Skip to content
Snippets Groups Projects
Commit 39fd4ff3 authored by Stefano Serafin's avatar Stefano Serafin
Browse files

minor cosmetics

parent 9c5b013a
No related branches found
No related tags found
No related merge requests found
......@@ -560,9 +560,9 @@ def plot_diagnostics(exp,show='errors',axes=None,label='',linecolor='blue',zmax=
if show=='errors' and truth_exists:
axes[0].plot(armse[idx],z[idx],label=label,color=linecolor)#,color=linecolors[i])
axes[1].plot(brmse[idx],z[idx],color=linecolor)
axes[2].plot(brmse[idx]-armse[idx],z[idx],color=linecolor)
axes[3].plot(np.sqrt(bsprd[idx]**2+sigma_o[idx]**2)/brmse[idx],z[idx],color=linecolor)
axes[1].plot(brmse[idx],z[idx],label=label,color=linecolor)
axes[2].plot(brmse[idx]-armse[idx],z[idx],label=label,color=linecolor)
axes[3].plot(np.sqrt(bsprd[idx]**2+sigma_o[idx]**2)/brmse[idx],z[idx],label=label,color=linecolor)
elif show=='deviations':
......@@ -571,9 +571,9 @@ def plot_diagnostics(exp,show='errors',axes=None,label='',linecolor='blue',zmax=
mean_bias_b_i1 = exp.dg.ominb.mean(axis=0)
# Plots
axes[0].plot(armsd[idx],z[idx],label=label,color=linecolor)
axes[1].plot(brmsd[idx],z[idx],color=linecolor)
axes[2].plot(brmsd[idx]-armsd[idx],z[idx],color=linecolor)
axes[3].plot(np.sqrt(bsprd[idx]**2+sigma_o[idx]**2)/brmsd[idx],z,color=linecolor)
axes[1].plot(brmsd[idx],z[idx],label=label,color=linecolor)
axes[2].plot(brmsd[idx]-armsd[idx],z[idx],label=label,color=linecolor)
axes[3].plot(np.sqrt(bsprd[idx]**2+sigma_o[idx]**2)/brmsd[idx],z,label=label,color=linecolor)
return axes
......@@ -672,15 +672,15 @@ def plot_desroziers(dgs,filename='desroziers_diagnostics.png',labels=None,logsca
# Two formulations of the same thing; they give the same numbers!
#ax1.scatter( dg.dobdob_ta-dg.mean_ominb**2 , dg.varo+dg.varb_ta , s=5, label = labels[i])
ax.scatter( np.mean(dg.sigma_ominb**2) , np.mean(dg.varo+dg.varb_ta) , s=13, label = labels[i],zorder=10, c=color, edgecolors='black')
ax.scatter( dg.sigma_ominb**2 , dg.varo+dg.varb_ta , s=5, alpha = 0.3, c=color, linewidths=0)
ax.scatter( dg.sigma_ominb**2 , dg.varo+dg.varb_ta , s=10, alpha = 0.3, c=color, linewidths=0)
else:
# Two formulations of the same thing; they give the same numbers!
#ax1.scatter( dg.dobdob_ta-dg.mean_ominb**2 , dg.varo+dg.varb_ta , s=5)
ax.scatter( np.mean(dg.sigma_ominb**2) , np.mean(dg.varo+dg.varb_ta) , s=13, zorder = 10)
ax.scatter( dg.sigma_ominb**2 , dg.varo+dg.varb_ta , s=5, alpha = 0.3) #
ax.scatter( dg.sigma_ominb**2 , dg.varo+dg.varb_ta , s=10, alpha = 0.3) #
#ax.set_title("Consistency of innovations",fontsize=8)
ax.set_xlabel(r'${\langle}\sigma_d^2{\rangle}$ (K)') # '${\langle}d_{ob}^2{\rangle}_t$'
ax.set_ylabel(r'$\sigma_{y_o}^2+{\langle}\sigma_{y_b}^2{\rangle}$ (K)')
ax.set_ylabel(r'$\sigma_{y^o}^2+{\langle}\sigma_{y^b}^2{\rangle}$ (K)')
if labels is not None:
ax.legend(frameon=False, fontsize=6, ncol=2)
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment