4 institut fUr G Lniversitat
i physik L wien

UNIVERSITATSSTERNWARTE WIEN

LEANOS -
AN OPERATING SYSTEM FOR THE SSDP

User Manual
Reference: LEANOS-UVIE-UM-001

Version: Issue 1.0, June 1, 2017

Prepared by: Armin Luntzer'

Checked by: Roland Ottensamer’, Christian Reimers'

Approved by: Franz Kerschbaum'’

T Department of Astrophysics, University of Vienna

Copyright ©2017

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with no
Front-Cover, no Logos of the University of Vienna.

A institut fUI‘ LEANOS-UVIE-UM-001 Issue 1.0, June 1,2017
aStI‘OphySl k User Manual

UNIVERSITATSSTERNWARTE WIEN Page 2 of 33

Contents

1 Introduction 5
1.1 PurposeoftheDocument it 5

2 Applicable and Reference Documents 6
3 Terms, Definitions and Abbreviated Items 7
3.1 ACIONYMS . . e e e e e e e e e e e e e e e e e e 7

3.2 GloSsary . .o e e e e e e 7

4 Software Overview 11
41 FunctionandPurpose e 11
42 BuildRequirements. v i e e e e 11
43 BuildSystem e e e e e e 11
44 SourceandSupportDocumentation o 0. 12

45 XentiumKernel Programs i e e 12
4.6 XentiumProcessingDemo e 12
47 SampleCode e e 12
4.8 FeaturesOverview i e e 13
4.8.1 MemoryManagementt 13

48.2 LoadableModules e 13

483 PayloadIimages e 13

484 Xentiumand NoCsupport, 13

5 Structure and Concept 14
5.1 Source CodeOrganisation v v i i i i e e e 14

5.2 Processor Architectures 14

53 CommonKernelCode e 14
54 Xentium ProcessingKernels e 14
55 ExampleCodeandTesting. i it 15

6 Processing Networks in LeanOS 16
6.1 OVerview e e e e e e e e 16
6.2 ProcessingTasks e 16

6.3 ProcessingTrackers e e 16
6.4 ProcessingNetworks e 17
6.5 Building a Generic Processing Network 20
6.6 Building a Xentium ProcessingNetwork, 23

6.7 Xentium Kernel Programs i e e e 24

V. institut flr LEANOS-UVIE-UM-001
aStI‘OphySl k User Manual

Issue 1.0, June 1, 2017

UNIVERSITATSSTERNWARTE WIEN Page 3 of 33
7 Custom Xentium DSP Assembly 27
7.1 OVervIEW . . o e e e e 27
7.2 Rampfit OptimisationExample 28
A Changes from NGAPP to LeanOS Xentium Processing Concept 33
A1 ProcessingChain e e e 33
A2 Inputbuffering 33

A institut far LEANOS-UVIE-UM-001 Issue 1.0, June 1,2017

- astrothSI k User Manual

UNIVERSITATSSTERNWARTE WIEN Page 4 of 33

Revision History

Revision Date Author(s) Description

0.1 03.03.2017 AL Initial version
1.0 01.06.2017 FK document approved

institut fur LEANOS-UVIE-UM-001
astrophysik User Manual

UNIVERSITATSSTERNWARTE WIEN

)

Issue 1.0, June 1, 2017

Page 5 of 33

ntroduction

1.

1.1 Purpose of the Document

This document gives an overview on how to use the LeanOS operating system with regard to
Xentium processing. An overview of the structure of LeanOS will be given, detailed information
relevant to system programming must however be looked up in the in-line documentation of

the source files.

Vs institut fur LEANOS-UVIE-UM-001 Issue 1.0, June 1,2017
aStrOthSI k User Manual

Page 6 of 33

2. Applicable and Reference Documents

[11 A.Luntzer, R. Ottensamer, and F. Kerschbaum. “BASKET on-board software library”. In: Proc.
SPIE 9152 (2014), 915225-91522S-8.

[2] Xentium User Guide. 2016.

Y institut fUI’ LEANOS-UVIE-UM-001 Issue 1.0, June 1,2017
- astrothSIk User Manual

UNIVERSITATSSTERNWARTE WIEN Page 7 of 33

3. Terms, Definitions and Abbreviated
[tems

3.1 Acronyms

CPU Central Processing Unit
DMA Direct Memory Access
DSP Digital Signal Processor

ELF Executable and Linkable Format
GCC GNU Compiler Collection
ILP Instruction Level Parallelism

MMU Memory Management Unit

MPPB Massively Parallel Processor Breadboarding system
NGAPP Next Generation Astronomy Processing Platform
NoC Network On Chip

RAM Random-Access Memory

RISC Reduced Instruction Set Computing

SMP Symmetric Multiprocessing

SoC System On Chip

SSDP Scalable Sensor Data Processor

TCM Tightly-Coupled Memory

VLIW Very Long Instruction Word

3.2 Glossary

Central Processing Unit (CPU)
The Central Processing Unit is the electronic circuitry that interprets instructions of a com-
puter program and performs control logic, arithmetic, and input/output operations speci-
fied by the instructions. It maintains high-level control of peripheral components, such as
memory and other devices.

Digital Signal Processor (DSP)
A Digital Signal Processor is a specialised processor with its architecture targeting the op-
erational needs of digital signal processing.

Direct Memory Access (DMA)

Direct Memory Access is a feature of a computer system that allows hardware subsystems
to access main system Random-Access Memory (Random-Access Memory (RAM)) directly,
thereby bypassing the Central Processing Unit (CPU).

©) institut fUI’ LEANOS-UVIE-UM-001 Issue 1.0, June 1, 2017

L@[; astrothSI k User Manual

UNIVERSITATSSTERNWARTE WIEN Page 8 of 33

Doxygen

Doxygen is a documentation generator for writing software reference documentation.

Executable and Linkable Format (ELF)
The Executable and Linkable Format is a common standard file format for executables,
object code, shared libraries, and core dumps.

GNU Compiler Collection (GCC)
The GNU Compiler Collection is a compiler system produced by the GNU project. It is part
of the GNU toolchain collection of programming tools.

Instruction Level Parallelism (ILP)
Instruction-level parallelism (ILP) is a measure of how many instructions in a computer
program can be executed simultaneously by the CPU.

LEON2

The LEON2 is a synthesisable VHDL model of a 32-bit processor compliant with the SPARC
V8 architecture. Itis highly configurable and particularly suitable for System On Chip (SoC)
designs. Its source code is available under the GNU LGPL license

LEON3
The LEON3 is an updated version of the LEON2, changes include Symmetric Multiprocess-
ing (Symmetric Multiprocessing (SMP)) support and a deeper instruction pipeline
LEON3-FT
The LEON3-FT is a fault-tolerant version of the LEON3. Changes to the base version include
autonomous error handling, cache locking and different cache replacement strategies.
Massively Parallel Processor Breadboarding system (MPPB)

The Massively Parallel Processor Breadboarding system is a proof-of-concept design for a
space-hardened, fault-tolerant multi-DSP system with various subsystems to build a pow-
erful digital signal processing system with a high data throughput. Its distinguishing fea-
tures are the Network On Chip (Network On Chip (NoC)) and the Xentium DSPs controlled
by a LEON2 processor. It was developed under ESA contract 21986 by Recore Systems B.V.

Memory Management Unit (MMU)
A Memory Management Unit performs address space translation between physical and
virtual memory pages and protects unprivileged access to certain memory regions.
Network On Chip (NoC)

A Network On Chip is acommunication system on an integrated circuit that applies (packet
based) networking to on-chip communication. It offers improvements over more conven-
tional bus interconnects and is more scalable and power efficient in complex System On
Chip (SoC) desgins.

]nSt]tut fur LEANOS-UVIE-UM-001 Issue 1.0, June 1, 2017

L@[; ﬁaS’[l‘OphySlk User Manual

UNIVERSITATSSTERNWARTE WIEN Page 9 of 33

Next Generation Astronomy Processing Platform (NGAPP)

Next Generation Astronomy Processing Platform was an evaluation of the MPPB performed
in a joint effort of RUAG Space Austria and the Department of Astrophysics of the Univer-
sity of Vienna. The project was funded under ESA contract 40000107815/13/NL/EL/f.

Random-Access Memory (RAM)
Random-Access Memory is a type of memory where each memory cell may be accessed
directly via their memory addresses.

