
LEANOS–
ANOPERATINGSYSTEMFORTHESSDP

Architectural Design Document

Architectural Design Document
Reference: LEANOS-UVIE-ADD-001

Version: Issue 1.0, June 1, 2017

Prepared by: Armin Luntzer1

Checked by: Roland Ottensamer1, Christian Reimers1

Approved by: Franz Kerschbaum1

1 Department of Astrophysics, University of Vienna

Copyright ©2017

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with no
Front-Cover, no Logos of the University of Vienna.

LEANOS-UVIE-ADD-001

Architectural Design Document

Issue 1.0, June 1, 2017

Page 2 of 28

Contents

1 Introduction 5
1.1 Purpose of the Document . 5
1.2 Scope of the Software . 5

2 Applicable and Reference Documents 6

3 Terms, Definitions and Abbreviated Items 7
3.1 Acronyms . 7
3.2 Glossary . 7

4 Software Design Overview 12
4.1 Software Static Architecture . 12
4.2 Software Dynamic Architecture . 13
4.3 Software Behaviour . 13
4.4 Interfaces Context . 13
4.5 Long Lifetime Software . 13
4.6 Memory and CPU Budget . 13
4.7 Design Standards, Conventions and Procedures 13

5 Software Design 15
5.1 General . 15
5.2 Overall Architecture . 15
5.3 Software Components Design - General . 16
5.4 Software Components Design - Aspects of each Component 26
5.5 Internal Interface Design . 26
5.6 Requirements to Design Components Traceability 27

LEANOS-UVIE-ADD-001

Architectural Design Document

Issue 1.0, June 1, 2017

Page 3 of 28

List of Designs
D-GEN-0001 . 16
D-GEN-0002 . 16
D-GEN-0003 . 17
D-GEN-0004 . 17
D-GEN-0005 . 17
D-GEN-0006 . 18
D-GEN-0007 . 18
D-GEN-0008 . 19
D-GEN-0009 . 20
D-GEN-0010 . 20
D-GEN-0011 . 21
D-GEN-0012 . 22
D-GEN-0013 . 22
D-GEN-0014 . 23
D-GEN-0015 . 24
D-GEN-0016 . 25
D-GEN-0017 . 26

LEANOS-UVIE-ADD-001

Architectural Design Document

Issue 1.0, June 1, 2017

Page 4 of 28

Revision History

Revision Date Author(s) Description

0.0 30.09.2015 AL draft architecture created based on NGAPP
0.1 16.03.2016 AL initial version with updated specifications from

MPPBv2
0.2 02.05.2016 AL revised after internal design review
1.0 01.06.2017 FK document approved

LEANOS-UVIE-ADD-001

Architectural Design Document

Issue 1.0, June 1, 2017

Page 5 of 28

1. Introduction
1.1 Purpose of the Document

This document specifies the software architecture for the operating system kernel LeanOS. This
document targets developers, testers and advanced users of LeanOS. It is assumed that the
reader is familiar with the user requirements and/or the software user manual.

This document follows the document structure for software design documents found in Annex
F of ECSS-E-ST-40C [1].

1.2 Scope of the Software

The architectural design aims to be at a high degree of encapsulation, with a comparatively
restricted number of system call interfaces to user space. The user Application Programming
Interface (API) of LeanOS will orient itself to Portable Operating System Interface (POSIX) stan-
dards where applicable. Extra functionality that is typically found in supporting C libraries is
part of the user space and must be implemented accordingly.

LEANOS-UVIE-ADD-001

Architectural Design Document

Issue 1.0, June 1, 2017

Page 6 of 28

2. Applicable andReferenceDocuments
[1] ECSS-E-ST-40CSpaceengineering -Software. ESARequirements andStandardsDivision, 2009.

[2] Massively Parallel Processor Breadboarding Datasheet. 2016.

[3] The SPARC Architecture Manual Version 8. 1991, 1992.

LEANOS-UVIE-ADD-001

Architectural Design Document

Issue 1.0, June 1, 2017

Page 7 of 28

3. Terms, Definitions andAbbreviated
Items

3.1 Acronyms

ADC Analog to Digital Converter
API Application Programming Interface
BSP Board Support Package
CPU Central Processing Unit
DAC Digital to Analog Converter
DMA Direct Memory Access
DSP Digital Signal Processor
ELF Executable and Linkable Format
FIFO First In - First Out
GCC GNU Compiler Collection
ILP Instruction Level Parallelism
ISR Interrupt Service Routine
MMU Memory Management Unit
MPPB Massively Parallel Processor Breadboarding system
NGAPP Next Generation Astronomy Processing Platform
NoC Network On Chip
POSIX Portable Operating System Interface
PUS Packet Utilisation Standard
RAM Random-Access Memory
RISC Reduced Instruction Set Computing
RMAP Remote Memory Access Protocol
RR Round Robin
SMP Symmetric Multiprocessing
SoC System On Chip
SSDP Scalable Sensor Data Processor
VLIW Very Long Instruction Word

3.2 Glossary

Analog to Digital Converter (ADC)

An Analog to Digital Converter is a system that converts an analog signal into a quantized
digital signal. Its counterpart is the Digital to Analog Converter (DAC).

LEANOS-UVIE-ADD-001

Architectural Design Document

Issue 1.0, June 1, 2017

Page 8 of 28

Application Programming Interface (API)

TheApplication Programming Interface defines howadeveloper canwrite a program that
requests services from an operating systemor application. APIs are implemented by func-
tion calls composed of verbs and nouns, i.e. a function to execute on an object.

Board Support Package (BSP)

A Board Support Package is the implementation of a specific interface defined by the ab-
stract layer of anoperating system that enables the latter to runon theparticular hardware
platform.

Central Processing Unit (CPU)

The Central Processing Unit is the electronic circuitry that interprets instructions of a com-
puter program and performs control logic, arithmetic, and input/output operations speci-
fied by the instructions. It maintains high-level control of peripheral components, such as
memory and other devices.

Digital Signal Processor (DSP)

A Digital Signal Processor is a specialised processor with its architecture targeting the op-
erational needs of digital signal processing.

Digital to Analog Converter (DAC)

A Digital to Analog Converter is a system that converts a quantized digital signal into an
analog signal. Its counterpart is the ADC.

Direct Memory Access (DMA)

Direct Memory Access is a feature of a computer system that allows hardware subsystems
to accessmain system Random-AccessMemory (Random-AccessMemory (RAM)) directly,
thereby bypassing the Central Processing Unit (CPU).

Executable and Linkable Format (ELF)

The Executable and Linkable Format is a common standard file format for executables,
object code, shared libraries, and core dumps.

First In - First Out (FIFO)

In FIFO processing, the ”head” element of a queue is processed first. Once complete, the
element is removed and the next element in line becomes the new queue head.

GNU Compiler Collection (GCC)

The GNU Compiler Collection is a compiler system produced by the GNU project. It is part
of the GNU toolchain collection of programming tools.

Instruction Level Parallelism (ILP)

Instruction-level parallelism (ILP) is a measure of how many instructions in a computer
program can be executed simultaneously by the CPU.

LEANOS-UVIE-ADD-001

Architectural Design Document

Issue 1.0, June 1, 2017

Page 9 of 28

Interrupt Service Routine (ISR)

An Interrupt Service Routine is a function that handles the actions needed to service an
interrupt.

LEON2

The LEON2 is a synthesisable VHDLmodel of a 32-bit processor compliant with the SPARC
V8 architecture. It is highly configurable andparticularly suitable for SystemOnChip (SoC)
designs. Its source code is available under the GNU LGPL license

LEON3

The LEON3 is an updated version of the LEON2, changes include Symmetric Multiprocess-
ing (Symmetric Multiprocessing (SMP)) support and a deeper instruction pipeline

LEON3-FT

The LEON3-FT is a fault-tolerant versionof the LEON3. Changes to thebase version include
autonomous error handling, cache locking and different cache replacement strategies.

Massively Parallel Processor Breadboarding system (MPPB)

The Massively Parallel Processor Breadboarding system is a proof-of-concept design for a
space-hardened, fault-tolerant multi-DSP systemwith various subsystems to build a pow-
erful digital signal processing system with a high data throughput. Its distinguishing fea-
tures are the Network On Chip (Network On Chip (NoC)) and the XentiumDSPs controlled
by a LEON2 processor. It was developed under ESA contract 21986 by Recore Systems B.V.

MemoryManagement Unit (MMU)

A Memory Management Unit performs address space translation between physical and
virtual memory pages and protects unprivileged access to certain memory regions.

Network On Chip (NoC)

ANetworkOnChip is a communication systemonan integratedcircuit that applies (packet
based) networking to on-chip communication. It offers improvements overmore conven-
tional bus interconnects and is more scalable and power efficient in complex System On
Chip (SoC) desgins.

Next Generation Astronomy Processing Platform (NGAPP)

NextGenerationAstronomyProcessingPlatformwasanevaluationof theMPPBperformed
in a joint effort of RUAG Space Austria and the Department of Astrophysics of the Univer-
sity of Vienna. The project was funded under ESA contract 40000107815/13/NL/EL/f.

Packet Utilisation Standard (PUS)

ThePacketUtilisationStandardaddresses theend-to-end transport of telemetry and telecom-
mand data between user applications on the ground and applications onboard a satellite.
See also ECSS-E-70-41A.

LEANOS-UVIE-ADD-001

Architectural Design Document

Issue 1.0, June 1, 2017

Page 10 of 28

Portable Operating System Interface (POSIX)

ThePortableOperatingSystem Interface is a family of standards specifiedby the IEEECom-
puter Society for maintaining compatibility between operating systems.

Random-Access Memory (RAM)

Random-Access Memory is a type of memory where each memory cell may be accessed
directly via their memory addresses.

Reduced Instruction Set Computing (RISC)

RISC is a CPU design strategy that intends to improve performance by combining a sim-
plified instruction set with a microprocessor architecture that is capable of executing an
instruction in a smaller number of clock cycles.

RemoteMemory Access Protocol (RMAP)

The Remote Memory Access Protocol is a form of SpaceWire communication that trans-
parently communicates writes to memory mapped regions between different hardware
devices.

Round Robin (RR)

Round Robin is a scheduling algorithm where time slices are assigned in equal poritions
and in circular order. In the context of threads, priorities are usually only used to control
re-scheduling order when a mutex is accessed by a thread.

Scalable Sensor Data Processor (SSDP)

The Scalable Sensor Data Processor (SSDP) is a next generation on-board data process-
ing mixed-signal ASIC, envisaged to be used in future scientific payloads requiring high-
performance on-board processing capabilities. It is built opon a heterogeneousmulticore
architecture, combining twoXentiumDSP coreswith a general-purpose LEON3-FT control
processor in a Network On Chip (NoC).

SpaceWire

SpaceWire is a spacecraft communicationnetwork based inpart on the IEEE 1355 standard
of communications.

SPARC

SPARC (”scalable processor architecture”) is a Reduced Instruction Set Computing (RISC)
instruction set architecture developed by SunMicrosystems in the 1980s. The distinct fea-
ture of SPARCprocessors is the high number of Central ProcessingUnit (CPU) registers that
are accessed similarly to stack variables via “sliding windows”.

Symmetric Multiprocessing (SMP)

Symmetric Multiprocessing denotes computer architectures, where two ormore identical
processors are connected to the sameperiphery and are controlled by the sameoperating
system instance.

LEANOS-UVIE-ADD-001

Architectural Design Document

Issue 1.0, June 1, 2017

Page 11 of 28

SystemOn Chip (SoC)

A System On Chip is an integrated circuit that combines all components of a computer or
other electronic system into a single chip.

Very Long InstructionWord (VLIW)

Very Long Instruction Word is a processor architecture design concept that exploits In-
struction Level Parallelism (ILP). This approach allows higher performance at a smaller sili-
cone footprint compared to serialised instructionprocessors, as no instruction re-ordering
logic to exploit superscalar capabilities of the processor must be integrated on the chip,
but requires either code to be tuned manually or a very sophisticated compiler to exploit
the full potential of the processor.

Xentium

The Xentium is a high performance Very Long Instruction Word (VLIW) DSP core. It oper-
ates 10 parallel execution slots supporting 32/40 bit scalar and two 16-bit element vector
operations.

LEANOS-UVIE-ADD-001

Architectural Design Document

Issue 1.0, June 1, 2017

Page 12 of 28

4. Software Design Overview

4.1 Software Static Architecture

Figure 4.1: The fundamental architecture of LeanOS

The fundamental architecture of LeanOS is shown in Figure 4.1. At the top is the user space,
where user applications are set up and executed. The C library is part of the user space. It pro-
vides the system call interface that connects the user to kernel space functionality andmemory
address space. Below the user space is the kernel space. Here, the tasks of the operating system
kernel are executed.

Kernel space can be further divided into three gross layers. At the top is the system call inter-
face, which implements any I/O functionality to the user space. Below the system call interface
is the architecture-independent kernel code. While LeanOS is not designed with a high degree
of portability inmind, it is nonetheless sensible not tomix hardware dependent code into layers
that run on abstract functional concepts. On the lowest level sits the architecture-dependent
code, which forms what is typically called a BSP. This code serves as platform-specific glue to
the underlying hardware.

LEANOS-UVIE-ADD-001

Architectural Design Document

Issue 1.0, June 1, 2017

Page 13 of 28

4.2 Software Dynamic Architecture

LeanOS itself has no real time requirements. It does offer real time support for threads in both
kernel and user space, these are however specific to the implementation of user space code or
drivers/modules.

4.3 Software Behaviour

The behaviour of LeanOS is configuration-dependent. Usually, the kernel will configure itself
and the hardware, followed by user space initialisation.

Without user space, all actions by the drivers or other subcomponents will be their default
action inbase configuration. Togive anexample, interfacedriverswill usually ignore their inputs
and drop all received.

4.4 Interfaces Context

The internal and external software interfaces of LeanOS are described as part of its source code
in Doxygen markup, from which a document can be generated.

4.5 Long Lifetime Software

LeanOS is designed with the SSDP as a target platform. To allow re-use and adaptation to new
hardware, the software components of LeanOS are designed to be modular. Unless neeeded
for particular drivers, all hardware access is abstracted into a separate layer asmuch as possible,
so improved portability is ensured.

4.6 Memory and CPU Budget

LeanOS is designed to work within the constraints of the SSDP hardware specification. Care is
taken tominimise overheads, but run timeneeds of the user ultimately definememory andCPU
usage of the operating system.

4.7 Design Standards, Conventions and Procedures

The high level design of software functionality is done with the help of yEd, which is a general-
purpose diagramming program supporting the creation of UML, flowcharts and entitiy rela-
tionship diagrams. LeanOS is written primarily in C, hence certain restrictions apply in the use
of UML, which is mainly used of object oriented programming languages such as C++.

The software architecture is described on a component level and the interaction or commu-
nication between components. The detailed internal functional design of a component is left

LEANOS-UVIE-ADD-001

Architectural Design Document

Issue 1.0, June 1, 2017

Page 14 of 28

to the implementation and is described as part of the version dependent issue of the source
code. This is done to ensure that a certain amount of flexibility is present in the implementation
and changes that do not affect the fundamental design architecture of LeanOS can be applied
quickly and efficiently, since it is foremost a tool to the user with the purpose of creating a run-
time, not a product implementing a well constrained task.

The Linux kernel coding style is applied to all C code in LeanOS. Its use is enforced by the
checkpatch.pl utility found in the Linux kernel source tree.

No external software packages are reused in the implementation of LeanOS.

LEANOS-UVIE-ADD-001

Architectural Design Document

Issue 1.0, June 1, 2017

Page 15 of 28

5. Software Design
5.1 General

The purpose of LeanOS is to create an operating system that is easy to use and on point with
regard to the features of the target platform. Still, it is designed to be flexible enough that the
operating system kernel may be used with other (LEON3) platforms. One of its distinguishing
features is its focus on processing with the Xentium DSPs.

When dealing with the particular features of the SSDP or the MPPB [2], the term kernelmay be
used in different contexts. With regard to processing and the Xentium DSPs, a processing kernel
is a small functional program that runs on the Xentium, usually performing a single task. With
regard to the general purpose processor and operating system features, the term kernel refers
to the operating system core program.

Functional requirements are always referenced to their designcomponents, othersonly asneeded
or for clarification. This is reflected in the traceability matrix.

5.2 Overall Architecture

Figure 5.1: The architectural model of LeanOS. Here, the ”hardware” layer represents both the
hardware and the hardware abstraction layer of the software.

In LeanOS, the SSDP hardware is accessed in multiple layers of abstraction (see Figure 5.1).
Typical CPU tasks such as thread/task management and timer operation are used as part of the
operating system kernel and are also accessible by user applications via a system call interface.

LEANOS-UVIE-ADD-001

Architectural Design Document

Issue 1.0, June 1, 2017

Page 16 of 28

Other functional hardware components of the SSDP such as theNoCDMAhave their owndriver
modules. These are in turn used by the Xentium scheduler and other higher level modules in
the operating system. Configuration of and access to the latter from user space is done via a
system call interface. The system control interface serves as an intermediate between all layers
of the operating system,where systemormodule states andhardwaremodes or usage statistics
may be exported by individual components for external (user) access.

5.3 Software Components Design - General

D-GEN-0001 Identifier Function
Boot This is the hardware entry point of LeanOS. The boot proce-

dure sets up and configures the LEON3-FT processor for opera-
tion, initialises aminimum set of needed hardware devices and
memories as well as the initial system stack.

Purpose R-GEN-0006, R-FUN-0007, R-FUN-0804

D-GEN-0002 Identifier Function
User
Space

After the kernel has finished initialising, it calls a function
kernel_init() that executes an init() function configured by the
user. This is the run-time adaptation point from which user
space is started. From there, the user can start processes and
reconfigure or load kernel options andmodules via the system
call or sysctl interfaces.

Purpose R-FUN-0804

LEANOS-UVIE-ADD-001

Architectural Design Document

Issue 1.0, June 1, 2017

Page 17 of 28

D-GEN-0003 Identifier Function
Interrupts,
Traps

In order to operate a SPARC v8 CPU properly, a trap table must
be configured, in particular to handle register window under
and overflow traps if used with regular GCC code generation
for the target platform. LeanOS configures a callback system
for interrupt traps that can later be used to install custom
handlers, for example as part of driver modules.

Interrupt statistics are exported via the system control inter-
face.

Purpose R-GEN-0006, R-GEN-0009, R-GEN-0018, R-GEN-0010,
R-FUN-0023

Comment The trap table and its function are described in [3] in detail.

D-GEN-0004 Identifier Function
Timers Timing functionality is a core element of an operating system

by scheduling periodic and non-periodic kernelwakeup events
that subsequently control the system’s exectuion. The operat-
ing system kernel maintains these timers to measure time or
schedule kernel wakeups.
In addition to the CPU bound timers, the real-time clock of the
SSDP is supported.

Purpose R-FUN-0011, R-FUN-0016, R-FUN-0017

D-GEN-0005 Identifier Function
Kernel
Mode

The operating system protects access to privileged registers by
disabling supervisor mode when switching to user space. On
the SPARCv8, traps enable supervisor mode, so the privileged
mode is automatically entered when the kernel is executing
after a trap/interrupt or a system call from user space, which is
also implemented via the trap table.

Kernel and unmapped memory access from user space is pro-
tected by the MMU.

Purpose R-FUN-0803, R-FUN-0008

LEANOS-UVIE-ADD-001

Architectural Design Document

Issue 1.0, June 1, 2017

Page 18 of 28

D-GEN-0006 Identifier Function
MMU The kernel uses the MMU to map pages of the systemmemory

into a virtual address space for most of its own processes and
for user space.
If needed, physicalmemory is directly accessible by driver com-
ponents or mapped accordingly.

Purpose R-FUN-0803, R-FUN-0008
Comment The proper handling of address space translation is particularly

relevant for use with the NoC DMA driver and Xentium sched-
uler.

D-GEN-0007 Identifier Function
Thread
Support

This component supports the definition and creation of
tasks. Task priorities and scheduling deadlines are supported
depending on the selected mode.

Synchronisation and execution control between threads is pro-
vided via semaphores and mutexes.

Purpose R-FUN-0012, R-FUN-0013, R-FUN-0019

LEANOS-UVIE-ADD-001

Architectural Design Document

Issue 1.0, June 1, 2017

Page 19 of 28

D-GEN-0008 Identifier Function
Thread
Schedul-
ing

Threads are scheduled by the kernel according to their run
state, their priorities and optionally their deadline.

The state of mutexes and semaphores is used to temporarily
re-order priorities if needed, so lower priority threads do not
block higher priority threads and vice versa when locks are
employed.

Unless strict FIFOmode is configured, threads of all scheduling
priorities are regularly assigned an execution time slice. The
length of this time slice decreases with priority. If Round Robin
(RR) scheduling is to be used, time slices are set to be equal
for all threads regardless of priority. The latter is then only
used to control re-ordering of the thread schedule to more
efficiently solve mutex lock situations. The user is in any case
responsible to assign different priorities to threads where
deadlock situations might occur that cannot be resolved by
the scheduler (e.g. with identical priorities).

Access to mutexes and semaphores result in random schedul-
ing events if the lock is actively held or waited for by any other
threads. In tickless mode, regular scheduling occurs when a
thread is preempted at the end of its timeslice.

If the kernel is configured to tick periodically, scheduling
events will occur at a configurable integer fraction of that rate.

A special type of real-time thread is supported, which, with the
exception of an ISR may also preempt the operating system
kernel if its release condition occurs andmay run to its deadline
without being preempted by other threads. This functionality
is reserved for highly timing-critical tasks and is reserved to
functionality and modules executed in kernel space.

If amulti-core processor is present in the system, the kernel can
schedule tasks to run on more than one CPU if so configured.

Purpose R-FUN-0014, G-FUN-0015, R-FUN-0016, R-FUN-0017,
R-FUN-0019, R-FUN-0020, R-GEN-0028

LEANOS-UVIE-ADD-001

Architectural Design Document

Issue 1.0, June 1, 2017

Page 20 of 28

D-GEN-0009 Identifier Function
Message
Queues

Message queues are a facility for tasks/processes to communi-
cate arbitrary data to each other. A named queue is created
by one thread and opened by at least one other thread. The
threads can then sendand receivemessagesof arbitrary length.
If a threadwants to activelywait for amessage, it can request to
be notified and is subsequently woken by the scheduler once a
message arrives.

Purpose R-FUN-0021
Comment The implementation follows the POSIXmessage queueAPI def-

inition.

D-GEN-0010 Identifier Function
Loadable
Modules

Kernel modules can be loaded via the system call interface.
The module is supplied as an ELF binary that holds special
sections that are executed by the kernel as their init() or exit()
functions whenever they are loaded or unloaded.

The init function of a module is typically used to configure
its functionality within the kernel, e.g. register a thread, gain
access to a hardware device or register an interrupt callback.
If the module is no longer needed or explicitly unloaded by
the user, the exit function is used to de-register and clean up
functionality used by the module.

Start-uparguments canbe supplied to themoduleduring load-
ing. At run time, the module may publish its internal settings
via the kernel’s system control interface.

Purpose R-FUN-0022

LEANOS-UVIE-ADD-001

Architectural Design Document

Issue 1.0, June 1, 2017

Page 21 of 28

D-GEN-0011 Identifier Function
System
Control
Interface

The system control interface is a generic parseable interface
that is accessible from user and kernel space. It is modeled
on a logical tree that holds nodes representing entries of
kernel components and can be viewed as a file/directory
structure. The input/output of each entry and how it may be
parsed is defined by its creator and may be used for run-time
configuration or statistics keeping.

Data may be read and written to the nodes and are exchanged
via character-based text.

Special nodes may be created that allow exchange of raw
binary data, for example internal memory dumps or configu-
ration data.

The entries in a node are functions that are part of a module or
system component. The component registers these functions
along with a name and a positional branch name within the
logical tree. Componentsmay also define new branches where
their interface is positioned.

If the node is read, the system control interface executes the
associated output function of the component and returns a
character buffer to the reader.

If the node is written, the writer-supplied buffer is passed to
the component’s internal associated input function and parsed
by the latter.

Success or failure of the operation depends on the correct use
of the individual make-up of the character buffers.

Purpose R-FUN-0023, R-FUN-0024

LEANOS-UVIE-ADD-001

Architectural Design Document

Issue 1.0, June 1, 2017

Page 22 of 28

D-GEN-0012 Identifier Function
SpaceWire
Driver

The SpaceWire devices of the SSDP are accessible from user
space via a file descriptor that can be read orwritten atomically.
If a SpaceWire device is only used in the Xentium processing
network, it may be configured by the driver for direct DMA to
the input buffer stage. Similarly, it may be used with DMA for
the output buffer stage.
If the RMAP feature is to be used, the configured physicalmem-
ory block is mapped into a virtual memory space.

Purpose G-FUN-0025, R-FUN-0026, R-FUN-0027

D-GEN-0013 Identifier Function
ADC/DAC
Driver

The ADC/DAC devices of the SSDP are accessible from user
space via a file descriptor that can be read orwritten atomically.
If a ADCdevice is only used in the Xentiumprocessing network,
it may be configured by the driver for direct DMA to the input
buffer stage. Similarly, the DAC may be used with DMA for the
output of the processing chain.

Purpose G-FUN-0025

LEANOS-UVIE-ADD-001

Architectural Design Document

Issue 1.0, June 1, 2017

Page 23 of 28

D-GEN-0014 Identifier Function
Xentium
Driver

The Xentium driver and scheduler loads binary images of
functional DSP program kernels via a system call interface.
Each image is assigned a signature that identifies the type of
function of the DSP kernel and amask that control the number
of instances and Xentium DSPs it may run on at any time.

To each DSP kernel image, an input buffer is assigned, which
stores references to metadata packets. Buffer fill level thresh-
olds are defined that control the dynamic processing priority
during run-time.

The first threshold defines the minimum fill level above which
the processing kernel may be scheduled. This is relevant
in situations where more than input packets are needed to
perform a task.

The second threshold is the low threshold. As long as the
buffer fill level is below this threshold, it is only scheduled with
the lowest priority. If the level is above the low threshold, the
buffer contents are scheduled withmedium priority.

The third threshold is the high threshold. If the buffer level
exceeds this threshold, it is scheduled for processing with the
highest priority.

Purpose R-FUN-0026
Comment The minimum input threshold is useful in situations where the

processing kernel must combine individual data segments, for
example when stacking individual frames that passed through
preprocessing stages earlier.

LEANOS-UVIE-ADD-001

Architectural Design Document

Issue 1.0, June 1, 2017

Page 24 of 28

D-GEN-0015 Identifier Function
Xentium
Queues

The scheduling queues are ordered by buffer fill level. The
queue is updated as packets move between metadata buffers.
The update mechanism is part of the metadata buffers and
triggers a message to the driver whenever a level threshold
is either over- or under-run and the most recent critical (high)
buffer is moved to the head of the queue. If all buffers are
above the high threshold, they are processed in an Round
Robin (RR) pattern.

The driver maintains a separate bonded queue for each DSP
that holds program kernels that are allowed to run only on a
particular DSP and one shared queue that holds all other ker-
nels. The scheduling priority of equal-level buffer states of
bonded queues is higher than the shared queue, i.e. buffers
above thehigh threshold in abondedqueue areprocessedfirst,
followed by the high buffers in the shared queue, followed by
themedium level buffers in the bonded queue etc.

Purpose R-FUN-0027

LEANOS-UVIE-ADD-001

Architectural Design Document

Issue 1.0, June 1, 2017

Page 25 of 28

D-GEN-0016 Identifier Function
Xentium
Sched-
uler

If a program kernel’s buffer is above the high threshold, du-
plicates of the program kernel may be scheduled to run in
parallel on other DSPs according to the kernel’s control mask.
If more than two Xentiums are available in the system, the
distribution scheduling algorithm ensures that all available
DSPs are assigned a program kernel above the high threshold
with respect to their queues before scheduling duplicate
instances. If DSPs are available, the head of the queue is
duplicated according to its control mask, followed by the next
item and so on, as long as free Xentiums are available and
pending high threshold buffers exist in the queue.

The driver also maintains a special type of metadata buffer for
input and output nodes that connect the Xentium processing
chain to external data links or mass storage. Of these, the input
buffers are processedwith the highest absolute priority relative
to their fill status. This is done to ensure that if a data flow stall
occurs, it does so as far back in the processing chain as possible
and data input is maintained until all buffers are filled to their
limit.

Purpose R-FUN-0026, R-FUN-0027
Comment Typically, the input buffer is the input for a special DSP kernel

that processes and interprets the incoming data stream (of e.g.
PUSpackets) andprepares and/ordistributesmetadatapackets
to the inputs of the processing kernels according to the desired
application.

LEANOS-UVIE-ADD-001

Architectural Design Document

Issue 1.0, June 1, 2017

Page 26 of 28

D-GEN-0017 Identifier Function
Xentium
Data
Buffers

The metadata buffers track metadata packets as they move
through the processing network. With the exception of the
input buffers to the network, they are the input of one and the
output of an arbitrary number of Xentium program kernels.
Each item in a buffer corresponds to one metadata packet
descriptor.

A metadata packet holds a pointer to data buffers of arbitrary
size and a field describing a route through the processing
network of available kernels by their signature identifier,
i.e. it defines its own processing chain. Each entry holds an
associated pointer to an optional argument field, which may
hold parameters for the processing kernel.

Program kernels may collect one or more of these packets at
their input depending on their processing functionality and
either operate on the contents of the packet or generate new
packets from one or more input packets.

As the packetmoves through the kernels, items on the process-
ing routing stack are moved to a history field and they are out-
put into ameta-buffer according to their pending routingnode.

Purpose R-FUN-0027

5.4 Software Components Design - Aspects of each Component

The detailed design of the individual components is documented as part of their source code
in Doxygen markup. This ensures continued flexibility in development and allow for effortless
maintainance of a fully update state between the implementation and its detailed documenta-
tion.

5.5 Internal Interface Design

The internal interfaces of the operating systemare described as part of the source code inDoxy-
gen markup and may be generated from there.

LEANOS-UVIE-ADD-001

Architectural Design Document

Issue 1.0, June 1, 2017

Page 27 of 28

5.6 Requirements to Design Components Traceability

Functional requirements are always reference to their designcomponents, othersonly asneeded
or for clarification. This is reflected in the traceability matrix.

D
-G
EN

-0
00

1

D
-G
EN

-0
00

2

D
-G
EN

-0
00

3

D
-G
EN

-0
00

4

D
-G
EN

-0
00

5

D
-G
EN

-0
00

6

D
-G
EN

-0
00

7

D
-G
EN

-0
00

8

D
-G
EN

-0
00

9

D
-G
EN

-0
01

0

D
-G
EN

-0
01

1

D
-G
EN

-0
01

2

D
-G
EN

-0
01

3

D
-G
EN

-0
01

4

D
-G
EN

-0
01

5

D
-G
EN

-0
01

6

D
-G
EN

-0
01

7

R-GEN-0001

R-GEN-0002

R-GEN-0003

R-GEN-0004

R-GEN-0006

R-GEN-0601

R-GEN-0602

R-FUN-0007

R-FUN-0803

R-FUN-0008

R-FUN-0011

R-FUN-0012

R-FUN-0013

R-FUN-0014

G-FUN-0015

R-FUN-0016

R-FUN-0017

R-FUN-0019

R-FUN-0020

R-FUN-0021

R-FUN-0022

R-FUN-0804

R-FUN-0023

R-FUN-0024

G-FUN-0025

R-FUN-0026

R-FUN-0027

R-GEN-0009

LEANOS-UVIE-ADD-001

Architectural Design Document

Issue 1.0, June 1, 2017

Page 28 of 28

D
-G
EN

-0
00

1

D
-G
EN

-0
00

2

D
-G
EN

-0
00

3

D
-G
EN

-0
00

4

D
-G
EN

-0
00

5

D
-G
EN

-0
00

6

D
-G
EN

-0
00

7

D
-G
EN

-0
00

8

D
-G
EN

-0
00

9

D
-G
EN

-0
01

0

D
-G
EN

-0
01

1

D
-G
EN

-0
01

2

D
-G
EN

-0
01

3

D
-G
EN

-0
01

4

D
-G
EN

-0
01

5

D
-G
EN

-0
01

6

D
-G
EN

-0
01

7

R-GEN-0018

R-GEN-0010

R-GEN-0028

R-GEN-2001

R-GEN-0101

R-GEN-0801

R-GEN-0802

R-GEN-0805

G-GEN-0201

R-GEN-0301

R-GEN-0401

R-GEN-0402

R-GEN-0403

R-GEN-0005

R-GEN-1001

R-GEN-1002

	Introduction
	Purpose of the Document
	Scope of the Software

	Applicable and Reference Documents
	Terms, Definitions and Abbreviated Items
	Acronyms
	Glossary

	Software Design Overview
	Software Static Architecture
	Software Dynamic Architecture
	Software Behaviour
	Interfaces Context
	Long Lifetime Software
	Memory and CPU Budget
	Design Standards, Conventions and Procedures

	Software Design
	General
	Overall Architecture
	Software Components Design - General
	Software Components Design - Aspects of each Component
	Internal Interface Design
	Requirements to Design Components Traceability

