Skip to content
Snippets Groups Projects
Commit e1469e00 authored by Ignacio Pisso's avatar Ignacio Pisso
Browse files

start tracking test environment directory FP_AI

git-svn-id: http://flexpart.flexpart.eu:8088/svn/FlexPart90/branches/FP_AI@23 ef8cc7e1-21b7-489e-abab-c1baa636049d
parents
No related branches found
No related tags found
No related merge requests found
Showing with 419 additions and 0 deletions
This diff is collapsed.
!**********************************************************************
! Copyright 1998,1999,2000,2001,2002,2005,2007,2008,2009,2010 *
! Andreas Stohl, Petra Seibert, A. Frank, Gerhard Wotawa, *
! Caroline Forster, Sabine Eckhardt, John Burkhart, Harald Sodemann *
! *
! This file is part of FLEXPART. *
! *
! FLEXPART is free software: you can redistribute it and/or modify *
! it under the terms of the GNU General Public License as published by*
! the Free Software Foundation, either version 3 of the License, or *
! (at your option) any later version. *
! *
! FLEXPART is distributed in the hope that it will be useful, *
! but WITHOUT ANY WARRANTY; without even the implied warranty of *
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
! GNU General Public License for more details. *
! *
! You should have received a copy of the GNU General Public License *
! along with FLEXPART. If not, see <http://www.gnu.org/licenses/>. *
!**********************************************************************
subroutine conccalc(itime,weight)
! i i
!*****************************************************************************
! *
! Calculation of the concentrations on a regular grid using volume *
! sampling *
! *
! Author: A. Stohl *
! *
! 24 May 1996 *
! *
! April 2000: Update to calculate age spectra *
! Bug fix to avoid negative conc. at the domain boundaries, *
! as suggested by Petra Seibert *
! *
! 2 July 2002: re-order if-statements in order to optimize CPU time *
! *
! *
!*****************************************************************************
! *
! Variables: *
! nspeciesdim = nspec for forward runs, 1 for backward runs *
! *
!*****************************************************************************
use unc_mod
use outg_mod
use par_mod
use com_mod
implicit none
integer :: itime,itage,i,ix,jy,ixp,jyp,kz,ks,n,nage
integer :: il,ind,indz,indzp,nrelpointer
real :: rddx,rddy,p1,p2,p3,p4,dz1,dz2,dz
real :: weight,hx,hy,hz,h,xd,yd,zd,xkern,r2,c(maxspec),ddx,ddy
real :: rhoprof(2),rhoi
real :: xl,yl,wx,wy,w
real,parameter :: factor=.596831, hxmax=6.0, hymax=4.0, hzmax=150.
! For forward simulations, make a loop over the number of species;
! for backward simulations, make an additional loop over the
! releasepoints
!***************************************************************************
do i=1,numpart
if (itra1(i).ne.itime) goto 20
! Determine age class of the particle
itage=abs(itra1(i)-itramem(i))
do nage=1,nageclass
if (itage.lt.lage(nage)) goto 33
end do
33 continue
! For special runs, interpolate the air density to the particle position
!************************************************************************
!***********************************************************************
!AF IND_SOURCE switches between different units for concentrations at the source
!Af NOTE that in backward simulations the release of particles takes place
!Af at the receptor and the sampling at the source.
!Af 1="mass"
!Af 2="mass mixing ratio"
!Af IND_RECEPTOR switches between different units for concentrations at the receptor
!Af 1="mass"
!Af 2="mass mixing ratio"
!Af switches for the conccalcfile:
!AF IND_SAMP = 0 : xmass * 1
!Af IND_SAMP = -1 : xmass / rho
!Af ind_samp is defined in readcommand.f
if ( ind_samp .eq. -1 ) then
ix=int(xtra1(i))
jy=int(ytra1(i))
ixp=ix+1
jyp=jy+1
ddx=xtra1(i)-real(ix)
ddy=ytra1(i)-real(jy)
rddx=1.-ddx
rddy=1.-ddy
p1=rddx*rddy
p2=ddx*rddy
p3=rddx*ddy
p4=ddx*ddy
do il=2,nz
if (height(il).gt.ztra1(i)) then
indz=il-1
indzp=il
goto 6
endif
end do
6 continue
dz1=ztra1(i)-height(indz)
dz2=height(indzp)-ztra1(i)
dz=1./(dz1+dz2)
! Take density from 2nd wind field in memory (accurate enough, no time interpolation needed)
!*****************************************************************************
do ind=indz,indzp
rhoprof(ind-indz+1)=p1*rho(ix ,jy ,ind,2) &
+p2*rho(ixp,jy ,ind,2) &
+p3*rho(ix ,jyp,ind,2) &
+p4*rho(ixp,jyp,ind,2)
end do
rhoi=(dz1*rhoprof(2)+dz2*rhoprof(1))*dz
elseif (ind_samp.eq.0) then
rhoi = 1.
endif
!****************************************************************************
! 1. Evaluate grid concentrations using a uniform kernel of bandwidths dx, dy
!****************************************************************************
! For backward simulations, look from which release point the particle comes from
! For domain-filling trajectory option, npoint contains a consecutive particle
! number, not the release point information. Therefore, nrelpointer is set to 1
! for the domain-filling option.
!*****************************************************************************
if ((ioutputforeachrelease.eq.0).or.(mdomainfill.eq.1)) then
nrelpointer=1
else
nrelpointer=npoint(i)
endif
do kz=1,numzgrid ! determine height of cell
if (outheight(kz).gt.ztra1(i)) goto 21
end do
21 continue
if (kz.le.numzgrid) then ! inside output domain
!********************************
! Do everything for mother domain
!********************************
xl=(xtra1(i)*dx+xoutshift)/dxout
yl=(ytra1(i)*dy+youtshift)/dyout
ix=int(xl)
if (xl.lt.0.) ix=ix-1
jy=int(yl)
if (yl.lt.0.) jy=jy-1
! if (i.eq.10000) write(*,*) itime,xtra1(i),ytra1(i),ztra1(i),xl,yl
! For particles aged less than 3 hours, attribute particle mass to grid cell
! it resides in rather than use the kernel, in order to avoid its smoothing effect.
! For older particles, use the uniform kernel.
! If a particle is close to the domain boundary, do not use the kernel either.
!*****************************************************************************
if ((itage.lt.10800).or.(xl.lt.0.5).or.(yl.lt.0.5).or. &
(xl.gt.real(numxgrid-1)-0.5).or. &
(yl.gt.real(numygrid-1)-0.5)) then ! no kernel, direct attribution to grid cell
if ((ix.ge.0).and.(jy.ge.0).and.(ix.le.numxgrid-1).and. &
(jy.le.numygrid-1)) then
do ks=1,nspec
gridunc(ix,jy,kz,ks,nrelpointer,nclass(i),nage)= &
gridunc(ix,jy,kz,ks,nrelpointer,nclass(i),nage)+ &
xmass1(i,ks)/rhoi*weight
end do
endif
else ! attribution via uniform kernel
ddx=xl-real(ix) ! distance to left cell border
ddy=yl-real(jy) ! distance to lower cell border
if (ddx.gt.0.5) then
ixp=ix+1
wx=1.5-ddx
else
ixp=ix-1
wx=0.5+ddx
endif
if (ddy.gt.0.5) then
jyp=jy+1
wy=1.5-ddy
else
jyp=jy-1
wy=0.5+ddy
endif
! Determine mass fractions for four grid points
!**********************************************
if ((ix.ge.0).and.(ix.le.numxgrid-1)) then
if ((jy.ge.0).and.(jy.le.numygrid-1)) then
w=wx*wy
do ks=1,nspec
gridunc(ix,jy,kz,ks,nrelpointer,nclass(i),nage)= &
gridunc(ix,jy,kz,ks,nrelpointer,nclass(i),nage)+ &
xmass1(i,ks)/rhoi*weight*w
end do
endif
if ((jyp.ge.0).and.(jyp.le.numygrid-1)) then
w=wx*(1.-wy)
do ks=1,nspec
gridunc(ix,jyp,kz,ks,nrelpointer,nclass(i),nage)= &
gridunc(ix,jyp,kz,ks,nrelpointer,nclass(i),nage)+ &
xmass1(i,ks)/rhoi*weight*w
end do
endif
endif
if ((ixp.ge.0).and.(ixp.le.numxgrid-1)) then
if ((jyp.ge.0).and.(jyp.le.numygrid-1)) then
w=(1.-wx)*(1.-wy)
do ks=1,nspec
gridunc(ixp,jyp,kz,ks,nrelpointer,nclass(i),nage)= &
gridunc(ixp,jyp,kz,ks,nrelpointer,nclass(i),nage)+ &
xmass1(i,ks)/rhoi*weight*w
end do
endif
if ((jy.ge.0).and.(jy.le.numygrid-1)) then
w=(1.-wx)*wy
do ks=1,nspec
gridunc(ixp,jy,kz,ks,nrelpointer,nclass(i),nage)= &
gridunc(ixp,jy,kz,ks,nrelpointer,nclass(i),nage)+ &
xmass1(i,ks)/rhoi*weight*w
end do
endif
endif
endif
!************************************
! Do everything for the nested domain
!************************************
if (nested_output.eq.1) then
xl=(xtra1(i)*dx+xoutshiftn)/dxoutn
yl=(ytra1(i)*dy+youtshiftn)/dyoutn
ix=int(xl)
if (xl.lt.0.) ix=ix-1
jy=int(yl)
if (yl.lt.0.) jy=jy-1
! For particles aged less than 3 hours, attribute particle mass to grid cell
! it resides in rather than use the kernel, in order to avoid its smoothing effect.
! For older particles, use the uniform kernel.
! If a particle is close to the domain boundary, do not use the kernel either.
!*****************************************************************************
if ((itage.lt.10800).or.(xl.lt.0.5).or.(yl.lt.0.5).or. &
(xl.gt.real(numxgridn-1)-0.5).or. &
(yl.gt.real(numygridn-1)-0.5)) then ! no kernel, direct attribution to grid cell
if ((ix.ge.0).and.(jy.ge.0).and.(ix.le.numxgridn-1).and. &
(jy.le.numygridn-1)) then
do ks=1,nspec
griduncn(ix,jy,kz,ks,nrelpointer,nclass(i),nage)= &
griduncn(ix,jy,kz,ks,nrelpointer,nclass(i),nage)+ &
xmass1(i,ks)/rhoi*weight
end do
endif
else ! attribution via uniform kernel
ddx=xl-real(ix) ! distance to left cell border
ddy=yl-real(jy) ! distance to lower cell border
if (ddx.gt.0.5) then
ixp=ix+1
wx=1.5-ddx
else
ixp=ix-1
wx=0.5+ddx
endif
if (ddy.gt.0.5) then
jyp=jy+1
wy=1.5-ddy
else
jyp=jy-1
wy=0.5+ddy
endif
! Determine mass fractions for four grid points
!**********************************************
if ((ix.ge.0).and.(ix.le.numxgridn-1)) then
if ((jy.ge.0).and.(jy.le.numygridn-1)) then
w=wx*wy
do ks=1,nspec
griduncn(ix,jy,kz,ks,nrelpointer,nclass(i),nage)= &
griduncn(ix,jy,kz,ks,nrelpointer,nclass(i),nage)+ &
xmass1(i,ks)/rhoi*weight*w
end do
endif
if ((jyp.ge.0).and.(jyp.le.numygridn-1)) then
w=wx*(1.-wy)
do ks=1,nspec
griduncn(ix,jyp,kz,ks,nrelpointer,nclass(i),nage)= &
griduncn(ix,jyp,kz,ks,nrelpointer,nclass(i),nage)+ &
xmass1(i,ks)/rhoi*weight*w
end do
endif
endif
if ((ixp.ge.0).and.(ixp.le.numxgridn-1)) then
if ((jyp.ge.0).and.(jyp.le.numygridn-1)) then
w=(1.-wx)*(1.-wy)
do ks=1,nspec
griduncn(ixp,jyp,kz,ks,nrelpointer,nclass(i),nage)= &
griduncn(ixp,jyp,kz,ks,nrelpointer,nclass(i),nage)+ &
xmass1(i,ks)/rhoi*weight*w
end do
endif
if ((jy.ge.0).and.(jy.le.numygridn-1)) then
w=(1.-wx)*wy
do ks=1,nspec
griduncn(ixp,jy,kz,ks,nrelpointer,nclass(i),nage)= &
griduncn(ixp,jy,kz,ks,nrelpointer,nclass(i),nage)+ &
xmass1(i,ks)/rhoi*weight*w
end do
endif
endif
endif
endif
endif
20 continue
end do
!***********************************************************************
! 2. Evaluate concentrations at receptor points, using the kernel method
!***********************************************************************
do n=1,numreceptor
! Reset concentrations
!*********************
do ks=1,nspec
c(ks)=0.
end do
! Estimate concentration at receptor
!***********************************
do i=1,numpart
if (itra1(i).ne.itime) goto 40
itage=abs(itra1(i)-itramem(i))
hz=min(50.+0.3*sqrt(real(itage)),hzmax)
zd=ztra1(i)/hz
if (zd.gt.1.) goto 40 ! save computing time, leave loop
hx=min((0.29+2.222e-3*sqrt(real(itage)))*dx+ &
real(itage)*1.2e-5,hxmax) ! 80 km/day
xd=(xtra1(i)-xreceptor(n))/hx
if (xd*xd.gt.1.) goto 40 ! save computing time, leave loop
hy=min((0.18+1.389e-3*sqrt(real(itage)))*dy+ &
real(itage)*7.5e-6,hymax) ! 80 km/day
yd=(ytra1(i)-yreceptor(n))/hy
if (yd*yd.gt.1.) goto 40 ! save computing time, leave loop
h=hx*hy*hz
r2=xd*xd+yd*yd+zd*zd
if (r2.lt.1.) then
xkern=factor*(1.-r2)
do ks=1,nspec
c(ks)=c(ks)+xmass1(i,ks)*xkern/h
end do
endif
40 continue
end do
do ks=1,nspec
creceptor(n,ks)=creceptor(n,ks)+2.*weight*c(ks)/receptorarea(n)
end do
end do
end subroutine conccalc
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment