Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
P
PE_CBL
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Deploy
Releases
Package registry
Model registry
Operate
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Stefano Serafin
PE_CBL
Commits
89522887
Commit
89522887
authored
10 months ago
by
Stefano Serafin
Browse files
Options
Downloads
Patches
Plain Diff
tweaks to figures; enabled storage of covariances/innovations/increments at runtime
parent
c3a57f03
Branches
Branches containing commit
Tags
Tags containing commit
No related merge requests found
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
PE_CBL.py
+80
-79
80 additions, 79 deletions
PE_CBL.py
with
80 additions
and
79 deletions
PE_CBL.py
+
80
−
79
View file @
89522887
...
...
@@ -71,6 +71,7 @@ if __name__ == '__main__':
# In case of parameter estimation
'
do_parameter_estimation
'
:
True
,
'
parameter_inflation_rtps_alpha
'
:
np
.
array
([
0.8
]),
'
return_covariances_increments_and_innovations
'
:
True
}
integration_dt
=
0.25
*
default_cbl_settings
[
"
dz
"
]
**
2
/
default_cbl_settings
[
"
Kmax
"
]
...
...
@@ -95,12 +96,12 @@ if __name__ == '__main__':
"
Assimilation interval must be an integer multiplier of model dt
"
# Decide what figures to plot
fig01
=
Tru
e
fig01
=
Fals
e
fig02
=
True
fig03
=
Tru
e
fig04
=
Tru
e
fig05
=
Tru
e
fig06
=
Tru
e
fig03
=
Fals
e
fig04
=
Fals
e
fig05
=
Fals
e
fig06
=
Fals
e
fig07
=
True
fig08
=
True
...
...
@@ -140,7 +141,10 @@ if __name__ == '__main__':
cbl_settings_A_noPE
[
'
do_parameter_estimation
'
]
=
False
da_settings_A_noPE
[
'
cbl_settings
'
]
=
cbl_settings_A_noPE
# Run and save to disk
# Run it
try
:
exp_A_noPE
=
pickle
.
load
(
open
(
"
exp_A_noPE.pickle
"
,
"
rb
"
))
except
:
exp_A_noPE
=
experiment
(
da_settings_A_noPE
)
pickle
.
dump
(
exp_A_noPE
,
open
(
'
exp_A_noPE.pickle
'
,
'
wb
'
))
...
...
@@ -182,15 +186,15 @@ if __name__ == '__main__':
# Make plots
ncont
=
13
fig
,
[
ax
1
,
ax2
,
ax3
]
=
p
.
subplots
(
1
,
3
,
constrained_layout
=
True
)
fig
.
set_size_inches
(
6
,
3
)
fig
,
[
[
ax
4
,
ax2
],[
ax1
,
ax3
]
]
=
p
.
subplots
(
2
,
2
,
constrained_layout
=
True
)
fig
.
set_size_inches
(
6
,
6
)
c1
=
ax1
.
pcolormesh
(
cbl_det
.
history
[
'
time
'
]
/
3600
,
cbl_det
.
zt
,
cbl_det
.
history
[
'
theta
'
],
vmin
=
290
,
vmax
=
296
)
ax1
.
set_ylim
([
0
,
zmax
])
ax1
.
set_ylabel
(
r
'
Height (m)
'
)
ax1
.
set_xlabel
(
r
'
Time (h)
'
)
ax1
.
set_xticks
(
np
.
arange
(
4
))
ax1
.
set_title
(
r
'
a
) $\theta$ (K)
'
)
ax1
.
set_title
(
r
'
c
) $\
overline{\
theta
}
$ (K)
'
)
p
.
colorbar
(
c1
,
orientation
=
'
horizontal
'
)
ax1
.
contour
(
cbl_det
.
history
[
'
time
'
]
/
3600
,
cbl_det
.
zt
,
cbl_det
.
history
[
'
theta
'
],
np
.
linspace
(
cbl_det
.
theta_0
,
cbl_det
.
theta_0
+
cbl_det
.
gamma
*
zmax
,
ncont
),
...
...
@@ -199,20 +203,32 @@ if __name__ == '__main__':
linewidths
=
0.75
)
ax2
=
plot_p
(
p_factors
,
theta_profiles
,
cbl_pf
.
zt
,
None
,
ax
=
ax2
)
ax2
.
set_xlabel
(
r
'
$\theta$ (K)
'
)
ax2
.
set_ylabel
(
r
'
Height (m)
'
)
ax2
.
set_xlabel
(
r
'
$\overline{\theta}$ (K)
'
)
ax2
.
set_xlim
([
291
,
297
])
ax2
.
set_ylim
([
0
,
zmax
])
ax2
.
legend
(
loc
=
4
,
frameon
=
False
)
ax2
.
set_title
(
r
'
b)
S
ensitivity to $p$
'
)
ax2
.
set_title
(
r
'
b)
$\overline{\theta}$ s
ensitivity to $p$
'
)
ax3
,
c3
=
plot_spread
(
cbl_free
,
ax
=
ax3
)
ax3
.
set_title
(
r
'
c) $\sigma_\theta$ (K)
'
)
ax3
.
set_ylabel
(
r
'
Height (m)
'
)
ax3
.
set_title
(
r
'
d) $\sigma_\theta$ (K)
'
)
ax3
.
set_xlabel
(
'
Time (h)
'
)
ax3
.
set_xticks
(
np
.
arange
(
4
))
p
.
colorbar
(
c3
,
orientation
=
'
horizontal
'
)
p
.
setp
(
ax2
.
get_yticklabels
(),
visible
=
False
)
p
.
setp
(
ax3
.
get_yticklabels
(),
visible
=
False
)
zoverh
=
np
.
linspace
(
0
,
1
,
101
)
for
pfac
in
p_factors
:
Koverkws
=
zoverh
*
(
1
-
zoverh
)
**
pfac
ax4
.
plot
(
Koverkws
,
zoverh
,
label
=
'
$p=%4.1f$
'
%
pfac
)
ax4
.
set_title
(
r
'
a) $K_h$ sensitivity to $p$
'
)
ax4
.
set_xlabel
(
'
$K_h/(\kappa w_s h)$
'
)
ax4
.
set_ylabel
(
'
$z/h$
'
)
ax4
.
set_xlim
([
0
,
0.5
])
ax4
.
legend
(
loc
=
4
,
frameon
=
False
)
#p.setp(ax2.get_yticklabels(), visible=False)
#p.setp(ax3.get_yticklabels(), visible=False)
fig
.
savefig
(
'
fig01.png
'
,
format
=
'
png
'
,
dpi
=
300
)
p
.
close
(
fig
)
...
...
@@ -223,13 +239,13 @@ if __name__ == '__main__':
fig
.
set_size_inches
(
6
,
6
)
#
[
ax0
,
ax1
,
ax2
],
c0
,
c1
,
c2
=
plot_CBL_identifiability
(
exp_A
,
da_settings_A
[
'
obs_error_sdev_assimilate
'
][
0
],
None
,
ax
=
[
ax0
,
ax1
,
ax2
])
ax0
.
set_title
(
r
'
a) Exp. A,
cov($p
,y_b}$)
(K)
'
)
ax0
.
set_title
(
r
'
a) Exp. A,
$\rho(p\prime\prime
,y_b}$)
'
)
ax0
.
set_xlabel
(
'
Time (h)
'
)
ax0
.
set_ylabel
(
'
Height (m)
'
)
ax1
.
set_title
(
r
'
b) Exp. A, $\
sigma^2_{y^b}}$ (K)
'
)
ax1
.
set_title
(
r
'
b) Exp. A, $\
delta y\cdot(\sigma_{p\prime\prime}/\sigma_{y^b})$
'
)
ax1
.
set_xlabel
(
'
Time (h)
'
)
ax1
.
set_ylabel
(
'
Height (m)
'
)
ax2
.
set_title
(
r
'
c) Exp. A, $
K_{p,y_b}$ (K$^{-1}$)
'
)
ax2
.
set_title
(
r
'
c) Exp. A, $
\delta p\prime\prime$
'
)
ax2
.
set_xlabel
(
'
Time (h)
'
)
ax2
.
set_ylabel
(
'
Height (m)
'
)
ax3
=
plot_CBL_PE
(
exp_A
,
None
,
ax
=
ax3
)
...
...
@@ -245,56 +261,14 @@ if __name__ == '__main__':
if
fig03
:
def
plotfig
(
exprange
,
filename
):
fig
,
[[
ax1
,
ax2
],[
ax3
,
ax4
]]
=
p
.
subplots
(
2
,
2
,
constrained_layout
=
True
)
fig
.
set_size_inches
(
6
,
4
)
z
=
exp_A
.
obs_coordinates
z_pbl
=
z
*
1.
z_pbl
[
z
>
1000
]
=
np
.
nan
for
i
in
exprange
:
i1
=
experiments_1
[
i
].
dg
i2
=
experiments_2
[
i
].
dg
ax1
.
plot
(
i1
.
aRMSE_t
,
z
,
label
=
labels
[
i
],
color
=
linecolors
[
i
])
ax1
.
plot
(
i2
.
aRMSE_t
,
z
,
color
=
linecolors
[
i
],
dashes
=
[
3
,
1
],
alpha
=
0.3
)
#
ax2
.
plot
(
i1
.
bRMSE_t
,
z
,
label
=
labels
[
i
],
color
=
linecolors
[
i
])
ax2
.
plot
(
i2
.
bRMSE_t
,
z
,
color
=
linecolors
[
i
],
dashes
=
[
3
,
1
],
alpha
=
0.3
)
#
ax3
.
plot
(
i1
.
bRMSE_t
-
i1
.
aRMSE_t
,
z
,
label
=
labels
[
i
],
color
=
linecolors
[
i
])
ax3
.
plot
(
i2
.
bRMSE_t
-
i2
.
aRMSE_t
,
z
,
color
=
linecolors
[
i
],
dashes
=
[
3
,
1
],
alpha
=
0.3
)
#
ax4
.
plot
(
i1
.
bSprd_t
/
i1
.
bRMSE_t
,
z_pbl
,
label
=
labels
[
i
],
color
=
linecolors
[
i
])
ax4
.
plot
(
i2
.
bSprd_t
/
i2
.
bRMSE_t
,
z_pbl
,
color
=
linecolors
[
i
],
dashes
=
[
3
,
1
],
alpha
=
0.3
)
ax1
.
set_title
(
'
a) Analysis error
'
)
ax1
.
set_xlabel
(
r
'
RMSE$^a_\theta$
'
)
ax2
.
set_title
(
'
b) First-guess error
'
)
ax2
.
set_xlabel
(
r
'
RMSE$^b_\theta$
'
)
ax3
.
set_title
(
'
c) Error reduction
'
)
ax3
.
set_xlabel
(
r
'
RMSE$^b_\theta-$RMSE$^a_\theta$
'
)
ax4
.
set_title
(
'
d) Spread-error consistency
'
)
ax4
.
set_xlabel
(
r
'
$\sigma^b_\theta$/RMSE$^b_\theta$
'
)
ax1
.
set_ylabel
(
'
height (m)
'
)
ax3
.
set_ylabel
(
'
height (m)
'
)
#
#ax2.legend(frameon=False)
ax4
.
axvline
(
x
=
1
,
color
=
'
k
'
,
linewidth
=
0.5
,
dashes
=
[
3
,
1
])
ax2
.
sharey
(
ax1
)
ax4
.
sharey
(
ax3
)
p
.
setp
(
ax2
.
get_yticklabels
(),
visible
=
False
)
p
.
setp
(
ax4
.
get_yticklabels
(),
visible
=
False
)
#
fig
.
savefig
(
filename
,
format
=
'
png
'
,
dpi
=
300
)
p
.
close
(
fig
)
exp_A
=
pickle
.
load
(
open
(
"
exp_A.pickle
"
,
"
rb
"
))
exp_A_noPE
=
pickle
.
load
(
open
(
"
exp_A_noPE.pickle
"
,
"
rb
"
))
experiments_
1
=
[
exp_A
]
experiments_
2
=
[
exp_A_noPE
]
experiments_
pe
=
[
exp_A
]
experiments_
nope
=
[
exp_A_noPE
]
labels
=
[
"
Exp. A
"
]
linecolors
=
p
.
rcParams
[
'
axes.prop_cycle
'
].
by_key
()[
'
color
'
]
plot
fig
(
range
(
1
),
'
fig03.png
'
)
plot
_diagnostics
(
experiments_pe
,
experiments_nope
,
labels
,
'
fig03.png
'
)
if
fig04
:
...
...
@@ -588,7 +562,7 @@ if __name__ == '__main__':
cbl_settings_D
[
'
Hmax
'
]
=
0.15
cbl_settings_D
[
'
is_cgrad
'
]
=
False
cbl_settings_D
[
'
simulate_error_growth
'
]
=
True
cbl_settings_D
[
'
error_growth_perturbations_amplitude
'
]
=
sigma_b_init
*
5
cbl_settings_D
[
'
error_growth_perturbations_amplitude
'
]
=
sigma_b_init
*
10
da_settings_D
[
'
cbl_settings
'
]
=
cbl_settings_D
da_settings_D
[
'
obs_error_sdev_generate
'
]
=
np
.
ones
(
nobs
)
*
sigma_o_as
*
5
da_settings_D
[
'
obs_error_sdev_assimilate
'
]
=
np
.
ones
(
nobs
)
*
sigma_o_as
*
10
...
...
@@ -598,29 +572,18 @@ if __name__ == '__main__':
setattr
(
exp_D
,
'
label
'
,
'
D
'
)
pickle
.
dump
(
exp_D
,
open
(
'
exp_D.pickle
'
,
'
wb
'
))
if
noPE_runs
:
# Corresponding experiment without parameter estimation
cbl_settings_D_noPE
=
dict
(
cbl_settings_D
)
da_settings_D_noPE
=
dict
(
da_settings_D
)
cbl_settings_D_noPE
[
'
do_parameter_estimation
'
]
=
False
da_settings_D_noPE
[
'
cbl_settings
'
]
=
cbl_settings_D_noPE
# Run and save to disk
exp_D_noPE
=
experiment
(
da_settings_D_noPE
)
pickle
.
dump
(
exp_D_noPE
,
open
(
'
exp_D_noPE.pickle
'
,
'
wb
'
))
# Make plots
fig
,
[[
ax0
,
ax1
],[
ax2
,
ax3
]]
=
p
.
subplots
(
2
,
2
,
constrained_layout
=
True
)
fig
.
set_size_inches
(
6
,
6
)
#
[
ax0
,
ax1
,
ax2
],
c0
,
c1
,
c2
=
plot_CBL_identifiability
(
exp_D
,
da_settings_D
[
'
obs_error_sdev_assimilate
'
][
0
],
None
,
ax
=
[
ax0
,
ax1
,
ax2
])
ax0
.
set_title
(
r
'
a) Exp. D,
cov($p
,y_b}$)
(K)
'
)
ax0
.
set_title
(
r
'
a) Exp. D,
$\rho(p\prime\prime
,y_b}$)
'
)
ax0
.
set_xlabel
(
'
Time (h)
'
)
ax0
.
set_ylabel
(
'
Height (m)
'
)
ax1
.
set_title
(
r
'
b) Exp. D, $\
sigma^2_{y^b}}$ (K)
'
)
ax1
.
set_title
(
r
'
b) Exp. D, $\
delta y\cdot(\sigma_{p\prime\prime}/\sigma_{y^b})$
'
)
ax1
.
set_xlabel
(
'
Time (h)
'
)
ax1
.
set_ylabel
(
'
Height (m)
'
)
ax2
.
set_title
(
r
'
c) Exp. D, $
K_{p,y_b}$ (K$^{-1}$)
'
)
ax2
.
set_title
(
r
'
c) Exp. D, $
\delta p\prime\prime$
'
)
ax2
.
set_xlabel
(
'
Time (h)
'
)
ax2
.
set_ylabel
(
'
Height (m)
'
)
ax3
=
plot_CBL_PE
(
exp_D
,
None
,
ax
=
ax3
)
...
...
@@ -635,6 +598,44 @@ if __name__ == '__main__':
fig
.
savefig
(
'
fig07.png
'
,
format
=
'
png
'
,
dpi
=
300
)
p
.
close
(
fig
)
if
fig08
:
# Create a copy of the default settings
cbl_settings_D
=
dict
(
default_cbl_settings
)
da_settings_D
=
dict
(
default_da_settings
)
# Change settings as necessary
# Changes include generation of observations, so the existing nature run
# can't be reused.
cbl_settings_D
[
'
initial_perturbed_parameters
'
]
=
exp_A
.
da
.
initial_perturbed_parameters
cbl_settings_D
[
'
perturbations_theta_amplitude
'
]
=
sigma_b_init
*
10
cbl_settings_D
[
'
Hmax
'
]
=
0.15
cbl_settings_D
[
'
is_cgrad
'
]
=
False
cbl_settings_D
[
'
simulate_error_growth
'
]
=
True
cbl_settings_D
[
'
error_growth_perturbations_amplitude
'
]
=
sigma_b_init
*
10
da_settings_D
[
'
cbl_settings
'
]
=
cbl_settings_D
da_settings_D
[
'
obs_error_sdev_generate
'
]
=
np
.
ones
(
nobs
)
*
sigma_o_as
*
10
da_settings_D
[
'
obs_error_sdev_assimilate
'
]
=
np
.
ones
(
nobs
)
*
sigma_o_as
*
10
# Experiment matching D, but without parameter estimation
cbl_settings_D_noPE
=
dict
(
cbl_settings_D
)
da_settings_D_noPE
=
dict
(
da_settings_D
)
cbl_settings_D_noPE
[
'
do_parameter_estimation
'
]
=
False
da_settings_D_noPE
[
'
cbl_settings
'
]
=
cbl_settings_D_noPE
exp_D
=
pickle
.
load
(
open
(
"
exp_D.pickle
"
,
"
rb
"
))
try
:
exp_D_noPE
=
pickle
.
load
(
open
(
"
exp_D_noPE.pickle
"
,
"
rb
"
))
except
:
exp_D_noPE
=
experiment
(
da_settings_D_noPE
)
pickle
.
dump
(
exp_A_noPE
,
open
(
'
exp_D_noPE.pickle
'
,
'
wb
'
))
experiments_pe
=
[
exp_D
]
experiments_nope
=
[
exp_D_noPE
]
labels
=
[
"
Exp. D
"
]
plot_diagnostics
(
experiments_pe
,
experiments_nope
,
labels
,
'
fig08.png
'
)
if
opt01
:
da_settings
=
{
'
cbl_settings
'
:
dict
(
default_cbl_settings
),
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment