Skip to content
Snippets Groups Projects
Select Git revision
  • 8b0ce6591edc0d989fca4d702085d0ea6f09f416
  • consistent_config default protected
2 results

gen_synth_obs.py

Blame
  • gen_synth_obs.py 6.66 KiB
    import os, sys, shutil
    import datetime as dt
    import numpy as np
    from scipy.interpolate import interp1d
    from config.cfg import exp, cluster
    from utils import symlink, copy, sed_inplace, append_file
    import create_obsseq as osq
    
    earth_radius_km = 6370
    
    # fit of Fig 7, Harnisch 2016
    x_ci = [0,   5, 10.5, 13, 16]
    y_oe = [1, 4.5,   10, 12, 13]  # Kelvin
    oe_73_linear = interp1d(x_ci, y_oe, assume_sorted=True)
    
    def oe_73(ci):
        if ci < 13:
            return oe_73_linear(ci)
        else:
            return 16.
    
    def cloudimpact_73(bt_mod, bt_obs):
        """
        follows Harnisch 2016
        """
        biascor_obs = 0
        bt_lim = 255  # Kelvin for 7.3 micron WV channel
    
        ci_obs = max(0, bt_lim-(bt_obs - biascor_obs))
        ci_mod = max(0, bt_lim-bt_mod)
        ci = (ci_obs+ci_mod)/2
        return ci
    
    def read_prior_obs(f_obs_prior):
        """
        docstring
        """
        obsseq = open(f_obs_prior, 'r').readlines()
        OBSs = []
        # read observations from obs_seq.final
        for i, line in enumerate(obsseq):
            if ' OBS ' in line:
                observed = float(obsseq[i+1].strip())
                truth = float(obsseq[i+2].strip())
                prior_ensmean = float(obsseq[i+3].strip())
                prior_enssd = float(obsseq[i+4].strip())
                prior_ens = []
                for j in range(5, 5+exp.n_ens):
                    prior_ens.append(float(obsseq[i+j].strip()))
    
                OBSs.append(dict(observed=observed, truth=truth, prior_ens=np.array(prior_ens)))
        return OBSs
    
    def edit_obserr_in_obsseq(fpath_obsseqin, OEs):
        """
        overwrite observation errors in a obs_seq.out file
        according to the values in OEs
        """
        # write to txt (write whole obs_seq.out again)
        obsseq = open(fpath_obsseqin, 'r').readlines()
        obsseq_new = obsseq.copy()
        i_obs = 0
        for i, line in enumerate(obsseq):
            if 'kind\n' in line:
                i_line_oe = i+9  # 9 for satellite obs
                obsseq_new[i_line_oe] = ' '+str(OEs[i_obs])+'   \n'
                i_obs += 1
    
        os.rename(fpath_obsseqin, fpath_obsseqin+'-bak')  # backup
        # write cloud dependent errors (actually whole file)
        with open(fpath_obsseqin, 'w') as f:
            for line in obsseq_new:
                f.write(line)
    
    def set_input_nml(sat_channel=False, just_prior_values=False,
                      cov_loc_radius_km=32):
        """descr"""
        if just_prior_values:
            template = cluster.scriptsdir+'/../templates/input.prioronly.nml'
        else:
            template = cluster.scriptsdir+'/../templates/input.nml'
        copy(template, cluster.dartrundir+'/input.nml')
        sed_inplace(cluster.dartrundir+'/input.nml', '<n_ens>', str(int(exp.n_ens)))
        cov_loc_radian = cov_loc_radius_km/earth_radius_km
        sed_inplace(cluster.dartrundir+'/input.nml', '<cov_loc_radian>', str(cov_loc_radian))
    
        # input.nml for RTTOV
        if sat_channel > 0:
            if sat_channel in [1, 2, 3, 12]:
                rttov_nml = cluster.scriptsdir+'/../templates/obs_def_rttov.VIS.nml'
            else:
                rttov_nml = cluster.scriptsdir+'/../templates/obs_def_rttov.IR.nml'
            append_file(cluster.dartrundir+'/input.nml', rttov_nml)
    
    
    if __name__ == "__main__":
    
        time = dt.datetime.strptime(sys.argv[1], '%Y-%m-%d_%H:%M')
        fpath_obs_coords = cluster.archivedir()+time.strftime('/%Y-%m-%d_%H:%M/obs_coords.pkl')
    
        # remove any existing observation files
        os.system('rm -f '+cluster.dartrundir+'/obs_seq_*.out')
    
        # loop over observation types
        for i_obs, obscfg in enumerate(exp.observations):
    
            n_obs = obscfg['n_obs']
            error_var = (obscfg['err_std'])**2
            sat_channel = obscfg.get('channel', False)
            cov_loc = obscfg['cov_loc_radius_km']
            dist_obs = obscfg.get('distance_between_obs_km', False)
    
            # generate obs_seq.in
            obs_coords = osq.calc_obs_locations(n_obs, coords_from_domaincenter=False, 
                                                distance_between_obs_km=dist_obs, 
                                                fpath_obs_locations=fpath_obs_coords)
    
            if obscfg['sat']:
                osq.sat(time, sat_channel, obs_coords, error_var,
                        output_path=cluster.dartrundir)
            else:
                osq.generic_obs(obscfg['kind'], time, obs_coords, error_var,
                                output_path=cluster.dartrundir)
    
            if not os.path.exists(cluster.dartrundir+'/obs_seq.in'):
                raise RuntimeError('obs_seq.in does not exist in '+cluster.dartrundir)
    
            # generate observations (obs_seq.out)
            set_input_nml(sat_channel=sat_channel, cov_loc_radius_km=cov_loc)
            os.chdir(cluster.dartrundir)
            t = dt.datetime.now()
            os.system('mpirun -np 12 ./perfect_model_obs')
            print('1st perfect_model_obs', (dt.datetime.now()-t).total_seconds())
    
            # cloud dependent observation error
            if obscfg['sat']:
                if sat_channel == 6:
                    # run ./filter to have prior observation estimates from model state
                    set_input_nml(sat_channel=sat_channel, just_prior_values=True)
                    t = dt.datetime.now()
                    os.system('mv obs_seq.out obs_seq_all.out; mpirun -np 20 ./filter')
                    print('1st filter', (dt.datetime.now()-t).total_seconds())
    
                    # find the observation error for a pair of (H(x_nature), H(x_background))
                    f_obs_prior = cluster.dartrundir+'/obs_seq.final'
                    OBSs = read_prior_obs(f_obs_prior)
    
                    # compute the observation error necessary
                    # to achieve a certain operational FGD distribution
                    OEs = []
                    for obs in OBSs:
                        bt_y = obs['truth']
                        bt_x_ens = obs['prior_ens']
                        CIs = [cloudimpact_73(bt_x, bt_y) for bt_x in bt_x_ens]
    
                        oe_nature = oe_73(np.mean(CIs))
                        OEs.append(oe_nature)
    
                    # write obs_seq.out
                    fpath_obsseqout = cluster.dartrundir+'/obs_seq.in'
                    edit_obserr_in_obsseq(fpath_obsseqout, OEs)
    
                    # generate actual observations (with correct error)
                    os.chdir(cluster.dartrundir)
                    t = dt.datetime.now()
                    os.system('mpirun -np 12 ./perfect_model_obs')
                    print('real obs gen', (dt.datetime.now()-t).total_seconds())
    
                    # correct input.nml for actual assimilation later on
                    set_input_nml(sat_channel=sat_channel,
                                  cov_loc_radius_km=cov_loc)
    
            # rename according to i_obs
            os.rename(cluster.dartrundir+'/obs_seq.out', 
                      cluster.dartrundir+'/obs_seq_'+str(i_obs)+'.out')
    
        # concatenate the created obs_seq_*.out files
        os.chdir(cluster.dartrundir)
        os.system('cat obs_seq_*.out >> obs_seq_all.out')
    
        print(dt.datetime.now())