From 91515f4273f46e37f188fca97d6b0c1ec6310adf Mon Sep 17 00:00:00 2001
From: voigta80 <aiko.voigt@univie.ac.at>
Date: Thu, 27 Mar 2025 22:11:34 +0000
Subject: [PATCH] Updates boundary data script

---
 prep-bc-4-iconesm/bc-from-icon-ngc4008.ipynb | 11261 +----------------
 1 file changed, 258 insertions(+), 11003 deletions(-)

diff --git a/prep-bc-4-iconesm/bc-from-icon-ngc4008.ipynb b/prep-bc-4-iconesm/bc-from-icon-ngc4008.ipynb
index a46e7e9..8815b7b 100644
--- a/prep-bc-4-iconesm/bc-from-icon-ngc4008.ipynb
+++ b/prep-bc-4-iconesm/bc-from-icon-ngc4008.ipynb
@@ -7,10890 +7,68 @@
    "source": [
     "# Prepare boundary conditions for ICON ESM from nextGEMS data\n",
     "\n",
-    "We need sst and sea ice cover."
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "id": "4dc8fe11-d0e4-4d46-9568-1af7e147fd9b",
-   "metadata": {},
-   "source": [
-    "On Teachinghub, use the MagicPy Kernel."
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 1,
-   "id": "cb932c48-e396-4bfd-beb1-a7a2a16cf393",
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "import intake\n",
-    "import cartopy.crs as ccrs\n",
-    "import cartopy.feature as cf\n",
-    "import cmocean\n",
-    "import healpy as hp\n",
-    "import matplotlib.pyplot as plt\n",
-    "import numpy as np\n",
-    "import dask\n",
-    "import zarr\n",
-    "import easygems\n",
-    "import easygems.healpix as egh\n",
-    "import xarray as xr"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "id": "e61a8fba-237b-423f-9492-59c76fd4fbaf",
-   "metadata": {},
-   "source": [
-    "Load simulation data from publicly available cloud. The number in front of \".zarr\" is the zoom level. A higher zoom level leads to much larger data. Zoom levels 0 to 9 are available."
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 108,
-   "id": "c71c9d41-1d62-4a0a-92db-58041a61fc90",
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "icon = xr.open_zarr(\"https://s3.eu-dkrz-1.dkrz.cloud/nextgems/rechunked_ngc4008/ngc4008_P1D_7.zarr\")"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 109,
-   "id": "55f9f513-6aea-4e58-be64-ba0ffc026603",
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "icon_r2b4_grid = (\"icon_grid_0013_R02B04_G.nc\")"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 110,
-   "id": "2768cc09-0bd4-445c-9dd8-4ea22af7f99e",
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "text/html": [
-       "<div><svg style=\"position: absolute; width: 0; height: 0; overflow: hidden\">\n",
-       "<defs>\n",
-       "<symbol id=\"icon-database\" viewBox=\"0 0 32 32\">\n",
-       "<path d=\"M16 0c-8.837 0-16 2.239-16 5v4c0 2.761 7.163 5 16 5s16-2.239 16-5v-4c0-2.761-7.163-5-16-5z\"></path>\n",
-       "<path d=\"M16 17c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
-       "<path d=\"M16 26c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
-       "</symbol>\n",
-       "<symbol id=\"icon-file-text2\" viewBox=\"0 0 32 32\">\n",
-       "<path d=\"M28.681 7.159c-0.694-0.947-1.662-2.053-2.724-3.116s-2.169-2.030-3.116-2.724c-1.612-1.182-2.393-1.319-2.841-1.319h-15.5c-1.378 0-2.5 1.121-2.5 2.5v27c0 1.378 1.122 2.5 2.5 2.5h23c1.378 0 2.5-1.122 2.5-2.5v-19.5c0-0.448-0.137-1.23-1.319-2.841zM24.543 5.457c0.959 0.959 1.712 1.825 2.268 2.543h-4.811v-4.811c0.718 0.556 1.584 1.309 2.543 2.268zM28 29.5c0 0.271-0.229 0.5-0.5 0.5h-23c-0.271 0-0.5-0.229-0.5-0.5v-27c0-0.271 0.229-0.5 0.5-0.5 0 0 15.499-0 15.5 0v7c0 0.552 0.448 1 1 1h7v19.5z\"></path>\n",
-       "<path d=\"M23 26h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
-       "<path d=\"M23 22h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
-       "<path d=\"M23 18h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
-       "</symbol>\n",
-       "</defs>\n",
-       "</svg>\n",
-       "<style>/* CSS stylesheet for displaying xarray objects in jupyterlab.\n",
-       " *\n",
-       " */\n",
-       "\n",
-       ":root {\n",
-       "  --xr-font-color0: var(--jp-content-font-color0, rgba(0, 0, 0, 1));\n",
-       "  --xr-font-color2: var(--jp-content-font-color2, rgba(0, 0, 0, 0.54));\n",
-       "  --xr-font-color3: var(--jp-content-font-color3, rgba(0, 0, 0, 0.38));\n",
-       "  --xr-border-color: var(--jp-border-color2, #e0e0e0);\n",
-       "  --xr-disabled-color: var(--jp-layout-color3, #bdbdbd);\n",
-       "  --xr-background-color: var(--jp-layout-color0, white);\n",
-       "  --xr-background-color-row-even: var(--jp-layout-color1, white);\n",
-       "  --xr-background-color-row-odd: var(--jp-layout-color2, #eeeeee);\n",
-       "}\n",
-       "\n",
-       "html[theme=dark],\n",
-       "body[data-theme=dark],\n",
-       "body.vscode-dark {\n",
-       "  --xr-font-color0: rgba(255, 255, 255, 1);\n",
-       "  --xr-font-color2: rgba(255, 255, 255, 0.54);\n",
-       "  --xr-font-color3: rgba(255, 255, 255, 0.38);\n",
-       "  --xr-border-color: #1F1F1F;\n",
-       "  --xr-disabled-color: #515151;\n",
-       "  --xr-background-color: #111111;\n",
-       "  --xr-background-color-row-even: #111111;\n",
-       "  --xr-background-color-row-odd: #313131;\n",
-       "}\n",
-       "\n",
-       ".xr-wrap {\n",
-       "  display: block !important;\n",
-       "  min-width: 300px;\n",
-       "  max-width: 700px;\n",
-       "}\n",
-       "\n",
-       ".xr-text-repr-fallback {\n",
-       "  /* fallback to plain text repr when CSS is not injected (untrusted notebook) */\n",
-       "  display: none;\n",
-       "}\n",
-       "\n",
-       ".xr-header {\n",
-       "  padding-top: 6px;\n",
-       "  padding-bottom: 6px;\n",
-       "  margin-bottom: 4px;\n",
-       "  border-bottom: solid 1px var(--xr-border-color);\n",
-       "}\n",
-       "\n",
-       ".xr-header > div,\n",
-       ".xr-header > ul {\n",
-       "  display: inline;\n",
-       "  margin-top: 0;\n",
-       "  margin-bottom: 0;\n",
-       "}\n",
-       "\n",
-       ".xr-obj-type,\n",
-       ".xr-array-name {\n",
-       "  margin-left: 2px;\n",
-       "  margin-right: 10px;\n",
-       "}\n",
-       "\n",
-       ".xr-obj-type {\n",
-       "  color: var(--xr-font-color2);\n",
-       "}\n",
-       "\n",
-       ".xr-sections {\n",
-       "  padding-left: 0 !important;\n",
-       "  display: grid;\n",
-       "  grid-template-columns: 150px auto auto 1fr 20px 20px;\n",
-       "}\n",
-       "\n",
-       ".xr-section-item {\n",
-       "  display: contents;\n",
-       "}\n",
-       "\n",
-       ".xr-section-item input {\n",
-       "  display: none;\n",
-       "}\n",
-       "\n",
-       ".xr-section-item input + label {\n",
-       "  color: var(--xr-disabled-color);\n",
-       "}\n",
-       "\n",
-       ".xr-section-item input:enabled + label {\n",
-       "  cursor: pointer;\n",
-       "  color: var(--xr-font-color2);\n",
-       "}\n",
-       "\n",
-       ".xr-section-item input:enabled + label:hover {\n",
-       "  color: var(--xr-font-color0);\n",
-       "}\n",
-       "\n",
-       ".xr-section-summary {\n",
-       "  grid-column: 1;\n",
-       "  color: var(--xr-font-color2);\n",
-       "  font-weight: 500;\n",
-       "}\n",
-       "\n",
-       ".xr-section-summary > span {\n",
-       "  display: inline-block;\n",
-       "  padding-left: 0.5em;\n",
-       "}\n",
-       "\n",
-       ".xr-section-summary-in:disabled + label {\n",
-       "  color: var(--xr-font-color2);\n",
-       "}\n",
-       "\n",
-       ".xr-section-summary-in + label:before {\n",
-       "  display: inline-block;\n",
-       "  content: '►';\n",
-       "  font-size: 11px;\n",
-       "  width: 15px;\n",
-       "  text-align: center;\n",
-       "}\n",
-       "\n",
-       ".xr-section-summary-in:disabled + label:before {\n",
-       "  color: var(--xr-disabled-color);\n",
-       "}\n",
-       "\n",
-       ".xr-section-summary-in:checked + label:before {\n",
-       "  content: '▼';\n",
-       "}\n",
-       "\n",
-       ".xr-section-summary-in:checked + label > span {\n",
-       "  display: none;\n",
-       "}\n",
-       "\n",
-       ".xr-section-summary,\n",
-       ".xr-section-inline-details {\n",
-       "  padding-top: 4px;\n",
-       "  padding-bottom: 4px;\n",
-       "}\n",
-       "\n",
-       ".xr-section-inline-details {\n",
-       "  grid-column: 2 / -1;\n",
-       "}\n",
-       "\n",
-       ".xr-section-details {\n",
-       "  display: none;\n",
-       "  grid-column: 1 / -1;\n",
-       "  margin-bottom: 5px;\n",
-       "}\n",
-       "\n",
-       ".xr-section-summary-in:checked ~ .xr-section-details {\n",
-       "  display: contents;\n",
-       "}\n",
-       "\n",
-       ".xr-array-wrap {\n",
-       "  grid-column: 1 / -1;\n",
-       "  display: grid;\n",
-       "  grid-template-columns: 20px auto;\n",
-       "}\n",
-       "\n",
-       ".xr-array-wrap > label {\n",
-       "  grid-column: 1;\n",
-       "  vertical-align: top;\n",
-       "}\n",
-       "\n",
-       ".xr-preview {\n",
-       "  color: var(--xr-font-color3);\n",
-       "}\n",
-       "\n",
-       ".xr-array-preview,\n",
-       ".xr-array-data {\n",
-       "  padding: 0 5px !important;\n",
-       "  grid-column: 2;\n",
-       "}\n",
-       "\n",
-       ".xr-array-data,\n",
-       ".xr-array-in:checked ~ .xr-array-preview {\n",
-       "  display: none;\n",
-       "}\n",
-       "\n",
-       ".xr-array-in:checked ~ .xr-array-data,\n",
-       ".xr-array-preview {\n",
-       "  display: inline-block;\n",
-       "}\n",
-       "\n",
-       ".xr-dim-list {\n",
-       "  display: inline-block !important;\n",
-       "  list-style: none;\n",
-       "  padding: 0 !important;\n",
-       "  margin: 0;\n",
-       "}\n",
-       "\n",
-       ".xr-dim-list li {\n",
-       "  display: inline-block;\n",
-       "  padding: 0;\n",
-       "  margin: 0;\n",
-       "}\n",
-       "\n",
-       ".xr-dim-list:before {\n",
-       "  content: '(';\n",
-       "}\n",
-       "\n",
-       ".xr-dim-list:after {\n",
-       "  content: ')';\n",
-       "}\n",
-       "\n",
-       ".xr-dim-list li:not(:last-child):after {\n",
-       "  content: ',';\n",
-       "  padding-right: 5px;\n",
-       "}\n",
-       "\n",
-       ".xr-has-index {\n",
-       "  font-weight: bold;\n",
-       "}\n",
-       "\n",
-       ".xr-var-list,\n",
-       ".xr-var-item {\n",
-       "  display: contents;\n",
-       "}\n",
-       "\n",
-       ".xr-var-item > div,\n",
-       ".xr-var-item label,\n",
-       ".xr-var-item > .xr-var-name span {\n",
-       "  background-color: var(--xr-background-color-row-even);\n",
-       "  margin-bottom: 0;\n",
-       "}\n",
-       "\n",
-       ".xr-var-item > .xr-var-name:hover span {\n",
-       "  padding-right: 5px;\n",
-       "}\n",
-       "\n",
-       ".xr-var-list > li:nth-child(odd) > div,\n",
-       ".xr-var-list > li:nth-child(odd) > label,\n",
-       ".xr-var-list > li:nth-child(odd) > .xr-var-name span {\n",
-       "  background-color: var(--xr-background-color-row-odd);\n",
-       "}\n",
-       "\n",
-       ".xr-var-name {\n",
-       "  grid-column: 1;\n",
-       "}\n",
-       "\n",
-       ".xr-var-dims {\n",
-       "  grid-column: 2;\n",
-       "}\n",
-       "\n",
-       ".xr-var-dtype {\n",
-       "  grid-column: 3;\n",
-       "  text-align: right;\n",
-       "  color: var(--xr-font-color2);\n",
-       "}\n",
-       "\n",
-       ".xr-var-preview {\n",
-       "  grid-column: 4;\n",
-       "}\n",
-       "\n",
-       ".xr-index-preview {\n",
-       "  grid-column: 2 / 5;\n",
-       "  color: var(--xr-font-color2);\n",
-       "}\n",
-       "\n",
-       ".xr-var-name,\n",
-       ".xr-var-dims,\n",
-       ".xr-var-dtype,\n",
-       ".xr-preview,\n",
-       ".xr-attrs dt {\n",
-       "  white-space: nowrap;\n",
-       "  overflow: hidden;\n",
-       "  text-overflow: ellipsis;\n",
-       "  padding-right: 10px;\n",
-       "}\n",
-       "\n",
-       ".xr-var-name:hover,\n",
-       ".xr-var-dims:hover,\n",
-       ".xr-var-dtype:hover,\n",
-       ".xr-attrs dt:hover {\n",
-       "  overflow: visible;\n",
-       "  width: auto;\n",
-       "  z-index: 1;\n",
-       "}\n",
-       "\n",
-       ".xr-var-attrs,\n",
-       ".xr-var-data,\n",
-       ".xr-index-data {\n",
-       "  display: none;\n",
-       "  background-color: var(--xr-background-color) !important;\n",
-       "  padding-bottom: 5px !important;\n",
-       "}\n",
-       "\n",
-       ".xr-var-attrs-in:checked ~ .xr-var-attrs,\n",
-       ".xr-var-data-in:checked ~ .xr-var-data,\n",
-       ".xr-index-data-in:checked ~ .xr-index-data {\n",
-       "  display: block;\n",
-       "}\n",
-       "\n",
-       ".xr-var-data > table {\n",
-       "  float: right;\n",
-       "}\n",
-       "\n",
-       ".xr-var-name span,\n",
-       ".xr-var-data,\n",
-       ".xr-index-name div,\n",
-       ".xr-index-data,\n",
-       ".xr-attrs {\n",
-       "  padding-left: 25px !important;\n",
-       "}\n",
-       "\n",
-       ".xr-attrs,\n",
-       ".xr-var-attrs,\n",
-       ".xr-var-data,\n",
-       ".xr-index-data {\n",
-       "  grid-column: 1 / -1;\n",
-       "}\n",
-       "\n",
-       "dl.xr-attrs {\n",
-       "  padding: 0;\n",
-       "  margin: 0;\n",
-       "  display: grid;\n",
-       "  grid-template-columns: 125px auto;\n",
-       "}\n",
-       "\n",
-       ".xr-attrs dt,\n",
-       ".xr-attrs dd {\n",
-       "  padding: 0;\n",
-       "  margin: 0;\n",
-       "  float: left;\n",
-       "  padding-right: 10px;\n",
-       "  width: auto;\n",
-       "}\n",
-       "\n",
-       ".xr-attrs dt {\n",
-       "  font-weight: normal;\n",
-       "  grid-column: 1;\n",
-       "}\n",
-       "\n",
-       ".xr-attrs dt:hover span {\n",
-       "  display: inline-block;\n",
-       "  background: var(--xr-background-color);\n",
-       "  padding-right: 10px;\n",
-       "}\n",
-       "\n",
-       ".xr-attrs dd {\n",
-       "  grid-column: 2;\n",
-       "  white-space: pre-wrap;\n",
-       "  word-break: break-all;\n",
-       "}\n",
-       "\n",
-       ".xr-icon-database,\n",
-       ".xr-icon-file-text2,\n",
-       ".xr-no-icon {\n",
-       "  display: inline-block;\n",
-       "  vertical-align: middle;\n",
-       "  width: 1em;\n",
-       "  height: 1.5em !important;\n",
-       "  stroke-width: 0;\n",
-       "  stroke: currentColor;\n",
-       "  fill: currentColor;\n",
-       "}\n",
-       "</style><pre class='xr-text-repr-fallback'>&lt;xarray.Dataset&gt; Size: 14TB\n",
-       "Dimensions:                              (time: 10958, depth_half: 73,\n",
-       "                                          cell: 196608, level_full: 90, crs: 1,\n",
-       "                                          depth_full: 72,\n",
-       "                                          soil_depth_water_level: 5,\n",
-       "                                          level_half: 91,\n",
-       "                                          soil_depth_energy_level: 5)\n",
-       "Coordinates:\n",
-       "  * crs                                  (crs) float32 4B nan\n",
-       "  * depth_full                           (depth_full) float32 288B 1.0 ... 5....\n",
-       "  * depth_half                           (depth_half) float32 292B 0.0 ... 5....\n",
-       "  * level_full                           (level_full) int32 360B 1 2 3 ... 89 90\n",
-       "  * level_half                           (level_half) int32 364B 1 2 3 ... 90 91\n",
-       "  * soil_depth_energy_level              (soil_depth_energy_level) float32 20B ...\n",
-       "  * soil_depth_water_level               (soil_depth_water_level) float32 20B ...\n",
-       "  * time                                 (time) datetime64[ns] 88kB 2020-01-0...\n",
-       "Dimensions without coordinates: cell\n",
-       "Data variables: (12/103)\n",
-       "    A_tracer_v_to                        (time, depth_half, cell) float32 629GB dask.array&lt;chunksize=(7, 11, 49152), meta=np.ndarray&gt;\n",
-       "    FrshFlux_IceSalt                     (time, cell) float32 9GB dask.array&lt;chunksize=(90, 49152), meta=np.ndarray&gt;\n",
-       "    FrshFlux_TotalIce                    (time, cell) float32 9GB dask.array&lt;chunksize=(90, 49152), meta=np.ndarray&gt;\n",
-       "    Qbot                                 (time, cell) float32 9GB dask.array&lt;chunksize=(90, 49152), meta=np.ndarray&gt;\n",
-       "    Qtop                                 (time, cell) float32 9GB dask.array&lt;chunksize=(90, 49152), meta=np.ndarray&gt;\n",
-       "    Wind_Speed_10m                       (time, cell) float32 9GB dask.array&lt;chunksize=(90, 49152), meta=np.ndarray&gt;\n",
-       "    ...                                   ...\n",
-       "    vas                                  (time, cell) float32 9GB dask.array&lt;chunksize=(90, 49152), meta=np.ndarray&gt;\n",
-       "    w                                    (time, depth_half, cell) float32 629GB dask.array&lt;chunksize=(7, 9, 49152), meta=np.ndarray&gt;\n",
-       "    wa_phy                               (time, level_half, cell) float32 784GB dask.array&lt;chunksize=(7, 13, 49152), meta=np.ndarray&gt;\n",
-       "    zg                                   (level_full, cell) float32 71MB dask.array&lt;chunksize=(90, 49152), meta=np.ndarray&gt;\n",
-       "    zghalf                               (level_half, cell) float32 72MB dask.array&lt;chunksize=(91, 49152), meta=np.ndarray&gt;\n",
-       "    zos                                  (time, cell) float32 9GB dask.array&lt;chunksize=(90, 49152), meta=np.ndarray&gt;</pre><div class='xr-wrap' style='display:none'><div class='xr-header'><div class='xr-obj-type'>xarray.Dataset</div></div><ul class='xr-sections'><li class='xr-section-item'><input id='section-81363457-6db3-4669-ac60-b2d248e0f6c2' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-81363457-6db3-4669-ac60-b2d248e0f6c2' class='xr-section-summary'  title='Expand/collapse section'>Dimensions:</label><div class='xr-section-inline-details'><ul class='xr-dim-list'><li><span class='xr-has-index'>time</span>: 10958</li><li><span class='xr-has-index'>depth_half</span>: 73</li><li><span>cell</span>: 196608</li><li><span class='xr-has-index'>level_full</span>: 90</li><li><span class='xr-has-index'>crs</span>: 1</li><li><span class='xr-has-index'>depth_full</span>: 72</li><li><span class='xr-has-index'>soil_depth_water_level</span>: 5</li><li><span class='xr-has-index'>level_half</span>: 91</li><li><span class='xr-has-index'>soil_depth_energy_level</span>: 5</li></ul></div><div class='xr-section-details'></div></li><li class='xr-section-item'><input id='section-05c54c7b-fae3-4aaa-abaa-b13583feb5c8' class='xr-section-summary-in' type='checkbox'  checked><label for='section-05c54c7b-fae3-4aaa-abaa-b13583feb5c8' class='xr-section-summary' >Coordinates: <span>(8)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>crs</span></div><div class='xr-var-dims'>(crs)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>nan</div><input id='attrs-2fe40aaf-26c6-4842-a1fc-69a8bce42b79' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-2fe40aaf-26c6-4842-a1fc-69a8bce42b79' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-47d29018-97d5-4ba0-b165-4ef6d311ff1e' class='xr-var-data-in' type='checkbox'><label for='data-47d29018-97d5-4ba0-b165-4ef6d311ff1e' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>grid_mapping_name :</span></dt><dd>healpix</dd><dt><span>healpix_nside :</span></dt><dd>128</dd><dt><span>healpix_order :</span></dt><dd>nest</dd></dl></div><div class='xr-var-data'><pre>array([nan], dtype=float32)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>depth_full</span></div><div class='xr-var-dims'>(depth_full)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>1.0 3.1 ... 5.546e+03 5.816e+03</div><input id='attrs-6aad469e-c1ef-431a-89a2-0d04ab929a59' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-6aad469e-c1ef-431a-89a2-0d04ab929a59' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-c48d7cb6-4f18-4c62-ba15-c1c78d1d7e0d' class='xr-var-data-in' type='checkbox'><label for='data-c48d7cb6-4f18-4c62-ba15-c1c78d1d7e0d' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>axis :</span></dt><dd>Z</dd><dt><span>long_name :</span></dt><dd>depth_below_sea</dd><dt><span>positive :</span></dt><dd>down</dd><dt><span>standard_name :</span></dt><dd>depth</dd><dt><span>units :</span></dt><dd>m</dd></dl></div><div class='xr-var-data'><pre>array([1.00000e+00, 3.10000e+00, 5.45000e+00, 8.10000e+00, 1.10500e+01,\n",
-       "       1.43500e+01, 1.80500e+01, 2.22000e+01, 2.68500e+01, 3.20000e+01,\n",
-       "       3.76500e+01, 4.38000e+01, 5.05500e+01, 5.79500e+01, 6.60000e+01,\n",
-       "       7.48000e+01, 8.44500e+01, 9.50000e+01, 1.06500e+02, 1.19100e+02,\n",
-       "       1.32900e+02, 1.47950e+02, 1.64350e+02, 1.82250e+02, 2.01800e+02,\n",
-       "       2.23150e+02, 2.46450e+02, 2.71850e+02, 2.99550e+02, 3.29750e+02,\n",
-       "       3.62650e+02, 3.98450e+02, 4.37400e+02, 4.79250e+02, 5.23450e+02,\n",
-       "       5.69500e+02, 6.17100e+02, 6.66300e+02, 7.17150e+02, 7.69700e+02,\n",
-       "       8.24000e+02, 8.80100e+02, 9.38050e+02, 9.97900e+02, 1.05975e+03,\n",
-       "       1.12450e+03, 1.19410e+03, 1.27070e+03, 1.35630e+03, 1.45170e+03,\n",
-       "       1.55680e+03, 1.67195e+03, 1.79645e+03, 1.92950e+03, 2.07140e+03,\n",
-       "       2.22245e+03, 2.38290e+03, 2.55290e+03, 2.73250e+03, 2.92175e+03,\n",
-       "       3.12060e+03, 3.32885e+03, 3.54625e+03, 3.77245e+03, 4.00695e+03,\n",
-       "       4.24915e+03, 4.49830e+03, 4.75355e+03, 5.01400e+03, 5.27860e+03,\n",
-       "       5.54625e+03, 5.81575e+03], dtype=float32)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>depth_half</span></div><div class='xr-var-dims'>(depth_half)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>0.0 2.0 4.2 ... 5.681e+03 5.951e+03</div><input id='attrs-248034d6-0b12-436d-9f7f-456334f3fb77' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-248034d6-0b12-436d-9f7f-456334f3fb77' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-0e24816e-7e2d-48fd-ab59-1f4f6f36ae0f' class='xr-var-data-in' type='checkbox'><label for='data-0e24816e-7e2d-48fd-ab59-1f4f6f36ae0f' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>axis :</span></dt><dd>Z</dd><dt><span>long_name :</span></dt><dd>depth_below_sea</dd><dt><span>positive :</span></dt><dd>down</dd><dt><span>standard_name :</span></dt><dd>depth</dd><dt><span>units :</span></dt><dd>m</dd></dl></div><div class='xr-var-data'><pre>array([0.0000e+00, 2.0000e+00, 4.2000e+00, 6.7000e+00, 9.5000e+00, 1.2600e+01,\n",
-       "       1.6100e+01, 2.0000e+01, 2.4400e+01, 2.9300e+01, 3.4700e+01, 4.0600e+01,\n",
-       "       4.7000e+01, 5.4100e+01, 6.1800e+01, 7.0200e+01, 7.9400e+01, 8.9500e+01,\n",
-       "       1.0050e+02, 1.1250e+02, 1.2570e+02, 1.4010e+02, 1.5580e+02, 1.7290e+02,\n",
-       "       1.9160e+02, 2.1200e+02, 2.3430e+02, 2.5860e+02, 2.8510e+02, 3.1400e+02,\n",
-       "       3.4550e+02, 3.7980e+02, 4.1710e+02, 4.5770e+02, 5.0080e+02, 5.4610e+02,\n",
-       "       5.9290e+02, 6.4130e+02, 6.9130e+02, 7.4300e+02, 7.9640e+02, 8.5160e+02,\n",
-       "       9.0860e+02, 9.6750e+02, 1.0283e+03, 1.0912e+03, 1.1578e+03, 1.2304e+03,\n",
-       "       1.3110e+03, 1.4016e+03, 1.5018e+03, 1.6118e+03, 1.7321e+03, 1.8608e+03,\n",
-       "       1.9982e+03, 2.1446e+03, 2.3003e+03, 2.4655e+03, 2.6403e+03, 2.8247e+03,\n",
-       "       3.0188e+03, 3.2224e+03, 3.4353e+03, 3.6572e+03, 3.8877e+03, 4.1262e+03,\n",
-       "       4.3721e+03, 4.6245e+03, 4.8826e+03, 5.1454e+03, 5.4118e+03, 5.6807e+03,\n",
-       "       5.9508e+03], dtype=float32)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>level_full</span></div><div class='xr-var-dims'>(level_full)</div><div class='xr-var-dtype'>int32</div><div class='xr-var-preview xr-preview'>1 2 3 4 5 6 7 ... 85 86 87 88 89 90</div><input id='attrs-e90b24ef-d2a8-492a-9ace-1ed9f3259040' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-e90b24ef-d2a8-492a-9ace-1ed9f3259040' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-d37f54db-0169-4c2b-bc77-6c32c7ebec48' class='xr-var-data-in' type='checkbox'><label for='data-d37f54db-0169-4c2b-bc77-6c32c7ebec48' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>axis :</span></dt><dd>Z</dd><dt><span>long_name :</span></dt><dd>generalized_height</dd><dt><span>positive :</span></dt><dd>down</dd><dt><span>standard_name :</span></dt><dd>height</dd></dl></div><div class='xr-var-data'><pre>array([ 1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16, 17, 18,\n",
-       "       19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,\n",
-       "       37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54,\n",
-       "       55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72,\n",
-       "       73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90],\n",
-       "      dtype=int32)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>level_half</span></div><div class='xr-var-dims'>(level_half)</div><div class='xr-var-dtype'>int32</div><div class='xr-var-preview xr-preview'>1 2 3 4 5 6 7 ... 86 87 88 89 90 91</div><input id='attrs-9deb1b84-d1e0-42ed-95af-b60bf27a474a' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-9deb1b84-d1e0-42ed-95af-b60bf27a474a' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-aabfce17-4d2d-4948-8e37-3647a25f1c33' class='xr-var-data-in' type='checkbox'><label for='data-aabfce17-4d2d-4948-8e37-3647a25f1c33' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>axis :</span></dt><dd>Z</dd><dt><span>long_name :</span></dt><dd>generalized_height</dd><dt><span>positive :</span></dt><dd>down</dd><dt><span>standard_name :</span></dt><dd>height</dd></dl></div><div class='xr-var-data'><pre>array([ 1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16, 17, 18,\n",
-       "       19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,\n",
-       "       37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54,\n",
-       "       55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72,\n",
-       "       73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90,\n",
-       "       91], dtype=int32)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>soil_depth_energy_level</span></div><div class='xr-var-dims'>(soil_depth_energy_level)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>0.0325 0.192 0.7755 2.683 6.984</div><input id='attrs-c87fabd6-d97c-4be8-b820-177bebd8a83f' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-c87fabd6-d97c-4be8-b820-177bebd8a83f' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-b2588331-9c49-4c16-a11e-352eebcd331c' class='xr-var-data-in' type='checkbox'><label for='data-b2588331-9c49-4c16-a11e-352eebcd331c' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>axis :</span></dt><dd>Z</dd><dt><span>long_name :</span></dt><dd>depth_below_land</dd><dt><span>positive :</span></dt><dd>down</dd><dt><span>units :</span></dt><dd>m</dd></dl></div><div class='xr-var-data'><pre>array([0.0325, 0.192 , 0.7755, 2.683 , 6.984 ], dtype=float32)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>soil_depth_water_level</span></div><div class='xr-var-dims'>(soil_depth_water_level)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>0.0325 0.192 0.7755 2.683 6.984</div><input id='attrs-f4ccb2a8-e390-4198-82d9-59fc83b0db6b' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-f4ccb2a8-e390-4198-82d9-59fc83b0db6b' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-bdb09ea5-30ef-4862-8709-ae908956738a' class='xr-var-data-in' type='checkbox'><label for='data-bdb09ea5-30ef-4862-8709-ae908956738a' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>axis :</span></dt><dd>Z</dd><dt><span>long_name :</span></dt><dd>depth_below_land</dd><dt><span>positive :</span></dt><dd>down</dd><dt><span>units :</span></dt><dd>m</dd></dl></div><div class='xr-var-data'><pre>array([0.0325, 0.192 , 0.7755, 2.683 , 6.984 ], dtype=float32)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>time</span></div><div class='xr-var-dims'>(time)</div><div class='xr-var-dtype'>datetime64[ns]</div><div class='xr-var-preview xr-preview'>2020-01-02 ... 2050-01-01</div><input id='attrs-089a68dd-7c59-47f0-9ace-34b5a0829af7' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-089a68dd-7c59-47f0-9ace-34b5a0829af7' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-b9902b3e-1070-4849-87df-8d9acefd37b6' class='xr-var-data-in' type='checkbox'><label for='data-b9902b3e-1070-4849-87df-8d9acefd37b6' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>axis :</span></dt><dd>T</dd></dl></div><div class='xr-var-data'><pre>array([&#x27;2020-01-02T00:00:00.000000000&#x27;, &#x27;2020-01-03T00:00:00.000000000&#x27;,\n",
-       "       &#x27;2020-01-04T00:00:00.000000000&#x27;, ..., &#x27;2049-12-30T00:00:00.000000000&#x27;,\n",
-       "       &#x27;2049-12-31T00:00:00.000000000&#x27;, &#x27;2050-01-01T00:00:00.000000000&#x27;],\n",
-       "      dtype=&#x27;datetime64[ns]&#x27;)</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-64668997-acc8-408c-8c37-830ca81abd2f' class='xr-section-summary-in' type='checkbox'  ><label for='section-64668997-acc8-408c-8c37-830ca81abd2f' class='xr-section-summary' >Data variables: <span>(103)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span>A_tracer_v_to</span></div><div class='xr-var-dims'>(time, depth_half, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(7, 11, 49152), meta=np.ndarray&gt;</div><input id='attrs-65abaa2c-815e-4c98-be46-615d68aaf802' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-65abaa2c-815e-4c98-be46-615d68aaf802' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-7bcd5b96-82f1-4baa-ab9a-a552fe31e248' class='xr-var-data-in' type='checkbox'><label for='data-7bcd5b96-82f1-4baa-ab9a-a552fe31e248' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>cell_methods :</span></dt><dd>time: mean cell: mean</dd><dt><span>component :</span></dt><dd>ocean</dd><dt><span>grid_mapping :</span></dt><dd>crs</dd><dt><span>long_name :</span></dt><dd>sea water vertical diffusivity</dd><dt><span>standard_name :</span></dt><dd>ocean_vertical_diffusivity</dd><dt><span>units :</span></dt><dd>m2 s-1</dd><dt><span>vgrid :</span></dt><dd>depth_below_sea_half</dd></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table>\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 585.89 GiB </td>\n",
-       "                        <td> 14.44 MiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (10958, 73, 196608) </td>\n",
-       "                        <td> (7, 11, 49152) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Count </th>\n",
-       "                        <td> 2 Graph Layers </td>\n",
-       "                        <td> 43848 Chunks </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                    <th> Type </th>\n",
-       "                    <td> float32 </td>\n",
-       "                    <td> numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"200\" height=\"96\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"10\" y1=\"0\" x2=\"30\" y2=\"20\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"10\" y1=\"3\" x2=\"30\" y2=\"24\" />\n",
-       "  <line x1=\"10\" y1=\"7\" x2=\"30\" y2=\"28\" />\n",
-       "  <line x1=\"10\" y1=\"11\" x2=\"30\" y2=\"32\" />\n",
-       "  <line x1=\"10\" y1=\"15\" x2=\"30\" y2=\"36\" />\n",
-       "  <line x1=\"10\" y1=\"19\" x2=\"30\" y2=\"39\" />\n",
-       "  <line x1=\"10\" y1=\"22\" x2=\"30\" y2=\"43\" />\n",
-       "  <line x1=\"10\" y1=\"25\" x2=\"30\" y2=\"46\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"25\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"11\" y1=\"1\" x2=\"11\" y2=\"26\" />\n",
-       "  <line x1=\"12\" y1=\"2\" x2=\"12\" y2=\"27\" />\n",
-       "  <line x1=\"13\" y1=\"3\" x2=\"13\" y2=\"28\" />\n",
-       "  <line x1=\"14\" y1=\"4\" x2=\"14\" y2=\"29\" />\n",
-       "  <line x1=\"15\" y1=\"5\" x2=\"15\" y2=\"30\" />\n",
-       "  <line x1=\"16\" y1=\"6\" x2=\"16\" y2=\"31\" />\n",
-       "  <line x1=\"17\" y1=\"7\" x2=\"17\" y2=\"33\" />\n",
-       "  <line x1=\"18\" y1=\"8\" x2=\"18\" y2=\"34\" />\n",
-       "  <line x1=\"19\" y1=\"9\" x2=\"19\" y2=\"35\" />\n",
-       "  <line x1=\"20\" y1=\"10\" x2=\"20\" y2=\"36\" />\n",
-       "  <line x1=\"21\" y1=\"11\" x2=\"21\" y2=\"37\" />\n",
-       "  <line x1=\"23\" y1=\"13\" x2=\"23\" y2=\"38\" />\n",
-       "  <line x1=\"24\" y1=\"14\" x2=\"24\" y2=\"39\" />\n",
-       "  <line x1=\"25\" y1=\"15\" x2=\"25\" y2=\"40\" />\n",
-       "  <line x1=\"26\" y1=\"16\" x2=\"26\" y2=\"41\" />\n",
-       "  <line x1=\"27\" y1=\"17\" x2=\"27\" y2=\"42\" />\n",
-       "  <line x1=\"28\" y1=\"18\" x2=\"28\" y2=\"43\" />\n",
-       "  <line x1=\"29\" y1=\"19\" x2=\"29\" y2=\"45\" />\n",
-       "  <line x1=\"30\" y1=\"20\" x2=\"30\" y2=\"46\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"10.0,0.0 30.68500573235934,20.68500573235934 30.68500573235934,46.097622246941825 10.0,25.412616514582485\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"10\" y1=\"0\" x2=\"130\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"11\" y1=\"1\" x2=\"131\" y2=\"1\" />\n",
-       "  <line x1=\"12\" y1=\"2\" x2=\"132\" y2=\"2\" />\n",
-       "  <line x1=\"13\" y1=\"3\" x2=\"133\" y2=\"3\" />\n",
-       "  <line x1=\"14\" y1=\"4\" x2=\"134\" y2=\"4\" />\n",
-       "  <line x1=\"15\" y1=\"5\" x2=\"135\" y2=\"5\" />\n",
-       "  <line x1=\"16\" y1=\"6\" x2=\"136\" y2=\"6\" />\n",
-       "  <line x1=\"17\" y1=\"7\" x2=\"137\" y2=\"7\" />\n",
-       "  <line x1=\"18\" y1=\"8\" x2=\"138\" y2=\"8\" />\n",
-       "  <line x1=\"19\" y1=\"9\" x2=\"139\" y2=\"9\" />\n",
-       "  <line x1=\"20\" y1=\"10\" x2=\"140\" y2=\"10\" />\n",
-       "  <line x1=\"21\" y1=\"11\" x2=\"141\" y2=\"11\" />\n",
-       "  <line x1=\"23\" y1=\"13\" x2=\"143\" y2=\"13\" />\n",
-       "  <line x1=\"24\" y1=\"14\" x2=\"144\" y2=\"14\" />\n",
-       "  <line x1=\"25\" y1=\"15\" x2=\"145\" y2=\"15\" />\n",
-       "  <line x1=\"26\" y1=\"16\" x2=\"146\" y2=\"16\" />\n",
-       "  <line x1=\"27\" y1=\"17\" x2=\"147\" y2=\"17\" />\n",
-       "  <line x1=\"28\" y1=\"18\" x2=\"148\" y2=\"18\" />\n",
-       "  <line x1=\"29\" y1=\"19\" x2=\"149\" y2=\"19\" />\n",
-       "  <line x1=\"30\" y1=\"20\" x2=\"150\" y2=\"20\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"10\" y1=\"0\" x2=\"30\" y2=\"20\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"40\" y1=\"0\" x2=\"60\" y2=\"20\" />\n",
-       "  <line x1=\"70\" y1=\"0\" x2=\"90\" y2=\"20\" />\n",
-       "  <line x1=\"100\" y1=\"0\" x2=\"120\" y2=\"20\" />\n",
-       "  <line x1=\"130\" y1=\"0\" x2=\"150\" y2=\"20\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"10.0,0.0 130.0,0.0 150.68500573235934,20.68500573235934 30.68500573235934,20.68500573235934\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"30\" y1=\"20\" x2=\"150\" y2=\"20\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"30\" y1=\"24\" x2=\"150\" y2=\"24\" />\n",
-       "  <line x1=\"30\" y1=\"28\" x2=\"150\" y2=\"28\" />\n",
-       "  <line x1=\"30\" y1=\"32\" x2=\"150\" y2=\"32\" />\n",
-       "  <line x1=\"30\" y1=\"36\" x2=\"150\" y2=\"36\" />\n",
-       "  <line x1=\"30\" y1=\"39\" x2=\"150\" y2=\"39\" />\n",
-       "  <line x1=\"30\" y1=\"43\" x2=\"150\" y2=\"43\" />\n",
-       "  <line x1=\"30\" y1=\"46\" x2=\"150\" y2=\"46\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"30\" y1=\"20\" x2=\"30\" y2=\"46\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"60\" y1=\"20\" x2=\"60\" y2=\"46\" />\n",
-       "  <line x1=\"90\" y1=\"20\" x2=\"90\" y2=\"46\" />\n",
-       "  <line x1=\"120\" y1=\"20\" x2=\"120\" y2=\"46\" />\n",
-       "  <line x1=\"150\" y1=\"20\" x2=\"150\" y2=\"46\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"30.68500573235934,20.68500573235934 150.68500573235934,20.68500573235934 150.68500573235934,46.097622246941825 30.68500573235934,46.097622246941825\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"90.685006\" y=\"66.097622\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >196608</text>\n",
-       "  <text x=\"170.685006\" y=\"33.391314\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,170.685006,33.391314)\">73</text>\n",
-       "  <text x=\"10.342503\" y=\"55.755119\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,10.342503,55.755119)\">10958</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>FrshFlux_IceSalt</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(90, 49152), meta=np.ndarray&gt;</div><input id='attrs-ae24a127-677b-45e3-a844-f77ea5bf6e98' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-ae24a127-677b-45e3-a844-f77ea5bf6e98' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-398394ca-8f79-4c08-8667-a1e7bb3ef661' class='xr-var-data-in' type='checkbox'><label for='data-398394ca-8f79-4c08-8667-a1e7bb3ef661' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>cell_methods :</span></dt><dd>time: mean cell: mean</dd><dt><span>component :</span></dt><dd>ocean</dd><dt><span>grid_mapping :</span></dt><dd>crs</dd><dt><span>long_name :</span></dt><dd>Salt volume flux due to sea ice change</dd><dt><span>units :</span></dt><dd>psu m s-1</dd><dt><span>vgrid :</span></dt><dd>surface</dd></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table>\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 8.03 GiB </td>\n",
-       "                        <td> 16.88 MiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (10958, 196608) </td>\n",
-       "                        <td> (90, 49152) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Count </th>\n",
-       "                        <td> 2 Graph Layers </td>\n",
-       "                        <td> 488 Chunks </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                    <th> Type </th>\n",
-       "                    <td> float32 </td>\n",
-       "                    <td> numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"170\" height=\"85\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n",
-       "  <line x1=\"0\" y1=\"3\" x2=\"120\" y2=\"3\" />\n",
-       "  <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n",
-       "  <line x1=\"0\" y1=\"7\" x2=\"120\" y2=\"7\" />\n",
-       "  <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n",
-       "  <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n",
-       "  <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n",
-       "  <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n",
-       "  <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n",
-       "  <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n",
-       "  <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n",
-       "  <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n",
-       "  <line x1=\"0\" y1=\"23\" x2=\"120\" y2=\"23\" />\n",
-       "  <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" />\n",
-       "  <line x1=\"0\" y1=\"27\" x2=\"120\" y2=\"27\" />\n",
-       "  <line x1=\"0\" y1=\"29\" x2=\"120\" y2=\"29\" />\n",
-       "  <line x1=\"0\" y1=\"31\" x2=\"120\" y2=\"31\" />\n",
-       "  <line x1=\"0\" y1=\"33\" x2=\"120\" y2=\"33\" />\n",
-       "  <line x1=\"0\" y1=\"35\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"35\" />\n",
-       "  <line x1=\"60\" y1=\"0\" x2=\"60\" y2=\"35\" />\n",
-       "  <line x1=\"90\" y1=\"0\" x2=\"90\" y2=\"35\" />\n",
-       "  <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"0.0,0.0 120.0,0.0 120.0,35.164509745010875 0.0,35.164509745010875\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"60.000000\" y=\"55.164510\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >196608</text>\n",
-       "  <text x=\"140.000000\" y=\"17.582255\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,17.582255)\">10958</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>FrshFlux_TotalIce</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(90, 49152), meta=np.ndarray&gt;</div><input id='attrs-fdc1af7f-f0b5-4826-841a-cfb14f00d0b6' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-fdc1af7f-f0b5-4826-841a-cfb14f00d0b6' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-8ff94d7e-14bf-4c7e-b3c9-a1967f03ed11' class='xr-var-data-in' type='checkbox'><label for='data-8ff94d7e-14bf-4c7e-b3c9-a1967f03ed11' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>cell_methods :</span></dt><dd>time: mean cell: mean</dd><dt><span>component :</span></dt><dd>ocean</dd><dt><span>grid_mapping :</span></dt><dd>crs</dd><dt><span>long_name :</span></dt><dd>Freshwater Flux due to Sea Ice Change</dd><dt><span>units :</span></dt><dd>m s-1</dd><dt><span>vgrid :</span></dt><dd>surface</dd></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table>\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 8.03 GiB </td>\n",
-       "                        <td> 16.88 MiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (10958, 196608) </td>\n",
-       "                        <td> (90, 49152) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Count </th>\n",
-       "                        <td> 2 Graph Layers </td>\n",
-       "                        <td> 488 Chunks </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                    <th> Type </th>\n",
-       "                    <td> float32 </td>\n",
-       "                    <td> numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"170\" height=\"85\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n",
-       "  <line x1=\"0\" y1=\"3\" x2=\"120\" y2=\"3\" />\n",
-       "  <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n",
-       "  <line x1=\"0\" y1=\"7\" x2=\"120\" y2=\"7\" />\n",
-       "  <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n",
-       "  <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n",
-       "  <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n",
-       "  <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n",
-       "  <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n",
-       "  <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n",
-       "  <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n",
-       "  <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n",
-       "  <line x1=\"0\" y1=\"23\" x2=\"120\" y2=\"23\" />\n",
-       "  <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" />\n",
-       "  <line x1=\"0\" y1=\"27\" x2=\"120\" y2=\"27\" />\n",
-       "  <line x1=\"0\" y1=\"29\" x2=\"120\" y2=\"29\" />\n",
-       "  <line x1=\"0\" y1=\"31\" x2=\"120\" y2=\"31\" />\n",
-       "  <line x1=\"0\" y1=\"33\" x2=\"120\" y2=\"33\" />\n",
-       "  <line x1=\"0\" y1=\"35\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"35\" />\n",
-       "  <line x1=\"60\" y1=\"0\" x2=\"60\" y2=\"35\" />\n",
-       "  <line x1=\"90\" y1=\"0\" x2=\"90\" y2=\"35\" />\n",
-       "  <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"0.0,0.0 120.0,0.0 120.0,35.164509745010875 0.0,35.164509745010875\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"60.000000\" y=\"55.164510\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >196608</text>\n",
-       "  <text x=\"140.000000\" y=\"17.582255\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,17.582255)\">10958</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>Qbot</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(90, 49152), meta=np.ndarray&gt;</div><input id='attrs-1d1a5109-3a72-4984-bf18-985f15d08bb4' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-1d1a5109-3a72-4984-bf18-985f15d08bb4' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-be0a1e6d-3cde-4129-80ac-3617cc35a15f' class='xr-var-data-in' type='checkbox'><label for='data-be0a1e6d-3cde-4129-80ac-3617cc35a15f' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>cell_methods :</span></dt><dd>time: mean cell: mean</dd><dt><span>component :</span></dt><dd>ocean</dd><dt><span>grid_mapping :</span></dt><dd>crs</dd><dt><span>long_name :</span></dt><dd>Conductive heat flux at ice-ocean interface</dd><dt><span>units :</span></dt><dd>W/m^2</dd><dt><span>vgrid :</span></dt><dd>generic_ice</dd></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table>\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 8.03 GiB </td>\n",
-       "                        <td> 16.88 MiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (10958, 196608) </td>\n",
-       "                        <td> (90, 49152) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Count </th>\n",
-       "                        <td> 2 Graph Layers </td>\n",
-       "                        <td> 488 Chunks </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                    <th> Type </th>\n",
-       "                    <td> float32 </td>\n",
-       "                    <td> numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"170\" height=\"85\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n",
-       "  <line x1=\"0\" y1=\"3\" x2=\"120\" y2=\"3\" />\n",
-       "  <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n",
-       "  <line x1=\"0\" y1=\"7\" x2=\"120\" y2=\"7\" />\n",
-       "  <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n",
-       "  <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n",
-       "  <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n",
-       "  <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n",
-       "  <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n",
-       "  <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n",
-       "  <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n",
-       "  <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n",
-       "  <line x1=\"0\" y1=\"23\" x2=\"120\" y2=\"23\" />\n",
-       "  <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" />\n",
-       "  <line x1=\"0\" y1=\"27\" x2=\"120\" y2=\"27\" />\n",
-       "  <line x1=\"0\" y1=\"29\" x2=\"120\" y2=\"29\" />\n",
-       "  <line x1=\"0\" y1=\"31\" x2=\"120\" y2=\"31\" />\n",
-       "  <line x1=\"0\" y1=\"33\" x2=\"120\" y2=\"33\" />\n",
-       "  <line x1=\"0\" y1=\"35\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"35\" />\n",
-       "  <line x1=\"60\" y1=\"0\" x2=\"60\" y2=\"35\" />\n",
-       "  <line x1=\"90\" y1=\"0\" x2=\"90\" y2=\"35\" />\n",
-       "  <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"0.0,0.0 120.0,0.0 120.0,35.164509745010875 0.0,35.164509745010875\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"60.000000\" y=\"55.164510\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >196608</text>\n",
-       "  <text x=\"140.000000\" y=\"17.582255\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,17.582255)\">10958</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>Qtop</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(90, 49152), meta=np.ndarray&gt;</div><input id='attrs-350d757d-6d47-4aac-aea4-39363a16867f' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-350d757d-6d47-4aac-aea4-39363a16867f' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-a7382f26-f48d-4b42-b05d-c997490fef8b' class='xr-var-data-in' type='checkbox'><label for='data-a7382f26-f48d-4b42-b05d-c997490fef8b' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>cell_methods :</span></dt><dd>time: mean cell: mean</dd><dt><span>component :</span></dt><dd>ocean</dd><dt><span>grid_mapping :</span></dt><dd>crs</dd><dt><span>long_name :</span></dt><dd>Energy flux available for surface melting</dd><dt><span>units :</span></dt><dd>W/m^2</dd><dt><span>vgrid :</span></dt><dd>generic_ice</dd></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table>\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 8.03 GiB </td>\n",
-       "                        <td> 16.88 MiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (10958, 196608) </td>\n",
-       "                        <td> (90, 49152) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Count </th>\n",
-       "                        <td> 2 Graph Layers </td>\n",
-       "                        <td> 488 Chunks </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                    <th> Type </th>\n",
-       "                    <td> float32 </td>\n",
-       "                    <td> numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"170\" height=\"85\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n",
-       "  <line x1=\"0\" y1=\"3\" x2=\"120\" y2=\"3\" />\n",
-       "  <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n",
-       "  <line x1=\"0\" y1=\"7\" x2=\"120\" y2=\"7\" />\n",
-       "  <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n",
-       "  <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n",
-       "  <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n",
-       "  <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n",
-       "  <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n",
-       "  <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n",
-       "  <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n",
-       "  <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n",
-       "  <line x1=\"0\" y1=\"23\" x2=\"120\" y2=\"23\" />\n",
-       "  <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" />\n",
-       "  <line x1=\"0\" y1=\"27\" x2=\"120\" y2=\"27\" />\n",
-       "  <line x1=\"0\" y1=\"29\" x2=\"120\" y2=\"29\" />\n",
-       "  <line x1=\"0\" y1=\"31\" x2=\"120\" y2=\"31\" />\n",
-       "  <line x1=\"0\" y1=\"33\" x2=\"120\" y2=\"33\" />\n",
-       "  <line x1=\"0\" y1=\"35\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"35\" />\n",
-       "  <line x1=\"60\" y1=\"0\" x2=\"60\" y2=\"35\" />\n",
-       "  <line x1=\"90\" y1=\"0\" x2=\"90\" y2=\"35\" />\n",
-       "  <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"0.0,0.0 120.0,0.0 120.0,35.164509745010875 0.0,35.164509745010875\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"60.000000\" y=\"55.164510\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >196608</text>\n",
-       "  <text x=\"140.000000\" y=\"17.582255\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,17.582255)\">10958</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>Wind_Speed_10m</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(90, 49152), meta=np.ndarray&gt;</div><input id='attrs-073b3d8c-0c97-416e-9d7d-f493a7c18c86' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-073b3d8c-0c97-416e-9d7d-f493a7c18c86' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-fec830fd-babe-43a4-a0a9-02488c854fc3' class='xr-var-data-in' type='checkbox'><label for='data-fec830fd-babe-43a4-a0a9-02488c854fc3' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>cell_methods :</span></dt><dd>time: mean cell: mean</dd><dt><span>component :</span></dt><dd>ocean</dd><dt><span>grid_mapping :</span></dt><dd>crs</dd><dt><span>long_name :</span></dt><dd>Wind Speed at 10m height</dd><dt><span>units :</span></dt><dd>m/s</dd><dt><span>vgrid :</span></dt><dd>surface</dd></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table>\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 8.03 GiB </td>\n",
-       "                        <td> 16.88 MiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (10958, 196608) </td>\n",
-       "                        <td> (90, 49152) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Count </th>\n",
-       "                        <td> 2 Graph Layers </td>\n",
-       "                        <td> 488 Chunks </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                    <th> Type </th>\n",
-       "                    <td> float32 </td>\n",
-       "                    <td> numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"170\" height=\"85\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n",
-       "  <line x1=\"0\" y1=\"3\" x2=\"120\" y2=\"3\" />\n",
-       "  <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n",
-       "  <line x1=\"0\" y1=\"7\" x2=\"120\" y2=\"7\" />\n",
-       "  <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n",
-       "  <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n",
-       "  <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n",
-       "  <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n",
-       "  <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n",
-       "  <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n",
-       "  <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n",
-       "  <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n",
-       "  <line x1=\"0\" y1=\"23\" x2=\"120\" y2=\"23\" />\n",
-       "  <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" />\n",
-       "  <line x1=\"0\" y1=\"27\" x2=\"120\" y2=\"27\" />\n",
-       "  <line x1=\"0\" y1=\"29\" x2=\"120\" y2=\"29\" />\n",
-       "  <line x1=\"0\" y1=\"31\" x2=\"120\" y2=\"31\" />\n",
-       "  <line x1=\"0\" y1=\"33\" x2=\"120\" y2=\"33\" />\n",
-       "  <line x1=\"0\" y1=\"35\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"35\" />\n",
-       "  <line x1=\"60\" y1=\"0\" x2=\"60\" y2=\"35\" />\n",
-       "  <line x1=\"90\" y1=\"0\" x2=\"90\" y2=\"35\" />\n",
-       "  <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"0.0,0.0 120.0,0.0 120.0,35.164509745010875 0.0,35.164509745010875\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"60.000000\" y=\"55.164510\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >196608</text>\n",
-       "  <text x=\"140.000000\" y=\"17.582255\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,17.582255)\">10958</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>atmos_fluxes_FrshFlux_Evaporation</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(90, 49152), meta=np.ndarray&gt;</div><input id='attrs-2d7a0cff-943e-44ed-98de-35dbab1b84d5' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-2d7a0cff-943e-44ed-98de-35dbab1b84d5' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-f9eb4ded-ab99-488c-b2c4-00d64e794dfc' class='xr-var-data-in' type='checkbox'><label for='data-f9eb4ded-ab99-488c-b2c4-00d64e794dfc' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>cell_methods :</span></dt><dd>time: mean cell: mean</dd><dt><span>component :</span></dt><dd>ocean</dd><dt><span>grid_mapping :</span></dt><dd>crs</dd><dt><span>units :</span></dt><dd>m/s</dd><dt><span>vgrid :</span></dt><dd>surface</dd></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table>\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 8.03 GiB </td>\n",
-       "                        <td> 16.88 MiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (10958, 196608) </td>\n",
-       "                        <td> (90, 49152) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Count </th>\n",
-       "                        <td> 2 Graph Layers </td>\n",
-       "                        <td> 488 Chunks </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                    <th> Type </th>\n",
-       "                    <td> float32 </td>\n",
-       "                    <td> numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"170\" height=\"85\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n",
-       "  <line x1=\"0\" y1=\"3\" x2=\"120\" y2=\"3\" />\n",
-       "  <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n",
-       "  <line x1=\"0\" y1=\"7\" x2=\"120\" y2=\"7\" />\n",
-       "  <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n",
-       "  <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n",
-       "  <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n",
-       "  <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n",
-       "  <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n",
-       "  <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n",
-       "  <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n",
-       "  <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n",
-       "  <line x1=\"0\" y1=\"23\" x2=\"120\" y2=\"23\" />\n",
-       "  <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" />\n",
-       "  <line x1=\"0\" y1=\"27\" x2=\"120\" y2=\"27\" />\n",
-       "  <line x1=\"0\" y1=\"29\" x2=\"120\" y2=\"29\" />\n",
-       "  <line x1=\"0\" y1=\"31\" x2=\"120\" y2=\"31\" />\n",
-       "  <line x1=\"0\" y1=\"33\" x2=\"120\" y2=\"33\" />\n",
-       "  <line x1=\"0\" y1=\"35\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"35\" />\n",
-       "  <line x1=\"60\" y1=\"0\" x2=\"60\" y2=\"35\" />\n",
-       "  <line x1=\"90\" y1=\"0\" x2=\"90\" y2=\"35\" />\n",
-       "  <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"0.0,0.0 120.0,0.0 120.0,35.164509745010875 0.0,35.164509745010875\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"60.000000\" y=\"55.164510\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >196608</text>\n",
-       "  <text x=\"140.000000\" y=\"17.582255\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,17.582255)\">10958</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>atmos_fluxes_FrshFlux_Precipitation</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(90, 49152), meta=np.ndarray&gt;</div><input id='attrs-94b626e0-8e1d-416a-9b2c-498619ac1f24' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-94b626e0-8e1d-416a-9b2c-498619ac1f24' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-8c8b07c5-b91b-496e-a667-42d9dd20d9f2' class='xr-var-data-in' type='checkbox'><label for='data-8c8b07c5-b91b-496e-a667-42d9dd20d9f2' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>cell_methods :</span></dt><dd>time: mean cell: mean</dd><dt><span>component :</span></dt><dd>ocean</dd><dt><span>grid_mapping :</span></dt><dd>crs</dd><dt><span>units :</span></dt><dd>m/s</dd><dt><span>vgrid :</span></dt><dd>surface</dd></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table>\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 8.03 GiB </td>\n",
-       "                        <td> 16.88 MiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (10958, 196608) </td>\n",
-       "                        <td> (90, 49152) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Count </th>\n",
-       "                        <td> 2 Graph Layers </td>\n",
-       "                        <td> 488 Chunks </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                    <th> Type </th>\n",
-       "                    <td> float32 </td>\n",
-       "                    <td> numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"170\" height=\"85\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n",
-       "  <line x1=\"0\" y1=\"3\" x2=\"120\" y2=\"3\" />\n",
-       "  <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n",
-       "  <line x1=\"0\" y1=\"7\" x2=\"120\" y2=\"7\" />\n",
-       "  <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n",
-       "  <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n",
-       "  <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n",
-       "  <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n",
-       "  <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n",
-       "  <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n",
-       "  <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n",
-       "  <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n",
-       "  <line x1=\"0\" y1=\"23\" x2=\"120\" y2=\"23\" />\n",
-       "  <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" />\n",
-       "  <line x1=\"0\" y1=\"27\" x2=\"120\" y2=\"27\" />\n",
-       "  <line x1=\"0\" y1=\"29\" x2=\"120\" y2=\"29\" />\n",
-       "  <line x1=\"0\" y1=\"31\" x2=\"120\" y2=\"31\" />\n",
-       "  <line x1=\"0\" y1=\"33\" x2=\"120\" y2=\"33\" />\n",
-       "  <line x1=\"0\" y1=\"35\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"35\" />\n",
-       "  <line x1=\"60\" y1=\"0\" x2=\"60\" y2=\"35\" />\n",
-       "  <line x1=\"90\" y1=\"0\" x2=\"90\" y2=\"35\" />\n",
-       "  <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"0.0,0.0 120.0,0.0 120.0,35.164509745010875 0.0,35.164509745010875\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"60.000000\" y=\"55.164510\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >196608</text>\n",
-       "  <text x=\"140.000000\" y=\"17.582255\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,17.582255)\">10958</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>atmos_fluxes_FrshFlux_Runoff</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(90, 49152), meta=np.ndarray&gt;</div><input id='attrs-5ed7a460-4986-41a4-94bd-2aa172e16ded' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-5ed7a460-4986-41a4-94bd-2aa172e16ded' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-2d8338dc-3894-4314-8e06-dac2c50e34f7' class='xr-var-data-in' type='checkbox'><label for='data-2d8338dc-3894-4314-8e06-dac2c50e34f7' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>cell_methods :</span></dt><dd>time: mean cell: mean</dd><dt><span>component :</span></dt><dd>ocean</dd><dt><span>grid_mapping :</span></dt><dd>crs</dd><dt><span>units :</span></dt><dd>m/s</dd><dt><span>vgrid :</span></dt><dd>surface</dd></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table>\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 8.03 GiB </td>\n",
-       "                        <td> 16.88 MiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (10958, 196608) </td>\n",
-       "                        <td> (90, 49152) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Count </th>\n",
-       "                        <td> 2 Graph Layers </td>\n",
-       "                        <td> 488 Chunks </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                    <th> Type </th>\n",
-       "                    <td> float32 </td>\n",
-       "                    <td> numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"170\" height=\"85\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n",
-       "  <line x1=\"0\" y1=\"3\" x2=\"120\" y2=\"3\" />\n",
-       "  <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n",
-       "  <line x1=\"0\" y1=\"7\" x2=\"120\" y2=\"7\" />\n",
-       "  <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n",
-       "  <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n",
-       "  <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n",
-       "  <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n",
-       "  <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n",
-       "  <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n",
-       "  <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n",
-       "  <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n",
-       "  <line x1=\"0\" y1=\"23\" x2=\"120\" y2=\"23\" />\n",
-       "  <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" />\n",
-       "  <line x1=\"0\" y1=\"27\" x2=\"120\" y2=\"27\" />\n",
-       "  <line x1=\"0\" y1=\"29\" x2=\"120\" y2=\"29\" />\n",
-       "  <line x1=\"0\" y1=\"31\" x2=\"120\" y2=\"31\" />\n",
-       "  <line x1=\"0\" y1=\"33\" x2=\"120\" y2=\"33\" />\n",
-       "  <line x1=\"0\" y1=\"35\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"35\" />\n",
-       "  <line x1=\"60\" y1=\"0\" x2=\"60\" y2=\"35\" />\n",
-       "  <line x1=\"90\" y1=\"0\" x2=\"90\" y2=\"35\" />\n",
-       "  <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"0.0,0.0 120.0,0.0 120.0,35.164509745010875 0.0,35.164509745010875\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"60.000000\" y=\"55.164510\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >196608</text>\n",
-       "  <text x=\"140.000000\" y=\"17.582255\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,17.582255)\">10958</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>atmos_fluxes_FrshFlux_SnowFall</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(90, 49152), meta=np.ndarray&gt;</div><input id='attrs-7b8b91f2-45e0-4df8-8f55-ac2b69312702' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-7b8b91f2-45e0-4df8-8f55-ac2b69312702' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-5736241f-eaa2-4b98-8109-dd2b959b8c93' class='xr-var-data-in' type='checkbox'><label for='data-5736241f-eaa2-4b98-8109-dd2b959b8c93' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>cell_methods :</span></dt><dd>time: mean cell: mean</dd><dt><span>component :</span></dt><dd>ocean</dd><dt><span>grid_mapping :</span></dt><dd>crs</dd><dt><span>units :</span></dt><dd>m/s</dd><dt><span>vgrid :</span></dt><dd>surface</dd></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table>\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 8.03 GiB </td>\n",
-       "                        <td> 16.88 MiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (10958, 196608) </td>\n",
-       "                        <td> (90, 49152) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Count </th>\n",
-       "                        <td> 2 Graph Layers </td>\n",
-       "                        <td> 488 Chunks </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                    <th> Type </th>\n",
-       "                    <td> float32 </td>\n",
-       "                    <td> numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"170\" height=\"85\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n",
-       "  <line x1=\"0\" y1=\"3\" x2=\"120\" y2=\"3\" />\n",
-       "  <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n",
-       "  <line x1=\"0\" y1=\"7\" x2=\"120\" y2=\"7\" />\n",
-       "  <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n",
-       "  <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n",
-       "  <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n",
-       "  <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n",
-       "  <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n",
-       "  <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n",
-       "  <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n",
-       "  <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n",
-       "  <line x1=\"0\" y1=\"23\" x2=\"120\" y2=\"23\" />\n",
-       "  <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" />\n",
-       "  <line x1=\"0\" y1=\"27\" x2=\"120\" y2=\"27\" />\n",
-       "  <line x1=\"0\" y1=\"29\" x2=\"120\" y2=\"29\" />\n",
-       "  <line x1=\"0\" y1=\"31\" x2=\"120\" y2=\"31\" />\n",
-       "  <line x1=\"0\" y1=\"33\" x2=\"120\" y2=\"33\" />\n",
-       "  <line x1=\"0\" y1=\"35\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"35\" />\n",
-       "  <line x1=\"60\" y1=\"0\" x2=\"60\" y2=\"35\" />\n",
-       "  <line x1=\"90\" y1=\"0\" x2=\"90\" y2=\"35\" />\n",
-       "  <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"0.0,0.0 120.0,0.0 120.0,35.164509745010875 0.0,35.164509745010875\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"60.000000\" y=\"55.164510\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >196608</text>\n",
-       "  <text x=\"140.000000\" y=\"17.582255\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,17.582255)\">10958</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>atmos_fluxes_HeatFlux_Latent</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(90, 49152), meta=np.ndarray&gt;</div><input id='attrs-526fa998-f8d1-4142-878c-e76e340b75ed' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-526fa998-f8d1-4142-878c-e76e340b75ed' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-6826fd4f-f3aa-4e04-9912-cfb9aa3fb1c7' class='xr-var-data-in' type='checkbox'><label for='data-6826fd4f-f3aa-4e04-9912-cfb9aa3fb1c7' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>cell_methods :</span></dt><dd>time: mean cell: mean</dd><dt><span>component :</span></dt><dd>ocean</dd><dt><span>grid_mapping :</span></dt><dd>crs</dd><dt><span>units :</span></dt><dd>W/m2</dd><dt><span>vgrid :</span></dt><dd>surface</dd></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table>\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 8.03 GiB </td>\n",
-       "                        <td> 16.88 MiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (10958, 196608) </td>\n",
-       "                        <td> (90, 49152) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Count </th>\n",
-       "                        <td> 2 Graph Layers </td>\n",
-       "                        <td> 488 Chunks </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                    <th> Type </th>\n",
-       "                    <td> float32 </td>\n",
-       "                    <td> numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"170\" height=\"85\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n",
-       "  <line x1=\"0\" y1=\"3\" x2=\"120\" y2=\"3\" />\n",
-       "  <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n",
-       "  <line x1=\"0\" y1=\"7\" x2=\"120\" y2=\"7\" />\n",
-       "  <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n",
-       "  <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n",
-       "  <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n",
-       "  <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n",
-       "  <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n",
-       "  <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n",
-       "  <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n",
-       "  <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n",
-       "  <line x1=\"0\" y1=\"23\" x2=\"120\" y2=\"23\" />\n",
-       "  <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" />\n",
-       "  <line x1=\"0\" y1=\"27\" x2=\"120\" y2=\"27\" />\n",
-       "  <line x1=\"0\" y1=\"29\" x2=\"120\" y2=\"29\" />\n",
-       "  <line x1=\"0\" y1=\"31\" x2=\"120\" y2=\"31\" />\n",
-       "  <line x1=\"0\" y1=\"33\" x2=\"120\" y2=\"33\" />\n",
-       "  <line x1=\"0\" y1=\"35\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"35\" />\n",
-       "  <line x1=\"60\" y1=\"0\" x2=\"60\" y2=\"35\" />\n",
-       "  <line x1=\"90\" y1=\"0\" x2=\"90\" y2=\"35\" />\n",
-       "  <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"0.0,0.0 120.0,0.0 120.0,35.164509745010875 0.0,35.164509745010875\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"60.000000\" y=\"55.164510\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >196608</text>\n",
-       "  <text x=\"140.000000\" y=\"17.582255\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,17.582255)\">10958</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>atmos_fluxes_HeatFlux_LongWave</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(90, 49152), meta=np.ndarray&gt;</div><input id='attrs-03549d13-c122-4a3d-97e4-dd735af3a555' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-03549d13-c122-4a3d-97e4-dd735af3a555' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-f6bc3c77-88f3-4673-a674-b7561eedeac9' class='xr-var-data-in' type='checkbox'><label for='data-f6bc3c77-88f3-4673-a674-b7561eedeac9' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>cell_methods :</span></dt><dd>time: mean cell: mean</dd><dt><span>component :</span></dt><dd>ocean</dd><dt><span>grid_mapping :</span></dt><dd>crs</dd><dt><span>units :</span></dt><dd>W/m2</dd><dt><span>vgrid :</span></dt><dd>surface</dd></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table>\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 8.03 GiB </td>\n",
-       "                        <td> 16.88 MiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (10958, 196608) </td>\n",
-       "                        <td> (90, 49152) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Count </th>\n",
-       "                        <td> 2 Graph Layers </td>\n",
-       "                        <td> 488 Chunks </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                    <th> Type </th>\n",
-       "                    <td> float32 </td>\n",
-       "                    <td> numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"170\" height=\"85\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n",
-       "  <line x1=\"0\" y1=\"3\" x2=\"120\" y2=\"3\" />\n",
-       "  <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n",
-       "  <line x1=\"0\" y1=\"7\" x2=\"120\" y2=\"7\" />\n",
-       "  <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n",
-       "  <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n",
-       "  <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n",
-       "  <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n",
-       "  <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n",
-       "  <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n",
-       "  <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n",
-       "  <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n",
-       "  <line x1=\"0\" y1=\"23\" x2=\"120\" y2=\"23\" />\n",
-       "  <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" />\n",
-       "  <line x1=\"0\" y1=\"27\" x2=\"120\" y2=\"27\" />\n",
-       "  <line x1=\"0\" y1=\"29\" x2=\"120\" y2=\"29\" />\n",
-       "  <line x1=\"0\" y1=\"31\" x2=\"120\" y2=\"31\" />\n",
-       "  <line x1=\"0\" y1=\"33\" x2=\"120\" y2=\"33\" />\n",
-       "  <line x1=\"0\" y1=\"35\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"35\" />\n",
-       "  <line x1=\"60\" y1=\"0\" x2=\"60\" y2=\"35\" />\n",
-       "  <line x1=\"90\" y1=\"0\" x2=\"90\" y2=\"35\" />\n",
-       "  <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"0.0,0.0 120.0,0.0 120.0,35.164509745010875 0.0,35.164509745010875\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"60.000000\" y=\"55.164510\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >196608</text>\n",
-       "  <text x=\"140.000000\" y=\"17.582255\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,17.582255)\">10958</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>atmos_fluxes_HeatFlux_Sensible</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(90, 49152), meta=np.ndarray&gt;</div><input id='attrs-a1ebd093-e192-4cd0-88f6-6b39be951b72' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-a1ebd093-e192-4cd0-88f6-6b39be951b72' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-042f63d2-488c-4827-a77d-53e6443df286' class='xr-var-data-in' type='checkbox'><label for='data-042f63d2-488c-4827-a77d-53e6443df286' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>cell_methods :</span></dt><dd>time: mean cell: mean</dd><dt><span>component :</span></dt><dd>ocean</dd><dt><span>grid_mapping :</span></dt><dd>crs</dd><dt><span>units :</span></dt><dd>W/m2</dd><dt><span>vgrid :</span></dt><dd>surface</dd></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table>\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 8.03 GiB </td>\n",
-       "                        <td> 16.88 MiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (10958, 196608) </td>\n",
-       "                        <td> (90, 49152) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Count </th>\n",
-       "                        <td> 2 Graph Layers </td>\n",
-       "                        <td> 488 Chunks </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                    <th> Type </th>\n",
-       "                    <td> float32 </td>\n",
-       "                    <td> numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"170\" height=\"85\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n",
-       "  <line x1=\"0\" y1=\"3\" x2=\"120\" y2=\"3\" />\n",
-       "  <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n",
-       "  <line x1=\"0\" y1=\"7\" x2=\"120\" y2=\"7\" />\n",
-       "  <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n",
-       "  <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n",
-       "  <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n",
-       "  <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n",
-       "  <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n",
-       "  <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n",
-       "  <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n",
-       "  <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n",
-       "  <line x1=\"0\" y1=\"23\" x2=\"120\" y2=\"23\" />\n",
-       "  <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" />\n",
-       "  <line x1=\"0\" y1=\"27\" x2=\"120\" y2=\"27\" />\n",
-       "  <line x1=\"0\" y1=\"29\" x2=\"120\" y2=\"29\" />\n",
-       "  <line x1=\"0\" y1=\"31\" x2=\"120\" y2=\"31\" />\n",
-       "  <line x1=\"0\" y1=\"33\" x2=\"120\" y2=\"33\" />\n",
-       "  <line x1=\"0\" y1=\"35\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"35\" />\n",
-       "  <line x1=\"60\" y1=\"0\" x2=\"60\" y2=\"35\" />\n",
-       "  <line x1=\"90\" y1=\"0\" x2=\"90\" y2=\"35\" />\n",
-       "  <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"0.0,0.0 120.0,0.0 120.0,35.164509745010875 0.0,35.164509745010875\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"60.000000\" y=\"55.164510\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >196608</text>\n",
-       "  <text x=\"140.000000\" y=\"17.582255\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,17.582255)\">10958</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>atmos_fluxes_HeatFlux_ShortWave</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(90, 49152), meta=np.ndarray&gt;</div><input id='attrs-75723682-da11-49bb-847e-1dfcfb05d924' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-75723682-da11-49bb-847e-1dfcfb05d924' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-34839a3d-635a-4254-9f5b-272bb9ad572d' class='xr-var-data-in' type='checkbox'><label for='data-34839a3d-635a-4254-9f5b-272bb9ad572d' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>cell_methods :</span></dt><dd>time: mean cell: mean</dd><dt><span>component :</span></dt><dd>ocean</dd><dt><span>grid_mapping :</span></dt><dd>crs</dd><dt><span>units :</span></dt><dd>W/m2</dd><dt><span>vgrid :</span></dt><dd>surface</dd></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table>\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 8.03 GiB </td>\n",
-       "                        <td> 16.88 MiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (10958, 196608) </td>\n",
-       "                        <td> (90, 49152) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Count </th>\n",
-       "                        <td> 2 Graph Layers </td>\n",
-       "                        <td> 488 Chunks </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                    <th> Type </th>\n",
-       "                    <td> float32 </td>\n",
-       "                    <td> numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"170\" height=\"85\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n",
-       "  <line x1=\"0\" y1=\"3\" x2=\"120\" y2=\"3\" />\n",
-       "  <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n",
-       "  <line x1=\"0\" y1=\"7\" x2=\"120\" y2=\"7\" />\n",
-       "  <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n",
-       "  <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n",
-       "  <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n",
-       "  <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n",
-       "  <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n",
-       "  <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n",
-       "  <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n",
-       "  <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n",
-       "  <line x1=\"0\" y1=\"23\" x2=\"120\" y2=\"23\" />\n",
-       "  <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" />\n",
-       "  <line x1=\"0\" y1=\"27\" x2=\"120\" y2=\"27\" />\n",
-       "  <line x1=\"0\" y1=\"29\" x2=\"120\" y2=\"29\" />\n",
-       "  <line x1=\"0\" y1=\"31\" x2=\"120\" y2=\"31\" />\n",
-       "  <line x1=\"0\" y1=\"33\" x2=\"120\" y2=\"33\" />\n",
-       "  <line x1=\"0\" y1=\"35\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"35\" />\n",
-       "  <line x1=\"60\" y1=\"0\" x2=\"60\" y2=\"35\" />\n",
-       "  <line x1=\"90\" y1=\"0\" x2=\"90\" y2=\"35\" />\n",
-       "  <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"0.0,0.0 120.0,0.0 120.0,35.164509745010875 0.0,35.164509745010875\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"60.000000\" y=\"55.164510\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >196608</text>\n",
-       "  <text x=\"140.000000\" y=\"17.582255\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,17.582255)\">10958</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>atmos_fluxes_HeatFlux_Total</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(90, 49152), meta=np.ndarray&gt;</div><input id='attrs-ba0b5a27-24dc-402b-8cfb-3ceb846ab700' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-ba0b5a27-24dc-402b-8cfb-3ceb846ab700' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-26fb2143-ab99-42cc-935a-67cd9215f565' class='xr-var-data-in' type='checkbox'><label for='data-26fb2143-ab99-42cc-935a-67cd9215f565' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>cell_methods :</span></dt><dd>time: mean cell: mean</dd><dt><span>component :</span></dt><dd>ocean</dd><dt><span>grid_mapping :</span></dt><dd>crs</dd><dt><span>units :</span></dt><dd>W/m2</dd><dt><span>vgrid :</span></dt><dd>surface</dd></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table>\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 8.03 GiB </td>\n",
-       "                        <td> 16.88 MiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (10958, 196608) </td>\n",
-       "                        <td> (90, 49152) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Count </th>\n",
-       "                        <td> 2 Graph Layers </td>\n",
-       "                        <td> 488 Chunks </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                    <th> Type </th>\n",
-       "                    <td> float32 </td>\n",
-       "                    <td> numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"170\" height=\"85\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n",
-       "  <line x1=\"0\" y1=\"3\" x2=\"120\" y2=\"3\" />\n",
-       "  <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n",
-       "  <line x1=\"0\" y1=\"7\" x2=\"120\" y2=\"7\" />\n",
-       "  <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n",
-       "  <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n",
-       "  <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n",
-       "  <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n",
-       "  <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n",
-       "  <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n",
-       "  <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n",
-       "  <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n",
-       "  <line x1=\"0\" y1=\"23\" x2=\"120\" y2=\"23\" />\n",
-       "  <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" />\n",
-       "  <line x1=\"0\" y1=\"27\" x2=\"120\" y2=\"27\" />\n",
-       "  <line x1=\"0\" y1=\"29\" x2=\"120\" y2=\"29\" />\n",
-       "  <line x1=\"0\" y1=\"31\" x2=\"120\" y2=\"31\" />\n",
-       "  <line x1=\"0\" y1=\"33\" x2=\"120\" y2=\"33\" />\n",
-       "  <line x1=\"0\" y1=\"35\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"35\" />\n",
-       "  <line x1=\"60\" y1=\"0\" x2=\"60\" y2=\"35\" />\n",
-       "  <line x1=\"90\" y1=\"0\" x2=\"90\" y2=\"35\" />\n",
-       "  <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"0.0,0.0 120.0,0.0 120.0,35.164509745010875 0.0,35.164509745010875\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"60.000000\" y=\"55.164510\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >196608</text>\n",
-       "  <text x=\"140.000000\" y=\"17.582255\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,17.582255)\">10958</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>atmos_fluxes_stress_x</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(90, 49152), meta=np.ndarray&gt;</div><input id='attrs-f54c9e39-d322-4874-9c17-4a09ed1f10a8' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-f54c9e39-d322-4874-9c17-4a09ed1f10a8' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-4345faf1-2b97-4314-8e7e-8e6563d3a64c' class='xr-var-data-in' type='checkbox'><label for='data-4345faf1-2b97-4314-8e7e-8e6563d3a64c' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>cell_methods :</span></dt><dd>time: mean cell: mean</dd><dt><span>component :</span></dt><dd>ocean</dd><dt><span>grid_mapping :</span></dt><dd>crs</dd><dt><span>units :</span></dt><dd>Pa</dd><dt><span>vgrid :</span></dt><dd>surface</dd></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table>\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 8.03 GiB </td>\n",
-       "                        <td> 16.88 MiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (10958, 196608) </td>\n",
-       "                        <td> (90, 49152) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Count </th>\n",
-       "                        <td> 2 Graph Layers </td>\n",
-       "                        <td> 488 Chunks </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                    <th> Type </th>\n",
-       "                    <td> float32 </td>\n",
-       "                    <td> numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"170\" height=\"85\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n",
-       "  <line x1=\"0\" y1=\"3\" x2=\"120\" y2=\"3\" />\n",
-       "  <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n",
-       "  <line x1=\"0\" y1=\"7\" x2=\"120\" y2=\"7\" />\n",
-       "  <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n",
-       "  <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n",
-       "  <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n",
-       "  <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n",
-       "  <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n",
-       "  <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n",
-       "  <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n",
-       "  <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n",
-       "  <line x1=\"0\" y1=\"23\" x2=\"120\" y2=\"23\" />\n",
-       "  <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" />\n",
-       "  <line x1=\"0\" y1=\"27\" x2=\"120\" y2=\"27\" />\n",
-       "  <line x1=\"0\" y1=\"29\" x2=\"120\" y2=\"29\" />\n",
-       "  <line x1=\"0\" y1=\"31\" x2=\"120\" y2=\"31\" />\n",
-       "  <line x1=\"0\" y1=\"33\" x2=\"120\" y2=\"33\" />\n",
-       "  <line x1=\"0\" y1=\"35\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"35\" />\n",
-       "  <line x1=\"60\" y1=\"0\" x2=\"60\" y2=\"35\" />\n",
-       "  <line x1=\"90\" y1=\"0\" x2=\"90\" y2=\"35\" />\n",
-       "  <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"0.0,0.0 120.0,0.0 120.0,35.164509745010875 0.0,35.164509745010875\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"60.000000\" y=\"55.164510\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >196608</text>\n",
-       "  <text x=\"140.000000\" y=\"17.582255\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,17.582255)\">10958</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>atmos_fluxes_stress_xw</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(90, 49152), meta=np.ndarray&gt;</div><input id='attrs-64410469-8418-4e1f-9b45-cf500aacbe28' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-64410469-8418-4e1f-9b45-cf500aacbe28' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-0f3e0917-91a0-4fd7-a640-89026cdcf69e' class='xr-var-data-in' type='checkbox'><label for='data-0f3e0917-91a0-4fd7-a640-89026cdcf69e' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>cell_methods :</span></dt><dd>time: mean cell: mean</dd><dt><span>component :</span></dt><dd>ocean</dd><dt><span>grid_mapping :</span></dt><dd>crs</dd><dt><span>units :</span></dt><dd>Pa</dd><dt><span>vgrid :</span></dt><dd>surface</dd></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table>\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 8.03 GiB </td>\n",
-       "                        <td> 16.88 MiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (10958, 196608) </td>\n",
-       "                        <td> (90, 49152) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Count </th>\n",
-       "                        <td> 2 Graph Layers </td>\n",
-       "                        <td> 488 Chunks </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                    <th> Type </th>\n",
-       "                    <td> float32 </td>\n",
-       "                    <td> numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"170\" height=\"85\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n",
-       "  <line x1=\"0\" y1=\"3\" x2=\"120\" y2=\"3\" />\n",
-       "  <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n",
-       "  <line x1=\"0\" y1=\"7\" x2=\"120\" y2=\"7\" />\n",
-       "  <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n",
-       "  <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n",
-       "  <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n",
-       "  <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n",
-       "  <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n",
-       "  <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n",
-       "  <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n",
-       "  <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n",
-       "  <line x1=\"0\" y1=\"23\" x2=\"120\" y2=\"23\" />\n",
-       "  <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" />\n",
-       "  <line x1=\"0\" y1=\"27\" x2=\"120\" y2=\"27\" />\n",
-       "  <line x1=\"0\" y1=\"29\" x2=\"120\" y2=\"29\" />\n",
-       "  <line x1=\"0\" y1=\"31\" x2=\"120\" y2=\"31\" />\n",
-       "  <line x1=\"0\" y1=\"33\" x2=\"120\" y2=\"33\" />\n",
-       "  <line x1=\"0\" y1=\"35\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"35\" />\n",
-       "  <line x1=\"60\" y1=\"0\" x2=\"60\" y2=\"35\" />\n",
-       "  <line x1=\"90\" y1=\"0\" x2=\"90\" y2=\"35\" />\n",
-       "  <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"0.0,0.0 120.0,0.0 120.0,35.164509745010875 0.0,35.164509745010875\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"60.000000\" y=\"55.164510\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >196608</text>\n",
-       "  <text x=\"140.000000\" y=\"17.582255\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,17.582255)\">10958</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>atmos_fluxes_stress_y</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(90, 49152), meta=np.ndarray&gt;</div><input id='attrs-a50e9f2e-68ca-4c9d-b263-ee9e0fc9eb21' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-a50e9f2e-68ca-4c9d-b263-ee9e0fc9eb21' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-99f61c32-23cd-44e5-8e11-132b0b53c220' class='xr-var-data-in' type='checkbox'><label for='data-99f61c32-23cd-44e5-8e11-132b0b53c220' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>cell_methods :</span></dt><dd>time: mean cell: mean</dd><dt><span>component :</span></dt><dd>ocean</dd><dt><span>grid_mapping :</span></dt><dd>crs</dd><dt><span>units :</span></dt><dd>Pa</dd><dt><span>vgrid :</span></dt><dd>surface</dd></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table>\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 8.03 GiB </td>\n",
-       "                        <td> 16.88 MiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (10958, 196608) </td>\n",
-       "                        <td> (90, 49152) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Count </th>\n",
-       "                        <td> 2 Graph Layers </td>\n",
-       "                        <td> 488 Chunks </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                    <th> Type </th>\n",
-       "                    <td> float32 </td>\n",
-       "                    <td> numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"170\" height=\"85\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n",
-       "  <line x1=\"0\" y1=\"3\" x2=\"120\" y2=\"3\" />\n",
-       "  <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n",
-       "  <line x1=\"0\" y1=\"7\" x2=\"120\" y2=\"7\" />\n",
-       "  <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n",
-       "  <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n",
-       "  <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n",
-       "  <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n",
-       "  <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n",
-       "  <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n",
-       "  <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n",
-       "  <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n",
-       "  <line x1=\"0\" y1=\"23\" x2=\"120\" y2=\"23\" />\n",
-       "  <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" />\n",
-       "  <line x1=\"0\" y1=\"27\" x2=\"120\" y2=\"27\" />\n",
-       "  <line x1=\"0\" y1=\"29\" x2=\"120\" y2=\"29\" />\n",
-       "  <line x1=\"0\" y1=\"31\" x2=\"120\" y2=\"31\" />\n",
-       "  <line x1=\"0\" y1=\"33\" x2=\"120\" y2=\"33\" />\n",
-       "  <line x1=\"0\" y1=\"35\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"35\" />\n",
-       "  <line x1=\"60\" y1=\"0\" x2=\"60\" y2=\"35\" />\n",
-       "  <line x1=\"90\" y1=\"0\" x2=\"90\" y2=\"35\" />\n",
-       "  <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"0.0,0.0 120.0,0.0 120.0,35.164509745010875 0.0,35.164509745010875\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"60.000000\" y=\"55.164510\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >196608</text>\n",
-       "  <text x=\"140.000000\" y=\"17.582255\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,17.582255)\">10958</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>atmos_fluxes_stress_yw</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(90, 49152), meta=np.ndarray&gt;</div><input id='attrs-6981c13f-1361-48e1-882f-85ea2a92288e' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-6981c13f-1361-48e1-882f-85ea2a92288e' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-c2e2f26f-9703-4615-932e-571b2541365f' class='xr-var-data-in' type='checkbox'><label for='data-c2e2f26f-9703-4615-932e-571b2541365f' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>cell_methods :</span></dt><dd>time: mean cell: mean</dd><dt><span>component :</span></dt><dd>ocean</dd><dt><span>grid_mapping :</span></dt><dd>crs</dd><dt><span>units :</span></dt><dd>Pa</dd><dt><span>vgrid :</span></dt><dd>surface</dd></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table>\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 8.03 GiB </td>\n",
-       "                        <td> 16.88 MiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (10958, 196608) </td>\n",
-       "                        <td> (90, 49152) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Count </th>\n",
-       "                        <td> 2 Graph Layers </td>\n",
-       "                        <td> 488 Chunks </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                    <th> Type </th>\n",
-       "                    <td> float32 </td>\n",
-       "                    <td> numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"170\" height=\"85\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n",
-       "  <line x1=\"0\" y1=\"3\" x2=\"120\" y2=\"3\" />\n",
-       "  <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n",
-       "  <line x1=\"0\" y1=\"7\" x2=\"120\" y2=\"7\" />\n",
-       "  <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n",
-       "  <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n",
-       "  <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n",
-       "  <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n",
-       "  <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n",
-       "  <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n",
-       "  <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n",
-       "  <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n",
-       "  <line x1=\"0\" y1=\"23\" x2=\"120\" y2=\"23\" />\n",
-       "  <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" />\n",
-       "  <line x1=\"0\" y1=\"27\" x2=\"120\" y2=\"27\" />\n",
-       "  <line x1=\"0\" y1=\"29\" x2=\"120\" y2=\"29\" />\n",
-       "  <line x1=\"0\" y1=\"31\" x2=\"120\" y2=\"31\" />\n",
-       "  <line x1=\"0\" y1=\"33\" x2=\"120\" y2=\"33\" />\n",
-       "  <line x1=\"0\" y1=\"35\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"35\" />\n",
-       "  <line x1=\"60\" y1=\"0\" x2=\"60\" y2=\"35\" />\n",
-       "  <line x1=\"90\" y1=\"0\" x2=\"90\" y2=\"35\" />\n",
-       "  <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"0.0,0.0 120.0,0.0 120.0,35.164509745010875 0.0,35.164509745010875\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"60.000000\" y=\"55.164510\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >196608</text>\n",
-       "  <text x=\"140.000000\" y=\"17.582255\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,17.582255)\">10958</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>cli</span></div><div class='xr-var-dims'>(time, level_full, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(7, 9, 49152), meta=np.ndarray&gt;</div><input id='attrs-d4387fc5-84e0-4e89-b4a3-9fcb71c005aa' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-d4387fc5-84e0-4e89-b4a3-9fcb71c005aa' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-82a8fef3-1aea-4843-8464-5423220a7981' class='xr-var-data-in' type='checkbox'><label for='data-82a8fef3-1aea-4843-8464-5423220a7981' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>cell_methods :</span></dt><dd>time: mean cell: mean</dd><dt><span>component :</span></dt><dd>atmo</dd><dt><span>grid_mapping :</span></dt><dd>crs</dd><dt><span>long_name :</span></dt><dd>specific cloud ice content</dd><dt><span>units :</span></dt><dd>kg kg-1</dd><dt><span>vgrid :</span></dt><dd>reference</dd></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table>\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 722.33 GiB </td>\n",
-       "                        <td> 11.81 MiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (10958, 90, 196608) </td>\n",
-       "                        <td> (7, 9, 49152) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Count </th>\n",
-       "                        <td> 2 Graph Layers </td>\n",
-       "                        <td> 62640 Chunks </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                    <th> Type </th>\n",
-       "                    <td> float32 </td>\n",
-       "                    <td> numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"200\" height=\"96\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"10\" y1=\"0\" x2=\"30\" y2=\"20\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"10\" y1=\"2\" x2=\"30\" y2=\"23\" />\n",
-       "  <line x1=\"10\" y1=\"5\" x2=\"30\" y2=\"25\" />\n",
-       "  <line x1=\"10\" y1=\"7\" x2=\"30\" y2=\"28\" />\n",
-       "  <line x1=\"10\" y1=\"10\" x2=\"30\" y2=\"30\" />\n",
-       "  <line x1=\"10\" y1=\"12\" x2=\"30\" y2=\"33\" />\n",
-       "  <line x1=\"10\" y1=\"15\" x2=\"30\" y2=\"35\" />\n",
-       "  <line x1=\"10\" y1=\"17\" x2=\"30\" y2=\"38\" />\n",
-       "  <line x1=\"10\" y1=\"20\" x2=\"30\" y2=\"41\" />\n",
-       "  <line x1=\"10\" y1=\"22\" x2=\"30\" y2=\"43\" />\n",
-       "  <line x1=\"10\" y1=\"25\" x2=\"30\" y2=\"46\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"25\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"11\" y1=\"1\" x2=\"11\" y2=\"26\" />\n",
-       "  <line x1=\"12\" y1=\"2\" x2=\"12\" y2=\"27\" />\n",
-       "  <line x1=\"13\" y1=\"3\" x2=\"13\" y2=\"28\" />\n",
-       "  <line x1=\"14\" y1=\"4\" x2=\"14\" y2=\"29\" />\n",
-       "  <line x1=\"15\" y1=\"5\" x2=\"15\" y2=\"30\" />\n",
-       "  <line x1=\"16\" y1=\"6\" x2=\"16\" y2=\"31\" />\n",
-       "  <line x1=\"17\" y1=\"7\" x2=\"17\" y2=\"33\" />\n",
-       "  <line x1=\"18\" y1=\"8\" x2=\"18\" y2=\"34\" />\n",
-       "  <line x1=\"19\" y1=\"9\" x2=\"19\" y2=\"35\" />\n",
-       "  <line x1=\"20\" y1=\"10\" x2=\"20\" y2=\"36\" />\n",
-       "  <line x1=\"21\" y1=\"11\" x2=\"21\" y2=\"37\" />\n",
-       "  <line x1=\"23\" y1=\"13\" x2=\"23\" y2=\"38\" />\n",
-       "  <line x1=\"24\" y1=\"14\" x2=\"24\" y2=\"39\" />\n",
-       "  <line x1=\"25\" y1=\"15\" x2=\"25\" y2=\"40\" />\n",
-       "  <line x1=\"26\" y1=\"16\" x2=\"26\" y2=\"41\" />\n",
-       "  <line x1=\"27\" y1=\"17\" x2=\"27\" y2=\"42\" />\n",
-       "  <line x1=\"28\" y1=\"18\" x2=\"28\" y2=\"43\" />\n",
-       "  <line x1=\"29\" y1=\"19\" x2=\"29\" y2=\"45\" />\n",
-       "  <line x1=\"30\" y1=\"20\" x2=\"30\" y2=\"46\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"10.0,0.0 30.68500573235934,20.68500573235934 30.68500573235934,46.097622246941825 10.0,25.41261651458249\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"10\" y1=\"0\" x2=\"130\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"11\" y1=\"1\" x2=\"131\" y2=\"1\" />\n",
-       "  <line x1=\"12\" y1=\"2\" x2=\"132\" y2=\"2\" />\n",
-       "  <line x1=\"13\" y1=\"3\" x2=\"133\" y2=\"3\" />\n",
-       "  <line x1=\"14\" y1=\"4\" x2=\"134\" y2=\"4\" />\n",
-       "  <line x1=\"15\" y1=\"5\" x2=\"135\" y2=\"5\" />\n",
-       "  <line x1=\"16\" y1=\"6\" x2=\"136\" y2=\"6\" />\n",
-       "  <line x1=\"17\" y1=\"7\" x2=\"137\" y2=\"7\" />\n",
-       "  <line x1=\"18\" y1=\"8\" x2=\"138\" y2=\"8\" />\n",
-       "  <line x1=\"19\" y1=\"9\" x2=\"139\" y2=\"9\" />\n",
-       "  <line x1=\"20\" y1=\"10\" x2=\"140\" y2=\"10\" />\n",
-       "  <line x1=\"21\" y1=\"11\" x2=\"141\" y2=\"11\" />\n",
-       "  <line x1=\"23\" y1=\"13\" x2=\"143\" y2=\"13\" />\n",
-       "  <line x1=\"24\" y1=\"14\" x2=\"144\" y2=\"14\" />\n",
-       "  <line x1=\"25\" y1=\"15\" x2=\"145\" y2=\"15\" />\n",
-       "  <line x1=\"26\" y1=\"16\" x2=\"146\" y2=\"16\" />\n",
-       "  <line x1=\"27\" y1=\"17\" x2=\"147\" y2=\"17\" />\n",
-       "  <line x1=\"28\" y1=\"18\" x2=\"148\" y2=\"18\" />\n",
-       "  <line x1=\"29\" y1=\"19\" x2=\"149\" y2=\"19\" />\n",
-       "  <line x1=\"30\" y1=\"20\" x2=\"150\" y2=\"20\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"10\" y1=\"0\" x2=\"30\" y2=\"20\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"40\" y1=\"0\" x2=\"60\" y2=\"20\" />\n",
-       "  <line x1=\"70\" y1=\"0\" x2=\"90\" y2=\"20\" />\n",
-       "  <line x1=\"100\" y1=\"0\" x2=\"120\" y2=\"20\" />\n",
-       "  <line x1=\"130\" y1=\"0\" x2=\"150\" y2=\"20\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"10.0,0.0 130.0,0.0 150.68500573235934,20.68500573235934 30.68500573235934,20.68500573235934\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"30\" y1=\"20\" x2=\"150\" y2=\"20\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"30\" y1=\"23\" x2=\"150\" y2=\"23\" />\n",
-       "  <line x1=\"30\" y1=\"25\" x2=\"150\" y2=\"25\" />\n",
-       "  <line x1=\"30\" y1=\"28\" x2=\"150\" y2=\"28\" />\n",
-       "  <line x1=\"30\" y1=\"30\" x2=\"150\" y2=\"30\" />\n",
-       "  <line x1=\"30\" y1=\"33\" x2=\"150\" y2=\"33\" />\n",
-       "  <line x1=\"30\" y1=\"35\" x2=\"150\" y2=\"35\" />\n",
-       "  <line x1=\"30\" y1=\"38\" x2=\"150\" y2=\"38\" />\n",
-       "  <line x1=\"30\" y1=\"41\" x2=\"150\" y2=\"41\" />\n",
-       "  <line x1=\"30\" y1=\"43\" x2=\"150\" y2=\"43\" />\n",
-       "  <line x1=\"30\" y1=\"46\" x2=\"150\" y2=\"46\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"30\" y1=\"20\" x2=\"30\" y2=\"46\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"60\" y1=\"20\" x2=\"60\" y2=\"46\" />\n",
-       "  <line x1=\"90\" y1=\"20\" x2=\"90\" y2=\"46\" />\n",
-       "  <line x1=\"120\" y1=\"20\" x2=\"120\" y2=\"46\" />\n",
-       "  <line x1=\"150\" y1=\"20\" x2=\"150\" y2=\"46\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"30.68500573235934,20.68500573235934 150.68500573235934,20.68500573235934 150.68500573235934,46.097622246941825 30.68500573235934,46.097622246941825\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"90.685006\" y=\"66.097622\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >196608</text>\n",
-       "  <text x=\"170.685006\" y=\"33.391314\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,170.685006,33.391314)\">90</text>\n",
-       "  <text x=\"10.342503\" y=\"55.755119\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,10.342503,55.755119)\">10958</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>clivi</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(90, 49152), meta=np.ndarray&gt;</div><input id='attrs-5b5f15dd-5cc5-4db4-a719-fa02e617926b' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-5b5f15dd-5cc5-4db4-a719-fa02e617926b' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-b274134a-bb34-43bb-a865-602155a61b6d' class='xr-var-data-in' type='checkbox'><label for='data-b274134a-bb34-43bb-a865-602155a61b6d' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>cell_methods :</span></dt><dd>time: mean cell: mean</dd><dt><span>component :</span></dt><dd>atmo</dd><dt><span>grid_mapping :</span></dt><dd>crs</dd><dt><span>long_name :</span></dt><dd>vertically integrated cloud ice</dd><dt><span>units :</span></dt><dd>kg m-2</dd><dt><span>vgrid :</span></dt><dd>atmosphere</dd></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table>\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 8.03 GiB </td>\n",
-       "                        <td> 16.88 MiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (10958, 196608) </td>\n",
-       "                        <td> (90, 49152) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Count </th>\n",
-       "                        <td> 2 Graph Layers </td>\n",
-       "                        <td> 488 Chunks </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                    <th> Type </th>\n",
-       "                    <td> float32 </td>\n",
-       "                    <td> numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"170\" height=\"85\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n",
-       "  <line x1=\"0\" y1=\"3\" x2=\"120\" y2=\"3\" />\n",
-       "  <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n",
-       "  <line x1=\"0\" y1=\"7\" x2=\"120\" y2=\"7\" />\n",
-       "  <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n",
-       "  <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n",
-       "  <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n",
-       "  <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n",
-       "  <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n",
-       "  <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n",
-       "  <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n",
-       "  <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n",
-       "  <line x1=\"0\" y1=\"23\" x2=\"120\" y2=\"23\" />\n",
-       "  <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" />\n",
-       "  <line x1=\"0\" y1=\"27\" x2=\"120\" y2=\"27\" />\n",
-       "  <line x1=\"0\" y1=\"29\" x2=\"120\" y2=\"29\" />\n",
-       "  <line x1=\"0\" y1=\"31\" x2=\"120\" y2=\"31\" />\n",
-       "  <line x1=\"0\" y1=\"33\" x2=\"120\" y2=\"33\" />\n",
-       "  <line x1=\"0\" y1=\"35\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"35\" />\n",
-       "  <line x1=\"60\" y1=\"0\" x2=\"60\" y2=\"35\" />\n",
-       "  <line x1=\"90\" y1=\"0\" x2=\"90\" y2=\"35\" />\n",
-       "  <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"0.0,0.0 120.0,0.0 120.0,35.164509745010875 0.0,35.164509745010875\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"60.000000\" y=\"55.164510\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >196608</text>\n",
-       "  <text x=\"140.000000\" y=\"17.582255\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,17.582255)\">10958</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>cllvi</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(90, 49152), meta=np.ndarray&gt;</div><input id='attrs-f6615ceb-8883-4c16-94de-6dcfb8181703' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-f6615ceb-8883-4c16-94de-6dcfb8181703' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-d999cbcf-22f3-4ada-985e-4e008e4eaeb2' class='xr-var-data-in' type='checkbox'><label for='data-d999cbcf-22f3-4ada-985e-4e008e4eaeb2' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>cell_methods :</span></dt><dd>time: mean cell: mean</dd><dt><span>component :</span></dt><dd>atmo</dd><dt><span>grid_mapping :</span></dt><dd>crs</dd><dt><span>long_name :</span></dt><dd>vertically integrated cloud water</dd><dt><span>units :</span></dt><dd>kg m-2</dd><dt><span>vgrid :</span></dt><dd>atmosphere</dd></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table>\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 8.03 GiB </td>\n",
-       "                        <td> 16.88 MiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (10958, 196608) </td>\n",
-       "                        <td> (90, 49152) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Count </th>\n",
-       "                        <td> 2 Graph Layers </td>\n",
-       "                        <td> 488 Chunks </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                    <th> Type </th>\n",
-       "                    <td> float32 </td>\n",
-       "                    <td> numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"170\" height=\"85\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n",
-       "  <line x1=\"0\" y1=\"3\" x2=\"120\" y2=\"3\" />\n",
-       "  <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n",
-       "  <line x1=\"0\" y1=\"7\" x2=\"120\" y2=\"7\" />\n",
-       "  <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n",
-       "  <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n",
-       "  <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n",
-       "  <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n",
-       "  <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n",
-       "  <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n",
-       "  <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n",
-       "  <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n",
-       "  <line x1=\"0\" y1=\"23\" x2=\"120\" y2=\"23\" />\n",
-       "  <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" />\n",
-       "  <line x1=\"0\" y1=\"27\" x2=\"120\" y2=\"27\" />\n",
-       "  <line x1=\"0\" y1=\"29\" x2=\"120\" y2=\"29\" />\n",
-       "  <line x1=\"0\" y1=\"31\" x2=\"120\" y2=\"31\" />\n",
-       "  <line x1=\"0\" y1=\"33\" x2=\"120\" y2=\"33\" />\n",
-       "  <line x1=\"0\" y1=\"35\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"35\" />\n",
-       "  <line x1=\"60\" y1=\"0\" x2=\"60\" y2=\"35\" />\n",
-       "  <line x1=\"90\" y1=\"0\" x2=\"90\" y2=\"35\" />\n",
-       "  <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"0.0,0.0 120.0,0.0 120.0,35.164509745010875 0.0,35.164509745010875\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"60.000000\" y=\"55.164510\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >196608</text>\n",
-       "  <text x=\"140.000000\" y=\"17.582255\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,17.582255)\">10958</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>clw</span></div><div class='xr-var-dims'>(time, level_full, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(7, 9, 49152), meta=np.ndarray&gt;</div><input id='attrs-59dea641-71d8-4f9c-88e2-57eddb0e56ae' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-59dea641-71d8-4f9c-88e2-57eddb0e56ae' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-7c75f43d-b729-45ce-bee6-6e7821f83e11' class='xr-var-data-in' type='checkbox'><label for='data-7c75f43d-b729-45ce-bee6-6e7821f83e11' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>cell_methods :</span></dt><dd>time: mean cell: mean</dd><dt><span>component :</span></dt><dd>atmo</dd><dt><span>grid_mapping :</span></dt><dd>crs</dd><dt><span>long_name :</span></dt><dd>specific cloud water content</dd><dt><span>units :</span></dt><dd>kg kg-1</dd><dt><span>vgrid :</span></dt><dd>reference</dd></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table>\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 722.33 GiB </td>\n",
-       "                        <td> 11.81 MiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (10958, 90, 196608) </td>\n",
-       "                        <td> (7, 9, 49152) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Count </th>\n",
-       "                        <td> 2 Graph Layers </td>\n",
-       "                        <td> 62640 Chunks </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                    <th> Type </th>\n",
-       "                    <td> float32 </td>\n",
-       "                    <td> numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"200\" height=\"96\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"10\" y1=\"0\" x2=\"30\" y2=\"20\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"10\" y1=\"2\" x2=\"30\" y2=\"23\" />\n",
-       "  <line x1=\"10\" y1=\"5\" x2=\"30\" y2=\"25\" />\n",
-       "  <line x1=\"10\" y1=\"7\" x2=\"30\" y2=\"28\" />\n",
-       "  <line x1=\"10\" y1=\"10\" x2=\"30\" y2=\"30\" />\n",
-       "  <line x1=\"10\" y1=\"12\" x2=\"30\" y2=\"33\" />\n",
-       "  <line x1=\"10\" y1=\"15\" x2=\"30\" y2=\"35\" />\n",
-       "  <line x1=\"10\" y1=\"17\" x2=\"30\" y2=\"38\" />\n",
-       "  <line x1=\"10\" y1=\"20\" x2=\"30\" y2=\"41\" />\n",
-       "  <line x1=\"10\" y1=\"22\" x2=\"30\" y2=\"43\" />\n",
-       "  <line x1=\"10\" y1=\"25\" x2=\"30\" y2=\"46\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"25\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"11\" y1=\"1\" x2=\"11\" y2=\"26\" />\n",
-       "  <line x1=\"12\" y1=\"2\" x2=\"12\" y2=\"27\" />\n",
-       "  <line x1=\"13\" y1=\"3\" x2=\"13\" y2=\"28\" />\n",
-       "  <line x1=\"14\" y1=\"4\" x2=\"14\" y2=\"29\" />\n",
-       "  <line x1=\"15\" y1=\"5\" x2=\"15\" y2=\"30\" />\n",
-       "  <line x1=\"16\" y1=\"6\" x2=\"16\" y2=\"31\" />\n",
-       "  <line x1=\"17\" y1=\"7\" x2=\"17\" y2=\"33\" />\n",
-       "  <line x1=\"18\" y1=\"8\" x2=\"18\" y2=\"34\" />\n",
-       "  <line x1=\"19\" y1=\"9\" x2=\"19\" y2=\"35\" />\n",
-       "  <line x1=\"20\" y1=\"10\" x2=\"20\" y2=\"36\" />\n",
-       "  <line x1=\"21\" y1=\"11\" x2=\"21\" y2=\"37\" />\n",
-       "  <line x1=\"23\" y1=\"13\" x2=\"23\" y2=\"38\" />\n",
-       "  <line x1=\"24\" y1=\"14\" x2=\"24\" y2=\"39\" />\n",
-       "  <line x1=\"25\" y1=\"15\" x2=\"25\" y2=\"40\" />\n",
-       "  <line x1=\"26\" y1=\"16\" x2=\"26\" y2=\"41\" />\n",
-       "  <line x1=\"27\" y1=\"17\" x2=\"27\" y2=\"42\" />\n",
-       "  <line x1=\"28\" y1=\"18\" x2=\"28\" y2=\"43\" />\n",
-       "  <line x1=\"29\" y1=\"19\" x2=\"29\" y2=\"45\" />\n",
-       "  <line x1=\"30\" y1=\"20\" x2=\"30\" y2=\"46\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"10.0,0.0 30.68500573235934,20.68500573235934 30.68500573235934,46.097622246941825 10.0,25.41261651458249\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"10\" y1=\"0\" x2=\"130\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"11\" y1=\"1\" x2=\"131\" y2=\"1\" />\n",
-       "  <line x1=\"12\" y1=\"2\" x2=\"132\" y2=\"2\" />\n",
-       "  <line x1=\"13\" y1=\"3\" x2=\"133\" y2=\"3\" />\n",
-       "  <line x1=\"14\" y1=\"4\" x2=\"134\" y2=\"4\" />\n",
-       "  <line x1=\"15\" y1=\"5\" x2=\"135\" y2=\"5\" />\n",
-       "  <line x1=\"16\" y1=\"6\" x2=\"136\" y2=\"6\" />\n",
-       "  <line x1=\"17\" y1=\"7\" x2=\"137\" y2=\"7\" />\n",
-       "  <line x1=\"18\" y1=\"8\" x2=\"138\" y2=\"8\" />\n",
-       "  <line x1=\"19\" y1=\"9\" x2=\"139\" y2=\"9\" />\n",
-       "  <line x1=\"20\" y1=\"10\" x2=\"140\" y2=\"10\" />\n",
-       "  <line x1=\"21\" y1=\"11\" x2=\"141\" y2=\"11\" />\n",
-       "  <line x1=\"23\" y1=\"13\" x2=\"143\" y2=\"13\" />\n",
-       "  <line x1=\"24\" y1=\"14\" x2=\"144\" y2=\"14\" />\n",
-       "  <line x1=\"25\" y1=\"15\" x2=\"145\" y2=\"15\" />\n",
-       "  <line x1=\"26\" y1=\"16\" x2=\"146\" y2=\"16\" />\n",
-       "  <line x1=\"27\" y1=\"17\" x2=\"147\" y2=\"17\" />\n",
-       "  <line x1=\"28\" y1=\"18\" x2=\"148\" y2=\"18\" />\n",
-       "  <line x1=\"29\" y1=\"19\" x2=\"149\" y2=\"19\" />\n",
-       "  <line x1=\"30\" y1=\"20\" x2=\"150\" y2=\"20\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"10\" y1=\"0\" x2=\"30\" y2=\"20\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"40\" y1=\"0\" x2=\"60\" y2=\"20\" />\n",
-       "  <line x1=\"70\" y1=\"0\" x2=\"90\" y2=\"20\" />\n",
-       "  <line x1=\"100\" y1=\"0\" x2=\"120\" y2=\"20\" />\n",
-       "  <line x1=\"130\" y1=\"0\" x2=\"150\" y2=\"20\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"10.0,0.0 130.0,0.0 150.68500573235934,20.68500573235934 30.68500573235934,20.68500573235934\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"30\" y1=\"20\" x2=\"150\" y2=\"20\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"30\" y1=\"23\" x2=\"150\" y2=\"23\" />\n",
-       "  <line x1=\"30\" y1=\"25\" x2=\"150\" y2=\"25\" />\n",
-       "  <line x1=\"30\" y1=\"28\" x2=\"150\" y2=\"28\" />\n",
-       "  <line x1=\"30\" y1=\"30\" x2=\"150\" y2=\"30\" />\n",
-       "  <line x1=\"30\" y1=\"33\" x2=\"150\" y2=\"33\" />\n",
-       "  <line x1=\"30\" y1=\"35\" x2=\"150\" y2=\"35\" />\n",
-       "  <line x1=\"30\" y1=\"38\" x2=\"150\" y2=\"38\" />\n",
-       "  <line x1=\"30\" y1=\"41\" x2=\"150\" y2=\"41\" />\n",
-       "  <line x1=\"30\" y1=\"43\" x2=\"150\" y2=\"43\" />\n",
-       "  <line x1=\"30\" y1=\"46\" x2=\"150\" y2=\"46\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"30\" y1=\"20\" x2=\"30\" y2=\"46\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"60\" y1=\"20\" x2=\"60\" y2=\"46\" />\n",
-       "  <line x1=\"90\" y1=\"20\" x2=\"90\" y2=\"46\" />\n",
-       "  <line x1=\"120\" y1=\"20\" x2=\"120\" y2=\"46\" />\n",
-       "  <line x1=\"150\" y1=\"20\" x2=\"150\" y2=\"46\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"30.68500573235934,20.68500573235934 150.68500573235934,20.68500573235934 150.68500573235934,46.097622246941825 30.68500573235934,46.097622246941825\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"90.685006\" y=\"66.097622\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >196608</text>\n",
-       "  <text x=\"170.685006\" y=\"33.391314\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,170.685006,33.391314)\">90</text>\n",
-       "  <text x=\"10.342503\" y=\"55.755119\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,10.342503,55.755119)\">10958</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>conc</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(90, 49152), meta=np.ndarray&gt;</div><input id='attrs-8b022655-695f-4fb6-8283-57bfe6584349' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-8b022655-695f-4fb6-8283-57bfe6584349' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-f254aa91-2df7-4b5a-84e0-3df2d6f6b87b' class='xr-var-data-in' type='checkbox'><label for='data-f254aa91-2df7-4b5a-84e0-3df2d6f6b87b' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>cell_methods :</span></dt><dd>time: mean cell: mean</dd><dt><span>component :</span></dt><dd>ocean</dd><dt><span>grid_mapping :</span></dt><dd>crs</dd><dt><span>long_name :</span></dt><dd>ice concentration in each ice class</dd><dt><span>vgrid :</span></dt><dd>generic_ice</dd></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table>\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 8.03 GiB </td>\n",
-       "                        <td> 16.88 MiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (10958, 196608) </td>\n",
-       "                        <td> (90, 49152) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Count </th>\n",
-       "                        <td> 2 Graph Layers </td>\n",
-       "                        <td> 488 Chunks </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                    <th> Type </th>\n",
-       "                    <td> float32 </td>\n",
-       "                    <td> numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"170\" height=\"85\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n",
-       "  <line x1=\"0\" y1=\"3\" x2=\"120\" y2=\"3\" />\n",
-       "  <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n",
-       "  <line x1=\"0\" y1=\"7\" x2=\"120\" y2=\"7\" />\n",
-       "  <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n",
-       "  <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n",
-       "  <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n",
-       "  <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n",
-       "  <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n",
-       "  <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n",
-       "  <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n",
-       "  <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n",
-       "  <line x1=\"0\" y1=\"23\" x2=\"120\" y2=\"23\" />\n",
-       "  <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" />\n",
-       "  <line x1=\"0\" y1=\"27\" x2=\"120\" y2=\"27\" />\n",
-       "  <line x1=\"0\" y1=\"29\" x2=\"120\" y2=\"29\" />\n",
-       "  <line x1=\"0\" y1=\"31\" x2=\"120\" y2=\"31\" />\n",
-       "  <line x1=\"0\" y1=\"33\" x2=\"120\" y2=\"33\" />\n",
-       "  <line x1=\"0\" y1=\"35\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"35\" />\n",
-       "  <line x1=\"60\" y1=\"0\" x2=\"60\" y2=\"35\" />\n",
-       "  <line x1=\"90\" y1=\"0\" x2=\"90\" y2=\"35\" />\n",
-       "  <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"0.0,0.0 120.0,0.0 120.0,35.164509745010875 0.0,35.164509745010875\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"60.000000\" y=\"55.164510\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >196608</text>\n",
-       "  <text x=\"140.000000\" y=\"17.582255\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,17.582255)\">10958</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>delhi</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(90, 49152), meta=np.ndarray&gt;</div><input id='attrs-bbd06dc6-b552-413c-ab66-4ea94cf0fee9' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-bbd06dc6-b552-413c-ab66-4ea94cf0fee9' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-fdd3800e-529a-47a1-a91a-4b6aa661fe56' class='xr-var-data-in' type='checkbox'><label for='data-fdd3800e-529a-47a1-a91a-4b6aa661fe56' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>cell_methods :</span></dt><dd>time: mean cell: mean</dd><dt><span>component :</span></dt><dd>ocean</dd><dt><span>grid_mapping :</span></dt><dd>crs</dd><dt><span>long_name :</span></dt><dd>Change in ice mean thickness due to thermodynamic effects</dd><dt><span>units :</span></dt><dd>m</dd><dt><span>vgrid :</span></dt><dd>generic_ice</dd></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table>\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 8.03 GiB </td>\n",
-       "                        <td> 16.88 MiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (10958, 196608) </td>\n",
-       "                        <td> (90, 49152) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Count </th>\n",
-       "                        <td> 2 Graph Layers </td>\n",
-       "                        <td> 488 Chunks </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                    <th> Type </th>\n",
-       "                    <td> float32 </td>\n",
-       "                    <td> numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"170\" height=\"85\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n",
-       "  <line x1=\"0\" y1=\"3\" x2=\"120\" y2=\"3\" />\n",
-       "  <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n",
-       "  <line x1=\"0\" y1=\"7\" x2=\"120\" y2=\"7\" />\n",
-       "  <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n",
-       "  <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n",
-       "  <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n",
-       "  <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n",
-       "  <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n",
-       "  <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n",
-       "  <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n",
-       "  <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n",
-       "  <line x1=\"0\" y1=\"23\" x2=\"120\" y2=\"23\" />\n",
-       "  <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" />\n",
-       "  <line x1=\"0\" y1=\"27\" x2=\"120\" y2=\"27\" />\n",
-       "  <line x1=\"0\" y1=\"29\" x2=\"120\" y2=\"29\" />\n",
-       "  <line x1=\"0\" y1=\"31\" x2=\"120\" y2=\"31\" />\n",
-       "  <line x1=\"0\" y1=\"33\" x2=\"120\" y2=\"33\" />\n",
-       "  <line x1=\"0\" y1=\"35\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"35\" />\n",
-       "  <line x1=\"60\" y1=\"0\" x2=\"60\" y2=\"35\" />\n",
-       "  <line x1=\"90\" y1=\"0\" x2=\"90\" y2=\"35\" />\n",
-       "  <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"0.0,0.0 120.0,0.0 120.0,35.164509745010875 0.0,35.164509745010875\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"60.000000\" y=\"55.164510\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >196608</text>\n",
-       "  <text x=\"140.000000\" y=\"17.582255\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,17.582255)\">10958</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>dzghalf</span></div><div class='xr-var-dims'>(level_full, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(90, 49152), meta=np.ndarray&gt;</div><input id='attrs-fa1d7daa-2500-498f-914e-73eef7780264' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-fa1d7daa-2500-498f-914e-73eef7780264' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-90cabbf4-ae09-42ea-9076-ebed5b1a45c2' class='xr-var-data-in' type='checkbox'><label for='data-90cabbf4-ae09-42ea-9076-ebed5b1a45c2' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>long_name :</span></dt><dd>vertical extent of model full layer</dd><dt><span>standard_name :</span></dt><dd>cell_thickness</dd><dt><span>units :</span></dt><dd>m</dd></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table>\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 67.50 MiB </td>\n",
-       "                        <td> 16.88 MiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (90, 196608) </td>\n",
-       "                        <td> (90, 49152) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Count </th>\n",
-       "                        <td> 2 Graph Layers </td>\n",
-       "                        <td> 4 Chunks </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                    <th> Type </th>\n",
-       "                    <td> float32 </td>\n",
-       "                    <td> numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"170\" height=\"75\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"25\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"25\" />\n",
-       "  <line x1=\"60\" y1=\"0\" x2=\"60\" y2=\"25\" />\n",
-       "  <line x1=\"90\" y1=\"0\" x2=\"90\" y2=\"25\" />\n",
-       "  <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"0.0,0.0 120.0,0.0 120.0,25.41261651458249 0.0,25.41261651458249\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"60.000000\" y=\"45.412617\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >196608</text>\n",
-       "  <text x=\"140.000000\" y=\"12.706308\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,140.000000,12.706308)\">90</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>heatOceI</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(90, 49152), meta=np.ndarray&gt;</div><input id='attrs-03e0b5da-ebcf-4d7c-9832-6158e643e7f6' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-03e0b5da-ebcf-4d7c-9832-6158e643e7f6' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-7b829bbd-8609-4520-83a1-d52d328a4d0d' class='xr-var-data-in' type='checkbox'><label for='data-7b829bbd-8609-4520-83a1-d52d328a4d0d' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>cell_methods :</span></dt><dd>time: mean cell: mean</dd><dt><span>component :</span></dt><dd>ocean</dd><dt><span>grid_mapping :</span></dt><dd>crs</dd><dt><span>long_name :</span></dt><dd>Heat flux to ocean from the ice growth</dd><dt><span>units :</span></dt><dd>W/m^2</dd><dt><span>vgrid :</span></dt><dd>generic_ice</dd></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table>\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 8.03 GiB </td>\n",
-       "                        <td> 16.88 MiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (10958, 196608) </td>\n",
-       "                        <td> (90, 49152) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Count </th>\n",
-       "                        <td> 2 Graph Layers </td>\n",
-       "                        <td> 488 Chunks </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                    <th> Type </th>\n",
-       "                    <td> float32 </td>\n",
-       "                    <td> numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"170\" height=\"85\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n",
-       "  <line x1=\"0\" y1=\"3\" x2=\"120\" y2=\"3\" />\n",
-       "  <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n",
-       "  <line x1=\"0\" y1=\"7\" x2=\"120\" y2=\"7\" />\n",
-       "  <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n",
-       "  <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n",
-       "  <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n",
-       "  <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n",
-       "  <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n",
-       "  <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n",
-       "  <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n",
-       "  <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n",
-       "  <line x1=\"0\" y1=\"23\" x2=\"120\" y2=\"23\" />\n",
-       "  <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" />\n",
-       "  <line x1=\"0\" y1=\"27\" x2=\"120\" y2=\"27\" />\n",
-       "  <line x1=\"0\" y1=\"29\" x2=\"120\" y2=\"29\" />\n",
-       "  <line x1=\"0\" y1=\"31\" x2=\"120\" y2=\"31\" />\n",
-       "  <line x1=\"0\" y1=\"33\" x2=\"120\" y2=\"33\" />\n",
-       "  <line x1=\"0\" y1=\"35\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"35\" />\n",
-       "  <line x1=\"60\" y1=\"0\" x2=\"60\" y2=\"35\" />\n",
-       "  <line x1=\"90\" y1=\"0\" x2=\"90\" y2=\"35\" />\n",
-       "  <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"0.0,0.0 120.0,0.0 120.0,35.164509745010875 0.0,35.164509745010875\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"60.000000\" y=\"55.164510\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >196608</text>\n",
-       "  <text x=\"140.000000\" y=\"17.582255\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,17.582255)\">10958</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>heatOceW</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(90, 49152), meta=np.ndarray&gt;</div><input id='attrs-cba1f0ff-ccf4-4a58-9bae-e20362221cb3' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-cba1f0ff-ccf4-4a58-9bae-e20362221cb3' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-c0845a6d-d8e7-4959-9374-3ef664879be5' class='xr-var-data-in' type='checkbox'><label for='data-c0845a6d-d8e7-4959-9374-3ef664879be5' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>cell_methods :</span></dt><dd>time: mean cell: mean</dd><dt><span>component :</span></dt><dd>ocean</dd><dt><span>grid_mapping :</span></dt><dd>crs</dd><dt><span>long_name :</span></dt><dd>Heat flux to ocean from the atmosphere</dd><dt><span>units :</span></dt><dd>W/m^2</dd><dt><span>vgrid :</span></dt><dd>generic_ice</dd></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table>\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 8.03 GiB </td>\n",
-       "                        <td> 16.88 MiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (10958, 196608) </td>\n",
-       "                        <td> (90, 49152) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Count </th>\n",
-       "                        <td> 2 Graph Layers </td>\n",
-       "                        <td> 488 Chunks </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                    <th> Type </th>\n",
-       "                    <td> float32 </td>\n",
-       "                    <td> numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"170\" height=\"85\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n",
-       "  <line x1=\"0\" y1=\"3\" x2=\"120\" y2=\"3\" />\n",
-       "  <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n",
-       "  <line x1=\"0\" y1=\"7\" x2=\"120\" y2=\"7\" />\n",
-       "  <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n",
-       "  <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n",
-       "  <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n",
-       "  <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n",
-       "  <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n",
-       "  <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n",
-       "  <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n",
-       "  <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n",
-       "  <line x1=\"0\" y1=\"23\" x2=\"120\" y2=\"23\" />\n",
-       "  <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" />\n",
-       "  <line x1=\"0\" y1=\"27\" x2=\"120\" y2=\"27\" />\n",
-       "  <line x1=\"0\" y1=\"29\" x2=\"120\" y2=\"29\" />\n",
-       "  <line x1=\"0\" y1=\"31\" x2=\"120\" y2=\"31\" />\n",
-       "  <line x1=\"0\" y1=\"33\" x2=\"120\" y2=\"33\" />\n",
-       "  <line x1=\"0\" y1=\"35\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"35\" />\n",
-       "  <line x1=\"60\" y1=\"0\" x2=\"60\" y2=\"35\" />\n",
-       "  <line x1=\"90\" y1=\"0\" x2=\"90\" y2=\"35\" />\n",
-       "  <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"0.0,0.0 120.0,0.0 120.0,35.164509745010875 0.0,35.164509745010875\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"60.000000\" y=\"55.164510\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >196608</text>\n",
-       "  <text x=\"140.000000\" y=\"17.582255\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,17.582255)\">10958</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>heat_content_seaice</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(90, 49152), meta=np.ndarray&gt;</div><input id='attrs-d29aadd6-b0cf-4735-a270-d9a0e506b087' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-d29aadd6-b0cf-4735-a270-d9a0e506b087' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-a7b478fe-0dfc-4851-b2d2-2b4e88bf581d' class='xr-var-data-in' type='checkbox'><label for='data-a7b478fe-0dfc-4851-b2d2-2b4e88bf581d' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>cell_methods :</span></dt><dd>time: mean cell: mean</dd><dt><span>component :</span></dt><dd>ocean</dd><dt><span>grid_mapping :</span></dt><dd>crs</dd><dt><span>vgrid :</span></dt><dd>surface</dd></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table>\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 8.03 GiB </td>\n",
-       "                        <td> 16.88 MiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (10958, 196608) </td>\n",
-       "                        <td> (90, 49152) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Count </th>\n",
-       "                        <td> 2 Graph Layers </td>\n",
-       "                        <td> 488 Chunks </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                    <th> Type </th>\n",
-       "                    <td> float32 </td>\n",
-       "                    <td> numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"170\" height=\"85\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n",
-       "  <line x1=\"0\" y1=\"3\" x2=\"120\" y2=\"3\" />\n",
-       "  <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n",
-       "  <line x1=\"0\" y1=\"7\" x2=\"120\" y2=\"7\" />\n",
-       "  <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n",
-       "  <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n",
-       "  <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n",
-       "  <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n",
-       "  <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n",
-       "  <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n",
-       "  <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n",
-       "  <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n",
-       "  <line x1=\"0\" y1=\"23\" x2=\"120\" y2=\"23\" />\n",
-       "  <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" />\n",
-       "  <line x1=\"0\" y1=\"27\" x2=\"120\" y2=\"27\" />\n",
-       "  <line x1=\"0\" y1=\"29\" x2=\"120\" y2=\"29\" />\n",
-       "  <line x1=\"0\" y1=\"31\" x2=\"120\" y2=\"31\" />\n",
-       "  <line x1=\"0\" y1=\"33\" x2=\"120\" y2=\"33\" />\n",
-       "  <line x1=\"0\" y1=\"35\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"35\" />\n",
-       "  <line x1=\"60\" y1=\"0\" x2=\"60\" y2=\"35\" />\n",
-       "  <line x1=\"90\" y1=\"0\" x2=\"90\" y2=\"35\" />\n",
-       "  <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"0.0,0.0 120.0,0.0 120.0,35.164509745010875 0.0,35.164509745010875\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"60.000000\" y=\"55.164510\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >196608</text>\n",
-       "  <text x=\"140.000000\" y=\"17.582255\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,17.582255)\">10958</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>heat_content_snow</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(90, 49152), meta=np.ndarray&gt;</div><input id='attrs-9cedb092-d043-4435-a99e-2252bcf493f1' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-9cedb092-d043-4435-a99e-2252bcf493f1' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-020c0aca-b9d4-4a36-9f6b-34e3622a67d2' class='xr-var-data-in' type='checkbox'><label for='data-020c0aca-b9d4-4a36-9f6b-34e3622a67d2' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>cell_methods :</span></dt><dd>time: mean cell: mean</dd><dt><span>component :</span></dt><dd>ocean</dd><dt><span>grid_mapping :</span></dt><dd>crs</dd><dt><span>vgrid :</span></dt><dd>surface</dd></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table>\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 8.03 GiB </td>\n",
-       "                        <td> 16.88 MiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (10958, 196608) </td>\n",
-       "                        <td> (90, 49152) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Count </th>\n",
-       "                        <td> 2 Graph Layers </td>\n",
-       "                        <td> 488 Chunks </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                    <th> Type </th>\n",
-       "                    <td> float32 </td>\n",
-       "                    <td> numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"170\" height=\"85\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n",
-       "  <line x1=\"0\" y1=\"3\" x2=\"120\" y2=\"3\" />\n",
-       "  <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n",
-       "  <line x1=\"0\" y1=\"7\" x2=\"120\" y2=\"7\" />\n",
-       "  <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n",
-       "  <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n",
-       "  <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n",
-       "  <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n",
-       "  <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n",
-       "  <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n",
-       "  <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n",
-       "  <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n",
-       "  <line x1=\"0\" y1=\"23\" x2=\"120\" y2=\"23\" />\n",
-       "  <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" />\n",
-       "  <line x1=\"0\" y1=\"27\" x2=\"120\" y2=\"27\" />\n",
-       "  <line x1=\"0\" y1=\"29\" x2=\"120\" y2=\"29\" />\n",
-       "  <line x1=\"0\" y1=\"31\" x2=\"120\" y2=\"31\" />\n",
-       "  <line x1=\"0\" y1=\"33\" x2=\"120\" y2=\"33\" />\n",
-       "  <line x1=\"0\" y1=\"35\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"35\" />\n",
-       "  <line x1=\"60\" y1=\"0\" x2=\"60\" y2=\"35\" />\n",
-       "  <line x1=\"90\" y1=\"0\" x2=\"90\" y2=\"35\" />\n",
-       "  <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"0.0,0.0 120.0,0.0 120.0,35.164509745010875 0.0,35.164509745010875\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"60.000000\" y=\"55.164510\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >196608</text>\n",
-       "  <text x=\"140.000000\" y=\"17.582255\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,17.582255)\">10958</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>heat_content_total</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(90, 49152), meta=np.ndarray&gt;</div><input id='attrs-d49d04d9-c9cd-4c78-8eca-45e3a8f683ce' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-d49d04d9-c9cd-4c78-8eca-45e3a8f683ce' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-e03d5c64-4b5c-43b4-9e74-c18c8e0dcd83' class='xr-var-data-in' type='checkbox'><label for='data-e03d5c64-4b5c-43b4-9e74-c18c8e0dcd83' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>cell_methods :</span></dt><dd>time: mean cell: mean</dd><dt><span>component :</span></dt><dd>ocean</dd><dt><span>grid_mapping :</span></dt><dd>crs</dd><dt><span>vgrid :</span></dt><dd>surface</dd></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table>\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 8.03 GiB </td>\n",
-       "                        <td> 16.88 MiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (10958, 196608) </td>\n",
-       "                        <td> (90, 49152) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Count </th>\n",
-       "                        <td> 2 Graph Layers </td>\n",
-       "                        <td> 488 Chunks </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                    <th> Type </th>\n",
-       "                    <td> float32 </td>\n",
-       "                    <td> numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"170\" height=\"85\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n",
-       "  <line x1=\"0\" y1=\"3\" x2=\"120\" y2=\"3\" />\n",
-       "  <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n",
-       "  <line x1=\"0\" y1=\"7\" x2=\"120\" y2=\"7\" />\n",
-       "  <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n",
-       "  <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n",
-       "  <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n",
-       "  <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n",
-       "  <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n",
-       "  <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n",
-       "  <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n",
-       "  <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n",
-       "  <line x1=\"0\" y1=\"23\" x2=\"120\" y2=\"23\" />\n",
-       "  <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" />\n",
-       "  <line x1=\"0\" y1=\"27\" x2=\"120\" y2=\"27\" />\n",
-       "  <line x1=\"0\" y1=\"29\" x2=\"120\" y2=\"29\" />\n",
-       "  <line x1=\"0\" y1=\"31\" x2=\"120\" y2=\"31\" />\n",
-       "  <line x1=\"0\" y1=\"33\" x2=\"120\" y2=\"33\" />\n",
-       "  <line x1=\"0\" y1=\"35\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"35\" />\n",
-       "  <line x1=\"60\" y1=\"0\" x2=\"60\" y2=\"35\" />\n",
-       "  <line x1=\"90\" y1=\"0\" x2=\"90\" y2=\"35\" />\n",
-       "  <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"0.0,0.0 120.0,0.0 120.0,35.164509745010875 0.0,35.164509745010875\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"60.000000\" y=\"55.164510\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >196608</text>\n",
-       "  <text x=\"140.000000\" y=\"17.582255\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,17.582255)\">10958</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>hfls</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(90, 49152), meta=np.ndarray&gt;</div><input id='attrs-d6033199-1a54-4f67-8f9a-56146ab157f7' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-d6033199-1a54-4f67-8f9a-56146ab157f7' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-7a14d5c7-fb5d-4c72-b7b8-fc848a6de79c' class='xr-var-data-in' type='checkbox'><label for='data-7a14d5c7-fb5d-4c72-b7b8-fc848a6de79c' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>cell_methods :</span></dt><dd>time: mean cell: mean</dd><dt><span>component :</span></dt><dd>atmo</dd><dt><span>grid_mapping :</span></dt><dd>crs</dd><dt><span>long_name :</span></dt><dd>latent heat flux</dd><dt><span>standard_name :</span></dt><dd>surface_downward_latent_heat_flux</dd><dt><span>units :</span></dt><dd>W m-2</dd><dt><span>vgrid :</span></dt><dd>surface</dd></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table>\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 8.03 GiB </td>\n",
-       "                        <td> 16.88 MiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (10958, 196608) </td>\n",
-       "                        <td> (90, 49152) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Count </th>\n",
-       "                        <td> 2 Graph Layers </td>\n",
-       "                        <td> 488 Chunks </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                    <th> Type </th>\n",
-       "                    <td> float32 </td>\n",
-       "                    <td> numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"170\" height=\"85\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n",
-       "  <line x1=\"0\" y1=\"3\" x2=\"120\" y2=\"3\" />\n",
-       "  <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n",
-       "  <line x1=\"0\" y1=\"7\" x2=\"120\" y2=\"7\" />\n",
-       "  <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n",
-       "  <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n",
-       "  <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n",
-       "  <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n",
-       "  <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n",
-       "  <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n",
-       "  <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n",
-       "  <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n",
-       "  <line x1=\"0\" y1=\"23\" x2=\"120\" y2=\"23\" />\n",
-       "  <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" />\n",
-       "  <line x1=\"0\" y1=\"27\" x2=\"120\" y2=\"27\" />\n",
-       "  <line x1=\"0\" y1=\"29\" x2=\"120\" y2=\"29\" />\n",
-       "  <line x1=\"0\" y1=\"31\" x2=\"120\" y2=\"31\" />\n",
-       "  <line x1=\"0\" y1=\"33\" x2=\"120\" y2=\"33\" />\n",
-       "  <line x1=\"0\" y1=\"35\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"35\" />\n",
-       "  <line x1=\"60\" y1=\"0\" x2=\"60\" y2=\"35\" />\n",
-       "  <line x1=\"90\" y1=\"0\" x2=\"90\" y2=\"35\" />\n",
-       "  <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"0.0,0.0 120.0,0.0 120.0,35.164509745010875 0.0,35.164509745010875\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"60.000000\" y=\"55.164510\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >196608</text>\n",
-       "  <text x=\"140.000000\" y=\"17.582255\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,17.582255)\">10958</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>hfss</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(90, 49152), meta=np.ndarray&gt;</div><input id='attrs-0dee70b4-7d8a-4d43-8137-24d7c1d5db89' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-0dee70b4-7d8a-4d43-8137-24d7c1d5db89' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-2a9ba8c2-af43-4c9f-a096-ee1bd017ccea' class='xr-var-data-in' type='checkbox'><label for='data-2a9ba8c2-af43-4c9f-a096-ee1bd017ccea' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>cell_methods :</span></dt><dd>time: mean cell: mean</dd><dt><span>component :</span></dt><dd>atmo</dd><dt><span>grid_mapping :</span></dt><dd>crs</dd><dt><span>long_name :</span></dt><dd>sensible heat flux</dd><dt><span>standard_name :</span></dt><dd>surface_downward_sensible_heat_flux</dd><dt><span>units :</span></dt><dd>W m-2</dd><dt><span>vgrid :</span></dt><dd>surface</dd></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table>\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 8.03 GiB </td>\n",
-       "                        <td> 16.88 MiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (10958, 196608) </td>\n",
-       "                        <td> (90, 49152) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Count </th>\n",
-       "                        <td> 2 Graph Layers </td>\n",
-       "                        <td> 488 Chunks </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                    <th> Type </th>\n",
-       "                    <td> float32 </td>\n",
-       "                    <td> numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"170\" height=\"85\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n",
-       "  <line x1=\"0\" y1=\"3\" x2=\"120\" y2=\"3\" />\n",
-       "  <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n",
-       "  <line x1=\"0\" y1=\"7\" x2=\"120\" y2=\"7\" />\n",
-       "  <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n",
-       "  <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n",
-       "  <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n",
-       "  <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n",
-       "  <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n",
-       "  <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n",
-       "  <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n",
-       "  <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n",
-       "  <line x1=\"0\" y1=\"23\" x2=\"120\" y2=\"23\" />\n",
-       "  <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" />\n",
-       "  <line x1=\"0\" y1=\"27\" x2=\"120\" y2=\"27\" />\n",
-       "  <line x1=\"0\" y1=\"29\" x2=\"120\" y2=\"29\" />\n",
-       "  <line x1=\"0\" y1=\"31\" x2=\"120\" y2=\"31\" />\n",
-       "  <line x1=\"0\" y1=\"33\" x2=\"120\" y2=\"33\" />\n",
-       "  <line x1=\"0\" y1=\"35\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"35\" />\n",
-       "  <line x1=\"60\" y1=\"0\" x2=\"60\" y2=\"35\" />\n",
-       "  <line x1=\"90\" y1=\"0\" x2=\"90\" y2=\"35\" />\n",
-       "  <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"0.0,0.0 120.0,0.0 120.0,35.164509745010875 0.0,35.164509745010875\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"60.000000\" y=\"55.164510\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >196608</text>\n",
-       "  <text x=\"140.000000\" y=\"17.582255\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,17.582255)\">10958</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>hi</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(90, 49152), meta=np.ndarray&gt;</div><input id='attrs-534014be-887e-4946-80d6-d41fd3925592' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-534014be-887e-4946-80d6-d41fd3925592' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-b6b6ce92-c663-4741-be1c-77e02c2cd668' class='xr-var-data-in' type='checkbox'><label for='data-b6b6ce92-c663-4741-be1c-77e02c2cd668' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>cell_methods :</span></dt><dd>time: mean cell: mean</dd><dt><span>component :</span></dt><dd>ocean</dd><dt><span>grid_mapping :</span></dt><dd>crs</dd><dt><span>long_name :</span></dt><dd>ice thickness</dd><dt><span>units :</span></dt><dd>m</dd><dt><span>vgrid :</span></dt><dd>generic_ice</dd></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table>\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 8.03 GiB </td>\n",
-       "                        <td> 16.88 MiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (10958, 196608) </td>\n",
-       "                        <td> (90, 49152) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Count </th>\n",
-       "                        <td> 2 Graph Layers </td>\n",
-       "                        <td> 488 Chunks </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                    <th> Type </th>\n",
-       "                    <td> float32 </td>\n",
-       "                    <td> numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"170\" height=\"85\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n",
-       "  <line x1=\"0\" y1=\"3\" x2=\"120\" y2=\"3\" />\n",
-       "  <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n",
-       "  <line x1=\"0\" y1=\"7\" x2=\"120\" y2=\"7\" />\n",
-       "  <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n",
-       "  <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n",
-       "  <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n",
-       "  <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n",
-       "  <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n",
-       "  <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n",
-       "  <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n",
-       "  <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n",
-       "  <line x1=\"0\" y1=\"23\" x2=\"120\" y2=\"23\" />\n",
-       "  <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" />\n",
-       "  <line x1=\"0\" y1=\"27\" x2=\"120\" y2=\"27\" />\n",
-       "  <line x1=\"0\" y1=\"29\" x2=\"120\" y2=\"29\" />\n",
-       "  <line x1=\"0\" y1=\"31\" x2=\"120\" y2=\"31\" />\n",
-       "  <line x1=\"0\" y1=\"33\" x2=\"120\" y2=\"33\" />\n",
-       "  <line x1=\"0\" y1=\"35\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"35\" />\n",
-       "  <line x1=\"60\" y1=\"0\" x2=\"60\" y2=\"35\" />\n",
-       "  <line x1=\"90\" y1=\"0\" x2=\"90\" y2=\"35\" />\n",
-       "  <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"0.0,0.0 120.0,0.0 120.0,35.164509745010875 0.0,35.164509745010875\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"60.000000\" y=\"55.164510\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >196608</text>\n",
-       "  <text x=\"140.000000\" y=\"17.582255\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,17.582255)\">10958</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>hs</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(90, 49152), meta=np.ndarray&gt;</div><input id='attrs-3c2dabf9-1efd-4ca5-8cc9-6e6c7c5e917e' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-3c2dabf9-1efd-4ca5-8cc9-6e6c7c5e917e' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-e8e6401b-aab5-4887-a365-c5563b7c52d6' class='xr-var-data-in' type='checkbox'><label for='data-e8e6401b-aab5-4887-a365-c5563b7c52d6' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>cell_methods :</span></dt><dd>time: mean cell: mean</dd><dt><span>component :</span></dt><dd>ocean</dd><dt><span>grid_mapping :</span></dt><dd>crs</dd><dt><span>long_name :</span></dt><dd>snow thickness</dd><dt><span>units :</span></dt><dd>m</dd><dt><span>vgrid :</span></dt><dd>generic_ice</dd></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table>\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 8.03 GiB </td>\n",
-       "                        <td> 16.88 MiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (10958, 196608) </td>\n",
-       "                        <td> (90, 49152) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Count </th>\n",
-       "                        <td> 2 Graph Layers </td>\n",
-       "                        <td> 488 Chunks </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                    <th> Type </th>\n",
-       "                    <td> float32 </td>\n",
-       "                    <td> numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"170\" height=\"85\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n",
-       "  <line x1=\"0\" y1=\"3\" x2=\"120\" y2=\"3\" />\n",
-       "  <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n",
-       "  <line x1=\"0\" y1=\"7\" x2=\"120\" y2=\"7\" />\n",
-       "  <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n",
-       "  <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n",
-       "  <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n",
-       "  <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n",
-       "  <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n",
-       "  <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n",
-       "  <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n",
-       "  <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n",
-       "  <line x1=\"0\" y1=\"23\" x2=\"120\" y2=\"23\" />\n",
-       "  <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" />\n",
-       "  <line x1=\"0\" y1=\"27\" x2=\"120\" y2=\"27\" />\n",
-       "  <line x1=\"0\" y1=\"29\" x2=\"120\" y2=\"29\" />\n",
-       "  <line x1=\"0\" y1=\"31\" x2=\"120\" y2=\"31\" />\n",
-       "  <line x1=\"0\" y1=\"33\" x2=\"120\" y2=\"33\" />\n",
-       "  <line x1=\"0\" y1=\"35\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"35\" />\n",
-       "  <line x1=\"60\" y1=\"0\" x2=\"60\" y2=\"35\" />\n",
-       "  <line x1=\"90\" y1=\"0\" x2=\"90\" y2=\"35\" />\n",
-       "  <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"0.0,0.0 120.0,0.0 120.0,35.164509745010875 0.0,35.164509745010875\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"60.000000\" y=\"55.164510\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >196608</text>\n",
-       "  <text x=\"140.000000\" y=\"17.582255\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,17.582255)\">10958</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>hus</span></div><div class='xr-var-dims'>(time, level_full, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(7, 9, 49152), meta=np.ndarray&gt;</div><input id='attrs-e972a89d-bcd1-4bfe-829d-6d279406228c' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-e972a89d-bcd1-4bfe-829d-6d279406228c' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-9ccdb58e-8ac0-4d0f-a649-1e4c6a0f2dec' class='xr-var-data-in' type='checkbox'><label for='data-9ccdb58e-8ac0-4d0f-a649-1e4c6a0f2dec' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>cell_methods :</span></dt><dd>time: mean cell: mean</dd><dt><span>component :</span></dt><dd>atmo</dd><dt><span>grid_mapping :</span></dt><dd>crs</dd><dt><span>long_name :</span></dt><dd>Specific humidity</dd><dt><span>standard_name :</span></dt><dd>specific_humidity</dd><dt><span>vgrid :</span></dt><dd>reference</dd></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table>\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 722.33 GiB </td>\n",
-       "                        <td> 11.81 MiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (10958, 90, 196608) </td>\n",
-       "                        <td> (7, 9, 49152) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Count </th>\n",
-       "                        <td> 2 Graph Layers </td>\n",
-       "                        <td> 62640 Chunks </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                    <th> Type </th>\n",
-       "                    <td> float32 </td>\n",
-       "                    <td> numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"200\" height=\"96\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"10\" y1=\"0\" x2=\"30\" y2=\"20\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"10\" y1=\"2\" x2=\"30\" y2=\"23\" />\n",
-       "  <line x1=\"10\" y1=\"5\" x2=\"30\" y2=\"25\" />\n",
-       "  <line x1=\"10\" y1=\"7\" x2=\"30\" y2=\"28\" />\n",
-       "  <line x1=\"10\" y1=\"10\" x2=\"30\" y2=\"30\" />\n",
-       "  <line x1=\"10\" y1=\"12\" x2=\"30\" y2=\"33\" />\n",
-       "  <line x1=\"10\" y1=\"15\" x2=\"30\" y2=\"35\" />\n",
-       "  <line x1=\"10\" y1=\"17\" x2=\"30\" y2=\"38\" />\n",
-       "  <line x1=\"10\" y1=\"20\" x2=\"30\" y2=\"41\" />\n",
-       "  <line x1=\"10\" y1=\"22\" x2=\"30\" y2=\"43\" />\n",
-       "  <line x1=\"10\" y1=\"25\" x2=\"30\" y2=\"46\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"25\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"11\" y1=\"1\" x2=\"11\" y2=\"26\" />\n",
-       "  <line x1=\"12\" y1=\"2\" x2=\"12\" y2=\"27\" />\n",
-       "  <line x1=\"13\" y1=\"3\" x2=\"13\" y2=\"28\" />\n",
-       "  <line x1=\"14\" y1=\"4\" x2=\"14\" y2=\"29\" />\n",
-       "  <line x1=\"15\" y1=\"5\" x2=\"15\" y2=\"30\" />\n",
-       "  <line x1=\"16\" y1=\"6\" x2=\"16\" y2=\"31\" />\n",
-       "  <line x1=\"17\" y1=\"7\" x2=\"17\" y2=\"33\" />\n",
-       "  <line x1=\"18\" y1=\"8\" x2=\"18\" y2=\"34\" />\n",
-       "  <line x1=\"19\" y1=\"9\" x2=\"19\" y2=\"35\" />\n",
-       "  <line x1=\"20\" y1=\"10\" x2=\"20\" y2=\"36\" />\n",
-       "  <line x1=\"21\" y1=\"11\" x2=\"21\" y2=\"37\" />\n",
-       "  <line x1=\"23\" y1=\"13\" x2=\"23\" y2=\"38\" />\n",
-       "  <line x1=\"24\" y1=\"14\" x2=\"24\" y2=\"39\" />\n",
-       "  <line x1=\"25\" y1=\"15\" x2=\"25\" y2=\"40\" />\n",
-       "  <line x1=\"26\" y1=\"16\" x2=\"26\" y2=\"41\" />\n",
-       "  <line x1=\"27\" y1=\"17\" x2=\"27\" y2=\"42\" />\n",
-       "  <line x1=\"28\" y1=\"18\" x2=\"28\" y2=\"43\" />\n",
-       "  <line x1=\"29\" y1=\"19\" x2=\"29\" y2=\"45\" />\n",
-       "  <line x1=\"30\" y1=\"20\" x2=\"30\" y2=\"46\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"10.0,0.0 30.68500573235934,20.68500573235934 30.68500573235934,46.097622246941825 10.0,25.41261651458249\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"10\" y1=\"0\" x2=\"130\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"11\" y1=\"1\" x2=\"131\" y2=\"1\" />\n",
-       "  <line x1=\"12\" y1=\"2\" x2=\"132\" y2=\"2\" />\n",
-       "  <line x1=\"13\" y1=\"3\" x2=\"133\" y2=\"3\" />\n",
-       "  <line x1=\"14\" y1=\"4\" x2=\"134\" y2=\"4\" />\n",
-       "  <line x1=\"15\" y1=\"5\" x2=\"135\" y2=\"5\" />\n",
-       "  <line x1=\"16\" y1=\"6\" x2=\"136\" y2=\"6\" />\n",
-       "  <line x1=\"17\" y1=\"7\" x2=\"137\" y2=\"7\" />\n",
-       "  <line x1=\"18\" y1=\"8\" x2=\"138\" y2=\"8\" />\n",
-       "  <line x1=\"19\" y1=\"9\" x2=\"139\" y2=\"9\" />\n",
-       "  <line x1=\"20\" y1=\"10\" x2=\"140\" y2=\"10\" />\n",
-       "  <line x1=\"21\" y1=\"11\" x2=\"141\" y2=\"11\" />\n",
-       "  <line x1=\"23\" y1=\"13\" x2=\"143\" y2=\"13\" />\n",
-       "  <line x1=\"24\" y1=\"14\" x2=\"144\" y2=\"14\" />\n",
-       "  <line x1=\"25\" y1=\"15\" x2=\"145\" y2=\"15\" />\n",
-       "  <line x1=\"26\" y1=\"16\" x2=\"146\" y2=\"16\" />\n",
-       "  <line x1=\"27\" y1=\"17\" x2=\"147\" y2=\"17\" />\n",
-       "  <line x1=\"28\" y1=\"18\" x2=\"148\" y2=\"18\" />\n",
-       "  <line x1=\"29\" y1=\"19\" x2=\"149\" y2=\"19\" />\n",
-       "  <line x1=\"30\" y1=\"20\" x2=\"150\" y2=\"20\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"10\" y1=\"0\" x2=\"30\" y2=\"20\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"40\" y1=\"0\" x2=\"60\" y2=\"20\" />\n",
-       "  <line x1=\"70\" y1=\"0\" x2=\"90\" y2=\"20\" />\n",
-       "  <line x1=\"100\" y1=\"0\" x2=\"120\" y2=\"20\" />\n",
-       "  <line x1=\"130\" y1=\"0\" x2=\"150\" y2=\"20\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"10.0,0.0 130.0,0.0 150.68500573235934,20.68500573235934 30.68500573235934,20.68500573235934\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"30\" y1=\"20\" x2=\"150\" y2=\"20\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"30\" y1=\"23\" x2=\"150\" y2=\"23\" />\n",
-       "  <line x1=\"30\" y1=\"25\" x2=\"150\" y2=\"25\" />\n",
-       "  <line x1=\"30\" y1=\"28\" x2=\"150\" y2=\"28\" />\n",
-       "  <line x1=\"30\" y1=\"30\" x2=\"150\" y2=\"30\" />\n",
-       "  <line x1=\"30\" y1=\"33\" x2=\"150\" y2=\"33\" />\n",
-       "  <line x1=\"30\" y1=\"35\" x2=\"150\" y2=\"35\" />\n",
-       "  <line x1=\"30\" y1=\"38\" x2=\"150\" y2=\"38\" />\n",
-       "  <line x1=\"30\" y1=\"41\" x2=\"150\" y2=\"41\" />\n",
-       "  <line x1=\"30\" y1=\"43\" x2=\"150\" y2=\"43\" />\n",
-       "  <line x1=\"30\" y1=\"46\" x2=\"150\" y2=\"46\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"30\" y1=\"20\" x2=\"30\" y2=\"46\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"60\" y1=\"20\" x2=\"60\" y2=\"46\" />\n",
-       "  <line x1=\"90\" y1=\"20\" x2=\"90\" y2=\"46\" />\n",
-       "  <line x1=\"120\" y1=\"20\" x2=\"120\" y2=\"46\" />\n",
-       "  <line x1=\"150\" y1=\"20\" x2=\"150\" y2=\"46\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"30.68500573235934,20.68500573235934 150.68500573235934,20.68500573235934 150.68500573235934,46.097622246941825 30.68500573235934,46.097622246941825\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"90.685006\" y=\"66.097622\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >196608</text>\n",
-       "  <text x=\"170.685006\" y=\"33.391314\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,170.685006,33.391314)\">90</text>\n",
-       "  <text x=\"10.342503\" y=\"55.755119\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,10.342503,55.755119)\">10958</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>hydro_canopy_cond_limited_box</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(90, 49152), meta=np.ndarray&gt;</div><input id='attrs-f8a1f97d-0b8a-4d74-9364-c6bd09382e93' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-f8a1f97d-0b8a-4d74-9364-c6bd09382e93' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-2218ad35-3a1b-4c8e-9a08-ef96782a8ae1' class='xr-var-data-in' type='checkbox'><label for='data-2218ad35-3a1b-4c8e-9a08-ef96782a8ae1' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>cell_methods :</span></dt><dd>time: mean cell: mean</dd><dt><span>component :</span></dt><dd>jsbach</dd><dt><span>grid_mapping :</span></dt><dd>crs</dd><dt><span>vgrid :</span></dt><dd>surface</dd></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table>\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 8.03 GiB </td>\n",
-       "                        <td> 16.88 MiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (10958, 196608) </td>\n",
-       "                        <td> (90, 49152) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Count </th>\n",
-       "                        <td> 2 Graph Layers </td>\n",
-       "                        <td> 488 Chunks </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                    <th> Type </th>\n",
-       "                    <td> float32 </td>\n",
-       "                    <td> numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"170\" height=\"85\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n",
-       "  <line x1=\"0\" y1=\"3\" x2=\"120\" y2=\"3\" />\n",
-       "  <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n",
-       "  <line x1=\"0\" y1=\"7\" x2=\"120\" y2=\"7\" />\n",
-       "  <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n",
-       "  <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n",
-       "  <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n",
-       "  <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n",
-       "  <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n",
-       "  <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n",
-       "  <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n",
-       "  <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n",
-       "  <line x1=\"0\" y1=\"23\" x2=\"120\" y2=\"23\" />\n",
-       "  <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" />\n",
-       "  <line x1=\"0\" y1=\"27\" x2=\"120\" y2=\"27\" />\n",
-       "  <line x1=\"0\" y1=\"29\" x2=\"120\" y2=\"29\" />\n",
-       "  <line x1=\"0\" y1=\"31\" x2=\"120\" y2=\"31\" />\n",
-       "  <line x1=\"0\" y1=\"33\" x2=\"120\" y2=\"33\" />\n",
-       "  <line x1=\"0\" y1=\"35\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"35\" />\n",
-       "  <line x1=\"60\" y1=\"0\" x2=\"60\" y2=\"35\" />\n",
-       "  <line x1=\"90\" y1=\"0\" x2=\"90\" y2=\"35\" />\n",
-       "  <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"0.0,0.0 120.0,0.0 120.0,35.164509745010875 0.0,35.164509745010875\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"60.000000\" y=\"55.164510\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >196608</text>\n",
-       "  <text x=\"140.000000\" y=\"17.582255\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,17.582255)\">10958</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>hydro_discharge_ocean_box</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(90, 49152), meta=np.ndarray&gt;</div><input id='attrs-c1a2820f-6672-4304-8309-42c571cace92' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-c1a2820f-6672-4304-8309-42c571cace92' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-8cdbcd61-a933-450c-bfb1-16c9e33b86ad' class='xr-var-data-in' type='checkbox'><label for='data-8cdbcd61-a933-450c-bfb1-16c9e33b86ad' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>cell_methods :</span></dt><dd>time: mean cell: mean</dd><dt><span>component :</span></dt><dd>jsbach</dd><dt><span>grid_mapping :</span></dt><dd>crs</dd><dt><span>units :</span></dt><dd>m3 s-1</dd><dt><span>vgrid :</span></dt><dd>surface</dd></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table>\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 8.03 GiB </td>\n",
-       "                        <td> 16.88 MiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (10958, 196608) </td>\n",
-       "                        <td> (90, 49152) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Count </th>\n",
-       "                        <td> 2 Graph Layers </td>\n",
-       "                        <td> 488 Chunks </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                    <th> Type </th>\n",
-       "                    <td> float32 </td>\n",
-       "                    <td> numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"170\" height=\"85\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n",
-       "  <line x1=\"0\" y1=\"3\" x2=\"120\" y2=\"3\" />\n",
-       "  <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n",
-       "  <line x1=\"0\" y1=\"7\" x2=\"120\" y2=\"7\" />\n",
-       "  <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n",
-       "  <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n",
-       "  <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n",
-       "  <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n",
-       "  <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n",
-       "  <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n",
-       "  <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n",
-       "  <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n",
-       "  <line x1=\"0\" y1=\"23\" x2=\"120\" y2=\"23\" />\n",
-       "  <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" />\n",
-       "  <line x1=\"0\" y1=\"27\" x2=\"120\" y2=\"27\" />\n",
-       "  <line x1=\"0\" y1=\"29\" x2=\"120\" y2=\"29\" />\n",
-       "  <line x1=\"0\" y1=\"31\" x2=\"120\" y2=\"31\" />\n",
-       "  <line x1=\"0\" y1=\"33\" x2=\"120\" y2=\"33\" />\n",
-       "  <line x1=\"0\" y1=\"35\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"35\" />\n",
-       "  <line x1=\"60\" y1=\"0\" x2=\"60\" y2=\"35\" />\n",
-       "  <line x1=\"90\" y1=\"0\" x2=\"90\" y2=\"35\" />\n",
-       "  <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"0.0,0.0 120.0,0.0 120.0,35.164509745010875 0.0,35.164509745010875\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"60.000000\" y=\"55.164510\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >196608</text>\n",
-       "  <text x=\"140.000000\" y=\"17.582255\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,17.582255)\">10958</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>hydro_drainage_box</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(90, 49152), meta=np.ndarray&gt;</div><input id='attrs-b7957188-7360-4820-ade5-af18acc62c05' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-b7957188-7360-4820-ade5-af18acc62c05' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-8146414e-fe4d-4304-8a5f-933ab5431aeb' class='xr-var-data-in' type='checkbox'><label for='data-8146414e-fe4d-4304-8a5f-933ab5431aeb' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>cell_methods :</span></dt><dd>time: mean cell: mean</dd><dt><span>component :</span></dt><dd>jsbach</dd><dt><span>grid_mapping :</span></dt><dd>crs</dd><dt><span>units :</span></dt><dd>kg m-2 s-1</dd><dt><span>vgrid :</span></dt><dd>surface</dd></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table>\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 8.03 GiB </td>\n",
-       "                        <td> 16.88 MiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (10958, 196608) </td>\n",
-       "                        <td> (90, 49152) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Count </th>\n",
-       "                        <td> 2 Graph Layers </td>\n",
-       "                        <td> 488 Chunks </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                    <th> Type </th>\n",
-       "                    <td> float32 </td>\n",
-       "                    <td> numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"170\" height=\"85\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n",
-       "  <line x1=\"0\" y1=\"3\" x2=\"120\" y2=\"3\" />\n",
-       "  <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n",
-       "  <line x1=\"0\" y1=\"7\" x2=\"120\" y2=\"7\" />\n",
-       "  <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n",
-       "  <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n",
-       "  <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n",
-       "  <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n",
-       "  <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n",
-       "  <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n",
-       "  <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n",
-       "  <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n",
-       "  <line x1=\"0\" y1=\"23\" x2=\"120\" y2=\"23\" />\n",
-       "  <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" />\n",
-       "  <line x1=\"0\" y1=\"27\" x2=\"120\" y2=\"27\" />\n",
-       "  <line x1=\"0\" y1=\"29\" x2=\"120\" y2=\"29\" />\n",
-       "  <line x1=\"0\" y1=\"31\" x2=\"120\" y2=\"31\" />\n",
-       "  <line x1=\"0\" y1=\"33\" x2=\"120\" y2=\"33\" />\n",
-       "  <line x1=\"0\" y1=\"35\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"35\" />\n",
-       "  <line x1=\"60\" y1=\"0\" x2=\"60\" y2=\"35\" />\n",
-       "  <line x1=\"90\" y1=\"0\" x2=\"90\" y2=\"35\" />\n",
-       "  <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"0.0,0.0 120.0,0.0 120.0,35.164509745010875 0.0,35.164509745010875\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"60.000000\" y=\"55.164510\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >196608</text>\n",
-       "  <text x=\"140.000000\" y=\"17.582255\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,17.582255)\">10958</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>hydro_ice_soil_sl_box</span></div><div class='xr-var-dims'>(time, soil_depth_water_level, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(15, 5, 49152), meta=np.ndarray&gt;</div><input id='attrs-ed8522b6-720c-4aff-b108-ba1766a17e45' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-ed8522b6-720c-4aff-b108-ba1766a17e45' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-d064867a-4b13-4fc6-8fd2-8782e5334987' class='xr-var-data-in' type='checkbox'><label for='data-d064867a-4b13-4fc6-8fd2-8782e5334987' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>cell_methods :</span></dt><dd>time: mean cell: mean</dd><dt><span>component :</span></dt><dd>jsbach</dd><dt><span>grid_mapping :</span></dt><dd>crs</dd><dt><span>long_name :</span></dt><dd>Ice content in soil layers</dd><dt><span>units :</span></dt><dd>m</dd><dt><span>vgrid :</span></dt><dd>soil_depth_water</dd></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table>\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 40.13 GiB </td>\n",
-       "                        <td> 14.06 MiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (10958, 5, 196608) </td>\n",
-       "                        <td> (15, 5, 49152) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Count </th>\n",
-       "                        <td> 2 Graph Layers </td>\n",
-       "                        <td> 2924 Chunks </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                    <th> Type </th>\n",
-       "                    <td> float32 </td>\n",
-       "                    <td> numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"200\" height=\"96\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"10\" y1=\"0\" x2=\"30\" y2=\"20\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"10\" y1=\"25\" x2=\"30\" y2=\"46\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"25\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"11\" y1=\"1\" x2=\"11\" y2=\"26\" />\n",
-       "  <line x1=\"12\" y1=\"2\" x2=\"12\" y2=\"27\" />\n",
-       "  <line x1=\"13\" y1=\"3\" x2=\"13\" y2=\"28\" />\n",
-       "  <line x1=\"14\" y1=\"4\" x2=\"14\" y2=\"29\" />\n",
-       "  <line x1=\"15\" y1=\"5\" x2=\"15\" y2=\"30\" />\n",
-       "  <line x1=\"16\" y1=\"6\" x2=\"16\" y2=\"31\" />\n",
-       "  <line x1=\"17\" y1=\"7\" x2=\"17\" y2=\"33\" />\n",
-       "  <line x1=\"18\" y1=\"8\" x2=\"18\" y2=\"34\" />\n",
-       "  <line x1=\"19\" y1=\"9\" x2=\"19\" y2=\"35\" />\n",
-       "  <line x1=\"20\" y1=\"10\" x2=\"20\" y2=\"36\" />\n",
-       "  <line x1=\"21\" y1=\"11\" x2=\"21\" y2=\"37\" />\n",
-       "  <line x1=\"23\" y1=\"13\" x2=\"23\" y2=\"38\" />\n",
-       "  <line x1=\"24\" y1=\"14\" x2=\"24\" y2=\"39\" />\n",
-       "  <line x1=\"25\" y1=\"15\" x2=\"25\" y2=\"40\" />\n",
-       "  <line x1=\"26\" y1=\"16\" x2=\"26\" y2=\"41\" />\n",
-       "  <line x1=\"27\" y1=\"17\" x2=\"27\" y2=\"42\" />\n",
-       "  <line x1=\"28\" y1=\"18\" x2=\"28\" y2=\"43\" />\n",
-       "  <line x1=\"29\" y1=\"19\" x2=\"29\" y2=\"45\" />\n",
-       "  <line x1=\"30\" y1=\"20\" x2=\"30\" y2=\"46\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"10.0,0.0 30.68500573235934,20.68500573235934 30.68500573235934,46.097622246941825 10.0,25.412616514582485\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"10\" y1=\"0\" x2=\"130\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"11\" y1=\"1\" x2=\"131\" y2=\"1\" />\n",
-       "  <line x1=\"12\" y1=\"2\" x2=\"132\" y2=\"2\" />\n",
-       "  <line x1=\"13\" y1=\"3\" x2=\"133\" y2=\"3\" />\n",
-       "  <line x1=\"14\" y1=\"4\" x2=\"134\" y2=\"4\" />\n",
-       "  <line x1=\"15\" y1=\"5\" x2=\"135\" y2=\"5\" />\n",
-       "  <line x1=\"16\" y1=\"6\" x2=\"136\" y2=\"6\" />\n",
-       "  <line x1=\"17\" y1=\"7\" x2=\"137\" y2=\"7\" />\n",
-       "  <line x1=\"18\" y1=\"8\" x2=\"138\" y2=\"8\" />\n",
-       "  <line x1=\"19\" y1=\"9\" x2=\"139\" y2=\"9\" />\n",
-       "  <line x1=\"20\" y1=\"10\" x2=\"140\" y2=\"10\" />\n",
-       "  <line x1=\"21\" y1=\"11\" x2=\"141\" y2=\"11\" />\n",
-       "  <line x1=\"23\" y1=\"13\" x2=\"143\" y2=\"13\" />\n",
-       "  <line x1=\"24\" y1=\"14\" x2=\"144\" y2=\"14\" />\n",
-       "  <line x1=\"25\" y1=\"15\" x2=\"145\" y2=\"15\" />\n",
-       "  <line x1=\"26\" y1=\"16\" x2=\"146\" y2=\"16\" />\n",
-       "  <line x1=\"27\" y1=\"17\" x2=\"147\" y2=\"17\" />\n",
-       "  <line x1=\"28\" y1=\"18\" x2=\"148\" y2=\"18\" />\n",
-       "  <line x1=\"29\" y1=\"19\" x2=\"149\" y2=\"19\" />\n",
-       "  <line x1=\"30\" y1=\"20\" x2=\"150\" y2=\"20\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"10\" y1=\"0\" x2=\"30\" y2=\"20\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"40\" y1=\"0\" x2=\"60\" y2=\"20\" />\n",
-       "  <line x1=\"70\" y1=\"0\" x2=\"90\" y2=\"20\" />\n",
-       "  <line x1=\"100\" y1=\"0\" x2=\"120\" y2=\"20\" />\n",
-       "  <line x1=\"130\" y1=\"0\" x2=\"150\" y2=\"20\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"10.0,0.0 130.0,0.0 150.68500573235934,20.68500573235934 30.68500573235934,20.68500573235934\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"30\" y1=\"20\" x2=\"150\" y2=\"20\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"30\" y1=\"46\" x2=\"150\" y2=\"46\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"30\" y1=\"20\" x2=\"30\" y2=\"46\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"60\" y1=\"20\" x2=\"60\" y2=\"46\" />\n",
-       "  <line x1=\"90\" y1=\"20\" x2=\"90\" y2=\"46\" />\n",
-       "  <line x1=\"120\" y1=\"20\" x2=\"120\" y2=\"46\" />\n",
-       "  <line x1=\"150\" y1=\"20\" x2=\"150\" y2=\"46\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"30.68500573235934,20.68500573235934 150.68500573235934,20.68500573235934 150.68500573235934,46.097622246941825 30.68500573235934,46.097622246941825\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"90.685006\" y=\"66.097622\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >196608</text>\n",
-       "  <text x=\"170.685006\" y=\"33.391314\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,170.685006,33.391314)\">5</text>\n",
-       "  <text x=\"10.342503\" y=\"55.755119\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,10.342503,55.755119)\">10958</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>hydro_runoff_box</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(90, 49152), meta=np.ndarray&gt;</div><input id='attrs-a69d6a5a-9ef5-4273-999b-f5335a35a63d' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-a69d6a5a-9ef5-4273-999b-f5335a35a63d' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-30db1db5-8e72-41b9-ad67-cd13e8125cce' class='xr-var-data-in' type='checkbox'><label for='data-30db1db5-8e72-41b9-ad67-cd13e8125cce' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>cell_methods :</span></dt><dd>time: mean cell: mean</dd><dt><span>component :</span></dt><dd>jsbach</dd><dt><span>grid_mapping :</span></dt><dd>crs</dd><dt><span>long_name :</span></dt><dd>surface runoff</dd><dt><span>units :</span></dt><dd>kg m-2 s-1</dd><dt><span>vgrid :</span></dt><dd>surface</dd></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table>\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 8.03 GiB </td>\n",
-       "                        <td> 16.88 MiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (10958, 196608) </td>\n",
-       "                        <td> (90, 49152) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Count </th>\n",
-       "                        <td> 2 Graph Layers </td>\n",
-       "                        <td> 488 Chunks </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                    <th> Type </th>\n",
-       "                    <td> float32 </td>\n",
-       "                    <td> numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"170\" height=\"85\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n",
-       "  <line x1=\"0\" y1=\"3\" x2=\"120\" y2=\"3\" />\n",
-       "  <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n",
-       "  <line x1=\"0\" y1=\"7\" x2=\"120\" y2=\"7\" />\n",
-       "  <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n",
-       "  <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n",
-       "  <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n",
-       "  <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n",
-       "  <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n",
-       "  <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n",
-       "  <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n",
-       "  <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n",
-       "  <line x1=\"0\" y1=\"23\" x2=\"120\" y2=\"23\" />\n",
-       "  <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" />\n",
-       "  <line x1=\"0\" y1=\"27\" x2=\"120\" y2=\"27\" />\n",
-       "  <line x1=\"0\" y1=\"29\" x2=\"120\" y2=\"29\" />\n",
-       "  <line x1=\"0\" y1=\"31\" x2=\"120\" y2=\"31\" />\n",
-       "  <line x1=\"0\" y1=\"33\" x2=\"120\" y2=\"33\" />\n",
-       "  <line x1=\"0\" y1=\"35\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"35\" />\n",
-       "  <line x1=\"60\" y1=\"0\" x2=\"60\" y2=\"35\" />\n",
-       "  <line x1=\"90\" y1=\"0\" x2=\"90\" y2=\"35\" />\n",
-       "  <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"0.0,0.0 120.0,0.0 120.0,35.164509745010875 0.0,35.164509745010875\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"60.000000\" y=\"55.164510\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >196608</text>\n",
-       "  <text x=\"140.000000\" y=\"17.582255\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,17.582255)\">10958</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>hydro_snow_soil_dens_box</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(90, 49152), meta=np.ndarray&gt;</div><input id='attrs-0ae23fba-fd0c-48d8-b61f-a147541b39dc' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-0ae23fba-fd0c-48d8-b61f-a147541b39dc' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-d587fba0-0a68-4067-8922-1072d999d2b7' class='xr-var-data-in' type='checkbox'><label for='data-d587fba0-0a68-4067-8922-1072d999d2b7' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>cell_methods :</span></dt><dd>time: mean cell: mean</dd><dt><span>component :</span></dt><dd>jsbach</dd><dt><span>grid_mapping :</span></dt><dd>crs</dd><dt><span>long_name :</span></dt><dd>Density of snow on soil</dd><dt><span>units :</span></dt><dd>kg m-3</dd><dt><span>vgrid :</span></dt><dd>surface</dd></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table>\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 8.03 GiB </td>\n",
-       "                        <td> 16.88 MiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (10958, 196608) </td>\n",
-       "                        <td> (90, 49152) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Count </th>\n",
-       "                        <td> 2 Graph Layers </td>\n",
-       "                        <td> 488 Chunks </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                    <th> Type </th>\n",
-       "                    <td> float32 </td>\n",
-       "                    <td> numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"170\" height=\"85\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n",
-       "  <line x1=\"0\" y1=\"3\" x2=\"120\" y2=\"3\" />\n",
-       "  <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n",
-       "  <line x1=\"0\" y1=\"7\" x2=\"120\" y2=\"7\" />\n",
-       "  <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n",
-       "  <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n",
-       "  <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n",
-       "  <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n",
-       "  <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n",
-       "  <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n",
-       "  <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n",
-       "  <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n",
-       "  <line x1=\"0\" y1=\"23\" x2=\"120\" y2=\"23\" />\n",
-       "  <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" />\n",
-       "  <line x1=\"0\" y1=\"27\" x2=\"120\" y2=\"27\" />\n",
-       "  <line x1=\"0\" y1=\"29\" x2=\"120\" y2=\"29\" />\n",
-       "  <line x1=\"0\" y1=\"31\" x2=\"120\" y2=\"31\" />\n",
-       "  <line x1=\"0\" y1=\"33\" x2=\"120\" y2=\"33\" />\n",
-       "  <line x1=\"0\" y1=\"35\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"35\" />\n",
-       "  <line x1=\"60\" y1=\"0\" x2=\"60\" y2=\"35\" />\n",
-       "  <line x1=\"90\" y1=\"0\" x2=\"90\" y2=\"35\" />\n",
-       "  <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"0.0,0.0 120.0,0.0 120.0,35.164509745010875 0.0,35.164509745010875\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"60.000000\" y=\"55.164510\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >196608</text>\n",
-       "  <text x=\"140.000000\" y=\"17.582255\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,17.582255)\">10958</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>hydro_transpiration_box</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(90, 49152), meta=np.ndarray&gt;</div><input id='attrs-1832db17-f03a-4139-be72-b1fe58368df4' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-1832db17-f03a-4139-be72-b1fe58368df4' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-f1f468e4-5605-48df-a17f-e2def2fe0063' class='xr-var-data-in' type='checkbox'><label for='data-f1f468e4-5605-48df-a17f-e2def2fe0063' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>cell_methods :</span></dt><dd>time: mean cell: mean</dd><dt><span>component :</span></dt><dd>jsbach</dd><dt><span>grid_mapping :</span></dt><dd>crs</dd><dt><span>long_name :</span></dt><dd>Transpiration from surface</dd><dt><span>units :</span></dt><dd>kg m-2 s-1</dd><dt><span>vgrid :</span></dt><dd>surface</dd></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table>\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 8.03 GiB </td>\n",
-       "                        <td> 16.88 MiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (10958, 196608) </td>\n",
-       "                        <td> (90, 49152) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Count </th>\n",
-       "                        <td> 2 Graph Layers </td>\n",
-       "                        <td> 488 Chunks </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                    <th> Type </th>\n",
-       "                    <td> float32 </td>\n",
-       "                    <td> numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"170\" height=\"85\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n",
-       "  <line x1=\"0\" y1=\"3\" x2=\"120\" y2=\"3\" />\n",
-       "  <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n",
-       "  <line x1=\"0\" y1=\"7\" x2=\"120\" y2=\"7\" />\n",
-       "  <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n",
-       "  <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n",
-       "  <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n",
-       "  <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n",
-       "  <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n",
-       "  <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n",
-       "  <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n",
-       "  <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n",
-       "  <line x1=\"0\" y1=\"23\" x2=\"120\" y2=\"23\" />\n",
-       "  <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" />\n",
-       "  <line x1=\"0\" y1=\"27\" x2=\"120\" y2=\"27\" />\n",
-       "  <line x1=\"0\" y1=\"29\" x2=\"120\" y2=\"29\" />\n",
-       "  <line x1=\"0\" y1=\"31\" x2=\"120\" y2=\"31\" />\n",
-       "  <line x1=\"0\" y1=\"33\" x2=\"120\" y2=\"33\" />\n",
-       "  <line x1=\"0\" y1=\"35\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"35\" />\n",
-       "  <line x1=\"60\" y1=\"0\" x2=\"60\" y2=\"35\" />\n",
-       "  <line x1=\"90\" y1=\"0\" x2=\"90\" y2=\"35\" />\n",
-       "  <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"0.0,0.0 120.0,0.0 120.0,35.164509745010875 0.0,35.164509745010875\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"60.000000\" y=\"55.164510\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >196608</text>\n",
-       "  <text x=\"140.000000\" y=\"17.582255\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,17.582255)\">10958</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>hydro_weq_snow_box</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(90, 49152), meta=np.ndarray&gt;</div><input id='attrs-d60fa86d-21ab-4106-b2eb-15f02530943a' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-d60fa86d-21ab-4106-b2eb-15f02530943a' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-11eb9844-2d53-438b-b825-ffe2818375fb' class='xr-var-data-in' type='checkbox'><label for='data-11eb9844-2d53-438b-b825-ffe2818375fb' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>cell_methods :</span></dt><dd>time: mean cell: mean</dd><dt><span>component :</span></dt><dd>jsbach</dd><dt><span>grid_mapping :</span></dt><dd>crs</dd><dt><span>long_name :</span></dt><dd>Water content of snow reservoir on surface</dd><dt><span>units :</span></dt><dd>m</dd><dt><span>vgrid :</span></dt><dd>surface</dd></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table>\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 8.03 GiB </td>\n",
-       "                        <td> 16.88 MiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (10958, 196608) </td>\n",
-       "                        <td> (90, 49152) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Count </th>\n",
-       "                        <td> 2 Graph Layers </td>\n",
-       "                        <td> 488 Chunks </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                    <th> Type </th>\n",
-       "                    <td> float32 </td>\n",
-       "                    <td> numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"170\" height=\"85\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n",
-       "  <line x1=\"0\" y1=\"3\" x2=\"120\" y2=\"3\" />\n",
-       "  <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n",
-       "  <line x1=\"0\" y1=\"7\" x2=\"120\" y2=\"7\" />\n",
-       "  <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n",
-       "  <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n",
-       "  <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n",
-       "  <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n",
-       "  <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n",
-       "  <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n",
-       "  <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n",
-       "  <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n",
-       "  <line x1=\"0\" y1=\"23\" x2=\"120\" y2=\"23\" />\n",
-       "  <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" />\n",
-       "  <line x1=\"0\" y1=\"27\" x2=\"120\" y2=\"27\" />\n",
-       "  <line x1=\"0\" y1=\"29\" x2=\"120\" y2=\"29\" />\n",
-       "  <line x1=\"0\" y1=\"31\" x2=\"120\" y2=\"31\" />\n",
-       "  <line x1=\"0\" y1=\"33\" x2=\"120\" y2=\"33\" />\n",
-       "  <line x1=\"0\" y1=\"35\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"35\" />\n",
-       "  <line x1=\"60\" y1=\"0\" x2=\"60\" y2=\"35\" />\n",
-       "  <line x1=\"90\" y1=\"0\" x2=\"90\" y2=\"35\" />\n",
-       "  <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"0.0,0.0 120.0,0.0 120.0,35.164509745010875 0.0,35.164509745010875\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"60.000000\" y=\"55.164510\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >196608</text>\n",
-       "  <text x=\"140.000000\" y=\"17.582255\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,17.582255)\">10958</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>hydro_wtr_soil_sl_box</span></div><div class='xr-var-dims'>(time, soil_depth_water_level, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(15, 5, 49152), meta=np.ndarray&gt;</div><input id='attrs-35a08a13-cd83-4279-b32c-159a90ce64a3' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-35a08a13-cd83-4279-b32c-159a90ce64a3' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-005cadd3-b0e3-45ef-8385-a86095dbcc50' class='xr-var-data-in' type='checkbox'><label for='data-005cadd3-b0e3-45ef-8385-a86095dbcc50' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>cell_methods :</span></dt><dd>time: mean cell: mean</dd><dt><span>component :</span></dt><dd>jsbach</dd><dt><span>grid_mapping :</span></dt><dd>crs</dd><dt><span>long_name :</span></dt><dd>Water content in soil layers</dd><dt><span>units :</span></dt><dd>m</dd><dt><span>vgrid :</span></dt><dd>soil_depth_water</dd></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table>\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 40.13 GiB </td>\n",
-       "                        <td> 14.06 MiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (10958, 5, 196608) </td>\n",
-       "                        <td> (15, 5, 49152) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Count </th>\n",
-       "                        <td> 2 Graph Layers </td>\n",
-       "                        <td> 2924 Chunks </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                    <th> Type </th>\n",
-       "                    <td> float32 </td>\n",
-       "                    <td> numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"200\" height=\"96\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"10\" y1=\"0\" x2=\"30\" y2=\"20\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"10\" y1=\"25\" x2=\"30\" y2=\"46\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"25\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"11\" y1=\"1\" x2=\"11\" y2=\"26\" />\n",
-       "  <line x1=\"12\" y1=\"2\" x2=\"12\" y2=\"27\" />\n",
-       "  <line x1=\"13\" y1=\"3\" x2=\"13\" y2=\"28\" />\n",
-       "  <line x1=\"14\" y1=\"4\" x2=\"14\" y2=\"29\" />\n",
-       "  <line x1=\"15\" y1=\"5\" x2=\"15\" y2=\"30\" />\n",
-       "  <line x1=\"16\" y1=\"6\" x2=\"16\" y2=\"31\" />\n",
-       "  <line x1=\"17\" y1=\"7\" x2=\"17\" y2=\"33\" />\n",
-       "  <line x1=\"18\" y1=\"8\" x2=\"18\" y2=\"34\" />\n",
-       "  <line x1=\"19\" y1=\"9\" x2=\"19\" y2=\"35\" />\n",
-       "  <line x1=\"20\" y1=\"10\" x2=\"20\" y2=\"36\" />\n",
-       "  <line x1=\"21\" y1=\"11\" x2=\"21\" y2=\"37\" />\n",
-       "  <line x1=\"23\" y1=\"13\" x2=\"23\" y2=\"38\" />\n",
-       "  <line x1=\"24\" y1=\"14\" x2=\"24\" y2=\"39\" />\n",
-       "  <line x1=\"25\" y1=\"15\" x2=\"25\" y2=\"40\" />\n",
-       "  <line x1=\"26\" y1=\"16\" x2=\"26\" y2=\"41\" />\n",
-       "  <line x1=\"27\" y1=\"17\" x2=\"27\" y2=\"42\" />\n",
-       "  <line x1=\"28\" y1=\"18\" x2=\"28\" y2=\"43\" />\n",
-       "  <line x1=\"29\" y1=\"19\" x2=\"29\" y2=\"45\" />\n",
-       "  <line x1=\"30\" y1=\"20\" x2=\"30\" y2=\"46\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"10.0,0.0 30.68500573235934,20.68500573235934 30.68500573235934,46.097622246941825 10.0,25.412616514582485\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"10\" y1=\"0\" x2=\"130\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"11\" y1=\"1\" x2=\"131\" y2=\"1\" />\n",
-       "  <line x1=\"12\" y1=\"2\" x2=\"132\" y2=\"2\" />\n",
-       "  <line x1=\"13\" y1=\"3\" x2=\"133\" y2=\"3\" />\n",
-       "  <line x1=\"14\" y1=\"4\" x2=\"134\" y2=\"4\" />\n",
-       "  <line x1=\"15\" y1=\"5\" x2=\"135\" y2=\"5\" />\n",
-       "  <line x1=\"16\" y1=\"6\" x2=\"136\" y2=\"6\" />\n",
-       "  <line x1=\"17\" y1=\"7\" x2=\"137\" y2=\"7\" />\n",
-       "  <line x1=\"18\" y1=\"8\" x2=\"138\" y2=\"8\" />\n",
-       "  <line x1=\"19\" y1=\"9\" x2=\"139\" y2=\"9\" />\n",
-       "  <line x1=\"20\" y1=\"10\" x2=\"140\" y2=\"10\" />\n",
-       "  <line x1=\"21\" y1=\"11\" x2=\"141\" y2=\"11\" />\n",
-       "  <line x1=\"23\" y1=\"13\" x2=\"143\" y2=\"13\" />\n",
-       "  <line x1=\"24\" y1=\"14\" x2=\"144\" y2=\"14\" />\n",
-       "  <line x1=\"25\" y1=\"15\" x2=\"145\" y2=\"15\" />\n",
-       "  <line x1=\"26\" y1=\"16\" x2=\"146\" y2=\"16\" />\n",
-       "  <line x1=\"27\" y1=\"17\" x2=\"147\" y2=\"17\" />\n",
-       "  <line x1=\"28\" y1=\"18\" x2=\"148\" y2=\"18\" />\n",
-       "  <line x1=\"29\" y1=\"19\" x2=\"149\" y2=\"19\" />\n",
-       "  <line x1=\"30\" y1=\"20\" x2=\"150\" y2=\"20\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"10\" y1=\"0\" x2=\"30\" y2=\"20\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"40\" y1=\"0\" x2=\"60\" y2=\"20\" />\n",
-       "  <line x1=\"70\" y1=\"0\" x2=\"90\" y2=\"20\" />\n",
-       "  <line x1=\"100\" y1=\"0\" x2=\"120\" y2=\"20\" />\n",
-       "  <line x1=\"130\" y1=\"0\" x2=\"150\" y2=\"20\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"10.0,0.0 130.0,0.0 150.68500573235934,20.68500573235934 30.68500573235934,20.68500573235934\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"30\" y1=\"20\" x2=\"150\" y2=\"20\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"30\" y1=\"46\" x2=\"150\" y2=\"46\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"30\" y1=\"20\" x2=\"30\" y2=\"46\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"60\" y1=\"20\" x2=\"60\" y2=\"46\" />\n",
-       "  <line x1=\"90\" y1=\"20\" x2=\"90\" y2=\"46\" />\n",
-       "  <line x1=\"120\" y1=\"20\" x2=\"120\" y2=\"46\" />\n",
-       "  <line x1=\"150\" y1=\"20\" x2=\"150\" y2=\"46\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"30.68500573235934,20.68500573235934 150.68500573235934,20.68500573235934 150.68500573235934,46.097622246941825 30.68500573235934,46.097622246941825\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"90.685006\" y=\"66.097622\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >196608</text>\n",
-       "  <text x=\"170.685006\" y=\"33.391314\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,170.685006,33.391314)\">5</text>\n",
-       "  <text x=\"10.342503\" y=\"55.755119\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,10.342503,55.755119)\">10958</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>ice_u</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(90, 49152), meta=np.ndarray&gt;</div><input id='attrs-3dafd4af-52ba-49ca-82ca-8b18037c71a4' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-3dafd4af-52ba-49ca-82ca-8b18037c71a4' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-e07b09f4-8363-4991-b001-8dc5c8a9370a' class='xr-var-data-in' type='checkbox'><label for='data-e07b09f4-8363-4991-b001-8dc5c8a9370a' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>cell_methods :</span></dt><dd>time: mean cell: mean</dd><dt><span>component :</span></dt><dd>ocean</dd><dt><span>grid_mapping :</span></dt><dd>crs</dd><dt><span>long_name :</span></dt><dd>zonal velocity</dd><dt><span>units :</span></dt><dd>m/s</dd><dt><span>vgrid :</span></dt><dd>surface</dd></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table>\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 8.03 GiB </td>\n",
-       "                        <td> 16.88 MiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (10958, 196608) </td>\n",
-       "                        <td> (90, 49152) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Count </th>\n",
-       "                        <td> 2 Graph Layers </td>\n",
-       "                        <td> 488 Chunks </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                    <th> Type </th>\n",
-       "                    <td> float32 </td>\n",
-       "                    <td> numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"170\" height=\"85\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n",
-       "  <line x1=\"0\" y1=\"3\" x2=\"120\" y2=\"3\" />\n",
-       "  <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n",
-       "  <line x1=\"0\" y1=\"7\" x2=\"120\" y2=\"7\" />\n",
-       "  <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n",
-       "  <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n",
-       "  <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n",
-       "  <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n",
-       "  <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n",
-       "  <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n",
-       "  <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n",
-       "  <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n",
-       "  <line x1=\"0\" y1=\"23\" x2=\"120\" y2=\"23\" />\n",
-       "  <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" />\n",
-       "  <line x1=\"0\" y1=\"27\" x2=\"120\" y2=\"27\" />\n",
-       "  <line x1=\"0\" y1=\"29\" x2=\"120\" y2=\"29\" />\n",
-       "  <line x1=\"0\" y1=\"31\" x2=\"120\" y2=\"31\" />\n",
-       "  <line x1=\"0\" y1=\"33\" x2=\"120\" y2=\"33\" />\n",
-       "  <line x1=\"0\" y1=\"35\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"35\" />\n",
-       "  <line x1=\"60\" y1=\"0\" x2=\"60\" y2=\"35\" />\n",
-       "  <line x1=\"90\" y1=\"0\" x2=\"90\" y2=\"35\" />\n",
-       "  <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"0.0,0.0 120.0,0.0 120.0,35.164509745010875 0.0,35.164509745010875\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"60.000000\" y=\"55.164510\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >196608</text>\n",
-       "  <text x=\"140.000000\" y=\"17.582255\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,17.582255)\">10958</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>ice_v</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(90, 49152), meta=np.ndarray&gt;</div><input id='attrs-8ed64b2b-7e04-457e-ba8a-4242fabb5389' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-8ed64b2b-7e04-457e-ba8a-4242fabb5389' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-db23b0a2-e595-40f9-afd9-fef7a6c99c0a' class='xr-var-data-in' type='checkbox'><label for='data-db23b0a2-e595-40f9-afd9-fef7a6c99c0a' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>cell_methods :</span></dt><dd>time: mean cell: mean</dd><dt><span>component :</span></dt><dd>ocean</dd><dt><span>grid_mapping :</span></dt><dd>crs</dd><dt><span>long_name :</span></dt><dd>meridional velocity</dd><dt><span>units :</span></dt><dd>m/s</dd><dt><span>vgrid :</span></dt><dd>surface</dd></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table>\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 8.03 GiB </td>\n",
-       "                        <td> 16.88 MiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (10958, 196608) </td>\n",
-       "                        <td> (90, 49152) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Count </th>\n",
-       "                        <td> 2 Graph Layers </td>\n",
-       "                        <td> 488 Chunks </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                    <th> Type </th>\n",
-       "                    <td> float32 </td>\n",
-       "                    <td> numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"170\" height=\"85\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n",
-       "  <line x1=\"0\" y1=\"3\" x2=\"120\" y2=\"3\" />\n",
-       "  <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n",
-       "  <line x1=\"0\" y1=\"7\" x2=\"120\" y2=\"7\" />\n",
-       "  <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n",
-       "  <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n",
-       "  <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n",
-       "  <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n",
-       "  <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n",
-       "  <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n",
-       "  <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n",
-       "  <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n",
-       "  <line x1=\"0\" y1=\"23\" x2=\"120\" y2=\"23\" />\n",
-       "  <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" />\n",
-       "  <line x1=\"0\" y1=\"27\" x2=\"120\" y2=\"27\" />\n",
-       "  <line x1=\"0\" y1=\"29\" x2=\"120\" y2=\"29\" />\n",
-       "  <line x1=\"0\" y1=\"31\" x2=\"120\" y2=\"31\" />\n",
-       "  <line x1=\"0\" y1=\"33\" x2=\"120\" y2=\"33\" />\n",
-       "  <line x1=\"0\" y1=\"35\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"35\" />\n",
-       "  <line x1=\"60\" y1=\"0\" x2=\"60\" y2=\"35\" />\n",
-       "  <line x1=\"90\" y1=\"0\" x2=\"90\" y2=\"35\" />\n",
-       "  <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"0.0,0.0 120.0,0.0 120.0,35.164509745010875 0.0,35.164509745010875\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"60.000000\" y=\"55.164510\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >196608</text>\n",
-       "  <text x=\"140.000000\" y=\"17.582255\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,17.582255)\">10958</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>mlotst</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(90, 49152), meta=np.ndarray&gt;</div><input id='attrs-77bda60b-cfd2-4fac-9d15-650eaa5ac47c' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-77bda60b-cfd2-4fac-9d15-650eaa5ac47c' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-e10c8fd3-37ca-47e9-ad0f-796c082bc2cf' class='xr-var-data-in' type='checkbox'><label for='data-e10c8fd3-37ca-47e9-ad0f-796c082bc2cf' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>cell_methods :</span></dt><dd>time: mean cell: mean</dd><dt><span>component :</span></dt><dd>ocean</dd><dt><span>grid_mapping :</span></dt><dd>crs</dd><dt><span>standard_name :</span></dt><dd>ocean_mixed_layer_thickness_defined_by_sigma_t</dd><dt><span>units :</span></dt><dd>m</dd><dt><span>vgrid :</span></dt><dd>surface</dd></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table>\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 8.03 GiB </td>\n",
-       "                        <td> 16.88 MiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (10958, 196608) </td>\n",
-       "                        <td> (90, 49152) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Count </th>\n",
-       "                        <td> 2 Graph Layers </td>\n",
-       "                        <td> 488 Chunks </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                    <th> Type </th>\n",
-       "                    <td> float32 </td>\n",
-       "                    <td> numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"170\" height=\"85\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n",
-       "  <line x1=\"0\" y1=\"3\" x2=\"120\" y2=\"3\" />\n",
-       "  <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n",
-       "  <line x1=\"0\" y1=\"7\" x2=\"120\" y2=\"7\" />\n",
-       "  <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n",
-       "  <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n",
-       "  <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n",
-       "  <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n",
-       "  <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n",
-       "  <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n",
-       "  <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n",
-       "  <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n",
-       "  <line x1=\"0\" y1=\"23\" x2=\"120\" y2=\"23\" />\n",
-       "  <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" />\n",
-       "  <line x1=\"0\" y1=\"27\" x2=\"120\" y2=\"27\" />\n",
-       "  <line x1=\"0\" y1=\"29\" x2=\"120\" y2=\"29\" />\n",
-       "  <line x1=\"0\" y1=\"31\" x2=\"120\" y2=\"31\" />\n",
-       "  <line x1=\"0\" y1=\"33\" x2=\"120\" y2=\"33\" />\n",
-       "  <line x1=\"0\" y1=\"35\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"35\" />\n",
-       "  <line x1=\"60\" y1=\"0\" x2=\"60\" y2=\"35\" />\n",
-       "  <line x1=\"90\" y1=\"0\" x2=\"90\" y2=\"35\" />\n",
-       "  <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"0.0,0.0 120.0,0.0 120.0,35.164509745010875 0.0,35.164509745010875\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"60.000000\" y=\"55.164510\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >196608</text>\n",
-       "  <text x=\"140.000000\" y=\"17.582255\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,17.582255)\">10958</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>newice</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(90, 49152), meta=np.ndarray&gt;</div><input id='attrs-67c08da1-8cad-40bd-98fe-d6efb0798ab5' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-67c08da1-8cad-40bd-98fe-d6efb0798ab5' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-1a74939e-e4e4-463f-b447-d0cfb7d602aa' class='xr-var-data-in' type='checkbox'><label for='data-1a74939e-e4e4-463f-b447-d0cfb7d602aa' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>cell_methods :</span></dt><dd>time: mean cell: mean</dd><dt><span>component :</span></dt><dd>ocean</dd><dt><span>grid_mapping :</span></dt><dd>crs</dd><dt><span>long_name :</span></dt><dd>new ice growth in open water</dd><dt><span>units :</span></dt><dd>m</dd><dt><span>vgrid :</span></dt><dd>surface</dd></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table>\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 8.03 GiB </td>\n",
-       "                        <td> 16.88 MiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (10958, 196608) </td>\n",
-       "                        <td> (90, 49152) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Count </th>\n",
-       "                        <td> 2 Graph Layers </td>\n",
-       "                        <td> 488 Chunks </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                    <th> Type </th>\n",
-       "                    <td> float32 </td>\n",
-       "                    <td> numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"170\" height=\"85\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n",
-       "  <line x1=\"0\" y1=\"3\" x2=\"120\" y2=\"3\" />\n",
-       "  <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n",
-       "  <line x1=\"0\" y1=\"7\" x2=\"120\" y2=\"7\" />\n",
-       "  <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n",
-       "  <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n",
-       "  <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n",
-       "  <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n",
-       "  <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n",
-       "  <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n",
-       "  <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n",
-       "  <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n",
-       "  <line x1=\"0\" y1=\"23\" x2=\"120\" y2=\"23\" />\n",
-       "  <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" />\n",
-       "  <line x1=\"0\" y1=\"27\" x2=\"120\" y2=\"27\" />\n",
-       "  <line x1=\"0\" y1=\"29\" x2=\"120\" y2=\"29\" />\n",
-       "  <line x1=\"0\" y1=\"31\" x2=\"120\" y2=\"31\" />\n",
-       "  <line x1=\"0\" y1=\"33\" x2=\"120\" y2=\"33\" />\n",
-       "  <line x1=\"0\" y1=\"35\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"35\" />\n",
-       "  <line x1=\"60\" y1=\"0\" x2=\"60\" y2=\"35\" />\n",
-       "  <line x1=\"90\" y1=\"0\" x2=\"90\" y2=\"35\" />\n",
-       "  <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"0.0,0.0 120.0,0.0 120.0,35.164509745010875 0.0,35.164509745010875\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"60.000000\" y=\"55.164510\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >196608</text>\n",
-       "  <text x=\"140.000000\" y=\"17.582255\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,17.582255)\">10958</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>ocean_fraction_depth_full</span></div><div class='xr-var-dims'>(depth_full, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(72, 49152), meta=np.ndarray&gt;</div><input id='attrs-85b4df71-2fa4-427e-8711-8b39c47fbf75' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-85b4df71-2fa4-427e-8711-8b39c47fbf75' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-d770fc84-1a59-44fb-bb56-b93c1215bd13' class='xr-var-data-in' type='checkbox'><label for='data-d770fc84-1a59-44fb-bb56-b93c1215bd13' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>long_name :</span></dt><dd>fraction of cell covered by ocean</dd><dt><span>standard_name :</span></dt><dd>ocean_area_fraction</dd></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table>\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 54.00 MiB </td>\n",
-       "                        <td> 13.50 MiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (72, 196608) </td>\n",
-       "                        <td> (72, 49152) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Count </th>\n",
-       "                        <td> 2 Graph Layers </td>\n",
-       "                        <td> 4 Chunks </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                    <th> Type </th>\n",
-       "                    <td> float32 </td>\n",
-       "                    <td> numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"170\" height=\"75\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"25\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"25\" />\n",
-       "  <line x1=\"60\" y1=\"0\" x2=\"60\" y2=\"25\" />\n",
-       "  <line x1=\"90\" y1=\"0\" x2=\"90\" y2=\"25\" />\n",
-       "  <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"0.0,0.0 120.0,0.0 120.0,25.412616514582485 0.0,25.412616514582485\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"60.000000\" y=\"45.412617\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >196608</text>\n",
-       "  <text x=\"140.000000\" y=\"12.706308\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,140.000000,12.706308)\">72</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>ocean_fraction_depth_half</span></div><div class='xr-var-dims'>(depth_half, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(73, 49152), meta=np.ndarray&gt;</div><input id='attrs-fdadfc43-ab06-44b2-9eb5-04c00b2b9f44' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-fdadfc43-ab06-44b2-9eb5-04c00b2b9f44' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-5d0ad2f8-5947-45ad-9d6d-6c3d5f882f7d' class='xr-var-data-in' type='checkbox'><label for='data-5d0ad2f8-5947-45ad-9d6d-6c3d5f882f7d' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>long_name :</span></dt><dd>fraction of cell covered by ocean</dd><dt><span>standard_name :</span></dt><dd>ocean_area_fraction</dd></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table>\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 54.75 MiB </td>\n",
-       "                        <td> 13.69 MiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (73, 196608) </td>\n",
-       "                        <td> (73, 49152) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Count </th>\n",
-       "                        <td> 2 Graph Layers </td>\n",
-       "                        <td> 4 Chunks </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                    <th> Type </th>\n",
-       "                    <td> float32 </td>\n",
-       "                    <td> numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"170\" height=\"75\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"25\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"25\" />\n",
-       "  <line x1=\"60\" y1=\"0\" x2=\"60\" y2=\"25\" />\n",
-       "  <line x1=\"90\" y1=\"0\" x2=\"90\" y2=\"25\" />\n",
-       "  <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"0.0,0.0 120.0,0.0 120.0,25.412616514582485 0.0,25.412616514582485\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"60.000000\" y=\"45.412617\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >196608</text>\n",
-       "  <text x=\"140.000000\" y=\"12.706308\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,140.000000,12.706308)\">73</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>ocean_fraction_surface</span></div><div class='xr-var-dims'>(cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(196608,), meta=np.ndarray&gt;</div><input id='attrs-4ba52bd8-5149-40ee-bcd5-498cd560adfd' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-4ba52bd8-5149-40ee-bcd5-498cd560adfd' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-af7ba5aa-3627-494d-84f2-a0b63acc0d24' class='xr-var-data-in' type='checkbox'><label for='data-af7ba5aa-3627-494d-84f2-a0b63acc0d24' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>long_name :</span></dt><dd>fraction of cell covered by ocean</dd><dt><span>standard_name :</span></dt><dd>ocean_area_fraction</dd></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table>\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 768.00 kiB </td>\n",
-       "                        <td> 768.00 kiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (196608,) </td>\n",
-       "                        <td> (196608,) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Count </th>\n",
-       "                        <td> 2 Graph Layers </td>\n",
-       "                        <td> 1 Chunks </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                    <th> Type </th>\n",
-       "                    <td> float32 </td>\n",
-       "                    <td> numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"170\" height=\"75\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"25\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"0.0,0.0 120.0,0.0 120.0,25.412616514582485 0.0,25.412616514582485\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"60.000000\" y=\"45.412617\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >196608</text>\n",
-       "  <text x=\"140.000000\" y=\"12.706308\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,140.000000,12.706308)\">1</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>pfull</span></div><div class='xr-var-dims'>(time, level_full, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(7, 9, 49152), meta=np.ndarray&gt;</div><input id='attrs-b25652cf-2206-44dc-886d-4c94d3973dce' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-b25652cf-2206-44dc-886d-4c94d3973dce' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-1e12abfa-6956-4ef7-85d8-7b587abad406' class='xr-var-data-in' type='checkbox'><label for='data-1e12abfa-6956-4ef7-85d8-7b587abad406' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>cell_methods :</span></dt><dd>time: mean cell: mean</dd><dt><span>component :</span></dt><dd>atmo</dd><dt><span>grid_mapping :</span></dt><dd>crs</dd><dt><span>standard_name :</span></dt><dd>air_pressure</dd><dt><span>units :</span></dt><dd>Pa</dd><dt><span>vgrid :</span></dt><dd>reference</dd></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table>\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 722.33 GiB </td>\n",
-       "                        <td> 11.81 MiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (10958, 90, 196608) </td>\n",
-       "                        <td> (7, 9, 49152) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Count </th>\n",
-       "                        <td> 2 Graph Layers </td>\n",
-       "                        <td> 62640 Chunks </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                    <th> Type </th>\n",
-       "                    <td> float32 </td>\n",
-       "                    <td> numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"200\" height=\"96\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"10\" y1=\"0\" x2=\"30\" y2=\"20\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"10\" y1=\"2\" x2=\"30\" y2=\"23\" />\n",
-       "  <line x1=\"10\" y1=\"5\" x2=\"30\" y2=\"25\" />\n",
-       "  <line x1=\"10\" y1=\"7\" x2=\"30\" y2=\"28\" />\n",
-       "  <line x1=\"10\" y1=\"10\" x2=\"30\" y2=\"30\" />\n",
-       "  <line x1=\"10\" y1=\"12\" x2=\"30\" y2=\"33\" />\n",
-       "  <line x1=\"10\" y1=\"15\" x2=\"30\" y2=\"35\" />\n",
-       "  <line x1=\"10\" y1=\"17\" x2=\"30\" y2=\"38\" />\n",
-       "  <line x1=\"10\" y1=\"20\" x2=\"30\" y2=\"41\" />\n",
-       "  <line x1=\"10\" y1=\"22\" x2=\"30\" y2=\"43\" />\n",
-       "  <line x1=\"10\" y1=\"25\" x2=\"30\" y2=\"46\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"25\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"11\" y1=\"1\" x2=\"11\" y2=\"26\" />\n",
-       "  <line x1=\"12\" y1=\"2\" x2=\"12\" y2=\"27\" />\n",
-       "  <line x1=\"13\" y1=\"3\" x2=\"13\" y2=\"28\" />\n",
-       "  <line x1=\"14\" y1=\"4\" x2=\"14\" y2=\"29\" />\n",
-       "  <line x1=\"15\" y1=\"5\" x2=\"15\" y2=\"30\" />\n",
-       "  <line x1=\"16\" y1=\"6\" x2=\"16\" y2=\"31\" />\n",
-       "  <line x1=\"17\" y1=\"7\" x2=\"17\" y2=\"33\" />\n",
-       "  <line x1=\"18\" y1=\"8\" x2=\"18\" y2=\"34\" />\n",
-       "  <line x1=\"19\" y1=\"9\" x2=\"19\" y2=\"35\" />\n",
-       "  <line x1=\"20\" y1=\"10\" x2=\"20\" y2=\"36\" />\n",
-       "  <line x1=\"21\" y1=\"11\" x2=\"21\" y2=\"37\" />\n",
-       "  <line x1=\"23\" y1=\"13\" x2=\"23\" y2=\"38\" />\n",
-       "  <line x1=\"24\" y1=\"14\" x2=\"24\" y2=\"39\" />\n",
-       "  <line x1=\"25\" y1=\"15\" x2=\"25\" y2=\"40\" />\n",
-       "  <line x1=\"26\" y1=\"16\" x2=\"26\" y2=\"41\" />\n",
-       "  <line x1=\"27\" y1=\"17\" x2=\"27\" y2=\"42\" />\n",
-       "  <line x1=\"28\" y1=\"18\" x2=\"28\" y2=\"43\" />\n",
-       "  <line x1=\"29\" y1=\"19\" x2=\"29\" y2=\"45\" />\n",
-       "  <line x1=\"30\" y1=\"20\" x2=\"30\" y2=\"46\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"10.0,0.0 30.68500573235934,20.68500573235934 30.68500573235934,46.097622246941825 10.0,25.41261651458249\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"10\" y1=\"0\" x2=\"130\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"11\" y1=\"1\" x2=\"131\" y2=\"1\" />\n",
-       "  <line x1=\"12\" y1=\"2\" x2=\"132\" y2=\"2\" />\n",
-       "  <line x1=\"13\" y1=\"3\" x2=\"133\" y2=\"3\" />\n",
-       "  <line x1=\"14\" y1=\"4\" x2=\"134\" y2=\"4\" />\n",
-       "  <line x1=\"15\" y1=\"5\" x2=\"135\" y2=\"5\" />\n",
-       "  <line x1=\"16\" y1=\"6\" x2=\"136\" y2=\"6\" />\n",
-       "  <line x1=\"17\" y1=\"7\" x2=\"137\" y2=\"7\" />\n",
-       "  <line x1=\"18\" y1=\"8\" x2=\"138\" y2=\"8\" />\n",
-       "  <line x1=\"19\" y1=\"9\" x2=\"139\" y2=\"9\" />\n",
-       "  <line x1=\"20\" y1=\"10\" x2=\"140\" y2=\"10\" />\n",
-       "  <line x1=\"21\" y1=\"11\" x2=\"141\" y2=\"11\" />\n",
-       "  <line x1=\"23\" y1=\"13\" x2=\"143\" y2=\"13\" />\n",
-       "  <line x1=\"24\" y1=\"14\" x2=\"144\" y2=\"14\" />\n",
-       "  <line x1=\"25\" y1=\"15\" x2=\"145\" y2=\"15\" />\n",
-       "  <line x1=\"26\" y1=\"16\" x2=\"146\" y2=\"16\" />\n",
-       "  <line x1=\"27\" y1=\"17\" x2=\"147\" y2=\"17\" />\n",
-       "  <line x1=\"28\" y1=\"18\" x2=\"148\" y2=\"18\" />\n",
-       "  <line x1=\"29\" y1=\"19\" x2=\"149\" y2=\"19\" />\n",
-       "  <line x1=\"30\" y1=\"20\" x2=\"150\" y2=\"20\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"10\" y1=\"0\" x2=\"30\" y2=\"20\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"40\" y1=\"0\" x2=\"60\" y2=\"20\" />\n",
-       "  <line x1=\"70\" y1=\"0\" x2=\"90\" y2=\"20\" />\n",
-       "  <line x1=\"100\" y1=\"0\" x2=\"120\" y2=\"20\" />\n",
-       "  <line x1=\"130\" y1=\"0\" x2=\"150\" y2=\"20\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"10.0,0.0 130.0,0.0 150.68500573235934,20.68500573235934 30.68500573235934,20.68500573235934\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"30\" y1=\"20\" x2=\"150\" y2=\"20\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"30\" y1=\"23\" x2=\"150\" y2=\"23\" />\n",
-       "  <line x1=\"30\" y1=\"25\" x2=\"150\" y2=\"25\" />\n",
-       "  <line x1=\"30\" y1=\"28\" x2=\"150\" y2=\"28\" />\n",
-       "  <line x1=\"30\" y1=\"30\" x2=\"150\" y2=\"30\" />\n",
-       "  <line x1=\"30\" y1=\"33\" x2=\"150\" y2=\"33\" />\n",
-       "  <line x1=\"30\" y1=\"35\" x2=\"150\" y2=\"35\" />\n",
-       "  <line x1=\"30\" y1=\"38\" x2=\"150\" y2=\"38\" />\n",
-       "  <line x1=\"30\" y1=\"41\" x2=\"150\" y2=\"41\" />\n",
-       "  <line x1=\"30\" y1=\"43\" x2=\"150\" y2=\"43\" />\n",
-       "  <line x1=\"30\" y1=\"46\" x2=\"150\" y2=\"46\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"30\" y1=\"20\" x2=\"30\" y2=\"46\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"60\" y1=\"20\" x2=\"60\" y2=\"46\" />\n",
-       "  <line x1=\"90\" y1=\"20\" x2=\"90\" y2=\"46\" />\n",
-       "  <line x1=\"120\" y1=\"20\" x2=\"120\" y2=\"46\" />\n",
-       "  <line x1=\"150\" y1=\"20\" x2=\"150\" y2=\"46\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"30.68500573235934,20.68500573235934 150.68500573235934,20.68500573235934 150.68500573235934,46.097622246941825 30.68500573235934,46.097622246941825\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"90.685006\" y=\"66.097622\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >196608</text>\n",
-       "  <text x=\"170.685006\" y=\"33.391314\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,170.685006,33.391314)\">90</text>\n",
-       "  <text x=\"10.342503\" y=\"55.755119\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,10.342503,55.755119)\">10958</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>phalf</span></div><div class='xr-var-dims'>(time, level_half, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(7, 13, 49152), meta=np.ndarray&gt;</div><input id='attrs-32c291c5-2822-4be1-b10e-40801f62c5c7' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-32c291c5-2822-4be1-b10e-40801f62c5c7' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-38f258dd-bd51-4b7f-837e-669412d33420' class='xr-var-data-in' type='checkbox'><label for='data-38f258dd-bd51-4b7f-837e-669412d33420' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>cell_methods :</span></dt><dd>time: mean cell: mean</dd><dt><span>component :</span></dt><dd>atmo</dd><dt><span>grid_mapping :</span></dt><dd>crs</dd><dt><span>standard_name :</span></dt><dd>air_pressure</dd><dt><span>units :</span></dt><dd>Pa</dd><dt><span>vgrid :</span></dt><dd>reference_half</dd></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table>\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 730.35 GiB </td>\n",
-       "                        <td> 17.06 MiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (10958, 91, 196608) </td>\n",
-       "                        <td> (7, 13, 49152) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Count </th>\n",
-       "                        <td> 2 Graph Layers </td>\n",
-       "                        <td> 43848 Chunks </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                    <th> Type </th>\n",
-       "                    <td> float32 </td>\n",
-       "                    <td> numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"200\" height=\"96\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"10\" y1=\"0\" x2=\"30\" y2=\"20\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"10\" y1=\"3\" x2=\"30\" y2=\"24\" />\n",
-       "  <line x1=\"10\" y1=\"7\" x2=\"30\" y2=\"27\" />\n",
-       "  <line x1=\"10\" y1=\"10\" x2=\"30\" y2=\"31\" />\n",
-       "  <line x1=\"10\" y1=\"14\" x2=\"30\" y2=\"35\" />\n",
-       "  <line x1=\"10\" y1=\"18\" x2=\"30\" y2=\"38\" />\n",
-       "  <line x1=\"10\" y1=\"21\" x2=\"30\" y2=\"42\" />\n",
-       "  <line x1=\"10\" y1=\"25\" x2=\"30\" y2=\"46\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"25\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"11\" y1=\"1\" x2=\"11\" y2=\"26\" />\n",
-       "  <line x1=\"12\" y1=\"2\" x2=\"12\" y2=\"27\" />\n",
-       "  <line x1=\"13\" y1=\"3\" x2=\"13\" y2=\"28\" />\n",
-       "  <line x1=\"14\" y1=\"4\" x2=\"14\" y2=\"29\" />\n",
-       "  <line x1=\"15\" y1=\"5\" x2=\"15\" y2=\"30\" />\n",
-       "  <line x1=\"16\" y1=\"6\" x2=\"16\" y2=\"31\" />\n",
-       "  <line x1=\"17\" y1=\"7\" x2=\"17\" y2=\"33\" />\n",
-       "  <line x1=\"18\" y1=\"8\" x2=\"18\" y2=\"34\" />\n",
-       "  <line x1=\"19\" y1=\"9\" x2=\"19\" y2=\"35\" />\n",
-       "  <line x1=\"20\" y1=\"10\" x2=\"20\" y2=\"36\" />\n",
-       "  <line x1=\"21\" y1=\"11\" x2=\"21\" y2=\"37\" />\n",
-       "  <line x1=\"23\" y1=\"13\" x2=\"23\" y2=\"38\" />\n",
-       "  <line x1=\"24\" y1=\"14\" x2=\"24\" y2=\"39\" />\n",
-       "  <line x1=\"25\" y1=\"15\" x2=\"25\" y2=\"40\" />\n",
-       "  <line x1=\"26\" y1=\"16\" x2=\"26\" y2=\"41\" />\n",
-       "  <line x1=\"27\" y1=\"17\" x2=\"27\" y2=\"42\" />\n",
-       "  <line x1=\"28\" y1=\"18\" x2=\"28\" y2=\"43\" />\n",
-       "  <line x1=\"29\" y1=\"19\" x2=\"29\" y2=\"45\" />\n",
-       "  <line x1=\"30\" y1=\"20\" x2=\"30\" y2=\"46\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"10.0,0.0 30.68500573235934,20.68500573235934 30.68500573235934,46.097622246941825 10.0,25.412616514582485\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"10\" y1=\"0\" x2=\"130\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"11\" y1=\"1\" x2=\"131\" y2=\"1\" />\n",
-       "  <line x1=\"12\" y1=\"2\" x2=\"132\" y2=\"2\" />\n",
-       "  <line x1=\"13\" y1=\"3\" x2=\"133\" y2=\"3\" />\n",
-       "  <line x1=\"14\" y1=\"4\" x2=\"134\" y2=\"4\" />\n",
-       "  <line x1=\"15\" y1=\"5\" x2=\"135\" y2=\"5\" />\n",
-       "  <line x1=\"16\" y1=\"6\" x2=\"136\" y2=\"6\" />\n",
-       "  <line x1=\"17\" y1=\"7\" x2=\"137\" y2=\"7\" />\n",
-       "  <line x1=\"18\" y1=\"8\" x2=\"138\" y2=\"8\" />\n",
-       "  <line x1=\"19\" y1=\"9\" x2=\"139\" y2=\"9\" />\n",
-       "  <line x1=\"20\" y1=\"10\" x2=\"140\" y2=\"10\" />\n",
-       "  <line x1=\"21\" y1=\"11\" x2=\"141\" y2=\"11\" />\n",
-       "  <line x1=\"23\" y1=\"13\" x2=\"143\" y2=\"13\" />\n",
-       "  <line x1=\"24\" y1=\"14\" x2=\"144\" y2=\"14\" />\n",
-       "  <line x1=\"25\" y1=\"15\" x2=\"145\" y2=\"15\" />\n",
-       "  <line x1=\"26\" y1=\"16\" x2=\"146\" y2=\"16\" />\n",
-       "  <line x1=\"27\" y1=\"17\" x2=\"147\" y2=\"17\" />\n",
-       "  <line x1=\"28\" y1=\"18\" x2=\"148\" y2=\"18\" />\n",
-       "  <line x1=\"29\" y1=\"19\" x2=\"149\" y2=\"19\" />\n",
-       "  <line x1=\"30\" y1=\"20\" x2=\"150\" y2=\"20\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"10\" y1=\"0\" x2=\"30\" y2=\"20\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"40\" y1=\"0\" x2=\"60\" y2=\"20\" />\n",
-       "  <line x1=\"70\" y1=\"0\" x2=\"90\" y2=\"20\" />\n",
-       "  <line x1=\"100\" y1=\"0\" x2=\"120\" y2=\"20\" />\n",
-       "  <line x1=\"130\" y1=\"0\" x2=\"150\" y2=\"20\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"10.0,0.0 130.0,0.0 150.68500573235934,20.68500573235934 30.68500573235934,20.68500573235934\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"30\" y1=\"20\" x2=\"150\" y2=\"20\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"30\" y1=\"24\" x2=\"150\" y2=\"24\" />\n",
-       "  <line x1=\"30\" y1=\"27\" x2=\"150\" y2=\"27\" />\n",
-       "  <line x1=\"30\" y1=\"31\" x2=\"150\" y2=\"31\" />\n",
-       "  <line x1=\"30\" y1=\"35\" x2=\"150\" y2=\"35\" />\n",
-       "  <line x1=\"30\" y1=\"38\" x2=\"150\" y2=\"38\" />\n",
-       "  <line x1=\"30\" y1=\"42\" x2=\"150\" y2=\"42\" />\n",
-       "  <line x1=\"30\" y1=\"46\" x2=\"150\" y2=\"46\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"30\" y1=\"20\" x2=\"30\" y2=\"46\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"60\" y1=\"20\" x2=\"60\" y2=\"46\" />\n",
-       "  <line x1=\"90\" y1=\"20\" x2=\"90\" y2=\"46\" />\n",
-       "  <line x1=\"120\" y1=\"20\" x2=\"120\" y2=\"46\" />\n",
-       "  <line x1=\"150\" y1=\"20\" x2=\"150\" y2=\"46\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"30.68500573235934,20.68500573235934 150.68500573235934,20.68500573235934 150.68500573235934,46.097622246941825 30.68500573235934,46.097622246941825\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"90.685006\" y=\"66.097622\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >196608</text>\n",
-       "  <text x=\"170.685006\" y=\"33.391314\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,170.685006,33.391314)\">91</text>\n",
-       "  <text x=\"10.342503\" y=\"55.755119\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,10.342503,55.755119)\">10958</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>pr</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(90, 49152), meta=np.ndarray&gt;</div><input id='attrs-c3fbacec-a77a-44b2-96a5-5b7606b043dd' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-c3fbacec-a77a-44b2-96a5-5b7606b043dd' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-e267aae1-55bf-41bb-b3ba-0532b1288dc1' class='xr-var-data-in' type='checkbox'><label for='data-e267aae1-55bf-41bb-b3ba-0532b1288dc1' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>cell_methods :</span></dt><dd>time: mean cell: mean</dd><dt><span>component :</span></dt><dd>atmo</dd><dt><span>grid_mapping :</span></dt><dd>crs</dd><dt><span>long_name :</span></dt><dd>precipitation flux</dd><dt><span>units :</span></dt><dd>kg m-2 s-1</dd><dt><span>vgrid :</span></dt><dd>surface</dd></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table>\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 8.03 GiB </td>\n",
-       "                        <td> 16.88 MiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (10958, 196608) </td>\n",
-       "                        <td> (90, 49152) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Count </th>\n",
-       "                        <td> 2 Graph Layers </td>\n",
-       "                        <td> 488 Chunks </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                    <th> Type </th>\n",
-       "                    <td> float32 </td>\n",
-       "                    <td> numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"170\" height=\"85\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n",
-       "  <line x1=\"0\" y1=\"3\" x2=\"120\" y2=\"3\" />\n",
-       "  <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n",
-       "  <line x1=\"0\" y1=\"7\" x2=\"120\" y2=\"7\" />\n",
-       "  <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n",
-       "  <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n",
-       "  <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n",
-       "  <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n",
-       "  <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n",
-       "  <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n",
-       "  <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n",
-       "  <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n",
-       "  <line x1=\"0\" y1=\"23\" x2=\"120\" y2=\"23\" />\n",
-       "  <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" />\n",
-       "  <line x1=\"0\" y1=\"27\" x2=\"120\" y2=\"27\" />\n",
-       "  <line x1=\"0\" y1=\"29\" x2=\"120\" y2=\"29\" />\n",
-       "  <line x1=\"0\" y1=\"31\" x2=\"120\" y2=\"31\" />\n",
-       "  <line x1=\"0\" y1=\"33\" x2=\"120\" y2=\"33\" />\n",
-       "  <line x1=\"0\" y1=\"35\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"35\" />\n",
-       "  <line x1=\"60\" y1=\"0\" x2=\"60\" y2=\"35\" />\n",
-       "  <line x1=\"90\" y1=\"0\" x2=\"90\" y2=\"35\" />\n",
-       "  <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"0.0,0.0 120.0,0.0 120.0,35.164509745010875 0.0,35.164509745010875\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"60.000000\" y=\"55.164510\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >196608</text>\n",
-       "  <text x=\"140.000000\" y=\"17.582255\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,17.582255)\">10958</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>pres_msl</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(90, 49152), meta=np.ndarray&gt;</div><input id='attrs-f7a74c47-60e0-4e19-b488-0cac3812bbe7' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-f7a74c47-60e0-4e19-b488-0cac3812bbe7' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-3ad6e55b-11e7-4c62-b5ab-639ad145ddfc' class='xr-var-data-in' type='checkbox'><label for='data-3ad6e55b-11e7-4c62-b5ab-639ad145ddfc' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>cell_methods :</span></dt><dd>time: mean cell: mean</dd><dt><span>component :</span></dt><dd>atmo</dd><dt><span>grid_mapping :</span></dt><dd>crs</dd><dt><span>long_name :</span></dt><dd>mean sea level pressure</dd><dt><span>units :</span></dt><dd>Pa</dd><dt><span>vgrid :</span></dt><dd>meansea</dd></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table>\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 8.03 GiB </td>\n",
-       "                        <td> 16.88 MiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (10958, 196608) </td>\n",
-       "                        <td> (90, 49152) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Count </th>\n",
-       "                        <td> 2 Graph Layers </td>\n",
-       "                        <td> 488 Chunks </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                    <th> Type </th>\n",
-       "                    <td> float32 </td>\n",
-       "                    <td> numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"170\" height=\"85\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n",
-       "  <line x1=\"0\" y1=\"3\" x2=\"120\" y2=\"3\" />\n",
-       "  <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n",
-       "  <line x1=\"0\" y1=\"7\" x2=\"120\" y2=\"7\" />\n",
-       "  <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n",
-       "  <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n",
-       "  <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n",
-       "  <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n",
-       "  <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n",
-       "  <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n",
-       "  <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n",
-       "  <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n",
-       "  <line x1=\"0\" y1=\"23\" x2=\"120\" y2=\"23\" />\n",
-       "  <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" />\n",
-       "  <line x1=\"0\" y1=\"27\" x2=\"120\" y2=\"27\" />\n",
-       "  <line x1=\"0\" y1=\"29\" x2=\"120\" y2=\"29\" />\n",
-       "  <line x1=\"0\" y1=\"31\" x2=\"120\" y2=\"31\" />\n",
-       "  <line x1=\"0\" y1=\"33\" x2=\"120\" y2=\"33\" />\n",
-       "  <line x1=\"0\" y1=\"35\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"35\" />\n",
-       "  <line x1=\"60\" y1=\"0\" x2=\"60\" y2=\"35\" />\n",
-       "  <line x1=\"90\" y1=\"0\" x2=\"90\" y2=\"35\" />\n",
-       "  <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"0.0,0.0 120.0,0.0 120.0,35.164509745010875 0.0,35.164509745010875\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"60.000000\" y=\"55.164510\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >196608</text>\n",
-       "  <text x=\"140.000000\" y=\"17.582255\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,17.582255)\">10958</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>pres_sfc</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(90, 49152), meta=np.ndarray&gt;</div><input id='attrs-75e3a12f-ec34-43be-9928-629a879e8ad9' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-75e3a12f-ec34-43be-9928-629a879e8ad9' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-31526b9f-da3c-4877-8477-a026ba723440' class='xr-var-data-in' type='checkbox'><label for='data-31526b9f-da3c-4877-8477-a026ba723440' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>cell_methods :</span></dt><dd>time: mean cell: mean</dd><dt><span>component :</span></dt><dd>atmo</dd><dt><span>grid_mapping :</span></dt><dd>crs</dd><dt><span>long_name :</span></dt><dd>surface pressure</dd><dt><span>standard_name :</span></dt><dd>surface_air_pressure</dd><dt><span>units :</span></dt><dd>Pa</dd><dt><span>vgrid :</span></dt><dd>surface</dd></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table>\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 8.03 GiB </td>\n",
-       "                        <td> 16.88 MiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (10958, 196608) </td>\n",
-       "                        <td> (90, 49152) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Count </th>\n",
-       "                        <td> 2 Graph Layers </td>\n",
-       "                        <td> 488 Chunks </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                    <th> Type </th>\n",
-       "                    <td> float32 </td>\n",
-       "                    <td> numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"170\" height=\"85\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n",
-       "  <line x1=\"0\" y1=\"3\" x2=\"120\" y2=\"3\" />\n",
-       "  <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n",
-       "  <line x1=\"0\" y1=\"7\" x2=\"120\" y2=\"7\" />\n",
-       "  <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n",
-       "  <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n",
-       "  <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n",
-       "  <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n",
-       "  <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n",
-       "  <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n",
-       "  <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n",
-       "  <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n",
-       "  <line x1=\"0\" y1=\"23\" x2=\"120\" y2=\"23\" />\n",
-       "  <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" />\n",
-       "  <line x1=\"0\" y1=\"27\" x2=\"120\" y2=\"27\" />\n",
-       "  <line x1=\"0\" y1=\"29\" x2=\"120\" y2=\"29\" />\n",
-       "  <line x1=\"0\" y1=\"31\" x2=\"120\" y2=\"31\" />\n",
-       "  <line x1=\"0\" y1=\"33\" x2=\"120\" y2=\"33\" />\n",
-       "  <line x1=\"0\" y1=\"35\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"35\" />\n",
-       "  <line x1=\"60\" y1=\"0\" x2=\"60\" y2=\"35\" />\n",
-       "  <line x1=\"90\" y1=\"0\" x2=\"90\" y2=\"35\" />\n",
-       "  <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"0.0,0.0 120.0,0.0 120.0,35.164509745010875 0.0,35.164509745010875\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"60.000000\" y=\"55.164510\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >196608</text>\n",
-       "  <text x=\"140.000000\" y=\"17.582255\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,17.582255)\">10958</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>prls</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(90, 49152), meta=np.ndarray&gt;</div><input id='attrs-80c038d9-e81a-4784-b5e1-cba00fe2aa0e' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-80c038d9-e81a-4784-b5e1-cba00fe2aa0e' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-41d1cb0e-74e0-42d1-b7bb-9f399f63c0d9' class='xr-var-data-in' type='checkbox'><label for='data-41d1cb0e-74e0-42d1-b7bb-9f399f63c0d9' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>cell_methods :</span></dt><dd>time: mean cell: mean</dd><dt><span>component :</span></dt><dd>atmo</dd><dt><span>grid_mapping :</span></dt><dd>crs</dd><dt><span>vgrid :</span></dt><dd>surface</dd></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table>\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 8.03 GiB </td>\n",
-       "                        <td> 16.88 MiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (10958, 196608) </td>\n",
-       "                        <td> (90, 49152) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Count </th>\n",
-       "                        <td> 2 Graph Layers </td>\n",
-       "                        <td> 488 Chunks </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                    <th> Type </th>\n",
-       "                    <td> float32 </td>\n",
-       "                    <td> numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"170\" height=\"85\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n",
-       "  <line x1=\"0\" y1=\"3\" x2=\"120\" y2=\"3\" />\n",
-       "  <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n",
-       "  <line x1=\"0\" y1=\"7\" x2=\"120\" y2=\"7\" />\n",
-       "  <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n",
-       "  <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n",
-       "  <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n",
-       "  <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n",
-       "  <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n",
-       "  <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n",
-       "  <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n",
-       "  <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n",
-       "  <line x1=\"0\" y1=\"23\" x2=\"120\" y2=\"23\" />\n",
-       "  <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" />\n",
-       "  <line x1=\"0\" y1=\"27\" x2=\"120\" y2=\"27\" />\n",
-       "  <line x1=\"0\" y1=\"29\" x2=\"120\" y2=\"29\" />\n",
-       "  <line x1=\"0\" y1=\"31\" x2=\"120\" y2=\"31\" />\n",
-       "  <line x1=\"0\" y1=\"33\" x2=\"120\" y2=\"33\" />\n",
-       "  <line x1=\"0\" y1=\"35\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"35\" />\n",
-       "  <line x1=\"60\" y1=\"0\" x2=\"60\" y2=\"35\" />\n",
-       "  <line x1=\"90\" y1=\"0\" x2=\"90\" y2=\"35\" />\n",
-       "  <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"0.0,0.0 120.0,0.0 120.0,35.164509745010875 0.0,35.164509745010875\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"60.000000\" y=\"55.164510\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >196608</text>\n",
-       "  <text x=\"140.000000\" y=\"17.582255\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,17.582255)\">10958</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>prw</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(90, 49152), meta=np.ndarray&gt;</div><input id='attrs-b012cb03-5d3b-4bc1-a3e7-f1dea824d124' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-b012cb03-5d3b-4bc1-a3e7-f1dea824d124' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-0e6624c9-88e4-406a-a644-1bfb377f1bd8' class='xr-var-data-in' type='checkbox'><label for='data-0e6624c9-88e4-406a-a644-1bfb377f1bd8' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>cell_methods :</span></dt><dd>time: mean cell: mean</dd><dt><span>component :</span></dt><dd>atmo</dd><dt><span>grid_mapping :</span></dt><dd>crs</dd><dt><span>long_name :</span></dt><dd>vertically integrated water vapour</dd><dt><span>units :</span></dt><dd>kg m-2</dd><dt><span>vgrid :</span></dt><dd>atmosphere</dd></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table>\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 8.03 GiB </td>\n",
-       "                        <td> 16.88 MiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (10958, 196608) </td>\n",
-       "                        <td> (90, 49152) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Count </th>\n",
-       "                        <td> 2 Graph Layers </td>\n",
-       "                        <td> 488 Chunks </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                    <th> Type </th>\n",
-       "                    <td> float32 </td>\n",
-       "                    <td> numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"170\" height=\"85\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n",
-       "  <line x1=\"0\" y1=\"3\" x2=\"120\" y2=\"3\" />\n",
-       "  <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n",
-       "  <line x1=\"0\" y1=\"7\" x2=\"120\" y2=\"7\" />\n",
-       "  <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n",
-       "  <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n",
-       "  <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n",
-       "  <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n",
-       "  <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n",
-       "  <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n",
-       "  <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n",
-       "  <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n",
-       "  <line x1=\"0\" y1=\"23\" x2=\"120\" y2=\"23\" />\n",
-       "  <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" />\n",
-       "  <line x1=\"0\" y1=\"27\" x2=\"120\" y2=\"27\" />\n",
-       "  <line x1=\"0\" y1=\"29\" x2=\"120\" y2=\"29\" />\n",
-       "  <line x1=\"0\" y1=\"31\" x2=\"120\" y2=\"31\" />\n",
-       "  <line x1=\"0\" y1=\"33\" x2=\"120\" y2=\"33\" />\n",
-       "  <line x1=\"0\" y1=\"35\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"35\" />\n",
-       "  <line x1=\"60\" y1=\"0\" x2=\"60\" y2=\"35\" />\n",
-       "  <line x1=\"90\" y1=\"0\" x2=\"90\" y2=\"35\" />\n",
-       "  <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"0.0,0.0 120.0,0.0 120.0,35.164509745010875 0.0,35.164509745010875\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"60.000000\" y=\"55.164510\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >196608</text>\n",
-       "  <text x=\"140.000000\" y=\"17.582255\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,17.582255)\">10958</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>qg</span></div><div class='xr-var-dims'>(time, level_full, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(7, 9, 49152), meta=np.ndarray&gt;</div><input id='attrs-dc5e32da-6835-4af3-a460-92685a246204' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-dc5e32da-6835-4af3-a460-92685a246204' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-a22ec119-0b27-4ed2-ac0b-06107f35e72b' class='xr-var-data-in' type='checkbox'><label for='data-a22ec119-0b27-4ed2-ac0b-06107f35e72b' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>cell_methods :</span></dt><dd>time: mean cell: mean</dd><dt><span>component :</span></dt><dd>atmo</dd><dt><span>grid_mapping :</span></dt><dd>crs</dd><dt><span>long_name :</span></dt><dd>specific graupel content</dd><dt><span>units :</span></dt><dd>kg kg-1</dd><dt><span>vgrid :</span></dt><dd>reference</dd></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table>\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 722.33 GiB </td>\n",
-       "                        <td> 11.81 MiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (10958, 90, 196608) </td>\n",
-       "                        <td> (7, 9, 49152) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Count </th>\n",
-       "                        <td> 2 Graph Layers </td>\n",
-       "                        <td> 62640 Chunks </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                    <th> Type </th>\n",
-       "                    <td> float32 </td>\n",
-       "                    <td> numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"200\" height=\"96\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"10\" y1=\"0\" x2=\"30\" y2=\"20\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"10\" y1=\"2\" x2=\"30\" y2=\"23\" />\n",
-       "  <line x1=\"10\" y1=\"5\" x2=\"30\" y2=\"25\" />\n",
-       "  <line x1=\"10\" y1=\"7\" x2=\"30\" y2=\"28\" />\n",
-       "  <line x1=\"10\" y1=\"10\" x2=\"30\" y2=\"30\" />\n",
-       "  <line x1=\"10\" y1=\"12\" x2=\"30\" y2=\"33\" />\n",
-       "  <line x1=\"10\" y1=\"15\" x2=\"30\" y2=\"35\" />\n",
-       "  <line x1=\"10\" y1=\"17\" x2=\"30\" y2=\"38\" />\n",
-       "  <line x1=\"10\" y1=\"20\" x2=\"30\" y2=\"41\" />\n",
-       "  <line x1=\"10\" y1=\"22\" x2=\"30\" y2=\"43\" />\n",
-       "  <line x1=\"10\" y1=\"25\" x2=\"30\" y2=\"46\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"25\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"11\" y1=\"1\" x2=\"11\" y2=\"26\" />\n",
-       "  <line x1=\"12\" y1=\"2\" x2=\"12\" y2=\"27\" />\n",
-       "  <line x1=\"13\" y1=\"3\" x2=\"13\" y2=\"28\" />\n",
-       "  <line x1=\"14\" y1=\"4\" x2=\"14\" y2=\"29\" />\n",
-       "  <line x1=\"15\" y1=\"5\" x2=\"15\" y2=\"30\" />\n",
-       "  <line x1=\"16\" y1=\"6\" x2=\"16\" y2=\"31\" />\n",
-       "  <line x1=\"17\" y1=\"7\" x2=\"17\" y2=\"33\" />\n",
-       "  <line x1=\"18\" y1=\"8\" x2=\"18\" y2=\"34\" />\n",
-       "  <line x1=\"19\" y1=\"9\" x2=\"19\" y2=\"35\" />\n",
-       "  <line x1=\"20\" y1=\"10\" x2=\"20\" y2=\"36\" />\n",
-       "  <line x1=\"21\" y1=\"11\" x2=\"21\" y2=\"37\" />\n",
-       "  <line x1=\"23\" y1=\"13\" x2=\"23\" y2=\"38\" />\n",
-       "  <line x1=\"24\" y1=\"14\" x2=\"24\" y2=\"39\" />\n",
-       "  <line x1=\"25\" y1=\"15\" x2=\"25\" y2=\"40\" />\n",
-       "  <line x1=\"26\" y1=\"16\" x2=\"26\" y2=\"41\" />\n",
-       "  <line x1=\"27\" y1=\"17\" x2=\"27\" y2=\"42\" />\n",
-       "  <line x1=\"28\" y1=\"18\" x2=\"28\" y2=\"43\" />\n",
-       "  <line x1=\"29\" y1=\"19\" x2=\"29\" y2=\"45\" />\n",
-       "  <line x1=\"30\" y1=\"20\" x2=\"30\" y2=\"46\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"10.0,0.0 30.68500573235934,20.68500573235934 30.68500573235934,46.097622246941825 10.0,25.41261651458249\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"10\" y1=\"0\" x2=\"130\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"11\" y1=\"1\" x2=\"131\" y2=\"1\" />\n",
-       "  <line x1=\"12\" y1=\"2\" x2=\"132\" y2=\"2\" />\n",
-       "  <line x1=\"13\" y1=\"3\" x2=\"133\" y2=\"3\" />\n",
-       "  <line x1=\"14\" y1=\"4\" x2=\"134\" y2=\"4\" />\n",
-       "  <line x1=\"15\" y1=\"5\" x2=\"135\" y2=\"5\" />\n",
-       "  <line x1=\"16\" y1=\"6\" x2=\"136\" y2=\"6\" />\n",
-       "  <line x1=\"17\" y1=\"7\" x2=\"137\" y2=\"7\" />\n",
-       "  <line x1=\"18\" y1=\"8\" x2=\"138\" y2=\"8\" />\n",
-       "  <line x1=\"19\" y1=\"9\" x2=\"139\" y2=\"9\" />\n",
-       "  <line x1=\"20\" y1=\"10\" x2=\"140\" y2=\"10\" />\n",
-       "  <line x1=\"21\" y1=\"11\" x2=\"141\" y2=\"11\" />\n",
-       "  <line x1=\"23\" y1=\"13\" x2=\"143\" y2=\"13\" />\n",
-       "  <line x1=\"24\" y1=\"14\" x2=\"144\" y2=\"14\" />\n",
-       "  <line x1=\"25\" y1=\"15\" x2=\"145\" y2=\"15\" />\n",
-       "  <line x1=\"26\" y1=\"16\" x2=\"146\" y2=\"16\" />\n",
-       "  <line x1=\"27\" y1=\"17\" x2=\"147\" y2=\"17\" />\n",
-       "  <line x1=\"28\" y1=\"18\" x2=\"148\" y2=\"18\" />\n",
-       "  <line x1=\"29\" y1=\"19\" x2=\"149\" y2=\"19\" />\n",
-       "  <line x1=\"30\" y1=\"20\" x2=\"150\" y2=\"20\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"10\" y1=\"0\" x2=\"30\" y2=\"20\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"40\" y1=\"0\" x2=\"60\" y2=\"20\" />\n",
-       "  <line x1=\"70\" y1=\"0\" x2=\"90\" y2=\"20\" />\n",
-       "  <line x1=\"100\" y1=\"0\" x2=\"120\" y2=\"20\" />\n",
-       "  <line x1=\"130\" y1=\"0\" x2=\"150\" y2=\"20\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"10.0,0.0 130.0,0.0 150.68500573235934,20.68500573235934 30.68500573235934,20.68500573235934\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"30\" y1=\"20\" x2=\"150\" y2=\"20\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"30\" y1=\"23\" x2=\"150\" y2=\"23\" />\n",
-       "  <line x1=\"30\" y1=\"25\" x2=\"150\" y2=\"25\" />\n",
-       "  <line x1=\"30\" y1=\"28\" x2=\"150\" y2=\"28\" />\n",
-       "  <line x1=\"30\" y1=\"30\" x2=\"150\" y2=\"30\" />\n",
-       "  <line x1=\"30\" y1=\"33\" x2=\"150\" y2=\"33\" />\n",
-       "  <line x1=\"30\" y1=\"35\" x2=\"150\" y2=\"35\" />\n",
-       "  <line x1=\"30\" y1=\"38\" x2=\"150\" y2=\"38\" />\n",
-       "  <line x1=\"30\" y1=\"41\" x2=\"150\" y2=\"41\" />\n",
-       "  <line x1=\"30\" y1=\"43\" x2=\"150\" y2=\"43\" />\n",
-       "  <line x1=\"30\" y1=\"46\" x2=\"150\" y2=\"46\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"30\" y1=\"20\" x2=\"30\" y2=\"46\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"60\" y1=\"20\" x2=\"60\" y2=\"46\" />\n",
-       "  <line x1=\"90\" y1=\"20\" x2=\"90\" y2=\"46\" />\n",
-       "  <line x1=\"120\" y1=\"20\" x2=\"120\" y2=\"46\" />\n",
-       "  <line x1=\"150\" y1=\"20\" x2=\"150\" y2=\"46\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"30.68500573235934,20.68500573235934 150.68500573235934,20.68500573235934 150.68500573235934,46.097622246941825 30.68500573235934,46.097622246941825\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"90.685006\" y=\"66.097622\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >196608</text>\n",
-       "  <text x=\"170.685006\" y=\"33.391314\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,170.685006,33.391314)\">90</text>\n",
-       "  <text x=\"10.342503\" y=\"55.755119\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,10.342503,55.755119)\">10958</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>qgvi</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(90, 49152), meta=np.ndarray&gt;</div><input id='attrs-012fc8ef-be06-4583-94cf-ddae546daa87' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-012fc8ef-be06-4583-94cf-ddae546daa87' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-0c842eef-4159-4fe8-951e-330a5bc1b36a' class='xr-var-data-in' type='checkbox'><label for='data-0c842eef-4159-4fe8-951e-330a5bc1b36a' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>cell_methods :</span></dt><dd>time: mean cell: mean</dd><dt><span>component :</span></dt><dd>atmo</dd><dt><span>grid_mapping :</span></dt><dd>crs</dd><dt><span>long_name :</span></dt><dd>vertically integrated graupel</dd><dt><span>units :</span></dt><dd>kg m-2</dd><dt><span>vgrid :</span></dt><dd>atmosphere</dd></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table>\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 8.03 GiB </td>\n",
-       "                        <td> 16.88 MiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (10958, 196608) </td>\n",
-       "                        <td> (90, 49152) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Count </th>\n",
-       "                        <td> 2 Graph Layers </td>\n",
-       "                        <td> 488 Chunks </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                    <th> Type </th>\n",
-       "                    <td> float32 </td>\n",
-       "                    <td> numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"170\" height=\"85\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n",
-       "  <line x1=\"0\" y1=\"3\" x2=\"120\" y2=\"3\" />\n",
-       "  <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n",
-       "  <line x1=\"0\" y1=\"7\" x2=\"120\" y2=\"7\" />\n",
-       "  <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n",
-       "  <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n",
-       "  <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n",
-       "  <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n",
-       "  <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n",
-       "  <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n",
-       "  <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n",
-       "  <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n",
-       "  <line x1=\"0\" y1=\"23\" x2=\"120\" y2=\"23\" />\n",
-       "  <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" />\n",
-       "  <line x1=\"0\" y1=\"27\" x2=\"120\" y2=\"27\" />\n",
-       "  <line x1=\"0\" y1=\"29\" x2=\"120\" y2=\"29\" />\n",
-       "  <line x1=\"0\" y1=\"31\" x2=\"120\" y2=\"31\" />\n",
-       "  <line x1=\"0\" y1=\"33\" x2=\"120\" y2=\"33\" />\n",
-       "  <line x1=\"0\" y1=\"35\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"35\" />\n",
-       "  <line x1=\"60\" y1=\"0\" x2=\"60\" y2=\"35\" />\n",
-       "  <line x1=\"90\" y1=\"0\" x2=\"90\" y2=\"35\" />\n",
-       "  <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"0.0,0.0 120.0,0.0 120.0,35.164509745010875 0.0,35.164509745010875\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"60.000000\" y=\"55.164510\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >196608</text>\n",
-       "  <text x=\"140.000000\" y=\"17.582255\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,17.582255)\">10958</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>qr</span></div><div class='xr-var-dims'>(time, level_full, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(7, 9, 49152), meta=np.ndarray&gt;</div><input id='attrs-c19e7d03-5edd-492e-9294-032db6ce7a8e' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-c19e7d03-5edd-492e-9294-032db6ce7a8e' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-2c0be701-49e0-4858-8ab1-421c037b7dd8' class='xr-var-data-in' type='checkbox'><label for='data-2c0be701-49e0-4858-8ab1-421c037b7dd8' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>cell_methods :</span></dt><dd>time: mean cell: mean</dd><dt><span>component :</span></dt><dd>atmo</dd><dt><span>grid_mapping :</span></dt><dd>crs</dd><dt><span>long_name :</span></dt><dd>specific rain content</dd><dt><span>units :</span></dt><dd>kg kg-1</dd><dt><span>vgrid :</span></dt><dd>reference</dd></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table>\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 722.33 GiB </td>\n",
-       "                        <td> 11.81 MiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (10958, 90, 196608) </td>\n",
-       "                        <td> (7, 9, 49152) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Count </th>\n",
-       "                        <td> 2 Graph Layers </td>\n",
-       "                        <td> 62640 Chunks </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                    <th> Type </th>\n",
-       "                    <td> float32 </td>\n",
-       "                    <td> numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"200\" height=\"96\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"10\" y1=\"0\" x2=\"30\" y2=\"20\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"10\" y1=\"2\" x2=\"30\" y2=\"23\" />\n",
-       "  <line x1=\"10\" y1=\"5\" x2=\"30\" y2=\"25\" />\n",
-       "  <line x1=\"10\" y1=\"7\" x2=\"30\" y2=\"28\" />\n",
-       "  <line x1=\"10\" y1=\"10\" x2=\"30\" y2=\"30\" />\n",
-       "  <line x1=\"10\" y1=\"12\" x2=\"30\" y2=\"33\" />\n",
-       "  <line x1=\"10\" y1=\"15\" x2=\"30\" y2=\"35\" />\n",
-       "  <line x1=\"10\" y1=\"17\" x2=\"30\" y2=\"38\" />\n",
-       "  <line x1=\"10\" y1=\"20\" x2=\"30\" y2=\"41\" />\n",
-       "  <line x1=\"10\" y1=\"22\" x2=\"30\" y2=\"43\" />\n",
-       "  <line x1=\"10\" y1=\"25\" x2=\"30\" y2=\"46\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"25\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"11\" y1=\"1\" x2=\"11\" y2=\"26\" />\n",
-       "  <line x1=\"12\" y1=\"2\" x2=\"12\" y2=\"27\" />\n",
-       "  <line x1=\"13\" y1=\"3\" x2=\"13\" y2=\"28\" />\n",
-       "  <line x1=\"14\" y1=\"4\" x2=\"14\" y2=\"29\" />\n",
-       "  <line x1=\"15\" y1=\"5\" x2=\"15\" y2=\"30\" />\n",
-       "  <line x1=\"16\" y1=\"6\" x2=\"16\" y2=\"31\" />\n",
-       "  <line x1=\"17\" y1=\"7\" x2=\"17\" y2=\"33\" />\n",
-       "  <line x1=\"18\" y1=\"8\" x2=\"18\" y2=\"34\" />\n",
-       "  <line x1=\"19\" y1=\"9\" x2=\"19\" y2=\"35\" />\n",
-       "  <line x1=\"20\" y1=\"10\" x2=\"20\" y2=\"36\" />\n",
-       "  <line x1=\"21\" y1=\"11\" x2=\"21\" y2=\"37\" />\n",
-       "  <line x1=\"23\" y1=\"13\" x2=\"23\" y2=\"38\" />\n",
-       "  <line x1=\"24\" y1=\"14\" x2=\"24\" y2=\"39\" />\n",
-       "  <line x1=\"25\" y1=\"15\" x2=\"25\" y2=\"40\" />\n",
-       "  <line x1=\"26\" y1=\"16\" x2=\"26\" y2=\"41\" />\n",
-       "  <line x1=\"27\" y1=\"17\" x2=\"27\" y2=\"42\" />\n",
-       "  <line x1=\"28\" y1=\"18\" x2=\"28\" y2=\"43\" />\n",
-       "  <line x1=\"29\" y1=\"19\" x2=\"29\" y2=\"45\" />\n",
-       "  <line x1=\"30\" y1=\"20\" x2=\"30\" y2=\"46\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"10.0,0.0 30.68500573235934,20.68500573235934 30.68500573235934,46.097622246941825 10.0,25.41261651458249\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"10\" y1=\"0\" x2=\"130\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"11\" y1=\"1\" x2=\"131\" y2=\"1\" />\n",
-       "  <line x1=\"12\" y1=\"2\" x2=\"132\" y2=\"2\" />\n",
-       "  <line x1=\"13\" y1=\"3\" x2=\"133\" y2=\"3\" />\n",
-       "  <line x1=\"14\" y1=\"4\" x2=\"134\" y2=\"4\" />\n",
-       "  <line x1=\"15\" y1=\"5\" x2=\"135\" y2=\"5\" />\n",
-       "  <line x1=\"16\" y1=\"6\" x2=\"136\" y2=\"6\" />\n",
-       "  <line x1=\"17\" y1=\"7\" x2=\"137\" y2=\"7\" />\n",
-       "  <line x1=\"18\" y1=\"8\" x2=\"138\" y2=\"8\" />\n",
-       "  <line x1=\"19\" y1=\"9\" x2=\"139\" y2=\"9\" />\n",
-       "  <line x1=\"20\" y1=\"10\" x2=\"140\" y2=\"10\" />\n",
-       "  <line x1=\"21\" y1=\"11\" x2=\"141\" y2=\"11\" />\n",
-       "  <line x1=\"23\" y1=\"13\" x2=\"143\" y2=\"13\" />\n",
-       "  <line x1=\"24\" y1=\"14\" x2=\"144\" y2=\"14\" />\n",
-       "  <line x1=\"25\" y1=\"15\" x2=\"145\" y2=\"15\" />\n",
-       "  <line x1=\"26\" y1=\"16\" x2=\"146\" y2=\"16\" />\n",
-       "  <line x1=\"27\" y1=\"17\" x2=\"147\" y2=\"17\" />\n",
-       "  <line x1=\"28\" y1=\"18\" x2=\"148\" y2=\"18\" />\n",
-       "  <line x1=\"29\" y1=\"19\" x2=\"149\" y2=\"19\" />\n",
-       "  <line x1=\"30\" y1=\"20\" x2=\"150\" y2=\"20\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"10\" y1=\"0\" x2=\"30\" y2=\"20\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"40\" y1=\"0\" x2=\"60\" y2=\"20\" />\n",
-       "  <line x1=\"70\" y1=\"0\" x2=\"90\" y2=\"20\" />\n",
-       "  <line x1=\"100\" y1=\"0\" x2=\"120\" y2=\"20\" />\n",
-       "  <line x1=\"130\" y1=\"0\" x2=\"150\" y2=\"20\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"10.0,0.0 130.0,0.0 150.68500573235934,20.68500573235934 30.68500573235934,20.68500573235934\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"30\" y1=\"20\" x2=\"150\" y2=\"20\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"30\" y1=\"23\" x2=\"150\" y2=\"23\" />\n",
-       "  <line x1=\"30\" y1=\"25\" x2=\"150\" y2=\"25\" />\n",
-       "  <line x1=\"30\" y1=\"28\" x2=\"150\" y2=\"28\" />\n",
-       "  <line x1=\"30\" y1=\"30\" x2=\"150\" y2=\"30\" />\n",
-       "  <line x1=\"30\" y1=\"33\" x2=\"150\" y2=\"33\" />\n",
-       "  <line x1=\"30\" y1=\"35\" x2=\"150\" y2=\"35\" />\n",
-       "  <line x1=\"30\" y1=\"38\" x2=\"150\" y2=\"38\" />\n",
-       "  <line x1=\"30\" y1=\"41\" x2=\"150\" y2=\"41\" />\n",
-       "  <line x1=\"30\" y1=\"43\" x2=\"150\" y2=\"43\" />\n",
-       "  <line x1=\"30\" y1=\"46\" x2=\"150\" y2=\"46\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"30\" y1=\"20\" x2=\"30\" y2=\"46\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"60\" y1=\"20\" x2=\"60\" y2=\"46\" />\n",
-       "  <line x1=\"90\" y1=\"20\" x2=\"90\" y2=\"46\" />\n",
-       "  <line x1=\"120\" y1=\"20\" x2=\"120\" y2=\"46\" />\n",
-       "  <line x1=\"150\" y1=\"20\" x2=\"150\" y2=\"46\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"30.68500573235934,20.68500573235934 150.68500573235934,20.68500573235934 150.68500573235934,46.097622246941825 30.68500573235934,46.097622246941825\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"90.685006\" y=\"66.097622\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >196608</text>\n",
-       "  <text x=\"170.685006\" y=\"33.391314\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,170.685006,33.391314)\">90</text>\n",
-       "  <text x=\"10.342503\" y=\"55.755119\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,10.342503,55.755119)\">10958</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>qrvi</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(90, 49152), meta=np.ndarray&gt;</div><input id='attrs-f7dee525-5efe-43b9-be46-456bce3e2da7' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-f7dee525-5efe-43b9-be46-456bce3e2da7' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-f0c53e4a-ddd9-4b6d-9fb5-1c5ee24505b9' class='xr-var-data-in' type='checkbox'><label for='data-f0c53e4a-ddd9-4b6d-9fb5-1c5ee24505b9' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>cell_methods :</span></dt><dd>time: mean cell: mean</dd><dt><span>component :</span></dt><dd>atmo</dd><dt><span>grid_mapping :</span></dt><dd>crs</dd><dt><span>long_name :</span></dt><dd>vertically integrated rain</dd><dt><span>units :</span></dt><dd>kg m-2</dd><dt><span>vgrid :</span></dt><dd>atmosphere</dd></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table>\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 8.03 GiB </td>\n",
-       "                        <td> 16.88 MiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (10958, 196608) </td>\n",
-       "                        <td> (90, 49152) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Count </th>\n",
-       "                        <td> 2 Graph Layers </td>\n",
-       "                        <td> 488 Chunks </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                    <th> Type </th>\n",
-       "                    <td> float32 </td>\n",
-       "                    <td> numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"170\" height=\"85\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n",
-       "  <line x1=\"0\" y1=\"3\" x2=\"120\" y2=\"3\" />\n",
-       "  <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n",
-       "  <line x1=\"0\" y1=\"7\" x2=\"120\" y2=\"7\" />\n",
-       "  <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n",
-       "  <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n",
-       "  <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n",
-       "  <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n",
-       "  <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n",
-       "  <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n",
-       "  <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n",
-       "  <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n",
-       "  <line x1=\"0\" y1=\"23\" x2=\"120\" y2=\"23\" />\n",
-       "  <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" />\n",
-       "  <line x1=\"0\" y1=\"27\" x2=\"120\" y2=\"27\" />\n",
-       "  <line x1=\"0\" y1=\"29\" x2=\"120\" y2=\"29\" />\n",
-       "  <line x1=\"0\" y1=\"31\" x2=\"120\" y2=\"31\" />\n",
-       "  <line x1=\"0\" y1=\"33\" x2=\"120\" y2=\"33\" />\n",
-       "  <line x1=\"0\" y1=\"35\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"35\" />\n",
-       "  <line x1=\"60\" y1=\"0\" x2=\"60\" y2=\"35\" />\n",
-       "  <line x1=\"90\" y1=\"0\" x2=\"90\" y2=\"35\" />\n",
-       "  <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"0.0,0.0 120.0,0.0 120.0,35.164509745010875 0.0,35.164509745010875\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"60.000000\" y=\"55.164510\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >196608</text>\n",
-       "  <text x=\"140.000000\" y=\"17.582255\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,17.582255)\">10958</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>qs</span></div><div class='xr-var-dims'>(time, level_full, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(7, 9, 49152), meta=np.ndarray&gt;</div><input id='attrs-19f5e06c-d0e5-4a79-853e-6187bf1ef30b' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-19f5e06c-d0e5-4a79-853e-6187bf1ef30b' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-7a531aa3-11f8-48c2-b32a-94fa98800c4b' class='xr-var-data-in' type='checkbox'><label for='data-7a531aa3-11f8-48c2-b32a-94fa98800c4b' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>cell_methods :</span></dt><dd>time: mean cell: mean</dd><dt><span>component :</span></dt><dd>atmo</dd><dt><span>grid_mapping :</span></dt><dd>crs</dd><dt><span>long_name :</span></dt><dd>specific snow content</dd><dt><span>units :</span></dt><dd>kg kg-1</dd><dt><span>vgrid :</span></dt><dd>reference</dd></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table>\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 722.33 GiB </td>\n",
-       "                        <td> 11.81 MiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (10958, 90, 196608) </td>\n",
-       "                        <td> (7, 9, 49152) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Count </th>\n",
-       "                        <td> 2 Graph Layers </td>\n",
-       "                        <td> 62640 Chunks </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                    <th> Type </th>\n",
-       "                    <td> float32 </td>\n",
-       "                    <td> numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"200\" height=\"96\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"10\" y1=\"0\" x2=\"30\" y2=\"20\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"10\" y1=\"2\" x2=\"30\" y2=\"23\" />\n",
-       "  <line x1=\"10\" y1=\"5\" x2=\"30\" y2=\"25\" />\n",
-       "  <line x1=\"10\" y1=\"7\" x2=\"30\" y2=\"28\" />\n",
-       "  <line x1=\"10\" y1=\"10\" x2=\"30\" y2=\"30\" />\n",
-       "  <line x1=\"10\" y1=\"12\" x2=\"30\" y2=\"33\" />\n",
-       "  <line x1=\"10\" y1=\"15\" x2=\"30\" y2=\"35\" />\n",
-       "  <line x1=\"10\" y1=\"17\" x2=\"30\" y2=\"38\" />\n",
-       "  <line x1=\"10\" y1=\"20\" x2=\"30\" y2=\"41\" />\n",
-       "  <line x1=\"10\" y1=\"22\" x2=\"30\" y2=\"43\" />\n",
-       "  <line x1=\"10\" y1=\"25\" x2=\"30\" y2=\"46\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"25\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"11\" y1=\"1\" x2=\"11\" y2=\"26\" />\n",
-       "  <line x1=\"12\" y1=\"2\" x2=\"12\" y2=\"27\" />\n",
-       "  <line x1=\"13\" y1=\"3\" x2=\"13\" y2=\"28\" />\n",
-       "  <line x1=\"14\" y1=\"4\" x2=\"14\" y2=\"29\" />\n",
-       "  <line x1=\"15\" y1=\"5\" x2=\"15\" y2=\"30\" />\n",
-       "  <line x1=\"16\" y1=\"6\" x2=\"16\" y2=\"31\" />\n",
-       "  <line x1=\"17\" y1=\"7\" x2=\"17\" y2=\"33\" />\n",
-       "  <line x1=\"18\" y1=\"8\" x2=\"18\" y2=\"34\" />\n",
-       "  <line x1=\"19\" y1=\"9\" x2=\"19\" y2=\"35\" />\n",
-       "  <line x1=\"20\" y1=\"10\" x2=\"20\" y2=\"36\" />\n",
-       "  <line x1=\"21\" y1=\"11\" x2=\"21\" y2=\"37\" />\n",
-       "  <line x1=\"23\" y1=\"13\" x2=\"23\" y2=\"38\" />\n",
-       "  <line x1=\"24\" y1=\"14\" x2=\"24\" y2=\"39\" />\n",
-       "  <line x1=\"25\" y1=\"15\" x2=\"25\" y2=\"40\" />\n",
-       "  <line x1=\"26\" y1=\"16\" x2=\"26\" y2=\"41\" />\n",
-       "  <line x1=\"27\" y1=\"17\" x2=\"27\" y2=\"42\" />\n",
-       "  <line x1=\"28\" y1=\"18\" x2=\"28\" y2=\"43\" />\n",
-       "  <line x1=\"29\" y1=\"19\" x2=\"29\" y2=\"45\" />\n",
-       "  <line x1=\"30\" y1=\"20\" x2=\"30\" y2=\"46\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"10.0,0.0 30.68500573235934,20.68500573235934 30.68500573235934,46.097622246941825 10.0,25.41261651458249\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"10\" y1=\"0\" x2=\"130\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"11\" y1=\"1\" x2=\"131\" y2=\"1\" />\n",
-       "  <line x1=\"12\" y1=\"2\" x2=\"132\" y2=\"2\" />\n",
-       "  <line x1=\"13\" y1=\"3\" x2=\"133\" y2=\"3\" />\n",
-       "  <line x1=\"14\" y1=\"4\" x2=\"134\" y2=\"4\" />\n",
-       "  <line x1=\"15\" y1=\"5\" x2=\"135\" y2=\"5\" />\n",
-       "  <line x1=\"16\" y1=\"6\" x2=\"136\" y2=\"6\" />\n",
-       "  <line x1=\"17\" y1=\"7\" x2=\"137\" y2=\"7\" />\n",
-       "  <line x1=\"18\" y1=\"8\" x2=\"138\" y2=\"8\" />\n",
-       "  <line x1=\"19\" y1=\"9\" x2=\"139\" y2=\"9\" />\n",
-       "  <line x1=\"20\" y1=\"10\" x2=\"140\" y2=\"10\" />\n",
-       "  <line x1=\"21\" y1=\"11\" x2=\"141\" y2=\"11\" />\n",
-       "  <line x1=\"23\" y1=\"13\" x2=\"143\" y2=\"13\" />\n",
-       "  <line x1=\"24\" y1=\"14\" x2=\"144\" y2=\"14\" />\n",
-       "  <line x1=\"25\" y1=\"15\" x2=\"145\" y2=\"15\" />\n",
-       "  <line x1=\"26\" y1=\"16\" x2=\"146\" y2=\"16\" />\n",
-       "  <line x1=\"27\" y1=\"17\" x2=\"147\" y2=\"17\" />\n",
-       "  <line x1=\"28\" y1=\"18\" x2=\"148\" y2=\"18\" />\n",
-       "  <line x1=\"29\" y1=\"19\" x2=\"149\" y2=\"19\" />\n",
-       "  <line x1=\"30\" y1=\"20\" x2=\"150\" y2=\"20\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"10\" y1=\"0\" x2=\"30\" y2=\"20\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"40\" y1=\"0\" x2=\"60\" y2=\"20\" />\n",
-       "  <line x1=\"70\" y1=\"0\" x2=\"90\" y2=\"20\" />\n",
-       "  <line x1=\"100\" y1=\"0\" x2=\"120\" y2=\"20\" />\n",
-       "  <line x1=\"130\" y1=\"0\" x2=\"150\" y2=\"20\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"10.0,0.0 130.0,0.0 150.68500573235934,20.68500573235934 30.68500573235934,20.68500573235934\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"30\" y1=\"20\" x2=\"150\" y2=\"20\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"30\" y1=\"23\" x2=\"150\" y2=\"23\" />\n",
-       "  <line x1=\"30\" y1=\"25\" x2=\"150\" y2=\"25\" />\n",
-       "  <line x1=\"30\" y1=\"28\" x2=\"150\" y2=\"28\" />\n",
-       "  <line x1=\"30\" y1=\"30\" x2=\"150\" y2=\"30\" />\n",
-       "  <line x1=\"30\" y1=\"33\" x2=\"150\" y2=\"33\" />\n",
-       "  <line x1=\"30\" y1=\"35\" x2=\"150\" y2=\"35\" />\n",
-       "  <line x1=\"30\" y1=\"38\" x2=\"150\" y2=\"38\" />\n",
-       "  <line x1=\"30\" y1=\"41\" x2=\"150\" y2=\"41\" />\n",
-       "  <line x1=\"30\" y1=\"43\" x2=\"150\" y2=\"43\" />\n",
-       "  <line x1=\"30\" y1=\"46\" x2=\"150\" y2=\"46\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"30\" y1=\"20\" x2=\"30\" y2=\"46\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"60\" y1=\"20\" x2=\"60\" y2=\"46\" />\n",
-       "  <line x1=\"90\" y1=\"20\" x2=\"90\" y2=\"46\" />\n",
-       "  <line x1=\"120\" y1=\"20\" x2=\"120\" y2=\"46\" />\n",
-       "  <line x1=\"150\" y1=\"20\" x2=\"150\" y2=\"46\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"30.68500573235934,20.68500573235934 150.68500573235934,20.68500573235934 150.68500573235934,46.097622246941825 30.68500573235934,46.097622246941825\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"90.685006\" y=\"66.097622\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >196608</text>\n",
-       "  <text x=\"170.685006\" y=\"33.391314\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,170.685006,33.391314)\">90</text>\n",
-       "  <text x=\"10.342503\" y=\"55.755119\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,10.342503,55.755119)\">10958</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>qsvi</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(90, 49152), meta=np.ndarray&gt;</div><input id='attrs-424a365f-b3d1-4efe-afcc-d898b85cfdbe' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-424a365f-b3d1-4efe-afcc-d898b85cfdbe' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-dd3b4100-0357-4d4c-a6b5-441d6ce02a41' class='xr-var-data-in' type='checkbox'><label for='data-dd3b4100-0357-4d4c-a6b5-441d6ce02a41' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>cell_methods :</span></dt><dd>time: mean cell: mean</dd><dt><span>component :</span></dt><dd>atmo</dd><dt><span>grid_mapping :</span></dt><dd>crs</dd><dt><span>long_name :</span></dt><dd>vertically integrated snow</dd><dt><span>units :</span></dt><dd>kg m-2</dd><dt><span>vgrid :</span></dt><dd>atmosphere</dd></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table>\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 8.03 GiB </td>\n",
-       "                        <td> 16.88 MiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (10958, 196608) </td>\n",
-       "                        <td> (90, 49152) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Count </th>\n",
-       "                        <td> 2 Graph Layers </td>\n",
-       "                        <td> 488 Chunks </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                    <th> Type </th>\n",
-       "                    <td> float32 </td>\n",
-       "                    <td> numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"170\" height=\"85\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n",
-       "  <line x1=\"0\" y1=\"3\" x2=\"120\" y2=\"3\" />\n",
-       "  <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n",
-       "  <line x1=\"0\" y1=\"7\" x2=\"120\" y2=\"7\" />\n",
-       "  <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n",
-       "  <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n",
-       "  <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n",
-       "  <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n",
-       "  <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n",
-       "  <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n",
-       "  <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n",
-       "  <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n",
-       "  <line x1=\"0\" y1=\"23\" x2=\"120\" y2=\"23\" />\n",
-       "  <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" />\n",
-       "  <line x1=\"0\" y1=\"27\" x2=\"120\" y2=\"27\" />\n",
-       "  <line x1=\"0\" y1=\"29\" x2=\"120\" y2=\"29\" />\n",
-       "  <line x1=\"0\" y1=\"31\" x2=\"120\" y2=\"31\" />\n",
-       "  <line x1=\"0\" y1=\"33\" x2=\"120\" y2=\"33\" />\n",
-       "  <line x1=\"0\" y1=\"35\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"35\" />\n",
-       "  <line x1=\"60\" y1=\"0\" x2=\"60\" y2=\"35\" />\n",
-       "  <line x1=\"90\" y1=\"0\" x2=\"90\" y2=\"35\" />\n",
-       "  <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"0.0,0.0 120.0,0.0 120.0,35.164509745010875 0.0,35.164509745010875\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"60.000000\" y=\"55.164510\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >196608</text>\n",
-       "  <text x=\"140.000000\" y=\"17.582255\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,17.582255)\">10958</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>qv2m</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(90, 49152), meta=np.ndarray&gt;</div><input id='attrs-ac60d797-f52e-432f-a9bc-89c5c3712507' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-ac60d797-f52e-432f-a9bc-89c5c3712507' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-c04619d2-f66f-41de-83b3-e1463245d700' class='xr-var-data-in' type='checkbox'><label for='data-c04619d2-f66f-41de-83b3-e1463245d700' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>cell_methods :</span></dt><dd>time: mean cell: mean</dd><dt><span>component :</span></dt><dd>atmo</dd><dt><span>grid_mapping :</span></dt><dd>crs</dd><dt><span>long_name :</span></dt><dd>specific humidity in 2m</dd><dt><span>units :</span></dt><dd>kg kg-1</dd><dt><span>vgrid :</span></dt><dd>height_2m</dd></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table>\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 8.03 GiB </td>\n",
-       "                        <td> 16.88 MiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (10958, 196608) </td>\n",
-       "                        <td> (90, 49152) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Count </th>\n",
-       "                        <td> 2 Graph Layers </td>\n",
-       "                        <td> 488 Chunks </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                    <th> Type </th>\n",
-       "                    <td> float32 </td>\n",
-       "                    <td> numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"170\" height=\"85\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n",
-       "  <line x1=\"0\" y1=\"3\" x2=\"120\" y2=\"3\" />\n",
-       "  <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n",
-       "  <line x1=\"0\" y1=\"7\" x2=\"120\" y2=\"7\" />\n",
-       "  <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n",
-       "  <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n",
-       "  <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n",
-       "  <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n",
-       "  <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n",
-       "  <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n",
-       "  <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n",
-       "  <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n",
-       "  <line x1=\"0\" y1=\"23\" x2=\"120\" y2=\"23\" />\n",
-       "  <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" />\n",
-       "  <line x1=\"0\" y1=\"27\" x2=\"120\" y2=\"27\" />\n",
-       "  <line x1=\"0\" y1=\"29\" x2=\"120\" y2=\"29\" />\n",
-       "  <line x1=\"0\" y1=\"31\" x2=\"120\" y2=\"31\" />\n",
-       "  <line x1=\"0\" y1=\"33\" x2=\"120\" y2=\"33\" />\n",
-       "  <line x1=\"0\" y1=\"35\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"35\" />\n",
-       "  <line x1=\"60\" y1=\"0\" x2=\"60\" y2=\"35\" />\n",
-       "  <line x1=\"90\" y1=\"0\" x2=\"90\" y2=\"35\" />\n",
-       "  <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"0.0,0.0 120.0,0.0 120.0,35.164509745010875 0.0,35.164509745010875\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"60.000000\" y=\"55.164510\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >196608</text>\n",
-       "  <text x=\"140.000000\" y=\"17.582255\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,17.582255)\">10958</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>rlds</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(90, 49152), meta=np.ndarray&gt;</div><input id='attrs-9aa5959e-19b7-45e7-8e55-472cfcf278f4' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-9aa5959e-19b7-45e7-8e55-472cfcf278f4' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-2ac062c2-da5f-4f6b-915e-6b017c52abd0' class='xr-var-data-in' type='checkbox'><label for='data-2ac062c2-da5f-4f6b-915e-6b017c52abd0' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>cell_methods :</span></dt><dd>time: mean cell: mean</dd><dt><span>component :</span></dt><dd>atmo</dd><dt><span>grid_mapping :</span></dt><dd>crs</dd><dt><span>long_name :</span></dt><dd>surface downwelling longwave radiation</dd><dt><span>standard_name :</span></dt><dd>surface_downwelling_longwave_flux_in_air</dd><dt><span>units :</span></dt><dd>W m-2</dd><dt><span>vgrid :</span></dt><dd>surface</dd></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table>\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 8.03 GiB </td>\n",
-       "                        <td> 16.88 MiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (10958, 196608) </td>\n",
-       "                        <td> (90, 49152) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Count </th>\n",
-       "                        <td> 2 Graph Layers </td>\n",
-       "                        <td> 488 Chunks </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                    <th> Type </th>\n",
-       "                    <td> float32 </td>\n",
-       "                    <td> numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"170\" height=\"85\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n",
-       "  <line x1=\"0\" y1=\"3\" x2=\"120\" y2=\"3\" />\n",
-       "  <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n",
-       "  <line x1=\"0\" y1=\"7\" x2=\"120\" y2=\"7\" />\n",
-       "  <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n",
-       "  <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n",
-       "  <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n",
-       "  <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n",
-       "  <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n",
-       "  <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n",
-       "  <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n",
-       "  <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n",
-       "  <line x1=\"0\" y1=\"23\" x2=\"120\" y2=\"23\" />\n",
-       "  <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" />\n",
-       "  <line x1=\"0\" y1=\"27\" x2=\"120\" y2=\"27\" />\n",
-       "  <line x1=\"0\" y1=\"29\" x2=\"120\" y2=\"29\" />\n",
-       "  <line x1=\"0\" y1=\"31\" x2=\"120\" y2=\"31\" />\n",
-       "  <line x1=\"0\" y1=\"33\" x2=\"120\" y2=\"33\" />\n",
-       "  <line x1=\"0\" y1=\"35\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"35\" />\n",
-       "  <line x1=\"60\" y1=\"0\" x2=\"60\" y2=\"35\" />\n",
-       "  <line x1=\"90\" y1=\"0\" x2=\"90\" y2=\"35\" />\n",
-       "  <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"0.0,0.0 120.0,0.0 120.0,35.164509745010875 0.0,35.164509745010875\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"60.000000\" y=\"55.164510\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >196608</text>\n",
-       "  <text x=\"140.000000\" y=\"17.582255\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,17.582255)\">10958</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>rlus</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(90, 49152), meta=np.ndarray&gt;</div><input id='attrs-18c319a9-10ed-4215-8623-4c14a413ad53' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-18c319a9-10ed-4215-8623-4c14a413ad53' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-893e0448-cadf-4ad6-b1b7-b120ccc35c61' class='xr-var-data-in' type='checkbox'><label for='data-893e0448-cadf-4ad6-b1b7-b120ccc35c61' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>cell_methods :</span></dt><dd>time: mean cell: mean</dd><dt><span>component :</span></dt><dd>atmo</dd><dt><span>grid_mapping :</span></dt><dd>crs</dd><dt><span>long_name :</span></dt><dd>surface upwelling longwave radiation</dd><dt><span>standard_name :</span></dt><dd>surface_upwelling_longwave_flux_in_air</dd><dt><span>units :</span></dt><dd>W m-2</dd><dt><span>vgrid :</span></dt><dd>surface</dd></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table>\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 8.03 GiB </td>\n",
-       "                        <td> 16.88 MiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (10958, 196608) </td>\n",
-       "                        <td> (90, 49152) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Count </th>\n",
-       "                        <td> 2 Graph Layers </td>\n",
-       "                        <td> 488 Chunks </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                    <th> Type </th>\n",
-       "                    <td> float32 </td>\n",
-       "                    <td> numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"170\" height=\"85\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n",
-       "  <line x1=\"0\" y1=\"3\" x2=\"120\" y2=\"3\" />\n",
-       "  <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n",
-       "  <line x1=\"0\" y1=\"7\" x2=\"120\" y2=\"7\" />\n",
-       "  <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n",
-       "  <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n",
-       "  <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n",
-       "  <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n",
-       "  <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n",
-       "  <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n",
-       "  <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n",
-       "  <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n",
-       "  <line x1=\"0\" y1=\"23\" x2=\"120\" y2=\"23\" />\n",
-       "  <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" />\n",
-       "  <line x1=\"0\" y1=\"27\" x2=\"120\" y2=\"27\" />\n",
-       "  <line x1=\"0\" y1=\"29\" x2=\"120\" y2=\"29\" />\n",
-       "  <line x1=\"0\" y1=\"31\" x2=\"120\" y2=\"31\" />\n",
-       "  <line x1=\"0\" y1=\"33\" x2=\"120\" y2=\"33\" />\n",
-       "  <line x1=\"0\" y1=\"35\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"35\" />\n",
-       "  <line x1=\"60\" y1=\"0\" x2=\"60\" y2=\"35\" />\n",
-       "  <line x1=\"90\" y1=\"0\" x2=\"90\" y2=\"35\" />\n",
-       "  <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"0.0,0.0 120.0,0.0 120.0,35.164509745010875 0.0,35.164509745010875\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"60.000000\" y=\"55.164510\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >196608</text>\n",
-       "  <text x=\"140.000000\" y=\"17.582255\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,17.582255)\">10958</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>rlut</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(90, 49152), meta=np.ndarray&gt;</div><input id='attrs-3cc99917-1c35-4177-9a33-fbd8a5b189ff' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-3cc99917-1c35-4177-9a33-fbd8a5b189ff' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-37f92a3e-67d0-491f-bb98-d5cc5567d974' class='xr-var-data-in' type='checkbox'><label for='data-37f92a3e-67d0-491f-bb98-d5cc5567d974' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>cell_methods :</span></dt><dd>time: mean cell: mean</dd><dt><span>component :</span></dt><dd>atmo</dd><dt><span>grid_mapping :</span></dt><dd>crs</dd><dt><span>long_name :</span></dt><dd>toa outgoing longwave radiation</dd><dt><span>standard_name :</span></dt><dd>toa_outgoing_longwave_flux</dd><dt><span>units :</span></dt><dd>W m-2</dd><dt><span>vgrid :</span></dt><dd>toa</dd></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table>\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 8.03 GiB </td>\n",
-       "                        <td> 16.88 MiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (10958, 196608) </td>\n",
-       "                        <td> (90, 49152) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Count </th>\n",
-       "                        <td> 2 Graph Layers </td>\n",
-       "                        <td> 488 Chunks </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                    <th> Type </th>\n",
-       "                    <td> float32 </td>\n",
-       "                    <td> numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"170\" height=\"85\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n",
-       "  <line x1=\"0\" y1=\"3\" x2=\"120\" y2=\"3\" />\n",
-       "  <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n",
-       "  <line x1=\"0\" y1=\"7\" x2=\"120\" y2=\"7\" />\n",
-       "  <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n",
-       "  <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n",
-       "  <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n",
-       "  <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n",
-       "  <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n",
-       "  <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n",
-       "  <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n",
-       "  <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n",
-       "  <line x1=\"0\" y1=\"23\" x2=\"120\" y2=\"23\" />\n",
-       "  <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" />\n",
-       "  <line x1=\"0\" y1=\"27\" x2=\"120\" y2=\"27\" />\n",
-       "  <line x1=\"0\" y1=\"29\" x2=\"120\" y2=\"29\" />\n",
-       "  <line x1=\"0\" y1=\"31\" x2=\"120\" y2=\"31\" />\n",
-       "  <line x1=\"0\" y1=\"33\" x2=\"120\" y2=\"33\" />\n",
-       "  <line x1=\"0\" y1=\"35\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"35\" />\n",
-       "  <line x1=\"60\" y1=\"0\" x2=\"60\" y2=\"35\" />\n",
-       "  <line x1=\"90\" y1=\"0\" x2=\"90\" y2=\"35\" />\n",
-       "  <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"0.0,0.0 120.0,0.0 120.0,35.164509745010875 0.0,35.164509745010875\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"60.000000\" y=\"55.164510\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >196608</text>\n",
-       "  <text x=\"140.000000\" y=\"17.582255\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,17.582255)\">10958</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>rsds</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(90, 49152), meta=np.ndarray&gt;</div><input id='attrs-d1bd82b4-3796-4082-a80a-3102deba28f4' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-d1bd82b4-3796-4082-a80a-3102deba28f4' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-b7f68ad6-710a-412e-b04b-ceb3b6ca1bcd' class='xr-var-data-in' type='checkbox'><label for='data-b7f68ad6-710a-412e-b04b-ceb3b6ca1bcd' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>cell_methods :</span></dt><dd>time: mean cell: mean</dd><dt><span>component :</span></dt><dd>atmo</dd><dt><span>grid_mapping :</span></dt><dd>crs</dd><dt><span>long_name :</span></dt><dd>surface downwelling shortwave radiation</dd><dt><span>standard_name :</span></dt><dd>surface_downwelling_shortwave_flux_in_air</dd><dt><span>units :</span></dt><dd>W m-2</dd><dt><span>vgrid :</span></dt><dd>surface</dd></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table>\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 8.03 GiB </td>\n",
-       "                        <td> 16.88 MiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (10958, 196608) </td>\n",
-       "                        <td> (90, 49152) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Count </th>\n",
-       "                        <td> 2 Graph Layers </td>\n",
-       "                        <td> 488 Chunks </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                    <th> Type </th>\n",
-       "                    <td> float32 </td>\n",
-       "                    <td> numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"170\" height=\"85\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n",
-       "  <line x1=\"0\" y1=\"3\" x2=\"120\" y2=\"3\" />\n",
-       "  <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n",
-       "  <line x1=\"0\" y1=\"7\" x2=\"120\" y2=\"7\" />\n",
-       "  <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n",
-       "  <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n",
-       "  <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n",
-       "  <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n",
-       "  <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n",
-       "  <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n",
-       "  <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n",
-       "  <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n",
-       "  <line x1=\"0\" y1=\"23\" x2=\"120\" y2=\"23\" />\n",
-       "  <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" />\n",
-       "  <line x1=\"0\" y1=\"27\" x2=\"120\" y2=\"27\" />\n",
-       "  <line x1=\"0\" y1=\"29\" x2=\"120\" y2=\"29\" />\n",
-       "  <line x1=\"0\" y1=\"31\" x2=\"120\" y2=\"31\" />\n",
-       "  <line x1=\"0\" y1=\"33\" x2=\"120\" y2=\"33\" />\n",
-       "  <line x1=\"0\" y1=\"35\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"35\" />\n",
-       "  <line x1=\"60\" y1=\"0\" x2=\"60\" y2=\"35\" />\n",
-       "  <line x1=\"90\" y1=\"0\" x2=\"90\" y2=\"35\" />\n",
-       "  <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"0.0,0.0 120.0,0.0 120.0,35.164509745010875 0.0,35.164509745010875\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"60.000000\" y=\"55.164510\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >196608</text>\n",
-       "  <text x=\"140.000000\" y=\"17.582255\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,17.582255)\">10958</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>rsdt</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(90, 49152), meta=np.ndarray&gt;</div><input id='attrs-0774f936-51f0-4d29-8389-4ce3276af981' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-0774f936-51f0-4d29-8389-4ce3276af981' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-643190fe-04cc-4e8a-bd90-0d8a3bc75d8c' class='xr-var-data-in' type='checkbox'><label for='data-643190fe-04cc-4e8a-bd90-0d8a3bc75d8c' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>cell_methods :</span></dt><dd>time: mean cell: mean</dd><dt><span>component :</span></dt><dd>atmo</dd><dt><span>grid_mapping :</span></dt><dd>crs</dd><dt><span>long_name :</span></dt><dd>toa incident shortwave radiation</dd><dt><span>standard_name :</span></dt><dd>toa_incoming_shortwave_flux</dd><dt><span>units :</span></dt><dd>W m-2</dd><dt><span>vgrid :</span></dt><dd>toa</dd></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table>\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 8.03 GiB </td>\n",
-       "                        <td> 16.88 MiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (10958, 196608) </td>\n",
-       "                        <td> (90, 49152) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Count </th>\n",
-       "                        <td> 2 Graph Layers </td>\n",
-       "                        <td> 488 Chunks </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                    <th> Type </th>\n",
-       "                    <td> float32 </td>\n",
-       "                    <td> numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"170\" height=\"85\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n",
-       "  <line x1=\"0\" y1=\"3\" x2=\"120\" y2=\"3\" />\n",
-       "  <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n",
-       "  <line x1=\"0\" y1=\"7\" x2=\"120\" y2=\"7\" />\n",
-       "  <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n",
-       "  <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n",
-       "  <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n",
-       "  <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n",
-       "  <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n",
-       "  <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n",
-       "  <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n",
-       "  <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n",
-       "  <line x1=\"0\" y1=\"23\" x2=\"120\" y2=\"23\" />\n",
-       "  <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" />\n",
-       "  <line x1=\"0\" y1=\"27\" x2=\"120\" y2=\"27\" />\n",
-       "  <line x1=\"0\" y1=\"29\" x2=\"120\" y2=\"29\" />\n",
-       "  <line x1=\"0\" y1=\"31\" x2=\"120\" y2=\"31\" />\n",
-       "  <line x1=\"0\" y1=\"33\" x2=\"120\" y2=\"33\" />\n",
-       "  <line x1=\"0\" y1=\"35\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"35\" />\n",
-       "  <line x1=\"60\" y1=\"0\" x2=\"60\" y2=\"35\" />\n",
-       "  <line x1=\"90\" y1=\"0\" x2=\"90\" y2=\"35\" />\n",
-       "  <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"0.0,0.0 120.0,0.0 120.0,35.164509745010875 0.0,35.164509745010875\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"60.000000\" y=\"55.164510\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >196608</text>\n",
-       "  <text x=\"140.000000\" y=\"17.582255\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,17.582255)\">10958</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>rsus</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(90, 49152), meta=np.ndarray&gt;</div><input id='attrs-3af411c2-19d1-43bd-a676-8c572d7ff0bf' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-3af411c2-19d1-43bd-a676-8c572d7ff0bf' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-c3f76ec2-c78a-42cb-81a0-3f95c4382cf4' class='xr-var-data-in' type='checkbox'><label for='data-c3f76ec2-c78a-42cb-81a0-3f95c4382cf4' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>cell_methods :</span></dt><dd>time: mean cell: mean</dd><dt><span>component :</span></dt><dd>atmo</dd><dt><span>grid_mapping :</span></dt><dd>crs</dd><dt><span>long_name :</span></dt><dd>surface upwelling shortwave radiation</dd><dt><span>standard_name :</span></dt><dd>surface_upwelling_shortwave_flux_in_air</dd><dt><span>units :</span></dt><dd>W m-2</dd><dt><span>vgrid :</span></dt><dd>surface</dd></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table>\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 8.03 GiB </td>\n",
-       "                        <td> 16.88 MiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (10958, 196608) </td>\n",
-       "                        <td> (90, 49152) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Count </th>\n",
-       "                        <td> 2 Graph Layers </td>\n",
-       "                        <td> 488 Chunks </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                    <th> Type </th>\n",
-       "                    <td> float32 </td>\n",
-       "                    <td> numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"170\" height=\"85\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n",
-       "  <line x1=\"0\" y1=\"3\" x2=\"120\" y2=\"3\" />\n",
-       "  <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n",
-       "  <line x1=\"0\" y1=\"7\" x2=\"120\" y2=\"7\" />\n",
-       "  <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n",
-       "  <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n",
-       "  <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n",
-       "  <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n",
-       "  <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n",
-       "  <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n",
-       "  <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n",
-       "  <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n",
-       "  <line x1=\"0\" y1=\"23\" x2=\"120\" y2=\"23\" />\n",
-       "  <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" />\n",
-       "  <line x1=\"0\" y1=\"27\" x2=\"120\" y2=\"27\" />\n",
-       "  <line x1=\"0\" y1=\"29\" x2=\"120\" y2=\"29\" />\n",
-       "  <line x1=\"0\" y1=\"31\" x2=\"120\" y2=\"31\" />\n",
-       "  <line x1=\"0\" y1=\"33\" x2=\"120\" y2=\"33\" />\n",
-       "  <line x1=\"0\" y1=\"35\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"35\" />\n",
-       "  <line x1=\"60\" y1=\"0\" x2=\"60\" y2=\"35\" />\n",
-       "  <line x1=\"90\" y1=\"0\" x2=\"90\" y2=\"35\" />\n",
-       "  <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"0.0,0.0 120.0,0.0 120.0,35.164509745010875 0.0,35.164509745010875\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"60.000000\" y=\"55.164510\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >196608</text>\n",
-       "  <text x=\"140.000000\" y=\"17.582255\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,17.582255)\">10958</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>rsut</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(90, 49152), meta=np.ndarray&gt;</div><input id='attrs-d287ee61-5457-4f8e-a9af-33cad51c4a45' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-d287ee61-5457-4f8e-a9af-33cad51c4a45' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-7b6c80e9-2e5f-4dc1-8985-9a673af9381f' class='xr-var-data-in' type='checkbox'><label for='data-7b6c80e9-2e5f-4dc1-8985-9a673af9381f' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>cell_methods :</span></dt><dd>time: mean cell: mean</dd><dt><span>component :</span></dt><dd>atmo</dd><dt><span>grid_mapping :</span></dt><dd>crs</dd><dt><span>long_name :</span></dt><dd>toa outgoing shortwave radiation</dd><dt><span>standard_name :</span></dt><dd>toa_outgoing_shortwave_flux</dd><dt><span>units :</span></dt><dd>W m-2</dd><dt><span>vgrid :</span></dt><dd>toa</dd></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table>\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 8.03 GiB </td>\n",
-       "                        <td> 16.88 MiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (10958, 196608) </td>\n",
-       "                        <td> (90, 49152) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Count </th>\n",
-       "                        <td> 2 Graph Layers </td>\n",
-       "                        <td> 488 Chunks </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                    <th> Type </th>\n",
-       "                    <td> float32 </td>\n",
-       "                    <td> numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"170\" height=\"85\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n",
-       "  <line x1=\"0\" y1=\"3\" x2=\"120\" y2=\"3\" />\n",
-       "  <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n",
-       "  <line x1=\"0\" y1=\"7\" x2=\"120\" y2=\"7\" />\n",
-       "  <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n",
-       "  <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n",
-       "  <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n",
-       "  <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n",
-       "  <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n",
-       "  <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n",
-       "  <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n",
-       "  <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n",
-       "  <line x1=\"0\" y1=\"23\" x2=\"120\" y2=\"23\" />\n",
-       "  <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" />\n",
-       "  <line x1=\"0\" y1=\"27\" x2=\"120\" y2=\"27\" />\n",
-       "  <line x1=\"0\" y1=\"29\" x2=\"120\" y2=\"29\" />\n",
-       "  <line x1=\"0\" y1=\"31\" x2=\"120\" y2=\"31\" />\n",
-       "  <line x1=\"0\" y1=\"33\" x2=\"120\" y2=\"33\" />\n",
-       "  <line x1=\"0\" y1=\"35\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"35\" />\n",
-       "  <line x1=\"60\" y1=\"0\" x2=\"60\" y2=\"35\" />\n",
-       "  <line x1=\"90\" y1=\"0\" x2=\"90\" y2=\"35\" />\n",
-       "  <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"0.0,0.0 120.0,0.0 120.0,35.164509745010875 0.0,35.164509745010875\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"60.000000\" y=\"55.164510\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >196608</text>\n",
-       "  <text x=\"140.000000\" y=\"17.582255\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,17.582255)\">10958</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>seb_forc_hflx_box</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(90, 49152), meta=np.ndarray&gt;</div><input id='attrs-b53b692e-4a37-4fcb-81ab-6c739943babf' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-b53b692e-4a37-4fcb-81ab-6c739943babf' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-a9f1c621-ad12-4388-8801-bae5b437d9f1' class='xr-var-data-in' type='checkbox'><label for='data-a9f1c621-ad12-4388-8801-bae5b437d9f1' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>cell_methods :</span></dt><dd>time: mean cell: mean</dd><dt><span>component :</span></dt><dd>jsbach</dd><dt><span>grid_mapping :</span></dt><dd>crs</dd><dt><span>long_name :</span></dt><dd>additional heat flux at surface</dd><dt><span>units :</span></dt><dd>W m-2</dd><dt><span>vgrid :</span></dt><dd>surface</dd></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table>\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 8.03 GiB </td>\n",
-       "                        <td> 16.88 MiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (10958, 196608) </td>\n",
-       "                        <td> (90, 49152) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Count </th>\n",
-       "                        <td> 2 Graph Layers </td>\n",
-       "                        <td> 488 Chunks </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                    <th> Type </th>\n",
-       "                    <td> float32 </td>\n",
-       "                    <td> numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"170\" height=\"85\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n",
-       "  <line x1=\"0\" y1=\"3\" x2=\"120\" y2=\"3\" />\n",
-       "  <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n",
-       "  <line x1=\"0\" y1=\"7\" x2=\"120\" y2=\"7\" />\n",
-       "  <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n",
-       "  <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n",
-       "  <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n",
-       "  <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n",
-       "  <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n",
-       "  <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n",
-       "  <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n",
-       "  <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n",
-       "  <line x1=\"0\" y1=\"23\" x2=\"120\" y2=\"23\" />\n",
-       "  <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" />\n",
-       "  <line x1=\"0\" y1=\"27\" x2=\"120\" y2=\"27\" />\n",
-       "  <line x1=\"0\" y1=\"29\" x2=\"120\" y2=\"29\" />\n",
-       "  <line x1=\"0\" y1=\"31\" x2=\"120\" y2=\"31\" />\n",
-       "  <line x1=\"0\" y1=\"33\" x2=\"120\" y2=\"33\" />\n",
-       "  <line x1=\"0\" y1=\"35\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"35\" />\n",
-       "  <line x1=\"60\" y1=\"0\" x2=\"60\" y2=\"35\" />\n",
-       "  <line x1=\"90\" y1=\"0\" x2=\"90\" y2=\"35\" />\n",
-       "  <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"0.0,0.0 120.0,0.0 120.0,35.164509745010875 0.0,35.164509745010875\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"60.000000\" y=\"55.164510\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >196608</text>\n",
-       "  <text x=\"140.000000\" y=\"17.582255\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,17.582255)\">10958</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>seb_heat_cap_box</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(90, 49152), meta=np.ndarray&gt;</div><input id='attrs-6d64d74e-b67b-4a3d-8a25-fa4d45cd2c98' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-6d64d74e-b67b-4a3d-8a25-fa4d45cd2c98' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-a735084f-35eb-45dc-9dee-46b680ccda09' class='xr-var-data-in' type='checkbox'><label for='data-a735084f-35eb-45dc-9dee-46b680ccda09' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>cell_methods :</span></dt><dd>time: mean cell: mean</dd><dt><span>component :</span></dt><dd>jsbach</dd><dt><span>grid_mapping :</span></dt><dd>crs</dd><dt><span>long_name :</span></dt><dd>surface layer heat capacity</dd><dt><span>units :</span></dt><dd>J m-2 K-1</dd><dt><span>vgrid :</span></dt><dd>surface</dd></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table>\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 8.03 GiB </td>\n",
-       "                        <td> 16.88 MiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (10958, 196608) </td>\n",
-       "                        <td> (90, 49152) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Count </th>\n",
-       "                        <td> 2 Graph Layers </td>\n",
-       "                        <td> 488 Chunks </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                    <th> Type </th>\n",
-       "                    <td> float32 </td>\n",
-       "                    <td> numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"170\" height=\"85\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n",
-       "  <line x1=\"0\" y1=\"3\" x2=\"120\" y2=\"3\" />\n",
-       "  <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n",
-       "  <line x1=\"0\" y1=\"7\" x2=\"120\" y2=\"7\" />\n",
-       "  <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n",
-       "  <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n",
-       "  <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n",
-       "  <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n",
-       "  <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n",
-       "  <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n",
-       "  <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n",
-       "  <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n",
-       "  <line x1=\"0\" y1=\"23\" x2=\"120\" y2=\"23\" />\n",
-       "  <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" />\n",
-       "  <line x1=\"0\" y1=\"27\" x2=\"120\" y2=\"27\" />\n",
-       "  <line x1=\"0\" y1=\"29\" x2=\"120\" y2=\"29\" />\n",
-       "  <line x1=\"0\" y1=\"31\" x2=\"120\" y2=\"31\" />\n",
-       "  <line x1=\"0\" y1=\"33\" x2=\"120\" y2=\"33\" />\n",
-       "  <line x1=\"0\" y1=\"35\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"35\" />\n",
-       "  <line x1=\"60\" y1=\"0\" x2=\"60\" y2=\"35\" />\n",
-       "  <line x1=\"90\" y1=\"0\" x2=\"90\" y2=\"35\" />\n",
-       "  <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"0.0,0.0 120.0,0.0 120.0,35.164509745010875 0.0,35.164509745010875\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"60.000000\" y=\"55.164510\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >196608</text>\n",
-       "  <text x=\"140.000000\" y=\"17.582255\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,17.582255)\">10958</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>sfcwind</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(90, 49152), meta=np.ndarray&gt;</div><input id='attrs-c249d7bc-9dd3-4e73-8e06-b5cc2ef584a3' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-c249d7bc-9dd3-4e73-8e06-b5cc2ef584a3' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-a8d1792f-4935-484a-aa88-f878839801f4' class='xr-var-data-in' type='checkbox'><label for='data-a8d1792f-4935-484a-aa88-f878839801f4' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>cell_methods :</span></dt><dd>time: mean cell: mean</dd><dt><span>component :</span></dt><dd>atmo</dd><dt><span>grid_mapping :</span></dt><dd>crs</dd><dt><span>long_name :</span></dt><dd>10m windspeed</dd><dt><span>units :</span></dt><dd>m s-1</dd><dt><span>vgrid :</span></dt><dd>height_10m</dd></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table>\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 8.03 GiB </td>\n",
-       "                        <td> 16.88 MiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (10958, 196608) </td>\n",
-       "                        <td> (90, 49152) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Count </th>\n",
-       "                        <td> 2 Graph Layers </td>\n",
-       "                        <td> 488 Chunks </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                    <th> Type </th>\n",
-       "                    <td> float32 </td>\n",
-       "                    <td> numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"170\" height=\"85\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n",
-       "  <line x1=\"0\" y1=\"3\" x2=\"120\" y2=\"3\" />\n",
-       "  <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n",
-       "  <line x1=\"0\" y1=\"7\" x2=\"120\" y2=\"7\" />\n",
-       "  <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n",
-       "  <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n",
-       "  <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n",
-       "  <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n",
-       "  <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n",
-       "  <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n",
-       "  <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n",
-       "  <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n",
-       "  <line x1=\"0\" y1=\"23\" x2=\"120\" y2=\"23\" />\n",
-       "  <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" />\n",
-       "  <line x1=\"0\" y1=\"27\" x2=\"120\" y2=\"27\" />\n",
-       "  <line x1=\"0\" y1=\"29\" x2=\"120\" y2=\"29\" />\n",
-       "  <line x1=\"0\" y1=\"31\" x2=\"120\" y2=\"31\" />\n",
-       "  <line x1=\"0\" y1=\"33\" x2=\"120\" y2=\"33\" />\n",
-       "  <line x1=\"0\" y1=\"35\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"35\" />\n",
-       "  <line x1=\"60\" y1=\"0\" x2=\"60\" y2=\"35\" />\n",
-       "  <line x1=\"90\" y1=\"0\" x2=\"90\" y2=\"35\" />\n",
-       "  <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"0.0,0.0 120.0,0.0 120.0,35.164509745010875 0.0,35.164509745010875\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"60.000000\" y=\"55.164510\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >196608</text>\n",
-       "  <text x=\"140.000000\" y=\"17.582255\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,17.582255)\">10958</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>sic</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(90, 49152), meta=np.ndarray&gt;</div><input id='attrs-6cca91c5-c52e-4176-a12d-665ddd16fd51' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-6cca91c5-c52e-4176-a12d-665ddd16fd51' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-7e4bd0c2-429b-4436-9ed8-4201a69d9a85' class='xr-var-data-in' type='checkbox'><label for='data-7e4bd0c2-429b-4436-9ed8-4201a69d9a85' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>cell_methods :</span></dt><dd>time: mean cell: mean</dd><dt><span>component :</span></dt><dd>atmo</dd><dt><span>grid_mapping :</span></dt><dd>crs</dd><dt><span>long_name :</span></dt><dd>fraction of ocean covered by sea ice</dd><dt><span>vgrid :</span></dt><dd>surface</dd></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table>\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 8.03 GiB </td>\n",
-       "                        <td> 16.88 MiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (10958, 196608) </td>\n",
-       "                        <td> (90, 49152) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Count </th>\n",
-       "                        <td> 2 Graph Layers </td>\n",
-       "                        <td> 488 Chunks </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                    <th> Type </th>\n",
-       "                    <td> float32 </td>\n",
-       "                    <td> numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"170\" height=\"85\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n",
-       "  <line x1=\"0\" y1=\"3\" x2=\"120\" y2=\"3\" />\n",
-       "  <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n",
-       "  <line x1=\"0\" y1=\"7\" x2=\"120\" y2=\"7\" />\n",
-       "  <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n",
-       "  <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n",
-       "  <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n",
-       "  <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n",
-       "  <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n",
-       "  <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n",
-       "  <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n",
-       "  <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n",
-       "  <line x1=\"0\" y1=\"23\" x2=\"120\" y2=\"23\" />\n",
-       "  <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" />\n",
-       "  <line x1=\"0\" y1=\"27\" x2=\"120\" y2=\"27\" />\n",
-       "  <line x1=\"0\" y1=\"29\" x2=\"120\" y2=\"29\" />\n",
-       "  <line x1=\"0\" y1=\"31\" x2=\"120\" y2=\"31\" />\n",
-       "  <line x1=\"0\" y1=\"33\" x2=\"120\" y2=\"33\" />\n",
-       "  <line x1=\"0\" y1=\"35\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"35\" />\n",
-       "  <line x1=\"60\" y1=\"0\" x2=\"60\" y2=\"35\" />\n",
-       "  <line x1=\"90\" y1=\"0\" x2=\"90\" y2=\"35\" />\n",
-       "  <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"0.0,0.0 120.0,0.0 120.0,35.164509745010875 0.0,35.164509745010875\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"60.000000\" y=\"55.164510\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >196608</text>\n",
-       "  <text x=\"140.000000\" y=\"17.582255\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,17.582255)\">10958</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>sit</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(90, 49152), meta=np.ndarray&gt;</div><input id='attrs-8057a6b8-7cd5-4d90-a7dd-8aace198b486' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-8057a6b8-7cd5-4d90-a7dd-8aace198b486' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-5cc50a63-1147-4a38-940d-8a0d65259916' class='xr-var-data-in' type='checkbox'><label for='data-5cc50a63-1147-4a38-940d-8a0d65259916' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>cell_methods :</span></dt><dd>time: mean cell: mean</dd><dt><span>component :</span></dt><dd>atmo</dd><dt><span>grid_mapping :</span></dt><dd>crs</dd><dt><span>long_name :</span></dt><dd>sea ice thickness</dd><dt><span>units :</span></dt><dd>m</dd><dt><span>vgrid :</span></dt><dd>surface</dd></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table>\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 8.03 GiB </td>\n",
-       "                        <td> 16.88 MiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (10958, 196608) </td>\n",
-       "                        <td> (90, 49152) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Count </th>\n",
-       "                        <td> 2 Graph Layers </td>\n",
-       "                        <td> 488 Chunks </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                    <th> Type </th>\n",
-       "                    <td> float32 </td>\n",
-       "                    <td> numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"170\" height=\"85\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n",
-       "  <line x1=\"0\" y1=\"3\" x2=\"120\" y2=\"3\" />\n",
-       "  <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n",
-       "  <line x1=\"0\" y1=\"7\" x2=\"120\" y2=\"7\" />\n",
-       "  <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n",
-       "  <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n",
-       "  <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n",
-       "  <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n",
-       "  <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n",
-       "  <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n",
-       "  <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n",
-       "  <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n",
-       "  <line x1=\"0\" y1=\"23\" x2=\"120\" y2=\"23\" />\n",
-       "  <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" />\n",
-       "  <line x1=\"0\" y1=\"27\" x2=\"120\" y2=\"27\" />\n",
-       "  <line x1=\"0\" y1=\"29\" x2=\"120\" y2=\"29\" />\n",
-       "  <line x1=\"0\" y1=\"31\" x2=\"120\" y2=\"31\" />\n",
-       "  <line x1=\"0\" y1=\"33\" x2=\"120\" y2=\"33\" />\n",
-       "  <line x1=\"0\" y1=\"35\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"35\" />\n",
-       "  <line x1=\"60\" y1=\"0\" x2=\"60\" y2=\"35\" />\n",
-       "  <line x1=\"90\" y1=\"0\" x2=\"90\" y2=\"35\" />\n",
-       "  <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"0.0,0.0 120.0,0.0 120.0,35.164509745010875 0.0,35.164509745010875\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"60.000000\" y=\"55.164510\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >196608</text>\n",
-       "  <text x=\"140.000000\" y=\"17.582255\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,17.582255)\">10958</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>snow_to_ice</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(90, 49152), meta=np.ndarray&gt;</div><input id='attrs-8bd63810-e591-46a4-8935-f1502f8f3748' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-8bd63810-e591-46a4-8935-f1502f8f3748' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-a9817451-77fc-4a4d-89e4-ed60582c2718' class='xr-var-data-in' type='checkbox'><label for='data-a9817451-77fc-4a4d-89e4-ed60582c2718' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>cell_methods :</span></dt><dd>time: mean cell: mean</dd><dt><span>component :</span></dt><dd>ocean</dd><dt><span>grid_mapping :</span></dt><dd>crs</dd><dt><span>long_name :</span></dt><dd>amount of snow that is transformed to ice</dd><dt><span>units :</span></dt><dd>m</dd><dt><span>vgrid :</span></dt><dd>generic_ice</dd></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table>\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 8.03 GiB </td>\n",
-       "                        <td> 16.88 MiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (10958, 196608) </td>\n",
-       "                        <td> (90, 49152) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Count </th>\n",
-       "                        <td> 2 Graph Layers </td>\n",
-       "                        <td> 488 Chunks </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                    <th> Type </th>\n",
-       "                    <td> float32 </td>\n",
-       "                    <td> numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"170\" height=\"85\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n",
-       "  <line x1=\"0\" y1=\"3\" x2=\"120\" y2=\"3\" />\n",
-       "  <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n",
-       "  <line x1=\"0\" y1=\"7\" x2=\"120\" y2=\"7\" />\n",
-       "  <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n",
-       "  <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n",
-       "  <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n",
-       "  <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n",
-       "  <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n",
-       "  <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n",
-       "  <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n",
-       "  <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n",
-       "  <line x1=\"0\" y1=\"23\" x2=\"120\" y2=\"23\" />\n",
-       "  <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" />\n",
-       "  <line x1=\"0\" y1=\"27\" x2=\"120\" y2=\"27\" />\n",
-       "  <line x1=\"0\" y1=\"29\" x2=\"120\" y2=\"29\" />\n",
-       "  <line x1=\"0\" y1=\"31\" x2=\"120\" y2=\"31\" />\n",
-       "  <line x1=\"0\" y1=\"33\" x2=\"120\" y2=\"33\" />\n",
-       "  <line x1=\"0\" y1=\"35\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"35\" />\n",
-       "  <line x1=\"60\" y1=\"0\" x2=\"60\" y2=\"35\" />\n",
-       "  <line x1=\"90\" y1=\"0\" x2=\"90\" y2=\"35\" />\n",
-       "  <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"0.0,0.0 120.0,0.0 120.0,35.164509745010875 0.0,35.164509745010875\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"60.000000\" y=\"55.164510\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >196608</text>\n",
-       "  <text x=\"140.000000\" y=\"17.582255\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,17.582255)\">10958</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>so</span></div><div class='xr-var-dims'>(time, depth_full, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(7, 9, 49152), meta=np.ndarray&gt;</div><input id='attrs-59e0107e-a498-41af-864c-7e4c0a4a6ec8' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-59e0107e-a498-41af-864c-7e4c0a4a6ec8' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-448b84c1-3755-4367-8ca7-43705d487a5a' class='xr-var-data-in' type='checkbox'><label for='data-448b84c1-3755-4367-8ca7-43705d487a5a' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>cell_methods :</span></dt><dd>time: mean cell: mean</dd><dt><span>component :</span></dt><dd>ocean</dd><dt><span>grid_mapping :</span></dt><dd>crs</dd><dt><span>long_name :</span></dt><dd>sea water salinity</dd><dt><span>standard_name :</span></dt><dd>sea_water_salinity</dd><dt><span>units :</span></dt><dd>psu</dd><dt><span>vgrid :</span></dt><dd>depth_below_sea</dd></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table>\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 577.86 GiB </td>\n",
-       "                        <td> 11.81 MiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (10958, 72, 196608) </td>\n",
-       "                        <td> (7, 9, 49152) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Count </th>\n",
-       "                        <td> 2 Graph Layers </td>\n",
-       "                        <td> 50112 Chunks </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                    <th> Type </th>\n",
-       "                    <td> float32 </td>\n",
-       "                    <td> numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"200\" height=\"96\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"10\" y1=\"0\" x2=\"30\" y2=\"20\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"10\" y1=\"3\" x2=\"30\" y2=\"23\" />\n",
-       "  <line x1=\"10\" y1=\"6\" x2=\"30\" y2=\"27\" />\n",
-       "  <line x1=\"10\" y1=\"9\" x2=\"30\" y2=\"30\" />\n",
-       "  <line x1=\"10\" y1=\"12\" x2=\"30\" y2=\"33\" />\n",
-       "  <line x1=\"10\" y1=\"15\" x2=\"30\" y2=\"36\" />\n",
-       "  <line x1=\"10\" y1=\"19\" x2=\"30\" y2=\"39\" />\n",
-       "  <line x1=\"10\" y1=\"22\" x2=\"30\" y2=\"42\" />\n",
-       "  <line x1=\"10\" y1=\"25\" x2=\"30\" y2=\"46\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"25\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"11\" y1=\"1\" x2=\"11\" y2=\"26\" />\n",
-       "  <line x1=\"12\" y1=\"2\" x2=\"12\" y2=\"27\" />\n",
-       "  <line x1=\"13\" y1=\"3\" x2=\"13\" y2=\"28\" />\n",
-       "  <line x1=\"14\" y1=\"4\" x2=\"14\" y2=\"29\" />\n",
-       "  <line x1=\"15\" y1=\"5\" x2=\"15\" y2=\"30\" />\n",
-       "  <line x1=\"16\" y1=\"6\" x2=\"16\" y2=\"31\" />\n",
-       "  <line x1=\"17\" y1=\"7\" x2=\"17\" y2=\"33\" />\n",
-       "  <line x1=\"18\" y1=\"8\" x2=\"18\" y2=\"34\" />\n",
-       "  <line x1=\"19\" y1=\"9\" x2=\"19\" y2=\"35\" />\n",
-       "  <line x1=\"20\" y1=\"10\" x2=\"20\" y2=\"36\" />\n",
-       "  <line x1=\"21\" y1=\"11\" x2=\"21\" y2=\"37\" />\n",
-       "  <line x1=\"23\" y1=\"13\" x2=\"23\" y2=\"38\" />\n",
-       "  <line x1=\"24\" y1=\"14\" x2=\"24\" y2=\"39\" />\n",
-       "  <line x1=\"25\" y1=\"15\" x2=\"25\" y2=\"40\" />\n",
-       "  <line x1=\"26\" y1=\"16\" x2=\"26\" y2=\"41\" />\n",
-       "  <line x1=\"27\" y1=\"17\" x2=\"27\" y2=\"42\" />\n",
-       "  <line x1=\"28\" y1=\"18\" x2=\"28\" y2=\"43\" />\n",
-       "  <line x1=\"29\" y1=\"19\" x2=\"29\" y2=\"45\" />\n",
-       "  <line x1=\"30\" y1=\"20\" x2=\"30\" y2=\"46\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"10.0,0.0 30.68500573235934,20.68500573235934 30.68500573235934,46.097622246941825 10.0,25.412616514582485\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"10\" y1=\"0\" x2=\"130\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"11\" y1=\"1\" x2=\"131\" y2=\"1\" />\n",
-       "  <line x1=\"12\" y1=\"2\" x2=\"132\" y2=\"2\" />\n",
-       "  <line x1=\"13\" y1=\"3\" x2=\"133\" y2=\"3\" />\n",
-       "  <line x1=\"14\" y1=\"4\" x2=\"134\" y2=\"4\" />\n",
-       "  <line x1=\"15\" y1=\"5\" x2=\"135\" y2=\"5\" />\n",
-       "  <line x1=\"16\" y1=\"6\" x2=\"136\" y2=\"6\" />\n",
-       "  <line x1=\"17\" y1=\"7\" x2=\"137\" y2=\"7\" />\n",
-       "  <line x1=\"18\" y1=\"8\" x2=\"138\" y2=\"8\" />\n",
-       "  <line x1=\"19\" y1=\"9\" x2=\"139\" y2=\"9\" />\n",
-       "  <line x1=\"20\" y1=\"10\" x2=\"140\" y2=\"10\" />\n",
-       "  <line x1=\"21\" y1=\"11\" x2=\"141\" y2=\"11\" />\n",
-       "  <line x1=\"23\" y1=\"13\" x2=\"143\" y2=\"13\" />\n",
-       "  <line x1=\"24\" y1=\"14\" x2=\"144\" y2=\"14\" />\n",
-       "  <line x1=\"25\" y1=\"15\" x2=\"145\" y2=\"15\" />\n",
-       "  <line x1=\"26\" y1=\"16\" x2=\"146\" y2=\"16\" />\n",
-       "  <line x1=\"27\" y1=\"17\" x2=\"147\" y2=\"17\" />\n",
-       "  <line x1=\"28\" y1=\"18\" x2=\"148\" y2=\"18\" />\n",
-       "  <line x1=\"29\" y1=\"19\" x2=\"149\" y2=\"19\" />\n",
-       "  <line x1=\"30\" y1=\"20\" x2=\"150\" y2=\"20\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"10\" y1=\"0\" x2=\"30\" y2=\"20\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"40\" y1=\"0\" x2=\"60\" y2=\"20\" />\n",
-       "  <line x1=\"70\" y1=\"0\" x2=\"90\" y2=\"20\" />\n",
-       "  <line x1=\"100\" y1=\"0\" x2=\"120\" y2=\"20\" />\n",
-       "  <line x1=\"130\" y1=\"0\" x2=\"150\" y2=\"20\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"10.0,0.0 130.0,0.0 150.68500573235934,20.68500573235934 30.68500573235934,20.68500573235934\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"30\" y1=\"20\" x2=\"150\" y2=\"20\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"30\" y1=\"23\" x2=\"150\" y2=\"23\" />\n",
-       "  <line x1=\"30\" y1=\"27\" x2=\"150\" y2=\"27\" />\n",
-       "  <line x1=\"30\" y1=\"30\" x2=\"150\" y2=\"30\" />\n",
-       "  <line x1=\"30\" y1=\"33\" x2=\"150\" y2=\"33\" />\n",
-       "  <line x1=\"30\" y1=\"36\" x2=\"150\" y2=\"36\" />\n",
-       "  <line x1=\"30\" y1=\"39\" x2=\"150\" y2=\"39\" />\n",
-       "  <line x1=\"30\" y1=\"42\" x2=\"150\" y2=\"42\" />\n",
-       "  <line x1=\"30\" y1=\"46\" x2=\"150\" y2=\"46\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"30\" y1=\"20\" x2=\"30\" y2=\"46\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"60\" y1=\"20\" x2=\"60\" y2=\"46\" />\n",
-       "  <line x1=\"90\" y1=\"20\" x2=\"90\" y2=\"46\" />\n",
-       "  <line x1=\"120\" y1=\"20\" x2=\"120\" y2=\"46\" />\n",
-       "  <line x1=\"150\" y1=\"20\" x2=\"150\" y2=\"46\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"30.68500573235934,20.68500573235934 150.68500573235934,20.68500573235934 150.68500573235934,46.097622246941825 30.68500573235934,46.097622246941825\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"90.685006\" y=\"66.097622\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >196608</text>\n",
-       "  <text x=\"170.685006\" y=\"33.391314\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,170.685006,33.391314)\">72</text>\n",
-       "  <text x=\"10.342503\" y=\"55.755119\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,10.342503,55.755119)\">10958</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>sse_grnd_hflx_old_box</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(90, 49152), meta=np.ndarray&gt;</div><input id='attrs-1ba8ea9d-a9ee-40e5-b9c4-f9cb539076fb' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-1ba8ea9d-a9ee-40e5-b9c4-f9cb539076fb' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-40c74f5d-597d-4dc8-8b21-168b50688527' class='xr-var-data-in' type='checkbox'><label for='data-40c74f5d-597d-4dc8-8b21-168b50688527' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>cell_methods :</span></dt><dd>time: mean cell: mean</dd><dt><span>component :</span></dt><dd>jsbach</dd><dt><span>grid_mapping :</span></dt><dd>crs</dd><dt><span>long_name :</span></dt><dd>Ground heat flux (old)</dd><dt><span>units :</span></dt><dd>J m-2 s-1</dd><dt><span>vgrid :</span></dt><dd>surface</dd></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table>\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 8.03 GiB </td>\n",
-       "                        <td> 16.88 MiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (10958, 196608) </td>\n",
-       "                        <td> (90, 49152) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Count </th>\n",
-       "                        <td> 2 Graph Layers </td>\n",
-       "                        <td> 488 Chunks </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                    <th> Type </th>\n",
-       "                    <td> float32 </td>\n",
-       "                    <td> numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"170\" height=\"85\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n",
-       "  <line x1=\"0\" y1=\"3\" x2=\"120\" y2=\"3\" />\n",
-       "  <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n",
-       "  <line x1=\"0\" y1=\"7\" x2=\"120\" y2=\"7\" />\n",
-       "  <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n",
-       "  <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n",
-       "  <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n",
-       "  <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n",
-       "  <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n",
-       "  <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n",
-       "  <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n",
-       "  <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n",
-       "  <line x1=\"0\" y1=\"23\" x2=\"120\" y2=\"23\" />\n",
-       "  <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" />\n",
-       "  <line x1=\"0\" y1=\"27\" x2=\"120\" y2=\"27\" />\n",
-       "  <line x1=\"0\" y1=\"29\" x2=\"120\" y2=\"29\" />\n",
-       "  <line x1=\"0\" y1=\"31\" x2=\"120\" y2=\"31\" />\n",
-       "  <line x1=\"0\" y1=\"33\" x2=\"120\" y2=\"33\" />\n",
-       "  <line x1=\"0\" y1=\"35\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"35\" />\n",
-       "  <line x1=\"60\" y1=\"0\" x2=\"60\" y2=\"35\" />\n",
-       "  <line x1=\"90\" y1=\"0\" x2=\"90\" y2=\"35\" />\n",
-       "  <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"0.0,0.0 120.0,0.0 120.0,35.164509745010875 0.0,35.164509745010875\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"60.000000\" y=\"55.164510\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >196608</text>\n",
-       "  <text x=\"140.000000\" y=\"17.582255\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,17.582255)\">10958</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>sse_t_soil_sl_box</span></div><div class='xr-var-dims'>(time, soil_depth_energy_level, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(15, 5, 49152), meta=np.ndarray&gt;</div><input id='attrs-5bca56ad-b9ae-4bfe-b0df-b9b9e479c941' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-5bca56ad-b9ae-4bfe-b0df-b9b9e479c941' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-6915eed7-8293-4e91-b247-3697a739ee8e' class='xr-var-data-in' type='checkbox'><label for='data-6915eed7-8293-4e91-b247-3697a739ee8e' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>cell_methods :</span></dt><dd>time: mean cell: mean</dd><dt><span>component :</span></dt><dd>jsbach</dd><dt><span>grid_mapping :</span></dt><dd>crs</dd><dt><span>standard_name :</span></dt><dd>soil_temperature</dd><dt><span>units :</span></dt><dd>K</dd><dt><span>vgrid :</span></dt><dd>soil_depth_energy</dd></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table>\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 40.13 GiB </td>\n",
-       "                        <td> 14.06 MiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (10958, 5, 196608) </td>\n",
-       "                        <td> (15, 5, 49152) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Count </th>\n",
-       "                        <td> 2 Graph Layers </td>\n",
-       "                        <td> 2924 Chunks </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                    <th> Type </th>\n",
-       "                    <td> float32 </td>\n",
-       "                    <td> numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"200\" height=\"96\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"10\" y1=\"0\" x2=\"30\" y2=\"20\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"10\" y1=\"25\" x2=\"30\" y2=\"46\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"25\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"11\" y1=\"1\" x2=\"11\" y2=\"26\" />\n",
-       "  <line x1=\"12\" y1=\"2\" x2=\"12\" y2=\"27\" />\n",
-       "  <line x1=\"13\" y1=\"3\" x2=\"13\" y2=\"28\" />\n",
-       "  <line x1=\"14\" y1=\"4\" x2=\"14\" y2=\"29\" />\n",
-       "  <line x1=\"15\" y1=\"5\" x2=\"15\" y2=\"30\" />\n",
-       "  <line x1=\"16\" y1=\"6\" x2=\"16\" y2=\"31\" />\n",
-       "  <line x1=\"17\" y1=\"7\" x2=\"17\" y2=\"33\" />\n",
-       "  <line x1=\"18\" y1=\"8\" x2=\"18\" y2=\"34\" />\n",
-       "  <line x1=\"19\" y1=\"9\" x2=\"19\" y2=\"35\" />\n",
-       "  <line x1=\"20\" y1=\"10\" x2=\"20\" y2=\"36\" />\n",
-       "  <line x1=\"21\" y1=\"11\" x2=\"21\" y2=\"37\" />\n",
-       "  <line x1=\"23\" y1=\"13\" x2=\"23\" y2=\"38\" />\n",
-       "  <line x1=\"24\" y1=\"14\" x2=\"24\" y2=\"39\" />\n",
-       "  <line x1=\"25\" y1=\"15\" x2=\"25\" y2=\"40\" />\n",
-       "  <line x1=\"26\" y1=\"16\" x2=\"26\" y2=\"41\" />\n",
-       "  <line x1=\"27\" y1=\"17\" x2=\"27\" y2=\"42\" />\n",
-       "  <line x1=\"28\" y1=\"18\" x2=\"28\" y2=\"43\" />\n",
-       "  <line x1=\"29\" y1=\"19\" x2=\"29\" y2=\"45\" />\n",
-       "  <line x1=\"30\" y1=\"20\" x2=\"30\" y2=\"46\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"10.0,0.0 30.68500573235934,20.68500573235934 30.68500573235934,46.097622246941825 10.0,25.412616514582485\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"10\" y1=\"0\" x2=\"130\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"11\" y1=\"1\" x2=\"131\" y2=\"1\" />\n",
-       "  <line x1=\"12\" y1=\"2\" x2=\"132\" y2=\"2\" />\n",
-       "  <line x1=\"13\" y1=\"3\" x2=\"133\" y2=\"3\" />\n",
-       "  <line x1=\"14\" y1=\"4\" x2=\"134\" y2=\"4\" />\n",
-       "  <line x1=\"15\" y1=\"5\" x2=\"135\" y2=\"5\" />\n",
-       "  <line x1=\"16\" y1=\"6\" x2=\"136\" y2=\"6\" />\n",
-       "  <line x1=\"17\" y1=\"7\" x2=\"137\" y2=\"7\" />\n",
-       "  <line x1=\"18\" y1=\"8\" x2=\"138\" y2=\"8\" />\n",
-       "  <line x1=\"19\" y1=\"9\" x2=\"139\" y2=\"9\" />\n",
-       "  <line x1=\"20\" y1=\"10\" x2=\"140\" y2=\"10\" />\n",
-       "  <line x1=\"21\" y1=\"11\" x2=\"141\" y2=\"11\" />\n",
-       "  <line x1=\"23\" y1=\"13\" x2=\"143\" y2=\"13\" />\n",
-       "  <line x1=\"24\" y1=\"14\" x2=\"144\" y2=\"14\" />\n",
-       "  <line x1=\"25\" y1=\"15\" x2=\"145\" y2=\"15\" />\n",
-       "  <line x1=\"26\" y1=\"16\" x2=\"146\" y2=\"16\" />\n",
-       "  <line x1=\"27\" y1=\"17\" x2=\"147\" y2=\"17\" />\n",
-       "  <line x1=\"28\" y1=\"18\" x2=\"148\" y2=\"18\" />\n",
-       "  <line x1=\"29\" y1=\"19\" x2=\"149\" y2=\"19\" />\n",
-       "  <line x1=\"30\" y1=\"20\" x2=\"150\" y2=\"20\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"10\" y1=\"0\" x2=\"30\" y2=\"20\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"40\" y1=\"0\" x2=\"60\" y2=\"20\" />\n",
-       "  <line x1=\"70\" y1=\"0\" x2=\"90\" y2=\"20\" />\n",
-       "  <line x1=\"100\" y1=\"0\" x2=\"120\" y2=\"20\" />\n",
-       "  <line x1=\"130\" y1=\"0\" x2=\"150\" y2=\"20\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"10.0,0.0 130.0,0.0 150.68500573235934,20.68500573235934 30.68500573235934,20.68500573235934\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"30\" y1=\"20\" x2=\"150\" y2=\"20\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"30\" y1=\"46\" x2=\"150\" y2=\"46\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"30\" y1=\"20\" x2=\"30\" y2=\"46\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"60\" y1=\"20\" x2=\"60\" y2=\"46\" />\n",
-       "  <line x1=\"90\" y1=\"20\" x2=\"90\" y2=\"46\" />\n",
-       "  <line x1=\"120\" y1=\"20\" x2=\"120\" y2=\"46\" />\n",
-       "  <line x1=\"150\" y1=\"20\" x2=\"150\" y2=\"46\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"30.68500573235934,20.68500573235934 150.68500573235934,20.68500573235934 150.68500573235934,46.097622246941825 30.68500573235934,46.097622246941825\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"90.685006\" y=\"66.097622\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >196608</text>\n",
-       "  <text x=\"170.685006\" y=\"33.391314\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,170.685006,33.391314)\">5</text>\n",
-       "  <text x=\"10.342503\" y=\"55.755119\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,10.342503,55.755119)\">10958</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>stretch_c</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(90, 49152), meta=np.ndarray&gt;</div><input id='attrs-e09c8697-fe8f-4768-8f14-e50f8a5e1d4f' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-e09c8697-fe8f-4768-8f14-e50f8a5e1d4f' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-9f83210e-d011-4287-b997-6858edfa5e7c' class='xr-var-data-in' type='checkbox'><label for='data-9f83210e-d011-4287-b997-6858edfa5e7c' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>cell_methods :</span></dt><dd>time: mean cell: mean</dd><dt><span>component :</span></dt><dd>ocean</dd><dt><span>grid_mapping :</span></dt><dd>crs</dd><dt><span>long_name :</span></dt><dd>zstar surface stretch at cell center</dd><dt><span>units :</span></dt><dd>m</dd><dt><span>vgrid :</span></dt><dd>surface</dd></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table>\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 8.03 GiB </td>\n",
-       "                        <td> 16.88 MiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (10958, 196608) </td>\n",
-       "                        <td> (90, 49152) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Count </th>\n",
-       "                        <td> 2 Graph Layers </td>\n",
-       "                        <td> 488 Chunks </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                    <th> Type </th>\n",
-       "                    <td> float32 </td>\n",
-       "                    <td> numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"170\" height=\"85\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n",
-       "  <line x1=\"0\" y1=\"3\" x2=\"120\" y2=\"3\" />\n",
-       "  <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n",
-       "  <line x1=\"0\" y1=\"7\" x2=\"120\" y2=\"7\" />\n",
-       "  <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n",
-       "  <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n",
-       "  <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n",
-       "  <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n",
-       "  <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n",
-       "  <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n",
-       "  <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n",
-       "  <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n",
-       "  <line x1=\"0\" y1=\"23\" x2=\"120\" y2=\"23\" />\n",
-       "  <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" />\n",
-       "  <line x1=\"0\" y1=\"27\" x2=\"120\" y2=\"27\" />\n",
-       "  <line x1=\"0\" y1=\"29\" x2=\"120\" y2=\"29\" />\n",
-       "  <line x1=\"0\" y1=\"31\" x2=\"120\" y2=\"31\" />\n",
-       "  <line x1=\"0\" y1=\"33\" x2=\"120\" y2=\"33\" />\n",
-       "  <line x1=\"0\" y1=\"35\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"35\" />\n",
-       "  <line x1=\"60\" y1=\"0\" x2=\"60\" y2=\"35\" />\n",
-       "  <line x1=\"90\" y1=\"0\" x2=\"90\" y2=\"35\" />\n",
-       "  <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"0.0,0.0 120.0,0.0 120.0,35.164509745010875 0.0,35.164509745010875\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"60.000000\" y=\"55.164510\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >196608</text>\n",
-       "  <text x=\"140.000000\" y=\"17.582255\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,17.582255)\">10958</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>ta</span></div><div class='xr-var-dims'>(time, level_full, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(7, 9, 49152), meta=np.ndarray&gt;</div><input id='attrs-9a8e7a5f-81f9-4f64-9bad-2b870b501c3f' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-9a8e7a5f-81f9-4f64-9bad-2b870b501c3f' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-5646464a-d0e4-4532-97d7-67ae4dd37acc' class='xr-var-data-in' type='checkbox'><label for='data-5646464a-d0e4-4532-97d7-67ae4dd37acc' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>cell_methods :</span></dt><dd>time: mean cell: mean</dd><dt><span>component :</span></dt><dd>atmo</dd><dt><span>grid_mapping :</span></dt><dd>crs</dd><dt><span>long_name :</span></dt><dd>Temperature</dd><dt><span>standard_name :</span></dt><dd>air_temperature</dd><dt><span>units :</span></dt><dd>K</dd><dt><span>vgrid :</span></dt><dd>reference</dd></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table>\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 722.33 GiB </td>\n",
-       "                        <td> 11.81 MiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (10958, 90, 196608) </td>\n",
-       "                        <td> (7, 9, 49152) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Count </th>\n",
-       "                        <td> 2 Graph Layers </td>\n",
-       "                        <td> 62640 Chunks </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                    <th> Type </th>\n",
-       "                    <td> float32 </td>\n",
-       "                    <td> numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"200\" height=\"96\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"10\" y1=\"0\" x2=\"30\" y2=\"20\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"10\" y1=\"2\" x2=\"30\" y2=\"23\" />\n",
-       "  <line x1=\"10\" y1=\"5\" x2=\"30\" y2=\"25\" />\n",
-       "  <line x1=\"10\" y1=\"7\" x2=\"30\" y2=\"28\" />\n",
-       "  <line x1=\"10\" y1=\"10\" x2=\"30\" y2=\"30\" />\n",
-       "  <line x1=\"10\" y1=\"12\" x2=\"30\" y2=\"33\" />\n",
-       "  <line x1=\"10\" y1=\"15\" x2=\"30\" y2=\"35\" />\n",
-       "  <line x1=\"10\" y1=\"17\" x2=\"30\" y2=\"38\" />\n",
-       "  <line x1=\"10\" y1=\"20\" x2=\"30\" y2=\"41\" />\n",
-       "  <line x1=\"10\" y1=\"22\" x2=\"30\" y2=\"43\" />\n",
-       "  <line x1=\"10\" y1=\"25\" x2=\"30\" y2=\"46\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"25\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"11\" y1=\"1\" x2=\"11\" y2=\"26\" />\n",
-       "  <line x1=\"12\" y1=\"2\" x2=\"12\" y2=\"27\" />\n",
-       "  <line x1=\"13\" y1=\"3\" x2=\"13\" y2=\"28\" />\n",
-       "  <line x1=\"14\" y1=\"4\" x2=\"14\" y2=\"29\" />\n",
-       "  <line x1=\"15\" y1=\"5\" x2=\"15\" y2=\"30\" />\n",
-       "  <line x1=\"16\" y1=\"6\" x2=\"16\" y2=\"31\" />\n",
-       "  <line x1=\"17\" y1=\"7\" x2=\"17\" y2=\"33\" />\n",
-       "  <line x1=\"18\" y1=\"8\" x2=\"18\" y2=\"34\" />\n",
-       "  <line x1=\"19\" y1=\"9\" x2=\"19\" y2=\"35\" />\n",
-       "  <line x1=\"20\" y1=\"10\" x2=\"20\" y2=\"36\" />\n",
-       "  <line x1=\"21\" y1=\"11\" x2=\"21\" y2=\"37\" />\n",
-       "  <line x1=\"23\" y1=\"13\" x2=\"23\" y2=\"38\" />\n",
-       "  <line x1=\"24\" y1=\"14\" x2=\"24\" y2=\"39\" />\n",
-       "  <line x1=\"25\" y1=\"15\" x2=\"25\" y2=\"40\" />\n",
-       "  <line x1=\"26\" y1=\"16\" x2=\"26\" y2=\"41\" />\n",
-       "  <line x1=\"27\" y1=\"17\" x2=\"27\" y2=\"42\" />\n",
-       "  <line x1=\"28\" y1=\"18\" x2=\"28\" y2=\"43\" />\n",
-       "  <line x1=\"29\" y1=\"19\" x2=\"29\" y2=\"45\" />\n",
-       "  <line x1=\"30\" y1=\"20\" x2=\"30\" y2=\"46\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"10.0,0.0 30.68500573235934,20.68500573235934 30.68500573235934,46.097622246941825 10.0,25.41261651458249\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"10\" y1=\"0\" x2=\"130\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"11\" y1=\"1\" x2=\"131\" y2=\"1\" />\n",
-       "  <line x1=\"12\" y1=\"2\" x2=\"132\" y2=\"2\" />\n",
-       "  <line x1=\"13\" y1=\"3\" x2=\"133\" y2=\"3\" />\n",
-       "  <line x1=\"14\" y1=\"4\" x2=\"134\" y2=\"4\" />\n",
-       "  <line x1=\"15\" y1=\"5\" x2=\"135\" y2=\"5\" />\n",
-       "  <line x1=\"16\" y1=\"6\" x2=\"136\" y2=\"6\" />\n",
-       "  <line x1=\"17\" y1=\"7\" x2=\"137\" y2=\"7\" />\n",
-       "  <line x1=\"18\" y1=\"8\" x2=\"138\" y2=\"8\" />\n",
-       "  <line x1=\"19\" y1=\"9\" x2=\"139\" y2=\"9\" />\n",
-       "  <line x1=\"20\" y1=\"10\" x2=\"140\" y2=\"10\" />\n",
-       "  <line x1=\"21\" y1=\"11\" x2=\"141\" y2=\"11\" />\n",
-       "  <line x1=\"23\" y1=\"13\" x2=\"143\" y2=\"13\" />\n",
-       "  <line x1=\"24\" y1=\"14\" x2=\"144\" y2=\"14\" />\n",
-       "  <line x1=\"25\" y1=\"15\" x2=\"145\" y2=\"15\" />\n",
-       "  <line x1=\"26\" y1=\"16\" x2=\"146\" y2=\"16\" />\n",
-       "  <line x1=\"27\" y1=\"17\" x2=\"147\" y2=\"17\" />\n",
-       "  <line x1=\"28\" y1=\"18\" x2=\"148\" y2=\"18\" />\n",
-       "  <line x1=\"29\" y1=\"19\" x2=\"149\" y2=\"19\" />\n",
-       "  <line x1=\"30\" y1=\"20\" x2=\"150\" y2=\"20\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"10\" y1=\"0\" x2=\"30\" y2=\"20\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"40\" y1=\"0\" x2=\"60\" y2=\"20\" />\n",
-       "  <line x1=\"70\" y1=\"0\" x2=\"90\" y2=\"20\" />\n",
-       "  <line x1=\"100\" y1=\"0\" x2=\"120\" y2=\"20\" />\n",
-       "  <line x1=\"130\" y1=\"0\" x2=\"150\" y2=\"20\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"10.0,0.0 130.0,0.0 150.68500573235934,20.68500573235934 30.68500573235934,20.68500573235934\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"30\" y1=\"20\" x2=\"150\" y2=\"20\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"30\" y1=\"23\" x2=\"150\" y2=\"23\" />\n",
-       "  <line x1=\"30\" y1=\"25\" x2=\"150\" y2=\"25\" />\n",
-       "  <line x1=\"30\" y1=\"28\" x2=\"150\" y2=\"28\" />\n",
-       "  <line x1=\"30\" y1=\"30\" x2=\"150\" y2=\"30\" />\n",
-       "  <line x1=\"30\" y1=\"33\" x2=\"150\" y2=\"33\" />\n",
-       "  <line x1=\"30\" y1=\"35\" x2=\"150\" y2=\"35\" />\n",
-       "  <line x1=\"30\" y1=\"38\" x2=\"150\" y2=\"38\" />\n",
-       "  <line x1=\"30\" y1=\"41\" x2=\"150\" y2=\"41\" />\n",
-       "  <line x1=\"30\" y1=\"43\" x2=\"150\" y2=\"43\" />\n",
-       "  <line x1=\"30\" y1=\"46\" x2=\"150\" y2=\"46\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"30\" y1=\"20\" x2=\"30\" y2=\"46\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"60\" y1=\"20\" x2=\"60\" y2=\"46\" />\n",
-       "  <line x1=\"90\" y1=\"20\" x2=\"90\" y2=\"46\" />\n",
-       "  <line x1=\"120\" y1=\"20\" x2=\"120\" y2=\"46\" />\n",
-       "  <line x1=\"150\" y1=\"20\" x2=\"150\" y2=\"46\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"30.68500573235934,20.68500573235934 150.68500573235934,20.68500573235934 150.68500573235934,46.097622246941825 30.68500573235934,46.097622246941825\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"90.685006\" y=\"66.097622\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >196608</text>\n",
-       "  <text x=\"170.685006\" y=\"33.391314\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,170.685006,33.391314)\">90</text>\n",
-       "  <text x=\"10.342503\" y=\"55.755119\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,10.342503,55.755119)\">10958</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>tas</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(90, 49152), meta=np.ndarray&gt;</div><input id='attrs-9ae8e17b-8014-4e98-9468-f549e2186601' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-9ae8e17b-8014-4e98-9468-f549e2186601' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-457a0bf4-a76e-4582-91f5-53b53e07ca76' class='xr-var-data-in' type='checkbox'><label for='data-457a0bf4-a76e-4582-91f5-53b53e07ca76' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>cell_methods :</span></dt><dd>time: mean cell: mean</dd><dt><span>component :</span></dt><dd>atmo</dd><dt><span>grid_mapping :</span></dt><dd>crs</dd><dt><span>long_name :</span></dt><dd>temperature in 2m</dd><dt><span>standard_name :</span></dt><dd>air_temperature</dd><dt><span>units :</span></dt><dd>K</dd><dt><span>vgrid :</span></dt><dd>height_2m</dd></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table>\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 8.03 GiB </td>\n",
-       "                        <td> 16.88 MiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (10958, 196608) </td>\n",
-       "                        <td> (90, 49152) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Count </th>\n",
-       "                        <td> 2 Graph Layers </td>\n",
-       "                        <td> 488 Chunks </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                    <th> Type </th>\n",
-       "                    <td> float32 </td>\n",
-       "                    <td> numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"170\" height=\"85\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n",
-       "  <line x1=\"0\" y1=\"3\" x2=\"120\" y2=\"3\" />\n",
-       "  <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n",
-       "  <line x1=\"0\" y1=\"7\" x2=\"120\" y2=\"7\" />\n",
-       "  <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n",
-       "  <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n",
-       "  <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n",
-       "  <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n",
-       "  <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n",
-       "  <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n",
-       "  <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n",
-       "  <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n",
-       "  <line x1=\"0\" y1=\"23\" x2=\"120\" y2=\"23\" />\n",
-       "  <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" />\n",
-       "  <line x1=\"0\" y1=\"27\" x2=\"120\" y2=\"27\" />\n",
-       "  <line x1=\"0\" y1=\"29\" x2=\"120\" y2=\"29\" />\n",
-       "  <line x1=\"0\" y1=\"31\" x2=\"120\" y2=\"31\" />\n",
-       "  <line x1=\"0\" y1=\"33\" x2=\"120\" y2=\"33\" />\n",
-       "  <line x1=\"0\" y1=\"35\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"35\" />\n",
-       "  <line x1=\"60\" y1=\"0\" x2=\"60\" y2=\"35\" />\n",
-       "  <line x1=\"90\" y1=\"0\" x2=\"90\" y2=\"35\" />\n",
-       "  <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"0.0,0.0 120.0,0.0 120.0,35.164509745010875 0.0,35.164509745010875\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"60.000000\" y=\"55.164510\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >196608</text>\n",
-       "  <text x=\"140.000000\" y=\"17.582255\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,17.582255)\">10958</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>tauu</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(90, 49152), meta=np.ndarray&gt;</div><input id='attrs-a04bf3c7-b869-499d-887d-7a8e2fafd1b8' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-a04bf3c7-b869-499d-887d-7a8e2fafd1b8' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-909565dd-7af5-4ec2-ae4d-df5ec4da1e67' class='xr-var-data-in' type='checkbox'><label for='data-909565dd-7af5-4ec2-ae4d-df5ec4da1e67' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>cell_methods :</span></dt><dd>time: mean cell: mean</dd><dt><span>component :</span></dt><dd>atmo</dd><dt><span>grid_mapping :</span></dt><dd>crs</dd><dt><span>long_name :</span></dt><dd>u-momentum flux at the surface</dd><dt><span>units :</span></dt><dd>N m-2</dd><dt><span>vgrid :</span></dt><dd>surface</dd></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table>\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 8.03 GiB </td>\n",
-       "                        <td> 16.88 MiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (10958, 196608) </td>\n",
-       "                        <td> (90, 49152) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Count </th>\n",
-       "                        <td> 2 Graph Layers </td>\n",
-       "                        <td> 488 Chunks </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                    <th> Type </th>\n",
-       "                    <td> float32 </td>\n",
-       "                    <td> numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"170\" height=\"85\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n",
-       "  <line x1=\"0\" y1=\"3\" x2=\"120\" y2=\"3\" />\n",
-       "  <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n",
-       "  <line x1=\"0\" y1=\"7\" x2=\"120\" y2=\"7\" />\n",
-       "  <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n",
-       "  <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n",
-       "  <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n",
-       "  <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n",
-       "  <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n",
-       "  <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n",
-       "  <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n",
-       "  <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n",
-       "  <line x1=\"0\" y1=\"23\" x2=\"120\" y2=\"23\" />\n",
-       "  <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" />\n",
-       "  <line x1=\"0\" y1=\"27\" x2=\"120\" y2=\"27\" />\n",
-       "  <line x1=\"0\" y1=\"29\" x2=\"120\" y2=\"29\" />\n",
-       "  <line x1=\"0\" y1=\"31\" x2=\"120\" y2=\"31\" />\n",
-       "  <line x1=\"0\" y1=\"33\" x2=\"120\" y2=\"33\" />\n",
-       "  <line x1=\"0\" y1=\"35\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"35\" />\n",
-       "  <line x1=\"60\" y1=\"0\" x2=\"60\" y2=\"35\" />\n",
-       "  <line x1=\"90\" y1=\"0\" x2=\"90\" y2=\"35\" />\n",
-       "  <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"0.0,0.0 120.0,0.0 120.0,35.164509745010875 0.0,35.164509745010875\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"60.000000\" y=\"55.164510\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >196608</text>\n",
-       "  <text x=\"140.000000\" y=\"17.582255\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,17.582255)\">10958</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>tauv</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(90, 49152), meta=np.ndarray&gt;</div><input id='attrs-1681e9cd-e67c-4499-84ad-bfe40eef362b' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-1681e9cd-e67c-4499-84ad-bfe40eef362b' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-df18d7f3-289b-4785-a055-eac8c80e7faa' class='xr-var-data-in' type='checkbox'><label for='data-df18d7f3-289b-4785-a055-eac8c80e7faa' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>cell_methods :</span></dt><dd>time: mean cell: mean</dd><dt><span>component :</span></dt><dd>atmo</dd><dt><span>grid_mapping :</span></dt><dd>crs</dd><dt><span>long_name :</span></dt><dd>v-momentum flux at the surface</dd><dt><span>units :</span></dt><dd>N m-2</dd><dt><span>vgrid :</span></dt><dd>surface</dd></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table>\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 8.03 GiB </td>\n",
-       "                        <td> 16.88 MiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (10958, 196608) </td>\n",
-       "                        <td> (90, 49152) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Count </th>\n",
-       "                        <td> 2 Graph Layers </td>\n",
-       "                        <td> 488 Chunks </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                    <th> Type </th>\n",
-       "                    <td> float32 </td>\n",
-       "                    <td> numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"170\" height=\"85\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n",
-       "  <line x1=\"0\" y1=\"3\" x2=\"120\" y2=\"3\" />\n",
-       "  <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n",
-       "  <line x1=\"0\" y1=\"7\" x2=\"120\" y2=\"7\" />\n",
-       "  <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n",
-       "  <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n",
-       "  <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n",
-       "  <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n",
-       "  <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n",
-       "  <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n",
-       "  <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n",
-       "  <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n",
-       "  <line x1=\"0\" y1=\"23\" x2=\"120\" y2=\"23\" />\n",
-       "  <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" />\n",
-       "  <line x1=\"0\" y1=\"27\" x2=\"120\" y2=\"27\" />\n",
-       "  <line x1=\"0\" y1=\"29\" x2=\"120\" y2=\"29\" />\n",
-       "  <line x1=\"0\" y1=\"31\" x2=\"120\" y2=\"31\" />\n",
-       "  <line x1=\"0\" y1=\"33\" x2=\"120\" y2=\"33\" />\n",
-       "  <line x1=\"0\" y1=\"35\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"35\" />\n",
-       "  <line x1=\"60\" y1=\"0\" x2=\"60\" y2=\"35\" />\n",
-       "  <line x1=\"90\" y1=\"0\" x2=\"90\" y2=\"35\" />\n",
-       "  <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"0.0,0.0 120.0,0.0 120.0,35.164509745010875 0.0,35.164509745010875\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"60.000000\" y=\"55.164510\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >196608</text>\n",
-       "  <text x=\"140.000000\" y=\"17.582255\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,17.582255)\">10958</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>tke</span></div><div class='xr-var-dims'>(time, depth_half, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(7, 9, 49152), meta=np.ndarray&gt;</div><input id='attrs-349aeb5c-4185-485a-96a8-0d2ebe015fb4' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-349aeb5c-4185-485a-96a8-0d2ebe015fb4' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-8487bbd9-a3db-4eaf-bcad-6e3deecb3aa2' class='xr-var-data-in' type='checkbox'><label for='data-8487bbd9-a3db-4eaf-bcad-6e3deecb3aa2' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>cell_methods :</span></dt><dd>time: mean cell: mean</dd><dt><span>component :</span></dt><dd>ocean</dd><dt><span>grid_mapping :</span></dt><dd>crs</dd><dt><span>long_name :</span></dt><dd>turbulent kinetic energy</dd><dt><span>units :</span></dt><dd>m2 s-2</dd><dt><span>vgrid :</span></dt><dd>depth_below_sea_half</dd></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table>\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 585.89 GiB </td>\n",
-       "                        <td> 11.81 MiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (10958, 73, 196608) </td>\n",
-       "                        <td> (7, 9, 49152) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Count </th>\n",
-       "                        <td> 2 Graph Layers </td>\n",
-       "                        <td> 56376 Chunks </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                    <th> Type </th>\n",
-       "                    <td> float32 </td>\n",
-       "                    <td> numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"200\" height=\"96\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"10\" y1=\"0\" x2=\"30\" y2=\"20\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"10\" y1=\"3\" x2=\"30\" y2=\"23\" />\n",
-       "  <line x1=\"10\" y1=\"6\" x2=\"30\" y2=\"26\" />\n",
-       "  <line x1=\"10\" y1=\"9\" x2=\"30\" y2=\"30\" />\n",
-       "  <line x1=\"10\" y1=\"12\" x2=\"30\" y2=\"33\" />\n",
-       "  <line x1=\"10\" y1=\"15\" x2=\"30\" y2=\"36\" />\n",
-       "  <line x1=\"10\" y1=\"18\" x2=\"30\" y2=\"39\" />\n",
-       "  <line x1=\"10\" y1=\"21\" x2=\"30\" y2=\"42\" />\n",
-       "  <line x1=\"10\" y1=\"25\" x2=\"30\" y2=\"45\" />\n",
-       "  <line x1=\"10\" y1=\"25\" x2=\"30\" y2=\"46\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"25\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"11\" y1=\"1\" x2=\"11\" y2=\"26\" />\n",
-       "  <line x1=\"12\" y1=\"2\" x2=\"12\" y2=\"27\" />\n",
-       "  <line x1=\"13\" y1=\"3\" x2=\"13\" y2=\"28\" />\n",
-       "  <line x1=\"14\" y1=\"4\" x2=\"14\" y2=\"29\" />\n",
-       "  <line x1=\"15\" y1=\"5\" x2=\"15\" y2=\"30\" />\n",
-       "  <line x1=\"16\" y1=\"6\" x2=\"16\" y2=\"31\" />\n",
-       "  <line x1=\"17\" y1=\"7\" x2=\"17\" y2=\"33\" />\n",
-       "  <line x1=\"18\" y1=\"8\" x2=\"18\" y2=\"34\" />\n",
-       "  <line x1=\"19\" y1=\"9\" x2=\"19\" y2=\"35\" />\n",
-       "  <line x1=\"20\" y1=\"10\" x2=\"20\" y2=\"36\" />\n",
-       "  <line x1=\"21\" y1=\"11\" x2=\"21\" y2=\"37\" />\n",
-       "  <line x1=\"23\" y1=\"13\" x2=\"23\" y2=\"38\" />\n",
-       "  <line x1=\"24\" y1=\"14\" x2=\"24\" y2=\"39\" />\n",
-       "  <line x1=\"25\" y1=\"15\" x2=\"25\" y2=\"40\" />\n",
-       "  <line x1=\"26\" y1=\"16\" x2=\"26\" y2=\"41\" />\n",
-       "  <line x1=\"27\" y1=\"17\" x2=\"27\" y2=\"42\" />\n",
-       "  <line x1=\"28\" y1=\"18\" x2=\"28\" y2=\"43\" />\n",
-       "  <line x1=\"29\" y1=\"19\" x2=\"29\" y2=\"45\" />\n",
-       "  <line x1=\"30\" y1=\"20\" x2=\"30\" y2=\"46\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"10.0,0.0 30.68500573235934,20.68500573235934 30.68500573235934,46.097622246941825 10.0,25.412616514582485\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"10\" y1=\"0\" x2=\"130\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"11\" y1=\"1\" x2=\"131\" y2=\"1\" />\n",
-       "  <line x1=\"12\" y1=\"2\" x2=\"132\" y2=\"2\" />\n",
-       "  <line x1=\"13\" y1=\"3\" x2=\"133\" y2=\"3\" />\n",
-       "  <line x1=\"14\" y1=\"4\" x2=\"134\" y2=\"4\" />\n",
-       "  <line x1=\"15\" y1=\"5\" x2=\"135\" y2=\"5\" />\n",
-       "  <line x1=\"16\" y1=\"6\" x2=\"136\" y2=\"6\" />\n",
-       "  <line x1=\"17\" y1=\"7\" x2=\"137\" y2=\"7\" />\n",
-       "  <line x1=\"18\" y1=\"8\" x2=\"138\" y2=\"8\" />\n",
-       "  <line x1=\"19\" y1=\"9\" x2=\"139\" y2=\"9\" />\n",
-       "  <line x1=\"20\" y1=\"10\" x2=\"140\" y2=\"10\" />\n",
-       "  <line x1=\"21\" y1=\"11\" x2=\"141\" y2=\"11\" />\n",
-       "  <line x1=\"23\" y1=\"13\" x2=\"143\" y2=\"13\" />\n",
-       "  <line x1=\"24\" y1=\"14\" x2=\"144\" y2=\"14\" />\n",
-       "  <line x1=\"25\" y1=\"15\" x2=\"145\" y2=\"15\" />\n",
-       "  <line x1=\"26\" y1=\"16\" x2=\"146\" y2=\"16\" />\n",
-       "  <line x1=\"27\" y1=\"17\" x2=\"147\" y2=\"17\" />\n",
-       "  <line x1=\"28\" y1=\"18\" x2=\"148\" y2=\"18\" />\n",
-       "  <line x1=\"29\" y1=\"19\" x2=\"149\" y2=\"19\" />\n",
-       "  <line x1=\"30\" y1=\"20\" x2=\"150\" y2=\"20\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"10\" y1=\"0\" x2=\"30\" y2=\"20\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"40\" y1=\"0\" x2=\"60\" y2=\"20\" />\n",
-       "  <line x1=\"70\" y1=\"0\" x2=\"90\" y2=\"20\" />\n",
-       "  <line x1=\"100\" y1=\"0\" x2=\"120\" y2=\"20\" />\n",
-       "  <line x1=\"130\" y1=\"0\" x2=\"150\" y2=\"20\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"10.0,0.0 130.0,0.0 150.68500573235934,20.68500573235934 30.68500573235934,20.68500573235934\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"30\" y1=\"20\" x2=\"150\" y2=\"20\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"30\" y1=\"23\" x2=\"150\" y2=\"23\" />\n",
-       "  <line x1=\"30\" y1=\"26\" x2=\"150\" y2=\"26\" />\n",
-       "  <line x1=\"30\" y1=\"30\" x2=\"150\" y2=\"30\" />\n",
-       "  <line x1=\"30\" y1=\"33\" x2=\"150\" y2=\"33\" />\n",
-       "  <line x1=\"30\" y1=\"36\" x2=\"150\" y2=\"36\" />\n",
-       "  <line x1=\"30\" y1=\"39\" x2=\"150\" y2=\"39\" />\n",
-       "  <line x1=\"30\" y1=\"42\" x2=\"150\" y2=\"42\" />\n",
-       "  <line x1=\"30\" y1=\"45\" x2=\"150\" y2=\"45\" />\n",
-       "  <line x1=\"30\" y1=\"46\" x2=\"150\" y2=\"46\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"30\" y1=\"20\" x2=\"30\" y2=\"46\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"60\" y1=\"20\" x2=\"60\" y2=\"46\" />\n",
-       "  <line x1=\"90\" y1=\"20\" x2=\"90\" y2=\"46\" />\n",
-       "  <line x1=\"120\" y1=\"20\" x2=\"120\" y2=\"46\" />\n",
-       "  <line x1=\"150\" y1=\"20\" x2=\"150\" y2=\"46\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"30.68500573235934,20.68500573235934 150.68500573235934,20.68500573235934 150.68500573235934,46.097622246941825 30.68500573235934,46.097622246941825\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"90.685006\" y=\"66.097622\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >196608</text>\n",
-       "  <text x=\"170.685006\" y=\"33.391314\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,170.685006,33.391314)\">73</text>\n",
-       "  <text x=\"10.342503\" y=\"55.755119\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,10.342503,55.755119)\">10958</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>to</span></div><div class='xr-var-dims'>(time, depth_full, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(7, 9, 49152), meta=np.ndarray&gt;</div><input id='attrs-1f7fbaac-a4c9-4e0f-9c92-86783297e5c3' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-1f7fbaac-a4c9-4e0f-9c92-86783297e5c3' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-094bfb56-1e08-4784-9389-1bd7dcf59e84' class='xr-var-data-in' type='checkbox'><label for='data-094bfb56-1e08-4784-9389-1bd7dcf59e84' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>cell_methods :</span></dt><dd>time: mean cell: mean</dd><dt><span>component :</span></dt><dd>ocean</dd><dt><span>grid_mapping :</span></dt><dd>crs</dd><dt><span>long_name :</span></dt><dd>sea water potential temperature</dd><dt><span>standard_name :</span></dt><dd>sea_water_potential_temperature</dd><dt><span>units :</span></dt><dd>degC</dd><dt><span>vgrid :</span></dt><dd>depth_below_sea</dd></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table>\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 577.86 GiB </td>\n",
-       "                        <td> 11.81 MiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (10958, 72, 196608) </td>\n",
-       "                        <td> (7, 9, 49152) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Count </th>\n",
-       "                        <td> 2 Graph Layers </td>\n",
-       "                        <td> 50112 Chunks </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                    <th> Type </th>\n",
-       "                    <td> float32 </td>\n",
-       "                    <td> numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"200\" height=\"96\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"10\" y1=\"0\" x2=\"30\" y2=\"20\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"10\" y1=\"3\" x2=\"30\" y2=\"23\" />\n",
-       "  <line x1=\"10\" y1=\"6\" x2=\"30\" y2=\"27\" />\n",
-       "  <line x1=\"10\" y1=\"9\" x2=\"30\" y2=\"30\" />\n",
-       "  <line x1=\"10\" y1=\"12\" x2=\"30\" y2=\"33\" />\n",
-       "  <line x1=\"10\" y1=\"15\" x2=\"30\" y2=\"36\" />\n",
-       "  <line x1=\"10\" y1=\"19\" x2=\"30\" y2=\"39\" />\n",
-       "  <line x1=\"10\" y1=\"22\" x2=\"30\" y2=\"42\" />\n",
-       "  <line x1=\"10\" y1=\"25\" x2=\"30\" y2=\"46\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"25\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"11\" y1=\"1\" x2=\"11\" y2=\"26\" />\n",
-       "  <line x1=\"12\" y1=\"2\" x2=\"12\" y2=\"27\" />\n",
-       "  <line x1=\"13\" y1=\"3\" x2=\"13\" y2=\"28\" />\n",
-       "  <line x1=\"14\" y1=\"4\" x2=\"14\" y2=\"29\" />\n",
-       "  <line x1=\"15\" y1=\"5\" x2=\"15\" y2=\"30\" />\n",
-       "  <line x1=\"16\" y1=\"6\" x2=\"16\" y2=\"31\" />\n",
-       "  <line x1=\"17\" y1=\"7\" x2=\"17\" y2=\"33\" />\n",
-       "  <line x1=\"18\" y1=\"8\" x2=\"18\" y2=\"34\" />\n",
-       "  <line x1=\"19\" y1=\"9\" x2=\"19\" y2=\"35\" />\n",
-       "  <line x1=\"20\" y1=\"10\" x2=\"20\" y2=\"36\" />\n",
-       "  <line x1=\"21\" y1=\"11\" x2=\"21\" y2=\"37\" />\n",
-       "  <line x1=\"23\" y1=\"13\" x2=\"23\" y2=\"38\" />\n",
-       "  <line x1=\"24\" y1=\"14\" x2=\"24\" y2=\"39\" />\n",
-       "  <line x1=\"25\" y1=\"15\" x2=\"25\" y2=\"40\" />\n",
-       "  <line x1=\"26\" y1=\"16\" x2=\"26\" y2=\"41\" />\n",
-       "  <line x1=\"27\" y1=\"17\" x2=\"27\" y2=\"42\" />\n",
-       "  <line x1=\"28\" y1=\"18\" x2=\"28\" y2=\"43\" />\n",
-       "  <line x1=\"29\" y1=\"19\" x2=\"29\" y2=\"45\" />\n",
-       "  <line x1=\"30\" y1=\"20\" x2=\"30\" y2=\"46\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"10.0,0.0 30.68500573235934,20.68500573235934 30.68500573235934,46.097622246941825 10.0,25.412616514582485\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"10\" y1=\"0\" x2=\"130\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"11\" y1=\"1\" x2=\"131\" y2=\"1\" />\n",
-       "  <line x1=\"12\" y1=\"2\" x2=\"132\" y2=\"2\" />\n",
-       "  <line x1=\"13\" y1=\"3\" x2=\"133\" y2=\"3\" />\n",
-       "  <line x1=\"14\" y1=\"4\" x2=\"134\" y2=\"4\" />\n",
-       "  <line x1=\"15\" y1=\"5\" x2=\"135\" y2=\"5\" />\n",
-       "  <line x1=\"16\" y1=\"6\" x2=\"136\" y2=\"6\" />\n",
-       "  <line x1=\"17\" y1=\"7\" x2=\"137\" y2=\"7\" />\n",
-       "  <line x1=\"18\" y1=\"8\" x2=\"138\" y2=\"8\" />\n",
-       "  <line x1=\"19\" y1=\"9\" x2=\"139\" y2=\"9\" />\n",
-       "  <line x1=\"20\" y1=\"10\" x2=\"140\" y2=\"10\" />\n",
-       "  <line x1=\"21\" y1=\"11\" x2=\"141\" y2=\"11\" />\n",
-       "  <line x1=\"23\" y1=\"13\" x2=\"143\" y2=\"13\" />\n",
-       "  <line x1=\"24\" y1=\"14\" x2=\"144\" y2=\"14\" />\n",
-       "  <line x1=\"25\" y1=\"15\" x2=\"145\" y2=\"15\" />\n",
-       "  <line x1=\"26\" y1=\"16\" x2=\"146\" y2=\"16\" />\n",
-       "  <line x1=\"27\" y1=\"17\" x2=\"147\" y2=\"17\" />\n",
-       "  <line x1=\"28\" y1=\"18\" x2=\"148\" y2=\"18\" />\n",
-       "  <line x1=\"29\" y1=\"19\" x2=\"149\" y2=\"19\" />\n",
-       "  <line x1=\"30\" y1=\"20\" x2=\"150\" y2=\"20\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"10\" y1=\"0\" x2=\"30\" y2=\"20\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"40\" y1=\"0\" x2=\"60\" y2=\"20\" />\n",
-       "  <line x1=\"70\" y1=\"0\" x2=\"90\" y2=\"20\" />\n",
-       "  <line x1=\"100\" y1=\"0\" x2=\"120\" y2=\"20\" />\n",
-       "  <line x1=\"130\" y1=\"0\" x2=\"150\" y2=\"20\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"10.0,0.0 130.0,0.0 150.68500573235934,20.68500573235934 30.68500573235934,20.68500573235934\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"30\" y1=\"20\" x2=\"150\" y2=\"20\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"30\" y1=\"23\" x2=\"150\" y2=\"23\" />\n",
-       "  <line x1=\"30\" y1=\"27\" x2=\"150\" y2=\"27\" />\n",
-       "  <line x1=\"30\" y1=\"30\" x2=\"150\" y2=\"30\" />\n",
-       "  <line x1=\"30\" y1=\"33\" x2=\"150\" y2=\"33\" />\n",
-       "  <line x1=\"30\" y1=\"36\" x2=\"150\" y2=\"36\" />\n",
-       "  <line x1=\"30\" y1=\"39\" x2=\"150\" y2=\"39\" />\n",
-       "  <line x1=\"30\" y1=\"42\" x2=\"150\" y2=\"42\" />\n",
-       "  <line x1=\"30\" y1=\"46\" x2=\"150\" y2=\"46\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"30\" y1=\"20\" x2=\"30\" y2=\"46\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"60\" y1=\"20\" x2=\"60\" y2=\"46\" />\n",
-       "  <line x1=\"90\" y1=\"20\" x2=\"90\" y2=\"46\" />\n",
-       "  <line x1=\"120\" y1=\"20\" x2=\"120\" y2=\"46\" />\n",
-       "  <line x1=\"150\" y1=\"20\" x2=\"150\" y2=\"46\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"30.68500573235934,20.68500573235934 150.68500573235934,20.68500573235934 150.68500573235934,46.097622246941825 30.68500573235934,46.097622246941825\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"90.685006\" y=\"66.097622\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >196608</text>\n",
-       "  <text x=\"170.685006\" y=\"33.391314\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,170.685006,33.391314)\">72</text>\n",
-       "  <text x=\"10.342503\" y=\"55.755119\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,10.342503,55.755119)\">10958</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>ts</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(90, 49152), meta=np.ndarray&gt;</div><input id='attrs-a2dcd1ea-670c-485d-9197-cca67d72cf17' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-a2dcd1ea-670c-485d-9197-cca67d72cf17' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-01a7323e-8c96-468b-ac26-a073601aa8eb' class='xr-var-data-in' type='checkbox'><label for='data-01a7323e-8c96-468b-ac26-a073601aa8eb' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>cell_methods :</span></dt><dd>time: mean cell: mean</dd><dt><span>component :</span></dt><dd>atmo</dd><dt><span>grid_mapping :</span></dt><dd>crs</dd><dt><span>long_name :</span></dt><dd>surface temperature</dd><dt><span>standard_name :</span></dt><dd>surface_temperature</dd><dt><span>units :</span></dt><dd>K</dd><dt><span>vgrid :</span></dt><dd>surface</dd></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table>\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 8.03 GiB </td>\n",
-       "                        <td> 16.88 MiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (10958, 196608) </td>\n",
-       "                        <td> (90, 49152) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Count </th>\n",
-       "                        <td> 2 Graph Layers </td>\n",
-       "                        <td> 488 Chunks </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                    <th> Type </th>\n",
-       "                    <td> float32 </td>\n",
-       "                    <td> numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"170\" height=\"85\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n",
-       "  <line x1=\"0\" y1=\"3\" x2=\"120\" y2=\"3\" />\n",
-       "  <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n",
-       "  <line x1=\"0\" y1=\"7\" x2=\"120\" y2=\"7\" />\n",
-       "  <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n",
-       "  <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n",
-       "  <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n",
-       "  <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n",
-       "  <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n",
-       "  <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n",
-       "  <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n",
-       "  <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n",
-       "  <line x1=\"0\" y1=\"23\" x2=\"120\" y2=\"23\" />\n",
-       "  <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" />\n",
-       "  <line x1=\"0\" y1=\"27\" x2=\"120\" y2=\"27\" />\n",
-       "  <line x1=\"0\" y1=\"29\" x2=\"120\" y2=\"29\" />\n",
-       "  <line x1=\"0\" y1=\"31\" x2=\"120\" y2=\"31\" />\n",
-       "  <line x1=\"0\" y1=\"33\" x2=\"120\" y2=\"33\" />\n",
-       "  <line x1=\"0\" y1=\"35\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"35\" />\n",
-       "  <line x1=\"60\" y1=\"0\" x2=\"60\" y2=\"35\" />\n",
-       "  <line x1=\"90\" y1=\"0\" x2=\"90\" y2=\"35\" />\n",
-       "  <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"0.0,0.0 120.0,0.0 120.0,35.164509745010875 0.0,35.164509745010875\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"60.000000\" y=\"55.164510\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >196608</text>\n",
-       "  <text x=\"140.000000\" y=\"17.582255\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,17.582255)\">10958</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>u</span></div><div class='xr-var-dims'>(time, depth_full, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(7, 9, 49152), meta=np.ndarray&gt;</div><input id='attrs-183ef9f3-b1ea-4ea8-86fa-a09a2f9ae5a5' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-183ef9f3-b1ea-4ea8-86fa-a09a2f9ae5a5' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-aaaaa204-9648-48b8-883f-c8999811b7d7' class='xr-var-data-in' type='checkbox'><label for='data-aaaaa204-9648-48b8-883f-c8999811b7d7' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>cell_methods :</span></dt><dd>time: mean cell: mean</dd><dt><span>component :</span></dt><dd>ocean</dd><dt><span>grid_mapping :</span></dt><dd>crs</dd><dt><span>long_name :</span></dt><dd>u zonal velocity component</dd><dt><span>units :</span></dt><dd>m/s</dd><dt><span>vgrid :</span></dt><dd>depth_below_sea</dd></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table>\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 577.86 GiB </td>\n",
-       "                        <td> 11.81 MiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (10958, 72, 196608) </td>\n",
-       "                        <td> (7, 9, 49152) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Count </th>\n",
-       "                        <td> 2 Graph Layers </td>\n",
-       "                        <td> 50112 Chunks </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                    <th> Type </th>\n",
-       "                    <td> float32 </td>\n",
-       "                    <td> numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"200\" height=\"96\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"10\" y1=\"0\" x2=\"30\" y2=\"20\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"10\" y1=\"3\" x2=\"30\" y2=\"23\" />\n",
-       "  <line x1=\"10\" y1=\"6\" x2=\"30\" y2=\"27\" />\n",
-       "  <line x1=\"10\" y1=\"9\" x2=\"30\" y2=\"30\" />\n",
-       "  <line x1=\"10\" y1=\"12\" x2=\"30\" y2=\"33\" />\n",
-       "  <line x1=\"10\" y1=\"15\" x2=\"30\" y2=\"36\" />\n",
-       "  <line x1=\"10\" y1=\"19\" x2=\"30\" y2=\"39\" />\n",
-       "  <line x1=\"10\" y1=\"22\" x2=\"30\" y2=\"42\" />\n",
-       "  <line x1=\"10\" y1=\"25\" x2=\"30\" y2=\"46\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"25\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"11\" y1=\"1\" x2=\"11\" y2=\"26\" />\n",
-       "  <line x1=\"12\" y1=\"2\" x2=\"12\" y2=\"27\" />\n",
-       "  <line x1=\"13\" y1=\"3\" x2=\"13\" y2=\"28\" />\n",
-       "  <line x1=\"14\" y1=\"4\" x2=\"14\" y2=\"29\" />\n",
-       "  <line x1=\"15\" y1=\"5\" x2=\"15\" y2=\"30\" />\n",
-       "  <line x1=\"16\" y1=\"6\" x2=\"16\" y2=\"31\" />\n",
-       "  <line x1=\"17\" y1=\"7\" x2=\"17\" y2=\"33\" />\n",
-       "  <line x1=\"18\" y1=\"8\" x2=\"18\" y2=\"34\" />\n",
-       "  <line x1=\"19\" y1=\"9\" x2=\"19\" y2=\"35\" />\n",
-       "  <line x1=\"20\" y1=\"10\" x2=\"20\" y2=\"36\" />\n",
-       "  <line x1=\"21\" y1=\"11\" x2=\"21\" y2=\"37\" />\n",
-       "  <line x1=\"23\" y1=\"13\" x2=\"23\" y2=\"38\" />\n",
-       "  <line x1=\"24\" y1=\"14\" x2=\"24\" y2=\"39\" />\n",
-       "  <line x1=\"25\" y1=\"15\" x2=\"25\" y2=\"40\" />\n",
-       "  <line x1=\"26\" y1=\"16\" x2=\"26\" y2=\"41\" />\n",
-       "  <line x1=\"27\" y1=\"17\" x2=\"27\" y2=\"42\" />\n",
-       "  <line x1=\"28\" y1=\"18\" x2=\"28\" y2=\"43\" />\n",
-       "  <line x1=\"29\" y1=\"19\" x2=\"29\" y2=\"45\" />\n",
-       "  <line x1=\"30\" y1=\"20\" x2=\"30\" y2=\"46\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"10.0,0.0 30.68500573235934,20.68500573235934 30.68500573235934,46.097622246941825 10.0,25.412616514582485\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"10\" y1=\"0\" x2=\"130\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"11\" y1=\"1\" x2=\"131\" y2=\"1\" />\n",
-       "  <line x1=\"12\" y1=\"2\" x2=\"132\" y2=\"2\" />\n",
-       "  <line x1=\"13\" y1=\"3\" x2=\"133\" y2=\"3\" />\n",
-       "  <line x1=\"14\" y1=\"4\" x2=\"134\" y2=\"4\" />\n",
-       "  <line x1=\"15\" y1=\"5\" x2=\"135\" y2=\"5\" />\n",
-       "  <line x1=\"16\" y1=\"6\" x2=\"136\" y2=\"6\" />\n",
-       "  <line x1=\"17\" y1=\"7\" x2=\"137\" y2=\"7\" />\n",
-       "  <line x1=\"18\" y1=\"8\" x2=\"138\" y2=\"8\" />\n",
-       "  <line x1=\"19\" y1=\"9\" x2=\"139\" y2=\"9\" />\n",
-       "  <line x1=\"20\" y1=\"10\" x2=\"140\" y2=\"10\" />\n",
-       "  <line x1=\"21\" y1=\"11\" x2=\"141\" y2=\"11\" />\n",
-       "  <line x1=\"23\" y1=\"13\" x2=\"143\" y2=\"13\" />\n",
-       "  <line x1=\"24\" y1=\"14\" x2=\"144\" y2=\"14\" />\n",
-       "  <line x1=\"25\" y1=\"15\" x2=\"145\" y2=\"15\" />\n",
-       "  <line x1=\"26\" y1=\"16\" x2=\"146\" y2=\"16\" />\n",
-       "  <line x1=\"27\" y1=\"17\" x2=\"147\" y2=\"17\" />\n",
-       "  <line x1=\"28\" y1=\"18\" x2=\"148\" y2=\"18\" />\n",
-       "  <line x1=\"29\" y1=\"19\" x2=\"149\" y2=\"19\" />\n",
-       "  <line x1=\"30\" y1=\"20\" x2=\"150\" y2=\"20\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"10\" y1=\"0\" x2=\"30\" y2=\"20\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"40\" y1=\"0\" x2=\"60\" y2=\"20\" />\n",
-       "  <line x1=\"70\" y1=\"0\" x2=\"90\" y2=\"20\" />\n",
-       "  <line x1=\"100\" y1=\"0\" x2=\"120\" y2=\"20\" />\n",
-       "  <line x1=\"130\" y1=\"0\" x2=\"150\" y2=\"20\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"10.0,0.0 130.0,0.0 150.68500573235934,20.68500573235934 30.68500573235934,20.68500573235934\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"30\" y1=\"20\" x2=\"150\" y2=\"20\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"30\" y1=\"23\" x2=\"150\" y2=\"23\" />\n",
-       "  <line x1=\"30\" y1=\"27\" x2=\"150\" y2=\"27\" />\n",
-       "  <line x1=\"30\" y1=\"30\" x2=\"150\" y2=\"30\" />\n",
-       "  <line x1=\"30\" y1=\"33\" x2=\"150\" y2=\"33\" />\n",
-       "  <line x1=\"30\" y1=\"36\" x2=\"150\" y2=\"36\" />\n",
-       "  <line x1=\"30\" y1=\"39\" x2=\"150\" y2=\"39\" />\n",
-       "  <line x1=\"30\" y1=\"42\" x2=\"150\" y2=\"42\" />\n",
-       "  <line x1=\"30\" y1=\"46\" x2=\"150\" y2=\"46\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"30\" y1=\"20\" x2=\"30\" y2=\"46\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"60\" y1=\"20\" x2=\"60\" y2=\"46\" />\n",
-       "  <line x1=\"90\" y1=\"20\" x2=\"90\" y2=\"46\" />\n",
-       "  <line x1=\"120\" y1=\"20\" x2=\"120\" y2=\"46\" />\n",
-       "  <line x1=\"150\" y1=\"20\" x2=\"150\" y2=\"46\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"30.68500573235934,20.68500573235934 150.68500573235934,20.68500573235934 150.68500573235934,46.097622246941825 30.68500573235934,46.097622246941825\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"90.685006\" y=\"66.097622\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >196608</text>\n",
-       "  <text x=\"170.685006\" y=\"33.391314\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,170.685006,33.391314)\">72</text>\n",
-       "  <text x=\"10.342503\" y=\"55.755119\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,10.342503,55.755119)\">10958</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>u_vint</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(90, 49152), meta=np.ndarray&gt;</div><input id='attrs-da57bc36-39a9-4ca2-a676-e25b8182920a' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-da57bc36-39a9-4ca2-a676-e25b8182920a' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-280210b5-0721-4840-a38b-bd5fc5e7a0ac' class='xr-var-data-in' type='checkbox'><label for='data-280210b5-0721-4840-a38b-bd5fc5e7a0ac' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>cell_methods :</span></dt><dd>time: mean cell: mean</dd><dt><span>component :</span></dt><dd>ocean</dd><dt><span>grid_mapping :</span></dt><dd>crs</dd><dt><span>long_name :</span></dt><dd>vertically integrated barotropic zonal velocity</dd><dt><span>units :</span></dt><dd>m2 s-1</dd><dt><span>vgrid :</span></dt><dd>surface</dd></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table>\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 8.03 GiB </td>\n",
-       "                        <td> 16.88 MiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (10958, 196608) </td>\n",
-       "                        <td> (90, 49152) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Count </th>\n",
-       "                        <td> 2 Graph Layers </td>\n",
-       "                        <td> 488 Chunks </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                    <th> Type </th>\n",
-       "                    <td> float32 </td>\n",
-       "                    <td> numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"170\" height=\"85\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n",
-       "  <line x1=\"0\" y1=\"3\" x2=\"120\" y2=\"3\" />\n",
-       "  <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n",
-       "  <line x1=\"0\" y1=\"7\" x2=\"120\" y2=\"7\" />\n",
-       "  <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n",
-       "  <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n",
-       "  <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n",
-       "  <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n",
-       "  <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n",
-       "  <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n",
-       "  <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n",
-       "  <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n",
-       "  <line x1=\"0\" y1=\"23\" x2=\"120\" y2=\"23\" />\n",
-       "  <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" />\n",
-       "  <line x1=\"0\" y1=\"27\" x2=\"120\" y2=\"27\" />\n",
-       "  <line x1=\"0\" y1=\"29\" x2=\"120\" y2=\"29\" />\n",
-       "  <line x1=\"0\" y1=\"31\" x2=\"120\" y2=\"31\" />\n",
-       "  <line x1=\"0\" y1=\"33\" x2=\"120\" y2=\"33\" />\n",
-       "  <line x1=\"0\" y1=\"35\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"35\" />\n",
-       "  <line x1=\"60\" y1=\"0\" x2=\"60\" y2=\"35\" />\n",
-       "  <line x1=\"90\" y1=\"0\" x2=\"90\" y2=\"35\" />\n",
-       "  <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"0.0,0.0 120.0,0.0 120.0,35.164509745010875 0.0,35.164509745010875\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"60.000000\" y=\"55.164510\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >196608</text>\n",
-       "  <text x=\"140.000000\" y=\"17.582255\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,17.582255)\">10958</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>ua</span></div><div class='xr-var-dims'>(time, level_full, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(7, 9, 49152), meta=np.ndarray&gt;</div><input id='attrs-1dfa9367-0b09-48c3-9b1c-5a6f468ff10c' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-1dfa9367-0b09-48c3-9b1c-5a6f468ff10c' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-ab8ac9f0-1bab-4366-9172-399b07673a57' class='xr-var-data-in' type='checkbox'><label for='data-ab8ac9f0-1bab-4366-9172-399b07673a57' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>cell_methods :</span></dt><dd>time: mean cell: mean</dd><dt><span>component :</span></dt><dd>atmo</dd><dt><span>grid_mapping :</span></dt><dd>crs</dd><dt><span>long_name :</span></dt><dd>Zonal wind</dd><dt><span>standard_name :</span></dt><dd>eastward_wind</dd><dt><span>units :</span></dt><dd>m s-1</dd><dt><span>vgrid :</span></dt><dd>reference</dd></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table>\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 722.33 GiB </td>\n",
-       "                        <td> 11.81 MiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (10958, 90, 196608) </td>\n",
-       "                        <td> (7, 9, 49152) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Count </th>\n",
-       "                        <td> 2 Graph Layers </td>\n",
-       "                        <td> 62640 Chunks </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                    <th> Type </th>\n",
-       "                    <td> float32 </td>\n",
-       "                    <td> numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"200\" height=\"96\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"10\" y1=\"0\" x2=\"30\" y2=\"20\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"10\" y1=\"2\" x2=\"30\" y2=\"23\" />\n",
-       "  <line x1=\"10\" y1=\"5\" x2=\"30\" y2=\"25\" />\n",
-       "  <line x1=\"10\" y1=\"7\" x2=\"30\" y2=\"28\" />\n",
-       "  <line x1=\"10\" y1=\"10\" x2=\"30\" y2=\"30\" />\n",
-       "  <line x1=\"10\" y1=\"12\" x2=\"30\" y2=\"33\" />\n",
-       "  <line x1=\"10\" y1=\"15\" x2=\"30\" y2=\"35\" />\n",
-       "  <line x1=\"10\" y1=\"17\" x2=\"30\" y2=\"38\" />\n",
-       "  <line x1=\"10\" y1=\"20\" x2=\"30\" y2=\"41\" />\n",
-       "  <line x1=\"10\" y1=\"22\" x2=\"30\" y2=\"43\" />\n",
-       "  <line x1=\"10\" y1=\"25\" x2=\"30\" y2=\"46\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"25\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"11\" y1=\"1\" x2=\"11\" y2=\"26\" />\n",
-       "  <line x1=\"12\" y1=\"2\" x2=\"12\" y2=\"27\" />\n",
-       "  <line x1=\"13\" y1=\"3\" x2=\"13\" y2=\"28\" />\n",
-       "  <line x1=\"14\" y1=\"4\" x2=\"14\" y2=\"29\" />\n",
-       "  <line x1=\"15\" y1=\"5\" x2=\"15\" y2=\"30\" />\n",
-       "  <line x1=\"16\" y1=\"6\" x2=\"16\" y2=\"31\" />\n",
-       "  <line x1=\"17\" y1=\"7\" x2=\"17\" y2=\"33\" />\n",
-       "  <line x1=\"18\" y1=\"8\" x2=\"18\" y2=\"34\" />\n",
-       "  <line x1=\"19\" y1=\"9\" x2=\"19\" y2=\"35\" />\n",
-       "  <line x1=\"20\" y1=\"10\" x2=\"20\" y2=\"36\" />\n",
-       "  <line x1=\"21\" y1=\"11\" x2=\"21\" y2=\"37\" />\n",
-       "  <line x1=\"23\" y1=\"13\" x2=\"23\" y2=\"38\" />\n",
-       "  <line x1=\"24\" y1=\"14\" x2=\"24\" y2=\"39\" />\n",
-       "  <line x1=\"25\" y1=\"15\" x2=\"25\" y2=\"40\" />\n",
-       "  <line x1=\"26\" y1=\"16\" x2=\"26\" y2=\"41\" />\n",
-       "  <line x1=\"27\" y1=\"17\" x2=\"27\" y2=\"42\" />\n",
-       "  <line x1=\"28\" y1=\"18\" x2=\"28\" y2=\"43\" />\n",
-       "  <line x1=\"29\" y1=\"19\" x2=\"29\" y2=\"45\" />\n",
-       "  <line x1=\"30\" y1=\"20\" x2=\"30\" y2=\"46\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"10.0,0.0 30.68500573235934,20.68500573235934 30.68500573235934,46.097622246941825 10.0,25.41261651458249\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"10\" y1=\"0\" x2=\"130\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"11\" y1=\"1\" x2=\"131\" y2=\"1\" />\n",
-       "  <line x1=\"12\" y1=\"2\" x2=\"132\" y2=\"2\" />\n",
-       "  <line x1=\"13\" y1=\"3\" x2=\"133\" y2=\"3\" />\n",
-       "  <line x1=\"14\" y1=\"4\" x2=\"134\" y2=\"4\" />\n",
-       "  <line x1=\"15\" y1=\"5\" x2=\"135\" y2=\"5\" />\n",
-       "  <line x1=\"16\" y1=\"6\" x2=\"136\" y2=\"6\" />\n",
-       "  <line x1=\"17\" y1=\"7\" x2=\"137\" y2=\"7\" />\n",
-       "  <line x1=\"18\" y1=\"8\" x2=\"138\" y2=\"8\" />\n",
-       "  <line x1=\"19\" y1=\"9\" x2=\"139\" y2=\"9\" />\n",
-       "  <line x1=\"20\" y1=\"10\" x2=\"140\" y2=\"10\" />\n",
-       "  <line x1=\"21\" y1=\"11\" x2=\"141\" y2=\"11\" />\n",
-       "  <line x1=\"23\" y1=\"13\" x2=\"143\" y2=\"13\" />\n",
-       "  <line x1=\"24\" y1=\"14\" x2=\"144\" y2=\"14\" />\n",
-       "  <line x1=\"25\" y1=\"15\" x2=\"145\" y2=\"15\" />\n",
-       "  <line x1=\"26\" y1=\"16\" x2=\"146\" y2=\"16\" />\n",
-       "  <line x1=\"27\" y1=\"17\" x2=\"147\" y2=\"17\" />\n",
-       "  <line x1=\"28\" y1=\"18\" x2=\"148\" y2=\"18\" />\n",
-       "  <line x1=\"29\" y1=\"19\" x2=\"149\" y2=\"19\" />\n",
-       "  <line x1=\"30\" y1=\"20\" x2=\"150\" y2=\"20\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"10\" y1=\"0\" x2=\"30\" y2=\"20\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"40\" y1=\"0\" x2=\"60\" y2=\"20\" />\n",
-       "  <line x1=\"70\" y1=\"0\" x2=\"90\" y2=\"20\" />\n",
-       "  <line x1=\"100\" y1=\"0\" x2=\"120\" y2=\"20\" />\n",
-       "  <line x1=\"130\" y1=\"0\" x2=\"150\" y2=\"20\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"10.0,0.0 130.0,0.0 150.68500573235934,20.68500573235934 30.68500573235934,20.68500573235934\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"30\" y1=\"20\" x2=\"150\" y2=\"20\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"30\" y1=\"23\" x2=\"150\" y2=\"23\" />\n",
-       "  <line x1=\"30\" y1=\"25\" x2=\"150\" y2=\"25\" />\n",
-       "  <line x1=\"30\" y1=\"28\" x2=\"150\" y2=\"28\" />\n",
-       "  <line x1=\"30\" y1=\"30\" x2=\"150\" y2=\"30\" />\n",
-       "  <line x1=\"30\" y1=\"33\" x2=\"150\" y2=\"33\" />\n",
-       "  <line x1=\"30\" y1=\"35\" x2=\"150\" y2=\"35\" />\n",
-       "  <line x1=\"30\" y1=\"38\" x2=\"150\" y2=\"38\" />\n",
-       "  <line x1=\"30\" y1=\"41\" x2=\"150\" y2=\"41\" />\n",
-       "  <line x1=\"30\" y1=\"43\" x2=\"150\" y2=\"43\" />\n",
-       "  <line x1=\"30\" y1=\"46\" x2=\"150\" y2=\"46\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"30\" y1=\"20\" x2=\"30\" y2=\"46\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"60\" y1=\"20\" x2=\"60\" y2=\"46\" />\n",
-       "  <line x1=\"90\" y1=\"20\" x2=\"90\" y2=\"46\" />\n",
-       "  <line x1=\"120\" y1=\"20\" x2=\"120\" y2=\"46\" />\n",
-       "  <line x1=\"150\" y1=\"20\" x2=\"150\" y2=\"46\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"30.68500573235934,20.68500573235934 150.68500573235934,20.68500573235934 150.68500573235934,46.097622246941825 30.68500573235934,46.097622246941825\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"90.685006\" y=\"66.097622\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >196608</text>\n",
-       "  <text x=\"170.685006\" y=\"33.391314\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,170.685006,33.391314)\">90</text>\n",
-       "  <text x=\"10.342503\" y=\"55.755119\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,10.342503,55.755119)\">10958</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>uas</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(90, 49152), meta=np.ndarray&gt;</div><input id='attrs-6e32e4d5-533c-4b14-b90a-5619c6c5223f' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-6e32e4d5-533c-4b14-b90a-5619c6c5223f' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-ba619d19-c12e-4a72-8fd7-7b009c9a5179' class='xr-var-data-in' type='checkbox'><label for='data-ba619d19-c12e-4a72-8fd7-7b009c9a5179' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>cell_methods :</span></dt><dd>time: mean cell: mean</dd><dt><span>component :</span></dt><dd>atmo</dd><dt><span>grid_mapping :</span></dt><dd>crs</dd><dt><span>long_name :</span></dt><dd>zonal wind in 10m</dd><dt><span>units :</span></dt><dd>m s-1</dd><dt><span>vgrid :</span></dt><dd>height_10m</dd></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table>\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 8.03 GiB </td>\n",
-       "                        <td> 16.88 MiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (10958, 196608) </td>\n",
-       "                        <td> (90, 49152) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Count </th>\n",
-       "                        <td> 2 Graph Layers </td>\n",
-       "                        <td> 488 Chunks </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                    <th> Type </th>\n",
-       "                    <td> float32 </td>\n",
-       "                    <td> numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"170\" height=\"85\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n",
-       "  <line x1=\"0\" y1=\"3\" x2=\"120\" y2=\"3\" />\n",
-       "  <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n",
-       "  <line x1=\"0\" y1=\"7\" x2=\"120\" y2=\"7\" />\n",
-       "  <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n",
-       "  <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n",
-       "  <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n",
-       "  <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n",
-       "  <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n",
-       "  <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n",
-       "  <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n",
-       "  <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n",
-       "  <line x1=\"0\" y1=\"23\" x2=\"120\" y2=\"23\" />\n",
-       "  <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" />\n",
-       "  <line x1=\"0\" y1=\"27\" x2=\"120\" y2=\"27\" />\n",
-       "  <line x1=\"0\" y1=\"29\" x2=\"120\" y2=\"29\" />\n",
-       "  <line x1=\"0\" y1=\"31\" x2=\"120\" y2=\"31\" />\n",
-       "  <line x1=\"0\" y1=\"33\" x2=\"120\" y2=\"33\" />\n",
-       "  <line x1=\"0\" y1=\"35\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"35\" />\n",
-       "  <line x1=\"60\" y1=\"0\" x2=\"60\" y2=\"35\" />\n",
-       "  <line x1=\"90\" y1=\"0\" x2=\"90\" y2=\"35\" />\n",
-       "  <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"0.0,0.0 120.0,0.0 120.0,35.164509745010875 0.0,35.164509745010875\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"60.000000\" y=\"55.164510\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >196608</text>\n",
-       "  <text x=\"140.000000\" y=\"17.582255\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,17.582255)\">10958</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>v</span></div><div class='xr-var-dims'>(time, depth_full, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(7, 9, 49152), meta=np.ndarray&gt;</div><input id='attrs-a68f6f01-6804-4aa0-9bfd-d895968cbf86' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-a68f6f01-6804-4aa0-9bfd-d895968cbf86' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-95702151-a9ab-4c67-acf1-397a6980dd1a' class='xr-var-data-in' type='checkbox'><label for='data-95702151-a9ab-4c67-acf1-397a6980dd1a' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>cell_methods :</span></dt><dd>time: mean cell: mean</dd><dt><span>component :</span></dt><dd>ocean</dd><dt><span>grid_mapping :</span></dt><dd>crs</dd><dt><span>long_name :</span></dt><dd>v meridional velocity component</dd><dt><span>units :</span></dt><dd>m/s</dd><dt><span>vgrid :</span></dt><dd>depth_below_sea</dd></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table>\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 577.86 GiB </td>\n",
-       "                        <td> 11.81 MiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (10958, 72, 196608) </td>\n",
-       "                        <td> (7, 9, 49152) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Count </th>\n",
-       "                        <td> 2 Graph Layers </td>\n",
-       "                        <td> 50112 Chunks </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                    <th> Type </th>\n",
-       "                    <td> float32 </td>\n",
-       "                    <td> numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"200\" height=\"96\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"10\" y1=\"0\" x2=\"30\" y2=\"20\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"10\" y1=\"3\" x2=\"30\" y2=\"23\" />\n",
-       "  <line x1=\"10\" y1=\"6\" x2=\"30\" y2=\"27\" />\n",
-       "  <line x1=\"10\" y1=\"9\" x2=\"30\" y2=\"30\" />\n",
-       "  <line x1=\"10\" y1=\"12\" x2=\"30\" y2=\"33\" />\n",
-       "  <line x1=\"10\" y1=\"15\" x2=\"30\" y2=\"36\" />\n",
-       "  <line x1=\"10\" y1=\"19\" x2=\"30\" y2=\"39\" />\n",
-       "  <line x1=\"10\" y1=\"22\" x2=\"30\" y2=\"42\" />\n",
-       "  <line x1=\"10\" y1=\"25\" x2=\"30\" y2=\"46\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"25\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"11\" y1=\"1\" x2=\"11\" y2=\"26\" />\n",
-       "  <line x1=\"12\" y1=\"2\" x2=\"12\" y2=\"27\" />\n",
-       "  <line x1=\"13\" y1=\"3\" x2=\"13\" y2=\"28\" />\n",
-       "  <line x1=\"14\" y1=\"4\" x2=\"14\" y2=\"29\" />\n",
-       "  <line x1=\"15\" y1=\"5\" x2=\"15\" y2=\"30\" />\n",
-       "  <line x1=\"16\" y1=\"6\" x2=\"16\" y2=\"31\" />\n",
-       "  <line x1=\"17\" y1=\"7\" x2=\"17\" y2=\"33\" />\n",
-       "  <line x1=\"18\" y1=\"8\" x2=\"18\" y2=\"34\" />\n",
-       "  <line x1=\"19\" y1=\"9\" x2=\"19\" y2=\"35\" />\n",
-       "  <line x1=\"20\" y1=\"10\" x2=\"20\" y2=\"36\" />\n",
-       "  <line x1=\"21\" y1=\"11\" x2=\"21\" y2=\"37\" />\n",
-       "  <line x1=\"23\" y1=\"13\" x2=\"23\" y2=\"38\" />\n",
-       "  <line x1=\"24\" y1=\"14\" x2=\"24\" y2=\"39\" />\n",
-       "  <line x1=\"25\" y1=\"15\" x2=\"25\" y2=\"40\" />\n",
-       "  <line x1=\"26\" y1=\"16\" x2=\"26\" y2=\"41\" />\n",
-       "  <line x1=\"27\" y1=\"17\" x2=\"27\" y2=\"42\" />\n",
-       "  <line x1=\"28\" y1=\"18\" x2=\"28\" y2=\"43\" />\n",
-       "  <line x1=\"29\" y1=\"19\" x2=\"29\" y2=\"45\" />\n",
-       "  <line x1=\"30\" y1=\"20\" x2=\"30\" y2=\"46\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"10.0,0.0 30.68500573235934,20.68500573235934 30.68500573235934,46.097622246941825 10.0,25.412616514582485\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"10\" y1=\"0\" x2=\"130\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"11\" y1=\"1\" x2=\"131\" y2=\"1\" />\n",
-       "  <line x1=\"12\" y1=\"2\" x2=\"132\" y2=\"2\" />\n",
-       "  <line x1=\"13\" y1=\"3\" x2=\"133\" y2=\"3\" />\n",
-       "  <line x1=\"14\" y1=\"4\" x2=\"134\" y2=\"4\" />\n",
-       "  <line x1=\"15\" y1=\"5\" x2=\"135\" y2=\"5\" />\n",
-       "  <line x1=\"16\" y1=\"6\" x2=\"136\" y2=\"6\" />\n",
-       "  <line x1=\"17\" y1=\"7\" x2=\"137\" y2=\"7\" />\n",
-       "  <line x1=\"18\" y1=\"8\" x2=\"138\" y2=\"8\" />\n",
-       "  <line x1=\"19\" y1=\"9\" x2=\"139\" y2=\"9\" />\n",
-       "  <line x1=\"20\" y1=\"10\" x2=\"140\" y2=\"10\" />\n",
-       "  <line x1=\"21\" y1=\"11\" x2=\"141\" y2=\"11\" />\n",
-       "  <line x1=\"23\" y1=\"13\" x2=\"143\" y2=\"13\" />\n",
-       "  <line x1=\"24\" y1=\"14\" x2=\"144\" y2=\"14\" />\n",
-       "  <line x1=\"25\" y1=\"15\" x2=\"145\" y2=\"15\" />\n",
-       "  <line x1=\"26\" y1=\"16\" x2=\"146\" y2=\"16\" />\n",
-       "  <line x1=\"27\" y1=\"17\" x2=\"147\" y2=\"17\" />\n",
-       "  <line x1=\"28\" y1=\"18\" x2=\"148\" y2=\"18\" />\n",
-       "  <line x1=\"29\" y1=\"19\" x2=\"149\" y2=\"19\" />\n",
-       "  <line x1=\"30\" y1=\"20\" x2=\"150\" y2=\"20\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"10\" y1=\"0\" x2=\"30\" y2=\"20\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"40\" y1=\"0\" x2=\"60\" y2=\"20\" />\n",
-       "  <line x1=\"70\" y1=\"0\" x2=\"90\" y2=\"20\" />\n",
-       "  <line x1=\"100\" y1=\"0\" x2=\"120\" y2=\"20\" />\n",
-       "  <line x1=\"130\" y1=\"0\" x2=\"150\" y2=\"20\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"10.0,0.0 130.0,0.0 150.68500573235934,20.68500573235934 30.68500573235934,20.68500573235934\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"30\" y1=\"20\" x2=\"150\" y2=\"20\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"30\" y1=\"23\" x2=\"150\" y2=\"23\" />\n",
-       "  <line x1=\"30\" y1=\"27\" x2=\"150\" y2=\"27\" />\n",
-       "  <line x1=\"30\" y1=\"30\" x2=\"150\" y2=\"30\" />\n",
-       "  <line x1=\"30\" y1=\"33\" x2=\"150\" y2=\"33\" />\n",
-       "  <line x1=\"30\" y1=\"36\" x2=\"150\" y2=\"36\" />\n",
-       "  <line x1=\"30\" y1=\"39\" x2=\"150\" y2=\"39\" />\n",
-       "  <line x1=\"30\" y1=\"42\" x2=\"150\" y2=\"42\" />\n",
-       "  <line x1=\"30\" y1=\"46\" x2=\"150\" y2=\"46\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"30\" y1=\"20\" x2=\"30\" y2=\"46\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"60\" y1=\"20\" x2=\"60\" y2=\"46\" />\n",
-       "  <line x1=\"90\" y1=\"20\" x2=\"90\" y2=\"46\" />\n",
-       "  <line x1=\"120\" y1=\"20\" x2=\"120\" y2=\"46\" />\n",
-       "  <line x1=\"150\" y1=\"20\" x2=\"150\" y2=\"46\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"30.68500573235934,20.68500573235934 150.68500573235934,20.68500573235934 150.68500573235934,46.097622246941825 30.68500573235934,46.097622246941825\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"90.685006\" y=\"66.097622\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >196608</text>\n",
-       "  <text x=\"170.685006\" y=\"33.391314\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,170.685006,33.391314)\">72</text>\n",
-       "  <text x=\"10.342503\" y=\"55.755119\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,10.342503,55.755119)\">10958</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>v_vint</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(90, 49152), meta=np.ndarray&gt;</div><input id='attrs-9d0c9180-dfb9-46d0-ac3e-6a7c1f62d913' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-9d0c9180-dfb9-46d0-ac3e-6a7c1f62d913' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-22251693-6257-4957-be5d-c2c3f5815602' class='xr-var-data-in' type='checkbox'><label for='data-22251693-6257-4957-be5d-c2c3f5815602' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>cell_methods :</span></dt><dd>time: mean cell: mean</dd><dt><span>component :</span></dt><dd>ocean</dd><dt><span>grid_mapping :</span></dt><dd>crs</dd><dt><span>long_name :</span></dt><dd>vertically integrated meridional zonal velocity</dd><dt><span>units :</span></dt><dd>m2 s-1</dd><dt><span>vgrid :</span></dt><dd>surface</dd></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table>\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 8.03 GiB </td>\n",
-       "                        <td> 16.88 MiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (10958, 196608) </td>\n",
-       "                        <td> (90, 49152) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Count </th>\n",
-       "                        <td> 2 Graph Layers </td>\n",
-       "                        <td> 488 Chunks </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                    <th> Type </th>\n",
-       "                    <td> float32 </td>\n",
-       "                    <td> numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"170\" height=\"85\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n",
-       "  <line x1=\"0\" y1=\"3\" x2=\"120\" y2=\"3\" />\n",
-       "  <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n",
-       "  <line x1=\"0\" y1=\"7\" x2=\"120\" y2=\"7\" />\n",
-       "  <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n",
-       "  <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n",
-       "  <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n",
-       "  <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n",
-       "  <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n",
-       "  <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n",
-       "  <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n",
-       "  <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n",
-       "  <line x1=\"0\" y1=\"23\" x2=\"120\" y2=\"23\" />\n",
-       "  <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" />\n",
-       "  <line x1=\"0\" y1=\"27\" x2=\"120\" y2=\"27\" />\n",
-       "  <line x1=\"0\" y1=\"29\" x2=\"120\" y2=\"29\" />\n",
-       "  <line x1=\"0\" y1=\"31\" x2=\"120\" y2=\"31\" />\n",
-       "  <line x1=\"0\" y1=\"33\" x2=\"120\" y2=\"33\" />\n",
-       "  <line x1=\"0\" y1=\"35\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"35\" />\n",
-       "  <line x1=\"60\" y1=\"0\" x2=\"60\" y2=\"35\" />\n",
-       "  <line x1=\"90\" y1=\"0\" x2=\"90\" y2=\"35\" />\n",
-       "  <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"0.0,0.0 120.0,0.0 120.0,35.164509745010875 0.0,35.164509745010875\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"60.000000\" y=\"55.164510\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >196608</text>\n",
-       "  <text x=\"140.000000\" y=\"17.582255\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,17.582255)\">10958</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>va</span></div><div class='xr-var-dims'>(time, level_full, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(7, 9, 49152), meta=np.ndarray&gt;</div><input id='attrs-c92fb684-faa7-4464-8802-dfbdacc09f40' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-c92fb684-faa7-4464-8802-dfbdacc09f40' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-53ae1612-57f8-4bf5-9ac4-d062c7d5975e' class='xr-var-data-in' type='checkbox'><label for='data-53ae1612-57f8-4bf5-9ac4-d062c7d5975e' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>cell_methods :</span></dt><dd>time: mean cell: mean</dd><dt><span>component :</span></dt><dd>atmo</dd><dt><span>grid_mapping :</span></dt><dd>crs</dd><dt><span>long_name :</span></dt><dd>Meridional wind</dd><dt><span>standard_name :</span></dt><dd>northward_wind</dd><dt><span>units :</span></dt><dd>m s-1</dd><dt><span>vgrid :</span></dt><dd>reference</dd></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table>\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 722.33 GiB </td>\n",
-       "                        <td> 11.81 MiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (10958, 90, 196608) </td>\n",
-       "                        <td> (7, 9, 49152) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Count </th>\n",
-       "                        <td> 2 Graph Layers </td>\n",
-       "                        <td> 62640 Chunks </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                    <th> Type </th>\n",
-       "                    <td> float32 </td>\n",
-       "                    <td> numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"200\" height=\"96\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"10\" y1=\"0\" x2=\"30\" y2=\"20\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"10\" y1=\"2\" x2=\"30\" y2=\"23\" />\n",
-       "  <line x1=\"10\" y1=\"5\" x2=\"30\" y2=\"25\" />\n",
-       "  <line x1=\"10\" y1=\"7\" x2=\"30\" y2=\"28\" />\n",
-       "  <line x1=\"10\" y1=\"10\" x2=\"30\" y2=\"30\" />\n",
-       "  <line x1=\"10\" y1=\"12\" x2=\"30\" y2=\"33\" />\n",
-       "  <line x1=\"10\" y1=\"15\" x2=\"30\" y2=\"35\" />\n",
-       "  <line x1=\"10\" y1=\"17\" x2=\"30\" y2=\"38\" />\n",
-       "  <line x1=\"10\" y1=\"20\" x2=\"30\" y2=\"41\" />\n",
-       "  <line x1=\"10\" y1=\"22\" x2=\"30\" y2=\"43\" />\n",
-       "  <line x1=\"10\" y1=\"25\" x2=\"30\" y2=\"46\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"25\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"11\" y1=\"1\" x2=\"11\" y2=\"26\" />\n",
-       "  <line x1=\"12\" y1=\"2\" x2=\"12\" y2=\"27\" />\n",
-       "  <line x1=\"13\" y1=\"3\" x2=\"13\" y2=\"28\" />\n",
-       "  <line x1=\"14\" y1=\"4\" x2=\"14\" y2=\"29\" />\n",
-       "  <line x1=\"15\" y1=\"5\" x2=\"15\" y2=\"30\" />\n",
-       "  <line x1=\"16\" y1=\"6\" x2=\"16\" y2=\"31\" />\n",
-       "  <line x1=\"17\" y1=\"7\" x2=\"17\" y2=\"33\" />\n",
-       "  <line x1=\"18\" y1=\"8\" x2=\"18\" y2=\"34\" />\n",
-       "  <line x1=\"19\" y1=\"9\" x2=\"19\" y2=\"35\" />\n",
-       "  <line x1=\"20\" y1=\"10\" x2=\"20\" y2=\"36\" />\n",
-       "  <line x1=\"21\" y1=\"11\" x2=\"21\" y2=\"37\" />\n",
-       "  <line x1=\"23\" y1=\"13\" x2=\"23\" y2=\"38\" />\n",
-       "  <line x1=\"24\" y1=\"14\" x2=\"24\" y2=\"39\" />\n",
-       "  <line x1=\"25\" y1=\"15\" x2=\"25\" y2=\"40\" />\n",
-       "  <line x1=\"26\" y1=\"16\" x2=\"26\" y2=\"41\" />\n",
-       "  <line x1=\"27\" y1=\"17\" x2=\"27\" y2=\"42\" />\n",
-       "  <line x1=\"28\" y1=\"18\" x2=\"28\" y2=\"43\" />\n",
-       "  <line x1=\"29\" y1=\"19\" x2=\"29\" y2=\"45\" />\n",
-       "  <line x1=\"30\" y1=\"20\" x2=\"30\" y2=\"46\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"10.0,0.0 30.68500573235934,20.68500573235934 30.68500573235934,46.097622246941825 10.0,25.41261651458249\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"10\" y1=\"0\" x2=\"130\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"11\" y1=\"1\" x2=\"131\" y2=\"1\" />\n",
-       "  <line x1=\"12\" y1=\"2\" x2=\"132\" y2=\"2\" />\n",
-       "  <line x1=\"13\" y1=\"3\" x2=\"133\" y2=\"3\" />\n",
-       "  <line x1=\"14\" y1=\"4\" x2=\"134\" y2=\"4\" />\n",
-       "  <line x1=\"15\" y1=\"5\" x2=\"135\" y2=\"5\" />\n",
-       "  <line x1=\"16\" y1=\"6\" x2=\"136\" y2=\"6\" />\n",
-       "  <line x1=\"17\" y1=\"7\" x2=\"137\" y2=\"7\" />\n",
-       "  <line x1=\"18\" y1=\"8\" x2=\"138\" y2=\"8\" />\n",
-       "  <line x1=\"19\" y1=\"9\" x2=\"139\" y2=\"9\" />\n",
-       "  <line x1=\"20\" y1=\"10\" x2=\"140\" y2=\"10\" />\n",
-       "  <line x1=\"21\" y1=\"11\" x2=\"141\" y2=\"11\" />\n",
-       "  <line x1=\"23\" y1=\"13\" x2=\"143\" y2=\"13\" />\n",
-       "  <line x1=\"24\" y1=\"14\" x2=\"144\" y2=\"14\" />\n",
-       "  <line x1=\"25\" y1=\"15\" x2=\"145\" y2=\"15\" />\n",
-       "  <line x1=\"26\" y1=\"16\" x2=\"146\" y2=\"16\" />\n",
-       "  <line x1=\"27\" y1=\"17\" x2=\"147\" y2=\"17\" />\n",
-       "  <line x1=\"28\" y1=\"18\" x2=\"148\" y2=\"18\" />\n",
-       "  <line x1=\"29\" y1=\"19\" x2=\"149\" y2=\"19\" />\n",
-       "  <line x1=\"30\" y1=\"20\" x2=\"150\" y2=\"20\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"10\" y1=\"0\" x2=\"30\" y2=\"20\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"40\" y1=\"0\" x2=\"60\" y2=\"20\" />\n",
-       "  <line x1=\"70\" y1=\"0\" x2=\"90\" y2=\"20\" />\n",
-       "  <line x1=\"100\" y1=\"0\" x2=\"120\" y2=\"20\" />\n",
-       "  <line x1=\"130\" y1=\"0\" x2=\"150\" y2=\"20\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"10.0,0.0 130.0,0.0 150.68500573235934,20.68500573235934 30.68500573235934,20.68500573235934\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"30\" y1=\"20\" x2=\"150\" y2=\"20\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"30\" y1=\"23\" x2=\"150\" y2=\"23\" />\n",
-       "  <line x1=\"30\" y1=\"25\" x2=\"150\" y2=\"25\" />\n",
-       "  <line x1=\"30\" y1=\"28\" x2=\"150\" y2=\"28\" />\n",
-       "  <line x1=\"30\" y1=\"30\" x2=\"150\" y2=\"30\" />\n",
-       "  <line x1=\"30\" y1=\"33\" x2=\"150\" y2=\"33\" />\n",
-       "  <line x1=\"30\" y1=\"35\" x2=\"150\" y2=\"35\" />\n",
-       "  <line x1=\"30\" y1=\"38\" x2=\"150\" y2=\"38\" />\n",
-       "  <line x1=\"30\" y1=\"41\" x2=\"150\" y2=\"41\" />\n",
-       "  <line x1=\"30\" y1=\"43\" x2=\"150\" y2=\"43\" />\n",
-       "  <line x1=\"30\" y1=\"46\" x2=\"150\" y2=\"46\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"30\" y1=\"20\" x2=\"30\" y2=\"46\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"60\" y1=\"20\" x2=\"60\" y2=\"46\" />\n",
-       "  <line x1=\"90\" y1=\"20\" x2=\"90\" y2=\"46\" />\n",
-       "  <line x1=\"120\" y1=\"20\" x2=\"120\" y2=\"46\" />\n",
-       "  <line x1=\"150\" y1=\"20\" x2=\"150\" y2=\"46\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"30.68500573235934,20.68500573235934 150.68500573235934,20.68500573235934 150.68500573235934,46.097622246941825 30.68500573235934,46.097622246941825\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"90.685006\" y=\"66.097622\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >196608</text>\n",
-       "  <text x=\"170.685006\" y=\"33.391314\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,170.685006,33.391314)\">90</text>\n",
-       "  <text x=\"10.342503\" y=\"55.755119\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,10.342503,55.755119)\">10958</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>vas</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(90, 49152), meta=np.ndarray&gt;</div><input id='attrs-fca5e000-ecd0-4fd4-8bb6-d46223571691' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-fca5e000-ecd0-4fd4-8bb6-d46223571691' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-1f8807f0-6883-4f86-a4cf-74ed4c09f358' class='xr-var-data-in' type='checkbox'><label for='data-1f8807f0-6883-4f86-a4cf-74ed4c09f358' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>cell_methods :</span></dt><dd>time: mean cell: mean</dd><dt><span>component :</span></dt><dd>atmo</dd><dt><span>grid_mapping :</span></dt><dd>crs</dd><dt><span>long_name :</span></dt><dd>meridional wind in 10m</dd><dt><span>units :</span></dt><dd>m s-1</dd><dt><span>vgrid :</span></dt><dd>height_10m</dd></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table>\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 8.03 GiB </td>\n",
-       "                        <td> 16.88 MiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (10958, 196608) </td>\n",
-       "                        <td> (90, 49152) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Count </th>\n",
-       "                        <td> 2 Graph Layers </td>\n",
-       "                        <td> 488 Chunks </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                    <th> Type </th>\n",
-       "                    <td> float32 </td>\n",
-       "                    <td> numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"170\" height=\"85\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n",
-       "  <line x1=\"0\" y1=\"3\" x2=\"120\" y2=\"3\" />\n",
-       "  <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n",
-       "  <line x1=\"0\" y1=\"7\" x2=\"120\" y2=\"7\" />\n",
-       "  <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n",
-       "  <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n",
-       "  <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n",
-       "  <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n",
-       "  <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n",
-       "  <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n",
-       "  <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n",
-       "  <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n",
-       "  <line x1=\"0\" y1=\"23\" x2=\"120\" y2=\"23\" />\n",
-       "  <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" />\n",
-       "  <line x1=\"0\" y1=\"27\" x2=\"120\" y2=\"27\" />\n",
-       "  <line x1=\"0\" y1=\"29\" x2=\"120\" y2=\"29\" />\n",
-       "  <line x1=\"0\" y1=\"31\" x2=\"120\" y2=\"31\" />\n",
-       "  <line x1=\"0\" y1=\"33\" x2=\"120\" y2=\"33\" />\n",
-       "  <line x1=\"0\" y1=\"35\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"35\" />\n",
-       "  <line x1=\"60\" y1=\"0\" x2=\"60\" y2=\"35\" />\n",
-       "  <line x1=\"90\" y1=\"0\" x2=\"90\" y2=\"35\" />\n",
-       "  <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"0.0,0.0 120.0,0.0 120.0,35.164509745010875 0.0,35.164509745010875\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"60.000000\" y=\"55.164510\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >196608</text>\n",
-       "  <text x=\"140.000000\" y=\"17.582255\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,17.582255)\">10958</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>w</span></div><div class='xr-var-dims'>(time, depth_half, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(7, 9, 49152), meta=np.ndarray&gt;</div><input id='attrs-fc940727-cd4e-4b18-8b1f-d31d37304fae' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-fc940727-cd4e-4b18-8b1f-d31d37304fae' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-4cc6cfc0-3df5-4c59-9304-15e46b5fc9e6' class='xr-var-data-in' type='checkbox'><label for='data-4cc6cfc0-3df5-4c59-9304-15e46b5fc9e6' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>cell_methods :</span></dt><dd>time: mean cell: mean</dd><dt><span>component :</span></dt><dd>ocean</dd><dt><span>grid_mapping :</span></dt><dd>crs</dd><dt><span>long_name :</span></dt><dd>vertical velocity at cells</dd><dt><span>units :</span></dt><dd>m/s</dd><dt><span>vgrid :</span></dt><dd>depth_below_sea_half</dd></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table>\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 585.89 GiB </td>\n",
-       "                        <td> 11.81 MiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (10958, 73, 196608) </td>\n",
-       "                        <td> (7, 9, 49152) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Count </th>\n",
-       "                        <td> 2 Graph Layers </td>\n",
-       "                        <td> 56376 Chunks </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                    <th> Type </th>\n",
-       "                    <td> float32 </td>\n",
-       "                    <td> numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"200\" height=\"96\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"10\" y1=\"0\" x2=\"30\" y2=\"20\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"10\" y1=\"3\" x2=\"30\" y2=\"23\" />\n",
-       "  <line x1=\"10\" y1=\"6\" x2=\"30\" y2=\"26\" />\n",
-       "  <line x1=\"10\" y1=\"9\" x2=\"30\" y2=\"30\" />\n",
-       "  <line x1=\"10\" y1=\"12\" x2=\"30\" y2=\"33\" />\n",
-       "  <line x1=\"10\" y1=\"15\" x2=\"30\" y2=\"36\" />\n",
-       "  <line x1=\"10\" y1=\"18\" x2=\"30\" y2=\"39\" />\n",
-       "  <line x1=\"10\" y1=\"21\" x2=\"30\" y2=\"42\" />\n",
-       "  <line x1=\"10\" y1=\"25\" x2=\"30\" y2=\"45\" />\n",
-       "  <line x1=\"10\" y1=\"25\" x2=\"30\" y2=\"46\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"25\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"11\" y1=\"1\" x2=\"11\" y2=\"26\" />\n",
-       "  <line x1=\"12\" y1=\"2\" x2=\"12\" y2=\"27\" />\n",
-       "  <line x1=\"13\" y1=\"3\" x2=\"13\" y2=\"28\" />\n",
-       "  <line x1=\"14\" y1=\"4\" x2=\"14\" y2=\"29\" />\n",
-       "  <line x1=\"15\" y1=\"5\" x2=\"15\" y2=\"30\" />\n",
-       "  <line x1=\"16\" y1=\"6\" x2=\"16\" y2=\"31\" />\n",
-       "  <line x1=\"17\" y1=\"7\" x2=\"17\" y2=\"33\" />\n",
-       "  <line x1=\"18\" y1=\"8\" x2=\"18\" y2=\"34\" />\n",
-       "  <line x1=\"19\" y1=\"9\" x2=\"19\" y2=\"35\" />\n",
-       "  <line x1=\"20\" y1=\"10\" x2=\"20\" y2=\"36\" />\n",
-       "  <line x1=\"21\" y1=\"11\" x2=\"21\" y2=\"37\" />\n",
-       "  <line x1=\"23\" y1=\"13\" x2=\"23\" y2=\"38\" />\n",
-       "  <line x1=\"24\" y1=\"14\" x2=\"24\" y2=\"39\" />\n",
-       "  <line x1=\"25\" y1=\"15\" x2=\"25\" y2=\"40\" />\n",
-       "  <line x1=\"26\" y1=\"16\" x2=\"26\" y2=\"41\" />\n",
-       "  <line x1=\"27\" y1=\"17\" x2=\"27\" y2=\"42\" />\n",
-       "  <line x1=\"28\" y1=\"18\" x2=\"28\" y2=\"43\" />\n",
-       "  <line x1=\"29\" y1=\"19\" x2=\"29\" y2=\"45\" />\n",
-       "  <line x1=\"30\" y1=\"20\" x2=\"30\" y2=\"46\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"10.0,0.0 30.68500573235934,20.68500573235934 30.68500573235934,46.097622246941825 10.0,25.412616514582485\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"10\" y1=\"0\" x2=\"130\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"11\" y1=\"1\" x2=\"131\" y2=\"1\" />\n",
-       "  <line x1=\"12\" y1=\"2\" x2=\"132\" y2=\"2\" />\n",
-       "  <line x1=\"13\" y1=\"3\" x2=\"133\" y2=\"3\" />\n",
-       "  <line x1=\"14\" y1=\"4\" x2=\"134\" y2=\"4\" />\n",
-       "  <line x1=\"15\" y1=\"5\" x2=\"135\" y2=\"5\" />\n",
-       "  <line x1=\"16\" y1=\"6\" x2=\"136\" y2=\"6\" />\n",
-       "  <line x1=\"17\" y1=\"7\" x2=\"137\" y2=\"7\" />\n",
-       "  <line x1=\"18\" y1=\"8\" x2=\"138\" y2=\"8\" />\n",
-       "  <line x1=\"19\" y1=\"9\" x2=\"139\" y2=\"9\" />\n",
-       "  <line x1=\"20\" y1=\"10\" x2=\"140\" y2=\"10\" />\n",
-       "  <line x1=\"21\" y1=\"11\" x2=\"141\" y2=\"11\" />\n",
-       "  <line x1=\"23\" y1=\"13\" x2=\"143\" y2=\"13\" />\n",
-       "  <line x1=\"24\" y1=\"14\" x2=\"144\" y2=\"14\" />\n",
-       "  <line x1=\"25\" y1=\"15\" x2=\"145\" y2=\"15\" />\n",
-       "  <line x1=\"26\" y1=\"16\" x2=\"146\" y2=\"16\" />\n",
-       "  <line x1=\"27\" y1=\"17\" x2=\"147\" y2=\"17\" />\n",
-       "  <line x1=\"28\" y1=\"18\" x2=\"148\" y2=\"18\" />\n",
-       "  <line x1=\"29\" y1=\"19\" x2=\"149\" y2=\"19\" />\n",
-       "  <line x1=\"30\" y1=\"20\" x2=\"150\" y2=\"20\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"10\" y1=\"0\" x2=\"30\" y2=\"20\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"40\" y1=\"0\" x2=\"60\" y2=\"20\" />\n",
-       "  <line x1=\"70\" y1=\"0\" x2=\"90\" y2=\"20\" />\n",
-       "  <line x1=\"100\" y1=\"0\" x2=\"120\" y2=\"20\" />\n",
-       "  <line x1=\"130\" y1=\"0\" x2=\"150\" y2=\"20\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"10.0,0.0 130.0,0.0 150.68500573235934,20.68500573235934 30.68500573235934,20.68500573235934\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"30\" y1=\"20\" x2=\"150\" y2=\"20\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"30\" y1=\"23\" x2=\"150\" y2=\"23\" />\n",
-       "  <line x1=\"30\" y1=\"26\" x2=\"150\" y2=\"26\" />\n",
-       "  <line x1=\"30\" y1=\"30\" x2=\"150\" y2=\"30\" />\n",
-       "  <line x1=\"30\" y1=\"33\" x2=\"150\" y2=\"33\" />\n",
-       "  <line x1=\"30\" y1=\"36\" x2=\"150\" y2=\"36\" />\n",
-       "  <line x1=\"30\" y1=\"39\" x2=\"150\" y2=\"39\" />\n",
-       "  <line x1=\"30\" y1=\"42\" x2=\"150\" y2=\"42\" />\n",
-       "  <line x1=\"30\" y1=\"45\" x2=\"150\" y2=\"45\" />\n",
-       "  <line x1=\"30\" y1=\"46\" x2=\"150\" y2=\"46\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"30\" y1=\"20\" x2=\"30\" y2=\"46\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"60\" y1=\"20\" x2=\"60\" y2=\"46\" />\n",
-       "  <line x1=\"90\" y1=\"20\" x2=\"90\" y2=\"46\" />\n",
-       "  <line x1=\"120\" y1=\"20\" x2=\"120\" y2=\"46\" />\n",
-       "  <line x1=\"150\" y1=\"20\" x2=\"150\" y2=\"46\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"30.68500573235934,20.68500573235934 150.68500573235934,20.68500573235934 150.68500573235934,46.097622246941825 30.68500573235934,46.097622246941825\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"90.685006\" y=\"66.097622\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >196608</text>\n",
-       "  <text x=\"170.685006\" y=\"33.391314\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,170.685006,33.391314)\">73</text>\n",
-       "  <text x=\"10.342503\" y=\"55.755119\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,10.342503,55.755119)\">10958</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>wa_phy</span></div><div class='xr-var-dims'>(time, level_half, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(7, 13, 49152), meta=np.ndarray&gt;</div><input id='attrs-2daaf203-1242-4786-9df7-d5577cc53c55' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-2daaf203-1242-4786-9df7-d5577cc53c55' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-bdbb29c3-cd7f-4aaf-b875-1a3e6474d3e5' class='xr-var-data-in' type='checkbox'><label for='data-bdbb29c3-cd7f-4aaf-b875-1a3e6474d3e5' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>cell_methods :</span></dt><dd>time: mean cell: mean</dd><dt><span>component :</span></dt><dd>atmo</dd><dt><span>grid_mapping :</span></dt><dd>crs</dd><dt><span>long_name :</span></dt><dd>vertical velocity</dd><dt><span>units :</span></dt><dd>m s-1</dd><dt><span>vgrid :</span></dt><dd>reference_half</dd></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table>\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 730.35 GiB </td>\n",
-       "                        <td> 17.06 MiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (10958, 91, 196608) </td>\n",
-       "                        <td> (7, 13, 49152) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Count </th>\n",
-       "                        <td> 2 Graph Layers </td>\n",
-       "                        <td> 43848 Chunks </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                    <th> Type </th>\n",
-       "                    <td> float32 </td>\n",
-       "                    <td> numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"200\" height=\"96\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"10\" y1=\"0\" x2=\"30\" y2=\"20\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"10\" y1=\"3\" x2=\"30\" y2=\"24\" />\n",
-       "  <line x1=\"10\" y1=\"7\" x2=\"30\" y2=\"27\" />\n",
-       "  <line x1=\"10\" y1=\"10\" x2=\"30\" y2=\"31\" />\n",
-       "  <line x1=\"10\" y1=\"14\" x2=\"30\" y2=\"35\" />\n",
-       "  <line x1=\"10\" y1=\"18\" x2=\"30\" y2=\"38\" />\n",
-       "  <line x1=\"10\" y1=\"21\" x2=\"30\" y2=\"42\" />\n",
-       "  <line x1=\"10\" y1=\"25\" x2=\"30\" y2=\"46\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"25\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"11\" y1=\"1\" x2=\"11\" y2=\"26\" />\n",
-       "  <line x1=\"12\" y1=\"2\" x2=\"12\" y2=\"27\" />\n",
-       "  <line x1=\"13\" y1=\"3\" x2=\"13\" y2=\"28\" />\n",
-       "  <line x1=\"14\" y1=\"4\" x2=\"14\" y2=\"29\" />\n",
-       "  <line x1=\"15\" y1=\"5\" x2=\"15\" y2=\"30\" />\n",
-       "  <line x1=\"16\" y1=\"6\" x2=\"16\" y2=\"31\" />\n",
-       "  <line x1=\"17\" y1=\"7\" x2=\"17\" y2=\"33\" />\n",
-       "  <line x1=\"18\" y1=\"8\" x2=\"18\" y2=\"34\" />\n",
-       "  <line x1=\"19\" y1=\"9\" x2=\"19\" y2=\"35\" />\n",
-       "  <line x1=\"20\" y1=\"10\" x2=\"20\" y2=\"36\" />\n",
-       "  <line x1=\"21\" y1=\"11\" x2=\"21\" y2=\"37\" />\n",
-       "  <line x1=\"23\" y1=\"13\" x2=\"23\" y2=\"38\" />\n",
-       "  <line x1=\"24\" y1=\"14\" x2=\"24\" y2=\"39\" />\n",
-       "  <line x1=\"25\" y1=\"15\" x2=\"25\" y2=\"40\" />\n",
-       "  <line x1=\"26\" y1=\"16\" x2=\"26\" y2=\"41\" />\n",
-       "  <line x1=\"27\" y1=\"17\" x2=\"27\" y2=\"42\" />\n",
-       "  <line x1=\"28\" y1=\"18\" x2=\"28\" y2=\"43\" />\n",
-       "  <line x1=\"29\" y1=\"19\" x2=\"29\" y2=\"45\" />\n",
-       "  <line x1=\"30\" y1=\"20\" x2=\"30\" y2=\"46\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"10.0,0.0 30.68500573235934,20.68500573235934 30.68500573235934,46.097622246941825 10.0,25.412616514582485\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"10\" y1=\"0\" x2=\"130\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"11\" y1=\"1\" x2=\"131\" y2=\"1\" />\n",
-       "  <line x1=\"12\" y1=\"2\" x2=\"132\" y2=\"2\" />\n",
-       "  <line x1=\"13\" y1=\"3\" x2=\"133\" y2=\"3\" />\n",
-       "  <line x1=\"14\" y1=\"4\" x2=\"134\" y2=\"4\" />\n",
-       "  <line x1=\"15\" y1=\"5\" x2=\"135\" y2=\"5\" />\n",
-       "  <line x1=\"16\" y1=\"6\" x2=\"136\" y2=\"6\" />\n",
-       "  <line x1=\"17\" y1=\"7\" x2=\"137\" y2=\"7\" />\n",
-       "  <line x1=\"18\" y1=\"8\" x2=\"138\" y2=\"8\" />\n",
-       "  <line x1=\"19\" y1=\"9\" x2=\"139\" y2=\"9\" />\n",
-       "  <line x1=\"20\" y1=\"10\" x2=\"140\" y2=\"10\" />\n",
-       "  <line x1=\"21\" y1=\"11\" x2=\"141\" y2=\"11\" />\n",
-       "  <line x1=\"23\" y1=\"13\" x2=\"143\" y2=\"13\" />\n",
-       "  <line x1=\"24\" y1=\"14\" x2=\"144\" y2=\"14\" />\n",
-       "  <line x1=\"25\" y1=\"15\" x2=\"145\" y2=\"15\" />\n",
-       "  <line x1=\"26\" y1=\"16\" x2=\"146\" y2=\"16\" />\n",
-       "  <line x1=\"27\" y1=\"17\" x2=\"147\" y2=\"17\" />\n",
-       "  <line x1=\"28\" y1=\"18\" x2=\"148\" y2=\"18\" />\n",
-       "  <line x1=\"29\" y1=\"19\" x2=\"149\" y2=\"19\" />\n",
-       "  <line x1=\"30\" y1=\"20\" x2=\"150\" y2=\"20\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"10\" y1=\"0\" x2=\"30\" y2=\"20\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"40\" y1=\"0\" x2=\"60\" y2=\"20\" />\n",
-       "  <line x1=\"70\" y1=\"0\" x2=\"90\" y2=\"20\" />\n",
-       "  <line x1=\"100\" y1=\"0\" x2=\"120\" y2=\"20\" />\n",
-       "  <line x1=\"130\" y1=\"0\" x2=\"150\" y2=\"20\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"10.0,0.0 130.0,0.0 150.68500573235934,20.68500573235934 30.68500573235934,20.68500573235934\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"30\" y1=\"20\" x2=\"150\" y2=\"20\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"30\" y1=\"24\" x2=\"150\" y2=\"24\" />\n",
-       "  <line x1=\"30\" y1=\"27\" x2=\"150\" y2=\"27\" />\n",
-       "  <line x1=\"30\" y1=\"31\" x2=\"150\" y2=\"31\" />\n",
-       "  <line x1=\"30\" y1=\"35\" x2=\"150\" y2=\"35\" />\n",
-       "  <line x1=\"30\" y1=\"38\" x2=\"150\" y2=\"38\" />\n",
-       "  <line x1=\"30\" y1=\"42\" x2=\"150\" y2=\"42\" />\n",
-       "  <line x1=\"30\" y1=\"46\" x2=\"150\" y2=\"46\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"30\" y1=\"20\" x2=\"30\" y2=\"46\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"60\" y1=\"20\" x2=\"60\" y2=\"46\" />\n",
-       "  <line x1=\"90\" y1=\"20\" x2=\"90\" y2=\"46\" />\n",
-       "  <line x1=\"120\" y1=\"20\" x2=\"120\" y2=\"46\" />\n",
-       "  <line x1=\"150\" y1=\"20\" x2=\"150\" y2=\"46\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"30.68500573235934,20.68500573235934 150.68500573235934,20.68500573235934 150.68500573235934,46.097622246941825 30.68500573235934,46.097622246941825\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"90.685006\" y=\"66.097622\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >196608</text>\n",
-       "  <text x=\"170.685006\" y=\"33.391314\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,170.685006,33.391314)\">91</text>\n",
-       "  <text x=\"10.342503\" y=\"55.755119\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,10.342503,55.755119)\">10958</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>zg</span></div><div class='xr-var-dims'>(level_full, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(90, 49152), meta=np.ndarray&gt;</div><input id='attrs-489cd423-6a7e-42b7-8355-8d54db8edd5b' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-489cd423-6a7e-42b7-8355-8d54db8edd5b' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-5c100fc1-5399-4c2e-82c7-bd23c1db9acd' class='xr-var-data-in' type='checkbox'><label for='data-5c100fc1-5399-4c2e-82c7-bd23c1db9acd' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>long_name :</span></dt><dd>geometric height at full level center</dd><dt><span>standard_name :</span></dt><dd>height</dd><dt><span>units :</span></dt><dd>m</dd></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table>\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 67.50 MiB </td>\n",
-       "                        <td> 16.88 MiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (90, 196608) </td>\n",
-       "                        <td> (90, 49152) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Count </th>\n",
-       "                        <td> 2 Graph Layers </td>\n",
-       "                        <td> 4 Chunks </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                    <th> Type </th>\n",
-       "                    <td> float32 </td>\n",
-       "                    <td> numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"170\" height=\"75\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"25\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"25\" />\n",
-       "  <line x1=\"60\" y1=\"0\" x2=\"60\" y2=\"25\" />\n",
-       "  <line x1=\"90\" y1=\"0\" x2=\"90\" y2=\"25\" />\n",
-       "  <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"0.0,0.0 120.0,0.0 120.0,25.41261651458249 0.0,25.41261651458249\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"60.000000\" y=\"45.412617\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >196608</text>\n",
-       "  <text x=\"140.000000\" y=\"12.706308\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,140.000000,12.706308)\">90</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>zghalf</span></div><div class='xr-var-dims'>(level_half, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(91, 49152), meta=np.ndarray&gt;</div><input id='attrs-f5d93d81-6e2d-4337-9089-ccaae3f900b0' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-f5d93d81-6e2d-4337-9089-ccaae3f900b0' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-6e49e3a3-ee76-4e46-b6c5-75794ee6f052' class='xr-var-data-in' type='checkbox'><label for='data-6e49e3a3-ee76-4e46-b6c5-75794ee6f052' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>long_name :</span></dt><dd>geometric height at half level center</dd><dt><span>standard_name :</span></dt><dd>height</dd><dt><span>units :</span></dt><dd>m</dd></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table>\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 68.25 MiB </td>\n",
-       "                        <td> 17.06 MiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (91, 196608) </td>\n",
-       "                        <td> (91, 49152) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Count </th>\n",
-       "                        <td> 2 Graph Layers </td>\n",
-       "                        <td> 4 Chunks </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                    <th> Type </th>\n",
-       "                    <td> float32 </td>\n",
-       "                    <td> numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"170\" height=\"75\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"25\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"25\" />\n",
-       "  <line x1=\"60\" y1=\"0\" x2=\"60\" y2=\"25\" />\n",
-       "  <line x1=\"90\" y1=\"0\" x2=\"90\" y2=\"25\" />\n",
-       "  <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"0.0,0.0 120.0,0.0 120.0,25.412616514582485 0.0,25.412616514582485\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"60.000000\" y=\"45.412617\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >196608</text>\n",
-       "  <text x=\"140.000000\" y=\"12.706308\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,140.000000,12.706308)\">91</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>zos</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(90, 49152), meta=np.ndarray&gt;</div><input id='attrs-3eaf2d1f-ea00-4c93-b300-84e8377bb683' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-3eaf2d1f-ea00-4c93-b300-84e8377bb683' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-740e36ee-c21e-430b-ae94-0d654c23dd8e' class='xr-var-data-in' type='checkbox'><label for='data-740e36ee-c21e-430b-ae94-0d654c23dd8e' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>cell_methods :</span></dt><dd>time: mean cell: mean</dd><dt><span>component :</span></dt><dd>ocean</dd><dt><span>grid_mapping :</span></dt><dd>crs</dd><dt><span>long_name :</span></dt><dd>zstar sfc elevation at cell center</dd><dt><span>units :</span></dt><dd>m</dd><dt><span>vgrid :</span></dt><dd>surface</dd></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table>\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 8.03 GiB </td>\n",
-       "                        <td> 16.88 MiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (10958, 196608) </td>\n",
-       "                        <td> (90, 49152) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Count </th>\n",
-       "                        <td> 2 Graph Layers </td>\n",
-       "                        <td> 488 Chunks </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                    <th> Type </th>\n",
-       "                    <td> float32 </td>\n",
-       "                    <td> numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"170\" height=\"85\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n",
-       "  <line x1=\"0\" y1=\"3\" x2=\"120\" y2=\"3\" />\n",
-       "  <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n",
-       "  <line x1=\"0\" y1=\"7\" x2=\"120\" y2=\"7\" />\n",
-       "  <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n",
-       "  <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n",
-       "  <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n",
-       "  <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n",
-       "  <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n",
-       "  <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n",
-       "  <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n",
-       "  <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n",
-       "  <line x1=\"0\" y1=\"23\" x2=\"120\" y2=\"23\" />\n",
-       "  <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" />\n",
-       "  <line x1=\"0\" y1=\"27\" x2=\"120\" y2=\"27\" />\n",
-       "  <line x1=\"0\" y1=\"29\" x2=\"120\" y2=\"29\" />\n",
-       "  <line x1=\"0\" y1=\"31\" x2=\"120\" y2=\"31\" />\n",
-       "  <line x1=\"0\" y1=\"33\" x2=\"120\" y2=\"33\" />\n",
-       "  <line x1=\"0\" y1=\"35\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"35\" />\n",
-       "  <line x1=\"60\" y1=\"0\" x2=\"60\" y2=\"35\" />\n",
-       "  <line x1=\"90\" y1=\"0\" x2=\"90\" y2=\"35\" />\n",
-       "  <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"0.0,0.0 120.0,0.0 120.0,35.164509745010875 0.0,35.164509745010875\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"60.000000\" y=\"55.164510\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >196608</text>\n",
-       "  <text x=\"140.000000\" y=\"17.582255\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,17.582255)\">10958</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li></ul></div></li><li class='xr-section-item'><input id='section-8a724231-39e4-455f-a77b-39a4206246bf' class='xr-section-summary-in' type='checkbox'  ><label for='section-8a724231-39e4-455f-a77b-39a4206246bf' class='xr-section-summary' >Indexes: <span>(8)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-index-name'><div>crs</div></div><div class='xr-index-preview'>PandasIndex</div><div></div><input id='index-fa4bfecc-e590-4012-9390-23b677e48188' class='xr-index-data-in' type='checkbox'/><label for='index-fa4bfecc-e590-4012-9390-23b677e48188' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(Index([nan], dtype=&#x27;float32&#x27;, name=&#x27;crs&#x27;))</pre></div></li><li class='xr-var-item'><div class='xr-index-name'><div>depth_full</div></div><div class='xr-index-preview'>PandasIndex</div><div></div><input id='index-f75b9460-00db-4103-93e3-14be80dd873d' class='xr-index-data-in' type='checkbox'/><label for='index-f75b9460-00db-4103-93e3-14be80dd873d' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(Index([               1.0, 3.0999999046325684,  5.449999809265137,\n",
-       "        8.100000381469727, 11.050000190734863, 14.350000381469727,\n",
-       "       18.049999237060547, 22.200000762939453, 26.850000381469727,\n",
-       "                     32.0, 37.650001525878906,  43.79999923706055,\n",
-       "        50.54999923706055,  57.95000076293945,               66.0,\n",
-       "        74.80000305175781,  84.44999694824219,               95.0,\n",
-       "                    106.5,  119.0999984741211, 132.89999389648438,\n",
-       "        147.9499969482422, 164.35000610351562,             182.25,\n",
-       "        201.8000030517578, 223.14999389648438,  246.4499969482422,\n",
-       "        271.8500061035156, 299.54998779296875,             329.75,\n",
-       "        362.6499938964844, 398.45001220703125,  437.3999938964844,\n",
-       "                   479.25,  523.4500122070312,              569.5,\n",
-       "        617.0999755859375,  666.2999877929688,  717.1500244140625,\n",
-       "        769.7000122070312,              824.0,  880.0999755859375,\n",
-       "        938.0499877929688,  997.9000244140625,            1059.75,\n",
-       "                   1124.5, 1194.0999755859375,  1270.699951171875,\n",
-       "        1356.300048828125,  1451.699951171875,  1556.800048828125,\n",
-       "        1671.949951171875,  1796.449951171875,             1929.5,\n",
-       "         2071.39990234375,  2222.449951171875,   2382.89990234375,\n",
-       "         2552.89990234375,             2732.5,            2921.75,\n",
-       "         3120.60009765625,   3328.85009765625,            3546.25,\n",
-       "        3772.449951171875,  4006.949951171875,   4249.14990234375,\n",
-       "          4498.2998046875,    4753.5498046875,             5014.0,\n",
-       "         5278.60009765625,            5546.25,            5815.75],\n",
-       "      dtype=&#x27;float32&#x27;, name=&#x27;depth_full&#x27;))</pre></div></li><li class='xr-var-item'><div class='xr-index-name'><div>depth_half</div></div><div class='xr-index-preview'>PandasIndex</div><div></div><input id='index-51af2a0b-e8d5-4634-86b9-6d0eb5a1c054' class='xr-index-data-in' type='checkbox'/><label for='index-51af2a0b-e8d5-4634-86b9-6d0eb5a1c054' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(Index([               0.0,                2.0,  4.199999809265137,\n",
-       "        6.699999809265137,                9.5, 12.600000381469727,\n",
-       "       16.100000381469727,               20.0, 24.399999618530273,\n",
-       "       29.299999237060547,  34.70000076293945, 40.599998474121094,\n",
-       "                     47.0, 54.099998474121094,  61.79999923706055,\n",
-       "        70.19999694824219,   79.4000015258789,               89.5,\n",
-       "                    100.5,              112.5, 125.69999694824219,\n",
-       "       140.10000610351562,  155.8000030517578, 172.89999389648438,\n",
-       "       191.60000610351562,              212.0,  234.3000030517578,\n",
-       "        258.6000061035156,  285.1000061035156,              314.0,\n",
-       "                    345.5, 379.79998779296875,  417.1000061035156,\n",
-       "       457.70001220703125, 500.79998779296875,  546.0999755859375,\n",
-       "        592.9000244140625,  641.2999877929688,  691.2999877929688,\n",
-       "                    743.0,  796.4000244140625,  851.5999755859375,\n",
-       "        908.5999755859375,              967.5,  1028.300048828125,\n",
-       "        1091.199951171875,  1157.800048828125, 1230.4000244140625,\n",
-       "                   1311.0, 1401.5999755859375,  1501.800048828125,\n",
-       "        1611.800048828125, 1732.0999755859375,  1860.800048828125,\n",
-       "        1998.199951171875,   2144.60009765625,  2300.300048828125,\n",
-       "                   2465.5,  2640.300048828125,  2824.699951171875,\n",
-       "        3018.800048828125,   3222.39990234375,  3435.300048828125,\n",
-       "        3657.199951171875,  3887.699951171875,    4126.2001953125,\n",
-       "         4372.10009765625,             4624.5,   4882.60009765625,\n",
-       "         5145.39990234375,    5411.7998046875,    5680.7001953125,\n",
-       "          5950.7998046875],\n",
-       "      dtype=&#x27;float32&#x27;, name=&#x27;depth_half&#x27;))</pre></div></li><li class='xr-var-item'><div class='xr-index-name'><div>level_full</div></div><div class='xr-index-preview'>PandasIndex</div><div></div><input id='index-616b06ae-9cba-4e80-ad9e-5bda8ce61434' class='xr-index-data-in' type='checkbox'/><label for='index-616b06ae-9cba-4e80-ad9e-5bda8ce61434' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(Index([ 1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16, 17, 18,\n",
-       "       19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,\n",
-       "       37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54,\n",
-       "       55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72,\n",
-       "       73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90],\n",
-       "      dtype=&#x27;int32&#x27;, name=&#x27;level_full&#x27;))</pre></div></li><li class='xr-var-item'><div class='xr-index-name'><div>level_half</div></div><div class='xr-index-preview'>PandasIndex</div><div></div><input id='index-761f5409-cdbe-481b-93cf-42f99a21895d' class='xr-index-data-in' type='checkbox'/><label for='index-761f5409-cdbe-481b-93cf-42f99a21895d' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(Index([ 1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16, 17, 18,\n",
-       "       19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,\n",
-       "       37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54,\n",
-       "       55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72,\n",
-       "       73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90,\n",
-       "       91],\n",
-       "      dtype=&#x27;int32&#x27;, name=&#x27;level_half&#x27;))</pre></div></li><li class='xr-var-item'><div class='xr-index-name'><div>soil_depth_energy_level</div></div><div class='xr-index-preview'>PandasIndex</div><div></div><input id='index-dd0a7328-8c16-4086-9aa5-242a2c7738c6' class='xr-index-data-in' type='checkbox'/><label for='index-dd0a7328-8c16-4086-9aa5-242a2c7738c6' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(Index([0.032499998807907104,  0.19200000166893005,   0.7754999995231628,\n",
-       "          2.683000087738037,    6.984000205993652],\n",
-       "      dtype=&#x27;float32&#x27;, name=&#x27;soil_depth_energy_level&#x27;))</pre></div></li><li class='xr-var-item'><div class='xr-index-name'><div>soil_depth_water_level</div></div><div class='xr-index-preview'>PandasIndex</div><div></div><input id='index-8579f1c1-4166-484c-b594-8b8d03869aee' class='xr-index-data-in' type='checkbox'/><label for='index-8579f1c1-4166-484c-b594-8b8d03869aee' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(Index([0.032499998807907104,  0.19200000166893005,   0.7754999995231628,\n",
-       "          2.683000087738037,    6.984000205993652],\n",
-       "      dtype=&#x27;float32&#x27;, name=&#x27;soil_depth_water_level&#x27;))</pre></div></li><li class='xr-var-item'><div class='xr-index-name'><div>time</div></div><div class='xr-index-preview'>PandasIndex</div><div></div><input id='index-fb1c8ee0-f4fb-410f-98af-ff55eb1500b7' class='xr-index-data-in' type='checkbox'/><label for='index-fb1c8ee0-f4fb-410f-98af-ff55eb1500b7' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(DatetimeIndex([&#x27;2020-01-02&#x27;, &#x27;2020-01-03&#x27;, &#x27;2020-01-04&#x27;, &#x27;2020-01-05&#x27;,\n",
-       "               &#x27;2020-01-06&#x27;, &#x27;2020-01-07&#x27;, &#x27;2020-01-08&#x27;, &#x27;2020-01-09&#x27;,\n",
-       "               &#x27;2020-01-10&#x27;, &#x27;2020-01-11&#x27;,\n",
-       "               ...\n",
-       "               &#x27;2049-12-23&#x27;, &#x27;2049-12-24&#x27;, &#x27;2049-12-25&#x27;, &#x27;2049-12-26&#x27;,\n",
-       "               &#x27;2049-12-27&#x27;, &#x27;2049-12-28&#x27;, &#x27;2049-12-29&#x27;, &#x27;2049-12-30&#x27;,\n",
-       "               &#x27;2049-12-31&#x27;, &#x27;2050-01-01&#x27;],\n",
-       "              dtype=&#x27;datetime64[ns]&#x27;, name=&#x27;time&#x27;, length=10958, freq=None))</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-13a8bbe9-a484-4892-924e-3e8952ca51a7' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-13a8bbe9-a484-4892-924e-3e8952ca51a7' class='xr-section-summary'  title='Expand/collapse section'>Attributes: <span>(0)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><dl class='xr-attrs'></dl></div></li></ul></div></div>"
-      ],
-      "text/plain": [
-       "<xarray.Dataset> Size: 14TB\n",
-       "Dimensions:                              (time: 10958, depth_half: 73,\n",
-       "                                          cell: 196608, level_full: 90, crs: 1,\n",
-       "                                          depth_full: 72,\n",
-       "                                          soil_depth_water_level: 5,\n",
-       "                                          level_half: 91,\n",
-       "                                          soil_depth_energy_level: 5)\n",
-       "Coordinates:\n",
-       "  * crs                                  (crs) float32 4B nan\n",
-       "  * depth_full                           (depth_full) float32 288B 1.0 ... 5....\n",
-       "  * depth_half                           (depth_half) float32 292B 0.0 ... 5....\n",
-       "  * level_full                           (level_full) int32 360B 1 2 3 ... 89 90\n",
-       "  * level_half                           (level_half) int32 364B 1 2 3 ... 90 91\n",
-       "  * soil_depth_energy_level              (soil_depth_energy_level) float32 20B ...\n",
-       "  * soil_depth_water_level               (soil_depth_water_level) float32 20B ...\n",
-       "  * time                                 (time) datetime64[ns] 88kB 2020-01-0...\n",
-       "Dimensions without coordinates: cell\n",
-       "Data variables: (12/103)\n",
-       "    A_tracer_v_to                        (time, depth_half, cell) float32 629GB dask.array<chunksize=(7, 11, 49152), meta=np.ndarray>\n",
-       "    FrshFlux_IceSalt                     (time, cell) float32 9GB dask.array<chunksize=(90, 49152), meta=np.ndarray>\n",
-       "    FrshFlux_TotalIce                    (time, cell) float32 9GB dask.array<chunksize=(90, 49152), meta=np.ndarray>\n",
-       "    Qbot                                 (time, cell) float32 9GB dask.array<chunksize=(90, 49152), meta=np.ndarray>\n",
-       "    Qtop                                 (time, cell) float32 9GB dask.array<chunksize=(90, 49152), meta=np.ndarray>\n",
-       "    Wind_Speed_10m                       (time, cell) float32 9GB dask.array<chunksize=(90, 49152), meta=np.ndarray>\n",
-       "    ...                                   ...\n",
-       "    vas                                  (time, cell) float32 9GB dask.array<chunksize=(90, 49152), meta=np.ndarray>\n",
-       "    w                                    (time, depth_half, cell) float32 629GB dask.array<chunksize=(7, 9, 49152), meta=np.ndarray>\n",
-       "    wa_phy                               (time, level_half, cell) float32 784GB dask.array<chunksize=(7, 13, 49152), meta=np.ndarray>\n",
-       "    zg                                   (level_full, cell) float32 71MB dask.array<chunksize=(90, 49152), meta=np.ndarray>\n",
-       "    zghalf                               (level_half, cell) float32 72MB dask.array<chunksize=(91, 49152), meta=np.ndarray>\n",
-       "    zos                                  (time, cell) float32 9GB dask.array<chunksize=(90, 49152), meta=np.ndarray>"
-      ]
-     },
-     "execution_count": 110,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
-   "source": [
-    "icon"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 111,
-   "id": "ca6deec6-3889-40ad-b8fa-784542dc0ae9",
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "ts = icon[[\"ts\",\"crs\"]]"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 112,
-   "id": "9779aec0-2230-44b6-a9b8-ef34491ddbcd",
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "text/html": [
-       "<div><svg style=\"position: absolute; width: 0; height: 0; overflow: hidden\">\n",
-       "<defs>\n",
-       "<symbol id=\"icon-database\" viewBox=\"0 0 32 32\">\n",
-       "<path d=\"M16 0c-8.837 0-16 2.239-16 5v4c0 2.761 7.163 5 16 5s16-2.239 16-5v-4c0-2.761-7.163-5-16-5z\"></path>\n",
-       "<path d=\"M16 17c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
-       "<path d=\"M16 26c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
-       "</symbol>\n",
-       "<symbol id=\"icon-file-text2\" viewBox=\"0 0 32 32\">\n",
-       "<path d=\"M28.681 7.159c-0.694-0.947-1.662-2.053-2.724-3.116s-2.169-2.030-3.116-2.724c-1.612-1.182-2.393-1.319-2.841-1.319h-15.5c-1.378 0-2.5 1.121-2.5 2.5v27c0 1.378 1.122 2.5 2.5 2.5h23c1.378 0 2.5-1.122 2.5-2.5v-19.5c0-0.448-0.137-1.23-1.319-2.841zM24.543 5.457c0.959 0.959 1.712 1.825 2.268 2.543h-4.811v-4.811c0.718 0.556 1.584 1.309 2.543 2.268zM28 29.5c0 0.271-0.229 0.5-0.5 0.5h-23c-0.271 0-0.5-0.229-0.5-0.5v-27c0-0.271 0.229-0.5 0.5-0.5 0 0 15.499-0 15.5 0v7c0 0.552 0.448 1 1 1h7v19.5z\"></path>\n",
-       "<path d=\"M23 26h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
-       "<path d=\"M23 22h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
-       "<path d=\"M23 18h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
-       "</symbol>\n",
-       "</defs>\n",
-       "</svg>\n",
-       "<style>/* CSS stylesheet for displaying xarray objects in jupyterlab.\n",
-       " *\n",
-       " */\n",
-       "\n",
-       ":root {\n",
-       "  --xr-font-color0: var(--jp-content-font-color0, rgba(0, 0, 0, 1));\n",
-       "  --xr-font-color2: var(--jp-content-font-color2, rgba(0, 0, 0, 0.54));\n",
-       "  --xr-font-color3: var(--jp-content-font-color3, rgba(0, 0, 0, 0.38));\n",
-       "  --xr-border-color: var(--jp-border-color2, #e0e0e0);\n",
-       "  --xr-disabled-color: var(--jp-layout-color3, #bdbdbd);\n",
-       "  --xr-background-color: var(--jp-layout-color0, white);\n",
-       "  --xr-background-color-row-even: var(--jp-layout-color1, white);\n",
-       "  --xr-background-color-row-odd: var(--jp-layout-color2, #eeeeee);\n",
-       "}\n",
-       "\n",
-       "html[theme=dark],\n",
-       "body[data-theme=dark],\n",
-       "body.vscode-dark {\n",
-       "  --xr-font-color0: rgba(255, 255, 255, 1);\n",
-       "  --xr-font-color2: rgba(255, 255, 255, 0.54);\n",
-       "  --xr-font-color3: rgba(255, 255, 255, 0.38);\n",
-       "  --xr-border-color: #1F1F1F;\n",
-       "  --xr-disabled-color: #515151;\n",
-       "  --xr-background-color: #111111;\n",
-       "  --xr-background-color-row-even: #111111;\n",
-       "  --xr-background-color-row-odd: #313131;\n",
-       "}\n",
-       "\n",
-       ".xr-wrap {\n",
-       "  display: block !important;\n",
-       "  min-width: 300px;\n",
-       "  max-width: 700px;\n",
-       "}\n",
-       "\n",
-       ".xr-text-repr-fallback {\n",
-       "  /* fallback to plain text repr when CSS is not injected (untrusted notebook) */\n",
-       "  display: none;\n",
-       "}\n",
-       "\n",
-       ".xr-header {\n",
-       "  padding-top: 6px;\n",
-       "  padding-bottom: 6px;\n",
-       "  margin-bottom: 4px;\n",
-       "  border-bottom: solid 1px var(--xr-border-color);\n",
-       "}\n",
-       "\n",
-       ".xr-header > div,\n",
-       ".xr-header > ul {\n",
-       "  display: inline;\n",
-       "  margin-top: 0;\n",
-       "  margin-bottom: 0;\n",
-       "}\n",
-       "\n",
-       ".xr-obj-type,\n",
-       ".xr-array-name {\n",
-       "  margin-left: 2px;\n",
-       "  margin-right: 10px;\n",
-       "}\n",
-       "\n",
-       ".xr-obj-type {\n",
-       "  color: var(--xr-font-color2);\n",
-       "}\n",
-       "\n",
-       ".xr-sections {\n",
-       "  padding-left: 0 !important;\n",
-       "  display: grid;\n",
-       "  grid-template-columns: 150px auto auto 1fr 20px 20px;\n",
-       "}\n",
-       "\n",
-       ".xr-section-item {\n",
-       "  display: contents;\n",
-       "}\n",
-       "\n",
-       ".xr-section-item input {\n",
-       "  display: none;\n",
-       "}\n",
-       "\n",
-       ".xr-section-item input + label {\n",
-       "  color: var(--xr-disabled-color);\n",
-       "}\n",
-       "\n",
-       ".xr-section-item input:enabled + label {\n",
-       "  cursor: pointer;\n",
-       "  color: var(--xr-font-color2);\n",
-       "}\n",
-       "\n",
-       ".xr-section-item input:enabled + label:hover {\n",
-       "  color: var(--xr-font-color0);\n",
-       "}\n",
-       "\n",
-       ".xr-section-summary {\n",
-       "  grid-column: 1;\n",
-       "  color: var(--xr-font-color2);\n",
-       "  font-weight: 500;\n",
-       "}\n",
-       "\n",
-       ".xr-section-summary > span {\n",
-       "  display: inline-block;\n",
-       "  padding-left: 0.5em;\n",
-       "}\n",
-       "\n",
-       ".xr-section-summary-in:disabled + label {\n",
-       "  color: var(--xr-font-color2);\n",
-       "}\n",
-       "\n",
-       ".xr-section-summary-in + label:before {\n",
-       "  display: inline-block;\n",
-       "  content: '►';\n",
-       "  font-size: 11px;\n",
-       "  width: 15px;\n",
-       "  text-align: center;\n",
-       "}\n",
-       "\n",
-       ".xr-section-summary-in:disabled + label:before {\n",
-       "  color: var(--xr-disabled-color);\n",
-       "}\n",
-       "\n",
-       ".xr-section-summary-in:checked + label:before {\n",
-       "  content: '▼';\n",
-       "}\n",
-       "\n",
-       ".xr-section-summary-in:checked + label > span {\n",
-       "  display: none;\n",
-       "}\n",
-       "\n",
-       ".xr-section-summary,\n",
-       ".xr-section-inline-details {\n",
-       "  padding-top: 4px;\n",
-       "  padding-bottom: 4px;\n",
-       "}\n",
-       "\n",
-       ".xr-section-inline-details {\n",
-       "  grid-column: 2 / -1;\n",
-       "}\n",
-       "\n",
-       ".xr-section-details {\n",
-       "  display: none;\n",
-       "  grid-column: 1 / -1;\n",
-       "  margin-bottom: 5px;\n",
-       "}\n",
-       "\n",
-       ".xr-section-summary-in:checked ~ .xr-section-details {\n",
-       "  display: contents;\n",
-       "}\n",
-       "\n",
-       ".xr-array-wrap {\n",
-       "  grid-column: 1 / -1;\n",
-       "  display: grid;\n",
-       "  grid-template-columns: 20px auto;\n",
-       "}\n",
-       "\n",
-       ".xr-array-wrap > label {\n",
-       "  grid-column: 1;\n",
-       "  vertical-align: top;\n",
-       "}\n",
-       "\n",
-       ".xr-preview {\n",
-       "  color: var(--xr-font-color3);\n",
-       "}\n",
-       "\n",
-       ".xr-array-preview,\n",
-       ".xr-array-data {\n",
-       "  padding: 0 5px !important;\n",
-       "  grid-column: 2;\n",
-       "}\n",
-       "\n",
-       ".xr-array-data,\n",
-       ".xr-array-in:checked ~ .xr-array-preview {\n",
-       "  display: none;\n",
-       "}\n",
-       "\n",
-       ".xr-array-in:checked ~ .xr-array-data,\n",
-       ".xr-array-preview {\n",
-       "  display: inline-block;\n",
-       "}\n",
-       "\n",
-       ".xr-dim-list {\n",
-       "  display: inline-block !important;\n",
-       "  list-style: none;\n",
-       "  padding: 0 !important;\n",
-       "  margin: 0;\n",
-       "}\n",
-       "\n",
-       ".xr-dim-list li {\n",
-       "  display: inline-block;\n",
-       "  padding: 0;\n",
-       "  margin: 0;\n",
-       "}\n",
-       "\n",
-       ".xr-dim-list:before {\n",
-       "  content: '(';\n",
-       "}\n",
-       "\n",
-       ".xr-dim-list:after {\n",
-       "  content: ')';\n",
-       "}\n",
-       "\n",
-       ".xr-dim-list li:not(:last-child):after {\n",
-       "  content: ',';\n",
-       "  padding-right: 5px;\n",
-       "}\n",
-       "\n",
-       ".xr-has-index {\n",
-       "  font-weight: bold;\n",
-       "}\n",
-       "\n",
-       ".xr-var-list,\n",
-       ".xr-var-item {\n",
-       "  display: contents;\n",
-       "}\n",
-       "\n",
-       ".xr-var-item > div,\n",
-       ".xr-var-item label,\n",
-       ".xr-var-item > .xr-var-name span {\n",
-       "  background-color: var(--xr-background-color-row-even);\n",
-       "  margin-bottom: 0;\n",
-       "}\n",
-       "\n",
-       ".xr-var-item > .xr-var-name:hover span {\n",
-       "  padding-right: 5px;\n",
-       "}\n",
-       "\n",
-       ".xr-var-list > li:nth-child(odd) > div,\n",
-       ".xr-var-list > li:nth-child(odd) > label,\n",
-       ".xr-var-list > li:nth-child(odd) > .xr-var-name span {\n",
-       "  background-color: var(--xr-background-color-row-odd);\n",
-       "}\n",
-       "\n",
-       ".xr-var-name {\n",
-       "  grid-column: 1;\n",
-       "}\n",
-       "\n",
-       ".xr-var-dims {\n",
-       "  grid-column: 2;\n",
-       "}\n",
-       "\n",
-       ".xr-var-dtype {\n",
-       "  grid-column: 3;\n",
-       "  text-align: right;\n",
-       "  color: var(--xr-font-color2);\n",
-       "}\n",
-       "\n",
-       ".xr-var-preview {\n",
-       "  grid-column: 4;\n",
-       "}\n",
-       "\n",
-       ".xr-index-preview {\n",
-       "  grid-column: 2 / 5;\n",
-       "  color: var(--xr-font-color2);\n",
-       "}\n",
-       "\n",
-       ".xr-var-name,\n",
-       ".xr-var-dims,\n",
-       ".xr-var-dtype,\n",
-       ".xr-preview,\n",
-       ".xr-attrs dt {\n",
-       "  white-space: nowrap;\n",
-       "  overflow: hidden;\n",
-       "  text-overflow: ellipsis;\n",
-       "  padding-right: 10px;\n",
-       "}\n",
-       "\n",
-       ".xr-var-name:hover,\n",
-       ".xr-var-dims:hover,\n",
-       ".xr-var-dtype:hover,\n",
-       ".xr-attrs dt:hover {\n",
-       "  overflow: visible;\n",
-       "  width: auto;\n",
-       "  z-index: 1;\n",
-       "}\n",
-       "\n",
-       ".xr-var-attrs,\n",
-       ".xr-var-data,\n",
-       ".xr-index-data {\n",
-       "  display: none;\n",
-       "  background-color: var(--xr-background-color) !important;\n",
-       "  padding-bottom: 5px !important;\n",
-       "}\n",
-       "\n",
-       ".xr-var-attrs-in:checked ~ .xr-var-attrs,\n",
-       ".xr-var-data-in:checked ~ .xr-var-data,\n",
-       ".xr-index-data-in:checked ~ .xr-index-data {\n",
-       "  display: block;\n",
-       "}\n",
-       "\n",
-       ".xr-var-data > table {\n",
-       "  float: right;\n",
-       "}\n",
-       "\n",
-       ".xr-var-name span,\n",
-       ".xr-var-data,\n",
-       ".xr-index-name div,\n",
-       ".xr-index-data,\n",
-       ".xr-attrs {\n",
-       "  padding-left: 25px !important;\n",
-       "}\n",
-       "\n",
-       ".xr-attrs,\n",
-       ".xr-var-attrs,\n",
-       ".xr-var-data,\n",
-       ".xr-index-data {\n",
-       "  grid-column: 1 / -1;\n",
-       "}\n",
-       "\n",
-       "dl.xr-attrs {\n",
-       "  padding: 0;\n",
-       "  margin: 0;\n",
-       "  display: grid;\n",
-       "  grid-template-columns: 125px auto;\n",
-       "}\n",
-       "\n",
-       ".xr-attrs dt,\n",
-       ".xr-attrs dd {\n",
-       "  padding: 0;\n",
-       "  margin: 0;\n",
-       "  float: left;\n",
-       "  padding-right: 10px;\n",
-       "  width: auto;\n",
-       "}\n",
-       "\n",
-       ".xr-attrs dt {\n",
-       "  font-weight: normal;\n",
-       "  grid-column: 1;\n",
-       "}\n",
-       "\n",
-       ".xr-attrs dt:hover span {\n",
-       "  display: inline-block;\n",
-       "  background: var(--xr-background-color);\n",
-       "  padding-right: 10px;\n",
-       "}\n",
-       "\n",
-       ".xr-attrs dd {\n",
-       "  grid-column: 2;\n",
-       "  white-space: pre-wrap;\n",
-       "  word-break: break-all;\n",
-       "}\n",
-       "\n",
-       ".xr-icon-database,\n",
-       ".xr-icon-file-text2,\n",
-       ".xr-no-icon {\n",
-       "  display: inline-block;\n",
-       "  vertical-align: middle;\n",
-       "  width: 1em;\n",
-       "  height: 1.5em !important;\n",
-       "  stroke-width: 0;\n",
-       "  stroke: currentColor;\n",
-       "  fill: currentColor;\n",
-       "}\n",
-       "</style><pre class='xr-text-repr-fallback'>&lt;xarray.Dataset&gt; Size: 9GB\n",
-       "Dimensions:  (time: 10958, cell: 196608, crs: 1)\n",
-       "Coordinates:\n",
-       "  * crs      (crs) float32 4B nan\n",
-       "  * time     (time) datetime64[ns] 88kB 2020-01-02 2020-01-03 ... 2050-01-01\n",
-       "Dimensions without coordinates: cell\n",
-       "Data variables:\n",
-       "    ts       (time, cell) float32 9GB dask.array&lt;chunksize=(90, 49152), meta=np.ndarray&gt;</pre><div class='xr-wrap' style='display:none'><div class='xr-header'><div class='xr-obj-type'>xarray.Dataset</div></div><ul class='xr-sections'><li class='xr-section-item'><input id='section-d6a52d13-7032-4707-b820-010bed1d0d9d' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-d6a52d13-7032-4707-b820-010bed1d0d9d' class='xr-section-summary'  title='Expand/collapse section'>Dimensions:</label><div class='xr-section-inline-details'><ul class='xr-dim-list'><li><span class='xr-has-index'>time</span>: 10958</li><li><span>cell</span>: 196608</li><li><span class='xr-has-index'>crs</span>: 1</li></ul></div><div class='xr-section-details'></div></li><li class='xr-section-item'><input id='section-0f524b29-a102-4994-ac5e-8bcd6fa41f9e' class='xr-section-summary-in' type='checkbox'  checked><label for='section-0f524b29-a102-4994-ac5e-8bcd6fa41f9e' class='xr-section-summary' >Coordinates: <span>(2)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>crs</span></div><div class='xr-var-dims'>(crs)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>nan</div><input id='attrs-c835cbb2-f194-42a5-a723-f0d47db76d7e' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-c835cbb2-f194-42a5-a723-f0d47db76d7e' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-8986a1df-059b-4f2a-ae7f-b38c284c9159' class='xr-var-data-in' type='checkbox'><label for='data-8986a1df-059b-4f2a-ae7f-b38c284c9159' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>grid_mapping_name :</span></dt><dd>healpix</dd><dt><span>healpix_nside :</span></dt><dd>128</dd><dt><span>healpix_order :</span></dt><dd>nest</dd></dl></div><div class='xr-var-data'><pre>array([nan], dtype=float32)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>time</span></div><div class='xr-var-dims'>(time)</div><div class='xr-var-dtype'>datetime64[ns]</div><div class='xr-var-preview xr-preview'>2020-01-02 ... 2050-01-01</div><input id='attrs-2aa7bb67-7745-4b11-b7ee-4d7d5c43bc94' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-2aa7bb67-7745-4b11-b7ee-4d7d5c43bc94' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-2d6e5b08-c536-4c8b-9954-8f9ea552c2c9' class='xr-var-data-in' type='checkbox'><label for='data-2d6e5b08-c536-4c8b-9954-8f9ea552c2c9' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>axis :</span></dt><dd>T</dd></dl></div><div class='xr-var-data'><pre>array([&#x27;2020-01-02T00:00:00.000000000&#x27;, &#x27;2020-01-03T00:00:00.000000000&#x27;,\n",
-       "       &#x27;2020-01-04T00:00:00.000000000&#x27;, ..., &#x27;2049-12-30T00:00:00.000000000&#x27;,\n",
-       "       &#x27;2049-12-31T00:00:00.000000000&#x27;, &#x27;2050-01-01T00:00:00.000000000&#x27;],\n",
-       "      dtype=&#x27;datetime64[ns]&#x27;)</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-7e6e4d9e-ab96-40ad-b461-9046eef7ca7b' class='xr-section-summary-in' type='checkbox'  checked><label for='section-7e6e4d9e-ab96-40ad-b461-9046eef7ca7b' class='xr-section-summary' >Data variables: <span>(1)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span>ts</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(90, 49152), meta=np.ndarray&gt;</div><input id='attrs-b6cb595e-970f-4218-b7ce-7573ebdefe12' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-b6cb595e-970f-4218-b7ce-7573ebdefe12' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-304c2ebe-14a0-41e9-bc1a-9a68ca59e943' class='xr-var-data-in' type='checkbox'><label for='data-304c2ebe-14a0-41e9-bc1a-9a68ca59e943' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>cell_methods :</span></dt><dd>time: mean cell: mean</dd><dt><span>component :</span></dt><dd>atmo</dd><dt><span>grid_mapping :</span></dt><dd>crs</dd><dt><span>long_name :</span></dt><dd>surface temperature</dd><dt><span>standard_name :</span></dt><dd>surface_temperature</dd><dt><span>units :</span></dt><dd>K</dd><dt><span>vgrid :</span></dt><dd>surface</dd></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table>\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 8.03 GiB </td>\n",
-       "                        <td> 16.88 MiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (10958, 196608) </td>\n",
-       "                        <td> (90, 49152) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Count </th>\n",
-       "                        <td> 2 Graph Layers </td>\n",
-       "                        <td> 488 Chunks </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                    <th> Type </th>\n",
-       "                    <td> float32 </td>\n",
-       "                    <td> numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"170\" height=\"85\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n",
-       "  <line x1=\"0\" y1=\"3\" x2=\"120\" y2=\"3\" />\n",
-       "  <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n",
-       "  <line x1=\"0\" y1=\"7\" x2=\"120\" y2=\"7\" />\n",
-       "  <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n",
-       "  <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n",
-       "  <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n",
-       "  <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n",
-       "  <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n",
-       "  <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n",
-       "  <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n",
-       "  <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n",
-       "  <line x1=\"0\" y1=\"23\" x2=\"120\" y2=\"23\" />\n",
-       "  <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" />\n",
-       "  <line x1=\"0\" y1=\"27\" x2=\"120\" y2=\"27\" />\n",
-       "  <line x1=\"0\" y1=\"29\" x2=\"120\" y2=\"29\" />\n",
-       "  <line x1=\"0\" y1=\"31\" x2=\"120\" y2=\"31\" />\n",
-       "  <line x1=\"0\" y1=\"33\" x2=\"120\" y2=\"33\" />\n",
-       "  <line x1=\"0\" y1=\"35\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"35\" />\n",
-       "  <line x1=\"60\" y1=\"0\" x2=\"60\" y2=\"35\" />\n",
-       "  <line x1=\"90\" y1=\"0\" x2=\"90\" y2=\"35\" />\n",
-       "  <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"35\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"0.0,0.0 120.0,0.0 120.0,35.164509745010875 0.0,35.164509745010875\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"60.000000\" y=\"55.164510\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >196608</text>\n",
-       "  <text x=\"140.000000\" y=\"17.582255\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,17.582255)\">10958</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li></ul></div></li><li class='xr-section-item'><input id='section-40d0ec12-1eb2-4952-b0b0-274a9ce256cf' class='xr-section-summary-in' type='checkbox'  ><label for='section-40d0ec12-1eb2-4952-b0b0-274a9ce256cf' class='xr-section-summary' >Indexes: <span>(2)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-index-name'><div>crs</div></div><div class='xr-index-preview'>PandasIndex</div><div></div><input id='index-17831d31-3a87-407d-89bb-adf4b99babc5' class='xr-index-data-in' type='checkbox'/><label for='index-17831d31-3a87-407d-89bb-adf4b99babc5' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(Index([nan], dtype=&#x27;float32&#x27;, name=&#x27;crs&#x27;))</pre></div></li><li class='xr-var-item'><div class='xr-index-name'><div>time</div></div><div class='xr-index-preview'>PandasIndex</div><div></div><input id='index-aed0ef19-5946-41e7-b906-a937df602730' class='xr-index-data-in' type='checkbox'/><label for='index-aed0ef19-5946-41e7-b906-a937df602730' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(DatetimeIndex([&#x27;2020-01-02&#x27;, &#x27;2020-01-03&#x27;, &#x27;2020-01-04&#x27;, &#x27;2020-01-05&#x27;,\n",
-       "               &#x27;2020-01-06&#x27;, &#x27;2020-01-07&#x27;, &#x27;2020-01-08&#x27;, &#x27;2020-01-09&#x27;,\n",
-       "               &#x27;2020-01-10&#x27;, &#x27;2020-01-11&#x27;,\n",
-       "               ...\n",
-       "               &#x27;2049-12-23&#x27;, &#x27;2049-12-24&#x27;, &#x27;2049-12-25&#x27;, &#x27;2049-12-26&#x27;,\n",
-       "               &#x27;2049-12-27&#x27;, &#x27;2049-12-28&#x27;, &#x27;2049-12-29&#x27;, &#x27;2049-12-30&#x27;,\n",
-       "               &#x27;2049-12-31&#x27;, &#x27;2050-01-01&#x27;],\n",
-       "              dtype=&#x27;datetime64[ns]&#x27;, name=&#x27;time&#x27;, length=10958, freq=None))</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-54ec36ed-9cd3-47b6-98ef-1d5b0825a512' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-54ec36ed-9cd3-47b6-98ef-1d5b0825a512' class='xr-section-summary'  title='Expand/collapse section'>Attributes: <span>(0)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><dl class='xr-attrs'></dl></div></li></ul></div></div>"
-      ],
-      "text/plain": [
-       "<xarray.Dataset> Size: 9GB\n",
-       "Dimensions:  (time: 10958, cell: 196608, crs: 1)\n",
-       "Coordinates:\n",
-       "  * crs      (crs) float32 4B nan\n",
-       "  * time     (time) datetime64[ns] 88kB 2020-01-02 2020-01-03 ... 2050-01-01\n",
-       "Dimensions without coordinates: cell\n",
-       "Data variables:\n",
-       "    ts       (time, cell) float32 9GB dask.array<chunksize=(90, 49152), meta=np.ndarray>"
-      ]
-     },
-     "execution_count": 112,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
-   "source": [
-    "ts"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "id": "f81d1060-616a-4c82-9e8a-6a07ac2d1790",
-   "metadata": {},
-   "source": [
-    "How large is the data in GB?"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 113,
-   "id": "2942963e-00e5-48d4-9b37-dd43f43093e2",
-   "metadata": {},
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Size of data in GB: 8.025960553437471\n"
-     ]
-    }
-   ],
-   "source": [
-    "print(\"Size of data in GB:\", ts.nbytes/(1024**3))"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 114,
-   "id": "381efa94-179f-4a4d-93a3-e3f18d18cf56",
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "text/html": [
-       "<div><svg style=\"position: absolute; width: 0; height: 0; overflow: hidden\">\n",
-       "<defs>\n",
-       "<symbol id=\"icon-database\" viewBox=\"0 0 32 32\">\n",
-       "<path d=\"M16 0c-8.837 0-16 2.239-16 5v4c0 2.761 7.163 5 16 5s16-2.239 16-5v-4c0-2.761-7.163-5-16-5z\"></path>\n",
-       "<path d=\"M16 17c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
-       "<path d=\"M16 26c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
-       "</symbol>\n",
-       "<symbol id=\"icon-file-text2\" viewBox=\"0 0 32 32\">\n",
-       "<path d=\"M28.681 7.159c-0.694-0.947-1.662-2.053-2.724-3.116s-2.169-2.030-3.116-2.724c-1.612-1.182-2.393-1.319-2.841-1.319h-15.5c-1.378 0-2.5 1.121-2.5 2.5v27c0 1.378 1.122 2.5 2.5 2.5h23c1.378 0 2.5-1.122 2.5-2.5v-19.5c0-0.448-0.137-1.23-1.319-2.841zM24.543 5.457c0.959 0.959 1.712 1.825 2.268 2.543h-4.811v-4.811c0.718 0.556 1.584 1.309 2.543 2.268zM28 29.5c0 0.271-0.229 0.5-0.5 0.5h-23c-0.271 0-0.5-0.229-0.5-0.5v-27c0-0.271 0.229-0.5 0.5-0.5 0 0 15.499-0 15.5 0v7c0 0.552 0.448 1 1 1h7v19.5z\"></path>\n",
-       "<path d=\"M23 26h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
-       "<path d=\"M23 22h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
-       "<path d=\"M23 18h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
-       "</symbol>\n",
-       "</defs>\n",
-       "</svg>\n",
-       "<style>/* CSS stylesheet for displaying xarray objects in jupyterlab.\n",
-       " *\n",
-       " */\n",
-       "\n",
-       ":root {\n",
-       "  --xr-font-color0: var(--jp-content-font-color0, rgba(0, 0, 0, 1));\n",
-       "  --xr-font-color2: var(--jp-content-font-color2, rgba(0, 0, 0, 0.54));\n",
-       "  --xr-font-color3: var(--jp-content-font-color3, rgba(0, 0, 0, 0.38));\n",
-       "  --xr-border-color: var(--jp-border-color2, #e0e0e0);\n",
-       "  --xr-disabled-color: var(--jp-layout-color3, #bdbdbd);\n",
-       "  --xr-background-color: var(--jp-layout-color0, white);\n",
-       "  --xr-background-color-row-even: var(--jp-layout-color1, white);\n",
-       "  --xr-background-color-row-odd: var(--jp-layout-color2, #eeeeee);\n",
-       "}\n",
-       "\n",
-       "html[theme=dark],\n",
-       "body[data-theme=dark],\n",
-       "body.vscode-dark {\n",
-       "  --xr-font-color0: rgba(255, 255, 255, 1);\n",
-       "  --xr-font-color2: rgba(255, 255, 255, 0.54);\n",
-       "  --xr-font-color3: rgba(255, 255, 255, 0.38);\n",
-       "  --xr-border-color: #1F1F1F;\n",
-       "  --xr-disabled-color: #515151;\n",
-       "  --xr-background-color: #111111;\n",
-       "  --xr-background-color-row-even: #111111;\n",
-       "  --xr-background-color-row-odd: #313131;\n",
-       "}\n",
-       "\n",
-       ".xr-wrap {\n",
-       "  display: block !important;\n",
-       "  min-width: 300px;\n",
-       "  max-width: 700px;\n",
-       "}\n",
-       "\n",
-       ".xr-text-repr-fallback {\n",
-       "  /* fallback to plain text repr when CSS is not injected (untrusted notebook) */\n",
-       "  display: none;\n",
-       "}\n",
-       "\n",
-       ".xr-header {\n",
-       "  padding-top: 6px;\n",
-       "  padding-bottom: 6px;\n",
-       "  margin-bottom: 4px;\n",
-       "  border-bottom: solid 1px var(--xr-border-color);\n",
-       "}\n",
-       "\n",
-       ".xr-header > div,\n",
-       ".xr-header > ul {\n",
-       "  display: inline;\n",
-       "  margin-top: 0;\n",
-       "  margin-bottom: 0;\n",
-       "}\n",
-       "\n",
-       ".xr-obj-type,\n",
-       ".xr-array-name {\n",
-       "  margin-left: 2px;\n",
-       "  margin-right: 10px;\n",
-       "}\n",
-       "\n",
-       ".xr-obj-type {\n",
-       "  color: var(--xr-font-color2);\n",
-       "}\n",
-       "\n",
-       ".xr-sections {\n",
-       "  padding-left: 0 !important;\n",
-       "  display: grid;\n",
-       "  grid-template-columns: 150px auto auto 1fr 20px 20px;\n",
-       "}\n",
-       "\n",
-       ".xr-section-item {\n",
-       "  display: contents;\n",
-       "}\n",
-       "\n",
-       ".xr-section-item input {\n",
-       "  display: none;\n",
-       "}\n",
-       "\n",
-       ".xr-section-item input + label {\n",
-       "  color: var(--xr-disabled-color);\n",
-       "}\n",
-       "\n",
-       ".xr-section-item input:enabled + label {\n",
-       "  cursor: pointer;\n",
-       "  color: var(--xr-font-color2);\n",
-       "}\n",
-       "\n",
-       ".xr-section-item input:enabled + label:hover {\n",
-       "  color: var(--xr-font-color0);\n",
-       "}\n",
-       "\n",
-       ".xr-section-summary {\n",
-       "  grid-column: 1;\n",
-       "  color: var(--xr-font-color2);\n",
-       "  font-weight: 500;\n",
-       "}\n",
-       "\n",
-       ".xr-section-summary > span {\n",
-       "  display: inline-block;\n",
-       "  padding-left: 0.5em;\n",
-       "}\n",
-       "\n",
-       ".xr-section-summary-in:disabled + label {\n",
-       "  color: var(--xr-font-color2);\n",
-       "}\n",
-       "\n",
-       ".xr-section-summary-in + label:before {\n",
-       "  display: inline-block;\n",
-       "  content: '►';\n",
-       "  font-size: 11px;\n",
-       "  width: 15px;\n",
-       "  text-align: center;\n",
-       "}\n",
-       "\n",
-       ".xr-section-summary-in:disabled + label:before {\n",
-       "  color: var(--xr-disabled-color);\n",
-       "}\n",
-       "\n",
-       ".xr-section-summary-in:checked + label:before {\n",
-       "  content: '▼';\n",
-       "}\n",
-       "\n",
-       ".xr-section-summary-in:checked + label > span {\n",
-       "  display: none;\n",
-       "}\n",
-       "\n",
-       ".xr-section-summary,\n",
-       ".xr-section-inline-details {\n",
-       "  padding-top: 4px;\n",
-       "  padding-bottom: 4px;\n",
-       "}\n",
-       "\n",
-       ".xr-section-inline-details {\n",
-       "  grid-column: 2 / -1;\n",
-       "}\n",
-       "\n",
-       ".xr-section-details {\n",
-       "  display: none;\n",
-       "  grid-column: 1 / -1;\n",
-       "  margin-bottom: 5px;\n",
-       "}\n",
-       "\n",
-       ".xr-section-summary-in:checked ~ .xr-section-details {\n",
-       "  display: contents;\n",
-       "}\n",
-       "\n",
-       ".xr-array-wrap {\n",
-       "  grid-column: 1 / -1;\n",
-       "  display: grid;\n",
-       "  grid-template-columns: 20px auto;\n",
-       "}\n",
-       "\n",
-       ".xr-array-wrap > label {\n",
-       "  grid-column: 1;\n",
-       "  vertical-align: top;\n",
-       "}\n",
-       "\n",
-       ".xr-preview {\n",
-       "  color: var(--xr-font-color3);\n",
-       "}\n",
-       "\n",
-       ".xr-array-preview,\n",
-       ".xr-array-data {\n",
-       "  padding: 0 5px !important;\n",
-       "  grid-column: 2;\n",
-       "}\n",
-       "\n",
-       ".xr-array-data,\n",
-       ".xr-array-in:checked ~ .xr-array-preview {\n",
-       "  display: none;\n",
-       "}\n",
-       "\n",
-       ".xr-array-in:checked ~ .xr-array-data,\n",
-       ".xr-array-preview {\n",
-       "  display: inline-block;\n",
-       "}\n",
-       "\n",
-       ".xr-dim-list {\n",
-       "  display: inline-block !important;\n",
-       "  list-style: none;\n",
-       "  padding: 0 !important;\n",
-       "  margin: 0;\n",
-       "}\n",
-       "\n",
-       ".xr-dim-list li {\n",
-       "  display: inline-block;\n",
-       "  padding: 0;\n",
-       "  margin: 0;\n",
-       "}\n",
-       "\n",
-       ".xr-dim-list:before {\n",
-       "  content: '(';\n",
-       "}\n",
-       "\n",
-       ".xr-dim-list:after {\n",
-       "  content: ')';\n",
-       "}\n",
-       "\n",
-       ".xr-dim-list li:not(:last-child):after {\n",
-       "  content: ',';\n",
-       "  padding-right: 5px;\n",
-       "}\n",
-       "\n",
-       ".xr-has-index {\n",
-       "  font-weight: bold;\n",
-       "}\n",
-       "\n",
-       ".xr-var-list,\n",
-       ".xr-var-item {\n",
-       "  display: contents;\n",
-       "}\n",
-       "\n",
-       ".xr-var-item > div,\n",
-       ".xr-var-item label,\n",
-       ".xr-var-item > .xr-var-name span {\n",
-       "  background-color: var(--xr-background-color-row-even);\n",
-       "  margin-bottom: 0;\n",
-       "}\n",
-       "\n",
-       ".xr-var-item > .xr-var-name:hover span {\n",
-       "  padding-right: 5px;\n",
-       "}\n",
-       "\n",
-       ".xr-var-list > li:nth-child(odd) > div,\n",
-       ".xr-var-list > li:nth-child(odd) > label,\n",
-       ".xr-var-list > li:nth-child(odd) > .xr-var-name span {\n",
-       "  background-color: var(--xr-background-color-row-odd);\n",
-       "}\n",
-       "\n",
-       ".xr-var-name {\n",
-       "  grid-column: 1;\n",
-       "}\n",
-       "\n",
-       ".xr-var-dims {\n",
-       "  grid-column: 2;\n",
-       "}\n",
-       "\n",
-       ".xr-var-dtype {\n",
-       "  grid-column: 3;\n",
-       "  text-align: right;\n",
-       "  color: var(--xr-font-color2);\n",
-       "}\n",
-       "\n",
-       ".xr-var-preview {\n",
-       "  grid-column: 4;\n",
-       "}\n",
-       "\n",
-       ".xr-index-preview {\n",
-       "  grid-column: 2 / 5;\n",
-       "  color: var(--xr-font-color2);\n",
-       "}\n",
-       "\n",
-       ".xr-var-name,\n",
-       ".xr-var-dims,\n",
-       ".xr-var-dtype,\n",
-       ".xr-preview,\n",
-       ".xr-attrs dt {\n",
-       "  white-space: nowrap;\n",
-       "  overflow: hidden;\n",
-       "  text-overflow: ellipsis;\n",
-       "  padding-right: 10px;\n",
-       "}\n",
-       "\n",
-       ".xr-var-name:hover,\n",
-       ".xr-var-dims:hover,\n",
-       ".xr-var-dtype:hover,\n",
-       ".xr-attrs dt:hover {\n",
-       "  overflow: visible;\n",
-       "  width: auto;\n",
-       "  z-index: 1;\n",
-       "}\n",
-       "\n",
-       ".xr-var-attrs,\n",
-       ".xr-var-data,\n",
-       ".xr-index-data {\n",
-       "  display: none;\n",
-       "  background-color: var(--xr-background-color) !important;\n",
-       "  padding-bottom: 5px !important;\n",
-       "}\n",
-       "\n",
-       ".xr-var-attrs-in:checked ~ .xr-var-attrs,\n",
-       ".xr-var-data-in:checked ~ .xr-var-data,\n",
-       ".xr-index-data-in:checked ~ .xr-index-data {\n",
-       "  display: block;\n",
-       "}\n",
-       "\n",
-       ".xr-var-data > table {\n",
-       "  float: right;\n",
-       "}\n",
-       "\n",
-       ".xr-var-name span,\n",
-       ".xr-var-data,\n",
-       ".xr-index-name div,\n",
-       ".xr-index-data,\n",
-       ".xr-attrs {\n",
-       "  padding-left: 25px !important;\n",
-       "}\n",
-       "\n",
-       ".xr-attrs,\n",
-       ".xr-var-attrs,\n",
-       ".xr-var-data,\n",
-       ".xr-index-data {\n",
-       "  grid-column: 1 / -1;\n",
-       "}\n",
-       "\n",
-       "dl.xr-attrs {\n",
-       "  padding: 0;\n",
-       "  margin: 0;\n",
-       "  display: grid;\n",
-       "  grid-template-columns: 125px auto;\n",
-       "}\n",
-       "\n",
-       ".xr-attrs dt,\n",
-       ".xr-attrs dd {\n",
-       "  padding: 0;\n",
-       "  margin: 0;\n",
-       "  float: left;\n",
-       "  padding-right: 10px;\n",
-       "  width: auto;\n",
-       "}\n",
-       "\n",
-       ".xr-attrs dt {\n",
-       "  font-weight: normal;\n",
-       "  grid-column: 1;\n",
-       "}\n",
-       "\n",
-       ".xr-attrs dt:hover span {\n",
-       "  display: inline-block;\n",
-       "  background: var(--xr-background-color);\n",
-       "  padding-right: 10px;\n",
-       "}\n",
-       "\n",
-       ".xr-attrs dd {\n",
-       "  grid-column: 2;\n",
-       "  white-space: pre-wrap;\n",
-       "  word-break: break-all;\n",
-       "}\n",
-       "\n",
-       ".xr-icon-database,\n",
-       ".xr-icon-file-text2,\n",
-       ".xr-no-icon {\n",
-       "  display: inline-block;\n",
-       "  vertical-align: middle;\n",
-       "  width: 1em;\n",
-       "  height: 1.5em !important;\n",
-       "  stroke-width: 0;\n",
-       "  stroke: currentColor;\n",
-       "  fill: currentColor;\n",
-       "}\n",
-       "</style><pre class='xr-text-repr-fallback'>&lt;xarray.DataArray &#x27;time&#x27; (time: 10958)&gt; Size: 88kB\n",
-       "array([&#x27;2020-01-02T00:00:00.000000000&#x27;, &#x27;2020-01-03T00:00:00.000000000&#x27;,\n",
-       "       &#x27;2020-01-04T00:00:00.000000000&#x27;, ..., &#x27;2049-12-30T00:00:00.000000000&#x27;,\n",
-       "       &#x27;2049-12-31T00:00:00.000000000&#x27;, &#x27;2050-01-01T00:00:00.000000000&#x27;],\n",
-       "      dtype=&#x27;datetime64[ns]&#x27;)\n",
-       "Coordinates:\n",
-       "  * time     (time) datetime64[ns] 88kB 2020-01-02 2020-01-03 ... 2050-01-01\n",
-       "Attributes:\n",
-       "    axis:     T</pre><div class='xr-wrap' style='display:none'><div class='xr-header'><div class='xr-obj-type'>xarray.DataArray</div><div class='xr-array-name'>'time'</div><ul class='xr-dim-list'><li><span class='xr-has-index'>time</span>: 10958</li></ul></div><ul class='xr-sections'><li class='xr-section-item'><div class='xr-array-wrap'><input id='section-387cb68a-27d6-4d19-a95e-a1f65b352e51' class='xr-array-in' type='checkbox' checked><label for='section-387cb68a-27d6-4d19-a95e-a1f65b352e51' title='Show/hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-array-preview xr-preview'><span>2020-01-02 2020-01-03 2020-01-04 ... 2049-12-30 2049-12-31 2050-01-01</span></div><div class='xr-array-data'><pre>array([&#x27;2020-01-02T00:00:00.000000000&#x27;, &#x27;2020-01-03T00:00:00.000000000&#x27;,\n",
-       "       &#x27;2020-01-04T00:00:00.000000000&#x27;, ..., &#x27;2049-12-30T00:00:00.000000000&#x27;,\n",
-       "       &#x27;2049-12-31T00:00:00.000000000&#x27;, &#x27;2050-01-01T00:00:00.000000000&#x27;],\n",
-       "      dtype=&#x27;datetime64[ns]&#x27;)</pre></div></div></li><li class='xr-section-item'><input id='section-cb574bd5-880a-4a99-b75d-b384dfb27761' class='xr-section-summary-in' type='checkbox'  checked><label for='section-cb574bd5-880a-4a99-b75d-b384dfb27761' class='xr-section-summary' >Coordinates: <span>(1)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>time</span></div><div class='xr-var-dims'>(time)</div><div class='xr-var-dtype'>datetime64[ns]</div><div class='xr-var-preview xr-preview'>2020-01-02 ... 2050-01-01</div><input id='attrs-4dcedfb8-6817-4581-af9f-12a67c64662e' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-4dcedfb8-6817-4581-af9f-12a67c64662e' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-20fcc142-0b20-44f8-815e-a217de195328' class='xr-var-data-in' type='checkbox'><label for='data-20fcc142-0b20-44f8-815e-a217de195328' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>axis :</span></dt><dd>T</dd></dl></div><div class='xr-var-data'><pre>array([&#x27;2020-01-02T00:00:00.000000000&#x27;, &#x27;2020-01-03T00:00:00.000000000&#x27;,\n",
-       "       &#x27;2020-01-04T00:00:00.000000000&#x27;, ..., &#x27;2049-12-30T00:00:00.000000000&#x27;,\n",
-       "       &#x27;2049-12-31T00:00:00.000000000&#x27;, &#x27;2050-01-01T00:00:00.000000000&#x27;],\n",
-       "      dtype=&#x27;datetime64[ns]&#x27;)</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-69c1c1b9-941b-4901-936a-7f3539ffe61f' class='xr-section-summary-in' type='checkbox'  ><label for='section-69c1c1b9-941b-4901-936a-7f3539ffe61f' class='xr-section-summary' >Indexes: <span>(1)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-index-name'><div>time</div></div><div class='xr-index-preview'>PandasIndex</div><div></div><input id='index-663c0e28-97df-47ad-a0cc-a788db079035' class='xr-index-data-in' type='checkbox'/><label for='index-663c0e28-97df-47ad-a0cc-a788db079035' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(DatetimeIndex([&#x27;2020-01-02&#x27;, &#x27;2020-01-03&#x27;, &#x27;2020-01-04&#x27;, &#x27;2020-01-05&#x27;,\n",
-       "               &#x27;2020-01-06&#x27;, &#x27;2020-01-07&#x27;, &#x27;2020-01-08&#x27;, &#x27;2020-01-09&#x27;,\n",
-       "               &#x27;2020-01-10&#x27;, &#x27;2020-01-11&#x27;,\n",
-       "               ...\n",
-       "               &#x27;2049-12-23&#x27;, &#x27;2049-12-24&#x27;, &#x27;2049-12-25&#x27;, &#x27;2049-12-26&#x27;,\n",
-       "               &#x27;2049-12-27&#x27;, &#x27;2049-12-28&#x27;, &#x27;2049-12-29&#x27;, &#x27;2049-12-30&#x27;,\n",
-       "               &#x27;2049-12-31&#x27;, &#x27;2050-01-01&#x27;],\n",
-       "              dtype=&#x27;datetime64[ns]&#x27;, name=&#x27;time&#x27;, length=10958, freq=None))</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-e5d165dd-93c0-40e8-a75c-a4b8b389f809' class='xr-section-summary-in' type='checkbox'  checked><label for='section-e5d165dd-93c0-40e8-a75c-a4b8b389f809' class='xr-section-summary' >Attributes: <span>(1)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><dl class='xr-attrs'><dt><span>axis :</span></dt><dd>T</dd></dl></div></li></ul></div></div>"
-      ],
-      "text/plain": [
-       "<xarray.DataArray 'time' (time: 10958)> Size: 88kB\n",
-       "array(['2020-01-02T00:00:00.000000000', '2020-01-03T00:00:00.000000000',\n",
-       "       '2020-01-04T00:00:00.000000000', ..., '2049-12-30T00:00:00.000000000',\n",
-       "       '2049-12-31T00:00:00.000000000', '2050-01-01T00:00:00.000000000'],\n",
-       "      dtype='datetime64[ns]')\n",
-       "Coordinates:\n",
-       "  * time     (time) datetime64[ns] 88kB 2020-01-02 2020-01-03 ... 2050-01-01\n",
-       "Attributes:\n",
-       "    axis:     T"
-      ]
-     },
-     "execution_count": 114,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
-   "source": [
-    "ts.time"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "id": "4adfdae8-f222-4b5a-8fbd-37c82573470d",
-   "metadata": {},
-   "source": [
-    "Monthly resampling and take the monthly mean."
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 115,
-   "id": "3572fb13-d950-43e3-96b3-6d7fdaf29082",
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "ts_mm = ts.resample(time=\"ME\").mean()"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 116,
-   "id": "fce3b84b-7068-49db-b8a8-c274c584f7c8",
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "text/plain": [
-       "0.2644069902598858"
-      ]
-     },
-     "execution_count": 116,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
-   "source": [
-    "ts_mm.nbytes/(1024**3)"
+    "We need sst and sea ice cover boundary data for ICON ESM. By inspecting existing sst and sea ice cover boundary data files, I found that the following format requirements apply:\n",
+    "\n",
+    "* sst: in units of K, variable name is tosbcs, dimensions are (time, cell)\n",
+    "* sic: in units of per cent, variable name is siconcbcs, dimensions are (time, cell)\n",
+    "* time axis uses time stamps in the middle of the month (e.g.,  1978-01-16 12:00:00  1978-02-15 00:00:00  1978-03-16 12:00:00  1978-04-16 00:00:00 )\n",
+    "\n",
+    "Note: On Teachinghub, use the MagicPy Kernel."
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 117,
-   "id": "313a32ea-0fb3-4938-8b28-d38e037917ab",
+   "execution_count": 1,
+   "id": "cb932c48-e396-4bfd-beb1-a7a2a16cf393",
    "metadata": {},
    "outputs": [],
    "source": [
-    "# do not allow surface temperature below freezin temperature of sea wate\n",
-    "sst_min= -1.9 + 273.15\n",
-    "ts_mm = ts_mm.clip(min=sst_min)"
+    "import matplotlib.pyplot as plt\n",
+    "import numpy as np\n",
+    "import zarr\n",
+    "import xarray as xr"
    ]
   },
-  {
-   "cell_type": "code",
-   "execution_count": 105,
-   "id": "24b106fb-2a02-4e9e-972c-c250af1e5f76",
-   "metadata": {},
-   "outputs": [],
-   "source": []
-  },
   {
    "cell_type": "markdown",
-   "id": "144bd3df-dd54-4029-b531-6f9ec3d96a40",
+   "id": "95e51bfb-e45b-416d-8079-101e9165bc57",
    "metadata": {},
    "source": [
-    "Is the time resampling done correctly? Let us check this by plotting the difference of the monthly-mean resampled data with a manually-constructed monthly mean for a single month. The difference is zero at all grid points, so the time resampling is correct."
+    "Load R2B4 target grid."
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 106,
-   "id": "ca2ebe19-3229-4d4b-af12-455f3f2b2fbd",
-   "metadata": {
-    "scrolled": true
-   },
-   "outputs": [
-    {
-     "data": {
-      "text/plain": [
-       "[<matplotlib.lines.Line2D at 0x7fb4d57773d0>]"
-      ]
-     },
-     "execution_count": 106,
-     "metadata": {},
-     "output_type": "execute_result"
-    },
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkoAAAHFCAYAAAANLdYJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABIyElEQVR4nO3de3wU9b3/8ffmtrlfIJAQQgABFQiiBEVAC4gCFlC8oxahCud4QbxRlXosYKVokZ5aK7b1QmnrqbTFS3/SVlDBQgmoiJVKvSEQFCIaIEGQJCTf3x80SzbJJptkdmdm9/V8PPYBmZ2d/czOzsx7v/OdGY8xxggAAACNxNhdAAAAgFMRlAAAAAIgKAEAAARAUAIAAAiAoAQAABAAQQkAACAAghIAAEAABCUAAIAACEoAAAABEJQAF9qwYYPmzZungwcPNnpu5MiRGjlyZNhrCoePPvpIs2fPVlFRkTIzM9WhQwcNHz5cf/rTn5ocf9++fZo2bZqys7OVnJysoUOH6rXXXvMbp6KiQgsWLNDIkSOVm5ur1NRUDRgwQA8//LCOHj3aaJr/8z//owkTJqhr167yeDyaNm1aq+cjmLok6eWXX9Z1112nAQMGKD4+Xh6Pp1Xvc/jwYU2ePFmnnHKK0tLSlJKSov79++vBBx/U4cOH/cb97LPPdPvtt2vEiBHKzMyUx+PRr3/961bPGxBpCEqAC23YsEHz589vMigtWbJES5YsCX9RYbBq1SqtXLlSl112mf74xz/q2WefVZ8+fXTFFVfogQce8Bu3srJSo0eP1muvvaZHH31UL730knJycjRu3Di98cYbvvFKSkr005/+VIMGDdKvfvUr/fnPf9bll1+uefPmacKECWp4l6f//d//VVlZmS666CIlJCS0eh6CrUuSXnjhBW3cuFH9+vXTwIEDW/1e1dXVMsbozjvv1IoVK/TSSy/psssu0wMPPKCLL77Yb9xPPvlEzz77rBISEvTtb3+71e8FRCwDwHUWLVpkJJkdO3bYXUpYffnll6a2trbR8PHjx5vk5GRz9OhR37DHH3/cSDIbNmzwDauurjb9+vUzZ511lm/Y119/bb7++utG06z7jNetW+c3vKamxvf/lJQUM3Xq1FbNQ7B1NXyvW265xVi1yb777ruNJLN9+/Ym3+utt94ykszSpUsteT/AzWhRAlxm3rx5+t73vidJ6tmzpzwejzwej9auXSup8aG3nTt3yuPxaNGiRXr44YfVo0cPJSUlaeTIkfroo49UXV2te++9V3l5ecrIyNAll1yiffv2NXrf5cuXa+jQoUpJSVFqaqrGjh2rLVu2hGOWfbKzs5s8/HTWWWfpyJEj2r9/v2/YCy+8oFNOOUVDhw71DYuLi9N3vvMdvfnmm/r8888lSSkpKUpJSWlympK0e/duv+ExMe3bbAZblxXvFUinTp187xvq9wLcjjUDcJnp06fr1ltvlSQ9//zzKi4uVnFxsQYNGtTs6x5//HH94x//0OOPP66nnnpKH3zwgSZOnKgbbrhBX375pZ555hn9+Mc/1quvvqrp06f7vfZHP/qRrr76avXr109/+MMf9Nvf/laHDh3Sueeeq23btrVY87Fjx4J6mAaHuYK1Zs0aderUSZ07d/YN+9e//qXTTjut0bh1w95///1mp/n6669Lkvr379+mmgJpb11tYYzRsWPHVFFRob/97W9avHixrr76ahUUFFj+XkCkiWt5FABOkp+f79vBnXHGGerRo0dQr8vMzNSLL77oazn46quvdPvtt+vUU0/VSy+95Bvvgw8+0E9/+lNVVFQoPT1du3fv1ty5czVz5kz97Gc/8413wQUXqE+fPpo/f76WL18e8H137typnj17BlXjmjVrWt0R/amnntLatWv16KOPKjY21je8rKxMHTp0aDR+3bCysrKA03zvvff04x//WJdcckmToaY92lNXWy1fvlxXX3217+/vfve7+tWvfmX5+wCRiKAERIlvf/vbfodX+vbtK0kaP36833h1w0tKSlRYWKhXXnlFx44d03XXXadjx475xktMTNSIESO0Zs2aZt83Ly9Pb731VlA1nnLKKUGNV+evf/2rbrnlFl1++eW+Vrb6mjtLLNBzO3fu1IQJE9StWzc99dRTraqnjjFGNTU1fsPqH+ZqS13Nqb9cJCk2NtZvOmPHjtVbb72lQ4cOqbi4WA8//LDKysr0wgsvcMgNaAFBCYgSDVsx6s7YCjS87tT4L774QpJ05plnNjndlna0CQkJOv3004OqsX6LUEteeeUVXXrppbrgggv07LPPNgoYHTt2bLJ1pq4fU1OtOrt27dKoUaMUFxen1157rclxgrFs2TJ997vf9RtWd1ixLXW1JD4+3u/vpUuX+l22ICsrS4MHD5YkjRo1Sr169dLkyZP10ksv6ZJLLmn1+wHRhKAEoFnZ2dmSpD/96U/q3r17q18fikNvr7zyiiZNmqQRI0ZoxYoVTZ6mP2DAAG3durXR8LphhYWFfsN37dqlkSNHyhijtWvXKj8/P6iamzJx4sSArWitrSsYDd+rpc+7rqP6Rx991Or3AqINQQlwIa/XK0n65ptvQv5eY8eOVVxcnLZv367LLrus1a+3+tDbqlWrNGnSJJ1zzjl68cUXfZ9FQ5dccoluvvlmbdq0SUOGDJF0/BDV7373Ow0ZMkR5eXm+cUtKSjRy5EjV1NRo7dq1bQqE9XXs2FEdO3Zsd13BqmstClbd4dLevXu3+r2AaENQAlxowIABkqRHH31UU6dOVXx8vO/qy1br0aOHHnjgAd1333369NNPNW7cOGVlZemLL77Qm2++qZSUFM2fPz/g6xMSElq9Iw9k/fr1mjRpknJzc/X9739f7777rt/z/fr1U3p6uiTp+uuv1+OPP64rrrhCDz30kDp37qwlS5boww8/1Kuvvup7zb59+zRq1Cjt3btXTz/9tPbt2+d3eYT8/Hy/1qU33nhDX375pSSppqZGu3bt8l0ZfMSIEb5T7wMJti7peCtXXcjcvn27JPneq0ePHi1+rr/85S+1bt06jRkzRt26ddPhw4e1bt06PfbYYxo2bFiji07WTfvTTz+VJL399ttKTU2VJF1++eXNvhcQsWy9ihOANpszZ47Jy8szMTExRpJZs2aNMcaYESNGmBEjRvjG27Fjh5FkFi1a5Pf6NWvWGEnmj3/8o9/wpUuXGknmrbfe8hv+4osvmlGjRpn09HTj9XpN9+7dzeWXX25effXVkMxfU+bOnWskBXzUfQZ1SktLzXXXXWc6dOhgEhMTzdlnn21Wr17tN07d5xDoMXfuXL/xR4wYEfT7BxJMXcacWBZNPYK50OU//vEPM2HCBJOXl2cSEhJMcnKyGThwoPnhD39oDh8+3Gj85j4HIFp5jGnjhUsAAAAiHOeFAgAABEBQAgAACICgBAAAEABBCQAAIACCEgAAQAAEJQAAgAC44GQDtbW12rNnj9LS0tp0c0oAABB+xhgdOnRIeXl5lt7smaDUwJ49e9StWze7ywAAAG2we/fudt2rsSGCUgN1t4DYvXu371YIAADA2SoqKtStWzfLb+VEUGqg7nBbeno6QQkAAJexutsMnbkBAAACICgBAAAEQFACAAAIgKAEAAAQAEEJAAAgAIISAABAAAQlAACAAAhKAAAAARCUAAAAAiAoAQAABBCRQWnJkiXq2bOnEhMTVVRUpHXr1tldEgAAcKGIC0rLly/X7bffrvvuu09btmzRueeeqwsvvFAlJSV2lwYAAFzGY4wxdhdhpSFDhmjQoEF64oknfMP69u2rSZMmaeHChS2+vqKiQhkZGSovL7f0pril5Ud1rLbWb9ixGqPYGI88HskYqaqmVnExHtUa6dDRavXPy9DWz8vVMSVB+w9XSZL656XLSPqi4qgk6auvq3SsplbpSfGSpJpao5pao4ykeB08Uq2enVKUHB+rmBiPSsqO6FBltTzyKDbGo+qaWnXNTNLhqmPN1n60ukYJsbGKaRCra2ulzw4cUUZyvLxxMYrxeFRVU6v9X1cpLTFeBR2SlRAXo6SEWN9rKo/V6NDRY8pO9Tb7nmVfV+qb6ppgPlrV1kpVNTWqPFarxPhYHa48priYGHXNTFJ6UpxKK46qprbpr7kxUsXRaqUnHv/8EuNj1SnteG3fVNX41X6splal//ncrVZbK9X8Z1U8Wl2jDikJ8uj4d6Km1uhwZY1qjdHXlcc/u96dU32vLT9SrUOV1SGpy81qao088igmRjpaXasYj9Qx1atDR/msguHxeJSXkSiPx6MvKo6q/JtqZSbFa2/5UXVMTbCtrlTv8Xu5x8fGaFfZESXGx6hjilelFUcVH+tRQpw9v/9z0hO1bU+FqmtqlZuRKGOkw1XHlBAbY1tNSfGxOlJVo/JvqpWcEKuEuBgdOnpMsTEeJdfbttkhJz1R8bHWfi6h2n/HWTYlB6iqqtLmzZt17733+g0fM2aMNmzY0ORrKisrVVlZ6fu7oqIiJLVd89RGffrlYUum1atTira3Ylqn5Wfovc/KLXnvtlh9x7fUJydNtbVGp/zP3yRJd11wsm4d3afJ8f+0+TPN/uM/LXnvAV2Ph83WGHlKJw3Mz9QTa7frjzcO1cBumTLG6JIlG1o9rVDa+dB4bfq0TNc+tUnHAgRBoD0uOaOrrhicr2ue3GR3KYgwr981Qid1Sm15RAeIqKD01VdfqaamRjk5OX7Dc3JyVFpa2uRrFi5cqPnz54e8toTYGHnr/aqoPHaidSkhLkZVx2qbelmTWhOSJAUVkrwBfvE0rNMT4LnmPLnuU/348oGqqPdLfvHqjwIGpa2fHZQkxcZ4FBfjaXKcOkZq9rOrCzbxsR7FeBpPq6l5WPvhl1r74ZeSpJ+s/kjLrj9LxpyYVsPPob1amofmvL+nQsdqjWI8svzXmZu19N0M9H3HcbXGqLrG6J+fHdQLWz5vchw7PsPqmloF85sgnLUFu/6G+/M69p+jC82xcz3wNLE9dqqICkp1Gi4AY0zAhTJnzhzdeeedvr8rKirUrVs3y2v62+3f8vv77Z37dfkviiVJHzwwTid9/y+Wv2drfPjghU0O/+/fvq1X3v/i+Dg/HOf3Ofa4d2VIa7plZC/dOeaUZsc5eKRKpz+wusVp/eq6wRp1SudGw1uah2+qGh/+2zRntLJSrDv0EOw8NGfCaXn62dVnWFSR+338xSFd8L9/lyTdNLKXnli73ffc+X1z9NTUwXaV5gpv7tivK39Z3Ow4gbYZoXTL/72jle/tbXacv8w6V/3yrDvs0pKvvq7U4AdfbXacLfdfYOk2IxiLV32ox17/pNlx7FiGbhRRQSk7O1uxsbGNWo/27dvXqJWpjtfrldfbfH+ZUKh/qCSmhVYTO3XvmOL7v5t+ASC6cSAyeoUzJAUr2WtvfyC0T0S1PyckJKioqEirV/v/Ol+9erWGDRtmU1VNa6lJ1Ck6WvArqO50gcg6bcA6HksP5KEhB/8OQSsdbaKF1w28cQQlN4uooCRJd955p5566ik988wz+ve//6077rhDJSUluvHGG+0uzY9bghKNSGHAZ2y5+qGcIBo53HTSwvjTukiSnr/ZWT/S0XoRdehNkq666iqVlZXpgQce0N69e1VYWKi//OUv6t69u92l+XFLUHK6UO8ETRgO4hBGQ4vPN3K4qXXw8WsG6edXB+4fC/eIuKAkSTfffLNuvvlmu8toVi+XnBZpBdPg32DHjxZsRkOLzzdyuO3MTkJSZIjIoOQGBR2TteKmoeqQEv6O5HZx87VNnVq5U+uym19LIDsrAO1AULJRUfcOdpfgbA7YwYWjfwu/OkPLTYdrADiPu9oxEXZWBAUnNCRZua+0OtdYMTmylj86cwOwCkEJ7hYB+0BCTmg1/Hz5vFvBAT9y6mPZwQ4EJYSNw7a5QQnLWW+RkPYcxr9FCQDajqCEZln5C84Jh+AQfWiFaD0+M+AEghJCrrWtMtEWqNgphRad5SNHtG0b4AwEJYRNKA5jhWsf6NRLGzi1LruF45ApgOhAUIJjOaEdIDyXBwj5W0S1GD5gAO1AUELIfVNVo1qX3rKlqZYJq8MTnbmtZ7jeJNCsmaN6212CaxCUEHJ//VeprvpVsa01RHo/lcieu/bhswEay0yOt7sE1yAoISze2nkgJNcHiISdYIRnOMAyrCuwA0EJYePOg2+hx7Y/tBpdcNKeMgC4FEEJzbLjkFW0nbEU6YcFAcDNCEqAzYhJ1uOqCdbgY3SvltYB1pHgEZTQLCt34q1dMYNpaAlXa0wotyk0KFkv2RtrdwkAIkSc3QXA2fjRATfq1SlVt4zqpQ4pXtXU1vo959IrVYRVXXY/dLTa1joaohUEdqBFCWgti1uA6KMUGt8be6puOKdno+tUvfrvL2yqyH2qa0gmkSra+oK2B0EJzbL00JuNK2akRxHCFoDWoHUueAQlhE0oVkziAVpChowcLEvYgaCEZtmxYeKXDgC0T0st+KP75oSpEvcjKAHNILQhmhmHrQBHqmrsLiFi9O6cancJrkFQQti0dpPrpJvFOmx/AUSldR9/ZXcJiEIEJTTLOVHFHk7vE0GAQyjx9QIISggjpzXjt5XTwxMAwDoEJQBA0yLjt01IOfV3U4T8LnUEghLCpuGKe/ef/qmKJq78G4r1u62tQG7Z2Dh1Y+0EXGOq7Vzy9QdCiqAE2/zh7c/0k1Uf2V1Gs97edcDuEoCwI1sCJxCU0KxQ/xr//OA3IZ0+AADtwU1x4RhHq2v8fskGk9E4NAAACCWCEhyh6litCue+oqT4WE0Y2MXuchpx6g0knVoXIkOknKkKtAeH3tAsK4+8NbfN3Vv+jY7VGh2qPKbKY7VBT5OuFADQGBHXOgQloJUIZ+7C8mo7drYAQcnVTu+WaXcJrRL0YaJWbJ3ZkP8HaSAgzuAC0B4EJRc7JSfN7hJcw0n3jQMAuAdBCa5G/AEAhBJBCc2yM4gE894cegOAxjhh0ToEJYSNm1dcN9ce7Wh1bLtavvgAQQktsLAnbNCbXPZsQWM/htA4vhLy/QIISgijnWWHAz7npg0yN1kFgOhBUELYVAd7IUkXhSYAcKLqmuAv3IvmEZQQNuSf0OHyB4HRAoho9PG+r+0uIWIQlFys4fY/Nib6dgjeuOC+wuwrAUQT7tNnHYJSBMlNT7S7hGa1dr0NJtzEx8Zo1R3faltBAJrFrhYgKKEF4WqIqR+Knt/yeateezJXKEczaE1sB5ISQFBCODXe6h48UmVDHZGD/VjLOAKBaMT33joEJTQr1L/G39p5ILRv4DJOP3wKANGGoAS0UiizY4eUhKDHPXikSkeqakJYTWTg0BuikaG92TJxdhcA64RihzDi5E6SpM5pXusnXg/NxK13+gOr7S7BFchJbcfO1r3YplqHoIRm5Wcl6837Ris9Mb7d02LFbVlbPyJaTWCluu8T66x7seysQ1BCizqn2dNvxsoLBZIjAEQTWgOtQx+lCOL0VoVFqz60uwTH4yJxIeD0FcPB+DYCBCWE0adfBr4pLgBECidkc35zWYegBAQhXBsd7ksGJ6GFs22G98q2uwRaAy1EUIog3Bg1PEKZZdgxAYCzuCYoLViwQMOGDVNycrIyMzObHKekpEQTJ05USkqKsrOzNWvWLFVVuePKz4uvGNjuaQzvffxXTEZS+89QAyIFPx8QSo5tBeY3l2VcE5Sqqqp0xRVX6Kabbmry+ZqaGo0fP16HDx/W+vXr9dxzz2nFihW66667wlxp21xWlN/q1zS8OOH/jO+r+yf008pZ51hVFgAAUc01lweYP3++JOnXv/51k8+vWrVK27Zt0+7du5WXlydJWrx4saZNm6YFCxYoPT09XKWGzTVDCrRk7Xbf3yneON1wTk8bK2o7rjDdPg79TesI/LC23p0XnGx3CY7m1EYmtI1rWpRaUlxcrMLCQl9IkqSxY8eqsrJSmzdvDvi6yspKVVRU+D3cIiEuYhafdpWF+Iw4NlyAZQbkZ9hdAlpQS39Hy0TMnra0tFQ5OTl+w7KyspSQkKDS0tKAr1u4cKEyMjJ8j27duoW6VMvQeRtoGWtJ29Wyr3UtFp11bA1K8+bNk8fjafbx9ttvBz29pjrVGWOa7Ww3Z84clZeX+x67d+9u07zAXued2jmk0+cqt+7Fkmu9lsIl4dP5OIPWOrb2UZo5c6YmT57c7Dg9evQIalq5ubnatGmT37ADBw6ourq6UUtTfV6vV15vaG/4CgSLbRsAOIutQSk7O1vZ2dZcmGvo0KFasGCB9u7dqy5dukg63sHb6/WqqKjIkvdA6Lip8yOHPN2FpQWgPVxz1ltJSYn279+vkpIS1dTU6N1335Uk9e7dW6mpqRozZoz69eunKVOmaNGiRdq/f79mz56tGTNmROQZb/BHMzMAnMAW0TquCUo/+MEPtGzZMt/fZ5xxhiRpzZo1GjlypGJjY7Vy5UrdfPPNGj58uJKSknTNNdfokUcesavksJo4MK/lkVzGTa1MVmnrmSrR+FkBTuWEi1Dy29E6rglKv/71rwNeQ6lOQUGBXn755fAU5DDJ8bF2l9Au+VnJdpfgCGzbrBfjgJ1WpHFCEEDz2JZYJ2IuDwB3S4xv31dx9thTJEnTA1xw0y39irj2ifVi2cpZjkPdLsAysoxrWpQQ2Va883m7Xt8/L0MfPXihEuJi9NT6HRZVZQO2bYDrOf1n2YTTuthdgqvwWytCtKYlvGtmUugKaaM/v7un3dMI5ZXKw/XjjJwEN+DQm/M1ty1JSaCNpDUIShGiNdutn04+PWR1RINQ7iM4pAHACiX7jwR8jpzbOgSliBH8N591xLm4ZQTcgG2I8x08Uh3wOYJS6xCUIkQkfvHd0gHbSnTmhhO0dGiNb2nzInF7HM0IShGiNetlz+yUkNWB9mlrTorGUAmgrdhetAZBKUK05hdMx1TubedU9FGCG7CbdTdavFqHoBQhGrYodO94/AKO/fNCd/uWuRP7hWzaVnPLhqFX51S7SwDQTi7Z3CBIBCUXa27nv+KmYXp08um698JTQ/b+U87ubtm0rGxJmTrUurrqhLqd588zh+vyonw9csXAEL8TgGhHkGsdglKEiGnwzc9O9eri07sqOcHdtzZpi2uGWB+UQu20/Ew9csVA5aQn2l0KgAjnlhZ2pyAoRYhAZ6m45T5XVrbYnJKbZuHUAADRjKDkYsEcrYqLce8idknGA6IO62bznH7lcs6SbR337kUhU68dJtB6GdvwmJyFnL4xAAA0xqa7dQhKLjLj3J7+A+q1KAX6hRAXG51rRGJ8dH212fABQGhE197E5Rpe/6j+kbdAO8rMpPjQFeRgsSQHADZx+tbH6fU5DUHJJQYVZCovM8lvWP3bXQT64neO0rOoGnZiZ8MABI/1JbLRbaJ1CEouMbpvjiYM6OI3rH5nbju+905e1az+PLhiNgBEJ4KSi8Q06Jjtf+jNybEl/EL5efBRI9px1hSiCUHJxUwQh97crD3zFMqz/QCgOfyYiiwEJRfzOxrk8hXT6iNb5CQA4eDGTQ1BrnUISi5mgrg8QCg5e2VzdHEAYBsOnbYOQcnF/M5643vvJ9palFj+gJOwQkYSgpKDFHRIbnGcWef19v0/go68WY4+SkDoEMzdjeXXOgQlB/nN9We1OE79aykZm1uUnHymXVJCrN/f7a2ViwMAJ3C1DHdz7pbbmQhKDtIjO0XfObug2XFq622gcjNOXEwyLdHdV+A2FkeRhtecAmCds3p2sLsERzujINPuEmAhgpJL1LUeBQoUkfgLoT2NQPGxoftq0xES0S4hjl1Hc2ace5LdJTTLwQcDHIlvu8O0tBOujdAmb6ub8tkQAG3H+tM+Tg+STu424UTOXppoLEI7B+w7VGnp9NgQAEDThvXqaHcJrhJndwFonfoxKVIyU/mRasunaWVO2rD9KxV2zbBugiFBMATQvF9OKVKqN07De2fbXYqr0KLkEnUtJMkJkZdtBz6wyvJpWtmP6JonN1k2LQCwS056IiGpDQhKLjOk3tkmRtKoUzpJkiad0dWmigAAbkC7c9tEXvNEhGt4SOmZaWeq8litEuNjm35BlGp4vcn2HoqLlMOc0cj5h00BOBktSg7T2h26x+OJ2JDUnsNnoezLTT9xd+mfR1ACJLZdbUWLkkvU/ue6ADnpiYqN8Sg+1qPkCA1IVuBaRwAAK9Ci5BKrtn0h6fiFFN+fP1bv/mCMYhxwP7Pxp3EFbACocwn9RSMOQckldpUd9v0/MT7WMYfbHr9mkN0lNIkmZgB2eOSKgXaXEBAt7W1DUAIiAMEQAEKDoOQwodjf5aYntjxShHHzlblPyk6xuwREOVoe2q6WU2QjDkHJJdqz4//NDWdZWIk7NPy02r3ZD+O2b8hJ3JkdcCuCUuQhKLlEexpITs5Js66QMGrPPLu4QUn5Wcl2lwCgjchJkYeg5BKsfK0TypwU6gx2bh9uMQC4VYyDf6U5uDRHIyhFieuH97S7hLBycx+lWAdc9gFA2yTEsVuNNCxRhwm0g2/vfn9wj6z2TaAVkhPsv3SBi3MSQqCoe/i+/wAiC1fmdon2Hnq7sDBXP7lyoAaE4b5X3rgYHamqCfn7NKd7R/eeOcZhVuudfVIHbd51wO4yALgQLUpRwuPx6NJB+eoTho7d0889KeTv0RJvlDV/04DWPCf3GwHgbNG1N0FYpCfF210CwQF+3NxnDYC9CEouwXa+dU7qlOr3d3s/PxPOCynBcqw+APuRtiIoISJ1SvOGbNq0TrgPiwxAWxGUAIehM7f14mPZ1LWGW4Nl945crLU53Jqmbdh6wHKxbt3KImIlEJSiQk8b7pPops2dm2p1ErYesNykM/LsLgHwww4CYD1oK4ISLJecwOW5AIQfOaB5HHprG4KSw4zu29nuEmCztpxhxy9FAAgNgpLDnNunk90lOIaTzi4LZwdrOnNbj87cAD+o2soVW4+dO3fqhhtuUM+ePZWUlKRevXpp7ty5qqqq8huvpKREEydOVEpKirKzszVr1qxG4+C46LvvatTNMOrhRqUA2soVnUk++OAD1dbW6pe//KV69+6tf/3rX5oxY4YOHz6sRx55RJJUU1Oj8ePHq1OnTlq/fr3Kyso0depUGWP02GOP2TwHztMpzasvKirtLsOViFyAMzmpFdqJ+HTaxhVBady4cRo3bpzv75NOOkkffvihnnjiCV9QWrVqlbZt26bdu3crL+/4WVeLFy/WtGnTtGDBAqWnp9tSOwAATkCObBvXtkeXl5erQ4cOvr+Li4tVWFjoC0mSNHbsWFVWVmrz5s0Bp1NZWamKigq/hxPx/Y4edFGyHv2+AIk9Sdu4Miht375djz32mG688UbfsNLSUuXk5PiNl5WVpYSEBJWWlgac1sKFC5WRkeF7dOvWLWR1AwBgF1qU2sbWoDRv3jx5PJ5mH2+//bbfa/bs2aNx48bpiiuu0PTp0/2ea+r4tDGm2ePWc+bMUXl5ue+xe/dua2YOgGNwU2MAbWVrH6WZM2dq8uTJzY7To0cP3//37NmjUaNGaejQofrVr37lN15ubq42bdrkN+zAgQOqrq5u1NJUn9frldcbuhuoou2i9cePacNxIi4k1zwOvUUH1oLm8fm0ja1BKTs7W9nZ2UGN+/nnn2vUqFEqKirS0qVLFRPj3xg2dOhQLViwQHv37lWXLl0kHe/g7fV6VVRUZHnt4cbZHPZiPwvA7diPtI0rznrbs2ePRo4cqYKCAj3yyCP68ssvfc/l5uZKksaMGaN+/fppypQpWrRokfbv36/Zs2drxowZEXHGW3wsX/D2sHL7EOptDaHMenymANrKFUFp1apV+uSTT/TJJ58oPz/f77m6wxSxsbFauXKlbr75Zg0fPlxJSUm65pprfJcPcLtUrysWlc+wXh21YXuZ3WUAANAurjjrbdq0aTLGNPmor6CgQC+//LKOHDmisrIyPfbYYxHT/+jJ6wbbXUKr/GKK+w93IoLQSSkqcGQJoeCKoATppE6pdpfQKumJ8XaXAPgQkwC0FUEJ7RZ9940D4ExsjJrDp9M2BKUodVp+pmXTCtWZFNHajJ6Z1PrWuGj9rIKVm55odwkIA9YDhAJBKUo9fNlplk0rGrZNbbm2UVu57TCrG1zQL/C11ACgOQSlKNUhJcHuElyLa5G4D8ssOrCUEQoEJUQFNqBA8MiVwAkEJbSbG84ockONANqHgNc8Pp+2ISgBACKC3fc8JIhEJoIS2o1tAwCwLYxUBCU41jfVNZZNiwszA5HP7hYdThqITAQlONb/++deu0twDTbPwYvlCqmwUP0fYU7/ZsUQ5NqEoISINbBbZr2/2tektKXkYLteD+cI5zWxEF5254AfTiq0t4AAkuJjNbZ/jvKzkuwuxZXcdUt6ONLxXynO2/lYuc2c/pu3LZwa7OS8byqsYkdn7vrfp9F9O4f9/YPxkysH6sIBXewuw7VoUUK7PRiiX1HHamrb9Xr/X5c0OeM4GpQAtAZBCe3Wq3NKk8P/Z3zfdk33431ft+v1/tGIvSMQ8ezuzG13AQgJghJCZvq5J9n6/pyBAgBoL4ISAMCPW1tG7Ki6/skBTv1t1iWTTtztQVBCuzm1z0f9bZZTawRgHVqRm3a63xnAaC2CEiJWNG0z2UEAQGgQlNBu0bSPjqZ5BdzGlkNvNrwnwougBAAAEABBCQAQEexo8XXTLUzQNgQlAEBEIKggFAhKaDennlFW/xRnh5YIwOWM6l8egKgWiQhKiFxss4CoQlBBKLQ6KC1btkwrV670/X333XcrMzNTw4YN065duywtDrCKU1u9ALgcfZQiXquD0o9+9CMlJR2/ymdxcbF+/vOf68c//rGys7N1xx13WF4g0FZu3mhdOTjf7hIA13HzOg/nimvtC3bv3q3evXtLkl588UVdfvnl+q//+i8NHz5cI0eOtLq+qBTjkWppAXGkcG2IJw7M0x/e/ixM7wb4c+0RLDvOeqv/9m793NCsVrcopaamqqysTJK0atUqnX/++ZKkxMREffPNN9ZWB7SDmzdaw3tl210CAEBtCEoXXHCBpk+frunTp+ujjz7S+PHjJUnvv/++unfvbnmB0chtHRJD1fjV3o8hmBt73nH+ye17kxBx2VcAcAQ7bubr1P6PbEOs0+qg9L3vfU9DhgzRl19+qRUrVqhjx46SpM2bN+vaa6+1vEBEr3Cs57ed3ycM7wIneOq6weqQkqBl159ldymIUHYEtUCcGuDcqNV9lIqKirR371517tzZb/itt96qnJwcff/737esuGjlnFXNXu1tWevWIUnFnx7/v2GrEfXO75ejzX3Pd12LLYJny5W5uUpbxGt1i5IxpskNzeHDh5WYmGhJUYDU/sDYLSvZkjrcYNX7pXaX4AqEpMhm+9K1vQCEQtAtSnfeeaek4xua+++/X8nJJ3ZCNTU12rRpk04//XTLC0T0ancfJRdvtFq7Q99TfjRElQBAdAs6KG3ZskXS8RalrVu3KiEhwfdcQkKCBg4cqNmzZ1tfIRwvVHnEyuP9VjWO0yIBOJftN8Vl8xCRgg5Ka9askSR997vf1aOPPqr09PSQFQV3iY0J0dah3S1KbLUAAO3T6s7cS5cuDUUdqKfGZR2P+3YJTWgm5gBoDVsuD+D3/ohE3BTXgbxx7losifGxIZluDC1CAFqBTQZCwV175CgRy9ouKbo7cwN2Yt0JHpceiXwEJQe64ZyedpfgCO3dVtdvhmdbBkQ+uwMe/SIjE0HJgW5z6G01wu1wVU27Xs82C0CoOfVH2KWDukqSvnVyJ5srcb9Wd+ZG6IXsLLIok+iyvl4A2svebaeTttwLJg3Q+X1zdG4fbrDdXuxJXILj4K13aVG+7/9W3WbASRtCAAgkKSFW3x7QRWmJ8XaX4noEJZfg2Hfrue3sQQDtY/dm0u73R2iwJwEARAS7cwoN/5GJPkoAALRRflaSzuyRpcT4WCUnhOaacrAXQQkRy46r9AKwjx2Hvjwej/7w30N9/0fk4dAbosLOr47YXQKAEPvvb/Wy5X09Hg8hKYIRlBA2Q0/qaNt7HzhSZdt7AwiPbh2S7S4BEYighLD58eWnhfX9QvEDjx+NiAb7KioDPtchJSGMlQD2o4+SC5yUnWJ3Ca7HdaiA4H1RcbTJ4f+aP1apXnYbiC60KLlADFfqbrdachIQtED9bQhJiEYEJYTUw5cN8P0/3IetiJdA27DuACcQlFzAzYeNxp+WZ3cJkrgQHNAa9MUDTiAoIaTsDHn1Dx9Yda83IBrEkJQAH9cEpYsuukgFBQVKTExUly5dNGXKFO3Zs8dvnJKSEk2cOFEpKSnKzs7WrFmzVFXl/tPCI+X6HK2djzQL+0PQogQEL0I2OYAlXBOURo0apT/84Q/68MMPtWLFCm3fvl2XX3657/mamhqNHz9ehw8f1vr16/Xcc89pxYoVuuuuu2ysGu1h5caanAQEL1J+nAFWcM0pDHfccYfv/927d9e9996rSZMmqbq6WvHx8Vq1apW2bdum3bt3Ky/veL+YxYsXa9q0aVqwYIHS09PtKh02qb+pt+oQILdFQTTgWw6c4JoWpfr279+vZ599VsOGDVN8fLwkqbi4WIWFhb6QJEljx45VZWWlNm/eHHBalZWVqqio8HvAOrH1Lm0QH9u6zW+4LovwnbMLJEkJsa5cHQDL0aAEnOCqPcM999yjlJQUdezYUSUlJXrppZd8z5WWlionJ8dv/KysLCUkJKi0tDTgNBcuXKiMjAzfo1u3biGrPxolJ8Rp1ug+umlkL3VOS2zVa63sUNpcg9IPJvTX/00fEvYrhwNORWdu4ARbg9K8efN8NxMM9Hj77bd943/ve9/Tli1btGrVKsXGxuq6667zO6TS1HF1Y0yzx9vnzJmj8vJy32P37t3WziR05wUn655xp4b9fesv9ubOekuIi9Gw3tnyxrnqdwMQMoGuzA1EI1v7KM2cOVOTJ09udpwePXr4/p+dna3s7GydfPLJ6tu3r7p166aNGzdq6NChys3N1aZNm/xee+DAAVVXVzdqaarP6/XK6/W2az4QvGuHFOjZTSV2lwGgGTu/Omx3CYBj2BqU6oJPW9S1JFVWHr9549ChQ7VgwQLt3btXXbp0kSStWrVKXq9XRUVF1hSMdps7sX/QQcnKxn+rLg/A9ZgQDTjrDTjBFWe9vfnmm3rzzTd1zjnnKCsrS59++ql+8IMfqFevXho6dKgkacyYMerXr5+mTJmiRYsWaf/+/Zo9e7ZmzJjh+jPe3Hxl7oYSWnF4q73b6vob+/Jvqts3sf+oromcZQEAaJkrOmUkJSXp+eef1+jRo3XKKafo+uuvV2Fhod544w3fYbPY2FitXLlSiYmJGj58uK688kpNmjRJjzzyiM3Vt1+07pqt/FX72YFvWhwnWj9noCEalIATXNGiNGDAAL3++ustjldQUKCXX345DBUhHKzcVtdGUKscEGpcLww4wRUtSohOndOt62RPTgKC11SL0u3n9wl/IYADEJTgWMnx1jV4huvilUAkaGptyU7l7GBEJ4ISosJJ2Sl2lwC4RlMtSk7otzTp9LyWRwIsRlBygyg9bMSp+ADqy81IsrsERCGCEgDAT7+8xpdUcUIHb348wQ4EJTewf/vkepz1BgSvd6c0u0toGqsxbEBQimITTutidwlhQ04CgueE/kiAUxCUolhrrpJtpW8PyA1qPCvDDU32QPBimkhKTghP3FoFdiAouUGE7eODPc3YytmujbDPEAilGIfuGWac29Pv7xEnd7KpEkQTh64OqK9rVmSd6RHsb8JIuscd4CZNtijZUEdDHRv8yJpx7kk2VYJoQlBygbNP6hiS6TrhLJZwIXMBwXPL9Vk5EodwIChFMbv67SR7g7vitpXV0ToFBM8tfYHcUSXcjqCEsBs/ILiz7fp1aXwtl7YKJied2aODZe8HuJlTO3M3FFuv6es7ZxfYWAkimXU304Lr2HXoLS625fedNqyH7hpzsmXvGUzrWac07mUFSO5pqelb78KY5/TOtrESRDKCkgtE2mGjlmanY0qC5l3UP6zvCeCEplqURp3S2YZKmhdbr063HC6E+3DoDY6TEmQfptbg8gBA8JrKHJ3TE8NfSAvqB7qmwh1gBYJSFHPqduXqs6zva8AFJ4HgOXXb0FD9Ot1yph7ch6AEx0lNDMERYXISELSGrTMD8zNsqqR59ct0S7iD+xCUolhdy81ZDjvbKxTbO3ISELyGQWnZ9WfZVEnz6p+QQh8lhAqduaNYUfcsbfr+aHVMSQjr+7bUsToU27tI6xAPhFLDdTAzObzbiGD5H3ojKCE0CEoukJYYH7Jp5ziwg2Z8rPUNnXTmBiJP/WhEHyWECofeXGDyWd3sLiGsBhVkWj5NchIQPLc0ztQ/3BZNt2RCeBGUHG78aV3kjYu1u4wws36Dx6E3IHhuCR20KCEcCEqICsQkIHjuaVGq/3+XFA3XISgh7Oy4phEtSkDw3BI5PH4XnLSxEEQ0ghLCzo7Mkhh1hy+BtnPjGWR5mUl2l4AIxVlviAqjTnXefaoAp3JTTnrh5mE6eKRa3Tok210KIhRBCVHBjb+QAbTsjIIsu0tAhOPQm0Mlxh9fNCNO7mRzJeFHpgHsRcdo4ARalBzqje+N0nuflWs0h4wswU1xgeCRk4ATCEoOlZOeqAv6Oe+q2W7FlbmB4JGTgBM49AYA8OPkQ28X9MuxuwREGYISokL/vHS7SwBcw8nXJOqSQUs7wotDb4hoG+49T18eqlSvTql2lwK4RnKCc3cNHVIS7C4BUYYWJYRdOC84mZeZpIHdMsP3hgBCauQpnOCC8HLuzwZErQ7J/GIE0LTTu2Vq0eWnqYALTCJMCEpwlOf+62xl0bQuSSqec54OHqnWhY+ua3Hcc/tkh6EiwBmuGNzN7hIQRQhKCLtA1zTq3jFZZ5/UMczVOFeXjCR1yQju/lWd0+jgCgChQB8lOIaDT7RxPAefzQ0ArkZQQtgF6szNTS0BAE7DoTc4wsSBebrv233tLsO1aFACgNAgKMERHrv6DLtLcDUOvQFAaHDoDQDQyB9vHKqTslO0dvZIu0sBbEWLEhABPBx8g8XO7NFBrxOSAFqUEH5hvDB31ODQGwCEBkEJqGdgfobdJQAAHISgBNTj1htu0qIEAKFBUALqce9hQZISAIQCQQmoJ9DFMJ2OFiUACA2CEsLOuDWNAACiDkEJYUdMAgC4BUEJiAAceQOA0CAoAfW01Nr182uceasV+igBQGgQlIBWmHBant0lNIkrcwNAaBCUEHb05QYAuIXrglJlZaVOP/10eTwevfvuu37PlZSUaOLEiUpJSVF2drZmzZqlqqoqewqFK7n1jDwOvQFAaLjuprh333238vLy9M9//tNveE1NjcaPH69OnTpp/fr1Kisr09SpU2WM0WOPPWZTtUB4kJMAIDRc1aL017/+VatWrdIjjzzS6LlVq1Zp27Zt+t3vfqczzjhD559/vhYvXqwnn3xSFRUVNlQLAADczjVB6YsvvtCMGTP029/+VsnJyY2eLy4uVmFhofLyTnS2HTt2rCorK7V58+aA062srFRFRYXfAwAAQHJJUDLGaNq0abrxxhs1ePDgJscpLS1VTk6O37CsrCwlJCSotLQ04LQXLlyojIwM36Nbt26W1o7GCjo0DrpoHw+dlAAgJGwNSvPmzZPH42n28fbbb+uxxx5TRUWF5syZ0+z0mtpZGGOa3YnMmTNH5eXlvsfu3bvbPV9oXoyD9+ku7csNAAgRWztzz5w5U5MnT252nB49eujBBx/Uxo0b5fV6/Z4bPHiwrr32Wi1btky5ubnatGmT3/MHDhxQdXV1o5am+rxeb6PpovXiYjw6Vuv+lPHfI07S+k++sruMVqNBCQBCw9aglJ2drezs7BbH+9nPfqYHH3zQ9/eePXs0duxYLV++XEOGDJEkDR06VAsWLNDevXvVpUsXScc7eHu9XhUVFYVmBtAmTo5TXTIS7S4BAOAgrrg8QEFBgd/fqampkqRevXopPz9fkjRmzBj169dPU6ZM0aJFi7R//37Nnj1bM2bMUHp6ethrhjs58dDbuX2yte7j5lu5uDI3AISGKzpzByM2NlYrV65UYmKihg8friuvvFKTJk1q8lICsJcTw4iTPfGdIj1+zaBmx+HQGwCEhitalBrq0aNHk1dQLigo0Msvv2xDRUDopHrjdEG/wP3sAAChEzEtSkA0o0EJAEKDoARL5EZIJ2iOCgIA6iMowRJLp52p4b076o83DrW7lKhEHyUACA1X9lGC8/TJSdOz088OalxDu43luDI3AIQGLUoAAAABEJSACNC7U6rdJQBARCIoAfW49RpPlxXl210CAEQkghJQT8fUBLtLaJNYJ99pGABcjKCEsMtIire7hIDSEjm/AQBwAkEJYeeNi9Vb951vdxkAALSIoARbdErz2l2Cq8THcmgNAOxAUALqcWpnbq6TBAD2ICgBAAAEQFACAAAIgKAEAAAQAEEJAAAgAIISUE9CLKsEAOAE9gpAPTExHnVIcefVuQEA1iMoAQ2c2SOryeGdufYTAEQdghLQQOe0xCaH/3BSYZgrAQDYjaAENJDsjW007BffKdKYfjk2VAMAsBNBCWjAo8ZXwe7bJY2rYwNAFCIoAQ2QhwAAdQhKAAAAARCUgAaaalDKTOaSAQAQjeLsLgBwmgFdM3z//38zz1FVTY0ykuJtrAgAYBeCEtDAuMJcLb5ioAq7ZuiU3DS7ywEA2IigBDTg8Xh0WVG+3WUAAByAPkoAAAABEJQAAAACICgBAAAEQFACAAAIgKAEuMR/jzhJ/bqk210GAEQVghLgEnMu7Ku/3Hau3WUAQFQhKAEAAARAUAIAAAiAoAQAABAAQQkAACAAghIAAEAABCXYJiGOrx8AwNnYU8E2mUnxdpcAAECzCEqAy4w/rYvdJQBA1CAowTbfOrmTJCkn3WtzJe5y1eBudpcAAFEjzu4CEL3mXdRf/fPSNa4w1+5SXGVYr452lwAAUYOgBNukeuP03eE97S7DdeJiaQgGgHBhiwsAABAAQQkAACAAghIAAEAABCUAAIAACEqAy103tLvdJQBAxCIoAS53Zo8OdpcAABGLoAQAABAAQQlwuZ7ZKXaXAAARi6AEuFxh1wy7SwCAiEVQAgAACMA1QalHjx7yeDx+j3vvvddvnJKSEk2cOFEpKSnKzs7WrFmzVFVVZVPFAADA7Vx1r7cHHnhAM2bM8P2dmprq+39NTY3Gjx+vTp06af369SorK9PUqVNljNFjjz1mR7kAAMDlXBWU0tLSlJvb9J3mV61apW3btmn37t3Ky8uTJC1evFjTpk3TggULlJ6eHs5SgZDq0zlVH+/72u4yACDiuebQmyQ9/PDD6tixo04//XQtWLDA77BacXGxCgsLfSFJksaOHavKykpt3rw54DQrKytVUVHh9wCcrlen1JZHAgC0m2talG677TYNGjRIWVlZevPNNzVnzhzt2LFDTz31lCSptLRUOTk5fq/JyspSQkKCSktLA0534cKFmj9/fkhrB6zm8dhdAQBEB1tblObNm9eog3bDx9tvvy1JuuOOOzRixAiddtppmj59un7xi1/o6aefVllZmW96nib2HsaYJofXmTNnjsrLy32P3bt3Wz+jAADAlWxtUZo5c6YmT57c7Dg9evRocvjZZ58tSfrkk0/UsWNH5ebmatOmTX7jHDhwQNXV1Y1amurzer3yer2tKxywGS1KABAetgal7OxsZWdnt+m1W7ZskSR16dJFkjR06FAtWLBAe/fu9Q1btWqVvF6vioqKrCkYcAiPSEoAEA6u6KNUXFysjRs3atSoUcrIyNBbb72lO+64QxdddJEKCgokSWPGjFG/fv00ZcoULVq0SPv379fs2bM1Y8YMznhD5CEnAUBYuCIoeb1eLV++XPPnz1dlZaW6d++uGTNm6O677/aNExsbq5UrV+rmm2/W8OHDlZSUpGuuuUaPPPKIjZUDoeGNc9UJqwDgWh5jjLG7CCepqKhQRkaGysvLaYmCY5WWH9W1T23Ud87uru8O72l3OQBgu1Dtv13RogTAX25Gol67a6TdZQBAxKP9HgAAIACCEgAAQAAEJQAAgAAISgAAAAEQlAAAAAIgKAEAAARAUAIAAAiAoAQAABAAQQkAACAAghIAAEAABCUAAIAACEoAAAABEJQAAAACICgBAAAEEGd3AU5jjJEkVVRU2FwJAAAIVt1+u24/bhWCUgOHDh2SJHXr1s3mSgAAQGsdOnRIGRkZlk3PY6yOXi5XW1urPXv2KC0tTR6Px7LpVlRUqFu3btq9e7fS09Mtm67TRMN8Mo+RIxrmk3mMHNEwn+2ZR2OMDh06pLy8PMXEWNeziBalBmJiYpSfnx+y6aenp0fsF7y+aJhP5jFyRMN8Mo+RIxrms63zaGVLUh06cwMAAARAUAIAAAiAoBQmXq9Xc+fOldfrtbuUkIqG+WQeI0c0zCfzGDmiYT6dOI905gYAAAiAFiUAAIAACEoAAAABEJQAAAACICgBAAAEQFAKkyVLlqhnz55KTExUUVGR1q1bZ3dJWrhwoc4880ylpaWpc+fOmjRpkj788EO/caZNmyaPx+P3OPvss/3Gqays1K233qrs7GylpKTooosu0meffeY3zoEDBzRlyhRlZGQoIyNDU6ZM0cGDB/3GKSkp0cSJE5WSkqLs7GzNmjVLVVVV7Z7PefPmNZqH3Nxc3/PGGM2bN095eXlKSkrSyJEj9f7777tqHnv06NFoHj0ej2655RZJ7lyOf//73zVx4kTl5eXJ4/HoxRdf9Hveactt69atGjFihJKSktS1a1c98MADQd1zqrn5rK6u1j333KMBAwYoJSVFeXl5uu6667Rnzx6/aYwcObLR8p08ebJj5rOlZem072co5rGp9dPj8WjRokW+cZy+HIPZZ0TKetlwphBizz33nImPjzdPPvmk2bZtm7nttttMSkqK2bVrl611jR071ixdutT861//Mu+++64ZP368KSgoMF9//bVvnKlTp5px48aZvXv3+h5lZWV+07nxxhtN165dzerVq80777xjRo0aZQYOHGiOHTvmG2fcuHGmsLDQbNiwwWzYsMEUFhaaCRMm+J4/duyYKSwsNKNGjTLvvPOOWb16tcnLyzMzZ85s93zOnTvX9O/f328e9u3b53v+oYceMmlpaWbFihVm69at5qqrrjJdunQxFRUVrpnHffv2+c3f6tWrjSSzZs0aY4w7l+Nf/vIXc99995kVK1YYSeaFF17we95Jy628vNzk5OSYyZMnm61bt5oVK1aYtLQ088gjj7RrPg8ePGjOP/98s3z5cvPBBx+Y4uJiM2TIEFNUVOQ3jREjRpgZM2b4Ld+DBw/6jWPnfLa0LJ30/QzVPNaft71795pnnnnGeDwes337dt84Tl+OwewzImW9rI+gFAZnnXWWufHGG/2GnXrqqebee++1qaKm7du3z0gyb7zxhm/Y1KlTzcUXXxzwNQcPHjTx8fHmueee8w37/PPPTUxMjPnb3/5mjDFm27ZtRpLZuHGjb5zi4mIjyXzwwQfGmOMbmZiYGPP555/7xvn9739vvF6vKS8vb9d8zZ071wwcOLDJ52pra01ubq556KGHfMOOHj1qMjIyzC9+8QvXzGNDt912m+nVq5epra01xrh/OTbc8ThtuS1ZssRkZGSYo0eP+sZZuHChycvL8y2DtsxnU958800jye+H1ogRI8xtt90W8DVOms9AQckp389QzWNDF198sTnvvPP8hrlpORrTeJ8Rqeslh95CrKqqSps3b9aYMWP8ho8ZM0YbNmywqaqmlZeXS5I6dOjgN3zt2rXq3LmzTj75ZM2YMUP79u3zPbd582ZVV1f7zV9eXp4KCwt981dcXKyMjAwNGTLEN87ZZ5+tjIwMv3EKCwuVl5fnG2fs2LGqrKzU5s2b2z1vH3/8sfLy8tSzZ09NnjxZn376qSRpx44dKi0t9avf6/VqxIgRvtrcMo91qqqq9Lvf/U7XX3+9342dI2E51nHacisuLtaIESP8LpI3duxY7dmzRzt37rRsvqXj66nH41FmZqbf8GeffVbZ2dnq37+/Zs+erUOHDvmec8N8OuX7GY5l+cUXX2jlypW64YYbGj3npuXYcJ8RqeslQSnEvvrqK9XU1CgnJ8dveE5OjkpLS22qqjFjjO68806dc845Kiws9A2/8MIL9eyzz+r111/X4sWL9dZbb+m8885TZWWlJKm0tFQJCQnKysrym179+SstLVXnzp0bvWfnzp39xmn4GWVlZSkhIaHdn9OQIUP0m9/8Rq+88oqefPJJlZaWatiwYSorK/NNu7nl44Z5rO/FF1/UwYMHNW3aNN+wSFiO9TltuTU1Tt3fVs730aNHde+99+qaa67xu2Hotddeq9///vdau3at7r//fq1YsUKXXnqp73mnz6eTvp/hWJbLli1TWlqa3zKS3LUcm9pnROp6GRf0mGiX+r/speNfsobD7DRz5ky99957Wr9+vd/wq666yvf/wsJCDR48WN27d9fKlSsbreT1NZy/pua1LeO0xYUXXuj7/4ABAzR06FD16tVLy5Yt83UYbcvycdI81vf000/rwgsv9PulFQnLsSlOWm5N1RLotW1RXV2tyZMnq7a2VkuWLPF7bsaMGb7/FxYWqk+fPho8eLDeeecdDRo0qM3zEMw4Vsyn076foV6WzzzzjK699lolJib6DXfTcgy0zwg0bTevl7QohVh2drZiY2Mbpdd9+/Y1Srp2ufXWW/XnP/9Za9asUX5+frPjdunSRd27d9fHH38sScrNzVVVVZUOHDjgN179+cvNzdUXX3zRaFpffvml3zgNP6MDBw6ourra8s8pJSVFAwYM0Mcff+w7+6255eOmedy1a5deffVVTZ8+vdnx3L4cnbbcmhqn7tCRFfNdXV2tK6+8Ujt27NDq1av9WpOaMmjQIMXHx/stXzfMZx07v5+hnsd169bpww8/bHEdlZy7HAPtMyJ2vQy6NxPa7KyzzjI33XST37C+ffva3pm7trbW3HLLLSYvL8989NFHQb3mq6++Ml6v1yxbtswYc6Jj3vLly33j7Nmzp8mOeZs2bfKNs3HjxiY75u3Zs8c3znPPPReSjs5Hjx41Xbt2NfPnz/d1Pnz44Yd9z1dWVjbZ+dAN8zh37lyTm5trqqurmx3PbctRATpzO2W5LVmyxGRmZprKykrfOA899JAlnbmrqqrMpEmTTP/+/f3O1mzO1q1b/TrZOmk+m5rHhuz8foZ6HqdOndrorMVAnLYcW9pnROx6GfSYaLO6ywM8/fTTZtu2beb22283KSkpZufOnbbWddNNN5mMjAyzdu1av9NRjxw5Yowx5tChQ+auu+4yGzZsMDt27DBr1qwxQ4cONV27dm10qmd+fr559dVXzTvvvGPOO++8Jk/1PO2000xxcbEpLi42AwYMaPJUz9GjR5t33nnHvPrqqyY/P9+SU+fvuusus3btWvPpp5+ajRs3mgkTJpi0tDTf5//QQw+ZjIwM8/zzz5utW7eaq6++usnTWZ08j8YYU1NTYwoKCsw999zjN9yty/HQoUNmy5YtZsuWLUaS+clPfmK2bNniO9vLScvt4MGDJicnx1x99dVm69at5vnnnzfp6elBnYbc3HxWV1ebiy66yOTn55t3333Xbz2t2/h/8sknZv78+eatt94yO3bsMCtXrjSnnnqqOeOMMxwzn83No9O+n6GYxzrl5eUmOTnZPPHEE41e74bl2NI+w5jIWS/rIyiFyeOPP266d+9uEhISzKBBg/xOwbeLpCYfS5cuNcYYc+TIETNmzBjTqVMnEx8fbwoKCszUqVNNSUmJ33S++eYbM3PmTNOhQweTlJRkJkyY0GicsrIyc+2115q0tDSTlpZmrr32WnPgwAG/cXbt2mXGjx9vkpKSTIcOHczMmTP9Tutsq7rreMTHx5u8vDxz6aWXmvfff9/3fG1tra8lxuv1mm9961tm69atrppHY4x55ZVXjCTz4Ycf+g1363Jcs2ZNk9/PqVOnGmOct9zee+89c+655xqv12tyc3PNvHnzgvrV2tx87tixI+B6WneNrJKSEvOtb33LdOjQwSQkJJhevXqZWbNmNboOkZ3z2dw8OvH7afU81vnlL39pkpKSGl0byRh3LMeW9hnGRM56WZ/nPzMPAACABujMDQAAEABBCQAAIACCEgAAQAAEJQAAgAAISgAAAAEQlAAAAAIgKAEAAARAUAIQ1aZNm6ZJkyb5/h45cqRuv/122+oB4CwEJQAAgAAISgAAAAEQlAC4Xm1trR5++GH17t1bXq9XBQUFWrBggSTp888/11VXXaWsrCx17NhRF198sXbu3GlvwQBcg6AEwPXmzJmjhx9+WPfff7+2bdum//u//1NOTo6OHDmiUaNGKTU1VX//+9+1fv16paamaty4caqqqrK7bAAuEGd3AQDQHocOHdKjjz6qn//855o6daokqVevXjrnnHP0zDPPKCYmRk899ZQ8Ho8kaenSpcrMzNTatWs1ZswYO0sH4AIEJQCu9u9//1uVlZUaPXp0o+c2b96sTz75RGlpaX7Djx49qu3bt4erRAAuRlAC4GpJSUkBn6utrVVRUZGeffbZRs916tQplGUBiBD0UQLgan369FFSUpJee+21Rs8NGjRIH3/8sTp37qzevXv7PTIyMmyoFoDbEJQAuFpiYqLuuece3X333frNb36j7du3a+PGjXr66ad17bXXKjs7WxdffLHWrVunHTt26I033tBtt92mzz77zO7SAbgAh94AuN7999+vuLg4/eAHP9CePXvUpUsX3XjjjUpOTtbf//533XPPPbr00kt16NAhde3aVaNHj1Z6errdZQNwAY8xxthdBAAAgBNx6A0AACAAghIAAEAABCUAAIAACEoAAAABEJQAAAACICgBAAAEQFACAAAIgKAEAAAQAEEJAAAgAIISAABAAAQlAACAAAhKAAAAAfx//8tjchdx2McAAAAASUVORK5CYII=",
-      "text/plain": [
-       "<Figure size 640x480 with 1 Axes>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "# we use Jan 2021 as an example, one could use any other month\n",
-    "(ts[\"ts\"].sel(time=slice('2021-01-01', '2021-01-31')).mean(\"time\") - ts_mm[\"ts\"][12,:]).plot()"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "id": "fe144fbc-d47f-46c7-aabb-97ce82d0d85f",
+   "execution_count": 2,
+   "id": "55f9f513-6aea-4e58-be64-ba0ffc026603",
    "metadata": {},
+   "outputs": [],
    "source": [
-    "Note that the time stamp of ts_mm is end of month, maybe we need to take care of this later?"
+    "r2b4_grid = (\"icon_grid_0013_R02B04_G.nc\")"
    ]
   },
   {
    "cell_type": "markdown",
-   "id": "4b6086dc-0c9a-4f95-9dd5-99a41f112108",
+   "id": "e61a8fba-237b-423f-9492-59c76fd4fbaf",
    "metadata": {},
    "source": [
-    "Helper function for plotting. Taken from https://easy.gems.dkrz.de/Processing/healpix/healpix_cartopy.html with the colorbar added."
+    "Load sfc temperature and sea ice cover from ngc4008 using publicly available cloud. The number in front of \".zarr\" is the zoom level (0..9). We use zoom level 7, which is $dx \\approx 50 km$ and should be suffient for an r2b4 grid, which has $dx \\approx 160km$."
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 118,
-   "id": "1fc40fd5-88f1-4e6e-b868-af2b8caf1fd8",
+   "execution_count": 3,
+   "id": "c71c9d41-1d62-4a0a-92db-58041a61fc90",
    "metadata": {},
    "outputs": [],
    "source": [
-    "ts_mm.to_netcdf(\"test.nc\")"
+    "ngc = xr.open_zarr(\"https://s3.eu-dkrz-1.dkrz.cloud/nextgems/rechunked_ngc4008/ngc4008_P1D_7.zarr\")[[\"ts\",\"crs\", \"sic\"]]"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 81,
-   "id": "1110e316-c41f-446d-97c2-161cb06e6203",
+   "execution_count": 4,
+   "id": "381efa94-179f-4a4d-93a3-e3f18d18cf56",
    "metadata": {},
    "outputs": [
     {
@@ -11259,164 +437,99 @@
        "  stroke: currentColor;\n",
        "  fill: currentColor;\n",
        "}\n",
-       "</style><pre class='xr-text-repr-fallback'>&lt;xarray.Dataset&gt; Size: 284MB\n",
-       "Dimensions:  (time: 361, cell: 196608, crs: 1)\n",
+       "</style><pre class='xr-text-repr-fallback'>&lt;xarray.DataArray &#x27;time&#x27; (time: 10958)&gt; Size: 88kB\n",
+       "array([&#x27;2020-01-02T00:00:00.000000000&#x27;, &#x27;2020-01-03T00:00:00.000000000&#x27;,\n",
+       "       &#x27;2020-01-04T00:00:00.000000000&#x27;, ..., &#x27;2049-12-30T00:00:00.000000000&#x27;,\n",
+       "       &#x27;2049-12-31T00:00:00.000000000&#x27;, &#x27;2050-01-01T00:00:00.000000000&#x27;],\n",
+       "      dtype=&#x27;datetime64[ns]&#x27;)\n",
        "Coordinates:\n",
-       "  * time     (time) datetime64[ns] 3kB 2020-01-31 2020-02-29 ... 2050-01-31\n",
-       "  * crs      (crs) float32 4B nan\n",
-       "Dimensions without coordinates: cell\n",
-       "Data variables:\n",
-       "    ts       (time, cell) float32 284MB dask.array&lt;chunksize=(1, 49152), meta=np.ndarray&gt;</pre><div class='xr-wrap' style='display:none'><div class='xr-header'><div class='xr-obj-type'>xarray.Dataset</div></div><ul class='xr-sections'><li class='xr-section-item'><input id='section-ea73ab6e-f4f5-498c-82ff-12e547dd6808' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-ea73ab6e-f4f5-498c-82ff-12e547dd6808' class='xr-section-summary'  title='Expand/collapse section'>Dimensions:</label><div class='xr-section-inline-details'><ul class='xr-dim-list'><li><span class='xr-has-index'>time</span>: 361</li><li><span>cell</span>: 196608</li><li><span class='xr-has-index'>crs</span>: 1</li></ul></div><div class='xr-section-details'></div></li><li class='xr-section-item'><input id='section-22e3cc75-26d8-4dc0-b07b-a675da2c628e' class='xr-section-summary-in' type='checkbox'  checked><label for='section-22e3cc75-26d8-4dc0-b07b-a675da2c628e' class='xr-section-summary' >Coordinates: <span>(2)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>time</span></div><div class='xr-var-dims'>(time)</div><div class='xr-var-dtype'>datetime64[ns]</div><div class='xr-var-preview xr-preview'>2020-01-31 ... 2050-01-31</div><input id='attrs-20ef9bc4-32fa-47c7-ad23-96519860fbd8' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-20ef9bc4-32fa-47c7-ad23-96519860fbd8' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-7a84ed3c-1bc8-4363-a204-51b210beb5b0' class='xr-var-data-in' type='checkbox'><label for='data-7a84ed3c-1bc8-4363-a204-51b210beb5b0' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([&#x27;2020-01-31T00:00:00.000000000&#x27;, &#x27;2020-02-29T00:00:00.000000000&#x27;,\n",
-       "       &#x27;2020-03-31T00:00:00.000000000&#x27;, ..., &#x27;2049-11-30T00:00:00.000000000&#x27;,\n",
-       "       &#x27;2049-12-31T00:00:00.000000000&#x27;, &#x27;2050-01-31T00:00:00.000000000&#x27;],\n",
-       "      dtype=&#x27;datetime64[ns]&#x27;)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>crs</span></div><div class='xr-var-dims'>(crs)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>nan</div><input id='attrs-ea09d8a3-0583-490c-b9e2-5e714492ad80' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-ea09d8a3-0583-490c-b9e2-5e714492ad80' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-ce4b6c01-46fd-48e8-8197-e8c0b6bbb32f' class='xr-var-data-in' type='checkbox'><label for='data-ce4b6c01-46fd-48e8-8197-e8c0b6bbb32f' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([nan], dtype=float32)</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-2d30f73f-75ea-46c0-b26e-e2799df551a7' class='xr-section-summary-in' type='checkbox'  checked><label for='section-2d30f73f-75ea-46c0-b26e-e2799df551a7' class='xr-section-summary' >Data variables: <span>(1)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span>ts</span></div><div class='xr-var-dims'>(time, cell)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(1, 49152), meta=np.ndarray&gt;</div><input id='attrs-5990e6c6-1113-4d0f-80f6-2774f8216668' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-5990e6c6-1113-4d0f-80f6-2774f8216668' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-a942aca8-b43b-48f5-9df1-fac02beab884' class='xr-var-data-in' type='checkbox'><label for='data-a942aca8-b43b-48f5-9df1-fac02beab884' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><table>\n",
-       "    <tr>\n",
-       "        <td>\n",
-       "            <table>\n",
-       "                <thead>\n",
-       "                    <tr>\n",
-       "                        <td> </td>\n",
-       "                        <th> Array </th>\n",
-       "                        <th> Chunk </th>\n",
-       "                    </tr>\n",
-       "                </thead>\n",
-       "                <tbody>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Bytes </th>\n",
-       "                        <td> 270.75 MiB </td>\n",
-       "                        <td> 192.00 kiB </td>\n",
-       "                    </tr>\n",
-       "                    \n",
-       "                    <tr>\n",
-       "                        <th> Shape </th>\n",
-       "                        <td> (361, 196608) </td>\n",
-       "                        <td> (1, 49152) </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                        <th> Count </th>\n",
-       "                        <td> 1449 Graph Layers </td>\n",
-       "                        <td> 1444 Chunks </td>\n",
-       "                    </tr>\n",
-       "                    <tr>\n",
-       "                    <th> Type </th>\n",
-       "                    <td> float32 </td>\n",
-       "                    <td> numpy.ndarray </td>\n",
-       "                    </tr>\n",
-       "                </tbody>\n",
-       "            </table>\n",
-       "        </td>\n",
-       "        <td>\n",
-       "        <svg width=\"170\" height=\"75\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
-       "\n",
-       "  <!-- Horizontal lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"0\" y1=\"1\" x2=\"120\" y2=\"1\" />\n",
-       "  <line x1=\"0\" y1=\"2\" x2=\"120\" y2=\"2\" />\n",
-       "  <line x1=\"0\" y1=\"4\" x2=\"120\" y2=\"4\" />\n",
-       "  <line x1=\"0\" y1=\"5\" x2=\"120\" y2=\"5\" />\n",
-       "  <line x1=\"0\" y1=\"6\" x2=\"120\" y2=\"6\" />\n",
-       "  <line x1=\"0\" y1=\"8\" x2=\"120\" y2=\"8\" />\n",
-       "  <line x1=\"0\" y1=\"9\" x2=\"120\" y2=\"9\" />\n",
-       "  <line x1=\"0\" y1=\"10\" x2=\"120\" y2=\"10\" />\n",
-       "  <line x1=\"0\" y1=\"12\" x2=\"120\" y2=\"12\" />\n",
-       "  <line x1=\"0\" y1=\"13\" x2=\"120\" y2=\"13\" />\n",
-       "  <line x1=\"0\" y1=\"14\" x2=\"120\" y2=\"14\" />\n",
-       "  <line x1=\"0\" y1=\"16\" x2=\"120\" y2=\"16\" />\n",
-       "  <line x1=\"0\" y1=\"17\" x2=\"120\" y2=\"17\" />\n",
-       "  <line x1=\"0\" y1=\"18\" x2=\"120\" y2=\"18\" />\n",
-       "  <line x1=\"0\" y1=\"20\" x2=\"120\" y2=\"20\" />\n",
-       "  <line x1=\"0\" y1=\"21\" x2=\"120\" y2=\"21\" />\n",
-       "  <line x1=\"0\" y1=\"22\" x2=\"120\" y2=\"22\" />\n",
-       "  <line x1=\"0\" y1=\"24\" x2=\"120\" y2=\"24\" />\n",
-       "  <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Vertical lines -->\n",
-       "  <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"25\" style=\"stroke-width:2\" />\n",
-       "  <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"25\" />\n",
-       "  <line x1=\"60\" y1=\"0\" x2=\"60\" y2=\"25\" />\n",
-       "  <line x1=\"90\" y1=\"0\" x2=\"90\" y2=\"25\" />\n",
-       "  <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n",
-       "\n",
-       "  <!-- Colored Rectangle -->\n",
-       "  <polygon points=\"0.0,0.0 120.0,0.0 120.0,25.41261651458249 0.0,25.41261651458249\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n",
-       "\n",
-       "  <!-- Text -->\n",
-       "  <text x=\"60.000000\" y=\"45.412617\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >196608</text>\n",
-       "  <text x=\"140.000000\" y=\"12.706308\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,12.706308)\">361</text>\n",
-       "</svg>\n",
-       "        </td>\n",
-       "    </tr>\n",
-       "</table></div></li></ul></div></li><li class='xr-section-item'><input id='section-35f39dbb-41cd-4d21-ac3c-05180ff1274b' class='xr-section-summary-in' type='checkbox'  ><label for='section-35f39dbb-41cd-4d21-ac3c-05180ff1274b' class='xr-section-summary' >Indexes: <span>(2)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-index-name'><div>time</div></div><div class='xr-index-preview'>PandasIndex</div><div></div><input id='index-60c80741-64cf-4e99-8ade-79b0fe39b87a' class='xr-index-data-in' type='checkbox'/><label for='index-60c80741-64cf-4e99-8ade-79b0fe39b87a' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(DatetimeIndex([&#x27;2020-01-31&#x27;, &#x27;2020-02-29&#x27;, &#x27;2020-03-31&#x27;, &#x27;2020-04-30&#x27;,\n",
-       "               &#x27;2020-05-31&#x27;, &#x27;2020-06-30&#x27;, &#x27;2020-07-31&#x27;, &#x27;2020-08-31&#x27;,\n",
-       "               &#x27;2020-09-30&#x27;, &#x27;2020-10-31&#x27;,\n",
+       "  * time     (time) datetime64[ns] 88kB 2020-01-02 2020-01-03 ... 2050-01-01\n",
+       "Attributes:\n",
+       "    axis:     T</pre><div class='xr-wrap' style='display:none'><div class='xr-header'><div class='xr-obj-type'>xarray.DataArray</div><div class='xr-array-name'>'time'</div><ul class='xr-dim-list'><li><span class='xr-has-index'>time</span>: 10958</li></ul></div><ul class='xr-sections'><li class='xr-section-item'><div class='xr-array-wrap'><input id='section-62decb7c-24d5-4087-8778-2c2a5cfad51a' class='xr-array-in' type='checkbox' checked><label for='section-62decb7c-24d5-4087-8778-2c2a5cfad51a' title='Show/hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-array-preview xr-preview'><span>2020-01-02 2020-01-03 2020-01-04 ... 2049-12-30 2049-12-31 2050-01-01</span></div><div class='xr-array-data'><pre>array([&#x27;2020-01-02T00:00:00.000000000&#x27;, &#x27;2020-01-03T00:00:00.000000000&#x27;,\n",
+       "       &#x27;2020-01-04T00:00:00.000000000&#x27;, ..., &#x27;2049-12-30T00:00:00.000000000&#x27;,\n",
+       "       &#x27;2049-12-31T00:00:00.000000000&#x27;, &#x27;2050-01-01T00:00:00.000000000&#x27;],\n",
+       "      dtype=&#x27;datetime64[ns]&#x27;)</pre></div></div></li><li class='xr-section-item'><input id='section-a3026824-6744-4564-8452-5bf756c2c2ed' class='xr-section-summary-in' type='checkbox'  checked><label for='section-a3026824-6744-4564-8452-5bf756c2c2ed' class='xr-section-summary' >Coordinates: <span>(1)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>time</span></div><div class='xr-var-dims'>(time)</div><div class='xr-var-dtype'>datetime64[ns]</div><div class='xr-var-preview xr-preview'>2020-01-02 ... 2050-01-01</div><input id='attrs-edde1aa1-f12a-4ad0-999f-087df53865fa' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-edde1aa1-f12a-4ad0-999f-087df53865fa' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-fd23e640-5e4a-460e-82ce-cf502f9b3a7f' class='xr-var-data-in' type='checkbox'><label for='data-fd23e640-5e4a-460e-82ce-cf502f9b3a7f' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>axis :</span></dt><dd>T</dd></dl></div><div class='xr-var-data'><pre>array([&#x27;2020-01-02T00:00:00.000000000&#x27;, &#x27;2020-01-03T00:00:00.000000000&#x27;,\n",
+       "       &#x27;2020-01-04T00:00:00.000000000&#x27;, ..., &#x27;2049-12-30T00:00:00.000000000&#x27;,\n",
+       "       &#x27;2049-12-31T00:00:00.000000000&#x27;, &#x27;2050-01-01T00:00:00.000000000&#x27;],\n",
+       "      dtype=&#x27;datetime64[ns]&#x27;)</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-87c9d33c-be32-4bd7-a1c5-b7bbf8cd086d' class='xr-section-summary-in' type='checkbox'  ><label for='section-87c9d33c-be32-4bd7-a1c5-b7bbf8cd086d' class='xr-section-summary' >Indexes: <span>(1)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-index-name'><div>time</div></div><div class='xr-index-preview'>PandasIndex</div><div></div><input id='index-af33d910-185c-4843-91f2-e2d00a338f6a' class='xr-index-data-in' type='checkbox'/><label for='index-af33d910-185c-4843-91f2-e2d00a338f6a' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(DatetimeIndex([&#x27;2020-01-02&#x27;, &#x27;2020-01-03&#x27;, &#x27;2020-01-04&#x27;, &#x27;2020-01-05&#x27;,\n",
+       "               &#x27;2020-01-06&#x27;, &#x27;2020-01-07&#x27;, &#x27;2020-01-08&#x27;, &#x27;2020-01-09&#x27;,\n",
+       "               &#x27;2020-01-10&#x27;, &#x27;2020-01-11&#x27;,\n",
        "               ...\n",
-       "               &#x27;2049-04-30&#x27;, &#x27;2049-05-31&#x27;, &#x27;2049-06-30&#x27;, &#x27;2049-07-31&#x27;,\n",
-       "               &#x27;2049-08-31&#x27;, &#x27;2049-09-30&#x27;, &#x27;2049-10-31&#x27;, &#x27;2049-11-30&#x27;,\n",
-       "               &#x27;2049-12-31&#x27;, &#x27;2050-01-31&#x27;],\n",
-       "              dtype=&#x27;datetime64[ns]&#x27;, name=&#x27;time&#x27;, length=361, freq=&#x27;ME&#x27;))</pre></div></li><li class='xr-var-item'><div class='xr-index-name'><div>crs</div></div><div class='xr-index-preview'>PandasIndex</div><div></div><input id='index-d179e0e7-97b5-4e52-8932-377e25d89daf' class='xr-index-data-in' type='checkbox'/><label for='index-d179e0e7-97b5-4e52-8932-377e25d89daf' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(Index([nan], dtype=&#x27;float32&#x27;, name=&#x27;crs&#x27;))</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-3717df04-3d96-40d8-8edc-4e87da2dcea9' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-3717df04-3d96-40d8-8edc-4e87da2dcea9' class='xr-section-summary'  title='Expand/collapse section'>Attributes: <span>(0)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><dl class='xr-attrs'></dl></div></li></ul></div></div>"
+       "               &#x27;2049-12-23&#x27;, &#x27;2049-12-24&#x27;, &#x27;2049-12-25&#x27;, &#x27;2049-12-26&#x27;,\n",
+       "               &#x27;2049-12-27&#x27;, &#x27;2049-12-28&#x27;, &#x27;2049-12-29&#x27;, &#x27;2049-12-30&#x27;,\n",
+       "               &#x27;2049-12-31&#x27;, &#x27;2050-01-01&#x27;],\n",
+       "              dtype=&#x27;datetime64[ns]&#x27;, name=&#x27;time&#x27;, length=10958, freq=None))</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-db59525c-81dd-4aa4-9f1c-a28b5ae446e2' class='xr-section-summary-in' type='checkbox'  checked><label for='section-db59525c-81dd-4aa4-9f1c-a28b5ae446e2' class='xr-section-summary' >Attributes: <span>(1)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><dl class='xr-attrs'><dt><span>axis :</span></dt><dd>T</dd></dl></div></li></ul></div></div>"
       ],
       "text/plain": [
-       "<xarray.Dataset> Size: 284MB\n",
-       "Dimensions:  (time: 361, cell: 196608, crs: 1)\n",
+       "<xarray.DataArray 'time' (time: 10958)> Size: 88kB\n",
+       "array(['2020-01-02T00:00:00.000000000', '2020-01-03T00:00:00.000000000',\n",
+       "       '2020-01-04T00:00:00.000000000', ..., '2049-12-30T00:00:00.000000000',\n",
+       "       '2049-12-31T00:00:00.000000000', '2050-01-01T00:00:00.000000000'],\n",
+       "      dtype='datetime64[ns]')\n",
        "Coordinates:\n",
-       "  * time     (time) datetime64[ns] 3kB 2020-01-31 2020-02-29 ... 2050-01-31\n",
-       "  * crs      (crs) float32 4B nan\n",
-       "Dimensions without coordinates: cell\n",
-       "Data variables:\n",
-       "    ts       (time, cell) float32 284MB dask.array<chunksize=(1, 49152), meta=np.ndarray>"
+       "  * time     (time) datetime64[ns] 88kB 2020-01-02 2020-01-03 ... 2050-01-01\n",
+       "Attributes:\n",
+       "    axis:     T"
       ]
      },
-     "execution_count": 81,
+     "execution_count": 4,
      "metadata": {},
      "output_type": "execute_result"
     }
    ],
    "source": [
-    "ts_mm"
+    "ngc.time"
    ]
   },
   {
    "cell_type": "markdown",
-   "id": "ebf8d332-bcc2-404a-86ca-5647cec4998b",
+   "id": "4adfdae8-f222-4b5a-8fbd-37c82573470d",
    "metadata": {},
    "source": [
-    "cdo -remapdis,r3600x1800 test.nc test.remap.nc\n",
-    "\n",
-    "cdo remapcon,icon_grid_0013_R02B04_G.nc test.remap.nc test.icongrid.nc"
+    "Monthly resampling and take the monthly mean."
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 72,
-   "id": "95186d2f-6029-467b-a634-0d3ea29c3525",
+   "execution_count": 5,
+   "id": "3572fb13-d950-43e3-96b3-6d7fdaf29082",
    "metadata": {},
    "outputs": [],
    "source": [
-    "ts_icongrid = xr.merge([xr.open_dataset(\"test.icongrid.nc\"), xr.open_dataset(\"icon_grid_0013_R02B04_G.nc\")])"
+    "ngc_mm = ngc.resample(time=\"ME\").mean()"
    ]
   },
   {
-   "cell_type": "code",
-   "execution_count": 75,
-   "id": "f13134b0-416f-4403-910b-b924cb1fcae2",
+   "cell_type": "markdown",
+   "id": "144bd3df-dd54-4029-b531-6f9ec3d96a40",
    "metadata": {},
+   "source": [
+    "Is the time resampling done correctly? Let us check this by plotting the difference of the monthly-mean resampled data with a manually-constructed monthly mean for a single month. If the difference is zero at all grid points, the time resampling is correct."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 6,
+   "id": "ca2ebe19-3229-4d4b-af12-455f3f2b2fbd",
+   "metadata": {
+    "scrolled": true
+   },
    "outputs": [
     {
      "data": {
       "text/plain": [
-       "<matplotlib.colorbar.Colorbar at 0x7fb4dec863b0>"
+       "[<matplotlib.lines.Line2D at 0x7f55426ea860>]"
       ]
      },
-     "execution_count": 75,
+     "execution_count": 6,
      "metadata": {},
      "output_type": "execute_result"
     },
     {
      "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhsAAAGiCAYAAABOCgSdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABSmUlEQVR4nO3df3QU1cE//vcayRIgWQhpfn0IEBWjGKGQUA0igj+Cwd9alY+eFCzSUgEfDNinQG1Svwej1h+gVtTnoUEFxKcHUvARkagkyEFaE4gI1JQiNBESqYoJ4UcSwnz/4LPr7mZ2d2Z3ftyZeb/OyTnJZnb27uzMve+9c+eOS5IkCUREREQ6Oc/sAhAREZG9MWwQERGRrhg2iIiISFcMG0RERKQrhg0iIiLSFcMGERER6Yphg4iIiHTFsEFERES6YtggIiIiXTFsEBERka4YNoiIiGxo2bJlGDFiBJKSkpCUlISCggK89957vv+vW7cOkyZNQkpKClwuF+rr63usY8KECXC5XAE/U6ZMUV0Whg0iIiIbGjRoEJ588knU1taitrYW1157LW677Tbs3bsXAHDixAlcddVVePLJJ8OuZ8aMGWhubvb9vPrqq6rLcn5U74CIiIiEdssttwT8vXjxYixbtgw7duzAZZddhuLiYgDAoUOHwq6nT58+SE9Pj6kstgsbZ8+exZEjR5CYmAiXy2V2cYiISGCSJOH48ePIzMzEeefp19l/+vRpdHZ2arIuSZJ6tG9utxtutzvkc7q7u/HnP/8ZJ06cQEFBgarXW7VqFVauXIm0tDQUFRWhtLQUiYmJqtZhu7Bx5MgRZGVlmV0MIiKykKamJgwaNEiXdZ8+fRpZg/vim3+f1WR9/fr1Q3t7e8BjpaWlKCsr67Hs559/joKCApw+fRr9+vVDZWUlhg8frvi17r//fmRnZyM9PR179uzBggUL8Nlnn6GqqkpVmW0XNrxpq6mpCUlJSbq9zthf/1G3dZO22i/Q5gAncpJ+X4o3pG/707M0X2dbWxuysrJUf1NXo7OzE9/8+yze35GOvv1i264n2s9i0pUtPdq4UL0aOTk5qK+vx/fff4+1a9di6tSpqKmpURw4ZsyY4fs9NzcXw4YNQ35+Pnbu3InRo0crLreuYWPr1q34wx/+gLq6OjQ3N6OyshK33357yOWrq6sxceLEHo///e9/xyWXXKLoNb1dS97Rt7Ea+R/Pyz4e5+4d87rJGJ7DypY7fiFDCdlb4gEVDV3oHnnTXP3YctnHP1v6SMzrNuK0e99+56FfojYhTmkbFx8fj4suuggAkJ+fj08//RRLly6NapAnAIwePRq9evXC/v37xQkbJ06cwMiRI/HAAw/grrvuUvy8hoaGgI34ox/9SI/ihRQqYJC9yVXEDCBkJ8H7s6rwITD/OluL4GFnkiSho6Mj6ufv3bsXXV1dyMjIUPU8XcNGUVERioqKVD8vNTUV/fv3175AETBkUDBvZczQQWQN3nqcoQNYuHAhioqKkJWVhePHj2PNmjWorq7Gpk2bAADfffcdGhsbceTIEQDnvugDQHp6OtLT03HgwAGsWrUKkydPRkpKCvbt24d58+Zh1KhRuOqqq1SVRcgxG6NGjcLp06cxfPhw/Pa3v5U9teLV0dERkNLa2tpUvx5DBkXCXg+yE7v0aIQz8j+ed3zg+Prrr1FcXIzm5mZ4PB6MGDECmzZtwg033AAA2LBhAx544AHf8t7JuryDTePj4/Hhhx9i6dKlaG9vR1ZWFm666SaUlpYiLi5OVVlckiRJ2r21MC/kckUcs9HQ0ICtW7ciLy8PHR0dePPNN/HKK6+guroa48ePl31OWVkZfv/73/d4vLW1VdH5LAYN0hIDCInOCUEjWLjQ0dbWBo/Ho7jNiIb3NbbtyYx5zEb78bMYl3tE1/LqQaiwIeeWW26By+XChg0bZP8v17ORlZWl6INg0CAjMICQKJwYNLxCBQ6GDWMIeRrF35VXXomVK1eG/H+kiUxCYdAgo/AUDBE5nfAxd9euXapHvRIRUU9ODrn8gmkuXXs22tvb8c9//tP398GDB1FfX4/k5GQMHjwYCxYswOHDh/HGG28AAJYsWYKhQ4fisssuQ2dnJ1auXIm1a9di7dq1mpaLOx2ZLfHAeY6u+InMwEGj5tE1bNTW1gZcSVJSUgIAmDp1KlasWIHm5mY0Njb6/t/Z2Yn58+fj8OHDSEhIwGWXXYZ3330XkydP1rOYRKZwWuDol92q2braD3o0WxcR6c+wAaJGiTTYh70aJBKrhg1vcFDS6GsZMuQweKjn5IGiQOBgUQ4QNYbwA0SJgg1o6MSxnHizi+E4cqGhX3Zr2MZe76ChpgwMJT+QC7lODyCkL0eFDfZqWNuABm1uz0w9yYUCpY1zpMbeCKEChf/7ClVOpeWPFJzM3gZEInNU2CBrCg4Z7NXQjtKeh0jL+f/f2+ga0asRrhzh/h9cRrmworb8ctsg0uuL5PiFZx3Tu8GBosZj2CBh+YcMBgztqAkY0TSKZoQMtUKVUauyhwo1RE7FsEFCY8jQTjQNnginSKwsXKgRcbs6qXeDjMWwQcISIWh4e1dEKEu0+K2a1GDgID04JmxwcCipETxOJNzgVFGDiNanBEJpP+hhoImCqL0bwA9Xq9g5dHDchrEcEzaIlFJ71YuIl+Ia2fgzaNiXVvPA2Dm0kDLcA8h2oq0gBzR0Rn15rUiX5bLxJ9Ecv/CsZSewI22wZ4OEFalyCvdtKZrzzsdy4mMKDWb1cDBc2IPIp1WIYsWeDRKSkm9Bkb4t2f2bVL/sVgYNC3NisLD7MUmhsWeDhKO2QooUOIw8X2xU7wZDhv04MXyQczgibHivRAnXKAU3SE4YjS0iPb752ClwMGTYA4NFZKyD7cURn6KSwUneZYKX5cAme1D6GWoVEpSO/VBTkTJokB0E17VydWyoOjhUfRypdzPU8zglgnEc0bOhBTW9IhQdvUOd//rDfWaxDhT1EvGSWDIfezXkKflCGG5ZpeO8yBwMGxow83bNdulqFK0S0CpwaIW9GtbFcEHEsKEbvQOI0hRv9RCiFyXbRpTAwaBhXQwaROcwbBgomnkj/Hsu1Fx1IVpPgYhECGP8nIjICRg2BKLVnBFWbMC8jb5eZY92wiSzezfYq2Fd7NUg+gH72MkQSq/qSTxwnu9HK94GW67hNjOYRXptBg1raj/osWTQMLuXj+yNPRs2YsUejXAinTpSQosG2+zeDbIGkQNGuFO0oZazW31C5mLYsDmrX62iReDwZ+TplFgue2Wvhpj89x3vZ2S1kKHkf/7/j/b4UxpwyBkYNhzCyqFD7/EceuD8GvYRKkyIHDIA7Y51NYFf7wBD1sWw4TBaXIGhdh1aVSxaVVTBvRtK34/S3g0lQSPce2CvhjhEDhRGfnHwBg4tAwzA0OEktg8bF7zwLIDIFbjIlYrWYqk0/KcNBkJXeHpWIlqfWgG0uwyWPRqkN7N6J/V4XY4RcQ7r9anrxGm361Z7Ka1W94jRupcjWtFemRIuTCjt0WCvhjWI+AXEiqdBlfK/Ek3rK9LIfLbv2VDLv7IXsbLRUnCjZ7UBXXr0cCgRfDol1tMmXgwa4jDj2Gfj2pMRx/iIV17Udf10DsMG+Zh5TjbUckoGnEVbGQWP3VDz3tWcLmHQsIb2gx5TPgeGjPDM+lJB2nLMXq72m4qe32xErlzC3fY5GnLdoeFuJy1XnliY3Tvl1ErS7O2uhv8kXEZPyCVyXSASnlqxPvZsmMCJDZCe305E/Oajpjx26NXwNtDe3iLR35MIYchODWfwVVp6DpSOtN1EqwvoHEeFDStUgtSTkjlCRAocTpqGXK7RFv39iRA0SD+8rFZMjgobAAOHltR+M4s1EEQaUxJq/UZ+5k6+0kS09ydyqLBTrwaREo4LGwADhxa0mhhM628fZvVwyL2m3fcx/1MnRKJgj4aYHBk2KHqxhgz/MKBHpcCgoT+5+4OIQOSeDDsT6SaFDBrisn3YiPbGW9E+z+5ivceKnpWB0RVN8OuJ1PAaQaT3a6VjladQ9MGgITbbhw0g+krRCnd1NEs0ocOsoBHu8/cPlUrnGXFaT0Yw0d4rj09i0BAfIzbFRMl8HFrN2eFdl9ZibTz1bHzZkMrzzofB7UMMGqEtW7YMI0aMQFJSEpKSklBQUID33nvP939JklBWVobMzEwkJCRgwoQJ2Lt3b8A6Ojo6MGfOHKSkpKBv37649dZb8dVXX6kuC8OGAqJ9kxNR8GRgWk4MJjK99w3uez0xYIjlWE58wLwaRt2MUIv6pV92K/oOadOoROIZNGgQnnzySdTW1qK2thbXXnstbrvtNl+gePrpp/Hcc8/hpZdewqeffor09HTccMMNOH78uG8dc+fORWVlJdasWYNt27ahvb0dN998M7q7u1WVhWGDLMe/gtHqxmbe5Zw2GRcZz64BPDh06EWrLzFWP37b2toCfjo6Onosc8stt2Dy5Mm4+OKLcfHFF2Px4sXo168fduzYAUmSsGTJEixatAh33nkncnNz8frrr+PkyZNYvXo1AKC1tRXLly/Hs88+i+uvvx6jRo3CypUr8fnnn+ODDz5QVV5HjNnQAgeMGkPuRnhyY2f0uN+I9zMON3bD+7pWr6isisegs2kV1Mw6ftd8fwXcZ3rFtI6O9i4AlcjKygp4vLS0FGVlZSGf193djT//+c84ceIECgoKcPDgQbS0tKCwsNC3jNvtxjXXXIPt27fjl7/8Jerq6tDV1RWwTGZmJnJzc7F9+3ZMmjRJcbkZNlRg4IhNpAG3oSqAaOZFibUy0fKmdETBuH9F5j8I3a69QbFoampCUlKS72+32y273Oeff46CggKcPn0a/fr1Q2VlJYYPH47t27cDANLS0gKWT0tLw7/+9S8AQEtLC+Lj4zFgwIAey7S0tKgqL8OGSgwcyoVq8P1DR7iAEe7vaF5X6XNDXZ3CCo+0xMChjNbHnV16Jb2DPiPJyclBfX09vv/+e6xduxZTp05FTU2N7/8ulytgeUmSejwWTMkywWy9p49453ear5NBQxklB7QeB71eFYl/hWeXyopIVHpddebEYzc+Ph4XXXQR8vPzUV5ejpEjR2Lp0qVIT08HgB49FEePHvX1dqSnp6OzsxPHjh0LuYxStg4bJE/vgy7WdavtxfD/0YL/epxwRY0/Xk5KduTEkBGKJEno6OhAdnY20tPTUVVV5ftfZ2cnampqMHbsWABAXl4eevXqFbBMc3Mz9uzZ41tGKZ5GUUnJaZTgQY5ygx6NZtTBpsXriHCqKlQZ7F5p2f39kTm0uETVn1GnVa1u4cKFKCoqQlZWFo4fP441a9aguroamzZtgsvlwty5c/HEE09g2LBhGDZsGJ544gn06dMH9913HwDA4/Fg+vTpmDdvHgYOHIjk5GTMnz8fl19+Oa6//npVZWHYiILczhvqplRyf+vdkCp9DREadZEFbx8nV1qkD/9xG+HGCFlxbIdeV46oHWDuZF9//TWKi4vR3NwMj8eDESNGYNOmTbjhhhsAAL/+9a9x6tQpPPTQQzh27BiuuOIKbN68GYmJib51PP/88zj//PNxzz334NSpU7juuuuwYsUKxMXFqSqLS5IkSdN3Z7K2tjZ4PB60trZiXM0zZhdHMS0bfTUHnVmvG4nSsCT3PFY69mTXYOwfNrx/yzXUVgoces6DoXXY6D7ZgX1TnkZra6uiAZfR8LZLs7fdAXe/2C99fWlcpa7l1YN19l6bM6KBlDsfz4aZrMLp+6qTxg6FIld/OXXgp9UwbAhE7wMn0qWoIh200ZTDWxHZ9Rsw2ZfZdyw2ct1K6hmzrmYj/egaNrZu3YpbbrkFmZmZcLlc+Mtf/hLxOTU1NcjLy0Pv3r1xwQUX4JVXXtGziMKKNnhEexBrceAa3cj734yLAYOsKrhxDtdYa3V1lFGnZIKvFvOvZ+T+F67O4zFubbrucSdOnMDIkSPx0ksvKVr+4MGDmDx5Mq6++mrs2rULCxcuxMMPP4y1a9fqWUzhGZng7XJA2+V9UCB+mxWbHvPR8MuEPeh6NUpRURGKiooUL//KK69g8ODBWLJkCQDg0ksvRW1tLZ555hncddddss/p6OgIuAFNW5s97+Bn1JUjIl2hIlJZiEQid+WK2QNIOfEdhSPUmI1PPvkk4IYvADBp0iTU1taiq6tL9jnl5eXweDy+n+Cb09iJkXNlKO3aDCbStxBRykHaYkN2jggDRr1lEKEsJDahwkZLS4vsTWHOnDmDb775RvY5CxYsQGtrq++nqanJiKKaxsyKVm3oICJ9iTDDbfDrG30JPFmDcJN6yd0URu5xL7fbHfJud3YV6e6pRry+ktfmnBdExjDjFIpcyLHSTMVkLKF6NtLT02VvCnP++edj4MCBJpVKXGb3ctjpdcg6+G2XyHqE6tkoKCjAO++8E/DY5s2bkZ+fj169Ypt1za5ECBzhKv9Q07gr5eSGpXBwQ8DfmxtzTCoJWYX/LKQirYtI172ovb0d9fX1qK+vB3Du0tb6+no0NjYCODfe4mc/+5lv+ZkzZ+Jf//oXSkpK8Pe//x1/+tOfsHz5csyfP1/PYlKMlEwK5uTQoFbh4IYeQcP7OJEcpWM31Cwn97sI2NtpTbr2bNTW1mLixIm+v0tKSgAAU6dOxYoVK9Dc3OwLHgCQnZ2NjRs34pFHHsEf//hHZGZm4oUXXgh52SuJI3iyHq3ChdMuf40UKLz/Zy+HvQXfL0WtSM9Tu14RLq0FGDSsTNewMWHCBIS7z9uKFSt6PHbNNddg586dMb92wXuLEdfHWQNH7SqWwGGVQarstSA5oW7KZgYld6HV83izwnFMoZkfVUl3ZvQMBFcMweM7jCqT6BVUqFMmSp5HJCJR7yRN5hJqgCjZi1xF4T++Q+261FRiVqikGBhICZF6N7wilSfWgeHBrHA8U3js2SAykLcnQ4ug4dSwYveGR+4UhQjjJYIZeTM3sj72bDiAXQ7W4N4Nq7wvp4YCPZk9sV0sYh38SWRFDBtkKVYJGGQM//3BasEj1OkRUa78iCRSWOKxSv4YNoh0wh4NY1nhMmkrhAgiPTBsEOnAqKAh9zpOnoND5NMrsQQNnnIhq2PMJtKQVoM/Yy2D06m5QzFpj9uegrFnw2I4g6R4RGzcCwc3cB+BNU6tRMJeDbID9mxYiIiNmtPxMxFfuG/Z3h4QI76JK70vSTCrjfNgrwbJsdZeTD5aztdA0eG2t45wE8yFW0YP7KkgJ2LYsIhwDRsbPeNZYZszjAby78UIFSyM/FbO0EFOwrBhAWwwxGK1z8Nq5TWbklASK63vyioKnkKhUGwbNq4dtN/sIsRMzTdTNihE+vAPHcEhxIhAYtXgQeSPV6MQqcBQ51zhxnjoNZOplYIGezUoHIYNAbFBE4/VPxNeCktEZmLYEIjVGzQ74mdCasj1avjPairyDKexYK8GRWLbMRtWw1uOGyt4W8mNj+H21Eeoy7atvL3bD3pCBohw/7MDBg1Sgj0bJrNyBWsVobax3OP8PORpNXNtpIBh99M9/r0bpFyk/UJu/+Rsy2Jh2DCJHo0aD6pADA7a8N+ORoQBuzcSdurlCA5OWn92wfuemuXlHvOWy/+xjvYu7IulkKSIrcNGpJ3TjMqMDaA+/Cs5buOelO7rejb0/Fx6stIYjkg9MmrCgJIeCD32F+6D5rF12IjE6C5b7uja4mkQecGBS0n3c/By4UKHUceNiKdUvKdBog0HIoaL4BARTdnU9jrw2HUeR4cNQP8uWx5A+uB2lefdj5Xsz0oGaIYb76LVMROuN0rUwBGNUPNyeP82I4AoHT/CcSYUK8eHDa/gyi743J7SwUlsBMksRjfKIgYBPUUTBtT2ZASHDrlGXqReEdZ3pBTDRgjRXJbHA88Y3M6xi2YbyoXpWAKH//PkBu6JRu/eB/8p0MO9jhblCNdTEW79/p+3ms9K5M+VjMGwYSN2/6bJCit2sWxDLU91hFpeTY+iaCI14NEId6msnuM//AOH93XUXhmiZjmyP4YNIjKEmuAgasgwamyFkt6NaNcb67IMEBQNhg2yBFZwsTN6GxrdO2HE64UKAGYOoFR6NQkHeZKZOF25zYSaCtrK7PRe9GTmdgruYo+my12Psmgp1H1PtG7E/ac3j2bdcle6xFpGHoMUK4YNIhtRMzW7ndjhPity91DR4jJbs1jxM7Cb8vJyjBkzBomJiUhNTcXtt9+OhobAz6W9vR2zZ8/GoEGDkJCQgEsvvRTLli0LWGbChAlwuVwBP1OmTFFVFp5GIaGxwlLP7gOFjWbEaYlwoSLa+6kofY7SCeDIempqajBr1iyMGTMGZ86cwaJFi1BYWIh9+/ahb9++AIBHHnkEW7ZswcqVKzF06FBs3rwZDz30EDIzM3Hbbbf51jVjxgw8/vjjvr8TEhJUlYVhg4TFoBE9MwIHPy9lgoOFklCg1w3cnHYjPDtpa2sL+NvtdsPtdgc8tmnTpoC/KyoqkJqairq6OowfPx4A8Mknn2Dq1KmYMGECAOAXv/gFXn31VdTW1gaEjT59+iA9PT3q8jJs2BgrDmcTqfE3al/UY2K9UFeGqA0A4W5Br/T5RpweYb2hn4++Goa4Pu7IC4bRfbIDAJCVlRXweGlpKcrKysI+t7X13P6TnJzse2zcuHHYsGEDfv7znyMzMxPV1dX4xz/+gaVLlwY8d9WqVVi5ciXS0tJQVFSE0tJSJCYmKi43x2zYnEgNDpFezJogzOjZPLV+PT1CBYOKMZqamtDa2ur7WbBgQdjlJUlCSUkJxo0bh9zcXN/jL7zwAoYPH45BgwYhPj4eN954I15++WWMGzfOt8z999+Pt956C9XV1Xjsscewdu1a3HnnnarKy54NIjJE8OyTcr0QsTRUZjVycleO+PdCiDS9uN6sMBOsXSQlJSEpKUnx8rNnz8bu3buxbdu2gMdfeOEF7NixAxs2bMCQIUOwdetWPPTQQ8jIyMD1118P4Nx4Da/c3FwMGzYM+fn52LlzJ0aPHq3o9Rk2HELLSp0oWmZeEqu34NMcVg4ZPJViL3PmzMGGDRuwdetWDBo0yPf4qVOnsHDhQlRWVuKmm24CAIwYMQL19fV45plnfGEj2OjRo9GrVy/s37+fYYN+EOpuniJXJnZriEiZUD0eXiLvs15WDhla4LErDkmSMGfOHFRWVqK6uhrZ2dkB/+/q6kJXVxfOOy9wREVcXBzOnj0bcr179+5FV1cXMjIyFJeFYYOEw8qKQlEakrUOJaF6LBIPnIfjF56V/Z8VaH2DSR67Ypk1axZWr16N9evXIzExES0tLQAAj8eDhIQEJCUl4ZprrsGjjz6KhIQEDBkyBDU1NXjjjTfw3HPPAQAOHDiAVatWYfLkyUhJScG+ffswb948jBo1CldddZXisnCAqIOJWDGIWCYSi9n7iH/w8A8admO3mYidaNmyZWhtbcWECROQkZHh+3n77bd9y6xZswZjxozB/fffj+HDh+PJJ5/E4sWLMXPmTABAfHw8PvzwQ0yaNAk5OTl4+OGHUVhYiA8++ABxcXGKy8KeDSIH8f/GL2pDEulUioiCeziswErbl6IjSVLEZdLT01FRURHy/1lZWaipqYm5LOzZcLhoKxz/e7BoVWmx8tNP8FUCVt/Warv29Zh7wyvxAKtRokh4lJDqiliPhsrqjZ+V2GVbR3ofetwQzn8d3sBhtR4NLysMtiX7YNggALFXxLE83y6Nn0g2N+ZYsjFRO09DLEFZaY9HcA+e3HOsGjiIjMKwQZqJpruaQUN7VgwZXtHsD2ovk9Wix8P7HKPvrirC3VyJosGwQYpF+00w3HKkPblv4Hbf1rHOyxFqf7X7diMyCq9GIR+9JvpihW08bnPjhLpRmx6vQ2RV7NkgRWK5aoXICEbPOurfG6J3EGDQIKtj2CAi29ByoHM0g1QZCojkGRI2Xn75ZWRnZ6N3797Iy8vDxx9/HHLZ6upquFyuHj9ffPGFEUUlGeydIKeJZp/XI2j0y24Nu14em2QVuoeNt99+G3PnzsWiRYuwa9cuXH311SgqKkJjY2PY5zU0NKC5udn3M2zYML2LSmDlRdYntw+rOZUS6xUxkQJCKN7n+f9oidOPk5l0DxvPPfccpk+fjgcffBCXXnoplixZgqysLCxbtizs81JTU5Genu77UTMHOxE5m/8VOWY1sv6BIVJwiDZYqLnaJvh3Bg8ykq5Xo3R2dqKurg6/+c1vAh4vLCzE9u3bwz531KhROH36NIYPH47f/va3mDhxouxyHR0d6Ojo8P3d1tYWe8EJACsjsjaj91//1/MPAf5BwugxHaG2AY9tMpquPRvffPMNuru7kZaWFvB4Wlqa71a3wTIyMvDaa69h7dq1WLduHXJycnDddddh69atssuXl5fD4/H4frKysjR/H0REsRIlaBCZwZB5NlwuV8DfkiT1eMwrJycHOTk/fCsoKChAU1MTnnnmGYwfP77H8gsWLEBJSYnv77a2NgYOklU84Fxv2pvHxppcErI7b0Nv5dlcibSka9hISUlBXFxcj16Mo0eP9ujtCOfKK6/EypUrZf/ndrvhdrtjKicRkR6UTpQX3AvBkEJ2o+tplPj4eOTl5aGqqirg8aqqKowdq/zb5a5du5CRkaF18SgEq3a/Fg/Y7uu9kPsf2Z+In3OkAap6TJNu9DEc7tgjAgw4jVJSUoLi4mLk5+ejoKAAr732GhobGzFz5kwA506DHD58GG+88QYAYMmSJRg6dCguu+wydHZ2YuXKlVi7di3Wrl2rd1EpyObGHMsED/+KrnjAdrx5bGzE4MHTKWQktZfk6nX7AD15jz01ywM8Fp1A97Bx77334ttvv8Xjjz+O5uZm5ObmYuPGjRgyZAgAoLm5OWDOjc7OTsyfPx+HDx9GQkICLrvsMrz77ruYPHmy3kUlP1as6PzxW5azWaURs1oPhpZ4jDqLS5IkyexCaKmtrQ0ejwezt90Bd79eZhfHMuQqZ5F6NkI1HrFUWKI3RBSd4H3C28tlxc87Us+H2UIdf9Eep2Z8Rh3tXXhpXCVaW1uRlJSky2t426Xha36NuD6xjTHsPtmBfVOe1rW8euC9USgsM3s3vOeBg0+R+P+PyJ/Sxs8qjAwU/seUkuMs3PEnty6lZSB74i3mHSpcT4H3MTNPpUSqyIjkBI/VkQsZkcb0iBpMjAoe0YSESOtS+xxRPwOKHns2qAf/CkKPCk6UsCBKOUgf4RosK332ItzTJHh7WWn7kRgYNhxI7rSEUzn9/dvRm8fGxvTN2In7hGjvmadJ7YdhgxQd1JsbczQ9pcLAQyLjPtmTlqdX1L5uuHEjDCbWwLBBsuQOXq27cllBkBxRGg8RyiAaM4KG/+/8TKzLsWHDqTtutO9Zq6DBc79E5vHvCTCrpyJWSstttfdld44MG9wJxeRfCcZ63l3t6xKRdWhxOS2Pe2PZNmxM6f9X2cfDfbN2am9HKEZuC6tdhkj6E+FYFKEMWghVt9nl/QHy7yXUY/69I6HaCtIW59mAfACxWyNnp0qFiJTjsc9tIAJbhw3/0KB2Z5N7rt0CiBWwknA2rYO/2fuTf12id71i9ns1gxPfs1XY9jSKV6ynRrjzmiPU5+Ydy8HgR0bRYyCl1qdvWU+R6GwfNmJhlwNYlPchSjmI1DJr6m4z10ukJYaNCJz+DZoVmTiincBI9IHPkconctm1pFfPCZEIbD1mQ0tWDB1aVTh2HDBrdUo/k1AztYr8eYa7SVoszGqAjXpdBgwSGXs2FBC5Yg6m1/S9IlVkdn9/cpRcwif6e5CjdNp6K743wJhyx1o/Wal+I+ti2LAR0StkLSo10d+jGeQabJ6asCazPhcGDtIbT6OQYlbpho+WXS5xVtpgmf15huqtEXn7qylftMHB7M+FSA/s2YhAj+76cNPnWuUbZ7TltMJlq1b5DOxM9H0kEqP3oVi3F/d50hvDBplC9MZEr7EvorLC+7RCGYlIHsOGAnpcY6/F4D6zK1+nNMZOeI9G4zbVnugBnpyNYUMhNQ2r/7fiaENEpMF9Vr8KwWqstI2t3OjoWXat1q302LQKq5WXrIlhwwDhpjuOZoImNY/rLZYK3MqNouiM3LZa7cPBZeb+wSBAsSkvL8eYMWOQmJiI1NRU3H777WhoaAhYxuVyyf784Q9/8C3T0dGBOXPmICUlBX379sWtt96Kr776SlVZGDZUCtdjoWXFYIWKNlQZ7Trewej3o2QbGtlAh9vn1WwbuTJaYX8nspqamhrMmjULO3bsQFVVFc6cOYPCwkKcOHHCt0xzc3PAz5/+9Ce4XC7cddddvmXmzp2LyspKrFmzBtu2bUN7eztuvvlmdHd3Ky4LL32NgZaBQ+msiXrNrkjKGHVpZvBnrOTuxWqCh9rLY0OtK9ptodWcK/7bJdI6rXzc2OWybDLWpk2bAv6uqKhAamoq6urqMH78eABAenp6wDLr16/HxIkTccEFFwAAWltbsXz5crz55pu4/vrrAQArV65EVlYWPvjgA0yaNElRWRg2BOCtQKxUkViprFrTI3DE0hDqEUDl3qMIn7m3XMETmcmVTc9wYdZ8IKLPQ0LGaWtrC/jb7XbD7XaHfU5raysAIDk5Wfb/X3/9Nd599128/vrrvsfq6urQ1dWFwsJC32OZmZnIzc3F9u3bGTasJLgCsVOFwgmKIovUKIbaH/wfU7ttvQ221j0WZgguq5V7MOTIXclmpc+HfnDiX0k4r3fvmNZx9vRpAEBWVlbA46WlpSgrKwv5PEmSUFJSgnHjxiE3N1d2mddffx2JiYm48847fY+1tLQgPj4eAwYMCFg2LS0NLS0tisvNsCEQO1SSkUbq26WSVPtezPj2HYmS8pv9ecn12tjhOImVnY4lik5TUxOSkpJ8f0fq1Zg9ezZ2796Nbdu2hVzmT3/6E+6//370VhCIJEmCy+VSXF4OEBWEkqtMWMkGEq2yDR4YK/d38PJq1g1Y85QbGYP1g7MkJSUF/IQLG3PmzMGGDRuwZcsWDBo0SHaZjz/+GA0NDXjwwQcDHk9PT0dnZyeOHTsW8PjRo0eRlpamuLzs2RCYXCMlQoUSTUOn1Z0plQyUUzKYUguRenHUPkfJ61lhunetGfV5qiV3+tPMshAFkyQJc+bMQWVlJaqrq5GdnR1y2eXLlyMvLw8jR44MeDwvLw+9evVCVVUV7rnnHgDnrmDZs2cPnn76acVlYdgQlJ0qDy0bx3BjDNi1bG9qrjxxAjvVEaSPWbNmYfXq1Vi/fj0SExN9Yyw8Hg8SEhJ8y7W1teHPf/4znn322R7r8Hg8mD59OubNm4eBAwciOTkZ8+fPx+WXX+67OkUJnkYh1dR8azeqUZDrBWKDZE/8XImUWbZsGVpbWzFhwgRkZGT4ft5+++2A5dasWQNJkvB//+//lV3P888/j9tvvx333HMPrrrqKvTp0wfvvPMO4uLiFJeFYYOiotWgPa0HKYp4uaaW+G1WLPw8SGSSJMn+TJs2LWC5X/ziFzh58iQ8Ho/senr37o0XX3wR3377LU6ePIl33nmnx9UwkTBsUNS0miVUi3EIdgsVZC0MHUThMWyQ4cLdGyN47gils2CqmVmTSEt2Cxo8XkgPHCBqEZFG5Cv9f7hlohXtnW1jmYwp1HTeRGbi7QSI5DFsWIwWMz8aWSFGunLAqCsL7NQI8GoMIrIahg2dqGnc5OaQ0HsqaSPnB4g0e6baq1jsEhooeuzZIrIWhg0dyM3yKHcDqeBlYrnXRSyU9jxo1cibNUlT8Pa3cm+Hk3s3Qt1t2cqfp0i4DUkPHCCqUqhBi97HI/VG+C9jhcZCqwAkyv0tgj8nK3wGerFioyJ6mfUsn5P3VbI+x/dsqPmWrWXPg1UrjkjlVnPqSJSGQ6SyqBFN74ad7yBqxc+QyCkc3bNh1mkLO5PrOdDyfh5mzlIqoliu4IlmHWRtTj5WyFyODRuhToX4/x78Q+pwmxkj1BiGcANwlaxDRE7ep2LthXLytiPzOeo0itZTY1NsYj19ofUN3qzS4MqJ5oofEpeod7q1Om5X89g2bKz5/gq4z/QyuxgUhihBw05ivYW9lxnb107jR2Kl9bbgdpU/bc7QYRzbhg2yp1gGRNq9wrVDxek/14zT8XLe6Cndf948NhYd7V0AKvUtEDl3zAbZHyvp6Jm97cx+fVFxu4TG8XViY9ggU0UaqGskVlI/EGFbhBr46jROvcxeCQYM6+BpFDJN8MRanBDJ2eSm0Hf6OA5egdKTHd+TExjSs/Hyyy8jOzsbvXv3Rl5eHj7++OOwy9fU1CAvLw+9e/fGBRdcgFdeecWIYpLJ+A2F5Hgv43Virwadwx4M69M9bLz99tuYO3cuFi1ahF27duHqq69GUVERGhsbZZc/ePAgJk+ejKuvvhq7du3CwoUL8fDDD2Pt2rV6F5WISDje3g01Da1dGma7vA8yIGw899xzmD59Oh588EFceumlWLJkCbKysrBs2TLZ5V955RUMHjwYS5YswaWXXooHH3wQP//5z/HMM8/ILt/R0YG2traAHyKyNjYw0eO2IxHpGjY6OztRV1eHwsLCgMcLCwuxfbt8l+gnn3zSY/lJkyahtrYWXV1dPZYvLy+Hx+Px/WRlZWn3BshR2E0vFjaa2rPKPs4eDfvRNWx888036O7uRlpaWsDjaWlpaGlpkX1OS0uL7PJnzpzBN99802P5BQsWoLW11ffT1NSk3Rsgx7BKJewk/Ex+oGb+EW43EpEhA0RdLlfA35Ik9Xgs0vJyjwOA2+1GUlJSwA8RwG9HRJFEc3wYMViTgcl+dL30NSUlBXFxcT16MY4ePdqj98IrPT1ddvnzzz8fAwcO1K2sZF8MHGQnZs8qGupyXK3LFWpdPJ6tSdeejfj4eOTl5aGqqirg8aqqKowdK7/DFBQU9Fh+8+bNyM/PR69evNcJETmTmoZcybLB89xoIbjHQ49gwEuhrUn3Sb1KSkpQXFyM/Px8FBQU4LXXXkNjYyNmzpwJ4NyYi8OHD+ONN94AAMycORMvvfQSSkpKMGPGDHzyySdYvnw53nrrLb2LSg7ECkue0yfTsoPg+wJp3esQ7lSKUfuOk+59ZHW6h417770X3377LR5//HE0NzcjNzcXGzduxJAhQwAAzc3NAXNuZGdnY+PGjXjkkUfwxz/+EZmZmXjhhRdw11136V1UcqBwlbDZ3dXBgitTkcpGxlK7b+qxr4gWSHnaRWyGTFf+0EMP4aGHHpL934oVK3o8ds0112Dnzp06l4roHLlpskVjxDlyEp8ed8WNZR9SEjjM3k/lXpsBxHi8NwqRH1ZCPxDtmytpS6sAoCQAGXH/IxIb7/pKRCGxcSA74gBT4zFsEIUhwjd7EcpAYmFDqQ1uR+M4Pmww4VIkTm/seXyQVkQ8lqb0/6vZRXAE24eNUGGCIYPUMKuSFLFyJpKjtD7lPu1Mtg0bU/r/NWDnD/V7uMeIzKJ0OmhW3CQS1qMUim3Dhhz2ZpDoornnhN4zNhKpwTqW5PDSVz+8HptiFcucArHsa8GBgxU+EYnEUT0bRHrx75GI9k6aImN4IaJYsGcjAs69T3rTY7+SWycDAxlF7r4s7H1zNvZsqMC7DZJW9LjjJpGIvPUl605nY9ggIW1uzDG7CLqI9XRLrK9NRGQGho0oMaE7i10+bwYOIjIDw0YM2C2on8LBDWYXQXOiNPSilCMSq5STiCLjAFEN8O6Y+tjcmGOJ0KHkFtui8S8TAzMZSW7wKNkfezaIVIo08ZbVrmCyQhmJSL3y8nKMGTMGiYmJSE1Nxe23346GhsAvcNOmTYPL5Qr4ufLKKwOWmTBhQo9lpkyZoqosDBtkG0Z9Q/K+jhV7NEKxUlnJPtiroa+amhrMmjULO3bsQFVVFc6cOYPCwkKcOHEiYLkbb7wRzc3Nvp+NGzf2WNeMGTMClnn11VdVlYWnUUhYhYMbFJ1KCb7vjd4NZ6TpwdlwG4/d8UQ9bdq0KeDviooKpKamoq6uDuPHj/c97na7kZ6eHnZdffr0ibhMOOzZINtho+NMDHnkJG1tbQE/HR0dEZ/T2toKAEhOTg54vLq6Gqmpqbj44osxY8YMHD16tMdzV61ahZSUFFx22WWYP38+jh8/rqq87Nkg4Zk9UNQp4UW03gGRykKkhX5fnoc4d2zf8bs7zj0/Kysr4PHS0lKUlZWFfJ4kSSgpKcG4ceOQm5vre7yoqAh33303hgwZgoMHD+Kxxx7Dtddei7q6OrjdbgDA/fffj+zsbKSnp2PPnj1YsGABPvvsM1RVVSkuN8MGWZ5ojaQdidxrIHLZiPTS1NSEpKQk39/eYBDK7NmzsXv3bmzbti3g8Xvvvdf3e25uLvLz8zFkyBC8++67uPPOOwGcG6/hv8ywYcOQn5+PnTt3YvTo0YrKy7BBQvP2aPjPKGqFy2GtisGNyBqSkpICwkY4c+bMwYYNG7B161YMGjQo7LIZGRkYMmQI9u/fH3KZ0aNHo1evXti/f7/isMExGxrgNytjxTKVOSdiszcei0Q/kCQJs2fPxrp16/DRRx8hOzs74nO+/fZbNDU1ISMjI+Qye/fuRVdXV9hlgrFngywpeBxH8DdyuctTo7lqhcFEP/6fkZZXEXnXE26dsXyu/usP9xiR2WbNmoXVq1dj/fr1SExMREtLCwDA4/EgISEB7e3tKCsrw1133YWMjAwcOnQICxcuREpKCu644w4AwIEDB7Bq1SpMnjwZKSkp2LdvH+bNm4dRo0bhqquuUlwWho0Y8ZuUMeROpygRrvLnzK/y9DyVIrdepY+pFe6zDX6P4QJEqPLIbafg1+RsmYG4DYy1bNkyAOcm5fJXUVGBadOmIS4uDp9//jneeOMNfP/998jIyMDEiRPx9ttvIzExEQAQHx+PDz/8EEuXLkV7ezuysrJw0003obS0FHFxcYrLwrBBliXXuwHw26WoRPtc1MyRovbxUP+3yj6qRyhgsDeeJElh/5+QkID3338/7DJZWVmoqamJuSwcs0GWYuTg0FDfZkkf3u2tppGz6ufhnfJe1PLrGYZEfc+kL/ZsRIkHjHm8M4sC5s/B4URKp2uXew71FO7Ui12J0sPz5rGx6GjvAlBpajmcgD0bKon8bcRJwgUMfj76CL6SJ9ore8J9qze78SFjefcBM45Z1hPGsm3Pxprvr4D7TC8AsVdg3CntK9wg0VCDCCmQmp4OuTEM0QaWUOVQWhZRifKt3yjBgcMp79tpbBs2/MmNKldayVm50rI7PU6n8AqV6IULHdym6jm150er00rc58TiiLDhL9IdO+3y7YjU8x+g6P9tywkVfLBY3jcDm36cuD9GuizZi3W32BwXNiLhTmo9scwoGk3Xv9NE8/7VBI5ous+dHGicGDgAZZcZO3m/EB0HiBLBGd3TavkP4oxm+5i1TZ3Q2Ih+6awcI/YHK20Pp2HPBhHZAhsaInGxZ4NsKZaGx6nd1OHIXUXCxp3U4nHlXAwbZGmhrkCJVKlFaizZkPbEq0zEZLXPgIHDmRg2yBa0mkXUahW30fTs0eC2J7Ivhg2yheArUtT2WvC0QHTCfUvl9jQOtzWJjmGDbIsVsL707g4Pd8UFP1sia2HYIEdhIyU2fj7RY+8ciYyXvpKlRZrQi5Wv9YTqyeDAQmW4rUhE7NkgIs0x5JmL259Ew7BBRJbABpTIuhg2yBa0uvSVyC4YzkgkHLNBRKrxvif24L89Oc6D9MSeDSJSjY2+9Zk5BT2DjfMwbBAR2ZTIoZCBw1l0DRvHjh1DcXExPB4PPB4PiouL8f3334d9zrRp0+ByuQJ+rrzySj2LSRblveyV4zXMIXJDRtEz8nNl4HAOXcPGfffdh/r6emzatAmbNm1CfX09iouLIz7vxhtvRHNzs+9n48aNehaTiKLE2T3tiROEkdZ0GyD697//HZs2bcKOHTtwxRVXAAD+67/+CwUFBWhoaEBOTujJmNxuN9LT0/UqGtkIezXEwgbKXjhBGGlFt56NTz75BB6Pxxc0AODKK6+Ex+PB9u3hd97q6mqkpqbi4osvxowZM3D06NGQy3Z0dKCtrS3gh4iM4w0YDBpiinUgqN69HAwzzqBb2GhpaUFqamqPx1NTU9HS0hLyeUVFRVi1ahU++ugjPPvss/j0009x7bXXoqOjQ3b58vJy35gQj8eDrKwszd4DiSvSNOVkLAYNsWnx+fAzplioDhtlZWU9BnAG/9TW1gIAXC5Xj+dLkiT7uNe9996Lm266Cbm5ubjlllvw3nvv4R//+Afeffdd2eUXLFiA1tZW309TU5Pat0REZHta9FDoETgYYpxB9ZiN2bNnY8qUKWGXGTp0KHbv3o2vv/66x//+/e9/Iy0tTfHrZWRkYMiQIdi/f7/s/91uN9xut+L1kX1wvAaR8TiOg6KhOmykpKQgJSUl4nIFBQVobW3F3/72N/zkJz8BAPz1r39Fa2srxo5VnmS//fZbNDU1ISMjQ21RiYiISAC6jdm49NJLceONN2LGjBnYsWMHduzYgRkzZuDmm28OuBLlkksuQWVlJQCgvb0d8+fPxyeffIJDhw6huroat9xyC1JSUnDHHXfoVVQiIlKBl8aSWrreG2XVqlV4+OGHUVhYCAC49dZb8dJLLwUs09DQgNbWVgBAXFwcPv/8c7zxxhv4/vvvkZGRgYkTJ+Ltt99GYmKinkUlIiKVggOH2tMrDCzOoWvYSE5OxsqVK8MuI0mS7/eEhAS8//77ehaJiIh0wvEcFArvjUJERJphbwXJYdggIiLDMZQ4C8MGERFpKlKQYNBwHoYNIiLSXKhAwaDhTLoOECUiIudisCAv9mwQERGRrhg2yHJ4EzYiImth2CAiIiJdMWwQERGRrhg2iIiIbKi8vBxjxoxBYmIiUlNTcfvtt6OhIfTdsn/5y1/C5XJhyZIlAY93dHRgzpw5SElJQd++fXHrrbfiq6++UlUWhg0iIiIbqqmpwaxZs7Bjxw5UVVXhzJkzKCwsxIkTJ3os+5e//AV//etfkZmZ2eN/c+fORWVlJdasWYNt27ahvb0dN998M7q7uxWXhZe+kmVwYCgRkXKbNm0K+LuiogKpqamoq6vD+PHjfY8fPnwYs2fPxvvvv4+bbrop4Dmtra1Yvnw53nzzTVx//fUAgJUrVyIrKwsffPABJk2apKgs7NkgSyocHLorkIjI7tra2gJ+Ojo6Ij7He4f15ORk32Nnz55FcXExHn30UVx22WU9nlNXV4euri7f3dsBIDMzE7m5udi+XflN99izQUREZID+/+zE+efH9h3/zJlOAEBWVlbA46WlpSgrKwv5PEmSUFJSgnHjxiE3N9f3+FNPPYXzzz8fDz/8sOzzWlpaEB8fjwEDBgQ8npaWhpaWFsXlZtggIiKymKamJiQlJfn+drvdYZefPXs2du/ejW3btvkeq6urw9KlS7Fz5064XC5Vry9JkqrnMGyQYYLHXPBUiFi8nw8/FyLxJSUlBYSNcObMmYMNGzZg69atGDRokO/xjz/+GEePHsXgwYN9j3V3d2PevHlYsmQJDh06hPT0dHR2duLYsWMBvRtHjx7F2LHKp6Nn2CBdKBnMqSZ8cHBodKLZbpsbcxg4DOS/vcN9XvxMSC1JkjBnzhxUVlaiuroa2dnZAf8vLi72Dfr0mjRpEoqLi/HAAw8AAPLy8tCrVy9UVVXhnnvuAQA0Nzdjz549ePrppxWXhWGDNBVLKFDzzTqaBtG/bCJX3GoanFDbLNZwZpVtZRdah3MiAJg1axZWr16N9evXIzEx0TfGwuPxICEhAQMHDsTAgQMDntOrVy+kp6cjJyfHt+z06dMxb948DBw4EMnJyZg/fz4uv/zyHkElHIYNipnWvQ5Kg4SawGGVnhGl5Qxezirvj87R4vNiDxRFsmzZMgDAhAkTAh6vqKjAtGnTFK/n+eefx/nnn4977rkHp06dwnXXXYcVK1YgLi5O8ToYNkiV4G/SejVyWlakcmXUq6KWW2+4XgK128+MUMGxHNEx4rOKdDz6f2ah9kMlp3H42VuTJEmqn3Po0KEej/Xu3RsvvvgiXnzxxajLwrChs2i/fUdziiDSc6JZf6jKx6iKtHBwgxDf2tWcrghXXhHeS7TkGiW9GyG5fdaoUzzh3mOo482sz1ftcaq2Z4yBk2LFsBGFcI2g3OPRDtLT8zmRKnFRKKkEQ1WAWr0f//WIuI2MFM3YAn+xhNxoQ1w0DWTwZ67VcW11HDdC0WLYiCDWbwxWYMUyexn5zZp6Cg57Sr8he8UadJWGH//XkeudUtMrSD/guBFSimEjCCsVe9Cz8aJAWlyBpLdIvVNKLz+lnniKhZRg2Ph/WMFYT6yVGytJ8sc6IDYinGIJPj3MY1wctg4bSnY0VjD2w8+UyHxmn2JROtaq+2TkG5hR7GwdNrwiXY5IzsZ9gUgf0U6+p+aUlihXrFF4jggbwbhj2hc/WyKxKD2VEe1VXzzmrcExYYM7JBGReSLNW0L2dp7ZBdDLR18NM7sIpCNWWETWxPlKnMm2YYOIiMTGoOEcjjmNQkREYmDIcB72bBAREZGuGDaIiIhIVwwbREREpCuGDbIFngMmIhIXwwZZDu9zQERkLQwbZHns1SAiEhsvfSXLYbggIrIW9mwQERGRrhg2iIiISFcMG0RERKQrhg0iIiLSFcMGERER6Yphg4iIiHTFsEFERES6sm3Y+KRokdlFICIiItg4bBAREZEYGDaIiIhIV7qGjcWLF2Ps2LHo06cP+vfvr+g5kiShrKwMmZmZSEhIwIQJE7B37149i0lEREQ60jVsdHZ24u6778avfvUrxc95+umn8dxzz+Gll17Cp59+ivT0dNxwww04fvy4jiUlIiIivegaNn7/+9/jkUceweWXX65oeUmSsGTJEixatAh33nkncnNz8frrr+PkyZNYvXq1nkUlIiIinQg1ZuPgwYNoaWlBYWGh7zG3241rrrkG27dvl31OR0cH2traAn6IiIhIHEKFjZaWFgBAWlpawONpaWm+/wUrLy+Hx+Px/WRlZeleTiIiIlJOddgoKyuDy+UK+1NbWxtToVwuV8DfkiT1eMxrwYIFaG1t9f00NTXF9NpERESkrfPVPmH27NmYMmVK2GWGDh0aVWHS09MBnOvhyMjI8D1+9OjRHr0dXm63G263O6rXIyIiIv2pDhspKSlISUnRoyzIzs5Geno6qqqqMGrUKADnrmipqanBU089pctrEhERkb5Uhw01Ghsb8d1336GxsRHd3d2or68HAFx00UXo168fAOCSSy5BeXk57rjjDrhcLsydOxdPPPEEhg0bhmHDhuGJJ55Anz59cN999+lZVCKKUvtBT8j/9ctuNbAkRCQqXcPG7373O7z++uu+v729FVu2bMGECRMAAA0NDWht/aFC+vWvf41Tp07hoYcewrFjx3DFFVdg8+bNSExM1LOoRKRCuIAhtxxDB5Gz6Ro2VqxYgRUrVoRdRpKkgL9dLhfKyspQVlamX8GIKCpKQ4ba5zGMhBcc2toPerjNyFJ0DRtEZH3RBgy1r8HGM/K29v8/T1+RlTBsEJEsI0JGrK9ntUbVv4dCz+3LIEKisXXY4LclInWMDhixCi6v2uM91vcr93pK1mnmdg712qwr7ae8vBzr1q3DF198gYSEBIwdOxZPPfUUcnJyAABdXV347W9/i40bN+LLL7+Ex+PB9ddfjyeffBKZmZm+9UyYMAE1NTUB67733nuxZs0axWWxddj48uF5GPHO78wuBpHQrBYwwrFCb4yo1L4XNb0z0YayUM8lZWpqajBr1iyMGTMGZ86cwaJFi1BYWIh9+/ahb9++OHnyJHbu3InHHnsMI0eOxLFjxzB37lzceuutPSbnnDFjBh5//HHf3wkJCarKYuuwEYmag8t/YJba5xCJxk6NJJlDzT4Uy/7Gnhh5wfcBk5vgctOmTQF/V1RUIDU1FXV1dRg/fjw8Hg+qqqoClnnxxRfxk5/8BI2NjRg8eLDv8T59+vgm3oyG7cOG91RKrJVrNM/nQUKiYLggu5Hbp0WvWxP2NeP88+JjWseZs50A0OM+YKWlpRGv4vROM5GcnBx2GZfLhf79+wc8vmrVKqxcuRJpaWkoKipCaWmpqikpbB82APEqWv/yiH5wkLWJtu8T6Sma/f3s6dM6lER/TU1NSEpK8v0d6bYdkiShpKQE48aNQ25uruwyp0+fxm9+8xvcd999Aeu+//77fTN879mzBwsWLMBnn33Wo1ckHEeEDZFZMZ2T2BgwiOwvKSkpIBBEMnv2bOzevRvbtm2T/X9XVxemTJmCs2fP4uWXXw7434wZM3y/5+bmYtiwYcjPz8fOnTsxevRoRa8v1C3m6Zz2g54e19OzAYmOU7abdx9xyvslIuXmzJmDDRs2YMuWLRg0aFCP/3d1deGee+7BwYMHUVVVFTHEjB49Gr169cL+/fsVl4E9GwILbjg49bNyTml0nfI+iUg9SZIwZ84cVFZWorq6GtnZ2T2W8QaN/fv3Y8uWLRg4cGDE9e7duxddXV0Bd2ePhGHDgjh/SHh2bIDt+J6ISF+zZs3C6tWrsX79eiQmJqKlpQUA4PF4kJCQgDNnzuCnP/0pdu7cif/93/9Fd3e3b5nk5GTEx8fjwIEDWLVqFSZPnoyUlBTs27cP8+bNw6hRo3DVVVcpLgvDhkUFDzJlr8c5dmqU7fReiMh4y5YtAwDfjU+9KioqMG3aNHz11VfYsGEDAODHP/5xwDLeG6bGx8fjww8/xNKlS9He3o6srCzcdNNNKC0tRVxcnOKyMGzYQPD4DqcGDrV3Ig3HyG3IUEFEegi+0WmwoUOHRlwmKyurx+yh0WDYsCEnBo5wDbb/9tAykHhF2tYME6RW4gH1Y/ePX3hWh5KE5i2j0a9L1sSwYVNOOq1i9r0oGCbEZIXGMJpQoWZdat978Dr8nx+qrFq8Ltkfw4bN2T10sKEnf3INX6hG0qgGUctAocVrKwkQSv+v5HkMHgQwbDiGHU+tMGiQVzSNop7fyM0MGJEYXbZwvSXkHAwbDmKnadIZNJxNrwYz8cB5MTeGIgcNEbDXw5kYNhxKLniI3vvBgEEiN+RalW1AQyeO5cR2sy6rULLNGEjsgWGDelw6G0xpAFEaBvzXp7S3hUHD2YwMGWp7N2It24CGTkWPhWNWODEiGOndE7J75hx4/vO3mq+XAjFsUERaN/Sh1sdAQcHs2JOhNkjEsk61QSCasnmfY0Tg0eI0F5nD9mHjy4fn4YIXnjW7GEQUhtahwr/RjKYRDNWoiRQwRHtdI0MH0PMzYhARm+3DBhGpF+kKAi3msNAzYIR6PNqG0Gohw0x6n1rx/yw42NQ6GDaIHEht46l0QqfjF541/NSHmgZdTUPo/aYczftxYsjwZ3QvB4mPYYPIhswa62DU6xrVmDNoxIahg7wYNohsROQBlbGwSgNulXIazUmX85I8hg0iG7BTyGCDbU9ajJ0h62LYILI4vYJGcKMf3EBEajwiPT/UclZll/dhBK1Pr3BwqPgYNogsTMugEamx9O8KD15WSUNr58bYzu9NRAwX1sOwQWQxevRkKG0s7dCoctAikfEYNogsxKi5KZxAi0GLemy/hD2HAQCncv+P5usmMot9RpUR2RyDhvZi2QZ6Bo3g3+0o2qDHUyjWxJ4NC1Iya54oU/eGmvRJhLI53bGceAYOyIcG/4bQqG0kFy4S9hxmD4eOvnx4Htra2swuhiM4omfjy4fnmV0ERRIPnBfx22vw/+X+Dp7OV8l69SD3mt7H7HSpptbkPi+9thfHLcgb0NDp+9Fbwp7DYXsx7NjDEct+x7rDmvipCSLcARRtYDCqwQp+DaVlZaURnlHbh4FDfHYMHOQsPI0igFgbFTX3cNDiFIaWjaAWN/SyEzMCIsBTKmZREiLsdBqFwda5GDZMpva0iRGvaQanj+MQ4TNh4DCWU4IGAwYBPI1imlCnGvwbXDUNkAiNVazs8B6iIdL7ZsNAWjmWE6/L/uTkLyVWxp4Ng0RqUOQOoHBXmpA98LN0JjuPwWBgJTmOCRtfPjwPF7zwrKGvqVdD4g0hdmyo1JxOieb9y63byHEjdvzMSDm7nzqxUtCwylWKduGYsCGyaBu5cA2nlYUKHFq8t0hX/QD6hQ6rfDZ2GLvhPwunkXNV+IeJ4Ndk0IgdT6FYF8OGjpRcIcKDR56ZDXOsocMqoSIUqweNYN7A4f+3HLNPbVg5aBBFwrARQaxXSYT6hm50yFB6aSz9QO5zChdE7LB97RI0vA23WQFCTXCwQ8iw0ukTMof1a0cVoj1Hp3UjYnQ3vff1jl94lj0pKgXPxhrqd6sHDaNmyzTaqdz/I2Rj7i2XiGUTmZKpApQcixyvYTz2bCgk+jwQoe5BQrELtR3tsH3tGDDkqG3U/ZcP1zuipgeFwUIbdjjunIhhQwXRA0cwK5WVjOeUoKFEuNu6ywWK4OUYJMRitbraCRwXEe3Yfea0yb8oNnY9ZRILJac0eOojNCvtT3ZsA6yALY9KojXWarr4RSs7GYshg5zEDmOp7MSRn4Rdki17NEgJhgwygqj7mX/osEvdb0W6tkCLFy/G2LFj0adPH/Tv31/Rc6ZNmwaXyxXwc+WVV+pWxmgaYaV3V422gY/0XLXrZtBwLhErf7I3UUMHg4a5dB0g2tnZibvvvhsFBQVYvny54ufdeOONqKio8P0dH6/9NdxfPjwPI//jec3XG8y/oQ83YEmP0x4MGURklgENnZx/g3x0DRu///3vAQArVqxQ9Ty324309HRFy3Z0dKCjo8P3d1tbm+LX+WzpIxj5H89HnJ9CTiw9ItHe2ZWIyEq8PRxmh47Plj5i6uuToJe+VldXIzU1Ff3798c111yDxYsXIzU1VXbZ8vJyX6iJhncnlOvl0CsIMGCQlkTssibyZ1boYMgQh3Bho6ioCHfffTeGDBmCgwcP4rHHHsO1116Luro6uN3uHssvWLAAJSUlvr/b2tqQlZWl+nW9vRxEImOwICsLt/9qHUQYNMSiOmyUlZVF7En49NNPkZ+fH1WB7r33Xt/vubm5yM/Px5AhQ/Duu+/izjvv7LG82+2WDSHRCNfLQWQ0BgtykuD9PdrwwZAhJtVhY/bs2ZgyZUrYZYYOHRpteXrIyMjAkCFDsH//fs3WGYn/zsrgQbFgYCCKjppjp3rTf+pYEusqLy/HunXr8MUXXyAhIQFjx47FU089hZycHN8y69atw6uvvoq6ujp8++232LVrF3784x8HrKejowPz58/HW2+9hVOnTuG6667Dyy+/jEGDBikui+qwkZKSgpSUFLVPi9q3336LpqYmZGRkGPaa/sKlZAYR42gxsp0NP5F1MVCoV1NTg1mzZmHMmDE4c+YMFi1ahMLCQuzbtw99+/YFAJw4cQJXXXUV7r77bsyYMUN2PXPnzsU777yDNWvWYODAgZg3bx5uvvlm1NXVIS4uTlFZdB2z0djYiO+++w6NjY3o7u5GfX09AOCiiy5Cv379AACXXHIJysvLcccdd6C9vR1lZWW46667kJGRgUOHDmHhwoVISUnBHXfcoeg1JUkCoO6qlGh9/P9Nl3188p0MIVo7AyBx7+mY10FEYtu4Tv4Lnl51une93rZDT2ekTiDGW7ackc59aQreHnJDCjZt2hTwd0VFBVJTU1FXV4fx48cDAIqLiwEAhw4dkn291tZWLF++HG+++Sauv/56AMDKlSuRlZWFDz74AJMmTVJWcElHU6dOlQD0+NmyZYtvGQBSRUWFJEmSdPLkSamwsFD60Y9+JPXq1UsaPHiwNHXqVKmxsVHxazY1Ncm+Jn/4wx/+8Ic/oX6ampo0bgF/cOrUKSk9PV2zsvbr16/HY6WlpRHLsX//fgmA9Pnnn/f438GDByUA0q5duwIe//DDDyUA0nfffRfw+IgRI6Tf/e53ireBrj0bK1asiDjHhuSXJhMSEvD+++/H9JqZmZloampCYmIiXC6X7DLeK1aampqQlJQU0+tZkZPfP9873zvfu3Moee+SJOH48ePIzMzUrRy9e/fGwYMH0dmpzalcSZJ6tG+RLpSQJAklJSUYN24ccnNzFb9WS0sL4uPjMWDAgIDH09LS0NLSong9wl36GqvzzjtP8aCVpKQkxx18/pz8/vne+d6dhu899Hv3eDy6l6F3797o3bu37q8TyuzZs7F7925s27ZNk/XJBZ5wOLsUERGRjc2ZMwcbNmzAli1bVF1BAgDp6eno7OzEsWPHAh4/evQo0tLSFK+HYYOIiMiGJEnC7NmzsW7dOnz00UfIzs5WvY68vDz06tULVVVVvseam5uxZ88ejB07VvF6bHcaRQm3243S0lLNJgOzGie/f753vnen4Xt35nsHgFmzZmH16tVYv349EhMTfWMsPB4PEhISAMB3xeiRI0cAAA0NDQDO9Wikp6fD4/Fg+vTpmDdvHgYOHIjk5GTMnz8fl19+ue/qFCVckmTA9T5ERERkqFBjKioqKjBt2jQA5y7keOCBB3osU1pairKyMgDA6dOn8eijj2L16tUBk3qpuTUIwwYRERHpimM2iIiISFcMG0RERKQrhg0iIiLSFcMGERER6YphA8Ctt96KwYMHo3fv3sjIyEBxcbHvMiA7O3ToEKZPn47s7GwkJCTgwgsvRGlpqWZT6opu8eLFGDt2LPr06YP+/fubXRxdvfzyy8jOzkbv3r2Rl5eHjz/+2OwiGWLr1q245ZZbkJmZCZfLhb/85S9mF8kw5eXlGDNmDBITE5Gamorbb7/dd1mj3S1btgwjRozwzRxaUFCA9957z+xiORrDBoCJEyfif/7nf9DQ0IC1a9fiwIED+OlPf2p2sXT3xRdf4OzZs3j11Vexd+9ePP/883jllVewcOFCs4tmiM7OTtx999341a9+ZXZRdPX2229j7ty5WLRoEXbt2oWrr74aRUVFaGxsNLtoujtx4gRGjhyJl156yeyiGM57e/EdO3agqqoKZ86cQWFhIU6cOGF20XQ3aNAgPPnkk6itrUVtbS2uvfZa3Hbbbdi7d6/ZRXMuxbdsc5D169dLLpdL6uzsNLsohnv66ael7Oxss4thqIqKCsnj8ZhdDN385Cc/kWbOnBnw2CWXXCL95je/MalE5gAgVVZWml0M0xw9elQCINXU1JhdFFMMGDBA+u///m+zi+FY7NkI8t1332HVqlUYO3YsevXqZXZxDNfa2ork5GSzi0Ea6ezsRF1dHQoLCwMeLywsxPbt200qFZmhtbUVABx3fHd3d2PNmjU4ceIECgoKzC6OYzFs/D//+Z//ib59+2LgwIFobGzE+vXrzS6S4Q4cOIAXX3wRM2fONLsopJFvvvkG3d3dPW6YpPb20GRtUpS3F7eyzz//HP369YPb7cbMmTNRWVmJ4cOHm10sx7Jt2CgrK4PL5Qr7U1tb61v+0Ucfxa5du7B582bExcXhZz/7GSSLTq6q9r0DwJEjR3DjjTfi7rvvxoMPPmhSyWMXzXt3guBpiyWVt4cma/PeXvytt94yuyiGycnJQX19PXbs2IFf/epXmDp1Kvbt22d2sRzLtjdimz17NqZMmRJ2maFDh/p+T0lJQUpKCi6++GJceumlyMrKwo4dOyzZ7ab2vR85cgQTJ05EQUEBXnvtNZ1Lpy+1793uUlJSEBcX16MXQ+3tocm6vLcX37p1q+rbi1tZfHw8LrroIgBAfn4+Pv30UyxduhSvvvqqySVzJtuGDW94iIa3R6Ojo0PLIhlGzXs/fPgwJk6ciLy8PFRUVOC886zd2RXL525H8fHxyMvLQ1VVFe644w7f41VVVbjttttMLBnpTZIkzJkzB5WVlaiuro7q9uJ2IkmSZet0O7Bt2FDqb3/7G/72t79h3LhxGDBgAL788kv87ne/w4UXXmjJXg01jhw5ggkTJmDw4MF45pln8O9//9v3v/T0dBNLZozGxkbf7ZW7u7tRX18PALjooovQr18/cwunoZKSEhQXFyM/P9/Xe9XY2OiIsTnt7e345z//6fv74MGDqK+vR3JyMgYPHmxiyfSn5PbidrVw4UIUFRUhKysLx48fx5o1a1BdXY1NmzaZXTTnMvNSGBHs3r1bmjhxopScnCy53W5p6NCh0syZM6WvvvrK7KLprqKiQgIg++MEU6dOlX3vW7ZsMbtomvvjH/8oDRkyRIqPj5dGjx7tmMsft2zZIvsZT5061eyi6S7UsV1RUWF20XT385//3Le//+hHP5Kuu+46afPmzWYXy9F4i3kiIiLSlbVP0BMREZHwGDaIiIhIVwwbREREpCuGDSIiItIVwwYRERHpimGDiIiIdMWwQURERLpi2CAiIiJdMWwQERGRrhg2iIiISFcMG0RERKSr/x/hyIPk0b+nGAAAAABJRU5ErkJggg==",
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlcAAAHFCAYAAADffdxRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAwsklEQVR4nO3deXhUVZ7/8U9BkgqEpFhiEoo1IsNi0JbQxDBigksAAQGxGxAj2Mo0rYhA2wIuw+I0CNo2OIAr0DhNK2MjyIw0EhQQTbGIoIiAioEgEAJpSEWQJITz+8NfaiiykOCBpJL363nqeaxzz7n3fOtWUR9v3XvjMMYYAQAAwIo6VT0BAACAmoRwBQAAYBHhCgAAwCLCFQAAgEWEKwAAAIsIVwAAABYRrgAAACwiXAEAAFhEuAIAALCIcAXUEunp6ZoyZYpOnjxZYllycrKSk5Ov+JyuhK+//lqPPfaY4uPj1bBhQzVu3Fj/+q//qr///e+l9s/OztaIESMUGRmp+vXrKzExUR988IFfH6/Xqz/+8Y9KTk5WTEyMGjRooE6dOmnmzJk6c+ZMiXU+9dRT6tu3r5o1ayaHw6ERI0ZUuo6KzEuS/vd//1f33XefOnXqpODgYDkcjkpt59SpUxoyZIjatWun8PBwhYWF6dprr9V//Md/6NSpU359v//+e40dO1ZJSUlq2LChHA6H/vKXv1S6NqCmIVwBtUR6erqmTp1aariaP3++5s+ff+UndQWsWbNG7733ngYNGqS3335bS5YsUdu2bfWrX/1K06ZN8+ubn5+vW2+9VR988IHmzJmjd999V9HR0erVq5c2bNjg65eZmanZs2erc+fOevXVV7Vy5UrdfffdmjJlivr27asL/6rYn//8Z+Xk5OjOO+9USEhIpWuo6Lwkafny5dq0aZM6duyo66+/vtLbKiwslDFG48eP17Jly/Tuu+9q0KBBmjZtmvr37+/X99tvv9WSJUsUEhKiO+64o9LbAmosA6BWeO6554wkk5GRUdVTuaKOHTtmzp07V6K9T58+pn79+ubMmTO+tnnz5hlJJj093ddWWFhoOnbsaLp27epr++GHH8wPP/xQYp3Fr/HGjRv92ouKinz/HRYWZoYPH16pGio6rwu39fDDDxtb/8w//vjjRpLZt29fqdvaunWrkWQWLVpkZXtAIOPIFVALTJkyRX/4wx8kSbGxsXI4HHI4HFq/fr2kkj8L7t+/Xw6HQ88995xmzpyp1q1bq169ekpOTtbXX3+twsJCTZw4UW63Wy6XSwMHDlR2dnaJ7S5dulSJiYkKCwtTgwYN1LNnT23fvv1KlOwTGRlZ6k9jXbt21enTp/XPf/7T17Z8+XK1a9dOiYmJvragoCDde++92rJliw4dOiRJCgsLU1hYWKnrlKSDBw/6tdep8/P+qa3ovGxsqyxXXXWVb7uXe1tAoOOTAdQCDz74oB555BFJ0jvvvCOPxyOPx6POnTuXO27evHn65JNPNG/ePL3++uvas2eP+vXrpwceeEDHjh3TwoULNWvWLK1du1YPPvig39jp06dr6NCh6tixo/77v/9b//Vf/6W8vDx1795dX3311UXnfPbs2Qo9zAU/wVXUunXrdNVVVykqKsrX9uWXX+q6664r0be4bdeuXeWu88MPP5QkXXvttZc0p7L83HldCmOMzp49K6/Xq9WrV+tPf/qThg4dqpYtW1rfFlDTBF28C4BA17x5c9+X4g033KDWrVtXaFzDhg21YsUK3xGK48ePa+zYsWrfvr3effddX789e/Zo9uzZ8nq9ioiI0MGDBzV58mSNHj1aL774oq/f7bffrrZt22rq1KlaunRpmdvdv3+/YmNjKzTHdevWVfpk/Ndff13r16/XnDlzVLduXV97Tk6OGjduXKJ/cVtOTk6Z6/ziiy80a9YsDRw4sNQg9HP8nHldqqVLl2ro0KG+5/fff79effVV69sBaiLCFYAy3XHHHX4//XTo0EGS1KdPH79+xe2ZmZmKi4vT+++/r7Nnz+q+++7T2bNnff1CQ0OVlJSkdevWlbtdt9utrVu3VmiO7dq1q1C/Yv/4xz/08MMP6+677/YdzTtfeVfXlbVs//796tu3r1q0aKHXX3+9UvMpZoxRUVGRX9v5P8FdyrzKc/5+kaS6dev6radnz57aunWr8vLy5PF4NHPmTOXk5Gj58uX8HAhcBOEKQJkuPFpSfKVbWe3FtyE4evSoJOmXv/xlqeu92JdzSEiIfvGLX1RojucfebqY999/X3fddZduv/12LVmypEQoadKkSalHgYrPyyrt6NGBAwfUo0cPBQUF6YMPPii1T0UsXrxY999/v19b8U+elzKviwkODvZ7vmjRIr9bRDRq1EhdunSRJPXo0UNt2rTRkCFD9O6772rgwIGV3h5QmxCuAFgXGRkpSfr73/+uVq1aVXr85fhZ8P3339eAAQOUlJSkZcuWlXpLhE6dOmnnzp0l2ovb4uLi/NoPHDig5ORkGWO0fv16NW/evEJzLk2/fv3KPFpX2XlVxIXbutjrXXyy/tdff13pbQG1DeEKqCWcTqck6ccff7zs2+rZs6eCgoK0b98+DRo0qNLjbf8suGbNGg0YMEA33XSTVqxY4XstLjRw4EA99NBD2rx5sxISEiT99PPZX//6VyUkJMjtdvv6ZmZmKjk5WUVFRVq/fv0lhcjzNWnSRE2aNPnZ86qo4qNSFVX8U+4111xT6W0BtQ3hCqglOnXqJEmaM2eOhg8fruDgYN9duG1r3bq1pk2bpieffFLfffedevXqpUaNGuno0aPasmWLwsLCNHXq1DLHh4SEVPrLvywff/yxBgwYoJiYGD3xxBPasWOH3/KOHTsqIiJCkvSb3/xG8+bN069+9Ss9++yzioqK0vz587V3716tXbvWNyY7O1s9evTQkSNHtGDBAmVnZ/vdiqJ58+Z+R7E2bNigY8eOSZKKiop04MAB3x3ik5KSfLc5KEtF5yX9dDStOJju27dPknzbat269UVf11deeUUbN25USkqKWrRooVOnTmnjxo36z//8T3Xr1q3EjUSL1/3dd99Jkj799FM1aNBAknT33XeXuy2gxqrSu2wBuKImTZpk3G63qVOnjpFk1q1bZ4wxJikpySQlJfn6ZWRkGEnmueee8xu/bt06I8m8/fbbfu2LFi0ykszWrVv92lesWGF69OhhIiIijNPpNK1atTJ33323Wbt27WWprzSTJ082ksp8FL8GxbKyssx9991nGjdubEJDQ82NN95o0tLS/PoUvw5lPSZPnuzXPykpqcLbL0tF5mXM/+2L0h4VuXnpJ598Yvr27WvcbrcJCQkx9evXN9dff7155plnzKlTp0r0L+91AGorhzGXeJMYAAAAlMD1tAAAABYRrgAAACwiXAEAAFhEuAIAALCIcAUAAGAR4QoAAMAibiJqwblz53T48GGFh4df0h9QBQAAV54xRnl5eXK73Vb/IDnhyoLDhw+rRYsWVT0NAABwCQ4ePPiz/jbohQhXFhT/+ZCDBw/6/owGAACo3rxer1q0aGH9z4ARriwo/ikwIiKCcAUAQICxfUoPJ7QDAABYRLgCAACwiHAFAABgEeEKAADAIsIVAACARYQrAAAAiwhXAAAAFhGuAAAALCJcAQAAWES4AgAAsIhwBQAAYBHhCgAAwCLCFQAAgEWEKwAAAIsIVwAAABYRrgAAACwiXAEAAFhEuAIAALCIcAUAAGAR4QoAAMAiwhUAAIBFhCsAAACLCFcAAAAWEa4AAAAsIlwBAABYRLgCAACwiHAFAABgEeEKAADAIsIVAACARYQrAAAAiwhXAAAAFhGuAAAALCJcAQAAWES4AgAAsIhwBQAAYBHhCgAAwCLCFQAAgEWEKwAAAIsIVwAAABYRrgAAACwiXAEAAFhEuAIAALCIcAUAAGBRwIWr+fPnKzY2VqGhoYqPj9fGjRvL7b9hwwbFx8crNDRUV199tV5++eUy+7711ltyOBwaMGCA5VkDAIDaIqDC1dKlSzV27Fg9+eST2r59u7p3767evXsrMzOz1P4ZGRm644471L17d23fvl1PPPGExowZo2XLlpXoe+DAAT322GPq3r375S4DAADUYA5jjKnqSVRUQkKCOnfurJdeesnX1qFDBw0YMEAzZswo0X/ChAlauXKldu/e7WsbNWqUPv/8c3k8Hl9bUVGRkpKSdP/992vjxo06efKkVqxYUeF5eb1euVwu5ebmKiIi4tKKAwAAV9Tl+v4OmCNXBQUF2rZtm1JSUvzaU1JSlJ6eXuoYj8dTon/Pnj316aefqrCw0Nc2bdo0XXXVVXrggQfsTxwAANQqQVU9gYo6fvy4ioqKFB0d7dceHR2trKysUsdkZWWV2v/s2bM6fvy4mjZtqk8++UQLFizQjh07KjyX/Px85efn+557vd6KFwIAAGq0gDlyVczhcPg9N8aUaLtY/+L2vLw83XvvvXrttdcUGRlZ4TnMmDFDLpfL92jRokUlKgAAADVZwBy5ioyMVN26dUscpcrOzi5xdKpYTExMqf2DgoLUpEkT7dq1S/v371e/fv18y8+dOydJCgoK0t69e9WmTZsS6500aZLGjx/ve+71eglYAABAUgCFq5CQEMXHxystLU0DBw70taelpal///6ljklMTNT//M//+LWtWbNGXbp0UXBwsNq3b6+dO3f6LX/qqaeUl5enOXPmlBmYnE6nnE7nz6wIAADURAETriRp/PjxSk1NVZcuXZSYmKhXX31VmZmZGjVqlKSfjigdOnRIb7zxhqSfrgycO3euxo8fr5EjR8rj8WjBggV68803JUmhoaGKi4vz20bDhg0lqUQ7AABARQRUuBo8eLBycnI0bdo0HTlyRHFxcVq1apVatWolSTpy5IjfPa9iY2O1atUqjRs3TvPmzZPb7daLL76oQYMGVVUJAACghguo+1xVV9znCgCAwFPr73MFAAAQCAhXAAAAFhGuAAAALCJcAQAAWES4AgAAsIhwBQAAYBHhCgAAwCLCFQAAgEWEKwAAAIsIVwAAABYRrgAAACwiXAEAAFhEuAIAALCIcAUAAGAR4QoAAMAiwhUAAIBFhCsAAACLCFcAAAAWEa4AAAAsIlwBAABYRLgCAACwiHAFAABgEeEKAADAIsIVAACARYQrAAAAiwhXAAAAFhGuAAAALCJcAQAAWES4AgAAsIhwBQAAYBHhCgAAwCLCFQAAgEWEKwAAAIsIVwAAABYRrgAAACwiXAEAAFhEuAIAALCIcAUAAGAR4QoAAMAiwhUAAIBFhCsAAACLCFcAAAAWEa4AAAAsIlwBAABYRLgCAACwiHAFAABgEeEKAADAIsIVAACARYQrAAAAiwhXAAAAFhGuAAAALCJcAQAAWES4AgAAsIhwBQAAYBHhCgAAwCLCFQAAgEUBF67mz5+v2NhYhYaGKj4+Xhs3biy3/4YNGxQfH6/Q0FBdffXVevnll/2Wv/baa+revbsaNWqkRo0a6bbbbtOWLVsuZwkAAKAGC6hwtXTpUo0dO1ZPPvmktm/fru7du6t3797KzMwstX9GRobuuOMOde/eXdu3b9cTTzyhMWPGaNmyZb4+69ev19ChQ7Vu3Tp5PB61bNlSKSkpOnTo0JUqCwAA1CAOY4yp6klUVEJCgjp37qyXXnrJ19ahQwcNGDBAM2bMKNF/woQJWrlypXbv3u1rGzVqlD7//HN5PJ5St1FUVKRGjRpp7ty5uu+++yo0L6/XK5fLpdzcXEVERFSyKgAAUBUu1/d3wBy5Kigo0LZt25SSkuLXnpKSovT09FLHeDyeEv179uypTz/9VIWFhaWOOX36tAoLC9W4cWM7EwcAALVKUFVPoKKOHz+uoqIiRUdH+7VHR0crKyur1DFZWVml9j979qyOHz+upk2blhgzceJENWvWTLfddluZc8nPz1d+fr7vudfrrUwpAACgBguYI1fFHA6H33NjTIm2i/UvrV2SZs2apTfffFPvvPOOQkNDy1znjBkz5HK5fI8WLVpUpgQAAFCDBUy4ioyMVN26dUscpcrOzi5xdKpYTExMqf2DgoLUpEkTv/bnn39e06dP15o1a3TdddeVO5dJkyYpNzfX9zh48OAlVAQAAGqigAlXISEhio+PV1paml97WlqaunXrVuqYxMTEEv3XrFmjLl26KDg42Nf23HPP6ZlnntHq1avVpUuXi87F6XQqIiLC7wEAACAFULiSpPHjx+v111/XwoULtXv3bo0bN06ZmZkaNWqUpJ+OKJ1/hd+oUaN04MABjR8/Xrt379bChQu1YMECPfbYY74+s2bN0lNPPaWFCxeqdevWysrKUlZWln744YcrXh8AAAh8AXNCuyQNHjxYOTk5mjZtmo4cOaK4uDitWrVKrVq1kiQdOXLE755XsbGxWrVqlcaNG6d58+bJ7XbrxRdf1KBBg3x95s+fr4KCAt19991+25o8ebKmTJlyReoCAAA1R0Dd56q64j5XAAAEnlp/nysAAIBAQLgCAACwiHAFAABgEeEKAADAIsIVAACARYQrAAAAiwhXAAAAFhGuAAAALCJcAQAAWES4AgAAsIhwBQAAYBHhCgAAwCLCFQAAgEWEKwAAAIsIVwAAABYRrgAAACwiXAEAAFhEuAIAALCIcAUAAGAR4QoAAMAiwhUAAIBFhCsAAACLCFcAAAAWEa4AAAAsIlwBAABYRLgCAACwiHAFAABgEeEKAADAIsIVAACARYQrAAAAiwhXAAAAFhGuAAAALCJcAQAAWES4AgAAsIhwBQAAYBHhCgAAwCLCFQAAgEWEKwAAAIsIVwAAABYRrgAAACwiXAEAAFhEuAIAALCIcAUAAGAR4QoAAMAiwhUAAIBFhCsAAACLCFcAAAAWEa4AAAAsIlwBAABYRLgCAACwiHAFAABgEeEKAADAIsIVAACARYQrAAAAiwhXAAAAFhGuAAAALCJcAQAAWFTpcLV48WK99957vuePP/64GjZsqG7duunAgQNWJ1ea+fPnKzY2VqGhoYqPj9fGjRvL7b9hwwbFx8crNDRUV199tV5++eUSfZYtW6aOHTvK6XSqY8eOWr58+eWaPgAAqOEqHa6mT5+uevXqSZI8Ho/mzp2rWbNmKTIyUuPGjbM+wfMtXbpUY8eO1ZNPPqnt27ere/fu6t27tzIzM0vtn5GRoTvuuEPdu3fX9u3b9cQTT2jMmDFatmyZr4/H49HgwYOVmpqqzz//XKmpqfr1r3+tzZs3X9ZaAABAzeQwxpjKDKhfv7727Nmjli1basKECTpy5IjeeOMN7dq1S8nJyTp27NjlmqsSEhLUuXNnvfTSS762Dh06aMCAAZoxY0aJ/hMmTNDKlSu1e/duX9uoUaP0+eefy+PxSJIGDx4sr9erf/zjH74+vXr1UqNGjfTmm29WaF5er1cul0u5ubmKiIi41PJKOHGqQKcKzlpbHwAAgaph/RA1cAZZXefl+v6u9CwbNGignJwctWzZUmvWrPEdrQoNDdWPP/5obWIXKigo0LZt2zRx4kS/9pSUFKWnp5c6xuPxKCUlxa+tZ8+eWrBggQoLCxUcHCyPx1PiiFvPnj01e/bsMueSn5+v/Px833Ov11vJairmuTV79bfNpR+VAwCgNpk+sJPuSWhZ1dOokEqHq9tvv10PPvigbrjhBn399dfq06ePJGnXrl1q1aqV9QkWO378uIqKihQdHe3XHh0draysrFLHZGVlldr/7NmzOn78uJo2bVpmn7LWKUkzZszQ1KlTL7GSiguu45AziGsOAACoG0Bfh5UOV3/4wx/06quv6tChQ1q2bJmaNGkiSdq2bZuGDRtmfYIXcjgcfs+NMSXaLtb/wvbKrnPSpEkaP36877nX61WLFi0uPvlKmto/TlP7x1lfLwAAuHwqHa7i4+N15MgRRUVF+bU/8sgjio6O1hNPPGFtcueLjIxU3bp1SxxRys7OLnHkqVhMTEyp/YOCgnyhsKw+Za1TkpxOp5xO56WUAQAAarhKH2Qr66jOqVOnFBoaamVSpQkJCVF8fLzS0tL82tPS0tStW7dSxyQmJpbov2bNGnXp0kXBwcHl9ilrnQAAAOWp8JGr4p/BHA6Hnn76adWvX9+3rKioSJs3b9YvfvEL6xO8cA6pqanq0qWLEhMT9eqrryozM1OjRo2S9NPPdYcOHdIbb7wh6acrA+fOnavx48dr5MiR8ng8WrBggd9VgI8++qhuvvlmzZw5U/3799e7776rtWvX6uOPP76stQAAgJqpwuFq+/btkn46crVz506FhIT4loWEhOj666/XY489Zn+G5xk8eLBycnI0bdo0HTlyRHFxcVq1apXvRPojR4743fMqNjZWq1at0rhx4zRv3jy53W69+OKLGjRokK9Pt27d9NZbb+mpp57S008/rTZt2mjp0qVKSEi4rLUAAICaqdL3ubr//vs1Z84cq/eDCHSX6z4ZAADg8qk297latGiRtY0DAADUNAF01wgAAIDqj3AFAABgEeEKAADAIsIVAACARYQrAAAAiwhXAAAAFhGuAAAALCJcAQAAWES4AgAAsIhwBQAAYBHhCgAAwCLCFQAAgEWEKwAAAIsIVwAAABYRrgAAACwiXAEAAFhEuAIAALCIcAUAAGAR4QoAAMAiwhUAAIBFhCsAAACLCFcAAAAWEa4AAAAsIlwBAABYRLgCAACwiHAFAABgEeEKAADAIsIVAACARYQrAAAAiwhXAAAAFhGuAAAALCJcAQAAWES4AgAAsIhwBQAAYBHhCgAAwCLCFQAAgEWEKwAAAIsIVwAAABYRrgAAACwiXAEAAFhEuAIAALCIcAUAAGAR4QoAAMAiwhUAAIBFhCsAAACLCFcAAAAWEa4AAAAsIlwBAABYRLgCAACwiHAFAABgEeEKAADAIsIVAACARYQrAAAAiwhXAAAAFhGuAAAALAqYcHXixAmlpqbK5XLJ5XIpNTVVJ0+eLHeMMUZTpkyR2+1WvXr1lJycrF27dvmW//Of/9Qjjzyidu3aqX79+mrZsqXGjBmj3Nzcy1wNAACoqQImXN1zzz3asWOHVq9erdWrV2vHjh1KTU0td8ysWbP0wgsvaO7cudq6datiYmJ0++23Ky8vT5J0+PBhHT58WM8//7x27typv/zlL1q9erUeeOCBK1ESAACogRzGGFPVk7iY3bt3q2PHjtq0aZMSEhIkSZs2bVJiYqL27Nmjdu3alRhjjJHb7dbYsWM1YcIESVJ+fr6io6M1c+ZM/fa3vy11W2+//bbuvfdenTp1SkFBQRWan9frlcvlUm5uriIiIi6xSgAAcCVdru/vgDhy5fF45HK5fMFKkm688Ua5XC6lp6eXOiYjI0NZWVlKSUnxtTmdTiUlJZU5RpLvBS4vWOXn58vr9fo9AAAApAAJV1lZWYqKiirRHhUVpaysrDLHSFJ0dLRfe3R0dJljcnJy9Mwzz5R5VKvYjBkzfOd+uVwutWjRoiJlAACAWqBKw9WUKVPkcDjKfXz66aeSJIfDUWK8MabU9vNduLysMV6vV3369FHHjh01efLkctc5adIk5ebm+h4HDx68WKkAAKCWqNhJRZfJ6NGjNWTIkHL7tG7dWl988YWOHj1aYtmxY8dKHJkqFhMTI+mnI1hNmzb1tWdnZ5cYk5eXp169eqlBgwZavny5goODy52T0+mU0+kstw8AAKidqjRcRUZGKjIy8qL9EhMTlZubqy1btqhr166SpM2bNys3N1fdunUrdUxsbKxiYmKUlpamG264QZJUUFCgDRs2aObMmb5+Xq9XPXv2lNPp1MqVKxUaGmqhMgAAUFsFxDlXHTp0UK9evTRy5Eht2rRJmzZt0siRI9W3b1+/KwXbt2+v5cuXS/rp58CxY8dq+vTpWr58ub788kuNGDFC9evX1z333CPppyNWKSkpOnXqlBYsWCCv16usrCxlZWWpqKioSmoFAACBrUqPXFXGkiVLNGbMGN/Vf3feeafmzp3r12fv3r1+NwB9/PHH9eOPP+qhhx7SiRMnlJCQoDVr1ig8PFyStG3bNm3evFmSdM011/itKyMjQ61bt76MFQEAgJooIO5zVd1xnysAAAJPrb7PFQAAQKAgXAEAAFhEuAIAALCIcAUAAGAR4QoAAMAiwhUAAIBFhCsAAACLCFcAAAAWEa4AAAAsIlwBAABYRLgCAACwiHAFAABgEeEKAADAIsIVAACARYQrAAAAiwhXAAAAFhGuAAAALCJcAQAAWES4AgAAsIhwBQAAYBHhCgAAwCLCFQAAgEWEKwAAAIsIVwAAABYRrgAAACwiXAEAAFhEuAIAALCIcAUAAGAR4QoAAMAiwhUAAIBFhCsAAACLCFcAAAAWEa4AAAAsIlwBAABYRLgCAACwiHAFAABgEeEKAADAIsIVAACARYQrAAAAiwhXAAAAFhGuAAAALCJcAQAAWES4AgAAsIhwBQAAYBHhCgAAwCLCFQAAgEWEKwAAAIsIVwAAABYRrgAAACwiXAEAAFhEuAIAALCIcAUAAGAR4QoAAMAiwhUAAIBFhCsAAACLCFcAAAAWBUy4OnHihFJTU+VyueRyuZSamqqTJ0+WO8YYoylTpsjtdqtevXpKTk7Wrl27yuzbu3dvORwOrVixwn4BAACgVgiYcHXPPfdox44dWr16tVavXq0dO3YoNTW13DGzZs3SCy+8oLlz52rr1q2KiYnR7bffrry8vBJ9Z8+eLYfDcbmmDwAAaomgqp5ARezevVurV6/Wpk2blJCQIEl67bXXlJiYqL1796pdu3YlxhhjNHv2bD355JO66667JEmLFy9WdHS0/va3v+m3v/2tr+/nn3+uF154QVu3blXTpk2vTFEAAKBGCogjVx6PRy6XyxesJOnGG2+Uy+VSenp6qWMyMjKUlZWllJQUX5vT6VRSUpLfmNOnT2vo0KGaO3euYmJiKjSf/Px8eb1evwcAAIAUIOEqKytLUVFRJdqjoqKUlZVV5hhJio6O9muPjo72GzNu3Dh169ZN/fv3r/B8ZsyY4Tv3y+VyqUWLFhUeCwAAarYqDVdTpkyRw+Eo9/Hpp59KUqnnQxljLnqe1IXLzx+zcuVKffjhh5o9e3al5j1p0iTl5ub6HgcPHqzUeAAAUHNV6TlXo0eP1pAhQ8rt07p1a33xxRc6evRoiWXHjh0rcWSqWPFPfFlZWX7nUWVnZ/vGfPjhh9q3b58aNmzoN3bQoEHq3r271q9fX+q6nU6nnE5nufMGAAC1U5WGq8jISEVGRl60X2JionJzc7VlyxZ17dpVkrR582bl5uaqW7dupY6JjY1VTEyM0tLSdMMNN0iSCgoKtGHDBs2cOVOSNHHiRD344IN+4zp16qQ///nP6tev388pDQAA1FIBcbVghw4d1KtXL40cOVKvvPKKJOnf/u3f1LdvX78rBdu3b68ZM2Zo4MCBcjgcGjt2rKZPn662bduqbdu2mj59uurXr6977rlH0k9Ht0o7ib1ly5aKjY29MsUBAIAaJSDClSQtWbJEY8aM8V39d+edd2ru3Ll+ffbu3avc3Fzf88cff1w//vijHnroIZ04cUIJCQlas2aNwsPDr+jcAQBA7eEwxpiqnkSg83q9crlcys3NVURERFVPBwAAVMDl+v4OiFsxAAAABArCFQAAgEWEKwAAAIsIVwAAABYRrgAAACwiXAEAAFhEuAIAALCIcAUAAGAR4QoAAMAiwhUAAIBFhCsAAACLCFcAAAAWEa4AAAAsIlwBAABYRLgCAACwiHAFAABgEeEKAADAIsIVAACARYQrAAAAiwhXAAAAFhGuAAAALCJcAQAAWES4AgAAsIhwBQAAYBHhCgAAwCLCFQAAgEWEKwAAAIsIVwAAABYRrgAAACwiXAEAAFhEuAIAALCIcAUAAGAR4QoAAMAiwhUAAIBFhCsAAACLCFcAAAAWEa4AAAAsIlwBAABYRLgCAACwiHAFAABgEeEKAADAIsIVAACARYQrAAAAi4KqegI1gTFGkuT1eqt4JgAAoKKKv7eLv8dtIVxZkJeXJ0lq0aJFFc8EAABUVl5enlwul7X1OYztuFYLnTt3TocPH1Z4eLgcDoe19Xq9XrVo0UIHDx5URESEtfVWN7WhTmqsOWpDndRYc9SGOn9OjcYY5eXlye12q04de2dKceTKgjp16qh58+aXbf0RERE19kNxvtpQJzXWHLWhTmqsOWpDnZdao80jVsU4oR0AAMAiwhUAAIBFhKtqzOl0avLkyXI6nVU9lcuqNtRJjTVHbaiTGmuO2lBndayRE9oBAAAs4sgVAACARYQrAAAAiwhXAAAAFhGuAAAALCJcVWPz589XbGysQkNDFR8fr40bN1b1lCRJM2bM0C9/+UuFh4crKipKAwYM0N69e/36jBgxQg6Hw+9x4403+vXJz8/XI488osjISIWFhenOO+/U999/79fnxIkTSk1NlcvlksvlUmpqqk6ePOnXJzMzU/369VNYWJgiIyM1ZswYFRQU/Kwap0yZUmL+MTExvuXGGE2ZMkVut1v16tVTcnKydu3aFTD1SVLr1q1L1OhwOPTwww9LCtx9+NFHH6lfv35yu91yOBxasWKF3/Lqtu927typpKQk1atXT82aNdO0adMu+nfOyquxsLBQEyZMUKdOnRQWFia326377rtPhw8f9ltHcnJyif07ZMiQgKhRqn7vz0upsSJ1lvYZdTgceu6553x9qvu+rMh3Rk34XF5YEKqht956ywQHB5vXXnvNfPXVV+bRRx81YWFh5sCBA1U9NdOzZ0+zaNEi8+WXX5odO3aYPn36mJYtW5offvjB12f48OGmV69e5siRI75HTk6O33pGjRplmjVrZtLS0sxnn31mevToYa6//npz9uxZX59evXqZuLg4k56ebtLT001cXJzp27evb/nZs2dNXFyc6dGjh/nss89MWlqacbvdZvTo0T+rxsmTJ5trr73Wb/7Z2dm+5c8++6wJDw83y5YtMzt37jSDBw82TZs2NV6vNyDqM8aY7Oxsv/rS0tKMJLNu3TpjTODuw1WrVpknn3zSLFu2zEgyy5cv91tenfZdbm6uiY6ONkOGDDE7d+40y5YtM+Hh4eb555+/5BpPnjxpbrvtNrN06VKzZ88e4/F4TEJCgomPj/dbR1JSkhk5cqTf/j158qRfn+paozHV6/15qTVWpM7z6zty5IhZuHChcTgcZt++fb4+1X1fVuQ7oyZ8Ls9HuKqmunbtakaNGuXX1r59ezNx4sQqmlHZsrOzjSSzYcMGX9vw4cNN//79yxxz8uRJExwcbN566y1f26FDh0ydOnXM6tWrjTHGfPXVV0aS2bRpk6+Px+MxksyePXuMMT/9w1SnTh1z6NAhX58333zTOJ1Ok5ube8k1TZ482Vx//fWlLjt37pyJiYkxzz77rK/tzJkzxuVymZdffjkg6ivNo48+atq0aWPOnTtnjAn8fWiMKfFlVd323fz5843L5TJnzpzx9ZkxY4Zxu92+/VDZGkuzZcsWI8nvf86SkpLMo48+WuaY6l5jdXp/2qixrDov1L9/f3PLLbf4tQXSvjSm5HdGTfxc8rNgNVRQUKBt27YpJSXFrz0lJUXp6elVNKuy5ebmSpIaN27s175+/XpFRUXpX/7lXzRy5EhlZ2f7lm3btk2FhYV+NbrdbsXFxflq9Hg8crlcSkhI8PW58cYb5XK5/PrExcXJ7Xb7+vTs2VP5+fnatm3bz6rrm2++kdvtVmxsrIYMGaLvvvtOkpSRkaGsrCy/uTudTiUlJfnmFQj1na+goEB//etf9Zvf/Mbvj48H+j68UHXbdx6PR0lJSX43P+zZs6cOHz6s/fv3W6s7NzdXDodDDRs29GtfsmSJIiMjde211+qxxx5TXl6eb1kg1Fhd3p9Xaj8ePXpU7733nh544IESywJpX174nVETP5eEq2ro+PHjKioqUnR0tF97dHS0srKyqmhWpTPGaPz48brpppsUFxfna+/du7eWLFmiDz/8UH/605+0detW3XLLLcrPz5ckZWVlKSQkRI0aNfJb3/k1ZmVlKSoqqsQ2o6Ki/Ppc+Do1atRIISEhP+u1SkhI0BtvvKH3339fr732mrKystStWzfl5OT41lve/qnu9V1oxYoVOnnypEaMGOFrC/R9WJrqtu9K61P83FbtZ86c0cSJE3XPPff4/VHbYcOG6c0339T69ev19NNPa9myZbrrrrt8y6t7jdXp/Xkl9qMkLV68WOHh4X77SQqsfVnad0ZN/FwGVagXqsT5RxCkn96UF7ZVtdGjR+uLL77Qxx9/7Nc+ePBg33/HxcWpS5cuatWqld57770S/zCc78IaS6v3UvpUVu/evX3/3alTJyUmJqpNmzZavHix76TZS9k/1aW+Cy1YsEC9e/f2+7+5QN+H5alO+660uZQ1trIKCws1ZMgQnTt3TvPnz/dbNnLkSN9/x8XFqW3bturSpYs+++wzde7c+ZLnX5E+Nmqsbu/Py7kfiy1cuFDDhg1TaGioX3sg7cuyvjPKWnegfi45clUNRUZGqm7duiUScnZ2dok0XZUeeeQRrVy5UuvWrVPz5s3L7du0aVO1atVK33zzjSQpJiZGBQUFOnHihF+/82uMiYnR0aNHS6zr2LFjfn0ufJ1OnDihwsJCq69VWFiYOnXqpG+++cZ31WB5+yeQ6jtw4IDWrl2rBx98sNx+gb4Pi7clVZ99V1qf4p+2fm7thYWF+vWvf62MjAylpaX5HbUqTefOnRUcHOy3f6t7jeeryvfnlahx48aN2rt370U/p1L13ZdlfWfUyM9lhc7MwhXXtWtX87vf/c6vrUOHDtXihPZz586Zhx9+2LjdbvP1119XaMzx48eN0+k0ixcvNsb838mJS5cu9fU5fPhwqScnbt682ddn06ZNpZ6cePjwYV+ft956y/oJ32fOnDHNmjUzU6dO9Z18OXPmTN/y/Pz8Uk++DIT6Jk+ebGJiYkxhYWG5/QJxH6qME9qry76bP3++adiwocnPz/f1efbZZ3/2yd4FBQVmwIAB5tprr/W7yrU8O3fu9DvJuLrXeKGqfH/aqPFidQ4fPrzEFZ9lqW778mLfGTXyc1mhXrjiim/FsGDBAvPVV1+ZsWPHmrCwMLN///6qnpr53e9+Z1wul1m/fr3fpb+nT582xhiTl5dnfv/735v09HSTkZFh1q1bZxITE02zZs1KXFbbvHlzs3btWvPZZ5+ZW265pdTLaq+77jrj8XiMx+MxnTp1KvWy2ltvvdV89tlnZu3ataZ58+Y/+1YFv//978369evNd999ZzZt2mT69u1rwsPDfa//s88+a1wul3nnnXfMzp07zdChQ0u9bLi61lesqKjItGzZ0kyYMMGvPZD3YV5entm+fbvZvn27kWReeOEFs337dt+VctVp3508edJER0eboUOHmp07d5p33nnHREREXPSS7/JqLCwsNHfeeadp3ry52bFjh99ntPjL4ttvvzVTp041W7duNRkZGea9994z7du3NzfccENA1Fjd3p+XWuPF6iyWm5tr6tevb1566aUS4wNhX17sO8OYmvG5PB/hqhqbN2+eadWqlQkJCTGdO3f2u9VBVZJU6mPRokXGGGNOnz5tUlJSzFVXXWWCg4NNy5YtzfDhw01mZqbfen788UczevRo07hxY1OvXj3Tt2/fEn1ycnLMsGHDTHh4uAkPDzfDhg0zJ06c8Otz4MAB06dPH1OvXj3TuHFjM3r0aL9LaC9F8T1WgoODjdvtNnfddZfZtWuXb/m5c+d8R3ycTqe5+eabzc6dOwOmvmLvv/++kWT27t3r1x7I+3DdunWlvj+HDx9ujKl+++6LL74w3bt3N06n08TExJgpU6Zc9P+Oy6sxIyOjzM9o8T3MMjMzzc0332waN25sQkJCTJs2bcyYMWNK3CequtZYHd+fl1Ljxeos9sorr5h69eqVuHeVMYGxLy/2nWFMzfhcns/x/wsHAACABZzQDgAAYBHhCgAAwCLCFQAAgEWEKwAAAIsIVwAAABYRrgAAACwiXAEAAFhEuAKASzBixAgNGDDA9zw5OVljx46tsvkAqD4IVwAAABYRrgAAACwiXAGotc6dO6eZM2fqmmuukdPpVMuWLfXHP/5RknTo0CENHjxYjRo1UpMmTdS/f3/t37+/aicMICAQrgDUWpMmTdLMmTP19NNP66uvvtLf/vY3RUdH6/Tp0+rRo4caNGigjz76SB9//LEaNGigXr16qaCgoKqnDaCaC6rqCQBAVcjLy9OcOXM0d+5cDR8+XJLUpk0b3XTTTVq4cKHq1Kmj119/XQ6HQ5K0aNEiNWzYUOvXr1dKSkpVTh1ANUe4AlAr7d69W/n5+br11ltLLNu2bZu+/fZbhYeH+7WfOXNG+/btu1JTBBCgCFcAaqV69eqVuezcuXOKj4/XkiVLSiy76qqrLue0ANQAnHMFoFZq27at6tWrpw8++KDEss6dO+ubb75RVFSUrrnmGr+Hy+WqgtkCCCSEKwC1UmhoqCZMmKDHH39cb7zxhvbt26dNmzZpwYIFGjZsmCIjI9W/f39t3LhRGRkZ2rBhgx599FF9//33VT11ANUcPwsCqLWefvppBQUF6d///d91+PBhNW3aVKNGjVL9+vX10UcfacKECbrrrruUl5enZs2a6dZbb1VERERVTxtANecwxpiqngQAAEBNwc+CAAAAFhGuAAAALCJcAQAAWES4AgAAsIhwBQAAYBHhCgAAwCLCFQAAgEWEKwAAAIsIVwAAABYRrgAAACwiXAEAAFhEuAIAALDo/wEh4M7hlb6DQAAAAABJRU5ErkJggg==",
       "text/plain": [
-       "<Figure size 640x480 with 2 Axes>"
+       "<Figure size 640x480 with 1 Axes>"
       ]
      },
      "metadata": {},
@@ -11424,19 +537,155 @@
     }
    ],
    "source": [
-    "plt.tricontourf(ts_icongrid.clon, ts_icongrid.clat, ts_icongrid[\"ts\"].isel(time=10))\n",
-    "plt.colorbar()"
+    "# we use Jan 2021 as an example, one could use any other month\n",
+    "(ngc_mm[\"ts\"].sel(time=slice('2021-01-01', '2021-01-31')).mean(\"time\") - ngc_mm[\"ts\"][12,:]).plot()"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "fe144fbc-d47f-46c7-aabb-97ce82d0d85f",
+   "metadata": {},
+   "source": [
+    "Note that the time stamp of ts_mm is end of month,  we take care of this later by shifting by -15 days with cdo."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 7,
+   "id": "fce3b84b-7068-49db-b8a8-c274c584f7c8",
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Size of monthly mean data from ngc4008: 0.5288112871348858\n"
+     ]
+    }
+   ],
+   "source": [
+    "print(\"Size of monthly mean data from ngc4008:\", ngc_mm.nbytes/(1024**3))"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 14,
+   "id": "313a32ea-0fb3-4938-8b28-d38e037917ab",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# do not allow surface temperature below freezin temperature of sea wate\n",
+    "sst_min= -1.9 + 273.15\n",
+    "ngc_mm[\"ts\"] = ngc_mm[\"ts\"].clip(min=sst_min)\n",
+    "\n",
+    "# sic must be in units of per cent, so go from 0 .. 100; in ngc4008 it goes from 0 .. 1\n",
+    "ngc_mm[\"sic\"] = 100*ngc_mm[\"sic\"]"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "19bbf526-0a64-447d-9051-319282b7ed23",
+   "metadata": {},
+   "source": [
+    "As a data sanity check, print the max and min values of ts and sic."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 15,
+   "id": "24b106fb-2a02-4e9e-972c-c250af1e5f76",
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "ts  max: 320.1194\n",
+      "ts  min: 271.25\n",
+      "sic max: 99.99993\n",
+      "sic min: 0.0\n"
+     ]
+    }
+   ],
+   "source": [
+    "print(\"ts  max:\", ngc_mm[\"ts\"].max().values)\n",
+    "print(\"ts  min:\", ngc_mm[\"ts\"].min().values)\n",
+    "print(\"sic max:\", ngc_mm[\"sic\"].max().values)\n",
+    "print(\"sic min:\", ngc_mm[\"sic\"].min().values)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "27a7c5a6-9716-402f-8c13-cb245b955d4f",
+   "metadata": {},
+   "source": [
+    "Save intermediate file to disk. Remap with cdo and also shift time by -15 days. Delete intermediate file."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 16,
+   "id": "1fc40fd5-88f1-4e6e-b868-af2b8caf1fd8",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "ngc_mm.to_netcdf(\"tmp.nc\")"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 17,
+   "id": "0d6560fb-1c4f-4a42-b49e-0e1eb527ac2e",
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "\u001b[32mcdo(1) remapcon: \u001b[0mProcess started\n",
+      "\u001b[32mcdo(2) remapdis: \u001b[0mProcess started\n",
+      "\u001b[32mcdo(2) remapdis: \u001b[0mDistance-weighted averaged weights from unstructured (196608) to lonlat (3600x1800) grid\n",
+      "\u001b[32mcdo(1) remapcon: \u001b[0mYAC first order conservative weights from lonlat (3600x1800) to unstructured (20480) grid\n",
+      "\u001b[32mcdo    shifttime: \u001b[0mProcessed 14786560 values from 2 variables over 361 timesteps [48.45s 9354MB]\n"
+     ]
+    }
+   ],
+   "source": [
+    "!cdo -P 8 -shifttime,-15days -remapcon,icon_grid_0013_R02B04_G.nc -remapdis,r3600x1800 tmp.nc ts_sic.r2b4.nc\n",
+    "!rm tmp.nc"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "1d9bad3e-f8b6-42a4-a365-e7b4955ad23d",
+   "metadata": {},
+   "source": [
+    "Do some plots for sanity checks comparing the remapped r2b4 data and the healpix data."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 18,
+   "id": "95186d2f-6029-467b-a634-0d3ea29c3525",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "ts_sic_r2b4 = xr.open_dataset(\"ts_sic.r2b4.nc\")"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 31,
+   "execution_count": 19,
    "id": "8885faa0-5681-4097-87ce-d128956e578f",
    "metadata": {},
    "outputs": [],
    "source": [
     "def worldmap(var, **kwargs):\n",
-    "    projection = ccrs.Robinson(central_longitude=-135.5808361)\n",
+    "    import cartopy.crs as ccrs\n",
+    "    import cartopy.feature as cf\n",
+    "    import easygems.healpix as egh\n",
+    "    \n",
+    "    projection = ccrs.Robinson(central_longitude=0)\n",
     "    fig, ax = plt.subplots(\n",
     "        figsize=(8, 4), subplot_kw={\"projection\": projection}, constrained_layout=True\n",
     "    )\n",
@@ -11453,12 +702,12 @@
    "id": "55649e39-f7a7-48b6-a1a7-5238ae01ffec",
    "metadata": {},
    "source": [
-    "Plot time step 10 of surface air temperature."
+    "Plot time step 10 of surface temperature from r2b4 grid and healpix grid data."
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 32,
+   "execution_count": 23,
    "id": "f8bf4c2a-27c0-48b8-b4b4-b39ce1e57412",
    "metadata": {},
    "outputs": [
@@ -11466,21 +715,23 @@
      "name": "stderr",
      "output_type": "stream",
      "text": [
-      "/headless/envs/magic/lib/python3.10/site-packages/xarray/core/indexing.py:1430: PerformanceWarning: Slicing with an out-of-order index is generating 81 times more chunks\n",
+      "/headless/envs/magic/lib/python3.10/site-packages/xarray/core/indexing.py:1430: PerformanceWarning: Slicing with an out-of-order index is generating 374 times more chunks\n",
       "  return self.array[key]\n"
      ]
     },
     {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "CPU times: user 1.56 s, sys: 502 ms, total: 2.06 s\n",
-      "Wall time: 1.68 s\n"
-     ]
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhsAAAGiCAYAAABOCgSdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABjDUlEQVR4nO2dfXgV1b3vvzGQTYAkGkLenoSQKi9KxCuBo0GugkAwVgX1qNz6UOyl9FAIXgrYXvDeEn2OxmMVX6oinlJQAfFapNBHTYkKQYqckmiqQI0cjpqgCfiCCXBgB3DuH5zZzp7MzJ6ZPe/z/TzPfpI9e83MmjVr1vrOb/3Wb6UIgiCAEEIIIcQmznM7A4QQQggJNhQbhBBCCLEVig1CCCGE2ArFBiGEEEJshWKDEEIIIbZCsUEIIYQQW6HYIIQQQoitUGwQQgghxFYoNgghhBBiKxQbhBBCCLEVig1CCCEkgKxYsQIjR45EZmYmMjMzUVFRgTfeeCP2+6uvvoopU6YgJycHKSkpaG5u7nGMaDSK+fPnIycnB/369cNNN92EQ4cOGc4LxQYhhBASQIqKivDQQw+hsbERjY2NuPbaazF16lTs27cPAHDixAlcddVVeOihh1SPsWDBAmzatAkbNmzAzp07cfz4cdxwww04e/asobykcCE2QgghJBxkZ2fjN7/5DWbNmhXb9umnn6K0tBTvv/8+/tt/+2+x7Z2dnRg4cCBefPFF3HHHHQCAL774AsXFxXj99dcxZcoU3eftZdkVeITvvvsOX3zxBTIyMpCSkuJ2dgghhHgYQRBw7NgxFBYW4rzz7DP2nzp1Ct3d3ZYcSxCEHv1bJBJBJBJR3efs2bN45ZVXcOLECVRUVOg6T1NTE06fPo3KysrYtsLCQpSVlWHXrl3hFhui6iKEEEL00tbWhqKiIluOferUKQwa1A9ffvmdJcfr378/jh8/Hrdt2bJlqKmp6ZH2ww8/REVFBU6dOoX+/ftj06ZNuOSSS3Sdp6OjA2lpabjgggvitufl5aGjo8NQngMnNjIyMgCcqziZmZm2nefWIYtsOzYhhJCebDzwqOXH7OrqQnFxcazvsIPu7m58+eV32P5vuejfPzmL+/HjAsZfcaRHH6dm1Rg2bBiam5vx7bffYuPGjZg5cyYaGhp0Cw4llCwribBVbOzYsQO/+c1v0NTUhPb2dmzatAnTpk1TTb99+3ZMmDChx/a///3vGD58uK5zigUget8mS1XBPMXtvc5LS/rYhBBC9HPHsCWK299ofzrpYzsx7N6/fwr6ZyQ7VHPOOqK3j0tLS8NFF10EABg9ejT27NmDJ554AitXrky4b35+Prq7u3H06NE468aRI0cwduxYQ7m2VWycOHECl112GX7yk5/g1ltv1b1fS0tLXCEOHDjQjuypoiYwCCGEeA9pm22F8AgygiAgGo3qSlteXo7evXujvr4et99+OwCgvb0de/fuxcMPP2zovLaKjaqqKlRVVRneLzc3F+eff771GUoARQYhhPgbsR2n6ACWLl2KqqoqFBcX49ixY9iwYQO2b9+Ouro6AMA333yD1tZWfPHFFwDOvegD5ywa+fn5yMrKwqxZs7Bo0SIMGDAA2dnZWLx4MS699FJMmjTJUF486bNx+eWX49SpU7jkkkvwf/7P/1EcWhGJRqNxKq2rq8vw+SgyCCEkWFQVzAu94Dh8+DBmzJiB9vZ2ZGVlYeTIkairq8PkyZMBAFu2bMFPfvKTWPrp06cDiHc2feyxx9CrVy/cfvvtOHnyJCZOnIg1a9YgNTXVUF4ci7ORkpKS0GejpaUFO3bsQHl5OaLRKF588UU8++yz2L59O66++mrFfWpqanDffff12N7Z2alrPItCgxBCgo2W6Ojq6kJWVpbuPsMM4jka9+Ul7bNx/Nh3GD3isK35tQNPiQ0lbrzxRqSkpGDLli2KvytZNoqLi3XdCAoNQggJB2qCg2LDGTwfrvzKK6/EgQMHVH+PRCIxr1wjM1AoNAghhBBn8LzYeP/991FQUOB2NgghhPgYvmC6i60OosePH8e///u/x75/8sknaG5uRnZ2NgYNGoQlS5bg888/xwsvvAAAePzxxzF48GCMGDEC3d3dWLt2LTZu3IiNGzdami9WOkIICR90GnUPW8VGY2Nj3EyShQsXAgBmzpyJNWvWoL29Ha2trbHfu7u7sXjxYnz++edIT0/HiBEj8Nprr+H666+3M5uEEEIIsZHArfqayNmHVg1CCAk3UusGHUSdwfM+G4QQQgjxN6ESG7RqEEIIIc4TKrFBCCGE8MXTeSg2CCGEEGIrFBuEEEIIsRWKDUIIIYTYSmjEBsfoCNGme3gRuocXuZ0NQhyBfYKzeHKJeUKIMyiJC+m2tI8OOZkdQkhAodggJGQYsV50Dy+i4CCEJE1ohlEIIcaEhnQfDq8QQpKBYoMQogs/CA41YSRu98M1EBJEOIxCSEiwoqN1e1hFyZ9ETVxo/U4IcZZQiA16HRNiHWYEh94OX+24iRxZ1faRH4/+J4S4QyjEBiHEWrQ6emmHbtSqYLUVgjNriBZVBfPwckut29kIBfTZIIRYitjBc/iCECJCsUEIsRyvCQ1aNQhxF4oNQkJCWDtcPdfNmSqE2At9NggJCexMe8IyIcQZKDYICQFh7VSVrBpaZeH21F5CggqHUQghoSGsoosQt6HYICTAhNkXQW6h0FsOYS0vQuyEwyiEBBB2mPGwPAhxF1o2CAkY7FjjYXkQ4j60bBDiY9iRqsOyIcQ7BF5scF0UEkTYkdoHZ6MQYj0cRiHEZ/hVaPihE/dDHgnxI4G3bBASJLwsNPR01GkfHXL9GpTyQJERXm4dssjtLIQCig1CfIAdHXTnhRFd6bIORhOmMdJZuyk4xHxSXBDiLBQbJJSInV0YOx29IkMPZssvmWXojRw/zPeZEC9Bnw0SWvzSAVnZGRsVGmpWjbSPDllWfuKxkj2e0nGszCchfmPFihUYOXIkMjMzkZmZiYqKCrzxxhux3wVBQE1NDQoLC5Geno7x48dj3759cccYP348UlJS4j7Tp083nBdaNkgo8VIH5JT/gFUWDTvLzqjFw0v3kRCvUVRUhIceeggXXXQRAOD555/H1KlT8f7772PEiBF4+OGHsXz5cqxZswZDhw7FP//zP2Py5MloaWlBRkZG7DizZ8/G/fffH/uenp5uOC8UG4S4iN+EhhegwCBEHzfeeGPc9wceeAArVqzA7t27cckll+Dxxx/Hvffei1tuuQXAOTGSl5eH9evX45/+6Z9i+/Xt2xf5+flJ5YXDKIQ4iLhWiZNrlnjBR8OKc3FIhJDv6erqivtEo9qO3GfPnsWGDRtw4sQJVFRU4JNPPkFHRwcqKytjaSKRCK655hrs2rUrbt9169YhJycHI0aMwOLFi3Hs2DHD+aVlgxCLcXtqpxS/WzQoLkiQ+OOxy9BH6J3UMU4dPw1gK4qLi+O2L1u2DDU1NT3Sf/jhh6ioqMCpU6fQv39/bNq0CZdccklMUOTl5cWlz8vLw2effRb7fuedd6K0tBT5+fnYu3cvlixZgr/97W+or683lG+KDRI67By68JLQSBY9U14JIe7Q1taGzMzM2PdIRPnFYtiwYWhubsa3336LjRs3YubMmWhoaIj9npKSEpdeEIS4bbNnz479X1ZWhiFDhmD06NF47733MGrUKN35pdggJEmMCgzR2qDUmXcPL1IcPjAjYqy2augRZWanmkqvj9YMQhIjzjBJRFpaWsxBdPTo0dizZw+eeOIJ/OpXvwIAdHR0oKCgIJb+yJEjPawdUkaNGoXevXvjwIEDhsQGfTZIqLDa8qB1vM4LI4of6e924abQkP+v9/j0ySDEfgRBQDQajQ2NSIdDuru70dDQgLFjx6ruv2/fPpw+fTpOoOiBlg0SGtQ6QCVrglN0XhjpYeGQ58es5cQsZoZPgjR8REhQWLp0KaqqqlBcXIxjx45hw4YN2L59O+rq6pCSkoIFCxbgwQcfxJAhQzBkyBA8+OCD6Nu3L370ox8BAA4ePIh169bh+uuvR05ODvbv349Fixbh8ssvx1VXXWUoLxQbJBTY0RkmsmroRU1waB1XTG+1BUNJaCQSYhQahHiTw4cPY8aMGWhvb0dWVhZGjhyJuro6TJ48GQDwy1/+EidPnsTcuXNx9OhRXHHFFdi6dWssxkZaWhreeustPPHEEzh+/DiKi4vxwx/+EMuWLUNqaqqhvARebLj51kr8g9F6Iu9gk+30lQSHUhqrzqcXrTKhyCDE26xatUrz95SUFNTU1CjOYgGA4uLiOGfSZAi82AD0dSRcQyG46O0U3RamUquFG1NWpWKH1gxCiJWEQmwQYidWCwOnhYbcomKF4KJoJ36he2ghcMTtXASfQM9GmTihNva/VsRGvqUFF6P3Vk/6INcXigQSJoL8LHuN0Fk23DaVE+9jpo5IrQN+jdqp95rNCDI+c8RLUGQ4T+jEBqBd0ShGgkMyDYqaD4/SMeXDEG75XHgZPlfEbSgw3CWUYsNJ1Cq42PCyEfY20vvDxio5WNeJW/DZdR+KDYsxMvNB+n/QGmG9s3vsNLebDfMthw3V97AsiJdh/fQuFBsKuNH5B1FwAOYcNINYDn7ArBVHa60XQpyCQsPbBHo2SjKYqbjJVnatGTOE2IXUv8RoHXQj0BghUthu+gNbxcaOHTtw4403orCwECkpKfjjH/+YcJ+GhgaUl5ejT58++MEPfoBnn33WzixqIlbiRBXZ6soe9gfH79cf5k5X69ppsSJW4/e2IkzYOoxy4sQJXHbZZfjJT36CW2+9NWH6Tz75BNdffz1mz56NtWvX4i9/+Qvmzp2LgQMH6trfTpTM+3ZWdA4nWINVfht68ZLQMDIrRk+4dKV99MK6HF6MPH+sJ8HFVrFRVVWFqqoq3emfffZZDBo0CI8//jgA4OKLL0ZjYyMeeeQRVbERjUYRjX7fSHZ1dSWVZy3s7LS0FuPy4wPodCdP4hHrklHBoXUsI+clBEg+qJ4f2z6ijKd8Nt59911UVlbGbZsyZQoaGxtx+vRpxX1qa2uRlZUV+xQXFzuRVVtQa+z92mmnfXTIE42FU3nwklXDbmjVIIQYwVNio6OjA3l5eXHb8vLycObMGXz11VeK+yxZsgSdnZ2xT1tbmxNZtY2gCY6wECahoQatGkSK3W0W20R/4bmprykpKXHfBUFQ3C4SiUQQiQSroZd2XEFowOVDKkEbYgmy0JDXP6PXSqsGIQTwmGUjPz8fHR0dcduOHDmCXr16YcCAAS7lyn60GnD5tES/Ig6piJ2P052QXecLstCQ0nlhJDTXSryPn9vCsOIpsVFRUYH6+vq4bVu3bsXo0aPRu3dvw8cLSuMYFMHhNlYKDic632MlKXEfIySbPyssarRqEEJEbBUbx48fR3NzM5qbmwGcm9ra3NyM1tZWAOf8LX784x/H0s+ZMwefffYZFi5ciL///e/4/e9/j1WrVmHx4sV2ZtN3BEVwqHVGXuqkxE5b/rETNXFhVHAki1RwJBIfQRjuI/4gKO1f2LDVZ6OxsRETJkyIfV+4cCEAYObMmVizZg3a29tjwgMASktL8frrr+MXv/gFnn76aRQWFuLJJ590PcaGndgZB4H0JJG/iNvWsESCQvw94zNB1/Hsuh7WRZKIoPlmkeSwVWyMHz8+5uCpxJo1a3psu+aaa/Dee+8lfe5rqp9CalqfpI/jJaSCIyhBv9ggncNOq4VYZ5IVHkYFRlDqKDGP1c832wr/4imfjbBhpvF3+807CHgl/gegPmSiZz9CwgSFhr+h2HCJZESDuK+bD5+V53aj41fLv5PDA14VDBwiIVbiFWFP3IViwwWssE64LTjYgJjD7OwStWNZSdbBqOVCg2+jJBnE+sN65H8oNhyGwyDhw0qBYQY9dc5OawY7CpIMrD/BgGLDIeyYMum2dcNKnLSUBKG8jEKRSwhxE8+FKw8aTjXyQfD8tyL/0pVy3RYVXvXJkOO0jwZX9iRWIbav9DPyPhQbNuKE0JBPhxXR24Cb2ccPhEVoKJ1HbwwON1C6L0EQyqQnUuFvNxQd3odiwwacNllbFfDL72+cbgsMwBvWjGMlKboFhxONs556RMFBEmFHu9p5YQRnuwVgp+WHJjIoNizECZGhFkFSLjj0CIdEnbOTbyZ+xgsCQ44RwWEXRoeyKDiCg/S+W/ESYJfQIM5BB1ELcGpFzESdmlY+knngu4cXWdJgWHUcMxi5P0be9r0oNPRip1VDurqveN/13Hs36wixBr33T3wmEz2bRp5dpfWLlNpFCg3nCbxlw8gQg7wCyvfzUgWVdnJ632CTtVQks7/8TcfKN1il45m9V0b287PQ8Dq0cgQbudBQa6etCH5oxbFI8gRebADmK7KXKqdWx+a0ydyIU6naW45VnYlS0B8KjXOoDbkZtWgkM7MnWYsaBYe/SOZ+c7HJYBMKsQF4SzgYxeqOTWzErZgeqmXt8Jo5XM1yZbRu+EFoSJGLUaONejL3Mdk6pkfYivU5qDOr/IjW7BAjK12T4BBYn41jxf7qEJQwEnXSbx0g4P74vFO+NsQYifyOpPVGLZy114RumFC7f3qeNz6TwSU0lo0wIb65qr1dSN/6rAp+lYzJ2+yUWzc6FD+KOiOIZW+FxUvtPibTmVg9y4FYR/fwIgoFokpgLRt+xup1NJyMYqr0v5njaFk9tH6z61rdXNvECvTmXa1srXrjpAk9XDjhP0XUWbFiBUaOHInMzExkZmaioqICb7zxRux3QRBQU1ODwsJCpKenY/z48di3b1/cMaLRKObPn4+cnBz069cPN910Ew4dMv5iSbHhIdzq0KyeGWLlG6dUeLhlyTBzT6KDunt8/Ip8GqFe5PfM6Q6Elg/noFXDmxQVFeGhhx5CY2MjGhsbce2112Lq1KkxQfHwww9j+fLleOqpp7Bnzx7k5+dj8uTJOHbsWOwYCxYswKZNm7Bhwwbs3LkTx48fxw033ICzZ88aygvFhkewc8lxtzy87XDS03rrTmY2iZKo0HtPpGJCS1j4QXiYKUujqK2Cm8wzkIwIIsmhVZacXeIuN954I66//noMHToUQ4cOxQMPPID+/ftj9+7dEAQBjz/+OO69917ccsstKCsrw/PPP4///M//xPr16wEAnZ2dWLVqFR599FFMmjQJl19+OdauXYsPP/wQb775pqG8UGy4jJ3WjKyDUcWH3amG1onz6OlkpJ2btLyVOj2jy8FLhYMREeG28NBTblLRIS0TM4JEehwpSvfEbB71pKfPhz3YbdVI9DyqiVc/D30moqurK+4TjWoLu7Nnz2LDhg04ceIEKioq8Mknn6CjowOVlZWxNJFIBNdccw127doFAGhqasLp06fj0hQWFqKsrCyWRi90EHUJOx4CI7E25NMEvbBKqhH0igy7sFIkRAd1I9KaZuocSvvpRVqGWm+gcjFmd0wXtfggcox2cIkWgVNyVGasD23kZab33ulFXveMpFfaJuZLuu3sKecEybbDQ9HreHLC7MyJKICtKC4ujtu+bNky1NTU9Ej/4YcfoqKiAqdOnUL//v2xadMmXHLJJTGxkJeXF5c+Ly8Pn332GQCgo6MDaWlpuOCCC3qk6ejoMJTvQIuNRJXTjbUjnFDaZk2XfhMcUqSNnJVlrCQE7LBG2G3h0NtxW91ZKB1bL+fSfx8TRF4/pTOupOcyWv+1HJGJMkq+OEbEgLR+qdU5O9rKIFk62trakJmZGfseiSiLmGHDhqG5uRnffvstNm7ciJkzZ6KhoSH2e0pKfJkIgtBjmxw9aeQEWmwkwunIm0Gq6G6i1biZdeYUkQoLqR+GV1ESQ3LBpVXH1cpLS3S4ucibmcXdiDWo+UsB6vVIOg0/kZWC7aMxxBkmiUhLS8NFF10EABg9ejT27NmDJ554Ar/61a8AnLNeFBQUxNIfOXIkZu3Iz89Hd3c3jh49GmfdOHLkCMaOHWsov6H32bB7XM+oD4Ab+LFBNlKeajND1HwmvO7EqYUoAjI+E2IfKdK3frNmael2K8bqE4khrXPQAdEd5P48xD8IgoBoNIrS0lLk5+ejvr4+9lt3dzcaGhpiQqK8vBy9e/eOS9Pe3o69e/caFhuhtmxIkT8w8rE9PW+HVpvwzWLnGgNaYYjtxkjHlkgsaM0Y8St6rA1WOvKJFg6vrWnhtfwEAbWprXraO7lVgzjH0qVLUVVVheLiYhw7dgwbNmzA9u3bUVdXh5SUFCxYsAAPPvgghgwZgiFDhuDBBx9E37598aMf/QgAkJWVhVmzZmHRokUYMGAAsrOzsXjxYlx66aWYNGmSobxQbKhgZlqe3x8oLQuHFWPjVqFUzn4WCW5gpq4qiWm1IRU9oka6n5LjXjJQcNiD9H7rbROtGnKTP+PJOEeHhcOHD2PGjBlob29HVlYWRo4cibq6OkyePBkA8Mtf/hInT57E3LlzcfToUVxxxRXYunUrMjIyYsd47LHH0KtXL9x+++04efIkJk6ciDVr1iA1NdVQXlIEQXBn8NUmurq6kJWVhQuXPojUPn3czo5l6H3QpA+2lY1tos7D7oZd7e2IIuP7uqCnUZeXoVUNeMZnQsKF7fT6kSilzToYVZ01YvcwSzKzUbQWKnQbvQvXiVYNIxZcq8Sj3TOyAODsqVM4+OBSdHZ26vKBMIPYL121uRq9+iU/G+UvU5+yNb92QMuGDzDboSaa2qj29mdmfQwnhm6kUGQkh9Ywkth4qznOaqHV8av5jyjtIxfNdqznYzVaefLairRKC9fpzZdZJ2y1OiTWM6V6p/fYStDy4S0oNjyM1kOn9fBajZthiKVOaHoaocFFXwIAPj00sMc2EelvYULsJMwINT31TV5PtPydpMI0kUhV6gRFwSE9p9L5pCLYK0Mrblo7lKxCYpnIBZH4PVmfC6VZXZHWtB710OoXCDWrnRkRTZInsLNRuov9O6MgmdkQRma/WN3wWh3m2gpvd7nQkG8bXPSlYho/oqec9NQrvc6z0nqqFIXVSL6UEIPNGUV+PqNRRo2gtsS9H5CWiTwqrFXX4yVHbKV2NTqoG93F/uwn/EbgLRtOWgCMkkjp+xW1Bt2IuJEfw4hVQ/6/HrTSi5YQJauJF5DWcTWHPKMdvl110UgdSMa0r+WYaMT/SM/5/SI09OZTbg0S0RvpVloXCREJrGVDihc7cbtNiF7EzFul3gbLjLjQu488nbivV60iamWWbB1TCnhmxXG1SNRB6hUvXhg+keL0EIpWOWpZQ+XlJr/vYWi3iDUE3rIhkqzjm9V5seo4RvOvdz0Mu9Azbi4fPpGWl1udu9Z5Bxd96Tlrh51RPtXqr11vskq+BH5cz8cLjqEAFP1cpN8TxU7xsrWYeJdQWDZE1MbsnFLoTr8FyFfQNDtebYdvhxm8aEXwMnZErzUyBi/dJo84qlQf5duU0iTjI+E164ZTGC2rZHx/KEKIGqGxbOhBzYci2QfIKZOzEmbecJ1Y6VLtzUnNV8PrQkMtf05ZPBLVVSvqnZ6orHLrodJbsFxQyFESISJKdebctkisrkuXqxfrvlGBK9bPRM+C36wrcrRiZhiZvSO9x2KZc4iFSKHYUEGPQDA7L9xKkhFEXpkKKOLmFNugYGaVWlFYW1Gf1c4faU3rEX1SqaMzIozlnbx0XRgrrDl6n49EcWmcHD7RM61WabVcqzAazEsq0pWmq8uds+Vo7UO8RaiGUazGTw5SUpO6nuEVJ97WEr3hinjdqqGFG3k3IpTlf8X/k7HmaQ2pSOufGUGgVl+94CgqDzxmduquGbqHF8U9s8lOyTWy0J6eupJoCrradr1O2Eoz0fzcbgQRWjYCgpbTltpyznrfIu20OKi9PeoN4uUH1N7e3EJJYDiBWEel1rie9zhN0zJhhdOrnjd7aZ0Uh1L0WA28EKgr0Xa7kT+7RmZ9GX0+EgkWLzpvhxWKjQBjlc+J3ahFngSC93bihKlXbqXwEskKSL0rzZqJsaF1PD/7ZWiRzAKTSmJR63h6RHfQnnfyPRQbAUVPo27n9EizhCUQkFLD66UxZy/PzrKj3soDeSVa58Qr01jtivQp+tho/a50DKkASTRdnIQLio0AoWf+u5q1Q+/sEKeIDuoOTYPk5HVKO+lkhZ1dJmo151E5Vjk461mM0O34NFagZUHUwkiIey/OHvOSiA8zdBANIGrRSZUcB7UaHC2hoeZwmgzJLBQWJOxoqOWzBBItNa+GPHJqsnk1G4VVyYFRTQQYqaNSi4WS0JD/5iZGV2U2glb8oUQvNF4SGsQ7UGwEDDNBl5Qa7kRCw2ooNKxBj4+GnnDmRnw9rOpc9JxTafE3tRkqeheEky9AJp3ZIY1mK36sXqzMbtSeZbNDUfKXFy9aM5SQLzPg1eUGgkpgxcagwq9YkQyQqOHWu38y55Y2WmG/d8lef8Zngu7ORGm9C7tFn9o9NhqnwWi901qdVq3eK4X09ovgSHYYVO0+yeuHn6ebDir8yu0shILA+2xwvE4bK9c5EBtlI29M8obcj42VXcjLIlEdFu+jkfI3KiqUgihZiRE/AqWVbqXTWtX8PrRWiNVa8RSQr2jqXlA8ueXFbn8rJf8cPqvECIEXGyJKD0ZYBYhZxz4zb5taHZ/c252Nl3mkglHJwdJrs3w+PTTQ8IuAki+SvPOXozeaqFQoSwWHLidVuD87xY5owHqCbhGil9CIDSW0BIjYIXstIJNVKAkOu6bCeq2jCwNOlrnZ58KK58muWDJqVgE1S6CT02G7hxeprimjZJUxAwUFsZrA+myYRcvTXsmpKCwPpdnOK5kVJIk+zHa0yZa7leLbisUOzUQdNTKtU/5d7jDqBazIC+NjEDsItWUjGZQEh9nxbLctJlb6bWidQ470nGzEEuNG6OVEi7NJ8+OFhQkTWecS1XX5YnF6jhPz30DicOZeh0KD2IUjlo1nnnkGpaWl6NOnD8rLy/HOO++opt2+fTtSUlJ6fD766CMnspoUZqdTya0pTs3G0HsOo1YN6WwGrZkNflrILkgYKXcj90c6pCH9aJHsom/SZ8XoNSnFnxFJZhjKyRkqSvk0E1ODELux3bLx8ssvY8GCBXjmmWdw1VVXYeXKlaiqqsL+/fsxaNAg1f1aWlqQmZkZ+z5wYHD8JdSwS2BovRGLvyktA64HrYZKbTEmty05YcErnYjygmvGSLS/tB6Li7lJUXIUlearp6Ui8TnVHFSzDkbjBIdRS4fWgm9q/hp6SDRbjJYLYie2i43ly5dj1qxZ+OlPfwoAePzxx/HnP/8ZK1asQG1trep+ubm5OP/88+3OnqdJZtqukr+J1ejpQLSWlqbosAbtVVStO77etGqWCnn+5MMuyQ7lSUW13pDnahixkiQK/a9ntVhpOiPofTGQz0xKpmwIMYOtwyjd3d1oampCZWVl3PbKykrs2rVLc9/LL78cBQUFmDhxIrZt26aaLhqNoqurK+4TNOweVlEzQxsNRW40Mh/fpIyRSJx5xZKhhHRZ+2SHTrQYXPSlaih+pXD9ar8bQe4wKjqNKgXIk0Ynlf5NJDT0pFFC7Rmm0CBOY6tl46uvvsLZs2eRl5cXtz0vLw8dHR2K+xQUFOC5555DeXk5otEoXnzxRUycOBHbt2/H1Vdf3SN9bW0t7rvvPlvy7zUSDUU41XmrRQ+Uo1dw0MIRHuRWDCUBYIUQka9AauSYZkSHHidrqViQCw6RuLVeknQ4NfqiQIidODIbJSUlvtILgtBjm8iwYcMwbNiw2PeKigq0tbXhkUceURQbS5YswcKFC2Pfu7q6UFxcbFHOvYvVnXQYOv3J+eecjOs7hrucE2LG8VQv8f4b6sew0roh7iv3+ziHepRPILFDp50Op162hpFgYavYyMnJQWpqag8rxpEjR3pYO7S48sorsXbtWsXfIpEIIhHvzHN3Eqnvg1VvJtFB3cj4rLfhPCQD36rCjVzoWuGDIj2mk0JazZKiFuFUO1Jpz6igdsT04PNHnMBWn420tDSUl5ejvr4+bnt9fT3Gjh2r+zjvv/8+CgoKrM4ekSE2On4dz52c/1HMeqH0m1/59NBAyzpLJ1a8VJtaqyUclPJjRmhI77PalHIj1222nKR5F58nJf+Jzgsjms+bKC6MLpDodDA9rWePEMCBYZSFCxdixowZGD16NCoqKvDcc8+htbUVc+bMAXBuGOTzzz/HCy+8AODcbJXBgwdjxIgR6O7uxtq1a7Fx40Zs3LjR7qz6Frs6DT95rEsbusn5H6G+Y3hC4RG24RS1mUF2vfWbCRbnlBVC7v+ktDxBsvmSd+bKQyzqiLNG7IxQanXbIT57RtID4XsWw4jtYuOOO+7A119/jfvvvx/t7e0oKyvD66+/jpKSEgBAe3s7WltbY+m7u7uxePFifP7550hPT8eIESPw2muv4frrr7c7q+S/UItVIGLXFEsr4VuWt7CrvqgJBCOdmFPLoyeKomsGu6f22gmf0XCRIgiC9StvuUhXVxeysrJw1eZq9OoXTl8OM0gb508PDUSkNU3TsiE2Vk6N96p1Hsk0WH55mzL6Rq20NL3WfbLTkqAnhHkyKzJrCQ0R0cplxf22o6ykgkMeh0TvqslGUAu2Zwa158/sc+rGM3nmRBR/mfoUOjs74wJJWomV/ZIT+bUDLsRGFBEbJDtWgdWLOA4sHyKR/hZ0khUaatu8hJXTuPV2fk6g12qhJcSsHMaU+9LIy1j6TOl5zrSeP6Vj6SEMz3RYodgIKWqNyOT8j3Q5itq9cFuihoz0xOuiwihmrkcuKpREhrwjlX+szJOVAcykQcPMrFckRes6zIiERMeyex/ifSg2SA/0Co5kju8FvJIPNYwMJQRNaFiBljXD6/ce6BmZ1Mz+SjODzNQVeXn5ofyIt6DYCCFKwxJKeMGJzG781mjKhUXQRYaZJc/rO4YnNWxiVZ0wuqqxFYvVqQkMEbUy89pzEJZhUrupra3FmDFjkJGRgdzcXEybNg0tLS1xaQ4fPoy77roLhYWF6Nu3L6677jocOHAgLs348eN7rMQ+ffp0Q3mh2CCqD7W0Ycr4TLDUf0Ov4AkrcquGn0WGUefQRGmcsORYWSf1iIhkI5eaXRTRCFYOrxg9r5bfCIWJOg0NDZg3bx52796N+vp6nDlzBpWVlThx4gSAc9G8p02bhv/4j//A5s2b8f7776OkpASTJk2KpRGZPXs22tvbY5+VK1cayosj4cqJ/xC999VCMFth9bBqhkBYsarDdTtUvZKjIqA8DOKkyLK7flqx+nGi59COOBpOovRSwjbjHPJFR5WiadfV1cV9X716NXJzc9HU1ISrr74aBw4cwO7du7F3716MGDECAPDMM88gNzcXL730Umy1dgDo27cv8vPzTec3tGIjrBXXbGNhle8Gx36N4ycrhh1YGY7fCyhZatQEh1pgNLOWDLVpwX4iUdA+eTov0fpFDs5L75PUMb47eQoAeqwBtmzZMtTU1Gju29nZCQDIzs4GcG7VdADo0+f7PKWmpiItLQ07d+6MExvr1q3D2rVrkZeXh6qqKixbtgwZGRm68x1KseG3hyssSO+L2Eg4ca+82Cg5jR7rhhVRNOXH05u3oJDoWtTK2GkLhtcxOp1WbVaSn5/7tra2uDgbidYIEwQBCxcuxLhx41BWVgYAGD58OEpKSrBkyRKsXLkS/fr1w/Lly9HR0YH29vbYvnfeeSdKS0uRn5+PvXv3YsmSJfjb3/7WYykSLQLrszEh72PF7Vpv1hz7i0eclWJH5EOlcynh58bAbyj5QtjhH6H3mF54Fq3Mg15nV6NrxOgtS7Wp7kFB7/XJY4Co9RVeJzMzM+6TSGxUV1fjgw8+wEsvvRTb1rt3b2zcuBEff/wxsrOz0bdvX2zfvh1VVVVITU2NpZs9ezYmTZqEsrIyTJ8+HX/4wx/w5ptv4r333tOd31BaNuQoCZCgdXJ2NCqR1jR8imCZuIky0pDeyfgYsK6oY6Zs/CLa3CbsZTB//nxs2bIFO3bsQFFRUdxv5eXlaG5uRmdnJ7q7uzFw4EBcccUVGD16tOrxRo0ahd69e+PAgQMYNWqUrjwE1rIBJGe1oMXDG4S13N3slJ1aK0QPVt9/t+qTWJbyt2o78xPGdouzU+IRBAHV1dV49dVX8fbbb6O0tFQ1bVZWFgYOHIgDBw6gsbERU6dOVU27b98+nD592tBq7IEWG0DyDxwr7Tmcjrmhdt/EGApBszwp4YXOXgmv5ssukp3ymchRU6muGy1jtlNEiXnz5mHt2rVYv349MjIy0NHRgY6ODpw8eTKW5pVXXsH27dtj018nT56MadOmobKyEgBw8OBB3H///WhsbMSnn36K119/Hbfddhsuv/xyXHXVVbrzEnixkQxBeYCTvQ6x4TMapMjqfBDvIPW7cNLR060pulYIDbvqP58rosaKFSvQ2dmJ8ePHo6CgIPZ5+eWXY2na29sxY8YMDB8+HHfffTdmzJgR59eRlpaGt956C1OmTMGwYcNw9913o7KyEm+++WacX0ci6LORAD9ODbMS0X9FGhNAFBziug/023AGpdk6RvazwxpkhS9HovyJddDNWCBS7IpLIvcVs6JMSbjRs6j73Xffjbvvvlv19+LiYjQ0NCSdF4oNnfjRbG9Vg6PmMKsWA4BYh1Z4aT11Ui1Sa6J9zTorWtEJJxL4ZuNuON0BS/00rDiOFKVypsAgXobDKDrwk9Cwy0FKPJ582qLasIqdb6F2Xp9X0TOFz8vXoGdNDq38i9OwvY74fNgpNOTbk22f/NS+Ef9CsREgnOxspI1dpDUNnx4aGPcBEPc/YE2j5uUO1S2UOuxE4sOucvSDILALK67dyH2xsqwpOIjdcBiF6EZuhhfN5kFZHTYoIez1dlhmfUCsQs1a4+XyN5I/s4LO7ftCiB3QspEAO8z1asf0uilcinRYRUqi6JB+mLbql3sQZLxeR5TqvRSn61Cy5cU6T+yGYoMkjRlzrtc7k7AFB/LDdfohj4QQZSg2dGBFI6cUEj1Z5z63G19pvu1YQ8MruF3OfkfP6qNm8cp0WC/gdQFPwg3Fhk6MCALpW7FZEZHIuc/rsxCCJj68WMZquN3pJHPfjebdyLmsKhf5EKI8cJef6grgr7pN/AvFhgNohTs2+qBr+Xu4gZF4DfK3ULc7xSDjZNkq1T35FNBE6YGeefZL/bB7mjchQYBiwyBaFgsrGwY/NLTSPEobXK0y8rPZ2+mGX89bspMdtFadN1I2SnmUb1OrJ0GzmBESFjj1NQmsFBx6w6J7NXy6ng4gCJ2EU1Mz5fdYPKfWvTciPIxOj1U7ltmy0NpPryCV3gs998WLz41egjItm4QXig0PIDYgfmpI/JRXq7FDcCTTEdohQJWu0Qv3XMyXPJCZUt7sFBduxQPxehwSQtTgMIoHUJqpEhTCNoXUDInKRo+Pg9EOSCpwlWKfuNWhmRlmk+fVyfrmhLUuyO0DCQ8UGx4iCJ2yGyGy3cDvjr2APkHhdhA2py0WZnBjeNBrZUBIIig2PIKezogNTDxeMyfLrThK3+XpjRwb8OeQmxnE9XaIftg+EC9Dnw0Po9RJeaFBMdPRWbUypR5HOT3OlFZgxoqTTJ7E8fqgCg1RXERa0+K2O3U/jSL3n3Azf14rG0LkUGx4lCA1HlZ2jlqzIsLuPCd21kGY9aOEkZknYSBIbQQJPhxGIYYx8tbuVKegZAVih+QfjAyZ8L4S4j8oNogprPKQ1+ukaPZ4QeuY5OX86aGBsU9Q8fK10bpAiD4oNohprJo9Y4UfQtBEhROY7cTt7Pzl/hriubwsOACKDkISQbFBHEcrboQ8doTeKJhGImuScxjx7UjU6dstBrzshxI0ocHnhdgBxYZPSNTx6v3djobE7Mq2StsSHUvs1JTCeYexkZR3wnZ0ynqFhl3DOV4WGnLCWAcJ0QNno/iMRLMu9PpAOPU2lmjmgJGZBcl0ZF5dU8YMTs7GcHP4ItKahuigbtfOTwixDooNmzDSuSnFkEhWUOg9p/S8dpFo7QqtWSyfHhoY92Y7uOjLwIgGqxhc9GWPcrICLaFhtQgRr0EUF4mEhtpCdYQQb0KxYQNKUR6VFpCSp0lmrYtk0Gt5sKqTdytIk7z8/WztkAs4J4WGnn2TzY8RoSFu8/P99BIsQ2IH9NkwiJpvQCKfCPnCV9JtXsYqAeSVxaTk98kP98Au7LoHZoWG0n7ybV7vCO3MX5jrKvE/obdsGHnLttLy4NeGI1G+jQwd6U2r9y3bbARNv74Rm/HdUBJ9XqqL4nCKGfx4DwkJC6G2bLg1bBFklCwHVs0UUfPXqO8Y3qOD8npcBqsws5ibnu1GBNvgoi/jPkB4yt9vsJ0jbhFasaE2FCL9X/4hxnCrzMLW0SWaRqxHkJixCkjFhRJm74NcuEgJ83NoxAr1j5nv9dgW5rIj7hMqsaFHOFBYOEeick7UWVl5r/x+zxNZLcyKCatQisUR9DDrycB2yB5Yru4RWJ+NbYeHotfxiNvZIBokM8YubzD8FPjJTpJdwl4kUYOcqLyVhlPU/peenx3BOZItiz90jYr7znJVHjann49zBFZskGAhdl7JOEQGvcG1o+FUctg06s9hxHohjTUTdjid1zx66099x3CcOREFsNXeDJFwDaMQf2LWasFG2jxul53b5/cqLBd16F/nbSg2iKskctR1EjZS3+OFslBzfA0bYZ1mrwcKDP9AsUFcQynQmYjZmBmJzkWSw8z9SLSPeK+VOo4wigspyV5/EOs9BYY/cURsPPPMMygtLUWfPn1QXl6Od955RzN9Q0MDysvL0adPH/zgBz/As88+60Q2fYno0a/nI6b3KmxAvInWVFSr0KqX4jTesAuPMEOBYY7a2lqMGTMGGRkZyM3NxbRp09DS0hKX5vDhw7jrrrtQWFiIvn374rrrrsOBAwfi0kSjUcyfPx85OTno168fbrrpJhw6dMhQXmx3EH355ZexYMECPPPMM7jqqquwcuVKVFVVYf/+/Rg0aFCP9J988gmuv/56zJ49G2vXrsVf/vIXzJ07FwMHDsStt95qd3ZtQ9qYuhX4KJHg8MqMDqutGsQf2LGYXBAwsz5RUDrloFyHWzQ0NGDevHkYM2YMzpw5g3vvvReVlZXYv38/+vXrB0EQMG3aNPTu3RubN29GZmYmli9fjkmTJsXSAMCCBQvwpz/9CRs2bMCAAQOwaNEi3HDDDWhqakJqaqquvNguNpYvX45Zs2bhpz/9KQDg8ccfx5///GesWLECtbW1PdI/++yzGDRoEB5//HEAwMUXX4zGxkY88sgjimIjGo0iGo3Gvnd1ddlzIQYRG06ljt2r1gWlfLHxJ3ahNj12cNGXnIWRBOygw4G8r4tEIohE4sM91NXVxX1fvXo1cnNz0dTUhKuvvhoHDhzA7t27sXfvXowYMQLAuZGI3NxcvPTSS/jpT3+Kzs5OrFq1Ci+++CImTZoEAFi7di2Ki4vx5ptvYsqUKbrya+swSnd3N5qamlBZWRm3vbKyErt27VLc59133+2RfsqUKWhsbMTp06d7pK+trUVWVlbsU1xcbN0FmMQPQxZ6URqKCSrs3OwhUb1RE7TsNK3HL3U8qEMmaW1piLQm90lrSwMAFBcXx/V9Si/vcjo7OwEA2dnZABB7Ue/Tp08sTWpqKtLS0rBz504AQFNTE06fPh3XLxcWFqKsrEy1H1fCVrHx1Vdf4ezZs8jLy4vbnpeXh46ODsV9Ojo6FNOfOXMGX331VY/0S5YsQWdnZ+zT1tZm3QUYJAwdclCFh18a4TDBe/I9RuKPsNzCQVtbW1zft2TJEs30giBg4cKFGDduHMrKygAAw4cPR0lJCZYsWYKjR4+iu7sbDz30EDo6OtDe3g7gXJ+clpaGCy64IO54Wv24Eo4E9UpJSYn7LghCj22J0ittB5RNR8QZ7PStsOKYjBJIiDZmhqucmC3EaLKJyczMRGZmpu701dXV+OCDD2IWCwDo3bs3Nm7ciFmzZiE7OxupqamYNGkSqqqqEh4vUT8ux1bLRk5ODlJTU3uonyNHjvSwXojk5+crpu/VqxcGDBhgW16tIKz+DV63crDRIkHC7fqsJjCszpd0FhJnJCXH/PnzsWXLFmzbtg1FRUVxv5WXl6O5uRnffvst2tvbUVdXh6+//hqlpaUAzvXJ3d3dOHr0aNx+Wv24EraKjbS0NJSXl6O+vj5ue319PcaOHau4T0VFRY/0W7duxejRo9G7d2/b8moVFBzeOA7xD7zn+jDS0epJK41zYxVyXws7hBGFh34EQUB1dTVeffVVvP322zEBoURWVhYGDhyIAwcOoLGxEVOnTgVwToz07t07rl9ub2/H3r17VftxJWwfRlm4cCFmzJiB0aNHo6KiAs899xxaW1sxZ84cAOd8Lj7//HO88MILAIA5c+bgqaeewsKFCzF79my8++67WLVqFV566SW7s2oZRteDCApGh1W8MNWRDZYyTpixOfvJXuTrAllZ18X6oVZHnLK+hGntIzPMmzcP69evx+bNm5GRkREbNcjKykJ6ejoA4JVXXsHAgQMxaNAgfPjhh/hf/+t/Ydq0aTGH0KysLMyaNQuLFi3CgAEDkJ2djcWLF+PSSy+NzU7Rg+1i44477sDXX3+N+++/H+3t7SgrK8Prr7+OkpISAOcUUmtrayx9aWkpXn/9dfziF7/A008/jcLCQjz55JO+i7ERVsEBJBYRSlMd3UKrEfba9Et5Y+qlvBFnMVo37agrXvOrcGp4x0+sWLECADB+/Pi47atXr8Zdd90F4FwfvHDhQhw+fBgFBQX48Y9/jP/7f/9vXPrHHnsMvXr1wu23346TJ09i4sSJWLNmje4YGwCQIojelwGhq6sLWVlZuGpzNXr1857jaJgEiJKISBRQzO2AXna+DSaDWoNpZ/6saqSN1HnpffdK2XsRK+qmVQ7U4nG0Xhy8di+ldfvMiSj+MvUpdHZ2GnK4NILYL1249EGkSqaZmuHsqVM4+OBSW/NrB1xi3mGkFg/5gxkmIeJVwvwWJMeJN9cwWwDdxioBIB7nXzXuI2eGES7E5gJq60wkWoPC7+PZ7FT8hxWdQ6J66/d6Tc7hp/tIB1PnodjwKFLhIRUgdi+I5SZeFCNesHR4IQ92Ib/nXqwDXsRPHaWX76mfytHvhF5s+FXhBk10eLlBCnJnrwcnno+g1WeijBefpQl5H7udhVAQeLGhJib8KjLksIF2BrcaSS82zmbQW09Zn/1L2FakJcYIrNiYkPdxXOVX+19rm19gAx089C5ExYabeAk/t6PEXgIrNpQIijVDCS8KDrMrxkZa0zw9rGInZla7tDtioxVo3c+w3uugIm9jvdg2EecJldhIhN/j8Gs91HzgnSGZzj7Zfe0IP20UsysCU3CEA97n8EKxEQIoNOwn2c7eqxYJEaPC26zoIMGGbVF4YVCvBPgt9n5QgiRFWtPwKdxfO8UJ7KhXSse0ylInjRQpDVCnVO+CUBeJcZQi8cqH+/xmOSbJQcuGAfwyvCKfRsgG33t4YcjDSljHiBpie+mHtpPYBy0bAcbPgiPjMwHRQW7nwnrcdObk2yQhxC1o2TAJG2378dKslKDc72QFjng/6JNBCDECxUYS0CxoD9FB3ThWkuJ2NizHK0MmXsmHiFr0UK/lkxBiHg6jWIATq2OGEXEoRWvpai+Q6N57sW5I8+SmYPbyfSX2oOQ8SoIPLRvE00Ra0wB4y+ckUeAtv81gsiqPRtY34VoohIQLio2QEISGPZHgcOoNSTyPHy0aajiVV4oMIoVWjfBAsUE8y7GSFGR8JsSsG4CyY6LUd8aJxivRjBIzIcdJcrC8CfE2FBshwk9vlNFB3XHfI61pcaJDC74tOY+0bmnVMzuHwyg4CPEuFBshwkt+D0bI+EyI/a9XcFhJWMSLlZ21muAwInjDUu6EhAGKDeI75PE3+EZrP2bKWC4s7LKs8f4T4n049ZV4GjHehtS6cawkJVRrpziJ1VMReX8IIQAtG5bANyt7kPttiEiFh1EYiM1avDa7hM8iId6Elg3iK7IORv/rvwiA760b8jdypemp8t/1dEwUJvFYKSyk98jKwHjicbSOmcx9lR5faxsh5HsoNpKEb1L2Eh3UjUhrmiR8eaRHGq0Io1qNPyO/KmNnVEel4+rdZhSteyu/Ri0BoZYfpXKSn5PRMuNhGYQXig3iW6Qrw356aCDq/2s7GzNv4rX7ohYjRW9are1qv/vFAmKHKKCwDzf02QgRXhpbN0J0UHfsI1+gzUj8DaOovc16Hb9OcTYTmM0P90MJMfCbV/Nvpxjy6jUTe6FlwyR8YNxDjCwKnLNuBHGFWCMoiQs7F6/TG65daR/SE62hl6DiFQtPfcdwnDkRBbDV1XyEAVo2DOLlt5EwIM5QUbJwiJ1umO6PHiuGGOI9WYuHfCaP2Zk9Wm/1bnc+xFnEOuDGMxumdsILBNayse3wUPQ6fs6ZMNkGjJXSW4hOo1ag5SSq5kToF5yyeBixdCj5MJgVLGr50JsXr+KVt36nkAuOsFx32Ais2JCi5FWut5Hzc6Mlx69j+Uqcs3CkxQ2nSKfCmsVPM1S8dj+1RIdfytRLhNXyY9WwEuuctwiF2JCSaMXOoLwdEeNIHRSlb1tea+CTFRl6rBvJXLeTgs1O3xQv4sX6aDeJpiWLsO32NqETG4lgJfUfyUQUNWP6DwJGOmkz129EcJgxn/vJAmU1YRQcgL5pxmGuF16HDqIhwWsmd6/hl8bbyfsodeI0Uz5ulWkYOhuvT51Vwon64KfyCBu0bBASUoIwBCHNPzsaQrwLLRskkCTT8YTJTK3XUqI0i4SdOzFKWJ4rr1BbW4sxY8YgIyMDubm5mDZtGlpaWuLSHD9+HNXV1SgqKkJ6ejouvvhirFixIi7N+PHjkZKSEveZPn26obzQskF8jTTAl5REjZrRMNNBRk1wyK0eamuBsANxFy/cg3/MfC/u+x+6RsW2/aFrVNxv9KtwjoaGBsybNw9jxozBmTNncO+996KyshL79+9Hv379AAC/+MUvsG3bNqxduxaDBw/G1q1bMXfuXBQWFmLq1KmxY82ePRv3339/7Ht6erqhvFBskEBgVRRRrUYwCMMORlC6Xjs7CS90msQa5OKDuENdXV3c99WrVyM3NxdNTU24+uqrAQDvvvsuZs6cifHjxwMAfvazn2HlypVobGyMExt9+/ZFfn6+6bxwGIUEArl1I9GKn0rb1PaxIvpmsriVh0Tn1BIHfHt1Di+XNYWHPXR1dcV9otFown06OzsBANnZ2bFt48aNw5YtW/D5559DEARs27YNH3/8MaZMmRK377p165CTk4MRI0Zg8eLFOHbsmKH80rJBPE2kNS0WolxOokiiVrwpSzvbMFk19GC3FUJriXcvd65KhM0qRpTJaBOQmmZ+qj4AnO0+t39xcXHc9mXLlqGmpkZ1P0EQsHDhQowbNw5lZWWx7U8++SRmz56NoqIi9OrVC+eddx5+97vfYdy4cbE0d955J0pLS5Gfn4+9e/diyZIl+Nvf/ob6+nqlUylCsRESBhd96frbuVFEISEVHFriQw9+66QA96ctO9lRcijFPG6F+6blwh3a2tqQmZkZ+x6JRDTTV1dX44MPPsDOnTvjtj/55JPYvXs3tmzZgpKSEuzYsQNz585FQUEBJk2aBOCcv4ZIWVkZhgwZgtGjR+O9997DqFHxPjlqUGwQXyC1YIiCI9Ka1mP4xA4fA76ROi84lLb5SYToLS87ytVvZUXMkZmZGSc2tJg/fz62bNmCHTt2oKioKLb95MmTWLp0KTZt2oQf/vCHAICRI0eiubkZjzzySExsyBk1ahR69+6NAwcO6BYb9NkIEUHqNJWGT5KxeEiR+ke4XWZuWzXM4kcLkhUo+daI39W220FYy5/EIwgCqqur8eqrr+Ltt99GaWlp3O+nT5/G6dOncd558VIgNTUV3333nepx9+3bh9OnT6OgoEB3XmjZCBl+GU6xalVXI/ihXPxOMm/yXn5jV1thV+82t0UtCSbz5s3D+vXrsXnzZmRkZKCjowMAkJWVhfT0dGRmZuKaa67BPffcg/T0dJSUlKChoQEvvPACli9fDgA4ePAg1q1bh+uvvx45OTnYv38/Fi1ahMsvvxxXXXWV7rzQskECQbJTX92a6WHkTdhtrFgAzorjeA0rrkepDiR7XC9ZN+jX4Q4rVqxAZ2cnxo8fj4KCgtjn5ZdfjqXZsGEDxowZgzvvvBOXXHIJHnroITzwwAOYM2cOACAtLQ1vvfUWpkyZgmHDhuHuu+9GZWUl3nzzTaSmpurOCy0bhDiIWgfipIndKEpOuVz3xJl7ZLfVQ2vGD/E/gpB45kt+fj5Wr16t+ntxcTEaGhqSzgstGyFkcNGXsQ9R7jSSKRu1t1QvCQi9SGcESTHa6XtZTBnF7nvpVNm4GYKewiZ8UGyEHC8KDif9Naxu2KVDBX4VGCJW3Qc/l4EcLwZW08Ju8ZDM8AgFR7iwVWwcPXoUM2bMQFZWFrKysjBjxgx8++23mvvcddddPRZ8ufLKK+3MJvEp4rTXYyUpiA7qdl04BalTVUN6jV4a0rATp4Sj1jmcFK5G7usfukbFPolQEiYUHOHBVrHxox/9CM3Nzairq0NdXR2am5sxY8aMhPtdd911aG9vj31ef/11O7NJQooVDo9BsGCoIffTEC0diQRHkESI1+6rk4IjSPeRuI9tDqJ///vfUVdXh927d+OKK64AAPzrv/4rKioq0NLSgmHDhqnuG4lEklrwhRhDahHwWuOaCLesGn4rJ6dI1EElGwHWSbx6j52MAWNkurF0pVdC5Nhm2Xj33XeRlZUVExoAcOWVVyIrKwu7du3S3Hf79u3Izc3F0KFDMXv2bBw5ckQ1bTQa7bEgDSGJSNSReMGc7RdEgaFHaHgVuZUqSPc4WUdQK60cHEoJL7aJjY6ODuTm5vbYnpubGwssokRVVRXWrVuHt99+G48++ij27NmDa6+9VnVFu9ra2phPSFZWVo/FaYh+vNDA6u2QRH8NO9+SpeURtA4oWeRl4ReTu1ZcEz+T6BqsuD96jqHHd4OEE8PDKDU1Nbjvvvs00+zZswcAkJLSM9CSIAiK20XuuOOO2P9lZWUYPXo0SkpK8Nprr+GWW27pkX7JkiVYuHBh7HtXV1dCwcGIfcHCznsZhI7ILErCz+gwiJvlJ3/O5eLR76iJJrXnwSrBkcgSIRcciYZWxHyxXQ42hsVGdXU1pk+frplm8ODB+OCDD3D48OEev3355ZfIy8vTfb6CggKUlJTgwIEDir9HIpGEq91Zjd8fCnmj5NeGN9mooUQdLQuTKDgSPQdK9UoUKlY/P1rDXn5+Vr2I0bDxovj4x8z3aPkIMYbFRk5ODnJychKmq6ioQGdnJ/7617/iH/7hHwAA//Zv/4bOzk6MHTtW9/m+/vprtLW1GVrwxSq0OmEvNmJinqR5k/8vT+8V/BxbgyTGivur9uZu1v+GOIvTQkN+373WXocN23w2Lr74Ylx33XWYPXs2du/ejd27d2P27Nm44YYb4maiDB8+HJs2bQIAHD9+HIsXL8a7776LTz/9FNu3b8eNN96InJwc3HzzzabykcjRT20sXk8D5ZVGTHoN8qBS8v+9iN1CI6iOf3bhRUdOtSEQ3s+eOFEmVk+Ndeo+sh1wD1vXRlm3bl1s0RYAuOmmm/DUU0/FpWlpaUFnZyeAc8vafvjhh3jhhRfw7bffoqCgABMmTMDLL7+MjIwMQ+du/SIH56X3ARD/xq+G2crntnr280NjV6fm5zJxG6P3xMg0TC1fDy1LodmXgTDjlOVVLjiMziyxy7FYT50Rv3938pQteSDx2Co2srOzsXbtWs000oVi0tPT8ec//9mWvDipnEXseNiD0Mja+eYchPJxCyP3Re4omkjQy4UGBURPrI5BYjQeh5pAMdKmGfXnsIKg+KAFHa76aiNWBt8JygNktdDgOKw1WOlTQc6RSDyozfYB7J3SDehffVjtd63nzknBwSE1/0Cx4QDJWDuC8AB50QfAK2h1SFa+6crvQXRQN++LjUhXy1UL+55of6vuvR1tiBXDNH6JzUKsgWLDYZSERxAEhRynOjKt2TZuIy0DsePQil1hJK6FUlq96bS2E22URJvab4m26zmXUr3xSrh3LStHIuuGVGhY5S9HvA3FhosE6WFh5/U9WuZxI/vo3ddoOqtwyuTvBbSEhJ3Xb0VgNbtRs9yqCQ4ti4Yei0mQ2s0wQbFBAoHRBsiKjpICKzgo1QevijzxnF4SHCJysWD1UAmFhn+h2CCm8UqDxwbIPbxw/40iFxZSsUAB6Sx8dsMDxQYxjNuNs7gIm5uwU/K+0Ehm6MoPyMW+V4a19DqP6g0x78VozcQ4FBtEF35vmJMl7NfvF8J2n7zq05GsQKDFI3hQbBBNgth4G72mIJZBsrjdmSnB++QtzK5lo3Us4l8oNkKC0ji1kamSYYXl4Q94n+xDbQouoE90UigQgGLDUhIFTrL7bVBvsCAj6YNGGK856PCe9sTMUIpcVEjbL7em/pLgEHqxYWdDJT+21Lpgxpkr7I1qMo6hZsou7OVN/I0RIaAkKoxO/aXoIFqEUmy43YmE3bpgBcdKUnSnNWrxId6FHZsx9MxYsarue/3eeDEKa5gIjdhgZxJOeN/twQnzeaJ1Y4g+lMLhO2HRdatD14qjIk1DweEsgRcbbJTCC++9vZgx0wPGhw7ZKSSPW1FORZwO6a61nbhDoMUGK5u3kPtcGBkKUSPZzoh15HvE+2PFfdFCzz3jUGOwsEt4JFM3KGSdJdBig7iHHmdOI+LDC1FD/YiZcsv4TNAtOMyazDn1+nuk5a11v+wWgU5hRScfxnridwIrNtLa0oA+bucifCQjCoy8WRvpEOXH13sOtzDS4aiVWbLizGhZcbZPclgtzr2OUeuWnfk4e+o7289DAiw2iHNYbXXQKyTEdHoaLr9YRvTmU57OL9dHzmHF/TIjuAlxC4oNYgj5m7RdnVyyDan0rUgpj3Y11ErH1bISGC0/N0SFU74cQcOJe5XoeZTeM7V6qGcYx457z9lG4YJiw2aMdGrJmPn1nMfM8dUaH6ca0mMlKYbPZUdDZWS4Qiu/frZAKHVKdgsQpTrr1HCY1jWqPW9u3V+jz6lRy5jd91tpei4JFhQbJtDqBJW2m3XSs3OfRI24V9DTCEobwEQWjWTz4MUychIzvgVSkhG5ZkWcmQ5Sfs+teq79jtV+I5x1FB7OczsDXifjM6HHR9yult5vSK/Lb4iNXaQ1zVaLBlHGzBuy/FnS2q7n/HrfytXyl6yACjMsF29TW1uLMWPGICMjA7m5uZg2bRpaWlri0hw/fhzV1dUoKipCeno6Lr74YqxYsSIuTTQaxfz585GTk4N+/frhpptuwqFDhwzlhZYNGXx4goHZ+8j7bxwrZiDZjR7B4WULn5ehT493aWhowLx58zBmzBicOXMG9957LyorK7F//37069cPAPCLX/wC27Ztw9q1azF48GBs3boVc+fORWFhIaZOnQoAWLBgAf70pz9hw4YNGDBgABYtWoQbbrgBTU1NSE1N1ZUXio3/gg2M/0i2cfNjI5l1MAoA6Lww4nJOggfbgOTwwtRc+fCwH59xK6mrq4v7vnr1auTm5qKpqQlXX301AODdd9/FzJkzMX78eADAz372M6xcuRKNjY2YOnUqOjs7sWrVKrz44ouYNGkSAGDt2rUoLi7Gm2++iSlTpujKS6CHUfSaWNnIBIug3k9RaMj/DyNZB6OKH/E34j5uP4daw3RxnzZ/thddXV1xn2g0cb3v7OwEAGRnZ8e2jRs3Dlu2bMHnn38OQRCwbds2fPzxxzER0dTUhNOnT6OysjK2T2FhIcrKyrBr1y7d+Q2FZSPRdEQSbvxQF5Q60KyDUV0WDiPpAH9bTZQEh5+vx++YmWJudEjLzIw1t8j8JIpevZKzspw5c65uFxcXx21ftmwZampqVPcTBAELFy7EuHHjUFZWFtv+5JNPYvbs2SgqKkKvXr1w3nnn4Xe/+x3GjRsHAOjo6EBaWhouuOCCuOPl5eWho6NDd75DITbk+KViEuME6d7qeUPX+xZv5G1fSZzoFSxWQetEcNA7lGF21leQnnkjtLW1ITMzM/Y9EtF+Pqurq/HBBx9g586dcduffPJJ7N69G1u2bEFJSQl27NiBuXPnoqCgIDZsooQgCEhJ0S+cQiM2wlohib/wWierd+jGCiFi17WbsXIEwcrjNRLFLSHGyMzMjBMbWsyfPx9btmzBjh07UFRUFNt+8uRJLF26FJs2bcIPf/hDAMDIkSPR3NyMRx55BJMmTUJ+fj66u7tx9OjROOvGkSNHMHbsWN35DY3YIMEiCA2W14SFFKN5S6ZzdrIc1Kw2WukBig4rkQ+t+O259ROCIGD+/PnYtGkTtm/fjtLS0rjfT58+jdOnT+O88+LdN1NTU/Hdd+fWjCkvL0fv3r1RX1+P22+/HQDQ3t6OvXv34uGHH9adF4oN4hucNuUni5fFhF0YtX64UUZmzknRYQ8UGvYyb948rF+/Hps3b0ZGRkbMxyIrKwvp6enIzMzENddcg3vuuQfp6ekoKSlBQ0MDXnjhBSxfvjyWdtasWVi0aBEGDBiA7OxsLF68GJdeeqnmMIucwIqNjDYBYEC6wOC1jlsqfLyWN68iF4t+LDcnBa/fxLURKDKcQQzOJU5rFVm9ejXuuusuAMCGDRuwZMkS3Hnnnfjmm29QUlKCBx54AHPmzImlf+yxx9CrVy/cfvvtOHnyJCZOnIg1a9bojrEBBFhsEGIXnGJpHrED9XPZOWHlkJcPLSvEDIKQWNTl5+dj9erVmmn69OmD3/72t/jtb39rOi8UG4ToxM8dpJcISjna5TCr5ZRrt5MuIXZBsUGIDA6RkGQxa4lIpr7J95UPWVGMEDeh2CCBwOwYsLRTYIROYjVqnbxavbP63GrnJOfIOhiNBcki9kKxQSzF6NRCwHjjZ8U6B0bM04Qkg56ptU7C6Krn4DPvLBQbIcOKENeJhhnMxGjQylOiNzJ6thNijmTjo/hVrFBoOA/FhgZ+NzsmG+7ayTcyIw0XxYU6aR8div3fPbxIIyUh36Nk7VB6xuW/KU1n9np7SaHhDhQb/4VcWMjH773+AAH2rJPhJE6Vs1evP1mkQkP+ncKD6MXoS4beIUkvtKFBffb9QGjFhlqlM7rdyANkZ2ca5IfI73EZvIBciIjoESHyfc3so3c/ElzUXuik370gSIg9BF5s2N1JGV2+W29+jIqYoKDXV4TEoyYm9OynJgLUjpnMuQCKjrCjZQlJFPTNqvglxHkCLzacwI5KrHcMNYhQVBjDbOcv3V8UAMkeS+/5pCQSH1qCiAQPvcM4Rhzdw9J2eplAi42gVLCgXIcR7IpDELSytEocOCEyEp1bSVCIv+nJHwUJkUOh4R0CLTaI/1Eyueq1englEqhWR5lMB+mmQLADKyw0atgtRNw8NyF+INBig6o2mOgZz/XCYml6Ok+zfgxBExp246bDqtPDQGHxjeFwq78IrNhoeKoa1y78ndvZIA7iZ2GZ6M2Y4sJ6rJoabERUJnMuJd8aLV8br/m62JGfRA7lxDsEVmwQEhQoNLyLXT4zaiIi0XcvYnceKSr8wXluZ8BOWAkJIXow0yEmMwVY6viqZpWwopP2mhix6rqI/7BVbDzwwAMYO3Ys+vbti/PPP1/XPoIgoKamBoWFhUhPT8f48eOxb98+O7NJSNJIG1A2qP5E73BIUIWAHVgdq4X4F1uHUbq7u3HbbbehoqICq1at0rXPww8/jOXLl2PNmjUYOnQo/vmf/xmTJ09GS0sLMjIy7MyuZTB6YniQiwzib7RigPj1/ipdkxf8ObyQB+IctoqN++67DwCwZs0aXekFQcDjjz+Oe++9F7fccgsA4Pnnn0deXh7Wr1+Pf/qnf7Irq4okcupSeli0lDwfrODg146HGCOI91k6hKMV20SKXbOlzITCJ/7EUw6in3zyCTo6OlBZWRnbFolEcM0112DXrl2KYiMajSIa/d43o6ury/T5tR4QK8yBfLD8TRA7HhJurBAFVj4Xeqbt8sXNn3hKbHR0dAAA8vLy4rbn5eXhs88+U9yntrY2ZkExi1udCFfl9A4UEoTox+7nRUl0yIcs2Wb6C8MOojU1NUhJSdH8NDY2JpWplJSUuO+CIPTYJrJkyRJ0dnbGPm1tbbrOYaWjlxV4LT9BR1reLHNCvAmf0eBg2LJRXV2N6dOna6YZPHiwqczk5+cDOGfhKCgoiG0/cuRID2uHSCQSQSSiL4qcXyosh1vsxS/1gBCiDq0b/sKw2MjJyUFOTo4deUFpaSny8/NRX1+Pyy+/HMC5GS0NDQ34l3/5F9PH9XvnwuGW5PF7HSCEED9jq89Ga2srvvnmG7S2tuLs2bNobm4GAFx00UXo378/AGD48OGora3FzTffjJSUFCxYsAAPPvgghgwZgiFDhuDBBx9E37598aMf/chUHoLWySTyFKcw6UnQ6gAh5By0bvgHW8XGr3/9azz//POx76K1Ytu2bRg/fjwAoKWlBZ2dnbE0v/zlL3Hy5EnMnTsXR48exRVXXIGtW7f6JsaGG4gPnFoo47A9jBQXhISHZARH2keHcN533RbniCiRIgiC4HYmrKSrqwtZWVno7OzEzVOfZscjI+jCg/ebkHCip21Tah/OfNeNN4/8Dp2dncjMzLQja7F+6epxv0avXn2SOtaZM6ewY+f9tubXDjw19ZXYT1CtHRQZhIQbtSFmtg3eINALsRF1gvQABulaCCHWwbbBO9CyEWL8voYLGxJCCPEHgbZsvLVtia86Ty/ghw6cQX4IIcRf0LJBemA2qJjcK9yslziFBCGEBIvAiw12XMljZBEmpe+JBAfvESGEBJvAiw1iPUbFgXwGDMUFIYSEC4oN4hgUGYQQEk4C7SBKCCGEhJXa2lqMGTMGGRkZyM3NxbRp09DS0hKXRm319t/85jexNOPHj+/xe6IFWeVQbBBCCCEBpKGhAfPmzcPu3btRX1+PM2fOoLKyEidOnIilaW9vj/v8/ve/R0pKCm699da4Y82ePTsu3cqVKw3lhcMohBBCSACpq6uL+7569Wrk5uaiqakJV199NQAgPz8/Ls3mzZsxYcIE/OAHP4jb3rdv3x5pjUDLBiGEEOIzurq64j7RaDThPuKip9nZ2Yq/Hz58GK+99hpmzZrV47d169YhJycHI0aMwOLFi3Hs2DFD+aVlgxBCCHGAtI+/QK/z0pI6hrhKbXFxcdz2ZcuWoaamRnU/QRCwcOFCjBs3DmVlZYppnn/+eWRkZOCWW26J237nnXeitLQU+fn52Lt3L5YsWYK//e1vqK+v151vig1CCCHEZ7S1tcWt+hqJRDTTV1dX44MPPsDOnTtV0/z+97/HnXfeiT594lemnT17duz/srIyDBkyBKNHj8Z7772HUaNG6covxQYhhBDiMzIzM3UvMT9//nxs2bIFO3bsQFGRcpDFd955By0tLXj55ZcTHm/UqFHo3bs3Dhw4QLFBCCGEhBlBEDB//nxs2rQJ27dvR2lpqWraVatWoby8HJdddlnC4+7btw+nT59GQUGB7rxQbBBCCCEBZN68eVi/fj02b96MjIwMdHR0AACysrKQnp4eS9fV1YVXXnkFjz76aI9jHDx4EOvWrcP111+PnJwc7N+/H4sWLcLll1+Oq666SndeOBuFEEIICSArVqxAZ2cnxo8fj4KCgthHPlSyYcMGCIKA//E//kePY6SlpeGtt97ClClTMGzYMNx9992orKzEm2++idTUVN15oWWDEEIICSCCIOhK97Of/Qw/+9nPFH8rLi5GQ0ND0nmhZYMQQkho2Xig59ABsR6KDUIIIYTYSuDFxhvtT7udBUIIISTUBF5sEEIIIcRdKDYIIYQQYisUG4QQQgixFYoNQgghhNgKxQYhhBBCbIVigxBCCCG2QrFBCCGEEFuh2CCEEEKIrVBsEEIIIcRWKDYIIYQQYisUG4QQQkIJl7NwjlCIDVYoQgghxD1CITYIIYQQ4h4UG4QQQgixFYoNQgghhNgKxQYhhBBCbIVigxBCCCG2EhqxwRkphBBCRNgnOEtoxAYhhBBC3IFigxBCCCG2QrFBCCGEEFsJldjgGB0hhBD2Bc4TKrFBCCGEEOeh2CCEEEKIrYRObNB8Rggh4YV9gDuETmwQQgghxFlCKTaobAkhJHyw7XcPW8XGAw88gLFjx6Jv3744//zzde1z1113ISUlJe5z5ZVX2plNQgghAYdCw11sFRvd3d247bbb8POf/9zQftdddx3a29tjn9dff93yvLHiEUIIIc7Qy86D33fffQCANWvWGNovEokgPz9fV9poNIpoNBr73tXVpfs8b7Q/jaqCeYbyRgghxF/w5dJ9POmzsX37duTm5mLo0KGYPXs2jhw5opq2trYWWVlZsU9xcbGhc73R/jQrIiGEBBC2797Bc2KjqqoK69atw9tvv41HH30Ue/bswbXXXhtnvZCyZMkSdHZ2xj5tbW2mzssKSQghwYFturcwPIxSU1MTGx5RY8+ePRg9erSpDN1xxx2x/8vKyjB69GiUlJTgtddewy233NIjfSQSQSQSMXUuOWLl5NAKIYT4E4oMb2JYbFRXV2P69OmaaQYPHmw2Pz0oKChASUkJDhw4YNkxEyGtrBQehBDibSgwlKmtrcWrr76Kjz76COnp6Rg7diz+5V/+BcOGDYulSUlJUdz34Ycfxj333APgnG/k4sWL8dJLL+HkyZOYOHEinnnmGRQVFenOi2GxkZOTg5ycHKO7mebrr79GW1sbCgoKHDunFK1KTCFCCCHOQEFhnIaGBsybNw9jxozBmTNncO+996KyshL79+9Hv379AADt7e1x+7zxxhuYNWsWbr311ti2BQsW4E9/+hM2bNiAAQMGYNGiRbjhhhvQ1NSE1NRUXXmxdTZKa2srvvnmG7S2tuLs2bNobm4GAFx00UXo378/AGD48OGora3FzTffjOPHj6Ompga33norCgoK8Omnn2Lp0qXIycnBzTffrOucgiAAMDYrxSwvt9Qqbr91yCLbz00IIUFk44FHFbfb1aaLxxX7Djs5I3QD31lwDPQsDyWXgrq6urjvq1evRm5uLpqamnD11VcDQI+Zn5s3b8aECRPwgx/8AADQ2dmJVatW4cUXX8SkSZMAAGvXrkVxcTHefPNNTJkyRV/GBRuZOXOmAKDHZ9u2bbE0AITVq1cLgiAI//mf/ylUVlYKAwcOFHr37i0MGjRImDlzptDa2qr7nG1tbYrn5Icffvjhhx+1T1tbm8U94PecPHlSyM/Ptyyv/fv377Ft2bJlCfNx4MABAYDw4YcfKv7e0dEh9OrVS1i3bl1s21tvvSUAEL755pu4tCNHjhR+/etf6y4DWy0ba9asSRhjQ5CoyfT0dPz5z39O6pyFhYVoa2tDRkaG6lhUV1cXiouL0dbWhszMzKTO50fCfP28dl47rz086Ll2QRBw7NgxFBYW2paPPn364JNPPkF3d7clxxMEoUf/lmiihCAIWLhwIcaNG4eysjLFNM8//zwyMjLiJmN0dHQgLS0NF1xwQVzavLw8dHR06M6zrWLDDc477zzdTiuZmZmhe/ikhPn6ee289rDBa1e/9qysLNvz0KdPH/Tp08f286hRXV2NDz74ADt37lRN8/vf/x533nmnrnwqCR4tPBdngxBCCCHWMX/+fGzZsgXbtm1TfRl/55130NLSgp/+9Kdx2/Pz89Hd3Y2jR4/GbT9y5Ajy8vJ054FigxBCCAkggiCguroar776Kt5++22Ulpaqpl21ahXKy8tx2WWXxW0vLy9H7969UV9fH9vW3t6OvXv3YuzYsbrzErhhFD1EIhEsW7bMsmBgfiPM189r57WHDV57OK8dAObNm4f169dj8+bNyMjIiPlYZGVlIT09PZauq6sLr7zyCh59tOdMoKysLMyaNQuLFi3CgAEDkJ2djcWLF+PSSy+NzU7RQ4ogODDfhxBCCCGOouZTsXr1atx1112x78899xwWLFiA9vZ2Rf+VU6dO4Z577sH69evjgnoZWYuMYoMQQgghtkKfDUIIIYTYCsUGIYQQQmyFYoMQQgghtkKxQQghhBBbodgAcNNNN2HQoEHo06cPCgoKMGPGDHzxxRduZ8t2Pv30U8yaNQulpaVIT0/HhRdeiGXLllkWUtfrPPDAAxg7diz69u2L888/3+3s2MozzzyD0tJS9OnTB+Xl5XjnnXfczpIj7NixAzfeeCMKCwuRkpKCP/7xj25nyTFqa2sxZswYZGRkIDc3F9OmTUNLS4vb2XKEFStWYOTIkbHIoRUVFXjjjTfczlaoodgAMGHCBPy///f/0NLSgo0bN+LgwYP4x3/8R7ezZTsfffQRvvvuO6xcuRL79u3DY489hmeffRZLly51O2uO0N3djdtuuw0///nP3c6Krbz88stYsGAB7r33Xrz//vv47//9v6Oqqgqtra1uZ812Tpw4gcsuuwxPPfWU21lxHHF58d27d6O+vh5nzpxBZWUlTpw44XbWbKeoqAgPPfQQGhsb0djYiGuvvRZTp07Fvn373M5aeNG9ZFuI2Lx5s5CSkiJ0d3e7nRXHefjhh4XS0lK3s+Eoq1evFrKystzOhm38wz/8gzBnzpy4bcOHDxf+9//+3y7lyB0ACJs2bXI7G65x5MgRAYDQ0NDgdlZc4YILLhB+97vfuZ2N0ELLhoxvvvkG69atw9ixY9G7d2+3s+M4nZ2dyM7OdjsbxCK6u7vR1NSEysrKuO2VlZXYtWuXS7kibtDZ2QkAoXu+z549iw0bNuDEiROoqKhwOzuhhWLjv/jVr36Ffv36YcCAAWhtbcXmzZvdzpLjHDx4EL/97W8xZ84ct7NCLOKrr77C2bNneyyYZHR5aOJvBB3LiweNDz/8EP3790ckEsGcOXOwadMmXHLJJW5nK7QEVmzU1NQgJSVF89PY2BhLf8899+D999/H1q1bkZqaih//+McQfBpc1ei1A8AXX3yB6667DrfddluPVf/8hJlrDwPysMWCweWhib8Rlxd/6aWX3M6KYwwbNgzNzc3YvXs3fv7zn2PmzJnYv3+/29kKLYFdiK26uhrTp0/XTDN48ODY/zk5OcjJycHQoUNx8cUXo7i4GLt37/al2c3otX/xxReYMGECKioq8Nxzz9mcO3sxeu1BJycnB6mpqT2sGEaXhyb+RVxefMeOHarLiweRtLQ0XHTRRQCA0aNHY8+ePXjiiSewcuVKl3MWTgIrNkTxYAbRohGNRq3MkmMYufbPP/8cEyZMQHl5OVavXo3zzvO3sSuZ+x5E0tLSUF5ejvr6etx8882x7fX19Zg6daqLOSN2IwgC5s+fj02bNmH79u2ay4uHAUEQfNumB4HAig29/PWvf8Vf//pXjBs3DhdccAH+4z/+A7/+9a9x4YUX+tKqYYQvvvgC48ePx6BBg/DII4/gyy+/jP2Wn5/vYs6cobW1Fd988w1aW1tx9uxZNDc3AwAuuugi9O/f393MWcjChQsxY8YMjB49Oma9am1tDYVvzvHjx/Hv//7vse+ffPIJmpubkZ2djUGDBrmYM/vRu7x4EFm6dCmqqqpQXFyMY8eOYcOGDdi+fTvq6urczlp4cXMqjBf44IMPhAkTJgjZ2dlCJBIRBg8eLMyZM0c4dOiQ21mzndWrVwsAFD9hYObMmYrXvm3bNrezZjlPP/20UFJSIqSlpQmjRo0KzfTHbdu2Kd7jmTNnup0121F7tlevXu121mznf/7P/xmr7wMHDhQmTpwobN261e1shRouMU8IIYQQW/H3AD0hhBBCPA/FBiGEEEJshWKDEEIIIbZCsUEIIYQQW6HYIIQQQoitUGwQQgghxFYoNgghhBBiKxQbhBBCCLEVig1CCCGE2ArFBiGEEEJshWKDEEIIIbby/wHqFHCMDtP76AAAAABJRU5ErkJggg==",
+      "text/plain": [
+       "<Figure size 640x480 with 2 Axes>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
     },
     {
      "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAykAAAGbCAYAAADA9989AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd5gkV3X2f7dSp+nJeWZzkna1WuUsARJBCEsImyRyxjYmmWAcARv8ET4bjDGY8GFkAQJkjIRIEkIJZSFpJa20u9qcZmcnz3SucO/3R4Wu7plZCbTYAurdZ5/pUF1169atuue95z3nCKWUIkGCBAkSJEiQIEGCBAmeIdD+txuQIEGCBAkSJEiQIEGCBHEkJCVBggQJEiRIkCBBggTPKCQkJUGCBAkSJEiQIEGCBM8oJCQlQYIECRIkSJAgQYIEzygkJCVBggQJEiRIkCBBggTPKCQkJUGCBAkSJEiQIEGCBM8oJCQlQYIECRIkSJAgQYIEzygY/9sNSJAgQYIECRIkSJDgtxnVahXbto/Z/izLIp1OH7P9/TYiISkJEiRIkCBBggQJEvyaqFarLFvRwdho9Zjts7+/nz179vxeE5WEpCRIkCBBggQJEiRI8GvCtm3GRqs8uPsl5FvNp72/wpzDKSu/j23bCUlJkCBBggQJEiRIkCDBr4/WvEE+//RNa6HUMWjNbz8SkpIgQYIECRIkSJAgwdOEkAohnz7BOBb7+F1Akt0rQYIECRIkSJAgQYIEzygknpQECRIkSJAgQYIECZ4upPL/H4v9JEhISoIECRIkSJAgQYIETxdCqWMST5LEpPhI5F4JEiRIkCBBggQJEiR4RiHxpCRIkCBBggQJEiRI8DSRBM4fWySelAQJEiRIkCBBggQJEjyjkHhSEiRIkCBBggQJEiR4ujhGnpQkcN5HQlISJEiQIEGCBAkSJHi6SLJ7HVMkcq8ECRIkSJAgQYIECRI8o5B4UhIkSJAgQYIECRIkeJpIUhAfWyQkJUGCBAkSJEiQIEGCpwmhjlF2r4SkAIncK0GCBAkSJEiQIEGCBM8wJJ6UBAkSJEiQIEGCBAmeLpLA+WOKhKQkSJAgQYIECRIkSPA0IZT//1jsJ0Ei90qQIEGCBAkSJEiQIMEzDIknJUGCBAkSJEiQIEGCpwlxjIo5HpOCkL8DSEhKggQJEiRIkCBBggRPF0lMyjFFIvdKkCBBggQJEiRIkCDBMwqJJyVBggQJEiRIkCBBgqeJRO51bJGQlATPOEgp2bx5MzfeeCM/+9nP2LVr1/92kxIkSJAgwVEwMDDAc5/7XJ7//Odz1llnYZrm/3aTEiT4n4dS/v9jsZ8ECUlJ8MzA9PQ0P/rRj/jRj37ETTfdRK1W48ILL2TPjgFaMqcBYtHfiqN8F4f2FLf7n8IzqzXHFtrv8skdIxyrhbJjNZVJFOop7E0+xf2pJ9nyqexHPoX2aIintN2TtUcE6ucn2+6pQDwFJfVTbfdTwVN5tj0VbfdTafdiGDs8xle/cjNf+tKXqFQqPOc5z+GFL3whl112GUNDQ7/2fhMkSPD7i4SkJPhfw4EDB7juuuu49tprue222zjhhBO49NJLecc73sGZZ56JaZqcfNqXF/29pvyJWQYJxcP3IfRFJm5NzJ+IF5ua/yeIjURFx2k2WuLmkqM8wD8vDzXvvKVo/u1TM7a8o2yno0Xf60EvLbb9QtsuBK3pu+br9mQIr6sX9FX8OnsLGH2/yjhYDE8neC8+hprH00L7jRO8Jzvu0a7w0X6riScnSeG+taMc56kQrebfxsf40ca7VDK6nlKoaDx7yIaxLZHoDfvw5rVBC7awqWKRjl4vBA0didewn/CzoyHepuYx3twOiRe9jn8Wf/9UoEXEauHjxHG0S7VYe5/s+/h9buaX08IZPHTf23j44Ye58cYbufrqq3nnO9/JqaeeyuWXX87ll1/O8ccff9RjJUjw24xE7nVsIZRKfEoJ/uewb98+vvvd7/Kd73yHhx9+mPPPP5/LL7+cyy67jEte+kNg/oQYnwifbDJ9MixkED+ZEXu0I8on+X6x30SvVf3dQgb2r0s84jgaCXkqCMlHeB00NCTyaZONp3Zsn5At9BeO3mdxo3bhff/qRGqxsRKiuT3N28eJUfwIIXkxgr8hUVmMxEj11IjGQliMBIWfx1u82O6P1gvaAlXI5AJjQ0XfBX8XeC9V7POQsAS+DqkkmtBwlIcp5hvl4b0VJ/TNY0LG/sZJiIsTfF7/TCIxmC9hMjCj/WjRPdLYHi34J5sIVvz7ee1fYLuFiFLzduFxFtvvYiToyUjYQsddbP8N/eZU+Ov3DHDttddy4403snTpUl7+8pfzyle+kg0bNvxKx0yQ4JmKubk52traOLT5+bTmn77Uca7gMHTSjczOztLa2noMWvjbiYSkJPiNY3R0lGuuuYZvf/vb3HfffVx00UW88pWv5NJLL+W5L/hew7ZP1RgMETdcmw16aJzAfxVjfSEDdtHV0ZgBdjTCEyck9TYtfPstdC6L4VchB2Ffha8X3N8iHgYt+isavD/EPj8ankzastjv56+21wU5RyN5zYapv83Tl/L8KjgaEYKYUatEdD3C/jcQDZIgLRDjLERgFpPXPZVtmiFYmGg07y/aXiiUEogFfrPYMaUCFRu39espUDQSFVfVfxN+5o8BFb1v9vbECQo8OdlvJi3x7UKj38BAD8hGdH6x6+afb31hY6GRFn4eekWbPUQLte9oCzO/yqJFnLwcbR8hwVjs84X3PZ+UhX0X/056Nf7P36zkO9/5Dtdffz2rV6/miiuu4BWveAWrVq16yueSIMEzDQlJ+c0gISkJfiMoFot873vf46qrruK2227jnHPO4YorruCP/uiPeNHF10XbLWa8PxkWM0hhcQMk/t2v6pGor5Au7OX5dVfef6U2PIk8acFV96dAJJp/12xYxg3jcAU//l1cFvRUcDTjbd628ZX02CV3F5EMHY28PNUxstD3T/b500V8fIVjylD6PAM4JC7+tk9OWMJ+fbJrDI3ekZCkxH+3EAmJ70uLXQfRtP/4LCMR0bVUSgRekTo5CT0o4BMUNyAkofckXJBYzCsSx5N5LY5GAEIPorTn8GQVzZPoSFTgwdGFgS50BLr/XtMRQkMIA12zMPRMvR1NXRcnVm7QypC4wOKLFJoST/rdYvLP+rEbSXuzd2cxkjLveE1eo9BbFCJO6Jqfh5rQ8LwK7/1AB1dffTU33HADJ510Eq95zWu44oor6OnpOeqxEyR4piEkKSMPHTuSMnhyQlISkpLgmEFKyW233caVV17Jf/3Xf7Fq1Spe97rX8d0rBSmrc9GV9PjKONQn79DQjBvnzYQmTnKeKnFZbMVyoffN0qaFSMqCkocFSMpTiYH4nyAazds3b9u8d0OoyEANV8zVAt6bxT4/GuK97YXG1SJynziRWUjmtJAsaKHjLCQD8rdZXB7WHAOx8Ln8anKZxaBFo0qbZ+iZou6b0QLCEr0/ikSMpm3C7eLvRbSNatgG5hOUxv2oYJv6Z0rVqdFUYTdTxd1U7Dlst4QnHaQKjH09hRAmjlvCdksoFJowQTODvwZKMxDCAE1HaBZCT6MbWfRUB2aqC6GnGgzm0OORUgaG0CJvVC0gATXhRO3U0VBKYlcOU5jbSrG4A6lcv2eFhusWKZf2IDQTIQw0zQx6SoHyUEqigr8oiYqNAV3LkLI6sawO0lYXGauTlNUZ/O0gm+pHCBF5i5rlbGHfPxVavNA1nxcLtIh3yRe6zZehNcu5NDRMjHlenmYvYJwYLxSPFY67+IJHxSkyOfMA/Ut3cc899/CiF72I17/+9VxyySVYlvUUeiBBgv9dRCTlwefR2nIMSErRYfCUnyUkJSEpCZ4udu3axZVXXsl//ud/UiqVePWrX829N3WSzy4F5k+28Qk1bnSGE5ulgS3r3y9mdDVP5AutVi408ccJUDy+IXwPLBqUvtAqZZyQhPtbLPbgV0F9Uq9P7tF3R1lBX4iwhBKeuNG50Aq4/13j/kTse03UyUi0Gh7rv+Zr0LyC3nwsicCTvqEWkhRXzV9R18TRSUrcaD4agfFfN0qFjiYNeqrk9sk+X3jbxsDs+GehsQ2NRNhUWoOkKD5GmslKfd/zPz9awH6z3EtjcZJSrk1RrBzGdis4XomqPcPY7FamCjvQhEE+M0Shcojutg2krE4MPYemmSg0FDquV/LJipFFaBmkJpDSwZM1pHJwZQ1P2SjpoKSLkjbKq+HaM9SqhwHo7L2Irv6L0GpzaF4VzSsjZQVDOBhCAQpDT5PKrKVqz7F/6j6q9hRWqgcz3YNdGWFy/HYAuvsvJmV14eEile/jyHZuxDN0nFigfVzCpKFhqTRT+6/HsSdRnoPrzODa0wv0ch0nHPe35HLL5xnzSkk8WcPU0oiY0R9iocWehZ4R9e0bf/dkYz/+jAvHW7hfC23egtJC4yr+rG1+3muAIfzXpgBP+fe8EeynWB1jdOouPPNhisUir3rVq3jDG97AySefvMDZJUjwzEBCUn4zSEhKgl8LtVqN6667ji9/+cv84he/4EUvehFveMMb+N7/PYjEjCYjU5cNhmpo0Iaa9PiEp2Ir6fHt6t/7f+WTxT40/MY/hiNFNJmGRrC/Lx/hZGsI0IXCkf7GAknNmcNVEsvsjH7jKrCRi8ZENMcXzCMOMdlOQ9tj8QeN2wd/xXyjcyEjNE5KhFCBN8Q/Ny34Gxqeupi/Eg6Nhmr4W2i8DkoFUp3gmsVlPHHPiqQpBiG2vadE1N+eEr7EpykO4cniKRYivs1ovub+6/mysbhkbKFV56Ph6cS8NK9cR/6UWL+FAeLN3pSGz57EYxaO9cW6tDkeJb4PpSSl2jhKutS8Cnc9/o8AWEaefHYZaaudttwy2ltPpCY9quV9CKHT13k6ZSWZoUyZAjXKVNUMBmkskUXgkwBX+URA4aFj4aiS3zfKwZveS3nfTfX+0XMYZhu16kjQhjYsswVTz6HrGRAGHuDi4bhz1EoHEHqKbPt6tHQHTm0CpzaOWxgB5Tacc3bZc+noPh8AmxICHYWHQI8C5T1sADzloEnFxObPLtKji/Szmad7yWXY5cO4tSlcezYgN7P4o1Bg6lkMI0s23c9Ax+n0dZ0NwpjnZQT/2RUSgLg8E+aT+3isTzMJCsdH89gJP9eD54qrRDRWpBJ4CnRBQAx9uEqQ0iUa/vNHKf+5ET7/04bEk/527SkXT4poscKTksnCDpacOsE111zDunXreNvb3sYVV1zxe220JXhmIiQph3/53GNGUgZOuykhKQlJSfCr4IknnuBLX/oSX/va11BKsWnTJu69636GOlcjpcfY3AGOHzyD89a+GD2Y5UQ0wdUntJKjU/M0yo6/Wpw2PEzNnyprnr5g4K4m6hNdiDBr0NFGcfgbTwlcqWFokpqnI5U/4eqaQilFzZ5iqrSPycI+Jgv7mS0fplybQSERQue4oUtYO3w5nhKRhh7qk/a0KygEhguwoA4b/IDoVl2QM7zImHCkiP6HxoMhQhlIrA+ivmh8HRKIkJSYmorOLfxMD/pPEwpDUxFRWYikNPdnM4GJbxNdA4g8LIq6sREnMv52ooGkqoCkeKrRqxKPSwixWF+wyOdHM9IWeh/Hk6XKXYjELITFgqDnZYRaIAFDuIp9NMnfk/VD+F3zdovJuxqlcfWd2m6Rmx58F2FeLk1YCCEw9Cy2M0sut5yW/Hoy+VUYZt6XQUkXoSSuUDg62IZCmGlM0mgBMfGw0bHQ0KioGQBcWUbX0ijlYWl5VLXIzO7v4VaOAGCm+8gYrcwVdwAw1LGOi096Dw/N6kyKCWqUsVUJV5VxZQEpbSy9E0fO4dZGWNpyGQAHa3cipU+ElHRRlTkozmD2rGcgd25DNq947IWJgaF0XOExyRgAHg4aGrYqY4h0sF0aA8vvB6eCpXQ6UkPUvDIPPPxOUlY3+fxxtKT7MawOhNFGNtVNp5kjpxWZLO5h26GfM13cha5ZnLTuL2jJrmy4jkaMQMShx67rQgkJ4os58QWa8HnhjxkVkYrwvRD1e0spsD2PUnWCkj2HbnbRnTY4OL2LfKqF9kyefCaPJIOpKcwYYVnIQ7vQuBQCbLfKE4cfYDa7k61bt3LFFVfwtre9jdNOOw2x0MMpQYL/YUQk5f7n0try9Kt7zBVdBk5PSEpCUhI8KWzb5nvf+x5f/vKXufvuu1FKYdv2otu3ZTr4wPP/BiH81TUhoOxo/kSoqchYLbk6jiewPQ2pBIamKDs67WkHTagF05ZCPXXpQkay/7lv8C40suOToxYY7Lqm+Jcb3glAa7qToc41GOZqzNQwptVNPtVGtTbKHVs+zIvP+Aym0YJS4EgNVwkmPUkFG0Pp5IWJJqAa87DEZRUhmiU7T5YZK67jDtsefh6dC/WVzLQhMTSJqSk0oTA1iRG8DsleszHQ3I/w1ApOxrf3pN+7/l8RkcNmb0tISLwYQXGkmGc8NRrMTX0SM84MMV+mFO+76HxEo2EU9/yAv6IbGnNygb9+mxRPFqzfjIXITJyUxD9PYczT9T9ZfZWnGm+0GFFR1MngQtm0NOChbR+jXB1leOgPSXWdzIyYpKVQYnLqHtzyYSq1UTxZI4rZWARrN36cVZlBjrgONeEgkbg4uDjUKGGrMgCGSGMoi1r1MBNPXElLbjUD+bU8cfC/ABjoOJl8z/OotrQx7j6KpqXo1tfhR/Lo2AEBEuh4OOiYKDxcHDR0dMxAVmcSRv/45xtGaXgN7z0cmmuZhL8JSZaB1fC5gUkKixQGBgJbeZSFjUQiFORFlhahMS39vsAp89gjH2jor+72k1jecw7DnRtwyUQEPn5tFyIXce+nf41FRCxCzPeeNr4Pn5VSKaaLI8yU99KZG0QzV7D3yA3sHPkxrleed40NvQVNM3GcORQeppEnl+6nPdvL6SufT2++CwHoWn3xJDwP/7hhe+KeX/jIde/hwQcf5Ctf+Qrf/OY3WblyJW9729t47WtfSz6fn9eOBAn+p5CQlN8MEpKSYFGMjIzwpS99iS996Uvk83n++I//mNe97nV88U3/xpX3/Cd9+X76WvtY3rWcXKqNXCqHri1Ur6AuB4B67AHQEKMQyrjCEdnsNfGNx/r6W2gKxbdxpRYZVQsFcoeeg3A/SgkqrsZ1D36RicIhnr3pE+QtA09CxdMxhKJol9l7+EfsHv0pqwcvoatlCf3t60mZWSxN4inBSMWgGq2M+9rtdGARVqUvDWuOMZEoP1tTYGSbAWnylMCWjVK0hYx1Q/jxO6GBEhIRUws8KAEhCSf40HMSGvOhYRB6OqBx9fJoaCaI8WuklMANiIeM/tfJY+gxCr8PNekLkYEQYcxFKGUJSUl8LITnqsUMHr2JlMT7z29vXKIWHjeUm8zPPLVYO5ulYv5x5pOWo9VRWSg1dJzMGtRfL4SnIvNaaNuaU+bIzMNoZju62UYq1Q3CwEKjqtyoXSNHfszooevI5lZg5pfhOrPoqXayA+egoZGnC8+r4lbHGN9/LaXyrugY3V3nkkr309pxCsOZQcalTYkSNtXI4J+Zup/i6B3oepZ8dgXFwg4q1UOgPJb1PZfTVr4SKed4ZO93KVaPcGR2DwBnrXkVnR3PwxCKihQUpcRVkprwqU9IgGyq1FQhIi4AuvA9JaIhxqROWEKE8i51FCLqqBJC6BikkXjowsQkHXlTDN//QlZZpIVBVbnR9bXQcJFUvDJ79nwVx57C88rU7EkuPv1rpPQmCZ6oPzvj9/GTkY44BHVPawhdU9F3IZSSXHPvX1OuTWPqORQSKR2kcunJL6HiFCnX5pDKQyBQKPKpdnKpPJbZgRAGVXua8cJ+pPLoaunnzRf8ZXTPmprv2Q3PZT4Bb7yvw1OquTX6Luvni1/8Itu3b+cNb3gD73jHO1i3bt3iJ50gwW8IIUkZvfeiY0ZS+s/8eUJSEpKSIA6lFHfccQef//znufbaa3ne857HO9/5Tp73vOfxpSv+KdquMZbE/xsnHwvFmjQcJ/a6OQD71ylQp5i/fhuPhwjbGWqi3WDF35UCpQT377mFO574IWkzT1tugKzVSdWtUa5NMV3cC4ChpWhvWUGpNknNmWPT8pdxwvDZGJrElRqOFBRtg5IXGvz1lX4z5s0IDYGKq0fGOtQN7ThhCMlWuM1Cq6WaqBscumiUdYnYdmEfNJM/qHuYQtlFfIU9fv3iWb5ChPKusG+VIvKShB4TRZ2cLJRutuFvYPQ3B4XH+7NZHx+eezzeJh7w3ZwEoDl+JpSdxWNllPI9K3EyFbbTbvD2qOhvs1clTkqeLHXsvGxKQdakuOSr2aMS9tPRPCuV6mH2j/4Ez6sAsHLgYjpaVkVj7ZG93+TgWD3WA6GTSvWQSvfT0XM+ZrqXfU98DjPdg260IISGlA7FqQcAaNn4Okyz3fcmCJMc7cjyJPu2fira5XDfJXQPv5gaNu1kGWM6klJlSKMpwa59X2N28h7/s/QAaweeS3/78WR0h3JthKniASaKh5goHKBYnSKX7qYtu4T1S16EmVrFhOtSFFVsapEXJYxzkcrxjWvlBONAQxMmQuhogSdFCC0iKwsVPPTFfV4DUfGw8VQNS+RxVAmFxBDZaH86VoPHxiLte1aUMY+AhklDwB9jnrS569G/4LihS1na9xyABmM9fl8vhPC5EIdqGj8CnyREzxRRf44YmiSlS1pMj9HZPWzefx+PHNpMxsySz/Qy2LGe1f3PJmWaGMJjujzDXPkguyd2MVvcwVRpBMfzPe6res+kLdtDxtRY07OUoc7V0TNbFwpTD55bsXOsP/8aF7MWIjKnvu9ZfP7zn+e73/0uF1xwAe985zu55JJL0PWFC1cmSHCskZCU3wwSkpIAgGq1yje+8Q0+//nPs2/fPt785jfzJ3/yJ6xatYorX/2JaLuFCEWkT6bR0wHzCYpvDPrGbKh3rq9g+9s3y40Wq8/wZIgfW9GY4jZawQ/lSUpQqJYZnT3MWGGEPeNbmCweoVSbASBrtdHeshTbqVB1ClTsKU5bcQmnrXwertSounpD0Gfoxal6GjVPa1gNDCdc9yjpesNA92bEje24jluPGePNkqcni9dpJjMNq6gsLJuLe73icUFxYhJ6TRarhQGNBCVe+2SxmAsrImW+58iMkZMwFif0ID0Z4u1ujpMJiVWcrDhSi7w+btPu4+RqsXiVX6fGShg4HwbMh+THETLap6H0KCtTSugNZEYoyQPbPkapvCfaZ1fbiZy57r2REWh7FX76y3cseHSQWOl+7OooAGa6F6c6hpHqomvghcyM3UqtchjdbEEYGZQmwHPxqlMQq/vRveQlrOi+mJomcXApMosVeBwkHgYWutIoTNzH4f3fBuBNz/43ytUjfPuevwegr20dXW2bSKWXkcosRRhZNAQlHCpUmWYUV1V9IoHEk1UkTkAqvOBaS4QwfQIh0hFZ0bEikrIQQYkXQgzJiqccPFX1SYrWFh03JD2aMCNZmREjKgYmGZXCFHpDwU4DgRF6VQMPx+HpLTy8+0v0tq1n3dLXkDJbSelynoewmYw8GeJkJR6bFi6i6KJOVHzpqH9vKWWzY/Rxth3Zzu7x7RRrcwx3rGRZ1zp6W4dY0dmLK7qZrqYYm76VHz/ybZZ0ruCCNc/lm/d+xT+epnPi8OkMtA3TketkVc8q0oaBpdVJSuj5DYmLFv1tlOtC47lf/Jk385WvfIUvfvGLmKbJn/7pn/LWt76V9vb2X6l/EiT4VRGRlLuPIUk5OyEpCUn5Pcfk5CRf+MIX+PznP09vby/vfve7edWrXsV1b/8sUF8lD1/H0bAa3fC6bpDGtcUEn4fGeShjCuNHQkM2jvDdvBSo8W2aJQ6LTNjxrGBRIH2MrISEZWR2hB9uvhohQq+AS9WpUqxNY+opzln7MpZ1b6Q1ncMNPAO2p8UCxevHcYL9hseOt83PjjNftvFUjI7QKI97VuJeAr/v1LyV03hMS9z70hw0HyePIcJtvOCcw/3FPWhxr4lUftxOSEz8a9DYjoWyFM07V+oGSVoDS5M+YQlJiqaic4lkbdRXnOPHi84xTrJCL1AsbiYK4I9lHXNi3qFQjtccP/NUicqvkgUsnoI4jJZwcYP2exSnNlMsbENHB6+GbU+xZtkbyWeXcujIjew+eHXD/tpb1nHehr9oMHRrbhXbmcOViqJTZqy4g9nSDqrl/Ti1CY5f+xeMTd7J7NwWXKdAaPQDpDpPoK/7Qjy3REXOgm6SSfVz6PHPzDuX4TXvINW6ApsqHXTh4GJTw7VnmT70U4ozjzDU+1yW913E+u40uvC484n/Zv/kNmZKo6TMFjJWDx6CqjONlC5oBi1dJ2MNnoFUDi5VlPLwVA2pqn4tk3jyAmEghImGia6l/b/CbCAocY9W6F1RTTEqIVGROBik69vHyI5fpUWfR1LicSpxT2Eo+wyJiFJQtWfZvOcbjM/tYFnveSztPoOulmH/+RQIrJplWyGaR1mzB7TeJ0SkpO6V9O8hM2iLEciyBH5soVCS2coEO8e3sWd8F0fmDjNeHKe7pZdLT347A62dXL/5Gzx66AHefdEHuGXbTTxy6KF5bXzr+e9mdc/SqB6TKRS6qEtz9aZ7uvnebl7L0YTC8STpP1zP5z73OR588EHe8pa38J73vIdly5Yt0EsJEjx9hCTlyF0XHjOS0nfOzQlJSUjK7yd27drFZz7zGf7jP/6Ds88+m/e///3MfvOXxKe6cGAsJL9ylRYZqKEnolkipJTLWGGMgzOHOVIYp1ArcWD6MGesOJNzV5wOxFbeVePq3rzML7FjNwQ/00hS5hn8Tb+Lp8aNy8BCwjJWmOS2Hbfx2MijuNJloH0p3S393L/ntmg/pp7iovUvA3xiogmDJV3Hoes5AGxPw40Zt6GhG55L2KdxYlc/z5j2+km8AQvJmcJ9NxOdZrmXJuorp+E+moPdw/cChSs1sqYbkTGfWIr5JCV4HZ7zQoHoUTtj57IYUQnjUAj+pnVJSldYmmwwqI4WcxOed/1YAUGhUeIVly0uFOjvSg1P+sTLUWJePZfmGJU4UWmuvbJQlfRQ7rVQQdH4NhIPT7nMjd/F9OgtaJpJquM4NGFhijSz43cyMHg5w90XIKTL9NxjjBW2YAqLfG4VnekeCqXt5FO99HWcgBBadF/U+0tQ8HzjueiWKVcOYcsKysxz8MB3KBe2+xsKDat1JZ0tG7EwQOi0tm+iMPMw+w76HpHeVa/HsrrQprag9ZxOKtUL+DIvJyBb+7Z/jmLR32dv+ybOWvduujI2Kb2eAa/m2uwY/SW3b/vmvHFiWO0MbfygL+/CwVGlgKQ4EbnwvSihxKpOUPxMXHVCUe/3Ro9KSEzi1y0MpA/TE8d/G+6vXpKzTlLC7GChNyXuRdEDkqLh358KAUpy/87/ZM/YHdExXn7OF9A1M/IgwtHlXaGnMET8vm3wpsTuLy3w6gAN91YkxxJgab6UVRewb2ov33vo+4zOjpIy03TlejgwvReAP33Wu2nP5DkwfZCJ0hQz5VnW9h/Pqp41pPU6GTFinpzws7hXBULPSuM8sBAksHPiIJvz01x77bX84R/+IR/4wAc45ZRTFvlFggS/HhKS8pvB0+/JBL9VuPfee/n0pz/N9ddfz8te9jLuuOMOdn7mRxS+9cvAGPAn37r3RKCL+qTgG20CV0omSrMcnBnjwMwRxgqTlJ0yZbtKyS5TtitMlacXbMMJQydhByvsIUEJUZ+ERJPsKJaJKCapkoAWN0Aja9wnLB4wOjfGZGkS27OpuTYpI0VXtoP90wfYN+X/L9bKaEJQsiucsmQTrz/rVSztXEnZs5AKLlh7MYem9/Lt+76E49V4/NDdKIKVTqfCLVu/wekrLuLcNS+g6mrUPB3b01CeQC3g9fCNeNWQajfuHSG2bTPiJEQhmSmNMls+guNV0DUwhE7GStPXupxMKhcZFo378Hs3NECkAkdpkcfH/z6UbWnYniBrgi21eVKoODwpfOKgKaTyHzChxyi8iM1yrxCL1WWIx/Vkg6xlKUNGq6txotJgxCxAUqTyazsoQi+Kv2//WoYSKX8AxUmLJ32D3RMCkAglEFLz63CEg7OJaIWeQh3hf3cU0hkavS7OIt/XjWPHmWH/Ix9DaClahp6Fme6hNPsYzswepD2LYXUyNnE7I4e+RzrVRybdRz41QGfbRlJGC/du+RApqxPXqzLUfTZrB5+H7RTJpbvQNZ9ol6pjbNn7TVzpMVN8Al3P4LoFANLZ2Gq0ktizOxmd3Uk6uxRNT7P/4Ldp7zg92mRm//VoRo6s1YG77/t4XgnXLSGVi2l1kLV6aEv3RCRF4AGSqhsEt4c3uEizvPcsaq5k19gvmZzbTWt+DS2tG5DpNmpTW5GyFgR1V0C5wfhI+emMrQx6rhc04UvMRDogDOlFJF56rN+9gEDqwetm6E2/bSQ88escklRNaDjKg0DKR7BwYgE1T8MQCj0gCzWn0kBQ2rKDSDlH1mxHITCC9O2hbLMux6x7sDVRf+8pv3VhkpG4N9IQElOXpHUZeU/8fQXNDNoggs9cCRK/vUs7l/PnF70XV9ocmhnhwNR+unJd7J/eiysd2rPttGfbG4LgQ3+viN2zIvoftCuKV5ENz0dg3vs4lBIc3zPE8QzxrBcNsq3H4/zzz+fMM8/k/e9/Py984QuTFMYJji2kWnhl99fZT4LEk/L7grvuuouPfOQj3H333bztbW/juL3Q09I+z6gKEcaH+LIKm33To+yeGmHf9CgHZo5wcGYM23NosbJRcGKpVsb2Go2sllSezlw3XbluBtsHWdt3PN0tvVFsShgEWV+lm685jiOczJrbW3aqHJg+yN7JfUwUJ6k6VSpOhWKtyERxgu6WbizDIqWnOFI4gu3aLOtawvLOpSzrHKYl3YZSktZMK53ZDqA+KbtKYAdSn1KthGXkCOuA1DwNKSU/f/y7PHLgLj5w8T+CaKHsarhS84mKiku5YivqscxX4fkK5ge9NxevDPc3WdjD7Vu/xWx5jLZsPykzjaGBlC4Vu8BkaYKell6Wda3g7FXnM1uZwdBT5FIdpK1OPKUjY3Ej8XgSX/6mzfP4LJQhK/55nFiGMrd4sHzofXCb9tds9IUrymGfpYKkAxnDw9B9Q0qPyU/q/RW0o8lrFkc49sJrAPUscfGsb0DMa1S/Xk7QNzXP7zcnJn0L41Uk4MZ8InGPStyT4renbrouhnhaXNercGjzP4RnirByWPnlDLc/m7TZzradnyPfeRKiYxnKLkJ1DirTzM1tIZPqx3ZmcNwinV1nUprbTs2ZwtAzaELnWSd+jLJopepM8+CjH0TX0uRyK2hdcglO2qJaOcTMtm+wcu37cN0CM7MP49gTmFJnrriN9IoL8coTOEceQaDT3baerJml5EFWk0gENWcO262gVA3XrUTXpDW3kpOWvZiBtl6Ktv9MsZqyWtWTTCjKtSn2TjzC4ektVOwp0CxSehqEgS4MdM3PkyaljSdrFKtjVO0pspklWC3LyLWfQHvrCZixtbqFvFz1vq9fg7jkayHEA/CjOjgNsi8jOq6pgnTFQoviiSwBKQ0yuhfd/5bmMlM6yMTcNo7MPMbY3G7OWf1ilvc9i7TR+MysS2jF/LEekY3G+0ITipTuYekSU1ek9HrMl+/dIJJkhQRcRoklGp8NjhSYmgpka0THDX8TPlfqEi4avCeaqHtPojYEBGXBxBhPQeLrt0FQqJX58fb7+dmhLQwNDfGRj3yESy+9NCErCZ4WIk/K7c85dp6UC275vfekJCTldxx33nknH/3oR7nnnnt417vexcbdNvlUFggnsLjsqZ7laKZW4dsP3cTWsT2MzE6QT2cZbutHKkXRrlGya5TtEjW3Qj7VSndLD935Hnpbuulq6aEj10VHtgtTT0VGYXN+/niRx3jgN8S8JrFzqQf6SraObufhQ48wU5mhVCsyNneE1kwbSzqW093SS8rMkjLSpMwMw52ryVq5SEYglT9x6pqIJtBmnXOI0NMTOgKUElScKodmDnJoej/7p/axb2o3pmbwwhNewtqBTb7cSwUxLjHDF/wUyYtJMp4su1YY8O9IDds+wjfv+ggre0/mjDVv4EihgK7GqXoGGV1h6FCqFbl/1zU4Xon+tuUcnNo+7/wG24Z5/Xnvp+ZpUb0aW2o4np+tzPbmrxnHSVc8W1i8onRc4rZY0Hx4TnGE5CQ0hvzrDhnDQxc+SdGEwtJ9KUpci99cDM7/bSMpDPuUeL/GzqtOUhoJixcnLbKeYjn0KnnSP2+pfG+Tq8AOduyicPHHXU24C8ajNBOVZsnXQgQm5RmktAytIsMsVaaZZHLX1ZRnt5HqWIdAQ8oalqdTLGyLftfWdhKV8l5sZ4YVS19HyZ1GAGOHf8qGdR9kaetqAA6M38pMcQ8z5RGEEGQ7T6EgxykfvpvOlS9jaufVCKFhtq2gNrODztYNzBV3kV1xCXbKQ7NdxNw4wnWQsgqujYaOmR2gloKs3guagSNLCKeGO7ODUmk3Zxz3l/S0rgwMU0VNBrVIAsIZxZGpuhSwxfDQtXocVvwe0yNPgKBYnWJsbjdHZndyYPwXDPZcRHv7yXTkVqFrWsP4dPFTGTuiTk9c3AaS4sZqp0RjrkH2VScodZISir/qsUbxTG7+9pAWGoaAVPDcyplelCRCKrj1sS9wYPJh1vSfy4UbXo2pyYg0hHWcfE9HPS176DGB+QsnYRyKrvl1lnKGF2XdsmKxKNG2NErAoDGmMIw9dGV9Xmk2NsL7KoqBCY4RBe43ERVLSIRQpDWfvGmoec/TqO8XaBPUn7dV1+En2x/g2n0PMzg4mJCVBE8LCUn5zSAhKb+juPPOO/nIRz7Cvffeyx+sOok/PP4M8ulcPcNVjKCExtpocZpHDu9ly+huHhrZwaquJfTk+5ipVpkoTnJoZj+GZrKiezmrupezsns5A60DpM10ZMzHY1RgPjnRNH+yNAO9c+gZidcCia9827JuKErg51t/yr2778AyUmwYOpmuXD+6nqW/bSn5dLufJjYMzG8KwIxLCUIZgwZ+PIzy22ZpipzhRTElAFXP45GDD7NrfCd7J/cxVhinLdPKko5hlnYuZVXPSrpblyKEiZT+5ByuFoaxG/F21Y3kmCehSZ4UD2oGogB9V/pyJU/CL/feyi93/wCpPDShk0u1B7EUEiH8MO6lXWs5Y+VlTJUrPHrgRg5NPYbt1ouvnbjkfJ6z/uWR5yQ0bsK2Vl0taHPdEIe6vj1eyyUkCWasYGdouIfGZehNaYYZEBOfdNQ3CGNNLL3uSTFj2Y3i6ZTne+WOnqJVNV2TOGmpe04aPV5SCeJpluMxK811YAquiGrnOGo+yQi9KkBk9sbjUkJj2G+Th1udpFbcj/KqaJ6DdKsYRo7W9AApqxNNGLhuCccex/MK1BQIzWL/we/WD6qZCM1EeTVS6X4sPYeuZzH0DNnsMtYNvADwCZYh/GtVs6fZf+QnFCuH0DSLnNXO6sEX8+DOz1Mo7QbNAOmgGa0M9j6Xg6M/BlkFI41ItSDMLCmrF1sVATBEBs8tId0CyrXRtBSW1YXrzOIU9pNf+kJO6305VkBYm4dLSADDsVdVbuSFMGIUtbn+UHwhxJOCmeI29o3dyuHpLaTNNjYuv4Lutg3RuHakoCobSaYj/OxkYQHKhQo/wnxyEn7W+Fpr2D6lTHQEjpDUsNHQyCoLQ/gkIys0Wg1JzvTIGB7FyijfueejACztXMX5a57D8p4TqLhaJJUL5ZmLeWz95/B8QqcLRUpXZE0v8oaYgaRssTiR5oWmhrGu6l5JGXimQxIT98KEz+YwHickKungnm/RHSzNCz73Go7nH0OLeWjCelixBZMFiFLVdfjx9ge5Zut9LFm1kg9/+MNcdtllCVlJ8CshJCljtz37mJGU3mfdmpCUhKT8buHhhx/mgx/8IHfffTfvete7eO9738tDH/ysv8IWTJxR0DOwb3qcD9/4dSzDZLI0y4quYQzdYq5aplArgFKs71/Lqu4VrOpZTn9rdyRl8BQ4SkSrd17McG0uLBauxsVT68ZTEHtKsWfyIEcK40yVpijWSuiajq7pKAUVp0zFLrN1dAuvOP1PGOxcA2gNk2/c4Gw2UsMJNJQwKAjkCCpqdz2drz+JW8GE/dCBB7nyXj9DUls6j67prOhaznmrzqZUnabs2JhmjqyZI5PK0tXSh6EZ0QqilDBVmmH/9F7aMx3kM22Ajq4ZpE0/BqChEJ9oFGKEN2ijNMsnLuOFMfZPPkGpNodUFY4bOIXu/CoADE1ie1oD6fDv9hq6qJIyWpAKLF1GgeFuZNDU0wiHco6QwMSD4ettrnswjHAFk3pChbDGiP+9H18SSrGsGOmIy1RCQ0UTfhvThucHywfXNaxu759X4I0SjfKUOEEVUVsVCxHGhbKzxQlLPQNczIuiGtMXx/vLkb5XSioiY7e5lkpcAgbMk4GFhjDA+IHrmBv7BSLdhpbtRmgGeB7USuBWQboo5eJ5NTrza1ne91wGOk9irnyAvUduxUYnY3bQkV9Ha245hmY2jLuaU6ZSG0MIndbsMKZWNyJrbpl9R36OYeRpSfchvQJKObS2nsLIxC2MHLmJqjMd7StltpO22smm+shnh/G8OWp2ASmr2F4VTVj0tK0nbeXwvApThV3kUh30tW9gruK3QdOzmHoL+exKqvge2bTmk47wutkS5qRLp25Qln7RVFhAPki9DklWlxhCYelBogXl8sThW9i893p6245n47KXk0r1RpnpQgmfrfzrdzTvykJoJifxz0PoweuUMiJSIpUkLQxa9HomOwgIQmDAf++eD1K2ZwFoz3bzzov+Gqn8ArUlp9FQCu+rEJ4UEUnR40Vgg+/De8fUFBlDYjXXYSIMnlfRM3Ne8o8FvMYNtYjiJD9slxLRQlboQUkFxCSteWR0P9bI1OSCXpTm9Pgh6scTC2wrqLkOO04Z4BOf+ASDg4N88pOf5LnPfe6C1zRBgmZEJOWWZx07kvKc2xKSkpCU3w0cOHCAv/mbv+Gaa67hHe94Bx/60IfY/MHPBsZk3bCSCGarVR46tIsHDu3k1t0PAfDcdefheB6Pjmyj6lQ4bekJnLpkE2t7V0ZV5BvlLz5BqRttfkxK0S7Rle1C1/SGDFKmaIytCPXJrhSU7CrXbv4e20e30tc2RFumk6yVx1MenvSQSpE2c6TNLN35IYY7j4skOeFKuiv9rFMp3WvwmIQrg/VaGyoiL3GjNdREhzK0UGYQGt8Vu8L+6X1sP7Kd23b8AoCObBsdmXYsIxUkCygzWZriuL41XLz+Iiw9haalmakWuereK2lJtVKqFSnW5qJ+OHvluVxywmVomhkZxNBI8OJ3qIpN6LZb45M/+dC8sfDK01/Hsp5TKTp+7ZYwE09Y68BTUHZ00kaYJCGW4SwgKnYg//KzlxGRlFpAeOIPjWZjIC7/CD0bcRIR7i+l+8H1uqgXq/QNlFidBK0uKwmlXn6b52vuw9/4bfCPY4QFNEXjtQ/bGUec7DY/FOP1U45GVuKpi10pokxgtpxfALK5Sn28AKQUKqiW7kbB9FLa7N/ySXLtG3AGlgaZqvR5NT+80hiFXT9EuUWMdC8rus5luPscMLvxpIcIArWVUpiaYLq4k9HpXzJy5IagHw1SqR7O2vBxdCGwvQr3PvY3oJloZgtubQrNyGKXD9E/cCnjYzeRH7oIq2MdtiqhZA23Okl5909p7zyDC1a9lvt3fYuRidvQzTz+pRYsXfFmxvd/l1JlBDPVjePMoFl5ZHUKTUsj0q1IpwSeQ0fbJrq7zqav7WSsBRa44+OvKGUkbwrrxYTZszJBjEtal75kkLoEqurMcf+u69g7fj+rB17A8v4X4YpU5FGyVf26SXzvWHidmuV6C0m+FkIzsQkr0ltB1q8qklZNo9Xw5U2W5re7M2Ozb2Ir1z7wBSwjg+1W6G0d5rXnfhBdqEC6GchLg/uvsaaVH2wfX8wxND+rV3gfhUTODJ4bUfFYGqWV9edkrJhqLK5wIX9EfeElfN9IWsLrWZd8yYikpDQPU/OigPrFaiItJvNqJivNktCq6/Lohm4+/vGPc/bZZ/OpT32KjRs3LnoNEySAhKT8ppCQlN9yzM7O8olPfIJ/+Zd/4SUveQkf//jH2fUP/w+oTwSe8o3NR0YPcNVDP2fb2AEG23rpzLZTtqvMVGYp1kqcMnw8Zyw9kY0Da9B1s6H4ob+fYJWdoK6IEjiexwP7H+KOnbdzZO4wmqaBgu58Dy87+SUMtvXwr7d9menSDJ+4/B8ij0sYszEyc5Dv3P91OnI9vPDE15C22gAiGVYc8UllsQlGETNURT3D0kL66ZCohCQlXtlYBFKTeHxIOAHvHt9FWyZPX74n2hbAk5JP/eyfqbk1BIKaW6Pm1pBKcfGGF3L26otwPIGUvrFdqE3zrz//FK8+8/VsGDg+6uPwjETsGsZRqBbZMvIoWw5t5vDsIVJGGl3TMTSTtJnijGWn053vJ5tqI221oWtGFOQfxoo40vdwZAyJp/y0yQoikuKGMhHqcTTxei/h6mfcEIhfi7ghE/YdNFbMlqqeXcw39usrvRoKXYsVdAskX/FkAvG4lziai1OG9R/iMSwLSQCJ9XezFCxE6OmJx6Y0S8DCGIA4UYnHUbiq7lXxz7XxPOLpi0Ppj0Ry5MD3KBd3Y66+EBX1rYcIany4cwdxjjyCVxoFBLqZR29bjj3xCACW0YrjlenpPIuWzDB7R64lm11CsbgDw2gFzcC1pwDo7TiN09a8A8dzuW3LX2PXxgDoW/Iy9N7jKRd2MfPENzFyQ6Q8RbplNdbSZ1GSY5T33Yw7uxcj08sJa/4KSk/w+N7/ZHjdO5m2ZqjObKe692YMPUemfQOqbzWOVsGrTeGO7URN7wOhYaS7cL0S2KWob9auehcD7SfPS7jgZ39b+HkQv76hl88KSErcwA4TVhyZ2cddO75DqTZNx8ALOHPw+ZQ9jaoMvQf+2LWDmJU4qYxDX4ScxKV9cZlYPU2xQUqZZIRv6LTpvsQzb3qRNDZleMyV93DNvZ+K9nvZyW9hTf+JDeM3LlttfpaESSfCeyIk9PWaKYpUEPwe95oImhclGj0nccISXwiKb19vU8xrGbvf6hkMA6kewTNAk1jCCyRfMnYstei+6/uNH2v+8ZsxWy1zc7fg3//933nVq17F3//93zM0NLTo9gl+vxGRlJ8fQ5JyUUJSEpLyWwrXdfn3f/93PvrRj7Jx40Y+/elPM/fF7wPxIGXB1vFD3L53GzsmDvPExCEu3fBsNg6u50eP3czmQ1s5aWgd5yw/kdOGVqPrqVhcyfxCjW5MzlKoVXlg/0Pc+sStCCE4b/WFrOs7gUOz+7hhyw+Yq87yrNXnc9P2m6M2r+pZw0RxAtdzcKXLks4VTJXGWT94Es9e90JsaWAH1dmbjd943ZP4ynzofTA0FU3IIbmARm+KF8RzNEurQoQfhwauFtgYShFbiW/MPhYGexL7bTMcKakXhPMnyIMzo/z40R9wpDDKX138l6QMA8f10DR9wYkz1FkrBP/3xk+QNjNsHDqJnnwvxeocheosc9U5CtU5ZitzzFVnKVQLKBQ5q4V8upUzVpzLqcvOjuImwlXW0DMQGt5hcH7oUQmvfyg1C/s9HGtxrwnUvSVxwtdguAhV90io0Nvg90sUKBys3MaJihGs8kZ9oub3d8P1jMaMijxJ8RoPcTlYuH18d6GHKTzP+mfxqvT14pbx7Ghxz1RYBDIeVB9mOQsRr7ES/g0NYFd4FEt72L3tU+TXvxrPDHvaA3SkrOGNbsWZfAKhJNnOE8n1n4VK5/CUQ2X0fhAauZY1eJrEHt+CXTpAy8D5uNVxCiO3AjC4+m146Ryze69DeA5nr/9bwOAXj7wPJ5BytS+9FL1rDUooVK1AbXo75ZFfoButpHJLcKkhK7OsXfl2UplhsprFocM/Yqa0k/TqS7GVTzisqot3+B6ywxczY0xQ8yaRbgGhWahqEXvnzViZAezKCHqmF2G14JXHUE6RbG4FPZ1nMdx5Fi2WP3mHyRbi4yYOT4b9Gz4jfO9AvWBgY1Y911NsOXgbD+/7MRtP/Kd59UygkWyGnpU49EUM4LjEz2nIAecjzPyVwcBAI6/7Wb6swPMYkoi58nZ+8MA/Nfz2tef+BT1535AOCXSz9zC+SBOv6K6JeqyeEfRPmFUvIgtNnhKIx5OopvcsSB4Wql3VjOaskyE5MzSJKSRW4EkJJV8LHSfEQkQo/PxoZCXc18jcDN8X01x//fX8+Z//OR/60IfI5XLztk/w+42QpIz//AJac8eApJRcei66PSEpCUn57cPtt9/On/3Zn+E4Dv/3//5fsv99JwitwZDylMa3Hv4F33joVi5YsYnVPUtZP7CequvyqZ9/mRWdg/zx2ZfTkck1rDj5v21ccXKVb2gVa1U2H3qMBw8+yvYjT9CX7+fcNc9h/cAmfrn3bm7e9lMqTnmBFsOm4VMZ6lhBR24ATbPQNZ1bt11L2S7ypvPeh8KIYi5CkhJf9V5ounfD+AXlp7t0QpKixQxPCAqi1dG8r2aiEicpoUencUIPt1XziEo861XUh/FjBdv89+YfsmdyD28/901krDS37biDnzx2A4Ntg5y69CTGChOMzI2ST+VZ3bOSYq3Ensm9tKRyPLj/If7hsn/AMupVruOGQUg0PSWZrRSZq8xxYHoPt26/kdee+TqWd6+Jgrsjr4kiIipKxaRKXt3IDklKs3wrfnz/HOsejHjtl3BbFeyr4uoUPEGhNklhdjMzxd1oRo7B9o0MtB2HaeiRJj2UfjWjwXsTM8aaCUxIVOYXf4RSdZJSrUhPvp+UYc4jK9DoYYHGuK6QcIWEJZSiNZCU4PPwdbwYJDQmE4hnlwo9KodGrmNk9Iek8qtIt61BtveCYSEwqE4+jHv4ETLpIVxnmvYlf0DZqCHdEpmWVVh6C2U1hSvLiKbVfV1L4x55nOKhm+lY8VJkew+GSjG34xpy2RUcv/SNCAWVyn4OTd7F5PQ9KKBl4HxkJodXHqNy8E76ui/gyPgtwXUwWNL7LJb1XYxpdVGsHOT+x/+BjrWvwk2n0LQMhmbRzRIAyhQoqHGq3gQR8RrfiaFlUdlWRKYDFQRJC8eDwhjO1BPYpYOsHn4ZUtq47iwr+55NZ64fXYuvxAdjjnpcVZw016urN8oBdaHYO/YQt2z9Jl19L8BzivRkh+loPw1dzxLW74nX+4l7x/wxt/gqfbNkzP+sHkSvKYEpdCw0WnRoNV10zb/vUroXtFuye+w+do7ej1IO+yZ3kEu1csqyCzlp2bPQNN9QintLmpNKCOr3QfjMM4Qfj2dFUsn6c2+hyu8LeUtCRMQl/lmTx/WpIk4oTeEhADOIVQmJymKZvhaaQZo9LKEMrLntIR4fG+GqyV3s27ePf/7nf+alL31pElyfIEJCUn4zSEjKbxFGRkb4wAc+wA9+8AP+7u/+jne/+93c+ad/D9SJRRh/IhH8xwM3c80jv2CgtYu/uPBNWEaax0Z3c83mH/Nvl78XFTxgPdVYZT6+wuspweHCLN964Ic8dngbA239bBw6kROGNtGa7UUp2D+1h6/+4l9Z2rmMsl3iBetfxN6p/dy58xaWdi7ndef8GQojMuRCA1cpiStddN3yjxUjGc2SnHrcCdF5hqREqTqxkYFXRY+t/pkx41bXVORRaZZ7QZ2ghBptQX0yi9dygfokFvfchO/DdsYnYS8w8DVg1/huvnzn/+PCNefw2OgOqq7Ni0+8nAPT+9g3uZe+1j76W/uZrsyye3wXKSPFur61FGslUmaKZ6991oIrkAr/nGox74ifYU1x166buHPHzQx2LGX9wEYqTo2SXaVs16i5FaqOjWW0kE+3s7RrDYMda32ZWFCcUgZEpp66dP4YjevSwz6rF54U0XW2pUbV1di8/wfsP3wt2VQ3tlvD9fyCgaesfisres5s8KQ0k5RQogPzPSj1GjyNn2tIpkuHGJ3diSZ09o4/xr6JxzF0C9urccLQGfS3DiMEZKwMx/WfiGUYCwbah9e0noq47l2JB9G7Xp38hWTP9jRqYWIF1ZhUIIqNof5aE2DXjjAx+whHph+kUB0h07KSSmEX0qvQ1X0enbnVjIzfQrG0Kzrnlv7z6Bi6mFl5AFeWg37wUxMLYWJoWXQyqMokMp0DoZDKwavNUNn+A7oGXkBX5znoVisuDp5yKU0/wtToz3Fqk2jpNvIdp1EavZ32JS8i27kRrzxO8cidFGcf5/jlb2So63R2jPyE3Yf8LGPp3lNpX/JCPGxa6SVNhioVCkziqiph7RFXlhFCx1NVUlonnqriqjJKSUythexMhdnRn5NK9WFoFhPT9zPcdQZ97SfQkl1Ge7YHIxikzWMwvHdDb0ozaRECpKyw4/Dd7BjbiaFn2Td+l99+q4M1Q5fT3n42tqbTrmkRyXRj1zIuRYu/D69tffv58UkhLDTSGrQY0s9spykyhht5Be/ddQP37vohAOesfh5pM8sjB+9HFzov3PQ6elr6oudoSMTChZgGsh7rI0NTpDUVJKnw2xEnJ2H/zYs/YT4WKrC4GGFZ6PuF9hc+n01Rz/IVxqZ859H7eXDkAJZu4ErJrulxZqsV1nb3c3xPPxt6Bzi+p5/eXL5hv3HCEp//mtNZK6XY96wNfOADH+CEE07gc5/7HOvXrz9KixP8viAiKT87/9iRlOf9IiEpCUl55sNxHP7lX/6Fv//7v+cP/uAPeInqpieXJwz+C6VdQERQlIKC7fDKb/0jQCQWAujJtfP5P3x/7LcLH1chODA7zSdu+iIbBjbw7LUX0p7rbsjitW9iJ9+89z9oy7RSc21OW34W561+Hp4SFGtFUmYOoixcMTJB3UsRZoAKjVAjtqIZkoiqq1PzBDVPj2QMSoGhK1wvrFUh6oHyol49OW34hf9cKbA0hS0FWaMxwD4+eYepiY0gyDzcRkXb1vuoOUBUBfuKS890oRoMl5rUMDXJnvEd3L7zFwy1D/LcdReiaRZhTZHwHIj9DuYbMeFqropdy7AtthTYXlD3JCAsFbvEg3tvYaJwAEPPoGsZlGjB0jNUVY6KU0R4Yxyc+CUvPf3PGOxYQc3TKNlG5BkIERVVi5MV5QXJB7R58QHQGKAvFTy094fsOfJzuttOwnZLtKS7GOo4jqHOjYQ1I4Ao81A8diCOuLQr/l6gqNgFth++m6niCIemd1Bzywy2r0Ipj/62FZyw5FxaUu0Uq2P86OGvY+kpUmaaXWOPoWsGq3qOo2yX0TWdgbYl9LcvoS3TQcrMkLPypM0sZaeG7bqkzFbCVMUE4yEe5xMmI6i6jSQlvLZCSVx7jJTVzmxpL3uP/Jy+9pMZ7j4bIfz00lJWODJ1N65XpC13HF2tKwALRwkmi/u57/EP+9fHbEW6FZRqLLCa6TkVY+hkJA4aJkLoCDSE0FHKw1VlPFnBndmLmjqIVxxFb+nHbFuB1b6GVLoXHX9hQUkHXaSZ2P416BhAtA+hlIuu59CKBSr7fk5P17ksH345M1P3sX3v/yPbehztubXYVgot3UEmM4ihtwR94Nce8bCjhAEKjx63lzmtSFUU8bD988OiRyzDxSFDhj2VO0mNHaRS3kulchAhdLrya1gzcCFLu9eji/nmb9wT2ExSjCC7VNb0GJ/bzVdv/1dSZoZqzFvcf9JfsME4DglYok5S4uTSEPVYFn9MNgaOu7HrT+xzYr8xBLQaHnnLJWX4me7C227zvpu4ddt1886tNdPJn130d1HwuaHVzzfMxhU+6+IZu+JZtcCXeWb0euvCZ7jWRFDiHtN4tsT4YkozKXlywrLw5CQE6PiZyaRns/nwbgSK//fgnQzm2zi+ZwAQrO7qQmntHJg+yBMTh9g6fpi90xMo4NTBZXzuRa9ccP8wn7DEUbSrfH3z3fzgiYd5xzvewYc//GHy+fzCGyf4vUBEUm44hiTlBQlJSUjKMxx33HEHb3/72xFC8JZlJ7FpYDnQGHcSEhOop5mM10AJJSMV28GWHgiDO/c+zoGZUYbaehhq62WofYAWqy4fUkrxwKEdfOuB6zhh8AQuOeEyZDBlKCVwvBo3PP5j7t7lZ7pqz7TzrHXPY+PwmVHa4HpBw8DLE+17vl7az8svG1b7nCAzlaJu3JYcnaqrY2qSMENN1pBMVCzKjk6Y0QnqaYWNoG5HWKkcIG95kbRMF/Wg0TCjTdXTyBqSsusb0xmjuXaxjzCIFoJic4jGQoTBdmFAfNnVoposhli4InOYPW2hGhEwP8g73H9oVJRdDV34JCWsq1LzNEpBti9Ll0xXLb/opBTMuXpgqPj7nCs8yj3b/5U/OuNvaU8LRuamqbkSpTxyqTyd2W5MI41ULrZbIWXkEEJjtnKEGx7+EnOVcXKpDvLpTlrSnRhGGtez8aRNS7qLvrbV9LSuxtQzkYcB6l6XeN2RsB8tzSeacU9XvT8WfoRpAh4/dCd3PvHf9LcvZ6BtFT1tq+hpXY2umZjBPsMgYb8NRNetUJ3k8OwhZsrTpM0crmczNref8bn9FGsFqk4ZVzpkzBwVx4+16Mz1Mdy5mq6WIbpaBujIDWAa+YCY1dM611zBRGkcR5lIrYXx2c0cmbyTQnEXUtqkrS6E0NBTXdQqh2nLDrF64A/YduAahIALN76frQeux/Gq5NIdDHeeQjrVhyMFc9UZtuz5D8ZntyzYL72dZ8OKZ1PxxoNz1tGEiVIejiwiZQUpa6D8QHBZm0LOHUEVp1CVOVIDZ5DuPxVVmaWw43sgNPRUJ27lCFrHEFrbIFq6Hc3I400fwDlwN0tWvoWl7WdSq00wPnUPFXuCcm2cSnUUz51DCBNNT6PpGXQjh5HqxEj3oHCRTpHS9KNo6LR2noJKtaB3rQVNw8OmV6wiQ5p96jGq7hj95sm0yzzl2igzMw8xNXY7nblBzjvujeTTrcG9I+YRgbhnTtf86ut+xiuFTpl/u+UfOW35c+jrehH3lI4wWX6EdNlBeTU2Db2cnK6iTG5xomIIP/VxvAAixJ/NjV66ZoSywBZD0pl2yJpuJGM1NcXWkfv44cPfoCvXxVRpKlqMEgj+7rJPomFgaD75sIJAeKh7UMBfBDCET04Wup+aSUj8udaM5mdf8+fx+7rxGIubIs2LECG++8gd/NeWu8maKbKWRc11ePPpL+CcpWsRKDK6Q9kVXP3IPYyX5tA1k4F8B1++7ycAvOHkc+nKtrBj8ginDS3njKFl5FOxeTAmBWuGQrB7apzP3X8zo26Fz33uc/zRH/1RIgH7PUVCUn4zSEjKMxQzMzN86EMf4qqrruLDH/4wm7bOYGh69IgOM3aFWIiY+NuFQfBBHRMEH/jBZzB1g1XdKxgtTDA6d4RCrch5K0/jVadcQtow+e7mn/Gjx2/B0k3+/rKP4+dX8Q3kfZN7uOaBbzNZmgDgsk1/yElLzkJoJkBEUCIJTKydXhALEcoPTK2eeQn8OiYVV8OWGhVHx9Rl5CFxPC2qhl60dbKmx0TVYs5TdBhQcAVpDfKmF0lwTE2SMvzJN/SudKZtSo5OS1CozCcPOjVXI2VIutIOVVcjY/htMXUVZQVqRty74qfE9D8PA9IdqVHz6oXLQtLWmnJJBXKKeB/FVy9d5XtCQjIXBrZC3WgI5VypILWqL/GCmqcxWzOiIoieElQcnZmaGXlDpm09KqJo6b6cRCnBriP38std30ShcD2bllQbmpZCE4KyPYftltE1E0/6K91LujbwrPV/zOa913JkZienr3k7tjNOqTZJoTKFK21ShoWpG8xVjjA6s4NCZZLu1qVsHL6QZb2nAXoDoQXmeU6aCUpzoG4IIRRVp8y2kbu5d+cPecGJb6O/44QoS5mlSySCsqNH4y9nurhS81eoRd1D5cWIrCNFlNYV/D4u18q47mGUGMBWBlNz2xib28Xo9GaUsilUZ2jL9rBu4ByW95xD2srz2MHb2TZyC+XaJCiFwiOT6qe3+3yqrb3k08tQk4+SEqB1no4tK8wd/CGjk79gsOscRibvRhM6ucwAg+3HM1MeZXz2Mdpzw/TkV9KRX4YQKe7e/iVyLWvQWgZB0zHzS0nlhnGo4mH7IiPloQmTjGinRXVSrO6lUNlFzRlDS7XR33IeR9Tj1EbuRU7s8fu7Y5hs+yaKe36E0TJEtvdUypOP4s7uAzMNTgWtZw1W3ya8mX04B++DgAhtOu6vmZl7jO62TWTT/UigMLeFzTv+ibb8BjyvjOvOUXNm0DWLXLoPK7uaTG4JnWYb03NbmC3toVgZJTf4bFK9J1KTMzhyliHjNDJk2CcfQQidDrGEDtVBTrnsOXAl47OPc+GGt9HfvqYhZikeTB1JOAPyauqSVPB/urCL/7jrq2iaRWtuJbOlvaSNNMXqJG1rX8O5bechhPKljLIu5dIQWAJSGsGiROOzJHxehghlVPHq8mGSiRCGqKcUN4N719AkpdoMtzx+NVPFw7zurFcz3LE8WsBI6YqM7pFq8pT4+5OktTDTWLjg1bi4FD53wnusnpI45jGlnhq8/pvFvSFx66M5hmwxhNdoslzgNd/9HH994Ws5cWAVQgg2jzxBezrPcMcA6YCMmTh85s7red3JF9CVbWP7xCg/2HovG3uX8PPdj7JjcoTnrtrE42MHODA7wfreIdZ09dKdbaEnm6Mr20J/vp0lbZ3B1Wxsm1Rw487H+fJjd3HOOefw+c9/niVLliza/gS/mwhJysRPzztmJKX74jsSkpKQlGcWlFJ873vf453vfCcbN27k3//931m5ciU3vflv/ZSSSqMq/UxRjltm+/gIT0wc4mc7HmCsOMNrT72Y81achONJJsozbD2yj+1je2lJt3DmspO4e8+D3Lf/ET76or8ilwoz4ygmikf45i//G4B3XfB6bE/y/mv/njOWn8XlJ78sZjxKPnL9X3LeyjO5ZccdALznog/RkevF1BVOIC+Kx59EhCn4TEA0uca9Aq70PSXtKZdDhTStKYet0y0ckVX6NH91yxTQZrmUXY0RW7I6Cx1pm8em/WBWV0FWIyILcQMcIGVILE1iS42eTK1BUhYlDohlAUvp9ew2UDcm4oH58RgM8D0YYT9UPZ9s1Txf4tWbtUnpiponSMe8M2VXi46nIkLjT9wVVyNryqieiF9UsVE+5//Ol5KFwe6hByilSxzppyDWg/05QV0ZpaDm6tiBAZ82/AKQVcdBegfRjQGUyFJ0/VoNnoJirYztFkkbGVIG3LPtcyhcak4ZqVxeetanqATyPEP4cpnQsI9qNniTHJrczKP7b6bszLK67xTOXvMKhJaaV98g7m3z+3w+OfGkx+3brmb/5Fbfw+NU6WtbyknLns9A5ybKjkHB0f1aC7H0s1NVi/5clbThEaYoDp+IYUa38LqHSRqqrkba8MltxdGZrFi+Rl5TlF2NGUdj94GraV3yYoZRFIpb2D9+CwentqMJg0yqi2WDL8FpW4Up0uRdySk9OrfO+BmfqpTQ0OmlG0d5FEQRA5Ocp5HSMxSLu8iaecYtg4ooofAwXEFtdideeQS7fJBSeT+edDD1FFJJdM1ESpdsbgVm3ym4bgHN9TBdD+mWKDtTVIq7UJ6NbmTREHjKQ3plMNKgG1ArovesJTV4JlnVQXHkNuzZXUinGFwFX8iUHj4X58gWMoPn4uRTZKwhUFDZ+zPcwggIkG6V7u5zWT78SoQweHTrR+jofTZu9xI0dLplD2PTdzNz6CecvOIVDHedwZzrx0WlNcktD/8F5doEQz0XUshmyeXX4aZ0POUgcVDKw1M10lon/dVW9u/9GoXKAU5f9Ro2DJ8dXeeGbE9NBnNY58nUJa2W69+D2ByY3Mv+6f30tQ4w2L6Uq+79OsMdq3m89XjONU/yvWaqnm46jDcxEGR1v5Bp2qiTlYbihqp+fF34tYFylkvWkBiaZLLiy+zShoep1z0brmdz3547uHfXTzlpaD1vOONS0mY2SIjhZ/ELK7enNI904G2uy7/qweh1KVro4RE017iKFgyie3FxM2Kx/TTEi8XiheL3eBzxYzhK54fbHuDmnY/w9xe/Fang5p2buX33ZjzlH2WwtZOsaZE2DIbbutk3NcLbz7oYHUnVqfKp269jVdcgLzvxfBA6nhJMlWd46NAuRubGmSwXma4Uma4UOFKYIW2YnDSwhE39S9k0sJRVnT1oon5uGz7xPt7znvfw/e9/n3/8x3/kHe94B7quzzuPBL+biEjKj48hSbkkISkJSXkG4eDBg7zjHe/gpptuIp1O8773vY/TdlYBP43t7qlxto0fYtv4IZ6YOMSh2QnUUVacWlI5VnUvJ2dluGvPL8mnWjh92cmcvuxUhtsHgcYVr4mKx7fv+w+KtQJSuhRrZV55+utY2bMaIRSOa3PXrtu44fGfBvr8IZ63/g9Y3rUaTQuK/QVFxOKFH6EeSB4P1Ay9AranYUvf0C47Ok6g3ZdKsL9kUVYSR3m4QYafDBYaUMJmbcpkd1WyLivYXlboCI5r8T0ztqcF+/fb0J52otW6rOFi6vUMNvXVy/rEHZ+wiZ1Lc+0UgYqkbbVAQhV6ksL0vpqAtpSDoSlKjk6b5VJy/SSlbSk35gUjCqwuOTo9GZs5x/DJklARSQqLq4Url6G3pOzoVNy60CJlSLIBQSu7OiXbnzQ70r4XxJYae2eykZHtSEE16Pus4THr6IxLPwbAVBoeKkrHmhYCSwMhSxwY+xmdLUMMda5DExkqrkbF00kFnjB/rIW1VXwCkNE9NFXhvl3fYf/E3aAU5657FWsHzkFbKCqfQFKnGlddXSl4ZN9PuH/3D1jRcxIdnS9goKWNTKo3Kg6pa1B1NUpecC1MjxbTlzOF3iYhFDVPjwzFcHyG8UVmKCMMvDA1T6fsaqQ0SdnTmfMUFeVSETUOH7iG3JKLSJMjR46UMtjQMseB2RJlrY+SJqlQASCvWtiYVzxe0BgT4zhUydCKTTVIRuv/T2FhKo2ysBsCzTV0JB6GSJOnCwOTkppF2QWMWgVDWIyP3sjc3BbasoN4SsMycphGjrTZEpynxq7R20iZXbS2b8K1LLzZXZQqI3R3noUna0gk7QPPw0ulomNSnmXf1k+CkQG3AlaOXO+Z2BNbyPeejda9hqK7H4FGvpZnev/19K9+E+P2Fmq7f07vspfR3XY6u7f9E609Z2J39mCKHFI59LKMnY99jOG+53PCwHP8bFhhnR93lsf2foOZ4m4UEtuZoyW3HKvzBLLdp+BqbpTuOGULqgdvZW7ucSwjy5KujQx3raEjN0hbphch9EXJSuhRsXRfahWSfqkEo8UKn7vp46TSwzzn+FdzWA7TbRjR+HYU2HJ+TZysJjAFZA0vIsvh8yXyhKv68S3Nj0HpzDgMZm3G5g5x7/6toFwmi+McmDnMWGGSJe29vP70S1ndszIK+A6fabqQmEJhBcUQtWDBI3zGpbR6jZfF6ossJEurPwefWmateO2ahRYjFkPz06AiDT744ys5fclxnL/yVD70o8+zcXA9h+eO8PrTL8WViocPPc5MZYa2dJ7B1k7WdQ8z3NYZ9InEUx7feuhWBHDW0rWs7h4Okp6IKJlMtMDmueyZOsSjo3t5dHQfW8cOYOo6J/YPs6l/KScNLGVNVx/7ZiZ5/fe+QjqdZv369fzHf/wHJ5544qLnleB3BwlJ+c0gISnPACil+NrXvsaf//mfs2bNGoaGhvjpj37MaUOr6cu3s238ELsmRzE0jZVdQ6zqXsLKriWs7R6m5km+cOd3yZgZThhcx4mDG8iYOb+ootCC+A+XfVMHWNq5DCsoINBQlE5BNQjo1bG5efvP6Mp1sXHoFCzDwHYq3L/vHm5/4lYKtSKa0FjRvZI3nvMnQcaqevraeDyBbDhH/68uiDwolubLbhwpcDyNiqtxqJjx2ycFFSmYkz5ByQgDiaKETQ6LVVmPyZrJyrYSRduk4upM2zqZwNjMGv5qeViQUBeKomPQmbaZqZr0ZGvkLC+STUS1PkRYF8VPx+nKeqyHn/HHPw9JPd5DQFR3xAsIWtnRkfgGsqn7cTMZw8NV9aKKYaYxXVNUHH8lL4yNCVd5Q0O54up0pm1MzScqYTAs+ESDoA3VIBNXnLiEq5RKQdb0ouOGQdxzNTMiJ6E3YE5K0qKetWiKerCwjkZKGXiBuZETZlTLIUz/Go4FR2rUZGM2IxtJGo12U/pxRp7AUC67D/+QQxO3k0t1c/LKV9GTHw48HGHtipAkzr+HXK/E3rFfsv3wXVTsEmtWvovB/DAlT9BpemQMyVTNrI9HfFlgWFCy6mloKCqeHnnfwsxPodEYxkBpQV97yic8Vdf3ktWCBAUpTfHI3m+jhp9NC220kMbwQ9MpBUHsFVGjSpk0WdrJ0mMIHnOnsEgxzRE8bAQ6bfSQI4epNDShReR8mkkqagYPG0/VgrFrkhN+gVGbEi10+a+r4xx67J8ARWfLEiw9h+2VcdwqVaeA61XJpXuQyqVcm+LZJ36cGbMbT3lMzNzH1NgtoBl4tVk8e4Zcfg1SuVRrRxBS4bkFjOVnI8w07uEtqOI4Rn4Yve8E9Fynfz97JTQtg+eVyKaW4coy7t670TyP7v7nsX/nl8gcdxnK0PwU5SJLWutkdsc16LUCZx33LvKZ4eDeA9tT3PjLt5AbvACndAhVnaGt91nMTtyJJdIMrnk7tqEoM4MtC35SAOnhFUfIzs5RLe2hWB0BYO3g8zhl2fMxjfSChrZP4H2i0JbyvRqWphgrTvKpGz/JmSd/marwGGEv+aDPl4quqFK9X0/FL/zoCEkKgzQahoCcrmi1XExdRkk/wkyGYcpvS5fkLYfOtIPnHOafbvosmwbXkrNS9Oc7WdIxyNL2frqyLYTRIpbmYQpfypjW3Khie7ymSOiJ1YWMzruejKX+19+2sU/C75vREEwfyekafxceeyHys/DSRH3fALbUKVQLvOzqz/DVl32AO/Zu56FDO/jDky6jPdftP+eMuqxtojTDLw88zv7pw7xs47Ppb22Pnum6UBRrJe4/sI0nJg6TMixeceL5ZKxMsMDhI8zMaAqJpzSkctk9edgnLUf28diRfXRkcrxg9UYuWrmBBw/v41u7HmRqaoq//Mu/5K//+q8xTXORM0vwu4CIpPzw3GNHUv7gzoSkJCTlfxf79+/nrW99Kw899BDVapWTTjqJuZ0HefjwHnJWmnOWbWRN9zBruofpbe1FCC0yAMO6C4o6MYC61yIeTO8FBm9zcLZftM/fPqwLEhpm44VR7tl9Bw/uvx/b842r9kw7pyw9nTNXnEcmlY/0x6HHIO498dtQR1iMKz55VVydgm1QdgwcKZh1dFoNv3DZzjK06wZHZDXah4NLCosVlkGr5SJQHKmkWJqvcLiYpiYFtvKDVTstl3zKpVAzqLg6eqDhLrsarZZLe8qJKk+HLQ5JQfNN4Uul/Gk1lP6EJCDsY9vzPUA1z4+lMUTd8NCFioL152oGuuZnLIvrsn2Nud9jFVfH0BTtKYeZmslczaQ3V42kSp7yiZ0EHC/IHBXGSrhaJK+Kx/9IVV8ZdqXvqalIQYflUXB0pjxJLVY1W1MCV3h4SIrMNvSHRRoDM7iuWlQhu9/yiWdal9H+M5ryUyIHBltZuVhCj+pIxGtLCK/GvsPXc+DIj2nNDrO85wwsI0fGytHTupzWdHskjYnXwRCBVMsULvft/iFbD93LGatfTSZ3CjkzJhOJvCL11NQhQQs/Dz0v8eKTYUCxnyXOT5/sKUHecnE8DVOXUcxUSve4d+d/0TXwSiSQRqOsXPawHUOk6aAPAJsaBibttNAiNLap/fTQT4kSs4yTIkeWPAYGWWXRohkYAsalzSTjVJnDU07k1ZA4hGaVQmKQJiPaAUi5OtlaCad2BF15GHoGoWcReg4r1cfhsRsZm7yT9UsuZ6jrLA47HkVRxaaGHcSwSCRudRJ7bjeu5qFME13PIWUNlcnhubPIucO4BzeT2/RGNKHjqRpS1fDsCf9KSxsjNYhSHkIK3MMP407vwug5DtHle3eFnkME1dZ1vQV71y30Ztaycflrg/ECjlQ8sO3juHjYqgyuzYkb/g9KSfbu+gLoaXKrLqMoR3FkEfDwvApKuRhGntXG+cypGSiNM3HoeirVUYb6X8SS/BLy6RQ9+UE04Xsdw7goS5e0WC45w/NlkU6Jj/zw73j28a9FZp7FPjGGgcWk2kuHWMIgPVhCRDVUXBQ1XDQl0BFYQierCVoMSS6QdaV0PybKC+PZgnu5xXJoTbnsPXInjx68n4+94I2RoR0PxtcC74khpO890WRAUOpFD30PS/3J3Fgctx6PMp+oLEQsFs6AtVAGxDgWKqS4UGX4OMLFFj+zo8dLr/4X/vbClzPcsZR/u/vHvPLUl+Hik7tcjKSEv/W8Kt9+6Gds6F/G2cs2NCQB0IVfKPbg7CR37n2cl554QfRsjycA0IWM4j/DPpQIbNfhgUNPcNOOzWw5sp+3nH4hF6/eyIe33sLWrVtZtmwZ3/zmN9m0adOC55bgtx8RSbn+GJKUSxOS8vR7MsGvBaUUX/3qV3nve9/L5ZdfzvEtfdw+voVf/OIXZM00lxx3Fi/ZeBG5VDb6TSijcoLCcFF1+JjXQsUISligzwoM07jHJCrsJRSaVn/vKcGWgw9x35672DOxOzp2PpXnhSdcysbhUyIPTd0TE5KmhQlKuG8jWMEvOX78RcXVKdl+rEA1MLiLUmLbOktzNh6CslSU8GUbefKksKhhU3QtWkyYrvka7ZJtkDYkpZpvWNgSCo4RZAfz+yet+bEgJU8Q3vJ+7Ea9EKYfPyGourofYB2satpSiwoCysB7lDa8hnoZZceg6uq+NyQgKGH2rjDbT9nRKdomadOjYJvkTJeyo5NPuUHGsjBlrYYnFUYm9KoEMTtSjyRlYVxJVPE88Mq40idUJdePwah6Gkr5ErSSR1SIzg68GuWqhq1casKlRAkDkwxpCqIYFZgzsKgG34WpYSUSDQ0DEykUM1TQ7CyDaT9maNYVlJVLStMpSoWtPKzA8KsoF1d4GEonJXRcJdGEhtQMegYu4cCRHzNXPshEcYiqU8RzC5Rq45yz9vUs6zk5Iihh7ICGx1TxECNTW5kujVK2Z7hv51W0Zm/ieRvfjS1NsqYX1dKJxxD56ZL915YmG+pmNNdh0YXCMLzI8AoL62kBgdE9f4wLFB26xohn4yhBRdRwZAmJR0r4sq0Z4eDiMEMRVAsWaaaZRCJJkcOhShGPNDkQ4ElFRhh0CItJ5afg7RXLaCVNOkive1BNM61GkHiI4DMDE91IUzOy5LJLSQUE0UXhKI+qUHQMXEzbwPNpFWkkCkNoaIF5pqHh4acHFuk8qfQmpDeBJ8t40TNHovAQrb2Yx70AT5VQpJCy4hMSPYNyCyA9PG8OpA2ahTawFqNjCJHOo5wZvIk9aLkehJVF1Qo406Mop0LPwMm+ByXmyVy/6l2MTt5BSXNobz+VtGbhSJeKPUG+/zxqqoAu0uQM37s0JR9HKRfHnuGg80uqzjiplpV0r30zk9N3MTJ2O4fHbVx7lg3LXsFJSy7wvY5KoOMnwijZelSQNW3meMVpV/DTx67nuME50u0X4gbxMLOM4gqHftlHVtSnWU0JpFDUcEBZGNKIMr6FXum0LtHNYEEkSDSSMz1qTplHDm5muLUniCGRkXQp/FuvXzKflOhCUnZq7JmeZrpa4vTBQXJWkEoahSMlpm5QcyVXP/owM9UaOcvieavWMtTa1kBcEMx77c9RIpKaNaNRzuVv5b8K7sOYN6cZUa0q6gs5Zwyv5JcHn2Bp1ypOHDyOzYe2cOLQxlg6eBH0g79wZxlp3nD6Jdy++yGueuBGrjjpOaQMw3/CKT8mb7iti5Rh8pX7fsoL1pzGkvaeqM7M1iP7eN+Pvw7A+t4lHN8zxLKOXpa197CkvZdzl63n3GXreWhkF5++/b/JmSnetew0rp51uG/PLs4880w+9KEP8Vd/9VdYQb8nSJDg6EhIyv8CDh48yJvf/GYef/xxPve5z9Fz+0GmTh/khevOoq+1i5yVQ6JHJAQagyvDCS0kBWEsA9S9GqE3JSQzRpAdK0yFqgs/fiN8ABPsa64yy3fu/wYAGTPDc9ZdxJLO5Qy0LcHUzehYoVwsnsULYoHR1AMsJaCkiLwQBdtE1xQzVZNSEAyrCSh7/rYTlGmrZZDCYSogKP5KsT852dSY8dKkaiZS+atmhyomGc03vDV847vqQaFikNd993/V1SLioQtFJUhlXA4C/a0gG0zV0wPDH1zlr2bGiWDoEQJ/0pTKl06VXYOaJ+hM+zEgYVpl8ONBKo5JwfY9RpWKGclIFEaUltlVGq7n7y++wm/pMqqzoWLjoh5MH7RP+tc0ZXiU3HrQZk0KyhIK2EglyQR1LhzlMSomaBFt0bYuDhXApoqLg4GJho5NCUUaHQuJxKbqV8dGx1QaUmiMMEmvbGfMgTnKpDApeYICVSqiQoYMCCg5k5QnH2Ri9AaOX/k28q0bsZWHIySGMOjsPBNN6Kxa/lZsJD2GYOf4A9y1/avMlEY4Y/UL8TyPw9Pb2T12HwcmHsOVLv3ta5krjwLQkm5ndGY7Txz+GWsHL46yu8WhFKSEjBIPGHq9qnWIcHEgNCJTuhd5VcJ4mzCDkqFJHKkHkkOPmmejCQ2bGrrwkz84uJhYGJiRp6JGGg2dghpH4pEW+ageiMTDpkZRzGKRZqXoIKvyFPFoIU2HrtGbqZE1PXoreUarG4LfwQR+UHsquN46AldJrKCauSFEtMJvKJ0yEulqWAj04OrK4F9YZNH3A2gIYaKLFK4sIoSGFCYoCbqG9CooUUMpF9AQwgIjj1LS3ybqfweRshBIlFNDTR/GK0yDWwUrS0vnKaztezl9qZZ6at8wEN3MM9h/sT9mlaSCy2z5CRx3DqejF1SJlNZOhlbSZJjTD+KJMvaBu5gq3Aiajp3qwBx6EUbHctJt3X6jRn7J6OwTyCUXQFgwVoAn/bu/4oaFDgUnLTkNpTxu2vZzes0TSef66dZWYVNF4o/nelV6iRQKBxebGggwfMoT9UcY/5LW/SB3KWvsHn+CJ6YP8ovd97OsvY9XbnpW5C0xNYkhvKAeixcj0zIg2SGB9t9ffvVVVF2PfCrFZLnM81at4oVrVvH/HnyIzaOjrO/poeZ6SODEvgG2jB3hX+65k/96+atZ0+X3jwyDxZWICgJHXhDR6H05GuqkJfR2iOh9YxzLwp6Zc5eu4usP3cVLNl3CpqENfP2+73Hy0Hp0re4BC1POqyBMXxeCC1efzJ7JEf7Pzd8ia1mcvex4Th5cRVs6h1Jw6fqzKdlVbnjiAX607R4uWrWJDX1DLGvv5Pzlx/OLvVt5fOwAj48dACBvpSnaVfpa2lne0YMjJSW7Slc2z1Wb7+CJiVG6c61MjB/ik5/8JP/93//NN77xjSRW5XcUQirEYgV2fsX9JEjkXv/juPrqq/nTP/1TLr/8cl5QGyBjpSMDMwzYUzSSEgjJhohiHkKJF9RJQyjjqgXZpQwNMoZH1dNIBZIbIzBqZYxIhGQiXDVW0mOqPE5XrjcqqBf31DQTFBnodeO1T8IV6zBexfF8gqAJRcE2cTyNOduIAplNAQXPl2kVpYuHoiB8A8siRZHZaAU/RA/9rLJ0yp7Ofq9MlQp5/IJalcBI0NBJYbHGMhm1NYbTHnOOQVqXVD2NjpQTGf4ZQ0ayiZzpUvOCLGpePd1zWLvF0iRmQEDCGiRKCRwl6E7bGJqiLeWQMTwKtsF4OYUXkJkWy2W6ZtKdtsmZLtWATITyPVdqQX0WwUCuSli4MszSE35vCEXecjF0RSkgP2EchaVJJqpWcM2hKmFWOtSEgxtI5ipUguBsizbVyrSYxsaX1nlBX/sxD46/So7fzjbRH10L35NikSMHwCzTdKluSqKChsagaGFOupSFjY0ffG2RojBxHwf3XQXAkq5TkRhYVh/DPeeB2RNp+KuyxMzoz9C8Keaqk8yV9rJp2SWct+YifrT5a+wae4hNS5/Fyt5TsKy12MqiVJtmZu5RUoaGp1Is7VqGaXRGHsRm/b8ReBpDMmIF34dxQeFYlkqQMf0MSLbnXws/k5oWxc2AHztz387vcsrKV7K95Mt6JihQZAabEjoWeTrJkKFEiTQZUsrkiDiMwsOhilKSlMiTJR/JuXzDVzLMADXlcUQcJk2OYbpYma+RM/1K5FJBzdOxPY39xRSTypdq5UlFRDCDEcntbOXhoejRTYrS94j1iiyjqhiRKCe4nxQennJwlR+jlNLaqHpT5PVBZtydeF5l3jNPKRulHHS91feiKIkQpk96pBs9Xbyx3cjCBDgVcu0nQvdyLui4DF3zn2lxkiJRuEoyV9pDzZ3Gw8ORFYrFJyiO34u1/HzM9pXRmLW0NqqenzJdTe6leuRBevsvoUO5PDHyE8yWJei9a1HpPM72n7Bh6RWcPHxS4EH1oQexa6YmyZgeLaZH1vAzfv3ksZ9wx6676Os4nVVDf0jVaMPD93xpPgXDVh5lYePi+kkHgAwZBrQ0nSmXtpRNW8qlxfLYO7aFX+y8lT0T++nJ5VnXu4wTB1Zx8er1UR0OQ0gszY15U2QkQfIlih6akGjUn2sv/MZ3sHSTFR3dlGybqUqRw4U5Thsc4q2nnc1jY+NMVaq8ZP3JpA0dV+lc+eCdXLn5Lp6/ai2v3XQyx/d0x65t3HMuAhlxKDlsDJh/qljodwvFxhRrFS656l/4zqs+iNTauGPvFnJWhnV9a/EUtBgelpBUpRYlRjGEH1P2qVuv5omJg5zYv5z9M2PsmR5jTdcAV5z0HE4dXhPVcrFdh5/t2EzVrXLFiefg4c8FI7Pj3LlvKz/edj8rOnp46+kXUKxV2TM9gVSKs5euoTeX58Xf+CzvOfdFPGvliZTsKnfv38HOqVFu2L2Zj3zkI7zvfe9LMoD9jiCUe01ee84xk3t1XX7XU5Z7ffGLX+SLX/wie/fuBWDDhg383d/9HS984QsBX73z0Y9+lC9/+ctMT09z5pln8m//9m9s2LAh2ketVuP9738/V199NZVKhYsuuogvfOELDA8PP+3z+XWRkJT/IUxNTfGnf/qn/PznP+crX/kK+rWPRIavF5EUDTcW6BwSlbicKvKiNMWdlF0tiD/wjS43qBES7h/81Sg3rHIdsI6o5kRsDonHpcTJSVzaFCcotvTjXWZrJp4UpHQvipuoefUCgmnDY/9clq6MzXjZIm/6E/WMbVBwfWO6qCRSSWrCxcGlyGy0mhtWodYCw8PDxgp0+xkyZLCi33pITIxIXpHHoi/lMWnrFKVLt+E/REzRuCKeMz3aUjau8qus20GNE1NT5EzfGxPGt4REJ+x/P95C0m9BT6YWFFH05VlK+f1SCQhJX67KeDlN3nIiD47taUxWLEZsQaum0RNk4DJ1GSUmyBgetqcxWzOpSEGb6dGVsTlcTFMJCIkuFClNctAWUVa0CpWo7zQ0qpT9jFCYGFiUmGkYrxIPV1XxVBUVjIIubSVpspgYTDJGljz9dGAIGFFzFJmJjGqbKsP0cpCxYEz5x826Ou7Mg4xM3Ixl9XHK8BpGZvaStrrYO76ZjNXKcUtei2b2A7B95AaOTNzOcYOn0JrOcdzACeRTrWhCMVUc5fsPXYVltPDcje/GU3pEBPOWS4tZY/PhaZR7kJU9G0ibKSR1j0dYCT5vuVHQ7kQ5RVtAMuNPRqkEVU8nrftj1gkkdVHmr4iw+vV27t5xDSeteCXjNZ1pqnSJNJaAI9KmQAE3iPGwSJMnT4ECFeYQ6GTJU6aAh0MvQ2holCgFHpcy/Sxhr3qUrOhkSC3h5HaHtOExVUlhaJKya7Ct6o+dDBZzlKlSpo12TKVFsRDjQVvSZNADU7xLpMlocNCr4uD6cSg4kWfAw8FVwevY2PD7qF4hXkXeEg8pfZIiZcWXeSkJQkPoeQwjj+dV8Lwi7vZbaW3dQFUVsIsH0ISJpefo6zqX/s4zsFL9EUGpKQ9bVdiy+c8xUp0IzUAJDc3IIt0yev9xkGkJnm0mQhh47qzfNs+hxW6nMHIrptLp7ziBqj3DVGE3nqzRmh3iZWe8D4nv1VT4qdHDZApa4O1osVxaTZe04ROXufIkX733FkamH6bruDfgpTMsFcfRo1nYEqr4MV8VqtFigIFJN230mtCdsenO+ETlMz/7Pzx7xXG8aO1GlrR1RJ4ACGqa6C6G8IJYijpJ8ZQWk3gFnq+YV3D39AwPHZ7gr35+U/TZ9a9+G30trXhKo+oZEckwNQ9D+M/xvTNT/NeW+/npjkf42IXP5UVr1zQUZ4zLvTylNUrDmvBUvCzNv1ssbuWPrv4CH7rgUpZ3r2Palnz7oRt41amXkQqksyExqcm6x94Skv/85Q85PDfJhy/6I3KmzmS5yI07H+XL99/Cx57/Gk4eXBWRLoDvP3Ynw21dnDm8BhcdS/M9r9O1Gl+/78fcd3AH7z/vYp69Yh1/fN1/Mlqc5YLl67hz3w7GywVOGljB6095Dut6l6AUbBs7yBefuI2BgQGuvPJKVqxY8aR9kuCZjf9tknL99dej6zqrV68G4Morr+TTn/40Dz30EBs2bOCTn/wkH//4x/n617/O2rVr+djHPsbtt9/O9u3byef9xd0/+ZM/4frrr+frX/86XV1dvO9972NqaooHHnjgf41MJyTlfwA33HADb3rTmzj11FN5aeY42jItwYpTnZzEpV3xv75XpdHzEWaN8pSg4mlBzIFPTtJBOtXwYR4GChPsx63bFI1Vu4PX+pOQk7BNXpButxxkpZLKDwg3NL8GgBmk1qy5GoauSOsejtQYLaUwhJ9FaTIWqG0qjXSQwatAjRo2ZQo4wWQeGtQ6VhTE62FjkiZDKy42/fRhoTHli1YwMfCQ0crlGr2DcTdIOxsYamYQ09BquWQMj9maiS4ULZbLRFCTIDy/sG6CLTVs6Xt9wlgTiU9QargMGyZL8xVKjsFMzcCRvtfDr4vie1icIMDakVpkEHtK+PVFXC26JmFbds6lsZFYaLgoWnWBKRQlT5DSoCdjc7BkUVV+YctKkAlrTrrMiXK0cluljEU6ii9poY0ZJqIVfg0Nh6of78AQkwHJCD0rGfKkydJLCwXlMCkmcKgi0GnFz+TUSwujzDEoWmk1JDVnjp8+8F5/fGkWHbk+zln9PE4Y3IiuhTEyirHCCD959AfsndzJ8t6zGOo8kcf2/4D1QxdwxspzomshIIr3UbLKF2/9FBW7Qld+GbanqDpzdOUGGJ3dTi2oBP/G895Nb+tKKkHAe2hshiQj9FKldNlQdd6/Do2PyNBjqCDISqdHnhSlfFnQ/buuYdXQaxh3FWmh8aB3H0LoOLJAu76SQTVIWdiMsQ8di4J3AIFOWuukKqfI6N2RF6ADn7CNqV14qoYuUrSKfmqUydGORYp+0YIliGJ/WjSDVkMy4fhZxUaZDgiHjYaORb2qtouDxGMpvZSViyE0XCWZEYUo7si/B2Ugu/SllxU1g6NKEVEJC0PqwpeuWSJLhlbGvG1IHEwtT9UZRSkHpSRCaJEczJvYhTexC6N3A5QmEMPHoaREzR1GFWdQhSOkUj0MDb2UdPtxSCTF0m4ObPssxsCJYJggXYTScUYe8K9f3zq0tn7M9ADD5hkM0sFD8h4q1V0gbZSSdLhLKU89Snl2K33tG1nRcxp9bctpy3aTMVxUIJ+1g4WGUB4bjr8Wy408KqamMIXi+4/cwC/2bKHjuDfiGpIWuuilGwsNG8kE07ixBRcDkw7VwbBp0J+r0p+r8dXb/g/PXXU8rzv5/MhbYmpeQ5xJvaBi/TP/GV4nJ/G06RDWg1K86JvXsHNqGoDVnT2cu2w1f3z6+ZRcK9pXGNMRPvsOzk7ytmuv5CuXXc4pA53RfqMaU0ogqRMUT2oR4YH55OTJvCtHi00Jv3vvT/6LM4dXcclxZ1GRBj994iH2To/xko0XouktdFp2w3ULi7ROlWb59O3XUKiV+MwlV9Cba+XmXY/z1Qdu46sveSuGniIsmCwReFJxy67NbB07wEmDqzh76fFYugjk1Rr37n+Ef7vrh5w2tIJb9myN2tudzTNRLgBwfM8Qn/2DN0VtLzsOX3vw59x2YCuf/exneeMb35hUq/8tRkRS/vsYkpQ/fOokZSF0dnby6U9/mje96U0MDg7ynve8h7/4i78AfK9JX18fn/zkJ3n729/O7OwsPT09XHXVVbziFa8AYGRkhCVLlvDjH/+YF7zgBU/7nH4dJCTlN4hqtcoHP/hBvv71r/PP//zPvPnNb+a6N3zMN/ZjK0Ouqsc/QCw7V0zWFa/iq6FwlKBg60GtDz8dbXPWrjD1bhiHEqK5mm+Y1Ssu/4rXT5Gx9kjlp7ydKKfQhG9cV1wdhaDo+OlbWyw3quTdlnIYL6fImS4jxQytlsucbVCRgqKUZIVGSoNKrEJzCQcHl3Kgp4/LXRyqKDzMmJEVGmo2NfLKXz2VwaTs4JJVFquzUHJ0jriKYUtRdHVSmorkcE6QDUsTipzhB88bmh+3UvAErUbgGQpkJwT9VVUu7br/QJqTvheoRTMiyZqOIC0MOk1J3vTYVzbJar4UoSb9lL9S+elw06YXVXEmuBZ+UUSdlO4xXTM56Dr0aRZTnk+21uT8zFPbigbL05LdFXCEjOpppJQZBOr6RlEo06pRoqJmMEQaR5UxRRalfCPUEjl0TByqmKQ5UV/KhOsbrxYa/WmXtCGZrpqMu/6qtil0skKLpGVZDdotN/DewT3bP8uBycd4ywV/QV/rgJ8pLSAn8axyuoDZ8jQ/fPQHTJam6Gsd5PnHPxtTEzge9OR7Im+jf738Qo6HZw9zYHo/pm6RNrPsmdzDiq4V7Bjbyp277uZvL/0MtcDrpQdGVdXTomxuWnDfhZXlwSdCRmCQxk2HkKS7SlALPGuzNZNJW6eqJEI67Bm5juOWvJyDappu2tiutuCpKjmth6I8givLaMLPjubHd+i4sgDoSFlB0yzAr9Lepi+jlc6ItLs4SOWQEnkqagZdmKxkHQAV7IhUTDJOljzd5GnRBEekn7rYCMhoOB5CD4mGxjKW0aJp7JRjZGmhSoWloitKRa0BYxSpUg6yfvnjSceMvCyaMEmRo4seuoTFuKoyzSTVwFPkqBKOLOJM78AeeRDl1QBBfu0f0W93sXPPlzGPez4ICcLEG9mCLB1BZNqRhSNYRjt93efR3nsR07MPMjl+O65XQuqCbnMYXbjkM4McnNtBqbgTLdeL3rEMs3Mtrjvl37v2DLI4jsi2oxlppFNFjR/EcjWef8Kf05Ju8ZNexGSBoYHsjwtJ2pBkTT+NeUr3nyVmkMThi3d+g71Tk/SvfCtOJoNFmkE6AJimSoE57OBZ5uKQIU+X6maJpbOqvURa7uQTP/s833nle+nOpjC1UNpVjzVpfp7rgedcCyRfcZlXM0IiMlYq88c/vIFHjozzhpPPZCDfzmC+nf6WdrpybTjK5O4DB/nhtrt5+PAuLl27gU8896wo612cCMW9J57yCXaYlEQFxr5qIiaLeVUa6tY0bVNPqa548be+wnvPfQGnDK2j4pk8fHgv1z1+FxsH1nLR2rPI6V7M1+fPpWFq5qpj88pvfYIvX/5WVnd18jc/+y/WdPXxmpOf1VArJTymh4bjCR4e3cXNOx/hj8/6A1JGKopfmy7PcN3jd7Ft7CCPjx+KfnvVS9/GWLnGqs5+WqzGNOie0pAvO4s3velNnHXWWXzlK1+hu7sup0vw24PfFEk5cOBAA0lJpVKkUqmj/tbzPK655hpe//rX89BDD5FOp1m1ahUPPvggJ598crTdi1/8Ytrb27nyyiu5+eabueiii5iamqKjoyPaZtOmTVx++eV89KMffdrn9OsgCZz/DWHLli1cccUV5HI5HnroIVatWsU1r/sYQc6g4EFejzsJH8ShgRQnJ3F4yq8q7ilBi1mfhPwVfRFVIgffoAhlQs3Gb2gYhr91pU9MQpd4FPQeBupLn4RMVfybo+xqlD3fHHJV3augCZ8MpHRFZ9oNjieYqqboythR+l3XE3ToGu1BTEipptOiAwgqrqBdZKgGxe604J9F2pch4WCRphhIlAxMpjmCSZpJUaWDLkyl4QiJjoYhNKZqWlRzxdAELUHNEj9wP5TD+X1pB1KeFsvFU4JW4WfX8euK6EhBlNLXReOIrNIj0sggQ9WYKiMjQ0GjjM2UA67j0o5OhyaoSX/yrnlBDA8E0hI/y4ylS8YrKWqe74XJGi573ApZZbFXzrFcb6U/a0ftPrm9yv5ClhUZj4erVaSw0NHQEdRwqAZ1TjR0ZtUomjBZIo5nRO0iLdpJkQXhr6orPCzStNDONKNs8Q6RFXk6aWEo6+BJwZztPzp6DIGla+RMl7ThRWMF/ADzOdskbSjOXvNKDk19mL58l1+XJkZOzFhaak0oelvaeOs5r/FTgk6P8IkbPhWNfz+JwyCXbHgRKTPty7SEznDHMC2pFg7PHaY13coTR2p8f/P3sF2bFd0r8SQNMVO68LMohbdXuFpuaCqS34X3Yyjpc6WgaJtoQkXZ31K6R9rwSOkSSzf9OKtaDVNPM61sCkwhkSzneA5oOzFJk9LaaNOWYJFmUu3F9mbRSZHW+3BkAUkFqVyUrOABU7JM2eilRfRiqzJtop8xuY2TzQ08LqEoR9kltiLx6BJLMDAZV/uwRJYyBSDPfllkmiMRgbFIR0ZySPIBDnKYqpxDKelnp1J9TAeRKeAH4LeoNClhMc0kSxnGQGMvh1jNUqpCMsYENlUKFKipVJS+OvTUKZFGU1Dc9wuWLHs9Qy1rMc120LP8Ytsb/Xtw208wBk/Cm9mP5kFH+xlMjd0KKGx7goOjP2J51xl0dl7Ass7zMRBMUMbEiOqQ9PbDbO0IY1N3MXrgB3iVCfTedYCLoXVSPXyn/3xq6cPo3UDX6jdQ23sTP3rk45y5/uMsb9HQPD9JRhiPEkdIVtPBc9iVAr88lc6fnPsarnv0Rm7Z/klOX3ERa4cupuK6jFQNMlhUMKlRiu63CgUmBaScPnKlNMMtw1i6we7ZIh2ZDJpS2NLAEB6m5jXkSI8WvKT/nEerE5XQi9DQblWvHdWby/LRZ5/HbfsOcLgwy217DnJgdo6Rgr9AlLVSGELwqhOP518vfiV9LRm0WJpyAATIYFyFub1C74qGRAqtHqsiiAhL1IkLIB4ov1D8sEBxw86tFGpVzhpegodPPNZ29dKRaeGSdacjhMRWGinNwwxSB4fnD/DAoSfozrWyvKMLgWS0OMvFa04IFkCCPqU+l/o1r+DkwVUM5jv44j0/4Oyl6zl1aA2mYdKda+XtZzzfP3dps+XIIa7f9iCmbnLKQHdDjGnQbT7pvOZutmzZwlve8hY2bdrEVVddxYUXXrhwxyR45sMPYDw2+wGWLFnS8PGHP/xhPvKRjyz4k0cffZSzzz6barVKS0sL3//+91m/fj133XUXAH19fQ3b9/X1sW/fPgBGR0exLKuBoITbjI6OPv3z+TWRkJRjDKUUX/ziF/nABz7Ae9/7Xj784Q/zgzd/kgeD7xcKjI/LqKBOUEKEVcUlfpC2GZsww0korHIeelLinhMIJrLgAGHVblc1SsrC44f3mCvrdTiqrk7Z8WM0wqJ1Gv5kktN8zw7BamNHyiFvudhSY6qik7NcqhUrSM+rKDg6Gc0PlJ8u++lQQ8JU9vwMRLby/JS0hLnoZRDXoGMFnpUwaHgEX7ZQCwzxCjlMsiw1/KKNplZFIdhfyGBLjbRh40iB8DQMpSKvU3013++fgm0ybet0WD5BKTg6kjohAwKzK0VRSTp1gyPSjnT84BOojEqREjo15YGAihS0Gh7FID7F9wYIXDQMTZIKvDYAhlCMu4pWqXF8ymDW0dFkC3NSUiz6q3KWEOR0xT6vjO5pGBgUmMPApCLqWbo0dNKYCKHRQT9dIk2NJZyezTBZM2k1Xd8Qd0GiY0tYqrXSn/n/7L13mB3Flff/qerumyZHSaOcswRICJEzJkeDAWdsr3NOu/bar9frbO86ru11xGAbFttgTA4CRBRREgjlnMPkcFOH+v1RXd19r2YA77Lv/l6vzvPMMzP39u3bobrqfM/5nu8phz1cShUKWV4gKwCwhlhghxFoL5DUOh5CQF2qkebaMTy66WHOnn02jtQNNwHSMoicGkuoCr9ldF095846mYJbYvmWZ9jVvZ1d3du5fP4Z1NhO9Gzs7T/A9x/6IfWZenryPYxvmsgVx7yJgAwNNdMY8jRNzHSXB03VyntxfxQ77J1inp3+sq6xqku5Wj4bQY3jheIPNmlLkXdt0krXGiklqHN8iqUSzekUWWzaGcsQQ7rfjHLpCjZrRSxRxBYZMqIRJX3dbBCfZmsKh9Q6ctYoBr2dBH6BIICS30MgdQalW5bJWM2s9F/GFhnSspEmRtPNHg4Gm/BVCT/IU5Bp6qzxDFCii71MZhpb1DoK9JITLToro4q4QtP17DB75qo8Zb+Pshygj12kRQMpapBY5JHYIkU7TUjVytiM4qVSPwDb2UctDTSpJoZEgQG6KIY1Nr3sxwo1w9oGHbYcvAOApvQYmms6ojnxxIXfp6QUXX2r2L7zt4xuP4uxoy9g/4F78Gpn4PoFmhoWMLn9DGozTWFQRVAMYJTK4MhKoY9cdhRtHZeRFmn2HnwAr/8xRF0rQW0rmdkXU9yyjGDwAOXBA+wTy7Eax+OXe3DcraStKZFohgplpQ0FE7STacaSeY6NAIojLC5feC7HjJvNTS/cwct7VrB4yuU01pxAPpCgGrBxooyUCQxkhEQoj9tX3URHYwctdePwlItUCoGPj4RAO7eHgSYlQAQEgYUlBJbQa4NUh2dUjDKXQDF/VBsLRuvovdnO9RX7BvJ05gvMbW8mG3kKw2dnpNJgJP6CcJ0RAqF05kMIpTMrgEVIK65KpET0NGKFr+R56my+zw9XPM5t61/kH087H1flKAV6Ls2lsywaN5M/rnmcs2edTk04l1oi0dtEKBSK3698hKsXHB8FSaa3jOKJnZs5YeLsCECgJAFxnagjfCwE4+ob+eRJl/LSge38duWDBCrg7GkLmNk6RoMzmWLBmMkc3TEJN6QHJ6WZk2PIkQErP/M93tc4j3O/eC4XX3wxH/rQh/jyl798RKr4/1V7HflJw2VSRrKZM2eyatUqent7+dOf/sTb3/52li9fHr1fTSdUSr0qxfC1bPPfaUdAyutonZ2dXHfddaxcuZK7776brl89yl/e9U38RAFhdfYkSAAFA1aMVRTuEnc/D0JaSvSZIAYnyd4lEE/wAp0ZMfUPye3M1xgpYRVG+AfKDqWQc28yNH6YaZFC9ywIFFgW0THVOV5UUJy2fDKWpp6Z7yt6ugN5SmpKkKckZaU7Mvf6upu2KzyyKk2KNEUKEVDxQkqKKZwH2Bty7S1SeAzhhNkWICqI7y5msIQiZ/mkpIhUsEqeBoBCKFBamUsoEUUh09InFcpZGjlfU8MCISUhABsNEMtK90GoJYMrUtFxG2uSTtSFetCzKAb6Ona7Ph1CojD1LroRYo3jU/IktdLCli5DJYcGx8fxtDx1AOQDRVkp8AU5lSIvyhQpRDUHEkmdqmVIFCgyRCsNjBNNtKR8fBVQLNeSc0p0FS2e2fxb9nY9S8krcOmiDzO9aaYWYAgLhh2pIkpUORBAgAjVzozjkpYBkiLbD21ky8EX2XJoLZawaK4dhR+UydrQnnE1KBBBpLqTtOQzkM1meMsiLTP79mPPZ29/D6Pr28P6Du1svLh3Azc8/R+cOv1kzpp9LmU/CJueyrAzfEDJl2HPmvjeOVZALny2bKH0PQwE6VD0IWP5pFIBNWF/lXLosJZ8SUu2jBcIalJlBKZGSz8nWnY4zfiMYlcxRVrZdIpuLOGQkg3hORYpKzeSJQ5UCEDYSsZqpRT06vtnZcnY7SjlU3T3I4RFgIuQFpZwKKshPJVnrzqk31MuUjg4djslvweHDLvUOhRaUOKM7Cx2FAUlPAYYoCiGaGM0s7O6JmdP3mGT2IYvdC1YStQhsBhShwiUiy1yZEQd3TjYwubZUh8l8qTJ4VKkSIp2mSOtLAbpxaVIGUdnZihSKO1j35abaW1aQuuUMxhVNyWanywBtal6ckBT+6lMbDkex0rRX9jP7v13Y+dG4RUOMLHjEnLpJg71rWPHgfuZMOpsSm4f67bfiJAO9bmJNNSMI+W00ju0Dc8bZELbiUya/006+15mb++z9O5ZiafWYtW1Y9VlKHetA+UT9O6mtW4GWduO6x+UgMQYNZloS6poDrbR87ItKum0U1sn8I/nvJ/Htq7kttW30Fz7KMdMey/tTgN95VoKQS2Dgceg0HLenoLeks+Ozk0snbQQISx85eEGEiFVOFqldniVSszv5jtlRE0CsMJMxnBAxQ9kJE1cbY4lmNBYw6TGbMXrI9HHDBgCCISMaWBVYEUfa3hdhZ5vk40kk8X4w/VNkULx8LbN3Ld5Pb+45O201o1iwEtRCKyoce28jrl4bOYPK+/g6qPPxXIE5UDiiBggKBWQd8uUfTfqiXTdMSfyjlt/jRf8hfccezb1mdr4WkXX08z/ipQlWdwxiSVjJ1L2A/5txX2Mrm2gIZOLqYFCRQ01y4Gl6V0hVc30cIlphDD56T386zlv49/uuYdly5bx+9//nunTpw97zY/Y/w6rr69/zTUpqVQqKpxfvHgxzz77LN///vejOpT9+/czZsyYaPuDBw9G2ZXRo0dTLpfp6empyKYcPHiQE0444fU6nb/a5KtvcsReiy1fvpwFCxbgOA5fP+nNdP3q0YraE72YDQ9Qkj9QWaxu+p4YPr0xL6R2lcP3Sn4oX5vcD3HRN+ilLQgqv9N0ijeF8EOuRcGTEUAxcrdGvjgttbytcfbscP3I2QE52ydra/qL6eJuaDQ5x6cupbMLaaklfA3Y0ZSxgJLycUMqgSd8LCQp0mGfDhn16zBARSaGr3kfdPbCFQGdZcmefJrOss6CABVdxq3w41Lo11My0BLNEYiR1Dte1BzMCs/V1KYYwBYAOUufR1pY5IRNAynqSFNDiqywsdEymEYBDCAjocYKG+eFtRB5T/dlsYWiv2yTtQMcob9z0DcSyLGjkAojHMWQapZW+lqZAufRopYJKcm4ANqH+lH9DzHYczvtuQIt2TJNlmRnv2Dt9n+ns28NtuUwtW0OU1snU5vyqEt7IZVJiyGkLQ29RPhjSYUtfXoGNrF214Pct/pn/OjBz7N8w600ZVO8a+m1XHf81Rw3YS6nTzuOK+adSFPKpc52qbF8cpZHWvrRT0oEITjU98IWKhonGdthUlM7aUs7MI5UbDiwkV8+eSOXLryQN8zRYCZlSRyp71fKUmTtgFrHJ2PFtDKFoULq/5P1KmkroN7xaMuWqQ1pfoOuFYEUPxA0pF1qHF17VfAsCp5uSJr3LAbcEj4ZAgU5IckJmzrqdQ5QOKREDSlZR1o2UifaSMk6fFUkUEW8YBBfFfFViYzdjiWzeEGeQLlYVi22VY8lMpSDPpQKaBHjychmpHAQSCyRxhY5HFGDJdIMqP2U/E78oEgXh9hTlEzN+SyshSXZBo5Pj2VyymYoPL8iATPFZGyZIy0b9DhSukFhoFzcYIC86uag2sIBtY1ufyuFoIsh1Y1LkSF62a8G6aeIja5NsUkhhUOAT37nA9Q0zmXW+LcytmUxthVz9AmfMTv8ydkprVZn1VLfsACbFNOnfpDxzccAsKfzMQ71rmL1zt/ge/04do6ayedRbhjDfnc/W3sfo4duhnIZVu/8LY+v+XuKbg/HTn4nxy/4EafM+TBjswuo83Nk0qPCuddjdPu5tNVP1GMsHPcmg2gEEqICeqEOA9nm/WhuEpLTph7D1y/6JG01NTz84ldR3nb6fEWjEzDKsRgna2klh0fAYJDlrAWfYeXutdz60kPheDXy9GbultFPpKhFQv43yqqbHk/ysHoQiJsvJutKXquZmpTq/yWx7HH0Exb8V7xOqEpmGqgSa5gl9x0eYQRavCDAlpKUk8VVVpS98pSkFFh4SjJ79EzOmr6IXz3zZ3rz/ToYFhbyBwikEHzhjMv59fPLWXNA14+MqWvgd2+8jqJX5rpbf8LDW1ZXADhJLEgTqLjjvM7QSo4dO5k9fYcADWr8EDCa+2OLIOrbYiw5cgQaAE1sbOMrCy9kfNFh0aJF/O53v3vN9+SI/f/Agtfx579oSilKpRKTJ09m9OjRPPDAA9F75XKZ5cuXRwBk0aJFOI5Tsc2+fftYs2bN/yhIOZJJ+S+a7/t8/etf5+tf/zrf+c53GLPiIBBSBBIZlKAKoBhZ4WTPkmorBaaQPsxwEO/LKHVVZ0OqLbnkGOlgiDMpZT8uGC96kv6yo+UV0bKbxmwRd6SX4THbAtKhmpeRdTV0Ghluq9A9UkA7gBk7oOQnomcqfhYtBE44JA0ASZMKgYsdbiNJlkKaAmDdD6WGAD/axwBlir5WDTOFv1HmKUy9G+BhnFc/0E5ISgb0eza1KZeCZ5G1/KiOJLoeQEYGDHqSlAxIScCLu5dLpV15OwJiUAzRp8lENdo+bmDjBzqSXwr0ObVky3QXdWf6BqUVZHIy5HMrEYoM6Otn+lxE9yoEa/WBQ2fXn3lq3zKK7iC1mSZaalrZ0bWJpZOXMFQS7N6/nPV7H6U+00hTrhEv8Ljo6LcjpYUKo6C2laAmWIqCJ6J+ETs61/LM1nvpGjzI1LapTGsdyzVHn8nExjYsqSObApDjxmGLAEv4Ea2u2kzEWivqhDLc5j0MDUQTL5AQKMXtL97LvI5ZHDfxGLywoseMeWnFToQnQ0ASmGdHj30vEFghIE3Wo+TL/Tyz7QmOmnAitt2sgauVHKmQtnRmSde56GslhYKgjGWl6SpblJWiPaUYKFlIoTu3Wzg4ZLBxSJFhSHWTs0bhqSLloA9flQCfOjGaHvL4QR5L5kLlrMpUv6klEcLCD7QksBBWNN4FUssBC0LwqmhMa9nrvGsxUHYYKlvs8YvgacnijAQRWOg+60UNSoWFRRohLCQObjBAmT4EFm4wiC9K1FvjKKs8h9iBFA42DiKUowbIFSXdg3tZNOXTWDJ+/k0QIGnGYfOVIOvUsmj6x8lIk3XTr88YeymuN0Ap18rUUWew6+ByvMIhVMtYAr8GocYBAb5ysRqXwlAfOw7dx56Dy5g/4UosJ8v8jsU015yPLRVCFdnbf4h+NS6kHQpS0o+PSZhjU/G4FiEoIZ5DlNInUE3Hqk2l+dCJV3LrSw9x23P/wqxx5zOu4zQasyntyAaCrpLDoA9OaixLZ1zLk5t+z/sXn0AgTLZdhopbCinCBqMYhS39ndE6gdBdKKnMqIxkw9WvjGTV4KR6HypRjxK/qYv7TUZFP9+yItsSKIFh0FVnVsy1P33yNB7dvpUP/eU3fPnsa2it6wjvh4rU/wSKiU3tvOnoc7l3w+OU/YBL559CazaNF0iUgDnt43jXotP4xwdv4/Onnsdx4ybRXlvHN8+5lMe2b+KfH7mbgVKeS+cujU5hJEUynRHR9Y4yFE8w56iAcmBFAMUROnSpMHOH6dMU7ztl27z32LNZMHoSH/nIR3jkkUf4wQ9+QDabPey7j9j/z+x1Ahh/7T4+97nPcd555zF+/HgGBga4+eabeeSRR7j33nsRQvCxj32Mr33ta0yfPp3p06fzta99jVwux7XXXgtAQ0MD73rXu/jkJz9JS0sLzc3NfOpTn2L+/PmcddZZr8MJ/efsCEj5L9iBAwd4y1vewo4dO3jiiSfY+t07YlWTcBvDtTYOe3XPk+qO8ULEYKIQFqbLcEFMfs4LYpADcaF78m+z0AMRXStJEXNDmphuSmfhBrrBoiO1wlWvqx3uTLjO5H1NRzDLTo2lQUeN46GU5vubho1mscjYPv0lR38/dii7a5P3RRQ19RTkhI2HikJLdri4eSpAUhltlUJGPRwCgrDXR7xNWtnR520hSYWReK3WJfGFdioVQnd1xjj/YEmhM0VSR04NhUBIrTwWKB3dN/cpYwWRxLDhpxd9TWEz9A+TbQpUSA2DyInU3aX1PhTxtgDNYZ+UpkyZgbJNS8ZFAv1lGyU1UBkMnY60sLBDJzSLTXFgDWt3/pa0k+Lio97OxJYJ1KUdAuXzpb98mvteuonNB9cxumEsHQ2jOThwgLRt8+bj3kMm5RCouKjckYr+fDc1mQbSlsASLhv3vcAz2x5iqNTP2TNP4Q0z30ltykEKTZOT+AnZz1i0IUmFSfLOwxcA0zdIRH+rELTo5yl8PXRo3nXcxfzjPT/h6mP6yKUbI4ltS8QAVAhFwZf4oVS3yR7q/SUlhTWKuW/NHTyzTUewbSvHCdNOw/e7eW7b4+zs3kZb/TiWTjmdumwjTnh/Sr7UxfSeRa1VwFMpBgOdFczaiqFyAYcMAosMNRG4KFPCFhkmMplO0UPRGmIg2IswmUPhIGQtUji4QdjnQwU4shYhJIfYTd4/QKCKBMojFCdHoKlf9WI8JdEDQIYaZtR6DLk2PUVJZ8lma9DFEL000EYP+zlazmCzr7cvBt3YIhfeNwcpMqRFHS2002UdZEgdit5zgwGtuCegqAbwlRbMTpp7aBUNzYsZm8sy6MVOfXVHcWNBOIdkrcMdZ0soGrJtnDj741GgZ8Hka3l6w4+pbbwGrNpQ6thDqRRCWNBQh2icir9vNWt2/oHAL1L2+jhx1geY3DYPS2QY0zCesSEQKnkSX4roudZgwMjuhs0dQ8BSDbQM4DZUIvMbIbhy4ZnMap/ALauW8Zc999Fc2xYOfsnoxgW0NJ9N3svSXDuL/uIAW3p7mNbUHNZG6CuuR6vJUMSCJ7rWVoausUSGvVNAA5XD0CAxyI7oVX8FWKk2A1AqgIopqhcqBiRhAMLCT4AqHWJIghUzDySPJ21ZfOXM8/jJs0/wibuv5x9Ov5qpbdMiJUtf6TncV5KGTC1vPuYsegoD/O75u/jg8RdiWylda6ICLp97LIqA//PQHUxpbuU9i07k6DETOGXSNH5wwVV85K5b6C0Oct6MBXTUt0XgwtTOxbWhPp35QSY1tmOLIOpRpvspaRZFIbB1oE56IaCSUeCyOhtnbMm4GXy7cRS/XPsMS5Ys4Q9/+AOzZs36T92bI/a3bQcOHOCtb30r+/bto6GhgQULFnDvvfdy9tlnA/CZz3yGQqHABz7wgaiZ4/333x/1SAH47ne/i23bXHXVVVEzx+uvv/5/tOHoEQni/6Q9/PDDXHvttZx22mlcxBQyic7xJoMS060qMx7JvidJM0XIg55Fb8mmxvEjepIilhfWGRBByor7a4TBu8jMpKeL6eP+El4IcEx/B6XAthQDJY1XhzyLUlgUnw8glXCyk9H7jITmtBfSuhQNGV1cbIeTt1EVK3mSkm/hyIBB10ai1bPiLFLYH8Q3C5X+vnygQoc+PA8UgQoqMgae8LFDUGghImCSEQbcxYAqZwc0pFzynh1dH1/pomgvIQRg7oMQKsoy1TpepPhl7nE5pPbYIpbhLAWChpRP3pMUfJGgsqFBCzqqvqVcpk1kmNU0RHchHV1DL5BRUfrefIrWtIcQiqZMOSrolkJxKJ+JjrOvrKWUaxxNsRsqdvH81lvY07OBk6ZfwJIpJ5C2RKSmZRHww4f/lcaaUfh+kW2dm5nUMoVTpp/GxNYZBEqx5dAGJjSNxfeHeH7nS6zevZqDA/uY0jqFk6edzJ9X/5mU5XDOrJM4fepR1KXssPt1UDH2ZIKiUR1VJhyvKvF7OAuUiLo8m2u/t7+HHzx+a7hfyfpDOzhrxnFcsfACEDZB4JO2regelwOtRDfoWgy5VvRMJPud+IFgdK7IsnV38NjmRwD45JkfpL1+EpYUPL/jae5++V6umH866w9s4pldG5nSOoW5HfMY3zyT/nLAYMmlqXYc2zvXs71rF+31UxjVOI8eL0teBQxSpJYMtSG9z/TaaXR8dpYUe8VeTs2N4f6hjTSI0QzQhaeKWEJnJEA3Shzy9hGoEjl7LG4woKlUYSNFW+ZCWtYgYPplONgihxAWY8RMiuTpVXuwSGGaMtbLsQypLupEG31qrx5fgZYTVgRkZDNpaqilgXGylkDBTtXDAN0slFNZE+wkr7poF1MphqpVAHnVRVY0UlQDDGy+nQkNJ7Bg3OkV9FVz7wW6Nkgfs4oEJYYt1BZ6fGnaq8RVkLMCnt98PQcL28lNvwglFI6owRYZiqo3HE8ulkhrEIeLOrAJ0beFcxd+BltWOsMpK+C5bffTkK1jdsfSaGybZo5ZO4izyCEotmXcj8NEyKtpYQZMCBTrDmxnz2AeBRzKBzy/YwU9Q4eYOPpsFnZM59H1v+O0qcdwzYJjdfCEIDqGZM+UJMgwRfVJuWKJwpIBpgN99AyKyufTbF8pcXz49tV/V1s1fcwAlerXD2vSmKCmxVS1w5FV1GRx3Ut8+4nlfPiEi1g88RgKvqWbC4uwZ5gIqLddLBGwp7+bW15awQeXno8dZnnN9esrlbl97VP86eXnac7WcNmchVw6ayHberv4yTOPsXLfTkbXNnLNwhM4Y8p83MDnpQM7uW/jKp7ds5WhcgnQfVHOmjqXc6bNZVpLWwX46HazpISPp2Sc+UlQlh3hYwkVyeEn3yv5Ab9d+Qj3bVvJj3/8Y9761reOeO2P2P+MGQni7puWUp97HSSI8x7N16z4L/VJ+VuwIyDlr7QgCKLOnf/6r/9Ky+P7SU7j1QAl6YgnAUrSjJNr5IVLoRSqSV8ni+6Nildy8jMABOKsS5ICZgCD0fqXoQM+5NqUwmzNgGuRswN2FrTaVoAiJQSpcMemUN84Vs1pTzvPlu6825D2yFgKL4jPoeTJqEC56FkMlW2KvowoNV4gtTRs6GiYCJUE+jxBSmoHPxv2USmGWQObGIQYpb8yuudKQJz50UWLusYkYwdkbT/q+u6FzRQztl40SiFNy8jLpi2fgbIdKZllLNODQH+nWUiylk/KUuQ9yaAnac940bX0A8j7mnrjCEhbAc2ZMoNlmwFXT2KzWwbIWAEDZYu+UgqBoiblUfIt8q5FXcqjM59iUmMeScDe3u1s7+6lPttCR+MoHKsmagi5/eBzLFv7Wya1HsMFCy6gMVsbZS5sqR2oIPBYsW0FD6y7j3GN4zh99sXs693JCztX0FLTzN7ePXQNdZG2U7i+x1Ed0zhx0jzmjJ7KL5+5g2d3ruO6JRdy/sxFOFJUZEv0NU84NFXPznBAZTgbvks1UUR4c/cBPnT7v0fvvWvxeSzf9iIDpTwFt0TBK/OepVewZOJR+EpEqmxDnoXrmxouGUWf61Ieg/k9/Hn1bRwa2M9gaYi/P+OtNNZNYfnmZ9lyaDM7e3bSUd/K9y96N5ZQHBro4rEdG3ly50bWH9xJ2k7jWDaDpSHGNk6ktW4cHQ3N7Onrpq1uIpNHncDuwSzNaZeDg93sLgzRVjOFKXUlip5FX9kmZ/tR35wXigOR8EKDqqdJOqSlVgLa7BbZqzaQEy0MBvvxVD689hkskcZXJZ1FscYBUFC9TGYea70HsWUt06zjcPHYqzZQ8jsBi7TVRLOYQIAf9dDJikYCAupoDutLtGKZpwL2ir20MZr5NfDCkMcgfbSrNhotm2IAnQwySB8BftRvp2vz7xhbdxQzOs7DEeqwII1x9m2pIjpmkuJavVIl+0aBzh47osS9q75OpmERcswxjGMcLZZkg9+Fja6LkVgU0U0+Hd9ix8tfZ974S5k37vgooyNQDBb3c9uzX8WSKWaOOZ7jp1+CY4koQ52xA+pSftSnyvT5kahw/o7nYwNSnKqeO7JqHvcCWLN/C39es5ydPQfIOhnOnnUyl81ZTEb6pKQfObhJJ9sKRSgMcDEd6M25VAMVfd2Cw0BKcvvhgEpUJ1L1LFfTspJ/v1agou9zTAX2lYUXFptbCQlh81nznU/u3M5nH7ibNy88jvNnn0mPlw73BVkroNZ2SQmftHR5eNsGalIZjh07GaACMFgiwPX1NjesfJJTJ03jA8edBkDZK/LAlk38+oWnGHRLDJaKNGZrOGvqHKa3jKLglpjQ0ExvcYg7NrzIi/t3c/fbPo2UVgQWdWDCot9LVQTEDFW61ipRCuwKKpjOOMV1ps/u2sS/rbqXyy+/nB/84AdkMnG/sCP2P2sRSPnd6whS3nwEpBwBKX+F9fb28va3v52XXnqJP/3pT2z97l0Ah2VPkvUnnpLD0rsML99MSLqojzBaHlO6zP6Lnu4sn7P9iiiibpYnEpGwmMIihJZZLUddtXUGpeSbRltExcCmL0jJs+guORSC2Nl3RBixVLoGpT7l0Z4roYAaxyctAxxLF9UPeZLeklbGSVkBvUWHgqeLcrO2H8kap0OnP1Ba8ascyKgWpqesHftAQY0FrqIClARop99V8f8GTDlSUef4URQ9AoiJUZ6yQlpAEDs62gmKaQqWVFG0VwpFWgYRxcsP9D00tLgDRa3alfehLR1nv4ZciyFfUGsHNKVdDhbSTKrPY8sg7D4PrtfH/r7dFMo97O0fpDffh+t1U3SLIOtwrFqyqVqESHOo93kGir201nVwsH8PTbWTOGXup8jaZXrzvby08156BtbyntM+T41DRLPSogCKbV1b+eMLfyIIfM6ffwljmuex6cBL3L7yt1y+8Hw8r0BrTT0LxkxhS+c2Fo2dSk3KqIRBoAIODvYwrqEpypIkx52xaoeHYd4zYDn5+7WYec4GS0WWb19LQ6aWY8fNwA18ntq5gVG1Tfxl3TMU3DLvOeHN7BnopblmNLZU9JZtCp5R/NIqXq0Zj00H1vHjx67nzBlLeeO843nvn/6FeWNmsvHQNqa0jOfEibM5ZvQoJjW2krKd0OmMZZONRKMUigMDPTy3dzvP7N7BM3u2MbNtEhNbZzFQ9pjZcRJ3r3mQxmwdZbeLmR2n0FI3loa0S1/J0VTIsLFo3rXCepn4GqYsLU+ddy0OFR0cAV1+QK2QbFddFOjXalrBAJ7KI3GwZU7XhQR9BKqIIxuol2MxDRw9VcSjiCNyzGI2TbZ+vmtSHiVPC2eYPiFCaKBQCkUCyr7EU4LGtEut4zHo2mRtHz8QUYNXgM2FsM7n0EN09q9j6ayPahn1JPUvpGQOV4gOCfqsintNKESYAdXzkx7nHnc8/wVmjb2UcW1Lydp+RMcqh8C0t2yTs4OIyrm3+2VWbvkxly7+R+qyrdE43bT/aTbsfYxjp13Ho2t/QH22hXPmv41cqlbXHYSBh/qU7pNjh8eelCmuqF0hmVWJGyqa5yt5rknH3YC1lAj0vRAKiyACQMMBFYXAFn5FxkWGwMX8rb/3tQGVapCS/HvE+rKqv5Ng5dWASnSvE8BmpMyKRLGh8xAfuecOZrd18METL8OlLjr3jAw41L+DD91xI2dPnUNbTR3vXHRSTG8jpsuZ1146sJtP3PMHbr3mvTRmMtG18X2PVfv3MLa+iWf27OIXzz9Bd2GIjrpGOvODDIYZlenN7fz8suvwlF2RpUrWqZaVFa3FOUtnHr2wrwvoOcaLBBLi894/0MfPdj6OUoo//vGPTJw48bDrf8T+79sRkPLfY0dqUl6jvfjii1x++eXMnDmT559/nqamJrZy12HRQLOAVmdRkk6YHUbAvECX1xXDhn0GlJQTksJxBkR/1lBUjHqWG4Q0rhCUGJDiK0HR1ZmMoq+pL0Ohk2YK8o2kcIDOkMxM64nSVWEvkHDiLgW6/iFrKdqy5SgTkpLxomwW6JwdYEs3AlXZUB3JSLYaWWAwAEo7DobOJARkpXY60lZAoCAt9DUy9TAmK9FgBeQ9vXC1ZMshhUc7oX1lB1/Fal4ZK6Doh00aLX1MJWVAiF4EPSXIygAPTTNJh58pBQKQpEM6kxMClqIv6So55ELVqJa0z4BrhT1oNP2rNe3RmtMLVxsaeKYsIBjgyc3LWLHtcZpzTTTnGmjINjC5sYHG3BwyToaBUoHB0hD5Up68280ZM0/m2AkLkcLiC3d+mYHCbu55/rPkyz0IoLmmhfFNHeRsF0voPh62UHh+gdtX3c2K7c9x7txzWDTpVLqLFg++fBsv7n6avzv+SpZMmEvGCkgJ7bSMr5urI4CRM6OdoMmN9Qj8EYHI8LSu5Pv6dyylHTtzUOmsJD8bv65j7A2ZFBfPOipyMFKWxRlT5qIQXP/8AJaUfPov36anMIAQgisWnsfuvk5WbHuG2nQtn37Dl7GllkxurR9L2nZoTGdpzjZw4eyltNXU8YElpzKjpb0iKq3rPeLzsYSm0ZkS2fEN9YytX8jFs45i76DHj5++nwfW3cvSiUexfP2tWhLVbsaizLL1d9OfH8/cscdSn3K1pHHGZci1dD1U6FSb66b70Gj1seaU7mnTYQks4dMiGrFlPV6glf5M5PWA67NL7KDGamEcY1ivVuNSpIlRDNJHVtTRTuiYAxk7oCFTpr+k64t6w1ooE8n2AhllQ1uzJQqeTdb2GCw7lMPnywRZyr7EkQFtlkMxAFU3l67df+DBlZ+iLjuKhZOuprFmbKxmGN7iZBAnus7RgIgj9gEKOxSTSIUAYG/PGoaKPUxomUrKCnRdhFRkbB/H0pTE2pRHwbOol4rBskVH81w6+47ntmf/iZbaCRw9+SJGN0xnd9caGnId1OfaOGPB53lu86+55elvcsHC6xjdOAmFnn8HXRmJhVjEgGM42K3rEvVfCl2XZ1GZtXDMliLu5i4SGUqlCOs2SAB942zrGhVT8wBBRa1K8grrGpmRa1Di71YERnZhhG2rrUJKWAxTpxI2eEyeo7HHduyi4LogLPpLZS6cPgXHTmELn0DJSLY4CjAhmNnaxk1vvJrPPnAPn7nrZ/zDKRfQVD8tzCAHPLlzIzNaR3FgqJd7N6+hvbaGC2YsRIgQzEmFG1hRBm9XXw8lz+PZPds5e+qsuMDdslk8dgIA23u76C4M8eUzL2Xp+On4StJbLCKFYNmWl9ja3cnk5vbovpt9O2G9DKpKdAARyrLrubYcxI2GDdhVCkbXNfDYY4/xsY99jEWLFvH73/+ec84551XvyRH7v2SKkfnLf+1+jtiRTMprsRtvvJH3v//9fOYzn2HeZgWiMm2dzKQYYGEyKJEyV7htVGgXvlYO6VtSKIq+xPXjydfUkpjPBYkoYrLotBz2IdGZExFFZ4bKNjlH140MuTZDrh0W0OvPuoFkyNf1HimhVaha056WNg6jpE7kmCtqHY/alEfWjiU5jVMCuu5Dc2r1ORlqjS3j+o4hV3fqjv/X8qdWuL+mTJnOfJoB1yZt6f4W5tydUJbWCiWM07bPQNnBDyDn6OhTybdCOeY4C6JlZeNhXuN49JdshCCicRlAaUlDvdO9YpIF8REVJBHtNXU9WTsIJYN9estaTawl7RMoTaVLS0VTxqXWGWTNrod5eusyJjeP59IFb2BKy9gIWBpL/p10LTRgDXh+10soJLlUHY25Rlpr6pHCjuY1RyrypQE2H9rMn1bdyai6Ni496kqUPYaim+emFT+gxrH5wIlXMb6hGScZpQ2pIUlKCcRUEmPDacoNVwA90rbVVg1QXsmS0XT9fxyRvWP9C6w9uIel42eyct8Olm9dg68U7bWNbO3ex5VHXcBJ008jJQN6CoPc9PztHOjbw5fOvIqOxtFIdBRTq5HF1JnqCL9xOirPX0UOYjl0elbs3Mi/PnEvvgqYM3oWuVQWKSwsK0vRDxgqDXLc9DchROjsoqmdRc+Ka9lCQGeyGW6oNFf2ZSLaXSkIo5QRxyBS9Rv0JPWOPpdDJYseijSQoSOji/yHPCuqvdrp6aBFAynKaInwFsthXE0JJ3T2o8yiEgyUbfpKTiSmAfochlyLA57CVT7CG6SruJO+7mcpDe3gzPlfIOfI0GE3QY/YwU1aHPGvHAfJ7Vyvn6c3/469PetZPOVi5o49GStR/B6oWBGr6FnkPTuqDymW9nKg70Ve2HYHuVQ9UjicOufvGN0wiqJnMVCSbNz3AOt2/Znjpl3GiVOPRwgdJEpbAY1pL6J7mUxJnO3Qx2eoRcmCep0ZMZSsynM19/WwaxBmSV8to2IyJ8NlU2Ia2MjZFAAph69jGak+xWRpApWoO6rOnFRlSUymxFcWZ/3mBgSCmlSa3f29fOvsczlriqYumixMxFyI1uAwoxYE/PjZp7jppdU0ZnKcOHEWbbkcf3z5Od67+ATeOGcWT+7ayhcfeojZbaP49EnnM6pWZ4vdQFOzfCW5+cVn+OULT3DTlW+no67+sMyWPm7FH9eu4WfPPYavFPPax/KlMy8jZaUYKBX492cf5ozJMzh67PSKzxkzGZKKLBKClPAr7pGntKiNj4wYAbrXiuDBzav45ar7+exnP8vnP/95pDzSVeJ/yqJMyg2vYyblbUcyKUdAyiuY53l86lOf4oYbbuD3v/89pZufqQAmYDIm4WRLnEFJZlEgltMk8blyuLgbFa9yICh4soIyYJwAK+Q9eyE9ynCeAyWwZRBRqkz9ifl8b9Gh6MeyuMmMhKdilSnQDRYlUGv7EbVJv67rOWpTHjnHr+BbJ81E7Ey2x/QUUCGQAk1bAyIZYCMFC9CcLeP6kgNDaQJEWE9CRGvLWLEjbVsqbGIJec8mFWrt21J3Ay/6MlQU05mX9myJjO1TDGkojhWE1Bp9fZNNBQuepOBbKKAl7YYUobgrfaTqI2NHww1ESMcLGHStCkBV8gVFL2Bo4GFWbb+Lplw9ly84j3ljplT0tTGmlF6EnIQzkHSQkzVPBpwmn+IntjzJXS8/wEBpiNaaZs6efRbzxi2hu5Sit+iwt/NR7l9zC1csPJtL5iwlZ8sKGkmS627Gbvx35TPySuDj1WpQkjUHhyl9Jc71lSxZs1D9mvm8r6DgKu7a+AKPbV/PF89+Fxs69/LQ5hd4YusLNOVqGSwVyLslzpy6kM+ccnEEQKRQieimqqi5GemcjBn1HtC9HZ7bu5cnd++kv+TjBgF5t8TKXS/y9mOvYPdggZljz6Yx7eFYcT8jc5/dsBcShAqAgQgB+uECHGaMJt8z85YBLW6gM4SmSWe/K6MaMNC0ziFfMBh41EqbrIQ+X1FWPrNqAxrSWijDCD2kLd2AdMi1dT8J4rmj4Fl0F51IFW9XSVDyS2za8HU6muZx7NTLEgpZlZHlCIyGUffqbZLbmZoySyr2dr/EY+tvZkLLTM6aezVC6GBHKaS7er4WVEheKyOh3jl4kH29m5ncvpT6tAhVAa0oINI9uImn1v+ESW3zeMO8K8jYNpbUhdpNKa+C7mXmSSsBSsw4iYFEEmCoKIs0nLtZDVKqgwnJ4vnhCuxt6YefjUGL3t8r0770Pv3DjqP6txzm+TBgZSSgYkCKQpB3M3zwrttY3DGeaxcez2fvvx1LwKTGOhSK0yZN4tiO0a8KVsq+y4rdu3hgy2a6C3lOnDCJq+fNJWVpUP/Urj286/Y/05jJ8NmTz+W0yTPwVZy5FCi+8/i9vHRgDz+/5Grqh+nyLYViqOzxw6cfpei5rNy3BykkR4+ZwOi6Rk6bPIsVu7ZRcMu85ajjIj+h2jRtUYbVUofPvzr7ZujklcqHAFu69vODl+9n/vz53HjjjRVqTUfs/54dASn/PXYEpIxgXV1dXHXVVRw8eJDbb7+dl7782+g9U1cCh0sLxypelRmL5MTvBrq7uXmvHDkO8eTjhTQuQ+vSnd812DCLqiNVFF0v+5Kib0VOq+GTD7kWfZ4gZx0OSsyU6ZkFHk3zqnP8CHBkwwaNWccnZ+sicah0Ck3fiej6hL8NmFEQUbxKvgyzFXob43AZOeSCZ4XSo6qC156ScVO1QGnQ5iVoLSVfF7uXQ0DmKxGpbIHOajSmy5R83XivLuWGoC520M1+ktHnjBVo0BXeTxVmdCxJRFMr+yICUuYcs5Ze0LO2x4GeZ3l26x3YUnHBvHM5YeKcaJENqMyaJJ9GoxQkiGlr5torYrCS/PCzO1fyu+du463HXsXMUTNw7CwFX9JZdBgo2TRlXNJygCc3PcDDGx/jF2/8FK01OZxEtqBaNQhendKVtL9m22qrBiWvll1Jbj88yAE3CPjx0w9zx/qVfPLkS9nQuZ97NzzLCRPn8fSudcxsG89RY2dwy6qH8AKPW9/8CWxpRccfFyPHkeqRrPp842Z7glJgUw4s+rwUQ2GW5MZnbkEpj8aadlobjmLhmFH0lS0ytu56HwQmaqrHo58IAAy5FoNlW6sCJjKrcDh9zlDrLKnIhxlVS6iIEmWanfpKkJYBnhLk7IDOkk3OCmjOuFFAIBtSpyT68/VpD4GegwqejIIUjqWbaA66FoNlhxrHiwDLoCcpFvewYu0/M3PsGXheH2WvTEfTTDqa5lCbaRl2HCTHVlJy3ZjJ7tpSUSh38efnfsS45imcM//aaDsDVMy8maQ12VJF2WMh9PznSEU5EFpoJJxXC+VuHl/3Y2xpcdWSd1KTqkMKXaNXYwc4QkXBhWQmpTqLEv9OjDVM1mz4zApUigUYKuYrZVP0mAgq/hYh6E7WnbxafcpIBfTVIKWaplmdVTE/QAVQKQcOj2zbyj88+DC3vOk6Htm+nXs2vsjU5hbyrssTO7dwx7XXMKomW/nZKrCix0IQHYc5Pt93+cuGTXz+oYdJWxaNmSwFz+X48RP50HHn0JCtje6VFwR8/oE/kXfL/OiCy8nYFqYxo8l0fO+p5Ty4ZRNDbpnRtfVs7DrI3PYxfOn0i3lo20YODA4wVC4xuq6ey+cuoT6drcjAmvVMBzTiPjjDBQGTtHHjc+hrIBgq5fnFoRfYu3cvt99+e9R1/Ij937MIpFz/OoKUdxwBKUdAyjD20ksvcckll3DUUUdxdXY2WSdUCwnfr86IJKleZvLwVdzN2qhvKaAQKgtBnCkxssC6r4aqkOg1sr5uoOkUMlxIi54VFd4XPAs/iCODTtioreBZFAJBOTD9hXSzOyMpnKQRmYaDpujc0C/q024EVBwZR/TNcUcSyKHDnawxMNubrEyy2N+YG3a69wJB0dPFwqaoPu9a0bVORm2No2YK/y2pHbacHTDgWpFCkqF8pa0gOp605eMrXdPjByKS/bVlUFHwK4hrhIzakCm0j3j34YAoBZJM+B1FX6t8NaV88oWXWbn1VgZLPZw75xxOnXoMPk7kYFQXgMapfK2mFkubHi5fmgTBoBuJ/eTx37KtezdXH3Mp49qOjmg7Q55ksGwhBbRlXRwZcOsLN5GxFJ88+WJSwtd1NlRnUF4bxStpSWrYf9aGK6J9te2qt9X3y+f+zWv59QtP4Fg2J02aw4v7d7Cxcy/fu/DdTGtu4WN3/YbOoUF6CoOcP2sx71l0EjnHGRZcJQHca82omLmhHFiUAw0oyspi0HMoB4KeoS6+8uAvmNg0Do8Ubz72jfhkomdQZ0bj7JrJVDpSj7X+kk3Jt6JnwwQpIgnysM5LKUJwrecOA/TNHFTyYgENL5CUfV3n1VdytCqeHTt8STW8upRLXcoLa99k+EzpeStt62tUcC3KgSQTBhF8JegtOgQI9nStYteh5bTUdiBEiv296+gc2EpddhSzxpzEtNHHk3ay0blVXONhhoaZH22pm8oWy7386tGvcNWS9zO2aTKg5wyTQR1yY0lys7+0pc/XBAl0bZxublvwLE3DCwSWKPDYul9gSZtrlrwtmq9rbJ+sFQxL+aoGJ+a79ZipBCqxcp453ziLkrwGSRGLeP6NFaXivytliYejfVV8z2sAKq8GUswzYCyZVVHRulGZTQmU4AN33UfBVXz+1AtoyNZFc96XH/ozDWnJV848LTqOCtpYFVhJAjFJwP7BQU67/kbOnz6NNy9YyHV//jPvX7KUZ3bvZM3Bg3x46WmcN31hROkuuGU+cMdvOW3SdP5u8dKQESGj53/Frh18btld/OSia1m2ZQPXr3wKXwXc+ZYPUJ+pD/0BSedQH794bjlXzD2W6a1jYqYBZj2NQUqcDVPDAhWzvT73OJte9gOuf2EZy/es4+abbz5Sp/J/2SKQ8uvXEaS88whIOQJSquzWW2/lHe94B5/61Kc4aquPHKb+5NVAiqkTSVK9Sr4uWC+EDeXMAqYgctKTZoeNBP2EcpcXKoCZrIkt9OI56NoRSDHRUb2NZMDToKQncKkTTgRIjCX7iZheIgVPR1Wztk9Nyov6tcSccf3ZIdeKAVeYHTHRfVuqKPOSDlW7DKXHUDN8BQNli3y46EcOrojrcfxA1/foe0AELMx39pftaH8pGUQAz0gaO0KrFQXh8bblytF2Buwke6SY4noDNAFqbJ9yWJBvsl0ms2G2b8m4Ye8Uyb7+PezZfwud/Zs5Z9ZpnDPrBGwrTcmXDIXXtsY+vJN10oyMqQEpFc3WqgCKFPCHVfeyes8GPnHG+/BELXuG0hX1DWkroNYJ2HpoMwf6dnDv2vv44SUfYHJjYyhrGlQ4TocDlsppopqqVXHsf2X2ZCQbCaCMBGLM62U/YG9/H19Zfhc9hTzXLDyFZVvXcHCgl4tmHcP5M+dSn64BYKBUYvn2DSwdP52WXG7Y2pOkJa/LqwGVpGqZ4ZV7SgOEUmDhKh1U6Cnk+c6jf2DIdRlVP5pZ7VOYN/ZolNBypOXEuPPD8WqEJsq+pC+srzJOjUw8o8l5JWMHIc0yvF4GFEdBEp39GCrbeIGkPhTSkEL3bvCViOacsq9d48ZMOar3GCpbWuZaCTK2poX2lZzoe4zgBsBg+B1xc1sdBHADiesV2NW9ir2HHmSo1Mnx069hYttR0Vw83HWO7o8wAZIgzIoo7lj1a1pr2zl91rnhcevrYhpwauGP+Ngsqah1tGKXAjJh9njI06prbqiSKIViy4GneHLTXVy04BJmjp6HFBJbampqSsZAxTzDMSAZGaRE71NJ9YxpYPE8qV+PP1NN8arOjJpsitmPSGz/akBFjpB1qVABE8Fh84GxarDySkClM1/k/zz8OE/t2s2XzjifxeN08foj29Zyy0tP8fsrLidty4pameHASnKMmB4x77r9Tiwp+P55F3Dvpq38w7L7APiXN5zDNx57gtG19Xz97MtoytVxz8Y1PLp9I8/u2c6frn4Xo2pzleekFF9Z/iDP7tnJ+5ecxsuH9pGxHXKOQ3+pRNZOcfLkuXTUNeAHAf/x0tMUvTKXzD6W5lxddH2jrEgiUzJcRiVWEA3nA5IZKj0mHty0mp++cD///M//zMc//nHEcAvMEXvd7QhI+e+xIyAlNKUUX//61/nGN77BDTfcQOr2VUC8EMQRjDhrEP2fACnJmhQT9c77Fn1l7dDXOFpX33zWOOpOKHnrBoJsGMUzUVPznW7oYJQ8iackzRkd6dSRUaKCeVtqfnjel9gC+n2Fh2K0o7vGG9leia5DSUnd8bw57eKExeqWUNQ4Hhk70PKaUkcUDVhxA8mgK+kpOlGWwwtBlcnCZB2fjBVUnLMxgXbwh7zKzJKZTk3xvokQm6aQRU87CbWOh20pugopir6kNVOOalWU0tklk2ESQvPFTeRXCBgo2xUUr6Qqm1ECS0lN9apN6d4qJV+QD481F0qOlgKt+tWaK7Ovr58Xd/6FXZ3PcvSEE7l8wWm05TJ4StcdFf2Y4mVAiiQRDU1kuIxzkgQpxoKqJ3bt/s1879Hf8tmzP0RjzRgO5FP0FLVGkBS6YD/nBGw9uJ7fPf1rFnTMYM6oqbxp3tGkpU9KehUgqLpQfiSnYzjg8t9lI9WrJF/f0t3F9556mGd2b4+O5N2Lz+K+TavxAo9fXPYOGtJxDwWzX7PgJ+sCzP8jWUypeW3nbCgdnoo79/phhsVVFp35Am+/5dv822WfZUtPFw9teobLjr6K5qwTAROBVtpL9ngB6CnaUcPUtB1E6oEG7Hsh3TQVUhe1EhQVgAXCHkyBwLFUVDuWs42whHlfhtsE5F2btOVXZDmhMuNhAgqBgpasiwL6wsaxhnJlAiymNs1XgkFPUvIVB3pWsH3X71EEjG6cwbRRSxnfuqACsCRBGYQZSKnnKhUU+PXj3+CcuZcyZ8z8SKrYZHCrr4H5vAYp+jrmbN0LqhAGIUwtWMmX9BcDXt79MC/vXo4UglNnns3iiUuwpdD9U2Tlc5wMOBxOATscpMDIQCV5zslsiiCWyK6sfRmuaP5woKL3F0Svm+NRiFcFKkmQUqFcNUwwwQCVIJDDZlMA7t64mc8tW86M1nYum30MU1taecefrsdXioWjRvOVM89kanPjYWBFJeaGWCFLH+9QqcC7/nInzdkc33nD+dywahU/ePpJLp01kzs3bMRTipRl851zr+C2tatYc3APM1pG8bHjT2VKU+NhWaJAKb71+EPcvXEd3zjncqa3jqbgutSk0nQODbBi1za293bRVlPLjJYO7tm0msmNbfSUCjRna2nI5JjaPIoZraMQQsv3+8jD6o2S9N7quU+fdwhwFGw4tIfvrLybc889l5/85CekUimO2H+vRSDll68jSHnXEZByBKQApVKJ9773vSxbtow777yTXd/7MxBHqAzFx4CFZCbF1JYoRBRtNwBFoKlb2wYypC3dGyNlwEe4nyCIlXcEVGQmBLC/bzcv712NrwRNNWOZ3j4dy6qjr5QKP6PIeza21HEk09Og5FnYIbd611CaekfL9XoqpHaFi2LO9iO6hkA7MlJoqoZSUJvyI+ldKbXssKabaEf+YD4V0aqAKIKZtLqUFzk7oPdRDAuBDdVNEPPJTbRzyNXc/PasS3fR5sBQGi+Q5ByPAE0Z0c6DRXu2hEKLCmgOuW4UaWpHah0vBFIypGxIalOell0NKW5lX+KGdBRbaoUiExX2AklPMRVFsQ1nvMbx6C0UeHbrA+w89BCzxyzgzUefSX2uhZQ0TR6tCNh5gb6O2fA6G/55dfM3iClzxtGoBid64AV8+LZvc/G8Mzl64gkUfMmO/gydhTRj6wrUpzwGyjaul+dXj36Jdxx7AWdNW0DW8nFEZXO4aqpWddFt9aJYWR9gHBd1GI3t9bBqpScIZT2V4pk9u/nL+jXcu3kdlhCkbQc38JnbPh6lfC6YOZ9zps7CsZyKzxqrVsx7NXCmt31tQK76eIMq58mogA14ab5w//UcHOzj8gVncTA/xLwxc5jY2BwGEQSlQEYCFP2upeVchX6Weks2SkHaUjhWfAe0PLOKsmqmhs3Qx0z0FYgyBKmwuagUOpsqhAYo5vvMuQ+5VgSEIll0ESsMKkU0F9SmvAj4SEEk/pG2AwbLtn6Ww2xKKVQuKwXmHHyKhR30DbzI9gOPIoWgPjcax0qTsrPUpBuY2LaQUfVaGlYIPQ+W3X7uX3MDKMUbj30vtrQiKmmynsXU+iSj2pZQ5JyAOlsHWgy1NR8GNDwlKPsmGyNRymf7oZU8uuFOcqkMiycuZlxjB2MbOqhNZ6KsqBTDUziToztJ+dLHGmdVYHigMlzfoiQgMY5ukvpVDVSi5o9VGZWRaF/6e4Po/1cCKRXPQWLNDJQkCEzwJvw7fE5W7j3AM3v3satvgD+sfRmAX1xyDTNaO+gulrjlpae5de1KPnLcUt521ALsqu+rrldJnnN/qcR7//IXCp7PFXPm872nnuC86dO4Z9MmTpwwkSd37aTkeaRtm6Zsjjvf/M5hzyH+X3HzmlV876nH+MBxp3HhzKPJOnGWP1BwYLCP369ewfzR4zhrqpZL39rdSdkP2NpziFX7tnH2tIUsHDMJ0I0f7egeDnMdk+eauKb63AWHBvv53uZHaGxs5E9/+hNNTU3D3o8j9vpYBFJ+8TqClHcfASn/60FKV1cXl19+OUNDQ3xs6qk05uoPo3uYBaCsrLC2Qi/2us+JiICJXzVR9JRtekpaSjdnB5TD6J0pzDYWKEF/SVEo7adnaD8HBw5QdPMEStFU08HUUccgheDR9f/B4kmn4srZ4SLqMVi2Q1CiF/2GtEvW0U3hCp5Ffxi1FAL6XIvakPJRm/IirrVAR0Iztk+t41fQMjJhNFGhF766UOr3YEE7fEay1NSUmIitoUOZxcGANGNuCFDMNmb/Cl2LooBax2de4xDr+3Ns78vhh9c570ka016kXpRztGKNESgIVBwlTYW1IkZq1A0jybWhNHPJi+teUlZAOix4N9z2si8jqVVTOGzU1iSKHYee55F1v8MLXK5ddCkLJxwfqRilZEAhvA8ivEYlX9KU9qLv0MBSRdSQ6nqQOPJKOLZiE8COnn186b6f881Lv4SnHHYNpunMp6lPu4yrK9Jfkuzt28/WA8/w+OaH+eGlH2VSYxMZ6WGLQNcphJr8KelXODCv5nwPx5H/77TqjtMrdu3gS4/cz8Ghwej1OW1juXTOQt4wdRppO42nLOxQlag6spo0Q0cEImfttdTiJMHKa+kfUemgaQfKDSxKgU3egxU7VvP9Jx9gcvMYPn7auwlE7OgIdOYuFWYC+sOaLeNAF0PaqAG3jqXHlwkcuEGsXlQOBSWckMpkjssL4gCKARVAJAde9Cwa0m4koGEyEpmQYipCsD8QAg+AMbVFahw/lD8P68GUoN7xyHtW5Oj3lx3dh8WTFbRa49DbQlHyAvb3raXk9oAqIYIBDvVvwZKS84/6kD4Hv8iTG29h04HnGN8yk/Pmv51sKgQKMq6VMwBNZzJj88PX7fDZa3C8sEZI03hLvoyovSVfB1mGvBAABWVWbHuSPd0b2d+/h/5CP0eNP4qL5p1HS21TxbmkwmxPNaUnOdaqlb4O/3t4oBIHPGLaVzVASTrt1RkWvb/hqV/D1adIGUQgpfp5qH4ukupe1UDFVxaBkgyWfE7+1Q00hB3Vy77HhMZ6dvb2c8KEaUxqbOGkSdM4ODjE15bfxajaWj503GKOGd1OxrZJ9l/xw+xlkp6qx6nPL55/jp899wLjGxrZO9DPG6bNoOSVeWjbNpoyGb573rmMqWukOVuD6c0iUezu7+dnzz/D1p4upjW3cv702fzk2SfZ1dfLOVNnIqRN3nVZMm4yJ02cAWigsquvi9vXreZDS8+omAMECl/BD5+6n7OnzWNW2zgU8Vw1ElCJrmni76QKWL5c5jtP3k5PyufOO+88UlD/32hHQMp/j/2vbua4ceNGLrjgAubPn8/dd9/N8g99G9O0zCimBCrseRKmX320MpcfORgi7AqbyK6EfUJyVkA+XNyHXM1Fd/0y/cU+Boq99Bf66S/2kS/1YEtFc+1YmnKjmTN2FrUZzZnXjq3F3p51lNwBth1cSX1tQEPtHLqLKWodj6xdxi9v4rZn/p2lU0/jtJnnMhQu/mYBc6RiVMbFV4IJTXlKvuZXmyJTL9BZhMDWtKiCJ6N+KMYU0Fe2yXsaDJRDSpSJ7hqAYIpRbanBmZbm9aPzSVsKJUGosI5FxI5u3tPUt5zjc1TjAJsGc2zpqcEOGyiiBPUpD4GiNuVF9SpJcJJUwvICiR8uvhlL0Z5zowUsFaoWBcTRX5NNasp47BtMR4W+Ah2Rdiw3Aj+1jo9wHY6deDR7evfy8KanOGHKEp7ftY6X960ll6rhxCnHU59rphwI7lh1M51DPbzvlPdFUb+kM5akZlTy1+PzM6PM3Je1B7YxrW0iCJshV597Y6ZMzvHpLwzwqyd+Qm++m3ljZvG+E65mQkNDqOSV4KejorqU+DgqHZZkIaqxmBv/fwekmNsaoCl8n192Dz3FAmPqGljcMY5LZ83jqDFj9TZKALEanDkvTVk5vMN9MgoNDAvQRqJ2VTp2r3wtTImIcU0A1nftZWdfP1nHYW5bC287egmP79hOWroEQs81Bd/CU5IGx2PQs7CFYky2HDYbjeuoBlzdDR70s5YJqZqOUFiWzsj0l8Ngi1CIQNdPWFI74Y7UYKfO8vEcDVQMHTETjvmCZ5H3dLE9QFNG167UOlp+1w2zhEZlsOzrucTQXfX/fpjxUHhKP+9pO9C9S1yLtK3FP3pKDoES1Nih4iAWHU0LImqbUoKugS0sf/mHCDwsaVF2S+zt3URzzRjeMO+tZFMZrMTt9gKBZamw0V+c2TBmiuVN0MRkv3VHe0U2vI5FX3cDdwNBQ9hc05MpTp1+ClKeglLQOdjFQ+vv4UeP/oxPnPEhGjI53Q40XEPKgb6uNmHmIzmuEpmTijGUeC1AIJW+1nrdMk144yaPcQZWhs+AWdvC7KEi7MERApYEjQsq6zGVElgyiLziQMRNHvU2kqQM8XBzQ8VrKiy2lxAEYdG4gt++uIYJjY38/cln8sTO3UxobOKHTz3M6ZOn0JixWL1/C//+3GO8ad4ifnLx2/jd6if5+weW4QcB//KGc1g6bkz0PRa+rldJfq0SpCyLDyw5jtmtrXzyvgc4f8YM1h46xIbOQ0xqbOSCGTP46D33IoA3TJvGG6ZNY1ZrO//+/PNcv+oFTp88jSvmHM2GzkN88K5bKfs+s1vbQQhyToqsk+KWl55j9b7dnDtjHlOb2xlV20BnfiACJjp7a0Cj4APHncUd659n2ZYXuXTOUjrqm5OXqgLQFgMbizigkszAK3Rj0bqUzRdOuZxlLXmWLl3Kbbfdxsknn3zYPTlir6MFIp7o/6v7OWL/ezMpTz31FBdeeCHvete7OOVgFiec9ZMABeKGSwFxbYivBD4iKtL2Eoocpji+r2wzUNa9S/b1bmHT/mewpINjOeRSDWTTTTRk6mmuqce2GnBsU8itKRtGKctM/nt6NmAJyaiGsdzy7A3MGn8J+bLHod7VoFyaaiexp2cNZ817F1nbjxR2zETdnNEdrU3BuBRx35ZcSGdyrCBqbngwn9KfCbdJhyDBNFfMWIpBV0b729WfZWJDnrKvnZKM7ZMJHZO0FdCU1pQvP6SGlMOsiBfEfHtDxZhcWyQrfV7qq6WvZLOjP4cbOlymoaTJHnlK4vlalcsJz9eoCpkCWik0zSsTAqVIwjgwDeQqHVDD+Xcs7awMli1qHH2NjIPgJOpzHKnoHNjL95Z9j7b60fTluzlu8nHs6tlNxk7x/pPfwb7+Lr567zcB+M4V34kWFBF+f1oGkUIYmCzK8I5x0nn+zvKbGdc4jlNmnMWhokPBk+GxCu5d/UtSMuBTJ19KxtGqYqZBoSP9BJVgeHqXidRW07eS4OSVajKSUcC/xszxHMa5VgI3sKNj6ykUSVkWNSlnBM57ZdZipPeTx1idQRouwv3XArfhqGqmGZtC8Hd/uYXn9+6mLp1hydjJfOqEk/joPX8BYfHhk6+hLtsa1aOBdpptEVAK6SAF3wozcaFSVzgHlULapCV0dsDUhQ2EzVNNjxTjjOtzrIzKlnw95o0UshmfgyHdrBw+Q9lE7Rpo4F3wpK4Z8yw6agsMlHWz0YYwk2iK/92gsl+SHb7eV3LCOrTKHkWGAkn4f9kLuH/Vl5gz7mQWTzoVBbhegfte/BUZJ8d5C9+BFEbdL4iK6y2hs0wpqSIgZp65lNSF78aZNGPGNILUY0pnnYwoSj6kmio0nc3MnRKf2164ge6hgyyacBQnTFpMY7YuqjWxBInn8pUbO8bj7PBMpjkHM1aTGZWkMEacXRmZ+lUdpNDfUylRHGdh/FekfMUZlSB8HoaRI05kVLxAcsxPf8e7Fy3l6vmL+NPa1Wzr6WJ950H6i3n+cs2VpGzJs3v28q0nVmBJhx9c8GYsofjL+tV876mH+MCxS3nPMfMQQlQ8r8niegg4NJTn7k2buHPjBtYe6uSPb7qaMbUN/Pz553hw6yZOmzSZY8eO55FtW3lw62YsKWnP1fDF089mdlsH5UAH5AbLJQbLJRozWSxhM1guIQAhJYPlEsu2rGf1vp2019YzvqGZK+cdG1+DRIbHzFVD5QK3r1vFgcE+zpw6nxltHdjSip7P6ucUYtZCcrYx2/pKN7n91eqHuf7667nyyisPG1NH7L9mUSblZ8dTn30dMikFj+a/e+pIJuV/+gD+J+zOO+/k6quv5pvf/CZTnj+kozjoCd6kzCF2YoQAqUIZWsBVocpWoijUDSyKIfVh0LXoK+kCuEAFrNn9JOfMu4ZM2DRPv66L5s2CrJRecLNSUyEs9EJqFrrJrdPJ2AGHBvaScyx2HnqG0Q2TWTTlAtJ2mhrHY6i4hbpUGVtyGPUq71lR/YNlVSlHSb0AGVqXrwRt2TKe0j0TSoGk37WRaI66AR9Drnbeu0opalM+/WUn6mdiZIdF+J1lX5C1tMNU9CsBinFyMlZAW1pne3YWMgyULXqLep+NaT/sGRNPzbZUeD40ZlzSnqYuGV68EWjc2bWRA/07GCoNIEMCvRCS8c3TGd8ym0A5mt6RiLBrx1Tz1F201KoXaK6+UW5zfYkj/cjhaa/v4NPnfJr1BzaxcOw8mnO1DBX7+T93f4NfPPl71uxdA8AxE47GFioq84wioioEa1IdBpwOi+iHv32lWH9gOydPO5VyIKhP+WTlENu7D7C3ey2bDm7m3y/7IHUpC4FfUVQ7XJZguAwKHJ4dqHZUYPjC9r+msH7YbIwyvwR5L03GKlMObGrsIgAt2VgaPOmIVGdM4ogl0f/6+OLXXunYh6u9Sf490vUZ6f8KeVQCjhnTwVC5TG06x9TmJkbV1vLLS6/hS488wO+fv4PPnXEtg54TiTTkfSvKwhRCsYzIIRYajCilCJSuiXKVnsMyYU+UGtvHSFwbMzLdXghwYhU//awTZj7Nc2vOwZaKhpSnG0KGdSwZOyBraeffEiUaUj4C6CqkouL9Uqhy6Ctd42XuVSxoQNiDxWWobGNbiqJrhRliQcZSUZ+orCNYMu0qHl33C+aMWUhdtgE7leGseW/mxse/wq6u9UxqmxnSTlWodmdqNeL7klTigrg2xUia+0pvk6xhsjBKfwHYsRiKLRU2oZiIsrj4qGt5fsfjrD+wgYc3PsZHT30PE5pGh+MPPEMiDiAQQkfIzfw8wjj6ayzOqsTnnMy0mIxKIHTGMgjPTyWel0BIpIqBikKEn5FY+MN/cZXpz8ZgJTqnMKOihL7mnz3pOP55+ePkHJsr5y4AoLdY4n133MKn7n+IT5+whLfe+pfoyVuzfxNHd0zjollHM72lnc89eDur9u/jK2eeRnMmFYElCx+lBFt7e/inRx7j6T17AJg/qp36dJoxtXXUpdN8/PiT+PjxJ0XHfdqkqXz8hFP5/YsvsK23hzG1DQDYwsdXktpUmtpU3PCxIZONgoC1qQzXLDiOee0d3Lt5DWdPnVOR4aqYX9D3vC6d4S1HLaWnMMTDWzdw04tP8LajT2V665g4wEUMVAzFS4/Z4LBtLKG4ZPbRtNXUcd1117F//34+/OEPv6Z7dsSO2P+k/a8DKb/85S/56Ec/yvXXX0/d3S8BYYSQSmpTteOS7PJaDileyQL4oi8ZcrWCU96z8PwyG/ev5lD/VmaOmkNtSkeS9AKoF3uR6ClgIpAmup+ytGMvwkUyFRavt9R0cNmid7F/KIMTAgI/8MPFVZC1VehwmP4n2gFIiZhCZAkdHTdABfSCVA6PJ0kzciyFFuIMos/q+hNN4XDCWhaTWRgo25oGFimC+RE/HrRDF3OStePUkPJpcHTdR1fJod+16C3p/eQcn4aMG0UEDX3NEgolRVhHEkR1NKYIfVfXVlbtepqp7bM4dsISatK1SBk21fPKbDm0mfvX3MSZc64gZedibZjQoUOF9yKM3OoxYfq96EyKUe/RQBOaa1o5fXpLdBz12Tqacg28vHcNXzzvE/zqqZuZN3pGWKheWZcUfnV0Lyqi+VVj2CzsBwd6GHKLjG0cR0kJtndt45eP/5RcKs3k5jF89tQraM1lw8hmJRBJ2kiZjmrnuxQ4ZKzyiOCp4hhfxXGXBFFUM6nMk7QgIf+dli6WCMhZpfh4DagM/zU0MFUFRAwwMcAl2r/isNdGOodXAm0jnuNITqVQiMT88u5jFrG1p4tlW7cwpakdSwTUp+At8+fz0Xv+zL6enYxtGk/Bt6PAhamvCpQWeSgHEsvSmUo3iHs01dhBhSNTDrOWyQamrhLkPYt6x9Nd10NnXEfWBbaI+zn5SpG2NKgxyoOg6aGmQD9rBaRlEPV1sYWekyY1FOgqarWynO1H9EzTsLYsFBk7iOq58q6NHc4vaTsgZ3tYpRT9ZTtSKcuE+xnXPIcJrQu5Y+XPuHTxx8k6Ng3Zek6acQEPrfsD72j+LIGwKYfzbRCeY9IC4tqvpJpekspraDnRHB7GqkWYDXWVwFIimlddIcP50+Gkaadz3OTTeXDt7dz8wl/47JnvDoMjcRRdrw5hQCxKbyXVvaqfq+GH2CuZyQIlAUol9St8XpTJjITHp8SwgMRkQl4NRCVrVJLZxSRQEUIhZcDV86czoaGeD951PwrFZbMXUp/O8OML3siFv/s5HzluEcePH0fR8/nAkpOY2z4eAEf6zB81mt9c/ja+uvxezrnhRma2tjKntYWPLF1MfTqNEIpfrVxF2fdZ8Z53Y0uHHz69gn867RxqU7lEv6pEphVFXTrNe489nq093fzomSf4yNJTqE9ngKAiO2v+To4hKWDhmPFMaGzhJ888zLULljKhsbJhabIhq5l7mrM5dvQeYm9/D83ZTDQOgooxWWnJjEoy8BYowQkTpvHVzFX80z/9E/v27eOrX/0qRySKX19Tgf55PfZzxA73f/5mTSnFV77yFT75yU9y1113UX/3i2HUIsDCdNqufODNZKPVcPSC7Ib0L90zQ0a9LwZc3e+jHEgO9e/mkXU3U5ep4Q3zLmPRhPkRrcJEIv0ExcHQHsyir5tR6Yi9yUQEaDWZvGfRV4qbzTmhkyxE7NyC5oc3prWEcNYOdL8SS//tWLE0Zhw1JDwefRzFsMB/KOxEbYfgJO9pzruhTIHuspx3daHsQNmJGkn6SkS8c5M9cMMJM2sF1Kd0ob4lFAOuxcGiw8GiEwEUW6qo033O8SM55FRYCJy1fS1vbGletwYrGlT05vczZ8wcjhl/FE01taTtuEFiykoxa/QcxjWNx/UGKxw2KXSdjAr/1hSWmDKmlIhocVqSWc8kJpKtpUn1NVy/fxOHBro4b87p5MsF9vbtY0HHtFBpSUVFu8ZE1W9J5QNq6CHmtZ09++mob0OJFEHgcdvKW7hq4en8/k2f5GvnvJkl4yZH97g6U1LdSX442ke12cKPAMBhICR8LfleBQVEa/dgCT+ih1jCP0wdKPlj3pciIG2VNWC3vIhOEh2ziI/Z0FUihygBykbKHlUfd7UlMyZymHNLfp/Z70g0vSSNzPzUpGy+duZZANyy5hluX/8ylgxYOLqV86bP5CN33cjf3/NLHFGM4JwXdrIvmKBISBU19QjpECjYUvcpMk6zCqPnSunaOk3hMtQ9/YykzbMU0qOin5CSaGpTah0/Cp4oYrqmG9JKQavYmUxsc8qjOe1F+8iFz6/JpOg5ibCuQisIuqEMuVI6YJK1vbC5bBApEer7ASfNvAZLOjz08g0IXGypWDTxRDy/zN7ejaGjRvR8D2cRnVfFdYeml0vyPibNFMI7UpGRei7KWgFpMy9J/aODNXDW7HPY37+PNfs2Jp7PeL/6PoajRcU/lWMynjvMuExSvQ47L+Ii7bgZrBj2t7kOhpIYHUvieIYVnxjhtWShvD5288xU1q4kqWO29DhpQhvvO/Zont69PVqrc6kUDZkMO/oLfP3M03Gk5NP33cnWnq7oHAIlaM5m+dY5l/HjC6/iwhnzefFgJ19+5MnoGM6dNpXd/f3UOhYpy+GDS47n1yufxw30WhskroMeEzL67JSmZt6zaAnfe2o5L+7fE13z5ByarPdLPvdN2RzzR43jkW3rK65TNaBJ/v/xE9/A+487nZtffIo9fV08tXMT921axbqDuxKgWlUdQ3J/KrENzG3v4NunXcVNN93EO9/5TlzXPey+HbH/ggWv488R+98BUoIg4GMf+xg/+clPeOyxx3BveDChshJEdQsAQ26J3X3d7Og9xKGh/mjCMg62Fy1eUAxEyP02zdAUf37+Zxzo28rZcy9nzpgZ5ByBLfWCYlS9TFRSJEBFMSwwNQ0GC5HjoQHRoGsxULYZChV9Cp6ud4n6e3iD1KSzUTQzZSlyoaNhgEyS4mEoRcaKnpYxLXg6i9EffpeuqxERYBl0LdwQwAj0OeVdwcodj/HA2pvoGurV4M3TlCg37A9SMg0YBTQ4Prkw8xIoQU/ZZm8+RWfR0fxzJUgbjnuYPTGOgHEGbBFT1kw2wwCx/b3b2Nm1hYUdsyJny4oWwVjad7DYS2O2Xi/4GJ63vh4CTVvRDlQoCR06lZrbHjqZ4fXzEwu8JWDDwY38+xPXk3UynD7zNO5c8wCnTT+e5mxtTOcidn6NHQYeKpzw5GKu2N6zjwlNY+gv9nLzszeQsS3esmBJeH2CCnBSDVCqeya8GkARQpGyvIpo6EhWDUyqueCGDy+FwgrVxUb8kQGO9CpBSxLYEDv71WBiJKAiKq738OcRJByq5D0aCZAkf6LrMAIAGu712pTDo++8jhktLQRKq6ylLfjCqafwuzdew5oDu8lIHcE2ilpadCGmJcnEc2IAhSPiIIZ5VswcoMJgiCVU2PcnSDxn+v9UWCxusiFZK9COuNT9QzK2osYOyFihxC5hnUaYzTHAxWSZa0Jgoq9lTDMzQY8YhOlggKGWmeAOEFFKTeAA9POZsmzOnP9eevMH+e2T32Zf73YcW7+fttPRs51UYhzJzHU19+uVTAqi+h47AUhS0gC8cH4Kr9lQqQcpJGv3b6DkFTEUn1gKvHL/RlzDAAd97yq3SY6nkUDyK9lwNVvVQAWGoS6a9xPPd6BktI9qq6ZLChFEYKUaqAihmNZcx/N79/Cjpx/jppde4M1/vIHmbJbZre2MrqtBoSj7Hq5fpuzrbvDx/gWz2kZzwcz5vGfRSdyxcQMFTx/jCePHYknB4zt3hucfkHfLrNy/NzoPkyEy/Y3KgR0BldG1DXzh1DN5eNtmXgw/Y+5DNB9ROS+YcXThzAU0ZWu4YeUT7Bvo4cdPP8SPVjzEjaue4uGt6zk42A9UApXRtY3sH+zjphefZP9AD7Na29nac4DvPXE3u/u6o6xJNUBJioYkj2dSYzPfXHoJq1at4vLLL6dYLI40NI7YEfsftb95upfv+7zvfe9j2bJlPP7442z9yq8wykbGlAp48cBeHtm2DlvajKptQAqLg0P9WNLisrkno0Qq7nyOznIUw+JUS6iwyFIyb+yxDJYGaM6lo+/wAiJwUmP7oca+LigviriJmd5WRJFDAwJME0OTZalxPPrLNvUpL2rU1jO0m1F1LWzY+zRLJy7Ew4moDeVwcdfF6jLqyQFxgWt/2WbPQJbGjOaAp6yArO1hSxUBJnNsInQqbKnY3NnNE5uXMaHtBFqbTmDPwXsoe3mQtUxsO5FRdc2UA0l9yiVXE5CydN+Vom/R71oMlq2KLu6ahpbMbJDgx8d/m14PUobAS4BSHg+8fC/NNQ285dg3YlkWvlJh/Y+OGPsohNB/W1JA1aIpla47yjl+6HRpQKEAO6SsGfBkqHqOUJECUEoqXtyzkl+t+ANLJi6kO98PwmbdgU28ZdH5EY89ECpS5jGWLGqtlh41xwdxZKGvOMC+vgN88/5vc8zYWXz+lKtJWZqzUU3tMgukGfvVheJGkWckgGL2Z3rvDGfVRbbmNT+Q2MKPHBkbPwIYI31eJRZXpWIKohL6GTDc8kDIaBut/hSbVJpjb7I/hvqVvB7muo/U3T55TarBScWxh9uYJ2skqljSVNWxtORy3Hb1NRWfESjG1DpkbIdt3XvoaNISor7SdBST7QAiJ9eYkbg17xkwUwizlFbiOTI9iqRQ0fOYVB4SMqYl6e/Xz5TtaOd8wNU6QykZzm8hkHJCwCQcRXfJpj7lU2MH9IZ9VCIJ4PDZMz1eLKF0I9aQLFUtC2/m3eiZQQOBunQNlx/7WV7c9QA3rfgRU9pmkS8P0JBtAmIqjBcIbBHSYACHpNIg0TGY65AcHYaGZaheyTEgEBHgMNc7UAIv8Fl7cAsv7nmZZ3e8gCUslm18krRl8ZZF51ZExKvHlLEAkEpUqCFWW/xcV9qrAa3oO9Tw9MdoPqlS/jKWbJ44vKJXZePH6s/GWZUQdOIjrYCTJ7bz7mMWsL13iE3dh7hq7lyuO3oWlrQAxZdPP4lP37+cd952U3SGD7/zo9SknOh8ACY2tjK9pY2r//AHfnHJxWzoPIglBA9s2craQ734SpFLpUhblXLFWjhHJtaQIDEf2HzwuJP5yTOPs7XnEJfMWgBVTUY1RTgBnNDr16WzF/L4js18cdntfOfcK6lLZ+kr5tnZ180DW9bSmR8kCBT9pSL16QxSClbs2sI9b/8kOSeFQDGleTQFt8y3HrubK+cvZVRNAw3Zmqrvr8rAJcZBe00N/zz/LL62+Qkuuugi/vznP1NTU8MR+y+aEvrn9djPEfvbVvfyPI93vOMdPPvss3zlmHNoq6lUSOgvFbh/00vs6O1kTvsETpk8m4ytJzeFnuA2dR/kjy+t4MK5pzBYLvPMzvUUPF0sV/R8JrVOY1T9aHb37kEKh9092xnbOI7FE48C4mickQM1C59RhTFXv79sRw6F0ekvhVkF0BSAoqcn0LxnU/IFOTugLVekNuWzesdydnRtZsnEo1m7fz2tte305PtwfZf545cytnFidE45O8AL9HcUfRn1IDGRQC/wKJZ2ML5pHL7SEqRuCKQa0i6O1Avw9q5dvLj7BWaMvQJEhpSlmN0yQFfR4eFNa0hJmDVmEcWwj8LkxqGoQ31zxo16xiT7ISilmydGsr/SqPHEXGbtDBleuXa2Bou93P3yPZw182TGNnRobn4YfTUUB2NS6Gt8z0t/4dSZF6GEHWWtQH+P6QjvqbgRmMlOpcM+D+YeGGpeSgb0lQp89Z5v8O6lV9A52Mm6g9u58uiL+OLd/8rPr/oSlrRQiEimOnnuJvodZUESY3U4tZ/fPL+Mx7e/zN8ddyEnjJ9EKoy0V4OTZMdp83pSbjje/ysDFJMdqRRKrbTheiskvyO535E+k6SNVKrxDNNnpCqKm3zPvGaiweY9OByUVEd+zfVKXpfkOZltqq/V4bScw88zeV4jmdk2QPLkrl38bvUatvf28ZajT2Vy+2w8Ucegp2mVBqQ0OF6oSqVCsCBJiYAAXWBfCnQjQiNRbGR2TfF6ztIAIxWKd1SbidYa0Q/zXHmhDK953aiLlX39Wn3Kpy1dpqesAydNKY8hTwcpkkXqhprmBrqg2vU1bczIoev7pPsoDZTtiuCFAc8GHAigv7Cf1TsfYeG4xYxtmhRt60gDaqjIxuqsU1yJYOa5lAzIhs9WOeFwmnM3x2+um1bNi2uelFL84LHfsblzN4vHz2F//yGacw30FIY4euw0Lph9fAgADrfqwEQyo/pKPVJgeMCTzKYmM6j62gUV28TfEb9v5gAzL5h9V1A0ZRBTMkUioymCqJ+KsZHobMr0TkHgB1bUQyX5GT0e9O9Hd+zmXbffxedOPoXL5yxixe7dzGwdzZ7+Xlbv301fqcBAqcRdG9cwtq6eA4MDzG5r5ZKZM1k0dgJKBdz44os8t2cvnz3xNOaMnhTO0zIcCwlqGlodUddU+fxoxaNs6jrE2PoGTp08nenNbYyuq9drZyJ4MVy2ak9fN79e+SRvmn8s01tGDTMCoOhpOlZfsUhTtiYEaNoCJejOD/Lsnu1s7zlE2na4esGJOJZVAVKG6/1kPp8vl/jCI7dRM2ksd9555/9qJan/ihl1r65/O+F1U/dq+eCT/+vVvf5mQUq5XObaa69lw4YN/J/5ZzGqRjeFenT7JsY3NLPu0F62dB/kgpkLmdzUdphcqUJHQFwlybs+f1zzFI3ZRuZ2zANZE0p9Cp7c8hhFt8i09tkUXJe6TDMttU1RlN0LRMTbrnH0AmgmaVODYophCyEoMYpXXqCpZGabZDZhyLVJW7pOoyntISiRljZCCLoLAxRcRWtNPVu79rL24AGWTl4ayRqXw+ZpntIgqexL+gplBodWcKBvFz5pmmtaOdS/E8fKMLZ5OjNGz4soDY4VoAKfe9b8mfHtF2I7rWRtn3mtA/QUHYZci0fW3cisjhMY0ziFUrmX/vweBord5F2PjoYOxjVPBWQYUSdycAwYMQ5R1g4QqoAlBJaVDqP5OnMhw22KboGbnr+daxZdTC6VxQtkKG4Q86/NdTPLRDkQ3L7qNs6Zd0XUDA80gDGNNw03XAotuZyxgsgRNTUoDY6nM1llh/6yxaMbbqezfzefOv3t/MOd/8ql88+iqaaNnz5+Az+64h8AopomkxkDvQhmTL1N2C+h0sGNHRMji43SHePTlhkX1ZLClY5I9fswMjhJvp90TmBkB7sabMDwICXp6FRvb/6vkBROgJHDG8ElwcjhYAVIgJnKz5r3kou5joUPL8s63DkNd/zmO0YCKK9kuh9T5bZX/eFWXjxwAAE4loXr+0xuGsXfnfQ2spl2hjxJWirqQ5BSY/nU2WVA979ICZ99pZwG0WEPIyOnnbUC6mw3Uv7Tr/nEHekPp0aZQn1zncvheCwHMqJJmUyzryAX1p+AzoDk7CBqRmnq6FQ457qBoLdkU+PoTu8l09xR6T5Fpo5PCBVRQ4GoPs7Iq1dy/FU0r5h5NBOqAA5HHwUieXFbBHhKhrRgFa0Nru/x+LZVdOf78HyXAEnGErTW1NGWa6SlphFHSvYP9vLc7g08u2s9/3Lhe2nM5Hj7Ld/hE6e8iW8vv4l3LDqPU6cuCMdIpVU//9WWBCrDgRRz7jBy4KKa7ln9mejZrwpURN+feL0CwMiggralt4/fEyKIpIhfCagY+lh1Z/rqoMXfP7gc11c0ZmsoeoJb1ryAAmpSKY4aPZZRNTWA4tRJE7ln0yYaMhnOmz6XZ3Zvp+i5vHXhMTRmazg0mOdbTyznn844l5Rl4ymrYo7QgNyixi5TcH1++PTDnDJpNsd0TEApjyd27mL1/l3UOIL9A90sHTeJc6bNASEj0BKvR1rps+gFfPzum/je+VeRslMVc8twmdk4y1MZcFEINnXu5/Z1z9GSq2fhmImUfZeWbC3TW0dH97lael2gKHouX3jkL6j2Ju655x6am+P+LEfstVkEUn74OoKUDx8BKX+TdK9yucwb3/hG9uzZwyOPPML6f/gOnUMD/OqFJ5jb3sG3HruLS2cfzUePPxPQsoxJFSAwUUGhOc/S5oK5Z0bKXgVfRyMD4Pgpp0Rdmo38p68UaSdgVMal4EtdPOrHrkcUPZQioailu7krBEOupjIElqIuFUcagUgFLGPHRaxZK0AILRFcDCCbaqA+o6eyMuM50PsoBwcm4gUudel6culGPCUpuoKuwR1sPfgsAsGiCQtobzqVKU15mtMee4eOB2DZ2ls41LceKXOMbpyOH5TYfmgVrU2n0JBtwrFcGtIuB/MpzStXcMyUt7LtwBNs2PccrTUNjKofzdimSRT9DDu7trC18z5OnXluBFDcyLnQgK3e8SiWO1m++WnKfomiW2Bm+zSkCEhJh2MmzMfzfVbuXsnGg9t501Fn0ZRJUwoMFUZPwHbCOQGirIcXeEhRCf5MdDUIr3MQaIqXqUOJIv1oJZ+c7VMONFXOElAu72fF1if4wtnv4bmdq1AI5o89mq3de0PloJiKIYVersx4ME5RtUNf3Q9BhM5FSpiMy6uDk+EckeFqLfT1qaRsVAOUkazacSF5vsOAk+qsSrIBXHSRgCB0ZIRQkfxSBJKUaVwmQipMCKJE/L65HgFgYRSKKt/Tv1Xi+X+F8xwGkAxnr1SzM9x25rpXX2chFNcdvZDPLXuYma2jaa9tJOukuWPdC/yfe77LdYvP5sxpx1HGISUCBn2bId+KaCuDnkOt7dLslDRtxRb0uTYt6bLOUviSgm/Rli7hCD+iJyFCSpeQ0SKhVNw3KnnsNgGBkuEzFqoTSp+s5Yfd2fVc2uh4pMNsQymwYnW88JkvhnNlOlfGEtDvWuSsgCDM+uq5T0v1mnoP0yTXABHCuhal4n5IsYKhikCRCSKpMOMRiHiO1YX7YUZGxg6gr2JK3V3rH+WBjc+xYMxkUrbD7t6DvLh/B+019QQqoL9YIEAxqraB0XVNfPmsNzKmxsEPXPqLQzSkbfqLQ/zgiT9y+9rH+P5F70OKSihSCVLivw3YfrXGocOOtypnt1rd63CKmaiQJEZR0cDRvC6I1b/Mc6gQ0XNWnT3RND8NVIaleQqFCIU6CMLjkkT/B1XXqq9Y4oGt21kwahTjG+r5/Ckncc7UybRkc9y9aTOz2tqZ2tzM9p4+bswPsaW7i8+fcjpz28fSme/l1ytfwAsg5zg0Z7N8cdl9/P2p55NzYvpbSnpIZZGSumZs0HXpKxYYVdsQNsNVnDNlLOdMGcumrm42dnXi2Fm+9ugD1KUdrphzDG21zRV0cz0eA6a3tFcAlOrMbhKsmG3S0sdTVgL4KGa0juLTJ19AXzHPyn07cSyLlw7s4s4NK2mvqWN0XSPzR3Uwpra+gpqWsR2+evol/LB7E2eeeSYPPfQQTU1Nr3VYHbGkKUZW5vhr93PE/vYyKZ7ncc0117BlyxaWLVvG2s9+i/s3v8y6Q/t4x9En0pDJMlguUpvKHPbZQMUc1LKywoi8pBBo1S7Dsy4FUtOD0AtaOiwCd0RcmGZ6kDhSRVFzM9G4QRxJN9kWAz5M/UjWCij4Mko3V09eZt9AGF3Xr+tC+QAvpDqVAsmj2w9xqO9lykGGYnkIkZ5GqbQHt9xJe/0kFk1cQF3aYd9gJsrapKwg6gwdIEhbPiIYYFvXZvKuTWvDItpyrpYfltrdNrU1biAieljG9qlN+brnSCCiepKnt9zHuOZpZFO1NGSbsaRN39BB9vRuoVw+SNkrUp+p5aQpx9GYrcMPfF7cs4YV25/j6HFz2d69k7Rlc9zEhcxom4CnYmfInLu5TraMI/MBOppb9H2WrX+QoVKBbCrHKTPOwpY2QhA5RaAjrpoCo6+8JVRck6L0eNC1PoqfLv8Rs9vHcuWCM/nsXT/gtGlLqc3Uk7Zz/P65P/GTN/5D5BjE6kGV0VxHhGpi4ZiMwYKqiJbqMREXwJttgGHBibFqetcrOdNxBqZScjSZSUk61cnIavK1kTInBpwMl5WopG4dHnEdKauS7Hyd3E+8r8OzKklLOgfVmZSRwFfFNauidA0HOl6rJY9t1f79LN+xi+tXruaaBcdRk2nh31fcRdbRNXQfPfECxjdNJGtpue4BLxU9y8XAohyYignt0KTD7K7JXtbbZWrtcsU8U/CdMDBjVQH9xLMUaDAUZRgS2eEIQCbAZCrsEzXoWfS7Nrt6dlKfspnU1BY9D6YYvhg+w0OeFu9oTPnYUoW1gCKq86umjJo5xhSbJzOzRoTDBJTsKGMSZySMwplA1xpKEdO5gqDE/Rue5eZVD/H509/IqNpaegtDrDmwi9+sfLTi/l0xdxEfWHIGjmVF46qvWOTi336XG6/+LHetf45Jje1845GbWDJ+Bps69zK9tYPzZixiyfgZVeMmBiUjNldNZFKqn/nqsZsU6KimfI0UzLCkcaxj8YrqbV8pm2IyKfq9ahnjMEsSyIrvNeOtmv5ltjPPeRDApu4extTWUZtKVWRKZ/7wpwAsHDWKDV1dXDJzDu9fchI1qWz0TFgioOCVGCz73PzSKtYc3E9brpYPHHcqLblajFJXEhQIFH0lnx89/RAzW0dx7vR5ZG0N6eN5XpKSPj1Fj688cispy2F2+wSmNLUzWBqiu9BPR10jy7au55/OuBgpDCCu7O+UvJfDWXy+lXOYAfAlL2CoXGTvQC9rD+5mV183R4+ZwBlT51R8jxf4/OuhDezfv58HHnjgf3UE/6+1KJPyg9cxk/KRI5mUvymQ4vs+73jHO1i5ciXfOuYMGjM5nt61lRW7t/GR488aNt2ZNDM5+EqDg0JgU/C1tn4plBt2lVbaakj5UZdnQVykahxHX0kcEeATc7Xj/SccaBEXtwIhRSKkUQQyoiIlnVopdG2EWZCMY25qOtyEk9Dv6vqVgwO93Ld2GZ0Du5jacQmj6ifRXldDfdqlPuWFEsF6wW9I+eQ9ye6BDCXPwpYBtSmPrB1Q8gUDZYdACVqyJcq+pCHthfmnWD4TYgpXpOaDXmwHXYtyeYAN+1/EV4refBd+4NJa28b0tslMbG6mxrYjZ0MI6Mt3c8ea+3jTUefRVlNDKqSc+GEGy1yfgl8ZYbOqFruAmJNPeC13dB/g2R3Pcf68i8jYWmjADiOzfhRhJIreWoIwoyZDqVTFsvUPs2L7M3zlvA/xHy/cyc6+TkqeR748RFe+l/p0LT95499H99YNKguRjSKXk3AGKxyECuAROyGWCKreO5y6MVzthNlvss6i+rkwBfVJkDKczOhI9SfV1JDhwMmrOe2V1Cx5GFCJtkkAlfhevzb6V/V5VUQtXyNIeS10rmFBzSuc/2F1M0qwYvc+vrfiaQIlOWnSXB7Y/BL7B7op+R5z2zuY0dKOpyyKvkXyzjtC9y0RGCfepJNimqUTOo5mPJl6i1hsIK7V85SI/geBj9CZqui18HkPs1z6+IkCBsVA17Fs7dzKmPpW3n/CG/HDnI2pKdFgJp4PFZU0ulJY92ICPOY4zVhOzkXRvRNUKgYa6qjQ9NEkaMmEtT6mni0lPf7xnp8SBD5TW0azcu9W8uUSDdlahspFxtY3sahjEtt6DvLkzk0A/OjCN3PUmPHRPVy+bQPffOwebrnmUwghKCuLXT0HeHLnOtprm9jT18UfXnqMX17xEcbUNVRkTV4ty2dMJueQYQCK3mb4916pLqW6BsWAkai+rQqkCKGwpB9lSZNARcogAioGhFTTvpLzRSQF7NsRUEluWz0XdOULPLx9F6sPHMSWkhtX62a61192NfNHdUSyysn50g9VySwRUPYV+/r7uHvzOgZKGrwfPWYcZ0+diqcs3MCqAP1rD+7jjg0vMrGxjfNnLGDFrg3s6uvl9Cmzac+lybtl3nnrDdz+5g+wqbuXdZ0HGd/QTFsux57+Tn741AO01TTyrfPeQlp6FSByuPurx+XhARZzL3wVK38OB1oAvvvEvXzk+LOxpawAQ0XP4x8fvh173CjuvffeI8X0r9EikPK9E18/kPKxJ/7Xg5S/GbqXUor3ve99PPPMM3zn2LPJ2A7fe/JBprW08bHjTyepyT7SQ15tllBkpI8UevIq+XphTFu6yDRrxX0CDKc7rjfR+7BFQFlZ0aKQkgFWwsmxwui5ryTFQJKSCk9pR9oAlCCx0NtCRZK6Cu3cpggo+FZ0PulQUrnkKZ7cvJw9/T04VooTZ1zGik1/0nU16IhYyZP0KZuMrTMnbVk3yuy0ZMv0lRxKoTyyG0iGynYUKfWVIOf4cQ1N6LBnLL34GFCVslQEtIqeroPJpOpYOOHE6DoIiOQ6M5YfKQ0FCPb17ebhTU/yjmMvoTblhKAkzpz4SgO6yCEJr1Uy+huEzo2EyPkwNrF5FC/vtXG9PrJ2fZQ1QXkcGtjPnp5dHD1uLo5dExZLCvK+7nwtBGw7tJF71z7A5866Dj/weGTrSma2TaFMmX+5+KOU3QLdhcHQaVPhYqIqAJSgktr1SnzzwxyJYQDKq0X9I/njpKNdtY0gBhkRHSoRTU+Ck+rvGi57Em9/eFFttVU4KorocxVZnGHoXdX0r+T25tobRSep4qh0sg7mtTiDrwRQXg14vVbKWDVwtGTAiRNGsWDU+XzhoUf55XPLyDppBsolzps+i2VbN/G1sy9HWvXkfYchX887zU6JAEFGeiGQdzQfnjjTYGpPGpxSJMCQdHKSPTR8JSiGcqwmIGOsEFgVx6zC/fS7TlTLkrN8el1bC4cAh/p385vn7sYSEiEEU1vGsmDsHNJ2KpzvNC1NC9cVqE/ZCDTQP1jUARMDOMq+fsr09YsL6o0aoQl6mO3NkRr5cT+cc4Ukool5YXDpqe0vsaVrL/NHTeD5PZt55+JzOXnyfAIkBbfEx/7yI3qLeb5+zhvxA4+C69KQycTZKaX4/lMPcuqkmdhSB0AcETCpuZ2JTe0AlHyfP7z0GO/84/f54hlXceLEmf+p8VOt0lWdQUlaMqBhHG/TjR5FVRf6w7/bfOaV7JWeCf2e5iUkx2Py73iu8DRFLHyWDVgxz7r5nm8/+TR3bNjCm+YtoLdYZG5bG9t6e/FDhct4jOo9mQySaaSYsgTjG5t496KToufwu08+xNlTp+KG2UOjGClQzG0fzZz2MfzjA7dxYLAbKSRvmn8cj2xdx2B5iJX7dvLlM95AjQOz29qY0dqOH8BvVz/OQDHPJbPns7uvF4siCoc+N0XOcklJP5rTV+7bxZ7+Xk6aOJXGTC7ObCayKJX1JmYsqMNeA7hg5kK+9+T9fOi408ml0tHrGdvmq6dfxGeW/ZlLLrmEO+64g2w2+4r394jFZhQTX4/9HLG/EZCilOITn/gEy5Yt43vHn0t7TY5tvd1MbGzmstnzwsW20qEyC1tyAa5UgFI4BFiWQgSasuVILRssgRrbJy19nCpHyziWllBRQzPT38A4zYa6YyxAgIojIb7SkY1YWldHOnXNRJDgWMeZAi2BrCkJaalrW/6w9mHmtU/h5OknUvIdDuQdajKtrNv7OGObj8exU2RtH1u6obKXplMMuZK+sh32HwnwLR119v3KTFDJkyFlIgiLWol6MiSpTPF9Cq9rZckAAqJeJ9VOc75c4N51j3DlUW+gxrHZcHAbL+/fyrmzTyJlZ6PvSRbem2udXI/jDASa0xxmnAy9w/VKZG0Hzy+yq2c3q3evJmU5WNLi0OAhTpy8KAKNGhBpsPD01ke59+V7eNviC5nZNoGHNz+DH/js6NnNN89/PzW2RdaupSFbi+kkTfidyeOLaz9eHaBUF8DGfw8PUEayV3QciPsVSHH4s5N83Ww/XCQ1+T3V4CQZOEhakqde4aigDgMqEIIRIWOgoeI6FPNehaTxKwCV+BiGD2BUZ3+q6W6vZiM5mMl7lYzQDrd9Xdrme+edwV0bJ/Gxex8gbdk8un0rZd/nyR3rOX3aYkSgx1iN5ZGzypQCm5SMVfMUYbRViKgWpc9NUwy3s4SeZ6RQDHkpIGzmSSjfnQBQfggWfSQ5EVNPDfBxw/tVa/vsK9ihKIV2gm2hmN4yhjltF4c1gD67e3Zyx0sP4CsfpSSeCrClQ8ktkHVsIOCkyQuZ3DIRgO6SjVEAfKXrbgkV0fANHfew7cJn09TG6Qi7wA98/mP1MgCasnX8wxnXknVyADhCsebQdobKBd61+Ay9f2nRkLEq7qsQgjntY3h2zzaUMs+uwtIDQK9JtuRzp19JX2GQHz51F7PbRtNWUz/sk/xKIbbhxs1ric4nActwlgQvr3gACasWkTCvJV83QEUIUfHsVWdVpAxQSs8dQWCBJCqqTwYtPnH8YpZv301fqcTpk2fwqRNPoyaVjWiJw52fmU/NylGReUWQslPs6h8g5TSTthSWlBXbAWQchyvmLGJMva49uWr+YgSKfQM9/NvTyyj7LovHTuZHTz+GGwQs6pjAWUcvYV3nfkbnMnz/yXvI2GmkTNOYyTKxqYOcY3Pry0+RkroZ5M7eLgqex+jaWi6fczQ1qVR4/HE2OXmPzXOh34sL92e0jOLUSTP51uP38cXTL64YHznH5l/OupCP3n87V155JbfddhuO47y2G37EjtjraH8TIOWb3/wmN998M/922kWMqdMqHh21Of7Yc5CvLr+Hfzz13MM+E0cZiOhCSbpIFLEOaVsZGYDtYQkLTwmy0g9rB6oj4maSF6iwsKFaGjZJmzAUMFPYq4EMoZRofIzmmOPMAIlMgsD1PTK2FTVUe2zHWurSWY4eM4Fi4NFZktSlJEunnsPaA3t5csPPOGH2h0mrWBnHDiNJttQ9CkxXddDyxzrDEiAiCoVePDJWgAzlPI37qMKQpZRUFb4CqNBJ0vuJGsjJwx0HKQKac/W8sOsluoZ6mNY6nuMnHcWNz93FW499o+68TRwJheGdRQNQBHHfExKUnyltk3h443IARtW3cuVRF3Fo6BAPbniMdx//JqS0KPimozEEQZFbX/gDWzq38pU3vJ0Fozo4WAq4f8PT5JwMC8dMZVxDA77S/R+S7nj1OeqMRZwBSjZ5NGMmSemKx5K5Rn8dGEkC5Grn2LwWAQ4R00zM+8OBoIjeEQKb5PeOBE5GAgVJ5Z9kJLUaqCSzH9WR1P8sUBnpmg1nrwZQXnORPYePh9di50ydyPj6ev7u2FPZ2dfPz59bzksHdvOGGUcj0fNOznJD+VQP0Jldy1KUAwsIsMLXjMRqybfAjmudkhF5PW5NJtCPOPfRyFWaCkno6AXh3Iav1etMbUo5iIGOHdbQOVIhFVhCMqV1ElNaJwGmFkTh+WVqHYktoehqZa3lm59jQcd0pow6CoRF3pOkJNF8AHHfnGQGxYooX8nxGwMUI0Os5ydNgX1g/RMcGOimKVPDu4+7sGJ8AsxuG4MtLTYc2sGJE6YNm7GQQjG2rpEnd27lypu+iy115mioXMKSkmM6JjG+oYXfrnqCK+cdx/Hjp/KtR2/nX89/c4XDPJwNlzUZzqpByEiAZaQMbPIzARIL/7D3k6YFFfxhgUq0v8OyJdoMDQz0GiJllby59BFKBxFNUb3Jqoyuy/Gby87jxtXr+d6K5ezu62PpuAl88LiTmNk6asTraOaGarU/gWKoXOIHKx5lsOzTkqshY1v4gSKbymoKo1fGkjZX3/Lv3POOL5C2gggUWVYND2/bwpmTp/K71U9z7NgOzpk6KwqOLhg1hiUdLXQX80xoaGLJ2El0Fnye2nOA7X1F/m7JeUyoz7C5azd/WLOSdxy1GCHgO088yPsWH09HfQNWCHSN35E8B/Mse+j+MoGCFbu38uyebSwdPwU/8LEsGWfMUdQ4Dt8561I+dO8fePe7383111+PEMNftyOWsEDon9djP0fs/32Q8utf/5pvfOMb/NtZlzChoR7C1G192uIjxx3Hz194DksEbO3u4oGtG1l36CDnTJ2BJS2mNrcwoVFrk1dTG4wZpzZreaQtnanwwmK4anCSBCB6cfXDgjtt1TQzs5DL8LOOpSkYVmLSNpb839RWDHqaevXwpmfZ1r2TlGWTtmyKvkdrbQdnzziRYhBEC31T2tMdj92J7O5s1ZK3Ya+EIVensG3pkrZ0H5O0FTaCLMc9WlIhaPEDQcoIBliVxyuAjA0mV1IOzylKsIfZISfMFuiIrSloraRo1aezXHvM+VGxaxBmMia1TGTtwZ1MaJkSOkbVjl5yIU4ClDBaFoTZpzADc8y4+Rwzbn7orMDO3r08tfVprll0GZa0o2J8TwmK5UF++fhPqUun+dHF76Etl8MSAat2v0xfMc/fnfhWfvr4b3C9MraVrljGLaGwiDtrJ6lpldmHyjFVeW6VGZTk6+a6WcMAgYp9VGVCkp83YGOk95P7iOtbKnnow+1zuILZ5L6MJZu7mayKqnomDc+9mv711wAVSL4fH0s1YHk1q6a9HfY+cfTyr9nfSL6m2ZdjWVw+ezoPbnmZz536Rn7+3HICFYTjXEelU9LDFj5W6DAZGVQRwwxl7wABAABJREFUhsKNU5MMGBjwYWgtdlUxtQ6sSEy/IQjrWQIrrBHTYMYCJBIldRPb7rKDJRRZS4VUMw0MSoHEV6YGRCsemvvkyIBa20O3rwrnMtvhrBmLOWv6Mby4dzN3rP4j4xpHM3vsSSjhRItaMhClEpnLqLt7IuhjMpghxoq2CRTs7z/ELavuAWBcYxs3vvAAaTvF6LomLp6tpd0zqTquW3QaP3jyAXoKQ0xsaOaoMeMSYyDgl88/yTULFnPhzDmUfQ+lPPxAkUtl2T/Qx8fvvQ2AkyZO47k9W/jEiefzxWV/whJBtC6Z7L8+rypgXTVgRhqP1XVqI47b6NoMv+1rldV+JTssoCF9nSEJTVNnBCrskVINVERYLyeUkbHWFDChFHPaGvj6WcfhK4s9/Xl+s3oN1/35Pzh32kw+ccKp1KbShwVmTCCkOk1kiYDOfD//cMq5NGZyOlgVBHxh2R30lQPOm3kiSsBzu9bx4ROuoNPNkvZjpkU6Vc+XTr+IpqzDRTNnR/UvAhU2L9bP2Ji6WpqzGXIpmw47zUUzpjPgpTXF0veZ0jyOvz+5ld+uXoEQkvcfexw3vbSSRR0dnD55GrZQWt1SKWxpaGlSzwdSga//PzTUzy1rnmH1vt24gc/Kvdv4wmnnh2NDP8O+ktSlUnznrEt53x3/wd///d/zzW9+8798z//mTQmONHN8/ez/aZBy55138qEPfYi77rqL+v+4AxOvtkSAH5R53523MaWxmctvvp59A/2cNHESs9tauXH1c2zq7uLqeUfzkeNHHQZKkh2oDU/VDheHlB07WZVOcOwgmixM8nVjh30XOnKX3M5EX5L67NHChMAiwEcigbvXP0vKcnjz4iu1JK7n0lkSWFYOKVwUumeBUR2TQpESe5EUdMQwdPxrUz5519JdoqXpaRBStqSiIe1GlKySL8NGk7oIPiWDCKiUfKMOZhwaUyOjgVsmLDz3Ek6RQC86jtDOixCJRQjFhoPbWLn75fCagKeg4PpMH32MjpyFxeMGKJloaTUPO+ksGmeEcFJOdol2fZflGx/lbcdeji8c3EA3qHMDicDjpmd+w9j6Zj5/+mWkLRkBgoc2raCn0M+vV9xM2XcZKhdozKWwzBhJgJN4GU5mUMLjFGARCyMcXm9SGRE175lFLy4SfpUMyzCgYyTVHqgEyklwYv43AGW4DEtS2afaqqlV1aCk+lyMI6GzIcPXqfjhFTbXy1cCSRDVryT3bzIq8T6GvVwVNlxPmOEsuoYjII4keIloXq+yOCUpZ2dPncAvXniRjpo8y9/5LnKpGkphjVhWeqSkT31qCC+wKfopVGAAhgIFZWVR9i0y0qPOLuMrQd5PgQ/FwKLWcslYXpQFcaQfgRcz1qQwBfcBMhFpNWA5awWkpM+QZ0XPvVJgh8DJzImmtg1i5cQGx9X1Z+F1KvhWpLRlCYsFY2ewYOwM1h3Yzu2rbmLp1NMY2zg+cjOj+gYIHTgTsTf3UW+j69Di+cEETWwB+VIP9ekcZ047hsnNozltynxsGfDzp+8lCMpImUIIxYUzj+LeDSv51mMa0Fw6+yjaa+oRKE6YMIlfPP+E7olx/PERyDYAoC2X5qQJU5jROoor5h7Du267kQ/feQMpy45pYeFaFM9hcbBLH/PIIHm4/18t0zfc856015JJkSHAqsjYvkpWRUo/VPqywmCFjP6Hw4GKZXmxmEZgIaTCV7ECmIXPuIYsnzt5CW9ZMJd/ePBRrv7DjfzTGW/gmDET9DGqSpqZoV0bVS8pFHWpDEOeRROKcmBTCtK8dcmVPLVjDTeuegQvULz5uGtYv+9lfvb03TgSJtbVMb6xkR3d++grdNFfzLOtp5M3zl1A2rbDNSEGnRPqm9ja0838UYJyoN2zBqdIoLTKXt5PUWvDuxedyLaeg/zsuRV8+sTT+M6Tj/DAlo2cMH4C333qCfxA8c2zz2bB6A5qHK1k6ivJM7s388WH7qW3WOD86TNxA33/zps+maxVDp81fd5eOIeOrsny/XMu5n2/+hWjR4/m4x//+Cve8yN2xF5P+39W3eupp57inHPO4frrr2fqsscBwoyEz67+fr71+GOs2r+Py2fP4ajRozlu3HhqUikCJbhx1Sp+/sIz3HTlu2jM1mCaNEFVliMBVMxkZaKIZtI1C35y4q9WDvGr9p00J3TqHBlUKHJAHOVT6M63npIItMqMQnDTSy+QdbKcPX0h+4uZcH+VC5lxLgq+LtfvyQ/y5xfv5sy5V9Lv1jJYdnADQV3KozVbJmdrZ7Lg6WPO2noKdYMw8inBDWtTTPPJprSLYykGyhZDrkVdyqc+5Veci4IwHa2PJyUTNReJy5KkZbjeEH9+8X4mN3dwwqSFpGwtiZr3LAq+DOllKpJANoDHAI5k9iUZVfUT90ffQ0P104IHf1p9FydMOZZxDe3ozvJaZrgv381Nz/4WlMd3zn87OcfBNmoqQcAbrv8aALPbJ1CTyvDFM9+sv5PK2oqkVdY3aMD61wKUkf5+JZqXFXaFJnFskgBLHi4JXH3cSbWvZAZoOMUuKSvpX6+l7mOkxm7DvReP88r3q7tT+yrOoryS6lfyGA67fonrmhQFMO9F12SkFIh5/zU4h8njqvgsKnLSJAElz2fOv93A3W95B2Pra3EDi95yjkE/RWsqT3O6Hzt0+obcLKXAic61FNgUfAdXSbxA9znR4h0BtZYbzjeKbFjAayhgZm400eB4foNkEX1yDs37Dv2eTSmwou70ZlyZBpCga/1SMiDvWxGoUFX3w1BczbNv5sntXTu5b/1jdDSM5ezZpyOEOIz2ZT6frOXT9K+4t4eZo2oSwiiuEjy7exMpKTh23BQsoXhh90Z85XPc+FkIdG+Yvf09XHfrzyn5XsV9O2/6HDZ2HWRXXy8XzZzN504+JeoKbu6HUZwLlMQLYEt3F7XpLG019dE21ePCzPUmoHV4NqVq7CTmE/Oa2edwr0dAIJFNGy5AYWrqzNyQBBLmtWQ21fyuBhwQP7MGdJjfBnQklcFGqnUxnzOZlaQioB/AjavX8e0nn+adRy3mvYuPqxi3Rma4mvnwwr49PLBlC5a0uHDOqTx/qMiW/SvZ0LmbyS1TOHXGGYytgdZUiR43RUp4PLf9GdZ3d3PpzLnMbG3hq4/czvHjJ7Dm4D7G1NZx0czZNGdr+NPa1Wzv7WVTVxcfWLKERR1jyXtp+txMSNssI4Wi4Kfo99JkpEejk2dnbye3r1/DbevXcdqkycxubeXmNS9xzfzZ/Oz5VXTmC3TU1VGXSnHs2HE8sm0bM1pb+KfTT2JUTZbn9+3nG4+toK0mx/fPuzC8XrIim5ySHr6SrNrfyQcfuIOf/vSnXHvttRyxSjPqXoe+dfLrpu7V9pnHjqh7/U8fwH/GNm/ezMUXX8w3vvENpi97DEsGdOWH+O5TT/LQtm0MlsucP30ad7/5zTRmMwyVPdZ3duH6Pus6O/nJc0/zowuupCmbi6Z0E6UaKOV56cBeWnP1zGprj6gOZhLzlS4gJfpcMhWvI/oeEkEcQYq53fE5mEnQ7N/0Q0lasreKCuNmZWVRKLvcumYF2Uw7iyYu5FBJUG97+Jhu9RzWF6HG9in6knvX3stVR19EJiWpLZc5IHRne8d0Ow/7ttQ6QeTcW0KRs022AlxbRMdb6/hR1LI144XgJO5Togvl9VV2QlBhalOqHdEACAKXrV3b2XBgC0U3z0VzT6O1pj4EakSRUC0FbBbQeP9G0jnJLY5qUMJrqh0b3fXaLOsmRX7nyw8wd/Q0xjW0IxLHuH7fi9z83C2cNHk+7z/ubHK2FWVQAB7dvo6zpy3k75acgxA2vooXec0C1ucXL/DayoEM0/362sQ9D0YGKNUR0GqAEn1vGCFMWjJLIonpUYbeJUNnYyQwNVJR/HC1KMnsSfI1fe+Hb+KW/L6R6lQqtqOSShUdD2E0Vphoqs4+QiUtLKZ3VDp0IxFZDEAx9mqUuOrPvhZLZhGH4+onvz/jSCY21rOt91AIUmykUNRaZQq+Q2exgVHZHsqBoxUEfVvLoxvnkFjZS49BPTazlks5sCgHcY8Pk62L/w4zE+gal6SoQ3VX65zl0u2mCBSM+v/YO+9wOYor7f+qunvSzUnSVc45IwkRJJFzxjYGGwdwwl57ndesjcOyzrtenO11Itg4gAPBYKIAAQqgLIGEcs7SzRO6u+r7o7p7eubOleT9vLtem3qe+9yZns5dVX3ec97znmSerDJ1UnwMMLGEptOzyfkykghP2EbpsCekmka1XUykxdWSlGXkWqttjxkDWpk24E08vXk5T736Ry4Ydzq1qZroPHQwP+Z8I6uejtU7KkbQNZY051xtuwi08SxraOs+yoR+Q5GYeXBK6yi++fzvmdk6nOqEjcSlJZPiJ9fcxFNb1vPQhlUc7ummykmw9eghPjP/XH6xZhULt23mH0+dTVMmE52bJTRaCCxAaYUUknHNTcG9LAoWlCqnmWWh0+xkE+MrRVAiemgZODH9TUcUYysG0CPnRmzdsDZQCT25LJJS3ipFa4TQJhk+oH+F0RWtBa7vYEfjonSOCc9LBlRepSwTbY2AtMQSkptmjGPu4AFc8+sHmD9sOBP79YucGQB55aC0oRuG92Zm6yBmtA7mya2b+NyT9zK0cRTXTpzEP8yaRHMmjauOkVc2BWUxNN3Jka4D/Grt8+xsb2fL4e0sGDaSg91dnDl0FFeOH8/OtiM8uGE9ezo6OJzt4WOnn8HRbA+/fWU9LVXVDKppoDFRzAtTWmALnwYni6skRwtVjGz0GdXYxKiGBj562mmsPrCPgvK5eeZk3nXKJI70ZPnl2g18Y/Fyrhg/khumTuKbS5bxH4uXMntgf/Z2dnHl+FH8YcNmEpaLryRCWiXPIVTxm9naxL+ddTbvfve7GTRoEAsWLOjzmf5dN/063esv2f7PgZQjR45wySWX8Pa3v50PfOADrHn/P/DrdWu5Y/ESzhw6mDuvupRRjY0kLeMxXLh9Ox965FFqkyksKci6Lt+/9ComD2jBVZpD3T28uGs7rx05gK80NckUU/sP4vFNK0lak5nU0hKFfUODF4qev3i0JXxJhEnOfmxeDnnacepWWHnWCySKSyMPIorwHMoWWLl/L68c3MvRbJYaRzN/xGQGNgzHVGD3cbUpMhkq5yhdpEw0JFyk0BzJO7hU8+C6p2iubqI63Z/G6sG0ZKqpso2y1+GcQ7XjczRn8jBSlqLaCfMTjCGTEjoSA3CkimhaWkPSKtIrTNRHEdYbMUUhVXQP1+zdQMpJMbxxMG3ZLhZuWkzB9xjdMpKLJsyjKZ0Mir8ZgyhetC3crwi8qQYMEhVDLK+PkgsiUQlp8mxcBHnP44VtK9jdtpeEZdGR62H2sJlMGTgu8vZ2FHweW/8Ay7av4h/PuIyzRkwIIjRFQ3HD4YN89bkH6F/dQNJOYVtGZlmFxi86kPEsTjrdvk2V5ZG0/CIwKQMhJ/TIxwBMsY8ZikVI2atkbPeKdgSRm3hNlLCqdHmTsugxLTcqzH/Va91KKl59gY7SdYpARcciIcfLUTHXLItGjlYlQEVTKk8cN7ZCg93QyE4cDTle9OSENLDj/B6CR4kqp8ZX3LY26dCZN/NTyirgKose5VDn5LCEotPN4CmLrO9EKl9AVOsh/G4F1JoaO8+RQoZcUDxPeAmqLI9quxDUcNCEtaSK0up+BFjMvkJAI6N9D051G7AegKLGRIGsb5FXkpxvYQlNteNTbXnklMXhvBMV0QUoqLiUu6Yx6UZOiTDPSyM4c+RsunNt/GLFI7xz1kXUp6uBME9QRJ8LSiKkTzrIL7SEpjPfzb7OoyA0+7Tpv762WLzjFWw7xajGlijym7Hh5lln8ZknfsXq/TuRwqgnAUzqN4AH33ILBd+jM5/l0dfW87mFj2FLwa/e+Ab6VSUhRpVSFKPzYU6A0oGhHVO80qI0qbvoHAv6BqW0z/j7Kd5Hw99O1M+Lc1Oxv/vawsLvPQbKAHxfrRKNrNJcIqXqBVSUspAoA1SkhxB9gZViNXuTTC/Q2swHWpgxPrl/DTfPmMi/vfgMd151LUiJhcLWPo70UFqS8x0KsehjlV3gnBFjaXfT7O1WzO5fTcbOY4kCVXZxTpRC89Ar6+kq5Lll9kS+/9IrrD+4j+H1TexqP8ov125hT2c7jekqRjcNYLKt+fGKl7l6/Dj+5ewz+cHLK+nIu9w88zSU1S8oqGr6bZXlGlqytsj7DtdNHsWgmgQ/eHkJ+7u62NPRyYHuLgZWp2nJJGlIm/N/eONWLhw9ij9c/0buXLmaW59aVPJcetwsVU7KOHSUjOYgJaRRUNOCOYNHcscdd3D11Vfz4osvMn78+BM+79fb6+3/p/2fonvlcjnOP/98+vfvz29+8xvWfOCDfOjRh9nR1sbnFpzB/OFDzXqe4t9fXIbWmvteeZXPLjiXC0YbvfmCD1KaQdtdKPC155/k2kmzGN3UHyFs0pYbhN49/u2Fp3jjpBmMbGyJtNXDF4CnZWQIl3unyr27UBqqDw1tO2ZYlYfw88pmby7D7m6Lu5f+nNnDT2V8yyAa01U0JFyqLI9uP6xuazzyOd8USHMDkBJyvFvThUgK2BIKrRSHuo6wt/MYL+54hUsmzCOdHsjGtgwTG3qiF1hPQHNKSE1SqoCvbgx9VwmqbR8hoMb2ousKgVl4vUX6WXhvQGuf3695gv41zVjSZtvRnSTtFGeNOZ26VA2ONHVojDFUNCrC4onldK4QqITFEMO8lJDvGxoknpaRLLRA8+irLzC0oZUZA4fjaUm3K5BSBhEWONRxgB8v/gVp2+YzZ1/FoNr6aNuw+Urx3gd+xoxBY1m0bR3XTj6di8fPRqLpzGfJJNLEFVF8LaLCeuVUt1DNKwSv5UpelQBMJZDiBIZkCQ8cEW0XGhMqMiANlSesEF3e4oZ8mHNSpGmoXkZznCtevjzKEYj+YvSgMs9RL2qXlr3W67VNbByVF3zzdZECUqTXVAZKccpVOf2tUt5Opes/0TKonHz850Zczrnz93zktLOZN2woed+h0zO1OartfOQEcZVFl5eg2i5gCUUhAC1ZZUdjTAKFwCvva1OnyeTimTmp1vaod7JkfYdOL8GAVHfUJ0MPdHzuC+lf8YgumDHQ4SXQWpC0/CiSE6kgBo/wYD5FteVxMJ+kx5fRk7WlpjqIviSkIhEUzRVoenw7AjEdPUd4dutKrp9uPL5hNEBrQVZZFJQ0ta4CR8/mwzt4fNNqpg4YFsQ0BUnp0+MnaEhnmNh/pJFbF37kYS94eT7z5O9Zunsb37vsWv712SdoyVRx+7mXo/G4Y/GzLNqxjbmDB3PthHGcO3IYyaAqeV/5ivE+HdIWi5H8GK2RIu0u6k99AOe++mp5X4o3Wd7vRW+6Y3xZOQ2yEg00BBAhZavoyAiOFT+PEtqXjChcvm+jtMQPhR2kV3ZMhWX1nsfK5x2tBR15n3k/eYDbFpzORaNHlzwDT9u4ygCBgrLwtaTazlNQNh35Al9+fiG3nzWX+mQSW/q05fLUJpM40idhu3i+yxt+80fmDx/AoNoEtz6xgmsnjuSFnfsZ19SfmQOH8M4ZU9nR1kbeK/Dsjp2s2r+H7196AUnb5khPni8tWszMgcPpLni8efKUYuFSREQVTzu5qM+M+uaPAFj67jcxoLoqurcHu3Is3r2PTz2xmI+eNofnduxn27FDXDZ2OAlbsGjHPl470saA6mouHzeat06dRNLORBF2V9nkfQcVzA/3NaT41a9+xZIlS+jXr1+f/ervqUV0r68uoDb1F6B75Txa/unZ1+le/9sncLJNKcU73/lOPM/jnnvuYf0HP8LO9qMs2rGTde+/iZRtE5rCD218jXvXruPq8ZO4dd45nD96IpbwTURESkJdre8sfZb3zp5HS1V9EDov5ocI4BNnnM2XFz3NrfMvinmdzDESZcacG3gdw+JLqmzOj4oTagFYEa867vFXGrK+AVBtXpKE1HR2beL80VM4Y/iIQAVH4WvYmU2Ttoo1UULj1hMCGYACKUyC+oFcgmrbp87x6AmATUttPwbXNzFr0DDuXP4UjVWNnDpyPrYwBr+rBNUxTxyYF0CNMMDEkSbBvc7xAgOkWNwqvN6whbxxPwBOW4/sprm6gTNGzgLg9BHTo/V9rUnGFKBCNa+Q7haCkaLRHsiqilCxxxTHjKhY2rxqHaHp9KwAbJkecKj7GBeOP4OCCo4hDB9doFi2/WXuXf4QV0yYzbtmzcORssRbb85N8KdNa8i6Ba6YfB5Dm0bx/Rd+yZr92yl4Li/tfo3vX/0R+tc0RAaYFAaYhAU9i/SuopJXKHDQVzuesRGnIpbQoGLGRXmLA5TjGdhhtMEYFpUT4UOuefj5eF7TchWvvo5bjKCUaqJVTMDVxeu2pE+8Sr2FHyl8CQRaiEgVKIpcBC2MvpwomlXpfI+3rC9P88kCk0rrdhVcGlIWtvRxlV1yzu1uOjIkw7y7MMrma0lBW3gBcM8FY8UWmiorKPwYGPNmfZPMqxF0+xaH8hlaU53B3Kno8hIIIGV5QQ6fIB7LM8DHgI2qAMAKdBQtinv+fST1TgEJNCULVPlh/ksxCm22D/qlhrwqrUvSr7qetmw3nueSsG0TPVUWGcsjIzRpGRaBVOxpO8iTm9fwkdMvBGFT0GaObnBydHtmTs6qoPiuVGQL3fzptdX8cu0yhtTV89Bb3slTW1+jynH4zyveyPK9O/nYYw9zxbixPP32G+hfXR09B01lwBDNmaL4jG0dvLe0ybOK5zyqKFJVFIwJ8ynC+9lX34knbIff+1o33Fe03xhA6WubOED5LzdRnMFCp0gYUQlpAiZ/xy6CIa1j0ZXK85NpZgd1KcmnzpzOV59fwrkjhpKwHDN/CI3QLlKEZQZMv8/YeZLaJSEdbj3jNL7w7PPMam3FkR5feu5phtXXcM2E0cwdPJpxzQO5bf483vvwI1w0ZiCr/+FSWqsz/GzFVv7p8eVYUvPl5zp535x5pJ0E19SMZvbAbdy2cCk3zZjJqMYavnLe2SzauZ/Fu3bx0xUv8KG5M9DaKrn/Oc9jya49ZD3FDy+/gE8+/ixJW2LHnEQDahJcPWEYUmi+v2w9NckUD91wKU1VZr74+OmTeWjjDr6xeB3/sfglvvHiMmYPGshtCy5iaF1N1FdC6tzlh122z53L5ZdfzsKFC8nEqIt/700r8/eX2M/r7f8QSPnCF77A0qVLWbJkCZs+diu2VOzv7GBgTTVpJ2T9G8NlZEM9lhB8at4ZaFIl0284sH+1dhXzh49mQHUtGk1YnK/4IhE4lkXKttl69CC7Oto5lu2h2y3QU8hz6bgpDKypi/arMZWcu/0EDU624ksofAErTaSQ40g/iqgkygCHFJrdRzZwzaRTqU/2kFM2Wd8KuOKCnG+TlDJQzDIGe0IqfG1qmmQsn3yg7OVIHdAqTGLssYKDI20aHcF7Zp/Dj19+itZULvBEQlIS1DMwNCpPC3K+jCWymtejKXIZJrOa6xQUk9fNNRqAYiri+mw7soPmqsbSHABdzH+Rohgdiie5OzIEJGabEIjEoydhFEJEPYIompKxTMRHCjja007KtrFl7NiA5+f5+csPsHrPRj57zhuYO2REsD9V5qWH9lw3P1n+LDfOupK8TtLSMIXbLuzHwteeoaC6sKVN/5rqqOp1KBQQnlNfAEXElps+W0rtqpwgW/RoxvtaX8neOjL2jDezPNekuF8VPdS+AEopVUOVfe+9Tvi9NCeFsu+980zC5cU6K8SW95YXjs5fEIEVERQzUyIoACcIahSV1nKQsTdERHsI/leKolS65ugcTjJa8udGUMx1azryBepTwbmhg0iJTZdXrCKtEUHNFENlCQszFpSFLwU9vomoJKVPre1G0ZZcrLp2VlmktSRtudQ5oaPFgAdb+CSkH+S8iEhWPGwmF0xFmKVobMeui1KgEir2JYQCq5gwX8kBFP63hZkXnGAuOGvUZBZuXcOFY40SoNJm3GULXbx6cEdwXM2i7Rv4+JmXIKWFr8ELcsXCxHRbKFLBXH33ime4d81SxjW38M/zz+Hs4SNwLM2lY0bynaWL+enKxdyzehW3n7OAq8aPCp5ZZVluOD5wNX3WPANLBzScgH4jgmsJ6WBCaKxgX5FEt+4NtuN1mPrqV/FWSekvfi2V5o1K65ywxceQVGglewEVrWUxihvUSAmV/JSWUdSmI+fxoUeW0pn3GN9cQ7/qlKEj2xZjm2oZWldNe94Y8ZP613OgK8v+rnaG1TdFL44ooh2bN5NWgY58gaTMMKIOvnzuBXx7ydP8et1qvnbBGTRWKX7/yi5+8PJaPnXmHG6YMpnfXXcNX3xuCbO//yhXjh/CF86bTEvVaXz6iVUc6u7ms089xDkjx3HG8OmMah7Ke+e08rVnH+LLF1xO2vY4bchQpg0YzIcffZCPPraQpnQCSwqqHJu07bDxyBGuHj+KKifBE1t2UJNM8G8vrORrF8zudd+vnjCUq8YPiy0Jnx9cOWEYV04YhtY+P3x5A/+x+BUuv/enTO03gPfNvYQhjUNJSY+k9OjxE7w7PYjPJnbxzne+k1/96le8XkPl9fbf0f5PgJRf//rX3HHHHfznhVez//NfwrE8th9r59NPL+Qd06f0Wv+BjZs4c+gQkrbE9QMvU/CCVAhW7t1Ld8Hl9CHDITA+7ZjhETdGTxsygvUH9zKotoGhdY1UJRJYQvDj5S9y6/zzgVBqM8xDkWR9B0soktJMgsYDKOkp5Hhyy6sczeW5cOxsMgnjfXCx6PEdhNAkhE/acskri0M9OfZ392DbtWR9hS0UCSlodx0SUnMwa+NYkirtUywAaahSljCUiKQyBnu9UwiMOBtLaLo9QZdnGcCUO0BrTaPhaAfXLYUmIUPvnAELoRRmCCYEBrxYukjLMtsWQUq84OSK3a+wcvcrnDZ8OuP7jzbPJTaJhsaHq0SUo2MMDwNMignfIe2GKHoSUqcc4UcAxeTlCDxlzACTO2PO6eFXnqMuleH2x3/Ih+ffgKclT29axpOvLWFQbSPfu/LdDKrJVKQ//eHVlXxn8RO4ymda6yjGt06lx7fwFRzpOkp9upadxw4wunkgaavoTY7TtSzK5agrJ8oX72n5b72NBauC17ISQAmbJXxs6ZucFFmuVtU7kfZ4Sl0hcCjfT8m5lAGk8u/l65ZHSvoCLqbFS/gVoyxhnkmvApChJzYAKtEeAiM5vv8QwFTqC/FzKbl/McPzRPfjz/mt3DP9yqGjAAyubTB0NvPEg8imSSyHoH9IhR3WvxEaW/mkLA8fidY+CjOHpC0XIEqGt4ShWvrawhKJCLiENaOUFtiWT1J6Ub+NO1vi82nYR3UUBThOgUI0fuBgMPuK7k40VxgjMpjfo2MU6Z5jm1pZuvNVQlnzhDSR4J+8/DhzBo2gMVONJeCmU84g5Vgobc7c9JOimIIV5Hkd6+ngF6uX8KMr38iMAf0DNTzT54fUVnPbgjN5ee8+vnDWmVw1flTJOCnJNaI4hsrrCmmCWh8RSNFR/5PCwgvyMnysIBooomhU+RzQV4SkfAxG65+gTx6P6ngiWe6QihVvlaKhIgQhwX8dfy8FCfRm22DcaR3kTJj+1JX3uP7+Z6lyElw0egybjhxl3f5uhBBkPZe7Vm5ld0cXtckEQghcX5FxbF49fJRh9Q1IWUoztYN577evvMJvX93A8r0HSViSYXW1jGio4+W9B7h1/im8ddpQHMfjygmt3L9+Fx97dBn1acEFI6fy7xddzsGuA9yxZCnn/3Qhv7zudBa/73y+vug17lm1hVX793D3qmV8aO65jGkeSJfr8x+LF3HZuEms2redecNG8sVzL+FnK5cwvbU/l44ZRtb1yHl56lJJkrZxupw5dAifXfh89F6M3/PyArmVno/5L3n/qeN5/6nj+enyzXzt+bX848N3MryhPy3VDbRU1ZJK1HPK4NHc3Ho6X1j2G26//XY++9nP9tV1/r6aFq8nzv8F2189SHnppZe46aabuPW08xlY14qnCwil+dnKlZw+ZDDvmzUVKB140/q38KVFi/nXZ5/j0/MXRL8LqTnQlefBja/w6QUGYBR8j+e2b2besGFknGSv488bNrwX71drTdYtkPNc0rbRsbfxSVsglSbr23Tmszy7ZTn7ujoZ0zyEyf2Hcc+Kp7hm0hzGO2l+vup5Cr5CytALZIxztMf5o6ey+uBBjvZ0ceboc9mTS2ELU+xMaej0bMJiZECkhiNtTZ3jkQmoGqEnUgENTh6Bxg4KQxVsSb4g6fYsmlONvLz7KdoK4EiL1tpG+lU3MaC6lvZ8N7s7OnHsFEPqWnCkjECDrwlqsAAaErIYAQjBR3uum5W7N7DlyA4m9h/FTadeG/O4FI1xE80QUXJ8aGgkY0mt8RYClciLGgEBolwWjSDMuJLA0l0bWLZzHfs629jVdojmTA01qRSffPjb9Lh5JvYbxifmXc5pQ4YHFDU/OsvQKHp22wa+v/QpPnPODRzoyWFbJhrTnlP8ae2vWb3nFaa2juK0YROYP2xcxShJaAgXdFGCNJS5Du9fudRw2OJApTzPpJLBUW5YRPspo3iVUzN65WHE+OOlFK7SRHkZMxb7AhXxfcSpXOWUr8rrHd8jWwncCKFBG1BmaDLGGyuCcGBEBwv7UplhbXZS2YNcfn19gZP/ClCB3qCk3DB8Ydc+5gzqj5RJCsqK1TAprRqfkJ6hAgV9L1QBCx0pVYGgTzHaawB+nFblKUmHa5MIorfVlourLLwADFlCUWUXovy9sFVO0C724bCmd1hjSgqN1gagKIrwU8XWJoiIxqOoiTKgArDp8G5GN/bHQuEISEhAeQypa8RTiikDRpTkf4WqZQnhR/UiEtIPKMCal/dsYUxTMzNb+xGX1g3lu98yZTxvmTI+Mg7L+0NYVyQEJ1KoXuBfa4H0bdMvhYiigGAMcnNPZeB0k4T1UioC+j7snPKq5CeS0D4+8OhNIz0e1at8X8UIKNE4K1kniKoIwmiKiJLio/GuLIQy/WlXRw/rDh7jHdMnc834SRSUea+b/hyIEQSfbeljCZ+EzHP/K9v4wjMvIoXFhJZ+JC0bKQTzho3EsWx+tGI1MwY08NOrrqSroNh8pJOtx9qZP7yJ9506BCnzaC24f91O3vfAy3z49PF86oklLJtwjI+cNoeBtc18+bzL+NnKJVxy97PcdtZkPnvOeG47ewIv7jjC95dt5mOP/ZbW6mrSTpo3T7mI365fyfI92zmWzeOpAtdPmcE9q1dx9ogJOJZPrZ1GaUHOM/fLkR6T+7Xwq3Xr0bpoI5h75Uf3O1xemWZbfG43zxrFTaeM5pmth7hr1U5e3LWNxnQNl00+hzX797C7bR/jE/V89UtfZvz48bzpTW+q+Mz/nppWAv0XqBb/l9jH30L7q06c37NnD7Nnz2ZkZiRu4SifOefN1Dk5BJp/XXg/M1ubefcpU3p5ZLcda+OmB/5EdSLB3MEDmTFgIOeOGo3naz678Bk+ctqZJOwEf3xtI+sO7GfB8JE8tfU1bpk9l4G1daWJuQjcIGkuNCJ/tfYlRjU2M3fwsGidEMh0uJLndu7hsY3LePusi0kmW1h7YA+bD77ChWNn0VTVgBSQlD6eluzPJahzfPolcxwpJOlyNf/54q9pytRw46xL6fEtcr6pn5LzJUnLJLF72kjpJqQiH9CwmpIuA5JZqu1CSdJqIuKgi4jP3OEl6PIMzzYpfY70dOIpja9cDnQeYU/HUdp62qhLVdGvqo6sl2PjoT1MHzSWU4dOIuSHhxGUfe372XBwO3vaD2F44gIQpJwU0weNY2TjQGxZpITF729IqSgqppnfTDTIC5S8yqMAOqonEm9F+GOuv8d1Wbl3G6v27aDgZXlp92aybp6PnnkJ5400xazWHNhLS6aWEQ0N0b7jvP2wfo3ScP1vfsD108+msbqV2x//EQnbZnz/UWQ96Og5wFcuvJ7GTH1wLkXaXjlNK6TahEZZsWhY0UiIe0XLE+TjhkRYoyC+rvmvKgMUNLb0sCy/T2BSck+FxrK8kkR4YySUJslKyy/SNE7gBSpPildK9nph9hVxqRRhKU/CN9upiAZWKcFeaRkct5hAX8nD2JfXsS+6Tl/gpJKhdyLO/okMxqe27uFjf1rGozfehK+TQZK8LBn7hirp0+0lqHOyZlz4CdKWiyM9PGXhaSuSss0r2+wDUz+lK6CAhoUYWxI5Csq4BVKBsmCDkwOIKtyH4wYomTuhGGUp/l6kjQGRqmEYBQ0lh8OIrlmnmJ+WjinkxWmUAD9Y+ijvm3MOjrR4ec9W1h7YzdGeLs4ZNZGZA0dQUFbgdFHRuRoIZMZVyvIoKItkUJtqy5E9vPfB+/jkmWewYNgw+lVXRQCl3FlQnkQef3629HrV+giplGDGlxfkwqgoJ88Y4Z5v4yk7UlyKA/kw0T4+ZuIgIh7JURSjD+X97Xh9Oy7eYQBiaR0UEZt/4mA+BG7G6VEEZyW/W5Xz4rQWJfOK71slY748uf61I8e46pdP8NHT5jKxZSCjmgYQSgyX1zazpU8iSL5PWgWyrmTl/nZ2dXSTSaR4dvs2lIYDnQfY0XaYF95zEdWJRDQvhtcTzhP//Nha/vOlrSQsix9cMYefLt/C+oPtfPDUOVw7cTw5v5qluzfzjRefRePzuXMmM294MxnH5rVDWX61Zge/WL0Vx3JIOwkm9R/GuKYmTmntx/dfWkrec3nP7AXMHdREl5eK3lVJ6eJYHh25Lq785X3MGdTCty+bTSZh9QkMPV+z4XAHBd/H8zVNmSSjmqorrgvQXVD8bMVm/u2FNXxmwUWMHzSH/d1ZfrVqIcv3rOG555/jlFNO6fX8/h5amDh/4F/P/oslzvf/zMK/+8T5v1qQks/nmT9/PpMmTeISdwRfe+63DKht5u0zzqLKyvPJR37MGyeN5q3TxpcoFXlKMfZbP432c/7IYQypq+Nt02Zy/yuvMHfIYJ7cshWlNeeNHM301kEAfHPxi1w5YQqDa+sJ6UMQJJeqUEVLoJXLzX+4l9vPvZgRDY3ROod7CvxhwxpeOXSIA90Fhvc7hdNGnhqdhyVMTogjNXUJj3rHo9Y2VZ4T0uehnRardq/laPch0okm5o5cQE1SkrYVNY4fKWgpDQ2Oy6FCgnrHpcHJR/KEEHL743KromJxQI0oyXEJDZDyZPSQUmX2rXl6yxpePbSThOWQSWQYWNvMmn2bGdU4gCkDRtKvthmNHdCtioXTQtqEyWEpCgvEwUl47IIy0Zoqyydp+SXJsiGNI25YhCAxjFAs37ebIXXNHOhq46FXX2bBiCmsO7CDhzcs4a1TZ3DBqDGMamzB01aJJHSlfI/QeFJasLO9jet/80M+f+4b+cHSx7l8/AwuGjudby1+nL1dWb5x4RXUpjKBtGvR0IkoXrGXe7z+RHjckDJYXL+0sGJ4buF1FxXCeoOQuHc33qRQgYHUO1G+L/qVEBrHyUdRkkq/S8tHWj4IjVayN1AJjxMDDPH/lUBGOUiJg474sXXFfcqS6Ex8nfh1htSa+O99KX6F21QyQstb5cjW8aMiJ9PKn5evFJO/+3u+c8kVjG0eGhlhYSTR1zKgeEHGytPupglzSOL9zwAXU5zUOC488oHyV05Z0TwQXkGYbO9qSdrySEmfpkR3LzBSUHa0LIzymHsRSwDXRbGD0NkTApI4XTMeYTXFHEMKl4rlYsTHAXx90YNcNGYST295hZkDhzFn8Eiqk+koAhSOoXA+Kcrsyuh4SemRClQfJT4ff+xBFm7fCsDGD76vxGivlN9VHlWQkaFebqSXbmcMbysC0mFfdn2nBFyHfdecs9ULmJT3m3iL9/lQuakcoMTnkGL0qwhIjqfoBcWk93KZ4NDpUTJWgrmkXOUrPFcd1hOL5gwRFXkM5wY/EIf59tJ1/GT5Js4dOZqWTA3b2toZXt/MGyefio8VOZFSAb1RaUF9sgspFK5vR4DPzBESIXyuv//XXD2xPx8+fULJ9cQjyGv2t3HpnS+Q8xRXjBvOD66azsMb9vGFhWuxhc1HT5/FGUPH4/qChzau4jvLXuJwT47apMPv33oGM1ob8Xx4aONu/vHhlfSvquGW2afyvZeW8pmzrmR4XRUPv/YqeS/PhRPOZ1C6nYZUBwCvHjrAF597mRkDBvDbV19jdGM1375sDoNqM7361k+Wb+Zbi1+lPe9S5djYUnCkJ8/4ljreMGkYV08cQr+qygnxT2w+wLv+sIi7r76Ksc2DaXMz/Hz1Mh7dt5EVK1bQ0tJScbu/5RaBlNvP+cuBlNue/rsHKX+1dK8Pf/jDtLe3I1dvpH5qE0OqNF1ulud2bmfzvmWAhyU9Q+HQIpoof/PKRgBuPXMWz+zYzZzBQ8l7LnevXs2+zk4OdHVzzcTxzBjQL+Bwaw51Z9nV0c7u9mNk3Tzjm1uiwWwHhlzed0hZBZTUDK2vpzmTAu3iKskPX15Ml6uZNHAaj2/dzuwR8+jJtzGptp1DboakVLS7NrjmRdvtWWQ9i61egkPdgnW7nsGxLGYPnU5r3Rk4QuNIj+ZEgRq7EHnjoVifpcYu4EifDi9pXkoUqV1Sgy+M1G348o4kQgNMauR4zYvai738wShPleSKUAQI542ZynljpmIJzfr923F9jw+efjmuNvvKxYpShrkllvApBBWtjVGio2rWcZUzR5qXYDrIqckpGUmUJgLaFxRpLMXCcYGSmYL71y3GU5pntq6lu+By3YyLaM+28/CGpdxzzXWMaWwMrslEYkKqSdjiICF8yZp7J+guZKlNZvjqcw+QsR2umzyLhG3zxfOuiLzVvjae63jV4vL8kjCJOF5XIt5CIBKeVzwyEhd3CFvcyxoaQ31Vjw8T5UOAUm4oQW/QYNtuLyMkXE8IjbS9iD8erkM8oiJ0L355peiE2baU9lVOKzP/ZSlYkH4v8KK1UQIq3UfpvYhoZMHhQknTsBhdvJXTZ/raZ3kLjbXwGVW+5uPvo68mhMK2YHBNhiM93XjawhY+jvTJ+gmMoqEOFPIsCioTJL06WMJEiPPKigz1cIw3JrrwtEVP3kEIEy0JnSDx8eprQdrysIShuGZ9h2o7jx2LQialG0WjyyOJcRplnL4YfhdCgA6M/GDMQHE+ikNJA7xKI6uWUHzktHNZsnsLt5x6NnXJZJRDoyEAZJQk8BfHqsnvS0iPwz09fG/1El7cuQ0NbG87BmByUsqjiWV5GY7lRhGT0Mvf17Msj0SUOw2k9NDaRL5dL4Hn20itosTx0nwfAy4q0blKDxwcqw9fZTxCFG1C6fWWn3f5OvHri19v+HtE2ZKq9zwCsWcDxOcRoY14QEQBKxaR1FrwrpkT+d0rO8i53Vw2dgpJpx8r9u7i3jVLefPU00xUSgs63BQAtU6OzkKGpOUGsr4erm+jkBzsOcbyfXvZevQYp7bOxbK8kjkoyoGzfKYNquGXN8zi0p8t4f5XtvKViyZxxcRWLhgzkLtWbubzzzxPQ+olzh85nFGN/XnsxptxrE7e8Os/cO5PnuGDp43m+mlDuWbSIC4c24+3/Gop29t2Mn/YcBzLIulUcePUCXxv2XLueflB6lIJ9nZ2UZdKMbGpjmPZAinH4vEb38hH/vQMM773EM2ZJG+eMpzhDdU0ZZIc6Mryr8+s5Y6L5jOjdRI5lcHXgryX5emtr/HY5uV8YeFqzhjaj7NGDGD+8H5M6lfH7o4ejvTkGVqfpKUqxb8tfo7BdcPodmHawHEMTRzkzW9+M4899hi2/VdrXv63tkqR+//qfl5vf6Ug5a677uLXv/41s2bN4rRMA3eueIq5gwcyqrE/v97cxYdOv5wPPfQDMrYJudqWKbzk+pofvrwOgKQt2d3exa72o7znlFM43NNN0k6RtBwG1FSVBLHr09VcPWESGsWdq17i6xdcBBjPn9KSpOUaTreyULrAlH5N3L3qJboKObpdxfQBg9nbLVi04zWunHwBwzNHSdlVfO/FX/HeM25ke3eKpNSkbGPIHujq5pF1j2JbGWqS1Zw/Zgqn9K8jLT2gvaiEQ6nRDBBWHQ6X1dm5KCJg9MwNTaPKKkSqYSF9I9zG1YF5LjSW1kHBxOAlT9EQSUgV8cG1FhS0xA08mAmpGNkyCicAE1nfosFxSTjmhZxTFl2eTV5ZZH0LR2raXRtPCZqThcA4CUFMkc5VbXuRh7QQysDqAs9tXcejr63g1MGjuGHaadG1ZH0Hic+y3Zt5YcdGFoyYyMQB46IaMruO7eae5X/ivJFjGd9cjwqSUCUaGfDO4x5lKDMUIyNK8adN66hKJDhj2HTuX/ci4OPIUvWcIsWrjyRrTAKwplR+ukj3CmukKLyY51mgg3PWvc4z5LmXJ+WWHDfm8YuATAWAYpYXaSfh9/J9IXSUoxI3LOLRCmH5vV/kMfASgYTo/ELaSLgdvY8b/F4EIBWMGi2iBNvQEx0ZQhXuS+joEDIE0bIXaDtexCS6T2ViA3FgcrL8/PJr6mv90vsGUhRISI9uL0FI87KEIufbQV9TtKQ6kCgSboa8cihgoq4J/MgR0pTowpKKjMjR5SXJBRW02z2HghIkpaFXJQKZ9h7fxlWCtOXjaYt8UNneihndFgohNVk/EdEZBdpEc0Qx388UQiw+dImRNrdkMbIdFo2FYsQ47rwoPguzLJNIcs7IiYFBWvwtlJD3tYwocSaCHI5bi4T0eGLzq3z6qT+WPIOl734r1QknUJUsOgXKgXw83ysce75vR+POsryoYGGJN75kXjDbhnTIsC86dsE4Q5QdJdab85BRZCHYWXBvRTR3VOrbxQKSvSOO5f/LBQDC38r7f6VWab4BSgFKeM+CHEdUhehtDKxE+4VoXlFKUp2CX7/pLC6463HmDdvHghH9yCQyWLJo9oT3JV7Q1FMWXYUMtvRJWgW2t7Vx7l33MaV/PbedM5754wQ6JjEXXVPsumxZfAZn/+Qp7nrDbGYMbOSWuSO4afYQfrV6F8v3HuPrL27k/ldX8pYp4/j9my9j7cH9/HrdVs758TNM6lfHR+eN4bPnjufyu1/ksRsv5Qcvr8SRkn1d7bRU1fOOaSNpqZI8ve0Qv31lI09tWc/wujqe2LKDD582nrZcNwCHe/J8Z+lG5g8bSHs+S0fO5d8vnM/pQyfg+pKMzNPppkDW8MaJ47ly/GSO9LTx0u7VPL9jH//+wnpynrlHDakEh3vyvHHycG498xIOFxo5VrBZsmsThzq6yG9u57bbbuPLX/5yn/3g9fZ6O9n2VwdSVq1axQc+8AHuv/9+Pv2uDzH4vJl89PTBpO08ed/hH2cmOdp9iNeOHOUjjz3HtZOGB9xczSefeAHHElwyZiiPb9nFzTOnc/HosdSlkrRUZSLObviSi2hCaM4YOhTXd1myawe2MGFo2/KicHohKGYECd59ylSOZl1+umIlnflOhN3Agc5NnD24PwuGO/x+w0G2t7Vz7aTTyPoWrx3czeo9a0EXTHK4l+WqaVfQWpWg1nFpTuTxtY68eyYpPUiGF2GkoMjhhpD6ECqT+cggCpGUxWhL6DVMSD+qCG0JTbUoAKa2S0GZmgBgvM++NtGLsIX3KjofwMcURwwpGFWWR51dKJ4bJmpSa3u42icdULZsYTjWTuChTATRBK0FtgxUeoTC1xJHKBzp8ez2zdy1/DGkgIZ0FX949WVunH5q9PwOdOzhV2uWcdrQUfzDaZeBsMgpQVe+i2c3v8T9a5/lmgmTuGX2KRGACKs26+AeRhrwlNYOgKLhs2LvLh7b/CpfvuQWhLC5f92LVDmit5qO0ISGS9wzHPL9w33GpVZDIzIEKpExEBoH9H6xV/LaWrEK1uVgpsRoIl6MsVJEoNTLGTfww5dxaFRIS0UJfsVog44oGuVRgrgB1Nfn8mXlyfPhORqjrZSaFY+qFA16GVG7wqhjpXOL7nVZlCreJco5/MczzHp5oPvyZlMZbFVer/RZaK3ZdLSDoXX12MKnxslFHPW2QhVOIKPbmOwm6yVJWm5EAau2Fa6SUR5LyvJwAofPkXwtllD0eDZdvh1VfQ+T1UNRjm7Potr2oxosYRQwHmEIn1tYxyP8HL9PZt8mnuLrkA5mnDKhpHilcRNur6lcPb08OhO2MLIpCI1TXbL/tFVAChUBlPHNTZw/cjiXjB1OS1UqGHu9c05CYz2eEF/8UyV5KNG4tYu5XkJWcDL4VhQtKBSSAaAxEVFbuREQ97UVVVQPaV8R7bcE1Fbo99H4MrK/5Ypr5fNNXACgZL1eEZQKjp9Kv1e67uieBBRlJQzNKwbCREzMI2wyds8H1iV4/6ljefC1DZw3ajIzBjTzwIbVKO2TCnxAYVHEMAIYUue0LwLHpIsUgt/fcBbNNRB/7n21qa21OFKwYEQLcwcP5NK7XuDJm+cxubWGtA03nTqYmxhMR87ljue3cceS1XzjxTX8x0Vnc/vZlzK26Xm++vxq3vLrZdSnHKa31vOhR5/nWxdfyteeX8Gn5y2gPp1mw+GtvOMXT3GoJ4slBO8/dSyDazP8x4uvcsW9j7By31EG1WZwpGR7Wxf/cvZcmqsGYQuPTjfD4ZxT0j/qnBwpu0ChYDOguoZLx83jDZMKtOUdtrZlaa6qI2VbuL6mR6VY2e6QthSOUJw3cjQT+o/gZ0t/x3e/+11OPfVUrrrqquPep7/JpoT5+0vs5/X21wVSOjo6uOaaa/j4xz/O72+/m9HNI/BFCimMakbGzrGv4zBv//39TGxpZNqAJkKlqIXb9nD/+i28efI4vnju/MgocZWNp2VE4dBlRqgUOpIe3dF+lEG1VcXJCsN3LSgbL0ie1wi63AxHs0fZ1dGNry3W79/K/q42VhxwWHWwnZnDZjN04BB2HN3GE6sfoF/tMC6ceC5j6yBtGcnKpFQkre7IE2iLUFlGlERKwqZ00SCO04eKL3hdck1hi7yaxieJwERbALyAohWeg5mn/BIwpEQxQd4NjQ10kDSrsAM+uEZEBr4fAD9LKmzMi9LHIiEVKWmkmX1kRAFLWD6pQGXIACmPQ90dfPnZB9lx7BDvmT2P7ccO8+DGtdwy5yyW7NrC2gN7WLVvB0PrGvnI6ReQSTiAx+6uLN9b/AjP79jA+Ob+/OzKK5nRavixKhbtiKeEWnHjpezdo4QBLyv37WLWoNHUpJvZevQgjrSxpKxonBbVoUrpD+XywaEqTwhSwsJh5lxLjekw96T4vfiiLKenRccMPbgxSoYUlQ2r4ja9PcLlAAWIAIr5rCOgEhkMlV7ioaEkFdrvncxZycNbHsUo3aZyxCGMomgtsSwfpYpSrqVe5uI1B1v2/q38nsaiJOW/H+96eh/r+OudzPIwijJrYBPfXfYS/35hfwQWtvDwtUXWtwPZcuMRFmhSdh6ArJeIAENYD6UKNwIyPb5DxnKxhKFf1js+VcH3XJCrklVW0Neh3bVpTeoScBLlvwkzBwihsVTRaA4TmOO0TUuAiEm3xyMA5fTH0Jltvute82ZlUFKqiqcDh0p4HoJQpthcy7tnzmDz0aP8+MoLSiIJxfsfAxtBFKa8llAIKsqjJVH0IBwvcZAfa9LyUb4R2XCcojOoVzqpIlIDQwX3L1YPqOR+VIi4aopjTgrKgL4B6+Vzg7m3xffSiZwelb6XKHqVgaiS3y0NvjSUrwogqnhxQS5NsK9zR/Xjy8+uQ3CEaqeOsY11tHXvZ2RjQwRI7CDyWHTGFa973cEDjG2qp6U2Fi0R5ZZEcA+VREhFVcLmtU+ez5xvP8Nbpg/juslj+dLC17j3hlNK5tHalMNt547jn88ey+ce28gbfvMQ54wYTH2qhhEN1YxtruaxTftZu7+dc0f344K77+W0Ia205z2qkxYZO8WhnixgCiF/e8lGjt12JVdPbuVDD60A4KLRwzl9yGgG1uZpSA/iSL46EoIw4Nxce9Z3cJVFt5siY+fp8ZJYQtHppvGxaK3N4GqLrA9CmNnXkZqCEmgpyRUS1CY110w+E3f1Qt72trexatUqRo4cWeFO/e02rf8yVK2/zmzx//n2VwVS/uEf/oGOjg7u/tYPmDFkGg3pKo72tPPguhdoTDtcMGoE733oQd4wcTSfWTArMroADnR1AXDV+JGG+qVsnFjOSrkHNGyhwS+FYnJLHb9dv4bDPd20VGVAm8k8nLCyboH/fPlF2j0bpSGTHs6mw3upUSka6iYwrHUKys+y4Ug3O9te5FDHbq6ZeT2ja3NUWR6NiVxEJwhfGpqwQFkx3B5/ocZzGuLfwxb3LEIx4TOq/aCDqrxBjsTObHVQuV4E3klT6LFfMkcqqHMQev2l0IEGv3kxhJ0ljDiE98XTkrBQYaj6Y0CLqf4eVm+utV0UIvpuaGOmQJpAU/ALbDy0jyM9nXxn6dOcOng437joCg53d/HVRY/x1mmn8rMVz5NxHKYPGMT45hbuW7+KpG3ziTPPp6AsfvbSn8i6XTz+tncwuCYVAM4gSTi0DwLDPaw+DjGPa2QABQaRBo3Psj07OW3YNFKWYu2edUxtHRV5jUu2j1rpDGPFjITiC1VG64YARYj4fY/lfZQ99/jz78t7WYmCYqIovWlexy/QWDmCEk+GF1KXYIZygNFr0o4bZfFjUBmg9EXVKj9eaUQmpLUFp6kVQsiIKha/bvO5SDOrJM1Zcl1UlkWuZJz1dc7HW3aideIqUD+5ei6TvvUw+7uOMKDG5NOl7RxNfjdHC1UUFOT9BEmrEMyNVokYSDgWC8oiISUF36bGznPUzdAV0CZtoXC1RUFB1rfJBXNIQiqyvhUl6sdbfC4DgrwXFTh7ZERthFjOHDoQ1jAgX8c4f0qXAsRyR045WI8fO5RiLgc0ShmRgDD6BOApj9+sW8HT27bSvypDcyYdgJZSCme5+ESlOkK9kqtFMTG8fAwBFWVHNcVIgwzGTTFPpfScDCBRkbS20Oa4ISMg3spBFmAiMeH+w3dIGXiPOzzi97v02itHBivOL2Ftpfj8E3qLyre1FPjBm6fSnEJw2gGtVErFwNoEBV/RXeihuSrDsWwbm44eYGRjA0LoqHZQGI0LnZZhHxnZkGFPRxc+LrYsUke9QsKwAGyvF7AUQtOUSfDliyfyqT+t4c6rzuHinz/K8t2jOGVwfRGgBmDHtuBfLx7PR84cw3W/XMafNu8iZVv4SnH7eZNorU/wpqmDeH7rMd507xL+sOFFPnjqBQypG8TPr7mQt/7uMYY3ZHjkHWcgLU3/WpufXzebgV/+I5P71XPuiGakVHQVFAm/KJoRRg9DimhReENGY7WgwuinBnxczHhPSZ+eYH5wlRn/vq8Z2jiET51zI9964X5uuOEGFi1ahOM4vN5eb/+V9lcDUu69914eeeQRrrjiCvIrt9CV72BTx04Kuf04ssCmw+38aPlKLho9jH+ef0rRKxxMkGsOHGFIbZWJrqBxfTvyEPhCl9uMQNFYBSNDKKXiH0+byX++vIZb580tWU8j+OmqVQinhQVjzibvS7KeZOxgI6t7oOMwL+18lXQig7Qa2HF0NedOvJEOV9KY6KDOzpG23F6gwkR7rOiFgAg9iFQEJuWfTdKnxFWmiGSoWJP3i8XAwrySDs9mXzZZcg621EHiq6TG9mhOGE+rpyVJESSra4Uji7GBSJUHEdQTKBooQpgk1/BlE0ZXCkqaSS2o8WLqGviRqs6OtoN89snf0V3I05DO8LZps3nr1GlsOXaUN/3mbgCe3rqBT88/l/NGjEALycGubh557RUmtgww56x8Htu8nrOHD2dEvY0QbvR8fW1FOQehd1doDcL8Vt4/IgNHaH6xag17OjqYNXQq2w5v4w/rnuJrF72lxGvcV/8qb3F5VF0hUhIabWGV+nI1qUpVz0u8mpR7LXXJWInySMoMivIijH2BAyEV0i7Lt4kMC2NkVTJE4vuN08JKzIy4kdFHK9m+7Fz7XhYHIkGtEGVVNKSK4Mjv0xtWDmL6AhAnd24nC1L6ymlRNGaSjG2uZc2BvQysbcISCsdyqU100+MnaXeTdLkpklYBV9nkfJO3UlBWRAHNKcEx19RaaUp0k5AehSDqlJQ+KWnEL0KjBIh+zytJUiq6faeE22/mqVKKlhA6pjZYCjpE7MkXAUZRBazoeOldx6avqEn82KVKe0XlPrPvojPqlP/8NqcPGcyKffsAePJtb6o4rkpzThSW5VNOlSz5XAZQohyMWPhWqFjSbRBhEcEcjhYlNUPifUAIEUvQl8Y5F6uxIoJ7FgccRQdIUdwBUaQ0RiBcl84L5e/ecqATX7f3sj6oUiVzTG+AUrJPqdF+HwBFmFk1Aiq+hWMLUrbkaDZPa63LJ86YzmeeXsrpQwbTkE4DZt70tOnb8Zo5As3oxgYG11Vz/b0ruOf66aQdCx1Q8Po6z/DevXHKIH6zeg8X//xRAFbuO2ZASnyb2Lk3Vjk8+LbTeM/vV/Dy7mN05D2e3XaE3944ByF85o2q55n3zuPae5ax5ej9fOW88zl96BBefNeVnP7jB/jSwo1896rpCKlwHM3t50/kcwtfYt2hQ3z+rNNJWgWSMhFJjkPRQRBX/AtbnKYsgrdnWGRVCKixXTxlBHPC+2bmFsn1087ltkU/51/+5V+4/fbbez/zv9WmRW8A/V/dz+vtOFqb/4Nt27Zt3HLLLfz0pz/lvE5BTyFHwoLPLVjADVOmsrO9m8e2bOMLZ8/hK+fPwrGMB0uWTHiCxnQaS5oXsKcterwUOd8Ucop7jcI/R3pYUuFYnpFlRdEvk2RKv0a+s2wFrtIoJHnf4VghzQXjz2JPxxFqHZ+Mbao37z+2FosCNen+jBhwHg1183DlGI507mHHkU3s60qzP2fUQ+ISsqX0Aq/kLyndII/EePhCxR4nCEmHno8uL0m7m+aYm+ZIIcOhQop2L0GPb9PuObS5ieC/EwGUnG8UTTwFeV/Q5UraCxZ7exLs6klxzDX3KzRgNDHpX1FUAAJT3d1UYi4aUJbQ2NJwVBOBqpenJI4wURYfk3+SlF6JGs+dK55nXHN//vjW9/CbN72Vt02fhi01CUtw6diJ/Pzat/DHt7ydi0YPx7Y0eS/Phx79AxNaBnDZuMkINElL8vNr384Lu3ay4fDhSMkq9HiGSeOi7DkYMOtTLskLsPbAfr619EU+tuBNbDqyjy88cQ8fO+M8zh7WLwIXIcAI/yL1MXTJXzyZOL6eJYwSV/i7JYIq8KiSz3HDqC+AEt+/lAorKFYmIyBSHl0p1i0o8ayGf2ELDCxpl/Lsy5uQutdfeKxSQ6TsBS90iXcx2iZcP7as/FzL/yptE93zoN5LWN+gfP3y+9fXsUxOgB94z1XJX/nxy/dd+bs67l+l64m3984ew+3PLuVQ95EoGVtKRY1tqCBtbpqCH9TdCKijYe5a2nJxhAFnYTX5vHIoKGOg1NouNXaetDRKXmGNEikMQPGUoMr2SwB4eYsMv2AcONIjYXnGORQbB/F5sZJjxnwPqDwU/0w0vOjYied4xf/HlxcT9oP8NKlQ2tR72dvZyRXjRmMJwejG6tI+JP1IxltKP+hPph9IacCKFUhyh7WDhOVHKnghQBGWNn/hWBEEy4qCFMIqjVyKYByKcL9RPw3HZazPEsxtsjgPxmuklLfwXobzhRWjqJX0/VjuXByklf6V9tW4stmJEvPNlwrjJAZeSuaTSvuJrVOTtHjbzOF89LEXWbZnD9VJwWVjR7Dh0D4S0u2lhFiel2ZLmzuvupinthxg0eaO6Bosx8Vy3OIzLlMnM+ci+PVbZvH9q6az8h/P5t2nDustsRw7d2n5ZFJwx2VT2NuZpS1XYGRDTYnBOq5fFc+/fx6N1XDVr+5j5d59DKxu4l/PncX963Zz830ree1ADinh/WcO5ddvnckfN+4ilcjiWC4ZO0fGzpOUbow6KaLoiQzfa+E5CWIRFlEcxyganSzVtkuV5ZOxPGpsl0QwxgbW1PPBaRfw9a9/nUWLFvXqb6+319vJtP/1SIrv+9x4443ccMMN1D+0hPr6/tw8Z6gxbqVLQzLHq4cO85HTJ3PVhKGBkVn0Mmst+M36rTzy2k4evOFq2rIeq/YfYmeHy4bDR5g2YDBXjx+MLbzIuAtbaLCGhl+4v8vHj+HlPYf4zFOLOHPYGKYNmkqbl+TFbS9w1ZjhTKk9xp4ei9+teIyc57Pt6CFGDLiYHtciryTViSTnTv0I63c+SHPdNA7mEgxNO1FV5nASDMPLUOoJhGJiaXzi1lqQVw5dXgJfSw4VUuR8U3sl60sS0hQ/tIWiOkjGFGjyKigIGewn5xnDwtMCX5lzSFqKgi84UjDeUE9LkkgkPppiMn4IUBSCTFBLQQX0Fyk0IZFGBNtkfRtfw4BklryyqLENeCmnaoxoaOHpret5ZNM6rp4wCYB1B/fTr6qaL593XmC8FBMbv7dsMRsPH+Ldp8zjaLabJ7dsZHvbEWqTaSa19OeFXXuZOqA2Wt+yfITSkVxneF8NdUdEyfRSq4DHDQ9u3MBXn1/EDdPPprW6js89/i3+ecElXDluJFYgrhBdhyoqQsUn/njr5T2OG7Eh1auPpMzy+1WelN1XrYIIlJV5MMuN/rhMcNi0KlW5ko6HsGLrxKkp8WstP1cZo7GIICKnRakscTySUyZXXLqz0mhLOGbLAUD4W/k9McpfKjKc4usVwUDvSEnl5P3eUZ1ep1vhnhe/H58OdrIUN4Drp45g5d423v3go/z0qotpra5BCE3GydHoZ9mZraXRM1zzVFApPh3MR7bwSQYV6cOaJR1ukqxv5jNDwVIkZA4pNHtzGbQqqtNZQpPzJYNSBTJWnoTllXjZK9Hi4t7qsMBrmCxvPpeOn/hvYQtV8qL7Qe8IS3zMlVMzXSUjBxCY492zehUA29va2d7WzgWjhhXHCERjqljEr5Q6WU7pKnleVgA6BMV+XJIEp4NIJMQvQ8tiDET5IS2OaJyEc094nkoByNJxgJn7hNAVo75Q1rdiBnt5hKXcOdIrx6Rsf0JoXN8hUSka2Guu6Hu8ACA1QtGb9hUbo+G2cTXBfzlvErc9sZ6b/vAsn11wCheMHM3nn13KsPoahtQ1FpkFwbyuKEYQpNAc6enGEoJTBw4FOrEct897Vz4n2JbkracMKl2ui/N/W9Zl/vdeIJ2Q1KcS7O3IsastGzEXzh3TiAzFFYJt6jMWd143nR8s3sE7Hnic373pMm6cOoVTWpu5+Od/4v71u1j14bMZ1ZRhfP8q2nIFPvP0Mj5y6ixqUx6essl7SXrcFHnlIAhV9kIQG0QXhcZVwrznEZG4Tuic1BhV0DrHMDAEmoKwyCsbWypmDB7DWSNO5frrr2f9+vXU1dX1fqZ/Y+11CeK/bPtfj6R885vfZPfu3VxXSJOQPt1+AoBqy+jr7+8xcnvHclnyfk/kuVTKFJ/K+4KvLFrFF86ay7Pb9/CtpSvwtaKlZhA3zbqALhe+8vxS1h48jC1d41UKvES2NBEU2/KwQslSJFprVuzbz7mjxrLxSAe28Fmx7WnqHM2Ulmp+tnwhP1zyIJOGXoRtV9NSOwhfC4507aWnZxvKO8Dew4uYOWwBA2uyTKrrxBI6qlxfpDcYQ9IOIhLxP1v6UTKfRKO0pN1Ns66jkcf39WP5sXoO5R08bahhduxl7AhNUvokpY8jNNWWUdLqKlgUAppa1jOPPm37EQc850sO5RxWHavhaMHplbgVDhlLKKqtfJDnYiZxR6ooSTesP5BXNgnpU22HtRlKq8THwdobJs1hcr/BfHvJ8+ztaOfjf3qImx/4Ldf86h7+/cVFLN65tSTicc2ECQD8aPki3vWHn9NaXcUnzzyf9885g7NHjODlPfuKBoX0SwBpGJmAmKcOTVchhxCa/Z3tvO/hB7lj8WI+s+ASrp18Gst2bWRSvwFcPW4EjvQjPn3kfZSlNUzKPbdhYnwEimNe4HKAEnqT49vG+0sxKlK6XWikxKMncYBS7r0vUR8qo4GVPviiV7fXT/H1RdG72ctLKmP7LjuPEoAS+x56jMP9Vjq38nOuBFb6imAUoyC9ty+PkITfi9GT4v0uv7d9/Zn99464nOg6ys+7r/vwpQumMbAmzbeWvBz1s6Sdpy7RjUDT7qZoL2SCqKNLUroRH98JIrdgjPWCtgIVPh0UVpRBgr0dgZJdPUnaCzZVts+O7hS7stX0BJFrW3okLJeEdEkExfLCfh0fI4KYvLAuBRzx9ULKV/gXXy/u+S7N4yv+j1MzQ69w2nKpsgvYwg+qjru855TpfHbB6dH+3zJ1jHk/hHNPEDkJ+4iUCsv2sBwXO1FA2l7kWZcBKJEJDyvpIR3fjAPbN8sd8z8aNyIWVYktF4Leih4Vxm08OT/ef6PzjNVIKneG9NVno+gzxYhz6diqRB/tPQYzqS4cp1AyZsJWMV8t3qQuvX4ZXruuvH64m/DeSEXCga9cNIXvXDGDLz23knRCcP7IIezr6sQSKlCY9EjYpmq7E4wFT1nkPZuntu4h7yuOFA5HRmjfdNDjj9U97VlePdCJ52nQgtqkTd5XHOtxGVFfx79fPINn3/lG6pIJrpzQyuyhNcWN48Bdwi2nD+eWucN490OPs7czhyVqo98///hGlGfTUpXkhQ+ezqajncz76YOsOXgAITSOdEkFEZWE9AJFOx2o/dnmngifgrKj8RXSt10t6fISHMpnsIL3fkL6pC2XOidHU6IHR/h0FjRXT7kQ1e3z8Y9/vOL9+ltrWom/2N/r7X85krJ582Y+/elP80//9E9U7e8m50u0DqoZB/CpQIYvnXcmd61cy9Fsnn+edwoNqRTHsrDxyBEe3bSDrOuxfN8RzhkxkivGz+BwviaiNJw3ehKbjw1j0Y4VbG87wtXjRxvpxgCgAFFl2fa8x/dfWk1H3uW0Ia0s37ODHs/n3xf9nm7XJ21bvHJwN7fMOYtN2YFsaSsgkGS9Gla+9htqUk2knQQ7D+2kO7ePM0afg9bQ6RmahQYyGIMtVB6RZYM/pA5pbShrOd+hzU2xJ5fmQC4RgB3B0bzNqISHrwU7ug2dLGMrfO2SSCiSVlgBRJMNkmSHVeeRQpNXBtzlA0552jIypTlf4ipBt2uxP5ugxvZocAokYzSzkO6hMZGHtpAepiWNTj6qz6CUUQNrdHJoBHtzGaosQZ2Tj4BJHKxVJxNcPXEmL+/ZyuX33sllYydw33Xv49WDm/nG4ufZfuwoZ40YbDqF0EzqV8uyd7+dtlyOi3/+G+YPa6Qu0UVboZqW6v7s3vxalNhZyZMLRclejeCX61/jtqdf5K1Tp3Hf+nVcNGY0t511Nd00YVFg0fa1nDt8eKT8Vk4NC49RqX5A+HsIQMyxFX5w/0PqRfh7Ode7XDa3UrSl0guxMkAJk8ljy63KlefDOicAdjpP5AHWorfySPn2oceT4jbhb3H1r0o5KfFtzL6C2ipCl0RfzIfje62i+xLuOxZ1MXVUit7DSsCgb0PEj/Wr4vK+E+77lliNH+9k1imP6oRyzI4l+MjpE3jL/c/z4bkejek0DVXHEEIzsfYga9sHkLYchqYLxhNq+/jKGOzhMRPSjxJlAYamu8gExktB2VRbBRyh2NxdzYBUAVdJ2lwzv+zJpmhJ5EhbRiUodLbEI9XFXLgYRVSa+SIsrBoCkuie9o6nAaURy7gCWAhMitsW72cI+L0goupILzrHEMjcNGM8//LsiwCcM7IloD2pEtnu0PA3YCSk+5SB6YDCFYKP4v/wYVYYA2GkVQlE2MUVxfyU+JwTbmv5RmiDsJ9VUrALQIsy+XiesoP5pkhzKq5bOn8VaVqyZJ1K/bX0c+l+KvbveH6mFiXbVI4kBh8sDahiDk+FaIrZIJhHgmd3+fgB/NOja/j3xUtxPZu1B46wfO8uLh4zgon9Gg1bwUtS8J1IfW7L0SN896WV3HvdHIY1pAGN8mx8vxiVl5ZLh5unLVegI+eScWyO9BT46sLNdBU86tMOb5gykLX7O/jPpdsRCIbUp7li4gBmDq7j92+fzY+X7uR36/awcOt+zh6xn0F1aTYe7qK5KtF7fg2atBSfOW80ezuzvP0PD/Ojy88GoKUqwXevnoqVKCCkZny/ah585yy+9+J23virhfzwirOZPXAknrLxdFFIo8bJUijY5HyblGXGS5VdoNN1SJKjMW0cDh1umoxVQGtNxs6T9VN42mJXRxcv7NxM1nXZcewwIEgl0oyoH8AvfvELrrvuOs477zxeb6+3k21C99Ix/J9pSinOOecclFJ897vfpe1b99LpJenwElTbLmnpIYWmOdkJwMoDWf758XvZ09lNXTJBe75ASybNhJYGPnLaHIbVj2BfrhYhYFCqjYKy6fEN0q9z8rS7Dnctu4/3zx7OxP5pkpYTqX7lvSRaaz7z9GLec8oMBtdWlxS16nbzHMvm6VfdRM5PcChfxaauahbvLvD42h+TTtZRlajBskzYtH/9BCyRpiO7jfPGn0l9slgtvdbxGJDM05ToIRV5GIsVrrN+goKy2J2r5kAuQXvBosczk2GV7eNYGq0haRXzRDxlFHqSlqIx4dHoFIzsaCAz6OswSdYkuHla0u2Z2ghuYHD2TxXQwN5skqQ0tUOM9KhLo5Mnq2zyvkW17dLlOSigOWH42wVlRQnwllAcddO0uyZyUlCSAakcEo0tFI70S4wQUWZA+CpPV76Nw12dfGnRs2w+eojWmhr+Yc5Mrps81mwT3Mt1Bw7yht88TFM6zS+uvYKhdTW0F6q5b/16nt66hofeugAwL1elZGAAGfUbP0b1Wb73IG/57WO8cdJ4nt+5h5tmX8qsQSNp9xLYQvHc5sX8cvXz/OHN19GYdiqCibhKWNxYii+LnzsQ1PcRxEFUea5JmCwPvaVPy1todPQdQemtNFQexSjurLjMThfKaCmgA4dCnPIV0aaCPmousmhE9OUZOm5YuwyElAPDsDBkOd89vn5fRr+usN3xAEL8Go937pXOoZyK0lc73vmGLZRRLj1/GX1/y33PM7i2ltsWnIFE4dguAk1bro5nDw1let0RGpMd2NKPlBB1MCYFmpyfiIyWuPpWQRWLxhaURdZ3OJBP0uHaprijgAHJPNVBDkuNk8WWfsnYkEE+SuhE0ggKvmPqUQRzQjguwqhzXPkQeqt4hfQTjYgl7FMylsL9hp7hcK5KWoVINAWKtMnfrN/IJx5/kaXvuZQRQU5KSQQtyDeJVLownnvieVgxie7ghItAJd5fVFmirS5dHv33YwZ58Hv4XfkWWhX7gPkrTYCPLw/nw0ihK+qbx59jKo3F3kCiNyCvCFJiTodi1KPoUCjZb5wGFn4O74mShgYXv4ex45XcMy34+jObWbjlEAe788wf3o/2XIHHNh3ggesvZGhdK/es3sAv164PJOahLZdjXHMtv3/7rOg8lYLntx/hhy/uY9ORDna2d9LtelhCUJdy6C54CAEfnTeKQZn+7Oo+wCOvHiavXL53+VwmNDcw/yePsvlIF+eMauaBd5jaXwVP88y2gzyz5Qh3vbyLjrzH+o+cz9CmUnWs8nvu+XDL79bw8CsHqE7a7OvM8fhNZ3LGmOpoHeVZSMfj3hV7+cffv8LopiqUEpwzYiSXjz+Nxbt2ce+aF6hOwpSWYVw28WxG1Gra3TS/WPU896x6gTmDBtDtesweOICOAuQ8SNkuggRKK2qTCS4bO5bqZJKlu/fQv6qaGQOH4iqbPzQluPfee1m7di3V1dX8rbWOjg7q6urY888XUZv6/1cz68i5DPrSn2hvb6e2tvbEG/yNtv81kPL973+fr33ta1x66aWc09FEraPo8IykX8b2cISPG0Q4sr5Fu+swPNPFvh5Fyt9Ev+oaXDGQndlqLKEZlOomYxWC9R16fIemRA9Z3wmoSD5Hu/fyjcXP8ZkF0xjbVI/rO2TdBOsPdfHLtWu5eMxIZg0cBpgaIntztfT4NoNSXWZ7N8PW7irWHK5m66FX2XRgFVMGTqG2ahRS1pByfKocj5SlONjtsXrHE5w+5jIsqWlOu9hCk7EVjjD0qOZEgaZEDwVls7Wnmqxvsb/HMYUPg4nYC15Evoa8L6lyfJJWyI8OJYYFKVtRY/ukLEVCKqpsnzq7EFCwTO6Iqy0TpcIofR0rOCgETYkCBSU5WjADa2JtZ0TLSgbJsp1eki7PISEVGcuEh0PahCN9o1CGMQwOF1LklUW15ZFTFgnpU2sXyFhuUHPFvCBdJU3F96AHVtsFHHL88bVVfOPF5/nHubO4fNwoWmtM8bTyyudPbd3Flxe9zCNveSNSEii6Kd794J84dUgjHzvTgBrjMbeKxh1F1Zv9nVkuu/dB3jljNheNOzMydI65KZoTWQSaK37+HT5/1gIuGD20YqQjPEbYjmdkxqMsnrJ7UVfi24cgpXxZ/DhxT2hY8K03IPF7GQlRoudxAIoQGpnwkHZlZam4cRUHLH2BlIrHCYywEwGVPn+KDLbekZVeymQnACvlYOJ4dI7y45/o/Mq36wtk9l5YwVCM1XoJzz1MTNZa8OrBDi64+3Hue+O1TGypjyLHnrLZ2jGA1nQbaScX0X8Acm4qAszdXrpEhlQFTg4d8Na7fYcqyyXr23T5DvuyJppqCc34mg5q7Hwk+GHFxmwINmxhBEss6Qd1qAxIMXRbEQEmNxbRKVdFDJdBUYEoTreM39O4qpdAk/cdLKFI2XnskCIVyVUHCeNo3vXAM0zuX88n5k0sEVooj57EwUmRqlX52ZUAlNIgTxHEa1ERqES/l42p0EBXvhX1/3IAHgex8e/xPl8p4d18jkc3jldnqHjP4//L91cuoBGtXx6NKgNzYRQlBH9x8KY8q/I8Ex4rfi/CCEhQtFgryZef3sQPlm3mrdPG8bOVG7jj0qlUpcx9tYRgcv96Btengl15fO7xDdy1fBdvnzmSSU2DGVzbwKDaKqoTNlpb9LgeOT9PQ6o6EIbw8bXFj1es5OwR/Zncr4Fur5t/e3EN+zqz/Pz66QhReu5Z1+eZrYe5YEw/LIvjt+D6luw4xjdf2MLDrx7g65dO4n1zh/cCfUJq1uxrZ1dbjmxB87Nlu3hpVxu1yRRD6qq55cwB3LtiL8t2HWPagNF05rvZeHg/n1kwGct2+ac/reO6KUNpTDXzwVNPAwjoxWaM5v0EUmg+8MeH+Mp5l2NZySBJ3+MD69YydepUvv3tb5/ggv7vtRCk7L714r8YSBn85Uf/7kHK/wrda9++fXzqU5/iq/PPZc3Lr7Es059TBo8jbfmBpK0kp2wcoaix81RbAq2r2Jmtpse3kIkZ7HMVDU6eMVVtUeKjQAfcYo+sCl5EQRJn0nJpSmeoSaQYXtePggc/WbGBLce6GFzXxD+cOo821Y81HcYQBzhWcOj2LDpcmwbHZU8uxdL9daRtn91HVnPZ1DeRVzaeL0hYHk3pAhlHsbszhVJddOXzLN22mHGt09E6hWNpcp4kZRsQsbsnidI1CEySuadKCzn6QXKqbSmkgLQKktoCEJPzJLY09C/tSVzfJF1KNClbk7KSZCyfbs/C0wJXCZqTLgmpOFZw6HAtkpaJdjhSU20HuRaY+9bhJQm10ZPSA9twUVNWWCFZGeMl4Kp7StLtm6KNNbZLPqB89Pg2jU4uUiXTGMpYIlbDRGnBsl2b+I8XnyBpCb51yXmcM2JwYEiFogdlid34CCDpuHTkakhYLm25Dl7YtZsvnT+l5GV5pKfA8j3HePVQOxsOt7O9rYsxjfW8cugocwcP5aoJc8gpAhBl4QTG/5Yj+2jPZ5nQUl/Ca48bNgBKFF/eoTe2kgFbEqqXvY3/+D7D9fvyapar7MTrNBSP0VuN62QAirQUwvaLACW+bsXrAqyiNKhJPu+9+xKpUB1QWIqMq5IW3b+4oVF2HkVqTSzZPgA/5aCjr9a3R7jM411hXye775Nep3z/FcQMylt5P5vQr5YPnTqB9//xj/z2uivpX5XCUzZKSVqSnXjKQqJIJ3sAyOYzuMqOCj162o4KuSktSEiTYF9QdgBczChOBvNua9rMSZ4WUY5amOcRj4RYgbEGRFRHIFCxM/TWUN40BCShAlc4c1QSkAijPeX/VeBwSEgXITS+tlABta0coIT0x3hi/OXjB/OtJa/wqbPGRtQuIKbYVZoIHwEUWTQGYydaucWASrwoagmAERoQkZGuQypl0L+lpVC+LPaVGA2pGCH0S8BJMbleFY3/ckdGxaiKKulvJ4qslCw7wViI01p73aYy2py5X4YKJ2yNlNpEd31ZjCgFfSxelV77RTBPoICnteCT8yegNHxt0ToAugo+V08eSGfeoz7lYNmarnyB9/9hNU9uOkjKtnnohosZVt+IUpKcZ4C6p0wfrU5KqkmTdR0SlhtFB98yZTqff2YhXz3/TJJWHe+aOYGL7n6c9/x2NT9+09Ti/dSCtGNx0dgB4c2pcFN0r+jR3GENzB02K7qfv1u7l2e3HeYTC0bjKkV92qEhbTG1tY6prXUAXDullZd2tbPzSIGzRjfSVG3xxqkDeW7LUZbt6KIp08yAmkGs3d9GPuez6JZ5vOGeZVw7oR4nqK0WvsssiKKa75oxjQc2LOcd06eZ36Tis8Nbuew//5Mbb7yROXPmHLc/vN5eb/C/BFI+9rGPcckllzC9diht+ddo9zwkReUoiaagTaX3tOWSlB6tqS46vSQiqSPgoRGkrQIZ29COfG2R843yVUp6dHqpQGHKoTnRyTcXL2ZwbQ2ffOIFkpbNxH6DuWn2OWzrqeaVbomv4WDOocbxkQJSlsKWml3dSQ5aCY7kAlqDOkpTJkHG0aRwyXuSuqRHleOT9ST9Mnl6EjWcP/FKntv0GAvX/YRLpn8QKRQZW6GAIzmHfGDQp2yftK1IWApbaKQEpcAL3h62MNxmLUxdE61NjYKM7ZNXMqp1YsVeAp4StHkWPZbJesl5kpwv6fEkaVtFVeTDN2GXZ+Ep4zU6WEhT7xRISY+sbwMmAT6enAoghQjUeSRVlouSgowl8DGyw0npR7KljjQGT7xKdEj5kAKe3/4an1/4ILfOm8+bJ43EtkwioxA6Snwvb/eseo35wwcF9K0cqw7t4YvPLeOycYMZ2y+FCAyiF3cc4e33L6E+lWJccwND6wYwY8Bothw7xNgmh4+dcTYJSyGESz6guQjtsXzPBr6w8Ek+OGc2IxqqSjyG8WR1s35vSs+JoiwW8byG0hd8+Tbl11+So1IGRI4nWXtcozkOUKSqDFD62CbKObF075dnbL1KBowOtyvfpvyRx7aN8lrK7l8crETLTxDtiG/fF7js69zj53MygKTvE6jkda8cwQqPX24sxj3nHz9zIluOdfD+Pz7GfW+8DFclAhW/Ir0p76awhI9teTi+kWD3tRVJAgP4Qe2IMBcrBBthzonCpiWRxdeCnLKpsgsmIT+s2o4fAXilJb62ggT0osMlKGNqvhPkbqGB4nkA0TrlFNFoebCdFTOYwqhNPhBkKfg2GTtXkisTTyoPc0+k9PFxcVVQ/yTI2yrx9gcAJaJ1BRGUKO+kPNkdShXx+ny4QZ8VReBi/hOAbwNUAIQy40daqlhLxfIhoEFGxnnUV1TgQBDR/FgaTSlGT8rnj/h68XnreEClPHpyoj7d616FeT193Kf4vCGEKk4Zqqj8pTy715j2fQPa4/PnqYNbaK3Zzq3zZvH151fwkT+uBqAh7TB7cAN72rO0VCd5/OZ5DEoPwpaSbMGUPAhzEaM8KSVxLJeapCkynfeSuMpBSosLRo3l8S17uWzcQIbVV7Ho3ecz/TuP8ol54xnXmoiuTWvRJ7YluLZKQCX8TQjNyr1t/PSlnfz0pZ0lm/7+HadwwbgWs4nUzB5Sx+wh4XvH7GPeyCbSCYtLfryErGfu7OT+tXz6nHG8beYwlu7cZxy0ZZF2L4iAnjakP49v3YSUeSQ2UirGNqd578wp3HLLLSxbtgzrhCGi/3utdLz9/+3n9fa/AFKefPJJHn74YX5/zdX85OVn8XF409SzURjvfJhDIYGU5RkN/yDBPW0VoheRHVRHTUijxgFgaUXOT5CULpZjPH9uIGP6y9UvcPGYMcweNAhPCfIqiasstvWk2Z9LRLK8WU/S7VqkbEXaNtkAjqVpTeepdnw6ujbw2r6XuHbKBaQSOQ7nbbp0no371jCgdgA16cF42udo5z6W71jEyJaZ1KVqaOvZT1WiX0BHCIsoetjBJGwUdsIJLpQADOoBBH21/LNjaTytsYXGlmaftjDFrPyAOlHwRVSwLRmAoJwno2WWKFa9LyhJ0lLkfEk7DgVLkrb8oB6KOW8nHj2IRUNsYaIqjjQqZpZUgUfVSBWGFe7DZETjAQ3qG+DzlUWPcvaIUVw/ebSJHOGXAJTQ+A7pBluOdvDirv18esFMvv78Sn60fANVCZsLRrfy9YunBtV1PX6wdAv/8cJGbp03l2smzKAj183mo90c6unk/bNPw7YSCFz+tGkNh3py9Lg+nfkenti6Ba0V75wxnffNmtgrclL+4o4vi68TtnIjIPw9TjUq3yZslZNbe+eZVKJsVDqv8nMyK4VUlsAQs4v1SqDoFdaqwosx2L7Xdy1KE+ijCyq7luD3kqVa9OLuR8enNBJTfl/QokjliHlUS3fUN/2sL7DRZ96KiJH2Km1b4Tz7+q2SEVfJEKyUexCeozk/wTcvnc34bz7A2kMHGN80PNo2FAzRgSEcV4yzhMlT8aTJYUtKo7KILhZDjPfFtDRzdM43SfUJ6eEEalhhszBUF0G8zk94nTKSIC5v5VGTsh4SXU94bmGti3CsClFU9TLFGg3wTju5aG4BgjoiIWDxOdKT45drtvOdJZu5/cIJRrHL9kuASUkyvKWJstgjsKx7R090sLwcqJTRvsyycqASrhhed7DLYHyFQEUrEyGIi14QK+wb/oURhPAe9uXciP8e0bDKgEpfrS+AUnF8xZdp08NOGKWM5qRiVEUGTkCtA/lhv5h7GP6PcnJK5l5FV8GnKZPk2onDuXj0cA5ne2hMO2w5eowV+w6x5sARJvWrZ0T1ILrzVfiBBK8fKI1qBKhwfAaFUJ18NN7Cvnna4Fa+vWwZV47vj9aCflUZZg9q4uFXDzC2/7DiXCyKUaOSe32iuTe27NPnjGX6wDqWbO/k/nU7OdxjKPELtxyJQEo8V7D8/bRmXwdZT3Hq4GaW7j7MGUPNNh88YwT3rtrJnasXc/OMWVhS4ikrEmRwgjpCZwwZwLLduzlzqBG9saTPB+ZM4MFfPsoPfvADPvCBDxz3Gf9fbJq/EEg5PkT9u2n/oyAln8/zgQ98gNtvv5377rmLs0aMo6V2DJYwxjYUjetQyjbn22TsvKEdWG6UROxIr8S7rLWhCNjCx9OWkdi0XHwl+dPmTfSrcpg1aDB536bHT3K0kKbbt9mbTdLjSgpKknXNhFbwg+JGSpCwFM0pjxGZTroLWR7a/yLfOO9s2lxBQXdzrLuHRRueZu6IORzoOsDLO1aisGmqamLe2MupTlax5XAd+9peo39tf0BGKlmOpSO6Vtgdw8+uEqbKe1HoLPoQRn4FkLA0SakC0GOiUCqYLG0BBQzNy7a1kSa2NDnP7D+szOxrSEgVRFLMzrO+ARwWbhRF8SnmdIQeTikU3V4CX5iq9yEIcwKDIQRAhr5RHHRh0bXwXtxx8ZX80+MP8dOVq7ll9sTIiCjSmUJj3BgWezq6yPuK8+56mHnD+nHf9WcwZ3ATduDVuW/tTm59bB3D6qv513Pm8OyOg3z1+f+kq1AgZVvkPJ8/vPkGkk6azzz5MEeyPUxoaSZj21QnJV8+dy7zhw3Glgaa9CXZKUUxsb2SNz38PVxeHhGJK3vFf48XW4sn/5Yev7JyV3x/vQBK+NJTMXpIBYASlxuuBBb6anEwE1G+jrN9uVcYKAUfZZ9LzkX1PrcQREUGGJQabMG1l0eASgrDnUQkpWSb2OdKIKPkXlf4ra/tKh6z7ByPF/VJO5K3zxjBlff+iaZ0khumjuGaCWMZUV9fNNqCZPmEXTBRFduIeZjcjQSW8Mn6SUOTInQuGMlRX8tgu1Bim4h/X16TRGsTZQgdSnFlRRU3FvvwQlYSqQhBCCKkmBVrYYWOjdCxkAwcXI7lRsfuLdmr6SoUuOTuZ+hfneTLF0/kuun9A5CiiiClTKGrF60riqRQes6KSjir9DpLKF9FoFL8LbZyLKoSAhVhFY3aKIpo+X1UqQetZUVw0svZInQvZb2TMqFi46JP0NGHE+VkW3hfwqhKOHOqiJUskZR6uOPXaJZJ9nb0MLDaSHQnLIeWdBO+loxtrGVSy0CE0Pzw5VdZuLWbaQMaEAEtIKRyhXckrhoZHi/p5EwOlpYc6umhJhlEF5XFoZ4si3cd4ksXTC5GTyo5X6gwNx7PAQKkEpJrp7Zy7dRWvnrZGOMQjavGnaDdNHsoVY7F/asPcvu507ll7nCEcGnI2LxrzjAeWL+dHe2Czy84DYUMHBuF6D02oLqK53bsZv7wgRGdryoh+OKCadzy6U9z7bXXMmDAgBOfyOvt77b9j4KUO+64g1QqRf/n/0h3fTVDGkbgqqLn3xI6StYUGOncdi9BfaLH0IOQkYfOFBAsvmh9JfG0jS19juSqaQiUpDYe3snWo/v5x9NOI+9btLtpjhTSHC4kOJhz6CzYKMD1RSSL6euAQy1NdGP17lU8cfQVUpbmU2fMpCaRxZGKdjfNoWPruH7qabTUttLpDWP8wFlkPYkUkPUkSsPWgyuZNGhOcK6GigXGQLPRUTTFEpDXRqUr70uTu6GCeSj0nOkgfyXwNiWlIm0pLGHARkFJCjHPiJSGAZPzzUtKa4UtIYEO6q+Y/VXbPlb4MsTkqdTYbqzWgOGFg8JVEhVEeVwl6QkqWRt6h8lpgWJBNkFRnSde+yD+ecaA/lw2bhy72jtLXiCVjXPNWaOaWfmBS+hX7ZBJyIAT6+Nrxc+Wb+djf1xrzgHBxx9fggqQ3dunTeaeNesQwKYjB/jiohe4aPQQ7r9gHlWJIHlXGe66r0BrjdS9awFEqjjoEiBSiZYWX1YeEZGBkVX+uyX8yIDsbTSUcsX7esGX/BbfPu7RPA5AqQRO4kZUiUFVtn5kOCAq56ZQ7NNxrzD0AVbi16CLx4+W69Jzil7q4abE9llyEifw6saO19c6fUU/ohb7vdezqvBbpYhNief6BAAlOm0tuP28qXz49LG8dvQYX3jqVX748it8ZsFM3jJlIpaw8ZWFZfsk7HxksKcSWUN/8lQU+cgHNNowqb08FyQR5J9E0ZZwrIRPIDCMQoBgh3ltPmgZioOYud9H9jLmw4hIvE/EAQkQRVLCyuphnonWgrBukB0oKoZjw7K8KN/kxy9v5WvPbArkWmdj25iaJrIMnITAJLz9cfWu2LWWP8OolQDtaNKNrjk+jiKKV5khHv1GMMbiEUtLIbQoiXoKoVG+VTzFEHDoytHfcsdGX8VWjxd5rAjcK6wbHTOWb9LXvuItpMFF25qlIGIS1L5GC41J4QkjQMUoUhhZWbWvjTsWv8r754xHCI0dCCUoZSiKIeh786Rp3LZwEeObh2BJ49RUiKiUgB+8BxLSjd3jALxIHxTsaGtnaF1V1DfrEmlmD2riE39azZunt/LuU4f3SREumQeO41Cp1KQMr7mPflmhCaF584yBXDd9ULCkEP1mScHwhjTHcj7dXpqUVSAh3WheeHzzDl7au59PnDGLsHOHc8fZI1qZP7iRT33qU9x5550nfQ3/F5rJ+/r/L0H4l9jH30L7HwMpBw8e5Itf/CJ3XjqLrrzH4JqaiNdcCOUnNWSVhS0EqeD5JIKwtAJc5ZC0DOfREgppuVGCpUKS9x2kUNTYOXqCRLant21jfEsTrm+SQXdka9jRlURKaC+Yy691PNq1TdJSJvnbNYnkjtQo5bLp4FbeMWMBrTV1DKw6jCVMESRLKg53H2HGsLkA1Ng+h6Um61lBjgMcyxnw01rXaGqzCI0fAAxLaAq+SaS3pSas/J60TMRAAgUlDIASxahLwtJ4nllu2cbIU4CrBR2uRY9rkXF8k1ujAVvR45pIR8GXVDseVbYfRDNME2jqbBeFKQbZ5dv4WlBl+aSCytSuMpVku/1EMNGZCa/OydHtJ8j6FinpEzzKwMNKVFslyjmKgaHQCyuEDt7TxQhFuUpP6PEMJ/+RzU7AFTcGz7df3MK3Fm1DA/928XS+8PQ6Zgyq5+ktBzh/1CAe27yHRzdv5/QhA6hPOXx24bN87cLZXD/NhKJDobuQQtKXZ7HXuVEKWo7XeoEuKnO64/uqFCXpTcnoDVzidIGK59EHQCmRTO1l5YffS1+QvQqrxV6kJ2BWF42Z0OlQBlbC1iuRvq/dxXj8qBjYiYDMiZPRe51f3BjoA6BUilgd14irtM0J1i9v5VSv8H+8D7RUJxjQ0MjCsXO5f/V+/uXJV1m6Zy8/vuo0HMsAD9+3cRyT26eUhW27VNsm4dx2PVJ+noKfoMtN4/pW5GDwA0nvjO0F82/ZmI2JSChkNHYFBiCE/d8TVtGRQe9+GwIQLYpJ9ZEDBVXMgYlyS3TJvQgpbeF5lQOUdQfbuO2xV7nzzdM4d2wjTkIhLB0UXiyeTy9wUgGY9Hqux2uV6F+VmiCilUXgJDqm2Uc0NIOk+hD9h4AljCagpFkW0L4qH6+0j8fnkuhsy2sWnWSrdG+OC1DKWzCeRTk4jO8LhSU1qmChldm3VtJce2w/Wgt+uHQTn39qPZ+YN4Fb5ozB94PoSABQXN8mp5Ok7DxSJrhmwgTuXbuSt0wrJqj7URQlRodWEg8bS/r4vh3d6zOG9uOTj29lwfBWWmsTWMBPrz6TX63dyhef3sjWIzneO3cYwxvTZv9l964XUOnjnobndrzl5dv9OTSlEY1pfrNqN2Ma6+n2EtjCjBWN4rtLV1CdcPjUGXORMhAUwEj/J+wCQig+N28S8372Sz70oQ8xc+bMkz7uX3t7PSflL9v+x0DK5z73Oc455xzOHJZm1d5O/vDqHq5rmkrSMjkLPXmHo27ChANt8LUO8h1gX66O/qmOoMZGMQ8lzse2hI8jvejB7slVs/XgK6TtJOePHE9BGS/dyEw7Q9MW7W6SdR3V9E8V6JfM0+XZrD5agxCa+pRL2lbsb9vJ8u2LuHr8JGb3U0hxNMqPsaVPys4jdA9T6tro8pIczFeRiHnBPCWoSfpRschkUEsgFYvYZGyPnC+psX0OZJ1guQ6OoaM/SUBpkKYuiuub6y4Ejo1kQNdKSA2OT49robXZR9LSJJI+HQWiqJUb5J+AkTbOWMIod0mfY4Hcs9JhebWi/GdSeiSkT7eXIGV5pgq1b+MIn7TjRjkntggTbSn5D6FRH6s+HUyUw+vr+cOGPdE65TSm8urG0nEjIxvg8Y2HeMOUIXz27MloP8WafZ08tnk3/avTrNh7lP+8ag4r97bx6QVTSNqCrkIhkAos8uONUWN8Y3Eql7mGUiBSDihOJnn6ZH8vl/UMf+srqlL+e4lRUWaIhL9Jq0hhkXGKVwkvpPwkiiDA7LsMnETr6YAnHvN8x/NadKXl4SGCg8aljDkOaClrxUTj4os4BCqiwvbx+xNSs3oZXhUNqzKOfSWP558BOKJ9VAJEZcsERfAayg+ba5K9xguA7zoIqbh2aivnjGnk4h8v4/svvcqH5k4yxqqVo6tQoC5tYQX5PJ5no7Uk4eRNxEX61CW7CCt0h/VGkpZr9iE0vpK4wjZ0XAKJ3qA/OtKNaFjhPbIsD6lspApzXUrHUHlifDGOE0Zzeie/h04EjfHClEcjpVRFgGL5bD7azk33reDaqQO4bGpTEDnxDEixlCkcGAcSfw44KVeuK+mAfXWC2OpxildA/SofL2a94johyJciNn58GY0JHfbNWF8/GbphvJ+HtKQw98OcT+X9VI7mVphDjtf+nLEUJttrjUyA8sx7RvsaLVUETrSSHOzKcduT6/j9W87k1MH9UUoipQ/KRiHpKmSMEI9dwPWNut0pAweydM8u1u7fw/TWVnxkVIQ5KhYa5GUqJXE9x+QA+UXj9eOnz+Gbi1cxuqmWG6eNpcZJcfP02Zw1opXPPLmSaXc8zfiWGqYPrEOjmTW4ngvGtjC8MdP3/Y21tqzL3ct3s/lwN2OaqxjXUsPpwxuoSth9bhMuP1njeGhDmk1HuhlW1wX+QaoyBoh9/6XVpGybvV3diMCpIHRRAczcYxhaX8W7TxnNRz/6URYuXEi5BPPr7fUG/0MgZf369dx55508+46zkDLJ1AH1HMvluXP5I3zktLMBcJXEloqD+RQ5X5KxPDJWAUto8spGosk42agIX9YzmuW2KCZqWkLR7aY5VKim2vbYdGgjH5wzAyEMDcEJeNRZX5KQPguaDwLGgH7pyAAaU25Ue+RY1wFW73qZd8+9mql1x6hNHEMIjes7aASJoCbLmcOaeXTTYi4ZO5ejbhqB2b6rYLNqx59o72lj8qApeErQ7VlBhMaP6FWuNrknnjYRkqRlDICUpUwypDAAJaR4hVQuW5rSZ54StOUt0raIKF+W0DSkXDwl6CzY2CmXrGdASUirCxP105aPLTQJaSrRh5SxrG8zINWJIz1cZVNQdgRUCsoiZXmmSr2ySQUSpUnpRcUaPW1F9QugdwG2sIXRFCk0swb251+efYasm6cmaUVGWHnkQAQSoKEKFZhCVWeNbuRHS3Zx7dT+OH4t963bzj1vPJXfv7qLaycN4eyR/XnD5MHBi1tTl7YRIi6pqZAy9ISoiEMbGUll4KTcWxtfdrxWXnegEjDpFXGJX38Zhzy+zvEiKHFjoRdAKa+FEjeO4/uKGUqlRlJxnbgaUciRj28f3zbyoOoYsIiBFxHszywwkTti4CPabdn+K117OZ87/vyK13F8onafv1d4/vEXfqVjxdeLt/i1nKj18qz2sY7vW3j5JNLyaUjDR+eP5NZHNnCgw0Sjk47Pk1sOcvtFYzln+EAsYcCKG+TpOQEQcX2H6oSRLu4qZIJ5xMwRyYBKFVKrhDCyv7bwonPxlE0ikDoOr9uWHq4wRVJDT7QQGhU4oOLFbiWGHhmn/lqx8RCPmPRSxBNGqSuMxkrbY/3+Di78yWLeNXcwn794dETtkgkfLI2wg3tb3o9j519Mgoj9KEs/C6XRcU9NX92sDMSUAPqon/Q27sPk8TCqUjzH4rVrTVChXRmp3pAOd4I+X3J6MTqljp2uAbr+8TYNzqMUqBTzbiqPm5M/MY3XlcTtSZMZcMzML8JctxQaLYuUr/CeCql4Yss+prbWcuaIBgqFoqBAKpFF5SSO5eFgcmB9JSNJ7JtnnsonHv8T45pbqUr4UT5UpQiFDMBK2BSSulQVn1lwBg9u3Mx/LF7Pe2bOIGELRtUN5nfX1/HRR1/i7JGtrDvQhi0lf1h7mE898gpTW+t449SBvPfUYdh2MXIaP6avfW64dwU9BZ8zhjfx3OZOvv/iLqpTgm9cMZE5gxtI2H1Hv07mHaa1YExzNb7WtOWzfGnRY4xqbKHgS6b3b+LSsUN4ZNNOfr7mVd48eXIgdGQhtI5ydbQWfGjOBOb+5DEeeOABrrrqqj/jgf8VNyVOLjp6Mvt5vf3PgJRPfvKTvPe972V09W60Nt6zBcP788SWfVQ5WTTCaOrn6qi2i8YwgCN9MnaeHj9J0itwMFdHfaKHZAASQu398GVdCABNvZOlq5APPAcBD1mbl1hYiBDgSMFUpB9Tm8VVgpwv0Vrz+PZFvG/OAibUHaU5fSzy1NmWF708c26ejYePkHagtcYAnqOFBD0ZyYHuBHm3h/MmvwlfCVK2R7XjBx5HA04KwWSfCTzYTuyl4ykRJLcLHGkKNGakJutLLAG1jo+nBR0FC0toOgs2BWXqp1Q7PimhQBrQsrcrSU3Cw9eCtK2iPBZHGnCSlIpOzySwVtmacdXtwT12IyqFo4wh4iqLhDTc0qzvUGvnUdoAvbBejUZEURjoDVCKeS6l3PVhdXWMbWrkvvVbufmU0SUAJTQsou9BHY9I7czy+PDZQ/n28zvYdKDA3Stf5h2nDOPiqbVcOGmKkaFUpVKbcQMvXK61RikLGVTKVsqqGCUpBRbF5PdKEZBKLTzu8QBHpe9x73jp8sr5JyXrhdcsi59LIygVXk7B+iUyqOaHynUgdBGYlKgeBb9F4CQ0+nR5VKXsPGKgQ6vA6ArBSvw0wzyW+LIoQbQsolLp3oSH64MSVmlds6CCpzk6vu5ljJYbMqUKQ+UHq9AHKkV5So7fG9Sb65IoVcxFuGpKP/7pkVe5eGIj84YMRgjN2WN20pn3+ecnVlPlOFw5YRBT+jWitYVlCRKYXJJ8QKV1ZBegKHiGxuXIopKSECZJ3feLfH6BURbzfCegwBSFOIQwdBAliuBDYiKZYU6JEMVcA0MQ1pFRaUsvEtoASmihUU5AED0JAUre97jhVy/zoflD+ecLRxZzT2wVAZQQYETteMymk2E9FaeL4rgIKV99Ri2pHEmIjzmpgWCcVgBUhJGPwIAq6YexdaKPfRhI5UpQpbAp/HKSEY+y9StGbSrtM5zDyg5sV+exqwMAHJ8z7JDSamqpQNHZMbDJojPvIm2PhDCUMM9zDFVL2WS9pImkWIWAIeDy9ReeQyOY2dpKfSpHGIEvH8dKF8VpQqAihC6ZpK4YN5qV+w5w61PP8KVz55FyLJ7d1s6E5mYuHj2Wy8d6QWK+pD3Xw2NbtvPdJRt4ZX8P37l6YozyV2xr9nWyZm8Hr378PGy/1rzLhMutj63lLb9YhRQwqX8Npwyu45/PHU3StiqCq/h9DFt8Lq1J2pw6pIGOfIFJLf15x7Sp7O/qZlL/Bnytaa3J8IdXN7Hl6FHqU0nmDx/ErNZmfGEZJxlQn5F86oyxfOITn+DSSy/Fcf7/iyD+b7fX6V5/2fbfDlJeeOEFFi1axF133QV3vA8IPHvapbuQJWEXjGxd4KlPSt/kbGgRAQlX2RwtmMSsxmQ3rrLocjNU2VkSTgFbeiZ5Xlt42iJtuXQX2tnT0cbezjYG1dSZdZSh9lhWka7QlOih29XgtfPH9YvIeT45z+OckeOYUFegLtGFbXlFz6CyAs+e5tYnl/Dh0yYztqUKrRVN6TamKAtNCx15Q3eocnzyviTnmTyXjG1kgC0BCE3Ol8HL2ACTatscJyGhyVKEUr0Jqcgri0SQl9Lu2vgaqh1TKyVhqdj9MlLK1Y45frVjjPlCUGhPCmPsKS3I+pIez6LLk9Q6Po1OnjonS12g7x42M2lb5P0EPX6SnG/ucyGoKB/SwsLkWSE1eeWULI/Ll4Z5KPGcFCngvJHDeW77/gCk6JLaBVGEIDK4KVGhuu+l/dQmbXa0dbP5aAf33zQlZvyqqNBfyeAXurdtIBRCxIFL70hJSc0U2bveycm0chnQ4vF7H6N0eem6xwUnsli4saQQmtDFJPmy+1gpGb7kvwDtQ2+rKrYoBm7MTkupKsVjlW/fh3FSFmkpz3PRgaFX8nxDL218d6HR3vvMS07/uOdUYX+9lp8EhaUvcHI8T3KJYRgDuvH+GoLlMN/C9HvzPbwnKcfi3XOH8B/Pb+ast/Znf4fPtfe8TG3SZmy/DJ++eDirDhzlrhXbGZCp47yRQ3CsJK5vI8niKclnnl7EtP79EUKzp6OLm0+ZzJR+/YBiNEXaKnLqhNcaSv6qICouhcIJojBai2h9BUa0IkZfKs9TAxPliSsBmv0YZ1NcucuyjIywtI3X+5crdpGyJbdeNCyQGA7Gga2NoS8p0rXKIiPFk+jdx6KTP9kmOHFuyknOK+ViFuXbizhA0mXHjO6dKEvQL0Zu+gIvvQ5XAfhH+xaxnDEq9Pc+xk7kXDnO2CoHLxFYIZjXA5lmAaAFVUlJQSlUIFUsbQ+pJPlCivZ8NdmgpEFCuhzo6uILzy7ifbOmMbO1f/BOM4ItUR8P+qCK5YopJYMIXiDwEBQwBhNVmdHan4zj8KPla7lmwlh+vW4bXz53PjnXjoFuRU2imjdPHs9Zwwdy2S8e5yMPmaT2mQPrSDrF+1edcMj7iu1tXUxoTAX31uJrF03nKxdOZfHOo2w50s2PX97MDxbvwLEEUgpOG9bI+WOauXh8C4Pq0gipeWLTIb7+9Fb2d+YZ1pDmumkDOXVoA6OaMggBjVUJDvcU2HD4GM1Vkvp0M799ZT0v7dnP7EED+NoF86lOpDmazbNw+3buW/8apw5q4eqJQ8kkJL4P108ZzQ+3rOTuu+/m5ptv7vPZvt7+Ptt/O0i57bbb+PCHP4yMAIqZ8T/91ArOH90aedAMKBHkgxeXJXxDKwq0+hNBPorAIyE9dvc0mPyVZA+27UYvvCo7h+07NGTgfbMnsXDbTm6cNhl0GP6XuIF6E8CKvbv43YZXqU63MHvYbCY2N1JjF0wRSasHx3KDGgI+WstIW/+Zbfs4a0Qro5tq0broDU9aLoNT3exNNpB0Muw+vInm+nHkPMvQu5ShcmWCiEatY4odFpQkbSkKSqKVUfjq8SxsaUBNQZnaJmnLJ1AvxNOCo3nzCMPk+1A5zNMmib7G8SNpYFuauilaSzKWCYPnAs9SzpcMr8oyrOoo1U53SUKlUkYHOSEVjuWR9Avk/QSetiIaWCIovBiJ+QiwhR8VfwvXC6WJ49XbNQILn32dHTyxdTvXTRoZ3c+SQoVxgzugK8VfWq0NDtvbevj56m384q1Tqc1YaL9o2PVp/IWGfgwwhABJBd57HRlax498/DkgBaBS4mqlYxz3eOVALMyVKAMnRXqKWSadmGEWt1X6SEgNt4XANgs9vOGC+PkFYCauumMMHNF7vbJ2IiMrTgkzG/QucBf9RMwwi++O4xtzJ9NOBoiU5OHEl1cElKV5NEAp4II+KWCVgGscpEipkJZvjLBg7HzgjGH84MWdPLn5MNMG1GNLwQ/ePIHNh7K86SdrWfepM3jX3MFs3e/z6KuH6CnYgMAKosq3zJ7GWcPNHF7w4FtLV7N6/37ePm0CUYRT+lgYUNL7nIt1j6RQ2NKL6leYZQSAtBKA1yUR9HgtJaAEnIT3IaQjmQiiz7oDnVw0qQnLCY5jaRNBiQMUqPyWPA6YNidAZaASX16+Trnql64wFuLPv+wUTgpAiDBXDAP0y/K+gF5RyUrjp6JKXrhMl9Y5OR7ojjYXZdceAZjjbVT2tdJ4LAErIVUtuggyKcHRbpecyiMK9fTkqmjP15Cy8yQtN6q/Y0ufofUWrdUpZrb2J2EXosT60IYpPayOnIbmUL2LYEIgVyxgYksdj272WX3gIOObmrGlRfgEoohrkIc1sKaa31y3gC8/t4Y3/3w5eU9x3phmLhnfn4vH92NMcxUfOnMEt/xuDYtumYfvOrExJTljWDOnD22hOZNk05FOzh3Vn5zv8fz2Q/xm1X4+9tArTB5Qw+yhddy7Yi+fOGsUMwbW8+r+bt77W6OaOaIhw4T+NSzZcZTzRvdner8BPLPzNeYPmcSMAYNYvGsfswY205ixcH1NYzrJtRPGcc34sazav4fPLXyZKf3recvUkVjS5iPjWrj99tu58cYbSSQSx3no/wfaXyiS8ucot/0tt/9WkLJw4UJWrlzJ7373O9S/vQsoJnY2pZMMqctwuKebhmQtlvBJWy49frFcYF7ZdHsa2/HJWC4dboqk5dLpptEI8soMPtt20drD8R0sYSaUrNfJ717Zwq3z5pbwmUP6AMC6g/tZtHMXHz7zSjq8JNWWR7WdJ2MVcKRP0irgWG7spW8S8x94dSer9x/j1vlTCek3YYjPEorGRA9DM2munLKAJzc8S2e+g1H9TyFbyEKiCl8JPCVIWpK07ZOSOiqW6CpBMvCwi2CZH5xvQhq1rMN5JwInQgSSyToojhib3A3ok1HOieeX1kaxA7oXwIjqHKOrjlITRI7C6IcKciZkAMSUiOVQBGAjE3hBAcKYChj6l6F4FA2U0ODwtGVkQgMln8M9nZx/9684f9RQ3jBpWOD5LRoZJo/C5KLEKz3H1XbOn9jAU/9wClNba6lK2KVJ18cBKiXUHt+KGTsyFu2oDByO5w0/2dZXLsoJP8fASfxaioAuBk7CZFKC+xYCE6GLntyTOtny/7HzqkT/6oOSYpaJ3utrehkbuszbGwKVXjkswU50bPtQ6agizasPWsxxW1/PtQ/wW2l5NH7KkodPaGQel6pm+mvcSC/S+1SUJB3P42qssvn4/NF84an1PPues5g2oIGCr/jEucO5+6U9LNvRzuDJVQxvTvCuOUPI5TJ4yibp5Mi7qWKSMZB04ONnTOPJLbv5jyUr+OSZ08xZBQCpfKwUjbXgvHWRfmlLz4iN6CLgilS6YnS2EJz0uHmW7z1EW76HgbVpqhOSne3dpBzJBWNaELI4RoRUyECxK2FDR94rBSiO+d8X+I5aaH/6ou91wlYOVsqjMkH+xMkk0kctxER99ZmTMXDKx014/PKoZF/RohPst2RRJSdGX638t9h8V6Kudpzj9dpXAPpK5iABs4ZXM6Zfmh8t38J7ppxCdaaTvJ8IlDYLpGwDhjcdPcJdq9YzvbVf5FgKKVyV+jUUac4q6N+V7kO83TJrMp9buAQoLbYZbyFQGdPYyE+vOgutNesPHeXxLbv4zvM7+OhD63nr9KHYtsYSxdyP8NgR5Qw4d9QAHt64j3+YOwGAma3N/OPp42nL5Xh88z6e33GYP7x9DqcONgUczx4umDmwgbzvk/cU2472cMW4Iaw/0MH01hYe3LiN2a0pBtYmuP3sBfzHkqXMGdzCRaOHR/Q5KeGUQQOZO7SFJbv28NE/LeNt08ZwxbhhfGdrGz/5yU+45ZZb+n6e/weaKe7wF5Ag/gvs42+h/beBFK01t912Gx/72MfwvvZehDCD+dVD7SzasY+Xdh/id6/s4FiuwMzWZk4dNJRrJ51JtV3A1VZE+SoE3vqU5dLlJeh00+R8m6T0sIVvPHWWjx+Ea/O+w+aj+7lv/VI+deZsmjJpVPCSCJWaLGGoUQ9tXMfbZ12Gpy0GJHuixG9LKKrsLEk7H9GNjMfa49+e38Cg2hSfP3cKoKMoCpgE0Cqnh4TlMko5NDhpGqfN49ern+GxtXeRSdaRtKuZM/J8ckg8rfEU5CyTlxICFTuYWEPJXi+IMkkBKIVC0OXaSKHJ2H60niWCnK3A+5+Upt5KVcLIGSsFSUuRsVRUnb464ZKxPAalOuhffRighOsdgRSpcH2HguegkBSUHd1Lx/LwVJF7Hiach9ESW5qISsE32/jaJCAmpDGgbOGRdgSuUtw4bSyNGQcZRGYiYBIYWGGyd8kLK5r4BaePqjOeDKWJkqOlyTUpVUWKRWfiL5jYb3GeR1+ApIRuFS37c7geJwdMSr6Hhmel9cLzt1QpOInuV/Bf9kGbqBg9oYKhpYNoSh+5KeX0lQqRmjC5NWo68KBGHtni+pWASum+eoMViEVXyi3Avoy7CkbEiah8x1XxCgy8voyyE0Vj+gLVYSXt+HphodN43w7Xj8ZCeJ7B83nXrFF8b/EO7luzlykDq3j6taO8+ZQBvOeMQdzxzA6ummCKsFmWj+MUsJSHbbt4voPrOyhfkrTz5v4KOH/0IPZ1tfPSngOcMrA1uAU6AithRDp+X8Nzlpg8OqUkFj4qeMgSRdbzcCyJZRUpbZbwyfseY775GzKOxeT+deztyNLtegxvyHCwK09V0uL3b5/Fuv1d/Gb1Xt4+ZyDnT2hEWIrLpjTzlrvWccd1o0g4IgIqWARUKHrnmZQv+zOcEX22kwUqZf3gvwJQTiraUp53Ukb7+nNauaDGcVvZWBAV5ozeBzhJsFM2H4X5ckLC5y8fwdt+9gpvnzKG2oRDys6b3FGpTO6UUty5aj1fOm8WtnRQ2o36syV8fIpjMf6eCKlf8ULA5X0+3qqTFmcNH8TaA4ejOllxpyqArywzH8bmpEktzUxqaeYjc2ewcv8hfvTyq6zaf5SfXHsKyitV84of07EkDWmHgq9IWGFtD0VDOsn104dww0xTG0X7xePPHdYIwLEel9OHtuBQxRXjPT788EoSloWrLBwJjmUzpqmZnkIxqhsyZsL/pw9tZc6gfty16jUe2LCDm4fU8a//+q+8853vJJVK9f1cX29/V+2/DaQ8//zzrFu3jkceeYTCV96NUpKFW/ezcNs+drR3sqO9i+unDWN8vyruXL6TVw4d4K12ga4wKTN0ZEGQ92BoUftz1WQsl5TlkbYLUXEuk+QsySuHryx6hivHDyTj2GitOdidJ2lnWLZnN3XJBMv27GJvZzdzB48maVkIPAamj5L1k0g0juVRlewhGdQNMC9Fjy89u44FI/ozf0QzQrjRMcOXruMUsG0X10swAE2VneGxDeuoTya5aO51eNpmzd4tvLj5Ec4Yc5EpQCkEuYLEd0wtlFDdK6wZACYiUlAm56bG1tQ5HkdsG1MfRZCSptpzxvLJepp2ZWNjwInWgjrHp8czsn9JqalxTIQjbSmaE1nqnSxN6XZsy8X37VLPZUyGVylJQTkR6FBaYAtDwyuZfAk9SAIrSDoP6RgqAigetvSjv4Z0kvfOmsqnn1rMktGXIAPwKUMeeeABDmsWxCMBJUmSMsxzCChA4TkFRltIfQmbVhIRU6UpMejCqxBhBPBEBmVlKtjJtL7oYr32VQasomUxEBJtJ2N5O2Wg7mTrPYT70lL0llIVVPZshsvK6SvxbalkeMTAS3zFsuhKRbpXmdJR8dzLDxEsKJc3FsYuLV/fKCLFrqtCOx4mLVcUMxv0EWE5kUFXYbuT6i+Ajp9D6OH1LBLS4VPzpnD7wrXc8cbR3PyLV5gzdA83zR3Et5/dzU9e2snNp4wEyyeRyOMHkUbHLpBzU+S8JHboUAgoWzdOG80nHl/KjAHN2JbFxsNt/Gj5Bhxbce7oFi4bNwg/cFiENF2I1R8KFPayhQLff2kND7+2na3HOmhKpzh1cD92dXSxYFgrnzxzKpkEzBrUyDWTBvKB00YhgjlDWApP+XzioQ1M+fdnacw4XDejlTffs5Kfv20Kl0xuYv6YOpqqHH6x7ADvPGuAeRtaFEFDHAdGUYbej6VE3Sv+jGLg/v+H/tELpMcfcTlA7uM4FftTJXBdtt5xc6OOR/mqtE1fEZKK+z/BOsebY0Ufn8vno+C3kS0pOvM+WauLVL4VX1s4soc/bt7Kqn3H6Cn4XD1xCElborVRj/OwDX08eMaleY69nVeVQAoU+7yp/yO5YsIwVh04yK6OdobW1YIiAutg3sGudkqltmNUsOn9+/G9y1oi4QjPK4rOxI8fns91U4bwjRfWc+uCSUXqpVRYjrFvQpGOEpEFobnp/uU8vfUgu//pChwyfOasKVx2z1O8fdoRBtXV8q2lL9OvqooLR43B9aXJGxM+nraj6wCwLbj5lAkc7Orm20vXYVkWd999N+95z3v6fr5/5e31xPm/bBNalzNS/zLt8ssvZ+/evVxa61GdcNjfmeVwT47bz53G5O88xF3XzeCCsf1QvsV3XtzC4u2d/PuFl7Ctq5/JNbEN+FAaevwE1XYBSyhe66rHkZo6u8DgdBsDag+QTObwfYuunloO9DRxx4tPcuO0Vn73yi5cpalK1HK4J8v0AQPR2mPOoFYaM420uRkKymJGv9fQWtKerQWgPtMW1QoAkxj9nSUbGdNcxSXjWqMJUgeh3jhQCb8DPLmpi/WHDnH2mPPJKZtOz2FXT4p1+7awdNsLXD3jbdSl4FjOIWGpqJBjle2TthS+LjrXCgFtqzlRoNu32NmTMrksXp6Xti0i72YZ29jA0t2vMahpGlMGz2FAuoCvBa3pPEfyCTo9K9q3qwQtyTxD0h3YwtQ/qE514vs2luURr7eQK6Qp+An8WOK5p218JbGkKfIIxQhVPIlQY4BMSPkKq1ZXOVlzv4LJVUrFux74E9Nb6/nnsybgOAWT4BrSuwJqVxQNsGL/zY4iaUntC6PiEn7WZrnypXlmQaXkSgZ/NDHrYqg88iSeJK/6LwlSeud6lBZWC7eJR07MMnpHT8oBSjz3RIbAhpKXbvm9KQEqfV1mpdsUXzfknPfpCQ7+hfKrfbX4ehV/r0CX+HO9wSd45hVnzwrH6LPvnKTXO9o+7JNhPy5r8WhbmCCutUC5pvCp5XhRhMXtSZtaKChue3INP/t/7J13nNzUufe/R9LM7Mz25rLuvfcGxvTeIXRI6C30noQACS2QQCC0QKgJkAChd9OrARts4957W3vt9fbdKdJ5/1AZSaOZ3QXfe3Pvy/P5zO6MdHR0dHTK83vqnDX8fGJ3np9dzQMnDqWiQOOUJxey8da9yQsLjJSCTKmk2iK0tBQgpaC2tZSImkAgCWsJJ1HboprtPPbdCqb26sbXG7Zx50HjiIXhlSVrqGlOcOGkoRiG6qyVaZNZc31oTRqc8eontCSTXDR5OJN7VLCito7Zm3dQVRjjgW+WIIHyWJiv1tcwvEshMy/dy2POJVQDicEXq+oYXVVASSzEq/O2cu4/l/LepWOZ1LeIp7/Zwp3vr+X7WyeQFxMQIr3o+sGnI/Hw/bbJLu9+pwYZTGwgw2qQOUd893DmQ9D8aAcIZwUp9leZvmfGWPVpUvygKUPTZ69lSnos+u9nH3fGa5APSkA9HqGIew30a3Nz+dW5iiYSkpMfX0xFLMTDx42iflsly3fU8/C3CzhxdA+m9alEFZozVm1Q7dkXEJ5w2W6trTssi9uZ3l3WPR6EkLQkE9zyyTz+cOAUdNcccR7P1iQqulOP4Qr3b++pqppKl7Ui2/nbDvDot6sY3bWYKb1Msy4tlERRTQGntKLz2R/bv2v+pmb2fOwjQqpg7ZWnYMgQvf78D0rywhwzdDBJ3eD3++5J0jBzJoXVBEJIUkZaLq6QDohj98UdX8zlvZ1JlixZgqL87zJ3amhooLi4mBVXnEBh5MdHKWuMJxn0lxepr6+nqKhoF7Twfyf9l2hSli5dygcffMCiRYto/ctVNCVS7GiOs2DbTv7y9RKaEil271sKmExXRFNoTaWI62FiVmjhpKEQN8zoFmHLBMuQgm6RVlQh2ZaI0k2qJFIRFMUgkYywrcVURQ4qy6chrnLF7vuQp8VJ6hopqTnx9uN6yNHYDCraQjgcJ5kMUxhpQtOSlo+LsCT/Bn/8fAlDusY4YmQFdjhjM2mW4ahT3UydHYv/0Tnfcvv+e9CnZAPbW0pZ21xGvqYzsHIgKT3JJ0tfZlyvKXQr6Y2mSErDKWKqbgIJyx8jrqs062ZUr0KrXWFF0jvWwnvLZlPdsIUjhk1hcLFgzrYGDh1xJJ+s/IaI5YRfEk7RkNRMwaCQVn4WSauukZIKmtAJqykzQIBioKpmCEfDkJYkJoQuzURuISVJXDed2jSRIiHzMAzhJHcDLE1U0nqHZvheO8y0sM65F1h7EV6wtYavN27h/iPHomlmSEhFs31QXCZezvfcY9AMN2kxw7qL4RbSCeOaNfGYfR438xRsd+wnj5YmwDzMvke2jT0IlHjK+CV0Lr8Td2ZswHGMTxe2nYK9G3hQJCNhuI4B2KkuPFJj34PJgGPufcavkfBLVl35UJxnC3JwdyTAIt3+QMBkCxNcDGJA3pZclBF9zHetm6ny2PRDhtmM51I/cxnQHrcpW84x4zmYBt6Ods0AXVdNxUDI9KvTEyFHK6JpOncdNZgjxhVx4pPzOWV8dy54bjH/PncU3Ysi/O6dVfzx2AGokRRSMzB0hVAoQSIRQRPmup1nrRsAqqoztqqIB46YwDcb6hjZvTdCFhJPGJw0ujd/+nwpi2q2M7pbqTO37ISUhgHzt9Zy00dzSegGr5y2FwVWArruxRXs3d9c448a3pU3lmykKZnkpgMG0qMkDyWUSgsz7P8C9h5a7Lygn02oZOm2Zi57cRlfXz+O03brwt++3MTNr63jjlP7uvqRTDPHbEPFBjWO2Vawxsu/Hjjv1PDV0xnya1Hse3dCCusGKHa7zOOZgMcd5c8f5MG53gMYsnx3U6DZ6Y8AKPbzBPqceX+e/8wy1u9o46GTB2GkFOpTO3hw1kLuP2os0ZCKNBTLfNqMoGf7YNmA2k6mqloRHk3TJm8ZsHyzXCpXd8Q72wTS/l6gqBTlhWiMx4mFvMkbM/raAjnCJS1x/EldofQVJQ0y/EK308f24/cfL2C33hWmcNYlCHEDJCfCphSMrirgjweN51fvz+Hctz7kwYOPBqCuLcENe01FlwohJeEEEHADI90O6y9Mga4delxRDK6aOoaXX/iUN998k6OPPjrz/f1E/9/RfwlI+fOf/8ypp55K4WM3UJgfo0s+DCiTjOpWwsPfLkUABWFTIiGEZFBljAe+Wk1Ma3Mk8bpUyJMpJ6dJwtCIqXHihkaBFqdX/nbiepikHiJsxElZ5gPNqTDHDBvNE3O/pCHezCGDemNIhZSlGDEjwmiEFINitZXy4hqkFEQibUTzm8x8GtZkaognuPHDBZw+oReTe5c4sb2lITwSQHPie2OlG4bK48fszoMzF1MZLeQXY4YTVeMUh8rYHIpRFRvA3n178+rCz1m7YwUDu4ymqmsBEoWmpML2lE6eJnhz6fe0JhNM6zuMcLiMijwwkjt5Zu5HTOk9ljNGj2RQ8RbaUhEGlYS5c8bXaLKFWcueo01UcurYPSkNpahJhJ31vSwUp3e0kahqZohvSUUoijSSSoUIhRLouuqYY7Qmo06/OWZfLjtZQ3qz7UohsPMhRNSEY7JmSEFI1QlrCVoSMddGKHlszjyeW7Cc8yYOoEdxCDWUMAGKpjvaE3e4XCC7KVEACSFdUZ785lxkAgMAW+pkaY+ER+qY3SQiq0+Jz9zGVpt7c4QEc8RucBKU4d0OJJBTc2I/mKNFcdVtgxEhLXt8kd3sy23KYpObyQoK2WqT4ivv5yH8zL0bRHkkyvb93H0acD+7mEvb5qecIAR7zARdJ7z3xycFBo8DP/DDQIvVBn9+imz5UtyaNnss6MmwKTjRUmbGcUMllQgjpUDTUmiRBELT2W9QOZfs05O1O1r5xbg+HP/YAub8ajL7PzCHgjzBbw7vRThPISQkRjJEU0shCSNkZpqXpmOsZqRc7RTs1qscTUsiRB3NzYUkEhGu3HMAl70xn4eOGYOC6sxHw1C47+sl/HnGYs6bOICr9xxMUQTSCDn9/EUa/HxCDydql1CkZ80INGvEHEen7daVW95ZS1KXhMOC+08byH53zeO20/qgiuCxHwjIoX2A4aor0y8qoHy2+0obGFgHpY85J8u86CgFjFU/MHabk5q/c7Xb1oy0g7o6FMVL5v7tIqkLZFJFyUt5NV+WpljqglRK8u/vtjFrdSPTF9Uy93cT6BaNkmxQ6FGZojRfJT8PjFQahNkfZ98zVKR0RdETXj8RsEGKS0viev+2wNQuaweJsYHNsMpSFtc0MqF7vrPv2r4c7nulDM2MEEYasLi/23xJPK4RibRa9zJIpTRHKxRWFUKKSn2rQWEkjBAGipEGVzYYswGO/Tlz3GA+X1PP20tXcZH+JlN79eWrDWt5a/kCDhs8zFwPlBSKFSLHCaJhARcFE1zZPIPUBaoiOGtgN+66667/tSDlJ3OvXUu7HKTU1tby7LPP8u2338KztzvHpRTkaSGOGNybe2Ysoa5VpzRqToRR3Qupbmzlug8+5sKJE+hZXOE4YqsW41asNNGWitA1r950TtcSRA2NRCrM1sYuxHVzsywLNxM38hlVWWVOEGGQF2ojL9RGIhWmORlFSkFxuJmCcHOGVOHt5Rt5a8lWSqMhkobBb/cfSI/SCGBYG7zixFQHexLbSfnM77YTf1FE5YZ9RvPhqi1c/9EMLp8ykiGlTQy3pBstiRiTykbx8UadL9YvZva6HUipoxtx2hJtFETC7DlgD0KhKHM2LWXN9k2EtTD5IcGhIw7j+L5byQutR0pB99IdKKrOLfv25aHvGlhal0S07qAxHkeXpmlYn1grBZoZzjms6BYgFETVBEkrwVprPOZEALGTtinCMEMOG2knPIkgoiZpszQrdmLGPDXuABrDUMxgAMLMJG0YCvFkhFi4xZEkPf79fJ6cu4xr9xzKKWN7oEXiKJqOolkRvewwuZqRXYXvd4q0tSjC0t8oEmGZXDgJ9gI2FWesum/hAitO/QHj3tk4ApnMjjnSZwNOHvMJW5PSAbOu9DVk+J3kZB4CJMEOqLE1LJBmsrw+3N7M2v7nCjifYUIWxNz7mDVPfe11rwMAMk9l18LkqFtm94HxlPFrWToBWsxr2gHftmN8gJTe9uGyTR2VUBJFNUjFw05/qKqOGk6ghEwfjhOfnMcbC7bz15OGcuYeXXlz6Wa+29jA+5eN44iH5vGXTzbw9XUTGVRaiBJKEgnFqdASbG2uIKQkiWhx00zTWt9sKXIqlTZ9UNUU4YjkvN16c+MHi7n94KEIVBTgi7U13Pf1Et4/ay9GVxVaz5h0tJ72fzdoVzTdCQJhalBcmlafOaNtUrUzniQ/rCLC5jVjB0YpyFP4aFEdB40v9WpQ7LGdLWywn5yoXwHHDDLnjr9ORysjvWaR1nEPUAHP2M0Idx2gAbHJAdm+cQresWqvm27QkQtQ22XSz5YbpASZd/mfp8MkzPksQknnu9QFRouGUmBqEFHghtfW8NJ3NRw4spSXLxtOVWUYo1mihE0wHE8ZNCeS5EekR6tgaxZsIaRtTgU4Wgu/L4rNsNppEmzhZjZzWlubsm//Ch74ehlTelYgDBPAGxa7b7+DZMr0TdFdQWs0JeUE+zHrTPtSmoLHlKU9TaHr6Xd55NCevLVsEyeP6gcoTqLV9HtyrS3WuqPrGg8fuQdnvhrnvRUbnfP3fvM9n61fz90H7k9cj6HabcFymhcCaZjBgFTFwB/F79TRQ/jLU28we/ZsJkyY0Lkx8B9A7rXvx9bzE/0XgJSnn36aSZMmMXLkSGpEpolCv9ICJvYo46b3l/DA0aNBSCoLwnx50TTu/XI157z+Fq+cfCL54ZgTe7wuXs/31euoKsxnUg/LblJLohpmluFIKI5hKLSlIjQk8gkpKb7ZtI1DBvTEkIoHnETUBAXhFjQlRVFBHWAtDmqCuz5fQXl+iEdPGo5tDmm238xU60bINoOgSOEAFcAx93IzDQcM6M7Eqgru/2YJrUmdsmgeQ8pLOXBAf4rDTRzTX7B/z34I0ZeXFi2iMG8AT839jCv2PoEu+XnoUrB39zGs3dmVL9et5twJkxEkSOghKku2WrkPdBZubmbhxjbW7NjK3w4fxoItRdz33YecOfEgtrbl0T0vnaDRzmFiSBNsCCFpTUSdxcJmOqQ0HfZVYaCoSXQrNrxuLbYRNWll1jUjnRjSzBitKSkMzLL2whnW4kipoFsSnM/XrefuLxfy1pl7MKFXkZXHwbInt7UomovhcDHZDrmdpG1w4iM7h4awJVE2w403qZinTpvxs+tQ0wkb/RJsvz+JH5QE+pkELUAB0kePuYN9XPFF7ML13X3c1iAEaU78TJLbNCJIIuvWkNj/g9ZhI5hp9jymS9Lo3N++b5DE2q1hcYEVp74AZiYoRHFWcur0c2v4wIjrvKtvAnOhZGjO/No3cjNwWUy8zGszGZwgs0DTF0VzAIrdPimFA1DUvKRjGpUXMl/EHr0q0DR48PhhnPHPBXx77RRW3bo7pz21iCdmbOaPRw8iXNRKaUEbzTWlFCWbHZt4m1Ez2+E2gTE8Nv1TBuSzraWY15du5tjhZhSh15du4LRxPRnbO4qiJtLmRCFTAyRCKadvbaDu5PvB7M8Mc0aFtDmjRWMHxOhVFuahjzZz5WE9CKFw2cE9+OPrG0yQAs44T6QMwpqSPhZE7vHrSO+lR0tqlhMZ19jZ7B3g7o7y5TaL9AthPKDGJxTwjKvgkN+eCHtucoEWe4z6A0MI1ciuvfaN6ZwakiyU1VwsWxkIFECY+7pELUyawRh0QSJl8PAnm/n012MY37/A1LwkQIQMlKRBMiFYs7OZX727iPuPGYGqqGbV1vqvSmEC5XiaqTbnU1rb5yRNBZeARKJK3TJpVBzzRqedrrVfUXQq8sMkDTuEfwoUU2vi9g2x/Th06fIbQVgJp01gBIYTDMeeezaPYvMpUgom9Szm+flrOHlUP0fj4W6bbVnhnt+KYhBSdZ44+gDOfO19Plu7mRW/2o+QBkc++S2Xv/c+jxw5DUMvoK6tiJjWRtJK8AyQkhpCJlEETi42VegURcKceuqpPPbYY/8rQcpPtGtpl4IUKSWPPvoo119/PVt/dRpC2JMwHUs8rBlcMXUYZ7/yNaeP78Wk3iUIIRnWLZ9HfjaS4/8xl4vffovzJoykJBrmse8W8tHqzYzsVsiSbY18eNaB9Ck0NzXb4UoRBklp+k6ElRSqYnDc8BG8uXQhU3pWIqUgprU5YfAUxSAv3IoaSmKkNIRicO9XKxjcLcrPRnfFzQE5C7RqIKQw+TN7chtKWqKnmFnobftqP5VEQ9yw91gMQ1DbmuSVxWt4cdESDujfgy4FUcd5vLpxK4cOrOLbDXksrZ7DF811gE5+OMKSmloumTKC4ZWrrIUmhaKlWF0T58Gv1tGjKErfogiHDuyDohhsaDQYUtGVslAbRVqCsGIupDY4UYRBVEuaIT6TZsi/sBWFI5EKe9XWCAyZDq0YsRzhkkaIqBa36jWBiqrqZiQPNCfhlSbSi7huqGxr2cEv3/yKe48axcQ+BSiq6dCrhM1oXo5EVJWOVCxwzCnCK7X0MAdeaaEJVNIbvr2JeSt0gRbDK2S37XHd0cDaJb900P7tZ9Rd5wJNumymLBs4gUyA4gcnpH+3G0Y1SKtjR/jyAxQ/4CHNfOUiN5ixpZwZdbrNaILAShDJ9HjJZeqVcZlHo+O7hwewBGtR3OYvHmm2+38W0zCwmELP7+wPaQMRz2/wmuTYAMkpKxzzKCWUcjQo9nM9dfowSgpUJt47g34Vebx6yUgumNKPAx6YzbuXjeHqA3px8APzKM/XuGLvvoRDppNtYbSB7U0VJFJhy7Qr6WFkFM2c+8mWQvIiLeZ6klI5fGQFV7yyhOPHdEUaCpoqyQsLS1BhmN1vaRMcYYFbS6i6/NXAfF8WIPGMdzcIt4bZg2cO5Kh7FnHslHL6VuZxwcRe/OnNjcxb28SSza1c/vgqGlt1krpk+g0j2X90ie8FgOOHkvUlBQgnbHKPdxew94QjhqzjNij0trdx6eszE6q6SqrecelO0OqAlSAwnQVgZ2hG/EDNP6azaU86qlXxTxG/xsh+FsPcU2Yur6coqjKuX76ZFwf47StraE4Y6CnJjgadaQNLWFrdzEWvLuCCPXoxsVdxukJrPKpSYKQ0VC1lWla413FV967zFrAxdBPwCMsXLG06lfZtsUlVU3QtDLG5eQd9SgodDYwbkNiJJAGPBseJrunkKDIcUOS+j1dYJOhRHGNjQxM9iwoc7acZGUwHyzLCBjx2+yORVgyp8NhR0zj0mXf524yN/P7QAbxz3kSOemI257z+OU8cM42KWIrmRL5j6uVupy3wVBFIIQiJJD9r3cgJr33B3XffTUFBQfC7/w+ln8y9di3tUpAyY8YMqqurOe6442hY8C6QBihpXw2FffpWMaGqjC/W7qA4pjKkSwwhBKoCT5w8ivu/WMttn3/DztYkZ0/uTd8uPcmPKGxpbKOhNYQo8kbE0KUdXaqVV5atZsHWbfQqLuCCicPMHCpSJRpqRVVTjkRAVc0kXgiJGkpy4bQe/Pad5Rw/vtIjeZI2YyhN5laxFh2pp1XAfslm2nEuvYOlB5xCaV4eZ48byoerN/L8wlVsa24FBJoqadUTfLzuex45dhhzNjUypLIneWFJQzxJLFRJYR4oajNGSkPRUmytDXHzh/P548ETqCgQJJNhayGJ8836dRw0ZKpp3mVx8vlWWGVH8kk6xLANPOxnMSUylkmJZQTlOL9J1TLtSnNpSV1D1XTnGts5Pt0HZvI3SRsXvvklx43qzqnju5uLumqYTJNmZDDZjvTfTx5fCJe0Udibmul/YjOSwpY6WuFn3YDFaaPruwgw7cjF6wap7jPK+CWN/hoDtCnuRIztak/cWic/s2b/DwAVHspl0pLL1ySI2vP5CHjeDMDir6ezZiBOHUHIIFvDfIyVD7B4nfutw1kAS/p8Fq2OnymUmec8TRMyU1sXxNwJmc4tZIFcVbEi5mmGB6AgIBSGB08ezLnTqjjticXsdvsc7j9xMK2ikt+/tYYXLxjB+5eP4fSnlvDtukZeOm8UoWgbba0xwkqSpBGipS2faKSFUCjhtNU2kc2LtKDrGkYyBDKFFtIZ06uAp77bwM8nVNGjNMz3mxodU8+gBJcZuX58mhOH6Xb7WSmk35/1fa+RxZy8Wxcufmolb103gtIKlUHdoqypbuPeNzdR25QWqhxy20KSL01r34fEPW+yzYkcdWQAFU99mWuV0x8+csahf9xmLZ8W5piFJBlalyznvJUHCzs87zGHVjMbQNlVtHhLM6c/toyf79EVYXE+KSlJ6ZK//GIAMikgYUaGvOLfK/jT0YO4/9MNvLFwK9cd2JfCcMgZa2oo5QAwRdVNAOKOFCmkx+RSuPpBCgm67ZRvvmRbgwJpwHHAwC58vGYzZ48f7BxzzL0sjYlTtyWwBdOsCmnzXtLhQ2wfFcMI1tAeN7wvLy9axxVTh6EoujlXDdWp3+bf3PdMpUJEwm0oIsyTx+7F4c++x7iehRwztoK3z5vAkY/P5urp3/Dg4VNRU3mE1CSJVNgJwGNaaehOTjV7DozqWs6gQYN4/vnnOffcc/9LxsNP9L+DdilIefzxx/nZgG7U3XQ+7uhxXrUmrKlt4psN20mR5HfvL+O5n4/jqJFdEEJSXqhw82H9+f3hfWlLGfzmzeU8+vVG9h1USkNbioU1WyjNTzCsawykSioVQrGyNT42ZxHDKyo4a9w4VNVkslUlSUhNEg63oaq6M8lUS9phR5EqDAliEcWyZ3Yt0PYXXbHZdGRKzVio3cxWGkkb+PNr2JE8pBQcPKgHhwzunl4ASHD527MZXRXjindnc8LoKsqLoyAk+VENQ1fNvCEWJdryeHXhNk4Z3Z/yfFMaY+Yy0NnRKNjW0kKvQg1VJLGTK4YUM5t8wgiZAQWk5qiU7chbjnOgb6dVLFBn+9w4wFOakUtUxUiroV0brg2I7KSYd86YTVxP8acjh3jNuzQDETKCmQ03uZlBa8F2frtstu3vNsOYMzt5QKQaSQCz6Td9UIJNxhzw0YkN123OZf62T7ik5NbvTmtPFFddbrMTt0mYu6lBtvO5GBR/mWz9lgts2lX4+qxd0BJELiDh/PY75uMtk5OB8zTQPimyXp+hlelI/Vn6NiORpY/x8zN3nv7LkEintQ/+aEn2OB7bq4BFt0zinQU7OPupZVxzcC+e+nozO9sSTOhbyDnTujNjZT0IUKNJ8vJaMQyV+tYiDBkmYsQ9ghuhmCuJGkoiEpa2WVcxUgrn7t6DT1fu5Lo3ltGaMnh78TYaEgmKY6rVPv8z4gXkLk2oJ0qdW7DhmhPOdwl3ntyXUb+Zze2vbuD6Y3pRnK/S0Krz7o0jaGzV6V0RYcRls1mxpS3dgf5oX/5XGmT61R65wIgjfLPnqB+oOO1IC2Q8JNN9FWTKlTEnIGMs2WMy63ju4Jrmvj4r4My4SGY/HyAYyCDbj8d9mTUWHv2kmr2HlXDHyX2cfr3i2ZVsqU1w7T9XoykKISHQFMG8zQ00ppJcc1AvVm9v5brXl3PIsAqOHl2BQAHNQJEWkHVrLN1td89Hy9zYHs8KOEFl0jyDN9/Ymp2tZh43y99VCNPR3NToB5t9ZnSHL8y3P5wxpPfxHoWFbKxvtaKZuYMEKC6neTdIMSxfHNMPbWT3PO47bDIXvDKLLkWT2GNAIS+eNZZp983kjzO+5+rdxoEMo4VTiKTZ5rZUBEVIJ9dS+p0JTqrQeOyvD/2vAyk/aVJ2Le0ykNLW1sarr77KC0fv7hzzIvh0h8d1nbhuMHtjPV0LIjQnU85EtmlrY4Iznl3AV2vrAHj2zJHc9NYqnlu4gls/nUeeprBnv3LGdS9lbPdSivPCbGyoZ0qvYj5ct5yUNIgnNOJGnC1NTWxqbGFrU5xf7defqX3KzXZpOlJXUMI6SaFT35rCkBLF7wisi2CJppX4z35GZ1GSwrUYpLmzNEAJ5rB0AwwDxnQvoTimsmBzo7mZ6yYYk1IQDpumVclkmLmbmlhZu5Pzdh+IlIbDECyvaeUPn6zmwkl7k6+1IRFowvQRcUvu7bwnmmKYPieW30hKNwGMIk3zOFut7GhVDM3JiOsGoBEtboUytoGUgpCWTa3VR/9asJzn56/js0smE4vB12trUVTJ1CEFoEmv/bjNbHhehvBu3HY5A0faGARUzPflM8OxzcDcDKz7/brMvRzTJNUnVYSspmi5Ng8P+UGJu263+Y7923w0L7Nm/fe0xQ/wXFI+D9OWs21kAhU/ZTPh8EuF3fV1Quoc1I8ZzvdB1/odksELVjzlszNwGdfbXzOmsU/6TAe0JwHMWzaywYnnmH98+ICut3U+gOKccDOjaRPIw0aXc/ae3Vm+tYVpA4u5/e313H3iACb3L+T3b67l0n8v46Yj+lBepIKQtCajZrh3Q0OzHIvtNqmRBEZKTfumpEImeAnp7Du4lH0Hl/LlyjpemltNXiQdTjtYg0jGeHeAbDbtiXNd+ntJkcbLVw3nuHsWU1kUYvHGFnqWRSgrDFFWGGJDTZzXfzuctrhvTvmBiptklnKdVA54THHsujxChADA4mtPhj9VO2A4bZokM8ZszkheHaTsJls5gIlzIrNsTlMvSUaUwZXVrRw6rhShWnNdhW31SU7foxtHjCknmZQkU5KUlPxyvyrKowoYkv5d8njk1CG8+F0Nl7y0jF8d0JfepXmotmbEEKiaDkYmc+rxN1GludlI4ZiGp81dFUeAaptUHT6oDw/NWsQ7y6o5ZFAPB6wYll+nG0SYQk5fmGOXiZhibWa6VM057jZZtTQvihCM7FrKwq31jOxa6qon03zd9IsxAVMyGXYSRh4zojs7Wkdx4jPf8dkvd2dg9wivnDOOU/4xj+Zkipv3nuKJhmZba7i1NTYdNbQ3Nz78GmvWrKFfv36Bw+I/kX4CKbuWdhlImT59OhUVFYzpWu5B2YBn8BmGytDKYgDaUgaRlM6hQys8jNrnK2s5/Z8L2Kt/KSeM6s7SmiYqCjX+esoQpCFI6QbfrW/i06X1zN1Uy5Oz17JuZysK8OGqrVTmRwhroCqCaEihR2mEfl3CxGJw0SsLmXPdboRU058EzUCEdCKKYERVPqt3tDKwSzT9YNJU/xqpNOASioFQzARp9jFE2gRD6l5bUVMSYaty0zHUzf/pVXTtzlYQgo11bfQuzue9Jdu57p1FYGg0xiX79+/GMSMrkVKhvrmEJ+bM5qFjh6FF4k7Ese0tbdw7YyU37nMoeZpG2BUGOCRSaEqKpGG2O6SmnOAEimJmi9asJJpufwHbv8CxQ1UTjnZEIpyF0XSQd4dS9DoUfrp2I795bwGvnTuOwT0ivPT9Js7/11JShmTOTRMY0iNqjkh7cwly5vZ/t0kh7ZsiCAAqXolsrug25nvBkn65NlC/Q3lGG3JzIh0Ns5k1N4AkGJxAmgFzMxNBIC8XOAmSDLuvgWBTsWz+Jw7D7LtZkF+Mj6Foj0xTvRwFrH3VA2aCHPOdNvmYPkHw+3Ql2QuMpgRpibWvTKDZi/Q5+AcKQ6T3Gtd1tgTXY17oWkulTI87Yfl7mT/IrNN9LwAFuhaFWFndyr0nDmTKHXM4b6/uTBtczKybxnPdC6s47IH5fHnVRMIFrRQl6mloKXbCwodCpvTVSGkgzEhc8VYz70Nr3PyvRRKOT8nXa+s4YFgZeRFXDiN3+3xjXQjp7GBO1DkboPj5Kv/8sLQpkwcVcuep/bj4iZVUlYbZbagZVaymPkn/C79lXP98Zv5pbPqa9jR47tfnB8nSdcz/rv1gHoJ9VYIoF2Bxge0MMBwIaILncrsR9HJRO+ZhgdroH8KfubUo9rMqVv/p0LsswsYd8fRYMKBbaZhvVjVy9Phy1JAgz0j3tZRYkkMz2EoSnZKYys//sYDDRpZx3YH9UDVX8mABtlm4Qz5hgBceWN3jASvCDCus6AhD5eLJI7j63W/Zv38VqsAx87Kd6M2uko7PZ1BSSXt/tv1Z7Lxnnldhld23n5kEe0SXMpcTvmGGB1ZTLgEkjnZFN0IYuoJmJJFS4cxxg1m1o5nj/jGH6RdOZHRVIW+dP56Jf/6a40f2YGRZL0KhOG3xmJPk0U1220siUfbu34sXXniBX//61x0eBj/R/y3aZSDlhRde4PAuMVRrwzFc9pIAdkg8e8M8ckgVby7bzDEju4IiqW1JUhhR+efszVzz+jL+eOQQoorGyu2tfL52u8kOC1PKF1IFuw8sZLd+RSaIMASNrTqxsIqqpqWLfrvlVBKG3TSTD1du57CR5WzY2cbWpripOtUVVmxrpSI/lLYdtTIsO5oUIQOTAApVD8wAbZuVmZKRtDOdx1nY+p3QdX79/hz+ecKeFEZNW9brDxjoXHPLh0sZ1VsSjraSikf4fusqpvQqJRwCPRHGto19a9F2zh43lLJoEoW4FavcIKlrhKwFQREGYSUNRoSQjkmcaRtroChmThNVTTnRSOwQxNFQK0k95ETuMgyFWF6zR+IihCQUSmAYCqmUypsrlnPN9Lk8fPJQ9h5eyMvzqrnwuWWcv3sv/jFrE726hCFkS/gths0j/SYzDKj13+lLm7EM2Iw9EXH8jGEAZQAKyz8pG3Umzr97U87cnGXmZu1iLNv1O/FrToIYf9cmnQEUskmGbWrPhyUI0HREo5QprPMeC2J0OsA0OtGTgkzG/OQEycjSXgu4mmW9WpOMyF5ZTMECpdsy4Fr3b8jYyO1fQT49ThkboAg7PK/fri7gOe1bW8nwRvXI58ZX19KjLMy0gUU88OEm7jipH8N6Rnn50uHs+Yd5nPfPJTx+2jAisWYiiTziqQgpPYSa0tNCCmudDue1oidD5IVbTf+5RMjRmiyubmZcr4LAhKPud+f4qLlBuOoqI1zX2cDeD84lzvg6bb8unLR3JUKAqprjZP12U2M9d3Uzny6sZ9+RJekGZBt3QXNJ8f32AxU7GIX/etd9MkzAgsg9du3X6gpdDGRf8wJ8V7znM4GE/7ubAudDAPnNwcwvOdrhuTjLcTdQceYq1DQk+GxpPZcdVuX084xlDXQvDbO1Lpnee5x3YcEJC+hjwPebGrnukF7ceFRv5qxv4oLnlnDZfj0Z3b0I2//Rub9L225GnVSQKdNqw1mWwwlEMkQiEUHXNVQ1harqaHrKAQiJVJiTRg7juulzKI1GOGvcMCrzC0ytiwV5VHcUPV8oNtsP1zbLdnxKjbQg1fFlkYIehYVsbmhG1zUHDKnC1JKgg9t3xuZvUroZsSuZjBAKxVFVg1sOGM3Ot+Ic+rfvePeCCfSviHH2bj258u35PH10d3qXmwJATU05AMk223bDuCMHdOfJZ57+XwVSrPBMu6Sen6hTssvs1NLSwhtvvMHPhvdI+3ooupO93Y2+bab46ROn0LUgzD++20SP331Kz999SvGvP+KGt1fy6tnjOGRgNx78cj1njxmKbsCVL63g27UNGNJIb9y26YJqUJSvoIXSv+2NztnwBGhhGNg1yqcranlncQ1/+WQ9q2vaWLWtjZXVcQ4cUUJJsaU5iWvobSH0uGYBEJ8E1H4e+3lV3fm41XSplObKG5AGJaataBrIRcOSgwZW8fHqzWY5q+yWhjaufmshvUtjDOtayDPfbeLl+dt4dekqztm90rx3yMzQLhSDT1Zt55sNO3lt6WIAwlrCUQXbAQbskMAhNUleqI1oqJVopMU0y9BSaeASijugRdOShLW4KeGxQI2mmCGg86NNzjsPhRKEQgnCYTNnQl2ikQvf+ZgbPpzHE6eN4JRp5Wxsbeaify3n4aPHM3d9K7+c1ptYVDWZBoG50dpMh9tsw93/Pmm8w7i4GHiP2YL12zkm3GMl7UTs+biOOYyewPtxlQ2sM+DjL+f97QIh7jao0vTXUaXTP+b4t55bI8202R+7P9xMm8jsu5wkOvCx6wpisjpyDyXHx2mHS5sgXO+1vWut70JNmxNk/bh9GnzXZ/SF4mKkcY0td3s9n8w+82vMHCBj1e8ZI/b93PcU6d/pSEHC5V+VrjsXpcewzLjPfiNKmXvzeGauaeDDJXU89+02jn1gEcmUQTis8NpVI1ixo4UjHp5Hk2giFm1CwaApnk9za4ElpAiRjEeQhkIybuZesvcFWwMsVIOtjQm6l4VMhlEFYZl/ej4haY511TXG7Y+zfvjeWdB4F65rVNDCAjWUBrLj+uVz8WHdAXj/+52u9+7rPLtrs41B//yw67Hb6H8GP7nO5Rq7Gfd0j1HXuHP60b/OudaijDnmH6/gMSv1r5v+slnLudck5+OfNwHtcfrGOx884Mw+brEeN72+lj4VefxiWhcAlmxq4fmvavjVUWZQnqZWwwJ0whoT1jobMcecUCUHji7h240N5McUpg0q5q+nDuadBTu49Z3VtBlJhGakI+bZiUXtvtV0lLCOkVLMfUMzw+0roaSTW8i2QAmFEmhqElXRURWdMd0qOHfCaM4YO4xHvl3E28vXODnO3EIKVZghiw1XmH8zWI3h7Nl+syophQlerJdhGAr54RD1cTtkuJKOKObaiN3maYowHNNv2wc3pBk8cMQkxncvZ68HZtLQluIPRwykf0WUSY++zK2fzyWcV0/IEoSqagpNTTrWGebrFBwyqCdLV6xk2bJlGePpP5Xca/GP/XSU7rjjDiZNmkRhYSFdunThmGOOyeizpqYmLrnkEnr27Ek0GmXYsGE8/PDDnjLxeJxLL72UiooK8vPzOeqoo9i4cSP/k7RLQMpHH31Et27dGF5ZjLAyqRoupA6gKIaZ9VgxnCRIJ46p4sUzxrLhhgOouXU/Vl+/L4uu2Yc9enXhwRlr+fepUyiLRXnrzN1Zvz3OkQ/PY/Rts9jWmPBs/qbjteF80hu8tYi5GLqrDunJOwt3cMULK7n52N6cNLWSk3ev5NQ9yjlmVFdIaEhdONGm1Lykk0vANv3Sk6aq1c5PAumBaeiqAxiAjJwpdsQMR/Kh6AhhxjJfX9/EQYO6OuZjAHd8soL+5TG65ueRaI0wa10TYSXKzQcPAD3sBUTxCOdMGMwBAypZtG1nOmqXFqcw0mRqS7QEITVJLNxCSE06tq3xeJhEIg+kIFZcTygSNz8W6NA0czGN5jWbgCUcpyDWQEhLOGEKIxEzOIEaSqJoCV5YuI6pf/sQNawz97eTOWZKCUKTXP38Ko4eV05ZXow5m3dw+XGVoMk002Az3O5RajMIbulpECPpByouIOsGL/5NFcgALxnHfBt6ENBwb6hZwY/NELqYBg8ocUKrWhu5C5hkgBN3n7iZFZth8zPZuWZ8Nga9PSAQBFqy1Zurjvba5GZSFHe/yDTT6i/j/miuT5Z2ZIAWd11ucphP6Wl7e2MrF+Pn/BYB48UCxU45ezwH2MG77xloKubWriiuMeZnHK3+GNg9ymfXj+Hk3SspjqmsqG7l96+tAwW6l4b4+MZR5McEJzw1DxFrMKN7WWu8rV1V1bSpVzweJZUKoao6TU3FJJqiCFWiCYGh42W8NSzQ4nvH/rFja91CZL5fW2Po7ia7bnue+MauogluO7UvIU1QEHWp9ILmFNY9gj5+QYFf+GKPY/u5/PM62xj2HffY8/vnpRt4BgCXDBCjBIybDOAjM/rMU87+6QYtQeuEH5i4rvnRZPV3XXOKv8+o5i+n9ycWU0HA3W9u5O7T+6FogvH9C/hmdX0a5Ojpa839yAQr+44u5pOlddhCj0hM8Jsje3P8pEoue3E5n6+utaLm+dZ5RVr5vuzkxOY5RTNQNHO/TPuaRmhLRJ08JXaKhcHl+fQoyuPGfaawaGsd769ahG6kHCGi6Qtq+pXWt5kCRzOfWdpxXlVTjoO6lOn8bo7w1Hope/Tqzoz1WzAwwYsdUczReLgy0NvjTlVsPietldFUye/2G82mhjbqm3XCmsLzZ41i5tWT+WBFDb9881vCkRbnWQFHG2RriYrzQuzVv4o33nhj14yJ/6P02WefcfHFF/PNN9/wwQcfkEqlOOigg2hubnbKXHnllUyfPp1nn32WJUuWcOWVV3LppZfy+uuvO2WuuOIKXn31VZ5//nm+/PJLmpqaOOKII9D1TqRd2MW0S0DK22+/zRFHHIGmmQ9iS9494fEU3UHMduz88vwwJXkRivIUokqELvl5FEVVPlpZQ4+SCFVlKqFwnB6RXvz96P1YesXhdM+P8fevqgOlQB7mTkszdu4N76Cxpcy9fQIDu0Y5/sGltOwUyKSC1BVEVEeEXIuMxWBKXUn7naiGGVrQJYmwcw+YvioG0gIqtpNoKhUikcizAIpi9ZFuATrF8UvRFAVNNevc2ZJkTW0z0ZDC6h3NfLamhhU7mhhQVsTRY2J0LcyzkrSZEhlp3WdSVRcGVcaoi7ewcGs1qqI7+UvCmhkW1Mx+q5DUQ7QmU9z91VzOeu1Tvq/eRtLyvVHzEmjRuKOl0SJxQnltqFqKcKSNUNgEMdH8JsLRVsLRVtRwAtQES2rqOeofM7npg8Xcf9JAnj9/GF3KzQzPaLB4cwsnDO/B3V8u4pJ9e1JWEjKZC/8G7mcq3NLMgE3dkZY7DL0NUtPgBJG5SXsktS5GLVPy5/14tByK9Naj+jblDCbBN3btDS3w43s2m0lRM/vA00d+oJeFIQukbEy5n9HIBVqCSPi+ZzAsWdroZhr8z+GXVrv7JZtENqjd2aTZuM4HPUs2pg/vGEpfFwBUgsCt38HdaYf0AhYXALG1K0444/ac8u2x6X4e6706Ph8KhMMKf79gMIO7RdnakOCVWTusGwjyYyrPXTmUplSKX723mOJuNRTn78QwFFrjMRKJCPF4nrP2JVJhDENBVVNm+FJVx4hrqEIhZfs32dqSbEy73U7V9/GPech4b5vr4tz6wnqO+8Niepwxk77nzGLspXPY47p53PPaRrY3mKawBfkqLS/uwW9P7O2tw76vX5gS6K/l+h00R4PmUTbtgf/ZAsZuoGYlaL74tWZurYQfQGfTZLj7I2DOOwDFWQuD56IbyPi/Z8ydIPKPX/d3A75d20DvsjwG94g6fV1aoBHJU/jFA8uYu6aJ7hVh0AWEpbffHKACkbBCSpfowoBQWsMyvHeMR88azNJtzVz7ykrq4nFHWOoROFgARgnpaWGEagIVoRjUN5dYptNNVr4hw2HabR5qc9MONjU20RQ3uOurb7j50xl8uHotQkjaUjq//3gu9369kOs//IaFW2ux86/ZZts2EEmbdRue9UOXKlN6duGbDdtMMy9hpijwa1Lc5uqaljQBkJa0NCymlYiua1TEoozoUsxfv9iEzecOr8rn7YvG8vnqWv61cBWRaEuGL6xqOeIDHNi3grfffjv3GPgPol2tSWloaPB84vF4xj2nT5/OmWeeyYgRIxgzZgxPPfUU69evZ/bs2U6Zr7/+mjPOOIN99tmHvn37cv755zNmzBi+++47AOrr63niiSf485//zAEHHMC4ceN49tlnWbBgAR9++OF/T+cF0I/2SZFS8tZbb3HfXv1QSyoAUxpgR3tQFN0DViC9kP5iQk/eXbKN1xdWo0uIaAqjuhfw3tJtPHnyaJORVw2KQjtMRlwKzp84kEvfns2eQ4qYOqA43RD3QmVvsODb1MwFKKIKXrpiGHveMo/HZ2/g8gN7YLSqyDbXLmAxtXYGc0daafmmCFUipMCwM9EbCtIyXdB1U3qhqLrjRB+y8pN4HFwBO0a6YaiUxyLUtiToUpDHL/79LV+s3U5+SOGjC6by9OxN/G3WKq6dOgk11GBpcnQUzaCt3ky+ZJpbmT4wv9tnLHfNWMC4qj0JaQlz0SDOm8s28t2mHaiKwBYdnT2xH9eV9+b5uVu4/Ys5TP/leIShIDQDNZTyPjtmfHg1nDSBkaFz34w1dC+McM+na1lR04IhJRfs2YMXLx5KcYGaZqytzSqkCV6Zv5XZm3fy/G8GeJ3lITh6jiQtFbWZBElWxkAIk7k3zV/S40M4jx0QdtN9wwDeLtBuWgQcs8aI55qMyuw2S+8x9xAM0hjZ98ylgbCZH5nlfFBbcvEBvq4JPGeT+734z3VUJBL0/v3X+n0C3OPEXT4bEylkdodeJV3WvRn7z3nb5+tAd7Qwe4goPsd5ly+AcPsSkB1ceHKpuP1isjCQGb4oHmAEfk2QW6PkZcwlqhDceFxv1jyynIfPG+BhWmMRlZevGcaU33zPPkM3ccwggRZKkkxESCbDxJN5REJtSKlYvm6meYumJVHDSdRYggQpwmFhrgf2/XONX7c2oj1waZX716fb+OUjK+lSFGJtTXqzf+TcgWytT/LMF9u48+WN3HJaH3Y0JDlkQhkTBhR4+gbw+pz4x4SvLwOPu693+6u4r3P7dOUy/XDf335/rmAWgf5Y7vnpHjqWds5uT9D61dFodOl1o5210H2uvbUoG9ntdpO1/uWHVWqbk971VZg5UipLQ9x2Rl9IAm2k9xanXuuTMv9PGVLIzDWNTB1cZDl9mY+nAhce1J0N2+Jc//pqDhpexrFjKz1rsPmMrufUzQZJYaZCKCmoBdLWF6Y/K0gruub0FRv5Yt1W/nzoOKJahKQeAnReWrSKWz/9nlW1DRw3oi+HDepHYxs8v3AZ/1ywjFNGDmBCj1LTvFIquEMS+/1YFGEQ0TQSuk7KUEwTMluzjHdMZTi8u7LU2yb+hqFy3+GTOf+1r5izeSdPnDqCXhUhuhWHeOr0YZzw2EL2GVhGt1AXdF3zgDO7/gP6V3H9o++wc+dOSktLOzwk/qfI7KkOzpF26gHo1auX5/jvfvc7fv/73+e8tr6+HoCysjLn2LRp03jjjTc4++yzqaqq4tNPP2X58uXcd999AMyePZtkMslBBx3kXFNVVcXIkSP56quvOPjgg3/0M/0Q+tEgZd68edTV1TGtbxlCmOHoQiFz8XccsxTvoBOqqfLsWhDhrCk9zYqEpC2ps3BrI0tromxsbKVPmZmJHc206QTYb0SMnS+mWLmtlamDinJvsG6mzj5vlf96VQNratqIKAoyoZjO1Jo1WaWpPbGvFarhJHG0Nww9bpp8GcmQZ8LaC4AWiTsdrFpaFiAw+aOtJp21YTtJ3QwA8P3mOj65YA9u/2Qp76/cxqb6Niqj+RRG8pCy0dHmSIkjlTTBjnn/Fxet5oxxA4iE2tC0JNubm7ni7dnkhxUePXYiuh42TbkKWiyTEYNzdu/GrK3VaHk6Uk9LgewwixgC1YrogWIwe/NObn53Fd+uryeektx5bH8OHVVGj/IweXnWxmhrMmxpHnDclApueXk9fzm9P2WlZqQxD3Pr3/Ddm7BdDlzO865N3LcZCyMArNjgxGdXbb4fslMu4OIiMzdLAHiBYKmfe9wGPIMjXXW+B7TNL+l1/8/G4LsZAg/ICqirs/RjdLQdudYqs7UuQc9fzuLJCwfxiz27BrfXzfxlAyr+cz7AmwFU3BTE8Nnv2QdWPM7G7k1eZpbzgmi8ZTtK7nuIgGNBl/gBin1PVTJtaDHL759kMVl4xk/vbnn86Yx+XP/vNfzs9koiikRrS6DXlZAfaaWtLWZmqLZs3e1M9NJyqo+EFHa2Jr0AJQhkdhSc+Mp+Mr+OM+5bDsCOxhQ3HNeLl7/ZzpJNrTwwfTP9uuRx20l9mLu2mRc+raFraYg/vbKRP5zel4sO644gYAxkc3oParP/d5BzvU3Sd9z/zvxjIFt7XI73zqVu0JJt7PpDcrvP25RtHNljOQicuO+VbRgHgCeP435Hhr8uzOeQ8Pb8Wkb3yneeeWdTClURaJogqcs0MAnJ4PXQ9V4OHVfGPW9tZOrQIvOAirX/mD97dQ3z8BkDeWHWdi55fjk3HNGHbkVhJxAFhsjoR6EaqEISlm1OJDysPV1KQVI3uPvLhfQpjXHHQWMQQmCiKpN+Pq4XS2qKqIxF+OuspRw1tCf5kQhnjRtBXE/y74UreW7BCk4a1Y8J3bu265AtkAwqL2Rd3U76l5Y4Un0dFRXdM57cfrb2Ommb+9tm4GO7l/DhWQdz40ffMfnP3/Dm+eOYNCCf/YeUMblvER+uquGssUXOdW5+SlF0epfmMaRbOe+99x4nn3xyu6/+/xpt2LCBoqIi53ckEslZXkrJVVddxbRp0xg5cqRz/P777+e8886jZ8+eaJqGoig8/vjjTJs2DYDq6mrC4XAGEOzatSvV1dW78Ik6Rz8apEyfPp0DDjiAvJCwosl4Y147A9pZsEyTKM/CaZWL5gkm9Snig+U1pvuUyy9AaAZGCi58ZSEHDy/ltKldMjYxz+aaS+qsQFgzf+w31HwhIqxbEhTDBC1gRuRwSyvtyGUpW5xpMxGWmZcVr1wNpRcQRUtnpkUKdJcU4/O1W/lkdQ0LqhuoaY4zb0s9i2vq2VDfyoVT+jG5byG79y1hUXUDJdEQfzx0JPE23QJUVkhjRaKFkmbdliZHUXSOGtaTe2YsYbdeFXy7aSu79y7nsKFdqWlpY119E/1KCxCqmSdGiyUwkipqRLLHgGKufHE5ihDM3dTAoC4xDh1RzsHDymlK6Hy3vpH5G5v599xq1tW2ceqkrjx3wTCSUqeyJJz2lXAzGj4zjHMO7Epdc4oLD+uefcMJYtTN15Nmru2N3gYq9jsJYCKFkGZ0HANvBBzwbMidsofO0navL0MHQInrWAawdp/PBjqyUUfKBWk72omY1S5D5mcy2mMqOtLlWUBUWFMY3Tuf6rokc9Y18cfXNnDT8b0Z0SPfe+2PlFJnAJWAMhn3Aq+E13Wu3ShfTtvN4xkRk+y6IWvI0wzm0M00Cm/ZnGPSreUMGocCS/sBx02r4PInVjN92Q4OHVRh5pBQdeuTcjQoUgpSiTCqlo7+dcKESm55cx0XH9ydqNsPxN+eLAAlpUtmr2pi7bY2omGF6voEe48oZkgv0xfmntc3ATCyd4wHzh3AtBHF3Hhyb75YXM/STa0s3tDCAbcuYGy/AqYOLmJwVZRLjqjilLuXMmt5Iw9fNJBYRPW9X3JHxcu1jvmvzQYcAjXMAZPGDz7893dpB8EFVoLGbpBmwi4WNBY9BXzgJKhoR4CGby7lXJuztKexLcVd721gxu/GoEtJS1znwembOf/gbqBA/+55rNxqpR0IY/L+kuBog8I0E6trsXgFv+DMeqciJDh5j0oOGFnCba+vZ2yvAk7frasFLgKqFSAViRJKgZBOlFAhBVtbGrj146VcMHEII7uWoCgpx+8jFEoPiBFdTW1fwtDRaSMSkui6hqJonDV+EEm9Hy8vXsU/563n6CH9mdq7m+uxXGuR9WL26dudx2YvIqyqjn8IAktH4OPrbOsS8AhghTCDEdjApTCcx8CyAk77xwIW37g7Wliy/5BSXl+wjXOn9EZLabS1hpBSQdcVxzUADA7oU8b06dP/V4AUQwon7cOPrQegqKjIA1Lao0suuYT58+fz5Zdfeo7ff//9fPPNN7zxxhv06dOHzz//nIsuuoju3btzwAEHZK1PSpl17P53kJBS/hDlqkP77bcfh+XVcv7kvh47OiGk46vh0RzY4MVl72oz/0LA5vo2HvpyPX84aqB5TDUHequR5MRHFrNqewtf/nYc5QWh4A3V/u6XSgcweFc9tZqZKxv59JqxNKWS/H3GVh7+eDPHjq3kjqMGYSTUDNMdJ2eKZerlPBemlsR2nLcBi38zMVImLlRUnT53vM9+A8vZvU8Z3Qqi9CzMZ3xvc7GRUqLlpbh5+kqem72Fmw8ays+G96aluZCi8u2okZQVm12SbM7DSGk+B30VwxB8vGYzj363nLCqcsaEXgysyOez1du5YPfeplpWNdAK25znW7C+hXP/uYTaliTXHNKLVdtaue/DTdx8dF8e/mQzhXkqI6ryOXxMGceNryQ/pno1V+6s5+4+D2JsgySlQf5Z/jL22uzWqLiv8y8QrmscjUq2Ud9RUwYgw8THTx3VlgQBE39/ufsqiCEKuJe3rWSCDyNL2R9D7QGcXJRLutqBa9+dW8tRf1rMqN4xFqxv4ZPfjWLq4CIUu1IPMPVfHzBmAr5nBSpBz+0HwtnOYQEVmdlOhxm0JZb+3wFD0BPVS7gCAHjWXTwAOjBIgEc7Z81xl0Y0o6xlv3/Pqxt5Z9ZOPrhyDEZjiGSzKfkzkiEULUVLU6Fj4qppScJ5rYRicWQ4wZQ/fsfFB1VxzgFdA9oQ3LZNO+L84eUNPPdFDZoiGNIjSkvcIBwS1DamWPbIROf6phbd6wjvrhszP8obM3cwZ3UT//hoK7PuGkdpVOOUvyxl4/Y4U4cXcdmRVUwcWJhjDfH9bq+cX4PyQ+vxlBXZzweNZ/+a6ikfMH/aI88Y6cSFQetv0OXu8etun33civBlpCB68ecMrYoSjShomiAvpDC2Xz5CEexsTnHMbuUcOaHcHL+2n7HbPxI8e8iD723mgLElDO0R856zgYp7L9IF0+fV8vJ32/n1ob3pXxEFPW2ZYCSt5IoCh68wLRcUltc0c+8Xq7j9wDHE1JhlApbyWKbYDvBg7i1frd/GF2truG6vYRh6mNZ4zDHZMqRCbXOU91Yt4bvNWzliSF/26dsFVXHVZeU/MyTc9PG33Lr/ZCd0seMfQ1oAbZvz26ZepjO+4vggA7iz1BuilQkPfsyNh/TjjD26sLUpzqCbvuHNC8YytaorLY1FJFNhFCvKmf28n63ewQXTl7Jp67b/UYY5FzU0NFBcXMycC86mMBL+0fU1xhOM/9uT1NfXdxikXHrppbz22mt8/vnnngSYra2tFBcX8+qrr3L44Yc7x88991w2btzI9OnT+fjjj9l///2pra31aFPGjBnDMcccw8033/yjn+mH0I/SpDQ3NzNjxgz+fME0Uyqf0tIaFEtiZoMSSDNozuYpJB4nUCG57/N1XL1vX49qd2NDC7e9s47GeIqZN42juEAzJedBjJ5Vj3Msh/T59lP6MPXGefS+7htaEjrj+hbQoyxCXDdc7TTSkiMpMFIKRkpFDaVMEzCbpJlF1taogKUCBeeYoukIkUQokuXbm6htSfLgyYMpjoSdRQtMgIMwo3/0KcsjqRucOK4betJslxqxJz+gKxgpzUoYaaCGks7CtampgTeWreeho8eQMCS9SyNomsEN721jc0Mb+RGFXx3Yx3zWsMEDH23ihlfWcOnBVdx4dB/yNIXtjUn+8sEmpJCUF2rMuWV8epFQwLRNcWlN/NJOP+Vipu3fLqlUoOkXBNtxu6XjrveS1dTCKeOu/8drUjztJACYBI1V9/GgepUsx+3yucCG/77ZTFQ6A1jaM3PJVj4XZZurQWZY/vMCDh1fxuJ7J/DpwnqufHoV+968gD+e0perjrBNSsmtUYFg8y/X9yBTh8D6Mu7nY6h82ibHpMs2lfEcT9/H+W2vpYE2iC6AEjSehe+7f3xkAOQsc8LNxIl0vZ8uqKdvZQR0E1Rp0YS5dqqGuXaqaXv1eCKPVCpEVG8mVADHje3CW3NrTZASBFD8c0TCxY+uRDdg+m9HMrFfAYqVT+TN73Zw4eMrPc9bEAsSkeO848riEOcc1I1zgII8lUNvWcg+I4u57dQ+1DQkufv1Tex+zTzO2L8LVx3Tk+GWlsZuSyD5tYD2+/VogjOfK0M4EzT/g8pBWsIN2ed90Jz0txXIav6Vi4JMvNx15rquM4IiN9mXuUIQK4pgXO98CmIqL143jLLiULBGLkU62ht4xxre70dOLOPfX29naM+Y9z3612Fp/jlkXBl7DCzi9rc20KM4wsX7ViFIW2nYSVedx1AN5m9u4LGZ67n3qOGEhYKeSjkRUx0LFesdm74r5rm9BpawobGRd1Zs4PBBfRynezsscVhTOGHEQI4f0Ze3l6/hmve+5oghvdi/f3ewNSaAdLLhGlYqn+wLfRqsmDyIrqdN2s3gQeYzCiEJaQojuhTzzZp6Tt+9K12Lwtxz/EBOemo+n14ymb7RMLquZQiDdu9XSH1DA4sXL2bEiBFZ2/L/K0kpufTSS3n11Vf59NNPPQAFIJlMkkwmURTve1RVFcMwF4IJEyYQCoX44IMPOPHEEwHYsmULCxcu5E9/+tN/z4ME0I+So37++edUVVUxsEvEijJlht51QvC6wIniCuHqBi4OCcmS6iYq8kN0KUyj0Nfn1TDkxllMX1jLMxcMpbhIM1vtD8No1eGJ3JON6bE21Gieyte3juWVa4fxxS1j+PSW0fTvmkdxTMuUZkrhaFYUK/ynErKAmCX9sJ/VuY2lTbIjgNllZq2r54jHv+OKvfpSEtOsCB9GOnyh5RAvVIOjx5fRnNT5bG0NWiRBLL8RoRkOqHHbgDoTW+i8sWw9v/9kHlfu3ZeeZWH6V0QIhSSKKnnutPH85oD+5EfMBJYAD3+2iVvfXMcHN4zi9hP7khcRoEpKChViYYXfvbqOk3evRIQxbXfdYUHdkblsZsXN8LiP4zruex8eDUw2hsldp7us6jvunJeea+woWYEMVmc/Qfdz3SM40o5Mj1N35CJ/jgf3cbf0Oss9PX3l7/ts/ec/1hkKqiOoT/zlO/LJdq9sbXSdH9QjynkHdmPNQ5M5emIZr39by9tzanEUxkHjsD3Q6P9uFw1axzIK+e/nX/f85TNNZDKifwVFCrO+e0Ji+8p5fivpeZHVTNYeoyrpOY6vnE3S/DS36bz73U76V+YhkwpGUkVvCyF1gZFSScYj5OU3mdEBQ2bepaQeoqm5iNa6Ik4eW8WXy+r55xfbvIx7EECxaOWWNi47rIrJAwpNgGJAa5vOZU+t4qYTeqfb296Y8x2784y+/OW8/tQ2pzj01kXsP7aEf18zlL9eMBCBYMylc3hpxnZXHwfXk7HWBVHGXub7+NcFspTzr33+8ewb04EBZvx1Axk5SYIig9kff2TDoDr9n86Qv7y/be5yquSja8YSUVQuf3x1eiyH0s8s8xQICYiTDmGdIxJin8o8NmyPp4Vp4H1v7rXbWvMLCzXuPKkffSojPPb5lnQTHYEtTj6Vmet28szcDdx77FBieQLFMpd055tLX28gVN3Mb2ZpM04e05MZa2tZvqOOWLSJUChBStcIqUlCqp0jDY4d1pc/HzKFlmSKq6Z/w3ur1uFGrn1Killb12Q+nmVi5s6pYpudpaOEWUJUx0zLHF926gk7/9ve/StYUt3igOjz9urOOdO6c/Aj3/G3eYsoKN7hREa1KayE2KN/Je+//37me/6PI8co7kd9OjMxLr74Yp599ln+9a9/UVhYSHV1NdXV1bS2mvxdUVERe++9N9deey2ffvopa9as4e9//ztPP/00xx57LADFxcWcc845XH311Xz00UfMnTuXn//854waNSqnOdh/Nf0okPLBBx9w4IEHompWiD0h00BFTX/Sm6alprSYfJOZg5Xbm7nzg9U88Pl6LppmbipCkeikuO7VlTxyxiDW/XkyfbpFCJTquRdj/0bmZpD9711AXlRh92FFjO6fDxp8t6qJCX0L02WksLLOW9IB27QrpWIktMAs80ZKw0hpjgYl2ZaHlIKv1u3gmL/P4ognZ3Hu7lXceXxfV9hb6WEuhKaDgMpijV8f0pvTnpnHg9+sJpTf6uRxQZHoiZClRdHZ1tzCm4u3cuWbi8iL6Nx74gBeX7oJNZIy47KHUwjNIByGVEpQ05hkXUMTry/eym9fXssb1w1nysBCCIHUJHe9s5Eel85CETC4e5T7pm/CsCKaZA0H2x4FbcSed5nlnfnv4WYs3Bu5+78DYHzg1Q0kgnKOdJKZ9vhguety5zRwh1N195s7dGpQqNBcDI//eBC4y8UM5GL+s8yXnO9EBlzzQ/o1FyDpCClQWRLi2CkVfLWygbMeWc5D72/xlsk2nqBTQAV8YCVb+3MBFbtIDgDjz13hCU/sBi9ZQJMnT4Wr/qwAxf3bPx8lXpMWl9lSfp7KkVPKWLPDDByiJ8zAGHrSVNqHo+amiRSkUiF0Q0UVZmVNLUWU6T159swRXPTkStZsbfOOaV+f2IKkloRBJKJ42jJjeQMpQ3L+kd2C31sHxp5QBYdNLuPLxQ20JQzKT/uGfhd8yw3/XMvTH28lL6TQrTDEPtfPJ3TMl0y6ai6hY7+k5JSvGH3pbO56ZSMbrcz1WcFK0FjJ1qZcoMW/74H3fQbtkfbpbOM3aJ22AUG2dSCbsKg9ag/I59pj/G1zfK7MT36eyt0nDeDfX9eYGhMhkJpAhoUJUFSrAveeFkSu5yiOqdQ1poLPu/sibP23AP9RE8rRVMEv/7mcd5dstwST5r6vhHQ+XlXDW0u3cvexgwiHzesMXUXXvQ7ljgm97eNrmdYDqIqgd2mUWNiOLJqgML+eWKyJpK6ZuVKwI3sJjhram3sOnYyUcPV7M7nnq/lc+MYnrKqtoymRfkY7ZwtgmYcpad8TcEId26ZebqAC6ahlJ43uwexNdSzbms7hcdvR/bj/lEH89YuNXPjWHKLl1bQlommgIgX79S3igw8+yPJy/nPIQDh+KT/q0wmQ8vDDD1NfX88+++xD9+7dnc8LL7zglHn++eeZNGkSp512GsOHD+fOO+/k9ttv58ILL3TK3HvvvRxzzDGceOKJ7LHHHsRiMd58801UNduk+K+nH2Xu9dFHH3HNCAGYmXk9/iZuEy93+FeLNte38dK8albUtDCwMsovpnSnZ0meVY+5AW+pj5vO2btVIkLCio5B5kacbfF3/w4q6yuzszHFks0t7Na30DGpsBNEGgnV9AOx7EhtnxTFARaYUsNkyJEC2ABGUZP89oOF/H3mJi7euyf/OGcIFQW2tkhazALWpms4DIXtj3PlIT157rttvLd0O5ft1QeZUk1tS0hHSehooSRqpI1b31nMKaN7c+MBg+haplCnt7B8ayt//XIdl+zfA71NQ6ZUEimDy99YwKV792ZC/yhj7pjJvaf3Z/chRU5f3PfOZh54bzPPXzaUPQYWcexfFlNRFEK4pfpBfet3sg16J+2RvcDbjJD7Or/jvPu4XdbN2HgkXdb4UcnwQRD2uR9CGQxIAJMbyAxnqSvoWDb/kVybdhDZfeeMtxzXy4Bjuer1X/NjykH6ue3vkNuPxsfAJgyDvhURukULePzDai45tCp9Psgsy32PbOYyQWPOrsbHQGSMQc+zuTogw5wr4JkcpsS6h70+uRjRQJDjrMd4bfYFaUBttzXbuA0ABum2Zz7afRcPZMJFc+jffQ3X7NMT0RBFbwsRKm6lflMXxzzENFPRkJi28ClDo76lhOGRSezfv4b7p2/i3rMHeNvje75vVzayZWeCsX3z0/NemF1aXZe0grlku971YH7nHmvsRUIKn945ClUVVBaHSOqSbXVJKotD9Kww1/DIy2blBwwpZUDXKOft35UtW5Lc9tZ6Hnl3C0dNKeOec/qbZrKeMebq0/bWxqCx559LSsDxjGuk1wTW3R2Gtw+yRgELutbyachqDtke+cdVkNmXy9ckswHBbQJAharSMIoiWFXdyoB+MVBEGowYEpknICQQuoSkr/4Ac9P9R5fw8YI6frZbRXZzVPt70vVdwjn7dOP0qXDFcyvZc3AR6IKPltbxwdJahlbmc/tR/a2262BHHG0VpFIauq45kTxtkjavoRjOewiJEEk7JoX9XoSkvHAH6fxsrnwcUuWQgX04dFAPnl+wDlVRuGTKGLt7PJoUxQElugfguqOL+tNO2HnkpK5SFs3jpFG9uH36Wp45Z5gJ0FQ4Znw5uw0o5MgHFvCbd5dyzzGwdV0figt3IoRknwHl3PbEJyQSCcLhH+/z8X+JOuJa3q1bN5566qmcZfLy8njggQd44IEHdlXTfjT9YJCybds2Fi5cyLTD93X8R2yAYqsdUSRJ3WDt9hZW1LSwcnszG+vibG9KMKgynxPGd+HyLr29DAHQmEhyx/trePSLLQyozCOUp5gABdpn1LIxgUHSKt+iu35HGyUxjcpYBKlLZErBaDMlgUI1gYrQTNMsI6WgRpKeUMVqyMxAbwOVZDxCKNrMNe8s4/2VW5n5mwkM6BK1biq9/wyzwUKVXsZClWgqXHtYT259fT1oKYRQPbbqoWgbby/dysFDy9hvVAwlbIYQLguHOXFCF0hpGHHXq9ZVBlXG+HDVVkq7lbO8upXDxpZ6+uvTRXVce0hP9ulVzjNfbmHppla+v3scwrL39mwqNvOTy3fA3d+2mtx9LIj84N3PSLrrVnzHstlfO+2SGQxgTqYyG2Vj7iA3YG6PKcnWf9L32//cHaFsIDNbuWxty2XT3hEQ0hEK6ods9/Tdd0y/AtZujzNwVJS/nzMsuJ5cfZfLT8XfFtfxDLAS1E5PW6z7WHb/wVGM7PkuPP4q3nGcvoc7N4ondKsFTLKGabefKxswcc/bIMBoQK/yCG/cPpLz71nOc59v44mfD2Vi30KEJinusY1EXYxI90Zkm0Lj5koaWorRDRVFGBTH6kilQtx0SD/2efhr8qMqR0wqY/LgQsfXJJ40mLGkgbe+q+XJj6q55dQ+FMU0kxm0hBApQzKoex6K5n8HWV5C0HHrPYwZWOg53LPSFKZtqImzcXucF28YxgX3rWDm+gZOGNuFilSMPQeV8bMbKvn922u59+1NfDyvnuevG8ow24fFPZY6MmeCxl5H/FgIOOcGI0r2RcADWlQyQIj/Xn7TR09EvCBBS3vrVjag4h/vWdZSd8CekmKVc/fqytvf1XJZ36h5of3sJhcOCkjVrl56hWS+tk4dWsT1z67lZ3tUpMsFPZ9fwKGajdak4Izdu3HDa2toTRr0K8/jvhMHoTpqPHuSG6a8LqFjJNL55xyfX8DQVYfnMnRTgFoYDtHQpjvPb2tbQqGEZR6eCUgNw9xwTx7Vn998MNsbBMkanIoro7y/jwHHrMuTXsGl7RGKAVJwzbThTHnkPRZs7MXovtacENCtJMwz5w9j8i1zuGCvKob2X8v2dT2JRZsY3qWQWEhl1qxZTtjc/0RyB5D6sfX8RD8CpHz88ceMGjWKrkUhEObAcwCKIvl6bR3PzTGjQfUrjzKwMsZxY7vSozjCTW+v4qr9ehMN285Z9s5qmsuc9ffF1DYnefXy4Yzqk5+2cbXnVUck0B0BKG7mUUJKh5AqHOAhNMMBUEZCBcUELg45+TYM0/lNF0hDRcuLk2iOocYauOT1RXy+ZicfXT2WPpURMpgKVy4EmxFxIu0oaUbiZ5MruPJfq/h8RR37DC0xywGhwjZen1PLF6t3cschw5ApCZEUQjP78sOV27nriCGosQRoknkr2tDCkhuO6sn89S38/eOt7DG4iH98vo1rj+npPNrW+iSvzt7BO/NqmbGygb9fNJjCPNdw8Uvis20YvmPPfLKVix5eRfeSEN1Kw5y8dyUXHVHVccdqN5MO2TUruM77y+M/5uMOMsCRn9H5AaDEXzajDVnOB1G2zNrZnGs7Qrnmlpv898323joDgDqi2XEx4J5r3L9tsto0vm8Bi+6ZQP8ueWg2s9rePSDzuYK0KpBlLLkuszfqbIygm8mUeMGKU6/FqPm0WrYwwyGZljB7tC32b1fUvZx5pJz6sjyn/ds9BjNAjWS3wYV897fx/OlfGzjyoQU8ftZg9u3WnWiBQd7wevO2dZL88p3ESutQXGtta20RQyPFvHrFCB7/bAtH/WEx+48qoU+3CO/MrmVldRuVRSEOGVfK2zeOZI8BRZYZD5ASnPnwUv75ZQ0HjSuxnu8HTgohuOiBFTw2vZq+XSNMHFTIdSf2YpyV3PHqR1fx6lc7PJdEVIW9+5Rx1ktzUIVgc0OcUb1jrK2Jc+eLG7jh5N6Mv3IubQmDnuVhrjiqB5cf0cO6n+/+7QF9/5jLplmxzwWunS4gno3BdqqQmWtUhvCHjDmQoVl0tz+ofZ4yroP+/nGPZzKZOo8JmwEjqgp4+ZsaLjuiB2gSDJCaCVaEAVIxWRmH3GPcsD6WgC0cUkjo0gqWIzL7S/HV42mYaeY+aUAhkwYUUt+S4t73N6KFMPOT+SKKEtIJF7aihlKk4mGT1/I9szQUzz5VlKfSlEykzcCsuSUt7YYq0pHBnMhdlvO7GZVLYEiJquAx8RLIDIBiM+UZaSdscrVLUU1/2r7lYc6fOJRDHpzHvScM4MTdKxwB6LCqKBfu150z/rGETy6bQCTcRioVQpWCPftW8OGHH/5ngxR2bTLH/9/pR4GU/fffH6EsNA/YYYQVyV0fraU0pnLvCQMJa5b6z3I+l4ZgUGU+y7a2MrZXgTMZm+Ip7v1kPctrmvl4yU4W/3EiPcrD3g3QzwRmo2wAxc08+jdWYWagVRVhZpm3FgobPAhVQcpMaZINUBASJWw6vqfaQmxvaeOc575jZ2uSj64ZQ8+ygAQ8Aq+0yGY+7IVZTTMUEVVw8OhSvlxTx96DykzneauaViPJsWMr0KKmz4kIGyBBJhUUBC/M38xnK+roXhamNaHToyTCp6sULt6rJ/+aY/DL/bpz7fNruOywKiJhs5P+feUw7n97E0II/nrBQPp1yesYA5yNQbf695bn1nPX8f3Jz1c4+7HlHDiuNHc9fgYp20bcHiAIAisdHU9Bu2e2a9sDx9moo2PaD679zcsFHHKBuFzvtiPt9t8z2zW5tC+52hDEoNiUjZkzYHBV1HvMzwxl668goALpDbejfeySMGdIxrKByyzmLBkZqz3FMq/xCDtUvEybWwMYBLT9INDdZvcYzKENDSkKvz29DwUxlcufW0Vjy3LG9MrnllP6MLmoAqUghVqQMJ8tJM11N5FmuvYZUMq+o4rZtjPJKX9dghYS3HpqX0b2jNG/ax5CCJKGwTcrG5AWH/barB1sbzDzVP3mpF4/HKBYZPuUTOhXwEtfbuelL7dT/fQUystCnL5/Fz6ZV0dTm0FKlxTFVD6cX8eY+bOIhRXG9Stgn5HFVFWEmT5nJ78/rQ/1LSnaEgaRkGDjjgTvfFebBiluCmTYrf9Bcy3IfNF/LmjttOvLALw5OsUP2ttpT84cQx2hXGtqtksCAgLsNayIa15YhdQlQpq6ARucSNXSpAAiIU1HejfZeVGkNAExMKJ3jEUbWhhpJ4r0mxy72+zWykhAw2H4iws0GtpSoFpsqSfUlzWPpU8b4XpOG6C4/VSKogr1bW2mj7C9/ljnnPehq46fSDoZoxkafHBFAWvrdjKgrBR3yOEgyog65iJv3hQLeKkGSijJ7w8YzPg+YS7/90I+W1nHX88c5PA7tx/fl4PuWsA5zy3i8RMUjPpKWtvymdajklc++qjdjOs/0f8d+sEg5ZNPPuHQQw9lxrpaRlcVEgkJ8sKCF+dupbJI4+yp3b2LpSsC1rCuBSyubmZMj0Ls2Xz1KytYvLWJI8eVceURPbwApaMS5qzSGNf5oO8WJXWDkGpvkgKh4GQPF6phgQkLlEhv6GQnM7uEN5Zt5MpXl7L30GJev3IE+ZEcTkcGZNjaWsUdiac1uSMhBV2xHO1sh28JB48u4U9vb2T3PmXONUKVJJM636xu4JDRpfz1jEHE0SmMKggh+NW/1rCxsY0zp3Vl+sJaSmIq/5qxjbP2NZM89aqIcNcZ/TsmYQ/SIPjfgwIffLcTQ8JZ43sRLtK5/8NNDLKZSP8ij+97LrASBEiygYige/gpl1YniKELOtfePdyUS4LaEW2M/1xH79te2c5od3KBox9SrjOUDXhke/fZyncUwNjn/JQN7FjngjZ56WcIA9vh+uHWsuQEltKzxnm0J24GLlsduUB4tnGW0d8m0rn8+J5cekJPvlvayLtfbOfQPyzkhkP7ctk+PVGSESuqkWGapAozCR1AoiafcGUzXYrCfHTDaO9akAJ0WLMtzmPvV3PouDIMXbK8uoVf7NWFxZtbmTayOLhd7ZHrPb560wj+9u4W/v1pDecf0o2+lXnEomaFR0wpZ90/JqOpgrBqHvt0fh0H3rCQ134znH3Hljh9dv6hpt+mNCRv3jAc1WLeJg/xmpI5FCSAyEW5xlDQOZv866cfsHT03u3M6axA3VPI1Sb3b/seOerN2i57vEvTpyieksR1SZ51H6kAqjBBCiB0aeIvt5mg/WwWUBEqkJQcPL6Ul2dsZ2TvfG8bg3gWWwvjey4HMAhMLUfQfHPeoyv4kM1vGEoatNj5UhSDvmVR3liyE0WtTINK+926AIWdJsEGOoahYBgKk3tU8u2mbQwqL/b0s5msO912f74Wv7O8EyrZ5assVANVNZ9jbO8Yew4o5flZWzl6TAWHjC8BIBxWeOHSoRz3lyXsfu9Mvrx8Mg++u53iSJRZs2bR2tpKNOoTQP2H0K5O5vj/O/0gkLJlyxZWr17Nz4xvWFPXyscrdrC+rhUhYEBFlOsP6+NZXP0JyIZ2yee1+dt4N28793+51swUvL6RD38zmskDC3KDkyCGzr+42cdcUpSsAMV1j5QhCalWdmc9DVRAIkI6wjb7AjNEcIajquCmd1fx5NebuPeUgZy8WwVCCMt5MwuDYpOLqQgMC6nAsi2W9kkzGY6k1Hno482cMrkL0YjCqh3NDO4ZRljhgcNRwde/Hg+aREQkEVV1FtwxffOpboozsVcRD32ymcv278k9b27kjL27mrbf2TQU2cjZEALOWc81a3kjew0rRiQjoLcyvk8B3y5v5OR9Kr3lgxhM/0bqrttNQZuu//qgetzUXiCLbExPR5ihjvSnvTHl0vS0x1x2hDpqTtJR6gygyUbtgYIfA3CCNBf+PsglbYZMjUpQ/W7KZW5IAPPW3ryztSNB787H1AXm53EEH1nanE3Q4y7vv8Y/Vv3aCwMUFSYPLWTykEIOmFLGRX9ezt++3MQV+/bi55O7UaiaYYpRzL5IpULIVoHamESVCUQejgQbQKYE6IJr/r6Gk6ZWcvwk04F55opGSvJCGTb3HSbf+1FVwUVHVJkmqQHOqbGwd7HYZ2QJrS/vgaYGv0ChCA6ZUNahe5sXECjwyVrePh8ERtznstXf0bnp8yPtKGUd755Cvt/uNiUEhF0MsOu87UOTDQglrXwQScMgIlTXmBU4/ikhBVLSNAMDREr6Qm+nNTB9e+Sxbnvcm3Hebo8fYGmY49fhQaQJhAyz3T3LImyqi9Oz1Aoe5PdnsZh8RdNd5mDCARxOf1i/+5SH2VDf6qRASAfZcKu4rHcohZnnTgpT0SMFg8rK+Oe8tU7RtKZFcaJ5ud+BeVz3lE2brBmettmWJ/+av57N9XH+eOQQPh5cy/nPLOf7weMpKzLZ0q7FYT773Wim/m4ev/94BY1tkmGV/SiNRvjmm2/Yd999A9/z/zTZFje7op6f6AeClM8//5zRo0czpW8Juw8sspCyQW1rivJYCGfVky6AYiHoORvrueO9tby9aDvPfBfiyiN6UKipPHHJIPpX2tG9yC3lc1NHy7QDUBCCpCEJaaZGQ6hGehEWmCZUukCxnsnMZ2I4WhDDkLy3rJYnv97EMxcO5cDRpc56IPyJJ+3jQqbt1a1FKdAkQ4F565v4fm0Tr/5yBCiwansLZzy2jG9XN5IyJFcdWsUtr23grpP7OSCGkISUBF2ko4QogC7YvDPB3kOLESHJqbt34fu1TbTEDa55Zg13/6Kf46QaSEGbpv99+Zia1dVtvDGzljOndEMoBsmUwfTvd/LXCwZ66+moNN5PQWZLbsDiloZlY0A7Sp0BDXY72isTVF82hsFfzw9dD90M+X+F0CYbAMh2HjrOgPkplxbEf437t31dBhjxtTMbWMlGHXG2d9WX03bfTzYD6iuXAUrc34PASdA7z9a/QeAEvP2XbcwqeN7NHqOLmf3kRF75vIY/P7eRq15ayZje+fzq0N4cO6qScHMbekpD1VKmD6Au0FMGSkpxNElG3My/8vRJY/nV+4sZ2SPGmN4FCEOwbWeK0gLX1par/4PK/BhSQGtvMmUDgrkEMe2V91+XC4wEnbMp17DOtT7nGuc/tG9ddbidxBWRyizjLhsEUFXJzNWNDOyax4INLXz/TQsrN7dy0O5lHDitwgEpUhHmnqkJMGQwXjdAqqbJWEFMpTGRMv01/cDE79/iHxa6LZgU1LYkCYWFKWC05reb0bWtORRpmqNL2wc4ywtrTek0xfV0Hb7ogODlzbCb5zjkhzyumu62SGmiNr+Jl72Guc3H7OPOc6jpVAtLtzVyw/5DyAsJfjGugBe+r+aedzZx28l90t2mCJ69eAh73zyPgV2j/PXoYl5bXsFnn332HwtSfqJdS52VlQImSNl7770dRGwOPCjPD2WUtZl5JazTqrVx4pPz6d09xMJ7JrDx0clce3RPLjy8+w8DKG5yM1puLUp7AMVMhWpqJnRTciZCVmLFkI4IuRIChCRKfirtUK9IFmxq5tZ31zLqlm857+llXHtYL/YfWeK9hzvxJN7v7vwaGYn/7N8qPPnpVkb1yqclpXP3++uZcNMcJg0q4E9n9OPDRTspKlBpbLMWb3tBtBKwiTzDm5BNlew2sJDX5uwAVTJtcBFbGxPcc0p/ps+t5dInV3n7NohBsRmloPdll3fFnD/pjiXMX9PMuO5FbErWc8Bf5lFSoHHIbqVkUK5RmUuL4W+nwNtGd7vc59QcHyXgk63+zlI2xo8sx+177Wra1XW6QZn705n7BvW3+1wQBUlgA+ZcRh3+sZur3qCxEHhNWpKYdfz4rvXk28n1UdPrhfu3k5fHzsnj+ZCZj8ffNs13zP/MQXPFXZ+Cs5Zm9J9vHGiq4MT9uzLz0fGs+tcUzj6yO1c8v5JJf5zNXd99z5bUVlKRRv48czl9rv+awvNncNwjC/lyzU5E2NxPlm5p5f5PNtMlP8zjn1UD0NCqc/YTy5g0qJAXPqvhy4V1rN7Syh+eW8cfX1jPjU+t5cXPamiNZybG+0GUbXzmeuf+Pvmvoh+yJrXXLs+8kdnP+Y9nA9TtlPf7OSgFqcxy/jnu328tGtU7n1Vb21i2sYXJwwq5+5IBbNmR4KI7l/LVvDpbqQCaMP8rwsyh4v4IYZqIaaaJ2Mn7deGht7eY50LCNQdFuh12X9pzxk4mGTY/zUaKuDToVhFKa0ptcpmJOakdnEiqhpM020meLSRtSZ2rXl/C1Xv3J/1QmeTktlONdH3CzKsihKRLfpjtzS2e9yWlGS7cNu+yQw7b4YjtMmb9hhN62L6XecLUCpXENBpSbQhVokZ0bjxwIH/9dBNbdyY87RzULcrlh/ZACAhXNrP3gCifffZZ4DP9J5CB2GWfn+gHalK++uorfvvb36Jsnec4egvNknS0aChR3VTdgzlJE4LNO5L84f01FERV7j3bihlvz0e39NIfuShIOtOe8202ZsR9LMChckivKCu2tJpx8GN5ju+HfY0j7bTUpw71pokAAQAASURBVPGUwbEPLmRkz3x+e1Rvjt+tnEjIuqH9bP5FJ0hDYat2g6Se1v8T9qhgzpom+l83i6FVUd69cSRThxfxwowaWpMGa+pb6V4cMbUmkFYv222w37QOqDBteDFvfV/Lhu0JeubncdOh/bj6hdW8c/loRt30Hb88pHva1tbflwaZ78lfxgcICyIqp+xZydQpMa58eC1lxSrv/noEqtsswnD97wxQac+R1G4PBNtp56KO+qcEkQ2c3Qxhe9QRBjybBLW9fvnvIr9kNtdam01K7KZszxW0TrQnFXaPjaBxku1+Qc/g1rBkW5uCzGL8ZdsbF9nWQ/CuL9mAF6RNVjqyNvq/uwURudqqpgFKmskjeM2zSUKPiggXHF3FaQd35ZUvtvPWjB2Mu/srAEb1zefRqwbRqyTMS9/s4Mj7F/Lrw3vxq0P78OiCFfx67/6EI2UUlZj32HNoEU99Wc1TH23l3Tm1tCUMGlp1xvUvoFd5BFWDl76s4bZ/reeZXw9ldD+fP4FNu3ru5Ko/aA64x2a2OdTevOno2pWtXEc1LNnq9defa/+2n9cFTrLWGSQcyABMLi2BNXZXbmulZ3mEM/fvCkUqUhWccUR3fnFYN371yGpiUZUxw4pIKYJkyiBqmYGtqW5lQ3UcpDRTExiALpGGpLFJRwekYxImXM2xXmyWdUYi2dmcYvaqJvIiSjo3mF3eBiiG8EbqS9/GJB/evvmDFVy5Vz8GVrj2b/c65NNs2JFZTZ9as8x933zHvOo6hnUp5ZCBZmAHKc2oVYZUnASszrO4tT5uDYvLfwYh0qZiAuK6QSxPoIRTGAmNSd26cdjgKvb8wzxeunw4o/ukQxOP6pNvJuQNG0wdUMxvHp5FKpVC035Uqr+f6H8BdfoNNzc3M3/+fEbNegj6AKG0BkC2KiAkMq4gDcG27ZL3Vlfz+rztvL+olv1GlvD3y4YgVJHp3OeWxrVHHWFa3BIMXHW7AYqvngE9ouwxrIhnZlVz1T59TbMuTZoqWAWT6TcwNSnAP7/eSmFM5dVrh6HYdbrNQQKZHffi62qH35nVvtYCA9NGFPPFHWNobtOJhBQzpKoKbUkDRcBNL6zjvhMGIaKGJckx6xH5himxCeivPhV5NLfpUAChAnMx6dslwmlTu/C396t54NyARGpBzLB/A3X3tUUpQ3JI/0oUKXh/yQ7uPqc/+XntBRRw/W4PtAQBFX99QW0Noo7aaAfV76aOgpNcwKSjpljtMZw/htpj2DoiPOgI+ctmY4yyPWsu2/agd+q3+3aXywUK/aZi2drWnmlYQFLRDPJf67GPd7UjqJ32OTdT11nhnK0p8dzPqsQ2mrZ+Szcgce7pvWFGmFeX8KAgqnL6Id04/ZBuVNcmaGxJMbBbHkoC0CXDBxdw7P6VHHzVfJKGgWyOUC5KaaktQlVraN0WYc/+cU7ZvZLL9u/BuN6FJm+WFCh5IFvNPFd6foqbX1vHpIvn8LfLB3Hmwd2Cnxt8YML1LDIHE+2/Loj849UvRAkq4yf3+NsVvlpuCppLQeZi7vHpZoI9/pbttM81PnNqWIKucbfBM/e89RhIHpi+mZ/v2cX0E3W1R9EUbv9lfy778wquOrMvf391E20Jg1TCQDckIU1hn/ElprzJsJhwQEEQCgnOOaJ72tHeqleCmRhSCLbWxvno+zoOmVSGKuCTeXW8M2snRVGV4pjGqN4xrj66p9l+HdNcOxUwUQVW/iMFkN5UCVKYY9IQpAyDwZUFAddnml95w54rCGmwuraRgrDGU8fuiUDxaEgEEkUYJPUQYS1hgZF0xDDF5QMDmFoaxTD5KEF6XEhoTujEQgp6XCOhG+SVNPHEqUO59Z0Cpt3yPTce25urjuyBKgTdisNsqUuwamcrw6uKUQydRYsWMWbMmMzn/B+mn/Kk7FrqNEiZPXs2Xbt2pXcXDaQOOkghMBo1MxO7IahtgKvencfL329lbL8CjppYxp3n9E2HA7XnmdtPwL2RdsSG2E1+yYpb8iddv22A4qvTNac455Bu3PL0eq7ev7ezcUjdnJyELOezkEQmBKu3tzFtSFHaf0MG3Ne5ia+9bsDiByZupsPHWORHVU95XUiEEAzpEaWsVIU8CXnWc+oSbM2pLaUJYYItafq5nLdHFSs2tdGnIoKCQqImxsieMT5eWuftU39fu9sZdM5H+40u4Yx/LOaZ2SUYQDRPwUhJb7K1IOaRHMdy3bs90BJUxqag95ZLqtgRaXxnJKF+cJ2tzv8u6ggIzHasI8xTtrU4iHHLRbmYofYAhZ9yMZAeJs13XWcBbjYH72yAI+h8rnnoX1M6Wr/Euy4HCXYMcy11tCZB7bIT5dmH3P1qP7vdBRIz27ch6VoRpquIINoM0A2n3lH9C3j3ntEcePn3jO6Vj5FKb2HhwlbenLOdq/fuy+geMcDS8IclRrOKTCk88vUGlm1rJoVkWM8Yny+oDwYp7n4KBN8it2drRzQV7QHrXPVkG8sGHZtz7VEg2CZ4DtjkZn79ASYCynuY32zgxL+3W/uA0aChFKUyAYp/77eOXfbUKt6fV8djlw2CsK+TDUlYVfjzdUO47PYlNLfp/OuuMSSTBmEssGGV8/SHlN7xbD93UiISklYkf3phA21JgwPHlvCXVzexaF0zh00q42+XDkRIgcfh3p5zOqY/qS6s5zFBkdTNhxFWrhGrCQhbeyNAKhJFIe0w7+trJ5eSrwukIk0DI0Pw/vLtHDK4irywjpSGY9IlrIs0NUkk3IauqxnJHBESVTNNOBwTNMVO8i3T70tAOAQtMklRSOHsZxcyvGsB+WqYYZWl3HXQHtz/2be8PmcH/7hoMKP75jN1SBH3vr2JB0/MZ3zvcmbOnPkfCVJ2lanWT+ZeJnUapMycOZMpU6YgU20YCRxHckOHT1bX0KrE+fWLa+jfPY/lf51I78q8YCbDDVDghzFg7UkO3b/dGhSLgoDqnqOKWb61laRhELJjpesgsSJ9qWkpUcIwCIdcN3PXZz9XNsDll2r6+8EPXIKeT4HKYjOz7LamJLWpBGXhUHoDbQHZoCDyDV74toaZKxohZZ5qaElRkKfy9qLtfLCgjm11SY4eX0aotJUu0QjbGpKZDI4beGVjftzkAhbXHd+TP/x7Ax8urOPYSeX84p5l1DWnOHxiGbf+og9DesTSG9muYMY7woB2hJFoT7qfy2QnV98EzYlc5X+spuTHMC4/5p20Bx47Qn6QkK2f3OZXfsplsoXruo6YpuQ639l9pb1Icv77Bd0jCJS4y+V6d9mAj6eeTMGOXcYDULLVC9nBmEsT4A7/KlISdIlIGC5zWLPS0QMLePeu0Rz16wVcMeNrLjmwO92MKDtrJO98V8vW6hSDSs0cXUpYR2gGzXGdmngzX6+q5+7T+tOlQuOGF9exuqYta9fY7cpK7QGVjoz19oB9ELi2j+M71979OjM2O6LRyTXXcpGvvg4DFCGd+aIUJ7OPdXuPdPEYFx7Snffm7+SR96q55ay+vrFu+pfEFMGvzu7H25/VICyAgiE9QkwUAYZEJA1kSEH6InwKLOCuSP74/AYOnFjK1GFFCAn7jSnl4gdXcPZBXR2G34n4Za9PQXPQwAEqpsmZYppQCZ92QkgMAzY3tNGiJ8kPa96UK3YfOVG3LJBoCMu/2NQ61rS0ENEEqpqytCMCXddcoYZVFMVwcqwoiuGEHrYTRworUJJQDSdRq1Ak7oSzh40s59xnltK7NI+uxSGOGNEFkhprd7ZQ3ZBicq9Sqlta2fv383n3NyO5/+z+7HnjfG4+vg9T+mrMnDmT888/n5/o/zb9IE3KpEmTkMaXCEWiRxLM3NjA7a9uYOaqRnqWhznzgK5ce2zP4AhR2UyzCPjdnvQ2aNEN0kZAoCTQrZW2F6KSfLNLGuIpyohY6N9si0wKZ5KhC9pSBoUxNTeD6l6AgtqaTWviBzHutrueqVtZhM21ca49pCcPvreZG3/Rm7r6FIoBxXkaotzgwzk72dwQ557z+kOL/bySN7+tZfbqJh44oz9fLW9gfY0ZTrFLcYht9YlM5tTNUHWEAXI3XcDA7nmUF4bYUp+gLWFw3xkD+HDhTiZcMZdXrh/OQUGJHbPV39EkbR2N49ceUxpEuZj3zjKrnS3fWdDQIan+LrrXD2mHH8z/ENOxXJqXbGApSEviPu/XmvwQbUxntYJuak8DkmtN7Ahwbg/8Bswzj3Anm7+JW6BhyA74T0gTqCggU9Lko5Iy3VeOOa1EIJgwuJCv/jqeqx9axb63LKClTadftzzuP2kgBTGF0//9PbGIyj/OHsK/vq7hlbnbiSgKf/vFYAqLFdAk0+fu5Orje7bTsE7QrtBgZBv3KYIFX276IUKezmge7eM25TLH7KiJaFB7MoR5AeZc/vb49313cAgNRvbN59/XDmOv6+cxbmA+akTltS9qmDi8iDZDcsrh3elSEWFA7ygrNraCIhB2cAXFdKQXjsWESzsYZAKowG+eWcveY0qYOqI4DdAVOGxyGY+8U80vD++ebrdhtre+IcWfXtlIa9xA1yWHjCrloJFlqMI2HzLNuezww0pYxxNBVQq2N7dx/aG9eeTrdVyzXz/ceZUyUybYgAGHGVJDKWJ5khRtKKrm1AtYmejxhCG285146rMBiivcsM1HuRPMxiIqR40r5/Tdu2EkQRgqqeYIQ8sqSPUJkUr15/Xa2ahfKRxw23zeu34U+40s5vbX1rNn/1Ju/+q7gAHxP08/mXvtWuo0SJk/fz4nnngi1z/8V/7xVTX1LTrlhRonTavk+V8PpTjaySpzLagdkQB2ZJP2/ydgo7UWkpClCk7q5qSVhlVYYkowrMRjqJLtjUn6d4u0zzy1t7i6pT9+cBPQdvfCOLx3DFURzFnXRH2Tzp9f3sRvnl0LwLd3jWVsrwKe/XIbT/16CLRimnvppsTnqInlHDWuHBQoKwqxYKOJYPLDKo2tenC7cj1TEFnP8Nd3trBySxurtrRx3kHd0FTBL59YyW6DCinN10gkjcw6M97tD5i0fvt5u96OMOT+Mh1hUDvaxPa0Jrk0NLDrNE7Z7rsr6/RTR6SyP4SxDzLB6igjlY0p85fNVc5/32zjo6PaE/veuX777+sv05l56xfo+Mpn7Jl+gOKvO0jKn2V+OZJqA4SUabMl2xzG3WfWWt2nMo+XbhkBqhlS/ca/reasp5ahqoKjp5bz8JtbWLS5mT7lebx83ihkUkGEDNBM5nPj9jhDe8X8vZD5TB2ZE7uqTDby72vZxnpHQLObsglnOiLbyTUXgqgzgN6tPfGP5/Y0+orrY59TYNzAAnp3ifD397dSlK+R1CVPvVONpgpG9Ymx/x4VKKpg/LBCnnl7C6cf0MVqW4BZly7NQBEuSqUkF921DFUIDphUyiGTy6zxnC5z+G7l/OXlTXy+sJ69RhZ7+v+pT7Zy2t5dGN4jRippagXPfXw51x7ak3fn7aQ8FuLkSV2IKCqb69r4+1fV7GzWSRmS8b0KqSgI8fq8GmJhhU11ce76aA3X7t/P1XfphngBS9reUqgKFYUaCRJOtnppKBiJCEJIVDWFELpjoucHKGCZ73nUT2CbfKGktWGNqSQFEdNFQLaFiTdFMXSVtrYYBUV1pBqLOWtyFVVFEe56S+fgPyzk3P268eGiOi7ZrwdLnphHMpkkFMqMKvs/SWZg6F0AUn4y9wI6CVLa2tpYtmwZv7nkNIQQvHHTCPp2idClKJxOXpVNEuSXVHaW2ttsc2kdXOYK7W209nMkhG7afuqKV+UCoEoSUmfWqkZO2asyNyOZTYPiW0AzvrcDTmzKz1PZb2wJc9Y3ogrBzGWNnHFgV/7xwVY++L6OPE2hPBZCWH4o5GH6qdiRv6z6565uZvwA09lu6ZZWBnUPyObantTVpgCG5KR9unDTM+uY2LeQpCF58bfDePqjrdz98iZqGpL8/aOtVJaGGd03RjQSoJ3yP3tHGVb39R0FKkHk34x39frREWb0v4P+O+6bTavRmWuylemI+VUuu/qO1N2Rd9/R8dHR/g4CHh0R4nTkPtnWmGzXZNOe5OpL2zfFBpuG63hQPRlMs61V8d1bmHVUlYZ54rohGIbk7Zm1fPZ9HQDz17bw25N7I2IGtEnPGlteqFFT5w132inya2l3NcB3U7b1Ich3yqZcfiu5KJsmsj3tZqDmRXqdPj33CRhHnrHoAijuosJfjuCxGmCVUFYQoktRmBOnljOkVwwtLNDCCrGYitGio8RUzjmqil//ZQX1k8sozlct00OryqCM9ABSsn1ngiG9YlxzUi8TwOhW+33Rt845tCu/+OMyqmsTTBtRRFVpBIAN2+P075YHismHHDWxnEn9C3l91g72HVZKS6vONf9ejaYImhM6Nx3el6KIRkFE5evVDSza0sxfTx3M6/O2s6U+wZcr69ClgScAlr/LfYEPhKazfEcTx4/phhoymQQjheMgr9ghj8EJWZxO9Ci89doZ5pW0JsWtTZm3qYlDR5TjWKdYpmP5hfWo4aRZny44ZHwpDc06L8ys4U9vbgTgpTk1hBRYtmwZI0eODHj5P9H/FeoUSFm8eDH5+fmcvE8J1x7XizzNLWbLLK/rkpqGJF1LQo5zF5DbLMNP/g3ZUf/nuMYDAnIAFJtcG6UQgpF9Y8xYVU/v0TFzkoUMU22qWDkJNMljn2yhMKpy+MSy7NL3IIm4X1tiP2MQKAnKWuzWsFj/F61v4ZgJZXz2fQNz1jTx65N7saM+yWeL67n1xfWM7ZMPzXjzGthSSqC5Wefd72t5bNIg0GHh5iZG9cnPrkVpjwIARs+KCFcc24M/vbiR60/tRUVJiKuO68kJ0yo58Y4lvD6zlg++r+PAsSW8dOPwjOuz1t1eG3JtyB3dtOGHM53/HSZU2cjPELrv/V+hifmh1N576Ix0uLPgM5uWJFu/ue/7X9l/2erOJUHOVUdH2ppjnnnWTsd8JRtYybKwu4GKj0xzGrz96l47/dET/W207qkogiN3L+fI3cr51cm92PeKeTz54VYOHFNCoaY5mhmpSBpbdWqbXHk3Oko5wElLm86Rty6iemeSl34zjKqyMIs3tLD70KIsddF50Ov3F/G1wXNNLtPHzoKq9q7Ldr9sPidu53o/OHHfz70/5tr/g4CLb778bGoFD721mWhIYe6qZgSCuDSYu7aJXl3zSABtCZ2GxhTfLaln8sBCiiIqMxc1sGVHgmN3K0eoAhnC8lpPN+TzefUM7R1L39PqD6malhr2YxXGNJ779VDmrGzi10+u4fT9urL7kCJSuiQvT0mHIQa6l4a58IAq09Q8KdijXwlSStP0zGXqNXVAMVMHFANwzNhKrnlpBWFV4a9fbOCy/Xt6gKITEhivRkUaIFTYa2Axv3p7KY+dPBwzKQyEQgknapei2ojNZd5lARcpRTrvijDrb2hLsaSmkSkDCx2Tubq2JN+taeTifapMbZNqoISSSEMhUtJMqiWMIRXzGdsUTpxcyWdL6zhoRAnvL6rjtpc3UF4cZf78+f9xIMWQAmMXmGrtijr+L1CnQMqCBQsYM2YMN54UcNK1QDW16ny1tIHr/7mWeWuaee+mkew3psRbPkDCkFGfXc5dfzZTiUBJSudesj0mTtq7kudn1HDyiB6WaRegWhKBsARV8vin1fzquJ6otkQll027/d+vNfGfd7dZ+hZqP7k28y07EpQXhVhfG6epTee0fbtw3qHdQYHZKxqZduX3rFrbxoAeeeZ1mnl9U5vO3z7YwrqaONcd1ouIoSHjKgs2N3HkbuXe+3VUi+In1zv47cm9KYlqPDJ9Cyu3trLf2BIGd4ny1V1jOOR3CynO03h15g6a23QzPPEPASdBbXSY0EzpV0bdnXT6zDjXkWO56u5oO9ojw/c/1706Q+05CwfNuR/qF9RR7Yn7mlzXtWfLD8Fa3/bM07IB0x8LYjrCiOU6n+uYU0cnNZRucoOVbMAk6Bo3uHFdmwYq1ksIEtz4r3eTy2QMoLIozIwHxnH0bxdyxROrefycQWb4+yTU1qeorktyYJAfnJ/aA77W+Y21cc748zKSukTT4K1va3l/7k4+XVDPuicnUVUWCW5vR4FKZ0yrbMoGHFzt7vQ9OgKMOjKOAq8PMO/yCO58bXC3qQPCv1P2qeSe1zZSWRbiuuN6mYBVSs772wruOKcf4XyVpJRsqY7zyBubeW76NjQFRvaOYUj4cGEd+08sM02mZdp0af32Nr5eUM9fLhmYBRgKpDXOhYRoRGWPEcU8/NZmttYlueRvq8wmup/BvYbrmLnnbLDRzpp69/GDuOH11SzY0uj0qxuQOHlRDOEcF4pE6oJjx1WyuraVLY1tVBWa5pBKKOkwSMJykk/nbEmDFWkozm8p4ZOlO7nvi7UUxVQqS/sysKuZtPsPb27gzlP6IVIqMqlgJFSMZAhdVxH1Ej0ZQjdUjLiG0A1q2+JEQypXHtyT9xfV8Y9zh/D+ynoWLFiQsx/+J+gnc69dS50CKcuXL2fo0KHAUs/xtVvb+GppA899VsOG7XFWV7fRtSTEUZPLWbC2me4l/kQd5F70A9S0zvH2pJl+Zr+9xdIl4bDpF/t15Q/PbWD+1npGdy1GSAM0icg3kI0qFKRYU9PGmH6uWORB2iH/YpkNmAS1Vyd7232by/7jSnjuixqWbm7h3AO7EYupjsnEhEGFHDCulFe/387VJX0QYd2p44yHlnHLKX0Y0SMfUqA3Sm57Zw3frGzk3vP6e+/XXj9mAYQvflGDpgiOnVpOLKJw7Yk9CR3xJW/NqkUI+MfVg/lueSMfz68HQFVgzdY4I/tmSbLmomyChgzBXbZN1c9w55Kcd+T4D6UfUt+uuubH+Pn8kPIdASw/pn+zAYaO+p8EnQ9qTy5Nyg8GgB2oy18m172yamM6/v46JMxrD6DkSubo1mJnk/r7o4v5gYobnPjW85I8laevG8IBv5rPL59YyX3HDSBSqbB5vWnmpXZGM+sTdhiGZPnGFp54r5rifI0H39zM4ZNKmf5dHdvqkxQXqKzaYkYPG3f5XIb2iPHMVYPp3SUg4qX9+7+CL8lmudCe+Zafsq2r/rrs+ZOtLr+2Mkhz4r+Hf+/0t8MvAPTvWdY761YR4V+/GsqhNy7kzVk7uPaYnrw1q5bxAwoIhxUUCRFD0K8kzB9P74tMSppbDQoKVHQFLn5wJUN6xuhVHvH4pXw2q45T9+2Svr89rt3PYgk0ZUoiFcm5f17OkbuVc9LUSn42pZyrn1xtlrPXFgnowtSi2ABFmpU6ybIloEgT2DsaHAnCoLoxTs/SCHVtCUrzQ5aQ1yzrATx2O6X9LgSHjyrjD++v4cEThqJoIp3E2q4fHH8UoUpHqSQN67gFYKb1L+XVRdWM7RMjYZi8RyJlkEwZdC8OY9QppFrClr+vDrpKQ30ZRcW1Zkb7hIoa0pm3rYHJfYvYZGWj/3p9PYO7h5m5fHnAgPiJ/i9Rp0DKihUrmDhxIgvXzmbBumbW18R5d/ZOZq1oZFjPGCdNq2DGkgb+dd5QhpUXMmP9Tv79ZQ1Dewf4N9iUa2Nub0MOYp5/CNPlox4VEY6cXMbby7YzdpDFLIdNm0oRM6hpTNESN+jTNZJdyuZeOAMkOhlt9T2HdNm85spvlUwZfLmwnh4lYdZtb+PCY6syJLkn79uFm/+xll8e1J18RWXRumY+nF9HTWPS1OaGYGV1K5c/vpoVNS18fsdohvSMZVer+ylLnze0pDj1zqWUFWocOzWtmSnOV/n5nl145P0tnH63d5HRVEF9S8rT/s5qPQMS63rqc/rHzzD7TQr81FnfCX89ndUQdBQ0uakz12SbK53VRHSUOqpRyUUd0Ya5ye5H/7v3M265pMPZ6g1sXwev72j9HQUlndRqduS6H21t0ElzMG+oV+u/C6B4XAMNiwv2SJwlIkC406drHq/eNIJxF89h3bY4PWNRSsoFIQ1qm1OUlGQ63mYFTBa1tOgcd9tiPpxbR2FU5eCxpdx9fn/qGlPUNqZ4a9ZOfvXUWk7Ys4IrjupB3c4Uz362jb1/M5/v7hlHWaFGXbNOPG7QrdQU4sWTBss2tdLQlqK5zaAtaVDbmGT+2mYiIYU7f9Hvh69LEAy+/WtSR4SHEAxYsvnHdFT7HAREgo61N/dsvsC3v9pjZ88xJax7dgp/enEjZz+wnL9fOpjj9qw0efSkhBbbDA1ESlCgqNAGahjqm1Js3RqnVyicTrwILFjayLFjShFtBjKsgAq3Pr2O+qaUo61pSxgkdUk0pJBIGRyzRwVH7VYOcUk0T6UoplFbl6SsOARJkM2KeQ/DvaGZQMVIaAhNR+pmmG18kbv+9N4GTt+tG8u3trC5PkFpoZaux5N3BedZna9S8vaCWna0JFm3o5U+pQWBa7c7cpew/ivhFAhMDYhqEAknaUmlmDSgkK9XNTK8Vz4LVrQwsHsUmVDMtqgGRlJD6mZo49LKraBICmKNxJvyyS9tY/eBRZz/9xVEw4Kjx5fx3Jc1nLRXBSvWrsgyGP7nSO4ic6+fonuZ1CmQsmTJEj755BNubqxldL98+lbmcdzoSp49aje6Vkhaw8001RkMHxhD1sG7i2sZ26/A64/ipmwAJUiS4v+eUVdus4XA921totKSvjmbpAKThxTy8fd1EJXmQmEt8I3JJPe+s4mKIi13xnQbmGTL1uxro7997Sbeta6du6qZ+madIVUqR00pNyU8NlnM2cl7V/LYO1uovOAb+nfJ48Q9Kjhjv66ce2A3omHBH1/ZwO0vbuD0/brw7LVDKC3QMu6T0fYO0B3PbwBg0uBCj/SxvlnnoelbAq+Z9/AEBvTIAWo7QVnBik3ZTJc6qMFq95psWr5c9851fTYGvb12+KmTzGqnyrgpSHPlp/b6oL0xFxS9zT7uBjBuZiyImfI3I+i2gfb2uZv3g7QqnVn/2vONaa//clzvz8e3SyiH1iVjnrr9UBRvO4QEdOnJHC50sLNu+5nuIT3NNeXnB3bh1IHdmbG1lu/XNfOH5zfw+NWDM9qS85kVwd2vbaKuRWf7G1MpytMwFmt8PFtjW9Mqzt6vG2/N2smjVw/mhAnl0AYUwe4/L2LU4tl0O2MmkZAgnpSoCtzxi76cc0A3Ln98Nc9+to3eFRHWb49n3PbOM/rlaFQHKBvw+iGmkkHayPa0eu1pboL2/o4AEv9vN0DxjRsUgQTKSsPceX5/RvTL57LHVnPMXhWoCSCJud8ncfyXnHqTcPPxfbjj5fX89YyBRIXG85+blgJNjTrxFoPCfNvsCerqk/z5koFOHSldMn3mDmp3JPlqWQNHji2FegmtAvIlw6tirFjXxpTBIUgIZJuZDwXL0dwEFgIjoZFsiRDKbzPzAKmGeVKVIKGlWVJTn2KPHl0YVNrK3Z+u4Z6TB5hAxu4L1WX+ZWtWLL/b+z5dz/g+BZwyqQu3vr2W+48biqqoSAMWVzdT25pgzwGlTnJGocp0GxRJW9Igr8iMDvrkF1s4dfcujO2bz8OfbWZEnyj3f7CZR04bjAgbJLbmY+gq0lBMfxYtRbwpn3Cs1fJv0REhSV5S4+kzh/HFijpWbGvhnH27ceL9S5BKLYZhoCi72rzhh9NP5l67ljr8ZqWUrF69mttuu42tD+7OF78ayzPnDuWSA3tQ1SOJVhRnzbY4/cqiIKA5P8GD723mppN6d0y66Cwuru+K75yfhEh//PW4254DoDhlLLWtrdWcOLSQ2auakDsV4qsLkbUqtAl+/dxa3plXy+n7daW+OcDpUmD5sJB2VLcXTbdJl0tL8GOYAKlLkimDOauauOjIqsAyqhB8ctdoFj46gbED8/n3V9spK9TIj6rc+tIGHnp3Cx/dNooHzxuYBig2wAqSSnWAXvtqO3e/bEbiuPu8/k49iiZ47abhDO0VZXhP0971zAO7MmlwAX0qIoQCNtKsIEMR2aW1LsroYz9YyPYJvGeWT0fIX3eue3ekPR19J7nq6Uz7O0sdBUydfQcdqcd9zN+WwLXEdS7bu/U3x79WtXdtto//fND17WlQOtp/QW0Miqblbrrs3MchQ2Z+ctRpXkMwcDVcZXXMHCpJiUiZ2hM7+aNzvf3dekYtojCyb4y/vb2F8C8/o6cs5JETh/D21zu476WNAf0kMj+a9VFg0bpmjtuzgmJFAQXEOJ2F6nIOrhrG3a9vAuCf7281GV4ViIEIwec3jWb+TZOYfet4djy4O5/9bgyPTK+m/Bff8NH8Oj7/7RiW37AHn102CU1Jv8JoWEG6QzP/EHKPN8+z0v5cDSqTrb6g437BQNBYd89BzXUs6OO+RvXXY74jqWYCFM+zKHDqAV0oylc57o4l1NYmQUJtS5J7pm/kmn+t5u15tWYluoCUYHBxDCMJV/xjNdc8v5qt9Qm+XdvAgC55XPX0GjbVxlm9qZUZc+pIJiQiKRFWUtKQAUeOL+OrJQ0cPbGcW59ej9ypoteHMKpDNGyDsK4gmxVkUlg+IgoyriITKjKloLeZAEXqKqmWCEZcM608VImImPNmztpmJlSVMX1BHW8u2cq8jU18vrzOfHbp+hjWc0lMoBEyaIqnWF8bZ79hpfQoC3PBnj3400drEYrkgxU1vDh/Cx+t2MEnK3dYyRotgKKabXh8xmZ++c/lPPnVFuJSZ/a6Rg4aW4pQBQ+fO5D739vEuP755Bt5yCaVUHEr4aIWQvmthGKtKKqOFk4gFIOCilpamguRukCEJKiwx+BiZq5sYlxpGR9dNo5UKsXGjQHz9yf6P0MdZk9qampoaWnh+JoXCbeGka3mZCIpUApTiDzJ6p0t9KuKQAre/GYH/brkMXFgQe6KgxYb9/FcDOUPfRo3YxvgiCkkjO6bz9a6JNVNCbT8OKJAZ01DK49+VM3TVw7mb9O3cMjNC02g4t/0Ba5FVjiLpv2xmeYMyWDA9yByX/v1skYGdY+ys1mnT/e8zH6zNmohBP27R7nw8CqqdyZAgd+/sI6H393C9N+PZNKgQm/f+7u3E6Y6b83cwQm3LwFg9VOTGNrHm4sgYUjWVLdx0t4VjOqXz18vGchX945j7MB89rt+AV8urM943kDyMT6doo6AjM4yyrnq6Gw9HQVCnQE3WersKEh2j9v2Pjnv+UOBUWfrkjL7uM3FdPmZLPd9/AKIXOAjqK6g5/AzWUHP5WZOjYDj9rO6nznX87fXFz+COgVk/M8B3nHrbr8u0x/LmZg4ZmjhFOlALC7ptzMeFcEjVw/m+zXNAJzy7Hw21+i8cPpY/vTCBp58M63ZlQLe+noHVSd8Tfigz/ndP9ayYnOr1TZYWxPn+5VNVJWHIQVGvgqqYP3OBING1FFdl+CSY6v4clE9UpHIBgVjSwjaBGXFIYaNjzBkaJSiLipThhSy7IGJbHpqMksensDuowpRS5NMnZDHy1cM58w9u9K9JMT4AfnUt+iZa7tfC/Jj3uMPvT5orAdpWYLGvX1NBtAguxBAzXE+45lE+r+7jHW9qgk+u38sUsIRdyymLWFw7ZNr2HdUCXef1p9PF9WxvqbN7OeUqckoiYb40/EDuOuEAVy2X0/uPH4A1xzam3tP788fX9zIk+9Vs3F7gjXVrWzaHjfHaxMWeIaBlVHGds9Hkyrra0wfi2QC5qxvYnhRialBsZMeus2wrMzwiqqjaKaAVKiGycADMi4QmmTWlp2MHRbileXr2HN4Ic9dMIwpvUrMSgxhak6SStqvxalfct+nGzh7r27Y5mNjexWyoyUJQvLx8p3ceHA/fn9of95dvJ2b317NlS8t5+731/PtmgYe+mQj1fUJ/n7hELqVhvjNi6u59OAqE8BoElUThCwnMKFIEjtjpJosoGWYE1VPhkBI9KRGqiVtFWK3VSRUfr//UH718lqGFJdTVVbA2rVrA178/xzZ0b12xecn6sSStH79eioqKigssZIZChARA1GoQ1TSQorXF2xnyrACEPDkp1s5da9KRC7mzL1g+MHJLnqS9hOQZQIUDCiMqgzslsf8zY0osRSzNzfxyydWAvDOnJ1UlYYpiqr85pm13gVaJW1EJ7wLYy6ticc0qROSsuc+2ca5+3ajsijEoLO+5eO5O13PZn2M9OfjeXVMGFTAGX9ZznOf1fDBraMY7k5oZm8AGQycr+FZ/Dle/2Y7x96yGIAPbx9Jr255GW0+ardypgwt4ubn1nPH2X1RVMGd/17P3FXNlBZpnHuP6aeSyfAK76eTlFNrtSsZtY4Ak1wMd1A7foj0tJ063f3RKeDRAerQ9f62daBP2q0rG+Uy08vWT0H38TNk7bW5M+As6HzQtYrvfBDZ8zNoDGbri1zHO/vpLAU9h605cIMtB5RhghLp+u6uSxUOOLG1H5OHF7Hm37ux8OlJHD61nCMenct22cTe/cu58KGVHP/7xbw2YzuTfjmHs/60lD1GFTN+QD6LVjYx+cLZvDezlg3b2tjvsrmM6p/PXsOLQYLSrKM06ixb08LH62q57IgqHnptM3uNLEZuDpHcHjX3zHxTGuy0WcFMrqtCl9Iw+XZ+KM1k6g6bUMaj5w9i0V0TaGwxePmr7Zl9FjSu2htvueZye++uI+M4m1mkf5/MBUD8YCXXnIPMNdf9HNb797TDRZUlYV743XCEgMP+sJDDJ5cxbkABKHD5gT159ssaZNIyiUoKzp7anWe/3orfv6c8L8T9Zw7gtp/35eQ9K/nN0b2ZMb/eBCitwjQhM2BwVZRl69o4elQFz3xTDVLwwOcbuHBqL1Q0ZFLFaDbtxIVmICI6IqyjRHSUvCShwja0aIJIeRNKYdLUouQbpiZFgY074wzvFeXU3bvwz69rKFTCKG1RB5jIlOJ8vl/fxK1vr+XBjzfyy3+uYHiXAkaUlmC0akhDoBsSPSUwkqoVtU4gFLjrZwM4Z48q/nLyQI4aX87q2jb6dcvjxuN6g5AcPrqce08ZyLAesfQ7U+HKI3sQjaom/6hIkKZTvjQUUvEwhm4+d6I1SktTIfmF9QghMZo0ktujJP8fe+cdJkdx7e23uidtTtqknCWUkBA5miSCQQRjcjIm2MZkDJhobAyYaDI2BmPANtHYYBMNJmeJJIECynm1K2nzTuiu74/unqmp6Z6ZFbKv7/04z9PP9HRXruqq8zvn1Kn2EgaURfnpjGGc9fRcKqImy5cvzzMY//PkmXttiesb6idIqays5Oyn5vHm0g0QtSAsIQIyIrnksaVcfuxQSqImby/sYNaSLk7dtyk41yCAEkRBZip5JsyCAEUlW1kEXZq5Yx2XP7mUzr4UJ98xn9EDY3x5z3Q+XtTFUbvWc8tJI3no1XWs2ZDILouqPaE4Ji9Lwlhkr7S2J5m9sItvTa5m9e924KyDB/LY663BEaTk8J3rePXTduJJm3dv2to5DyVdCLLbMx8D5GO6tnR9H0f8wtGgfHDbVPaYWpMdzW0HIyS46+xR7Dyhkof/2cLNT63k9r+u5vidG7j2+OGs3pBwTBtU8us7P8BZBIjpt4Civ2ZVWWUKuPpLX4MZLqztEIWvYsPlafuCGpd+hC8IgPxAdLHtn/Utk59B6m9/GD55eM8071EFKcgRQyEz2KD6+z3fXNOi/oIVPazudc+VZGMpl0dC/1UAipH9rrYyzNhBJVx28jB2nFjJX+a00m0luO6I4Sxe1ctl9y3hkOm1XHj4IN75vJ3muiizF3XxqxNHcN6dXzH55A85YLtanvjJeAZXRRwztC4beiTPnTeZpz5s43u7NfDcZRN54JjxWN0RjLCFKLMy2nWvrhGy9yx6zHvUvVwAU1EaYv8pNfz80eX88O6v2NCZ7EfDBpAPs54uR7EUFLZYYKEDE1P7r88Pfpe21mYVQ+Jq25VyBVA0YnDveWN5b14H396+Nh1+YF2YpW29zFrRSUt7AmkJhtXGeHthR3aaKRzTqbiAHqAHthtYwYdzOh2A4jreIQnbDinntS/b2aqhgrYupy9XbuxjmyGVDh63DLAFdsJ0zjPx2saUiIiNCNuYFXFEpYWIeRteBLLHYO7COOVGGLvbZO9RAzh8YiOnPjQfOyWwuiPYfY6TCO+AxT990MIhkxs4YEI9Nx0yjoPHDMaKh7D6wli9YUiEGV9XwRH3f8L2Q6pACtfEC4YMiIApGTuwlKN3qOfb02r95zOvnQwY0RhjXWsCUWIhQpbjzlg6rpDNcJJQxNEshaNxwuEE4dI4VkeEVHcUI2QTKk0QKkswbliI358yhmE14f86kPINbVkqekpatmwZW2+9NTcfP5LlHXF+8PBCfv/2Wt5d0MGVjyzj8B3rGN1cAgZc+/RyfnRAs+OlQs1JZxA2F6DkoUDGRTfx8stGfSwEvzhpGKUlJtN/MQtLSm49dSQjm2M8N2sjh207gIkDy9hpXCVPvdeaPWm695srgS5EHqBZ6W6u/M5NX7ChK8mB29Tyyscbc81BPEmkDZOGlvHeLVN55vKJ1FaEcxeSggXUAIpCK9fHqa0Isf6xnZg2tiLrvVqve55Zza7nfkpVickz77Xx2Gvrue/UMfxs/5FsN7yC3rhNR4/CheQDl19Ds+Kfns+zYkxm/pN7PfJQcRqM4sBcTpz+UJEAZktqbpx8tRdB5m9FAryiw+WjIFOtwMpspgnj5sQvBCa+7hgOSj9I8+KnNdG1Jxa5jGeawfXm31yA4qSZaZufHD2Ef3y4gefnbOSqvy5j6IAob181lY5uiyseXs6jF4/nqWsmsrI1wadLu9lnSjXP/Gwid5w8CtErHMZUAgmg18n/8Mn1vPjxJvZqbCDWWYMI2YRq4w7g0Jk2U0A4s14QwgnngRev/BLO3n8glx02hFc+3cjEM2fx13c1YZQ6j+vU3z70G9v5gK1fWPUK+TxT+0YXCOQD+Ol4Imut9c1XJ3U/hv4cmDi8lOqyMO9+1ZFOwwgLOuMpXp+3kSv+uhQpJY+8t47v79qc1S5SOpoWmRSOKXyvQViYxHtBJtxypoAEDKqIsa496RzKKAQIiWGIzMnsOKZdMmUik6bjBSuZmbdExEbEZKavLYHsc0DI9c+v4KLdx2L1hrH7wmxdX8vMCU28OL/VMaHqCztaFMvgwXfWMqSyhAkDKhleWU7MCGOnnI08dsrEioexEyFO3WEYl+8/kpfnt/HZqk63DUV+jZxPH/z9ozbO/8Nijt6hARGxMUuSiJDt1FUK50DHkIXn2jha3k2qL0yyy7HGMCvimLUJjMoUoszGrLKYPCTCsmXL8hTkP0/fmHttWSp6+lq1ahWDBg0iWik4fq8G7j1zNBNGlfHwGy3UVYT41thq6IO3Frbz7oJOzj1kUP4EC0hR85bYJ3xBhiwfBYCWSNjgscvGc8D2tbz8y8mEIwZCQF/CpjpmggWH7lDHM++1+WpP+kN+kmL9nZ7mhKGOmVZFmckpdy1gRH2Mla1xLM9mWwcr7u/0keWY+mn2foxZTiFloAmbFLDL5CrWPb4T1ZWhwHKvWB/novsW8+ODBzKgIowpBPecMpoDR9eDKakqNTEN2NDpuSH+93yoefsnUELow/AGMb6bk28RlE+bkGHU8wAEn82jX+tSya/evuGKKF8/KWvjNeQXbGzuBnOdQQpKKyjvfCZR/QE9eaTHRZPf/LC5WhOP8u2ByVd3fS+NGl4FJhYOo+fXdt6v4fON+TGmwN7Ta1j9l5144aYpfHT/tqztStLww/f4bKWzb2XY8BIMQ3DEHvWkbMmydXFG1pRgJoUDTOKk98bIHgNKJOHOClLdgp6WaoRhY1YlHA+RfmWy3EKZ5GqKbDKepgQ0VkR4b34nb14xhdtOGsVJty3g5dkbKZr6C6z94uSLW8wcIbRL3deVb19WHnBSlEDDwB/wamNCmILvHdjEhfcvoaPX2Wv6xvx2dhpXyQUHDWFUQ4w3F2/itQUbGVgdJe3S12+dxbF0qIo5+y1kpwGdwgEcQFnEQOAAlIyXLDt9ScsxzbJTBnY8hEwajqbGq08KSAiIC2RcIOMmS9f3MbGhkqhpIlMmqb4wVjLEzK2a+ducFj5f0875z87hD2+38ONHF5BKCn6403BkKoSdNB13xqbjocIwbefkeNet8LQhFdx7zHhuf30FG7ssB5C5m+7TZZIiU39TZp659MHCLspjJtU1JlgCo8L1TAZpYGRbBkbIIpWIIEyb7o5qEBIzlnQO0o5Kx2yyXEIZDGmKsGrVqgID4D9L35h7bVkqespas2YNzc3NEMPxVBITrN6UYPyIUs797mCIOWZflz+yjPMOGcSAynDwoqdLPfMtjrrJgg/1m/Hz0ar4mloJQVNNhNvPGMUg17WvkIJISJBISUgK6krCbOzKnOuRb9Is6FbYJSmCw6oMaThikHhuV168bjIfL+nm06Vd1FeFuU917+vZdUN+u3y/+3TBcyuk1zOZspm9oJN4yvZnmN373zy3hnhScsczq/lidS+7Ta7k3AcXIS3BI7PXsNfPPicaMuiOWzl5bmkqWmpf7P6SIvLyXF33V1ughi9orhVUvv4wKsWWLUjaqefTnzIUAVQCPUP1p7xqmc08ADQIgPht7i6G1Hmvv/s4CmmVg8aqPgfkYwQ3p1xqG+ib+Atdfnl6jKQKVDzNRVBz6/XOAUO59yVRk72mVTN+cAnPXjeJXSZV8q/P2qmvzFgBnH/EYJ6ftYGDptUypN5ZB2TCgD6R9t7lbV6uC9fz13e6WB9ZzVxrDe+u2kRvwt3w7u1X9BwvWDib/hM4JkK9QLd79QI9bn1MkH0GqSRURsIcOb2BW48bxel3KWdESOXXAwF+VGhNLkTFCC50MOJd+hyB8jxoXggSBlFYYJNrTUHuONfG0pUnDqOpNsJel3/Oh4s7eey99fx4f8dr5l4Tq7nz9ZXUVYQY31SaGZ+GV1TXHa87Ib0wZwMHb13nhEs5LoW9Q5qlAd55JWnXwAJnD0rIAQdOWmS0KykD2Wtid4XSWpt1G5Isb4mT6o7yzNwWZk5oJtUXda54lERvCRs6DLriSf61aAOn7TSY0fUl/PrQrfje9oNzule6G9i9U+WlnWnEcEhw3t6DufTZhXTEk1kn2Ke/WRUQphN1fn5+7DB+fswwLnt0KR3dKeeQSikc7Ylr9oXbHqV17aR6o86ZI8lwxoNYFCgRUCogCk11Ydas8T/O4Bv6v0FFg5S1a9fS1NQEYYGMGLw6t53Plndz1mGD0mrrf8zewLyVPZwT4AoXyAUo+agIMy91Ispi7AtJZTXPUNmMtfdQZv4r5S2NGmzsTmF3m8xf0cvEoaX+EjytTEHv/QCJr7maX50MQXVlmMN2HcC9L67h1u+P5ML7FrP1D2fx2eKu/ADFq1d/GKSAfjv15gXsdv6nHPHzL0hZMres7ubFbcaWM3pQjPfu3Ya375pGa0eK42c00lbRy+n3fcU78zuIRQzGNJdQUOrvVx+tbTZbWl9ofPZTMhl05kQxi2vesVCMZkRlWoIYCP1Cu/fo60rbs+oR8Nz7LtV+Uu6z3dy6lxXAueoAQmeEg8rg99xjqj0PU94zz6TSe56UDkPtXV6+apo6CCgWGKjMfSFzKZ2C8tocUFJMfn75++Xjp9HRk9RNpfwAiNsm6b0Ierx8JJ0N1M9eP5nXbtuaBX/a3jkZ3oZtx5Rz6w9HcfkTy5z9ICZY7RG6l9Vht4UcxrPSNacd2cePtpvOX2a38sWqHla0xjnt3oWs2uSafEUFstRAxgznfwLkBgO50UR2GMgew2Fmk858Kbudd3e+uZJoTJBw91h8e1ItKzck2Ouyz9jUmcpuM++3GOCRD9AUEy9o7vATWnj/deBiUFgg4DPfipT0X/P1Sx87ehmV+S4SNnji6onM3HUAe172GbOXdGEJCSHJduPLefLcragsD9FnJBEldlZ59MP3vlrfy7iBJen0pSVAgEwKyqMmrX19mCGIkyIUAktYaZe+ImRjRFLOvg0zUwHvXsZNlq9NcsmTS7jnlXVc+uIXLGjpYWhVWXqCFEJiGDZ//WIV5+68FWdsM4nxtbXsMLgOw8DxIOYBDemBE4ch8bQawrQds6+kYwY2aVA5Vxw8jPOeWkB7l+0AdLUTvJPsvbawcfbpuFRVGuLimUO48InFbOhMYpQ6x1eEyuKYkSRGyHL2cJk2qUSEiuoNxOMxUt2up68wyLBARhw+tLEhwtq1a/lvIj/P65t7fUP9ACmeJkWGBbMWdvLcBxu44oRh6fe9PSnOv28xVx87jMpS7YxIfTLIYSb7X1I/hl8KcplQv54u1Pv5TEYMOGiHOm76+0qufnURt720igO3rw2UiheSlqvfc143nX4jV6nnVccP5YsVPTz8rxauO344355ey8FXzWX24q50uXMWC3zu9UU9ACiq5Xzh/Q384/0NzLplGnOWdPPCBxuy01YWpsN3r+eLP2zPaPfAxm3HV/DG5+2UlRpUlTm7SI/eq55I1MgtW1Z7BJS/kJQvHS67XkVJ3sj9X0gjUlBrUsQm86ywqitNvXz5mAa0+3RGBS7V/p+AvL4O6f3rB1Dc57nncLi/ustd778plD0KPnmpUj8VaOi/HvDQmWzvWdA3pUps/X7VMCH8y+hHnmmQa2rkawYVBB6CNBl+4TY3brHgxw+keeMunacWV11D9LHt9WE6fb86+JRDYerLS0x2nlTlHNSr5HvEbvU01YR5d2EnAGZ5gnBJH8n2krTGQ3Y5B9KNqK7hh1tP5Ljtmjhql3ru/MFornh0GU+928rT77Zx/wtreObtVrBdEJIwsOMmafOhpEAmRNrtqgzZzF/ey29PGEdVJAQhaKyLsOKe7aksMdnvZ3NYtdHZn7h6Q5y3v+xgwcpeZH+5nHzfsj6nFDPPBmlVvDCqm36UOPnmbXecSIHzbeMv5MuEd9fMtODRpz5k/8aiBlecOIwFj2xP0pYce8d8uqSV3iuUsGzeW9KhbGSXzmVKp04hh3Fv701RETMdIBByziHxziQ5ebcG7vjXKspjBkfcM5fn5rSxx62z2e3m2ex08ywe/GClo1ExlcoJ6ZZZ8t7SjVz17GJuPngCP58xnjOmj+Hm/adjGs6BiEY4iRlO0pOK8+HKDUxpriAcTmQAhXZCfdbkqiw6QriaIelu5E8ZDCwv4aoDR3Lzq8scU0dvP46r3cmai8LSMdGC9FqyVVMpV84cxtXPLnVATsTGrEkSbu4hMrgbsyqJCNsYho2UgqqBLUSbuhwrHlfoI0MCwoLGoSWsW7cOy/r3W14US9+Ye21ZKhqkrFu3jsbGRuav7OGB59dy3ekjM+PahpueWkVNeTjj0UtdiKF/GhSfUuqSZi9f54R4VXKixPM5A6VfJx5DrprZgAuPGMyHS7r4qrWXJy7biiP3bOh3lfIeZuYTtqMrRU+vlRXXKZNT7+rKMN/eoY7xQ0r5bEkPIgVbDy9j5s/msnKDcnpxPumxGsaPchhKeOXjjRx7/Tx+feh4tqouZcY2Nfz4zq+45ckVbHA9lyBwJueE0sAuA3zmIQOZv7KH6Wd9TNgU3Hj6SK4+aXim34qRhOp1CmLS9Tr4aFYCNRoFwEmh/7556l6z/N5nPS+ingHatkANkl87eQxjyj2ILCkRcQkpqTHC+DN9xZCvRF1jMLXD/wLjeWDEFMiQe5kBGqp8GjA/TaGB/wbnEM6zsMg2FTOVZ959WGTH8e6VcmfFz/dfzcPbaB0m4/ZcBwYe2PIDFfnMGPvhrKRflA/A5AhmlHu17b06qwIQjZH1BbMeecDbDxB5Vxo8ZQI010WZv6IHwiBiEiPsMkZlEroE8TUVrF87iL5UlJLmTYhKG8JQXRnip0cNob4yzIDyENuPruAvb6xHtkCqLUZiYxnxTeVYPWEnb1NmvkcTPlsYp9KMOaeQWy4TKCRNlREeP28rastMhp/6IfXHv8uw73/IcTfNY5vzZjPq9A8557eL+Oirzoy3xEJA2A9U5JkH8wpE9O/NV7Ai8n+TQcXU+jfjyStzCVfbKSTZc5efMMaHmuuivPCrKWzoTrHdRR/zwYpOCMOvThjB/LW93P7iKnd+cBfkdJ0csLLdqAr+tWBjuh1ESIIJ89f0cts/V3Hriyt5fFYLo4fEOPeQQZx3yCDOmTmQM2Y08ZMnF3PveyszJ7kLwAUDwpA8ObuVu44bQ2WJ4wFsUHk5oWgcM5xKAwth2Kzu6WCn4dWYYQszksAIpxxTMkHak5gQEiNku3k5dRGmjRl2EEFaoxNytTi2YGhVKVHD5L6X12MlpaNBsUD2Keev2DgaQW/Met9dCAbXRhk3oIx353RDTDp7THBBu7vXxYwkiFT2YpSloFY6nmRjAmFJjB4bGTVoaIphWRZtbW3FD55v6H8VhQoHAcuy2LhxI8lkktsfXcEd54whZIr0Ijh/RTc3Pb2Sl34xObMhW5/I9Gcoz7wvRqViFkkXvGRJX7MWNiUNHZwYIhiw6BJQtTwGTBxRxqKHt/c14fH2HPhRwT0puqTVzS9lSwYd8x7xpKSuMsTogSWMH1LKtacMp74mkq7PV6t7OWqXevbYvYqKkElTfZhT7l7Iufcu4slLJ2TXLYiy+i24D2xbcsffVnPZ75dw7/fHcNy0OjBs7jltNM9s08a1T6zgFw8tY+ljO1LlnmIvTZFZENw6jh1ayge/mc4D/1jDh/M7OXPmQIwsM5887QSZPrTJMPKF2tmToGc98ybW4MjF7CHJvyG/QAJB70Pu881NO59ENR9jiCex1NPy+cZ1oURgWbS0fNo966wgn29Rmplw/d2PlrPfy9DfqXOGFll3NqFSkDbSczbht5fFL40gjYNO6l4OP01OMVTsnLu5e248KkbQEJSFCkCC7sHpG62cQuJoE0IB9fIT2PjMLd54+XxJN5ccNthZd/oEic5SQiV9UCGwW0J0dVQD0FS3GlFuZ3noGtNYwphBJWDDpo4UA8rDyL4QUgpCpXHn9PBECCNuIaIu+Ek45R5fOYBIaD0PvrWW7UZWMHFQGUhHih8JGxy4TR3XHzeCjl4LMyzYeWwlPb0WJ9wxn7bOJDOunMN2o8t59OKtqClzl3y/Nc6PgsZU0KegAxq/tIrYZ5pD6nxga/+NgHnABmFkfqU333hhgzR2SpnqqsO8eOMUbnl8JTMu+5xHLhrPQVNq+cF+zZz9wKL03BhP2Xy5qocvVvawdlOC0pjJXhOruPmZVew9pQaAjZ1Jznp4EU/PauWIXQbw2i+nsO3YCrdNsssxZlAJB/x8LodNH0BjLOpsnMfRwiRTNlJKSswwEhvbMjFCDvhQ95AIQxIyIWE7HrOMiAtQTNvZjK/sAUFIBAJU07L0OSYOmJHSAkuwpDXOl+s7mTmhiS/XdXLew0v49XfHZWtiUnYGbBs4m96978EGyiSnH9jAL59aweJECcfv3QAxEK6azO41idZ3OQCnVDpOJCLuN+0KgUTcptQUlJaW0tbWRkND/4XF/w7aUp65vvHu5VBRIGXjxo1IKXnggQe4+YxRxMKZr7i31+Lo6+bxwwOa2WFsRe5i4wdQ/BhhFahok1iOyYu7eAT2YQDzk5VGMeQzgerScpVyQEg+IFRk3lKAGTaoLA1x5cFD2XZoJV9t7OHh99Zx8o3z+fsvJiHc/thpYiVPvrOe03ZpQnY79qTXfn84407/iHkrexg/uDSTtt/ilG/BUN4lkjbHXjePTxd3cdAOdRy/WwMknEnIsByg+PGibgYNiFARNYMZYZfhDZmC02cO5PSUAjYLtY2bRtaeH88nvq5RU/NUGTrfNsjuM9/9IFnpFtm/6t6RYpi2Yhdvb3GVMsNEe2VS8ERWeI9sJazvhntt/Kr/gxgQ8GcC9DqnwaUsDrz7MCL9ncNzTSi190FAo1jS46hmaMUIXTYHoPgwbJtNfqClvwBlc9oNssdpWkscEEaXxKPca6AzXaZCTHnA+FTHzA7jK/hkWTd7TqpGhCRmJIGdDGGXG/SsryZphampaqN02EbHNEU1MRKk+2r2wi72nFiF1R0h1RclVtpJuKIXqzeCFQ85n7EbR5g2oZIElx4yiKPumcfL8zbw8ImTMaQFQvDi5xv4dGkXP9iniXDIcPKxoLPHYuLgMn5+1DC6eixOuGs+37rkM565cgLDGmLBbVyI/IZxsYIvPzftxZLafwbZfRpA0szWwAoDSEpHWOZp4KTySyasmqdpCn5yzBBGDyrh+Bvmcd5hgzn3gIGEQoINXUnue3Utt/1jNfGUzYQhpQyui9LameS8hxaTsiRftfUytDrGX2e1scfEShb+ZlsG1mVOU89aE1ymfteJVew9uYprnlnGHUeNdfeKQEtXnBteXMGA2hCixMJqixEujWdYJxxA4dGoAaXc994KhOF66gpbzsn1IRtSBhiSues6ue21ZYwaUMr3dxzMgJIouO6Qu7slXXGLN5e18eK8VkdJJEwOn9LEO4vaaU8kiZgG7yzoZKfRlU67WyAMI60FEqbtmMolhHNQaRQkklCV4GcnD+P8BxZzfLjB2RRvgFxvpDtOVLqA3QRSIGMuSBGCucu6uefJVZSVlf1XaVK2lKnWN+ZeDhUFUlpbWymJhbnj+AWInoytrrAk5/92MeUxk18cP6y4HPNJ6vN6UBJZ91JbRHKADOQHKD7v8nnVSuehx/djagPyUPee6GV2zNa05wqzfduZo/jhrxfyztVTObJ5IAduXcv2V3/M9Y+t4Kdu2x+/XyO3PLES6UkwTGiuiDC8Icry9XEHpBTLJOeRdp1z9yJmf9XJJUcOYcHyXp75YAOWsCmNmQxrivL0+200VodZ9ND2jlYkSzqp3Bcy6VKlpuArbVX7LFCyXih9P62Kn+atPxTkZUv9LYY8IOEHvLz3hSgfn1lIa4X+PqAcavACYMDXjCunXNn3m62d1Ckv07+Zi0K+NIP+B1EhMKO76dWB6Ncx51TJUPLK+T6KiP91KB8jrDO8xQLLQA2eX9hcgAJQXR5yNs4ngRCEyuJYvRFEr008XkLISFHStAkqZG4bSZx4QF/SJuruuQtFE2BI7HgoUy2vT4UkkYAXF67h2c/aOH/GIF75agOvLGth3/G1ADz3yQbuO22MIwV33RWD44kp6lo7lEdNnjh3K374wFccc+M8nr1iInUVYfpF+TQk+nPdTC9dsS1ERY1fZw6XQhM+QEYbrILIIuiw3QcweMAULv7tYu56djU15SF+98pathtTzu/PG8uMbaudc09c6kvYtG5K8vS7baxYG+flX0xi+uhyJ4wuLNPXZQE3nzKSnS76FEMIhA3PfNxGS2eSREoypinGT2YOIlSaTLssRuJscMdOAxVDQFcixZquHgZHI9hJ0zVTdDLr7EtxxxvLuOu7W7FyY5xrX17MmPpSdhhWxZTBZfzspUVUREJsM6SS3xw5AaSRTnuvMbVgSKwU/OjJL5i9qp2lG3vp6LXYYXglp+w0yNXGgJA2dkcIEbFIyRRn3f8VZeUhEBC3bH5091dUV4S44OBB1IYNZ/iHpANubNjQkaSs3CSCybK1fXyxopfn3mnllnNH8+G8L2ltzXOI9Tf0v5qKAiltbW3UVsYcG0+FAf/dP9bw9NutvH/zVEeKA9lMiq5FKdKUKE15mJPcsJqkupAGpQCQyJuHfq/G1cMEgCE9HalLrCGLST9i7wY+XNDFd+/4kpfO3JqGigiP/mQ8+1zxOQOqw5x20EAG1UVJpCSL2voYXelsTJcJyYauFKUxo/Di4lEegPLnf7Xw1FutfH+/RsrDJrtvVcmCxT3suHUFnb0WB/1yLqMHxXj+l5OzzbYKUZBEX2j3qgTQndRV1755wUEQ5TP/2pxwvmOvQBkKUTHMmN8erLwAJc87r63zaUy8cGo+RQKU/oILHdj7xi9kvqNS0MbwfPNSsen7pa3H9WPk9LhqWfy8lPm1dSEpczGMvG76EqThKVaCrqadL04+MOS3dvgxxb591I/Blifs+vYk7Z0pkI65l7QM5/yGLkk8GaW2bh2iwsp8E3ofueXcYVQFtz23mn1m1DkH8bng+IbXF/Dox2vZe6tqth9VwYeLOzEMwT6Tq7n7pDGEqyS77lzOqXctZMb0arAdwJOzr8KE2tIwi1v6SCZtwiGDkCm48jtD2f2qT9n78s+Z/etpGAXdWfs8C+qToDAQPI7tgHXGJvc7CBLQBI5zZZ7RwgnpNpcfOChA242v5JWbt+aNTzYxb0UPO0+oYsqIMt/vOxY1GdxoctYhmrdTPawPQMGAUYNK+OvlE3jgxbVICXedNpqxQ0poro2w3YUfc9ZDi7jhuyOpDIcRloVMZOxyhZDOAYlCcP1BY/nVK4u5buZYsAykaZNISsIG/HNBG8du20Q0IhhZX8Kth43n8zUdfL66i8c+XktzVYTz9hjhdIcl0iZiQkhH2yLANAR3HD6BL9Z1cfqOZRhC8Mt/LuLpT1vYb/wAkljUlgoWrO6jtSPFw3OX0d5lc/dpIzBK3TGQgnXtCX76x6Uct2s9e4yphrjASkpufHYlLZ1J2npSVFeaJIE9tq/llgvGEpZQVxH6r9KkqMrtr5vON1QkSOno6KC63Nv7AKQkb33azgX3LebZKyY66mOdigUogdJs9V4L75n0uJKSwDgBnrCy8/EHEjlh9Pw9KpRHPiY2SzpeWBX+y9NGsKo1zu63fMxzp09j6vhy/nbVRA66ai49cZtzvjuYUw9o4rS7F/LPqyZjIkgJSVtniubaiE/ZtP8FbIU/mN/JD29fyJ8u3ooDp9VAAn768BIu/fZQKhpN/vxGC0lb8vjPJlJRGspum3yaCT/mOoh0Sb06DrLS9K+Dr6Qfn7BB8YtZ1HI2rhcInzctcuulpxs0Hr8uBbWVSoVASda7AOa9P0Uq1P79ASV+belnclosFeP6V38WVB9Vk1EoLb/3ajrFxoVcgOLnNMfSfsGfoc0HzNSyFaOpUdPywKSt/dfC5t2zVOA78dt4P7Q+yoqWONiQ6oiS6o0SG9gB3U4msebOzDdjKXE1c7y6ijCWJVmc7GZUdQl0G5gyxaUzB7Our5dbjxvJ24s62HdKNQ0Dwk48IZG1BguXdjNuSImzcltwwNY13PnCan6wd7MjKJQiPW7227qG179sZx93T8TDr6/jmYsnMuOaz3nriw52n1SVqaNa380FJ4VIdZsNYMjMXiKLbPPClBIvJB1A46d98IqslN9PkBE8DvKUN+CdEII9tq5mj62rnbQhe98eivbGJhekGT7PwJdX2nliJTtvVZl54Nb9zz8Zz4/uWcTFTy7m3uPHIpOZDetCgDQkwgYpBdUlYaJhgy9WdzOhqZynP27l73PXUxkLsbq9jyv2H+keIgnSFkwZUsaUIWUcazW7Z6HYDrhx08y0A24jO2fHTR3k7q8xJFceMIrfvbOCMx6by5CaGD1WkjENpdSHy7l85nAWrOjlj6+s54T9Gpy264HGcIR7LhjLnX9fw99mLaav0yaRsjlyt3pmbF9Dn21z+h1fcfdPx1JSEXHWxV6LqlJBR0dHUC9+Q//LqWiQUlEaQhogLFi0opcjf/kFN35/BLtPcSc6XRKgUj4pmF8Yl7IYT1+GUZDXFKYQ49sfcKKWoViJuh43PTn7ACN1UgtYBEKm4KFLx3PKDfO57NlF/HnweHYZVMmLV0/i4F/Mpa4qzI1njGToMe/z+Zpupg4rJxwzGFwXYeX6OKOaS7LzyldWlz5b0s1v/7GGDxd0MmdJN9d+bwQHTqmBFMxf0UOiGyqqnBl61qIuJg0ro7zEzAEoeRcMv/0ankpem/xzyukBViWvvH2ha/mKMTcKeldIEheUhl68QkAgB5gVyMcbX3oddWl2viEbpKkohorxoKcymJB//4P6TmX+AttXZBjX/pzh4afRCDogUO/3QiComOf5yqPG89OiBMXP0WTliaNrw4K0PSp5Y1ONozO8OVJy0nsnstcGrex5y6swdjYOw+sDLFUNXL9NA72cpOS9eZ088moLs2+dBhakeqPOqdiVNrLNpG7A2jQISZdbB3EGjgvblM3aTQlnv14MRMhGthoI0zHTEsJgt3FVjvtWqcS1JV8s72HHUZVpN6+HbFPH/a+t5YXPNnLwtAEuU+xkuWx9HzOmON42+xI26zqSTB5axkHT63jmg7ZskAL+80HQXOMH4gu5s9bHk5p2CrL6NGstwOlf9YT3PPNzluMNtcwq6ftWlfsscOvjfCfHXNsnTHq86WM/n9OMdAVEBsz4aV2ArceW84dzxjLx7Flcc8gIag1HUOyZfgkE0pDOxnNDcsleI7no7/M5ZFID7yzZxP3HOY507npjOaWxTJnSBzQKr8Du35CFkI7Wz9P8SYljZqj2jVdFITlph0Esauvl2oPGYpYmMgdFmjaDxsQ458+LOGFXAdXS2cOVAMMQ/Pi4oZjrE9gmbNqUpDYWRkYEf3p5Pcfv20CZaSKTNjJsICxJZcl/F0iRMqNx+rrpfENFykQ6OjqoKDcRNnw4t4PdL/yUk/dp5PT9mwunrk5qQQBFo4y70OIBjW++6qVToGcvkbn09ILSKLT/wO/ejwQOUy60C9ISTsMQXHPqCP7xRStvrtyI3RZm+6EV/OH8sZx9x1esWB/nwO1r+d6tC1i4shcMZxPeTx9cmnFDCZn+CDjNF6A3brH7+Z+QsiUXHjGYOfdO55xvD3QlQXD7M2u45rsjnMAWXPydIcz+qpMnXlufaUNbItzFOqdfC5FBNuOkAwytvOpmbOdXuSB74dLTU9uaAs/1vPX+DernoHRU5ixfmb08/MKpaetjO72YkhlfpvDvB910JKc8Mu8lrMx5JjmXpaSlnzauHsao1zloo7jeDt6lHrToVw8/fXx/pcP5AEo+fb8faMgXNqi8+lguJn5/tFbqmHG/90DXtILcMeZdenreqet+34hULv18HpXUb8xzyewHJpUra+x5Z99YMnfcqJdL59+3mN0v/JSLjxjM6NoSZJ+BMGyiZT1gQbytjEhjdyadFM7+Ey9PFajZ0N1lk0w5tvwIIAxGcwpRZWOYgofeXsu85b3OIXiua1fAObwwAd29mQlVCMExOzfw3Kcbkdg8+m4LD7y2jj++2cL81b30JGxSKcnfPmzj21NrwYaZ02t59v0NSBW1fV2AEkQ6WFBddKtOczyX2l4Y0+eZX7mCvg0fl9u+Z4+p934OebTzyVQA481pwsoO41GOK/ug9cFvHdaOPciJY0NFuYltQ2mJQIRtbFvSk7AQhiRhWU5yrreuWNTggj2Hc+vrSzn3W8PSk/KX67oZWhdFPfU+7e3LdK80cHE8gxlhy3FZrMiCMCQY7lkxbiMJMl0gbYFMms5ZKrYzbisrDNr6EmCCrDeRDQZikw2GINUUhbIQNQ1RZKWBLDH4ZEkP++xUB5ZExO10m1eWQ3t7O/8t5LBq4mtfmylT+T9HxWtSSgSPvrSOH/16IT87fijnHDwoO1CWpkD79WGAC4JEP+2IJ7VTKci9ZCHK8lRUhHTDyx+lDF4ausmXXn9VqpmecLzJqEA51fqazv/B9VFu+dEoDr5hLrcePpaTd25m/4m1/OCAJnY95xMGVIYQQrDjxZ/wyPnjuPeU0Qz90Qe8/UUHu050pWcBntQWrOjhpqdWcsERg/lkcTeVpSHu+dEohOf73AJ6YV1fgrpwCTFM52EK6ivDHLdnA/94r805O8ab9E2lvkGaB7V9bOjqtRh78of84dyx7LtbnT+A0Nsnr+ctHymcd6+DFT3doPz08ucjof16lAUIlPHopecxen5j32Me1XS8cEHt5aWvtk0xs6EPqC/apbZKOnAICl8Mk5+vzfMx5EHAzy+9QvtUgjaX58vTD2zrc2e+NPza3S9N/V3Q+yDqh8YV8K+jOkbVvIspRz7hVCF3ycWME09Cr/73wrvpSym59+9reO36KewyphJ7TYhUVxSkwLYM7PVhog1diLB0XK56AAsy4EQFegbU1ISYuV0tv35uJb86ZWRWvld9dwgXPbSUOct7uOE7oxCG7aRnAl3OSfMX/mkxB0yuTX+A7d0Woxpi/PbVNbzwySauPGwYm3qSSBuuenw5bV1JRjXGuOHYEZAS7D2hmjUbEzz7/gYO3q42s9k733egtElWWJW89943Y8ncePlICOf8G7U/hDJvq8+9MqjP8vWzqQjIfLR0OdoTbb4TEqTpMo6KmbkAh2k2fcrpljH4IF+f8B4VoQH+ckUPNeUmVz65DGzBsvVxxtSX0t1ns3JjnObKKGHTIJ6yGdNQyuFTGiiPmgyuD4F0zMDrK8KO9s7MgLq0G2ORmVSEoZdHZurv/WYhOJuQAV+s7WLeui4mjgmD7ezj8tI6eptG/vhKG2fPbEKEbWREQJlAxC0H+IUNJEa6ncIuuJWKgE2WmFRUhVmzaUPB9vqG/ndSUSClr6+PuYs28dpH63j4wrEctF2df0AftaTfprf+nr7tpKP8SshS0aoMXL5J1pc5Frnh/PL1e+YHctQJ0PPRr07+alnVtCXOgVOGyDVx0idlCace1MyowTEOumQOe+9QzjAjxi9PHM6hOw2gN2lxw5MrkVJy9I3z+PVpIzlgeg1PvdWaASl6nW1o705x+M+/YGNXiodeXkdJ1OSS7w5GWILFLX2sao2z4/gKwmUGf/rHeo7aqxpRbUGfcA5kEmAIwZylPazfEKe+OpJeFFrbk9RVhhA+HpSeeGM9tzy+ghdumOKcqWLAQ6+so7U9yQ/v+YobheSw3QbklltlhPS2Uih9XkIaVOJK88hm4Dzm3o/JTycWUAb1fRDAgewFMAd0KMxCvnHnZwLnLcCQOy51gOGnafFbEwPa0pfyMel+mob+kl8cP2bFABkS2QeHFpNOPgYtiAoBlByNUMB/P7ASmKcSxq+8hXib/gBLtX2DyurD8PnWM+h7ygeuVCqmX/z6I625I+vcEt80daGaDb/403JSlqS+KgxJMCpT9K2pI5mMUt28zjlozhs7IaU+Xp3dpE65YwG15SGQYNnOmRSfLutCSpfBtQALXpvTznajKjhl9yYw7DSDTQhIQigiiJkG783vYHhdCU/PamXOim62GVxORzzFd3YYwLTRzkbuPSfWgCmxbInpzQWmpDRi8rMjh3LiLfN59OLx7D+9tvg2KZb89l4UE0ddH7z+1AGAqk1WSf3vgUxvrgza16d5GgziTdLnsWlWFlIb3KonsYKC2ELfut526t4VG976ooMZ02q44WDHRfEFTyzimpmjQMK9b6xi+6FVjK4vpaLEZN7abh76aCUzJta4acOsVe3sMLIyG4CYuY5vpacNzDp/AceNsZDp81mEIbPcHz/9SSu7jKxhfFMZWEkHoHjmaCGbiipBT8JCdpuImIUoAzZKxAobe7LbcWEnTyNugQsUnQduPyRtomFBvKOnQGP+58jv3NzNTecbKhKkJBIJsCWz7pjG4AHR/B+XLu0K+mjV/SQ66QAEshnIfPHzLWY6UMnnfjXfBOOCpLRtatC+GDV9U4mrpq8OxHD2JBBYNkD02ew5tYb9t6/lwbfXcdWxwzAMwQ7jnM1rO42r5JBffMH4IaVc+MASOnosfn7CMDey8P0CHn1tPeUxk+P2bGDcoBL2nFxFS3uSR/7VwrwVPUwZWsZFbyzBSsH4ISVMHFcG3TjmD9UWWHDZYUN478sO9r7wM166YQpNA6L8+rEVXHTfErYeWcbMHesY3hSjpiqMZUvendPOLU+tAqC7z6KqwhmSb83p4KxvD0QIuPevq7NBirou5GMsVc9p3ngJKZOct29DKunkY6j8qBjQopbH7wyT9D6LgO9BjxtEtivJ1Q8dzOeS26/MELiQ95vyaU4KUbHhNWZZJGQwA+1HhRjgfKuFrf36xg+IowgdCs43atxix39QfvnCqN+C/k4l773i9ta3rPnqqAsI/Mrk14cG2X2ib5rXy9kf4ImTdjJl8/ibbdz4xEqmjSpj3pIeRqcqsfpClFR3UB5NIWJWJn1PiwLOGVWldiZfAzp6U1x8+GDGNZem67XdxR/zzLutHLJDPa/N3sTj77Qyoq6Es/Yb6OxHcZXUGDgrtQn0wS+PHs6tf1/Fw+taOONbA/nhPs1k2SDZZC22pucG3ksHOH/mYP4xewMrWxP+bVAInBTSAPTHlXZQfHcey9nfUey8YCjAw0+gGOTZM58znBztTXZ6fsAk0BNhPvJrvyxNluSTJV0kUpIH3l6DYUBLR8I144ITd2riimcX0x23+PbEARw0qZ7LBo1wC+MUaFV7HzuMrMwcuihxQKIqqHM9eDlRfCqihjEkImRBStDSmeCtJRu55TtjEOEkMmUgws5CJ5POATa/fWkdP957IKmuCGYqhVGawuqIYtbHEQmBLA1BynaGdKlJ2gJFWc/WtcZ54G+rmb5jb4EG/c+RZ661JdL5v0YdHR1UVlb2K05RICWZTLLHlBoHoEDwZBFg3hW8UToPQ+al70mV/TQRXrhieaigiSELWBVIwyLNTEqdqVQX1UJp6pofTxLuMZoFyipjzs3Rezdw7e+XceW+IxAVNpQ4YaJhg7t/NJqpZ83moYvGccCOdUQNkW37r6nvl6ztY7uxFVxy+GBufHol78/vZHhjjLqKENecPBxsOHK3eujFGTkJwCTtdrNP2mxz4ce0diQZUh9l4epe/vJ2K9f8cTn3nD6at7/o4IHn17Jqo7MwThpaSk+fU9HbzxzFwPrMAVfJlE1jTZhozOTzVT5SEj8tik87OfdePZVx5aeN8No832b9QhQ0fnSQkQVelDB+aUggKbM1P36akyBmtxDI0DUpWwJMFNKebI42pb9l+Doam/4ytv1NX88rXxf5aSl0oOKl4xfHLz+/50FaGh24CLLTz2f2pddRH5+FBF5+ICxn3SlyAShUf4UueWApf3mnlXt/MJpjdhvAo/9s44TnFnPnwdOpbNyEUZFymDuPhJuuBSJmZ80hmzpTNFRFOOPer3jtminp5+//amt+8cQK3vhkMWVRk7tOHo0IkdmHAY75kwpWAFMILjx4sKY58GMgPYafnDnt6fdb+XhJN/ecVRU81jfHw50qAFNNJYsRCwcA7hxPa36HjuYrklccFawEhMvhVQqZhBeRb0HyG4+FBApCUF8doa09yc6Ty7B6DPaZUO2YbQFlJYKbjxjN/W+tYWhtNH3SvFMwQEJ7X4rKUjcjd4N9ehN81vrkaSh1wCYV7b7MpCPgD++u5cd7DgKBsw/FEhgRO32Q5OerOymLmDTGSrH63IMfQ26jRcDotLAiRrpPvOMvpClcxwiS5St7OfCcT6gpD5FKpfiG/mfppptu4sILLwx839HRwYwZM3jvvff6lW7RICXiF1LVTBQDUArt/dAXPnXxLHrBUu515ivfh1+IuUz6zDhB2pwgUCKUd35MtgdQvOf5GA2XYd132xpOunYes1ra2bayIiv+yIYYd585mpNvnM+F3x3C5ccODaikQx09KapLQwhTcNERQ7Lz8zaCqh5rkkAp6QX68bfXU15isvCh7RBC0B232fvCzwA478HF1FeGKSs1mVxVyvL1cRas7kUC39+viTMOzfYlP31sBZc/sBSAo/aqzy6o3q/qc5WR0kld7Is5y0TXevWXcqRwPlI8tRhCCZe1qRP/eun7SlTwpY7LPNLDnDJA7thTyuPrJSmfbfX/BiqWyS8UX6cgDUqx8fOl5T3LGg8+4X1Ba0BahYBkEDDxxufXqYdH6rfdn3SD1gW/+H7pamHWbEhw9O71HLdzA8Th8MGjqZ4suOr1j0iEEqSwufqIYQyqjmY7CfDulbnolc838e1tavnVicOzymtgcNXRw9KHPKbLqwIKU3ketNZ5mpM0R6dy5TI7rIQ+y+aUuxZy7sEDqS0LOSZnQQcrFwHockgHKv0hXXum8wb9Od9IG6+FQIMOULLCW56WRAukaumLpa+r2XXfz13Wwyl7NzJhWCmy13DTzfAQQsCnqzo5ZedmB1CY2WUMhwQ9SbcwKtD3A/2CLG0h4Ago3fNY0nyBOyet60gwamAUsMASCNMJIAyJlDa3v7qSO48a58YR2PEQhkghUyay1URUWhgRCxl1NtkTEpkmtiVtbXFm/PhjZmxXw6Qhpby4KEAj+D9A/79697riiiuoq6vje9/7Xs67rq4u9ttvv83ywlYUSLFt2zm8x4/8PigdoBS7MV1/pgMOffKyyZV0bI4kNN9YcD3ACJe5LXhgYL60guYxHbjoaeqmN4rEvbo8xM9PGc7MG7/gtaunMLapxHHn55ohHL9XA2/OaWfxGlcdqnsPUWhEY4zZC7uUvMgGh95E5C2cYbK8ryxtibPdVhUI0yn4q59uAuCUA5q467wxmIoZUsqSLFzey+ABESrck2dVmj66HIDvHdDETT8amXkhcfbuAG992cE/Z21kr22q2WlipXNOQDGaDFWd7adB8DRb3rOwtggVMp9Sw/hR0J4UvZzpZ2Rr2oLKkDbBkT7v+jnh9Qd46OEKMSb/KUDjBwDzUX/njv6YeG0OFZNGoTBB2rX+UiGNh2r2lU9joo8r6fPe+++lm895RFpoIzLChyBNjl88n7IsWtPLM++38fmd053H3QapRIQdh0Y5YLcRiCqLjT0pLnlkCRu7U1zx3aFMHlbmL0gzoLLUZHlrnIpoKFN+Uwkbzs4/vQclTjZ49NpYnb9UUudo8OfKbYjFDH54QDN3/GM11zyxgnBIsOP4Cp7/xSQAohEzu838AIIKRLbEafJ+c4h6Fk4hKlSWfJo/fDQofnFV8Ki6I1asE7K2bagCnSAri2Ly10hIaOtI8sH8Dv583jgHgIVl9tkyOE0SCQnWdvUxsCaa4aHc+ixa38uZzQMLzyHqOPAppxASaRvg7kmRKYO+PoGMm4ioOyBdDU2qM4ptCSrNGBHC6bzthIm0DBJdJYSSJuFIDyJhI6OmU5GUa8lmSay4xXGXz2Xa2HLuOGs09/1tDbb93yMls9kyS9x/T42Ko4cffpgTTjiBmpoaDj300PTzrq4uZsyYwYYNG3jjjTf6nW5Ry3E4HCaZEsETgOo+TwUouitfNdf+qjiL/ZD6EweCF3BJeoEQVkaKnOMWWa1fkAbFT0pJwDM/8msvmfm98OghnLh/I4deP5dkj51lniEtyRNvtrLVsFLiifwZ7jShkn9+solNPQGqUxNnQfXAiQeG3DJ2J2y6++x0eV/8YAMAny3upi9u8/z7G7j43sVMOvFDSme8yR1Pr6SiIhegAHzL9eH/++fXklC0WK/O2sgF9yxij/M/5aBLPmfe4m6OvfpLmg97l6t+vzR7zElyx6BqWpNvfOiaLl/X1EHgO2ihVMCJymSoGjY1Dd38K9+eFZV5yZe3X/z/tMDG0K7/afJjfIu5ik3Po2Lr6o2PfGXqDxUDZPJR0NzlXe6ZHVnlltpVKC09XfXec+UrfZ6n85CZ5wa5+efrQy3MH19rYY9JVYxoiIEBqU0xEokopRUdEJFgQE15iEO2q+PkbzVwxwurWduhSHJVIGbDvlNr+HJlD6s3xJ1nKkCxtfw9Eq50OkmuFlsVonjppU27fIQWavu7ca89bjitD+/Epkd34pnLJvD+vE4mnD6L5mPf54Qb5vHMu22kPBfNUjqMuNfP3jM/2hzNSZDGztuBrF6FqFizMi3PYhyCeGZG3n5U4TOuhNUPMy+vyP2cf6WAO55Zza6TqhhUG81oOVTX3iEQpuTyQ4dyx+srnT1OhgMohCnZ1JcgKW0MZR4Wpsydl9043n1WOHK1BtISLF0fZ1BlzAEecdftcNIg1RWhu72clvUlJOJh571rQmanTFK9EaxUCM/9MSkQKZkGxNKyEUmbS+9cxPqNSe6/cBzCckzDw2Gfw6q/of8oHXHEEdxxxx0ce+yx/Otf/wIcgLL//vvT2trKa6+9RmNjY7/TLUqTEolESOoTiR9gMQjWngQt0IUkGN6EHCRBC9r8rmsB+pO3tmBIgesZRgEo3rNiFnhPwhfUJsVOaoZbaB+zlF+cPIK/vd7KH99Zz8kzGtN1E0Jwz49Hc/yN83n6rTbe+fXUQKnSLhMrmTKijCseWcatp40khMgwA55E0xsxIfDcTEpL8rM/LeN3/1jDY1dOcKskefHDDTx15QRuf3oV254xi02dKQ7fvZ4FqxytzvCGWGBVw6Umr103hZfnbHI8frl0119X8+Zn7Zx/5GAePmcsw8pjWJ2Ct9dtYsbVn3POdwZRWx3J1froWhSv7fSx4TuG8oCDYlxZq+DEW/hVsKSmpaej7lMqpJkE/zHtZ3b2dTbDb2naEpoLPypm8fcDrP+TWvageU6nQkIdlTa3PoXaWx2ThbRQxQy3IGm3Opfr6XnPkjiMmNouBaTnWem76X22tJtfPrmCv13qzGOY0N5az/ruOsbUtzkSa5daOpKMH1jCNccO46KHl3D5d4cyur4ktz42HDitlo8WdzGzNuoIeZJkCZOygFkC8Jw/qGmp/RgklPNMWr3N0Cqp3s3ctMuiJqMHlpBISQ7fqY6jd2/gr++1ct5vFnHOvV9x2v5NfH+/JhorIu78paVpkKth0esfVN5846s/41unQm7DA/LI593LCy/8xpaXp0cWGZfEKPxDf0jVlPvM93OXdrPH5Co3LBmgmlK0T6aktsYkkZJZwGLp+j6ufnoZ1x0z3AEzqcw7gTPupBTp/S0YIGzHrEsImfXfq69HwpBsSPRCKMVZf5kLUlAaMZBSkOgpwRCCkpBBdyLF379cx8GTGhCGjW2FsC2TSEkv4ao+RxiQApGQyKhTsu3GV/L7Z1Zz919W8fHvplMedgqdtCSRyH8PSPn/1dwL4NRTT2XDhg0ceuih/O1vf+OKK65g7dq1vP766zQ3FzhXMYCKAinhcJiEJ1zXP37lI88BKP0BB7q5lDfhqnHSkos8TKNHHoDQzQf88pfKcz0PHRjocbMWDs0EJ6mUMyTyS7p18pvAPQmHyuS6eYVMwSUnDuW6h5Zz/M6NhGoyYY/ao579tq2l/qh3WdkWZ3Bd1HcREELw6zNHceQvvuSSB5Zw0/dGZvZwhJUygOPmNSUhCbOXdXP731bz1p1TmTCsDAS0bkqybF2cPYdWstuJtVz08kKmltXwyGcrGdEY46PbplJR6zOxeIyPgF0mV7LzdtUZUyfgzvNGc+RVX/CzPyzl3c/b+dtPJmCWwm4NtQysjjJnUTe7T4+kPaUtX9PL1Q8uY/m6PspiJifs18ihuw7AVDfR55PoFzNPFDLt0hkqP3Dr9aXfPie/PSXqMy8t3auXF94XIGtAxW9sBph85exL0cP5eY/bEkCkPyZo/y4KYlJg8zQSRUhwvxb1Z53T27dQe+tpFwsKio2jAp8gplU1PfXIAwAeCS1+HrAzsDqCbcMu4yrTzFdHXwWloT7M0kTarn9DV5K35rdz0p4NCCG4+7TRXPLIUm4/fZQTKYSjefCWgqQkGjIy5fMEXUHtpGp5TO2/TqrAzKunvnaqz1SNjA3D6qO8ce0UdhxVgTAF04eX87PvDuO5TzZwz/Nr+PVfV/PBrVMZPiCWrdHyc5Vv4v/t+4FYHZzp7wtRMUCmHyZpOk/ogQthKel4gjs1bbUsvsJbn/k7iNJu8vOHO27vBs6+cxE/OWgwsYih9Lu7gKaAkEBiO5O1C1J6+yx+9tel3HXqaMrC7qDxuEDlW/DM29N1gzRAUUkIiee0WEQkVpfJH99dT10sxvFbN/HqkrVcduAIADpW16eBjhApnlk6n3Of/pLLZoykoSqUdmUsLYFICIhJZNgRhCIE08eUsd/5n/Gd3QcwdmBpuo1SKflfpUnZHGV3UDr/G+miiy5i48aN7L333gwfPpzXX3+dQYMGFY4YQEVNCdFolERSe6gxdjnmXf1l+nSTF/Xek+C44MGzTSyYhl5ev/y9iV2XUukaGtWcJpCxUCYXXTVfLEDRy6Ge3uylY+Dsy/DOVXHp2H0aEQLuf20t9qqQshgKqstMDtyuhovvW8J78zqyTxtWaNLwMn56zBBmL+pyJq8o2Zs3vWL2ufHDEI/b1JSHHIDi0hdLemiqCVNOhOpyk/uOGstzy9YSihrM/v22DkAxMmmJDtuRQMUzTL0sMbLaQ/TZDKyI8Obd27D6qZ34fFk3B10/l31v+pwD7v2U8jKDucscT2DSgNsfX8HWp3yEtCUn79XIrltVcvG9i5l66kc8+VoLHd2p/BK+fkrybL/zSNRHJhk304Ls8aoAMcDVuGSnJ9VxqQMMQe7C5rfQ5VsA9TJBpg00kJPrsU9Py+dD1E9WVk9YVtPRTQ7SZVcL4F+FfpPffBGUdqHxUEAKmzcfPzMkPX6QWUwx5QlqU530MMXE8aNiVup8WqJ8aQaBjCBG3i+M33Mb2l1T13/M2sjT77WCgIpoF2HTXQAFdPVZXPDQEn559HBHYm5AadRkeGOU9+d10hu3eOS1Fj5d3sWnK7pAwPzVPYwdWJLdnlZu/hlzKqV8XrgwGcDlliVnzVTXOdU01zPVjWrhJQhDsNO4SucMK9ekyxSCg6fX8dylkzh8hzouvG8xS1r6mL2oC1sqa5wKMgoBrqC6bg43VgigFGt2VkzeBs4hgiHh8jnZz9Lukl1zd2niHPzo9Y0t06fSZ06pz74y5cmYkuUs0d7cbUsO3rGOAVVh7nlhTcbCwR0fj77Twk3PrwQbPlraxdjBJek1/M/vr+cHM5opi5mZ8aPzGAaOVhKyAE4gud677M4QMpwkYduc+63hTBlcysbeFCJiZX2TQkjKajs5bscGLjtgGL98cTGPzVoLkRRG1HLObTEdAahwTb0/XdDJ9qfPZuYuA7jnvLFZ2felbCLRYKuMb+g/Q4cffnj6mj9/PuFwmAEDBnD22WdnvesvFaVJqaiooCueUf15FOi5K4dh8UlUKs9VCZBH6ckvmxEXelhPGuMx7Pny1gGG6UotdMm29+F6k3Cx9VHL7k5iOe/9JIc6U+zlH0QCiBqZDXuuH/yQIbj5h6M46VfzOGRiPU2W6aYjwRTcfPoofnTHQg66fA5nHzKIK48bhjTJdgYDDG+KsWRtH7YJRnolExm7b41x6bNswqHsut782AqO2b0BkoL3v+zlrveWcPbegzjyji/5dGEnO0+qSverLHWkJkDm4Cic6r3wXhvtnSmiYYPJo8sY6wKh2uoIx89o5Po/rkhnO2RAlPe/6OAHhw3kH2+1cc3Dy/n7Lyax65jK9Hg799sDeeBf67jsgaUce+08xg4u4XsHNPH9A5qp9szKvDGlnqtiyQyQULUZ7vi85y+rOOeOr7j5zFGcefggDM2fe44mwxvHqhmh+s77tWR6HImUAnq8KLqULsirFz7hVa2N3wGPXhnSkuxsgKQezeCkp8S3KUp66SSg119m0giMU1zSW4z0OSBIy1CsMMJvPgiifKB5c7QX+TQk/WEYi8nPmy/6C/x1xrZQ3M0FrRq4KTENBtdFOOHX8wFI/nlXDMNG2BLbgg/mdXDvv9Zw9ZHDaKyJZNYJ4Ix9mrn35TU8/vZ6DtymlvcXdNIdt3n0rfXELZthDS5C8MauusYE1UNlij3yWxvUNjZxwIi30d4T8vmBN3W8Bhwi3FAV4ff/Wsc/Zm2kJGJQUWJy0Ha1zNyhjqa6MH3uwanbjSvH8Jh17zDHYseTDoz9qJi0VJfHntmXep8vqvQ39/LTsKiO1Lw1NMepjpF9Qn0WGDEUjbSt8DUyM9/7Ht3gzr2mENz6g5EcctVcZu5Yy6imElasiXP9X1ZQGjGYPqyCC/68iKQtuemEEekk3l/YySl7NaXLkJfMPPOwZ/JlCUTUOdFDxg3en9fJNkMqOPPpz+lJprj820ORSSejSLQP2zIxDBs7ZWCW2jTVhbj9mDE8s3ANZz61kMv2Gs6g+ohTeVeT8uqsjXzn0jmcfdggfv69EUoZnPbo6rGoaK4pUJn/HP3/au5VVVWV9f+YY47ZIukWDVI6euzCAEUd9N7kp7ezDjIkaW9NWYFdiUL2Sa8gDZEJb8ucONhkS6v9yqD/1w/Ty7fXJB/IUDUOOjjS4/ilp4cNKq/X3h7IkqQXvAN2rOOA7Ws58oE5vHjmVEoGSWfBkpLRA0t46drJfLqoi11/8hnH79PAiIElOZPhuCGltHakqD3sHUqiJiOaYtz549H89e1WeuM2Vx4zhIpSd+gkYO6KHsYPLc0q78IVvZw4vZG+pM0+93xI0pKcul8jV393GN//1XzmPLR99ppoCFatj3PNH5ayqTPFrlOqME3Bpb9ZQn1liDWbkvQlbMYMLuHpayYyZlAJr8zaRFnU4F/XTWHy6HI++byTg6+fyxGXzuHDBV3cfPpIdh1dCX04I92GsGlwxl7NnLF3My3tCU65fQF/f7uNax5exvf2a+LUA5uYMKI8w7R7Y80bUx4wVECCNKDEPbfmgrsWcd+za3juhskMVs59yQEDpshw9zqIUfvVG/9BY8GLL5V4QaRrdtRFtZDHMnWsa8BIHT++gMWL55emL6OvMDn54haiYhmkYtaCIHMV/b0urNAp6P2Wsg9Qy6TOffo7te1VRvXfYVK3JerpN57UNaQQ6euAH8MODKyOMutX09jq3FlsN64Ce30Yw7BoEfO5/PFF7D6xiju/P4qKEtdTl2dhYEBZzOSCQwc7/y3Ye1I1NpJT711IZYnpCC48Us1p8o1zvYxBYVUwaOBI1eN50lfbzvJ57o0JGw7boY4pI8rYd1o1JSGDN7/o4JkP2/jxvV/R0WMRDRv0Jiy2GlLKb84Zy1bqWlCIigEn+vugOcPvfzH7U5RvWxfY5SNV01HMQZDSB1xm7VcxQUiRLk96/4vmPczLd/etqzlpRiPH3zqfV38xmdlLu5gxuYZDpteBgKN3qc/6TiSS8hJTWbvIaO0gewxJ3DNP3Hk4gIcRhkQmXJ4pJOmzUvxlzhrO32sYbe2S5etTTBkokLYgUtGTjiNM58wUpECYNodMamD3ETVc87cV7DGkmUP2jaZ5w7/8az0nzmjk6lOG+37rHb3QWFWd++J/iP5/Nff6/e9//29Jtyi5VmVlJZ29GY9PBQGKR0EfuuomMqgnDJH+IHPUniGfhP1s9FXyFilv8pU4e0ayJmiV24K0uZXKzKWl6GQ0ON5/Na5fWQqpuYNU4VK51DJ4ZVYlcybce+FYbAFnPD4P2U7GNaEroZ40vAzLlpnsDZHVpg1VYdb/ZWfevGMaz147CdMU7HHBpyxY08snS7qoO+o9xp36ESvWx/lgYSfn/2YxU0ZnTL0Azpg5kFMeWMBv3lzlKGBs6Oqy2XliJSvWx0nmeGKA7qTF/f9Yy1NvtHLenYv4eEEnXX0WS9fH082/cGUvN/5xBcIQ/POWKey+dTUPv97Cj+5cyPsLOvns5ulUlYTYc0oVJ0yrd8zeugWyzUB2GBnAIh0J4biBpbz28ym8dNVkWluT7HjWJ0w//SNueGwFy9f2Zby1eIu5VmxpgLDh5AOb2fjcrhy4Uy3zlvcw8uj3aduk2Eh6WhGvIlbwYpbVr35exTxSTbf8NCtqGDWcwHXZWuA7UtNNv0djLLLTkSL3yoqnmx0FmRNpB43mpBGUZr73X5f6K+Htj2lVvnL2p/z5hB755p6sOT2gDIXy8sunP5QvTtB8uSXJBikl97+yjt6EzV2njiLVHSVlSW57cwl3nzyak/ZodAAKZDN73uXNFS7D96e31nP4jnXOcBZaHL0eunAL5blNtotZP82eOk76AvKxtfuU9jy9VmTqMG10OUfsNoCqshCRqMHeW1dz26mjWHjPdqz73Y4sv3t7lt27PTuOqWSHcz7mxidWZIZdsWO3UBh9TOnhg8y7+uMeWRlPQSZXWc/s/GGL2VuikxSeuZiSh3KpHsWEhF+dOpJIyOCUOxcyvD7KG/PaHa+bnpm2Mqbauy2ippHRqvkJD1TBhSkz/I8pM2ZfngmY6WhS0mQJvjVqAOMGlPOtEfWs2tRHScgBRcKUmCVJjGgKI5pCRC1ExMnMTphgCWqrQ9xywgheX7naAdndMH95D3/+ZwtHfavBAXA+1NlLv08x/4b+91BRmpTKykraux2GqyiAEjQveFoTzyxLkv6IhSfkzTINcE9190iVnvmeJ+E+U/Pw7lUTHe+5HleXLKjkSaH1DfDefzWPnMlKS6ffpLSzDlR0BtaWlMRMnvzFRKZ9/yP+/GELx+7UAJW4tsmCFev6sG3J0KaYAr6y6xCNGExyff8//6vJSKC81ERKyar1CX7628Vsd/bHxN12HN4Yy+r3c44eTGefxT/nbqS5JsLE0WWc9Nv5PHHuVoxojHHzYyu47KThzj4LHEZ/zOBSHrx8PE++3MLMXQdw8kHN3OHan4ZDgnVtCW59fCWvfbwJgJKSEN/Zs56f3LkIBLxauolnPmnjvh+PYUiqjNTqKNI2SLbECEXjpOJRIhXdhBv6nAEXzrTn9mMrePjCcXT0pnjmww08/uZ6fvmn5dzxw9GcuH9jpv31nlH6tixqcOAOtXR2pXjz8w6+fcnnvHfvNtnjQdfE6H2pPvP7r4Ib77WnRVHTyic59rQzfqZrfuSXji5xz7M51PcASJ0KSZNVKXExFMQE6s/6Q4XyL+bTVvvMI73uetsWU+8tAcLUeS1fHvnK1l8g8XXL3Z8xoX8TejoSrvvrCu56eTV7bV3NsIoYyQ6bvy9ewPG71hMtNYrz0iRIr6zV5SaPv93KeG8/SjFaQR3I6BqQlPLOq1NQu9tkr/Iew+uVxWNYFc1J+r+h/HpCGrX+iuCsNGpywwkjOGKXARx545ds6k5xzUnD/Zs7SCgRBDT0uuW0VxFAxG8Dvd8zn/GUCz7w/2b9whZJfqZd0jNF18nbzI+zTj95xVbsfM4nnPfgYp6/YlK20BJAQFeXxQWPLObq7wzz15xlFYYMoLa0MNrmeSEk0jNPswR2Igy2yZsLOrCw2WdqBelGMlwvY+4hkABELEiYOKfdO3nV1Jr8+e0WjtmlgXueWc3huw9gF/dIAj/q6JVUVFQEvv9Pk0SknQl83XS+oSJBSm1tLRs64sWZeOETBrK1J5ArkRb+z/N6TvLbB+NJGyyJdO+lZjqm2oam7UrVvPOZEgjlV91P4AdQchaO/DOYPsFlqZDdfSdp8haQgDQbayP89ifjOOGXXzJneQ9XHT2UaIUBAtZsTNJYE3EOP9TJh1ktK8nMlEIIBjdE+fVZo3nqX+v57t71rN2UZHRzLCsNAew6rYo/vLiW+uowJx7QRCRkcP9ra6ksC3H1g8vYc1o1O02tzqRtwzH7NnLMjCa8/S/haKaMjQ1RfvWjUVnlO2ZGI5s2JNhteg2jBpfwkzsXsfXZH7PN8DK2HlTO2fsOZuiAMkTIJpSIk+wswdhoYfWFHVeHkLUgV5aGOH6PBo7fs4FXP9vE0dfPY/WGOJccPyy73X1ICrj43sWY7piYvbCLrl7LUbGnAynxdaZJBQ7S57+3L0Yq8dHi+xbM57/t3njvdPDkPdfrquYfxJz6jKF85hOBnsJUkw3vXbGS0f6e11CICmlRfAUbedILAitBkuJC1B9mPR95/VsINPrlvbnAr7/h9Xrmy9/QwujzsyKU6u61uOW5Vdz7g9H86a31nP/wYq7aYxzvLGvjpAOHZeaJIDAJacbwtU838eInG1m7KUk8abPnFB8mKwhYZGkqC9RR/xwsn2d+7RKkccs3hnQHKkklHffd9qMrePHqSex9+eeURAwuP2Zo/nSLNcUqVLZiKejEerU8+b5BXePgd+jkZozPHDOzAh5MpTKQ66sjPPLT8cy45HMWbejjhfc38N2d6nl7bgedvRbH7lTPWQ8u4uqjhjK4JpqdkFe2YgG0Gg8cF8ZeWWwbI2SzaH0PT3++lpuPGgmmnbPOeV7CZMI5P8VRQ2XSvOLwoTz02jpO++0Cnnqvlb+4h4wGrTdtnSnq6uoC2+o/TbYU2FtgP8mWSOP/AhUFUurq6mjv7HMOzQkZ/QcohSgvECH44/EDPYq0WT3fSt/kq7pLlqpaVt1878dIpKVMmwdO+iNpyeu3XV2sA8IctHMdb981jZN/OY8XL9vIXy+awJDBUUIGWJt7ToZb/7qqMKcfOhAMQU2V6/5Pm1iXrupjWGOMmCnY2JViv51qOevmhaQsSSxi8KeXW9IgxTObcv7I9LM0eQc6GSCUCodCgrOOH5qO+5uLx3HGQc3MWd7Ni+9vZNLlH3LMtxq4+JDBjB5WgrHGAgF20sTqjkBcIDtBhMjY4AKUwV5bVfPKzyez71WfM2lYGQftUudUPs04OPW97pFl7LBVJcvW9mHZMGVEGVJIhjbGKIsZbOpK8dtnV3PhUUOy7dLVceQBEHXfiAdUILi/vbDqHhY1TPo9waQzfmkQQ/H+/fNpVnzzzIy/olwaq+8C09TiFCuZLUTFMEe6FqLYPPR4/QEHOgUBFR0MF8pDB6JBkuw8QqesvPNRf9fhQkxTvud+EnCFlq7voydus/+UWo7Yq56v5vRxyD2fcf7uIzHCZDQYeYDK+vYkP39sOduOLueyI4dmCyjU8B7gUcsSyMj75JmvrrqAQWeS/cabnl9QOfziawLGcYNKefHayez70895afYmDtupltrKMN/ZZUBue2xpYcLXJXUPS7HfoL7vpRhQ6Pfc0PiTPPtbskxsbcn2W1Vy0oxGDv35XL6/TxOXPLSEfSfV0NNnccLd87n5+JEMrY/luJ/OrYvy62lTgsaL4ZbRA1oxiZlKMLS6lFsOH4sZUw4v1ckA3IMche49TMIJuzdwzd+Wc9kxQ9ljWnXeeWRDR+K/CqR8Q1uWigYpAJ3bPkXtZ0c6DzdHqmFAlukSyn/vWT5zAW+jfAGpnVRMXzIbeV2VZL4y+W1Q9jPjUpnHfEygBgTyApRipBj6pOUnHdTmsgnDy3jrrmmcddNC9r9mDq/+cjJRwyCekMHSmnwMZpAWQQMP2JIvlnYjhCPp2NCe5MLjhrH9xEqmn/QRowfGCJkCYWeDEe+/akYlDYpazDZ1pfjpPYu4/vSRbDO+ghNnNDF/STc3PLaCqefN5tYzRnHaAc0gJWG7F3tZmLAdpneDQUlMYMdDSFtgJ03Ctb2ImM3kYWWctEcjtzy1kmHNMSaPLENYcO49i2jvSTGsOcYvH15ObUWIrj6LPSZX8d6XnTx7/SR2nlINwOwFm7j8d0tJpiSXnTAsM6aCNqt7C4POLKpj0ouXpYkhsyAUYpgVUwBf7VC+79sPJKlxilncNW1LXk9hanZaOfOCm0LPC5Yxz38/JtXrr/7mpfazrsnQ8wuiQvOxClQ2py3+XRSksSuGdNBRzJqUp+4TBpUyaXAZf3ythTMOb2ZUbSl/+s63aRi4Btkbx7Gt90nA/ZakLTn7t4v49WkjaayMZDtg8QN+fnX2E77lMIbKvVon6ZYlSS5jqAMUL10VAKlzjsC/fU0lbFiJa+OAuBIn7oTR5cy9f1v+8NI63p3bzrwVvTzxZit/v3qiT6XzUDHfrm62FXS4ZLFU6GyVQtqY/pIKigIBqLJe5MxLDi9w6bFDuefZNcxf1csfzx/v9IcFZx00EMMS2aZbKuDUx4a6YV4dB/o41NceQJTYmCaIkJUeg0K4e1eMjBYFADNzyKQQ0kkj5KT7xlftdPRa/OjQQc6ZbEmtfb1xYQjaugQDBgwIaLj/PEkKy2aKTecbKhKkxGIxysvLaW1tpRZyP5IsKZ32YftJ7P3U2er/tEo1VwMhdbOxfBQSyJy9J9npC8tlfEKisPRXkG2X633gvnXMTqtftqqKClkYPlIVt+xZQCUdVymrS5Gwwd0XjeV7185j6nmzKY2a9CYs9r34MypKQ0wcXsq53xlMXWXYX6OUJ22vLB5AUQHGWYcP4se3LqS2NMS+29YCMGlUOXddMIZP53dx5UnDwJI54EZ4G9TdRV64k5EHZnRQ47XFvU+v4v7n1jJmYAnnHz0EgHHDyrj/kvF891sNnHT9PI7YdQA1FWEwwRiWpKzJpq8iTmk0jBGSpDbGSPaUIC2DSG0PAovz9h/EFU8vY9dzP2Ha6HIu+s5g7npmNQDjh5ZwwaGDaO1O8fgb61ndkuDWM0ax08TKdFvs6NrTXv3gMnaZVMW3ptdkjw/d7heymQiVgtwVC4K1HurCpDPRuuRsS8yMxUq7fUBafzXcOZ7FskBDgDalGMYn3xyVLz0/CXkxJLT7/vTDljCDUWlzNEJBVGxddG1PEOlagXzanHzaB596CVMwujHGJ0u7nTMaqm2qyjswK+N0LG2krG4jITMOpTL7W3PTfmdeJ3tPrXYAis4MqmNCbw/9u/XT1OTrY709PMGVn/ZM3Y8gyN2v4j33Y0ohA4A8sOIdWOlJ3WPC2fRtQHVNmHOOGsy5iUGs3ZBgyHHv09lrUaFrU4Kov2MvCKz0B0Coba3HU+eTQsKQfHNMzrqqlNvNP9BzmN+a7/ZXY12UEU1RehIWd7+wmkWr+7IcJQoEQ+qjnLX/wOzN854q23OJbcoM8MxHqoBUCjAldlJiRlMYpSknLUsgI2SNeWmJtFc8Ycq0501skElHcPnAq+s4cZ9GYqVm7v5hhVKWZOPGjf91IGVzDVX0dL6hIkEKQH19PS0tLYzVPw6V8jH5QS3uZ5aSdjkssrUh+Jhrqfnq0umUuxfF06x4ZVdQOJYbRlO7pkm11TeUFVeS9+Ppl4mXZubklM27F2lXhHlNv/Ryq8yrANMUPHDpeN78ZBPzV/Tyk98s4qjd64knbZ7/cCPjTvyAHx8+iJ8eO5RoxEno8X+10NNnM2O7GgYO0Hz8+523gaJNMQRDm0t45oYpmbawnNNpT5050Amb5UqabAba05op65nwmTSlASLpRH7783bnmQdklYV2/+1rmTq6jPueX8NF3x2SnhTLS026DIva6jCi03Yuw6ansxJpG5hdCWoSFdx7cDnX7ZXi1jeWcOR1X/LBXdP4/QtreeSfLfzxtRY2dVsctmsd1/xgJEMaYllAqjRicN4Rg7n1yZV858q5/PGKrZg0osxxUewx1kHaCYm/a+EgYKyai/mNFw/MeG1tBsRTwYv+TGeo9TIHkZ8mwiu3TkUAfz1s2mzMj0HoLzDxi+cntc+X5uaAFY905n5ztUEq5QMCenMXpQ0rIty/Y6XNZ6YC/hqjIvpeWpKPl3XRXB1h1do4gxqjhEt7EaakpLKDVG/E8U4UsiAqM96T3DyffreVXx4/PJOf994iV7sR1HZeH+knyGtlLVgf5fyWdHmMgPdhJW/VI1TWfKyUSZLr6dATtCQlIgGEpXPQYdSAHpumqjBNNWE+W9rNLltV5i970Fq8OVQMQMlnvZG1pvoAlKC5QAfRQXOfSsqar1LW+u8HVLwqGjBqUAkJG741tZof7lfieMRKOmuinRJc+tQS+qRNzDRcgKlNCFn1dSdUS7hjQ2lLVRMPEJLumBCk+kzs7jAibDn8i6kORCAh3DEukQkDge18T7hruQ1r2xNsM6kCGTEQSTtQ69i6wUE7/00g5RvaslT0FNDc3MzatWszD4qSeilgQ5UoCeXS0/NAiSLRV12Zeve+jL/nRtcgna+/FiJz6+vf3Cb38Cu1TApAUd0P+rki9C2n7+KkTYD6hGfnph0I13UpiLughIRgz+k1/P29NgZUhmltSXLmrs384+KJ/ONnE7n2keVMPPlDdvjhbGZc+Cmn3bSAe59Zzchj32e7M2bx6ydX+uQltbaTuRdkGEx10TDcyS8pnctW4vtocqSRrUVJa1aiTl/3JpxKf//AZt+F/fDd6nnls/astqkoMensdSfRMggN66N05AaqBq8j2tyJMFzJUHmKf65fxw0vrqCqNETcktx21hiWP74jj/1iIp88MJ0/XDkhC6CktTwSrjxhGJNHltHZY3Hdw8sZefT7PPpKS6a/vPGmggdwtXdaP1saoBDac6//LXLHMWQtak4YBYh7aQntkuR+s15aOoPoF06ngtoJkX0VChtEQSYbhs/l946A9/mon9qgLJLktmk+6i8TJwMuj4qRoPYn/2LGgzrGtgQVqmNAmYUQvP+LqQypjbHnVZ+zdFkfkeYeEi1lhEoTrkmKyP623PK/v6CTNZsS2Opc6HdQo/p9+o0xFfh4z33WgiwzKy+c18aelkM/LFL99cB8QqmHl7dXP889cUp5hnbv/ffy73bfeWe0eHsWumDrEeV88lUXWaTWQa2L/s31h/IBE9vn0t8XE97vPl/a+nPLJ5x37x0+6V3K+u+Ek9nhFTphRhMfzu9kaFMMYYj0/C+kwAzDDiMreHduhzJ2M2316bIu5qzozh4HuPemzAb/Ng7wVvvKBCMETY0G7y7dhEyaiLALMCyRMfsKSTAkImYjaixHM2kDSQERCQPh2L0buey+Jfz19ZZM5fQ1QcDaTQlqa2uJRjWHAP+D5Hn32hLXN9QPTUpTUxNr1qyBBgJQrc/DILemQRI9gWOiZYOwpCN5LxYMpRPw8ib9kQkLJO6HoHkcyzopNj3xy9yzWFLSOdDPXWSKNd/yBVT5pCp+6n1tsg7cUO8ntclxIQgXHTuEj+Z1cv0fl7OhI8m3Jw5gx9EVrLpzez5t66YrbtGxweL7+zZx9G71tHYkeemTTZx9z1eMq49xwE61joQsq9zZ7RpE6h6UrH0sXp09rVee9lVBgGpe9vLNU5zTZ8tCuYwXzib7d+Z2YFkS0xQQgopSk04pkaUGost2vohqMCpSWLbEqO3FSAlkh8GEsnJKIgYf3reNo1mSUFZqstOEyqx6C0T2pn/b8ZD20o1TeOL19eyzbQ0TTvyQE6+dR0/c4qWPNnLcPo0cvOuADGCQbltYMsNwqN+T2v9Be1t0yb8gt5/UNtcBpZqeesBkPvJ7H8SA+jEhWQu7LlzQAK5fGDVtb8HXnxVTjmLIT+LqPVM1TMWkr8fzSGeu/STrX5f6A0oKxQkaHypQ0UGt332+tAqR3zzo994n/cqyEA/+YAxnP7iYw2/9klk/n0ZfVxmd6wZiSZPBVQuhRIso4f6X1vLQWeMwoyJbMKDnISheq1dorHrMoSCTp4Uzh3kAxG+FN3GAhwmUufFSSlgVOKl9ZuJoXbzjn2ycMzlSZM5lEe59NYiEhC6ZTnvKiDI+X9qdv85bioo18fJrY338+P3fEoDaZ43y1dwqG/OzDriGHK3K0XvVc9Xvl/D+gg72Hlud0eBJgewT7L91DZc9sZQ9J1enNSnz1/Twq7+vYPiAGE/PauWQbeoY3hDj5D0aHS2KDSCyGQ9LOu8sMt+DBJkUXLTXMM54ZAE7j65ExOwMyDEydRZmJg4mjnbFBsIglxqceGATv3tuDYtW9aXn+hwzb0OwdkOCpqamzWj8fx/pctuvk8431A+QktakTNVeFCPl9GOsgkgJo3rgwnDHd0oGM+lB+Uuf0+vVPLLOCtH+exTKAJR8o0fdAKxqfwqCGtXe1VCeFaICrgpzTIlwTqrdfetqth5Zzh9eWMuJD8xjQ2eS2vIwrZ1Jxg0q4TvbDeDYcQ3INQYDKsMc+6162ntTHHrNF8QiBiOaY8zYtoafHDOE+upIVnlSKUnIY3x9iiZSMrtNTK2Bki4g9Pb/GBrTjzNJiW4LyhT3yKZBRYVB1oZyl0l84YMNXPybxfzypGEZ0z4LKqImXRuSiD47vei3bUpy09MreeiVFgwBx32rgZN2bGTCgCqO2rGenX74MY//bAI7TKjMBtxB4Nvth7qqMD84xDF1a/3bztz85ErGDi3lBzcv5C+vt7LntGr+cOl4mqoiGQ2KylClXRNn0kwDDC2vNCDx87Wvajiz4onMDKvXxQ+gFJJ+e9/Tlphsg8a4BlayxpUBadMJ/dvSye+E6kISWd/yaO+LZbz1cvnFLxbw/Luov8CkmDA+8qV+jxdVs4Byn8PskX8NcuMJU3D9MSMYdNZ7fLqqiymNYUIbksT7SpzxlCCj9YhAR3cKQ4DprRGQq8XQv1sVXOiAJMvkRvvvxckSPCjtoK7ofls/dFDoaVO9/6qZmQd6DByGVpBxO2wocdOaFgFhtwF63DSTOEDGhFWtcYbWaxLvQgI7/V2x478Y4K2HyZnzAsJLn/f6d18sqWNTjZ9HIJHjAUwBKkIIpo6u4JNF3ey9VTWU4mi13EM6S6MmjTURvlzbQ1NlhDlLu3ninVZuPX4kVeUhzj94EEi44vGlYDVp2hpVCCwy4CNrfwvI3ijjB1SyaF0fo80IVm8YYdqIkJ1hiqIWIuyu070C2W1ARCLCEtFg8cXqOJ8s7uYvN0x26qq1gyecXLcpSXPz4P60+Df0v4yKBikDBw5k7ty5mQf9cTG8mZQFRpSPPxtY5JEe+4XPChug6fka5JU5x1tREAVJzDxGqSgprC4BLy7e3tvVsPe2NUgpWbiql1Vr4wxuijF7YSeP/rOFa3+ygqEDomwzqpyBdRFqYiHOP2AQvbbNtoMqePKzVsYf/yE///5wzjxsEK3tSZ59u5UL7l7MNmPK2XlSJZedMJSHXmrhxQ83MH1cBbtNqeKtz9q58v6lPHDJOI7fryld9o7uFO993s7StX28MnsTJ+3fyIE7B9ia2hJZYmT9z3g/ye3re59ZzaThZWzsTFF99DsMqY+yz7QaDtmhls4+K91ma9sSbHP2x0wfU86DF49HSslDL69j+ys+4e3Lp3LPYRO4s3kZ377kc+b8bluaGqLZC4yBY5etnqGTBp2Z8lSWhLj65OFgCJY+tgMHXTKHf328iaHffY9Hr9yKD77s5BffG+66/FbSzlk4fQBFWrIq/UGM3l5+VOjzFtov5DKXhSTZfu+znvVjjlHmg1ygQnGAH74eQMkqT0CcQsVQy63n5aeJKETFahUKxdepEDj1o3xMZ6E69aecQcxlvjJo7VwWMzh5lybO+v1iXjl7Gn29pcRKetiwYiDViRZCDb1OWMs5W8k0BLYlHRfjPt97Fnng3rv0cnll002qQmRAi9puqmTfmws85tLUnnvxVM9j3qni3t4U/UTytLBQSTOEw/waOKebh9xMvLQsJS0LZELyyqeb+PNF4wMaxYfyaTm88hQTp9i0oXhNcL4xFgS8/caDHzDz+s9vTPjWORuobD26jE8Wd2U8vaXcjJMCTMFZMwZyyZ+WUl1mMmlQGQdOqaWqxDnZuLzUGTBJW7p7ULRCq2UIuRVNCWSPQR8Wc1Z0snBFK+t7e/jT+wl+utc4zFgSYUhSXVHCtb1OeQxc9/8GMmlgVKSgztG2yJBg7dI4DdVh6qrC2U2vzM/SgNVtcZqbm30a5X+OvjnMcctS0SBl6NChvPDCC2BshiivWDCgBMkCFllSBZ15DwArev5ZccjViAQxTPril+98B69EqqSjQNisfHRGqr9NneU4gGAGQGNohRCMHVLK2CGlAIwZVspR+zSysT3BB3M7+eSrLlo2JljU1kfEEHy5qpcHXl3HiOYYli1Z05ZA9EkO++kcPlvSzfDGKO9/2cEbn7XTWBvhvDsXUV8Z5pm32rKKMbDO0cBIKbnrqVVcdO9imqrDrGxLAFBbHeaAXTWQ4raRVEaup/qFXImL93780FIWLO9h3qpefnvuWGqqwlz3p+XMXtTJ9/ZtSrdVT9xmQ2eSx6+c4HgWAfbdvpaLf7OYC59YxPOnT+WcvQbzztJ2rvj9Uu67YGw6b+E6BgCy93pARqPgLXhKOQc2xPjot9vwu2fW8OM7vuJfH2/iN8+uYeroco7eu8ExNQyJbGYBchct9TtLhykARnQqtIldfa0LCry6+WWnjkH1u8rHePfHTErPThUS5JNyFmN6E1Su/sTbnHyCqFjtTL58N0fSHJTf12EMi9VI+eWrU77x198yGHDdd4ez1U8/4uXF69mzpppkIkpXvJzSrk7M6jiixE4zlUfsMoB7XlzDmQcOzC6/WjavDtLneT5GWPF+lGOCpf6GyHjbCjJZ0tNQ5yNVe5JS4quAwwuvfr+eViksMuvcJgmRTLk/X95Dd5/NDlttwZPB+wNc82lsCo0r9X1QXL/+K/RfJVUYqwIV3P/6oZGGLsTNAJVEUrJ2Q8KxRkhIEBIpjbQ5VlmFyR3fH+WUJ0nGpMtU8tfHkD6ePGbGANljEE/YnPrH+Rwwvo7RDaXsOK6MR95t4drX5nPs9g2MaY4RruxDhN2zzsIS2eOUyahKQXkGoACs35CgosTMOaIg015OuGUtSYZNGZanYb+h/+3UL5CybNkypDECwNfTkkpZm4chm/kpBFgMcpklQ/vVGTZE9kTkp0L3k0QUy8Bp9d2cw0D9gEqgRyIjO0zRpNuqamk5CfrEy1JzOwFqKsLst3Md++2ce1DSnKXdfL6oi29vV0tlZZiujUnen9+ZLu+RezYwbXQZE0aUMnPnOmRCsnpTggGVYXaYWMHOk6vYc3oNny3p4swbF/DR/E5GNDqgZ2RTjIuPH8qJBzUHS8A1iYo+HrP+25LrzxiZmXjd9thl60r2u/AzLnlgCXc+s5qRTTEMAZGQwaYeiyYXpGDDT48ZyrTTPuLqfy7m6m+P4IbDR7L1lbN48s31vHrT1kwbXZ7d/uhgVRufmnbPMASH7jGAxWv7GNrgmESceN08Dt1tALF8Y9QDMF7e+RbNdGYZQOf7HeuaObXM+nO/M150CgIguvZnc8x8ctLNBk6+YMWvLHqa+Q6D9IsXVJ58z4uhYjQghTQs+Ri0Yiko7c2RSBczn+UDJ0FmQTrT7pd/EPkAh5KYyfE7N/LQO+s44MRG2haPImImcOz7DQekuHH3nFzNH19roS9lE4sY+Rlh1Y19sZqkIMGESgJnRU/6hPH7r5qDeeZpKkCROKZtgmyNjK/0XyDDzpojbelMz0rdfv3CKvbbpppIOI/kYUsCeZ36M06LNeOSAffFaBKD0so7RmVm3fPMuzSg0pOwuemxFbx0w5RMemEQSem4ArZxxkdETzybIqbHwLkZ6OPPAzJJwJA89lELP9hpMLuMrnbOEopIrjhsGMvXxnniw1aWvt7DwdNr2W1kNSUR09E2pAxEieUAFO+w1IhzJsoB29Vy2k0L+GJpN1uNLPNvAylZsV6yw9Ch+SvzH6Zv9qRsWeoXSFm1ahWp1HBCIZELQvpDQUxOEIOjqq29Z3ocfSEOAixBCxwB7/UybiYVfU6KVh5fgBLkclkl26+RctPPZJQbNCsdjWGdNLyMie7kIYHSujDtL+2GRFISdTrr6Cvmcv7di4lFDKaOLucvN06mqc61SZYSW8Kp181np/EVVERM1m5KcOlJw5i5V71j5pQuQ0CZ1eK7DLcOTnLq5zHHEipKQ7x661Q++rKTrp4Uny7qpr0rxe0/Hk1TdRiVqktNnv/VFPa58FPiCZtrvz2Keddvx343fsYOP/6YO348ih/s34wwlUXEy0+ngD79cEEXtzzheFAb1hBlWUucZ99p47u7DsgGI+k4Sj76ImkSbOrlFaM/Y10/gDJfWL08UBxj2h8NQSEKACu+2epaHsjWbBa7CfffyWQVk1chsFIMFWLGgsIWk2chEFGIigGBxTCCHhUCxgactGsjU6+cxYaTe7Fsk2gkTioVItUZI1LW7bhOdZm+AZVhzrlvETedMoKKSIjF6/q454XV3HjSyEx+kNFIGJBKSpat76OixKShJpJdH6+Pi9H+qMI7zztTSgvjraHePhPV5MvTmOjgV11LBRmAlRXOPRvFszQwhOOxyTUF+83za3j+4w18dPs0n4psJhXb5x4VGnPFChjypaNbXeiC0WLmBt08T00LMnORdqaKN7/FIgYVJSamN/95zg7CjhESSeG4/TU8gK1NjK4mrSvuqs8MMvO8B1a8CTPpWhBEJNUlYTq7QUTceO7P0NoY5+8zlHktHVzw1CL+EGvhV0eOYHBtDIREROxMeOHmJSUV5SF2nVTFv2ZtZMJwBaSkC+nQ8nV9DP0vAynfmHttWSoapAwaNAgpJavaEgxriqU/Fr8NzSoFSms90pkf3/MRtLCaFDodT+rhffIL2r9RTBkV0veeeM88Klb74csg+eQTeD6Mugk60CWxj3YlT56BaWhtrqtiY7HsnZpXf38EPT0Wb3zWzntfdHDxXYv4w5UT3PYWfPhFO58s7GLS4FI+W9bNrIe3cxZqtV6eBypQGPLceqbHmB8wUeMa2c9jEYNdt64CYP+d6jJhc85aEYwfWsprt03l4Es+54Olnewyoooz9xzEj//4FWfduYj1rUkuPnpIRlpokLsfSgWDWn/tMaWKU2Y08uy7Gxg2IMrIgSXEwkZ2fL2/PDMwLykdtOQ7byQf6NDPwdGf+f1X09Cl5vr47I/nvyDAV4yGoAhT04L7x/pz8rQfQ1IseNHHa7Hfpk6bA1aKkTRvafOv/oK6QpNqIUmQPo6Cgqe/UcmY5hK2G1HBn99v4biB7bR2DcDsK6c62U51LIlZEU+DlOuPHsGC9b2cdvtCBtZFsWxJIql8D0reazckuPqJ5VTETKSUjG4q4Yz9Fdt6dQ3LJ/DwngvtP2TAiN97b6r2xpm6Id4z+8KpV/pZ2pGJElfinDVmiLSjDxkCGTPAlvzp7XVc8qelPPuzCQyqj7ntG7ROBdSvUJivKxjIB8zzfUuFgI2fYLTQN+0JZXWTqyLjG4Zgz2nVvDJ7IztOqEQYMgNcE+pcj/M9qSBYmXMaKsO0dSedA54NHJMwSDMksk8ge02MqiQkBWs74+wySXWgI9JtJiIWWw0pY8qgcn6810DuencV158wAtHtalAUF9gildGU7DG5ij+91MJJ+zVR7nMAqESyfE3nfx1I+Ya2LBW9DIbDYYYPH87y2mucB0JkLoX0syyKK0UegCLIlggXc26CR35SqLSfbRQzGbJ1dH5nf5BZA/Vfj3TA0q9T5vNQTjpKOYUEYUnnktll8zu3pSBJ5SoUtEA/jxtRxjO3bM2j10zk7MMGctge9W65nZ+BA6JsN76CaMzg2Zum0FAXzWWIdQbdID0ecjQnenhwNBApmWmj9HksuXX8dFEXf3u71fkTFr6SzNGDSnjjjqnM3GMA61IJHpm1jgoXnP380eWsaIsrwCaAVFChuCstLzG596JxrHpqJ56/ZQr/+mQT37lqLmfdvjCb+Vd/vXqoTJDHlAS5DA7SR6vfVrE6ay+c6hVMummZgkAAHZS28Ln3Y7SKIbdMxX4D2QKAgPt04AIJGmSPA8PnWVZ6PvG/DvkBhyAGTwW2+pUvrp5PvnCQkepIZd4tJmx/4nhlUBkvvVyFyglpTQcGnLRLI/e/upaS8nZCRoqwmSJphenb6O6v8DQSBoxtLOHRc7bi5pNHcNv3R1EaNTJpAT29Ftf/ZQU3/m0lvzx+GDd8bwS7Tahi7KCS7Ha3tHLoFCYbMKhxU0oYPQ1VW6K6p9cPmlSZc8NNyxu7XhoJHHCTALql45VROnOsSEqeem09Z97zFU9dvhW7TqpW2tafdyg45reEltL2uTzyW/v8voNiviU9vaA0gsqhf5N6WGX+yZq3bMlBO9bx8MvriLvnhrFJIDtMpAtShJCORiUpkJZASudKfz9AT9KmtsKVYVvCGVMpnHg9BnanO7jcNL5Y183EQaWKGaN0Nt6HZHosVZWGSHSFSfZKKBFQ5vExOGMqgeO+2nDM03YeWsGSNb38+aV1uW0tYHVrgr54ipEjR+a+/x8kfUn8Otc31A9NCsDYsWNZsGABu02U2RNMAfttX21KkN27RzqzlHO+g088/ZGuztbJT/qeo2nJngx0ZmdLARHfcnmkStNMN0/3DBk/TY7wJjXPftMzzXM3cue4XQ6iHFO47MrmnAciZe7CA+y/Yx3771iXk97Q2ghv37MN0gOhKekuhD4Se/2LNQU9CYs7nliJaQiO36+RxtpIOrywcSR7alxLZs770PzLJ+I2h1w6h41dKeY+uB2DG6IZ18geCHCTqa+OcO4RrttDG9as7ePP/2phwrAyRg0sSY+TQKYX7bkurTMhbBg8c80kZl4+h4deWsft54xW9neRPa514KKmZZM5Y8UjtS0tma2ZDPou/Z6nzQCU/IX2LoiCBBN+0YrRDPhJ5d2+99OU+GoktedC7TNda6OP83ygRS/blmC2/NINokJ5+wLZPOn1Nzz4mJUUgTj95sGCkmhlkvatqzIY8mko0t+i5Kgd67n48SV82LmKyWWVdPRUkUhFsCwTud4ECWKAlemPMAhbIG3JvJU9XP/Ucuat7KW5JsLidX1cecxQJg4tS+dfXxVmeVs8sy/EO4fEAxdhMtJwtWwq8FA1lyEtvNoWYTJMIWRMt7z3Akd74jGNKrMcw5kTe6Tj0csDKTGgVKTncWFJ3vhsE6f+egGP/nQr9tqmJrsMKum8Q5BplNpXBceamj755w117gqiQtobr9390vWbs9X81Pz1sH4aGMVU0EtfGNnD+ug96vnBrQtYvLqXCU0lyLiBtAykJTArkhl+QOVttO/xrXntXPDwEixL0t1rM6I+xjl7D6YsFEJaAiOaAoELchzDJGG5315ISc8GLIEtbJZt6mPEUAPrXxHkKoHwxmJYOuejGE55PvqikyfeaKXcMNh9qyraN6acPTUen+CWf+HKXoYNG0YsFuO/iXSc+3XS+YY2E6QwkVyGVD9nQFu0c4BK3rM9hP+9H5jwwhQy6/BjdLJU6QFMmZqEPvF4aehUSD3fX1LSCwJFvgdG2iLnfZY3kKB3kGHivbTQ3nlxtQlcGtq4yNMGUj8QMi0pkooEWulXLa9PF3ZxxW+XAPCz+5fw+0vH8529GjC8NAApFSZcB5lK9qs3Jli3McH0sRW8/NEGvnfQwEy+KgjwaefmphgXHDnEAY1e3bw80yIRZYLVFzX9rAS3XPtvX0vy+d2ctISbuK1HJnfh9urlLWbpeO69KXLrhhJG85QmVG2Nbk6nApN8pDMDxWhS/N71h0HWNKDpogQAFH0OCTLl9GWUCu1fyWe2YxPM5PhRfwBEEEDJF67YtIuNBz6oXYmfbw4tNq8sYYmPNMl7rt+rYEVPB0BAaanBybs2cs9rq/nD4c109lYCYJoWVneEUHOvE69dQLVMAwAhBA+ePY6ehMX1f1nJFUcPJRoxnINkJWkBw8oNcZqrI9kAQ/3MkzjgImj98VwTe1pZ3ZRLq0/W3hSUe8+cywMf4IARD8j04Ow1SSjhvbh90pHQhwXJMJx97yKuOmEY+29fSyD1x+yr2LVUT1L9X+x3U+zYkwH3fnH0vggqp963tvbem9NTONoKd51XBSpdfRaJlGRAWQg6wY6H0t+fB1hEVO18JS93Dnz50slUlpoIW/DzJ1cQM0yu+/tyVm6Mc9+xWxEyDBas72Hc4Cjz1vQyrrk0G5h4ZXbNvt5a3M5eE6sQCLrsPi7402LKKwR7bl1FWcxk8bo+Xvh0A3VVYSYMLeXyI4ZQGQ0x6dxZnHxAo3JmXibtr1b1MnbsWJ+G/4b+L1G/QMqYMWN4/vnnMw98JOdzl3Tz1qftnHHowJyFu6BGpQig4CTk/voxPDpYKYaB0l0da5RXW+LHeOhmQsVMsHq++gSuuh/0HunS3aC4Fum+CGwOBQAFnmirM6pBbn99vJDkpXS/y9znWUxxxpSgbVOSZFeKv1w3iaOumMvFxwzlzJsXcvlvl9BQHebgnev4YmkPr87eyKQRZfzt2kmEQ0bmIEeVkQfentPO1qPL2Wd6DVfcv5QTDmh2rAG9MqhjzgeoyKzFJQBke+S1icfgqyZBerqqVzDVHNFLWx93KoPjt4gq/SdDIq/gQChgz3fgFPNtBYXNJ1TIJ3H0oyDpqzc+IaM98+79yAe4A2mNpa+QQqd8GhY/cKI+769WBDYfzOjjI5+EeouIBfW5PeA+KIxOOuiz9Wd5BmeWxFoBK/o7SIOJM/ZsZsoVs1h7QBdl0W46+ypYt7GJnvUxSpbGGbX75xCTOQKH+qowiDAzplbzxpx29t+2NjuMAXtMrOKih5YweVQZNaWh7AMVk0pY76T4fIBWkK0l8fpZrZeqkVEl8+q6pc5ParvFcfY2hKTj4czb+OyVLyn5zTOrSVmSM789MLfN85GXb3++B68eQelB8RpHNU5/voVCQku/cEGkljUI5Kjzu40DViRpq4lXZm1k9MASGsrCyDVOZwtTYicM7HjIPVTRSzfDo0lbOCfBhwRVsVDalGtDR4orjhoOwAeLOzj/qYUkLcnStj7uPm4M7fEUy9vi2NJ2hpLpxMMWYEhESLJ4Qw/bDq2krT1FVbXBL3efQN+ADl5dsIklbX1MGl7GHTuMoqIklB7n0pB8tbaXMcNKs9c6t8gLV/YyZsyYIhr1P0u2FNib4/7VJ51vqJ+y/okTJ2Yf6Ag5DPGl9y7m7FsX8rtnVmceKgu3x9Cm964o4CSX2VWuYqmQmUm+fveYsv4aAwYxH37/9Xub3PB+EiYpcy89vt9z77Lcd5ZPOn5lTpdRe9+fpinGPMPLI6jNVWbDFMiIwQdLutj6R7M46povOekXXzJj2xrO2LeRFQ9tz02njeQ7Ow/guXc3EBZw1sxBfPJVFw+9uC5TJh/PV//8aCPfmlLNFccOpbvP4pVZG7PzLsQsB20uT79XkvJMrHTy00oUYMCztE9e+VTNj05e+Q1RnGe+QvUqhnwXdl29gf+3rgsk8lGQeRbkAkf3v7eXSw+jb4Xw1cAZPtfmUj4th18Yj4rVZP0nKWg/CfjPdyoFzYl+4fLFKSadrDbXyqnRqKYS9p1Qw13vLqOiZgMRM0HcilBiximN9EIS+pZUQreg5/M65EYjS1Nx8HZ1PPvhBl+GtqEmwq9OGsF59y3isTfWM2dpNxKZ2XPi/Uoy56AEkcrIqUDUG59qFT2tSlr4pITztKdJHGDi7hVI70fpE86J4aabRtR5/+HCTi7/w1Ju+8EoIrqmXKV8TifykboOeZffepdPg6jPNYXGStDc5BcnZ00OiK8/U8uix/Eur+1t5V6tP7CyJc559y7m7IMHQjfIlIEVd0y0AKTtSlssAZa7J8W9zy6DK5xMCHrjNrarudl+dAV3HDuGe48fy/3fG8tD76/l0XdbmLl1HYfeNpc/vbc+k54hEREJpRJbQE/C4qlZrRy71VCiDX1UR8McPnUAp+zexPZDK6iIhDLjz4RESmLZUFmq2C0q4/eLFRYTJ04M6LT/OQrqvs25vqF+alImT57MsmXL6Ng4iKqqcAZUKCZe7V0pTtmviZ/ctYg9p9cwarBzQKB+roVHOcAkaPN8OkLAvR5Opf4wOl+XipEK5ls4C4GG7MDOj87I+sWVPs/1/nMXKV/zL500k6+sfiz2dO+g8njk7VFRH9k2p904n9MPbOaKI4YgTTBMI31w4sxta2EHwXmHDwYpWd+R5IYnVzBpZFmm/w2Ro9WzpGTNxgSmKbj+tJGcc9tC5v1xh+zM/bQoXj2ytHk+9VMkYVIFSPrY9FsI0+kGtKsfw+8HVNQF0dMOqdoilfS8goDV5pJaxmJm46B2h/yS1yBto5q0Vw4/72bKXhUdqPiag+n5qd9CoX0r6Thq4bQwxUqE/cLr/4PGs075xn1/ya8Om5OOQp6ZifBbOwq1md4+XkfrY8uAy2cOY+8bPuXsnUdQEumlM+GcjVQS7aFnoWPWJC1BX18J0d5OzEgSkBCG3rhFyBS5c5wAooLGARHu/tFoPl3UzaufbeKxt9ZzyRFDKItmzmpCkjEHCxrXunZW7btC36+nqVE1KbjxDRyTsz7AlI4b26idMUOLw8ufbeTkXy/gqhOGsff0mgKZFSC/PvMTlBXSePRnjvFLr1iBQX95ETUdXUPil3Z67SJ7bCrxN2xK8O0r5nDAtjWcsXcTdDlj2Qhbzp4UW2CEMolLWwXmEmyBtOB3r69meVscIQTCciw2DA8nCBzNDTCoNsrPZg7n8Q9b2NCd5Md7D3IsCiz3DJSIBRFJS0eCDxd2cfL2zcxa0k2MKMJbfL19LLrXOKClM4lhQGV52BfAfr64iyumTAlo6G/o/wr1S/Y3YMAABg4cyJwl3TnvpG2zti3BypY4B06r4Yjd6rn2wWW5iRTDwAbByEKTrZ8U1k96kY+KkRirUtMimKCClE+rESQlUqU1+j34Q/IgyZNXhnx10FStRdHmtIen9QmIu3BlL18s6eGg7esQQmAYDjhOl8+TXhowb2UvA499n723qWH7rSqyJOhOmMx9y8Yku7uuiI/bp5Ela/pYs76v+HLn8zpXjFlTTpxMPYLDSNDN8oqlrIXepyBfx72I/p3pzaJLD1VApUt6CzHSfu2jm0zkkZJmbJ1F9hUQ1k85kJWOXo584D2o7Pn6POhdkEbFx4Tw30YFtBGB2o7+ZiNF1qU/z5tnvufpudCnHkIyfXgFe42v4dY3FlNa3klJyJkfbNsgEY9hmBa9K2pIWWF626pItsagR0AKvljey45jXW9g6nhPz6uC0hKTnSZUcvahgzh4xzp++tBS7nx+Na/O2UTStv37V2fc/dZIfWzoa5Y3Z6pAW2j33nkbniAr5gZOOldHe4ojrv+SU/Zr5NzDBvkUVKN8fMDXBK15BZlqHvk0LnrcIC1NPl5F1UwUs34HaVFs7d7be5RSntnwo7u+YkRjlLtOHY2IO967VBKGdA5aBKSlSFmETIMP25bMXdXDJQcO5Sf7D+GC/Qfz66NGO5669DYBMOGI7et54fMN/Pn9FkbXlbmgKgM8fvvSWn564BAMQxA2BJt6Us53arvhVHDi1VXAvFU9jGyKEY3kTlqtnSlWt3QyadIkn8b/nyU/o5fNvb6hzViyJk+ezBeR03Oez1vWw7DD3yViCg6eWMtFBw/isVdb6OhK5ibiN0GlNS0FCqBLiP0YoKCJY3MXxaD5VLXh/ToTq9oefsAjqE6BgEMJ4zcx+oGVzaQcTVixWhQINJXZ1J7k5j8tZ8Y5n3D3UyuxFWb53FsWcvTe9UwcXgpR4XrgEpn0XImPFFAScxK9+5wxCDdMjotslyGNJ2zCrsvc8qhBZanJ0rV9JBPaBsNCjKCfVN+P6e3PBNSfrzSIWQ0K2590i9V4qONMfZ4vvl9ZCsUJYsCLHc857q790vw3q1+DTMXyCQWChCReeD+mNMgULl84Pd18VMh++usynl42Qfko85gfgAlkRgsxqsp7ISRjG0pY250gUt1DRUkHIcMiZYUJhxP09ZSxpm0gKSvExs462tYOpG91JbLDYMXaOEPLYw5T7ycZ9zgSt/23H1/B7T8YxfTR5WzqSfG92xY4Tkm870ovt9fnnmTdT0CnpJ/uaxXcxLUwKP9N5T6E4z5WkN5A//g7rUwYUsovThqRnmsLkl+4LTROMnlsRhy97Qppa/woXz38zCH1TedZ67XwX7uV3/e/7OTF2Zv47Q/HELIExIWjpXC1JcJwNCq6ZkmYtrMPxaWvWnoZ01hCWcygosSgoiRENJq/Ec0w3H7cGH7/vfGMaohBSCJitmMOaMGnS7vo7HP8Yu8+upr7PlrMJ0u73MhKedQ1w4AvV/ay1ZBS3zznLO5i2LBhVFVV5S3b/wTZiC12fUObAVKmTZvG7NmzAdLnVAgbxgwsAeDu00bDpgjjqsoYO6iEl97b4A8LfTaYilSwBN2J4/PMm/D1hTlIaoEWJut/sPS4kJAwkHRYnA8y69oQ8AcmftoR/XmQxEcqz3PS9qm7H5Om7iESihvi/gAULx0t/b++uZ7Gme9w7R+WceBOtdz26EoO+cnn9PVazF/aw7uft3PzGaOIRgxkxHF7KcPKJG66px8Dj72+nl0mVlJbGc5Myn7jwBBsO66CD77sdMJIOGa3Bs64aSEDZr7DC+9vyA5fjMQ633u/sPrCWIwE3G0/S4JUJVLFnCWUTxuZNY76Kc4RWhwvLe/blkq4IAHD5lIWMPwa6ejko2Hx28dSFKlnRBTNzOHfXjrD6RdPD+8XpxCoyZfe5pLSV7pmxA+IBD3X09Lnvax4+QQyfpJtn/xGDChhaWsfosSipKyLaDiOLQ3i8Rhr2ptIyRCRUIKkFWJZRzOLV4+ma/kA1qy0aaAcuoV/GbzxoK1XO42v5PCdBtBUHXEeqW2ufi9+JkPe96aejZJ15phW37jIbSMPoHhhI2TOaIm5VwiWtPYxbWS5T8V8aHNExDogy0f6eNaz8xsvQWti0BpaDEDJSlcDI375q+NUDa/+98Jaym8KfvXUCs7Yr4mGkggkRHoPCoARSWXykzjARTgAJaudLMEny7uYNrQ8e57w08rpvJYXLuIAlIUbu/n1iys55/eLGF5bwrXPruDJD9YzvCnKPaeP4I/vtGS0M7YbN6TkASxZ3cuIplh2Gdwosxd0MXXqVL6h//vU72Vmhx124P333888sCVYkqvvX8qIxijfGl0FQiLjgpnb1vFH9SAeH8Zc2CBSEhGXiIQLEvwYbP0+iHnPVzN1E7gfQAkgP08/efMBf2CWb3IuBFCCQJff8yANTCGJoVfGIgBd4B6UQuYqfuQygLPmdXDMFXPZenQ57942lfMOHczsO6fR3pHkwPM/5YrfLHbm2KQz5rBwDl3E/fUknm597/zbas75TuY8k7RLWjsXrNTVhFm7KZEu+0VHD2FIQ5TzjxzMcdd8yYsf9AOoBLWf2jeFQLVffDUfpZ3PuHUB0X3fZNm6PncRCgDb+sLt9w35/ffCpv3U5wFBEueQVH0M+D1T0y401vONcwgez6D0i8y+vLrk5OvTfn4HQxrZ7SFN4c+L5NVQKGAln8YjHZ7Nkw5vKQrKu9CBUf00OysEWvJ+K+S+09MqqJFRGUfvCsGROwxgzspuHnl3LdHGTirK2okno2zqqaYkFMeyDWxpIKXAFDaWNPiqpYG35tk0RyucNBM4492vrz1NhZ39fLvRFbw1p90BCfrh26p5o7evBDKb3j3tjSTblFZtIwuHadTHoAd0bDLmRdJN1+vyELR2JR1PZnq/BvVRf+xZgvoYgr+tID4hX1p+c5DfO50Kzd1+jiP0Ndz79XM0ocZTx6MLVDZ2pHhu9gZ+uHezOz9ISAlk0kDELETYzph0QSaMR4Z0LgGfrexm8kAXbBo4WhYD1OMM0u/CThpSCoSQJG2by/+2mLMeWsQLn2zgoCl13HbsaG48fiT3fH8MJoLr/raCkhKDlGln+i5MZszbOPuekpBMSXoTSoMqRfhgXh877KDtGf0voW/MvbYsbRZImTt3Lh3dGXR+719X8+ALa3nmiokYpqNaBNhuWDkvfrCBf2qSaI9BdDQnbk+YOBJxnWlQF2VJ9oeG8ryY2vm5OC7C9l738BPk8r8oKsRsgT/Tpr+TynP1meUT3y8NnYrRBAjwNp0DpM/DyeepJd+ioFBf3OK8W7/inCMG8+Gd0xg/sASRlFSUhnjm6onsNa2GYY1RDtyxjh7bdhjmsIC47Rz0FBbImMMIy7CAkGCPqVVcev9iZi/odCdEkWvu5dK0cRV8+lWX60FMMHhgjH9cP5mrjhvG+YcN4pbHV+ZGKoZh1BljH6lQVnul4xE8PlQyoKbMEUHd89fVuekGkV/ZdSmZKrFTNSReXdRx5weGdRCGz/NiKcA0sCjKAiyaVsTv+/d5r4ITKch2fpDOJzudzZ4j+lO/YsaIHt7vvj/lCBLSeI0UBFg2t16F5sv+pANZQCUvGMoRLEhqq0P85cyJnP3IIn796gpKh7ZSV7WelB2iM1FKwg6xsbcaISQNJRupinaxqmMTo2qHsq5lJFZHJHPGSB8u4y8zXhf1/N2N7M/ObmNQTdR57sWP4Jzc7Wk2PJfD3qGQHgMYI6MB8b6fJM65JxIHNPUKJ14fGbMvLy/PYlsFKxbQKRzNUBJa25PUVfXLD4+/JnFztXNBZo8eFRo3foI8/Z1KxY7BIJND/Vm+ca7+Tyn3LlC5+4XV7DSmkmG1MbBAdpvYCdMBJxIwpQM2PKAilXK54AQBhCU9CYvyqJk7T5huOHf8CCHT2hohJEQlq+J9NFaHuePkUZw9YzCj60tcTZykqsakvjzMkIYIWAIzRAZsJ3DGonc+TwiWtvbx0L9a+N6MpgxQVoDnB192/veCFApPX8Vc32AUh/o9JTQ3NzN48GBmzetg8epezr3jK376u8X86YJxjB9Q6gzgqI1MGBx+y5dYNixa2ZuVRpZnJZ3B8WNG1N5Swwufqxjqx6ZgIXE8XGjAJOhQwOA8yZ2kgiYlP+ZOZwI9BtLyiR90D7ll0J/rC0dBl87Cf7HxKF/bKMz7Q8+uobvH4urvDXfAaxJn0U5KamMhrjxmKDd/fyRPXLoVI+rdE2aTrokgIPpshOUwj95ZKg+eP46T921ij/M+4cirv2Dusu50WT2w4l2fLuxi2tgKZFhgl4eQMcNpE0MwbnAJLRsT+dsB/NvWY3hD7gXB2i0/aXMh6boNu0+tBuDeZ1YjujxODP/vxvtOdHBhkfdblLakq8fKDeNHHhDzq6P6XAXahRjQICa130yrDyDJEzYLmHjgRD9gVgMyfry69BZ4lVSAr54rpI+JzQVnOfXJ8y6foGdz8taBSn/7qRD5AWS/OvgJfPKUI69ZGYAp2Wvrap4/fzJ3vrSaw+/4gp5YK41V6xg/Yi4hw6IrGaMnFaM97kikl2xaztSmEFUlHdgJ02HOOgX2WtcMVe17lbz5XTrnrYwaW+YIZkJAKRktMmQ0MH1unLB7eeno30zcDR/HBTcS+kR2uBAOuIko8Txg5eUZdpjXNZsS1NdHg9vNj/xAWbFjpL8CAL9xrK6tarh8Ar2gtTVon0k+wGHnAmXf8BAYpr3T4tYXVvGz7wx1+ikGotTGiFh4Z5TkFTZ4GhIDpJTZ+4m8fDxgYjoHdjqHdkpE2AE/G7pSXPanpVz+x6UkbZv5LT0Qkc65QSXSAckGPDWnhZP2aCRR5nq68wCwZ5rmAm0LyfdvX8Cx36pn24mVmfXEvVa3xVnV0sW2224bULH//+i6665ju+22o6KigoaGBg499FDmz5+fE+7LL79k5syZVFVVUVFRwY477sjy5cvT7+PxOGeddRYDBgygrKyMmTNnsnKlj4D2P0ibtextv/32nHrbJrY++UM2tae4/+yx7DG52vGV7qYqwjbbjXUm6R22qsyAkhwmWLn325OiMzRZEwOZidzCf5HKV8MC3nx0t6KBQsKsSS1AIqb/D5LYFGIAgyQvetpBE6P3Xyq/AeRfV+m/r8NvoS1idC1Z2ctfXmnhrFsW0lQXoQQX9KgTJEDclTZa2XuXZMjV5rjuPUXSATYkJaYNFx8+mC/v3ZbB1WF2+cHs7PN7vKLbMH9ZD5OGlyJ6bIzOlKuZMcCWzJhSw4KVvXy1vLc4xsiPqfPrc0/qGUR+zKpPegfvVMdd546mJ27z21fX5n4jfmDFr8x+RbAlb3y6iYN+Oofag9/GsgIGTNB3m+979vJNj0slbV0DpQoW8gkZ/My0PPK+9WKAiuJ6ODCcj+ZEN/fy7n1dFPsB/C0JSnTKB3gLCXr8xq6e7maWWRQyFdMpX/Cgb1N/VmDezGEIU2R17I5blfPhL6ZhGoIdbnqfj3sWEKrpY8LET2gqbUNKQUWkB4DhVTWs6+6mJ1HKmtXDsNtCWO1hjCplr4DfOFDK2lQd4ZEX1vL311t56eONzF3a7cxzytyHEBnTGUFm/gzjABpvXvUOiEySYRSlyDX38trH06QkgKRwz8DACW9CRyLFx4u72XFcRfb3os7f4L82+vWFTsWMq6D4/QEzejn8AIpOfpve/dJS3udo7uzsd2p4v3Dq2PzbrDZGDIixx/hqpy+7BKRAlNiOBzaPdwnZjmYFsjX5yjfR0W0RCWe0jN6vEDJj9hXCAaYudXRanPPnr/jhwc3c9oNRVFaGeX7uRn7y6GLaZcoJbwIRsELQQZIzfv0VR05tcOoTAaIyvb/JKpGc9+BiVm9IcOOPR7vjNrsZ35nTwcSJE6msrPTpkP958tPQbu5VLL3++uuceeaZvPfee7z88sukUilmzJhBd3fGE++iRYvYddddGT9+PK+99hqffvopV1xxBbFYLB3m3HPP5emnn+bRRx/lrbfeoquri4MOOgjLsvyy/Y9QP/WzDn3rW99i8eLFvHxpA6ManA3zaTeGSRw1oIDzDxzMNYnlTBujbagTAmm4zK7KpOhMgCp1RQurIHxd6lA0FWHmVfT6GWRAGDBRZcfV3gdJc/R66vHy5e1J0dX01cXIj6nWmZhi3TMHvstmENs2JtnptFls7Eyx7fgKfnBQMzIiEH1uGG9MqZLAEGkTCeHWQ4ZEWtOVLqFS9yH1UW790WgO3bOeo67+gnc/b+fUmc3stHU1WM65PV8u62HP6TXOpJh0pOIyLBAhQVVZiP2m1HDnUyu59ZzRwd5r/DQhQf2vMiH5qMgxfeQeDZz566848/avOPWAJoRpBMfNq93K/rvXeZ/yztwOAHabXImpnKeTN65Xd91Fsp8kUyFhyfxmUjqQKRBGSJw+1tNUT6DPR37ARHdjncfZhn+aXlpewDwDwW8M5UurGApKs59YwddsMeu9zDRCgXoIIbMX5UL1/jqkltebY/S6eEyj6izBO7fJAKSgtiLEE+dsxT2vrOGwe+Zw2PQBXH/4CAaOXYRYOJL2eAVRM8H4ATU8M38Rh46X2LZB69Ih1NSvQ643CZm9pN2w6gAyRFr49sNvN/P50h4StqQ9bnHXc2u4+wejM+E980PPpMsTQHkCPC8PD6SkhVRKm3sLnqf1UwUoHpiJSoextEmD2lc+38To5pij4ZbKuqkDlCAq1NdBgo5ClE+g6LeGfh3Kx4Moz7IAh184A3/mVBUoKuGent3GEdvWZ/rLM8tSvGYJA2R6nHuAQ2bxV0JIqqtMuvosuhMW5aWGI/RDZja4e+QeAPnXWa28ML+Nq48ZxuDKKKQEp+3aBBLe/6qTyx5cyswd69h311qEhKnjyjn+9vncd9YYBkWj2U4YDPhkcTdXPbKMRat7+cd1kymrDLlsi9dmTjmufnAZe377RJ8G/O+gQnLm/qRTLL3wwgtZ/3//+9/T0NDArFmz2H333QG47LLLOPDAA7nhhhvS4UaOHJm+b29v5/777+fhhx9mn332AeCRRx5hyJAh/POf/2S//fbb/Mp8DdosWd0ee+zBggULGFofzZ4I3WMlhJCIqGTemh5nM507xoRNWpriABRlAdOpGBBZSAKTFVaTxurZbc6oypd/f8rmF9ejQhJp9X+hOvilpd4rB24GbqCH3D0dxezw8jm5/JcPLGXkQAfFfzSvkxlTqh2AYgClbjjPTtWv7JZ0PHmFNOYmJ28n3u5bV/PWndNI2pKDLvycn/12CVI6ZkyzF3Tyrek1jgYlKiBpO2PCXfx/eugQHvpnC69+uDF/PYPaVi9PsRSkUdCuqhKTVY/uQOtTOzkgKm94gi+Xunotlrf0YduSgXURrjx+KI9dOSE/U5yl7fDqGqCp9ItviM3fx5GHAtP009IUE0a/3xzSv7v+esbTtR5BmowgDUl/Z/6g9PtT/QKmi4EaFX1u+7pjxBbZl18e3n9Nu5L1rUiBMOBH+zbz2XXT6UqkmHTlR9z/wSoahy6nLNxL0g5z94dfcPLUCYTNJEJITMNC2gbrVg7BWh/N3megUlg41gkmVFaE2WVSJXtuXc3oQSVMHVWedr/umSFKgaP9TZHZNO+lm9aYuGmnD+dzmVCv7U0ccOQJUVzvUc4hju67BJk9L8ALH29k/+1qHcY5RxhQZJ8EaUv0tXBzuT+1fQsJ9Ly8+pO2mkfAnJoXoASVIz3W/J8vWNvDVy29nPPQIs5/cDF3vLIaGZWkDEkcmx5p0ZlIsqk3RWtXkvV9fciQDaZrvhXKNgn70T7N3PLPFWDAhp4kfZ4E3eub/8feecfNUdR//D27d/fU9N4ISUiA0HsHIYii/EBQioiKiiKKKCI/K2JH+CH2Aopd7IIovfcivXdIAuk9eerd7vz+mJ3d2dnZvb0kqGi+r9c9z93u7LSd8v1820QA5fs3vsyCvn4u/NBMpo9uh4Ywxplgj2lD+exRm3H/i+tiQdF754zjq++bxqTx7bGGJQgll925jIM+9Qj7n/kwE8fUuPk7OzJtahJ62OQ3/nbHcl5ZXufAAw8s6MT/LFqzZk3qMzAw0PSZ1atXAzBy5EgAwjDkiiuuYNasWbzhDW9g7Nix7LHHHlx22WXxM/fffz/1ep1DDjkkvjZx4kS23XZb7rzzzo3bqBZovTQp22yzDW1tbTzwfA97TBuSltpoCqEeSKaOb089G5sKpSSixjWTodloUo78jExh33oBFcgy6WUX5qLy8rQkRUxwWem8+az5TB7YcIJIkf3uBAhJurifI+nzP55aw0ffNpk1PQ2GdlVo764gQ6lAR4iKHqIXaR0G02SSNdD1RdKEhkT4kYjIlNxLiRiEGRM7+OVZs3n4pR4O+dCDXHbrUjraPHbYopvJI2vIEGRnBTEQJOOmArtPH8IHXj+en1+9mDm7jnT3k6Y8TYN9v3CzUmW3MibHDouMx01ppoOkbQJlRbpata7BXh9+gOcXKqnDVeds5z5Ben1AeJlnrNPeIWlLrl8YDgYp51pRnusNOkwq0K5seN5YAMf4Lo00msqmDY37GyKpTt0vqXltNiZarVdsZ1/yATtykUk6j0gLLT2hTraP1xU10aaMrvGH07bmqodW8rbvPMHeM4Yyfcwr3PFUhf56g+kjh1Lx6vjVACFC1q4cSXutn/q6duRLHv7wAURHqEBJjSSUuucpLZMPItIgz5zUwUV/X8htj69mv+2GRYKAqJL2uqP3ZHNN0uZgkO5/PSHs96Ed8r0ov0Aon4MqSCTXPrSSH58+K87C+dpNAVhZKrNWbEiaDZ2iJSUquef15FEeYLLHdShYtGqQN28/ire8biSE8Id7lnL6L1+gzffwPYEvwJcCPxT4nmCgoaJwnf2WqbRVjcHiwereBvNWDHDfS2s55efPMH54G8vWDdLd5vOxQycxdkgNEcL5V81n2oQ23rb/6KSuvtJ5UFdmSiKU3PnUGvaZORTWSgWKqqgw1YNq7Nz97BpO/NYzDDRCPnTERP745W0YMbKmgHfSeamu+Nj3nqWnrx5rB/4dqQWX56b5AEyZMiV1/eyzz+YLX/hC7nNSSj7+8Y+z7777xoddLlmyhHXr1vH1r3+dr3zlK5x77rlcffXVHHXUUdx0000ccMABLFq0iFqtxogR6b1+3LhxLFq0aMMbtJ60XiDF8zz2228/bpd7sQd/TyRB0QBV6mXYanIHN167moyjqXEqeGwSYktb817yq2AG0BI4sRnQsgBlfSU1LulP3rMm8Mgj/axp+gXZdoWAJxFSIDVI0I+GqIPFIB+glDClGT28yoo1dT70lknoyFuiEZlv1aX6rytcxYjxLyNJjFBR4bxIJazHkZRpJszwl5FRKNzttx7Ki5ftxaU3LWXRikE+dOTEKOvINChywCeU8fies81wTv/VC03bFfdf2futrGguAOQoSxSMgdR4j3xMpEjqMX9xP/OWDvCDU7bgW5e/wivLB5K+zdOgODRlxe0wninyI2lW/xLXoRjcbFC0Phet7w6lo+U1oyIQYj9umna6hBr2mqHBirlO5AlMXKTvr0eHNrXBdrWvsC6mhlVmwUhRXjppKNSzMrmmmTCVLykp16E7juAtu4ziLd95gu+/c4BfPrKaer0NKSW+30AISRBUWNffzahhS0FI6r1teG0NCEDIMInUFYEPWRWIQKrxEUhq7R7nf3A6n734RfbdeXgafGqTNEgsHOL+IG0KpAU/5gGTWnuk24bxu07iZB/V8Zc3L6F3IGTf2cPicVa4n5Yd4za1+sirJCNI8re0Ii6NiU1l+BZjnKW+m2M3GpNrehus6Q/Yc9rQmOc6Zp8xHLP/mERw3Ig+QSS1CgR3v7CGL/51LgP1EIGgvx7SMxCwdiBAAF1tPvtsPYw7nl7DkHafucsG+NF1i1jZ22AwCHndNsN4276j03wcqMhiEf8nEdz11Fq+dOxmSvNWQe3hdcX//emeZZz03Wc4+x1T+fCRE6l2+GpvNsFspGEWgdqHV66pM3/JILNmzWL8+PElOvNfQxKB3Ahx4nUe8+fPT/nftLUVB6g49dRTeeSRR7j99tvja2GoBt8RRxzB6aefDsCOO+7InXfeyY9+9CMOOOCA/HrYARX+ybReIAXgoIMO4oorruCMzVHOdIAc9JQ/ihSIWgAh+DnMkgikeglRVBz5akkem1Ch30kR4NDt0otuGRUyNAcYZhp7Acx71rxugo8i0CKNtObGVZIUUGntGZPueWw1Nz+4ijPfvplanDQFkQ1tVSB8gaxIBGECUHTbhAoVLCNpkPSkAirasTsCMBDtJ1raWPUI232kJ+jsrHD8YRPU+w9lwpcFMrGprku1yPowsrvCwhWDrFw1yIihOnTOq0epcVmkQTNJMwABLZkQmaBmm6mdnH7UJH52wyL2nT2UI/YaFc/RXIbenMc2+Gjm11GCNlTbWeq5jbQGrbdGFtafiYNiwU5euoxggrRWpWxZqfWr4GHX2I3KLOWXYgMVp3bIAUgKtCXSuic0KLHzN+ofa1TMukbmYL/64Fb835XzOeq7T3LXx/bk93f3smjtADM6QnV+it+gVhmkt6+bEUPX4XfU8ToC5KCnDlTskErzG6hyVGhgqcy/orVqYCDEiw6yFVrQ54MwzLAy/+19JF5LyfqfmNQfgaVAIIaHcYhiWZGc9au5/OgjW9Be1fugpc1xvsOcMZ63xrW6PxfRxhRwOvIqpTUxwYf+bd/PuxfnLehu89luYhd/vHcpHxk5EboMPkTnX9XlRcBSSvacOYQ9pw8FD3oHGxz//ad5/bYj2HFqF7tNH0IYwm//sZhvv3M6tYrHn+9dxvC2CnO2H6E0aHqs1I36RGUIATL0WLpmkAqCTq+SWhB7+wO+cdkrfPOvr/CbT23Fm/YdDYI0QInzTDf+xYX9dLZ7zJkzJ6dT/jNp6NChpYMEfOQjH+Hyyy/n1ltvZfLkyfH10aNHU6lUmD17dir91ltvHYOZ8ePHMzg4yMqVK1PalCVLlrD33ntvhJasH603mzlnzhxuu+02BvRhOzFDLZANlW3vQEhnm7H6hcnin/LXs8N6xulzPq1SQfSufKar1TIKnpfGx7zvAiHNAIrdD64Fz5SG2c/kASfzmdB+Tsabo0mxj5H5TFymxNR72n18zi/n8tFjprD3jsOjM088tUj5ajzImqf8Q6oCWYl8FUKQPsgOLzoTRWUaSxl1c6LNW7Z7hJ0estsnHOKrPH2BqId49TAed3EkJl8QdlZUfnXVIDEYLcpV2HWzIew5awgnnPMUT8/rdYacLfpA6+mdfVv29KcoGlqpU6OM8eFLwVffM407vrMTF358FsM7E1lGXrSrdH2teuT5dTjysSm3TzYyud5PUX2a1nFjMkNFq7R5rwhY5AlRzDXBZGrL5mtTqwDFojjEqSbP+uj66E/q4aJ6OT6ZNErAJgMvAS4S8vxWYh8VSPWlh+Bd+46nvx4ya1KViUMrzF2zDgDfb+B5AW3Vfip+nXpPB7LuIwPjlHCDsZc1TzFw0flNst0DT/C3u5dzyC4jlLZXa0P1OikioGCKIDUQ0R9QDGxIKugNgyILUiIfldj8Nnr+6Zf7WLmuwaG7jjT2I3vuu/q5yUR27YfmvfXlA/KAz/rO1SL/PJNc465oHNqUM/4EHme9aRrnXj2fAfOcEQ0+tW+RIIm8CklwBeCe59Zx4n7j+PCcieyzxTBqeLRXPN6z/3hqFZXosJ1GcvlDyyNNDMo/aZC031Kg546q6+/+sYR37zkhqUsV5i3uZ89PPMTl/1jO9Rdsz6EHjon2eS+JUOeRaFFM8oQKZOf5//YgpaQbaalPWZJScuqpp/KXv/yFG2+8kWnTpqXu12o1dtttt0xY4meeeYapU6cCsMsuu1CtVrnuuuvi+wsXLuSxxx77l4KU9dakzJ49myFDhnDhbQs57Y2TYI1A1ELC/grCDxEVybp6QGdHNBsMgBJTXijQ0Lrf5CyDIipjypFhCG3fB6zfGbvwSDIUm68Z96T1nKaiBa6MBkXmfHdpT5oxL4XmYZbJl9M0z72oxLdN4VIo+etNS7nlgVWc+5GZqnoDYWzupc21RBBd13l0KIBBGGnhtDYlOrgxlrSj6igrCvhIX8TABBQQETL6H/2WnsCrh+o5TxC2+whfqPJNyeRQ+Pkps/jiX+ax64cf4N2vH8e5751Od4cBxO1zL+L+WA8G1h5nzaSPLtLjMWOOZz1r2+8HKBWvaS4UUezL4Zh78XwrmpempmVD/Tdc8xPjmv27gDLnmuTc07/NMMOZNM18klzkmkdmfmW1tc3SaG2EyxTMNVbsdpmaFmlch+Rd2h3YYt1tJ/pYQl3C1FGlk7SiPVEAJVUDteYRaVa02Zd+zO4nDSoic5f2SPM7UBnkuF1H8d7fPsr+03ajLTpror29j/nLNmNUuAKkoNI/QHVkL3QqIBD6kgefXcfDc3t4al4fjUCCLxjT5fPxY6dw/f0rufjjs1S5VW0qa4Rn13WrGnUVOf3nocCJ7ksddQkUQ6rfhT7t3gcG4caHVrHX1kNoNwWRrnXG6B/VoQ5Nir3nQVZr5srfft51vRVwkrcUFY3fIhP0sktb5kR36b5u5fk/247m7T99nPlL68zoqCGGhslhngIFWrQ2RZKAzIrix25/ZjUffP2E+LybOH/dHh/aPI9qRbCyr6EODtYRuSIwKwc1j6eeFe0hz63o5bRpE1W+Idz21GredcHTHLrHSL7zsZn4VU81w7Xm+SLVn9JXJl/tbR49fY1/e6f5stizTD5l6cMf/jCXXHIJf/3rXxkyZEjsQzJs2DA6OlQE3jPPPJNjjz2W/fffnwMPPJCrr76av/3tb9x8881x2ve9732cccYZjBo1ipEjR/KJT3yC7bbbLo729a+g9QYpQgjmzJnDUy/fpAZsu0T2eAT9VbxaA6+9zrp1AUM7Kg4wApg+BM3IBistMjXCnHRx+TmUx9jYC1LRwpQHQMosZEUApeiaTWZ9JWmgElrXNdOR9ypCVCfq/g+iBU3/1sysJuudDtZDPvO953lpQT8PP7OWtX0BF31+NrO26EY2Qqj48VjQa7IIpJKweKhTlRsy8RHxlKZFM7iy6qnrFQjbPAVIPGUKpkGK+i2RbT5EWhRt6xqDlapnaaWiDT86BRdg7MQa3//QFnz8yEl84AfPsftpD/CzM7Zkjy2HpPvM3ISFyL6nZtJE1zMRvbxkgBsfXsXrdxrBhOG19E0bTGP8pslvG0RLmZiNhVHXOMBKy5QKmrGBy3meMMFZbkEac043s6uPKF5XWtVH55UfZ5xjDlP0TPwsxeuDLTRpEcjFafQzLrCi14tm0qEWgJwGLRl7/8J12AAqUb+kwElR/WT0kJDIUCigYlEMpEyAEjFqlUjdUG8LGTZygFFdHrVqiBCSer3GYL2NIPQYqLfhDzSodvalHNQvunoRgxIO2H0Ebz9yErVIuPLoI6t5x1eeZMSQCngiFtgIDJClfQA8FMNnmsDqNU0zmVWgz+pDSVqb4oHs9xBdYcz0vrSyny//dh7nv3+Gui+SV27+N/vH6rxkjJuCFHM+m13uAix5eedR3rxoZQkqGybbrn8rIMR13VFH4Uk832P80BqvrB5gBknglPgde0Sho0Gu8hDtYaJJCWB5T50x3Ybpsh89r8FoBHZOP2ISX758Hhe8Z7rKr1/lIXs8ZN1D1MLkuaok8KQyDfPgjhfWcNiXHucL796cjx49SQXOSbVNCwHM/gFzM5YILr5yEdtuMzOOWLWJEvrhD38IqONBTPrZz37GiSeeCMCRRx7Jj370I8455xxOO+00ttxyS/785z+z7777xum/+c1vUqlUOOaYY+jr62POnDn8/Oc/x/db9AfYiLTeIAXgkEMO4cILX4wYSRBBiN9eVxtBv2DtYMCQTt+9CFiD0EmGlNW0iS9FJvNQxKDlSb7jOlrf8xal2IE8vXFlpJY2FQEU83k7faoNRt3Xh3Nsxiz4uv+tZzTIdDz/4oI+lqwY5Irbl3Phpa8weniVU46ZwklHTeSgXUfQHgCr68hOH1n1EAOB0lxU1UYv2zxEf4Dol0pbEmlNpO8lICgKbysFyj48lEp7okFLIwThQTXKayCk0ZksyGHVUxqUepgCKLLqKe2KJwhHg7ciSA4L9YCqYMbmnVx7znZc8MeX2feMh/nzZ7bm8L1HufuwrHmDSQWRia59aCUnf+c5uto9Lj5tFm/de3RUjpVXmY3YBV7tZ80gCc66WlnmCNNboXI+JDnXipiHojSu+WdSnhS/FUYpj8wxoqWLtills3ZpymPoTCpa28qMm4w22ZHWBCpFgNmmVvvTBk1ll0Bdv7z0NlARpLQp+qC7zDOhYG2vOqhxSM3n8Rd6mD1mOEGgDnnyvIBQeowbspSuIatZu3oEQb1CJRqXK/rrPDm/l299bKYS3FQjwUsI2209hK52jzfvNVJFQawr4Y0EJcQRQkVa0ju71vBr8kXURzJhpCuoZ7SPgQkaAoHsEyryWBR6eN3qkKPOeZKj9x3DOw4em9EoZsg1bl1j2yY7v2YAPM7baof9flsdXxuSvgwI0fWz2ycK7pEA7i3HdvL04l7232qoAg81kvcfEjvPixFhCoAOypBKRWTTm+tBdBDjpHFtbDupkwsufZmPvmESfl35H4uK2nTE8FCBICG59tGVbD0+CiHcAb++fQknvn4cHzsm8ZEAyvu1hvD8K3387MpFfPi0M0o88K+lVg9iLMqnfNpyi9573/te3vve9+beb29v57vf/S7f/e53S5f9atMGgZTXv/71nHTSSazs3Y0R1YpiLqOJI6WgbyCkvdNbv03cEX405RToZPgtwBEa13LLiR9OX48kDbnmF7FWoyB/nUemngX5NeurZpuwDVhsrYmul122TkNOGkiDEr2AxelV5ivW1Dnjm8/ypxuXICXsvOUQfnvuduy59RA6OiuxBkNGgERWPbUJC2XzLOohytxLAY6wMwIcGqwGMjlpGbXQUZfITlVhbdYVa1x0t0QO8yIwOlhEEj9PmXzJStJoEaooX6LqEY4SiF7jRUZ94ANnvmUydz++hu/9fQFv3m0kvratbUZ5DLZNjryO238MF165iCfn9XLSd57l6Zd7+fTRU5R5VrO1qqgM4bhvlm/OL1NNn6NNeDV9SJqCEJNcc9Sc20VmVmYeeQzH+jq6F+Xl8vXK+15EZcBE3jOv1vtrBrbKgjFNdlpXG/XQ9aThb5J+n6bGJP6ugQoYEl8ZzxXpuYHKqnUBHVWPqu8xaUSNRevW0jfQSXfnGjwvpKOtFykFXrVBW1sfbWPWIdokBHD9A6s49qCxSngTaZSlL/D6A0Qd3nPoBJauNryWI2ZcaS9kpJER2XHtKY0xQpnwEiaAKzYL0vlJlJ8BICKJuFzjIbpDPnLJc4wcVuEbJ0/PvIqMFsUou+z6lqudLDMmXEK8ojHvum6nT4HgfAlMiqmMwGrTeja7VnBPeBIZCLYa38kTC3rUuJTG+NRDpC5UMIZ2ocL/RuPlgRfWsfPMbnXaO6g10dzTI7M+eoB2eM+ccZx20Qv0rgnprvnqUMhqEsdKjAzp6Q/4y/3L+NEpM2PNWP9AyMiRNUvYovbnFFBxvffomRPOfpxqtfIvO1BwE/3rqFVDhRRNmjSJLbfckpsfWa0uVMEfMohXUwxdEEoqWhtS0jNI1CWiJ0T0S7cjaiwdkdmPvqcdhgOZSBL0vbzv5icoKCdTYVGshdG3YlDj6MgigGK3vxXGIXIEzdf+5NQjlSZhRFPvwvHulq8c5K3/+yhLVtV54s97seKm/bn5xztz4E7D6YykgWqjDZFtHrLNVxtaI0xC9Lf7yMhRW1a92L9ByAigmFUz8caAkjSq/zIx3wLEQEAY2U2HbT5hBIzCNqXFCbXzHnoTV4BFVtR1WRXITh/aPKXp8ZLuRcBFJ89k4YpBzv3TfKN/mnzMPrevaWlXzrOdNZ+/fX42k0fX2Gx0G9/92wLe951n6dc+PGXK1eVI457+bZLreZORXl8G3VWfvHHqSmuTqx7N6mfebxZYwExjByMw67ixP2Yf2JS3erfI7GTyL8MMNgMZ8fonHRyrkabFHSgDCFoBM5ALUMz7saDNZDJdGpOc8mUoWNMXMKxDCe5GDvdZU++j6g/Q399JvV4jCHwajSqNvnZ8P0DWPaXNqML9z69j22ldsTmqXjM1LVlVZ+KoNNMnAqmCfLhCwptMYGiMV03V6GMKsYTRZg+ogRgVsk4E/OGOpfzwlC2omkId4zU7hROp9c0QdtjUMOrgGh+u1yaNTx6Zz6XGp5WmSBuUR63MnYJ66rGXCtpQlFWUbv+Zw7nuqRUKVDZItP6gfnfJ6BBOqYBL1P47nl7DvlsNTQSp2sRLg1WPxP8EEEIwcWSN1WED0RlCu1QAZ5j6X69KPnnJi3zs2MnILoHsEFAVvH7H4dz48KriPsoJwNPTF3Dghx/g+QV9DNQl++yzT3Gn/BvQq7H8/zfTBoEUUCZf1z28RkWPEChpEMCgIAjA90Rx9CIXaNG2lObbMpkCDT7Mjw04AuMjC767PpAwiQ3jE+JmUGwqO7rMkWgzqc0W3VZJM6GairQqhfnojStZzb//x5fZ+ui72PLouxkxrMofzt+eyRM6qPkewvcS2/2QxJE9iICEBgraf8TwIwmrXsqkKz69PApZrJzeozZE12Wbl4kWp/MM23yk7yGrPmFbJfrvR9cj3xUwnPKNOulIYzoSiaYKjBpZ5RsnTuf7f19IT2/gZr5dn7wxaIKGHLAydmiNm762PV0dHrWKx1/vXs4bzn6MVWsb+ePaNc4xvofGb/N+mU14fVdUe0Vuxqg7wVYO0Cgqq+wOUfb6+uRfdmdyrRFlV+6Q9QIDQLE17gbvHE1ofesMLQpyyqaLmEcJtoTcZZbxxMIethijHFYJBBO7O1m0rk5/o53+esjP7l/FM8tXIyoD1Lp66Qsa9Ich64IGjVAypLOiNMYQ++Npn7yn5vWy1WadulqK6jLZJy2AEkc71MymJD0/TP8Dc12yqQKX3bOcqWPbmTmpI77cVGNqj+k8wV5U38JnXeCwjLBNpzOBiB5jReDEVbdmZjj22tpkP08Bk/WgQ7YexfyV/dz9/BoVXcu03tAR4/pRoaPr8I9n1vLDaxdy77Nr2Wxse3quGeePxRHhKkndjztgDD+4cSFn/v4FGu0SOoEOQX8g+ciPnucDb5rIllO7lDCvqsoeP6LG/GVR3Oo4sEbyXdjvy/h90V8X0D8YcuaxUzhgv72bnhHy70BlgmmW/WyiDTT3AgVSPviXvyClRASG1N6XNAKZPSdF3/cKFjft4JeDrjMMfdl7Jgkjjeu7JrP+LtOtPN8Bk9EsU5+i+xsKqQsPg6E5M5B5hzIGASKEj3/7OQDOP30mpx6/GYRS+ZjUpToUMZDINk9ttjJa4+sh1CLtRcWLQYHQ55XoRTvSisQa+NhZP/pXR9mMV9NAJgYcJjjR5USgRoYyduITBkgWUiYHS0aAR0jUWSyBVGM9RIEi1H578M7DARh+3F0cs99ovnLC5kwbp/XokMv0F5ExV1w0bliNG7+yPV+4ZC7f+Osr3PnUGj73m5f43vu3yC+jmfTdxQhrM7A8tbw2K2lW5qshGipayTe0vCLAANn1YmNtKnn1lgX38siWqNtrUjPSE69MO8uYkm0gtWTrvQGMn14zZSiUWYszDal+ESI6+wu4+4U17DlzaCSJlswY3cX81avpHDWSz9/4KHtMnsWd8xbyzbsW8IUjpvDF655l5mYd3PXsGk4/enLiwOwILDN+ZJUv/2IuVV+wcm2DI/Ycxf/sPDKzd8maZSqrx4+5r9r7Uxi13djHkYL6upD3//xZLr1nOd/54IxXD6SW9V0qaxKYZzZma1bs8orGu97EjPSZcekYe02BiLFP5wVrSFUjMvfqavN5/96TuPDWBew5Y6uk/rpdgyTv2oef37iY04+YxHEHjEn3j80Nmn0crfnTJrXz8aMm8Zlfv8RHf/o8XgQ21/Q2+Oy7NmfWuPYkSmeogPOLi/tZvLJOUA+VObRJZvAkh9ntL69ayGfesRm/unYVbzju8ML+2ET/mbTBIOXAAw9k2bJlPP7cKLYd2Y2sRzavNUmlIqjrkIiamjE0rQKT0HHNTt+E2cul2C/Fet68VkQm4+dab5ottGUAV9lNW9sg6zK1BElTifUzXTcZL0RDOn3W9gac8D8ToBEq04O6jJ06lUN7lEFDqoMDhWL8GQigovxF8DwFXjwlsUwflmZqT0QUIjhQksJKYtoVp4mc31XkMZEAlIpAChEfkiZ8qfxUhIgBp0SXHYJUwCnEQzRCBcCEQFaSbpMeCN/jT5/bmofn9vCR7z1Pe1U5tWcob7wWkQ0KjHHRXvH4+jun8fb9xvCnW5fxof+Z6Eyn+tBxTV8vKlczY+Y8sueUDRbMzaZojOeZfqyPGKkZqHBRKwBqfYBmhsEp+ZxJrv52AYKyeTcDE3afuPItyyDGeRgFll2zmpWxHu8g5ZPS9LmIadTjXxodFybrBRhMasRc3vXCGr52zOZQVdYFW072+M3dz/P7Rxbyxpnbs9/Ubtpr3bxhxhYc97O/cvlnZjNtRjvL+xt84qIXOXDPkXR2VBLNSBitMyG8/7CJ0JD09gR0tnmc9sPnef22w2nvUmtcbPrcLmAgCkts9pm9npjXteQ9hBDJI0vXsXxNgzseW809z6zl8R/uwuSRba1p8spSmb3QHLteiesustdS/WzeWmAKMYuoQCjZ0piDEuqpNA1tr7B8XSO5oB8XUr3TDnVhTaPBiKEVtpjQkV7TtR9TINOCV0Mw0jsY8K0rXmFlT4PPvX0zpkxop94XUBMeH//5C8yc0qFky9FeL4KkCrttOYSK4SOa4kHC6CBmlCBQ3RcMBiFPz+tlm2ld3PzQc3z314e11Cf/KtrYJ87/t9MGg5T29nbmzJnDVfc9yraHdKcY86HtinnNMBxlpJ9l1Lyua+ZvuxiXJkSndy26GozEjFj03wQtgeMaxjVXU4sAWNlFvawkqRVyScqlIS40pXphFFVGwFv2HsWEyR0MH1JNziNp81SM9EAi6iDWBcpRvkP5oRCZZYlAKmAT+rEDnWhEeUSnOse+KBEoElH5gDIV6/ZjTYhs8xOVsgYlhjpPan8TIxpbXI5UeSTOfMqPRnpak5N0kKhHfeOLGITtufNw9tp6KJNG1PjUxS+l+9bcCNfnfbu0fMbY2mHzbnbYvDubpzn+XIDbTO+RHeMu5jhPq5IZN+SbdZhpQvI1knmU12+tzglX+iKBR16aorLz1hdNRSYu5hrjuldUp7xyY6bbkaddr7IauVbysMMTF4HnV0P71owKQFQs4TYZV93PIchAsLJvkKcX97LHzCHKTFhItpvexoErh/GLu/rYbdIoehse3Z1rmTzC45bPb8/IiRXwBSNHtfHp90/jfy98kW+fMRM/iBhHYazB0XrY1elDCEM6fIQZiVyHhB8IFaPYIPGl02ujXgviKGBAXRAOCP721FL+9I9lXP/YSgYakvGjanjA/50yXQGUCvnz2iXIyO3MFuZ8gUVG/Nt8J60AFTM/6bhnl2cAOQBp+306AElTcGyPOX02WfRsIUl44OU1HDBjVGK6FmL4msjYpO+2x9aw3w7D0u9dkxmqGmNt9uHphb2c8+f5fOrYzdhqcocaU32SWuBBT2TSPyiRtcTCghCklPzqpiUcuZcR+TIWcGK8v0jbZ77EEIIA7n2xh80mT2DmzJnF/fBvQq0exFiUzybaSErbww47jCvnToY2iahIwoEKsiEY2uGzti8HGYRNPtL42Lay5jX7Y6YxrxV9JMqhLO++vqd9U+z8zXJtkCWs/0VkM5fmp1VySWKMOP6p/+Z3yI6KIAr97Ah4ICSsWtegM4rclfIrqXoq/O+AVIcxakf2QCL6Arz+gLDmEXRXFSgIZWT25SNrvjpluZo8Z59SHnZWlAZGlxVF6dLO8alnhCDoqBBW/fh5ZRbmxaZgYfw9aoef+McozYtInOnbVNukB7I9ulZRoGj/nUewbG2dL/52bhIa0GYI88CC/THv5Y0J1zOmVC9vnOZt4nmSc1eeru+pOstyzEhefZqtE0XrhutjknmtqF/t9PbcDykOwqHXF9cao581n8fKN+UTZ+Rp5uF6/65+hPSapIUweTuB1+S+XVZpbY5Mr1FF5bdKOXXI2P7LnOuphwruuc6yCAV3P7+O6aPbGTuyGr0nQVsn7LZlO+O7h1DxAsYOXULfQCe9/V2MHFZBdgjCTrWebDGunWPfOI6v/Xyu8r+zTWTi8tW/wXpI1Rf0NMJI0BAxfJLIhxLlszIgk4hPgsTJGhioh9zwwkre9pPH+NAvnmOLqe386ezZLP7Dnjzxo1147Ee7cNhOIyPpt8iOCdd6VUTaoqJZVL080uXbY9i2ELDT2/X2rP9F5cXzRqYBiqbo/cffDSoNUGT2uulQ7xqrYSi568XV7LPFUCUYbIvqWweGAMNRWrUK3P74GvbdZmjiM6L9kXQb9bk6kYCPNsFdL67lh9cs5IcfmakASj+wBlgLcpWnHOc1BaQ0d0/O7+X2J9ZwzL6jrfFhgCDdbj1eo4ARVR/aax7X3LmKw454W37/baL/aNpgTQrAm9/8Zj70oQ+x9L27Mqa9it9Rh1BQ8z0Go/juTnJdd0n3pCOtObjz8jOfy4tyZZo/5WlaINlQTfMXe4HT+djl6Gu2NL3ZQl6G8g5NKzKpMOtpm5KYkkFINpHAUj5GG5UU8PALPXzo5BnKpyQ6uZ2KB1EY32CkGmZhdxV/9SCiLgk7/cTfQy/4FYFE4g0ESTjgWEXsxUBB1ycGGR5xyGIgDtsZtFeQFREDE+l7hJXI78XwRVGvJTLt8KTyVYm+h+3VKGyxGhxaoyJkqNLp+ngCsSZAdngM9QQ3nrs9h33+MeYtHeCHp2xBrWLtgmWBp/luzPdi3rPnih5nrjmi07u0H3YeNtlAVli/7Xql6l/Q4CJzs6Lfuk7NnjXzd6W31xd7DuetMa71Jq8O+r65xth9bIZYd5GtUbGZLVv75RoDqblt/bfNXex+MNcxO3/b9MYs05UXNF+jHCSExHn6/MZYS606pfwC8uaEWX4gkIHHrc+uZL8ZI9RjPR6y3+PFZX186a+vcNzWB+N5IdXqIL39XUza+RkYIWJ/EW0qs9/soaxZMcjpFzzD0O4Kn3nXVNq0j4kZ4COU7LfdME790fMsXDHIrz+5FV3tfuJIr/u9HrVBM6TRWGv0Sb5+6Xy+ccUrDOv2OWKvUVz0v7MYPayabpvuhKI+LzL5tMkM/23m5VqPNBVpoV1WC3Y+dnVce2AeFd3XwpFW/FCce7b1vwjXGPm+snqAVX0Ndty8Qx3WqIFHjcTMul8iOwS9AwGd3RUIUIEUojPFtGmW2tMjzUgAq1bX+cnVC7noIzPxhVAApZ9orEf+Wrq+gbGX1kPCQclvrl/CpFE1xo1SDu8pdsUEKg7fqydf7EEIyR2PrOXDn31tmHpBeblcmXw20UYCKZMmTWKPPfbgL/cu5uSDJiBGBFCHRkNSMaVAzZgMF2OQx4iZZG/K5qKTcWiLLuvrenJq+0lLA5Ec2CUSIBOgVKgCtRiYC6vezEzphGY+bCmpTfZGXzRI89rXjLSddR5QEdZvz5B4aemXvh9IqAimT2jn0msWsf/uI5ODGeth7Mguo9OSRT2kMaINr6+hFqtKEpZYaT58Jb0BvL6G0lrUfFUHT0lXRD2MTcrCdh9ZJYrSJRCNUGlhPGITL+kZIMWL/FHMMemRmHuBUrH7QpXXCKGiFmt1iKSEeqhAji9ix3oxGKYXWg+2mdbF7f+3A0d++QmOOfdJ/vC/W1Mz/GZyN1UXY6vBQN4mbecTWNdtRjOPudS/XUwm1rXQSmuTDV5cYKaI1geg5KUp60Om02umw5V30TrkqkfRHDYYg8w1SNfZZlxMQYkLZIQkUXmEkUY7ZJt52GQLLvIYNGGlsdPaQhk7v6JT6XPyzHWcdwqHpJNxtIGI63o2vSwG7wJkw0MGHrc8u4pTXz8RqiBX+Hzv6mUsXRvwpQN3YkTHWp5dOh1fBHheqEK4LgJGSiUFr0brZV3y5r1H8+b9x/Dkiz2cct7TnH3SNKaObQcduCOiI/YZzRF7jeb0Hz1Hh5aE6/96v9L90w/U1WFzz63q4cSLnmFdb8AV52zLntsOVWctRUs9kURceCSmQObZSKk+WE+OSu8rLiGMTS7hn3ndHm/mnLHBlSlgtIU29vqYQzJlmeDWoLgfbGHPbhb0RsLi1XVGdVapdQqoyHi9k/qMMUDUBEuXDzJqZDUS/GlfJWmYEhKbZzeQXHrbMq54eCVfe9dU/AEBfVF7fQk1iWiTyFUevT0NBXIiAca63jq/vG4JF16xgHog+duXtqW9mowb4epT63gBKeDBZ9YxbUIHS9dW2X///cv32b+YJIJwk0/KRqP1UaY76bjjjuMn169g3vJ+GqHkgmtf5qIbFjJ+eGQsa2/cmnkIjY993TRxkMYnNK7bphNSKJtR84wQw1wiPg00Jw8ZSQj0h9C4Vk8+1AU0RKIyD6x6NYy2lBlreo6ab8RkLnQfxn0lksUuLPEx8zCf03U0GRfdhrgsmQYoKCmMrCjwceFHZvKLv7zCA4+uUtG0OpQZlmzzCTsryDY/9u3wBgJ1PQrlq0MNi0aI31PHX1dX5mBSARUxGMQO9LLqx+ZfQXc1+q3yklWPsENpThKzr0oEWkQMUOI+jj5SJI708YGOGsxEvivaHEyFL/ZSWh5Rl4i+qIOjhVjWPGRNMGl8O9eesz0LVg7yzm8+TRDI/BnnAq62ZM31Tm2Qb193MfvmXAvJ5m/PM9dHWmn1eCEnD7v8ovGZ91taH7tdONK5rhV9dFqzbqYplmsdMj/2WlXU7mZ9Elj5mNfstatO2iwM47fLTNbVL+Za4zKJsb9T4rp535WmyOTLATyEkNmzUmyK+6tIFF2cRSa5y7TL/i1gzeAgD85fy+tmDkeu9KivaefJRYOcvtf2jB/VQAjJxO6lDB+2nPGzX1CRl4bI1EGKwlwn6iFbT+3kOx+ewcV/XcCnv/8cy3Q4V4OxbgRSKZd9L3rnUQX7kzQMotb+dslTC3vY9wsPs/tWQ7jn+zux1zbDFEDRFAmYUpTSSMr0x9lpsvi3eS0PCLvInD/GWh7XG+O7PQS0ALHZnmzm6VprXRTdz553ItKfgmf186lrrueM30vW1BnbXVPzog2lQdHWBdqsuU1wxX3LeWpeH7JNKJ/QDmWiHCIJ/CjLCKT+4M8L8D3B998zg4m1tgScVKUC1m1AjyBcW+UXVyzl+P3H8vKSAT558Qts/s57+fUNiznzbZN58Fs7s92U6PR5+zy7go8IYPLwGvMWD/C2o4+hUtko8vRN9Bqkjfbmjz76aE4//XS2OvU+poxup73qccF7p/Pm3UfmO342k1a6GC37mjl5XQyZTmYy5nbZeZuZaaKSkrgZoSnDiHEXMpFqukwfypIp9XGBixDn5p0hcxF3UdwfjpU3pYkiKdNTO7E0N7BAMmZElYHBkDe97z6evmJfhg+vKR+RUEb2rRDWPLx6qLQTcR1NBkWBFelFGhFP4IUy8WOph4ggiP1PtHO9qAgVRlifzKwjd3kJ8FDNNQCK3VaU1EKpuSPJkwZGUb3iCGA6updvvKiKgIaMzNdIfGhkyLBhFa76ynbsftqD/OXuZRy9jxX20ZSmF80NUypoXyu7icbPiQg8OxjEgjmUSmuWqbvCZS6ZB5bMMvPuN6M8ULc+lNfuovrrthcBplR6x2KQOSTQSuOan+bap99jXv8TXTfPnnJqHSjuv7w1J2c+xfU0+8elWYG0RiXPxOyfSM6T5+ObyqHZ6cws4Y6XVjB9TAeTx9WQAYSBj5SCIKjQt24IQVBhoNGGDD11GF4XydkUUTv12inQ+4uge2iVL500jQefXMtlty1TEb6MfrnkpsV0d/hIEUVPzAiaooRC8vKyAd787cc4+c0T+NKJm8cH5uKJBJyYkSBT65LVbtc4SvVJk0lpa1KaUdH6VHaMxmWTFgLY2pS89AXUVDNXsI6bz8bjzhYexHVJKrKsp86orlqkiQNZ81RUzX4JXdERACE88EIv44dXlYVL1UMAdz69ml9cvZggkLxlv9HMntjBnQ+v5pUVg5x26CQFRnSfVlBjqh9kv8e6hR28MrCaRxesY+z4Cgef/ShzdhjO5Z/fhr23HpIGvan31KQTo7T7bNlNpVLl7cefUJz+34w2mXttXNpoIGX8+PHsv//+7DnqWaaP7eDYfUbT0R7ZPNmbZ95i5GIMJNYi6Rj4Vn5Ok4AicJI3GALX6hBd1yrxiEET2owiFbKShDkoscBltCZm202fGnvjKCJ7EbfV26b5lzCe0SNDa4J0XYRS15pCnsHILGBtT8Anv/EMF35l26g8FSZYtvnqe28jMmUI4/vJAYpR4VHIYEA5xetzTfBSIYlFPcQbDFVF2qXSmBj22kDseyLzFkvdJ8Z3DVY8QNQDZNWHIIzPTkF6Sfd5uh0SEQaJGZk+WFIKhICRo2qc9pZJfOfvCxRIMckGtVDM9NobbhlQAcm8MZniQMQq/lT+dsS6Zky4Wf88vwrX5uwic2wWjfENBShl16C8tLJEujiErQ08zB8WeDbbr/NIJZfp6yFqvJlgxS5Hv9MiwGWX+2qBgyKgAm7Grsx4yKP13Og1k1g6dGyU7o7nV7PfFsMUw1hX13whqVSUx/qK3hEAdIxeHWniJVSI1w5RD6N1WiRRvaKAIkjJH29eyolvHJcu24M7n1jDdtO7+N0NS3j7vmPVdcMxPu7DQHDyT57lwB2H8cV3T7XaQLIe6GZ70UYX6g2vWT/gnv/6uuMsDLMdzufy0thlmeAiz3zMxfSbe3PcT47yzU0vVUcXGDHBSvZ2mXGZASrmeqLni4B6GFKrCAVQKpH5cT9K4xHtaStXDzK0y2dIh8+CJQNsNrGd+59ey6+uXcIPPz4TArjslqVcddcKdp7WzQm7jYV+geyLzN0rQANkQyDrHkG/zyeveIrJoyp0tgve9d2n+eq7Nuf0t0zKNsRch8oIV6Om3fjgarq6hrwmTpk3ycS9G5rPJtqIIAXgxBNP5LyzP8aD509VoeTyNvCigZpizEk0COZzLg2Jna9Ztg0QHOCkpRNfo0VCxItHtJl50fqrwYAvk4VSgxVnftZ/E6Bkwhsaj5WwbY1NI4oYXfM8AFeYWs3k+MTRYvSaiSfoaE8y7K+HkWmUysTTNrEmI6zDF1cFgigUcXSIowgTRCsNZ3Ppi3ij1loUFS5Y2WeHkfZEyORANSD2H0m1xwa1llmDIDoXJZSEFS9ZW8MoCLEQhJ5A1KN911PX45DKUcAAJUlSv4/ZZzRn/uQF1vUFdHdG4L3MKlQGhBTlk2cmYAJdzRC5pNhmuTGwjf6LnPQu5iHv2bIMaN5a0spKXmaDLCorr0wXOLG/NwNFeX1hX/Mc6515z9S8mH53pvDERXqO2/dd77Is6fFkSqyFdd+Vb5FEvFWgkicciq43AyK54V9jgU762XtfWs079hivtMc9Va55ciWzx44hDH3a23tphD5d1T5ENTQYTZGeH5Z9vtoHJH+/YxkzN+tQJ3rHJmGCZSsGGT+yxomHjOdrv5oHe6DuNVBAyYsyloKFqwa58YnVPPe/u8WS7hgfhnq/MsdYtJbF7S4AK3qs5AEVTUVAxaayGt6yGhQXQDH/m+uTq5m5QqDi67ZGrsxhjc50ek4ba8zK3jrDOyrKzKsiYNAYV6Haey+/ewVv2Xs0F1+1kMlj2vjqz16is+bx7Q/NwJNq33zr7qMVuBHAIMhBT5m5E82TwIv9rr59w3z+Z/Y4tppa4dKnF1BvSDpqjg538S7N+jC6/7MbV/LOE9+D5xUNpk30n04b9e0fffTRvLJK8o8J5yUXTWZIf5cFnzxGwfhov5KUb4mZbyDU5qE/9m8j/9h21LYbLfwAoYrkonxVPCUVqxu+LI2oHrbPTDPpsK1BcfUjDnDm+uDoK8i+D0jAkC7fFd5UXzPt3oGOjgrnfXA6AJ/+wHTiMMK+8hMhOgtFn9wuAqnAhj4jpR4iBgK8ARWW2BuMrjVCRBAdDmk6bnoi8XeJwgAjBGHkLG9qXGIAYkuJjfvaLyX1jAdBm4pAFmp/FD8KU1xRJmBhW0VFEKv5BLouUcQyNMCKQjJOGF6ju93npSX9pEhr2TSwtclkXvI+rndp+mTljI3Uc4FIxqudpz1e7Pnmuu4qxyRXve06NaO8Pd71bN41u42tApRmlNffrjkaiPz0rudd+dn+ePE7Eek5XBSO3Xx/9vtttS/0+BWkGUKbWSwyG3OQ0y9lQ3ezKM8yzGOKoj6rByH3zVvLnjOGQABBf5VVPTUGGzUG6m0Egc/Q2jpGDl1GOOArprKWrbfI9LNk4ZIBrr17JSe+aXyUSP1btGKQM3/8Au89ZDxX3L2CnaYbZyVFe2U8LkJ4fmkfE0bUmDSyLTN2RKA/Mha2xN0crbGqbAfAyNtb8uZyHJq9pHbG/F70uxnZxcmCe5A/ptZjfbJ9VXLDCjt9UHLKEJIXV/QxbUy7EpLWpbImiLQoIgrpe9/Ta9lly27aah5nfO85DtltJB9/2xTavEjzMiBhgCRMel3EIB5Q4CQCKGHD49llPey3xTAufXQRl92/nJFDfN550NjmfZS3h1mmiYtWDPL3+5bz/vefXNjF/44USrHRPptoI2tSOjo6eOc738lFF13E7m+2buZN6iLmBVKSyIxfif0MKBDimNDmIpCSnsWSCXf1XBKPdF7RNUu7IiMbbyFQvRxLqWhu8hIXJJovhi7myr5n1jFwbPC6Xqbpl87TJ6cOMorQBXiCj71lEivW1jnu9Ie575r9kyaaITOj7GMzBgN8xAcoam2JL5BBpAXRDH90Xok+y4S2KGqXjukOMVBR5TbpOxusIJLwxD54Qaj8VDxphCrW5l7Kb0Y58qtT60U9iDUroqHie6jNHqgKJo2s8Y9n17Lt1K4mFWuRHHOlVHrUmBCWb1Asjbc3aJeUXaeztSr6upbO50lETSa2DBWN96L0za4VgZNWwFCrdbHuyyiKoHD5ouSQGakwd26HgI5Q6KqXGbEQ8rViUTYbhWzpNZDxTzHraNfLvGemdUjBW9KU55GZhdYKGcKuR1/uoeoLtt6sHQLBA/PWcf3zyzhznwNohCHreocyYvgyOiavIlxbVfb+WsvbkGrueaj5F0foU5riZavrCCSf+cELzJ7Wxebj2njypV7ue3otX3r3VH54+UImj6zxwTdNSICljwpJWxdxH63oq9NWydGG6D6NTDZjTUtefzTb012mqSlTxhYBSjMqO2XMd6eBuKssnWYDTB83xrhL8SDG/NbXBuoh7cMErEWBjTaQHUIFcglgxfJBRgypQM3jmx+bidcbKiuGASUspIHSoOgD6wOQg168Hogg6iJjTTpx1ymcfvnjbD+1kydf6eWnH51FV81fP0GGY03/5c2LOeCAA5g+fXrZbvq3oU0+KRuXNnrIhA984APsvvvufPObrzDk+sPTg7ZMjcokAADkt0lEQVRZp9saBFMaqMke0DlRV7LRWAxJuelrohcs1zPRczIQqcXBmVfksBgzDEJGpka6TgJRlQkj0ApYgdRCmQvWINsf6oFUWdIwxcswNZ7RVp2/rq/9LiKsIaPMznrnVH569WJuvHsFc/YbgwhC5SxvmnyFJKEPJdAwpHVR0bIqoC9EtEnCdi8GMjFg8QXS86KwwMa78D1l7mWEH7Y1JJr5M83CTHOv0DAxC6MdVQSS0PdisIInCKKyAPAlXh2EJxBhA6/eiP1ulCkbSB+++K6pfOh7z3HYbqMYY55DYJtImBtnq1S0mRrjx3zvejwJ09xDAwyTbJ8H3W0286GBia5L0SpjA524UkYZ69MXZYQidr6taE6caR1zr4mdfUojaswxc0y6tAYZU0/9bo0xnjUVc9Q7NMdD1Nm2YMLVVjOvZhqMskxeUTrHvfjMFFtL6sgjFkxZ/dYyEylk+sR5nYcUXHL/Ql635XC8Tli8eJAf3bmEL885EF+EVP06w4auoGPiKoQv8ccPIIf7iN6osvp967C/oPwLQiCUbD+jm++cNpPegYCn5/Xx4oI+9t9+ONPHtfOlX83jU8dMZsbEzsTUp44CQVEgMC2g+v3tS5VZT9GeCm4fJ0hrVOzndR5FXVp2zBQ9q8vZECqa+/b661qP9fposgXNxlKrknGXH6HpjxLRlBFtPLOoD9njIwigqoGFRAxK/nrHco6YMxbRkIh+GZ/FQz0CKHWgX/Famp8RtaRDZCOaN1JbinjsstlQ9txuJh/7yzMcsN0w/mf3Uel3X2ZtTbXVSNqQXHyXz7nnfqBEJ22i/3Ta6MZ+2267LbvuuisXXXRRevEzpRW2GthU90E8IWioSZMyhdB5adMtS22Ya75l1CMVZjhMJp7TtIsoz8BLPo4TYGXgEdb9SCWq6iYbiRkYAcgBAQMiukZmkUtJlT3cm4SLXAu22S/a5C0w+kszQ4HLbM5ov+5z2xwkXtxkbCZQRfCRIydxypkP8+iDK/Ci81KU+VYEUPpDtTjWlV9KHF89UAsqAxLRHyIG9f8QMaA+Xn+gwhJHpmF+fyMqI0AdSBUNoEgbEvpeqv+EAZY656/GHwgQDYlfD/ACdf6J1wjxdOQwHeEr0tToyGFhxYvDE8fdHQGjMAqPHHZWEhMuD8Sg5Kg9RrPNZp38/talyXs2371I0qdMYuzfNsXjxiFFt+aaftcxMLHASjzX7JPOQ5IxFI8T42MDGnus2KFv40LJjl+Z8918Pq8vSoC0VL72WlRUr2Zl6FPU896DJsO0LzecrvXO7I9zHY2eM9Po95wy9zTyj9Pp92qa/BV9HHk5+9F1DYqZTFcfQtokUs8rIRG+bBqaOC+EsMvev5TTvLHfADyzpIcf37GALx63GWFd8tnfzed/996dMGyjvdrPqDGL6Jy2EjExJOzxldZrVRAzjNq8SoeMFYMSrzdaK+N+gc42n51mdnPUAWO49aGVPPZ8Dxd9dCYzJncqDbUJAhqovSYEAnjh5QH+9tAK3jFnrDGnjY/9W4e2Nu/r8MauPVwa38H93jHu5Y0h+3feGGqFyubjGr/QVKCY5TmixzzZuvlgbv6Oa8DRu4zjsoeX8v5fPM3pv3hBaUUisNoY6nPPgl52nD1EPdMuErMwiXq/ddR4qYCoSiVMrZAxQZaBB56k0jVApXuAB19Zw09vWcwX3jm1uPL2XpG3nkSfv9+3gr6+Pg4//PD17K1/LTVraiufTfQqaFIAPvGJT/DBD36Qj5w3LTlp28UEmNdtHwuTbEmPw68kk4d9L1W2yL/nIocEJFcVp9P6msMgYjDVYiWj0ad9qvFlObOk0PifKi/6X/ZMgCgymco3umFIbjNmJmbkILM9Zl3qCkwJCZ98yyRWrKlz+hcf54af7kZFH8AY2caKCKCk6qTz04vlQFSOJ2PVdBwaMzIRS0zBItOwAcUlh20VtcmHyjBL5rzrgbFdVNYNQnctCVMcRRuTnsBrqIhesRZHCAQyBibSVxHAlPN+ED/rDYSxhids9/FCEL0N6FHt3G5KF3OX9CfvM0/yZPaNxG3mYgPcEDWecqLS2X5MdsAAO61m+kzNo4gZKYwoYFbldXLT1Ksefa/g3vB1f9ik2w/pMefqrzwGJA+cuKgMgxWntRpSdDihi5ppGDT4y8vS7oNQqDmtlx49rg2gkvLXsoBLcj/LEMXv2PSRAremy6yzna5Z95h94gIdpubEWhMzQMws3ya73gUaljjcvIui577wtxc5YffxbLtdF3/8+3IOmDCbcUN8hk98mqC/qhi80argsL+KVw9iIZT0RKxBcVYnSDckCCSfv/hFdps1hCMPHZ30hTmH9JxD9cszC/o49ieP844DxrL1Zp2GORnJ8+Z/m0zhiQ6iUjQHTRPQIkGbDVTsOZE3R/T7Wx/wsqGAxyYJKUGovpyzJ9um5/paLpixtSfGbxkKZo/vYqfJQ5gyop2Fa/v58z+W8fp9RnDXg2v5w+3LePtRkxG+B/UgyWa1TMCnFogORgKqAERXyMPP9/Ljmxaz25RhvGPnSXhtDUQlRIaSSx9axqm/fYazj9uMbSdb5stmMzRAMceBq/+NaxdctYyPfvQMarWauz/+zSmUbBR/khYsfv+jaaNrUgAOO+wwhg0bxh8a73dLXfMAiiU5kTbosBzfs1qT6HqQaDdc2pEiZ/k8LUzm7CrTEd/4KM0EscYl1q5ETmey7iUO9vpQyDrZiRsa/WJeMykPoFgLZcZBT78DHVBAS0+1FNY4yDKlXdF1sKVtg8SHyYkQPnf0FFauqvPF7z8HEAMToSWDgyhpTw/QC/RF/2V0fTAqZ4BYs5LSvgyEeL0BXk8Dr6+B1x/g99bxIqBino8idAQwqT5aYxJWfRqdVYLosEcRSvyBBn5fA6+uzNREQ53K69VD/MEgzgMAj8T/RZ/L4nsqZDEQtvkqOllFINs9dVhbAO1tHn39oXuDLWMCaEq37LT6ui9jyVjKH0m/P01F0vBIui6tuZnRtMTSd5FoWcwDB00pmSQ55NSUoIG7P/R1FxX1k0sC61x3HJ/Uffca4XRs1enLkFW3TAQ+W4xWJGKzA4Lo+Wz2u7WmxpoWB8WMvq1J0w75tjQ6V1jjaINJRV1l70oxA5gG2eZ/517hElQ1OwiyBTLX0nvnruHte40mXC259pGVvHmrkdFc8RB+SH9PN/XHOpBVgb/LIHRJ5BBlupr4o6Q7RWmZZcKtBBD0h3ziB89z+D6jOXKfCKDUpZKcD6o09KLeW8TgPzJ3HXuf9wBv2GUE3zlpenqcpd5xdC0vqEKdpAxTO5raJ6K87XXAtb+Z10PrOtb1PCrLwdjj0aa8OrrmnKte1rjK5SOsvbplc0NXGwTMGNOJF/p865iZDB9a4bxLX2ZtIPnhWbM5aGY33tpGIkPR2rkqKnBDCAwmAD8Ukq/+/mWuemAV5xy6Jdc90s+K5TWC/gpLlge87aLHOfV3z3D+idM54ygj5HBmbTK+m+bi5sey0Lj7mTU8PLePk09+7TnMb6JXh14VTYrneZxxxhmcf/75vONTw5NDfTJMtnvTcR68WKQ9Ma+VtTk2/Uqsie/UkjjyyQ0BrH1YYqlj9FvK+L+QIfjRoZB6svrSveia0qnMou6QeuJot9lew8cmlt5oDUuAksYK0vbtKrVRD93pdsEwtOrzq09sxX6feIjPvXMzOhAqfT9qYfRQm92AltwI8CSiQ3McRt1rEmqRBF9rnDyQQnmUiLpE1mQc6jhs8yGUKX8VEYSxOZY2qdAHPmrQIiKTL202FrZVkrbHNv7qOYGSQmkwFFYqeIOBEu5FeerwyDQikNWjGPsFKweZPa5TbfL6cCwNTmT03WaWXVQkhXeMy5T9fjMmIG+jMX7HWpjAYrJN59/4GmmpqmagzDxdUrYiBiSPaShioEPHNVce0BrggOK6uuZts3TOsow6eTKzJmbS2pJZ/Q5y84+y80SqXZnACmZwjVZpfcRiLvO5DaH4rAmSvsvRgqW19NJxDaSULFtXZ9yYCosXBExpG8XavuEM6VhDZfgAUgo6WUV1bH+i3Rqlgn94qwPF/PsyuxsLkSiwAxgcCPj4j57nfW+cwM7TuxWzaTJ6g9FzRrj71WGd4y56gtPfNInPvX2ztAbCBhWQP6/M84/MOe16n/bc1tfy3pur7FYEFkUWBq56lCm/qDz7OSN9BhCb+65t8SHS48nFq5QyFROS0d0VlvfUae+COZOGM2ePEcoCYVU9XpNlTSD6pRpvVWLBIlooCQz2SU7//fO8Y7fx7DZuDFc93MPUEW0MG9Jg7uoe/ufCB9lmSiePfnsXRo+oujWprjW4aH02rl1wxVI+8IEPMHz48Obt/jelZni4lXw20asEUgBOOOEEzjrrLK7o/gqHrf1GcsO1+ecBlHgQJ5txXlQuE6A0PfWV1oFIzOQ1y1fn4UVgRERu5R5psCJRjKwfmYD5SgtB1QAq9sbZZHMuMm3Lu24HBRCa+YnMRvKjDVnMqK5fZM6z02adjB1W5Ypbl/O2/UarIjTI0AtjdDCU1jJ5AwGiPYhBCyLqE6L+0vX0I7ikTY4aQRI20xtQ4YHbqwTRIZLaJCuueV1pUrRZmND+KJGvS9CJ8VzSPump0+2lceAkEJuGQaS5aSjQIwaCJHRypJlYtbrB8OmVRIqpQYm54dubfxHj7dokbIo28cwYziMzT2lcM8nY9M08k/4SiRmBySCYh4PaDtq2hiiPsWgGUPKYnbKrfpk+KmK47Po60hYeOOvMt6BOeWPAfiaOEGRXhvR1vfbqJVab/sXvYwM0E7p/7LY2Ay8uTaC+5dozSlJLkm0JxNE9EuHQ3BX99DdCxo+o8eLcOsNrwxk35hVqI3pguNL+VkU/jJAgogNstV/AWlS4WHM9MAsMUNoWGXLcV56ks81j6ug25Rdi+pGEpM2G60qQ84ELn2X6uHY+89Yp6b4LrP/QHKS7zH7z1gdNtvDBfs/6ubIAIW/8lKUcoUuKYTZNWXNAVuE6Ko0x4qIWzEJNM7CU2aFpAiYFo7urPL6w1xCMRv6egYwjcGprhDiogtE+ISSyIVg3EDC03WfyiDY++fen6K7U+NwhW7B0cC1v/tEDvHHHEXzzpOl4bYmQyl3xdP65c9Po0yde7uWqh1fyzB8/Vqpv/l1pU3SvjUuvGkhpb2/nM5/5DJ///Od50xlD8UTOLuRC2DZAcQAR26QpA1AMMy13ufmAJHtDJMU18WcxN8w42peQUYhdvbmJaMEJ1WLiqwYrvwcUUGmRcoFZqaxMaU8EVLRmxQIr4JCs6t8G8ymk4NNHT+FzF73AITsOZ1i7nyz0sbmAiN6vCjLQqPt49UA5G/phBPRUKN/4FGRTghcxwcIDghDqEj+UeG0+QSARdT8+WFKEJINBqMOrQt/Dj0zERBDiRY74lRX99E0bFoEXYod86QnFZFSUU76w2q8jmYm6ChhAxUP6MgFUErprPivW1fOld3lUJK0yrzXZ/ISQaUl5WXKBI7seTptjYVyXSboguZ16xtQkldnHiySoZdvYqgYlr+9dDFmzOpSpo2utaRpJiCx4Mee0izk0v5vvxXMAFUgLXpx1SEuMk7o70phjw9UnLsYuTyNYQnve9J5D2i18d9pv3jift+00hmFDKvzixiW8bcs9qXQuwRvdQHZF0mtkHBKWqgIoYmlIrD1dI6BNKsCSqof6c90DKzl639HM2X44Z170Al95+1QmDo84Ta1JgZQ/2revf4V/PL+Oe8/ZEc+c85Jkj3W+i/xuSpBr9DMvbLVN+p7tY1Wk2cijojnvesV589V81jWWXNdcfk/6egFtcCjiGPiQbaOQjOmusXTt6vT+6qMAbvTuhTlOdLq6SPkcjhxSYaAh+fqV8/nyG7dk+BDB04tWc+RPH2D/2UMVQKmKbP+Z5AImJTRjX7p0Ie95z3uYMmVKiQ7ZRP8t9KqBFID3v//9nHfeeVzW8TmO6v9e8WKBAyTk2RVL+7cBHGxwUrA4OEFJE82DLscO45rKT4MaLaXQYCWjWfEVKpAgCNH+qgIijUQTDrZIc2KDuAISpoRV+xxoczBzUYxCGWed7HXFZbLxefC+A8Zz6Z3LOeVbz/KbM7dMggXo9pt18CWy7tHoq+H5IcILEZUQLwwUAAmU1imWzus8NGAJdbQwSdgf4A8GeG2+OvSxmi5MBJKwvYLwQryBBv465WEqo3NXxECIN6hWc2+gobQh2mG+onyJPG0yJoQ638UTeIMq0Lyoq0hkeOqda9MKWffYZlIXTy3ozS7eeZurzUiY5GLIS0jpYqBil5VKZOXvKtsuJiQdOtcVhAESiax+d3YdTOdsQb70NI9JzauvizLtbtJ/hdoO0oxaTv2c5qyZvFxzW9fRumYuhdFzwpPOtTOlKW1GVv+ngIqXXE8x9BviqwMJ0LbXPpM5zNsz8gCXi1JpmwE+V32i/wL+8tASfnfq1vz9vuVMHTKeGaOqqs/bIsZQ+2ENKBAiAolYFSLXeoghYbQ2CERFZs2qIvrLHcv4/slb4PuCzxw5hR9euRDfE3z+yM3whFBRI0Gt3R5cePsrnP2HuVzz2W0ZPbSa1NleU+yxmDO+7b1SBdCIOkCbNru0JXnzxTQBLUtlBDpFwpzQka6Z9s0FjPVHAtrP0yQzYuKGgpMoj2ZmX1NGtjN3RV9ywTOqHkZalbpUfqBVlGlgQ/sXilhLIwPB+UdsSdBfxas1uPalRbzn4qd4/0ET+NIJmymAAsXgTt8vA2QiemjuOq58eBXP/umzhe18LVDIxjmIMSwlpfvPp1cVpLS3t3PWWWdx9tlnc8SZo/FzOr3Upg2FG2AqGku0eKTyLqIiW2RXclmQtwlUos1NBmpzd2pWAmNF92TMGwokRAcUOiPY6D4yAZvLBC6nfakqu3xUENl7SQdEuCQBkXHUJ73J+hJfCH5x6ix2+9RD/OLaxZx44DiV2Edpi+pSLaBR44QEEQrChk8Y1PCrdWTDU1FFwjCKhCYTXxMh6RkI+OtDy/ndPUt4emEfK3sarO5rMH1cO587cSrHHDIef4iK+KVOpxf4vQ383gZhu4/0PfwVdfChPr6CbPMJJnXiDTQU8OgP4vZJXyCCBJyoflCnz8uKp9oSRnv22oDk0ErFhMi6T6MhqXpedkE3QYH5vYSaPP0yc961xeTHkbtkdoxtEBmMeuEhgxrAmZJVF6Njb4Yu0OZaN5qBiX8mmXPXplSd8wQkLf7GLcRR1w2g4iI9/431xQYqYGtTs+U4KY+JNYGOXWcNfIqYaINhTNWd/LXRpjK+i67nJSErehpMGFvl95cv5aydd2HEmEUqaAsoh3Yd2S4A2jxlgrPER3SF8XUxNEzyN6XdHtz/zDp2mNqt9s8AthjTwZeP3pzbn1zNJ371Iue/fToiApB1GfDJP7zA7+5eyhWf3oY9Zw1N8jUBiq0RKBqjDs2FVAdkqX3KjABpmnRCWoOiyb6H455RVtP65FGeCaG9traouckAY8P0L7nuOEW+GdlguEhLadGMMR28tKKfRiWk0i6QtWieNqI9qC6hD3WWypBA+YOa9ZZK+BYOVpAS+hngs5c/xSX3LuHb757BCQeNzUZ0c81Juz9dYEa3zaAvXraIk08+mUmTJvFaJ0k5PF0mn030KoMUgPe85z18/etf57fe+zgh/Gl83Q6HmjLvssg28zI3nlILgcN5zZRMNDXdysmrzDPCuC4jTYrwor3fACoyFHjVIOFX9QZQ4g0VxvQ3+kinc6fX15M87VbIRgSwdCW9hMnUgCVhRlXasR01zjt+Gp/57UucsMdYKlUD2PgSqmFsoiBCgVcJkKEkbFQI6tU4EpFXDRB+yLPLe7jnpVUEoeSel9bwh/uWstmoNt6x5zhOnzOF4V0VhnX43Pr8Ks7+8UucfP4zTBrdxoeOmsSJJ0yls9NHCqi8MABTa4RtPo1xbco/pREi6iGyqg6QVCGFA8Oky1PvJUgvH34QKod9UGe2NEK1KayNXuSAQA74iErI80v6mTWhPT2OXEEI4oFD0wU+cz9vc3b4SqTAii3BNcFSK+TY9GXEyKTBirEJm5J5V3vyNrtmtLFW+lbLtZ2MC5lsi+mxKM+htjRjncpXJEBF/Syuj9bIGEAFmoCVVF4lrhVJ2x3pMnuHSSUAyvoc4JjZa1DrV38Q0Aglw0SFNs8jCKvUJvYwuECFZQ1HVbJa47ok6KtSGdqfmGppUzJbGwdccvMSvvT2qUlEragd+84cjhd6fPnSeZx9xFSeXtjH8Rc9CT7c8eUdmT6uPT1vAhJwUsR45/VpJnCDWvdTWhVJek67Qmjr6zZoNee5TWXGURHZwh6XRqmMJsglEGk19LgmlzmkC6wXmVNGZd/+3CpmjunAHw5yiJ9ExNQR4iTQKxAjogiYaz3CAR+vLUB0hYhGSNhbwWtr8OD8tbzn148zrKPCP87biekT2tNtbqadykur62xdu/v5Ndz45Bp+csWn3O3cRP/V9KqDlGq1yjnnnMPHP/5xjvzc5nS1+VnNSZDeRMACJsa9Iv8TIOODEptXRZtMrAWxz5LIWwxSeSffi5yQZWhqR8I4vV2GOpdAARWBClds+qnIqN1Fh5Sp8tL95ARxMrE9zbRdP2poTWQQMTIODYtOlzIFUw1KJGxasyLhbbuM5kM/eY7Hnullx1ldyeZQjfokSN6r1jQpX5MQGXqEdcHK3gY/v28+X7v+eWaO6WREV4WZYzu59rQd2HmzIQgRqcQjx8Jpozs4frdxvLS8j0df6eHcK+bzxZ+9xC++OJs37TuaYKqKwe71NaDiESLxQvB6A3XKfV2dzKst2PBE4pxvRPvS/e+B0qTUo4Mre4H+qK8kiErIqnUBdzy3mqN3H2M5yYq0n4ZJtiTZZuIdjL3W3K0X2ZtK6v2uX5ZmvhlTQW0CphmdIqBSlrk1yQRaZdI3A4B51MzxOwo+IW3fgFTZ1k+XACZmmHPKcUj+syZgIkd7SvqMHQGxaZhOYjOdOvhBWWf4vLQ26Z3JYqpzz0LJNQ3OASgGg5dJa5OhHbcLfmFJP1VfMKyjgqx71CqDNJZ0UJvQixzuqzUkOiMKXyAGQmSboDJyIL/txviQDUkQSrqi0OYx0IjS7T1jKNc8spIXlvRx7I+eYL8th/GNE6PzyfQ66xJ0QHb/cmokcwC09m8y1/zYFNDoc/t8HbMcW8viAgl2/YrGji3ksdfTsnMmT6CQqa81V3T5DqARKd3Lle+4L0OyZ/VEfXvLc8v51GXP89W3TEP4gtAXyE4Pb12IXCISQeKAj9emTJvF0ABvtaqz7FcBbPobDc69YS7fvPZl/vfwyXzqrVOUUNEkF0Cx19fM7/z2SSn5xB9e5swzz2TcuHHF/fAaoaIQ763ms4n+CSAF4JhjjuFb3/oW51+9gM8fvpm6aA5oy/ygiOlO3Y/NrqK0KZOvFjYfnV4W+JnEdYtWqoiBLsoTQAZ+pAYPE2ATgo4jICEdstj2UyHaBDxjE9CbchHlAahmjKaWkIo0aInDJ6OZGgOsOMIYS8NfxPc9dtq8mzueXcOOm3crCVxDxM+oswQkwmsgfI+w4eFX1WIaBj63v7icI35xL9tN6OZvJ+3C3jOGpQFUFC1NShGbHQhPUhU+M0d3MXNMF0fuMIaDzn+Yk770JLd9dydmjm9X5nQNyaI1dQ46/SH+fs52zBjTjleXURhPL9aiiEAqvkaftmww1AKQkd+LCKKQw9EZJbLPU+/KD/ifHzzMNpO6OGTrEfGhWe5gBNH/EEyOMG4f5n2c4CYOdODamIuYgCLSVZHG/9yNF7cmxjAbyoa3luk66zHkqluutDfnejNqxqgUMdz6ngsYalBi1iulWckR0Jj1SuQDBQwzzrZmDiU0AYfDpNMEQ/G8dq01pvM9uPspT+Ia4pbcG8+KhkzNg0KTYBdAcZngaIqEN/Ea7AhdHyeNmMvIwjUBfNFhvRfetoCjdxxHbYQg7Gwwf/U4uoaspjKqD+mB1x+q9UCvG2tADCXbp3oOm3NfwuMv97L56Hbj8MWkH2Rd0GhIVvTUOf/ql6mEPhe8a1ranDQl3c7ZH43y0teKx2bKbFCDFSN97sGveU70uv1FB5i66umiHGBWaBJaoPGM115bsJrJ3309F6A0oUJwE9FfHlzGETuO4r3HKOGXt6qhgjTUJaIKDI/2yUZU+Wjf0VqVnp6AS+5aytcun8eYITVu/cr27Di9O11IGe2JK709b600f7x3GfNWwZlnnlncyE30X0v/FJAihOCb3/wmc+bM4X37jWPSsDaDqRBuJ84cG+U853hpbd4ulX7hAWYoAFK0/glPi/NEAj4M1CxsLYmx8cvQU0CFqOna5EKXDQlYMXfrKEwxUirGU5DalJMCRRrQQWbzLeOrE5v/RO9EmIwMkDrvBRI/m/he1IYgYogELFk9yMp1De57aS2y34tBqdQHxEniwy+FJ5HVQUTgEQxWkaHHC8v62W3KMK47ZTfQJmmmVsqoT6pORj2EEFx56vZ85q8vcODHHuKaL2/LtlO6oAFf//lcnnuln99cs5iz3jkVsTZEDou0KZGfkOoLVJQwK7qZ8lWRUA8RA9E9fUBaqOx8lw4OcM+La1n+zX2oCT8dAtQz3m08GEhvyK550gyoxoyPzF4vu2maDDKO783IBioG85A6h0f7JcSmI5SXuhcBlDxwkEpX0CAThLjuQb45RnxP5DNAReAkuu8yUU3yL5lPVBfXadfZdI587GcCARWZDSBSQvOUa1qk37fxO6vxtjJzRX/M6wtIr4clI0HqdTNtdixYvqbOr+5ZxI0f3Rl6BFu0DefxJYvYblakJRECWQXpeeo8lJUCOqT63yad7y4lcPDh21cv4JvHT4/WApHMnahfHl6wjqcW9vLw/B6u++y2VH1tS+xui+oz679dBwucFPk3AdlokIFOGp0pZYJQ7b+iyda02FH/NJU1JTTbY+dRtLlba02ub44kBig2IE6dd2LtuxromlQEPsy0GaASC4AEkpD7XlrLuw8aiwgFrCXaY6Nn2iQ0oLcnwPcEbZ5PX71B32DIH+5axl3PruWvDy5j2th2znvnNN661+h0JDi7/WYdnBW3fmuewLH+9Q1KPnPpAr527rfp6rJOrX8Nky2T2pB8NtE/CaQA7Lnnnhx++OF87tLb+Nm7Z6QZrAKH0cxBRzkbSp75lUujYptt2ffTGRtAwtCcaM2LXZZZj1Q5+nkLqMT3PVVWIi2PJPOEidbcUb3Cs1EiNXNMNkBx9Zf+EpkMSZsx0u12aljM1hL5sMDzCwZ47OUeLnn/1tEmprQnMQMiBbc9s5ovXfscL68a4KUVfcwY3cGUYZ3MW9nHknWDfHS/qXEbYgCCybgbm4JlqqZNwNo9jwuOmsXI7iqHfPYxHvu/nfnNbUv5xQ2L2XPmEFasqsePiAGp8vajfPUiG8q0lUhkxsMgUbhH1AnS7SBXejR6lVnZg/PWMW10O0PaKtl3ZgC6uE81hcYGqNOZr8O2kzdi6pv5m/es7sqSixkOjL7O2/xtpqvZRhYSa3xiZsYMaa373Hc8a4OfMhtoK+QCIJa5ZtNnmzFRgSMyUJ55Ejlz3Zl39hlTIJLcS75nAJBm9mOEnoyreKxqEOi7mbpCrXQugxxdcjFKOQAl92Bfsy0515K6ZaqflKHT6L6MLl14+yvsPGUou+ytDjp5ZWWd121dwx8+AP0gOkKkDn5SjYCJPrQX0pG8HPTLmxYzd2k/3e1+CqDEfSQkP7jxFV5a1s9dX9iBGRM6skDPSN+Umlgw6OsJ6X6Nfmmwom95MlnjIw1JVmMs3Kauwkpng5cyICRvfUilyY5Jp0khqLblAOLYXNklRCV/fBVaNuj+j4NZ2Ise3PrsKu6bt5ar9tqG8OUoipuQLOnr508PLuHXdy7h5RUDLFtXp+IJtp3YzaML1gGw7eQuDtpqOLd8Zge2n96JqETt0UIsl1bUVd+UME2nE9k0FgD8zrUvM2r8FN71rncVdMJrkGST99pCPpvonwhSAM4991xmz57N+55ezb4zh6dv2pM/da/k5qyTFzHucZrEbCsmSzMC1jpYpC63izO0K/F3Xa4GKibTY5iAKbBCHPlLEKbSFjrNxu1LNtSMBqWo7mYbIWFwTS2RyfDotvlhWupppN9tyjB22WwI+57zEB87aAofO3AK7RVVjzCAH90xn8/8/Tk+uM9kPjlnFDNGd/LUkh7mrxhg+qgOhtSq7DJ5aKpf4/cnZSR9l3F7gVxTNRB87uDpXHr/Mn5w5UJ+cONCfnPy1nz5b3MZ7Jf87/de4Lz3TlNReQQqLKgpxorMNoSWsPsJow2oE+YbCTOi+sXjhidXcvBWI5OoP3EHR19DEalqpFnVhFnQ7XaZGRgbdspXIWN6qBmI9Or349sX8MC8tXzr2C1or3r5QgN703TVw5U+j7xk7EtMiXzUn1qr4mLm7E3RWd8mv21ymmsZz5mmKmZ+tolaqp6OzdqYj5m0NpPdRHDictp1apHDLMA183CFLs6jOK9AQBS21MVs566RRYAyw+yYz9n7grVfuPYQA1xltMqZelnj2/WOQtXmBasG+caNc7nsAztACOuWB7y8wqNW6YZ69FxdzWUxIKFfJuNE85q2xtBsN/D1y+fz7KJ+Dvn6o2wzuZMvHLk5nTWPKh7zlvbz5b/N5frHV3Hn53dk8ui2tIY3F3TlXDfJBVCscRmPExGlcWnpzP7UfhFm6HMdSMMGVlqraqTLzE3Tyd7k3cuAEZMssXcmemacztD8Q6Y/TIBSlkFt5Qy3+BlrHo8bqoRgp1/8Il8/Ygv+74a5XPrQUuatGGDfmUP5wAET2GpcJ5OHtdM7GHLf3LXsNL2LNX0BO0/toq3DI3a8rGMIZ6L/eszm1dX2J3Ktd9F/E/zNW97POVe/wtXX3oDnNXPo20T/zfRPBSmbbbYZZ511Fqf9+tfcMy1UqmmD8g5rTBK4Nw2T8ZYmM+54JuNjEkRi2hypn+s8FBfZWhQ7D00poGI508fmTjJxqCcUoJ3CsTaDspLdFinZbIzTbo1NXxg24vE+EX0RQv9INjOBz60f3Y1bn1/JZy5/jovvXMC7d59Ie9XjuSV9XP3UMs5+4ww+st9U/GgT23xkp9PXKO5j3XcaVJpn0GgybM6TegFS8vXDZ3LaH59i6do6O0wYwvOL+7n/RSVhOny3key75TCoRQ20+1hH5IkYaRGCrIoEYNRRmpVY86HClM4Ya0VJwRjzeeZzEDOvdmQ2l9Yk78zUFEmRbOwCrn1iBZc/sox5K/o598gZbDupO6t1kcb/PLBSWtIf5ZWS3EYhnl0HhZqRj+J7lGS4mswR+76r//L6VD9b5LfiIlMD4JBSO4ODkAgnTF8K4VmgpEAA4XK2tzUsudoVF+AVUs0rT5Z7F80YnlQB0f8w2z+qniIF6lLXILWG6frnAhPXOLY1ltGarL7D2Vc+zxu2GsX+O3RDX8jZv3mFk3fdi/HDF8bFioZUWlV9TkqqDJLxYjPoEX300Emc+rPnmTGug6cW9DH1Y/fQOxiy8+bdPP5yL0fsPIqbPrO9AihRGzGZfpdfQDM/jWYAxQAkGaCiybwPWVOw1CsViTa6kCwgbAKXMmaceePTNu+yTWxVJVXbbasOu4xM3o6x5UrjIJcJecpPLKKtxndx88d34rDvP8Lv7lvCIbNH8KN3zmLXaUMY3pll77ac0qGy8nPmdsr8liwIydTfkYd53dZORdmf8af5HH3s8ey77745Gb92aZPj/MalfypIATj99NP55S9/yfduWsDpB08GmkttbMr4ojQBKEUnyTu/p8pKM8hF9/MOeMyEJc7JR4iECZGgNkWBkr7HJ9Nb9SzTNsAOTpBHdp9nzYmsNmvGuRH56ETS5qxGQ7D/9FHcetpIfvvAQm58ZgX1QDIYhFx18q5sObYr6oco4zDdr04ypcjSNAOLyNbs6E1OCubMGMNDnxzBffNXs2hFg1W9DbYa38nwzgp/vH0Ze00dhl/FfY6HjP5rR8pQh5UWCSNQB1n3kA0PKQUvLe9n982HpJmAqC7m/3TUJTLaFFOT4tKq5EZ9KqDvH7slVz2+nOufWsm+5z/AJw+ZyqcPnRrVwZCs2/9bASXNroWqoXGQCDP6V2DUQRfZzBQoda8kmC8CGS4zGp03uJlDO2nuXDW+mmYjVv7x+hZ48diXFpPgYsRjRaBdfpGPCqQZzdRz1m8TtNqANpWO9NhxaSzM8vJ8IwzQnq6wSDHSqT4pGqt597TvnCWwemDeWv700CIeOmtXRFXyyDN9jKsNZ9boGt0TFkfnOVl5xe+AbL+4+go4ec4EVvQ0uOj6hbzw7d2474V1DGuvcPszq9l9xhC2ndSdrDcuEy+T8Tb+p8yZzPeRAisWg5665gAqWM8KUprbjN+KVVdTG50LWDLtFG5TsTLPurQnQCyEcYw55/c4k5JjLVWn5jyHk6zbe00fxlNf2IOewYBpY9qNsSbTexcO3sMeP56xVuq9L2/pNMeYK0/cfXvlo8u59bm1PH3VecXtfI3SJp+UjUv/dJBSq9X4wQ9+wGGHHcbbdh7N5OEK2RfZE5e2xS4gZyQufc+h/TC/N3O4byUvACENR3rNkNqLh4xOrZcqPLFiRrxkwTeZAShm0qx8wQU+igFYfM0R3jaR7JOYiMVSrrSk1hOC43eexPE7W4c25YGSIoDiqIOpwcm0xbDlFkJS8SrstdkoEJKl5xzAkPYKH/rDE1x440J+edsSLnjXNN4zZ3y6XNPBUwOVqmqnCFEMdaD6IKz7BINVVvU1uP3Flfzq3ds4zXiy5inJmTWx5qT0PHCfg1N0YvGYrjauPXVn/udHD3H8ruP59k3z+ehBU+is+bmgx8mctDAWM8yx3tz1+Qspp3qRPiyuDOVtoDa5nL5dPiVSkHLq18/qcaU398wzVl6OvnGud5bkX2DOj6RtcWALM19b0AAZxlAI0v0j0loa81r80xngBAM4GsDDBUYsBjDXnCpV8eirpWV3mQU7NSm24AoyGm99rSlJQSgln7niGT58wGSmT2pDDgjufqqHPSduQWfHOryOADngReuCAd4kSsNqRvFqNjxDGBwM2X6zLoQn2G3GEAhh1gS9Z7rraD5vf3c7hFt7b5N+ThWXsybZ52w5new1GWafqliRO89F6AjWUJYca1keQHH2A2TAisrDLMMdSEffc5bvIodgpXANH1JjDKT7OSUIAEwBowXsMgFMzGhsmnJAXuaaYWlhCyZ6BwI+9qd5nHPu+YwZMya3PZtoE2n6p4MUgAMOOIC3vvWtfOSP1/CXk7ZE4KUXAk1FC4KZ1mGX7SR7U8sBIXm/my2Oth+KlMmsFiJM52M8Jww1bqYPQhGfoyIjX4jUYWz2Rm7l4ZKsylBkN+0ymov4+USSm2XyFJMcBl60UOpCZFzdzGnnmQLcQCpNBWAEcs+CQZevmeGoLl2eR9iQfP+t2/Ktt8zmhmeWc9IljyECwYkHGEDFNwBiCDSEAiYNlGPsADAIst8jHKwQBj59dRXtZ0x3VYVbtkGEObalMk2L37UZSaak+tepYQlE/qYnBXttPpxfv2tbjv/Fo/QOhpx7zVzes9cENh/VkTAUpl+SCwTZONswS8t9l1K4N9YMUMENFFyUZ/pRxglel5FTVydQ0U7eXk4bLXtsMN6nATgyTrfmnMzROpTWPFq+ZXZADGGbkqI1eZEQxQ45nEeu92wypa513iJncAgH45wBd1Zf2P53sdbXeCb+apYvZDaPqB+uf2Y5jy5cwx9Pno0MBA+90MPdz63lyDmddI5ZipSCcNDHHwyiCF5CBdTQB+ppqbUw/hecE1KreDyzsI91/YFyoLc1dXlzoQig2Ey50T+lAUoT4VFWCCES7Yo5piA9PuJrdr66WiL1P5XO0RdF55kBWe2eJNdv0GV54RxzGAClzL7aZF0XogCgWFrD+LLmEVJzLyX1UBS7dorEPwiScWr5EGXWUJ2W5LnMOIO4b790xXzGTZnOSSedVNDi1zZtMvfauPQv81i64IILuH+R5E8j3p++oTeFwoXFAS4c9pquNPqaDVBcwCSdzos+2efsQenOK3k+BRC8MFVv2w5cMTdqA5ahjorlxSF7zY9+Jik36iv9aUKZyWW+C5nOX4ZRW0Ivvq+vhUHyX3/MfGTopZ5TZkxmPsnBm9JIn/kYZcR1tz72M/paGHiEDZ+w4SOj77LhqzNaZIVDthjPj4/ZjjMueYGlyxrIXk8detXrIfs8ZL/+L5A9HvQIWCWQK3zCVVWCnhph4OH5AR011Wdr+8NMW3PNdGT6XWsmLPUJlPlX/N11z7ie7Zv05w1bjeHn79gWgK9fO5ctv3g35183Lz6QktAaC8YYsfOSNvOTGWzWmNJMpyltN5l706xJ/3Z9WqEyTIOup85fCrXxG5HpALe5TUO/F2Fs/lHbpH4/6kFTeyIDPeeNjx4L5npjzO3MOuSYC+Ycda4L1jvJ85kx08fvLMXMWR/jWq6po66LbqtjHGUAijn2dJ8FybokA2OeW/2cefepuegeF2Eo+fzVz/C/B09jeGeVZ+YNcPGtS/jGG3ele0gv3vA69WUd+CPqyp9NR/sLpPJRq0cZ+cZ/3Ud6bFnj/R17j+GFJf2s7XXYNGnzWvsTV5h4DqXmkUSNX+Pd5WoOWiXXmNPv01xH7L1M39NzK7Q+geOj0+s+1L6CxnqQYphDK00AuQDFGLv2fpuapw4SFp+R2ZuMvpLGHukSMuIpM2/hh+WEBFbeMohMjhsesu45+jHdV8meIeI1jAbIulDfA6sdpvYkEOn+jse26tt7X1zDD29fwk9/+Rt837aH/M+hUG68zyb6F2lSAEaOHMkPf/hDTjrpJA5+4glG/OHt8b2mvijkbyRJgiwYUHl7scN6HrgwgYkQac5HAQ39qzlXlAVBHlLKjDalWR6x06ZhPmVKOtXN4hyltDf9qG6ZhFa/hJ7qP11uZC6l04RR8AGdxj4vBiCUQgFJlxZF18PUuhh1KDw00yhLGJHaMs9E5Wu/ldSZN2htklE+8PoZE9h9ynzO+/vLfP3wWfG9lNYr6lPhScKG0p5oRlBETMOwtiojOqo8vrCHfabVnNqtlMQNEh+iokhDRP2opeQOk46UVFhf1JHQHCPwsNljOWLbsfz1sSUAnHfdXE7dfzPaKp6KVBZKhEtj0Gw+gltzoSsmIKVVkSitla1RgcS0yi7TlASam6Xhi5Spg30tx74/Y+ZoRiCylwHbHjsun4QR0kDF1J5orZmLiXZQRhhSgrHUUm3dEj0+4jEH0Rw2M9ZaXJleLOx3lqcNNu7p/NR/kj7IpDPmt8m8yTSjaJ+RFWuJrXVXRMVprbGtFTe1inqdMO+v7Q/Y+YLbqVXglP0nIgPBdY+u4X07zqJ7RC+Da7uQPT7VEX1QkwqA1GXiMxGSgBJIR1HySUuwI3OndQMNjv3eUxy/71gmDG1TYMckFzCO/ivQZtwzmXHrmh2EoMw4ah3EJCasqavG+84w/QVWCyktQcr3MPqvNX+mpsQk81oMoEQmrQYnufPRoSkpNFc2gqHEwjvjeRltDjIQeJUArxIiKkaniWw+zt/ONhtzJfY7MUKKR2d26XIk6bESn3vjWh/Ndjo0KAP1kA9cMcDnPvc5Zs+e7ajcJtpEbvqXgRSAI488kt/97neceuqp/OYA4kUsFbHGnuTGddux09ygMgyuY5ERQuJ5YY42xEv9T64Lg9FO39OAxrzuAlOJdNRHeiGE5Ktz7XIjxtX0AzHbn/es+lLMBKkN3I645iX/TVDj8qGJwIo0QYBZB5shtBjNNLOR/950WrtvhQagdrlGHeP/NoNn1okE8Hzx9bN500/vpCZrfPagWXheop0RXkjYqLCmT/LMqmXsPmUEMvAJAh/PC7nn5aX87cmF9NQbDAZhskEXbPBxffU5NYGjH1yMttkGu0/t9Dpv/duyH//mkVtx+eNL+Nt7d+OMy5/g9d97gPftOYmXV/fx7ZvnccLu4/nm0bOsOqSySF/Xv4sY7+QFqJ9acCjUzRioxOYuwh3u1wVebKCSKdvoI1e60DTfIP3fzMYGLZp5ik8Lx5AoW5oCg9lOmZs4yigc480oBhRxlRIygFhsYqqjeEVmpurZnPFXILNxOb2nzACNPNJgKD1/05Js1Yiw4afygERwEpMWshjaBpuxyjMdRUgeX7SWRhjy0Bl7017xkQ2PZ5f28r5da/jt/XSNXA5VCV2oMaT9UbTzso6WZNKg0UQPpWmJ+nAwDDn6208ytL3Cj949MxnzkPaLM0lLxLWUvGhPkTiZ79x917wXX2hh3NlMdHTNNAnNFqj7P6mz/l0Uah0hs2dP2aSFQMY4MkGaPTYLfb5kcZ9lrCO05jPa40zBnYjq7/khXiUkDg+cap/VViNvl8N/+lmZjugnMOa4AfxMivoxjgjWsNptkmlKaPTB1656mba24f8VJ8tLRBrgbUA+m+hfDFIAvvvd77LNNtvwu66xHLfrODdQsSiRhmfTpA5TtBjdPMBgP2uDj7KUB07scsPQT8oLPYQfpBbrPLvwJAMRO6RnGIe4rXbl8ttu7wHOxcduj37W5YQKCrAYDL99Lo0wmMnU+3Iwmu53ZDB1Rl3M/5l2OjQ8Lorfi5BsO2YE1753P4777T1c8uArHLblRHaaOIK9p45isxHtLOvtY4dvX09PPWDBpw6nsyaotvdz9rVPceHdczl2h4mM6q5yyQk7sM/0Ec3LN9ttXEtt5maa1Ph3AE8rfap8Q5pm9s/47nZmje6ib1Bywwf24ef/eJmf3fMK6wYC3rnjNO59aUm6goL0IMqMvcIq5qS1pPdao2JmZjPFpnbDvm/b+9t2/bmSUlJ+ALkbs83E2Eyg1liEiblf6vyiWBiQBd8pkiLdva0wimY14/Zbgh69toYRUBHE60wS+jh6MhOmOqcu9ny2NCPmNRMM6TJcGhTdh2Hcl4ZgI3420Z7LwFfrbMQIpsCe5UdhnlelbggeW9jDtuOH0EkHQb8SwggEwWA74WAdb0QdOlBaEQ+1AIco4CFRwTU0btIhyqO88WU8B0MkNzyxivOveplVPQ2uP3M72oSnzG08rfkiN4pckS9eykE+SPxAbXNjGTrWYJPpdQkCSpDTTwVSYKWIRI5wLluQiIFMrvBPay0NgJIxUTXWXSCttXOVaT5rUGgIHeL90tjz4mU0Epj61UZk3hXt8SaISLXReg/NAEp0zfZPtLWrOl3KxEwaY0snNMaT0gg6+BSpzLy+ddMr3HXPpVSr1Wyd/sMoNq/eCPlson8DkDJ27Fguvvhi3vnOd7LH5kOZNrrDAiqkJ5uXPqcjj+wzM/JAQxGYaHYtzymvjHN9GPrKbCrwkZF0z3ZgB72J4AYqvowXq4yzvGYEUgti2hQi0x67ruambyyIJlCw89H3UiDEYa6VNVUxVUIWeMl510JIwtAzwGFYmL7su7JBzaxRw7nnQwdz20tLuOKpRfzkHy/w4csfYLvxw6gIweumj+HZ5evY+ltX8f5dZ7DZ8A5+eu98bv/QfmwxulO9Z1+JOYvAY9YZ3dEGx2ae0RaZYMwRjS0v/wSkSmoVj4F6SJfXxYf32JLT9p2ODHx++fDzPLlSny1EAkrMKtjSQ1ch+vk8kkYBGpSHkD70keYRZ4qul7lv3IvNt/T8MqSxcRqHxkD9zvqemCHUpWO+5lKTNSuPMoIBzZwHtulT9EojoAIYgTvMeV3ABJoMlEz3kd0OmzlMaYetwBHx2mYzkK7swwTAABAJTuKqGNEVUxpyPX6N+i1bN8i47o5onQpZvDrklZXKycSrRSoN7XMSR/yL/sd9ou41PMkVj61gVFeFTuEzf8UAc5f28+KSAS5/YDkD9ZB37j2Oj79hCt3VKjKSXGugDsTmj/GYhDTzCGkzKLOfzbFpCLrie3Z6+17BmJOSJPy8xoAOAJsGovpLWtCWydsVfj13bVOLUqEJmWtc2mPSEibEaXLMrNP7sB6zIjXOwKHpi8jz1ViK+zDOT4A+hiBeqN3WJHadnCQdfRkaQEgY88AV+EL3nUDxLr4kBVgiWtMb8O5fP8cXvvRldthhh+I6baJN5KB/OUgBOPzwwzn++ON573WPcN0xIRXfKwYqmiJtClgLarRBpvxQyAcXGU2ACJ1mXvrZvOdc19NOdGlmOgiS7vcqjdhmWqd3aQTS5Udl2GFIy9gUl2RuUloQLdlx9IXrd1KYSJ41wEgqb+t95OXlem8uMztnW6L3KkSY0maZ9+2y9FipCMGB0yZy0PQJAKzsG+TvTy3gznnL+Ooh2zKio8Zd85bxlRuf4oI7lvPb43ZnxshukIopElKkfUyiNhdqC20GuYhsoBI3Kj+6jbQ0KHounfqXx1m8doBtxg2LwWhvT4XP3XA/d85dwZu3Hxll4MjU2lwLz96wwE22gsRnggiIfVRSZ1C4AEbRMGgGWByalgwjqDUldWPs2lJMfd28phkeyAAUlx9FGdJmh0Uh1iGR0qYfNpgnnU6kz2qKTQMz5l96Puv8jfdsMqWufoF03+QxsCYzaAE7U+MUrwN2PzgEKSbTaIeBT+0PNvMXMd9eJWBtX8An//4UXzl4Z8Iw6qiBqK4eiY+JR3YsBvDISz0ce/6TTBzZRk9/wJRRbUwd1c5mI9q44LjpHLrdKKqeRwZ0GJJqp1Q7r78zfWD1uwMsltGU5El67evOs3vMkNqWCWKmLgXk1Kg43l+SsUiEK+Zll3avaD+1gYpVZxdAia9n2hDG/xMn+WzET/XfIfCz/fDWl6RjfrvyNMePtmghWsrNcPISTv/zS2y+za584hOf2LC6vYYolEL54G6EfDbRvwlIAfjGN77Brrvuyv+tOpZPj7qF2AYy2h1k4KlNMpbOpE8ez4Q5jRgbGYEV22E+TparDdEMbaIZaMn2O4dUHl7UrBAhEo5LAxVdr2b5iJB0GFJIa1DAvQEV1i1hfPR3m1ruizzAkQNQzP95dXQW0wSsuPyM0qAnC1x03+r3pcfC8PY2TthxGifsOC1Ov/dmY7nyxNEsXjfAhGE1TE5XmVCIVFSozKbWrK1N+twFjksxG/pLVN1HFqxlu/FDWbBqkCldEARVbn5hMZc/sYgzDtqct+48OgtQ8hgWl+YnZbpWcC/OV6gXEAjwS5yTYPqgWKCkaO6bITjj6zY4ib6b0sSMaYixLiXlkmJ2XADFafZYgkx/MSdphty8pOe3ZsyNZiYaXSNkrzYRcfiqZH2kjAxxAxHXdQ0ETD8dfTCsrXlKHjKZXZcjcv46Et+x+joBMSrFknWD/OL++Xx0v2kAXHjny3xsr20Y29VJpdKfPNOPAhK1KCN7HEZj6cXF/Ww+tp2nvrlron2pGxGVJJnxFlPOeEz1Z0qL5Wx+0taykned3s6vJJjI5GOamGkhm6kdsecOiXYhlY8rpHHUBy0798fzkOw+aqSxTc4y1g8FACVvHupgNOpj5BUa5QkLkBjCpawWPqtdaeb3mm4j7jFhamPjQ2UlgjASxiVJ//CPpVzxdC+PPPJLPG/9TOhfi6Sn78bIZxP9G4GUzs5Ofvvb37L33nuz70lbst8Ww9G27mpyRY6PgacWuDCRhtn+HE4/CUuroklKkXKeTz3jACqtUjHz6REEuiwJgR+FJA7Ll2eanRSU2bSeBjApJZl1aHncCaX7e076vIPWmpnYpdPna8JsaklqLf2o3fkaFyEE44e0Z9IA8RkppepQUK8ydW7JDAhSGpdfHbczF949l3f8/l5O2WMLTt9re8YPaWdlX52PvG4y1YplIrKeZG+eWbMfmf2tl4K8M0l0m8Lm49NlrhiT6WeSxwxGmp6UKVKcvkl5DoBignaTGS+zDhSZRLqlvpZG0wArpimYdth2gRXN1Kmob0aZ0XtKaZCsNTppp90OUgxibHKWo3nKADujL4oEHpk+NdNYa8wZf3ucXSaN4AN7TGVdr2T+qgFmjhpOtTpItbMPHUUqHPTx2hvG6d2ZYpFC8tU/zePDr58I/SKJjGSPN2uspcx8mpgYFq4d9juJ+8jsm5xnHcIwdb1g7OXdN4M0QErDnGcZYJ/tk0pvgJI8P7xmpMJXkwYo9hphrVHxd3tuO9YWU/jgCixj11iGQoUO1vuL3S4piCPzgRIgCFKaJFd9y4AVM2BLCiSmTEZJCyx0P0h4YXkfH/7DC/zsV5cwadIkZxmbaBOVoX8bkAKwww47cP7553PCl77EXad0MmFYWxyhIzb/8sMUUFGSBm0SYthURmu6nqK2SYDevJszvVrSgSGJL14A88yhXGm09F6TZzLjTfJIqtgak+uiMsCk8PmietrSvRKmXEXXikzikutlTcAc0vSCchWY9R3lhjy5ZC0L1vawy+ShjO5WxugDjYA1A3VGd1WjyGB5HIC77XEEGHtTa/auHIyp634MiIH7X17Nebc8y0/etiNfPXQrjtlhPAf86C7et9tmXPPsy7xp9hgqwkcGLUjlbHK9rzyTt5RpWOQTIYj9U5xmXVoT4or+ZaUpRTbDGF2LgYnB2LRikucEKPp7wTxwCUyKmERTo+qco5aWRacQkRmUBiwp00Avkp5qxkmb5MVgM2mry8cuxRgXmTtKkQCjqA1pgOMAdq58rO/NzGjNufPyqj7+/uRi7vvQIchGjV/d9yJv335zKpU6lbYBvFqAbHgKoFQD5Y9SJ/ZF6RsI8DxBm69sYpatafDo3F6O33VsEiZY94M9zmT6WgwepNWv8Tu22p6zL5igOtZSQVMwoNPkjnMb6JnjymaQ9X3d7zZoySk7Q9qSIH63OA+uddbVeueukNZm3YHMPduPJgWaAex91QIoaeFgtj5BvaL6xQ+dIebDhp/4PAZCpbM1UyYVmMI5AVhomEeqDNJ10O0XXjyQevpDjv3ZM7zrve/nyCOPzNbhP5w2mXttXPq3AikAH/zgB7n77rs54drnueoIqFUNf4jov6gE0caoJKZ6UwwbPl4lcjzTjIze1M1CLFMmQXpDd5mEmIyvMtdqzpQUMbrmfSk9GpHExPcbyuTeDxLTWR1Zx2KoS4GhHCagCJw5AUtRW4tMi6yNS0tfIcscFEreXMXmaHPSICatDSvKp4hBbKbNkdLnW3c+xZ8en0fN9zhk5lh8D65/bik9gwFHbz+Bn799h8S+uMWxUwhKyjANZMc1BpO3qr/OEb+4h2FtFU7+88MsXNvP27abwOjOGiO6fC55ZC7feMuseHM3N7pcrYfjXm5dXWMovgaxn4OUifYwIKuwiLlsCs2+Uulc06dIexKKRIMSpXVJXVPF5TA6LoCSt/6knjXztq61Mo/yUuioQ/b5SCrPMONcrx3rda6u8MLpOtMcoJgmZwWS+zgymmNtzNPKCiFjRtnlr6N//ewf8zl4i7FMG1NFBvDYoh7euf1sPK8fv9pIzHFCAbUA6gL6JXhw7zNrecuXn6DiCd7/+vEsWVXn8n8s58BthjGsrZqEEA7SWo3MmAPUyW5h07mUMTmMvru1fcTCvlRfOZjbJKiAyyfC9R5z3pcdVc58Z45ckptWGZFpVDyG9HoTAS/3OmLlYYJlyMxjpxlX6rnsnHeG8I/eRcqEWs+p2FE+WlMrCnTJ6ADSFJAz3n1ohqY3tRuNKBCPRfFeqc0nDV+yXDNVh3mq2S+xdhWgoQTHUko+eulzdE/eivPPPz9Tj/8G2hTda+PSvx1IEULwwx/+kL333puzXtmVcyY+qdSY0SdtfypjX0UdKz8GKkJHnFBhS01HS0HEeGpmXOcZ18FtchSaJhI5jEDx9cQMySwjybdCGHqEYYAfNvD8QC1sQk1+YUgrTcpcyVlkbcqTxpbWqFigw0WZPrf6pywgKco7t3px+7LaMNfzRcydq+42vWP7GVz5zAK+fsjOzF+zGr8S8Nk5M+moVNn5OzexYNVWTBjabmXsLqupn4GVvpU0KcAVXXt5VT+r++tcc8KbeeOvr2TXScM57+bnWDfYYMdv3Ywn4I1bjkmYACzG2yUxt74Xal9yAG4qDLEwQI/FnOSCFQ1k8oq2mLbUNbMdGqCYJ09bzF3RfHMxOLYWQEoRrwV6rIU5c7HonbtAtXndlY/L/EkIGYcSN01QdYQr07k+XohJM0G2uUiGSc5ZP1KO8Q1LUGWBu6K+cQX3sP21bNM3ncdgI+Tn98/n+4ftigx8BhqSzmqFSkU5ktT72vGrdfz2ujpwT0LYW0EMhggZ8MvrFvM/O47k9VuP5E/3LWXqmDa+fcxMDt9hVBRII6qGHQbXMZ6EF7U7cI/TdAckYy0PnMRkA5SccSVj0Ji93pQMwGSOTTOqXDMTrazPRVS2A6xkfFgywproS4EFglOYZAkQXBEpkzKs/cKc7+Z9AyQLIOiPHJoMTZTqK1+ZsFpzQLXDS5lbxvyMOfYj3kloq0ENVmxAmvf+Ay8rHDC0q0qgIbn43nlcN3eQBx74I7VazZHTJtpErdG/HUgB5Z/y5z//mV133ZUdDpnKMTtMjO/5bVEMcQAh8SohYSiiVSti+ht+HCnDdKzXYMUVTldT6oAlh2RO3Us0KnlkS0CTzVGJd1OLNQlYEUKgTrUXeKGHHwEVE6wAeL6xKtkSEItczImzzkUmX7Y5hHm9CaNg/i5blzh7p9bCzXCXyy8xAysClEWMTh7tM3UsXzxoB866/iH+fOxb2HZ8hc7uNfi1OvtPH8lvH36ZMw6YUY6ZbXKtbBpXO2wmFuD/bn2Gt86exoQhI7j/A8fz8to1HPjzS/nJMdvx9ycW83+Hb0XV9xIzyrwqmePB+t7MzMDt7JkwvHFYUTP0rdaqmNma/WtGm7F8t9KVSJerfoj4Xso5XoqMWYjJVIMD8BprQZ7/hBlOWwdqUN9bN8NMP+9e68xxbYMjG8ja5xwRerHgRF03xIcGYEkxj0G6zUWagJTk1pG+GUBpSXiUGqOJeeWljy9gMAgZNqSBV63zzJK1TB8xjJ6+IVT9OtXqIGHgE9Sr+NU6lc5BZCjwKyGE8OBzPZyw91hW9zb4xjEzmDisLYkMZ5iwucZXxg8AMiAmG7BAxHMsrXki34fEYMpd64Kd/3qTBVTiy5GQsChUuv2MGdSgKVjJA1b2HmbezwFuKcFCdL3Zep23t+iPB4lpZZR3GPip/orJC7PCvsDPmAVpLaHwwvh8ICHD2GwMSMBK1Feq4DS/4uwruxwjzb1zV/Kpq57jyquvZeLEic5n/hto02GOG5f+LUEKwIwZM7jkkks4+uijmTaim10nD0dKQbCuClLgVRoxENEHe6XV214qFnlqAYwWNClFkiZv4Y8ob+HOW1hdjLWIy7Wel8bAltFiKKt4nkcY+nheED/reSFepUEYJEy2HdPfLlNd93Lb1jKZGhRHns2Y6mZalGagoEyfNwMvLuf6ojqVSSOE5N07bcEji1bxf3fexY8Pn4NcO4y2tj7a/Ar1IMwFKCkGFjIbQ5k+zQDuEv0hpaARhtz60lJ+esSB9NQ7qQcVfvnwAxwyYxLH7jSBY3eaEKWN8nJtcHGGpu18YvdumomZ5Izxb2YXWucEScAwLXJqVeKHScf4z9GWxGXb/SPT9xI/FLcTd+ZRF3NjXrO+Z7V85X3g3HNCA48wEnwkwMUlRDHzsoFN/EqNs0a04EQ9lwhPYu1KRJp5zDB9RZL5PMYwTpgFeenvptY7HYgkI+XW6SBuTxgIvnP7C6zqq3PIj+/hI/tM46VlIecesjOd7T1RHorxGxxop81T+5A/ZABRUSDt4B2Gc9qvngfgW++YwYf2mZy0uwicmH3lhzFQMYM0JJV2ABXrPBFzrDr72+y7bE9nnzH8KJqRS2ubYdyjdqRC3TsLFjEg0elMLVtqP7Sj+hUKSNLmqYVj0BpncT45YETfc5kUm3uznk9BvZrcy0kH6fUlry5C1znwkaGHFx1mqoS2YWKZEiRjSpuRFWlfXf0wf8Ugb//9I3zt6+dxwAEHZNP/F1EoI+vMjZDPJvo3BikAhx56KF/60pd4+5e/wM0n7c7EoR0gBUHgU68rVaLJbHpegBdpHTJaAS+teVDS4GTyx4tKAbNn2jPrTUrdz48kVcQ42hTqdkRcYBj6EUjxVLuERMqAMIx++0F0LRnNheZUOaDCpEJtiqvuJduWeawg7frm4/L3yX8ubbrXmjbGkrxZZf7vvtuyz0+u5JJHn+ZdO8xgWc8gVz61mM2Gt6uNpllZVp+Wb1N+OqeELKLzbnmG0Z3tzBo5BUFIPVzI7x59nL+/dy/nO4+fjTa4DIMLKcBgn+eTCvfaxCRRp9EalSRscQJ6UloV57P52pvsDeu+yVA7AIqZJp2/l/7uACXJd4cphZEmj8y1yGYm0nPBDM6R1dTovOzn8ihmNqNzRsxrYcOPGcaY8UtVOs0sZ8qywUcJ0J4vNHAz0i6my7524/NLeXTxGgAqnqAi23j9jDEMa+tGiF5q7QNqLoce1eqgEiDVGojuaO0WkpHtanudMrKNrcd2psCJalsO+DUpVCBbNpJ3mLJV1+nzzJMMEO1aAzImSy7NuCH8i5MW+Sya89tMYqeNtXBpv6dCDVmQ+FyInD1dhmT2OVP74sw7zPYdGFoNsw7W3HQx8jZAyQMsuk2eAVDMe2b90wUk+WktaNEzWlOjr3mVBqYmNCVoMdcAmfWTs8fMuoGAt//pQQ476m2cdtppbKJNtDHp3xqkAJx++uk8/vjjHPf7v3HVO3enoyIIQz+eOHoDVuY7fszM+34jNbH09Zg0M0VrQMI0h9Bp05u9YUdqLV7JJhGmGAetTfFESCi9BKwQIpAGWAkikzCpAFn0Xat34/yM2OuZNuXUKf7dYoQvc+Nzbf6tMP+tUpm8y5jKbOw6ju3u4Ndv25+3/+EW1g70c88riwGYt3KAsFEpNb5swGH/bxVYaUqPc8k3bn+Ki/7xHL848i0IUaVWqfPZq2/n4Jlj2HXKUMKgSLMV5eVlmZIMf2jaijvAinq4ALhGwSMyQAX7mvmMSP3Pz1zPDeM5BwjJ06A4QaHDLMQFODVAKQKWzio7zcKagIuMhsSz7jsOfDTqYo8DQdLO+L1rhlOYfnTu/NSXonee1T4583DcK2qD/T/Vviifq55Wc9YXgolD2pk5ciQj2oYjkFQqDdWuSgO/2gBP4rc3EB0BSFjXH/D27z7Fky/3cuVp23HQrBEIvLTJlTHGtH9Tft9bF1xpZXqsm/1rn25uggWbiW4miNIkKOhza43KY+AFpDQowgtzT2I364tR1wzwivJM7YEl1koz3xRAdjHpjvnqnr/JHNXk0uoBNBoV57NAbEmR5BFp+xwCr7Q2Nl1uineJjjuQup0YoM8Ar5lzXax3GUrJKX9/hOFTt+AHP7oQkWsH/F9EOev5+uSziV4DIEU70h988LN88PJHufiIXTJpko3ejyep7XCqmWh7sprMtWtB1emSsoolHCqyg2m+EWbSZzYGfY/0whVEoW69KA9ttyuEjLUpnpdEB3HV29MLj90GC9SUAic5Ui6dZzMzrWZUtKHFVXBoAuz7rSwQZQBDs7SuMveYPIafHbUv/3fbY7y8pofLT3gd+0wdRaORfsZmHIvKNBlbc1ytj8/Cs8vWcO5tT3DP/OX87MijmDhsChVvDTe9+AwPLFxO1RcEAfieseCaElU9FoS0HGCjJEbfABlb8dwIPCSba2q/k8INVERyL0OtLPI50u24Pi6zLhN0NHGizYKUtDDDTm+myVTVSG+DDRdgscdn/hwpzsfF3Nu5mL4rmpHVmt7U2C4LMBzArug5UxBkU7P1KSlH8pG9ZvLGWeP5wKX3c/q+W7LD+LH87IEXOXDGNnE6zw/xaoE6JbwWqClZF1x47SIWr6zzj0/vyrC2GubpbqkQyrEGxTJXNtqeuuby1ynjP2GNMZfGuVWmqiwozLtuWy4AypSwSV6u8Whf1+DZdEgv2rsyZTjASf46XJyf3e+ucIPNgrmEoZ/iW4DYf83eM119rtcI80Bip9DB8Euz1yvzuvnc125+msd6K9xz0+WbHOUjMs5t3eB8NtFrAKQA1Go1/vKXv7DHHnvwjXArzhDPWRMscUaPGfyg4gQfJlOvQYvWsoSGOtT135zcZZlypeFxbZhJnU3yREhot0WDFS2FkTJ6NozrnFcXs41JnSym2N4MS25YLqYhb8EslgoXp0tLf/M3vuy1fDO8MpS3CbrIVbcDNh/PAZuPj38HQRocq3zN8vJNVJI0Xuq/XV+dfxHd98pyjvzNLRw6cyq/O/oYhrSNQBLy60cf5Dt3P8ype89g+qh2TCmsGYpWFZYwRcLQShIDiATYpOplhj7FAiKZ9qR/6zC3WWd6dbcp5XSL01nerIMjcllqzBZI/MuAE5c0tNk4t8dl8jvxQ7GfcYHivLxd48ulabHz0nftEMapMWI9q9NnG+vSPOWvD0ndiwVJRc8C/OHRlzn5svvZYcIwOqs+b9t6Jv93+9PsPmkcUirzGhGoKJIqbKzODAYHJN+77hUueNvMGKDY4ysFgA1/gFxzq2bgJAeY5PWXLcBzAeU8alUIlJfeXtNbAT16HBfuw1FfxOGly+TfAjjJY/TNtGb67LruOdNqsvd0UzClxqCfy4vkAQtVTtZP1/RTy2uLi377yFwuenghd9xxB6NHj3am2USbaEPpNQFSAEaPHs2VV17JXnvtxbRzz+Wol67LBSqa3Au0OUlDwI81ElJ6hKFeAC31qJVHslA6ThYvyZDrvG3mwb6nn5PCAFsiJAh9BAlIsX1kkt/VFFAxy9HXfL+xXgy5a4EsAipFZbiYtfTvfCZ+fbQJzcrPu7ah+ZubrHlP9Wt6EykjKStbZyEkK3oHOenSuzlz3x1569b74nsh7X4Pg2GVxxYv45Q9ZnDGfjNjZkrqethSTnNORFLzGJCkYvAnjq2ptkTRtjImYIXtSgMVgMxJ583ysE2/7DGX42eiGR3bzMsVqct8Jvmk7cZdjIkLwJRh8ty/3cKRZvkWXzcd8YuZNBOsAMkYcVCeFqoIyOXRhsxX9WzIt+98ls++bjZBGLLjxBEgO3nd5pO4fe5CDhdj4jaHgYfvq+Atq/oaPL24l0sfWMawjgqHbTc6ASgWsFBjh+hQUC/tN5UDAp2+PGb/NIk61ex3cZ8osgV1eWnKlqMFg2baZiCz7PqnhW8tmS9LkTGhSn9PwIk5p1UdXXPNM8avHwtIzXxt4QVgBMpJ7+ea77DzcGlKbXJZliTvMn+/sHKJy73lxSV84rqnuPzyy9lmm22cz/+3Uiugv1k+m+g1BFIAttxySy677DIOPfRQNvvLX9jllp8C5mRKH0NtLqjuF+7Fi4258KhFIgtWVJ7phSqJoJNmFvKYBH3PpLQZRFqbYkuapBTKyS40Tj2PnhGZkMjaXlwAPiKQmXrq8uv1WgzUtD+PWS+bYXYtimZ78zYrN8NVbNaSBkVpZrlVyV4etZqHzRSm76U3L1cd3W1zpykCry4qkoidd9sTzBo1kiO23I91jTaG1XoJIj+ol1at46AtRsXO/a42urRv2oE6Zkx14hSAsO5B4rdigJWY8pxcrfMUYn8Hke8Ym87A2OTtcK2Z/qfcSfJkwbj+b64vmhJH13yJdnQ8orpmsfeCNNOWJyQw1yB7PcpjBJsBFw1WTHMwW9CSGp/6t6lZwTFG15OJXl/Ka/91zy1hac8Ap+w+i46qz+BgO/2NOj994FnOf8MedHSuxfMDvEqA314HP+A39y7mzD89j+/B0I4Kv373NvgkkbgymhRjXBWdNRTVLF1XPe9S47i8747rd961ojTaBCm5lzVjyqMY5GU0OkpbkN0PsteECDJjzlVXV6vy3n0Yuv3DXOAky1sUB2JRgKzA38aqi12u/aziA4LMPuxas+02ucChTXqOm3NdRIvtU0tX854rHuH73/8+c+bMadqmTbSJNoReUyAFYP/99+fHP/4xxxxzDLfeeisTfvt1a3KmD0zMI5sJM6UUQVCJI4WB0q7YTIi9EJmSFZOhdqXTZEvT9fcgWpBcC69eYOx8w4IzW5pJWTTP4xn+PDE4ipglu772Aqauufs9D/C46lh0z/5e2KYW7m8sSoPlhFybqL6ed8+VNo+RtDemPIZDSsmVz7zM1w/ej+5aP6IuWDHQxdj21VREH08sXcn247cnsB1tc+oYlxIxoejgFDGjbVCRGZjDyT6vDwiECjseqlDHidmX8xH1XNGhbWa41iKgJIu1KK66ZqWlbtCSegZBKD1l2hl9N0lfhwSsFI2htL17vuS3aF6562quUQkQz9XE6Oes81YyJ3Q3mevN6lyULo+h1b/XDQSce8tTfGC36XTW1No22Khx57xlzJk+keEdMo72pPz4BD+7fTGf//vzfO+4Wbxl+zGg9wB9Jozt2wQJQAkMQVSJ8MDJDQuglAAd+WtCVpJfROn3k96n1NjOXjN/q2vp/FzPp8vMmiiF8R7pFgKBshIoI/gxBYFFkfbSmhE1V/PmcWbeWnuCa17rdDpQTrO5EObwCbY/WdayIr+dZn8kwCsxg1/a08sJ1z3BRz/6UU488cRMnTbRphDEG5tecyAF4Pjjj+ell17iTW96E5cdthtThnXnbqhFkmpNYejFzLi5CGqtiv5tMuZ6gdDP2osORBqR0IsXIEiHGZZSqAheFgOvo3yZ12zKk6DkpXP1SwI41PPa90U9kG6HvpYsZImq2N6I8uprqrvVtfKqeNdml1BxqNH1kco2A0N534sYxqKNe33r1Mp9IWBEezvfvOsRpo94iQOnTeCwLTenZyDk1KtuZvPh3cwYMcJ5yrlpfqB/x22VIgVUkgpF92ONi8OsxSV1NLNwjS3DVEybiTkd581yXLcKQElcJ5lIu539G7U/zejk+6DYzEGcTh/oGqUPHFJXIWQ6THmqLeX9p1SafKluHti2y0ko7ZRbKJCQiWbFvGanL2pDeXCSZc7s53V5i9b2cfwf7qKrWuGknbciDH3W9Q6hHvhc9uTTnP+GXalWB6jUBvGq6kDhFesafPqvz/HLU7bkjdPHRuujUX4zgGJFRjP7QqXx4++6rupLMofMNmW1+c0Bny1YS9/LCo7KCIlcY6SZEKpoTXQ9m7TVPU+ECDPCliS/fBOz7H93gAtzz2/WNigWIgoh4/t581tTis+wusoXen/1CvsqdyzoNsmkfC0wCUKfnsF+3vHXOzngoEP4whe+kNue/3badJjjxqXXJEgB+PSnP82CBQt45/XX84eDdmRMVxJjPG9RNbUCpjRSf9eHKcbppbAYNj35/cxEdwER+7/5jAYEAvdiXgRU7I08b6EtoryNwWm7KhzSsJxDI+10JnmRWZHZV3b7W2G0krR5G8DGjY+RB0Ds/rdpfTU5xYyaKxKTzZRlTXx++bZ9ufa5hSxZ18dXb72Xs2+6m1DC7LHDuez4g/CoEIZ5ddbmGFmfmlhSrhkDfU9HeYrvW6DD5S/tbK8GI00OkjPAT/p5R1rbId4AJvG1nOhJqu7FUfGKzETiNAY4yWMqzTmRmoPGeua6b+eTum5pY9z1d0tq9bwy1yG9Lqr/WQm3zUTb48fVZhdYSfdROZNaVzABMz8hJEddcgfzVvXwtdfvhAxrzF0xieFta7ll7jzetE03w4etw/MD/PZBvEqIqAbUqoO0VQVLlgQwTWcoMuaDZvAFKQUZ7YjNGIcJgLH7ST9v90Xq+QJwkhdMJO+ZtB9S1kRIv2+bnPPNIDu/5HdR1MIw8y7zNYj51gjmf/3dBiX2M3nCBFc+NjDxCFMgxdSq2ONc1zclMCyou5mmIZNgQSbQcK0BLqGqmTYwwF8gfQYaAe/7+11M3HZHfvKTn7Ap1PAm+meRkLLZcvLvS0EQcNxxxzFv3jx+sfssOqvJaa2mpNeUCrjIllq4Nu5WUK1rAcsjXT8NlvI0Mma+GsA026TMRTJTxwLJjosy6uqC503tUJ6Uzb5ugrIy7yO+1wQAtAIQmkXWKlNGHpBpRs0kna8Gre7zeW7lYgYDyS4TR1Lz7aASGL+T95l8DzMaOfO/Pq8g1R952qgSTu+gQIPwozxzIoTZIYyLAIqLWdTlJPnZTGfCTKYk3zmApAigmGuFzfBkzTiSvm5ljpRdu/IEBvb35FrWBy37Pw1oXOPIWeeSzLMuo2ieFM1rXYd75i/nE1c9xONLVvOrtx7AFqP2gHAxF9x1J1896HWMG7UYLzoXxe+sI9oCRFVy7eMrOepbj7P71GFccNQsth0/FJf2JK6/FOpUb/t9OyJLNdOgFwsxsky3CSjTadxpC8tuAnLXZw20pf+ufjCvuTS7Zcp3t604ol4ZYYK975bZ/+262gCmqO6u9cF13RZ46nzy+tdee4IQTrv2NhZ3j+DGG2+ku7u7VLv+22jNmjUMGzaMw3f/HtVKxwbnV2/0cfm9p7J69WqGDh26EWr42qTXrCYFwPd9fv3rX3PooYdyytV3cOGhB1L1vVgUq5nl0LCpdFHgsHnNM9Eyf7uozMZhliWlSJVfVA/7sEfXM6ZU31zwQjwnWClb1wDfuVm46hASqYwJM+lt6au+Jw1O05Yi5am+U/maEmVTY5az4bs3gOaAwPbFcZ2F0wyotApIXIzFhpIQkiFtkp0njDE2ePP9uk1l0vXJtt1mRk2HaSEkKTOv0EOfTp53MrzKwwLjgQd+qMzCzHNX7OfyXkGBj4pd3j8DoOSdGJ3HRAghMxrJTHMMYFK0Xpl5ZMCMpVXOanM95/iw00S1yKRz59n6+HaZ79j3i4CKlJJfP/QSi9b18au37cPrpm7O0p5evn7HHXzhwO0ZM3xZrDWToUc4UMETEuEHHLLNCP744dm85TuPqzOQZOIYb9bJ9mmKDy1MSfGzQFX3i3mtWR/ZvhPm/+x3248yC0RclOdT4SqjmZDJVbciwGBr0N1rfLmgNRlNiMPCAvI1J/Z3G6CUGc9mm8x91su1Yc0+l1eWXivMNEVjKDtuJF+67R881dfgzluu2ARQSpA6K2/j5LOJXuMgBaCtrY1LL72U173udZx5w+2cP2c/fC+y68ZPFkiZ1QYUme6YjLKesC4wUYaaLQg2Y2fWI48ZKVoE88rTQKVVLUqzfF1pbLASa3VkFrjo73mMvUv17ZIOmf2k35XpT6NpfZkhk+nKc0hOqNx5J7aplvpe3mwnP/9iqWKRRDU9DrNgJf2cAiouZsOUlqcc6yEFCuJnDMZOAxbT3CpVhglUAOnJLFApiPaV6k8HQHHdTwEUIx8XIEnu5QMUm2FwzUuPrJ9H3DzH2mCboxS221FmWdBi1lCT6ZOSHa9Z0x2TzGdaWdNc9/IEE+peFrD86qGXuOmFJdx60sGM7eqm0WiwaO1Cdho/lqFtQwjDdYiGMqUJAFEJ4vF5+1Or+eQfX+SMgzdjx0nDyESE0+/W0J4UncdRNPeT/7ZJbnoNCWJfluJ1PjVOHVp81xqS9x7y1mgoBjvpeZZNKyj2YbGvJ/VsvlfH7XfUz+VzkjfONJkAJXfPd5RltzHe+4V7T3AJ/+K8ckCf67drT7bXg2/f+yBXzVvEXffey5gxY5xt2kSb6NWk1zxIARg2bBjXXHMNBxxwAJ+5+U7OOXAfPJGVGEiRXQBd2gV7k2vG8JUlKQX3L1jM5U+/wMf23ImRnW2Z/M1Nvggw6e95TIG92MSMkLXw2e1qBqjMtM3aGtfFKDMPIGlmzH7ebWYinZItM2+b8UsxcyVeYTNVe7PnykfLcb+PIgC3IYAlj/LyN9uTLzXPd5yO84FMGFqdv5Mxc2gzMn0iExmtCIkPiARSJjZl+67I/yRJ48X3XAClsM6WyYj+uMxDWl1nWpH6FpG51uQBoOiHg9JaE03FoCU/OlNcVIbRKju3slJ3/V2P5UVr+zjr+ke5+Mi9GNM5hHq9Sl+9jd8++hAn77o9A/U2ujrW4lfrhI2KCj9cDZi7uo+Tfv40D85dx6mvm8z/vm4LzLNPgEw0OHWtGKC42tus3TqIiw2UC/u0iW+FSc0ApL136N9FGjwXOYVxrToPS/tn8fNlwHxR2137rD3nizRJZhrX/HKWmRPK0NxDTcuJPN8YF09gXr/o/of59ZPPc8vttzNt2rTCNmyihEIE+adCtZbPJvoPASkAY8eO5frrr2f//ffni7few9n77ZmSrNrhArX0wgQuGcbAZe7g0MjYVMTwX3D3g9wxbwG/ePhJxnV18uZZm/P5A3bHjJLl2sBceZuSEH2uSqr6DkmRkO6zUvIloFky07YKWFwUa10cpKU85gaYZj6K89b3A8uRUmtiXBujS3oHST/qTWd9NTJlqJnUrvBZ0uN8fcpzMR72YX7ZPDSDm2MCptNFzu+x+VcrDLkuNzYRI3k+72wVV981A+NF/V/AALpAi5SJpNqc14EjAIeZTytAxTbpsOtcFqjmgX5NGel4DlhxjRGXplgx1Fm/kfU1x8w+42aqNVC54umFbDduBK/bfCJBUOGllfDNux/igM2nMXVEDU/00dbVS6VrgPradipdA/SKAY76/uPsOLmb379nO4aKTvWOG2mTLl2+DWzNernnUTkNSJy/A5g0A612XmXAR7P6tGKSmqcZzKNS0a4c6Yq0Q0WUN3fyhH/O53B/d5Zn3XeGN84BLjEoFJYWV6QFNQF50c6ybfjlw49z4SNPctMtt246rLFF2hSCeOPSfwxIAZg0aRI33ngj+++/P1+/814+ufcemFEowtRkTDZZL5rkoqQRoJ7seUyEBg0u+t6b5vDm31zKTuPHUPUFP33wCY7cagu2Gzc6qWfRQugosiErxm0tISuWjOk263SewaCEjoXcM9pqMvHruyGZlJeHC7zYdrqtgoR4wY5Ai8sfKS7L8ksyGbSMir6QaXNTUb+kpJd2FCcHCMnbBFuVRNq+PGZd3FoiF/OQlZIXaabKpMneUDV11dfM00yfejwCNLZZmbMo/R4cZ3rYgCS5Z2hLHOZdWqhQxByWIRc4SdW5JIOpvwuRnMPkqpNZnnlmi8rAzNc0/3EIAjIAP2s2lq5neYBiM83m9XS5Hje/uIQDp40nCCrUgypfu+0u3rXLm9h93GqGDVtCtasf4UlEe0Ct2ktIyEkXPc3I9hrfedOOVAMlstIHoALYhyva9VpfECmlsA7hywKTIrBql+GStpuk19q88VgEesqs+bY/UhGV8QPVGvaieuVRMzMpyHeILxJoNSPXXmvnnQjW8hKl6+Hai1rZJ3/32JN8676HuO7GG9lxxx1LP7eJNtGrQf9RIAVg6tSp3HDDDey///6M6RrJietWxkDFZoo0BQUSP00mE28yRq60eRILgKFt7fz0iDfypVvuxBeCN8+cRletSoiX2oBMqVSxA2Nz6XFmA5IQRNXWm5TdB5lyUr9ECrSk76yfmVQzipkky442FdoxZ1N1bSrN/DQgMX2JwRtpBs2kZvHtM+1xaGsyG2UJSZzreqtmFpoyTGdBPePym0jCnQwvCSOXCuMrZFqrYpabxyjZ2hQpSJ29Yvany9/EcSaLK8RrkZmX+bxiJP1cgKK1J3nvWfd3WaCSx4Da87+ZL5peB+z8ikxebU1kHMpdCqsdbs2KmV8eYMlrb9nr9j2zb+uB5LaXlvLRPZWk+Lnl/cwaNY5tRw0yesxCgno1BrHhgOCS+xfzjWvm01cPuflDe1Dx/Fhz4gImee8kvw3FAMPpEO/Q0NlluoRe9nrqZMq1GZC1V5jPmdfLAi2bymqkWzFJXh+gYq/zNoDL7WPnGpxc0+CizF4dP2/UIZB+9D89B/Ue7BJMekI6zcjyNOs67Z+eeJqv3/sgV151Fbvvvrsz7SYqpjzh0/rks4n+A0EKwBZbbMFNN93EnDlz6H3rW/lQOIAQaV8Pm1ILuTGPXUx8Itmwwh4aUu0iM5stRo7kl0celi4/TC92QZgfEtFerPNCDduLq1PFXhCm2C4v9VyUpw1WWpHcN1swzc3U7gsTCMYSYGtTTeUZpdHMWl7kFFPa6pKu6frkBVGwzcrySDN35piR0h2Cen2plUXO9PMxyaxncX7FEZR0fbK+JwZYkSLF5AkXYNEmYtE1CajT7F0FimxksDwgEuVbVEeXmVf2sMbkYwISzSzqw19tCqVIMRYuyhuTqXbgloq7zEE1aY1lGf88sx6q3m5wngIsUsbrr8orH7C0SmXBieve3FW9rBtssM3Y4XhewJNLlzOuu4tGsBgZetS6+5CBh6jV+cglz3PFE0v5zIEzOXb7ybRVKoSNNDBpDkLygaTrkE8TmJjCqmagBPK18a2AvIzQxiF8M7XdeQ7deXtMq2NgQ8ZMs2dd67nLf8MlXLDBh11WaFzP87E0nzXLjQ95NPrQBCiBQ7CZrlO6Li5tjF57fvXw41zwwCP87W9/Y7/99ssm3ESlKKRZ2Jzy+Wyi/1CQArDlllty6623MmfOHBYN6eYL+++LJ+zFozlD6EwTq1eL7Kjdi6JpZuUJ6ZSumAuVc2GTWSe4vLo2ky7Fz4p8sFIk2dXtWB8qkvTkmU/lSYXKSM6kTOx085wPdZm2E6KmIhMIk6Gzy7bT54091/tKmLusBq+sdDDvnhCysL5aWp5n1pOuh4cZajZhTF1+P6DPUUkdXuelGZ3s2BeZ3xKQQdQWLwExYeAwu8nTstkMohFi2KYYdIRprYjJVNoAJf6NyJWolplLZZlSV1r7uj2eigQWRWuAqnu+JlED8MQfLt+0a339vMo+YwqqpgztouoJnl62hq1Hj2bPyVM57877WdFX4bSurRheWUoYeDz/yiC/uPcVHjr9dUwe2qXGa5DvN2j+fmllDx1Vn5V9g1zx9AI+stcsqp4pYPGcYyj5nmjjzGuuck0g2qw/bIFExnHb0RYbPGd8mIrWVIqj120oZcyCS7B4eVokGzTYaYpMqm0Nk45wadapcB/OAZd2neoGqGqWrwu82PledP8jXPTIY1xzzTXstddeufXbRJvon03/sSAFYPr06dx6660cfPDBfOqmW/nK6w6g4m2YpNpcCEzJknICbn4Yk7mwmVIQl9Qm77ddtkkuW3InA29IbFOLWM5iXyRRbWZXC1mNi1mPsr/tcmypUJnNLm6HEUDAxfDnnQsT97vVnFTaMNtXeQEXyoANU4JetBHZzF5Zcm3STkmo5ZNjPpv2V7Hb6boWmX0Ffgo4ZPw+SIBL3ljWVxS40BcTsJJ6xgJ4TrOzKJ3NoJjvwH4XJmgxAYr+rs43Kn5/rZLNGBWB5GZlmSCkSKviAsomucCKLUxI5+Mb83DjaVjS9XYHfLj4/mcZ193B1GHdCCEZO6TOtOGCY7YbR3tbL42BGsILeW5ZL9NGdjGpe0guOLHr/cTiNZx/+1Nc8fQreELgCcHQ9grzV/XyzTfvkgtOUr8d4EQLsJqBkVZ90YrAs2lWlALStvygxJjL7G0iH/y2Ioyxy3Ltp2V93vL232b+ns2Ehi7A0swR3653npbUpqIwxalnQ/jBfQ/wm6ef5sabb2bnnXfOTbuJylHIRnKc3/As/iPoPxqkAEyZMoVbbrmFgw8+mC8sWsxZY8fQVsk222QE14dMJlY4FvFmJ7Y3lYgbWociU7JW6u9yANeUx7C4FvAyDFazDbBZOlcdw+j5MiApWy7x+3FJyew+bvp+HNJge3O0gaUGtqXIqKsLPGW0GzmgqKjeZt3t39oczHX2gTmGVHoPzwusMtwhjJtqSiCOBmaCivh5L0wOxjOuZR3ljec8BwOe4xRvUhhqxjL/sEatNdAARZt3BaGXH8EupbUD3+zzaP7lvnfH77JjNc93Ky7XoTUsA1QgDVaanU6e1HfjmTq6y0nnf9OLizh5163pqrUhpaDq1xk31OOPj7/ItBFDGNVZw/dCHl6wlkVr+mk0BJ5oHimrEYbs++Pr4+tvnDmexxavZnnvANuNH+nQwLUGTnSaPFqf9TCvLaYQyhyjkG86ZJLXDGQ0Wf+agbFWqBUhVuqaQ1CWWRsKNJkuvqLIbzUTKKVJvVsVcMQmZFJywd33csXLL3PLbbez7bbbtpTPJnKTZOOEIG45/PZ/KP3HgxSA8ePHc/PNN3PYYYfx0WXLOG/LWQxtayvc6DeEXPnYWpf1kYDFdt5NNv2m9ctxyHYtjM3MQHRaW+JVduEsE92k6F6Yk6aoj/XGmxstBWJmc71IWn0s3cCyTF+5fBDK1qtpFDrtn+MAoUXMZ5ngAHkMrPN6GeYhdDOwLrMsM61pPhZrVnLycgKkHEl3ckp8mnEMDG2KDVBcgBAcggCHT5ZZF02tHsra6ni2g1TkmRs2MwOzga0tGHFJyzdEE1iGhJAcMmMyP7n/afbZbDwzR41ASMnRs7fghRV9PLJkIV+9+TEeXLginrmPLlrL9uOHF5YppYcvPA6eMR7fE2w7djjPLl/LqXtuyQGbj2PGyGGEYdakC4jBiTnmzDDVGriUASFlhUf2M5risWVlYQLmPM2g2zcier7kmtCK0M5xc72pmRN8kebElcb1O6+cVu5ryptLzdaGehDw+Vtu5eHeXm699VZmzZpVqrxNtIn+2fRfAVIARo8ezQ033MAxxxzDSXfdzXd22ZVx3d3OtK0sEOvz7MYAQ+sLUIrIBX7KbnZFGpYi5qNQFV2CCTPDPZdVcdsSwbw0zUwN8vsluzHnjYtmDumZfm0yvpo7uGc3srxIPaYWxewP26TH1shpbYoQgdWPRQdCFtS1BSBrp3eGg80Zqy4wqMGJeU23xSX9NgFKYPqnFERNK5pfUoqMv1iRaWiz62XIrpdLm7O+QAWy60wzwLK+9Tfzs9slpWBkRzvPr1zLG355JX8+7lC2HzeGige/e/RZLrzvSQCO2HoyN72wmM8dOJvtxo3AjFKfDTudlPvbY/bPXFfjJw1sIQ1OirQmrWiZy5BrjWum4S8KTgJZH5Nme0eRNt9MU3TdDuKyIRLootD9UG7ulanDxtB2uQJtFK0p+l7P4CAfv+F61g0dyl033MD48eM3uC6bKCE1xzdOPpvovwikAHR1dXHZZZdx8skn8+7rr+f7++7HjJEj4/vrY8ebWiCaSGFc5FlSp/V1Qi9DZdvnYiJM0xMoFxXMKUEqsTi3IiF2RUIpS3kRvuK8CjZiyLYlzyymeAy4JY15EshmY6RMCOE8ptLWmrmAik6n6pJ/dozruaglgPuU8bI242XSxOU3ec5kIF333NG73BGXFDBJNCgxs+mw99daPN1nocj6gdj932rEpmbUDCSlxnAJoGJTWqKe9VVxBsxYT4FGHuWtQUJIxnZ3ADAQhLz1d1dz3uv3ZocJI7jo/icZ3dnGze8/kOXrYNHafp5f0WM8n8/IF615eQ7x2ozQFf2tWeQom5oB3qJrLkfyjI+gTI/l+IwxpFPrnl0zsutXnglzURQ8/d2+t6FUpClpVSOyIVYCeWRrqVwCsCLQt6y3lw9fczXjtt6aK/7yF4YOHdpyHTZRMW2K7rVx6b8KpABUq1UuvvhizjrrLN79gx/wrdcdyC4TJxU+U6SybkU97HY0bb7QtgpcXg1bxljSZkVwcUnhy1IzUNHqIt6qyVmroKbZc60cNJlnjpZ3Xk1QAHqK/XLcoEYx8Mn1jLbEYkrzmNNm5l95QMV1tkoR5fVXM01CMyBpAhXzfp4GJfUcOWegGCZe9mnf9juMTQ4lKbzaql36hpqAlqFmQCVTJ8c8zBsvzQDL+pBrHTTz3nPyWI7bdjr3L1hOX6POx66+DQm0+R6XHLsXY7s6+d5djzNn+gT++PhLLNhjgAlDOpyANu+3tN6/PW4aYSUGJqb5VCuAvVn/N6O88NR2nUKSoAde1I96XTJ9/PLAimv9Kqv9MJ/Ji4i5odRMS5JXx41VH9uPwXMBt9x1pJgnAZi7ahWnXH0l+xxyCD//+c+p1Wot13ETbaJ/Nv3XgRQAIQRf+cpXmDx5MqeccQZn7b0P/7PlVqk0RVKQ9ZXYrK8UbH0W9Y1BLglXEehaX6Y/U6696RcwG4XPbYSNy0V5fgJ2RLBCKkhmaqtSmivpBoI2sLF9HHS4Sn1N19GW5tvaEhdQMSkj6c6YbiSH+LmZriTqlw2E1P20Vsa8ls4nKxRwSeFdYMsEI4paP8vBBjEqFy8V0StE4Dnsx01paCB9fIK0Y7LRjDKMa5FZYVH9U2lz3oFuVytAxZlHwXk8ZhuaAS7n+lTS1l+P07MO2IV3/PlGxnW385U5u3LLS4v40B6zmNQ9nFdWQCOQvH/X2bywai0HXXwdR287lQOnj+d108ZnxqTrMEb7t/Zb0uCkEaq52SxAiUlNTagcz4Z4+CLAjwIZJOMyH6AooO1w1JcQkLxzT+ogJum1xG6XG7S+Onupi8oKxVoRPGbL2HgAKhTZuaWBi2sdMckWTP3jlVc4/bprOOmUUzj33HPxNjDK6SbKp1BupOhem8y9ABBS/ndbvl1zzTUce+yxnHbaabxt2SqEaLLJOTZ01+KbtzA1i/rgkp64NqWy2pWym0BRfkXMQp6JUytUltHaGFTIrBlMz/owexuT8hhSFwNX5KDuGq/6QDBNpsmGmV/MhBjMk/mcEDJTtifC2PQjySd7npD9rE6TZ+JTZm6ZTKICR17qv90Gk7l0gRe7LNvMy/YjCKRPKD2C0KMhK4RSEBiS9ExfGf3tCRn3m+5v33D6bzZuy1Kr49ceC5qKQq0XrQFl14cywRlaobxDUj0Rsm6wzulX3cGDC5dzyu6z2WHcZLYYOZmrn3uGa557hrZKyPzVPRw4bSK/fuRZ1g3UeeTUIxhSawfytXaabM1JEPrUw/LywaLQ5UXl5pHvhZlgDqZ/hwbVGmTH9YjGqE5vrhf2WIbseuJqT9nxYM9PTXnhd22tSJ5ZYquAxN6/MwBuI1DZ/VaTi2cw6fKnH+ecu+/kW//f3nvH21HVa+PPmtnl7H16Pzk56Y2EFEIVBEIzXKWqiO3lCgpyVbCAXMTXgl6vvhYURbGAAj+4glcRRJQSUEqAEAiEkJhASD/J6b3sOrN+f8ysmTVrr5k9+5wTibCe8zmfvffM6mvK91nfsm68EZdddtmk26cgx/DwMKqrq3HiypsR0ROTLi9vpLD25U9jaGjobW2W97YnKQCwZcsWnH322VhSlsT1J50qDVE8GbBVVPY9LIIePhMhA6VCRlymQkgP81AvdYVtsr48U+0PVMo4BY1H0EqxTMPG8hQrUyQrQYKFdyXPK2D4CbE6MYoSFdmnLK0fRN8A65i/uYx/ORJNiBAmFnCFTTGfGMnLoDoMajnOs/TiPIqCHYACouK3OCH6wZXi9+bU70PGZddtEGkV0xQ7FuacDKWQFj9CElQepRR3v7odD23fh/X7e3Bc2ywsb27Fa7178fjOfTisoRo7BoYxvaocN/7bCVjRUu/mldxrhq0hEU0B86buIQcy4TlIqHf6CPleNmKaMPcDtck0IycuCS/+DBafO+y6Fq/pUvoWBqGCR5T4nvGSn/Ba+al2kmfmu+LYiihGWExK8bMX1uH3r2/Fvffdh9NPP72kdiiUBkVSDg4USbHR3d2N8847D4QQ/NfCpahPlpdchgZacnzssEJVsdUSGcKaY/jWeRCIkEywFo+VEsUm/MpsYV1TjTDj5UdegpxlS0GxuZYLFYVkRWwrTzj40MVykkFDaVRk+byfzExE2BvF1o6w/pY6BjLzMG/kMa0gjag5YcdNaDBM3VmBZgQlb+oeQU8U1vh+snubaU4IJ+RZ573jxmtYipmhiBqzoHtLRpZ8ywoQLoMIS7G5CXM/ywhLGGLC5w0yOds/PIY7Nr6OXQPDmFtbiQuXLsT8Out9wAdKAOT94bVr7PrgNRfFAq74XScF7eXmgPcBCWN2W0i+2fWrcX301xLIrmt+oUMnplSrErZPpfgrluIrIstv1Rf+nSPWJ/VJmYR2RRwr8b0ShrCkcjlc/9TjeCOfxYMPPojFixdPuD0K4cBIyglTSFKeVSRlipwI3gJoamrC3/72N8yZMwcXP/4QtnR3e142Qf8Mk9nAR1YeDxPE819KmWL5fu0vqHOSAr1JScG/7DzfPsPUSmpnKX05mASF1VEMtvhX8C+WEfbak/U/6JxnzMEJUvZKr2FqThomsLB0Thlc6GK5WZRc42BpJzThP6g/GmTRtUxulbpYf8U2FOZx22GauqNB4fvBTHTE8lk0JmusdORpxCEohmAqI869OGaeuRcIkUV8rBV4S+h154hPw86zfxF+Dr7imLC5N+1/2RwHYaLXZ9j73uTaxv7DIig9OzetshJfOuko3HLeKlx38pGYU1vlzgHVPFoSsT+m6UZ5M6juEBSW1yEE9nXArhP+n2nh+OtEOg4Bc12s/6yOvNM+zfNe8SMo4nOUf0441yRcjQx/jP8XTSUZ2HUcdD2wcfQbP5P6v0ccDafdRmeshfKda5+rx++f75erQeXvo8L2+f0DkL4TZOfFZwn73z88go8/eB9SzY1Yt26dIihvA3znO9/BMcccg8rKSjQ1NeH888/Ha6+95pv+8ssvByEEN954o+d4JpPBlVdeiYaGBpSXl+Pcc89Fe3v7QW59MBRJ4ZBIJHDXXXfhs5/9LC5/+E/46/ZthQ8DyYM7rKAcFmHKE0lL0D+f3q8+PwQJ934PWsPUAslGGEHEr7/FMNUCkl++YuMV5mXkN84FwmsJcx30z7fdIzywlzO41V4uHQBPOr59vo63TFjxISJuOjkRKTbmQcfZp2lqkvoKyYknj01K8mbEY97FhE82TgbVkTMiyJs6cmbU/tQdgsIEFn5Vmv/nhQt+fsQ0nn9JP/g5KDZOYe81S5iz/CYMbr8XGYIEZF6ALvU+K9aHidznpZRlzZk3OptYjtg+kZzkjAiyRhR5yq4lV3hmz8gCgZerR7wG/O4l8VooaJfdj7yt8XPaYAvrjqmXIHgXE6K9bSOe694U+sX6K5Ixvm8uidOkdchIid9YiM8+cXyDSAhPFGX/IpmUERZZWcUWqKxrrnTTMb6sDQf246I//Q6nvvc8PPbYY2hsbAwsT2HqwRznp+I/LJ588kl85jOfwbp167BmzRrk83msXr0aY2NjBWnvv/9+PP/882htbS049/nPfx733Xcf7rnnHqxduxajo6M4++yzYRjGZIZkUnhbRvcKAiEE11xzDZYtW4YPfehD2D7Qh88cfQJ0jVvZ8hGWCbPzDiEIlAJKJ2auxeBZIeO+8yZkrM1+9UyF6nwqECZMox8mOi9+QnhYyMY0jElbKXbRYdrAytO45rCoPFYF9jHijeDE7KMpCECLR+JyyqbevTEI5GGErfKKb/ToR0gK0wVF6yoMCeucY8KS6d3kkmmZWL/z3K7yrh+K5hGiXHLCjS/rL9iYeqMhmSAFc8ODRfviN3f0MyHi2+/kR2E4WBF8eew3oRTQ8tDhBjcotnov7l8UxveAv4bEuS3Vx6iU42HS8r/F9jHi6gj6NlnxmE3RwkUW5xq0jxNQGODuI0pAqWD659MF8d0j1g14nyfSdNx3J53Ps5w9E8R0BmXXoe2LRan97KBOn3hfrDDPQU+9IZ+JxcxnSyEHpRIJP4hjxpcv3rt8vQX3tU/99/5jI368fi1+9OMf4/LLL59QGxUmDwOFpr0TLScsHn74Yc/v2267DU1NTdiwYQNOPtndWHb//v244oor8Mgjj+Css87y5BkaGsKvf/1r3HnnnTjjjDMAAHfddRdmzJiBxx57DGeeeeYkejNxKJLig3/7t3/D+vXrce6556Jr7zZ8sXkuqssK7QyD4pM7Lw6fh00pCPOC9Ytg4pdORlj8hMhi7ZhqYhKWmPFBCaYCYfsxFeQoaFxZO0QhulTIiLPJFeOGD3V3L6aUlERU+LC0fN/cvNbeGPx9wM+vSwD8yYUfZM7z3v76a3oAXkjzrpg7Jm3cHhbsfJ5aj00+RKtIUpzxJYUrYoyc8PWzMfXck9QrEDNCSW1B0CRawfUhji0PWTjYILB+6HYbDGgeosKXW7SskESFb9tkIlj5oZivkl90OR6MxAJeLZa1Yq6Dj4rFyImMkPDXFeAlIGyODUGA9XMh5QMxyIiJWL+TTiAmxYR7Pg0LfV74XiMwKOejYhMV9mmyPFQ+H9L7tQhR8DNNC2p/EMKa7vIIer+X4t/pRwD9ys8aedyw7kk83bUfj6xZg5NOOil0XQqHPoaHhz2/4/E44vF4YJ6hoSEAQB23WblpmrjoootwzTXX4PDDDy/Is2HDBuRyOaxevdo51traiqVLl+LZZ59VJOVQxMKFC/H888/j3//933Hpk3/Ft446EYsamj1pxIdZEGkpRcicCKEJ+yIXhUkgWEMhfVGHWNGSrYiWgmLanalEqSRrMqQsiBCGKbfYy9d77Uh2eKau4GOS0omKU4YPUeGPi0SFtZPXqsivk0JneaveYqTE+7uYwCPzufCYT4GZdrjCJy948j4GohaFaUx0YfyZFsWkfCQf77x458Yqj80T4N1Dhe+POLYixJ3tRfKgwbT2+wGFbgc94AMkGFSzojfZK/zF7vEgMlOMtExUWxn03ChWZpAWRmZKBcAxI2JBE3iCwGulAP7eLSQFBhVX1F0C6+6P5fMstA/zxN9PsJdpT+TnreOMPPFk21u25NkPb4RBQr3O9SyNLFBHKYRDlj4MgQlqa7G0su+APxGZyLtcpnWRaVw6R4Zx3RMPoay1BS+++CJmzpxZcl0KUwsTFOYULJyyMmbMmOE5/vWvfx3XX3+9bz5KKa666iqceOKJWLp0qXP8u9/9LiKRCD772c9K83V2diIWi6G2ttZzvLm5GZ2dnRPsxeShSEoRVFdX47777sN3v/tdXP7f/42rjj4R5xy2DID84cMekJONjCV7aE6FCjGswB/W/yPMeVF4DvNC8K4e+gsdxTQafuZtQSQrSLgJq62SQSSEYttl5hjObxDpaicge4F7X3Ay21bexIsnKuwcT1QAQKOuoCq+LB2hjARv/sgLeX4mYP7j6x/NS2yH8xuuT0lQXncl3N5Yr2AlvHBjRpMjJPwnv7GmRoI2G3SFfqtOZwTcuaPeTfOYORg/D1Zevk6OaEpIKz+nDJ55gQmduPbHsqhvTt2smSHnRIzkVurmr0GkJkhbJkMp97Hop+XMueTasNJzvkyh71mnZdKjIjmRPUuDyKmsLX6kRGyrQQvbHPRMt649zSEmPApJivd8KYRhIpBpNSdCUIqFB2Zp/Ey8Jgq+rc+378bXnngYF/6fj+LHP/5x0dV1hX8O6BSRFHbP79u3zxPdq9g8X3HFFdi0aRPWrl3rHNuwYQN+/OMf46WXXkKxvQAL2kFpyXmmEoqkhICmabjuuutwzDHH4MMf/jA6F87ET37yE2z+/Fd880zUbhXwJzh+tqthMVGNxES1IUGapCANFEvrWbXytaEvNPfyI1gyEiATpoPsnEsdC9aHoPb71R28yukVmADvGPKrsrwgILV9psQhKiIREc2ymMaF/Rb75YRC5UiNrG8mvCZgfBq/NoYRLIOICS9oAu7cO6ZdAjkB4PgWiBoUpx8eLYpXeDMpoBO/614ThB5wabzHZJovQxh73iRMLM/PXKSYJoMPIVvYfq/pWRiIc8HqKNYGp+4STMZKaYsMBQ7/3H3HfJT8rgueuLI87HipcPNO7NktEgtRSOcJbTENBBO4+eeNn5bIfuoVtIc41za16xXJl//1KsLPP6egTo74hMlTTEPiR1Zk0O1nXDGfk1KuDZNSPDazFt+56yH89Kc/xcUXXxw6r8K/HqqqqkKHIL7yyivxwAMP4KmnnkJbW5tz/Omnn0Z3d7dH02YYBq6++mrceOON2L17N1paWpDNZjEwMODRpnR3d+OEE06Yug6VCLVPSonYt28fLrjgAhiGga8sPAJtVTW+Dxh+FWUy5GKq1Mh+QmMxQUFmz1wMfqtu4oobj4nEgy8FfgQgqD7ZanUYBO03UqxNfvbhGqEenweZ0MG0IOJ1JxtbPg1v086EU/e4dwPHMBs/htmRXDxebMO+YHMQf2LCfxejkTlEpWA1XPMIogA8pjy8D4r17yWLPEGU+aaFudbFvVX43/x8We3lyIM9b3w+WT2yuRLPiZA9M4KecbyAVuoiS9B+K3x7/BYa/PrArukgTQ5vApi3Qw6L1wQjJyydqFXz03SxY0H71jjtEK71IIFWRkDcc8HPvrCQtderteXrkefxf5/J08hIQeG7I7DZoa67sJsXT2Y/LD+EneehdAr/tXYN9pk53HvvvVi5cmVJ9SgcPLB9Uo444ifQp2CfFMNIYePGz4baJ4VSiiuvvBL33XcfnnjiCSxYsMBzvq+vDx0dHZ5jZ555Ji666CJccsklWLRoEYaGhtDY2Ii77roLF154IQCgo6MDbW1t+Otf/6p8Uv5VMGPGDDz11FP44he/iIvvvBNfPnYVTp27UJrW+0IqPB/2QSZ7yQGlv/SDzF2CbMvDOFOGSVvsRSIzW5FU4EEYu3M/ohG0KihLL5Ynwm8uPIIaJ8SIQgoz/fFrh0H5vshfbH51y7QtMoE3yOGaCAJWQf9DrnqL15tbrr/QyGtdZOlkQipPOPzSs7IMLqJXMdMh/nqy/r1p+chd3vSsL8TxR+HLZOPqaE2E54aV3x57Ck8ABI92h3i1YrJrnDcN4s2/nI06qVeIF+fSqxVjKLzG+L5Z5xAKfPs817ldNN8n0/QWymv6nLLEe1BivsDXx/LwkbpkzvCiGaYpHBPBHxd9QmSCaaGpZnFthwxBiy2TMUcqXAzxnud9sorVwp/3tpNw71LvMfde4dskK9v/XVlswWAi4xP0bJ4oSdzUeQBffephHHPSibjvtts8TtEKhw4MmMAUaHyNEsr4zGc+g9/+9rf405/+hMrKSseHpLq6GolEAvX19aivr/fkiUajaGlpwaJFi5y0n/jEJ3D11Vejvr4edXV1+OIXv4hly5Y50b7eDCiSMgHE43HcdNNNOOWUU/CJT3wCGzr347PHnYSYXjicMmHUdYIMJhmy86KwGVY1XgylakuC0hV7QYttBwrb77f6JvOHKAgJKiFKsheNR9AJqSmRr+KTApLjfWlSj5DgCjPeFchg8y7/+sVV+6BVSI8GpcSXr5/mzY90FCvLz3xLnE/meB/UJvG3qBGRpRd9C9j5IBMYPi/gzq1JC+3r2XG//Lz/SjAxgV2Xe4x3nBfbxAgMT1TcsgufG/y8yTbqBAADuttWiQbGkzaAHBrUzRfktxSkCeHP501ZRC4xAhnxfGr8tVpAJN3rgV0Lhieal5ecyO/r4osYsjTi80NmsidDWC2JqOXwSylrp9dkqrgWkNVXyhNG1p5iBEH2/vML+12s7IlqTYIw0fey91qg+J9NL+LWl9fhv7/zHXz+859/U30EFA49/PznPwcAnHLKKZ7jt912W0nmgD/60Y8QiURw4YUXIpVK4fTTT8ftt98OXdeLZz5IUOZek8TOnTvxwQ9+EJRS/N8FK9FWXVOQJqzz3EQeaEHllqRlKUJO/EyQSi077IsgyO43SGNRattKwWTKF4lQkIkgnybshk7spVzM1Et23jlna1SKmXvxZcpMvsTfvFAaBqWQJz8CAhT6FQCFcygz7+LPs/yicMpveMfKlWm3CvqGQjIjnuchmyuRbMrKEM3BAK+pXlCdYbWqvIailEUL0aF4sqv7svZ7yhJWJPlxMIXrR0ZO/PxN/LQmhZoz/7bLBGrxvFiue64Y0REDaMgXfoDi7wo2Z34La1P57C3lnRbsLyLP41dH0BhMhqyI5ZaiSRlIpfFfax/FPiOD3/3udzjuuOMm3A6Fgwtm7nX4ET+cMnOvLRuvCmXu9VaG0qRMEnPnzsXatWtx7bXX4uLbbsM1R5+Md81f/E+rP4gAiatgxYQJsdyw50t56MoIi0zbwb8MxT7KVvdErQhvPsMjLHErZoZRSn4AnlVzHsVX6lk6/7p40yKxv8X8BYQDgI8g6yTxWeEOWvmW7aMiQyjH+IBzPCkR88jMXfwISqHgWpygBEG8voPn0nvdycykmGDrCsHifQSPORgf8poX1/00mn7mkmJ/eA1FKQEl2L0guydkJmrFINOuesoSzNYoJQXangLTLcm8s7rE7wblTZrcPhU3by3aNQ9ErQ8P9twL0niUKmiXKshPtJ5iCGN+VYqPykQC00yGSJf67mXYcKAd33j6EbzjlFV44De/KQgNq3BowrTi+01JOQqKpEwJ4vE4brzxRpx66qn4+Mc/juc79uELx52C8ljMSRPmpRtkuhVk5lPMMZHlDStMBbWNTxe0ahdUpp+pWimCCZ+fX+ErXOX01unXlrB9F9MWewFNxozM206xXPd4McEh7ItX58bCswIr8U3gTdzCCC5B/g0MYQTdIP8S/refWZ6YXjRrEtPIzHsKTX3segPqdNomCtTCb35lXSTqAG9e5k9gHZMx+zhPVngyKXtuhOkDII6hD9Hm0hRqNySCZsjnB9/esHACHsBrtiAjJnx6UWPCCCrgLl5QbgYDw31PAkH3GRsHnqiIeWXgF6/EsoLqkc3JZM2Nw6C470hhHlm7wizsBeXny/FrW7Fyg8rLmwZ+/fI63LP5JXz3+9/DFVdcocy7FN62UCRlCnHeeedh06ZNuOiii/DJpx/EdctOwNKmFk+aMA+2sCsuvIDsFXQKhY/JCssyzclETZPEMRBXcvkV4bAvCbH//JgEaRPCtLXYPIUxw5ClCwuZ0CF7IYddIZTNJbuODGrtKs52Nwf190ERiQq/gh3kn1Lq/hgF/SkiNIsmOI52TVg95/OJwqqVrpCgmDQcQSmF9BZe/16i4j3n3hsiUeXn0uPbwpGVoH2FfK9byfEwm7mK572BFQpDh8t8k8S8Hv8Zn3tTTOtnwif2Q6ZNY/cEg2Gn2T/Uj/bhPhwxbSbKIjEnupt8oUZu4sfPYRD450wYQiGSCXERhS/DTwMbhKC0YRaawjyHg56VMpOuUsoGwptgh16E8bn+i9Uh5ts/PIhvPP0IjJpKPP/Ceixbtqxo3QqHFpQmZWqhSMoUY/r06VizZg1+8IMf4MpvfANf+9rXcNKOPkQkb6lixCHsQ5QXSPxWjoqVEZQ+yN7YK6y5AlRYFNN08BqSsLCE0uBy5Xn8tT5WWwuFexHF7NPDtSX4fJiXpt9qqp/JCL86zzYNLJWocIVZdQX4NjjtnMBquJSkCNco8y/QYEpNe/zyigQlCCJBmaigElS2lb+wnWyuZPMp3jMi2S8Wzc/TjhLJyFTAqZOvi1qkxtkIlREvuP1xfF0E7ZNM6yO7BkQNMfudMzXohCJnGHi+fSd+v+VFvLh/NwDgpFkL8a13vR8G1ZA1dST0nJPX++yQBD7A1GhZ3Drk16EfQbHqD9ZOiPlZGr8ydV/iFFxHYX2l3TNhyUnYe5G/r/wWA8OglMXBR974B3744lO46KKL8P3vfx+JxOT9GhT++TAIBYqE0w9djoIiKQcDuq7j2muvxWmnnYaPfOQjeKStDbfffjs6v/0z3zyyB2ExrQt/vtBOPNwDOcyqf3H/lODfYpnu6p1XoPIzH5rIy6GUCDQygiL6u2icEFRMKBWFSdnx4DYVF17Cvmz9/HlEELjO8iIoCLcaX3xDPacOoaiglfHA8gShuphJEu8ALZr3iPnlPirFFw+sOWLXAbW1W94Oy64tGen188Vy0/F1u+lE3xRvG61Pj1aFujvYa1weptXgP/nxYPUVQ9A9KteoFde+8DC49IbYRkaMBY2Sp7yA68ZPO9w+NIQ7Nj6HB1/bVJB3ZnUDPrLiHTCohggxoOvufSHT3vLzVMzHTEwT5I/izSsQNIFMTETDLDvPP8NlezXJ8obVwIjhuWXpJoogDYrf9WLV6V2Amyhp4ctlGM6kcUeuF4+88hzuvPNOnHvuuSWXqaDwVoUiKQcRxxxzDF5++WVcddVVWL58OW666SYsXPtqgX0pe2gxswLrwe8VYNhqsN9DUfbyEh1TRVv4YpDaovvkK2U12U3LXnRebYP4ki5m1lDYbreeyajq+XqMgD08ZKTETzvlar6oQwzkbeJf7qW/DEWyG0RyGQFz8lJ3B3q2RTRv0sWIiivUF0JmxhcUiQsoElWKI4d822Vl8X4mofxEJCvtsv7wpIB9MtM7WahhGdGUXWvivR5EZvl7RPRN4dPzWhSWjzf/YkK+61wuJyilLFYEaXP95rUYWS39OcWTDM0jkPtrOd3jOZPi6d3b8ZfXN+OZvTs86Rc2zgGlBo5qnYmT5yzD9Opm1MQyMCkt2OOI3dvuM90dk2ICrij0i+ZZfF5+fPwWW3joxPQ9F4RgR3T/8kpdKOO1QbK8U0Feghb/KAhyprVBq05M6CQgGmKARomVLXvu81jfvhvfe+UZLF++HJs2bUJra2vofigcmlDmXlMLRVIOMioqKvCrX/0K55xzDi699FIcXlWP/zzhdNSUJQvShnE890b58V/plL+AJrYK5W/a5J5nO6EHEQfxQe2+yNl3RtbEF7189c8y66G+ToVhVlLDmDcwQUPUrrC0YfwS+HND6XE8tuNVvGv+clTFEyEIi0vk+GPAxEyJGMRVfVGTZYKA+NiYexzhaWGI4mKCtwhrPuVEsJjjtl+7gnwR3PT+pMivnf5ERZrF12SwoO0+Yy0nWtRDVLz1ud/ZvaMRcPcRd5/yq/tMKTEhgiJfACkmCAdt4Cmru5jg6kdEZJHExLQbO9vxrSceQjqfR+/4KADgjAXH4D1LTsX8mnLEtbxANvKeZ4Nf+UGBTCayEh9WqyKiFN+8MGZoxcqZDKEo1ZeDgSeJxcaX1zplTR15qiFCTEQ1EzoxfDXLYl2y4yYlMCTPaNbuTD6HX2x4Gg++vhk3/OiHuPzyy5Vz/FsEFAZMGFNSjoIiKf80nHPOOdi8eTM++clP4uJHfo9rVp6Id86c55wPdLSlFNt6O7Gpaz8GUuOoisfRkKzEjOpaLKhvRkSz4/l7nqfuSmqYza1kAiv7XkzYd52J/UPtAsTJxQvEvGqfb6fBVOzUsnPmCYtBNRiUIII0zvvtLSiPxXFc2xycMXchVrRMk75gZQLXWDaLtXu2Y05tPRY1NIJwO2/LzUDkDtN8WlGAYL/546lcFj9/fg1+/vwafOfMD+Po6fOs8bHHggmVfivo4thbx0sTdmQrzB7/EmoRDoNq9gq7lUuztR2ettnjJoYZJkRu6iS/1uVmd2FCDsvS8/PCHy/Fx0JKcgQBPCxRmehKrwxsjkRy7+YvTCs62YualgJNl0TLENZckT/vl2eimtxCXw//csJojimleGH/Hvxp2yY8s3cnPnnMyRjP63jwtY244axPoL4sCgIKneQc53igUDPiF1krqD9+5q1hUGxBJOj5LjOHC+sbU0pbS7nmxTYV0/7K8oooRlCY6W7O1KARioSWL1gs4s2wg8DeDywv/6wT27ytpxPfeuZhNM2djY2bXsGCBQsCy1ZQeDtDkZR/IhobG/HHP/4Rd9xxBz73uc9h1d43cOUxq1AZL5OmpyAYSqfxpUfvxc6BbixpmoXaZCV2DgxhMPUG9g71ApTilDmH4fJjV0m1M9YL1voe5Kchmg3w32WCikx7IHuxiI/2m59/FB3DA/jiSWehNlEu7TdgERMmFDjl8qu+lGBteztMCnx05Rl4of11XPXwH9FUXon3LVmGdy9YjKp4mYcAsfbet20bfvzsw0jnc5hZ3YC+8RHUJZP40LKjcOb8JaiIxQvIB19GOp/D9t4uGJRidm0DquIJ5EyKjpFBEBDUJyuQiMaQNwn2DQ9gW/d+DGXGkDfyMKmJjpEhVMUTqIwn8I3H/4BLjlqF9y05BiA6mP8AC0QgruYxIlcopIQjKjIbcVk+rx+K66hsUOak7Elspyvcj4KHP4G180NOGsJEA/OL7uUXxYmlCwMZQREhCjLFzB89bS8iyBf6qLiCMk9WrGPefLyvGq+VFO+LsCvnsj7yPmVB/fI75qcp8QtmwddVCmHxtJ1SPLV7B3714lr0jo/iXfOPwMePWYIsNNz6wr04cfYy1JbFYAKIEdMzAyJBAeTaVva7FOdpvsygNAx+12aYshhK2Vy0WLsmYpbqhzA+fyKCTK548Oa7Uc30LNqEqc/PlzFornOGgds3Pot7Nm/Al7/yf3HdddchElEi2FsNlpmWMveaKqgd598k7N27F5dddhm2bNmCLyw7HsfPcLUq7KE4kknhvn9sxK9efBI3nXcFGiqnwaBAnlq21joMdA/twR9efRKbOvfihJlz8c6Z83DCzHmo5PZoEctlKPbylPla+J1n2g3inPMinc+hc2QYP1v3EDZ27EYiEsP7Dj8a75w1H7NrW6CRGPpTo0hGgPJYOQgMtI+mUROPoyIWBeXaO5QeQXm0DJ/7yx04ftZSnHHYqciYGgwjg5f2bcITb7yA3QMH8I6ZS7CgvgVxHSDIoWO4D6/19mDPYD+uOflctNXORjJeDQ15vLB3Ix7c+jx29ncjquuojMVx8pyFWDltFg5vakVdohwUBGO5HD7/l9+ie2wYOtHQOz6CRCQGCoq8aYnCOdNAbVkSsUgEA6lxzK+fhupENSJ6BDoIapPVmF5di5XT5uHAyBB+9uy9iOkRHN22EMloDKlcCjnDQN7IYCSTAkBhUArDNBHTdSSiMdSUJbCgvhmnzT0M8UhUSj78nFZLdpwVXtxsV3q/cmV5pgphNB8yghJWSxDG50u0M3e/T6z8Usx2/NrHk9mg/SLCXAeyAAB+z45ieUUEmYQWy8cjrCmRbGw3dXbgh88+js7REXx4xYlIljXhvs1PomukFzNrmrCwYRrOXnQk2qrrnLr4cnk/hWII47cQlFeEeB0GCdBiGfK5L97+YghDGsJe4xO9P/zyiVYEfgsAB8NRn103GqHY1tOJbz+7BsmWJtx+++044ogjJlyuwqEJtuP8jJVfh6bLF55LgWmkse/lb7ztd5xXJOVNBKUUv/nNb3DVVVfh5OlzcYWtVekYHUY2n8N3n34Yr3S2o6asHDeeezkq4rXIUg2jeR1Z01oJqozkURvNYF//HjyzdzvW7d2OfUN9WNjQjOaKSsyva8RJs+Zhfl0jYK90/+W1LegbH8XiplbMrK5DTaKiwGQEKBS2gh7kXoENuOvltXhg2wsoi8SgEYKOkQFENB1ZI4+TZh+Ocxcfiz9ueQ6bu/ZgJJNCVI8gZ+QBWIZhGiEwbF+HGTXNKI8l0D06gJyRx0hmzKn7R+d/GdFYDdKG5nkhdY90YsOeFzEw3gdQA1ENaKuqwZy6aVjRMgs1ySpkDB05e0WtTDOQ0PPoHOkFNbPoHhvBU7tfx+aufdgz2Iu4HkF1WRJD6XEsbpqB68/4CKDFMJbJoHd8GHmToqFqGpKaiXRuFL1j/RjLprG0eQaglaE/G0PWDmWap9YO1ToBciaBYWbxwp5XsKN3Nwwzj/JYHBEtimRUR3U8AU0jiBAgqmnImgYyuTRGM6PYcGA3xrIZ/PYDlyIRjUnnKEgo4lfUg4QRv434+OPF6p1K+PtIebUlYfbA8IPsmjcDyuB9rsK2txjCmPKFIZzFoi0FERggWCsUNO/FzHWK9avYokopgiUr66Ht2/HtJ/+Ci444ASumL8avX3gM2/sO4KzF78T7Dz8WNXG9oGx+3i3NNK+Jkl8nYfony+c3B3wfxDb5CdKi759Ypt9moFMZFvlgw2+M2PXjR1JE+Glc+DLD1C8ia+Rxx8Z1uGfzi7ju/34Z1113HaLRaGAehX9NKJJycKBIyiGAffv24bLLLsOrr76Kj370o7jpRzfCcowl+P8+cAVqE+UwqIa0qWPciGAsr9sRSABCLKJSppu2eRTQO9qD3X37MZQexGvd+7DhwA5UxsqwYtoc1Ccr8IfNz2F6VT3S+Sx6xoYR0yNoqaxBY3kVasuS0AjBkdPn4vS5S6BrmlSwEFekLEdBy5H90Tc24YdrH8A33/VRaERH3qRorWlGbVkVcpSCQoe17kuQN4H+1BgG02lUJeqQM4GxzBjypom68lqMZ8exo3cnxrNpNFY2gxAdzVXNyOfTiJAMqpMNzljkTdYGq62EWKueUY0iplHEdRMRQhHTTJskWESBrUJHCUVMMxxTs6ypwwSQzqYxmBrGYGYcFbEkWiobYZAIsqbmCKc50/rXCWzHS8skiu0bkDU1jOctQpST2Ck7RjmEOsZNrP0RQlGmu21OaAYqI1nEtRwuf+BOdI4M4dQ5i7CytQ1HTmtDbaLC91rzE1KDhCPnONOe+GhMJuPEPxEE+a/47RzupPUR8MLYnosaRplp4ET6ENZ0iU9bjBSwNEE+acEExyuM+50PKpdBNJHxe5awY35aAuYnEPZ64+fmE/ffgzPmLcHy6cvw2Qd+juNnLcUnjjoVNWUxKWEQ51Un1pUVLNQWmrnyKHavhdFGiYtCIlj9ro8bhR9BCfI1OlQISzETSHaOES6//VrCYCo0m5RSvNyxD7/c8yqi0Shuu+02rFixYsJtUjj0wUhK28qvTBlJaX/5W4qkKJJyaIBSittuuw1f+MIXsHLlSnyi+ShAr0B5NIKYZiJrakgZOjKmjpShgVJLEMubBHnKR7+yyjMosYVlAGYW23t3Y0fPLoxlRtFWMw2r5h+LiEZgmhkMjQ+gd7QXA6kRjGZGYZh5/O2NV1AWjeKilatw4qzDoBHvaqIovFi28QR3vfx3PPTaS7joqDNwyrwjQSlBztb+5KnVXmdDNrvNJiy7+pypIWsSmCbb2dlC3nQd8/kdp6MaRUSjoNR6UTOSwtJb42Gl0zX7k1h5dI7ARO2V0ZhmIqpRzyqcTCA1KGwHfvYPhygxEABRzSqXkQ4TLplj/eTHghCLmFi/rT4y0hPTrHKSEQMJ3UB1JAudmBjL63h5/w5s6dyKjR17saO/B7Nq6jCvrhGza+rRVl2LGVU1mFNbj/JYHH3jY3hm704c2zYLLRVVzhixeWWQCVJ+GhXZuX8W/MIHS3eSF1aixWP8cU8dBWm8x2XmXwcLMu1HMQ1HoTbNm9ZP4Gf3QRgiJNZVqn+UiDDaMpm/nJ/m0KQEj76xDd968lHc9v7/wMu9Kdy89m785gOfQ2U0In2myUgKS6cXPP9k/QsmLH5j7neO1ceuM8odk5WtT4CgyNvim2RKMVHt60T9YcT8DCYFRrNpPLHrNXSODOGMeUswu7bBM258wImxbAavdLZjW28X9g0NYPdgD3YP9AG6hq985Sv40pe+pLQnbwMwktK68stTRlIOvPxtRVIUSTm00NnZic9//vN45JFH8L3vfQ/5x/qgEc1+6VjmQXlKkDE0ZEzr0zIZItA1a9VdJ/x+B5bgG7HPiarviC38EuIlDdTM4YU96/HXLX9DbaIc/3ny+zC9phGUEid+vFgHpcBPnnkAYzkDlxz/EYznNY+zdN4WzkVtByuDEQxGMkwAhkkcAkKpEKXIEdgKo6mIL2C2mqwRi7DEddMhOWxsotz4WePB2mjvDwI4bWfkhDn3s+/83eQSDgrRmo4nVAyOAEqsPjHNiaYBMZtgRTWKuGaiTDedPiX1PCr0HMr0PIbT49jS3Y7dA33YPdiLA8ODaB/uR39qHDVlCWQNA7WJcnSODuGIluk4e9EynDBjLqrLEp428AhadQ8iLpOFjMwy8GSV/w0Ek4cwmhIeYtAE8bhYD/stjsJk5LxStCZ+Ph9BRCXIZEy2MBEEP82An2+CrC7WD75NsuOiViVnWqZaXaODuHXDc9jcdQDnLV6O9y5ehpvXr8WDr23Bf51+FmpqjwU1c7jhiV+jY7gP15z8fhzROhs6TCnpk7VZlq5UTSKfO4wmk7WFXV+887eYx3p2mAUERSxL3i4vOZkImQzCwTQFFVH8fvem2zPQg99veRGPbN+MObUNeK23E80VVbjs6FOwoqUN0yqrYJoGntqzHevbd+H13i5s7+tCS2U1FjTMQM4E3kh1Y8GCBbj11luxaNGig91FhUMEiqQcHCiScojiL3/5Cz796U9j9uzZ+OUvf4n7vvxXAO7qHOUE4/Gcjpzpvrx1Uig8EgC6xlbXXFLCC886R2YiGkVSNxAlady/6XHcv+VpfOvfLsOCxlnWSxrWizCmGWgf7MS+oX4Mpsfx7J6teOnATvzmQ9cjjzKkDN0xhWLCfN7+zTQR7Apk5IJfnaS2IG9QYhMWm4BwQqq4C7BVlldwZemI3Wfd0aqYHqKic/1n48jGnAcjLUzrwzQ/jFTx7WMkipEP1j5e68NWXFk6Jn5otpYnolnlsLbGBELFm7GxfmoEiBATZZqJ8cww+sYHAVAsrG/GWHYMj2zfhMd3/APb+7pRXZZAQ7ICLRVVOHr6LFxw+EontHVY23o/4lIqZM7xMgHW7zyfxs9kCPASW17o9QNPVETbd1mdE9Gq+AmrpZo2BZl+WecL6+DzycxrZKZffuZesvo1biNBSgnyVJeSKlY+E7LF4zLSYGk4Nbzc2Y0vPnQ3jpmxBBXxcvyj8w0kozoiGsE1J52NxopG7E8n0ZOJwTAp1u94HOv3vIhfvPcKzz4oQRoa2TXiR878ND/eeQ5n4gUwDTOxg0HY+YUFpigxHJIitq0UzUkxMiG/t+ApQ1Y+D8M0oWuSUOLCAhN/PJXLYDyXtQOJRFBTlgCItwy/UOD8+f7UGHb0d+PA8CA6Rgax4cAu7Bnsw2lzl+DcJe/AYQ1NeHLnZtz20lrsHerDksZWLG6chnXtO2CYJlbNORzN1W2YXT8HIFGsi23Ho48+iu9///v4+Mc/Dk3SL4W3LhhJaVn5JWh6fNLlmUYGnS//v7c9SVHx7w5RnHXWWdiyZQu++tWv4sgjj8TRM07CO+adgYjmRu0ixDaFsn8zAT8PcZXNgkY4bQJh5kTusTyAvAlENIIymMhrBDqJ47jZR+L+LU9jND3uCHIRYvl3jKRHcfn9v0RTeTWmVzdgWnUrvrDwNIwZSWRNDXlKkM4TZEyN00BYhIO1lwn17Dd7AfOkxCIz7nce4p4iIsSXqSXYU8ekiuXX7Ti7EY0iqpmIR0yHuPBj6CVRbh8Y4RLJFsvHzxuEvO48EaE+61jWdNvOE5OozmuBNJtcucQoQjRkNAo9Uoe6qjpohGIgT6FpSZyy6AycvPBdGM2Mon+sH0OpYXSNDuD3W17EPa9uwFGtM3HKnPk4adZcwDcMsBva1jlC/Vfd/RxdgxBW+A9juiVDoZDMjnuFHe9GqrxAZ+1GrxPvniTMJChIe1CsLX55gsiX+N2vbFk7GGkQTWj4vH4mZkFmYwWLJoQiAsN5OHlN5XgNmKih8tabM92d3rOGhp88twbnLnkHzl66Gs/tewNrd72CjBHDj875FEbNCmwb1TGe15A1CExoSCRaQIiOHCWIQAPsYB18/8VxCtJM8KRVfE7xv8VQ0Dxk5mYycmKNo73YBAoDmv2d1aE5ixVBdbA+hSUnTt3wXu9WeYVpRAymx7Gl6wCe27cTD762Ca1V1RjNZvHRFcfhwqXHoGNkEA9v34yNHfvwRl83hjIpNJVXoqG8EnsG+jCWy3jKq4jFEdV0XHLUSThv8ZGglCJr5AFQmKaJrGmga3QEB0YG0TkyhJ0D3Xj5wF70jA2jtaoWbVW1aKmowoeXvwMrW+eBRGoQJSaAPFbNXYpT5h6OzV17cftLa0FBcNnRp2LhtBVIm3GM5ymefGM9Htr2GM469yxs3boVLS0tocZPQUGhOJQm5V8AGzZswGc+8xm8sXUHVs0/B3ObjoAJr/07m0RKgbypOb4fOvcSAgrNpJhArDvmYNbLiplDJSMm0ulOfPWvP8G8+mmojJfjxDlH4JiZS5G3hfGfr70LWZPgY8df7Gh0GJnIGhZByRmWvwlvtsX8MzwmWnaf+D0zXOdkZl5VuNruhsT1jp1n9VuSRxM0SjxhYf4rUc1a0Y3ppkPomLaDEURXg+IlVH4CqlfgdQWcwD0LOFKpc5ofdowRlIiHhNohU+HaqfOkzrtSbrUlZ+SwresN7Ordhad2voyYTrCwvgX1yTgMkyIZjSOqR5A3TZTH4mhIVmBGdQ0W1jehktubpqD9JZqdBPmSBDkuF6vDb7W/mEkYIyJ8mf7mSv71+yGIiIgah1Id9UXfBF4gDTNfQU7u/HE+nTjmzGyS3avjeWs/IssZ3T94g2vi5H3msWvAoAQZM4K7X3kWD27bgJ+d/xnEI3G80L4TP3z6dzh5zjJcetw56EqXYTCnI2dYJrPJiIk3OjdgzdbH8bPzP2XfJ8H9lEHcINRpt0AmnHaD9xUR8vjVQQkMaJ4ydW4++fuYjz6mc9orlpaRafG4CH4+OkaGkMrl0FZdB10rvrZJKcVQJoWO4QG0Dw/h9b5ObO3uwO7BXgymU5hZXYeV02bixFnzcWBkEDc//wQyRh7HTp+Nlzv24fgZc3FM21wsbGjBdY/+AXnTwH8cezoWNzSjsbwSyVgMQARZI4v2oT58ec0f0T02jNqyJAbS4wXtqYjFLTJSWY0Z1fVY0TILixpnIBaJI28HpclTDVlTcyJnsrGJaZY2mhCKccMKmDKS0/F6z278ecufoSc13PyLm/Hud7+76LgovHXBNCnNR1wzZZqUro3fV5qUN7sBCsVx1FFH4dlnn8Udd9yBa6+9Fps61uPEeeejutxdsSFwiQG/Ysf8RZiGQqMUhHACsWm/jExL6rasuilSeQ0ZAqQNDfFIK7559pexuX0DskYGNz97L64tS2JuwzzkqYYT5hyNO154AISaAHTHb4b5lxim61/iECjOt4OZTvGCvZdc2M71djkym38w8yrJ+Pm9+EmR1WYNcBzuI5q1pWBEMxHTLRMxltY1FfL2gbXbuwzACQecRoWdE0033HC/Vh+prQUyKWAQAs2kThQwPqIYM1fTOFLCExeZn4zr4K9jXvNSLJ62BOcvOwN9g1uwd7ALe0cJ6sryyOZTGMnmYSCKzvFRvNRxAPuH+9AzNoKF9U1Y3jIdx7XNxjva5jimHBoJ3rU5yIRLds7Pb8BPuJSZoYiCv2vqI28jvymqya2Em9Stm9UramHCrk5PpM9BWhOZOZ7fijnf/iCCIsvLEzbx01MHoTCpxpnYeeuX9Y2ZcvHIGQae27cDT+9+Hdt6O0EpQe/4CL5z5kdRHouCUhNbe/agMm5tcJunVmALnQB5AluTS0BIFGPZDPKmBmjWpo3E1l56+hdi+kSyIr/H3HkQI4j5QSQngOtzwsqxWuwNNSyST+vZwEhL4dynclk8vWcn1rfvhqZpOGPuYrRV1+KmdX/D2j1vIGcaqClL4tPHrsK+4QEcGB5Ez9goRrNppHI5/PvKd2BLdwd29vdg92AfxnNZ1JQl0VJZi3l1TTh9/grMqW1CW1Udqsri9rtKw+EgMEkFNnftwfz6FlxxwllorawFtft294eucsbBfTZa/YjoCcyqa8N3zvwItna3Y2ZNAxrLK5CM6ogS+7rUYojqMeSoFbo/b2owQDBKCYwsuzaIs4jG3qGutt2eB2pZLgykRvDI1oextXMTvvq1r+Kqq65CPD55oVThrQG1mePUQmlS/sUwMDCAr33ta7j11lvxuc99DgPrGxGLlDkmN+zlKwrHjBQQwkV+EbQGGuEiUgkmRUndREI3EdVM/HXLo9iwbwvOX3Ya5jXOA6UUX/zT/8Olx38Yh01bgYwdpStrWCYYFBYZyeQ1ZA0NOVNzNCei1oE352IaE56YmBRe8zZubEqxAA4bsUYD067Ao7lgTuwRzUREpx4ywZMTNu4MxVZmCwRHj+bGnTOmEWMr+7yGh28nAdy5trU/rp+MPFQnr9mJaRStiTSqIjnk7JVGNj8Gtcz5ciaBRoCx9CC2de/Ejt49WL93K9qqqvGLcz8sH9cAMxc//5OJOOnKCIdoHij6pvAIa54W1gRNbFMpvjRhIdNqWL+Lp+HBj8Wn//y/GMqkMKOqBvXJctSWJTCrpg66pmEkm8VZC5c5zw6xDgZGNmR9lGkE2Pes7RDP5idv5HHJH3+NjGHg5NmL0VJZB5OaOLZtPhoq6pE1CZ7cuRk/X/cnLG+Zg9aqenxg5dkYzEUxlteRzhMkIiYiJI8frLkBqxceg/MPP865NyYDz6KCz7lS4DxHuAULGUEBGBF1CalsJ3WZFnEwNY4/bduM/9n0AmrKynH8zPl4fMc/0D02jJiu4/S5i/GxI1fh/q0b8fedW9BcUY2Z1bVorqhFY3kV9g114X9eWYdFDS04qnU2ZtdNQ1t1E2qSDYhFymDw2lq4Y5w1dcevMmtqiGoWaeUjLHrGgjI/SDccu1Q7ztWRNzVk7WuO1cUIq6PBh/XMHjd0J5AJO8ZAKZA1DKzf9Qyeb/8bVq9ejRtuuAEzZ84seU4V3ppgmpTGI66eMk1Kz8YblCblzW6AQmmora3FTTfdhEsvvRSf/exnsXXrViyuOw2Lp78ThGgegsIEZHdVEoC9mmgSy/dBAwAToMQV0HTNujA0UBggICaQIdYrJkoJzjzsFFCax72bHsf+obsR1SLImwa6R3pxeKtlbmQSSzljaBQ5w11NZ0K3aZMT1i6ZOReLpiUjJkzQs9YsfMwVClY2OUhX1v3HnfmGaAaxTcSslyn7j2mmbTrnXT0Vx583Z5ODeNppmaTZc6NZ7dbssgghMDjCQux6DI1CM3lNCiM3TDhxtU5iAAWvWQqBQSm6M3GM5KOojOScUNh56kYnMyhBRKOIR+uwckYNVs44EifNWoD/+tv/FjjGivb6xUyc5McLNSfF4M1vjQEjK37+FTL4tbfYiniY6GCyc0F1yxyxveRLns8vvXhuIDWOztFRVMbjePHAXiQiUWzv65G2rS5Zi+PaZnvMi/j+7RnsR840MLu2OaBeeV95MyUA6E+Nomt0GC2VNfj95nVOuu0LVmB7byf2D/dDJxpOmrMMa3dtxgdWnI6UoTsR+QDLNHJ37y6MZMbw7sOOce453hxNFlVOhiBiIqYJUx4DIycMhMCJQMbATLt48sHMwNhciMTbMIHdQ4N4Yf9uPLd3F9a178LhTa348qqzcdT0BchTHR864gx0jPSDUqCtpgl5U8P7Vvwb3rvi3YgQExV6DryPzPuXnwFKYnaIfEub3p3TkM+6zxq2WOK0g7IACsQhJyaFE3GSXUlR4o4v879j/WXPIfY8YecBcO8Tl4g4/o4caTGptV9XnhZaIVhEhuK1jlfw3O6H0Nhah3vvvRdnnHFGqDlUePuBwgCFMSXlKChNyr80KKV44IEHcO2114JSipnxUzGrYQUA4iEoTphFJhjaLzJd867QM4dy3daeOCvxmndDxKRuojJq7Q4/nMlgJD0MTa9AMl7pPPxNW32ezmtOJK+soSGd15CnGvIGH92LOGQkZ/us5G3NSZ6REY6U5KlFTKx/wKTBalGNi/yiwUteRCJjOoJJ8G2hgUCDtRN8hABxjrAw0zA21vzY82ZtQDhhW+PmhtcCuH408nlkc+eSE5GEuG1kh1nwAJaH+bpECEVl1EBMM5E3NYxzPkY6AcojBggBkroVWej+jfchRnL44olnePopOj+HIRkekg1vUIigEKt8XgZeqJf5AMnMZGTly0hGkNakFFM3cXy6RodQEYuiMp7wtMcwDUR13bedYaKy+aU3KcHP1z+FOzY+b58jYMECymNxtFXVYU7tNFSWJdA/Poz3L30H5tQ2o2+sH52jgxjP5XHEtNnQCMHfd27Bz9Y9Al3T8IGlx6OhvBJD6XGcNGshWqvqPXUTUPSOj2JH3wEcP2MedM0bdpwR1I7hfrzR3w2CCG558QlUxhOI6RFE9QiGM2nsGuhEc0UtLjv2LMxqmIe+bAwZ2z8uQigSuonfvnA3KmMxXHH8exDRvM8QmamWZ4644ZOlE0Os++Xly/Bovj3PKJ548CSUcv48PJkzbc265TifMwy8eGA3XunYj2193dja3YmxXAbLmttwzPTZOGXuErRU1iNr6va/ZQ6VM4lHcwrA0WLE7GdcjmpIGRrGDR1ZkyBnakjnred5zjbv5Z9FBf2GZULFL6RYJIU62qOI5vWnA7w+j4xcELt9MZ0RNna9WOAjSTqLX9SNNMlHmWR5DgzsxLpdDyKnj+Cb3/wmLrnkEkQiam1XoRBMk1J3xJVTpknp33iT0qS82Q1QmDgIITjvvPPwnve8B7feeiuuv/56pKu3oGb8nWismuMhKFZ670vCpMTZ70SjlsCvwXroAyag24v3Jv/SJbCORhDVTCSiZdD0JFKGhoxBHNMuZr/L9mghFMibFjGiJgXVAGraGh9inRftwK2XiP2dP2YTlDw1YYDCJLSo/aZmi+Sa/cLVQWzyQiEzE3Prs+pwjrNVVlYOtcsxgRg0JDUgrmkeszCZMz+bG94fxRpf65coyBDChGuW2n0R8yYObLWSCQSa4ZqIecbD0Zy4pMQ67goL7HfEJqd56gZiYC91WynhRCsazWawr2czXmjfjsuPPtHqiw9BYef4zdH47/x4uWndMmQmQvxvEWL0K43AWVl3x5M4fXEhJxF+mjdZ/TJ/C7FNsrQbO3bjC3/9rfP7/UuOxOXHnoK1u1/HN594EG1VtZhX14iYHsGaHf/Af59xHk6b6+7NQCnFq13t0ImGpc2t4H1H+PYwjRIfijmi6XjX/KX4j2NXYyybQTxibUi3va8L//vqs9jSvReLGqcjYxi4Ye2DaB/qhWGaaCyvBiEWkaCgqC5L4rpTP4ixTArP7f0HXjqwG1Fdx/9sXIu26npUxMowrbIWhze3oW98FL9/9VlkjTyaKqqRzmVRXZbE+w4/BifMnI/u0WH8o+cANh7YjZc79mAwPY7qeBKEaKhLxlBfXo2l0+bhkmPOxuzaFuSgYzgXscOgW0+BhG5g8/6N2Nj+Kv5r9cX2ooJATIVpEbUq4nle6yEjOOL9zJtvAYWRwPhyNFBEOA2VnzkX7yNlUA1jOQN3b3oef9i8AWXRKI5unY3j2ubjkiNPwvy6Jiv4BbWIyZihYdyIIG1ozuIR24+LLaxENFqwyW7WdPfr4sOquyHjAXb/0Ly3f+JzxhlXg/UfBQSHwLrv8vbmuawudi6iWQFOeNNDPsw77L645l72fFCvT+HgeA827PkzDgxtwzXXXIOrr74aFRUVBXOkoKBwcKE0KW8hjIyM4Pvf/z5uuOEGrF69Grm9S1FbPtNDTkQhlwm0or+DdY73XbHU8THdtHZm1939RBjYqlSeuv4oHlW7/QJgx5lvCu9Yz4cozlE39C7ToFjfC0lKDvlAoqIJVESH5iEuLmlhfbHKEkmQwdUh1qdBQ5xGoYMgSSJI6q5De8QxdWPlW5+iSQePAhMhTpAR55QXjHgHelH7IoJp06z2u9cE7/fCm09EdQpK4WyEWR41UBkxECE5bD+wDg9ufREZI4ujWmfgk8ecjuq4Dpl9uVUeKSDSTl85YiMec8aAE9CC4BcRTOY/UTA/INL8TLDnNTl8Wp4M8PXkTRM7+rvwem8XymNx1CcrMDA+ivFcBjOr61CXLEfOMNE7PoqesRFENQ3P79+NzZ0HsH+kDwBw2VGn4LDGabj64bsL+rq0qRXDmRQW1jcjomnY3H0AQ+kU8qaJL696N06cOQd9qRTaqqoL+iaSvPXtu/GlNfdj5bSZWN4yExcuO94Zz76Mgb+/8QqGMynEIxE0lteioXIaqsubENU06IRiODWAZERHeSwBSiLQiemY7gDAaz17MJgaxUhmDJ0jfdjUuQeJSBQXLD0Bs+pnYEvnXjQl49g/MohfrX8YY9kMEpEYFjW2YlnzDKxonYdpVa2IRhPImpZLes4kGMtbIYXZRrcWmabIGqPoGdqLv7/2N3SNdOHKE87FO2ct8iUk0muJCdyUmQ4x0kI9+XjNSJB5l9ynQtwt3oK1iS4z4XLzMG0Km7uUEQUBxf+88ixuffEJXHLkifjwilUwYZm86cQiGyYsTceoEeGCnWiOGRRvEpU1+GeP2z9K4QRJcbXicHw72DHruinsP08+RBSYqdnaEhbRTQTzryRCXjHQCmsPv08XszwYTfdiy/5Hsat3PT72sY/h+uuvVyGFFUKBaVJqj/jMlGlSBjb+7G2vSVEk5S2Ijo4OfPe738WvfvUrnHnmmUjtXoa6Cpes+O0PwuybC0xgeIdMjrAko4YTSQqwVejc5oaApWrPMWEBFhEBrP0NeEd/RlTypgbDhBPNK08JctQiKDxJYZ8mgBw1kCcGDJjOXxAccmJ/MsLiR1b8iIoZQFjiiKEcMZQRDRECRIltPgW52YMI3kTP1erIqQa/GsmbcDHyYv12HcZ5AsPbiYsBFRhJYRtIsjDG7DpIRCzTv9pYDht2PYl7Nq3FexauxIeXH4eqeERqOuXto6sVcbVLrpAfBjIHeL78YuA1B7I9KZx04DfHK9xokK+PUstkKW/mkM7l0JcaxRt93djUuQ+bOveBEGBBfQtS+Sz6x0dRn6xAeTSG3YN9GEqnENE01CUr0JCsxGg2jf7UGIbS43D3ZnFNrxgSkShOnr0QK1tnoS5Rjtd6O0EpxcKGJqyYNh/P7XsD33vqz6CUImcaOHLaLCxtbsWsmnocP3MektE4RjMp7BroQ39qDHFdR1VZEl2jw+gdH8NN6x7Dp49bjbOXHO84Ouep5qy882STrcIDrh+JRdZ5zRUbf858zdZuiaiI5DGezSJPgageB9u4L2cSpA0WzMESlnOcGSkAUDODjfuewZOvPYax7DhqElV498Ijce6S41ERjzthh4OJhD2/QhqZL4qfyZZ7Xl6PRUCo555hz9wIcW3TGfnNUx1pM+KQDquvBrb2tGP9vtexYf8O7Broxspps/D1085FZbzCDrGrI2VEYNjXe9YkGMtHkDUJUobmEI6cbcrJt5m/91lfPRoIwNn/ShaGXbYgIxI7vzFkdfFBLlibxPy81ksMXuL4xJluREkAGE714LWOR7Cvbx0uuOACfOUrX8Fhhx0mnSsFBRkckrLiP0CmgKRQI4OBV36hSIoiKW9ddHR04Hvf+x5uvvkXmFZ3OBY1vwf1lVY0EtlmhqKPg9fEwFu26McQ101HLc9fUbzAwG/gaDovQ83xnRGJSt7WthgcSWGO8rzPCCMqvEbF+pM7nmnQue8uYeHJCmCZhPEI0qpY7XDrZaXFEUMCEcSgIaZZ/itAYVQt0YeFgY9uBlikTzSBE8txtWXuS1xGXgixyCbzT4o4O9a7G3xGNOrsyVIWscxiyiIUlREDNbEcknoe7QPtuPbh/w9fPPE9OG3uYZxgKieLMu0Ic2AN8iGx+lRoqsSDN3kR0xT6frhjxFZnDU7jxqLhAa7DMi9IUkrx6w1P44X2nQAhOHn2Iuwd7MPGjj3oHB2CTjQkolHUlJVjZk0jljTNwPJpc9FS3QpKIogQEwndQJQYGM3HUBNNI2vqSOg5O3Ka1ZasqSNPKahpQNMiiGiW8/94DiAwkEcUZbrmuR7YPVemmUjoORAA23o6EdM1VCcq8PgbG9E+1IvXezuxc6AHlFJQAI3JStSXVyBnGBhIjaE/NebsPfGR5cfjkqNPR9bUkaMaMiYLN665AS+cMXX38aAgTohXfgXcG2nOnUknjDYxoRPvNZ+nmrPqnzLcUMYZw9LepA0Dg2MDODC4Gzt7tmNLx1bUJ6vxf448AyunzUA8EnfJJnc5iNoTj+mWnyaQE6D53+71IyckxLk/qIf8MvNbpjFhPhUpIwoDVujclKnbz06K/vEB7O3fhx19+/FG73680bcf8UgEx7XNx9Ft87G8ZS6isWpkTEuDkjY0jOV1Z9xEcym2iMQ04mwu2ciw7/yiCGs3y8ubTLF5Z0SBHysZCu997zha5sjeceTHmJ0X99gSy2ZmtiYIRlI92NH1V7T3rMP73vd+fOObX8eiRa65pIJCWCiScnCgSMrbAB0dHfj+97+PX/ziF2ioWoJ5javRUDWvYEUdkJuD8eBX0jxRoQRzGSuve2nxLw0WgcxgphgcQeF3lafU0riYgC2YeIlKnicq1ESOMIpgIg/LADqPXAFZYSRFs6kJ+85/Rm13LVG7IjMDYxocERo0RBFBHBFEQBCBGxmM/7TGz0soeO0JICcnxaORuXWI2haerOgav5M9dfaBsbRkphNEIaJRlNnnkrqJqmgeVZE8frfxYfSODeFLq96LqGY65ieir4i4d4hLULybp/Hn+ON+DvdBjvh+ZmbWOfnqrFgeIyc6MT1+G33jY7jg7h/j0qNPAaUUr/d2YEZNE+bWz8YRrbMQ02NI2Y7IrP1MwLa0MdaxrOn+1gl1tBAiqWL18p+80M+uId1eYIhKTGlYXyPEDeM6ODYAgCIRTyIZjSNrak5411Q+jb0D3TBNA0tbZjlzlTY1R/h1tKScuQ9gPTv4iFoAnD16IlohOXHb6L1mEroB3daaAm7o69FsDv/o2oX2wQ7sG+jA3oED6BnrQ4TomFXbghWtc3Ds9HlY2jIThLir6fwu7cU0doXEw++4K0gDhYsOvH+JCJ2YiGmG0x6TEoznTOwfTWEwSzGUyWEoPYLB8UF0DPdg/1A39g50IJPPYnZtE+Y3TMfChulY1tyCaVXNyNOobSpraZnGDR0ZwzXj8oTj5TahFbUi/DHDLLxPnL6D+XkQj7ZEjDApkg53jL1BXVgaPhw9Xy7zW/MLL+6UKyE5DGOpA9jd8yjae9bhgx+6EF/5ylcUOVGYFBhJqV7xSRA9NunyqJHF0Cu/etuTFOU4/zbAtGnT8MMf/hD/+Z//iRtuuAG//OVPUR5vxez6MzC9bgV0TXOcw11TJAJx9R3wOhuycJ08sZGRGpMSp1xPBJUiLy+nPXYEKas8m6g4Lx7LN4UHIwwiOWG/2WcEMZgwPQSF5c0hDx0aTAKA6jCo4WhWNKLZYYCttTtGWFjdoq8Lk2fyoNAosSOM2f2hHKEQVgUBL2Hx9MVjEuFCDALAwjU7IVZBnBVHK2iBlcAkBCaxwk9n8jrytuOprmnQ8rZmTTMxSigSERNp3XRMTaZVNuL5fa+B0jxMqsOkusfHgQ1AXjK/hYI4y1G454bM4VzcEFAkRuJ+EhSukM+IQc40kDMMJKIxz9jy9WdNHSYi0EAxkhnHQ6+/ik2dewAAQ7kI3r3kdBy3wLLpz1GC/RlLIM1xgjvrPx9JiCHimFyy/rH+yP0WYmw/I/sYM9PTKIFBKHLQkTEZEbDGYyQfQUI3ENMoCDRXoItZYYHHTGAswwmGIADiqKuuBgFFV8YdY6Y14fea8O4xwYfy5YiBXSe1hV/TTsciCWoEMIwcnty5AYZpgFITuXwK2XwauqZD1yIwTBNj2XGs27MZ5fEE5te14rCGJpy1aBlm1TahMVkJXeM2QrVGEVR4OLFNEnkndt7PhF+Z94PXJ4UzpfVZ5LE2CbQ0czHNgIY8Nne1Y337LuwdGsSBkUF0jw1jIDUGjWiIR6KI6VHUJKpQm6zCtKoGnDh3JWbVvBvTa5oQ06Oe8nuyllYrY7p9Y9GrmOaE+ZEwc1vPtQVXu0XhziHTolDuumT958mJqDVxA4R4rw0/gmFpY4hj8isL2x7GjNMtkzOBpRT9I69jb/8adPZvxkc/+hFcd90tWLhwYejyFBSKwY45OkXlKChNytsQQ0NDuOWWW3DjjTcimUyi0jgOs5tOQMRm/8UiQQFewSloRYsXVBh4Nb2ommdCZs702riz1T8mdPOhiPOgyFGLeDDflDzyjo7DqseQmn9ZZlnM0EuX+qvwv3kiIZqD+YH3ceHHgoU/DtrPRVyZdcuU1BNwXnaOrWQzwcraBNK7ii36rkQ10wqeoJuI6yZq4gZqI+P49pqfoTFZgf84bjXaqr1hZUX4O6+7v13/j+KakVIgaktMSvDL9Y/h95vX4cTZS9BSUY2h9Bj6xkfQnxrFqtmHY+m0OegdT2F7Xxf+0bUb23v2YG7DDBzVthQ1iSosbJqLZLzKsednG1wy7QIAmKZ3JVj0L9I5YZDXVLItZpxIavZ5tgdO1NZIMK0IE4Kj9rzx2grD1r4EjSCvERHJr/jK5MO5QjjPX2+83xNvQieLqkcIxd7+vfjOmp85x945+wiUxxOg1ETeyEPTdMQjURw3YxEWNc1BXHNf52wMWNn8/cN2Ec+aumO2ZAQ8u9w5cRN5Fm64Tz8wosPuobyRw57+/XitZx82de3HK53tMCnFEdMXobmyGQ0V9ahO1KIqUYPKsgpEuGcHEe4VEe7cwUOO+ecnIxOu2a2/0C/TqvDXrhhKne0/Arhkw0+bUaBN4crhzbHE82xumQksP33884yNV4RQmNRAR//L2N33GFL5HnzqU5/ClVdeidbWVmm/FRQmAqZJqVpx6ZRpUoZfufVtr0lRJOVtjGw2i9/97nf4wQ9+gAMHDqA5eQLmNK1CWazaScMLFYD7AvesXntW9TkBVBAw/cLr8nkMbjVWNHXiN3Hkzb6y1JCaX5meX64Whdd2WO30EhXrmBv9SyQqTj6mKUEhEQkCMxnTiAaTmr4kxnuMCJ/2cX5u+PQSQbBwTxCeFHh9VVh60dGe+apENRNlEQMVMQPlERO53BCeeO0hrNu9EZ845kycMncZ4hHLdChnmwiVaQbiuksU+ZVuCuL4QImb000FXKd4W0DiLurX+/vxmftvxjtmHY6qskqUx8pRl6xCPBLHw9uewcD4ECri5WitbsGCxlk4fNoiNJTXeszFmEYha7q+F3xkO3GTOACeu0NG3Nxx9/bFE5qVuEENnHDioI5GhoQgJW67Cje98x1Pri1BmjyWNm8SJITQsExzwrQyVuANA10jPdjcsRU9I714eueLOGL6Ylx58scKTAFlZoQy8u60w9ZaMv8ZmckQy583ctg7sB+dI73oGO5BJpfCgoYZOHH24UhEIw7pMcBFcbPLMEAAamLfQCf2DHaifbAH+4d70TnShwPDfUhE41jYOBOz62ahtW4uZtfNgq7pzqaGfP/4edQLrgO38fx8Ma2J5RPinVcndDh4siEbK/fZy/uV8KSG16awdrM6RG0KG38eoj8Jf0ymHeVDtvsFOuCfX4aRxu7uZ7C77++orInhC1/4Aj7xiU+gsrJSmldBYTJgJKVy+SVTRlJGNt2mSIoiKQqUUqxZswY33HADnnzySVxwwQXY/8pM1FTMAyFy1bw3v/dlU0wdLxYnlm9Kzpnid7jO82IoYiuNl6RYx+TaFMBLVNzfwUSlVJISZDoibkgpbkBpfbpERSQpxX4Dct8EP4d63i8gqnm1KcxHIxk1kLA3cSQAkhETO7o348+b7kfPqLXrdzKWwBUnfwzzG2YioRtIaIawCu2a2Xg2qgNvLuZC3MzO6pe1cR2F66wN2OYq9neDasgYJs6649sAgJbKOsysacaJc5ZjxfTD8duXH8Xftz+PZdMPx+KWw7ByxgroJOLxIzAo8YTcFld7mYDGhE2rDV4hUQQvdDHhkc0VbyJlffeSE+Zr5MyLzNyysEqpRoTfids5LskrIuhOZyZu1CZvlVEDtbG8dH7Gsmn84pm78XrPLlBKYVADlFJUl1XitIUn4szFpxS0izcpK6VdQRgYH8DTO9bj6R3rYVAD06unoaWqEcloDK92vIaasgpcd8alnpV95lvE+rKpYwfufOE+DKfHMLO2Ba3VTWiqaERzVQPqy1tQX1Hv+NUY1P/5Ku6xxGsJRPAaaZfseH06eC0KEExSvOcLfVTEjQ95rQr//OevJ9l7QYy65a2fpfFG4uLPyYjm8HgHdnY/iQPD67Fo0SJcffXVuOCCC9QmjAoHFYykVCz/2JSRlNFNd7ztSYq6axVACMHq1auxevVqbNu2DTfffDMe2PNTLFy4EFdccQX+cHMWRItK84qrakzjwb4XpPfkDW6XJ60jzFKufPleJkFhiDXoUqLiR16sPIWigVaEiHnzF35nhMMEhQYCswjJ8SMoQeSEON954d8F4VbsRXLCwg87K/X2Z9TemTuiUSQihn0OoGYeD215FMOpQTRXtSGVy2E0M4KRzBie2fkCDmtsg0mBtOn6qzATJSZ8ZOEVRHhCwoQUfmdwFh3JddAmiHHneS0g8xWpiCUwmk1hXsNsJGNJ3LFhDYwXHsaVp3wKy2cch437XsEj/3gcD215FK3V05CIJVARK0dlWSXKouWI6lHEI3FMr2lDRVllgXAlW9G35hgAEVaf4baP2NG1rPQ86bc2WgUAk1jXHSHMP8cmaRyREgVO/qoWCRU/rkxbyZvoAIVExUt04QuTuvtnsH0/TOpqzSxiCZhUg0YofvLUHegZ7ceXV38W9eWN0AiQzWeRiMXt8rz+Efagedrl0QpJ2uQXbQsA9g0cwOOvP4WX9m3CkpZF+OixH8Li5vnQNRZEwMRgagxD6VH0Z61nIdt53Q10oOGel/6EJ7Y/i9MWnIAjZyzFeC6NkXQK6XwOW7r24Pg5rchRDZQzvctzY+4lJYXtN1BoQivOoag94Uko06CwMfJowYXx4cdQg339cYsKsNtimNbcWHun8A72Xi2833qoKcxegd8isafax9yYEMAwKfb3bUJixut46sWn8IEPfABXXvkYjj32WGmdCgoK/xpQmhQFKUZGRnDnnXfipz/9Kbq7u3HZZZdh3UN1SMQbnTR+0aZ8f3NEwynDp35/h3F3B3jeWV3cI4XXoLDf4neZ2Rf7lJl+yUIUM42HH8Xg/U1E3xNZn+HTbzGNLEqYSErYyjtL75bBCXf2cT66G9N06JxpDovqVhHN25t/uqv6cd1E1+DruGPdbXjnvFXQ9SiaKxsxv74FzeWViOnEISSiZocPUywLFUzhCqA5s3D8ZBtVMiGYNxNhe3nkTRNrd27A468/g87hbmhEQ97M49RFp2P1kvcAAAzTwD86NmM0PYzx3DjGM6MYzYwglU0ha+SQyqXQM9KDhooGzGuchxPnn4imSvmGbzJB3m2PzFZfbtLCO2LrxB17jcDyJeLMwsR9Ilj5opDOLyww0yB+5V0Gb9he/2uVEcQIoUhGTFRHLQ0nrzngdy+/Z8P9ePKN53D9e76I5krrGWP1z9VisfZHNBMRQpE17XuPM7cbzY7juV0v4PndL+HcZf+GxdOWFPQna2TRO9qLvrF+dAx1YPOBregY7sQxs47CaYtWoa68geuIgZ6RLqzZ9nfs7tuLT6/6FBrLqz3RydwIWBRX/P5LAICYHkVZtAyV8QqUx8vxevcbAIArVv0H5jbOs9vkHXOrL9anLhIyeLVs1lwwYupGULOucbn/iUuQrU/xPiucQ++1KealwnFZeTJiKAsL7Ckb/vubsPyMhKWyo9jR+QyG8CLy+Tw+9alP4dJLL0Vzc7OkRwoKBw9Mk1K+7P9MmSZl7NW73vaaFEVSFAJBKcXf//53/PSnP8WDDz6IU089FT07F6Ch+ghAixT4ijBTLHg+7XMBGyPyEMlDEHjtCSAPOeym9deWAF6SYn26RCViKx39iIoV2YcI5THth6QuH74ii84lO8/yR4jcYZRPIzUD4jQmLI/jl0LcTds0uFqUvGmFUI5oJhIR09nkMaZRjGWG8e2Hrsc1Z34dNYlqaMQ6HtctgZLtx+LdfJHrp0wD4QjPhPvNzvGCHUd6BVt6XpDmhSCDWqY9uXwGVWWViEeTyFMdGcONVsSvOrNVb4skUMAcxUt7X8L9r9yPing5vnH2N5w2iA9UmX29eI4RFrGtPPx8U5ivgu600bvSzu9+zhMDXnPC1+8IhtTf9l8Ev+9OVKMFvhUxjSIZMZA1NcTt/XiY9sukBNl8Dr969g681vUGqhKVqElUYXp1MxY0zsaK6YtRGS/n2gx0jfTjq3/5nqcNlfEKjOdSMEzrPn/HnONw4VEXeATlv732N/xl818Rj8RRX16HpspGLGicjxl1M5DOZdE/3o++sX70jPSge6Qb3SPd0DUNi5rm4mPHvh9VZZUefw7Y45YzDYykRzGWHcdYdhyjmTGMpEcxkhlF72gvXty7EWcsWoVzlp9ta5CIM7J+zvvEPhcUjtvPrDBnEshMsxjCvPTlPiOFZXnyCOl4yEzDrDxeYuzsmcT1nY/yZVATnYOvY3ffs9jf9xJOOOEEXHHFFTjvvPOUSZfCmwaXpHxkCknKbxVJUSRFISwOHDiA22+/HbfccgtSqRQuueQSXHrppfjUh5+2zTusl1nepgzi3iWAl1QUhgh2N0LkUYywyHxORHMvP42JXx3iOdnu9NZvJsR6iYqMoBQjJjJn92JgwkzY3eb92kFsImGFHaYechLR3L1TWF3EkxfI5Ebw/x76GlqrW7GoZQlOmHciqsoq7U35mGkXrwFwNQEMTHgDBNMd2Wos5BoHSnmByi3LzxGXnWer0ZQC3334qxjPjgEAptfMQt7MYSwzikQ0gVkN85HNp7F/YC8Gxvswq34OTj/sDCxsWuCZEz+I7QgyeQwaAzE0LBtLx1QPXrJS6IfCmwd5fQ9M0z0m26uF1asTK/qYBkZsXaKkc3MutpsADpHRuXw6oRgYH0D36DD6xoawa6ADW7t2Yc/AAcyum4E59bNRk6hGMl4OjWi48/m7YdDChYeySBnOWvZuHD/3HY6mk/mv/H7DH/DcrucR0SKI6lFQUKRzaWhEQ02iCvXldagvr0VTZSOaK5tQX1GHbD6HjqFOpHIpmJTCpCZGMuMYGB/CYGoQg+ODGEmPgIIiES1DMpZARbwC5bEKlMcrUFfegPqKJsysn494tMLje8TGMqozrQicT3GzSEe7QrzXvvgG50lUMQ2Hn6+UO1/udxnhZ/AzFfOQY87BXtZHP2LCtIBjmWGc8P4cbrnlFgwNDTnvHxVCWOFQgCIpBweKpCiUDNM08dhjj+GWW27BAw88gLrqRaivOB61NUeCaLYNOajjP8JrUKxzXtLijb5VuMdJMQ1IMXgJh5yYBBMWr/M8OyZu9Oj1PbE2bwS8viPsd2EbC88R55h3Zdw57+M0LGpQ/AiKdx8LV6vCNCls93mdJyd2GnHzN0IoorQT7QM78Gr7Ruzo2Y7DWpbgsJbFmNc4D7XJOkQ0QBMEV9nmdjLfCfdcoVkclRAbJz1nLuJHCETtzYY96/H4tjUYGO93ji9oWoijZh2HPX27URZLYnrNDMyqn4OyaKJAg0W4cmXO/07fJuDeXcyPi9VrtaMwMa85AQpXy71CpV0Odz0xMGd+fn8TRpB48zNxbHTnk0WvogXjz9rIiFLf2CC2dm3Hrt59GLH9nPrHhjCQGrKIY/1MLGhcgHmNc1ERr0REjyMZSzpjMZ4dR9dwF/rH+zE4PoDukS50j/RiYLwf6VwGAAWlQDwaQzKWREW8HM2VTTCpiVfaNyOqR9Ba3YrKsgpb06ghGUuiOlGDqkS1FTK4rAbViUromu5ZMGCBRJyIW5y2zOtTUhh5yztvhfccfy8UA+/4zpcH+Gs4RMhC0YsQwxID3ntYNOWy9kSx+sKHLWYEJm8a6B7Ygo6h53Cg72WsWnUyPvnJT+K8885DPD75Xb0VFKYKjKQkl31wykjK+Ku/UyRFkRSFyaCrqwu333477rjjDuzfvx/VySPRUH08qisWOJHB+GhcMtMvwOtXwn57iYrcv0QGURNjHdNCERERIjEBUKBFAeAhKpZzu1eTIjq5Mz8SQB6JiN/dWRaJSwbR70R0hA/My5XN8rBIXq4w6s3LhJCI5pp+xe0ws6Pj+/FK+yt4vft1tA/sQyKWxIzaNsyomY7WmuloqGhEXXkd4pG4ZwxkzvJWXV7IxoxKzoV5uPkJZpRS7BtoR/vAPtz/yh9x6Ts/icNawq3aiu3jtTk8OeHHlCdSQUSDv24Id534oSD0KwpD0/qZdvHRxbzHXe0JayfvF+X0jyMl7q7rrnkhIyt822RtZtcki56WNTWkc1kcGOrCzt6d2N7zBnb07MBxc96B5soWHBjab5lrDXdhJDOCqrIq1JfXoyZZg7pkHZoq69FY0YDqsiRiOkBAMJbLYzA9juHUCLpHu2EYORw5YyWm17TChOYJ62uFSy7Udrj98JsL93omXDrRjIonIiK5AJdHnBexLaJZGh+BS7b5ojgHQVpBQO4PBrih5A3hupRpEnnfGdbnwbF2dPQ/i66h9aiuSeCiiy7CpZdeinnz5gU3SEHhTQIjKYmlF4Lo8kBDpYAaOaQ2/68iKYqkKEwFKKV44YUXcMcdd+Duu+8GNROorzgOzXUnIBFvcPxWeCd6P58VBp7AAIX+K0FRvHiE0YwUyxdETKy0fD4ifLL0/qZdfsKAeDiMVkU09WLHggRevgw/3xZGXFg7ePLCHO4Bl2gwAUUnafSNtKNjcB86htrRO7IfQ6keZPMZ1CZrccqCkzCtugXJWBKJWDmqE1XQiFZg4mRQd0d2vq2UUmh2Iwk1MZIZxXg2hVQuBY0QtFZPQ1R4aYhO5UAhIWIC1bau1/CbZ27BOcvfi5pEDZqrmtBY2eSMp4x08D4FoskTD3GDVBnR4tskg99eH/x5mYmbs3IvrHQDhdePt80u0ZCB1yS5x7whkwF4tC28GaDobySWJxK5kZyOrEnw4p4X8b8b7sGchnmYXtOGpspmNFY2ob5iGuKRBAixd1yHFS6b3RNsfsSxJ4QibWjIMT8lFJIF0ZyKPxcW4saZslC/kNTN8vJjwoJGsLSe65zTXsh2cg+KflYKPL5OkmvLk46ZGFKCdG4YHX3Po3f0eQyN7scFF7wPF198MU477TToeuHCk4LCoQRFUg4OFElRmHJkMhn8+c9/xh133IGHH34Y9TXzUZ04Cg11xyAerS4QqmShhsXfIhXh9xUxxDwB5ggMYUMI8+ZcnvxBZfNERkJUZL+LlinRuoQJLWyd8zrO+63SywiLWD4RVs+ZtsU656ZngpZGLO2KRqwQuzlDg0EJ4noeQ6k0+ke2Ykv7kxjNDCOVHUM6l0J5vALTqqdjLDOK4fQQCCGoS9ahsaIWjeV1IITgmZ3Po7KsAjWJamzv2YnyWBLzGmZjd/8+9Iz2IapHkYwlkDfyyOQzaKuZjpl1bWisqEdFvAIV8QpUllWhrrwOMT0mCIluRyiAnpFePLL1EYxlxjCWGUX3SDeaKptQWVaF8lgS5fFyRLQINEJAiDXjC5sXYm7DXHfM4IXMR4TVZ42tcF5yjE8P+PvdSIVabp5kYH4PVvABdg+6BIZtGun2h7/mvdcbv8M8EUiHqIGRXXcxjSKimR4fJp4gjuc1Z4f1nGnChC7VEvGmVCxUtSZMjDgeOdOKliXd48PJ445pWF8NsS4/jQfrI59eGkqaM89jebwb7vJtLNRWhTE9lGm8RLh7m3jbKu48z9qSyaXQOfAS+sY2oKv3VRx/wvG4+OKL8YEPfOBtLZgp/OuBkZSypRdMGUlJb/6DIimKpCgcTPT09ODee+/F3XffjWeffRarVq3CgR0z0FhzFKKRCk9aechhBKbxhjMuvJSL61mCESa0cHB+XnjjjpPCY5CcF/PKdo138/iTFp6wWMf865JF4PIjLeI5XmPDb/zo8WWx7dDzprU5YnU85/iqZA0D7f070T/WiWS8GhXxalBqYjTTh7F0LwbH+zGS6sOS1uWoiFdiONWPOQ2zkclnsKt3Fxoqm7C4ZSkoidsr9hTj6R7s7tuL/YP7MDA+iNHMKMYyoxhKDSJr5KwwsbEkyqJlKIuWIREtQ87IYyg9jJH0CExKEYvEELP3SDFMA92jPfb3PEYzYxBx+qJTce7y93Dj5Qr63tVlNi5eYgR4NSA8ZPuYyARl3036BCGXESDDJpW8wGyYhe1ySYYbDc4lGYX1ya450d+F919x22lBtyPFMRC41xwfxpdph3KGS/h4ksD27eDHRdYmP5Mr/pyTByggG/w51kZWfzHCIZpeWeX4C/pWGYXHZSZ+njwlvPWLmXx5yRDfrsJ2mwAMI4OuwVfQM7IB3YObsGTJEnzoQx/ChRdeiNmzZ4dvmILCIQSHpBz+3qkjKVvuUyRFkRSFfxba29vx+9//Hvfccw9efvllnHLKKWh/vQVNNStRFqsFMEGiUuT8wQTbjDEswoYjFtOF0biE3V0eKNS2WOf9CUwxUzG+TM+eKwJhYWGN2Q7zBiUo0y1dWMbQPcKgSS0yo2vuhnGUEsQjBqKaCQqCuG5AI/AI1UxjE7FX4Ctjlg9TRKNO+RGNQicmxrOjGE/3YTSTQiqXRjqXxlg2jYgeRVVZFSrLKhDRNOSNDLJGFrl8FqlcGsOpIfSPDyCdz6KqrApViRpUlVWhOlGJingVplU3QyNagR+Kn2ZDjNYVFA6Yv94NSjy+DU5aSVQumbmQYY8xOy+aW/m9HBjx5Pe/EaO+8XllmiERRDjn7j/ibQ+Bl5DzaWWmU4yYiP3z02qIZbpp/DUQhQEeBDIS4PfhKVuoy5MG3v1/xLb49UMGP/8jHjLC6Ydi5CSbH0XnwCb0j21C78hmzJgxAx/+8IfxwQ9+EIcddlj4ihQUDlEoknJwoEiKwpuCXbt24U9/+hPuv/9+rF27FkceeSSGOmaiqWYFKhJtIKRQIGAoRlKKpQ+LUlYbD5rGxkejEpSmWLqw2hcxXzEhRvRBkB6XhMXVRS1NADES62dCqCYQJMAiItan6ZTLRygD3PyA5a8AAKPZCAyTOGGX2b4wrEwmKLM8JiXImhZZiOm2/5QtZDIBW7aKD6cMzcnHPv38FIBwPg9iPYzMsDJ4h2Y2Bmyc+FC3AApIEAM7LhIT8XIUzQF1m2wyE0C3Haxt1u+84HwthrCdKKgwF4HR5Oy6/UicmE/m+C/bb4Q/7md25aehcMua3Dj4QRZxTwbTt632fZTuQdfgKxhIbUJ3/zYsX74c559/Ps4//3wsXbrUecYrKLwVwEhK/PDzpoykZLb8SZEURVIU3mz09vbiwQcfxH333YfHHnsM1dXVeNe73oXVq1fjNzf0Ih6tBuBPGvwIQqnpi+UT8wftuF0qwpKUMHkmW05YJ34rrXyw+LGROfnzgpuMEHnL8idHvDM122+DzZ+uuSZBBfUI7dA1N5/ooC22K6qbDvmIaqaz+RzbX4aZdPEmbqzdLJ9jVsWdY8Iv72/BR1ji2+f3XWy32H/pHjkhySD/m8HalNBtr9h+N11he2VtFCHz3RGDDTBSdbA1qOJ1VGB25UM2xHNW3sLrQwbRD6gYSllYKQV+88Yjm0uhd3grjj7DxKOPPoo9e/bgpJNOwnvf+16cd955mDlz5sFpnILCIQBFUg4OFElROKSQyWTw7LPPYs2aNXj00Ufx0ksvozxZDXKQVg3fKgi6icOOXJgHwSE7C4dswxQU3vqglGI8NYzZs+bi7HPejdWrV2PVqlWoqKgonllB4S0Ah6QsOWfqSMo//qxIiiIpCocyent7sWvXrje7GQoKCgoKAZg2bRra2tre7GYoKLwpYCQltvisKSMp2a1/eduTlMib3QAFhSA0NDSgoaHhzW6GgoKCgoKCgoLCPxGKpCgoKCgoKCgoKChMGgZK8xgNKkdBkRQFBQUFBQUFBQWFyYKa1v9UlKMwJXRPQUFBQUFBQUFBQUFhyqA0KQoKCgoKCgoKCgqTBIWJqQiITv+p21IfulAkRUFBQUFBQUFBQWGyoHSKzL1U4F1AmXspKCgoKCgoKCgoKBxiUJoUBQUFBQUFBQUFhclCOc5PKRRJUVBQUFBQUFBQUJgklE/K1EKZeykoKCgoKCgoKCgoHFJQmhQFBQUFBQUFBQWFyUKZe00pFElRUFBQUFBQUFBQmCwUSZlSKHMvBQUFBQUFBQUFBYVDCkqToqCgoKCgoKCgoDBpTI3j/NSU8a8PRVIUFBQUFBQUFBQUJgtl7jWlUOZeCgoKCgoKCgoKCgqHFJQmRUFBQUFBQUFBQWGSoFOkSaFKkwJAkRQFBQUFBQUFBQWFKYDySZlKKHMvBQUFBQUFBQUFBYVDCkqToqCgoKCgoKCgoDBp0ClyeqdTUMa/PhRJUVBQUFBQUFBQUJgsqAlQMjXlKCiSoqCgoKCgoKCgoDBpmMbU6EBMYypK+ZeHIikKCgoKCgoKCgoKE0QsFkNLSws697w6ZWW2tLQgFotNWXn/iiCUUmX4pqCgoKCgoKCgoDBBpNNpZLPZKSsvFouhrKxsysr7V4QiKQoKCgoKCgoKCgoKhxRUCGIFBQUFBQUFBQUFhUMKiqQoKCgoKCgoKCgoKBxSUCRFQUFBQUFBQUFBQeGQgiIpCgoKCgoKCgoKCgqHFBRJUVBQUFBQUFBQUFA4pKBIioKCgoKCgoKCgoLCIQVFUhQUFBQUFBQUFBQUDin8/yWekwahdQPgAAAAAElFTkSuQmCC",
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAykAAAGbCAYAAADA9989AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9d5wcaX3ngb+fCp2npydnjXKWVmFzXmDBBC9gYxuDbYwx4LPPhw8Hzvz8OzDG3IvD599x4MMG41sfYMDYZ6JZFlhYNmtXK61ylkbS5Dw9naue5/fHU1XdPSNt0uxKu1tvvfSaDlXVT1V3VX0/zzcJpZQiJCQkJCQkJCQkJCTkCsG43AMICQkJCQkJCQkJCQmpJRQpISEhISEhISEhISFXFKFICQkJCQkJCQkJCQm5oghFSkhISEhISEhISEjIFUUoUkJCQkJCQkJCQkJCrihCkRISEhISEhISEhISckURipSQkJCQkJCQkJCQkCsK63IPICQkJCQkJCQkJOSlTLFYpFwuL9n2IpEIsVhsybb3UiQUKSEhISEhISEhISHPk2KxyIr+FCNj7pJts7Ozk9OnT7+ihUooUkJCQkJCQkJCQkKeJ+VymZExl4Hdy0k3XHomxVxW0r/zDOVyORQpISEhISEhISEhISHPn1SDINUgLnk7kkvfxsuBUKSEhISEhISEhISEXCKukrhqabYTElb3CgkJCQkJCQkJCQm5wgg9KSEhISEhISEhISGXiEQhuXRXylJs4+VAKFJCQkJCQkJCQkJCLhGJZCkCtZZmKy99wnCvkJCQkJCQkJCQkJAritCTEhISEhISEhISEnKJuErhqksP1VqKbbwcCD0pISEhISEhISEhISFXFKEnJSQkJCQkJCQkJOQSCRPnl5ZQpISEhISEhISEhIRcIhKFG4qUJSMM9woJCQkJCQkJCQkJuaIIPSkhISEhISEhISEhl0gY7rW0hCIlJCQkJCQkJCQk5BIJq3stLWG4V0hISEhISEhISEjIFUXoSQkJCQkJCQkJCQm5RKT3fym2ExKKlJCQkJCQkJCQkJBLxl2i6l5LsY2XA2G4V0hISEhISEhISEjIFUXoSQkJCQkJCQkJCQm5RFyl/y/FdkJCkRISEhISEhISEhJyyYQ5KUtLGO4VEhISEhISEhISEnJFEXpSQkJCQkJCQkJCQi4RicBFLMl2QkKREnIFUqlUeOyxx/jhD3/Id775HU6cPHm5hxQSEhIS8jSkGxq483V38oY3voFXv/rVNDc3X+4hhYS86Eil/y/FdkJCkRJyhTAyMsK3v/1tvve97/GTn/yEWCzGa17zGkr7TDZwDSKcVQgJCQm5Yinlivz0S4+w+8ndvP3tb2fnzp287nWv4y1veQs7duxAiPAaHhIS8twQSqlQr4VcFo4fP86//du/8c1vfpNdu3bRGuugIddMMx00kAlvaiEhISEvQUqqwBRjzEYnGJfDtHW08pa3vIW3vOUt3Hrrrdi2fbmHGBKypMzNzdHY2MhjBztJNVx6uvd8VnLdphFmZ2dJp9NLMMKXJqFICXlROXbsGF/72tf4+te/zokTJ2g1u2gstNJKF1ERu9zDCwkJCQlZQqRymWacKWuUSWsEO27x5je/mbe//e28+tWvxrLCgI6Qlz6+SHn4YNeSiZQbNw2HIiUUKSEvNAMDA3z961/na1/7GgcPHqTN6KKp2EkrnVginFELCQkJeSWglGKOKcbNISbtYaKpCL/0S7/E29/+dm6++WYMIyw4GvLSJBQpLwyhSAl5QZienubrX/86X/rSl3js0cdoj3bTVOignZ5QmIQsOUop8mRxcZDeP4UEBAKBgRE8qv1rYRMhGoYWhoS8yCilmGGCCWuIcWOIZEOSd737N3jXu97F5s2bL/fwQkKeE75IefBA95KJlJs3D4UiJRQpIUuF4zjce++9/OM//iP/9v/+jaZIK035TjroJSKil3t4IR5KKVwcTK9uRpZp5pimSAGHMhUqgZGvUJhYGBg4VHC890xMDAwMTAxM77l+zSKCTYQ4CRpouuQwPle55Jhlnjnmvb8ulUBs6H2YQeJiYXuSxMRAoCDYD+n9VTV/9b5YJEgF/+M0ECVGM+2heAkJeRGQSjLFGBORIUbledauXsv7f/d9/Oqv/iqtra2Xe3ghIc+IL1LuP9CzZCLlts2Dz1qkfO5zn+Nzn/scZ86cAWDTpk381//6X3n9618P6Pv+n//5n/P5z3+e6elprrvuOv7mb/6GTZs2Bdu4/fbbuf/+++u2+yu/8it87Wtfu+T9eb6EIiXkkjl48CB33303X/7yl8nN5GktddOplpEUr1z1fzlRSpEjS5EcFcq4OJQpU6ZIjjnmmMbFwcAkTpIieTK0ECOBTQQLGwPTEwGCChVAYWF77xm4SCRu8F//cyhSIMs0BXLBeLZwHSBwcXCo4OKgqF520jRhYTMXiKU8KdI00ISLwzGeAiBDKykaSZHGIoIvP0CRJE2apguKirzKcpgnKVOqG4NNlAhRJJI82UXrXcOraBTNwTF1cbz1IhjCXMqv7PkjBNRewv39X/jas1lm4WshIZcBR1UY5TxT8WEmy2P8/F0/z2/+5m/y+te/Pky4D7liudwi5Tvf+Q6mabJ69WoA/vEf/5FPfepT7Nmzh02bNvHJT36Sv/zLv+Tuu+9m7dq1fPzjH+dnP/sZR48epaGhAdAiZe3atXzsYx8LthuPx2lsbLzk/Xm+hCIl5HmRz+f553/+Z77whS/w+GOP02H20VbuppmOcPb5RUQLkjlcXBSSBjIcYx+DnCJJGpsIJhYRothESNJAmmZiJMgzT5552ujGEs8vefWo2ss5TtS9ZhFBIXFxEAiixIkQxcTCwsbEqispPckooMVKmiZiJJhnljmmmWEiWM4mym3i55/zGGfVFI9z33Nap4t+KpQpU6JMkTJFJDJ438BE4rKT22gSbc95TM8GI6Y9UP4lWggBZr04MtINyPkcSD02kUiAksjsfLCO0dGGHJ8M1hGJuN5OqYSqOAjThIhn/JUrFxyLchyU6+onXgH/4LmSCxa+Qm4phokwBMpxLnlTSinKlChRIEkD5vM8X0KeG3k1z4gYYCI6hB23ef9/eB+//du/zYoVKy730EJC6vBFyn0H+pZMpLxq8znOnTtXJ1Ki0SjR6LOLTGlubuZTn/oUv/Vbv0V3dzd/8Ad/wIc+9CEASqUSHR0dfPKTn+T9738/oEXKtm3b+J//839e8viXivBKG/KceOqpp/jCF77Al7/8Zfr6+njf+96H/XArtowQtjJ5cXCVywTDjDPICOcAiBBFoUiQIoWe9Winlxba60KbAFwcCuRI0xR4Cp4tFVVmgmGyzCwSEb7hbmJiE2cd28jQ+oyiVSn1tMsopZhm/DmNs5ZG0cxreNtFt12igInF/XwbgAwtRIjqUDWiRIghMJhjmjxzTDJGAS0CZpmkiaURKUYiAYDM5zGbmsA0UKUywnUR8RgilQSpUIWCXiGTRgFGNAJAZXaKQnaQYsTFSidIlmPMuKPI3DSxdANxkkSNRPVYCwF2vcAIhIdhQKUSHKOgs5hR/Z6EaXoCxeS0c4hxNUiFEo20YGBSoUSeeSLEWMc2kqJhSY7TxRB2BCOVBEOgiiVwXTAMRCQCUiI9AWbE9A1e5vPPuE1HVRjgGIOcpkwRCxuHCinVSCMttNBBMx3PW+SHPD0JkWIlm1hR3MhkcZQjR46wbt067rjjDt773vdy1113EYlELvcwQ0IClBJIdenGkPK20dfXV/f6Rz7yET760Y8+7bqu6/KNb3yDXC7HDTfcwOnTpxkZGeG1r31tsEw0GuW2227j4YcfDkQKwFe+8hW+/OUv09HRwetf/3o+8pGPBJ6Wy0HoSQl5RgqFAl/96lf5/Oc/z759+2h1uumsLCNNc+g1eZEZVmc5yh5sInTQR5omUjSSECkc5XCcfcwxRZZZ4OlP7au5nYx4+nhvqSRliswzyzADjDNEgjR5ski0QdtOL020BmN5qc4y14qlveohJhgO3hMIGsjQSAsNnscnScPS/P6F0ALFq2ykymWM/l6wTHBcGJ/CmZqiIPLkzByltEHbVBJLRBhMj1Gam2RAHanbZIQYZYrESWITpUg+MLIFgg3R6+lKrgPTqPN8qEJxceiXrAqZ2mOklNJCBbg393+fdhd32q+hyckEQkyVywjLqu5zxUFVvNfQnhuMGq+RdJ/5OHrLm02NiJqwIKUUOA74pW4LRbCtQHjJeR2aKExDL+tWP2uX80Nm1SQ2EdaxjQ76KFFglilmmGCSUYrkaKKdNrpoo5uoiD/zWEOeNyVVYIgBJuKDRBts3v3ud/P+978/9K6EXFZ8T8qP9y8juQSelFxW8uotZ5+TJ2X//v3ccMMNFItFUqkU//RP/8Qb3vAGHn74YW666SYGBwfp7u4Oln/f+97HwMAAP/jBDwD4whe+wIoVK+js7OTAgQP86Z/+KatXr+aHP/zhJe/P8yUUKSEX5fTp03zuc5/ji1/8It3d3VQO2HSxLKzOtYTk1BwzTBIlRpI0MRJPa/juV48xx5QXMmWwk1sXfR9+mc/H+QkAPayghU4kLiUKpGgkTTO2qM5ATqgR9vIgGVpI0ohDmWkmKFMEIEaCTvpopxeAPTxAhTIAfaxmndi2lIflsjOqzrGfxwBop4e1XEVMJC55u8KyQBgYqaQOu3JdHUrV015dpljBbYyDIRAVFzGb54FTf0fRnSdBCltEmVHas9QoWmhQjcwyRZYZBAKFIkKMiIiRtDJYIoJbLlAxXabdUSQuq+3trIxu1Z4GIbSHRKogtKxWmCxCqXoh44egScm0O8qEM4hEkjHaaDN7MAwrWDYQIb7Y8T0zUmkvjl+CtlINO5Ol0jOHkHnjMeJxRMTWYxJCixXTDMasCgUtTmo8Qrhu1VPkjc0XUSWZJ+tOMVsa4RwnvcmBXi80sRmbCHnmmWCIcc/DeBU3olDMMkWMuJdH1YghwvK6S4lSiinGGIueY1wN8brXvY7f//3f59WvfnVYyjjkRccXKffu718ykfLaLQPPqbpXuVzm7NmzzMzM8K//+q/8/d//Pffffz8zMzPcdNNNDA0N0dXVFSz/3ve+l3PnznHPPfdccHu7d+/m6quvZvfu3ezYseOS9+n58NKc8gx5wZBS8uMf/5jPfOYz/OAHP+Cuu+5ixdQWMlPPHLYTUmVGTTLKOaYZx6HCctbTK1bWLTOoTnOY3QAkaKDAPDZR2lQ3G8QOBtVphjiNiUULnfSyinVs42d8B9DhVT5KKWaZ5BwnmWAYl2ocfiOttIuepx3vEKf1uJmkkWYEUbpZjkJSokiRHEOc4QxHsbBJkKKFTtI008vLawZTKcUwZ0nQwBauo0FklmS7RiIRGOkimUAl4yAlwpWomnNLprxZMqm00Z6Ks6LrZo4N/Zhl9kZ6rNWUVRE3nyOmqqLWURXGGOIoe3QejSqScjOYwiAeacOyY3Sp1TTbXcRJemFcEmUY4NbkvYA27GsNeVkvEhaF6BkCTINms5vmeF8genDd+nwX29t/qbQXp7pBRK1gqfGECN9jI7z8EqkCr4cWE96ySmqxIhUIpT1RvmfEE1IiEtGhYLUIA4yqKBMS7XUxDKJGipjdQKvVQ39+HSPqLFOMMcxZCsxjYhIlQYw4UeLkmGMPD2IFmWBx5pnFxaXBCxFbyca6CYKQ54cQghY6aCl3sELlOfjdE/zaY79GU1MTv/d7v8e73vWuV3Tp1pBXHpFIJEicv/rqq3n88cf59Kc/HeShjIyM1ImUsbExOjo6Lrq9HTt2YNs2x48fD0VKyOVlfn6eu+++m89+9rNMT0+TGm/hWvUaZv6VFywx+OVG0FmZMQY4VvfeCGfppSpSCioXCBQAE5N+1pEjyziD9KlVHGY3TbQxzyxTjAHQL9bSqrqYYowoMXZzP65yKVOsq5q1jLW00UWKxgsaRLrk56g3Az/NFOOkaGSnuJ371bcAnciuS/KmaKGDuFei1ybyshasBXJMMsqtvOnSjEkhtAHsP41GtWEujKqBbpko20KZvoFO4E0QUqEsA2nZdPXfgB1Pc2Lgh5wuHWJ5ahuN+fqxWcJmWo3r78vuYaBykBF5BoAWummlh+bkcuJWgxYFUlWT3mu9C1JVRYovThYUMwu+/bp1vH0ShvYCCaHFjO89Mc1qGJbjgG3r9V2pxYShQ89ULl+X3iZMoyoyZKQ6ZlfWhYzVLed7UGq/CwDLQkS9xH/HqXpoar0cJlXBVHM8zGic7vIKutVyvQuqQpE8RQqUyFOmTBOtRIgxzAAGBikypGhkhomgep2JyWq2ELJ0xESClWxCjrmMjp3n4//lE3z4wx/mN37jN/jABz7A2rVrL/cQQ14huMrAVZfuSXGXIMZJKUWpVApCuH74wx+yfft2QHtd7r//fj75yU9edP2DBw9SqVTqhM2LTShSXuGMjIzwmc98hs997nOYxQgdhWVsZqMusfrytUOfE0qpwJDPMo1C4eIyyQgZWrla3A7AfnYxzuCi9W/gtYvKMcdFktvUXV46u8sUY0wxSoUiq9iEiUUDmbqE8ePso011s5UbyJOlTAmHCgrFUfYQp5EsMwDMMcVasbXuM6VymfSEyRiDuDg00UYT7awWW0mZTTgRRaqQIa/myHoVtnwMDFazhWVizdIc2CuUeWaxeZbipFas1QoS38gVBsL3HkQjVcPZNAOjXlkGynsshKoKFgXKEChDgBC09GyhpW0Do+P7OT3wY/JMszKyjZXuOlCSJ+X9zDDJdQ0/T0Oqi4HhgwC0GF1MukNMukM4tmJN7Lr6ZHglqyFcwvA8Et6+GFRFgf+e/1i6Og/EEzPCqhEFhqFDyYLnQr/vh+GYBipiB8IE8PJEJKI2R8ZxApGD6+oxGoYORyuXq/kjpgmuq5PkQXtv/G0HQkToHB//O3AlqIvkutSINt9jsxBL2EEo1yIUnOMEOWaJEKOLZRTIk2WG85xiUo1SocxqttAp+havH/K8MIRJF/10FfqZVVN85+/v4fN/9wXe+KY38Md//MfceOONL+sJlpDLj0QguXSRIp8hp3QhH/7wh3n9619PX18f2WyWr33ta/z0pz/lnnvuQQjBH/zBH/CJT3yCNWvWsGbNGj7xiU+QSCR4xzveAcDJkyf5yle+whve8AZaW1s5dOgQf/iHf8j27du56aabLnl/ni+hSHmFcvjwYf7H//gffOUrX6GZdlYUt9BEW3gB9yipIhMMM8FwIBQaaSZGkqma6k7LWR+ss4EdNJChwDwuLmmaWMaai8ai2yIS9DTROR/LiJPCoczD/MDrmK6TttM0ESXOCGfpZjk2EY6yl3lmqVCmiTZ2cCugBYq4wEXyJAcDD0+aJq7nzurYDBMjFiNqW6x3rubJ8n3B5/tIZCCCXm4opRhniGnGmWGSMkWe4mGu5vanXU+HIRl6Ft83wKXUj73+JCIe00ZvNBKIGhW1kVFbG+RKIRT4BWGUbxx74sR/T5oGxCO09+0gHmvmif2f51R5L/nInP5dlse4vfnXiSV1xbabO95JtjJJrjJFt7mJllgfMatBCwEhdEgUuoqMfi6qyeV+ToovCKDab8UPn5JeOFVt74paD8TC46E/DGV5Ak0I7UnyRZkQekcbU8FzkS9WRYZlBuLBkS6juZNM585RVgWUEHQ7vXRGt9UlzQdCxXG14HIc6tIwhUCrQVmfl+K64Or1VbmMqjiLSy0/De2ih3aqIZaTapTTHKGftaxhK+c5wQjnOMBjnFD7SZGmjzVefyEFXpHuGIlF+WMhz45G0UxjpZl+tZ593znKa/79NWzbuY0/+qM/4i1veQvmgnLeISEvZUZHR/n1X/91hoeHaWxsZOvWrdxzzz3ceeedAPzJn/wJhUKB3/3d3w2aOd57771B5a5IJMKPf/xjPv3pTzM/P09fXx9vfOMb+chHPnJZz5Uwcf4VhFKKBx54gE996lPc8/0f0G0so7uyilTYdDHgjDrCAMeCpPAoMUxsFDJoUGhiIXEDA6KZNrpZgRCCR9UPKVEI1t/BLSRoqEu6nlQjnOYICsU8sygUMeLkmfdyPFZxiMe9xooRGmjEJoJEMswALXQSI8Egp4LxNNCIQuFQoeJ1ho95Pd9jJMgywyy6V4ZNlJ3cSkp4M8C1SdCGiWO4HJCPMC9n6FdrMTFxg8aNfid6iRCWV27YpoUu3Vn+JXo5yat5HuNHuDi00UM3/cRJVo/RBRBehRVhmmCa9fkctURscBzdw8QXINEIKl4jWixttCtTVPNTDBEIF/89H2npx6XR84xM7sfJzZE0GlmR2l7/HdR6EbwclEX4XpSIHSynEjFw3GCMouxUt+P3UjEMRLmC8kogi4qD8r0hjqvFiF+hzF9XSu0x8USRv9911Agkp5hj/NTjTDrnKVsOZSdP2S3ofiVGmoxsoUyRSUZxcbgh/Qs0prqrouhCuG5VqLhuILyUK+uW8cdS22dF1ebm1IiWoswxyyROTcPPOCnOc5JxhoIcsdu4K5icqFCmQokKZcYY5BwnyNAa5Jr515wCOeIkSdNEC5200f2ii5aSKjDNBCUKGBgIDCysagjoS0BEOarCIKcZjQ2Qbk7zp/+f/8K73/1u4vGwGlvIpeMnzn973yqSDZdu1OeyLndtPfmcEudfjoQi5RWAUoqf/vSnfPSjH+XxRx+ny1lOj1wZlsq8AE+qnwX5H/4NOEqMPPPMMEkTrXTQR4YWiuSZY4ZBTtFEGw1kOM4+bufNHOIJxmpCv14jdJ+OUXWOA+xCoWinh+WsJ0Wa85ziBAdYzjosbLLM0EoXc0xzlmPczptxcHiA7wJ4+S0CEwuHShD+pTwpIdDhWVGvulADGTK0Eif5rLxlSimGxAAj4iwCA0MKDEzPQBEYGFqqWFASRWYrYzRFuugvr6RFXDwR70rGURXOcpzznOTWZ9E0UkSjGNFovffgggt6oVzJhBeuJHSoU8TWgsTQ+RoAWEYgRpS/rKBOpGgPi3Y6KFNgOAp7toRRqGhB4ImERYLEz/1YND7t0cAwcJuSiIo20N1UFKPs6ud+Q0nX90p4++y4VfERhLIZWnwYRo3gAhmxMLM6aV0mbO3IWeDVkBET1y0zOrGfsROPMKVGSZKmlU6d7I/2PBaYp+SVxrZFjEy0k7ZoP72JTUGSvT5YNduX1f0Pwt3UgmPiixUpA6FSV5bY+y4dWeKse4w5NUmFctAvqJl2TKxgbF0so4eVwbmTEKkL/0a4eL+gsiqRZZpZphhniBxZtnIDraLzottaap5QP2WGCdrpCSYq9HVnngplbKIkvOtlCx000sIkI8S962eE2BWTyyaVZIzzDMdPo6KS/+9H/oz3v//9oVgJuSR8kfJvT61ZMpHy1quOhyIlFCkvX5RS/OQnP+GjH/0o+/fv54Mf/CD3/dfdYQnhZ0AqiUCHwJxShzjFIQCSpLGwmGUqWLaBJlawnoM8HsyWrmADFUqMMYiJxVZuCCpEjarzHGEPFUpedawMk4xSokiJAjYR0jQxySidLGOWSTrpY5XYDHjigTPMM4uDQ4USAoOkl+Dud5gXQJZZTrCfrdxAm+jmhaSo8jzIv9NEG9u55SVZbnVIneEE+zGxuEm8/qLLGbFYNfeh7o2aRPna0CA/mTser0ngNrWnAaoiYQEyrvMqpGVUPTAC8MSKNA2U51ExKhIUGCUXM1/Wng+pEKWaXArfo2F5lbLiUZRlIBxd4UsmqtcF13tszZerlb9cF1Fyqvvqex5qvTUeKh7BTegGr8o28CMHRbBOzeOa4zc49iTHTv07cTtNV7mbNrpJiBQ5leUE+xlniAa7laZoD03RbjJJL4TNMhHlSv32XBl4SuqEhiurSf5ByWVV952pSk2Xem89WSxyTp1gmAHyzJMkTTs92ESJECFNMxFR7V/wTE1Knw9zaopDXsGN68WdS7rtpyOvsuzmfkxsmmmnmXaaaEOhmGSUHHOe12eeOaZZxhrOcnzRdgxM4iTZzi3ELvMkmVKKCYYxthcYGhriQx/6EO9///tJJC691HjIK49QpLwwhCLlZchCcdI620OvWh2KE49JNUKOLA4VXM/UN7FIkSFKDAMDA5MUjSgkk4xSIEeF0qKqXaDDrZI0YGEH/00sMrTSTs8iQyWrZjjNYRQKm2iwrl/ty8DEJsJmruEwT5Jnvq6PioEZ9MNwqOBQpuLti+6OLsgxR4kCrXSxmeswxQsbUyosi6mGHIdm76c7vo4Vuf4X9POWEqW0oZVlmpMcZBWbWCE2XHBZI5n0HtQkydeGedWW1fU9KLUCxA+p0it6IU81M//e+jJRDQWTtpdYb3h5KcH2Cd73MYsuRsnFKDsYs3ldwQuQiZje17itPTCWEeS+BF4aUZMPI8BwlM6ZkVQ9KdKrCiYVZm5xMnmt50TZJjLqVfbyx1hTskZXF6MurO3M6R9z6vxPuNm+i5gTwVUOx9nPEGfoia9nVfONxGLVEDwV9a5pnuARjlvte+J5Q4Jmjj7uBZLlF/aIWdAvRpYrSOlwv/oW7fTSwwpdqvtF8gwUVZ7H+QkVSnSzghVs0OGVLyKOqjDFONOMMcUYOeYAXT7dxER5/0DRQiedLGOGCbLMMMNEEC4L1bC3KwFfrAzGT2CmRShWQp4Xvkj516fWLplI+cWrjoUiJRQpLy927drFn/zJn7Bv3z5aZrpDcbIAV7ncz7eDUqG+oKhQDpLQJS4uDlHi7OS24GZaUgWOs48ocSwipEiTojFowFhWRfLM60Z2tNZ5ExzlMMEQs0yRoQWFokyJRlqIEGWAo4wzTIlCsI5fwrSb5SRIMcsUObJUKJFjzut63oiBCARXgoagzKmfj5Kh5QUL7ROWpasvmSYikWAof5iB+X1cK171gnzeC4GjKvwUXXY5QYpOlrFSbKwuIAQi4oWqmNUKVYGBWlPJq1akCMtCuVI3F/SJ2CjTCMSDMkSd4FHxCMKROOkYCO0hkX4ImBC40WpFMNCGvjSr3hQhPSHhSISrMAsV3LhdFSB+DowvSoRAGdQJBeE7RlxVfU16/UqkQjhexSwFhperIhypvTKuCsaqLANpm3Wfd7GCNUIp9u3/EhOTR1jHNnpZhRCCk+og42KEbe1vJBVv0zkvdk29lwVhXaJUgYqjxYUnMFSlgpzN6mOUTgVekyAHRS4Og5t1J5gsnSevsmAYGFIns5/nJAApMlwvXnPhnXkBGFYDHORxQIehpkh7xTEUK9hAmRJ5sigUFhFsb7IkRoK4SNbvm5okR5YIMS/nzgKvAehzuVeUVBGBCLxHSinOcZIcs9hEydBCIy11YkR63qor0dO6UKx85CMf4b3vfS+WFdYXCnlmfJHyjafWk1gCkZLPuvzSVUde8SIlPPteJpw6dYoPf/jDfOc736GzuJyrpNeJ/PKHAF8RlFSR85zkPKdI0sBWblzkXZBKeuV5zzPFGPPM8jj3cZW6iRhxIsTYLHT5VoXCEAaTaoQhzlBSBYY4E2yri342cQ2gDYzDPEmcJBlaOM5+iuQBaKWLKUZpp5eNXE2GFsqUOMcJznMSF4dZpjjHCfJkMTBw0TPBRfLYjFOhTIIUFco00kKWGS8mfJQKJfLMs0ZtoVesWroDWtsDxLYx0rpCSGY6wwGmKatSXejLlYZSikM8QZkSEhcLG4cKO7m9OkMtRH1SfE1CfNAt/ULhXQDC0AKltuqXX61LqjrvibIthBdeJKMWhnCrosTzoIBXjtgUgYjwc1L892XE0I0IlYKoFgxuwvJKGevPF47SIWJelazaxPyag1PdDT0xHpQFVkJ4dw0BrtLjrUiULQJB4u9rUK2sJsdGoOoaV+rPUBhFl6mpEwBk0I1jCyrHWY5zTesvkGzs1uvV/vfH6eeX+Dk4plfRKxZFSUl2fhhVnidmpLBmPSM5pXOzlOuiSqVqhTaPQ6VHKaisFkvSQHlFI1ayEQODNM28mHSJfjrVMkoUyDHHPHNekYwyj/EjAFroxMCgQtnzsFYoU6RbrSBDC6bXYnKQ04xyLsiTcXE9/ahIq2Za6KCN7mdsYrrQk1OiwDH2LlourlLcyOsQQlyR4sRHCEEb3bQWuhgvDPHhD/4Zn/70p/nkJz/JXXfddUXk04SEvNIIRcpLnKmpKT7+8Y/zuc99jna3hx2V23UlqfB6Cuik0zMc4byX3L6Za2mmPbjhFFWeYc4yyjnmmcOf6o2hXf155nmEHwC6BHGL6mSYs5QpskZt5ThP0U5vUJpXIOigl2WsYY96gKJnVCRIcYN4LUCQ59JBH2OcZxs3EyXGGY5ykF2UKdFCByvYwDlOUmCeFaynjW4mGGE/jwKwjDV00EeKNKawOKOOasFEgTmmAq+MQnGCA/SyhCIFMCK2zs2IRlHxKMJxiTpWUHlsBRcOmbrc5NRcUKloijFWsIGVbKSBTN1MsjDNarPAwGtSY8yKaq6I7gBYI1qMBUa/H9rlezNsS3tDlELGbIyyocOjIqYOxbL8z6iGUPn9wdTCc1tR4ynxnlAVB0JW1xGG5znxXliUvF7bo6TGs6KE0EJFgMJ/XBUKukoXQb8XjJrQr9pDIUT1ec3HDo7vwRAGV6lbaBAZlFIcZjddyXU0Zvr1Z/lli4WoChZDe3G0ElMoQ5d1wNJjOTb9AGezT6KQSCmJyCgpGtmUv4mcnePJ+XtZYWxkhdqAqeygetcWcT2Pqx9jYdHPuivCQBVCECNBjAQtVJPml6nVGJh1FQR9cirLKQ5yjpNehT4HBwcTizjJuryWosozyShTjDLAUZpVB6vZQlI0PKvxxUSCreoGxhhknCGviLJA4nKEPURVjAhRL4cnGjy+UhLqfYQQtNNDa7GLwaOnecevvJOrr9vJpz71Ka699trLPbyQK5yla+YYBjlBKFJespTLZT7zmc/w8Y9/nHixgW3FW3S51CvnWn9ZcVSF0xzhPCdooo2ruZ20aAL0LPqYGuI8J5hiDIHAIkIfq+ikjwaaEAiOshebCM20EyfJCQ6QZYZVbOQAuzjCk6xkIyvFRmbUBE/yM3ZyB42iiayaYZJREjSwju20Ue3Y2kY3ZzhKjjlsIpznJJOM0MVytnIDKRo5y3EGOMYattLN8uAm3qia6WY5y1lHosZ4KKkCJ9gP6JyWMkVa6cLAYIJhIsSZU9PBMbhklNICJR5D2DbKNJFKcV6dpEDOM1CuPJRSPMK9da81kKFJtNW9JixL75/XPLDOiKoVJ4EhXu2yHlBbitg3sG0temTMCgx6GbU8geKFcsEib4MyqO8nQjUsS0Fw3teuJ1DBunXbCdZXWmOo2nU8D4hS4HltlL8dROBZQXrbF+jEfkEgGmqFyCJRcoGQL1kuMzF1FIWiCf095JlnijE2Rl9Vl8OjDM+zVBsiZ1F33JWhAJ0fJA3obdjC6rmVlClRJM85TvBU6afssH8OgNPyEHNMkq40M8LZwLvmi/sTHOBqdTsZ0cqVSOJpRERSNLCF65/VdmIiQQ8r6GEFJVXkJAfYzf1cr+6s84q6Snv9TLHYfGgXPZxRRwDtTW4gQ5kSFc8HNMsUFUqUvf8SF4HAVhFsojTTTg8rnrb094uFIQz6WEVXaRlnHzzOLTfdwlt/8a188pOfpL//pZNzF/LiIjEuSzPHlyuhSHkJ8sMf/pDf+Z3fYW5ujqaZLlaJTVVDYOGM1BKqcaWU14Fc0UDTFe26n2CYAY6SoYUN7CQq4jiqwjyznOYIc0zh4mJgsozVJGignZ66mfT1bK/b5mb0LNqkGgWgnR76WYtSiuPso591NHoioEFkuEG9jkM8wQhnaaCRCTXCNGOMM0SUODmyCGCSUbZxM82iHYB5pce4veY1n5hIsJGrL7DHgm5W0EQbKdIkacDwwtlc5XKC/ezix6xQGyhSoJv+RYb5s2ZhLgaAUpycfIiT7CFFo56vVQ7WBQyZy0VR5SmQ42bewBRjnOAAZYqBYRzg56D4sejGBYRHTbL8ImHiz/qbZjU53VtPxiJg6YpdvrdEWQKFqC4Li/JDah8v8qQ8ndcCgnCtwBviL+c5IDD0Y4VCVHSjRzdm1omY4LP9xpMIjLJEWabOUakdh6j9u2D8C0PHACoVZmZPk452Mi1naTCaSBQb6FC9HJj6ERsjryUd76x6aWp7xkj/mEuwzbrrXdnJMzF/ku649oREvRyMourmFIcYLZz0zv+1nOEwk4yyik200Y2BiUOZUc4zwDGe4Ke8Sv3CFX3NW0qiIsZ6tZ29PMSDfI921Usvq2ikmSPsYYSzNKpmmmjHxWGaCSJeEZBGWphjmnPo8L1beRORiyT5u8oJBEuJIuMMsov7SKk0zXTQRJsOVbuM1xFL2KxUG+l2VvDw/3uCjd/ZyIc+9CH+5E/+hFjsxS1eEBLySiNMnH8JcfbsWT7wgQ/wve/+O9Jxg9yEW3gTURGrJjFD0AdAVRZX4Hk2lFTBS9Sew8Bklsmgf4hAUKHMSjYhAAubPrF6SfZxKcmqGfbyICWKxElRYJ4IMZppp50e9vFI3fJbuI4O0feM23WVS5likJA6qE5zjKe4mTcsqljjqApP8TA5siRI4eKQZ55lrKGP1dhEOMxuBIINYicAe9VDTDAMwDW8ikZx6fHvs2qKPTxAK52AYJpx1rCVJtqec5UgI6H7fYhYFCwryNfIu3McnPgRU5WhoFv9Vm6k/QUuf/xsOauOc4yn6GUVa9iKQvEo97Ke7bSKqqfLSCZ1Loqfc1KTcF7rRRGGURUlUtaEcZlBDxQV040L/QpcMlIVLr5wCMK4apo11nag95+Dl4di1AgST2QEosAgEAnCS27XCfgKaQvMok6qHxp+nMmzexDCBMuimJ+iUJoiYiRoTa6gYc1VpDtXY1kxnefi44sML0EfITCLrg6zksprRlkvrhYJrgV3HKEU01OnGDz3CLn5EfKlKVZGriJDM6fK+5hhgqRoZEXztXR3XA0R7XnSzUerXe2VaSCU59kB9u79Im6pwE55S51fb0ZNsI9HKKN7tnSyjAplJhkB4NX84qLwI6ncQPS/0phXswxymiHOYGFhE2WeWVaxiRxZTEyaaKNChRxz5MmSpgkDkxkm2My1FxUpF6KiyowzxDTjTDNOiQJpmmiiDQvba4Kpqxo6VDAwg14sjTTTTMcLKiZ3qR9TMgs0tzbz+b//O970pje9YJ8V8tLBT5z/0p4tS5Y4/+vb97/iE+dDkfISoFQq8Vd/9Vf8xcf+gqiTICoTJEnRQBMZWomaSYRtacPKr2ijVH2tf+nqakOOU590iq48NclIUCYyy4zu6OxVr5K4NNBECx2kaaJAjoe5hw56GeU8AE204VBBYNBMW1C1yiZKnKSXxFkiQeqS4o+lqnZ+j5PkLMeZYYLVbCYlGlFKUaIQxGePqvPkyNJIky4x7N0sB9QxjrPvop+zgZ30iBXPakzzapYD7EIiWcWmurLDjnIAhYnFcfYxxiBXc3td/PiAOsYME1wlbgTgKfUw4wwFZTzTND3jcXOVg0Q+q7KeSilOcpAJRphnhjRNXMWNz6kCmLAsnWwcsRG2BdEo8ymHJ05/hbgbA0TQ4G47N9PyIjaeuxDH1FMX7NsAsIXr6bSXa6+IZQXJ8r43RAhR7XkR8yoZeRWmVCKKKDu6GaPvkYiaKNvUM/9SoSK63G8gJMwar4nnmUCqIEdFJ7aj8y3cGiNfLsgDqW3uCNUQKxOk1+QxOlOhkDEpnTrJvDlH/MQk0+4ow/ljrDK3IBBI5RKPNhEvmBSNIpOMcF6eROISjWW4+vUfRrgEAkUsqOArpKoXIlI9rSDxBZTyiggsJJsd5Ojh/0fZyeNWijiyFLx3+9r/hJ1qwiiWYXwKd3WPbjDpf1xNkv6JgXsZHd3L1YnXEsvWnzuucjnsNVxtpoMZJriFNyFxr5jSuFcarnKZZZIZJphjitVseVHCsgoq5wmWCf39BNXLIljYuOhJIz/HzMWhh5WsYtPzEiuOcjAxL3q9nVeznOIQWWZQtuTW227lf//t37Bq1dLm/IW8tPBFyt17rloykfKb258KRUooUq5s7rvvPn7nd36HZDKJtTdz4bjomoRdYZrVikJ+Ezk/8db/qr0+AXOlUU46+73OwEma6SBOkhSNpGl6VuUoXeUwxzR55rGJ4OAwzRhzTONQpkxJG0LoBokxkrTSSYZWGmkmSnzRzUApxTyzAESIMccUU4wxzTg5ssEsvd8zJE4SA5M0GU5yEICNXMMUo1hYtNO7KGzqgNrFCGeD5wZ6Clp63qnNXEfns/Cq+OMtU2KAo5zlOCvZSAd9DHOG85xCoVjGGk5zmDVspV+sBfTN8CQHGOI03axgndgG6JnEQU6RY548c16IHZjY2ESIEqOBDDYRKt4xnmIUhaKL/ucU011RZY7wJALBZnHdMy4volH9fdk2QghEMoFKJRDFMrvP/jNRYqxjOxLJFKPs51HWsf1ZC74XAqkkP+VbSFySNJAjG7y32bye7sjq4HwRQd6Idx5ZViBWZMqbDfZm72s9H0BNUjfIuBYx/qy+b8RL2wg8IE8XvqVfv7goDUKm/L4mfsP6ef37NUuS/OOPcFodYqJ4FkNYJFUqqGS2nh1B9/O8yjLIac8zq3tczBmznJYHaYi00ZjowbJidK24EaNHi03hhYqZZb+Mb/1tJMhdqRlrgP+6I2uW9V/0RUZ1O0oppFvGMCyEd50z8xXU+RGOzz+GqpSJixSJpm7iVppYZz8iGoGyw8nz93F+/AlukHcuqjanlGI399NIMwMcCzzSIS9dlFLMMskR9mBispz1NNKCgcEcUzi4KGRQnjlGHIFBhRIgsLD5Cf8GEJRojhLDJoZC4uJgYJCggSRpIkQZtwaZsIf40z/9Uz70oQ8RuVCj15CXPaFIeWEIRcoVyuTkJH/8x3/MN77xDT7+8Y/znT94YPHMTk3/hqADdm2IimGCdIO+AHI+R8EuM144w6QaYopxellJDytIihfmJJDKJc+8JygMhjnHAEcRGOSZo5EWNnENNhHGGGSU88EMPOD1/kh5HY7baSDj9RU55rn225ljmif4aVBGFrSXpZNlOFQY4gxpzxPUTDspMl64R5E0TbTRU1fxayGucsgyS555HMpe75HWwOg5rHYzyGkEgjRNREkwxnmSpFnOOmIk2M39rGADAxzjZt5ARETJq3kO8jjzzCAwWMUmkqTrBNWwGuAoe+minyIFSuTJkcUmQiMtXphDlDTNVCgH3bCv585nNYsoleQsxxlmIKg+9myw+vtQsWg1FEopHj75RSpukTgJ5pwJXLQnbzu30CI6nvW2XwjyKssI5xhiAIlLt7GCHnsNSSONiES0p8RvtGia1VAu20LFItpTYopqiJHyPB9GvQgBXenKjXmeFqve6K7tTxLwdI7Fi12dPaEjI9obYeUlbsTAcBRGrsjA4R8wMP4Yy6z1tDudGJjMMUUnyxb9Lo6qvaxiE5awEdEI+4sPstzazCm5n2k5SpvowcFhXA3SHOsjZWawOrtJTbqIrRtIxzp1yWHPexOEszkSocDwhEzgNfFuOdZMARwXUSihiiVEIobT1eQdr4XXOqrbdCXCkUyOHWH30DcAaBYdlFSBIjkUuoxxi+ignV52cz8Ygga7jfXFjXUewxk1wR4eRCDoZBm9rCRO8rLmQIRcOq5yOckBJhghTxaBIEpcVxJDUPGKs0vqS4f7kQIVyggM2ugiQysVyhiYmJhIXHJkyTFHjmzQUyvTkSaTyfAP//AP3HjjjZdpz0MuF75I+Ycnty+ZSPmtHXtCkRKKlCsLpRRf/epX+f3f/30ikQirR3ZcsLQkUJfgKyKRqsFomiAVJfIMZJ9iqHAUhwoKiULpGziddNJ38W2/AOTUHGc4ymq2EBUxHFXhKHsZZgDQVZY66KOFDlI06gRe5Twrg0FXnBHMM0ucZN2saUkVg94n04zj4mJh4eCQoYVpxulmBWkyXryz/79ElllKFIIu9DYRDAxyZIkS1wY5M6xgA8u9UqWTaoyDPEaFMiCIk6BIgWWsYYBj7OTWwCOWV/M8zD2AFlYuDjfwOmwRYVwNcYDH2MoNdeFSo+o8B3iMG/m5ukZtrnL4Cd8EYBWb6GHlRXuVOKrCIZ5gklFMLLpYxhqx9RmPs9nagojHdadvP28DQCqk6zA+uo+puTNUKDHBML2s0oUdXmSUUhTIMc4Qo8YgWTlNq9FNt72KtshyTC9cjYitw5P8pGw/ZNI0wetloizvsVSoWNW7KKNWsP91Fa0MgYx4TQyt+mT4uiaKZtUjoZet3YH6/fHzQpShH/ueE2kJ7HmJPVfGmikwO36S/RM/QEjBRnaQFk0cV/uCcEuFIo7+zUSJe1XYFP1iXfBZ+9QjNBudtKpO4lYDynURpkmRImPyLAWVo0SBgpwnTxZbROno2Ulny2Yi3cuQthZOwvWaURbzTI0epkE0kzg/j7FpLaLi6rwSIXQDRgkyoY+tODXIWHKK4bOPMSbPsTZ9I8t6bqI0NoSSFQpynoG5vbg4NIgmhtUA7aqLDWInSilyzDHNOBMMM8UYUeKkRIYyRebVLN0sZw1bgz5J+9SjjHlhqwJBC51sEzc9159cyBVKRZVxcRbd65RSVCihAJsILg5jDDLGeSYZDZbbwS00X2SSxQ8vnvc6bI1xHhWV/NZv/Rb/7b/9NxobL3+VspAXB1+kfOHJnUsmUt67Y3coUkKRcuVw5swZ/sN/+A/s2bOH6GgjZznGajazXKxfvLChTwIzldSGkt/12ws5qbgFfjz6RUDnBEQ9t3aU+GWpuDSpRphghNVsWdRE0VG68diLIZiUUswwwTlOMM0EDmXa6CHHXODtMTGJ08A5jiMQtNKJTZQYSQY5FXhLIl5MdIIGMqIF0J6jx/kJeea9JM8SSRppIMMo59jEtXWJ5IPqNIfZzTZuZpYJznOKa3gV5zjBEGfYwA46xTJv25ID7GKSEdZyVV0IlascTnsVikCHr80zx2q20HeBJo5SSY7wJMMM0EpXkPsSI3FRj5LZ1ISIRlCpRLWcrtezQpTKFM+fZm/hPrJqhmba6aQvGPsLhVSScYaYYwqFokCevDFPXmYBRcbooCuyig6zj4iVqA/l8pPea6uV+TkfNa+rmoaMvkhRXiilsrXXUhk1eSa1ifK2v42a/JGaBHcUQY6HtKu5GgupDZmSvvDxkuLNokIVi5x/4tucm97LcmsTCSfKBCNBSOBmcS2uchjkDDnm6GVl8PtMLyjMcETtoZ1ummhHmN61Qi3uyq6Pv8sEI4xFRhkrD5CwGulq2Ej7yuswOtsRrqIwfo7Hd/9NsE7MSJKxOtiw7hcxGtK6a33ZYTZ7juHBXQyXT2GLCK2qk3OcoEE0UaFCUeUwvHLh3SzHxGSAYygU13DHBUMcy6qkhSrnmWYMgYHE5WbeSMzzqCilGGOQUxxEInGosI2bl6RgRchLE/93EyVWV1Tj2ZBTWU5FD2C2KD772c/y1re+9QUaZciVRChSXhhCkXIFIKXkb//2b/nQhz7E29/+do7//Ri2iDCkznCSA9zI6xcZ9oZX+lCkkjqB2TKrlW48Q2s0e4y9sz9YNOP+YqKU4jwnkUiWseaKaNq1W93PNOMAQXK/36HZjznuZx0DHKOTPjaKasnfWTXFSQ5iYTHNOFESmBgUyAfhTQkauIY7OMMRTnEIgA766GfNIoPQJ6tmeIwfsZz1jHBWd7fn2iBvAHQIw/18i+3cUlc+2FEVdnO/l5fTxDlOcDW341BhLw9xB29d9PvxKSrdN2KKMeaZpZ91rBabL7ismU5rQ761WVev8ntWSCjOjvDE2a/RQBMbufqin7eUTKkxDvEECINWswfDMImRIBlpJkkDcaMBQxg6lMvLLRGxmPaKACpiI8oVVDwKrp9b4f2tC8eqESy2hVAKGbEQrouM2V6ok06Or+sOL0TQ+0TaAlTVA+KLFfDCoJQnZLzu8GLhVbnmud6Wqo5xKstTj36OWCXCGrZwprSflErTz9oLeiFd5XCSg3TQd0FDXCrJKOeYYozVYks1PMoPE5PuonVA/w7HGWZUnGdKjbGy42b61r8aTJO5yTPsfurz3Nj8ywzNH+JM+SANsXau2/I7nDl1H4MzT1GRRTpUD13000gLCsl5TlEgR5Q4/axddP1wVIUSxWfVcNA3PB3KdZ4jnyE1wHlO0Eo3pznENbxq6foKhbyiUEoxzFlGmk9y55138pnPfIa2tudZ8j3kJYEvUv7uyZ3EU5c+EVyYd3h/KFLCPimXm9OnT/Oe97yH3Y88yZrids58cSaoLtNMO4co8iDfY5laQ0QHLtBidyPi2nAQUS+cxxcojoNyXIRl0hztRXnpfpcDqSQn2E8TbbRdIWVoAXZwK0XyzDOLxMXExvKKa8ZIcpjdzDHNZq6llfpZtEbRzA5uAXTi+xjndbdnElhYXjhNCkMYnFKHSJLmOl79jOVLkzRgYTPMAKvZTCfL6goeZJnhPKewiJCk3iCbYISsV6XrPCeD7ulaTNleUYALExMJ1qDDvObVLLu4j4RKESNBisa6cDGZzwNgNmV0Qrifm6Ekuwa/ToZmNnHNCy5ElVIMcIxTHGJ94np6k5sxLEt7E5VClUpadHgFIox0g84tiUeRUVsb+K5CRU2MeYGMRfRsPlRLCUNVuJh6P3XVKgVSVhPXzRpPStBskerfGjGhzJr3qM9TEdLzrvjd4xfss6D6nnC9JoomREeLHNj9ZZJmhh3R2zg28TPWsvVpvZKmsOgT6xjnPBlT5z/5ndaRLoZh0iH7mGIMW9n6M73KZxgGyjuuqlz2vxAQOum4i2V0sYxZY4anxh4iZbfQvGI7cTuDwGCSESqqTNSIs7LxGsojg5yYfIBNXEM7vXXiVmCyjDUX3Q/QPSwsnrnAB0BEROnh4gUcxjjvNW7VXd2TvHINg5BLQwhBN/20THXwwL89wtrvr+MLX/w8b3vb2y730EJeYJaumeMroyfTMxGKlMuElJLPfe5z/Jf/8l9oKXaxw7m9rprWjJrgCX4KQAsd5MgyzThTjHFH7B1Ek4k6A0iWi2Qrk8zmBpmpjDLknmRT4haarS4GnGMXaQD4wlFWJY6zj2WsoUFkXtTPfiaEEMRJBrH5C9nCM1e5ArCERTfLL/r+q3j2zd8MYXKtejVzTFEgT445iirPHNOMcI4SBdrpYSe3Luo5kKGFtVyFhU0zHWSZ5hHuJUacq7l9kWhwlUOOLGWKZGgLwv9SopG16irOcpx5ZlnGGtZyVbCechwdZljRZayVKUAKhHKxjAima72gAsVVDqOcZ1CcoUSB61p+gcZ4tz4HLFPnjgBCSoh6x90wdDK2IaikbJxKgdLkKOXsJGmjj4StPVWuoZC5HLYZRZmC8bkTTM6dxDRsUslOujObtRfJdzx7CfQ6eb6ak1LbMFF5gqI2LyVA1P+teli8ilYG9f1JaleV4DdKPPP4NygXZ7mGO5ivnEVgPH3YpGEiDEHCbqJYORlMcgjXBcNAFksI08QpF1HeP2HZutS0aTLmnGVP8UcAtBhdNEbaSdNMJtqJXdIllzEESbuVSD7OxMRhSjKPdMusbr+N05O76HR7sLHZP/p9JC5xUrTR/aJ43y5GTmWZZIQO+jjNYSLELut4Ql4eREWMDeVrGC2f513vfBff+MY3+OxnPxt6VUJCniWhSLkMnDlzht/4jd/gkYcewZEOO8SGReV+baKkaGQT19AgMno23Zhjt/wJ80YW02hhpjjI5NQxptxRsnIyCPfxmy4ezD+AhU0LG17U/fMT5New5Tk18Xq58Vxq9LvK5TwnGeQ0KRo5zSHiJEmSZhUbaX0aIy4mEsGM8wl1gPOcZA1b6Wb5BcJjHHbxY8oUMTBppJmt6oZguWbaGWcQgJVsXPRZZnMGVfJm0IVOqhga202pMs8qlraiTYUKs2KKOTVFXmUZZ4i4SNHbvI2e5EasWEqLg9qcESFQUe2JLLdrEeok9HHLD59m397/g6FMojJCnnlWNV2PsCMMTD1BsTJHRrQGFaLaRQ85o8Tp2cfpiPRjJqsz66LiIhMR3SMEAWa9QIFqyJY0qzkoOgzMXwBvzDUlez3xgRBICwxXLXKrKEOHfI0de4iR+aNcn3krxqzLGY6xlqcvfmCmkjiWYsYZI1uZ5Yjaw/LEVcRVAlWu6J43QMRMsFJt4Yjcwwb7JmzbQrmStMyQNlqYk5NMymGsWIbR4gFysz8hZqZoiLRRcLPMZydIRVqZcoeZGRsh7sSZYZwKZdroYg1bmGeWKPGLFnd4MdEVoAwOsstr9rnlcg8p5GWCEIJO+mgqt/HQtx5j7T1r+eL/+SK/8Au/cLmHFvIC4CoDV126F2QptvFyIBQpLyJKKe6++27+43/8jxTyBZRnfRyNHGBZaXldfHiUGG10c9Y8RYUS83KGiqrQHl9JsqGL+899AVOZNKlWeuinkR1Bw78ZNUGOLBGiGJg0036xIS05s2qSYQbYwI5XbIfm54qfW1FC/yaaaGMntz2tyJlVkxTIAwqJpEKZPLrfxXW85qLeqxHOUqbILbwJF4dH+SEDHKVPrWaAY5zhKF0sYxPXLu6TIwS0NKGiXsdvAFPQmOhB4jDPDM1cWqnhrJrhDEeYY5oCORJWE412O/FKI9d030E62kGlJ4M5lSff04AbMwLDXkjdt6OcMjErCmWA4XhGviM58OTdgKI9uYrGfIJkQzuH5x/BKEvWsIFGmplUI0SI0UInBgZZZ4YJzjM+tI+Odbd6DRa9RoSOxFAVZMTyQt+q+6EMnTyvDJ3orhPr4UL3HWV4uSiiWqY3CAXzvTfe+35n9+mz+zm793vsjL+GWNnmrDpKOz1P29vISCQoigKPZb+HECYNmT5yyuGBiX+is30bW60dOkROCFS5TNJsoFMuYyR/nJ7KGjAEURHj+sSbyKk5nireT5PZwVXr30ZFVMhmh5grjtAVbaRcyHJs+Ecsj25meXEFhjBxlcsME2RoRQhBA5lL+q0sJW2imzvUWyhRIELsBe1YHvLKJCpirC9dzWjpPL/2q7/OL739W/yv//W/wgpgLzMkAvm0deWf/XZCQpHyojE+Ps573/te7rnnHjZv3owxuILh+SPYIsrp7G7i2DSiRcqsmuIAjxGzGmiNL8c2YvTbGVoa+jGEjru3sFmlNi5qOFhRZSQuFUp00PusGjIuFRNqhGnGWMf2KyJB/kpHKskZjnCGoxgYdLOCQU5xjhPMMcU6tW1R/xo/z0d7XNIIBAIDgUGcJKvZTIqL3/S6WMYgp9jLg6xjG1u5ngPs4hSHSZJmJ7fS6FUqW4i1oh83FdVd1S2dKC4cSaKtj+W5Gzg9ceSSRMp5dYpjPMWy5BZ6G6+nobkf0d6CNAVWwcVJWpSASsqk0J4BWOSVcKMmKHBtr2eHF4YlLIO2VdczePwnnM/u4zzwmtm3cR231eWJ9LCybkwNIkOfWMNT5Z9xs3UNCZXQFb38j3V1vxQl/KR3LUYwBNIWgUgJhFRtA0ev8aP/nv/axXqjCE9vzY2f4sSjX2XD5l+h6YRgLjdMkTy9YuXilQwTIx5DlStgmuzL3ktz0yrWbn4bwhBI6XD8+HcZGtzFhq7tRGJpVC6PEY+jXJcZd5I+Yw3CthCWpRvCSklSpFlmb2Awf4z+yo3Mzp9h/9lvkrZbaWtcRzSaxsAg6kYwYwlUqYQpTFouUcS+kAghiPHilWQPeeUhhKBD9dJYbmF4eJjNmzfzpS99idtvv/1yDy0k5IokFCkvAt/97nd5z3vew4033siO1l+icaodYoqWSC+OW6LgznGucJpUtJ0Zd5wh5wSrU9ewovHqIFkV0EaNIXClQ0FmOSyeZNA6S6kyj2nohOCs150coJkO0rw41WlG1FkK5FjNllCgPAOuchnhLGc4EjQZa6aN9Wxng9hBWZU4xUEe40f0qJVBJ3qAUxzkHCdYwYagvGyOLKOco4/V9LDyaY+/KSx2qts4xSF2cR/X8Rpu4LXMMkUTbYvXNUzM1csRpTIyrQ04ZXuVrITQeRpSUCjPXNJvze+Zs7PpTbT0bMHJxHGjpjbeLYNyxsCJGVVPRFAmuEao4IkAr7Qvor6aVjTdSiLVQX5+lGSsjXKxdNFQI79z9UhynOHiGTasfit0tZFNeqW/S4rYeBE3ZuHEzaCqF1KHaKnaMsN+Pv3CsK0agSK8DvTKK/rlv6ZACx7v+ezgEY4/8hU2ZG6l55guWpBlpuqVMEyEXx7ZdUG6KMfxckoMVNQmYTdiSMgWxzm8/2sIV3JNy1uwVQTlVCAa1WFfxRIdrOBk5SDr3J1Yfv8YwwApabeWcXj+Yc6cvZ8JhnFxSEZaGJs9wnR5CIFgXA7R47ywZahDQl5KDHCME+yHH+pS8W9605t4//vfz1/+5V8Si71yw6NfLoThXktLKFJeQHK5HB/84Af52te+xmc/+1m+/LF9NEZkUCkIpbCMCNta3sDB6fs4XzpO1Eqy0byB1tiqxQLFazhnGhZ39v8+k7kBKqV5IvEYOWeGfGmKrDtNnCQ38LoXLWThnDqBQLBCvLi5Ly8VpJKMcJazHCfPPBKXhJcsPMxZYsRZx3YqlDmrjnOek2ziGhwcznGCeTXLTusOcCW9rGaeOSYZxSaCTYQIMTawgzEGeZgfsEZtoVssDz6/rErkyQYNJC1hs5armFWTZJkhKRrqQwKFAGFgxKKI5b3IZBScGCrqNTQ0DS8syfsdC0HRzdLIhT0wz4RSipMcJB1tp6VrE5WmOJW0riqFBDduBEZ/raGvvBgo36gPBIvyVrWEVwlLh0x1rLyWREM7B3/2d+SK45xfWaIpZxEbLZLqXU3x/ABTKyNMjh5kvDSAMqCpZQNbNv8BkaY23ZrTJRAd+e44Zkl6oVieujDAiQiMsqqr2CWCcK368sP1eSjeS94+SFOvZ5YUquIwcPj7jJ18lI3Nr6LHXk1lcpjj5kEqFOmxVusiBobQAkMIhLIQ8RiqWMJZ0cmRk98mV55kRdtrGRzbzYlj32FZ005Wt9yMmS0QVKNX1cpojakeyAnOOcdZEfXyNKRE2BZRabI5cStDhRNMOUMoFDYRro69lrKcpeBmSckwlCUkpJY+VqGQnOU4FcrEcg386Ec/4gc/+AFf/epX2bIlzIcKCfEJ+6S8QOzdu5df/dVfpaWlBXNkK3ErDUoh/NKosv6wu9LhR+f/N4pqSZ+W2DK2d70F0/ZmVwwD6TrMTp2iVJolKuIM544xKgcAETQm3MjOZ9Wl/VJRSnGawyRoWBR2FqJRSrGPR5hnjhX2ZhqdDBY2E2qIw+wGdJfrNnqYYIgm2oKmkQIR5C3dkfgVLMdEVXTSurCq4TeqXEZYNkopHqx8iyL5uspik2qUPTxAkgY2cS1p0YRSikf5ISvZQEfNdycsC6MxjUglUbaF25zSPUAsI8iXEK70yvEGO8mJM/cyN3Wabe6Nz8mTVlA5TnKQKca4Zsv7sLq7caNG0ATR7xsSjM+3ow2Qpqg37GsNfw/Drfe0OOUCM2eeojg7Rj4/QXF2jEJhCiEMlHRJpDto6txA47JNxDv7EUZ9zotQCsPxygB7mGWFMgXSrI4xyIUR1ZwTaVUFijKq26yjZn/MCqhKmenjexg89TMMw+Kq6G0kijqEc2z+JK5w6aAHYetiAcI0wLb1d2CaiFSSicIZDmTvJxrLsG7HO5gbPMTxE//O9uW/RKvbpkstO44XyqW0x8WfSHEcZp1xBkvHWBvdiel6A/Qbx6I9NhVVZqR4gkbRRko1XLSXSkhISJWCynGGIwxxhpTRhBMt8N//+3/n937v98KIhJcYfp+Uv3ri5iXrk/JHVz8Y9km53AN4uSGl5NOf/jR/9md/Rk/D1STEDRgW1SZxF9GEhmmxMnMN2fIE4/lTKBSTxbO6rKptocoVJsYOcGzuEcpOjggx8mTpoJfNXIdAkKbpRREnejcUx9lHC520iCs3zvxy4HewHhWD5EUWB4frE28kaiWDHhM9pSTtZj8nSk8xqE4SJUoHfeQ8L8l6dhAjgY1NpqEfw7Zx5+ZwkZh43dJtG1GpaFs4FsUwDdbO7+Rg5REOs5t+tZaUaKRFdNCmehhnkMe5j2bVjk0UF4emGg+KsCMYmUbINCATUWTcxo3p35O0BIarEI5CGaauaqUUQiqEC/1dt/DI1D6GOL0or+NCuMr1cmtO0ZlYww3Nv4bq6aaSMOs9JjXiQAmdZyItUR8OtfBeXhvu5TdX9ESMGY/Tsv76oMyvP5ZSfhrDihKNN9SUE67+98PIpJfIbkpdfctvwugLIbOiMCoKNyKqFbsAZS3OP9Ed6lVQUtgfZyQnyZFlbNf9DI09QcRI0B/fTG9yE3J4DOm1qJ9khDVqq96m62oPii8eTBNpCg7O/IjR3HGWr389nSuup+LmOXb8u2xf+Su0GN1QLi0SKJimLuPs5R1loj2YkRjHsk/QJNrpNPvBdVGmGZQmjpgxet21uneKCgVKyMsfqSSgLqlATFwk2cBO+tU6TssjjBZm+OAf/CHf//73ufvuu8NSxS9BpBJIdekCcym28XIgFClLyOjoKL/5m7/Jww8+zuaOt9GU6PUq87h69hkWixRD/xCFEKxpvhmAgsxhmzFMO4ZTKXB26GHOzu2l7BZYGb2KHqe32kn7Msy2SOVylKfoZvkFO1a/kplSY5wQBympPH3RjXRHNpKJdBIVMe1J80q8mqaJaTaw0biRNc52flr+l7rtpMxmCu4cZzjCWrORkipw1HmAInkayJAptxF30mTdSfIqy5ryTpojPXSl1tIwn+GMe4hd8j4aVTPNtNNNP/New8cGmphlku3cTNROIiLeLHw8Bq0Z3IYYyjZxY6YOmfISwqWhEJ560OJEAdqrYkfjbFp+F0+d+gZtqucZy8pOM8Yo57hGvJqGq25BWgbFhN/nhGopX+U9l8oTC9XeQEKqOoFQGzoVvLRApOjHol7YCItoVBsDUsFC74wffuW/pkyBiwqEmxS64pbhVserTJ1HYri+16ca8qXH5XtUajaO/rzKwFkOHribjGjhqszraJatyKlp5Oyot7IWATYRXBwMItpzIc3q9SViM61GmMyfYedtHyQaz4CE3NQghmnRZHcjChXvM72QOQMv1E8EYaZ+yGmD2c5KdTXncge0QJbS+68QiTgYBsIrTa0qTuhJCXlZc0g9wRBnsIlwjbqDhGh45pUugqscznOSEc5iCJOKW+b7/34P69dt5Gtf/yfuvPPOJRx5SMhLi1CkLBE/+tGPeOc730lEdrBz+buJENVN72rxDQghIOhOXZv1qx/HYhmUUJybfJIT4w8QUzGWi3W0ix7MsuEl44rnXaBOWJae0X8ekX46wfkplrN2UeWpy4aXc4Bh6nj6yxDB6KgKR419jKvzrEjuYHnqKkxDG/+6K7sKGt0BeqyGwDANDGnSNNuJgUmPvYYOezkz7igHc7sAyFk5jk89yAqxnlbVySxTzMpJpuUwcZK00sWe4o9ZW9zGstadpDLdbHY7WVOeZ7h4jBk5zqA8Q5EcEaJsMW/Sx0kYGKkkIhYD00TFo7gNMZxURIcjWdpQlUGDQYGywah4SR81XdeFkrQ0rSFip5hXeZqdpxcprpBYRMik+8g3RQNhYDi14qSm54gEwQIvSm2I14KTYWHVL/3agkT72vf8bu8L0rgCUSGq70kTMLV4k95f32uiTIETr3pNpEkQuqZq80+CHUOfyzX7um///2VZ41Wsyq1AThSRNcUwaomTJEeWzMJcIEMgIhEm8kO0plcTizSC1ANoal1NNN7EmbndrI5t16FepunlsFTzdxBCh6VGbJCKYiXL8fwuNmRuQbgmlCs61LBU0iIFELEYwrKQ+TyqFIqUkJc2SilyZJkzZygYeXqs1cSdGMpxaKGTUc7TYnTzFI9yDa/Geo6Jzo6qMMQZznGSqJng2pXvQgGF8jT50gy2GePn3/Rm/uA//yf+4i/+Att+8Sp1hjx/JAZu2HF+yQhFyiXiui5//ud/zl//9V/T33wHPU1XIZTQAsU0tBHgz05CnRHg9zzw8TtmYxqcn9ICZT3baRPd2mMiDIRv5AojyE94tkghmGKUCWOMteZVGL4h4Rv38LQGflkVOcY+VrP56btav8gY0aiuYBSNIvP5F/3zp8QEB9UuGiJt3Nz6m8SMZDW8D3SiMWhh6s9CG+jZassiYsS5Lv0OfewdF6QkVYa2cj9tzesxpYElTXq9yl1xknRSnwOUUS08yc8wJgwSLT0kRQPRRIblkR1aGAlBqTKPKpcx7aTOY4lEIBrVHrloBNmUQkYtbUhbRmBMawPcy0GRvkDx9kcBKKRtYJQkqWgLk2Ka5lzrRWfTK6rMcZ6iv+06ZH9f0OvEqKhqrofyGhl6+OFR0hY1AqU+hGqxUKl/YVGfEn//vAR3Ianf59rl/MpbtYn7onoopCnA1J6eYDvemBcl/asF26eatyKUwjAsMvFe1PzTi+02ujnKXuIqQVTEdZngeAwsXaZ8OneWzpartJiyQDgglEFP59VMjB1CNt+AoVT1nHelV63N+wBLJ+Dny1OcmHuUDW2vxkqkEeUKai6rPVmuizsxiRGPITKNUCojCgUvDE9fs0KvSshLDVe5PMS/4+DQaLQRiTXy8Px36U9sZbmxmpaSDnHu67iWk9ldHCruZqt7zXP6jNMcYYJhVqR30LP8ZoSh7/+ZVF/QGLYpvZIv/O2XeOCBB/ja175GX1+Y+3mlI5WBXILKXEuxjZcDoUi5BIaGhnjHO97Bvj1H2dr7TtJ2GzjeHd6rxOULFWWZiwWAUl64BzVhFoJCJcu58cdpN/popw+URJimNiqlDGYwny0FleMAu5hVk/qFEqxiLXPMMWqPkDVmSRutrE/diJyY1KJlgWFRUDlOcYi1XHVFdIgOEAJZKulj6TjPvPwSopRiwDjOaXWYdS230tewVdu9QWlezwA0zersNARGJACmoTukK4WoOFq4CEE0lmZHy9sBePTo39PLqqcN7WsSbXSqZQxwnPzkk7THV7Kt9Q1gmSgpdQ8IKwMJgSqWEPG4FqaFIkRsZCKmf7sGugmhb/TXCAKkAlNoh4OjlxOWwihr75WM2azuvZMnjt7NpDkArosAOllGv1gbHLPD7CZlZOjrv4VyU0zP4KvaELKaxHTv/FCG0GIGPR5p+a+zOCcFLVD8a3xt/kmwTu2y3lXQL1cc7PNFWCRUVHVdpYQ+VLVXVt8b4x03P7/GP77CF34e8UQL81aOFqvloue5EYsRIUab00fRLREloXNJbBtsGwxBV3oTJ0bvJ9W/jnhLN4YrdRiabVKWBcp2hahpIJyac93z9kkkjqqQK05zfn4fG5tfjUUEKg4qFoFIsxbbI+MI09R9WKZmvGNQ45EJ81NCXoK4OJQp8er238bKNCMqDrPWWQ4XHmHIOUaKFI2xLppjvVRsxcFz33768GshyMssERHDEjaurDDMGbak7qBl5TXeueJNXvoFKYQgFW9j24rf5MTJe9m8aQv/9NWv8MY3vvFFPBIhIZeXUKQ8T+69915+7dd+jZjoZXv/u7AM24ug8Q0poZNPZU3ohBlYMnVG63T+HGcmH6NQmmFezdKeWk3WmeS62GtxbQNbRKBSQbnucxInRZXnNEcY5BQADWRYw1YytJKNzLOn8hAdnVfTntnC+dM/46Hit+inj8zyqyieOo6lTBpookSRPTzActZjE1naA3mpXKbidEopTpiHGGaA6/reSdpq1UabENW/Bnom2R+nYaAsU4uR2rHXhgH6IVQJXdHNMSWzTLKF659xTJvENZRVkYe4h/6GbbgjoxgNDYhYFAyDSiHLiamHaUh00tu2Q4fsFApQriCkpNKYwI0aF/RKBONDG+ZuVOiEb6mQEcOrRiWJ9izj2uTvkhs/B6bAdUocOXsPZVWkhQ5mmGSGSW5a836K3Smkrcv1mkVtzPrek8ALolQgSMySREYEwgE3IgKB4s861uaaVHM/YGGFML0vF3nsP1/4sxLa07JIwCwUJFRFjO+d8THLqpqHUhPOFizjeVwiTe3MO9OIeA/k8xf8jYuGBkTEpjB5lJbWdVhWClUq6+/IMlG2RX90BxVVZu8jf8PyDW+ga+VNmEWXxu51jI7u5Wd7/5oNa95Ke89mSrPjzI2fZMQ4z8zECZxyPhhUd9dOSu0JzJKNyOZ1OFmposVuNIIqFEFK3Gw2uK4Jy+vL4sqgX0tIyEsN0dKEKLmoXIG0aOLa+OsZNk9ypnyAra2vQwBnJh5leWQzolx/ISmoHPPM0hrt50zrCKcG70dg0JZei5ObxZZxWvp3LIqyEDXnuxIC07BZ1/NGRib38Yu/+Ev8/u//Hp/4xCfC8K8rFBeBuwTd4pdiGy8HQpHyHJFS8rGPfYy/+qu/4rOf/Sz/9Ddn9KyvUmAolPfDCvoz1HpUQIdULGC+PMVY4VTwvK9xB2PZY/ys8i3KxTzr49fRW7yAm1cIjGgUWa7ohGypcJwSk/FJBsVZJuer21y9+g04Y6OcMs8zP/8ETjnPyo0/T/fqWxBS0bx8G+NndnP69IOUzx7AjieolHNE7CSdTZvZlPpl5NwMJ0b2s4atgDbU55gCuGiX8suJsHS1o+ci7J4tQ5xh2D3NtSvfRTLSpG1aKfWstGFUPSjonA0MQ/8GvPwU4YUBKssMllemAZE4yrYQrosSgoGD/06EGFGeXZOvMQZpoJEmqwNafW+EwdzcOZ6c+wESyVxumt6W7WBZiFgMVSzC0ChmKoob9bxkNQnkUJ/07b+vBLoCFIBSOKaJUBBJtxBJt2DNVxClCulYF/sG/pVxOYZlxLiq623I5V06pKusMCpSixNV9TIIVH24lmfcC9cTKGZ9ONeFBEpQ6pcaL4n/eu2ma07J2opc/rLBZxgg3MWvL1ruIo+lrccvpO85WrAN77NjDa3MjB6DTBqRna///RomSihIJai4RXJmDjvVrIcci3jNHw3wQkdXdd+Kbcc5fvj7dPZfh5OyiIoWNr3qd5kaPcLhB/8vh078P1AQjaeJJJro6N5JY+96Yul25gePc+ypfyZWMFmbvgEcB7IV7zuX4OqeKdJxtKfXdVFeGJgfQipME3WZcsVCQp6OrJphVkwTX76a6OkpkqTrvCFThx+lNb0aozENpoEAusVquhNroQTKlGTzw6xnPQgoKT2hZxsxipEKpfIchvMk9kSC69b9NsIwGZk+wOmZQwA4tsCsDQc3q+GWYsH50tmylXS8k3vvvZdHHnmEf/7nf6a7u/vFOEwhz4Ew3GtpCUXKc2Bqaop3vvOdnDhxgocffpg/+u1/A7yZ3NoFhdCGhKuCBPm68BVfwAAoRW96CxEzjjAtmpPLMI0IV/X/EoMTuxnPncQ1BU5zAmu6gJFK6eTU+RxGPIYslTAiNrJcIW/m2cW9RFSatu5tTB7XIsU0IwwM3E9zxwZaWrfT39BNPNWGZcUwKjpcR9gmPT3X0tt5DW7M1DPEToXJ8cOMn9rF8PR+btr0e4yN7COv5hniDA4V4iSQqOfdyG8pEZalc1M8ceJXJlpqkZJTWY7xFNt6foGUSmqh4egkY/+xcKWeMffCt4KEeanFiwLwhKUevJev4onZUmmOA6P3kGWILVz3rKu4jTNMe8NaHVLm6PCx8amjPJW/j2WsoY1unuCnSFnBqClXLRoagmahtf1Ggtl+77HyEsXrigBQnyPiRnWJ4lJLDFSUaC7G1b1/gBsxgnWlJTAq+m5slmWdQFELt+uPRSkqCRPXZrGAqQlPg5owMC8PpZq7IuoEheGoukaLyAs7kYLxWAtyUy4kaBbY4kIRNIFUJuD6Ser1y/sCKdbey/yhHyLbbYxoFLesc8+MeJxsZ4Q9Q/9KeroTO5piTe+dCExU3A8ZdL1xamGshGCscJKu1TdBxMKJGsGxaVy2gS2v/0PGDj/I7NgJ8tkRKDlkszlGBh7BVQ4gWJ6+htXxnbq8cO33LgxQDqpcqfZMMU1dAc4Qwfkncxf2BoWEvFAUVI4ZJim1xchPD1JQ8zimxHJNLNcgYiexI0nO5w6SttooD52lIGboTW9hdXY1toqwgg3s4UHSxWNsSN6hm+Eahi4m4bqIWIyyrXBxdB80FyJEiRAlp7L0t99CT2ozMyeepGntNVhmFGUYrIndwerO2ylWZrGEWb1c+NX1DO8VR1UvEd75lUi1E3XfRN/qQXbs2MHXv/51brvtthf56IaEvHiEIuVZ8uSTT/KLv/iLlPNJ1vb/Mn/4vm9WDcfAg6JnQYIqOZZvmOpY8Drvip+vgA4R60ivq5lNMRmfPcJ47iQAx+cf5fj8o3Sk11Ny5pmZOw/ADfabSZYjGC3NVIozDHAaS8S5+sb/jFQVstPnaG5YTkPLcpKty3RinkCLkgpQdoN8AMOrRqoTmL0ZUMOitXcrLd2b2fuT/8nZiSew7DhjzUVWGDcTcW1kucDhmQcu/QB7ISJ+HxFhmsHjoGJXjbBbuC5K6TyLYkmv55Z1KdQXgEFO4eJybORHWB2vpUl1IRuT+rs3DLCoSRwWQeJ6MG5DoOyovilJdFigt7yyDEqqwMNn/oEW0cH13KnD/Z4lebLMZ5+ioZQkGW3mXOEQA85h1rOdbrEcpXRX8LHRA3R2bkP51Z1sCxXxBFWt0exXnvKbN/o5I95jXfXKS2avsc6V4eeECCoNtt5XpfcXQ/c7ETWVvHwBEeSS+LkofniUADdq4EYuLlBqSw/Xeksuml/ifXxtE8aFy9fln9Tmv/iv13yO8PfPlcyc2ouV114iqVxS269BCLMaNuZvxhu73/NFSEi2LUOiGI2M0d2cwTR1JbgRznPgzI/oXHcrk2efIhEVRKMNQc0LhEDZ1fyn0bmjnBi6j5KTY+XN79RVxkR1H4SEZLSF3PQgiaZurl31G8Sy+lxT0qVIkRMTD7Cu6UZ97XJdPenilShW5YoWwzXeYSGlJ/b09U2YBmZjGpTEnZm9yBcRErJ0KKV4gp8SJUaq3EM82UaLvRrLjuNU8lScAhXKVGSZ9U230ZvZirJM8szz+OmvMGkO4BgVSs48hrAQwqTozEO0XV8PbRuSCX2e4N04HQlC9yjaoHbykLqHZQ1XYTrQ0bEFaemy7kDgdY8ZTfXzGRItUHzBbxj13hQ/KMOKMHign+bY1bz2tT/HJz7xcT74wQ+GzR+vEFyWJlQrDJDVhCLlWfDFL36R//Sf/hM9LTeyavlNCNMEv28DNQaoUnrmlqrLFjzDVSk9iyq9WVSkXqbWeAX9WErS0U7KqTxdzVs4MXo/+dIUo3NHgsVWpa8jmY8xl8wxmH+Q4dwRWtKr2LLxHQghMEWErdveFfSRUIaeudazujWfFxhY1VwA4Xqzpf5ilkn/VT/PkYf+Dy3xZcQcm5Puk9iOQSa5DJsIRZW/9IpfhsAwbZTjVMWKIQATJRUXLS/sj90XKH78+wuUtLuaLfRaa9jl/gi3XEBlYoEoVUohHPTNxhcntTcP38izqlndyr/7eDNplpUgFmkkWo4/J4ECcD13cpojPFW+H7fs0konO7hFzwICQgg6VC8jldN0VDZVV5QyECA+tR6DhX99hEJ/N0ZN1S1vXb+KVeChqOlSL9xq7HW1eAT69+o/9wpLKFOgLB3m5S9X2xOlbiy194YF7y8MYQvGKS7wfo1gWbRf/hCM6j4CCEf3RRnedx9jhx4kYWeYL4xi2FG2btyJipv14qZ2X1T1NUOYdG64jf1P/h+GOzaTynQwO3WKuex51tzwazQs30jjsk0c+eH/ptBbIV6ydaihH3YqdDjc4MQeGtvX0LPt57CtuPcd6HH7eT7Sgq5VN3Lsya/z07NPctvGDxAvWghhYLsmlojoaoWBchXBX2EaKEcXZVhYSQ3Q52JFIOIxVKFcvdZdoDBHSMhSkWUahwo38XrszjXVHEEI+v/U3kd80ZCwM1y38l3M5M8RsRuIWSniRhrDcbVAlzXnl20hKg6OqbcjcTHRIkQ34Y0wcXYPHWaf3n5bJpjQARD+DFUtfpiwPyFniuotzI/88fZDmCa97dfQkOjizz/6CR555BH+4R/+4RXdmfxKIQz3WlpCkfI0lMtlPvCBD/Av//IvrO/7JZoziztpV42WBbP8/u9L1oSDCW3x6EiP2ouUqLsAIhXLWq+mr/t6lGXQ3r6FsdH9HBr8dzrjq2lpWMVkZZD7nW/iZh2EMJC4TOUG2NLQEyhwVWOkGa4K4v79jwwMixr7orbZXHCOKMh0rOWa2/6Y6aO7cIt5pCEZLh4hK7JEkUSeZc7ERVF6plYJo76HixnRXbAdB+Wop9/EcyzJ/HwxvGR4qVwyjSuQySii6KDi1apdAu/41vwOqsn0VaNOACxoWGwYJhuWv4knjvwfVquNz2mGzBQWK9R6osRpo5uYiC9app1e9vAA7twcViaDKruoiI3hSIQjtUcFFoUtPReq4VC6I70f5lVfGasa9qS8sEhpiqrXBS1Q3IguPSzN+t/shTwkgaCoERx1PVX8/zXnQTCemt978PKC5fyy4X4Ime89EVJX7ioOn2V434/Zsf19GKNTPJ77GqlYD8MPfZv46nWkV272fgqivmll7WcBPZtfQ8vK7YwcfoCZ4gjp5RtZ3vnLiPZm5s+dYHrsKA0dKzk9/SgbG27VAlPKoOS5wMRxizS1L8eMJaCi9Lj9ni0GuNMzDO+7n3Smn6vu/M/svedTHJq4j3jJoiexgUa7HaRLxS1iqwW3ioVFHwyjvuw26ImccqUacin0NU8Your9CQlZYsYZppVO7MaMJ94lymuii+l7ixdMDHrEImk6I5uq1yavmqZ/nVY1XvEnR7/N2PwxUmQwai7iQghWq83sm7+PDC2kaaJn7lYSzT1ezpjX66lG8OvJRP2ZwqkRVSb1k1z+kIV+PZ3uY/va3+bB+7/J9ddfz7e+9S3WrFmzdAczJOQyE4qUizA2Nsbb3vY2Du0/zYb+XycWy9TF4Nc9rul1sigkyRSeW1hU492FQCERGIEh61+Y/HANZRmUnRwDQ7sYGnsSpKTBbmU4f4wpOYpp6m7TtojhCkcLieZVSC/uv9aAC5rvUQ2duRjKm+mXVk1ysrd8LJZhRfuNiIpLWZQ5N7OHLa3XMZR9ODDcL4VFJYS9UCmllJ6tvxgLbzoLn1+IS2z8mHUmMbE4PPkTiiNztEZ66Vh2LTGRQEYthCWroX9QM90uAoMcfK+bQHieI+XN9MUTrUjl4uJg8dyquJjCoo9VF30/TRMCwWx5lJZIG1QqOtFaqqCC1SKPQ01u1dOV562uUC9I/HOkNjRKeyJ8o7m254mo5pKY+rfo2osFdf3n+evWLOO9pjvAL/jtB54RX3R473lNIxXVr0wJTzz569UKJE+o+MtOnXySzuZNNIlWhkonaIn3kxDNTI6foByTpNZtDgSNPi66SMCi3TEhmmqh/9q3IE2Bcl2mju0ie/Q00wNPIaXDule9j+M/u5tl23aSNBrqD49SOG4RW0S94+h9pjf2SiHLwe/+dzLJPkbOPMqqtW9EGBZ9615Dy3nJuem9DGUPUXRz5MszNEbb9WxyTaNHtbAISF1oigi+d1WsyQkTRv25/GzO1ZCQ58A4wyw3NyBamrRol7LqTQl6lOnrbBCa7YtspfR7BiihZyKEYeiy2hCEbImyQ0dmAxPzJ9kpbgu8KD49YgWNqoUZxplhgsdO/V92ln+ZxpbluhcVEPR5MgTK1BUSlTd9WRVJ3vv+8xr8e7NtNbB5xds5NfRjduzYyb/8yzd43ete90Ie4pCnwVUG7hJ4QZZiGy8HQpFyAfbs2cNb3vIW3HITW9a9G9OMVEMzoO7GKrxQFyVV4E3RM6zeY2+GxHCk9qIIz6XrCp3LYvsB8Q5uKkrFKTAxdpCRyf1MzeqcFMuIoZAUjAKbtv0GmZZV/OxHH8Z7k86Oq+nuvY5Eqi34fECH4NQ2xKuJ8/epi8M3BMrS4TZ+OIhfIQnASRjk+xqITpWQJYmUDlZFPGcj+tkSVAtyXZ2jghcmIgRBkzjD1O/5XhQhqus9Td8Uvc7zDzmJkiBDK/ZMiSRpxnNHOTb9ED3Rtaza9jZsO6INc6nAVfWeFS8EzDf8jaKDKDle6VhAKWanThMVcQxlPt0wnhcVyhiYFFMKDANh26jxaUS8XTcTdFXVKKfWIK8annrg9YrhouLlAgIzCOtyZDCz6FfwUiY1IqJmpWcQR7UCxfemVEsQV0sWB5qgxmNTt+3a4fq/f6P+9aonTCG9n79wYHriGKvabwFX0RddR6+xEidlMzr0JZLL1lS3ufAj/WaP3gSDW9O0Ulkw9sT9TBx+mKb2tSzruZmBwQdINvfSsmIHB89+m51r3qXNJEtPfEi3TKE0rbvNo8O7/FwYaQvGDz1KOtPPzq5fZnzqMEdO/phErJnGoQqmEWN5fDNYFlK6HJ65X4sUQLlSh3kppQszKK8BZNnxmpQaVa+xUiD0TPSiAOvaENmQkCUir+bJMUtbYmVVmLgSIVxd1EQqr5GuXl554dfKFFoe1JSDV4ahQ65qvBvK1IJGGQad1ib2n/8WTkRiX8CJnxJpUqTpZRVn1XGeOPdVdhbfTKZ3EzJiIi1jgVfXm5xRhr42ujUeFar3b7+IiH+91Pc8m1W9ryUR7eCuu97MJz7xl2GeymVCIZBLkJOilmAbLwdCkbKAr3/967znPe+hq+1Glq26VZ/kC2fpawgqIpnom7Fv9AfL63VkxNSGSW01J0AKcGSRkpxl+PSTDA4+SsJM4yh91Us19tLcvp6W1vWk411efgts3fZuTCtKY0MvwvNiBNc635Piz4yjP7fW8PSXA88QMrVA0fvkv688o6l6cVQmOAkLSyVJRpqZLJ2jIPJUVPk550/UHc+LGSumiRGJePsgUW5NQr0f226aCDuCciqYDQ26elahUB82toBLDQ3LiBYy3BA8X8Ya8mqeg6XHOXzkG2za8k7dAdyRGEIGZXqD792uzpIYc3nvEOjslJnSMIcGvs3K1E6M+aWfTTnKXgwMOlu36jChaARkEXN0Boxmyo0RHYxo+uJBBF3n9YBFnfAImj3WNvGrxajPMwHv5mp450/gBdG5J4FXBbz8Cf+DvL+1HpNaD0otwfo1YYssXl7ULLsQHdIlqiF7/mfXlAmtzVkRAtLLNnJ65HFa+3dilJK4EYv9p/6ZSCpDZsUWr0pa1ftS3xOhun1lgGtXj8vc4BGWrbyD7u5rKI4NcubcTznz+P+jc9MdHP/xFxgZ3UtPZjMz+RGGZw7gqBLReBPR9u4gqNSNeCFzBkhZwbTjnJx4CKeYpathA0IYnJx8mJZoH63xfkwMDKWIm2mGcsfoiq0Kep8AOmm+VKpOBhg1B8oPlfH7pASvh3FeIS8cI5yjhU7MXBlavRPbL/PuFaBAelEMXmipH+WgLB0KpqwasRLkoJheSCUgJTJmARZdLVs5NL2L7dyM8TRG5TKxhik1xq7xf+W6WJx02yp9T7bN4HoaTHh610oZMXXunqwZi3/9CpLavLdMLWw6u7aTSLbx0Y/8JXv37uXzn/888fjikN+QkJcKoUjxUErxsY99jL/+679mdf9baWlZXw1XuYDhVVsmtdZACwyWWqMOzwAxBdLSFTtyuXGGh3czMvIkZScXLBeLN1MozxOJN7Jl8ztpalqpKyHJ+r4RzS1rMVypZygNFYStBEMKPpjqjAuwKAnYuygqo2rQ1W3LM5xcW79nliE25jA+dYiSO09nxzbac80cyT/K1uhtuqLWs0mKrT2mXqx6XVNDoSugCdOo9htxXe0douo58cUJSmEkdOK+X3K49rlyHL1s7XpLnMOSECm2qhvYNftjHn7kk/QmNrGy9w7c1oYgpEhGTaxcJfheEAKntUF/D+Uy50/+lBMzj7LK2krvfOeSjs9nOes4wGM8furL7Fz/Luy8g0jEQSnM8VkisgEnHcXKSZykFYhb5d9MFXUha0C9mPGX9c6B2sR4/5dZe/4IvIaNoiqI/VAv3/shaiYApCWQlk5SD5attY+98KbgGNf8lBcl1qOX9cUDgIyIRdvzywjXNl70ty9rBFjLyp2MHvgJh099i02td1KSOSbmTiCVw9iuH9K3+XV6/Gb1/PM7zktTBIntC+0dI56gGHOoJAxOn7sP04wwP3qGw+f+F0q6nB55gJa113Lk4R9gRGOIeJzOq38OJ2FUPVS+oDIhkmll9PiTrNv6OpITCldVUEpiGRFG545weOI+GiMdOLJCwZ3DUAYHZ39C3EgTFXFaI71EzZSeIIDqhIAXClYduC6GgeHlmvlhfy9S/ljIKwelFKPiPKu6bsPMNaCiEUS5AhUvX9AQKLPGM+0XNfF6nPlh1soQCFU9X8CbyPOiHgynKrTXrX4zj+/7O05lRlinrsIdHbvo+Fy0mDekQtkGyjR0vow3C2JUXE8g+ZOFpo5suIiLWuev1ITfep6ehkwfV21+H/d8/5951atexTe/+U06OjqezyENeR6E4V5LSyhSgGKxyHve8x4eeughHnroIT7wu98CFogN33iquXABiwRMEFKFqgvrEUWHuZnzTE4dZXR8P/nyVO1GaGpbi3QdMpl+Wto20ZDq0sm1Xg8JvZTObfFLBMNiY7H6xuLnwhcsfn5BTRhM3XZqlnFtbRDWGnsqYjAyfww70Yg0DQbMk/QbG7Q4MMwLz6YvGl/tTBVByWEjGtXVvbyGcMqpIBwHEY3qMC7QRpBnMCunghGNVvuR+N+JqWfPRMTGyDTiTkwCYDY1IfN5LaZegCpDURHjJvV6pt0xTuQOMXTkEDEVxxQ2UStJg91K53Vvwiz5U/EKp5Jn4syTnJzbhSVsruJGmt32JR1XLQ0iw7XqNexVD7HnyJfoa91JY2M/CVfPuJmTWczJLMoysQwDN5Og3BT1bvKiqiVrQwVrhW/gJay+USt6lVd9KhAFlqjLfZJm1aiuTYL3q3tJW6/rRms+sxZR/btQ3Ae5MBcSK/ZFtufhd5CvDdVSQiCGp5k5shsqFRrb1gIwevpRlsU20Szaue2m/0pu4ixP7L+bjq7tWO0di7yY/vb18agZn7fvkeY2ZkeO0RfdyNjUITbf/B84+NDfsWzjzzEzfJTZqVM89IM/w7Bstt75p1iROG5E4Br128EFpSQRO0U5N01pbop4Yw9W0dG9fqSks3EjXfE1nJx+jKTdxIrUNh0+qRRzzjgoxZH5R1ifvIGoilQnDnxxYprB+R0cSil1VUT/S1fW04ZjXkkopTjLcYrkiZEgQYoWOpckDy9k6ZhnlqLK0dK7Faks1BMHMNes1HNBjqt/35Yutw7oEuq2GQiXhUnrgvr8waCPk1nNDzEiUTZv/FWe2Pu3xFIGPar9oiFW69nOY/yY6cIgqekujEQcNxHRjX0NgRuzsKcLOBl9HRaO1GLGEMFn++MA7zpqL85VQQqi0TSbNryL7r6jXHfddXzve99j06ZNhLzwSCWQzypx85m3EwJCqWeyJl/ejI+P6/wT18WWtxOJNQTvVasCecm1CwRKrUG2EH/mvFCZ5cyxHzA8+VTd+5Fomo6u7TR3bCCdWYbpehc/Ry2+6NSi0MnLplhkyNQtJnT4lqjpZVGXk1JjyPlGo7Rr3kfvmzSphn95SdVmWVGyKuz7t78kbbayrryBlNWim70tHLvw+p/4HgzrAsaJYSKCG4eXQO4tIywLhKFDpyLaitQCQyc6inhMV/6qOPqxUqhCUS+jpM4VMoTuoSJ1d2wsC5mdDxrT+csGeS61OUfR6PNuBimVZIIRHMq4OAyJAZyowXU3fBCzLJmcPs7Z4z9iujJMigy9YjXdYvnTf/9LSFmVOM1hZpkkyywrWq5nTest+oYO1e8ioWv8l9qTSK/yl3/jrA3Vqr15BojquaDf9Jb3KzDLqvhQQeWzBd6RQLwInf9RI4iC7agF267xIAZCxahZx6BOjPjiZeE5HhQS8B97++A/Lhw5zKn7v4JtRonHmskVxuns3sHZ0z+lffUNJLtW0tOwhcRQjv2TP6Q4P8GKG38Z0dZSP1b0eeafa75n08cp5Tj8Dx+jpX0D2akBOlZcT6Ktl1O7/5VKIcv6V72fqJXESqQx4nGUCW65yPyRfYyM7UXm8yTbl7Ns9R0cePTvqczP0JReSTraTrEwRXfTNppj3Tp+v+IwUxjk/NwB1qSvJ6Ii9U0cpWKwcIS4kaLZ7gpeC34vtb9fv+KX6wbnrFJKTzDUlgu/glBKkWOOWabIMYeLSyd9ZGilRIE5pplnlpVi4+UeakgNJ9QBhhmg115HvLGdzugqjGwRuWkFZrYEFQdMAxW1QSlEsaJ/nzNZVFdL1ctSm4+3IO/OT3KvDb1CCGbz59m3/8u0x1awNrvmogJ2Qg3zFI/QmljOtk2/4eXgGbjx6nyxla9QSdmYRX0vUgsmcYKx+XNynp1i1NoOwRyYYuDsfUzO7ObrX/96mFD/AjI3N0djYyN/+NCbiKYuPU+3NF/hf9z0XWZnZ1/RpaVf0Z6Uw4cP88Y3vpFyMc2a5W/BiNj6AlUTb64feAarYvEsa22IklIIV2EWKl7MqsGpE/cwOrkPgJbmtaQzy2nr2Ewi6SW5+8JEqgv2Lwk+ptYINBdcsPwwmZrX/MTkRd27axKJ9XJUQ20MEXiNqonMQMVl4uTjmEYEWS6SWbeD6XMHERhsbX4d0ZLAnZoJ1hWWJyacStCg0YjFkOUKIh5Hzc/XixnpospaJAi/CIGtZ2h1RSFZbczozyYJoWfE/O/Gm71VhaL33EC5IEyqteljUc+YkhippN5exUF5nbFxXWShUD829/kbUYYwaKcbgGLE4UT5INvWvRsVMVEKZmfOkHfmuEm8gRjxiwreF4qIiLKObQBkmyS7Jr/Jmo7b9E3YcYPfmyiUkMk0Vt6hbEf0b6u2HLAXClXrIdGJ2qr6u1ogqGvDugKBYFRf870d/u/e/30v9IBfsPN74KXww8Kq4Vv+OVAn1L3X65pCLsg5oeZzhILoaImzT32PiZO7WLXm58nNnGPtyjfy5OG7ybozrLjzN8mNnOHcE9+msinLhshOVvXcwaEj32Dv9z/F5jf9EWZHK365Y2XW7HeNh9PfPzOeJN7SRWPHGtrSazh+4t9xjhRYtuY1jA7u5vjP7qa76xq6V99Kfm6SkVMPM3F2L4loE51t24ilGjh9/n4eP/4gphmlq20bFjbSKSMwOTfxOPG224jbjUgk57MHWNd4EzY2yk+O9zEE7dEVHJl/kJTVRMSIe9cVoc9hP+9EKp0fdrEE+SsgP0UpRZkSRXIUyFMkT445GmgiQwtd9NcZnDESxEhQUDkG1WnyZIkSp5VOEqI6wVVRZfbyEGvZSqNouRy79oqjlS4UknxlmtHJAU7yMBvYSetEK4eyDyCnp4nKKMs6r8du62KaMR4/9g9c0/GLNNFSvc7URE7U3fMX9G+q9YamU31cveN32Xfg/7InlWVb95sxjw8uGuMAx0iYaVZ034aMWnW5d/51xhcsMlrtqyT8CqHUXwOVKYJKhH4IrPCLA6C9Qcv7X00s1sJdd72FT3/6/8fv/M7vLNERD7kQLgYuFxapz3U7Ia9gkfLggw9y1113kWm8irWrXqW7sfu/idrfxkLBsgDDkYFnQzgSUXaQMTsoKbh+3S+wbsMvYFqR+jKCXviLkNVY+9o494X9GfxZ61q3r09tl+66+NQFhlgQm14zQ63j40Wd1wiqM7oIOPfEdxg7vQvpam/IphVrSVS018JKZ2B4st7gMIRXcKDGQ2IYWmwUSxcxWDxrTRgIQ1cQwrbrypcq19Xb9eLbdYiJ1/HXdXXjR//Y2DbC1GPyQ8lUoYiI2IhkElWuIKIRSOumXGp+frFA8T5zKfj/s/ffYbYd1Z0//KmqvffJnfPtvjkH5SyQEIhohDAmGSOCbSaAPdge/+xnnGbmfV9jj+e1jWecc8AYBxDYgEECCYQkhIRyvjnf7r6dw0l776rfH1U7nL4iS0TV8/TT3efsvCus71rf9V3T8XF6KxNURzaTFNfs7dvKqdP3prVMEjrbNxu5+YbaGqpb0LSy2EfP3MX6gcuQvm+7oouqyHobXSifE4Gzf5qMviUygzvdeE2E4iuBAaNIn00ngMioX2nORnIZyf7SJfo7ZTBbUNOB8GQc5H0AuWGXjTH3WQ4sJIbD2iKWh+/8exrNeS666r9QFBWOrUzx1KGPsTh/hL0v+SVET43K6CZ6hrZx4Pa/ZPsVF1MQZS7c+w4e2f8hzj59N8Ojr3EXn0VxkqR8IyGu11Fnl5k99hDN5RkaM6dZ9o+yd/MPMzJ4Pl+6//+yMPk0E+MvoBYMcPzEF7jv8/8brSNGRy/ikt0/Tndh2EVTBSM7dhKaFkpLlPTRJrKOFS2J2is8dvqTVIJetA4Zq+3GV0X3XHKOGBcNCfwSO7qu5omlO1hf2kuvGnZ0rgQFuodmtKPIiXNyVb7T7bg5QINVAoqUKFOkQi8DBBS/pirSerYxwxmGGadNk7OcBiNYzzamOckc02xmFyc5Qsu0GGT0eaWl57hZMRMLCI0xnOAgD3En/sF7aZkGG+UulvRZ7jjxl6yf2cNQ1art3Tf1YXauXMWG8j4YG7Qqkknl90RKXawRCk/W1xxtuVjo5uKL/iOPP/nP3HP877h49AaKZ1bzezHAKCf0QSqq2yn3yXOiNcm8qh0Tws5Lz9B30lw/SwSX2q3va/NTpWFk9AKKpR5+7ud+gWPHjvG+973v+f74HLXn6V7PbvuBBCk333wzN910E+PjL2V0/HKbvLaG75k2ibVycspFCX0lSaBLlLQAjFJWB90ZUlIEnUAj39JwcRYJyU8u6TZrW85ATJWKUhnXZwYnwDMnJ+cTmI3NB0g81kYINDFTh+5mYHgvczP72fbSn6TYPYg3rQnDOg3ZoBLrjsnahBH4nqVqgaVpOW/q10yYlQIhvEy3fo2SVPZc1kQ7kvfnexk1Ja9E5CIlAKZctEph5SKm6CPCGFptTLz01c/zLbRZfYbB8h5UPSKqeFaxae4YPXIwe8dfrRbMc9yCpmRX6UqOLD5Awa8xOni+U2tyz7Yd2udkcmFs1/eSBfScpO/ES5hEQDpASgKos8hdqjKX3z/ZJxdd6cjnSPq2Eugg20fkv3M5HiJnIyfqWvljpJ/lHAXiKzj7C139UCxQqg4i25qtW19JY3WOyemH8Lp6OHzLX7F0/EkAyl0jLk/Dnmt87AoeffzvGb3gpVApoQNyNWGgceoYMw9+nqVDj2F0hF+o0T24hZ7eTezY8kOAQAjFFZe8N3NyCOirbuTA8VuoVcYYHdiXRg3THDSpCCi74pMaJdy7lIaC6KKvvJ6ByiZqwYAFp2lxRhexlNJFN+08WBAVtndfxenVpzjbPsaOypWZPHEcu7lTgtTnShDbCyIrqf3tbxJJmSrjbPmGDTYhBIMuSurhs4EdHDSPsZ+H6WWQnVyEEII+M8w0p3iS+9li9lIQ32LR2++j1jCrnOEYIW2b/+EGe5UuuumnQtc3bUgLYQHjOrOJJTNPiwYjZj0IWDLzHGo8xonGE/R6I8xHkxxavZ/V1Wl2ey+DoT4LVBJHXRJRjpJ6Sjl7YI06pfQK7N37Fo4cvpV7Tv0jFwy8gp5ZP/1+HZs4I07w6OmPc/7gO2wuXC5i2umgdE6X2HSu57m1Pi/jndgOCYMiZV5g/+7p2cj5+36SP/zDP+f06dP8+Z//Ob7/3JQPeL59+9sf/dEf8Ud/9EccPXoUgD179vBrv/ZrvPKVrwQscP+f//N/8qd/+qfMz89z+eWX8wd/8AcduUqtVouf//mf5x/+4R9oNBq85CUv4Q//8A8ZHx//TtwSwA9ePOmP//iPuemmm9i05XWMTlxuowlKZglysbE/+ea48mlLHIuxwSiJLnhW97zgEXcFaW2UZ+KRdjRB53am87v0J9dSClcKJMgpdOUASu7HRlpyAOWZjp1KwybSs45uohTGaM5OPsKu6/4jpfFNGAkHDn2CvnV7KZcHEMVi5/PRsTVSfB/heYhiIc0n+aot8ewn3GBjrHdWiiw6kyTI52lfwtVGEdL+JPtrYznw7XaavyKKzkgI/EyaUgiEkvZcz1Fr06JY6kWthim9aXHJgRTXTNj+9qke5XMBhEAqxYS/E18WMg+dFJhiYOsLBD5qtW1piUkCqcyM68TATiJzScROpzQm0SFpnNIcVCLcwLljJbdwGwU6sPkr2XlJ6YraJ1X0khEd9Cm7DRjPJt1bmWPSfCuj6JwJk+hJDqDkQRIGypt2snDyiXTcaE9ydnE/QbELrQwrZw6z+wXv4pKX/RIX73pnx2311DZSrY7x2Md+i6Of/itaU2fS5xe3mhz56J8QBDUuesHPcN2L38fQwF72bX8jF+57Bz6JWkA+uuHGg5JUK8NIqVwOjuPP58eMELaWimdrPeTFPTYMXMqJhYcyA0wl0q3SjpWkWnf6W/H4wufwVIH1lX2pEp9I5V7d2BXuGpICekJ8V3hxBxhlmlMsMPOsHG+r2MsOcQFDYl16f0IIhsU4W9nHQR5lxTyDI+QHtB3kUdaxmR3iAraL8+1vzqebfuaZ4Ske5IQ5yLeSNquER68YZESsTz/rEr1cKF7IBVxFM1oGBLvKVzLLFPefuRkWltLiukAGBlxUQ7joinUQ5Mdh8qdk89aXs237DTww+wlOV6fSQ32RWwhpUytb5UYR27pU5zAqIB2HyfxqywTIbK1f42RMgEmeZrs2Kl0uD7Bvz0/w8Y/fzg033MDKyso3/Wyfb8/cNPJZ+/lG2vj4OL/5m7/Jl7/8Zb785S/z4he/mBtvvJHHH38cgN/6rd/id37nd/j93/997rvvPkZGRnjpS1/K8vJyeoyf+Zmf4eabb+ZDH/oQd955JysrK7z61a8mfpYYJd9M+4EBKcYYfu3Xfo1f+qVfYvuutzIwlEt6zAEEGWkbIdFkP9lB7KQRSFCCqOLbehcSW/QpSXBLjrkWYDwDTSv7h8z4y/10HCuZeFwV7lRtKfEGPwMwyQOajnNLchOd/TsOyPJd0uNk+xRH15NQUyrrtjB/+glOzT9sAUg+UVAqC048D1GrIopFRKWSRla+YhMii74k+wc+IggsCFEqM5zAUriMsd9Jga0g736SxFw3uHSjaRWKqmVEvWlzLhotC16WVtHLK/bciTrZs9wST2HYVwRtWJw9zGz9GP3kZIbznrnnqq09vrBGpCyXabDCSjRHf892tzgq4loRUymiCz7Gk9bjp5O+SqbCJZ1Kl8wAgFZZX9W+Awq57fORFq0yEJOv4J40I62wg/YgKgqikiAuClv7o2CBR5YbY5W/dGB/EgCkvQzYG+VAS/JZDtCcWxel83pFqJl67HYGRvYiYkNMxKnFRzh86FNsueJH0Tqk0NXP6ac+R7HQQ+BXOp67EILz9t3Ezr1vpD5/mvDo8fT8C498iWLvENu2vppqoR9jNFLIjloJQpvsGTlBj+RdDA9fwMz80xi0yxGSmdc1+UmiIl7OOQPsn/4cfeX17t3LzGucH3fJj7I/u/qvRQjJql7mdPsQx+qPoqWxQCXZX4pMSjx3LJEAme9QW2KefkboFYNfe+NvsQWiwC4u4hSHmTVTX3uHH4A2wnoO8DBtk9FbhRBURTcTYgu7xEXU6OFJHiA0z77zplcMchkvISDg8foXOJ8radHgsWP/CmEmqW1rOiVJbTm6dlLbxBg3z8kOUDAyeiHnX/BODtS/zH7vcYwxbGA7Qhs2ly5I95dtjWzrTIjE5ObADll+e+BzhG8cUIkLkqio7JhO6NsmB1ZcC4rd7NnzTh588AjXXXcd09NfWTb5+faNt9iIZ+3nG2k33HADr3rVq9i+fTvbt2/n13/916lWq9xzzz0YY3j/+9/PL//yL/O6172OvXv38jd/8zfU63U++MEPArC4uMhf/MVf8Nu//dtcf/31XHjhhXzgAx/g0Ucf5TOf+cxz8ai+rvYDAVK01rznPe/hr/7qr9iy+x10d29E1SP704jSgkki5xVNihtqX6aRFuPL7P+OhPRzQcVasJGvQZKPbEDimbEARfv2J0v0XXOMFJBYo+4cw7YjOpJ5ihOuqlFWVjiRFk4Ms7iQGYl5ow0B45e9hsFdVxMXMoNNlaoIpejSPejZOZLq7zYqoWz0pBDYiIXvQeBbhS1Aro285JurLo9SUCiAH1iw4iIdQklEwYEWKbNzxHEWRfG8TqNKKWSpiF5t2EXFgRdTbyDnlu05Xe6MLOakjp+tJhVV0c2pM/dCHNOYO8NjD/8dO8z5VOJy7n3lPHNfoyUg7htuQmZgTCpUXy+mp8xB+SR3Ld/McG0nfrFipTkL1oCMK4GVwgw8grmmowXmvXnJsXMGPRYA2H6WRQuTqIb2s1oh2ksAcgYaIItk5CmIWdV0Fwnx8tEa9+NBXISo1AlMOiIzyWc5oGRUdqz0lSQRm9x1rTzxEMsn9yODAocOfYp77vxfHH/6Vta96PV4e7Zx+N/+jPbyAl1bz0MHgrDmZzQ2B9ykX2AlnqPdXqE0ttGeI46Ze/ALbBi6Gr+uWV2aZP/T/0pvz+bUYWKNmhjZDJHtOPPquh+JpFYdo96YzW4iP2+kN2ZyRpi9sfHeC2jGK0zWD/DU2dt4auZ2Di7cw3TjKCFhJ3deCM42j3Fs6SFWwjmaZply0Et3YZjH529HS7KIShJVcIVvk9wVoWRnHtk3AdAbZpVls8CimfuGDNnYxBzicQZ4bmoRPVOTQrGd81lmnlPmyLftvGvblDnJ4+bLTJmTxN9But2gGGMLeznG019xmx4xwBZ2s5+HWTGLz/o1+CLgAl5AjOYR7mG7vIhZJjly5g5EI4Qcpdv4MgXwSOusTBLoRWwBhvHyKpqC7t5NXHTpu5nxZ3hY3sOo3EyJCkem70bV23YOdUWUZVun4xtI81GSlqel2g/I5QGK9HdclMQFmQnG5Glgbh5WhRI799zEmTMxL3jBCzhx4sSz/myfb89OW1pa6vhpfR05q3Ec86EPfYjV1VWuvPJKjhw5wuTkJC972cvSbQqFAtdeey133303APfffz9hGHZsMzY2xt69e9NtvhPt+z4nJY5jfvInf5KP3PxJdp3/ToqFHjBWOUO2Y4wvc/QVQVzyMoNKZBOCVSsiZ9SIjuhHyv/MF01L1tycdOdaEJHsA2RVyHPUq7TlkuLTat2JV/QrNOOR3otOE+FzkZU190Le4HQABwOD510LKXXH7jT18GfZdNHr6F4cQsfH3f25nI+wTbwUo7TJKFRaI7tqiMAnnpv/ytft+7awoO9jGg1EoZADITmPFiC0zYUxYWhpJsUiZnkF027b6EshsJz8KAKtUWPDaTSF2QX7edEgKiUbTGuH6XvKq4vl5ZC/WhX7Z/IKC/e8tpsL+FJ4Kw/f88csNs6wUexkndh07rEcyEPZaJReXT3nmMm1AF9XrQnhBy5XR1vRgTCi2Quz3ixz7cc4O7/fet5NzFJ7yi7EicGY9M1ApYudtxJipE9YycB6PnFdhqYjUgd2PGgpshknyRtRFnAkxwALLITGqYRZAJ18TmCjJXlwYU9gf3TChkqKObq/Re4x5fdJa57kxqsR2bV1RBOlU9DZuZGR1itpLc5i4pCJl76Fysbt9tkCfedfxclb/4Hj93yY43yYS1/1a1RF0QKUPC1Ta1SxQrvHY+nBLzB//10Qa1ZXJjl6aJpadYy+vq0M9uxIjSW13EqLyiFsMTd7zZmDpLs6wezMU9RG+x34spFfm3uXN3JMGhVDCCqFAR4//Uk29F3GzqGXYLSmHddZbJ7h8Nw9aB0RxU0MmkCVmW+e5qLx11NIKGjumKdWnmAxmqYm+/CkZ1+Dy1NJ5gOhFEZmNbpNGin6+oxmYwzH2E9MRIkKAslZThGZkF6GGGAUJb5ylEYJxcXmWk5xhJPmEONsoSq6v65zfytNCMFGdjJpjnPIPM4oG1hijiHWIb/K9T6bbZFZdnEhC8xwmMfRTvSkTJVhxgm+jXkzqyzRy1ePZBVEiV3mIo7wJPNmhnE2P6t0wRo9eHhU6OJheTcbxDaOzX+Zxvwkuze8Gob70nGUztYucc342Wcdzo0c1bvYNcD5V7+Hpx76IF9a/jyyHVOuDRNXArt+CYkJBCLUKUCRbZ3ZA865aKSwfoUcNWyt88V+SDa3JQ7T1AEp8Jox2peYQsCm897IkSc/xhVXXMWdd97Bpk2bnrXn+oPanu3E+YmJiY7P//t//+/8j//xP55xn0cffZQrr7ySZrNJtVrl5ptvZvfu3SnIWFvUc3h4mGPHjgEwOTlJEAT09vaes83k5OS3fD/fbPu+BilhGHLTTTfxyCOPsPuCn6QQWInIdPD68pyoRh5YGGe7pwobMvs88Z6kEwAiS9jWJp0UUoPAfadz+6aJx96agJYQ6ECkk032eWb4JfxT7WhWMurktObVufKKX+mhnFGWRFfAGosi7vRKd8jDClh4+kHMapPG0hSqqWkNlCnE69DHTnXkUwiloFSEQmD3Vcoaya2WLb6olKVgJbkRUqG6qlkkxPeg2G1BRsG39KwoBxCMcUm5wj6i5PiFQqYoliQUep6tOr+4hOjtQTTbmNFBxNl5RK2CWa1jVlYzwz+JtLQiVFcXul4nobMJT3bUdxB+kO6TRHpSDnVieElBIMpcoK7hZOsAO7yXUTVdYDRIhSwWMGGUSjYL37N5NF8lR0Y3m1/xO29kmGhq2j5n37dyy66GTHtlgf2NBzk9+yRdvRtsQrwQ+LKMQXPRjptSI9h65ewziYsKGWpU0wF7beUuU1GGHNjQnkgjKiLO97XO/qg9gXT9LQ5s/5KRsQn47nhxQdgInszACwm165mqsydjJr9Qu+PlHQfn1juio9ZKGtExGWBKgJDf28fQ5S/NlP+SvBZ37MLACF6pSrU2xmDfLhpzZ5CVYVYaZ5g1pzGrdYSG2WMPInyfpz/4mwTFLgaG9zHYu4NacYhmtMTRI7dTq4xgencjANmOMt67MdB0Y6egEEIQN1aZXHiC2ZWjSASnQluPoeR3o2u21o31+LqidfmaCp4FDJt6LyfWkQXLUlKQVYa8rQxVtqTUFm3siw9FiF+sZeAe+5w2917OfOMUJ5YeZU/vdSjPARVtgNj2a6fUZ1y0RbgXYrfrBCqyWES3MlXA2MQc4BEGGaNfdC66xhjmmeYgj4KBYcYRSE5zFIXCYNBo+hmmQhcBBQICJjnOVvbx7WojYj0LZoZHuIfN7GY/j+CbAIMmcpXJx9hIl+j9GkfKmjGGRWap0o0nvnIOYExEREifGKaP4XTfOssc4FF2mou+KsB7NpulwX7tJoViC3s5a05zgEfYavY9a8U0hRCMmAmWWWTbttewf//HWO9vZzo8xgPH/pELmjcgNoxbJpYSWd2n2JUNSKhezgmB5xyYjpaJNviqyHn73s6Jo3dw/Ojn6BvabYs1BiqjZLvIdVRWeHXn8EscOV7ORjECGRoSWli6vuf/Fzhnk3FV7K0jQhiIisrl1ABCsmnPazn61Cd44QtfyGc/+1l27NjxrDzX59uz006cONFRJ6VQKHzFbXfs2MFDDz3EwsICH/7wh3n729/O5z//+fT7teDeGPM1Af/Xs81z2b5vQUqr1eJNb3oTR48epWfodQRBNf3ODmSRLvgJ+MgXLOtQz5DPPJFqL7F47G8BHcc4B6A4qd80UuIASl7u1CbCZxGLtcn0iUfF7p95qrUQqYcl9WDnjDVyic6J1zjxfCfnTJ5FooaURI+SY62ePsLJ2/+JoNQNQnLwkQ9zSNzMnivfxWhhE+bQsdRAF0plHVtKxErdAg/fx/g+erUOOk6LNWI0eB6iUsYUAkwpsM+1HaWVgo0QiND9nz4TAQVbbM60Q5ebIsBV8U2iIaJUtOAnub6lVav+tbjkIide+q5koYAxBhn46CWbWCh8G0VRvT0YYzCLSx2DN+Xcg026lNKqw7jidcYYarKXncGlKb3MRBFGG7STWU6lkqMQhMTU6/bzfEFJB2rQNkKkFZzpmqXhtQixxqK3eBBv/QjFWkBZlhAYWiunaDRmOLJwD5XaCJdc8185e/phTh+9i4HKJqaWn+aqC95LsdDnFmOZCjIkBRwxFqxgcvknzqCPg1ykzyWxp4DXAYWkf6XgXNnXHpUFIiKt5m4cHawj+T3Zz8stwoYO6sNaqWAjc6hd2vyUFNzk90vGBEAyHpI9c8Alr1IWFUE5TJ7QxABWDj7B8Zv/HCE9/O2jnDrzII0DpzFxRNA9QHF0HFWtgTYMXflyztzxr2x9/U/Tc0Zx+tjdKOFTUGUCv8K29S9javJBVDNy78FDJk4VbSywaEeIepvJxceZWT7M+uHLGRu5BCEE84tHeWLqs/QH40Rn6kxseRFeseIKVLpQlpsHjUuoV36B2aVjjPbstuDF5XTlk4Sl8/IUsOPEyoub1Cgqql7G/G5KfhdPLH6evmAdRVWjrVcY9jc4uXc3Lj3P7pdEK1Eu8pJ7SUohlGIhnKZFgxWWWMcmaqInm6PT6UDQhzW+YxMxzSlCQnZwQWrUGmOYZZLj7GecLWg0g6zj2916xACXmRen9ZRapoHCwxM+2mgO8ih1s8wg674maJgxZ5jmFD0McJYzaBMjEBQoMcHWDoN+C3t5igfZay5LPxdCUKGLjWYnT3I/fcZGozw8FpmjzjJtWpSo0E0/JVH5uu+zaeoEFJ8RVBQoMcPk1027GxRjFE2Zp3mIHeaCZw2obOM87uU2mkf3c96et/LwY3/LRbWXcnj5fu6e+hAXtV9FadtuYqWIi15H7aaslglp8eQ0D8RkPhQhJNuCC9k2vAXiwBIrnBNQBxIZmXTuaXe53MzUKUduLSd1UhpHAc03kbsem5/i1rxku8S2SbYVgo07f4jjB27lmmuu4TOf+Qz79n37APv3WzNGotcmAX+TxwHo6ur6uos5BkHA1q1bAbjkkku47777+L3f+z1+8Rd/EbDRktHR0XT76enpNLoyMjJCu91mfn6+I5oyPT3NVVdd9S3fzzfbvi9BSrvd5nWvex0zMzOUB24k8MqZV9u1vEJRh5pR6oFINhQZUMgthvnChx2f5aIn6TESD0vuGB0J75CCgpRmlXycq3idL0iX5QFkbpSURpK7FrAGlIwTNaNMASxTB8sMv/S3Eh3GIUB74SwAtbGt7Km+numFpzl56HPsf+Sf6N7zH6gMDqC7qwiXjI4xtlhirWRrkSwt26T6FLyoFKAIz4OeLnS5YCv/SiwVJYxsBKWdGUl4KjNOUplUEIGf0Z+UBCEteHD5K4AFL0LYKvWtdmYcFYt2/1YLogjaEabtjtkOMWGELBWhXLI0s1YL2mHH+c9RRUreTxRZEOWoLMYZfCII7LGSJqWVRk5kkxPQIwSiVsO02y464kEc0/TgweVbMauCas8Eyi9w5viX8GUBb/oMegbazUXAUCz0UCh2s3HXq+jffDHzZ57g+OHbGChZgAJweulxNq+/zhqnJuNDy1DbpMyyspEUp98PNiE+9kVHP0n7qcr3qzWUyGQbFxVBuEiMnyXZ20U/+63dMQU54JKAEzdO0uR3cpEXssXf3pNIAVGalZdES+j0Rhpy25CLqEiIg+y7BIgt7X8YgPLYRmITUVq/mfU/+p9pzU+hG01qE9tpRSss3f8lzt7zGYrlPobCUfwKbN31Go7uv4XpyQepVEZorM46pR7nlFCC2PMRsU7pX0JKjA/Tywc4b/y1ts+47/r9Mbomfpj5+UOUalvYf/TfqaheNg1emRksSZ5IFDMfnmF+9QQ7Bq+zkcu8tHjSv5M+nfR150DoSMp3c2tPZYKewhiLrUma4SLC83i8/gWKskqPGqbXG0Jp1+8926dRmWPBaIMsFS14V4qp+CRdpo+z5hTDYrxj7n2mpoTHKBvO+VwIwQCjDDD6DHt9e1veyC64eknJ59vMecwyaWWNzQBd9NFklR4GUmqYNpojPEmRMru4+ByP55KZ52keRBqFQFCmSpVufPxnNPArosYecylLzHOCg8REdNNPN/0EFGiwyhmO0zbNryvSc9ocZYVFNJrAFKjQRZ1l+hiiiz4UHissfkPPrCZ6mDBbeJoH2Wr24YtvPYdQCY/zzBXc27iNoUPjbN7wEh47dgeX8SKOsZ975j/CvqeX6D3/BR3Gflxw4yeZT7BgIIm2GLfmWoqqQXeVEIWcxL5jAxgliHyRyqQL4/bHzZvJ3Jq8X2WsFLjKnfMrhaTcuMzbNGvZSEII1u98OScP+lx33XXcfvvtzwOVb7LFCOK1qknf5HG+1WaModVqsWnTJkZGRrj11lu58MILAWsnf/7zn+d//a//BcDFF1+M7/vceuutvPGNbwTgzJkzPPbYY/zWb/3Wt3wt32z7vgMpYRjy5je/mXvue5wdF7wTLyihAaFFVtU9N5htvTHTmfOxpm90AJacV3jtYO8sVpeBgfR73fm9/ZDUiNOe6PScOG9zPkFOq8QgFOmxRBI9ScBLDmzgvClxh8GYAx/5/8nATcf3DsTU9l3MukLAiY//LX0Xrqf/8hdz4uBn8fwyDx/4IBfufBtKBXjLLUQcYxoNm/jeLlkVrXKZpFaKLBZSepV2UQIRRhhdAIWtySGEjag0w7SooEmkUBP6V2IYuerzqUwxpEa+CUP7GhLFodzfwvOYEqfoLYxTME6lzPMsuGq30yiLCSNX6yJZoGQnQMl/l5xfdxp5RhuEFAjfy3J1EkCT21YEvjXchMC02+h2iHSGnPEUS3KRU+2nOL3wBD3lcSY2v4hIN6n0b+D08XtoRSu0IhsB2nH+mxlcf5GjT1mre3XhNAe+/A/sWX8jgfapdI1y5PQdTE8+woljX6Cvbyubt7ycit9nF9ukzkZs0L5MPXTaJYkKDTICGRvCctYvz+lPjj+Z9tGEEhZl4EL7OePf9XsRk9U4Mcl+WTRSxNlYssfIewxzgD4/rhzQ0MoaAPljdNRGWQPe02NIzsnhQsDoq95M/5XX4w/0I40ERzVbfegg05//OKWBcZrzk9QGNrJ5zw0M9O9EtmwEAiHZtO3lmDhiafYIs7NPo4RHJDVSedaAB5vLEens3QhFV3Wc04uPMda9F5G7YU8FDNW2YXyPPdUbeOrYJ7n/8AcZKm3CJwAlWTXL9FU2cGLuAc4ffGX68pJ3+0x5U8m4E7F2lC1nCEmZ5rhgbHSx2x+nJxoFYxgsbSJuN1iIptjfuI9eNcSI3JAm7yOlnTu0Qfgii3AqiZYw6m1hKN6AUolkmwGjs1yxvJH+LUjXfje0PJiaMieZYZICRZ7kAcbMJuosM89ZJthKt+h7xmN0iV66uBggpXQtMc9Gdn7V83bTRzfnHjOgSDf9xCbmJIeYNicZYhyBoEgZXwQsmXlmmaRFkyrdbBfnA1A3K7RpMs9ZFpnnDDaXcRcXfcPPpiq62WC2c4KDqWBChRqjbPymqWoV0cWE2cr+1S9x3vr3srB4lIP1A2xubmOROR5c/He2PrrE+PmvROIAhHbzqsgVWU4cbM7UsKwNYwVCyh7K9VPtSXRB2f0hAzU5ZkViG9jv3YW66AfC1WsLgQi7VhnOsV/OGRdJE9nvxGG7bseLOQVce+113H33nezc+ZX7yfPtu6v90i/9Eq985SuZmJhgeXmZD33oQ3zuc5/jU5/6FEIIfuZnfob3ve99bNu2jW3btvG+972PcrnMW97yFgC6u7v5iZ/4Cf7rf/2v9Pf309fXx8///M+zb98+rr/++u/YfX1fgZQ4jnnb297G5+64jx0X/QRewXqm7CA3qSEhyAb+2ra2+mvaRO67/OKXM1w6wIfMzpFIC6bf50+RTBBuXu2o4p0LJ3eChhzAgbQgVAoo1txDSq1JAE3eeMsZYPkaKnkKS2qMeYra7gtYF7Y58NmPsG/zNrZc8kYOffmf8UtV7nv4TxiobUK0Imi1rZe1WIDTwlGvLLggjsFoaGsb2UiS4qcDWC7k8nqs8WP586TPIn3+SVSEJMoiOoEDkNRKSZ95QvmKbbE6bWJmo9NcErwW8J0CkbSgB2ykRSlk2fUl38MEPsJTiEUPs7ycqYgl505+p6AjsCDNZMMtScIXStlzOVBkYo2Q0kovF4uwvALNps1Z6a3wyPJtTNcPkyDt+dXj1J/6CEr6tA+0uOCq97Awd4izpx9iZeEkM5OPMrDpIivV6wvmjj7M0Xv/hQ1jL2C0sh0dePR6OxgZOp8z849R7R7j0Uf+jlJliK3rr7cePSNszhNuQU68fbFBtR2QSBRkhAUwYU60LOvnnX05H3FJ/k+VvAQYz9GLQkHK3JJglOnM98r1Ye0Z0sfs+rog6Te565EO6KTXYRBGdCai5o+dt3tyx+qgVWrAFwSDgzTOnqZ18BCt0yeR1SpaaVSxzNCGS+jbu5lqebjDqeEyq+yz8AJ6+7bS27OJleVpDh6/FYPBD0psHruOLH/GGR/SsGHkKs7OPcFTk7exfeRaZhcPMtc8ycjgBRQpExIzNfsY1fIQu7uuYa5+FBPGKBnQ172FqeYhZhpHHfhvYtoholzE+I6OCTayQgJe7LmNclSvnCFkcjQysA4H4/ZXXoASHkNBFU8WaLQXrfJf7KTDhQQlM5EKz4MoQgQF2q0WIvDxRSEHSjTGCERCGXX5LoCLWK6JBn2PtmGRFVMLTMApDqPw2M0lXzflKaF0Vfj6qCNfrSmh2MB26maFRWYxGKadcEGFGmNsOqdwZVlUKVOlblao0cN6sfVbuoayqLGZrJTAkplnPw9TMTXWsQklvnHzZiM7uIt/Z/ngQ2zefQNfvut36ar0s7A6g5IBB+fvon2swJZN17t13U4yHdFhB16sPHgGQBAQ+9JGUtxnRmbOHsjYDkDqIMjW7Jwoj/s+cU4qgGfQdFmbh9chNJL/7ZoRgrGdL0HrkBde8yLu+eJdbNmy5Rt+jj/IzapTfwU78hs8zjfSpqamuOmmmzhz5gzd3d2cd955fOpTn+KlL30pAL/wC79Ao9Hg3e9+d1rM8ZZbbqFWq6XH+N3f/V08z+ONb3xjWszxr//6r51T6DvThPlWKiV9FzWtNT/xEz/Bzf92Czsu/kmCQrXj+1TOb82gF07vPMkZSYz0Z+KAas8aa2JtscecYXNOJMKQGniQAwLkjk8CIjJQ8oze28R4SzyqHUAj87bkJWHT/dzn+RyTTpUjkSUXOyrLMyXfCw1EESdu/htWDj9JpWeM1fmT9G2/FLHU4JK+G2z9ESkxniLuqyBX2uiyTeSUzdC+i9WGrfK+Wke3WqkalxkZtAmEib1f8nIGsEBGGtEKMx58colNm48hwoikvoOIYguKtE49vxQCJz/sEs+NZr59hsnWIRCCQJUZr+wm0EV02ED5bqEd6idsrqD6+ogrPiIyePN1zNGTJKpjQghrPOW7hlJWnUxImxCsDSaK7Lb5yEkCUqIIhER2VRHlMmZlFb2ySqMU8aXlfyPUDQC6vEHWF/cwUtqGCoocaz/B0zO3s/XCNzA8frGtTRK1kdIqhWlPcPb4Axz64gfZve8trPO32Qv0JKkClBScnnuYJ5/4Z0rlfq64/L+mfVoY4+S3M4CceP6S/5McLSOg0S+zbfK0QZEBkbV9Mz9utG8s/UuACC1QEa7gvVbuuSWv32TKe3FglcXywCTNKzGdIL2DnmZsNAjojMzk1po0gT4/btesRUnkZ//v/DLl3lG6uzfSjuusLJ0iWlnmkpf/N1SY5Y8l50mbu0bVitN+LyLD/NIxVutTbKhdYBNhkzko4ZxraDRmOXD6dnyvSNXvY13P+ZyqP0GzvUgjXmFs6CIGyhuQy010FLK8dIKTq08QlLqIRER/93aGxCgsLKEXFpG1GqKrigl8VuJ5ZleP0lscp6s4nI09RxczSmU8/eS6hFWJE3FsI6MJhcxFDadXDqF1xEhxM0brdFVOIolmZdXOCWGIEZInlj/Hnq7rwGhMq31OpNKeV0EYpvliJtY2x+ubWOaEH2RiIGtyX75T7bg5wDwz7OESJjlBSJv1bPu2Jbo/G23anMIneM7q0yyZeY5zgO2cd45SWd2sMM80A4x20Ovy7ZjZzxQnueSFP8fByds5e+wB4qjJts2vpDS6Gal8isVuVMvSYBPZ4XQNJ3NM2iitPa6RVvnQ1kQhtSPCmkdcyPI/k3w/u5MTKOEZAEbyrya1S/Lzk5Gdtkf2ucj+z7WOfFdjOPHEJ4iWDvKle+5m/fr1X/O5/6C3paUluru7efvtbyaofusUxPZKm7+57kMsLi5+3Tkp34/t+yKSYozhv/yX/8JHPvbvbL/yXfiFauJkA7LJwFI8OvM2ZJh9ZnIGWFK1FRK1ImdsGbuByHlJOkBKMtDdZwKTJdi7bc+ZyMiBjGTXnKc5PYfI10lxYMLlA6xVIEoiIYnhlRqIfuf12ZNiqS9+zqBL6V+5/RPjzPOobthO4/hhmkszKL/I4tHH2HHeG2HZAoK4r0rYVUDGGiMKrkCmRhd91EoL4ymELNo6D3ECJBxtREp0UeEtNDAFRaKgBhArhfAt3SWJuIhQQ9G3ailgDSdj0r9FEk2RTtdeu+JyQoD06fMm6PVHbJ4HTY6vPEpMiIgMsQwQBuI5hfQCzBRs3HAdflAi7iqiyiWbcwI2l0TKtB5E3iuMEBgtXLJwMU2Kt9z7HNXL1XjRK6uIRhOEYLa0yAOLnwBgwJ9gS+VieopjiCDAlIscXLmXk8v3s/eyn6S2bhs6WaBEkPb1OGxx6tFbABgONqILnu0nmJQWVw/n6R7ezhbxWiaP30NckDYRVGVcaRkbm9Sez8VSIpWn1l7W54wSKd0pD0YSYYZEStjIpF9mn6V5KRpQoIXJAHau2+aPo5XpyB/p6OPu/zzwX7vop9ee/74z3JEdJ5eDk11Mdn2qUKLYP0bf+ouolIaswawEIjIY5aIOxs4BifMjPU4uKVcY60SZnXmSTRteTLhcx/OqyFZoVdg0qVLXsVNfYPfAdQSlrpQ+tb73IuKC4uHD/4zyi6ywzKm5O9FRm2Kxjx3bX0scNphrHOfkzJeZ9isEbYkXCPrnullttJmRkxil6KmtZ659ipNLD9NbXs9odafNH1NOpSuJiOYjKokwiMY+AyKEMbRkiB+UOb30BCPV7ZlXWghMrWydC4mghO8jgJLfzcnWk4wXdll58SiykUcl7e+kTxYLkPxvDLSFpWuuUQ37qk0IZLVCPG9BivD8DvXCb3uTCnRMnWX2cTlSSMbZzIpZZD8PUTBlBhihRs93VInn62lFypzlNEVTRjmpvqM8zQCj9DL4LV9/l+hluzmf/TzMZrMLj4CYiMM8QZVuSlSZ5hQTPHMkp0oXp2WMDhRj572M1aVJZqce5/iRz3PR8HlQLmZreJyMZZOtqwIbTUnYENJkdG1fOIcVqLa2FefbmjhQHTl2eQepVjmHDDmHYRIpNsbNO1luYELRzqKeyb62AK50tHer8pUDVG7uEVIwseeHOP7ox3jBC6/hvnu/dI587fPt+fbtaN8XIOXXf/3X+eu//SA7rv7PFApdDny4QZhLcrOFk5yR7r5L8kASXiiQWT/gqly7CUlnhkRK0RL5fTLPcUYByU1WiXGTHibzACcTUSJ7bE+YCyGvMahSj4tLPM6DiQ7ajExUunKJfDmvdjIhpkUfHUDJe4g7jo317DRPHWN87HL6N13MA5/7bYrVAYaLWzCtNnFPmbCnYDm4RqI8jY4NshXjza7YaEcxsIZDFIExiIIt/qgDD1lvg/aIa1ZqzwS2gKYwLiERQElkaBcSYYC2RgeeTTJPohmeshLGMrsJEWsLkBJaSCGwCfChVdQqUmZb6WLMuiFEGNNc14VsRlZdTAqarUUOHf40vf1bGRrch9g0hjozh56bByFckck8KLW8fHwvy6ERAoLARlSUyry+CVARVu0oqq9ypHiIIysPAbCr51pG5EYKSZTQGPAUS61pxjZeTXX9NtvlPFusU7VN2mfbzSWaKzOA4I5HfxdpJHHUwghDz/AOyuUBTh26g57B7UxsvpZ2ewUdyLT/APirDkwlxnVgz5OA57ggiH3wWgavAXHBbqM9Usqgdv0slfQ2EBdzkREh7H6e/SAB/TJRuU36v0rGIQjZCWDWmjh54L+2pfuIzKlhF/cc4EnmCgnSDQKj8uDFXkgq1+0Zhm58A4tfuovHbnk/5Z4xdlz5dlRPt40G5jnn7qK0Z8GWNAbV1mmhVmMEp6fuYXnlNIeO3EIctZBtDe02ldoIzfYSpl7HRBHT5iQblsbxqwPI3p40T+ueyX9gbP2VLC+dJBYx68Yup1IaSOckZQqIaJJSsY/1I1dS0D7x4jwn61+kt9HPnv6rUX39PL1wFyMD57Fh6HIeP/5v9FTXU5QOEHkyzVfqeL5KYHyrSkY7Qgif5XiBwwtfolIdYeP6azGULKgI7VxAFCPaoY1AJi8njtnSfTlTjUM8Vf8iUdxkZ+0FeMq3joqyk+VMojHKRi0FWBDjRdYhYEymlPc1ml5ettGUZD75DkRTjDHExHiubw4yxllOM4ylf1VFN7u4mJZpMMMkxznAerOVrq+Qo/Ld0LpELy3TYIqTaGJC2mxgBwuc5Qm+zLjZ8hVzbL7eFogCO8wFnOKwdcQg2MZ5BMIq0u3n4a+4b5M6fv8Qq2M+QsPGa9/C0r/9FsuNWe6767fZcclb6e6xkQUZGWLndElbErHArfnKLbQJ8HBjX/sSiU7rlsQFkRZl1WtYD+SmGyMtyEh6YiLlrhVpAn1ih4QByMgxQIzdNimmmzg2s3zd7FyJ03b9vtdw9MF/5sUveSlfvPvOH2iP/tfbNAJ9zir0zR3n+cb3Pt3rz/7sz/iFX/gF1l/245R7Rm3V5dA4VaDs1oywtUfytQ+A1Lt6zuKaRiuyyEvi7Vzr0U2boMMQSrazRekyoJOFhrPrSOpFrKWSdHhs14Rr40LntXfQt1xOjMh7eHDgJQdCjEvByBKSs3OlBfHy96qBVsiB9/8aO6//T4TNFQ7c/hdcuPnNDPTsIOwr0urxiAM7Cfp1m+Drr0R48w3kvE3oJolkJApZgZ/WOtFnZxEb1kE7JBztsR5oR2nJ0/WEtvUeZCtKa82I2ORyQ+hUz4LMAAqdu99TEMUZBau7RnvMTsRxIPHqMf5cHV30iLoK9t0Zw/T0IyzOH2XLxEsoP2ULHZkwsom+LhoifD/1KqfApR1itFMz09rWaDHGRVCyqEszXOFzZ/86veyR4laCoEorrnN+78uQGvA8TLXEF0/8Paqvl8GdV9HTv8UuRgpiBWe+9HG61+2gvGE7rZU5aLYJCzEi0nja5/GP/e+Ox7P5vBuZOfkw1Z5x1l9yYwf1QDv1mWBVuyR6S5HUHkQl66FTbYPXzKKMjSFbTT6J7qWKX+SAgDPuUyM/GXsqyy9RTZFSAJNjJWBBaPudcP02ackxyX9ucsfIA3/jaBUG68ggARHnji8Z5cZGzuO5VkRDxMBqm+l/v5n6of3seO17KesaKswiqGnkEkfZiAxeIyYu2L63tHCMs9OPs3nwKgLtw+wC9ZkTPBXdT09lgoHVHlvEkIgN7MAXPrJYRHR3WeWvnhqPTn+anbteR0pvZc28YQxPHfgoe8ZeZW+lGdpx0WpjTp5BlEq2r1UKPLZ4O1tHX4REsn/qc+ze9BqEkMQeaLT1jAuyfm9PgAFa4TL7p25j7swTxG0bSbzi8p+jq1lO67ekghhgx3EUW7CVo4MhBY14hUNzX2Rv30tACBa9ZQ7P3IkKygwEE2gT06dGKEWFNEclibygbR5cvvaKfRnWyy2k83YnqoOJaEWUo2R+m5qNlDyc5pG0abKBHV9RVcsYw0EepYcBBsXYt+06n62mjU5VxTaL3V97h2+yPWUeYKe46Bm/O2Qepz5eYeIlP5rmZa5OHubAp/6EUb2eUxxm/cQL2bL5ZRjPw3g230/7nbkpkLMzcg5TS82io++ptiYquzopRQtYEtsh34xwTsc181kSGVmbk5qwNVRoz2fcfJ0kygsNKkxoYuYc0RDt2SjkkXv+hvN2jPGJT3ziq9bp+EFuCd3rLbe95Vmje33wxR98nu71nb6Ab6V99KMf5Wd/9mf593//d/6fP7w39QDoJNczSTTTyeBdM4Bzsn3acbs7k8sygJLXHO+kYYlzgELqzXA0mE76SJYkl4ZhTXZ9kF1nnpqSrzOhfdJ7RVivS+KxSa8lATSJUk+ybeKcTL0luWfzTGHlxPMTZ9ew8Mh9BJUeyn3jiFhzzRW/TGk+otVbpNXrERWt8ZoYXaqtiYoKuooEyw1MvWENqFVbO0WUyxjf5p6YlVVEtULUU0LoouX8KpEV1HT3J9s6U/zyrQSq9mwygohc5d4kFwUyEAMWJISRNX6EgEAiEhlVIDi5gCkXCCZnbaRHCCQQDA+gSz4ijFkfbmReKp547EOcN/QqCnUNBQMDvTZJfqWRAZMk78kYKBUtcIpcFEdrRBQhqhVMtWxr6YQxK8szAPR56xjv2sdYzx6M7/HE1C3Wu+t7tp5M0SOOWywde5j5Yw8zsuc6Wsuz9O+5msb+Jzhz6PME5W7KG7ZTrPShu0EVXGQtjunZeB7SKCb2vYKnPvenHHnsExSKXYxd9EraNRtJUW2Xo+T+jgqio0ZIVBRpMcawIgirAn/ZEJVFCqQTYCxiMiEGZ9gb30ZdEAbZcuph0riop0HEdhzJnEFvz+0q2yu3uMYZkLFRTmP3CxOVqmTM2p/UQZmMFbX2+FjwE2f3ANh6Ky4Cmh8vHXWOEoBTCRj64Tdx9h//gUOf+1u2vPbdlBYEXtO4fmyQYa66tMTWpRFWMOLYoc+yb+wGgrpBT55E1+toE7Fe7eTo6uO06WZcbqehlzisnkTWahRrw5T8kNnlI4hJQyNaYHH5JF196yE0llKZ0PCAqTOPMNC3HQIPsdLEnDiNmBjDlAvInm700rJ9ZH6NHROv5NDp21g3fCndlXEeP/ZvRF0+M0cfICh3c94lP0HFdKVCBw3ZZP/JTzN38H6MjqmMb3UARbB9+2soixrGdxNcbKDkIoutCFMKEI22kyaWGcBSkqI/iFopcXDlPuZap1honmZs/DKMgCPzD6B1xDEjuHL8bcilFQtOhEQUAwjbJCpkSQRTVitWqMJRL/XSsr2BXCI+SiFKToI8jlOqmSi64rRLK89MCZPKqvqVSrB5HDm3DGFoz6EU0o19pmaIl5YsyKxWIIooDo7St/8MG4VVWYpM+FULNQoh2Gr28RQPMsj3BkgxxnCKw6yynH7WovmcFpFTeISm/YzyxSUqzC5M2khE1TpmyuOb6d9xOdOHHoY2HD/xBUwUsWXPa4jKMnVY5CMSsS8giYio3BruKGAJ5VO2tXUoRjbvL6GwrqV8p3aDSaImZLZFbm5M808NoO0GkbTOlcR5YpzEe3KdMjLIWJDVliJ1NBJ4rL/qrSwd+Shvf/vb+eAHP4iUeSPo+fZ8e+7a9yxIufPOO3nrW9/KBz7wAX7+T+61hgFuEDpZwNi3f8vEyEha4vV0E0OaLJYs3jnPaGLw56V+O46R/G3yhr94huJ1IvsfsroOeaMmF7lJE5JNNinZyrO5/UXuWvMSxB2Ayf2dgKU0ypJtk0ZrJGiZRIsSkJRDbRJMK2L2rs8wfvGrbVE3pTB9XdT7od2liJwHyGsainMRwXwL40mkLwlOzWOWVxC+j15ZxTRbSFWxFeULAdSbCN8n2jCE8SVhUdmaHJEhKagpYmPzWyBN9tbJu4ytCpjxlbUhE65wkrwbaVfkUabqXVbpS6eAQtSbFjjUmzaHRVjjwpSLiNUGqt4k7q8R9pUoR9vx2o/zdPvL7Nh1A95yG9GMCEdq+PM+YqVhk/y1drUk7Ms35WIayRGyDPVG5nnWQBgxYIa4auBNnI1PMta1C4SgRYOg2IUe6EL7Ks3JKZX6abTn0VGbycdvt4dpNWksTiGkR2NpmoSqZ+V8bZ8XUrH5JW9Pc0jOu+EXaS5Oo/p6icvF3GLr+p4SeA2TJnLGgSAs2bom5KhcCIhLgrgIMlwT8VsTsbQVkDOelfFNOhYARCxSgJxXp9OeSbdJozQyi1Dko4+po+Er2Tsi3TT7W2ENCQVaZuBnLTDpkAtNrsVdj0gMA2Dohtdz9G9+j8kv38L63a9ARokH06BaWSJtmrcS2ByWmuzl6eOfYlftauZXj7HoLbDUo6kWB9gkX0x/12aYmacaRfTueCkLY5JjX/ow44UBtgy/gmOn72ZQDTO3eISZ+acZn7gKYXzOnL6XVnOBRmOOrto4m9Zda9WwANnfZ6MoRR/TXUMWC9Z50A7xurownuLQ5OepFYcpBl0cPfwFJt72Hs7e9gnu+9z/RnkFglI3Pf1baTUXadRn2PS2nyWo9SLLJSY/+zGWHrufkY1XIFYjjHHOBKfmJiJt60mEsQUqYWw9v5BSOY2UjA5fzD1P/Smbd76Kret+jEKx2zozYkMct7nn87/Boj5Lr9+F8IFQpjWIRLGIrJQxzSZiwEpt02rb+SKKbPHXtH/Y/BdiF/F00ukCwLg5BZwiX1Zo1QIZe71qoJ943QBqZslSQ/NR/nYbzjas2l+hYCM8rRbC8/FHB2mT0dMSgKJ6ujFhhF5dPbc7C4Fvgq8JaL5b2jILxMTsEBd82845ykbOcJz1z5CXUqGL+uqj+HUrqW4UhL5g+CWvZfHMfmivEJS6OXHmi6y7+IcwBZ+oKPDr2kaRHYtBxs6hE1o1wuJ0i8Zo0SW0J7muIAoS1dLowBW1dbTPc5LxE5Ce2iuQsEKSGmv2e7J5KGdvxDKzSxIHaUL5tBFzO/FqP8uRi0pu/vWKhBt/iAce+Ht+7ud+jve///3P0Zv53m/aPDvFHJ+NY3w/tO9JkLJ//35uvPFGfvu3f5v3feSQqxVgB6WMTarSZWlOhjgffs0bGGQDOTXa1zyRjtyMZ7iWjkTc9DOBELkJZQ2gSX6fIyWcBxF52pXbJkk4TiSVhVl7PFKwlh5rrfGUP3ZyXUm+gG9yhmASRyZDUBoWH7wH5RXo2XI+atmgmslkZk8crGj8VY23EqKaLt8k1sizDWg0rRHQbtvChH09iHLJRhmWVjErq5hGAzls+cjSk5jYoEKdTqYYUmWjTOhAuPuW1nPVdjOxJ22eR7J94CHakc1TCXKLt9aZ6hBknlOwlC3fQ9eKxCM1mxvjkvVlLDlv4rU8eOyfWWxPU+sbsepdSmD6S/hCoPSqBSTaYAoeBL6N6sggu4cuWz9GRBrRbCEaLeqtOY6uPMTe4ZfZiEm5wMzyMWp9G1mdqKDbTUyzRRhoNl71Bir77+HEgc+idYxf7sLEET0Te5g99iCtcAUtjM2nIAGuySJoLKCLQZcUXnXUAhIJxnf0IJcXYgGKXYSjoiQqWeAiXKEwHUDkpIfDijtmwap0WXAk0iiJ9sly0VNgnSu6qLNF1xZ5zCGBBBgkKlzpy8qNhzwgkgaD6KBwZQDfopjUK7lmkBuBLZwm7MAQsTvOGkdGzqnprsPm02hjo3Cm26frkstoHjhkI0TKaTm4Qq/+QssKNBQ9KwDh+YjYsK10KY82buWphTuoBr0Mb3kBQ2MDeEEZoQ0NKTAbu2ivLPL00X9m4a5HAOjeNU5r6iFa0TIbtr4EBDSWpzl14os024t4fpmtO29g5uyTNOqzVqCiGVuVuWbLqnutdkPYRsc6pSEChLqF8ov0r7+Qxw7+E33nX01pYiMbbnoP4dmzHPrT36DRbrBzx+s4c+o+lleXaD95kNWoTjA0Qv3w06zbcg0qcjLjQticlBxVU4SZnqrxVaZoqBWxjrj/0N+yuHyC4bELGd15jQWxBozRtKdP06jPEPgVGvES3b1jIARycRXRbGFkASEE7fYqM+3jlNqhzTGoFu15ZxYsGPWUFbUAG0VJXm8qsSydAyLplyoFLUkdJBNbyXUTRciVFma1nuahpcfSxkqMt1qZtDLYqMzh4+gUIbvT1GrgeQghrUc7jtHNVocwQA/9THKCcTbz3dq00cwxxRmOsYMLv63nrlDjNEee8bsFZugtj1t7IrJOE+0LTKDY8pafZfK2jzKiJ6hMbMeTASHW4WCkICplzkIZW2edjAztqqQ+ViQqCkexSuZEu21clG6uIQUN4LYROcl158wQMSlTI6zYbVUrS9BPGRLC0VPz1DHh7ieJFLvjylh0gJ6UaeHAkPRqFM57Ax/60F+wadMm3vve9z6Xr+h7tmnEsyNB/HxOCvA9CFLOnj3Lq171Kt71rnfxJ19ehZIgrRYtQAuRGiE2/8K+aBmSLmRp5eskmV3QGTpdAyTSwZ4rKNdRsZ7Mw5tPjEuS69eqcdgLOvdcaz0h6d/J94JcxXi7uFmlpdz3OaCT3z/l/IvO4ycTmvZMVqvFfZ7kCFi6nCE8O8vZz32Czde8DRVLgoU2UUXZ3JNVjRHgNWNUI0I2QmtsKWEjJXML6CRB3feR1YpdnBeWUlCg63WMNqhWiAQKiw3C/gpqNcQUlKVzgVMT6kSGRlnPswy1jaI7hS8Ravu+XVTEFHxk2yXoCpEaRRb4KUshS2hivofxPeK+CrqgCMsewoC3EtqClZHG+IodF7+F/Q//Ezsveguy5QrsOVqNKRUyTn2CGIUFB4v105hGE10tYDCoRgTNJmcWn6CoKuwefin09hCXfKKyz0BxF/c8/Ie0n/4gOk4yyaFv3V52Xv52Rtddxtz8QWbmn2Tx1FO0dYMNL7uJ6qadlgmlbb5W2p+AVrfto6qVU4LL90tpIyWynX0fFQRRGeJi1hejok2AN37WZ9I8JwF4ZJQ9ia2BojvpBedEP5RTwspFB9NNI5Ehg/xcbtb8TrCOMml9gfw9ppHSXE6MMFhgk4wH978dVxaoiCiZXww4moQxGQjrGF/OERA1VlHlqgV0yl5YXAChJbKtUI0QVW9jo4Ke7ac6ptv0UpAVRgb20hoZIyoqGwAsWWpIWJKcmH6IZn2WwVe9lrOf/CiHnv443cPb2Db8Yg4+8TGM0Qjfp1waoFTuY37xCI3mAv1Duzh17C4OH7qV7YPXWFBaCFAjQ3bcKmUTz307/nTgsXHz9Rw5+lmefPpfaCyeYfwd707nnPrUcQCKvSOEJcOOna/lYb/NyS99NH3uXqnK+PoXYNrCrkAuopSXChdhRuW0Y1umc/mJ0/cQ6zaX/tB/xy9UbJKxAdXSHD94GycOfo5y0EujtWDrvcQGUW9AFBPJmFMrT7ASzuEZj8HyJpbiGU6efpyRkQvp6dmAF8WIlbrNRUkuOinWmk+eF8JGVRKVQZ9zHR2xhrBtgctK3UZyfK/T/HCy5AlAiU3EPGeZ5yxRM2Idm5Dlss3XazYz9UAlEdLHtHEFYgtp5GagNcopc4SnzUOApTAVKVOmRlV8Z/jtM+YMIOiiF4D9PMww4+zhsq+71su30owxHOUpWjSRyrPOy2dIL5pjiv7+C7N8Ul9kTpVKEa+riyfv/TD9xyfYfOmb8IJhW6Mkby8oiGWyLgrn2BGEFTtHRLHN31Nt7Dt3+X4yNillPSraOUK5qT5285H27XydFNEFiEuAFKhmlleilUAHFruqtkmju6nMu9eZ95JKJMekBXYhm7+0B2qon+6r38yv/MqvsGHDBl772tc+F6/q+fZ8S9v3FEhpNBrceOONXHzxxXxyeRBREplnIeGIJ8aRzLwFSZJa8p3Iodw4UcpYQ8tKFt2UwkI2aGUMxqxR8VoDAPK1TNKWAzIdNlcuIvKMdUzS68kAUzrJqJxhBZ0gRWTelA5Fpdw1J1W3jXLXlHip154/ipn6yAfp3XEpvaM7KMzHqJYmqihkW6NCyylXTVunJOqydAlvqWmT5cMIvVpHBj5p9XnALLdTcIKOU2+t8STi6DReYL2ghsSDpFPxgagWZJ5s34ISrQQEynllXU2bOHbRNntsHXiWV25sAT+UTJNyjUfKfzdKYgILEIwn8BoxqukAWMNyz005QHg+XqGKamj8xaaV901era/Ak9l9+YrZ2f1Mzj5KX3UjftugC7F972GI0BHbeq8iqPWjK0V0QREXPWYLs5w5dDvN+gxDe65l4egjmDhm3fYXUSj38PgX/5ylyQMUe0eobdrNpsv+E8XhcYSUlg4nLT05kRM20hrIUdUa1UaKdOHL970kOifbFpg3+yRhlVQeWGg7RqKK60N51au07xlMYFx+h0iBhwjX9MV8E8YCGZULJea/jkQn6MiDfb3ms2SxzUVR0vcDGYBJnBvpQp67qKSjueRzo0RabJI0AmSynJhkHJE9z3h1haBczeaW1FsqUYGy1K+VFlF3ibgo8XyFqFVpLbUZKW3H9NSIhaZpmoQT3ZTmNP6KttQ3KfB6+qhecQXzd3+eyo49LN57F2fHdiGFYvvgdeiCTz1eIDQtpqYfRbfqKK+LifGrOH70Dk5O3ksctdnYf7kDKAIdKDsOVPbQiqqXQrHG1Jn7GXzBK6EcpPfdte9iKhu3cfJDf87pk/cyWb+LpdmnqV10KYXx9ZiFZea+eDtf/uL7Gd/0Qtb1XIRvQLZjO6aUhDCyCoC+B35W/8M4aueBY59m1/lvQVWr9rROVOPQkx9nYeppesrruHT0DdYhUihYYQyXB7cYngUh2N19rR3/nkf3SC+RD2dmHub0zEOsq+xmIOi3c0Keey+EBSTpGuF+h1GmFCiFBSa+jdQKHysKonORWqksfUxJazWSFLi1/WmSE6yyxBb2ZAUJtU6jL2l+Wxhl4AYQgY9ZzcQ71kWbQCp0HNKiQYNV5pjmuDnAWLCFXjPwbRUBOMtpBhnjJIdo03zGOibPZdNoVlhkFxfjq4pVbIwaHdskAHHbwA47b+ams2QN7d53KWfv/SzKL/HAnb/HhqErWDd+JXKgj8iHtq4juzLxlagoOuacOBCpAyf2bQQjDqwj1WvZc0YFQVywSe6xmyeTdV77NmotYuOcS4ZIWkcRxoKfTHwksV8cbcvN9dZRRGfNKmkVGmXoQE0ig56jmRkJhYkN9L34jdx000189rOf5bLLLnsO39r3XjM8O+pe5vlICvA9BFK01rz97W9HCMFjwxcjfWt82YGXvcy8pG/Cj5eQUU5Muha4HYAw27+D3pWoESXehpyxk0+kRefsKJEN/LXF37K8k5zNc05uSfIjsskDUkpW4qUxJrs/AKOz/TuOp7IJ1iSSrjkwlx7X3U9KwckbjxrmP3cbutFg/QWvRrUMhZkWRgm8hsZrWLlPGVlPaFQNaPXZrlVthDA1A3GM6qraBbZUxHRVbORDa1htgLZGvywUQFjjiEbTygxXCi6vxCp5iWYIShJ2BRhP2suU9v1qX4I0KTcdY5C5GgwYg/ElxNhIiDNChHDcck9ZYOHyXnQ1sOotniCYD5ErTbtdzrscNpfxCxW8lTZqfhWpJHFvxd5DYKWLjSdpxw2OHr2Fbt3Dvu4X20rbBYMpWkMKZQv4JUUwVwttzp59hKn9D7Iyf4Ke3Zey7R3/jSP/+PsMb7mSnqFtHHnoo7TrSwzuuoqhV7+BoLsvBdU66V9k/SF2oN14FqTEBZOOm+TnnEiesYtiq0dSHzWEXRoRC/xFiWxbSle+LwpHG8AAnsEUDCZwEas8RcvRv+xANpbqkPTLJEohjc36XNM6rlHgBpPdV3Sg69z3RnTgjuw4NhqSPqt8vksakcmek6VL2P9lKLL7XLumJOPR/R2vLuMNDrM2cmMUGE8QlyzVq9XvExUksuUjBrsZMhfy9OIDDJbLPPnFP6TdXKJy3vkMb7yScTYiQ0NXYZSp47ehJ+dY/wu/jC5D4/Qxjt3/UcZ3voTl5jQ97UG6Sj0YX9Ho3kV95gQ9YgAdKDaMv5Cl009z5OwXGalchldwdEhla+JoE7G4fJKVlTMMj1xApNsM7buW7pe9lA42kgDV3UXv1S9i7vOfodI3wYa3/jdUTy19lsGOrcx87MMcevDDHPU/wXnnv5OhRreNNLRDMC6no1CwlCsZ2P5gQCjJwOAeThy9g8qmnchy2VIDMUyffICotcrA6JU2AuSKuRol0/y0XjXI2cbhlI6FEIhWjIdifOAiRgcuYPrU/Ty59Dg7+q5BJkUSk0iolBlFzf2IKMZEMcK0SGlgHdtkQMMqlkWYRsPKlZeKiKCI1JYGizGMm908Fd5HWFD4cRHdaqGbzazPtq2YgGm1MpAhFUaFliImhY38RBFCCqRRlEyFEhX6GEJjmOI0k/oYJVVlg9gJURaZfa6ah49EPqeqXV+tKaHYZs5jPw+zq30xIlw7YGGesxRUjaBvmEbOoSdjO3caCUH/IF07zsNQ5ZKp3eyfupsjU3cxUNnESjhHqBvsffFP4w8PE1akjUDkIh9JpFV7gAcxpNRbcCAjoXYriAqkKmMJdSsqgtACf9XSvJLjxcYey9LBcvN+wV5DkrvSkYeaDAWT2TyJRDHCOYRy9oVRUN25l3Z9jhtuuIF77rmHTZs2Pdev73umafMs0b2ehWN8P7TvGQniX/mVX+H3/uTPWfeG9+BVqh0UKoCES5ku+rnogi2cZEOZSQJuEjUxKvs8n9ibAYLE22ky0IGdEFLVKZ3aQJlRQgZCOvJWch5f47yyearYM0ZgEtDhrilJnk/vcc015ykwWUTFdBzjGaM1SeKxsUl/IrTHbxw6zKkP/CnbbvwpeorrKMzHlE4tE1ctoBCxUycxhqjiE9YUoVM86TpSRz19AtNoYPZsQZ2eJR7pJ674yHaMd2qW6MwU6BjhB6ihAUy1TNRXwT8ySbR+KFVKE7FJuerGV7QGSp2RocRIdbQiERlkO7Ze2jVJh7Idpwn19hnngKqXFTGsj1fs+40NhZkmsm4Xc1P0iIseMtKciY4AgjEzgVy2BRjD3hKz0Sma8Yq9Rm2Yn36aTdtfSe/JENG0xoSuVRAtS/GxtVgkq2qVx45/jMX5o5SHJ6jtu4iuXRfil6q0Js9w6G/+N/3bLmXu8EMMXXgdfS94CRQT2bZcH8z1Cxygl5Htk1HJLXYVQ1zSiEjgNUS6IAltx01enjrs0haQlGNoS4IZhWoJolJSHT4fznO2f1ljKhEiibBogYkEtCWyJVOQYDwDgYZIZtEWT1sAk4CYBFAYYa/N5a0ILdJ7B+yqD5n4g8zOnV5YMj6Ucc9GpEaL8deAlI6+5RZ5DM0HHmfh1s/glaoEw6OIoo8RBlXrIphYZ8Ue2qHNQVhpMPnBv2XLje+mq2vC3o6TIpUx+KsxGMtNXy1bQ73ULuDXNZGIeOLBv2dp8iADl7yI4rWXsHD3Hazc8yV2vPw99JbW4TU0B4/ewuSTdzD0gldQfs21xCvLnP6/f0BpYILiimCzfx7d3ROIZohptXl89lb2TtyALvjoop1UHnvyH8Hz8IMiCImUHkIo2u1l+vq3USkOcOrM/czOP03l8kvpv+ZlHc8qBV6SlMonHK2vo3tICFcWOf2nf0g4M8NE70Xsql6FaLSJ5xfBWFDgrRtD93fZyA52Hoik5tGnPkSoG2z/oZ9yAATi+irHH/w3GvOTXLr3XRTmbX5XKo4R2rH7xNIdNpKilBW0ABu1SRT+Ys1SY4rjC19mQ++lNNrzNKMVIt0iilv0VzbSX91kx6vnaKX1lpVrrtVs8jxkxwNSz5gx6Nl59MoKwvORXVVEt63tJcLIOiuAmJjH525jV/Vq5PzKNx/xEML2v1ykJt9ma8s0omXGm+ue8ftnsxljeJz72MpeiqL8nJ7rq7UZc4aIiBExcc53+9XjtDb0sP6qHyH2HV1KWTshLrj8OAGtkyc5+oH/wzWb/yPBsXlW23NMcZKWamFKAbN6kg3v+BlEbwV/2c6nqm3SOTXvjMwnt8vI4K9a+ldUtvZBVBapumI+6iEiO3eoBoRVUgWxvBJnssan1DUvkSN237tj5SMqHfLGgrRG1TPlzM7e8jEG62f54he/+AMtkwuZBPGPfObt+JVvXYI4XG3z4ev/5gdegvh7AqR88IMf5Mff9R+YeNNPUei3VU87+OReZrgnYAWy72VkB3QeSCTeZpkksOkMbNgojMgWXzd5ZHLF2JorwnFCDakeeT760SFv7Iy9Dq68zLZLql1rdy9JzYaO/JIkIpIxILLjQUrNyUd5Ui9y8n0+uiLJOP85kCZikebwtE+e5sRf/QHjl97A6MTlFBZj/KU2sh0Tl3wbIvYlOpC2sFVSpVwK2jVJeTqkMLmCLvnoQNnoh4LiZN0p3SykC7Ya6CMeH0S0IxvhcLknRkl0QaXAznKE7fk6Kv2654q23F4RWXlXG50QtjK9wVLGkkTdpMp1Dozmq6nX11fQnqA4G+KthhDpNB8JaekBj03+O3uHXo4fSuJKgC55TC4+xWp9mp7+rVbmVEBNDVBejC3QijW6VoTYIJttkBJd9FgWyzzw+F9S2r6T/he/gqDUBcYujjICs7jK7BdvI27W6b3sWgrDIxa4Flwf13R40GxkLzPEVcv2ee1D2GWIKi4MmKhjuVuXdUmwJNNFNawYdEHbd1ByikWLHqqRLODGLb52kJlAI0KBqcYIpS3NQAtMJCGUiLZAaIEONBQ0QhkbZUmARELzykdeErCRjCUtUtlhYVx+i4ukGGFs3kqyLWTHTu5TJCDFGdOhdIDMpONHJLLGKQASxItLzH3wX2gdPcbo+S9DhdCanSQmQgeC9uoC9dlTCCkRvo/RGtNq0z2wmb3n30RYlcSBVQPyl2LioqTZJZl++i5mzjzC6tRR0Bq/0k2xZ5h2exlKAQM/9BoKGzZg2m3aK4vMf+bTVPxBNux4ha1HZGB1+jiP3P3HjL3npwg2rCNaWmL6Ax+gdeQYldoww5e8jPWtTex/8EO0w1W2976AhWia3r4tFAfHWTx7kLn5A2wbuhbtK4yOiDyDqFQRnu0Pk3OPsf/Av7HhXT+DGuxL89kScYRkUsvm6Fzukcg5k9x8dPYT/8rSXXdRKQ/gD4/QPQWy3mZQj9Al+vDG19nir8WCBfQLy4Qy5LbJP+eCt/w6qlDM5v12m8c//jt0DW5hw+jVdLerthhrO7TiGGHEkfl7GS5tpVwZyCIjCaBIVfY0zWiZ6aX9VPw+ikE3nvHwZMDppSdYaZ9l8/ALCUpdNvIKqNllosEu1Gobc/QkcqAvkzCONcQxk63DLK6eZJB11JplhBDIchndaJwDEhpmlSM8yW5xCd9UEwJVq1kQtLxMvLjkPpcWBAIYw3FzAA+fMbHxmzvP19mWzBzTnGILe58zaeGvpxljeJL7mWALT/AAE2orY3Irc/oMj4h7mHjZj1HZviczzr1sDY7KsHzsSU594M8A2OdfzQgTKYgMTZspdZr9+iG6t55P/zvfYutEAYU5gb9Cpxy6Awh51oWMDH7dApUEFMUuD1D7+fndIFsiy1nx3bU6h1CijCgjt967ws+JwyoFMwlQ8bLr6hD1jMjmP3Jj14Box0x+7K+4eNM4n/rkJ1Eqb5z8YLUEpPzwre981kDKzS/9q+dBync7SPnSl77Etdddx/APvZXaxl2Z7J6TR9V+Z7gyWazyRZQ6EoLz3ggcgImT/RzXPEclSbzoyfmMsAnD6XlMDjBpUgNW+2SRlIRGlQABzgUcIqlf5neCF7NmcoBsn7yH3O6QX/w7eanJfsLZpGn+gEieUeLxc9cdgg7bHP///wbD269mfMdLUKHBW41tcvxqSLvHegx1QSJbmrik0J7AX42Roabd7VnaSmxQLYMMjTX4Z5rIehs5PW9rBQhhedRCYtYN20VfWYqUml2x1KmC596NyD0HkQKUfP0b+zytEpWlodmIip2MEyMkmch1znNkMkNBWg/p6vqK5eHOR3iroQUYrm9FKubpE59m/cgV1Lw+ZDOiPl5jcfk4k/vvZEffNZS9LkzgWeoXWLpaaFWUdE8FWW+jy4GljVU97vvy/6WwbQtD178WXMg9ETZAgGqI7H2T9a84SVxXJjMUs9drPfdtgYwgKllAHpWNlfxVBjyDLEXoUEHbPWBl8Oa9VLM/rmhMQYNvIxxqwUO2BMaDqBojKhHS5WnoyAIS4WurThPLlHGHsIAFIyx4cYZscs1Ig8gBJhNJC0aSCIhLVk8jKvl98159V+Sxo0ksgHH7JDQ0NPaYKT0ri74kzzNJmm888DjTf/U3bPmJX6S3PWgLWLY0Xt0C3ziQWd5UWeI1baRxcvIBVqeOUQw9BvQQCysnGCtsp1TpZ3Zrifs+91sMv+J1FHdvR1SKtKenaE9NosOQ7quvtgUFV5uc+YM/IGyv0veGH2b2H/6J8Xe8m8H6KF7DUJoJOXT408ysHGLwp/4DyuV+NRfOMPehj9A+cYpC7xAjXXtYH25k/9TtqEIRFZSoBYPIcgU5t8xI315LWQKMUpiST1y0hesefeyDFIfXUXzzy5CRsDltiVhezthaKxSyNl8uKcBpgPb0FAu338bqY4/SfcWV7BHXMHvHJ1k2s/QyiEBQEjV6ahOIYhG9ssKd9ZsZ6tpOz4++BZFw7jU0Zk5z5sufZPHMfnr7trDnkndQPrVqI6etNsv1SRbDacb7L7T5JEIw2zqJUgFdtfGUGmb7gQUuoh1lBWCFoG2aPH32dvZs+WGXs5Pl7fjzDcxRW9PmlD7MMguUqNDLACc4zHbOY4YzLDLnHo2jnJaKDtC2qNJNiwZVuhkS6/hGmvADTNjG2zCB7q0hWqGVQgdMwUcXA9TCCjRbRGdsIdpJc5wFZilSAqBImSJlSlSQKBqsEtKmQo0CpW8IZBhjmOEMU5xkN5d8W5Lkv1KbNVNpTZY2bQaK65kTZ4lNiA5bTFz5OmqXXk67C4xnUI2sJpTQtl7U8sn9TP3rP3LtxH9ET05yqOs4Y0sDVOY0R+R+TnsnKF99JZXzz8MbHczWc0fB8lcF3iok1HDVIl3Hk4iNkeA1SO2UqARxKWOCJNNTHNh9CnNZNFl7oANLGZMtl2uYsy/SMWiswyoRBEop8jlHL2Tfp/mtOWeo0MByg9P/8Af8+I++iff/7u88+y/te6QlIOXGW378WQMpH3vZX/7Ag5Tv6pyUEydO8NrXvpbuF76c8vZdxPkvc1eeGv45I15ol+yrMyM939Zy08El2ucASnpMJRxNxhrZab6Ji7oksr/uyG5H+5MPjZpku3zYNBnoyeSSu6+OpLbkmMm+zxB6tecw5xwfFzFJJqZ0gnFgT4TO0HcGptECqSF+/ARCw/jW65CxQbZtYcYkx0I1Y4wv03xQbzXOVM+EwF+K8UVsAUOo07wVubAK84uYWCO7u2yOSkJ3cEmzaI1otIhH+wh7ClbqNkmETwtdCue9F5kHSJsUcNq+IJydqmy0KzZ0FNF0KmDpu8tVtV4dtwZe6WwbVY8cp9x+HSvDUyc/xdiOF0GpyqHZJ2g2J+GhBn1yiPN6rkdpZT24xt63LQKnEa02uqcKkSbsK6fnb63M0pg7Tff4dZgiTlkmk+tFgKkaq7yiEsph9r51JbYUKcArxEQND9FM6CzaRifaErWiMoPfRc6MAN1WyEKMKrcxWhI1PWuYa0HUE0MhRnoaHSqEr4l7IuK2tOCpq00QRBaQGEHL+AgVY2KB0baDSk+ntC+jhQUqWljgIjvRRAdIydGzhK9txCU/LlJPQcch7LNJZDbjpK8YNy6NfR5Jk4DSKYXsnJYztkvn7UF2d7P49IOU1l1OLarhL8doT9Du8dL5QTU15ckWxiXID268mIFNF6NXVlicOkhX6WqOHnuAuL2f5pNNZLFI3/lXEdbsWC2v30xp0+Y04qmlYf4zt6AiSXNxia7qBtrXvpCTf/2HxG95J/39W/Dris0j17B6aJrJ9/8fBt92E9V2L2weZexd/5nVJx9j/tOf5tiJO1gYOkVQLdLrjVMrDvHU9K349Srbi5dgAh8xNYteP0RcDYh9a4RHrVUiEbJcWKGggMiCwaTGSp5mEi4sEM8tQKjpPhhSf+kGqBQzcQUJRAIBFIaGGX7Tj9J+yfWc/D+/y9Ef38fG3jcyNhcy//jdyIU6y/E8x5f2s2vpIpTwuJAXcP/S55H/8CFqP/ZmhBOFKA6NsfkVP0ncqPP4v7yPqf13s9g8jdc/yDZ/D9XaGCennsD4irinzOzCQRZXTlI03Zw8+TCDPTsZGNiJrIeYggNq5QBi39Zbig2+qBEEXUSmjVRlO7doO5/EtQLe0ACrJw8w255iD5fSosECM3TThy8CRtnAKBuy7lerWSnhtrUoZ8wZZplCoxniq4MU4XnIcpl4aSkFKAD67Cyy7cBJGNpkfUAqBV01KAR44+vQc/OM1NfTb0bQbpVt0qDJKgvMEhNRVt34qsi0nmQ1XqRkSoyykcKaxPfIhExzmiXmELkB2csge7j0uYmg5EHlV2nLZoFJjrPO386D4e0ofDa9/CcYK8SsLp5Cr+ulUO2D2NLD20WIe0zqgFRtgWpCcWCMuNXgjDqJuGaCYzf/NcekotI7hhcJegb30Hvp9TQHjGNhZPO3MNZJpD3SSEfSkohNUislrFhHUgc7A/u3dvQtAcRFTWPMAhLZzgrXishGuHVgnVvS0bySz4R2EfjY7pvmJOYcm2kh247n7WwV30acRalI/5vezp/8+e9z/nn7eOc73/mtvc/n2/Mt175rQUqz2eRHfuRHePWrX83nx3bZMeqMfh2YDu+EjDoHe54ilYRHU9qXS57Pq3aQhE9z3r6Um5m3X52aFu5aOqrJr8kDSHNREr4nrKFg0eGx0KnRmTuetB70JPdEuGhHRiPLGXL5a3GAQyQVZN2kkqp7JbSYyHqJjZ+vT5E9p+UnH6E2uhW/BaoROVAm0IEkKilU01KpZOiiEe6evHqIaMXgSbQnLc1CChrDRYKliGDRVV/2PSvRawy0Q5tArqTlZRuDKRWIC8qBR4Ghk7+bPO9UdS3K5BeNEmgpMrlpDQbruSeyKmFZ/o/MPOhgjdpI461qjCeQrRyf20V4zi4+TVDqYfrE/dBq07/pItaP7CFYDBHt0CbtGm257i453wSePY5LujcqMZwlUSBoSvvyJz/89/hb1uMPDqRh/aRuiJEQ9WgbAfAMQmlMLK34gzB4hRghbedTxRiKMVJqpNLpWq57BVHTh0Xfvv9EpUoLCyqkRHkxsqIJPU3cUKhqlD2Col11tTaYgkZ4Gik1SmmkMBZLlwzNRpCiYSFNB0DBkOr/pxSz5HuTOLDtsVQhTvcxCWUrNy7TQZH0QWUgzIUjZTIO8oM+669py0dZc7/zVCU0lr63WkdEcOqumymUekHHrD//1QjfXqdyUdm4oCzI8Cw9sVVTmEoXlZGLMMDQRmuAnpi/F24/QKs3l7uRdPGcM0LUSuiqD4uCVq+h92UvRVUqnP6bP6X9yhsRI1fQFVc4f+ePsv/0Zzj1/t8FDIM3vp7qtVdQ2beP8r69LHzmsyzccis7Xv3TzH7+0+jVRc7f+HpEpcpTR/6VPX078b1B1NQCcqUE/WUePvAhStUhKqVBTt1/N13XvoByaRh8KyBgPIMxhpUH72fxzi/Qmj5NENQQQjKNJr63xdDWKym94lrMupp1nCQg0o1bf2CQ6oUXEd16P6VjMwgM/XEZoWoMDu1m0GvxyNlbKFFhc3MrF4lr+fLK5xn/x3+h9sbXYwKZ0nOlKhNFbfYf+ThC+fSqnRxYnWKi/xJLIQ0Uh499BtHTzfpdr8BfCVkXX8RTxz9B38A2qAagjc1R08bWvjLGCpBIyXD/bp44+m9sHL+WanXEApSSHddnmk+yqo+lNU7KokqZKl+p6eXl7G+jadPCw2OELG/CGx3BVEqWQiaFzWtz0R2zWscbGQbfRy8sopeX0fW6pZEBwvPTKLJQKosKAbpet88+V329QIlu+tL/hfQQfmAdNUVFPVzgZHiASLcRCAyGfoaZ4iTjbGaU9c89pUsIRBDYGj5xbCXudYcrk6ZpsMICCo+THGIXFzMXnqUQdDNw44+wNOGD8fHWbQGc2lbb5nmUmpZiFdZMWu8pDkCWqgzd+Eae/Nd/Zt/qa5BewMQrb6JuFlh8+Ev4F43R6jNppDBlJyTTSJ4WKTMgoj1SG0RGoFoipYCbpERAsltbuLppJnUwxp4hrpI5bTSIUKKagsg5t0QMxs/ZUKkgiM3JU03OceDa70gpYUZZkKOT4qsa5MQAfT/6Vn7qp36K3bt3c/nllz+77/p7qGmeHXWv5+uk2PZdC1Le+973IoTgtk3bEAq0MXYhTORyRTYB5CMJqcc1PDe0mVbDXhPWlGHOfslHJXKHdeyUjMcpQQed22eUL/tdes7cteUjHwlVJ4l+mzxIEXYyMJ77G6xUai7fJon6pHS3hFrmOQpPkgCcGFsuipLckEkMOuykmSRVoyGaW2D+sXvY/Yr3oj1B1OejlS3WqBpO8lIb4qIiLoiUFqea2gITl0gflzya/R4qtAZa5dgKIozQc/NW279WwxQDa8hLAVMziGoFPbeAHOizie8thQ7kGnqXvadE9MC+O+Fs4kxmkdh56nNv04ID6bZxBnNSmd5Y7xBS4jVjRGTSHJuk1grAYPd2hIau8iglVcXEEtmMbLTEUxiXBG8KirToG6ALPiLStAuGk9P3cebsg2hliFaXiFdXAPAGBlADffYd5jph1B2jutoUfAs8tJZEoSLSworyK2vUe8qgVK4gpYtuxLF04kMGZJYAbwJtqU6xwLQUWhpULscrSVj3PI3nxRgjiEIFCcVHGKQ0eC4aEhuBSZLnlV2ppbRGXl6xxOT+FtIgVYzW0lJ3hN1eANqITmepFlnOSkL3ykVbOvJYwILyBIil+5DlpkSic1tEBlQwOYpgtpnX3Y2/boTRTVejjGLu8AMsnD1A//AuUupobm6wuVEC2Ta0uhVhVdBQdZbCY6wc38/yPfcw8OM/Zp91nNScMVk+jDtW5ZILWbr98/h9A3g9Nl+p9qIr8YYHmf3bf2B55GFKG7fQf/4VjG58DWMXvJJHbv0dzn7sXzAlRe/2S4i6JD0vu57V+x+g3jyLV+1mYvjFCKVoiTbKK3Lk2G2EpkVkWvj+AEHYTUjIwNAEveP7WFUrnPjt/4VX66bnshdQDivISpXFpx9k5dQBtk5cz0jvJgqOOqhLBeb0JIfnvsjk//3/0Tu+l+r2fRT37sI020RTZ1HlMqtTR1l5+CFEdYynw2kMhgm24mmPlakzzBbmGB+9nMnV/TzddYJ1rTF6lwc4tfAIPfdVGb76VaBAO1GS4YtezNT9t7LtFf+BQ5/5KwojF3By/kGMgKdO3crS8nH2bnwrKrZgBCUZHNzHoZO309O9Ca1D+nu2olSAEU6NUCp0oKhUN7BjYIz9Rz7J5sI1yDhAFmscnbyTUl8PQ8uK5vLDrAzA2cI0I3376FkOiI6d4Cu1yIQc5gkGGGEXF9t5tFBAloqYWsU6dhI5aFnMBkWlZOeoKMY0W3gT45hGI1X5Qiqb0O+cQKbRwDRtJXvheV8zMd9EkQUDSiGCgIrqZ6uppFEbG0E5xS4u/rbQuYQfIIoF5GA/aI1ZXkHEK5g1IGWG00SENGkQE6PwkAiMjujp3kJ9OKkLIvAarm5RkTS/D2MBQeIc1cKu0+WLz6d78jRPPPoZhPKY/MLHGbzxdYz+t/dihCFuG7ufJi38qskDAJOpIEon4Z681ijnXE3Gv3EToHOaxE6bQcSkkWLjuWi5wG4bC4zQxEgbzXGO0HSuFOmlYKTBBLlzQRbxJBENEukcaG0h55iQdpvCjq2UXnI9r3/963nggQcYHBx81t7391J7Xt3r2W3flSDlL//yL/nIRz5C+T/+J7zAS8V9dK7wW97u7CieBmCEDRaobJuEIpUm2Yss2mHcZJSPcOTVr/IO2Pz8e45XX9vvdS6Sk10sKWjJ0786clEUqRfEuGJyCdXDelfspNYx0STX5WhtVs40m4RMzi2SSrMaUg8zMY53T6oMYrRm+iMfomfrhZR7Rlnptl7g8oxGtrWT+bWh4pT+FmXnFLGlN8UFRVSxCEorgddynsjZeXS9jqrV7DU42V/RitBLK4jVOrrVQlYrxBUfHUhX8yZXuDJ55EmtiVQ9Bwwi2yZ57zJ53w7k5JLlbd2BBAm6j1ytFPtu1iy6xrKThmvb3DkEInS1WALP/u3be9K+tKuUkRhfEhUVpw7ewaGDn+w45PDPvptg/ThCKiTumYkEjBpMIcarhZTKLZR7p7HRdi2KpM0ViS2FSimNryyQAdBaEsYqywkBPD/GeBpdtABAh67jSoNUJq1zKT1DHBqkMARB5MCOvbAk0iGlRkpDpCW+ilFALEy6OAthkEq7QqrCRfKs/9U+PoOQOi+w5j6z38uEZScS4GPWyIi7vueOe44DSpk0cd8e0KS/hXQiCInMscz6kf3tjAOdgGP7EEubt9A6eRJvz3nIEJYnDzNy2Y+CsSo+yThp93iolsZfikBa/nlckMREHLj5NxGVEsHmcYZ//j8RTIwTx/adGc+kuTdCW+dMNDfP6f/vb9h3Gka0T57B2zoM0lDcu4WR//FzrNx+J/WDB1l++AEGXvJKBof3ccFLfpYzMw8x+enbWPz3W+l/wxso7nV9t6dK7/p9PH3w0xhilFegtn4H3bUJTs49xOr0QRqHnsSr9ViDefMET9zxlyydfAqAaHmR9oEjhM2QqLFMqdDHVVvfRakuoG4FIUzF5jD0FdbRteOtNEYmmZx+iOk7P8XqZ/4OgKJXI9QtAlXm/I0/zIgeI5o5SmRCnpaPElCgpms0mwssTx7E8yI27byBmeWD7Nz4RuKlJe55+O8o1Prp2XkJJrARjcHLX8rU/bdy5sFbGdx8GWee/BybN1zPQM8ORKnIenUNQVCzc4ZvozC9fVsIijWarSWUKvLU4Y+zc8cPI5HEJd+OSc9SWr3IY6xnH2cnH6VZjFDzPq32Ej0bdrJ4dgqiAvWqYXjLNUyffIBjy6fYXT0PsdJZnwPgYXM3VbrpYZA+MQxCoPp6oa/HPsdEwS/pmspNEmBrMbkonxofxZSLUHYgJokmJ46gKLZTdbViI9i6kgIZAMI2erVhAUjeO6CUjcIoC+ZEHFvVMB3jCZ8xNp5zT99yE27R1XEHmDJxTNtr8/jiJzCBYs/GH6J02BDPW9AkPI+6WWYxnme3ubgjqtPPKFI+xtnH7qCy66V2XvAMcdHmVwFIITI5djLAkhjkSOh/2SsRgUf9kUcZru3k5N//JePy3XDFKLpgadEokHXZkdNqKeSkYj0pLdupHBotszVaONn0c8IbDrDk6eWQOpTS9UwDnkm7SRI1XyvTnhxE+6JDBCg1GRQppTFf+NoezH2vDbVrX8jCqZO8+c1v5tOf/jSe911pYj7fvofad10PeuCBB/jpn/5pau+4CTnUg4lNh+HZQcGCLImLbCJJEuHXtoTz2SFP7I5hkmMlxn0uNyURQgF3LgcchDPuk/wThOWKnkMBE9n3JlFRgozCI8h5JABMeq22UFt2P0mkJA98MlpK3vvhAEqOhpYAFuEMLjuJiVRJLKGnLdxxB9HiAluueweRJwi7IFgA1bBuobgo3X1Yb6XX0DZJHWzOiasxYnwrMavaNsIiQychrBTe+nFMpZRWkRdhDHOLALaqsudh+rqJSsoqqSUFqGQGVIwAkaRXxOf2DcB53AUameW0AGlxR2MshQs3t+tz1wMj3UKRJtNi67OYDBwJpPMuxRjPUkkykGKPERck83OHUoBS3LyF4nk7Ke7bTrB52BrMsUHrOH03xgCewauEFIohKokwCIMnQLkoRtj2iJoenh8TeBGBF6OkDRhHWhK7l5vegjRIofEDVym9aIhjafORlKVvGSPR2iB8TVCIkMIQJTkkua6Ni5yI3IOLYzvILA3MRVG0QCdFhp4BmHzF5hLdTXZCy3cXxs4Lrv93RFtE9q5IqF45L2E+OV8k4CP3mXHPPzu4SU4OQHvyDNXtl9lE13aIX+lCFySibcdxVFFEBVtfxxcgYg9/qW1rdoSao098FNXVxfB/fy8iEBZIrQpMJfFaZA84yfdQPZYuNPamdxI/fpS5j3+coZ9/p4v8GVR3ke4fvp6uWLP0ids5+4mP0LzkNOv2vJyh9i6m1Z00508x+ed/Qu8PvQpZrRDOzVCt7uWsvofzJl5L3FPiwaf/jrnBY8zvfwBZCBj+sbfRPHGcuU99goMf+32i1SVUoYxQCqE89p3/NlQk8BfbyGaEbLYxfgy+pTeakqURiUijmhFVv4/ttSvZbvbRbC7gaw/Rjm0tEA3iYJtIHAPAEz4b5HaWgmVG9UaqzW6ONw6yy78Mf6pJsPlC2l0+wUo/u2tv5NHP/S0nPveP7HjXr+F19yCUR8/uy2idPcPq2aNM7LiesZGr8ZWtvWTnWJkF49wcUVHDlLtGQIAKipw480UmNl6TEwKw85AXG/pL6+n3x4l6CkzNP0m1d4LJx25jW3AhDabpblUJzoYEkYcv+2wxYKBlmhxnPzExQnn0BuNsql4I7RBdr1sqU3cXcVfJ9YUEMCdd3PXrxPugLBAxXWUbFcolOCbFa+3YlxawKAnFAmK1AQ4ACN8HT1mKrnFeN3e/IgjsNsakkRlpDLrZOodmZfdRz/z5N9CE5yMrJetIKhTSvJr2QJl7D/811dHNhF7EPY//MddO/AdYXEKWisSjfRyZfIQ9wYtREcRLSwA2ib88T9hqUr3gQkuhFhAVjQ22JuusY10klCjLuBBoP1unjQ9erZtYt9mw7hqKy4ZDf/+nTPg/hdg2RNQTgTLE0iCbMnVIJjYLQCrz7pl0vU7sEwM24i1wrIqcMwasGmGq3Jk4CZM5zGT9IbTRabuTu4b8QikcaHFrXCJkkk7nKSCy12qS70y2f+o8lIKuN76Oe//vH/Krv/qr/MZv/MY3//K/R9vzkZRnt31XgZTFxUVe//rXU7j+Wgr7tqDRdnCbnAGaM8qTgZNEINIaD85rkVE2OAcgGOyknlTfBjvp2Orbuf2SedoNTJ1EOERGEzO5a+kMobq/JS6pMjeZJBtpkQGf5DqUS0oT2WdpjovKg5k1WGUtpz53mnRjk30mNB3KHdjHSLy4QGViC6pQpNUlMklkkUVOtGcXeK9hE4ST4okyjK0L3tEtrEwweKsR/uwqaIPo6SIc60X70lZwr7cR9Sbx/LylJwCyt5f2YCWTBtZJQn7uWYlsQlc6m0QTDjBgveSeXcQNAhmajvvNXpx7bFJgjCsGmb47B4ySZ5dGYEi3RVkjDK3RRd+qkXkiy6lxoG5l5TSqWGHdb/4qIlCYQowINH6hjZTWkI9jiY6kVbUSBlWI8V1SetKUNPgqJvDAU5pVQEhNsRBS8CN8qVHS5ogQeQ7c4Byr9vo9z0ZchDAU/IhW6NGOvNTmkdLYPBNpt4PkswjwiI0FOAkY8aQm1tJO0i6io1RGETOuZLNwHU0I8LzY3m8e/DyDqkXahXPAxFLJOhff9DUlwN4FshB0JON30MMgi6AkC31iJBhhDSSRTDbASpPmieNUX/UOooJg8chjVLbuJKwKdFOgPUMc2HFjxQ8E7S6F0D5xIJluHGDh+GMM//efRta0uxcDCx4iiNPIltECIXUKmISnKGzfTEiTSvcQi1Mn0uhX6kHFAubuV19PcfcOzv7+XxMuzdJlbL2h7le8lMVP3crCbbfR/8YfYerv/4l4w0lGN1yOjCH0BAunn4TTTwIQN8AbGaJ361aU9jh7y8foHdrBui3XIgo+fs8AhbnYGffaVqkvBnaMGINoWdCeRBpFGCParqI8UBQljI4w2nTmMORCZaWoxFlviqfi+1mvtlGkyopYomtS4VdLtHp6aQz4FEob4BEIegaICZFudZOlAs25M4zsfhET21+OXI2JPJEmBetAdMwzIrJJ0kmr9q1nbvEwpya/zPD6S0CpVJwlchFZ1Yzwz9YZ7d5BFLVYbQiemP00vgl4ovEp+mbG6OqaYDjaRNxYYsUscpwDbGUfgSigevtgoA9T9BHNELVSh8BH10okSoOpRHKyTjghkGds0jmSnEKbTJ+7LbxrfM8CF60xq3WQAr2yiiyXXYQ9RxdV0t5zQgkLkwIdChH4SK3RrQwEIRUYjfA9TFt3vMtvtAklEZUKBL7N73PHenD+o1T6Jxi//i2cOXgH0eoy9FRpdsFU6SSnzn6GnpGttLoHqczHSFf88qn4fs40jjJ++Y2odYOY2GI5XdZWOCRZ01W2iObzNYXGSvliE9DLV1zMwgN38/TUZzh/7EW0TYvTf/snbH/rL7L4AjfnONELEUpE5ChSXgIwRTbfCVIqa1r01smhG18jAo1M1BKBuOHZ3LvkUmWW+yeknZMpQNT0MU3VsR0md2M40OLmN+s8zYGxXHRZuMiycTTb1P6RDvYYENUCXe/8MX7nd/4PV199Na9+9au/6ff/vdieBynPbvuuAinvfve72bZtG0++8trUsBdrBhOQRk7S6EHiYUiMU+FyCHATSo5HmR4qoaog0oRZnSSQ5y3/hBdqTIf8XpqbIkjzRtxhM2MmuUZBVodCdt6OkLlJwG1rPMdHd9eQFKtL6zfkjDjnU84S4smuP4vUmMxzk95b8h1ZUp7zFgmh0HGTsCpo9Rubo1IUhBWJv6rxQkMcKISG4kzbyuoaSAsuxvYBiLZOQaCIDWJ+iXDTCKretgnp7RjRihGtCFptuxC2LE+aoT6EsbVObEjcgsqOe0ieGZZO1jHnJypf7pEktDCjQES54xg6qWIiO0FKA0xq5iSPNwmHq85zyUaIDjzisqWoGSloFmMa8SL7P/MXDO96ISefvIWB//wOKEpMIaZQbeH7mUFgjLCREciUurw4BSixEfgJ+EhuQxh8L6YYhAhhUMKgkvwQLe3alHjcUoASUwpCCl7UcRwlNdpFRqQ0FINWuo+UmkBq+78fYYyHMQLPiwkSIOLOoZTB82K85Hh0tgQwpRijE2ukif46SQbL75MsiA54CJndn9b2ugF0JFOalxAGWzw88RS6Z5G804SC5vJ3Oga0dC/fnXT2nz9CcWIDXlc3rXads0/exfrXv4u2L5BFqwykmqQ8cGsIw8qoj/bhzF33UrnmUoLxKp5vBQniUGF8Y4uFe3EGTKQFdYkSmiwXiZeXmT99DKU8a9TEZLllyaULQ2HzBCO//NOc+dXfRl54Ea2FaQrFCxj6f/4Tph1S2rMd3awz85FPsGXfjZjTIV49YvyiV3PywU8w9IY3UzxvF7JSJsYQxnW8ahdbX/A2CpGlHhXOtpChdTSkFMeSNYhkGFuwIi1dx/gK2WzbAotgo6WtFkiZFUA0umMeEH6AikI2NjfztP8Yj5i7KKlu6vIAA+EgI6u9HHvwToJaP107zwdg00/+AtLzUiNr8PobMEazunKWeo+gjEIra2cnUtGxU3YUWiA9g/ZVVjtLGya2vZi52f3sf+zDjO14EaVuW68rDpzMdF1RaIQ89cg/oVsNNgZ7aLGAQlGlGxFqgtkGcxylRZMl5uimj0AkhR89TNEnrhYwPUWg5nINtAOAiTHoQLMUKb0L8oa0G+e5GlM2KmILTrKwBLFG9nZbGfSzMx3V7ONk/s01E5JGRVRXFyaOMa3IRnpc8rqUEt1s2eha4NuIi3DjPqGRrY2q5CeBZwAywvNsvwh8S18DVtpzLMVnWZg5yPb3/A8aXQp9WBM1VpiuH+HRxQ9TrWyjev4FzO1/lNMHPs/E6FXsGbwCs7jMwuIsmzZdT+nyq2g4h1+ydsY1jViU6ZyQshKEzfs0nkmV7IwCfIMpwsBNb+HMb72fEy86ny3e9cw9eojVWz8LV7zUyrUDohjbaEhbusiJy6pPIsvJ7TuAJAR2XAtSiXjhaTw/Qik7B2svpl0PLKBJAIo0zsGk8f3YOZUMLQKMAzSiELuhZueUtN5UAjYSGyhx6iSgJraRfZFsK3K02zWMaG/dILU3vYZ3vvOdPPLII4yOjp7zfp9vz7evpz33GW5fZ/vABz7ALbfcwuMvvRSRerVESszPU3yS4mFpkngCGhxwsEaBIS7Yn0wZI+8tBSTEgSEuGqKSycKwIvtJWB7Gc4nyCaxzBqz2jbseg5EGrYw9d9GeN/9dClgSipqLmCQJ+EaA8e3+HWCC7HpN7toTmofxDCbQVqWroDFF7Z5LFkLukBcBy1Mt2Ou0mur2nCIWLD3xENW9F9AYMkRlTVTV1EcNjQGbm5Is/qptUHVb2NEoQdgVpPVAjK+Ian4qWuAtNtAj/YTdAfX1NXDJ6KagEO2QaHomAyi5Rctr2rokyWKSj/jkgWAciFQz3oJJkYG+lCpGWj04rVEjcLQPl/PifrQrUBkXFMYTaeQoOYZVehNoZXNNRGxA644cmmUWuPfmX2Jl6jCt5RmO33sz/T/5Vor7tkBBU+tbpVZuUfQjPAc8lNQEfkS53HKLTMY19FxEQzkjPHbSvkpqSkGIpzQqn8CuJaGWKGEoBSHFIMTzYgqFkK5yk5If2iR3d/yiH+Gp2OafeBGlICTwOq/Bvh57jnKxTaXUouBboBO7vqqkplRoUym08VQGqGxkxRlRWuClIEynFDbl2aiRUtln+fMm48LzY5QXo5yyWPqM/NiCIy/GL0TWo+hplJfx+JLICpBSI4SyRoC9uMxmEiLzhuIbjB+z+tijjLzqDcRFkJUywcAQlAISMY2waqtFa995aT2Rgui4YJNZdbuNbisbRYoVXhDjDTaQykaWMNjrdtEoqaySmzcywPwtn2LxyKOobWO5wUD6t1A6HfNefw+VF15C++gJKhu20T55guKOTZT2bgcBlRdfhr9umMdO3MzC1jI6UKwbvQyMQZ+YwStU0qmjunsvBjg6cxdR0UYlRaSJqr6NWBqDaIXIVmQpn0KgS74dUwUrAW4CD1MIbHFDbQGJ7OtBjI+gJsZQ60aRm9eDEFZat7uGCCxdzIRt9vS9mKDSjQFm4kmeOPNpNpcupHX6KPX9T6LKVUxBZUXvpDV2K9v3sHJsP/tv+SMaFY32rIiBVoKwJIgLwgKOoiAquP8Lkqhof8dFQdfETjZe8jqmTz3I6aN3E3lWIVB7grAqafR5tJdmGGj1U1nx2C0vY6d/CTvlRYyygRWWaLCCh0cfQzTJ8lLiqWnk7BKyGbr5TqRAQ3fQR22V+0QGXnuuPou0P8aTdhvlDFJtUCst1KkZ9LFTxDOzxPPzRIePEp042QFQvmpzACNeWkKv2oi4XlnBtK1zSZRLqP4+ZHcNWavad+b7ICRqsB/V3WXVwRJvhFTIUgmEQFbPVT0ThQJqZBizYYy4v4bxFQ29zBcP/BkH5+5maN81KLdfZf12WsszPPzYXzN+xWsZe9u76HnRS9jwrp9h4vU/yeTi48S1EqJcYqy8k4OH/p25f/pH1HSrI4fT+HatS+qFJCUBEoCiC4a4rJGRk/N1VDFvQx+lfduZbR8l7iow2rWHmcWDyBWVziPGMSYo6pSCnKrxpIa+BSMEGq+vialFtnBukCgoZvOXEDbKXe5qUupuEpRDpO/midx8IIWhGITUeuoUupuIIJOBT8+pjAVNeVCS/u8+U/a68LQTLzKpxLvxna0hc59LqFx1IeG2DbzjHe9A68415Pu5JZGUZ+Pn+fZdEkk5fPgw73nPeyi87XWoni7rQWwLZChSZC9Mpn6R0qbWSOkKclELQBdM5gk3pqPSaxamtGFbkVf4Sb1SiZFLKtOr2k6ODzdx5ZLwITOkZWyVQhCZ5z45Tr6JyPGiyzpTy1BZsTmb9GYyzqi7vjT6AnYCSSYe4x5CQgFJWvI5zjOjQeA01d15RWzvSRYKxCZMIzqyKQkWBeWzMd5KSLs7QLUN/kpMfbxCsBgR1jxEZNW+TCJlqQ2qaSgcn4PFFdrnrbdGg1PM8uZWMQXPzrqJl00IVH8f9U3d1rjzsghJHnhY75b9TkYGgcmpr5kOEKOT/BljIzrG1Vw5Rw0s995lmAPGSR2WnNdSGBCh5dhjQC6sEg3U0AVFHEjaqs3hBz9qX8/5O+BLMPjTP07p/B2IIKa3b8WyKlyUTEoNjiqVdMEkKuB5moHqKgChlimlSgqTAhWwC1ICZBqhT6RlGlkB0miLLzWxEYRuX20EKncsT8X4SqfRGOVoXK3QOwc45JsnLUjSa77OT7Z58OEpbceplunCK1yODeAE0Ww0QWob+TCRRHiaKFQIR0ez3WYNCHefJWcW0uC5QWqMQMcyzYlXvr0Os1YVjE6wYjDQth7QlZWTeOMjiDYgpS3IZ0grPGMgKgtHHbL7rI5K1EqM11Y09h/DK0ZWwOAcZ7JGG2XBnchFeISg50dejj86QPmi85DFElkxS0fn0yKjgHgGsxBilpq0pk5hBiJ63vDDrrPYOUNKw8BP3cTU/+f3ObTxbrasu5rq0Yie8T0sPfEgxQv34G8Zx0gI1o/jdXWjghKtHmmrYJfKFBbCdK7RRR8RakQYgpToIKAxVKBy1CrXiXoL0Q7RC4vIagVRq6K7yuhygIhsVEHW23jDQ8TrBuDQSeutl5Ka7kHPzLOxdycnS4eJmwtsae+iMNOEuSWml75AzxVXYgpuvOZ+Ktt2sulnf5VDv/WrNNsL0DUAQuI1DMX5mLAiiUo2hy4OhHViaxBGoNrOg/7/svfecZId5bn/t6rOOR0n78xsztpVWGWtcgIJIbLIOZlgYxwuxgmMjQM/c325F19sAzYXDBbBGEwWIBAgAQIkECjHVZY2zu7sTurp7nOq6vdHVZ1zumcXX4xs4Jr6fHZnpvvkUFXP+zzv8woQImHNiU9iZuo+Hrjh0zQn1jO6/mSqmcIO1ThBnM0D9g4WG5p6VkGuXQWdLnMPfZ8JVhGJIvn9gN3LXfZGJljFqJgge3Qn8uAh4tUr6Kwe8ktJ1z8FNl8JrJfEhrpP+YOMP1+Bc0V8YBd6+hDG6CU1TX/altdiabeRUiIHB7w1sgQpkNUKdLqIFROEmldSCi8V8xb01iJHRzAzs/l21eAgen4BOTiIHWpiKlEOvubbsyBg+YVPp7ZlC6HriweHmLzoMgaOOwkxPkDmnf+EFsSrVpC2ZpgThxgaHmbD0IVMtI7l9l1fYurdb2fVa34Dto45JkFZbGLJEo1sSTf/CEHRUPQ2cZVkZFt4Jy2LWFREo2PwwAGSZI4sMiTRoMthMaJHLkUmlqghQrAxMCFSOaORarPr8vi0zPs34/MUjZFIGfpS8mBGWB4rnPsj7rvIMyummmK0cvOqEASWFpErN3wepC/EC3jZqQ9ixgYhNNaAWYhdvly52wygxjMtAy9+Gt/5i3fzrne9ize84Q2P8VP4y/Zfof3MQYrWmpe85CW89KUv5QvHrwNvBwhgqmGW6SeG3os/tyAFN4lMLLpktys7wq1rcYAnuGiEiboI7IvAVJ0mXAYNsiB308rzGjwbIFOfKF/OSRQUyW8e0OSOHYHpkB4wlSK4aHJLZZO4zjHXhYYJUYn5sSF/JThrBCejANagADGhGcFhmwGRSl8PxW+z6ztkBY3NRzN7x4+onLUtt0mUGUQtg5rvkAiBaUs6w44pyWoKoS2mIhBWuroigNSW+EDL1SQZGQQgXshQ813kYuqKNu7eR+aTGpEKNToMQiIyi6nKAqT0yeSsd18J4FUY8nqA5eKOoQXgIrV3c/JRRqNEnuuyJBnQsycuKd9PFPy+VEcj2xq1mCIWu6STg5hEkQ4oTCR45NavMbPT6frvzfpreQABAABJREFUfd/bqJ54NNVTNpM0Ogw1F1HS0M1UnnCeS6p8foeSliTSDFbb1KI0n+inRtFKYzfQAIlnPgKgMFaQakUWgAwO2EjhclhMCZyE/YVtR7IAJj3XDnJg4iRh7kJZK9CmSJp3FsNunWqc5Y96pCDTyj26whL7aJ/2LI+Qjg0Jy7sEfYkpHaeTY1nimsvRMFr5ZHyXtyNLx5fLxML2PDDqOSdp8kCALf8sgxJL7jBmvRGAqChGXvA0Dvzzv1L7lQkqK9ei0zbaZCgVYWJvFCZcrYXKols/mdF0m4KphXuY23sfa/7qdUg/qRAl2YS7lg60CmnzHCKjBVZLVM0wcOF2ZKLRHZP3Z1hBe8ej7P/fl7uk9mpCOncQMzufg+uRV1xC7YQ12KzXHSKebDL22mez/z0fZ/FVZ9PcFTFxwoU8+P1PsuuD/8Dat/05IMjMIp29u+icrZlfAyN3uncoqynESA0123XyJK0R7dS59jUTqlMdTDUimpp1lc+lQC4bzfMlhLaYSJKOVBDGkq5vILNh6o8ssHjmFuo3P4Kd2s+gGWVWzLB29Vms2Hoqg7cdgP3TABwdncYt5nss3HgL4sInopv+HQ+naUGpKlGzyUI8R6KWMWenyQ7tpf3IA8j5DhPVjQyuOZqZjVVUasmqwnW5qjdRWBgYWLGJ5qrNzO6/n0du+RJCWzZUT2LheWcyJE/h/h9eyaajzyKZTTnw6K20RxS3H7yBbXY7SrjBYzPbsBju4kaG7BhKKMzCAmrfAZJaQjZQKWzXfV5kkDEL63Oz4oIJFcZJbBECtX+WbPrQT524/n/TTKsFxiCXjfnIgpc01ao5W0YcIahCrN3zmHiwJtyzEOrEmE4HNwPWDuQkEaYeY4VzXTt64zO463MfYGziGConHM/gyafC0CC15Wswi4tEZrDIK6UIbD6g7qHWjZhsHs39O7/N8OAGau1D7Hzf3zD5a69FnDJJYacosBWLCWNOZLGRQVSMK0JbMRgktpEhI4PtSuzBFkYbTDVhXs6TTQ4guxTjdGix7RljcnY3rxHlJjFxrPO+2RgHOBw4EbQXE6S0xIlFCJM73AeJLhif2+iisNY6Vk4KF/DKwLmOqWLcCX2ok4u5Y+kuxigPVIx3jrRGICPjigVL0LP+PgYWujzHsSDrVZqveg5vectbePzjH8+JJ5740z5uP/fN3YEjzL1+wu38sv0cgJS//uu/5sCBA3zu2BXIyEDm6zb4nJSQWI7F1WWw5Gjd9rAHxTZNLSwXli1Z18qS9MoDnrwQpI/Sl6VlOVPjx3UrnUTLFUp027cxhbVf6hkgyAFK3gIAES5JNN9P0gtIehLcyy99ro/HJ4PbArSUmyW3LoXSdcKDEk9Xh5wVYSnshwXUNmzm4Cc+xPKuIPPSs8UJywEVs0w3qe6cR080vJuYQNckOhZIbWmtUiAiatOGxiMtRCcjGx+kM14lq0qqB1JXwboWE80pxEzIblWuFsBiG7F2JcJCfU+H7mBMVvf1SUQAK6WBWhQFNqW2RXXfnkmFzfXneKACRZ4K5WCQ34eJhGNownr+O8eyGBctthZdj7EDFdJmhK5KX+xKsOq0J7P7rmvy6z7+Wy8kqWkatY4reGiFu5UekKiQ64FjLpSw1KKUWGnvzuUTYLEMJEt149pKMj+pD7klaslSBSiRJZYhLgGTkD8i/LLlR6pe6eZsi7ECJY2rySJcjkg7jRy4UqUB1p9nEukc0AR5VuTropQBRvk4i6T6EmgQznI5TOKhCCJLaXPzAXARQOt/IlkCVCjtV1hv+x0qzguLjErvjTcOMEiaF57O3Ne/RzY3S7Qwj6hWyIYlWeTeR9Vx+6+0oXLInWtrIuKRvd/h0Pe/TeP0Y5FDQxjtbZzDPKEMwq2zaBa+DxPSRUOEsqg4pbv7ENlsl2hiJbLmJlfdBx/FZF2a205gcHQT1WSYgw/ezOzBHTTPP5HGKZvdKxGZfLIR7lP1+E2gJPvkPdRWbWXqqm/Q3b8PhCCLuiiZIEWVyde/hqkPXI6oxFQmz2LgEUsymyE7Gt2IQQhXCFVbyDSqo8kaMcIaRLuLWTbEweMGaexOUe2MrBmTNhVZ1fWnqmM9cwHt5XWEBo2GYzfTyFax874vwq691AcrLGwZpXrPfUTLJ4nXruHE2kauvfs97PvQB6mdcBy1M06Bapx3pSayJKtXM7vrbhrrlrHnxq+xbNVJrFx1JrVOzNSem9h1yycYu3cdbDmKke4wh7bUnRy3D6S4zgCayzci6lVmd9/LvdM3sKaxhm7WRjYHWBxV7D50KwcP3ci22tnUD1p28RBr2IS1lmn2kVBhhAkeZgcbOBoAffAgstMhXjmJGaqj60lu+x5extAfEg7FuPw9NdfB3LGDzP50Ces/aTPtNmbnrvzvaOUKB06S2DFAkXKHKwRkGbbdcU5icYSNFGpyAr1vCrV8ArN3Cj19kKhahZFmDtKsEixfcTKNgUn2H7qHh77+CZK2JI7rPHzNP2KtZXB8A9Ha1QydsB22TKLGh1nxgpez55MfwWrNQ/KrrDz+YtaPXUA8vciDO6/l/ve8h7Hf/hWqJ6/Bttx4ZIXFVixLTCm8FMoqiz7QQsRDLD58O/O33sz6J/0OdrdkzfBJ/PDmDzF2zsWwqppfE+HlWAifGC/wIoLCGbEcrEpKuYhppnxQS2GNwFjnoFiJMxCW1KqewEy5hRpZ1veP1WpKlilXjNcHmELfGazrM62IIpOz6FpL0lS5Yr/+NiaVlO4g6HYo1AZCmcIh0fel1WPW0LnoTF75yldy/fXXE8fxYY/z/5X2y8T5x7b9TEHKPffcw1vf+la++tWv8qJ7v+0qZcc+ocyIPNHLTaRFAUyCjhIcTVu+mTkL4deRvq8OOSnl+24L8GHiwrN8KVDwciDIWYtQaBEoqGC/vBEslY9ZfE6JLX5aimNfwoqI3uMNPYOwRcEmYX1if4k5CBRu2Ey4XsZJ4gh5O6HjDR2bv4wBqCQTE5jIOlaq4pgqe9DVHlhcN0B72DEGUccyv1wRtS2dETeKJrMWEwnaE1XUQEJ3KAIBlYMZuuLyN6S06HpCtGzUVedeXESOjqD3TSHSjMqueboTDUwl5H8EdkrkrIqbWBbXx4QL7YNXwvjkZe/YBSL/PAAsE5Lfw0S35JaT17Fx80NfkC/8tF77LUibESYpkm+tdHVCQlv7928mqiuqtU7OIERK5/kf4fEIA1JgNELxwwBApH8eykq/0JRwwD50kOXHt7+FiakSS5coA5Pwe1mCFkknjQoAKPbHqY2kFmc96wM5e6O9N7cQLjk8nKsUZYDUO0gDiMgBmeD+ZUrRTgjApEiyL1gReqOEfjnHzgSns2LZsC3nGOa2b61Ysoz73ZDu3M3sw7cx88DNmLlZpr9/NUPnnIcSMUK7eiidEciqCiTse+B7TF/9FUZf+EQaZ24rbUtgfZQ0m8kw04uI/V30wBzVNcPMXn0j89fdg0gt8YpJqkdtonXz7SzefRdCRYhaQvXYjQw/54k0zzsR01pg7uvXs5DcRf344xCqSzQ4xshTzvb30EdGpcjlZBIgETQft53Zr32LzjErObjnTuonbGPkV56JrMag3TWobtnE2Cufx4EPfoL6Hx9Hd3iQ5KBi+ffmkF3NoxcPUJuyjN1qUdMLYJwkUi6m7L54JZ0VMe1xQ/eehOZuhdCQKYtOHMBPK5bZPfeyeHAvenGedP8USW2A5ACkMsNMDnF/ej+bH2kgzCjq6M3oHQ8gt25CRpLTll3GTh5m3zXXMP+ta1l5zjPpnjoJow2y2UOowQFmr/su1T0Zx45fSrWduABDU7Bs8CwmZ05ifue9HLrjR0xHmo3t85k5foTMB75CQCv0GVP3XMfCvocYWH8MWWWOnd+/At2ahyjivu98lEhVOO6Ul1G/a4qYSfZxI13b4SHupsEgHRbpsMgB9jFilzEslrn702ohHtqJUJJIKThqHelIFSsFqqOdfDUzqIUOcm4Re2gWVoxj7nvop2NPhHDV6a0p3LyOkNi+pJWWsZ0OopIgFhaxVceQoX20oZLkgMVGjmVhsIn0si+RJEilnEysm2FDzpNwIKE5sprmyGqSyiAPfv/zdNozHHXcsxibOIa9u29k+v672XnHzaz5b7+HGUponHACmza+jSiNWNhxJzuv+Aj1TTXWLjuVdevOJ4qr3PN3/8SmF/8O7YvqDqgoWwRIQ38QLqsRmLkpdr7xfzF4/GnMP3Q34096Bo3KGLI7y6iYYHTZVma/eTX17ZcilKFW75KmiiTJcqdEcPbwnU6MzhTGqxYsRf9XNi1RSpBlyrPKDgQ450XHRC+axBuZ+JxEXURIg8NiaE4mWwSAysV2Y2nJdOhPpZcca29L77bhAJFARRotlMvns7ggSqRzya7r3wRDz7qAzjv+hXe84x28+c1v/r96FH/ZftngZwhSjDG86lWv4tWvfjUvvu/buR4zTMrz/i6fs/uIhk/yCm48uUSjDD7yALl7mUU/MxG2K4MHOQ446N4JkPDLlQs49eSCCL+ej464GaSfACfW2QYGsCLI3b3yZRVYYYrjD9/7Y1vS8mVCBLhv7Dhc3ko5Sc6Gz/1p+ogxIkRu3SAsGolzaim7eAiL7ELU0sxsrNAedYnBwgpq+yydYUE6ANX9EC/YooCdtaiOLCRSXTAVhUgNsusGQdFsIJoNbL2KHGhimzVsrDwzIfJk+PwcSudRvjYmopR7gstT8cs4podcjmdU6Tr4SxtykAT+mRAirzYvsNiokLLpWuRkLtaiPZAK+UlWevBTqTD09POIR6pEUbYEFEjhWIhKlJFqlTMcuXWwbwEk5D9xy0ms+70ERyJhMELkeSvl1v9E5bi2Dxj0Aw1Vypcpy8Okl3hJ4avFl2RT5WWVsOAHuDwHJ2cOi22kWqFLajNJkYwfZFwO3EivIjGlwbD0KAhcbZYoy9cLywj/7gWJVR59FL25NsZTquUIOvhIqs6IVixDH5zGdjrUTzma2W98F1mtMHzSOczefRMHvnkVTlcpwBiy6YNM/u5LqW3b5OVqhsVbH2bhmzeRPrqb7OC0k80IgaxUEVGEnp+jumotY6ecg5IJs/feyuxXrqG2ci0rf/XNtPY9zK5PfoiF797EwKXnEE8OMvLsxzH89PNo/eguFr53C60f3k7z8WcV19Tn8Eh/n4KkTWEZeerpPPK77+ZePkk0OkK8eTVquA6ZN+Dwhia1k4+mcu1adv/VXyMqCcm6NaQnPp3mvS3ue/97IRYkw+NsOPkyJh+OmF9b49Hm/ez60NuJJoYxC23mjz+X7OFHSaqDLlggLcQxNuvSXH0Ug1tOQJuUg9dfw+RFzyZqOxvX9oE9zN7yfear0JhtY5MIOTICe/cjRodp0GTL8DlsGjqLHbu+xgNf+yDdr7SQKsbojOroJOvWXsAWcTKtwQZ2NgPhkuOttIhGlYF1xzCyfw0Hkxluf/SLjCenw5pJopEh9wwYnwdnoDO9l/XnPB8EjK0+gahtiWcyWuk0anycuAO1+2YxU/sRQjBqJ7iDG6hQZY5DAFSociynMsUuZu1B1gpXaNOmXeesBaj7HyWp+ai81jA8iOik2JlZdKeD7XaRWVaYj/x7m7XYLF3y2U/SZL3uWBJjoJvm7mJI6SSAucyvRJFKiRwbzV0eRa3qfqbeicr341YJooUMm0jWjJzE6uETaDFPpTlG13bYt/cWFg7tpLpiDV3ZRqkYg0AMJeguqMllGJ0xNXs3aya3YyoRK9edxYw9wN4vfJzB81+NqHtw5uVN+SCRCZ/0DmYxQ8QRaqbL2NBRHJWdSjLjHO50LWZEbGXPvluoe7aklqTUkpQs5Jf4FiuNqlo6aUTajbBArdbN5bM9wEK4HDwTwIdw0lsnoTV0vXw0WMbLhNytMTAirm+mJKWVpVss3DjvWZxM++WNs7mXpblEYFd6iu7G3vxFFcce+peoJpl+7gW87W1v47LLLuPYY4/9iZ6pX6T2SyblsW0/M5Dynve8hxvvvZuHXn5xbqkXIiXYULjNMwXhXnkwIL19ny1Zb+atzA6EFy8yvWxLaGFCFJgTab1EykcqXHib3PVClMCSKa0XtmH997Ffxru/iEwWif4BaIRly+sHAFM+1PJxl0BcLgOhVMMjyMGMzZPxcomAtHmuhsgkNvPlnXIA5yZvVoGoVTGLixhpIHIyGNlxG2otT2gvE2R1yGoW1XH2xN1hX6dGO4mUTK1zxfIuM7LrJT5zHbSteL9+nPf9YMNFzeYXsaPD6EZSyKeC05vNb2f+e88tDfcH8hySUODR+mvrnFqKpHkgL+5YbMcNmlYKZGry+iYyBWlcFWHdUOiqQCfS6+mLOih5LlI1IlmzinjZgKtHEmkiZYiUZjDplJgE/9MDDnCsSD9QCC1M/qFX92ptAVYkHujYQkZQBi1HmnIYK4g8M9JfnDGAJ1vaf7mVAY6xoscEoPx9LkXzg2fu/CUsRhq0UR7MlPJRAqjHRfysLZJF+25bfnZhkC9j23Jksbxdt01RcuIpEqBCeZT8fVMWYsnad/43n0vj5GVyeIhDn7iKbOcU8z+4geHnP4lofNBPMiXRRJPKukl0R5HtmWX6Q5+g++huBredytAZF1FtjFGXI4iBOqbiwej0LEncdMVGlWB0zYns+/5XGT7lbGS9ido0yMCpp2FqguqmlYUkLo5onLGNxhnb6Dywk2TZgLtvPrk2NHc9SnKP0Qbr//r1TH3sasRMBeeBimeu/VX0AZRlv/48Onc9DFKw8J0buOfD/x0VV4jWrmDo0tNY+P5t3HHF/+LBiXWkD87RPbCH4Rc+ieHVEQ+8/TOkB/bTWLme8RMuxMbSuXFF+e3DStj1uQ+x6vHPQVdB19wLniQrmUiewI7rruC4lU8hapUm1N4O13ZTxGCNLZuezNHtS8g6LVpigWpzDBVXiaZmsTVLWpdYERcsqABhJLomsXKAAd1g47KnMbP3XvZddwPrHveiUpE/QXtmL6bbQaWWaNFS372Imm0jFjs0lETPtsiaCWKxi/YuWhbDCOOsYF1hP+zbOrbwqL2fg3aKETHe852enYWQuwfIxTamD5SEvI6fuv0koKQcAfB/iyTGGuPr5ihsx1eBT2KsiqHi9XOttvuZaZe4Filss+6KS3ogQ6aRHY2p+wR6KTAV5QJH0oBV1NQw1lj2Tt1MRsq6P/1zxGCtUFH4gISVArVmnPr6zVir6AwpkgWB7GjWbbmE6779Vwxetxd54TKkNG4SHroeC8aqwgEQQEmOOe2l1PZ14GAXkXm3t6qiFi2nddcXGbh3jsrWZs6aaxM7ZrgU6JHSUE3S/N2sxoUtfO+ldiDFesv6OM56cghjpel6eYeSlmqU9QSVQpDM4saD2AoyLfP8v9zG3QqSKMvluWHf5eOIlKYrIrSWRJUMnUk3hckLAbv+NAd5wlI/ehWdi7bzope/jB9edz1KHU6Q/IvffglSHtv2MwEpO3fu5M1vfjPN33guqh67CClFJNNN3kU+0RZ+gh9oTlGaeINxVHCoot4vkfKDatGJ+s/yquuixFqIXCoWJGZWmD4wErZfXo8CfITPfc6ICJXkw3rhGLH5MYQE2cNV37ZBu0Sxrsi3Ud5uOJ5ieREmJGG7EblOX1jpEsHBmwv4CayCeOVykILFR+6netRGVzugK9BVmFsjSRuOpTGxJZ6VHrBAZZoiv8eCiSVpQznbYu2S/xQgWylCa1f0sBa5nJHFFKEk2fgA6UBM2pB5fZK8kGUYD8uSvPCZ/z2AEmcrbPPL4Rizomo9QElp1H/Ri8r00uWmyNSATxLOaqLIZwnbVCJn5bKqoD1qSPfto7p6jEa1Sy12+SWRMAxVnPVo6IS6Jloy8S8PLuHvf6uVI29RHwhwO5Q97EZ/JxgASu4qVTrGPDEfegausiQssDtSWHSfu3mI5ikKyVg5L6Z8jmWAUrZTttDDRklhewBXPxNUZnPCK1LMpfyyQebgE08DKCknlgf5fwAleYRQFP8aZ53Egfd9itlvfZtk7Rrqp5yCtQvI+gBCKCxtDnz4K7S+eyN6do7m8Sex9tffQmwrLj8sc8AaAzpyzoBKDWJbLk9DdFw/Uh2coLt/H7VGE2qSeMNaDn3lK5jFS4gHKhAGSH+PaptW+smc7TnnkGTbfz2ioQaTv/o0tJZ0dx5g/9/9C0OXXgQ1i6zVkPVBRAVktUr9lKMwrYjGqZto3fYQwqQkW9ajKjHN7Vto/fBO2rvmSGyNamuaxWu+y6r/+UrWvObx7Pr4D1n9uOdhpSzeZ//YZVX3txochNEmVpfebwNitM7A1pO4/c4vsHHF+QxKgag1sEpiaxVEmiG0dcGOoSo2GqDWyoj3zoJcRC8bpDtSwcSCTDjbYRO5+jZW+siyjKlMd0lEjYmJbSy0D7Dw0F00127FRIL7vv1hmkOrOGrzU0n2pCT7F7B3P9BTZ0SNjKCWL0O0SnVI0DQYoBI3CjlVqa1iAzu4hWm7jzoDjDFBIqpLljMLC0s++7lo1mK7KaQZYkBAHCOUxPrPRRJjIulemtQXZ0xiTCVGZppsWZPIUZyOeYmLKUp4rLO68vVrvMuZtjw69UMeuPNLrHzWS5DNWk9uaR5AlBYhJJMvfgmP/t3/5qGp69gwehZxaojqA0yuO52Zb17DyAXPyRlHIS2kXWZ/9CDd2/fRfXQnenYONTwE1tlWL05UnHJgzt3PrK6ojGxgcM9xzF75dca3PiN3VIQi7y/8jnfqSvpqVpWbK4vj3BuDE1ej0u01PlEGa3UPABJ+QOwfC5QHTZmSdLUizVRpX65frsRZD5NTtrzPc2WEIoo0i62K6599fatcbltisoUyDD//Au79g3/g7//+73n961//EzxYv2z/VdvPBKS88Y1vJDppM/UTNubgJEzUQ+/iahO42anTiZPTioBfBvJZaJBcCXJKtqAY+oJD/uUB3KxLWUflQi/zUGjNiuUDi+LZHKFKybZ+PSQ5sAJc8aS+pDafIlEAMKBnxhUG7RJwEgEI2QBs3H6FKB2PDFakJTDn95dbrEYuGh2YJGG8rXKYCMSKxvaTmf/BDVQ3b0QuCjCeOVHuWkgtCEUQhQeCwghUx+d1CCfv0olPtI4EIMkGKsTTTtai6zEmEqiOwSpJNlylOxCjq956uAQiysDEeHleOeqKdSyJ9JVyQ/J7OL7Q1wa5V/65/9v6extylLCQVaWLki5ohLWkzYisJtFJOCi/D0GeJ6MrgsUxy+5rP4mqJQxvHWa8Mc9g0sZYQWYkXR0tcf+IhMnzM0xIkheWrlFL2JZypEaKQvJVHlACWAjLAzkTEjTRoWhjGMDKWukysxP2E9rhsN2PA1EBXMiSjC0zhUitJ0HfH0twEcsnz6GAmYXE55YE8NF/HPkAH9igw0jGwk8ptZdIBJBSDOz9cou8xENJYha2tXD9XUQjI6x46gvZ+9XP8OhvvcUtW6uRbFpHuncfqt5k5dNfSm18NapSzXNXopbFxM76VpSe6e6QxcSC6n43gdYRRFEVM9PCKkibloGzzmD6U59BdNpUx11ENE1VbluqIpPn8Thpm0RK7fN4Cueg4vq7f1JY2jfeQeuGm2jdcFPPNV7xtt8jWTvi/ojctWoev7bYjr8mdnGRmSu+iTlURPiTusJoS7J+JaISITpufVd/yaPBmu9ylczf9/D+GwUmFjQ3bGGotpKH772W4ybPgFYnj8hbaxELbWSsSJsR3UFFujJGrqsStyydIUnUtmQVgZKWrIav+yKIFn0BR2voDsaojnva43qTQ3t3sH/nrUgVMbZiG8vHTqD+8Cxy3x6yvfuWMBD64EE4eBARJ4hKBdvpsCrazJ3xLUyuOQdm57Fz807mlz9jgi2ciLGGafZxK99nnT2KZeLntBjeYViXcD5CKUQdl4MiBLT9PbJOOku9gljskg3X0NUIVY0cG53ECGMwtRhdT9AVmbMogUU3kUAqN/5ZJXj0ke8w+dTnEJ19jGdNyDt+L9Jw/xmLHGgwcsHFTN9wA2tWn4MwEZntQqNKt7U3f7/jxIGGXe/9Ags3P8Tg6CbGhjZRGWgyP7OT+lGne6kvdAYjkrpEppbOkGJhmaFbSYnHE+LEMRrahpw8P26W+9TSO4g0SMQSoKKkRQqTx0bLQR4hXG5ZpAzaOFmtyy/xtpclw5N8n545D9vSRjozlGA9LyyLmcpZGeODS6HFJVbWVFO63cKtEop+siz9iqoRgy9/Ir//pj/kOc95DpOTk0d4sH5x2y+ZlMe2/aeDlKuuuoovf/nLjL7jV3OXnx4GoTQxyIGLKCKe1gaa1ycIS5HPOnuYZ9vbfwoPWvLPBAWo8fsgJJkX2KaXjQl/e7eR3MkiWN6WIqz0dUQOL/VNeGThhBGARTlKHVKqhacIyjk7+bEIF+EN28gnWX7SZSnt14oCLMV+Zp7KnP2wytcDkCAbDbLdB93AvSDz6tm66uVcXfd3e7l2eTd+YHBFsATtEUV3QDHwUIu0GaOrCrDIrrOgTEdqZDXlGAoJWUWhqwqT+EElyLCsIKu5Qo05rlTF73m0zIJKi3sUaHrrAURYNtSwKWrXlJzfIM9BCdtQHYOuStKGRCdFUUfw4KY0geroRfbtupH5q3+EPXCAM/73cxibXKCqMto6IrPqiB2PQfS8jAGwRNJJn/KOPzyrOCBRVKKX+Wdhe/m2S4CmzJCU3cQqyl2QPDGSXiCUb7t0+EvYn5LUKlaaTualB8IXqZTuQQvAS5e2HyyTg71x2E55XwaIZXAnMz367n5ZQg9g8/sqklCLiYIFD1BACO012DYHH1IU0oUgiyrkcO4z3TXMfOYrDF7yOGqbNnPU838HDs4jBhrMdnbRfvRB5g+mrHrhq6kuVhxr0nE5XjJzoN4qN0E2MSQzAIJOxQUG2stc/lfWsMzd8yjja09zz6eGxft3gBQMroiII00nwwUScOcUx5mrl5BJlK+LUs4HAlGaRDjQghWoyDDyxJOJlg0y953baN1wZ3499dxBECPeEjnzbkN+AubzhKQ0TH/uu5hDc0QrJ8h27eOod76SSmIZ2jjKvk/ciNq/iIqrRV9pLN0BF5ywEUW+oC3+BjCJA3Tzd91Ko7mcLK6iKi4HQra62IZjHnRFkTaVq+kSC3TVXWMsZDU36e1Gri83ym+36twe04ZCdSWqA/V9Ke0kZfSYc2hEIyRzxhdvtWRDNZL5NrJW6wEb5aaWT2BrFezDO+lONOk2x3jkyctJ5ixjt7RQt93P3vkdCAtNO0iFGh0W2c9ujmM7u3gAYw0TYtVht//z2vTsLCqOELUqNvEyL+VZFAM2VlhZzfP7ZGqQqcbWYuf/Uouc8USp2dKfWU2hugYroLsww/wtNyI2TVJZsQobxjdwc4ow/io3zlY3bmLqi59mLtuPnj/APT/4GKpaY+gZT8plVUmk2fejg8x++3ZW/f4bWfXQOLKtaaWHsAM1FrYk6BSEFszE0yzcdwu23UE/mjLz0O2IWHPU65/K+Ng0c91K7nRoS0GYkH8YzEUyL0k9nOQ2fK7CWEUvm2wI/Z9bQFuB8i/N4QJT4e/IA5PMyJ5AlTbS5bpkCq0EidI9Qa1uFuXHGFig0E8qtfS4g8vYwKmb6Zywgd/7vd/j8ssv/8keql+AVjZc+Wm388v2nwxSOp2OK9r4nHOIR5s9L2CeuBXGTz9xlDkAcROsoNs03qWYvpc4uEmUax64LwrgE5Jkne83yMTXJPCMSPADz+VYsXbfa+kcxyJHaeaVW0tgQVCaMB02+T2AkgKcFNKtkgTDv+x4tqhXqlKsU5405deJvoiJLl0LaZ0jWiYRHYnquEm6qYTJnTsuNTbE4pe+ykN3/wnDj7+Y2gUnooabJHsj4nlBVqWodF8FNaNoTxqyhiCel8TzUJ026FqEzCzGOMmUbKeQaefwlRpkqJEwEOUJ8rmUyoMMV7k7hMMCEMLbA/tLYdyxyy4l9y6KdUKaQZjoxAWLktsT40CLVrhjlqBjp382cbHvwNwI6xLyEdCa3sUDV76f6kSDtY/fyDFPPpvmMsiMAyhB0nW4hPjQMiuLhPiSK4BBoDzVn2rVkyhfbiEXxT1moseWOF9G9Mq8hLA5eAh/9ztshW3378NakYMh2QcslDC5IQBAInWevBnOvXz2lSijnUV5rkp5/3lRSb+eEtZZZJbzK0zv4GBK70OPPM2zlv0GAP6queuR6FyuEApq5jku/j2U0uYT/5kvXw9CMXjKmWgsZlIiR4aI56E2tpbaqrVUk1HMLQ+QTG51xxdyG1TvYGRiQVaD7oglqxtsxdCVQCow902RtmZpnTqI7Fo6i4eY+sCH2PDbT6JaE7npgHPjSRE4m2crDcbEee5fD7hUpuSe5q3RPbixgwnNs4+nceaJ7t3ylbK1dlLRICcNBSmxIi/WCbD6TS/gwKe+TVyRTLztuTRXNrFYph9ZRJmIXd/7AhtOfw5WQtpwVd6FdfVlFvbe66LvQJDq6KSYpAoN8929DJ/7TLi+RXekguwalJIuF0JKhHEFZ7OaM7KIPIbIGt623BR9RWDIncGHJV6AqGPpDAgObU4wD7eI4zo6FrRHFdVpTf2ROeShecz0IWya5WxJuclGw/0SR2RnHMPe9V3EXQ/SHbakg9AdbBA1hpm7xTLaHmFqfjctPUOVOqvYQFXU2MixPGDv4oDdy5j4xYo86wPTKK0RzSa2mrjcw24K9QrpcJ3ukGNPZNcS75lxuSnGYuoVRGxRXePY+KC59MxJ6LuzmmPbTn787/DIA99k97v+luUnXkzlZRcVhjbCPT/CuHHO1EAmYwycdCq3ffavEHHM2DMvo37RdmRborMO1ZqhdfsD7P3LT7L8rCczMj3M3fd9lpkbvufyZCpVzDWa4Vf/MQOzFR755j8Sj8UMrW4gkwqTZ5zK1ss2IVSEFEXIyIET93uwog+9WEhYN31jeZkdLgeWwnchyCOFhVLfDOTsSFmqhbBOdi1sT9S/DFCsdfLchCKfMQdNfh3XVxegKlY672+DpC30N6GPlZHGAqOvvJh/+e2/51WvehUXXHDBY/a8/bL9v9f+U0HKX//1X9NsNhGXbs+LBoXE03JSax7xzSOXvRP04oUNnxUoPQcoUIABigHV9smuZOx15n7bJgAUKxCRyWslWOu2EVVTdBpozT62WzhgkktvyuF+HyGWyvYwQfn54ifSOGLG7dMzKAQc1Nd5BbtU+ggW644/+K8LYREKpNRkXYXtShd2kRaTFIcobBiwLc0LTqN+6nG0776X/e/9CPKar7HqHf+N7vgwwirSpgMoqpmiFyP0gEa0FemgIau7pHLVESyOJ1gJ9b1dkr2usJyNI7ojiWc/Mp8/gk9k9QAhKs7IRGAqBcgIIMFdBBcZI3b3Tvrk27zqfLgmpbwRrKubEiRjRpFPiKwCmZbYF+XofF0hr89SPDwwf+Bhdn7r03T27GTVC8/mxFefwEDsEkW7RtDViszPrPqjV/0Wv4dNSMfVSwHyCvKHa7HUS0BQNxQetUW+SHhYQuQ7kgaDoCKLSJsBlF82CQUgtcpzagzuvHrYGv+7CjIzK3KmpxaluYTgcHkwIZpYj9O8EOWRWp5T48FMMWgXDEympU/Ot7nsIZdyla5zuTZN+bjK/YoqFTzLmQb/XWf/Igc+8jVaN9zKipf8CkkrIpmF+l5nUa0TQXtMUD1gMbVhOnt3Ogc4W4DrwBqKTNAZdYYUOgkFSl0wwdmIw6EbvsvIy56CqWpMRSBJsBYO3vQow2duxtSa7vxKybRBIhKuabh+LpHXDQDGalds0zpAVktSulmhUxfS5H2S8JMco1VuNRrHGVmmXP9rRS7zqCwfYd1vPSU3jAgTskNXXMfQ2uNoZgOorqU9IrHKgYO0Ncuem75GZWIFk+c/DTIfUFAeoEhfHDcBrTt065qs6WSj3UGFakfUdi4g211EJF3NlpYmqyvmV8aYxL3fxg8xsgPdIfdORC2I5y0yde97vGip7ze0hxXtpIMeqqIjQdQqvYOZRlSdG5vtdpHDQ9jJUezdD2A7HZefAZBm3PS991K7eyVjJ56JTgW6atFVEOvHWbhfs2XwGJapFSAF+sB0z3O/ji3cx22M8YsFUgAQ0uWdDDfQ1QjZ1ajpeZKHd1MZGXY2xEmMrSUOKAqDXGgjUo0dqWHrIrcgdjJgm5uUCOsK8saDw2w46RlMbDyd26/6WzYuX0/6pI15Hy+0K8IoEoNKNAzC0GsvY/AZT0QON6BuiZttmvUOSaTZu2+A6c/eiO122XfjN9h7/Zcd5ZppBtZsxTYrtO69mwe/+1EG1WqMTTnznc+mXrVkVtLREYnKkCLL+3trJFJp72IoEH0Bg3xcp9cgJbQyEx7YaXD9UmBCAlAJ5iMmvO+l3L6ye2QYM4K8N+uRfjppcFxybgzr9I9FUrj5SCgpFs6BEtOTnwNQGW8y8txz+Y3f+A1uvPFGouhnXrLvMWsGsUTO/e/dzi8bHHk28Bi3vXv38pd/+ZccfO7xRInz7Y581C049QRLUSEtUaxJEp0zC1Ja/73JwU1YpwwWlDJEsUZGBhUZkmpGXMlcBVdZbD/kdbi/jf/O5FbIAaCEzwEHMIT7GVeyfHnl9yV8lFZIQxRneRVtJ4OwqFgXcgh/LlK4/Ul/3EoZNxEApNL5+Ybt9Lz0h5mwBolXXi1buDEiADkVG6cj9xIlV+/FFpQ47jMygazVaZx9LGvf9QaSVcvY/75PO6lEw6JWLFIdabvj9XVbbDPDNjVmMKMzoZlbB3OrJWlN0B6LCXq8zsomWU3SHlVkVeX0902JUXhmxUU6TQLpgPCJ6r3SKsJEpeIAjIncZyEqaiNvC6xCnRUHUGRagBeXt+KkJI6tIc9XscKtl1WdXt0qUSxXAV2F2flHeeBf383QBRs5+QOv4qTXnMhA3CXygCEzskfiFaJWUWkSCa7jjoRBYomEplw75HAtH1hK/8rbP9zy+OfHyQWc9KrQHhdRuQCepPBFGSkm9InMkMIQCU096lKLUudEhs3/heMILEstSg8LxiLpmJaKKmqrSCwVlVGJXC2Bsl66f8COpCFRmkqUkUR9Lje+bzE2RC6XVpwHemR0RwJ/oQWAorWrubP349/jkf/219iDi6x/3e8zNH4UlUMQz5W2I9zE20oYqC1ncWoXMuuNXegKLC6TtJc5SaMVYGOKqIMGkQpEJogGBtAH5iB1QQ9ZrTL56l+hdd8097zrm8zvbefXpmwwIISlnqRU44x6pUu90qVacgYKxTarcZbbpEIv2AkSGKUMUeT6N9enuO8rsetjq0lK4u9JLUmda5HfTqI0nT2HaO+appPOM3DRRSwu8wVQrWXPzVez+5avM37WExk5+WyET6oPpxIMNGxssRVD8wlnsvf7V7L31DhnWFoTis5k3QUi9k4TPTJFPN1CdQyjt8+DhaEHMqSXe2Z1x6SCM/9oLxPMr3HSsNYyiYkFA490GZw8ip3Xf85JXiuChRWK6ROGmT9lNWbtBKycoHvG0djJUceI16qokRHklg1kq0ZJJwcZPfoMknUbqK1ah4ktumLJahY9UUVu28Bdxxykc8rG4pqXJm5SuI5P28M7P/08N33wIHS6yLm2y1NsxCxuXkbrrC2YRg2hXf4JUmJrMd2JJosbR1lcO0DajAozFsiBSgCtwf3RRIK0IYlXrmL1qU/joas/itk3k6scECC6EhYisgVX4HNgYpGhEyw0LSjL+PA8Q7U2ZnaOvX/xXlo3P8CKC57pCplWa9h2h8k/eAXtg3tZfORuqmuHGJpU7LvpG6x93RNIZaUnZ3AhTVjMYhbSpDDvwL0HSeSt7I3MrYGhYEB6cuv85+W+PchXw3Ih4KSEs7UPEi5wwa3wD0r9cF+/HfYLRb9ZBjNhbMiDXsJZH4fcwX4HMOmPpd+kRfrjHH3qdh4+tI9//Md//Pc9WD+nLdz/x+LfL9t/IpPyJ3/yJzzhCU/g3m1rEb7XsVbkyWSOIcnL8eWTghCZC8CkJ2fD9kolpGcohHS1J8J6WYgICkGo8E1EXiAugCATEqqDdrskJ1EUrIWKNCGJXVpyHbeAHvZHKYsRpoe96ZeMhOhv7oDhwYRU5YlVySI1VBWX+Ww6v5aErdny/siBjZQGowtRr/XJ7nkfFQBLkITFDnzJFSOs+L0X8sBr/gfZzDQR40RxiplfxFYaju2p+nu6qEALZEcQLQhUF7pDApNI7HEjVPenLI654o7VQ26ddCByrj4VJ1Ny9U6c9CX8HgabkBSfO37hBivV9X8rD9C8KVtZ7iW0Ay9kNt8WxS3INfBhAmMiPyBGYUB04MRkXQ5c/w0OXns1488/j6NffjK1KKUetfPcjswIMtObg3KkHI7ie0efl2ufhGhKj2Vl36T/SNuPpPEyuMMsJ2z+LCWHiZQ54OTuTwR0S2LwHBxZN8BlttdSMwyG4VpEwRCA0jl4ACSEzdO9wgBfPkchXEJn2aWrbKUZrkOwxSzLHIqikTb/LCyvfYJ5veprEtgiN6Mc9NBa5nUJginF1L/+gLmvfI8Vr3oN9ZUbQILu4nOYHBOY1iUmAdV2QFtkCox2kfVq7Gx1KyIHxyZxwQHhKzqb2Dp3utKta55/Fgc/dQWDjz+PZJVLpG5s2op8xSD7/8+Hue+176R69AZUo0K0bJj6iRtZfvYaVOInHaXnw9iCZbVW0M0Ue695mO5378UMCCqjK6lsX0Vz41DOQhWyt5CnU9RkyLQqpIZ+m64mjqJSci2a/s49qOFRsgSyussR6XTn2PP9L5MMj9MY24gabLrtOEovl4FaiZOYRhZiQ7JxJd2du9j9wy+Snng+9c4ACNi7KqaxcozR2ypED+9DzC4gRmp0xqsM7Myc42Bq6dYK2VDObmn3wLfHQGQCqSXJrCBZFNTWbHDvfwKpcLkzaVMhTJ3kUEo6oOgODdHcMUN27Hpnrayc7KzTOsTs/geZuOQyDh0NJnEFgMWiQFegdtapHPjkJ0jOXsPwii2M3HQIc9tdPe/tajb6yvTH8IvWbK2CqVfQFYUVgngudWxILaY74uyCRWbBWs9ei7xYstA4xjsu8gfd8yDyoFU+JigYPfFsWgd3su9v38f4H7wONeCeJyv9e96VaGLaQK3eYXxyhmqUuaCLNGQVgZlfoH7GydSfcA5HHX86O7/8z8yZ+5h+/79iG1XWXXYGzXWjLDtzAxte/wSoVkg1dLUiURptDB0TkWrVI9vKJ/2+n0u16pkHSQ8Ojpi7WGJYyqxHEYCyeaFdawXSFtKrI015y+NNP7PS38LxBRlvSNgvjg0MRd+drwe5zbEUgDTUarDsFefzx3/8x7zgBS9gcHDwCEf4y/Zfuf2ngJRbb72Vyy+/nA1/8wpqypQGMTcp7Y90WivQOFDhdNRQ1oX3Rx0AnxRqcpeMsrYzVFsNrEx5/XKiWai8CuSMR66xpAAY5aiBe/HA+ryRsE7YvvTuXT35JKWfQM/yxTZ6r6EQ3p1HGi9BAaNlLzgBepL3wYOmYkZvUlk4mZVWtLGfEAX2pZEho3CvyL3tZ754NQu6gmlo2j+6lcEnncXAE87GmgTbVm5g7whUyxVPFNqiMrf7zoDAyjgfbNK6K/KYVd1AbZXAxNa5+UQFeyJsiUEpgY58cPIWpXngtwxAoMecLQiAy1bEvZI9SyiVYxLhgQo+ggpzdidTH/wnZK3Chv/vpaw/dYha1KGqUmoqpaPdK9X2Dl79wKF/8OkBJH15KKFJLJHUOYA53HagkPKUB5h+1qZ8HKI02PXknwjbN2jpXoAhyvkcxnUiojju8j7d8g58hWjc4YBTT6J+CaBJYUO1jtxWuXz+Py7aVO5TAmsbXMGUNMiK6WELpHBFC8N7GKRd+TumBd19sxz61ytZ+eu/QW31WvCGEgDJIcvAo5mbvAajhSZgHHCprljH/uk7GDjupIIZ7J+E+0CBLYEUYQQYUPU6Yy9+Nvs/+M+Mveh5yEqCFZCMT1I9bitjv/oS2rfvgE6GPnCIfX9/Bfv+3tJ83KlsfsWpqIoq9OKl+9/pSh5571XMf/cWho4+FeYtC/f9kAOf/Qxjr3oBzbM2k9SFCyKJgtUNLG+qVWkCEpi34tpr612GgNa9e1Ejg+hskV3f+BSV4XHaM/uYuOipqKTGniv/lcFjTnJBCu/iZ2JbJExbjyCNQCSagcedQrb/IFNf/jrx4CjDZ56XM1Rpc4CxgYTqvfuQXY0VCboi0LEDjxXjWK60KRzDZXAGHcYZhOimu/aVmYjGyEb23vNFGieeiI1sXrg1qwuyekzUisBCMmdJx+uOwU1c/yYyw57W3Yye9TjSNQ3A5oxQOuQL/hoYfvJT2POlL7Gw7hiyM4+nuW47QkNy5Q8AuIsfkVA74vP+c92UIhuqkA5EmFig2pJ4Icut4VUrRXY12YDLLYqss/LVFUGYdUvt3O5y2a5wTErebQbGRAhWX/AcHrjmo0z99fsZf8OrkENNx7AHllpadCZpLyY5eA+s79CI4KT/8SxuesMnePi++1lxyfMZWLmFrllk+UXL6bYyjnrhSQBoY1G1hNS4wMd8t8JgpU0lyjCIHISU+0whLLE0SONqi2SeTckvlSgk3vT0taXPSz/Dd/T9bayTlCkKJkYdaTw4HCApjSNH2r7yfaYbd9zxir4+Oe/rS0EMJdw2Rs/exOwVP+Ltb387b3/72w97bL9o7ZeJ849t+08BKb//+7/Pr//6r/PN1RUImnXcRDrQnuVmrH/QSzpKKF4UTXEDeyN8vXQjtqBDtZE9ybFF9WknEcsTR2Vwpym2VySUFhHFMLENVp49+6UAQGXmpJcFWurcEdbrBzo5uyLpWb+nSranjAv3skJ6FkAUgM1ED9MCHqDEBhEbMAKbCSeX8wDRSdzczoef8QRq7RHag9NMnLeGlAoHP3IFcmSI+mlnEifDqLYgaglk11+jFIwydEVKVnUJjDJKEDVXDFFXypIux+zYqGBNcoDSf6385C7IAZxczH/Xx5L0SwZyu1N6t21EYQMbEnUDizI7/yD73vMPLHvaaax6yXmMNdsMVVok0km0UqNoe5AS8lB+vJWvn5gLT72LAkGVwUuUJ7ab4rsSm1LeZmAtggXx4aRjxkqyIyg9l7I7XtMslua8FMsUMgCszAFV7zZ62SBtvW63D2xEpeMNbmJl7XW/8UC/EUBoubyxNChb4Ssqs1TeVb6eugROAqNrUue8sPiDB6isXEVt5VqMAqUhnhHU91qauzJkaphfmdAedfe105ll6ttXolRMPDjK0LazSOvkQlt3yfy7GdzxYnzSr1/G56S4CyQZftqlHPz05xl74XOwsWX+W9cTN0aoDq6gvn2ly6kSoC+7jNa9dzP9mc+xcyxhzbNP7jm/YHM6f/0dLPzgdpa/8bdpMp4Dg+nvfpODH/ksBz8K8arlNM47gcknH+fz9yzzC1WajXbe71gr/PsjWExdobdapYuxCiJ3jecfPICwdWqTq1h+2hNZPLSbwdXnYdMuc/fdTtZdZNfXP0U0MEhz20nE476oocBPgHxQQdjcuCSeHGb0ZZcy+5XvMb/zTmobj8bGsBCByCqM6XFUKyU51KUzlqATZ0FMBy8HdddeZoB1OSpZ3WIrlo4UtOYkql0lGRylPT+FWjmWg6aQr6aaIjftmFtTIV4wqK7rgGwsSYaW0Z7bT4WV6IqTq6GsB6UCkQrUSIOBc85h/rrvMXDsCaQDMVhYsX8b4u6HGJ5dxgrWLXnWfy6bdMwh4CrQpxkmcS6JJnJujiYRqKpCVyUVa1ELXVQ7g8wgY4mVCSaJ0LHrkw3k919Ycvnv4cYIG0vWPOFFPHLNx9n7P97N+G+/mmjlaO7gKUoByMxIImvo6Ch3IZxYX+Pcj7ycH73jWg7c+m0GNmzDPNih+pTHs2XkYC7RzYTr32MraKUxXa1opYkDKirLWdueS5MDedMzx+gPFAE5ECgHh8r9aDmBvmcfYZ4liv5VlZYrO0NKe3iQEljuJXkzsgA9OeONmwtpD4z65zrgreNLfXWY06x4zXm863ffxete9zrWrl17pCfqF6Y9VlKtX8q9XPsPBynXXnst3/nOd9j7K1uIZZx/7l480TMZDzfFyUzLk/Re1wnhJ+hh0l5+WQW9N9dpKy1COEmCLTEgwSkssCN5Eq7PcylPZIyhp0Mp2JdC/hCOr1w/IQAVx/CUChv1gare9XqXCz+tLa5JOO7iRG1vcj30bCdP1A/SM+HQh1UWIoNMNFGi0VqiTYTVIVnRH08sQClMx+neD37wEyzcuINkbIDJF5xDdMwWDnz5u3Cww+DGE6jKQUzq9iPbloMP34LWHWSUgHaJxStPfTJSinywCQmyQpNT+mU2pNxCPkm5b7aRO70g3wjRtnyZnIUReeRaBCAjisHO41u3PQ9S2u1p9v3D+1n+kvNZ/exTGEzajFRbJLKQsnSN6p2clyNRpd8Pz4KUE+mLz9zPYNErewaTSBRMgGMqTM+k/Ug5K1L42iAhAlYauA7XemQKfaCg/Ln7GfJxDvdd6X0KF7m8D3qZ0nBMRwIiQE8iPOREGcoHJvoDF/3vFfQGAoztrRviFsDJH1PJ/LU/oHHqyc6GW0Jtr3Mmqsy6PS8ui2lNCtJBy/RVX8V2u4w846nEUS2XVlple5/nAKg9OCAAlHCMovdY4sllyHoV3W4z9/VvEg0MM3zW+Yi2e3eEBRuDrQhqxx3NsO0y9S+fRY2PUDt2PY1hmevIpbC0791F44QNVAaWoTObH8vQ485n6Nxzad//AOnePez/wGeZvvwKMIZo2TC1k7axeM6x1DZOoiJLd2qGqX/8MumuKRCS6rGbGb7oeOJ1KxBSku2fpfPAXhCC5uqjkHFEVG+y58ufQNZqNDZuZcWzX4y0Edn8LIduuR7daTF4/nnIieGS9Xfh3hhqQYnIMPSkM9j/fz5P9egtoAWmCovL4VBaYeg+QXKgBcrlLiBAesvyqO0siYW2xF3HrJiqgdiiq5bW8pjkkKC5dRt7v34lzfNOp7p1c95vGN93REK4HLoGZJEg2jPPvnu+S5q1yEiZPONSbAtsYqBcO8sHZYyFme99i4lnPQ+tLXimd9/2AZa3VrB614ncf/D7HGVP8DkqvxhNDg6gR5ukTUVaKyRaOlGomszZEeeu5mSkwlhUW6OrysmvJIhgrS1dMEqmNmdidKnvDhb1Mo5Y9aQXsfvrn2L68n9l4g9fi4hD/mghDRfCWej2AAAs1bpk4ux1PPTBa9Gnb0SnLax1jG4kXM5cKJkVQMt8mpAaSSeLaMQdjBJo4RLpQ8C0H1DEShP5Pkj3sdqhhfolS4xHRAF0egK3oW/3AKQc/OkP0JQlt/2t3B+H7Vrbex6hSK8UFrRybE9fvxvmaHkfa0XOkDc2TzJ01ibe9ra38b73ve/wB/LL9l+2/YeCFGstb3nLW3jDG97A14cXgV570bJW0orD04QGF/ELevPU68OVKGQg4ClUZdDG5omfweFHSUPkwYr2xcuEdI4zxkiH/mHJFC2f3+Mo5KUTnpKdac/6Ykln1D9Bytfz1yAwOe77YvvlCVtZglJmc0KxtrLplWOFSmckLDaT5JIuKKRdsUHFurgv3m7ZqPI5COLJEbKpA9jlK2jd9gAX/d1TaO1v8b23Xsm6vz2a4addipg2pD+4g9bM/lymJTNIxiYY3nJy7p516PYfMHXXdxg/5hwnZek4LXJPcjylSZdnM8KNsTFOm+7zTEIBLyvIpRv5pTP4InAuZ6AsFQtgpmxDiiWProZ8lIM/vJbGtrWsfc7J1OMuI9UWA1GHRR3nORm5BInen4ElcY4nsodCD9/1u1+FyXm+nLAEJqWooeKifsYKMlvkW/RH5AKQMlZ6INXL0hwOyJTBVnD0CkDrcBG/sJwULkclKfnyl1t5G2GwK7fDycCO1A6Xm1P+rL82gJNzCcwRwFjvcZQCB8oiEoOeadN58EEmXvZyZCZQ8zByd5f5VTHzKxWgcsMHrSxZd57xpz0LXQGtcZH1cKyHYfGsgMMSXOV31rjAQrJuDd0HH8J0OgxceiZ5PrXwxx62q6B24nF0HniYvR/8Otn+aRonH8XI+cew7NyjiOswcPxa9r/ry4w810BHIHRxjLYiqW7dRDQ0xPB55zNw8mkgJZ39u5i//Rb2/Nn/QY0MUT16HQvX30r95BMYfvbZWJOx/93/xNxV30UONqmsXEV37z6SVWsZ234B7fYBTATRwCAoycDppxOvmERboAtKDjJ23hNI0zmmr/8WYqjB4IXnuSCMFs6SWSpkRXuJrAEhMAsL6MU5VLOJlYK0KVlYIYkWY6JWTDTToR5J5lcmeR8hU3IXR5FB9YClOywxE12iJKM7IdA1hRoZZ2z9s5m+4gsk61chazV3rWP3jNiOM9pQXdh37/dg30GGm6sYWXc8nSFFWgedgWpJTM1Zseb5f8LdK9moomsgugAuZ3BhFcweO0J9uMaq2xa5d+Y2Ju1qhsTov/kc/8yaZ1GQCrNshJktTboDIgcV4BhEEwsfHJJk1QpxyxDNK6JWEfyx0tXFkRp07Ppk1YFk3rk0GizCG5vkz70HK9JKhk87l4Mf+J/oQ/NUVleo1rq5G1ZwxgJ6WNdIaiI0686aZP8XKky9+19Z87Jz2bTsAM2ok7Pgob5TJAwDSRslDa00oaMjalFKM+64/rRbK/Lt+uSs5Zy9fkmrKo8BOJvfck5Kfx8ohO0xHMmM7HFcdOe2FOyUbZDL2yu+d1HD0GeHJPoAqvKxLHL7DDkr4btyEr47JkCrvCde/qIzuPz1l/OHf/iHbNy4kV/k9ku512Pb/kNByje+8Q1uvvlm2r99AomoOFaDXtakJ6AoCs1l+SUJD7jydqVtfC6IX9a9CIXjj44Ei93YsygmTwyWSqOkwNqiM3LBfldErhJluT5Ul6yMy0mmUIpYUPIr99sLCe3l6GzYRnnSeTgAUv4sn/yV9rkkATrfl/SskvVmA7A0YiyIKxmZsphMOsCiBSI2RJUsz3ORkUVnxrlGJlnPOSerlqGn9tIZWYNNNSNbx6hNNEAKxMgYdgHsiKR61onEM0XF+No+Z3VsRDH5H916GntvvpqFfQ8xMLoOUkhmLWmjlIuSF1wsWJGimrwtQIYin6QFYJRHXX1g2EbQGtNw0yN05w5ANSJujpK15sgWZqkfcyxRY5B4AbSfaObR7cjSuu02Vr/28VSjjJFKL0ApP79L7rXPJymaqyZc/q5fRhU+S6R2hQ/xbi3CkFlJJIyzHPYT/hCly/dQeoYSmTlAHwYoYciQJF6KEPaTJ+17wGOsO6aqSh1gsf78LEuBSklaZvzxgWOWiuth8psSCYMRIh9Ef1wLki/T9z79uFYOAJQHUvASC1tInqC3P4qkQQvpEuZLxyaVxY5FiDiCuUWiaAjVhbm1Md3BUDcIdGQ4dON36ezaRWPrMS75V1oPLtwznYPi0qmY2BZFUUv1HdzOrftXOvfkqHXMf+M7rpgtHrAL3Dtti21bYRFSMvLspzB62VPpTu2jdcMt7PnItez5p28w+byzOHDVrVS2bsZWDDZz1RN7QLsAOTaE1Zp4xXKEgcrIBINHnYR5Spf5HXeweP8OJl/7amrrN7j3NzZM/v5vIFKBnM/Qj04hj6mw8PB9JM1hZGpc3YpEMfHEZ7Lnio8z+rSnIkeGAM+yWxCNJqNPejKt++7mwCc+xcgznoKsVx2bknoJr3Q2tFGsGbrkdDp33kbt5C2IKMYMDJAamNkkSeaq1B9dIJ7tMmAss2sr7p63nWFBVnP3sHLIMnyXYHa1M1+JBzukokK0EBElNaLxZaSHDpI0q0XUOBPomgu0GQvtqZ1sPuU5RG1LWnXbDkYJybSkPe6DSEY4uZ8R6LSNSTvYxKKVQViJVk4eu/94xcBAnebgmWy9YZxHDvyI/WYPK1hDQhWBQImfDxtXEUVY7SrLq9Fhpk8cpjMkEdbmdvMI0FIgM/eZ0G4Ml10v6YslaTPKC3GCl996wKIrYGLXL+lEgMRtwweowAUFdCLY863PkaxYgVQVjPa1jyJDzeeqRqow8kmNyucLVZWxelnKyvdezO5b9jN0/Co62vV1Xa042KnTSmO0kVSjjGbichMTqZlLK7R1RDXkuSSLzHRrPTIrhe2ZJwSXxVCsMTWKWAbrbuHrZbkmS2CkuPAlx8eQU6h6x4VyPxc+K38fWqjJFfrwfGxDEHlIEwmT5/r1sN/+2PoDZuD680T25jhqIxFrxhi94Gj+/M//nA996EP/xhP28936ndh+mu38sv0HghRrLX/yJ3/C7/7u7/KVgUOlz5faqwU7vUiaHKDYvpcnoqAVlbAsdGOEFSSRztcL2+pmUc6sDFQ6VFRGR0d0siiPTBjrHDVCTkxF6dz7u79IUXCmyI/Zg6lQa0CVXvgClHgXC5weX9qiNoGx5BOgoM8PgKPsBFIGCCEPJ7iQBVBjjMiLtJWNAMrMTWBpjJZYHyUV0qKqGZVqmkeNhXD2rVmqaDbaroJ1GpFmLvmvsnoZ6c59dJftIhlroqt1kgEDxmIWU0S36ih046KLWcWi2oLKnAVraU0oVyzNO3GNHnMG+2/+FvXl69ygVXHVno3PDbWJi5gF15ag1beCPGrm5r4+IhdZ7FwbqRKoqMK5B0gHDHsv/0cWb76Tyqb1CNpkUzMko3VULWHfVZ9l+et+Fbmnzcyt11N93DEMrT7dTZAjCzqlPhIxUmnRiLp0SoxEKMJYzqsI0qsyAMlrVXhw0j/IhPUTqamp1GmdpXae+zLDWElNpUucv0IOSABM5QHCWEksMj/Rp3R8ZSvJ3uMI0T0pgiOUIbNRwb4It/3eXJvDn8tSB7Ji3wYJsrgu/zedcr8mu3/7/YxoGaCEwdSxKsUyVhQAoEgqJzecsH7iiYmIxpfRmZ9iqLEcE8HMJv+Makgrmpmbr0MO1Bh7ybPdBCqzlC+NSWwBoj07EpgLXfO5CgGgeJDsZ8L+b38PRgdJp6cZffEzsYlFpMGW1RZuVT7/zMYmj6IkoxMkl1zM0EUX0brxJvZ97utUt6xm6LnPRHSlT9gXnr20nrmAbGqKeGKikGFGkA0Y1HxC/fQTaZx6oq/rAtK4wEltxXqY7aDHNIMTR7ljSirM3HsTE6u3u+tgDdmhabCgorozLlCO7bLSsRw2gdqWLUQrJpj+1GcZfPx5xOtWuhPKBCSOJW7vn6Wza4qFb3yfmU9/FdvRVDauQK5cxfiFz2TPmYqhewapHnLWfwOPdJlbk3j5kKUyAyp1FujN3RkHpqtUxxfdPapoRBZjD0yjZ+ZINkwCxk2wM4nsOrCR1UFUQCQJad31hYvLJK2VFrXo+iMTW2RkMKlERAbrQv7MXnUNg5deiEQijEBXPHD1z8bMUdAeixkc3MKqnWthx4Pcs/caUrrEJCgbsZ6tRKKQVf+nNyFQkxPo/Qew3S4iiohblu6A66NzBjs8R7jnVmqoT2VkdYnMBFYLZGqJFyw0IK2L3P45N5rwEjEbgeyCSgsGPeo41YQVMHbKBez6zOUsXH0dzcvOwFRdACJWWQ5QoMjbyIz0Y7V/1yLBipMn0VZTUYvMpxWMLdgCgHYWoa0gjRUDcZuRSov5tEJXK6reZr0RdXMmG/zEP5/8L53cBzY6MzLP89BGQskmPgSqnD18rz1w2IezH1Z5sCyzpYLAojeoVe5TY6V7CgwXJkIFEw9FQFb7IJcUzr0x9NVhzheCVyFQFHtzozDXWfWS7Xz8NR/mTW96E1u3bn3MHslftl/s9h8GUr797W9z++23c+WVV/LV7/9ZCYnTY5PXztwhBAoxUJhC+BwL/8JUooxYaqoqI1GZq7OhYxazOO8stH+JlTQ04xRtJI2oS1aqvN0vVTEeHAkPFsILVy4OZ61LuFXCunoA0tDVKt9XaGEyIwXEqig2Z3ynlzveeFASOh1ROq7YR3fChHKJxTKQRKXibL4YJpAnuhsjcylYLgnTLjospJsoxklGHOk8eS/I4mJpeoq5hYJuShnqG8eZ+pdvsex55zE112HXj/ax5fRBKuMDpPc9yPAZG2i3Y9JWRNqVqJYknhVUDmWkTUVztyatCbqD/pxGG3T1gvtbwsyDt7Nw310YmzJw+pk0l63PI9RZzeYRYhPbcBkRWjCf7qTzvW8w/8MdpNMLqKEmyfo1ZPsOMnzOBQyedjpy1Ty2NceK117K6meeRDXKqPuiiwD3fvgG7vvff4saajB58THsft+nqP72OqLVE5iqQdRqdGa7OaOhrWKpbMuCyvJnuIcGF85woWsUiUp7NMJxiWk5XF5IGFwCe9LfYmEwwiKt6QErQeaVWkksDI2oQ2YUqXX5LZHUzlM/yA2sIbVuQJPCUvHrS+GstJdIyUqStB5nsjCQ9TFLUS4784CgzzkmsD39jGV+DH1/H66FIEe49mGbxgpsH2uTRzSlO5owmAphiSL/fmqJySSmq2jfeB/Z1DTN9gitzRa9vIs+1KF1+49I9+zHdgyVLZtonHySAz6ejbAaqFhM6pmSxDrgAI5elMWEAWVLeWMQitoKaYsis7GzNY+XL8uRp/VMSy5zFH7+Y0B0JSYxhaufckYgzZNPoXnyKQ7cS4v18iIbG0ilmyD7yaQYbJLNzrjlIpCp21Y2kiG6MncgIwQO/Ont/cg/sbjjHjb/2f8i6grGlh3Lvis/y9g5l6Ak7P/WV4gaTcYf9xRENYZQRyYYC3gXLStBjQ4z9uLncujLVxHt3Enz3O0+n8cdy+wXr6F+7Fo6D+1j7OyNHPuso5i/b4pbPngd2blbUBs3MmtqNL5raC2LWJhMiBZx9ZQ8wxsvQGN3F12RrPimYu/TIhrNNnOHqggLc9d/H71/ita1t1HdvgWZVRCPzCJFhdbOB7C1iNZdt5OMDiE0TB8r6Kx0/UyaSqJZhYl9IAyJabsZt2l3sYtd4uXLHNOfU8E4BznpJMeLKwxZQ9IZqBGt3crit25g25pnkI03EHc/zD13f5Fxu4JlrED0JC0+Ns1Yg0As3XbhDkO2azdqeBjd6aBXj9N4tAWiTmuZRFc98xeYPgWVgz6IU5MuSBULTKTQFUlWE44pgVwOrDogMgemTUzOpru8Igc4OzWJyFyxzOEVx6Ce+nJ2fv2TMFSl8ozj87EvFJMt25MnUtOMO1Sk7rFXD4y0FJb9i3UAqlFWVGQHOlmEpEIj7jCYtHOprEuyN1RVYTNfXFPRM1ZUozSfl3S1IhTkzYx0QKDEUIdaVi4nUedAp5zL18+alPMojRVkFNuLhCGJMto67unfg5rF2N7E+NCsLeTAPedT6reDCqD/e+knKc1Vg7zoRS/iHe94B+9///t/0kfz56ZZinnXT7udX7b/QJDyjne8g9e97nW89OY/oBFHOZAwohdVp8J9Hvuck3IEQEmTO2QEpiVRxQuWGgcUws2sKI2IXEQhlq4YZGi1yNnDplrl2w5R1lxOJmwBRkKlbS//Srwdb+yXTZSmXZpU5eCmxKyEnriapPn2u1rllcsNXo7m2ZyQOOfYGwdU8twXK3o60rKWP/KUroXcCrTs9CWly5khc8uoyMtx0shR375q9HCtnR+HkhZjrS+M56/jaUdx6Gs3sft/fIzBSx/Pj/7qWtZ+/GmMnbqG7N4dyLPWEccaLSPXkfkJhqsE7Tu7yDt5+YJ1zVWb2P21T1NZuxa9a4oVFz6LtGnZ+4VPoC6bQAw7SYaNfM6SIXc7km3JzK0/YPrTn2LZRcex+Q+eSm3jJPN376b18DSisoGd7/8M7fu+z+JDU2TT88RPOIbRWquHcjZWsP6F22luW0NzyySVmkKajLlvfoahV70GIpcobPYeQDLizqM0AQ/PqxSWxA8Uh0+Ot9Sjbs9nqgxihMkHwswUwDvXJZe6rSC9yveNJZGGmkrpmohD3cNblUphUViU0GgrqKmU1CjPcPj8Jg9eyi0AqTAQhWNcmgNjMKWaKvmxshRo9DMi4Z08EqMihXVRRHtkOr0M+MM+wjuelb39S1HHsuufMTK3IddakKUK04po37yDqQ98hNHnPwu9fSViNmX2K9eSTR2gcd6ZNM4+C+H7Mus0ce53YSEGYQSmUjAa7qJaRKTdfr38sqfZ4rhCYVant/P9ytGb6dzzANEJJ/RegHDuCjfjlz7YE1lkW3iL71IkVLmIvY2c2xTGybXkosz3FTeG0AsLHjj5QIEB0ZE5YCnswp2FMkDzpFNY3HEPC52bGOJkFvfvIpuZZu8VnyCqNUhWrWbo9LPBOPbZnzKe/CtAkktOBKkYeeqlLNxyCwc+/AmiZcOIWgXbzTBZRrxxFdHEMKsv2crac1egzluJsJb7P/Q5Rv/0N+lOZOzdHjN0r3ERe4kr8Cpc1F0ngtZk4pjbSBA9WKW1AWrLWnQHYoajS8i+8HmY7TLz6a9BaohrQ5j9M8QnbwKbMvKUpzC4u4I6YDCRIG6kRLEmyyRpJUEmGqUsmRXIqnYA+J47qJ2yFSKLUAaqGptJbCoRHQn5/Ye06VgVPTOP3LmKxZUDyMySbV/PNvl8dt95DbfzA9bZLQyI4cO+Jz9J22sf5SBTNI49mZn7bqHaidnMcT3LiCRBDjTR04eQtapLwgLkXBtbiajtaZNVa7TqTqoF5I6Lugq1/Ya0LlFdi4mkw+bGy7c0mJpbTxjAOObFWhe4SgcEadU/6l2IFp2Zha55kK2gufFo6lPHke7fRRQdR6aLvDlw8w8lvDQc0dP/pbnkyctZPbAJ85VKKdiVGkVmXQA1sRoZpXn/XuSCmFJtEZnLe8ssSlWleQCpra0bDyRYLXrs2jMjS3Ldw1epP1JfGcAMZHSNoq0dAxf5gr1d49jzciD2x20vrBuYlnJ+TKrddTGEZP5ieyG/BeDBx7X47ms+y1/8xV+wYsWKI+7n57l5GP+YbOeX7T8IpNxxxx1cddVVvO997+NVO96ey6jK+Rbhwa/FKVDIr8L3YRKesxX+xQ2tayKUMHkeSVgP3IQqOHBIH2HumqgHkABIpXOwFGjN8v77J2rBCjBIwBKl82MOUjS3f5MXPCpHMsJxJlGWb6ssiylvSxuZ5y6AAzT9ky9L72RZ+HVlsAg0BTOUpbEb/AXoTGG0zCc/UaTzJGPlbQQjpWl3YyqxL06oJZWBiOP/8pnc9OuXUx3sMndongc/dQtDEwmP3jFFux33FItULUF1v0V1LDI1ZA2F0F7iYgENQ0edTHPdVmZ33cPYOZcStYBYMnDe2czfeRPNC053G5Pe3cy6EHHn/oeY+9rVdO5+kGP/5GksP3MtHR1hrKBxxjrM6esxVjC+bYzFe3ZRHdtGtzrAyhNG8zyLcr6IFBHLT57019Kw6lmncP0r/4mBV3aQKqKydSP7r78T+fJNSGFIddw74cbZ9IacjGDxG1iFCJPvq5wj0v98lbcX8jGWfOZb2eq3IjMiqYmFpkvEQNxmUccE16/ycwMObNSiNF/XIPLBuAycetgLlg6A5RZL9z5EUjsA4yOIR+psD5eT0u+6VW7l5NDcre4w29RW9IATKWxPUbW2t8etJiltHRErBxRSrei047xGUrcdYxciZr/4DWauuoaR5z6VxoUnYTPD/i99nIEnnMfAhecXYeHy9QiRZglEXo5q3KSJyLgaRCG44DXyObiLvG145hhGoVyOGNaxKdbi88kq2HTGAXjtItn5JfFEsNDCy9nc344xcM+VjRxzEthq0ZXOeUo6qZhzS/LsigChIqx2gAth3eRZFAVhrbJOkunzY0QqGDz+FKY++XF2/+WHid99POk37wVg4GWXMpC6SUieXxYuYbh0mZNQCeGunTUFO1U/bRu17Udjux1Mu4PtLmJm55j53DepH7+B+/7lJrZcsoaG6nL8S47j3i/eh7zmKjjtGbRXpOgkonJQeCdBQdRy16gzKtAVQfWAk51VD8DccEI2ZjAHEpQUjF/0VPZ8+RMMPOVxJMcOu2upBczF2KrGakFLOKlrPCdozSVEo4tUKhlxrOm0E7QWCOVs3kWc0b7pLsZe/UyvlXPXQMTGAb7EQNuZnoiuu/ZWCbJ0kdbcHnavnqYysAyrLDoZZ0XlCYzffAc77M1Iq5hkNYNi5LDv4I9r1lru4w6ajQk2bX8Fj47t4+jBY9i563rmZjWDCxVsliGiCFmpgFKokSH09EGi5ZOoSgUihU3cNCOZNd7dq2BEopYlarvzkVlhnuIeMfdcSW2JFnHMSQKmEiTAzknNgXFyC+9QKDVaoHCMzCCpDtM68DDSBwYD2ABQXoYaCc1Q0iaRGV0Teeak10Gxm8VL8irCGB+YjUT1yq/A26uHZ9t/V2ZqwEl9y4y5FM4cxR0AyKgosts1Ub5MYPgDO14eX6TtDyQt7ccTWcjbynkoIaDTP08qi3vL7l9uf8V2cyVBZKl5aXQesC7N94JEur5pmIsvvpi//du/5S//8i9/3OP5y/ZfpP2H+Bi+853v5MUvfjG/eu//t1STjnURC6nzl09icyu9WLkJc0DX4SWpR90exB35FzMkFZcBSlVluUbTdQbBEczt10UKTI99X5jQxEr3AJn8O39sZUvgSLrItxKOYYl9kn5FOWlaOJfyv2qU5SAm5L+UIxUBLJQlX+4YyIungQdFoqgPUz7eEE2WHoCE41WRplrr0mi0iWKNVIY4dp1TrEzuER/Yokqc5cdXT1IGqx1qNUtj8yTp9By1bRu56fI7OOGFW2nf/TDmxh8hhHbSlNhgYtBVlxQpLHSbks6gdEmPfj5mIxDNOkNbTkLgJghpw5KsWUV31y4fHitYA9PtsP/9H2bqXe9naF2Ts//xRaw7d6WTAyrNYKXNYKXNcHWR0VqLVccMcvQzj2L9+atYfcoy6hWdDzYhLyR0pMEtK5KGdHoemcSEegyVTStZfGg/mZX+fhfPUXimHPAskgrDs1PO7+gHvqEFkCqxxMLkz+/hWmAKw/5iH0mr+8I0NdnNpVqx1MT+XMPPRGZ5bosD8qVIGcXxhn31u5U5ENDbdZQla2G9MqgJ+uQClB++6+l5jksAvL8FqUZ+/0rvgID8fQyF0cquOJF0CZ/GSNI0YmGxkhddE9Llbs0/0mX2iuvY/4//zOzV32by93+N5jmnQ+Ym5rLZJFm7yueMWArfai/JCjKuxCCiMLm2EBlUYogSTRxrokjnVugy1shYO/AiLCKyyKT4G3DAwwOdbN8+opXL3MehCGRee8MDkbKUzPpjyo+ZHgCTL+e3kSff+79FEmHT1Oe8+AR9Gxybiv1Z5eVjAmxFsexJzwBg9qovcvDA3QBkex+lvSJDVywyK5L98/pG/lytgGBeYePiHN0kXqIGqiTLB6mun6B50gYmXvlEqusmWHhwPw9ev9/ldVUEF/752Txw+XWo2bshtqQjmva4pTNq6Q5CawUsrIbukLMd7gwL5tYb5jZpbF2TziXg7chFLWLyKc+i/aM7mP7w15x0tpphG57+iS0ihe6wIGtaREXTqHapJalj6YQDXnElQ0WG2S9dy+AlZ6ASWTgyGlGYmygDFYNNjJMKRu56xysnGHnmU5m980b2XPUpWt39HNoKuy8YYf6FZzHxytex7HkvY3Y0Y8fAfRycNKQlO39tMzKbMWsPco+9mQN2L227mH//cOVBlq0/mZUbz2NxZY3kqA3svXCEheNGebS5h7ui27iDH9GJUqhVwVhEvU60fi1mYgTRqKEbCd3RKlZJVFtTmTVUDloq0xbp87VMLNCJk3sZn2topas6b2KB8bWzhCa3qne1tdw4knclAZj7Aqu65hgXmcFCeoDZHTcjRZrPL2LlAEEsNYnSVFXKSLKYm41AOQgo8z418WO58n1v4vvUetSlHnWpRikDUYeG6tKIuj19qQM0Oh9/qiqlqrISq0HPsnEptzGSurA+VtrtS6UkPtia9/HCEPvxKGwr9OkBzPTIkHOAZnr6/ryvFL1MSvn3APRi5a5hfm1Kc6gQXAvnW57f9ecnA7SfDO9973uZn5/nF7GFvMfH4t9P0t7+9rezfft2BgYGmJiY4LLLLuPuu+/uWWbv3r284hWvYOXKldTrdS699FJ27NjRs8yFF17o3WyLfy94wQt+6uvy722POZNy4MABPvrRj3LDDTfwRwffTfBzDxKlgt4zORsS3DTKk+0g8ZKldXqiEtLVeoh9wntgHdwLr/PlQyS7V9rhWthWmcEp778sLykfW3kCJoTK2YrwogfQUY6chCJIR3LTKB/P4VouASu5g4TPywxV2KalNMkzMgckzWrHyc7iLLdqDkBHG+mKU3lWJtwX67c9c90O7vxfX8NYWPu2V7Lw0CwHH3yE4RHJE958Mlf+8ecZPGcHY697ARmRT+L1UVbpIrO6Sq5bB/KK7sIPQgi3jK2CGh6gu2snycpVbjJkDFN/9wGi2HDBP7+M6kiNRGZE0jECZbes8vXMO/+oS3Cakn33M5JFEp8xgr1fu5PRxx2HqjsTBpt2ieqxAw9hIu+ZvbLVsPvV3//Sc9SfWL4k2uUHpJzZ8fkl0ueIlJeryCzfnvRxhtizhsGFK0bTjLq5XCxYHVcOkyRfRLS85KtkZ9zfglwMQhV5k2/fvWdL1+0HKOXPD38cveCkPyLZw6j4a9nfoYdBssfnn+Jdj7zZRBxnZFlRMV0Iy8KDM+z7q/cTjY+RrF3J5B/8KvGqCWcFaMGaDLPY9dEAWwAAY3MgYJV1xVE9eBF+0q4SQxRnRFFxH/pVXggnO7PGJfDnX3sAAQ54EUsnfg7b8pHnsGxuCOAZlVz6pQU9ijxDzpYUFzBIvxybYwXIehXTWURFSY7J3A2yuUlFyE2x0vptCAbPPZcDX/8Shz77TQDqa4Y58L5/ZeKNdVi7FXtIES0KV1k+MCo+LcPG5JXnEeGnC1wI6QIIQgaGG1SjwtjTzkS0W9z53u8wtuYiVq9TTGwb5/TXbuOGP72ckbO3IE6/EDauQc5HyLZjf0zF9+lakDUsjHc8O23zgp6ZjVwNoG7CyIWPZ+qqL9CZkcQDlqiiyRZixKJjPbqDnlkywU1OkGWKJMk49JXvs/jAFDJRJCvGqG9dmbv29rQAVkLBT58/JFIniZJDAww98fGY9iIz13yLuXaXzmlnUj3escIyqzIqn8bQXIuZmYfYX38AO7+APniILF2gEg2gszZblz2Og3KKvfoQC+0HEWnKSLKCwfXH0a4qWssl7WUWUzPEq05laPPpzHzmsywfOJN7DtzA1hUbqc6DVQrRTckGq6gkIhtwxTONckA0aluENRglSOvu4XZjQDFOhByTMvgwcfFcmBjnvijccnkeVIlNMcptV3bdz0PXfQvZqLD8pRdQjTMacZdKlOVjRsjvqHg5eblvVsISC8+MGJn3/+UQbxHockChorK8T4yE8UYr8rDjQCwyMNFh5gNO4xj74zNC9OwjyG57+uHy2GdBI/LtJCWAerjcxsMy56JXdtTPsOfgpjx++mPqGRdL+6h6SXK45uVCwVJYJk+ZYPPmzXz4wx/mda973WFeip/vFvJ2Hovt/CTtm9/8Jq9//evZvn07WZbxR3/0R1xyySXccccdNBoNrLVcdtllxHHM5z73OQYHB3nnO9/JxRdfnC8T2mte8xr+/M//PP+7Vju8fPw/oz3mIOXyyy/n9NNP5y9m30UkJZntfaj7I8SJ0t65SJCUXvojPeTlyU4kNAaJVGUPcF2ACMESOUn/BBbI662E9cpJvz2RA2wP0ConhLnjMb0sTGmZ/DxEcR7QK2kRlOYYHpSE38ufFS4bzkEseJvlBSX9NgpEDnGsqcYZzaTr3EukIVMy93kPMhlK/uax0g64+GXigQrdgy2O/rNnUd8whGmOsT+13H/tbk550iosgmsvf5BarUtbWrpVRdqQpAOKeM7XrIgEMiWfcJjIsSloV7k5D0pLy+Cl53HoX79M8rxVALR+cBP60Azn/dMLqNUlkUwLT3gsMirkgAVdXty/qsp66omEn4ENCWA2EpraeIPWPdMuim0hWTNOZ/chyDJfPdtP6DMDMs4lTuV7HPI+3O9HBqCBGQkDmMIQy1CMSxELQ8dT+07K2GtpHIBBagt5oRSWGl00vXKCfiBc/q5IDM0Vw70Wy+Ga+nNUopAlhAGz59pSgJNe0LLUtjn83q+rDuwSgiXflbdZBu5xn4YaUUog9e444N6PWLnzDpLUNJUcvPzz1E7cysjLL0MgndxKaSdn6kD7rvvo3Pcgpt1BDcTkFURtUVcFS55HYo0PBODYUKWKIpz4z6KoeFddPSTj8mF8AARhsUb2ghbdQVYlIjFeDoVDPBb3EilwMxXh/kkHXIR2mum8kr0ngHK/bigAgSy+E9UqptuG5lAuSXLSI4rCqxbQOE228JIyK5n4zdey93+9m+WvvoQzXr6JBz97G7f//SdY/VevJxsZQRAhUpY4oZm4T8IGLm/Dy+Xy/O0eQGpZ/qwz2Ln3AF9/9Wd4yseew7JxOPUVR7PutDHu+eoj3PQ/38fIi55I86IzyVqxO4FKhtnzMNlDj1I/YTMjIzWm9g5hlaFST8mkIgPIJEY6IJKsW8OhT36DkRdc6ArepoJoQaKrNp9oCz8OaS+x1Q8/AnPzTLzmafmzG/IHhQei1se3rAKMcHVYpIXY32sMZYMF2agx/LRLMPOLzH/nemb2fxsZJajBQTobt9FYPw7yOCrxcdSmLJU7pjh49/fZ332U4yefTiwaDKzZQrWpGJqf4dGbvsT4MU/k0IYKWU3QXmbRIylogTwE+3bdTNseYHT7UYzI1dz2jc9xyvLLEKmzHs7qirQZkTWkc4sz1uX++CKM4Ny4HFtCXt+qzLAb5dfTYJIAYugBsoF9EyEeoJxVsQMxFpMIssQyt+MOlr36iYxsHqYed6hFaS7JKlu7g+vfdIk1DqBDl/q1yBVo6XM4LAJNef0rEdjqKJdnlceEMpsRUI/7XpJ4CVQS8nd97mBFamqqS+YjDR0dLXFa7GeqA4gJ218aJDv8OkGCWu57E5kRheAzgmpUSPbDdTB2ae5KGYgYq53So2TBH65FIi3VJya8733v49d+7df+Qwwg/l9sV155Zc/fH/zgB5mYmOCHP/wh559/Pjt27OC6667jtttu47jjXE7Ze97zHiYmJvjnf/5nXv3qV+fr1ut1li9f/p96/EdqjylIsdbyvve9j7e85S18VX0d6RNrjXUDVs6ieCCQ2MI9KPws26MaRA/IKE8sy62ftlwSQWdppDa8FJmVuSVezkgcwVchAJCc/hQ+Sd70fn+4YyxvO0ze/k33osNNbEXBeuT1NkpABbu0MGUUmVyqlk8qrcjvRyhmGa5LmPAFSVNICG6esJKtv3I6d7310wwePcnKt76cwbPP49vv+DabTn0cq04YYfGhH5J97wcMnncK06miPS6JFiXDcxqZukRI2xXomo+gxSECW4qWaZBtiaknLgnZT4baO+5l+JxjaDQgCnI+7BIw2zvxLWY9SlgqbppBpy9yFfI7DIJIGVadv577P3oDQ69qI6oVqpNNAGZ2LXLXV+/klo/dRdbRWG257J8vY/KopquiTu/zE4kiL6UfsJQZjiNFtmI0lCJgFVkAMV0K5aVWOc2ysKjwQErcs3mE6tT9ALo80AXrYWkLq+FwjWTpuIEepgeKgftIDEr5/I40kOXbEr1MoSoN5v3r/bjzK/8dBuiQpC9K78H89TvoPvQo47/9fKQUWJ1x8GNfQgiD1Qa90CVZM0m8eoKDH/0sQ089l8r6yXz/Qa6TdiKsEUSJxni/YwE977QS1oEWWVRjTrXTbIe8Mps6prb8XgfQIrIOqhm7Gi7CYq0ssTrFBDb/55uNbQFk8BKmsIxd+s99LDyT0s4T2R3bIbCRKQoSetbGWkBZTMW43I5N66ls3czi/ozMKjZcdiy7r9vJ9P/5NBNvfBHdqEp0IHaTVR+wsJHFhBEqyNQ8eyIjd+2OGG2sVNjwu0/lgb/6HF966ae56C/P55jTm4wfP8HKE8bYevEqPvmGq1F33crQecchxsfY/aFvsPjAPsaPGuThD13J2o+8nCk9jO1GmKrrN/JcIS0wVUv9rG2YaxdZvPV+qkcfi9COEdIDGhKfp1BL3aWxgmqS8tBnv8fql52PrHZZWEzyGlfCj0PGs19WgKwYTNdZFAvrzt8aN4m1pujzsY7FUvU6g5dc6LZjMvShWaa/9k0W120kWbcGuXyIdChCrhnnwEyb6qkXcvP3r2PcrGJm30H0IRCVCq3KDI8+vkJ32BQsmxWYB2eZ+cJXaW47icbRx7E4mGGHB0nWrGE+m6NeG8IMV9FVV0m+PSIxCpI5N9kQqnTIwuWh6EpRUys8q8YXZyQToAvbeRMXkkABrn+TBVBBOIASjCGyGrQWpshmZ1i2fRXD1cVcOl5VaS6nCiAlRPUxkPmd9PctQRoMeCdEUwo0hTGoN+BUkRmzWTVfpyyhdRJ4198qYX1uoAMNeX6KzEoSYm/e4wuJSWwexOpnakIrAyLHv3uwUO4YWGp6ErafB/C8NC4SzoGsa1Rujx/yMCUWE8yBjtD/u+tXSKLD8VT8uL7u4g18/m8+zw033MD27dsPe04/r82b3D0m2wGYnZ3t+bxSqVCpVP7N9WdmZgAYHR0FoNPpAFCtVvNllFIkScK1117bA1I++tGP8pGPfITJyUme9KQn8da3vpWBgYGf6nz+ve0xBSnXXnstD+9+mM+v/hqxLZLZCx1kr3tRuTJqeFDLNGlH+4Q7eTge3EVkAxLvASD+gc+8E0ewuCt3Drk0yBYRhLKHeWiHk54UiXTKReBLUdGs5MAF5L7i4HJifqxzkV9P9QGU8vOezyNKEeKwTTfZCVW2ncwrRE2ULABIRWV0iHK3sJAj04i7Syd2kH+ujWTzK05n3YmDXPPH3+bhP76ckV97DfM33sBDN+xn+xPHuOy/n8Znfu8qNkcJ4tgziOckaQOsEjR3dVlME+ZXilxb7PTuDrBELVdVOCRGqgUJxpDu3ku8fJJs926WnX9yz/MS7mX5Gva3AArCMwhuwh0Sy4t74EY8KQxjmwdprBige8vt1M48ic6+BcCyahVc8f7berZ/5yfuYPKPTvfXsoiiBdCT+ueqHL3Ka4546v5ILTzbkdQoTGlwLN4vKXSul4YCvBgrljAp/dep3w5Tla+rsChl8whefztSXkkZnCxlbnqZmaUDZbGN0EKifPl+H66gZL7uYbanS4whuHco1EMK78/uj32Xg5/5FmOveDqqUcMaS/v2u6lt20jtpGN8grvFWo3+6FcZed4TOPSpr9N9aJzBC05GRTq3BI+SDKOVkyRp4Sag/rCcJbmhEjsteiXK8mhuqhWLKXQzhTECnUqsdvU0hJc45XUJFjNMOyui8CEvRFOAFM/qWGMJFsE5y2Ipybm8NFNSsDGBLYGCSWm1vdxKFB1TeDRsMVHEelGatNiqowWGnnIRU+/9J2ZeeQzVgRqnvukCvv7SfyH90W3I408mWwYiMuiFyE0OWz6RXwCxyaVd4Adw4QxMEDZ3ZHPXV5BqhZKWLW96Go9+8Bp++MHbOf7E45mfSolXDzF54gSv/cT53P6Z+7nnC99h371znPWyDZzw38/nc39yM4Mratz/ubtoPmsVxggG6232HxxwCfKRxcYZeupR0u98l8pgg+FTz6BltJscj2qa9Q7NaodOGrkK29IQVVzfvPG3LuHh93yVtb92MZXKcH7MUjrLa7RAeCWfECBj7Z4B5aynhbSIaubvtcB2XYAi3Dch/M9IEY2NMPK8p9O+cwcLd99K9p1pdzulQMfz2H0PUH3mGcy3BJX1JyMrYDod6tG5dGTm7l/Iw1pQzH/yK4w/+1nISpX0VItuCWQXqivXMnP3LirjY76KvCCrCtKGyx2R2jEnVrg6NMI/W1kicqlXKPYoM4uw1hcmtcErxQFWW4AU2XLMixXktvShrkzoZrKGZf7Ou6gevY6kHhPJNlXlcvLcP5fH1zFRzkyAGwtqKvWfSzDk+SvaCromynPiTKlvgmK86WeJB6M2xgoWRZK7gAFeRZLlblphH5mVSOtZcZX2yKiMFcSiMLupKTdGp1b58/BSMQoL5Nyh0ZbnK6o0P7HOyr4k6QpmMOXzCUHnir+O4IJJzqHPB7REqVbXYZiQsqFK2SQggLZKI2LVJWt4z9+/hw9u/+CS9f8rtTVr1vT8/da3vpU//dM//bHrWGv5nd/5Hc4991y2bdsGwNFHH826det405vexD/8wz/QaDR45zvfyZ49e9i9e3e+7otf/GI2bNjA8uXLue2223jTm97EzTffzFVXXfWYn9v/TXtMQcoHPvAB1l26ibgqiyiAByZRzyRH0vWTjLIXd3iJypHbAAqCPR4UL0tSLmwnipcD6Jkkhc/6wY5B0M7iPDJRjVK6WuV6yfK+iiMvT/CWunOU2+GYmTDh6vmbogJscATr33c4H0tfBNyDFVVaDvBWyJpyWa+BSodEabq6AFehpsdQsuhslf316AeAwR2tqlKGz1jLC7/8XL79R99g9opPEC8bIJ1pk1rF+NYhdFczdMxyZiopi6sjmvfEqLZGJ9Lp8r2bi654Wh6QqQMnsgUydZG7dEQz/KwnM/f176Knv0d2qMXsrOjxge9nSgIgCN+V7XvLLi1h+WKG1fu3krD2ks3s+up3GDh9Kwv33M/wUWNE1YiXXHEZjUHF9IOzfPJlV7H54jWeAtc99ywWIVcmBj/YlUFAGaCEZ1BRMoEQOgcckqVgPPKRNIVxTEr5meh7Tn5cOzyLE/IcZP5e9juS9TMxGld8MtQlOhJA6b8P/SxOefvhnIP7TjiO/mM+XG2V8vGVrZzDd61unNdIOnTnFAc/8y1W/Nlrqa5fgTHQfmAX0x+7kuq2zbRufQCZSGTkc7SqESKKGHn+E5m/7jYOfPiLLH/Z4xAqRkqoJBnGZq7WiuzNjVGqyFsrs5cRBiOdYcZCq+I+lxZrLDaVLoLvo+bEhs79Oxl88rk5C2I6bjKFKTEpqYCKcXkr2q8fGLZSBN76SUYOVEpBenfQIBoVzKGWWya/8Tb/6eql+PViz/YYAYlGJZr6aaupbFzJze/+Edv/8EzkYINjf+UU7vno11n79vV0qsNUqym6ltLtRBgVue3G3g0t3Gvp3NcKq2hJ/zzIWkE3UygZUV29jNlbH+XDr/kuu289yCs+diEbjm8iV0gmf/0oLv71zRjt2KwPvPYGdt64n1NeuoU7v3wjA+uGaK4YorFxjPFVC3R8Xa9Yae664mq2v+FMdFRFigUemnGd2Wh9kcxIalFKtZFysFNnZrHqmTJFo15l5ZO3sXjL/dTOPIFupoi8xX1mJJ1OTNopDc3CX2cBNpVE9QwRAmMRmNig25Gz5E0L8CgygY0tAklt21ZqYktBQgqLabeZ+czX6Nx+D9mBaZq1M0jWrEZGFUQm8m2Zpkak0kn3qlUG9sXMbnVGBroGqiOo1IY4WLmfCVxAqj0sc2ARtd1zpIMVt5d4dYbdZNcqkF3/HCowFX8zbfEACuuX8RI6FcYL7QJyeYFIb7Ii0+LZbd91D0OnrmesvsBg3Kam0j7JrHM4jK3uCeoYBBWZUQtsS0nOW56Ex6oke7UuKKWFk4khIRIZsdCkuPIHDdGhIyLP5hf5JL31S2QOSqTMUBiUcGlx0n+f+uPukabnJLqjlsKkvz8QlZbzHEtBKS3EEjcwMCXVhs0dyAKDIoVZYkffk994BFahRwUhbD5PDOPDlmds5OO/9nH+7m/+ridf4ue9/XuS3o+0HYBHHnmEwcHB/PP/GxblN37jN7jlllu49tpr88/iOOZTn/oUr3rVqxgdHUUpxcUXX8yTnvSknnVf85rX5L9v27aNo446itNOO40f/ehHnHLKKT/taf3E7TEDKe12m09/+tOc9zcX5MlgZctVKD2Uhh5kH3SfZZlXsV6RhN71E7EANsodTYhSh2J2+US1BILCtsNxuNyMQhMZCQPKdxCiABihNov0g0g4ztCplPd5uFwT6NXMB7r4cJHmvMK97dfx+86aApgIf+3K5xccjcJ1zTtSafIEvJAQn3qw0og71H0BqaIOjcm92gEWMnfODV/nI04EG8+Z5Jar9hOvXM3OW/bw+BdMoGuGqBax92Pf4qTfOoMdah3zsk60UKG5W5NVBTby9qbaDSZQABMroL7Lub5MnyCQlQpDlz6e7qN7mf/u99l6ao1ImNw2t7+Vtb1uElwkFBZOLcV96N9EWKamUo593lYe/fq9TH/+u7R+cCfHP209UlhGVlaZeWSOkXUDPO+Dj2fZ8eMesCqktTnrEe5LRaauI/fPb84EeOAUlxIH+wGqwiyRa/V8R6/sKzwHgUUJ6x/uWSqu19Jth+WcFM1dywBCitwTr1cuva8BQPSfD7BkYhAkDUAesSvXACgzZj0SstKEH3rfLSEs0ro8sa5WLjron/W2ESjpKlEvdhKy1B1/uhBz8Mpv0zz3BCrrV7htSFi8/kYa249h2YsvRgiD6VpHU2gNUcXnG1iGzj2W7uYJdr/3CpY//xyGNw46gIFjvBa7MZnPR5Ce0QwSrwKEuYlvqOVktQuABJtw64GHWpB+8ilpXng2s1+9nqEnnYVJJWQCkUqXZCfdhE1Yge1IJz0SgDJFvolnXKx0dVKEj8RbSVFUUpUmPvUK6dQBTGJ9hXXyiaSNDXowQy4qx47WNAgQLYVtKUQlAy0Ze+Uz2PXmv2Xq6Uexctswm56+lX3fe4iD7/0Uq978QtppRORrx3R8tN0agTUCFescmDhJhXAWvkJjjEQpgzFFDSljBYvdmOS4jRz6n1dyCJg8ez07rtnN8SetQWFJrSK1ijg2fPFdDzD1oHO3OvUZK1Fpl4c/cz2zj8zSXdSsOG6E8WNGGdg8jtwwick08w8dZHHPHLbTZZguWSp4eI+lvW+Ozt5ZxjYNcOzrzkYKZ3GdegZ04NhV3Pe/v0KyfjkDq0fpakWmvXNgrF0R0a5j03JwGhfvagA1AMZ3aEYqrFUFiNTkNtE2tr0qSQFCKaxOiVevoPm4szj0qa8wctkKlEmIFgTRgrP87QrHkA3dbml1NAdPFJiKdmCgq+g2NAdu+Rqb11zC/EiS18vJalCZsWS1wJz758uzH1HLkg4KsjqIpJAQCk2xnD9m6XLLiRfcsqHpimdRAqj240ooztnhEO2772bLG84mNYpOx/LQlXex8ZKNDAxJYqHpmMg9A56ZcJ/FLOqYSDiWQmF65gRBCh0m6EV/ZZYEQzomQklD1Q922juFpVY5psavH0l3LEpYaqqTM/3Gn5QUHoAJSyzSvN8Px21KAQidMyG+Dw5g4jByrnKrBNfIfgmvzXr+DhK1WGT++sm+sUN6oFKAlXK/XigOnOJFW5Hn4kQ48LXymEEGlg9wxRVX8PznP//HHvfPU3usQcrg4GAPSPm32m/+5m/y+c9/nm9961usXr2657tTTz2Vm266iZmZGbrdLuPj45xxxhmcdtppR9zeKaecQhzH7Nix4xcbpFx55ZWMj48zfswYIqcL+2o0eF1+xxSTNShYhMO1HHxQsCJhslPuHFSY5ByGhehPCiuj9zLbEpLUZGRz6VfZsg+cK1DXqFyL6o7fycYyq1yCpJH5JBToiaKGvxWW2E9YMq+Nz0rSk3B8uYMRS4FPOdIM5NbBZUCjhANEFVVEXPLlvXVhVWWEJLk8EoLtATuhYFTBVEl23XYIvXI1zVO2seMdNzLTPZHRsUXe8Nlz+Zc/vIXb/uZaklevh1Qyc5ymPgVRxzqv+9gl0Af3L2FcVKwybZEpLKx0HW50MELXLHNf/QrLn7iN5VsHewBKOQnwcO4p5WuVO12JfiB3eElUbSDm+Jccx3V/9R1GNw5y2nPXojDsuO4AX/z1r7Px6UfzlD89KR/oEplRkb0V58v3KREuIhYGlwBkcnBeOoY8r6T0t6YYCPq/72EN+kDL4YDKUpZjaVL6EpvhEkUfttHPVoSclSOB8HKTPgjRv53wXY8MwBbveuQZwMOdSwhEdLIoB/HdLOi1QRtBJ43JMnc9dDtCtBXpninqJ61HKeNlNgbbahGvGKFScQO0jQXGRCglSVNBHHfyekRzP7qN6liNR//605inn8LkE7eRBpmP0vlxCmGJlHM07O/3FrOYzEiyTBFXMtJOhEmDiN/9MxWLUC5KPjC2lX3X3Y5pOcYB7aPfAadLr833ifV4xy1wuTNWCmepXJZ3hWah7CiFAFFJMGnXRdTbTprpvrAYpLMdr5piMu0j+QDpYkxzpIXeMMTAE87moXdfxcb3PpUolpzzlnP45JM/zvLpgyyYtUTVFGskzYE2i+04D4kHq+Ysk85EwNeEEsJ9l2UyZ1jKJiJqbJQNv3UJD/zNVzHdjLg03wqOd1d/fIrrP/4gp/zFk7nlHVdz7TcNL/qj4zAIrLUceGiBB390iD13zfDAFXez9+7v013I2Put+xmYrJE0YoRykq3qaJXx5U1qxy7n9o/fRTp7Ncf93kXM0sjZ8Fpi2fCbT+S+v/saG9/wJKpRxrxO8lo9uu0tD7vBWs2xaWiB0SI/V2sFRrtlbEe6/lR72VNOPQmPNByLLzM/sY8ltZOPYfGWu6mdsJXq0Rs49MUrwTgpmWlnDF50AYmaIJ6TLHSnMMetKJ4VCdlQRvvqWxnaeAKdtSNEi86hLVj/lue6WdnZ0ULWEOgYjLJEHceuCA22UoANAJN49mJeOOlwBFo6KZfMyOvpGF882FTcZN5Oduh+/hoaJ2ygvnqUoWSOO/7hh+z45K3c9NF7eOVnn1SSxko6QX4lRC6RKrMZJu/XTa62kMIFtMpMONDDyIRCjBACY6X3XvYGm8qS4MHIFVeuqy7SA2pw+YeBSc8lX0GqjM6BihLkY4ax7hwjoXOgcricvUhqNymU9OS6VFTWI9nvlYEZoFcSnIMrAqtSBA/LdvVlY4AldcIEbHjCcv7lX/7lFwqk/KyatZbf/M3f5DOf+QzXXHMNGzZsOOKyQ0NDAOzYsYMbbriBv/iLvzjisrfffjtpmv7Mims+ZiDl4x//OIMXNFA+CbAAC8UyYRITC4M8Qp5JiBaEFqq/DkQdOkb1TC7D8lKYXqeKkqayTD8esRJ2SQoU9hlozfL6wJKJW89Ewx93SMQvT560LWyKDzeBDYxISL4u2wnmTfTmoIT1g2QlX97r78OxCeEi0alWeR2WcP5LLHttOK+ihk2iMjKjSEsMVSPqECeC9jU3MXziGrK5NnP37GPihDpr1ghe9raj+O+X/YAnPOuH3Du6HXXjAKCJFww6VhjlorEuEuYGpGjR1VXRFUhmYHEl6JpFz8/Q+uEdXPjx5zo2iLKTlOuRD+dMkl9Heq9lkFgZHINnRB/9LZzPfIzgxKev4cSnrCRSNncZefDqRwA4cMtuKtLpPQvNsOh5JvJnsKQDDvkj5cGpn0XRuChfalUPIOkHJ2VAIoXtkX31t38bMBQD1+FA/eFauBdFDRhTGpxKVd37AFLYX1cfOQ/M/V4kiQb9dAAq5eMNLUhqHDgprIWVdAN1J43pdpUraNpV0JbMf+8HtO/ZwYrferLLKck0Bz76NZqnH026cx9QsDVKFbWcgkuejA2HDk6z6VfPR4tz2Xf13dz/f77FqpeeC0lELc7o+gl/YE9ywFJyGgsTWAAprSPQusHKyHppjMtx0Q2NyQTx4CiH/vXLRCuW0Th9u5NshQKOEueEFZuciaGjnPRL+CRwD27AR62lLeRiwV5Z4CK4lQTb6SC6AhH8G6TbH7EpSYko2B/f3YioqGsz/sLzeOTNd3PTe3/IBb9zItVxxdjWUfTV13HMSxWHunX2TQ+ijaRZd8menTQqIpS+L1XKorWkkgR7WHce5WdDCpdgP/KEkznw1ZuZvf8ADw5PknY0UwehUhM8ck+br/yP23jy3zyO3VNtlp29iXs+9AP2Pv0CJpcrjBAsW99kaN0QJ+bPmSVra2Q1yaPw/QGyjonY/LjVfOZVX2Xki7cy+bRTEIstug/toyMs2kRgLeLAAdTEMJU482yboS0NWTv2rJYpZHwWTOYcLbXBnbMFq6W/b6V3IQ4MGT1FO620yFRgJMxf/QNGX/lsENA4Yxv17cfnuUizX/omIo7yJPRu0yDmJaau3TMTGURiMEOWTFSwkasNIzKIFyxGOSYmsCgyWHh7hsSZI7hjTQe8qYpyYCrPWfRgW3YcKAmFGXXNSQl1BMJYTGQxtWCbDbItaT80xfSXfsCxf/wUljdmsY/uYccnbmPZy1/M1Ac+zLd2buSp626nQ0S5GK97rANb4vL9YqFJ/dgTiilmpflIf/9VEd28b86MdH287QMopeUBKqLr2Q8Yihad3NdKJ3Utydodk6Lz8cbNH9xy2nr2XPrnH7eckoUkuJjv9ObPut+L84eiSHAAJr3H7AKzxhbgqjCFWSoRDuNq+ZyXXIs+bdjmJ6zlky++gtnZ2Z+ITfhZNmN/NhbEr3/96/nYxz7G5z73OQYGBtizZw/gAEmwEP7kJz/J+Pg4a9eu5dZbb+W3f/u3ueyyy7jkkksAuO+++/joRz/Kk5/8ZJYtW8Ydd9zBG9/4Rk4++WTOOeecn/qc/j3tMQEprVaLL3zhCzzx/Y8Hll7cfi17ABbldrj6CrLvxajIIlIKS+UjrrBdATzKk6v+hOXeY+mjKbE9E81+gHI4W2P3L6VLtKR6vcTS7Vu+/1yDTOVIx9XT/KQv9tHq/oisVEV0JTA0YR/lXIH+wk39BfnKkZNYpTS8NAmgGXV45h8fw/XrEr78Z58gbib8wyt/wG9c8Xi2rEyZ2FDnqb+7ma++8Suc8+46d687jWQ2YuDRjLThomxkbjT0/Z2zl4ycBCxesMiO0yi3br+L5tYVDK9uoG1vxKUsPyquXVG7o7iWpgRYiui9Y7JUb+0RUVDlCgMRaJ/1ozBsf8lmbv/kPcw8OLMEaATGo8x8FDkyxXH3A48yS1L+/scBlPK6ZUvsI+0jHOePa8XxFon/oem+wexwnWjZFQzIo7n9IKyc/F4EE0yh72CpFC2SulRleWntlHKOmAP5bs7mbLRd7kKaKoyXU5EJFm+/k+lPfpYVv/dC6isaiM4Cj37gKkYuPQ01PMDsnil37tqxnHGkc8ATSVe5OlEaFUtsXEECy5/w/7P33mGWHOX976eq0wmTZ3Zmc96VNksr7SrnHFAgI0TOYMAG2+DfzzYGg384EXwxApMx0YgggSQUUc5Z2tVKm7Q5zU6ek7q7+v5R3X26+5yzuwJdX3yv3ueZZ2bO6a6urq6uesP3/b5Lmdw2yIv/9ltmX30ShVkdcfQnCMcoKpwKdSMwCDSDl2N5VGoW0vDxpYmcNDT7nRMaKqaOiAQSihefjDcyjLfnAMM/vY7eK64MjQ8ILK1ERvVEVMnUCqgnCYIwqhIWmAyQYRG8IKQCFnWGmlBplaZDUHKRrkCG0RcvrxXEOCHfDJPbw1ySAA03Mi2tLPlKkm9XTP3YG9j2p//GjhP7WHDqACf/xRpu+8u72PvAdtZ+/iLKbRaub1DzTI35l5qmVymQUfHLzLpnGAo3jDxFsNmourjnGyz98tuoPrKOJ/76Bj557Iupc0/4+FoKK+ZS/fGzdPRaVE5ewH9cdR9nv38BC1Z30jO/IwUNFUJg5U0kfujFhkjpy0lXK4uGom/AZu0Hj+GBLz9O+/Q2tt+xla7j5iHDvazvhLnk2gwM6SOtqGiwNuYqpqI8mkvlZiAAJfAqpma+Cp9NnXo6zEUxQJYl0iOuIRIZnDrvQxfG7HrtxQz/6Hr63vdGnZgfJndMPvQU3r4hzN5u1ESZg7fdSzBRJn/pKbqdBHxMdhSZeOhpqup52lcdR76tP2SA00nyQVgLS1r1KEr0I3zA0kPnFQOEV4+gBIaOogSGZgCDMNJSCH+HjG+BFdIzC/ScFlAe3MLgv32HWa85ljknDmBKjy13bqVn7RxkTweyrcDCnsF4za7X6vDjPS4ZtY4NA6ET1qURUC97mYQWa/iVJX1kSMObTRyP1j4j4SyLJIKBSYK4H8ljkg6vlop+dIzIOIvi/VDXmEsaEtl8QUc2JrZnx0SzO9TvKbqNJJQ/SRCQ3Y+bEa8kESgAnXO7mDK/l+uuu463vOUtTe/3j01ebnavI5VrrrkGgDPPPDP1+Xe+8x3e/va3A7Bnzx4+9rGPsW/fPqZNm8Zb3/pW/uZv/iY+1rZtbr/9dr785S8zMTHBrFmzuOSSS/jUpz6FYRwaKvj/lLwsRsrtt9/OtGnT6FrQE38WhUuTkn0RkrkqyQoXdWWmbnkDKBHEjF+t6k6kvOZRYCED70odn2knwlBmJdl32/CJXITZF1iaroZsRF7fUCnOGZHXobHxWNEC8mFuSEtMY0LpMzLjG7H+xH0Jf6yEchh7fxPKenR/lsjgTsPxj/ImTFk3UiQ6snDy2xagkNzxne0403q56avbmPmZ2VjC58yrZzG63+XRT91C598tY2xREWsy9Oa4ddxwEHp1o7VVmRrPHHncalu307F0RvwMDOE3GCFZD1XWGx/1ORmWtxLe7UjcwGCw2kafM6GfYTYjV0i6ZrUx/Zg+8r35+rUSG0fsvUoYH0mDodk8zBogh4p6ZCU+V0gs/KZzrNl1ksZUNg+kmaOhFZtX8lnofuh39VDvWrPck+ibVufE57a4v2xR0+i5Vj0jhGVJ/eMJAl8SeB4Hv38tU951KVNOmouUPjv/8w6mveFk5JQeKjuHQGrjROdCBJghlbdtpIunBUH9PgypsOZ30/7Rc9j2nXvwVk6j57Sj68MTRlCawUADNKTUMBS1qo2cNDAnQkXPDivJR0NkKoQtsIvdWH29UFOM3n47HWedAbahFckoAuNJ/JFJjPY2YuZAEcQGTeS9htAIihRJ0HktBAjTJqi6+vmGXvrA0McHljZQCA0UaYTGT1hoMjJSgkAbjcU53ZgdeSpjOvl2ysqpXP3rK7jrsw/w6F/dxOqvvon9kx1UvYTRIaJopoxhc4TdFCLANj2dy5GKLut7yFt6h+k9eREzzpjL0vetJT+9G1VzkZ6H05VDBQHlXSOc8pdrGfccnvzZNO791fPc8s/P0ja9g6uvOYG+aVZDZDGpdEqCGNJjoJXOZedPZXjzPB749F0U+gssfe8JlIt9KATdBBStKlCtk8N4Jr6UMbxN1+EJ0r8DNLwvzClChBE0GYAJwg2dPwH1fD8z0GxY4TMDsPr7kDlH+wd8Gdb4Cag8txl79gzKzz5Pbu58/PFx2hYtw5jdDSJA2r7WgUWAPXsWxpiJ3dbDyAP3YF1wOUY1mhvUYVgh1bX068t1UN+kdf/NQEdXooiLFc556u8Z4e3HBlrSu2cqas88zYGv/pyF7zqJBa9biWPWsKXH7gd30X3WakbGhjC7u9hfamdF524d2c74fyKjBIj32chIif+WOg+xvs8nfsI5oMIo25FEsQEc4VEQtdjQBeLf9b7UoybNpJWOkdwbsqxdWfr8ZC5i/H/GaJOE4yEbDZ14r5UBViLankUsJM/JkpuA3idmnN7P9ddf/z/GSPl/S4IjsGo+8pGP8JGPfKTl97NmzeKuu+56Obv1B8vLYqT85je/obDWaSi6k6Qcjv6HRqVGCoUFuCkvaqPxQJCBxTSJikTHNlOokiHOrGTDlUlJ9j/JwtEsB0ZzmuvzkhzqUgTIIKh7gkPPQ1ZRixgzKr7ZNPneoE5B2gB5yRgoQNzXenSg7tWXmeeQHcsofyNWviLvfpibEMHn1r5lAfdfN8j4s9sYMfqB2fEzuPBP5vHkrQfw77sP87QzqHbmw+Jc9SJtqSGXGrvs5QUq7yNcQXXHNrrPOz713JPRuGxhqqzECfMIJGnPGIAvJGXfYtMT42z87TZGtwwzumEfVtHCKNjYnTkWXnYUyy6eQcHRWN+3fPf0xDhpD1oy5F43lNPRKiPusz7+cHkiRypZ2Fd0fjODI+5Lk8hMg2GRiUhmJWkopp9PmOOUOb/h/5Qx2dxAyvYtO2ZRFCXbTyOMLhkioOZLnYQc/hDA5KNPYrTlmXrh0ZiGQgaeZubqLbLl8z/DntVH52krYgUYwDb9+N0wpIqpjYXQ1zOlqjORtcOxf3oy227awIvfvJvZbzsFaRnxnJEi0OkjQejUkUqTWZgeKoCScjBcAQJ8J6TylQG4kWWvx04YisrOHZSefhZ7/lyGb7iBIFAUT1xObslc1NgEQz+7EyEsAs+j/YJTsab2hKxgWukVrtRQmWjaJv4mIIQvSFD6vVVmCOkyA50wFynKAqQRIMPohxDEhAHR+EWRaLuvnbF9JWIsvGNw9l+v4fuX/Rrv0XXYK9ZQrlmYpodBFG2uR50iyJyvJLapC8/Gij2akj2aI3nTRaHXzdmXLmHvgzuZc34OpzsPWEgU3mQVOyfJGT62UWbFaxdgnn4yRTnOjn//LT/9+GO89Tun0u54KY+vIeoRwOj9jua5JXyKNpz54aWc9K6juOWzj3Pb23/Oqk9dSOfKWeQMFymCRI6DVturnqGjQhH8DuLclFg5N/SxmhVLG40YdUhgIAMwREzPGxj6EQZJpT4Ae+5MKhs2kzt6AZgqjKB0Unr4ScyBXnJLFyMNi/YFyygZVYQMMCwfwwioVU0M6WDPX6D7ZEqGn3qAngVrEI5ZL7wY1K+vBGDA2JZnGX3yYfJHLaJt1bHItqJ2XCUIAohIHAL0iZGRHhrE0gxpmY0A6ZUYu+k+hq+/nxWfPJfZZ83DlC629Gkza/TMLDCx+yC+YWL0dsbOutjrn3AiRutJXKeEMGqfWGetJNlHiqVKxXOiQY+J1stMNCX5XU66MdTLD9L5rQ05LdFczxgtzSLmyfXVwsclRI4IVU+wzxyvgrrelmo7SOs1+vYT+p2I9lg3TYMvG5E1JPrR0GcC5pw2gxvffyO1Wg3bthuO+WOTiNTj5WjnFXkZjJQgCLjhhhs45n8dHU8yLzB1yC+adKJZlVUVT8wI6mHoWDZJQyL5gkaLBqr+4jTWudA5By5QVVaqcJ7+nWQnSr8YWQMlVuDDFzDZVrL6bDrBt/5CxnkdSUUsPNYMmbYUdUYjMzEWkQKT6k9khES49oTC19R7klAgTaHI6ppJoy6SqGBfhMeFDFQoqD+faIENhOSki7t44maXq/5xOY50Q8pEheXAaz+5gP/8qzuZcepavEIeEYBvC4xaqGeFAZxAhGwtTghPsBTe8ATurn3MOHZKw1gnJRmViyQbOtbjLPFDL1B0/6WS4lcfv4e9j+/Dr9RjetPOWEDulGPw9h7k6e8+ypYbNzLv9BmYgcsJb55H3tFjkAzL6wRHkTJemhmC9Q0q6yVrNF6aSczcRWsIV9OISPTsmhgoh5JsvknUvv4dvcuNuSetHArR94cygtJY6bSBmi3ymtwUoghKdIwQga4Z5EsN8wrF2zuIM3eAnO0TBILy1gMU5vZRWreV3nNX0L7mqPA91x75qN3IQHF9gwCwDR8pwQpcbCNN7mFLn0WXLmTfC+Ns/MItLHj7CRSnd6QUBk9po8MQumaKryTK9LFzLtUOU+d8FD0sx9OQqcDUCe8CAq/C8HV3YhYd+j5wOQSWrp2hFKPX3Uplw0ZqW3bQ/Y7XYVk9+LUSY7ffA75LxyWnYbQXwZMYJYlfVJrpyxcEhiJeMAQEKqgXfIzG3dQKcUrplXWyD9BrlWnUYalFp0bNNyjXLHrfdiHP//NPCSbLnPTBFZiWj5GXnPTOo3jm20+y7CvHcKDajm16MbRLUzXrZxsZdFH0quqaYYTFTxkoRmjMRF6R3jXzEGzhxevWURutIAiw223y3U54jlYwu+0yq6buRoqAKX95Ovd84Jf8+L33ctWXj6Otywrngkr9jpTLZG2scOJCweTiz67hqWu3cO8nfs1l370Ea1Y/BytFyp6FExrCfjhXPdfUleZVZJgEdda1yFgJ836kq6E3ugiuJjCQZU0b7OdDY9YXIYOW0G2G0KjiKccx/OPryS1dgLd3lN2f+FcAnIUzaFsxk8pzzyCKOcySvp4wFY6j82eqkzb4CfjYpZcwdscdlMf2kp86E2Xq3BG3PMnIo/eiyuU4DGJNncbA299OafdWRh66l8CAzsvOrUfkooiRCOrzLnp/gwDcMhO/uQOjPcfgtffij1cozujkjGsupzivn5zpUjRqOIaHLT2WXDKHX3/iIayjxsnP7OXkKVviNSWKprg0h7QYYWRMK9kyTl5POmMMNIOXI7x0HgkidmCl5kTCAImON0SdgteSnoZlJfrRKnoStdvq+yRhS8qhShpZEK2zKSrmUE9KEbuEDtaI9UwFRtM9OLp2RNxiCh8Z6jx1PezQBCt9R3VjFS3uvfdezj777JbH/bHIy83u9f93+YONlKeeeorR0VGmre6PJ2lEEdsqohFJEnpjxM8jKkTU5PjIO5UpmAfEkz7qwy1/cTd7Ht3DG2+9KkzmJz4upkpNGjVh8lfyWkkxMgqVIQI81XwSZT3ZyRfQDlm26hGUurFiGx5JVqVsAnbUtjY6IuBuOm8gee0oUpMkANDHNCr40TOLcP+maDSwUjkOmTbOfu88zn7vPHLCwyB9vVVndPLzNoOenU8y2HMW9pjAqIJvQ8T2Ivz670hRQgm88QNYXQXap9hx4S09fnUDM2kAa7pfPb7JooZeoJOpEWHCYzi2kwcr/PiDDzG4YQi7w6Zzahur33I0t/39o+y970W6KjB/bTedX3oH27/0G7Y9epDavhG23beH1395LR3t9fB/9hlEm05Woo0k6RWL5lZkoBwuGpLMfcluQK0MheR5cV9anJeUNJ99mhmt4dhmHrkW0ZZm7WfbisZA/673VYYe9KSzIJvj5YebhaekNuylIDB0JKW2fTcTdz3Ikk9eiBNScu+++zmmXbyc2sFJqJQwDYXnmhpCpCR5242ZuiIDxQrnkdPl4I2XyfU52DETThC/f90Luln5sdN4/hsP0nfMdGacOU/fj4Cc4cW1ZaLIjCUVeccl6NbsTdLQ0AkDIC/wJwTVFzYxef9j9F55KoU5PQjhUa2iyQKA7tedDft3Uy4KckUXTygMUaDr0vPxRocZve53GB0ddJx4GrJm4Oep57w0TgINvRFh9MSHmDM84fITUnv3A99AhYZNYNTpcuMCvk6Au3QBc//xnWz57I/wxipc+allFIwaC0/o5r6vP8dRHfvZN94WQ1QjeJyUClsqap4ulOiEUZSksRoRFBgiiJV/0Bu/YQbMOGU2806bHq995dEaw5uHKe2dYGTHOB0zO3XCtK1poTuLguP/+TLuuvIb7N4wzuITe1KKqCHqicmRF72ZoVLFZOpRnQS+YnywQrW3g7JrYRt+7NHPmR5V06QmNHmCsH2dUxQW9oyNE1cgqxFGT7cvPfBtBQpUPoy8hQp/oDT7W0Q3rWmJdR0Vf3Scsd/cQuArEIKjv/Z+dv/Tf9E+voNdz9cwO7pTDnxtHILXVqUCqIqhIzkmqMCDoqWjcRJq3iR7f/6fGMUCfe94E0LKmMLa6/Cwe2ZjL5zF4A9+QoCvERkyQJg6mSZQAmnryJw3YYER4A0PMvKD66hu3I5QihM/fTa9ywfIddhYhsKRE1jSp2hU4wjJwNqZLDprB89e9wJn//PZONJLOYYiQyUiLYk+j6B70VoVrfRS1I0bKXTBRUd4GqpFqF8oHaEhYYREEhk+qYhcQgz0fhZJrEtl9vzUOZHjK0jnRtbbSO8FCJlCFvgiQcuMgcosBdG+G7Wtoc5NuxLqIM1yjeskRmnDJ8gcEzrUZMCskwf49a9//T/CSHlFXl75g42U3/72t0xfOwXHhihPwzTqheeSFnMkOl+lDh+KQ5CxopcuNOTIiBO8HlaPzpPCTynPbsg20T23nfL+cdw9Q/zu355m2ZuWMu2Y/kSYNQ3viuhVszkmyYSzZI0Via7cnsRY1ms+KDxkSlmN2ovbRYQeiGhsksncCls2GhMRdaApkvSlCqlkDCPL9r1OepsmK0gXOQzqLB4o8rLW4HFP9T0QCaMSCrJGQdZStUHi66Co4tC/oA2xdTvyzBLqBV2YKczRjJMphRdglgW+I6j2KJ1wO2UK7miZ4d0V+ub5YaQiGX2oR7VsWTcAo/67tYB9G0YYfHES6Zh4oyWmL+9i1rIODKF48b49DG4YQpqC8z96FIsumseo2c2fn97BzqeGGN05wX3ffxL/B+sYOHE2stDB1E9ezLpPXc8P3vsgV1+zlo4ujTuO528Luzy1SWWSCeO/Rd1gT8HGMs9WH5/gxw/l94WIRe02Oz9dtyjqW9pwyEqcQJ/0vDe552T7rfpfN1bqx0bzP6L7zvY/KuY3WXY0RSvEORgowdD3f0nveasYOGEGXrnEyIaDOF05CtM78TxBbdMBVBAm29dMpKFwLDfVr+R45HryyLFRClO7YsKJKLpU8U0NZ2qTHPOnJ7HtxhdY97UHOfqdazBtQ7NeBYJSYKfqMEmpKORqKUPVVxJLjrDz+geQ3T30v/9y8gU/ToI187X4uMABo7MPhgap7RrEWdKBO+7o96qzm57Lr8Dbuo+Rn16PM2cOuXOO1YBIK4y6qkB7rnUwCRB446McvP66xpoqUbJ8YjpoBi4VJrxrFq6DoUEo0HVDpAworJjLC9c9TekDcyhMsyl0mNQmPVS1xvSOMbYe6CWwPQ3PkQrLqOeblKoWvlQYkpCMQEdNDBGQt1wN0Qkp3iXaYIlgPkkpdpnkVw9gmoJdTw/TMbMT0GtKBJmtPLeHtqkFFh7fpedeqMDquWnEbaZgNwknmhE6gjp7DJw2iz0P76F78TIdlQuNrB5zHFvmGZwo4nuSwJMh8YEfsqWJeoTBCFB5haiJ2LgMpAgjD6IOB7SVpi9WOudDeALGqozd/QDujh2o/fsob9lP+bF1APQeN5MFSwz6P34q9338BvInrKDrTRfibwARzo2aZ1J0auSdGp4ncWu6fVVQFM8+kbEb72HMMDBNB1dUsAf6KB57DGO330XnBWeh7ACjJAlMhcwrfGHRds5ahr7/c2R7O/7gHkStQnHlXAqrFuIsmE558z68HXuYfPwFxh7eyIzT57D0R2+mYLt0dRthBflRCkYt5TRyA0MXWERy3idXUmiTrD0t17DOAC3rb7kJ6Gqc8B4q4ZbwyRtuHeoX5nPofwgZ2BLsWyI9/5o5suLvUsf58bpSURZJq7ExUhOhHsLvmzijorySKGfGEAonhDUYhqLk27p2U1h0spkkIV/pdTy6nl8vRBkbJjLWO1SGGj9dELmue8w+pZ9ff+N6vvjFL7Ycqz8WCWhpt73kdl6Rl8FIueWWW5h+Yk+DMpXyXmcvmlToqE/0CJ6RNATinAh8qoHZoNBkr6u9AQEn/8kqYBV7ntzPzjtfZGTTEKX9k5z5tcuZtrQrLh6ZfGmzif6p+4lgVdmkySbnJI2V1sfJGFtshgaSKZT2hoX3n8LHBunxiDy1EZNYXL+E5AuvYSdJlq5WOSjR9SIFOfl8IvGRml0LlTomyYaSXHAs4cfh6xVn9nDTzw7StySP16VQlsCa0JutUGC4AcrSyZ7OEBhVyaRhYuQ7aF82i9FHNsO8ubGBkoXmWWE4Orr/0a0jPPzd59l0204Cw8CZNQVV86BU4gnl8dFbNOXecVfM5JiLpuI4IITAD3xyaozC1DztU2fiSJfT3jqHDfcMsumRYR76r+foOXMJSz/zap77hxv46pV3MnDcdC5432zmH2Xr5xNIqoGpF//EeFtRflCo3DQmRNbNcz9zTHJss/Nee7PSbGJJSX4WbVbNvGvJNlOwrkyk41AGSvQMkmwvyXOgPkcPl++SlQiGk3w3Ila86LPIm64T53VhvKoS+CHrk/IkuJLarr2MVSZ4fP0mlDQQhklhXh8vfu12Aj8gN3+AnOVhyIAgV0MITT0c9dYytPIrhM53aOuxCcYmsGUbUY0AvQbKuNZSJAtftYiRzcM8/c+/Y8U7V1OY1U7FN7UBYvgxLbPOf/EQaHhT1TVR+3az+6cPMP3NZ1ApTEcaPqZ0U0niUcSh4mpF0p07wOhvHqBj1UxoE7C1gHQFboci1zeN9vNfz1BpA0M//BmF41eQX70Iaepk+yBSikP0l9nVSc9rLouphSOmMaRWYIWp2cRM08cODYuqa6KUZKBzXCs9nll3LIT3u37fEPf9ZoTL39NP91SHQpfFgUd2UFo6l9qog180KBYroCRVJSk4NYp2DUMqyjULITT8SAVgG4qiVavTrSdq9sTKEfU1v87qpxh8fpgpx8/ADTT5SVFowpPS3nGe/eLdrHn7UbjSxoodBEYc/YwYnSLq8Ox8B/2ed81u56pvn85P3nsvfsWl7e2vojpUZt9197Lr+qc54Z8uxp/ejzSVHnYZ4I/ZiJyvoxNhrZsQrUPg1D8LbELWLxHvL4GrI3a6oGeAchTlrS8y+subOfptx9Jz2QoCw2T2SQP4hhMayi59q7t4tGhSe/I5rPdUmVgiaXs2ByeN0Jmv6JpnroVXDZnGhO6P0dlG5xsuQu0dozq8B/eO+1CTZbpffzmlLc9TGz6A3TUFr8PH3OdgzJ3A6vYprJmG7Sxnzz//iFlnzqVv6Qx23r+FF394J7M++Vp2/ssvmLKin1kr+pj38dfSPaOAKXzyhkfeKKccRanoLwGFMArvFyUXfmJ5aCj4Dc8ntd5k4FoyuZ6H0YCI7he0s05DnTPspVJDz/Xc8+MclqTTKos68RGxgZKFtkdENlG/3cBogJdZwo/X36j/MQVx6CCODJPk/SYhY5bQOTgR4xjovd+UKgU1dqRGgJDZDxQirhFjoBLt1O81YueMcn2TTtEIemegmLu2l99+4n527tzZUKDwj01egXu9vPIHGSmTk5Pcd999vOGj58WfRcpDZKAklcmIcxxawIgkyCCIw7NRCDLpxTepJ6tFL1tWYmUOwcAxA7zpV5ez+Xe7eOSrT3DHO3/BFT+5gr4F7Sn4yOEkKuwUSRzmFC1gL5kFxsoYEVEYNaLriwvhJRbXmKI0HlMZe1q9QJKTri4+iVGPnMQFLvVCEBVhTCaPp/sXpBZBPxzTCEOelWixSSaI+mGuhyJplOlqtAqJ9D1++5Ut5C44HaOiN0+jKnDbAsySZoGp9ImQehikH2BNQPtWycRsUO09DO93U1ErqOc8xaF19IIt3BrXfuAe2o+dy9x/eCv23GkIqefi3v+8A57fmIZqOCaKCHaoKMhafG8qkEjHZMW5A6w4d4DymMfGz/ySrmNmsfQjZzDy/H6e/8KtfPOWjay6egmXf2gGuXZJnzFBJTBxlZnCGafmR8ZQSTNkhVHDBBwhKa1wvIeLqiTD/9nvs7AqPcrpYw5FUJA0EpvDt7SHT49rc0OlEeKV/U6PS0Q1DHVDBUEM+/EDgefLOGehKgPcqqmVNyPA7OzEmD+T4z9zOgOFCfaX23GVQaddptsuM+rmGK/VqEqzoThnJFExVCkCnO48IzvHyVeL5Aw39tabCSUkkqL0KC4u0v/JtTx+zRN0rZxOz2lH45getZqB6xvkQoiSFUYeTKkoPbyO0ad3s+DPLqCkihg1H+XLev2j5Fpr+LQZOtdm6nwHd1o7/rZduO1HYS+YxNtRwKhqxdJtD8jNX4CzbC7lx59i6Nu/oOPctdjzZ2ojJYZ26bYj6lehRD1txYpyRsA0fRzbwzZ9VADFXI2qa1JyLfrtKkWzxqSnCxeaUQHaisfwUOj5F4LzP7SA3/3jk7zt2inkFyxg444BSiWHtmIF09D5QABFu6ZZB406oUFknCTp1qWoE414Sq+L2pBM54WNbh9l7hXLGK6Zet4oEzVR4unvPMXAij7WXjVPK1CJQsLRu1jy7fh6SSdPtNZEip4lfabOL/Dmb5/OT953L+Ubv4RyfWauncr04/rZedc2cletRnmSoGQSOD44vkbV+UJTO4fzXUTGScT8FQh9O0LpvCVTaUdQScOxVF6BrbDndBK4HkvfvJxcXu8btuFhyzJW6NyyhM/xb5rHIz/YzNzeQfZVe5iYbTCQq1LzNWNeV6GM50lqo5aGkDkKmfdQkxbCsSk9+gS9734jyq0Q5BUdl5zKwW9ei9k7BSEMOs87E2/MIddZpfzwOvZ86Ves/rOTWHLFQkyhmH/6NH52xQ68vQfpWDKV8665MIyYuFhiIqb7Tb2XoXMsMiCTEYws3EqvMUZKOW8g5GmRrF5/1m5LAyUn9GfJoLUKE+KhHgGp531oB0eKfjgBbTbC/daSHq4yqYaFZiKnliRocI5FRosV+CndKnV/1HNakpFpS2iWscj4NoTCVUbq3nUf9TmHirpEaBmXuqES5agkxzTS+2KoHJBrt5m1Yiq33nor73jHO5q2/4r8f1NaJ4wcgdx9991Mnz6dvtn5pp53JwyV29IjL2vhwuKnjIts8m80QaMCSlmlRVPh1pO6j0Q6Zraz/M3LOO9L59G5ZCoPfncj5dEE6XFGiYw8stHLbIaKfnLD84J08lf93LThExU6iq+F9uZZ0scxvNQCm4zo2Jm6HfW+1nHuyc+iH9vwNCZeqvB3Oqk7C2dLVpDN1p1JjkOUFBj1N1oMo+iAj8AN0javG5jUApN7/2sP4wddOk9dijkpsMZD5UZq1iJl6lwUBBiVAOnqwo5mOaBzoyA/azHbf7OBXUNO3HYMVxMqjKLUp/Lu9aP4NZ/Zf3oJzvzpyNBAcR98jOHfPsYVn9IFGGMPWROscPR9UqRQXPXpxZz1zjnsun0TG75+P8UVc1n2z1cx/yPn8/wtO/j8uXdS9MZib1fBqKZwxZCIqERjGG4qyU00+11WsgpzKzaXP0SaGRpZ3HDDNbPwtRaS3SST7DWRt7vVeRoOqdeGyGuVTNb2Q7iTIXV0wbE8CrkauUINI+chLMXAX76PylMbeebmUSyh6HLKDOTH6XVKmNKn5Nka2iFVwxqU7Iv2FkpURyeloSpeCL30VN2REp2fN1y6rDJFs4pjeLS1CU76+BoGn91P5cAENV9v/jnTo82u0uFUsKRPTlTZ+8O7MCbGWfmRk1GGw+S4hquYljZEfCXxle6vbfjxdSPFfODiVez52UMUe8pYlo+cUYa5k3jtCuGDzHnIHBRPWkXfOy+jumk7B797Pe7+gwmq1/DGBSADzcIkQDjhnLUUlu3h2F4c6chb2khsy1XpzFXIGS4Fs0bRrMV5YaZQ2D15nK5cvKac8LqZ9M3O84v338WywQdZMGs/QgSUKja+EnHRzqqn15yar2lXpNAwsprSCqof5vnIxHphJp9pIirnBRLPl/jCoOZrti23qrjuDb9kw682sebqhShh4AYaOpROLk4rfpEymMbcp9+XnlkF3vHL83nd107nqv88hyu+dArLrpjH6FPb6Wuf1PVmTEVchLNqgC8IalIbIMlaNiJkUpOBzlUZC9fiMBIWFXXUn1UZ++WtDBw/HScHjvTpsUu0m5XQAKjhSA9Hepz4tsVMmVtk1z/9nAWd+3EGSlRqFgXLpWjXNLQl0MaJKvoIJzQQx4YYuukGrKltyB4Ls68LoSTSyTPlT66i64oLaDt2NeO33aO7NF5i51dvZNUnzmbVq+fSblYomlWmTLeYefIM9nz3dxgoxscC2oyqhhiH/YzWyUiJjqSZoZhca5IRg1aSXI+bGTmW8HFEY/5tlCsYzTlL+OTCCvGOdFN7TMpRFR4b6SRZ3SRyCLpJltDwHprBDaM+RvtJTrqxkzGZrJ+EiiXbjHJsCrIWkwLE4y9rOMLDER6dZjmeM1GfIx0m1mvCEgaO9MgbbmwIO9LFCRnNktGwVGRMBExf28ktt9zS8ln90UjwMv68In9YJOXWW2/lvPPOw5DDqIA4xJhcsGNO7SaGSSuGoVYKSrKqbyvRG0edVi+qlA7QtqCPsa1DjG7Yx3XbhnnD985GiMZEeinSodWseLEXpBllcWNoNql0ZVmKos/8WKFRmTbTi1+kdETGgp/YCCOvbpL6OfrtxgULdQQoeVzsSWmRZJcqbJlY1CLPUbRwWqEyno2SzVrSRq7DJCi0UZ7tYh0w8XMBRkVgj4ZJ9DlNUSkUmJWAWrvAmggIDEHf3LWMdz7Muh+vZ9oHFyLDe6qzp6XHaNcj++hYOp1yzYkVWBF4bP7GvZz3yVVMXdTeYubVxQqpoLPP33IM9q4foTbhMnjHegbvWI+VN1GeIggClpzaw7rb9vIff76ZYl8OJJQOVrAKDlNOX8SSC2dwxplmOsyeMpAzeSKkEzVbRVCyz47EObrdNNwr2V6ra79UifvXZHVNvmOtIpgxXCFIw8WycDR9nQwELYygJBXDpOFiGgpfKXBcXVh1Shu5o+aSH9xC3phNu1XR+VNK18HossuMuTmdN2EGVL06RWxUs0NS/zvXncMdnowjKHE/RN2QjqLIyXG2pM/yt6zgyW89htVdZM5rVtHZVoftqbEaz33tPhZcfjT9y6cAFSZsh/Gci+8ZSOnHNVpEeE7k5TakImd61HyDSeVgdBbj69qOZsyqTgGvyyCXr+HWzBC2YdJx4Un441VGb7yPoOrjDY1itLUjCw7IBOQInTdvOD6W5ZOzXRzLI2d6oSNFRyQc0yNvagPFSRB5VHyTqm9SmNvP+Mb9OFI7Igwj4H1fWcqt39zBN9/7KG/5Vo5qzxr2DnUwMZkjn6+Rt13GKk68PjmWh+9rliGZcDLVjSG/IR/FD3QNmH3PDLLl1m10HdWXYo4b3jSE8hR/8tgbyBmNDqUo8fhQRVKTuStZJdexDaYt6wrbDOiZVWRy7ySTNQvb8aiUTTAUOH6d2UpQz0sJ66TIsB6NMAI4aGmG6qoksFVIRwy+7VN7/ilGf/wbZCHHGV84jU6rRt6o0WZUY096NVSALeGTcxRv/cpqvv6WB3n0gz9h3puP58BRp2OZPgXLxRA674iwto5/4ADlDXuoPLeR7jddQuXB+/H37secOqDpkZWAmolUkqCzSPnFLXSUzmHwxrvoWTKFVRdPpcsqYQmfQAX8+tNPsuO+nTgDnUwcKPPoP93HnH9arQ1FJWPYUxSRiKLgoN+7nHSb7uFZsTLP61B5IlDfByMlWjsjmxs7OkE9Oo90pCSQWKGhpY8NUlCvuE9RXmAiquMHkoJRjY9xVR0OH0VPGkhyqDPQJSGJDRFtAnLhfh6dA417VdYginQMT8lUgeJ0jTWtxzkJeFez98eSvqZKDqOW80/q5+a/uA2lFFL+YXvV/6PyMsG9eDna+P+A/EFGyu233878qx16mEUqYxJivCekMZCRJJWjw1XBboRZqRQrReMxKvFy6OqqoHAPjhNUarSfs5bx2x9GlV3sotWAnwcaFpxmMJcs5Z5WXEKcKOmoSjKRNtnP8C8sVFxQKdmmbk4nIMsg4Q0UdZy1YdQNksj4SdIh6/CwjpQkE82jCEo8rjQajslnl8TlphLFYwaU5gv7wmOKzDiqjdpPfkHxna+hXOtGuAK3z8Nrk5gTMoazFndBaUBijekkUGWCVRYU1h7D+BOPIMWCVN/qohfI0e1jPPXTTcz56EXaARwqKVIpagfGmb6gnjCZjaAkQ+pSKFQynySxSF/w/tmc8vppFLsdZN5mfH8Z05ZMmy5pz3nc9oO9AHQtHUD0dtPdP4VgxlzGr7+D2z58MxtOnck7/m0lRSfh6UtgnSGdcBtdP6K9bL6B6nyhVtIsV+Vw0ipn5FB1aVK5M5lzW52XNTKTbTTk3oQSGTJmmG/gh58l2zekijcLX8mYmSuwPa3flUp09U2JPccQwgsCSdGsoRCUhE01rHru+kZcn8gQ6ciqzJsENS/OcYgcMzpXQZNsaNYcCzeoO1IsoWjvtTnmz05hx907GH9iK10nTWffswfYfc92AiFY8f41FHrzmNLDEoqe3CQHrQK1soU0FFEhYCkI83EIjXNB1TeouiaVA2PYU3s0JXDIlGXIgIKti8d6vq4x4oWFL31PIjtset5wNrV94wxfewfdb7hUa1lGEHvuo+E2DIVp+phhtfQIghXlxzimF9eAksLV0STpMermmKg5mEsXsesLv+Bg9Sj6nUmkUHS0C674s7k4hsf1n3iIV/90gNsnj2ZyOI809NtZKjnYthfXR9GFMP3YeIyejxlGUMzEc6uOVnjx5k2MbR2hd1k/S9+7BmXnqCWgXHbBxK96GL5Hii0kIcmISoTjbzgmo/jGeZfRfoZuvnPAwZ2oEVRrgANGSPZAAvIfQFyXRgYIQyGNANPycV0Dv81HRJTEVanzhsyAibvvYOKmuznug8cy79LFzChOUJDjcfQqVpCFivMcLOHjdJl86D/X8Ku/X8f+29ZTXHUCUKf4bstXNVFFxWT0t/eQO34tfe++DGmbWCcuZ/Dn92BOm0bHBSfrCRPCBId+fh19b3o9OFBet5XjPryMTqsSe/yfuG4H2x85wPHfeTfjbTM58JVrqdW0EVL27TCP009EU/QeFTmYoueRFClUfX0PFfUILixDdERD7ZKsoi/qOZnZPUOKZASlvo5llfFm59av2cTpFO6xKpAYBBhRlD28HzcwIHHfyXsFUvcQX0/RYJgk7z95vp84LvosSuSvqqSJF8LtpGpadyZeZzFiHdEQKtZtovNTOTtSvz/TlnczUR7nmWeeYdWqVbwi//+Q39tI2b9/P88++yxnrb0wXmibsQUBDQZK8ruXqji1kmhBSNLqRZtHZITYobfJHt7Nq39wUd1A4dDQlIgNTAUZBeoQMJzI6IiS3SO2o+Z9D3HRQf168XdJ6EsC/qUXxMONiW7XIsIYp+FjSWMO0rU3UgpY9BzDCIqVgKLF7STHK+NlFELwjs8t4Osf38juv/wqbR98G7YzC6ujSq7fpVK2CZTEr0mqux0mZivat0jK/Rr2RQCFNcvZc90N3P1/Pcv8c+aQXzDAvOJBAIZGBVseOsj4IxtZd+NOBi5aiX3MklhhFSJg8sktOH1FBhZpVq+IbSX7DJMerOw9gk6AFL15evv9mNGst0t7f3durvLkiMUJV0xj1+Yq61/wcI6dgd8zFXv+XOb+7RuYuOE+tnz9Lr582Qjv//ZqpszIMeY62uttaEUhO0uy8LMs3jh5TCue/8igPbQhkzYWjiSpPVnvKPFpy/e61XvQzFCJb1Okc1SSRpCnml/LkLr3PsRRBaLcEhkgpcJZOIvRIS+lyGjMtPbitZvaS+kpiQiC0NBXsSGSZNQzhQqLOYYsW1FOivRjyKspFVWlKbAVQueThbAIW5r0LOxky48e5+DjO5GWZNUH1iAdq95++C5222Vylsek0FGMKIISGSd+IhLgK/2/t+cgzvQuCraLIRM1n8IoQ8UzsQNBNfSC6nZ13onV14GRd7TDRNQNFGEoROgdlzKIjZ/kmOjClDKmXq8pgyIa+maEXuBhs0B+6RyUp3joQcWrziDODzNQXPb+Gdz6vb04mzfR2TmHycEC1QkH1zJRnsQLo0iekHF9lEiECBAovJFxRrcPM7l9hMmdI1RGKkhTsuh1y1nwupXxc1aJ+bT/sd088U9341d9ysNVjP580yhmw9zLzO9k9DOb0C1jjL6Wjm6DQm8OY+tW/Fmr9FiHBljgG6l3AhGADBBGgJAK2/K0cdlZxZ20wRPIcQOVC6jt3MnIL+7g/GsuZPGxRQpyjE6z3OghD738kQIcvZPFLpsLP7SAL7z+EU7Y/BSVxSviKJVjegSBYKgqkI6Bs3g2Zr6GabrI6Z3M+JNL2f0ftyHNAEwfZep5kl+1mJFbb6Pt9BMgCBjdPoYUvSnoUdvUIm7PAO5owPD9Gzjt66+DyMAjSPS/HuHXiI56hCNrDOTCPIrxIMc+t4MeUxvFUZ5Hipwn8awO5dDKRj7qx2WjxX6cu2k1OyF5XlOdKhsZCQ2OwIiNlygSk6LxbbLPqXAfhHo+SkM+TmJeJA2V7HzR91ZPdldCxPnFyXvK7rl1giQ/vZdlcjV9wLIFc48b4Pbbb/+jNlJ0MceXp51X5A8wUn73u9+xcuVKCt1OU6x2JFkD5VAFh45EtNdUNmwESUknB9cTwfoWdPLGX15O+/Qi0mh8IXXfG2u7RBuLJXXo8VAGTdRG0oCIIVWJz5JQrPp5reEy0fdR+8m2DyVGGPmIikdCfeHOLqBJAyXreU9ieqM2XOqequjcKC9FL5yaetAQimlzHD71kyX88B+289A1P6TzHW+ibXovjumT6yjhK8FEKcf4fIugp8aE5+B3eOR2WZhlMPLt9P/pVRy48yG2/OzX9F+0kmfKw+x9cj+lfRPkZvQw7+QBlv7jG1Fz5sWKFkHAho9/m8rmvRz/rmUIywDS2OVWof1k6N1A4VU8/uX1j3Bg6yTt09tYeFIvr/noDDq79T1f854nGdlTSbXR5RvMeVsbO77wNSbaNE1t19H9TO4c4bFf7WbWohzf/dizCCEo9Di8/vOrWHRiT3x+sjhcM+y0Qd1Lm4RLwaGhXcnPk+f8PtJACiDqPPjNJDtno3dACoWXSMqMIU+JnyQxhKdkDAWIiTakiutqRJGVpFfdD3H8gZIgJcMvjqfu35GeThINfExh6DwFUzM9tVnV2OHgB4KSF6T6E+VEQN254Mi6p9cInQVSmaGCFeLFDd2OnFVgyidPZmzbKIOP76ZYAFfVmfmS4pgepu1hmiq+v8hAiY50wxwXQyr8/QfpPnYm7U41Xs+S0aqC5eL6Rgybq1duD5mhkj8QKs8BAggMbfSlohfUYR6mSNSGEsTYdQNF0azSm5tksmDTedYq7vu7u5j2z8dxytoAicIWPuTgtCt6uO2azSz53DHsK3YS7HcIDAMKfpyXFEWRIglUwJ7b1zP29E7aZ7RRnNNNz8ppzLroKAJf8dRXHsaeM5WaX6d/jxXUSpV7PnYjp//ZKhaeMY22/nxqnjSTQxkwkfLcLAcuKUoIFp85ldLD6xGzV+lEeRukVAS+JKiEVehlENeoCZQgetVNS9cTgRruhK0NfFXi4Ld+xPQ3nMislV10mmM4wkt585OS/NxNfDZ9YZ7X/a/5XPf3t7H0q3Nx+mzypo7ElQyL4R//lvbjj0KG1ehztmadE76H4YCTq+lIl1RUnt+OPLaPvgsWsue7D1I47Xie+MYtzF7VxdFr2rGEz+yVHfzq79eh/vWnjGweIT+zh9XLaphSxLkNOenG61+U3xC9az56j4oUdEtEERePr//5Jh6+6SAdRw1g1sq8+lPLWHRsW6y4N+aK+GGUTKQMk7qx0hryl6xppeeC/rwZgUmEXEjDrhsNjchg8BENV032Kw2v1X9H5zYYPJkofuqaoSOyQTcSCieaK4GBhRfnyyghsII6g1pk/PoJwyZZ9iE55pGemEzkB5ixpoPbb7+dj33sY/yxyivsXi+v/N5Gyu23384555wDbAHSCtGhDIjkC9AqFJqUZiw/cVstIC6a+rPRmPADQdvMjvDT5gZKy88ij4wkUxulnkuSlEYoWMY7EEdHaDBUsveSvVay/fi8xIveyCwWKrciKhSYDP2mYSvNch5UIGJjI1rIKspK5W3owk9RJV6lKTpF6IFCIVFgCt7wyTl4n9nKA//nGoa728gvn0fvOy/D822CEZug3dPJodMqMGHpTdYEWZHYC47GWbKYtq2bGfr2dcg18+n74KnkZ/didrdpT/X+MSrrdqACQVCtMfTL+wmqeqs97epZAKlF8nBSD+MHVCZ99m2coP/obrx8gcd++iLlwRIf+soSANa+agq3/McO8l025ZEaub4CI09sZ+SJ7RR7bGYt72DBRQMIt8a2F3Kc955Z3PH1rSF8QzA5WGHrCzUWnaivHY1vxFTT7Hnr55pOFtXPQqTeq2wSb/RcG5/9oQuwtpLsRpiKhCSPO0R0JnIoRIZ61LcoGT362zZ8PGWm8lCiezASyrLyDSxZT9y0DR0J8ZXEFQHSsfAPujE1ZjQebVJ7+CMvYJKmNpnD5UifSc+Oc9QiifqdN9xYIY9gDo70woJ3dUXLDQztRIigfVJ7USVBjPFORqzGvbxOFBeaOUtHeLUBljQ6o6iGY3moAwcZmLMAx6zFUaAIrhOExkPe1FGWsrQ0bXAgqPoyVHqDOIFeCJCWrllihAZK3aghjqhEsFTHCCEeyiAfJu7GDHoiQDmSsVyOue89E38O/PBd92B9fS1nnVpXBq/606l8+PznOPbee1m4po0XBmdhTkg8CaLoxrlnMlxPzUCw7UcP0X10H8d+8szYaAWYcB1MSxH09rD7hRI9CzqwQyhgtSbYce3jjD25DTNnsuoNCzFkc9KELBTxUDmWSQalGOoVr9OJXBcER581wG8+9yzTX6/zUJQnwBJYeZeaF8KlAlF/76MIfKgcSenjOAHuUI7A8xj8yn/SNq3IxR+axYAzRkHW6gpjqHRHimvWcNF5oJJC+E6c/tp+nrz5AGM3P0zvW08kZ2gjpTtXpm9uHs8S2DkPy9LPPG955PI1DFVl8uF1TDz8PHZXHgjId+WomgZT3nYW+776WzovP52bPnEf3T86n4GpFj3zu3j/99bw6K/2YK2YxolXz6PguCm2NE1C48bzJHIogWbWigyWCCqrn0HAxicnWf1XZ7J9u8H+793Grs0VjlpdiOHaKjBSinRyPLLGSfK7ZnI44yWaI8n2IkQIgUI1OT8bGXGkG8OuWsG0kv/XHZWt8yE122doXEROSMy4Fl1DvmbksJRBw3Vb1lnJRngyhlJ2v5h/Yh8/+tpduK6LZR0qFvWK/H9Ffm8j5c4772T1R3uYz3Qg7S34fbyzrWhRm32WhHLVj6lP6ihK0QwTn2o3FXZPh3KTL6HekEIqUOFjGn7q+ywOtJm3IfqdHJtm5yXbjGFgmbaybGFJSbKeZdnRsh6b5Pd1Q0b/Si7qPlIjdEJsaIRXNgLFqJ9LYUhjlpUkbIp6ny3b4Kq/P4pXf9LnhUdGufafXmDoX79H8bK3UXDzuG0a9iYCDX3P7wsV1TaBa5gEnsJaMJ/pn/+oZrIBXF9S3meR755g/3/dR2HVQgIFle376Dh9GQd/fi9rPn0uxd4wKbdFFEXFuTVB6u9IOvps/uHOE7jh37dzYPskJ39kLvNWdcRz99I/W8i5751LsSjjd+HL73qG8SGXj127Fikjo7y+iJ/85tnMWtWFnZOYOZPpK7oQQtU33TAXJfJAHU6SOOBYiQoU9ZrJdWkGwfxDDJWktHr3m0HVkudEP5FiFzkcvLAgH8Cka2t2PNMDz6QWhHkUkdMjZG9yTA9PSayE8a0CQd52qbkm3uAIPTNyOuE2kYAK0GmUKSk7NlTyhhsr9XnDpapM8kaNDrNMWdmUfQtL+rQZFTyMGFrphEp5vIGLOmZdU49Lyp6t2edC50cgBb7S9xLBxwyhKb0jGZvMMdA1Ttm1YoiTaQQp75uvBKahcAwfG5f2Qr3IrilrqQTxyGiJDIqc6bF/rA23aqJco87wFYQGSgibs616n2zTTxgouk8lT9PyFs0qecPFlpoJqM2oUFUWRqCjKQvbB5mqXLZ0GuSXzeUn/7Kb00+ZRi6EiLR3m3z487P4wsc28ua/9Ql6l/Po72qYHV0IZxJhW7Qvn4HszyMMn8lSidqkS98J8wCXmm9qg1JJKp5JEAh6LzqO7d+/G/tD58TjMvjAZl78yeOsuXohZ35wMUKkozOQjj4eKpcvkiwrFKThQ6n3LZAsPqGb8lAFtWcfOPMIKrp1KQKkExZ1jCG1II0Ax9FwQkzwPJ075dfG2P+d/8QRFV7/5VOZUpiMmaga8iEy73tS4bZDA8UPJEIITr58Cr/6xgsc954VVHwLFQg67Apr3zSLOz79MObMaRgdDvlclQAdOaiNVjEnfOb+6SUU5QS5gkRhsOuW53EfuJ8Z7zudnV+9heKKufzqLx/hdV8/A6vgM3V5H5ev6NHFC4GcdOv5MmEeTTSGdcVckhNunPgdrQu6krxHTriM7qtiLZhF9zHzcQ+Oc/8NBzj7dT3hXpYpfJyInGSV7+yzTsqh5ke9LlaoNyUQJklFXa+D6WhIvf06WkQm9ozUdcKcmojauN7nLCQxnQAPdYMsqdNZ1Nk8W0kW/g1QPcR+kkXXZPe55Lj0L+pAWAGPPfYYJ554Yss2/1+VIPF+/qHtvCK/n5GyZ88eNm/ezOXHLEp9niwQ1CxicjhpSJCHlHIRSZr6sdHiziaHQ6Myn5RDRlAS95YmB1D10GzDIqVSfW4KqxISUCmsZ9IAsYSHm/FWHKoYY3zlDJQrlVsSYkSzBZmaLbLJRTVSwqONIlKYR718Pe9HBDghTWG0YEZeLF3JJfRooa+fKxocf1YHS49bxn/+3Rae/sfPsvSNSxHnn8GBkVnIgkfgS6oTDgRgToKywLNBjVlx74QryR2QeDM9Bn/zGL4nKa5dhhAB7oSLGOintneElcubj1dyAcx6EJNj6oZj0jmQ46rPLG4Ym0hyRTNmk3MxeO83jiVQpAyUpLT32iw9oy++jpb0ZtgsVyQbIk+GyiPlt64YpWuTRNIsgpnNucrmR8XSEAFs3AhfinjKSEUk0hAvvVlH14uSoCP6WVv6eIGMiyuqxHF506XqmzEDVNUzKdUsvBpUX9hG25pjaTMqqEDiSJeccON3pCBrTLNHwmR3gxI2BaNGRVl0m6U40jXu5yhLi0K7gaiUmdJRH8dkTaFoDGP4l9Ae3rxRY6hWpMee1BHgkKo9MhgiJ4oUGhZmS4+5fUOUXJu85TY81yAcP8ess2oJVLpoLFq5jcbaCwHQQSAoWjWqvolhKFTNAFeG9TcCXaxRaC9CEOiEeyGI4V7RDFGBoKbMVH0pVxn0WJNxFKXNqMQG+PD2CR74+kYWXLyQqR99HVs/9CUefaCXM06p39dx53Txlo/XuPU7O+k/xqV47HmoAzmCrqlIOcro/c8zOjaKPziMEpIZ7z6X4UoeSzrUQihbzTMwDZ9KzUKaNkGxg11Pj+O/sJHxu56CSoU5a/pY+84l4brYeh/K5vNBXemMit7qeVuHeMX0rrJu3Om2EsnKecnsNVNQzz6HOHU2KIFp6zo4hqnJIAIg8HXkxDB98raroYwhuYNtuAz+4zXMWNrO6z53PE7eRSF0QWQlyBkeUZK3ZmGqK83R3JQJCK+GU+m6V/NXFDi4ZRxfaSr8nOHij5XY8qv1nPbBpdx7za/Jv/dV2IZP0arRYVVY9MlLGS/l8HEx8zYKnePVf85SNv7775h7UUDw+uPYe/MGypsOctMXX+BVf7mYbqsU51hFekVB1mJvftKRFN1PlHhvCS+ENxlhnoPeQw2haO+SzAp2smt0KT2vOZMXP/AFtq0fYM7SIo50m0YKDBRWNB6HQIscbn7UaY0TzzwyRjKIlBgmJpKwr/ozi/qZPCZryER5dm4mGp80utJtpeFsPpJk9fpmRu2hjJbsnnA45rRkvZaoUGr0HhlSMee4Pu66664/WiPllZyUl1d+LyPl7rvvZtWqVRQ6TBQ67yCJi28F6chGP7L4y2bKchaClFX8U6HyICoq2JjvoY89/MJyKMn2tSWVsjiE1yAbzkVhJKI/UFcGkzTC6fomjV6Qxs80q1Cyb4ZoxnbSOOZR3k/0N2Evo+Oj75PPJSfdcGOowwU0Bl1ikagki6aF1Bu5oK1D8oEvLOSFR8f45f+1nee/9RV6FnQy8JazmJh9IqVFVezdtqbQzCnIu0jDQ5Vy2F1V3KpJ2TEpbjXhuDMYHfwVlc07sebOorZ7EMMSmN1F+ua1AUGMc02xkzUZRzcR7o8kSyzQLJKnj6t/LoRAGI3GyeEke7wUikG3jU6zHPcvvnYGyxv9Tr6LBgolRGqzqV+rscBjEubYtDBjmGOVrT7fzDBPYf1pzMdSGePEU+l7iwyMbFQwhnUFAhOFaaj4Oq5vYBpaScybOt/CC/RbZEqFt30X7uAIx84f464fjTKybZylJ7Zz2nlFKoGFH0hKygag25zEFh4jfoGS79BnjccbeJSEC9A7xcAaHaatp0BB1mKK0OhZucqM51XBqMaMbZFE8K9Nd29m/rFTyIfKmBcYOqE33LBryqRg6vajQo7Z8YawUKzhI2o1qsMVvEDG7FbJYphRhDgKtuUMF1MoOvIV3HaDWsVCWAKEizDC56w0MEbJQFMQh+cWLBdJaMAoiRICUxnkDTc2TnwEbbKGLbxQCZHsfWw/57xrNvm5nbgjVUbPP5Y7fraLs0/tSSlv576hh9uuPcj+Zwc56d01Hl13NASgOvtpWzGbvFODWpWqsglMi0rNpyp0Yn1HrkpgC9rsKpOuTXnbINUNWxn88e/omtvBcW9dipQBSy+amRrLZpGTVt7zJHtTM7gQNFfSku+7IXyWn97DU7etp+2iMyhN6AhwLudSrVqg0LlIdv2c8VKOzmIZQ9YIAkF53Raqu4e5+FvH01bQPYuj3dkaXEFzZ1U9Yl83qCzhM3agRvdUm4LpMenZBMPj/O7PbmZw8zhzuyY44e0rePTau7CvPot2W0fQunN63fJ8SdUz6S+Mx9d0bMj7kwws6aKytQunazk7f3U/15YU5/35MuZ2j9fX7KgOByJ2ihgZj38yWtls3Af3+ZQmFPv2BNArMXpzBEGAE46nGxjkhJt67lFdHF07xD1sDkok2fzZ7LNPoiKMxLMA4shlfe9NIDsi9tTkHhWkI3Zp4zNA0UhvnJ13SeMkaRQl2zycNOx1IjLujKY6WARpTibxp/XI9OczVrdz991384lPfOKwfXlF/ufL72Wk3HXXXZxxxhnAlgYPERBbv/H/LaBcWnkxUovjofJTIL2oNmcTqye+HS6pvJU025Sy/TuUxMeI1ixHqeslkupldoFI4Z4bIQURPKdZYnRc4TixkB2OdCApSSUm9gQFobKb6Ufd25tu2xaeVkip30/UB50voBf/xcd38InvdTA25PLQzaP86os3UJx9P9aalQQLTqd9YD+lX97Dvts3ELg+A6cvxLzyPIyeAfyq5KDagPubbeBYjD+wgd55s/D37Gfv9few9MqFPPHr3Uw9ugMZKJ749S5G8lPprA2y9OQulp7ciZT1xbzZWCfHD4g9pfUxOHKI1KG8Tq2k5DsxG09UdyHLUQ+HjhhawscXzfNTmm26GhLoxopynYkl9LplDJVIFCKuxRP9nz3GVUaD0icJ4iKIcR+S74PQOSmRZ1WIugPDTFQZd5WBIRU1pRX4glljInCoeTpHxXBqVHMueD7W2AhLVjosunomj1y/j2//zT7Of9s0+hZ0UAgV6ciYaJcVuowSALXQm+ojaTMqSKGYu7TA7od3s2DhzBTk0QqNDUMGMVwC9OacE25sHDjSZWJ/GX+8xMJj2ij5HihCuJsRUxdH51oypAM3/DhKks3R8UZLPPfV+1j41jU6ImUE1Py6wyEeexFgZtaFguUyYXsaPuRYBLUqMpfTERMl8X2BCPNScrYb5/9EuUFSBNjSY05hSHtCQ4+sq0wwtMOihqmpmfeP0dvfjy899o+3Ya04hhe++Dj7J6fRW3DrdSJsySmXdPPU/ZOsnnqAR/bUMHc7OB0VHMsjb7sIW5LHoxYOtWN6WIaPryQdToWxag4pAvZ853b6Bywuu+FK2vvzCBFCHQGdg1N3WDRjqGwl2cKCVgbimAVeZiloVSBZeloPN/zTc5zEIJPBTAxToUIyENPSFMu26WOZPq6naaalV2Pfjc8wdv9zlDbt5cKPHcW0mQZGImpjhJDcaO1qFe2HujPBTjCAuYHJ0N4ayoehdXupVRV3//XdrDy1nas/vphrPr6Jt/52NX4gGNxao2OJTa8j6M1NAlD2LAxZXytt6TH3VUfzwjV3cfRHz2LKeSt48RfraTv7ZEae38y1b/ktr//2mczud+N3Kso1SeVAijqk0g8kvpBY+NjSBQV+mMPiBgY3/+Qg1ZJibOcYPStH2PONmzEckykz6vT0bmBqmHL03BPGgx3BLo9gOiQjJ5FEEZRm+knyMxWEUYXwvTlU3m8zfSntVNWGXQoL0gSWnjQwkvDSI5FWjrgItpxN3E9eN/k7+ttVJo7wUELERqpCMH9NDz/6+r34vo9hNMKY/1+XegD2D2/nFfn9jJT777+fv/7rv2a92BR/lk14SirNh2O1iDe2Ft6J3yfHJT63wSOd/r+ZIdLq2N9HmmFSk7kCSdjXkUR6mjFzZZOf08cLXIx6/kkLr1njderKTup5hcl8kWITb3ZZb2EK6hAdI+MNstW9dvRYnPOmfo65oJ/7bxzmkRueZOf37gAV0H/6Qmb99ZvBsvB+dx87PvF15v791bilOVTufJbpay6m0hegumy8mofd3wHA+l9uYtP9nbgjZRABhWXzMIzdjDkmz/3qMR4/bTqv/ZvFdLdnjcBDP49m9JARj/2hDJFkAczDSdROTrqUlF1PtiWIo4hZJpqXyqCXnI/JUhDRfIrmTjoKmjWkm9AXH8Hrk33/IlhiJFFOBig8ZdbXlER0JZnYLqM8pWStixCSogJd1NQAxu9+koGT5rD20inkRA1DKE65YgrnXFrgmr/exXs+LWnPmZTKAcqykFJHANc/VaFSCqgGJga+zn1SJlXfYvuzY8xY0Y2rTAwZ4EZzIGjE/uuIL7HiVKvB6P4aL9y6i3mrOrCET1siCqPfNU2DbgqFHULBPBHVAGmMpnhuwNP/djcrPnIKVlcxni/JpO+I+S8Zra0qk5pv6oruw2WGfnwz1Rf3IS5Yg5B2jJU2TIVXNbHaqthmvcq9CMfcNnRBxygSFkVac1I/iwr1nJ/SuEetrYMRN89RffsZnTqP/Jwp/N27d/I3X5uJUdQskjnpUqkKnJyOiAYTJtaYoDSWo21gFAFYhk/FM6l6BkrpKvKmoTANn037++hqK6M2bWXwmf1c8I+n0jFQSIxbNIfr8F5PGdqZG2TXh0YHVkOeVyL3JIJ91ffIBNwnBaVU9M/JsWBtL0Pf+S3Wm9+uz/clhqGLJ0bX8fw6G9vwXevZf+39HPvGBZz/tcW0dZjIjKKpjZTWymfr5P8oT8Fj5cntbHi0g5s/chvVsuJNfzWHi67uw5aK77UbjDyzB7/iYXYVgXHKvoYJF60qluGH8EIN4fSUSdfcDhZefjQvfutecm+8lIFLV7H/5w/Q9vZLGL3ud/zmLx/iPd9YjczV3/OirMb7ChBH2mIDIBO5Bw1X9pEcfZwuatp29moK5iBPXvcY7/rFudj5euFcHxHWJgFJRDIgU+1qgzZyWjU6jOKxCyOByf4aib2zpUM2/N4WHjXMOHqSNHziCHpivgINulfTYokhcULDdYVqmMuH070OhxSI177EGpgqUJkRXdstrPsS6PpsOkIGM48qopRi3bp1rFy58pDXfUX+58tLNlImJyd55plneKjrGjrJZ2AcGS9oQ/g4fMGDIFZ4W+Wa/KFyuNwNqL/YrRbm5Iv9UiIQDddI9itrXISKoX+IBSGZ2B8n0iYMusMtdvF3QX3hSS5y2evF0QLSi15klETKSDIZGFpHbgjMOBFfhvBAFaSvkYXnFbssjn39Aha+ZhnPvxDgF9vZHUxndLyAAPo+9CrmLLiRpz7/U8wTVjOw7HSMfAFbgBso/DIE3f10XHYGHZecgZHPoSoSmVMIGWA5HnnHJV8+yPOf/gX/dsVd/O+bTsG0ZaPS8HtIM0MlS7RwuOhLNi/FDzfNrBESFRxL5qFE+Q7R31HIPDKMYyUnkTx9SChLq+T7Q8A7m0VQkvejwuhMNNQNULNkWwlsMmH/7JARS9ci8UMIk/7OV5GCod+dTrtCwXQpeRZ7nh1izw3P8Mb/PBc3qGILiQqgXVYoOgFv+GAfP/jXvbzu4zP54oe30jNgYZoCLxB0TC/SPbdDV1MXOgA6GZiUlE33kin0r57CQdeMKyxHVbAt6eL5gk2PDBEEMGN5B9VSwJ3f2IqQAmlJ2vocZq/sY8Gx7fGqYQldZwVAhoxf+v3TOSYVv76E1yOaegz2rtvPtFNmk+/JYYaKmilUigrdkR6O4TVEcEvCYrxqM3zD3fS/9iRkVwcKU+Okw/dYyADL9rBNHaUwLM28ZBs+OdOlaNRiwoEoD6eirDAyZUIAlcBEBopACarKZHepg2oFzB6Prve+l9oP/oPPvOZp3v/lo+lZ1AMKtq4r8/S9Y5zp5xEFHwITMWkwMlagt2sCfIOxUg63ZqKUpKy0QWVURig99ADD9z/JyMZBVr1hEdOPndL0PdTzrT6Po/0qG4GIxl1Hhv0EVLdJDaaMp7jZGhMpcz6C1316Cf965QMsWPs03lErNLxRBvi+hIShYpt6vd21bjeLLpzDee+ZG0f3oHl0+HBOqojspH6/dSfalH7Jhz47k/f9/UyqZUWuYBC9xEvXtrH1thcxxVSkbeD6OmKaM1wqnhW/w1mnR8/Rfey+dQPtuSojk3mmXrqK3T+6j773vZY9f/NVbvvpEK97WyF2mETRlFbOICNJTEDdSK4FBotW5LEcyUBtN1WmAGD1tCHFKJLG3A0gzmk5UpHZfT8TPUlBwFo4Z+OoSqDq0ZtEe4pMwj1pOHpyfKPc0KRhkExwT0Y4mhrbIlGHDuI1pBnUvJlEOTME9ZFpBmmOJXofm7QtDcGMZR089NBDf5RGyisUxC+vvGQj5bHHHmNgYICOgVzLY5p5chu8C5FXP2GoHM5AOVIDphnrVrKN6AU8HL4yu3hkjYLDSTZ60izKEbXbFG6T2FyyEZkIlxoVT2q1OCWvFXnJm2GiswYJ1I2N5AbdzDhJ1k5RBLgQe46iRUwF0f8OyGqDUaKQVJSFFAElZTPsFTlYa2PStxnt6aHimYwNF/DLJtLxqbomS686lslN+3j+/seo/Pl5+CJA+uDnFcor4+4epvc1VxIEAUFZV2dGgDACKjsPcuBnN1Oc1obd187I+n14NYXtpOEXzZ5Lmtr3yBbpw0mzir5ZSeYwHC5a0ur9UyF0JZYWTTTLUzmcRGx08bxucl608Sbrm+iEzzRMKQu51G1HCk/EQOXGNVFM6SMDXSzQlD6WIUO64pAK1dBK8+Tze3j4Azdw9BuXMf9ohwlfMOoVaDd0pWsUTJlrsfBEgy//1W6OvWoxK0/rwPJrKMNin9vBhO8wwxkmqvQ85BUZ9/R6WCag6plIoegwwzYlPHn7EE/fPsjiU/pwyz73/eQ5+ua1cdzr5zBjYSGGNygEKsHkVjBqqedRE/U1wQvXhYpvpgzMSFkeenQHC688mpxZi8c+mcgeFXh1pBu/19WoD4GkVlJQrdExo4CvfKquxPNCljURYNseHflKTAVtRgaK4ZKPf2pIEcQUzJFXPbq/Cd/Bn6hgtjnUlMn2e3ez7donaDvzOMrPTdL3xvPpefoePv+mp3n13y7hxMsGuPA9M3js9hH8iQqd3ZO4gYM5LnFNhzHbQwhwXQPT8gGfakVy8LvXM3rr4/Qs62fFhdM46osnhFS4kGXvamZ0q9Cbm/4s7bipz/FGAyV6ZvExTfICUrCXQNI/w+ZVf76YG798IzO+tBiZswgCUErUiThkWAdHSWRHgYmhg4l3XabbzEirXAPNRhbdl8qck3RyScyCJEn0seLEItd/5yDF46aQc9w40mmF0b5x18FXkpypv9MRTokXCDwXOuwyo9vHyU1rx8TDbjfpOO9EXrjpadRbl2OgYghm5Fk/UtF1d8DulFz8tilce9UNmHmTwpQC6+4eZtmrA4QEK/H4jQjyFSnZcTt+OqFcpK+jx6gJnKsFRPiQOS4ZuFnj93WHY2ptF43rd5ZkoH5s862gWXtA3J/DJcE3tCWgTvPcDKKm51IyJzJiJ0uO18DyHA899BDvec97jvj6/63yClTrZZOXbKQ89NBDnHDCCZiyisbtNhY+iqQBykFkHIT/h4q2QoRJXoeGdWW/b8VOBKSKrMUFHZOh/MTxzaIkSQhMNsJjiHSCZPaek8ZM0mhoFj7NRi2aeZOTsKro/yQUJ/JwNBuHpESLakR0kLxes3uPx1fIGK9+KEYwzQQi8AMDRQAhlAU03l7PFUklCDAyi25JOVQCnRy8v9bOvmoHXiCZcB0mazaTFRu/ZoAnwNbew4qyufLTK/nWux6i9l9fxXj9JVRyUzANg6Gv/RfCyaMqZWQ+T2ArMAJQHmqszPCPb2Hehy8g3y4xNjzHxLod5NpMknMjS4zQKpr2Ug2VpLe0mWSTGyMpGFVGvUK8OWcNlVbEFakaOiJIYewlfsNcTN9b6++iNpve2xE6HEyh4iTupJc1m6sijQAvMKj52ggxpSJv1PM5omiSFCp+92vCjBUk0Er57KNzLDhnJmMv7KeiljDhOYx5eXrsScb9HD3mBAVZZdZp/ag7XKzVR/FCKYhhUUO1AhXfwkDRZlapKIuyb1H1zbi/+l6M+D423DPI5mdKnPY3J1E0dETj4AGfFa+aRe9UCymq+nlH8IboWWYgHck1QqKhP1Fk1Yoq3QsV/60myhT9cYqmpKpMLOljhlj+aDwiz3S9bobERicn+zt2UZzdRcFy42rsmrlGP7u2XBXb8LVzQOjcGFuGEK/E+xDBvErKjpnSlCGY8B0mPQcnV2DHxjK7//FJBrdMMOPjr2XoiQPk1sxh5LHdFIXk2PP6+Pmn1xNIgzMv62Xa/Bz7HtkFC47Bt8GoCvyypFqxsWyP9mKFwsgeqrsGGbphA962Qd72iwtpn9UR9yuL2W+mNB2aFTJdK8UPDRmZUuSjY9ORk8b8wvRaE+UinPb6fu767ovUnn6ewgnLUUoQpQT6gUAobVBWXQvnqLns/fYGJItbriFZwySbXxGxemUNlKZtpZRjHbk44dx2vvY3OznunICDDz3FjPPn1mmtDU9H/5SJt2ecvT9/FFPqOecrSXmwjNo/xNAPHmK4rYCq+RTzVdSpR7P5P2/i4L6j6J4RNLCPNasj0kqic97y8X6u+499eGWPea9ZwX2fvZdH/0VQ6LQ4413zWHP5dDpybiq3KBldkvH1QxUqVtobIYCp67d47iphYESkMtG1NEVxqDs1oCzqkLNmELC0TtAkKhHDPtMERMl5GF8jcWtJWLAhFLWwiPOROLTqhm49EtZ8rgYxPMyISyTofs1e2cFD33josNd6Rf7ny+8VSVmzZg2WuCueYK2qS0vRvLJu42d1j0RkrBxqsrcyVpKfK5GpQ5JMXkzBbcLrCNnQTqwwBVrxi4ol+SKsEB1CJ5r1p5kXuhWsKu5zRtnN/p+F4zTkogSKpLGXlEgBaWm8hNIMi9q00nmT5+oqs+7Fo9GbH0lVWSlPTiWwKPkOCsGg28ZQrcBQtYAKBBM1B8+X1KphoaqCh5N3aXOqzMoPY1sG7/7m8fz6H5/n2X/4PtVJD6e/g4F3nE9udh97vvk9sCxmfPw1HLz7BSYe2oAgYNp7L8bqyWFZLpv+60lOunpeYpybGxytPI8pBSPlUWv0FjXbOJrlsbSEMST6FsG7Iqz7oQolRpKdj+n8BL/pe9eafU81Zf+Sh8nJyYopNBlDza8r9vWK5fU6IZKAEjaeMsgZHn4gYg9tXJcEnXdiKiMmJarntUAxF3DRp1Zzzfk38OC1u3G7etl9xzMUZ3fTlvNYc34XR801GfKKBEIy6TkMVopUfV080jJ82q0qWyd76XVKWNKn6ptxhCBvuPF4eEryyHefw+5wOOa9xxCgIU0AM8+YzcM/3cY5Hz6KglGNlUpLulRLPrd9cxteycVzAxas6WHBmTPwTM02VlUmKiA2nPKOm3qeBorJwTJnvX8BD39jHSd//PgUTFRG8LFEFCAZNXWkR69TwhzcT9eATc50cZVB1dM5Qe25qqYwj5Pj/fhv3a5eV6Nx8APN8jXm5agqHWVypMf+ajslz0bUqohp/XRdfT65mkG5nCO3sB8EtFsz+cgbtmNvGOafS738/G+eobt/NasumsrDv9xN7a3tMNXTL5sIaC+UWVTYydC9L/DAvz6C024xcHQnr/726ZhdBZKaVutcgHqxxSQpSTIanTo+uV5GSpdoVPKbRzOSEZX0Wm/h4gvJMef08tzT65EnLSUINM12EECtZlJJGC3G/LmUd45QHa1gdNmxYhflV6QYvVL3my5WGt9L0Ah9jd/rDLQ0kvYuk1WnttPJOC9u2EdlZTdqFqhSCdO0GCgoupXJY197kDV/shqRz2NKH08ZjO0rsfmnT7P0XcchZk5n/Rduo2iUYWqejmUzeOrm/Rz1zrqRmZU07Xoj5Co17obgz748l3//5HYmtw9BEDDnuD7MnjZu//YOfvfdHXzy1yfSbZVTkZOk8aYNMzd8d5tDw7P7eav8i+jY2FgR6T05bjdEICQNs6yxltqbA2K0SrT3HK6QcdYwi38fYkmPmPqSDtz6fbeGPTclqmmS0J/9bs7yDn60/l5KpRKFQoE/JnkF7vXyyks2Up5++mnaznyepaJP4zcBGWg7PLkpQWPY+1AQlai2Q2TRR9EVaFTsmsFCGpQ/AkCFjEaNEZqoKnYWW5yNWuh+62iCFCElqEqz4yTZvCBRUE/U+99M+Yv6nPzOC6voJmtheMpACREW4mqRrCnqUZxknkFUD8UK4TDJjaUBEkTjppOMurQSDQ9p7Hf0HWjDxJFuvChFbE1uYFDyHUb9PJ6SjLs5hqpFJmoOfiAYrzjUarr4mlOs0dVWYkphkmn5UdrCAnyFosFrP7OMiz+1mupohZu/sIHnv/4bAtOk78R57Lzuafq+/gMqE3mmfOitWDmPYr5K3qohA48Dzxzg2M8uijfkI2Vwa8a2kjR0IyhTUpoTQ9RD21nYV5K20VVmTOMaw76S7YTjHyfmZjG/Yb6CH+jznSTrT/zM6/PRQIEkTmRPRgmje9QJ8wnK4FQyfZ0hKPrbTdALR3NZv/v1eihRP62ERz5rrCcVLiuhEErANHwsWS/CqAJJm1EmH9YfsboExb4cL9yxC8x9KCUYunMrkoD+xR0sn+cxYI3Rd1Q3W259kfZTlzNZs7EMn1rNpuqZTC2OMe7pZO6Sp40HW3q61ku1xuP/ci+2HTBl9XSmXbCAitJ9HPHzGCKgOMfB6d7PhscnWbS6nU6jrGvxCMXdP9rBigun07OgC5Ri20P7+NXfPc0J71jMM7ceoDi1yPzz52PbAZM7R9lw0zaqYzVNLrG8FzNnsuOBPeTygrEDVe79xguc/O6j4vFKFvyMIimu0NG1EbeAIz2KZpWcN0Fx2gxsQ0euxoV2GJhS0ZObpOJbmFLRYVXiGjc136DiW3hC4YYRtV5rMi5MV1UGXVaNSd/Rz5uA/c8NUZw/BSkCxvd1IDxB7xOS4TMr+GMGP9x1Ah9fPspH33eAL1S7+O5HnuLsd82ldGCIs5Y/z73PL2LZ1E1s+Pxv2XDfHtbVFL3z27ngb1ez+PzZ8fsSwbpaE7TUladkUdxsJDzrxIkilIZQOMKrJ/yShdc0YvBTdS4S8ztKjjZQLD2xg8c/vZleqZgczyHC5PlACVS41kupcLpsrJ4ie7dWWLjabDBOor0ief9++L2dYF9KjkW2zxVlUQlseo2JBuU4+v+K9/TzuXdtYcn/OprNd+5h8+Yt7Lx1E4Yl+MA9r2bdziJGTwdBvkCbWaXLKjHpOzBQYMWHT0aKAE+VmbGyB3vPDpy5sxg9eSGb7t+A+45u2kW5pQGSNVSaRZsjeeCGIWplxd77t3PMW5fyzA+fw63uY97Zs9l6x3aG9lZpm2nERAPN8nPiMcpERKLvI2Y0P4wGZJ17URSK7DoXNO4VdaeeQyWwaJflxH3VIWGpWivR3Ar3cYvGKNSRkqwcyuhL5sdkES5JJ+6h8mebQ6uTjg8Zj1P3VItih8P69es5/vjjj6j//20S8Aq718soL8lIqVQqPP/887x+8UmxAgX6RYjgVJr6VxsnugBUHV+drPCe/D86PlXzRAisRAjSwUOFXtKktZ70/FthzQJXGbESFkVCoutFRkHkWUwaGs3wxZH4gT7WEV7KI5HCIoceEAufaiL82YxmOZmIFt2PF+hE4zqjj0KFnkcrGpcwslH36tShBYbQCqUhE0nT1Fm2kkZj9Jyic+Kkd9k8apKEhyXbaxyn+kKS/CyqVB8ZKpbwmfBzVJRFKazYXfZtxj2tvFiGT7mSw3V18THbcWnLV2mza9hS0xqXlB0Xj6z4upaA05njys+sxPUE62/bw84nh9gJbLl1G8dd82a87kkmy06cbOrWApSrsNvsen/jKFijApE9JvZ+tYi+RBLRZSbryCSvkVRqIkMlic01CFCJ85LesIYwf+b/pCRrN8SbiqjDxJJJ9knlzEBpQz3IRDnDz+qJlHUDLZnErY/VV44cBEBsiNgyobCJOmNXFEFRiDiBXN9bWD+oyZj4SHrMSQbsMSZ8J1U8UYbrll/xmLmsk9LCJYjeXuycoKetysqpuxms2kzLjXHm6/r50d9tZOpZi3BMj/Gaw4RnMrN9hG67zL5KOyOVPFJoRquysDCFYuKZfUw/bQ59py7SCr6oMlzLUzBrGCJg0rMpC4ueNXN48huPMTk0j9nH9zGzp8qkb7F5o2LlW6Yw7Oq3fuAEh5Nn97H+7oNMP2s+7uA493z+YfJ5Pd5nvm8RuYLEyQtefOQgw3vKXPI3K3j0J1vpXdzN1kcOAtpREEVyJj2bkZrue5tVRQW6MB/AcC1Pu1VlbN1ull42H2WVGKkVKNo1inYNx/DwAoM2qxobkxY6oqQVTE117CmDA67DjslupuXHmJkfZrDaxv5qe2zMAOy/fysz3nQSY66JyPnY220mL5wg2FvALAkOThZ4sdbHlFUOq84Yxi6a3PjFjQAM3fg4xRcf5d6bnqfYa/Mn/3UyVk8bTqeNEAI/8DS8MSR+yDoTojmcFBlC31S4FicdV1mIV7xviDpRQrYonj6uOdQrhvQl1vPIQImUwsXHtTG8p8Ky8R2MG4uRhsK2PXxf4tZ0YUfL9ig6FaQpUeUKBsW4/YjRq5kH3Qop4rP9SdfPqK8nQ34bc+3BlMKaZq1SHHeCwwnnddC39zH27J2F6fqc/qbp3P3j3ez91RMMLJjB1pESI9U8tvQYqhWZmR9GEjBUK+AYHlVMqiLPgfE8hZqNV+hgdMSI+5ZmTKsnkTfrU7Jvyft628f7eeLeCYy+Lvbsgc/dsJINd+zl2q/tBuDa//U0l3x0Af1zcswbqI/dISNiqSjLkUUhsuMdr/stlNScdLGC0HBKzsUwytLKmLAS0dTYGAiaM22mDZ3mHUkVzA6aJ/Lr+2meL9sMYplFI2T7Wx9nmHlUF08//fQfn5Hyirys8pKMlPXr19PR0UHXVK0QasahNKNT5CeN66eEPxGVXLK+QxaiklWiIa14qcCIX7QkTWnyPEOomIYU6vCxSCR+QqFKR1GaJUAmJUl/mg7ppj0FhgAkTPpOPbqQ6K+HkYKg6HFTmMJHElY3jxacyEODSHm/swZKss+R4dGMXjmGMSTGXp/TWslulb+SVYqznzdrZ8LPxYxiUdQnekZ5o4YXSCq+xVC5QLmmqV+lBNPQheksqeE2RUMrVpUQ4568HxUYYMDyC6az/ILpLLt4Jt9/x7307HqOvmPy7Cl1MFLOYUhFYe+LANiOHl9FgB+YsYLhhmxEWVaUeDwzXrUomf6FR0b43p8+y7y1vbzln5exY/04PVMdOqdYuCFsMHo39Hn1ZMLYcBBhTQnACI2x6JhmkiyIBTQ1FiF8V0Xjc5PZjVak37M4fyyED6SM6fAZONLTkJ7YAxak+m0Kfbde6GXXxeX0u9BllVO5E9E5SZawKOfCjyMBGu5loOKoYWSUWNLThUMTRmTU5ykL2tn90C6cYYE9pZOKG6BEiV9v2kbXNJ0EX5nwMavQtn8b5YGZ5OwK5j3P0LGii/y8HiZdGz9IFGKViqqSbL99K0e//bhYYYd6jty468TvpTljCks+fh47nzjIpi8/x+pLpzIiuygeNZXNpX7azSqTvqadLvbUWPLqPqrK5MXeBSxbtYhea4KCGTpmRIBSir7jZtKlJGO+ZMZlK7nlfz9AsU0yuukgQ9MWMzU/zv5KG7WQzrnsWYxV9f12OJU4cjXp2bQvHmDdD55hyTtWYwqfKfkJbOlT8iwKpk6M189IPwttvEgN3alZlFyb8aqN6xuUPYvBrWO4cpLctK6wQKXB2LO78IVJzW6jMmHBpInbHsCuIoGtkC70t02wvdrLoNfOwldP5YkHn2DmcX3sfGyQ536zla6BPGtfP5PT3z4XkctpoyTcZ3z0WmlIFaeblYYr2HkTO2/E8zoZIe8wy7Fxko1eJ42biKAgCbls5rxpZaAcKmKbVDTb2+D4C3rZ/eMHMN66IN7fDENh5GsIEWBKhb9jH95oifYVs5BiIjZOpAji3JNUVOEIIsZZcQMjZhmM+hlH5xP3WWyXVFwDO6gizYC2dsEpF3Ww89EDPPWVFyl0WnhvPp4dfjdT8hM8PzHArPwwecNCIZh0LYZ2VjCKOarjBTyZQ1XDSKhIR4CThkokScrfuM5L5n5nL3R4z6dn8ZW/2MZlr3FYMHeAWe+YwamX9/HZD+9m6+PD/Ps7n8Aq2rz9lxdy2vRdqehXUupj0Fyy/cuel4TuZg0eSK/5GhlRV/DTpAfp/T5pSCSfdwM6JTFeRyotC1HGOVONxkrSOav/b3QaZOdlq7yx/kUWTz/99Evq83+PCA5rlR5xO6/ISzJSnnnmGZYvX45IFPOLQpVRcbfYe5DwWjRja8hSqCajL9Fxdc+uliy7UfLcZFsIraho5dWvK+uJZ66CurKVNFAOpbgZiZcvmWgWH5tcIAJSSapJGFRdaat7qqMX2BIuMtwgo7yXeqTo0FGOFNuWSCfIR/2O7iVrqGSl2WbbLFdI/x8tlo2Kb7N2k+dqGEZ6jGypi6/lbRfPl1imj2X45EwvrrkAxM9YIeKIXfw8hYphLf3L+njD107lp++/lzOOWszsxT55s42RSp7dd21l2SWzyLWZ8XzNVtxN1TQReqvJLrLRQur5gvt/upPr/3Uz808bYP2tu9j+6AD//o4nWHnxdN72L0uBLE1z3UBxA4OK0lSdBaMWz+8k7CtrJCUlZbAmxjwao+Q4R59FSl32PGjmSAAUsVc6Msri4+N3T3/eyuDISx83nN9m6Ll2A4OiWY37mYToJNs3hY8pSG14jvSaRgGjeeEHEkt6OKHhd9xr5vDzv3yMD3zhJGR3O1sm+lhibuXBL+/hwr9axVDFQUmDdTdsZ8PNOxnatQnfD1h95Sye+v46Vv+vMxir5OIaHFG9iuHr7qPzxMXQ1cl4LYijC1IoBpxxyqatGetqOYarBVxpUJgdsOv6Mk88IahueJqpZy9iwnWYcLUzyFeSMSNHwawxVsvh+gYHK0Uqns7t6ra1cecFElt6McRtPHBY++lzefIzN3P/bZMc83aP50YGyJsuplS4yqDsWggRULBcJl0bUyqKZo0XR3sYuHING/79bgwRMD0/Fj/TDqsSG2bR/anQWBut5hmt5jQlsVRYhsL1DbZ+9XbyRo3qhMvRn7iInOHiT3jsvGk9M//kEkYn81QnbQJTEVhgjBvYBw1ygwEjlTw+kk6jzB0/3cPS1yzm0R9vRhiCD37nOHK2jo7pnEEVO3SyNbtKO0d44lc7eOTbzzHzlBm8/isnx2urI7wU/LFVXmSWPCN6b5LvczNoV1ZaErW0kDd8fCafvPgZFp2/lWDmHKpVEwKBk3Npz1WpeSZjz+2hb3k/MztKMRFClrq2rkwfmUKayoFDkBNevF5kDZRksn5Pr+SJJypMe+0inv/8TSy4ZCrnfWI2BgEjgx7/9Kc7qPzgN8j3v42tI70MtI0zZuUomlW2Pj3Oums30XnsQuwVfdQ8BZaNcGth5CetW9R1huZ9T/YTovVQUgksTrmiD6W0kv2xSzdwyd+uYtWMSf71RzO58Ze9fP/TL2IWbB750RZO+3P9Pmb34WTUq5UkjYCmBkGUV9QiCh7NqWiM0zpV9HwaoxIRSqPZ807mvhj48Tt9qGhMK4nais7NRrYiGFjWUGklcTQ+Yfwk91sVSKYuLvDMnc+8pH7+t8grcK+XVV6SkfLCCy9w9NFHA1uBBBYzxFtmQ9yQSRaLJ1jd05U1UGRGWUoptQnlCtLGTVIiJT06B5KehrSXOMITJ7+L28hI1tOclKzyXYcFqBgXnDSGImNLK3jpjS6OSiUU8hSLTGLRSdc5kXXoXUKasos1MU6yC+Nhc1ECkfodwcCgbjwdKg8pSth1IfasuuH9tFk1JgHb1BtIwarRZlUpmLr2ghsYWIGfumacMxFoz35y0Z6+up81b1vMg3/+ay655lw6pppM1BwOPrmLpaf3ZvqVjaAlvViJiFu4eI4frPHQ9fu4c/NsxLYtVHcO0ru4kw0372LRCV08erOG2zxzy17+7txRLvjQAlZfPoOCrMUGUGSgRD+e0oxMvdZkHCmqhBGYXCKqkvXsZQ2Ger/rzzNZEDJlPDeb82GV35RTQQRYaPprPzwlmWQsQyrfiG0rCYtMRmBsUytQ0XyPvNYR1CYiwIhydTQMzI+VSRUIHEPFCllSeUjO76iYW+y1kwHHXDSVZ27o51uX3cQZH1rC5hclGwOfE1+zlL21DnZWupAioP3sXhxl0u9phW95734CZwW3fvVFCpcvwjB0vpkfMl+Vdo8x5dUn4imdXC5EwFgtR39+nG6zxJ5KJ6BzxWzpc/D2ZxnZsI/ZH70UpzvHiKgicpqmtaYM/TuqNRFWTq/6BpM1mwnDpjdf4kC1DVt61JRJCZux8Dma0mfwyd3kj5rB0O4aQ9UCrq9rVwBhIjzkLA9fSUqurgZ+cLKAIQPKnkWuzWT42T10HtuFSb1SuY8mFQDwAokpFGPVfGzo5EwvXge7cmWco7vom9/Blpu3YEpFxbfYc+NjTH31CdR8i2rFglELoxauJT54xQDpCYZGi+zvaacga+x8vsQZl/fym7+4n8APOLC9yowFOT1nhJ4nFlBTkj3PjbLp3n1svnsvkwcrjO+vYM+bxbQrj2N86wEdmU565ZsoTS1zHlsYFVlGLz1WdeW97uxIR8Oz188qslNm5bjo3dO4/0u/YNYXPkCNIrl8jd5iCSkCKq6JlTcQnhe/c7bwMlCsxB6S8bAfyrCKlU4CeswJvf6kPN9B6jfApVd3c+03NtHft4nRvWVmr+4BdA5hT5/kI5+dxvsv2sJb3vY029uXxH0Z3TzEcz/cwKmfOoOSKDDhllDlYYZ+ewtzFlq4gYkbmBghtNvCr0comuzLsTGTcLoZQvHNL46w8pKZLFngc85runn63lG2bajw9Xc/TlDz+N7DS7j7R7uoTrhUJ1y237YF/nxJ3K4lvIZn1DTPMxHpSY5nqzGOfreipE+OdTLhHmiq1B4KNqbbqb/PcQ0XUc8hfKmSNHKyuTFRH7PkSMm9IZJWObxRX6VQ9M8tcN8LL7zkPr4i/7PkJRkpGzduDPF/W+PPkklfzaqmN8MdJpX9FEwruVBmrPCstKKGbEq/2sL4kMLXSlDmO4VoMIh+H4k9Gc2gZKHnIcu9fziPWlYaX2yZ8sY0Y3NqNp6Hi4Ac6rrNP6snZh5KtLKvF8Q6w1lAu10JWWwEluFTMGu0m1XyhhvDeyKDJLqn2PCjnhjsBgZeYGBLj5M+sJwHv7GB6959G31rZ+NZeSYO1qCtkOhPo5IRj1ECPgFg4nH9v+/khq9sQ5oSZ1keJz+bqR86CXXPQ8BBNj40whSvyJK/fRX5uf3UNu/iV5+9jc5+i4llqxkalUz3dzF7lkAIQc2X7Nk8ycgIjI8FdIhJKgcmqI1XGdw8zvl/vhRripnqXwpH3gSO0CxvJmWwZAz9hrmQyDPyAxkalkY9Z0ymmaWAVEX4pOER0VlnI5jJCFiUZO1IDxkEGgJGnTLXkV7KCI4MlDRrTD0illW+DOHjS8Gbv3w8Wx85yI//7FFmnjSDFZ+6GN/wGKwKJl3NNmeFEZ/RSjuGVHSXXbYOVRjdugPHlyglME193cr6LbQdPQ3L0HUrHMPjwH2bmFy3nQNWhc2ixoS7iUrJxxcGni8h5zDw7oupeQae7+MsmsPIi4N0HiOoeCaeX48mVTz93H0lGS85mKaGfRhS4RgGQZjE7YWGzdiGfQz+bi9z33kKB793H64yyFsurq+NYMf04rGPYGmlqs7NyttVxp/YwvieSTbfq+hdPpWiWcUxlG4/hIu5gf675qeBLjnTpWDqGik1ZaI8RVCtEoQR5smKYGjLGNZF0ylN5FAVA2EE2KMS6UGtKyB3QFLrhGB7gQPT2uizJ2ib2cGt/7qOnlXT8E2Hn/3DRj70jRWYQrDruTG2PV9h69aAbXdsZWxvBWfBDNqOPxZnz36mXn0RZpvD0K8fJDc4zOEkS4ySjLanUANH4PJsRQmcfW/0/MzAXUIP96s+MIP7fvUUxtNP0XP8Mbi+xPUN2uwqHbkqY+02lbGazo3JKMJGk72nfk/N1/40isEDzBTxRTbHA+oKuGEIapWA0tZBOqYV6JtqERkpANPn2pz3ui7u/cz9nPylHspGG/vXDTL4xB6GNw0jXBc752Pt3smjf387XV3wJ/+8KAX1SjFPhX+1kmTEZ89uj198ZQ9l32Lxn03BQjF7sYY8nnj1fB749gu8ZfX61PlD2yepTLgU2o3Ec298Zs2QDYdy1DUbu6if2f4ffi9tQaPdxJGVdWo1jWqIw1PJtzy31bGJ+zgSXedQhEMDc3Ps3Lnzj4/h65VIyssqLzmSctVVV7FD/BZITvBM+DEjzVhD9HnZ/9MegzgPIBF1qUduGjeIbB5LdC6ZRSMpSUhMVhoiEi3ab1UjRt9vECvSWQjBSw35R+1mPQ+pMG+giBbr7PetWMbCqx/RtVtel4wnMHOdZp6T5HeWUCgh6zUeAkGHXSFK6I2Kw0WF57L9SrKkRRCyCALjKoO84dJhKqYs7oS5s5nyocsY2V6mPObzxK92cOpVs+iyKk3vO5qX2eTTJ383xF0/3sPlP7qc2ozZbD7QR/k5xb47fstZHzmRrbdsZeHli+l832vwlSBvuzAwQO/T+/jWex5D2E8R1PSmu/TKhZz5kSU8dv1OHvriI9hT2nGHJwm89Bw58U1z6J7SlYJkNXjamszzhk1JqIbIyqEM1aRjITJUlBCgIE6WFvU8FN2XMEIYYvcjMowkpj1O2hdJOKQfQj1JMYtFVdyjBGUrrElhSS89BklSARqpX1XYfyxYfFIPf/Lz0/nSq+5i5e59VKYPxAndXliksOKZjJe0ErOeAar9Cm/ycbzxCkYxz8S6LVRf3EWu0ybfZccRj5zhMfbsDo75yMksaj+AJXzGahYHD0oe+dazGJhMvfoMxlzNXlf1wM93Mrl/B4ZQeL5BzQtpmaUiCASTNYtKzcJzTZSvGDccik4tdX8136Bcs9h9w7P0v/sSqsLFnyzjVX2EZVENqZ4jxTVAGz7Rs5NSUVn/ImNP72bRn1/Ili/9ltFBl/yAjuDu21Vly/oRBk6ei2XoZz/pOhhSEYTPqlJW5Nq0E2Z000Emdk1w1BVHsW9zie03bmDf+mGKF55GpWKhXAlKEFgKryAxSwLfDjAsgScgNyio+tooWnH1MgbLee78+4eY9vZzeeEvvs8/vvYJKsNlqhMenYv6MKZ0MeP1JzB19XFMljoJyuOU7n4Qu92mv32c4Ykxck4Qr4eHWnezrFtJAob6fEtDdA4H9YrmYBRNSV2viQKs2xaYluC01/bz2E1PM/X4YxifzFE2FbRBnjITT72IO15NEascyX0l+9xsDYhqZFjCIxdGMA4nO150yRclVtFk7vGdcW6YXpt0xOA9f9XPX75pG98/6yd0Tcuz8uLprHj1Ipa94WiEJXnuF09w3xef4Jyrp3HVR6eALdHx8ebwquRnzSBV0T3e9ssxggC2PjuJQR8A7V0GhglP/Hgjymt8fu//yakU2ksN43SkDr8jNVQO1VayjcNRvEc6V7P8mVZ6WvPrH4kBnoSUN0LGkuxvKokCyegPrSCWra7X3mfT3t7Opk2b/rgqzwdC/7wc7bwiR26kBEHApk2beNj4P0xLMIe0SuLNikwYC7QwTLKSVbgiQyUbfYivQZKhKNFOE0gYpPNEkp7iVhGU5gnkre8/q7RlE/V/X0nSG0f/xy+4kKnqtK1qATR8d4iKtofrS3QvLSvmZoyjBsKCQMXD6ADKEJR9i3wCjpQ1UJLjl6RUjSInVd9k0rdj5VkFgrxRo3Mgx8Gd+3jqVZ9j+j9+nM4rX8O+//Mlrv3iTq7+82kUjLq3T/dVL7VOWJAuviehWH//KEefP4MpizoYdascN2MHTz+1m9rJx/DUl28CYGTjQYo+BIGk4pnYpsfMd5/DnNccw0TVRnYUsL0yWz93LV8969dYbTbzPnkFHacsozY4wQsf/HdMS1IdqyEkdE7THqNkEnyzHJUoAT/qa1NGmiZePz226ffayLwbychplBcURU4i1rtmOWNJUo1s21Y29yW6nvAxDJ0/Yck6pCsJD21Vg6LeVuOmaBAQqVtd0wssOLmfBz57N2v+/gLKbVNRkxX23r6BsR1jGLNn4JywhiAQHBxpAyvAnNbL4HdvxGgvYBRtrIKBe2AUd/MYXdMK2L0mw3uGQQWMVmzG8zlM4VPFxO/IY3S2kV88k01fv5sp774UhMDzDCa2jyH7e3GVga9CGJlUiEDgKUGlZuHWTAKlx6fqmrTnqgSBQITvhG34eKVJnN4i3pbtHNiyG7/isee36ymeewKekuQsL45UJsUyfYTy2fXbZ1nwZxdS8w3mv/s0nvr2A3R/4jj2v1jike9sxFwwk/HrXmDBFUfrSIoyIPSyjzyylYN3PEPbnB7mvOl4tvzXUyz/mDbGZlx+DM995W48V2D1zcSrAjIAIwBf4HUolCVBgtuhsIe1gqwCwZiXZ7iWZ7yWw+jrYnSfS89ffhBz65NM7c9jLZ2PL3QkSEoFvkGbXSbI+1S8Gm25KlXPZPyB51nxkbpS08xQaeZAighGsvM3Galsljf2csopr+7n+n9/nK7BEh4dKKUouyYjv1vP3t9tZM2rZ7BrS5UZ853YGdAqv6AVzXAziZTLdqMcRzAPdd6cBRalCYXYPsrRFw4A4AYm4MV5fbm85Mu/nMuOnXD994a488dbmX/eXJxeiz33b+P+Lz7BX39rAUvWtAHg42ELHztcXw6l9Le6553bXb77r4MAXPiRBVhCO6ZyDvzDD+bym+8f5Ll1PoPbSixc28XU+QUev+kAolpl3M/TZZSaRlD+UGmoeyKaG0DxdTnyWlTJPQEOr7cdSmc4lERRl6ShAnXjJFnHpRlVse5ba0Ml2y8hBH1zcmzcuPGPy0h5RV5WOWIjZXBwkMnJSXpm5FKfxwv0Ebw0yeT5bHSlJWNREhqWCFtmj2/FGHbIisFJ6FcWZpbJhclCp9IUfv/9cbms0h9ttJ7ShdOa9elwBksKn5rBYEeSZeE4kuJNyUKZyeskE+kIVCoHxxQ+XqL+hin9OBrV7J6iSEpkoJR9i5pfh3qZhk9VmZz90aV8/x33AnDwK9+j6zoLsCEAAQAASURBVOo3MeUNb2Hjd7/JzXMKXPz6dq0IBz5P3XyAn33qOaoTLme+byFnv66XGbN0n3ZtrvDs3cOsfvcKDBFQNLQ3e/vDw6z507k88eNRzn7bDO69dh8LDZcDYwWcnMuKaXt0VGi2rrmzYTRHEORY9O0rMcsT+EhEIY8Ue5jocuj6x0vZ/btN7LtvK93TclhtVur+m9JHhtC3JPV38qxWdQOS7TWlh8y8G5GzIErsBx35aOZtTl+jOQFEMjqUpLK2CHAML2UsZQ2UZCJts/uJRAV1vLemUdfJ/Fd8/jh+/XdP8cBf3MSiL7ydTf9+L9MvXk7nhWvZ/K0HEHOHMPt68ZVEGAEEkr63X4os5JCGwnFccpaH5ZfZ/d07GXYC2o+axviucQY3T2Au7iMfQqDGajlUWxtGdyf27AHcXfuxZw3guwFjdz/D1PdexHBJ91GEEQ8hAmqeie/rzyOjxDJ9ClaNiqdrlhhCUTBrTDzyDFNPmMWuGx5j6utOxD11OXbR0rBKJah6BkYYNQFQSuoIStVi8qaH6Dt3OYE0cJVkQvZTcm2Ga3m2Xr+T4z98HNVCFy9852Ge+fojlCd8ZGc7ncfMobR5L+XdIyz6i0uYeH4PG796NwOXHoMyHTw/pKfPWyizjaBsIqqSIOcjcj6Ba2JMSIQCWRY4QwIvD5W+gJJrsX54gH1DHRAIuq44nW1fvJnu118Jq0+hZCpM19dwMlPRbrsMtE2gAsFIyeagV6PmmdjeJBM7hpm+vCsFF63Pl7pDKQtDjMhGmimmh1P4mzF8vVR2LUME9E21mHtMJ7knHyJ/3plUXZMpxUkeu/EpTrt6FrvXj/JPr32Rd39xCcec0ZXpQ2soa8P9ZKISR3JcvZ+KaiWMOBQchscEQ2WHrpyrE98TY+gjmTlL8t7/PYUHbxpm7y4PqzzKLX/9EG//zDxWrs2hoogsYT2XaP/IRDOyHvts3ybGfP7s9TsAeNuXV3LusZOpteDolQ6fuHGcte9fyfA3n+ENn15CcVYXS058kWve9ggnv3U+7/pYF51pFeiIpVX05VDj24rqP+ozpNe8ZAQl+Rk0MlEeTppBvQ5FR5wc8+jcVveWWstb6Bqp9lt83zPD5sUXXzzkuf/dEgT65+Vo5xV5CUbKtm3b6OvrwykYDYZCK7xtVpLH+4HRmEwYSnP+7MZclVR9iSaelaySlEy4zxYdTH7frD0jDFM3g2s1UPNSr+ra7OU6kpDmoY5PJcA3iVBERkv2+MMZU8maAK2KZyahY3B4AyX+PxH5ybbRDP4lgwCHkM42gdlu5vWMojEKnXwfwbwgfNZhrosjPXoXt/PhG8+hOlbliet3ce8XvkbfW95EYeHR3PuZexl6diFL17Rxx1dfoDzuUVg2k47JcdatC7j/h4/z0e+toiCq/NPbn2PWKTPoPXkBXWaJqjSZqBp423ehtvcz+7wF3PEfjzP9vKMYqRRxRxzWrtpGjz2JFAFl36LNqDKnbSj2OnmGo1ntAv1OdNtl5OqpHHVCF9sOnsYj7/kBmx44yNJzBkLceePG44fMRrHRQGMOUrI2yqE2wVbOg2Y5K0nSh2bwsWaGUTMq5+T7HEdeMkZIlkkp1bcsljsxT7MGCkJhSY+qsrALJpf8/fF8/y138sLf/hdTLl+Lc9QsJqsWbaeuYvKJ52g/71QCJQiUoLB2JROPrKfr7GOQMkApHdXwZJHp7z2feR1DbB3rodvoprZ3iKFZA/QWJil7FpOujXIKVMY8CsvmMPLQZnqnT2Pol3fRfckJBFaOmufTWShjK13N3RABtunjO5KxyRxGTsO/TpuxhTFPM4HVlBlTCO/fOMb0c2czq1Zh3+/W0X7l2ZQ8G1v6SBkggJpnYBgCf9NWhh99EVEsUN5ygOLqhRhLFlLzFTXPoFbV4zdWdZgYVZjtBXylWPKO4xjbX6V7qs32zR57143QNrXI3CtXUPUE7Utn0L18Whjh8Ynq5vSfthD3iWFEaHCJmoSqRPoCocAsCcySXuqtCZh+7k627utFHXQwQyOmVHDovPQChn/2C9rXLqT/9Pk4OYEhFZ1OhS67TNHUjoOhW15k6okz6cmXGH5iB/nePIW+fEPkOWJvjNZ6Pb+aME+SVvyy864VhDn5XVO2pRZQL/1dvZ1TLu3hlms3cfRFJ2MKn8Gf3cvQc4PsninYvXGSeefN4xsffY6/+sVqZs53jgjukyaNyRwfJXMnjYFAwypbwaq2PFti+nyH9pNmcdMXHueJm7r43LWLaTfSUC0NxwavDMODHiPbxnn8f9/D6z40wEVX6qhxlIcSFSJsJc1ofqPjgyDgQ1duZ2i/x+oL+njdJR5Zitd8Dj59zTQ+9YGnOfakPKcuHuHF53bzmxsPIg3Bkzfv49o57bz36uZ9aEXJ30yyBTCbfZdtN3tfSXhh1lBJtRdExD2HR77Ui3y2Yv1MF+dNJturgNQ8yfa1MddKHnHUJqtvRPfUOU2wbdu2I2rjv01eyUl5WeWI43rbt29n9uzZ+qSMgZL8nZSkRZ89Pvo7+smel5WUcsGhF9rI49VKmuWatMxnybSfTASO/k4aAdF38Tk0FgNMntcsvyL7kzwne8yRSLM2ox9PyRh7DxqHH8GnstdIfpZUhA/VnyzULXlsNsybHUtL+HGV8CT1cPY6UY2MZPtSBNhhwn3O0PSiXmBQUjZOp0PHrA7O+dAiTDPAHl0HbR7drzubjfcO8uuv7cY69xSKxy3CHtyPaYA5Mcr8q47jm3+5kc+9aR3HvmM5x/7N+TjtDvuqHZSVzSRF5n3uLWy78QX6r1zLwAffx8CUt8OjnZx/3DMc3baXglHDQMWUu20hvMwI7z1vuHRZ5TBJ2WNx234AejoVbQumcOu/PMud17xApSYaPXJBnSUMmueaROckn1/9GTT3ECd/kp/F4y8SyestsO0RVCZroGi2tKCh7egnmRRfZwpTDX1o1V+f9EYYXS/6O9lvw5Kc8sFlVPcMM+eMWVhS4Zg++enteHsGqW3ajHJdAl8iCx1UN+1ESl39O4pI+EoyUXFYPzjAeMWBgWmMbBlFBXrshQg0EcT0DsrbB5HTpuOPjGuWsLFJCgsHCAJQSjBe0TVVdD88cqaHIRVdbWW6i2WOn7GdSd/GEAEFU1MIbzrYxyM3l6j1TKNUtVFLltK9Zi77v3UjgZJ4ni6U6lge7fkqBbvK/usfo+viE8ivXkLvO19Ffs0KKjWLodEi4xN5al4Os7PAU//rV/SfNJuqMulzJuh1SvRNs8gbLn1zCsw5dz5HnTXAQH6cDqeCY3o4hqdzaVwbIQJdMFKa5CwPo7tKUPS0wluWyKp+ryv9PoGhIyijyzw2bZmKP2Yjumowt0SwYJLc7HE6l9jM+tir6JhisPubt7L/R3dSHNlDITROhmt5DuxxqW3Zwxnn2XTnSgzetYGFZ81I0egnJc5zCqOBkYGSnNvJuZRklsvOyWaU8fo81bDeNT0ujKJl2ZaOv6iXyoEJBn/wO8S2baz77lO8+yvLeeNnFjO4rcTct5/MzEuW8pPPbAIyUKLMe6evk1FqSe+B+v32mtYbaTBQwrb27agx7udZ+bYVXHLzuzm4s8wD96TpkJNiFQxOe+N0HvzyY7zrb2fy6vf0xdAuCz9loGgHTbr/9WeVNvSi9e6HXxlm51aXEy7t5a+/PBA//3j9QTtCTr2gnY//n3727fH4r2+P8rX/c5AXB/NMe98FTD9nEVseGaai7Gz3G6j+49yRJg6iZtGFZL+jn3q0STToSsnclFYIFr0XmPHfKjQKWv3Uwv3gcMnyUW0obZCI+KcVxC45FtlxyeaxNnP4RuIGZoNO2TUtx/bt2w/Z31fkf7a8pEjKnDlzUMFY/FnWcEi+LElDI+nBbCXZaEzTtg7hCTgUfjNLoQppiEr0fdK7nJRs4cNm12sW3WgVjWjZz0ReRXTsS4EEpJUxlfo8mxeS9WBEVLIG6Wr1SUlxl2f63Oz/ZgZY9vehojxRvyNIWSu6zuh/R3pgamiYpwyimhzRJu8qzWpUCmwc6eFjc+5Hl3DTPzwGQK7TYeZlq5j/1rU8+O4f4qgK7/jG8Zg5i/9z5h30vmoNct4sjvmr1QwcXWCkZmPmfAwRsH54Ksf1bqe0/WjGjW42PjCTno4CQ0t8lq7YyrFt2ykpR9dBQVf+jliqHOXFYxDRD3eFNMubJqcwXNVVmBe/92R23rqRh3/6DM/eto/X/Msa5s63YordZoaHfraN0MVo/kcRi0PndDShu6Qx0pL0ljWLkjRrN/t3s6KZraBczdo5lET9bba2WGG+SN+CDib3l5HVCpapk7V9W1DbsRdzax/+uu10XnY2Y7/9HT2vPQsRQrEi+FX0jkQF9vI9DgcPlggCwUg5T0++RLtdpe2YTh69+RnsU07AMpSGioW6j2VpZbBSsXBdk4plUnRqtNk1Cpar66ZUHHZMdNNuV+myS4y5OUbLOUp7Jph87HmmvONCKlVJznEpTVuKKuyBiRGM3iJBIPCVwFWCPd+5k84zV2J1FBBFiVIS0JEhw1QYhqLg1Jj+1rVMPN7Li3e8gLlgDtb0PABV38SWHp1WBVMq9pXaCQJBh1Oh2ynp/BGpcMPE/Be+/yj+ZIWprz0Ru/sgW3b3YRywMMoCZYcEFaM6WlLt9+l4zqQ8NcCbVtPsX45HT7FEwaoRBDpyMnTsXGafOJX2yb1sv/FZ9u4fp/v4OfjFdnb8Zj0r//RUtk86WKrKvrs2cey/npGZF40GgyEUVgslvhnMMJpDzeZcNM/08Y0sj82MhBjS1CRi3dFl8LFvL+Ofrn4G65YNrHlVPyvPmcL2Z8fId5jInk4WvOMk7n79t3jycZdlx+awjDSZhG4zrLnRIppqZN4/qBdGrAQp8t9YIpimIGB82wjP/O/rOObzlzH3sqXc/7PdXHzWlLh2UXSNKJry0b/q4Mqriiw6ykKGGWNZL3xEAY+IWPzSEaxorYqMAYk+37Qlay7o5i++OBNT+viJ+0oaBJ/7bJm7fzDIwJkL+c7nXqBzzXy633kZuemd5J5/ki1f3cykmkZO1ppC3FMjEtTHxBY+tcBoGLHo/+zv6Lxkja54H6c1zDc6LvVMQmMiNa8SOSPp51eHadV1ohaR9kPoJs2IG+oQ+cz/pHWmJJJDhc8xu2ZHz7pneo5Hb/pji6S8kjj/csoRGym7du1ixowZ+IwnlNh0wmr00mZhFakXLRMSTS2QiUUG6sm/rZLkmilfcV9CgyPOJ8kqOAm8fgQRimhPm4Ul3cCIN5jo71YS5UdECkvy3ENR9yYVTBVIvEDEhe4OFTWJrhcVy5MEDTGyVmHVusEQjofIJOHTCGtrBT9rZbAcCWtHq+8VRtz+4bCrlvCRhn6GKhBUlRUXoIsU1KqyMKWu4+FIj+PeOJ/FZwxQG68xNljjh+9/kK3/+TBt83vJ9XfSNqMTt+pj5gxGd0wgBBTmTmHbqMNE2cHtMWi3KgyV8ox15gkkeAdsnCUlCh2TLGwbY3nnbsaVruXQKat0mwGG6Ig361JgM+blaDOqSBEw5BapVkzG3BxTchOYQrF1rAfDHcWfrHDSD97Jxq/fw08//CDv+dFpdHXaOBF7DsQ0oTGrVpO6OW5gxQZpK4+vHvN61CFZSEy3k95QI2m1gTajA244NoLpNTn2SCT5rFtFWkisT1IorLD/lvTpmF6gd3E3O39wL4vffxoHK0W2/eQBZr7vAtTUORz49m+oPvEE/sgosqODWhVsx8UyfdpyVSypmKzZoeECg/c+R/vaxbi+gRAeE662RJTrIvI5DOlhmOCYHob0+b/Ze+84S47q7P9b1d03TM47szloV7tarXJOKAsJBAIBBkxGmGAEGDAYMCbYBhtjgjEy0RhEDiJn5YRyzqu02hxnJ997u7vq90d1dVf3vTO7wrwvfv2jPh9p73Sork7V5znPc85pK4dOvIhGqeTjrST1yDdeS2UKSMZKsrdWZbxeYaJeYmqmzPgN91E94ngae9rA0zREGdGQtB15OLt/fTelgQ7kzDhSR9R3TNB9yjo6D16E0uB5VhqTAK6ksvlMI0AKTfdRy+hcOchjX7qeBX97PGUZ0VeaZlejnb6Sqdch2zQN5dFQPrU4oOqHTEWl1FEwsX4Hfav66OmTxDLC8xXKB0+CiAVaalRgWBQ0JPgb4Zmn2BSebDBUnWC8UaXNb9BXnqYW+7S1tfGMvziAiXrAU7ft5OEf383yZ65ioF/THYzyyG82Uu4sMXzIYDI/Z6AhneOS+dMa23Mx8s3fv1k8ycwG0jPvfyvvepzMwcV+FZKRFW289cvruOVnO3jWxUvxUPT2e8xMRET1mHG/l0XnH8yN33iKw45YkThrknc2ebf29X6l394Wcu5WWb5cI/iEM9v5zId2EY1N8/g//YxlzzmG6957P1PxAkp+FldiDXhPxHhVwYEHenizFqB0HRetr5l5nxWxkGldqZKIefkbOtkZdREiEFoQiCg9L5sUYOPjDa69dBMnvPsYtt+yhfYenxPecBBPDXQSx1BZtZDxjePcvn2IsxdMNs+HjmFfbA3tUdNBLh7Hnn/xPIvL0/U51mHu+BIXgLjXydSYURSL5D6dVrzurhxwfxMJWJvFBSNu/+61DZPQAPe7IxF4IqJnuMzmzf+zmBShzX9/iH7+1J4GSNm6dStr164l1OtT8BACgYwgoV8tGKmpIAc80u2T6uBAWmPBFqnzEmMhK/jovlhey4+FC0DcwHYbE+JW2HbXS5FlKAqVkQBFSSHBsozSWgy2Lws4Qu2hVGLE02zc2W2tXKrIPMyVtaI4ASkXqLVgVIr7RNrLsmsgQFnpSwYQWk1sbhVwAA+B1LbielJXpQVD83Qyg7VKhQz7jpEp7m+jFFrFxrjN9luWIb4D4LLkC0beZ0Fh50g7jLQzfGDMG79/Cv/xgmuZfHw3Bx23zHwsSh6Hv2ApD93wIEf/6/NBKsYmK8Rb2nh0vMyCBXvoqtTZXutEV2K6yvPZ8ZN76TqrH71pC+PDEQsOiBgKJtMiYMP+Xh6tD/Po9BAP7x2iEXu0l4xMZToM6C7X0FqwaaqHqh+yoGOMPbUx2hd0UWmTHPjmU7nrHd/jqq9v4dw3Lkk/anXlp4A7VjIHjlN9vdCESqDwaBONpuuXXXeZvidFo6bodGi17z6Dc1swJcVlTyeDYHFsrZalkpwiUJGReWc8zXM+ejTfeMVVEMbMf9bBlKqCzpVDzDQiKvO7iZ7cTNuyQartDXRi3PuecSSESaV1ITRR7FF7eCNDrzsPP0khHCvJTBSgdo3TPtRGR2mGKd/UAvKlpr3UQIjA1AfyzfxiGQOlBY2kAKMnjSdUa83eR/fS6BwhrlUIN+yg+5iToQa6pEGBCAXTdz5MtH0cv3+A0gGDdM0vUZ7XRRSbgpw2y5cBRsk1UyIFLtONgFhJOroEvasHufu7j7HkgoPpK08Zh0DsMxaaiOIoYSwBZuIg/V2PfQ798LMZf3Ab6796C/NedipCauLOGKE9RARxRaPLGi00bU/5lMcUQgmmogrhogbdfTWGqhN0JJIuL4nvqsUBnYFJv9tZBq82w9JjBlh3Wi9lOUFFhjz0w/Wse/4yhGzNapt5RjrfIA83ftE1wMz3JUrn4VYB97YV16fLW8iTis0ClXSMzry79KA2lh60NBlDzPCIIChLxjdNMtXfT7ByMZu++bj5HtLau92q7U+18Yb2mFBV2mW9JWAZWlDm8sdWMr4n5I0XbGL42M3ge3zpM5Nc/LaKSedOoXI7Gq/pm5pnVj3cWmpRGmuW9WEBmInlipEEOuLOewXeAkm5o0QoYgLhURGhYVSEAu1z3eWjRKHmlk/exoKVVdYd38EdH72ac74xyANX7+K+L/wOr71Cx5Yn2TvcTrusU9OZQZ2OWduiyk5xRlfuXnC8piyB6/RxHLtztValHfanzTZvF1MeA7nzaLmvyEu6oFUMiQuaPIrgpJXk3zJG9rfbf6wlSOjor7Br1y7CMCQI8kll/tT+d7T9Binbtm3jzDPPZLPyceM3lBIokRkkYbLeTvAuiLDGe4wkdAxOg+wT7y/ZC2f3td5et6aJQjAdl5qAQQpMhMixAm6aWrdmiQmyNgHXJkbDSxkVXzoUuXYyGCVaZBto7r6ARq5jmBlb86OUTKbFNlf6XitTMsXZvJYZu9wJINb5SS1MriXkjbxigLJlkpxRJWkrszHaa9ZqnO4yl+koys2K2+9PjYK5GJu5xpMbs1bJR74Z5EmtCfFy/Q2u6uHin5xKLfZYfECFujbP7ul/dTAbXnU9W354O5z/bKLdVbyGwNsRMNpTZeXALh7YOg9/zKdv/pFEe+9g663bmbdsgs2P72Lb5ZO89C3zUEjG4wqe0IzFVW7btoh6aF7DmUaAn8gypmWJwIuZapQIY49g2yY2XfEYbUv6ARCepGv1CHd97nYGFpQ57PwFgAEpkbLvVlbtXQqNJMvGZa+Tfbdm+yC2Csx30xu7LE0xHXJ23/L7t5JyFX+7x3fXFxnaWatkt5DozJaMI+1HRnhasWyFz2suPYmfffhuHnzdjzj6PSdTrtTwpKJ04dFE0yHbv30tgRcjpUIKUsmXwlST14BHiB8IqqU4W58AjrZ5VTbvGKUahEhlYjcCGdNTnqGnPMNUVDLvtZJpXRNfKiJpoHrJi4m1YMN37qRe82g8eQey1EZl1QpUybzDeBoiA2Si7TsZeOkL0YFCtkV4HTW0TgB7wtZoLUxQvTAAxY7ZMiuNyGNKlOg8+xi2X/4gD33vIVY8fy2RlqiyYNqOuXCdfWlYH60FM1FAx+oRtt28ke1Xr0cceiSiEhNXYoSvUA0PQoGc8fDqELYLwg5BYyiks2earrJJGVuPfapeiJfEcbV7DXqCacoyYvf6MbbdvYNT334oMqlttPeJMTbdsYuz/+E45/47TpwWjAUkz7c2b45KkjbY5zf3TuFkKkyfuYwBTo/5NBUcJki9mdnP+kvYIBSehJFlFbo3PcTMwGK0CmnrCeZgeJrfn+b6LLNLwSoiX3leUnjPBQwMSF746i4u++pDnPqXB3PFJ+7j9u95XPjuFTz/uaYgbDEZRvGdz34X0o1rA85i0cywy0SuFyP42hcn+eK/7KZnwQ7e9NWjGJnnUxECT1rbQxKjOPDIDjpHJnn/5xez4qAKn333BpYeZebbBz91FVNbJwEYmF8i1B5747b0XgQiMvFDqJQht0ClUVBImFpTLWS5s8jli05CVzYVzwIcZpNzudu2VCXofFC+bQ38lhLyVscu9t1K/m7PcbZ45Cz2xlynVjLmUPlU+qpordm5cyfz589vcbZ/hPanwPk/aHtaTMrw8DAbHVmVBSMA0kpNErZEolM/iQUp9aRKMcCMNia0DYq2gYmWMbGgpvhwFj3GMTJlQZSWKAsutKF8Y+0GgydZLjAyCpuuNhujSGMZ6tKjLONUMhORxa9IbeRUbpyHBUvWSFQIoljizyIZSI07nQT6OwxSei7JbsaDJNKH1t3e7mP+FZncC4kSOrs/LbzgFqDkZVmyyZtl+3ZbSy9kiwxes7VWcTL7koUV5WPF7Wfb362w3JLZSp4TK8vrWNLLgAwJHWNc+pKjLlzMLT/ZRvvpZbxJifZAxOB7ipkoIN7SRtdTAr+u6DzySBaevJGT5j1Apyxx1Vc28MNvTxGUJdqPGN1ap/aMg9m7tSsZvGYmUFQ6GnRU69Qcac/YTIWdV+1i0bOPpntJV/pcrLjoBOYdNsjVf385ng8HnLmIel2z64lRonrM4Jp+SuUSfsIMpgUSLcjGgPNQJA4Cm5GuYAS5jMpsAEUWwUYLudb+ZgGcq80GaoopzVu1YjwNZLp2T8RIBCq5NotWlHndV47l1ss28+uPXc8z5rUxsGYFu6bbqe3ci26EROPTVPvKTYap/TvcsZu2+V34Xpx7NrUWyMCj5EUEj69n4v5NrP/7y9j94B5ueXATKEVloJ3V7z6HsNqV7mfjXPyEqXn805cjVx5A56pj0UeHaBUiu6ogE72Bp0FIJm+8mbbDDkL7CnwDQsLII5YySZeZ9a81KVApxpZrkv2UoOPkQ9n6ld+yYzuUe0q5987tr3hNLPAaecmJrP+vWyj17CBYMEK5ElItheze3YEWAn+XmZenRwS1eRE9wxP0tRtJ2XRUouKZeb7dq6O0oNOv0enVmBlrcNtXH+bcDxxO4NVTg+uaLz7KuvMXUelvQ2l37pzbUQLuXC2bgHgxJbud94oAZTYZTFN9jH1s08ogNDEV5ninvXiIn3/pHkZeUGbz9+/iiFO7UgPabUXjsOj9b17XzHpUZGsW1pWJSSTPf2U3N187wz3ffIgDzlqCf8AiLn3PNcyMLuUVr6okhSJjB+jl1RSt3tvcb93shLJtaizmm58b5fx/PYFbv7+Jn/7bk7z6H5YDJTytCYiS85EMHzrIB69YzvxglFhrjjqjmy98eCsHvGQPvQcOMLV1knkr2mkfamNKebnxmXTWxiEJrefSNHBdZwb+XEyxjSXJNacKfOa2zZ6R4r1rjnGZ3alntvfSYzetL8i/5/rGtwqAL5acaMUWFUMD3LhhNylLmqI+8BgYGGDr1q3/g0DKn2JS/pBtv0HK9u3bmTdvXiq9cg0UV46VMhoyzkmsLOCwXl5riNeFokpoamSIDPgUQUqovZR9iZHM2KrQCQtiU86SMDmlRL4BUFdBCpB8aQKdrXEepga+JNKSRmwmn0hKIhlT9qI0rSfYCcnIqZDZy2gBj01/6wuV/pvJlUTalwsofBmndSxCLWmowm1xvSpaEAhl9hGqCVwZeQAJi+U85C2e91jPniFstolTOuO3hle27ew1Y1oF1DdNcrrZI1acEF0GplWMTCvwkh+/m5yh2UtpAQsqb1goLZC+pLZ7mg6p0b5GxIKoXdHXPs2Tu/qo7pC07VDUuwX+oXs5aeAxur0Z6irgiJet4uHrdtI+UCasK+S0z52XT9O+SCKS1KtxSVP3NB3VOmHkUQt9Ezg9WWLv3VvpPOd4GlMx1SAywN6HeSet4JgPKi5//+Vc8aFbiGoxXtkjaAtoTIfMO2yYA5+7kpXPGKa7XWcyS6ETR0L2ISh6Td0kEsX4L3d7t7CibUV2xkqssusp03fpvwtcbH/pcZ5GawVWYpK6MtLjmAsXomLNr9/2aw57zTqqzzsdtbwffe5RbP3yb1hy8TkE7ZmxIMAwLjKmbUGF7Zt3EUhTAyiMPQIvxmtMs/3X97Ljd0+w4acPsvi4YVYdVqXnvBUIKZBScNsPN3PHu3/CkZ94PvhtaVHSsm+MoLFHdlJePIh3zGGoLRJVKaErHtaTIbwEqASKcNt2Ok47BqTCKxv2J4okQhhAIqVCCAi8mEjJJB7FlYCplFFRAIl8q/vMI3jqy1cz/2Uno4Y68KQikM2OB6TK/a0QCCHoftZJbL/0Sha84Ry6qybwftTXSBkDJaI2qI1EtA1O0V5uEEgjqWson5JNjpEcqyJDPBVx+Sfu5/y3H0BXpZ7e2y1PNnjgN1t49WVnZ2Nq+Sy0roECNMm9WmVt3Feby4D8Q7XTXzDA736yi4nr7uP8V/VzzksGkPtRgb44riag4nxAiu/reKPEnjHBvN6Qdj/CpiiGxAnpC177lh7e9Rc7OPSIXu6+Z4rOdYv40b89ha/m89LXdKT9ulCoCAbnYk0lzd+sqRnNO167k+WHd7Np5Un0n/8497zvMj4/E3PSixdyxNE+1s4PgYm4wrA/ljplDj51gEOvnOQ7L/opXUt7mH/MfF754aWESZbIlNXRRgwFhnFoeU0LAMFlQIo1RSzodGtdgXUYZTEgdn+3xbRmvlyDv5j4xk3PnslsdbrOXn/3GMVA9+J5FZu15UwmNUfK3oJJSR3R2jehAEn/1mGcxhhrSah85s2bx7Zt21oe90/t//22XyAljmNGR0cZGBgg3mvpyixWw2YKsvKRUHsEOpFdpS+BSOMmVLKvYSUEkVDUk6FYiVSovCYmxUqsLHNi+jfgIpUsJU4VGzxuNNEZ0xJq2eRVssCpEXvUYiuSSlL0amlqCyQvfpC4F5XDGhhWx4zLAB1zLiUvoqE9GioL/ra1AmyTQhm5hYzS6+JeI7NN5oVUCCI0Uhm5A0Ckmz0uqb46W9JEAbcCIqnRNouXPO8NcT0wIufRak493Ho/91q0onRdBiQ5CxNvoZsBjF3m9r8/edhbBfgXZWAAm+7aw8DhC+jqnGFvzaO0LUB7xnjTj7dTGtPUuwS7j4x57Yo7WFXZykRssiCVfcXBpw6mH57rfvwIbYetQ0tQFYWcyTR29chDJeli66MV/L0+XeedwpYvX0PH0SvpPmIR1XKDnqqRvvQcOMTa1xzB8ElLiTbvovf4A9BS8ugPHmDHnVu59ZI7uelf6jznM6ewYl070onXChOQb2Ku8oXr3JpEs7EnrQCK1V1br1gRoGTXfR/Bn78HgHH7/H2Bi20ymeeOedFi5q/t4Tt/dRtDW2cYev351BcN0XP4EqKNOyitHcITMTNbxph8cjfhtj1URIORwwbp7NKUJncjeroJiNjxk1t5+D9vZWBxG+e8YRmHnzuPoOw1fawPPGWAS15yM7t+cze9zzoWZMKAeTH12Gf7FQ9Sfc7ZhJMlREmjA2WACYDQCM+wIVpn99ErKUolU2k+ihxgJUjjaAIvNrEz6TqTAjfGgJYoFuhag8YDj6E7u+h91jFs+OyvWfauCygnYM3G3gApi2RjanyhaCiPih/S0+8xtXYBo1/5KeveeTgNUcKbpxidrjI6YBIMVPpqCAEzoYmz6qnM0OHX0/dyZ6ODeeUJ2mSD33zmUU77syH6h3wCUcfGEV7x2Uc5+NwFdMzvopkjTsBJTrY0izGcY+7277mcCxzsD3OS66tJ0tNChuULPvitA00/OdlUnnn/fWMY3LS4tn39s3v4+b9vQPqCwYVl5i0uc8TZ/bzwJdU0g+DMtKZckSw9dSGPd/fR+cKzGNz1AN956485+qglrDvUT2JbmyXDzbWPdGvQ5JzT1s2Kv3ndNjwfVr73QnbHmurhSzjla3/Ohu/ewZdedyunvnIRL3vHsLkmSCoypKYDc1+0h/Ikf/4PqznxZTP88vMbOfkVCxhY3MZ0wqK47JKrDKjpIJ3L3XppxpnbDFSLDIdJaJL16QIa+3cx1sM+w5bRyd07rCTeT+a0/LfTZTW8BNBa510KJARp4VPbVy1Jb1xxkhC0mrNjBNNxGYVIErwYsGITG0DGjtjvS6g9asrEs0VIfKmQ2lHnON+qgYEBdu/ezf+Y9ie51x+07RdIGR0dRWvNp7dcTFD1CXWQGXA6iyexoKKhfCK8VLeb97ZbLbxMa0OkQcwqMypdiVZqGMnMUDf9uEZ98nArjzgBEpY9cWVmSnsokZdXNRKPXC02waFpkKr2UVoRKUnJiylJU1wQMmPbZTIiLROPp2I6KjnbybRiukpkW9aTbccDWUYOC5osULIPq9JZDZDZgvLN34WA+cRo9AsfpiIIkqIZyABNLIwZd7Nn3V5P8y9NxqIbq5QGxM2ynTUIWmchSc5D5J+p4rLZznO2VgRP7mQdI+lb3sXW60cZKTeYag/RfkBlh2Tb3k7aNwomF2miDsWzjrybVZWtTKsyY3Eb06qUJoeYjMqEEYRBFdFWwpsSxEN1VKdA+orAj5meqoDQlEoR5d4acadHhxxh5urr0PfeSa2/jLd8AKUF05v28OQ3b+PAF68lWDJIZXmvkcPIkL2P7OaQD5yHFJpN37+dH/7FVTzvU8ez+rieXFyKkRUkJ568z/ZZTe9D4SGw4MQCFMuc2I+dSq9j3qhpBTrmAiO/L9PSKg5rf7ZtMn5kRKh8Rg7q4dVfPZGvXfQ7ah/5LoOvPofGxh0seMYSpq+9k0e+eTcTT47Su6SL3sXtKKG56mt3UhsP2XzVE/QeuYTdtz6JLzUv/7fDOeCYHnznkhYNr6DscfLLF/OrLzzAMWcdgUzyE9drij3X3kNj4078mR465k0amdSeDsOgyiwlsoZUMiACRbnSSNgTw5zEsakyL2em2P6da0BrBs45jGDRsJmbvRitNfGuccKJGrt+cSdxPULVQ/rOPpxo+x6ivVO0rVnE9h/czKKXn0g99ImTuktaCwJPogNBd7nGVFRCCk0jibHpK08x/NwhNn79Merjdbb7Ayzs3EsYe9QHppFS098+nc7xk/WSyezVMUEgYnaPezz4xTu4M/bp8mY46LAyQwcPEog6FRnS0D73XjvKg9fs4DU/ONO51tk7PVdmO7flWZT9m0dyjLEmYbh/P8BsxzBXqn0TY+PWMGvNSreKB2s6h8K+xXgTtx24POa6eRUG3/UyvJkJgj1PcelHb6erYwHnnl8hxGfVoWXiULH7xseZd/hS9s4oSisXs+zPDueSj67n09+anwbgz8WauAHVxXOwvx9+KOYvX7qN1QeXOP3Ph7nbr6IigYo9proWMrHpGuJ6DG1VTMyIn8q0XMBggcXQqjIv+9fe7Pjp9U0cc9YJI7IxxkoSCwN83LT+xWB6eyw37X9IkMZLFWVXreRYZtzZHO1mxCwyJVlW0+wcVMKyGGeSlyQwMudhgQjJMrQi1H7um1YnMA4UGWGypWXN2oQuIAlETN06s62zLFlvHd6Z0sXK6sJUYm8k/ln8157yk+zatavl8/JHaX8CKX/Qtl8gZdeuXZQqAapcoZ48gTESTysisofFAhTIDGOVvDxxwQD00CZeQyjDgkiSlyUzWF0A4Ms47Xu2gDBr1PtApJMxJeDBNUD9RKvlAp5Ie+bjijByhkSiEGHS3Uml08uVgYvMm2EBSjZuSS328aWiJKMkID9jGVywgTaBoHYsEp3K11pJmWxfKgFjbqFD82DbLPP5FmuviUWyFdntX0VQYDwviYGZAJhQeynjVbz+ub8dGWAmERLJBOisc+61PY4FsW6dE3d78282RvcaPZ3Wis72pXI+6PbYMZNRmahujCwhNY3BkLBLUhHgNTRdj8PiVzwOwKO1YQIZMR2X09ipPWE79dhnYnedUdHP0IpxpjZ1QijR0x4qEtTbYrxqTFz3mKn55gO4eT3jNz7IgqOHKLX5+JvvYvlxB6O04Km7NrD8RYfgLR5GaWgk74rSAlEtIYRAI1jwgqOR7VV++FfX8fofnMrggrLJqCfj1OtdPGfzEW322FqA4haxy61vYdDNxW7MZSztM01qC/BTBB2eA6pn04AXDS+7nQUqARGV+T6v/uoJXP6ph7jnDV+m2t/GbVfcS6XD5+iXHsChF5xEuep4nKOYxnTMkzdv58lbd3Pyew5k1cmDlNJacM0eYnfMR50/j999bwsPfvgn9K3qZ+Nv1jO1NyScMm/3oW98jPm9JSIlqQxFzIQB0/WARj1Ig92F1JTmddN4eD2lQ5cSBEbu6vtREpOi2fa1K+h/4SnItiqjv7wZfc0D9B61lI4DBtlz46NMPL4Hr7+L4decjSgHxHFyjp5KJWE7v38Dm79/K+HOMVSkwfcZfs3Z1EOfeugjhGZ0oo0giJmZKTH+y2tpG9tKe1Uh6nUe+ux1BF1Vxs9bize/k0opJIo9hNBMzFQoMUM1nKLNV0ztaaC37+J339jIoledRNtwFxU/ZGHHNmoqpixDplSZ6QnF9z74EGe+/SCqQ53mejveYDf9cFHqVUwHazXwwdNgIFywYoFKOt+I2etPzNZmS1ebBteLTCqTBTVnc2o2rtagfbYg+X0F05/87G6u/cUEu755GeX3vJ6du4+k71Wr+ex7LmVo/nKOPNKj0lnmzJcO8cTVmzj+9E1cPXMAAF0nreWe791FQERNBy0zhc3mYGg1N+ydlrztNdsYOGoRE10lLtuylnDDZkpeRM+gT7UkmNk2wcEvOIBXvqmL0IkjyZ0jmZM0VxKh6JBLAYpKGQILBqZ1mZoOWgJhV0pVTL8LpIAgF6DeYnuzPJOLZUmHsjHa9SZeOHMQFpOgxFqi0jgfw+6GyqQsDp3j1lSQxh6HCVCRaOM7TLKiWuBjlQPp+SqoJeL2UHvEIv9MhypIwYlxLifSLxUQ6rzzVaKRWuN3+f+zQMqf2h+07RdI2b17N+297UzG5ZzBaIPJZ5tErOHZUlZUMDjdAG4345R9oVLmhXwQZqhlgcXQJrOXZSUKAAUwxr1uXieEJikNkGNUzH8BvjKgypcqjTnJ1mfnaVNuai0IY3MevmMcueyBOXC2j/VgN5yAfjdQ3rIskfZMAD8ZeDGplZO/C1Ill7nI3QeHPcmKW7kftEwWEqX76Nz9KbamWARI44CSLcw1dib/Qg8Aue1tprOWbR8GaDGOpthyUg9H+lHcdmbjHsKxaaYmPdST7bSNCQ585nrW/2wlo8+YYfn8XfSWZhgujzEatTETl1LAsDc0sq9IebT1wUC4BSE0y9ZsZdtYJ2HFY+buR9j26e/R84x1iJGF+GPbKMU1ulYP8ZoPdDK/a4Yn6t1c+aF7Oba7ypZGH/c/sYcFz1zDnoZJ/1qSMWU/whcxUkBjvIbfaY4976w1PP6du/jCC67mr357Fm0d0gCOwvmn16UQn+IuLyZ7aL6meXBSvBettpst+9ZcrVVBtbna/gCUuY4xMOhx4T8cwkmvWcETt+2he0EHi48Zwkse1ZyR53tUuiSrz1rI2rPnO8ZK9vy3Osc03WogeO0nD+K3X3iSmd07OOctKxhZXmVkdTdfe9vdjH3uMlb8zalM9YzgScVMIyBsJFO60MSRiS/pPPdEdn/5J7QfssxIsbRAhDEyEIS79lIe6aE7Kc5YesGJqD17mXxkC3u+eStqpsbIX5yLTWmSZQBLKqELTaQkQy84nvrGXQTzehC+x9gND7HrshvoftYJ6KkZpvwKM1unGN8ySf2hB6hv3MHIX5/DuiUTLK7uocOrU2sIfvJv61m5/BFWnnsYN2xawd7pKpPX3snk/RvxVYPasOCpPXs58IR+TnvHIewotwMxjdhjMi7T7c8wGVcoiQbf+MDDdC/uYvXzViIKzLMb2N4qFqVVfSHzrjjMtcjLcdLl6XOVLLeON7IEFQ1tsiXNFgPTCpDMHi+TAZKiE8rO7cWaK9bAbpLmzAJU7PFb1u/wBO/+1ALe++dPoD/3X+jn/SXVg9fQ9fxn8+HX/Jy//cISjj42YO06j6u+t4sL2cGS7n4mwgpdbRGqERMqQckqtlscv6YD7q0t4uiqcQLNxsj++79MUBrooCRjhs5cy+7bNhAuXMXwvJh46w5u+pebOPbC+bzsrd1Otk4nxoPMoC4ClNYxIg5QgVRy5manssdx2ea0jznmOJfRsa3ogHFjSYzrNQ+icrVFEpYiFxPiKFXSOGCRl10r7YETt5hKstLvc5b9Tql8WQizfzamuhNvq7TIZS21hYxtMiRXep6pN/LPRqQkQXfAjl07Zr2O/9fbn5iUP2jbL5AyPj5OuaNswACJVMmdSHIvbnZli7EVtmUPXT6mwZVNZYa3TJgFPwUo1ouf9o8w2sXEcPdlXEj7lz9+Iy6kBCQDCYAThJ9lqImVREmBFBKlFcqpam4/aBasWMClsMyHNJpykTf+bT2S4lhaGeOt1kU6AWVOXxas2HVgAVJBQkZyH7VI5Wa5bGIFCZptXsL8pGNxAYkLbuw4E5lZpPLSM0lmLDQ9H02pnZsnp1wTeQlaMW4izermGCbQrBd3sxDlz9l8nLt6PbSGWqNMaUYgI2jzQyZXhASbKgwun2QqLrGx1stEWEnvgcsmmedUUlnQy+DOuyn1LmZhzxiRloyfuJiZO9ex6I1nwYZN0DGPVasM49jZ8SSd3gwrw8e4pVOyN+5gPKqw5LzVPPjVO1n0kmOpe+00lIkHq6mA+aeuYOf1jzFy7sFoLdj8y4c46K0n88gl1/HAVTs4/Nnz0/MuFihtBVBaeZqLKYHt73214jazJWrYn7a/TMy+wMi+ZGEWSAUiZmR5G/OWtycf5ATUOteplZGZZlByjtPqmrlj6Bmu8MK/W53PeoPgmHcdz03/dCN3/OOVHPTxF1OLqmgNQmoEGq1MYUQjLRVUDpjP1F3r6Tl6OVMPbWbvz28i6K4Sjk3Rf9KBlJI6L8qPkfM6aBteSf34NVmmLhJgIjVRLFOJbSY9lXjzhw0A0pqOE9ah7nicrZ+6jPKCPsZrE8i+HuibR/tx62g7poNN372JBW9Zx9K23XR6Ndqqgte+e4jrfj3Jnf96A1HjVib9TkRPJwf/9Rm0iRr3f+Y6Dn3lCcxfIdkbtlGKYrZMddNXmUrf3WlV4trvb+PxW3bziu+ehRCGNSlKQVsBFDdAPp3PXFYFYYw87SfGbWLgzRF70pwgJDGGEel+sxXyswzMvgBKtq9IYojycYpF8AJPH6jkxlV4X8tV+NAXF/PBv3gK+fmPwQXvpO/8I6n2RHz4tb/itR9ZzrnP7GRgZA8//ND9HP/BQe4aXUhZ18CTqBgCP2M0ioxriZjDKhvSd8ca5u688+Nfwq+/N8ZLv34meweWMlpv46nLtrLgWQfS0b+bDXdsYmR1F6/+2wWUpIn7AEf6pLPYDTc+0jIKTfLXxPaw9d0851vjnoM9j1Ty5ZzbbCnVi+efk5g51ygFQ8731v5dnFMzJ2lzhkYXfBQzgrrfUxd4uLGgdlmIlwusz84/Xwoi/Saj8bRKgQmY5EGBUEQpMBK5b3w+/lHitZfZu22U/7+3j370o1x22WU89NBDVKtVTjjhBP75n/+ZAw88MN1m+/btvPvd7+Y3v/kNe/fu5ZRTTuEzn/kMK1euTLep1+u8853v5Fvf+hYzMzOcccYZXHLJJSxcuPCPcVr7D1L8tpJjeDoPso05scZ6zhB3DNOk2UnUBr67mbYUgloU5NiDYiaKYiyGZVCiFka424oGrGuoR46GOtIylb/EyDTtp8SMU6JRUuTkWDnvmcOu2ABUJUVakM3uk1Z1LhjGlg1yPX7FMbvHs+DKjFGk7Ip7riXpTv7Z5GXjZDJWK5GPCYFLgNtrKoVuimux16G43PYnhU5jhOx9kEI5+t38swHmmXAp3UjLHLCx1yWrzeMl2eRaACrmkgu0HnNqzCT0staaJ++d4OavPcqyj76aaHsVNEwtjLl142IGF+5lb3eV6cgwJ2NhNQd63WdyOipBHDP6xDiLnrGEjqBGe7XOTBxQ9jrYWBLUGmU6li+ku1IjUjN0lursCjsZ9se4934YPnwo9WJ1HThE58Zpdl7zCL1nHmquR2yA/t71uxg6fomJT4gVEw9vY+Gzz2TkuCd57Hc7U5CSMoGYugVukodWrciCFj+2czXXyHC3bwUg/hBZv2zbX7bFjm820JSXqeU/5Lnr1cIzD3mg4vZXNFDca9TqPJbPj1j8kXX846lXs/DxUSZ7TT0H34+JY4kWpIUYEZruMw5n9Nu/YULGTN10P0ve8Rz8QDD2u4codZWzc5LGQaGBkp9JAYF0vhJCI+JEd58813Fs6qCYmisCraFy8Cqm73yUJa85CYDJ6QpSaqLQQ2vB1LVTtPkNOr0a5aS0fElEPP9Zit3PXMpj0wNs3l2iUemkPZhg+y0b6VnRS3l+H3U1iRSKWuyzsGMvXUGNQMRMxBV2P7SbK/7lHp7/qeNp76+kYKSYyc8FKC7AbALliQHnuQZj4j23Ehvl/HZbK1Y55yG3dZzmeNRnAypzFoBsscyCl1zT5Aq2ZttnsrSWld0Lxw61j+6p8qFvrOSfX/8Y0/d+ncpRL0KddBzLhyp8+X0/wiuv5D2fWcgrT3qExRdp+vunqBzQCcDWJ+p0rs6AQYPEadJC2iSdsT5wX8gXvqp5+J4aux4b55n/cBzTQ4uohQEb7p5CdlTorNaoRz57npigb7jaErCZvvP3Kpd4IJH6BSKmrgKTWSpJChCmcRzZ82LHaq9rq/mk1fxZnBeL4MSdn4pAxPbjMiTFObwYoN4qIUqWjjq/TTZuV6qW2VFuHbziOmMz2vgXK0kUaQkGVz0TyDjdJrsGqgmoGJm9h2yrsHd8rOn6/tGaFn+UFMTXXHMNf/mXf8nRRx9NFEW8733v4+yzz+aBBx6gvb0drTUXXHABQRDw4x//mK6uLj7xiU9w5plnptsAvO1tb+OnP/0p3/72t+nv7+cd73gHz372s7n99tvxPG8fo/jDt/0HKe1BNvk5184GNUJr+UKaXs9hVJQDMGy2l0iZ1Lv54HD3BUz61XnZTlqTxJFLRTRXqHeZDgsS7IenCCyagEcCHOxHWqm8R8UN4rJBo/ba6ORfJUVaS8auKwKUzJDJ2A03SD5O0oPasdt+wtjDk6qpP9saDn2bA0SOp99OfCabWbNG1wU2bl/ZPW39Qkl0E8BwWbH8Mcx5WcDjTt6uByVjc7JrbevdNLF8hTZXGk4XBAOJ8aD46T89zH3ffpiVLz+SxsByqg9JY6O0x8SRRxRLlg3uMdnc4ixJQ3OGM9N/WI+IZ0KkLynLKAFlkooXUi5rJq+9g2jlQtoObEuvw56wnd2lDrZNShra0OYN5dOIPYZPXMpdn7iertMPZefVD0O9gfYk4w/sYPCk5QgVsfN3T9B3zDJC5dF5xDLu/8iv8YnQInsGImWKrAbE2KJzrbzMTYkO3I9YwTO7vx/nVm0uIPN/ogbLXOCkOIY0ZiU18Aqt1XknRkPOACxcO3usfcnSAhlBSRI3FEFXmUoQEUYCVQuR5Qr1aY3wAwMoBHieZvAFJ/LUR7/H4jedjedLQDN5zwaWvPrk5JwMOLHvQMWPjPyixbzoSQPe02ddaqLI/NZKoJQkrps4qyABS74fE0UeQprZy+/v5qGHBG0Hj7CuczMemj1RO/OCcbaHXSjhsWJohvHIXLu7r3+So99xHEKEREmWx5IX0+7XaffqAGy+axc/vPgGTnrDapYeOwQOW+KJPEtQlDDm7neRNXSfdft3ypA5d7+FUZ3+TmIWbMvqayhssPNc81Mxw9bTbUVmxUrA0rodLaSYs7Eqreq7BCKGks8bPjifi5+1nsNOeYDOtSvYuXYdK97e4Et//UsGvnsoh5/azfXv/CUv+8Qh7B46gJETFvPBd4/y1R/24yV66xKtK89Ddg9qNcVrX7CDg85fwtpXrab7oHl4A73UYuO43Pmzu1j25tMBU8dqxV+czC2vu5QrftrL2c9pz8u8HPvExGF62TuOJpBhKsMMvJjJuEKoPcaiKm1eY04HxVxzXKt3vdW8mGNNHEamyG41xYUWVAVFgNKKJXF/Fx2+RZbE/ba566zCxYAKl7HJCmZb5UbxGPZbnm/5JDueo7zx2sqMjf3PASmJCvYP0s/Tab/61a9yf3/lK19haGiI22+/nVNOOYX169dz0003cd9997F27VoALrnkEoaGhvjWt77FRRddxNjYGF/+8pe59NJLOfNMk2zk61//OosWLeLyyy/nnHPO+e+f2NNs+w1SZNVvergg/4AZVmIWA81lOJz9a8qnFgeEsVd4YZp1wRKTyrLhyIFcg91u01uZTrNr2TGYj62kCEAiZEtgoqGlFxFcD332kY7JgxLI6gwo0ZwxSxT2twBDFJ7MJkNeibTfSMn0eKa+S/NkGHiZN9Segzt+l81Ja90498IuS8cV+01j8lvVRnD2dRMGzNXs+kbK0uWlZKlkzQKRQncueEkD/gUGJCWeF1fyMSuT4jSN4L5vP8zZX3oOu+evZedTvgHKPghfIaWiWgrprUwbwB37xrtj7kyuX5WActkRMO/EJTz8nfs46W2HMR5WmAzLNJTH8pcfw0OfvZ540zbE6pPpDOrp/RqN2pl3bD+Xf/xeKsevZToqEWmPmdEZ2hb1su1ndzN2+xMse8WxRFMNJqTg8a/cTG2sRmWkh5WvPwUtNB1rFlIbb3D/1bs4+LTBpvOPhTSMXGKMFY0U1epjhtjvTEnFflpJHm3bF6Mw27LZZF6t+m/191yApdW+TfE0Yu5MTNBsdKZ9tDAW3eOk9T8emiCoejzyzbuJ1H1Mrt9O++qFRNMNGnsmkZ1teOUAopjS/F76Tl6D31Gic2kfSmv0TA1R8g1LrkVuboDsnbcpiCXZ+yGEJvBjYivjTOZiS+Tq5PGPdu8lenITwbIFKCXx/RiVOFvajj2EHVfexZOLj6DDb1CVDe7Zu4Bj+58EoMOr0+nVCGTMdFyiHCg6gkbqjfVlTElnxfMeunwzP3//7ZzxtoM47M8OSIwaJ6U2IJNndK56KK2aV7zXQjWBDphTlJquT5+b9N2xabqbJWn22rrxJG7hxebx7x+ASR2LOYdM0kdBitgKcNuWKwCZbD5vaZU3fmCE/3jvj1n7+mPpeebJRMcfzJINm/inF91Fe6+Ph+bTL7qZF3x4ivP+8VguPf/H3HJtjVNOLeXmhWIMx/YtEZ/5xBR/9uouprbVkIHHMe86gam4TC0OUofh1HiM11Gm2mZA6lQjYGCgk+XPW8vtv9zK2c9pT1QcrUFYqzTHgYhM0UmhmKkL/u1Z1/CMi9ey7rz5TdLnuVpubmnxrhfjTsBhVFqwILa1iqHKsSmO7NRuPxcYSfttAUqaq8dn0ntzjMxxrVocI0rPJ39+6diFIp/sIbFHrO3jnLNoKzE+vp3/rW18fDz3d7lcplwuz7J11ixw6+vrA4yMC6BSqaTbeJ5HqVTi+uuv56KLLuL2228nDEPOPvvsdJv58+dz8MEHc+ONN/7PBSm1Wg1KRkJSlAa5v32pMlahgJJdmZFthq4PqMd+EyAAUvCQbW+K0UVKpoZ6sYnE2LZxJ1JoYmXSDKepMclAgpu+2Eqw7G+zvTve/HFs/27cSgpMtOnD9xQ66cetxOxJnY4tHbfI6gnowvW1MgxXmmb7FEITxcn5OSBGSoXvKUKnJoKUOmVdsmUKKcwY2oKQUMk04N+OKUjqKLhMkV1XknHq/bDXwkrkLPPjXq+SjJvYLwuSbKB5kcb2HamcGbvnsECJ5FAk8UoFoGK87CIFDinrVZhoi0GwkpirP3EPADOdA+zc3k2w1yNq04R9ikp7A9+Pmdc2QdULU7paOeAIFDpW3PGPV1DuNZODjsy5TG8aZSYO2FNvS9+BHTc+xtCRI6x45nIiXafda1BXPn2lKULt4fvQ0AGP3zuN1yXYdd0DzGwepWPFAI2pBsvOXMrA6n6UFgwdMZ+SNB72WPj4MiZSGlkVHHrRYfzgXbfTfsnRzD8qKdJqr6MWaeFUw4wkz6GjwzbXR+c+dK00/PvVChIGcw1tn60ZklYgIq9Vnh2YtKrfsj+g5Ok2r2AUtPLcp5mjWrSisVhkrh65cTdLThyh93Vn0Yg8Nn3hcoZfcTpKC3b/8nbaVs6nsqAXr61MbdNuRq+4i94jl+JL816MPbSZroMXpu9U0bFk0xin8WmQe2OMfNWZJzxlZF8Y9mbmnntoXznI0Jo+to4HaA2+p4gFRJFEa4kKYfveTsMItk+wYUcfSzv2sKy6izavnnqvzdygKCdp4IPk+jSUD2HE5Z+4m/t+toHnf+QwVp2+gFA3O0VmSwQx232bq2Xy4dnlpLO1FNy4+1m5GCqTp+FIaxy2xWzfesyzpQ6eDdDYY1pWpVXfc55jATDZ4x1+4WL+eWXAu19xMycePExt0QGsfO3xrDptBN1osP77DxDfu4Pvvf8+znzDNMtPHuYX39vNiacOzMqIhg3N+9+8k6c2xNzwkz14nuDQl6yipkrs3tpgbMNuBtcNUvOrbLn+KfqPXZwNM/kGedUSTz04zpNPKpYulakzYXSPIuzooDeYMechzBmFwEM3j/Gzf36Iiz6zjuWLzXf4sWu3sXfzNL/9p7uoTYSc8OJMr78v50Tu2raQa7nrikV03WxZZp9meyx9RqyjJHWCOHE2DnBoBTj2vS6bN936d8Vti6AF8kl0WoUEALlY2dnm9bQFJer1WvPyP1bT/EED5xctWpRb/IEPfIAPfvCDc++qNW9/+9s56aSTOPjggwFYvXo1S5Ys4T3veQ+f//znaW9v5xOf+ATbtm1j69atAGzbto1SqURvb2+uvz9mwcz9AimNRgN8LydrcpGzlQtZYBCpZt2aK7ey+0uhqce+8dwXQEfKlJDXNlrDtimlsfOR3TrdBZDGgcRKEiqZM7DtfkAKRsz29vxAFQxybaVWhT5kYkBnwCaLObHbGwBDWqcgSpzOrmdSYIqfQcJmFICbNdTNuiTOxVPoZKxxJFFKptJrzzepA+MoA09Cajw/xvOMbE2rbLmUmjBJsVIP/XSfIIgIPJMtSmloRH463mopZIaAMLaTFmlRuMCO1wKx5HrZqtnu8+BLkw7XeljCJP2oFBpfClQsm+KNfKEoeVEqVXLjlQIZFzKcqRxwyAxyx5svZPZcN0Lu+dmT3PHNRxk4aID192h6dAmvDpNLYwaW7mGgzQTrtvkhVS9kKiolKYCbte/xdIMDX38knfM78WVMHAt+9crLePzmPUSrhth7y3rGbnmMjkU9rH7xSjqCOmWZFUTt9szHM8Tj8Dcfw63/+SC10RpLnruWNS8+CDDxLm1+g1qcMW2+kJSDGF/W0mVSaI599Wo2XfEY07tr2Axfxfz6tqBlLLKPedGAc4u65s/ZqdfgfLyKhrsnVMrYFFNi2uYe0fVCN32w5pBIWc9oTq+tTcpN6RzfbXPFy6Rj2w+DxGVVZpMVFdfvD2jadO8YU3GF8Jd3EymfaHw6zbo1cOZBbL/0akanGnSdcBA9xyynY8lJlPwoYyy3jdJ1yOIUoKReUi0QZO+tmzXKcmXWYRLFMnOwJCmJ41gQ7pmg8cjjHP7OExitBUxMVSiXQ8LIw/djGtMVxn9xK51nnUhjd4XtEyWmBwLC6YBHxwfoCabp9qdpl3VqUSdtXlbAUQpNIELqKqCxe4rfvOu36Fjzpu+cTM+idkgN89b3rRVAeboSqqI05mlLsApMjAUCsfYyZgIXDDlsC6AccAikBk1TAP/sj24KLHJABVomGCiyG/a3W3vDBSuP1EY45LCQsy8c567v3c/ydy4n8BTda4cAGDp0mJs+fA17Nk5xw9c3sHdHyBkvHiDUPp4IcwDdGsp3/G6S7VtjDnn9UUzUAlaft5jK2C6evGErT167mf4jFnL3525jalqiu/sYOm4dWkdM1ksMdJj4p1V/djATD27jn19yD+/8ykEsPrDKzb/ey1fecT/VeZ0cee4gvQvb6BuQ1GOfbY9Pc+WnHwRgfFRRWmKKHW66f4zVZ81nwbpebvzPRzj2zxanLF3zdW6WXM3V3OxYbmIem30rZ384TuPsWVDpWsDJxJlnJloFuLtMif0WuvLeplIBSZpgF5Bk59GcOMmqbVrFDufGZ+NgEwVFTobtjheB8nwajVZFF/53tI0bN9LV1ZX+vT8sypvf/Gbuuecerr/++nRZEAT84Ac/4LWvfS19fX14nseZZ57Jueeeu8/+tNaIWST9T6eNj4/nzmV/2n6BlDAMk2BxryVDYpiTIoDJ6/uzD2DmVZxJAAo0A88wx0oknr1W9J8wqffSy6fNSxQrU6W0njAMQCpNsC3GShRMXIfWhmlwmyvZmm250Fk/SgmiSIIWBiQk3gshSIJKQQiZO44JOgXfVzRCP5VMqDgzAIXUNNJjg3LGqzE6cB0noEMLI0kKHbAYmuU6UKiGRyhsRWogkiA1shzTqPvYZzGum/0bgY/0HMYolgbUCJ0YKQaYuPUTQukleniNFKaKugDKQWTqjIiMSbJMUdmLc6xUxixlk7+V9yktUlBjY1hMPEucys9SsILJDucLlTAtBpSGWqaTsA3iswbZ5R+8ma337+X0j56KOuJQHv6nTeza8n3aX/c8epbupbcygy9VUv1apYzcTBQwWJ3MUkhrycxoHdFW5s5P/Y5T/+UslJZ4nuKc/3oet3/2dvZesYWgp401f3UaXaUGbUGdDr+Bn6SsXFzdA8DusJ0YSbWkOPJ16xxgZt6HjqDuHFdQ8SJ8GaesFpgUxZ1Bjcd/+hCT26ZYcniPSY0pBaiMXUoBpDCFHu1Hzc0C5nrZYk0aROq2YtpOG2xqf0utCUSc1vWx+fdt/IubacYCC2MMNbeixzd00106x7Rj8oQiIAanqFg+YDjfWgGNoq67VaBqcZ9WrWV9CssuzWLUtHUHhHWPnnXDTM6U6DlqKSXfMJG0BSx94xls/uEdlOb15FhgO3dG4zWC7ioykb3YJmiejy1wsbEMVg5rU7Xb918pUzRv4jd30nH8GTz+ZCeiZM6trkvpdtGmDfiynWqjj0ZfSEffNFOTFdCwdbSLDdU+ev1pPN8EK0/HZTw03f4M03GJaVViz6YpfvXmy1l2WBfP+9DBBGUPC6MkOvcs7c91nyvoPX8tWoDhWbad7b63So5gQYvCMIh2uziRUkoyEFJMb+wCC7f20+8DoJqL+Trn5lzKYqYt9/04qv0JrhtfxZkv3MtvXvo4I3+p2a46ibRHf3kK6UmO+usTueyFP+Twlx/EWy9qEJY6GFd1pKcoOcex57t9a0zfsi6WnL+Wp37+APd/8TbaF/cReIoz3nM4MR6jpy5ny2QX9TCTJZf8mKUdewi15PK3/oJd9+2gY16V++5T7No+wVff/SAHveE4Nj2uuPlnD1HfZmQy1UW96OQ+LH/hOo45LE6vv0DT22nGQxS3lLpa54Sdy9y5opWU3ZVh2Vokdq7NMoPN5TBJEtUUng3376b5vdBccOJm+3KfiYzRbc2WFOVd7nkWHdXF8UPmoDa2XWZHunZlbh/PIwqb42j/t7Surq6nZdhffPHF/OQnP+Haa69tysh15JFHctdddzE2Nkaj0WBwcJBjjz2Wo446CoDh4WEajQajo6M5NmXHjh2ccMIJcx734x//OO985ztnXT8+Ps7ZZ5/NTTfdtN/nAk8DpODLfMaiVqjWeQBtZivAediz4HRw6okU+iuCE7f/osxLgTG+Cw9uGHk0ClKjooRKJaDCAgzzAW0+L7eP4hgNi2EAQDpeO/6GzEU/aSWSFKHmU+r2qCKJirUBDbow1rSDrG+tBMJTZrw60YIn4CTtOBZggZkGoQTauYfpIYTZVoWFD22ii1OhQEnMuUjDuqhYoHxlajEk60S2CzIJlrVgzF4/F9RYpgkMk1IXPl4iR/OkYeZ8qYhl5q0FUmbKAhzD2hhjvKF9Iq1TsGJBjJnMIlTsXldBPTYyKFf/6gvF5I4ay563jr6TVnLzvfOZt2wRm9c8xPSV36Hx2xq7PDjiTUfS3g9lGbE3rKK0oCSNHLHkRWnWua1XP8qKFxxC97Ku1BAKhKIhSxx+8bFGnqg8lK5R8SLKSeKCSHv0+NNMKxMz0OHX2VbvSiRzEe2eouqF7Gq0m2Mpo9OXWjHWqBpwksrvsnNsm9jF5R+5kzPetgZVrqC1U3+oYPRkHxonbTf5D6bxbMdpljULBCADJbmCXmTxQFLo3Da22bz7tqVJJVosdz/8rQJDTX0CL++h1MIsS84zFPlkG2kFaIfpcPtKx+l4O811y4Ky96cGhnsMt7kGsi1sFsiYclJ4TiHY8vAEi/78OOat6mC8Xknepyid2xqxR2PTLvqfdSygKPtRXongCVQjzhkNqSzGzpm5cefnxii2zh+ZSl21hrghUfVJghVtqJlkDpIaFUrK7Q1WDWznhs/fQOefv4hoTCNmPCZ3tuNNePiRoDHlc0e4mM4Vddo660zGRiYZJ3KXUHuM72zwizf8hnVnDnDeuw6i7ClkUggwrZ6taALNrdJpt7rm9j65DOLTkfG4feSO4TwrrlGfgon0ectYlmKmp1zRviJYseeZGKsWqNg2K2gqyLXy5+AyaXmmpghU3HZ69wPorgodXZKZG+9DH3cssTKJWXpLM7R3eZz6jydz1Xuv470PDvPpSyQVESagJN+fh6I2o2mrKHwZc+BzVibSYDPuqajEzloHY7UKFT+i5JkshT2VGeZVJgCYeHgHex7axd9ccybzekICEfO2I28gqsU88Lmb6On36a8IggPLjO2Jmdi2F61gxfEDvOtvq4Yp0eYaLF7Xzc/f/CBctp2hAzpzjIc7j9gq7DYFcegWu85d/4w5CZWX3tcic7KvlpPhu3O2Fmlym2J/xWxcbgau/W1p9rgCa9LKhtvX+bh2ZnGfJkkZAu0H/6NAiuAPFDj/NLfXWnPxxRfzwx/+kKuvvpply5bNum13dzcA69ev57bbbuPv//7vAQNigiDgt7/9LS960YsA2Lp1K/fddx8f+9jH5jz++9//fvr7+3n1q1/dtG5ycpJzzjmnKb5mf9p+gRSlVEt6zjY3nqToKSiiZr2Ph9htxfVuvIdZny0znuxMcuXGe6SGvdtHkoHGshYu01E8XsoSWMbE6dNsZ38k/+Zckdl5C6FRkUzBRrZfAjhqXg6INDkA7dMvzG8dyfyxnP5SayQBJ2kXaj8ffZEwVzq5ODpZKDRaCPA0OjSpThEGuJAwPhqIE0kYAnIsoQUbwmYdMh+8KErYFQek+J6iHvlEiae2mDoyVJIo9qhFPp3let4LLkUKVpQ0GcOmolIO6BgwEVOLTZVbW6Rz5/072L1+lMP+4UC6gxnanvJp3x5RedZKlj63i85SncauSe7+1A0IFXPUmw6ne4HPdMKigAkMrHgREFFp96jtmaZnzTwiZfgwJSSdfp2pqERnUEuTUpRllKPXt9e7aPdNwNtMnAWVVr2QSHnsabQl4ESlyRMibcCC9TqZOjWmxlG736C7z+fQ5y7i6kse5jf/cj9+SbLq5EGe/09HEIsSwvdS7+Vc76gbx5AaS6o5FsB+dHP9JIHALpgBCgaQE1fm9OfOMaFr9BXW21ZTgdNnXmft5vif7Rxt84TK9eUud+sCmfPLkg483QD64vaBiA076aRZH9s2w47HJjn4iKUGwJbqTDbKDmMtqIc+cSyp753G76/k+lRaEO6epDzYSViYE2QiLbXsStHDGStTvE1KBck20zVzXdSOCsHwNCU5k773OpmylizYRdUPIQoZmu+xaOlu1m+ch7+lRHmPh4ygNqipbpB0HjiGL026V3s96ipgW70L4pjL33M1y4/o4vy/WY0vVJrC2AS1G6AcyAhPqyY2z17j2a63y37lqnEXApb3l6EogoQicLKGbZgUzUsBrh1HygolRT4LwdVAatFkxRqTBSLvFGhZjNE5D1dqZtYVmEGKYKgVqLGAR7Il7OWNfzfBx99+OWuHOhlfcjBP6V5kt6bdbzB8xHwOf+VBPPrrDcR0sDvuoMebSpiJfN/zFweMbhrFJi6wtaja/Qa+jGn3G0QlA5jbgwZlP6LDr9Pu12kon5ktYwws76Sny7xTuzdMUZ+K6V/Zwxd+PJ+eiql639AeWmu2bIgod/h09JfwsM4B824tW9cBwNCKdl7/1aNyAGValdgbtiE2b+XOn2xmwaF9HHlihfa2mNBJYdwqDXCr+7OvhDP7aq2Yi7kC32err9MqtbWNP7ashyc0nnDLARTimMXsYyq2VmED6Xgdx3esJUo9Tbnl/8mmBX+MFMR/+Zd/yTe/+U1+/OMf09nZmcaQdHd3U62aYr3f+973GBwcZPHixdx777289a1v5YILLkgD5bu7u3nta1/LO97xDvr7++nr6+Od73wn69atS7N9zdYuvfRSXv7yl9Pb28sFF1yQLp+cnOTss89mz549XHvttU/rnGA/QUoQBNnXHJrYDGjtGYDsBUspu2S9TGRSqEzS5MZn2OO4WbxI920eoxuYnqMLW43VCS63kift7J+yEmnfDvvQfOjsY9xindusFKsV66FtgcliJ5aaSNcl+xW0yLkHOgUohXPf37kuASiiwFBlx9GGpUmpE1M8DinQSmegMNlXSJ2AGLO/EiIdv1YiBSwg0DrvwfWkTlMvx2SJCoxEz8TgxFrQFoRMxx4VP0IJ440ygfU+nlRUvBClZcJYiNTr31AZ29BQUJYNHvrZEyw4ZSkLhiKqXkjnBsWe1T5tg2NU/RBfxFTmlRk6cj5dS7q5/fN3c+K7jqW7vUZJRjSUTxkT4Ku0YMV5K7jlo9cz/+hhIi8x5pwseBNhJX1fZkRAWUa0+3V8GVNNrkNd+XhC0+7XiZRHqCVlz8QXRGElBSqmc5PutSOop8VRfaHoCmr0+NP4nua8vzuM0//2aBpTIZtv3MTPP3QXnzjnSlSkWHXqMKvOXsSy4+chPQFC5uLRbGv18UxrP5CXprT0qOE1v6stshvFusC8JPfWZtRrov9bjM/VWrfatknjb9frfHBq8Vwss+LONalMwdGSt5RzFV7IucCMRKcsCsBN33iCoWMXITvaKMlGmr69FvmpdFKXQha87ER2/PQmel9zEg0nVTkTk0bu5sXo2EvTmNsWFryZtlJ9en5apFLdWi1AyCRBSElRf2wc1TuPuCHTF1n6pu9aQxLXFHGkeWpPL4z7yFCgAogTqfXEujqiZv7o9qYJRNmkJE68U7d++jbiqTov+vDR+CIBcTiyOu1DIr9RyQBSp5kjJbRtrnir9Ho4ADG7KDK3rJWsrCkupsU+bnBzus59ForjcuKsIAMKzQDCMTCd57643f5KwrJ3sHnbHOvhBPEPB2MsOruLN3ww5vN/9yOO+3ofda+HWhxQkjEhHut/9SSHHiLZOVFifueMEwuWfwZXrSuzY0Od6vaNTAwtScsWTIZlZqIArQVlL0JJRW9lmqoXEmvBtloX7V6DcCokrscJ0FPcdqXx6tbG6kRjNR54oM73ftPG3b+bYuzeLaw8upv3fn0NHo2m6zM47DFveRvbH5tiz+Y6C7oreMCWB8e465fbeeq+Cbbcs5vuI5Zy288e4rI94xx69iCv+/hKkDAWtaXMrJt9LsQzSUt05iRyWyt7plXw/P7cy3xdGI3l0wxMzZ7PNONhuty+a4Y5MbGqMjdXpnJFh11JtxNmrI1ZYmXMv/vH5CgtUJHCD/bLlP1f3f7jP/4DgFNPPTW3/Ctf+QqvetWrAMOKvP3tb2f79u2MjIzwile8gve///257T/5yU/i+z4vetGL0mKO//Vf/7XPGikveMEL2Lt3Ly996Uv5+c9/zmmnncbk5CTPfOYz2bVrF9dccw3z5s172ue1X3e2VCpBlD1IrkzHNneCnm3SlkLnKMfMqEriEoTOkxHWgMG8Fp5UOSmYOwaTtz9jWbxkjPbD635k3fOwR9PF70sKArIAeBssrlsZ7yRgxWFt0mVmwFhBlEiMe5Om0wEdWoDMjjtny3mlnbG0ACgWcKTOXgseWhxDW6ZGYypWQwaSmgALKfCw52iok3RgGYCxf0ptbFj7HCSAxTUXTYCWJDUzHPBalO5JqfAFSSpJnd5nV78aeHEaPFiP/DRmqeTFhrGRmURn192b2PCLhzni4xfSV5riB1ccx4Ixxfgyw6TFShJJE0vRGK9T7Smz7qIjuOlfb+Kw1x+JP2xgRT2h9W1dmQXHzWdi/U76Dx3BF6YInS1E6gbaKy0ItWQiqlD1QgZLE9RUwExcSlNgIiGMZZpRrd037IwvFKOOzGs6MjKx7lKNTr9Gh1dnqDRuDC4F07qE31ZixQpBbTLmpDetYuSYBTx+xUZ++aE7CEqSI1+4hIMvWIbX3T4rICh+SHNMRQuA4raiR22uPk0Ab7MHruiZTpsuGnezAJRZxtcErGjWhdssaKmMyPVYJ2xK+je/f42LbAzGyN71+CQrjxii4kUmDXUUECpJLTTPRJwku6j0tyGS1JO21bfuZcs3b2DRa08jVtIAe51noN1sfEDTewdQ9mNmGgG+nwTMa42sSdjeQO+FPZ//MTrQyFKA8GPqbQ2EgEqbYO8ujXfDeiqrDyHsVoTdoJLYFa+USSInVIU22SAQMQOr+1n/0/Xc+731vOOnJ1GqmliilmmkHUarXJDatEw5axMo0FpSMtu92J/tZtvG/T4W67e44ymCkVbL5qqv4rbidvmMZ7P3sb/9t2oP1+Zz/PPLXPHDcbb99C6is58NQE9pGoAjLj6a6/72aq772d18//aVhEGJCmEuzkNpSf+QzxkXdHL3Z27mxH9sZ6/XzURoig+XpHkOSl5M1QspyYhAKLbVOomUx6OXPci9/34rz3vfaiMpE4oHr9rOOe9Zx003e/zFhY8wNdqg4/iDGLt3PQB9i9oymZuWBCICYeabmi7xsn8/iqu/uY3OBaYgZSBiHv7VRn536SaO+POVnPs3a9k2uJqN491svbvBXf9wCXfcLTj80JDQqxtGJdnPHqMtWW7j9dw5dzYnjst6F1txznaXNz8L5t+44NxNx5cs95NVbvIZF4zYaxYqL8eymL6MoyXUGUtfVN8Yh1imBDAqg/y7mTJXQqMjRVBqZrj/aM1xPv+3+3k6mzcZsc3tLW95C295y1vm3KZSqfCZz3yGz3zmM09vAMBFF13Enj17uOCCC/jxj3/M+9//frZt28Y111zDyMjI0+4PngaTIuKsWKDLiNjmZrNqqq3htHRyJYnzkNnD7hqjtk/XKLGB1GHsNcWxpGNIPP1m3/zxjaFushRkx0jXpvu5MgVrmLtHEhZQFJZpnTEEdoeUbJCWsknGmRQ0y7MruZPJmJNWrXhtW4wpHYBo/QC3AloZIGlxrPRkitvO8XLYa5L+m5w/zvUXBpzZ6xGnsFRmOCjpS9BsOAFZoUtHopLGGSX7gdG7ho6W3oIUP5GYeQM9aKUJDliI0hvx6oK4Imjbqtm7xhTH80VMuHeaqU176VlyEJHyOOwtJ/DAf97OEX91HDajiZ1gTZhlJr0CqHhG1uULo+m225lJ2oMkrfPuRgehlrT7piq9VD6BiAmEIkpCOK0eWGnBqo4d7Gx0srAyylMzfbT7dbr8Gm3SeAOnE3d1WYaUZUBFhpRW9fGyrz6DoUOGqCufoXWDnPDmdTx57Sbu+e56fvfVx3j1t0+jPNSVXtvZ2u8jTWjlCWzFiBTjWdxlrVougHgWsNSK4WnqQ89uoM3G3OxPa1XXYF/b222OuGAhP//o/Zx94dGM02U8k5GXBK+b+JDYF5T9MH3XpNCIMGTLN65j2cXnIMolyn5I2YuIlcSFMqkzqLDMPtdWsqm1SaQR1k39IMqaiXvvRFbb6Dj+GKYfu5+e551Jub3BUPckQZK9UO/oYeyq+9nzzcvoOfss5Eg7fUPj7NnehR9E9LbNsK3WyaLKHgBm4oChQ4f42et/w9qzRhhaXEU6hrzbTGFCO2gLVgy4b1WbZ7bWSqpXDHj+fZsbTN0KnBTjO4qAJb9sdgbFbXMBlKZtnT7+OwAFDBtWEjEvekMfH33b3Sw/53TGpqvsqbTTU5ph5MgRXvLLF/K1U7/FQw8pDlwH99YW0SlrrCxvS87JjOHVb+vjfX+xlWs+fCOHfuBcx8FjEqRUPfM821aSMZM7atz1iet59X8ex2HHVghESBxpHrtrgjPeN8ADK86g8ZPLGFrQwdgt62nrDvjQDw9m3sISHootYS8TcYUDK1uZUiUUkopoMLikm2e9azWdXg0pTLHHs9+0jE2PTHHHN9az/fatvOqrVaRYTMcx7Uws6WNm4x4qh5u4wl3KZ/tOzU2ff5Cdj08gfY8V5y7jhGf3Uw50CojSJlrHqBjFQNx6Xm4Bauw+s7EyMtFnFgGOJE6X2+aJZvBi37GyjNLYFhf4BzJGKpPkwgUpKeNCxlra+E7zLc3AC0CarCmO8P0/gZT/Ke1d73oXo6OjnHHGGSxdupRrrrmGBQsW/N797RdIKZfLEGVZgmarLg5ZkFMrj2juxUg9ddlDlw8Wb30Mmy/f1krJBWIlTExqoLpsS0Jnai3AYVek1GlWLpPyN8t6Zf61zIjLVjQH0gMIxyPushSpkZ2wDtZoMDEcSe86ASwJ65CyD7M9qS0vj8NkWJDjAot9sTMFgNXyGK2AyWzbpWAi+60L9zq9jgmI0dpc/Cw+SOZrrTgeG5EwZSb7lDRsWpNcJ0vgYGvL2NTSSmdBwoEfE3gx9bpER4qJWx7h7rYp0BBWJcGMToPuo+mQe/79Jo5867EGHAhNqatMqbfKrgf30LOsiw1XbaD3gH40ms4Vg0ztmGJg7WA6LvtemBgUa6RnqRyVloSAikvEWqSV6aeicpMR4iXgpyeYpq58BksTdHo1FlZH0yBx+7Gr6yRw08rN0EypKgPrerDF7yLlgR+w8sxFHHz2CL/8u1u58mN384x3HEZ9vE7Pyn60aGYl9hVjZttsRtT+SBugRZpVZ/vZJGj7A1Ba7TfX8Yrj3h9jbi5pzf564iWaNWcMc80XH2Xj9+5g8MUnJxI4E+M1cdMD1DfuZPjFJxM+tY3ScE8an7f7+ocZOfdgRLmExso58qyJOU7WiolM7HUWQmdxfRqYCExhiVqDngvOQ3kafe/tSdr1LIOYOY6k/YTDqKxexd6fXknbgQP0v3ApE+1VyqWItqDBdFSiLENGo3Z2PDHFD17+aw591nwu+OsDkELlPO1FAJveCweseCIibvHtalU8z23SBPaZ9VrSSjWwP60YtG+ufb64ZBGgzM2mOCzI0wTIczEoTxegzFbXxLYezzAmh53UwcBICXXN9ajTzqIe+zQS2a0UHstPW8jX/303z75omPJBJTxfM63KVJKECFIoBkd8XvGXPXzp3yfwhcqSolCIkdPmO+jLmNpYjaDNZ9XRXZBIt556aAIhBbV585FPlel46fMY/dw3CCYn+btfH8vygUkkMygknUn6d4CSiGloaJcN4/hBJ06jpNBjh+JdX1qFqNd57/Mf4rtvvJ4ZVUIIKGvF2JZpJB1URIP7frCeH/3r44wcNcKic9dQG29wyxcf5Hef05xx8YEsOWkBQz1RUwpzN4Ylf99aSEYd6a1UsXGWutu3cPxYRmW2RzsuJFWRxLmxuExMOclQ6GZHleg0OYw9DzczWJA8mwbg+KljzybhycpZmG+ViCJK/5OYlP+ftuc///m5v4MgYGBgoIm5ueyyy55Wv/sFUjo7O6EW4ScTqj8b8EiaDd61v91t3e1zki+nRcpg6dm0lh7mZdVaEOmsLond1tjjRuIUO1p6IQSxysCLKyGLkAihnDTB9mg6zVrTErA4rRggDhlTIyBjE9zNHMCkpU7TCAtJPjbG7tYKJLj9auc/u05alsXZJh1AoT+7fXGCKh5/tuYCE9vkfnxAE4Bpr5PJmkbalwsY3X3c+xsrY2TYeTirU0OawQ1IpS2RUz/G92NKfgylCqXBDu774M+4D1j7jvMBzeRCSanSYOLhbWz64Z2suegYgu4qcVLxWgrFyhcezKOXPciTv3qE4ROWsvOe7US1kCd++Rg6VlQH2rJLkkzeJB9ZUxMlpq68NL4AZAIcFDNxiS5/hlB5zMSJTCBJr2w9h4GIeXKmn0Vto0yrEoGIGYuqNJRPSUZ0ePX0I1dTAR6KuvZTKZzbrOFWVz49C9u55nOP8PA1vyYoewRtHgecMsKyZyygZ7gCYUgUw+BBAzCLbvW/w7C0anMxKPvT5gIo+9t3K+O+6TgO+5H2v48YgNkC6TOtv0BKeNb71vHVi27irOOX4i9YhhqfZPvXrwfPp231QrZ9+dfoMGTp609Lz3f83k2MnHkGoJLscxIRe2mRWPdcZpPWmjGAxLxjngcqUCgF8ead+IND7P7uD1HTM3SceVyaAXFsqkqQvGdCKoTw8Hrb6XvF+USP3s+9H7uCjvNPpTY0xHRYYn77GEpLHr6nzvdffxWHP2cBL3z/gTlD3rJkRY29vS+ph1mYbSXNnl1EviaNWwskvU9uQgS3zWIwtkpF3aqYpz2eOZcMiGSp0VuDk/15n1oBjOJz93SC5Ivj2N8WiAiFpK7LvPQdI/zb229m1UlHMVar0hnUiBMv/JFvPJzf/cN1/OvrHuakV0c8+w0LGVcVkLAj6mTYH6MiQ7p7JNOjDbr9KapewFRUxqSfNyyUK+uOlEe4d5pyZ2bExlryg09u4vDnL+GBsQXUn9zA9A+voP+Zh/PYB9ez68kpDhxQeEJRImbYH2PQH09quCimojJTCvyozvVXTuHXpmivKIZXdzO8uEynV6NSFRx7Ti8//OyW9LjVgTYefySipks8dOVWfvzxx3nmx05m7MAj8IWi249YeuEh3PWjTVz12RuYeM9tdC/p5LALl3PcCxfQ25WXv7VKaexKx0wgu9n+zm8/zm8+chenv/swjnrxsrTmRTF1cqpYmeU+x9phlmdhadAqt65YPyY9BhmAarYhJb4DWHLrElBjA+v1TJ3Op1l74/9kS3ypf5B+/l9qNmOYbS95yUv+IP3uN0iJp8McoMgCpBJqMHlZ7ERhg5QbsZ/7UFsdoe1DOpOwBTC2oGEuE1NCc7r7RFoilM6BlUBmnpUw9vCSVIRKJ9WTpUgzgAFJFXWBj6Ubs+U52VnCtCglcjVO3I+3KBjolo2xv1PE4rA7dr3AxG4oaQx0IVUGLCzLAlkAejqA5H+px1A78rGEEpLaAS3kAYfDctjj2UxdKQvjTiAifw5udrSWb5XIy7JyDIrI9kuxUuENN9c7PVGgNYtlwYqRd+UleZY50WmfkjiWxJGHipPnIfJQpYi2vh4OueTV3H/xfxEM9VDZrRFaMz68mehLv6btsCEOe/tJlDsClIaG8rEFp8rtcOCfH5oN6ugFKAS3feRqgopPtaQINYCZfJXQzMQBvowpJ9r6sk2SpSVBIvkKpE5TLLf79XQ5QNkzzoOpqMymqIdISzZO9zJSGWM8qqbvQqyNBrnDr2cpbUWM1FlefROULrD1Zuy+K05bQPuiXhYcP5/5nTNsvXMH91y5i6s/diczYw2CsiRqKLrnt3Pm+49k6KD+5udgluYal00BvU8TiMxluO0Py7Mv6ZgbvF885tOVxMwVqN2UKayw3mYTm39IPye+ZgW/e98VHPXvf0Z9a53y4iHmPfsIfC9Gn7aKRuThBRFpsGvZx5PgiwhPmveiFgXZu6EzmWTe+ZMfvyfMtoEfJ6mIPXRnhCp5zDxwP52nn4Ds6CTcvA1WryAKfeKaR70c4/mJ5EsJZBCjQo/gwDX0HTrMpm/djOweoXTBgRw9sIGxuMqj1z/JimP6ufB9q1LD3QY/58ZUMN4zNsUYViYTUcawtAImtuinCxTy6/Peaini5kB3MlDiBurPZuDb83HbXOfpGnhuKzJ+sxURnSv2JBvT7yfxKh7HTW08pcsc/oxO1hzdwc7P/oDqW15D1OERKY9AKDpHOnj2f5zF5ntG+fHrfstJfzZC36DPlCrzRH2IdtmgIkPmLfQZ3RnyH6f8EN8XDKzu46g3HsYTVzxJuSI54jVrKZUl41GFhvKYvHcjK47opiKidL7Z8OA0R77gOB57zGfbJy9BaEX/c49n+EXH8/2/v5NTfrKsiSHa+sQM3/v8HraMlVlz6hBi525+8cUttHX5TO2pE9UVAwd086YvHcIhC2rcfsUolc6A4y55ISPLSjx4Z8h97/0+n3lrxJM37eC09x3NlmXHsXNbJz3dU8zrmGRzvY9lz27n8AsXM7oz4rYPX8mdv9zBjV94gKNftIQTXrSAkcUBIUaya+RfkjyINeOuqSB9/trK5p278p/v4qFfPsUL/u142ntLTXOQBTWzJYEw28s0psX9duTUM7rZVnT7cVkvV17mbu9rDyWjNGlMlohEpIyLFBo1U6ers3MfT+b/xebaWP/dfv4fal/5ylf+j/S7XyClq6uLaKpByamA3ZTpJ5lQ7YMDpnZFScZpFgcg8dgVPV5uPYfW+lqpdIqc7fZSK6QwXkAUOYM41vn0qUHqbU8kNdLkfQljI5MgSadpmQ1r8Gb1PTyUNKmIpQ3SdwJMoRnYWCmZ+a1SsKMTSZlwQAok3kkRI4RMPI3J8qRIWnpNbAFHm2ErHUDybwJU0n9l8tY4YMeMlzzLYXOFYsBQWuyxGM8izDKtRf7wadB/fts8aHOAnND5/ROAIsQcwMbdNjmU+zwW5WQ5OaBzmnFsQItWhrlSStDQPlIqxO2PUN89xcA7Xsn4jMCbhslfXM1BF59OZ5cg8BuJ0WILHhpw7glNNajRUIadUFqw/dZNDKybx97HRgmTibXsN5iMSrn3oK48qp6i6jWQwk8/PCUZMRFWjMxRBETaS2qkmAiCUHtMRWVCbTLd+Mm7MR5VqSsvm9y1TIKHPSaiSsqezCuPp3npZ+ISoZbmPfOgN5gm1pKh1WW6V/QzE5eoe5r5x4xwwHH9yPetxBabm6pJrvrSE3zntVez7sIVnPzWQ/ACV96TbzljahaDyPW0tSog+d9p7tzQKqC+SVK3D91/K0mYzUJGwYue7tMiDW4uDelsXmud1WZ5xutXsvPRCe55749Y+u7nsuNnG+l6wUEEMqYWGe+xThhrFStEHBHGnknLncx1xUxeuXMUmjA2UkrblwUsVm4bx0kun0jSKQaZGpxPx0GHMXX/AwhfgAYVC4SvEFJTLkd0V2vsku2EdR+vHOMHEZQqrH7DcWy45HLay8vY02hn7ww8cNl6zrp4JVIar0nRcJ/t+SlmL3Lvt333XHmXC1Tc6+8CF7ud25q+Z7OAEgs6iuBornUeqsnbDc2MSKyz56+YuazYimmGW7XiezYXaGlVI8U29zg93hQA7/6XebzluU/Qf+XP2PzscxjpnDBOxuReiK4O0JoDe/bQ4xmp17Htj6V9jSwM+Nk9y9nyeJ16KPjgW3bys7+8gnVnDLLltjFu+vJDLD2onfM+fw4bbxjlvv+8kws/vJZARFRkSKwlhz97mOvfczkDr5CgjC1QF1X00Dz2jGpqqkS7zKK0PDS7t0dc8/2dADx+3XYOP6mNcCpkvBYhPHO9dj06xtXf383Bb63wkW8fwN+97DGmbnqQ67+0m4GzD+HIL76ajf/xaxaecyBPHHgO4d1dVCYEY31lRoc6KFdD5o+MGXa9t43q4n6GX3s2E/dv4uGf/I6bnn0d8w/uZuW5yzj9/E66e+McUDHyM8OsWxATao9TXzjE8eeezGcvuoen7tnDV192NW/80WnI0u8/nxbnTdepXGSZ3fm7uCwL2M+PJUhiYFJ2KAFHkixQXwoNMzW6u59+1qg/tf832n6DlHCyRtWzuegTA9DRElpjCLKJt5QYWVVtZAWxFigpU9bD/tcEeIRTXC45XhEgpaAGExBZlIZpbYM7TZ9pUL+X5foPbcVuQCKQnkqlQUJoPJnJ0wIvNNr+yIAiT2pUQcaUZv8qXL+sUKREiHyCAAtUTPV420/CJDnAxvZjAU8cS8O6uJWinWsgtMUWBpwIz0jJRFF6lUqpbB8UmA3nPLJdcsHv7vFbfqoSOVoKaZL+XdakCExahT25RSDtOCC798Wscy574i43cS/mP5FK4cwJjl1/P9v/40o61yxgcE0HY/drxicep2PNCJ1dgooXYoP4wARmWo1sVqQtM3Q9X7Lj9i2UO4w3qK58EwAv8plbvIRViZSX1kUxgYceVS9kIqyk8Si2AKXSMulLUUskYApBp1dPAUqYZEapypBIe2yvd6UZx+rKYzIuU5YRU1GZvWGVhvLo9Ou0e3VqKqBNNoi1pCwjZmKT/39JdRc1ZYLubWXknuo0z7t4IUc8cx7f+es7+fnf3MSz/uk4vKBZRvR0vbRFsPKHACp5g7X5Ycvdm/0cbxrDkpyqrQMzm4SiWGXa7JvpvW1q4+bjJE0o2jzFi/9pLV9+3e089L7vcewlL0TLmJIXo7UpdBopST2UbPrqtcw7cw1gnDM2cYQnFVKbINXAi5kJzfNps+BpLYhikRRUJZ0XETpllpXQiIYkrmp0IAjre5l55EH6XvlcM/8IjfCgXA4p+Sbz2IK+MXZOtiexgDA9XWZmpkTX6mE2ff16Bi86hMlrH6Wj1+f4C4ZSI6y1DKnZQCreT3uPXCCQpbu176wj9Sqsa8V4mHuXBxitZFquER8kxmOxPw9VkIHppmWQMRTWaFfkWbnfp3jj/ki9gCav/VytCIbsuNq6fd7zbwt490vu4NDjDmW81M8Tu/tYO2+bqVN1304WrOmkvZKdpzW8TS0PSbmiWLKmHSkUX/jJQryyxCv5xHEPO7bG/P0bNvKf5/2U6b3GZjnhpIBBfyK9l29+Ty8zW8YpTdzDNuDE87rY8Kkv0veOl7BjLOR31zc45WSPkgMQjzi2zEXvncdtdyiecV4np5zXxVRN0OE3KPmazU+FfONTOynt3MGUOoCuDsWqIzu44msP0NcLD3/0F6w4dzkHvfdcHnlyKeX7PYIZQXWnJpiQVO8oMTVc4balB9C9ZIx6aFQovW01Bo7pY+Vx5xKPTbHt6vXc/7OH+N3nJnjT59ax9JCO9Bm06bhd50eYzCMlb4bDTuuhNhWx47EpLv/kg5z/N2ty92xfhUttjGP+mcjkW8aecr9r2f0PRGzYnVkcQW7wf4wkEHG+VlcqI3NSJQuNmq7R09k998P4f7P9/5RJ+T/V9guk9PX1MT02QyDjNC82JBMWGWAB67FKUL0FLkIRpHKwzLiqqywNa1ECZoCIecADmQVLN5SX29acRIxC5sZQlHfYIGmps8Art6UgRhipVc6oSv62fJCILU2ZSY9cBsVzgIAN1I61wPNUztPvGuVSmgDuVpXtlUi8/ql8SRAEcQJgVFr3xQINm465KVDeL7ANzio3jiO7KLoJLNh+MzlafqzWeMkWOlDGuVaGqXFYlVmaC+T2BVDcf1vJ8IqxRblzAlCCPT+5icWvfQZjtzzGji/8An/Z+dTWr6f/RavS7S1oLnsRofKoyjA1/CdCUzRvasMuNlyxgfGN44hA0rm8D4lO40hCLVFJ0cVYiyxFspaEoaQnmDHMhfJp9+up5tqes62VYqSQ2Wvc6dfZXW8HoKuUBXzaYo515VNXpvBkR1BnLKzS7jVQCNr9On0yygU1jiepkD2hUvC0K+wkEDE7wk6UFnT5NULtMRq207Ms4s3/dThfuOh2fvbXN/Ksjx2PX/JmNR6fTvt9JSizZfByAcr+Bu23ipObTUpm68CESYE+Y5hmc4vrH/99Kppb9lqWPV7+6cP4xHNuQN/5AHt0N422bioVGL17E4PPOpIt37mZ+ccvpH3tfOpR0b2Qr/JcDULDOCfjLPlxTgaWxYBJKqWkyrvvoUYipqpVpL+XiZ/9iJ7nXwgKZCXGD+I0E5ipceSxa7ydxnQJ4StK5QjpKeLIIz7yODqGHuO+j/6G8Ud2cMR5w4mG3qnZ0OI+zHbPZgMoRUDiAhUgBRIWYLjpjnNAR8RIBKoATGy/xWW2r6J8cLbsW61YD3eZBS2xlk3SybkAi0T9Xlm85gIqzfFTeTBl91+6roNnvbyfy//qa/S8+YUcdlYfkZJMRSVGH93DooM60jTekmZ5pNJZX9WujH30PMHIQp93fHwBGx+Z4fhndrPp8QaLl0R50ClhaHGZDRvNXPfOj43wkmMeof+22wmnQj756vtYe8/RjLRPZ9dLCi58bR/Pe61hj0MNnZXYXDmhGFpc5a8+sTg5zxoAL3zjIEMjPief10Ucwyf+6iluf+WXmLeyi3knLKH9rKNZPzqCf3sn02eMMbGjg9JOH3V1H/Ulxhk5US9T8mI6SnWCnjbWvGA1Ky88iPXfvodPv/o2XvGF4zj8SB8PRUlEOeAZiBhPG+to/SMz/OKSp4gTp+fG23Y13b9WhUzNvRNNAMU+L4HUqbwxL/crzKkI2qRJl9+y7lCyF5DKxXKSzWS5Dfi3SZfCsTpDC4aazuWP1Yom0H+nnz+1/QQp/f39zEzMoKMYzzcPlwErKgdYsg++M5kksgRfxBnalhG+jJFR2XiCHcYiAyDJC2ClXQg8z2znAhWzrUZpWwwuMxrsRBblXjZSEORmdyp64opGiEj+JfFQKm3AgPVEtvqI2z6i2KiqUg8k5gMfxTJNj2v6yYMbSAxznQX6a8DzdJpyFmQ+yw52P7AwpJVcyi53Y12aVF0tJGmWnTHsi3ZAV/O2phOdyc7s34VjFMfm1kBxGZYiQCmeS7G5sUhuTRx3bFpJMzYFOpI0tuwi7h/m9E+uYNdYwB1v/hHeMUsRvb2M1+uUqjFtft0xVkxdk3rkm/SXus5dlz6IihUrn7eGSl81fabCZOKdUYEx/J1UmXm6XLKn0U5ZRvQE04xHVfO+OWO3GcDcWivtfoOpuJRuM96oUvFDpBYoYbadjkrpx2Nvo42SjCgloKShfJMK2XOC5pOMYXVlzs9DUZZGNtHtT6fjnY7LhNpjwJtk+dAYH/racj782if46vN+xWHnL6BzqMKCo4fpXNy9z2xZv2/bl5FqW3MRs+a0xu78UhzvfgGU2Yxn0ZzS2LAWzUHfszXXEAiVT0WGdPUGXPihtXzrXbey+oUHsu2x9ZQX9NN37DIe/ehP6D3rMLw1BwARZd+kHI6UJI49BKQZE2uRn5vHfC9O2RTDLifGr5W6JnOTJzT10ENITbXTZ/FfnMH20RJSRpQrIVEk0wQYAI3YIwhiaGskThbjqAmqDfrap/H6Bnjkmi66BvZw0kVm3K2uzb6Ab1HS58aaFGVaLlABW6gz229Ww9zKnURz6uB8/60lg8U4ktw2szEaBTbRBShmTM1yrdZxUCJfVXw/ZF4tq8w7bJMdjwtUWo3/Ze9eyKJVVb7wwe9wz4ZjWfKKE/ClYmI0YmSBiZfw0CnQMeeYjGsW5si2FatLrFht0gUvW13BdcnZMT546yTzTlgKbEOVSqxcV+We/7qPoOoRzsRseHiGoSNml7IFImp5TXMSt4GA5100kF6Dv//WSu6+cZItGxpc/u0HmPrqvZzyFytpnHUKpRL4AztQWjDRqPDIU/Ooj5fZvrkX0ZDIGYGqmrGsWrOJZS86jN21dr7+5htZd/1xeJ6tz5SNYe/WGb73ma38+TtH+NUXNtE9r8z4uKZrsMyJr1iKRPPojTvRCFacMJjGfdhrbK9tluGudexVq8QQs8kipVA2RC4vbyWL8bKZypQWzrvrOJ+dYpfxRMzg4GDLe/Sn9v9+22+QAvDhpZ/kQ5vekTxEOvdQqkRaAtnD6DlUqUxQvRv0Z/T3iobKD8OyJoFQ+DJOK5tGSbpCMMAjBRvk9ZDW4PNlZPJsJx8k+/JFKjN6ZaHivZ2wvcKH0P0YlpKPvP1gCyBw2Be3P6UFnh+l+knPedFCT9KIbJxN3uOfz1AFSmdgxS63xS+Vkqk0zGVUrEEgbZxNqivPWAUbk2JYHrM8jrPkAbY1JwUQOSDkGv9FwCEEaRyO28y5WMDTzEoVJWD723IMFZnsK40J0knMjY3pEdoEvsaCzmccz64f3sz06c9k20w/Iy95NaVjxpicrNBomEKQUVXSFdRAxuk9LcuQmTjgzktuYcFpy+laPZxIFLNnItJ+k3fJBgG64Nw+776MmVElIi3zz42WKUABY2CWZMxUUrzRGmAlzxTpUwh8DJCOlKQk47QKfVtSCDIQisBrECYsp+k3ZiouY1JGhiaAMWECKoRMxhUmozK+NDKDUHuUpfGsd3T7fPw7S7niNw1u+c1eNt61h8s//RAv/9aZdC9obynZ+kMwJbMBiH1JxFwg0ir+xS0maZe3ihWYa2wZg5L3ds/G5sDscp1cIcDk3Tvo9CEWHNTF2CO7OOFD5zIV9FL2I4YPfw41VaIWCeqRbwCzkjnwARB4MXFk5uJG5JlYFi87vpF9mfnKghidFGOdrvsEQWwSUvQMML61RtAV0agFRJFjhCRzUT30UUow1D1JqCRjU1Wi0COOBXtlhc5yjfFb13PB36xC+QExMQH5+bXY5gKTeU387Eb2bK1V3ZKiLMyNK2mOR2kd1G+MO9ept282zd3GGnj2mXK/PUWgDaTTtUm+4HqnswQaLnBp5VCYq9ZMEazsqz3jef2sWlfmb15yK9X+KiuedxD+1AS9vUHanwtUVOE8itdkX9fSrq/NKB6/Z4qVR43i+QKkx0e+upiP/s1uHr9rnJ2bFAODklBLvCQFMmTFW20rxpS1OvaeuIMeb5orvrcbXalw/LMGWHuy4oyXzuOWX43yg888Rnzp45z7tQuoSyNhq3gRemHMPb0heBoigYwElY0SfxoenVmEmF9jxQtKbP3KlXz6cwF//qoqC9onefieGX7zH0/SvbyHR+6ps+PWndxxU4NwzyTBkmF6umZ407eOp+pHeIR896/vYGY84t1XnUnHQDn/jXLOz6RajtPMYa3Aib0mrWSOFsTHSQB+ms5b5BM8pMkphEIl7HNufhZJ/Ioyz+fCaDkDAwNN9/qP1rRoVrH8vv38qe0fSKlUKnR0dLBrl6EHsyD5fEATMjO6is1O0nafwIklcYvfmf6TSuGJNAYwxmSiwzeWZ9a3+5JECbq2HoFSosl267HIQlyG1PnYGKVbp0ZOWZdkEg8SLyMYJsTKcaLE6IyURCbH9Mk+IEJoo6kUmsDLDBWX3XG9mQrzYlqw4sbMaC2S2iBJRh5lL1ZyblKl52tjZlQCDornBhlYcFP2ttrOWZKyKHNvvz99zb0uHVvL3ubusymNtHaugMPylFcsZeLKG5iol/D9mEZFMDFWRfqa+u4qOyOPih/REdTTzF6+UCbOKlI0JhsMrR0g0nkD1G32eQ2dRBC2WfAfI9L+bZrhemwMTHRr49f9txFnz2CkPJQT02XBTS326XBiIsxHR9Mgk581kuUWGLUn2cGmVYlQmaDMmahENakKHoiYzWEvFRHS6c1wyNm9DJ+2klB7fPMNv+OxqzZzxMtWtTTM/7sMSytZ19OJXykWf2y13gUyc0nYWsXZzXVMIGVYinruYl2O4t+u0Xjo2UNc9Z8bmLztMZ66f5Io1DSUT6wlGoGQggXPORRvqJc4yVho5xl3/rPvv5WGWKdJrJJ5iSyFuy8VsRI0Ih8BxBPT+F0VQi3QNQ8VxMhkntNaMDVTRghNe7VOR6lOScZU/Ig9U21MTZeNk2TDRsKJOktPHKYsoiajt3jt90f2tb+t1fcrTjJ4tWJgzPVRLX+3ygiXrisAlKY+W6zbF0Ap/ls8bhrX5Z6DoIndK+7TsjldtwQsLRJDuM2uGzmgg/f9xyL+7tXXsPtHNzG6eYbRJ9q564ZJhvo1z37lIGvW+ZiohQy0zNYyA1g1g5tkfXsbXPSeIa771Sh/dvGQibsraV7zriG++MEGr3nvCAsXJgxO4WvTKmOaba3uT0WEjG6rc8l7NgJwyLmn0CVnkFJw3Hl9HHNOL+973gPsvfweqs88PgGIiq5ojL7eiKGFu9g12c7Utnb8CZ96H7RvlsyEVTbsXMTIWy5g8zev55++NsWiC9axuGuGe6/ajX/jKPPPXs2qF6xhw++205iOWbG6yumvOZCqH1FJ4nyOee4w11y6ia//w5O87d+WJzEsyXOezi2uwzmrizIbQGkFUovLXKASyAwImqRHcRpLo3SWWjmdE3VS2Ft77Nq1K3Wk/49omj/FpPwB236BFIDBwUF27NiB35PX0kqhUy+tWexRTFdps3EVi0+VRYSKBYGM0wBfsy7ZBp0ECAtsoFRoBy2bqepQeSm7Yve3Vb2tR9mwG82UZupxdVLZFpkRy+LkLqD1GCQfa6UFnlbEjsfagh734+nKvFwGx3r+7TVy/0VoUBJFFtQvpULkWIiMCQFSKd1csogcjBAaKS3bkgceeTlXMyjZF+goxuGkPWkbvC9yMSj5bVozNXN5od3zy0veDLtj5HsapazUTRBu2QFC8vCPNjDvnDVoCWJ3CdEQBBrCsk8jqSsBhsWQQoGWzGwfp2txt3neraGQxmLlPU7u8170TLoVeO15hUkMSrNH1wFJzvb2vYmUZ0CJMsssaPeT53U6CtJYE1sdONbCpA9XHr5QNJRHxTOxKlZLHyov53mNkXR4MymAUYmGeCyuMhqa+jALj57HU7ft4oiXrZrTaJ8rvervAzr21YqAbzbJS6tUya3Aotvmei6Lx9kfkNYkqSg8DyMHdjK+vUbvoEfpVccwJTuZbvg0Qg+0JhydZNvldzH84pPSWDm0gCh7r+z8B06yDk+l745SEukpoljieyqRhSlqjSTWpaObcNc4HYtKjNb8XPIPKbN3zZOmMG+b3yDSknGvjO/H9LTPUNk6iVf2GKuXqZbrtGq5+ZTMYN9XKuu5ije2AiDp8uQ9n6u1ykj3+8RiPV2AMltrNT/aeICU2dOSUmKw2uPab2tcmONzTWTvw/7Eqcy23BOKVUd187EfHMDWDXUu+dstzDtmAR1L+9m7YTfve/F6DnrGAO/4h34G+sw9e+yeaW68WXPcaW2sPMAAl2zsMgdUZmsvel0vF17Uj0LS0Ea6NTIP3vcfi5ItMolhq3Nwj6PSubD4ThsD+/prJgEYXtOTc554KKQnOOvPh7j6sqc48bxjsp2npujs8VnYsZeOUp0nNMyoDkQoUIEgalcE4xK96jgW/uthzPzqMTb+6PsMv/lwXvzhA7n8yxvZftV6hNBU53Vy+sdP5szzjCzXxld5KI6/YIhrLt3E5ise5fufrXLys7sZWNKebtPa6Wxaq2/Y/rBoxUx5xQKmacyR8U43sdZSxCghkFqzY8eOP8m9/he3/QYpIyMjbNu2jaA3noW2JmU43Kq+WRB8M4oGa2TFxEI0Fe5pDpI0nmZPxEitiJLYFClUTgpmPb+2P5kYbDa9qhICiPBFpuu30ixr8Fk2BkAJkdapyLE2rkzHBnUK88I27LjjbH+ls+AzIXTK1rhBqzoFIqYVwZJhczIpixSkAfdZbIoxCuwy1+gw1z4DGEqLJlYiz360Zkh+n9YqJsYuz+Jh8kCmOcg9Yz0sHyRarSdvxFgDy8jLLBATxEkSBHtnu555CsHAALu/+j0aW3fTfep5dGzyKI9q6n2CcNiwDdNRCSk0baKB0pIw0jz2i8fpmN+Rpsp2EzRkueHtPTepr7MA0OwFKmbaUYg0TaxbeNFNMBHFpgBkycsYQ/ffCInUKok/Ma99xXO9V8IZi0xThUs/TPspexFtXiPZXiKJ069VQ/mMRVXKIiKQETXtMx2V2BV2MBmXCYRi+Khhbv7Ph4gi8OeYeWYzvJqNzT88HT6XPGu25krBivPc/oDoP2RbcmgP8w/sYNvtW+ldfTCTE2WUhhjPaNX7eqjvnESgEEKibfYuQE1B4+ENtK0ahkpbmmJYA8QylWrFWiCUSOct5Qk8qdIYlcrhR7Dluz9n1V+dTnuXb2SScSZJlVLj+yqVy9r3RGtBuRQRSMXA6n46Rjq59CW/5eLvn0SlPWMzEHkwUAT5re5X0dBywclswKRlH61kLEmbPSPW/iWNmI0daGUAP90Mdy0Bnc4UDg1tpJz2spgYENHy2JYBKjoJ3WYZj1kBiiMLs9ssXlXl6h+OMj0WUq54dJx2BFp3cMT5u7n7rd/kTeeM0jWvQk+XZusTNUo9bfzwExvoHSlzzLl9vPitI5R9RUU2Us+bZVJcNqUp/gtFSeTHlRurA0KK+9l1rcBJTQWURIwn4hTsXfBek4DFJNNQIMzcsXxdO9/++EaqXkg99okR1MfqtPWUTFbVEizpG2WrH7N3dwfxUExP5zSjOzuR4z5+tIXtX/8aohzgNWqc9cp+znphD08+MEOsBAvWdhFSIk6uufv8LlnbwYkvGuGG727lgZ88yc2XTHDy61fx/LcsRArjFG1131yA4ok4l4q6VYIJ21pJJ3PNec8CjJrGgpQigxNp2L59OyMjI03H+WM1of8UOP+HbPsNUoaHh9m6dSttBzdyaTKNJt+YeNKJvLaeFSvxcjW5uUJXyXolpIk/cSb6ovxCJpk+jIzFM4H0Vg/suTExzYDHl3E6vijxDNttbSC+zTJWi4O8/MwBLNZDDSbFciujxGhKE++Sr1PPNUA9Emlwv92+ZVP2w6vTD4HSIv2wu0XWROLJNNvbIP785ODKuGyzsrOcMU8zy+jGiBSD6/e3FVmUYkrg5nWzZBZLR+mMUzQHL7vDzKd8zmRvGuPZFUITat9cswCqRx3EvIE3seOzXyDo72KocQqlKYUXSiaXmUxV9dgnVklsCjC5s06sBUvPOzAPcpNh2RiqUhJzYqWLDeUV0ms3ezHtc22ArunPjWGx+0bagzgDsJnxptP1fjLp23evO6ihtKSeFFSzoMfGdCkt6C6Z9OMlGeHqkCsyNFXtZZWnZvrYMt1No81nYXmUybjMZFxmV72Ddr9BCPSuGkBr2PHIGPMP6p71WdkX+HBjTX4foDJ7gH3xg9ocZ2bbbCzI/hqkT2u8jv4bWnt17XPglyTPfudKvv2+B3neqyfZTHcm1UqYj+41w0QPPU517TLimiRSgl0/u43Gxp0Q1hFX3Ecw2E3n8WspL51n4kwAKbMkHaEWSRp0SbUUGoARRNRmSvilbtpOPJXHv30Pa151GDujDrRWoAVRaGpAeVKlhXdrUZAWJ/W9mNHpKsuGJUf//Vn88nnfoDEdEbfL9IqrBKjY36lhuZ9gw24/GzhpZWClMiO7rCkA3WvSoLpsSkvw65xHsbUKjLd9Nm3b4nl2t5utxlB6HZ0K4rbeSkw+FW1elkg2bp0Z2kU2Za76Kdnx3QB4j1Oe00vvoM9lX3yM/nGBPPYI/GVLWPapN9K382FGxyTLvY0cgKb79EOYmPYYu/NJrv7YjbSvGOLs8yvECLpkLZVqSTKw8nRbE/jQJqVvRYY5cOKCm1D71FSQXMM6aDjtzwZZdMYyBnqbtUAxkm0bG0yNxeipaartVYgDGmM1Onr9lOnuK0/T0V9nS7lBvSFYN7CN8d4qt9+/nNrMPNCav/jBaRx3wJiJB/Zg5TqTdCXUmlgrYu3RivF6yftXsGhNB8uO6uNTf347133+Efq6FJsfmmDtmfM45KyhhK3KzjONxbIlE1o8zLkkSo4zYS7HgFUmmDB9jRRxlnWs0G9tb0QYhgwPD8/a3//19ie51x+0PW0mpUMU4kTIp63zRFY53gbK20nU1VinAVJCGgcypqJ9LsBRNxufqWzMecZTOZjUiWQlk2+ZasA2TV4CMGSm/VcIyl6UsSbJSdlg/pQhKYyh+Nv1mKYGY7p/diwvkWdljABIzzEc0XhSpgGubv9u8LRlXLQQuZTJLj1vJVSxvVU6Sz1q/fZFoOJKo9w2l/xKSp0rNjlbawWUiuvy/bcGRza2xAIOrUWOWVEqPwEWA/LteZqxKzwPlB+b4yhQQhIsHaTn2ecy9vOrGPuLk+l+QuLPKLof9Nlc7mP5EpOFpTOoESmPzTdsZODw+aZP536n18g5ti/Mx6KcpPu1mbOk0Gm8SApQtKlRYmsSuQaUG2Rf8SJqMRkQEZpa7KVSQ8uaNJTvgBjzX9ULmYpKaXyU57B83cEMkfKYiQOqsoGtrl1JNMT241ySEW1+g131dkoyopHUg/FlnI6zrnxUpAiyBGRNxluruJLiNXQByr6kWW6s12wtLy1wZKRaOqAwKd5JPrNgrl+RAZVWzZW8Fsdnx54/R9kytWdTNiGRr8txwJHdTO9tILZso6+nl9Fa1bAlkUelFDJw5lo2fPoXHLR2mKldY9T2KGpP7WLBG8/D0xFeXKOxY5zROzdQWjLsxKcpTJ0nUsbWvknTjcAwtEog6oK2zoVMbr0RX0bUp0rMHx5ly46eZHPJVJw5lCZqpj5KUIrorNZZ1rMHXyieuHwDi48ZonfAxyNOjVoXLLjG4b6C37N7Juc0oGeTLuWOlaQndltIPngeyL6RLSRoxYxbrdIF7yst9b4ASvHvonFo645IoVJmxcq4ciloXYYaI/UsiciAqQJQcY8bYrJgudcqJh+3an83tMfwgV0sWt3OsoOq/OLb27jvX75LbSqmrV3y2GRE9/JeolPX0vGMQ5mpm6Kz7ccdxJpX1fjuX9/Ijz8gmbe4zCnP7OC5Fw1SrmaATyFpxCZNcXqdc/FdRk4b6UQ23YJBiRHsjjsYFONN2eDsueyN29gRdrGivD1dHmqfeb1xGr/bwDcSO6245ec7+eoHn+QZb12LX/GpeA18GROOz9C73Miu2pOMkvG2GSa/eTWP/uoJ1pckxz1/hNVnnMRj0So6Tj6WS19zA0u+soIlB5TSe2CcnFHKOrrFUNM5KZCc8OKFAPzNladz81fXM7Kmkx//y6Pc9tPtrD1rHi/9xzW0dzTHUdrzdq9H8X632qfVMreQarCvbYDa7mk6Oztpb29v6vtP7X9H22+QMn/+fO6//34OTkCKDZAKlZ+j4MoiouxFTQGexWa9NBUZgiKrReIERikEcRJPYidCY6zn+8qMBkVZKKKksrYBL3mpmXkpncKTReoRTcWL0n18oVI5gisFcyVarVgRt1+3D7tNqv+276TQ6W9fKGQQptvb+iNF48imBG0V5yFlHuBomo10C3zSVKKFPopZwuxv7Yw5izVpzbIUwUcRzLSqkTJrHZMW47NAzDIiVupmjyOEyVxmj+1u5zYpNVppkAKvpFAC2o49hLHfXMHuK3/JvN5z8GZigilFbaDE6GAV31NMhBU6gxprnrmIm79wHyNHGdrZBrhbZsLKCmtxQCAySVdd+SZBhMieR/s+pXJFkc88ZwGMpdntNpYBxCMXXG+r0Nvf9lmMlJfWYWn3GygtTEFJJ0bLVrH3RUyHX0+zroCRLNTiCnXl0x9MsaSyxxQvRLB+cig95obJPgN6Nm9Da+hd0vW0GYdWjOVswe2tgM5cnju3KG0meSMFVzIxiu2cZte54Ma87yoHYlrGroi5jc7iuJvmOseZYgJOoyyo1Ho2Kx5LjujjoRtHmffcOpNhibFGlTjymK6VCdoVg889mgc+cx3BvB7CUgdd5xxn3lVPorw2/CGP+tZ7co4FU4zWAntFJYjoKNfZvLs7Tc4RMMnEzlHC7bvwowlq9zxK54oOtjw8xDFHPcJ920eozZRYMWwqdz+5q49wVxVdjTlgeGeabW4qKiHjiFJPpXBN8t73pnVztKLEy+2lpeSEuYFP07pkbBbAxIj0twUCOWZFtAhiJwEVOvs9OxMicstny8I1V4tTYO4lGfr8HONQVDZYliXWBXZRQ0WYe1ecpzBRq0D23mTMo6SmgxSs1ZJ1a47tZs2x3UQaNq5vML4npHfQ55G7prn2sju5+4vX0bWsj84DBpg/rKkHncy/8CiCjjJyeIBrfnEVP/7WE1zwj4fz/FMn2bi+xvW/GOOyz+1g3Sk9HHdGB8ef3clvvrWLh++c4cRzOhlZUuK6n4/zs0v38NGfrmXFap8JVSHWkqntkzx27zR7Ntd45I4nuPCtCxla0UFFhE3xcp1yhs7yTMaGC5lWfrdFCs31kUSh4rv/uon5h/Szd2uNz534PYYO6GTt+UsQeFS6+4zahJin7tjFz996FWtPG+T1n1xNfTrmuu9s5clvf5sPXH48n33uC9hzVcDH33wPH//FGnyZqVA8oSkRpUqMIgj2UOl3Z6C9zilvWMW2ejcfvrzEP7/oLu7/7XY+vSXk8GfPp0PMcPorF+afu5RZy0svvYTDgiwWyn0OZms2pbds4Uxw39WJnbX/UVIvAPQfSKr1JyYFeBogZfHixfzyl7/kSFnJP1xO4TfIJkY3Ud9s+bJdNkWJLF+2pfhsYJRN+yeJM20/cc5QMVVWs/7NMc2/ZRmlErFAxqBae2jNvsIECDvxLSrJdhTIGD8x7lp5U633WSVeRwtkoqTqdNGr21QFfT9aClySv1tJqHwvTjN/CaHTDD1poCwJk1IAb/HTGE8RGBUN/+LvuYCG2T9jT+z2QuRlWsX90gxoUqd1GMx5ZseTUuf08Epl/br9AAibhECahARhtcTQRa9iy798iu2vOo4O0Yf2oLIbJh7oo+fg3Snz0dMD1cF2Rm/fQO+RS3JjjZSXGbICJqIy7X6DuvJTliRynn1fKNoToD8TB8xEAWUvMjWF0Ck7obRMA/DL0mQcqyXbe8Kcr/0ogZWEZXFUJS+r4hwlfRnwYmK3fBlT9ULavSxweTIuEymPcnlvuiwNqBeKTs8UdhyqTOCh2DjTS6g8alHA9MOj9K3oQfr7F1uS897ugxHJ2JXZdP0FUNriC2Df6/ReaIFKQKY1vGxyAVda5AmdAD8vB2JSIxSZewasrNV1PDSzKKbZTDe2uR/6Yl0O14vZ2R8ws2E3UmgGq1PsTVL8KmWYtd5VA/QfeDrTYcDETIUw9BAiyuamoIKKtcOaJKetScCKouRHTNbLANQnyki1l8mv/4j+E1eiDxkkOOo4dlxxK9EDE8QrTmC8UaGjUk8dK7GWhHUf2Vunr3uKsXqFBW1jjIUVdtY6iEJNOB3N+v1oJSWZDVTkPPy6uaq2y2hIkWV0KhZ/bNVfbp+EpXF1/CmoKsirLFBp1eaqeVJsroGcMXStY3ByBQ0LzRavtM+YC66ybfx0f5WAKQu+pnUZmRjDYGI2iqmMLUCxy2Itshov2tYeEdQICESEELBsVQkoESNYvKLMOS/oZufWiIfvnGLDw+Ps2gNizyj9gebe344buyBUSE8yPVrnhkd7+fi51yBLHoOr+7nzil3cf9MEWzdF/OiSHZSGurj1yi25a1FZ0AtMU65N8JGLN/PgDaP47WXCcSPvPfSZwwyvUDS0ZzIipsUJXVlc5sxpaN8AQJFJQmMktYbHorWdNCKIJ2Z46SXHMT3a4JcfvZfhtX0c9txFaR97Hx9lyVH9vOzjhzARG/D+opOW8MU/u4affr/G0DN2oXrOYcuNd3L1VYpzzsiej4b2WtZ0cZtrD/R5U3RWa0yPdPORK4/iG3/3KI/eMc7V//4g9amY4fPWceDgWLafzoMft2UphPNz1VwMiW2t0ry7241uqbFkyZKmbf7U/ve0pwVSnnrqKTxW5j1ZBd1uESEXsz0Ut5GJRExpr1na4HygLVAJREaZAk0fexsTEgBKaEoySl+SNFOY1Kn3tPljk3mG0mXo1Jj0hDaGi0sTt/AK22WR8pqWt2qplzb9OLqyLZ0GsboApQh4LLsSyHwqY6tJ18LUWsmdp7svzeB9triQYoHI2UBNCk72AXq0BpLxaiVz56hFNg5b8d4eU0iFSqpYC6lyxxFucczE0BJCpAHAto+seKQGjHQtjiUECn/JEO2HrGPr+is5tO95VLbXiToDtCwxvqzCFr+bSreRPi154RHc/Q+/4bgjl+QkSTY5RJRkn6v6YRpnYo3eFFgL87xZhsVm+KrHRhIGMGMZE+wHQoKMKCXPt/JMRW+7PtKmHo+VfU2G5fT+zyuPE2qPqhfSHcwwFZWRcQAJgIm1YE+jnYHyJKHymAgr5j1Kntc22ch55SbiChUZMhRMsCPsTN9NT4Y8ftV65h+6f6kii15i0//c8SRFuVZRwpnLVOT8DJMMaBJzrbLaNWbuklpAGjfULNNymRUjr4sTqYJhVlIDWgtj3ClhEhhoJ4ZFyExuQ8YIBRhnzWzxFlZzb5uHZnos5K6fb+WNPz6dmaDG1pkuetpnGBMGwO+drtJZrVHxo+TeKGJperFvTNzQiMB8HtLaQsk1k1JT8iMEMDreRjztg4SJ6+9j4MKTYP5CtBI0AHX+SqIndzF9863cfN0EpYMOojz/AMbbO0FqRElRrTZoS5jjJyf76AxqdAY1lj5rFZdfehvbnlzFgqWORtC558VroZKYAchkxc01LFpfz1bxB0+3pSAy9SRrx2mWj6cpSgPnyu62rxjGVpnv9kf+VvxWt9pnNsDjsjCuZMwdkwlXN/8P8XIsjcmqlZkgmWxct7wOnmMbDI74zBvphPM609gQTyh0FHPbNZP4JY81x3eBlPz4S08AEPia/soMR796kKVrKoztjjjumT1MjcdMDlRZvKrC4nVdHH1ylZGOCb75iW384ut7qE+EdK9bwPhD2zjgtPm88I2DrDq0mh5XtWDDABqYZASGRcnOM7YSOcBrK/HiTx5JXQWGaUn6KQ918p3XXcN/vfRKKp0l5h/cw2PXbGXZ8UOMxVWmY5O4JRAex71qJb/62J0sWnUMeL10nHk8l158JVcdP58Pf2lhU3KDhvapKwMC56r1FIiYDq8GnseSYwcZXt3FrqdmuPHbm3jo8i0c9JJquq1ri8yWPMSsU6k0rNiKToDZMn65241vnWbx4sWznsMfpWn+FJPyB2z7DVKWLFnC5s2b0fEyPM/ZzZmMpdWaFjTStrm6RXe5+6IUCwnZySdvlGW62SZphUiCllMJRKt4EpV6vGZr+3rRfHeZKMgwCoBJ5WjO7GUuGvi5bFD7yWrY/tLiju5HTzUzNl7CKLh9u/Eotln2Yl+MiltA0q1Bkm2wfwwRYKq/23Gk18TEzmgSSZrOy9K0U1zOxqII3IxhBnqZbGeWOZFJKtQ8w+P+7fkxQmpioOvsU9n2r//OzLln0T4DIlZ0bvSI2jrYe1TM9qCL3so0Qgj8nnZu+eh1rHnjiVS7fBo7x3n0u/dyyMXHp8+IZSzKXkSoPLTSTG6bxC9LugaNZ9p88E0CiBBoqACVMCluc5M9+MKkFe6QdSYpEyYxKVJoKl6YJouwkpre0jQxkr2h+dh0+CY4fyYOqMU+paSQapCAo021Hjr8BoOliVT25QaSAtS1Tz326fWn6NY+M0HAZFhm52/vY/c92zj3A+fOamgVW2vp1uxMiQUXymFA3P3yH9HMaLQsUk7CpbPim76MCWOZi2MzD4xzH7Sf3ldfS5SMc3WerIPDeI4NG4tsNlStpDUFacLE5rmOobyDxGTfSQGVULR1Sjr7S8xsn2JmMKAkYxpJkUY750zXS2mNJ415L8LQo1Qyz4jwPfTkNEIofN+wJ1ZW6XmKRuQzPtFGXPfoHZpgdFsXvQd0Mr15L8HAUuIokywFiwbpW3kq0dbN7PzyL5Ddt3Dkmw7lKb0WLzBOpqlGiWoQUvYixhpV+itTtA+103/0Ym79+Q6G3rQk952YzZjOxVEk7Fa6zxyeZFeyXOyjeM1b7t8i1sMa/U3shd3WYf5b1f9wn8eAvGKhVWB8sRUNwRjRJHlrNWZ3+2JfFggWveD5OjLZNzDNGuaMea4020WA4h53thgiiVPd3BccfUa3PSNA8aLX9fKcl3RSaZN4nuDWK8f5yF88SakjACF4/yXzOfj4rhTQekLx/S9s59c/mmbo7IPZ+vN7OOpYn8P/+XhWLTdsjwUoVsKVv46CUPtpql+XxcqeCxMfUksAQ+w8u0oLFhw+wKsueyZjm6eYHq2z6fadnPL2w1h9xgjTcd5sW/3MRTx5624e/8dLGfjARbS95ATKpZCN37iGd5w3wd/++Eh2xt0sLu/OQFAaU9g89mJWQw/FFZ9dz54tGaN+xYdv4bkvOa0pWchcEl437XArJrJVwVX3WWsV0zK2NebEgnLhj97+BFL+oO1pxaQA7N1ep3+BS2m6k6XVEbZucxXCkq0+INpklTHbuMGjxhNR1GvbFjiFG4vN6tOt0UBhwpw944vOHhoBoLApZI3EY3YPr5X5uOAlH4hoYlMswNmXEdeK8SieYwYYmoFKcdtiv8VK8636KAKsHEDZDyO0ZfB8+iPvudVa5NiTrA9MoK5IKl/r5CQsuBLaASwivdMCUFL9f+z9ebxuR1nnDX+r1nAPezz7zPM5meeBJISMBAgzKKOg2AKKqCh2i/ogtt0otm3rg2M/tvKKjVOrNNIoLYogQ8IcSSAJmROSkzPPe7yHtVZVvX/Uqlq11n3vcxLI+zT6pj6f/dl7r6HWVGvV9buu3/W7xubDhMuk1JhEkOzeTPvss3j80OeZ2PxC2scGxD1NshyxcLQLMwsc7U8SC83uH3su+thJvv7rn2FyQ5ein0MZdWhFhTekY6lQvYyv/t7XiWJIJlMiCZf90KW4pGmwYyIRmmUtSaM6BbE5TjxNSRi6ccaysYAnlUU9z6qsUN+SlkLmqUyloe4iNoWRLOZtWrJgIh4yGWdMxQMmo4GvMH8km2Y+79KJMqbjAcNScGKgE1aKkgp0z6N87b2f4+Zfu5HOmjbhO9ekdLkWAhQ9xmgM7wOEeTqiuhflu+eFAoIopXSRTiMJ81HcduE7Gt5XB1rsOVbnEtK5Cm0pIO4yx9GVcvAIPJzoC11FAtx3LCeqASxZFs102ziDw8vBR3DFSzdw19/t5fxLLmQha3NysYvOIuJWQdoqUFqy1GvX8rq0khTS+LytzvnbGDx0gPbZ2wKAb8FMPogxhUS2FK2kAG3FQpQJJpXyHYw6iijSiC1bmHjmRaRn7eTAhz7Juh/dQV5EJLGy0RwjODnolGNWcbg/xbqbzufrf3Qrl798K9t2rAJQfaSqTt8a17zTa5WcySYtsLkvjKe0nKp56WTXfOTRiQdYkOIS712rqSWZU0zV4tSGvz+Hb6OdThGt2RyVzb5PdXp0s/ikS952Vc3tsjoDw4OV01CWmtaHRKOFZGKqAquXXDPJS35wI5/8i6PkA81vvvMQf/K5SXITk4iClRX40187xPar1nPo7+/izb95ATfc3AVy/61wAAXqFEz3LL3qXIOeafeNfMTPRU/GjbvZ7ZPMbp9EG8G5L9pZUsSaUVxBIWJe+POX8qGfvYODv/B+Nl23i6271rC0dYYTjyzwh790gNf9NNCy269Ww6f5/Q3bi9+6jc9+6Bj771nghjfuIEqjVRzA41sTqIY5K6tta+/Z6mNbIZk/WHznRVKebk9pe8IgJUkSdu3axfXml7mP/7zqx2qc9wbqHzcXTaltu1pui9CEutmyBEIOoITeB9t3lbwavnSrFYJrJvmdLqFrtXY6WdR6hCi8TjGyzTiwcirgcjpgY05xXrXtGv+HoOVUEZWQrx4ClNUq0LtoiFsbgpNmf4JSyawZpSkBik34t8YQAgSmpv5lRJWDYnR1TjKq6si4LLexoEUaiDUzNz+Pw+/7Q05+z7NZm6dEmaZzTNM/ErO8M6U3TNk6s2AjG+tmufQXX0pL2ojFPb/3RaCKoBhjeOwfH+L4XYc4999cwczWLoODCzx+y+O1/Ce3TyfKfY0eZ1g3Aa82VY0UW+Nk9cT0tMw1AZucXxD2Fai3GCuRDDbBvyMz1iVLvrK8qwjs1kdCl7x2zbFskpUihQOH+cLPfZKr/92V7LpuCzQ8wmFbrb7FaoZj3nhP63kHVZRTm3pifFXPqBmlqQOU5vsshVU9G5eT5gFQafzmOkKJknYWPIsw3wVJFSrE0tkcPbQeBaoMPYkKVBQ1LZn75N3weq57zSZ+/XV3cNb3HeJ4ZyuqH4MS5DoBYeuUaG2BSehwsPkmVukOESFblZFlnQLSv2uU0clhHkNLMdh7nPaFZ9nE+pb23wNbCBK0gvYZG8kOHCGbmEXmfWTU9dHYXEsiqZlMM1rlfDB9+S5M9AX+7v++nzf/zqUekDWfuTP0/HxAVZPKPTtHJ87L3KHKaDxFAq/z6I6JtJwOrIT0lBpIcOc8Jqrh3XBlAr5Psi7nyybYqCINp85F+VbaKcUmGtGUcVGO081f/n0vmRFpmY+CqCq9n1LCmFFZYfd/E6yElLCkI/mhn9/M9d81xy0fnWdmc9dHMiQSJSRnXT7FzHp4xW+fy1XP6VbXKeq5my4iEto5qyrONbYLAUqtoLQ35O28fvyB4ywdHbLr+ko9snZtRkCU8PL/8ky+/jePc+D+JQ78w0GKpT4iltz3ofs58vIJ1l81OXoPG89ltTnj2a/fzLNfbxPU33re5wFYXoY3/8dRgNCkfYX2SbOg96lskidSmHVhr+Dss89etY//Ey0wKb7tfp5uTwKkAJx99tk89NBD6K2rU6XGJXI+kYI+btm4fn2CvfOijPFKec+zqQz88DdgOeBUfOVTec1Wa3rMxOKOW1/nEuVXS/qsn5umMqCdApPrJ9z+VG01IHE6kOG3ox4sOt07MrbPAFCcbp/TvoMueGVEbWNjBLjkeB8xsWfsoi42x8Wu84cMlMU0IKMShJkyGlM7SEkt0wIEtM7aRfvM3ex78FN0z/wuph/tMblfk021OdzdQHv3klXRiowHCkOdkkqFGhQ89L/u4+g3DtNZ0yFfydhw8Qaufdd1pcSwor2lw30HbVVibWwdFm8YCZtLEuY3NUGIXVdFEAsTlapepSQ49h5qbD6EA0EtmduE/LKvvkp8/45KJoUmEYpulNEtgVdPp/RUy0dOWmUNlUQohtpSvvp9weff8WnO++4zufQ1ZyKFGut9c969U431cZWvx0dlQ2dBJSHsrkkjagnxtf4aAGWsepcRtZejGXWRpQGvjahFclx+UUgD0lqgGxQIr/ZGnbuukDY/JRwTDU55eO0bz57iouesZ/9nH2Vw0zWgyncokxQyQacKWSawO5qki5SAjbYVJ5c4+sGHkDOTGAXFQp+5N30X8UwHGVmvrjGw0m+RtAuWD88z/bxZolR5wQalJUUhrbJepCnuuZ+ZF19L/44h2f4TiB1dtKmEVmZaA2ZbfZLeAif/9gEOPbTEru+7koMfuYPcRLSog5TQqRR6t5tjyiZ4Gx+dksKClZDiM7Y11jXBympSweHycUn5p0vkb17buP1OVc/F/b0ac+F0AGS1No66NLpNUGsleN/H1mmBSkxA1Nc16XK1Y/iIWB2oVPmso9uHamsAuy/sctaFNnKX+/dZIloJ7/qri7FFHhUOOq5eZLaeC7V8tMeXP7iXdds6XPSSrcSpS6pnFEQHwNpfQ3A9i4cHfPCHbyFKIt7y8ZcTJXWae1ifKUnhsteewUVlNHb52JD7P/Yoa7ZPsOsZHSALznn8Mcc5t5rb/tgfXMTv/+g3eOAzh1D/cddYIPFkoiynEoY41brhSsHBgwe/40DK0+2pbU8KpJxzzjk8+OCDbH12NLKuqvZb9/icTpO+mUjVBCrNHBWoTwDjwIbTeh/3wjk++rcSLXGtmXA/NnJSy0sJz8GCrBG1IWH8a21MpQRV7oExdd5noUfJCqcCI2IMeBjnkQmjG6eOnoja7/rBTg1Uqk5GtwkjJeFv44CKCcCJP30HSurLbffOox6ckzD2XxepoQ5WAJtor0HnkQU3kWHuJS/hwO/8Lkvn3MDMMCbuZcw8GjH7kOHRH2gzP9mhHed04wxtXOq04JKfvJbe/nnkRItWV7L56u0kLesr7EQ5iQOlWpHKwidyZyoijWzCfSfKyYTxRe9ci53xE+dkZX5OLK1ksEtadzSlUHoYqlywSs5WeQliKIuexjktqViXLNOSuVcAOplPsFh0mM87FEb6ei9SGE/zOvKpexGR4Oq3X+6BTthW87TWQAZiBKCEtCzXankaiNo2TXqcA2yxqBwZ4wBKzelQUna0McExRO1c/bk4YGgq6fBQvc2HTqxJRG4kCTYaVRjpoyvSGLQIvjUSb1y3yElEKW5Qy2OogEp7IsLkBTLSNYBuMolSAjpFqXoHGJvmZyWGDa2kYNMrrkBHLXIdky8XHP3Ax1n8hy+hlpbpXHIunUsuwuQ5w5M9OpsmMIWGKCaJcqTUVk0QUIUdb5MTA4bZCu01bdLtE5z82y9SdKdJd2xg3eWbyfce49i+few9vMSmDYZLXnAGm151JQf/8V66M/HYJN+8jODVx4cFKE5d0XPrja5Frdy2/uYyGh1ZLcmeMipzKlpZ2IdTflsN2ISUn7E0tEb0xdeKGQNUwmVjnYljIjm1PsddzxN06IU5F9W+8vSgSNj8lbbIAoO5Airu/KC6b01wOQ5ohhGVcU7Q0F6JsCpdWVkNPhXK085U+c2w9WFcdMuJXdi520Xo7v77A3z6D74JwK1/8jg/9IdX0F47UZ6PBSXGWIqyMvV3t7on9jwf/vR+1u6e4uDdJ8mWhnTmqmT1cD9thI+w5kRIY5DrU65509lMxkMiubJqpBqoiTmMblO/Zxc9ey2/d9+zfX/Kxp+C+6xr+zXzhkO632oRwNFrrOcXAhx+bMjs7Czr1q075b5Pt3/Z7UlHUv7hH/6BrYwmsq3m8QmVQMbRvFaNsgQfcudlaqr11PZx27gXNgAqq7VxAGfVxNzSkBlHC/MGyROIzoSJ+5VXtAEWqAOVeri0anmQKB5GZCoWiY0kOG+yS5r3NKeg2eNV1xqqXlXbVNs2930yleifUAQl8IB6z3UToDQBjctLGQucgr+lKOli+JiqMZb2IkopNF0IjJKef2FiQ7xrM91LL+HA1/6RubO/h86BPumJAdGxRTZ8cgtHXzXBdHfAUtYikZrE5ZAkLabOWMf07jlu/y+3sPm6XSSyqACG0LSEYuPuLg//r3s561UXUOiIVNrJfUWlTIkhsdDkJUB1kQ6XXzIubO9khD24DYDvUMVWYapc3okytJFMJwMbBVEJ7ThnKh7SkoXni58sJhjohMf7c/SKxFOgVlTqpXVXVMrSMOXBv7iTi3/gIiI53pN2yiJz7rsxBqA080jcPYSKjlEDHqsACl3eGxcxgopuVYz5DlggWb374951axhHXo5cGuNBi/tx5+uopi5HxSXwqwbv0CXgu2dua0dJy6GnYGAST8FzLUJz7PEeZz5/A2Z6hf0nOpBqG1FxY1oJb8SZMuorynMUwtCZijBGsTKMGCwPiTetY+alz8YYw8JHPkX/3m9CnllQ89aXYoyh/8Bekgs2IWVphLiE+0hx9tqj3CZgZaXN5sMPccG/OZvBtt0cf+gkgzvuZfd5HWYv2MD07nPZnC5wJJviwILEZDmttgxyb6pIwYLqMBevWBqPLHwScm4iD0hEXvDFP3qQC19/PrMzp67PMy4iMvabHgCEU81LtT7HAJtTzRchCPH/+/0oj10Z8COJ+av0OS5mdKrilWMjGeU8frqIRyhZPK7VbQHBarfjydK+KptB+zHeZGH4WjbYRHftoj/B+PCKYsbWpJKlg9MClYyImJyIgYlBa/Z+/SgX3bSWvXct0F8u6M61+bUX3MrWi2eZ2tBmy4UzPPS5o+y5/Thv/vMb2XzB7AjYktiyC3lm+NpfPsz1bz2Hv39ggW/ecoALX3lm475YYJIE5+zKLIB1RHVl5p+VQpTRRFl+l8bQqYxe9XvdVKqr/h59cJ62hgr2F6t+98eJTFQAcXRMH93T4+yzz66VFPiOaKFt8u3283R7ciDlwgsv5L3vfS/P4dxVPxrNQRe21T5U41REYPyHc+R43phpcnHrYdHVwMpoZfBTJ9LX5fxGvVjOEGx6EcYee4znZMTYLM+veR2R1N7wCtdFwmCEQZdedVfhXukqSmANEXdc/DLA54uMU+p6wuDEVCpcq34+VgFAtWEVLmseS9TXjeWphYUjBRCV0RRtynyW0ryIte1fCZAGEbn1wTGkwaSGmZe+kIO/+l4OXnQtZ+o5xKBg+eJN5BOC/lKb/kqLdWuXOHrHRqJMkJ/d57Ide0lLg3jb885k/z89xNkv3g3A+nTZf7iv+/6d3PPx/dz2m//MxmduZct5kyTrpgFbVDGVRQ2cOEN4UEZXXGK9Az/LOipBTFUPpRXkfjl5zKnEav/LUiY5looWgpUipTCS9XGfZdXikd56zuwetVSCvEzKj3JSWTAVD+jKrKyjIjn417ehC8OFL9nuwYtrzfwJZ/C7sR6qdDXfn1AiuE4Pcx65yqFg/68iI80EeBdVshQwUzvGalEeR+nwxVjH8cOBsNhrKsF9KwqkLW1noqoGC8by1f25VrLF7nk5oOPOoafTcnlMhGFoJEhrlEhhuO+LJ3n87iVu/qVNfHq55NTnLpJYna/RdtyLUu1OK+nff5fjBBBNttGLKwhp81nWfe9NqDwCAf27HuLon36CZMN6hg89zsPv/zt2vucHEN2UPI+QkeKybfvZ1F5E5YpWrDi5Z5mLX38ej69EmB3bae/YzqA1YHLqKBuSRZSRLBYdtk/MM5iLObpQKQv5+wGsS5boqRZTkR3Dk2WdnjAx+ZYPPMhX/uA+jh8zvPBdl/i6Wc1im2MNMzMaYXGgJEzCD7f1dUaahmeQY/JEmzMEnXJZM+Hf04cCh4fNFTtNIn1orDuH2yr7jKuqDhDWfwmBymo2wDgDN9zH5rTFXuHricz/zcjUarS9St5Y1/aFEEiVzxrt6z655qKWtrSBZKBtpLwtc5SWmGPz/Mm/vY+D3+wxXFFsOWeCa958Nue+aAcXv3nIvq8cYt83FrjnE4c4+/nbWT6e8YX33c/3/u5VYyNnAA995gBGGy5/2WYe/+oxTj66UItanE4sIfHR9Mpx7MbHKR3FAk8zDe/LuO0rSmyd+hduMzRVIdNxkZNmDs9quVxN+uKBh1e48MIrT3kP/k+0p3NSntr2pEDKxRdfzJ49e+gvnUFnKvHLxxWKWg3ENJc3q5COSyZsep5OKSU54nmtG/8uwuIoXy5B2B12PPe9CsOP8/C6wpG6tqxSFQr7qW3jAEjg4a7oJ1Vzyl/h+vAYVT0U5w22CahKSy9NLIWrXh9eV/W3McJ+bKHGUV+thbLDT7QWCgQ5Jr6f+sqx9LHmshp1y/UaRF7GRVOMwEekhbAAxu2mgviUpsxDMWVIqtyuBDzJujlmnv989n76g7S+76eZOipZ84mHGLz4HKa+1mJ5t2a52yIaCtIFyA+2+ObUWs5Ze5SWLJhel7BwqMeG1pLnx7uijhuSRbZ+V5f7r1jLI/cOuP3PHmTTOVPsetFZdGJj66M0jG+wifBuHM2mfVJZcGgwTTfOvBIVWA9bLCy4nUoGdKKcfp6CsQn669MlkLBYdFjRNqdlKh5Y4FG+pxuTBY7nE7TjnJODLmlUsK09D8BjvbUURjL/6bv4xvtv57vfdzOtVv0xjFPtctfkEuEdcFAl+ExKAz0EKGGrvWOIWmTEHacJPBBQlPk0NVpWGaUyjT6b9xwsrc6Y6v0bl0cWCU2mI+IyeqeNKKWiXYQr8v+7fVxbzUgrtGRA4gUWWqKgLfMS7GmWDvX4o5+5nyt+6moebp3L8FhigXguLVCPDCLWFYUyBC1l9KMdF+z70G3o3pB+kZItDEjXrSFpFT7pHsBoycRlZzF5+ZnM//Un6Vx3CUoLhkuKpCVpt3PmJnpcNr2PW7/WJlo7y+71x3k8ijnebzM/6LDQ69BJc+ame3SinJ5OWVYtTz+cmoZsucpFCeWWnafYgRLr+S5QQiCNRmrD/jtPcNH3nse9H76fQz9wAVu2RSQowkKKoRS049Q38wadMdmce0KqlkuAdqISVeJ75d13Y8pFJ53ghD+G99zb4+Q6ruUujIM5oSJcJDS5G9sBqGnSzCopbVkBlUZrJsc/EdrXqbYZZ+BSPkerXuVkfQUp1bNerVXCBtIDifAaoQIYI9Q8QZmjooNnrpmQQzu+yijMaETJ5nOhW2QmYkYt8t6ffIjJrdO89fefS7sFMhIsFm0ODWMmdmjO2L6eq753hfmiS3zyOHf8+YNcdLOV1a6cM3XgePDuE0xvbNNNFRe9bDt//dNf5eqfuqp6bqLK/XAA2EV9wmLUQ52ArOcRjctLqkcyZA1UNJ+d2z68L1U+WCO6XR53nO7ranlTI8d0QD045pEHc1780ktW3ffp9q+jPSmQsm7dOrZs2cKBB1fYdcWakfXjVC2cB+hQZj3C29sn6vsEnqqRl2BMWPyJFNgap/0dNgdUpE+irOhXodpXk851KgpKuN1qNVPGtdCLMpJMHxhL4/qkBCIQyOw2gJL/LQxoaQseYhNaQ1nfprzwqZS5qv8bIKORi3K66cxx4UeoXbWNRiM6tcjJKpGc8Qcswce4aI1g1HVhsA5wJRC5tKsNzN54Eytf+zqH7v0066PnoHdtZs19SyyeOQlCMvnFSbqH+6hWxPqvaxZ3zfHV53dZP7dIse8o63bOsVK0mIiHJEKxJun5fI+eTlm3IWbjxi47r72MfZ/fy+d+9Ta2XzJLe+ssGy7dyFI0QaaimpQw2JwGZQQrRcsnzetywkpl4alQQ514g7sjM/o6RRvB0WyKlcLStmaTPkMdc2Q4xVQ8ZDruMxv3yE3EGZ2jfqwu5y0eXN5AKhX7lmfRKz2+9B+/yA3veiZbL1mzauJsE6DUapxQz0NxdK1mhGWUqlmN/0FZU0aWnu6ms6DQlobklNKiII+kqRjYdDa48eoiWg7Uj81NKymXDvwAaGGP68BJgSxpZKZxzFKqWMUoaaWotbB0jb5KKrlWaYiMVfqSwvBn//lxtl6znd0vP4/HlxJanZz+SgItXfGEXMRRgIy1/0YYLVHK5nNkRxY5563XsDRIGWQxJCnEhf/mJIlCKYNWkiQtmHvVDRx6/z+i+0NmbriYuJQWfsa6veQm4uFP7mXbK65gKWvR2jjDwqMnURvWMtUZMNMacGLY5dhggnXtFdt/CapNYZCx83IbD1Ca80Wd7mbIs4zD951k7x3H+K4fuZy99y5zz6ePs+nfbGxEz01jbFo1NUyZA6SFBxwhZWg1OezcRFYAQajSOKzTZ5yCH0DPpHU5WO80q+prNfNVmuNemfFRx9xUstjuuOOoaS7iFOao+VbmWVggJb2qnH0Px0dGnmyzBqyxkECUdDgBivJbvQpQGQcWx0VM/L6iLk6gjCxBrSJB+fon4bESUZAE2zvQEglNVw7pAp//+xM8cucKb/mtF6BbLWRkv+uFiZiOB16ivRtl7PncPv7q7bdx+Xdt4RnfZdWyElnY+xeAlUILHvjUfl79C+cRYZje2KHoF6P2hJAoXUk3u+sLgaks35nmPYfxDmYXGXMRpmZ9k9C2C5/5qPOoAhjjVF9dXyGoce+22987sQPVSdfXwQeXueRd36Eg5ekoyFPWnhRIAbjkkku4eOnlLJi/88tWqwbq/pdCMxkNWVYtjmTTrEuWR+lZY0LZzbaaDv44GeLVkkmfTFtNBSWUITxVAn1zQlgNsIwztlxbDTC4bZq5JeFxFBU9zQTbNos5NsHNam1cjkrt/AKw02Rm+f8D0FGjVNU6bh43/KcZVSm3F6aidzXAUr0zYQ01AUKX8sbhOoENMcmyYyMQyhqavpg0ku6lFzE48DgHvidGZtPs/NgC3SMZrYUIoQ3ZVIKJodVXrP3aPJ1jUxy5ciMn54/QM8ssHt/KVesfZyoZMBP1q4kfgxaahaKDNpKLn7OWLdft5PDXD9I73uPT7/4Sz/y565DphDXEhYHSazqb9FlRKakskEL7/Iq8rHTvqqZ3opzJaIgUhpYsyE3EvOqwrrXM0cEkJwZd1nWWOW/qMNoIZpMea+IeiSzo6RYzUY/5vMuatMe61grLRYo2kg3dJe774iGmd6/hsteeMUJHCN9Ld72WBnNqx0MTwMBoVMMtgzISU24bFl3VfuwJH3FxTVKPXob7NAFK05HQjLwANWplCHzs9ZTGZsm5TKPCV7yvDlQHKk4JLAkiY87rLI0hMZZnfvLogPs+c4Qf+dgLeaA3w6CI6R/vQEu5h+D7d+cnhbHJ9YCIrJd4mAmSliTtJqzpwHIWkSmAooy6CnIVIaVCR5pWUlBEkq0/8VKf97Zmos8z1u2lJQseWN7I0qFHmXr0GDOXTrDthu089hdfpX1VxvQzzyaWmlxF5fnYc+mUVMJJVogSOwYiVxxvlfkmpEd95Jfv5yv/6yBnv+kq7kiuR+xaptizHyk21Lj34759zTHjBAucxHboUPLKXVR1LMJWqbRJbyjXaoWIUTWkEJjkOqopJjVpwj46aSwAdlOfM3jdiHHzq4voOHWzvCmp3ZiP6gVMx993oEYjWo36U78vlYGsECTN9eW9WU2OuKaaVuZmNJtVxKtHKKpW1PJZ2iKvQEh5n9y5fe3Lff7pb5Y4ftzwY+/exMatVrBhz319/uu7DvD8d17CxExMUjqMThZdZuMeANNx34OvA/fMs+GMCb7vP59fAjHtgZJ0ETChWTkyYPFQn23P3IjCsLRvialNXaS2To1Y1m0JjbDPnlHhhahJmzIRmlF1w1qOjk6q9Q1AY487Stsa1xSCgWrRlvmIPeWBSs0ZXeVZhetqND0Eg+WCI3vnueSS70CQ4tgcT0U/T7cnD1Iuu+wybr/9dnbfOB4wrNa6UeYTQFcrXgSMAJVmGHQ1b9CTaavJ2j0ZWeKk9CzB6lGSJ9vGGV7ACJ0k3P501eihETgIDLVTNWtkVVSucfvV+lgFoIw7lglf4nCdAxpuwmyeY23bxoEcQFntxXbHdDimBEhOz8xgEO78Xd9umJS/jaw6b59xBoufvZXh+pO0jqzhyFXTrLurR7w4RA4KitkOqm0tQpNEdA732fz5FNOe4Fg+ZNoIDvRn2JAslXr5cU29xhVQ7CmbezB98Q62JgN6fUnx+BFmzt/MQt62il5RlYfSiXIkhkzYSvG5kRQ6YkWloOz6qbLooquV0lcpE3FGYSLSqGBdZ5lNnSW6UcZUMqAlLZ1IIZiJbJX6RKqy7osDwpqlrA1CIOJT69vXZIIRNGsPhG3cJHgqCqXLb3EGpKvzEr4rzciKf08ahqk2lgIZ0sFqxqsRY6k3YCOVaaR8tMYdP8wpSwEtNeMMYje+q3yb0sgtf6Wy8May8/BLofnGp46w49JZhms2UixKFlY6iI4iaRUUeYTOJTLWlukkjK1pEpWGpdS+kGNUDGh3BbHUZCpiIsmIZcygiNFAXO4zzGPSWBFJQxpbfn5WRKybXOHiNQfo9Bf42i2LPHLH/XSnJEc+cz+Lj80zecVZXP+uq/nMf7qNLc/ahiKmFResba0wFQ/oq5Shisl1ZJOaiypHwXlbVxtjzvs66GnOunETO77/Wh56JIXWJPnJ/f55hhLPzbHgo2qVxe+XFUG+Y4LyNbvGzR3hsZQ5xdgVo0AmBCAOHMVSE8pSF1rWAMzQe7/r4Mv1Y9/bxK/LTVLRI+UYSli5XSIrYYam9LFP4j8NMDldlMU9j2aR5tMl54+XAlg92d4riQqFwt5rR/FS6BpYOjmveeOzv8nKkuba799JMan5qVc8wm//zW42bYn57Xfu55ofOIMLX3dejd4HMBkNrWNHtUiE4uCDS3z5Tx7hLe+7DCkFlPApvFdO/EEPCoQQJK2IiJzNu1ssHlzhT1/19+y+ZiPXvfOZPjfFOyVNlSPVzFtqPhsHBqIxYCXcDlhVvGEscESgfaJrVM/TCgtbMiaPeBUn9Lh24L5FtmzZwvr160+53dPtX3570iDl6quv5hd+4RfYye7xG5h6vkgYfmyJeiG31bTlx7UROdDTtNWKNzbD+vb36i+E9/gGNKHTHX+10PxYj90TuBZjRvuoGV1jQv1+32Cf0xV1NIwCiuZ5NPNUTqnqVQM09QN5Pvy47cedw7hlTaBSWxdEU0wJSgi2D38LPEDBlH8HrDDTuLdGGtrnnUlrxw6O/u6HWPfWN1BMdklWukztHZIuDYgPLyCnuphWhJECE0migUI/cD9Tm57B/HKXVqS4P9rIZJwxEQ3pRplPsI3K3JEV1cJVOW/Jggues47b/vBerrl4jtxI5rMusdHMpn2m436ZNGyvZajj2v2JRVUQ0q1fUS2vKrWQt+kVKbNpn6l4wELR8ZPukmoDMBet0NMpfZWwVCbPZzpmKWvRzxPiqS7ZwqB2v8a9h6HKnX+WzgIvn4kaM+7DFhp5IX2siqhUxx2XM1LrawwlTIUUreBYDuvW89KMH44uF0xpSeGMXV0lxrtWCINwstGB4o5vtfFta76owFuaRIq2zH3V+QjNN7++yO5nruPoYJLDC1MM+wntbkYcl1QeaaMmkYucCFPKDldCDGmsSJYHJO2IbpwBKYW2dVrcPY2lJo8sZa6VFLTjgkjaSM9kMkTfdT9fuGUPqt1l8zXbufgnLuS82WM8sLSeuz+3xN73f5bl9z6L3VevJ3/gMeYu3WrluKWts7NUtDzg7myb5cgjy6hcEyXO+15RqMJ7mpuIXMM//deHeOALx3ntX76Me7MutBRyosPSQ3ntWzkyNhvKRjVaTbk4LLiphQUSYaK1opkTFc5d0fjlZdQAE9C8ShCSm6ise6SswIOr5F6Cl8IVpwRiqUqDsJoXqsi6Bbnj5JntcQU05kcf+TSm/HYo7+EOa324GklhUWY3npslCcI2AmxEGQkwo+tOlUg/znYYB15crkml/kWZqG/vkae8Gck37x/y9tfsZXIu4cW/cjnrrz3TXs+vfIH3/Mg+Lrm6yyP3DLj5P233UWm3/7pkmW5J+7L1jAre/4tf46Y3buecK2epfZiDiIW7T8e/ucCGMyb9N2vjjpTznr2BTedM8bk/fpQN1+zgvBs3jBln44HKE4l4jGtPBHiGQCXC8Lk/eYyPvfdB3vYPL2TztrrjwPd7CoewbmzrloXX89idS1x99dWnuKL/c82x65+Kfp5u3yJIuffee+kt7aA1mYz9OKwmsVhPPJcj61bzBKzWd9hOFc04VTh/tRZ6d0OgEnqAR/psRjoa1JQneo7j+O/NbZvLm/ubU2wLJc0D4SdeKO3EVehlzdYELCNRFA+Mwp3GXFODmjUCep7Audh+qKzHUwKnxvZuWXO/0oau2TDh+gjWv/nfcPS//xmHf/33WPvm72PxzO3IIgUxQ3pgEZkVGKUQyqC7Kf21HfqPLLF5ZY6jS9DrDnjw5AYiqdk5dZJd3eOefjXUMdoI+iqhE+U+72RlzwkibB6LkxmeiDPWpsvWUEB5OsmKSv24jYUiEsYnaLu6JvNZh1gqekVCYSJyFZHpyHtX3XHdpD4wCSeLCU4Ou6wUqU3MVDErWUoaF6SzbYbzAzItSeWp1Wc8UGF0Ygpzwp5opLL5vpkx7+qpaGJh1MT3wZigXQD6HSBxQNb2AUlkjb5cRSXVQ5AV9nM7jqJZ0bBc1KS6JucgCWt2SKFplefRLqvOYzQPfGWB73r3To4YyXCQIIQhKXNDRCv35xJLTRxpT92Ko0oyO40UQvWJWjGx0HTjzKu5JVFVf6cVFV5q280DaaTY0F7mzi8/zvP+r8s4XMySyoJOtMiu9jGkMMxfvZulL3XIc0k83SYf2ArzhZEc73dtIUktmYqHJFJxzy0H2HnlOqLE5hGOpxrFKARGFfzlz97DwfuX+Hd/cSUnN00y3B8jRE7UhqN37mf5RMHMXGWkN0FEUnqonUqYfebV83DzQuTGlQtyBZEP+6BHIzWhglRYiM+NKy3q42+ok4AOWVL7UDWAoowo8yTsfjkl3dFIq6wXAC9drmsWTx0XWfLJ/H5f4Slv1f2p+nAS3e5bYVXzpFceg1Xm7yAPx+aG6pICNxpZWU0JtNlWKxbtAEpY5iBUEnPP5dFHMv79Dx/geW/cykU/chWHh9P0y0j0c37mEu7/i7tZWci59HlzTHaxOScy87ZCy72T4Cma0+sSHr39JMXygHQqLZ95kAMjNHmpGrZypE/alTVp8Tf/7qUoBCePKR7+xOOcecNm7/gNwaaftEQFiZ+IQzikSp6qnSoiJoVmz702p+y+W46y7vu2obF5dLVIyZh9T1kniHqJhwPf6PH9z/vOBClP072e2vakQcrmzZvZtm0bNy38JF+Y/ANquuOirinf5BOG1K1xBn2T5hW21ZC3NzCCj3/4/7i2mtHzRKle/jxL7+945C9GDJ5q3fh70GzjFIZO10bAyphrDcGWl1IN9g3zTMLk+CYFzMmTe0qYP/FxkZDRa/ItoHf5442LtPjt632eFphgoyHCiEoETJRV6leJrNjTErWvaRhRMcIgp9ts+IkfZOGjn+Twf/l/GNx0E/H5z6e/rs3UmoT2kSHJyT6iP7Ra7qLDcFogEMRHY/prEgb9FGMEU+mQMyaO0Za5BShEvoq7BSqwUkjWnDVH8k97mYn6pQe9YCoaIDH0dGo18aVmPu969SeovP5RCTycYZKVhSPBUoiI8cbRptaCr00xE/U5WUww1AlHsyn6ReKTz3MtacUFk+mQxakWOlP0+oJoog4yxsn1Vgp+gaG2ylgfUehilNYyAkAaAEUF0RUPNhrvqAMnNQMsADL1a6AE+9bYd/kYrg8V7BeuD8UqpDBkyv62NW8sUAm/H83vSEsqhjoh1po18QpSGPZ87STZQHPONWtYXslodzIbJRGGNFa04yGR1AwKK/Paiq2Bkwdy5UmpOpZlQ2TLFpdMZUEsEnKMj7YATCRDptIBsdTMDzt2v0MnufWv76A42mfx3gOs37jA+q0J25MTDEzC5d09ROs1+1pDOi3NCZOS55qFvM3JYRelJbOtPmtaPTt2+33u/ov7ePkvXmrPkUo6OKRSZX3Fl/56P/d86ghLJ3J+9i8vY3JNwqCfkcaKxU/fzck/+Rvbx0RC00wKDbM8WDZO2ME9M4tOSkO+jHDYgpzW66sNPk/A7VNoKw9cGMv5dwa4L4wXGDj2PYz9dUKZZ+YYaH5+NWUifnk+xp5vVB4PiQcf7h2M0LWojjteM9JTizqV+S3jQI4zjm08r65Ettr77GnbJUBxT8CBJRuRCsFcBdBzE4MoaM68taiNiwJRVaZ3BRr9vQvoTg6gZFryH95ygMtfvIHz3vpMHuvNURjJutYKUmjWTBle8LazWFAdDyJykzEZDYjQLOk2TrDEiaFoI3nxr17D//7ZL/PLL/1nXvr2XVz7mk2MU7zSWcGt//0RXv1/ncFMZPNaHAjvqRZH9mXsvnFL7Tm551AHmhWLZQSUhFSuIOdElcDcOYwd9a2pCNaMbIURlWjKRt2jyHiH22Q0LJ/J6nZMWE9oteXO1pq/T3P1z3+HgpSn21PanjRIAXjmM5/JG97wBn7kM89u8BUrGcUQ+YZoPpQQbibshS8MjKLn6jgBEGqEpzXR2GTIU2l9j2t1qsmpPbr+Ghp0sLqcqDMyTpGP0wAzzaT503mUn6jHOezfJgyPByoaSqPKXpwzsBwqCA2u1Y9hv5nj5E6B1SMlTfAwLvIRrm/uN67LJm1LmBrN63StylkxIMrfbcHMq1/I5IWXcPR/fpCH7rqbtW94Nb2rzmD6kQ7Tj8ckiy1EoWkdG9Jdt42FxcfZ9pkdPDY9CQKi6YxennJ4OE3UtoaiVZtRrGsts6c3x0SU2WO322SF5LZPzhMlknZqkFtiZndOMxXZWiUDE9vIitD0VcpKkaIRTMVDOjKj0JIhtmBjN84YqMQn4cdC044KnJ5+l4x18SIDk7JQdJiMhsxnHTSCTpwzVDFDFZHI0nu6MkAmkixuo81ghI5QTzivV5QfRwVpAnpr6EnvJW621SIlIWAvnNS2qbzPYcSkCe7de+CARm1MCOPBh+/HVMVQhTBQ1hvxOSlGIIRClABP5wlJpEilIsNKShell7oJ7GJhKVfDUhwgN5KZqE9b5HzzziXOuWqGImohhaHbyokjRaEiNkwsW7qQMNBywMhK207EWc1JJIVGRTBYsgVHXQQuiSqaURopunGONoLZtM9i1kas9Dj+Z5/mrb94BkeOruHxLx8m//rDHM01a9+4i42zfTZFi6yPF7ktOUm8NM8jH3uIc9/yLHpFSisq2Di5hMQwlQzIleSrv30b63Z2ufCmdUQUNcNICsO+B5b5X//3ozx21xLrt6Vc+vz1vPr1bVrrhuzLJjk4mKGfJQgsINv+ykvptJpguQ5GohFOv/AUryqBHCy1xoJKR7HKSoU9H2QJ5sTCCN9/rq0TAk8vqs8Nbt5zstsJrrZOZRyGqpSV4hZeOS4SVpq80BEFFhx51Seq5P9CRz6C4wx1b/iW0dkcmxNTycyOdzw4RTFnWDoPejO31EoOjwLFSNTzLLQzugO5aOXuSRhhKW2KZvFoP1bKCIrPZRLgVKzcNR84YDh+POenX7+XQU/z6h96Fvv6cyzmbavEJxSdKCcSmp5OmSxr8/RUi2409JGTrrTfartdi55qWTppu813/9cbeOTT+/jf//kuDn2zx6v+rzMoSHwSeSIUd33mCGlLcuNLpkhkj8xELKiYnmpxPJ9Axwn9THoJ+zAiZ/PZqqhKbhJ/v6Pg+TvwGEa63PPxeU3GoIS0YgABkHHy1v55ysLKZAuNRPCad+7mzg8+wsOfPcBV37PLR9maEsvN6E4IfkMJZDdWjTEcvHee2/7iMQ4cOMAVV1zBd2J7mu711LZvCaTcdNNN3H777bVwb9ic99Z90MbVNXGKJSEHuKZEUvZbeYLHcxvDbVelcVCBjBFvbi3yMwpMVk0qC6lqDTrYuIKOq0ZvVjn3ca3mVXXnrEfBVniFqwGd1Slg1T4eE6wSYXFHktKgjaVtGRhJfK/lnwTWoNECmyjP6BspCFkv0DAOS2uwiris9kK75e42jTiUTJWvMm7f5mEdsDFUifSJIT57Cxv/w9tZ+odbOPz//CGd88+j/4oXM5zbyNp7BO0jA6J+zpkTF3PPgx9n7hm72XwLHL1c0Hmoy8GNHZbPS5GbNGsT6xmfjAasiVeYi1d4uLeBoY7oRDnX/PB5Vr4114gs44t/vIdX/tJFZb0IwdmtQ9zR22U5/cJYnr+KGeqIw8NpMh0xFQ+ZiIcslXkobmzFUeVpdPSFE2qSrsxYLDoAtKKCNa0esShrgIg2w7Kg5ODYMq21kyhjPcqpKMZGO8YBlNPRIaUoizAKYY2x0is9Cm7KfBAzWvOkKHNDPGApje5I6rHviSzHvEsIN+BrEoUJ92GfbjgKLUhj7cFNDQwZgdKgdIQUkKmIgdRMptkImAuTucGCGLB1ZWIUx/MJpqIBhx/rs3lXy3pvi5RWXBBLzdbJBda2VphN+mhjqReLRaf0+kv/7GKpfI2a7hlT7PnbRdTRkyQbp5lJBqRSsVy0iIWiHRUMVMxSZsdP9vBeTvztbTznR8/lQbOV+ZkO2fMvhijn/Mc/zwd/+yAXXxxx86tnaYucq66O+ei7Ps5r33Mlx9fGFGaJmaRPV1rq18LRIV/5vfv45heP8oN/ci1pZEF7qHAVofnq3x0FbfjRP7iEzZesZW2yQlcOUMB9K5u5+8hmesst5ESXztlbeMV/OH9kbIXGPth5wN9zjM3tohGVK6OwDpAs5B3vSKiEDip1xXCsO/lhqOhmzfehUj6yv4dGekqclTeuf8hCEGX7sPknUliDPA/zaEovfyhAo0uQVbsvJbDSjYre4fucoEbGqpvbkxIkhSIAgAcJoQOzqdymsVEmR10dGGusOjvCVU1X5Vwr0SN2hgMs7l6FNUD8cy//3/NIwdtfs5elecW5169ly/U7GcRddG7rGrXjnL5K6SsbrW7LnLloGU1FyZqQQzc4yE3EkuqQiIJl1bIiJNEAZSRnPW87rzlrAx/6wU9R9HKe/9YdTG2ZJpE5/Tzmlj98hJu/dz2JU/BCMjDWoTAdD2hNxBzbn9Vko8M6O47e56Ji2giGxP48vUKgkeQBmyAUS0jK2lu5iUBTAzJNRkyuIi/NrYxEJoIolTz2hcMcWW4z0y0qe88/7/GO5vB//24QEZuCP37DLRy8dwGwAk5TU1N8R7an6V5PafuWQMqNN97Iz/3cz7E8iGinlbpIXCrVON3uutExPiEvNxUHeCxFq1RVaXpwfK/BB7LJ8a11E4CBZjTj1IZSA+2Xk8BqikRNoBIeO0wWHqcwFP4/jk8/rjVpIGbMuiZQqRtj9f9DvnwYvKjmqcowC+lewlacrIAKeBAhZFnBvdGEoFLSCu+lt+REBV4cIAlbE6CE24cXETb3OL0lCSYyXu1r3L61CIwIwIk7b6ExHYUoImZeeyPdm57Bwt9+koP/+TdYftazUJe9mHVJByMF/a/dztymc0iXFP21MevutPkMa79RcPzwWr5wXcxlm/azsbXIXGw4lk+xs3WM1mTOY4N19r2amWDmsilL9aLHni8dZHtyAoD18SIH8jXMxTZx80g2zULesfVPyonm5LBLoSV9ldCKCiYZ0itSppMBrchSzOJSzWd9vMRAJygk29sn2D+c5WBvmul0wEDFnBx2yVREGlkPvzqxSGfDBLNpnzjwlDadA2ERVWsUVqF89+40E9NdIUr3nSlMRKHjkYhloevvV1hDyIGMJljPighjbG5GuNyZPNrYx62UpbgZaUBqMPUojTue8PtVcr1+mxJEVd7iysArVMREmtGKbCJ6CFAkhjRS5bPRTCUDslKlTQpNFMMDDxru+g+PkokDJLLguf/2fKbamrlohdRkdOlzZDAFQ43JY9rdmIk0Ii+N4KWijTKCllQ858fP4TO/dgfXvetZGBkRDTLWTWREEo4OJimMJIkUm47cw52ffJRX/PJlLOgJ5ocdBiqmV6Qc7U+SbbuJa3/2EJ977+1c/6oEiebql69nw84O6W6B6vcY6ph1yTLH9vb51Ace4usf3ceuqzfwhvdfx/qtKW2R1Yr1AWQrGV/+m0O8+j+cT3HeOSzqPrOmTyQ0n5q/iG+c2ITWAmFyTn7ok5z5XeeMKIJVY9OOP/ddr5Qb65G8cEwqBLmS3ugP26kSvcPlTnmvWS/LjR2nnOe2S8scMVuzxJS5nIJQxttGRozPTXF9JlJBGWVxsuFu7GgjR4qlOlpoXlJP/X0oT1ViGBqJoqrVFCqYDU1cuxY/jkvPOqaq7+Hvp67q/4SqZUCZ40OplCY9KHB1VQB/bi7vZDXlL9e0kZw4oXjnm/YzuanL0vwScSfmhu/bxtFMMxUPmUt7NUbHYtFmqjVgSXd8P3Z8KlwNlYGx0ZGBbrMmWWFZtcl1xIZ0kYPZLO0ta/ie37uWL/zXu/jll9/Be/7XhUztWsOdf7efYiXjhd+/nkp0QNIWBSd1xL7BLPLCs3ns9z/D8GcvQkZjHECUtW3KSEShI1881gHu0NYKC0L6Z2RKCWZH4Q/ASS2vOHiukdAlMI35yX98AcQR6cSwLM5ZZ6OEAMqPiZqdVD5OY1g+3GdpyXDw3gVasy1mts3w3Oc+95TP9en2r6d9SyDloosuotVqcfT+E2y6eB1gB53jNrsiVmFTTQOQasC66rzjIg9hUa0QaHivTOk1cLxYh75D7q1rLsnQtdXqndjjCkuTMYKZZFCepwy2c+H1MYBoDLAIoyAOqISbNfsZFwFxxpAzXhwAcTQt0+ir5ukdE3FpAhTXatQVMVrA0VG9tG4AoHFAQpS5H8G52OXUQUFzfKwW3XDHcduYMcthdRqZ37b+20hrhYox+9VoXmGLDEjjr0V07ETd2tJl04+/nPwVz+TQ732U/fp/o1/0WtZ+w3Agf4QdO15Drx1TdGHisKFoCRZ3JiRLBv3pGW7bNk3r3AUu37SP3d3jHC2m2JLMQxuO5VN2EtQ2J2QQtdh4/hr+9NcP8NafW8eSbpMIxVQ0INGKY2IKZQS9ciy7nIITgwmmWwO2duZZLNrMpT1/War0tidCMa+6DHXCZOkFXClaTCZDTg67LAzaGCOYSDOm0iGpLDi5OE9rrmuTs8XpI4RObUwjoPTkO4NcItA+yipq0UqwfTuVopoxX1IDQgMpfE9cG5XGFhRKlrU6yntRUrkKLSmKKNi2fCe1QGuJMXj5XkpHhqFKxl+tjoq/D+X/hZL0cpvw3imflSv62I4Kr4DVKSkl69MlZqI+EZqZ9S3UI30u+akbOLA8gz52gs+997NsmMnoxAVpZBARaBmjRYSSMcf3rHDV95/FxNkbEEKwLl1msWgzVBGLxw2TO9fwqf/4RSY2TtKejDnx4DEu+P5LSc9MmO3C5PIRvvhnj/H6XzyPbjqkpe03eF9vln6RoLTk+GCC+9jEgeEa/vrolVw8tZ9z2wfZfNEcDw8n0EYwFfX5zG99g8/9+eOcf/NmXvOnL2T3eW1PYWwCFG0EX/n4PDPrU3bdtI2jhZ13Duaz3N3bxoHeDIWKyPOI7OA8en6J6374XKToj42wh7lRzdpXYYSjfg7V998WSY1HwMq4wr9uHlgpqWFRaTy6WjlSVHljDqhk2DEoichKwB7SubIydyWViqx8h9y7EVIjW7JAG0GmYytfjk0GDwGKy1HTpRMjDqMTwfXkxua8ubpErmp87d6tMj8moqrXEpXUUlUCFCk0ylTKhBGGrhzWcpE0EQOX14MJcmCqyvPN2ilhoUJ3XzIT8flPLDK9NuYlv3MDd//R17jydbuIhGZ9ukRP22KbiVSczLskQrEhXfLXn5uIrsyYkBkTcsiKbtEWOe0o57iaZDbqsaJbVgCBiCPZtAcK02ev53X/7To++Z5/5pdfdw8XPHOCr926xDt+YxszbVuzJSttFpsTYmzU+4IL0L1/QOY5hRiNJocRokJbB4TWwo/z0EaK0D5SVmN1BOZCSMsax2QBfMFTt197zspcu5yUTpSvOheE46TprP3Uf76du/76mwCc9d3n8NxfuIqPvPYfuemmm8b29R3Rno6kPKXtWwIpUkpuvPFGnnn4Gr550d3+Q+u8QTl4F2QY4g0HYIjam96tQo9KODYjJj4iIkQtEuM8rDGueq5VQIF6mN32VV5Pk4pmXCJxRauIhCn56+5lHi0u567HvXRN73HtHgb5N17BJ7je+nkKH6GyCyqJ09A4c8AivFerFWp0AGUclSv8aAhhaynA6PY2id55pPHAoOHUIlwoaIAaUa6sAZZgfXNZ8+8m2GmuP1UTjb8FmHJQ1MCKD+aUHvTmBZbnYLRAJhqjBEpHJFs2sfEtL2b/L/8p+wc9lp95A73WgN4d/8zElc9CaMFgVtI5oUh6sLQtZnmboZhRFAsdvqp2MLkzgxT26HUkZZL8kmrbuiXCRkM2vvhilj5yH4/dvcSmC+cYmIS2yFFC0JY50/GQQlsKkMslWd9e9sbMZDQsqyLndKLM6vsLxZJqMxcvs6Csx1AjODyY4sjKJO3Yys6CTbh2BtKx2/fT3r2B48MJZpKBr8Xi9oe6ekstF0AY8Inj+OXh/47C1XQQ+EhEmcwftubEF0kNXhIYD0jAfnuE24aKyqXUGJCvhY+s2P9BSjswLIiPgqKOBMp1wifru/Oz2xgiafyxlZbEcUEslf8W9VXCQt6mHaXMJn1aoiiNpZjWZELCCpu6ywx0SrIr5cx33sRVs3vYlp7gRDFJVw4ZmIShTlhQHbIMvvZXD3Pi7/YhsXmCeliQ9XJUYYgiweR0wobzZjh851E2X7GJO//wa8ydv5f2YIlsoHnZz57Hspjg+CCmr1OODSfIdEwrKpjPOwyKmAPzUxw4OcVFOmLPYC1gufu5iWjLjE+9927u/6cjvP4vX8TGMyas57/0TtcTdCvDe5hLJtemrOg2Z7aP8s+LOzkxnGD/wgyFlmRZjFYR6tBB2ltmmUnr0tjjWjP/0AGU0aT5CsAUnlrYHJNRDeA4p5hNdJeeWmdpVUE9HgzSyDISYAHMoEiqeULFKFkxFfoqoVdYmeh2+b41c2gKHVFIjSyvzwEUd9xawVQjyEoKYKadDPVoBEgj0EpYefQywV2ZyjHo3rua49BociyFyAIxxaBUtArpRfZ+lXluZaJ8cz7NTExiVJlAb/w+No+FMqE99tEUl7OiAho6wNe+1Gf3M9cxNZfw6p8/p7RJ5jlWTHkZ4aFOSFJ7rpPRgGXVhpJutT5epF0C6dmoYGASchMzS4/ZaIUpndIWOSfkBMfyKRKhWJP2mItX6MohP/SfdrH/VVN849YT/OjP7WLL7jYaxZGia20OJAtFl6PZpAUpiyeQnRQtbMRTmyAnyUU9nB+vFgGM/LMLgYxz7kJd2tuBsHH2iGuO5eL2G+hkpPxDK5ClHpaR73ERzWbfRS/jrr/+Jpf+8OXs+fx+WhMJy8cGHH/8BNdff/3Y/b8TmjBP56Q8le1bAikAz3nOc/jYxz7GtudsBqzR63iu2khUzeNpwUQYEXHAIaYqhmW3HTX6x7UqRG/5uk2gMdSx5wPnwUsZTj6VsTQ+Mb5KRqw4xm5fT+miXo+h6T06FVgJq26vBlTGeRm0EZ5msto9CkHGOKNdinp0yzQ+PI4W00yObyp8uVY3wkabXy/qQMVSwcoTanogjBj/po6jZT1VL/Rp+hJGeCBTZs9DrCEy9lqUsNdYPqv2WVvZ+ds/waH3/T1HP/RXXPCyd3Dkn/6Wrrma4ZoSDC8JpIL2SY1qSZa7AtOG/nybdHdhJ3EJQxXTEoVPgmyJwgtQbDxvlm883Gf7RVaTv6dbDExaRik1E6WhMVCx98hPJQP6KmFtsuIpVNoIjucT/v05kltamUsGnUyGHDZTrGQJU62MdlzVnVg4nnPwS3t5wc/djC49y44+1uTbh80XawsAifXCSW9sQfXehdGTMErh+i+CiMtqwhO2Pogp36MGBYwq18sAekwUklWWu3fGRRmFsL+VEj7SYoyljbn6JN6rKQ1xZKWim++jO393D3pFSlYqSW1pzTMwMec/dyN/+zt7WPjC/ay/+hIPQns6ZaATpqI+ABPCUjBaokCmEVf+m3O8obH34SFffd+dbLtqI9suX8v6s6Y4tqfH4Ud6XPuua+019jJ2vehMdu+WLKsW8yZiOIwZ6pjlvIVL0HZ0kGEes/TQCdJt6zm0Mk0qFUtJmyPZFMVQ8aXfu5v7//EAr/rD57J2xwRgKv58jQ5UARSFIOok9JY0W1snWSi6HOlPcaLfZZAlKCVQeYQuJMtfuostN+4cBauBMeXG51i5+QB8jKun435nQd6HAyS1yEQAQhy4cVHEKupRFiFVVvI5jRSZinwyvBvfWguKEtwMVMKwlLfumZR2VIycnwPwkkqspjARbYrScKz6Hqiq2COa8n/7jrr8DscqkEL7qdEbo6KiGDXvUVEmcutSNRBZSRk7RoV77m6OdoUcQy++M3IjdA2g2C6tiperHq9KWWmfXG8kGklh4E9+/TC337rMW//0IiajAVNRBWTXxUuVQ1RIBmURTAecbYRPMSt7nupkz8kwwLBCy5/XbNTzER6XIN+SORNyiEJyzlVTXPLMtv2egz/HvKyTkxsbLesXCSsPH2birI0QxxS6kk/2DtNVKOJuPDraHyWwCJ2+BEpw9jlXAh5N5VQnpOAiW7lyYhB1e8q9S1apzsqIh/k0I+JHZeTPtFIueNVZ7Pvc46w/by2XvPkS9n9pH5dffjlr1qwZe41Pt3997VsGKc973vP4uZ/7OV4zfA0ijZGYmuRpputd6wCUhKF1iQU0YRXdsDlDWppGBeBGG+d99d4EIwhlgr3BJJyaSxUF0ojaBFN9YBua8eX+40LaobZ+vRjSKtsx2sdqLQzjj+uzuWw15S19GqPeBjgqqdTVEu2fiMJXfR+XCmIjEi63pQZwxgGTEGydDpS4/Z/gOY1rLkHeSxXXug/uL+68bN6NEPXz11oQr5li7vtfzP6f+W36GyOiM7YxfPwx1PYzMRKGM5L2SU1rXqFjQT4dMTQCuX5ggY60Re3cJNyWuU9qX1ZtBiQMDsyzacsES7rNhBySlZOHKg2uRCpaUYFGWOAgDLOJpQkNdUyEpq9bDHVMpmMP7CORsC5dRhnJkWzKVjqXllHcTTLaUc5AWeqZWsqRsaQ7Z5WammPTSaWO80g3HQV1amX1joTUHEft8pTN4D0qtPQFFF2/o3kxBiMqkFLrywEWYwH5OGrYaqDcS3KX2whhxwHYSEs9eimR0tTOrcpVscZrRoyWleqRuweZtnVMZmOb09DdOMVr/uN5fPiX7uB7P7yVdMaqsFnFt4QJUSkQ5SbyKj7+GyYkUX+FC2/eyDkv3InCJmlPbp9lescMhbbj59I3nMutv3UX3Z+71huSS0WLxczS/zSCYWGr0xdK0koKxP5H2XTFBh91A1hckfzd2z6NGhZ89+9bgBJL7ROk61SdOkDRRrLxnCkOPLBMq+iTmylybXOjsmGMHkagBHrYo3f7/Vz6jpePgJRmc9/909WKGAdSRsey9tGGQsvauPX7IkhlYcGmdvWMNNoEgNxEFYARFbCx0ZuITEUMVey/w7G0YhZpmfjs3wck0ujaMm2Ed1q4aGKm4roTIDj/WGqQhQde1iFpJY6lMTXp5dyUx/O5DI37Xua5uTYM7AWNTdYPeQ/aSHIqiWGNpCVyTtVCZ4hujB9lJF/4h0U+9eF5fu2vz6LY2qYl+zUg0Za5BQfEdMv8l24kSEXBlByQm5hUDn3kpi1yIgyZgATrLBro1I/ltszZkszbPk3MhBzSljkDnZAKRSoUbZGzYlIrOWwkJ5SVfT9ZdBmqmE6cs/bcOQ594DD7bz/CjivXk5cOpXFKqOPoi159bkzExSu9eQeslzagKiJajUfAO5wBX8cnPJ6Lnrjx4fpUjfcxzBUudAQi4oaff5ZnwGgjOHTbEb77ed99yuf+f7w9Tfd6Stu3DFIuuOACZmZmOHj3MTY+YzMKK5PY9IZaQyKQjaT+0cqNVSFBMvZDDmXEgTHa7EEbJ1ccer/GNWcw6fIcw3B8s++RPkd+y7Hbh8XZxl1baHwpLT3Vo7r2cPILui1/rzblnq66PFS8+NMBjBqlK9hXiAZaEFXCcLNg40ji/BONfvgOT7P824mmrBKZcTkoY6WKRbneBvSgjKAYWd4Dt50pKRHr1yAnuiwO9jB3xbM49j8/TPe8adJ168mmBd1jhmigiYaGdEFgpEBuLTgynGJtskIiFIPDSzx69xJH7z9J0c8tFSCKedYPnMH+rx3j2S/ZxYmiSx5FDHTCwCQsqxZ9lRAJ45NunUfWqdScKCYC4z7y70VWeg6n4gFDE7NUtP0EE0mrWjUg8VGHfCUjmUxpRdp7UZ3jYuTdbFD8nNHj1z2BFkYLmxETpa0X0kdEjBh5t6pviX2WTwSIrAbKmzkmQhgPTKy6ne1L6/DdcJLeZeVyLYhk8G1Ukb8WIWIPymrecSNZLDrWOaThnBftYvZP9nPwC3s47+VnlEpQimVlwevAJMyrLnsHcxQmolOqaYH1jJosR6dt35/7hndlhpKWXjjsdJg9Yw2P3XaUzVduJpGK5bzFwrBNIjX9PGGQ26kliRTtuGByeILW9HZaUcFEnDFcGPDJd36ZKI14+R88n3YbpCgqb62xydFWWKWKOtskXHv9G86apDMTc/9ti2x81gxbJ+bZu7wGvRIjMolJDP07vsbkGevZcVaK8xyP+yZ6ufwaUKmLtYybB8Y15xSrqIlVRMX978ajNol9zm7+knVqc66iMkfKnndW0p4KLcm19V47Se1EhjkbonYsO8dFSF1FUQotKXRKLDXSVDWTwrnN5RlI4+oqWeqZFFYox31LtBEMVVyTBXc5oE0KnRQGXV5PM4oiAwPXJsRrhjpBYmjL3H5qEeRAYlwhQ/dtrtS9MhN5YJKIgsw9SyRFbrjt48f5b//hAG/75S3sOCPhUD5kQg5xUY5IKE8TawsrLtDVFqikQjEoK4h05bCik5URQGUsiIqwVCjnNIKI9dEiPdNioJMyelzZBIkoLE0XwQBb7PFkPsFi0bG0SRXTjTN2XTbJ8E3P5JM/9SnOefmZXPnvriaO62wSryo3Jr/KM0NEHcS4iFWE8M7kkHEyoiBnKuDn7CdthJerBnxOinuvvNRymcvkzy2gVTplMTsGqrFojOHw7Ye5+Sdv5ju6PQ1SntL2LYMUIQTPe97z2H1gN49cfgio56KEuRrhQXJGjfVhEFEIqVlQvmylF4Vg33GcS8V4kONayA32/FtH3TJVki7o2nrXmlGTQo96xkYmL+excMcZEyWwsqiSQktihI9GrRZhcR5ft2YEwDTO83QgZJzR5SfzU0RJQuqX/9tHFlbHDatSw8YdprZsPHVt1bYK1W3sMU4Hgk61n7JGKJFxYSL7/Vagpb2HUQStc7Yz3PM46eaz6ExvIB6AHILqgI4Eqi0p2gKhIF4R9FZSDq1Mc9bEUUS/z8d+4wGuef12Ln3LdqanhC0cdjLn737/IR756klaZgsnmAbVYWCsrv5S3qavEiZia4xGJWc9TI7vyoyeTm1SbWTH6kqRsjDsUBhJO7Le06GyFerzMj9jOU/9mG7HBY///QPMnb/ej/EoMAhrcsPl365KtjufU2GTUNbbFsOrRzZVY7w748yBCiEMuZJIMQooAJ/j5fYfB0Iq0OLAEcHYd8euziGU4A4dAmH+lsFG35TDbAUIIUkibXNUtCQX9UiLA4hJpGhHOSsqpVW0yKVV0dl94xYe+PQBdr/0HJaKNkuqTW4iZqIex4op9g7WcLg/TRoVbGjVCzQurwiypO3BZaKtclNLFt6rXoiIC77nXL783q8ws7GF3LKBk4MOvWFKJDXD3Hr241j5HJu1uybZ89AKa7e1mI77fPhnvoqQES/8jWcTtyJkSWMMK2cPTUzkihDikn4rp5AQCp0bOl3B+niJcyaOcP+JjaAEIheYlqb3uX/m4ledcdooih9j5eOtydGPmQNW+y6H8164XQganBMg9l7jKnIhygF0KgpvOF/44wbGXCJd/RNZKTA5SmMUAODyefaKFJkMfUTURcOgUutyFLJekTIsYpJIIUXu31lXdLLlKVph/mZ1Hx1zAQ1xpCq6UGk4awRKyLI4pgWK46rUR6KiKlWOIxvhdYUP7f2QKCF55O4VPvZHhxj0NPd9dYVWR/Dzv7GBK2+eIsdGp51QyIQclon6Fmi0ZUaCoidaKGMT848W03Tl0FO9ALJS5CekKEqhLcjB5sq0ZY7WEimtAtiKTkmF8iAKYEJkLAkrXyyFLea7nLcojKQbZ3TTnGveeBbn3byZW376E3z239/Cjb90A7KV+HvvDTEqsOnsKws6K3vH2znOUSQVUIkMuShI+E7s+8phCgWbr96CENZ+QiovluJpfQ2w4aMowfe/yVqpRFLqdtji3kV6x3tcd911I+Ph6favt33LIAXg5ptv5n3vex+7X3qR9x4h66pZtgXKE6sYw47e0aR+FNi6DE0d+2Ydk6bHwP/dsHxCGpg9s6polixpX80K8uEE4D6ocZDg25yYmtfWDLE3c0/CCSdXUS2xeLXm7OPw6kzj2k/VpLBAr0nZGrd/tU15HFMttx5jd+8roCKog6NQat+EngY/wZSAIjx8OFELsIpfY4DHarfrSQGa1fsZp/gFVPVVyusxABJMLiDW1gCVVlEJaUg3r6M4dIzBJYLe8AQ7BzMsl8cdzEmMlGRTts9kCcSJlN66hKGOufcfD/PsN+7gzEsnidC0haUKtNfGvO5ntvFbbzyBimMSrThRTNCWOcvKFvVzMqOxVF7dJzcR3ch6Doc6pisz63WPbd7CQtamMJJWVLCctzgxtBXsDy9NIoA0VqSRYnnYYnGlTf7YPvb+/b286E9eOZIfNk7iu6J+2W2k0I3csWpyGo2QjhotVX5J4K0NwIFdZse89CDDjAXobl1zzFcJ8mIs0HGtSRETwpRgv3wPAhAkXJK8kmWkRfok/W57WEukL1RUiwb1chvpcvS8RCpSWbDrBWfwpf/P3xMtLTI1RZmcnvPIYAMrJXC1AGWZ2aTnDcwkUkTZkNl1VZLydDyw36+SIhNLzYQYksqIa//dM/inX7md2edeQm/nZtK0sMn+kaaVFCSRIlcRU+mQe796mOj5VzDXOs5QJxy6d57vft9zaU2mxCVYDuk/Chth72HrUjBGVejrf38YBOw4v8uW+CSfPnmejeB0FKYQZIcPMHz8KBe9+Ppy3NRrzujaeBkf7VZGsJxbRTu3vaNx+XFVUpycApM7VrM/GQBhqMBJKCRiSseQP8fg7ybVN+zXKT76ZPUymT88nhY2b8ap1Tlw2i8SUlmMAJRqLpBlfpP2uS9VbqmkKMdrXOaVKQStsgTBuPfX1XHpq7QeZS2dkUpLbzJEQaSmp1Ofj9cWilQUpXPD0celrUQPLB8fcuLAgIcfNtz6Z3vZ80CfV3zfFDt2RPzov93Exgtn6dMmxwKQtsjLPAkn8WzpWBmRlzjOSoGKtsw4u3WIx3MrALGkO3SFjVIqI5mWAwtgopVAgUwwJ5cBmJU95nWXgbE0Lwe0qjouwufVXNTZx0zc426zlRPDCWKhmYwzlBFs2tHiFX94Mx/83n/gs+/+As/+1ef4eUybICeojFo7cDxU1fs9Ip2NK+5ZsUtqDqZyPP/jT34Sow1nveYCrvmZZ5YOJFmn7TW+4a5//3eTkl+uc+9XHJyTMoL9tx3k2muvpdvtjrwD30mt/Nw/Jf083b5NkPL85z+ft7zlLWxdPJt4qu0HeEFVGMx+WCval/NweGpVmA/SMOjBTgCu2FhzApBlRMS1IvjbSzuqeAQUjGvu4+9C2KtFUMapvzT7bAKVcLkxgvpnoWoh3csrITU8gONoX037epzcqt13lQM3mqHu/R015uo0mLpBt0rkpTQiTY3uUp48dZlioDLogv8rZNYAKqcAGCMXthpueaL7r/a3oUw6LH/y0gCR1qslBMSb1jK8/y76WwtmNp7Dyb3fIN32DHQCwzUCHVlbTBaQT4OezRnk1oDc9+CAa1+xkaEWvtKx5S0LZBpz6XPmOLZvyHDjOvYN1nDOxKEyOdMmxhY6ol+eboQuCz/KUq1myNDE5Cair1JOZF0GpfwoQBoVLOUtji5PeEBqjODwwhR5FpOkBQc/8DG2v/YKZnbO4CKRbsJv5qdBPYyvsUpYsdAUJq7oBSZQPBLGKxLBaBQTqDy45aNwRnIz2hIqejUT1JvceQc2mtSv1WoLeYBSnl8TzIyLIGptk+qdlLH73567sgankpbaU0S+j6nukBMrXU7QZaKV0UlyWlHB7MYW689fw30f38s132flVLsygxhOZBN233jIdNz38q/aCAY6IR8q1ncVM3HPKhoF6ksITV8lnMgnLCiKFWf85Av4xm98ljU/cjECmOnYsdmKC2bSPlIYlo7nzMwY1p/bZ6BiWjJncmOHI/eeYO2567znOfyuh7Sv3NQdN5HQGGP4+//7fl7zzjPYODmkZ1pEwlEtBaatGXzydjZefwYT0xFDXao+lkUA46ZxFswdTRVIb5Dr0pHW/OaX3mOJqHKPhPGqXaFaZdNptlqU2m0fB8IK4T4u58qtcxHJQkuK0sJ3OVmi7MdRw1xEUUWKVmSL+xU+AToQlBHV3JeXc7nLe0ll4UGONlYNLAMrpIEhcRTt0vHUzI3IdAVsnBOlOVda+h21ZXmZqaKw1LdUFLh8Vo3kyP6M//1f9/CVvzsG2jC7qcUb3zbNTTfN0t5si//lJmZRt8nLSN3ApAyMVaWajXp2udBkJiItx+bAJPb9MDFEsKJb7EiOo5EsqjaZjGiLvAQdgqWy/9zYZPEpOfD0rxk5ZEpmzOsWR9U0K7rlRS0GJmEu6gHLTMsBR9QU2kh2d4+zo3OylnB+Ip9AT02z82Xns+/WPQxUQiptUn8S5FXZ72qdGeK+n06QwQESN0YdA8ZFwyoRA7vN2S8/k+MPzbPnln1MrO9w6ZsuAQNFCRLzkjrojh/meZ2K6hU+a0rRFfu/5Ng/H+VVL/yhMW/L0+1fc/u2QMrWrVs599xzOXT7QbbdtLvmnfEShab0pBgbafEfwWCS0Aj6KrEAp3xpYqk8inct11UBK+cdCAd4qIAihWaoYh/SBveyjIb9fRjdRGgl0V7Wz/ifcDvbZ+wnovBjbo9tPWa6cQznpQoNrFhqP+FAOQEZWfVNfWJz59+8Dmenhx5kpxLkpFZd/+MAiG/uPLXwykThdqfi5FeeYyyQCIs7NidjH0FxP2UownuY3QlXfdaAyri+TteeRGAl3MdQ5qQ0j12LCAlEDialuhaAQmK0QKNINq4jP3aMZGbI1O4L2PP5D7J7/8UU3YR80tA6KYgGhuEaQTZjEMsx67evkJsIgeZE3mVDvFKqqsQslXKPbZmzZvsE+44mpOs6LORt9g7mPDiJpSKR1gAvdEQSKSajIQuqQ6usiAyWstFXSVmTI+dwb8rmGBQJK1lqH5MwDPqWL91pZcxN9piKezzwwAEu/48vsO8gZWTESO+oaLYwB8W9Q27cO8POKwB6I1b6/DT7/+h7UBmDdY4+VNEWu4yxkTaBfX4hGNN6vHCEHwbBOgdQ3FDVpZHo+nXbVwHECpxrLXzullMAy8prysuaH0UeYZRAxoblfvXerfRaJGnBRDsjVxG7XnMpX/xvX+b8V57FPDNMxQNP2ZpLe0zHfYY65mg2FahPSRhkpO0pch3TU5YCGFa17kQ5O+ITDHTCnt4cRdRmevca1i49QmfnWibijFgqunHGZKko9/CH7uCiV51B0eqxob1EbiIue/NFfPV9d3Hxq88cuZ/aWONUCpuHoExZGbscK8rA//zp2ymGihe+yBqCx9UkU/GASzfu58uDXUih6H3xTi545/W+VgSAMrGt3B7w652CFMBjK2u5/8BGLtp6gJl0QKEj2mWNh2ZUJIyOu9/NaLr75htjvOKfWx/mDXogVEaQwnkHrGSwAyyZjqr6O5TUGWULUfqk+oZamCq/67mSaC0pjKjJbDtqmLsn4fwXzuGAz21z/2cqJgsEMVwfbi7uFbF3VMTCRmD9dZURwBhLBW8J7eVs7XlXlDbAJ6AnpUIUlLlUxvCNzy/wx+98gGfc0OWv/mkz82u3cc3E4+zRa0lEQW5iVnSrjHhYJ+a86tKVVlDCJbgPjI3qIEBRFYWMhGE2WmRFt5iWAySWsjUb9ejpFkvGUrRSoXzSfG4iFmmzPlohN5J2qZKYCM2sHDIwfVZ0y9ZXiXJmpVPgy1nBRl3Ob+/nQL6Gw/mMpblhFftioch1m84Lr2XwwbtYePAoa85dV1K5qjwRKKMojI7PyrapohpuPy+O4GhiWIARC80zfuRyPvzav+HMV1/I3R+4i4kda9l5046x32TPsgmO58o6+LzgBtsklrrMDSvnrdxw8Kv7ef57n893fAvtgm+3n6fbKlJZT6K94AUv4PA/H/IGhmuhIVEYGy4eKFtAKtNRnZtoLGUhlNArdOTXueYG9VDHDJWVvMzLvpynoFck9jhBf+48sgDdh+do14deHuv9KHTk1U7CScp5FFxl67C5j0BInwoBCoyPrrhmPV2R79tdV0jF0qYqFudt5OAcQnAlPBWgaUw1JtKgvoTdr1rXXA9VlCM05qp1zhNnfPVtR3kR0v1tgYgDP24Z0tgfwOjVFZSqgzEefIRG5ROJv65mg4bLw0hMefOFFggl7CHKv/2xjQANIpeYfoxod9GDIQhDMSFZv+Z8Vh6+l6k9mulvQv/+B1g+/jhKl1Ke0wMe3TfFo8tzGKVpJbYC/YKyVAFtpJ0cVYei1WHQ08znHdaklsJzMut6GqWdDCR56Zl2NIo9gzmOZlM1oHJiOMFCZmujHF2aYL7X4cTCBFke01tuoZWtD5LGiunWALkwD9pQTMz4mhG+wFwwMfpvgE/Mj2pjvNDSfh9U7D27hbaSqM7ICdWOoDKU/NilbtwJShUvP7bx27sxbYygCBKUBdRqA/nHX4KIcWPSghPhAUpI6TLleWot0SqqwIj7NmiBUsI6SIygyCNUEZENE/qDhN4gJcvsMqPK7QcRw35ClsXkWWzHVBHRG6YsZi1mbriQeKrNJ9+3B4D5vMOJbILNrQUADg5nODiYoa9slCRfHHDf3zzMfV88CZ2WT2TOS8eSGy99lXA8m2Rvbw0nB11aUcGOl57H0c/cyzd/8x9Ijx8ilYqBSljM29z9Px9kzcWbmN0xxa7ucbQRdoxeczYLe5eZ378y7q3zBuhAW/GH5cL+LBZtHn+04MFbjvD+T+xGtlNfebwT5XbMaUn+4Dchzznv+rlaNXY3hnJjRQCWi5TFosVS0WalaLG+tcyVOx6nHRX0y2ii+5bGpZfag+vgOzsuQl+jTpV0uXC8jgU0Yww2VY7TXEUjYDkERpmKrKKan6/KyL2WtrBlCVDcnDrMY3Id5Eus9TRFAAEAAElEQVSWQCRXkf/xx8H2044K/z4OVMLCsMP8sEMvT72DrTDSyyYv5m0rl+3mtIDaHEaYXJ0Zd1/H1dFoUvMAHrw35+3P+BLveeWd/PefvZ8f+qlZfvm31yK3bsDEKV/JzmBgEo6rSY4UU57SlZYJ7m2Ro02VcO8iHwpBEtRfAZiQQ2ajHpviBTJji0keKmaZV11WdIsD+Sz7srUsqjbHi0lWdGrrVMkB+4vpsk9NuzzWoIyK7EqOsjU+SYRhxaQMSnEIhT2vVCjWx0tsS0/4/MEIzUrRoiULztoxpLNjLSceW/bjx9pc1k7qq6SMZNTHWzh23I/br68ShiomL3MRnQ3XVwlDHdFd1+XZ77mBh//6HuaecxFf/qXPsO++ZX/smgAD1Tn1isQLufRVUrfHTN2h7JzUvSLl6H3HaKUpl19++ci4+E5rztx4Kn6eTPvVX/1VrrrqKqamptiwYQOveMUreOCBB2rbLC8v8xM/8RNs27aNTqfD+eefz+///u/XtrnppptKB3X18/rXv/7bvS3fcvu2IilgQcpHfuwj5EoQyTrvd/SlKNUiTBUh8JGPJu+8BCphElgUfNCAEaRZAYkqRO4GvvPKaqOsmombWMpDOnpaOKn4Vnpww4RdGKVihdftJygjalSFsNltKnpW6P0ijKyUho8uvT/N3tyk4yY5x1F25+TWNyMgq0kLu22fSBtXkb6ZSO+9yFpapSxZbhQa/eXW7rzsH8Jz+XF91FCC3xHC/BDwQOdJeSNWi9KIxu9w23oQyoIShE2cD05VKIHp2xd+sjtkZdskHX0Rhz73vznv6HksLOyh33uEeOMG+vd+jXjNGnqz80x1+twz7CHmhxzNpoilrSbfIqclc6TRnCwmaG1dy2f+6FGSW+4gWxoSzUyw87WXw6ylwUxE1oOXl5PH3sEcKyplpaxE348SEqkYqJiVPGUls0bHcJiQDRMwgsHJNrJTkLQKskHM8WKSo48dZt+v/w1z155F1E7IdEGhTZlwn+MSNqtJMPKeaymMVwpyoCR8h8LCjAoohPReWDXGQRC+ZyHgzrWsRVE88C5/u16cUdaM/BjjwEl9XLpo32mBtB8c9W1dAn2lThR413NZU8QT0lQ0R1X2VdhorSkkWkqiVJEZWKINwHnvfDG3/dhfct4rzqK9fgoplXXw6JilvOWpIbmOOHrXYYQU3PBTl7F2k6CnbPV058nu6ZSeShnqhBWVslxYUKsRtGfbnPuWZzH42gPc9tv/TGddF6KIItPMbOlywWu3Mhmt0I0yFgsLfqOOjcbd+VcP8+yfvpSwNoMz/PvKytQ6gOqe7/57Ftl03jRqbo5v9LaQCMXmdJ5jw0nmhx2k1Cx+/k523HwGSSLK5O8qh9FRUerKU3adBdd2LKaRqlG/KnqT9ga3uwd2+epREje/hcubBqOjbTl6lbsXlEIJ7lihtHbzWO7vQklfHDTcLqRZRtKeeaGll5MdFGV+krTCDT5PRViaV79IEMLQL2xtlnwM7TKS2td3CdkF4Xs1KBL/d5/EU74KE5EYZWld5eaukr3Ln+ipls1NIed3X/dZVG44/5KUX/zIDJ2OZNFIHsvWcbKYYCbqM9AJ+7I5tqUnWMKqd7VF5o+flcd0oMJGgWPAgl+Xa5KIwkq8C1td/ria5GQxAUwwGQ08oFnSHZwS3XQ0QApNCkzJnARDW8CUgCmR0TOZVfMyEfNaMistXTLCMDA22X6lBESqPPepaOCdCP2ypo0Uhjt+6RMc/tyZXPYzN5BOt+39FvVIXzje3O+CCtSGoNuyPKr3wdEkYyHRRrPt+h1c8/PX8sX/9AVEHPHgf7+NDb/2/NrYrtuCdqxkqnqXnQ1WaFk6h60stzaOXWP3Ofil/bz4BS9Gym/br/6vtt1yyy38+I//OFdddRVFUfDv//2/5wUveAH33nsvExOW5vtTP/VTfOYzn+HP//zP2bVrF5/4xCd429vexpYtW/ju7/5u39cP//AP8573vMf/3+l0/l+/Hte+bZDynOc8h6NHjzL/6AIzu+dsp0ERp3G1DuygLPNVGvURan8LZ7g72kedrqWpc3Vd3osNXQbGTlA1NTMxOpgQrXes8pQ1K/VW5zTKRR4X2nSTiRAGaSovwmqtyYmvUQeU/eyFyY+Kik42Ltk9nIi8Z7j8kQg09fwS0/iguPsZ2uSrJRbb+g+j61ere+IMRV97pNFtZf/XE0hr/VIaak1AIRq/x7bKUH2yrSZDHBzTWJXMkmtXAi9NXbLYhdH7AhCcPDIFO4eIokXah+OP3M6R3iOccd3ryWZjsouv5OhdtxItHuXqd96AFIYD/3gfX/njB7j8B87jhJyoGY8Am8/o8NL3XMGhhTZRDEeOGO77k69xyduvtcaesdWJpdD0lQUmK0XKmrTHwf6MrUZvBMtZy3oYYztRxLFieLINsY1wdSYyOvGAxcePogcZR//yFtY97wJ2v+VGWnFRm3x6ReoN4fD9cTko4OiO8dhJ0gF9Pz4xDIuKMhly8sPkYSfdq43wFEjnjQ7zstyf/liOaiUrCmSlYCfq+NTYKNk42qMb47WIWm0wjRlftfHiIi3h/1Thy+DdMIVNujVKUAwjZCwYaEmeR0xs2kV78yx77u1z3QsEJ7IuBwczLOZtUllYOeDI1ts5ng3ZfFbKlh0xg/J7MyhzUpZUu2Z45NrmdswXHTpxjj65yAN/+lUmd6/lWf/p+RgpObGccuLuQ3SzBRuxkNbrOx337f+qxZZrtjG12U6eClmj+Qz9mJC1+luxVKQpqMJwOJ8pq4HH3L60k0cW19HLE9ZMLPP4Fx/ksl9/7hiuu/QApdlqY9RIslKdL/zOV3OFRhub5BtG9jxgCKLm4TvRdOooY0GHdyxpCbLKz3Agwe0XRknC49l3oToHbUQZzTNIqX1EJdzH0cJiqS3YNVW0xhhBHBqa5bIkUmgtGRaxP/fmXNKJR+lx7nwLbH6VNoJ2lFPoiEEZzZMYoqgYqYLu8jAc7dCNj8XHeqjckKSCX3jPJLOdghxDZDRntw7xTTZyOJ9mv5olltpGoMv8KgdGIgzr4kVfe8Wds02kj1EuNwqBMkmZah/RMy2OFtMsqTbtsjBlt5T4drlcLZn7wrqzsucpZokQJEKWksU2h25FF0Syz5RUDIzghLI5LU4dbCAStGn7818uWnSirIySGM77ses49rX9PPKBr7Dpueew5cYzvB0mhfEAoE5ZrKIr1fLKuQlUrJSGzeUoYTtuPpPO9rU89PE9nPXq80f6a+bBagSpDHJkym3dN93nHwbACODkVw7ysn//7/gX0RrOy2+rH2BxcbG2uNVq0Wq1Rjb/+Mc/Xvv/Ax/4ABs2bOD222/nxhtvBOBLX/oSb3zjG7npppsAeOtb38r73vc+vvrVr9ZASrfbZdOmTU/BRXz77dsGKe12m+c973k88MU9TO22aheVoT2eWuX+dx/IZs4H1NVX/HIJMS7npQoVj+O8u/7GgZ8iZLnpuiqLDyWHoESM5pz4vsZMUM2/w+Ovdq7NfkMDKvwtcUmIouYZDicou71Njoyj6kNlOZ7usgNwF5yDmwxD+dhT5aAIUY+61PJSHNhoAA4BvgaJX2dGizqeUqq4GVQZd1/HgIonDFTKYwgtqnMdu10jHGREBVpCqxbsF1tIKGy0L5vVbLjo2Zg9+5HDGN2KMBFEmWHuihs49zlTrEl7AEy85EwevXUft//BnTzrxy72BRibbWrCsFi0mNwYExlV4xwXxhBT5YNkylLCVvLUG/zDIkYbMJHlrxd5DIkFX/qbd3Lwj7/O0tceBQPRVBsZCza/5BLaiaITV95Qe0xbLK4WuaSisDiuszPinAywovo+hAaaUzpyxloROATceA2LBbpjhb/d/n65lrWcE1ffxDnsRuqfECx3xlu4wbixJU495vy75ahkNdU4Uf0OT8CtD7fLJTqXkGhMIhjGMaQp/YGgJQvm0h4PLm5gOh0wEWXMJj2m4wGR0OxRAybbnapqtgBpjE+szz2nXJe0qojJdEh//0n2/PlXOO9tNyCnu5zMI5ZzC5znLtzIgT9/iDOft53CRCwWbasOFg85Ppygd2SF7royskL1DXa5VECQS1J9O+fOmuXIQ0tkvYykndBNhiwWHQotWe63iB65HxkJNl6ynmbir+trXBsX+S8ar9ip5hqofytX+95rI7yBX0VI8ACFcm7zUsVCB7ktwueX2PeoDlag7tQ6VXM5KrGs7rHrTytJVthnkMYKIQytSNXmpyoi6S5MMiiveaCSUqlJ1mhu7vxcfo5L6F80bYpY0jUZncjSokJa19DE5KKqvxFLzcLhAdMb2nzgi+cxFR9naCIWTQuXqN6SOTNxjxP5eqS2+U1OACAxNkqohWZBTRCJZZ8XAg6URETUAe687tbqqM3FKyypNgtFl6TM1empFj1tVemmZJ+18TJSaIYm8vtGCBLhHKIaKRUTaDIDXWE4ivDn4GquKKS9DzriRD7ButSqhXWinE2Xb2Tqoh3s/Zu7SNdN1sZaZUvV6564a6or1VXNRTdCqWvXp1MA00YwddZ6LvqxzYFzejTK3WxhZN0Bb3eMEJwURpIdW+LYgwd50YtedMo+v2PaUwxStm/fXlv87ne/m1/8xV887e4LCwsAzM3N+WXXX389H/3oR/nBH/xBtmzZwmc/+1kefPBBfud3fqe27//4H/+DP//zP2fjxo28+MUv5t3vfjdTU1Pf3vV8i+3bBikAL3vZyzj5Z39WgQpR0bjGterFqUc8wnXubzdgbShe1t6i5qTSPIbbr0klq3HahSCWtnjRqc63eSyXkwKjgMR70Wofg/o2svSgNPcdRyFzakXeO9w8XkATCX9b4zoaS90KJYhhPBDxHu3G+ubvetK8aawLoh/Btj4QshoAaEZKOAWtJgQrzX2bf9c2ZDyQKT8yovRmC8YAFTNm/wCgCO0ADiXBFNBlrk+skcsxCFi5fC0bhh2i3iPo2HrnMTDYCNFMl0iskMqCBR2z88btHJ2MuOU37+SKt19JGlNScoQteCaqIooSQzqV0j85IO3GyE5pGJmIpExqXylSDvcmKVRYoNF6U/tDSZFHaGWIFvZw4mP/zMqX7mb9y69ky6uvpHvWZpKEsl6CKYufVfWHXFPGSupGQRQ0jJA4g8V6a+vvidJy7PtdL/BVghhRJSZDNaE2I40QRDtMJRXs1OQqUFQFLmSp0KZLCo3txHiBiBCINyDrCEA/VfMAJdy8OeH5sdy4L1ogCgGIUqgB8ihGaxiWlJDJaIgUlvo3l64wE/fpShtJibIBnU7bUmvK76UkjGgIDz6dsEG8dJI9f3Eb57/juZgkZagiloYt5pc7tNKCNbN9iqE13CSGvk6JjVXXEvmQ+UdO0l1fyYlq44r7OQ96ZajYOgyAhu62OaY3dzl4+xHOefZGIjTr0yW7bR6x8MWH2HzDTmQkKcyoZP1I5ffVwEQZKnUe5zCa4gy1wowfozVwHH4iGgDFJytTUn/Lb6OLBhrwUU2AoYpqUcFTUXbtMDG1bcZt61TzXG6WAyBWPIVSVtoK2TgnQHM+tNdlh2XoQMiDJH93PfX7XfjI6qCMCjiVqlYZ7asiUVCUrAqh+nzhD+7jqpett8UayyjIQCdobLX7tdEyEZoj0bSXxrXfKiu+YWlkFoS7WkIuoucq24dV66XQDHTHv4NuHLlodqTKSG5ZwNBFWKzEsSLC0BWGRERIJJGPjEoSfz80qpzoEqG8StjAJOTGFuntq6TMDYk9fbF64JKFRxeYu2DjiC1lx1n5fzm2a5Fq4dRSnUBDXKPcEkQFXZ/N/KnVWpXHVY2fEKC47667ryGF8uCXHueaZ13D2rVrV+3/X3Pbu3cv09PT/v9xUZRmM8bwjne8g+uvv56LLrrIL//d3/1dfviHf5ht27YRxzFSSt7//vdz/fXX+23e8IY3sHv3bjZt2sQ3vvEN3vWud3HnnXfyyU9+8qm9sCfYnhKQ8tKXvpS3ve1tXH/ifJKZCavEEhUjUr6uNQ2JeiJs9ZIAVdG2YN8q2W60nkkod2c9xuNfHB8md+ciq5co9ASf8sVrAAq/vJzkQ4345sfiVBNbCA78/1RA5ck0pcWIPeMAimtNoDKSZ0Jgk4cgqJyUVpMedstdbkqtvydxHc36LD56MQ6IEPztPNjN9e5/d37jzqUBbGpULz+fBKDE2a4+iiKqU3V/q7LDErykC5JssmDv0a8wObOFeKCRStCblLC1x6GVaR9JGaqYTpQze9l2trW73PbbX0VoxVmvOp/p3Wv9mJ+Ih0TCkCHYcvM5fOP3b8Now/abdrL9xh0+etkrUpaGLRZ77eA+G5QqIwtaMnjsMMf+219RHDnJ7JW7ueL334DYsI5EapIo98mmroXKdeE4d44L9384IbnoiQlAfzj+dWk4uRyrkOKofMShLAwmjafKOG91rqpojBR27KvTYIb6+UEUaYRw496N+RIENaJop43ojQDvcp0WowDlifZjQBROtAFLQyMiB0SakC3n5KZDi4LJZEgrKlgT9+hGQ6tcJDRkOUm7+p462d+httLUhYl8LsdS3iLTMY9++B4u+uErGEZtssImbWeFlUmOIquuKCc6LJ4siOecQWXzoFaOrCCkQMYuWi1rQMgpMzoJ+lgq0KDLmhjpZEI+tJKxK7pl8xulRucZxz59L1e854W+7o4DEwCxGKXoQmVwgRt/IW++qubtxnOmrQiMA9yh8Xeqb7yjKTqAEo61kGqbl9u4se4k+7MiCupS1c+/2UZyqxrr3XGL8h2xKmGVmEQF3Clpk5UaZRhFaQIlgwU2mbbJ92PzZ8q/XWTD3RtXUFIKQzvKy8hKXlf1BB773AEWD/X5kZ/a4mucuJyQzEQs6UnWR4vMqy4zcZ+eKoGEqKq8u2cWCcWJYpKpaMCSatOVw0DRropYhwUXhzphYGIWiq4VWJAFCIkyNiq4LllmW3qCDfESE3JIWyi6wjArYx9BUT4311IHFYYEwQBbuT4yVt0sKyOZQ22ByUqZD+Z+L+ZtP353/9sX8sCv/R2zF25iza5pUlGM2DE12m1z3Ag8eHHP2YkiiWCfZh6WXR4ILQR2mstB9NERJ5gSAJSwNc9r/kv7+P6Xvol/KU1wGtb5k+gHYHp6ugZSnkj7iZ/4Ce666y4+//nP15b/7u/+Ll/+8pf56Ec/ys6dO7n11lt529vexubNm7n55psBm4/i2kUXXcTZZ5/NlVdeyR133MEznvGMb+uavpX2lICUrVu3cvXVV3P41ofZ8vLL0KYsGBTnte2aRniY1BW2ECRU2zsDRvkoSbNfqDwEhbEqWZEcLztc215LCuG48JH/SK5KFVmln2aCfNNDF/Y3zkgPj3lKoBKcS5hrEk54YRv9CNS3caClBkxKY3DcvWsWurPLIAQqjjZTi6g0gVF4X51RSFXB3g6R8Jzc9VCnWa1m2IXnPQ6o+N+jQEWYBgga6dsBkOB3GIwLr0+DLKBUnyQ+EVNszGjfF7P/o3/OhguuZ21nF9HJgmIyQiqJPtFidmvf1jDRNrHUJb1Pnr2RS89dT5QPuPtPv4GJ9nP2916KTKx6VjsqGBQJydb1nPMzL6RYHrLvw7cz86xzGKqYlSyll5WqTlmMkJpikGAKAUYg2wXFvd/g0G99mF2vewY7v+cK+tEEidREshgpAOZav0i8oyDU1VdaMnTeWiq6RygR7CmMwWNyAKVQEqUFaaw8lUVpUTPWhDAUyo63yCX9KmvQuYKjLtrSbCIYSx4EaVsVOoymRFHhPcyA/R08Z19JvgmqgzEz8t6bYNsRsO0QMquPcSxAIUyyVwIyC1TiTRvQB4/Qkltpy5xMRczGPaaiAYkoPO+/GBREie0jL6t8y0D62aoqRvSKlBPHNEdvuRsRSbKZ9QgMx1e6CGw0LkkUQsBylqLXb+TongF5dyOzaY8TRwoe+OAdPP43d3Pu6y5i7vx1gPIAxUU9jg8nSKPCf0OlMZ5eAmDihEdPTnJ+MVnm1Exy7uxhHv7oInJmksmLd6JND23sO+Gj8Ui6jXkJaACU+jOqAxTpI0mOxuTPUZiSLil8kj1YR1gFal0/Y77LpqLZWiBjx2FI6XJzgvvWux6aTiQXVZTB32MpyGUSvi7zmGwfwdgSIGUZKdHCqoEF5zcSqTSCrIgZSu3feRepDXMkx1G8dQmEXbRjWbcs7S+1lCaFjV7NpSsceXiRLedO0e5KbGU2m+A+r7ucKCZZUF0OixkmI0v7WlJt+x0u+1ZGsqA7ngLWjbIyIpLW7k8kTKnklbKs2j6PpSuHSKPpiRZrkh4zUZ+WtEphAxMzJQdsT44zITLmyqT6CEhERExE0WBuqPIJDkwpgQws6rZXcXQt0zErKkViyEslrlgoG5XPUyavOpd1L9rH3b/yCa75/ddCHFcCJj4CVBclcc8GXP5KEFkLjm2MVZDTJWfcAdYmZcv1E/4uTORltJ191aQlKiO9ceOpn4tDDt/2TV77x6/lX0wr7YGnpJ9vob397W/nox/9KLfeeivbtm3zy/v9Pj//8z/PRz7yEV760pcCcMkll/D1r3+d9773vR6kNNsznvEMkiThoYce+pcLUgBe//rX8+EPfxj9sjIRMFK1uinjwYiNdDSN+9Bj4vcT+GqkIVe1CSTchDFUZbKXxnPZoUoOdz245PZc2foRPoITvEAjyfFGkgdFu/y5EH5wRW3Z6QBKeKzm/XI2ijtvV//EXYNLuNSsnjsC1STnjtGskeKMuZECdMF691sK4ydL13cIVMLJ0ibYh4DBARKqfcNjCSplo3FGJaKmfFS7UbUTXiVK4rY5BVDxyf3hB6dpQIaGpWmcr6n2FcZFWOwOsoD4aEr3uKYdTdHedSY9Be15gYlgOAPphh5752e5ZGY/CkkLQQvrNXPyvrGMOOfNz2TlocPc9btfJJmbZMerL2OpPUmmI0/jKFYGqKTNiX6XXpaglGTQSxGRPVc1jDHDcrxLKPbuY/9vfIgzf/ql7Lp5t1XqopRibQBRN5F5br0RaCm8EpADIFDnypvSU+wShkPBiaan2b0zJhcksSpBi6yNP5eXkhWSuHToOe+wKMd80+Nrx6YFxQ6QOANNa+tVlrISmgjzVFxVeKPLWG0JdGyx0nBclUOrlBz2Y6Q5bgj2CcdbDVgHY4v6dg4oV+PN3rd47SbmH36MiM2ANSyOZlOsSVZ8sU2AlfmcL//Zo7z4HechI+2TfzMpyZSkE2mkiFnMOjz4F19n/Q1nMXPuBkCxf2GGdlIQSc3KMGXYSzCDiH43Jdt7HHnTmRw9rLnzQ3dx4KNfZ+6ybVzz6y9mxxVrEaUErEZ4WfleqfyUlREUFx13dX4ANt+wky++/37WbbyQC6+fZfDwAb7wZ3s4/Ol9nPVjN9JNCgallHUVoZNeOWjct7rZCu9xF8QiKHhoKuPc/01FT3SREEFdjKRJX6znr7jnGuZa4oG1/85CPZISfB9DAC1lNXxE8I647fw1aklRlLLY5TmExxJgizPHila7sP+XjoPQiQbVcFdaeJWw0DjGCJCVSqcDZbj7RHWtyjiKqPXAZzr24h/aCGYu3soDH3mICTHHlLRqV0ulQa+wAHKh6JCbiBPFBNoI+rpVKYUJRVvmDMroxHKpGLa1Ne+vJxWKrMwJsddi3wuAmWiFnm6xMVlgYOyyKdmnXQKVqahPW+Q+ItMV0JUWoGgMyhi0T8q383pXROTGyh5rI8mJSpUxWzyyp1OUEcwPOywM27QiRTfJmGv1GKi4zAk0nPnma/jqm+7l0GcfYuvzzq5FUrzoSMPJq3VZm0RXeSsj74go7SXjhCXkWLpjOObdu+e+705B0amaAo2cJUcTtOd89HP3cfmll3HWWWfxdDt1M8bw9re/nY985CN89rOfZffu3bX1eZ6T5/mIQloURWi9enrGPffcQ57nbN68+f8n53269pSBlNe85jW84x3v4JrjZ6Nn14yNQqwW/ob6wHYvlTdqnFfKAZVGrYRwP2MEQ1MZTAUyCOvWk2pVmUDsJy1FzcvTPO8wtH+6gnLjEoWhAgbjvGhhc/vX7OhwuTC1JLdIaoQRqDFjLZJ2ohDChmzrwCIEcEFEIzjPGtWp9N41Iz3NvJQmF9pW1Bb1iVKU3P+yD7fMVZ+vUWlqzdZbMU16jDPwwt2EqRuDbn24zWqgpunddqt0EMgJDEl7KBEYk+UvAToBndp98llNvCjpHhwSreSsub/PcG1KPiHpbZBkswa1knLltr0cHk4zm/RYUm1vwEmhiYPn1jpzC+f82+0sPXKMfX97F2tffb03/COpKfYfQS32yJZzRJpYICpB9eJSiUFY6lou0KLgyPv+hk2vfhbbnncmhannX7noZ1x6I5tUAiipHiV33oENL9gQeJCNkcRRKS8uNVkRB33UvbQWDAlUXgKegMbl+tLSKhkNssSD7ThW3nvtrsMBDEvjMkRR3XgL6S6qiKokeapxDCXty32b3D2QruJ8cG6uLooW5ZipHC9+nDiJYbcwoLKNbSUQQZeRlHL8CSVKCwDiHFprNrN861d4vH8NSalkWBhJrmNyEZeeYSt1amTM8QMD1m5psyZe4chBxSd+5y6IY9ZfsoHuxTs59OgiZjBE79hNFK2wMGwz0crIioh+1qK32EbMJ8hcMDx6nMGyZulgj3t+7oNMnrGOK37zNWy7ZLa8CBtadAIKQx0zULE3bNOSMuwK+4YF6Xa99jJkJPnwO+/g79Z2WTmwxNaXXcTVv/XdrDl/AxpBphJvdLnoX2EieoUkjaqChM7xVZt/qMaLn0ca60OHUxjlaEbQ7XiW5KX3WgqDcfTHhlOnUMJ/duJI1b6juauxU457SzsUPmrtIiFRZHDFI6UMnEuMOmc9vdPg8wdFeQ2OvhhFmiiy71U7zT1A8UOxPD8pR52HqzXPGCgBnouwOE97qywoG5dKUNJYNalOlNFTCYe/cZxjB3MefTjjinM1g7JQ44ou6z2ZmG6UWbCDZr6Y8AWjrcKUFZKYjIZoIVhUbTpJzoLqoMpnnxsnGhHT0ynH8kkODmY4b/IQx4ppnxzvclsiYZiVvZLeVZRV3wU9HRPJnMhoonLMKww6CFlJ4LAqvBwx2EKOEcbXd3HAoh0VqDSj0JK5Vm/E1oraCZteegmHP/8om597Tr26e8MeazpNncOpVb4fTdtGIyiUTd5324TtdLT2sOA22LHj6fGmrqRnjGD+lkf5wdf9yCnH0ndaC6aLb7ufJ9N+/Md/nL/4i7/gb//2b5mamuLQoUMAzMzM0Ol0mJ6e5tnPfjY/+7M/S6fTYefOndxyyy386Z/+Kb/5m78JwCOPPML/+B//g5e85CWsW7eOe++9l5/+6Z/m8ssv57rrrvv2L+pbaE8ZSNm8eTM33HADez79MFtffSWAV+oBasawzwdpLA8NHgcI7AqrehJK1Ln+w348iGgAhGrSqABLk1sJYRVsPRaoCGE87zWmnm8zAlTKFy8vi8T5dWMmMLd/8z6sBpZcG+cZa+abhMuVN66q/UIajGpEJ6Swk2gcqYCDXN3XSGpbvC740NUpYHayrIxJJzQQPvcyX8XtD/btjKCpZVADdqIEKk0Aslo7VVTFg436eiPd5B70HwCP8PG4v2tARYi6h5sIowpMW5G3Ff2NLbgXhrMJ8Yoi7muyyQShQC4k3HFgG8/d+RAnsglaZXE5L5Oqq4/6ZDJkbWsFLXpk04JukrGc2claacn83hXM5CT73v8p1r3l5dYwUcKCkyK8p9C/6x50f8Cu77vKLw4dAv3cJre6kH/YXD2fymtWCUu4PJDQmBNAVkSkMZ4+4iIkof1uiy6WpyiEB7t6hPIFQrjxCBhrgMWxRpYqQkUha+PRGXu14eCjIpWzQxhRByThw3egphwAHmSX51mL+oVOhHGA2QGVcYA5+C3KRHkTBShf2x+p8ECls3MXxYkT3PNQyjPO7XFgeYYdUyeBisYEkJqcG9+wlc9/aD8v+fFdLA1j/vH3HuSVP3MGJyc38fCXj7H38/vIpubY+dbnsqzg4Pw0w0GCKaSlCmqByCRGwGDfoyzf/lXyY8c48I/3kE63uey/vILpdIg2MJnYGhTOcHQFfp3n3EVQnBBEmNeQqZiMiHWvfBYvePH5PP7pR5m96gzaG6bKyJ2NdDkvbxpI4tvbJNBOfco4am+ENK5goyFG1XIeR+amUxjhI1QXXecKrLavU+1yEZG8qGhSVdFcfGTaARRjJCoY16oQvlCuKWlyUprR47n8E12NZw9UjBULiWJloyhxVZ/IC09QvZv2nOzf7jySqHIKhp8LF0ENKWn93EYjOklOKyp8VXsHEntFynQyoDARJx4+ye2/dwcAt941wY6zCl+BfkF1kULTEgULqsN83ikpdGVOUqBAtZB36JeFKeeSFRKhWC5atETBSWNl3p2y3Xze5UB/mnZUcP/yJjpRznTcpydTL0CRiAKNjeS0hUIhWDEJbVH4BPyBUUQIcqyTMSqX94whEdC1X1CQ0NMJA5PQ06ViWTQgT+x70o5zHym3+Tu2yKYxtggkcYwhqO0TMFbCKGA4JvNAQCW0bRx9N9wnab5Tq4ASE7xzvognNsznomdhC22e7OQKR+54lO/50PfwL6oFdsK33c+TaK4oo5MXdu0DH/gAb3rTmwD4q7/6K971rnfxhje8gRMnTrBz505+5Vd+hR/90R8FIE1TPvWpT/E7v/M7LC8vs337dl760pfy7ne/myiq54D/v9WeMpAC8MY3vpF3/PK72PTKKwHpFTXcXNyKixqKDosdhnkW4YCWwpRzdj2sHoYZY6mtI1JUtUlcX4D/GDrDXwb/+2O4czICl/nRjO64thpdy23rEopjtE8YPnVuhxn5cIyLxng7ZczxXWTF5q2Imvd6XEJ8sw83OdYATOMtcZSaypMXFGpsNG8oYr3PjlIzjnID1bZhTxUIqV9H9f00DYNRnAaonGLdatsZ6jVSQut5lf+FwRpsFu/604vbXXS/D31B60RC50gfs7hI+9AK8xfNIHNDa8HQPSjJ1gg2XrjEdNwnloojgymkMHRj64lz+vWWQ2x5yt/8h4e56EeeyYpzApRRjKJfMH3tBeRf+iYre5dINq3HKIHsRZjEYCKDUDbxuliYp71rIyQJSmufsB7SC7URELyfPvJpKq56JG0huTAiYqiPO22s97U3TPwxAA8cHBBRSvr/3TgpiqheYBHKiGtVeNEAKEmBBS9NR4nWFvRUxyypJkqiVT1Sa425Uo2wPL96YUZR/98BNFEafr7uSR1oV+O1MTjHfWMMtVwpI+1zKz+jvk8tLKVQKEhNl3T9Rg58aZkzz+iijY0qLCtbVb4bDenKjJyIxQXorEk5upTw8V+9m2d9307ymTUsDtvkF1xE68w2sSlrPWQKpSRJWpAVqZXVdgFvBctf+mfmXv8KFr98C/GmlJW//jIt1UebmG6ceeUgRx3xie1Y8OSMq0zHSMoaVkYyKBJbSFDF9pvXmWbHyy8q80SCb2ek0MoaXkMjiIy2c09AP25+a8c5hUKvrl/eiKLoYHy7/5vNU8FM9W1eTZ3LfwuDb7Uz/t16r4SkBTqIbPh3SFlQrZVESAtSHKWx6dxy6/0xAieClPab76k5wbtVFFEtKhlF2s8NWksyU30HRijTJdgx1AFoL09KY7ll85uk8mNBCs1i3ub2P6uqaD/r0owJUbBiUqTQJEJxopgoZaylBcAIL6LgI3JG+PynVNrcrGVlc2AWVKcmia2NYDruMzE1ZKWwIg3LRcqyann6l4ok62NJVw6ZEBkSw4qJSUqwsqQT2iKjKwQDV6dNOO9Y1XKsqp1TtpuSfbI4ggJOFJNoI2hFBQt5m/XtZQodlbmKdvuhilkctJh/6ATdrWtxNK1w3IoSHDiGRzjOXQTe+QcjqX30PNw2HOd+XAdAKGxhXSufW+sAagDom/0e/advcPV117Jjx46RPp9uo808garCmzZt4gMf+MCq67dv384tt9zyVJ7Wt92emKD6E2yvfe1rUcd6vHfqVTa0DT78rQKk7pSv3MfdFteyPy4p0TUbji+TFMuPTThJuDB4pm3SXRaENh04yQPqidL1/mGUK2zP126bq8ifd9hG1C0angnXxkVNXFsNMJyqX/eRCbcZ10KAErYwr2RcTsq4iFezn3CSc1WLZaO/ytCsvH9uueX5N47h9qudrJN5rVbUrkdQegyr7UdoXE/EG9HcpoaUgpMyQGnMu9MwAkxMEI0BnxegqNVMkVNdMAa9PKB9DJLjK0y01rK47166Rwp0IuivlWQzoM9f5qzpY1WV4WRAS1q5TjfGHR2lXyQcOmCg1WYQT7KcpxSlEVAs91l+8DB6ehaiGLOyjIwUUarR7XLyH0g7EbU10eQE2aF5hkXsJxbHL68VFS3f6aJMvC20tPKlxkY3ChVGOOpGkfMUKyXJ89h6vUtevFvuljlvbyjCoJSsARH/o4PlprLcw351Sb2qtsMbZ/aYFqA0h059bLvxUDciMRaMGPUE0bAb+82DWS3a0kqs0PuIwpywQMXjdA9eQEegY9CRobVuE3LxcR5fXEMvS3h8eQ1HsymWVYtj+RT7h2vIdczsjgn23rXAJ377Aa77kfPZdP4aFos2J7OuBSrld3Jp0CIr4uq5OFUxd57Wk4QmB52x8Nm7aG2awaQtpNAMVMygKKk3XnVL+8iJM0qdI6owkuW8xWLWZilvsVKOb6D2zXdUqqZBXJTf8aGKGarYf+/dnOPmhKLMfch0zKCUbXb7ZKVCWHN+ckDL0RvDeckfpwFQXE5HrqIAqFX7OSAxTuTBXmcduIybP4wRqCKqxmY4vLQIKIumRmEMm5Da52TZKGf5bmtJlsUUeeT7du+Xp62V27n9clX93YzYQ/WJdbS4oYro5QnLWfW8XdHHzc+x+Qlv+/wrae1YzyE1w3E1ybya4EQxweFs2tf1ca0T5SSiGldFadgPdcRK0WIpb7NS2PE5n3dYLGyUxVV2d2NqIh4yFQ+YjDNfy2VZtYiEpi1zInRZGFLQFlZu2ymPKQMDY7z0cGaMC34igbYQ5Y8iEZq2qPJT2jJnXbLEumSZqXjAls6CjRCVd869AytZSm++YPmfH2Drs3fbZxOMj/BaVhs3zuZyY7dWj0pqLzvv3g9jRBkJLe8rwt9jt9y9m+ExQiaLAzf+fdAgP32Qn/yxHx85x38RzTwFP0834CmOpHS7XX7gB36A973vfejvtdUqQyNdlYO5GbkIvbFuAIfbiNIYc9uFuuvN5ryerm+wzzsP9g8r7HoqlhHey+bPhwDpG0YKxTWPu1oLE95h1Jvc/Nt5sUJaTLP5yEnjfEJRgFO11SZAty6MqoTnPJJUb8bQ0tw1iIpPHcpZjsvJqR037F8YT7dyRxEljxtHUxBm1PM8AjzE6DoxZr0Zs74BPmrn7Cbp2FTgxZRdyNJgK2umiLgFUYRZ6pFPTaGyAQuDQ2zdejUnNscsnAM60chC0EoUE7GlxFiFr7ike4mahKNPOswyzGDAff/1VuKt65nYsYb+fM7RWx9i/RtfwOIX76M4scjM855hgZUGUo0ZSktlygSmZWhfcA7H/+iD9BY18RqBKo0vwKtxGSpKVz0KaBMjlZLWszqGYnIq73AdFI/s6us2jHZajY/wiMZUVK3aeHSPtrQOXMTG5pLU6wI0z91FczzIDqg8FhhV51PjAAp3UWZ0vQk8qr4zMXJBtYjeyD0IgIowmLg8XwntHbuY//LtbPieG7yRcnQwycmsQyw1M0nfHipOeeWvXE5uIno65cCwxYmsy8lhl6ykrUbCeuRjnBc/glJ0QRQCOZQIA2te/AJO/M+P0jpjLVE7Yfb5F5f5BVGNphJL7SVKQ0+qUw1yCevDIvaKjc7zHq/iyHF91Dz3gfGlSvU3/90S9n4bVX3zhspOjS6/SghbzHBc/4WW5EWElBop6t9I9402RtSAe1io1EUUmq0Z+V7NURrSr3y9HgeYpfEOq7APHYD0CuUK/85gbOQwz+17FEfaO0WyzDoWcN91WVW1jyJdAytaWpU8F41xy2VUqW6G9O1QgMMpc7px4tr6q7aTTKUsPXqSbJ3NRXESvT5n1NiaO32V0IoKWrJgRaUW1KqoKm0gbHQuiyJmSjqZTVqHGOmLR4dy64lQTETDsqZPdf4rukVXtJiWA3KkBzEr2tYfcj0oY8hxUuihfVQBmLZQpZS8TcKXWiO1ZjKyuSku6V9i6KuEeZWUAFzQu/Nh0k2zpbBFJUE8LlIYRkPc8zXB+nF2jQPXJnif3LbKCPIGKHJ9hb9rzgQX6TGVI2z+a3tYWFjgla985cjxv9ObM0mein6ebk8xSAGrsXz11Vez/7f286Lbfg2wA1KVHteBEaWUqfaAotJMH5Wxc156BxBCFG4IDPtymes3tC/dfqpcX6tWH/ThKv2GRr7bVwhDynjjvvkih5OP+2CGL2vtYx14/cK/a8YWlUO/2U/ozV3tfKr+LcXgVADFtdUiME+kxkqYnG/zheoGRAWArHE2LmJjgusL5Yn9vQmNOTFKv/Hrav839gsNxrBP/KnZP4MEfT+fh9uXD8dExiYxh/1okIWw8sTGAi6darSB/Se+zs7WBajt6xnOCYoNQ2bnVugNUrJh7I2qKNK0ZEEkDGmpbuOoXpHQFDqmu2WGy3/qOgZDwYk9PRYfn0d0J9n0tpdx/H99kWTjHGtf91xLDdECnUcW5El77jITyDxCZeW9TmOUVuW7KwhVh2qRR/dulUUgi6LyrhblOxDWVaiPgcYzC7cJDfxwE1NFSIzfJ3xswQMqDTUXjWjua/83FZ2r9nDrDzs0Fh1Q8cacO46pn09TottIY+/5OJPUjI6bkVwrAS5foNaERU3BfF+euh3fk1dewbFPfYyjX97H3DN3eP5/JDRppEhl4T2gYCWIl4o2RwaTHB9MsDxsoQ0kkUZRCWwYI2yFexEAFAUmNkRza1j3htdhJjL2feSz7H7jNYAtHOgSgFV5D+MS9Di+mBNGkcJQ4IxKWRt3zkASwngBFNfcMZrAxavMKVv5Oy7BSgi4nTHs5isbhRckkfbRgRDgaGNrl9gaIzbDII6UByva1CMQHtSPAdzjIo72Nx5Ai9ICsmOs3oEox4IDy0KaEhubWt/G4CliLqooo+r+Ve9TRX3UiarRL0MxCCMNRAEFWNTBUBQBkfbj2Z1T89nkStZyzJwDLG4A2Fyk6Nwg2inLCl8AdEm1yXVEJ7KU2EJHxFLRiXJc0UMbEbPja0Di+4yN9f5rJYiljYCE3n4dAJJE2JyRYWHpXJPxkJbM7TUQkREh0WCgp1ss6Q4TwolE2J/c3R+Cuk3CApWSKFrmrBgSbCHISBhbEyYaEmkrXNKSOf0ywtTLrVBEPNnCZJUwhIsaAl5BLbSh3DNp2lQOWIZ2SRWFDL7lWtb2bz5XPzapPmXK1J3T7nm7e3zRHYIdb3oTaZrydPv/7/aUg5SLL76YK664gj/8wz9EXjbqKdHGHtWhbrc815JhXvKMnZ1SghPAA4hmq8LqbkmVCO7AUW2y8hNbwDcuV/nCjjQ9xHbbDHwSpj/aaQx+ifWijgMizT5Cb0T4P1RABSqwspqnoznZuWUVMKpvv1qifXPdmFzp2vGav42x/HXTOJ8wSlOrr+KNy3qxP+8lDECZ9T6WnjwCj2CzhTduZN0qACW8Nmc8jrNdV7E3vX2tLECRud0u278PkabEW9fQ/Yri2OAIO6efzbGtqe2nH7FxaokNG5b46v4dHBtOMpf2yE1EIsrJljqoLbT0lBSAONa0dqxjbtsGTvY6HPnwF+mev53OJWeTZxGqkNZQdknzJcAS2p6vXlhBtFOSBP9MrBe4oqvYY9vf2tiE2VxFZFmoLiT8++yAi601or2Rdqrmx+6YZ+oxojOUCMYc5ZhyD8hg6UjNbow7hnWSCGlKY60JdsdEM90EXwKTMIJSH4cBCHZA2l2TG1MhOHHjKVSt81itFJhotgBri2A3v68B2e2w4YWv4MjvfJClS8/myNZpLvzRZzLVGpCW0YGhiryC0FDHLBcpvSJlJUvpZwmtJLfPsjTaXcTM3duoLxEF6JZBx1VUJ3vsMCYrmDljDdroMeDB9lEIl9hcFQt0YinjAIe7PMdzD+eYrKxy7qInTXqLLvtWKvJzhBBV3R7XX66rGiVCGDIVkZdqby6y4OgwWlvwL8v8CyMqGmrhq8TjDfhxUZRmVDGsx6NLQ9BTwsox5d5Pg8358yIORiAjjQhq/XiA4oCGKkG2Fmhtgg+XG1t25Dt6mJDlt1g33j1dKnTFxt+D+rVE1TlJTSspas/EAZS8BI9Vkct6tGpAQjvKyXMBkeTw3owd587Q0omv8u7oWYW2wHW6BBB9nY5E11wxTkdfckVDpbGCCi6n1uWV9nXKlBzUoirT8YB1SVmwsawwb+ldVjHviJpiX7aW9d1FMiOtkzYsgmvKyvZGAJpEQNSYV2wyvgMOuirACihs/kqhpaVhZjF5T2F0kHdSRiDdOE7l/5e9N4+77ajKhJ9Ve59z3uHOQ3JzM4eQEEiAQGIghDkyC2iHoaX1A5VWEbpbgVZbBcdutf2w9RMVQRGkEVSmAEEGIYQZGUOYAmSeb+78DuecvXet749aa9Wqfc4NyKCAt36/5L5nD7VrXLWeNXYlb+D2k98nGq1tnnDYv+/zAKF3T0vlNGF+T3r6rnMzueMQ3vzmN+Oqq66aqed7ovT4hW+pnqPl2w9SAOAFL3gBnvOc5+Daa6/FQy//NQDZVErzI0RnOsUAJk2NRg4NTcYWQJaNWg+RIzHmgAIWAEFd38tNp1IzJYIa/pSZMKyTWlQlAh44MMRcwJkp+H/7JYLMkR/obUop80yqVKujNGpGQyP3K3d9nulU39zNP1tR+Uzqx3ygonOQk0DNvuu/78GJSifVVyU/U9ahGhVvF30k0zI/EKVUfv5j/vmvW/qAg9ELvVzeL4CKPsL5OsX0n392/aZrsXjiqQjjAZb++SZsqLcBCyOs7yB0I6A+VOGaO7aj3hVx4tYDuPbQNuzYuQIA6QAWyWDNGbBrLqJJW2MsIXynbZ3CaX7oC6g2LGLpPqejaZKU0PwlpPGWpZyBZrHDwbe+D4v3Og1NV6GuYpH1uhGgMqg6IEQDJ+rHoWu3Q0QIKVFk/l4CArGKCFUER0LXBlCVNRlAXk821I7ZKZx+OwKLRBfE5l2njJS9bmF/5Z7M7SywSG1UBqxg1Cj9JreWtV8+/wkrwHDfVqd5CnBAhVFkmNdXVHtyhEOOfLv693pAx/C+mBxuuPACrF3zVTT7VxFP2IZb3vIZLDx8N6bc4Sv/9zM48YLjsb9ZEgYv07lAyZRnWHcYWFhrYNIIsz1tcPhNH0B1sMHWRz8OvERAxeAItNMV7H/tG7H1UeeiHga0LlFbn443sZrVaMT5eRj65rJdTATfm4uM27oAFP2iINpMx0IE111K5ee07dFs5INFahxItMMUKCLdU38n0mTDMScRVedyXT8+F1Vfu+j9TOx3VNl6Dxy49ZzweM/F1K9LZIASuwpxUuX14oRDQNoDXoONjgBm0wQWQFyAEgVN1ChVuch7zMmPLBCDBln4x+K7RsQWfpw05xeTmYu2HDBtK9NyDYfAsY84Ezd//Facf/FmCwLhz9mVboRRSGCoQxLk9M/TIG2vJVRwpBRFLFYtNMqcmn/5hJ4qNNo6SElRN4Z1RAQ0XGMcMy0CgMPdIj6/shv3W7wOe+ISFqjBMlrT/Kn/yirXABosUBTT8KRtGVBEQAImYyasxhE6EJpYYyE0ONQuoCLGntUNWFtLER33X/ZxbLn4XExjhWHoUuhqVpCTAJjXkPR5k75guW/hoWZ5BQ/j6tHgCrrmq8AmHNZ13jFZVNbCtB/AQz61jJOf8ITv2dwo5Ojvt1rP0fIdAik/9EM/hF/8xV/Ea1/7WtDudE2d6AAkp8EQUJFm6IU4YqJQO6f9XqoW/cZSBN83e2IWwwGTAMi7wnDrAdC0lZmITds6hdqV7/gM2F6boYkqcxvLA7T0wQkz9zxRmGdS1Y9k0K9fAYpPiNUvHpjZOOqZYu+lcZjnN6CgJaA8QI/095HMFLQtnr+f55NS/OYsubb69DrDpH9FsXfdh4CMImLv2W9g9ytASQCZ5tQLeCm4OcgHBldufIgRKEkfsTRCXFsHNYQ7tq1g8/WbsXaPY7FyasoYTC0hrg5xYLyIHzr+c/jY/lOwdbCGlXaEqw7sxrFLh1BRcvhcawdYa4dYa4ZYnQ4QCEWCtZVbV7D6hZuw45mPQ9OIE63YkYORojHJxHDF4EA4+J73YnrNjTj+N34SIURbI4WJTRsk2hYncBJD4SientVMcn6eGGCgawPaaWUMfJwQOgJoIFLsusw7MgMgkBh1NkkwkBiwJOmNTQBVEaFWMJGiG2lIYGuKAxc5XLDWzwY23LJMQANk2oNEqzgBJslZ0tfOcZB/O8rMiwIUAzS99XSk5TnvOqMwRyzXaR476oAdD3sMrvvz38OOn/shgA/jy5dehcVhh9OfeT427xhitW2Mfg0oYqmeYvOowvIwmaqsNQOMmxoEYFh3GO9vsO+V78TO8y/G8rUN7nzD27H9sU/EdCtjbe1W3P7nf4nlM47DGT/9IEsCqqHZs7lt+q0aiSA0UAGBL4XWWxhgFX41Lnlg01WYNPm3aue9FnAiJlrKSLcAqCud1adtAjEawEGdzNMzaZ02XTZvBFLEq7atLOSvT5KYQEV09DJNUtsG0zCWQAVGD2e0dnoNCn4yLS6izMWQZPrWnoBumnMepcGkFMpa16SCftW46n6pOCWALWi3rC+37KMEvmDRvnBH4DYAw87Oaw0coOPKnPxZGDnk+aStEBlYGGTBnN5bPHYDDnztMA62i2hj8j0JxCkXkJhGHW4XMBQzWTVlHHcDrDbJhGgYuiRwcesrEFuunmmssVg1KRwyB9HyENa6FHZ4RC2WwgRrkptljAFWaYSqi1gOEwyow63NFtx3440YUIvDcRG3dFuxqz6ILWE9M/VIUcZAGt0LGHMl/9UCgCqsxZGZtg1Ci7VuhAPNIg5Ml7D/0BK6cY3285/A9LpbceKLHo9R1UqACsdVOP5lnlm47qu6p/kAkl9v21XGTyhvpXyVRujrC027mO+laG8uNDVQaDx5bQ1/8Rd/hXe/+904Wo4W4DsEUkIIeP7zn48/+IM/wOc+9zk86N2/ZIRZkXnbVQh1ylJcAWi7aExWcCi8i5kJbtV5M0RjZJOkJG+MhPKTXXDr4n5rXZ7p0qIaGKJgzvNwdVqyKcw31ypMCVRCoVErqLRf7j+vpe+nolGTvH9Nn6iQe9e3t19fGheRpPRQkCc4HsDM0670wcfcNjkGXu8UGZJ7pWwz0gHZBgMCdlgDTurMyBJwB1CAUuPhDvSMt9K71Imk0E+D5xkZKZIX9epUUGc+CL33hemHABNiIIbEoC/e/e644+1vQLV3gs03tmgO7cV0Y0CYEraeuQ9tFzAatHjIsV9FoIgLtl6Hfe0yRqHFSjPEYLKczBLaGqvNMDkTy54Z1h0Whg3WJkMgMva+/nIc+6xHS44EAHWXeBDVpgwjqI7gcQUaBzQbpjj0wQ9i589egnrbBsTYIfYPsZgjBqW56fV7Zi7KeTJgEJElshUDLYEpzblGezJfo8CIrUiig1tbvmlMQCdAgFKivKi8R5R2kTBMjAwObF5TmzjkNpu/TAw2z8kEiQ1QpTGQtkS3JnTNAMmkjt23evja2v+NlP5jDkjptpipsmJxPSIMduzA0qlnYuW9n8CGH3soBifuwmjQYHU0BU+nCCPGpsEYjYQ1DcTYvXwQe8YbsHd9CSvjkQVFmDYBd/7NO7HlCY/Dhr1bsTq8GuH4Y1LS0sNj3PHyV2LjhffEPZ5zIRYGHSJyTgQ1l9Fojup7VWyl3tpTs91GTK46JtSBUIUsFSYBKDoUXZdCqTJg/idAqRHOZocBLJqi1cnQ7jFr1KpEnyy3SF0mWiza2gV0vRxPQcBD2waEwOg0y7vS5TpapDQKCQxorbr+uXPAlpGCPgROe0jGjJHaGTthIAfszMSkDqWvuhcCA9PgFg2VdM7RyYIWB077wfl8afAB7VcUE1AFK9PJAK1ouGIXUIlQgijltskg0CkYRdA1bQZYmYywaWGMSDV4PMVqO0qmWV1tjPBC1WClGWFYdWhihQPTxWyq5AQuEYT1NvlzNF2FTaOxne/D0CYNtSQujJxC/9aUQNDBdjEli0TASrdgmeUDRWwMYzP9CmDcZ/F67O02ICKFKAaAA3HRtDPjOMBCaNAgoOGIKQcciCMx5Ur+LYGifWutG5rmaK0d4tbDm9AdHiBgL25/2dtx+n97FDbvGGDShWJfKdBTixUtfRMuBW7+jO8DFM9fqMnvPIEpXB2Zn8tz4AXQEcBTvrIbb7vvffGABzxgtq7vlXJXgqZ/aT1Hy3cGpADAj/3Yj+HXfu3XcOmll6Jb0IWa73eRsoqXGEPJDN11AS2CIXnvsK2FOTnZA6WtI3PWsGiITCDNtY/1DuQNqP4ptWygoJmAOTvMK9pXCUAUoJWcSHt1snP0nicJdCDJq1U9G98PwQwc2ZeFe/XO8xvw4zNtXf4ZLVSaZLH0oX/NEzNvyuZzp0QBV/6ZIKZBpSlD2S77O+Y5K5rvpIh9KfgRmTy958FKhCUqsw/p45GANkXo4koOfz3IlXmNuGvioc8QkkIhAqgAaoHRxh2olzdibc9NGD36Xlj9i08g7q7QbZvg8NoIg0GHY0ZjC5+pmrgP7zkN46bGXl7CpKlRi9RVowXpXI6nA9RVh9ve8FG0h9fRXnMjBmefgbatzWRE216NutS2UQcMIyaf/hxoOMDivU+DJotTPwGdr7aRVKZ+zAuwkOcPcKBCxsWIt71L4heTgAqqNG4GPjkzcZBM3AgMGqrdEJukN4NIAUGElGCQFUEhaZK8Fsz6InMscwXxTym0Ex5cUdLWdNOQgYlznM9j4tcl57boLT+OumY8UNZauNdHlrWK3rPuXa3auhuAbpGx+cIH47Y3vgYbH/cwLG1Lgp+D6wtGTwNFjCTD+zC0mHRZIzGsW8SQTG/aaUCctKgWlrDvqg9jdd9N2P2IS9ANgDsvfycGuzbjHj97IQYVY61RKXd2VF9vBuJgzgUzqt9ShmraVWi6kJz2Y8BYQlZX8ruTpVBXXTYPkvDVbRtMwxCrFKxFA6cAsJDTQPKX6rokYVc6pblDtFjunJDBiYKcROOSZiC2oVj7pEuSk59I21YJeMSslWubkIlelVBvVPM+twdsfRlA5bQeFzoEseCKTa47MoFr0Vq2BBbQkIB9b+365eqv6brVv1naEinpwXrCnhgDeFzl52qWMO2UwmO76F9ogXqQmOK6Tp4Xnfr31B0G6vvjzxNi7Pv4tTjh4jNwsFmQdVIjSCCIpC0Z4abDi9i6sF5kOU/+e5WdZ0uDKQIxFusGq81QzBkj1imBl5rSmlFf1PVuIzbWE7QcsLEeYxwH2FiNbe8EJGf5g5OUVPLk0Z040C3hQLeEw3ERdx+mLOBjHmAsOVYG1CLGgC1hjCkHTLjCahxJSGPGGEmLogBlLQ5x23gTvnznMRgNWtx5y2YAwB2veBuW730qtj74Hpi0831bvdO7RRtFyWfoGECmf+rMxZSn8GGk264qls88XkULM2Hc1KhDiv6o2noAiOMWf/iHf4iXv/zlc9/9XinE35CxxjdUz9HyHQQpCwsL+OVf/mW86EUvAv324wHKhKljEnOaWBwsAMzpTm3tteSM1bMRwPrFsQLi9FchhuyEb2c9Z2c+3ZhTkfJkxrnMnqt1a0jjvlkYASURkNCMPoSyL/2+eHMw/3yf0ACwUJ7zSpIUzfqLqIbDq1vbbk6bHODzY6pgIyiOEq2P8OQzbZhngmD3+s7TJpkE+lGa8os90AH3N2GWabVOQcxe0n0KVC4U14bEkFJigpXgMGUe866IEEn0pZifI3WeBxCbKXjTCAu3MFaqgHqdMVhscMaxe4xJ++KhXXj/6uk4d+dNuHF1K67/2jGg5RY7th8GAJMk+2zPTVdhUCX743b/IZz8y0/Bnjd/HM3V+7H80PMRltJhzpGASYVOGBnUESeeuBeffsnHsfHh54GoAnNnc5ekwoSqyusnzV8JSMysSMGBMIfFQJF7uOCg5e9OwKstNsf42zxSYoAqx4lbtQTNQsYePOjijEjcup9rKutOEmJpT18zot/qkECfrYf5B/IM48cyCEXfyvsUnZCjWOfuGQ0EwABF1yXFP71/7dUALNzj7hhs2IyVyz+DwRPOQ4yE0bBFFwMOTRagjrajKkUHarrKaYUTUxwCgyrC5sc9Evv+4v9iwz3OxrFPfCraAKzecg0Of+QjuPv/+0wgENaaJCwa1m1K1OfoKwl9VLpZUXYi18haGtpX/UfU9yMEEaT4/kmd7Rw/EGZgMq2zc3vg5DMFobvel1mkz0SlOiTGkEwOmdB1Ck5SXW1bJea7T38MOIpvY1shCnie0YxQ+oM7ArMArCh7atozoSyAMIObgG7NrW3Zr9ylM9NMt6wz5d4lB3pIATsArllscuYAmkFMGp+Q6EE3rYAmJEGPBuUIqQ1JyBQQKVpwCqJk/lnVEdNpjdGoEbCYwhbXVWegVsuwbtO6OLSOxR3qQyW5OSTHTRsDVpqkDVtphiAAY2mympcPxE+pkZQIa80Aw6ozJp3l7I2BEERTM+5qLFQtpl2FhapFTUMsVg0OdwuYxATmR6HFBglPfMP6Vpy6tBc76hV85MBpOGVpL3bVB7EcJjgUF3C4W0RF0bQr42aALWENh+ICIlJemKGswQVqMAoNgEWstqMU8S4GrBzYAGoCJnfcgvVPX437/s3PoKISoOi/Oo7qTxKqrtg/vpThoFHwERY0xflK6b8KfI4U5Mh4KE7BWLwVyB1v/xROPPFEPOEJTzhCq46Wf4/lOwZSAOCnf/qn8b//9//GH47PxW8vXFkw5AyIU25ybCTiZPbF2Sa3I0KFzKD7pIpekt8v3sEVyIeKHlxaNLa7stetHWw5sgUBloW1ChGtk/b1CYHXrBgocBu5Y5pLFDxo8GDEzjcH7gCXrZepICAz9aq0zwEe1bYEScLo7bz1t6rd2WuprE4FKlxmGHb1eBMItbtW6byBENLoXLNO0mX73RjE/HtGym0D2QMtruhB7BnBoi5tg0rUtQ7P9PUBCrv34O4JA6n3OUVFAGLE4ACj+/yXsW10POoxQF9dxk1Lm7E4TEjm5I37MVmocfv6JqxMR6AuhQhNidAkKWmnYDFnirY1gQqggG1PfiAOfPIGHHjj5UBVYePjH4GAxaRNakJiQJhw6DPXY/2L12Pbs/9DYS+vUmYwoW3CzDpTsw715ygGspVnNdFlf5x7Y2tMk2qt+qV3iaYhabv6PlVqduW3ugMvxkBSrwHaNw88/L++dIJaehLkfjtMY6ffYmRg1WcM7XtI5hAOEPsxUOd5xXUGnLX585IkyfMgoAJh60N/EHve+iZs+sF7Y2lJNBvTATYuTHBwsgBmwr5uEW1XYcPCBFMxK5w0NaaTQZLUr9QYbVjChh/7CdTrQDNgTFb24fbXvRo7f+yR2HDaTqxPycx7uzgokhoCiZ4NRANi9u2UtCLMZGC866qec7oG2QhGxxQQN21lCUJ1IpT2dK36uSRGmGXe7QyRAeUIcBcwbQLqoZi+xBR4giTAB7e1rdV62GXzsOgACJDWp55Fsp64CVlzpmGpbV2SCVsYSDRPTCKzT1O5JgCyJLOAAIuGMjD3i5Tg9hoymACS+Zhf70ygFm4vCdCp0prmKtHkyEj9Fu0QNerzIpEdZX1SJedydLSdCdNxDVAa47YlS/YbY0DXtzkWgVi1YRGH9nXYs74BAxdxs+OkpTs8Tn4iXUx+l9ncPPthTrsU3rqW871B3krrzcC0BXWVNDRcMToeYiAJR/eMN2C1HWLjIGlSoiSIDMQSmniKg+0iDraLuM+mm9BxwIBaHIoL2NduwFocmZnYgFKY4b3dBhyOCynJKAK2VKuowJhKHpg9043YM96Aw03qX3t4AHSMg5f+I7Y+/F5Y2LpUmGnPjXCKNP7e7GueeaXP6+P9u2w1qLABBQkqgId3uPffZuQziwC0axN0b/sMfvPVr0Y/ZcH3XOnT7W+lnqPlOwtSFhYW8Ku/+qt48YtfDPqdHwFVpYpcneUyw91z+I7ZR6TvZBfCvNM4FV3kPkt1P1lcuqb5G8oEbfquOkpCmHKNRELEZv+avpdXE1Mvv4ccot7RkzCrEmXATC50w89bowaIjOGn4p6+a9E5HEPgxz6NpY6DnI1y+FvISRImgHp9tLEM5pCZrud59aZd5AihnxP/bLqPZILk+u7zT8wUBRT6rxzKJXModXsm1A8y3G8PNGLvk/3JkOePxE+nvBjCNBKrIS+Wz7gXVj93JWjTThyHBTQVMDxEWF0fpYhaIWJ56xSj5QOYdDUOhgXUhwKwPWJlbQGDQZec11uxvZf9E93eiFGS4bUVhmfdHVtOPxPTm/Zi/6suxYaHXoiFE0+C5uuomtvwhd9+G7b9+BMw2L4xg3+T8Gbp19yi4BHaaWTNQyTxSHbjp34fR1zgmLVTlGSYYCSGTa9xGlMPOI2JN/AxRzsBd9+M7f3koQAohWkVkNcWOwbvCKDXa9USqOr1jd3anDcefQBdcAO9ds97z7VP+7HxHvfG/g+/Dwff9gnUlzwQoYpFdCR9tesCDqwuJj+CcYorTBWDJ8mPijpCt8iIA2ByeB9uffmfYuMDzsSuJ90PnazBGEPGh5ylr1qmnAUXIaTIWeS07syEpklrPfuPKM0oac+0TUkVm2mN2BKo4hS+1fkFqQ9EFn6kalhRnDLcXdrAXeBkJuiHVc20RNvacvqXO3mvAMgAK0pUWqVaCR+Jrr8GPKPDlNawaXZlbPoaNxXCdNKV6A416tUr65oE/LCatsJ/U9qlYEfdVhSoRIi5Wl7jVojzOPjgEVB/GLJzh2Oaq65Lkcc6OWNjIDtzFcg2IqgZbN+I1dvXjNE2f6WYwLSC1OTszqleW1M8428JSH6dSBjffhgHPnEtVj7xFUxu2QteG6NbG2OwaQm7X3AJdt13B9bbQUpEShERiwhgTGOi35NYYxRaNLHCHeMN2L14EBuqZMZ7OC4KQEmmhQPqEiDhgEHVYhwHWI0jTOIgJYAMAWOucLBbToCnWcCBySLGbY319SFoFLHysX/G9Gs34h6/9BPFEgKyBsXyHMWcriGADO8G97yaEnuAQcg8QD9PWkApXM2+Kvn9Pm/ggUhkwr63fQJ3v/vd8ZjHPGZ2Yr7XylGQ8m0t31GQAgA/8RM/gd/7vd/Dbxw+A7+3+WvCRPX9EzLo8JLzHFc+RUDRg8SHcfQMbxk1xW+MkhnWkqRblGPhF1JZEgY8gimFy1Nb6NzW8ttq3mVRxChrMZouGH8yL3O9D+unGhkP3nybkzQqFPeUEHhQ0G9j7AGb7PgJcxQ2gBFDChUrZgfaZ5Vm5jlKGhUdZ2VC/Fz4a2qPXGi6opsnicZEVXQHa75fREVSRjKiCKULBiikts0ww2qGNaNNcf4mLAc9yN6f0Z7454FM5cslVJjiEICNZ5+LPe94E7Y/+wW49WOvwWk3XAAOQ6xNK2zduIZh1WESUwSXfZMljKoWXCU7bgtprEBPNBlUpf3QTAkk2sHJeJCkvy2Bu4DBMcdg24/9Bxx6x+Vob7wNGx74A2gP3Ilb/uCvsHTBfbDhIeenAe6hLjPLo8zQzdzzUmM1r9Kx6Jv0MYxpKfxUlJfi3rwpUyYMkwUyiBkgEkTa7OfA5lGAhtdOQOhKKL+j66CvvSjq9O8W5QgwTt/R9Vkha076chYPLBLpKSN3uc94rR77a1+ncACoIiyfdgamt+5Ne5MYXVOhWR+AGaiG0bTMDKBbHaQ5VgCjaz8kp/zm0J247c//HBsfcAZO/OkfRORg+74fVrzTYBQAuBcNqK47TLnGtE3OuxpZq22rPHW67jkKoyMmLEi0qZnWzlcotVfpSxh0KfCDStbZgRI9H3ReZNzjVJKeVuIgrtoSZ07IjAQ+dY57dMXTKQ98mSBED8VaKOY8uHvynv4mSyWf1wJ0PZBb84AIzNyzAlBU0WF7VcZF8yZlcEQJ2FfpOmv0r0LTIm11Qojs/0fJTJJg5mEGVCrRnHRiCkeErgp2FlVVCoENZGZ4um8Vw7NOw8pkaOBj2tbJX6rL5n5TAMM6vdc0dVrXISccHt+8H+Ov3ITALSa3H8Shj12NyfV3YOHuJ2Lx3DOw/IgHoNqwgMHGAVY/9VVc9yuvwo1LI2x7xNk449kXImCEtZYxrDq0MWAoySNjN8DBZgErzQjtQoVbp1uwsRpjX7sBh7sFRFACKCCLDgZA8r0MJN9LxJgHONwt4vZmE/ZMN2LcDdBoeOsmoL32y9j3mrfi1F99ChY2LxQWHrq31Nqi6UpteApmQWZSp5rMtsuR9jxJUa2oL57/mGeS7vmSUlDM2bT/0Dqayz6N3/r7v//e16IcLd/28h0HKcPhEP/zf/5PvPCFL8TyH/w/oOEQGq9dbVJjJNS1MsqCwnsS9ygHCSCEjvLzWROQmW0tXq2svwFhoo1JT8Q59FBM1yV/Fs3hwaJhCKGM+W1Mft2hBoz5bWMCX5otOfnEZIbdfFhiQKPSOgFxIWR/HSU0+rfuY+/IXoIwsohk5TiUz/k49vpdSJv0cNcpiJI7IYqZBEHO3MgmBdXsxMneNeZ57MX5T/1XJhv5oBeGl0361+O6VFIpksv8jDxvItvUg0L+rz4pkZxJTO6f5TVRAKIndx/kwN2X24nRQT6Y/bMCVCihVizd7Uy0q4fRrBxEtXUb8OkvYHnxHOydVDhmeQVL9RTjboCVZoQ7VjagCox2cwdMKlQLHdqmyho/JnPI5ZjMDYgIiGxhfm3gAVCoseUxP4hDl38Iq5+9EpPrv4bBKSdhy4/+kACf7Ctg35Dx9QncEm/omCsPRFzixBkGGxANhi4qx7w7UxYScy3uzT/pOMt8FX1jSmYu+m0FJ8Y4wpgt5U8J+RumzejmXOsXrVfrdHOd2zr7LnXCYFJePxyQfZ+UoZdFpOM3YzboxqNoVn/bCF0r7ldAS1OsfukLGN33TABAO0nmNlitESaEbksLjNJYB/H9ocUOPKkQVirwiMES5GByyy24/c9ejs0PPRu7f/KRaGNVCKAAOHqTg46o35u2T4NrdLK/uzoBnbatko8GIYMDYmAAdB0sipaGvE2gInXWh8YGgEgCXoYdqIKZdeVQ1nCgQn43ecBZF44TZphpoe4DDeWr4+7BSZrcvDZVI+TWk9Zp4FMBe8gAxcy6PH3Se5zWl823AAZSbQdge4wENDD5fZLXnNFKW1iuW9Jmtk4B6AhBzTAzL5qeCw6oKAnQMRSBkobyJkpBOhRABommV1XJCmFyyz6sfvEmbH7WJVhZyxpoHy7afPWEXlZBoqdxQDftsP7lm3Dgnf+M1X/+EgbHH4OwNES9eRmbH/8gLNz7HghLSzATPSnLF+/G6Lz7It65F3tf+RZ87Iov4D5/9WwMF4dYHDSoKKIW07PVbog71jYCAFbaBKQGo6Q1qcSRLFCU0MI1KoqWsFEd6tc6yXvSLuPm8RbcurYJ43YAAjAMLcaf+gz2vPxS7Hr2Y7Dj/BOTVsfzTJytU/p5y3yxXD9MhdWH8gLQqZJ65glBlQeAe94/k83ElU/LAtL9//BBXHDBBXjkIx+J74cirOW3pZ6j5V8BpADA05/+dPzRH/0RHv+VBbzmnsoIIR9mHSWrkB7jzzHb3ZtPA4QBoOTToIWV8XAgxbL06jPKNFGS5pAy+cI4RJSSApMGRAdoOrLfSfqj4VEjiMQczIEHOC1CK2ZjPotxFdjytRR+Ll0FZuOmbVx85CyvQvXPqGO7nUl9c5UecNOxYrFf1nGMMs7+PPHRt1i0Ed7nJd13fjBaL5Xjb8yvJuTTg1YPQWfXXJgPGWpyJ6be9wCjo8zQGoPHWcoYAWp6uWp6jCU55iUxZZnJ9RJ2ytgzE2f9Q3kTYexpVIPqGu1Ci+FTH4Yb/uKtOHXvGaC1BRyejlBTh4UqJRatq4g9N2zNY6PjL2NS2L8TwG0ChBwG6NYbhMEoj2lHoGkAMbD8A+fiwKXvwOS6G7DpsQ8FIcwcXGmdoDyohaNhsAUTKMZM7eJtjv2AyHDMAS5gAjVu3AjgmgtJcRnNKv9Nbh7QClDx73gMoYycKOm4I2CAbOqiDKOY5xCnNWMSaP2OMtfKaAb3PtCz6/f9RJJOc44AF2uhY1qf24PFeyLRpq4EHvaq8pF9Jrc/1CEBjOmBvdhyn3uk0KVrAXFrY3h/sDTFwkKD8XrK0l0ttSAArUaGagndYIyV93wUB97+Tmy/5MHY/fQHYNKk46Rtk10QhSwtZU40DUITYktZYBEYqFPY6NgRQh3Rrg6tYynHDBttJ0pz0LWV7fE4qcr1ZvOZ1xBi+j5XwZhiaEheP09Kn5jy2DMAyWVRrAMP0i04A5XawujWhO5lne9pyNEAe+slrT/plFuf9ozXfHSJXqV9meaYONEtr2UuaJenhc7MlnzfHImF+K/EERu9y0AFCGIG2C2yrTUD2iznpo6NA9vMnOi1RN/jabDgGDRIdrcxihUDMfZc+nFseODZqDbvRNd2GIvW30djU0Y4BAXHyR/p8Keuwe3/53WgQY3lB5yD3b/386h3bE1jWMecj8aEICWPUW/eDN60GRsuvgj7XvlGtE1AGAWsTIdYqFusXn0r3vTTf4f7/cWPY23HcQCAu22+E5tq8VtB8rNdCI2BFL22Jkkptax0IxzsFnHHZCOuO7wNd64so20rbAr7cNVvvAnrN+zFsT/1WGx7xNkINMG8orzBkVIFqJ+j8ivqk6o5a6hXlw9IodfUBF7Xzzx+xPMqmXdhTG7ei5V3fwp/8IlPzG3/0XK0/KuAFCLCS17yEjzqUY/Czv/3Z1Ft3WRaD4SY1LxdSNlmPQNCLBnq028GEsFimCS+4INi9hmxcMBajxwS9m+RkA0mTYty1qnmRG1jzcQLWgeVoAcBbZvuJYfylHEblA5qNYmKhMJpXTVG3lHdTNnEpluBmmbmVomQFq8dyiZdXJhoFYRDn9G/tR8KSqrso8MCDMHld4q6Ihmg8Ydt55IgcqSU0IuR6u8xYRYCVg9zH6df5n2uM7IHMQSzx7YD2a9DdT513+77G8ww0JBPtMIwGBjKTWD5LldyOHbICFHbFgB0ykRGUAzA8VsxqBax/8Pvxqbzn4zbjtsEbIEl4QKAevMU7cpAxr9cy9ZkWXNh1KFdrxHXGhAvAA0lINaWfWzv3Ic4HaO9cx8WzrpbYgxkDtI0JiDCMaBrk6SZNJqWMIgp3wKVWhQ91byWQ9aVFyyjZ2almoIZwKH5H5y2xcxk5swZdTAmiCnXbVsl+m8IY8eAmIcbQwoHbtWxmHUOIWuholSvzim5b6iJDCGbpVk/3W8GQpOi8IFKc8NqkgAXh7zGMsPdAypwP52mkIAstab8UFUNsHDm6ZhcewMWTjwN1YQQbh8iDhlxIQJNhcMHFlAdCKD1KbptQ8TlBhQmWL35Ooyv+ipWP/RJVJuWcfKvPwNL9zwp2f1HAQ7ITFH09AFAbIKBa933DKCbpvZRzejW6rKPnNYZO1odkZAmESftiWoi+mGvdX3of4GSAESBZRtKEKEDByrM8ggJ0BhoNVDp6CoxqFPpULlHjSbZWlaAg9nCGSMp0Mh7y2uCU8VqluWFA2RO8Q4cEbLmztegQIs4y30UzGudsvbjgE0QQC0hTNwZ2AmA0b3qnfkjkpmXS9ac/QjlrK1jOiMUfGlQkJjWcbc2we1/9wEceO+V2PFffgLoCHFSpcfriKqOYqKc5p5Ch8gVui5p45pb9+COP30Dtj710dj4yPMhtpcJkDCBp1XP5BvZOsGY7PRz+QH3w+F3vB/7P3YNtj70nlgbD3Dw8itxx0vfCABY2XgCpmtDbN+2ksy/mLBnuhHL9QQLocFSmAJcoeOAAEbHAWtxiD3TDWhjZTlZVtsRbljZitsPbsR4ZQRuW9zyx28BVQOc8sf/FfXyAEC0VABuqRVnvi/ebMsHvAGyObdG7/T3mHP/My+QgYdeV40pkIMTlb6nShsCDr7mfXjmM5+Je93rXnPb+j1ZdL99O+o5Wv51QAoAXHjhhXjCE56AxY/eiSsevSXRMWHck68CAV2VNBwOlWspMu7KPeOBHWMco3AoandM7gECCMrkCShR5hyYMWlJ5sIS0YUqM31QwuaZxZSRN0mLui4d1mAhzFEcm02yCBSaJE7Rx0oCkB3YIX3tSy+YycCdJQhjDfEXU1ScrjKwYr5AnrFUkKISuZrBbUhhZM1JOY9f4twoH/I2N+TmwZmeiQQ0MxzIzpZeE2ITDTuMrXiGTBkGNQciyoyCHOAmVe7cgS6HPbtv+nszChX3uzAtCrmJxvQq09ki5QPwzfbrK7CYLEXEhUTEjz3zIbj5yn/EcgtMVofYN1jCtuW1HC6bCYON0wQWoiR6A+cxB8BN8qtSoD295kas//PnsHyf+2YAIGPBARht2om1T16FnT/7Y6g2bUj9qDXfgayrVvI9GPMt8yUmeTO+JoDEs3a/5zxDEcZQcsXm6F5Ih+GYLB1I3Wo6VwqGogNAMr4QoFpoE3rMoM1NR0norYyga6fXCikZYVnLJv2WOqxvkDXAhDB1gAXp2jwtXMUOeDEQmtzuMCW/dYwJ9doXuDkiB5p8nX6PxZrR3HAL2jvuxOaHPEzmIrWl23sYB9/8Eax+/JPgtkN3+BDq7dtAwwGaW28HACxfeD/s+JmnYceDdqPragAR6+NB0v7KGHREM+azal6FlgBnmuf3PI+9BlUZbKE3zleEuwqoY3pGTUB1wtXM60jMAiOZcc3RHuaBdoy/ahVCngjqQjYv1bkaZ1OnQqNoA+/IoKcdUofNF5nSJ60dT6c6ZEChe1s1hDDFve0d8kBIHdgdTSJw1rwh/Zv2nnxScxe5fqJLIdVDU/rlcUACLU7LTR0hDhPgMAERk+xRv+Fymyy8uN6q0rm5960fx+FPX4sdz/lxLJx6GixTZwCYA6aHVnHg7/8RzS13or1jH+LqOhbOPAlx0qE7vIJu3yFsfMyDsOGRFwDiN1Xmg0ECSW6/pgZw3uvyL9U1Fs45C3s/fiPabSdg39+8FeMvXgcA2PKkB4PrEXia8vrctp7MvjYPx6hD8l0ZhwEqmZiGKzRcoY0VVttk4nW4HWEYOoy7GuO2TuGy2wb7/uK16FbGOOE3ngUeLiBGxvLCFMyEaVehrxEnIQZZc5K0Jv2oW54PUeChwXWyaVZezN7aBQAGw8T3aETI5MfKhYlX3wJk5bPXov3ijfiNS38D30+FmEF9B+hvsp6j5V8RpADA7/3e7+Fe97oXNp3yo1g482TELqlpIxMoJFU/YsoYXWg9vB189AwwnNgAmWnzdu7CVHjTAg1/mx6Wdxii9pffTiuQnT7ZtAtUxVIiGDRiCIFjktCQON7nwOJJvdqKSreqO2MCU4jk7G9gicOk2FnmtSnGtAZ49XRkpFNOxo6rYNm2vdbEDis3dtmEIKQwln0+Uw9TTmNpduLKbM5jPJTD85oS4mJczFRIpGtlFCdBBo5xNK2FmsG02X6aiE1iyCJpBIDQAl2VGD8WB1AvfVSmUZkHPaCL/siySNLLzBvpUtI6SZkHP3QdoW3WwG2DsG0DBocJC9fswbRdw0lfHGO6ZQGH7p5CsA7rDodWFzAYtpaTgZswc4Cbydc4JKatDZjecDPu/MvXYPXsT6LevAWbHv4w1Fu3IiCAxh32ve3tGB63C4tn3yONdx3zelDTPGH2TAsRjPucZfxUEi33Q5OWjzeRK7UmymSl+kNDmfl3bbD9Jwx5yaB55l/G12kwSBgQc5B2oLpoDwASbYZFY/P7wdXv94LugTAV8FfltUCT1P/M8Mn81a4e/b4wjZ4HAoDQwcxrRGaR7kl3EvDPY2CA3I9zRBKcBOTOyvc3X/wI7P2HN2DvK1+H7T/yIzj0zx/D4Ss+jHbPXize80xsfdqTQUsLGOzajunNtyGurmB4ym7wdB2LZx2P4bBNpqtdQNtUOYeI0AFjRsgZ5RIMoOYs5ci+ZvYcG+2wQWkJxEE0GWngiBKtpybltaA2lAz5vPmT75kzNwBqwqxpn6yBQnjBDnz0tINKD3RN6/eMPui2NaETWx0sE2s0g0VjUelCy3WERs0Q1cyQDKB44YyBeL9X9ThSE6xO1xBMxhQ6mGaGCXl9IfclTDJNtbUpbePAKQdulRoTj5TKi5GAHpDMDYcMXm5z5DBxpqc6mXi1bcD01gNoD6yChovZ9yUQmn134tDlH8D6P1+J0d1PxKYfPB/1jm0IiyOsf/l6hNEIYctGVMsbMDzpuLxOC/rM+bc3E+0HRHH3xl/8GkZnnoLbfveVWDr/HFS37UO3/xAGu7Yl4WEVMao7rLVJVTuUTO6LVYNGojOOQmuZ51e7Iaaxwlo7xIHxIiYS+nt9MkCMwN6/eD26Ow/h+F/9f8DDRWhQgaatchqHHkgJxJY0UX+3MQN0BSNqxsVREtVaJFOIqaYTHsjE6ztxbYI9//BPGJ6yG5sedh8EEZrOC2xk9TUdDr/qnXjxi16EY4455giL5Gg5Wv6VQcrJJ5+MX/mVX8Hf/u3fYuUXTwCq7NwbRTqrRM8YaZWcBTbVvEkTTU0NY8ILKa8Qf8/w94EFIAe+SuMg3/ZMt9PIMBKzY2ppqxilGY4coByrJKUOAAVkZhBAnNa2aSsBa30bWJPkOulOjscP52zoQJUjtn3NCWmkFgMrbrylLab5UELumUHlvmoYE5LvUR4vQzLI3wEyUIHU68Jwpiz3lLO+96MvyfhSBEKri0CYYaAYOzOXCJwAkDZP1o+G1rd8bXJQ+y4ZQ6DVMmdTIqSDXPGcCdsKcxPXb52S2w8gDEcYxEW0Gxh7ztmIzVedjMMnjtBsYGBSYTxNkbmWFydYG49Q18mpmAYSbtiB6UJDIFKsnc/+cex5+auxftUXsXjfs3Hz7/5vUFUhLC+lfxcWsOPHnw4NQ5yl0Gk9RZV267oZRAPEiASa5nXqtRhcp2AFXAnD0qFkFt3cGLMKmE8PV7DIOwYUIUtEAa1ndFvXBlvHjkmEY95BZjo1UwRsFPdjXnpWorZXvhthwINaedUxNeZDIiVMZK2K70KWhAM8KNujTs3WP4L1S8haBu0zA1wyznGo45JpxMYHPRCDE3bjwNsuww2/8WKEjRux7Ud+CKMzTkO1tAweMDDqUI06jE48xbRsRFsQZPM0TVWYcs0VUgCi8ZUxG3WZpngaVMwHFWZzReQ+T3IjmWM7iYbP9mvkDHSAItBD8t3oAZCg383gAcAs6BEgoYDZ6Ix+VzQcLHNs5MABm0SH8v5Nw1bOY5rX1Icwoaw9lPWS3vVaRHlPhQwkTWYFR3Lfzw/yeCaamvcLE4Cas7JO6VxbtqXYLzJHpuQlZNNORzPR5XpUMEURIlx0BFj+Vf/GY5/zRNRv+Sj2/PErsPnhDwcWa7QHDmDl/R/G4v3OwpanPgZLD7g/qlE05njDzuMz8IwEVt83PwZ6rs0rGuXRQEteNKO7nYyVf/oIli64D9Y/+yV0+w8BANav2YOlC2uMlqfJ50NMuvaOl1FRNLASwFiqp9g4GCNywMHpAtbaIVamI7Qx4PDaCFEAxMFL34/JNTfj5N/7z6g2LqXko8ILNEjWEpXfGyz+JTFrQKrAaLg0F48x0XvVeKipuve39UlMCz8z2b/jr9yMw+/8EKod27B07lkYbB6CQxbAqj9xaleq9+BbP4iTN23Hf/kv/2X+uH8vl3k07Zut52j51wUpAPD85z8fr371q3HgHz+GLY97UGGrWDhzq4pdiVZ015V7UWosBNQOJQEY2dmxN9sejLBI1bzkVJ9R6uzNm0zV0T9gKR9oSpyV0WpFtexNn+wAT98qsr5zss9VTYi1VfvU64c6/mdTNGlL5fqldrfWLsqAr+f/oVL0Qrti35QONvK9LgCD8v1Cra/SvD4vpYyqN81Afq7wH3EHvPXbjT3120eUAYq2p0UCiYXENjGNoUU6jCq3DHSeYnZyJqYiKWBhBiYHMbn+5PbmOpvD+zHYtBVUEZZuJnRfuBpLqzVowghNQFgPWDu4iLB1DSzq+2aatmk9SLY8VCWn39iqw0JqK40iuCMsnnc2jj/xf+DOV78e3cFD2P1rL0BcXUc8tILu4GFsOP/+oKoCNwweAmAJZRxQAGNr+zQ5DHMEwjQkUxDqjRUL46YSbQVtqvlwGhhjst2cKZBI8+mmSN+RsKdmihJ6jBnnv1UyrO+b1qsSyS7l5/08WmhVtz6cW1UuQUBJBCiZlmemTF812pXqDQKoItjWUEGWGhg1Dm2+b4/IesqAXK517ppjDgvm1ZjKDFQ4AKO7nYRjfu6n0Nx2O+pjdyIMh2lc64iw3JofXZ9+WnhhlYSThirNdDIFGZExUJpEPGPzP1P6ZnmePpD7D0g0SBnweUBH96AwqH0NVgEy/Jni1odpRxwtNVNAz/gr+Y1ka65ggn2f3Nos25yfDUofgWx65YFSK2uTUAZ2kBJkj+SohfmjpvGLyXdRBTXkzzTb05zr0W9ZR2RvyTyz0FOl20xuLzLEPMuZJKpGByIQOlylPQoAdbTpAANdrBBDwPIjHgEsLmP9c18FNy0oBOz6tZ/F4Pjjk5CmBWLr1Dcm7aDZ+XBnS7HuvDYNQvf1HQ3OQcDW//jDWLr/ObjzZf8XcXXNXt/woPuhGqZIjOsY4pamxpbl9dRPYjQxZbYfhA51rLB3sozD0xSWeNLWWJ0Msbo2sqTJh995BQ685XIc/+s/gbBxWUCGzCUTiCTsfFOlPGxOg6FmXlVgrE8HlnMo50RzgWsIM3mMTMip32TB8aZ5IcSVMepdO1Etb8Atv/r/4cQ/ekFxJhcmY5EwveMADr35A3jzu96NwWCA77dCPGdvf5P1HC3/BiBlOBzipS99KZ785Cej+YGzUW/fDJXgFvkvAMeMkmMagQJ4GAF0h4sxPI5p9kXrNI4Y+V+a8xyhlMgRnEYAjqjP+w5y9u3AYlJApblDpMTs67cDp0ZT9j3gyKYFsevu4E0EXUEFMlgDMlhxB2sJ1GDSXeuvK2au4m2yhfmghsBdBgPejKKwh9DvuLEqoi+pdNUzjX3wwZkAeAWOH3czrQAsOIJdF58Rj0lJuxzzgWxjqsvOg083dNYm6jG3nkhx+bs7fBj18qbkZDoEti+fgDuaL2FryxisABwITaixPhqZqZdqT1oOCJXPMI8c7pMBhBT6mStGtWsztv2HJ+G2P/pT1Fu3grZtT/MVhbGYEuIQYBN9Alz4CTFQwdaMSkDzundmPMoHKJNqon+trrRd1+qzRiqPY3+M+wDEGK4izrgbY05tIF3PVL7Tj6TUl5jrN5T5s+3QdyRVJo+Q6tV7nPtG5Nuc/g09TY8fD5rOGRtZiNZOkQQnoQyXbYIMu4bBFTLJLMyi5JLxGhUa1hiedLztS64jaBRR1VmVwxp2VCXbkcwWfaYTc4Q9RttjYvBIHeBN5O6Km7ci1K+nzcbgumhy2lZXnQEUuHrc9YIJKPZs3gcWncqDEp1P964GKPDfJPfdvsYDQNY+uHYX61HGIGvuZgOOUK8e3weu2dZ+1jaS7YkCvOiYad/kHOVA9l1dSwqOicv3uWIDJTaE5n9EM2NRzE8Ekha2WM2A19QxAU3A8oN+ABsfel4yEW9CMoNtff1qzodkUlx8x/2WNeW1kUx6BvmzEkY7AYifTcrTs3Dm3XHcb78QYWmAPX/6Gow/+yUc+Pt/xPAXnwWipEEMFeMAgKVRgypENDFgVHWITJh0NZquwup0gKZL+YDW14do9y2AhxEr77scB9/2IRz/4mdh4bTdzvkcFiRIA+MwA01bmVlVSowqz6hVBSMDE+mbmWTZ/OazGOjtU4ZZb+g4Vps2gscTLD7gBzD+ytXgjtBxhVhxkeBR27rymnfiGU97Oi666CIcLUfL1yv/6iAFAB7xiEfgiU98It72qsuw+b/8RxDCrLkVMHsoKUepG6kPDDxza8SfXUWueMLlE705DYjlLVDNhyfKrIx6qt7nVii+yY7Jr5CIJonfjfbR+WLoO4ahDGw4G3wl+I4JnwFIfQBQHMDueT24OI9foYFxYzWT+0HqDVPKEr3K1UMuQg4wS/T7DIQzoym+bX/3GSCYuVzBJDqm1w7/Vu2ok1Sfazl4hQnI/ixy2Dp+Hb1/aQ7o9QK72Rwe+Zk4HiOMFhCmhGoCrI9aYGEB9ThidCCAAyGOgHY1oSkzhxQTryjOR9yFPG4OBFKVBpqHQHXcFlSbNuL2P3oZjv2pn0A1XLBxV78RW0eeEfQMoeY3UFMQNZ/qJTQkQEAM5fa4amaYQpTj6xkWZfCBWUaKemvLA96sdUk+JqGjcj5UFango+f47L+X2sOZ8dR2mfbGjZmOvWtLMlHjwj9BmTt7D717Co7Ij5ujiY455ABwrdHYOD/q+DkKSKCmgjkue4Bi9SqAIQA1Iwy7FMq610QgMzG+60VXCMbIgsn9LY1qkSXrEY5WuEH2kmwz3XWt0fXl3+8Ve9zRupLeUPlsj7Ywyt8+YprVof8Sek/n9iuzb8DVD5gCEOKZCjzYyMCFjKZl0DHne5zOGmrKtaN/k/ZHP+uBO1CYtFobIAFfWiA4ehFdThSvUSR9lpHyf/Q1aH6/y8DafokQ09WYaZQHF5Mq5VmrOAEU7ydHyIDHhwZ3dVBvT3nQQiGbdBfnlAd1xKCa7NyvlpaBwDjmuc9Ct7qCW/7772J6ze0Ynrw7VRs6jNeHYCYsDJvkB1IHS/I8bWtMpzXaaZXo/KQCRWD9qqux/x/+Cbtf/CyMTju+tKKQzkYxw4rRmWARo64jukBAzJnjLS+aggwdLxuLnhl45/aizpG/Lxqoeucx6A4exurHPoHF+90LsSFQRYkuqVBNgODqxz+H7is34Pfe9p5+Z75/it9v32o9R8u/DUgBgP/zf/4P3n2ve+F3B6fil8Y3lCDlSKVHZHyyt5kMznow+RCMwAygMEfhoFlokb9hzIdj7P0GzR/POR2ALHUOyCpuJZKiSdE25twHgCXnKt6nTKDV7MyPhy+9g2uuLXf/X3/Ymp0053FRyZZnPH2dnsFCOhx8e0iYDpPEUWKQCxTQF3/2mdL+Zu0f6EA6RJTx5Fw1Sf3J5CZdoU4IdZW/oY7GarLhHev7YIWtYtdkZ/pBR2CcwAmkVKMFhAYYHGbcdPCzOPuYx2IiWgpjaltJTKdARZ3n9QGveYw6jBUiOssxE5ZGOO4X/ytu/Z9/iMmXvoYN9zi7sJe3zhR7Chks61zIgaVBBVSiaowAAO+krnlI/JjhSL9nxohgpjfSpr7EW/8N6Dnce2ZDaUUs588y2nsr0JglzYV1qJNAF5G7ZMxzu3Rxp++qKRhXhDgoO1wAI89Y6Z/aDr9PHfjoC2Zs7TnG32iXapIAxD7j6cczApAITFRLePSeuQbLeDBgERAtfDuQzXYZOfdR/ztSh8SQn6VfhNx5pSs6FjYPZWjgciBKP5PcOEezpA0za8r/9qBD343okx37rNEFR+M8ODGNsPrh6PljzDWZFnFGo9JrXzY9ndMYt04LsNo/A/ya7p+NFQqzstDqb8o0MsL8x+DbrfXH5PMXpmRnCHNPqKECKW2Cmm+SCJFQjlWxryPARJkuzqMPTgOl60fDift29gVjPHTfU1oW3W8uTUZ1rxn9DyNw2yEsLxnNVn/b8coI7ahCqCKmYpLWtlUKPDGugDaApilaZRMPYu8rX48dz3w8Fu52vOufngNpbBRMR85pBoIkrmzbCjEk7YVe4xjS/pQt6IlNAYI6SkCxr9myscntoXoIMKO59XY0b78d9bat2PCI8wHm7GvcEbpDawh/90/4sz956fe1s7xTOn/L9Rwt/4YgZceOHXjpS1+Kn/mZn8EXvvAFnP/mVxUMiAcQAHLCNbkPCEMshCar0z13itIsC0hEkKhwpiMGNAcDCYNaSu58fZRt3NU0iKjY4IXJiLaF1Ue8ZNo1BCtXTuMgQnJte85ULUySO5xVc2Pj1TsQCymwY2bMXIRL508l5vrNOOJZxiimA9bU+wEWjjKDGh3PPA5ccZLqCvFPpgS9g17V8zIOittmDiJyY+yYgtC69+dwFaFFZjxaN4e+fxbhZpax0+8kYOvGzH9zDnEhBqZ33o47P/wu7DjvEcncqwawuIB2+xKaDQHjnYTJ9mjgiRmJEWQX/lHnvqPM/Kg5YcvghhAmIfWrZvAgJGA0XEQ1zuuhGzLi0K05aD+o6B8AUEPmJ2FMFJB9obSPTjqn2q1cbzk+88ZWB6owA/SMVW88NdSwB/2qZSjMVnS9CDNhyRS1LrOrB+LAtVHf9WujQSHpp4iUEBLOlM4FZSASG3ZldoDi29o2z+ACQFD6ouDC0xLkubHoS9pf5+9CkdANHd30NE3rdJoMGkSEOiJ2VAQB8Zot7gJ4mghUXOxgiJ0d06ha4T6DQ5wBcBHgxC8WNy5wa4TJwtaa4Omuit+Xyoh6kk7l/PplVgBF2e93JXiw9SJDkYFtaeZoAhwZ2xmQoLRoTsmAuveIa7itLx27CsX3i+fm7CsmP97qSJ9ppJ4hCmQsgAAljYoORWiBapzMGuOQc5sVfEo/ZjupFaDUpvn1L0kreUCwkFXz6ukI9TohVkBEnL/WbH3kdcJ1Xl+2n9X0S03Z1FrAM+oy8ZOrrka9cxvqLVvF0oFTYsrAoPUKzVoFWm4R6sTA8zQA0wCSkNg8iojEOPDXb8PimSdh48POneme5R2Rb3u/EapTAB7vl8MdoapdvhIVeAVO0gunIbKF4H3B+mb4VnH6p739TtDiAng9JaxEVaf947XqkfDwT1yDgxdcgB/90R+dP29Hy9Eyp/ybgRQAuOSSS/C6170Oz3ve84BHnlcySUaU5YDR0ISAO1hREBpA3ieUUht/ENj9dEOdWpUQU5f8P7gilCdXrkMZgMwkczb1UK0IoQgzaYySa0Z2WAdMXEnCSEUAzu7bNAOtI5hiex7mSC3NxEwIvDKZOm6JKXP1BzFx6jKxoghU69IflZyJVoJ0bjTfgSP0nhGFdJMrgKZZe6EMFen4yr99ZnjmgPXMIUvUrprz2PuDrUdUuYI5oVr44FgMQ/HNufc9I9yhYHyK7zrGU+urNmwCAOw65lxwA1RTYHlxJ+7YsA+jjcejmqTDvV2SMdVDnTitfQ0J7aJsVZO0HrhKDHYKAyrJAFtg9dOfR7W4hA3H3A3VJLUrDsRkQ5utwCC6MSQAyrD7eSDZG8oUy/j0pc1+WPrS3czwlMzjESX9vbH3pWDCtN3zGCDdf8qz+7pcnaFBOXeuXQbm/V4CMljy7ZLvhBaIcBoZ/b573muobO0Ik8ZAKRSR5y3M8zA3NIhJo4WHrQAalOuXfX4SbQcBqBihTgPHTBK9MD/DIYcPTWNM4HEFmoS8//UbQ4aFrNZv1Ow0f1RqUbQNniGi1FYzWbIOUG9xMWb2ugMAhVle77UMHpC1HlpFT8tqfgvUMwWV/hRrxWkU+8IPbV/RVllXM/SNMv0u2u1LPMI9zv8V69yvs964UIfZwCCuLbl/sk/sxeRrlaJ2ifaFgG7EiEN3dhXnMAzwFN8nQqxcp/x8d0kAEw1499aCli6dW9TKMgxu3aXG5r3UEqqpnscAt4TQUCEg9edB2j9Cf1UYqSAOhO7QCqoNG7LgiJLfpq6HuH8F0xv3Y3jSCaJ1JdAEWLv1akyuuRrUjLH2xRvR7j2I3S96dgJMvU6a1jIK6JjoYmWAZO8CliZBNZtUcY5K6s75UvKUBJQsAgVqMvEwCxQvRArAygc/hoXTT8PS2edg79++HmharFz+SRx442UAEXb/r1/C5ItfxVvf+lZ8/vOflz59Hxe/zr/Veo6Wf1uQAgAvfelLcc973hN/+iM/gv9+8AZxEHebgDmHKWxUyyG3dJ95SZcw2lF7ptL4vkQJmUny4AIRCFEi03iGR2hFckYkZ94EFNE/9LAhJILhrzlTD01uZKWTw68lVB1yHHy/nxlGUKhJ343KdBQHlI9a02Mk/cHkf3fy3Qo53CsyU+UlSmYCEFJ7TUAmvIk9CxhYTABI6tOcErEcE7+5yY19aCnZPjszBGMCgBQS1z1fambc3MlBFMQn2PrBMOl7aFGMZ6zz835MjFGl8jtmNuCGWd+pR4vYcPq9sGfvF7D74G50I+DYE87D1V95B4456yloNgDdIiNuai2csDn/E4NGYhcuh2xkgLqQNCQRkkQwm1lMb7gFB9/9T9h0/gMR4LQHA2C6qS+SlXbKPiMGYkspFK1OoOsMO42YzquZx0Uxc3Jjr/4hWfKf67O10WPIvFCA51yfASfyd9Etv8Y9s+TW24yU3NfhmTyUvLcBnwaWfI/6gIUTGI0qfW5hINfa0vtGljy7PSMmemZ+IvuZxkAckO0NBTzK9Iap0IihtEufU2mq5KSA2KlzR2YumB6QimI2rQPSngvTMKuJJAANwBWBhl3yndL72jCvFSck0N0G0CQgNEBc5MJHpjBN9IV6//aZ4Hnhmd282Ph7ba7OqUTP0nrymFJaAz1670EwhHmea67RW7tz5989S/13ZnnWkvkHCjDbF/b0zR/n7Tf79px9V2gqfb3SjqhJUd1aU4ZfE0ACSZMLEfRotDxQyvE1WK/QLTDiohvollCtZESj2n7uJQWllhDGSXij5+fgcECUIAIpwl+KZEhikmZrLSbhjgkKXN8g64TlGyD9l4sxWDr7bOx/49tw51+8Bkv3PhsLZ56JenkZ3XiM/W97O1Y+8BEAwEkv+33EELF21Wdw8K3vQTy8isVzz0JYWsTyhffDhofdH4PlRNBjDGlfMuXAKQIUuA0uYqX6pCDtsSCAhQCqOJkPN5TyCqnZudBr9aM1YRWHEihXKby8joOW9au+jNWPfgLH/fdfwGjbTgRUOPj+9yOuryOurGJ0ysmI4ynqN74Tv/uSl+D4453p2vdpMYHTt6Geo+W7AKQce+yxeMUrXoFnPetZWP7F52CwZVuZyZdh/iKJ0GXG3JtP+PCJBJEkq0mEmMwUB9IUhSmF2ttqfSbdE+JlEhOVkAAFczNPOsUBEvbWLTh9R/0C1LSL0uGnYCp06aDvS9IQs7Q3VeOAkCfWSrulL8pAFSZo8i9zbn+YpAzBxnwI86jMvB5cetioeVfBrDC5gz/NQ2izUyQx7IDqJzzM0h35Rw8PizBWjoeZI3AeuxKw5jn24wA1hdA2R1giM1800JqaPoCcTTJyf8x8yx1YfqyVR9t6zgW49Z1/j53nPBiL60OEhRFGK0C4dh/CmdvSoXmoBg855c4goKojIhFiU2UJHzEwjJgcPojmllswWN4K3teh27MP7Z37sH7NNRh/7avYfL8HYMdZD0Q1gYWrbZY1MzvlvaUH/IRQTVPDQ5NMErphYhq9lk3bYBqRnrYktLB8KaTrNQDJPBEFB2QSSR90wS0F+3sO0S4OUseIFSAVbv+it0aOdBD4b8fe9ynPrTKC1TR/w+cz8c/ZGlRzQm1jP+GdmrpQ/q5pHXV8HQ3wfgSsTKJrexzI9xsyBotrdqaxDKpzJEGqU4hraBhwq0yeF/9BaskCCfjQxjxgC75B7hvpQTE3qdw6mgTUKxXCRPtGaLZ28jhnyas3AYqKIPJ8FZpNXdN+ONyeLUAq9+47Jj447WxBqXr7vwBIXpjSL30G5i4YEW8h4Nd4IWzyv/U5YBYEu7Ol6IPrq39+pp++jn7bnb9ToV0QAYZqx0NDJtwJ5IKX6NnTkVoDp+pDAA9jEgpOyUx1qzEBgdANYVpkiDY4TBJASTSZAH1nPVUah0DgBCzUNNjCgws3pGbMRr717AwASAQzLdCNpC8u+uVgcROOf+ELcOjDH8Kh916Bva/9Oyzd/1yMv3Q16mO2AwAGJx2HyTXX4uDb34fp9Tdhy5Mfi+UL7ouwOa8wBSNdEwqfxE4tQPRRL1AwHyFO4zINieZWMYGVNtVj4f292Wsg5KBBLky0nH/pHM98FEfG+Gtfw56/eg2OefJTsBHHIq4ytp5xHjaefi/c+rpXodq8GTv+209i5a//Do94wAPwrGc9C0fL0fIvLf/mIAUAfviHfxj/+I//iC9c9gFc/4wnIHCdJZL+kBeiaH4Hcw4X0n8dsQxtcbxkwqjSMshz4tBNAowKhpgz4zXPJ8G+r1oWlRJ5cZRXr0ZYDPNYl8yIPaoEQotInCxqEQMRXEisbbza8r3iEPHMJjyTn9peTUQSLtfSAYDMVCoD5ZJymf2x62ZhAiLMU+6nM4fQeWaZTHlOc5gUdt0RJShBvq5zUIwfC/jQNgqQoNbNEXJ/zNzHfaM/zzO+PfJdi5glv/2qU3vvDXe/FwYffQ/uvPID2HXuxeA9h4A6YLnegpUx0G6QQ3FCiFwBm1y+AGJQjRwmkoG1T1yJA69/K2hhARQCBlu3Y7BlO5aOOQnHP+rpqDdslOzlOu7AYIUw2cE2R4VEmtz+QHq+mqpmhEsGRv2ztB5d3l4DqNJ/zlJWkza7vef38zztaN/kDn4J6zw5EFqYoDkQ1DfVYUrrw+aScl3WFv9d9K7LsFibeiYgBKUr87+vDA9I7gt9Ibf2jJ4JKTFzrhom1bYoWp6JpGRyk75DEvaaESZJUxxrAg/TC9yEJC2to9mso5MQ4zUDw5gzvLfCCOo4EcxHTWkCU6n1RgxJszINRfswJVSrVdo7NUwbF9YC4lIUcsACoEP2k6iAbhEIY9H2CfPKldDTWJIUP3+mHe7NqbVJmX8fdtiR7v5aKDTWVN7zoIR7a/ZIpVjXuk3DnOu+Lr8eIVa3Tmjjaa23QGDRLM9tn9I4pfXyjpkaBtgc932iEmgnxAHK3D4yTqFB1gZobhUg0xMQaiCFGNYgJkqjzZRZI1px0v7rvPnzQmi9lmqMZK6K8pnyG6JJHrDtm2ROq+sbIkDipLUWQaP69w23bMf2J/wQOADTW2/BoQ9+CFse92gsX3geeNJi72teh9t//8+x4cEPwI5n/EdUG5ZkH3bGE2jyREs1oEVoPzOStn0en+DfIQZP6uQT0wQzn8waE1evJsl1wX6M3sSkSaFImN5+O+7429ei2Xsntl38aGw+6zxUa8Dhz1+Jg9dfiektt6DavBE7n/NMrH7sk1i+7U68/F3v/f4389Li9+O3Ws/R8t0BUgDgJS95Ce5///vj2Xum+MstdalqVqLDjrgoH+QYBC8ZUwm6Hfae8UI+3C3XgUj2DCR48bcUC2NLQKzYEf+8+Txzl5gMvzEzY5b6kaUySbIpzERx+GQmI7+XD5Ygzn6+P55wceDk42Idh0nRjQly9tdK5IPzLbF29xjPAnTEpIUpwJuOp9ZhY5zHUbtpI+TABqn2whd3EJqE29vhe0k253nwh5cCH2MIHTNYjIPOdZ3rY72vZ4BE5QLyNZN6eo2OdZCw4bSzsHbnraAO6BYCRoONGBzuUK9ROvRYfEsqxmRUJclezFJpjcrCRNjwkPNw8M3vxAnP+lksHHeirSfVCpFI+H0gABKb7W6BjblETN/WA91CiypjMqViHKhDNjOr5HnkdcoVi1Ymz6k3ry6AAMo144FNX9Jrw6gaQqlbTfmK+8jmh17q6yXUgv1sLr0WpDQvnK17bptcMQBBjjELKEGvAyOWIb7K182HSp5VQNQtuDFkIExzG1J4YuluQwAnrVyRVJIIGMTUhmnIGpaFtP5oopyXdCYimW61okGR8Q9N3h9Z2oqU0FO11RWn8R4P0h6q2bQi1WqFei0RZwNppEwjJTOfCaEaI2c7l/kmFRq1KZw3tYR2WQ8AF8zEAwsuL80U/0zv3yMV6r/j29j/Zn/NHKluR1tNA9w7x3x7i2tdNkucp4H0oKXQOs/Zb9TbP0oD+333dFbXt5rPdm49B6GXCqwt0mBX9jcgzX+9ls7nOGI7f9W0lTjRt6DJZnUPub0V/PlxhLFWkGJCBulvJREgOTj6polkkWiiCjt9AktVoVJkjHbtxo6nPkX2FAAMccyPPgPtkw6j3rIljZffZ77IOV04rntew0U2K8Mt5+epDeafShJG3off1wVF8p7Om34u4wqhCwD2vvGNQIw45b//agrIsgIc/OzHcdsH3oKND70Iw7udhA0PvQDtnXsxffO78A+XXort27fPH/zv0/L1aMbR8o2X7xqQsry8jL/927/FRRddhE0/9SwsnnxqJsDzbIu9xMoTardRU4SczDyZZJUdgyTvMSe/B5WIZRDU46SFCAUVnzlGo98uJXh91bs959oOJNMJdnUGdg/OOWzMZErimXvTloJgzQMNepZ3yP43M992NDG4A7LHQBbmB/oN9O4pxXMHmklh/Zj0DldzpHdjWEi5fTs84EC+5s34KucYahLugCzJc/NJEj0myBjaOCDX0S/FWPRBmIzv+u03YdPO0wAChryAbrKexqEF6jWgG5FpMLphjRYADSNIHEo1MRYFBpaHqDZuQDdeR2hg5hWFRs6th6QpA3g1gRKuGXGQTCjTAeWQgzLAjZpPsDEDCmjsUJe8AXbAuSh4xmjFsk22BTSamVsPBjBVK+KBQch/6h/WDi1Oe2iX2vx8wYBrnT1mgd268vSl2M/94vaZX+O+DTMmnCjXra5jz3CRi2Rkgo8IVC2y4y9SvXEgZiHORBPKeK0TqgZoNiTps094CgYwSY0gDSbCAE0SWOBQRl6zduq7HaBh3E1YID6FqjlVjSqDUa0F1OtpTGItYWdlDKoJgdYJYZqEH147ZXSGHWPqzwiPfv28kI7lHJosa98LIPpAob+e+vPfn++Z9TGPXjjgMW9dFDTVGMvcl5mibXb1zAM1M+uZe+/L3wXQ6tVZaOv9e1S+n+kpSsAje5triL9a7qPmWNE9HSVoiDcrrlfJvtufm6wNK9vt+2Nj2RNGzJwjnMzTRKedGXw4muPbpmPOumeAIiAJ1Rhs2Apock5i01Kz8hVA1qLMaFLkb9F4pHY4vynJiYSY9rHyUEaPNZWBmsB7UOO1UAFllEYZlx0XPw63/O1fY/Uzn8GmH3ggDn3pM7j1/W/G9mc8DUv3PQeoGF03wcor/w7Pfe5z8YhHPAJHy9HyzZbvGpACAOeeey5+//d/H7/zO7+D7qf+M6rNm5Kasi+plmJ73hFVY76NESqZfHPyhTvLlIBWVEpdXSkIYe+A8Bs7X0QmeHOe7TucWv01zLm239l+G9jX34lzro+eJQw6efOoHnNmh40SWR0rbatei8hSlTn90i7PLXpDvlMw0Ec6bJHr77e7kFjr9CqDG3N//DMmPSz6x/ayja2tIbZvEYuzIuVw1fM667uhffNYVh8aLG9Cu7oCEFANhuhiAw3HXK+LVDykf4eHCHFYIS4RsMgSoaVLASYGdcosfNLxOPzlz2LT7jMQ2hKk9A8eBbbVVJiEmkAdgwbkDlzO60EZ5I7MDwmAASI9zANQ7CfUrv9ujRcMEvLf0T1v+7TL66zwiVLNQyjrKPYIwxKL2j7oCSj82tC1GdHbQ769IhlOmlR8fd+DTngBAUzJtIxhyWM9OHD7ogihHLlohyICarONviVzDGRhZ41hdmY5YUIYrKbvdKMEACzMsZi3UlOCTaNXHdlpoXusmohJl+wjAizEMwJE8ydMUkwMm2l+xgGhyZGUjCZLX8M0ta9qYL57EW6NVHkeda/FeZHLkPegn0d7TBg4Xc+Q+TffHk93uGRy/Z4q1sAR6Fm/mGZXzxydC/8NX2dv39j9OaDK968o/b1Ibq1om3wb+8/r9/rtQ77HhKyZ0L0sa6agRUKbos4n8tq1d6L7nq5l4bFVyFRoMChfm2cySsjX9V5052MQcy4PZDRIScC8vEcKnvQsyePPADhGjL/6VQy37UC9bXu60UXE9THC4gIwJLNk4C7InsnnEnS9il8K9cYudSATWQKQEt3qOJLNaxYgAWYpovPrxsX2DQNoW+x/7/sw3XsHdj3lGWk+ByMgRlTLm7DnzW/E4as+hZ1P/49YOvteQAPEFlh5/aU45/gT8Zu/+ZtzFsn3eWHGnMyb31w9R8t3F0gBgOc85zn4yEc+ghvf/z7c+NgnAMO+2BTlxupd87/tgPVgpL8xpXgHvz4TY8y81OvNOIA5B4oKTfTQ6Gkq+pIaPfwCA1EIpRLdPpBSQj1zwMGEJ0WbgmPAtM0zIXXdQdAngn1HdW/3b9fmmNn0GQhjLl20RP1O8V3fND9m7jAqVNJunLyZgc075b+NURHGL7dPfs+xmTXzBmUGST7ak9Qbk+WvM3LEKtfO0Y5dWP3Kl8AENEuEjiKoY1TTxChWBHQLqcHVGBgeCIhrhOk2IA4muPVX/ghxdR3LDzoPNKrR3noHwq46H+6yJhIgZxs/DkBXp8aFCcALaU40x02aSy7XhzIcblxDIwe6ms0pA6mS0Dy8c/22ivF10lW1MPTgpFgjyjjLtZx4tfcvYNqjkunRSdfFIP3pOEtcIyEOU5/77Q4tUE1S50INdEMXUtsXaUto2CLIxUHWTIQo+YX8epP1peOZADHbmPfHrJqwrKdUBxOVa0/nThloAcDVOGlQQgNUIWnQUu6lHPEIMgfdKNMmihIOmBOAqNaTiVUcImtNBBTBxp8KfwaV5sZhAjhhiqzZZiTmELC6q6nMc+Wc/2X6oqNLTMlfwM9Ff2/qfqjXUh+6BWHqIknUKZjvwUzEMiesMZDjmHkvWS/MizBnPhz9Ii+0kTUTARMq5XWBXqWuLe7RuftsDl2d99ws5Su/UbSn//Cc88E+y5nxN1MvXyeJdrEDMPB71dH4IO/ehekWyf/8eCuIBzINA1DuKQUznTOR9VoSSgIJC7+twjrKzyRtnk6sG7cAHPyn9+LgBy4HNy2W731fxOkE42u/hri2hoXTT8eu5/2MmdtCNNvQMMdi6kXiG1bkAGM37Jw0kaCs6Qza1h7t5Kqkj35M/HiDgeltt+LWV/0l2oP7AQDXXfs1bPqBB2H/Fe/BhrvfE3vf+w6EaoATnvfzqI7dDmrSGB7++Ecxuu56/P2nPoXhcIh/b8X4vm9DPUfLdyFIISK87GUvwwMf+ED88J7b8KbdOWSdJ3620fR3zASysNsU5/hCpY2SUHuixOSIsD+oHMNjkXQUMPSJvq9DCUQPcBQgAHlhB8llYXWrZM1JfzTfhyc8+q3K1WmMqpOO9CW4nohR75ox+D5nANyh7Maz78xuMyBEXdsdB+5Z/U5vjKxNDlBZH8jVK4xjUa92s5P3+yCm74jviD17DQIyAJxZa3IxVjTXVEAlYwpWfV+IgdH2Xdj78cvBFTDZFLC09Tis3XE9FutTQBzQjihHjpkCC/vSoHOoMNlA6A4cxtZHXIzJbbcAg4BNP/BAbL/ngwpmK4EFLtYa3LzW6wyuE0Ou143JncOYqDO8alM8o6VmGToHCmKN4XOR0QqmTeYvNIwcEte1U9sQenvPr5vev/1DNzPd7DQpXOy70MCFo2YgEKJrq/Y1NIxqCotUl3yKUsI4Wxs6Lh3niF8yFxogw7S1/WSH2vYOSYPs+9abkhDFQdxJ2/R51bCyMl8SrW14UEz6OsZgRRbnQjJjoYAUulXysYUGmGxlJ4wRk79WAM4Ett44ELoR23hzAFArkEjR4xSUUAc0m2B+UQaC2uQDENrUzmqS+tANgTgkA0xhmgch1uJPFeRbutZ13GTA0jol2UucwKW8q1pHZSrNGZzzXCl4KObXM3SyrpS2FAyx/Q8mydcAHf7MmjFXcm3PE+yu6T4V2jKDMhx9m1evv6daPv/sPHBSvN/bx/aeE5RooBI/NoU2ChCTpPyuCgdmNN/U+9ac8fJnd9bccOEo39cIMWDaZ3/m6RgUJlxRgjPU7lzSvkYkR3fVFsrzhz/xcez6kf+EDYOduP1zl2N4/DHY+gMPwq2vfzWW73vvlNKgo5QCYDUgDhhxqUtniPp/icaxmB8TRgmwAczky0CvCAr02UTrOY23H0cGzByeAeaI1S9/EXe8+fXYcu6FaG6+GYeu/TzaQwex7z2XAQBWvvQ5bH7gg7Ht0Y8FRnXyg2qByXU3YO1dl+Gyyy7D7t27ZyfpaDla/oXluw6kAMk/5Y1vfCPOO+88vOxlL8P/uPFmAJnh01LYm4oPiknmzCbaMSuyIVWikypBwQgUUiC495XJc2CnIKTI1zRikpqwqDaFegxtceD491HeMwmsI6Qa+QpANn+h9B1TiXvCq4QTyA6LlOtVJs2HgVVGP8KNpThlqlmJSkqLvltnXD0qaWRYlKNCS8UwMwxlAF0VeVzEJAKUDyGAQHq4tYmJzP0meyep87n0Xei3szc25PpqcyftCMyWVyabjkmFWqcDSloWt+5Cc3g/VvfcgLBxE47ddS6u//xlOPWYkxEaRs1Au55Nd8BAszHNUR0XsHz/czG9/kYc+7AnYv2ma7D57PMyGOE0JgX4jHkthJaN4RseYrSLIoGvSkm05cPpMVHe1EIDG1BkVF066GIta3OaQEvKPp0YfA4JFEVPdaSd9ThNWBzm63Zo+oWg9/SQBoq+ApiJJhTacs51vXmNl5YkvWek7NMlDelrTep1RmiSxkEZU28uUvg9dMl/xBjDkPdVQQMcbfF90zYEoW+dgktC1sjIXNdTTySByVbKNAeJude8Lmkes6lht5C/t7CHMFhjo2cqDIhV1hgoTVaHfDMBlGhITCmkdTWBfXN4gKyPyrindcJprShdk/HW9YqYnhmsAXwQmGwhTDelvdYtykKR8alXKQOQVmkcI0yBdlHHmKxvnYT7Nr+ITjVnaayrBgUNTAsr/6YOGKxy8idzc1+sSxV+iCAh6jfhvg3HZDp/B6+dL8CKW099xr0QxDlAYkWv9aNvuTWX63IHIwHsaFx+j+UbZFqxMM3t1Xf7QjDitE5CK9pUJ4DT7hdgyZ/Dji7pZ5JGJJuJ67iZcEBpstKBvmWBG1MfzMHMollAeot81kPngCxYR0REe+ggFjbvxHK7A6fd/xKsHgvc+c63YLhjJ5YvegA0KEloUyoBAxaTkGjGOJQCQaUDIixKe0zolrQl0fy8500Ag/Qtb9bYF7LF6QS3vfX1WL/mqzj2/Edj16kPxIFNV2Ntz43YeN/z0B46BI4ttv3gYzE4ZkcW0kaA962A3/EG/NZv/RYe+tCH4t9t6e2db6meo+W7E6QAwOmnn47XvOY1ePrTn45tP/ZsDE89Md1wgEFD8SrXwaCU/8JJqZSYGcPumICCkTgSUZS/jXCxOwti754HA53Taiiz6E2k/GHhgZIQUQ2Ra+YA2g6Vkisgi5IJ2kcRc5KxGbMHVzTfh9Xl+mtjIgTQQJ8fu570bWZs/aGvYSL1UO+PrT/E3LgW7Y8ixdbwpso8KqMHlIxrBBDSutA5nevQzCjmcQZA9hhHAElKHZDApzMfM2YiugPb9wtAWN6AarSEa9/+l+jWV7H/Pg/FiAj1eofp5grdiDA6FDFciWhHAevbA5qN6RthTNj0qIdiz1+8Gtf86W+nQ7FhbDvjfGGW2NpdMBucAFpogXqc+r92bHBzmrMM23i3hME4jWM3gkWMMq0UEoOhDEBoWJjTBFYUpCRwCKAVafuAJIdKYvR1DusxoyUHzqIwMCGbVdk8+/tqviV9pGme31jrhKAE0CwaINGQhC6vo9AmprQbwJx6KSpjwvY+MVA1ycSiaJ/uYVkbXJGMTVpwKkToA0kD51Qyjl4rFFqWfUGo1xnNMmWtixuX0OW2MAHDw5zDwWqdomUmOM2IRAkLHRdZxedK+pG+Mzyc+6Pzk/zjyNZ9rIGFvSwASzSFVIKTqklrnAMhdIy2JnSjPLbVNK3desxi4gU0GwijA6mB1ZiTDwuQtaKyVnXtgoDRfkazUaM65jEyOuyFLpyCWRCnPpggR+m8o4OhBUYH0wBMNxDaxdx/nUvzCZP1wLX7rmgl/Zj7wCEaHU/XqWem/Zq0+dLfbh+Rq1uLr0ufTc8ImHQAxWhKPxx5H9Agj9E8wRVrEBUzR2VoIIjimSPUzeKvQc4fyrfFBBwhP1P2Kb3kLSH6JmGmEZH1oELHfmASBRehQTKtRqp35ctXoVpaxsJgK9AC08WIW17/11i/4ybs+ulnI3BI0RfVjEvWlmlPXG4Y7Vfoct4pM4FkoB8YyK9jXf8KqmzNevADYHzHLbj1ja9BvbCMez75hRhOK1z30X/A/ms+jZ2PeiI2n/sAkJiVxpqNrFIL0EqHPW/4Gzzmoovw8z//8/j3XOYJr7/Zeo6W72KQAgBPeMIT8OIXvxi//j9/F7uf8TwMNm1OEkTPyAKAMDYq1ecg0qqepMcTrwx0SiI/T23uzS4oZua+Xx/594Up8hocTxCCMlcz5itshDQ0mdgrI6ZS8sIUpU1/KJBgIjvQgqsPECbOM0SA2b9rtBBlulVDYA7jRsDZvuElVmp3r8QyKKMu4CS0cjD3JIZWhFGgjvNceFV9FCYXKayySnOrCSeHPQVdar4B5ENXpKndMDFk8zQmes2YLZlfP9++qRzTGvMRm7gCAlySMuU6Yn4xVITR9mMxvuNmDDZuwep1X0E9OAaIHagTjUNNaBYDiIHBGmN4kLC2O4KHjHrLdux+wc/j9j/6c0xuuh7d6pqtFa+V0vVtmgRKDGLo0rML+ziZKw0co7WWwgYDqS/VujDxDaETCXS1nsa8MEcSJo0NtBEGXZZeK3AKra7xkpjrmgxNAhlWYupUHKjdddZgUCeMo9MCGfMtY12vp31R7Nk4O8fg1Cdbo8QYUDLpM9oSgWrKaJbTAmZbkxk4FFrLmJhm1j3XcWLeya/pPAYWfcyBaAMoUUFm+tawYRvP6abs+6HgxPZKBBb2JzCTmItEc5SpNn8Rmx82LULhF6f9X0+avm6IZDLlhEDVhIEAdANKAHDK8HRTzWlVW1aNgXqNUU9YmDGGEi4NAqLggto0l/WYUU1jYvSnCaAoncqaZwI408lYE7ph0tJRBzQbyZi4epz+7Yai2ZA1VE2QAwsg09si9wvyvA0PMoYrmW7VY4BD0qzYWmedI0a7QNYvo8dcfitJ5NNFBYyJ4SyZdy/0oY4FUGXgns0+2cbHC2AMeGuRPswDJ4WgxgMd7r2PvHb6/fL+Vh4M2FqzOvP6sfNAwESpuXbf5/J7BkDcvrT3hH+Y0ai6sy40ec2SP7eA0gRYtfCurkOf/ji2nv9ghKrGvj1fwM3v+TuE5SUc/99fgGph0UIDmwBF18ckOKGEC2jigEccat8kt5n6bzntLct5BMASpVJ/LBhoDx/EnR94Nw599p+x/f4PxUlnPgp37v8Sbnn/GzHcthMn//QLMNy6vZjD0FIS0LVpn+/5xzfgpC0b8Vd/9Vf/fvKhHC3/KuW7GqQAwAte8AJ8/vOfx5svfTV2PfWnUesJ5wgJ14k58tJ+AIXWwUwwPIhQQtUzBfEOqH1GDAyLQe+dwAtpeq+olmOG6BMboeNApVSp9202Uan0B5hh9PIhwtYHZW76BJqEwU4SOi7eValOZ1J2aY/TVhB6DtaA2eor02AmIVEOR+ihS1avN4VgZICUpZpzTHUMXMFMvxDL8MI6Vv6/WMNswYv+uEMtqB0zZTClgQxmmIjeGvTjG9xYaVv8ulo87iSs3XIt6moLJqv7cMxpD8Od130KWxcvQLsQzJ9jvDVgshWYbk4AhcWPYeX9H0G7fx9O+9n/gcV6KzBlMzvxUvXQcsFYAInxJk5O+96kBch2z2EqJljGdCUfi25BzGjcWvdMLQHJPrnhxCjpnLm9lnK3ZA1IoaEzyWBvXmQtmF9R5wF3NjMrGHpl7CqAFGz4b3VZC6RtDC2DJmUiV2WqLHqWAMlqyln6SgLKHaOg7xuAjKkujfBVCEfsPrJGp8vf0uc8uAKAKjJGB3LbZsx5lH5UCaAW8xZLsgDO5jkzTvjK1MLRnWkKX02RJZRwZqhN2u+1xwHgATDal31jCtMcAhhK+wjDFbY8LEmLErNjOit4BkKjYu00pt0oFKZ5Oq+DtfSdekLJtyAkTYxqizWyHkUX8KA+QnAErbtT0J6Zv2L/qRDM4Yo4cNEEATNP9ZoR83cjlPvXzYF9SwUxum8iULUM9M9Do3s8n2lH+bvQLKPXDj1S/HOYXX82Fg4Q2HnDPboKV1cfOOj37+J7hUZefytQ0m+LxsaYeBdEwwN1rij7JBIAZ52hdEbPhaDXtdkytu3BA+DtY9x02Wtx4MufAACc+HM/h3q4lKw9Otc+FS5M0wU753pSeV1Ptt7kmn3cCcNMKKS8jzOzJgYmd96BfR+9HIc+9wls3XUPnPOYX0B32k588e0vw/TWW7HjEY/F5vs8AFRlUF/k35G/937icoTbrsc7PvVJLC4u4t996a3Db6meo+W7H6SoI/1XH/lIfOkdf49jH/OjQE2l/4CoydVRTzfnDLPa2/DzmFS9PiML6C0Y6jmg9Qm6fVcBTL/CHgFnpyHpmx1pVUZMu941xwTaMz6GvQKyfl/8u/2+RiAQl0munNTPCKI/JDr9rj8p8mGhpg4oNESuT5VoaOAOXO59x41JiJDQwLn/xUHlDiftbmHa4PpLzHbopmczF0GR8+cNcOb3EuOphx5mNXj+EOS0Nnc98PFYPu40hOUlXPf6l2LL4gm4ef/HQNd8BpsG98Nkc0C7RGgXgHZJKmopOVtHYP1rX8GW+1+IpWqrmTd63x9f9LtJG5E1SompTAfQYDXPLUUgTLnYF8b8H+bZNW5jmH8nKX2WlmbGzUWsqpIpnjfh6/uZ6N+hA7iV9ncogLyCDZZcBMW9yIggVJERvfS4MOmR5zsGtZz+BYBANp+J0cngJJlaiHlRbzyMwZeQQJ4JC60k5oxZ26bMj2rt1NypmrIx/vNMb/R7gZMTeARZaF4P1jhI3p0Jox5npjgO0vqKA5I5E9DXi8DXZ2iJYU7wHYuTuwMahWRe1gRFJDOVMeDNb/qmEbacRNtWj+V7QjOCzk8EqI1ZUq5mWEyoJhGagTzRqtRfXdPtUsDCAUY7ItQSKCAKgPX1UZdoYAyzgLJkntkAcxwAUUBzrGnWTE5pbseJ4RPmrxBIBQCctYPeZDg1No/TjLbBzRHHYtrylCjwcfTXnxEz9NFf8+/c1XP+W27M+veNZvSPyB4gsvZReW+u0L531lnwGWfVkLTctvXTPmzdGdzlStRfBu5MVf8qA4LSTz82C7tPwqEvfgajnbtw2n99EXjXRgQEVBJhzkD8nHOrACD9Myvm7+nzWgrzQK1bz2wA7foqVq/9Mg5d9QmsXvcVbDvlXJz9mP+GbsMAN9/0Caz/400YX38dTv+F38CoXQBP8vrzkUSBtN8OX/15rHz8vXj/+99/1FFeCs1Z599sPUfL9wBIAYDRaIQ3vvGNuOCCC/Aflg/gTYe32qY2aTYJQBFmrC+N7QMUoCSexW+U1wEY0DDTKLl/l3W4tvWrniv1Qa/NMy/lZ01N7plE900PWiwiUp+h1J89JsSktFPkfBA9oqqO+8R53E3K6+uFP3hRzIuBHfccBKBkgOfGoccoWV2+3VTet9e+3obvjxmQpf29dUDueWNeBREV86rLJOS/1WQgVDVued8bECih6oPLa9h53Dm47pYPYrk9GxwWERpgdEBMsoZIfinTFPFldMxxaO64QyJjzV/bNnYsjFRLCMqMRSSbeRmgFCKUs5lID4QmTQWJSZRbM7EEDR50pHa4veIAS+xJpxPzrvdohrtSkyoNEzrPrwNeAynvaN8T4y/Xu6zl0/kxrZNjtqEayIAEWLSt3i+MM6NoY6naQcewJ7AvEnQxrez7dIU2jX83SD4L1Zjz+MkHvOTXmFdwSvDJcMEkZI6k/9UkvTRYj2nNRKBdIHAIYPFpUTNIdJjRRJR7AFYHrTstmgOBnhbEGtmfxkt6ObfV1w0AESRChShMvFtHavbW5fHpQsjtZFkLbl2HaYQ3pW0Xg/lJAUBwGjYOCbh1I5h2nlqgbpKZlmnsBPgN1hKgTOaHZMKKvMDyOOq4Re8b1APyvh2mYZcxU+Bp9L+nzbZP6v6cd87oHIRSS6z0uA9c7Kxts0mc1TX3467P80CEGxP7uwc+fCG/vfrPMGb2Uf+80Gh3/mw081ZwzjfmNTUyfgZy/bkmWhYViNp1Kt/b9UNPtbZ0S6mOapLPE9VA23e9KZf0w4L8+DPaf1MEO3ep9YpA24yx/4PvxZ4rr8DC5p3Yevy9cNolTwNvGOGGK16PQ9dehQ2n3RPLJ98d2+91IUbTBYucCeR163mFtX03Y//7/g6vfOUrcf/73x9Hy9HynSjfEyAFAI455hhcdtlluPDCC/GSl7wE/+eTB1DkESAAkjG4b3pTEJ95hHXONR/as3jXJW06EtAo6lTCGMpn50mV5n4PyESJM+NRENM53/RMozcHK+4bMSY7nAqNTMwaKiAfkBypIPx2TnLvfSddKhhpdyhkP5ryuh0w7gDyB1WfKHstmO+/Bzx+LPuHXd+RVA8adQyfNxdmThCSqU+yJHB+Of7wlTb4+Rtu3Ial5WPAJ1QImzZhkRZx/Lb74rYvXY5txz4W3QgYrCR/kDiQvBIgNPv3IXCFycH9MwxhXwtH7j9IWNxumIFIVv+r1iOZOsSaEFzfOaSIUJWOvx+z3pwnhqbUxOi4qj+MOmAS1L+JDfRS5Fm/Lze3vhRMr/sOuUM/jQvne86PytaPHvYRBTOrWk7tsDrDHxH0egYkxnywg6AmkkUSupD3QTVhUI0MAvpmmkABiK3f0k5qxD/GmxiKD0w9SfUlZjo1MrRiskZq1y4MdA10IZskeZOsYp1xogU2Ts6fy3xi3DoM3ey4+Tn1NCk07nePxnotJsR0TucpdGwO+6mPAlC6pF2hCghNRBiQzXOKNicmqhbSPGtPUm6Z1KaBBJ9QwJXCUrNrH1m/E6109Euk2/V6AqOxhknii3HwoKWnOVNwZKa0If/n10OxFnu0Uk12oJJ2rZezRrOfrFQDYwCU96Y1qnyuEFQ5E8u5Z6XuA+R5naf+OaLgzj/u+mt0Fj1a78ekfxYo3dBzSc6eIp2R0ErVPur4xQBo7iwDexXAVQ6vHqaUwy3rWDkTXe9P689S7Y+dw8httHO0LyAT2s5ti/1XfgR3fPxdWNiyC2c98mewfMxJAAOr4RCuefufIQyHOPNZL8JwcWP6/pQRVtnoE4CslZFr09X9WHn/3+JXf/VX8ZSnPGV2Uv49l6PJHL+t5XsGpADAWWedhTe+8Y14whOegLe85S144RuuLIh74GTyoM5uAEqi1Dvw0o30X1+iN0NQHbM0o8JHvle864nmPC3OEers3zPmFvmQLkAGAO8cX/q+8Nxn7NmolUIOezamlCQUqzEmyniQy8DunIb7EmWl7ioVykyna19M35rxodH2OntuzyDNzJeaYTk1/bzxK5j6oq29sQeKefTMcH+uiohhELMbV1chBYvKXBEWt+9GxQOccMETsXCgAw5PMRkfwtJoG6qGMdkSXLSnZFaz8rkrcesbXoNquIAtp5+b2jUHhNsaQdnW0CE5cNeUzF9GVEjySE0mg0izZc6VKcsmBKJRmrMXmATgqBmWmk258Qzqm0RIkvzomFhOJkwepORDWJjSLv2dAWWOXKSMeuFLpXW563ovgSIS8yG2/hX26qzjnP0p1KQIcIyYjXUGA6qdyAyhC34hJmEcKDHTmrzN9bVPbwictU2yNpPvlgdfsofEuT0x4Jzt8cX5uJrmMVEwoj5RahYWWrkn45qYWMr9JsfUOV8hHcfA4ijdYbboWrL9o/OvNKD/PANRNCjaFwXGCh4dYxnaiNB0RvtYs3G3bAFHgJDM9xwtjk7jOFjLZn6hTRquHOXNrXEN/BB1XmXPqXldncz46gmji2km4xDgWgIR9qTqRAC7dhUgwPY3ZYbcC2OAQluo79t6VBqqY6c0LIhZJEhjVhRzSp3DLp6u6Tos6DeMFhY+nr32FG2Sf4t5pyM837tMR7h/lwIFdoy4A9UzZ4BrC7FoBz2wDPKnnbWJZpup1IQyuLTx9z4jbBWYJtqPLdwZpPSpUnQHaDAM37XJnbfixnf8DRAZdzv/adh40llY2tthZUg4sO8a3PDOV2PDKffASQ+6BHWsERuezWeDWdoWJ+sIn3kznvjEJ+KFL3zhEQb3aDlavj3lewqkAMDDH/5w/Nmf/RkuueQSfPCDH8SP/3/vsnt2IIwJ3QKytEQYjIKxJWRTnh4Da9IdJ50opLmeOOMbI4iFNGfm4HV19A4aO4x6RGsWCPH8fvhvhpKKFQx5TPetHZprI7ARVK/RUHCT6+D8PRtWnhmPvgQtM4TutxJIxwCkMeTyvWKcWJ5x/e33dc74+TEoDlLpc/9wtc874GTrSqLmpOhe3kxDH84MFYGxuGM3Dl79mXRLJGzbjz8HV9/4LmxZPQ9ha8B0M4nZUDrkbr/073Dck34U2047NyXnc4EAtJ3aNvXvMYkgAywPUEzmPRrGUhMaqgmDSWc5gf7B2mwAg2Isdc67PFDZlIULaaoy/JXXFPQYDHYMlE5n1urke1kCjHxN/MUs7KpjXsu2ZyBVtZwBSsfQ3DoMDe3J5vBrc1mJaU8gsXvvMRa9veQBtPYpMbnq1xST2VbngQmDHMjT7ykwU41LAiB5Hab5R2LGCSikck5YUU0YdYx5fEI2UaumKZJWpoeuf9o6ASmxTsxVCuecaQaQ920xH34cFPwZh5fvp32br2eNDufnmBE6+Vh084fU/1RPGjytOfvqSDAKt9bU5FGjf9VjRr3aITQxz4GAtBx8Ia3BYUSK/saqdcwAT0FGHBB4pP2W/eqAiuZyIqbSnIsVyLDMr1snvX3kBTF9gZY+o9/Steojz5Fo0TVseepzqsPqLQCKM5N0cxc6RvRRLOeVPi1H+bv/Wl/j0n/XXuqfpf3fWoWt07L989qlGhLvW5doK5nPH9eODnOmrwAsxDcAM4E081m4s0T89QqNpDZLaV2X95MX9oGAfZ//OG65/I049p4PwcmnXwyqK4QxMN4A3PqF9+G2f34Xjn/QE7HztAdYSHrfDhscyt9mAjh2OPbm96M64QT8yZ/8ydFIXnMKzVs332Q9R8v3IEgBgB//8R/Htddei8c+9rH48Ic/jCf99t/ncL9VSqpFMUUiAuSwdkxl+gPGtKtbtEk2oqi7nQOpByxqx1uAlf6C6i3UgrBySQyOCHLcAVMw/P1NMI8g955h33f/jB8PV39whPtIzo8qZZnZTNoe6r3rv+nGQRU5nhGjol9sTEPfRMxsqvt9dmM8V21uhy2X/enTXMpSbQM6RejoPC/UMQIkUZ5cVJMmAGI+lz4QB8Dhm76CpQ3HYrDGclhFBAQQCO1CSAeetEczgSNGLIWtGB5QybdjWpRxUm2Nrjk3vxoCuFlMzqD1Wgrrqrk8BjI33l9Fc4VULducagQiFQxQ5zCwaDiqqQcn1AMqbtxinhMDh72oRBZpbZra2o0ycE2S6lRfaKKEuaa8pnl2rtNYstvT0UyHLCsz5YAJeYxdw9RnIDIQgTgIyQxE6zAGkJPvgwOPAAzEahhj0xJFzwHCNDzJFEfMcVjDDidzptCVEemKtd8Jc10RENUhm0zqH5oIEu1aHATRnLD5O/m5UD8Jk5Z3hHZBI3yxaQ36JWuVGNXEAx9AAxQUPkWRDWxl7QlMY2QAJXIKU67ARZk8XUsCXrgKMq9pj1mUtoqM6cwh34Mx+fVaTCGPW0Zoopj0UGIQnSDCQsS3EfVaWhuFj0WARbsDEt1qJCFnNcmMbSEgCZm5LfaOaLO8BqDYL5zN5XwACwW2uubSus9zHESzGXVN6hAXOXvcvnXnxzwhk4GI3rlzRB8Snbf+O71zNsheUm1ev3iA4K/116Vq7vtnzzzwY+eGnD2VOJSrIKYaM9olgJfEX0WTC8dk4qUBGsLUnelR6VJpVm0Cn6imhdIGDQ6h+0Yf7+3R2Exw83teh8HyZixvPwGhqrBWreGOr30Ee77wIVSLizjzMT+DTZtPAtQxvn9Wc/4mSduYGfdursKVe/bgiiuuQF1/T7KP3/kyZ6190/UcLUdyu/vuLy960YvwuMc9Do9+9KPxnv/1TFTTxBRp2NSFfYzR/pyjIW1wKjYkhJhrQjkgX6+aRIiyOUT+tjHWCoxiJjjqDNdPHplfRiZQ/r5dz8xlYT41571CkhPd97hHbBxB1DZm+/uyvr7KG726qf+f1emcWWPZNl9P6HrXOL/ffyfIWFaNhMBVm3s1K9As0i6jeN+3pX/QEGfThhmmFbPvFQCF3XsR1hZ9zx9u2fQhrwmSOSUGun0HcfBrV6KZrOKOmz6FabsKAOgWanQLAdNFSVpXZ2fVZgNj4/1/ANe99eXYf+1nZ0yXdCyCn4Pe2lPfk8Favhk6YLgSk+R8whisJoZT52h4iDE6HMWvoRwbdodbdmbWMRDJuszbvFK00a9plTJOhQmfyt9NYhrr9YjBarpObWJ863EnTJcfAz1thbmNnE2j/P7TvdDFPOdRtRTRScKTfwNFBjUxmWgJSApNakO93qJe68yxW+vxezw0EdTIu7aW2MYhyDdCF40RTuMlfYh5zZnpUU/wQYzEXHe572YWqXPVxgwgZAyqcUSYpHHta5+TBi7mgA1S93Al2jwT5//67dE10g9xbO3VtgJ5rtpZgKLrKzHiyaRLAYmOk86l7fGe1FfHMvUVNi7Dgy0W9zRYun2CwWpr2pi8TjjPoRsjXXP1eofBSptAjS7tQOhGAc1yMH8GHe/BOmNhX8Ti3g7Dw9Fonc6rSuLrMaMeR6GDbkw7lntZcNE3w7K/de1rIAM19ZumPVRNc/1q9gbks1UDZxTnScy0APqOMPVmEuzOUH82qU+Pgl47J1Qr16axqCa5zRYauEfnPc0rzqfeWVica8h1Rc3J44SVcP0CEshQIWhokCPwyblTrzIGh1IbQ0MYHAZGByWPzgHpawPL8zRzniN9L0hI7GrqrnuT6CbPS1p7qV31GqPqapzwiKdh61nn45oP/F988t2/jyv/7rdx+Lav4ZSLnob7POoF2LzhJKMfxClQRz3hPM+uXm3bo7bfgSuuuAKXXXYZNm7ciKPlu6v8r//1v3D++edj48aNOOaYY/DkJz8ZX/7yl4tnVlZW8NznPhcnnHACFhcXcdZZZ+HP/uzPimcmkwme97znYceOHVheXsYTn/hE3HTTTf+aXSkKMX/veud0XYdLLrkEt99+O5rjfwh1GBREqpPDoFmmHPFLaaFjKJUh64be/0I+Qj3iK9fsGc+Iu+K/YwTcXbcy856zK3fvg7NUw4dptVCIdhDP1n+XasOeGchMO7/B5VGM6xwVcA6jOfs96l33plR98xmdC3Y+KCbp0bF2Eth5fZ/n/1P02T9Hc+5zbldpEphzg6gfRqFpc2uprRj7b7gSh++8Fnu/8BHsPvVBuOfWh4MHFb50y7tx5raHYt95WwEkjWCsgfHO1IC1f74St73j71AvbsTm4+6OU+79JAQKxdwV7XJ+JekBFFJ3P84qKdcQqqEVwIL0fjcidIMM9vV9BYx6iFbjaN/S8UhahjyePnu7zYePoqcgoWH0pYdcaTQrzwiz7BMXvMBeQME0p7nzku0EGkrpK2dti3wTAKiN4DqY1J6rkLUB9jKZ1N0cvN29Gam/9D2OqvROG+fWpRLkOAwI0/RM1UTpM80IN9R3A8xol+sZ+pdAZCzq99L2NG9hLv2KNeVki73wpF5azBUMiFUT0doMg2lRUmUKLHNeGF0DOkb2d4QBRcRyTq2NztTStDX63yA4sybO/nc6NoEQppJYtQ7oFivUq22mK/5bRwDfWk+3WKFZriSSWrpeT7KWyoent/EXsyu/B2NNtoe5opRM07Unm/yIhlOWjzLR8zTm3k8JAeiGwYEMkvlKQgLImuwWKsSh04oin5XtiAoaV5i8ItNEimkM6rVMI5rlkM7fbratGoTDm9l1gzx/xbmgJomyD7zWct7fQAYnQNZapPYCnu54U7vc+UwvjcYKrU+aSZTpAOydPHbeWsG0OzHTq+iFqyGPtwlJpU/dQBLzOj5hfOAOTNb3YzTYjE0Lx84Irkprg3Lsva/o7V+6Ams3fgQf+tCHcPe73x1Hy2w5dOgQNm/ejAc8/rdQDxa+5fraZoyPvv3XcPDgQWzatOnrPv+YxzwGT3/603H++eejbVv8yq/8Cj73uc/hC1/4ApaXlwEAz372s/G+970Pr3jFK3DKKafgXe96F57znOfgDW94A570pCcBAH72Z38Wb33rW/HXf/3X2L59O57//Odj3759+OQnP4mquoukUd+h8j0NUgBgfX0dj370o/Hl6/bj9Ps9AyFWOboXi/0vpX993Ho1GfIRhZTYAGKjL3bGShhZpZaygbuBvouvC1K0PX2b1/RsSUC9hGdGhQ4lYLl+/4xV7RnxuzhI+0xLYf89B9DN7UevP4ASeDJmoTh4+nUcoXnzvt83I/BEu/+313hZm/r9OQLI9CDEPzu/nR5gKaOX+8iegaW89toRYe/XPoFbPvo2XHS3Z2NIS2i3L+IrX3orTr/nE7H3nguwePcEdAvA+jEihV5Zx+Tqr+HW174S5zz9xVjCxnJ8ZVy92YZqrArTPj3YdXyMySAbzyDS4gROyv6FDqYt0YMZEJDi+pzqJ0t+qFJcLuzgGdXYhYrVsRfbazvYWUBKp2ZSc+bu64ASnbcE1iSy07SzOcsM8Zx90CWmzYCHN+2pA+KwSuOkjJxjvg1EF471GQx1owpchwRSdP/0QIquJ/Mn6EW0AiOZNU27bJ4WKIEU8b3JpnoCzpDAltaj2iEziRoEAyum1YiMZrm2kLw2rjFrt6hjdIvpYAtNRBh3CE2HOKzSOInzbzI5i3nPqHkWAyTJGrkOaSxUW9MxxMsbCCEDEx0zAF7womBSAxVwHQoQBzGnM6f8NqJbrFGN26IeXYNqYliYfMn6S/uEwDWhXazQjRIAqMbRALzRozrkpKDWfzHrq3Wu896NNaEdkflE9YU8mogyaSKyMMAHPNAob6oZ5prQDYPt+WoiWkK39uMgIIogj9psKmf7GhKhrmW0yyGB6UEPOMQkpR8e6qzubhQw3aDBGjJ9THRCgJkKT1wI5BmhY/9snQOU+sUnas11cq5D51OeU0Bhc8ywIBPGByiNpzLBqpmL2R7KIANw4MPWVb4X6xxVzQucFMgnTR3cOKd/OSgozmdBcdabVhLlGeX4lj3Xfwo3X3Uprnj/5TjvvPOOOJb/3ouBlMf95rcPpFz2om8YpPTLnj17cMwxx+D9738/HvKQhwAAzj77bDztaU/Dr/3ar9lz97///fG4xz0Ov/Vbv4WDBw9i586d+Ju/+Rs87WlPAwDccsstOPHEE3HZZZfh0Y9+9Lfcr39p+Z43KlxcXMSll16KhzzkIbj2yjfgtLMvQWiSal3NTeJAIms4sx1AnIYdo5Sep8LuMx2SnCWCSHbxoJxHxHJLODAxw1hDaOgR6KUCohnG3THRBQ3Wts3h0fS76UEufs/V6CjfSsBcEygPTtD7ew5AAgANDTMjufF1zmv4HIaT+mMh42sMvD7qQq9SV44XMAtqVFo1k9MDAIt9dqlp6TVuXltjBmV6SKXfqvFJh3wrPhXrt9+A7afeD83pu4DDHar1FoOwgPHBO7D1K7tw6KQBuhGhGjPiUMBExaBNCxiedDwAIKy3gCb6tbYCfS2Y+maZaVxAcjCHJu10Ubh6B6WOkTejmgnxG5NttQU88GAIEK1IepcJqKYRcZC4kTBNviSJwZWYQBUZiCjsxBlixiQT2c05fAPMx8Q7ORcGrhEgjub8qYxl+hEL8yHE/FzSCkj4JYsIJt+KASFG8KAyZ2piAG1EXKhTpKlA4EoZZF0v6f2kGdR+eXuUvJ7jsEI19YlehI4NguuX0q4OcVABkVGvikg3Mip2PhVmBpaii9nci7aCOSASgQKL/wcbELEmKIDsgDCJqNeSuVMcJi1EmLRurhiBKN2vQwIfARI0QE2pWvS1vGijW5tspldMlMCKgsWADFTMl0w8w1ydoYnFejcJdMsGjOq1xvrXp5l5beg3OAE9t46Sr06XEkwazRamOMhYthEsCZSMTsTkdxSQHfyLyGrujDHzSAthm/ZoNY0z2hn1QQkN21hwIFDLqLsIH5ygKPLNapKBoPklhQxWwjSadi4OAyabk9CQopikSZ6e5BuVtHTdUADz1J2dLAIQ+UasKZ/T6n/mt4DzmynAuqnHMFsKel0+5wVYSRNXHsBeUNA33fbMPgDzUUkdSZf75rhec+ItNMwXRtsUlVfIQiQLly1gwycHrRpn2gpXD5BpT/+81/4QsO+WL+KGz74Jb730LUcByr9ROXToUPF7NBphNBp93fcOHjwIANi2bZtdu+iii3DppZfiJ37iJ7B7925cfvnluPrqq/FHf/RHAIBPfvKTaJoGj3rUo+yd3bt34+yzz8aHP/zhoyDlmy1btmzBu971LjzkIQ/BdZ9/C04960moJhHdKBjR82ZSAEQrIswkA7HOO7VwRnbAoUxIlohWCEB0TF83yPkFZkxUoASKC0bR1NrCRB+JoH49jUP+EGdm6+s96xqnhOlI35n3Pvtr7Bj5I31fXzpi/bMfmAmvrELmI0nJ+syECckkz4X39dE6e83tmwT03wEwc5DPaHXAQMwDalLLIAxFSwhhCB5PhHGIqPeu4Lh4Iu5cuR4nVVvBpw4Qh8k/CmJWxRUw/eoNuO2v/xJbz3kARgtbjjivfTCYTS4YHqSpf4EyG0AC9bFO0kKNQqN/98NSZjDt9lHs/WaYjwcsZK5Etpp28Fo8EIE7TpcozV3VRsQqlGvUfEscY6XMqsyr1zKYSZc33YmyoGKSKKcHtQ+ZIc7zmNqfouFxel+0KxQjqA1g0YQogElMZpfWbkXCmIv0v2NQTCZk2Xk7MeWY4xwcmpg1CPIs1wGYRhRO6DGmNYNOpL5UgCLy461AxZlfJf8beT4QwiTNSxyE7ItBMPAPJMa4Xm1RrU0lL09btNOEJk0n4FEAioSQZiSQgzZmQBmRxlr+NlAodWag4p9HnjdVJrUJFAFI6y0QUIUERqPUr8BBQCPreEnVnuaM1w9g/+HrsHPzmSY5JZY8NkDWfsnS0T0aB0GAQTQtCOl86pkh44o25RDKGkMSfwGCJiUNDRcho7N/Xnn4qG+S9/tJZ5UysVzQ8Axwcphji8QoawQQIDGF7UsLN60+cmIyqgEagFRnHCaAkuZG+leRaU+qabrWjdTsKAkxBmts5lWqYSlMpD1t6jHnfasHipLzhDOfkM3h5HcvCAJJ38k9UwATQja9VKDFzkTO0a/CJFfb0DtXiJHoDWfzR7UW8UlX1R/J+xR5X59+6QsfTeMuZ93B27+Caz71Wvzf1/xNwbQeLXddVED07agHAE488cTi+otf/GL8+q//+l2+y8z4hV/4BVx00UU4++yz7fof//Ef49nPfjZOOOEE1HWNEAJe8YpX4KKLLgIA3HbbbRgOh9i6dWtR37HHHovbbrvtW+/UN1G+L0AKAOzatQv/9E//lIDKl96OU858fAIqw1Coxa3YqcNIuQnkd9VjsuTZfoQb79TYNyeKVT5wCz8SO4Dk4BGJRxG5RUxyvPS4T2gL23drVJ+5/wZ3Sb9ulL+BI3yv94wdbkroelSxPKzdhyjfnwEC7tCb1+7Q9ZjlIwEs3yZ3ANk9P792GCMzuUT5Wr/eI4yNMW56CLl/LVJVx9iw/STc+M9vAZ/x+MQUTqbYe+ArWN5wOsY7F8yWvV0ktEtSd0tY/fSnsfFu98IpFzwFtMJ3YZvf+w3trw4WFXNSaP44281bXhKGaQgsipZ9a44Wrsu+Bh5QqFNxJCRmmRPznxkrhgRQTtqewKBpRBXk28JsJumiMlxygEe4tZBNltTZGVDGi/J7MTGMEfldA12FGYZjkI0pZgcKEpdBXGWmvEvgIa85ASfB1RcB0gqZRfoh9fWLY9A5hMTAq/YJsDkpGCsGuLDfp+LbeRzE/K2LyeSMGdRwyluiWi2ujGmmNgO70DDqlQbV2jRpIphTfpgQwIOqHLv0xQQQGsj46LiKyd+8vmv/vVZsnrCic8+y+qXIehbwpdHOCnDttWdEeT2r+Z0hDcYXvvYm7Dt8LQLVWFzYivPu+ZMYhoWUqLRCmrva0T6jdYm5TM7T4ncVk6aFB8FMGdXHi+vgNFWMKqYzi0MO+2x+PzK/bL5xyOtZIsGVjHhitvM+LmmzF/KFiYsyV2vSSqUbpYkmC9gbrCWhgH5XaUbWMGeAwhXMhDI0nE3KQv5WNVHTUsr0N/YIcV/gpMJFTw89oOJsDWGRO9Fj4h14MGEUO22OO0P0DDfQwUngk/1KSjM905wYuHZtz1vdALP2CYCZWqr2jKIzA8VsPUXpn63ubDx45zX4yqdeg798xctxySWXzHn5aDli6Z2731I9AG688cbC3Osb0aI897nPxZVXXokPfvCDxfU//uM/xkc/+lFceumlOPnkk3HFFVfgOc95Do477jhcfPHFR24KO6HWv3L5vgEpQEKc733ve/HgBz8YN179Tpx8yg+iigAoFOEfARQMpjmrccngeOlGlKRoFplFiL4+pxVVUwYGkGyzZIQxtHNWrSd8lNtjjKDzZeira2eAg5NS+uesbt/vuyjziNmspia3X39/PVMoD1oKJ1sh7gogZoBA/9Pe2ds97zVQ8+rw6vC5oXCZclvUnCnKYRtK0ybAMcTODqeMFqOTVDLuTHlNUAds230v3Fxdhttv+yxO2HouwqDCwW4PTtzyaOzdVRsj1i4B7XJiRghAt7aKpY27MFzhGclN6cx/V2Mp7XMHbbGekaTPAEwCauAcADpJKugdeLvygz6CVBCmt/C1AExqX2g3ioYm5pk4ARV5JQ2vvgvMf58hzLYwxCrJ72CDo+ZYSYob7xKUF9qA4oAXIAYRMHhnWV0LVRCGKoK8ZFXraqKNCUeN6lVq9IAE5kAaOjeCEZL5mbZDwAvFmECMfcP9K1oWin5OSLcBqOnyXHIUkyQCBlXKryoMZ2giYkiG9vVah2p1Cpq2wtBLX7zGRscQMGBmIZelX2VCVgUPmBkHRFiYeNOG+eK1eAA4iqZLTLkoah2UgWKhRXDtAhLIFs3WwZWbsO/wtbjHcY/CbatX48Ch61GhAjpOmisOyQdGzxOCaViSZBzZtFE1N1VIUyF7MEzTWuwWAB46c7COQR3ZWkwaydx386F0JnhFqGrVlHbRAKoGD9Bw2sYsR7L2hSatFa5CMs3zggfIO8HVF4FqPRNj9RO0M61lVF2W+qs5kwGtipKJKxHqSQYvhQmtjK8l32SkvCzItL6WaHR5XlGcT1WnIEnWXl976fiDJIhx2mgHRIrr0i4TCBh4g9Fl9XHJ/+VEwLZO2H1D/aIoAxFWYKLJdnu8QR9ozVgQ9M5MioxD+67H1Z98Ff7kT/4Y/+k//SccLf+2ZdOmTf8in5TnPe95uPTSS3HFFVfghBNOsOvr6+v4H//jf+BNb3oTHv/4xwMA7n3ve+Mzn/kM/uAP/gAXX3wxdu3ahel0iv379xfalDvuuAMXXnjht69T/4LyfQVSAODUU0/Fe9/7XjzkIQ/BQx7wIHzgw0ugyGiXKklUpwRaD2CYcxu1jHpaShbMAa1mdMNgzmuxJrO/L8yCOqDuOCfskkMvdCgTo4XsyO8JI1PSxKizsppvFL4CAAizoMSXQlrm+vMNlf5zd8W0cUnsitfmqOCVGBdEkzMRn9tGT3Tj/OeOCG7mABcz+fJ9UC0LZ8dZIB8k8+pMPivZvKMfKcgcLZ3kUA//7MwacNxZD8dNX7wcxzzifhhsXsbi4jasbGjBlcTfXyQ7KJmBtS9/Catf+TK2XnTPAlDMqu1nx2lu6R1evg4rZhfP9k0moGrJzFoKaayMR8HEADBpesgRo9Q23MYOytCJNoXQ6ycjjJtsLqX1qUZFxtj7XBCTaQb6vgrGhKpplmd2KYFUAIlRrpwEOc5fdInRE2dv9U9QjYoDLNRnrAvTuJLBLu57oAUGKjHf8SBAARgiWCOyONMzAymc5xJgYJAYbWXkvWaB1LQqps3MiwMQA/Wa+G8cnOT3KGuqkrmM015Y+7v5miLfb6d9sSejo7teG6Tz5PYu6/wxzyVjCvJSxu48p0Qk10taAMkGHtsGmxaPw+2Hr8awXsQDz3kO6lglrjEijWHNiDGkZJwh+fQwEUgY5jCNDty6b6iTvGoulVZGBTAJYPgIfanfjCLEtOzraprNrLIgjHNeIPmdwlILAIaAE46y7z0xl7Vn4+/qFJ+moEBH/mW121ShTYes/Q0EHlAyTVQN60JlZl6hSb4sTEAckZl9BRe6uBuGZALlmPJqmsxVk5mi7kU397aG5Flxyo+5qbJGkOmF0PXonPx16wCceAKljxI8g5FpDcNpOlz95jficrN5E9akgWcUETgjykShPfp/JEDi72X/l7TOD++/Edd/8bX4gz/4ffzUT/0UjpZ/efl2m3t9o4WZ8bznPQ9vetObcPnll+PUU08t7jdNg6ZpEEIorldVhSh07/73vz8GgwHe/e5346lPfSoA4NZbb8VVV12F3//93//mO/MtlO87kAIAZ5xxBt773vfi4osvxo/+6I/iE5/ejgED7WJAN0zPmLpW7OvjMIEGs/ENjnhEAE2Kp98tBHHEF6l2A2OyzKQrIOVwaIM57qvjnDLISmg6Sf5m5kXqFKlARSO6iGOzMVg9Rz9jYpXA+nIkBpS//rP9b8wjdB7MeYmROrabVsJLUDlLfChwoZHI7cyHSB/ElMxsr9A38Fy/70a0eQYU9R0hregBEvJczPVdMTOatLY01HXoGGgYO06+H26+6l244cvvwSl3uxjH0cNw3acuxa4NT0Z73DJCnRZtDUJDU9z2mlfhhAc+Cbu23ScfTj3C2NcGzEQggwNgcw618l0YQxEHAdWkE6YvmWMhilO1HtBeEi4HqGlRlMEMsChWXIXE1JkpjcgTBchQoIL51bGnSSPS25Ds6hW4N2KWMqgyuJ90eT35KIoeaJgEuTcQhcahSs/FCLQpN0fOau9ABIlzfJzjv2ODQ/l5AVNZqi/XfPLIedeZQdPOgFoCVWR28xwcie8YYTzNzKGrmyCgTjUNrWgbpH/GkDYMagk8qEFtRLXWolqdgMZN7lMtUbts3FQAQ4WPiPr5qBmdaX0C8veAEoA5IEZA0o7oHo8qLHDACshamAAxVcybI5nL9eZFNDTe5MwApYCdbRtOxgPu8eyyTR5QNR3QdKjqZOoW68TNqmYyDlMwgzBtk2ZCzRfbBAwA2PpR7YZqVwqgIf1nRg4+0ROU2NjrmDifGy1h3FmdHHTM9Ruc1zcRwrRJAGkQzIcnvZuHkCMj1iH1N8perAnMBFEQ2gRxZFTjHGRCk6KmKGNs5qVxSIgVoZowqnFndE/Nr1nMp/2ZU02ihPAlM42ygCuMRMHkjAnTHJxE+9M32yosG9yZpL43qT16lqUX1LeP9Zz0Y+XBiBPWgDXnjQQY0PNfxizxKNlE0jvez/hqzjs/XehidcY/tOdruOarr8dv/uZv4rnPfS6Olm+yRJ5rfv1N1fMvKD/3cz+H1772tXjLW96CjRs3mg/J5s2bsbi4iE2bNuGhD30oXvjCF2JxcREnn3wy3v/+9+PVr341XvKSl9izP/mTP4nnP//52L59O7Zt24YXvOAFOOecc+7SHOw7Wb4vQQoA3POe98QVV1yBRz7ykXjCE56Az3/5eAxWGGEY0C2kyDpKGKsG5reSpbYaAjIdFNU4Eep6rUMcpmuxJnN4Ng0BMiGronOM9OZmcq2aJArbDSlLV4RJztKSVGdgAlcuVCIywfPMMSERSZ8p9i6Bh7/39RjbIzGxThrD8KEae33WA9wRfQBJZR2cTXPxLBff7puVFRJ2UkZrtqEF+FCiHfN7vo55joszkar8GeBBgto09wGdG4daTCD04Bx0Fe7x4J/CF9//MgyqBZy25QKcunhv3HbFu7Gye4Sdj35S+mYHVIenQIzYuLgrmTL69riD30v9fFlf2YvhwkYcuOMrICJs23kW6EiqMpUeunVNjGSPrsnv1MSJE1PBNWWpYOT8feasyWAGNZBIYxHV6jQxPQCgJhcxArFLWhHVmIhoOGkzojHAKdqRbhhK0u8mgqYMqIN6nZzZlaHTOvVbpm3Qw95rMny7J21i7gWgJP8Jv845P6vvizatMHUTZ20EKv0g2p5dYWTH1Lu5tDDIXaY7GlHCr4tJKyCOEkBpxBQrZJBj86PO/9MGXFclQFEGfSpgJBAwBerVSQZOfbM0NxZpalI9xvir5qJT7UUazzRfVY9+uINfx5JF6yUAjTofbq4EgAm05XWiAIRINCn2jXL4DZzq/T6w9N9yIaWt7W0ylauAFK1uWIMmjYS7TvWZ+ZL6AQGIg0oAfKJ9g5UW3SggTDozjdTw0ur4n34H00Z0o8q0ExSzP4nmjAlNB2pTBDauJYCAnkFaIqeko2I6aFHt1JTZA0jIXhEhQyBCHNWpr1MJOz2qk9YEMNM1C3BTEaKE6R6sdumaMPzdgguPPO5QSWS4bGor9J3I+YuKMDAk53tQBjBqgmfvCv0mThE+u2Ey3VbQYAFFCIjefxEakAAz9J46oIgKRuLDonQVym/0/2YJEY0cucvWI2c/GAUoXhCoGkG4enum0NSyAHbRXDGwb99Xcc1XXo+XvOQlePazn42j5XuvaFLGhz3sYcX1V77ylXjmM58JAHjd616HX/7lX8YznvEM7Nu3DyeffDJ+53d+Bz/zMz9jz//hH/4h6rrGU5/6VKyvr+ORj3wk/vqv//rfJEcKAND3ep6Ur1euv/56PPKRj8R4ug2nn/FkOfyUQSQjWBojHgDqcVLZs4Q9VAJkGYTV1tqFFbSszq6obXCsXBhUc5STA0qik6SbKPNGMCenYWmjJQrUQACx5+vSY+QL4lo0TOoW4qb3vd+ORWgRhj7n0KDiELY2ztEgzGgq+ky+O+SVz2OJJjXPub7fh69nGjbzfL89RyhHUrMWUrT+tun7BHlprf7pHOmNLxImJQ4It33tI9h/01U457yfRDWNCG3EF25/N44940LQru2IwxQLf89H34NDn/8UzvnB/4aaqwyQXD/7ZmDMjJu+ejlu+MI7QaFKTEQ1wIYtJ+Ds854Joqp43iR0OkUaIluuhTaCpI3FPDpnekDWuzBqM+ZRjrlTzYd/hnoMkJoQJTMhYfBDQBzWCYQ4poPGbTK1qKrEHNYh1dfGzHiKc3ohXa8FEEnErRlgYdJ91QzFon2pP+5aIMCbW9Hs+CBGcF3Zb7tfVel9BxK8NoUU0Lh6rV0OtLHXuigzq894jUUrGpQqgIcD0PoEGNTZjK9pU9/qykCetrtg2Ac1zIyu7dKzRTQ1zhL4WJo8GSjqmSTM3VtH8mHqg5ueMzyqkGm4o2P9dTzPz68AKd6kSes4Upv9Zacx4mGNOKgQzLyO0/oOwc4M0yiqD0md89VYCGwAXAfEQSW+HDk3jYKfgq5F1egkOSVXksCS8z0Q2b5VEG+0v9bADgnI2f5WwFpXpqXiQQoiwXXI0dXaCJp0iIs1usUaXFHS0CIx0RxS9K8UCS3Rx9AyBodaCVsuTYxc5DGLg5CFczbeBJYABtU0Fto8zeeT/o7STgI1KdpeHCZ/VtXipPpgZnd6joQmC2RmAiWE/Le3OtAzzueeKiKQ1rBw00fW/CNHBETvmV5JwtZooEzP8713fglXf+n1eMUrXn7UB+VbKJon5cKLf+Pbliflw+958TedJ+X7pXzfalK0aASDiy++GMdu/yxu3XsOaDh0BCQRAd3oBiIAC/sHoIy2Ilnei2gmIpmxrMnkHA4DpSRt3uGvYzAxIBKsnEEdyTbWSV+USJnzX0yAgkQSPJBsyJYZmjSGuvbFEU8lhkpgWZlBoGpF3e0lTEbQqXBwT5IsKojvTJkHMqQv/Whrpl2RsWOi7CcyT+NxpPL1gE2v3JWJVPmu82E4wv0j/Va/inxAaXLCPOdVZGzadgqu/+xbsWffF7Fz+1kIkw6n7344vvyZS7F04ukYVIug5SVsPOEe2PepD+Kqd/4h7vGw/4zFOhGwLFH3TFr6p23XccPn34HNu87AwduuxpaT74N27TBWD9+WJKR90CcMmmlPJBKSVRsSo8KcJK3mE0CJAZwbkW3emLaOIWq6+X4eyvgwg7wGQNYmxQhMuuT0XodijqjrJNJTLWPknMDVOZ0dSNJ2O+azYMDnAS1lgo2ppKzpiJzMy1RjUIVSUyegg5T5ZwZClesx87aY6yzGplev+b1kEEJdBixZg5SBmoGbaWMmYzRtgDblKqG6Es1PzMDGtx/IgCkEMDezbQxVBiVEibbGOKP1NPM41Yp4oNAHa+z6pcWS8nH+np/DqirqM22OM4FLQJiB2AMLjpZae7s569yPf2+cbK4FiCAmjQOYEcZJPammX/Z+G0FqDiZ7hLROYf4BSLSvCJZxCRKwwoMObYuFIBatTFhtS3MhNfuTtWVrqelECV1DQ3GTrkHOY5jnI9iaC+M2yWnEFJBHlZ0/oY0I663RGg6VnQfVJIIOSXLSOoBHaU7q1fR8RNKoEAAENjChGigAaDYkhxUFJKxJMptEg6r1BtRx0irFtEZsZvX8NT/Ccg+SaoyjnCekvlcyBI30IXI+o2U+7MwLVGh5/PnQt3rwtFrBkY+e6dusf2vkPQWvekTccfuVuO6at+A1r/mbo1G8vk2FUPIV30o9Rwu+/zUpWvbs2YPHPe5x2LRpEyb8YITFpUKabWZGLkyqMvtqGhSaaGZZgBBTT7AiZ/Ou1h0CIuXsFit7BkjPmXRGDxqtzmtYnNRFpfAKEKgDKkkWlmzVCd0gSYC0FH4VffMvldBw2lixJovBntrvHvXO76IyRkTWSPlyBEDQj2Gv42XgispDoACNvXKXoKL48Pw23SUh8YzRN7BF5tX19aJE+SSg2sY9t12JG69+L5YWd+CUXQ/Cps0noAkdVtq9GFcTjNf24ZYvvQ+Tg3sAAKEa4oFP/O3cP5GOZTMr7U7E9V/4R9x502ew624X4sAdX8HmY07HMbvug8Xh1rIPfXMEvR6zoyqQ1kCYtJaxXP1D+uPlzaUKUyRvSiP1H7F4rYWG550HGInACwOTxHv/CitVCWS0Xh5kbVI2OfMotsdYa/tn1j6X/x4J2Paf8RqCqko+CV3M2dfl7+T34xzbleHVteo1QDpeWn9dZWDDrh/6HFACBM/UA+n9ao72RMy0ZrS2Whw4MnDu/Xi09MaqqE+1Hj1tEQfXTmWQ/TN+Pvw4a7Q1XZshJF8bZtEAufHrgw5r4BFAyrziNGDs69Z3VLs3qM2HxvptcyXX7Lxwz8GtWwWCdSjpaef6C2QzR6HlxJz3TE/jdERzut4Ymqle5Z9JdXNF0JDUqhFR3woVWHjao0KHME15dZpNQ6Org5UWmhTSEr+KuajV5QUrg1AkeNXgAaGNCCtTM8cDkpk3D5Pmp0/HuSJ0iwEkOauCmIWpEDFpgPKZWK91BY1XywqvddY8Nwo2vJlXX4BkVg4or/eL8gzVWADeIBTA5aabPoxbb7kcr3/96/G4xz3uyBUdLd9QUU3Kgy7+DdT1t0GT0o7xoaOalO9/TYqWnTt34n3vex8uueQS7Lv9LVjgx2GwtBmq/ZibaEntPEmIeyAzTQEAmro47k51q865xIwwlkzDgKn0LcsykkYCHacwkxWBIGE9JRN31sikdoQuhSkMLeewyJILppD0MDLYAhAUWAgI6Gsy1I8FSMBEtT5c4ciEMKbIMZ0CorvgxRSMJGLtwB87Zp7F+VmCBZh/yBEOfYuYQpjPVGu1/nnk52bKv4Th6LfjX3A9aVWy07qCNw6EnbvujQ0bT8An/+l3ceetV2LThhNwj3s+BZs270K9Bbj60r9BbCfYvPsemK4eQDtZw+TQfiwsb80HYTX74cABp571OJxy5mNBRDjx1IelNvroWwpO3MFOltwOM2AvHbQh2awzJ38cxML8pQg/K4xKGoMS3Nsz/l9lKB2YschZnmn0pjohAE0AD0Uzc1eMZQ9gUBstp0nBeM17v39vniZtnlZIAda861qkHSRMNDX5m6rV4KaRIaKkzWJGIW/y/arcWLWttc+eF/OrmTqYxTldGL66zgxz25WgwByxHQDRagIV4I76890fN2t4nztUJ/I8fmbKJr45rOtCvsc9QFr42Wgf9FtVyJoVXQOVmjVxZtrvqt1qytYv0m6NkkV9zZRfT02bTOaYEyjsYvqtwCmENCdRRrvSfDnSldaNTwuAqhyQwcYhm0lR14FRSdhpASgenMSYTP10nIKrS/sBETb5dex9dCpCrOoivK8BE05aTB8aG0BSyrrzwecXqSZd1kqR7BNKjvkqIEzakqQlDE0UnzShW106I8O0BU267HMzSc5yAXWyrJt0Fo5bgVW3WIOn6YyiBqjHnQUeiKPK+IVq7CUyyMJQ0ZJY1EffPxVO+nOMMy0tzKCPeO5w4W9STTozowYAZsZ1170bhw99Du95z3twwQUXzK/oaPnmypHOjW+mnqPl3w9IAYANGzbgrW99K37yJ38SH/jAa7HzhP+AxY3HZOYZAMgnFRPNCIQA9yQaQDoQSN9hMeMRhz6GSGyUWRKb4kqdFVUqGlO0EnaZnEMb0YmkyUfuAKe47lwTmuU62dqqRIbYclL4Q0hLmEpYVLXpFaY22Rjn36mPlCObAdm3pc+LkR5OR0Yopl1S8AFOYTkJdkjrOKQ8IO47X2+jKmNttuXzv/91r/kD3AOnuygzdfQZlCNoBkif8ZFjNDM9AYsLW7DrlAfitus+gkMrN+HjH/9DbNl2Ok44/eEIVKHrWpz+sGeiWu/wuX/6Y1z10b/AvS/8WYxGG5OpV3+NettpbZfyZp4nFIDSj9Izf/yStjA06YBXfxG9Z6DiCASbCkk/HJOrY+cOeJHApxdp1oSnYM5jYjSUAfVMkzKDGnpVGVKVJqtWoh8Wl7MD7QyD3de0zDPx8aWvPeprP6oqazLafJ81IWTXJUZcnmESaTQY4PkqR26FkQMgUSry39auAJ7D9XDs8jteA+OZVCAx8AoieqCx0Jh4YHmkMXMaEAtK4M3eXF22Lvx6c0DCNFEOCJBK0918ckAOKqDP9iOrqenTN8o89NeGznPTpn/rOgFu/R6RzSvJumRdezZeZGZiaXyRn296cwIkc2IXYc18WDTgg54tsUtAxI9vp8+WcwKnjfFaLe6NjTLWScNRmfYHaiamvowemPSFGCK4UnPZetylIBCTLmuF2nIdA0hncIRoOGJem5DzVDRNYdpmTasGX4hJm6SmpRotLvkpVVYHOGlPNJhBHFZihg1Q48zTVIjpBaCs6yMBEvNvzTjfwIkfTzMZhnsOvt4MUDTEdZqTdJ53FPG1r74Z9WAvPvzhD+OMM87A0fLtLf9WIYi/X8u/K5ACAIPBAK961avwy7/8y3jFK16BE09/KjZvOdkRjTLkoDoRU8cWgcokGgGwZFcSYSVJHtmFH9VM05zV8h0LAcsEOUw7sBJNIB3AI5kef0Dos5QlS3GYzSwoZgd/rqlItpeIZ5folhI4kvj9cqGD2KRrAj6X6ConCUv3zXZa6rY9Re5fvagHhIypjVXoXZdx+kZNuUyDgh5zrQCozxzpeKJ3/xv4zl22qQ9I7sp0SetUSWNIoXwtIRsRTj/nh3H8qRfhi598DdYO3YoD+76KAx//qjxfo5oCAwyw87h7Y/XgLfjsB/8EJ57+cBx7/P1BNCxM8/wBZn5I/eYdYRyK5/xB2KY1bJLQEIpcPzPgJCLNqyTUm1tUwq2+F8oIeWAwU+9MRxJzNZU9U4VshtRfD8oAOntCi1bWd25X5tYu3oVEnfI8AkiJGR3TpQynRqZi1VgwZxCifTOtThRNVe9b3DNl8+0rnvXmT3PGv3+tx+wDMc2damK8mVIfXPZAY9Gmu9JC9K950N83L3IRvor655gBWpjoItdHYtzM1EjHWJltABZZzYOsrjdOR9KazPRFtCiTadaCAaIRkfXgwVRk8DCYrw81LVgCEphTvwMNpEEKPIgn8a3hXr/7Pl46Nn3fFQce7N0+EPX7Sc0KAdvrFk5a6vM+MiZIiwChF2K8R68T4xcBiXhmIclVmySFYpc1EaKpUSGhCVG6LoOzps390nmKKRcQKf0gcfof1tmnhJOfSYqcxhK5TKKkRU4WEsg0PrdHwlqrcFDlVSNnKtmn10X/MFt6NNrWc4Dl5EEEuuk6vnTtP+C44xZw2WUfxnHHHTensqPlaPnuKv/uQAqQmIPf/d3fxQknnIBf+qVfwkl3eyKOOfbe6Z5j4nwY3HQYmCClJN5ab5QDo4lJK9LE5BwIkcZEiJMyAy2b6ZhFYhm3mfiGpHFR216VyOihECYtBgI62s2j/7+9N4/TpKrvf9+n6ll7nZme6emejZkBBhkERMQFBImKUYigSBSDEROC+BOMXBNzL2aBG40iiUleCmIQF36GxC1obkL0p5iAgAsIosAwCMPs+9LT+7NU1bl/nKVOVT+z90z3MOfNi9d0P08tp5auOp/vSlwOtYs5IjBlR0OBKIckYWArpYTNtISltdJKrHUxlOqFHtZjVSklylUD0euJOCHRxyaltgQFqcUrk7st9ETcyS+ZYBUy59C8+4r7tli29AKYsCRBJla7lZU4tb7uedv57r0yf1z5dd0wm/xcRS8vWwgaK1QkJgWKtrbZnHHeH7NxzcNsXPnfxEmTansP8457LdVBiZAxC2edyYbROrNOOZWNz97P2md/SE//S+mcsZDuOSdQqc6cECKQFR7pL5nrZP8OpP7OmbRHqpmitWRqgZJp5hhLK0wg+6/qkJ5MnIhqgaB+D9Lyuu6EaMK5y99AIs3RcC3C+SpbZlmw1mC3UpX5e9gv8pNlg6kepkOysuN2QkwTae9PaSbFhriFCGmxrcxkeW8hbvmfW03+zYQ9X3IykUgSFfaVz2Nxr13mGslsAYD8mPKV0PLeB/ceyx9z/m86cNZztyG0oaiV0ULoB5b1VOi8GZO7QzBReLnrtzJG5IWbmdg3I2SjkYrXRkMVFNCeKmlC/AqFVFyHUnk49PEboWIm3SJKEPVGKri16LITXlMyuoVhRoVKOQLOjMsICzdsLu9FdPO83Ap0uvBA5nrE6lmlGjiSNVIYw4z5KDTny5SG1mM14VhSQiTSCmgthK9IIBhTvVxEM7bhZsYokM9Ts94g15NmKtIJFUqn+rzod3CgxJ/xoMhimK2mpucBCFXmWSbq3Rs0YhvNYMKUzfmTokhcSSv8ZcPO8/cX6TWx9y25d64Wano/481Bnn32bs58xXK+/e1vH9M5DoedFo+mg96O59gUKYbrrruOJUuW8O53v5vf+93l3He/ChC1oUm5l415+Nia8pBO3oXQYWG6epCuqCPGHatwgnpYm8mRLocaRAmyohM2jZUoAUj0ZCtILUFmOEIQjKmXU2FnQtBWVONuRHo/kcpTGYO4o0xSLBKXA5JCSVUaMRZwbZWToS43iS5F2YyVEazpTBQhjak3kwZ9bEk5VF6bQpDJNzH/JkUBicq3UcmN2DA2+1AP007HE1487rzDiAN3UmWW0fsToK6VmYuYlZ245okT5HQZd7/2ZaLFREsmTM4mYgsm5I4FlEgUzu+ByRMQggVLzqN//ivZtO6nbH7hITauuh85NEhn0MPMYh/EMWPbNzCjcxGbhh9heGAdOzY/Sdv6Xk4/+wP2oSmc0C1X8ObHl/4ubciAFaTmxa/LCkvdrM5aO5tuvkhuQmjvIUeoaM8HQiBqdbVYqagrXQVqUpzAhImnIRf+k8G1qicALSb8zmRVRLHygEb5WUGL/eZL/e5puSBIhUarcEDXyq1j69U29jIGa/XXf4N5b8PexpOfbLteG+2tScdjthuk3ticR0g9s3SIWhimk83Mfhyrv9luPnkfVNhO7rmSGWcLT1hmrLnnQebcuGMyz18jdJzP7eTead44ASEm5i3l73F3cRNG6H7nhPWJgi4DnPNKiHpDP28lUk+CRRxDI4FCaD0BtjhLmHpeCMI0j8Q5NhHFajIexzrcLFHeFMeLozwcOnxPh02KRKT3ss6vsRP5IFCiLgzSnJTEERZmHLlnrSymFffMObQ9awKZJuq74kJFUqfVMYXIhoqZa5EkKgc0kWo/QaBC3eLY3ncZA4i5F0N9LKYqYFHn0eiwxSBW1dOCekw4XIdCQFQKMZU2bSipSIsBmEiJYDxSkRJSeZ5FKJDF0JZglq5NQDrixL3NYxW+JqRqmxDoUsmZXipxGuImA8Hg2EY2rP83fvedb+Nzn/scxWJxwj3qmTyEeS5OwnY8x7hIAbjooot48MEH+Z3f+R1e//rXc8cdd/CWC//eTqTN5Mt6MJoxYsyxhpkXXv4FqD0iMgz1A1d/b/qaGPd6oF4s5oFsKwwZa1eSIHXsbtjU+S7mga23I4BwpG5fEEK/hARAGBI6IQxxWXtUdNxtEKGSGgmtNdw0UBfa62L7XOiHqzTJgcbLoo85AJJyqHrOmHwYM1fVD1xbxz7E9qAJwD7ghUAl+Tnkk7kDPeEO6rGaPEv2mBOTD1fSve1TWggLN6zHeBfscubfveTgTNhvHsfqNVEYOL9o4SJkQiBKLF70OhYc91q2b/oVO7c+zcbhX1KvDTJ31im0dS9kd2MNAOOjOwDo7T01vYczCfIghMxY8jLHLSGIVR8UVfxBWRiNpS8pFwhH6jq8RL3wZCBSKyGkIiVR4894Qkw4jZlQmZyWcsk59nQCm4ZM6rEmep2cl8GGzhgLo6n4ZCabTrnjdCWJqUjkTspaTlDznh/zmaFFGJuMYpsAnxEBLV9AycR954W0e8zFnDhp5WExuNtoJahlkv0sU6rXPVypku/dXI4oslZqolyzSFDXuZAbZ6s+MzDx97xoMcfvhhaZ9YSwydpZT4e0k+mMV85drpXAc78z/9v9yez4W90rQqhnsT5eWatltiEKBaTMhf8VCmqsDd3t1PE0iWakBAZAvZEdC6hS03ZCH004l6KRQBSl+2s2oViEZhMoZveVvw7m3Jsy1YBbhc4co4jSMuJigijX18A2oYzT54Gd2Dtha4UwV+kxSa8vgHRCR613SGafK1oIWYHSjLJGsLxXCFROG6RV1vT6ASAGm6noShJkWLah2jbSQM8Zgrr6WwhHlfFF1JrWQwbqXR91lIjasmWBM2NJJOF42ogzaMT2OR2O6fdtmFb7MiFooMbywT8+iSuv/CQf//jHuf7661Mjg8dzlHDMlCDeF5s3b+biiy+mWq0im+dSrHbYvAwAG1MaG3exCXdovT1Rj9IXp6nU4k483DKh1sWceylC9kXjWKCCsZq1XmbKWbovqShWD/q2iq0ME81sSx9iplxjvak7U6ffm/KQqsSsE8MrpWpAVgqtQBHN2JbClKGyrskwIKqqaiim0aXZZlhXwfVJQajvtGXITpq1WEqKumqL/k5ICBqJevijBV2SWi3My1IWg7TKmmPQB6ybfE/lHdMFc5+7vwtnrPtgYu5HbputPm8xFtU5OTvRTELByPBGtm/8FWOj2ymW2lj0kjdRKndTaEp77kyMsun/YEo+m/OUEU2Jvh56nWBMTYairooNaSiMNAjG9Ms6UNZAE3ph+isYsZ1p8gYTrc7mXhVCWTBz32fKzZq/BTPJiGNbecqSm3yLMFATbiEmTnBdQVAIJ07284K0Va6BXdaZLBkDRhSjem2EavJuvA3ABE+J8Va0ECX5R7Qwz4pCIRsuZYSGCW1zvTJusvxejkvGseojlXkW5Tw2+XPheh7dcJn0w2y5X0g9C/lJk3NNbLEA0zjSTESDIBVRLc67vd4ubrUuN9nfHqO+ZrlcJGkmlfmx5ivOuWMwk28dMiZr9TTsyoRGmeaIIg0FtCLFhB2aMsBhmIqWKMqeWzfsLnDuIfN5HGfPZ/58mPObP29GlITKQ0KjqT5zQwALYRp+ZjwTrojOv5tyOTeZsZhQK/d66FLGVri4Fc6aEZRLaU5LXpS5Qsqp4marw2U8iDJTxls2m0pAVstQKqbnw1wT9zzr82AaymJyYDQijhH1ptoWqJzWoioiELcVVP80m1sqCOvKCxJXAtVfZSyyxh+bU2retcXQ5ocmpVBFZOhnQ4Jk/caH2LL9Ye6++24uvvhiPIcXU4L43PNunLQSxA/++P/1JYinegDThf7+fh544AGuvPJKHn30bvqrb6arOjdbh16HKKvQKPWR7VbtLCNMCcsgVA81t3yjfrGmLnpn8oXuMG3EQBiC8awkqOTCOCEYHU8H3ox0E6uctc+ZPImRMftSL25RL0sZBrqbtI7zDZTVrrBjBFkpIkQRGapkwUAIFUYWo1zLOtwttbybSSQIEmiCCGKKTfVCSXQ4UKAb7pmHe5gL1TJ18aU+r6GJrVZGKkSkQuNs2FQjVlXSzPvObKuRKBe9iSE2cwuJrXwGyquTmZzH0l7HxJQjBVsG2mxDDSbdbsvclD3hip0DNQ84E1gRS4JE0tU2j64T50GSisAgJ1CQQCwJtcVQxTKr82S8VmmvAr1urKrTmHs+1N4UU0Y7rQSkwhxl6MyDC4EOO9QHGAbYxG1I7//MsSnPTUurtf4+gzsZyosHUzEJVNnRCeexhbXeWG9dL4addJobzvnOfO/8LOMkFR8iUONoRqgyXUoAuOMWpqM8qPVs52gVbiJNkrrZt9lVEIBptJc/pkA3ddQ3pMp7CBDmBtX7UxXCcgLL7kB7fAp7eD3kQ9JMVI4pUQxWXAkzITfWauMxNt+Zv7H8xNXZtnTWQ+gQQLVSbtzOdZsgKshazY2Xwq3gRU5wgPIMCCccyc3NaDUG420A5Ph4Oo5AOCFEJfU3FgYTBGjmvjYeJzdczIh1u90gFYGGQFk1pOttcc+pPq8ZwWG8YPZEONex2VRCxuwvSayoN803rXfCmbin49HrunlE5r6PE2Ugk9KGf5n9ikZTiTiTGyKEDbdVye2JLTc8IezTvGebe7hHXHECythh7g2ZQKU8MYfNHEuSIBrqeshySRtT0r9tG3YmJWK8rsJX3bEZbdxMCALnnqopI5xoxhRG0/LJQlcFJYCkUkCGadPmoK4aWob1mKSg3llxo85za/8DUdrFj3/8Y8444ww8nqMVL1Ic2tra+OY3v8knP/lJbr75ZpbOfjN9M5dnQjREI8lYTUxirH0JQvpAzlmAJ5Qv1ZZim7ioLXfCuruTtAu1W/4yb1EG+xDLTFyiSIWbFEIoizTETKiJJeN1TAUTWQjT/YYBIgx1AyjnZWPLVuqXWSFIj01b7CRB+hBO1LhDN7/HtT7nUgQE2MlrUiqAhKAZKQu+8QLEThd0oc6hnWCbl2SgauVLXT3GJDwGsZqUi6YSWGGcpOWYzfWLgVAva7abuD0F0mpTsiDshN94pTK9RASZxorWs+MKlf1Bbzbf9V1o8WEwscqZ9XS+j1tW24hju75wKxxpgVKPnM7sEAzX9DWTBKM11ZHcWCujGMLYWh3FeF1NOMy1tmVVZe5vxJlsmbG5oTkwcVJhJnxBoCbxLcL11DjNpF0go8jG/QMZ74twx6HHJbW1VrgW63yjQ7P/RjMN0ZGJs1+JbDRVKI02EMg4zoRbqFsktOOTUipRocdlRY8I0gltHNtjScZriECodeNEbV9bvqWUyGaEKBYQYUhitlutqomn+b1U0ses/qZFGJKM1wiqjiXQTG4Txxtjc/K0l8aIH/fZlMSqSIQ5P6A9AabgRpwq2yRX3UktkHqhXI9OIpGRDrkNQ3uubHWs/CTelJk2HgUz6XbFk9tPxb1H3bEkicrNyHkCLc4z2lTwmuA5sGF/ia5+pYRqJgwn15zTilVX2BjRUiio61/Tz/JyCaIYWa+rc2OEYxQhm7kHrhmTyPXHscfrCIrAObfuuZEybdZqku/DwHqgRBQrUWmMcsZj6XpdtEAQ2vM/4fxbT41ezvS6cULuJoRwuefTiMs4yfbGiWP1t27ub3PMxnvmCsM4RtQa2e0WCzYPx7YZEMpzIxrN1OsjpfUUiaJA1CLVFyYUBLVYGX6MwRJIqgXVikCXz07KBWUcFaoBsOmHFtYiXelTqHdWI2K8NsgzG77NyS9dzL/92w/o7e3Fc2TxOSmTixcpOYQQ/Pmf/zmnnnoqv//7v89YfRtL5r7OJmIDBHWnYoprHbKkD0zhxru6D1HnMyFdy09qzVJJks4L0bzwXAugYzWySasmRMRMFCIQQa4GvkFbc1UeixYwYzUC49aWygrkVkSxpRndl7QwCekxJpbKlKKVSZL5g8s08nMNmU5IWZBEtiRkUI/ScsdCNbyUYVrdhqLKS8mErQhHVDgWLlte1Lz/mknWSu2+2yLnOsa5sUqJaOhEepnrE2OsZRKEzstQ3djVZ3vrKbNHJNkSuPozl2y1My06EmxIm7JEZpe1lWTMMUVJWlrYvPxjNTEIdjtFFOIkI4hFLDKx4AJSC2Gr+w4cT4seQGCENOmk1R6rK2738PB2vTWZibUuM5wPVwp0qE3eO5LEIIXyfLTcjzOJip1JjntMMak3RIsNmUgtWNTPIkwgjEkaTUSgRIPZpxSO90kI1ZRP79uOS0q1iPu7TLLLNtQE3Ux05ehY5jzJWAsFfQzmTMiCEjcWIdLjzHuMzDpOo0i1XJx6/xL3d0ecBLnJcF78JJH2EjsCyRoj1PmWie48nghEsZg++zKiUQsCmWQEq8nREHGQDQOENETJhFq5zzx3Ah3Faa7HeCooMvdbICAJkDJS+SRJosPq0kWsKNGTnIwYCRyvm5uEH0WpWC+XkCOj6b6jKK0kmMRZQa9FtRHHFnPeDOYecMPK8uLNFSiBI0SMqDa5KJDmfLnrue9FE4frnGfrmXDHb/72INto0v3XGji0R8W9L835Tdx7VJ/vQCDHxrOeQXMtKuXssTeaNvdTPd+lFV3mnSz0mGSpqI0aISRCNZEMyAiUuFpwqrMFuo2A8viLRFIYj224sxGHAiCSDIys5ekN3+H33/tuPvvZz1IqOTl+niNHqynhwW7H40XKnrj44ov56U9/yiWXXEJl4ROMrD6JEuX0AZQviek+eG2FkyT7ef7h6a6b/1nqyW2+1KchyW0TJoiTdJtJNnTEQSUjOtZB82C18dtpTLNbRQbt+XEnFiIM1EvGvDxQE+NAZkPiAlMfX4g0xMX87npmElKB0RS2F4dqlpn+LAMdhuTGCQvScev8ITUxdzpOu9fNiBqJSoKE1PsgVHlgUy5TCnTDSac/jpMDY5M9zXmUel0dKmhih9PeNs6YpRZTNgxIfW5CzjICj9TaYr4zZSmtByVWjUEBxxuU6EkwquOy7qZs4qlttR1ttTT3sciHLbrCWYp0ogIQ6HLQSZIRM/ac58+/OU950WDI/x3E2fvbtbKnAkUiYx3upENgMkTOfozFvlTU23Am0nGsJvO5fSsPRoys68RxbbWXUiLCUH0Xx7guQxljJ9pSJsg40B6H3PG6/U/29rzI/97iu4zYain+WoixOEaOjiEqZS1i0nCr1JtkrqEOD3PEjtqXnnDr+8bmXiRAYASPu890PbV9I4QKTLB2y0QJ0Lhhcy2URyVO83HccZptG2t3EKhwKCPOEokIpf3OXuumEgEqNM2ZsDvL2O04nq/M+XUQYYDUyfSy0dATXFV+WHlz1Dm0a0WR9vjo/C99bTIGGSuqhBpvHCOKBX2tGul1y4QiqpmUFe/mnLrjFY6HJ3+PuaLB/S5OECJ9Z2SeCe71sx435+/aLRvuLp/JpUmFogo51WPJ5xdZQZKk+3C2ab2UVsyS9XZpgWe9c0EAxaKKOGimHlzbdLMUpM9MK1D0fiOy72+bP+SMF6wBTTQTm6cimonqVQYq1LnpNLHU60op2bDjMdbuup/P/P1n+MAHPoDH82LBi5S9sHz5ch555BGuuOIK1te+S2/yOjpLcyaKDkgnrO6D2SYvJtnlXUuswU1Ulc5D3LX+uJiJpAlj0JMjK1Bc66R0Hr75/RkL0QQRpC3prtfGWLZA14sPMGFSyq1fSI9XH4vQIkZVOBLpg9wkH5pz4yYuC6dhpuPGF0JPTMzv0ky81YvWPrwlGUumrUAm0yooNhHdnXBrjABJzcpSD01iPEZpTxE9J0kkgZQkBTM+997QLzMplFVRqrEJk/SZOKWSzT6N50WXZha2nC/kw8hssrsQKgRNpNsNdLlgdU318ZpKX0miKndFMaIZqvymKJ7oATHhGeYeMPenO6nITW4mfLa3n92u4fn73tmWLXkLSnS73gZTGUsmahIIaUgW2MmWzYXQP5MkOjckRjaa2Y7uZt9xnEk6NpN+UYy1EIqVlgxUjxmSGAoF9fOESVdOfOypGeNk0kr07WsVbaEP8kUGTPgUgFS5Luk5zSX5J1nvjBmL6m2Re95oMonkCdnnFFjxofapBZi5J4SASCIK0l5bgkD9PRtxJQJkqA1NzQY2VE3oe0MNwibYS5NfEpDeG4nEqh6ZIOsNZXXXVvj0+Pd+3mWkxIooFNTPYaiek/n1k6jlec1fVzmuJsfSfd84180KDiP+jJAzye+u10mIiX1yXFyjQmYQMlsty+zf5ns4zxVI95EzvljcZ4NzL4goTr0VrcpWW4EQTbh3pTTCJBUq7nPBHY/9PAigWFDvQ1sEIYAgTAt+RHFasMaMy4iQYloQwTZGdgSKiCUy0HmbjdgaqYJGnBYHyIXaSSGIkybPbfwvGsFmvv/973Puuefu+Zp5jgx7MrQdzHY8XqTsi5kzZ/Kf//mffPzjH+dv//ZvWdr5W8xvfwmSJDuxd63Abtxr/gG6pxsvltmHrDMZaOmON3X2pbTVb9T3sYp/dUMkzHqAa+mbEAdtxmkw241zL0VT8tAtP5mo8pPSVDRzj8t9cRkxh47DNUKirqrHmFAB4VbhcV9EsQ4dS4BQT8yFIKkUCEwyt7YAuuWhpRAqhwZU1TZQCf3ae6G+IHucAptQL0UqdpJCkC4b6N4uJJjmnCSOvjHvIWm2laRljd08VRN+pL0xqjOzEaxaMAVCqRghVNMzM3adcyLihCQJ0vApSea+NMUeCADjMTF9EMaaqRerma4zwTJprof7r4ubp+JOMFut70543fOOc8/nBLZMnHAa9CTDbjcNkbGTC/33ktTrdgIsc2LdehmdXA1r0XaXzbk7ZKORHbN7KHvwXB4tmPEnuneNMM8TtyKYtuyr5GbHe9yKFtfa5ug4z0hplpNS9/GQuuytnpg5lnEJqfdYI0xomzORl+b5YTq9O/eHlBHCVHCKY6QIUk9As4mtzqa/U9tMlKW9kf7NpPuIM4KgZfFMx/CUNCMrdjPV33IeOVuAwAjmfGW2QKT3LiCjJogge93CUP3fjLP7cj0v+joYb5TUOWL2XWHyezJVJ3N/z64A0c9j2Ww675ggPeeZd1eCyVdS40qyeSGEqWfWNWjYZZ1JvHv9zfNPOh4UE4LpvGOkuW7uuzORpB2G1b1oc9YAhO71Um+q967rQTGlzYVAVsuZkOXMvaCPP6ibsaALzCS6mqizuH32C8ZrO1mx8Tuc/NLFfPObjzNv3jw8U4+QsN+FdPaxHY8XKftFEATceOONvOpVr+KKK67g3EsX8Q//8A9c/NK/UAu4lmPjRXEfonkrUT50xbVKm5+dh721LrpeEmvRM1bl3EsLsCERJqnXfcnG+iVvEk/Nvsx43Umia5WLYxUeFqhYbaEtTOol21ThDKYZX5K+fITrXXJfYjonRmorlC1HmwTpOlLqUK/AHrcIJERSh34JwvFmWgs/UH1a3LOujtFYxiVBvYkwjQgT0tAx7aGwAifSokf3iwFUvxotBGwZSB3CJpoxhAFBIlXlMceyqoSHbp7mNJq0l0sLlPQDJU5sPk9TebVEHKuxhrofTShUPL6ufiZj7AtRhsrbJZqx7Z+TKd+qjy0VQ46gcCcB+ZKve8K9l6Xzd6G/M71MlGctSV/4ZiIjRM5DgposRZHtN2ITxMnd+yYHRK+fOH8LgjgVju7nUnk/RODkoIgA9QeSs0jDRMH2YkeHh+2ptySB+huWtVo6wTTV1fQkWSaSoFTMFAIgTpBRU4kCU9XJ3BeQCo1iUSWF62WkDnWyCeRu2JObAxPH9rpa9D2TjIyq7ZVKTqEC5Tky95aoVqwXRRQcw5AOC0zGa9YzY0SLFRHmeJ3t2RA0c6/Hib13rdgVIpuLpMURIiCJGlaw7Pf9J3UYYaBCOSVaxOlzFpTUOZG6CIYoOKF84BjM0rwVIURWOJjy0HGCCLUIaDaUwNSTelv22Vz7Qvb9JnV5blEuZz22JrEdMr2GTIlgs5xZ347JhMc5wg5Sw5EVP/Z3R5TqQhL2PjbryWbam8aEhwXquIRbbVOI9NhNfk6xYN9TOO8WO179fEa/fwD1LjOCzH2HJBJiwbU3v4b3vve9vO8P3sctt9ziGzR6XrT4PikHyJo1a3jHO95BsVjkm9/8Jte87h9TUZErswlMtDq5p9u1Iu4pudjBNlJz13esctaSDKlFyIwBMImjE8ZgXozGw5Iry2kf9o6V2u4jfywtXOYTMOEEQaCqQOl+AjQjVUEFstV2hEjr8ecphKpSiq4fb5MszXpGdGj3ugwCK2Rs0y53P8YC6lQ1E653yBQoMKfItSIHYJP/IVuaWghswnchyAoUx4OS7lNNwKRTClk1KlOepKQU2jGaMsIikjapMnOuokQVe2g0bSJ82u3ZER6uULG/O9/t6Xq6SNny/siIbOHclzr+mzBImwSaSauOr087XSsBNGGi6vy9yXzirz2hrtezxff+MXh4CUI76cv8fCgciGB0BZT5Of8sdLYrTGUsu37WoCTj2IYVWoErndCt/PiCUHt5mhOXmwJEsYRsqmpVQbmsizcIgo52gLRaWrkM9TqyGRF0dWpDgvGWRntRr2QNZgbTd8V9b5lJfSEVq/Y5YfrJBIEVLJl3YKsiJG7UgBtOZt5frofeNciEoRKvYSoO3YILmXtF30OZd2WxmD22RJJ0d+jjFtnnp/OMtW0M9HJiPFc62ow/ECQy4ay3h3z2s5/lzjvv5F3vetfEZT1TgumT8rrX/MWk9Ul54Kef8H1SpnoARxuLFy/m4Ycf5o//+I8544wzWMxrmFM6TudYZC1RqmpM1oUPpA/JQHsW4hhRLO7fS1c/ME0ctE3qNJWKzEtUShUGJHSIUF542DABINbhYbo8mDQlJa0lSgmwfLy01LkYxvVtx5K3FLmdv0GVbhYCQm313OOLRqZ5Jc0oTSzUW2oAqwAAM3tJREFU1U9MfLCppR8kTvM1E7pkq8qg81b0vl1PjzksmcYli3oy4ThMbLAan17PFUaxTPctdBOyJOdNEALq+p7QZaxlUYdomUXiRJdJ1l6hgvK8UAhsQYEgSqCgS0TXJUm5oKpyNXSpS11uVBZ0eUzTaTmO04T4YiFtombOW6DH6sZV5/OhcveodF7Kth+EsRiafiHuC9oNH2w6oVbG+mlLrpr70ZmUmOVlQuJ2uG/l9ciQMxQcax6RqcYVJZMhUODArt+B7F9b5937TpTLyHpdPXNzhUn2GObnji+Jke46UxwOKJvGKyBJaqq8uEwg3j2YLhSEwIj6sVpB1urI8XFEqYQply2c57uMY4JyWb2LanUoFrOGLPRxm0M3OUNJUyf7O7mUYWjDVoUQygOryyrbhPdiwXq2ss+IZio41AZUmFbOe2LD5rRhQxSVt0+OjiMqZUSIKuxiqtGZMMFSUXmLwlA9sgNVVY5iwYY/C13eXtQbyHLJPoNlVXlqRJR9Xgld9UsM11Qkgo46EKZIT5JQaw6zYviHbPhOlZ/97Geccsoph3wfeCYfkaj/J2M7Hi9SDopKpcIdd9zBb/3Wb3HNNdewO1nGCe2vRrh9G9ySnu4D1C2xmQlVSJwKJUHriTtgSlmKQsGGCUx4VRv3tRErUYQIitgkXdfabCvqBGa0WUGTKXfq5K3YCjHq+CSoZGEps83zpO4Z4MRO2/4T+mGOm+hcKSHG6+l+y6V0WSchUzWsSwWR6n6uQ8TcajBxolzuQKZammwh3MznIics7P6zv6uKRkkaa0xu+wmYc5qWYJa6GWasX0IJCQVVZjkwYiXNbTHLUNDx7kLYbRqviiwEhKNpfoRoOJOr8YY6N66QcJNKCwXtwdDHYMSbERpGeAL57u6ZCYhbGUfonJ0ogsBYTJP0nrN/I2mYocWEZuQ/d+7Zlt4S1/vTivznXqB4DgBZV7k5Uy0ujiiO5ysZHYXRUfW7FjVA+u7Rz4IkjnVp5cCGT5mGorjL2hDWpmpabELGyqXs+y+Obdid+d3SjJBRLTVmOOF/AlS5YHd9Hapmwg7zoXNyeDgdYhiQjKclnE0/IqG3SaGQennM8TRUuLOJKDDJ/WK8ro6vvaoaV8bxxIagpsy1Sc6HNEFfRmyvreWZkR/xzssv49Zbb6W9vX3P183jeRHhRcoh8O53v5szzzyTd77znQxWfkF53XLaCu1pIy83ntQpG9lyYiYlItaN50z8NtqdbCrTFFUFGdOkzbLHMsWJE6bgWLnRosiE0BSLCCGdREo97lYTuURiy7OasC3zwLWVcPTncZJtdGesUSZUx1ReioxbP852No7jrKXf7N+EX0mpJtUm5luLM+l2O4ZMxSppQsv2lS/kWuHcEDK3apq6mNlGXg62KosbhxygPFzmZRsnqidNGCBEotYx10x7WoQRDLZyGKn3J5aqNw2kfVS0yMgIQPc4wtAKR4HjtdB5RjZW3P3XCAO3L4b50amkluk5YMvEZr2LFrffiS3X65xjwPYUcStneS+Ix3Pk2B/Pl5Nf4nqazITbPBndKALZaCBKJZsHKXTYVzI4mBZKaKgKbKKojHI2L8cwobSyeT6EJAODBDpBP6nXEYWiDhXd9/EkjhADkISIICAZHSdor0KckOweVM1RS0VMBUvZlDZUTJRLqSGoECLqjYnvCeO1Nu+uZlN5ZXRoWhIIVo3+nK3RM9z+T7fx3ve+d9/XwjO1uPOFQ92Ox4uUQ2XZsmX87Gc/4yMf+Qj/+uy/sjg+i7nFxY7V2JlcYyZ8E/14slYniVWyru1HEeQeaMYiZcooQraLtStWbFJeknpWpLA1+k2pShnHiChSCaxOxRW7TZvPItJ/M8fUwqodk41bthN6M44k7RcBKlnUEXQ2ZMwkaUKarG9PmGOhT7JeEeMilzqvRYWlKWEimukfvjTHl6+UA2l+kZvb4zIh3trxQhmPhvG8mDCyQsiEXhDmWIwnLdFhdyZsLAAa6hgzHWjdpHRz+p3r7ZZd3lPJUgKRhjzI7PbzuR7pus61TpzrkQml0P+GoRVJaUjYPvJB8p5IW9XLuc/8w9vjmb5kwtq04aqVA0qHjNncHtdb5RoiZKyakmrPbnYb8cSfneWSevrMsCFuB3lMyfi4ElEjaRiqHB0jiMtpKwBIBZZJ6A8EolJRYsV9n5j8P2M4TBJbmEBGMePxMCvrD9C7uJtHvvkIJ5988sGP33Pk0NOiSdmOx4uUyaBSqfD5z3+e17/+9Vx99dUMjK/n+OR0CsUKJkmSQKT9G0z8PVhLkGt9MgmNQFr2EiZYstXqqgxopmKRmzBvPBdOmJl0J4JSpnM/0/8hEHa/Ng/FeDhMjo32dAjd/C5TZ954TgyJtna5SdFu6FmgJ9Qxajxud2VzTPq8qV/MfkwVKcdy4Yg6QerVUSV+g8yEXQiBJCbTs8FM9N3tSe3JyQuTfIiREQSZF6xMOwibEDMn3C2TH2HKK5uGmO528/syLzv3HMSJim2OYiWIjKcpYuLL3b0HjNgwFcucsAkyPye5UMQktWTmhYbx2rkNNlv1QHHEdiYMkZwwcdfzeDxHB/v6m5XSvgsytq7JCs+czGeG4y2yJGnZcmlzT7WRSkcLiJIKYZPDI4hqJR1ToYCp9CZ04+Sk3kCEAZtrq/hN/HPe+77f5x/+4R9oa2ubvOPweI4ivEiZRC677DJe+cpX8p73vIeN255gxqrFdImZmMoh5uEmm1FqbdpT6IpjRcp+HucWm7i+fdi7wmd/XPYtyo3KSG/fqY4jCqqmvoxjAqeJpDT19N0qX0GACLH9DYSZtGasSSKd/CZSJZyYiXPgTJw1Jjwg/aB1DglJkuaumOXM+TYJi7Hcs/jQ+R8y70nJiRAjRCZMvp1xmf1IKdM8DXcbRhwlqO/d4410KIDZD1p8JSL9Czb9I3RfC7vdVs3hgEyIBLT2FomAZnOUoWg7XUEPhUTHYNtQuCAVmGb7bq5TK+9hJtzLTWaWEwV0fnmPx+OZZtjcFid/U32uq9jpd6Ws1wmc6mKiVLTl+2UYIut1GmPDvFB6ipH2nfzLnXfz9re/faoOy3OQiFxUwqFsx+NFyqSzaNEi/ud//odPfvKT3HzzzXziE5/g3o88jAhNecW9V0o6YPa2/mRU0bFhOq0r0yS1nGgCTAlPQCX4Nx2Rka8U5TRyEyb0KkY1rAJsnxe7Q1VVrMWUOjtmU8UryIqS1sfmen2cZXS4mEhQzTv1OPNiKFPG191u3rsjpU3wl62S9sEm/tuu7874hEy9JiLW29UCJt+8TJi8qIg0dMsVTgbn3BpvmPIwSXbW1vPE0P8hFAXqcpzXFC6kozDTXjMhHIEJmOZoaV8fI1jibAlXnDG5fQx8SJfH4znayD/vDW5khPnILToQNdU7T3ujB5vbGDhxPUvnz+drX/tvFixYcNiH7jkM+JyUScWLlMNAGIb85V/+JW94wxu44oorOPGCE/nKV77C+xZeP9VDOzI4McETwoxa9AewnhlZV65x8xmoSXSxlCltC6ESKkbwmHhgtxGm+dxqB5nN8TE5IFao5LwwJvHfhIvp1vFSlx3OPECauWN0vUV5r4revtBCJD0J2mOkyySLOPegM14x8wB0RJGpuuU25cw0znPDsVzhFKYFBsy6zbjOquFHWTP+KwA66CaQAU0alCir65Ircw1OEQa0UA2CNLzRnG+3Yo/NNYrThFePx+M5VtDvSSklb/jkmXziE5/gL//wL/noRz9KGIb7Xt/jOQbwIuUwcvbZZ/PEE0/w4Q9/mFNPPZXb//V27nz3t6d6WFNKqxKe7mcyiiAICao6iT4spc3+jPU9kUrsaOFhxErGep/ItLeLbRIGRE1VjcVO9mUqIlwRYz0/Sfp9IUzDx4y3ppWnJna8BK43J3DyUSDNVTH7k27ukEz3YSb0Npk+15NHCxjblwRSYSLjrAAz+3Nzm6KIgeY2Vo38gh3xBvtxD3NpUKeHPs4svpEwkqlXxPXcmIpzpocBTghE3nPTMrTRCxSPx3PsMSZH4Owh7rrrLu6//37OOuusqR6S51DRdrtJ2Y7Hi5TDTXd3N1/96le55557eP/738+bLn8Tt912G+/sef9UD236ksSqLr8QaW1+AGcSLooF1R05KGTyVWwHcy04ZDNO+9ToLtLS5G3UJaIQOsnnYqKXxJQ/jmKot6j374oWgxFNOuTKNvostggVM7kbRd11OXIS5oWwY7flmguFTK1/tT+3ZHQuXMoNoRJB5hya74fq2/jF8H+yUCxjB3AcyzieUwiEsuYFFdU9V+pyxbLRSD0hzvG0zHvyLmuPx5MjkTHb2UQvC8g3fDwWkFLyrjt+m4985CO87+Xv49Of/rRPjn+R4HNSJhcvUo4Ql156KWeffTZ/9Ed/xKmnnkqvXEqPmDvVw5retMohMZVg6jFxvW47QYc9s4h3DRB0dNhOyKJUSif/kHYm1kUARBioUClT+hFyFae0EAjDVGgYT4ZbHtl4NbSAIAhsE0QpJTKKEaH28rhhbG4JymYzW1VLfy9KRTVmM6Z6I/Uqub1LTBlmI1hMGJVbBcF6bdLy2M36MM/VH2O2mMcJLGc76ylTtQIFdBx1oJJAj6lmdp4pJ5EJowwxwiB1xgkIKVOli5lUxbHb0C6RCdvYwFp+gwRewsuYIWbv9/pN2WCAHXTSfcTP47gc5Ul+xhADnEGRHvqO6P6nmrqs8Xz5V9x000+55557uOCCC6Z6SB7PtMWLlCNIX18f//Ef/8Gdd97JRz7yEXbV+lkSLacgilM9tKMW0wk63jUAUpKMjKgQJEBEkS7/HKjSjyI7SbdRRlJXKNN5GhnLnhYAMokh0GWUZTMVCS6utyORKhzN2ZcohNrLE2TdwVr8qP4wUldCU6FsMop0OFeLnJlQl0c2uR9uZS3ze0704DhRmvEYPx/+D6qig2WcQSxj5jCP3/ArEpmwWJxk84WUwCnY8+3xHC7MBHwL6xlgGyDooJsKbSTE1BhjlCGOly/lOLFsqoe7T2IZs4qn6GEuPeLQJuR1WWML69jAKkB5PSMifslDnC1/m7KoTlhHSskow2xlPVtZT51xYmLa6GCcUc6Wb96nUIllxBgjJCR0MoNABCQyoUENgaBExRpl6owzyhA1xom19zUmosYYdcYZYAcxEe10MoM5h3Q+jiaklGxlPatKT3HJ2y/mtttuY9asWVM9LM9kI5mkxPlD38SLAS9SjjBCCK6++mre+MY3ctVVV/HCC0/Qs3YRs7xX5dBoUWHFdD8WxULaINPgJre7fV6CSNW7b0YqdwVSj0TkiIV8CV9n36oZmZMMHoQqN0ZKm6zueiSE23xTCOXhMR4Ws5183xnScaSV07JPtZZhFHr88dAQv4p/TFW2cbp4DUjJr/gJwwwwi7nMoV9tPo5JVY/Hc3iIZUSDOg3qvMAKxhhmHos5nlPooHvCvbxS/pKtrGeeXExRlKZo1LSsGmgm7yEFBtnJ8zzFCIOMMcIsORchBJFsEhAQiBApJRFNChQnHGckm4QUGGeUdTzHJlbTxSyO5xR6WUCgnz+jcogn+Tl9chECQUzEOKOMM8IIQzSo0UMfJ3AqbXRSokRJVHhK/pyfcx+BDJjPEhaxzJ7PRCYMsJ0trGcb6wFht12WVerUbNXDkAJV2UGNUSKatNFBhTZCCggEAQEV2uigmyUs5yl+ToU21vM8sYyQJMTENNE9R5BIEgICQgqUqTKfpZRF5TBf0MNDXdZYVX6SZtcY//vzd3HZZZdN9ZA8hwtf3WtSEVL6MzFVJEnCP/3TP/Fnf/ZnzKr1sTQ6xXtVDgdBaHt7iFIpW/rW7cpu8k3CUHk2wjDtSJ+YpPF8z5Q99BkxoVhGCIWhDZkSxSKyVkura7Xq8+KGcoETopUKK7WKHrubvO/8a8s6G29IHCNrdUbqA/wkuZfzeCslUWaNfJaNrOaVvH5qJ32eY4JINmlQRyDYwAts5AUi1IR8DvNYxumURHmP69flOCt4jBEGmckc5jCPuSIt2dqUDTazlhIVepibvaf31JvqQBCCccbYLNeyS26hxhhlKtSpUWPMLlamwnyW0k0PT/EIMU0CQiJUvlpIQU/HY0IKzKKXcUZJSIho0KBOSIGEhLnMZzEvoUN0tzyfz/IEDWpIJCEFKrTRRgdtdDCD2YRiok0ykTFDDBARsZoVDDGgwj0JqDNOSJG5LKCf4+gSM5FSMs4oNcao0EaVdiQJY4wwyrAVIqHYe3WqrXI9W1hvRYggICSkQElLIRAESBJqjLGBF1jICZwkXnZIl+1I43pPLn77W7n11luZPXv/w/I8Rw9DQ0N0d3fz+tP/bwrhnp9d+0sU1/nvX32awcFBurq6JmGERydepEwDVq9ezVVXXcWqVau48847ueW375jqIb340EJAlErZEKiWi4qsYDG4QsYuJ9LljOcD0uR5RwCJUJXlFaWSypsx23a8OWa71rOjv8/0H3HHo3YyofyyXb9YTMepPUKy0aQ5Psqj8j66ZQ8v4Qx+wf/Qy4KjInzGc3TSkHW2s4ltbGAX2wBlMZ/DPBZxIjNQk7f9TaSWUrKNjYwyxHqep4tZdNPDGMNsZxMddNOkwRjDlKnSThcVqgSE9LHwgHI4DDU5xi62sZOtbGcjPfQxm36qtNOgRklP08tUiYnUBFwfTyITxhklJqJKO4n1HAgqVBlhkN3soI1OQgoUKFClgzrjlKgcES9CTY5ZkVSmQjtdU57Yvkau5Hme4gzOParyOOtynNlvL/Hwww/z+c9/nne84x1TPSTPYcSKlFMnUaQ86UWKD/eaBixZsoT77ruPO+64g8suu4xL3nMJa7+2e6+WRM8BYhPP69aSKoqlbBiVWRRSsdGMrBARJlleCxUJVpyIgirFm6n+5ZIktiKWyetQ+SZOIr4Zo/5ZjUOAVOLD5s3kj0t/JxI39CtGigBkI821MaIoDCmERc4ov4mfjfw7fWIRC+TxPMPjxDJiISd4b4pnAkYUjDNKD3PpFDP2uuwIg+xiGyMMMsQAYwzTyQx6WcBJnEGFNmKig77XhBDMRXlPFsjjWc/zjGlr/ss5j26h4v2bssEIg4wyRJ1xdrKVgMCKov057q1sYC3PMsIgXcxkJr28igtoF517XK9A1iseiIB2ssuXSXNIZjC75ZhKHLn3QEW0UWF6VZmaxxJGGeZXPMxM2ctMZtPJTLqZRUEUkVIyxC4imoec8zMZSCnZyGo2d6/iwsqFPP300957cgzhq3tNLl6kTBOCIOADH/gAb33rW7nuuut4uucn/P3f/z3/+8r/b8otWS86jBhwOgHvlUD3/ygU0xAsNwQMUqEgtNfDdJR3O60HATKO1TJRBGGoPCqFovKyOKWSTcPDoFxGNpqIMCCp1zPhahnPihYlMo4RJuE+CCFS1cmQkjiJeLbxKIPRdo6rnkK/OIFK0ElDNOhPjqMqO3ieJ1nNM8yUvSxgKXOY5+8/D4lMWMEv2MVWuunhBVZwsjyTIiVKlOkSMwEYlcNsYBW72EaNUWYxlw666WU+Xcya4A0ImBwxXBJljueUlt8VRYmZzGGmTtJuyP0v/lCXNZ7hMYbZzWJeQh8LvYA/wpREmVM4i6VyOdvYyCA72chqFXIm23Q2i3oOnyRfRr84bsrGOiqHCF87xvj6nfzr7f/KW97ylikbi8fzYsCLlGnG/Pnz+c53vsN3vvMdrrvuOpa/cTlf+MIX+MCJ/89UD+3YJTF9T/YianRpYak9MEmjab8SgUCajvE4RTtMD5RmA5kunvZ1QZf/Bfu9ra4VRXss/mGdQ2Z/UQRRxC65ha2s4XhO4bnxx9gRbmQk2UUbbSBghujhFZxPTY6xmXWs5JdsYg0vla+i0CKe3TM9SWRiqyqFhJly0gdCTY4zxADjjLCZtQC8igsoiwob5WrWsBKQ1BhjoTyRAgXW8Ryz6GUJJzOH/pZ5EFNFJCO2s4nNrOPlnJv7rskIgzRp6BCxEUYZYhfbmE0fr+YCL06mmKpo5zjScNSaHGOMEQSCLmaxky08xSO8IFdQpsps+lksTjoiY0tkzLk3nsYtt9zCB1/1Qb7//e/T3n7slsg+pvGJ85OKz0mZxgwODvKxj32Mr371q9xwww38918+vs+ERI9nT9TlOD/lByznLLqZya/4CWOM0EE3Z3DuhHurKRv8mp+SkPAyzvGTtCNIJCO2sZHneZI2OhAIqnTwEl5GIEKG5W7W8RwDbCcgZAY9RDTZzU4a1DLbKlOlTIVOZnASZ9iKUAYpJQkJ4zr5eZQhtrKBUYZop4sq7cymj36Oayk6huQunudpAgLmsoA+Fk0r79u4HOUFnmEr66jQxhJOttZ2KSUbWMVzPEmRIkXKFCjSRgftdDGDHrpFzxQfgWd/qcsaowzxHL9mmN28hjfRLg5vPP9OuZWxk7bR1tbGF7/4Rc4888zDuj/P9MTkpLzhlI9OWk7Kj57+22M+J8WLlKOAn/3sZ1x77bWsWrGaJbXlzBb9Uz0kz1HKRrma1TzD2bwZgJU8zmbW0kYnZ3AulVyfhVhGPMWjDLKTk3k5c8S8qRj2UUMkIxrUVIL2fhoUTEL1KEPsZCu72cEYw7TRwSKW6QTskI2sJqRAB91sZi19LGIO85Ak/IZfM4te+lhIhXYKFABBTJNxRqlTYw0r0ZlONoHbJSCknU7a6GQ2fcxh3oui2uAj8kcMMcAiTmSZON1+PiKHWMVTDLOb5byCWaJ3CkfpmUwi2WQFjzHAdvpYiERSoEBAqH8uUqWDGfQcdO5nTY6xuvQ0A+EOPvmpv+Haa6+lUJg+nkPPkcWKlOV/OnkiZcXfeZHiRcrRQRzHfPGLX+RjH/sY1bFOFteX0yY6pnpYnqMEZXl/nhF2M8xuXs0FtpTpGvksq3iKkAKn8ZoJkzUpJVt0+NcpnEWvmD8VhzDtGJS72MxaAgJm008XM3mEHzHOKAWKymtBwChDjDJMjTEEgk5mMJt+trKBQXYyyjACaNPf9DCXTmZQEdkE5khGPMevEQhm03fAxopYxmxmDUXKtOsKUqrYKwQEFClPKw/IZCCl5AkeYidbOZ6XskS8hHE5ym/4FTvZwlwWcSKn+iIlL0IiGbGFtYwyTEBARERCjEDQpMkYw4wzynyWsJTl++0pTmTMOvEc6wrP8e7fu5ybb76Zvr6pT9j3TC1WpJz8J5MnUp75jBcpXqQcXezYsYOPfexj/PM//zMf/ehHefCvfz2t4r49isflg9QZp4uZlHQISZk2KlRpUKOLWUdMZNblOA/xPWbTTz+LkCR000OJsrX2r5CPMcogwwzyUl7ZUohsket5ll/yai5o2dn6WGKX3MYTPEw/xyGATay1vS5ex8WsZgU72UqCpJ1O2um0VZPWsJImDfpYxEzm0EE3VdpfdAJhqollzM+5jyYNlnMmM5jNZtbyAiuYywKWsvyYv4+PdTbJNazgF5zIafssvy6lZCdbGD1xG+3t7dx6662cc845R2iknumOFymHBz+7PcqYPXs2d9xxB1dffTUf+tCHWD9vPd2b+pnHYj/JmSbU5Tg1xhjT8f17olvO4hX81l6v24gcpEBxglX9QChRoY+FbGU9DcYZY4QmDUIKHCeXMchOdrKVWfRyMi/nWZ6gl4kipU8sZJfcyi+4nzPl6w5pTEcrDVljAy+whmc5idOZL5YCsESeTI0xCpQIRMDxvJTjeWnLbfTKBQSIg05o9+wfxkvUpM4KfkGTBh10cyqvmhalaj1Tg2r0uY7NrGWUQRZyAvNYvNd1huQA6yorqVfH+PiHP84HPvABwtD//XpakACTMRWb2B3hmMSLlKOUs846i5/+9Kd861vf4oYbbmBrW53CU9300OfFikMiE5rUKVHJnBe3ceJks5pnGGNYbZ9A5wFI3aCtSJkqkoSICIm0k6lExowxQp1xOuimLKqs5JcMspM5cj4zmE2ZCk3qdDKTLmZOGH8iE3axlZnMsR42IQSncBaL5UkMsot2OhnR+Q/D7KaNDrroISFiLb+hwp6tyydzJit4jF/yEGfI1x4TQmVMjrCFdexiK4PsYiZzOIPXMlPMscuURTXT82Jv+EppR4ZABLxGvokaYzSo00aHL/5wjKJ6qQywkRfYwno66WYBS+ll/l7viZocY21pJTvCzVx33XXccMMNzJw58wiO3HO04fukTC4+3OtFQL1e5/bbb+fjH/84Z5xxBsM/wvYtONZZIX/BJtYAyrLay3x6WcAGVjHAdspUmEkvZaqM6F4I7uQT1AtuF9u0cNh312cpJet4juf4NT30sZSTKVGhxhjDDLKLrexiK7OYS4UqCVKHWu1GEFCmwhgjhITExJzAqUSoEql1xilSZpCdVKhSoqI8LbTRRgcJCc/xa5tg3aROmSozmUM/x1GiwiiDbGYdW1hHkwZlqlRoo51OuulhLgv2mjCdyISneZSEmNPF2Yd0faY7u+UOHufHzKafHubSQ98xIcw8nqMZKSXD7NYV60bYynpqjNHPIuazdK+NSEEl3q8NnmVLeS2XXnopf/M3f8Nxx01d/xXP9MeEe71x2UcmLdzrvt/8vQ/3muoBeA6dcrnM9ddfz/ve9z4++clPcutPbuWSSy5hzdd30XGYyy9OJXU5zgDbKVCkRIUGdSKaVGmnQhWJZDb9NKizmx1ENNnKBraygWW8jBGGqFNjC+vsNmfTz2a5jmEGKFGhnU6G2c0QAyTEzJHzWMLJdIoZ1OQYZaoTvBlCCI5jGT30s1I+xuM8yCx6KVKih7mcztnUGGMr64loAoKZHK/yVOhACEEkm9QYo0iZUouE5kg22cU2IppEqGV3sJkRhljGy5hBD6MMUaLMOGPsZAureQapPTpzmMdpvIYuZh5wTpNA0M2szHl7sbKdTSQklKna0C6PxzO9SGTMADt0kYohtrOZhJg2OqjSznGcxFzm7/NZF8kmG8QLDPRs4vTTT+fbf3s3L3/5y4/QUXheFExRn5RPfepT3HPPPaxcuZJqtcrZZ5/Npz/9aU46Ke0VtKfIkVtuuYWPfvSjAJx//vk88MADme/f9a538fWvf/0AD2By8J6UFyHr1q3jU5/6FF/5yld429vextpv7LKVnI5GpJRENElIaNJglCG2sI4dbKaTGcTE1Bm3XoVxRmmimh6aUpMxTSti9oUq7dpPnTpjDFGlg34WEROzlt+wiTWUKFNjjBJlZtFLO12UqdLJDNrpIhABkWwyxACD7GSYQQQwwA4CAuazlMWcdERD8xqyhoSWomd/2SE38wQPIwg4jVe/qEsSJzJhM2t5hsfoZT6niddM9ZA8Ho8mkQkDbGc7G9nCekIK+vnbySzmMpM5E3oC7QklTlYxMGszJ554IjfddBNvetObfOi0Z7+xnpTjr588T8qqf9xvT8qb3/xmLr/8cs466yyiKOLP//zPefLJJ1mxYoVtLLply5bMOt/73ve46qqreP7551m6VBnhzj//fJYtW8Zf//Vf2+Wq1Srd3VMzh/Qi5UWMEStf/epXufjii/mrv/orrj/1pqke1l6py3HbQLCHuRQps42NDLITUL0cqrTTy3zms2SPoTeJTBCIljkbEU0ClbqMJEHq/wBCCvtsmBnJJjvZSjezGGeUXWzTvShUh26TZxITUaGNgJAY1T9DOn3iX8Ub9xl2MF2IZJMdbGEVT+nKSKfs9wTgaEJZZLeznc1sZxMBAUtZzlwWviiP1+M5moik8obvYDO72EaBArOZRz+L6KbngEVFJJtc8Dev5DOf+QwnnXQSN910ExdccIEXJ54DZqpFSp7t27fT29vLAw88wHnnnddymbe97W0MDw/zox/9yH52/vnn87KXvYx//Md/PNihTyo+3OtFzKJFi7j99tu54YYbuPnmm3nFK15BT7GP+Y3jp3XOyiC7ABhhkFnMpZf5nM7ZFCi2FB6t2NOEMhABJdwHyIFXaCmIInNZAECFNmaS5rBIKRljGImkRJmSk8MipaROjXGdHN9G5wHv+0gRy4gdbGGA7exiK2OMUKWdBRzPQk44qifsUkqa1ImJiWgyzhijDLKbnQywnSIlZtPPcs5kJr1H9bF6PEc7UkoG2ckGXmAbG+igmznMV2G3zDgoQdGUDTaIVWwqraZx73a+/vWv88Y3vtGLE8+hM8nhXkND2Qqh5XKZcnnfImhwcBCAWbNmtfx+69at3Hvvvdx1110Tvrv77rv553/+Z+bOnctb3vIWbrzxRjo7p2a+4j0pxxDr16/nlltu4ctf/jJdyUz6akvoYe4ReTDHMiIg3K99NWWDX/A/jDJMSMhvibcf9vEdS0gp2chqQFVKVHktUca7tJ1NRDTpoY9Z9NLFrP0qGjAdacoGG3iBEXYzyjDjjBATA9iiA6ZogAnd85MVj2dqkVKyg82sYSWjDNPPccxnySGFLo/LUTaEq9gs1nDOuedwww03eHHimRSsJ2XpH1MIJsGTktS574XPTvj8xhtv5KabbtrrulJKLrnkEgYGBnjwwQdbLnPLLbdw8803s2nTJiqV9N3+xS9+kSVLltDX18dTTz3FDTfcwAknnMAPf/jDQzqeg8WLlGOQnTt3cvvtt/O5z32O3t5ekqcq9LHosFmME5nw39wDqJ4dCziemCY1xqkxSgfdzKafKu2MM8oW1rOTLSxiGR10+Q7nk4x7PQwV2lRJYwSCgCIljueUvVb5mu6MyWE2s46NrKadTnqYSxudOpm2Q4kyPznxeKYdkWzyBA8zxjDHsYz5LD2kZ9Gg3MXm8gtsk5u49NJL+dM//VPOPPPMSRyx51jncImU9evXZ8K99seTcu2113Lvvffy0EMPsWDBgpbLvOQlL+GCCy7gc5/73F639dhjj/GKV7yCxx57bEqKSHiRcgxTq9X42te+xmc+8xmGh4dp2zSL+Sw9LL0ERuUwK3jUhnKVqdDPYtrpZIgBdrCFBjXKVJlFL4s5yZd6PYzEMmYbGxhjhAG22+pls+nnNF4zJSFOu+UOhthNjVGqtNPJjAOKMx+RgwywgyF2McQAY4wwmz76OY45zPOCxOM5Ctgtd/A0j9JGJ6fx6gOuPmgwnpgt1TWMBINcffXVfPjDH2bx4sWTO2CPB0ekLPnQ5ImU1Z874JyUD33oQ3z3u9/lxz/+MUuWLGm5zIMPPsh5553HE088wemnn77X7UkpKZfLfO1rX+Nd73rXAR3DZOBzUo5hKpUKV199NVdddRX33nsvf/d3f8cjj/6QK664gifvXDMpSd2r5UpW8RQAM5jNfJYQ0WQ3O1nLs3TTQxczWcLJzKCHNtFxyPv07JtQhHTKGTzNo5nPd7IFSQIcWZGyUv6SDayih7lU6WAHW3iBFaoSmlzKEk7eq8jYJNeygkeZRS/dzGIO85jJHN+8z+M5ipBS8gvuB6BM9aAESlM22MQa4qUj1Go1rv/Qh7jmmmt8E0bPkSFRzZsnZzv7j5SSD33oQ3znO9/h/vvv36NAAfjSl77EmWeeuU+BAvD000/TbDbp7+8/oPFMFl6keAiCgLe+9a289a1v5de//jW33XYbT7b9hJe//OVcd9113HH5Nw/asj6X+WxmLWMMs5sd7GaH/a5CGyEhdWoMsopn+AVV2UEH3RQo2v7sJcoUKBIQEFLQfVDavGX8ECmh4lB7WcB8ltBOZ8u+L4ebYbmbTazhHN5CVbTbzxOZsIttPMevGGaQ0+Sr9zi2AEGVdk7mTAQBCTGjDFGXNWJiJAlzmEdJHLqFy+PxHBxSSkYZYgebqVNDktCkSY1RxhmjQc0uO489T7JaMSx3c+ofLebuu+/mrLPO4rrr/oK3ve1tFItHb8iqx7O/XHvttfzLv/wL//7v/05nZ6ctN9zd3U21WrXLDQ0N8a1vfYvPfOYzE7axatUq7r77bi688EJmz57NihUr+JM/+RPOOOMMzjnnnCN2LC4+3MvTkoGBAb7yla9w2223MT4+zjXXXMOPbnqUsqjue+UWxDJmF1vZyVYG2M4o2YoV53IRIQVdzneEiIhI9zZp6v4mCQkxETXGEAR00EU7XbrayzzvhTkIxuUoz/Mku9hGQMhSltPD3EMKtUtkzC95iA66mc/SPTYUbcg6I+xmNSup0MYp4qyWyzVlg5/wf1jAUo4Xp7RcJpYxT/AQA2wHVMPJEhXKVAgIGWWIdro4lVcd9D3s8XgOjlE5zCZWs5UNNKgzi17adF5YSJEqbVRpp0yVIuV9loE3JDJhGxuZ8doijz/+OO95z3u49tprOe200w7zEXk8WWy416IPTl6417rP73e4154MeF/5yld43/veZ3+/4447uP7669m8efOE3ifr16/nPe95D0899RQjIyMsXLiQiy66iBtvvHGPVcION16kePZKkiR8//vf59Zbb+W+++7jwgsvZO2/76CHvkOyuMcyYoQhBIIKbQdk4U5kwhjDjOjuwkMMsJMtLOQEThIvO+gxHctIKdnEGjaymmEGKFKiRIUSZSq0004n7XTRxczMtXpWPsF6ngdUpawSZdtccy4L2cVWzuV3JnjiNsgXWMnjCAT9HMeJnGZDsyLZZIwRRhlimN0MspNBdtHLAk4Tr97rMRhU4886Deo0qDHCEM/zJACv4HxmiNmTdu48Hk8WKSUjDLJD9xsaZpBe5tPPImbSu98iZE+MymE2B2sY7dlFV1cXH/zgB/mDP/gDH9LlmTKsSFn4vyZPpKy//aD7pLxY8OFenr0SBAEXXnghF154IWvWrOFLX/oSjz76ZXaG67jqqqv4wz/8Q/7wuI8c8HZDUaCbfSvzSEbcz3ft76ZkbExElXba6aKNDnZCplGi58AQQjCfJSpnSDYZZUhP8OuMM8pu3adgnBEqso0Ouumgi5ACbXQyxrAuZdy029zKekD1u+kiO3mYyRw66GaEQbaxkR1sIZCB3UaBIu100ckM5nM8p/Jq690xISOD7CIhASQxEWOMMs4IY7oPDWDFVpkq81lKGx10MOOInFOP51hlBY+xmTXMYR4LOJ7Z9B9yqGUsY67+l9/ljjvu4LGf/IS3v/3tvP/97+f8888nCHwvI4/nxYj3pHgOmCiK+K//+i/uuOMOfvCDHzAn7Gd2bT6z6Z/0qlBSSp7lCbawLjMBdmmni2Wczix6fZ7KYaYpGwwzYL1YdcZp0tSBeePERIQUqOjwjSrtzKKXDrpb5hE1ZJ2dbGWMYcYYYZxRaoxpwSkRCJ2fVKRImSrt1BhjF9voZhahtrOYXKU2OmyJ4SIl34jR4znCSCm5n+8ym3mcKl51yNsblrvZGq5na7iehYsXcPXVV3PllVcyZ86cfa/s8RwhrCdl/gcmz5Oy8QvHvCfFixTPIbFu3Tq+/OUvc9dddzE8PEzH7h7mxgsPuhPwvlAd3UcYYZBxRhhlmO1soo0OXsoraRPTt4v7sUAkm9QYs9dIiZlB27G+n8XMpo/tbGY32xlkZya/qJMZdNBNgAkHkUSODKoxSpMGS1nuS1R7PNOUn8v7CClwIqfSxawDfhc0ZJ0trGNX2xZG5RCXXnopV199Needd543RHmmJVakzLtm8kTKpn/yIsWLFM9kkCQJDz74IHfddRff+ta3KCdVZo310ceivSYqJzKmSYMmDQRCNdk7QOt3LGOe50k2spr5LKGTGRQoUaRokzH9i21qiWXEdjazkRfYzQ5m088sepnBbDro9tfH43kREckmq3ja5qudztn0MJdgL7koiUzYwWZ2VjaxpbGBc157DldeeSWXXXbZMT1J8xwdeJFyePAixTPpjI6Ocs8993DXXXfxwAMPUBXtDDcH6WIWkoQxRrS1PLDVmEIKSCSSRIcJmbCddoqU7P8qmbvSMvFySA6wnud1CFLDhiCVqNBOJ0VKFChRoEhIQXdXFwggIGQuC32J2iNALONDTpz1eDzTn9XyGVbxtP29hz6a1GnSIETlJZapEhUbbBebmDuvlyuvvJL3vve9LF26dApH7vEcGFak9F9DITj0/lxR0uC+zV6keJHiOaxs2LCBb3zjG3z1q19l5cqVLFu2jOEVDdrposYoJaosYCmBCJBS6lAhlZ8wxgg1xqzgMC83ibSCpUCBkAKh7qsCUGOMOuMIBBIYY3i/x/t6LvV5DB6PxzOJNGWDDayyhqIGdQaCrdQ7RikWi/ze7/0el19+Oa9+9at9ErznqMSKlL73T55I2XKHFylepHiOFM8//zzf+MY3+PrXv86qVat405vexHP/vvGAKr9IKW1Z2To1YppERMS6rwqoJpFlqqiqT+Y/tUyTOnXqNHT1pzY6dXNIlXS9p54eHo/H4zk4Epmwmx3sDLeQzBtnZGSEd7zjHVx++eW87nWvo1DwhUY9RzdepBwevEjxTAkrVqzgu9/9Lt/97nd5/PHHee1rX8vmB3Yzm37flNHj8XiOciLZVM17S9sYadtFpVLhkksu4ZJLLuENb3gDpdKhT+Q8numCFSm9fzR5ImXbnce8SPF+Vc+UsHz5cj72sY/xyCOPsGbNGt75zney6I1zeKRwHy8seZwTrpnN//r2u2nKxlQP1ePxeDz7IJEJg3In5950KrVztvBQ4V4aJw1wxf/1u3zve99j48aNfOELX+Atb3mLFygej2e/8J4Uz7RiZGSEBx54gB/84Af88Ic/5NmVz9JdPTzljD0ej8czOYw1xiiWCrz5wjdzwQUXcMEFF7B48eKpHpbHc0SwnpQ5V02eJ2X7l455T4oPBPVMKzo6Orjooou46KKLAJV4/+yzz07xqDwej8ezN2bOnMnpp59OGPrKfZ5jGCnV/5OxHY8XKZ7pzYIFC1iwYMFUD8Pj8Xg8Ho/HcwTxIsXj8Xg8Ho/H4zlUEglMghck8Z4U8CLF4/F4PB6Px+M5ZKRMkDKZlO14fHUvj8fj8Xg8Ho/HM83wnhSPx+PxeDwej+dQkXJyQrV84jzgRYrH4/F4PB6Px3PoyEnKSfEiBfDhXh6Px+PxeDwej2ea4T0pHo/H4/F4PB7PoZIkICYh6d0nzgNepHg8Ho/H4/F4PIeOD/eaVHy4l8fj8Xg8Ho/H45lWeE+Kx+PxeDwej8dziMgkQU5CuJfvk6LwIsXj8Xg8Ho/H4zlUfLjXpOLDvTwej8fj8Xg8Hs+0wntSPB6Px+PxeDyeQyWRILwnZbLwIsXj8Xg8Ho/H4zlUpAQmowSxFyngw708Ho/H4/F4PB7PNMN7Ujwej8fj8Xg8nkNEJhI5CeFe0ntSAC9SPB6Px+PxeDyeQ0cmTE64ly9BDD7cy+PxeDwej8fj8UwzvCfF4/F4PB6Px+M5RHy41+TiRYrH4/F4PB6Px3Oo+HCvScWLFI/H4/F4PB6P5xCJaE5Kw/mI5qFv5EWAFykej8fj8Xg8Hs9BUiqV6Ovr46Et/zVp2+zr66NUKk3a9o5GhPSBbx6Px+PxeDwez0FTq9VoNBqTtr1SqUSlUpm07R2NeJHi8Xg8Ho/H4/F4phW+BLHH4/F4PB6Px+OZVniR4vF4PB6Px+PxeKYVXqR4PB6Px+PxeDyeaYUXKR6Px+PxeDwej2da4UWKx+PxeDwej8fjmVZ4keLxeDwej8fj8XimFV6keDwej8fj8Xg8nmnF/w8PefqUCMN3HQAAAABJRU5ErkJggg==",
       "text/plain": [
        "<Figure size 800x400 with 2 Axes>"
       ]
@@ -11490,54 +741,58 @@
     }
    ],
    "source": [
-    "%%time\n",
-    "worldmap(icon.tas.isel(time=10), cmap=cmocean.cm.thermal)"
+    "plt.tricontourf(ts_sic_r2b4.clon, ts_sic_r2b4.clat, ts_sic_r2b4[\"ts\"].isel(time=10))\n",
+    "plt.colorbar()\n",
+    "\n",
+    "worldmap(ngc_mm.ts.isel(time=10))"
    ]
   },
   {
    "cell_type": "markdown",
-   "id": "36c1ba4c-800b-4320-baca-fcded39049e4",
+   "id": "4ee5edda-7a7d-4e12-a6ba-51a1a12346d3",
    "metadata": {},
    "source": [
-    "We can also plot the time mean surface air temperature."
+    "Now the final file massaging."
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 33,
-   "id": "fb36bc09-30bc-44b4-a129-d361c7ceb324",
+   "execution_count": 25,
+   "id": "ff4bacad-7a7d-4327-b611-46f3c4a20782",
    "metadata": {},
    "outputs": [
     {
-     "name": "stderr",
+     "name": "stdout",
      "output_type": "stream",
      "text": [
-      "/headless/envs/magic/lib/python3.10/site-packages/xarray/core/indexing.py:1430: PerformanceWarning: Slicing with an out-of-order index is generating 81 times more chunks\n",
-      "  return self.array[key]\n"
+      "\u001b[32mcdo(1) selname: \u001b[0mProcess started\n",
+      "\u001b[32mcdo    chname: \u001b[0mProcessed 7393280 values from 1 variable over 361 timesteps [0.11s 9356MB]\n",
+      "\u001b[32mcdo(1) selname: \u001b[0mProcess started\n",
+      "\u001b[32mcdo    chname: \u001b[0mProcessed 7393280 values from 1 variable over 361 timesteps [0.22s 9356MB]\n"
      ]
-    },
+    }
+   ],
+   "source": [
+    "!cdo -chname,ts,tosbcs -selvar,ts ts_sic.r2b4.nc tosbcs.ngc4008.2020-2050.r2b4.nc\n",
+    "!cdo -chname,sic,siconcbcs -selvar,sic ts_sic.r2b4.nc siconcbcs.ngc4008.2020-2050.r2b4.nc"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 26,
+   "id": "36f89b3e-5cc8-4c43-90ff-e2b3477c8e17",
+   "metadata": {},
+   "outputs": [
     {
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "CPU times: user 6min 27s, sys: 1min 5s, total: 7min 33s\n",
-      "Wall time: 3min 36s\n"
+      "DONE!\n"
      ]
-    },
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAykAAAGbCAYAAADA9989AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3gc1dXGf1O2qPcuV1nuvVeKG2DA9OZAINQEQkJCCUlIIKQAKRAIHzVA6MX0jgGDuzHuvRdJVu9t68x8f8zO7OxqJcu2CCSZ93n0aHd25s6dO+2897znHEHTNA0bNmzYsGHDhg0bNmzY+I5A/LY7YMOGDRs2bNiwYcOGDRtW2CTFhg0bNmzYsGHDhg0b3ynYJMWGDRs2bNiwYcOGDRvfKdgkxYYNGzZs2LBhw4YNG98p2CTFhg0bNmzYsGHDhg0b3ynYJMWGDRs2bNiwYcOGDRvfKdgkxYYNGzZs2LBhw4YNG98pyN92B2zYsGHDhg0bNmzY+E+G1+vF7/f3WHtOpxO3291j7f0nwiYpNmzYsGHDhg0bNmwcI7xeL336pVFd6e2xNnNzczlw4MD/NFGxSYoNGzZs2LBhw4YNG8cIv99PdaWX9fvPISnZcdzttTQHGNv/Lfx+v01SbNiwYcOGDRs2bNiwcexITpJJSjp+01rQtB7ozX8+bJJiw4YNGzZs2LBhw8ZxQlA1BPX4CUZPtPHfADu7lw0bNmzYsGHDhg0bNr5TsD0pNmzYsGHDhg0bNmwcL1RN/+uJdmzYJMWGDRs2bNiwYcOGjeOFoGk9Ek9ix6TosOVeNmzYsGHDhg0bNmzY+E7B9qTYsGHDhg0bNmzYsHGcsAPnexa2J8WGDRs2bNiwYcOGDRvfKdieFBs2bNiwYcOGDRs2jhc95EmxA+d12CTFhg0bNmzYsGHDho3jhZ3dq0dhy71s2LBhw4YNGzZs2LDxnYJNUmzYsGHDhg0bNmzYOE4YKYh74u9o8OijjzJy5EiSk5NJTk5mypQpfPTRR+bvmqZx1113kZ+fT1xcHCeddBLbtm2LaMPn83HjjTeSmZlJQkIC8+fPp6ysrEfG5VhhkxQbNmzYsGHDhg0bNo4TgqaZGb6O6+8oSUphYSH33nsva9euZe3atcycOZOzzjrLJCJ//vOfuf/++3n44Yf5+uuvyc3NZc6cObS0tJht3HTTTbz11lu88sorLF++nNbWVs444wwURenRMToaCJpmV4yxYcOGDRs2bNiwYeNY0NzcTEpKCof2n0lykuP422sJ0Kf/ezQ1NZGcnHxMbaSnp/OXv/yFK6+8kvz8fG666SZ+8YtfALrXJCcnh/vuu4/rrruOpqYmsrKyeP7557nooosAKC8vp1evXnz44Yeccsopx31MxwLbk2LDhg0bNmzYsGHDxvHCCJzviT908mP98/l8R+yCoii88sortLW1MWXKFA4cOEBlZSVz584113G5XJx44omsXLkSgHXr1hEIBCLWyc/PZ/jw4eY63wZskmLDhg0bNmzYsGHDxnFC0HruD6BXr16kpKSYf/fcc0+n+96yZQuJiYm4XC5++MMf8tZbbzF06FAqKysByMnJiVg/JyfH/K2yshKn00laWlqn63wbsFMQ27Bhw4YNGzZs2LDxHUNpaWmE3MvlcnW67qBBg9i4cSONjY288cYbXH755SxZssT8XRCEiPU1TeuwLBrdWeebhO1JsWHDhg0bNmzYsGHjONEjQfOWgpBGti7jryuS4nQ6GTBgAOPHj+eee+5h1KhRPPjgg+Tm5gJ08IhUV1eb3pXc3Fz8fj8NDQ2drvNtwCYpNmzYsGHDhg0bNmwcL3o4JuV4oGkaPp+Pfv36kZuby6effmr+5vf7WbJkCVOnTgVg3LhxOByOiHUqKirYunWruc63AVvuZcOGDRs2bNiwYcPGfyh+9atfcdppp9GrVy9aWlp45ZVX+PLLL/n4448RBIGbbrqJP/3pTxQXF1NcXMyf/vQn4uPjWbBgAQApKSlcddVV3HzzzWRkZJCens4tt9zCiBEjmD179rd2XDZJsWHDhg0bNmzYsGHjOGGVah1vO0eDqqoqLrvsMioqKkhJSWHkyJF8/PHHzJkzB4DbbrsNj8fD9ddfT0NDA5MmTWLRokUkJSWZbTzwwAPIssyFF16Ix+Nh1qxZ/Otf/0KSpOM+nmOFXSfFxncOqqqyceNGFi1axKeffsq+ffu+7S7ZsGHDho0ukJeXx+zZs5k7dy6TJ0/G4Tj+WhE2bPynwKiTUrb11B6rk1I4/OPjqpPy3wDbk2LjO4GGhgY++OADPvjgAz777DN8Ph8zZ85kcLuL04aexLeXW8KGFep/+ZmwZ2z+e/HffOWK34Ert7ylgVWvvc/jjz+Ox+Ph5JNP5rTTTmP+/PkUFBR8292zYcPGfyBsT4qNbw2lpaW88847vP322yxZsoThw4dz5plnMnfuXCZNmoTD4eCzq37zbXfzW4GqffMmlfYNm23/DkLzbTy9/tuJ2n87vimDvieydB5P3wQ0854WeugYxVCxBlUTzM9Hwswnf8emTZtYtGgRH3zwAStXrmTcuHGcffbZnH322QwZMqRH+mbDxncJhifl8OZTesyTUjDyk/95T4pNUmz8W3Ho0CFee+01Xn31VTZt2sSMGTM4++yzmT9/Pgf+8M9ut2N9Icf6LRY0BHO7rrb/JtATpENDnw0+nhv2ePtxvGPWEwZ+Tz2xvg2yof0byKeNSAjdNK5j4VhIw9GQlaNpv7vEo7tkItzu8aOrfTZ62micPZK3336bRYsW0bt3by688EIuvvhihg0b1gN7t2Hj24dJUjbO7TmSMnqRTVJskmLjm0ZlZSULFy7klVdeYc2aNcyaNYuLL76YM888k223/+2o2jJe1NGEw7osGv8OcnI8xv+x9Odo93csN/nR7+MYjuMYtjnWJ1ZPkpL/BrKhftsd+IZwLHn1u0tkukMqjkRSutVGN9bpDhk50lV6NITmWLwz0e17An5az5zCq6++ynvvvceAAQO45JJLuOiiiygqKjrq9m3Y+K7AJinfDGySYuMbQWtrK2+88QbPP/+8mYv7kksu4bzzzmP3r+8/4vY9KV3oSVJytEk7jmbfR0MKutPusRCn7hxed9s9qmM/inWP5onVM56bb5+Q/KcTim9qDLtPLo69rbq2ZjxBP0ElgF8JomoakiAiiSKyKCJaPuvLJdwOB/GO2EXXuiIpXT3ruiIUnY3ukUhIZ/vrLnk5mmezGNXJdr+Pmrnjefnll/nkk08YPXo0l156KZdccglZWVndbteGje8CDJJSvqHnSEr+GJuk2CTFRo9BVVWWLFnCs88+y+uvv05RURHf//73KV6/j+zEcJq7ntJLHw2iPS5Hg54yyo9EcHqSeHT3GLvTXlfd7vH+dHO97j61jpek/LsJyn86GTGgaiqioFODXTWH2V1TRoOnhVafh4AaRFFVVE3FLTtxSDItPg+tfg+apuGUHDgkGack4wj9GZ/dspMEp5tEVxy5iWnkJqWT4HQDsUlGd8iJqqmUNFaxoXwf26tK8CsKkiggCSLNvnZ2VpfilB04RL0fgiCgahqKqqBoqnksiqqiaOEzGO9wkZWQHPpLIdP8nExmQjKFyRkIMdwu0c/HWIQh1lXZGbGI9bw9mnXD23T603F7fpq8HpYc3M1yrZ3Vq1dz+umnc/nllzNv3jycTucR27Zh49uGSVLWzyE5sQdISmuA/LGf2iTFJik2jhf79u3j2Wef5bnnnqOtrY3vfe97TCirZ1Bm9rfdtaNCZ4Z0V4b40W5zPETmyNv2FJnqrO9HRvdITzfI2BHW+Xd5U75tL8o3SVqORRYVjZq2Jsqaamnze2nxe6hvb2FzxX52VJfgEGV6pWZR2ljDqPz+pMenkOCMwyk5EELeh1afFw2VeEccCc44REEgoAbxB4ME1CABJUBAUQiquhfDG/DTHvBQ39ZMaVM1AGcNncY5w6dT3VpHm7+dVr+XNr+XoKLo15qm4Xa6GJzVi0ZPGysObaOurZm85HTykzM41FDFR7u+BuCCkSeQGZ+KqmmomoIgCEzrM5wEVyIBLbYPRAA0LcC/vn6f6tYmvAEfde1N1LQ1dTl2D555DcWZ+ZbzobeuqCp+xY9bdiIKkQHr0VdjtOHfPYKjWX6PdTxH712Jlt52hu54aMqaGvlwzzY+q6ugtbWVBQsWcMUVVzBmzJgjbmvDxrcFm6R8M7BJio1jgs/n45133uGJJ55g2bJlnH766VxxxRXkvv85TrknzJ+jh9WEsBqmIlqXhmpnhqiGgKKq1HvaUTWNrITkDr9bEW2g9ySB6Yy89JT3JVY7XZOzb2afHdrpxjrfNGH5tonKt4HOpE+KqlLV2kBQVWjze7ntw6cBSHHH0z89n/T4JPqn5zG6YCB+ReNAfTmiKDGlz3A8ikRA1c3YoCoS0ARENKTQ8BqETASU0O5lUUMS9HWW71/HM18tNPuS5IonNS6R0kadrKTHJZLsiiPRFUe8040sSiGSAs2+dvbUHibO4WRi76EUJGdR2VJPRUsdO6oO4lcCEcd53ZTzmTVgVMSyoKY/16KvBg3wBv1c+crvjmaISY9L4tpJp7K3roKqlgbq2pupaWumvr0FRVMRBUH3GjldFCZncGK/IcwZMByHpbDakUhJV4Qk8rejJzudrRuN7sXOdFxH1TQ2VBxmRXoCCxcuZNCgQVx77bVccskl/9NGm43vJgySUrF2do+RlLzxn9kkxSYpNo4Gu3fv5vHHH+fpp59G0zRGjRrFhtVfMaEgn4Cqsq26mvmDBnPz1GmmlCHWLFtQ1V+0khg5V9ydwPboF9qRdOmxjMzofWiaRmVrK1ura9heU8326mr2N9RT3daKomnIosiVYybwwwlTY7ZhNcp7krx0vm7MxUfc7lj61VnfIrc9un113P4/w7vyn0pYjifDFehEv8XnYcErf0ENDbRLkk1DusHTRlFGPqPyixmU3ZcUdwIBRcWnqvgVBUFw4JDduB2JuJxJiIAkaDhEjThJAcCn6iQgUVZQNZ0USIKGqkFVSx0PLXuRssZKAHqnZJHkjmNbVQkA4/L7cP+8BTQHXXgUnZyomoCi6deWJGigBVA1Cb8mkywHEQQNvyqZhEhTg+yrK2FNyVbmDZ5GemIGkqDRFpQinl+ioPddFjQkQUXRwpMyQU0goAqIgv6ccogaTkElqAaoa2slqKnkJqXTHvDyg1f/RHZiKqPz+pGXnEFmQjKZ8boULMnpxhPwsavmMG9vX83OmjJcksyDZ3yPIVlh70uH8xyDlHRFOMLH1HFZV8vNZYJGQFE43NxEraedvMQk4mQHGyrLyYiLJyM+nsz4BOKiCjseVVYzQaPN7+ejvbv5sLWZHTt2cMkll3Dttdcyfvz4mJI5Gzb+3TBJytezSU48/hKEza1B8ibYJMUmKTaOCL/fzxtvvMETTzzBqlWr0DQNv9/f6fr5SUksvnwBgiCgaQKCoOFTnIiChizoxkFQlfEpDjQEREFFCv0BSILSaduGsWV9eXbqmYharnYicNE0gWH/97DZ9wkFhfRNK6RPWg65iSnkJripbKnhe68/x5IfXEeK220auVon5ORoSMvRrPdNxr0cDWmJtX54u65xLPI5c9se9qx0t83jQU8Qm+MlGVYca1rdm99/itKmWi4bO5fp/cfglATWlZew+uBGyhoqKGuuxRsMHDFN9uPn3Uqv5Hj8qki7IuNXRZQQoVA0IfQdnKL+vKhqruWvix9nYFZvhmXn89z6zwGY2nsQZw6bTr+MvqE4EX2cg5qAU1SRBRVFEwhqevvR90YsI15DCPVFMMmLounPMUULXyuSoCGinxcB/XkkEOmtEDC8QLonyCGoyKIaaksATQFBMmVkkqDR6mnhqtfvi+jnlN4DOXPgECb36odLdoUIWOyxjXVMxrNSQAv1M/ZvEHmdiZZlqqZxoKGGrVXVFGdkMDgzk2c3beSf69bREuNdkOp245Jl6trbCaoq6XFx9ElNpU9KKteOG0/v1NTYB0DnZAhgyD8eZv369Tz55JO8+OKL9O/fn2uvvZbLLruMpKSkDtvZsPHvgk1SvhnYFedtdIry8nIef/xxHn/8cZKSkvjhD3/Ia6+9xoFf3cyPP/yU4ow0BqSnMS4/h+yEeNLj3MiiQQQiPSSS4I34LkoBnFKkxCIaXb2sItfrhBAIWoRBLGodFf4qIhoC03v3ZXddLa9fdAUu2YFflVFDBk6b38MHu3ciCALPbVzPoKwsphT2JsnlQrXan5auRUorIvshCR29RaomdDCWomUS0evEOuauglv1NiK3j9w2en+d7yd6fevxdTIkR9xO37bz/kHnkr6INqIWH4m0dGW09wSB6UmCYUVPFSVs9Xn5umw36fFJZMQnkZechixKiGi6MR3a15TeA9m1/jBf7t9IZWsj9Z4WMhKyOH/cxQC4RBVBbaOquYrn137EztpScx8zi0bTOzWLKX2GUZzqpMbvwKuIIQKhXwdrSjbyyfYvSXC66Z+Rz67qA5Q2VhFUFc4cMokfT55Lm6+FqpYaShvrWFmyi5Ulu7hhyulML5qKQ1ARBA235dg0QBZUpBCJCRoEAfCrurGvoe9fQyeUKvo1oyKE/uvLraMdwPAS6+dXJyz6OOn/9eUGQZEEjaAgIIW8QwIamiAjoeEUFZPIuh1OJvYaTE1bI60+LzVtjdwz51zzvlZinPJoYqQv0zr9bhAVvd9axMSPKKiIoWd3+LpVOemZl6hobSXF5ULRNHzBIAFVZVhWJnUeL7UhMiKGkgq4JJn0uAQGZWTjEGWq21vZUlXJhooKtlRV8cH3LkIQtAgCH32fxPpt909+RCLwMwdcu+BCNkycyqOPPsrtt9/OFVdcwQ033MCgQYM6DpING/8mCKqGcLRpQDtpx4btSbERBU3TWL58OQ8//DBvv/02c+bM4cYbb2TOnDkcuvm6iHXFbob1dubBOFoY+7O2Z7zIOvNoQAwPgeW70dazGzfx4OrVpLrjKErLICshmbaAn8rWVnbVVqBpGnEOB8Oy86hoaabe08bPppzAeUOHRLXXsT/RferKyxKzv8cQ0N91+91ft7P9HFuSgdjoifiVf2e9lZ7sg0E0VIRvrBJ6WVMtb2xdSZtfnyg4b/hUBmcXmvt/ZPXHvLtjjbm+LErkJaXROzWTMwaPp1dKJr/4+DkKkjNIjUtAEgQCqsJnezcD8NSFv8HpiNMlVejX1+HGcn7xwf+ZbV40YirfHzeHgCZaPBXh+1gUNB5b+SZf7FsPQEFKFmcNmcT4gr5IBClpqmVvXRV766rZW19JVWsTuYmp9E3P4/yRJ5Cf2rsDOVa1sGeEiO+EvoeJiWIhJRAmJoZcrCt7wZB/WQmLQU4MoiIQlrdJ5jK9UWPcjOUG0fEGAlz9xkNcMXYaZw8Z0+EesMrPIr9HEhLrZ6vHRBLUKMKiIokqYojs6deH/nl9RTWvbdvDB7sPkOJ2UZiczviC/pw9ZCxu2YEsBKltq2dTdQubKg6xrbqMffW1eIL6RNRZg4rpnZqCU5IYl5fDhIK8zgc0xjF2+nuon7ULrubhhx/mtdde44QTTuDGG29k3rx5SJb4HRs2vkkYnpTKr2b1mCcld9Ln//OeFJuk2ADA6/Xywgsv8PDDD3Po0CGuuuoqfvSjH1FUVETJz688ptngntbvxyIXEeSkm0QlVjsADR4fu+rq2FVTx9KSA+yrr6e6rQ2ArPhEBmZm0+Lz0eBtp6athevGT+KqseM6tKm3e+R+HYmMHFuA/dFtE8v4Opog+qNPDtA1eirgHnoi/fBxbX7c6AmpvaKq/PyDp9hTW24uG19YzB/mXGIagO0BH+e88OcO2xqz4n1TszjYWANA79RMShpryU9O57LRJ/LmtlUcbKghLT6JJFcCTsmBN+jjcFMNfiVotnX95HnM6D8BSdJf3iIQ0ET8aphEaJrC8v1f88yadwD4/MpfUtFcy6WvPwnAyNy+jC0YRJ/0XPql55HkitelWAihgPwwmTA+h/+HSYm+ryN7TNSQ/MzqYSG0jXFujKeH7oUwyEDoO2Gyov8eIi5oOEU15GEJT/SE19eQRRWHoLD+8F7++OXbTCjox0+nzCE1Lr5DfAxEEpSuvCeg71MI9cfwnFi/S4Kiy9gM8iQq5rbeoMLn+w/z+f5Klh0qp7qtnbH5eUwq6MPQrAyGZiWRm5iIqkm8tGUvdy/5lHH5Ofx4wkh+8M6nADhEkXOGFDMiO5OC5CQmF+bhkvXr4li9jsYEVtwv7+HJJ5/k0UcfxeFwcP3113PNNdeQ2oW8zIaNnoBJUlb1IEmZYpMUm6T8j6Ouro5HHnmEhx9+mOzsbH7605+yYMECGu/8Ycz1O5vZijS+j81z0mmWrRjekiORlI596ny9aM/Mztpa7lj8OWLoaP2KSqvfR2VrC/EOB7dNP4kT+/QlIz6uy2PoDlGJ7lt3fu9q3SNt810hK/o2R0ZPkhb45uNPrLAas8eDrjwsQVVhyYHtbCg/gCDoBfKq25r42bQz6Z+ew1vbVvP4mkUR24zI7cNfT/t+hOyuPeCjrr0dTVNo9XvZVVPO9ppydtccprylgQdPv5yP92xi7eF9NHraCajhuLFZRSOYN3A0DV4vXiVIguwkPzmV695+vEN/fzfnCobn9Q+RFMGMR6lvb2bhxo9ZV7adM4ZM4uyhExiQIoOm8uDqL1hTdpCDjfWkuOLISUpDQKC2vYWAouCUHZzUfxTnj5plek4MgmGVk6kWYgKxPSeGBwbCBMcIwMeyrQHj/FolXobXJJqsCEKYhEiCIUMziIO+roROUJyiilNQkASVJk8Lf1vxCZurSplXPJI5A4ZQnJETIfPqzHti/GZ4S4zryfCkGITEIC5WgiKESIuxbTSBUFU40NjClweqWFFSza7aBvY1NFGUlswT808lOyGbX372Ke/v3sUnl53LP77axPu793W4Jl6/8BzG56d1WB4e46MzUfSYR5X10+fz0EMPsX79eq6++mpuuukm+vTpc1Rt2bDRXRgkpWrlzB4jKTlTF9skxSYp/5vYt28fDzzwAM888wxTpkzhlltuYeRnLyAIQoeXwtFkz7J+Digqe+ub2F7TwL76Zuo8PrZXN3LhsEEsGFWEaJlFjCY2sdo0/seSe8XcriuvRQzjV0WkpKmJZzdu5NN9+/EFFYbn5NA/LYMXN28w14t3OPj1CSchCYJueIiSGaNyLB6VmP3rMfLx7yMrxypL6+4D6JuodN/l/r5hQnM88i5FVXl/51oWblmBU3Iwo98wveK5KPHBzq+5fOzJnFI8ioDiZ335ATZUlCCLEoOyCshNSGZbdQkFyWlMLByAGLK0NcLSI9DHWxJU2vw+DjTU0h7wk52YzMOrPmFd+UFAl4aNLyhiVG4hggAOUWJan4EsO7iL//vqMwB+ffIlZCSksfzAOuYOnEpWUpoelxWSfanA7xY9zbaqAwBM7lXMX089D1lQQt4H3VD2BAJ8vHcnv1/yWYfxyEpI4Ynzbtb7TZigBFT9v0FajOOyekVieVKivTDmtmrn14WVcIQD6iOlYJKAmXZZNORdgpEtTDUD7F2Sov8Xg4iChl8RuX/FB3y0e6O5vy+uvBm3LHUZJG98jiYoBnGRBCVC4iWiIopqTIIiCNGxKpHQNIG1h2v5xaJ17KptIsnlpE9KChsqqwB455IzyEtys7GylpLGNipavJzYtxdTe+XjlIMx2+xqf0eC8X7ZUFHLc4Ek3n77bc4991xuvfVWxo4de0xt2rDRGWyS8s3AJin/Y/jqq6/4y1/+wnvvvccFF1zAzTffTP4rf41YRxBix5pYXxaqCmXN7eyqbWJnbRP76ltp9Php9vlp9Ppp8vopbW6L2c6vZ0zmhxMHdUpSYsaZxCAona0DkYbqvvoGDjW20B4M4AkEiXc4yU9KYUt1FVuqqthSVU2j14soCDT5fJxWXMwZA4cwIqc3kiijIdDq87GlupyffvgGAGPzCgANTYMWv4+KlhYuHz2WH06Y2C1vSnQf9THonuFvXU9RVQ411nOwsY72gK7/liWJJKeLYdn5pLjjYm7XdT9irhZz/Z70rOjbdR/dJS1d9ee7gO5U67aiwdPKxa88QLzDxWVjT6YwOZO1h/exumQHVa2N5CalkRGXQFlTPfnJ6RSmpNMrJYMJhUUku+K44o1HyIpPpj3gZ1bRcC4aMYkmXzu5CckkutxoCJQ1NfDw6k8IKApbq0tJcLhp9Or385CsfHbUlHfo16DMPBKdbtaVH2BW/2F8vn8bAFkJySS5EkiLSySoqrT42mnzewiqClkJKWQnpuKUZD7buxGASYX9eeC080xPhNXgDigB3t6xjY/37mZLVTnDc3ozrnAAWYnZBJQAQcVLQAniUzWCioqGhkN24ZYdpMWnUZRRiEN2R3hbwCA1OlkxiJNqCbJXNEuMSlT8SsS5FMLB8515V6CjHMyIXZFDcSu6J0UlXgrgloI0eAOc/UL4Od03NZMHTruAguSEmNdTdPwJdCQohucklszLkHhZPSiCJVYl+r8VmibgCahsqWxkXXk9G8qbWFdRw99Omcq03pmxLuku70/r/REdbN8VjHWNPh5qbOFFdx+eeuopJk2axC233MJpp51mpzC20SMwScryk3uOpEz/wiYpNkn538DKlSu56667WLVqFddeey2XenZTmNLxBWfA+vJp8wfZVt3I5soGtlU3saOmiV21TXgCCmlxLpySiKZBg9eHNxiZPjgzPo4+KSn0SU1meHYas4tyKUqPvOG6S1DM9WMQlVa/n82VtWyorOJQUwstPj8tPh91Hi+HGpvok5pCnCwT73Cwr6GR9kCAkTk5jMrJZmh2LulxiQRUgaz4BHKTUkL9MnTugvkSbfJ6SHTGIVgqQauaxl+WfcLbOzez/KrrSI7yqBwNUTH22511tldXcO+yRZQ0NdAnNZ1EpwsBCKgKDZ52Spsa6JOawajcQi4YNpbqthbiHA5yEpPJTkhCEKRu7KfDouP2rBxpu47tdB9HQ1y+K+hOsTsrPAE/85//c2hbgcz4ZEbl9eOEvoNIjUvkt5++wslFw5jWdzjlLY0cbqrjcFM1X5ftpSA5nXpPK81eDycXjWRTxX5q2ppJcLiQJYlnzr2GeFcKde0tXL7wQeIcLgZl5vPDSXPJT8mmtLGWn7z3BP84/TKava2sLttPWVMDqqayobKE35x8Ifvqq3l50xJEQWRsXm/S4tyhNL4KogC17e20+n34ggHa/D5Av1aKMwv40YRpDEgPS3+ipUvW5ZWtLSw9uJcVJYeoaG3DJTuId8g4RQlJknGIIgLgDQbwBv2UNTdS09ZC//RshmT3ZlLvIQzJGQCAX5Xwq2F5mKIJBNXIdMRG0L1BVsKxNOGYl3B/w4QFQBTDhMX43SAtxmdDDiYLIZIiqrhFlTgpqD9DNIVDDZVsrjzExvK9bKsq48eTT+CcIaPMgpjRY9YVQTEC5QU0RDGSpMTyonRGUDqb1DKgaaLuoQr9WZfHXj/yHra+i6L3dTSkxUCj18u/NuzjqZ1VFBQUcNddd3HmmWfaZMXGccEkKUt7kKScYJMUm6T8l2PFihX87ne/Y/Xq1fzkJz/h8rYtZCSEC2t19qKob/fxpyVbWVlSy566ZjLiXQzJSkXVoNGj0OwL0Oj10uL3kRUfT1F6kv6XlkS/tCT6pibROzWReIcc2k9nMqzY0q2uZFwBRWVJSTkf7j5ARWsbde0e9tY3kpMQz5i8HPqlppPkcpPodJLgjGN0bm9S3HpiUr34GKFZ2o59shITACWUjci6rN3vY3ddJXtqy9lWXcamyjKcksQvZ8xgTtEAc73OiErM4zsK+ZeqCRxubuT8V55kZv9B3DrjDCpbW6ltb0ZAwCGCIAg0eNp4ePViWvxehmfn8fXhQ0RjcGYOz5x7eYd9dse70lMSsyNtF7utfx+i+yUKWoRB2hM4FvPIF/ThkCRkUTJn/e9e/BprSvcyvd/w0DpB2vweNlXsN7eb2nsQu2rLqWtv4adTT6fB60HTNF7dvIz7513GiJxcAN7dsZGdNRUcbKxFFPTYE5+i8eLGJdxx0rnc8dmryKLI5F4DWHpwJxMK+rKtupw7Tj6PvumFlDfXsOLgDlp87XiCPlp9HkQBijNyyUzMRJbiESUXvmCAJm8La0u2saumlCfOupiROeHsT90hu0dKzW2gurWZzVXlbKos452dWzln6Dim9B5CUUYhqqDXbPGpEgFVj5fRIKKOi2olLRbPSjDqGlG0cGJ0o4aK8bixek/0voeX6UHzRqFI3atiyMCcokKiFEAUNAKaxO8/f5lVJbs5e/BwfnvSHDNbWmcxKF0RlK5kXgCiqE8+dUVQYqaHDy2Lnnwy3jvRxOVI6MqDY0V32vQEAzy3YT//2FJJfn6+TVZsHBdskvLNwCYp/6VYsWIFd911F1999RXXjirkRxP7kx7virmu8UAvaWxj2aEalh2s4fN9lYzLz6Bfaga17QolTc1sra7CLUuMz89mcq8MJhVmMCQrlSSXI9ROR8JzpBTBnZGUDtuEPt+/aj3PbdpBvMPBvOIBFKWlkeCMY1h2DjmJiSiqGJJi6Ot3J/e+qonmC17PvBPEr8pmP9sD8MWB7awrL2VrVTmHGuvISkhiWFY2w3NymVyYy9CsbByhzEVdB+kfO1mx/qao8PKWdTz+9TKCqookimQnJIUyEamoml6AbXxBL26YeAINnnae2/g1q0r30xKavQY4d+gYbps+22y/a3JEpzh2eVfPeFs6bz9MAKK7L8T4vbM9HWnb40F3yU5JYy3bqg/T6vfS5vfS6veR7HJTmJxOdkIyDkmixeelorWeRo8HURBwSTKPrFlsthEnO3HJDtoCXnolZ5DocpHodJPodDEwM5+LR4yNCBwHqGtr5qXNX3GwsRaXJJMZn8gPxk7l15+9zY6aClySA0/QT0Z8IucNHcNLm9bQGvCRHpdIQXI6mQkppMW5cUhxBDUNRVVp83to9bXT7PMAIqlxyTR4WthetZ+fTZvHhcOGR2S+OhK6e41YvQwbK0p5c/tmVpQeID0ukRsmz2VMfhFBTcSvSnhUCb9qxLUIMb0rRvYvRRNQVczfDCLb+f7D3hNDFiaLGg5RxR36b5WHQdjL4hYVnKLC4eZarn1TT/M8Jq+Qq8aMYWrvARHkBOhU4mX93lWwvDUWJTqAPlacSmefo9GRuAidTpodaT/R7Royr1hkxdiH0WZ7IMhzGw7w0JoD5PcfwJ133sn8+fNtsmLjqGCQlOolJ/UYSck+8UubpNgk5b8LmzZt4rbbbmPVqlX85Cc/4Wc/+xnSg9d0WM94eO+oaeacF5YR55A43OxhTF46bslJTbufunYPGion9ctlSq9MJhVmMSAjKcIDEd2ediTpVgcj3JhR09hYWcve+mbKmlqp93iRRAlnqDhko9dHo9fPon2HeObs0xmfXwiCFEFy1NDLKbpWiWF8G9prA9YaFdZ1jbYkQUXRRD7Zu4M7Pv8QgKz4BGRRZFRuPhcMG0ltuy4dS3G5SXXHkeJ20z8tDUmMfEiVN7ewqaqSvMQkchITkQQRhySS7I7vMF7R49SVlOpgQx1rDpdQ195Oe8DPKQMGMiInP+ZYG215gwF8waAZr3LssTEdFnW5fqy+HOu23YHahbFoRVi2J8T8HKvNnsLRxKM88tVnLNy6hj6pWQzKKiDB6aLJ287hpjoaPK0EVAW/EsQT8DMytxfnDRvP9D4D2VtXxbs7NyCLIlnxSYzK7cWgrFycUuQ12uLzUt7SiCyI9E/PijDSWv1e3ty2nrS4eHqlpNHoaSOgBjmhTzFv7djIwm3rqGlrNdfPiE8gKz6JXilp9E/PpMnrodHTTlvAjyfgxynLTCzoTYo7jna/j81VFWQnJDG5V1/KmhqQRZF4p5tkl5th2Xm4ZccRx707RMXahhG7EVSCvLZtE4+tXcX4/D5cO3Eu2YlpeFUZnyLhD3lTdY9KpBRMBfNzLLICYYIbixTLIaIii5pJVNySSpykIIdISqIUxCUpiOheFeuxXPzKg9S1twBQmJzKJ5dd2mGyoTMPihl/EpVyuLskJZo4xPJydCASnZ1DixzMGkdibcdYHh1rErO5mOSk88kjAE9AYWHeydx7773k5+dz3333MXv27E73YcOGFSZJ+eLEniMpJy+xSYpNUv47UFpayh133MHChQu54YYbuP3225Efujrmug3tARbvr+azvVW8vLkEgKvHDsWnqCzeX0ar38cZgwo5e2hvpvfJslSRj0Q0CalrD9Dg8dE7JSlimyORlGafn19/tprFB8oYkplBQXISGfFxKKqKX1FRNUhxu0h1uRmYkcGUXr30SvEhGVZ0pXaDrMCRNcudZepxWGoDKJpIo9fPlqpKVpYeMjN95SYmkpuYhFt20uzz0uT1cLilmSm9enHd+AkkOJzEOxxUt7Vz8ycfkhGfQIPHQ217OKHARcNHccvU6ciSI2L/3SEsnkCAE55+qEPf75l9BnMHDDyCfOvIRORo40yOJuA+9vb/OzOXx0J0fEE/33vtCab3HcT1k09F0UTzGjXImIbAzpoyfr94IXXtLfRLy2Zm/0GcMmA4uUkpBFXVvDc1TUMQBLZWHWbpwV28skUv6OiQJPISU3nxgqsRBD1pxOVvPoVbdpIRn0h5cyNJLjd76iq5cux0Xtv6NddNOIkT+g0joIJfCVLSWMvdi99gdtFQbpt+Mn9d/hlv79xMZnwioiAiCiJ3nHQ696/4hAMNtfRKSae2vZWcxBQONNQQ79ALBjZ4W2nxeZneu4h5A4cwvU/REccpljwvFqJT9DZ42njoqxV8snc3F42YyPkjpoMYh1/VPSuGNyVgEBSLN8XwrARDzx7Ty2KJVzGgRfRBR7g+CrgkFbcUSkMs6n1LkBRkUcUt6mmJUx0evjxUxq0fv0qi002r38vAjBxevfASHKLS4RgNgmL1qhgyr1heFGMbazxKZ1Iv6/KYciwraRGP7B3T1K5T2AuiiqaKnbbV6fbdkBMLgoYnoPB82gz++Mc/MmXKFP785z8zYsSII/bbxv82bJLyzcAmKf/haGpq4t577+XBBx/knHPO4Y9//CPp/7qpw3qaJrDyUC1/+GIHX5XWMzAzhbzERFp8ASpbW6n3+ji1uICzBvdm9oBsnFLn0i3rZ39Q483th3h87S62VzfiCAXRF6Unc8/siQxIT+bC1z6jrLmNXT+5qIPUa0tVHT9870v6piZz3+yZpMUlASCFXkDGy906I27th6JJMYlItzJQHcEotuqprWRmbXkZWfEJ9ElNi/DkKKrKxQufoz0QQBB0EtHmD6BqKj+eNJ1LR00EIKDqRkJlSzMXLfwXf557Jif27RuRkjZW5XrjmOo97Szev4dP9+1mZ201iU4nsijhkmQSnE7mDxpGv7RMshISyYxPwBGqunw8Qfqd4XhIy5G2/2/E0WbygnDBvodWfcaWqsP8bd5lOCVnh5a+LtvHS5uWs62qFBDIiE9kWp9BvLNjLQDpcQm0+r3MLhpKv7Qs/rV+BUUZ2WyuLCU9LgG37KC8pREBOKnfIP4w+2wCqsr3Fv6Tw80NANw0dS7zh0xgU0UJP/vweYZlF9Dm9zIqtzc/nXoqigZ/XvY+Kw7tpig9iwdPv5h1h/fxl+Wf8ciZ3yM9IYOvSvfyu8Vvkuh0cWLfgXxv9AwSXMnUtnt4fsNiFu3ZgCgI9EnNxBtUONxcZx7jvXPP56S+/ULjcuyvrlgFD437fWtVFfcu/4LK1lZ+MGYaswdOwq9KBEIExChC6VdFk5QEDJISKioZQVIssrBwlfuwV84ImDdTEYsazpBHxRWSfcVJKglSOE2vSwyyr66c6999ylz257lnc+qA3p0EzkcSFJOUhGJRgAiSEiurV2delE49KV2Qk2NNK3y0iOlRiSYxnTzf6tv9PBgYxGOPPcaCBQu4++67KSgo+Ca6aeO/ACZJ+bwHScosm6Qc/0ja+FYQDAZ57LHH+N3vfseIESNYtmwZxe/fDc/+NKQr0B+8a8vqeWd7BRsqGll3uJGfTB7G3SdP4aHVW1i0r4w5RQX8aNIA5hZnEeewZnvSXyqdxZk0e/28ub2Uf3y1A0kQuH7icGb37836ihr+uHQdhxpbWHzgMOe8Ei4kd+Frn3GgoQWfouALKkwoyGF/QxPzB/Xn51PGoWoOlE44c2eGsiQoqIgdX3qadZ0Q2QgZxAKa/jlqm2gS1JmkYHx+ofnZMHY0BCRRZOFFV3RYP6BoiKJkdsohCuytq+Xvq5eQ7HIzqbAQSVDxK0EcogSIYcIiaGGCFFp09TuvkuR0M6toEN8bNYHatnZq2luoaWultr2NN3ZsobatlTpPG6qmkeaOJzMhgQuGjeGcISMixsIqb4o+HgNWYzD6PER7sawQO+EfVvJyLEb7fyo6G4+uYIzPjpoKXtu6lufOv5Y4WUazjFtA0fjn2s/5cPdGgorCvIEjWTBqMvnJmWgIZCckI4kCQ7MLcUoSH+zawEd7tnLrCWdwqKGWzZWl1HvauO+Ui+mVnMm9y96lrLkBXzCIU5IiKsdLooiqKozO68ULF/yIZQd38MTXX9Li91Lb3oKAyMHGGh4+42IGZmQhiwL762sYlJlDdmIqiqYxqdcAHjvrcp7fsIzLRk8mLT4ev6qRFp/AT6adyfzBY7jxvacRBTjcXEdReg5ZCansqavgl4teZ1BWAbOLhjKvuJj0uITQ2Hb/OurqmhPRGJmTzYvnXcBLmzfz5LqlzBs8Hqeo4FFk/KqEiopTFBEFNSQB00AVEdGzeClaKLsX+mNY0QRQjftY04PqQ9ovXVZqTIYQIjA6yfGrAiASL+neE11apj+PA5qDtmDkcdy26G36pixgcFZmxHgY1ditaYmN5VZiYSUo5lhZsnpZlxnbxCQonZCT7kq/OktrfCyItZUgKR0ntWJ4X9ITHPyO/Vxx7TTuqWpj4MCB/PznP+f2228nIaHzzJg2/rchoCH0wNz//9K7sSvYnpT/QCxdupQf//jHBAIB/vrXvzL968c7BvlpAn9Zuot7vtzFBcN7Mb4gk5P79qE9oHLBq4sYmZvG3+eNIze5c5mR/j2chaXJ6+fD3eW8v7OMLw9WMjAjhR9NGMa8gf14YdNu/rZyI41eH7Fw7pD+jC/IZkBaGm7ZgUMU+eOyNdR7vLy34EwEwRGR6eVIgdidybmi0xNHwyAeqiZGeGmMtmMF1hueFBEtpjws5mydRRduPRZDB//AqiVsqjjMw6fPJ8Xt4IVNG3l4zVcMyshi3sBiDjY2sreujvT4BMbnF1Dv8bKxspw0dxwf793F51fcSJzD1eVYBRSNek8b9Z4WtlQe5ukNq/jznDMYX9ArZt+MMYh1LJ2hJwLjK1ubWX5oDzuqy0lxxzOxsB9j8/sgi2HSfCwGfndR2dpEo6edfmmZuGTHkTfoBD35Uok2up9cu5yn169kfEFfpvYq4qT+Q0mLS0LTND7cvYmn1y2hb2o61W0t/HTKbDLjk6nzehicmU+8U89s19m5en3rSh5bs5g7TjqLmUXDCSgBfvbhCwzKzOWWaXMQUNldV8Une3bw6b4dAPxg7HQGheql/GPVZ5w5aARv7diIpulysbOHjOCyUePJTUxmb30tV7z1IvefdhH90vJwyQ5EQcApKqaHVC+8KKGhTyq8vmUVoigwMLMXAzIKUAT9vNS2trCufDdL929mR3UZP5x4MkHFR52njfOGjqJfWsYRx7az4oe6ZyGcCevz/Xu54/PFfG/UFOo9bfROzWJ6n6E4nQm6F0UVCWi6N8UIrg9a41a0cC0WqzTM6lnRND1wXiAs+RJF/bNT1LN7xUsKyY4gUqjfsqiGnjkqKw5sYtmBzQTVAOvKS8iIT+D7o8by/VEjcEpiTJmXNRYFwmTjSGmHY8WnRH82iEen5CQGAYmZFUzsIt5E7f7DoEty04nkqzOsLWvgN9vg0KFD3H///Zx//vl2cL0NE4YnpebzE0hO6AFPSluQrFlL/+c9KTZJ+Q9CeXk5t956K++++y6//e1v+elPf4rvvvPM3yNmgzSBuz/fwd+W76YoPZFXL5xFosPJitJy7v5yA+tvOCXmAzZWHvuSxnZ+9elGPt9XwZCsFM4Y1Jt5xX3ok5oGwNeHqzn3lY8Ym5dJg9fH7dPHsaGilsfWbmVcfhYLLzwVWZQ6pJtUNQ1fUMHlcEZmeImKMzH7Ywlqj4XuzLYpmqTLMUJZwKKrfhskJJb06kiIlmZFEwFT3oHG+vIybvroTb43ciQrS0tpDwS4ZdpJbKuuZFNlOf3T0ilKT6eqtZ115aXEO51MKuxDo8dDvNPJgpETO5VqGQH/1t8FVJ7fuJrnN61haFYOJ/cbQFsgQKvPT6vfR4vfZyYAyElMYlx+H8bm9+p4jD0YV6Ih8Mz65Ty1bjl5iSl4An4afR4AfnvyGcwdMNzS/555TGmaxr76GjZVliGLIitL9/FV6QFcsown4Oe0gSMYmJGDIECi082JfQfikrv3wumJgPqujrO0qYGVpftZenAPhxrrGZXbmw0VJbT6vcwfPJLh2Tm8sX0zW6rChRYvGz2VK8edBGBmsOvQZ01lT10VgzKzzWdCeXMDP3jzKa4cO5VTi4eSlaDLMBVV5YsDu3hu41eUNzfRJzWdOUWDeWbDKm6cPJNZRcPZW1fJq1u+YnXZAX5z4inM6j+Q5zd9zUOrlwJw0YgJ3Dh5FqpmyJw0S2pfMSK+xiAwALKghoLT9Xt36YFtvLZ5OX1S0nBIMl8e2MHsosFM6dWPwZlZ9EpJM5N8dDauXZGUdr+Pd3ZuZ0VpBYlON+/v1otTZickcuXYGZzUfySILjyKTEATzNTFBlkJWAiJ0glZ0Y9HT1csWiRfkhCZ7SteVnCFaqa4RUWPjdFEXt20hJc36tnbLh89hSSXm4/3bMUhCdw3Zw4D0lNNkiJZZFudxaLEIiiaJiBJylETlK7IyVERkw5e8s6fMQ8vP8iyA/W4JImAorK9qoW69gCj85MZW5DK+F4pjC1IJT/ZHbuBI026aBpv972YW2+9leHDh/PQQw8xdOjQLrex8b8Bk6R8OqPnSMqcZTZJsUnKdx+BQIAHH3yQu+++mzPOOIO7CqvJS4rrsF40SWn2Bul13wdAOLMMQO+UeDbeeGrH7WMQlAP1bcx7fjGnFBXw40nD6J2SbDG6RVaVVnLNO1+QmxhHeyDIxSMGcuOkUQDUtXtJdTsRhci4kej0wIomoariEWNLDHQVpxKrDcO7omkCfjXy4RErAxiALCgdyEks4iKi6QHMoe2CqqTXMVAls4+mvAzdGApqEk4xyLryQ7y0eT2DMrK4YswknKFZ/FjHF3GsUZ4Za/9BJym6Ll6MaA+g2evhlS1r2FNXRaLTSXwo/WyC00Wc7KLJ56GypYnF+3fyf2dcyKjcvCPG90T+bmj9u+d9eXrdcl7fvp5pvQbQ7PeSm5jMxILeTO1dpEuLorxd3UG0Qdrgaee9XVvYV1/D+opSWn0+RuYWomgqw7PzOXPwGDLjkyhvrufOxe8S73CQ4HSxomQfTklicmE/mnxeZFFkSFYugzJzyU1MJtHlIj0ugWSXmza/D58SNOVHsfrRGSLldBqlTQ1kJSSyo6aShds2cmKfAZxaPARR0EmCJxDgk307aPR6GJdXwLDsPJNI7a6t4pLXXwQgMz6RFp8Xn0WuBXDe0LH8ZOopXY6bKMCqkn28vPkrNlWWMTK3gBP7FnNC3wHkh4qdioKGNxjAIUpc9+4rnDZwFPMGjUbRRCRBZcXBnfxp6YecPnAoN00+kU/27eCuLz5hcmEfRuYWkJ2QQmFKOn3Tskh0xjYaVU2/vtp87ThlF6LoIKCKKOixb6Dfi4omUNtayzvbVrG79jAHGqqRBJFRuQVcOHwM03r363BNRmf6spIUwDTqJUFhU2UFFy18h2SXiyZf2Fu89Mrr8ZNOUBPxKDJeS1HIgBrO+GUG1oeC7q3V7Q2yYvTO8KYYtVJckl7cMVFWSJEDOEVF9+CEnpkfbl/KE19/3mHs8pOSWHz5pd0Olo8VKK9pAooi43R6uw6QF7QjkpMOsrFYpOQYiL43oPDlvno0Ff74+V76pMYzrjAVQZUYmhdPshzP5qoG1lfUs66skZ01rWganNQ/g/evmhjR1hEnukK/N3kD3PPlPp5ad5gbbriBO++8k6SkpKPuu43/Hpgk5ZMeJCmn2CTFJinfcSxfvpzrrrsOQRD4y6QkZvTT5QxH1NRGEA4BVdNo8Sn4g3p2n7e3V7CzppnijEQGZyUzJCuZ1DhnaH0RTdNYtLeSXy7awGnFhdx50jhCZcEAaPOr3Ld8HU+t3wlAflI8P508ivOHFuOQwqTA+N9Zli0jS1dnCCgyKqIZoG7NPOMQgwRU2fS+GL8rlronBrGQRcU05A35lrU+igEBDZcUML0R1uM4GsmX4Q2yzkZqCBHkRRaUiP1bjX1ZUDq0ZfY/av/Gb9ZsZNHtQWzyE92+gMaasgP8YtGbvHLBFcQ7REqamvArCoqqkh6fQK+UNOIdTnxBlVa/jxR3HKIgUNJYz22L3qasuYGchGRyk5LJTUwmzuE00x7nJiUzOreQkbmFJDpdEef0eBFNZAQ03t6xmb+vWsLwnHxG5eYzLLuQkbm9cERlU4vVh8rWZvbUVlHZ2kiKOw5PIMjO2kp21VZS395Gc4gApLjiaAp5gPqmZjAmr5ABGVn0T8ukKD2DVHdch/1omsahpgYcokSK282Kkv28v2sbW6oq8AYD5CbqcSQFyansq6+lKD2DK8dM4qGvliEAT8w/nyfXfUWb309OYhIz+w2gV0oqAFWtLdy95FNWlR6KOU7zigfz25PP7PR6iu5rTVsLSw/u4rN9O9lcdZgbJs7gijET2VFTzY8/WIgsihQkp7C/vo75Q0Zz1pBx5CSm6ZKpfdu4+4t3uW/OmZzYtz8VLc18vHcHh5ubqWht4WBDPXWeNjPpQ4LTTbo7nrykFPqnZaCgUdfeyuf7diGKArP6DyY3KZ05A0aR4HShagKe0DNAEvQg84AmoqpByppq+bp0B+/tWEtReia/O/lUshM7xhJYnykQu/ihN+DllBde5srRo7hg+GTK20X21tezr7YERWnhsjEn41EctCsOvKpokhSDoHSss4K5zAiuN/sjgCTo17PVq5IkB8l0+pFFFY8ioWgCcZLCqgPr+dOSd+mdkkxpU7N5JYuCwNbrr8QhyTGD5Y9EUI5F3hWLoETEuEQTk05ISXcD6//6xQEeXHqQJLdMolPG41f43awxzBuUg6YJyI4AHq/Egyv3UtHailOU6ZOaxK8/Ww/A7ScPIC/ZxabyZmYOyOSkogxS4zpKPmO+ozSB7VUt3Pzxbva1CTz00EOcd955tgTsfxQ2SflmYJOU7ygaGxu5/fbbef7557nzzju5xvNlR+M/VqrFLnS2xucJj3yKW5aZWJDF/voWdtU1UdvmY8Govtw9axQJTpk/fLmVv6/cQZxDYs9PLo6Yhfz6cA03fbySAw16fv4/zprIRcMH4pKlTlM7dvbdgEFWJEHBG3ThU5wIgk44vIoTo8iiTiAUgpr+4g2qEn5VRrak3bQaGUCEge9THBFGOegzpqKgRhCaWNIYa/8NwmIWgbQYONbvuuxKNIlTIHTO4qRAuL8Wz4vel3C7uk5fIKCKOEL1DTQEZEExPSbGMZp9DHlRjBS1xvHGqhkSy0PxyZ5t/GX5p6iaPlOenZAYqlMhUNveRovfh0uSzRn6Kb36ce+cs3ns62VsqizjzpnzOdTURn17A5UtTfiUAHGyA6ckU9pUz6bKUspbmhicmcPFI8Yzq/8gpE7SXB/JgxKLXIiCRrPPy7s7t/Ho1yu4b+5ZTCws6lQeZ/VGdUaYon8z+tXs81LS2EBOYhqSKLKx4hBbq8pYUbIXbzBIdVsLvZJTmT94OGcOGkp6XDyvb9vIK1s3UtnagqppBFWVvqlpnDV4OJML+9I/LY23d25F02D+4OH4lSAPrFrCOzu3cfrAIXy4eweyKNEvLZ1Jhb050FDP6rJDFGdkMjInj6FZ2cQ5nNy26APG5hUyIqeQeIeDMfm9GZqVh9xJgI+AysHGevbV19Hq95GXlMLgzCxS3HE8s341j369HIALho1mXH4ht3/6PuPye3He0NF8vGcbK0oOkJ2QRL2nnUtHTeT7Yybz6d4d/GHJR8iiiEuSefaci1lZepAZffrTNy0VgNWlh/jR+28xubA3LT4/9Z42atvbcMkyvVNSGZNXyODMbFLcLlaVHmR7dTUHGuu5ZvwJnDVknHmtKyFpmPGoMghCIODh0dXvsaF8P3855UzG5BVGHXdHkmJ8N2oriahsrirnync+xik5GJhZyN66cpJdMhUtzTxz9jn0Te9rEhUjG1h3yIohAzP2aVaeFzTzWET05ca1p6cn1v/cohoKrBdoaG/ikVXvcaihmgdOncWEgszwcVpkXqKoRhAUUYws6Kiv3zEmxRynoyAnRyImMQlJFzEpBioa/Qy8ZymvL5jMiX1zEASBz/dVkhUfT3FqDi6Xj0DABaKPn76/jl+cMIz8ZDebKxt5cu1uJvdOY+GWMjaWN3LRqF6sKa1nd10rE3ulMiI3idwkF3nJbnKTXPROi6M4IwFR7Pg+1TSNVzeV88svDzN16lQefvhhevXqKJW18d8Ng6TUfjy9x0hK5qnLbZJik5TvFjRN44033uDGG29kxIgRPPbYY/Tv35/WP5yhz8arIkpQRhA0WgJe1h/Ws3Y9u/4QJY3t/H7OMC4a0YuAqlHW1M7KQ/WsKq0lI87FBcN78+qWEt7aXsa6H55FelwioL+k9zU0cOsnep2EFy+YgV9RGfLQ21w6soi/nDI54oE84MFXuGzUAJ5YtwuApVeeyYB0XQKihTwU0fEn+raxPSqKJoUy2ojIokJQlWgLxOGSArQF3fhV2aw+7VclVE0PugX9hZ0ge81Zz6AqmcXKICz/UrRIj421gKOxnrW4I2DWGzAMfcVCCq3eFKtExHqsiibiV2V8qoxHcaAikCD5Q7Ojeh/12V/VDOY3YkkMI9ivygRUkUTZZxItYyyssS4GubHOjMeqoWElbNbfDBjExxsMUNpUR2FyGoKYYMYKKCo0+zw0+9pJcjqRRZHbF71OUFVo9nkIKirvXfoj02i09lM/1/rxNXsaWFGyh1e3fE19eyuziwZxy7SZuB1OotEZEbEiqAS5Z9liVpYeJKAotPr9DMvO4XujJjGl96DQvruWDupELjL7mGGTRFdhN45PEjTaFAf+UHYnp6ggCRpPrPmYn06ZRYvPy+aKfbyzYyNfHS7BKUnkJSZx/cQpnNinH05JotnvISPOjaqFEwVYry/DC9ce8BPvcLK5spy0uDgKk1MIaE78qkS7r42vyvaxs6Yi5O2pwa8EiXfoGfOckkRAURiWncv3Ro6l0euj2eel0euhwdNOnaed9eVltAcDpLrcqOiV4Zt9PjLjE0hyuTjQUM9146dw3fjJ1HvaefzrVXxxcB+17W2IgoCAgKKp3DbtZJ7dtJYfT5zGqcXD9POjatzx+QdsqChFFARafF7OHjKcn0+dgUOUuHjhS1wyYiynDxqBqgkEgj4WH9jNP75aym3TTuDU4oGW8dCY9+KzHG5u5uLhIynKKGBcfm+yE9NCgeqRpOVQYx1/X/4G++qquH3GXM4dOrRTMtqVN0USFIJqkA0VFWyuqmZIZiqjcrO47r3PmVSYyzXjTsKjOAlqEm1BB35NCqUpFs36KgZpscamGMTFuM6MuBSHqBEnKcRLCnGSglNUqfO7aA9KuCXFXMclKngDARbtXs1rm5Yws18/7pk9jmSXu8OxRUu8dI9K7BTD3ZV3RS+3fo8gKF1Iv7oiJVbHhGGtaIrIU6tLeWl9BZ/84AQUReCFDYd5dXMpQVUnUUXpCSS5ZNyyRHFGEluq6/nj7LGIokJb0MuP3t7AqNwUfjZtMKKgvx8qWltYvL+aPbWtVLb4qGr1UNXqpaSpnTiHxPR+6Uzvm86MfukMy0mKIC3e657npptu4q233uJPf/oTN9xwA5IkYeN/AyZJ+bAHSco8m6TYJOU7hLKyMm644QY+++wz3G43N998Mz9RV+p5+BWV7dUtfF3SxLrDDawta2B3bWuXQpmMOCcTC7NIj3fw4qaDZMW7OHdYHy4a3o+hWRmoqhhh0LYHglz9zlJq2jwEVIU6j48nzpzBlF65ALQHgjyxdgd/XrEJpyQyLCuNX50wlqm9cy1So1BNjhgenOjPxvpqaMZfFFUUVcITdJkzmN6g04wjUbRwf2VBiTCwk53tpiemsxSW1tiU6BiODusjIAqq2TdjWWeeCKvUyuo98atyKLBWIkHymxWjNQTiJD8ADjFoStA0TSCoSXgVmXbFSZarldagLotyiop53FZEV0E3YgKs/TL2Ge53+NgMAhILxjEY7XkUR0QCADEkhXlj29cUpWcxvqAP8Q4nAVUkqElm+0brqiagICKhk6pA0MMjX33Kx3u2omkat58wh/mDRiAIHb0a0TEEVjy9/iseXrOSmf0GcOHwcWQlJJOTlBE6Bp1MBFQxROYI9U/sROgUaxwiq9EbM/aOkGTPGAsB/Xr6v9WfctPUWciCYnq2/IE2qtua6ZuajEuWIgxhUVAJKPp1bpUIdkZ+jXNj3BPRZEtAobq1iZKmBhyiyHOb1rK85CAD0tMREEhxu0lxu0hzxyEIICLw6rat5CUmcXK/IjLj41l26CD7G+o4Y9AgPAEFVdP44YQJ5CWmmv3ZXVvDBQtfIis+gdr2NgqTU7l4xCje2L6Fi0eM4byho8y+bq4s477ln/GP086hNeDnR++9zm9Oms2MPv244q1XOXfIKGYPGGV6CkUCXPjas3xv5CguGTEi4hhr29v509IlbK6qRNU06trbGZqVw9wBQzlryBgQHOb1XtbUyGNfL2bd4f0ku9zM6N2P8QW9KErLoFdKqllHyDrWsUhKdAB6XbuHmc++RnFGBn+cOY2+aTk0++NRNBGfqqcr9qtSKMjdmLSITVSMJ1D0xIlT1HCJKgmyQobDS7qzne019XxxcB8BRaG8uY599VWUNjVQnJHB3SdPNJ/XQhQpEC3PhKOVd5n/ozwo0fvplKR0k6B0VymlBkVOeXQtpw3KY8HIPsx44gtm9+/N7rom7pk1DkWDT/eXUNHaSnaCi75pSYwvyKAoI97sQ1BV+PNSPVvdvMG5jM1PRRABTYiIkdQ0Ab+isrGigRWHallZUsNXpfU4JIFpfdOY3k8nLSPzktlZ3caEh5bhdrsZOnQozzzzDCNHjuzeQdn4j4ZNUr4Z2CTlOwBN03j66af5+c9/TnFxMQUFBSz68H3mFGfTJy2etaWNbKpowiEJjMlPY1x+OuMK0hhXkIY/qHHd22tJdjuYXZTHaQPzSXO7kEURIWSU+xWF9eX1jM3LxiEZMSdCKA1v6LMq4pAD+INB/r56M/3Skpg/qB9xDpEmr5+Xt+zjkTXbqWn3IosCkwuzefWC2SCEJUVG3MiRCIr1pacbXRKKKuFXIrXAflVG1fR6BKY3JOQNkEUFpxgkqEq4JD+yRa6ghLwtsfoAYWmZNW7E+t0gKNZtu9LtG14Q1eKxaVdceoBviABEEwxVE8yq9lZ5maYJ+FSHSQZSHB78qowoaLjEQMw+GP2zBtYbnpoO/Q15jKI9SUa8jBgywqwIqFKH2BlVg6AmmQTAGToW4zfrudKNdIFAaH0RfX2XGDQJkKL4eXnzKt7btZm8pGR+MX0WxRlZ5j5jERSrsdPq87Jo3y7e2rGdRq+Hv55ylrm9EkpvG91/a/0cvyrhVWWkkLnoCBlhhhTHOBb9WIMommh686zjbRi196/8kp9NPTliLNUQAQVwikEcYjCidoVVUhYtL7NOJhjn2rjWrETFaE+yzISXNNRz9ivPoQFDsjJJdrlo9flp8ftp8HhoCwQoTE4moCpUtLTyziWX0S8tDVWFxQf28cLmDcQ5HJQ1N1HR0sL4/AICqkpZUxM+JUi9x8OT88+jd2oaf1jyOcsOHWBiQSE/njSN4dn5Jkkz+m9MLty26B3a/F6uGjuBn3z4Lq9ddDmZCVnmudbUADd99AaHmxt55PTTKcoIS5cUVWX0o//HjZOmsqmyggONDXx/1Bhe3bYFhyjx4GnnkhKXYJk0AL8SZF25LsXbWVNGSaNeJPJ7I8fygzHjSHCGvXjRki99TJWI76XNTcx+9jXW//DHSGI4hbmKQFvQjVeR8WuSmenLICdWCZhqISjGHaaCGVQvCXpRxxRHgGQ5QEt7GZe/+Twn9ulFkstJ39QkBmdmMCwrlZxEN4ZqMhYpMZZbvSSGJ8V6P0WTG/O/dbmoxiQnHbaLIinmNmL0+kSik0kTAC0oUuvx0fuuJey5dTbvbK1l0e4a7jhxEoXJ6WiagNvhxenwIUlBShs9fLDrMFurm7h1+mD6putExXj+1Xu8fLy7kg0VDcQ7ZG45oZhkp8skKrEmCgKKxpaqepYfqmXloVpWldSRnejkkjEFXDgyny/31/Gnr2qpr6/nl7/8Jb/+9a9xOI49vbmN7z5MkvL+tJ4jKWessEmKTVK+XZSUlHDNNdewYcMGvF4vo0ePRijbwdIDtaS4HZwztIDxhWmML0ijOCPZJB5h+VVHYhD5u9VYD6+raqJuzIckTKKoIovBiAfy7romnl6/i9e27ccT0A2y/KR4LhrenytGDyIrQQ8IDsuOLIZsjP5EzwwHQwGvRhuqJhBQHSYpMeJHjCBya/yHJKjEyT4Cqowr5JEwiIaeXliMKFZmIJanx3oMVhj9sBqAVlhf/vp46l4Hf0je5dckJFTcUjCCpBjGgySoBNXIWVxNE/AoTlqCLiRBJd3ZbnozkmQPPtURYQxb++9XZXOsrMZxZ0GoBrEyjssqNTP2YcTEGIae4R0Jp40VI/piJBwwgpgNGYtVggPgloKm8W/02SGqeAI+/rVhFc9tXENxehZzBwwi1e0m1R3H8OwcchKTOsx4W49RQOEfX33FOzt3cPuMWczo0x9BCHseDDJhJXV+VSZoSdnssMgFowmNQeJ0yWHQjIWykk9R0Lhv+TJ+NuVks2/W680gZsb2xiy99XwFVdlcHl37R7OMqfV/NKxJHtr8Hg41NnCwsQFF1UhyOUhwuklxueidks4Lmzfw3q7t3DhpEqcPLCaodowvAzjYWM/K0kPEO5wUJqfglGRUTWVYVg4OSWLRvj3cuuhDNv7oRgTCnh5rpjlrPM8DKxfzwe7tXD56HD+ZfKJJlI31VFXhhg9eozg9nd+ceKJ5n2qaxqVvvI6KBppAvaedDy69DFXTuOGD90hyurhv7hn6cVhInaLp94lfkwioGvtry3hm3aeUNtXxgzFTGJiRQYpLZmBGhj7RE8ObIoXiOZp8HsY+9gJ/mDmbU4qHAg6cYtA8J+2KyyQqRl0Vv4WgBE0CTMgDp5nXmd5GKLAeSHUESZQDrN6/mk/3bWbhhadESLeiYSXysTwm+m9qByM8FlEJ/xjpRYmWeHVooxsE5WjIiQlNlxX2vWspr1w2mtE5GfzkrV38ec40goqToCrjcvhwObyIZl9VPIqPuxdvZ3qfDOYPKYiQHxt921vbxjs7DvOzaYPN5dFeJVUVO7zLvEGFRXsreGljCatK6vjd3CEsGJ3HGR83sGPHDvr06cOLL77IqFGjjnx8Nv4jYZKU93qQpJxpkxSbpHxL0DSNf/7zn/zsZz/j7LPPxr/pSxZuPQxAikvm4lF9uHX6UNLinB1eHKpqJQNdkxTrZ1WVCCgOJEuQuQHRMrv29o4DPLtxL6tKa8zfsxPc/ObEsZwzpGMqT6uB3xVRie5fQAlLMgzD0a84zH74Qp4Vh6hExIMASKKKW/IRVKWIF40h6zK+G8ZfdBYxq/fECmtAvUFSrMdoJQZWYqGhkyq/KuNVZNMoc4pBs2hdLE9Ia9BtGqxASM+ukxQVKHA3mwQkTvLTFnSGZu41M3jeaiBLUbOi0WNufo6SrnUWz2LNFGYtumclQbG8HE5RwSEqeBWHhdCEjVVr9jRnqO6DUTPDF/Rz0tN/B+CUAYNp8npo8Hooa27kdyfPZVb/Afp+LYaYqmnsrathVWkJm6oq+Wz/frLiE+iXlsYjp5+NU+5oWBiz3oYhaxyT1eizklRr/JBBNqUo+Z0a8gzes2w5t0w9CWt6aqO/hjfFESIp1mJ7xn6iiXF0qm393EgR12DEuQ6dR+O+iRULFh1XZawni4pJYKO36Wx/VrQHfCQ4nabs0erhi77mAPbUVTIgLZ2gqvLk+q8Yl1dIYUo6BxtqeXbj15S3NPOHmTOZ1rt3xLHVezy8vWM7bllmVv8ichMTUFSV+S+/xA/GjOWcIcMjPJQGUW4PqBxobKLOG2RIdm9EAb4u3cbCLatp9LZR29bKjZNP4rKRwyJICoAkKCZJEQSNt3bs4a8r1rJg5HAuGjEDlxhADV1LPkX3iPpUGa8qR5AUI05FCV06kqDXgXGIoYxeIa+dUX8l3eHD42/jr0sX0j8tnnvnTEIKeS9jzfbr5yp0PRuZvEQ9VmtPXSs1bT6m980g0SmHrg0Nv6Licoj4gypPrDlAvcdPslvinOH59E2Lj3kdHDHFcCzSIxrLrCvH2PYIuPLFbeQnubljxmje3FxHUBU4dUB/naTIPmQpgCwHEEPFL/VxUnhpUwm7alv51UmDcTvEDslmHlm9n5LGdr4/ph9DshNNL9JXZTXM/ecqACb3Smd8YRpDs5MZnJnMwMxkEpy6Ybp4XxXXvb2We+cNY3xhMg8s28+ne2qo82ncfvvt/OpXv8Lp7Bh7Z+M/GzZJ+WZw/CNp46hRVlbGVVddxfbt23nooYc4v+RdavJGcM3E/vRPSyQ9zgVHSM0LOkERBNUkKrHXEVBVCVFUItoTzVm0sFGraQKVLR5++J7+IE51O/np5KGML8hieHYGLqnj5RJt5BsGnmoxzox+RBj1WkejP6Id1Ii4CtPQEzpmqAqGYlYkIsmXpgkoSGY/FVVEEvVZcMnwssSaMIxBRIxFkbP4IUkQYXmZIfECQ9KjdpBQBTXJJAR+VcIhCoiakclMNnXsgqCFJFW6pC68D4kAIAoSsqDgloLIgoIsqhFB/NZMZKbRaZERWccyeh+hUde3txiZsqCiCOHrzfCYmGMe8ow4xSAagiX5gIAoCEiaTgIbPa18uHsrL2xazd0z5zGhsNhsQxYlTiseiigI3HXyqeZM/NIDO/nt4o/YW1/Lj8ZPQtEU1pSV8tHeXSw7dAhfMMiEgkIONjYAkJMYz5rDZbyydT3fHz0eSTSuzVAskqgiEU6QYPxmPVfGdYOgry8LQfM6iPZm6eMRJiSSqBJUQp4nq3wIgwyFCAgioqaC0aagIQvBSLIdumc0ISyhk1BjevishEaUwtJGhMi6QtGFTI3lmmZcIx1jYgzEIj0G4h0uYk19GXI5Y1yNsRuYkYMkqOxtqOGFTev4aPcO6jzt9EpOYVb/Iq4ddwaJLgegWfoGGXFurho7NmIfW6qraPB4mD9ocOh8qMbOETQNSVP5xRfvsrrsEC5JJjcphavHz+bkfgOZ2a+YoCbx1NrFrK84zGUjh4XHJdRfFRFB078JgsZ5Q4rQtCD/WLOZ8fkDGJiZg6KJBI1zJGjmnyZoSJqGIghIaCEPnVVGqOEW9fvYIah6PRTFx1cVJXxZX8q7O7cwKDOdmyaPRBKViGd4LKJi/c0gKpMf/QxPUCHF5aSmzcuZQ/I5b3g+f1+xlzWl9YzKS8UXVNCACYXprD/cyJ2f7mT1DTMYlhtlKHVCULokGEcgKEdTO2Xe0EzuWXSQX00TOaWoNz//ZDWnDuiFLIbfGcZxh707cOm4QjaWN3LJK6tJcsmcOTSPWUVZZCToxOH6Kf1obFd4dv1B/rm2jUvGFDCpdyqDcuM4Z3gub22tZHVpPatL6wFIjXPQ5A3QOyWeodlJ+BWNJm+A/CQ39325l43lTeQnuykva+S+++7jzTff5IUXXrBjVf5LIagagtrFPXAU7diwScq/HS+//DLXX389Z599Nv8cI5NS8i6aJpAZ7yYz3m2RaXV0vUfHdEDYla1aihRGZLFS9cB0SQgiywEcgr9TL4sgqOQkJlB2y4UcaGijf1oSohBbHmWF1ftgwAjMNtexHIOqirrUi8iYEGM9SVBQtPBsvXWWWzcOwzPcxu+iEEMWEzVzqyIgGcdi6W4sQ8wqvwkdZKgN0fzd2m+9iKM+A65hzKiLaKqALAhIkopP1T1D1jouhvzI8MD4NQktJC+KkwJm8G2cpBvHRhyEPxSYG0DUDT8RHEIwYkbeiDsxjPzouABDeiULCn5VRiNSkmUYwNbq9Y6QbM0qfzKNZouMzeijSwxEjJPRlzVlu3hkzZcAfLBrMx/v2UZhchqnDxpOQXIqv5s5DwGNVp+PZzeuobq9lfLmZlRNwxmS4dy+6GMW7dvLghEjuf/U0xmRnYMsytS2N7OipASXJOKURUbm5AM6ubOSuOjYFiPZgVXeo2mCOXMuhTxXiiZGyLGMMTfa1CVcHWOCoj0qqiaYxq5h/GqaEJqB1mftjetOQ0AVOnoIjfvI6v0xEg7p515FUUXT6xL5mxBBWoz+dZVIIcJrRJjodqi9Y5mEiM54HOt5AfDR7h1kxcdT1drK3AFFnD9sGFML80OeW/3+jp742FpdRU1bO6qm6TEnFeU0+XwsOXSQ2f3Daaf1fuv358SCQrZXV3Lt+PG0+L38bvFCRucWsGDEOIoyevHJni38ZPLJHc5rLAiCxlmD+7O3voEr3nqFmf0Hc92EGaTFp5n3iCSoeoIFwUjUoYWyeOn1q4wsXW5RIS4kDV1TuouFW79iS1U5uYkJjM3L5/bpE7h4RD6SpCEIgQ4yJNFCtk2ZkqhGxI8kumQyE1wMzkyl2Rdkd20rN7yzkWl9M1h27Uw2lDdT2+bnirEDiHOIKIrE31dt4cTHVnDuiHx+PLUvI/OTI/Zjfu4k1XC0zKtbBKWT68+KmYPSuPS5rbRqTSTGwZwBOaw+fJgZvQv0cZaCpjzLJCuh/39duoedNS3M6JfOQyv2cu0bGxhbkMKvZg5kTnE2qfESP51ehDeg8MKGUlYcrOPnJ/bnuYvGwcUau2paeXdbJf9cc4ihOUncdUoxDZ4AO6paUVX42/whFKa4uODFSh6aP4ILRhbS5A3w8a4qNpa3MnnyZO666y5uvvlmOwPYfxs0Yk5+HlM7Nmy5178L9fX1XH/99Xz++ec8+eSTzNz0jOlmtsaPaJpg6mgNxCIVhlGhhrTjgYA+C6RoEooiIYoqLke4SrDRptWLEav98LKuPTmd/RYdn2L1rAAoimSmHI6GIGgEFNk0DgKqHEr7qS9ziEGMbFEGjLYE0yBQTMmXebwxpDOmbIcw+YlGLK9N9O+BUHC/LxTo3hp04QvFHOjyDTVCzuUNSdisM8nWeAi9crUDFXCEvBRGW0HLcRtkxUjHrGgCqc72cHyJGo4HgEgjy1geUCXcUsA0Gr2Kw9yH4XWRBDUUOC/gEPXZXacYNJdLghqOywjFQDhEBb8SzghmQEWg2Rfg4z27eHPHJnolpzCzXyEbKqrITUrh8/17yYhL5Nbps8hNSgPgpc1f8+7OLcwrLiYtLp7Z/fuQGa+nzt7fUMetiz4lxRXHI2eeiyjo17ZBJFRNY39DFQcaGjihTz/iQ+mNDUmTQwya8qzoOA9DhqX3O1zDx0iR3R50m9eMSwqYbWmagCwq/H7pKm6eejK+kNzNJQVMT17EmMSQP4mCijMkDRRFnRzpfZPMQnzR97GVPFu/G+sZQfZGrJY1eURXfYlGtLEei2xY27J686LlhsaxSoKKpmlMe+pxJhfmo6gaGyurEASBJKeTswYP5LQBA+gXqqtioC2gMOnJf9IvVc/Q5ZQk0uLcNHl9/HjiJCYVFnYgYioCigqf7t3Bo2tXo6gqM/r0obqtlY2VVXgCQYrSM3nl/HP1aXciyaw1w5dxbgRBQxIVDjc384cl21h8oITnzr2AvqnZBDWJQGiiQZd9hdMSG7EpVi9KouwnTgqy4LXHOWNgLxaM7ENReiKCIER4TKLrmhiSJCBMSmJ4OnZVt/H1oRZ++PYG87fNN55GYUocwaADX8CNooQKzooqUkj6d6Chjqc37ODlzQd49NyRXDg6L7SvrolFdwjKEdvowjMz4M6V/PPiYUzJy6elTeZ3i7fwh1njkUKTOqKonydrELwgKdz+0Vb21rfy0vdHkuCSKG/y8fK6Cu74cA/vXDGemQOywfBeqiL/WLmX4swEThucBYiIkn5PNnoC3PbBdj7eVcM/zhnK2SNyOen/VnOowcPZw3N5f3sV5c0+TuyXyW9mDmZCr3TQBL4uq+OHSyrJy8vj2WefpV+/fp0eo43/DBhyr7q3p/aY3Cvj7JX/83Ivm6T8G/DJJ59w5ZVXMm7cOB4Y4iU70aUXYjS9GKL5P5qgGIgmKoKgoSgy7d4EvEGXnu1K9uOQAuYDOtrwjkV2oj9Hrh8mKrHkHdY4EOgYm2Kd3VVUiaAqo4Q8DtbtI7wsltl+v+pARDWrxVthnY1VLOkiO4vFMIw2w0tjBMBa2+uwXdQ+o6U1hoHrUxxomp6VS48ZMYiQIW3RZ08FNJMExIeKORoEJRz7Qaif4Rlqp6jQHEpDbHhZ5FAsioBmBnrHyz4zbkKf7Q/Nnhsz91gMVsKB9tbAecNzA7pG3iAqRv8B3FLAPIfRtWVA97ZYA/DrPW3MePoZfVtZpn9aGteNG8NpxX0RhLARubO2jvuWr2bN4cOcVjyYE/oU8djalVw8fASXjRzSwVMmouIJ+jnzpddo9vkZmpVNQFWpb29nQEY6Xx8+TKPXC8CL513A0OwCs3+OEAkwrg1HiEQa15XhSYlOaW019IOqjF91mEHmRoHPONnDfSuWc9u0E/TCpKrDTEVs7MMovmdc78a5SHB4aQ3EmefT6ItL8uOU/TpZlwIElI6ZgkRBNe8zAIcUMA1Oay2iWPd7dHxLZzKvrhDt6Y39XIicZFE0ERGNZzau5fmN67lyzChWlx3msTPPwqeoLNp7kI/37mRl6SEKk5O4ffpUTuyrx6Zsqarlgtde5xfTp1OQnGLGLv1tpS5XvW3adE4tHkR2Qrx5XlVNj0FSNJGAorKiZC8f7dnB8pIDTO/dm9OLixiVm0NhcnLM6w0w6zBFkxTjmrlv+Ube2VHGS+dfSJLLjV+RQ/VTdDlnU9AZQVIAM4tXvBQkzeHlijce59yhhdw8bVjI0FYsQeBhUtIVIenMuFdVjYkPrmBHdSsAw7KTmVtUyO0njMTjC8eeGElGjDYPN1cz74WPeO8HE5nQN6nLeJQOiCYp3fCgdCcuZf5jmzh1cCbXTeqL4nfwrzXlbK1s4bYZw4iXEomPbw2/Z6TwvXy4uZ0rXttAXbufD68bR2Gqm4UbK7nro72s+fkU4mUZTdU94ZoqoqoaL24s46uSBmYOyGT+0Bwccvi6fnNLBT99ZyszizN5Y3OluTw/2UV5sw+Aib1S+fzaaaiKhCCqtAcC3PHpHl7dVsPf//53fvCDH2BXq//PhUlS3uxBknKuTVJskvINwuv1ctttt/Gvf/2L+++/n6uuuorWP8xHU6SIF7qVpFg9H515UPR1Jbz+OJyyD1kORMV7WGQhoVgUVY10KcfyqET+3nW8S4T3J2q2vmPwtX68/mA4CYDxcjfIRVg2JYdiGQIYNVQgMtOWAcOrYpVkGEaYtaCj1ZNizGZHZ7+JPq6IcbJ4PaKJi5FJLKDoWb3CXoqwdEjRRLyqjMMik4qX/AQ1ySxOqbetq3ucYtDMfgVQ7UskTgrgEoP4VL3mSjBU8yNJ9pHk8BIIGaZGcL4RsC1Z0jdbJV8+VQ6RJink6VHM4HZrYL712CVBxa/KZlYqa0yDEYBueFb01NAGEdC4/oP3WXroEO8tuJDBmbqXpLOaMxUtrdyzbBUlTS0MzMjkuvEjkUQRRYW+qanh82943BSF3XV1bKmqxu2QSXW5+Lq8kgkFuSw9WMLzm3ey9YYbzXNvTYjgDPUxOlOasa4kKqYnI9oIFwQ9C5c/6MCj6CTSISr4gj6eXLeGn02ZTJzDS7MvifZQtjbj3OgJD1Qz8YHh+TJqAlkTKTjEoOmtcUp+ZCmIJCoEFD0TnvXaVKKychmGrUFg1JD0y3ovxToPsQLurfKnWNvFGiPrMoj08HywexcPrF5Fo8eHLAo8e858Klub+PknX/DlD64gyekmqGrc+cVi1leUMyI7h8UH9pMZH8+5Qwdy9dhRfLrvIC9v2U6L30+q202a24WiqQxIT2V9RTXryiuZ3KuQMwcNYU7/YqRQjt5Wv8Kq0nIm9ipCFkVq2tq4b9lH1LY188+zziQrPrIQogHj2WElsNHV21VN4aq3l7O7roVHTp9Lv7QMgqqMV3HSFIijOejEF/KoGERFFPRJgThJId3ho65lLwtef5WtN55NdpIYEV+BoJkz+bEC02PVJjF/i1pW0ezjwmc3sK6smZ9PG0iftAR6JSdTmJREbkIyfiWOLw/U8vymjawuK+N7Y/P5x3mDCamAOZJNbbUuuiQoUf2KHZsS3bbGoLtW8+B5g5g7IAclILNsXwP/WLGfmf1zuXLcABwunz4hGNG2LoFr8wcp/MOnfPXzyQzNTeTCf21kdEESv5xdBGoMxYEioqrw5f5aXt5QzgNnDifBFc7OeLjJwz9WHGBNSSNrSpvM7TbcPJ3qJoWRuckkui3v4VD7y8bdwJVXXsnkyZN58sknyczMxMZ/HmyS8s3Ajkn5hrB161YuueQSEhIS2LBhA0VFRTTfdbYuIRB088AMUg0ZApKkdPCmWL0NBtkIBh1IUpB4d6v58jLSIgKmNjnawDDas363IvK3cLyL/lvsrF2CoHXQTlo9JYZBpKoiDilgzkQbwcJhOYiIJOjeIGM7QdAQNA05ZLBZNfmGrMt6AZtBrdEGkhYOaLZm5oHI2BPdAIgyqgSxQ1tWSKIKKmatFsAirQnHhCRpglnvxCBTutEqmd4Va2BxW9CJUQTRqKcQtMxs6imN9cKEXsVpkhMjRbBTCpoeGqMP4dgUXeplZB4z+mwSt9DaoqDhV/X23CEjOU72m7ImawyDGiJkGpGSK9DJza9POJGVL75An5Tww7YzSVFeUiIPzZsDwPaaWk594VXztzG5OQzOyuCWqZNJDGXIcUoiw7OzyIiLY3d9PVnxcbQHAvx28QraAgEmFuSihM6R4T2LJrAg4FOcxMu658WoXeMPuM1zpSHgCTrxqQ4CqkheXAOKJuGUAiRLbeY4t/q8uGWn6dFIcrYSJ3txhAiRMSlhkHCHGMCnOAmoDmRRIRAi6kYskFHPCDCljwBupwePLx5ZDBJUZSRRQRaDERJIw5DWiXvIqNbCcjH9PuxIzI1rOTRYMYm6MSYRBC+W1Wo5z0YdmlZ/kF98+in3zjmRMXmZZCckkOR0ce6DrwMw46mnueOEGby3ezcNHg9z+vfmXxu3omgapc3NPLF2I6cX92P+oCLmDyqKII5WHG5u5a0d+7ht0SdcM7aaGydNQcNBeUszN3/yFgATC3px1dip3DPnLP6w5GMuffNtXj5/AenuyBTm0dXnoyc4zAkYUeTpc6Zy77ItnPPqm1w9ZgwXjZiCU9bPpzskz1QEATU0XIomEETEr2q0Kw4yEgtwyzJ7agJkJcYhy/6YnpOYXpMjeTgs6+alOvn7uYNZtLOOsqY2Nuys5UC9h9JGL2iQ6HTgkOGqCb155vJp5CW7Oo0XMfqgqdb3Q8xVu+896YIEvbqumvr2ACcPSgNNQ5RURvdxk7PFyTWTeiMQRAk4kByBMKkj/Hz/ZHc1BSluBmcnIEgqJfUevjc+D0EATdQQ1Kh3naQiiQIzB2TSLz2en7y7mflDc5lbnEOcU6QgJY77zhgCgE9RWHWgiafWlBAnS0wvSgyNS8fjnrH+YbZu3crVV1/NqFGjeP7555k5c2bnB27juw1V0/96oh0btielp6FpGo8++ii33norP/vZz7jzzjvx/On8qJU6n4GMtdw0KFSJQMCJ293eIWjS6o2wkh+rByXaG3OkfYd/j9S3x9pv9Mva7Ldldjes+9f7FEtKAzrZkENV2K11Tazra5oQEWcTPQZGP2IdZyzDItZYWGVi1t86jF8H3Xtsvb9BXPTvIh7FiaIJeBQHAU3EIai4QgX+FE00PRmG/MqQiPlDKXNBD3qPCy1vCsSR5WoJ7xMhFDMTjrcwPCWKJprenHjJFxEwHlRVJFGKSLtrzCAbdV2sXpno2XUrETOMXU3TuGThi8wd0J+fTBpDd9Hk9fHY2vW0+v28snWnuXzlVZeRlRCqHo3GnroGzn/tbXISEzjc3MKo3Gx+OH4sshjPhPwMBEGImAU36toY3ibrdeBTnARViQpPCgoimc42XGLAJIlGogGnGDSJqCwquCQ/DilIeXMzn+w9xNXjhprXqeEx1eOuHOZySVDwK04kUUFRJTPGyW9JY617FoOmZ0rfTwCHFE5KEC3HjLzGw0kejBi2sFRS964YErbwtRN53Ud6aiMnTqK9qdETIlZoCGytquaf67fw4Z69vHz+6UwuzDH3WdvuQQA+21/CnV+s4IrRw7h+wmgeW7uZjZXVtPr9nNS3FwtGDiE3McFsV0RF1bQO6dENPL5uK89s2IooiJw6oJgZffpTmJzCte+9zYEGPUuTQxQ5ZcBAPtm7h6fOOospvbI6tGNMcBixQdGSQH1cwrKstYdr+dVnG6hp9XHbtCnM6DuMen8SPlXCo8h4VSMVcbhwY6Lk529LX6PR08Qr588lPakdWQ4gOUIpzKPJ0ZEC1s3OR3krYg1VaJtgUKOs0UdVs58xvRNxyuJRB7ZHINY7pivvSRevpKCqcMe7B3hqRTlPLhjKGQPzUYNhueJ7W+rYXtXKDRNG4HL5kRyBiNougqihaioT/r6CH03vxXUzCkDQuOal7YDAExcNC8eLKlEdETUMZhkIwNID9Xyys5agorFgTAFjC1M6HI9m8crEmjg0h0jTeDHzbG6++WZ+/OMfc/fdd9upiv+DYHpSXp9CcnwPeFLag2Scv+p/3pNik5QeRG1tLVdeeSUbNmzghRdeYOzSvwJEups1Ifxw7gZZsBIUVRWRpCCSpHRqCFhJTeTy2AXhutpv9HZdkZnO+mMUjbQSlFiVfDtk0yIy2D+6b9GxLF15iqK3j0VSOhu3WCQlui9WOVmYjMSuX2MY975Q/QQAryLjU2UzWN7wkoBu1HkUmXgpgENUkQXFrPQuhwLyDSPbkFgZ+9SLFEoW2Z1opkNWNBG35DcNbEVV+dOyJXyydzctPh/Pn3smY/N766mkLdsHVDmiAr1kkSyBbsT5gwG+OnyIxfv3s6zkAA5Rol9aGuXNLZw9ZBA/njhaH3tiZ3mKOFeWmUdfMMjBphaK01MjjNElh0q4ddGXLBgxlJ9OnkBAURAFCUmEgCqb8SbWfVrJlPXctAbicYhBM24hTvbjlnz4VQfekHcrTvabwe2iqBJQZJNMi6gcaKhlQ2UFFw0fYhZI9QVdiIKK2+HVPSMh2VVAiczKZ1yPAdVhesJUCyGUBQWnFCRO9hLn8OB0+sxEGdFEPdogMgxoRQkXUTVIiyENVULHEn0vREu2YtUfsnpvousSGTjc3MI5r77N6cX9mdorl5P79sIlx85u5A0GccsyBxqaOPnZNxiencnW6lqePHM2c4p6s7K0gqc3bOPKMUOoafdwx+ercMkyw7LTGZKZRmFyEpsqa2j0+jhv6ABO7lfI0oMVfLz3EIsPlKKhMbVXb1ySzNs7d6ABTklibF4Ot02byLDs3A5FUQ2CEkvmZYxvtFdH1TRe3XyI33+5mQHpafx+1hk4HJl6wdeQ7MtvpC0XVDTNw9WvP8D8gQP44+wxJMa3IslBRLljrGFnBCV6vaMpoHg0aYC73OYI0FShe56TqH2/taGGn7++h09uGEv/pFSCXhd+vyti4mrxvio+31/Bb08eSYJbQRBVREn/L0gqmqYy6N6l/OTE3vx0Zi8EUeNgnYeJ963l9OGZ3HvGILISnWgaJinRNAFBUs3xs1pOfj/c/M5Ofju3mIw4l3lcgqyEtzdiXDp5Rxnfd1S3cNUXzTidTl566SWKi8Pp2W18d2GTlG8GnRfYsHFUWLJkCSNHjsThcLDi+4NNggJhDaz+JZwWsrNKvQaiDWdJCiLLwZieE+v/aAIQjei8+hF656i+6OuqRFcsjrWPzjw0hswEQBaDyGIwps7fNAJi9KW736PJS7Tnx/iTRMWsNRCrHUOSBoQ+daxFYPY9FAhtSKTMmdaobQwPhkFQDG+D06w6rns//CED2ZBaOUUlggzIgmIGzhsSq2CoUndQlczaKkZlcxGFJm8r26sO8N7Odby8eQXxkgdnyIBu8an8+vNFrCo9iFuWOKlvH8bk5enHYKZV1vdhLfhoLNc0jc2VZby0+Wtu+eRdTnrmcf6yfCmpbpkHT53F/aeczKkD+rFgxBCuHTfClJMZY9fVnxVuh8TgzEiCsqKklB9/8Bm/nD6ZmyaPB3T5lxR6sjnEIKIQNiaNvlulOwB+1UGTPxFvyMuR4PCQFddAirsZhxSIIArWQHZZDNLsT6DBl0iDL5FGfyINXhGn5EI1ZH+qUYNGJBAMFSgNeUIkQQ/AVzQJpxzAJflxyz6zHosBWVDMxAiGBAx0aackKaHJi2CH+0IUVSQpGAq8tsRQGF4ASU9Nrq+jLzc8NLJlmfXPKnWyXuPW+1avc6R0+PvlZ0uY278Pv585gXkDexPnjKzqbf1zy/qLPi3Oyez+etHFx8+YxdwBvRAEjYXbdvPZ/hLuXrKGunYPyS4nD502i5P79qXZp7BoXymCIDEsO5s/LF3L7GffpqqtjXvmTGLttRfz1FmzKM5Ioj3goU+qPgPuVxSuHjuC0XmZJvmPeDZZj7cbBEV/1sCC0X1Y86NTyU1ycsVbL9HYdoB0ZztJso9EOUCiFCQu5HWURTd/m3cFn+4/yP0rN0dcB10SlM7QTYIiiFps0hNjnei/DhBi/EWvEu05sa5j7DfGeyygqDgkkSSHE1URzed8IOjE73ehqiIn9Cnk+2N7c/NH66ho8egEwXhnagKiKPDCpSP53cf7WH1Ajx/pmxHH+l9OoM0fZNSfV/DSunJ9vEQNRC1MUMxzGx5TpxNmDU5jd20LgqR27LuomQRJlCLfb9EYnJXMF+fnMMldz7hx43jxxRc7XdfGdxBqD/7ZsD0pxwtFUbjnnnu45557+Otf/8pl9e8iCILpPenK+2B6WDrxhlgry+sGhaI/+LqY5Yy1rHMpWdfelWgJSez9dM5zrf03PCix0qdC596NWIh+wEfXZIneNtrjEh1sbGwbLZfr9LgsXhLrGFllL9EpWJUQcfAqzlCAvS7v8CoybimIxzKjrmoCbikYShEcNPtqeCsMQ9X4rLdv8fiE4gS8QYXXtqzm5S3rafB6yUtMpHdqMl+VlfP1tZfT6hd4YdNWFm7fQl5iIiluB76gylNnn02c7IxoT1HFiJgYVdOTA6wq3cezG1ZysLGBiQX5DM/OZG5RbwZlpmLNVHMkSeGR1unspX72y29RmJzEQ6fNjtifIGhmhjljW0UNS9iiU3K3B920BOJM8iJqpbyybQtXjBlAijOdJl8SoqDREohDElQSHR4zTXC9L9n0zARUia8Pl+IJeDi9uBdOMYBTDuAPOkwPhFv24ZT9APiDTloDCYiCikvym/3XPTlSyEsj4pSCuCR/RPC/4UkxCAbo95xqCXqPjm8zvLKRY6uay4xzEAyGs4dZ75Ho89XZxESs+3lnTQNnvvQ+a669gPR4V8T60dt3BaO9Q40t3PH5KsbmZfPjycM55bn3uHj4EK4YPTLyftAEgqrKJ3v38cS69YDK7TPGkeRykhnvpn+aTlA8gSB76prpnZJOsis8SQFhT28EYTHIr4WgdCQp0enkNe5bupPH1uzhRxNGc+7QcWhCMoHQ/aWEvGcCGpsrdvLgyo/ZdONsZIeCKIdJaKcEJWr/euc7ISnd9Mh0uo75Q+zFnULrZJtu7tMXULnm+V2s2t/MG5dNoDgtDb/PTTDoiJiUcrvbqWhSeGr9DvyKxs9nDCAzSUJPPKBPFP7fykM88OVBHl8wiDlD0s1nyHtbarn6+R38+pR+/HhGny6OJayMWLihkl6pcUzqkxq5jiVGx5CLGWTJiN8RRM38bCoFRI0Pt9dw3QcHOPfcc3nooYeIi4vrvC82vlWYnpRXetCTcrHtSbFJynGgqqqKSy+9lEOHDvHaa68x4P07AN1zYjyEIMaLWI1h2Fte+OFsX5I5UxpLItYlAeps30cgGrHISaxtY/0e9vBExrAYMAKJDRg5+KP3HV1bJdZv5j4ts+OxDCmgwzbRiN5PLM9UrOONrjkR3ZaVqAQ1XSblVZwRBeYCqu5JMbJsGQREElSCmmRmeYouABnZfyMjl167BODrsn38bcVnJDod/HLGRMbnp5HokgkoKkUPPsfcot58efAwQzIzcckCe+oa6J2SzGNnziPFnWghV3rQeGlTG1kJ8YiiAzQ/H+7Zx7Mb11Pb3spVY0fx/VGDSHLGlu1Ep3K1ojtGaSwYhsjmqhrOfvkdVl51KdkJ8R1+t3odreNnJSmqJtIeCpBXNLh/1Qpe3rwGgN/PGsWVY0ZysEHjla0bWVnaSHF6DleNHUVOYiKyaHgJ9Paa/Qm8vacKUZSZ2Scfp6iQ6W6iJRBvxpS4ZR9uWa9h5A868YYyf/lDxT41TcApBXBKfjwBN3phU917YaQaNyRecS49XkG0eGojxklUIyZDrAk2oicDDKJirBNNXKxjG5Y5HnkyxsDvvlxNqz/AA6dOiXnPHu21YDXERUFl2aEKrnlnCZ9+/1wy41M6xIrpMrYAf125gpWlZbT6A9S0eXh8/snM7t+rQ/vRMjbrPg1ZW7QXJZKodF6D6Yv9Vfzpyx3sb2ijb0oqICAKIif07cMFQ0ejiil4AgFOf/7vLLl6JkNyEpCc/m6TlIj9HqGIYof2ukMWOjtVXXgIuovueIg0TePOdw/y+NJyXlowjkl5BQSDDhRFJqA4cEgBXC4PqirhdHuobvXwm0U7efCs4cQ5QqnZZQVElYeWHeLPnx1gWH4Cd5zWjxOL9QmWdSXNzHt4E9dMy+f7E/MpzgrHQBmThQYUVeORpWXMHpTO4JzEyCQCmoCmWLz6xm+KiKaEYn2MyUeLHEyUVDRVoKTBy9UrfTQ3N7Nw4UIGDx583GNso+dhk5RvBjZJOUZ88cUXLFiwgJNOOon7i2tJcoVmnmOQgojZ9lgEJbSdUdPAMA5kORzwF2v96AeldZ+x/kf/HrPZIxgNR5rtNowbVdVT8YpRL2pjubWOSnThR7M9tIhc/VYPSCxYg+yN/RmyMsN4UEISKsPbEB0TEZ3CVdP0rGvGuTFgJSbR3hRzWzM4WTTraSihYo0aAskOj5nG10g1K4sKPkVfN072IwtBfIoTWVRM+VZA1dMdGzKzoCaZM/lVrU38Y/VnrCkr5edTJvD9UcXIkrWfGvNeeI9+aam0BfysKq1gUkEu144bwcSCXvhUB8tLShiRlUGz38eHe/bz8Z697KmvZ0J+Ht8bOZp7li3DLctcNXY4FwztT5xD7jAO3UVXBKYzHGps5pZFSwCQBYGvy6u4dOQQfjFtCi5ZIKCquOSw8awHojvMYozRkj0NAb/ioC3g5JE1X/CvjRsA+PiKkxiZmU9QdfLq1t38deV6fnHCIL48WMnHu2qYWJDH7P59mFTYmyafhDfgZ3BWBp8dqGRzVRVDswsZljuIwgQ/CbKXRGe7eW26ZB+ioEYE0auqXsle0wRdEikpZupg67iKooo/6MQp+0lKaDJJhVlVuxOZjPEs0ZTYZDL6+aOaEpmoFK6h1ORWOaUxAWF4NWNNDFz+5mJO7pfPlWMHhu+XiOQSR3ctxNrHzR+vZE9dMy+dNw+H7OgweRBZgR7+uX49n+0/xFsXn0qsGhX/99UWshLiuGBYOC4gWurVsbBiR3IS/Vl/TsKqkjrKm/2ARrtf5flN+9lX38L3R41iau9+3PXFp3xvZD9unN47IgAcOjHmj4GkHMmLcixxIx1+PoaYlQ771Dp+f3pFBT9fuJd/zB/JWQOLCQScBBQHshjE6fThcPqQXX4EWWFvlYcHlx3kgfnDkCR0+VaoX03tQR5ecZBHlpaRnezkmun5XD0tjx2V7fzm3f0s3dNE3ww3t8zqwyVjc/ErGiv2N/LsV+V8urOeJq8+mVSQ6uTisblcPD6XEfmJkZOKashzYvGYdHiPCxqaEp0yWcMf0Lj78708ua6KRx55hMsuu+z4xtNGj8MgKfUvT+4xkpJ+yWqbpNgk5eigqir33Xcff/zjH7n//vtZUPMWIHYwfMJfImfjomVIVvKiKhI+XxxOp1cPlLSkTezQLkeWi1mJQSwJVSxpRrQnpNPj6gSqKuqBuZZsP0FVNtMPm32y6PujZymj9xfdz1ikIGIZ4WJ8hhFq1Y4bhquAFiE/swb1W8cxmpBEpy2OXidiPEIGsjGLH1QlnFLQrENhZJwy0iwb/QiqEm7ZR3vQTbzsJajKOEUfG6sq2V3noTA5meL0dBJd8aaX4IsD2/jN4sWcNqAvvzphPJnxHaUBiqbw4uZd/G3lRkbkpHPL1KlsrarhtW076ZWSxLbqWkqbm4l3OPAGFU7qm88Zg/oyrXced3y+mo/3lHD3yVO4bPRAMzbkWL0h3dk2FonZWVPDvBffMb/feeIk3t65jwavj1Z/gDZ/gD/PPYEzBg6ICGp3hopQWs+hca5319Vz+2drOdhQR53Hy6sXT2VYRgH/2lDCqtJyNldVUZSRyLLrpwBwsKGN93dU8cH2alaV1JPolHHJEvUeH8Oz8xiUmUX/1CR21bcxNDuP84YMJC4UgF/e0kir38uY3BTcDi+KKplexTZfPIKgEe/04JR9RNc8UhSZoCoT52pHUSTcce2IkoKqSKbu3jgug6wEAw7kUBpW63PIeH6Y3haLJ1cJyQ+N+yH6PKmqZHoPgkFHp88JY1tB0LjirSVMKszi+olDOp9AOUrtUPSkhU8JcvoLn3DGoL78eOIoi0dQMr2egPm5zedl9nNvcuv0kSwYMSCirb31Lcx97n3cssxFw4v49QljEISw8WHIvawkxZr+vTOSEr3MOhaaprH0YA1/Xbab7dXNJLscXDt+KD+aUmCSlC7jUrpDUnqSoByNLKyzdjqTfxniAVVAkDpvc9H2ehY8uZ1bZvfmZ5MH0dacbl63bnc7zngPCBqCpPDm5mpS3DKzB2XobSuhtgU95sQbDPLmphru/eQQ80dl8MezigBoDwR5Y30Nf/zoEC1ehYb2INmJDi4an8PowkSavQoDs+OpafXzzKoKVuxrou6+E5BFXV5myLk0RYzwrBj3nBAly+zwTg8lGfh4Zw3Xvn/QlH+53bHr+dj498MkKS/2IEn5nk1SbJJyFGhsbOTyyy9ny5YtvPHGGwz86Nfmbx2MrW54OkyDXZFQgjKKIuN0+vTKuKIaMbtiyME6MwaiCUtnRkCs/VvbjZZo6ctipyONhqFtN4ycoCqb2Y2i92ElHKIYDqI39mXVycfqs3W5QTSs+7F6bIzZ6gRXW0ScTPQsbrTUy2gvuv1YY2FdbtR40WfGJfyqIxQgH+yw3yZvEztraqhub6GipZ3K1laqWtto8imkuFykx7nIiHcgi3EsPrCfytZWBmemsb2mnhHZWTxz9ln4VahoaeHp9WtZXVbOF1ecY3pPrOO25nAVv/psJUFV444TJjKpcCCf7z/ILz5dxK9PHEer30deYgLT++Sypqyak/rlk+wKx6YEVYGSphb6piZ3OGZjH11dW7G26Q7BibWfZp+XD3YfIjPBzax+hfgVlUX7DtE7JYl/bdxJmz/A/aecwoFGD8XpyTikoEkErXBIAb44eJjvv/ElV48fwI1T+zH8wUXMLsplZUktY/IyOWdYFhP7pDA4J8GUikR2SDVn4Q/Wt/PF3jq+2FvH53tqmdI7gykFffEEA1wwdAT3r9pAVnwcVW2tLBgxhBE5SbidHhrbU4lzePGHMohJgkqc04MsBczAeOM6bGtPQpYCuOPadYKhGDr7sCxUU0WzaKymCcguX5iEhCpem8dh/A+taxIWQdPJj7Hc8hwQBNUkJx2fH5ESMOO3x7/ezrKSal66YEbM9bp7PUQj4r7XFKb9831umTaKc4b0N+9rK6Lv8SUHS7n+gyUsvmIevVISzfUWbtvP85v2cu/sk7nm3U/onRLPP+ZNIyNU6NGY/LBWhO8sNiX6c8S4RyOCtITHVpSDHUgKdE40ouNSjpukHIGg9FjMyjFgU1kr5z26lfG9kvm/s0bjUpPM96noCLCtrp5Z//c1F4/LIT/Fxa9P7aeTEy0sydKJik5YVu1v4sxHNrP7d5PJSAobnAFFZcXeJvpnxfHFzkZ+/8FBqlr89M+Mo6LJT6NHf8aMKkhg9S0TQZU6HRdd7mUZHFFDC+r3pnG+oskMgkZpg5fLFrejaRqvv/46ffr0+cbG1Ub3YZOUbwY2SekmNm/ezLnnnsugQYN44YUXSEtLo/3e0yLWsRaxMl+MsV66FqNAVSTTEHC4fB1nVCJ2EJtwdEhxTGzPTWcGQLRxaRjynRmYmiaaleyj2zGlXiEjRNMEJClofje2E2PI2HQJhB6HY9ZziPKEGPvpeAz6y9vQJBtafj1w2a9nGDMKsUlBVFUypV/G8QcURwSxMhA9mxyRxcgIXFcl/EGnpT9ahBfFyBRkHE9QqefRrzfx7KYdFCYnkJ+UQF5SPHmJ8eQlxZPkclDvCdDg8dHg8dHk8zGlVy7zB/XDJcPoR15HEATcsoPqtjZAo3dKEoMy0/jHvBNwSmGC1+r3ce+y9Szcto+fTRnNpSNH4Qk6eWDVCt7euYP7T53GacV9wtI8a3G+GBZGtFTvSLK9WNtHn/dY6Mpg7cr4u/C1T5BFgd21TVS1tSMKAr+aMY699U28snUPmfFuNl1/gWnAljUpnPLCK9w4eQC3njCQXy7aQkGym5nFmYzITe4gn+qukVjX5ue293fy8Y4azh/Wh8oWF78+YRRZ8UmIYit/Xr6BXikFXDSsL3LofnDIAbwB3QiWBMXMtmXcEwElnB0sPr5VL5Lq9uq1H4KSSUCsXlijfwGPG79fD1iXpCAOlw/JEYw4NjWoe2QMr4vpbbF4X7RQcL6mCSiKHOGNjPW8MJ4pe+obmPn0p2QluOmflsQfZo9mcGZaaN3uXRPRiD4Xn+8v4wdvLWf1NWeRm5gQIS3t7LoTBI07Pl/Fq1v3MTInndumj2BSYTY3frCKJJeDP82eRlWLyK8/X8yW6hr+edZ0xuRlmW0YEy0GWbFKvzr0MabnoeP9Ej35YSWUMZ9/MWJKjpekdOlFOVqPi6UfR8KirQ20+RQkUaCxPciF47Nxu0INqlENW9qraQpw6VM7qGz288RFQxma0AtRBNnl48/LdrJ4Tx1xTpHl+xp54IJirphQgCiBIBsyyNC1Lqk8t7KKH760i39dMZgLJ2TH7Ocv39zPw1+U8eKVwzljWAaaKlDfHkQU4OV1FZxUnMbQ3CR9ZWPS0oAmRMi/oj1FgqSiBsWOx2sc9k/f5aabbmLhwoW89NJLzJ0794jjauObhUlSXuhBknKpTVJsktINPP/88/zoRz/itttu42bncgShC+208fCxkpQoA8eYGdE0wdSHi45A+KUWo3Iv0LFN68x/F9Kv7kq2uvKSWLeNRYCsx2YQFQPWGUbdqDE8Jx3jXwyDRrFku+pgFFoyNhl9MWo/+INOU3olCaGkAyEY8hmjDWtgcFDVPT9GitHoei6GwWhNZatEHWd0AH2HoF0EvAE/L2/ZyJPrNzAmL4NfTh/NyNyMyHE+wtSjqmm8u7MESRRId8dRkBJPflICshh5Xda2e1hVWsHdX66jKD2Ze2ZNIz8pg4pWgavfWUicQ+Th06fRPy2py/3FglXOd6yIPs7OMkjFQmfXqSioPL9pN+vLazllQCErSip5e+dBVE2jV0oiW6rqufOksVw7fhgANW0eblu0gT11Vbx08UQGZ6XoBFrQYnsbOtl/VxW/P9xRw0/e3E5Q1Ti5byHpCSJOCRLkOHxBjXpvO7+YOguHhJn1C8AbcCOFSL2mCWbK4xafntggzuElObFRJylSVDyXoKGpopnEw/rcMfooCFoHKZAxc2uQFasMLGJyxTKR0dnzQNM6BulXt3rZW9/C61tLWFdex6IrZuOUpIhni3X77sCaQau23csvFq1l2cEqfjF9FJePGYiAGBGoH01YREEFTWVvfTOLDxzmLys2k5Xgwi1JPD7/BIrSM3QPlyrwr02beGDlWn5z4hh+MLYYI4v/kYhKxPjRNTHp+EPXsjG9vW+YpBwvQeluTIoiUHzHagRBINkts7/WwwtXDmHe6PRubR5UNO569yCPfFFOZoKD+cNyyUtx8PCyEu48ox9XTM/h4+11XPfcbsb2TuLRiweTm6a/awxJlaYKPPhFCb//4BDr7xhPnwx3x2NQdWneP5dVcOd7B1FUjcn9knnpyuHEOyQa2gP86t19nDM6i7mDMyKyeBkIB9XHuM6FsEQsPPFIB9LywrrD/OyDg/ziF7/g17/+NaLYvXvGRs/DJCnP9SBJ+b5NUmyS0gWCwSC33HILzz33HC+99BInbr1f/yGWxwRi6kgNRKcYtEovjNSSsdzC0USls31GeFSOQTJhbbM78pwjER/DeNG16yGvQ2g22OqFiTZEjODdaGlJ9D6NfVjjX4x4g4DiCP3JpgEV7/Qgi0E8gbgOleutx2QQFr/qMA3BgCLjU8IyHJfkt1RSF0wZkU9xRmSOUlQJJVS0z6+ovL1zO49+/TV5SW5+fcIYZvTJ6Xz8jkMj8a8Nu7h/5SbqPD56pyTyk0mjOH9oMQHVRWsgjg93beKuL5dw2/TRXDNukBlkfiQcLWE4ljY789zEQmceGytx0j1aGn5F5cXNe3h/VylvXjybjZV1vLR5Hwu37ScnMY4Gr48WX5CLR/bi8XPH6Nv2EEkBCCoqKw428vmuBtq8EFA0mr0B3tlxmH/MH8XBWic/GDMal+wjIa6FYNCBP1QA0pAsWj16ejKFIGkJDbjcHgRRRXIEIzILqoqIKCsxC9AZ39WgaFbrFp1BMz2qGpDNZ0qEdzeKtFjjWgyPsJWwWGVdVjLhV1TmPL2YmUU5/PbkUea61v/Rn7tC9PlYvL+CWz9eywl9c/nz3MkIRtrw/2fvvMOsqq6//znttul9gKH3DgKKFXvvPfZu7F1jjEZjjBqNGhN7b2iMBRu2YEEUVJDee5uBgWH6bafs949T7rl37sCA+HtTWM9zn5l77j777NP2Xt+1vmstH7jOTODhbl9e38i0tbWcMrgnQVXxkhkkjCASgpk167hi4pcc3Ksz9x26GwFF884vnfolsj4/mQAl6/uT1VvccYCS1n4HY1I6AlJ2GKBkaydA6DLHPj6b/foWceNB3TntuXnIsqB3RRjLEhw9vIS9+xRk2Tld4rrFpAUNvPvTJmqbdQ4bVMwl4zqhaRJI8OWieg57aC4lOSpPnNmf44aV2c++u97KFlf8YzFTVzTy1c0jKGxH6WyNWfz23RVEkxZTljWgyhL79SmiR0mIE0eU8dnCeloSBjce2q1dr4gXq5J5iXw6Q6qx/92z/5+9vpkz369l6NChvPLKK+Tlbb/RaZf8fNkFUn4Z2QVS2pG6ujpOPfVUamtree+99+j87q+939Ku2NYoXq4i7KQZ9DwsGYqxXdxReN4RTzK/QzrQSfsho3bK1gCLzyKa9Tju9yzHTztkO+DEi7XJksnMpXqlLLFtKRjZPDTuby6dS3FAgpe1x5JRFcMLQtYNjbgR9MBFXiBKUE2gm/b2kJpIG6+bBcwurGcDC0vIqFKK+uVWlHdrafgValmyvHNzz8HO5iXx2fLl/HXaNGRJcONeozh+YCcyMwltSxnrEGgRFu8sXMktn//Aw4fvxX49qsgN2Mqtey1U2SRpNvPEjz/x3E/zmfnrEynLDbYZS7ZYm2zycwBK5jGz/Z/WJuMabM2L46fa6KbFH76aySuzl/HokXsye0M9L89awnEDuzJxyTrGdCnlwJ5d+PO3c9BNkxU3H05AS+/n54IUv5i6iqXb9+WqD6aTtEy65ZYypssg9u8FSSOIIpmedy/TgOB69ZKGDVRywi12QUZNb/tugw1UZAtJtdIpqaYNUBCSTRELGEgSWLpib88AIeCbV9LO3fJiYLy+M+ejjHcDYNGmJg594SsuHt2LTa1JWnWDfbtXcECvCqryc9P27YhkUgCrm6KcMP5rxlaV8eBhe6W1dWmXXvsMOqn/mLZXNAUUZdlic7SBi9//goAi8/wJ+1CeE/L29XtTMlNDp2Xnynw2tvIudQigZPTxS4OUbQKUjoITv5gSH87ZzEUvL2b2rWOZOGcLL09fz6BOOUSTJhPn1zHrzlF0Kgxuo6PsohsW47+v5eKXlhDSZEpzVVoTFocMLuLB4/tRnpOqFm9YFqc8O4+WhMFH1wwlGJDJnHJ+89YK3v5pE81xk27FIWatbWH3Hnm8csFA3p5Rx/qGBE0xg27FIa7cv4riHK1NH5CimmUaNtu0c7w9aW2FxJZYknO/1qiurua9996jT58+bfbdJb+seCDlxZ0IUs7bBVJ2gZQsMnfuXI477jhGjBjB02PqyQ06D5zf7Yo96WcDLG2swz4rSRrlAtIBytbEo3W1D1LSvmbSwDoomcpIWp2FrRwvTaHJouBms5K2bdO2vopLozAMDcPU0ihWfrCjWxqarKNbmpPaNeUNcYvfAUTUmNfGpmHJyJLwQI/pUMB0K+WFCcg6ppBRXeqNU3/BzRikyJa3P+BllPpx3VoemjqVDS2tdizIiG4eJWtbtLvtFcMyuei9yczesIU/HTyGQ/v0dDxZsqPsOhmuVDvL2i3/+gJVEjxy5NjtPpYrmYXqfq5sK/21uz2T6teemMLk7QWreOi7uQQVlWP6d2Pq2g3M3LCFT885hCGdIhz50tfUNMepbYlz/qje/O7AvuQEMwLLYeeAFLeNJWEmNSxDZXVzI0c9P43hFcUIK8KjR+2GJkfS4qT85+7GS4WDUeLJMJYlE1CThEJRVF8dDVcsU0HR9BQAMWSbGuYzmNjjt7ygYUtXbMOKYrWx8LY3f1mG0vbd9nld/B4W/32buLiGl35axaDyAoKKwtcra/lx/Rb6lORxzohe/GpYD3IDAToq6UDFoqY5xh5Pfsabp41jVKeU57I9Q4j/u0sJddu6oBHseCFTRLn8oykEFJlnj98rbd823hTHGJX1eO0BkK2Blm2kH07bf2eClI6AGN8x244xs53vf/fyCDj5ifnEE4KnTxtMRW7IW2fPHT+bvIjMk+f2y97/NmRdfYJet3zPKaPLuOqgLhz60BzuOKY7XyyqZ8aqFu47oRfn7tHZMyK1JkwOeOQnjhtZwu+O6d6mv38tqOfsZxYy6foRvP3TJu79eA2GJVhz355U5Abt51/Auvo4v/9oJVfuX8XIKp+nw8UZpmO89IGQrM/FVoyHhmnx2w9X8srsRt54441dcSr/x+KBlBd2Ikg5fxdI2QVSMuSdd97hvPPO48Ybb+Sm3K+RZb93IgUUJIm0ySKTRpGZlSNbnIqsONz3dhajTFrXVqlfGV6RTOtrRxTf9oJeM8eS5qXxWQhNXfP4/G3GaaU8HkJIXqyI+92ORUnnpvs9MvFkmKRTCNEroKeYxPUQpmUDCFU2vPS9cSNI0lIJyAa5gSgJM0DC1CgONaIqBoYDJFxKlgtkXM+M7igjmkPlcutsgB174g8S12QDRTaRsdAtjbkbG3l42nfMqqnhyj0Gc/HofkS09ietHQElmXLP5JlMWl7NO6cfSn4oiO5UONed2B5NMdAUne/WbOCnmnoemTqdry44il7FOdvoObvsLA9KpmSLa9he0U2LtU1NXPXR92yOJrhuzyG8s2AVaxtbOG+33pwxoorSHFvxbUwk+GBhDYf3q6Q8N5CmTG7N0i11VNHLBlIAYSgeHWtza5JzX5tLU1zQr7iQfXuUcUSffiiSkvYOuEUdTaGkZaozLJVIqJVAKIas2PQuf2ycrJrIqoUQeOAjNT7fmP1zmSWlgSrPA5zhOZZVM+1YbbwQhi+2rD2DB3hzlhASTQmdjxdv4JkfV7CmsZU/Hz6SI/tWocgde08y6aEXvvMDfYrzuGmfYd4ckz2GJt0w4sa6ub/ZCS9SxgtVMXh7wRLu+2YO9x46ksP6dEaRU4Yal/6V8pZnea62g9YF7YCTLP1ke+5+MZCyIx6UbbzWmxqTXPXaMr5Y2MDzZw3i8D6VALw9t4ZHJq/i698MJ+CnqWb2l81+4rQ56uG5KBL887LBvPPTZs59bhEAr14ygJv+sYJuxSH+eckgKvJCvPr9Bt6bvZlJi7ew4O4xbTw4Qgguf3UpXy5s4J7je/HDymZygjK5QYX6qEFuQOGkERX0LA1hWIKHJ60hmjS5bN8qKguC6SAF2jIaSL8P/hiVNMaDu4sseGXaBq6esJq7776b6667ro3Xfpf8MrILpPwysgukOCKE4N577+W+++7j5Zdf5si1j6b/bvkWaXcxy7Q0ZgEtblVZe5uUBlDcVIOeZAuUb2OdTAX3tWmbtmE7JqbMyS5zonQViCxZxFylzp+2tA2H3fe/O05ZsZUby8kUBKQpEIahEQjEMQyNWCJC3Ah6VdsVyaIg2Iym6NTHCgEoCjc4WcRkTEshlgwTN4MeqAG7NkJYi6Mqhk3hcLwMuqk6NBorjbOetGxgkjADhNUEpiV7AMV04gMCso6FjCKZ1LY28NDUn5i4ZDlnD+/P9XsPpCSSsoSn7tW2Fe/toVlNXrWB896dzMdnHUGfkkIMU6VVj3h95AZaURWDL1Zs5JIPJnFAj87s3a0TF43u1aavbckvBU4yZWtUwvaUzMWbG7lj0ky+XrXBY1TcMW4kr89biW4afHHBwRRGUskQoK3C2FFrd7sgpQMAxa8zuPPEpkaTnvd8waLrDmVeTZLnpq/mjwftT0kk5eVziz8alkpIjaModsFHOxWwRTinBTWYbHMsz4DizBtZdRbnPbcMGVkz2/4uJA+8ZBpGvPffua52wL3Pc+qb8yxTbjun+eYW/3xhWfDWvHXc+tkcTEuwd/cyThvajcP7dt4qYPHf2+aEzt5PfcGfDh3G4X26pacgbycFsixbqKqOaSqYztyQ8qCmZ7BLGAbPz1zACzOXIEsS1+89kDOG9fTGl4pTscgKgNt7Xtxt2wo43xbIyfbcddALmPZbxr7telG2SQFrM9ytypvf13Lpy0sY3iWPS/euYkhVhN3v/xHTgj165fHMuf0Z0CWyXX02Rg2OfHguZXka/7hkEI98vp7b31vJOXuVM35aLYYFIU1mwmWDeXpKDd+vaGJ411zuP6UX/Ssjbc7BsgTXjl/G+Gm1vHXpYEZU5dOSMCmMKKxvTPDZ/HoWbYjSpTDAqG55vDh1A0M65VDbotMpP0BpboBhXXIZ0TUXTZbTUiJDFpDiF2/NTb/uP65u4tTXazj88MN54oknCGyHN3KX7Jh4IOW5nQhSLtwFUnaBFCCRSHDppZcyadIkPvzwQwZ8dX16gwwF3p+pI809C22qylqG4oEZYckeP9zLg545p0uk5U6fXd3EO3NqARhSmcv+vUs9K7B7vEzQsk3LvH8CzOIpyfTEpI4lewqJZSpemtNMaozl46b7lT7LUD0lwKWH2SAlVeFakgS6HvAUsKZoARGnUnc0GcESsqe0xfQUDzxHixJQk0STES+QXXcqtwdUnZAaRyChyCampSBLlgNQbBDhFvdzC/9JkiDpeCPc+BJDKF6Vd8tZfcNKgoZ4jCemz+Yf8+ZwZL9u3LrfYLoXpnsothlzsgMeA0myMC2LUU98wA17D+VXQ/tjWgqbo0WosklQSZIXbEE3NTa0KBzy8svcc/AIThva09fHVqy2/0eApCPSPv1LMGV1LePnrOSt+WtQJImwpqCbFmO6lGMKgzNHdOekIV0IqUpbcOLzBPplW/ECOwpS2gAEBxwYcY1jXpzG2vo4vz2gHzUNFvt27cPQLqCoBqahYhgalqWgqjq6HkDTkgRCMUxdI5EIEwzG2mT6kiSBHHTqwwg7QFcIn8fX+d+bo4RzPq7y4/aVbT5w6zxkzmU+IJMGKn3gJa2fNOCQynjoGSwsi1nVTfxrWS0v/bQKRZboU5JLTkAlP6jRKS/Ekf06M7JzUdo13xyN8+sJMzAtwT9O3xuZgNev/3j+ekyQygDmT4XuebScIrDgFIh0vK+yHGPi0jX88as5FAQDnD6sG0MqChlSUUBBKODFp/ipX+7/bZ4VtgFOOkoPawcYbzs711aAyLY8LVulgHVgzD6ZtqyJyYsaWVkX59nJGwD46vqRjKrKZ3OTyd+mrOLJydXcdXwPrjq4SxrrYWsiSYKGqMFRD88jlrS4aJ9O/PbdFZwyuow3f9zEYYOL+NeCBmK6RUiTKc/TWHTf7lvtUwjBY5Oq+c1bK7jvhF5cuFdnwkE5VYhSwJotcR74dA379Cng1FG2Z2hhTSsJXTC/ppUvl2zh7D06Ma5Pkd1nloxg9oYOnKSA9Q0JTno3RmFhIW+//TZFRUUduj67ZMfEAynP7kSQctEukPI/D1Lq6uo48cQTaW1t5e3jg1TmhdKKPPktSS5v1B8Qb/+Tsmak0graaTwlWXjWQ1kz0jLtuCKETVFZXNvKktooi2pbqI8amJZgUEUuJw2rRJZkrp2wgCv27s6orgW+ndufsTKBi19h8Aff+S2jLggxdc2jXyhOkTh/BiEjEdhmETnAq9lgGWqax8b1qrjpht0K1oAXbNoULSAv3EQ8GaY5kZsCH5ZGXqAFgLgRJD/UnAI/zrm6Fk/PCu1U63bbJQ1bcVBlw7OS+ivQQypgNqHbLn7Ts6IKr+3EJSv57aTJxHSTPx++G2cO6512vTsq20v5cvuet7GeY1/7goVXnYIsqbQkchBCIi/Ugqro6IbKjPVJ3l+ylOd+msm0S4+gd3FeWh9uYT5FMXd6nMkvKV+u2MRVH/5ITXPM2zaqcwnn7daL4wZ2JjfopPfeCs2mQ6lgfyEvir+9MGQSCYl3Fq3lxneXMLSygLd/tR8BzSKZDGIYGpqWxDQVgsE4Qkgkk0FUVU/14dQhUhQTWdPtGiiysD0j7ntnKDbty1CQNRPJoWt5fZgybuYgSRZevJykWt685p23BFZS8b77A3nt8eDRxvzGl0wA04YS64zVMtQ0L61tLDD5YnktNc0JWpMm9TGdH9bWocgSb5+5NwCtus7NH8/h7Xnr2L9XGU8dP4a8gP0OZxaIzXzv/JRT1+PmGk9c8OLNoZLwDB6SJNC0BElL5/npK5m8ahNzNzSyoSXGCYOquOOAIXQtjKT169WzyQAq2yqwmClZ5xk585ltv792n+GfA1LSvCsdHLNPogmTbjd8T3FEAwRxw6J3eZhltXGOHFjKwC5hjhpSSk1jgotfXUSXoiC/O7YbY3vnEwl2zOCTNCzu/2gt909cS6+yEGvqEpwypoyobvL+zC2U5aq8fvlAepSEqChI90Ss2hznng/WsLA6ypCqHM4YW8adE1azvDbOyaPL0BSJ1rjJIQOLOWZ4qb2TgEUbojw3pYY/n9gn7Z2RZIFpwPVvLeNXoyvYo2cBbQLsM++hn/aVKc5vLXGDc19dxtJ4Ph9++OGugPpfUHaBlF9Gfv6V/A+WJUuWcNRRRzF06FAmTpyI9vwxzstv/y4HnDSzhp3VQ1IEwsSzSEqKky0ni7vVTDpKflJBDcc9cBIzDKobE1Q3JljfmKC6MU51o610DO2UR7+yHMb1KaLE5y3BkvhiaR2bWxNMmL+BqG6wX28nb7wkMC3B1FX1nPjCTK7etwe/O7S385uPmoZL9RDIqhMAbsqeUmAHztrnI6smyXgIIWSCTlVrsBd1U7fpD6aueRWn/XEmbuFGN9Wwpum2Z8WvkGXw0l0l0t0HIKkHyQs3YVkKLckc8kPNWJZM0gwQVuMABLUEQS3hpTR241oMS/UyILk1VVzgYpgqASmJpuh2sUUHrGiKjqIYngIhyyaJRBiwa1ckjQCaYqBIqWOFAjGqigxOGtyN+bUNPDdjGWcN78UnS9fz6dJqisJBzt+tN10LbK/KtR/9yJrGVt7+1QHeue+ot8Ldb+raWnavKkWVZXRTwRQKBaEmmuO5bI62ct6ED1jf1MyBvTrz+NH70LMo1+PL+4+tqvoOjyXbuGD7gdf2yq/fs2NOuhVE2Lt7KWeP7Mme3Yp949gKtWYHwElmm50FUKavaWTllii5QZURXXO54aDufLKgDsMCI5rrxUcYhkY43Eo8HiYUipGT35jyaqoGlqGSTIRIJMLIskkwGLczflm6DRRkgRBgxgN2LIlnWEmdizcHaCkjhm20yQAywgdknH3cgnSeAaRNWlWHEpbmtRWpInpyap4Cu8I6QkJSUum+A8DhA8vSgMsPa+s5/Y2pGJZJQJWI6Trfrt7MgPI8njx+NwpCGuBm3zM9oOI3SLj923OJn3KWooS5NWv8xhDXq6KqOkLIaFKQy/boy6VjBiCExOqGZu6bPI8Txn/DZ+ePoyQS9PbFcmopZRh60mQrADmrbA2cZOuvo/VLdpK0O373kjuv5WOTquldHubvp/fl8/kN9C0P85t3l3Hs8GIKchS+XFrPHR+s5KpxVXx59Wge/GIVFzy3GMMSvHbpAMYNKGx/EM6xAgGZ20/ozvDuuZz15EJO36Ocmatbmb2uhX4VYU7bo4xTH1uIJMHJo8s4aXQpI3vm8ucP1/LgJ+s4fmQpl47rzJy1LRz50DwShmC37rkoskReSCE3qPC3L9fx7fJGztyjgqFdc+hZGqK6MZF633ygTlHhzyf25ukp1bw+YwNX7l9Fn7IMKpvfIOqPY2mjg9jvUW5Y4c0L+/G7VaMYO3Ys7777Lvvuu29Hb9cu2RHxMWl+dj+75H/XkzJ16lSOPvpoLrzwQv7Q5UdkxX3hAYf+4IqfvuXmNLcnCdm2RLrtTNlL3yks2fM6TF27hTd+qiGkyoQCMp3zg3TKD9G5IEiXwgDlOUFUOZ1ykCmTl21BlmF4lzzOfmUuvz2kNzHd5JOFm4kbFqOq8vl00WZePmuYvUMGJ1ySLc+zkylegK0TyG8mNVqbCwiFoh41y80Q5NVRMBTMZMAOao9HqI8VkqNFCQXijjXXQFUNW9HwiVsR29RTdR+AtEr1oXCURDxMY7SQ0oJaqrd0Iagkvcrximx6YMYNbvV7AFwlxO3bVfJccOEqKh54sWT8hefcvhN6CN3UCGlxz1qqKPb5mKZKPBmiVY9QlreJeRuaOezljxlQVsDaxihnDu/FrJot5AZUXj1lH1ZsaWaPpz4GYPNvT/lZCrx/oT//7e8YVlnMFWOG05rMQZN1TKEQUJP8+oMvkCTBE8eN8gL3s8VibAtY+CmB2wtkfi5QyTyergc870Fda5KgJpMbUNs9n7ZK2c8HJ3Y/HQAokJ3mlQF0Dn1sBpOXNVAUVjmofwn3H9+Hk56Zg4LM08fuQ5e8Ag9Uuu+VpJgI0zaAxJryCUZaUYI6ZkIj3ppLUrdreiiKQSgcRVZM25MrCdu7otpGiXapI848mHYt0oCKM6+oVpqClEY/9dedcPZPC/zF520hy7Pi87C0+V2k4uR002KvJ77iwtE9+PXYXkiyRVNc59w3f6IorPHciWPSMgKaPjqZ631y55/U3OEzbvi8L9kAviuZRhFFsam9lgXnvTWdZXUtnDy4ijNGdKMiN5Tep9PW7+XeVrzK1goktht35P/a0aB52LonJVtMiudZyRyXH8BnGSM2daryqmn89ojuXH1gFU9/U82iDVFmrmmmrlXnp7t2Q1NlvlncyC3/XElQkfj86pFIEjw/rZob/7mc3x/XnesO64IkSVs9Tk1Dkn/8sInx39Uya00r0+8cSffiMPd+tIZ3Z2zm6BEl7D+gkA9mbebdGZvRVIlOBQGeOrc/o3vmgbP8N8YMGmMGZQUaAVmmodXOpqfIEo0xg7d+3MzkpQ10LQrSryLCVQdWOYPw0bp8VecbogbPfFPNmroEZ+xezugeeWhKepribHTztGsvfN8FPD25hpvfX8eLL77IKaeckv2i7JIdFs+T8vSe5Id3giclZlB8ydT/eU/K/yRI+fDDDzn99NO5//77uVi8nf4yg73ouhOGf412A+AN2aNOSKrpxJtIXpC8TZOw404sLC79x3yePH2gPcm4k7R/ofbRJDKzhLnjcWV+TQt3f7qcroVh9uhRwOEDSr0Uyde+s4iHT+iPJKX6ScvS4xdLarPoe/z4RADTUJFlCyWQtMGW4lpH7fSpyXiIaDw3LfgcICcY9WhZqqp79Rtc/rXrRTGSgXSut6MkuEGrLvjRTc2jZfnrD7hUDdca6ga4up4cG4zoTF5Vy0/V9WyKxnHZ5IoksU/3Mg7oXY4qqZ7l1AVJYFNn3IxKrhXV5Z8njKBXKDInGCWoxZEkwYotzXy9aiNH9a+iMk9jQ3OS0Y9P5PC+nZi4pJqEaXHy4G48dfyYHYpB8R4HybXkCgY88hEvnrAvIzt1wjBVdDPG3NompqxZw/MzlzDt1wdTlhNqV4n/d4g7aQ/IpJ4NmWQySDAY92Ix/L+ndsh+Lh2u7r294CRjnx0BKAB3TlzOpwvrKAoH2Lt3Pr87sgexuOCS8YtpjZu8fsbuJGKRtGQSLvDw3iEXSFoyRjJAMhkiaQQ8Q0BBXj1aJIbsAxUeSMl23v5aDNloJb5tkmIDHyumIqmW43FOGXYs3VH8ffEtbeY8HxDxaGDONfXTUduLvfvX0k2c/4+Z/HDVODrl2wCgpjnGqL9O5tXTR7F/j0pcyqqpa236cAGL/3vmeISQPRDiGjvce+6ffwDPuGPoGkLIJK0Ez81YzhfLa5m3sZF3z9qboZU+xUNKZQDzgEoWg8J2AxOn7zabtkEp2xZI2RGqV0cAiisvfL2Ba8cv56HTenPBPp0AqG82OOSR2fStDHPvyT3of+t0b52beO1QDu5XjLAkpq9v4PSnFjKqRy5Pnd+X4tyM5CUyLK6JcuVLy/hqYSMAY3rmsmxjnMX3jaYwkj3IvDFq8Ld/rWPxhigPn9GbUre+lH96kZ1n1pRSQN8Z45Rljbw2dSN3Ht+DivxAWzpXFqltSvLOT5v5ZO4W7ji6B7t1zyjU6BxDmFL2e5IhH83ewtmvruRPf/oTV1111bYHsEs6LLtAyi8j/3N0r+eee45rrrmGF198kWM3Pob3Nrv8axecZKTgtOleKXoXZCy6DoCRA/YiFTdMJszeyPdrGjhqSCma6sZ7+Bb8bIu1czzh8LjTFgVJMKQqwj8uHJoBcuw2imJTJsDZV0igiHTg4x6XthZ0t8o0QCAc8wL9LUNBJG1aiemkFDUMza7ZoAg0Syeg2iAjaQRI4sR7mBoh4aRFdakbDsc8s7CbTbWSURSTRCKEZSnegu9azv1Kq60QmI7F0vD1YSsU36/dxKuzV3NQ7wrOHN6DspwgkmQrHDHdZPKqWq758CfuO3QE+SHNATz+ApQWimKBCSaKk9HLPUcNUyiEtThBLe7Va+lVnEffsrAzVouK3BCd88N8vLSa7y49mEsmTOeAXuXe7z9XVje00hhPMqyyCFmymF69gTPe+pT8oMbQykKeOX4M5blB53nIovBAu4p9NvEnS9hp0gHvjM33T6b93R5A4vaR/Yd2+tlOxW5rQctZ2/t+v/mQ7iza2MqEOZsY0smmBoZDEpeP68yJz8xh7qY6hhSnKEqym7wCQEgooYTXl6FrToyXrXDnhFuIJexMb60NhYRzm22jQ8D0WWGz0EXcaUoWuNpUusVXpJQwANOme7mARRKOoi8J5IBpx64IyZlD7XnKo8pKdj9C4BRVxP7ixrO4t1QSZFJY3XEd0q+UowdVcPr46Xx84VgiAYXOBUFuP7gvN3w0j6mXFxOQNDv5R4ZnMBtIzqSC2cAk/dm3QY3vkvkATGZmxrCmcNWefblybB9+9/lcbv10Dh+cs7czX/s7deZmtg1QtppZtt33Y9vg/P83QAE4f1wlvctDnPLYQiwBF+3dmaI8lU+uGU6v307j98d148CBhcR1i7uP68mePQrs42gWY3rm8/3tu3Hxi4vpe/OPDO+Ww/Cuufz+xO4U5tjr118mriOhCzY9vidBWeL376zmmfP7U5Sj2c9hFu9xYY7C7cd1Z2F1lN+9s5r7Tu5BUY4GWUgQktL2udqnfwH9K8P89u2V3Hh4VztTWDbxUd/KCwIsqGll+eYYpQVq22ygEvY74m7zv5NZ7vVRw4v5JF/luLvuoqamhnvuuYddKYp3rgjL/uyMfnbJdicE/M8VIQR//OMfueGGG/joo484btPfbWuialdiljTLBijOgoks0jmBngvVWYxdLrabEUexbAqFLJhT08RVby+gLE/loZP6cNJuZWkcVP8k72bS8ayJWXiIXvCq7Ps41Cw3A48d8+L8n9HG/93b5igTyCLNauhaGW1Kl4oRC2Ekgpi6hmmo6HoAXbctTYFAHE1LeIHoSTOAYdkKvQtA/Iu1ayUUPuqFm/HGpVX4KVqybBEIJFCUdC+KLFtO9i/D+01VdTtg2OlzSV0Th/et5LgB3SmN5CCE6gXOhzWFI/pXMKpLIVtidnyLS+Nw90/7SDZFxLBUdMvO+BVUkkQCUee4BqapplHQwE4NvLK+hev27k9DXGfhpkYO6l3uKTI/9zO/toF+pfmENJmEYXLL599xy34DWXz9Ebx95l4c1Kfcu16SY6l1nxnv496XDnxk2UrFL2X5pJ7XjvVnNxbb/EiyhaIa3v9pVud2xpC6p1nqEGWcf7Z9Mt+/NvSu9gCK806lfmtziDZ9RQIKz5wxEIBHJ6/hpe9rQLKtu6eOKueQp77niJe+Rsh2ljsXtLuxXpbjyZVkCzWUIBBwPqoN6AJqkng8QjwZpqWxCCMRwDJkH/3KPzjSlRxFePOipIjUPOkEzrtix6RYdl9ucL0zr0qqheyAIs8YlGWu8l9nyZ2D/ddUThVGTH8+7M+jJwwmpMn8+p1ZGMJAkgWX7tmVmG7y7ZpN3vPRHmD3gwwgjY7qv9f+OWtbdEbX4+K2lSSJW/bvz/zaJv61fKPvmUh/dr0ELG7/Gc9Uu3Su9p7rzGfY3z6jXfqGtv1427d26h0FKHL7n/0GF3LLUV35fGG91zwvqFCSo7K6LslzF/VDUyROe2oB82ta7QbO+lmao/HO5YP57MahnLtPJTNWtXDNK8u98z5591JWboqRG1IIBxXuOqk7D36yFtNKf//bjF2GgVURbju2Kzf/cyVTVzS1O35J8c3Xzv9lBQH27JPP2z9tan8/3z7I8OhZfbnvlF48+Nlalm2O8tHcOl76bgPTVjWmvyPufZF972fmRxbs3juPr67uyeuvv87555+PrqeSb+ySnSDWTvzskv8NkGJZFtdeey1PPPEE33zzDXstviO1+GoCVGFbQxRojhss3RhjQXUr6xrjbTtzFte0RcPheKMYnPLCLH5YU89DJ/fh0MHFqIrcdqLwiWed9E8uPi9K1kXD+fhBS30sSZFbk8OdWH0LuHc8Q0n9JgGWHV9iJAIkYhF0PWAH30Zz0PUAsZj91/Uw2FQsxStyZlkK0USQ52cu5ebPv2Vdk33NhLArsrt87lQFe+EpuvZ3O8ONf9HXtCSBQMIBJSkuvgtObBqZkQYkUkBH5od1dXy7uo6De3dysoe5fHM5TbFY3xSjc0HIR9+w0o6ZuuTCS0VsCQlNNggHYh5Ay2aN/XJFLWe8+R35QY2r9+rL/ZMXcuHoXlTkBdOUpJ/zmbexkSEVBWxojvHrD6YQVGWu2qsPspyuTPmV/a2Ci20cT3aBQpaPey89uopf2TPUrEX8Ogpm2hvztsabOlBbYNbeOafG1vbdyQZOOmzpzqI4+rflRxTW3rM3QzvnYJj2dlWV+Oup/fjuxtFMXd2AFkp67Q3D9pggUsqspAiUkI6WGyUYaSUYjDmKtkVCt5+7aDJCtCUfvSXieTfaSAbQStuuYK8afhCBa0hJxewBzhxrt5MCJnLAtJU1hxLmUZq85yc1b7W5fr4xpBllfM92KADjzxrBsrooe//9O35cW4+mAQhyQ3Lq+fHFf2TOIfa7n3onXGNJ6pPKgJf27Espy7t/LvBXnXcD7qubYiiSxKTlG2lOJtLeGXz9ZEobcNLOc51mzGrvGc4CTtp4SKSMffy/+e7H1uJQ2gUoMh3SPvp1DjNlSSO3vbeCv01az6h7plOWH2Bktxy6FAURQFy3iAsTw/TRrABJkhjVI49z96rg98d1Y/zUWhK6fQ8OGlKIqkh8OncLYIeWtCZMvl3W2GZcdpIZCaFL3ri7lYV48oK+vDezjqnLmtqeX7bzdIDLBftVUJ6vce+Hq1m5Kcotby7nljeX88DHa3jnp1rWNSTaAJYepUFW18V54OO1rNoSY0SPXOZWt3DF+KUsrY2l3ke/oTVzDDL2+yhB/04Rvr68glmzZnHiiScSj2fRdXbJLvk3kP96updpmvz6179m0qRJTJkyhaovzkNSbQsFFiCDkAXfLWni7emb0RSZHqUhNEViTV2CgCJx42FdCTqB7ZJmgUOTsAzZWTCdhUrAmWMq2dicoDAngwfrTtbZMjZkLsrtWOc8eoZ/UXDazq1poW95mNem13DaqHJUyQ2SF1hJ1eaFSwLLUFA0w/NwWKaMHrczAkWTEQJqEsuSvaxZtpIjI8t2IKisGjYwiecg6xbL6pr5y7ezOXbAAI7o259XZv9EcyJOQSjISQP707ckQMBQEXoALZDwFEw1mMSIB0FIyKrhLdQAaiDpBNbblC9FTdV5SLuWOBQk2cI0VXTL4N6v59GlIMSjR++GKgWwLMmJ/7DSsvIAKB41LqUY+AGHC2wkyc7+pZuaF8Bvg6hUf/44ifcWruXy92ZyypAuVDfH0WSZL1ds5E+HDUnd8gzlZkektjXO4s1N7P3sxxzauxPvnDkWTUmPUWi3OGF7so02mYkQgBRlK8u+EmCaCqrk86DtbMoYbHPcXrOttOsIFSZrH9sBTrIdw91Wnhdg+q27p+8nCSoKNCKawqyN9exWErYNCclUlqigkoqNcOcIJah7tErD0AioSe95bYnnYloKuZIgoMRStNXMacf/3bHqeseRM95Ft15KhgdaUoRdINUEKWB6fUpYqcKSwqE2iBSv3qU6SL45ro04VFbJ5woqz9OYctUePPz1Ko545kcO7lfCppYkXQtD6c+o++4677fkgAs3qF6SLJs+KwkURc+ITZFwzZxunIorliWjanqKViYJJOwU81+uqOWjRRt5Y/Y6NFnmiWmrCKgyfzxsoG8NyHg+3FjBtPvS/jPU9ofs27M/6+3v2yZIvr34B0chb/uOtPP/VsYIcMDgAq4/vAsrahPMW9fKxft34spDOqNq9kH/fm4fLnhmCfveO8uj3tX/bW9yI3YNH3cuH9gpwrCuOez1h1l8ctNgZq1pRZFgwvTNzFsbxTAtcoMKQS19cB7osWygIimmpzUpssQfT+7BHW+vYn51KxeOq0Ry3wu/Fdz/vwoSEhcf0ImPZtVxxlOLeP/awRTnamxu0VmyMcob39dS3ZDEsmBLi05xroYiw8dz6ql/ai9yA/YzOqJbDi1xk0teXMr1h3ehW2GIsoK28TRt7oVjp+xcEuDzCxWOHb+ZY445hgkTJpCTk9Nm/12ynZJB9fxZ/ewS/qsD5w3D4LzzzuPHH3/k04sLqSp1At2ceWhLk86r39WysDrKXn3yOWlUKZGw8wY7E8vstS08/Ol6bjy0Ky1xk/dn1xFPWMgyxBOwf/8CBnXKYeaaFsKawtSVjezWNY/TxpR74/ACSUUGtYKMwFT/NvAWKM/i6HC6vYBcOZWu8/Gv1/H1kgbO2L2Cj+duoV95Duvq48R0wdkjutE/tzc5Oc3eguAGdJqmQkO0EFMoFEfqCQZj6MRZUNvEkJIKLMuuz6BotktYmAqSYmLqGtNWRXlnwSouH7MPeQEbLMjYRRInLFqBJgtOHFxF0rAnzkggiiVkciLNqEGbR+/SyABPCXAVK1k2UQNJr4ikfW1StWmSyaBHsappjnHPV/O4fGwfBpUVedQuwItdca2irnXqd5/P5c6DBtneLiGleVpMUyWhh9AUHUmyMEyNlkQOkUCMSKjFqSnieAp8KZg3NsqMefJDHjtuBCsbmvluZT1/OnQ4uz/+OTW/PQZVzuJR2EGg8odJC3l3wXoeOHwEB/UpS7MqZ+13O4/zcwDUL51+eGvSkXFvM/VqFo9LG9kGrau9GJT2t2c/9qRFW3hy8nqWbIxx20F92bdLFTlqDs2xfCxLJhyIoSo6oVAMWdPtgrGKhZVU7VTDQKLF9ogGAglao3bwbTjUSjAnihLS7YKPbjyegmfASTt3H1fez9UXSZ/nBDylDlnYBiG3jZZSxIUpgSmlzYvZCtNmSzCStY0zP/pXsyW1rTw2ZQ1njurEmKpizyjj7uPRXD0vr+UUnEwF0JumantvA7YRwkgG0q6JadoUVbfIpmXJXtuUWJz5xgymr23g2MEVLNnUSlVBiI0tCQ7qW8ble/b0eSPbeU4kkeZhb9M2o32mdAiUZDtuR8BJRzN4dRScZLbrAO3l87n1HPnAfB45qzeX79+JLxc3MLJrPitqY0xZ1siWFp2GmMHL39bSozTIui0JRnTP4ay9Kxg3sADLgr9/Xs3kRY389aze7NWj0H4mdefZ0HyDkEAKCrAgoVvc+s+VzFnbSu/yIMeOLGVo1xy6lYVS45YBv23Hd37LNsa45/01XHtYF4b3yE3fx/k/mjBBhvpWg4pCrc0asqE+yb/m1zN/XZScgMxNR3QjoMpt74N/N9/pNLcanPD4MqySAXz44Yf/00HaP0fcwPm6x/baaYHzJVd89z8fOP9fC1KSySRnnHEGixcv5uPzc6ksU0GG936so19lmB9WNDNnTSsXjKtgcFWG9cBMt4bEdYu/fLyOrsUhjh1eQr4a8ADD379cR1PM5NCBxcR0i24lQbqX2NllPM+HIjxLTCZQyVqB2eWYS6RiT9y4Dn/KT9+u0ZjlVNSWqKlPkkxKdMkN8+PyJFNXJrlgVHcCgQSSJEgmgym6lpBpjudSFxN8tXIRS7ZUE1QU+pcHmVlTT35QZe/uZRzau5sXpN4SzUfTWrjt89n8aujeVOVHSJgaxaFGzwNz7cQfOGNYL8Z0KaM22sKSunrWN7USFwmGd42wd/cShKl6SoEb7+IvvGdZMpqWJGokUFXLK9LlFox0s4E1JpLc+NE87j9sOAWhQFqVaBfEgA1WvGssJG7+dBYPHjXEKz7pfmw6m610GIbmgRXd1Dwvk6YlvcJ5SIJoax6KYnD3V7OYt6mOd84ZzW5//Zpbxw2ge0Eh57w1lSU3HNb2Qd0OIOABNWe8ppMwQXUZfEp6TEyHFO1tHnP798n2TP//kA6NfWuK3TaAid1m6/21p3S2/a1tG/f3ff78Ez+sakYCgqpMwrAYUpnHs8eNoyqviJZEDrIkyA83EgzG0cJx1NwESAJhyMgBk6Z15QQjrbQ0FhGJtJBMBtH1AKFQlHBRE0pYB1Ugaele5jZKk0Vb/7uRBZRapLwrAZG2vzAkJDUFVNpkUBTO9RAZBptM8c2LqRiO1D3xZw2z26RXvPdnDfNvExl1nUxD9d5zF9wkDJM3566lujlG3DCQkAlogs75QboWRqgqCBPUBKsbYkxcuImPFmzk26vHUpIToNc9X/HqGcP51Suzue+oAZw+snP6OdH+s5eVBtwBb539Q/bNHXoutwFO2vWcZKNAbc3L0lHxgWiAi59Zim5alOcG0JOCx76sRgjIDyvs3S+fzkUBhIAjRxTz5vebKM7ROHPPciYtaKA1YXLdoV0oyw+woSHBDa+t5PmL+hHUZIQhpZLoWBLCkO13Kkcnrlvc/OZyThxezv4DCtEx+Xx2E1OWNhEOC1bUxzhkSBFn7FWGZEppwN5/3smkxaEPzuXjm4cQVpX2r0fmvu67KVL6yszVLTwxqZouRUH2H1hANGFRWRhgZM/c9Gvn70cSROMWpzy2jIZgDz7++GOKi4t34Kb8b4sHUv62E0HKVbtAyn8l3SuZTHLyySezfv16vvrqKwo+PZ7qhgR/fHste/TJ4+LnlnLJQZX85ZxeqZ3S5k2R9uKHNJnfHtPdJq5KIJIOWACuPLiL007y0bB8lq5sViDfYuGvbm8fWkrRHoRk88adxUmYkp1xCsnOkOPsCxAJy864BZ2KNYSukGiIkC9347u1X7Ffr1ySIkFpKJ8cpdSptC74YV0L7y2ehyRJnD2imPNGjqGwtA4jEUDR7NSP1743n2/X1BKSIwwr70nSXM+ny1Zx/ICBDCyzsKwoReGkU7wxiaKY/PXYIbwyYy0TFq2kqiDE4M4R9uiZR25uhG+WN/DlwtXcuv8Aj2JhGC69yySWiBDU4myM1/HSd6uI6gaNcZ1xfYqxLAgrKscOsANiJyxexbertnDHIX0pzpUxDdJSGfvjJNy6CpapYAgdtZ3FQJIsNC2V3tUt/BjUbN6uF6iv6RjJgFfUclVjPc/NWMYnF43ln/PWgZA5tn8v5m6ss+9NG2VgOzNRkVKsJNnyxu+nyrUb0O0dcwdsEtsDbnyUnX8L+bk0sGz0rG0AE9gBcJLRzt/muoO7cvErixlZlUf3wjB5IY1npq7lgBcmcvehA7hwTA+SsTwCgQSJRIhkMkiuanPt9dYwgbwouWVbEJZExGimtSWfvMItBAyVRDxMsimHcLghfRwK9lyUYX0VQkIyfKBDE6Da2/xpg9Hs34Tp0mQshC4jBR3vioVduNGvbDntIAU6PK+JTzH3vM9pnmbn+zZAjVuY0i1s63lmfYAHyS6uaOoaikPd8vp0fnt86hJemL6G/XoXE9EUFtW2MHl5PV0LQ5iWYEs0iSmgW1GInkUR3jhnBCV5dlHJzS06eTkym1qTXPjmHB6evIJp1+yJ5KT6SnmuOg6yf7anpL39Mj0p0PGYk3aOmfX3zGNsTUTG/hLUt+i8N2MLu/fOo1d5iIfP7sUJY0qoKAzwj6mbGNkjl4FdIizdEKPm0yTz10X52/m9Gds7n7V1CR78eB2mCbkhhbI8jfOfXsJTZw4gNyJ5QehSyAJdIAVtY1BLq0Vds0m3ojAogoAqcdReBRy1VwHz17YyZ3WUPEnj188uoyBX4bIDO9OjMGw/gyop0KvA8O45hGXFNmi254X2U/8snHfUvSD2dRjZK4ene/Wlrlnnq4WNBDWJKcsaeXZyDV2Lg3QvDTK2Xz49yuxsl+67F4nIvHN1H858v4yDDjqIL774gqKiog7ekF2SJoI2jJkd7meX/Pd5UgzD4Fe/+hXLly9n0qRJ5H16LOOn1DJ9eQu3ndiVkjyNxqhBQSQLPvMsE9gWPjfDsPu//0pZUoreAFmpEWn7mVLKSghkK5TmryCbWa3ZsxBKduCoHPDx+l2ro1vHxUztLyyJT6bn8O2adaiyRn1cp09JV9Y21lDb0sCwinKOH9CdisI482v70L94NUJIqUKOgGHYtUTqWpN8vbKRpKFxSO+e5AWjKIpBMGjXbgA874KkmFiGnQo1lNdi061UCyHATGjcP2kFY6sqKApF6JxTCCLEmuY6Zm6oZnVjI61GkrKcIBfsXkVlQQDdMnl//kZem17N0QMrmb6ugXBA5qQhXdijaxGWkQrudyljsi9I1r2ulql4IOUvUxbbCQfCAW7Ypz8BRfFAkwtqFMWOy1H8cTPO4mIZqhcbkNRlTnjjU0Z3LeD2w3qz+yPfcuHoHlTkhCkIq1zzwRyW3XRY+1QsaLuQO+3a1LNpZ7/MPremKHdUOuJ9yVrTYnslG/d+J0mHPUjtKIUdrT+xXcXxICtAaQ/AfL+iiU/mb+GRSWu57oDudArncsMH84kEZboXh3j0hEEMK+qEFokhqRZ6qx2DIasmpq6iJ4L4a/MEI3Y2JDMZQNF0AgVRpIiZqg8lg4hLKS6+ZqVi+TJpIx7NS0p5W2Tazo+mM2daqbY/Lm8mJyQzqFOOPf/J2MYg3xzmL7Br16JKfx/8NLFMION6UzLTCWd7p4RlGzFsIGKl9WvqGrJqkBRJnpm2lj9+vozXzhlGVXGA2pYk362s5+6PV6Xd3sv36cq9x/Ql4LOGNMSTdLptMmtuO4hnv1/D4E65nPbKTI4aVMqMtU2M6prPBWOrOGJgmTNW0sX/nLRL+2rb3vvaETCzPfEmmWAjDTzsRGDi7t8O9UsIwYL1UbqVBMnLsGJrZ04BYI8+ecxZ08q5+1Zw94k9KAypqX4VQUvcpKXF4rFJ1fy4vJnOhQHuOb43lUWa/eyrIBJSWmxWS7PgpreWM7J7DmeOrSASVFLjFDZdTA6bNGwRnPXSPMKqyp49CxjaJYe6eJKapgQ9y0O8OW0zr11u1zgD0j1F7Xmj3AQWbS5G201Jw6IxZrJ8Y4xpy5pZWhNj3MACTh1b5vRn/9ENi9PfLmXDhg18/vnn/9MW/O0Vz5Py6E70pFy9y5PyXwVSTNPkvPPOY+bMmfzrmlxKCzU+m1XPpzPr+cu5vbLvlDnxCee7SWrRBc+K6H6XMhfgbDxaixT3WncKPWZWefbjFA9kpPLvp4EVISGppp1NLJCiH7iLgRXXsHS7wKQSMhCmRKyugKaWQpbV6Tz6w2wWbdrI5buPYVSnEjrnBwipccLhViRJ2PSPSKvNaZct9GgYw1C9DF029SmIhYyMRUBNIpCIhFvsayKlMki5IkkCNZy0gZMlY5kysZY86uOtvL9wA6YlsbaxmYSl07c0wj49iuldkktOCO+8ZMVibWOUuz5dxj1H9Kc8J+TFqXgJAAzVy+4luylz/QAFPC+KP8ZFki0WbGzktVnruPvgIQjLzVome5W93X39/ZlJO3jZpcD99buljJ+znKnX7MnNHy1k8YYYMd2iPpZgTUOMspwgS28+JM3j0Z7ynKlItFfAbntByXbTvbIpNJnFQXcStSvNCr+zxQ3m3oZlenvrTvysmhNZ2nekGNvXSxq4472VSEicMKSS8TOqWVUfJaYLdu+Rx4huuQhdxkw4iTucPmWn6CySQNZMz2Biz2nO9oCRoqc6hg8gBYz940szttDWup12em4D3z2w7O3fLG6kX2WYFy7pj+rGiZhkp8e6AMRJn+xZov2B+u2AlGzSpoK9v3q3YwwShoKpOzFzis64J6ZiWBbDuuTxxZI6muIm5TlBGuM6vUvDHNC/iHnVrXw0fzMAk64axd69Cr37/N6cTVz2xkLW3bU/kmyfy8LNTbw3byM9SsIs2RjlgUmrmX/rXnQv8tXRyBon0k72x/baZ7ZxZWu/Z/OabM1jknHsDgOTHaF8bUVqG5N8PKueH5Y1E1Al/v5JDQDf3DGMsX3yU2t7tnVbBiMhWLU5xmtTN9EYs9eAffvlc8LYEmc9l9JoiTNWtvD8lBoGVeZy7p6VfLBgE8trY5y8WzkVpQrNUZM97p7J6gf2YOH6GDNXROlTGqGySGPpllZu/McyqopCfHLlSKRwurGgjbgAxfue8Xt7MT1+Gidw5XPLeOSc3qiKlLZvIm5x4l+XEc3txyeffLIrmL6D4oGUR/beeSDl2m93gZT/FpAihOCSSy5h8uTJTLqxkPwchdteW8XQ7jmcv38FHS5Y5AEU0jmfDuBoM3lkKi8+mpjLvxYJN2iAtIUlLWhegJVUcXnkbfirfnGy6MiamVFgzTmMYiEMmZZNOTz27XpWbIkTUlUu3G00f5r8Pfcdsh9BJYmFXZhQlU0qytZj6hqBnCjIAmEoGPEgliUTjdnZgFTZsDP1gF2BXTbRjQCKbBIMxrwqy64y71k3HQuoZSokYhGi8Rw0RfdoU5qWRFJMDzy4QEDRDIQlM2dDA09+u5YHju1PblBNy0zmprd1vSiuF8ceg0gHMqbseVPSKmbLFvd8sYiLxvSgPJLjARNDGCysbWHm+gaOGlhJWa5dDM4yVAxDdYL7Lb5ds5Ez3pzCRxePpl9lmB53fc0+PUqojyWZ9Os9aEoY1DQkGdqpwD5kuxbQdu53O8HDbSQb1WsnUK8kyefJa0d+1iziKpG/AE3MHbv7/7Z3aH8MHc7+tS2lMGO/7VUiW6IWl722hPdmbSIvpLKpRedXY8t5Z/omVv9pL/KsXIx4ED0ZRNOShEqaEKaMHDJsABPTUhx737Nl6SqBolakkOMxdL0hmZ4TGXDTsbrn4Ra0M0lZeH0W5TRDkEaaIWjm6hZenLwBRZJQJInduudyzNBScjQV0xTIyN47EDV0coJKmpfFjeHzX8vMWBb3+c18ToXpK+7oxKzYXl8TJWggLAkrqWIkAryzaBXnvzGHfXoXsrQ2yr3H9OO0YZ0Amea4yeiHp3DYoGIe/1V/dNOiNWFSEAp44xJC0Of3Uzl0UDGPnTgk9Vw687mwJHTLpOiWrzAtwZsXDOOYweVtvIxtUjVvBai0CXyHrYMSaD8Qvj3Lftb4ma30385x2sjPsH9c9OQS/vHtZi47pBObm3Xmr4uypCbGxJsGs2efgvQ6FK6R0TX6ud4+P5tCSNzwxnIeOqcnIibbYzOkFKB35FdPLqBzYQBVlrn2oCre/mkTdYkkkxc3ctMxVRwxrNhOImGCMOBPH6+hLpakc2mAZRtiPPqrPgRkBatVQ47odjyX8w5+s6iR5RvjHL1bMaV5brkB3zn4z6e9a+i7VTNWtPDclxu4/8weKe+TA7yiCZNjH1yGWj6MDz74gHA4vOM3439EXJCy+eGdB1JKr9sFUv4rYlKEEFx//fVMmjSJL24tpbIkwKJ1Ufp1jnDBwZVOow501I7FAct+cyW3too7kUG6xdE9kGMltOlekhPs7vbtVyRBOFZDe4OzWMmpnPpeW1+GrzTLuikja3Y2H/+YJMXkkR/ns2//Eq6r6ka8pYDWmESX/Dxen7eE4/v3JqTat19TdGTNpjO549NjIYSQMAwNw1TRTQ1DVpFx6gtIdtpfr+qzz7IJeFmFhKVg6SqmrqHrAUxTJaglnBSfpl2YzvUquB4QZ19kQUM0yYNfreQPR/QhJyTzzYo6vl5Wz5V79iIvYKcwdtMEy7JlZzdSrLRzkSxn7pVE6lY54ESYCsJUaE6YRAIyUSvGzHUNvDN3A5GgjCbJLKtr5azd7Ngjy1AxTQUhZGTZ4Kkfl/Cnr+fz4LEDGNsrn+e/X4duCmZVNzLlqrGEgxKhQIDy3CDC8mVqo+NeA3+rNA+ef3ua9dLtv0PdZ+nMbzGXnPuzjV0k2udSb0vaOaedJZJPaetQ+62BpQ57VHZg321ZuB3Jjci8cvEA3p5Rwq+eXkhYk/lwVh0JQ/DB3M2cNdy2wEuShRaJIecYWDEFKWDPEQqOYm/KSAjPO5to0LDiGkogYQMJV3lzAYlbT8pV6FwwkjlM/3eXN++CFieuzwM1QjCyVw4je/UGU0JPWny/vJk/fLAa3bSQkdANCAckGmIGOUEFwxScsXsFe/TMt+dCM3Ut07wh7jUXUooqS3pwPQ71K5UZj9Sc5npjLAkLnbs/XwpAp/wA/zx/OAVBN9OXxffrN9MY1/njsb1AAk2VKVTltIshSRJjeuQzaVE9liWQhJy+HsiCgCwz/twh1LYkueqfi9itax5VhaG259WeZHvWM9eejoKSbL9nM87tDG/JznHIevKHU7vz6ax6trTqnDi6hIfP7EVBrqPuWAJkqS01TYbMh1n4jI4RVWFVbYIyKYwWEGiuB8LdRYJwUOayA7vQpzgCiuDKQ7ogKYIVm2Pc8s8VxEyTgwcW8ds3V5HUBQcMKOTWPauYvryZ8hKVK99YRl5AJiirlOaqDK/MJzcs8/AXa1A1iYoCjSUbo7TGLbqWBLn0kEobYLjvV7br6ekx6ddot5451LeWcPkzy3nlqv5p72UkR2HCzX048k+zOOWUU3j33XfRtIyyCrtkl/wfyH8FSLn//vt54403+Pr2KqrK7BiBqpIg89e2cvFjS3nmir7pL627aLb3PdMKCBkWRdF2UoDsfFknDWdaDQ63X4HPoo8XZ6I4aYa9oFFXUXSUOZvuAJaueMXTksIg6AReIgsmzN5MSbHM/iMjQAxFtQsi/mbfvnyxIsnVH0/i8aOPIldrJRJqBcd6aJ+HAzR86XoFEnEj6NRlSGIKBU3RCagJVNX2isiK6VXBTrssjmJvU6jslL52/QHb6+EpCD4KVMp6Z9GlIMiEubWsqY8zpls+p43ozM0fLeLvR+/mUdFkp4aLohn2dXL3F6kqCpmJDCRJIBywslePQh79bjmSBH3KIjxwzACWbWnl0cmreO6U4SiygmW6hSEVYkaC6ybO4NvVm5l46W6M7Z2PJQye+nYthSGVA/sW09NJQ+mCI7fqcLYMUX5rf6a1V8r2XGU8Y/6+7H/aATO+9K0dC3DfHgCRscD/f87ytf3n6t95Oz0qsGPAJNu+HfHEAMeOKKFXaYi7juzNyk0J7vh4Gd+tauCcMZ3txAqajpKTBE0gOYVHJE0gKQZWVPXG51aGBzDiGkpeIjV2f4wJpICJQrryk2nYyRR3P7/lFzyA4T46miqzd59C9u5TmLJmA3HTJKjZFdtjCZPXp23i+W9rOGRQMccPLUdRXOON1Pa5S/M4iHT6l5x6v7z31HlH3bnVMhUem7qMFXUxyvM0Hj5+gO3dIXUvR/fIQ1Mkpq5q4Kihpe1cBOhZGuLj+XX0+MPXqLKMLNsWU1WROKBvEf0qcrjvs1Vce2BXjhhcwkXj5/PJFbsh+b1W7YmU3ibtOcsEKO0Fv2f81q7XpM32dsa0I3EoO4H61bk0yMTfDeGpT2u45Y1VLN8Y4+AhRdx9WndGds9lq/OaGzOVMaamuMFv3lhJa8yiMj9ASJMxhEWhA1ZbkyYBSWHQ734k9vAByJq9hltJmVwRYML0LRy3ewkPfLyO/YY68SCOl3GPAXnsEcpjc7NB304hDh5cxJYtJlNmt7C42uSh4/vTuZPKjOpGHv9XDTceX4UEXP3iCn5/cjd6VIayX8ds3hVn26ez6vl8Tj2HjygiaVoEArIPhEJuROGD3/TlwLu+46KLLuLFF1/sOCPlf1ksaefQoP9NsmT+/5b/eJDywgsvcN999/Gv3/ekV5fUi5qbo3DXGd257+21ACxYG+XtqZv5aXkLp+xdiqZIDOoaYXC3nLYTt51AK33hzWyTzY3qby8cq7djjXRVZclKFTfzRBYpL43/GE57L3lHwO3DoTA1KkgSPDelhh/XNhIOSIQ0mWhcMLgyj0v364ZICqSQhVYaQ8lJEoo1s5fek0+XF6R5QSxTRpYEsiSwhISi2Zmx3OJmqdN0lAYjiCKZThV40yvyJ8mWY31MBbG7geyalkQNJDGSgdQ+LjjJpMA5i2Fxrsr9x/XzFg3LkLEMhd2ripiyspk9qsq8Oi6yaqZidQAvGYEsbEVEsk2osmV6nh93vxN3K+VEq8w7z9nrW3jxh3X89fjBaJJNKdMTdurmLbE4J73xFUURhanX70FlkYokW7w/q5bNrTqvnrEbp706g2jSJOIU3vLuf4Yi4d1n3/MkZTxcws3ulk23TQPXfmUs+3GgfW/MzhbJH1D9ixxAtN+3ey128Fy3XUel/WN2uK9teU62cdk0VeasvSr4x8wNvHzaCO74eBmG64RUTKSAboMPBTszkY++4o7VjpMTHhiQFcsJWsf2oGADG+/cXM+JOzZ3HnPnvqzXxfe/O524c5xw+nDfT1mys365wfGOkSfkBv1bEA4qXDCukvP3reCz+fVc/c/FDOmSwwV7dCEgZ79oaRnCpJSHxJ/KXQgHsMi+eiSWYPGmJn736SIABpbncvvE5UQCCr1Kwly+b1eEIVMcDHHX0b244a2l1LYk6VcRZp++hb7jC/44cTXXHFDF2WMriCcFumlhWlAY1li1JcYJT84FNnH00BI+W1jH46cP4LRn5zlgexvPpOsp2moQfeq6dzj4Hdr3mmzDI9Nuu47s01HZyv5De+Tw90v7ALB2c4LHJlYz7q45nL53GQ+e1ZP8iJqeLMd9tmU8b4vkpHlHhfUNCZ48ux+lBRqYYAmLs55eSGsrXDm2J0JIfLh4I0+fPJRkQz5KIGkXe5YExZrKyxcNoCxP4az9K3zvIRDEey+qSoOUFASIhBUi5QqnH1CC1aRiJRVEzGRUZQGPn5PDA5+uQ5bg96d34+8Tq9l3UAHH7V5in4oQWAIUSUq9b+DLBgZrNsd5eGI13y5qJKHXMGlBA89f1S/9ulpQkKvy4a192e/2d/nNbyq5//77d+g2/U+Jm3lwZ/SzS/6zQcqHH37IlVdeyUcffcSIxtvTfkvqJkfcNY8BVRGGXDWD1ZsTHDGiiOHdcvjLhPXMW9vKlUd05i8X9EpfYF2KQ6YF0T+pZPOg+EGMu+AGM/Z1OpAkYWcKUUAyzfSsOf4FwZTSF3U1BWIkS6BKCZ78fAOqpvDI4WOQVYO4YdDQkI8iFaA31xCqaELSBEJ3MvTEoclcg2nZwfJRI4yUEETympzh2aAhGQ8RCMXRddtKpMgmimyiKXZRRyOhkDQDiJhEDi0obkE0R/G3jFStEkVLVWyWZItgThTA43/bxdPsjDruGAAn0Nfg2xWNvDe3FmGlAFUsKTimTx+70FowgRLSbW63krrYwnQUEySEj/qFJFAcr5GkmilF36lgHYsLHp28msdOGIKGatM9DBXTVDEsk4smfEuf0jCvnj+IQMAZryR4csp6qhsTXPTP2cR0k4a4zZ/3n1O7cQ1pcScZP0vpf9N+ayeuJauy4qMl2Adi6wpEZvvM7R2WneNhyXbtMpW3DtNi2j1IR9rsgJdla31vZ4yAX44eXsJDn64jpzTJugfHUhzREEk7DkwJ6fbcEsLJmCUgKXmxdVZCwoxrmHENJaQTyI8iTCdmJWZ7atVI0uakSpJdwC6tYCOpVKgG6c9LtjGbpOYz1xtjZbS3hA2qZKdPGQgJpLjd1q10byvZEocNLeawIcVMWdrIJW8s4Npx3RnRpS1/W1Lc9MN4Sr93oZ0geUlIWIZrXAFZtZAUi42JZkpzNM7dozNDO+Vx2shOSIrFTROWkDANArIGkuDCvTvzwrRqfv3aEgAu2a8TVUVBBHDY4CLu/mg1iaTgjyf2bDO+sgKFI4cUM6Iqj8vGdWGfB2aw/8M/EdJ8HptMg0S7AD3je8a+XrxRWpuMvtv9bSv7Zft9a21/bruOiDOermVB7ju3J78+ohOXPr6U3X4zk+d/3Y/9BhS0NU66QMWNr3LW5cKIihGToQA7ztRSefSIUbw9dyN3fboGw4JHj9ybz5ev5foPFqMqJr3LVHqWhZi3sZF1sVbqZ+vMr2nl0oM7EwrJ6QZQoE+XMIvWRtm7Vz7EbUqanG8gWwYiLmO1agRDErcf0415G1v5w5treOSCXlz3wgre+m4zh4wo5NZXVmGYgpeu7cdeA/NtMObIJ9O3cP7flrC5yeBX+5WR0O17fdKepW2vgyOdSgN89Lt+jLvzeSorK7nuuut24g3aJbtk6/IfGzg/depUDj30UF588UWOCzzibRdCsKI6zo3Pr2Ta4ibOO7CCsb3yOXBQgc3dFPDXT9Zz74S1zP37KMoKNPuFdCckv2XFBSkGkHCs+5H0cbSheLnt/Qu2n9KQEYzv0shEq4yU449dwZuk0jj7vmrQf/ukmsKIwtnjKoguLEFWDYLlzXY/CacjlVSWMQuqayxufXclfzlyOIqZT31rEaZQ6FRUjaKYKIEkWl6cLWs721m/nCrMup6qB5J00v02JXMJqwkKIg0Eg3FviC6FSwjJC2AHvMB1wAus92e5Ej4LhKSaNMST3PXxCoZ3KuDkIV0Ia3bAu0sfU1QDWTFRw47FSvXdDIFH1/AHzwrDpsjJASPlnbAkHx1PcOuHyzh3984MrMhBWDLJqB00uK65mQvfno5uWUy6dgQ5Ydk7N9MShK+cDMCePQsoCmu8feGIrWfi8UnWKtuZsSGZ29zrnU2B2Yb4+fs7nZb1n2YB6mCsitd8e+heftleANOOsua3gseTgsIrprD4D3vQzaG6ms1BzIRKoKIVqchKBarHgWSqX9GkYDQHMZMalqkgqwZmMoAaTNjgxHlmpaBpe3E1G0AgkTJv+ec3aBuM7G9jZewnAzptg+sz50lILxjppCi2gU7K0/zDyiYe/nwdw7vkcvMh3ZE8t0HGdXee90xA684XbiFdOaQjKU6tF11h4tw6AqrEwQOLQRJ8tngzSUNw1IAKe/5RBCvrWxl593RievrCcObYcmavbWVZbYyz96zg4dN6p6Um9o8LAZYlmL8+SlEkQJeCYJvYFb+kURolsseeyL7nxn9vMq9PR+hZWwMt7fWxI222Jds7zbjOOEvwxMQabnttFTcdW8VtJ3ZLX/8Nqe0zIySmLGrkne/qCShw5aghzFobZPK6eXy/pondO3fisjFDKS9sJZjfgt4aRtYSjJ+3mrmr41ywXxlDeoY57+WFHDK8kO+XtdCtLMhZ+5dTUajx9Oc1LKmOMW91lNtP78a+gwqgFax6zX62cizbSBmXMBqCyAETuUhn0aYoL369kRcnbeToMcWM6JnDk59s4OLDKnngnXVsbNDpXhakMEdlvyEFfPhjne1huqQPlUUa3y5s4paXVtGpSOOtWwc555pxjZ3r8uOSZg67ewVPPvkkZ5xxxg7csP9ucQPnN/15350WOF928zf/84Hz/5EgZdmyZey5557ceeedXNrtDQA21ie59aVVfPB9HU0xk1P3KuORc3pRkqfRGjeZvaqVpG4xe00rd7+zho/vGsKYvnl2hz5Xb12jztRFTXQpCqZXafXHjGUCk0yLtHtFXUugu0/mQuzvy+0/0yODbz8TRFwmpur89bNqupiFnLl3CUZrEK0ghlxiQMC3TwIwnHSJFoikzGXjF3PP0X0ozlWxdAUjGiQezSGWiJCf20AgrxW9JYKsGsiqiZGwO1SDSSQnjakRC2GaCslkCFXVCYajXsC7CzSET/GXZDs4F2zrJNi0rbS0sJaEZSjEdZPv19fx1dIGGuJJbty3H50LgumeBqdfN1WyEra9O5Jq+Qq9+ahj/lvjpIG2ko5J16WZmbY354+TljK2eyGH9itDCIlkawTLkvlw8Tqu+XAGp4ys5IGTexEJS757JfjnD5v4dF4995/Qh4AiYZoSBRFfVjdXfFQ0+7g+yknmm9jetsy+8CkuaYqJ2Dm8Vj8VIlt32zmD+JWqNrUtOiCZimW23zIBWNag6u2Rjl7G7Qluzrp/RtMOAKjBt03nwZN6c/hwO3OQMGQvLkvOMaFE2ADFBNGg2EUVQyYioWDGVcx4AD0RJBCOYeoaaiiBVhD3UgBLAR9IcddeOeNvgnSvbyYt1gUkivMxfW1M7LnSFf/c6AISx4uaWS3bBRGuUUSSBC98s5FltTGuPKgLlXmBVHuHQmYlFPs5kAWSZheZtI8rpd5HQIqYqZothsxTk6udGhf2uqCbFhe/voDHf9Wf3LCMgUUsblFdb/CPn2p4bkoNNY06+SGFnmUh/nZWXx79bD2TlzTw0x2jKM8PtO+l9AGWtOvonXtq3kz3YIk0is82gcm2PCHbS+/aVmxSNtna3LKj0oHjz1vdyl43z+bLu4cxqmeuA1AAXUIkXWOZ75lXBCIuM+HHTdz73iZ261TFxXvl0bWfXdOLpIQZs8sAqDlJlseaOPah+SzbEGf3HnkcPbKYSYsaePOaARQXaizeGOXd7+tYtSnOhvok953Xk02NOs//ayO/O7UrvcvCKYOnqz+Ykg3YDQmRVJArdF76xgYp/7hpAFMXNXPjCytY+vQYADY16jzzaQ2/H7+Ge87ujqpK/P7V1ZyyTxn7DMpnzaYEJfka47+uZepfRtjnuRX95rNZ9Zzy55VMnDiRcePG7fj9+S8UD6Tcv9/OAym3TP6fByn/cXSvuro6jjzySM4991yuuOIKEu+/ztMfb+D2l1dxyPAiPr5jCIM7RQg7sQATZ2zhlIcXUpSjoioSLXGTD+8YzJheeSDb4ObTGfXMXtmKaQmKIip79s/nxa82IgTs1j03pfj7XcHtSTZaDaSDFdeqCE5lZt/3zHZJibp6g2nz43y7yGRTq0FOKM6vDi1keKALiATBzi2Q50ymfhqGH+gYtjUwPxDgT5+vpHdxhN7FuQytzKMkRxAIxtHCcVrqipFli6ZGW0nPCbYSDrdimTKS44EI5LciLAktnkAJ6KlAdeG6JkCW8GgU6fxvJ32yJPhswRbyQgqjuxRS02DwxJS1JJKwV/cSrtmnJ0W5ipO+2DHVupnNhISiGchBO0je86Bko3LgWEgN2eOaJxpzUDSdhEgyfmY1c2uaURWJLa06v9qtE4f0LUNYMkYiQJI4t32+gH/OWc8TZ/Tn5NGlKWXAOcTsNS2c9+IiepSEyA/LqLJfS3AUngzl1Yyp9vhV33YpiwLup2lsjRbkByn++76z4k8yrWvZtrcnmUAiLV129v87Ku1mO3O2/6z+tzvYfnv63ko32YBJe+0tKAirtMScwPiQBVEJK6mgFifs/ZoAXcJqUbESKnLAAMNugyWhhGyviW2UCKLlxzFaAhgx2zMjyRZaTgI5R7cpX6pwlHfsucsfRJ8JUPzjVkgZY8yM7X6PjLuP7jawtSTJEjbdy3LupWbPOV68l5MY4/x9K1hfn+CWN1fw51N7UVHgTODO73LAtOcDy1b0/JkRt7TorNgQS+U0sWyF8L3ZdUQUlSGdczyjQjAguOu4Hhz/5BwmL21ElpxEkMCYnnmsvH8scd1iS7PJq9M2cMFzi1Fk+ObWEZQX+cBTNvGMGWxdiXc9SW5xYddjkgkis4GS7aVubSt2xb99ewHHNr2QbD/42Ub/Q3rkcM2xnbnhxRV8efdQJEtyAJ4deSlMyQb9McfYJQnkPJMTdi/FbA2xZmM+IwdKyCUaBOz3T8X0xjjh3ToaogY3nFzFX95axw+rmhlQGWZZTYwPP6tmZW2c8nyN4V1yGdMb/vz2Os45sJzHLu/NfW+to6HZ4HcndaU0FsFKOPW7HABkJW1WgRwzOPegCjqXafzhn2tYtznBqtoE6+sTdCkJUlakUZRvv3RvTtnMyXuVMv2RkTzyfjWXPrYs7Xo0RQ3yc9V0ursrzrt56NAiHnnkGk444QS+++47BgwYsIM3ZJfsTLn33nt55513WLRoEeFwmL322ov777+f/v37e21aWlr4zW9+w4QJE6irq6NHjx5cffXVXHbZZV6bRCLBjTfeyOuvv04sFuOggw7i8ccfp6qq6v/HaQH/YZ6UeDzOIYccQkVFBW+++SaJD/blxLsXsnR9jL9e2JvDhhcBkNAtfvf6KiwLnv9iI09e2YdTx9kZV4yEQFNkkKA5bnDVU8u58qjODO+egybLNh0iAEZccM3zy7n8yE4M7p2TDh4yJ8zMydOvJPpfdPdKuxQHlbYLuQtO4hBdUcy62jKu/Pgrzhjaj4OHJKgskVG7xFP7useTfMdwrS6u5dL9m7SbmJJgWV2MFevivDOtjusP6UrvQCnVNd3p2nOZ42lQSTTlYBgampZE1nQsXSOZDBIIxjF0jUhRkx3T4WYdc4uvuSKJNtZsAMO0uPOjVfQpySGgyPywqom8QICLR/eiskCzvSNBuxil3zNjOZXglVASJWjY4MRVPK0M70kWT4owZTt7UVBHGAp/+2YVw6ty2b9fEUgC0xLIll3s0dRVFm2Icv47P5ATlHnlwgH0LAu3SW5gWoI97v6JIwaW8OaMWq4/uCuXjusMwJZWnaIcNT0jSjalw/V4+JXibF6F9lKI+sbzSxRD3Gq17kzJfD8yrXJtOie7EtaeVymzrdjK7/6/2fpqr/8dkR1QnrZ5rzrY55Bbp/PgiX05bEQhGLY1V1IslALdVuQTtodA3xJGK44hBQUiKntARJiKV1vISASdmDK7FpCqGl7yi1BBC2pRHCumYLYG0DpFUwDFjU3xz2nZ5jbXLKaTilHJnLvwtXG3u4YdP+3R88RI3ncRdWI4FMHqzXFenVrLbcd0S7umQpec5AA+L6YimLayiZe/3cB+/QuRTDt9haSBiCmU5QXYr2cJkmIhBw17HlCgNWFy+uPz+XR+A5/cOIRfv7iUToVBXrlwAIYluPmtFXw8ZwsHDijknH0qOWZECeGAlH5/t/WOkPIeZ27z7+9P1OJdI/9xshnNMrdn+z3b9/b287fPtlb+X0oHzqs5ajDoshk8fFFvTh5b6nvOsOO3EjZQwTEYyfkGQpeo3yhz5fjVPHpmFaXdBYSgvsWgMKQgKRIEIGla7HfzHA4eWUSn0gDXPr6cMw8o46s5jYzomsO4/oVcc2xnlm6I0apbfPLTFr5b2sRbtw0iFJCpa9G54ekVHDigkJaoyWWHdrL7BnucqvMJpM5LO3oKAKteGEOXkqB3nhvrk3w1t5HLHlvG3Wd154ufGliwPspJ+5QS0CQmzWpk/ppWupYGOX3fMq44thO5IdXnwcH2lsqABnfM2Jc33niDadOmUV5evpNu2H+2pDwp48gP7QRPStyg7JavO+RJOfzwwzn99NMZM2YMhmFw2223MXfuXBYsWOAV47z44ov58ssvefbZZ+nRowefffYZl19+OW+//TbHHXccAJdddhkffPABL774IiUlJdxwww1s2bKFGTNmoCjK1obwi8l/DEixLIszzzyTVatW8cUXX6B9cSjzVrUy8sqZNI3f0/OcADw/aQNXP7uc8w+qZI/+eZx1UDkokh046kyYQgiuenI5N59YRbfSjPR9uv1JShZXvbCcp67p6wzC1yZz0nXdspmW7Gzt3QUa2tLImmxLob4lhDBlvl7SyJZYgpNGlWLE7ZiQQEUrTSsqKOi/wbZqyqS8PX4xff06oEXE7WA9KWBz1ROWxW2vraJHQZhLR/RGiehIAZsKIiwJK6F6mbpcz4gSNDATKlgSan7CAydeRh58tBtTRtIcICMLRFJh6rIm5la3cOHu3dKUcbeYmkcbc/Y3dc3ONqZYyKplc8VlkUok4FgSMytUe3UOTBlh2nQyJWhgxALIqsmNHyzkLyf0xc3cbHtcFIQQvDxjPTd9sJDLx3XhzuO6o2mSd2/9FIrnvt7AAxPX8tNNe/LV4gbOenUOhw0uJpo0+XjeFhbdtTs9S8PpHo1MZWFbSsq2AEgmQN5Z0gHlaYfawtaBzn+o/GyAuDXLdDZxrnmP67/n9YsHMbZfPiTtdxZJIOcaiKiCm848WR8hUNZq89tNsJpU9MYwejzkpf+WnEKsakjH0hWS0TCGoaEoBqGCZtQiOz2xURdCUi3UinhKCXWygRG2lTZv3Irk/C5S34VIGWsyjSzuuWXOX/i2+R8flzqmS17snauwX/3KMv58ei9Cmj0HoEs2cHP3c97pRTVR/j5pHX89oy+KsD0swpRQinSsZnttsb1QJlLQpCFu8OKUGh7+bD29y0M8d3E/3vlxM69+V8sPv9uNrxY3cMpjCzhzz3JuO6ZbmsK4zXc0SzyEdx2yzRcOFc4DKX4A5zdkkbGtvfF0FJD8/wAesGMGhfaoacCLn2/kj6+vYd7fRhFS3MAVPCaDC1QkRSAV2Z4SUaewoc7gxn+sZt8BOchhgytfWU7vTiHOHFfO4YOLGN01nx+qmzju3vkcPbaE28/pTlVZkKc/rOGqvy3jmFHF9CgK8YfjetoFShMK07ds4bkvN3DjCVX07RbGEoIvZjYwaVYDkbDMbWd0Q/aVLQCI6SZfzmsknrQIKBIXPLKUBU+OorSwbV2TNydv4sG311GUo/L6LQMoLrDbCCH455TN3PP6GhatiyEs2G9IAc9c3Jeern7kGhFksFTBee91Y/ny5Xz55ZdEIpnBuv974oKU2nt3Hkgpv/Vr1q5dmwZSgsEgwWBwK3vCpk2bKC8v5+uvv2a//fYDYMiQIZx22mncfnsqydSoUaM48sgjufvuu2lsbKSsrIxXXnmF0047DYDq6mq6du3KxIkTOeyww372Oe2I/MfQve666y6+//57pk2bhvbFoSBJrN2UoFtZkHDQh/AE9K+KoMgSD/66F8F2ZrLHPqrh2D1K6FbhvIB+Kx+ABgFJJhySmbuqlRU1cTY16jRHDZpiJuceXEGPSqcKq4zt52/FDnbPFykKVzZvi8vPNkhRJtw2YXuB0dQ4qIJvp63n6qM6o+bFUFoSiJiC2RAkGs/BmN8VVdUJ5zWj5iaQwiZSwMJqUmmpKSGnrB4lT7ctQbJA6DJWXENSTfSWEGo4SbBLnHsv6sGtz6+yLaNu4TbFRDJBDhtpXgo3Q46IyphJDTluelQvtwq0pJo2dckNZleFx6fVLZPv1zTQsziMrJlpFC5bu5A8MGPqmlP7REcOGHbRSremQ+ZtzaQj+YEKgGzTWWzrqUVNS5RwQEJWhV0LwUltHE2a3PDRXD5dvIl/XDyYQ4cVpoMTj74u2Nys8/t3VvHoaX0JBeHA7p358ZYgD01ag2FAQJGoKg2kgKQ7vEwlZFsGikw+eaZky8aT7dnbTiCxzXH5gca2FJaMY0ttXBntt/2Pk51hPe7IvjIIU9AQNcjLcW6WQ70UhoKIplMHtfy4nU5YAYIgmyaqnsQyFZLxMJJkEY7YqcolzUKKqUgxe340TRW9NYwSMpALdNT8BGarYxkRzgvncPalgEi9j/7z0CTfdXG4UZlerfYUaI++6PvN7cunsEqSSBWiBE7fq5zx02q5YFylPec6x9oSS/LtkiaE8+68M72Op87pi4LkGTwkWdhztGVnRpSDBpJmcfeHq3jg43UM75bD38/tzdEji5FViZP3LOWOt1dzz0erefTzap48ry+/2rM8BRz859SelyHrcuU3xtD2vXRT5bqGED/9LrPfnQ1I/n/ZGrZx3KaowYWPLqU5ajKwW5jKogBCQDAgM7BbmJ6VIRpbbcQ7rGcO1VuSrK6L078iknoeFSDoq92l2M9WY9Igt0DQKU/ipQv68pv3l/LEN+t56uq+5BWovPlFLQ++u87LJjb1gRHc9MxKBp73IyePK+O+S3tRWqRx42PLqWlMctYLCzl5ZCmnDunEmPJCBhyTxyUvL2D8lYOQwxIHDy1inz4FnPDgfM75y2JKCzUUWSI3pJATkpm7KsoZ+5eRF1J4f9oWCiMKd726mr9d2afNdTl1vzJO3a+szXZJkjh13zJO3bcMy7J4ZEI19/5jLf2umc7Yvrk8fPwAhhWXIgcMlLCOSCo8vc9ajlgb4Pzzz+eNN97YVUPlF5KuXbumff/973/PnXfeudV9GhsbASguLva27bPPPrz//vtccMEFdO7cma+++oolS5bw17/+FYAZM2ag6zqHHnqot0/nzp0ZMmQI33333S6QsjX5xz/+wSOPPMLku3pTPPUkUGFZdYyL/7qUq4/unK6ASTD+61oO3a2IYFC2vSeQWhgRfLugiZaoyaGji5x9pPSJ3feuHT66mB+WtNC7MkS/qjD5ERVFlvjD+NU8frXtYRESthtWE7a1UODRxgDPEtjUYvCPbzazpUnnkn06UagEbA65BVa9zRdXK+O28tEqs7HOonqjTpEIQsyud0JSItaQhyobrG+qRJYsimONBLYkieQ0EyxssQPiDc1WVJImVly1+eQBCxL29Yi35iLHTPJykyyLR+ndOWxbixxFXJKFB55ENAVAhOFQtxzLq5lQUUJ6CqA4WW6kgJkOFnSZ92dt5sN5mzl9TAUH9C2yjyUEIKfiSITjzbDkVOxJwAEnLnc8Gy0oY5s/s5fnK/QFkj8yeRVleQoH/W06r509HKGrPPf9Cp7+fjV9ysN8/5vRVJVrWTneT39Zw3WvLidpCA4ZXMhxQ8ptbw0WKzbF6VwQZH51K6O65xEIZ2hh26O4bivrjteOtpbFzPz4mdu2Je1Rpdo0cmRbwMJ/bLcOTnvelMxz3V4K2b+DuMByZ1BdsnlonGs3Z20rAH1Kwinaj2wXJRSmbFOTABS73kgqhgEICeQcHc2SvMQXSkS3g+1lIAaKpmOaCvFEBFlOxYZJAQvZ1FPcdSfeRMJK3Wsvzs6lM9rXwiuDpDgUx0z+uytyxl9XMtu6GQ8VAXKK+oUFo3rk8t6Mzbg1WFDteevmN1dw6LAiOhUEkIA7TuhKKCjb9WGESNHAvLHYKYxrmuLcP3Etk3471PZc+dr0KA/xyDm9mLK4ib+d25tf7VWeTrnK9n5mAopt6XmZlDjs8abR5rKBFLJs25ZHJVPaG9vO8KjsxHe6JWZy1F3zyQ8rnDy2lAXrosxbEUWSIJa0ePbjDazaFKcwR0WWIGkIcoIyc5e30q8sjJSZoEEDSbZ4fvIGXpy8kamLmgmoEn06helXGebbxU386ZwenHtkJZIqceJ+pbw+qZYrH1lGXr7KmaPK+OfVA1naGOP3b6xm7ytm8u7dg5nzwmjueWUNz0+s4bvFjTxQuJYHT+nDblV5NLfCLa+u4uy9K/h6eT1HjSrmlSsHcO8Ha9mzfz4n7lVCVLdoSZoU56oENBkMOGRYEVc+JZA9XaaDwMFHqJFlmetPrOL6k7ryxIfV/OHV1Yx7aAZDOuXRrTBMVWGQEq2Qg/uU8dpBOuNe+oG7776bO+64Y6fdw/9o2cl1UrJ5Ura6mxBcf/317LPPPgwZMsTb/uijj3LxxRdTVVWFqqrIssyzzz7LPvvsA8CGDRsIBAIUFRWl9VdRUcGGDRt+/vnsoPzbg5Qff/yRCy64gOfO6sbg4lyI2YvHX95ax0HDC7npRCegxzdRjumXx00vrOCax5fx18v72O5wCSQZaht0XnLiVJAkErrFe9M2c/juReQ5+cQlX1+H717sgAznJZYkhCRoiZtEkyZhJ4uDkLHz+wcExKF+s8EL0zawZkOC3bsXMG5gPre9u5Krj+hCQVDhT++sJRGX0JxF1UxoGIYKWowzd69k2iKdmkaDS4aMomlVBFXVUQJJhCUTi+cgS5b9QdCczCUZU+kEBAta0YrjFJevty34hoQSSEKxDTrULXHQJcKtzZjJAFZUo1tOiM+nryK+SSIYgt6dgvQujdCts8amBp3Va0wicoBBnSLIyMgBW5lxs2lJsgDHa+IBCUdx2NSo89HcOqYubeaA/kU89asBSArtvsSWKTu0L9mmnqhWGl1sq3ELPqqXO1EIgZfR68N5m3h/fg3LNydYXNtCp8IgxTkquz80laaYyd69Cnn23H4cOrQIRXMOkMHxfufHzdz8+grevWowtfUGoaCEJEvEW2Su+WgWH87bzIEDCzl+dAnHjylJp3lt72LeHod8e/vwAxiRZRu+37ZH/At5NgDULtAR6X87CnA6Arb+3WhkHblvLmDbHrqYs8+XCxrZt28BQVmxvbLuNOV6MRUbIEiqkwVLEx6NhYBAyrFQ5CRqYcJeDdwsW5YDclS7YKvslmUXeNmF3CKQdg0m58AhUvdHkAqwd8GRYxASkt1OEi6NUmSP33OpXu0B10wPgUgHPT8sb2Z4dzum0LWEm5agX6cwuinYr3ehE0djXxdJEghJSmUKVHGuo93fZwvqGdo1h7H987Pe20sO7cQlB3dyxp8JdNx7l2Vbe9+zSXvxjm6//njFbLI18Lyt/ToiW/MUtfeu70Tq2Oq6OLNXtnLVUZ258JAKpKjspbCWJKdQqMB+/jQBqkAEBK9N2sQ1z6xAlSVGdskjpMgoksRRw4sJhiX+8sF6RvXP5fXbB9Iat1i6NsqS1VH2262AK07sgqTaF+/1SbWcd+9ibvlVVy7/21Km7d/E3Wd1p29FmNeu6M9976/jgOtm88cLe3L3RT24+6IefDOnkUffWs+xf5tH99IA+QGNaw/qx5Nf1fDl4i1saTKICZOrD+vMIx+u5+QRpeQGFHLDikdPB/ucduuZy9Ofb0AI0XHvRjvtLju6M5cd3ZkvZtfzwocb+decLXTOD3DdnhVMXd3Ecz82sH+Zzp/vu4cBAwZw6qmn/uz7958uwpJ2Slp/t4/8/Pztyu515ZVXMmfOHKZMmZK2/dFHH2XatGm8//77dO/encmTJ3P55ZfTqVMnDj744PbHsT3P0S8g/9YxKevXr2fMmDEcWFZCY7KON84egVYQAyFx5vi57N4/l+uOb5t1YMn6GMfePY+8HJVxwwvZe3A+J+xVimkKLv3rUu6/qCeRoMz4Lzfx46Jmjh5bzNvfbuaOc3rQo7wtSpXcQmgyIEk88t56BveIcPDo4jYTsNFk8MXkJp78ooY/n9aLSr2Sr5ckmLxmFZeMK6d7cdguEqZaGK0BGjaXEw61EsprwUgEaGjI47IPvqdbMTxwbH9amwpoidupkuNGkLAWJz/SSFO0gLAWQ1EMWuJ5JA2Nqk6rCA5oRhQrCEVCMgVS1EIEbcuQCMlIURMpKaDZ9tZg2NbF9XVJLMUkIQTLa6MsXZ9gXaOdfaRrWZCmVpPvlzZzxOASTtjNTkIgdNlTChfUNTFlSSOLNtgWKxk78DQ/pHLk0BJGdslDVnE446kH3qtN4NCthCVjmfZfSRIE8qJOFq8Mipen9GB7TnTZpmm4NRCcegetSZMvl9bxzfJ6mpI6ny7cRGvS4u9n9+O03UtJ6BZTlzfTpSjIgE7httZbnyVUCEH/66fz++N7MKAkhwMfmkVIk9m/fyF6XGZZQwsTbxlMVWkH+OcdsbDvDIVhR2RHrJodnUU62vfOmpWyKUv/CZ4YV7am4AmJj3/awq9fWsqyP+2BYvnQm5usIuh4PxQQUQW5wEYhIirbntmwz0voJNYQcdmObUkqWLqClVSRFAsjbqcCD1c2eGl7pYiJiMvIec5x1HS6lRej51r3ncBfoTh0L7eZ6yFwlyO/Ip4JWLJdC/c3/1/g2leWc/8ZPQmoEp/PbeC7JU3UNCQ5bWwZBw4qRMRkh5pqdywMKVWDBZBCll0cM2CDn5/WN3Pwn+bywNk9OWJkEZ2Ls1g1M5/dbFSrTM8KGb+1J9m8iZne5GxgqKPS3rF3lldwW7KT3s35a1o54Ddz+dOZPRjdJY8RPXLsDHcxJ/20P+ufk2ZYJCSkiIWhC6bPTrByg0leIMCnSzaCZLFkSzOLN7Uy+5lR5Oc49l3ZpRO7ncFNjy/nsQnVBDWJF28dwFMf1DB3eQu/P7U75x9Ugdoq8+mCLdz4+gpM4E8X92TciEJyQjJL1sV49bONvPBRDSFVJjeoslePQoZ1i7DX4FzuensNMcPi7mN7MHZEHqJeAefZlIICAoK6hM6o62ey96A8nr2+fzodPkNMUzB/TZSEbqEbgrICjb5dwtkbyxCNmzz5YQ13vbqaZy7ty7HlvdlQL7j7X8t4e8k6vv7mG0aNGvXzb+B/oLgxKRv/eMBOi0mp+N2X25WC+KqrrmLChAlMnjyZnj17ettjsRgFBQW8++67HHXUUd72iy66iHXr1vHJJ5/wxRdfcNBBB7Fly5Y0b8rw4cM5/vjjueuuu372Oe2I/Nt6UhKJBCeeeCKHH344jw1ew1nPN/CHj1dz+2E9kdQkazcn2H9EQRvFwzAFg6+Y4fZC98oQkgS7D8jj+U82cP4Rldz/1jpMU3DCPqVccEwnkGDqkmYs07INlIpv4rFAYFctRwh0y+L1L2t58dYBqYVGQN2WJM9/WMOsBa1s2KSwf/eRBDf3ZJOl0K9EZXhlN5LNGtWtJkV5dQQjUYSQKKrYgDBlpszrwgdLV1PdtJay/J6cMngkq6oThNU4pYW1nmKQbIwQ6taEWCRR0HMDUr5FEaQy5SRBqjaRIngLttRqKw6SmzgAIAiSIbCSMiKq0CnkFI0KmfQpiXD4bla6xVrAhQdW8No3m7hi/BIimkJhWKNfZZhJi+oZ1iPCgUOLuHi/TshOALy9X8pCbCVkhOGkFXYAhUfJcts7VekVTUcJ6Tb/1ZRtb4gvm5enVAjJjqPx9Td5cRP9ynJYsyXO09PWcsqwToRVlRd/WM/Vh3fm5N3LGFJlZ7yIBBQOGlbojLEdr4cztBW1cVZuSpAbkTn9ufncdkJXzhtXwbUvrWBTU4Iv7xxKSb6WfSHPRlHJdqxM6ahS0J5XJNODkq3Njh5zWwpFtt8z18uO0Mr8/Wwv3Sub96W9Nbs95fLfxYyTBWQdOqyIhGExY00ze/TM92qBuCBeJJzAeVMg5xlYTTbgICDsLFdusLspYcVVJM2pZxQ2kSwJyaVxSoJggU0ts+Kq/d5KAmtzwKZ7tjpBxZJvfG68iEUKrLiUNESa08v1dHu0sMyLni12Q2Rsz3xOgOaEyXfLmvjH1E0cMLiQa4/uQmFYtWvGxORUvJ0ppTy1jgdamDKiVbLBnEMlG9kzhwMGF/DrZ+z0rfqb+2zlhkEbsJYp20u5cp/djhowdiaoULZ20B2QbPbRnTTewd1yuPHELtz9z9WcsHspXeYHWbI+xoDSXK47ojNyjrMWOtQus16z6cV5CdSwxNh9Q4x1YpiOPqArIiZjyRZ73TeTJz6o4ZYzurVzTnDmoRW88PEG4kmL9yZv5sMHh/Le15u57emV/P3jau46uzvHDi1mZv9RPDethiseXkptg05BjsLHfx7GvZf04o8X9+KdyZv49QOL+XF9A4eNLeCCp5fw8tlD6NFZ5ZUfNjJ5VQNXDxlCqHMTlNnP7sxVLdzywkrOO6icl76o5bi75vPcDf3p6hR69b8jT3xYzZ//uZaGVpPckIyqSGxq1BncPYczDizntHFlVBa66bvtP5GQwvUnVzGoe4TT7llIr/vDjB6Zx3NjKhj0jsnxxx/PTz/9RFlZ27iX/xnZyXSvDjUVgquuuop3332Xr776Kg2gAOi6jq7ryHL6C6YoCpZlPxSjRo1C0zQ+//xzzyNWU1PDvHnz+POf//wzT2bH5d8WpFx77bU0NjZS1ToJs7yKkl4mLZujfDK/mQ/XLMYUIn2Oc679i59vBODe83rw6U/1HDCskGjS5G/vrmftpgTVdUnOPaySPQan+MQbtyRZXh1nWW2CpoTFiD5OEUeHkmBn+hCIiIwsBH2qwpQXaRiWwLIE97y8hkSLyfG9Knl/QzMXje7FuoYtdB4cx6jNJ1AQo7mmlIaWIgxLoaGlGKm1iMZ4hJVNgo8XTyUg13PCwO4MruhEUecNKPnfQ0hAEK8AmoRJSG4ECwr3rrbH2EBKMUliL6YadvE2lyvu0i7izsRsSIiojNBlzIStcChOUChgx65k4S9LqsRZ48o5a79yUOCb+Y0kTIsnz+8DuowVU7GaFVsnkbALNgKyamEZMrJq2SmANSOta7fwI8LO7CUFdXv/pGoXapTseBx/wTZU976QYg3pMo98vRrDgDdn1dAcs7jjgGHUtkZ54rufmPKH4Qzq4mYhybJAbk1hkKAhZlCaq3H+U0vIDclcZoMrgwABAABJREFUc3RngkGF8Tc4ueL9xewyFeltxZR0VH5pS6ZfOkLD2poCv61Ygo4eLxNUtEct+6XEr3T/X8fFZDsv9/iSQJEluhYH2dCYdIo0Ou9JQrbpXJJlp/I2ZESzbAOVVsUOtDYlhJ4yAMghAzSBlGvZinuTbVBQcxLpMRoCp36RbFemB8yYhhq0IOLMP9m8B+7uaQA9ZRASgOTPAOa/AJnXPJOymO3eyPDI+b2YOLOee8/oSVGuatPZ3AK3W/NkOHF1UsCitl7nz2+t5dM59QgBi2tiAIztl9f2HLONqz16V1bQ0sHJQCGNgowQqb+Z/WRckx16nn/uvJOt/46c644SPWS4+vgujP96E41xg2uO6UynSJCv5zXyl0lruem4Kvs5Ne3nWilO2u9Dq4wUF1AobOqiChTC2ppWpsxsYlFNlIOHZxhHM+7/iD65vH33YA65YQ6vTqrlwav7cMJ+ZRy1ZwnPfFDD1U8u587c1Ry3ewnDuuSw4r49SOYa7PXbOex1xUyuP62Ksw6r5JQDyjlibAkn/24eM2taOGK3ItSgID8Q4LITOnHP62v5zZczKQoGWLM5QXGeytC+IbY0GYTCCnOfHMW5f15Mr3N+oLxQ4+yDK+hVGaIsX6OmPsnvXlzFi1f348hBxShxu8hrk5Hk3embGf/9Rn7z3ErGDSvg0N2KOGBEIcN65rBmU4JNjTpdy4OUF2rc9MwKRpTlEYvKHD6ghFFFmzn99NP59NNPUdV/W/XyFxU3ZfvO6KejcsUVVzB+/Hjee+898vLyvBiSgoICwuEw+fn5jBs3jptuuolwOEz37t35+uuvefnll3nooYe8thdeeCE33HADJSUlFBcXc+ONNzJ06NCt0sF+afm3pHu99NJLXHfddYwePZrfHraRCd/VMWZQHsPLInz4fgFXHqyy5xPfcuMpVZx5QCpHt2EKhl02g6XVcR66tBd/m1DNkXsWc8sZ3djYmCAnqBAOKHSp8KUcdigHn8+oxzIFr3y2kVd/N9D+zXR+1ySEKiEZgrghePzd9Wxu1GlsNogmTPYdWkDjBp3aaji4fwlG1ziRoMLjE9bz+llD2Ly8K6FQFF0PoGlJVm+GO79aREiNUJ4T5FcjwozeLWmnBs0hZXVz6GVtJNNyGBOp6vY6NoUr1wE4AC2kFU8TLbI9IVsp6pWkWSlwYmEnAfBXr/dVfkbGdjFHbaun1arYSkpu0u4DEAnZq75rJm1gkoyGMU2VcH6T3caUEUJCViwk2QJZoISc+icCu3J2yCRpWbzz0yaenVzD4cOKuenoKtv7EpewohqWCZ8u3sR7szdz0vBK9utShZ4MIkkW8zdt5tbP5tCvW4CnL+tAKuls84JD9br2hRV88lM9J44u5cGJ62h4dU9y3KxKmYpINjqGe+zt5YJnk45y17fVrqOc8UzZ1qzRkX46MvPsCBj4v6B27YxZc0fGmUl3EhK73zGTW47syonDyu24E8UG9cKUEDHFiekQyCWG/ZyZ2Ip6axYPZb7lGQBEg4zZHMDSFWTV8jyibnIMK6lgxAIIS0YNJlEL40ghm3LiFW50aV6SD4xIgJrxwPs9I5bIHqbj0sGszG2+v/5U8G329V03fxV7SCXHcONskhJSSPDm97Wc+fjitKGuf3538kJKOo0m23vWXgB7JoDIEH8pmB3RdX7Ofu2NZUdlu7Jy74x3NQOk1WxJMvaamdx/fk9OH1PGDyuambakiasP65L+/ulgNWp22m43dksVkANLa+MMumQ6I/rkctZhFVx9skMxt9o/uW/nN3HA1bMA6F4R5PU7BzF6QD5ChnjC4rXPNjJ9YROf/VBPny4hLj6sE4cPK+SHlS289PlGJkytY2ivHG4+sxudigMcesNsfvj7SJ6dUEPAlFlVH6drQYizjy+nMF/liyn1vPT1RpbUxOjbNUI0bjLlkRHsf/1spi1q9sZ1yIhC6loMmloN7j23B8ePKPUMfaJZQW8MEejciojLrGuMM2HRZr6Y28DXcxuJJe0bVJynsqlR58wDy3n67D6wKYdkTOXjhZv46zerqZbDnHHGGdx777074Yb+54hL99rwh4N2Gt2r8o5JHaJ7tRcz8sILL3DeeecBdmD8rbfeymeffcaWLVvo3r07l1xyCdddd523fzwe56abbmL8+PFpxRwzM4z9X8q/HUiZNWsW++yzD2+99RaPXHc2/7xyAOGeElaeYsdY1Jms2RCn95XTAUh+uA+SJGFZgoseWcL0ZS0M6BahocXgxH1LOfWAMoryNYTmzEa+05UyJsV40uL2Z1bwwBUZqfssAbqwYzlMEPkyW2IGD72+llUb4pwyuIRP59ez79gijtqnhOc+3MDy1VHO2becUWoZH32fx+fLlxE1bNpYcyLJHfvvQeeCJOGcFsJdGiFHQISUBTGbRSybZFp03IXctapFgRzJzjoWJxVUKbABTVJKARxs2oMUstIzkzlKjRt8iGXTrVz+thT2XUjLoU44wYlWUrErPFsSRkvQC2L3ijG698JX9dktbChkwfuzNvObf65ElqEsP8CazXFWPrK7nVY5KTG/toWHP1nHkYNLObJXFZJQMJMBNrcmeG3ecu7/chkXHlDJrSd1pSy/bd74NtexnW1fzWvgtAcWMe223dA0iZ43fU/8rb1RVCkFKLPJjiy8/5fekmyyPWPeVtudCUR2dKbamUDl53pStvccsh3HB1SEBYWXfMfk3w5nePdcGyBEsGsibVYcb7BAyrNso0JI2GnSnWrt/ncaGaRC54CtEigCvSZMtL4QWTYJ5kRtr4pmGxQwJRrWVBLObUZYMuHujRB0lX3S41BkXxyKLGXxMDhfLJEyDpGucHtxK5ACKx7o8P312viuoX9fSN1D1wvtAhScbU4WQe1MO/h0WI8cjtu9mJP2LmVw95zs98rftwvMtgJC0vfZTjTwS4Fw9/783D46IP9XAObhd9bxxawGPrhxMEIWXPrkMh47rzeaJHvGLiQHoDuGPtGkePV01m6J0feWH9kwYS8KMmqPSA6oThNZojVmUn7stxy4WyH7Dyrg7tfX8M3jIxnisjQcaWo1eOiNtbz79WawBC9f258RRbnc9+Va7nhlNQBFeSqDe+YQT1i8c9tAbn92Ffef0ouSIpVvVzdx2oML2Vivo8hw7UlVdKsIcf/rq+lcGmL64ma6lQfRFInlNXEWPDmKvqVh+91rkhAxJx5UV1IFYPMcvcF9UAOCZJ3EirUmVfkRggEJQxdY8VySySDh3GY7M2BIZ0uD4IoJ8/jX8jgvv/wyxx9//I7fuP8w8UDKnQfvPJBy57+2Kyblv1H+rfxxTU1NnHjiidx4441UP3MHY6tKCBgBhGKnrhAyLG1OsP9tsxneK4dRffNsBCjDJ9PreWVSLRceVckT1/cDWUJorrVM+BYLyZvwhK/Ct2TB4nVRqipDqZgUACHsiUi1KztIcYEUFzTW66ypjiOZgq+WNLKyNk5kViNzZjdz5tDOXDJyGD8uq+Hc79YxqKwTV+0xgh5dNqOEdJBNZG2N470QUCTaKrpbAyc+Jclb8BRnQVfsc7QXdClVuEz49ks6f3XJztITEl5hREkWqWwh3kJOir8usOshmHbGIEL2fkKXvEXfLeooyQI5YDrWSQechHQPnAhdsWkmuYYdwOsCJ2B9Q4LznljCgvVR7jq1OwvXR3n+y4386dQefDyjge+WNfLN4kb6VIb52+l9CUdkRDLBho1w3Qc/MmH2Jnbrkctntw9lj/55W1/UO+DZmLywkcNGFNGjKMy8ta0ENckGKO4b1N79krOsxH56xr+j+KkkP1c6otRvizaWrc/tEbf/TOv69orf8rq9QNId89ZueXvULv/+GSJJEnv0zuOPH6zhzasHOKnQne4MORU4H8CeIFTsOSFOOkAxnWeyWYJ8YQcR5wmUsE6EBpSwbgfHK8KeN5ISyfoIoUgrsmrSVFdE2Gi0vbfumJ05RyikgIkX79fe++LcJOd34SqBsoSwRCrzomPI8K7N1ryXkL2yvYztMXFqy3jt3LpOCtx0fBUL1rYy4fbBHadqybQFIu2eb/bNHfasthfj5f6/vbItgNKR97m9PjKU+fa8NFnBS7br1MF54LDRRfz+1dU0SQb5ksrAbmGWt8YZUBUB00nNHSFF7QakHNNbH2esamFQ14gNUDLmbCE78aoZkhNWWPPWngw//0fOOayS8w+s4A/PreLNe4ek9ZGfq3HnRb24/fye/O6p5ex36xyOGFVERSRAny4h+nWLMHHqFmYva+HQMcX0v3g6BwwroLHRpEgKkR9U2FhvL5qmBX/55zoS/9qXk/Yv5dK/LAHg+D1KOGp0MXnFGn06hbDWaMgRA0LCzpyJiYzuFXomjj1ftGInFGiWUYVC71K7wDSWQAuAYeqEVANhyciqjt4SojBH56ZDuhE3V3LOOecwa9YsevXq1bEb9V8iQmwfVWtr/eySfzOQcuWVV9LU1MSEZx/g+P7dKc0Lsr45yrOvVFNSqHH8vqUcfetczj64nPsvSn/w19fZlZBPP6wSEbRnNKFIXprLNGucF8SQ8loIGYb2yeWZD2rYUJ+g0q0QbEkI1eZKR1tN7nphNXqTjNBV+kVK+HFdK6GcXHbL78RxlZ3R1QYWrzB4p6aaeRvrefCw/agor0bLqUYpS9gvf2ZNlm0pupmSpiz5LJBge3vcivYu9cuyDySSEq3rSjAMDdO0D6ooBoFgnHDnBtuDIpMCIy4FwnTiQAK+t8ZPjYi7bhicQHjnvJwUnCJhZwhSQobtXUmoSLJIByianTlkxvIWquuT3PTKSg4eWsjbtwykuj7JZc8u46ZjqvjjhDXkhhT26pfP8J4RHv98A+GAzKNn9AUhcetn86lPJln+9zFUVQS3HZjaDr3LLwLBpDmNnDa2FClk8d68TRw8uMjxSmW3lm79AFvb7jtuBu1jRwuapz/7HRX3udpGs20Bmu1R5jsKPnbE09QRkJBN/KfW0eN2FAhnts0cW+ax/efgGR0Er185kK5Xf8+KzXF6d7Yz84h8GblSR9TZldOlpOMdjWMbHZJyysPgy2aFJuzkG3mW7TGVBWp+ws4OpkuQkLygci0/jtESJNGSg2GptsHDEOnn67DEhN9CL0t2ynYpNf+mXytfP4rvwrhAxTv3DKDitc+4rv5YMfc3//8BkSqoCyQti8c+rWbC91voUhKgvCjQln7rTnnZqFl+Jb0j802m/FxPxtakg16ONuLutr0gPc17tWPgpd15q4Nj6FQUIKlb1EcN8ktV1jckmb26lQE9cxzwKlJUaZnUs6AJJEvQs2eQNZsTGKZA9dEU7UQ0ApFJXXSkuEjjz1f05obHlvPu7QPZ87rZTF/YxOhBBW3aKorEvZf34cYzu3PSb+by3vd1hAMyhim497JedC4NcvrB5Xwzu4ETfjOPv3daz4Mn92SIlscndw7h8Dvn0bNziH/9dQSSIlNeEuTNOwdRdPS3DO+TywF7FNm6gQxSvhMTapLm0ZRyLPsauPfMM3BKjoHRsGPbnKQZWm4cIxrAMu0sgG5B51Hd8plw6TDOfnkhZ5xxBt988w2athUWwy7ZJVuRfxuQMn78eCZOnMixxx5L582TqG9qZu6aOOv0MHrIYm5tnAfGr+H4vUv504U920xkM5a20KMyyKjB+fZkqFtIsoRQJIQseROhsAQokm+hS5meJFni9ot68pfX1nD/VS7lS9iLoSV46OX1VFr5nDt2JEkjQEwPcc5gC8NSmLc5yfuLV1CZEyASqGD6+nn8/sAjaErKdCtptTPfhLCrLu+o+Kzv3vlbAqnBoaE1KVgJxa6gnlTTVk5JNTHjAaq3dEGRTEwnejWoJAkkksSiuQSDMXKq6ux+DZBCpBYQF5T4Cl2JpOxl2UplkxLpC7EAS1c874qVVJFUEzloIkUsD6DMX9PKafcvojFqUFagccOxXbj66M4sWBdlxHUzAXjr+008dlFvjhtTgiRJ1NQneWXKJkY7LnTdtBj/fS1HjyqmqjLYMevbtrwoMvz9gxpWb4xz6shyvlvexN0frOazO4akZbvxP487yglPH5ev74y/nnj3RsqufGRs3yGeeodiX7bRcZons70+6HiczY5c21/C8+FK5qXf2rG29fxlAy2ZCqJ7DZw5rCRPZWCXCFOXNtO7SxgUyTbUFIIUszBqQ8hx01Y6ZOysVuB5PSU3nbcppazJIaBBwoxpKAVJ24Dh1ESxa68IG6C0RojFcwgHo1hRDVnS7bZuGmKXkuXOey5AScsUJbWlqcoZk4hL52oPqPi9N5nXKtP67/MQI0hZAJx9ck79joNHFPLdoiYAFjw5Ko2+JSTwB/z7D9vm3vmlA+BD/MJUz2xW/22KJbbvndsasM8K4DM631HQ0o5oAZlQQGZzk0H3ThJ3nt+Dax5bzoG7FVFaFPBYCOgi3WjojH1Q9wjdK0Kc8rv5jL97kB2LZNn3SkJqa1z0ge7TDy7n9c9r2fO62QDMWNySFaS4xyop0Pj4keGc/8eF/LigicYWk8kzGpjw4DAA9h1RxJSnduO4m+eyeH2MFy7py0Fjilj0zCgGXDyDu59bydO32IlcVE3mvkt6cf3Ty/lpZQuPXNwboWCnKk5iv+++WFVyRPp3DZsOrmBTRnULN2kGskDSLAIR3TNCygG3VIBAGDJ/PLInez+2nD/84Q/cfffd23fT/pPl/0N2r/9m+f/Nfgdg5cqVXHbZZTz//PNcM2gWTTEDNSj4+697c8XhnVi1Ns6739bx0OV9ePSK3siq7NAHUh9JhtLCAIGAo5QbAilmIkdNHw869XGfI6HYQMbdVlYWZOTAPP704ioMw7Emxi2kBoub9u/BktoYkdwm8nMbiARamLV5LgG1kS75JRzRf0/27D6acGQAC+s28+P6Nfw/9s46TI4q+/ufe6uqZVwyyWTibkRJAiTB3VncfXFYdJHFfXF31wUWWFhgcfcAIe7uMsn4tFXd949b1TbdMz3JsPJ7Oc9T6Uz39ap763yPrgwVE652bZg3BxJq3WHi4HP/L0IKsUHBCkFsRZDQ4iLqV3SiYV05oZpCGmpKaK4rItyYR6QpSKi2kPraUiKOSUyZKARh26IpFiAc87O8tivLq3sQWluEciN1xRO7Jdtre8PyzLtAMz+eNMbQmZmF5WjeI2yiHJHIfC0URmEUUWJr534fIODGV5Yzum8BSx4bzy93juFPB3RDSIFlSI7dsTM/3DqKOfeN5aAJnRCGzn+y/19nMrZvASfs0EXnVPHDz9eN5qOpm5i2pFGPKf2SSZeR4fe0Mj/Or+fK55bw4lmD+XlRPfveMYN7T+3HjuNLE89Q+jsqWaK62VfS2me9ksom1zVFitR6s66kubR2tT1G9Eu8tSuXNjb38ijTfU6+ksvlOp72tp2t3Uy/J1N6OzLpe/fv8/boxsUvLGLJxpC+L7bSz3eRzp7uNJgQ1nWEUHHhgpBK71/X3DOeFC4Cdp1PCztA79OgdshH6HqxkB/HMRAoAvkNCe7Rk85me8emOI4nPcPe90K0ZNaT/046v1OeL6/f5P6T19MktYyXsykJvISU/mPpuhBH7ViBIWFAdxf4Ga523vQYN1rea0O47ae9b0w9p7au+Pp0xJXclku5jKHl2ud+Xug+W14iqhJgMduzn62/NMp4BrVCBUGDU/aq5I/3zueLmbXkBQ0O3bGCnxc06DGYrmm4nySrhsTlsyTvXTuMD3/YyDc/1yQaNtx66ZR0D4SUvHHLVjxx+SBmvjie0//QLWmeGdZBQjBo8MAlA1mxPsKmhhj9qwIp5Qf3yufHJ8dSVGQy7i+/8u2sOvp1CnL3qX3526frOf7GWcxb3oQQgnMO7c7rN27Fm19tQAXc9bRwk666gltP+NAsUvdN/BFyhaCxRGoB4XMQQQfRyUGWRzFKwphlYYwyHTxHGIrenf08dVglt99+O1999VXbN+p3+p0y0H9ck2LbNscddxxHH300+9TfDlX53HnIAJywgXRsRLHD1MWNXHFMTw7bMSn2dtLGfv7Dtbz51Qa+f2YcNQ0xpsyqZ82aENPnNjCpXxEHHlKJ8iKxZJFmJbPgR+xZyffTazn7r3PZf5tyDhhWiqo2eGL6cg47qIDg1rU0Lbf5y6M/EY46/Fio2GVgf0KOQbNjke+TPLzfYTz207ecXDGK9Ruq6NGzrvWFSD6o0qVNTtJno9aYqJikfnUnIhE/phklGvNhSJtgsBEzEMYKhADNTNhRk1BTPvXhAixpE7E1SAnZVlxy4pMxTGlTU9OJcl8UJ2YggzGEl405w4KJoKNNvbwcAxA/4IRQqIjADlk670lhFBUTmKXRRASzJBrWM49XvlrPc1+s5aRdKgGYvKCebmU+nj5vYIu1uubVpUxd0sh1B/di3aYIr/6wgTnLmynNMxnbr4BPptUwol8GB9dMzF6G+6CU4vlP13Hx44u59pCe9O7iZ/Bff+aJ8wZwxC6dE3b2rdGWigDSGWGV9Jn+e2tM3WZRDm9/XM1ka614Eu/WKNfsvLloZOJtup/tLQ/Zp765GpP09lprJ9O40828vN+TNCon7NCZn5fUc+DNs3jnhmF07xbUTHRAYHYJEVlegBW0ddQiz2neNeeIR/ULC1SjgSiyUY2SaEMAacV0HYf428JptFCOwF/ciBmKIBu106xRGE2EIPaYeNdpPuM6xOeX+RlSkoTZl8c4xddMuIEDXD+VdBOu5PVJ7t/7v+dnZ6iEAEbAfe+uBGD+qhDzV4U4cNsyF6Akg6BUpr8FZToXNsf/bEv2sJPWZ679u8KwXDQ6KYFnMs05+b66oX5blMvUTwttY1KdDM9KLkDlllP7cNnjizn02lncdnpfDp7UiQsfWUjfbkEGetE+DZH0HLn9uO/HtXXaMX3n4SUtx51tDu4zaJqS4/bumnVsNfVRtj3lZ/ICBqUFJis3hFm2JhRXKu68TVmL/oqLTF64figPvraS/a+dwVd3juSc3arYZlAhEy6Zyt8+Wc/s58fRryrIkN55bKyPcf6DC7nmqB6UFvu0qZqloFH73CoETr2BLIol9o5E+5+GJHa9a/4uFMoGw3S0H4+bn02UO3EzdtHgIBq13+oegztxxtbNHHXUUcycOZPi4gxapP9j9J8IQfx/mbaYldlSuvfee1mxYgV/3XYqBNGRZwwtbcdQ1G1QLK4OsaEuRkPYTkgeXMQfcxRXP7WYe84fwAc/bOSmJ5cQsxVDK4P89ag+hBoUV9y7gCnTa0kJZJYupUmS3DgSvptWy8E7dGLOokbIEzw8dyWBoGTwiCKuemEJZzw7n5OHb0uRL59RXQspNMMs2biO+RtWoyLL+XjhzxwxfAw98jbRtftSvYFj6MM6WTPikZN0QaJMDC3dbARnhcm6KX14//tdmDt7OLWNJdjKQClBwN+E39+sDxFHuGFCdWhfwxfFNKOsaS5FoDDct0vAiBI0ItjuG8kQNlHbYvmKvjTWlaAihn6R20mXO0ZR4CR8UdwcCsJUCEtLaZWbg8EsCGOWhnAaTR0kIEDCJydJivSnA6vYdnARf3l+KUvWhTj89tnsetV0RvzpF/787GI+mLIpsVYCTtylCwDXvLGUiddPpUe5n/uPHsD1B/Vhv9HlfDO7NrsE3CQhVU26apptEIJl68Psd80srnx2KU+eN4AL9urOO79sZNzAAo7YrbOWniVH9WpN0p5BqrhZF2mfv+VFG/NKnl8b0tUO0cS0R8LslculzXRGo60yuaxba+211k56vfS2kutm+l7CXcf0pVuJj+ueXRrPN6J8AkoFRjCiGfMmqfefX2mJp+VqXHxoc48k0ylp2ph5EVRYEA/vGxXIvCjSsqlb24nGWs10SMsmsj5PRxATaKBiJWkfJMRNvdIp3YdDkriX3rOk0GdPTOkriZFN0agkvx/S96B35Lr+esJS2uTUC5dswSWHdeee0/vG2z517666fRdwpWtEcnomDdH689XWc5dtrVqjze0nl/3lUns0MCrf0CZ/re2ZTGPPNP8sGpbWyDIld57Zj8cuGMAVTywi4JPsN6Gc5etCKe9dlSdx8g09XhPXf0vxr8kbCUcVy+ojuXUokz7TrhUbQsxa0qgtNYCifFP7zNRFGVAZ4ME/DWDuXWMpyTc4ePtOjNuqKOOchRCcc3h3zj60OwddP4tVNWGKkiIpXPn4YrChU5mP7x8fw9xlTQw/7Wd+ml+v92RAaIFhvkLkO8iSGCoi9RkRI5Eg2hYI00YYDtKykX7tm0K9QFUb4AcVFKg8iQpKVIVE9RKIcoeIY3PdHv3JjzZy8cUXt+ue/a9SPFF1B1y/E//ZEMQLFixg+PDhXHrppVw5/BN9UNTriBp6c0C0zuLFVcu47x+rGDe4kJv/2IfyYov6phgzljTx5pcbePb9NRyzVyX771zBTiOKkUtj2mHcp9WUCxZEeWvpWip7Bjlyv6qWjsQxB6SgrsnmtmeWUNcYY4dxZfw0s5amZpumJpvGRptA0MCyFTef3JvArHIWrc7nySnTmNhzFP+Ys5BuRUUU+Uxmr1/Litr1PH7gAdgqSP+q+fhLGpH5MR3ez0fC6dojL6SmJHFohoBmQaw6QM3azqxvLAdgdXMxPmnTt2g1UjqsayxHCgefjFESrKWopBozEE00bQuizQHsmIlSgmjUrz9ti6htYQgbxz1Va0KFVBWtZV1DJ3qUL8df1ICZHwHTNRHxq0RksIiM+5qghE5+ZiodESQkcJpNjE46SVZ0XUBHCOqZJKnxyP3/zwsaOPSWWazaFOHYHTtz8+G9+WJ+LZc9t4ThvfJ468phKXWq66NU18UYcf7PrHp0G8qCFqre4B+/bODmj5Yw+b7Rib5SGL2Wm//JD9dwzgMLOO/AKh7/1xoO3aETtx3Th+KQD3wOu94yjX0nlHHhUT0TTFCu9Fs6wv4WlKtzbVvF2nKE7+hQpe2J+pXLsZdLe22Vaa2bTHXTy2fYJy3KOYm/v5pVy4F3z2LuI2OpKLJwKkxwQK6L0TS9nLxh1QnmQ5JgRizifhqqUbp25gZmSVifWckR0qKgNho0ryvG9EdorC2muGodTtTAKIjoZJBeEloL7VjslwmmXqmUKF/xoBCeWa6j4j4qwkELdtwoX8nPQsaAEPGy7ng9G3tBwlHYC73uEPeJ01G9vLICa19tntL07iRMv9QAJRk8JVM2QNGi3H/ROdBeB/o2n/PM7aWH+W+z//bul3aSsh36Hvcjh+1QgULxy4JGJo0u4eAdKxg+pFC7VDbbiDonbvo4c3Uj2/15Ks9dO5T9J5VnzEmhlKKmPsamep2DJC9gUF0b5aanl9DYbFNSaHH4bp2ZtqCBh19fiRDQszLAQTt0YushRfTrFuDRN1fx+mfrCZiCPbYuY/L8emKOYsqL47PmwcBNKH36rXP5cWYdr102mOFn/kLnUotZL29DYYGZAGCOw/1vrOT6J5bw6pVD2G1oieYxGvW7XOQ5UKBQGyQ4QptkC6BZEF7nh4IQ/t5a8CCqFZQIHBNUQCJdocjylc2888NGGkI2s5c1aYtT02TDWod/zKnl7bff/o8mBvwtyQtBvPIve1IU2PJAAXWhKN1u+uD/+xDE/zGQ4jgOu+yyC47j8OCDDzJk3lkQAmeThfDb2vYZoAiIwczpzRzw8AyWrQtTUmBS0xCjsszHVv3yuf70Poztng/LhHYK64zL5CvUWm2+YFebnPH2bM44oSeD+uUT8Ou8KwAi6qAEnHvHPC45sTc9KwPxlydAfWOMjbVR+nTy6wNsvUN0eZBPf+3FRR+8R0mwiOJAPn7TwhAwuEt/ygImyzYu4/hRY+hWuBbbMTCkTcDfRH7FJowuEa05gkT2dM+cq1lSv7iCjfWdqI/k0WT7sZUgz4iQZ4ZRCKRw8BsRhFDYjpaeCBRBXzMF+XVYec0IU2tTAG17jnZidyIm4cY8olEfMdsiHPOT52vCMGI0hfIpKa4mFtURwHy+MIHSeoRlJ5xUHR3FQ1guB6CEDitsaemsatbZ7IXlYDf4MAoi+tArtbWKOOMDoT+aQzarq6Osqg5z3pMLmbGsiZ6d/FxxaA9O3qMyAQ4U/LSgnh0vn0aXYh+f/GU4fboEICJ44pM1vPzzWj65fUQqU5GFmfhudh17XT6dk/eq5JOfN3HHgQPYY0wxdr2FMB2e+Gk5t/xzOT8/tjWlJdYWMRu/tWNsR1BWxiKZcmFythTE5NjPb5Jvoa1jcXMBTLZm08vmAlbSgYpLB90xkz5dAtx9aj9UiUTl6fNB1sao/aqS4kFrUN3cZziWAAYqKMGSyE0xaHQb9/IlhdxPSUpOEhWS2LU+lCOwwxZmMIL02TpqX5GCgGu3b6BzVUkSId7NpM3gqBSQImyltUEe6PDKpDmsx+cuQYST/PaSTWQ9B/mw+13MRUXSnZ8nNPJICJ76aA2n3zOf2c+No1+3oAZabUXya8e58O+05NjcqIA57fFs+6A9oKW1fn4D0HLry8v4+OdNrK2JsvPWJdTUx/jX99V89ujWbFUZ4LE3VvHIu6uwpNb8bGyIMaRXHm/dNTIxLKX4ckoNj7+1ijlLmli8KkRDs41hQEmBSUOzjUBwyXE9GdAlwNzVzbz3dTWhqMMzlw9meO98Rp36E/OWN7PruFLeu3cUANGYwyeTN/HZT5t46u1V1DXaLHhtG7p3T7w4M91P21acdtNs3vpyA4VBg1XVEb64byTbjilNKqSFAy9+sJZzbp/LgB55KODAcWWcNbo7H8+o4bYvl5KXbzCxbyHnjxxI16FRVJ3klveWccu/ljFpVDGNzTYThxXT3GQTiTqIgMSSAlspiossjtqnK4WFJl/+tJFunQNsv3UpMuJw3Tvb8dJLLzF9+nQKCgpaTuJ/nOIg5Yq9Og6k3Pz+7yDlPwVSHn74YW677Tb23Xdf7hg9FTMIqkEztzJox6XxKiq1k2ajD7MgwoY1Jss7b6RbJz9doiaxtQH9UuwUTYT3tYEaARVKJyVy1azzNjbz52eWcOO5/RnSO0+DlJDNzMVNPPL2Kg7epTM7b12qJXgxhVjtoJokoodCWQJR6xCZn8+388Yxa/VsPli4gD8M7ka/sl6YZjFSaN+OAquZRbUB3pjxNX8ctyO2kpT4GpHCodDfQNDfhGlGsfKa8XVtQoUEmxZVEYoEWd3YCVtJgi4ACdsWEccgpgzqYj7KrGaCRhRbSXwyhq1kvHzADOtoXWYEny9MsKgunilaSNcMTCqcmCRSn09jUyEABQW1OLZBJOKnrrmYbt0WxwGOl+dERQzskBs62HDc31UcjKDQzrcSrWWxhf7eFloLk+dowJlMEbQkN4Z+4eRBFIenPlrLpc8u5poje3HkDhV0LXM5JY9BcF9O703eyOXPLeHXW0br/BDu9wfePpMJw4q49OieKUxFJsZg1aYI2509hUsO6M452/RA2QIZtHGaTGR3LUrrcfIPPPCnARywfae4yUryy7ZdwOO/PUdKDsdBmyDm3wVgcu2LHBm19ChQmWhzwUtWZq6VcpujVUFHytv2yql8d9tIthpcgJMnUXkmOIroh0ECw2tRBVKDh2Sn6qCBiDrIFdFE+HLPod4mYe4J2jQsAkQFTrOBsJyUsxvDNe0MgPJJ1/TLAyeuAMiUGbLKu4IjWyHCjv5b4foLqIQ2JzlynQuaRDKg8Uxl41HBSIRXDbvjCKpUgJIGQg67YRYjBhRw5Ym9U0zW2qIOBSDePJM/k2lzQwpnoTb3SWv9/acASy5nRaYz2n2OlISbnl3K/a+t4I8HVvHQ6yt54KKB5AUlAoFhwoj+BfRwfVdsW3Hlo4t46u3V/PGgKrYZWEC/igC9OvkpyDcQStBUH6NBOXQOWu5+EBBV3PH2SnYbU8LI/oXUhG2uf3YJK9eHefnmrVpoS5rDNp/+tIm9ti1HZglznH6/vptey10vLOPtrzZw9wX9OeuQ7hnWQjBtfgNL14YIRR2e/McqfpxeS1m+Ra+ufk47qgcvvLOaH6bXsWu/MjaEwvyyrIHrT+uDMgQX3TWfY/buQs9yP9ed2DseTdCLeieiDsqSHHzRNF66cShBn4GdZ+II2OfcMCNGjOD+++/P4ab9b5EHUlZcvneHgZTut/zrd5DynwApq1evZvDgwbx0Y1/mTK2lnz+ffYeXawdO16lTRd3QmIWu+dAGiWo2aFpXgr+gUZsOlUShEK2ud5k/5dOnkVipoNx9acUAA+rDMf70xEKeuGooGIIHXl/JwmVNDKwMcOzOnSkOGTgbLWShNkmKbfATbQzgK2rCKI0SWl7I1KUjALj32/e4aZdtqQ6XEHEMfNKmIlBDnq+JWRt7s7qxiWemfEfvks7sP6APXfJ92ErSGLPIN6MUms0AOK5qwFGSqGNgK4kU2m/EVhKBwpI2AkVM6Ug60j2ZHCXi31nSxhQ2MWXgKEG+FSLfasI0YjSE85FCEbEtyvM3xjUmDZF8fEaU0oKNWL4wsahFLGZRXLkeYTg4UQNpaZWvsoUbSlhi5kd0kjgJqslABGytLvaAUMAFMBGhtS5RiewcbalFsd3LDfz13tSNnP/kQnyW5PaT+rD3+LJWn6O3v6vm6heW8uvdY1AbJSLfYW19hL7nTObXB8YwoFdenGGobojx45x6Zi5pZOaSRhatCjGkVx5TFzYwpFseT504ABpNncPFdFAxidEvzK9LGphw4VRmPDOW3j3yEkxdpm3z73aO7SjqKO0CHQBgOtq0KxfH/o7oL9vaZGTEMtVvpUyuYCWp7A1/X8azX67l64dG06XUh11iIRQYsyLggOoKdicfypQYdVFkvU2siw8ZshENNmItGqBERCLRasTNzm0LhN/RzFcM7HoLWRAjtKoIf1kDsjSm97pFIgKSZy6VFEkxOdIiJJl8obXbIqoQIT1BL+dVsl9LPNu3AmKuKZjtCgBslYhU5pm22WihVUxokGUk/ZYEULzxvPz5em772zKmPD1OzyFprO2i/yYzr2TqCICfrY2Mz/i/wSQsF0q+HUnP0w1PL+HGZ5YC8MBFAzlx30rqmm1KC02kFDQ0xfjjzXP58IeNBP2STx8Zw4B+BYiwjdwYSwg5pDZxFAqoVXovuKaV4ajDmY8u4LHzB2IKweLqMBPOm8Lu25bx9DVDWw5V5QZ6M94jR/H6p+v49OdNXHZ8L6IxRWmhSUmxFQdE3j6cPLOOFaua2WlcKaVl2kn+i5838dOUTVSU+ejcyce0BQ2EonDAThUc9KdfOWHPztxwYl9UQGrBg5G6R76eUsMvc+o597hemocwJfOXN7HdQd/z+RdfM378+LYn9j9Ev4OU34b+I9G9LrroIvbZZx92H7maxoYY9mo3hr8bxx9UPKuxQKHyJPQEWR+loGx9IlRgDFS+RBW4zmIxhWy09WbxJH0xoFHgFDpc9twSenUNcMZf5xL0S7YZUsR5x/bBXuJHrLGJNPiJNQeQtTGUEgjpoGyD6hXdKKipZfWGbvhkjKbIJioLHIQQlPrqaYoFKAnUk+9voK65mAp/PYbI58Jtd+GRn7/huk/f5pY9jyZo2q4WRLCsuZT6mEWZFSbPiJBvRrCkjV/oN6vjAhQAKRyk+39T2i7gMPFJW9ubC4VAIYQiILUGxhA2jdE8jJjOiRJzBDHHoLqxDJ+h+xBCIYWDEA7hUJBYzEIhaKouxhdsxvDHiDVpLYY0HRcHuqZdScy1MJTO0Gspzafb6ISQBoigjfDZ+p5lIgFY8PYP1Rx371zuPrUvJ+zWBSM5KlAmcuCxD9aw+8gScCAsY/y0oJ5LnlvMwRM6JQCKFHw9vZbDr59FeYHJVr3zGVaZx26DS5ixopFRvfK5+8S+WhMjbKShMxDbUvHelE2cfs88rj6hF717pkUKywWQbA4A+XcwNOkv/7bG6TERrc25jahAcUakrShAbU3fK9rGsxGn1tbTUW0yAKK1/pL7Sfcvi/efoXym75LMGONlcvktTbvolb3ykB7MW9PMoX+Zyed3j8SoiWKXWFDqnrGmRDbZKL+Kh1H1NBHC04qiTU8T+1efMZ6mVJt7GRjFOsiJv6RRZ6XPQ5t5Je1hT/uow76nLmMKg+UFXHC1LkrKllpLTyAl054rD6Akm3t5fTXqNVLNElHiJIJnQBygpCdjjMYcIrZqwXxlpY7Yux25/9sCIdn6aiVPSQtmOFvkrfTnErLukeQzI2vEsGxnRHsAS/p00+Y/YUQx3Sp83Hx6X65+YgnnuBnby4pMxg8rYsXaMBWlFl88MprBPfIwfRKaYnrMVhLT77atDFBdJQiBrI5BPfgDksPGd+Ldr6s5cFI5vasC/Pz8OAYc/B1XnNJHh7tOnl4aoMq4Hknl0vfSz3PqeeKt1Tzx1uqU8m/fNYI9ty2PtzVuWBHjhhWltL3j6BLyfJI9zvyZZteUcsSAfK4+vS8nHlDFD9NqoNEGv9awCkfvFRnVZ8rEcWW8/sk6YkphGvom9++dzwWn9ubMM8/kxx9/xDDSDoP/A/R7dK+OpX87SPn444955513mPzGKK55ZjlW1OGqfXogHCeRSMzWkVfIV6gCgQpo0wSRJ/WLCMCSiLCD8kscT3vinnAqIHUis6jSCZpsxW3vrODwXTqzw1bFWurmStnUOkmkPojhi9JcV4RtG5rJN2KYpgYrwUAjgU51dLeifDq7kX8sms81+/WjwreYmvWdaa5v5u258xjSqYROeRU0xmB5zSr+PvMXtus5nKUFeSyp3ciQ8mIMoVBAUMYwLIVfxuJrY7nmW0ppcGZKDU6Ee/IYOBjCcUGIgyEdpFJYbhumtON+Ko6j18R70H1GFFPGsF1NS8xxM84LG9s2icZ8OG7fkUgAxzEww1GsYEhH9PDFtB+KQoNJx42OUxzTgNADJ540yc2XgknCrj0TSW3fe/oj8zlgm3JO2qOLBgzJlCFZ1rzVzXw+vYZbju7NNa8s5b53V1EQlOwzroz7zu6PMgQNzTb3/2Mlf31pGbed2IfTd+1KdXOU+UubWVkb4dojehEwJDFD8cLX61i/MUJTk0N1KMab323AUXD+Yd05/5iemwc4Wsx18w+dzT2vMkrYchlHJoYj5ff0jjK0mYURiVdpDbhkGgdkBjEtGKfszeUEYFpJgJnKBGRpuy3AkjKG9LpevXb+lgZ8hBQ8fvoAup72A5Nn1bHdoCKMmI5MpIIybpahc0TIeA4Fp8BENNkIVxAoSm2tkYiSyAsilY7CGBVao5qvoFFoDbRfaygSyWbddhz3GfBy+CQ7zEOq2VdyklL3txYmkslJH913gheFSySHRE8DdCLfcc2CRUpQjeQEjetrIjz70VrueW0Ft5zZt8XvOdN/WoPSVv/ZQEwrJmU5AZZsZ0cmwJKmXUnRkrXVNuQGWDItQ4a1aWi26VTs48h9uvKHnTqzdm2I8oDB7JXN/DCvnp/nNzCifwFb9SvQGj6Pv0iem6vtE1GFcgBL8y5OuYkI2mAKdhxTzHUvLuPAHTuBgMpSH9sOL+adLzdwwbE9s0yilfFnuD/evbn6j30YPaiQH6fV8vIn61hfoxmfTydvYs9tyxOampR7lmh76rx6msOKicOL+GZ6HTuMLgHg/ON6svWRq7n17RVccnhPjIDmzTzApiyBcBQ7jCvlix83seuE8jiIueCMvrzyzg888sgjnH322bnN93+IFB0EUtoVnef/Lv1bzb3CYW2PeNZZZ7Fi1n0ctF0Z2xQG4hFj4nbDkAgL6Qe7QnO5yssUH9M2j0DK4SVshWyIgXLtoN3oMH//cC21EYdT9qlERBSEFNQDto6cFWv2IaRDc0OhTnQmHEwzBkIhDRursBmjf4RNIZtLHljIozcMwajTh9Tcb+GWD5dyzIg+zF8Pk1c24OCjT0kBO/YeSGkwyNermlm4fjEHDxsTD/9rCIVPxuJmXH4ZxWfECNsWUjiEbSueu8Qz7/K0JY6S2I7ElLbrmxLVgMUFMEAcpMRcp3pTauNs7/fmWABHCfLMEH4rjBQOtqMBmilj+tOMEiysx8wPg9RZZAEdscshYc8dIq7ZwhY6qpqPxAsqm7Ak6UX0/dw6jrxtDucdWMWFh/RILZfhRffxLxvZ+6qZAOw8vJhrjuvFhCGFYGkG7OXP1nHxQwvp2zXAqXtU8vmvNbzz00Zqm2yCPkFzRPHrvaMpMkyOfWgu62oijOxbQF5Akl9ossf4MvbcpkxLy1pjZjeDEflvFZDk5rfRRqHNNYtKHkdHOe5DbpLWLegv65rlYu6SXqY15/n2ONYn0SXPLeKed1ZRUWxxyu5dOG73LgzolQemQIQVKiBwijQicSyJ8hmYG0Pa5CuktJR0o2v25YUrjhKP7icCDpQo2Oj+7vqhYIlUzYTUZ7Lyy7hmInX87hnnmXy557kX5Suj07rjan88wZUHiJJ9U3Dre07zfkCIRJ6jeKJf/XN9U4xtz5pCZZmPU/fvyhF7ddEO/q3t8w4AIx15Jmy2ozzksL/buw8y/NAO35V2m4LlQlny3Dz0xko++nEjb9w1Ukf5CjsQdgdg6fDT9728nHGDC5k4oKjleykZSLsR7Dx/MCdgxE0TVy1u4Nm3V3Plib1ACNbWRel9wDd8+8w4Rg1J1Wa0i9LqpN8TWyk3krRoUabF85e0Ri+/v4bXP1zLjqNLOOvIHhhuzrnbnl7CPz5dx3Y9C7jnT/3joN8pkJr/MiU/zq7jw++queKs/uAoHL+BMiSffLOBE/40lzlz5lBZWdn+uf4XkmfuteyyfSnyd4C5VzhKz1vf/d3c69/Z2T333EMgEKBvp78he+axTWVQAwYPpBhJnyZaRV8joAL90gINToSW6CsjdbOJqNasyLUxKAYE/LCogakrmrj+1D6J+PpR3HjgBk7U0GZdShAsqI8jYGk4Oja4VLw+YzWfvb8J0y+5+tKBOEU+8NnI2hhfbFrJJQd0YXCpxTYbSpjUayxRxyBoRAg7FjEl+X7ZDA4cNDQOULSzuwYdPhnDL6MJ0ysUfiNKU8yfgqQ90y+lBI4S2EriFxH8RiQOKpQSOEgcR6LwtDF2vI2YY2AZuqwlo9hK+8DYtoHlixKzTYyk8r5AM0Im3hI6m7yj19ADHmGwN/i0I72lywqhNMC09T1oAVKSbHc92nZIEUfv1JnFa1xuIo0hiUta3e93GVXKgqfH0bnYIhg04pJOWymeeGcV5963ANAC0zMemI/tTuPc/bvy4DurEQKmLm7kwicXccCEct67cwTBfDPRb7IUN4kymaakjzNn+k9LWqFVrYFHbc25XVqXbCZjbWhdoBVTkGxjgezmY61pROJttdKfkyS997rK1GZr0uNs2pBkzYnK4bfk39P6vP34vvz5Dz2Yta6Jvzy7hLveWsmtJ/fhjH26YsUEwo22pSyJMnSYYLvQQgQMjA0RsASiWGnb+pjQJl5hl6mXSvsOorXenm9ZiumUNzZPGwKuH4BI0QwJiJvfCW+tlfuP4/XXUnqsJAhE4r5nNDkSWsPjgRN3DHg+Mi498tYqbn5hGUN65fHuXSMxrISd/f+SMGKzfRigVS1Ki99bkeC3KN+WKRhk1K60W7PSGqXNLfmcmTKvgdteWMYFh3fXvIUlUZZE+B1Es63fZSacvVclZzywgG3PLdAmye4zpROKiiRLD9cCxKdBuZIiLlidtylKj3752MU+RMyh1IBthhdz/u3zOGrvSk4/rHv7td0Z1iT9bJLteV8lCeCO2quSo/ZqCSQMQ9C7KkBdjdLRAPMFyq/XRNiKt79YyzfTarnuTwNaCPR23b6CnSeu4bLLLuOZZ55pe67/Q6SURHVAGM+OaOP/Av3bVmHdunXcdNNN3HhlASFb0bt7HoQVKig0ILFwHSBFwpfEZWRF2NFakiZbg5Woo3ObQFzqhqMQTY6WfuQJRI2DqHZ4+6sNDBugw92JiIIahdpg4NRb2nxJOlhFIQx/FKswpBlsJZC+GIY/RoQIX82v4fIDu3P/YX2p6hJImCsUGCzeGKa7LMeJGARL6jCFTX3MT7Ptw1GCNc1+CowIQ8oDlPoaKfc3UOprpMRqIs8MYyutEbGkjU9G8RtRLBmjU6CWAqsJQzhEHYOIo7PERxwTn6t1AVzNjwYoXmJHwNW0xLBcMy+fGSFoheJl/UaEfKuJgBlGukAk4GvGNHTiR890TvpjiDwbWeiGFTUU0bVBoivyiK0I4lRbGIVRbdqVlDMF0NqUTAKFViIoOWlZxZOT/iUnARSWoGe3IIECU9vUW4J73lhB36N/4KYXlnH/2f0oyjMYM6gAKQT7b6ud8N/4upodR5bwh+07cebDC7j97H48ctUQgoVm3BRFGSLRb/qLTbR+JeYo2r7aU7ajrhb3ou1yrc4zWxvp9zv9SqfNTB7XWgK5VsckslytjTtTP1nWKWMb6XNNL5P8d/o4W/utjXFXFFvsOKyYr+8exdMXDeKhd1Zx1B1ziRSAXWLi+HVUL8eSKMtAmRJlSqI98ohWBnFKTFSl1KHdTYUKGdrnTKD3vAEUioRZpxB6L3mmXYJECF+PsfL2lvd70n3y9p3HKKrkyGAp6098HZXpjsPUpiaen03CDEckgI6XiDWpramLGrnssUU8cPFA/nHHcAxP42PK1PPApbbOgXYDlN9yj2egnMeby9mRpd22yrZ5FiS3m2mvp4+vrfMtrT2PHnx9JTufM4VzDunGeUd0d83BHWRDDFEX07xEjYOIKSwkJ+1ZyX3vrNLBIAxP+0cKQHHyXBN12+VNYpqHEQ7sML6Mb6fUsKo2ipNnIUv8vHz3KPbdsRM3PLaIS++dz5LVzRkmm9vcMn3fYYA5qc0+3QLMX9aIkWdDs8DzBRNRh5ufXszyVSFuPbOvVl5GHb2mYRvhgtAbLh/Aq6++zC+//NJBg/vvIM8npSOu3+nfqEm55ppr2GWXXdhhIkydUcPbb61kz0OrUPmmfnhXxXT2UkMhvMRhPgWmQi6L4fQwtJYk4mDn6WELzyTAYyz9AhFzpQjVko/nb6QoaHD4zhVa4hGQ0EVBuYPREMZe4cPq2gSFIBujRFbkI00bIy+ECNr8vKCBh75cwfGHVNJtTBG2Jw2xtcTPKbRoForibZqgRhFdEaTA18TKUAkAYcekMtBIxNGcuqdJCRrhOFgosJppjvkp9DVQ3VyC6wKv54c2vTKl9o0xpIPfAEcJTGI029obXSkR16YAWEYUYVuEbR9+I4JlRuOmYnWhQqQLbEyh2405Jj4iOI4Rj/xVUbmy5SbxKUSRwipuRjVIHcErJMEEUWhrQOKZ7XmhoLOZeiVLMd1Da2D3IM98tFZ/5XWdwswn1Y/7viR+f//HjRy1YwU3ndAbMyqYtqCRf06upmu5j8lz63nu6iH8PKeeG07ri88vqGu0KXZNXbI6KGb6O1dqR73f8jxqUxOSTGn+ANl+b1Pr0kb9nLQXsEWaF9gM7Ut6kba0FclttiVZTgfnnl9Fpt9blE0aS0YtTdqY0+dh6x8O376CXbcuYbdLpnH3yyu45KReCEcRKvIT3hSmMN9ExBycgDbLELZDrCyAuSGkO6ySyEBUt1efHLGLuD9hitlLsgZEksiN4pl1ZSFPc6oMkaJlAeJ29EKK1DU3RSLil0T7BHhmXV7/Gc6VOSubOfaG2Ry2S2f227lCt5UMmNLGlRNt7pnREZTrHk+jVrXGye1uiXYlUxsdoVnJNp4MlHxerKmOcNnDC3n/thFMHFMChvYnIaItBsQm19SxSMX336Stivlsag3fzqpjwtCiJMuARCS75LEIt6pwFLhv9+suGMhtjyxkYJ98Tj2sO53LfVx8ch/22Laci+6ax9CDvmVIn3xGDylCKcXYYUXsNbETvbslHOuznuuOoqY+yjNvr2bB8iYG9AgypHc+E0eVkB80MtfZDOrVNci8pc307xpgnRWhIuhHmYLbX1xGvt9g+boQQgmIOuC4vJN0QxQLQc9eeZxxcm8uvPBCPvvss+wJK3+n/6/p3+KTMnPmTMaOHcvXn21Pv75aq/HFl+v46IPV3Hr5EAB8KxqQm2zUakOr/4tsnVfDElrjUiCxy3wIW+FYEqMppl9cnqmCKRExB9lkI1fGICK4/IMlXH5WP/LyTJQU+vfGGLJeO4OqIokXvjI2PYDVpTmeWXnOkmYe+XgNd5zQGznIR9QNy2c0xRBhG7vIh3AUb320hvXrwpy5TQXRBUHWrOzFvNoqQo7B+7M+ZWltIwcO6sn4br30ggtFnhlK0Wp4TuxN0SB+I6JBiLTjEb488KGUBjC2IwlaIWKOSUMkL96mmeSEbxg2tm0Q9DfhOAbN0SABM5SidTGEjeGaf/l8YcLhAFI61DcXUVKwkYKqau1oGgMV0Sd7Ismme/KG0TbokAjnCQkneu+7bGZAnjRUKeavbGbU2b+w5rXtKMhPws9e3TQGIyUqTExx60vLeOztVbxy5VAKkWxzya+8eu1QXvtqA4fv2pndJ5SndJ8VmHQQg7HZwKMj+m+HGcQW5UbIoUyH+LpAbr4jOR5nrTI57c3VkKmtNuzDW/qYqOy/baY/CpC677y9aAhe+nwdlzy2iCN2qtAag2I/H3+5jusuG8oek8oxTamlnq6dpFEfRTRoU1AVkIiIg9joaDBQJBG2m0uqxtG5UVznfBzlajlEimYCXCAQX6DE3ISnGU+eZ6zlJIV7dnu+h17kL096HV+r+DlDi7NjxsIGdjnvV/54YBXXndkPw2WkNstRvp2kfsP2RXvMoLYkYWrWEMQtv88WJrfld1n6amNvywYHmhWqvKVkLJsg45l3V/PkP1fz9UNj4v5Swo3oJptsRK2trTq8aHBRICCIhRyOvXMuz184ELPA1GZO6eG1ven4DTcEt2ghmHjtnVUsWt7MRSf2wjIlsjmGLQRn3Dyb3bcrZ/q8BkxT8P3UGr7+pYZRgwo5bM8unHl4d8ykZKjJaxuLOexzzhSaQw7bjypmweImpi1sID/f5O6LBrDtyBJ8VpYFaYuS5lXfGKPrrl+w3fBiSoothnUP4sRg660KOWjnzrz1xXrWboxw2oHd4iGK49pRQ+JYkrrGGCN3+4bHH3+Bgw46aPPG9F9Cnk/KkosP7DCflN53vPW7T8q/o5M///nPnH766fTtt1y/X6Vgh50r+fDjNcQKXKf4XkX4jXpkQ0xL590XqjIEFAhEg4ModDCWRxCdzfhvypIov4FjSWQYRDSqX0blitqQQ7DQwrEMhO2ghMQptFCuE5uwFXJNDIICq1ezGzpXS+Ae/noV157TG9ErQKTEH9+cdoGAPBNhKxqbYkyf14DfkthVPqymZvI3NNA1UMvipjI2NEf5y467URfzE3GaKA/UEXVMHUEr5ov7jeT7G1FKYBlRHEcipUMk5os7x5syhpRO/HcAWxlYIkppsDZeJ+aYRG0Ty4gRNJtQhsQ0o4TCFrZj0BjJx2+GCfqb8LmnmmlGkWaM5sYCHMdAKUlF+Wr8Xeo1QLH0fRAxO+4Yr6ICNghwBKKzrR3n/aQCFNeGNwWgeAkXk23y4+E/Bf17BNmqTz7Pf7SWMw/q1jo4SZbUop+FC47uyX1/X8nC5U089eFaTt2vK3vsVMHuydLRbM7ubajGc41Xn63NXEhJEWcuvP+3l5GJMye51GtDKwKeH1CGAq1JU9N+32xfl/R+ctG+5BAmGTIzLVmjjWXStOSqYUlb4xYhjdMjgiWbO7bmq5I8hlz4jeQpOXDwhE5c/Mgi9h5fzq4Ty4lWBnl/Uica6qNcdt1MCvINDtmpgtEDCvBMr8jTeUtko42yBOF8d3oxB8txBcj5AkI6sp9TKFP9SVwGToRtMF1gkwIcEp8pTLa3Z1vTvHhroLyQwUn300i0ES8nBOGIw2FXzeS8I3vwlz/2bcFgeuNpF8PPbws+tnQMGefS2vPutZdJK5JeN1OEqN9Ys5Iy7AIJuSYyd9uqLPdR2xjDCch40AZlybj5uFqnBZmi3AFLYBfAxY8tAmDCkEJEmaVBuPfsuAlKU/siDlB02OwEUDls/278+OsmzrhmFg9eM4Sg3+DLbzYwYlARh+7TlUP3wU1sarNxY4R/fFPNXS8sZc7iRh64YnBqvhOXps5rYNq8Bha+NYFC9/eoARfft4Cj/zITKWBY/wK2HlLEVX/sg9+3eYClMN9k2xHF1DbabD2gkD/9oTsrqsOMcLU/VRV+XvxgLbMWN1JebLHrhE5sM6pYHxQGCKUoyje58oK+XHLJJey7775Y1pYz9/9p+j0EccfSbw5SvvnmG7766iueffZZEGfEv4/Yipr6GMqQ8QNKhBwIgsDREosw2s45pqBaIIttVKkrxQs5OGUWdp6lJRWOAmwdErBQsBaHhWtCLNoQoXePPJSUyKiDApQ0EDEHcHA6m4TrYjTVR7n9zRWEog7NUYeDd+xEUbcAsWKd8Az0Aa+E62xqK869cTaX/bEvA3vlQcRBVUrK7BUwE9Y0W0hsKoMbobmMZtuiKRrAcn1JvFDDDhIRydPAxbHIM5uxbYOAFSLPp09pT4Oi/UQkMcfUJl3uaR+KBHSOFDOExEfUsWgO55EXaEQIhe0YGNIm6jrGm2ZUa1Nsk1jMQjqSmG1pp31/M/5ODYgKJwkcoJ8UGx3oICRQYS2tshf7MErC2szOUMQd5QUJsOKZfrnOq+mReuKmHVKw/3blfPJrDWce0i1RIF1zklw/6SX56qfrKM43WLI2zNyVzbx254hUW/ZWbLbbOg8y2ljnQO1lWJLLpzsXt3CW3sz+2gQybQCMrMAlue6WtJ1MOQGkzF1tSZjkNvM1JDeVCbC0AlZyNgFL/y2TCVimMZChTNoaBXyS0/bryu2vLmfXcSXUzKjh0JN+pKjAZGDffC49dwA/z67nqddX0rPMYt/x5eQbOnyHcod49n3zGTdERzlatibE+Yd2Z+v+hRqouMJs5Xc1Kq4mRNgqRZuSccgeKPE0ItkAimvWhZPGvCbl7PHuY9wnJskU7fkP1hDwG1yeBlDS91CHgg5vD/8W/EcOZ0T6XNoELWm/J+/ZjHs1k/AiQxu51fXGkFY2PcR3tpDf2SipfF7AIBrVAksnYMTNkWRDDLVS4DRaGOVhVLnBiuow590yn0uO68X4rUvjGhflCbDcZyejcMkFKAmgnJjv+FGl5Psl9zy7lGMPrOKFD9byyF8GYzTGEmviQHmhxckHVrHbhHJ2Ovknzv/rXI7cu5KthxalaEYKC0zCEYdFa0IM76dRmwHcfckg7rh4EN/+somFy5t4+LUVPPzqcixLYkjBhJHF7DGhnL0ndaJ7F20e8dG3G7j16SWs2RChd1WAI/fuynYjiunXI4gQgvJiHxs2NTJzSQMlnXyUl1g8895qvpley8SRJTz2l8GU5JtU10Z557tqnntnNdttXcqhB3TDZ+pD4oRDu/PgMwt47rnnOOWUU9q+f7/T/1f0m4OUq666ivPPPx9Dne5uVL15L/vzFHbfo6ve1F5hgXaaj7rfhBTC72jTgXwdDlDlGVq9vxZE0EaVaXWqiCmUaeMUm4iooqw4wPmn9OH9z9dz+vG9ke7BITwntqiDUPDllE089+Zq+pUFOG5SZ4b1z9fmS4bANiWOZSQdaomX5yffVbPbxAoG9tHiRMeSCEsiLIeiimq6NVRQHPDz8eJNjO+Wjy0lNdE8zJhDwPAc5KMEjDCmjBG1LQp8jYRjfhwlkNIh7PiROHHHdtsx4o7wHkVtS5tuYSOEwm+FsVQUR0ksK4Lpi2CGtOO8UiKRc8XUZl6xmOXmSbEI+pso7LMeilXC4T2daTK0yZeIOhAWiJAbDcyvUl+8ZtJn1L2vktTQxKDtfgFlCZauDfH2t9Ucv1cXt78M4MQbRwZ78coKP4tWh3jyo7W8dNMwCousFkxuq2BkCwBFq9QRDIlI+2wPpb23M41bZJKCJlMr4KJVjUg7NC6Z2m7RfrbxZewrU5n0xtPaypCUMiNgyUW7kl6vPVqVXCOApY+hNUrSXAKcd1AVD721io++38So4YWYpuChW4azcEkjR5/1M9M+2IFTDu3OioUNfPTVeqLNjvbTdyXHfz6sB7ttW4ayBHZUcfOzS/hhdh1n7lelbdHdeSuBzmtlJxYoXYuSfcyu9iXb754pl5M0t6R+Wgg2nMT8py9sYK8J5Ui3D2XKzB21xvduDuj4rQSk2c6IHEFLq4Ali3Ylt2heLb/LWasCLfdSMqXv33Q/r2zlXMrzS6rrojTaioINEURIoVYbiEoHysEoDGvzRUPQpXc+lV2DbDOqRIfShTiQziRc8p53xw3Zm83XUUkYNqSYNz5cy08zahk+sADTkig78U4V0hUOGIIelQHeeWg01zy4kMMvmkY46rDbtuXst0Mn9tlBJzI+/7ienHb9bL59YXxKf9JRTBpfxvbjyqgo9zF3cSO7b1tOKGTzxc81vPKvNZx/+zyG9y9g3FZFvPjuai47uQ+jhxYye3ETf7xuFgB9ugUZ1i+f76bVsMf4MrbZqpg3f97EoaNKmDikiC+m1LDNyGKKS3xgK8rKfBy/b1eO268r38ys58+3zGbE0CJOOLwHpim57Kx8rr/hBo477jh8vtYSq/0PUEc5vf+uSQF+Y5Dy2WefMWXKFN544w2InBx3CFdSUF7mp3uvfNauDVFZoR2uVNBA+Bx346MjfTUpzdgWCkSjQuWhfUokiJArAbEMhHCQXthA22Zj2OHlf67m5ssGxe2qdeeu+lTB5Gm1fPJNNU+cNQAZEhqc+FypmyVwLJmkok2YIbz+rzX8Or2Ga88bkGhXoA9TC8zyEFU1K7lku0E8PHkmG5qa2LP/QMLROnz+fEK25UbpsgiqMH5DxIFHxLbwG5G4nwok1H6mEYv7qURtC0PaOI7EUZL6cAGWjGFIG4mDYdiEw0F8+U0YrvZGudG/IhE/gUAz0rCRjiQa9ZMXaKSkz2oocwFKsqTTJpXhiwFh9w3lSJ3wzYf2H0rOaeAl5xQqkffGe+FEk8xaDMGq6jBDT5rM/hPKOXqPLi1MMyBpDJlsxqVg1+3K+eTRMYwcWEh+vtluQLLZEtNcq/27zEA2Iwxvu4HL5oKW9PHloCnJCbjk2FYL4LK5zrq5gJVMWpW0dcuqVWnNqT5T29lIpn0m9V1aaHHZUT34y9OL+eGRMYwZWEA44nDR6f14/u8r+HF6HT1370L3fgWc2jWgc6dElY5oFFMQ1qaxwgHDElx9Qm/e+6aa655fyrWn9NFRGaMKJyBbajEdhZCuZib5e9HS3Kv1cLmK+mab76fXUl0TpaoyQKFfsmR1CL8l2XN8mQ4Vm74OUmBZkromu22w1Na2be+27qhzIFcztBxBS6vmbVkARKtmYL+FVgXafubb4YC99eBCBvTI4+FXlnPJYT1w8gSy2RUCBgSqWDvDz1zVzAOvr2Tc8OJ4KGFlSATaOiPFJDnJZNcbj3eGqAxjE0qhJFx4ah8uvmU2OLh9OPHgEMqzNlHgWJIhfQt45e5RYDtMnV3Pu1+u5/6XlvOnv87l+AO6YhpShxz26nv+K0n3cfdJnfjH5xu48PhCcBTjtirmkuN7UV0b5b1vq/nyl028c98oJowsQRmCXSdVsPXwYsIRh1DYZsnSJg7ZsRMzFjWyzeBCXvliA4cNLWZA1yAPXTyQq59awoTRJRy4c+d4n0IKJo4sZsL4Mj7/aRNnXzGdU47uySF7d+XOxyM8+eSTnHnmmTnfv/9GUkhUTja4bbfzO/HbOc4rpdh+++3Za6+9OO+kyTiGdpaaNbeOL75az/vvr2L58iY2bYwwdkwpO25fwcWHVGGuDyPqHW3q5ZkKFQpUQCCqHR3qMqRBjCqWRHrmEykJImwHqzaEtSHErwsbuPcfq7n2okFUdfbrF6pSWosS1aEAiTmce+tc7j6qN35L6gPJDWEJ4BRbREv8CSkIoGKKv943j26d/Zx4aHdETCUAkKOQEQdZG0U0OKjVBtGaIE11Rdzw6VLmbaihU0E+Rf58jh25bdyW1BQ2Phkj32rWIYZti6AVAkDipOQ/sQxtpuUzIzRF8rAMnfnStg0ao3n4jChSOPF8KAEzhM8XjmtQmsN5GMLGsiL4/CGEdLCjljYVK6vD6B+JH/BePgEvWhpCaGDRrO+LqjfwsjqLbk5GEy7vgExpQ6mEKZ+fOCCqboxReeh3vH/7cHYeX5YorxfC/RSpbWfQpqRQDsxAm8DkNwIgHWlCkrPNfC7lshRptY822t1ix/wc57fFDvqZmJ9cE8ylt5terYUzfGqBlLG35lSf6fe2KAPY9/ZNKKYYdtJkbjylD19OryESMHj4lhE88NRiXnt3NZ+/tA2me2aKZhsR0c4nIuRAjdJS5kLp+pspsOGh91Yxqm8BEwcUaulvUIIltTmNO/e4ViXdzMrVTKQ7zzeFbHyShLOwu36hsE3JTl+SF5CMGFjIirUhmpptelcFWbsxQkHQ4K27RzBzQSN/+2ANJ+5fxW7u+fLFL5s4+sqZLPzXJKygSbJjfVZqC2D/t1CuZ0IrxbLu+Szf5+4Yn2FPZRtHzmdbbsUy0Uc/VnP89bOZ89ZEivIMjA1RHcY6oJOPxoBzb5vLXVcNw+f5b7i+T8IhzgNkO9Pjpo1SxEGKUNp0HCl0fXeeb767il9m1nHjRYPiYYtT9gskQFKyxsbdK5Nn1nLfS8v5eVYdz9y8FeO2Kk4dQ8rA4LI75nLDuf3xeYmy08x146bYnqbRbWfTpggBoEBCJOpw1l/n4vMbPHJaP61ZteCFj9Zi+iRH7lflzlPFx6KkAEMQceDRV5ezfGUzgwcWcPMDG1m4cCGBQKDleP/LyXOcX3ThIRR2gON8fThK37te/91x/rdq+Ouvv2bGjBm89957UH8cwlF8+vkaPvliHYuXNbF0cQNHHdmLwX3zeeaFpfw6rQb7uF4YVgQREFoy721MW4GUWtOx0ZX0W6DyDG2OhT5QhQOiyeHCu+dzwH7dyM8zULbDhjUhiv2Cr36pobjI4ovJG1mxOsReY0vx+yWqxCBW5kM2xeIbMlbswwkmaTNshxvvnMNOEzux47iyJLMQEbehdnwSVeZD+mJIGcNX2MAjb82nU0EB52wzEaV8fLp4A0/+/BVnjd8GgU662Gz7MKSD7Uj8hjbLMoSNg4y/RBxHEsXCb+pkh9I9lQ1hY1pa8pMXaCQSU4SbS5DCwO9vpraxlNLC6vg8pHSwrIhOYOlIDCuKlR/C6BLRB5CtEloUV1Kpu1LaQb5JaNMuNy+KKHTNvdJAv1DEpT8ILY0SkSRfI9BMgdBMSlmRxcVH9OCcexcw88XxCdCTrEbPBE62FBx0IAjpEODRht9Ee/ptwWTkomlILtKKpiVXLQvkoAnZQhOxbP20qW3JxQa+PZqVtrQqrZRPkSi35qeSPM70saZTJkFc8ndSEPAJrj2xN1c9tZi7LhrIKTfOZtzIZZx4RA8efG4JT76ynDP276qZHL/EC1giDIGsj0GdQAQUhJy4BvrUA6o467a5jDu/AEtKZi1p4r7XVyB9kt0mdeLAnTojlMuYJWlU0vdiY9jhjqcW8/pH65i/rImKUouJo0pYujrEruPLuOb0PgSCJuOHF3PoHl0495ieKfWjUYdL7pjH0EO/p6zI4sg9u3DYZdN54YZh7DOpE5NGl1BeYvHSv9ZwwsE5JtD7DYFJu5zd26Ic90xGU8W08WQ9RzZbK5KjRiVb/UzUHk1L2j7v0zVIfZNNbcimxNXwR4tMXv1yA1Nm1NIYsjlk/yqsgNRJGYULLFxtv5Iy4fuUtr9S55gFxLh+rgB/2LeKH6fVsXhFM326BwEnxc1IqISppCAVfCgBY7cq5vmbilMDQHgJSdPJURy1fxW3PLmYq92M8CSDEUfpjj1/MkfFwcoJf57Gx99vZONXO5FvSG44oy87nzmFxUd0o3fXPG54ZgldO/k4eqcKbe2SJFyI++0IsEzJ2cf1Ys26EHc8vgjDMHjuuec47bTT2riJ/730u+N8x9JvpknZf//9WbVqFQfu2UxBocnqtSHWV0e46frhDB7xPs88tDW776TVgA88vpAff63h+fvGEJxVq6UUQfehtkHUO6h8/QIUKxQqLBABB9XDINw9n1iRHxFzsGrDWKuauODhhRxxTC/+/vYqYlGHzgHJ2o0RthtdQkwIJm1dSq8CE1kdA5+gflwFMmrjW98EQKwkgO1PAj9Kce9D8xnYp4B9dq9ERN2ERC4w8rQ0QCLUccjmm0/X8/PCBs4b1hc7bBJrDrBmY1c+WryJN2f9woP77IghDZqiAQzpuJnqw5jSJuhrJma7+WCEikf1KsirJxLxE3NMHEcScZp4espc6iMhhvUw+NesDWzfbTAHDB5MZdlqIhE/wYJ6Qo0FRCJ+fL4wpqk1MIYVxQxGEKaNURiFKiCqdD6ZJIdV0aCgyb2xFvp0jLmfASBPtNSceMk4QWu9Aq6kJqTc8M+e5Ia4ZPfAq2cyZkghV/+xT6rWBFLMRTJF4MmZshXvSBDyn4r3nsNWbpPhae33zdGytNUmHaAByeX31vrJKjHO8F0umpXWtCpbolHJ0n+blB4JLw3gOyj+/MgiHntnNcfuU8nfPlzLvdcPo1OJj2POm8Kyb3aJRwDyzjYRdpB1MdQqiShxtACjTGtNlCWZsqSRB19dwU4jivlyRi33XDAAf5HFSx+tY/3GCH86pmdCsuppUJIY0lDI5tDzfqWh2eb8E3qx3agS5i5q5MfptXTv7OfOZ5agHCgvsfjqlxqG9S9g8uvbtVwuR/H1z5sYMaCA4mIfb364htOumcX7D49m3JAinntvNbc+uYSfXt+OgBuq/n+N2g1iOnKP56oV2VKNSmvtbAFFwg5HXT2TTsUWj1wzFLkpysyGGHe8tIzD/tCD7bctxzJFXLMHpIC0uEbEo7T3UkIjqDKDlAyAr7EhylW3zuGeq4fqAD8qaf0zCIeUIZARV5vjNhePRindCKjZfI8cxcMvLWPk0CImjCzR3xmJAADYKmXuytT7e8asWrY57HssU1D36Q5IBP4dPqe0yOSYPbsQjSnuu2hgXOjpJKWBSFkjty8PSF1z1zz++anB7NmzkfJ/y9zJ06TMP/+wDtOkDLjntf/vNSm/CUiZM2cOo0aNYubMmdibzqSh2aZ6U4QpM+pYsy7E3ffOY8WsvSks0Ez4488u5oPP1/Pmg6Ox1oW0xD3mMrteiFqXcRZ1jjYB2yRwekuiXfOw8yyMpii+lU3gKB74eB0jBhcyaWABdrE/1SfFVhhNMeS6KDRDZGQB4c75GKEoRkMEx29iBxIaFCfqcNtdcxjYv4DD9q1KLFzMQdhOHKSkrqqWfB5wymQePLc/fbsEYAmEVhWxcWNn1jSV89XSJfy0cg6HDBnCsM6dCbgaEsuIkhdojAMJ2zYIh4PEHJOArxkhFIYRw7BCPPL1BuZu3MCZ2/ame7co05c3UxSr4pHJy7l44iRKgzUUlWgtih3xYdsGphXF9EcINeQjpUOwrA6ZF9XhhsvTMjs7ChFS2sRLkHCC9yzgHCAPlC+heRFRpdcjhhvRC1S+WyGq4iBG+bRUVkT1QfjTwgZ2vXQas17ahq6VgVQ78TTNScLWN8cHMp1aYUTaNv/KBcy0d0CbR63m+vCoje29WWZcbZwYvzloyYVR2dw+MjJTGcqlrWu7gEp6m60BlWz9ZxhDaiNpz2kWgJIsgf7k500ces1Mjt67kmffWc3LD47hsptns9euXbjpymGImIMRiiFD2o/DqI8hljhaq2oAhaAKDe2D4s7r25l1WPkm2xb6IArRfkFufmoxe+/SmZGDixLr5s5FOIpfZtRy6e1ziUQV7z42hoICq8U6NTXbvPHRWuobY4wYVEi3zgF698zLvBZp63vLo4t497N1fP3cOGxbsdPJP7Pj+DJuvGjg/yRIyUQ5AZeOAiu5mn9tKdDJRu0BLskBKBw46cbZzFjUwFv3jqJLtzxWrw9zxf0LuO+2UQTyDGTUaQkMksBKi2heQmiNojsuzxxMp0AQGUFNig+W+3ndbbO56KTeFCclrk6nlOiPyeNyQU3y755PipcHJrm9cMThL3fN447LButoq0nnivDyEyniggTHNTd7/NklXHDLHPbZuYI3b9oK/4TPdHtf76QFk35XsGErHJ9MCDGTAVQaUInEFFvtMZ2HHnqIAw88MNtd/K+k30HKb0O/CTt15513cvTRR9PZvIDKLgH69y1g/NhyjjuqF4GAgRBQkJ+IeNG/bwHzFzRg51nYpT5iXQLYnXw4ZRbRbvr/AHaxBQGBU2wQmlCIk29qIONJ7x2FaHQ4Zb+uvP/9Rt6YVk+sIDlEMQk1pglOlUGkVNs+2gGLaGmQWL4vLrWvrYtywWVT2X3nzhx6QLf4i1+kHFJkZFyVIXj27tE88cUGHvhgDaq3Ijighoouq+hWuI7Dhxbw1z2G8tmSpdz/4wymr4vgN5sJ+JqJRk3WbMqjui6Px35YwYM/zmFBdTNr64qoaypm5UbBma/PYUCnIPcfNoBRe0bo1F+x864B3l81HSU38uD0N7jr29k4MROrIITjSJpCBdrEKxClsNsG8rtuRBhOPJwwYZdRiGowKBoVNLgT8jQongN8wP2MkAhJ60pevORXqlAmacTcNbMEhECEdBhpFXK46/UVHHfbXM46uJsGKG7SN9yDK36geaFLBfHEWZtzqVaueIjkLJdW77d+xWkzx9fiykKt9u1R+hxatJE2/2TKNgaRdrWnzUzrkl5fpF5t1m+rjwyUtf1MdSQtT8q09cx67+Pl0/tJK5s2tjb7Tx5DpitD3VStpPt90n3cdWwp5xzSnbr6GCfu05UjzvqFVx7ZmpffXMktd88lEtNRDB2fREYcRK2NiriN2mhtStjRIeIjDjKimDiokHH9C7C7+HA6GciwzYWn9uXBZ5cSQzN0ykwIR25/cjF7nDyZbUeV8PYTY8kv8iWeJTPhgJ+Xb3LsQd0485heTBxbRq/e+dmfu7Rn5ej9ujJlTj3RmML0Gdxz+SAeenkZtq3a3P//FVcO1Or+S1+XTNTK3m5XO7mUa+MMyLld73LS+kr5HWKOw8vvr+X8e+bz/vfVvH3HCLp0y0PEHDr1LqCo1EeeJZBhO25RoEzpvn9k6v+NpAA7hvssi4TviT4Xks6JJJ8UD7zocqnfDx9QwKwFDfH7oCypI4rFkyG6wMY1/4r72io002/JxDsS9FzQwpS4TwiAo/D7JD5LUF8f1VYijhsBNal9bx01oNJ/nn5EDw7buYL3PlvPQVfMYM/RpQA888UGogbxEM2Op4WNOnGBo+f/Etc0uX43fik485hCbr/99hxu/H8neeZeHXH9Tr+BJmXjxo1069aNyZMn07P0L0mbVW+YOfPr2XGXT5n30+6UlmhAsKE6zNDxH3HwflVcfO4ABvTKR4ZjcS2FMgSO38SsDYMAJ2hi52mkatZFMGvCiLCTSOIVdvjH/Abwm+y1cxdtjhVzkFEHc2MI0WCjgpJYRZBQZSL7k3AU776zkvf+tYqSIotY1OHCs/tT1SWQatblqFQtSkbmz/2PFHz4+Tr++f4aLj+6B71LfXFwI5sc1DLB9z/m88asCEtqGwga9YSiMWrDUYr8BseNHEaBL8BXS5cxc91agpaFKU3+vP0gBu2wTgcSAOwSE+U3MNaFeen5TSxYHmRtYw2X7ziMsgIw/dqB3gxGkP4YMmijYgKnyQKhkHkxRJF7+sTQPkEREsDEM83yAIrt/hYDgtrnJEVKYopUKU/YQTQr/Z0ltFYFuPPdldz/j5VcfkJvjt63krwCK7vWpFWGvR0buo0XfauakPb0k9xmlj49yZrY3G3YlsagLW1LK/1utrP8lmpa2mqfLdS25Cr5zVa2Lcd20ta9o8y/so2jDVFTyrvOAyiQuj+BQ6+awdtfV/Pwnwdy/MHd6bP3V9x06WBGDi/moJMnU1sf48u3t2dQzyCyKYa5IYyodVDrDES+DWXgFJna/8xlQry2RbMNCmJdAjiWZPKMOl5/bzU3XToYKbWN/5ffVXPkuVP44NlxjBhc1HKfdtCraurMWvY4cTIrvtgJnyWJRh367fElT94ynN126JySX+V/hnJcm/Y6w+u2t6ydLTH/ytRWJv+V9PwtnmBL2ApRF0MVGPFn8bL7FvD6Z+vYbXwZR+9TycRxZXE/DMeSnHPVDG69cij5BZbWLEBG7YLjN1q8D1RSmgXPVDweuCeWeKi8c18lZ41P+r26Osw9jy/ixksGpVpruIIyGXWjoHrvRc9/JP09mbQHlRRxp3vdn4rzLz/+uol5Cxs47qCk/GRefUi8i71IZdIFcRGbg8/9lfe/Tfi99uoeZOtRpTx9/VACTbEEqFLoVA2OSgAWI2Hq5a11TWOUgTt9zxdffMHWW2/N/wp5mpS55x1BoX/LwyjXhyMMuu+V3zUpHd3gc889x7hx49hqq63SetLShb59Chi7dRnX3Donvnk6lfv58l87giH4w3HfU1MX1VIKd3SrqyO89sEavlnYRLhzPnbAxLEMbJ9JpDxIc68iQr0LsYstHfIyz+C776opNfXLz2yI4FvdhLW2GQCn2MQptAh3yosfKCrmcMcds1m3ppkH7x7NLdduxR03Do8DFA1KNECRUQcZtrUKN0PUjGSAArDHTp254YohPPLBWv701BJu+PsK3py8CSdPIkodtjuwnr8eY/PaJT52HBXljF2DNEZruOvA3uw5IsKEQfVctmcJl+3Rhf6dDB47sZL+/WohArEKH9GuAZw8k5nz6vnXN9X8sKaaq68OcsnJxdw3eSqmX5uSBbrWYxRHkEEb/AphKoTpIIMxhKV0WOGwJ4lCgxFPY+IjHqIZG2gkrjFJvsdEExF54skcvftfKFEBgZdV+4Opm7jh+aW8dutwTj2kG8FCK3FgmTKhrva+a+VqQW1IIlvVhLSh1fAkZe25slEcxG9m/Ta1Eu3RtLSom6M2pEWbaVcr7WYFl5urCUmv346226VZSaYM69eaA23KmqRrSdL6a12jlGEs2eolSZJTxhBnYHSCR4Dtx5YiTcFDlw7ivGtm4heCuV/uzB47VvD0y0v12ZtvEe0aRBVKRImd1LHKyEAqv9TgxWVOxo4uZeL4Mv7xwZo4QH/jwzUcc1A3RgwpdqW9ac9tB2khhg8pontlgEf+thwAy5KcfXRP7nhicWLMbr/hmJOT9vS3vHKiHDUtbe7njG1nbicjZdGK5FIuJ+2xSHxm2xtxR3GXwXaKzXibkajDI2+u5NWbt+Khq4cyaWyZruRaWDhRxeLlTVx64yxiMScVHBh6fZ2gmdP5okzpAhGheZagvpSlA/4o02XYHQ0U4ppCoFOZj4jrv6FMEWf0PbIDJnahTyezttx67s8i6iBczYn3Hk3WnMTfK2bieRk3soQfp9fpcsm+Yknz1JoVFQfwjt8An8Hr94xk9+3KAZj/3a589sZE5i9s4JjLplNfkYdd6MOo0ebrMuok1shJzS+DG4q5uNjH0UcfzeOPP571Ofid/v+hDgUpSikee+wxTjvtNOqXHpD4PulBNIMmF1wwiNffWslPv2yKfz94YCEP3jmawQOKOPzUyfzz03V8NbWOQ86fyuAdPuPeB+ez71HfMXNOHWZDFKM5lnBeVwoZtZERR9tDm5KTDqji/S/WYTRFtQ21X2IXmjgBQ2tiCqyUTPL33juXAf0KOOW43hiupiTZMT4eicZTz5oybpuZ8aWSdoCVFFlcf8lgbrt6KKce24vl1RGe/GIDy8skdlc/sncM1U0wt66JYWP8DBpg8cG6Jdz80wxunDKN+2bP5u5fFnDgwX7E1jZinE1ssB/lN1iyuJE/XzuTjz9bh1Bw8HblYAhWr44yqmc+VmEIq7gZTBCGAktpIGKCLIohgg7KFqiwANO1Lw+jQYhKujyygSI0aDFB+UXCT8VytSrugSpspcOVOiqhho/Ckk1hjrtjLg/8eRBjtnJjzydLVtwrfsgacrNNIrK++DcTiLSg1kBNrlcbtFmgJVM7rTE+vwVggVYBS5ttp7efhQlq03wr2/g2F6xkMwFLmVda/ZSy6e3nPq5crozttAJQAJ6+cgh/PKiK0Uf/yMhDv2PgVsWcdXA39jj+B2YvbOT8P/bl2b8t544H5hNWep86hQYUCVREQhPIeltrTdyw48oQKNdMRYQTdvcybLP3Ll344rtqvFCsUoq4g346dRiTLwTSkNxzzTBueGghS1dpwdXpR/Zgyqw6ps2r49V3VtFzm08oHf4BZSM+5LNvN2Qc07+L2g1ccgQrGenfDVTa2vO5UCt7PL3f76fVUpRvMHJYkeYFAgZXPbyIC2+by59un8dJl01ju3Fl1DfGOOvy6fw8rTZukhgHDJ62JInhdwyZci7HhU9uQmgPmOhLxgGPFsYmgQB3PsqQVFQEWLS8OXHmSxHX8nmmYh7ATzaHVJ65F7Q809PXJ15M0KNrgGWrQrquk9D86PEmOd+rhHl9rNCP8Bs8d88oBvTO47Hnl1JR7ued58azclWIY878iUYpiHTP0+tliBTzsTh5Jmbub8fuM4sXX3yRhoYG/tfod3OvjqUONff6+uuvOeCAA1i5ciWxdUfEpdLeplZGQlLwh4O/YueJ5ey7ZyUD+hWAG8mhpibCA48u5NU3V1BTE+HEE/rQ2GiTl2fwt1eW8fqjW7P1kCLsPAtliniuEmE7xJptXvrHCn6eXkuvbnkcf1gPKkotZHMMJ88iriZ1FLEiP9Fi7Y8iYg51dVGuuW46990yIi6BSXbq9BzlW5BseTDlYrqjlOJfn61j5px61q0PIxyFYWg/mGF9CzjryO78OrWWgX3zsYIGdfUx8vIMCop9ILS0RPkN6lc1cd5t87j3wgGUlPm0PXhUO6bfcNdCTh/Xky6dDB0uOOhAudIgw9OW2LiARGg9uUQDDkEiT43p/i3dT6V/U0XuCeflVGl0EiAFt480RzkMiDba7HzZNEYOKuT+K4YkbGTdMslOiJD6Uk42w8hZytiqZK6NgyDXF+VvRTk6hbb6zG2JSdhv4Xgfb7v1n39TB/yOdABuw/xri5zqcxhfCmUEYsmDSS2XKWHq1AUNHHP1LNZUh7n30kF8P7Oe1RsjvPTQ1vwyvYZTLprKoH4F/O3hrTFCMaxlzbBJQVRoAUgRqHyJCro29AIdfSimEBGHWCc/ntnuk68sR0jBsX/oxv1PLuLXmXU8f8+olvPo4KhOwoFzrpnB8lXNvPXgaIQQTDjyey49sz+3PbaQKTPqUso3zNu7Q/vvqPlsafCMdpt/5Wr61R6Tytb621JKanfOokb2Pf9Xjti9CzddOBAnaBKLOVx9z3xuunxIHAgAXHTdTG65cigPPb2Y6pooF503gKJCK8U0V8RU3Ek+3aw9ASoS33tak7jfh+2kOLErQ2rrDLfO1Gk1/DhlE6cd06vF+e7lHotr/jPwLLpNkfJ7fGyQGqEUWLaymVfeXcUlp/WL8zweYIqbQCaPw9XGOJaB0Rxj1pIGdjnsOx65bSQH7FFJTV2Ug076kX59CnjsvtH4q0M4ARPhCpRbRB/zTMkAx5TseNhqzjrrLE499dTNuPH/fvLMveace2SHmXsNvv9v/9+be3VonpQnnniCIw4sI7b28IySHKEUCsHixQ18/8MGohGba2+ZzQuPj2O/fXTkrJISH3+5fChXXDaE5mabq66fyVPPLmbH7Suob4gyeVY9vhIfA4YGXGGmgzINwODeZ5cyYkgRdx3fV/O74RhKCmzLl4jYFYrFN3hyOLz8fJM8L9mYS8m2ySmHRJLqNO5Yl3TAqUx10tdCCPbZpQv7uGGYAaK24uwrpjN0RDFn3jqPw/appLAyCECg0IrHR1emBAWyKcY//7WWE/eupLTYijv0EbZpWBNmVXWULl0MbcrlKPApDSJ8ICJKR+pyk+viU9qUS5EAMJDIEg8JBsfBzSavtO+JZwubktvBrRdfi8T77fLnlxCKKm6/aGCqTapMSHyyAZCM3+eoiWiVcmnjNwAsbTLiadKmbNQqQG6jjYx5P+IDTEjPMvabLgVsR7/ZcrKktx0vnt5GW/NK+jlj/ob0epm+c9tpkdclpR5pz75IWa8WPg7p9T3gn9wetAQr7X3+WgEn3rji4/XKS8GIQYVMf21b/vVtNadcO4sLT+rNM2+sYFN9jDEjSznxiB5899MmkNqMxSg2kHYMtc51qrVdQUjU0RpR19kXw3Xw9c5dR3HSUT358rtqLr1pFqGww3ufrqO2PkpxcdpLvrW5J9ndt1omiZSEGy4ZxNb7fM0tjy3msj/2objQpK4hxltPjaOh0aZHVYDRe37JgiVNWRrdAsrlXubAuGcT4KRQK3s4JbJU+viy7dl0jJ2pjSz1W82HAlsGVjL1mfTdY2+uZIetS7nxggH6eRSCi26ezZr1YS6/eTaWJTF9EsOSTJtVS12jzXln9mfx0kauuG4me+zcmX3374ahwDEkEgfHkKnRvVpoKpJAjHfOSqFfmTZxbYWwHRe8gOf7umxxAwGrpb9iPDky+p4nA5XE85DhbPTO6ixnec9uQZavCaGUSlWcKf2CV9IdsweqJDo6p6sdGrhVKQ/dPorTL/mVzp38bDumlFceG8sOB33DjbfP5cpz+mOicAp8qFBMazVDmgGJ8wDee0wIjj00xuOPP/A/A1I8+j1PSsdSh4GUUCjEm2++yVvPj0xBxC3IUYTCDuGwwy+/bqJLZz+NzXaLYmvXhTn1rJ/4/gftkPXUY+O4/uZZPPvqcq6+dRZ+v8GkiRWMGVXCyJGlFJdYLF7ezNbjO/HGp+uxIzaqKUpTyGHF2hArVodYtz7MJWf2Y+KYUkAfDMo9OZyYQ21dFMdRyLQDU7jRwzLNKeWQICFJETEnReqSlZIONSfm4CgYObSIokKLGbPqtGlExLUxdUAFDf1Obo4xbVots5c2cewR3V1woVCWZMHSJm59ZAk37NdHO8N7TJRE+4wYQgOUEAmA4UXtsoTOZeJ9ZyTV9eZvAz7hJmwkoZGxkky1wE3CKVCOQti6/SfeX8PzH6zlq6fH4c8z+W56LZiSbUaXpqzj5tKWgpF/dwjSNhnxZMoBsLSpzWuFGegIsKLrdzxgSe5jc9pPzh/Qol4ODNa/BahAZrACLQFLJspqxpfUJxnASZa6e23fiZP+UMW8JY1M2LqMv943j1uvGsbYUaXcePc8zr9mBlecP4jKUj+mA7IuprUpNtpsIwbYCscv4rkclN+NDNZs6/uZJ9hxQid23Lacb3+s5vV3V8VNvnIOKJHLns1QpqTI4pWHRnPEWVOoKPcxa2EjVV0DlJb6KS2FFaubee2xsYTDTqvnymYHvWjvmNtg4Fvdv9DimUzUaydQydh3BwAVr04y5Xoepn+Xod6C5c3stUMnCJhx7cC66gjHHdiNvXfvQtRRhJFEFfzx5D6UFuvgPH165XP/X0fwxj9XccGlU7n43AF071WAbbjsk1RZz92EliRJOCAE0tGBfGRUJ0GNR+hyFCJsa7PtSeXc+eIy3v14Lfvu1kW3F9OamLjDvRAJkN7iTBLxOvE9n0kok0QjhxQxfX49IwYUplo1xCeU4O28ORnNMR31z29ywAHdWLchzOGn/8Tnf59A3z4F/P2JcRx91s80NMW4/S9DXfMxXxyYeWNJ1z4dvF8Vl137MYsXL6ZPnz4txvrfSr+DlI6lDgMp77//Pp06dWLMiOL4d3EGPomEUgwZrFVXoZCDz+ew565d4r8rKfj62/WccsZPTJpYwcF/6M68ubWUlfm5547R4CjsiM2UXzfx1XfV/PLzRp56ZjHLljchJXz8yRo6V/ixTIk0BMGApFuXAL26BQn6JedcPo0fPtgJ00odmM8nGTqokMXLmujbp0BH5Uiy/cxECfVn4qDIqvrO4UW6eFkzQsDKNSF69gjy4WfruOTWORi2oqk+xh7blXPAnl2QzTGMNVEefH0lD1w3FCdoalBkStZvinDbC8t46IR+BPMNyBc6klbE7SQKRFwGwlMc2cRBiPJpaWg8Q7wQupx0DyVHIQzAVgnpkNBMifZFSZqzp3GRAoXi/SmbuPj+Bbx13yj69ivgtQ/WcMY1M4nZih/e2Z4BffLbBhm5UEdqRTpiPCkdt8VotMHse9SG5PE3ByuwedqVNvrWFZMby95+1j5aASwZwUqOWpWMQCW5TLoGJA3YZQQq6f1mAivJbedC6Y9sW9qTpDLpeVQ6l/lYsLyZuy4fxITDv+fkY3oxcVwZX/9ze664aRYHHfc9n7+2LcFSH6LJRmxQWvgRUJqRcm3NlSUhpk1RCduIdQrDiqJ8Bspd1O9/2cQuEysIBM2UgBIpU8sREORUTwrGjirlpksH8aerZ9K1s59tXAHW+uowQ3b4jFHDivjyzYnt6isX2ixgk6O2odXoZB0BVARZ92V7gAq0YZLp1e8AEraiZxc/K9ZH4o7mSggquwT4YUYt++zXDcuQmEkm6p45FFIgEERjiuIiixPP+Ik99urKBRcMwTBcrYhrVdHiuXPnLkmYccX9SaK2y1tIrVHx1sTNei8jDhcf3ZMzb53DXhPLMS335aoSGhhlSoTt3o7ktUpm+oVqYdqV7Jepkm7m7jtW8No7qxgxsMh9jrwM8bqO54ebDCaMpigyYsfH9Mfj+7BocSOHnvYT/3ppW4YPKeKt57dh2z2/4LCDujN+SKHObRe1tfO9t1aupY13NpUXWey8fVdeeeUVLrvsss2677/T/z51GEh55ZVX+MNehnZ2JjNAgcSBvv9+VfzznVUcuF8VSgo21kbJzzf522tLufyq6dx4wwiCeQaLFzfy9TfrtQrSrWuaknFjyxm/dVm83fq6KHlBAyNDtC2PYjGH0Tt8yiffbmD3PbqyYnUza9eG3IHBgsWNlHX2/FRU0kGiQLgbNSlRU/ywdxRCksgFQpLNqOnWQ2VmntxDPBpyuPiGWbz28BiCrtnZFecMiBe/7p559BlZgl1gYdRF+HRpPduOLMYosHRgAFeD8c5n6zj7oCqC5YYbOlglfFB8JLQenoZEoZ8CE5xCIxGW0BA64aILMgANdqRIhBuO6CRNIuTg5Bsa1LgaHe1k6K5DxOGlr9Zz7n0LeOjqoUwcX84bH6/lrOtmcfrB3XjmndVUdQ2mmMy1W4LWCnVEgsYOo/S+WmFWcgIs/ymwAm0Cli3WrkB2pr29feQKVtpgsnKq14pWJeOatgZW0im537Ye29bAiTfOpHItEj0CwwcUcs2DC6mqDDBh61IeemoRN1w2lEH9Cnj5kbHsdti3nH7FDB69ZQQFeQaCmI4Q2KCQwkEFBNIBpKsJlvq/FGrNixGMQr72F5w9v4FRw4pyiobXXmqt3hEHdeeQ/aoQQsTfHytW6/fCrzPr+PL7anbcrtNm9due8eQMXHI4I/8XgAq0A6xsAQkF6zdF+PLXGs4+rlecgf/ul010qQyyrjqic5AkO75LgUIgkgb268w6LvjTIC65fBhTp9Zw3nk/ceaZA9hqqxJdIH2e3nvQtayQSmH7XS2Oo3ACFsgYMmwjQ5phV4ZABQ2IOTpXWMzhj3t34YJrZlLayc+Zx/aiqtwX5zU84WSyRUccnLjaIhl1cAwDGYqSMWVC0vPUvVseK9aE422LqKPN09zcZcLRmh/lBsFRlsTxGQjbwWiKEivwgQE3XLsV1RdMYZ9jvufdF7alT898TjyqFxdcNpW3HhxN2YBi/bzHx5n52Ttk73IefuG5/ymQ4iBxOiAmVUe08X+BOmQVmpqaePvttzlk/6q42lGjbh0mOB51IokJffqFiXTu7Of5l5bSZ8h79B36Hl16vc21N83ib69OYo+9q3j00QWcfkwPbFtx6RXT+PmXjTiOysh0FhaYrQIU0OCmb+98Pv96A+9/uJoHHlrAkqVNLF7SyOKljeyyc2eKihKZQuORvCyJFx4vHuXLIR46EBLf47gxwHFfFK5znXBISTwpbJWk4gUz32TvnSv46OsNKWYZq9aHuODGWfTqHmRo/wKe//ty3vxwLS9/vI5jT+ijNUt5OlqZ4zf4/Jtqvvulhme/Xef6n0gICK05iRHXfMTNuUwggA4l6oIwL5IJlognWlOW0FG8HKW1KEkJ2FSB4QI5UAGJk+dmnbYka+ujHH7bXC55ZBFPXD+Mw/evYnl1hHOun8VT5w9k2ox6zjqkG3n5ZgpzFFdfZ7qSqLWwxLkmaExtr2OunCmHSDzJ88xKGdYmpX6uUcEy9p3DvFqJDKbbaEcEr4ztJ11ZKKcIZOl10r/KVC7Tc5epXsrfpJ6uWZ6zjP20dp+zrUOWfZLST4rvSeq400MVe06tO21XzuS/b8ePU2v49NtqXn17FYefNpmIrbACBq88OY6Fixo56JTJrDcllAod8a9BQo1CNDvImhiyJoawFbLBQRmggt6Z5NrkO7B2Q5jKCn/m9fyNyTS1L4I3/5FbFXPG8b0B+Ng7k3O5toByjuDnUVt7vq39mrFOK/uzRRvZ+s19/8XriMTVIZTW19WPLaZnZYBj9te+r3MWNfDqP1dx0dkDyA8aNNTrELlCqaQoWTIeKliZkp126cLkaTUECyy2264Td98xmg/fX81fb5lJU9iJm3pnfB5c/scIx5ISOJKIFCaFDuqj3HXwaz8PJ2gyamw5FxzTk7MOrOKepxbz90/WJXKquO+3eFtCJMyoXGuQeBZ5bzxJwtV07bFQivx8k/oGbz3ccsrTqhDXMnnao+S5Ck/zFDB56O7RjB1Vyk4Hf0NdfZQbLh9Kn175DNzjS6766xya8nw4PjMlKWZ8rG77++xRyew585k7d24HPRi/Pf0e3atjqUNAyieffEJlZSXDBhfqBzim4vGw40mLvEytUuC48cMPOaIXL748gYWLDmD50gOZPWc/pvy6NxO278zDj8zn5RcmUFHi5+3XJ7F8ZTOHHvUt2+zwCes3hFMH0A5nuz+d1o8PP1nNpVdO44rLBnPIgd049KDuHHpQd/bftxvCPTQcS+rY5n7T3Ugu0HDBhQYtApSeq47SQSIOuPd91I7nVEn+TjgqHirQsSRCKZasaGbPnSoSYE4Kbn5oIf165lFZaiGaovwypYYCU3L1RQMx7ERCJBFTGA1RzjqsG7tPKmfagkbtfxLSTAHlQiddNF3wERDg9wAWUGcjmrR5l93Zr/Ma+KXr9OoCEkvqHDP5BirPxCm1QLqHqiFwiqwUpufFD9Yw5qSfwBT89PoE9t+jEmVILr51Dvvv1oWKPJMfF9Rz2jkDcwIbreZH6SAQ0lG02WFD22BO/pNgRff/vwVYsradXDYTc5Stblq9ttpuAVTS1iXreubKFGeaT3qbXp/p4MQFIy1yqaRRv555fPLceA7ftytFhRYLFjVy092aaajsHOC9V7YjL8/g8D/9SnOh1DmYDKV93ACioHwS0WiDBNGstbBIMFZGMTeEcCyJaQicZNPYLQED7V2/tDalFFxz8SAsS1CQ1w6Dgw4EMu0CK9na6EigkrGNbP22sbdbofaE2m4T2DiKmvooz763hrsuH0ygxIdjGdzz+GJuvmYYwicZObKEH3+twQsrnJxUUY9H8y/b79SFr75ch3SzsfuCJhdePIQD/9CDSy6ZwlffrE/MO+5cLuKfcbNx7/wzJMrS2hMnYICjMGojOqeINw7XQqLv0GK69s7ntgsHMnNmLa98tJZo1HHPOVCWEV/b6tqo5kXCMWREXyLmJBJTgitkdfmZWMJMTQnBTtuW8cUPG7XvmJvXCEOk1HcsI/63B+bS112akuuvGsbK1SHqmm18luD5h8fy1Xs78slHqznj3J+JednobZVR81dcZLHTpK68/fbbrT4zv9P/XeoQtuzdd99lv/320/bFUsSTFwFxhtsxJY4hE/HEJZSV+ykq9ZNX7CNY7KOiMkh+iZ9PP11L1+55dOpZgB00GVEoee2hMSz4cQ+6dgnw/MtLE50nAZT4xmvFyXTXHTrz3b92ol+vfI474QeitZGEc1s6Q+si/LgUIimxU6JTkcjh4YUmdDUsyQeWbIphNMW0A7wicUglHQ6mITDcOhvrYixe1kSeX7JwWROf/7iJ+QsaGNgjj932rqRztzwde92vDwvZFEU2xJgwtJj+/QpY3xBl8ux67QhvJbQhwkYDFIAmRVOjzbUvLeXgm2fz4/x6VMhGhG0cn8TxuVF5TOmqdfWncu1IlUDnm7G09kQJsAXMXNLEPudN5YqHFnL3FUN48a6RdHIzTTuWZPaCBo6aVM6Nf1/O2Uf2oLTM37a2I0dtyGaDkC1gaHKlnIHQ/wBY0WNoB2DJ2sZvC1haBSvpZdO/ygg60s6ITExSJqCSvkbtANDpZVor2wKYJGtP0ubUMtFj0vfeurn/91mSJ24ZzoA++ayrDvPWu6vjY8rPM3n2ga1pbIpx4aOLiQ0MQIXrm1KLlsK6AhBAhzwHVJ5EFeh3gVkfwVJgR9th8rSZ+3P12hC33DePI0//ib7jP2LQxE8Yv9cX7HzIN9z7+EI2bNQOfAX5Jhvn7MOl5w5oXUDSXmrnOZITWPl3AJXW9mCubSS3tSVrmN5Xtqak4MfZ9fTo4qffoOI4KCgptfAHTU45+2emTq+hsksAGbVx/GZKXaSIC1f9fgM7poip1HNr0NBi7n1gLPPm1fOXK6dSUxNpMbd4OF+hgZB0c5wo6Wo6HIWxOoJsckN0e/XtBM/hWJKF68MsW9VMY5PNX+6Zz0U3zeadT9e5AYlsrrxpJn99YAHnXz+TabPrEs+OFAkndeFaSEjiWph4WGXbYcK4Mr7+aSNOwEjNa5K0JnHtjaHf6Y5P55/zgJ43v4pOfrYaUsSjTy/Gw2hDBhXyj5e34+uv1/P8K8uxgyYIkaT9UXG+SjiKPXcp4d13392yB+TfSL9rUjqWttgnRSnFO++8wwN/7YEyu8bNnZTPiOdFyXZYHXV8Xz58dyXv/nMltqPw+yTDhpfw0QereeipbQGw/SbhLvkoQ2JGbc4+sjtnXD2TiePL2M7NFpsJlGT1iZHg9xu8+Og4dj/ka558aSlnndoXJbVdZfxgAr3RHNc2Mynsn/ZLSQCQ5PjhSuqsysK2NUNvSoyGKE6SNE4DFI95SKxNebmf6toYnTsZHHvOL3z5fTX5eZJP/rYdz/99BQ++toIbT+hNrNAHUmAH9Pr61jTGE1YiBSJsc+upfbj+uWWMG1SIypOIqEMExRtfr+f72fVxMISC0/brysUnB/nbv9ZwxbNLeP/h0Yioow8dSLUV9e6vm/ApphR3v7CMqk4+7np6CfOXNuE4itOO6MGL942iuMhH3FbWtT31WZK/f7aeyQsaeOrJcTmZO2Widmk+OvCFmLW9nCPh6M82cxxksR1PbSuLHblHaZK9FvXdtW/TZ6WVNvQ49Ofm+q/oNhJltihCWBZb+RbtZlibjJGH3Bdvu+plWnfveU33V0kZaHbfoGx/Z90/yeWS1i6T74mnVYn/Pwmg6D4FhhBccU5/lixv4r6bh6d0lRc0eOnRcexwwFfsML6MwyaWYwSiiAYHmtHAJKDAj04C643NEjh5JrFCH82OwvJ3oDrTm2/SPF99cwXn/WU6FeU+lq5ojn//wLVbs646zItvreLOhxdy9UWDqN4YYfddOjN6eEmb7SZTm2HFkynH/QW0He0s/TlNritzOG9yoWx9CLLuuy05n9pDLfxb3LHm5xlsqou5jLmIr0PUVnSq8HPVlVvpMdpuFDczSXiYdiaN3bqMn3+qZtx2FSl9C0Ny0qn9WbW8kWuvn8Guu3Rh//26JcITSxFPTYAUcX8DiQteLAO7ixb46dxCHtPuASL452fr+eLbDdxzw1YUBExQCkfBi2+t5OrbZjN/SRNH7t+VP+zahebGGE+/uZInX13O8Yd0Z8zoMpQhMRrCOrmqTPVj0esnEBKCPkEk7KBsJ+7Y7vm3pKxJ0tkgHIXj5cFzlNasODrJ9kO3j+TEc37ml6k1PHrPaLp1DdK5IsBj943hmFN+ZIdJFfTrZCEjNraXvNl9XpUh2Wunzvz5ms/ZtGkTpaWlW/yc/NakEKg2HQZza+d36gCQMnXqVGpqapi43aj4Q+n4jLhdZ0aS+sHu3CXAsSf3i38dCtnMmlFDj7l1LF/RRM9eBUgc7GDCT2Tb3aqoOe9XFi1qYLsxpa0evC0iWZD4+/spG1myrAmfy+hL94ByDJlib6kkYEpsUyYOW0fFXxYyrKUTydnrAZy8RIQaCkgcPC7w0ZVFCvP0/S+biEQc8oIGU2bU8umbE7np7nl88OUGVq1upmuxRalpELYdHMtKOJwptHbD0eELsRUvfLKO0/arROVJMATrIzZn3jaXvKDBM1cOQYYVyi9w3PwrxBxOOriKr+bWowKmthX3JKpJLyAB2idFKSbPqee6hxby07RawhGHmy4exJ47V1DVJYDfdf53hEidqxAcuE9XbrlnHndcNZTS8kDHmVl1NBDZ3P7bAVZyAirQKlhpM5pWDmPLKRFpDgxV8r38dwCWtRvC9Nn5Cx6/cVjc3rwtsNKWY2+7IoBtVr2k39PXaDMBe4t20/tPGl/K9xm0KnGA4tVz9y3AhK1LmfHpTnHpb/J96tE9j5v+MpSr75jLwbtujygGEbCRa2L6TdOINgFzfeOUlWRCqxQ+n2RjbTS13zRqFwBIoy++3cCpF/4KwMZNES47pz9vvr+GuQsaeOiFpfTuEeT6Cwby66w6/v7WSioq/Nz16EKuu3Qwpx3fOx64pS1KH3fOY87h/MhJqNBeoJJFGNIuR3rYfKDitZmN2nnPU/ahFLz3TTXDBxXE125jXQRpSAyfQdQLkw8IlSEnSVrfu+9eyf0PzWf8Np00M532TFT1yOeuu8fw5hsruPCSKVx68RC6dAkk5uioOBjw5hWPmFWkcwN5AkAsAxG1iUYdbnpgEb165vHX67ZCCIET0+GLhSU45shezJpbT3mFj/sfX8RBe1SS55ecfXRPmqMOz725imdeXc4xB3dnYv98d16pAEWvV8KiZEDfAuYva2ZgrzwSViRp83XcgEEOichcjuadlDtfxzIYOaqUb97enktumMXEPb/gjRe3Y8zIEnbevoKxY0r55NM19D6+jx6Dl0PJfSaVIejeLY/BA8r44IMPOPLII9vzKPxO/wdoi0HK+++/z2677Ybfr1DxqE4y7hAWt8lszeTD/c0fNBk9rhOffLgGhzRJhqPf52dfNIXddurMUQd23yLJkM89GHaeVBGXUCkpIKbj98u4r4mTiJaRxAwmond5dplJzICVZKMpBHYSgBHeO1gKPv++ms++3sC0WbVs2BDm15l1zJpbx7KVIc44sQ9jR5ex7dgyZs2ro6TQ5I4LBqDq7SQHd73Odp6JiDrI5pheJCH4w04V/PXZpUwcXszXs+uYNLKEfSd2Ym1tlMVrQvStdKOYRR3sQh8iov1kJo4p5eJbZiOEYMq8evr3zmevHSvYY1InGppsfplWw4zZdbz6wVqWrmrmiAOqeO6+0UQjDp0qEoexd7TH719cMgUnHN2LupoIp5zYd/MBSgcAkrZMKDY7/0E7wMq/VavijW1LmKDkdmDLtCvQLhCWUs3t12dJhg8qZM36MFPm1HP744u48sx+DO1fkBWsZNWqpM0lJ9CRRauStV5a2YzAYktyoqT3lTSelN/a0qy4fyevfUr0oCx00D5dueSaGfzr243su10ZRtSJRw/0QpnHE7yGlTZFFYCjOHS/Km66Zx5nnNiHQBY/kNYAeSzmMGVaLUtXNBEIGKzbEGbStuUM6F8IwH2PLwRg2KBC7rp2GBPGl3PZBYP45sdq5i9oYPa8evY64UdGDi1i29ElDOiTz1nH9+K4P/3KT7/WcO/NI8gLJs71xKDa3pce5QRY2tij0IZW5b8UqMBmgsxczvoM7SoB9Y0x7nh2KZ+/ui0xIWhstnn0mSWcfFxvkII+vfNZtLiBvr008y7DMQ3ATRmPYJXcdkmJj1oXSHt+pZB6XgohOPiQHuy4U2fuuG0Ww4eXcPQRPRFJmoaUtXCtDByfkfjb0uu+akOI6++axzkn9mar4aUo6Wo0hIGTtD+HDC0GIBxRhBwIWgYoRdCSnH5oN8JON156exUvvbiUww+sYvsJFXGgkmk/77pjJx56egk+X7LUibhWKH64SvByrcWfSUXcpF/fGz3X4kKTAX0LOPGMn5jy9a4YhmCn7St4973VnHxSP5QlMZpj+hm1nTgPpUzBHjsW8/777/9PgBRHCZwOMNXqiDb+L5BQassyUe2yyy7st8sGTjm5L5B4iJUh4w7yKSRbMh3JZdasaubxh+Zy1Y2jEnaSjqKpIcbJx3zDokUNfPrmJMpL0zISt0LZGOHLrp3B5Ck1fPD6BOqbbJ5/bTlPPL2Y/fet4qa/DEU260gccQcxT5viqESEDs+ZzD18hFI4vtQXrN50rubFtQt1LIPeYz5g5+0r2G5sGV07B+jRLcio4SX64HBDLt9w2xxefXM5158/kCN2rsCoiRLpmU+0MGG36qtuRoZiyJAdj7YhXHXthz9t4r43V+H3CU7cr4oBvfP47MeNnHFodx2P3RREy/zxsc6aXsNpV81kU12U8//Yl0XLmnjgmSVcff5AHn1xKYX5JsP6F7D3rp05aK9K8vKt+PxbOLK3sf7xdetA6pA8K1los0FLji/mnEF3DuPIiRnIoUzOc+7IObZznb25vv/leg4+ewpbDSxgxrwGPn5mLNuOLEkkZ83EU2Uad4bvMoZI3ZK6bbXTHsqwh1r1k0nXniR/52lRUv4WiT3sgZTk3yFlv9/32EI++HQtHzy+NcbGMKLZDaISUdoRuFHpcOigzb0KDexii6gpmXjwt5x+fG9OOLpXm9P27t2qNSFue2A+r/5zFaYhGNA3n+ZmG5+lNTNTv9glPr6GhigF+WZLptz9fcOGEO9+tJZfp9fwwt9X8PU/JlCab3LcRVNZuTrEtmPLOOuUvowZUZJ5UDk+uzkz622Ua3V/ZqmbdQ+20lau+yTRVvaftkQb1l5yHEXBuE8Y2C+fYNDENLVvyYjhxQghqKmNsu8+VeyzRyVIgdEUjQsZM75LpODRJxay0y5dGDCwKAUsZpqXcBQffbyGt99ewUUXDqZ374I4/yBtJxEdy0l1HFcS5i9s4J6HFnDb5YMoDpgoU+ggPmbSuNx63v78+odqvvpmA5edOwAzamPWR7XfnCmRUQd7fZgXf9rEt9NqOXjvSnae1AlMI6U9d+G45IZZ3HHl0BSLlBQTfpFklmVqKxTppmxIFtSKmJsXxlY0Kxi3/SdceslgjjmsJ+vWhxi+zUf8/ZWJTNqmHKs2pE3XLYnjJd00BV9+vZ7Tzp/HylXrc9Zo/ruprq6O4uJifjn9ZAr9ufOn2ag+HGHMo09RW1tLUVFRB4zwf5O2SJPS2NjIN998w53XT0qRuMTD6uVA6QfBw/fN4dwLBusN7NLKFU3ccdMM6uujfPnWJIqLrJYHalYHwCwdS8E1lw9llwO+YuDYj2huthkxvISqrkEi4QSzr6QOBZg4QPT3jmm27Feq1LM5fnglXuQegJm3tJGNm6LcdctISoqtRDSQ+HQ0I9CzR5BoVHHYvlWoiAtwfDpcr4hp5zSjMZoIe+wlR4opFq+N8NoXG3j0zwOJKOjZJQAByWX3L2DV+jDBgMGfT+uLcMDxGzz09GKuvWMOZ57Qm8vPHUDAb7ChJsr9Ty/BAcpLfXz3z0nxsSXWWNAqKPkNzLB+SzDSVp/tBis5SEYhR/Mv6FitCuSkWYEtNwXT40r8PydzsHjFtjUte+7UmanvTeKr76u56Na57HbiT9x8/gDOP6m32y4ZtSq55HXY0iSQyZTR56UDKKPgrT3gBDIClPaMU0n48vsN9OoWTJxJeYZ7/xyEl6NJohPLhpSOPmQrRLHFwbt34f1P1nLikT3bfId49+5PV03HsRVvPb8NW29VjOEmrnv303Wcc9WMlDoFBQnT4UzPWadOAU44qhcnHNWL/HyTA06azI7blHPtBQNZvynKPU8sYqcDvuLYw3pw3mn9GDygMLWBHPZm8tjbpBw0n+09j9qrTdncsWXvfwu0Ku0kYUpGDSkkv8Dk+Se3oaRTIN53im+Fo9xoWzLlnM/0ntl77668/uYKzhtU3CpA8Wj33SrZdnwZd941l65dA5x+St8Wfp6a10h8NW16DU++sJQ7bxpOniFQntN7BnIsGc9cP2FSZ5auCvHWJ+s4eOcKbf7tN5B1UUTEQZqSYw+s4ohDuvP6B2s468oZHLB3V/bYqTNSJc54YaNBSHLo4iz7UUm0mXwccBEPb6wMqXUuLrDxGZJhg4v48edNHHNYTzpXBLj1hhEcd+L3fPDeTgypCmA0xSDqIAzXlF5Kxo8vp7aunlmzZjFs2LCsa/E7/d+jLfIG+PLLL6mqqqJ3v8J4iGE8TYpMbPS27Dw9mju7lvIyH53L/FpFaCvefWsFY4e/y8cfreHpe0ZrgLKl5I4tGDT47J/b8/LT2/DRW5N4/81J9OmVR0mhhRGKIUOxuATAi93txfL2wgd7UTK8SBlxcpMmxXOJGIkXwOSpmzjwyG8574x+GqB4Y0q/gH33qaKx2eaznzaifAZOoZakyHAMGdUJlHAURB33UBDYluD1L9dz2ROLOf/4nlT1zKdX73xkwEAIwWs3b8XlJ/WmIGiwcH4DwnZ47Pkl3HLffN59cVuu+/MQ/PkWypQUl1jkBQ1uuHseh+1fhfBCSRvJV2IN4nauafOABMObHK0mPS9Aeq6AbNd/kjZrDLmC9vZEAGuzrRyFBWn3KWt7uc471/ZaiWLVgoRoeWWg/r3yOemInsz9dCf237Uz73y6jve+0MlgdTuQ7o+YcZ0yPL9A9mheOdZPbmNzc0O0GoY10zninckZyqXMPQtASXeubY0am2J8+Ok6+vQIJqICKTc3lAJCClUo3aiDaDFZE4iVNuaKEEftU8k3P23kb2+uSG04yz1XUrBwSSNnntKXcSNK4i+0UJPNhdfP4i/nDchpr2SiG64Yyu3XDae6LsqBJ09mlwllvHz3KO67fhgCxfjdP+fNd1e1rNgO35Wc92dr7WQNnJC9Xtb9llXY184+MuyzTG22J1paivl4Wt1sF8CHT47Db0kuuWp64p3lPf+WoSX+UjuqpwtYPf4lzsM4ip7d8li1oskNrKPaBFtKCgoLLK69eit6dgvyzNOLksBNAjB65+v3P23i+deWc/tNIwjkmUmhiqXmIZIFIO5ckrUrhx/Sg29/qGbW0iYiXfI0iNkYS+Q6kwLDkhy2fzceuHkETc0O51w2jXc+XqstMd32+3UPsmhFc4rgJZG5Pm0MSeGJdQ61BC/oaaVETNfbcVIn5s2pi5c/8bjenHBsbw446Evue2EpkRJ/PMGlx38FTMGEbbrw4Ycftvmc/OdJxJ3nt+RqcwP9f0JbBFI++ugjdt99d0QGaY73EGfbwPHflWLRgnruvnUGj903hz+eMQChdAg7O2Jz9RW/cv9fRzL3u13pURVs1/gyHsRph6E/aDJ+bBnDhpUA8MuvNYzZqji+oURMuYDA1lfYTkib0u3Svbm5Zb3+jcYIRijGtz9Wc9AJ33PAUd9x4rG9ue7KYW0y4+Vlfi46byDHnjuFe19aRqzYF+9T2A5mbURLLA3B6o0R/vnxWs6/YTZGwOD2K4fwxjcbcXxSZ7QN6IAGlimh0Wb9+jCL14T4x6fruOb2Obz29HjGjinThx5w9yML6TfuI6SAAX3zeeCpRdgus5ArKMkEQpJ/T7lfWwg+cnlhbVHo0PT+fiOgAu0AKr8FWMmBKco5LGqObepxtgO0QGbg4l4VpRYH7dqZb6fV8scrZ/DIy8vT6mbqP8s6tQJWWmglMs03G3DI0l67ckJkajPt75zASWsAJT7GpPbJvJfy80z22b0LS1Y0Q8xBbrK1uZcC5RMaoABEFTSho34Zbv/Vgv5N8NztI/jTVTNYsrzJHV9SPxlAanPIxu+TKczbt1M2EbMVJx3Xu8UY4/ORrV8Ygj137sx3kzcSCjtUjfmYgbt8zrV3zuPF11cQ8Eu6lpjsedg3FPX+J9vv+wVFvf9J16HvMW73z7n7kQWsXN2ctf/EOLYcqGxOvd8cqEC7+Kxczu9Wx5Hcp3cZgvwCk9suG8Ibb6+Mm1sng5WMmh1XE5Cc8DAOWGyH4gKTuuqQtmZwmfbkK95McsAdYJ89u2JK+NMlv/LhR2sScxLax/TTbzbw7kdruOWmkZiuVYTRFEWGYkm+LInxJTu7Oy5QMAxBz+555BXoRNqxYj+RgQVEqvKRq+wUDZIwJX/Yt4r7bx2JAs65Yjo3P7SAY8//hblLGmlojMXLprzbk8zcdfAeHdHLsQydZsIz9U/yU/YCBBz+h278/Osm5s9PAJWrLx/KHX8dxWOPLeCPl8+gtrIAc0MY2aRzvMiowy7bF/LRRx+1fu//C8hBxP1Stuj6HaQAWwhSPvnkEyaM+kVLFGJOIglS0mbNdqCsWd3Mo/fN4ZJzJ/PBOys46uje3H3fOAoCRrzu2pVNLF/exOH7V7Vuh5grs9iCMUj9e1NdlLnz6xk/slj/7tpDetIWL/us11+KBMSVchiuH4t3oMioA1Gby26fy2GnTmbM6FKm/rgHF184GDyJThbyDtCzzxxAt25BPvxinW7TiygmdRIo5TeIVAS46skllOQbXHNGX/bfvQu+fIv5ixp4+OXlxEr9yJCNbI4RBs58YAEH7d6F3SaWc83d87jtmq3YZusyrRUxBA8+vYiHn17E8/ePYenk3enVLUj/vgVgkMhI7zE8bWg7cpV6tVdKtjmSuGztby79x4EKdDxYgXZrV9qlYdlM0JIzeAEQgrCCXlUBhlbm8eRrKzKUYYvBCrQDQKTXzQZe2nNlaifTmNoCJ8m/pQMUKVoAlNR1TP3u9huG88+P1nLT31fR2DuIKjB04JMiC7FaITY6EEG/fWz0/21QUYGz2mLPSDF7jSjh4ScXtewrrd+fp9awZl2YEUO1zbYn6XUcxdr14RZhPNv7HPmCBu+/PpHvPtqR+T/vwczvd+PNl7Zl+re7sWbePozfoTM+N2zyrmNLOWifrrz82DguObEXz768jD0O/ZY/XzeDtlw/c9qbrb0rWtt/m3O+dTRQ+a34LZHh8saT9ExXVvqRUrB4SWOcaU4GJ/HM8lKb4UnXZyQOOtKunbav4MvP1+q+0sCMR15bws0Z4tHxx/bhzltG8K9P11Ibtqm14Z0P13Dhn39l3rx6rr1qGFJqnsIxJHaeDk0so44GWSrJf8VJ5CRJFgz7fYJYyIm/G+ygibIMIiPysfN9OlG1JeMmfoZSHLBzBQ/cOoKeVUFGDCnm3quGMXJwmi9EMjAyRdw/LdlPLYW88ygp4WOnYh9HHtSNW++dHw88JKVgv32q+ODdnZg9q4Yrb5hJ4/ByzHVhbdUSttl5m3K+/PIzIpFIe5+S3+l/mDbbJ2XdunXMmDGDHbfeOS7JRwqUo8PSeS+HaMhmyfImFi5sYOGCelatamLDhhD9+xdx0ME9OOOsQQB6o7lSjrraCHfcOZtnnl1Mn175+AzRmh9eRmrLLyKdiQZYvrKZ4mKLziUWuNG7dDZWVxpgpLZhu5IO4W5cZQgdV9z929oYIlLo46Kb5/Cvb6r54sOd6dM7P8NYWz/BDUPwp7MHcNudc7B9BkJqqaGIOWArYoUW7362nj0mljNpYoUGLg50MhWH7lmJGbZ1Ismog2i2MSOKgV0DfDB5I3lVecxf0sSeu3RJaEWAL7+t5oIz+rPzmBJeeGslcxc28t2nO2tzrxwZ4s2hjtR0tLffzbWRbrdduBQdG6bYo3bYw8er5Oq3AjlFHEoZTq4RwnJoO6WfDAxm+hopCSMGF7J0VYj+2+Xz6lUjUswWUit7ldLbyLJO6c9oK/4nkMWPpYOprYSSKftKtCyTAC6tAJRM7WX4rXtVkL8/uw3n/Hkqr761ksevHcrYrYoJd8nHH2jCWtFMtEr7BlizmnHWWyjblQKXhyEquOqkXky6cCp5+SZ771bJ2FEl8QAI4bDNdz9t5F8fr+W5V5Zx1UWDKc43UxjFmK3o1zs/XmdLwpwPdyMnedStWx4AK1Y1s2p1My88Po5zL5nKD7PrOXyXCqocm71Hl3HIixVc+8Ri7n1mCZ9/s4HnHx7LoP6Fre7RNs+hVs6OzYn41er5kuU8yTrGts61LPssZ2pr62R65t3ns7jQ4qTDu/P+R6s5fUBRvGzcj9YFBQiFcOyE1iIpQlXyHtpmbBnX3TSTAw7onugv/fxLFtK6fJG3RqYpOfbwnlx362xCYZvevfK5/aYRGIbAi5aleQqJMh1kvTZ/svMthKFSeBER06kSksMBF+Wb1DdEk97peh87Ja5Pjutvowz3/45CuGM95pAeXHztDH3vZer73lsPYTsoKXUmeg+oSAGOSKyZO+9kYYpjGQiluOL0foza9ytmzKhhq6HF8TJdugR4/LHx7LTzJ5z0x/4MGVlO/oxqnCKLrXrlkRcw+PHHH5k0aVJrT8J/lP4fe2cdJ1X1///nvXdqu5vdpbu7JJWyUDGwsFtEQEwUu8X+2NgtBiqIIIK0IN2duwts19S99/fHndyd2Z2ZnQX8/nw9HqPLzL2n63XeFa5AjP8Fc9QQMkn5448/6NSpEylJRkfAP++NYOWKE3z97UGiY/TkNo2iRYtoLjgvi4zMCB5/fDN33t4aU5TOETfEW3R5621/U1xk5au3e9K+fVzdB9dAb3A94IugAMiKil7nXmg9D+2iTUa1a1IVt2tVbRFSdSKqoiKiaOlJIlKpGbNJx8QHN7F0VRE/f38GObm1CUq9hzNH/uedm8V9D21i2YpCBvZPBlErhD3OyK9zj7J0VSHP394CFVD1EsgKil7H/LUlvDixBXKEDjlSz7a/TyAaJe6d2Iotm0r59PMD9OuZyKffHGLS7S1d2R47YeGneXn8trCAFWuLePuV7kTH6GvtL8GqKnz59UHuvmcdaakm0tJMjLugCTde27z+NE4CfIr9A333dCIqEBBZ0dIOgpz5O+T7S9spcQykLHUc/EOBoEC3trGs/2UgzTNN6HQei1N9ZMUJj5/rJHb1lL2uvaZez18BpOGzDPiYm57/dB3e/ZATxzNeB6+a79TKz/13r+4JLP1tMDPf2MXYO9fx9owOjOpsgUQj1e3ikY0SuiobUpYNIV1BjdSC4CqyhHhcpmNEFF+93ZNZXx7k4gkrGTIwmZycKOYtLGDvgUqSE42MGJrK9x/3pW+PBHA4ERFklRvu28QXc44yfFBK7ToFCkcdJ927gVmfHSAnO4LuneOZfHsrujg8e933yGbmzM3zes2gFxjSOY7LX9uJpMLRQisd28Rw4HAVL762k2mT2tB/1GLMFoWsDBN33NCc26/zXv/qXYdOd6ICgZGVcKBOMu4xpkWB9q1j+H5ePrfd0AJZ1Hurejnic3jZnzjGv6+5b9QJWO0qqqy4tDwEEbfb4hrPe5VRJ4JdoXv3RLr1TKK0ws4b/9uF5IyP4oTzwlcQNGmK6OgLRQVRdTvkUR1/O75HFIiJ1VNWadeIgafrY0ednBJHp4exmv0vOqSRgkcZtEtoj+bVDFgQRAEV0c1BHc+6PKB6xIUDzcg+q1k0d1ydywWXLOPpp7pw4dgmrnZs3SqW665twS03rmLuj2cQEatHsMgYbApDesSzYMGC05uk/BfMMaxoEEkZPnw4sN3bX7ii8tJrO4mLN/DM013RO9S3XDcTskLrZlHs3V5Cxy6JLnd8FZV2Xn9tJ7v2VLB4yXH++WMImen12KD4FUl7/CNAgoIoYLerSJLgNvgUPQzCPIxAQXBNUBBdZxlFEhEBqcLKiXwz42dspaTUxs8/DCLLnz1NgDerRqPEmcNSWbq2mDN6J2o+1R03RZXVMuePTEeJNrii6oKIaLEjqSpfLjjG4tVFpKdHYK6WyUg38effcPu4Jnw6v4CbLm/C/c/s4NabmmMwaUPi43d689Z7u0EQeOmFrjTNiQpeylHjeZus8vRz23hmcmsi4wzcdO9Ghg1Orb8NGnhgPW3RWEQFApaqaGkHSc5CJCsQIGHxzCOIfLwz1d5p1TSq7sNeXXl4Dks/hAUCIC3+0icA8uEPfolC/cSk1nM+pCda2eohKF5rae3y6UWBaZPaEBWlY/JzO7ipwk6ndrE8PLk1A5tFYks0YU8yugO4KarmRl3QJOqD+yczuG8ShUcquXLaJnQ6kUemtKF9u1ia5UYhCAI2q8zfa4u0SyJFZc5v+Zwo1tRBpt3ZymcbBQRHfzltSnq0i+X7X/L44Zc89v0zgsRkI1eMa8KSZSeorLJjt6vExuhYtKyQLssKiYyQ6NI+lkF9k8jIjGD+omM8MKUtZeV2zBYFo0HkSJ6Z3/44VoukuNu0jguEk0lUQkEQa1tIaddA7XHvTVAABvZO4r6ntqM6D+ae73mMeVUQNAmBKNQ+P+Ce7+1bRbN9WxntHSpRKmgaJTXLJgg4dUF8qU3GxeopK7N7v+QpgXCW07mme0iI3A84Vb0EVFSiY/SUlNtcBMVZJ8HxvqpopEpB1C5X8SA9okCrVjHs2ltBm1axvkm+kxChBcJWABXR54WNIOJlWK9JVERmTGpNh84JTLlvA38tPc7LM3u4xszD0zsy9sIl3DLxH96e2ZXE41WIpXaGd47i04ULmTFjho9C/Yf/iwiZpCxatIjRo0ez7O8iOnaMw2iUMOh0zP7xMMlJBq66spk2MRw+sl0uhRWV9k0j2bGllM5tYzWbDVXl/gc3sm17GWPOTOPOG5qHh6DU/K0OggJgsyuaUTkOKYnXc259Vfdi4W1ToqmsKXw/v4DJj25h4MAUvvqsP1FRDY6ZCWhExS6rmqQEHIZ/MHxYGq+8upP+XeJRBU3PVNELyBaZ1f8UM2JIKq8+2ZkqRSU2UocgCDz05BYOldiYMK4J85aeIC5Gx9ffH+HK8bkAZGVH8vijnd3tFUgB6yAbqiCw6M8CVEXlxjNTIS2C1z85QIsW0aGn20ibYKiqX6G4Az1diIqWfohkBRpHuuKZTx3p19cmAam3hUhYaqbvN59gCX6A8HlxUPOresiJ9n3tZ2u+7+9df8+D1t+33dSSW25owT/ri5m/oIDzr1nNAzc0Y+Ll2egsiksKL9hUrewyYFMx7inHlhVBcnoE8z7t45Wm1kcqBw5W8sHnBxg5OAXVrrJrfyVXnJ/Ftj0V9OuV5L+MAeLL93vzwaf7+e7HI1w/Poec7EgiHYEmR5+Vzva/z0Qnia6gd0uWn+Dcy1bw9Ts9GTQwxdVO113RVCu7qvLtrN7oHIfFHt0S6sz/tCAqwUpTAihfUKhrX/FDTrTf8CIfSYkGLFYFi0VB7zheuLQhnBoTDvsOv3FSJEE7nCsqw4em8ePPR1wkBZyqUzXKLAq1byMcbeOKzg6aVMZ5mPdUIXXNPwcJCWAtyc2J5Kd5ebXIgadUoxZREdGCQltk+nWJY8U/xZp6onNB8SBOLtLktWcooPqWvnrCacOrRBno2Dme/n2TmD37EOeck8WZw9MBMBhEZn3Yj6uuXM6g0UtY/P1A3n1/G4mROlavXk11dTUREcE5UjpZ+C+YY3gR0uk5Ly+PvXv3MrbvavYeNbNo+QkOHjWDAC2aRnHP3W3A6dfbIUp0GpMLqkr73Ajm/HqUBUaBVz/cj92msG5zKb980Y+eXetetIHAVLyg1mbp+tsHQQGw2UGn0yafKuJeRDzc7GoJaETFJUZ11BNgxgvb+fDzgzz7ZGcuurCJRmT8VSPIA+3O3eV0aR+LqtM2IIui8tb7+7j0/ExMJok9+ypo1ibOFVhJFwlLP++DYpRQjBKxkkMCpKp06hBHXrGNnu1iefPzg9xxVS6vvrVbi4yrq8H0GnDA8mz3NWuLGNg7Eb1VxQZ0ax/LurVFjLswO7TEG3rb/i9ESEQFGpesQOOqgoUR9UpBIDjC4kq47nx8wVMfvkHw9XoAajDa977fqdNQvgYCUacSRYEePZPo0TOJIUPTuHvqOt759jCTLsvmqtHpxBhEBJtDIm9D062vVNBFW5GjNC9FLokL2mEKReX+GVu4+LxMLhyZjqDA6vUlxEeJKB4B6BoCSRK4cUIzbpzQzOfvkRHeW+jgvskU7T7bW73QA4IgMGJomu/M/MyFeokK+CYdJ4moQAPIf33v1ISsuqUcNcvnVa7ar9oddqY2RfN+7elIxfWeJKI49nyv8no+g4CgyOTkRnHosNt7m4twSIKXPYpTs8F1yHdqlXikn5lh4ki+mSYOe6da81dyqJr7XI9q9I0okJ0VwWGPstU3j51jRVBUBKtMx6ZRfPrdEa0enipfNSQ8riLIbq0SAdV7XIoe7zn+VnUin3xzkPw8M0891J4lS1O5a+Jalq4YQYIjzERqqolf5w7lrLP+YMaruzCX2OnQLJLEWD0rV65k6NChddbpVEGLVtFwgnGSt8bTFiEt4UuWLKFz58706xjL+HMyeOjuNrz1QheeerA9997WUjPQdjBy0SJrBvEOta51G0u4YeoGXnlvL7fer6n7XHxOJit/G+wmKD7cTLpQB0Gpd8PFP0FRBQGbTUHviH3iyqemfYpTjOzwcOUUD8uCwLwlJ/jwi4O881YvLhqXg9NuxG95/XjF8vXZtKWUTZtKGTc2C4A9+ysZPW4ZDz+xhc9nH2Hijc1576tD2i2QU8Tr8J0uyI7NX3QTrbx8M+kZEah6iUvHZmGxKFRXyTwwYzOKcyH0Ie4OFDU9Pu3fX8nceXn0aBWtqdZZZOb/eYzB/ZNDSr8WGlBWXwjZ8D9QAu2JIPMK6eAVQrlC8nwWZD8E3F7BlsPf+lEzf7EeD2/O+nh+fObn5xNA3gGjrjz8lNHbm5fH+lXTw5XHjbMvghKqFMXX+/36JLF00TAefrgjH/5+jNSRf9Hn1nV8s7EEOVp0nCABIwhVWgRrWVYRrYrmodAsI5bb0B238uU9bVi6spBNWzV3pqKqUnjcQkJceKTXocAfQakXde5t9YwTP7+H4vUrWNfE2jsBjGNfcynQ+eUsgqLWHos1SLc/tcXV60to3jSSrdvLeG/WXh64fz0LFxV4tZHiiPXmIl81Toqu+eT4REbrKDPL3vYtHgEevQzzde74LF5pAcUlNvT6Gg3voSaveccSXVoUtRtGcF+uAtVWlYoKu+9nna/4inkiCiCA3mGT4rJXUdzxYgSnN1dZQbCrtcin086lFil19p3j3LR9VwUTr2tG08wIJozNoHXzKN54bYfXK5Ik8O67vfl+9kG2H6zm7HOyGNQljsWLF9dZt//wfwchk5TBgweDimsAi7JKSrTkihEi2mS34ZROm1xlCFx25zqysqNYs2goO/8ZyeRbWnL9Nc1plhtd+2AR1O2vn++DOJzZ7YomSXGm51x0nPUQBEcwR/fit3VrKc++sI2+A37njrvWctfENgwZnBpwnoHik0/306FdLFWVdma+sYuBZ/1J9+6JPP5oJxYtOUZUgpGyCtkV5dlV3gid234FrU6qJNCrRwJz5uej6EX69Unm2AkLL0xrze9/FHDPfRuCKltd7oedeV5z/So2bymle/NI9lplRl73N3FxeoaPymxo09TK61TjZBGVoMlKgAf32nmFSFYCTT+U9vJ8v6528LzwqCcfT8JSZ32DOVz5IxahfOrKv6461EdOahzmXN97pOmuj3c967L/qws6g8SFF2Tz54JhbPpnFFde3Yy7X9xJ7+v/Ycb8w+ypNFMZBc/MPkKzUX+R1ON3LrpnI3+tK9ZulU0SO/ZU8vrXh0mL1THr60OgqpSX27n+ka306BLPtz8dYcXqQvYdqOT5V3by0mu7ePzZbcyec5Rqs/8I3qcUdYzTgMalr/dOIlEJp3fGmmNZlUQUh81kneQEfI7pjm1j2Hegip27yunRPZEnn+pCfl41kyf+zaqVJ2o977Ll8FU2x/fjLszmnff2OvZVR+wV11xzv+upVqZ6PiuJVJgVLFaF1LQIb/s9p+G6x6VhraDRHnV3XpxWWxSmPbiBSXe0cjsC8CQNjgtjz3Z2Z+ow0hcgJclAQZHVURa02HHOj6oieJzxnO0tOoiLKHuL4zyJmxPxsXpKquwOtTGRhya24t1391BwwuJVphYtYrj11tYIAljSoxnQN/a0JikKQtg+/yFEda/ly5fz4IMPokTudHt9kERUR5wQp2te5+29aJEpOFLB02/tJSpKx3OPdHAZmGmGaDUy8EdOArVD8bvw+tmEHem2ahnD7r2VHC8wk5pk1IzJPNwpu9MQEWQFq9nOZVeuoEP7WKZOacf552dhNHrcdIRRBWns+Vls2FBMh74LaN0ymu++GUif3kl89/0hzNWam+fMZIM7Vo1H3VyBlZyQBPr3S2buwgKOHK4mJ1HH9OubMu3ZHfzyWle6XrSC669rrnlWa8gB0qONo6J0XDI2i25jmvDglH+ITzLx7ezeiLra6nANVgEShbC0fai2KVCPqoU/hFDukAxeg7RVcecVZHs4+z+AdwJqrzrax3MNqLM9fI3nOtRsar1enw7+SYZvm5Ta3wXqTKTm7wETlJr5BbFuZGZEcP21zbn0khzmzDnC3N/y6HzrWgA6tIvltRe7kZ1pYvbPeYydtIFp1zRl2nVNeWXxMR68IhudUSQyxYRgVxjQM54PfzzKx98c5rc/j2OxKJRV2OjSMY4mGRFIosDsX47y7Ms7eP/1HnRsF1tP6YJD2AzQ61DTDMVOpU71Sn/vuLxYBl62estXD/ySHMH3OAwkYLPzuz0HqshKN3HlZTkoEQZUQeDyK5tx2eVNefihDURG6ujYJQE7AharQqTj0H/gcBWHD1eBrDpUebT/IyuUV8ooqm+CXzOgtWhXvFXAVJWSIivrNpZgipC8VcHsit/10DnGXBepDvU05/NPPLeNu25pSYvm0e70PHfZGu1Ts68EVeXx9/exfmsZnVrHcPYwo7tPnc+qmu2r6/ymqNppUlFxOhdywUm0RM0LmBMWi4zJJGnq6zYY2CqKcwclM2rkH3zyaX9XgG2A9h3ieOfd3ShAv16J3D9zNXa7HZ3u1ElM/8PJQdA9XFlZycaNG+nGCwi2eFSTThvAsoJotiMoGlEBKDlSxZx/SpjzewELlhxn8MBk3p3ZzcsDRsAEJVAEoG7g7zDRrFk0fXsn8dmco9w9oanDSM39riArCDIoRh2CqvLl14eIidHx2af9Xf74/ZXFLwJczPv1S2He3KFUVtoxGkV0Bo0MWayaC8Qnnt3GzPvbIkfqvW5tFKPksxyqIJCTHUlVlR2S9ZASiSAIZDeL5rKxWXzw0T5eeLZrQGXzgp8622WFMV3jkBT4bXUxTz7aichovc9nw2KvECai0hCcTKICQR6OQpZYet/0BYQA69RQouJKp8bBpd528XegrkMHPxCE/aDmN6N6SIkToZITH3kEejEUDKKjdIy/LJfxl+VScMxMRZmN5s2ikByHowenxHLeuZmcP24ZVkVFXyGTJUpwVEAVrAiVKmd0jefSszO444ocurWN0W50rQpE6ZHKbKh6AatJ4rF39nHG6MW89mwXrrw0p8Fl90RI87EO+AqKHHaD+jouFOq0U4EGzxO/CFS12wk/ez+igKKo/O/D/VzmsBN1evcCEEWBRx7tzD1T/uGOSW35/OO9WMwKdquMLKvo9SJnnJGiCW9UpxBHQBBArxOYcEWuK+4IUMuW5dgxM4v/LODMszIQRfhr6XHmz88nJlpHbKyeDu1jufOO1t5Vrzf4p7ueqkNNTLOVUbHbVVq1jPFpfO8qX4257jmWdu+tICZKx5cvdUEUBBfJcHo9VUUBsdqOEql3xEtx7Nd23JIeRUUQPNS7HGPSU4JTVSUTaRS1ANMWGTUpgref68Izr+9i5IhF3DOtHXfc0QZJEkhLM1GQb2bvoWraNo9GxM6WLVvo0qVLne10KvBfnJTwImiSsnbtWtLS0miSakK1yC49SNGi6QoLNoXSUht3vL6H7+YX0LlDLGePSOexh9prEcs9EA6CErQdSs33ayyEV13VlGef2cqk65q5fhfsCgiSO8Kqoi1IBw5W0a9vsm+CEij8vevHaC8qxvtgL8uatKdl61hi0yJceq9Ot4eCrBnzuQzfPLBpcyk3XNSEfbvKyU4zIklg2F9Fh5bR/LGmOKz2AoPOSOGaGVv5aOExZBVMkToURW1Y2wVSrgYSlZCMyD3fD5WowMkhK1Dvzaj//MIfYyUgd8U1x0yQpMUTQUtdXIkGQLoaOrYDnH91qrvVR0x8PVMPQQkL/BjgOpGWbCQt2eiOoaWAikrHNrF8//UAzr3oLzq1iYFiRxqigJIiMWduPvdclEmnppGaTr0gIIgCQpkNwarwvzn5bD9UjV2FNs2jWbaqMOwkxYmgybIveNgZ1E6/jrWpLtJRn1TFx3t1ri0hrh8+EaC2hGiWUSJ9H198STWmzNjMgr+O8/rMblqcEtFbJVJnkHj62W5MvXsNVdUyH87qh1VWMQra5aTnOu7Vfh7t5FJpcthrVCLy8ms7sVhkhgxJ4803d7JtRxkjzsrglZe6ueKC+KuDICt1zhFBAUFRNBV0z8ujYKar5x7pIBELFx3j7EHJ2kWog5w420pQVJAEZJPerQImqS7JkPNi1580y9k+AHq9SLlZJckocOM9G2jfPIpYvUjnVBPvTGzJjM/28+uvR3nrrd506BBHnz5JvPHmTl6Z0YGeHRJZtWrVaUlSwqWq9Z+6l4agScqqVavo06cPYnUhqmB3eWpQVJU/1pdQbocHn99Bs9xINiwfTrbTW4UTLhFojYTrW+ACvS2s9Yz/20Jf6N8vmd37Kl1G9K6FQlZQdZKXuNZiUdAbGug+xh8CPOAkJxmpqLBz4oSZohIrCSkRIGoLqigr6Mos2ONMfPPTYdb8U4ygqChAebmdqCgdvyw9wR9/HqMwv5pzzkzDnmEkPVrixAlLWMrnxKQ72/DiSztY9NcJzhuVzo23raG0zMbIs9J56MEO2s1PDYR0wPdVzn+jRAX+FWQlaMlKkCpgEIBEzddYDLDN/K0hIUtfGhH1rndBXMb4lK4GQE5CktD4Qz19JDgOTa6+cOTTqUMc3385gEuuXMF1v+zntsuyaVKlUnrYxryFBZw4GE3bFBMGo4RqFEAvUmlTyLcorNhcxjNTW5OaYuTh1/ew90i1/wKEGQ2al/VEqdfSPU3IiuvhAOZgsNISR9l8EZS6xvgNVzXl98XHee/jfTz4YEd39i57D4iIkJgypR3z5uYhKCoGSQC7ZgQuOtzFqaJ2+SfaZBS9f9VuVYCZL+9g6JA0+vVOBGDIgGQmT1vP1eNz8HTf60USnERIFJzhgmrXyaVypTnEcXrWAu3SMi/fTIVZJipSF7T3QsEmk19oxeB0/iAKWrQFm2eHK+BwMCTYfYwP0SMIpmcdPdXZVJWRw1O5Y/I/NEk3kZpk5NxBKejNdvYeNlNSYKFPl3iOFFsZM3oR380exHPPd2PUyEU8eE87enSLZNWqVdx0000+Guk//F9CSJKUXr16ge43lEiJ6mgDqzeX8uwrO1mzroRMh87npNtbIYpuTcg6DxoNlaCAf1Gvn2f8PRfncH9XXm4nOUZTZdP0LmUkWUF0GrzpBCxmmeiYU6sTmZZm4mi+mcnXNeWtj/cz7d72lBRZEHQicdE6bAkm/lhynKPHLTz1ZBeXQZuqqvw6P591G0t56fFOrFp9gkOHq1FFgZRkI8eO1yApDbwVFkWB5s2iSErQk3/cgsUi88KMDixceoJBQxfy2Ud9GTYsvdZ7pwtRaYieNTRQhe1UkRUIibAERVYgKOkKBNiGgUgo68ozwLuHcKn0NCQqus/0AlwDtbx9PBsiQQkXBK8DW+3fu3VNYOHcITzw8CZGXL2aqmqZ3CYRvHZ3SyLjDIx/eRdRJokPZrTjq1/z+W7RcUx6gbceaEtkghFVJzF/yXEm3tIyxPIF9pyvsodityLYFU0CUGdeJ5+saPn5K3RoYyOUcVaf6mL7NrF8+lZPzrpoKZ07JyAZRH7+NY9u3RKwWBXGXZZLapKR5s2j2bO73OEMSHHd+jvXf9e4FL3dDHuXX+CRp7czsH+yRlA8pIYjzkzj/Vl7uf76GuNOFCgrsfLyKzswmzU1s7OGpDJ8SCqS5KN/nJKgGkb6J46ZmXp3G975YC9339Ha9yVtHWqCqiRijJSotmpqXK76S4KHh1CnRETVjPUVd2BMQQHF00W0p8S0BlGJipAYMyKdKy9oAhY7OpuCWGGjU04UQneFm0R4fa8ZvXqA8879k+9/GMygM1J4fuYOBnVP5Lk31/iuxynGf+pe4UXQJ+yNGzdyySWXcPcn7/Dp7COUlttJTDBw0dgsPnynt+uQ7xP+pCgNRQhqXv7gdANosyoga5NP8LjpUHUiikFCFSUKCy3kNo1qUNHrglPMXNcC3aZNLJIksH5TGWVlNl59YxePPL0NgCW/D6FLmxi+mn2YN1/vod1AIboCUo4ZlcmYUZkgK8Qnm9i8sxJVLxIZKXm7LwzDQeTdD/awd18l+/bDNVc1RdKJTHxgE717JBAfp8dqq+Om8P8IUYEG1iXEOjRIR74B0pWTEcEegiR+dY3lBrRtoyHAuReaB6fAyIn2bGDp+iuHvwOdr+cgsD7NyY7k01lakMf8AjOPPbmFa5/YjiSJnDMqnXc/2s+WvRXkpEfw3dMdtTgsegHZscYfyTfTpmUAwWS9yhfU417PN2SsqDox4LlYr70KhI2saPm5/w5ljWmwumId73iOuS4d4sjOiuLTLw4QE6fHZlP59NN96HQi7drHkTo0DUEQ6No1gS++PMDlF7vjd9X0VuWEZzvbFJVJU9cjSQJDh6Ry1tA0F9lRHJKOUSMyePN/u1i+7DgD+id71efTz/dzySU5tGsZjV1Rmf9bHrdPXsek21vy+8ICEuP1XHxBE4xGibx8M598dZCSUht2WaVr53iSkoz8PPcoERESefnVvPTqTiZP9LZ1qSU58ZxvjvNNUqKBarvqlvbIKoJNQRUlFL07NpziIC2exv6qTkS0aYEhtWDTtfcsTUqkeeKLMUkIdgV9uQ2xzKaRv+MyaqKIaFO5+vJmZKaYqH5pGxeMXcKEq5uxaPExbp3QlG3bFmOz2dDr6zhzngKomqJ9WNL5D0GSFLPZzI4dO7j3nqsRBIGvPutHTnYkKclGl2/4mkuY542Y9m/t/67bpBBEwuG4dfS32DldEFtkVXNQ4fw/uCsnClhsCmv+KWLcuMbRZw4UUVE6Bg9O5Z/tZUiCwJp/irl8fC6ff3GAPxYdI0KCpDg9oooWCMolGfK+ldmwqZSuneIQFJWd+yrdkeDDdFN60UXZPPX0Vnq0j8FuV/n4w758/uUBXnt9JycKrXz2+X6Sk410aB9HRIQfX/ANRZiICoRuowKnRqoCDTxMnExVMCdCJC3QwLatC+FUHQxxbtV7UKtLwuLvt2DISYjwF7zS79jwY5dXk/AIikpGipH/vdwdRVGZu7CApUuPA7BpWznTJrZGidQhmmXtNthR18R4PcdPWIMofwAPOQL9hvy+38wF778DICpanqGTFfAxj+pZfxo8XkKRDvp515dnuoR4PakpRi64oAmtW8Yg6kV0kkBktB5ZVpEkgQlXN2P69I2UVtiJi/ZWmRLsqvvSxzNoIVB43ELrFlFMuq2VFqvMA66xD1x1RS433raGgoJq+vVLJiM9AlWBw0eqaZqrXXrqRIGzR2bQs0s8P/+Wx+D+yVRX2rl/xmZ0OpHKapn7p7QlNlZHVIyeVX8XsW17GS8/35Wff82j4JiZ5StPuOrka86Aj/4VBHbuq+KiMRmOeooIimZrLEgCILk9ujrHWK16qoAIogqu817tcbNxaymjBqW4y6ACNhViBFS9gGBRkWwyQ89pQnmZjR++PcDLr2hxVL6fl4dOBzt27KBjR7f63n/4v4eglpStW7cSFRXFuIuyWfLHMPr0SSYjM1IzsHLqH3pMBFlWKThmRq1hYBZWBKLmFQQEQaB9u1hWrCv2IiWqTtQi3eq1oEqzvjhIdLSekSMzGpynP6ieEe3rwLZtZXTqFI/FrrB+cyk9eyYyamQGf604waAxf7FmQzGiTXHfBtW4aaqssPH7wnw6t4hENMts2VNJhzC55nQa3GVlRnLbra1Ysb6U887OJCnJyJ23t2bR70Pp3iWeX+bmMfbCv7jp5tW+0zkFNgB1IRwxAXzGlAkUNeZa0HmHEmcFCDTmSO38Aog/UhOea0qQdfUXFLXBqFmmhnzCVYd60q2z7evoy2BuuIOBZ/wHX4foQAimv/dFUeDss9J5+tFO7N44ilYtovnoq0MU6XXYE4woETpNQq2qlFfKFJcERlLqJBiaX1pQVaqqZcZcuozuQ/9gx64ySkutrFpbFFAeQSHAOVjvfKtnLIY65oJCXWM3kLlb491aY93j3bFjMliy9Dhzf8vjm9mH+Prrg8z6aB8337KaBx/cwJQp/3D77X+z/0AF69YWUV6qjY/V/xTz069H3UkquF3vOsbgsuXHaeO43PPl1tcZ0T02UseH/+tFkzQjj8zYxJ9/5FNVbkW2KUTo3eRSUFXSU4zceHlTuraLpV/PRGY+1olnZ3TgjRe6kpUZQUy0dgHZr2ci117dDFGF80ZnsHdvBXq9wDvv7XGl5TXvHEEZXeX3KO+Avknc+/R2FNEdEFrViy6HA54EBcHjb89LQNURT0VWKC+z8vfqQlSPMhSX2Vm3voSm2ZrNsioJmtdXRUVO1Gu2LlYtFotkkbng4hzS0iIYPjwNgOee30ZCgomNGzf6HxenCIoqhO3zH4KUpGzatIkuXbpw79SUOp+rqJZZtbqQR5/YwqbNpfz4ZT+G9E/2kpwIiuDlvs4v6pKihHJjGAAuHNuEr3/K4/IhKW5vWQ6dTEUvoUoiH356gMl3tXHpi4Ydihrw4p9fYCYh0cCho2YqKu1ccnEO10xoDsD69cWMGPUHB7aX0tSxgCoOMWxluY0PPt7HoQOVTL2mKVEWGaHKzsad5Yw6t0kDD8E1bm0UlalT2hIfJfH+R/vYe7CKQWek0KppFAvmDuaCS5YRF63jp3l5VFZqRv2NgjBIUzwRLhUwCMPt/79AuqLlGaSExQlf4zFYO516DnYNVisMEo0V+DPYdbX2+6Hl7+WKNUgE7M0twHdTEg0s+HkQl169kntnbOaN57ugAwSLTFGJlYLjFoYPqnsvqxce+R7Jq+bGu9dhs2tOV35dUMDCJcdZsqKQHavOIiPN1LC8fCGAORiQ9Lc+CUl9a1SYJO6eeflFMPt+jbTGjc3ilXf2kJxo5O6JbRwECO68ay2PPtwRg0FErrZTcLiS9z7ezzffHkTSiXRoG4uiKPyx4gRDByTXyvfw4SpW/V3EC492QlU0j5uCrHoRLFdgRSDSJNK3RyLvfriP48fMTL13A6Ik1JJwOM9MrhglooAoiK48vKoqu/vmmRkdmfHMNjZvLfXWZHH+rbhdCnsGegU4f0Q6+/ZXknfcSlaKAVUnIsdI2sWWk5TUkOxpmjFa/VTFPdYWryjk1Vn7iInRMz3ZSDOHevwLr+zgsfvbIaFJpwSLjGBWwKYiFts0kmIGXZUNUVYoLLMTYRC4/eaWLFxYwNuv9WDhkkI2bdrkZyScOvyn7hVeBHUS3LlzJ23btkUVirzc8R08WMmq1YV8890hjhypYv+BKlKSjYwZk8mWraVkpBj9evMKVFcZ6t44Q9HJ9ofxl+bw4sztbNhfRZfmUWDTvGfIUQakKht2o8SBg5V07BwfVLrBwOU9JICyDxmUwrc/HGHHngquuSKXSA/PJ127JjBkSBo/LMhnSnquFjdFAkSBm+5cy8NT29K+VQyi1Y5aaObxjw6wen0JTz/XLeSye/bnD7MPodMJnDsmk8hIHRMnt2NG8nfMm5+PIMDbb/bkn3XFLF6qRfyVJIEDBytp3y6udrrhsE2BBqlM+UI4VMCgHjWLQNDAeoXF0B5CVgnT8g6y7GEgLl7lOZ0kdkGsWw0lJe506nkgCMIQTFsGOt490/b5jstbk5Z3fIyOd1/rztkXL2PSPet5/rFOmEw68neWa48FKE30NTcURWX33go+/OIgsbE63vpwH6OHpzH/z+McP2EhLlbP3gOVAPQd+SdtWkbz/ivdvT1eBhm42C/CoQIGAZMVCC+hb+j+HahnurRUE7Pe6MEFV65k7m953HVna+bNz6dr53iMgoqoqugFleYpBp6c2gZVgAqzQrRDHWzSQxtp1SKa7FSNcDrHw1/LTnDp+Vk+y+Yk7s4DvuiQ5N02ZT2jR2Qw7txMzhudwX2PbfF+UVEdEgmPwI4Od8CC7K1aL8iqiywAqKpKQYGZzMwIikusJMQbvMmKrKWL4wK2ZluOPiudZ17dySuPd0TUi94qXh75uNNz/N+mxW1zqvMP7BbHD79F0LFTPBarFqHealWwWxUyUkzgiFovqGgqXjYV9omQJWM/akKqsqHoRTZsL6dX53jyj1QBsGptMS1bRrF+w06fbf4f/u8gKJKya9cuevbsydZt89m6tYxDh6v4fUE+a/8pok3rWC64KJtVK07w4es96JhpYtm6Yr7//hCtW0ZrM8rLNiV4WxQvNJIUBbQIyKNHZDBnWSEdO8c7pCfaJJUj9RQWWqmqksluEll/YiFCMQbWNTabwvKVhWSlGTl4tJprb2rl+s3ZDuMuzOHpp7dw41VNiQC27Sjjz8XHKCy0ogra4r3riJl7pm9i18Eq5v0yhJatglf3qnlDXlZu4/obVpGQYODcc9wLeGysnvFjs3jvswPcdKu3hw6dJFBWZuekoBGkKtBwsgKnzm4Fah9UT5Z3MC3vBpIW8L82NJbKaUMRwnoV8BoXLnLiRBAS3rA4uwg0bU+7AYcajrNOOZkRfP1eb/qOXMzBI2ayMk0kRErodQLFpXbiE40BF8mZZlW1nctv+JtFf50gJlrHmQOTefrhDpSW2ykqtTH39wIeemorF5ybxR03NKesyMIX3x9hxLhlLP1lEInxekrKbNjMMmkp2oHXUm1n175KyirsVFbLmG0qRSU2Nm8rw2gUeWJaW00F2G+j1E9UtDoEQVYgIMJSqyg1yhE0+W+ItLAeG9YBfZLYvmYEM9/czW0T1/L2az0475wsTRJgk9GXWhyq1ipIItEOqb6oFygts3E830xOksEr/81bSznvzDQ8Y4U889IOSspsCGhNaLYq2O0KEQYRq03hnDEZjBmRgWBTiDRIxEbpKC6yEJ8agWDTTv2i4/+efeD8TkFyXfK6bEEcKkIvvbmbKy5sws59FeTnmTWS4mFP4+UC2fmVgksVcu6CAgpLbezPN9M0O8qrXX2uFYIAqCiOINNO43nRpKeyWqZH13hWrymmXYtotm0qoUWzKESzTZursopgURCqHBtNCxVVEtFlmlHzRGwJJvp0T+DOKfuJMImcMyqNb787xIXjcti1a5fvMXAKoYZJVes/714agiIp27ZtY9GiRTxaVUyHjvFk50Ry4VmpzJ7amqRUAyU6EfPxatq1iEYotTB3RRGdO8Qhqu7FM+BDRxBqXnV69ArlACAI9OyRwOIlx1EMOq+Fv8Sm8Prbu0lKMhDVWAbeQRwENm4qobzMSlTzKMaMzKBJzbg0wIUX5/Dhx3vJ7vk7TXMiufD8JlxxaQ7XjM8hwiTy4pu7ef7lnYy/LId3PuhLfLwh4PzrOiy99NJ2ALp3T3BXTVEpK7Px9sf7fb6z/K8zadbMt8edRlHFCbNUBU5DsgINky6EQyXMK8HQJS1aGUKsSzBrQbjGQxjUYMIRgb7u9INL/rRBTWLihHOv8Ygz0coRSPiyi5owoXc8S/ZWsX57Oc+/tpP/vdAt8DZw9MWrb++ltMzOgZ1nExujJ3JXCWvmlbC00syES3KY+3sBr73cg3HDUhDNdoQ0A/3btqHrqkKadZ+P0SBisSpIksBj09pyzaXZTH10C198f4TsTBOHjpprZf34/e3rL1+ARAWCWKdqjr8A5kZjkBKoZy74kZ74QmKCgccfbE/7NjFMvX8D545I19StbAr2aAO6CiuoAoKiHdpVQQCdyPQpbXnhtZ288lhHIkwS3/6Sh6QXqKiSsdgVop1SBkWlpNTG0491cpXbrqj8viCfkkILK9cUM/qsdM0uxOFsoV2rGPburqBnggFFEhEV2UVKBRRXUFM8XSM7yIaiF12qYeYqO4XHzQzuFkfbJiae/2A/zz7aEc8gi5pNoiNtD5UyVRR47d29dOkUxyUXNOGpmTuY+XhHdDoRVVXZtrOcwlIrZ/T2UHlzlN9J7MwWGVOk5nHr4y8PcPEFWXTuEMu7H+6jfeto3nxvH2882h5EAX1elTaePOaqUKSgxgtgQ9P6AKJElQ9mdmX5ikJ27y1nwmW5XHXLGlRVj6IoiIGKRE8C/lP3Ci8C7llVVdm7dy9PPPEE+9aPZOFX/fjw+S7cfnkuiU1MKDF6DhyqollmBKokUBht5O339/LAXa0dAbl8G0n6RBDevBpLPaNb90TWbSxBX1SNaVcZ+mIzgl3lkce3MH9BAeMvy6WszNYoeQel5iGrWG0q6zeVcMMNLXw+oxPglzmDWbVsBJ06JzD7xyMkxumJjNLz9Mu7eGfWPub8eAYvPNctIIISiBH0z78c4dXXNFHsk090dldNFPj8s360ahVDW4f7zysuz6VHtwSysyIwqOH2T33qEA7jeldaDTX8DpORq9PgvkEHW0/j+xDq5Dn+an7ChpqGwaF+QkBIdQqhPUPuxxqGtmGFpyFvfR88DJgdhuuee43nnqPXi3RoG8P7nx7AOPBPmovw9uRWzFtQwOvv7am/XDX6c+uOcsaem0lsjB5EgapW8fyht3FxbiIvv6Ol9+XXB13lVCURQRD449M+bPisFyt+6E/+0qH8/nU/3v3sAFld57No2QkWfdSLPZ/14a+3uqPTubszwqQdEhsDDXZoEei7IcyTgOaCn3HvM5ZajfwuuaAJMdF6rrh+NcWOAMaFFXZe+vQg017Ywa9/HXdFYhdtMq2zI1BklWmPbeH+J7Zw7Fg1a9aV0Dw7knsf38qRY9XsO1DJylWF2BzqTU7oRIHRIzJYuaaYs0em8+wL2xFt2nhFVamosGHQiw4yovW1onfEZavpLcymaLYcDoIgKGjBFRWVjeuK6d0uhgWLjvHTouNs2lLK0pWaOrVgrz1/nG2oSiIVlXYOHjUz+IwUMlKN3HBlLi+9sRtBUfn9z2N8O+coixYfZ/GSY+66ebT9rC8OMvGBTXz05QGqrTL/bCrlzMGpCILAK8924c3399KlYyyJVhmpwoY92Yg92YiSoEeJ16FGihAjgE5AzRQR8jRy5lR979snkTVri+mdE8H893pit9s5fPiw3/HzH/79CFiScvz4caqqqrikzeeYqo2odsk1SOU4I4KssDvfQm52BKJF5rdf88jNjqRHx7rVhoI+WHg8X/PQFg4pihMd2sdy7LiFo2V2suJ02ONM7C0wM+vj/SxZOJTR5y5h+fITzP5mILHxhpDzaShW/11Iq2ZRbN5eTk527ZgtLkM8QaBp82iuv7Y5469cDorKU89t472P9/PzT4No28bRT2FQo/vt1yNcPWElAJv+GUlWjrdkxGZTOXigknvuas33Px9l5jNd0BslrpywkrPHLeOtN3vSt6+3QevJNmgOJ8JhXO9KqyGSFScaQcICIUhZXC96lKeB/VzXGA1XH4QLDSZVp9p+pmZ7BlufBvSHT8lJHempIrz6XFfOuWQ5AJc8s50Xr27Kdw+05eKntxMdJTHhiqaO5FTmLSjg9ns2UFhk5Z6JrRg/LpsWDmnM/sPVbNhcwrmj0pEsMvZIPUgChw9Xkzw6lfxXLNx0Ywu+/Oogik5EV25FNMvY4wzEZUYRmxONKgiIVpmeTaLZsHQ4x4ptREZKxOgErDaZrk2i+Pyd3syZl8f8P4/RPDeS0jIb8XGNt9eE7NACwmY4H9ScCMYrnZ90JQF+/34At01Zz0XXrGLe532Z/sgmbr6uBd1aR3H/U9vo1CKa7MwIR0R4hYRoHQ9Pbk2cw/bTGTvkRKmNp17ZSUyMng5tYjhwsIqj+dVkZkYi2BQUvaae1Tw3ks4d49i8qYTDR6pokhWJ3a6wfmMJ11+RqxncO+xGXSRXFBAc/xZsCqJZRlDBHmdA1QmIFlmzU5FElm8tY9TwNGa+sZu7bm3JeWMyiY+SXHPGReprnp8Uhdff38c1l+U4yL9K1zYxfP71IVBU/vzrOI/f2xZJgPuf2sbSVYWUltvJyDBxRt8k1qwvobjUxjsvdWPuwgIeeXobt17XzNX2kiSgc0hGVL2IWGFH1WukUZBVBKuiGc8Lgvb/CsCiETDJoola9FaZJ25qxgPPbuf1u1uRlRbF/v37yck5taEgPBEuz1z/effSEPA92sGDB0lOTsaUaNQGnaqiGCXkSD1yhI4KBeYsOkbv7gmoOpGPvjrIpednIoRiAOiBxvLmVdchT1BVYqL1NG8axcbdFSiROv7ZVsZd92wA4PeFBaSnm4iJ1jHjsc2nVNf92+8Oce3FTUhOMtC15zwWLznm+s3XRrN4yTG6dY7nxknr+PqHI/z0/RkaQanjRiuQmzbnreWvPx/m8itXADDnuwG1CArAmNGZ9OyRwFMvbueRRzoi6CVefGUHGzaVkBCn5/aJ/7hdNnp4RPk3I6y3/IRRghgG6YoTjSJlCeNBvC4JTKNIY+rJt0EIQ7uEPahuMFKQENdMl+TEiUCMxR1t1bN7AlvXjGDtkmGMGpnBmEe2cFRWGNoxjon3b+Ly61fz8695nDF6CTdPWke/Xol07RjL1m3lnDFqMQv+KODQUTNjLviLju3j6Nc32Su43e4dZfy+pYJbb2rBu+/tYUD/ZExHKpCKrNjjDNjiTdgj9cgmPYpeQjbpXDflyekRREbrNQ+SBh2KUWLkiHRef6Er//wxjIoKmR/n5tVP4sO0Vjb2nAg5n3rWhaCj1YsCyUlGPnm7J4IAY69dzajhaXTpqDluufOqXL744TCCTXZ8FK69MIsvvj/inY6ikpRg4MVHO/HItLaMOz+LqRNbs3JVkSa98ECrFtHs2lnOuSPS+ew7TQrw5gf7uPnqZuhF9yWU6pBuqDqnd1ERVQTFJCFH61FMkqaOjofERSdwpMBC67ZxXHxRE776/jAx0TqMEi5Jo8tbmKqycUspT7+8g//N2svEBzbRrlU0HdrEuMaRLKuodgXRKiPbFPSCdmh85v62XHtpNs8/0oFzRqSz/1A1ublR3D+pDQCjzkrj2Uc70qZVjNdcv+PmlpgiJFRBM94XzYomFXLapJgBqwqlQKWAmqX1qa7UjPFwOfq8KlIjJe6bkMttL+4kJkLi4MGD/vv3FMCp7hWOz38IkqTExsYy8ZntLF5XguJ0RyeJKCI8+OJO7pnSFlOEjpVrili/sZRrL6ub3dbnkeNUqHl54uxRGcyYuZOyapmbJq6lRfMo1q48iw0bS7jo/CY8O6MDX3x1gPyC6lNCVAoLLazfUMKgfsnsW3kmt1zfnNmzD9X5znnnZrF46QmsNoWF84fSvmN8g8iJJw4erOSqqzUJyuIFQxkwON3nc5Ik8OKL3enTO4kvvzrIa2/s5K23d3PFORk8ek9b8vPNjabaUAuNqbrSyAjrHAgjWYEwkBVPNBJp8YdAycypIj3hbINah/7TFMGW01/bJyQYaNEihnsmt6VXjwS+W1pEmU3hydubc2B/JY88tZVzBycz6YZmrPy7iPRUE+s3l/DktDZMe3gTvQcvYMTwND59pydZmRHaDbdNRrLamfN6N36Yl8dVl2Qz+/N+zLq/DYJNRY7XY4s3oRh1bpf2OuehUvQup+iITSEKLnuD6FgdZw1J4amZO7nrgY0UFVvC0KLBoSHjucFzI4C573e9CSQPUcBolHjtuS6s/qeYkWemg4MkpGeY2J9n5p9tZRwrtCLYFXJTjKxYW1yLEDoP/oKs2Y706BjH2vXFtbLr3iWepStP0LZVDEWlmsr44bxqunWK09QV7Y6Du6x4kxVJRNVLKEYdcowBe4wRVSdoIQUkEUFW2Lm5hFijiGS2M/yMFMaOzuDWe9ZrMUrs7gnkbPuvfjjMuSMzGDUslWcf7sDYs9K0C0e7lr8OlXbNI7n4trX07hTrIlyCIJCVFYkqCrRqHs24czMZPSytVl294skATXOiOHbCguKwWUFRNXJiU1ENApgAAdADUSpKgh7DiWqkUpsWGFIvoupFWrSI5r1H25OTbjjtSMp/CC8CPkYcOHCALl268OyD7Th0zMIdj2zl4+8Os/rvQh5/djvnj0qnZU4Uqk7k2dd2cdNVuSTWoQZV3wLlU5/U+Vt9al4Bor4b+oce7EBEhESfC5cjyyrPPNGZprlRzF+Qz/mj02nXJpbePRP5ac7ROtNpLBw9Wg3Apbf9Q1GJlZFDU/lz8bE632nfLo4/fh/Kl58PICHJv1ebUNr06NFqEhL07N95Np26Jvp97r339zBi1CLionXMnZvH7NmHeOvxjjx6XVO6d0ug2ixTVt7IHr7+xeTEE2En641EVsJqnH0SCctpiUYg8M7DxOlIWPyWqaYHqZqHX8cY8Tf27r69FfMWFTBvZRGPvrOPJukmlnzYk/JyO4/O3MUnL3fly3d7cSTPzMYdFQzrn8y3s/ry0oyOiLK2f4gOWwWpyoZikrhoYBJ/LMhnVJsokqpk5Bgdloxo5Ah9rTXVSVQ8CYkiia6PJ267rgX3TmzFoqXH6TF8EXPmHXXZ4fhrj8bCSSHpQczxcK0t7VrHEBerZ9XaYo1wiAKCXqKsUmbx38XMeHUXqqry2S9HufbCzNp5e9pBqSpGnYDVLLv6xRlMOSMzkmPHLJoBvNMtsUdbCQ5CIVpk7eMgLKrolJhohvKK0zWws8lsMi++uZv7bmmOYNPe694+lvNHpDP/z+PuAI4OfPrNIbKzIunQNoZmOVFEGUXtTOSwwdGCMarceGkOD93ekgVLT7BxW2nI++bc3/O5b8ZmLj6/CXKEDiVap7VxlYJg1dwhIwngCGipJoqIpXakIiuCrKJE67DHGVAidSgmCTXGQMfWERw4cCCk8jQW/gvmGF4EPL2PHDlCVlYWhgg9l12UzavPdqFtu1g+//4wybESQ3omINhklv1TzOp/irnjuuZ+0/K5cAXobjjgQ1mAi2NNdSLPvw0GkQ/f78NZZ6Xz07cD0etFBAHMZoX4KB2CXeXc0Rn86oxE62vyNoLKgxNtHHYkMTE6br53I82aRHD0aDWyXEe6okDXbolIev9dH+rG0rd3Ent2nEtsvNFv3Q4fqWL6wxu55dpmJMfrkSR4fUZ7zu0ah6oXiY+SkCSBkuLAIkEHjf8j5OTfiEbxIvX/K1mpeUANIzwJi69PYyPg/HypBtY43LrGnI81bcigVHZvHMOPX/Zn6YKh5JfYyBy2hI17tdgmOS1iEEWBC8/OwK6oHDxSTdPsCPSKgmi1I9jcHpdEi4w1MZLYcgWh2IIuz4ISI2FLivDpTt65xqqi4B0Py+OSQJAVh62BSlqintVrilj4dT9efKQjN969noVLjjsSa7yxcNIQgrS03suPYPYxUUAQBK6+LIcHnthCWbkm4Vi6qpC+PRKYdF0zmmdH8te6EhavKSYzxeQmMp5nCJdBusqJIitxsXqHVEL1UvuKjJAQVGoTbUkjHpqhvqKRDasd0aa46+SpEiYKiA5CcuBwFR1aRWPSaY0iWmREs52xQ1L4aV4eG7eUMvmRLXz+9UHufnAjsqxyy4SmXkpFzvhDnvNOlUS6dIznjcc68vrHBygttrolKs691I9XOc/4QmvWFRMVpSM2wYAqCdgSHcFN7YAZt0RFAmRQjQLsB8Gioho1cqbqRU1NMkJTlczKjuTIkSO18j2V+E/dK7wI+NiQl5dHRkaGxt71IuhFjhaYad06lttvaa3p0epEHntmG3de34zkxCAM/EK0Q9GeDU9H+rN9SEuP4PlnupKZEaE9JwgYDCK2ajuCTSYpTk9JiceBOlgSUtdz9aRhMIgUHr+Q7787gw1byti0rZzkJAMffbi3/nz9INT2tMoq6zeWYLV6RjurXfZZs/ZisSi89cE+tu2ppH+fJKY+thVsCp/My2fU+JUY9QJV1XKtdwOCvzY7BeTEl5ehsOfxbz+c/IeGwXlA9fw0MuojMQ39NBS1pHd1rGkRERKDz0ihdcsYvvu0L/16JbJ4eaG2f6naHJ54Q3PmLzrGmMHJNMmMQLApSGVWdGUWB4lQNLUvWaGJEMEvvxawM0JkuVlg2bYKqiwOd7F+pAuC6+ZaQbTYkartSGY7UpXNFS9DqrAi2xViovVcNCaD56a35457NzS8sU4VGqDCGZBkNsR97P6725CaamT05StZs6mUb3/N49arcgEY0ieR1786TGKcjra5kS6S6hVA1IN8/r74GGcPS9UkbhY7qKpbKoLHmcPpDEVRvb141SALLrUpBzlSBYHCgmoOHalCqrLx88JjXDA0BanShq7UilRuRVdsofxYNRUVdv5cXsj147Np0TSKmY91ZIKHOn7N/UnVOSSQDkmkKoLeIDHx2mY8+OJOSh0kzmtP9ZTq+JjL06e146Fp7Xjs6a2UVdrddZHQVLnsaCdSo4iaKiJWKagWCcq1OCqoGmFSInQaUTHqSE01kpeXF1Qf/4d/FwImKfn5+aSnp7smx58rCtm8o5ybb26JoheRjRK/LDnOjt3l3H5tM7/pBGWHUlM8HiY1r5DgkVdEhERZoRV9iYVd20pp1yam4en7OMRKVruXeNYXBEEgPtHIuedm8e4n+3h2RgcefHgj/QbMZ8uW0qCKEGh7+hLn33HHGkaOXsSVE1Zg99B9rUkOunRJoHmzKP74fRi//z6MwmIbl12Wy5EIPbc9vIWVa4swGSWaN6vtqSwgOOsQRolVsGhMUuKVT2MdSBuLUDXGLfz/hVvkcMMXcfk/3k5+1QqDkKgnJxn59tO+/PbdADYuH052lnYx1aNzPM8+3IEZr+ymuMgCgoB0wop+UzXGgxUINhk5yoBkkWnaw8gD52bz428FbN9exuHDVUy8cw1H87W4J67I4469TF9mwVhQgfFYJfpSC5LZ7iImTq9Hugorr80+ij5Sh9Wm3bCPGZjMkXwzoy9dTkljucJvDDRA8hkwOQn1XCBqF5CfvdOLs0ekM+qSZazbVIpdAVUv0r1nIl++1p3YGAOVKigmXa01zaWypajsPlBF6xZRrvVUtMku4hEdqeNYmR1BL2E2y0iSgE11l0OVRBSDVMsFsYvM21WOHqhk+uNb+OCDfdz37HZ27SyneYwOwSI7VLZUUOD7X/OZdnUuU87PoFNOJP26xCEIQu0LNEV12cA431dFXDY2AB1bx/DAxFZMeWob5aUWbYwqPtYXl8c9j8ZRVOKjJCbf1pIHZ2yhqMSKPdWEkqJzuB1GI0WOwNkcVxGb2KBaAA+ir0iiZt8lCaRkRJKfnx9afzcSgvUf0kiKNv9nELQkBWDdhmJ+m5/PfXdrnhxUUcBcaef+6Zt4eHIbzXe8D9R1CK61ADWEoDQyeRk9Mp0X39/L9I8O8sbHBxgxIqNR8pFNelS9/4CRniThvmnt2Largi+/Pcxj97Rl9LA0LrlsKRs21Dbc85dWqM/NX5DPb/OOsmzeYLZtLeX3330sGo5Zd97Zmfyz9EyaO9x5duuWwF/LTxAVqSM2RlOLuOiiJhgd/uKDmq2ncGY3tsTElU9jejwLc/s1iprQKTx015SMnaxPWFEXgfkXEps6DaaDIChOREdI9O2VSLRJ59X2F5ydSWqKkVVrirSb8EgJ4kEwq4hmjVQY8ioAyLFkcs+AZK44J5MLx+Xw/EvdeeKJzfz442F+mXOYTz7cw9xfjqCKAroSs+ZStsLmupASbZqdi3PPkw0iu3eU8dbjHYmP1jx/paYa2bNsGDHROs6/ciV5R6sRFJX8vGpWri5k955yzebhJF2Y1IuQYyIFYdMWjn1fFDCZJO6b3IaNy87ELqtMuHs95WbF5V3LaldZtUG7AFR1HtIDjyCLKCplJVZiHNHqnUTDGS3+ikuzeXPWPqKjdYy/+W/m/XGMsy5exvALlzLowmV8NPsIql5yO1bwiAMEsGptEY8/t42XprXh6WtzmTQmjTdvbYGkF1GNEqpeRDGIlMsKK7eX0aVpJKrkJCZaWV1rvVOS5/hO+1t1P6u41wFVhMx0E9MntWbmu/tce4Zgd8d7ca0ZNR0LOMhO2xYx3H9XK558eadGxiJ12DJMWFtFYcsyoUTrkGN0mvG8DZQ2OqxNo1AidV7jWdFLpORGU1BQgCyHqHnRCPhP3Su8CJikFBQUkJaWxs49FXz0xUEefbgDeIgmX31jJ4lxeq65tLZHL78GdP4WrXoIyqnGxNtbs3ZzGbsPVfHxB324cGyTRs+zrMxGZaV/Y/L4RCOjRmbQqlUMW7aXIdllOreN5dLLlnHkaFVYyuCrDxf/WcAN163k9Rub0zFJz/AhqUy9dz2vv7GT4hp2JZJZu/FTnMRLUbnpxhbs3ltB/7OXoNeLPDmjEw/e6yOy8mlw7XDSDpI1820sYtII7RdWUtLIB+ZTShYasZynBbGpj/SEoT/9HlzrOKzWnEO+5pQrjoTXdyoZaSZ27arQ9jOj6NLDtyVHIJptSMdtyFuM6KPMWFtGY482oIoCcfEGJk9pS3KSkcQEA917JjHnh0NEHCxBl29Gv78aKd+GVGxFsCnawddxWEQQ2LHiBIkiiFV2lzE1okBqegSfvtWLuDg9bQYsJLvbb7Tuv5Br7lpHvzF/0X7QH0ydsZl/NpZAPRL5RkUDyElACLOzD2d66WkmfvyiH8UlNgac9xdrNpWCKPDEvW3Yta+CNz7Z73XQd0oinGn06BrPohVFAC6DdFUQ2L2zlDff28tr7+7l2zlHaNE0ijtubM4dN7Tgthubc/1VTXngiS288+l+ELxjbDkJy/e/HOWVRzuQKCsI1TLZqSaUOD2KQcRlby0KHDxuoX/XeDBILvLiRUZsshdh0QiMt0RE9ZCWOG1rctNMmAwiH31+AMWuuA3unWTF431fc71Jmom2WRGsWX4cxaTDHmcEQXDY4WhxYDCAkukwljfqUPQSilFy2GrZUfUSSVlRyLJMYWFh+Pr/P5xWCGgZkGWZ4uJibDYbL/9vN08/0RmdwW3st2dnGa+8tYcXZ3RAkgKUeHgsXMFIUOpM08f7jYF2bWPZtG4UH7zTmyGDUxs9P1lWadPuZ7Jzf6Rl6zmMGLWIOyau4USB5t3L2R5791bQMjeKydc149Yrcvnm7R4MH5jMffeurzP9QKUonouPoqi89eZOLr90KS9Pb8dl47JAgNdmdOCFhzsw+7tDdO42lzIPVQRfBqQtW8Tw58Jh3HZrK84clsZN1zcnLta3JO5k4FQeUmvGhgkrMWkEUhc2e4JGvME/HUnHyUC4pDeN0k411ULC3f/1lNnv3HLcHLviSNTA5m1ldG0fqx0czTKUuW909cfMqHnaRiZ1smJNMHmtqy1axDBgYAoD+iWTk2kiKcGA5Lh0UlL1IIFQJSNV2V1elaQqO6LZTpeUCPRGkY9nH2brjnJEs91lC2PQC4w+M42lvw7ii3d7M3/2ALavPIsDG0bSpUMchaU2zrlqFedNWN14zkjqQogEJWA05n4vCiQmGfnpy35MuDSXc65cyS9/HscUoePG8bnsOeC+/LPYFTbsqODLn/N45b29vPv5Abp3S+S7uXmaREQSKS61ce3d6+l7zlJKS2389u0A1i4cxvOPd+Kay3O58NxMLjw3i6suy+Hrj/rw0BNbyC+y1Io2b7fIqHaVWKtDrcusaipSgKBqH1cARVHAYtM8Z6kOZzmau2LV/XGs257R5wVFrX0ukBWQFfYeqOSXhQWcPyyV2GiJe5/Yoo1Z55xykhW7f0meKolcc11zfl1Twqdz81EMjph7UVqsIKFKQc7Uu6QnUpUN0aLNDUUvoeglJLONGEUmMjLytCIpp8K719NPP02vXr2IiYkhNTWVsWPHsmPHjlrPbdu2jfPOO4+4uDhiYmLo27evlwtni8XCnXfeSXJyMlFRUZx33nkcPnw4LO0SKgKKOF9cXIyqqnzwwQc880gHTAbHpFFUzJV2Jtz8NzdemUuvrgle7510gnKK0NiSHkkSiInW8fxdTenZOpqdJ6x8MreAW279m2++HojoaJM+fZKZ/ctRbhyThlRlxyoIPHp/e7oM+oOdu8po3Sq2dtmDbE9BUbFaFa6/fiWbN5UwakQ6l5+bhVJlQ9VLSI6Nf/3mUjIzTMREudXV/LWTTidy3bXNuQ4aVSJyuhxMG93YvRHqGVZ1rTDipPfpaTKG6kQY1sjGICpBr93OseJn3RCUOg60ihp4O3jcIteFXt3i2biznKG9ElANIkTIUK6ta+JBO6okomtjprp1gqYz72Gf4NmGG9YVM2hAMlKRHcwqSpKInGZALLcjVNmRAJxqQzoROVHHPbe35MpJ61mwopDPHu2AAqAXWbCogE1by7h+QjP0Dl1+VVEpr5Jp1yaWh6e0obLcxnV3r2PEpcv57v1eZGdHucrliUbZWz0MwwN6vDE8ADYQkl5k0u0tad48iusmrePO65tzx7VNkfQCRSVW3v/mMG/M2o/VqtC2VTRZGREUFluZ9ugW7HaVPfsryc6KZM5veQzsk8SmJcPISNfsnfydf/r1TmLwwBSenbmDmY910tTIRIHjJyy8+NZukpIMKCYJXYUdOVVzUqToRVwaQo6ubZEbxTvfHdF+QyMHNdfgzTvLefXDfbTIieL6S5qQEue4JBQEzJU2ys0KS1cVMu+vEwgC6CWBi0amsWJNEaXldgyiwKq/C+nTK0l7DbdqGLKzXqJrnqk6ERUQo3Q88EB77n1sC5foRGSHVzKp1IJq0lxzy9F6pAqbg6xo6nWKUSMum3eU8/77e4iKijqtSEq4VLWCSWPx4sXcfvvt9OrVC7vdzoMPPsiIESPYunUrUVHafN+zZw8DBw7k+uuv59FHHyUuLo5t27ZhMplc6UyaNIk5c+bw5ZdfkpSUxJQpUzjnnHNYu3YtkuTf9KAxERBJOXHiBBERep59/DiiRYeqqJp3CkXl/oc3EhWp45EpbbzeaShBCQmngMCcLFW055/uwqQp6/jrw15c3jSa0X2T6HvNGl6auZ2pU9oBcOklObz2+k4UneBqiowkAzlNIjh0oKoWSQl1U7rvvnVsWF/M1DtasWdHGb/MO4pdEIiI1pHdJII58/NJTTGy6Z9RGoFyGuPVQLgO66cL+fDESfG61aiELkwJ/Rv6+DQcPw1CY9dHFLw9GgWI+vrQ73rkOYZqrCPOcerzcOuZn6+0vYiYOy9/5YyP1VNYYgNZRdWLqHESgujw7lUpIkQpmNvEYos11iYoHmlaquyazZ0IRGptKVbY3fXzICj2ajtz15bw85/HmXhNUxauKWbe5jLOHJCMKonMW3KC11/sqt2gK6A6Dog6g4jRcZkYHaXj8zd7MPGhTUy4cx3fzOpNUkJt75s+b8/DgSCISp3E81RCFDhvdAZZGSYeemIrb328n4Q4PbO+OkSPLvG880IXzhyU4qUCb7bIFBbb+GleHoePVPPzF/21gI013WP7wTOPdmLomMWIaEPl598LOF5kxWpVaNEskkm3tCQiVUAxSJqLYqexumP8CIqKKEJ5tcyRAjNZmRHefaGqlFfaef2j/bz+SAeO5lXz9Bu7adksij5d4unYOoZHXttNbKREt3axvP1oe63sjqE8tDcggGxXue2xrfyzpYz9R6spq7DTp0sc117YRCPNjjElVttRdSJWs427H9tKZKwBVRCwWFXuvmc9cfF67rqxBemROpedF4omJSoutBAZp0enqBzeV8G23eXMn3uUp5/ozNp1qzhx4kQ4evlfi3nz5nn9e9asWaSmprJ27VoGDRoEwIMPPsiYMWN47rnnXM81b+4OFVJaWsr777/PJ598wplnngnAp59+SnZ2NgsWLGDkyJEnoSa1ERBJKSwsJCE+wmuhFWWFDz/dz09z8/jrRy2GiBOBEJT68G+QopxMW5nzx2azdl0xl9y3iQXPdiI1Ts8nb3RnzPiVJCcZueaa5mRkRGC1KuzOt9AmUa956rArFJfYiIqsmwU7N+b62vjbbw/y4w+HmTA+h2iTyIA+iezaUkqv/smUVcpceONamjeN5Psv+rskPF4Bp+o6tPo5HJyOJMSJ/8iIBxrYFo3Wz6fSnuQ0NjwPef3ybM9Q2tbPGhPQzb4fwlInWYE61hY/afvAiUIrpQ71VbFKBouCGiMhygpKtQ6hrYwtzuRVF8FDX9+JXt0SePPdPYy+JscVBwXgqS8P8sWCYwztm0TvznH8vaUMUYChZ6Tw6uMdEWKN9Dorg9vu2cCQUZkgCpitiiu2hbM+qk4gMcHA/kNV2GwKBklAJwrcf0crzrp0BWdftoLlcwchikKtNm80ohIEgiIqwUjMGgpRoEf3RH79pj/LlheyY3c5fXsm0bGtw7tnjflkMunIytBx67XeMeP8OnqogWZNo/jqo7588vl+VAVmPtWZVs2jSc2KYNCIP5k8YzNPTO9AvF5CAUSrrBEU1WP8CQLPTG7Ns+/t4+kprREAVRKwWjVVwYXLTjD+vEwMBpFm2ZG89EA7Nu6qYNOOcr7+OY/0VCOTr851ERPPtJ3jRJIEXn+oHVv3VHLTJU0QRYGn/reHH+cXMKJ/EhZZJTbVxO69FRQXmJk1v4DSMjuvPtoRJc6kSVYEgWMnLDzyxGYuOzeTIZ1jkSpsqJV2nvv4AMcLLZyokIlL0GNTYMCQdJ55pisGWSExXn9aSVIUxycc6QCUlZV5fW80GjEa/QfiBo1wACQmakG1FUXhl19+Ydq0aYwcOZJ169bRrFkz7r//fsaOHQvA2rVrsdlsjBgxwpVOZmYmHTt2ZPny5ac3SSkrKyMu1qgNToc/+GWrCrn/0S18934vcrIiXc8GSlCCVfM63XDSyygKPDy9I0fzzJxx13p+e7wj3bvF882s3lx09SqqquzcdltrJlzVlNse2MS893shAjZVE0mnpZlqJenckFw3ffUs9mvXFjF50lpm/a8nowalICgq05/ZxgNX52BqEs3Xc45gs6t8/FE/YqLDY1dysgjKKT1Mns7qWTVxOkpGGnmMnM5EoyFo7Hr5XSP99ZeP+CG10vR8xoc6mK9x77nX+JwXHu1Q17jMzorg8FHNDlAsskMFyK0kxGo7gk7B3CLOnYbzkCgrtdJMTDQgyyrbLAKtE03oSi0IepF77mjJ0UqF5x5pz7J1JdwzPJ2EptoBWBYEZKOOPbvKaNE2DtmkXUKdNTyNt97fy41X5mKoYbswfHAKf60qYtjAZARF5Yvvj/Dtuz055+rVLF9dxMC+ST7r2ShEpR7VvdplOE2JCiBIIgMHJDNwQLIj/wZIf/yU2zl3+vRKpE+vxFq/f/h2L+6+dwPTn9zKa0921uxBbLXHGopKfKweo0Fk664K2reK5seF+fz8xzHiYnQcPWbmwdtbaoESJc3ldac2MXRuFc0VY9LdZVRUF1HxnoPa//R6ka6to11fT7+1Be99c4hbZmyhSbqJCqtK66aRZOpFHri5Bbt3lPH114e45JoWLjWv1GQjL7/Yjbc/2MvP8/Oxllux2lQuOjuDM4ekUiXD7Q9uYubLPYiI1mt1lRViY6RaB/n/S8jOzvb69yOPPMKMGTP8Pq+qKpMnT2bgwIF07NgRgGPHjlFRUcEzzzzDE088wbPPPsu8efO48MILWbRoEYMHDyY/Px+DwUBCgrfZRlpa2il18xwwSYmNdjyqqOzdU8FVN6/h6QfaMbCPe6ELiaCECydxkTpVJEqnE3nnnd7cdtvf3P/+Pj5/ogMD20bz0xd9uWjCKpISjTzxWGfad/qVjQer6NI6Bp1RJCvdxJGj1TRr4Tuei1qHd5QtW0qYNWsv69YWsXVbGTMebM/o/kkINpldu8qRSyxEJRqRgXXrS2jfJoboKPewCqqtPNVICPwg+685RIbxMH0yIn+fNoSkMSVJ/3JJ2GkDH+tHfW1ba22oq5081Ke80nC6Z/XK2LdKmPeLtSUIfsupqqxeV8IX3x9m5Y8DNNWaSkAWsMcZ0BeZEdopKJKoSa8VNznx1Qa2apnjBdXERErYY40oRgljQRWCIKDTC4iiwIB+KVqMDEVF1UsoOk09bPv2Mnr3SHS5oj17dAYff7Kf+UuOc/bwNK+6HjpcxfChaQCYbQrHCi10bBvL2cNT+WVBvl+S4tkejUJWGouoeKKxzwMe6bvKGMw8b2D5OnWI451XutFzyB/MmNKGNMedoOp03e/khI7/3HdTM6Y9v5Pzh6eyYm0x7z7TGYA3P9mPKVLbr72izIuC9q6DcKs6Z5wW1ZW+15xRVM1g3wPXnJPB3gNVPH1HS+xxBgRZ1TzTKSo5PRKY9OJOxlfZtHFu1GlpSCI33tEW04lKZINISaGVZJOAYtDx1dcHGX9RE6IlUB0uugVVJTZaOK1IiqoKqEEYvdeVDsChQ4eIjXWr6tcnRbnjjjvYuHEjS5cudX2nKFrnnn/++dx9990AdO3aleXLl/PWW28xePDgOsqhulQUTwUCWgLKysqIidUhqCpr/ynmrHHLuGpcE667PNf1TMgE5TRT4aoPp0zKo2guA0VRYPrDHfnl7yL+3FWBrthCn5bRvPtSN+65dz1HjlZz1pnp3DxlPXv2lAPQv3cSMx7fjBrkgay6Wmb0qEUoVoW7bmnJmoVDufPKXFfApzc/2McTt7XQvIHYFabc0oL1m0r5/scjgB+Vvfraz2vx9/9so8YLCRXOBdzfJ0iELSp3Q1zFBlzWBnrRCmO7ucrkx1tayGOnvv5tYPkbO5J7o0aGD6E9guofP2n5HGcBju1Ax+i9j2/lzIuXM+WWlrRKNyFUyxAJJGmekaQiG9asSESHK1fRJiPKit/xVV1ixWZTUB3emRSjjqpm8VhSoxAkgc++OcTurcVavBSnm1hFBQVEVaWqyu2KXhAExo3LZv6CAlQBvv3+EB9/foCvvjnIzj0VVFfL2O0KP88vYNQwjbCcPTyVX38vQFXrl5g0ime8INaXkL0GhnEdCRjOy75APnUg0DNGVLwBRdGCS6uSiKKoVJfZEGQVq00BAZdHL5NBYvJ1TZn54X7uusZ9btu+p5LsDA8tC2feghZQUtVLWqw2R5wb14WmryI621hRwa4gyiqq4vYgJlXZ3c/oRGJi9RSWWLXzhKhJChWDppZuSYpENeiIS4vAHmNE1Qls3FbG0GHpCKqqefqSFQS7SkyM6FJvOh2gAgpCgz/OERsbG+v1qYuk3Hnnnfz0008sWrSIJk3coTGSk5PR6XS0b+8d3qFdu3Yu717p6elYrVaKi4u9njl27BhpaWlhaZtQEDBJiY6S+Pa7w5x3xQqm3NaSx+9t5/o9nBIUfxP0VOvJQiMTlPrqJwraYqGoZGVG8tQTXbjgzvV8/ONR9HlVjO6TyPVXN+WsUYv4Z10R1RaFQRev4LdFBbw+oz379lawaoW3cZmvNt29u5yJE9ewa1c58349Qky0nlee7Mi4EWk0yzSBoiJV2DhWUE2aJGIySi5f6ylJRi67oAm//ZZXZ1U8Iy77q2tFtUzLDr/yx4J8t771ySQmjXgYhRAOgf4QZrLhv7xhiMvRwLbzNQ4aTEDC1L9hO/R79lmo5PJkfEKsc1BtHkhfO2M81DM+Qx2zqqry7mcHmP9VP+67pTm6ExbE43awAHbQlViwtIhGMeqQDTo3OfE1bhz/jks2MubMNF5/e7dbQuQgIg9MacfKDSV8+MVBdOUWlwqPUyozelgqC/8o8NovykusNGsWxfuf7Oebn/Po2j6OjFQTqPDE89u48ta1rN1UyvABSYg2hWG9k8g/Zg6YqPge72EgLkGsUQ12cw4nn7QEAeeeGMwZY8f2MuLj9Dz+wnbufW47l9+3iadm7WfyCzu5+t6NTHpqG9Oe3c5dT2zjtS8OojeKREfqyMjQ1POLSqwkJxo0e2JRQNUJWnwayfF/ncd3Pi6XvcaN6IgU79G2kqKybXcl23eWa+k41MmcLpIvG5HGN98c0twLO4m9oqIz2zCUmLX2kEQUvYQqCC67Z2fEedDKFROro7S0KOS2/78AVVW54447mD17Nn/88QfNmjXz+t1gMNCrV69abol37txJbq5GWnv06IFer+f33393/Z6Xl8fmzZvp379/41fCDwJS9zKbzWzZVsjipUd4f2Y3xgzXWFWdi1sgBOU0IB6B4rSxk3G02TXXNKd5syguvmwZZwxOoYlO4NF72nLeqHSqzAoz39iFosLVt//DCzM6MHJoKj/MOULf/il+ky4rs3Hl5csoLbXx5RcHiDBJTL69JZJdZd/BKo4UmOndPQFiDHzz2W7Gjs/GHmdAKrOi6kQUo4AowpZtZRwvtJKc7Gb8hYUWEhMNXmJDZ5v+8MMhXntzF99/ewaxsZqu9edfHqCwyMrEBzby1IyOnD86I/A2Og02oLCoY4WRYPhM3ofhbIMQYlrBkM5AnlUMOkSrPfTyNLTvVBVnoL9QIchK+PsnrAjycCs41bWCyMJH3X3tI4LjOzXcKpCiwNOv7sJuV0lOMiBaZOxJRvSHzahmAdIEbMkm7RAlCa5o4hph8iivonLr3etIiNc8asmyiojKxm1lqKqKKKsum4K/lh2nR/dErro8F5soINi1NlB0IoKiIhp1GA0ia1ceJzsnijm/5rF1Wynd20ZTYpY5/7wsOnXTdMoHOWJ4yTYFHSDYFVQdRMToePCu1txw9zo+eqMHI4akhmWsNcilsedcqWevrTmGQlYf9yxvA84ip+pssGJ1EcOHpPLC7S1QJYFpz+/g8TtbAvD2V4fo3TmOljmRRMcZ2L6ngo9mH+XMM5Jd76/dVErvbvFuNWvHRahQM/Cnpxq2IODUJVP1osvLK7LDYa5HIMgflpxgQMdY2mVHYrNr4xtwpRUVIVFVLaMrtaIKAopRQl9kRnfCQmWnJK8+cRIV1aFS6SqPKGA0ipjN4QlYHQ6E624wmDRuv/12Pv/8c3788UdiYmJcNiRxcXFERGjuru+55x4uvfRSBg0axNChQ5k3bx5z5szhzz//dD17/fXXM2XKFJKSkkhMTGTq1Kl06tTJ5e3rVCAgkmK1WhGA5b8OoonDADsYgvJvx2lDUDygq7Ay6IxUzhqezodzC3iwXTyiKNDTsUH16ZnAJdespnWraO57Yivl5XYevN9HJHcPzP7mINFROi4b24TWzaMY1C+JE0U2Pv/hCLt2ltGxTQwP/XwUxSrTplUMbdvFIpVaEWwqikmHaJO575bmrF5bzDnnLebH7weRlmbijf/tYvojm+jUMY7RozLIzYkiIUEzHl21+gSvv7kbgMoqO7GxelRBYOXKQm69thmiooBRGusAAQAASURBVPDerH2cNyaz/gPqKTjQhXygbWQCEvZ3w9C2YQ1MWQdEs63O350Iqe8CrUON50LpJ5/vnC6kJchDrSpq9WmoRFyQa36hHaBU0U1WGgLnWm+zKXz3ax4z395D146x7NpWRkdiECoUSBVQ4iXkOKNDJcahry8rjiCMNuRIPVpQPK3uZRV2Jt/RilYtol2HrzNG/cmvPx/mvOHp/LXsOLN/OkLT7EhuvrGFlq5ORETWItwL2k20zmbj4Yc68uar2zn41UGuv6oZ19/QwmtcuP5StH1aFARUWQE0L0qCrHDXTS2Y9+cxjuab3e+FmRR7phUyYYGgSYuWX+DZAWEjLI2Jmm24cXMJNpvCh18fQtCLHDvhCNYpClw1NotHXt1FRbXC2UNSOHtYKvffFqNJRdDa7EiBmV7d4rUx4WgvF0FxkBbv/J1/uWOteDqJ0CQwmjvkYycs/LWxlJcmt8YepUNXYsFppqFEaHFO3v/uCLePy0I6ZkUss6HE6hGLbShx2llClkRtTDpixHipmDmI07HjZj76/AA9erUKTyOHAU51rXCkEyj+97//ATBkyBCv72fNmsU111wDwAUXXMBbb73F008/zcSJE2nTpg3fffcdAwcOdD0/c+ZMdDodl1xyCdXV1QwfPpwPP/wwbDFSysrKvOxrAkFAJMVms3FG32SyMiIcG8LpOYkbA6cjQQGQI7Suu+iibF58ZgszrsxGjjUgRxlQRTDqRV5+pjP9hv/JO//rwYgzM9BH1N3d+w9U0qNzPFNva8HMt/bw97picrMjSUg0MP3BDgiyyrhzMhGr7CgmCUFWUYwSarQeVRKptqn0PW8ZhUVWsjIj2LO3gp9+PsJzL2zj9RntWbG2mE8/3sfRYxYAOrSOpqpKO3W88GRnV4ArAJtdITXZiNEosml3JeDui5Nlh3K6uOc9qbfpYcor5D4Kc10blYjUyusU1flkDQ/PpTBY9Ubn/8M+lp0eCgVXjJCQIHqvLdOf284P8/J5/dGOXHJeOt99fYhrpx/h/ZtbITSTkGMNmsGvp0ctUUCwyCgmndfBurTYRmqSkTunbWDe9wNdbffn3ME8++IOVi46RmSUjpcf74hq1CMbJdceKxt0qDrRZQeoCgI6UWXixDZepM91w+yE4jB29rhxdv2qCvw0L48NW8p45Wlv43nP+C7hxMmSsrjzq5FEMKTFo80CystRvsY6K/hrq5QkI4XFVnoOTAGzzLCByS4D94goHc/d345Z3xyiSYbzYhkXaQYoLbcTG61zj5tg+txTUuwUsjgi2AN8/HMet1+Ri2IQEavsYFc1IiQKiNV2Nu2uIMookhmpB7Oi2b5IWj2VSB2iRUbRS6D4seFRVA4drOSCy5YTH2dAtgd2MfV/FYHaG1933XVcd911fn83mUy89tprvPbaa0GX4YUXXmDq1Kl+fy8rK2PEiBGsXLkyqHQDJil6fegL179Z1cu5OTQ6fNxc1AXn5jhsWBo33/o3fx+oontno+MmREQVoVluFC8/05lbbl/LxDtbc889dUtSysttxMfoEASBybe1cqutAIJNcfj0V7SbQ1FAMMsokTpNFCvCdz8fJSpKx4a1I0EUqayWOef8JQBMfXo7yUkGIqN1dEw0cuhoFbv2V6GqKhMuz+XaG1p4laVr1wQefWorAOPGZnnXvab3HrXGpnKq1Hw8cbIPuqEgnLempwkpgZNHTELqq1DrezoIUOorQ13LVzD1rrkO1vWu6pDQ6LWbvkD6vt7Aj0BegZmLz81k/LkZiGaZK9sn0aI4minf7aXKIGJDYPrkNmR4uN93lt25NjsPhX8uO87IYak8/kB7r3xEUeSBqW21IHd6CUUnoEgO+wBnwD+d6JZw1Ci3M76EoGrG+ope8pqHgl1xkxjHbblgVzFbFG6Zup7br29BYpxeu1mv1UaNQ1ZcZTtJUhZ3fh5JBOsxLAiyEs6zgme7+PK2tm1HOVePz6FtuzhEsx3NsN2jPAps3F7OtRdmeaTp/l2nF6iqlus+ewTY/y6JiuP5gkIrzbK1S0fBQwUMu4pqEHj1y0O8cXdr7TtZO184SY5UZAHHBagiiaiOga+q7n2m6ISZcy9exvBBKXRoHcPClacPSQm3d69/C6ZPn05SUhLXXnttrd8qKioYOXJkSF7YAiIpiqK4g5TWN2EbMElPV6lFY9+UNARxcQYeur89F9y+jgUf96ZVs2jkCAHntnPZuGyWrSpk/4EqjWBI/lfo3NwoNvxTVLc+vaK63RxKgkZQHOoOBw5X0aN7AojaRrtkyTEArrqyKS/O7IEkudUJ7HaFPbvLycyM8BlTpVuneO3dy3N58tGO7qi1DkNZVRJZvqqQRUuOMXhgCn16JmLQOfrHc4wGvMgG9Fj9OB3IyUkgOg2WZp0OEhM4vclJGJsolDIHLTH3l0Wwy2YgZXXe3jqeVYzUcmHuD/WNlT2Hq/hl4THW/jpQswOpsEOlQN+2kfS5tC3WlAiKy+089Ow2Skpt3DelLe3bx2mHVEl0kRNwGPZG6zh8tJqYaJ1XEzkPtfZog7ddgHON9jBIr9V/tVRxHDfOch31VzRleWOkxA0TmvHWrL08++pO9HqB3t0S+OGTvtrvRskr3ca+OAmZsECDpSwBEZYgyEo4iEogbVBUZGXNumI+fLO7VkSDVGtNVlHR6QTyCsxkZEZ6SVEA9h6s0tQPhRrzxjkWa/R7rXnjtE8R3EREsCkIFgWLTbvMFM0yrqiEooAqaWph8XF6DFESqqwiVCgI1QqibIMSFbFSRjU5yJNjKAqq6iJCslXm2lvW0KVDHDMf78QHnx1wudg9HaBAWIM5/lvwySefcNVVV5GQkOAKEAkaQRkxYgRFRUUsWbIk6HQDulPQ6/XYbadOzSugfE/Swey0cnnrwMS72nL5ZbmMu/Uf5HKrw9sK2mFeVvh+zlHatIrBUm33eq/m5tO7VxKL/jpOcbnHrYSHBx1Vpxm3OTdSp961c0GrMssu9S2ABQs0460tW0oxm2V+/z2P6Q9vpHfveaSmf89bb+8mJtbg0y3jGQ4f/p98fgCb1V3OP5cc475HNjPy/L8Yd8UKdm4v49qb/6ZFp7k8/vx274Zx3hAF4vbRlweTfyP+DQQlzAirBOx0wim+EwmLu1nQCEXNT0PTqQHRprgO4dqzamgf4MsfjnBG70SaNolElUTE43aUSgkhRUaO0oEokBCn55wR6Vx5STb/e38vxwq0II+qQ6XFcy0ZNiSV7bsryCswexfaH/Hw/F5RNZ185/+dTVHTE5QPguaShnjuWw7j4xkPduDgltHkbR3NNx/04e/1JXQftojmPX/nurvW8cv8fOyO/E7mvt+gMReCxXJDHTn4TLMR1ke1hjett9/fQ7/eSWSlOlSkHf0v2L3JxQO3teTNzw7VSq+o3IZNVkEnuceR5z5Zo8/9tpPiUPFyjlGbysGD1ZrtsgqCRXH1iSoJyHqRMouC7JmHCFSBUKhAlQCSZpTvIj4OQ3lVURFlhRlPbuHECQtvvdAVAc1+TK8zBNGa/6ExMG7cOF577TUuv/xyFi1aBGgEZdSoUZw4cYI///wzJFfGAUlSDAYDNvn0kyLUQpAqU6HCcxEKq3QllPI7FqSHpnfklzlH+HxuPldenuvS00YUePm5Llx/21p++uUIC+YP85tUn/7JdOwQx+MvbOe5h9qj93KPiSPokoRgV1Ac9i2CTQEZnnhpBx9+doCP3u8DaDqSC/4o4PP3e/G/9/YyeNDvlJZYOe+cLHbv1WxMcrMjfRcE0JskfvtuAAuXnSA2Vudql3c+2s+yFYXceWsLPnihC83idWCRWbK9grOv+5vbb2hOQqLRZQDoVIcAAlIHqzc6dX0I0atT2NQrGqjyFgi82jRUhLGczj4Lub8gqD7zpYZRL0KQ7mkZeGYc+Gs1cVrZETZCUUSz7FZtEtHWvnr61JcKzabtZTzz1h6+fasHiAKKJGDfF4G1PJKI1sXaJY0DJwqttG4Zw4ypbXnwia1Mu7s1LbOjXEQFcPX1iGGp/LOhhLPT0r0kLYKiaO5ZFfchVEAF1ZuEeErza+45nvPRaRgv1LRJAVd9VJ3oIjyR0TqaN4/CalU4f0wGF5+XxZx5eUx7bAtTZ2zm2vG5XHNZDqkpRq82a2w0yMmCh5pyYHk5XgtUqhKgRAUaT/ti2/YyBvZPquUFUHPeoO3ViALxiQYsLrKpvXvgaDVPvrqbx6a1dZdX0SQvgUojtQSdeape4/1YmQ3MdiZO34ygqkSaJBRRAJ2AKAlEGEUqqmTm/HGMsV0TwIb2sQsQo6Kk6V3e8lTJLVns2TWeTz7fz9uz9rHytyFER2pz0W5XMRhPH5Ly/6u6F8ANN9xAUVERY8eO5ccff2T69Onk5+ezePFiMjKC8NDqgYBIil6vx2o7vW5P/eIke+kIO2EJkqiINhlVJ6LTiUye2o7nXtjG5edkICSYUPSad5lx52Ry5uBUcjvM5eiRKjIzIrwiOLs2R0Hg2We7MmHCSqY/s41nHDrUmgcbbRPVFg3J7Qu92s7anRX874O9/D53CG3axoEoUHjCwqFDVQxvG81Z97Xh7i+P0CdWx4dLj5ObE8nynwYSlRKB4mdBVCWRvr0S6d0/xas9Xni+G1dfu5Inn9/OqtVFfPdmN3R2hWFpRjKSDWzdVkr/M9JwCgkPHaniqee3c+hwNVGREpdfnM25ozOQpPoPjT7dnQZyEK45DkI8AGv5hTjv6htDDTxs+LULChbB2B/Ug5D7C0LuM18HqXr7zI8haL2oZThQ/yunBI217PogbC5iond3vuBH5clfv3h+n5FqRFGgf9d47VZaB3azHp3JghKncx2YikqsLP+7iCvGNQGdyMtPdmL6M9t44fFOPvcgu13FYPIeoDXHqxdpUjRDY1VwkAqLJgUXRIc9Yo26aHaB7sOqKuG6qKlp5+IMngeasX12bhS//ziQXl3jEQSBbp3ieXByW35bmM87nxzg9ff38tfPZ5DbJDI0gh4iTiZRCQpB7NGhqH8FUu9Lx2Uz9f4NTL6xORF6UYvk7lE+0Syj6kUU5xgTtAvL6io7T7y6m5ee7ES0QXRf5unqJid+L4I8yqnqRbCpfPl7AUmReq4dmMJvW0t58LqmqAbRZcsK2iXmV98fYeKbu5l+WQ7JSQbQCaAICNWyxpUidF7pd+sUy7mXrWTsmAxaNYtyfW+zK+j1pw9J+f9V3cuJadOmUVxczPDhw2natCmLFy8mKyur/hf9ICAFF6PRiNUayCZae2KFQ4WmQV5zfOhWNhbCpg4WRHmdQY1QVC6+JAdE+OibwxgOV2gqEA7Ex+gYOTyNhx/ZxD8rjoHVI2qxR37tOsQzZUpb1m8uBRzGmQ7jzZqxDgQFFKOERVaJizdoBMWB7dtKSUsxEi9AbIKB9ya14Icd5YgROpYuPpOolAiX1xpdlQ19qRlBVZE8yiWb9F6LlFRtJytWx/xfh7B769ls3lHO2Jv/YeSd6xnx5DaiYvRs2V3pCEwl8ub7e+k75A9U4IrxOfTtm8SDj2+h7/BFfP/zUcqcam2eKmEBqoV5flx94a/fHNF6XZ8g4BTz1/w0GDXrHGD9/ZbTIxhZsEHJGrVcPvoroDWpZp8F0X8h9Vko9RYC/FDj74Yg0PwaGz7yrGuf8PtbjT2ivExbE+YuPs4PCwtQJRFdhBVB5z4EVlTaue+Jrcy4py2CKCIoEBmhI6dJJGvWl1Btlvny20Ns2lrKps0loKjs2lNBy+bRXupgqgd58BwjLpUnRXUZxTufxeP7mkbyolUroxyhRe5W9RJyhB57pAHZqHkJc5EVR36KXgJJpFfPJNBJrrJJksCYs9L54eM+jB2dwf2Pb2H/4WrWby51rXNhW4v84LSS/jUAjaH+NXpkBklJRt797ACAK/AiwNdzjjLzg30INoV1G0pdB3rBrvL1L3nccHkOMXrBS9vAOSb8nT1cgTSd6t9OKJqql2BREMtt2A0CZp3A5Cuz6dwyipIKO6pBdAVwBK1fJYvC5Wel8cDVuTz22UG+/Os4crTkskFRjZI7rgqwaXMJZ4z+i7PPSuPVpzp7lc1iVTAa/Edh/w8nBxdeeKHrs2PHDvR6PcnJyUycONHrt2ARkCQlJiaGiqowTjQfi0+jG6XXY3gYToRFuhKEsZ7zZk0nCjz9ZBduvvVvzu+XREKmChIug7mnZ3Rg0n0bufCqldx6Qwvuu6edh1cc9+1NTnYk+w9WIesExBoiR2daLiM8VaC6Wkav837u1dd3csnYLASLwtq1JbwyL487L87i8qkb2bS5lL59klz1s0cbXHVWPAz7ZVllwYI8ysrtGIwSHdrH0rJFDADxiUbGX5rDizPdEVSbZJhYs6aIG65rzrz5+Tz74na++7QvA7rEu26/7roqlw+/O8wjT23lmluqaNk8iqsvz2XC+Fzi4/QBt7lXXAIR3v1oH1Onb+aZRzpwy4RmiHUeLutJP4BNLZgNPGiSHyYpTCBjP6gNvK5yBVlHf0QlJElZrcT9SeYCaA9f9QhyPNZO1M/f/x/BpwG489+q+98mvUBWuolr79kIQOWwVES9jGLVoQqw+p8i3v38IA9NbkNakkFz/ekYD9dPaMp7H+3nu5+OMGJ4Gn+vL6GqSuabH45gtcrkNInwytfzll30OPi5JB6K26mygCbRFhUFQZFdhvIutSJJRHZ49xJtCookIhslUHBF8nZBFFAVasWV0SQ4DmmNw+eXoEBykoGPvz7IvD+OEWGSiI7SMebMNMaclUZ6igmz4xa/Z6e4ute9INBgghLCvlvTsLxOBKnxEG7PX6Io8MzjnbjsqpWcPTyNFtmRHDlYwQtv7SXSINC9QyzTnt+Bza7yzH1tXWvS3+tKmHBxtiMRt2TNnXAdEhWH8boqCh62Xw4Jig6EKjt/byilR24kN7+8i0qLzEPXN0WwKuChuSAoKopJQgRS00y8OqkVszeWcNvM3Uy/OIvM3CjtLGDSjqeLFxcw/vq/ue26Zjw8tW2tYlVU2ImJTWhYg4YR/7+qe8XFxXn9e/z48WFJN2CSUl5RM4rWvxyhHgaCRIN1UwMlK6J2MzLizHTOOjOdSx7dym8vdEJoHufyP94iN4o5X/Rj09ZSzhy7lMsuzSW3WbTrtk426VFFgZZtYikstpLVbi4mk0TTnEheerITc+blY66WuX9SG6JjdQiKJt3YtrucNq29A/Ts2V3ONUOSMVfLDHlgEza7woQrcnnkthbcfucaVq8YoalceSz2RwvMPPfcVkpLbfTrm4wkwqOPbyY5wUD+cQtmi0LLFtF8/mk/WjSP5s8/jxEVITH3uwF0aBvDtuXHGXvnOq68agVrN5TwzMMdGNg+BrHCiqqXsEfr0UkiN16Ww00XN+HYcTM337uRuXPzePalHVw5Ppdrr8ylbY26+DxI1+gPk8NG575HtzDrswN8/1lfmqRF1H4vENQ1Vhpg7+I3u3CRmBAklvXNi4BJTEMP8s7yBHBIqZfINICEhtxXoa5dzvkXim3Nvxk1CYrj78wUE6u+7Ufns5fSo0s8+kNVYBLYZijlpacLGNAniZce66R56nK2haM/ow0Sk25s4RpDQwckoygqt09dT0y0DtFpI+KQZtSUhtSMA6UKHupbDkLiNT6cqriO2BiCqiJaZfe/5bqN0F35iW4VM0+i4szj/NEZdOwQx/CBKZgiJZatKuTX3/OZ/NAmyirsGA0iZrNCm1bRvP5MZ9o2jw6qK7zK9G8aX0FcJEJwRCUQla+B/VO4/LIcrpu0jrlf9GPd1nLO7JvIeUNTQRK45OxM93hDU7GKiqphKK/U0P7wGC9OTQxVEmuvWU7bS0lAsGnvqQaRarvCN6uKmHJJE0pOWDl82EyXZtGoksNuTACc88DuMLrXC1zQP4nB3eJ5+o09nNksjrPGZ7gcAfz4cx6XX9SE6VPa+GyH8gqFzNT4gNr1ZOD/V3WvWbNmNUq6Ad0bxMbGUl5hr/uhQFW9QlyEwuZppi54iv7DnFeDVcECKJNTbPvyzB7IgsBNM3ejO1HlpZ4F0L5NLLKsapNAdHjqMjgM4RWVlBQT+/acx29zh/D1lwMQdSIjL1rG7gNVbNhWRpNOc+lyxkIOH61mzcYS7p2xhY4dHSza0b/XX9OcG57Yxlu/5qGqKooC1SfM9O2ZwJGj1dittUlvdaWdjz/Zz48/HeG+BzawYWMxFZUyB45Uu27odu+p4NWZ2xEEgZ9+GMSAfsl88c0hJj2widUbS1k7uz9x0TqG9EvimgEJGA5WIVXa0R2vxlhQhVRl0xwACAIpqRG0bhbNwg978et7PSk+WsWQUYsZOPwPZr6+k4OHq7zata7PleNzObLrbEaemcaO3RW077OAwlKrX3WjoFSPPFGXGlKIamX+1JOCVi+rS2UpRLWtQNo+YISpbA3uz0ZQJQtZHdD5bCP03clGQw64zv1FVVVmfXuYaovMy491RChTkRWVmT8c4dWH23PlRU2IifZxtyc4VVnwaquvvz/MeWMyEJxeED1vr32s6apO1GJDONPTuQeU6vDMhShowe/0mnqWoGiev0QP71+e0pO6XPx6HZxFQXvPI7ifqhPo3DWBC87JJC5Wj1EnMmxACs8/1olNS8/k4NoR7FpxJttXnUnv7gkMOvcvXnpnT8DB5bzqHq7x1QCJRUjON4I4L4Rb9evxhzti0IvcfM8Gmqab+OufEhSTpAVZdoxDpxSxtELG6FCx9nQm4+r/GtIhVRK1vVJEu+h0qCW62lcQNJfXznFmUxnWLo42zaIY1jORw8csROjdY0uV3PNClQRUowiyimBWEKplEo0iz09qxfzDWiwNfZGZnTvL+PrHw1x8bqY2h3ygvFINOor5f/j3ICBJSmxsLGVlVv8PNLaqlmdWDTGmCxZB3pQEgkaVrDi+i4jS8cnH/RgwaAFfzj/GZedkYI8zuR47fLQaRYEmOVG13gWtjY1GifYd4gGY/c1AVBWiY/WoskLe0WoeeWwzA89ejNWqrerZ2ZFeadx6WysqKu3M/7uQ9FQT7TrEce1j2/jixS7kNongtdd3MtUZXNJRpxbNo3n7zZ78MPsQY8ZkcsWVzXjx2W4A6PUCxwrMvP6/3fy17LhWzwiJ88/P4qHpG1FFgcVROn5aeoL/PdWJFnYF4bAN7CAcUiFShSoFKcWCmGkEUUCO1Ia/Kon06J7AB90TKKuy8/PC43z7y1Gem7mDF57qwhWX5vjsiprjMDJaz8gz06gos7FsdREXXrmSP38Z5Lcr3enU+4gLQW2iYZTIhKyq5AthUidzIqxqZWEoW339WWcfBrou1FOfYNfIkxpE9DSDq+6KynMf7OPNLw8xtF8SzRJ0UGLjq60FXH5uBoYIyTcJrNlnHm0ZF29g9k9HaNUyutZvPstSw+2vy1YAH2PYj/paTdU2L+9PHjYtzvS9Io7XVAvzkLZ4/ibIDjU3x3eRETqefLADF4zJ4Mpb11JaamPG1DZ+D5Y1cTpJUILy9uWJAM8L4VT9MholPvmgD8PH/MnUZ838+EEvdzBRg+SShlRU2bj3me08PLE1gl3VVLZxx01TBUGTisiKy5Mnouq2C3FKTmqWWxJcmhqiTUGwaNVftq4YWYWh/ZMcl0nuV1QBF3lSTSLYZZDRRAcixMcb+GpuPpeOTufdj/dz/sh0+vdM9OsnpKxCISYmJiztGQ6oCKhh0KsNRxr/FxAQSUlMTKS4pNr3jyeRoLiy9PSCcjLQCPYsYSMrfsqTmh7Ba6/04MabV7NlVzkPTG2DPsqAoAgUHDOTmmJErw9sFY6KcQdbFCSRzOwonn22Kz/OPsQFF2ZTcMxM8xbei4QgifQbkMKnXx4gJcnA+PFNMehFZn1/hNgYPU89v50zBqbQp1+K13sXj8vh4nFuUqD3cPmZmhHJY495G81dfHEO5QXV9BuWTtOmUTw0fSO9zv6Lbm1j6NIimomXNKFZul7zux6lQDnoCqxQrSKm6mrdKMXEGRl/YRPGj81i0aoiJty+lrz8aqbcXVsXtiZUVWX6Y1sQHYv2uk2lVFTaiY4KaJoFhLCoI0Fw87YBnq68sgy3SlEQB+u65tnJtoupqw9D9kbmlcHJvcX+P0FwFJXKapmXPz7Im4+25/Of87nnme08cWk2f20t5ZVrcjTVKqfNnEfcEXDb6TmxZPkJFvx5jGMnLJgtMoP7J/tXq3PcYHur3TjIhaxov9kV9yHNl5qOA6okIlpl90G4Zr8633NqJjglNc5/O593EhbJkyyp7jp6egpzjkVVpVfneOZ80ofR41diipC4/45W9TT86UVQPNGYZCUQohLohWxyspH33+rF+eOWsafAzO+/FzBudDrL/y6iskLm0rPTmfTkdqZPbk1WqvuyEkXViEpNNUPRY030LKPH3y67VEkEveO9CAmhWmHP4Wq+tZ7gxZuag/OM4ZQuKiqCCqqiESDB6TVWdHwUmD4hl09+yePmp7bz/W/5fPVOrzrbobjETlJSUr3tdLKgqAJKGOxJwpHG/wUEdHpKSkqitMysBc0J8GAbLEJ11QenYJEL0miuLoTFn7qf8owancnvvw3l1ptXM/+iFXz7Rjcym8Ug6URkp5g2xHokJhq59oaWgGbE7gv7D1SSkx1JhE6gpNjC8OFpTJ22HrtdxWQU+ebbQ7VISrDQ6URumtTO1Y6vvtyD6yY0Z9vOMn5fWECnK1ZzyXmZTL2pOS1bRqM/XKU5EzCriEV2xGoZscSMoJfc+ruSJmUZ1juBuR/3Zsw1q2nfLpbRozJ9luGFl3fQq0ciBw9VIisqHdvHoaoq2VkRREXrKCmz88En+5l0W0u3fqW/dg/Dga9BN/k+XwhgjITR2D+sZCYQycfJsIv5FxOY+hCSG+ZGgL9DXaBlOXikmiqzzFn9khg7KoP9W0o47/7NTLuoCYJRAlV1G8r7aePC4xaeemUn3bvEM+2u1toFhb9xUZMQeH7nrz411cU8vncZ4dtk93ceGt2e74iOAL3glrR4SVdqSk48DrDu8uFF2gS7RqhatYxhzuf9OPuy5SxccpzzRqaTGKdn7OiMWhc2jbJ3h9n9cNAR6p2oZ38Np0SlZ/dELr8sh0uv/ZsJl+bw0DPbObNfEtVVdq6dtonn7m9LdmYE2GtL3zztj7yImaLW6m/Xbx7/R6/NDTlSB3aV3KwIXri3LUK13aVyVjNPzZZF1dTFRAEE3EYYisqVY9J54sP9TLujJQP7J9dZ96Jiy2lFUv5DeBEwSQGwxX6AvvoG9w91TLBQXA+HemCvuQmdFNISZlWwBnsE81Oetu3i+G3BcKbd9TfnXL+GeV/2wyQJWKyNb5a1fXsZAlBUbKWk2MbEu9rQs3siA4cspEWzKCR9eNuutNTKI49u5tEZnejaLYHxl+aya3c5M1/ZQe9zlvLcwx249vJcQNvIDXsrMMoC9gIbJpMMFkcb2kFM1yHH6OnQPo6rz8/k9bd2k50TRcf2cQiKyrTpGykrs5OTHclzM3eQkKCnslJmYJ8k/l5XzDef9qVfz0QA1m8q4dFntmG3K0yb5Nv4z4WGjKcwHIRrIiwHY1fG4ZHIuLIMpL7hIA7hkMKEgZQ2KA6M6wU/5QgzeQlbcNIg0ZD82jWPomOLaL766SjXXdWUVikm5t/SHamzimyRUW0KRIJi0Ln6wrP9FUFl8sObeGFGJ1LS/LhE9SQmfn6rFYPIXqOT/UljJEELvOtx+PUkJp5ExKXGI6qaobzjHZe9Ql3t6LgR11zeii6CItoU5AgdCALtWsewbuEQPvnuMKvWFLFjTwWzf8lj9qze/tMNJzzHcyMRFghgLa3nnFDfmScY9fZ77m7De7P2sXNvBbNe7a6peqkqN1/fHJ2sIlhkl02Jqx6q6pDa4XIxrJXbswx129upIggyIIAcq9c0CSQB1eiOpybUGE6CCug0Ei04LkwF2UGKRJE/t5RRXiFz87XN6613UYlKcnLdROZkQnV8wpHOfwiQpJhMJqKjozlx4gSeZgwhIYDb+4ZKF04qaTnd7FZ8tK/BIPLi67257eZV9D77LyJNEuZqmfMuWEJMjJ527WK57dZWJPqRiISKW29qyeSp60iM1TN0SCoA7TvGM/P5rmzcXMp993ZocB6eh8T3Zu3jo88O0KJFNHfe3hqAVi1jePO1nlxwXhNuun0NY8/OICHeiKKXsLSKRd/ERFm8Dn2khGCWEY/LqEUios0Oudot0F2XZfPwe/sZcfZiunSK5+5bWvLOB/sAaNMymrtuak5hsY3v5hwh/2gVzz7akb49Elz918tBVp58YQd9eyUxaEAjLahhkix4IqyEJkz2Fq7H6rqlbCiBgQZJYRpEXkIkLiEZ/bpe9lQaD8/2eNqqgfkplyAItMiOYP32cgRFxZ5gQJ9ajS0xAv16M2qWgJyoQqSqxafyNJYHVv9dzLCBKVp0dqc7W3/960dC4jKYr8PmEHzvcZ5xLzRPYFpkea8be8X34d35uyKJGplxkjDnuy6igwdBwUWKPNNUdQKCXSUuwcgd1zfnzglNOZZfTYszFlFeYffteKAx4Ws8h4m4BCxlCYCsNFSqkppiomluJNXVMu98doC9+ytBEkFWEFVNppadYeLWq5q6bJNcZVIFR5R3jRSJNsU9Bh2kplb9RK2fwT0eFUXzyCVYZJc6l+q8jPRULbQpmhRFcth4yWjv2QCbzEezj3DFBVmYPNS9fcFuVyguLj7tSEo4lr7TdPU86Qh4tUhJSeHYsWPkNAvs+Tp9jgeoZhSuaO7+NsuwkpcwqoA5ETJZ8WGvIkkCb7zVm+XLT7BrVxkPPbyJi8Y2wWpVmL8gn2495nHzTS2ZMrktRsfCMPv7Q1RVyQwflkZGRvDudJvkRPH1lwNqfT9hQv23I4HC0/BzxcoT2nc+Ik6fdVY6nTvFMevzg0y+VVNTU0WB6DgDJXodsckmdKUWxFIZQa+iHNcjWu2I0TaamOGDa5ry4rgmvPDjEa665W8W/z6ETz87wJffHuKr2YcpKbdz3pgMHr6/A02yvNsqMkLHHTe34PW393D59av54M0edGgbS1ZmiC6KG4JGsPdwImxqZvWN9zColjWIxIRIXkImLiFKyEImLU4j2QbgtCIo/spS42tVVVm3vZyMZANHjlaTlW4CvUPqkAxCuYJosCNH6tyeipzrvqLy49w8ZtxTj6QUXKpZnvZwgCuoI7hv0D1v0gW7Usso3pWkrMVGET2Iiqveijt6PTiM3sFBakRUvUe8FU9jXaf6j6i63nFCcDj7FFTVZYjtmaZgk3F6jpQqbaQnGUlLMbJ5e5lLwnxKEej4DmLvDUjKUgdZ8UdU6pWmeEjnmuVGYZVVzhiQwo2X5yAIghbk0yqj2lUeemM3ZquCyaCRUeeJWgAQBBS9WOvsJsjOcefIR1VdxvJuIq4Z2ot2O7IkoOpFRLNGVNBJmjcvAQRRQLAo2veigBwlaVIVuwKCI1CkXSW/yEqXbgn+6+xAYbHm0Ol0Iin/IbwI+J40IyOD/Px87y8b6lI3CIQtmrtnmg5jwbBtqI20MTvrHlL9nTcmiopOJzJoYApz5+WRlGCg+GgVt43L5PsPevP9J3154cXt9OrzG0OHLeT8sUu48861fPDBHjp1+ZXBQxbwxhs7A6+j501NXd+FAM/28GwTs0XbJSZc0dTne+edm8Wi5SfcG48gEBWjo6JKE4PbYwxYW0QhdzQgtJdRWulAD0SBnKTn56NmnvviEHHROqzVMs893YVtG0bx4Qd9WLF4OG+/2Yus7EivDcXpDei+ae3o2E5z5f3Cqztp3/t3vvnxSEAudgP9hBVOXeK6PkEibO6Y63Lh20BXvgEhxLYIi+vkIBCSi2snGuFSKCh4rFsN/vhCza9FAUEQWPFRL3LSTJx1zd8c3F+JnKVHt9eCKqGpRckqollGqrK5VaYUlTVri8krMHsLKhTtdtizHM6+97eWe7adoKjumCc1VLbcNiLufhJlzQjaGRBXULS4KYKs3Vw7PT15ejOTKq2u713py4rrecEmI5ntmkTGrrk1Vp1eoGyy16FbMUoIsoJotbvVyhykSayy0bl1NBs3l/qt72kJVa3/4wfOKO0+Lwv8jM0GnXNEgfGX5rB2XTFNMiMQFVXrO5uCKKtIkkDvDrGsWlukSTkccXSc6lYbt5WydUe5y6bHS81QEDxUHDXyKlq8wwhoUjtITdCzYnMZSqQO1Shq5MSi5Ydd0TQEdYJGjmX3+EEE1SRiz4rg0vMyeeSFHfw0L8+rDDXXpYLjFhITEzEaT5+I807vXuH4/IcgJCnp6enk5eXV/qEOI7V6vWP4uPGvD+GSrtRKV6m96IeERlD/8kSDVcGAu+9qwz/rinnp5R0UF1k5p08CfTrHcWD+GfyTb6WySqbihJlrLs7m4vMyKSy2suCv40x9aBNtsiMYcVYailHvrV9dl651CPWrVe4A2nPO7IFUVNqJidb7/F0nCaxaU4RdVdE52i8mUkd5tV3beBXtBsgeZ0CNNyLLKmKiEZ1ZRrTIdImXiDCJLFkwlPTMSACiInX06VXbaK/mOIqK1PHjtwP5/ofDDBucQveBC7nh9rVUVtn548/jXDquCWNGZNRbx7oQcKCwcJH9k6xe1mD3yyFKYIKWuoRg6xKUlOU0PdiFdOBs7LoEkbwqQGysnvcfacekF3Zx8eQN/P1+D9QSEfmgEVUFXaIVOUpbXwS7gipJCAp89OVB3n+5mxag1plezbHsoUZVO+/a406tp68Flz2BdtgT7KpD6oFLFUdT4XEbyTtzEW0yql5CMUgu9SxV50GeBIdrWcnRhI593lknRS9qKkEOl0zagVVGlUQEWUGO1GsXY+XaTbeqF+nULpbNO8tr1yMIu4vTEgGok/k9C/k5L9SUqgTaRuMuyuaJZ7axen0xZ/aIR7ApLqmHYFMY2T+Z6W/uYXD/FLDKCHaFnfsref6jA+RkRvDjomOcOyyVppkRXH1BlkY8ZFWLZyK593gBTV1LVGSUCJ02dmQBwaZw37gm3DRzF32e7Yxi0mnEtcqxx6KNJ0EUXK6IFZOEaJZB1gJC6g9UccUlOcz65jD7DlTVbk8PSW/+MQvp6en1tsvJRJjuYk/XZf6kI2CS4lOS4oQvd3UeqFP1y4maPRKkOhiEh7TUFfgqKJwksgLB13tA/xQG9E+hU8d4Pv98PxMe3UpxiY2EWD2FJVZaN4/mgjNTGd89HuOhCtLi9Fx6XhalFXYuvX41JpNEbm4Uw4akMmlSW5L/H3tnHS9Hdfbx75ndvS7JvTfuHmIECAmWIMGhOLSlQLFCX9ydYkWbYoXi0FKkxaW4u1vc3fW67O7Mef8Y2dnZmd2Z3b03geb5fBZuZuY8R+bMOef3aI0hxTD6HI9rhMPpX7iU0juGvgFKRFzTJYkedt1KTNVtw80xEcIToLzz3mquvm461166DdKmri4rC9PQoNsumCFGN2yKcucD83nqueUoCvz2kJ78fr9ujO5azDH7dmPPAz7i8UcnsOMOwcwWqqoKOOXkgQhNsnT2gdx933yGDCzj3It/4uXXVjJp1xoeumcHutnDRLYD5S2alR/Kg8O4STmbM2Xpd2FfB9oTsAQ2BwtgBhZ4rAKMT2Bwku3um+dN26vdIqRw01mD6HvQp/y0pJntexUTLm1B2xTWD2am5kFKtOIw9XVRFEU3qSXpYGlrui2CkpuDvHOvsaIi2TT9UhFWVC6hYYEKuymWdRhGl/ILNblOYSuPqqEVhA2nZcP0y7lsmxoRI3KXUEnk1jBMz3ReRnSvsN7eUGPUel8yJJBhhZVr2+jtYeK6xWtUXCjt+cDDcd/Th8XlvJANUBFCsO2YTkydWc/eO3bWQUJUtcyrSopDdOlaxMwlzXSvijBrRh3Pv7GaKRcOpbIiwnkn90cKwbV3z9PbJG112ysytDAyoui8DfNCoUpCtSqjOxew7MdNDBhUhlIXI15TSHh9m8FMn7sU6WbloU1RRLMKYYFWqhDvWcScRU38NKuefz/qEWjBACpr17XRo0duwr2ttGWTb5DSs2dPZsyYkf4hH1oV8GmCkMUhPy/hfO388gFY2hmsQPaAZY/du7LH7l2RUrJwQQMrlzXTq3cJP06t5fkXlnHrg5/Rp3sxY0dV0KNHMVWlIc4/ri/NccmOg8t45rMN7DDuTa68YiSnnTqIDRvaeP3NVVx51VS2HVPJTjvVcNEFw3n630t47/01jB3bmV12ruGLL9fz55tmct894/j1MX2tPtQ3xPjm240sWdzER5+u49hf92U/N+2CsXFb4S990COPLWTksHI2bYrRc5s36NWjmL0mdeGg/brTZIIUBdasbWWX/T5iu2078cA9OyAFPP30EnY+7ms+fWB7HjptEHf2L+Wo337O15/unRWgkIqgsizM1RcOQ4YUZn23L0ce9yUff7aeYdu9xeMPjeOb72r502XbtFvI77Tty9UZ3A9l6Xdhp5xAS46AJVCY5PYAKu1J7QFQgr7fLIch68Ouo1xpcYjfH9SDc2+bywc3jUbZWIBSEUebFaYg1kSsRxEI3ZyrvHMBIUUg45oeytxBdpCYMmfNqFoemvwU8y8jPLBUkr9TM5KT9by0+a5kArWG70jCryQZGJkmZppi+jEkgItpzqUn9dP7LkMiWYKvSqSm8v5n6/nn3du7t+FnSOnmWtJ7zABYUsBKjmeF0aMqmTazHi0SQkFFRNEBpgFUzjy2D1feMY9OZWFGDSzlgN2q6VQaRgJlRSFkWCEec/TNBMsmwDb8Tsz5oTRGadEkM+Y0sHB+E6saYjz1zhquMJKYhprjqFUFiDYVpVUHNSKmIZo1RKuGLFWIVxfqACYSYvWaBrpUF1DducDb9FQIVq1p3eJAytZkjvkl3yClb9++vPnmm0Bl+gczaFXAhxmYnXIAK5B/wJIzWIEOAyzgr/9CCAYNrmDQ4AoABg6p4Mgj+lBbG+W7bzYwdXod69a1sWBlKwUhwewFjfzjhRX071eKqkrWrGkhFI1z7LGfM31WHX17l/Dt95v47IsNdOlSyGVXTKVL5wivvZFsLtjDCNMppeTBhxZw1bXT6FZTyIrVrQB07lzgDlKwvQefh5Ihg8tZsKCROQsb+duUsXTqXMhf75zDj9NqOeGYRPLI5haVTbUxHn9kAkVFIVAEe+3RjauvncaFDyzi7etHcN7hvfh0dgM33DSTe+7MbtOVQiCMk1j3niV8+vYe/POfizj/qml89Ml6Hnl8MduOruTII/pYZTa3tDElNOoWDFqyAiwBwUp7AJX2oEBj4XMM8g5OAg5P3vxe3Mh4XzedOYiRx3zJmzPqOLhHZ2SzQrSumKLaepQqFdWmtT304J489K/FnHbyoCRWbkDaAgPmYd/NYdoxZ8ykjm7+THokL3Qth6GBFl77jXnQ1FLrNEPQmn4p9mSQJpDSNTHC0Kpoib3cDnI0EG1q0sF4xoJGmltUxo/t5D7mm5NymUsee7mngNPlfJRyHrJrvrLQpkSjGqvXtuogwt43IzJbaXkBd1w7UrdGMKJwWd+fJAmIWu2x/20BFb3BoYYobc0qp902hwMm1jB4cCnjd+zEE2+t5c8PLuR3u9UwqF8JsiQMhSHdlUeA0qTq0b9KFbSysAVQkJL169t8JUFetrKNfgP7ZXxuK/18KRBIWbJkCTAm47NA+4EV2Ozalbz5rUC7AhZwP0j6GQspBJWdC9lr357stW9yEkMhJTNn1TNjVj377dON8ooCGje18s0Pm4wH4IhDejF2dCXDhpVz0H7doU1l1fo2qqsKGTe+mgnjq5k4qSszZtRxwUXf8/2Pm+jfuwRVlfTvW8KFZw3h2OMH5GUMAG7406iUaztNqOLwoz/j6ptnct8/FjGgbwmKIiiIKNTVx3SQYtBF5w9jl93f4+pnlnPD8f247f8Gsv2xX/PSqyt4/aWJjBndKVB7pBkRxSARVjjo0N4sXN5C3166dubUM7/joAN7Wu1IJ2XdHNQhoCXLPmZl4hQwqlUgoOKX5+bUpuQToPh5xmc3O8rXJSmXgyIoLgxx3P7defyt1Rx8YSdafywnFInrDvStKqIkrB/q47D7rjU888JyWqIqxQWJdcPV1NkGFFJ8Ecz9xWbmZc0HTVoZ4JOuGe2VFg9HOGJVS/5W7WUUrDCyOHmClRjS9DUx/V4kSsr+nc6s++4nl7L3xBoKitKHlM0rdcT66FaHxzrtB6xkBVRszzY3x7nrnrm8/OxuVp0yokCbiizWx16oGjKc/B6SkptrkoKwkv77NNsWUyEueeadNZx+TG92GVdl9ffK08tYtqSJF15fzaLnWzlozy5MGllJSVgBBUSbHp5Yq4gktG+RECKusf9uNfzf5VOZPa+B4UMrPJuxfKXKznv09by/OWirT0p+KRBIWbFiBfH4qIz+BkkUAKzAz0O7kje/FegQczAneR2C/I6LFIJtRlSyzYiEVq24cxErlx6KlFBsLIa/P/lLLv3TdIqKFEaP6sST/5lIty6FVl81TXLmOd8yYfvOlBcqrFnXxiXnDeOAQ3t7mznl8cstL4vw3xcn8sMPm2hqijNtRh119TFuu2XbhBmXsQFUVhbw4rO7cfBhHxNtVbnlhH7MeG4nDjj7R3bf90Om3LItfziunxVZxw855853P2zib/fPB6Bv72KWLm/hjbdXc/ghvXyVh80LXJISyOWLctBC/FyBSj7Jd/999Dkv4CTfwCTLsXcml/PiefyB3dn+hG9Yd65KpKWEkoI6aBUoG1VkQQylMISIS9SSCNWdI1zyp+ncdNVIyktDLFraxEP/WsJNVyXyQVkHeiNsbzyusXR5C+VlYbrUFCaZfuntlEl7hKV9sWcOlzLhw0JCAGKZYmmJEMQyZDi8h5Oj2enO8zov+/cr4rpUXQph/Q0GCHKad5s+MMI4GBsH5IeeW86bn67n85d3y/RaglMevz17QssglLJvOtvkMBFNB1b8AhUvKioKUVYW1v2jNGm9C60wpCf7bFN1LVckATItzZoiMD3bm5rjngJZMxKiMBzvZaFC59IwTS2qbnZoRAUTqqR/pwIuOLoPs5Y3cuF9i3iieCW3/HEgvbsW6X0393mzr8Z4lJeG2WVcFR9+tj4tSFm2soW+fbcskLLV3Cu/5Buk9OrVCyklK1e30rd3SfCafIAVaH9TMMjOJMqTV74Ai8fC1pGUq9apyCElu+qyEbQ0xPjsqw188+1Grr56Kg8+mHCE++7bjUydVseogaVMm9PAZx9Opks6H492OAwWFYXYZYIenWufvbqlfYdDh5Tz5n9356hff8bXsxqYOKKCMw/vydl/ncdFl/3ExlXNnHvBNhQUZOdHstsuNZx4dG9ee3cNfbsXMaBfKUWFwXgFdvJuB8q7NqCjgcpmJN/jls93mw+AkgdwknMdJp9sh8Zp1gIM6VPCjsPLefrDdZzRr5TmjZWo0QiFLY2EIjHUykKU1jhqcZgbLxrGnGUtnHnxD/ToXoyqSmKx5MlnzsU1a1u58a65lJXq4bMGDizjlOP7px5GTW2K8/Bqi7Zl5q8wtSb6HmvTwlg+J0YwEguw2MwcbdnG7ZnnTfCiRNVUP0CjPsvMzBAhy7Cim+0AT7+ykivunMcLD4+jR68szg1e7ydLyvR9ZbNuZbRWcJxTXM8MNsDnB6h4AQhFEew+sSsffbyWnbattNoiC0IorXFbAIXUNttz89RUFbChNqoneLavv0Z5pSVOqCGOWh4GRbCyNsrOw8sRLarVH+ssVygYPqicMQNLOeuQntz97jpuOmcw4U1RPdGjJvVoX2A44evlJ47rzDMvreC4o/tQ5hIQR0rJ0uV1WxxI2Ur5Jd8noEgkQv/+/VnddoXrfXvOkbSbTYbY4gl+iV9GMvVrWerZnHk3sj1g5T3nSo79ypbylZNmyNAKnnl2Iv94bCfOOGUAvzq4Z1J/evQoYoexnSgoCfPc07tkDVB8zz2PsiZNm1HHa6+vTFv3wAFlvP3f3TnwoF6siEr+9cF6ykv1Dfmmu+axYmVLoPrtVFYa5o67xzF35kG88MJEPvpsPcee+BUXXvZTVvwC5//II7VL3patFIgyrp0+1uKM31SmtUmSFqBk/G4zrH9Cpv7Sktu66uTvqOuEA7rz6KurCNW0EI7ECEXiyFgINmLkezCytMclw3oV8a+7t+eWq0cw5frRllbZPHQ2t8SZcu887nhgPtdcOpwbrxrJLjtVM2hgma1PRq4Su0bDiMpltc0WDhh0jYdiy4Vi71fSt6gIZCSkgwjzm7L5nugZ4xVLc6K0qQlAFFLQInoERAxJOmYOlpa4Fd1JGPlVXnx9Jef8eRZP37cDO0/IItne5tjXzXrSzRMf7XKt06VM0ty3fY9J365Ts5aB9t+vO089s4zWuD6PIrVthDe26uZUxn6gtMQJNcZQoka+FCNXitmWlhaVzp0LMPOoCFXq35cqCTXGCK+LJpktzlzazMj+JboZl2oDKLY5WlkaRmvSUBtjyIIQWpmRFFWTENd0p/qWuPX8bsPLWLS0iWdeXuHaz1VrWmltjTNwYP6SQ+eDgkydLKbW/xz51qQADB06lLlz5zJ+cGaTiIyO5h4RL9x5OYq2QzjjlDqz9OWAVIlg3g6JXrO2nQ5w+fLn2Wdyd/aZnBrLvG/XQt57bXcrYVlQam2Kc9/DCwiHBb85qg9du+ggx+vAk07LEI1qHHPCl9TWxvj2k070dGoLbRKtmq5FnPnHwdatVatbePaF5QwfVs6A/qVZ9cVJkYjCM0/szDHHfcHT/1nClJvHpIRstqLu+DAxCxyVKg+0xUSrakfKm38G+dWi+AIoacvn2K8MwCRbvr60JEHmeKZnFcExe3fjsvsW8smGBnYqKiPeoq8zSjRGZG0LqBLNMKkxwYUiBTKuMmd+I1Puncuc+Y306FrEoqXNXH7BMEYMKbf2sS41hSxdrgs3RFwm/EkUYYERXcKNcR1DUi0MnxjDvEZKtIJwory5LigO6bvQM4sDet4W+4nI5jiPYWomjDqlUcaeFFKoejh3WWiAMeM/n3yzkdOvnsHjf9uOPXbrkr/34UFZJzrORxsy7MuupuYOzUTSeckAhUnv27b/2CPCJQWQMf4+6vA+nHvBDyxe2syIXkW6iVdMItriVjhoGVYQMhn4CkVYjvaf/1DLJbfNQVUlzc1xBvQs5pzf9KGsQNGd3Yv0QAkipunpBGwCAlmoGHzNTks0TbJ4fRt9BpcgntOshKGiRdXDEYcEmgKyMMS30+t4/u01lBUoTBxXRV1dzHV45y9sol+/fhQVtW/I/qCUQS4TiM9WyhKkcCAptqhettm+omIFACw6T6OY37NtukUnS78WyB60QB6BC7Q7eMl38AGTZyBw4nQUBKbOquf6W2YB8OfbZvPAXdtz2K96Jh3mpSmZci7qDlq1ppW169rYbnQl7320lhN+208v71Kvs109uhdzzhlD0jY/m4AL+0zuxqZVh3nel8qWn5X2lwxUNos53eYGKJnqzxacZAtM8ggSXevSJCVFIU48oDt/f3UVk06rQJsfRmoCUaAhNmrE+hUjNAivbyHatSSRqTuk8NAd29HcovLXe+dx6flDKSwOExL6t6uFdA3M8uUtdO9aqGs9FLCHD04yV5SmpDuxbsqQAKGDI4lAicatb86KzmU/EAth+aPY6wCsditmXg1AGskerXGMKLovgiatZxCAaT4UEsQ0yfm3zObK84aw757dfI99sPeURyDqxj9LE1HX3CfgDVhcwIoFVMACK15AxY0am+JEoxrVnSL6u2xOdEZpiiPiUo+mRbLZl/mXDCu8/tAOVJaEEBJuvH8BxRHBrY8uZvmaVh6+eBhhRTBvUTNDBpcxe3ETw/qXWpHcpNABj6lZIyb5bEYde+5YBWGFelQuvm0OZSHYY3wVZQUKi5a38ObXG6mqKmD48AouOXconUMw9rDP+d1v3c25FixuYujQoelex1b6BVAgkDJkyBDeeOMNwBGhQ5gOezBrVj2ff72BU4/vn/yIH7ACOWlYzDYEohy0LvnUtkCegQvkRaNkJ7/Oe3745EobN0aJtak8/fhOnHDKV1xw9hDOu+wnrr15Jl1rCjlwv+7MmtPAR5+uY8TwCp55fCcihlmGG3359QZGj6xgr0lduOGWmRx7dB9/ASJ8boDtbXL1s8/a3E7UnkkMfVE+tSgZeLW79qQ9NCfZgJNc2pmObxoefzisJ2N//w0rTuhPt+Io0YYSmhdUU9fQmYJwlLJTN+mZs2MqWiSkRytSJTXVepj1yZO68NkXG9h3z256JCVNohii5om71nDlDTMYuU0FnSsiCVMuoWeL15PMCutAaTnEY0vWaF5XRMLkK2w43/r06ZKRkM2nBZzyD6EBMVU3AVMEolVNyo9CSIAqefjfy4ircPoJA3wMdOpYe1F7AJN8+6t5nknSABYnWPHSqjiBil5f6rr/4UdrGTSwjK6dCgivbNS1XUUKxKQVcEGoMhHRy87T+H9lecS6t7EuxtVnDwEp+WZ6PRfcM59YXLJ4dSv3XjiUusY4y1a3oMYkIiRRFAEalgkZEcH8dW3suE05G9e1UV4V4cbLh9O4vo0Pv9rAojUqI4eVc/uBPSiriCBDCqHWOJqABUubGWIzhbTT/EVNDBmSXji4OUiTAk3mvhfng8cvgQKBlJEjRzJlyhRgjHtOAiG4+i+zefuDtSghwcnH9kvhESjfiHNRCqBlsVjkClqgQ7Qt0I5mYiY5pDbZUHtoVYLSdz9u4tgTviQe1x1TJ+/RjVOO68cFfxjEu5+tY+HiJv77xioGDyrjjycP5J4HF/DUM0v5/e/6e/J8/6O1TNy5hsvOH8a9Dy/ko4/XMXmvbj+bw3/GTMSbycB1qxbFB68tHaB0IDjJWmvSXiZixrgO6lXMPjtWcffrq7j14CLirRGiLcVUlm8iUtaMRpjItBbiI4oo+L4JbXSYWE2x5Zx+4D7dueja6ewzuVsKaKjpUsT1147m0mumse9e3RgxtIxthpYb/u9mOGHDPCumWo7wznabB1lzz7MOv0bkr7RBNTyAjIipCFUHHzKioLRqhnRcQxYoYJgOYfgWfDujjj/dNY+n79shcwCRDgTwEACQ5GPNSpdl3gFYUsCKm1bFBai4CQ1XrGzhsiuncvG5Q1FaY4g2TddyqVKfQqruyG6a8WFMLSnQo3KFkgXQIqbR2qohhe7cvuPoSsaPqABNsmJDlIdeXUltY5xf792Vw6+Yxm/27sqx+3U3rGuAwhBaUQhNgeZmlRe+2qQLAKMa1WHBEZO66PlcQoavlNkvRRCNaqiqpKLM/Zg6e16Uw48Z6Xpvc9JWc6/8UiCQMnr0aJYsWUJ97TAqKgusBdgeJ72uPsaJR/bi8ptmscfO1Qwc4I6Cs4qK5TNCWHI9adjlai7mo9351rZAHsCLi1QnKOWiVQmSX8P5bDyucdZ533PSCf257PxhSKlHNNGjzEgOntwdqcDZf9CTqq3f0Madf5/HiOHeYQwBNE2PuBMKCW64fAQXXjWVHz/fR29fNnN1M5A9OssvjjqiT5tBi/JLBChbAjjJ3UQs9dJVJ/Rj8nk/csH+PakuKqKlsZxQSCVcGkV806JLj2MaWkMEpS5GONKGWhJGRkK0tKiEwyJJYi2FEdgipNClWzG3T9mOGVNr+eizDTz3ykouPHsIpUUhzLDYloDPY901o3YJHIdYzTCtdTrbG/cV08wMbKGFbYxV/d8yJFDapPF/Dc3ITm4+8+4XGzjlqulcde4Q9pyYwQ9lS/k2IP/fvRtPW+QusJ093Ey4HFqVTBoV85lNm6Ic9ZvP2HdyN079TR+UBiN6VoGCmcjRNPnT68b6vzCBiiZ55IUVLF3VSkjovIUiECHFMOPSP3sB9OpSyLUnD+CZ99eyqS7OWUf21n1aVKn7rRQoaEUh1tTH+HZ6PSft3Y3vZ9RTWhLWNYRGfaYZIVIvZ0aJW7ehDUWBcg+QMn12HdeM8Zm3byv9bCkQSKmpqaFnz57MmNvIzuOrk+5JKVmzvo0Vq1o4//f9iKtwy73zefC2bTMehANrENItKjkCmECalyy1LrnmKcmrxiUH7Uq+zL+CgJYFCxuZPaeB++/uocsWBZjhDvVxkZhSx7nzGxi394ccelAPxm3fOW0b1q5r5Yhf6flIfnNEby780zTWrG6hW/fi5Lb5ACztBi591LMlAZTNrUVpj0zrOt88SXY3M0D52YKTbLUmaduXppwxhjsMK2ev7Tvzl/+uYMohhRQ2tBKLFaBFQ4hNAqU6Tmh6jFi8CGUphJtbEb0KiVcK5syuZ8K2nayDorXmKQlzrJKSMDuOr2b8uCq+/34j19w4kyEDyxg2pIzddqymwPRPUSTS0V4z1LDJ0xnRC9z3NjOSmFSU1LlinkaFbgpmDz8sC21O9JqkrkXlN+f/yBknDeDMkzOYeeXj22hn4K7zyG39cs2HArg6xYOnVsUTqDjo/It/oF+fEu68biThVtXyEUm4MNn+9hgfqUpmLmjkhnOGIFUN4pKCkC1ctWFyaK//yMldOe/OeTQ2xbn6+H6ImAFqI3rku4f/s4xLT+yHIiASFtTWx6EqopucRRIgNxHlTG/q7IVNDOhTQmFhagLQ9bVtrFpdz6hRqUmaNzf5DGDri89WChCC2KTRo0czf93vUj6SufMbGTruHQrCCodMqOLi4/rw3H9XUt8QS44e4oOcIWUDLRbmDHH+fNft/vNNZl/tP791ZxkC2W28Ai+wAdvanlRbG+Xue+fyq8M/4aGH56PZ2nXp5T9x1BG9GT6sPDVSiknG+Jl5W+68dWxKZCwnRaMakYj+TFlJiIqyMEuWNROPqp5lgo671/N+3lfO73dzUy7zK4ty7ZUbpUPHfUsDKKYMIAg/j/eeNlyw11zJwMuVn9c6rDl+buSydwztVcyq+hhUSwo7NaIoKmpLAaJIQ24KUTu/B1JVaFtVTmxOCaH5bUTWt7JycSP9K8OEWhMhVpMiM4Hl6C4VwfbbVzHlxjFsN6aSuoY4p130I2pYWIdaN7NityAVMqxYEb0AC8DYk0KaWuiQGf7VuVYqurO9xVsRaEWhhImYJnnurdVsM6iMay4YhvCKNuhjDci4/2XgkXa/znAeCLy+BlizXdvhbK+tb9YYmP+2DvCpdUpF8O33G3nv/bX8/ZZtKYxpKK1x3SwvLvX5LdBdiQ2wYTnMKySdAhcsa2FInxJKikOUlkUoKwtTUBxKgBQnhQRKWHD3+UN47IptGNi9WM8iXxLSI75pkmmz6mmqjwIwaUwl9z+1hB/nNxqmZjpfJWaYEZrdUwRzFjYxfJC7Jc6M2Q3069ePyspK93ZtRtIQefttpSxAynbbbcf333+fcn1QXz306t+u3obIyijbVBcyuF8p7368LvFQFgd3k3I+nOUAXPT6cwAwbsAl02JrAyz5AC++KQtglU969b8rGDDsNf7y1znsv093/n7/fH597Oe0tqrMm9/AV19v4ObrRlMU0Tdfu8TQNJ0wzRqefXUFO4+vonPngoz1brdtZ779odb6968P7MHZF/1In21e5933VneIViBbAKOq0opitqWStQkFoazXioAFfI6d7+9oC5cUZw1QPHilBShuZfIMTjyfd+VFZlDisj+Y4z2gRxFLVrciSxRCnaIUFLegqQpaQ4T65V2RUqCENbR4mPVrelI7tSdimsq6eY301iBUH03OFp/Un1TgMX6HKg49qCfdawrRNJJ8UZL2BJvU3glWzJDCKXNGsx+WJUpzLJFV3mNc9TU28dOK9MPoopWtjN2mPMHXpWwmyuWb8NyLAwATzzrT7d3p7msyfT3pwAppgIqtbeYzt989l5N+35+ulWHdb0kzcptENYgkO8UnrcPm+zQe+XF2feI92suYGEkARshgJ8mQQBYpqJ0KmL0pzt1PLeXCG2bSv2sRNz+6hOffX0e/3sXcfc1InnprDdLIISQs7YzBM6Tv44uWN9O/T3FKPQA/Tqtj7Nixrve20i+LAoOUCRMm8NVXX6Vcv+mOOfTvXczu4zrriF2VHDKphn+/5J6IJyeNQ5rDXKBDuZfWJSCYyTuASVdXlsAlKylRtoAwS/rhx02cdOpXjB5VyQev7sbZfxjIZ2/uTn1dlCOO/pQb/jxDD90f1+OsK6qenEqXPmKBE1PL98A/FnHGaYN81V1dVcCada2Wze75Zw6mV89izjltECed8R3vfrA252Sf7UVnX/QDnXu/wtLlzR1Wp30c/ABqrTCUUO37oSzn3v88QPFxIPOs0+2epP21J+nWmiBAJxMwyeIQ66Rj9uzC9AWN/OvdNchegoJuTWixCK2byolEoggh0WIhEJKSoiYURWXVvGq+/jpKn3ABQpW6Q7Oq6e8jriV/L/aDrU3bscO2lXz5+Xq0wpBhAkQC7Nic4k0QY2afV9rihvO7ljgQS32chAaKcaA1I3bpDwgsIa7ZHOPQa7Utplk/NMmG+hg1VYWp78LnPpKt9iSj5sS1TJp9MMsziSe58Eup3wFWrHKkAhXzeXufa2ujvP3uGk4/tp/1vBLVEG0aWmkIWagYYadJ/EI20y/T5FARTJ3fyOghLtoLW/utoFMhm49VSBDTNK54fAnn3jqHdz5Yy8HjO3PneUO49fwh3HvZcMKq5JbHllASEcSimgWOZERBM4IsmP4oQtWIxyQtUfd38N2PTUyYMCHz+G8G8nuszMPR83+CsgIpM2bMoMGWYOehxxfz+DNLee4fE6A4rE/euGTHYeW8/cl63v9krT/mPiQSfikvIMakHGZSOgDjubgGHINsgIvvsfAJnHKl1laVSy//iTNOH8wnb+3BsAFloEkqSsI8+8h49pjYhd59Sth33+40x0ErDCcSWjmyIZu/iTvXcM2fZ/Lj1NqM9Y8d04mp0+sAfRHv1aeUlx7fiSvPH8Y5J/Xn7vvmp/TZa9w7Gsh0rtDDRT706MKceXn1y2t+5bWfOR4OtgKUNGtEOr5e99KAk7QHPOfz2YITv7wygRMnZZSue6/TnSsivHDDSM69az53vrAc2UdS3K0WJRwnGi0kFiugqa4SJaRSWNJEQXELKxprGVXTjcbZfQitj6G06WF8Q61xHazEtdRDrEzu02vvrqFnt0K9LcZ1rTCEWhS2EjPa/UbsmksZCaEVhJNMdoQGoSbdBEdpVQk1xZBmDpSoar17oUkdjGiJf4MOUpSmOEqzilAl6zbFqK7KrLF2He9MAMWtjB+zrpQyPoCJK788/DzqSgErpAcqbu1/6NGFjB9XRd9exYiYRqguhmhWLb8hGRK6Y7r9F05ow6zobyFBU6tKaVnEAqmWdsMGZNz8V9XKApZEoWu3Iu66fDhn/bo3g82EyIqgvGsRNdUF9O5ZRKguSihsm4uqRGmOE2qO64knVcmSFS088fIKTjimD25+xt/8sGnLBSmQYk2azW8rRtEpkOM8QI8ePejduzc/TKujb+9i7n1kIU8+u4xnHhnP0EFlEFPROodRNsY46tJpACxY3Mzk3XJ0svZ7UPDpnJyN2Zin47Pfg5pL/70WWlcH/nRtdrQtiHO+H2dwNJl2bHN1on/630tobo5z1UXDdbttTQJ6XpPOVQV6JC+7Y2hIQQpBqDWW5NBpb88Dd23PnffNZ7/DPmHfyd244qLhbDOswrX+qdNrGTumk42BsN7r0IGlvPj2msT4ZxgHt7+zIb/jueuuNdz78EIe/udibjl3CPGK7A4LadsiJU3NKmWlgZeM9JQHaWV75kLZUpzktyTzriB8Auc6Cao5ceXhUWcaUOKbFMGe46p449bR/O7Ps/j4h1oePmUInSpCFPeqo25Bd1bXdaebkKhqmOKSRqauX8eYfkWU12yEFomMhIhsbCW0PkbLiEpkyMOUx6a56FJTSP9tOiFVDa0wjDNSl5mkMWSYbOkJGE3zHs2I+mf4kEhJuL4NGQmhtMQxI3eJNjURrUvofdUiCvboYkqznrVcSAyzHP3Qunp9G12qg6072YATyE5zEqiOAEtSpvXB2rOcj5mRrcCRG8Xka2jGnJHaLMYSENTVx7jngfk8+cgEZERBLYnoILghZmkpgMT+bd/HlYSZF2BE7zLjV3t0yGynzZm9dk0Lf31gIYvXtLLt2E7MXtbM8F7FqGFFr18IREzl2a828pczB9JcGiEsdHAiYrpzPka2eRkSxBXBaVdN5ze/6sn2Y1MD3qxa08rKVQ2MGzfOo5Fb6ZdEgTUpAOPHj+eMS5czfp8PqauPcd+UsUzcucZQX+shCgkJxo3SD4QTtu8EZDYLyYtUNp02JkdNjR8zs7SLVgBtTHtpXzJpW7IyCbHxDkpLljTx8qsruPCSH+nWtYgSI96+EtPNIUwpoZASxTDxEnFNt7tF16ikaDGMZGehkODCs4bw/SeT6dW9iMkHfcw/nljs2o658xuTwhSbm4USU9ln52rmLWhk4YLG5HHIUfKfifxqNQ7apzt33jKGllaVB19Zmdc2aJrk0y/Wc+RxX9Jr2OuoQf1KUhjmb9wCB7WAnyVAyUjZAJRMkmO/vPKlPcmGT8o10mtOnLyzmT8GTRhdydcPbI8SFoy74gc+bVgLVZLKHVbRr/tCwuEYRUXNSE1hcOcKVjW0oLaFaZpaQ8GSJkLroqhdCyytids+KOIJk7CuNYX8+9mlvPX6Ct79aC0z5zV4SrWtNdPMGm8KcYy1UWmL6wdfI7O8ZbZlDldEsXJWALoTtiZRWlXQ0P0cTFIEdU1xfpzdwISxnXyPX14BShDNSbq1R+I693OxyPB83l6XQ7Ni9QmSNGfms3Y+r721iv59S5m4Sw0iphFujBrJGw3zWlNLYuUiURJ/2821FEFds0qhPbeNcHzzioCwnhvHbFNjbZRz7l3Iyf83hNtuGEN5eQFvfbaBS+6azyZVWto7tSSCKgS1QuHsy6fym12qdVAcEro5mg2gXHjbHFaua+PGa0a5Cna//HYjI0eOpKLCXeC4uUlKkbffVsoSpOyxxx7U1NTw1Vu78/CUsRy+X/cEw+YYSkMcNLjg6N6MGFLGtiMq0/LzY9/u1/wka8ojqMkKyOQBwGTsl5NPmvHLxiHW5OmXNm5sY8993uekU75i+7Gd+MMJ/RKJyMwoNqpuf2vaX2umOYOqWSYRpoQpyUTC1sZevUq49frRPPv4BK6/ZRb/d+53fPXNxqS2zJnXwIB+evCHJNtsoFNpmH13quL+RxZaIRhTKM+AOCgdcYgePvn8y6bqoSPzQZrkgCM+5aCjP+e9j9ax6/gqN3/JlDLt3fesD5cBzLu2FICSsa/ZAhRPfu58PAGKW71e7NsL5AQAJ2nXy4Bzt6pTAc9eN4KLf9uXw26axcn3zGVda4yiUXVEivTwxPF4hOHVVXy3tBER0lDCceIziqAOQovaCNe16f4gmg4g7PNFGodBoWqcdlw/BvQpoaiykJa45IF/Lk4KY2yZfIUS/5choZtltamEWuIobXFdyh7TrJCv5jhb2hGMeSOlLgG3racipqGVhNDKI3r+F8M/5v1vNjGoTwl9zfUzA+XVvCsoOEkpjys4ycmhPs28SfVHIRmskApUzHvOcRMavPrGag41Qudjy7GSBEDQ55IMKwn/JXtyT+PvyooIDc1xmloSES2lIvSyNud64jqofeXt1Vx0/0KuvnAY/cpD9FAkp+/fjfMO78kxE6u57uZZvPfhWl2rpwjGjKzg95dO5U+Xb8N223bSkzyayR4LFH5Y2MTR5/7IB19s4KV/TqCsLOI69H++fQ677bab+3vZAkjm8beVsgQpu+++O3PnzqVv9yIjfKHhyNymWgudDMHspc3U+IislA/KFtxkDXRyPJDmDGBceWYALukWT49xCHpACUK3TZnNgP76xvb9j7XsuXs3/YYidJMGRSRpTaz2GGBEsV1PdwAy+7TbhGref2k3YjHJkb/7nBtvm4WUksamOD9OrWXSrjVWOaGRGGdVctmJ/XnyheV89Mm6zMAwEwXZ4Hwe8CsrIiz4aT+Wzdg/EW7ZWc7vO9MkjQ0xlq1oRtMkPboVcfl5Q3ni/nGZ298OlHU4cJPSfDOpdfkfo4y8tkQTrywAShA+gQGKXx5e8yug5sSTr19Q6nhWhBT+74he/PToDjS0aYw8/Tse/mA1hf0biESiqGqIuz5dwOkTBiCERAiJUhAHFVpmdyK8qBWlVQcPQrXxNqMuhXWtRkV5hJ13qGL3iV0YOLCM0aMrkYpACylooUSkQy2iWHux0qbq66Wqr6F6HYb/i5mI2TD1Mv8mJJJDFqOb5YSa4pbpkNKq6mZixpi8/dl69ptYk3H4Mu6zaQBKCqXRnvji63EK9A1MgpDHGukKVsw9ywZU0q0D8xY0snhhA5dc/hOXXTOVe/+9DLVQIQa0xiVNbRr1LSq19THWb4qypjaGlDIRaMEOVoA/HtuXOx5fDAI21sVotYXgFxIdoKiSe59bzrKGOPfeMJqBPYpQmuMWeFFaVSYMK+fyUwbw/bQ6Cyj//sheXHfxcHr2KLYSgarAyx+uY99TvmXycV/Ro3sR7zy7C/08AO9r765m1eo29txzz2DvYCv9bCkrA/ORI0dSWFjIT9NqGT+yEgARNxzu4hpo+oSOqZJ+vYr1D28LztRtUi4aGU//Ab8Lmm18vBZJz+RQdnImRrQtcCl+LrYNMamMwdveJ6HJVH8Vj/fq1z/l++83csZpg6mvj1FRGaGoNIzU9ERlZrQuoSXnKbFHppHom75bH/Q2O/opJQP7lvDondsxbVY9B/72C159YxVFRQqjR1bSs0dx0rja38P4ERWcemQvHv/PUvaY2MUa50A+RblShrmUJBDwAic+5mNtXYw9Dv6YRUv0aGEvPblT5gzSeaK85jfJ5nvOtFb5/J7b1UEesvdB8eQXgE9QcOGTRzCA4/FsEHCSjpy3nVPCsXb26VrEM9eN4I0vNnL0dTPYZXgF2/TayMyfNFrVGEO6lCClihJWkapCfG0x4eI2aBQUzG5C6xJGrYiglYR1J3dz/RCGWY5paRDTGNy/lEcfX8xnX6xn1127JKTnikBIQ4KuanofDM2v5fNgtFkqIik6k9BkIqeKbRzNkMPEdRCjRA2QE9EzkEsF3v5iA/f92TupXi5g3a/2xN7HjHzzMNetcj4/tSTLHcfcEbb3ZyXQ1KSep1hJ7DMSqWd81zDuwZq1rey/VzcO2bsboYYoz72zhotunUNhWBBSBEpIEFJ00+eQIojGNGIxyVX/NyjFtKuuIcbSlS18P72es66fQbfqIjbURSkrVjjnd/3oVhlBAFOeWkq//mUcdkjPRBJGRegg2wiyIEPw5Xeb2HVUBaHmOFpEQYkojB1RgYjpkb2+nlbHyZdPoy0m+ePx/Xjyvh2oqipMAcmQ2E8v+tM0mprjTJo0yd/AbwbKl7yunWR+PzvKCqQoisLEiRP5asHOTBj+vrUQKi1xRFTTM45KyfD+pbz/kmEj/3MacXuSLb+O+D4PRIHBTK7gJQlo2Mt41G2vzwE2khZTe9ksAWh1dSEbN0U57eSBiazIYDh9mm0M6ZoUKa2DScKhNOFQmJobwFaRlCltHzWqktlf780rb6xmzfo2/nDiwOR3aJqOmVItTTJ5XGcuuGNe4n4aIBb0sN0uoCZLWrGqheUrW/jbtSO5+x+LWLWqVd948tDG9kqyaFGWgoYtxbxLb0uG8tkCFK97QYasIwGKZ3mXa7mCk0xjYL/vduA06ICdqjh0lxoOu24m9545kCe/2YAWjaCp+oERIdGiIaJNJZT02AQhCbUCpdCW5DGk6Bng0b85qx9S908pjIS4+eoRXHPrbHbducboq006LnQAIjSR5Gvi7IcM64FJUI013PRBcB6ijftmuGFTy4Mi+Nerq2lp1dhlfJX+bLaCARcKYt7li6+XXC+Alg/8A5N0ZaTdcR4cmeVxABWS93EpkQjqG2LUN8TZaWwnPcx0XOPoyV05at9uqQ0wneYlfD2tlj/ft4C2mJ4usLVNo6klTkOziiIEJcUhdtmhis+/20R5WZglK1t48JnlbKqPEYtJJk2o4vCDDYASN/2eBKJN6mbZqj5nvvyxlmtPG6hrWAwtHXF9P33+vbX88crpXHXOYE7//QAihboPlNvQmvvOptooK1a2MnToULp37+7y5JZBEoHMQyLGfPD4JVDWoXr22msvXnvtNc7ZXxJqjutSllYN2jSISd2QTJV4JZ/doikbExk38tAyZKIkIJMleHFKxBIPp2oAXAGLlcRJprQpRaviAlQyaVO++XYjn3y2jnPPHpJ8QxFoRlQvABkRKHYnQhvgsEe4yTSu0twETKcKRVBSGuE3R/VJflCTSVF1zFCeMiSo6lTA6nVtbNrYRueqwrSAMCjlcnh3godseCWiysCIweWcfcpA/vn8cnbdoTMH79s95za2C+Xoi+Z6OHED3B2kPdHblOGBDgIoQbQxHQZQ2kN7ks0U8gIsBv3ryuH85allHPHn2Xxz7XY8934jyzdq9O+Ofjo1fVMaC4hUt0BnkEUKolklFBZoJWE9a7tNECLimg00aERbVEIieS0WWvKaa/oemJG6Ukx8NYkMKQhV1ddH1QAsJhAxygjDR0HENNTOBYg2I2iJgGvumcc914+kyBbtyTcFASeQu3lXtmXxAUz8fC9JAkCjWeYlo7z5T2m+NxtQEZqwon2hScqLQ4waXs7zr67krKN66aDTCLYgw4onmB4/uhPjR3cCAc0tKsdfMpW9d6lm7IgKdhhViaZJ/vP6am6/fDgFYYUX315Np9Iwe+1crTvdK3q0LhHTEuNiN2NTJWs3RgkrgpJCxYoYJxVBc3OcOx9bxN3/WMw/bt+W/ffunuwfk4YWL22mpDjE5MmTM4/1VvrFUNYQYvLkyXzyySdEW40FzFjcRFyCIRRqblMpKcpi8bJRpjwjm/uXlux2qJl+9j778Z3JwMc7qohM8W1x7Y+Tn8Oe2NUx0fnu0hyo/nrHbM44fTA771htlbc7giYtWsJQ/5qAKaQk3XdzKAQSiR1Fwv5WiWm642iGDcrsn4hpRpZdhXFDypgwupKTz/meufMaUsfAzXfIpz9RLpSzzwbJZRVFcO1lI3j/1Unc/dftqaxwd2DsMMrTOAaNzONHb+/Lp82n/n+LByg5a0Cc61z+AUpaX7ykcqT2Xwvwc/Kx8VMQnLBPN1qjGoMHFNGzRmF5fQNKREUpiCMUSSgS15elhsSaJ1QS66DZL2Oum6ZY5v/feGc1k3fvYvTZWBeVZG2yXSBjlQ0rVlhh08lexI2IiW0qSquaENIYkncU/WdGhSKsIFTJvIVN1NbH2W9SQFPQNN/DZgMoHm3KGMDB57ftVcbk7zzsC3PsjWtmMAMz2peQEgW44tyhTLl/Pm0SECSitdnLe42DhK+n1nHCYb34v9/2ZeftOlMQUSgqDPH7w3tRYPggHTSpC69+tE5vV5uq5zMxhHdWfSbAlfq8+/eH6/j9Pt2S3ufyFc1MPOYL/vv+Wt54fLwFUPySlBAKbfkgJcixL8Cx8H+WsgYpI0aMoLy8nAf+u4p4Jz3TrCxUIIaF4BvbNEpK/IGUrEDAFkB5AzgBZmxap3+Pcr5ACy5tcwFQib77OHg5NhdNk7z86go+/WwdRx/dN1m6ZDp1mk2znPuSwYap2rabZCW1VdoWdIu5i1Yrpumg2mVF0CWLidCcUoBWFOLRa0YwoGcxux78CeddNY2mhpj/Q6/F3OPQncsvaB0+22nPVG3xDdqPXPudJWUNSgKAE188M7Yzw1qXYRx+rgDFbz1BInf54ue85AQeftqVAcAUFejrTUtI5Te7VXH/1wuIm/mPpUCJqMSaC1EbIshVArFSRRYJ1PKIroWOa/z4Uy2PP72EK2+cyaXXz+CyG2Yw5d55RGOS9z5dz+5GoA+787PSEteFMKBrgA3Jtxl+VisIJa+5MYdjNCTC00osB3kZEmglIZD6Oogm+eDrjUwY24nCYp+CyAzgpCMAimfkLyd/mQGceFGQU6cHYDGvWUDDuOYGVA7aqysbNsVYsaZVj5RVFtGjrtnLG+MgNJkIa238Pv9uE7vYQkebc8nSwoUEBUUhIhGFTbV68s8U/5qYnt3ejMApixTmrWll2DblaEUKxDU+mVbHXsd/za47dObjF3Zl2zGdfZmy26m4SKGpObbFO83LPP62Ug7mXkIIJk+ezOyFnyPD+uIaqo1CEyBAlis0NsapKElfRdbReuzSpp8DBUjk6CTLnCfNhyw84Ka0hSW0SBFJi0KKaZgQSdoIq7zNBMwK+6vZTL8cz5kUa1O55vrpLFnaxNTpdTQ2xvnbXTswZGgFUtOdAd3a6OQnFRBxEpoWm+Ylqbw5N6REaCLJrts0+1Js9tV6FiuHuZomLe2gEtOszb6mZzF3X7kN553Unz9eO5PdDvmEh/4ylh237xwMqNjIj6rbTitWtfDh5+uZPLEL3bsWGUwC1u3zeVezwXaqKxvKdswtClg+n8AkI2WoKytwAnkBKIGoPQCKg1yFPinlfPD2KpvuunP9AwoMLUVUEVSVCTqXhgiFQcYVREiixUK0NJUhhKQg3IQo0yznYxHTePTZZUTjMHGXGn59TF8KDZOZ6TPrOPGc7+jcKWKZhNnNU81IXkRCVjQu6/Bo+u1pUl8TTad6ScLfxPi3afalH5p1s9d4SZhQUxytQGHxujZufHAht1w6PHl8nGbAPmizak+czwSZm+mue5Hb8469zgKLmkw2/9JSTb9CiqB7l0KWr2tjUE0icIowtBrY97FmFa0snLTfbKiN0rVTRD8UO/YhaUTXBDjnhH7c+PBiplw01OIpVIkwzfvNDPICUEAVwpp/n85t5LAzvufqs4Zw1qkDQMlONv6Pp5YwauRQqqqqsiq/lX6elJPHyL777sushT2QQqCWFaCVhqFC5ypUSUObRlmZN0jxDVDcJKt5PPjYpSvpQgM7nwlEOUiQfWljPKQ2GU3FHH1OaiuOehx87eOXRJpkyeJGvvlmAzfcOIOho17nnfdWM2lSV26/bSxzpx/IEQf31DUiDj6mtMeqx8z5oRmmhFJaQMPcoC3Vs62tIq6hxFQjPLYJWIzN2rGRiriW0BjY2iMjClpZxNpErIU/JBjQr5TXHx7HiYf2ZK+jP+e1t1ZlfZjLNOecv/c+Wsv/XfQT2+35AS+/tjLtHPXzsz/vp03p7tvnQ7pvxOv5oL9A5PGNpH03XhrLdLzT8fOjIfahOclae5IHgBLMTMvnO3It6/JcewIUl/dnN8dJMc1xKWfeb2jSNRTlJSGmr2hiZNcK1LYIUgq0uEK8rYCKrusprGlEbYlAm7AC0GysjTJ7fhNn/L4/o4eVUxhWLG3yyFGVlJSE2H/vbvqaZJrbxCVKS1w34VJ0wYwMKVZYYuu6aeZlCHlkWEEr0H9m4j8zjKyZDVxpUpERYR1KW5a1cPR5P3HkPt34rZGfKWUsfH4Hns7xm0l74srfraxHH73mS9o55Ll3J+5ZWhHbfmVqVIYOLGXuoia0Yj13jWWWZ8wP0M9jWlnYuo4micY0wkYOFE+zK0Ob0qt7ESOHlHHHPxejtaqIVtXyVUIRyJKQHr46LHj7u01s07tYz6tTFOKpV1ZywuG9OfsPAxPh8T3egRctXNzE4/9Zxv4HHOq7zOairckc80tZa1IA9tlnH0499VQ2NUymukjRP4gouiZFQEubRmFZGDMyUCBQEpBylqj65OE8yOWbfIUZTmqP90SWLicSp8ZF2t+JTcOiRxmR2B3tkzQ6SiKyln7f2GDrYlx29VReenUlUkrGjunE449MYMdxVRQXKtazIqbqi5smEk7txv+FAT4sHxXNUHHbgAaahJBimYjJsJIANEZfUI16QgnnvZTxMMpI01nfZjphbfCVBShtqhW207wfCgkuPGkAX/1Yy32PL+aAPbuieNTji3xqVI7+VS8eeXIJs+c38n+X/MTcBY1cfOZgawMIOi+DzulM4MPt/36fz5ly5BMoOpHPuvK17mUco3T309wKClB81x3kIJhyzeW59gIoQfrp574GtY0xigsUIoqgd00hq+obiLYUU1TeiBLWiJS2IDWBKNEIqTFkN3QgENN4/4sNHH1wD0+H4hN+04/1G3XTG2Eeak1zr5hmmHclsoInrSuKSD4Ia/paq0S1hA+LJhExYx3W9HahSsKr2pBFgrMfXEjnzhFuvWKbQBH/svW5yqv2xKOsK/B0oyzmihdljPgFCHMv0ty0KhqgMHxAKbPmNqIVhBJCOb2x+vtt0/R3aNfSCPhhVgPbjahIDoVsm0vO/p54SA/Ov2k2Lc1xKiIhPQpnSCBiUg9HXRKiMarxwkfrufdPI1ABFEFrVKNzpYdfo62+JKsMx9njpDO/JRKJsN9++/kb3K30i6GcNCm9evVi2LBhfPLpWkRM1VF8dQhKAEWgSkk4lJhofkjEdMcsK1mU/V6+JKomuUkwOvLn1v80fXTtq08NjGufSUiKk+7Z2pFWq0LyoW7jxijH/v5L1q9v48dPJ7Nq7kG889Ju7LFTFSURgaJqeqZ4u3bEuGbWmTQW9npVLRHu0LSXtffVlC6Z2pOYmqSNMRfgpDoczveJHCzJ7TDtuZ2RfMwxeuCqEaxe08aU+xf491VwI5/zpqRQ4fmHd6RXtyL6dC/ivn8s4o8X/0RrS3zzz2n73N4c32UACpzQNUBdvv3qfPje+NKcpLvvcSstX5frWzxAcSNnsQwAxVtLFOAnJXUNcSpLQggJnavD1MdbCYWjaPEQUhW6VkVVkE0KImLY80cUtMIQ38+oZ8SwCs++rlvXRo8uhZYk3RTU6ACFBNhw9jNpfTcENEmmYgkznqRyAr1tlSHqFXj23TXcc91IIgWZfVEyfgdp5r+nBsRtzrhc8lPWUzPmJL9lnc8HWLOStCyOZ7y0KkjJbuM6895n6xGqRqgxRqgxZnNsl5Yplql1MxMyfvb9JnYd20m/Zjq+e5EERYMeXQqpbdXQihRkgaJbG5To2pu2kODye+ZzzskDdG2OocGbvEsNH365wdZPl/fiQU3NcfY96lMWLWkmGtXYddddvdu4hVCQpSLTbyvlCFJAN/l67/NaZER31tKKFB1dRzVUVbeZ9EXmQmU6+YVtUvdMm7Qb5flA0y6U5QEsI4BxAS2uZmL2TSsNWLF4WvXbygMPPrKA7XZ5h213fodOnQp48uEd6dW9iAJAietmWjrIMBdZknlpLodE+/tJI2ETqqZHOjFMHoSGUZ+0TMCS+BnjZElsTMDjfC+Oe9LQxljaHtsYVXWO8JcLhnD/E0toaowljWdKVDSXg3HgwzLQpbqQt57eidLSMJGIwn/fWc2vfv81tfWxjGU7hDTHXGonoJGJchnjoO0KFPAjAzDR+eUBnHjcTgtO2gGg+C7rRn4BipNfyuEz/fOph1Xbzw+Z71SDmUuaGdyjWJeOx6FneTGr6+NEW4ppaYWnv9nA3A31aIqGKNVobtNoiWs0RFXimqTcxUza7PPc+Q0MG1Sma5aNsVGiakL444jy5Vzjk01oDU10SEBM03+Wv4HU/Q0kEJfIwhAvf7KBvj2LGTSgzHUIfAW+yQDMPee9FzhxXM7ZvMv57yBls1nDXNaZpGhfNqBighUTqAhNss9uNSxb1cI3P9QmTPakrS+aAVYMv6PvZtTzwHPL+XZ6HX276UGPPMdbGuDVEBD+ev/u3P/cCi65ZwGxkEAzzMtaNMl5N8/m1KP7MHRAKVZETqB7VYRlq1od4+f97i2SkkefXEJbm8b5fxzMpEm7UFhYGGxsNwMFtepP99tKOZp7gQ5S/vjHF5CagdwlOvTRBHFVEnKT6oDnG5CKQBaG/AOTXA81W/pEcEbSSEcOh3iTUlTyXo7xYJmDWQ73SSZgyeXNspf8aToAN183ijNOGagviqpEMSLHSCH0bhhO6voCmwgrbI//nmSyZe+Lo1+mU58JgMy2Wv+39V1oAhT3vC2WuZqfFcElWIMJWiZPqEJI6Lb9uxx5YHeuu2Ao/fuWJooGXHG8nrf3oWuXIt54eiduvGMudz6yiC+/28R1f53DndeODFRXvsh0zLWPqfNaNmTn026UxToSKOiHz7bnZc1LczsbX5Z8ABTfJjHOMfX7ztsDoLhRRm2b/vtyTgM7b1OhS7EVyeAuxSypbaA81Jk/vfU9+wzqzkcLNvLndzZxzXG9+dNLSxk8qJQvZtRzzh8GJtroYnbbraaQm++YQyQsqK2N8avJXfnVLtV6sjx7OdMsyNIQG321rbEipkFYMQCLrW9GQj4pAAHx+hin3TiLFz9axx1XbpMo7xeQZ6AgGj2dZ/Y8cvGnChTRDoKJwx0BcixTL4cZmFCEZf4lBZQVhTjlmD48+PRSJtw4CtCsBJwourmXzl8gBfzjv6s479g+HLN/IiFiSt4zsECQUCUYIGVAr2LOPaEvV927gPOnzEEx5mVDo8plZw5iSJ8S3e/JzLulShYvb2bthihqTCMUSRxGkvYF275tFyI+8ewyLjl7CE89t4YDDj0twGBupV8K5QxS9txzT9avX8/s6XWM7luio3VAFgnCIUEs7vhKM5g1ZKRsQEkezzb59kPJGNnJT3UmC2fb7Lam9rqStCLJB3oLmJgLiE2rYC0exqZpApXysjANjXGOPaqPtRkmzKtAMZKFyZBI+JGYzpvW4qSk+NB4bYBO21Vh2GGbGXCtRFZWmwFNB2BOHxqzDfYcLUlaAOc1D1LCCv+ZMoafFjRy3o2zKS4Icf8to1PeRRJfP+SYH86DenGBwp8vHc6vf9WDF19eyWmnDPDPO89kmec5NEfOa7nwzoly/HYDRyLsSGACeQcn0I4AxbW8ZzOS+fnxQ0lHQQGKb6BkPg9fzq7nxpP6G6ZSMKRfmCc/WcpTP6zj16MHMnFYIeHiUg4Z0peD7viUF/86hr7DK1jfqnLprXPYY+caSkrDyWuuQScf2w+hSZoaY5QUh7jomhnsu10lhWWRZOETCUCia5WlJUCy912a1yQQTwh7NE3y0+oW1jfG+eLrTXw5vZ4fX92N3t2L0m9LuYASayzzD04gzwDFs173yxnJXs4mPLT7pVhtMYCK+a4qy8JWiOCk9qkSEZXIIt1Bvr4lTueKMIP6leqgxdkGiT5npY2HYR7WHNW485klbGqMc8VpA+nTu4Roq0qhgIvunMfg/mVIaey3JkDWJALBuNEVrgLrdEClLS6Zu6CREUPL+fjLqdz70MFZDGrHk9yacT6vlDNIKSoqYvLkybzx6UxG/a4vim2hrigN09iUiMMeyDHOTn43oSzPIO3hAN9RdesbmBtjUjdj17LGM3btCubiaPzboVWxlxOa4Ff7dadn9yI6lYcTPIyEiyKuEVLNCDSgGdpa037adHA3KiKReNFspEOjZrRDsfmcmOaBwggVLFRpgRar30Yf9Cg1mi7tCSec5b1IxCUynBzG2FKD29TwEthpbCd2HllBr6oCrvjb/IS2ySyTDXmVc7R59IhKRg+vyK2u9ibFsRnZxz7De0gp146UdVj0QHW0PzDJWE++wEma61ukH4qdXz4Aipb898a6GLNXtDBhSLluLgWM6l/Mnusr+dfHzWzfoxux1lYipW10rxF8cM9YKvuVohWEqCoJc9mZg7nillncfs1IFGONcgYXASgtCSOkpKw0BAUh4/vQBUhSCJQ2M9GylshKb/c5ievrpWkOJFo1ZFTy8o8bee7T9bz3XS1tcY3uXQoRwK1XDNcBipJYp/2OU857/JYETjzLujcH8L8+WAd2499pwIowBWyK4PvpdewxodoKmKC0qohGfY/UfSp1IeEnX9Wx2/adbekESPJFsZ8nhLG3AcxZ3sItjy/hklMGMGxAqT5nWlWKANEU103RYqpu9m8BDZBS8uSrKzl0crfkcXP4gwKuQlFVlXz70yb69u7JkCFD/I3hZibjWJAXPlspDz4pAAcffDBv/dgDrTis+6Q0SYhLykvDNDbGPQ3sMjpuZnrb0vFLQzk73dvbs7l/PvrlmhnIwSf5+cQ7cvqs2J3K7eX0dyCprYtRbEvoZTmuAzISQi2JoJZGDBMwzdOe3PQx0YEJyXPGWlSllWTR0thYpl8ayIQpmNKm6hu1Ko2NmhR+9kRozntu+Q9SnfvRI4CZfBTBxAnVbNgU489/m6fX7ehvVsk+XcYr3bzYIsneTvv/nX+nm/c59DMv4w6BjYcDrTlB170Mdaatw62cTHMoC3AoNHn5ejYXgOLk5yyWRusSGKBk8m7V9Pq/mtvAwG5FdOlaqNcRg4JiwbhhJfSuLCUSaaOosoF4cwFqawFVnQqMPEw6m0F9Szj64J7ceu/8pDXX/n97f6IxjYiAJgMQSUUXAmGslUqrEYzGyCYvhSEPsoVvb2tSeXdmHUdMmc2Zf5vPoIFl/OfOsSz/cA9+emlXfnx5Vw60Z5bPMP99zfd0cz3N3p7WZ8VlfU4XMjrlejZlvfyWsnEucJax8zbqTXKiV/XEn1/+WMvO23fC8us1t7RCBVkW0q0Ywgqf/VTHrmbyRpe1157sEU2fK1/MbuC+F1dwz1XbMKxfCaJNRWmKI1pUlMY4WnnEslxw8p29sInPvq/l6P26uY9j0veYPK8jEUFRocI7H27k4EOO9D+GW+kXRTlrUgAOOuggzjjjDNZt2o1uZWFkhS7NLghBWyz1681Wugf40pZk5WSfI2UbhtAvpWR5zUBuMumkw7hd0+Lid5JkBmb6i9hNwGySvWkz6znrpAFW+Es7Tz2+v+6TopaEE+DDy0fBXCBdnNmTFjHDP8TyTTGdPWXCP0UrNGK3h2zoRNFVsfax8JovQtX0MItaKmiyHxbMcQg1x9GKQnQqVHjn4R045KwfWLaqhb9dO4qCguDygKwk+lspN8rVLK291p4Mj+UqqQ6sOUlzr0OSNbrxCwBQMrYj6cDkXcztmY+m1zFxeKW+htVqyHqFRataueGlZZy1/ThCIRUlohJvKaRop3o9F5NZreF7teuOVdQ3xLj4+hlUlEe45IxBFBaGEiHTtcShbrcdqjj35tmsXtfGY38Zo2tY4rogR4b1jN9Kq1EuYvgHGuuZWhfn1qeW8tcXVlBRHuaQPbpw3/UjqK4pSmwiST5+LiY7uezn0C7awEC+Iy7X/UX8cuHlaS3iXrUb2a0I9MLCVpex55jmXsDKtW3UNsQZM6xcHytTW6ZgaVDMd9gc1SgtDVt7JCTOFlafTc2KJqmti/Lo8yu47+ptCIOeH6VNs4SeskhJhOwPmcGODDZxjadfWUnProV06V6cYopokf0cYtOqzJ7bgBDwxTe1nH3hz8PUC4Lj0nR8tlKeQEqvXr2YMGECL72/lj8c0wetm4IS1VBjkojDDjGwgxzkD5gEPEDkFXj4rdtpzmJXy/okt3jrnlnmHW0T1v3EbcuxHZsJmJbgOaBvCS++sYqJ46sSdRhO8EqrLpnRIkpy36REqOgLotAd/JAJQGCZgtnJkByZCaos6Y1hWytUkRouWJPICElSHnvOlIxRZGwAxQImxgJtmZfFNAMMCUs6NKpXMZ88uANHXjqNY8/9nqfu3I6CQlvIziArkOmwH8T5vCNXOHu77Btr0Da3B7XDOGRlohmkjM9H2w2YZCrbXuAEOgygJCfTS9MGr3a6HlD16x/OqOPs/XrqB8Umwb0vb2BtvcYNk8dSVSJYsb4XvYwGyCKF0NoosluBnkEezTqsHbhnVw7csyuz5jdw9pXTuPqcIfTtVay33zADEqrkV5O7csieXbjoplkUF4UsjbIS1SCq6ZG5FBAxqYMVVYIGcze0cdKUOTQ0xXnl79sxYWynRLI9u2TcPm7tKGDMdQ/Ph4miv4hfLs/kAZy4lZEKpIAV890bQGXthjaqKyMUGPtrqDGm50axJeiUAtZtiFLdKayfD1z8Q6RIaGnUNpWXPljHa19t5IazBxMGlMa4br5YqCALdR8XpSFOc0MMQcLcq6ExxpMvruCh/ywjFpe8dN/2FNn2PueYuJlECwV+ml5H/z4lrN8UZtKkScEHcjORRKBt9UnJG+XF3AvgN7/5DY8+v5alq1uJa5K//mcZD768km41BdYzrmEB/ah7XSiwOjnD4pYxq7Af/ul+findGPmsw7Ufjuc8TcOMZ5wmXZYpjHnfZv51z81jePyZZXw3sz4ZDBhhCKUidDOvmJkpN8HbNPGyTA80W32xRNhiq39C2JCU8T+jTq1ASeQIUHSfExlJLI5SCM8IaM7xT3L+tuVZsdpsYrFWFaUurgMVzZRg6W3oVV3AG3dvy+o1bZx0yU9oUTU7MYtMvIctMnahW73ZtLk9fgEonUmob/PQbL5/6fj5bF/G+t14ZFrf0rXX415gE7FcAIobT2ex9gQonqY9+v/qGuP8sLCRPUZWwjpJfEMRs1ZFOX/nMXSt0kAKOhfXUlRTT8kOGxCtGlrnsC5YcfbR+G0zsIw7rhrBY/9ZxpW3zmb9+qglPBGGsCQeVVE1CGkSxcwzpklEs2qEkDXC0Go6MJq1opmJ5/7AuDGVfP70BHbeNjNASR0LjznunM8u89rXd5XhO0q7X3t9Bxn2y8zlHfW4rDNpTUcDnhWS+Jh1WaaG+j60dn0bXasKks0nzOVXJJ57/bN1zFrUnNokTQ+SYG/j/f9ZTigs+NtFQ+ldHka06smXKVT0xJDooEU0aDzx/Ap+e0B3lq9p5crbZjF0r4946pWVXHjKAL5+aRdGmr6SnqaBLuOlSXp0LWTZihaOOvoYwuG8yNO30s+Q8vbmjz76aM4//3xGH/AxvXsUU1Sg8JdLh3Hgnl3dwYkXZdjP21V6GJBXxrId4ORrkVddikjps3QuhOZ1uxO+eSC37hnPasKKAmZGy6rpFKEtqvGr333J9E/3oqo8kggL7GEiBSRHmTHGS3dQT+xqVghhadvIDKd4JabpWZsNXlqB4jp/hAYSo702DVASJW1aRt/jZhtsz9sWf2GMlyzUs+4CutbGJEXQqTzCf+8ey04nfMNLb63myAN7JPPLgfLFZ0shu3OwSfZ/ezkQdyjlWmeA4vnSDmdc83yA9sB8PYGOy7VstSeQGaA4+aZrczqAktYpOvHMp7PqGdStiF7dCyEGWiyEpoVQ1TBtjaUoioYQEqkKZIFAlihoRSEr1LDdzNZO5aVhrj13CD/MrOeVd1Zz6lG9jTr1dfHfr6/WHeiNaJpWIj8NPTqTTPRhxcpWDrpmBn84qjfXnjU4Tcfs/c9uzw7k85mBsp7HaQC7fx4u13KZt+nI+bziSBlg+asIQLKhNkZNZUTXnsU0va1CF/LJ4sSG9MOsBrpXFxDXJGEj7PTnP9byr1dXoWqSw/bowvD+JXz5Yx0r1rdx9hG9dG2MAzyIVn1exdbEWdzSxrSFjdT0KGK/075jz52qeeG+7dlpOxvodY6Vm/DIFmLbpF3HdiIcifDb3x4XbPw2M20198ov5Q2kdO/enUmTJrHj0CUM7FXM0Qd0p7jIJSOtn43GQbmomH1rRIJQHhZes12mitVStfog6baPeQAU1wXPvl7YTMOSBDGKobEwwIN1WDQ2UjtQiUV1J/mGxjhX3DCT+2/b1tFZfTHVTbtwf9/S4Gfviz3MsGHCYLE0JIgihmVmJWwSQIkN+IQUy4RMSKkDlXyQoW4XIZEwW7O3H/2d1pSFOefXvbnnyaUceWCPvB2uf0kABRL9SQlOYB9Pj2dyonwKFLJkkc/DHLQfMMnIO8ghD9ofoDi+Rc/n050IPNueeunTmXXsNrwSIkAUpCZQFI1IJIqiaDQ0VVIQbiNUFQVVIDV8hKFPVPT8G6s44YjeiX4Z6+YX329i1NBynnltFb/dq6slade1u8m8Tr9zHnvs2Jlr/m9g4rLZBpuZrHd73C/n7Jti8snHnh0EmKTj157gxO22196uJB/iLbCiCWIxjUhYWAkXhSp1s6xIgtmm+hgVZWHKS8OsWNtGv57FfDeznidfW8W9Vw5HSHjp3TW89dkGth9SxnF7dkG0SURUdbQFUCUyLrnw8UX07h6hpEThpCunc8O5QzjnxP4Z/ZbchFFuY/rBlxspLS3/WWSZt1NCxJo7n62UR5ACcOKJJ3Lrny/gm+cHJaNoSP1gs5W+tLfkMJdng7TB8VwQDY+fZ738UpKuOQGLDRwkLSIuWhVT4ieRlNgie7W1aYnnTdcRVbOFGTauGc+kLGhpDqhJ/9aMRGOKSDJNMKPXCDtv0zfCBFy2BdGZZNB3Pg4ToBh/J8o7+qHpbTpmYg2X3D2fxsYYZaaj7C8MZPysyc+7yPF1tWdAj/Y82GXkn3a99rie60EvE0DJ2Fef99KYdqWUkfDVvAaO262r7rRcG+LNGXWM7NIFITRCBVGidQWUFjdABN1sxvTxs69VLiQ0yWsfrmVIvxKG9SsxtNT69Q2bonSvKuD3B/fg1vsXInat0dekmJ4jA7DqWbUxyvs/1TLnul1S92izby5mQ27t8aR87NFB+HUUqM73nPXzjBM02sP7GkBlY12cTmXhxHPm3mqElwZ45cN1HLJHVx57aSW9uxRy0wMLKC4KccclwwgJAarGkbt3sfYr02/J+r+9fRrc+fJKDhtfzZBBRTzzwyZicUmRcQ7ItM6lEzTZzwOPv7CG4084CUXJm1fCVvoZUl7f/tFHH83KdSo/NlybfMM+GT1gpm9baxfK6Etilk3Dw499qFd9vvxZvPjn85dpTJzPOv5tPWtK4Mz3Yb4z23VTpyk0PaHgzZcOA+CyMwYl/FVsfRe2pJ4pYTRNko6fs73CtogpAlkY0kN32m2oNcMvxN5H53tIGieZ9PN6znPehPX67RFUnACFmKRHpwLKikMsWdGafh5upfYn5zzz+/NBefVlSVdPpvXGjWemZ9LUkbas6z28D3q5ak+cl334oGTlhxIEoACxuMa3CxrZaVgFaBBvLGBjQxExtQBNC4EUlBY2UVTZAK02Uy8XJ+ak9muSlWtbefvT9fz+8F5JAGX12lYuvWMeJx3Skzc+XMt2g8vACEii+/OR9C4WrGqlR3UBvboXuY6V1UfHOHvO5TTz1vf+6Hdf87lHB9qLk64nj1ViPFLnrKvPSaZ9LRtylrXv10b9i1a2MKBnkd7fmGFxENFzo6DpFgffzaxnhxHlFBQILvrrXPbeuZrzj+9HoRH9zQQmlhYmLvXTYSgBpJEYcwvmrWhh4sgKnvt8Ay9/uI6qyjC/O6hH5v5kOlsZ82vN2lZe/3Atf/jD6VkN2+YkTYq8/bZSnjUpxcXFHH/88Tz44IPcd4FjErrMyVz8S7KW7AV4psP8V1J4YUTwSPOMG7z0akMmvxS7hsV41s0MzG4C5tSqnH3SADbVxjj2zO/57tXdUAzTsKT6NUM7YwMQSeZdjvbYo3Altd1ohwlGTN7CoVEBI/qWpie0sqRPbvWZZLtnJXD0ilBlalMM+96kJFs6ByuZGyFBz5pCvptay8ghZbbOuLPeSlsO5c20LAs+HSlx9lVfOh5p/Ta8DiU+60gDDtKVDZQLxY/fiVcbJExb3EwkJBg+oBia4ftFTby9oI7LJ+6KlHXE2grp1GMNoe5tENWjEMqIkuRz5V6HZMPGKALBVbfPZZtBZfTrUcTsBU18N72Oa08fyAPPLad3dSGnH9bTOExKfd2KkFiDgA3NcQoiqetqLv5Pm9OkOue6A2j6IE+aE7/mxvbXZPKya1YMX5W2No2iagNsmL6RYQFGguONa9voXBFGCMEdlw5P7JkmKInLhPbE5mhvtcFh8YUGJ+/ZjbMeXcDowaXMXtzMQ9ePpLTEZt6f4xnsiRdXsPvuuzNw4EDPZ7ZU2uqTkl/Ke8iE0047jfHjx3PHHSsoWvrrpHubLWRmrrz91uFaJngRX+X88PXKdu5l5mUjK7utA6y4mYCZQOWKMwbzj+eW8/7n69l71xr9viE1sWKxW06cMpFt3lG/VIQVZtgEKik2rOjaCwEQ0wzfEwNEuYUuRrN8U5wkPXaTpKgqJrhy4hUTqKRoUSRo+mZhhm2+7tQBnPnXuRywR1e6VBXQHpRvPxU3R3Uvp3Xns84yznZ6OcQHub/Z/HI0ST78WLIKc+63zvYGJZA/YOJVV5bgBHIEKE4Tl3Rt0OUhPPnRWvYcUYkSEqxZE+Xvn67nxsl7UlLQRigUp7hzPaEebRAGrV9Yz+OE+9rm7NfooeXcecVwmltU5i5uYvHyFiZt34lBPYv488OLuOSEfgzqXWzlQxFtElkkdCdnsCTgz7y/liMn1VhCHU9hbVBA0k4gJG2dQXlm2jPba776rd/reSdYcQCVPl0KmbukGRHVEnui0PdQ0ajyymfrOXTPrlYZS7gXNaJnqlhm0skh/Q0hW9Roi2r8X8K4QeWM26GCcx5ayMQdOnPQXgn+GcneB/vfZrc0yT/+q3HrracFGKyt9EulvBv7jRo1inHjxvHggw9a13yHGLRRYBVxe/JOo570zELsZe5gUkeEXvVsV3K/ksYhwz0zI63dJMs0/4qEBWcc348/XjWdqdPrdKCh6s86tR6e78v823YYTQpX7HY4DqVutlJJTmKVNOZgZbY3TdZ0/sk/q4xJJnBL5+hqM0fD1MTE9MX+iF2rGdm/hOfeXGU97jfsrd9fvsnNftirHuezzjLOdjr/druW6X7W5PWN+/2ZPDzI7msWyCzUT9v8lnG0Jyuz1KR7Lj87pQn/7BmW1asuc31xq9+tzS59TSnrbKvXvaAABZi7soUH313NtSf2Q4tKrvznMi7eZQKFIUl5aR1l3TcS7teK1jMMTQJimh4m2Gyz15pob4OE0gKF7YaWc/geXfjk201Mm9vI/VcOZ3CPokQOFCORn7nuoAJtsGhxK69+tZFjD+qeWo/Le3edL5nmZIDvJ/A3EuS7CDpXk6JQBpyvEvf56mxHyr2AfXHWZ/A4es8uvPTxOk67dQ4X/G0+WkkIWagf7dQiwVfzG9luaJk+nmbSYyP6m2jVwQpgOdoLu9lXzFa/ij6vyoBS+H5hI4/9dxXXnDEotW8yzc/ZB8f91z5cR0tLC4cccojLoG35lK7rQX9bqR00KQAXXXQRf/zjH/m/PbdJqJZ9bOielOkw0p68IT3YsFOW+jkr8lSWWhd72ZRstSmVCZf+2BZo8yBuP4iZgMF2L8kEzDw4KoKLTh3AxtoY5944i/ce25GwPUKYfZNza5okoZVwc6hPAhzG/wwgYmlswrZEjiY5eZlARbNFLFONsbHdN5/xJOc900xNJOadDOnhiUWzBhHB6P6lLF3empN5xVZqfzJNHrPSdNh4WJQroMq23mx5+lmL0qx3adcyr7q92OVLcwKpbQ4CUDwl6nDNv5dw/MSujBxWzvMvrWXXrmPoWhampu8ipKqgRUOIag3CAtkmdE1HieJpaupsgz1cuxrTuPbeBYwbUc5hh/XUx9psm2EqbK47Jo+5K1s45s5ZHLtfN4YPSpibBrZO8DEXg3wznkKrdBRkn/SxJ+d1rkKaeRKgn/ZnLS29+W9bGwSM7F/KdkPK6dO1kFXrorz49mom71zNVz/V8ez7a/ntYb0grFgWBwCiVbPmChgCvVjCDAwNpi5o4qHXVjN+QDnH79EVSoECgdQ0XvxsA2fet4CrTxvAiKHlGU/UQQRKd/1rNeeeez4FBe1jbdDepB9Fcvcn2br969QuYRMOPvhgKisreWHm8b6keimUVqqQXuqQE2/ILIExyWfiOKdUxu1nPheYTImUrWymelzb7aJlEWpCi+IcM1MiY4ITYWhL0CSKhCtOH0htfYzr75mvt8kcmriWDDYcPM1DoWhTrWuu71izSeTNfVgRCYDisfELzdAEOZ34zb9VPdmk/Vk/UuyUwARW3cZ4K1hSqsJChZY2NaX/GaVpASiTZDKbn1t/26OeLeWX9F6d5FdanOld5lDW77vyrCflGcfPSRnWO9/SZ2fd0vbzao8bL3vdbv32kpx7PeMmrU7Hz/HM1/Mb+O1uXZAbVd76oZb9h3RDMQZChDXU1gjMlWhFIeLjC5FlIbSiUMJHz1zLbD+h2rSjxjqrtqlc8te5/GpSDYft3kV/pk1PlEtMQghEm85PhnQ+Uxc1sfNVP7LvLtXcdfFQdwGQz1+gtSLo/PbU/Dt+zneayaLAoLT7olebne8701z1qyl0kOe3a+fhVp/RnsG9igkDd54zmMrSMH/95xIaWlXuu3Ib9hpWjtKsGnurpjvFG3u9DIlECH8JqBItLrnp6aW88fVG/nLMQD74oZGGNUADrF8R5ag/z+LM+xZw24VDOP+k/rbxzVHDr0m++qmWqXObOP30n5/D/FZqH2oXTYqiKFx44YVMmTKF3zzWzT3UIfg7iKV5JmeJYY7SQqsdOQCMnMkvH1tCKDslJYcCSEompl9P0a4YJAx/DCDhr6JKKkpCPHbLaPY8/muuOLU/xYZfidKqoRUZPibOzcxWD6BvuoqwIt+YC6mThObiYG8DL0DCITDRpcRzNi2MJbU063H8O8nB1WyztPEy22SrQ1epa9CqD9KqTVGGDynPDHi2MPICKj8Lyte31gH1ZD2uvg8CPp7JsOZlXO/StSUd64AS6IzABNz7kk57AoEBilQl6+pjdK2MsGapSo9wd5qjpXTttAalKgYCCgpVRE/NCvqhlupbb7gumjgoeoRjNwVB0ZjGhbfP4+RDe1rmO2Bo0tFNyISKHtXJEIrUtsb49R2zOO/o3lz5hwF6PQ7+KX8blHEu5nPO2SkLi4RAe7Cfdmfse/b8042r816SQN7kmySE0/9XUxFhQ22MgiKFvbfrzN6jOkEIaNMfsICI4etJCAuoALolgSqJtmmc/9BCfjepK7v0qOStbxvoW11Iablg0aYWDrp1OtsMLOXH53aiurowc38Drol3PLGK0047jU6dOgUqtyWRG47Nls9WaieQAnDcccdx9dVX8+aKP3NA73v0i5kmbA4ftz/+Gcrnujmn1BdwmrXXrLQ5vyeRC3CRihtg8QYrSSZgxqFfKoKxw8rpUlXA6x+v58i9uupSG5vNK3GbpEs4EITVJgNc2B39jTqsJwS6xsPmL2L+OzlZlFGVCTjMcTGllVrCoVArDoNIBiNWWTd/FCdo0XRJlYga0VZiQBwIQ21tjM5loSTNkS/qqIP2/yKZ79X+/zxSzoAum/bkyUTV15qXb1CShqe7psitXh/gxO1aQICCBkvWtdEa0+heXcCiRVE6FVbSq9tSCns0QCej3SUaWpWRH8kUdsQ0RIuKtOe4sJF9jZCqxm8um0ZpUYh+XQuNtcp8UCAViShU9LXZ4K8JyWl3zGVA72IuP6l/aoh0R12ulOueaqccwhXlHYTYKRdAkqG+XL99C4hmACvVlRFmLmnSx8kMRpMUtZPEfm76lpj8VanvTyo0NqpUFIXoU1XIRf9eSHlhiD8d3o81rW3sf9N09t+5iimXDkMUOhJ1BxhzrzGZtbCRtz7bwNzHzvPNa0ukrdG98kvtBlKKioq44oor+NOf/sR+D9boIWnttIUDEsjDBu1ab7DH9Tp8PudlvOdWpxtwsYGWJA1LOrBiaiMcYEUogstOGcBV9yxgnx07U1EaToANA6AIOxgxqxPC9m6McMhOiZ9tI05qiz3akyZTXFOs8iQ0P8KIEW85+Zshi01fGzW5vhRNDCTsxa26SbIh14GW/v+y4hAbamP65WwPBtmQH57pAgJk4us0sctka9+OoCAr0hzv0IUCA8tMdeXEI+DzPne8rOzzk+rJcD9fwMSLV0eBExvd/t8VHD2hhsqyMP98Zw2HDh5JpHwFolpDFit6ubDuq6bENDShh4YN1cYsDa9XH831590vN3LMXl3Za3wVl941jxtOGUDPmkLLB1HEzdMslub47pdW8O2sBr58eAeUcOq3naqJSvPy8rCfulGHWCEEbVoumkL8WnhkuO/YyzOBla6dInz0Y8wSkFlkCudMoaC5N5mRuhzJGqvKI7TFJLc8u4ybjxxARUWIOcub+dWd05m0XSemXDwUYUsS6UaB1kcbnxseXM5JJ51Enz59AjDYSr90ajeQAvCHP/yB2267jVeXXsWhfe93fSZnky3Y/CYMKXX5fzTBP4sy2fCwO92llE9cFLYjvqVdCahZOenwXrz03lrOvGUO/7puRHKdQuh8bAutMBNImbUIvS5hmJG5LtDG30IRIHW1trQc493V5ybwEZrNv8YAFVbIZdN5P6ZZ0iZ7OGawgxOS8to4+VnNVmFUv1JmLWn2f0DvyAN8LnU5y/rtVzv3L99mae0OLLNdB/IBQpLakQdAAlmBEsgDMPF61g/4yARgHM89/9V6/n3ecP771QZ6l/ZmWE0IqSq6SY2aWCeUZhWtBIgohGpjiEYNWWlIpE0/Obfw6RJe/HAd91w4lFBIcPlx/bjvxRWEFMGfTuqvL5mx5EY+8OZqrn1oEW/esS01nRIOyBmBSUdbG6Rri19qz/3WR5syC1R91uVVxrYneoGVPjWFLFnTqo+Fgk1bJxOmXqYvir2OOMn7lwq3/3YgslVBlGi8MXMjJ949l1MP7sF1Zw0CmwYln1YAP81t4I3PNzLvn1f6ZLrlkkZ+EjFq7mLW/zlqV5BSVFTE1VdfzTXXXMOvHupOKENmXX8+KmnudaR2JJC0IMCzKWXzdPhxRghJuY+rlgASgCUFrGg6qHADEUIRhIFHbxjJzr/7msdfW83v93eEvnQje38tFXUyKLJTU2OcVz5ex7/fWcOcJc3UNsSpa4wzoFcxV/1hIMfs3ZVQRE90Zdf4JGk6NKmDJsUAMGA519ufS6nfzsOe8EqTuvNqUr/0bsTjGpGwbfzS9d+Dflb+IFs6tTcIzFX40BES6o4AJBnqSTunvfj61Zp4XXcV1Ph4xvaclJKNjXF6dC7gP5+s4/wRk6juuth6TLRq+toQAREFSnRtilitQWeh+5PY1067ZtIAKN/PrGfbwWWEhL7ODu5RxA0nD+DTaXVcfO8C/vLHgdY5NhrTuOzRRfz7/XX89y9jmDCyMlkq7weU5BOI5PJ95fJptpNpdl60JEHJBBEu7TDnzaCeRSxa3Upck4QKFURcIqK6sExAIpywMRetv53tjQrQoEXEuPRfi3nqk7XcefZgjj2spx4hLIj2zbUv7s9f/+ByTj/9dHr16hWM3xZIkq0+KfmkdgUpACeddBK33HIL/5n/e44d9rj/Sd0R5lodtTnn2gYXymR6kgLkM9ZjK+ABWISGAXZkItSxE0Q4wEq3zgXcct5grvzbfI7bqyuhiEfmd6dfQJuuwZARsw79mbnLm/lyeh2qBl/PqOeZ99bSt1shv9u/O+cf04fO5WEqSsN8PLWOa/6+gD/+eRY9uxRwxlG9OeWIXpQUGQnUVGk5kcqQkXAxLkHVECFbO2wbRBIIk4AQSSDGCgUt0ednzBhW85FimL+6lSGDSn29l7yAEReTvpSxzje5+Xikq2eLMvsi1WwyH4cOKR2mjMEpaym133HN11qXizlMNkKofAMTr+dcnm1p1YirksqCMIUiRFiRFHRpJr6pCEICrTKUSDQLuqCkRUW2KvphEfSM3zbpt6mxNdeWp95aw3WnDdBNZG0ak91GVxICbvjXEq45vj/zljTx25tngwKf/n07BvQudrTdFDI5+5ra2Yxmf9l8rx0JOqxywSoNZqrk87lsvnlnsCGzLg+w8um0eob2KkYx8qOIVglR46Y5Z6Loc05DD+QSE1AkoRBLi0Kx5PvFjZx47xwqS8N89eg4BgwoTevPlGhjdgK2r6bX8cF3dTzy7GUZy2+l/z1qd5ASiUS4+eabueCCCzj0n4MoLbY5XG1JZlq+VZd+nsluEQ9q8x4kSogXpUjw9NLJD7lI4pK0K2aOEQ/NypF7duWsm2YzfX4jY4foMfoTIZHRwUFSPTKh0dD0f29sivHIq6u48Z9LGNKnhM4VYYb0KeHtO7dl+2HlyRHkFBjQu5hj9+3KohWtTF/QyG1PLOX6hxbxz+tGcNCuNcmmW2EFLaYSMhNYCd1PRRYqel4Dw3nf7L81topx9jTar+daASs8pED/wkICiqCuKc5nM+o56oDurnOjQ3xUnGZW7QUMgtaTyR5e8fh/e5CXdDlHkOFMGJc1dcQhMU/rataABNKPtV9TLvANODyfTdPOhWtbiYQElUUhtGiIkoJmYhuLiNS0IgtFQiNimLIKI9qSqNaQiqILbMwt0Xivlt8euqZG1SSlhSFjDhptNP6/88hK3vp2EwtXtnDMTbOYOLqSKWcMoqAwlOhKko9CFoAk3fVsPoe8mDZnL9zzX0dA5vn0dLbzsu9tLkKUD3+o5dKHF3LjSQNQNF3oppUpKM0abDD3OKDVACUqUAE0Gn+36o+0RjVueWMZt7+8got/3ZtLThtAuMCYnD599nyRjYeUkov/tpSLL76Ybt26+WSwZZOUApkHc6988PglULuDFIBjjjmGO++8k9ufXMbVJ/dP3MhneN9Mi1a+QUgWz/j5iD3Daub7UGaP7uEgZ6jhFC0LWM6ZKdoVzQZWAKR+Rh87rJzPZ9YzdqCRSMxLum5ocWRIWM79H/9Uy4GXTmPMoDJemzKGXUZXOprnLnWKKApD+5QwtE8Jh+/ehcln/8ipN8zi4we2Z0ifEstca/XaVvY680deu3kUg2qKIKYhwzappu1AmDJehpmY5YCo6HbA+jX0DSAkkYVw0NXTGTmglH0nVHmOfaIPAQ9ov3TSPP5vp/YOh2IEe7CclXN9D7lokDSZdFgNVtYnfx+UF/OXTO8t7SHai2cenvdR7wNvr+aYnWsoqFSQZTEW1vZkbOcNUG2AWjNISMzQgjRIKEB/bwKbRtrREGNNmbmwif7dixIBPEBfUI2M4fGYZGNdjCnPLiMcEvz1zEFE7CHZ/YCSfOydHaTpcFJO2ub2BCG5rA1OTa4zCqbjTPDC5+s5dJcaTvpVd0SDiggJZJFhBVAMlOiaPCuzfAh9DlXoe1ZTq8pTH6/jpmeW0qWygI/u3Y4xoypc16as96yk5xJ/PvfeOpaulVx88cX+ym6l/znqEJAihOCOO+5g8uTJnHxwd3p1KUzc25IcOYPUZaOsFsrANrMu17I9lLlmnTdISe6P01ncFbAkaVcMsGLTrqyvi1JbH+Pb2Q2IA2xSFJtWQgrDBAtBHElYEbpNrQaLlrYwfng5792znXubM42D0Fv22pTRXHH/IvY64wfevGtbRvYvQ8Q0bvnHEhYsb+GJ99byp2P7GWpvJUXLlJqozKjeyFMgYhrSlHQ1Y2iJ9GfWbozx1awG1r+9GwWRALa9Ofpg5ZXMTdLUKmyudgSgnIGEH575CjiQDZukOZllvRkob47BfuZJRg2OF+8s+AUp43JtY0OMxz9ewwdXjoFawdDScr5fvY5xI6MJ/mYQj5iEJglF6BrYIkUXhDi/I3ueKiG4+9nl3H7W4AQo1bDyoaDAj4sbmb2smZ8WNvH2lDFEQqkhHjPO13yCkI7QcHjWnUPZjgIgQfnbX6dz3dV0TcQ3cxr4/f7ddWuCmIRmiWiRia26TdLSHCcUFhQW6cmEW1TJMx+u44tZ9bz81QYG9Cjm1jMGccTeXRERJRGaOKldefh+bePc2qZx5UPLuemWuygtLU1T6OdFpiFFPvhspQ4CKQA77bQThxxyCFc/9AmPXTY49YF8OqvnGYj4V2P6ZplMHX3I86rPBbwIx54n3QCLK1hJONovXN7C9IVNPHXVNglzNi3ZqOzTGXVc+8QSlq9rY9HqVgb1KqZfl0KWrG1lzaYY5x/dO6sDpz2UcnFhiDvPHkx1ZZj9zvmJaf/ckafeWcPjb65mp1EVbGyI60nQYrrU0s1R33PexBzRxyLoQCUKSPhhQSMDehRRXhLOTkuS7+hNTvZe4au92tBeSU7bk9rb5yWf7DtAMh34YJgvwOxrfc5wv71BSbp7Bp/731rFDgPK2H5EGYQky9Zq/G4bSahrm3VSMTVvMiIQRVIHJmFhJalNNQHU/y0V+Nebq1myqpWyAsXyKzDXTr2o5O+vrGTR6lY+/9t2DHL4oFjfXxBQko3plwt1qIbDSbnsp/kQHuZCbv5waYDKx9Pq+HZeI6/f3AWxTtOfjcCa+ijPfrmeJ95fy/J1bayvjxEOCUb1LWXakiYQMKp/KXtu14kP7xrL6GFliLCia0+c4CRIXwPsC397djnVXftwwgkn+GD8MyKZpyPdliv761DqMJACcOuttzJixAhO+bGW3cZUpj6wpYMQv3Wb1JGLZS5khSV2tNcJWmxalmQNi0O74jAF23F4OTsMLWe3s37k/CN6cf6hPSk2QhlK4N7/ruTyRxfzf4f25LLf9WVQn2JmL2lm+ZpWBvYspqI0xA5DvbO0pyPh9K8Brj6uHy9+tJ6/v7CC+15eyRPXjODPjy0hGtO45P4F3HbaQOOQIfUDRbqIOGa+l5BRmz3uvII1tu9+v4l9duzs3sgAwCTvB39N8tB/V/H93EbuOGcwRQV+0Eo70OZ0mm+vqvP1rrKZ9/kEIE7KxTwrm2ezPVTnogFy3nPwWrUhyl/+u4JXLxoBIWhsUVm2MURJQRGyUUEUGQw0qWs94jaAYleWGCAm6bvW9DXllseXMn9FC/tdNJWR/Uu45vh+lBQqFAiFpatbuP7ppbz7fS2f3TWW3t2Kkg+0fjR0WQKSdvXrsFO+hHfZtCFrgaPP57zcDex7h/2aB1Dp1lkPL33BvQu47fgB3PbSMl74YgNL17Wx28gKTjugB8P7FNOnppDmNpVv5zUxdmgp9S0a2w0ro7AolAjqAAn/UNe+5UEwZcyrpWtaufnJFbz51nsoymbac7bSz4I6FKT07duXq6++mnMeeYKvpmjJtrNOyrN6ud1CB3akmthcrLLl4zXcTn5uoMUBWOwalkzalRB6tJmPv6/lsgcX8sgbqzlx724UFSrMW9nCm99u4rqT+nPOkb2sMNUDuhW5tzXIvpViqpag204fyFl3zmNdbYyxA8tYsKKF7+Y0AHDIbjXsNqpS1y7E3drglH6S6LNqu6+gf2Fh2NgYZ2DfksDS6JyT6/mgt77eyCufbWDp6lZu+eNARg80VO9bWsJFSXY+GH7J/n3l0wcsT2PYIWal4H9Ny9Y0y7PeHOvMFsyke8aNpwZXP7OY/cd0ZrdRurDtukeXcuaOO9Ot82r9mZBLOVMza4ZBN+oTpkDEUed5R/XirLvmM6hXEbOXNtP/d1/R3Kax/eAyZixp5tCdqvngL2PobTOf9my3V/9zBSPt6deRa1354tMe640bTztwcYIVD6AyvE8JH/1lDAddPYN/f7yOfbfvxAPnDmHckHI6lYWTI1MqgqGDy/R6zEhyTjDUEYGKJFx43zKOPuZYdtttt8zP/8xoczjO33zzzbzwwgvMnj2b4uJidtllF2699VaGDRvm+vzpp5/Ogw8+yB133MF5551nXW9ra+Oiiy7i6aefpqWlhcmTJ/P3v/+d3r1759qdrKlDQQrA+eefz+OPP849L6zk/KN8djzL0HbuvHw+Z1J7gpCOlPD4Let1OFMc42CznXYFLIYWxeQpJOw+thOf3bMdT76zlve/30QsLonFNd66dTTDBxgH46BSOq+oT84wyg7ae4fOTH10HN/ObWDNhjZqG+MM71tCp7Iwz72/lp2Hlev5VWxMPB2m0/mTGLcWr2llvNPhH4IBk3TfQQ4H+L+fN4Q3vtrIO99t4tOzfuDS3/bhiuP7JerryFCjufDOpyFwPv1OHOVzz1hP9iCqPdYz3z4p/qvOScOSD3MyJ3/b898tbOSZL9fz01+2hwhMm9tEt1AnhnUNU9JrrQ5QnElz7aajbqDVBVScdlBPNtTGeOi1VSx4cgLfzW6gojTEZ9PrGT+snJEDHHb8zjrd+ugxj3OKwgbBwceWYrTfUcDfi5KAh/F/J1jxAioG7TKikrmPjKOpVaV/t6KEOZiSACcoeIMTW/LjFK2eG+Vomv/6lxv4eFoDc56/LTOfnyFtDp+Ujz76iDPPPJMdd9yReDzOlVdeyb777svMmTNT/H1eeuklvvrqK3r27JnC57zzzuPVV1/l3//+N9XV1Vx44YUcfPDBfPfdd4RCbpKX9qcOBykFBQX8/e9/5+CDD+aoSTX0qSn0LWXMu5o5G6lOvk0Z3KijhdZuEhyTUqLPGNfsEUdsUp8kp3sXwKIgOH6/bhy/nyPcYNY2+Bn+70UKFEQUdhmpA4cNr+xCeUmYP/51Lg+8vJLH31zD7WcO4sQDEgkoPRdv+6HA/Kno/igxQV1jjE+m1/PEtSM855wrb69vwmt+ZGne0rWygHf/MoaDrpjO7/bswl3PreC8o3pbOWXyTh1lytjOWqDN6uxrSj2zDYvcHgKVdjObzQO/XICUlrgnpeSypxZx1r49GdCjCCR8Nb2RCd2HUVTcrPudtAn9+3eLYGiahroBFBdgHI1LxgwsQ0gYN6wcgGG9ShLtSbd2B9WSBNTyelLQPTLfkSuz/S6z0bBkIxjyemdOkClsz7gBFZvZV5dOBXSx1+EGUOxN8NhvBD7Xyyy/yeZWlfP+voybb5lCly5dUh/YSlnRm2++mfTvxx57jK5du/Ldd98xadIk6/qKFSs466yzeOuttzjooIOSytTV1fHII4/wr3/9i7333huAJ554gj59+vDuu++y3377tX9HXKjDQQrA7rvvzpFHHsnZ97zJi9cMSflg8qpm3hI0IfmQnOaTUkIcejxn5vxIy8tW2IzoZRb3MgnrqENqWkpetcsLQoiY5P7zh/K3swfz7ve1nHzbbISE3+/XPXHgcLMVtptrqNLK5itbFVCh2ciN0KVTQXIL/GpMcpEY+6SdR1by5JXb8NsbZtLcpnHLE0s5+cAe9O9e5G0mmI922A9y7QEmgoTQzLqOPPDI1gzGLNcRWtn2MP/xy9cv73yuyXZexvPv/FTLT0ubePbCbSAEP85u5IvZTRy2ZzFF1et189C40NeAYhsfcx4qwtsUy2WuFoYEc5c309SsUlacKjQwc2sleAXQ2Lmat2Uo1B5COpdxzgt1hJAwm/bay6Qz8ZIEAipJVdgBir1O0yney5LIy2nejXy/3wTP6x9fRreeAzn11FP91/Mzo3ybe9XX1yddLywspLDQxcTTRnV1dQBUVVVZ1zRN4/jjj+fiiy9m5MiRKWW+++47YrEY++67r3WtZ8+ejBo1is8//3yzgZTN5rF0++23890ieHbDHxGSpJ9FWpqfSVKm/+GTX4oUKuDzMs0vCM9M9djry1RvLu3w4u0sH3f82z72tutCJeU9u/2cZF7zUzbITw8hbPuBFQwgoggOGNeZRy8axoX3LWD9pqheTpW6Y2E8kfdAxPTM0Pp99Lwo5v81QECxkQW4sSmO0LB+ifeR2hZf7400PLL4HTCuM49fNhyAW/69jKEnfM2U/ywN+N0ErNdexvHe2+PnOo65/iDzOuRnnbIOq1m2IWiZdGuFn28/7bockK9Jua7PdvJbpxdPOx9Ai0uueGYxlx/am04VYeYtbuGRN9dx58FjqKiqR+kcI15biKhQE9nk3dbvpPVTn/v2NcRcK9Hgd3t2ZeHqVhpa1NTykBwm3Qjp7nsfBe/9Mh/zzD5++Z4Lvr/LLH75qj/o2DjrxeW629/Oc45TkBbk2w/yjgHfazzw9ax67nttHY/+88nNZjrUEZSHrThp6Pr06UNlZaX1u/nmm9PWL6XkggsuYLfddmPUqFHW9VtvvZVwOMw555zjWm716tUUFBTQuXNygJ9u3bqxevXq3AYlB9osmhTQEd59993Hqaeeyt4zZ1L93dHpC+TLmdPvMyn1B3jWL/8gPP2UN+t1888IUp+XBsXLz8Orv2n8WFx54wFUjJwAWb03DxK2Or3owB2r2GmbCv7yn2XcdspAkFKPRW8CMNDHI47+JTUAUYFsFYiwRJRooEGlCNG5LMyMhU3s6hbVDhsvO7kecDK/xFy0BYdMqOLwXap58fMNANz69DLOPrQXhQV6eEqpavoY+KS8ai7y+P6TTKVyzSTvpGzb6XbQDkJBu5BtXX7ryWUc/FJ7t8Xg39AUZ/Rl31MQFvzfPj0hBu9+XcfJo4dTUhkl1lgEbYJwVZuerDFEkobQBB0SmWICJsxgG47Da2OLyq9vmsWxe3SlR6cC1z54Jv9N6UeagfIqk2nM2mNPzJZ/vuvOpVwmctvL7HurU3tiv+62xzv5mJRur0jXtwD9NjV5mdb5tqjGaQ/FuOqqqxgxYoT/CrYSy5Yto6Kiwvp3Ji3KWWedxdSpU/n000+ta9999x133XUX33//faD9G3TQE7RMPmmzgRSAww8/nH//+9+cddZZPH2ijxXJ78fTHptcNryz4Z9NHV7lnf/3Q+kczlXc1cSKxzMpi6j0BgYOU7HU+/k87drqJH29N53Yn8mXTaU4onDNb/vquMuURMV1Hk2tKtPWNrFT3wqIgwhLKJJ8tqiel75YT2OrRjSuoamSJBW+X8Dnstnk7OhqJ9umKRTB3f83mJe+2MCbfxrFuQ8vYO9LpnLqAd1Ztr6NO59fwfF7d+OOMwb5a0u2bfKifIIJ62CY57nVkUAj13rbe/1rbyCUSz0B6pi2vJm4Jpl2ww56mO6oYO6qNk7eNoxS2EpRZQMUSCghkdHbxSdFSPQktirJa5q5phhrZrRN4+gbZ1FREuL+Mwcnz3vneuXse74BST7Xmmzfa7ZCqo6af37JTQBo75sbKHEz//Iicx03eXUA2XP3eNFNTy+nsLDqfyKzvEQgM74of3wAKioqkkBKOjr77LN55ZVX+Pjjj5Micn3yySesXbuWvn37WtdUVeXCCy/kzjvvZPHixXTv3p1oNMqmTZuStClr165ll112ybk/2dJmBSkAf/vb3xg5ciRP96/it5O6+iu0pUjaOkpymWtZv+RnI3Bb+NwWXZOcwMZN+mOVk8kaIL9tyoXsQQBcaNsBpXz8l205/PqZ/Ou9tRy6UxXjBpUzcWQFfbsUsbY2ytAzv6WpVaP+3ztTXBmCMFzxr8X8/bWVHLtHV6qrIzxz1QgmGuFKPVX4dvLrS+Fba+emojIlvcn8ulcVMKxXMa0xjU9v3JZH317No6+vpqFN5eRdu/PZ7Lrs25MryGivuZBvvtl2M9d2dNSa1BHCms1Rl0fdM5Y1M7p3KWXhCLRKZFT3TNbiEaTahiiSUIoOTmxaYWlqUcByZhaSBEBWSYQrFqAJyXs/1jLlxeXUNqm8++dRFEaU5PXQ0TbPbyooIMkVjLSnZiUbgRt0POh3o3QRJ9NpRyTeQMVpKeE2B+yWCx6+K3mjNOv6V3MauOOlVXzx5ctEIhHP534p5OZpkC0f/89Kzj77bF588UU+/PBDBgwYkHT/+OOPt5zhTdpvv/04/vjjOemkkwDYYYcdiEQivPPOOxxzzDEArFq1iunTp3PbbZsvEttmByldu3blkUce4fjjj2enoRUM6G7kx2gPk6ktTQuSN+lyHnj4cpL3eMYtS26Q+87rmsu1zUgjepcw7d7t+WBqHa98tYH73lzFqffMY9sBpYQVweQxnZi7soW+p3zNmQf0pG+3Qh56cxXf3LUdQ3qXJCKtgG9QAgEj8GQTAtRpjmexkhREFFqjGpXhMOfv35vzD+wNMcHDn69i2rqmzG3Kp3lme5R1Ur4lp5tLm5Jt/R11+Nuc45JD3evqYnSv0ANfSClYuynOik1RhJAoxaoRsctopCSRUR6HOYwiiMU0Xv9yA9VlYUoiIZZtaGPJ2lYWrWnllS830hbTOH7Prlx4WG/Ki8OpAMX1QBqwz1kLGTLc98Mj22eDtCEf9WRbl0nONd/eBrdIXk7gYd73A1ScZAKXpHsyue58k0s7GprjnPDXRVx73Q1su+227VTxVjrzzDN56qmnePnllykvL7d8SCorKykuLqa6uprq6uqkMpFIhO7du1u5VCorKznllFO48MILqa6upqqqiosuuojRo0enAJyOpM0OUgAOOeQQjj32WE78x1Teu1ASDjkQ/89dGxJU89MeCevSaTDMetNROj+VTKDEzUxsS0ky61NzVBBR2G+Hzuy3g64G3dgQ46UvNvDJjHr+csoAqirCfDqjnj/9awlfvFDPC1eOYEivYouNFYUng0+Jb2ASVHoa4Nk/3jOfNZuijOldqj8TE7REJRc8O49PZ9dx0E5V7uXbsU1pKV+Herdw27lQrlLcfGgRswUf2axBm0Pj0RFCDCn0ZVkIhJA0NGlc+Nx8bjtgNJoaQkqBiMrk/CjG+zO/eztQmbawiV/fNIue1YU0tar06VJIvy6F9O1SyO2nDOTAcZ2JhMwsfGnaFUSYE0Tgkalev3W2h8VDNryzrSNd3W5JX7OJmplJQ+J2z87ba092S0Js3sv3N5PG6uHch5bSf/g4LrroojxXuuWSJgVaHqJ7BeFx3333AbDHHnskXX/sscc48cQTffO54447CIfDHHPMMVYyx3/84x+bNdCBkDKfRt7ZU3NzM+PGjePXv/41V277rvtDW5omJJsyP5eN2aRMYMIv+HBe33x+WKmUro9e7fQoI6Vk9YYYPWoKEs+I5NDF9rXHt9lULgAg4HzZ6aIfqSoNc9khfZg4qBLaFF6ftoFT/jmHSw7vzZF71NCvWwKAuUbRy0db2lM4kY96/dKWoC3qKLOXzW1ek4fDQXKyJ8G6+ig7XfsjF+zXmzP26sVfXlnOfgN7Mqy6EiUSJ1LTgijW9L4XA0W2NthMvMymPf/JOq56dDGzH94xIe3WSG8GqpCaxT4bkJGyrqThkamOIM+017e8ucwqs6FMe6DiuK54XE/HMxO1x77rIdh45tN1nP3YOqZOnUqvXr3aoeIti+rr66msrOS4iXdQEC7OXCADReMtPPHJ+dTV1fn2Sfkl0hahSQEoKSnh6aefZpdddmHSZYOYaCTZS6HNsQluqRqaXOv0onQJwuzkZmMbpB8/B22KWxvTaJWEEDpAsfNVZMI+WAmgLYH2BQAeG9Z/Lh7O319bxVG3z+Kc/Xty5X796VFVwKamOGcf0ZNIJOS/bdnYv/spn47yKTHNF20p3/fmMrfK6j1uJkmGo95zHl/Ajv3L+b/de9LcorJ0fYxh4ysIFUYJl0aNMiCbFURYg0J3+38hdSHGTU8t48xDeiYc5+0AxT5O9sOf25qTLcDIZs3OFxBpDzPuoLytOjpofgnbezbJuXfaNSVe5lx+/EH9UD72XTcQbYuSvXB1K2c8sITHHn/qfwKgbKX2oy0GpABsu+22TJkyhWOvv56vbyimR+eC1Ic298GhI+1hs60vHbmZfTmv5XKA9FoAN4fkKggFabebREzCjMVNLF8fZYfBZdRURECBtphGXVOcmk4RlJCSeRz82Jvnw27c5blv5zdw0zPL+Of5Q7n1pAH8elIXdrnkR06b3J1Xf9rAwTtUEQkryW30C0yytYH3wyNXvh3BJx9mnFuCVgXy2I4sD4ntuZY4vu1lG9p4+fsNzLh6J4Sq8M9PVnP8Dr0IF8UIlUZ1AURUoLWGEYrUD2px9DwpCrS0qShC6CG8gfW1MaYtauLYiV0S/ZAk/23vY7rw8fk28cqWZ3vy8cMrhXfAedXe88nZHuHwFXEDJvZ/+63HL+XaX7d3ZwMozW0qR/91ASec9AcOP/zwHCv7+dHmMPf6JdMWBVIA/vjHP/Lll1/y238s4J0zNf1QZKf2XFA6UnW8OQ8KQSTeXhQ0Z4pZxk62hW2LMv+yk9vi7+Fjc+tzy3n643UUhAUH7lCFosBbP2yiqVXjNxO78K9LhyWeT5ebI9eDf7oybqRAXUOcA66dTmVJmJPvmsfKjVGO2bWGLhUROpeHefzTNdxx2kD/gMmvLb2f5zPV5fVcvuyv8yUosB9Gc+GRD8q5He3wwebaJqfk2Q9lCOrx8Aer2HdUZ/p3LQAB0xa3cdKoGhCtENJfhlQVpCoQJXH9/UQBJF8vaOCw62cSDgn+cEB31tbGeOWLDew5ppJOReFUcKK5tyHhlO9Bdq1oOpMxr2tOXukon0KFQLwCzLdcLCbytWZ4+bc5QYsdsJhlzP3Fa79s773S6RMTYFyklJz18BLKum/DlClT2q2JWzJtjuhev2Ta4kCKEIL77ruPXXbZhcu/2oMpO30XnInzA7OTH4nDz8kkIqX+dlzB7HZKQU2kwDvPip/y2YCodGpyJ3ltAOl4OMKBnjK5G698tYG7TxjMwvUtiBD86Yi+lIZDjLjoO25d15+e1YWpISM7UhvhUX7p+jZqm1S+ump7dvrzD4wfVM5Nzy2jsTXONud/hxBwwA6d8w+Wgpqe+DU7ESSD4CDk1CzmA1jkQ4uSN9Bl8+LO13qRb+FRR5nmptkfonGNRz5azcPHbQNAW5uktCBEuDCKCGloTXo4VaUojigwAEuTAq0gijUef2cNv5pQxb7bdebZT9bRr1sRd582iEPGVyGkSJh5OcGJ3czL+W+vOeQFTpw8M5FfMOSXp6/vNcMczPWd+iQpBUKTyCy+CSH0csLNtMvZNvvaYs+jYwZVMQWA6fbLdAAm3Xvx0zU3sOy17jvqe+jd1bw9U+X775+loMDFEmYrbaWAtMWBFND9U55//nnGjRvHDrGu/HYXn/lT7OR1QAkijdgch4r2OEC4USaQ4ZRGu6mtvUglc4a/dMAh28OlFw/zMJAtQDL5ZSi/+8hO3Pb7AVz0xEI+OX8cQ7oVo5TGoUiyx4hKnnh/LZcc2ce9sB9782y0Fj7p5ueWcexOXRlQWcKKm3dl4foWxtzwNf84ZyivfL2R208dmIg4FLR9mdqZaTP0y8ftmVwPu/kQOjjstbMmNY/rgfktb27z2TSUzWExFxIOM5znvl5PNC4pKxWIQo1Zy5oZVF1GS305iqIRLmxDCatocQUlrKEUxpFxRf/mQ/DDgiaO27MrtY1xbj91ID07FybWIvv81Eidr/b1ylx//e4nbnM3H+ZXbntCWlDjiBjgh7ff615V5jhnpPMbcworPLQMZjmpZK5f2CM82nmZZb0iQNrbkukc42Th1+k+yLnFocH7akEDFz+5jNfffJuePXv6YPDLpHwnc/xfpy0SpAAMGjSIp556iqOPPppBNSWMH1QejEG6xdF5gHZqXXKRokqHZCSbRdNZxk3a155mb26HxqAmFJn6bS2yHazTzKRVyWSC5twoHM+ctncPfljYxJWvz+OZk8egNYcRcZWisEIsnkHK5ker0A7alLgq+WBaLc+fORK1uQAZV3j448UcPKaa307qmkiy6pQCOuvNVVobhFc+zU4yUbZjax7S8gEu2vN7t/Nvp7Ul74AjnyY5Bplt1KXikr++uZxNzXH2/MtPnL9vLxavkNxx6DYUd6q3yghFEm8pQIgYUhMonWK6eVYY9h7biXMeXADAnX8YyJn790wPTkytSlJiFZLfSRAQHwRo+9V42OezH+DtZ+5nOBgHmjvtrdEz/21f+wMKWazDpzH/LNBira/CA0DkYa90AzpJddiuB1gLlm1o46i75nPTLbex++6759TEnztpMj+vKh88fgm0xYIUgAMOOIDrr7+eo278E19cMZJenQv9F05So3rcs9uA2smuCchmc7XqaycknA1w2FLJh+Qpb+R0WExHfn1uXADtNUf1ZdQF3/HI18s5dWIPNrRGefWHjfTtXqjPrSBO+kE0FtnMBwVufG4pXSsK2KF7J4TU2BBr5KEvlvHOn0an1m/fnLPRpmR6Nqj5V9CFPBfAEZQ09Pm9BWsr3Pi3uwajvfvgV2vq8S1LKXhnxiamLtOTloZDgogW5sBh1XSOlIHWglIYBynQoiGUsL6BiAINDFmaJiVV5fr22qemkBE9SxIgxA4enODErrUWMnHPrzYuKy2Kz/etQeA9zee7TtFgePHIpCHoyINdIOd/QVLyXJtTvF37kgpYbOS2V2ayiHBSkDnkU/vb1KJyxN8WcNBhR3POOef4K7SVtpJP2qJBCsD555/PjBkzOPzvL/HBhdtQUhjK3SRETfzfsiFN+aCTY90D/lXt7a3pCEgdbjYRRATgthi3B/k1V8tkU5zB0RYFulcW8NLFI/jVrTOpa4nxyTxd8rp0XVtm52m/mpI8mH5JJDc9u4x73ljJ22fsQFiGEWGNM/4zh/227cyOQ8r9z+dc5numA1V7ApGchBABn83jmmC3f++w77s91zS7fXuu/jsmPz/kFm5dgf/+sBGAkAK9OhUwoqaCzkonEBJhOMwjJOHyNhAgijQo0q83tqj8dspsZi1r5o0/jWSvUZ1QEMnaEzuYUD2ArBS6ODWI+Y2zLyYfL/L7TrN8977npm/tsgc/RaY+Zw/93tHkNo/tbbG319Z3adei2M8njud8UTqBWgae5vqS6f1pmuSkxxZR2XMYf7/vAYRL6O3/OZIiP2vy1uhewM8ApJiO9HvvPY+TH5vPU6cMRrFsN9O8RD+hEYRtUXAuCHZKszi4TsZ82J93JOUZKAT9QAOBGr+UCUx4lsvkxOlhKuioZ7fhlTx3wTZc9+wSlq5v4/0/jWbiiEp3k8KUOnxeSzdsGSRss1c0c8PzS/l8dj1vn7ED21R2QYSaeWX2ar5e2EAkLFDjklA6TUC+XpuTf7b9clJHhSLN4fCey2aWUnZzC0byBSx8mScFHDfzwOo8zNr/abCUquSC/Xpz0JgqTnx0Dpfs04/te3bm/k9XsefwQYnHwxoUSEREQoG0gjU88MYq1tRG+XbKdnQqNrbYTNqTTGtwEPPHJJPjAOXSVd/e35KncEakv+98znmtAzQr0sdcFIr0BizgD7TYya8QzU7pziUu/Pz4RFz38jJ+2lDMV1+9stVR3iC7sjRXPlvpZwBSAAoKCnjhhReYMGEC1y3djev6fp70wTsXCT1evXHNl4O8IZG0SwH8Hto3x0zy67gYhDbXF6HkLglOiawCWZs+ZVz8vcJHms/Y7MEnj+zE5JGdsvNxytX0y+1Zo+lfzqln35umc/j2NXx63ni6FJQhNY17PlvKTa8t4fyDezGga5GuVMrCPjktefHJyhG/nQ9OWfQ3p7ncEd/g5rJz3tySbbNet/rNA6Lxv6e+XMtJj81huz5llBQoHDe2Dze+uYRd+9cgFP0lCUXqPyFtpsEQa9W457WV3HHyQB2guIETzL+FnlMlpa24O2zb/+0kr0AIGeZUxvmazZzMZo65vRe3Pd65/pp/OsGnnU17zbkA37q0jWMKYIH0oCWI0NPtWbdm5uEdPf7Fav7+6SY+++wzampqsmC4lbZSZvpZgBSAmpoaXn/9dXbeeWcG3Horv48+lbjpWCykKjwXMLcFy3rUfsuuiclk9+pXBZ2J/Jg52GxZ826v31HkZmKRA5k2vbkcEJ2RfZLI62Dt1LrYtSxuh4ogYMWvb4YfCastIdzGxhi/+9scrjusP2ftOAghQClsQ8YVvl/WwDkH9OTSQ/skH6ggP9pB+9wN7HuSo9lIrs+azWhv87CUCnMomy21F6AIwi9fZl9OcmuC2S5Fd5if8tYyrjukP/EY7NC/jJBawD5Da/hw/gYOC1ciDB8UqQmLXW1TnNkrm3nxqw1Ulob51fbVLqAE2/zXNSh2Z/3kNpHsm5LOfCuNSWHa+Zqv/SOXeeJRR9I+be9D0vOJ6849P5VhPsxvsihj+e/Z2uox7klASxX+I3fZ63Ejk2+m9xSgf+/P3sQ5zy3jlVdeYeTIkf4L/g+QzJO5V0eb6W+p9LMBKQDDhg3jpZde4oADDqDvCy+w57xbEzdTPjDHApaG3Ba4pH/6lESkaHQyOfmZZJfkZVpIggIfSNqEs95Q/C50mXi4mVxkQ7kCHUcoSa8FIS14cfIzebhpWNzaGdTkC4If7h3PXP/8Mkb1LOWM7QYTbykgUtKGVAVSVVi4ppW9x3TSAYnXoSibaGw2kOTZ5vaM4LOlmLSkVJhD2fbWSGwJgKI9AFq6NVkTvDV9I+saYpy7e1+KIyHUtjBtbXHu/2wF9xw+klBhTNeghDVEoYYMSZ76bC0XPbWQkCKoKA7x5DnDCQnhACUktCfof0vTF8UruqQdqDjJA5j4MgFMa07p870HeDdSE9YB3JdWwwWUeJVLOthb6y/Jc9ICCu5ts/PKh9YluU0uD0h3AGKdU3KIeOmqUcp0/gnY55mrmvj1P5dw7733Mnny5EBlt9JWCko/K5ACMGnSJB566CGOOeYYPv74Y7b5+Pyk+85Fx4tSTcTMP4z7LgtGyiLmtnnYtDJJ4Mhl4bHaFyREaToJSyay2+gGPVQ425iuvJfmyeSRrT25/d9B2m5vq8nGpzbKK+59es2Lh4bFy0/G2TYv0yc3jU4QkwMpefnb9dx/3DDCRSoqcaINJRRUNKGFo0xd3sjYvqXp52NWmgSnH4AHj3Y2x9psdvW+68vxgLQ5NacBD62bk1wPkQKa2lRueG0JZ+zRi+KCECKkodZH+GxuA/sPr6KizGbaJYAwPPrBGq56bhH3/mEwh+9YrTsO243SneZd9nXHAS5SEgGmM7H0C0z8av0zvL+s35nRNmkHaGmfT1OnS/mMGpQM7UrhlS3Z2pDtWFnz0tm2TJYc9iNJuvGwC9Hc6vFBq+vbOPRfazj33HM58cQTA5f/X6CtIYjzSz87kAJw7LHHsnjxYg488EA+OLUf/aqKkx8wF8YAi46niZhdTev8qDNIeewkXKTm0rloBKB0ACwdmW3Nl9TIizKa2AVpv/M9ZgNyrMYEK+qVxDHFodEeeMFpQ26CFj9JLlMqMualFKkmVwEP0QJBVVmEP7+6lGe6rWPfEVUcNb6a5hbJcQ/PZGCXYoZ3LXW3a3cmMQtYsy9y0zQF6GO751PIl619R9RrL25Isjc3OAhM9rlvz3vl/Ib85sMyH3cRZK2qbePw+6ZTVhDmjJ36I1VBtLaMWFuEp39ayr3HDEWJqIiQrkUB2LhO5dL/LOTxs4dx4HZVKcAjybTL/LdxTUqRkPKb15zCDY9gLknzPJOmJOWg7/I8GfawoIdZL+1BDvWmn7v+2hdIm+OTPIGFg+zaJM9nnEJNZ76cIG1JJ/ByA2g+xqS+Nc6hD85h990P5Nprr/Xdrv812prMMb/0swQpAJdffjkrV67kkP+8y3vHdaWmLDmyhOdHl+bDtwMJ36pXnwt4CmBKAkTmH75YJfjloBZOckRMl/jSKeX3ed+XiR20P0AT5G6i5lWdA8AkHTI8QYvxjJ/DvnUAcWl/lqZGL549gtd+2sjq+iiXvjSf85+bh6ZJRvcp5f3LxxAWwv3dGQCpXSKxQZJtvnUIy1eUPD9jFbRb7WCHn7FYDnW2u/Ow38zi2fJPMgHyWU+650TygfWAu6eyeEMrtx82jEhEIlUFNRbh7XlrOGCHEorL4yDQAUpIggKhUklhRGFdbSwxV53AxLzm1HyYz9vXz3QRlrxMRjNpStJpJpKe869hsQu6MvJNR2nejx8tSuDq8pFU1U7CB/C37a+ZLCsczJP+bx9rU+Dg3Ae9fF0yts8HtcU1jvnHbLoNH8fDDz+8NdTwVuowElL6idW7ZZKqqvzmN79h6dKlvH5YKaWFocTNoIuaz8Ny6sKQ+8dq8UxnEuaLUQ6NyOPBKbCWJ5t2Z/m+/PMP8KwzSVfSPdstP232qT3IR0S0pjqYtr6eWBzGDyynIGw0NshmZ29ve+S7yWfEqyBTYTOAEGifA9/PjvK5I/kZFiH5YkE9Z/9nDtNWNvH8iduxbcWOFFTP5rIXlnDjnntSU7OWUGEMJaKiFKp64sYwvD1tI0fcNZMJg8q543eDGdO3VOfp0KikaD/sB9ZcfPQyaEoymid7lEspm3Izt/kW2DcFfGUV6AgKej53a7cQies5nfd9RjhLaZMzWlqavUnTJCc8PZuloZ68//77lJWVZdXUXzrV19dTWVnJIePvIRIuzlwgA8XiLbzy9VnU1dVRUVGRhxb+POlnq0kBCIVCPPHEExxwwAH87snZPHvCCCIh/aQUdEETPk+leZfGYJeAuEhHAmocsj6Uk4VZiKcK32e5LBdYi0emZvqRdHnVncuB1hk+0twP/GhR/GoPcjy8S0VQUgoTKiqT7eSzMYdz+9ukfH0u7XFAyQYQbAYtSILJ5jcd+9lRuv6a36UG//hiFavqozx36mj27d+DhvpNXPryAv687yi6dFqDElaRqoJUJDImQZGIsGTfMZ159uwRHHbHDFRVJn9LeJhm+fUTyaJ/aTUQacYiG81FTnPaD/98jhPkLWKdDLpXudRp52DxCxhURgiS9lJfWp2A96SUXPTKAqZuCvPZV69tBSg+SMr8AOotBZRvbvpZgxSAwsJCXnzxRfbYYw9OfWYOjxwzXE9AZ1K6A6SN8jkh7JIRX3ylsMp4hyf0V3dezMD8mrB5Lorp7W8T5WxRX7Jod2Zgk6EfDpOPoOSlds8YktoLiGTTjGxftWbUlzbBV54Bea5R3TrKpyKLZuYMQnIBIL+wzSxwNKgM5LlOGD4hj32xindnb+Sbi8fTvawYLaaytGkNO/SsprqkCKWgWedjd/4WgJB8OqeOy/69iIsO7M12/cr8gROPJINOM6pMlBFY+DX1cimbq6AqYzG/c9ajHa6a5Aw+HMKp0cqSRB5Cl5tadSmFxc/+ty+etnmSTsiay9nmxncW8+LsBj7/6hu6dOmSPaOttJWypJ89SAGorKzkrbfeYvfdd+eM5+dy3+HDElnpndQBBx1XSYtR75eLa3nmp1VcufcgqksNPxpFJlS/bouNT42ArYD3AToAZaOSty67OQG61mH/V4BN2seYZOTjRxuTqX4pUoClZ71+IrNl+778zg9H4rpAZbM8vCdFscvH5+fVjnS8czzIb3YzrM2pwdkMlM92pzNJXVXbxqUvzueJ48fQraQEtTVMvC3CY9/O5qwJ2xCPh4loAhHW9Lkc0hBhjaWbWjjlH3P5YXEjZ+/bk8sP6pts1uUVYcsGULxMsXxpz9MAEtc+B3Vc9yuoyuW78vmOPYGFF1AJysdJGaJf5UMmYG+L19/pSI8uaSvntW/k8B3d/tFiHvhmHR9+8hkDBgzIms//GmkItDxsdPng8UugXwRIAejatSvvvvsukyZN4oJX53H7r4ZuFucu5+JhJykFN7yzgA/mb+D+z5fRo6KQI0Z347ZfDdPbagMrCX5kddAxNzpX87RsIkxleiQdywxqZudrShdkwLqkkBGE+dnsswZxJsCR4DwdZzJ3S1tnErjLrmlpD/Fuc7O9NAf2KHtupn0mizz5cLQ7IE8plIf1xZDmbxbtzc+NMjnCB8jnY47dK1PXs22vcvYe3AUtGmLxmhB/+XgBB42qoU+nIlRVd5ZXCuNohBERlUYtzuH3zGRsv1KePXsbOhdGjARuuJt0BdFiSMd1e9EszbVc50nAueu5vuc4BwNpNrKMSuWXnJG6PPeXLcD/y9kqpwYmV43RfZ8t5a+fruL9jz7emqwxIG0NQZxf+sWAFIBevXrx/vvvM2nSJIremM9N+w9pX6CSKTykC/3r2G3Z+a7P2bFvJyIhuPezpfx2u55s17sSVJHsXO0CWvJCViQlj9syC5M1N/IrKTP/8DTLSG2vBcJ8qMfTmcplFRHFtQ67bUV6jUFQ07ZcDt/JFbtcai8zpZS67Icm21WfZj1+fKXyfmjP9TDi97UFOXz6rnvzH6Q6lFI0CxkAjUHvzdnEPkNr0OIhNDXENe/O4I877seuIxaC0pQIO1ykESqKommSUx+YQ3VpmAeOH0I4FHIHJxmEASmOy5k0IV7kx0wrSVLvj60rZfr+sp1zAco5+5ePACJevL2ubQnk3NPymZ38sW+Wcv0HS3jnvQ8YO3Zs3vhupa2UDf2iQApAv379eO+995g0aRIlu2zHVRU/IIRwDZvodvhLZxecUiaLhaFzcQEvnjSOi16dRUiBI0Z3p6wwnJDe2J3KbVJ1r8hQSUnAAlJKKZsDXy57WdYLZob+SkgFMtJexqM9pi256zjlZhJn1eECPNLyTZL6+uANOfka+WpH1jxcLjk2dy8Q5zfJmwVsNvfhO09an9zbkYV2NR+R+H4JZIxdXNX4cO4mLtpjAEKRLFzTyphulYzq2kCoNIraVKCHHJYCGYWnfljNlDeW0xrV+OTy7QiLUHpwkum7cACUwNoQj34lXcrGrDOFR3aAKVAd2Zh+ZVufHZhs7vUkW8pBuOYU+NjXgMe/Xc5lby/l9dffZPz48bm08H+WdK1q7vPqZzs380y/OJACMHjwYD744AMmT55M85FHcmPXuTbHdH8Lv9e9fBw0hncp578nJy8AqRL95EUk3YRNuedlU5vpkJvvyGW5bFpeoRFVU6viAWLAE8h4ORcGi1+fjhzvzA1c+Aj5mMLVmTCsvdaudE3KYHYSRMsh7LlnOuAA1J60uYFHCouA7dlSJcXtSeb3tGRjKw1tcbbtXYaQGj+uaKRbWSmx8qUgw4Qr2kCCVFTOfmIBr01fz9W/6sexO3WjKKykAhM3TYkbuWhPUjQrGa67snX7fu37nXRfO9MehnLQcvgul4PJl1fZtIK7LXQtCULSFLoF2E/MMdFUxVWD9MCXS7j2w2W8+uqrTJw4Mf+N/h8hZ07XXPhspV8oSAEYNmwYH3/8MZMnT6a+K9x18DbezvRbOPkJe5y8KHs977Ggt4M0NX+HHw8+SblJ/AGZjGZlkAA0uVr6JAEUN2beGjtXXu3gVxMosIJfqXAmEqlSvF/UQbkdDkAdavJlF3C0h+ZuCyBzPPtWFREJKcxc0cKorp3YvX8PrntvNmuaFc7ddQjFXeqQqmDBhlb+8eUqZl43nr41hfrB3yVct9v3sHB9CyUFCpua4rw8dR0XTO5LQUh4Pp9y3XYvo6mWm7mSq3Yl83cbGOzmRSNrWzMztbsj2rOlk92Kwod5ozUmdkm/ce+uTxcx5bNlvPXW2+y8887t1eKttJUC0y8WpAAMHDiQjz/+mL333pvTX5rJfYeMIBxqj4xzNsq0aHht/PZDQTamHDkcKqTTFyYP1N6bRHKb3Q/8nj3y0V9fgMaNUkJeJ/50Az7+/VO8AUUumqB85DpwM5H0NJt0SkLN/v+CDhUdBrqydH5OC8DzYU6zJZPt+/j7x8vpUVHIgJoiREijplOU/jWS34yroqC8SV9jFMm89c0MrCmmb+eipJDd6UD6jJWN3PTm/7d33vGSW/XZ/x5pyu1t293evMXr9a67Y+NeMc0Q3IBAINj0aiAOHfImIQ44gRdeQgs2gVCDjcEYXDBuuNe11329vd/epkk67x/Skc5oNO3e2WJbz+dzP3dGOjo6KiP9nvP8ymauX7cXQwgMAZ3NCTYPZPnPS1aWKCQ1x5LUk5I3Ylwlq2skNjWhQfeLdKLf0eWW7wsIw9nv+6wGNSYd1a6VqPJslQ5ceccGvvPwLv50+x0cddRRUx7nKx0ODQqcn3oXLwu8rEkKwPz587njjjs466yzePe6Zr5zWIampFl9wxCEqOxyVdOMRrX1U5wpmsorom6SU2v7fWjohPdeSrYqGPY19F8pU1vZMYWPVxuTH1Oj92lIojKcRfZd01OrRnUkfO0aEONQT+Bptdiul6y6coAN+1oCo8u10atgR617WUC7Prc+O8BHTlpIWzIFUmAkLWZ2G/z0sR0snd7CtNYEhil5fOsYO4dzWBZBDa6o6+ydO8t2OOorD/qLX7u6hye2j7F3rMCRczuKalFVSxUcFVMyGfesushII9x0p4CqxGBf/8aELB7DgSbrfj2v6oQpTGQqXQ/HkXzxT8/z8+dGuP2uu1m9evXUxhkDANmgFMQyTkEMvAJICkBvby+33347r3vd67igL82PT2ilu7U+olLt4XswyMtTHkMZn+Vq7as220fnpqjXsKSNRyzLBQtXG1MVUloRYUND/xJ23fNITGRSgPCQanxoVQq0L4lvidq+hrS+9fjKR2bBq4eEHAS/rVpRa/akSFVtX3pXqfNdKWV3JS/Il7jnV9T5fs2q6Xz7ri2csmQ6K6Z3IITkbWvnsaEvyyO7+vnSHzbw0JYR//f7xLZxjpjf7n4pJ4g7AlOYnHvoNBKGYM3cNp7dPc7lZyzkjOU9LJ/ZCrKyCgM1kJMaf7/FfZYhRKHZ9kY+r6ekRByAd2455eFAvd+rKSFuI13Bru18F2yHD92wnvsG4c4772T58uVTGWaMGPsMrwiSAjB9+nT+9Kc/cdFFF/Ha32/hV+fMZk5H84Eelo+SGRDHKFo2ZdlZf9DV4OoUJS1Parf7QC73pXidkJQ0qkAyppi2uFYExkL5THJ+UgQtm1vZTG7qQ40uaFGkpt6Uy7UEAEfW9olo1wgc1MZyHcSrbPG1fbzfUnfEiHGU6+8lnAks6h6d0Zri+b4JTvrWX7jp0hM5ck43hiH474e28s2/bAQhePPaWdzybD//+LolHDGvnbKZuIp2Jrj+PUdEryoXIF/u1IYJSo2qY70FEIsKCu5LF6fJujLvw/b7qo+pQERMupVrU9W1PLR+LG/xjmsfo795Bvfe+wd6e3unPN4YAaRszHvqoH7X7Ue8YkgKQGtrK7/5zW9473vfyzm/upVfv34ZK2a077sdqlmQGpSJqBdDXS+LCrM/Ja5qNSgm0jYbFzhb7wO/3OxRGdlbGE6JglJxprHa7muoZl8r1LhkiIDoy4UXXO+nx67WqV16XWtN2VyrGlMLyj1Ea3UZ2tf1dw4EajZu9kEcWK1jKNrvVAjOwQLlQlkHiZISZrWnAchaknN/cC/ffMNajpjbzrfu2cSMthT3XH48Q6M2O4dzvLAnU1dRxFoquVfLxuW2KSUndSsl1dr5/dbwvmmw8b6/CEit2x1IclKUcSvKnbtCVrbIZ0lEH3vGslz0y0foWb6GO669lo6OjimMOEYU4uxejcUriqQAJJNJ/uu//ovPf/7znPvtb/M/bziMExdOr2lbZRTW7Q61nx98vgEc+h/VrtKxNHLU4TFMKkVkGeKiv1zDhKWkeRUCFDXWKaOKK4VSUqIIS8VuNXeNsmMOGcOVZvBrjTuoFsRbAkW+ajDK6kHd16kOt4lJY7JxZfsxk1Yj7+99RbTqgrqH6rwfX7Wkm7cfO4cHNw8znrd5z7WPIoF0wuB//+4Ietua+Obtz3H28hn8/PEdbB/MMberqaS7mtIN64siXLmK10eTjaL0+XU8I2smJQeJIb+vCMUBddmqAdXekZWISy3HtqF/jAt/+RDHn3Ue11xzDalUqqZxxYhxIPGKIykAQgj+6Z/+iXnz5nHBJz7Bv599KBevWeCtq+SzXdnon/q46iNBtdROmcpYp1IoMjwOHdWSENSKKMJRdTawjBvbvn59VT1e71yXEpbi7aOvR5W+FTHxXMoi+zBk7cpGLcaSGlmV5AOTug/qNU5qJkIVyG2Ns/STV+BE+f1U+w1O5hw2iFzss7iAfQntGn3ldcs5//uPMKs9zddeu4o/vdDHx05ZxPzONvr6oGDBh89cxIaBcU646kHecnQvZ6+YxpkrphX3WXYiqPoYIs9hGeWkFrUk3EY6RqCem3aocRnlpgL25TO93rHU0654m8a5tAlRec67nvFVU1OqtSlHbP6yuY93XPswf/e+D3DllVdiGAdP1rKXGxzZoOxeB8H8z8EAIeUr2/Ptpptu4uKLL+YjH/kIH5dPIPZxGpt9/QIu8i1u0Etj0hXt61FP6kS4r5r7LtOuUTE4lVCr+54wnOrHE3H8JS59Zc6R0ElLxPpyqKvac72Z4sqt2p9KS8XOqqsedRlqVdQ8/Vo0oo5RXTVxGomDQWmheMY5fJ+P5ize88sneXDLMB87eSnHzZ7JodN6ueH5F7lu/TZSSYfNQxnOXjaDHz64hdGcxYufP4WulqTfR8W3aDW1pIRU1Nm+xoka20pg2wnSzRNFxKVk+33sUrUv+62HfExlvI16l1UjOLXsr9pYfvr4Zj516zN8/etf57LLLqtrfDFqx8jICJ2dnZx05LdJmFOPd7bsDHc/+gGGh4df0W55r3iSArB+/Xpe97rXcXQHfPM1a2lK1J+iOAoH2hVCStHwF0ejCMtU+50MSZkqkWkIFHmo5boIWZY8TeneUmRFyGLDtYpfs27o1kIeqhnFNfvWV0OD7vF69zuVa1CLz3mwIpq8HAzYb8Rnnx+3wzUPbuf6J/dw76YhTl88k+Pmd/Pwzj7+8MxeVvW28fzeceZ3NfHdiw/j6Pmd3maTvIcrxJhUU0tqIiU1xqOUdT+tEbXM9k+27+LtqpOPRoy7HPbF7662d1Z5ElNte0dK/uWOZ/jh41v53+t+w5lnnln3GGPUjpik7BvEJMXDnj17OP/88xFC8MPjepjZVup7rONgMxaiELh8NVbarXX2p3gs5cdQb3/lzn21a9JQItMA1EzcwllawgStggoUjtcp6V8jLFMZazlEBvTXYcDVgqkS8ZoTVIT3U6R21HcPRyV/qISi87gP79H9/Vw7GEnO9uEM3713Ky/0jXPI9FbecfQ8lvV674NytUrK/DZrCayv6u5VRGjK3Kt1KOjViErtblZGDa5O0W3qfSfV4to81X7C2N/EZKqkRcd43uLDf3iMJyZMbrjhBg499NCaxxhjclAk5cQGkpR7YpLyyoxJicLMmTO57bbbuPTSSzn713dyzdkrOXJOZ9n2+zIupVZUfxkZfrt6XFEquUbo/daL8gH8Zs3HLUR0YPxUfaLrCUAst+9KMSSTecn6fVaYWRVCupnYSgYlS9qGM7ZJNOP4AGWaasR2+7IWg9+siiFZT4rvovbq/qhwDCXJICrGJ00C+zBpRFXyW6c736RJTY3KJcDczmb+8dXFdSOkHspRqa96XbeitqlGSqqoH1MlKe6y2n5TtSkc5dtMJe5kX7mBKSIwFbVFhp7RUcurrYtuU/04tg6P847fPEjXkpXcd9uvmTFjRvXBx4hxkCImKRqam5v5yU9+wte+9jXO//KXueqs1Vxw2IJ9us/wzEgjgwDLvbiqZb/aF3EtlfqrlWC47UqPtRxxqWUfkyUnUS+Xel6ktS6vlryg7PpyxLTMd1mHKjApdWQSmGoK7qqb1GnM1dJWkcopF0TV769y52EKcVRF45vMtWtAco+yXVe63xvgZli+8zJKWQ3Eo2K35chseB0R17rGZ0o9akitpGRfTcTVs4/yz8laSVT9z/V6J+GqkZpyhKXcNrW0iR6H5J4te3nX9Q9y0d+8g69//etxBq8DgDhwvrGISUoIQgg+9alPcfjhh3PJJZewfs8onz1lFWad2TBqz9DV+CwbU51V21/B/bUShErtqr1UJjsrNpmxTAa1vNgmTVSq7KNoW60PX5mJ6LNSiueGF4Hbx25fjSQp+jZhchgmtDW5JVbbt5CTOt9RhVBr3naqxKZsx5MzyqAMYW5APRdhBNegasxINVR4HlcjJbWSj3pdtsLPzKkqFZNF5WdTfcRpf4w3GkbV33Wl99BkSEmUev/DhzfwpTvW8+9f/wbvfe97ax18jAbDRiKqVzurqZ8YMUkpi1e/+tU88MADvOENb+D5x8f4xoomupvT/vp95cPfKFSa3Y9ub2if3f+TiT2pdV+1qB/uGMqrLNUUmFoITL0G0b66rtVmDKUsfz3KjUt/iU1KKYrqs5JhvI+JW6O3218GTyPvMf+5M0n1o54Mc2E0WhUJOq7Qr7oPJxGIPaXEBnXEjFTspw5SUo0o1EOq6w00358kpZLyX+lZFrlNo5PHT8EurKzUa7GBk/SeKKfe5yybz9z2OH/cOsQfb76Fk08+ue6xx4hxsCImKRWwfPly7r//ft7xjndw7vWP8YPTVrCmtws48CSkGoKH2ORTMkoZxDpMNatX6cun+rjqJRHBdrUa5vX5Ke+fmcXyL/DysTu1kclajJxq8Uj7ojDpVMiU3kcj209G4aym2lU7xtpI9yTIpkIt29YQIwO1JwqYnLuNKCVjNShLU913WdSoXpSsryGepNpkUq0kpRZlpJ6+G6nw10U61PmoQj6cfeCBAGBMZmIu4jEZ9VuPIiyVUAuZ2TYyzqU3PIA5az4PPXQrCxbsW/f0GNXhIHEaoII0oo+XA2KSUgWdnZ1cd911XHnllZz/z//MP59yGG9Zs2S/j2MyRpyURp3tQy8qVWCOUveVMPmoFgBYyR2hfLrK8gH1jSAN9bi21RPcP1VUeoFHjVknkzrca1PLHqNfzGG3vH2BemaKK21bW/t948cOtfqyT06ZnMxvv95talZoaiQxZTdX7maOUVGtqVshqeealbuf61DWpqIoho+xVkWvHvenelXCYiU9+jlTCVUJW4h0VCMZk5m4iCYE9R2HU8fEFbikRj825eYz2XeT/j6t9jy5Y9NO3n/jA1z4tr/hG9/4Bul0umL7GPsHskEkRcYkBYhJSk0wDINPf/rTHHvssbzlLW9h/by1/N//+38Z/uK799sY6k0UXXWGLmKmypFGyUxS5MtEBjNO9bqVVRorULMvZyXSUMk1KmrftaYmdhxjvxEVKE/soghjpWD2SlnH3GWm9lIPtg8rA4049skYVaVt6zeQ651ZrgfVXBKD/idHYuo1tOpFLQrNpN3MwoRaM+4n63o2eRJZJlteCJFGvD7WOglA1Pp6VIx6fzPll9cXh+JII/J5XEnlCL8vqo2x0r1Xbny13K96u/A2tbpq1xI7FvV+LKfGSCmqvt9qubcdKbm6axVf+f31fOtb3+Kd73xn1W1ixHipIiYpdeCss87ikUce4YILLuCkk07i/x01l4Vd7Qd6WCUop4jU8gKxy8zKh9urGadGGE/l+jDKpRsOzVZFqznFx1E5sDxqTNGGUXg8Uz3+qaoBaux6HJFqU8n9KPwijjqusLvfgayoVKtxErVdI9vpqGWmtz4SPHXiXW8yilrb1nJ+Gu4e2EDXs3omU+qNG4naT7XlwXiMqm1q3c9UyI1OPPT3hCGcuolHLW3Lra9Jyaj1OSTLfzaqqMfhz+F7u9KklV1Fda/JpazM5oOZHB+/5UGeL9zLXXfdxZFHHlm9rxj7FU6DAudjdy8XMUmpE/Pnz+fOO+/kk5/8JOf++Mdcdepazlu+EKhdBZgsityvavTZ1V8y5R7A9Rpo+ovEkJN3YalEMgCkiCAoEQ9/9cIpMbSpzRCLViHMsuuK25Xrs5QsBNvUX8gsbCiWPx5DM1TLE85Kykm4/ygjdUpBybI09mWyM6uV9lG9jVF0ncLb1nLtG51copIiUy79di3bl/bVOBJTa5+17i/YcZn+KqgzU0YNhvZkjfQol6py7csHkJcnNWWX1ah8VJu0qoeE1EI2pnK/TBU29bnvht9zYdJbLkNXORJTbp2/v4jnykM79vLBP97HUSedwkNXX01PT0/N44+x/2DjMFnX3tJ+YsQkZRJIp9N885vf5LTTTuPd7343d2/r43MnH0U6UWwU1jJjolysJhMIWMssVfhlEaWG1NNnuF29iopPSHRCJ0P/cYlH9Ox+xIsygsxEjUmd5/D5LjerFo7FKYdKJCf8ubRd7e4L5Vz0ShtXvvfKHZcoQwrDRKxR8UDVPpffNppc1Lq/4uVmSbt6DO7aYpWq152pRqIrkdJqqJXITIaY1NM+vE0tY4rcZh8atzUb/nUSktL1pUqKDscpH+dX9l6uMe6jluOpdD0m896YzPNCIvwJufB/HZOdHKw2SabDEZV/Z5OdrItC2I3MkZLvPfQU/3H/E/zTV77Cxz72schndYwYL0fEJGUKePOb38yRRx7JxRdfzMV3P81/rF3Ioq4Of30l1ykdUe1qM9Yqz2IZOBVJSuT3Mi+CyY4l/AKp1e0iUkUp8zKq9oJQLx91LvRzIoQsOf/VXlphAuC/7LQXadH6KjOZBvWT1GrXsRx5rDh7F2VMy+LzHnYDq4Z6FZd6yMFktivbH1EGZHUfcr9d2QQP5QNga62dUGl9tW3dNtXrCJXrq3K/9bWvZZuo7Sc/UTAJw7gOtSCKlITJROnvtLJyUWlbqI2ITMUdq5wCUm2sZdfV8R5xpMAQEqeoP1HmfwBjiva6P/5JisNCyPLKUQXXskrjUffzYCbL5bfexwt5yW133MHxxx8/uUHG2G9wcBANUEGcWEkBYpIyZSxZsoS7776bK664gtddfTX/fNKRvGFFbdm/6p2tqmXbckpJJfLhlPQ1eYLk9+AbDZN8g0gwSmZQVY/Fy6uqOX68RpRLSeWXSJSRH0VqKqGccaDIUL0ZZaL6LddHmMBVnC2kfGKAIHDa6zdE1Ipc6zSi1iiXjlqNHd3Nsdy6qSKq71oJjUI1961qake9xCXcRqEWF7KgbW2KZbX21babzPaNIiTllpdzvVJkQle7olSSWpSKqQak13M89aghtSo3Rf3XcT30/u1JkNh69hUF9Z6p+IyZgid3OdeySpNrUgru37aLj9/6F4477XQe/eEP6e7unvwgYuw3xCSlsYhJSgOQTqf5+te/zumnn87f/d3fccfWPXzh5GNpS6WqbtuoF0OlB3UtL/DJGsrld9qALio8xMsRjjCKiI4ef6F9CSsrRfsJdVruxVKroVZ0nqd4jmpxASkhHiWuW9FEMIq46W1rcfNrdEaqegzRWlXMyaCcT3mki13EKSjnvlVL3Im+Xa3KRiVjPlqBqKz8lLafHBmZrEJSz/a1YDKkRI1NSuElPCh2P4x08Sr77J68W1a15bWQkf39rqk0tmrQn0tTvf71kJyKas0kH3M20c+Rgu3wzQcf44ePredf/+2rfOhDH4rdu2K8YhGTlAbi/PPPZ926dbz97W/nTTf9ha8es5o1s2ZV3KY2ZcNrW+OMWKX21cbiz4BP0u1LR6WZ5Vr6dYhOgel1EOxHc88Ku97YFYxufftwvz65kaWEplaCVLS6zpnTelHxRRulSnkQsvh6+/1FkZDQOQ8vg/pUqcmg1nvawajbzaISou6t0nutdMZ0XxCXWtUWfZzl1tejjlSLAZosiam8z/1jnJUjJWpdQEgMpDTYODjKhsFhTpw/g5akiW0nkIiijITlMmZNxnWqHhJS/niKCVPtynrlMVQby2T6guj7YaqTaZMhOaLEBa2khdt3FUJd7l2mj2PL8AifuO0u8h1d3PfAgxx++OE1jTHGwYNYSWksYpLSYMydO5dbbrmFr33ta7zty1/mC1/4Am/a/iJCRM/sVvMJLhczoj6HUW2Wq5whEB2HMVUDYXIuGMWkQ89WVa4Keun/8AsjfF6jAveLjbcKSoK2qdqP7k+tLwsfWxTCY1MvUmVo6//19VHblkMlslYxBifiWMPL/X4o9s0up9KUXV8FUTPAUaRB/bdkYlLEKPJ8hO8xguQO9RIXiCAvZc5NFMGoR22ptc8w6nEZC7apLfalHCazT7VdPfEr5fuJVh0cx8AwHHKWw+0bd/L9h57jjk27AThv2Xz+6/xTsZwEBTtJUzJblpDUqmAoTGYCqtbJEPfZNLnnUy3b1DKGcmi0q6j+e56UelNjUHwNCcLd/srcy7999nm+fO9DvP3tb+erX/0qzc3NtQ8yxkEDW0hoQNZHu8GeCC9VxCRlH8A0Ta644grOOOMM3vrWt3LTvHlcc801ZL92JVCZiAQ1TeqdUSvfvmiWtsx97xvt+2nmsiL8sYb+hz9XgC3B8I7JQfifFcoZoj7B0I1t/9xU368QEsup7j4RDhItJjuGtlx9NjUSZBTdH1HkqNyL0FdIymRXq2QMuuc0mixFoWKQvpABOdRmdMt9LjkO7xjtkpoWbt9R7jaRYwztT9+mmtHsu2t424VTYVeL/9ERlYwhPPMapbYExnl1F63y29bnrjUZ965aMrFVIjLV9um6YdWf9a3SPqQUbBoc5+v3PsVP171Y0v6Qni7ef+zhFOwkhuGQNAvYjlnSV7WJqGrjqLq8xsmqRqgx5fZXDrXGi+jPsEYpzP5vWz2+J/luqzldcWgCo2x/oXGM5LJ8fTzHTQ89zo9//GPe8IY3TGqcMWK8HBGTlH2IY489lkcffZTLL7+cNWvW8M1vfpOj738AIUSJwQrFD1FFOiq6BtQQuBhpyEV3VoRK0vVkMFXXsclAavuU4QMsY5gHisPUjl9dPwNZQiAbMUMYpS7Z2pDt8PWMOJ5a3NYqKVJRxk0k+YnYZ+n4akjXHcpaF+7D320d6UB1w78WQ8QIGfYqnXMRadEUt3Aq7TAxCM5HqX96LWpLddWkPHmZrLvYVNuX327qcXGV+qiF6FiOwx+e287Pn9jELRt2FK0/onc+jrR41fxZvHrZShZ1zaC7eRQp8dzAvAmmKmp4zeuq1sKq/lyZVLauScSi1NJvJdhK6WjgJJmKI2nEe6foN1zDu0E9C3REPV/u2bqVLz70MGvWrGHdunXMmTNnagONccARu3s1FjFJ2cdoa2vje9/7Hq9//eu59NJLWdPVzedfdQpdTS1+G52QRJEXHfW+QGxZ7CKm9xGOPynej4yckZ98wcr6XhTh2fTy/ryyQlChKPM5gFHG0HMoPj+ThXrM6NdnKJvhxuee5jXLV9HZNElJXzsdokxFSf3aqXGUIxHlDHRdkZoMShSriK6MOt0wqrWtGMsUHp/+u3BKXd7C5MkuITSi5B5S10MRlxK1LsIvPur8h13FKqW+LjqmCuQlWF9/ZjF9+6hxVMNkt2s0yu33vq19fPTG+8kUbHaNZQB486rDeevak1jZ4xqdaTOvHUeWgp2s2H+jVIepBMZXG8dkY1Dc/TfwGkrhT+pMdZIIqmcKm3yMXO3qkA79fGYti6/ffx/XPfMMX/uPf+e9731vHBz/MoHExsFuSD8xYpKy3/D617+eJ598kve85z1cdONv+ezRf8XJCxdHBllC8YtDSslTfXtYt2s7A5kJ2lNNTG9tY15HD8unzyJhGCXbhCErGHaukVPsPqQe8HbJDFJxu3pRyRUp2Adk7eDWTBoOpnAQSGxpkHdMbGnQbIzzuv/5L1pTaY6ft5izlixnbe/skoe9bsTpLlHj+Tx3bHqBJd3TWD59JkbJS6K+l30ltUgfQ7aQ4z/u/TP/ce+f+ffzLuL4eYsbolzVSjSj2pczCgQSK8pFrFbU4ErWKPVKwd1P+eukn4/IOBdtHGVnRP0xO1WJi05a9D6LCIgMCEL58zS5+JZaUI64BOsnX0+llu1qNRgbSWxcFzHJnZt385PHXuSWF7fzDycdyUQ+xc/XP8tP33wBbakmty0OaTNfMoZKz+1qx1CJTDbKBWsyBKQa8diX5FJ5yjaU/JSD8jbQ1O5an0G1tLfLXOen9u7ms3fcxowli3l03eMsW7ZsUsOPEeOVgJik7EfMmDGDa6+9lh/96Ed89KMf5fRNG/n48SfRnnZfhOEXiiEkg9k8l//hN2wY3MvqWQvobm5nw+AIAxMb2DLcB1Jy2uIVvO+4U+lsai3Zp1PTMzdkqFHOyC82eFXfapktKxuzEsF/3HMbO0YG+cyp5zK9paWkveqrybTI2ElsaWDZgaHoSOE//O/buhNHwtuPPIsHtj3L5X+8lpmtbfz1qjW8dvlK2lLRKsUvn3qOb9xzE1mrwPzO6QxMjNLT0sJbDj+aVx9yKG3pdNG41JjyTgJHCvJ2nmf7duNIyZLu6XSm00hps310GCEEM1taaU0lyNsGG4eGeHrvDoaz4xRsC0c67BgdpTPdTHu6mc/cch2XHn0yF60+GtMIxyno57r67Gz4vCvj35bRhLLIGNfaFPdTXY2qFdUMAF29qgelAfqh31HJeanm5lT6OyzqXiMyRUqJppLYGtnw3U5CBKjIVa9MP9UC8yHaoI3MKuZ3Un5VFKoRmKDd5JSYWrapFTUHckvJTc/v4Mq717FrLMObV63k71+1EkuaXPmXP3DuIStoSTVjS0FLIgvUHmxesyqoC2zVXNEalIWrUuxiLdjnLrt13puVVPZaYWvHZNd5fHr7skTbO7cF2+Z7Dz/IT554lM987rN8+tOfJpGITbCXG1w3rdjdq1EQUpbxFYmxT7FlyxYuu+wy1q9fz6fWHM+rFiwuWi8RjOYy/Gr9E3znwTv5f+d/iJ722ViekW4KiSFt9oxs5pfr7mTdrs2cMH8pr1pwCCcsWEJLsqni/qu9bErqg4jSdbpRqweB29IoMQSzVoFdY6P8x19u4tGdm2lOprjwsKM5ZeESFvfMwjRS9E1M0JaUNCdbEDhsHCnQmU7TkU4UkZOBzDitySYuv/FqTli4mvNWnUbGNpFOlge3rOPPLzzIpoGdnLDgUJZN7yVlCKDArpE+nunrY9PQAJef/EbmdS+iJd2BKSwe3vwov3/mfl4c2EPSNGlPpTl98TKOnjOPNb2zmdbcgsRgNG/xgd/9gj3jo5iGYO/4GM3JFEiJ5bgPlYJj09PcQso0GcxkWD69l87mTpJGAiFgWksXczp6OHruYraOjPDNv1xL2kxw7LxltKZSTOQzFBwby84xlssgkdiOxJIOKTNBUyJJV1MLy6bN4rTFK0knSl1Oyl27ctc3fD0bhXBQfzXUs+9aFLnIdbXEnlSJ4SnnBlnUxnvJlKYlliXbhdtVczuLOobwsppUl3AfEa5j1VBbmwP3wg0TrId39PHZWx9m+8g47z/2KLqaZ/LDRx5g6/AgS3qms2rGTC5cdTgLurpJmwVM4bpdTCa+o6RtA9y/JpM8pRFjiq4IP3WEsyFG/a71deX23+g4yskiyk346b27+ce7b6O5dybXXHMNRxxxxAEaXYx9hZGRETo7O5l/5BcxzMr2Vy1w7CxbH/0yw8PDdHR0NGCEL03EJOUAQkrJD3/4Qy6//HJOm7eIjx53Cu3pJnaMjlKwC/zzHTfz2K5tdDW18vU3vJeWdDc5x2TcMrGkQEpoT9q0mXk2D2zhga3P8cDWZ9k23M+yab3MamtnSc8MTl64jKU9M3w3qD889wT9E+McOmM28zt76GlpwwgF80ehWPEIlhlC+v/BfaF8/+H7uPapR2hOpDCEYMfoIAnDJG9bnLJoFeevOo5fP3kvT+7ewkguQ8pMkLctr0+BIQS25wKzoGsWralmdo8NYtkWI7lxfxzfeNOnSae6yNqqroe7fM/ILh7c/BD94wMgLZKGYH5HFwt7ZnN47yI6mzvIOaa/XcqQtJoWfWN7wcnSNzHCXZuf44ld29g01EfaTNDV1MxQNsNhs+bxf86+hISRZCyfZ8/4CI6UTGufTYvpkMmPsndskEwhy9reOUjRQn+hyd+XIpmmkOQdA9spcP/mx3hh72Zsx6I1lSZhJGlNmnQ2NWMISAhBwjDIOzbZQpbR7ASP7NjIeCHLj978XpcohVBrPFElElMSOF/FQKhkaEShVlJSrb9q/UyG0JQShfIGfCXiUYlglNsuav/ViEtUm3qWueMJjbXGc1MOk/f7bzykFFy7fjufuPkuPnjcEZww7xC+ds99rN+7m4tXH8db1xxJe8qd2VbPtKZEsYtXvWnf6xlbNUyGhDSqKnytfU8mQUq52L9GxARG9dHISZhqyNsWP3z0Af7nyUf49Gc+w6c//WmSycqTSjFemohJyr5BTFIOAmzdupXLLruMJ554gre97W188z++jiMlphD894Ufoqu5lYI0yTsGY1aCMStBwREUpMDAJSoJz7gwhaR/bC8bB7YxkhnimT3beGTHBtpSTaydvYjpLe386sl7mdvRQ9YqsHd8hJSZYHZ7FzNaO+hqasYQBkfPXcKZSw4tckGKMnoNUUxUBA43PPsk/+eOm7jy3EsQwsRyHOZ0zqanpZ28DRITCxMJ2I5kMDPOcC5HV0sXlgNjuQwFx2FaaxeZ/ATP793IeD7LjPaZGIZJb8csClYWQ+boap1B3nGrQNvSJQD6KE0BCSFJGJK04WAISUIE4w6OzW3XbFqkDAcpIe+YOEChkGEwM8xIboLWZCu9HTNAmOSlgSPdF2DBEeQdA1NIkob0SYh6NeYdwYRtYnuKkEpTHPXjU9sIITGFe03ThuOqZwLShkOraWFg84kbf8iesSFOWbSSw3sXsKZ3oe9Gp65ROdRquKtz1QhXj1oMhFoIzmRJSb3noxJx0ElLNeIRpbCEl0eNIWq8NSkmFfZRz/Io5aWWazhVclKu/s1UIKXgDT+9hdcvP4S/mr+Ki371P5y+eAUfPO4kOpvSwb6151nKdCdOimMEpzaOWuMtJquA1BQXsz9iPjQ0Wn3Z15iyKiMdHtmxlW9teppkMsnVV1/N2rVrGzO4GAclFEmZd+TnGkZStj36TzFJiUnKwQEpJVdffTUf//jHOfLII3nXrKMxzDaaEkmSQlKQwldRsrZrgkgpsKTAkXhGsfvfwX0puIYtIHM8t3cTz+/dzFhulAVdszntkOMwDYHj5BieGGDvWD8DE6OM58ewHYtbX1hHUyLBO488lVMWr3D70VDs6oUf2P79h+7muqfX8Z5jT+P0pUeR98jVhO0SK+WupiBwDXUpXdJlOcLPSOYSAI94SNxUn9rLNWUE6o0Eb1t3O0cGYf6KMBgGPnFQhnfCCM5bQkhShhYg7I0BArVBfVfjUn85Ozgu1bfqVwg19iCmRrVXYzVEtNmQMCRp0x2bEJIW06HZtGk1bUwhyTrw2PYXeGrXMzyxazObB3czr3MaS3pmsaBzGnM7epjX2c3Crum0ptL0T4xz39YXOGbuIma1dfrXsBrqeWlPdqYyStGppc/Jqiy1EIJKbcoRFn1dlAtdJUWkam2ZMmOtppaUS/E8Gbexel3G6kW9BKdW0nD9M5v4xE338ce/uYiHdsGX//wbrn3L+2hJuupJWD00hUPSsJBSlKSEbwRpKofJko96UxYfCOxvclQP9Pt2LJ/jthefZefoCOccciiLu6eV3W48n2fd7q08tXcPW4cG2TjUx6bBfqRp8LnPfY5/+Id/iNWTVwAUSZlz5GcaRlJ2PPovMUmJScrBhV27dvGxj32Mm266iX/7t3+jcGs/hjB8Y7vgGGQdQcExyNmCnG34s/IJQ/p/0lMVHOka6gnDneGHYPZeqQz+rL/2/pBOgfs2PcgfnrqN7qYWPnvaG1nQNb0kDgWU4e/OtP/zHX9komBz2YmXkLFdtzTAVzoKUkS+LJUiYTkCy3HJiPRIiuORF0VmIDBkVE+6r7IjhUfiit2P1PEZQMJwSBiKYLmEwhDBd6HtQ/dEV0TD0VQbWwocp1TFCRQR7bx6DSypjlX4JAytvQCShvTUFEnKdK9rylOEUkYwQ9+ikZbx3DjP9m1hy9Betgz1sXt0gB0j/Qxlx+lIt1BwLLqa2tgzNsThvfN59bIjOHbeUrprrG7cCFeJycaSBNtXXl8L2ai1bWlsVvS6KMIyWbeuoJ/KcSi1uvP5v5VJ7idqWa3uYpNBpXTpOsoZvFuGJ/iPex7nkZ17eeuaZfzNmkP417se5ZfrX+Rbrz2FJdOOJWPBFX/8H7YOD/DFM97AUXMWRsbamcIpcWUMjrX+30K9RKER7loHghiUU14PBqJU6bptGuznF088yB+ef4rF3dN4pm83vW0dvO+4Uziidx6z2jqwHYc7Nz3H/ds28Vz/Hp7r201veyfLp88j7wheyOxh2bJl/OAHP2DFihX78chiHEjEJGXfICYpByl+//vf84EPfIBFixbx3e9+l//99B8wCIwD6RnieVswYZnYTmksQDg+QAhdSZC+sac+JwylJriKQmvCxiTHdev+xG/W38VXzruUlTMWAK6R32xYJA2bzYN7eHFwkLH8OHdufJYHtm/iJ2/9AjZN5ByDvOMSKaWi2BIKnpIgCblSEBjyjkdobOmqJOq7nrHMj40JuYco0qPgu6ZpioVpBOfCFPiEQJGEMJTaoUiHIlG2FNhOQFj08YfJkULBccdoOYa/jSJmQXuXCJoewTQ8t7WkRkbV9TS96yaEu53qQy2fyI3QPzEMUrK4Zw4ThXHu3PAI9216nE2Du+hItzCttY1ZbZ0cOXsx5x96TEm2Mf1eaiT2RTyJu11t7asZ++UIRjXCUos7WLkxhbfxt60hDqVa/wci1qUeKKLjeAHvYeLjVMg09uiOPt7661s4ZdFyOtItPLZjI60pMAzBV848nTkd0xnItbM714LlwB+evoPbXniMH1/4Hnf8ES6speNr7G+g0WTjQBGB8O8h75io7FvlJhZsx4l8zlT6XY8XCkwU8tiOm0ikq6kZIerL8iWlZDA7xgv9e9kxOsT2kSEe3L6ZzUP9nLN0JeevOoFDps3k9hfXc/Ujd7NluJ9VM+ewasZs7t26AdtxOH3JKmZ1zGfBtMUgktyXep6bb76Zr371q/zd3/0dRsRxxXj5QpGU3iP/AcNMV9+gChw7x65H//UVT1Li/HcHKV772teyfv16Pv/5z3PUUUdx1LyTOW7J2SQMLz2u90JQxntgxLsvM9/wlcWGr6nFSygDOKXN2CcMiWW6fSccSbOZ5q8WHclv1t/FaHbCdzMr2CYZ2ySbG+Edv/4vZrR2Mr9zOnO75vIPK88g47RQcAzXTc0W5BwD6ZGNsGGvCJc/Xu+z5Rglx+NuoxSTwLVKaISrtBIz3jkL2ggBhq0IiZpBVe3U+Qnah6H2ocYajNtdrhMPCAxW3V1Nvz5h1zL3mFySU3AgS0Ay1bULCEugCqlrqVzaTCHJCIlhdNPV1o0QMGSBIVIcv/Qsjl96FmO5MQYnBhnLDjM00c+1T9/P/z75AEfMWcTJC5dz/PxlqBoy+8YAKiXYOmxZyQAJxhPeXqVgjtK3dKMp3H/YoIoixfpyQwSzxoLADchGL2IZFKjT0xOrMUUdezhlsdtnaa0UVWPFH1eon3BmvmpuSo6IIKeylLhEpUOutYp9JdjSrPhdd7Uq2MkgqF1KPn/bQ7zt8CN4+1FncPumzdy6YT05J8EvLnwbBdnOlvE0GTtBzjFxJPS09WIYJlk74f223PShbuKOUhVHryG1r3EwxpZEQZ0fNV5LGmTthBf/52AI97eo2g1lJ3h6zw7u3bqB3z+7jjkdnYzl8/zN2uO55PCj2Tk6zB+ee5JHd27l+f69DOcyTG/pYHprO1uG+pgo5Ir235ZKkzRM3n30ybxp1RFIKcnblhfz6FBwbPaMjbJ9ZJCdY8O8MNDHozu2sHd8hDkd3cxp76G3vYOLDz+Bo+cuAbObhOEAeU5bchhnLF3F+t1b+K+H78YQcNkxp3PonDWM202MFuCOF+7npmdv5XVveC1PP/00vb29+/P0x4jxskaspLwE8PDDD/PBD36Q55/ewElLz2fRjLV+TRL1gtaNecsWroEfWg/4aoKBS1gUUUkIh5Tp+IZvU8IhbTq0J2wy2d187sb/yyHTZtOebuHkJWs5bsFqLGlQcATfuut/cKTkslf9rasQoAx1l5TkPCWl4AQB44qk6PEjugKi3NXcsQffFaFRypFCkSFWxnAKx5eYmhuMnq3MXabaFrvB+fujeLmvnhBNpvRxqH2qY1HrwuNT2+rj1a9ZmGwqt7WE4RRvo9QhQUkSVUUO3bbuuBynwOa+59g2sIH7Nj1CwjBY2DOHac3NSOnQkkyRNhNYjk1bKk1PSxtzO3o4pKeXtnSpzF3vA6YWs6uWIPdK7UvVkkrrShWTWtSV8LqprP9GAABFcElEQVRagu7rHXe9qYonE5hfdYzePlWK3nLxL1GoV3nRlWT1v+AksR2D7z78GD9/4kmuf+vbMI0W7t6yjc/dej2vXb6cT598BgP5VgYKTeQck4IjaDZtHt7yGL9YdxffeeP7MIXjGdXeMyA0eVEylhpd0BqVdAJqrXvVOKhj3zEyTMbKs7CrB0OY3qSKIO+YWNIoSQbgODCaH2f36CC7RgfY0L+T5/p2sGVoLyO5CeZ1TuPw3kX81fwV7Bod5IcP3ULOtjh6zhLW7drMcfMO4eh5S1g+bTafv/UXWI7DZceexSHT5jCrrY3WZApJgoKdY/vIAF+49ZfsHR+hq6mVoex4yXG0pZqY09FNb1snCzp7OGL2QpbPmE8i4dbCyXuKdsZ2YyjVaTYFpAyHlOHGXGZsk5xjMFpI8NzeTfz+qd+SaDH49ne+zXnnnbePr0aMgxlKSZl1xKcapqTsfuyrsZJyoAcQozqOPvpo7rnnHn70ox9xxRVX8OSu+zh+0Ztpbw5mbBxco1/FONhOcSC37bhxEGp23RBgSteAldIB0wAbHCkBB6dgkvdiXpoSc/in132GJ7c/TN7K8q2/XMdn0i0cMvMQ8o7B8YuO4WcPX48jJQ6GH/yu4i5UbIwaX5ioKFKijkEpC/6xaQTF3SZQJHQjvhLC7QwvrD5MQKKyfilSB5orjwj6VfDJEKXESFdK1LHqhqr+klcEKBynYgtBAjcZgiMFFi45EQJMR5ERNyuc79rnEZOwK5vqWv+svoNJb8/hLJixmjMPfTV7h55l69Budo8XaE855KwcQ3kbhyTbxsYZ27mDPaN76Z8Y4ZBps1g9cz7HzF3MsfOWIoRZso9aZogru3hF91HJmNTb68pHsF7vJ7xOlGxXTV0Jt9cVDCFk8fWOOFR1n1Ubd5j46rU8DJzS9RX681GnIWxjVvxekYjo56tGciOlIG/b/HnjNm7esJl1u/uRCPaMj/Pd17+RpNmElNJL396M7QhyThJLGv7EhCXdOuOGkWI8n8NB+C9DR3tuQjlFzl1SGyq3iypIuL8VEoEkU8hzz5YXuH/bZhAmpy0+jNkd0/jeAzdz/9ZnsRybzqYW3nX0WewYGWDn6CD9E6OM5bNkrTwXHH4yz+3dzuah3Wwb7iNTyNHZ1MKsth4W9czitKVHsLB7FrM7emhLNfuTNIdJgTRaeGbPRpb0zOY9f/UG5nR0uedBCq6+6O/9z+Ddx8LNwJhINLOgey7/55y/4bm925jfOZ3pLW20pUwSQiIxkSJJMpEuIiMSwZgU2Hm1DPKOQd5RLsYClfxE/y3mHcHgxCi3PvsHntm1js9/4fNcfvnlpNNTN0pjvDwQF3NsLGIl5SWGwcFBvvCFL/CDH/yAj370o2y7ezbJhDt7bUtB3jb8jFP6DL7lxXYEgeIuUVHuQup/2nR89yE3s5RDypS0JmxaTHdG6cb1N/PAlqd40+FnMH/aMvIOfOGGf+bdJ7yVw+ceTt4L7M87goIdxJ1YThDo70rxItKVS6kkjt7GIyaODNzDlAIDtZMVBb2pMoijPIh1lSUIiC7fr/5r0serjkcfc7kxGRop0sdgIDGNwG9eKSvK3U2pPiqRgR6DY2gERY9Rihp3sF9Imw7zWvI0mTaWdOOfJlRNGrWt9z+bG2Jz/wtsGdjE49vXM7e9k2+87h2h6xTstJwhNtlMXlG9VVNcKikL5dSVemNU6gmar1SLpZYxR/dZW4xJVN8K77j2dwxlcyzo7GBGaws9zU0s6e7EFAaj+TwXrFpRRO4qoZp6Um193rZ5zU+uJWs5nLP0EOZ0dGM7cNKCRfS2d1NwDG7e8DT/eudNHDt3Pgs6O/nQX53NuJVizE4yZiXc3w95Pvm7/8d5K47mrw87noRwMIUTSRqqYbIFCA8U9PEOZ8e54dkn+Pm6++lsbuWYuSu4a+MT9E0MkzQSnLR4NRetPZNbnnuQuzc9wfTWTuZ2TGNmWw/dLR1sH9rDdevvYum0ORzeu5T53XOY2zmT7pYe/93k7rP4XrWlyk7pquxNpkPBMUiorJSEJoFQyV4cXzXWj0Ug/QkZ9fxUWTF1TwNX4Tf8lPXquTxhBe8m3e0Y73vBtnlk8108suNPnHPOOVx11VUsWLCgkZclxksYSkmZccQnGqak7H3sqlhJOdADiFEfuru7+eY3v8mll17KRz7yEZ5+7mkWdpzNIb0nIUkWBairB60l3Ye95RnyBoKEEN6MvIPtGNiGJGkEs8RCOAgJedtA4JAVhkt2TMG5K0/Ddmz+d92f2D78MxKG6/qze3Qvq6Vr7KuXiCPcGSpQAfqu8Ww5hq+gBDEdgQKk1BP1WScmtlQGf/C/GsIExihaJyKXuyieVS1naoQNEZ086WMMfy4eh/vdEML77+4vgTub67gSAkJoRr/jXk/XsHOVMlvIIiKilJlKAaxuW92Y9mbapUF/PkHaMGhLOEzYBhnL8JMCKDXMNCQJs4cVc47hkNnHcvz8lXzjzv+hYEtM/76qTlAqrQsrIsF581yAStqXKhF6/5UUFl1dMUT0Nqq97pNfbh9Ry6E0W104him8PryfSn2q7cLqSrhN0f615QOZDLvGxulIpbl32w5aEgme7usnCjNbuzl54eyyxvqmoUEKts2K6dMi41aKMnpFxLro2DuWZcfoGHPbO7jmsUf95U+tOIxn+vawZWiQhGFw7tIV3LzhWd537Ilk7KSfDt2WgpRh8/TurQxnJzhv5XHBvr1zqdyZoLZA+UpxKvsrhiWMKHXGjVuUbB0e5pGdG3lw2ws8sv0FVsyYx4dP+mvWzF6Ojcmb1pzNztEBJIK5nTMpOILzVr+G81a/xq8FpZ7RRy2AVx92DkkzQc4xmLDcGlh7CgaFrPDVq4RR7K6nXE2V2p42PXXEUL8tFwlvG9eVVWJ497MpXBJiaxNBKY/gqL7VOwQoqqOlZ2R03ZANr95WqfuxI+HFPY/y6NbfM2tuN7/+9a8566yz9uGVi/FShsRGYjeknxixkvKShpSS3/72t1xxxRVIKekWZzOz8yikF/SpkxNXgJQ4SJekIEgZkPBm3pNGUISwKWGTNm0/RiVhSJpMx41TMSQtCZv2hIVE0JcpMDQxSlOqhZZ0u+8a4acc9lIlg+v+pZQUy3sx6CqKW+TQKCIotke61E1qSY10ecfjGv7lpVFD6Eaattw3CCsbEVEKSxTpCRMmx/8fjNNf5403PDYD4f25+0h4f4LgZa0rK66CEhAQNYuou6WFEwu4+482wPTMYgkv/kXdB21J259pzNmGfy2ThqQ16T5Q25I2jhTc8fSvaDYKfPiEVwNBKmn3c3DyailsF1YX/LGWWR6tnpRvU5saEr3fqagq4XXlVJWdoyO0pZJ0NBXH+xRsm3Si9sxItWYLU/j3e+/jew8/6o1beK6g0J5KM7+zi2XTZtHZ1Ezf+AjvWHs0q2Z2sWNkmO0jI0xYFsfPnYtpGNz4/PP8y513kjAE7zryKGa1tTCUmeDMJYtZ1NVVQqL2jI/zdN8eTl24ECFESeC8gcPmoWE2DPRhGIKr7nmQ9nQzKTNJ2jQZzmV5rn8Pczs6ueKkM1g5cwnDhTRZx032YUs3HuVbf/lfWpJNfOCvXkPKsL1aT7V7ux0M2kglAlXwJocKts2jO17kyT1beaF/N8/17SBTyLFixgIOn72UExYdTm/7NGwpyHpKPLjPYJXwxPZcnVoSTlESEPWMVy6+Odsga7vbZC2XFKrnlIqf00csvHEK5bqKS0RML42+EC7xECJIl6+nep+wTHffjkvc06YkaTp+36Am3bykLTKIaVTZFfOOUeJmrNT83SMbeHL7dcjECP/4j//Iu971LhKJeG43RimUktJzxIcbpqQMPPbNWEk50AOIMXkIITj//PN5zWteww9+8AO+9KUvkZzxOPn+02hvXVpCTnSj2f0gcAQkNCXBEYBlajK39I0TAJFwwHKNhpQh6UinEUaLNyMVjE3J6rZUBSYFwlNZhP/nGtSOF0OhTBU/cF4jKEqR8EkKEgtJQdpYwsYWDhZW0fkxIuiFgYHpB/h6/6XArNfk0N60img40sHWVjj67DcONg4mBjZOkYVjYpSMxRAGhnS/K0IZxBipmfPANcw0pGcMiCK3iqgUze6xFy+PUljyXvazvO2QNB3yHilJeZ/ztoEQkDRs3zUiW8iyrf9JHt/+LO86+tTwqSpCrZW3w+18lSEUn+G3jyBgrs5EUZtaVI9AJQnOUS3uQGG1Y7J4YPtWLvvttf73S1av5aN/dSK3bXyRz/7pJhZ0drJs2nTSZoIbn3+Wfz/3PM455BC/vRubsRNTCNZ6WYeKVBmMIuVCJy1Jw+R1y1dy+YmnMl7IkzbdgnTP9u3hmsce4vFd2zhs5mxytsWXbr+ZTUMDWI5Db1sHQgi2DQ8ige6mZv7l7Dcylstw+6bnuGfrNlKmyX8+9AgLu7ppT6WZ29HFEb1z6JsY40ePPUTOsultbydbKNDZ1Mwlhx/JqQuXsHtslHV7dvLQjq08tH0rA5kMXU3NIExmtKSY2dbOMfMWcvmJZ7Kkp5e8TDJiJcjYCbKeepsQDvdseoL7tzzFP53zThJeUDTsW9VjqvdD1MjCSqDjPy8FQ3mHa5+8hxufuZ90Isma2Ydw+JyVvH71WSzu6SVlJn1VIWvjqyCWTlK0orM526Dg2AjhKrhKsS/YBhOW4Rn+wo8tzNlGUQKRSs+kqOeRmlxRzzZ3Pf4ElyPx3ZvBS7duOqQTXqC7ij9ygjb6hJgeE+mq9YGL7mhmD8/vupaBsaf41Kc+xSc+8Qna2tqmdP1ixIhRP2Il5WWE0dFRvvrVr3LVVVdxzjnn8OKza0k3z8MQRpEB7RvBQAKDlICU4b4E06bjx6ykTEdTU9y4lZakTdpwSJrSLyioKsmnDcfz+3XroKjAeT0mQXryul4jxH9ZaMsKjhtfU/BekD7hUmQFh5y0cYQkRx6LAhYFjwoEhpaBgYNT9N9dbmJ4Ab6GT13K57XX+3Q0GVbvw92/U7RfB9vvW61TyyzyRWNJkMTAIEnCHZMUJIUZqbCo/+72gWuYIi262gL4iotCWHlB20Z3c1JKiuUIxvIJsrZBd7pAwnRr6bSlLNqSNklR4MVd93Pb8/eRs/Ks6V3EW488jxnNxa5wfuC5ZnJVewJVCnWIUlkqZedy10evq0dRqda23PaOtHm+fy9P791NeyrF9NZW+icmGMvnWNTVzbSWFizHYe/EOH1jo5iGwb1bt/LYrp1sHRkE4IPHncyqmbP44A3/W3Lsa2b1MpzLcuj0GSQMg3W7dzGYzWLZDv/njDM5ZdEi+icmWNDpzszZ0iUppmaou/eEwz1bt/GhG//IcXPnctTsebxt7XH+dRzMOtz4/JMMZ7M0JRLMautiVsdsultnkjYNUobNwPgQTQmD9nQziIR3zwXU8qk9WxnKjDCay7BtZIDHdm6hKZHk7WuPY3HPPB7dtZ1ZLSl2jA7zjXtvZSyfoyWZZNWM2Rwxey7Hz13AvK45JBOtvhFqSYOCNLAcg4xj+q6mtiOZyI+zfXALv3vqTrYP7+HDJ76ekxatxHM8reiC2GjUEvMyGVJjS4MRK4lEcN0Td/Dzx27hzWvO4PzVp+OQwJbCj1lTAeQ57zmrlBDLc4VS8SISyFqG75ZlOSqzpPvb1DNKgvd8dgw/WUuY+IXj8tRzyxSlvzMIsjAWHEFCuAWN/SLBBL/nhAiyHCqSU5phUUsyE3IdtiTk8n1s3/t79g7dx9/+7d/ypS99KU4pHKMmKCWl+4gPNkxJGXzs/73ilZSYpLwMsXPnTq688kq+973vce6557Lu2ZU0t8z316uZe2UEJzwDuMmAtPeQdx/4FAXVq+KBCY+ktCVtvwCkmpFTfr6W58aVMGQw84VWcV3LQuZoREUF/6tgeUsKL+tKQFQsjTLkPHpiYZEni0UBm7xPEJRfp8BEYmOSIi/HMUUS4ZEDE3eG2PDPTLF7iSIlYaKi+4yqdUkClxw1jnBfBiYONgmS/rjUtmHCYmCQlskiYqkTFigmLWHC4h6XCzWzmBDSr6uipyv2XS40ly8hgntAQakpbUmbtqTN9HSBhzfewS/W3c1rVhzBhatPpDmZKnLxglKCUu+Tpx6y0kiiUomkRLUROOydGKNgWWSsAn0T47zQv4dHd23nkZ3bEAhWTp9JppCnb2Kc6a2ttCZTbBwaYCiTJWEYTGtpZUZrO2P5HP0T4wxlJ3xFU3e9UmhOJDl18XKOnrOAac0tPNO3G0c6rJw+k7Wzl3LPlg185c7fI5FYts3RcxZwRO8sFnX1cML8Q2hLJxnNZXhxsJ+BzAStSehqamLX2Ch7xrNcefedfPzEM3jTquOwpEneMSlI5a4p/ABkBRX/4Lt/eupTUbYzggxKEGTRUsazatOeKJAp5LCloD2ZJGm6M+sO6tlg+tsrdy5fDbBz3PPiffz+qT8zlpugq7mDM5cdwwWHHU93U9IfbyVVr9b7tMa8AWXdF6G6C6P+e8o5CfLquYrAsiXP9m3hkW3Psm7n82wd2sXqWYv55CkX0tbU6qeMzzt6chXBmGVQcAw/cLzgCCYKJlnLLHLBNbVngIrXUJkaFVlR7lgu8QmUb3DdVi0JWWl5xxQ8zxwkKQw3XrHM6VGuyvrn8HNPn7yxPOU+PMGlexYot9uJ3F729v+R4cH7ueCCC/jc5z7HypUry16nGDHC8EnK2vchGkBSpJ1j8PHvxCQlJikvX+zcuZN/+7d/49vf/k/aOlfSOv1MUi1zgGL1IEmChDRJCxMDQUoIUsIjLB4xUUTFLJqt8mqseFnA9AKICnr64HDBRkVewumHlZqS94pAOlJQkJB3ikmKUod0NSUgKi5ZkdLB9hQL5fBmkMSSE76ZbwjXWBGYJIRLFGzyPuEwSflERWpKjYONIwvutsJASgdDJP1lFlmktD1zysAQSf+zG86cxMAkJVow3Vd0EUmxKGBgkMJ94CVJFLuDERAW97jKv7DVZdGJi1vI0/Er2gdZ3Ryf5LjE1CUqLUn3uFtMh46kRXeyQLNpsWVwO5/6w4/55EnnceriVb6Bqh4sU1FRyqGcQVhUf6QCUalGUqKXFX8XOHz/4bu5f+tGhIDTFy9n02A/D+/Yys6xEUzDoDmRpKe5hUXd01k7aw5Hz13IvM452B4xbjItBJIJO0WLmSfvJGg2C0iEH1NgSQPLAelYGEaClOm6YI5bBgYFbFI0ma6bjV6vByAlbJpN9358tm8XKdOgu6mNm154nC1DAzzTt4sNA31I6U40zGhtY0ZLG3nbZjAzTn9mgp7mZgYyGd5+xPG879jTyDsmGScZpHMtQ1BckqomLVwDWVdUhU/woq9NVGpnPTOhcsFTmZsAMgWbvvFBNg1s4ZndG3h8+zP0tHTy5rXncOisxcxoclWe8P0TdR/W6o4YhbJxVDXct0XtQ8vH7KR/P+weG2Rj/3Y29G/nxf5tbBzYTspMcMTcFayZvZxVvUtIJTv9uJKcYzCSN/14MqVm51S2PhEU0S04QUr7Ivcvj5TkHffcN3kKvD7KCdslJGPSIeGdw3EK5LTJI/UMTZH2FWg1MaMr3sH5MciTI0FALJtlGkfIInfdsNeAJdzntq3doRaW/zzP5HYxvvcORvsf4a//+gL+8R+/yIoVK6IvUowYFRCTlH2DmKS8ArBz506++tWv8p3vfIdE20ISPceSbJtHgiRJmkiQ8l8QaVIYUviEJYHwg7dVcL0KsE+Zjp+xK6jBoRVG1IwQwM8GFWRNCQwrFaioZ/hSbl+OdDOEqVm5vHRnwnLSfdGoF5GrqAREpUAWS2axZRYhTGwniy1zGCLpmvbCREobIdyZWP2zgiIySdFaop6YpACKCIz738F2sj4pUvvSociMIZIYJDGFey10NQUg4VLIIvVLkRTAJyoU/S8lKSr43v3sXpekF5DqF4nEJS5J0yFt2q77n+ff7aoubirqlJdIwRQuyfn1439kaGKIfzjtTaREcH6iHiwqi5t73sSkSYpCSZ2bCopKtCFcP0FR6wcmRnntT/6TDxx3Mo6UPLN3F4u7Z7By5jyOmbOAhJkiayfIS9O/7wva8UOQra6oppFmFCo1IVzUU5+11lUJlZo6ISRJ4ZS686H6UG6dDgPjQwjh0JJsoSWVpuAY/jHmClk2DfVh2RZrZi/0fpeGp6R4KgrBeBVh0FO+uq40AZnREztE2ezKJSycsla/Do6EnJXnmd0vsm1oF1uGdrJlcAd7xvpJCJN53b0cNusQ1s5ZxsqZbgB+8XV00WpaXpX5MHmun6CUTetcxbVLv4dV27xl0Z8ZZSgvmcjnGcyM0TcxzPbhPrYN7WHz4E5yVp4F3bNYOm0uS6bNZ/G0+cxqn0VeJlA1PSwpGC2YZDyVxJGiaOLITX5haO5QwWD07IrK9RYg6wQKBQTndEI6ONIhJ1ylJEOGZpoByHkTRQAWBf9zniwu1c76EzV6O/15q7ZTirhN3p1YIuk/i8PQn9n65JKV6aPQ/xCZ/ie55JKL+dznPheTkxhTgiIpnWvfgzCj78d6IO08w49/7xVPUuLA+VcAZs+ezb//+7/z93//91x11VV897vfJZ/sQnYeRnPXKgwj4b8g0rRieAZ1ijRpUiQdg4QwSDgGCS89rpsVrDiGRRlIRbVFRGD46QUK/dl13aiRQeYV5e6lIMDfL95MLQIs6WCBNzcXbCD9WBATxyMjEsdXTWw5gUGTq3r4NoQNEoRHHIQwsWWOpNGGRdYnLEopQbifFQEK9u14yw0EJg4FpJPzzkPSHZumuLgqjIkl3O+KqOizhv5MoDDc8Urtu+f6UOQOIdX4PIOCgLRYXlB3wTFcw8oA6QhXQZFg2QIpTUzhuuplDbfXhCGZKJhuXJLp0JW0MYVkTsc0Htv2FIbMYxiBkREVPO7OunoB6rhJExo5TRIukhmFMEGxHYuCbdOaUopasXuXSkPqfhcMZTLc8Nx6Htu5BYCcLbhk7alkPfcbSxrsKQgMSwZGnpdFSCmIKjNSpVTAap8qm5GejjjlZUJSkwNF/vwEPv7673LMMmn2ah2puAQAkZqFAWSBbB6fdLi/0WZmdHUhkPR5dmaUUuIqP0F6V51oQRC/YCiTUQbJMtREhyImtl3gzhcfxnIsQDKez5It5DANk4RhYkuHsVyGh7auoy3VwsKeOczrms3JS45ibucselravSKi3rl0B432z8eYnSAhHJKhmAh/uxrgJ/zQrk9xP0JrqxFgAbbj8MzuLTyyfQNbRwbZNTpI3/gIQ9kxDGGQTiRJmkm6mjvobu5gVvsMjl10FG9cO4fejl4MI+mfbwnszrn/dVKisvCpWlUQZP7S3W7Dk0tuAV53/KYhfVfelNDdpyRIN9NiDgvHI3w2Dq20MsqorxA72H7soNvGvaEKOJgkSdGEq3tnKZBFYiNlENenJoNMkSQvx11VWxbIer/68GST7WRJGC3+MxopsMZ2wNA6soOb+Ju/eRuf/vTPWb58eY1XOkaM6vAcCRvUT4xYSXkFYnh4mO9///t8/etfp6WlhS2ZGaSmHYowEkXKQVq0+8ZyiiYS3rx+Uhq+u1EKw1da/Gr2BEHY6sWvu4LpL/FwZXZl1BS8dJFAUYCjmr1zJH7ER4Y8Bc8JTCkptgqml1mXJEibgjPmEYICjrQCQx88Y9/76LljARgijZQFhEgihIEpmgiiQfCJjyML2DKLKZp88qFeskK4TnWu/mO7yonR5BMnU6R9lzLl/pWkiZRPVoqVFKDIvcGPTaE4VsVdHxhRUS5gCY1UKoVMzbirQpHKpU+5+KUTDk2mW/izM2XTaU7w5Zu+zYzWNj5ywpnM75zmXUPTMz6ldz4C49c3XikNrK0XUS40fsKACCVFJykCyXce+BO/eOJ+Tl18KLPbOhjKTtA3Pkp/Zpwzl6zkqDkL6c9M8GzfXtbt2sz63dtYMWMur1p0KD3N7RwxeyGdze2um4zn2pR3lHuTd+/KIEbD0ZaVBhVTREggiNVQ9R8cBwwjqEWkx3W47byYI4oJgPT6MEXpuXHPhxZgTECSohBcv+CzMoCVQhZ+xbrPhej+1PVKGJJN/Vu58tZv+etOWHQELakWHOlg2RamYZIykxwxbxUrZizyVZJaoLuJKfhJJFAKo3tfJCsErlfLlhd1fEJAwbbY0L+Dp/Zs56k921i/ezOOlBwxdwUz22fR0zqN7uZu2pq7aUu34WD6RFdN7OixfXrRXt3FUmXWCicokVo/KrWwH1PkTRip+0MtK3hEJucEip4jIS+D49ZjPXLSJiNyGBhkyfguXHrCEQebAlmEpxjbFGimHYsCWUawZNa7Nqbvfus+Y3M+IbGcCe+aJtFjD93nr40QSaQsACb28BYSw8+RcCZ4//vfz4c//GHmzJlT9vrGiFEvlJLSsfbShikpI4//4BWvpMQk5RWMfD7PL37xC772ta+xY8cOhs2ZiO6FJNLdvppgGk1u1Ipo8t3DABKkSJH2M1HpxCXhERelfOhuKjpUbRGFcAV5tU7VRdFTKFtI3/c4JwpFBEW5CRTIUpATPmlwZMH9czIA3gsMn0joI3KXJRBGEukoxcPEMJoxReBvqoiHwNRiW4oVF7VcKSyGSJYQk4QIAu5dJcWIJClJqeJoAncv939xbIrbpvxnd5yeEUuQ5lOvaK+TFRV/pOqnJE3HrZeTsmlNOBQKw9y0/ibu2vg4Hzj+LM49ZCWpRBMDhSYsafhVonWjJohTcgekpw2tpoboqERS3OMM1DxHuga7EMInKxsG+3nvdf/JSYtW0dXUSlu6lWktHTQl0vzu6Xvpnxims6mVBV0zOWzWPI6au5zetk7AzaakoLIa5b34C0uq+6A4mUQ41kEZ9Oo86AHkEGQwUtfNlsVxG0UulrjXzRSBYawmDdT1Vu2KzpdGUNQ+HW3/wViLx6i77OmEK3z1bCkCQqwtV9cuUFht+kb38NSup+kf28tdLz7E2rmH8pFT/tY/l/sS6nzajsXWwa3sGulnx8he8laGZdPncfKi1aQTmsKpxdYkiyZfJJuHdrF5cBebBvvYOtzPrtF+doz005xMc8j0BSyatpAFPYtZOG0RpmH6ZEAnqq7a5p0bdFet4HlZEhPktdGTkqj7Tleyq5EUta+C48ZHqUB4hfC10LMu5oSKy7O8/yrzou3HnLgxdy5JKXhuXwB5OYGFIinBs1TiID0XX1tOaHs2kd56NcEknRxIA3tgI8mxzczobufjH/847373u2lvb6/1dogRo2YoktK+5l0NIymj666OSUpMUmJIKbnlllu46qqruOOOO7jgggv45b3bEM2dmGZLkYqgDG6duKjZLuWe5OktqKD8pHTdxfSiiXqWFh3693DxQxUM6QhJwXv5OTjkcV2pLPK44r87a2fJLJacQEobhwICE9uZwPFcr8BBSge8bDOuK1WwV2E0IaVVRGDcc5FwXbm8DGG2M4FhpEmIliKXMnBfssp/GvBfpCYpUqLFf2EXERYvoF65SaRVUH1E0Lx+PsMkJCpNsTsm1S5QvRKiuDCkyuTjz8qLQEkxBCS97F4tCcdf12w6PL3rKX796PXsHhvEFAatqWY+duo7WDlznu9iVBpY7/5XM9jlZqWldF3SgmPW7g9tvV5sThnqbuY5i/P/+58A6G3vYVHXTE5ZsoZj5h/Kfz98Czc/9yDHzD+UNXNWcOz8w0mYCT/uxr12bi62on16SpA6p7Z0A92VgecbvZpLThR0Q9PWDEh3v9GxG0Xbh9oERT3VudKztpVH2NgNZ2Jz/HXFZMUdQ/EobRmoK5YjSJqSFs89VPWlxjiRz/Df9/2EF/o2IqXEdmwkks6mds5ccRLnHXqqdr+ESF6F46kXA+OD/OXFB7hrwwPY0mZu52xmd8ygNZVk3Y7n6Gxq4zNnvbsoYF9XYADW7XyBH9z/W0ay4yzomsWczpnMaJvJjPbpzGjrZUbbNBwEGa/Ghxq/nkxAfXcIzqE6j2HlpIgcagRFErjO6iRFERTdzVapfhCQeuVyW/AyiOkFghXCaeEBPzW8Urf1YHnL07/DKdltT/VWsMn7pKSYnLgxhQVrEMNIB8REWt6kk4GTHYShTTTl+lmxYgWf+MQnuOCCC+IijDH2KRRJaVvztw0jKWPrfvSKJynxrzYGQgjOOecczjnnHJ555hm+/e1v07T3tyxfvpwPfehDvOfffoFhprGNtG8Ku4a76asKQph+QLrfr6cQpEUrTbT4hjfg/w/XNAkv878L9TmUXcv7rty7lIuVTR5b5rC9F58701bw/UV99URarquAdDxLzyMqwqUA0smA0YxhJEG4qoryeTYM97jdF6UZKDbqeIQb0GmIJAnP31qHSQoTfFISvMCLa7bYFGe7KZfVq9LncBxGuDZKmKDoCkrKz9zmunoZuCSlKeFmA0saDkksrn/iVoYzQyzonkvGKjCSHWMkN849Lz7AmllzfKNeNzL1zExZO3ABi4IjodkMaKyuzCkSkJZunIwK6DZxZ+9dVSNBW6qZsXyG5TMW0ppq4eqHb+H7D/yRz539Hk5YfAwPbHmC3zx5O79e9yfmd/XSmmqiPd1CV3MHLSm3qnlTIs38nvm0pYPibmokQvvuGpGuGatqzoTrcfjuVSKoJaNigcIqQzk43n5lkbEqvNgPdZ2Dz2Fyp2+jH4saX7jWRLiNvt+wK1LeFn7MjOMAZpBFSkqBIyQm8IO/XE3/+ACfPvujTG+bDgLyVp6mZBOmkBScaAO+HKqfs+J7bNvQdm5/7k4e3bqOVb0rePvxF7Ni5jJMQ83kO/RN/JKx7BgjhaSvTIXxi0eu58/P38MZy07kyPmrGc/nGM1OkLUt1u/ewqta55DzatOEoSYA3P0F6pdUJNtTWNR94bvtOSoJiXb8aNdTqu0DcqL2EXUeFUkGr1YKATFMiOJ7RqX3Dc4rJIVJQdokRcIPmA8SgRQnG3E8JVotcyeTDO+X6/gExZY5hDCw7TEwm3Gf4Zb3XDdwnAJydBenr+zmzjvv5cILL+TDH/4wxx13XMRVihHj5YWvfOUrXHvttTzzzDM0Nzdz4okncuWVV/rJIAqFAp/73Oe48cYbefHFF+ns7OSss87iX//1X4vcHnO5HJ/85Cf52c9+RiaT4cwzz+Tb3/428+bNO1CHFispMaIxOjrKj3/8Y771rW+xZ88eLrvsMq769YMY6TakkweRcBUIpSoYHllBj+dIYIoWEkYLCdHkKy6G9xJSL66w8a6CJJUbVRh6thbVzpYuQfFduij47lyO1CrRS8d390J6bgHC8EhJULNEYIIwkE4OM9HlxqUYaQzh8nopHU81SbifpUUqMQ3LmSBptPkzfIqopESLfywqO01YMYHALaKJFiwKnotdUNxRKSkJ3Mxr4ZTDoMiGC5XJq6i6s2Yf+S5BQkt6QEBQkoa6lq4B1dVUIG04JIyA8LQnbQaHnuYrf/4Zrzn0VaQSCeZ3TGNxTy/dzZ2YhlFCUFwjXl1PUdYYVuujEG4XTn8dBSlt7tn4MLc8ew87hvdgGAYF2+K1q07jzWvPda+BY/PotqcZyowwls8wlhtnJDvKRD5DwS4wns+wa6SPme3TWTFzCWcsP5E5nbOK1CGIcqny0jkLp8gYhSD4XBmiUa484fTClCxX34vJhn6ey5Kk0LbhfZZzU/M/ExyHvi5hSJoTDmkv3bXKEJUU7i9EKTHXPnodd2+4hy+e9ylmtc8IxqftK+zWF47nkRIm8hPcv+lBHtz8MK9bfR4rZx9KGNlCnr7xfgbGBtg5spOndj7FrpFdHLPwaM5ccSrTW6cH7ojSYu/oHm595s9sGtjCR059H9M9Vz99v24KdYfLf32Fe3xmkuZkM23pNlpTrTy/93kAPnDK+zhk5tKiLFtQeu8WqRkemVDV30tc6fxK7+5YVGp3vVCuo/4Xjbv496buCxUsr0iMFbqfIEgH72j3nkoNr55DlpbpSynfbltP6fYC6HOM+65fKiDe3Z/jP89tZ8Jz41IuunmESOEUxnGGtjCvKYNlWbz//e/n0ksvZdasWSXXPUaMfQmlpLQe/jcNU1LGn/hJTUrKq1/9ai655BKOPfZYLMvis5/9LE888QRPPfUUra2tDA8Pc8EFF3DZZZexdu1aBgcH+djHPoZlWTz00EN+P+9///v53e9+xzXXXMO0adP4xCc+wcDAAA8//DCmWWqL7Q/EJCVGRUgp+fOf/8y3vvUtbrjhBk4//XRue2ovtLaDdBBGwlUejJT3PV1EXAyRLorVMI0mLGfCN+Ah8DdWUIHovn+xRmLCsR+6K4CbjSuLbY9r4y8gPZIi7QzCSCOdDMJoRtrj/johEsUqitnqkxgz2YNhpIJge2FgiASGaMIUaf9lqgI6HVkgabT5pMRUiorm1qVc41TcCYDh0xWjRFVKSLPE1UulhzZEkGJYV0r0qvO+q49mDEXFnqhaOHo6aVU/JWcbJA1JS9Km3cvwlTIkacPBKgzz/l9/hWsuupyu5s7Az52AnOjEBEIzuhGGs94mvNxdVzuKi0q66B8bImvl6GxuozXVgiGKs5GF3Yp0ZPPjPLDlMX768G9pT7dy1Zs+X6KiRGU2Uxm3wvFZUWl7VT/hcZcjErprlh7jEk0Ig778gouaS5B+HGFXsmDb4vGZXmFXU0gs6WaSUgpSQkjakg6WFCQNh7aEjaPiHaTAsgtcfe81PLv7BTqb2uls7mBOZy+Lpy1i1ZzDaE21FilLe8b6+Jc/Xll0DtvSbWQKGWzHfR4cv+h4Ljz6wqL76/Znb+MP639PKpFmWus0prXOYMWspSzsmU+mkKd/fID+8QH2ju1l7+ge9o7uwTRMls5YwluOuZCOpvaSc2xLsB2bsdwYY7kM2cIEY/kxxrNjjOdH6R/r45Gtj3LWilM5f81rvfoyriroIMiqOiXq9+gdj0oYYjmlMSWW5tKlu4WpZTnb9OtOqWuu4k/UhIVOUsJprlV7RVTU/eYH8UPRf/1+1IslAhQ896/A6cvxs3yp4ruAH0jvyIIfKK+e7w4FHCfnueoaOON7SIxtwx7ezoknnsiHPvQhzj///NilK8YBQ0BS3tpAkvLTSbl77d27l5kzZ3LHHXdwyimnRLZ58MEHOe6449i8eTMLFixgeHiYGTNm8OMf/5iLL74YgB07djB//nxuvPFGzj333Ckf02QQ/6JjVIQQgjPOOIMzzjiDHTt2cM011/Dcc98nM7SDd73rXVx66aUc+vr3uZlUlHrh5PxXlC31QHQjyKIlEp76UuwhL2UO0+zAMFJYhUEkNobRrK23/HS+bvxIMHcnzOZAGXEs15VLWoEVJ0wwEoCb4QuzCWF7ftD+uAyPwGQQZjNmsgchEr4aowLnVY0VW+Z8xUelwGwyevyMMyqPP6hMNToVMTVKUkxOggJlbkICZbmEXXUs6f6IVYphd7acEgMZggxrUZmJFEHRs3glvJo4Kc+1K2UUZ+rK2gYZS5AwJNJ2H8pfvOVnHDF3BeesOIHOprbwEIqgZvVd//6g3yKXF42KGKKYsEQZzjoqkQyAaW1dRcRCbfPJ3/wjYzmX6C6etoCCXWA0O0ZLqpnlM5eSLWTZNLCVvrEBVsxczBtWn0FCBPVMBEGmNFPIotgFFbegH4c6F4bnk6W2UeejRGUSsojAOLhGqulfGzABRwTGtIqcsGUQJK+PRDeC3XalwdlQfO/oZ1fdNxAEyaeSxceatd2U18IRTFiKwLuxTImEwRVnvIvBiUH2jA3TNzHC5oGd/OXF+/n5w9cyv2c+i6ctprO5k9Z0K2BgChNbBhMYY7kxANKJJs477DUcv+SEouxXAH3j/e45c2yGJgYZnBjgyR2PYwiDjqZOult76G7pZnbHHNbOPYKe1mkUnAK7h3dy78aHkdJN2DGeH2ckM8xQZoihiSFGs6NIJE3JJpqTzbSn22hJt9GaaqO7rZeLj/lb5k9bxsZRN0FGW9JmtGAWJRURQvhpfiVodU2KC+HqMSkqrbCD8Nwc8VM9Y3j1p2Rwb+G5QvqEQgYpsaNqpZiGu43bWIDw3BfxCIr2F9xQxb+qpDBxpENBuBMxBSxfRU6QxKEJi7wfu+cIE4MkUrgKuU3WnQSyHb789uP5/ve/z/DosP/+iVMIx3g5Y2RkpOh7Op0mna5cLHJ4eBiAnp6eim2EEHR1dQHw8MMPUygUOOecc/w2c+bMYfXq1dxzzz0HjKTESkqMuuE4Drfeeivf//73+e1vf0uyvZdc80zMznnBC42AUAiRRNrjCLNVIxiWG7TuvS6FkQKRwDDbkdLCyfchEq1uUzvrxcDgkw5hJHGs8SL3MgWBR4aMJMJIue5pgDCbQLmq4fiqCJ6K4rp4eetw41USyW5sO4NptuHIHIZIkDDaizJ8gasG2dI9thZzVpFbm4JeoLFYPSklKnqqYT1rWjjmhNB3NRMbBLoXu3TpxQnDqYaFipvwXJIShh40751bERTuDIwm4Wb7Yicb+17koS3reGr3Bo6au5Ij567g0FmLmNXWFZkqNiqDVDm1JbystrZevIa2P0OL/9DbKdy78SF+v/5P9I8P+MtW9y7jlKXH8NzezTSnWljUM48l0xbRlGqOjC9QyQjCVeqh+Droy8Ltqrm56QRGkY7A3SowbFVmsUCpKQ7OV8Qk7K6mvxmiyIq6z3S1RZEVZSgbhrovFWkLso8l/UQMsmgfejYqgIGJQZ7b/TybBzYzlh1jLDfGwMQwQ5lhmpPNLOhZyNIZy1g8fSktqXbSiTTNqRafUE3kJ9g7upuB8QGGM4PsGd1N3+heBicGyVlZJO4JSCVStKRaaE23MaNtJo50WL/jCZJmgnlds+loavOywhm0plvobO6ko7mLrqYuOlu6aEt3kDANVDIAP4hduwbht61+HfwCtxGkRBVctKQRuHeF+lIB8KogqIov82O0ZDHhBde1y5KCvNe/IdxijXnp1lxKCXciJGW4Ll4tZqmiWXRvevenJd3aKe4yGVrvOukqdUUV4VWB9UEdlQIFZ4LcyAYYfYZM/wZOO+1U3vOe93D++edXNdRixNifUEpKy+EXN0xJmXjiFyXLv/jFL/KlL32p/HZScv755zM4OMhdd90V2SabzXLSSSexcuVKfvKTnwDw05/+lHe9613kcrmitueccw6LFy/mu9/97uQPZgqISUqMKWH37t1cc801/OhHP2L79u0UmuYhOg/BbO3FIecRERvbznjpfN0fgBBJHHvcjxsBPLexhK+CuA0NpONl2PLiYKRTACFcFy0FlYHLczPT9yOx3T6NBEKkkdIlTuC6gxXFvXhxKMnUTCxrFMNsxjSavePATx/sKiVaJjCPkKREq6+GCJ+IuNRDBY26n93sZ3lyfgxOpZooupuXyuQVJifhmJRK2buK3L60dnoRTkMjJCpeRbmLCPDrp6RNx3fzaUs6NJsO+ewW7t70JOt2bmBD33ZaU80snT6XxT2zWdQ9m7kd05jZ1k1zstTQKA4A1glJsftSadrcaB/7YPuoPvXt9bYCKSWbBraxeWAbP3/kN3z8tHezevayIkKgu8+oXnVS5y4PFJSwkaigMp+p2BR92zD0jFLu/oqrgwfnKCAWylBWQdAFv7hfcYV7t72m0mgGs/rupzH2DHGV5jhhOFqCgKDQJCjyoo4zIDN6emQ1bp1gRRXnVAZ/ppBn58huNva9yIa9L7CxbwPHLPorZrb3snN4O32ju9kzupux3CgdTR1Ma51GV0sX01q7md0+nVnt0+hubvHuI4PRvMVANsvQxAgD47tBFjhu4Vp6O+ZiYUSeN13RougYgvNVvDw4Np3o69v5RMX7rILe/esRoXhA4H5Wzn3SDm3r1vQJ3Lay0ikhESq1fA6LpDSYEHlUvq4ECVpkCkMYON7zUc/iqFy+1LqCCAruqmekS1AsHGwmGEXVRMlldpEfeAJr9Cl6utp4+9vfzqWXXsrSpUuJEeNghCIpzasvQpjJ6htUgbQLZJ78JVu3bi1y96qmpHzwgx/k97//PXfffXdkwHuhUODCCy9ky5Yt3H777X7f5UjK2WefzdKlS/nOd74z5WOaDGJ3rxhTwqxZs7jiiiv4+7//ex588EF+9KMf8bOf/Yz87gRW6wKS3Ssw0u2YogVbTmAk2lwDX9rYhpptMIvIigo6B/yYESCIGQEMI4X0guAdJ4Pws4x5ZMXLymMYbjFGtzsDKfMYRquvjODVQ1FQ7Q3RRCIBhqpfIlzSoVy93N5cAmSSIqguH7ifmFpyAHBTJOsB8srdK0ECNHIClCUoCrp7hXJ484mLDAxXh5A7mHTnvIuUFelmgjJEYHAbiCLSos/KurPJLomREgq2geURmLzjpiTO2ctYOHc5C+dCszHBwNg2tg1u48XB7dyz+S4GJ/aSs/JMb+3itYeeyMKumXQ1NdOebqGnpd13v9MNVCdk20vpsjEpPVcZ7/iGchOM5zOM5zMIBPO7Z5MMvTQqFS0MSh/CqplzsC3XjWjv6B6ecHL0dsxgdseMUPtiAqIrVuH9hdcXt5X+vsPB1EH/xYTHlvjV3sPKVJigBEasctMpTgVteelm9QxdYYM7KMrqkWEkwpAe2XHvL8MLjDe8jS1HuFmqhFtQ0rbB9O43Q92PEYQsHLsDbjKIBJIWM8H05jksnz6PkaWn8+iWB7nu0Z+xePpS5nbN44j5RzG9bRbT2ntpTjb7hGksb5I2HYQAx1MKDaAzBZ1tQRKJhJBkbIPBvFKiikmcTjoUwqQjCuUUqiI3LorTBbv9BTEiepKEIjXNfyYUB8qr/ShSorJyqfiRYDzuFkmhkpq439MkMAS0EdRzcq+Fl2VQK4arx6So/myk+0wTqrBjEJ+iqsxbhREyg08ix58iN7aHCy54M+9855c544wzDljQbowYBxodHR01x6R8+MMf5re//S133nlnWYJy0UUXsXHjRm677baifnt7e8nn8wwODtLd3e0v37NnDyeeeOLUD2SSiJWUGA1HLpfjd7/7HT/60Y/44x//SEvnPArN8zG7FpFIdSIw/GrBejFERxb8eiwqna/A8N2o3GrxrjKjyIOb/SXnkxq9naplIqXju2rhB7OnCTKAqReg7SssAAnR4gfxK+WkKHuZ57alXNFMAolXuXqpeBR3WUBadOcu9d3tozJRcduKov/u51JlRf+sKyvuOdJUE0oD66Pcwvx0xR5hUQqLUlnAnSEHl7g40lVbWhIOSdPBdgQZyyBvGzQnLPrHcwyMPc1T2+5gJDtCNj/OeD5Le1Mr87rmMpodYzg7jBAGM1q7mdXWxaz2Lgxh8KfnH6KzqZXprR08uWsT7elmDp25gOf6trNrdICUmaQt1UTBsckUcizpmc3SaXOY3d5DZ1Mb7U2tdLe0M7O1i3TCJbi+4RdSOnaODPCrx//ESG6ckew4O0b2MqdjBt3N7bSlW2hLt5AyEwiES+CE4PDZh7By5iK/j2jHrQDFKk54XXn3Nj3IXq8qDoHioFeEV8UBdeVFd7OyncDAFt7+9Bl/tRzwa+mo6va6C5jw76MgPkpAERkRIlBhoDjeRRniiiykjMCFTLmMqXHkHIOcrbKjOTjSDIxzJ4i1UcjZRlEdoEpZ4QqO8ALXS8mIez30Oifh76VKnh5HFC6sqBPmIre90LpwprWoLFzh4HZQxKQ4qF2vP2UiKAjv2Sbd9NAqNs5GYiJICdMnNfpzqNilKyAotrbcErZPTNx2Djl7hNGhx7HG1zPa/xwnnngC73znO7nwwgtf0bUhYrz0oJSUptUXNExJyT75vzUFzksp+fCHP8x1113H7bffzrJly0raKILy/PPP8+c//5kZM2YUrVeB8z/5yU+46KKLANi5cyfz5s07oIHzMUmJsU+xd+9efv3rX/Ozn/2Me+65h1NPPZUHXkhhdi7CSDR5RMH2A9EBTNGE5VUUNkQS2wmKfAXpjZN+e1WoEVxSo777aoxHhKR0SBgtPulwvLTFqq3qW22XNrp8ZcT0yI4qMgbFJEVPr+z2UezqFXwOSIpaphAmLElP6AyTFbeN2kaE/kfHrFSrmeIrKBpxASrGsuikRcWzqOKPCgnDCepkqCBfz/DKWiYJUzK3LYvlCNqSNpmCw8b+jewe2UNTqpO2pk6QDqOZfiZyfQxODDCSGWDtvNW0pzsYy/axbMZCMoUcL/ZtYlb7TA6bvRp8lU6Sz+3mxf6tbB7YRt/4sFe/ZYyBiRFyVoGuplba0y20pNK0JNO0pNIUbIuBiTGGMmM4UpJOJEknUjQlUliO7VUOdz8PZ4Nscgp/vfok3nH02ZHxKnrmLWUsqsr1iiyAXhujOF2t46+HgudypgxTRUqUca4X/1PuaXqsSti1CxSZ8e45zbVLQd0LbiyT+z9lSC2FRTHKkRcI7sGSc+Qdk3IPS5tB/4Z236lzE4ydItUDilWhQIdyr4Hav75Mz5qmp1SOIiC6ehaZZU3bPqyERGXXCleX18cUVmj0rFo6GfEJilLc/P9qfXFh3HBdKsAnE2lSGFKQETnSpGgm4bdW11rfOkxMwlm9HBwsJ8PY0JPkx59kYvhpVq1axSWXXMJFF13EokWLSsYSI8ZLAT5JOexNjSMp66+riaR84AMf4Kc//SnXX3+9XxsFcN3PmpuxLIs3v/nNPPLII9xwww1FKbp7enpIpdz35fvf/35uuOEGrrnmGnp6evjkJz9Jf39/nII4xisD27Zt41e/+hU///nPefTRRznttNO4/xmTdNdyzFSHTwikVy1eKRM2eVQNE6VmCEws6aYyVqQD8FMA61Ckw1VqAkISFKYMCI2CIwukjHYKcoKkaHHHpZEUNQZwCUy4nkuYfIRJjB6HEk1UioPpi9ZppAUoIi7lSEs4yF6t05dFkRf3/JRXXaLIi6oKb2oZn4QoNm7BnYGXElqTNpZjkLEMzQAX5G2Dgm2QMBwsx/1vS0FzwqYpYZO3DTrSFglDYjuuwam2y1gmApcwzWrN+zPyaqwtpkPasBjNjTOa6WcgkyVnZZkoZBnP50iaSbqa2+loaiNlGDhOlkyhQMHOMZbPMZQZZu/4MJlCjq6mDrpauuhqbqer2U2fO69jBoZhaFXjixUPnSxAMLOeMiS2p16ooGvdZUsSkAiVmYlQnyoVLegExB2Dbnjr6/U6JKp/KQUpUxH3gIiq6wkBiUmbbkphUyOoYcXF1MhKGDoJKo3TCEiZ3j6qKKVKwav3VXKsUEJWyiVmsGXwtAi7X+lt9VS9+piiyEwx4dTGoI1TJyI6+dCPVV/nLi8mJeDWKglDxZsoFLAwcbNuqYkRVddE1WjKkKWZppJnj+oP8PtUpMf2/ltYFKwRxoafwpp4muzYc8yfP5+3vOUtXHzxxaxcubJkjDFivNRwIElKVFIagKuvvpp3vvOdbNq0icWLF0e2+fOf/8xpp50GuAH1n/rUp/jpT39aVMxx/vz5UzqWqSAmKTEOCDZu3Mj111/Pb37zG+6++26OOuoontneRlPXchJNM/0fnaoiD/jB68q9yg6REaXKuG1cZUbikBLt2FqKS5MUBTmOKZqKCILed94ZJW10kXOGSBtdABTkeAlZUkQqIZqwvOr2imypvoUI2hkUk6EweVHQM4Gp77rSEiYuEJAXiCYw7v/iSvX+tiH1JWpZOTITjNnbt6FITrFBqwftqyB8KI47CCs6Qc324v/6Oh2ODFzO1DhShuP3rWefSnipfE0hGckHcUlj+aRv5AO0piymN7sZ4poSDpYjSJuOVzRPkLMNsraB1Patu1jpLjtWiDyoGXa1v64mdz/pRGBc+u5ZqiifUkAiZuzVdwgZ2xqZ0f/75x3pExJdCau1boxOcoLMckGdHR2GwD/vOpTSoZ+jKBcp/dyp49RTY5dLNqCOsyTBQkjV0slGOfISXqefBzXWqDb6vsJkRB9DeFsn1CbsXqW7XIVpiR4XAq7blQ4bBxPDJxXqs66w6M8c9T2swKjtlWKSz/UzPryeQnY9o4MvsGbNGt74xjfyxje+kdWrV5c1rGLEeClCkZT0Yec3jKTk1l8/qTopLyfEJCXGAUdfXx833HAD1113HbfeeiudnZ2cffbZnHPOOXz83x7CTLZhk/dJiXKxUqRAEQAhDL/yvIIqBqaC3XUFxPa214tKCmGS8IJDC3K8aDu9T4FBwouLCY9LQa8wD5D0+g2/3HWiIULKSoom9GB8tR891kXvR49tKbcPI2Rs6rOihghvp38WoXXh74GBFEV2wn2qtgkRGGDl2katC5s4eswNBCSlfN/SNyZVjQlVbwIC33+lHqknZTrhKjvgGuDu7H2Q8lWle9XrhrjjDdyTwgH1hnDTwUJg7Cu1RLVVRMP0lKPwZ6V46X3qM/ymIUvOhd6/fl6KzrN27Mr9T8F2gvGGs3Gpc2sg/XiJ8Pj0c6CgpzmOUifCCor6HuxDXXdR9FmtcyLaRSHcVm+np14G9160I0hFOAOdroLox6+OQxEQ9duyvC0SGEVKSZAsQyNUZRQUPauWv0xTTXJeMcXIc6C5nip1JUxe1LKcPUJm5AX++twWbr75ZjZv3szJJ5/Mm970Js4//3wWLFhQdj8xYrzUEZOUfYOYpMQ4qJDL5bjnnnu45ZZbuPnmm3nkkUdpaemkeujx/oKMmKedfF+NQ6POT6PGdLBcr8ai9qOqpWUt5/qlfB6rHd9L+dhiFEOSyYywYMES3vCG8zjnnHM49dRTaWurXNA1RoyXC3ySsur1jSMpT/0uJikxSYlxMKOvr4+NGzce6GHEiBEjRowKmD17dmTa0xgxXglQJCV16GsbRlLyT//+FU9S4jopMQ5qTJ8+nenTpx/oYcSIESNGjBgxYsTYj4hJSowYMWLEiBEjRowYU4ZNdDL2yfQTIyYpMWLEiBEjRowYMWJMFdJx/xrRT4yG0L0YMWLEiBEjRowYMWLEaBhiJSVGjBgxYsSIESNGjClCeonEG9NPjJikxIgRI0aMGDFixIgxVUjZIHevOPEuxO5eMWLEiBEjRowYMWLEOMgQKykxYsSIESNGjBgxYkwVceB8QxGTlBgxYsSIESNGjBgxpog4JqWxiN29YsSIESNGjBgxYsSIcVAhVlJixIgRI0aMGDFixJgqYnevhiImKTFixIgRI0aMGDFiTBUxSWkoYnevGDFixIgRI0aMGDFiHFSIlZQYMWLEiBEjRowYMaaMxgTON6aPlz5ikhIjRowYMWLEiBEjxlQRu3s1FLG7V4wYMWLEiBEjRowYMQ4qxEpKjBgxYsSIESNGjBhThGyQkiJjJQWISUqMGDFixIgRI0aMGA1AHJPSSMTuXjFixIgRI0aMGDFixDioECspMWLEiBEjRowYMWJMGbJBQe+yAX289BGTlBgxYsSIESNGjBgxpgrpgBSN6SdGTFJixIgRI0aMGDFixJgyHLsxGohjN6KXlzxikhIjRowYMWLEiBEjxiSRSqXo7e1l1+YnGtZnb28vqVSqYf29FCGklLHjW4wYMWLEiBEjRowYk0Q2myWfzzesv1QqRVNTU8P6eykiJikxYsSIESNGjBgxYsQ4qBCnII4RI0aMGDFixIgRI8ZBhZikxIgRI0aMGDFixIgR46BCTFJixIgRI0aMGDFixIhxUCEmKTFixIgRI0aMGDFixDioEJOUGDFixIgRI0aMGDFiHFSISUqMGDFixIgRI0aMGDEOKsQkJUaMGDFixIgRI0aMGAcV/j/i7WZDMCI4OwAAAABJRU5ErkJggg==",
-      "text/plain": [
-       "<Figure size 800x400 with 2 Axes>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
     }
    ],
    "source": [
-    "%%time\n",
-    "worldmap(icon.tas.mean(\"time\"), cmap=cmocean.cm.thermal)"
+    "print(\"DONE!\")"
    ]
   }
  ],
-- 
GitLab