diff --git a/verification.py b/verification.py
new file mode 100644
index 0000000000000000000000000000000000000000..e1e9646f32aaeafabadd181f96e0ab0ce01f0f1c
--- /dev/null
+++ b/verification.py
@@ -0,0 +1,205 @@
+#!/usr/bin/env python3
+# -*- coding: utf-8 -*-
+import numpy as np
+from matplotlib import pyplot as p
+
+from models import CBL
+from observations import decode_observations
+
+# Default CBL model settings
+default_cbl_settings ={
+    # Physical parameters
+    'g' : 9.806,
+    'f' : 1e-4,
+    'kvonk' : 0.4,
+    'z0' : 0.1,
+    'ug' : 0,
+    'vg' : 10,
+    'theta_0' : 290,
+    'gamma' : 3e-3,
+    'Hmax' : 0.12,
+    'H0_perturbation_ampl_init' : 0.0,
+    'H0_perturbation_ampl_time' : 0.0,
+    'exct' : 0.3,
+    'pfac' : 1.5,
+    'Kmin' : 0.1,
+    'Kmax' : 200,
+    # Model formulation
+    'is_bwind' : False,
+    'is_cgrad' : True,
+    'is_cycle' : False,
+    # Domain parameters (Kmax determines dt)
+    'dz' : 50,
+    'ztop' : 4000,
+    # Ensemble generation parameters (only effective for ensemble runs)
+    # Part 1: perturbation of initial state
+    # perturbation_type can be "smooth", "random", "uniform"
+    # the adjective refers to vertical variability
+    'rnseed' : 181612,
+    'perturb_ensemble_state' : True,
+    'perturbations_type' : "smooth",
+    'perturbations_theta_amplitude' : 0.1,
+    'perturbations_uv_amplitude' : 0.1,
+    'perturbations_smooth_number' : 11,
+    'perturbations_symmetric' : True,
+    'simulate_error_growth' : False,
+    'error_growth_perturbations_amplitude' : 0.0,
+    # Part 2: perturbation of parameters
+    'perturb_ensemble_parameters' : True,
+    'parameter_number' : 1,
+    'parameter_transform' : None,
+    'parameter_ensemble_min' : np.array([0.5]),
+    'parameter_ensemble_max' : np.array([4.5]),
+    'parameter_true' : np.array([1.5]),
+    # In case of parameter estimation
+    'do_parameter_estimation' : False,
+    'parameter_inflation_rtps_alpha' : np.array([0.8]),
+    'return_covariances_increments_and_innovations' : True
+    }
+
+def observation_operator(fp,xp,x):
+    f = np.interp(x, xp, fp)
+    return f
+
+if __name__ == '__main__':
+
+    # Settings
+    energy_diagnostics = False
+    sensitivity_to_p = True
+
+    # Read the observations
+    theta,z = decode_observations('./LES_data/Theta/*csv')
+    nassim,nobs = theta.shape
+    thicknesses = np.zeros(z.shape)+np.nan
+    for k in range(nassim):
+        thicknesses[k,:]=np.hstack((z[k,0],np.diff(z[k,:])))
+    tint = 300
+    t = np.linspace(0,tint*(z.shape[0]-1),z.shape[0])[:,None]+np.zeros(z.shape)
+
+    if energy_diagnostics:
+
+        # Compute delta theta wrt IC
+        theta_init = 290+z*0.003
+        delta_theta = theta-theta_init
+
+        # Set the sensible heat flux (kinematic units)
+        hfx = 0.12
+
+        # Run model
+        run_settings = dict(default_cbl_settings)
+        run = CBL(run_settings)
+        run.maxtime = 25200
+        run.initialize(1) 
+        run.run(output_full_history=True)
+        zt = run.zt
+
+        # Model state
+        model_theta = run.history['theta']
+        model_delta_theta = model_theta-model_theta[:,0][:,None]
+        model_thicknesses = run.dz*(np.ones(zt.size))[:,None]+np.zeros(model_theta.shape)
+        model_delta_theta = model_delta_theta.T
+        model_thicknesses = model_thicknesses.T
+        model_times = run.history['time']
+
+        # Model equivalents
+        model_equivalents = np.zeros(theta.shape)+np.nan
+        for i in range(int(nassim)):
+            valid_time = i*tint
+            time_index = np.argwhere(run.history['time'] == valid_time)[0][0]
+            for j in range(nobs):
+                model_equivalents[i,j] = observation_operator(model_theta[:,time_index],zt,z[i,j])
+        model_e_delta_theta = model_equivalents-theta_init
+        model_e_thicknesses = thicknesses
+        model_e_times = t
+
+        # Make plots
+        fig, [[ax1,ax2],[ax3,ax4]] = p.subplots(2,2,constrained_layout=True)
+        fig.set_size_inches(6,6)
+
+        # Time coordinate is hours
+        t = t/3600.
+
+        # Observations
+        c = ax1.pcolormesh(t,z,delta_theta,vmin=-3,vmax=3)
+        ax1.contour(t,z,theta,
+                np.linspace(290,290+0.003*2000,13),
+                colors='white',
+                linestyles='--',
+                linewidths=0.75)
+        ax1.set_ylim([0,2000])
+        ax1.set_ylabel(r'Height (m)')
+        ax1.set_xlabel(r'Time (h)')
+        ax1.set_title(r'$\Delta\overline{\theta}$ (K) observations')
+        p.colorbar(c,orientation='horizontal')
+
+        # Observations
+        d = ax2.pcolormesh(t,z,model_e_delta_theta,vmin=-3,vmax=3)
+        ax2.contour(t,z,model_equivalents,
+                np.linspace(290,290+0.003*2000,13),
+                colors='white',
+                linestyles='--',
+                linewidths=0.75)
+        ax2.set_ylim([0,2000])
+        ax2.set_ylabel(r'Height (m)')
+        ax2.set_xlabel(r'Time (h)')
+        ax2.set_title(r'$\Delta\overline{\theta}$ (K) model equivalents')
+        p.colorbar(d,orientation='horizontal')
+
+        # Difference
+        d = ax3.pcolormesh(t,z,model_equivalents-theta,vmin=-0.5,vmax=0.5,cmap='RdBu_r')
+        ax3.set_ylim([0,2000])
+        ax3.set_ylabel(r'Height (m)')
+        ax3.set_xlabel(r'Time (h)')
+        ax3.set_title(r'$\overline{\theta}_{fc}-\overline{\theta}_{obs}$ (K) differences')
+        ax3.text(3.5,100,'RMSD=%6.4f K'%np.mean((theta-model_equivalents)**2))
+        p.colorbar(d,orientation='horizontal')
+
+        # Energy diagnostics
+        ax4.plot(t[:,0],t[:,0]*3600*hfx,color='k',dashes=[3,1],zorder=10,label=r'$\int H dt$')
+        ax4.plot(model_times/3600,np.sum(model_delta_theta*model_thicknesses,axis=1),color='r',label=r'$\int\Delta\theta dz$, model state')
+        ax4.plot(model_e_times[:,0]/3600,np.sum(model_e_delta_theta*model_e_thicknesses,axis=1),color='orange',label=r'$\int\Delta\theta dz$, model equivalents')
+        ax4.plot(t[:,0],np.sum(delta_theta*thicknesses,axis=1),label=r'$\int\Delta\theta dz$, observations')
+        ax4.set_ylabel(r'$E/(\rho c_p)$ (K m)')
+        ax4.set_xlabel(r'Time (h)')
+        ax4.legend(prop={'size': 6})
+
+        fig.savefig('verification_1.png',format='png',dpi=300)
+        p.close(fig)
+
+    if sensitivity_to_p:
+
+        p_values = np.linspace(0.5,2,31)
+        rmsd = np.zeros(p_values.shape)
+
+        for k in range(p_values.size):
+            print('Run %02u'%k)
+
+            # Run model
+            run_settings = dict(default_cbl_settings)
+            run_settings['pfac'] = p_values[k]
+            run = CBL(run_settings)
+            run.maxtime = 25200
+            run.initialize(1) 
+            run.run(output_full_history=True)
+
+            # Model equivalents
+            model_theta = run.history['theta']
+            model_equivalents = np.zeros(theta.shape)+np.nan
+            for i in range(int(nassim)):
+                valid_time = i*tint
+                time_index = np.argwhere(run.history['time'] == valid_time)[0][0]
+                for j in range(nobs):
+                    model_equivalents[i,j] = observation_operator(model_theta[:,time_index],run.zt,z[i,j])
+
+            rmsd[k] = np.sqrt(np.mean((theta-model_equivalents)**2))
+
+        # Make plots
+        fig, ax1 = p.subplots(1,1,constrained_layout=True)
+        fig.set_size_inches(4,3)
+
+        ax1.plot(p_values,rmsd)
+        ax1.set_xlabel('$p$')
+        ax1.set_ylabel('RMSD (K)')
+
+        fig.savefig('verification_2.png',format='png',dpi=300)
+        p.close(fig)