diff --git a/graphics.py b/graphics.py index aaefb23353f8a8ab3dcf6ce107aa9394019fc8b6..6408ec71910c0aced73106eb73af13f19da218f7 100644 --- a/graphics.py +++ b/graphics.py @@ -560,9 +560,9 @@ def plot_diagnostics(exp,show='errors',axes=None,label='',linecolor='blue',zmax= if show=='errors' and truth_exists: axes[0].plot(armse[idx],z[idx],label=label,color=linecolor)#,color=linecolors[i]) - axes[1].plot(brmse[idx],z[idx],color=linecolor) - axes[2].plot(brmse[idx]-armse[idx],z[idx],color=linecolor) - axes[3].plot(np.sqrt(bsprd[idx]**2+sigma_o[idx]**2)/brmse[idx],z[idx],color=linecolor) + axes[1].plot(brmse[idx],z[idx],label=label,color=linecolor) + axes[2].plot(brmse[idx]-armse[idx],z[idx],label=label,color=linecolor) + axes[3].plot(np.sqrt(bsprd[idx]**2+sigma_o[idx]**2)/brmse[idx],z[idx],label=label,color=linecolor) elif show=='deviations': @@ -571,9 +571,9 @@ def plot_diagnostics(exp,show='errors',axes=None,label='',linecolor='blue',zmax= mean_bias_b_i1 = exp.dg.ominb.mean(axis=0) # Plots axes[0].plot(armsd[idx],z[idx],label=label,color=linecolor) - axes[1].plot(brmsd[idx],z[idx],color=linecolor) - axes[2].plot(brmsd[idx]-armsd[idx],z[idx],color=linecolor) - axes[3].plot(np.sqrt(bsprd[idx]**2+sigma_o[idx]**2)/brmsd[idx],z,color=linecolor) + axes[1].plot(brmsd[idx],z[idx],label=label,color=linecolor) + axes[2].plot(brmsd[idx]-armsd[idx],z[idx],label=label,color=linecolor) + axes[3].plot(np.sqrt(bsprd[idx]**2+sigma_o[idx]**2)/brmsd[idx],z,label=label,color=linecolor) return axes @@ -672,15 +672,15 @@ def plot_desroziers(dgs,filename='desroziers_diagnostics.png',labels=None,logsca # Two formulations of the same thing; they give the same numbers! #ax1.scatter( dg.dobdob_ta-dg.mean_ominb**2 , dg.varo+dg.varb_ta , s=5, label = labels[i]) ax.scatter( np.mean(dg.sigma_ominb**2) , np.mean(dg.varo+dg.varb_ta) , s=13, label = labels[i],zorder=10, c=color, edgecolors='black') - ax.scatter( dg.sigma_ominb**2 , dg.varo+dg.varb_ta , s=5, alpha = 0.3, c=color, linewidths=0) + ax.scatter( dg.sigma_ominb**2 , dg.varo+dg.varb_ta , s=10, alpha = 0.3, c=color, linewidths=0) else: # Two formulations of the same thing; they give the same numbers! #ax1.scatter( dg.dobdob_ta-dg.mean_ominb**2 , dg.varo+dg.varb_ta , s=5) ax.scatter( np.mean(dg.sigma_ominb**2) , np.mean(dg.varo+dg.varb_ta) , s=13, zorder = 10) - ax.scatter( dg.sigma_ominb**2 , dg.varo+dg.varb_ta , s=5, alpha = 0.3) # + ax.scatter( dg.sigma_ominb**2 , dg.varo+dg.varb_ta , s=10, alpha = 0.3) # #ax.set_title("Consistency of innovations",fontsize=8) ax.set_xlabel(r'${\langle}\sigma_d^2{\rangle}$ (K)') # '${\langle}d_{ob}^2{\rangle}_t$' - ax.set_ylabel(r'$\sigma_{y_o}^2+{\langle}\sigma_{y_b}^2{\rangle}$ (K)') + ax.set_ylabel(r'$\sigma_{y^o}^2+{\langle}\sigma_{y^b}^2{\rangle}$ (K)') if labels is not None: ax.legend(frameon=False, fontsize=6, ncol=2)