Skip to content
Snippets Groups Projects
Commit ffe2970d authored by lkugler's avatar lkugler
Browse files

obs QC

parent 65ff868e
No related branches found
No related tags found
No related merge requests found
......@@ -311,7 +311,7 @@ def calc_obserr_WV73(Hx_nature, Hx_prior):
OEs[iobs] = oe_model
return OEs
def run_perfect_model_obs(nproc=6):
def run_perfect_model_obs(nproc=12):
print("generating observations - running ./perfect_model_obs")
os.chdir(cluster.dartrundir)
......@@ -325,7 +325,7 @@ def run_perfect_model_obs(nproc=6):
"\n look for " + cluster.dartrundir + "/log.perfect_model_obs")
def assimilate(nproc=12):
def assimilate(nproc=48):
print("time now", dt.datetime.now())
print("running filter")
os.chdir(cluster.dartrundir)
......@@ -493,26 +493,42 @@ def qc_obs(oso, outfile='./obs_seq.out'):
# creates obs_seq.final containing truth & prior Hx
osf = run_Hx(time, obscfg)
df_final = osf.df
#from IPython import embed; embed()
obs = oso.df.observations.values
n_obs_orig = len(obs)
if obscfg.get("sat_channel") == 1:
print('removing obs with abs(FGD) smaller than prior ens spread')
Hx_prior = df_final.get_prior_Hx().T
Hx_prior_mean = np.mean(Hx_prior, axis=0)
#Hx_prior_spread = df_final['prior ensemble spread'].values
Hx_prior_spread = df_final['prior ensemble spread'].values
#Hx_prior_spread[Hx_prior_spread < 1e-9] = 1e-9
obs = oso.df.observations.values
n_obs_orig = len(obs)
obs_dist_to_priormean = abs(obs - Hx_prior_mean) # /Hx_prior_spread
oso.df = oso.df[obs_dist_to_priormean > 0.1]
print('removed', n_obs_orig-len(oso.df), 'observations with fgd smaller than .1')
abs_FGD = abs(obs - Hx_prior_mean) # /Hx_prior_spread
oso.df = oso.df[abs_FGD > Hx_prior_spread]
# obs_dist_to_priormean = abs(obs - Hx_prior_mean)
# oso.df = oso.df[obs_dist_to_priormean > 5]
# print('removed', n_obs_orig-len(oso.df), 'observations with abs(FGD) smaller than 5')
elif obscfg.get("sat_channel") == 6: # WV73
print('removing obs with abs(FGD) smaller than 5')
obs = oso.df.observations.values
n_obs_orig = len(obs)
Hx_prior = df_final.get_prior_Hx().T
Hx_prior_mean = np.mean(Hx_prior, axis=0)
abs_FGD = abs(obs - Hx_prior_mean) # /Hx_prior_spread
oso.df = oso.df[abs_FGD > 5]
else:
raise NotImplementedError('no obs QC implemented for this obs type')
print('QC removed', n_obs_orig-len(oso.df), 'observations')
oso.to_dart(outfile)
print('saved', outfile)
if __name__ == "__main__":
"""Assimilate observations
as defined in config/cfg.py
......@@ -569,8 +585,12 @@ if __name__ == "__main__":
# oso = obsseq.ObsSeq(cluster.dartrundir + "/obs_seq.out")
oso.df = oso.df[oso.df['truth'].values < 6]
oso.to_dart(f=cluster.dartrundir + "/obs_seq.out")
if False: # set reflectance < surface albedo to surface albedo
oso.df.loc[oso.df['observations'].values < 0.293, ('observations')] = 0.293
if True: # set reflectance < surface albedo to surface albedo
if_vis_obs = oso.df['kind'].values == 262
if_obs_below_surface_albedo = oso.df['observations'].values < 0.2928
oso.df.loc[if_vis_obs & if_obs_below_surface_albedo, ('observations')] = 0.2928
oso.to_dart(f=cluster.dartrundir + "/obs_seq.out")
if hasattr(exp, "superob_km"):
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment