Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
D
DART-WRF
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Deploy
Releases
Package registry
Model registry
Operate
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
DataAssimilation
DART-WRF
Commits
4d74d07f
Commit
4d74d07f
authored
2 years ago
by
lkugler
Browse files
Options
Downloads
Patches
Plain Diff
add superob for multiple obs layers
parent
cfef202d
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
dartwrf/obsseq.py
+98
-88
98 additions, 88 deletions
dartwrf/obsseq.py
with
98 additions
and
88 deletions
dartwrf/obsseq.py
+
98
−
88
View file @
4d74d07f
...
@@ -124,20 +124,11 @@ class ObsRecord(pd.DataFrame):
...
@@ -124,20 +124,11 @@ class ObsRecord(pd.DataFrame):
return
pd
.
DataFrame
(
index
=
self
.
index
,
data
=
dict
(
lat
=
lats
,
lon
=
lons
))
return
pd
.
DataFrame
(
index
=
self
.
index
,
data
=
dict
(
lat
=
lats
,
lon
=
lons
))
def
get_from_cartesian_grid
(
self
,
i
,
j
):
def
get_from_cartesian_grid
(
self
,
i
,
j
,
k
):
"""
Get the observation using cartesian grid indices (ix, iy)
"""
Get the observation using cartesian grid indices (ix, iy
, iz
)
"""
"""
# indices of observations (starting from 0)
i_obs_grid
=
self
.
index
.
values
# number of obs in one direction
nx
=
int
(
len
(
i_obs_grid
)
**
0.5
)
# indices to the pandas.DataFrame
i_obs_grid
=
i_obs_grid
.
reshape
(
nx
,
nx
)
# find indices of observations within pandas.DataFrame
# find indices of observations within pandas.DataFrame
return
self
.
iloc
[
i_obs_grid
[
i
,
j
].
ravel
()]
return
self
.
iloc
[
self
.
i_obs_grid
[
i
,
j
,
k
].
ravel
()]
def
superob
(
self
,
window_km
):
def
superob
(
self
,
window_km
):
"""
Select subset, average, overwrite existing obs with average
"""
Select subset, average, overwrite existing obs with average
...
@@ -156,11 +147,6 @@ class ObsRecord(pd.DataFrame):
...
@@ -156,11 +147,6 @@ class ObsRecord(pd.DataFrame):
25x25 km with 5 km obs density
25x25 km with 5 km obs density
= average 5 x 5 observations
= average 5 x 5 observations
"""
"""
debug
=
False
radius_earth_meters
=
6.371
*
1e6
m_per_degrees
=
np
.
pi
*
radius_earth_meters
/
180
# m per degree latitude
km_per_degrees
=
m_per_degrees
/
1000
def
calc_deg_from_km
(
distance_km
,
center_lat
):
def
calc_deg_from_km
(
distance_km
,
center_lat
):
"""
Approximately calculate distance in degrees from meters
"""
Approximately calculate distance in degrees from meters
Input: distance in km; degree latitude
Input: distance in km; degree latitude
...
@@ -176,16 +162,11 @@ class ObsRecord(pd.DataFrame):
...
@@ -176,16 +162,11 @@ class ObsRecord(pd.DataFrame):
dist_km_lon
=
deg_lon
*
km_per_degrees
*
np
.
cos
(
center_lat
*
np
.
pi
/
180
)
dist_km_lon
=
deg_lon
*
km_per_degrees
*
np
.
cos
(
center_lat
*
np
.
pi
/
180
)
return
dist_km_lat
,
dist_km_lon
return
dist_km_lat
,
dist_km_lon
# indices of observations (starting from 0)
i_obs_grid
=
self
.
index
.
values
# get the observation indices on a cartesian grid (ix, iy)
nx
=
int
(
len
(
i_obs_grid
)
**
0.5
)
i_obs_grid
=
i_obs_grid
.
reshape
(
nx
,
nx
)
# loop through columns/rows
debug
=
False
# avoid loop in (lat,lon) space as coordinates are non-cartesian
radius_earth_meters
=
6.371
*
1e6
# i.e. first column of observations has different longitudes!
m_per_degrees
=
np
.
pi
*
radius_earth_meters
/
180
# m per degree latitude
km_per_degrees
=
m_per_degrees
/
1000
# determine obs density (approx)
# determine obs density (approx)
# TODO: error prone section
# TODO: error prone section
...
@@ -203,79 +184,108 @@ class ObsRecord(pd.DataFrame):
...
@@ -203,79 +184,108 @@ class ObsRecord(pd.DataFrame):
print
(
'
obs spacing=
'
,
obs_spacing_km
)
print
(
'
obs spacing=
'
,
obs_spacing_km
)
print
(
"
window (#obs in x/y)=
"
,
win_obs
)
print
(
"
window (#obs in x/y)=
"
,
win_obs
)
# superob in case of multiple layers, only implemented for single obstype
nlayers
=
1
if
len
(
exp
.
observations
)
==
1
:
obscfg
=
exp
.
observations
[
0
]
if
'
heights
'
in
obscfg
:
nlayers
=
len
(
obscfg
[
'
heights
'
])
self
.
nlayers
=
nlayers
i_obs_grid
=
self
.
index
.
values
# indices of observations (starting from 0)
# get the observation indices from obs_seq (list)
# onto a cartesian grid (ix, iy, iz)
gridpoints_per_layer
=
len
(
i_obs_grid
)
/
nlayers
nx
=
int
(
gridpoints_per_layer
**
0.5
)
self
.
nx
=
nx
i_obs_grid
=
i_obs_grid
.
reshape
(
nx
,
nx
,
nlayers
)
self
.
i_obs_grid
=
i_obs_grid
# loop through columns/rows
# avoid loop in (lat,lon) space as coordinates are non-cartesian
# i.e. first column of observations has different longitudes!
out
=
self
.
drop
(
self
.
index
)
# this df will be filled
out
=
self
.
drop
(
self
.
index
)
# this df will be filled
boxes
=
[]
boxes
=
[]
for
i
in
range
(
0
,
nx
+
1
-
win_obs
,
win_obs
):
for
i
in
range
(
0
,
nx
+
1
-
win_obs
,
win_obs
):
for
j
in
range
(
0
,
nx
+
1
-
win_obs
,
win_obs
):
for
j
in
range
(
0
,
nx
+
1
-
win_obs
,
win_obs
):
for
k
in
range
(
0
,
nlayers
):
# find indices of observations within superob window
if
debug
:
print
(
i
,
j
,
k
)
i_obs_box
=
i_obs_grid
[
i
:
i
+
win_obs
,
j
:
j
+
win_obs
].
ravel
()
# find indices of observations within superob window
if
debug
:
# i_obs_box = i_obs_grid[i : i + win_obs, j : j + win_obs, k].ravel()
print
(
"
index x from
"
,
i
,
'
to
'
,
i
+
win_obs
)
print
(
"
index y from
"
,
j
,
'
to
'
,
j
+
win_obs
)
if
debug
:
print
(
"
obs indices box=
"
,
i_obs_grid
[
i
:
i
+
win_obs
,
j
:
j
+
win_obs
])
print
(
"
index x from
"
,
i
,
'
to
'
,
i
+
win_obs
)
print
(
"
index y from
"
,
j
,
'
to
'
,
j
+
win_obs
)
# find observations within superob window
print
(
"
obs indices box=
"
,
i_obs_grid
[
i
:
i
+
win_obs
,
j
:
j
+
win_obs
,
k
])
obs_box
=
self
.
get_from_cartesian_grid
(
slice
(
i
,
i
+
win_obs
),
slice
(
j
,
j
+
win_obs
))
# find observations within superob window
# from IPython import embed; embed()
obs_box
=
self
.
get_from_cartesian_grid
(
slice
(
i
,
i
+
win_obs
),
# save boundary of box to list, for plotting later
slice
(
j
,
j
+
win_obs
),
eps
=
dx_obs_lat_deg
/
2
# for plotting
k
)
eps2
=
eps
*
0.8
# for plotting
lat1
,
lon1
=
self
.
get_from_cartesian_grid
(
i
,
j
).
get_lon_lat
().
values
[
0
]
lat2
,
lon2
=
self
.
get_from_cartesian_grid
(
i
+
win_obs
-
1
,
j
).
get_lon_lat
().
values
[
0
]
# save boundary of box to list, for plotting later
lat3
,
lon3
=
self
.
get_from_cartesian_grid
(
i
,
j
+
win_obs
-
1
).
get_lon_lat
().
values
[
0
]
eps
=
dx_obs_lat_deg
/
2
# for plotting
lat4
,
lon4
=
self
.
get_from_cartesian_grid
(
i
+
win_obs
-
1
,
j
+
win_obs
-
1
).
get_lon_lat
().
values
[
0
]
eps2
=
eps
*
0.8
# for plotting
lat1
,
lon1
=
self
.
get_from_cartesian_grid
(
i
,
j
,
k
).
get_lon_lat
().
values
[
0
]
boxes
.
append
(([
lat1
-
eps2
,
lat2
+
eps2
,
lat3
-
eps2
,
lat4
+
eps2
],
lat2
,
lon2
=
self
.
get_from_cartesian_grid
(
i
+
win_obs
-
1
,
j
,
k
).
get_lon_lat
().
values
[
0
]
[
lon1
-
eps
,
lon2
-
eps
,
lon3
+
eps
,
lon4
+
eps
]))
lat3
,
lon3
=
self
.
get_from_cartesian_grid
(
i
,
j
+
win_obs
-
1
,
k
).
get_lon_lat
().
values
[
0
]
lat4
,
lon4
=
self
.
get_from_cartesian_grid
(
i
+
win_obs
-
1
,
j
+
win_obs
-
1
,
k
).
get_lon_lat
().
values
[
0
]
# average the subset
# metadata are assumed to be equal
boxes
.
append
(([
lat1
-
eps2
,
lat2
+
eps2
,
lat3
-
eps2
,
lat4
+
eps2
],
obs_mean
=
obs_box
.
iloc
[
0
]
[
lon1
-
eps
,
lon2
-
eps
,
lon3
+
eps
,
lon4
+
eps
]))
# average spread and other values
# average the subset
for
key
in
obs_box
:
# metadata are assumed to be equal
if
key
in
[
'
loc3d
'
,
'
kind
'
,
'
metadata
'
,
'
time
'
]:
obs_mean
=
obs_box
.
iloc
[
0
]
pass
elif
'
spread
'
in
key
:
# average spread and other values
# stdev of mean of values = sqrt(mean of variances)
for
key
in
obs_box
:
obs_mean
.
at
[
key
]
=
np
.
sqrt
((
obs_box
[
key
]
**
2
).
mean
())
if
key
in
[
'
loc3d
'
,
'
kind
'
,
'
metadata
'
,
'
time
'
]:
elif
key
==
'
variance
'
:
pass
# variance of mean = sum(variances)/n^2
elif
'
spread
'
in
key
:
obs_mean
.
at
[
key
]
=
obs_box
[
key
].
sum
()
/
obs_box
[
key
].
size
**
2
# stdev of mean of values = sqrt(mean of variances)
obs_mean
.
at
[
key
]
=
np
.
sqrt
((
obs_box
[
key
]
**
2
).
mean
())
elif
key
==
'
variance
'
:
# variance of mean = sum(variances)/n^2
obs_mean
.
at
[
key
]
=
obs_box
[
key
].
sum
()
/
obs_box
[
key
].
size
**
2
else
:
obs_mean
.
at
[
key
]
=
obs_box
[
key
].
mean
()
# define location of superobservation
if
win_obs
%
2
==
0
:
# even number of observations in x-direction
# there is no center obs
raise
NotImplementedError
()
else
:
else
:
obs_mean
.
at
[
key
]
=
obs_box
[
key
].
mean
()
# odd number of observations in x-direction
# -> there is an observation in the middle
# define location of superobservation
# take the location of that obs
if
win_obs
%
2
==
0
:
# int(win_obs/2) is the index of the center element when indices start at 0
# even number of observations in x-direction
i_obs_center
=
i_obs_grid
[
i
+
int
(
win_obs
/
2
),
j
+
int
(
win_obs
/
2
),
k
]
# there is no center obs
obs_mean
.
at
[
'
loc3d
'
]
=
self
.
iloc
[
i_obs_center
][
'
loc3d
'
]
raise
NotImplementedError
()
else
:
# check if all obs share the same vertical position
# odd number of observations in x-direction
heights_in_box
=
np
.
array
([
a
[
2
]
for
a
in
obs_box
[
'
loc3d
'
]])
# -> there is an observation in the middle
assert
np
.
allclose
(
heights_in_box
,
obs_mean
[
'
loc3d
'
][
2
])
# take the location of that obs
# int(win_obs/2) is the index of the center element when indices start at 0
if
debug
:
i_obs_center
=
i_obs_grid
[
i
+
int
(
win_obs
/
2
),
print
(
"
pre_avg:
"
,
obs_box
.
head
())
j
+
int
(
win_obs
/
2
)]
print
(
"
avg:
"
,
obs_mean
)
obs_mean
.
at
[
'
loc3d
'
]
=
self
.
iloc
[
i_obs_center
][
'
loc3d
'
]
out
=
out
.
append
(
obs_mean
)
if
debug
:
print
(
"
pre_avg:
"
,
obs_box
.
head
())
print
(
"
avg:
"
,
obs_mean
)
out
=
out
.
append
(
obs_mean
)
n_pre_superob
=
len
(
self
)
n_pre_superob
=
len
(
self
)
n_post_superob
=
len
(
out
)
n_post_superob
=
len
(
out
)
out
.
attrs
[
'
boxes
'
]
=
boxes
out
.
attrs
[
'
boxes
'
]
=
boxes
#
assume square of obs
#
quick after check - does the output obs number match with the expected number?
n_windows_x
=
int
(
n_pre_superob
**
.
5
/
win_obs
)
#
in x-direction
n_windows_x
=
int
(
(
n_pre_superob
/
nlayers
)
**
.
5
/
win_obs
)
#
assume square of obs
n_target_post
=
n_windows_x
**
2
# number of windows
n_target_post
=
n_windows_x
**
2
*
nlayers
# number of windows
print
(
'
superob from
'
,
n_pre_superob
,
'
obs to
'
,
n_post_superob
,
'
obs
'
)
print
(
'
superob from
'
,
n_pre_superob
,
'
obs to
'
,
n_post_superob
,
'
obs
'
)
if
n_post_superob
!=
n_target_post
:
if
n_post_superob
!=
n_target_post
:
raise
RuntimeError
(
'
expected
'
,
n_target_post
,
'
superobservations, but created
'
,
raise
RuntimeError
(
'
expected
'
,
n_target_post
,
'
superobservations, but created
'
,
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment