Select Git revision
gen_synth_obs.py
gen_synth_obs.py 6.66 KiB
import os, sys, shutil
import datetime as dt
import numpy as np
from scipy.interpolate import interp1d
from config.cfg import exp, cluster
from utils import symlink, copy, sed_inplace, append_file
import create_obsseq as osq
earth_radius_km = 6370
# fit of Fig 7, Harnisch 2016
x_ci = [0, 5, 10.5, 13, 16]
y_oe = [1, 4.5, 10, 12, 13] # Kelvin
oe_73_linear = interp1d(x_ci, y_oe, assume_sorted=True)
def oe_73(ci):
if ci < 13:
return oe_73_linear(ci)
else:
return 16.
def cloudimpact_73(bt_mod, bt_obs):
"""
follows Harnisch 2016
"""
biascor_obs = 0
bt_lim = 255 # Kelvin for 7.3 micron WV channel
ci_obs = max(0, bt_lim-(bt_obs - biascor_obs))
ci_mod = max(0, bt_lim-bt_mod)
ci = (ci_obs+ci_mod)/2
return ci
def read_prior_obs(f_obs_prior):
"""
docstring
"""
obsseq = open(f_obs_prior, 'r').readlines()
OBSs = []
# read observations from obs_seq.final
for i, line in enumerate(obsseq):
if ' OBS ' in line:
observed = float(obsseq[i+1].strip())
truth = float(obsseq[i+2].strip())
prior_ensmean = float(obsseq[i+3].strip())
prior_enssd = float(obsseq[i+4].strip())
prior_ens = []
for j in range(5, 5+exp.n_ens):
prior_ens.append(float(obsseq[i+j].strip()))
OBSs.append(dict(observed=observed, truth=truth, prior_ens=np.array(prior_ens)))
return OBSs
def edit_obserr_in_obsseq(fpath_obsseqin, OEs):
"""
overwrite observation errors in a obs_seq.out file
according to the values in OEs
"""
# write to txt (write whole obs_seq.out again)
obsseq = open(fpath_obsseqin, 'r').readlines()
obsseq_new = obsseq.copy()
i_obs = 0
for i, line in enumerate(obsseq):
if 'kind\n' in line:
i_line_oe = i+9 # 9 for satellite obs
obsseq_new[i_line_oe] = ' '+str(OEs[i_obs])+' \n'
i_obs += 1
os.rename(fpath_obsseqin, fpath_obsseqin+'-bak') # backup
# write cloud dependent errors (actually whole file)
with open(fpath_obsseqin, 'w') as f:
for line in obsseq_new:
f.write(line)
def set_input_nml(sat_channel=False, just_prior_values=False,
cov_loc_radius_km=32):
"""descr"""
if just_prior_values:
template = cluster.scriptsdir+'/../templates/input.prioronly.nml'
else:
template = cluster.scriptsdir+'/../templates/input.nml'
copy(template, cluster.dartrundir+'/input.nml')
sed_inplace(cluster.dartrundir+'/input.nml', '<n_ens>', str(int(exp.n_ens)))
cov_loc_radian = cov_loc_radius_km/earth_radius_km
sed_inplace(cluster.dartrundir+'/input.nml', '<cov_loc_radian>', str(cov_loc_radian))
# input.nml for RTTOV
if sat_channel > 0:
if sat_channel in [1, 2, 3, 12]:
rttov_nml = cluster.scriptsdir+'/../templates/obs_def_rttov.VIS.nml'
else:
rttov_nml = cluster.scriptsdir+'/../templates/obs_def_rttov.IR.nml'
append_file(cluster.dartrundir+'/input.nml', rttov_nml)
if __name__ == "__main__":
time = dt.datetime.strptime(sys.argv[1], '%Y-%m-%d_%H:%M')
fpath_obs_coords = cluster.archivedir()+time.strftime('/%Y-%m-%d_%H:%M/obs_coords.pkl')
# remove any existing observation files
os.system('rm -f '+cluster.dartrundir+'/obs_seq_*.out')
# loop over observation types
for i_obs, obscfg in enumerate(exp.observations):
n_obs = obscfg['n_obs']
error_var = (obscfg['err_std'])**2
sat_channel = obscfg.get('channel', False)
cov_loc = obscfg['cov_loc_radius_km']
dist_obs = obscfg.get('distance_between_obs_km', False)
# generate obs_seq.in
obs_coords = osq.calc_obs_locations(n_obs, coords_from_domaincenter=False,
distance_between_obs_km=dist_obs,
fpath_obs_locations=fpath_obs_coords)
if obscfg['sat']:
osq.sat(time, sat_channel, obs_coords, error_var,
output_path=cluster.dartrundir)
else:
osq.generic_obs(obscfg['kind'], time, obs_coords, error_var,
output_path=cluster.dartrundir)
if not os.path.exists(cluster.dartrundir+'/obs_seq.in'):
raise RuntimeError('obs_seq.in does not exist in '+cluster.dartrundir)
# generate observations (obs_seq.out)
set_input_nml(sat_channel=sat_channel, cov_loc_radius_km=cov_loc)
os.chdir(cluster.dartrundir)
t = dt.datetime.now()
os.system('mpirun -np 12 ./perfect_model_obs')
print('1st perfect_model_obs', (dt.datetime.now()-t).total_seconds())
# cloud dependent observation error
if obscfg['sat']:
if sat_channel == 6:
# run ./filter to have prior observation estimates from model state
set_input_nml(sat_channel=sat_channel, just_prior_values=True)
t = dt.datetime.now()
os.system('mv obs_seq.out obs_seq_all.out; mpirun -np 20 ./filter')
print('1st filter', (dt.datetime.now()-t).total_seconds())
# find the observation error for a pair of (H(x_nature), H(x_background))
f_obs_prior = cluster.dartrundir+'/obs_seq.final'
OBSs = read_prior_obs(f_obs_prior)
# compute the observation error necessary
# to achieve a certain operational FGD distribution
OEs = []
for obs in OBSs:
bt_y = obs['truth']
bt_x_ens = obs['prior_ens']
CIs = [cloudimpact_73(bt_x, bt_y) for bt_x in bt_x_ens]
oe_nature = oe_73(np.mean(CIs))
OEs.append(oe_nature)
# write obs_seq.out
fpath_obsseqout = cluster.dartrundir+'/obs_seq.in'
edit_obserr_in_obsseq(fpath_obsseqout, OEs)
# generate actual observations (with correct error)
os.chdir(cluster.dartrundir)
t = dt.datetime.now()
os.system('mpirun -np 12 ./perfect_model_obs')
print('real obs gen', (dt.datetime.now()-t).total_seconds())
# correct input.nml for actual assimilation later on
set_input_nml(sat_channel=sat_channel,
cov_loc_radius_km=cov_loc)
# rename according to i_obs
os.rename(cluster.dartrundir+'/obs_seq.out',
cluster.dartrundir+'/obs_seq_'+str(i_obs)+'.out')
# concatenate the created obs_seq_*.out files
os.chdir(cluster.dartrundir)
os.system('cat obs_seq_*.out >> obs_seq_all.out')
print(dt.datetime.now())