Reduced Instruction Set Computing (RISC)

RISC is a CPU design strategy that intends to improve performance by combining a sim-
plified instruction set with a microprocessor architecture that is capable of executing an
instruction in a smaller number of clock cycles.

Scalable Sensor Data Processor (SSDP)

The Scalable Sensor Data Processor (SSDP) is a next generation on-board data process-
ing mixed-signal ASIC, envisaged to be used in future scientific payloads requiring high-
performance on-board processing capabilities. It is built opon a heterogeneous multicore
architecture, combining two Xentium DSP cores with a general-purpose LEON3-FT control
processor in a Network On Chip (NoC).

SPARC

SPARC ("scalable processor architecture”) is a Reduced Instruction Set Computing (RISC)
instruction set architecture developed by Sun Microsystems in the 1980s. The distinct fea-
ture of SPARC processors is the high number of Central Processing Unit (CPU) registers that
are accessed similarly to stack variables via “sliding windows".

Symmetric Multiprocessing (SMP)
Symmetric Multiprocessing denotes computer architectures, where two or more identical
processors are connected to the same periphery and are controlled by the same operating
system instance.

System On Chip (SoC)
A System On Chip is an integrated circuit that combines all components of a computer or
other electronic system into a single chip.

Tightly-Coupled Memory (TCM)
Tightly-Coupled Memory is the local data memory that is directly accessible by a Xentium’s
load/store unit. It can be viewed as a completely program-controlled data cache.

Very Long Instruction Word (VLIW)

Very Long Instruction Word is a processor architecture design concept that exploits In-
struction Level Parallelism (ILP). This approach allows higher performance at a smaller sili-
cone footprint compared to serialised instruction processors, as no instruction re-ordering

’,,% institut fUI’ LEANOS-UVIE-UM-001 Issue 1.0, June 1,2017

tﬁ[" aStrOthSIk User Manual

UNIVERSITATSSTERNWARTE WIEN Page 10 of 33

logic to exploit superscalar capabilities of the processor must be integrated on the chip,
but requires either code to be tuned manually or a very sophisticated compiler to exploit
the full potential of the processor.

Xentium
The Xentium is a high performance Very Long Instruction Word (VLIW) DSP core. It oper-
ates 10 parallel execution slots supporting 32/40 bit scalar and two 16-bit element vector

operations.

]nSt[tut fur LEANOS-UVIE-UM-001 Issue 1.0, June 1, 2017

L{i[] aStrOthSIk User Manual

UNIVERSITATSSTERNWARTE WIEN Page 11 of 33

)

iy
il |

4. Software QOverview

4.1 Function and Purpose

This software is an operating system targeting in particular the use of the Xentium DSPs found
in SoCs like the SSDP or MPPB.

The source code components are split into architecture-specificand generic sources that de-
pend on the implementation of certain interfaces by the former. While this means that any ar-
chitecture could be supported, the only currently implemented hardware architecture is SPARC
v8.

4.2 Build Requirements

In order to build LeanOS, make sure you have set up your environment variables to point to
the compilers to be used. You will need at least a cross-compiler for the SPARC platform (i.e.
BCC from Gaisler or SPARC GCC from RECORE) and a GCC compiler for your host platform. In
addition, you will also need GNU make, appropriate versions of binutils and a bash shell, i.e.
what you would typically find in a Linux distribution with a basic set of development and system
tools installed. If you want to generate source code documentation, you will also need to install
Doxygen. To generate documents from LaTeX source files, you will also need an appropriate TeX
environment.

4.3 Build System

LeanOS uses an adaptation of the Linux kernel’s Kbuild system. For details on how to use it, you
may refer to related documentation found online.

To launch the configuration interface, simply issue

$ make menuconfig

on your shell prompt from the top-level LeanOS directory. If you prefer a graphical interface,
you may use:

$ make gconfig

You can now configure the build as you desire. The menu items are usually descriptive, but if
you are unsure, have a look at the help text of an item for more information. Note that some
options may only appear if a certain prerequisite has been enabled, i.e. unless you check Enable
System-On-Chip Configurations and do not select the correct CPU target, you will not be able to
build for the SSDP or the MPPB. You will also not be able to select any of the specific drivers, e.g.
for the NoC DMA. Once you are satisfied with your selection, save and exit the configuration

y) institut fUI’ LEANOS-UVIE-UM-001 Issue 1.0, June 1, 2017

L{i[] aStrOthSIk User Manual

UNIVERSITATSSTERNWARTE WIEN Page 12 of 33

interface.

To build a kernel image, you can now issue

$ make

on your command line. The build process will produce an executable ELF binary named leanos
which you can then run on your target system using your preferred method, e.g. via grmon.

44 Source and Support Documentation

To generate source code documentation in HTML, go to Documentation/doxygen and run make.

To render support documents such as this one from their LaTeX sources, go to Documentation/-
doxygen and follow the instructions in the README file.

4.5 Xentium Kernel Programs

To build Xentium processing kernels, you must install the Xentium development tools (avail-
able from RECORE) in your path and select the configuration option Build Xentium DSP kernel
programs. If you have configured loadable module support and embedded image generation
(see below), the generated Xentium kernel will be automatically embedded in your kernel im-
age and loaded on boot.

The source code to the Xentium programs is located in the dsp/ subdirectory.

4.6 Xentium Processing Demo

To build a LeanOS kernel that demonstrates a Xentium processing network setup, select En-
able System-On-Chip configurations, then configure your CPU and board type (LEON2/3, MPP-
B/SSDP). In the submenu System-on-Chip drivers, enable the NoC 2D DMA driver and Xentium
processing network support, but make sure to set them to built-in if you have enabled loadable
module support. Now select Build Xentium DSP kernel programs and Build a Xentium Processing
Demo kernel in the main menu, then make the kernel image.

4.7 Sample Code

Use the configuration interface to enable and select sample code to be built. Run

$ make samples

to build the executables. They will be placed in the samples/ subdirectories.

y) institut fUI’ LEANOS-UVIE-UM-001 Issue 1.0, June 1, 2017

L{i[] aStrOthSIk User Manual

UNIVERSITATSSTERNWARTE WIEN Page 13 of 33

4.8 Features Overview

The following will give you a concise overview of some of the currently implemented features
of LeanOS that distinguish it from other operating systems in its class.

4.8.1 Memory Management

A fully working malloc/free interface has been implemented on top of lower-tier page/chunk
allocators with optional SPARC SRMMU support. SRMMU-based page mapping is done on-
demand (i.e. lazy mapping). Situations where the operating system runs out of physical mem-
ory are detected, but currently no action is taken except to halt the system. This can be easily
extended to boot into safe mode or take other FDIR measures when a faulty software configu-
ration uses physical memory above a critical threshold.

4.8.2 Loadable Modules

The operating system is able to dynamically load/unload modules to extend or patch its capa-
bilities at run time. Modules are unlinked ELF object files. Relocations are computed during
load. Modules may also be compiled into the kernel.

4.8.3 Payload Images

The kernel can interpret and load the contents of AR (archive) files. Configured loadable mod-
ules and Xentium programs are automatically added to an archive that is embedded into the
kernel image during build. The image may also hold arbitrary data, e.g. calibration files.

484 Xentium and NoC support

LeanOS supports the Network-on-Chip and its core features (such as the DMA) found in the SSDP
and the MPPB. A major focus is the integration of the Xentium DSPs into a processing network
that can be used to create arbitrary pipelines on a per-task-packet basis (see below).

",,% institut fUI’ LEANOS-UVIE-UM-001 Issue 1.0, June 1, 2017

t{i[aStrOthSI k User Manual

UNIVERSITATSSTERNWARTE WIEN Page 14 of 33

5. Structure and Concept

5.1 Source Code Organisation

The operating system code is composed of a generic and a processor architecture component.
The generic section typically provides higher-level, abstract APIs which may rely on the archi-
tecture code to implement backends to certain interface dependencies. Examples are low level
memory management, MMU access and interrupt management.

5.2 Processor Architectures

The implemented processor architectures are located in the arch/ subdirectory of the source
tree. At minimum, the function setup_arch() is expected to be implemented. This function
must set up a basic platform boot memory manager and implement (de-)allocation functions
bootmem_alloc() and bootmem_free() in a way that arbitrary-sized chunks of memory can be
requested and released. If a MMU is available and implemented, the architecture should also
provide an implementation of kernel_sbrk(). If the latter is not available, the operating system
will fall back to use the boot memory manager for its high-level allocator subsystem kmem.

Other backends, such as for interrupt management must be provided if this functionality is
used in the desired configuration of the OS.

5.3 Common Kernel Code

Common code components, which may be used across all architectures are organised into sev-
eral subdirectories (init/, kernel/ and lib/). The categories are not strict, but typically group com-
ponents by intended usage type. Sources in kernel/ usually concern single-instance, driver and
driver-like elements used in the implementation of OS kernel functions, while sources in lib/
may be reused multiple times to implement functionality (e.g. paging in the processor archi-
tecture code) and are generally more modular or could even be used for completely differnet
purposes.

5.4 Xentium Processing Kernels

The processing kernels used with the Xentium DSP and their support and interface library for
interaction with the host processor are located in the dsp/ directory.

ﬁ ins’[itut fur LEANOS-UVIE-UM-001 Issue 1.0, June 1, 2017
Tastrophysik User Manual

UNIVERSITATSSTERNWARTE WIEN Page 15 of 33

5.5 Example Code and Testing

Programming and usage examples of certain operating system features are found in the sam-
ples/ subdirectory.

Automated test scripts and unit tests are found in the tools/testing/ subdirectory.

]nSt[tut fur LEANOS-UVIE-UM-001 Issue 1.0, June 1, 2017

LE[: aStrOthSIk User Manual

UNIVERSITATSSTERNWARTE WIEN Page 16 of 33

6. Processing Networks in LeanOS

6.1 Overview

In contrast to a typical implementation of processing pipeline, the approach taken in this im-
plementation is not a static route, but one that is defined arbitrarily on a per-task basis from a
set of processing kernel nodes consisting of small Xentium ELF binaries that are registered to the
operating system’s Xentium DSP driver. Each of these nodes define their own capability as an
op code which is read by the driver and used to identify and set up individual processing steps
of a given processing task.

To define a processing chain, the user selects a sequence of operations to be performed on a
data buffer. It is up to the user to make sure that the processing kernels are designed in such
a way, that the data format may be interpreted properly. A processing task is inserted into the
input node of the Xentium processing network and then autonomously passed on to all nodes
in series until it reaches the output node, where it is handed back to the user. The node selec-
tion from the registered set of Xentium kernels is performed by the driver, which takes care of
scheduling tasks.

The concept and function of a proccessing network is described in the following section. It is
based on a generic implementation that will be described first, followed by the specific variant
for the Xentium. Note that it is laid out in order of dependency of the individual components,
i.e. bottom-up.

6.2 Processing Tasks

A processing task (Figure 6.1) is the lowest-tier element of a processing network. It consists of
a data buffer and a list of processing steps to perform. Optionally, a task type identifier and a
sequence number can be assigned that may be used to track tasks as part of the user imple-
mentation of a network. Processing steps are added by configuring the op code of the opera-
tion to perform and optionally setting an arbitrary data pointer associated with the particular
operation. As operations are completed on the data, the operation step record is moved from
the pending (TODO) to the completed (DONE) steps list.

6.3 Processing Trackers

In order to process the tasks fed into the network, nodes must be created, which execute the
desired processing steps listed in the task. These nodes are the processing trackers (Figure 6.2).
Each processing tracker is initialised with an op code and a function to execute the particular

",,% institut fUI’ LEANOS-UVIE-UM-001 Issue 1.0, June 1, 2017

t{i[aStrOthSI k User Manual

UNIVERSITATSSTERNWARTE WIEN Page 17 of 33

[OPl
[OPZ

OP Code

N| 5

1OP 3 =1

o

OP Info o

(optional) o

OP 4
Processing Step [

Steps TODO Steps DONE

{ Data Buffer

Processing Task

Figure 6.1: The structure of a single processing task. Steps from the TODO list are moved to the
DONE list of steps when the operation is complete. The data buffer holds the data the operations
are performed on.

operation. Trackers have a property called the critical level, which is the threshold of pending
input tasks above which a tracker should be processed with priority.

6.4 Processing Networks

Processing tracker nodes do not handle task management themselves. Instead, they are part of
a network that propagates the tasks between the nodes. When a task is added to the input of a
network, it inspects the op code of the first item of the task’s step list and moves the task to the
input of a matching tracking node.

The execution cycles of tasks are controlled by the user. To execute the input tasks on any
tracker, a function is called to initiate a processing cycle (Figure 6.3). The network then looks for
trackers above their critical threshold and moves them to the top of the execution queue in any
order and executes the top-most item of the stack. If no critical trackers are present, the first
non-empty tracker encountered is executed. The return code of the executed operation is then
evaluated. For each processed task, the processing step list is updated by moving the top-most
op code (which was just executed) to the DONE list and the task is forwarded to the matching
tracker of the next pending op code on its TODO list. This process is repeated until the input of a
tracker is empty, or task processing abort is signalled by a return code of the operator function.

A ﬁ Institut fur LEANOS-UVIE-UM-001
Lﬁf i aStrOthSIk User Manual

UNIVERSITATSSTERNWARTE WIEN

Issue 1.0, June 1, 2017

Page 18 of 33

Network Input

Operation
ID Code

Operation

Function

Critical
Input Tasks Level

Processing Tracker

Network Output

Figure 6.2: A single processing tracker node holds an op code identifier and a processing func-
tion. It stores an arbitrary number of tasks at its input. A critical level defines a threshold above
which the pending tasks in a tracker should be preferred for processing. Multiple task tracker
nodes form a processing network. Tasks inserted into the network propagate through nodes
on arbitary paths or even multiple times (as defined by their processing step list) through the

same node unti they reach the output node.

. institut fur LEANOS-UVIE-UM-001 Issue 1.0, June 1,2017
aStI‘OphySl k User Manual

UNIVERSITATSSTERNWARTE WIEN Page 19 of 33
New Processing Cycle
critical nodes
to top of queue
v
get topmost
node
get next <
pending task R
Exit
no task #{ ,
execute
‘ OP function H eval response
> move task
yes to next node
> move task
yes to next node
DETACH yes -
move task back
RESCHEDULE 6 SEE Feke
move task back . | sort tasks by
to same node | seq. number
delete all n move to
pending steps " output node

Figure 6.3: A cycle of the processing network identifies possible critical tracker nodes and moves
them to the top of the queue. The top-most tracker on the node stack is then processed until
abort is commanded, or the tracker input is empty. Processed tasks are propagated to the next
matching node in their processing step list.

4 institut flr LEANOS-UVIE-UM-001 Issue 1.0, June 1,2017

@ :: aStrOthSIk User Manual

UNIVERSITATSSTERNWARTE WIEN Page 20 of 33

Once all steps on a task’s processing list are completed, it is moved to the output node of the
network, which executes a user-defined function that takes care of any further treatment of the
task, e.g. to move it to mass memory.

Processing functions may arbitrarily manipulate a task. This includes deletion or addition of
steps, change of data buffers and so on. A processing function may even collect a number of
tasks, merge their data (e.g. by performing an image stacking operation), then re-add the newly
shaped task back to the network and destroy the remaining, now empty tasks.

If an operation is to be applied multiple times or recursively (e.g. for wavelet decomposi-
tion), the pending step list can contain multiple entries of the same op code (Figure 6.2).

This characteristic can also be used to very easily construct state machines, where the pro-
cessing function control the state machine transitions by manipulating the processing step list
until certain conditions are met.

6.5 Building a Generic Processing Network

The Xentium processing network is based on the generic implementation of a processing net-
work, which may be used to create, develop and representatively test processing operations
before theirimplementation in Xentium kernel programs.

A processing network consists of a number of processing trackers, each having an op code and
a corresponding function assigned. The trackers define a critical level of pending tasks, which
is used for priority scheduling.

Pending items are tracked as doubly-linked lists, where each item provides the storage space
of the links itself. This means that, while nodes may reach a critical fill level, they can never run
out of memory space.

A processing network is created by calling:

struct proc_net *pn = pn_create();

Then to add a task tracker that acts as a processing node, we must define a function with a
matching interface. A simple example is a function that just increments all data by one:

° institut fur LEANOS-UVIE-UM-001 Issue 1.0, June 1, 2017
aStrOphySI k User Manual

UNIVERSITATSSTERNWARTE WIEN Page 21 of 33

int op_inc(unsigned long op_code, struct proc_task *t)

{

size_t 1i;
size_t n;

unsigned int *p;

/* get the number of datums */
n = pt_get_nmemb(t);

/* get the data buffer assoctiated with this task */
p = (unsigned int *) pt_get_data(t);

/* n ts not 0, but data %s NULL, this task is malformed and
* will be moved directly to the output node with all
* elements set to zero
*/
if ('p)
return PN_TASK_DESTROY;

/* increment all items by 1 */
for (i = 0; i < n; i++)
plil++;

/* signal successful completion */
return PN_TASK_SUCCESS;
}

Such functions may return a variety of status code, please refer to the API description in the
source files or the documentation generated from the Doxygen markup.

The op_inc function is then registered as a new tracker, with the op code 0x72345678 and a
critical level of 5 and added to the processing network:

pt = pt_track_create(op_inc, 0x12345678, 5);

pn_add_node(pn, pt);
Similarly, we could create more nodes, for example to decrement and multiply:

struct proc_tracker *pt = pt_track_create(op_dec, 0x22225555, 10);
pn_add_node(pn, pt);

pt = pt_track_create(op_mul, 0x00000bad, 2);
pn_add_node(pn, pt);

Finally, we must create an output node, otherwise the processing network would just keep ac-
cumulating fully processed tasks.

[nSt[tut fur LEANOS-UVIE-UM-001 Issue 1.0, June 1, 2017

LE[aStrOthSI k User Manual

UNIVERSITATSSTERNWARTE WIEN Page 22 of 33

=

int op_output(unsigned long op_code, struct proc_task *t)
{

size_t 1i;

size_t n;

unsigned int *p;

n

p

pt_get_nmemb (t) ;
(unsigned int *) pt_get_data(t);

/* print the result */
if (p) {
for (i = 0; i < n; i++) {
printk(, plil);
}
}

/* deallocate the data buffer */
kfree(p);

/* destroy the task */
pt_destroy(t);

return PN_TASK_SUCCESS;
}
The output node is special in that its op code is zero and it should be used to deallocate the
data buffer, which is not automatically done by pt_destroy(), as the management of this buffer
is solely the responsibility of the user. The node is then added by calling:

pn_create_output_node(pn, op_output);

Now that the processing network is defined, we may add tasks. Here we create a task and assign
it a data buffer that holds 32 bytes and at most 4 processing steps. The type and sequence
number fields are not used and simply set to zero. The number of elements in the buffer is then
set to 5, assuming it has been prepared accordingly:

struct proc_task *t = pt_create(data, 32, 4, 0, 0);
pt_set_nmemb(t, 5)

In order to define the sequence of processing steps we want to be performed on our data buffer,
we now configure them in the desired order and the proper op codes:

#define OP_INC 0x12345678
#define OP_DEC 0x22225555
#define OP_MUL 0x00000bad

pt_add_step(t, OP_INC, NULL);

pt_add_step(t, OP_INC, NULL);

pt_add_step(t, OP_MUL, NULL);

pt_add_step(t, OP_DEC, NULL);
Note how we added OP_INC twice. This will result in that operation being applied twice in row,
as the task is moved into the next node after processing the first step, which happens to be the

identical node it just went through. This may be used to define multiple passes and recursion.

4 institut flr LEANOS-UVIE-UM-001 Issue 1.0, June 1,2017

@ :: aStrOthSIk User Manual

UNIVERSITATSSTERNWARTE WIEN Page 23 of 33

As the op functions may also manipulate the processing step list of a task arbitrarily, this can
also be used to easily create state machines.

Note that steps with invalid op codes, i.e. those for which no tracker node has been registered
will result in the destruction of the task as if an op function had returned PN_TASK_DESTROY.

The task is the added to the input node of the network:

pn_input_task(pn, t);

This does not yet start processing, as the network input and output rates are user controlled. To
trigger processing of the tasks pending in the input node, we call:

pn_process_inputs (pn);

Tasks processing cycles are then executed by repeatedly calling:

pn_process_next (pn);

which will result in the execution of a single task step of a single node. If one of the tracker
nodes is above it’s critical threshold, it will be processed instead of the last tracker, otherwise
the last tracker is processed until its pending tasks list is empty.

To process the acumulated tasks in the output node we call:

pn_process_outputs (pn);

which will result in the execution of the user defined output function for one pending output
task per call.

Note that in case of the Xentium processing network, the call to pn_process_next() and the in-
put processing trigger is controlled by the driver and user control is only needed to execute a
processing cycle on the output node.

6.6 Building a Xentium Processing Network

The specific implementation of the Processing Network on the Xentium DSPs maps op codes to
Xentium programs instead of C functions. These programs are added to the Xentium driver by
calling

xentium_kernel_add(file);

where file is a pointer to a memory buffer holding the ELF executable of a Xentium program.
As the driver loads the file, it reads a static structure defined in the program, that contains in-
formation on the capabilities of the kernel (see dsp/xentium/kernels/ for examples). The driver
then registers a processing tracker node for this particular program kernel and adds it to the net-
work. Alternatively, DSP programs may be auto-loaded from the AR archive file modules.image
embedded in the executable. During the build process of the operating system image, all files
with a suffix of .xen in the dsp/ source tree are automatically added to this archive. To add all of
these executables to the network, one can simply call:

/o institut fur LEANOS-UVIE-UM-001 Issue 1.0, June 1,2017

LE[:: aStrOthSIk User Manual

UNIVERSITATSSTERNWARTE WIEN Page 24 of 33

module_load_xen_kernels();

To set up the processing network, an output node has to be added, as described in the previous
section:

xentium_config_output_node (op_output);

Now tasks may be created (see above) and added to the Xentium processing network via the
call:

xen_new_input_task(t);

This will also take care of calling pn_process_inputs() that had to be done by the user in the
generic function based implementation described earlier.

As before, the user must call for outputs to be processed. This is done by:

xentium_output_tasks();

6.7 Xentium Kernel Programs

A Xentium kernel program is slightly more complex than the functions described above, as it
must also take care of memory management and NoC DMA programming.

First, it defines its own capabilites and, optionally, permanently assigned system memory stor-
age allocated by the driver:

#define KERN_NAME

#define KERN_STORAGE_BYTES 128
#define KERN_OP_CODE 0x0000000a
#define KERN_CRIT_TASK_LVL 0x5
struct xen_kernel_cfg _xen_kernel_param = {

KERN_NAME, KERN_OP_CODE,

KERN_CRIT_TASK_LVL,

NULL, KERN_STORAGE_BYTES,

}s

This structure is found in include/kernel/xentium_io.h. 1t defines the Xentium kernel’s name, the
number of storage bytes, its op code and critical threshold of input tasks. As the driver loads
the executable, it analyses the structure parameters and creates and registers a processing node
accordingly. If the kernel requests a permanent storage (128 bytes in this example), the driver
allocates a suitable memory buffer and patches its address in the executable’s corresponding
ELF symbol record.

Next, the program kernel needs a main function, which is very generic and consists of a simple
loop that parses the messages sent by the driver:

]nSt[tut fur LEANOS-UVIE-UM-001 Issue 1.0, June 1, 2017

ﬁaS’[l‘OphySI k User Manual

UNIVERSITATSSTERNWARTE WIEN Page 25 of 33

int main(void)
{

struct xen_msg_data *m;

while (1) {
m = xen_wait_cmd();

switch (m->cmd) {

case TASK_EXIT:
/* confirm abort */
xen_send_msg(m) ;
return 0;

default:
break;

}

process_task(m) ;

xen_send_msg(m) ;

}

return 0;

}

Here it waits for the host to write a message into its designated command mailbox. If the com-
mand is to exit, it confirms by responding with the identical message, otherwise it calls its pro-
cessing function and then relays the message set by the latter back to the host.

A processing function that simply copies a number of bytes to and from the Xentium’s TCM via
the NoC DMA is shown below:

-]nSt[tut fur LEANOS-UVIE-UM-001 Issue 1.0, June 1, 2017

EE[: aStrOthSI k User Manual

UNIVERSITATSSTERNWARTE WIEN Page 26 of 33

static void process_task(struct xen_msg_data *m)
{

size_t n;

unsigned int *p;
volatile unsigned int *bl;

struct xen_tcm *tcm_ext;

bl = (volatile unsigned int *) xen_tcm_local;

if (Im->t) {
m->cmd = TASK_DESTROY;
return;

}

tcm_ext = xen_get_base_addr (m->xen_id);

=]
|

= pt_get_nmemb(m->t);
pt_get_data(m->t);

e}
n

if (n > XEN_TCM_BANK_SIZE / sizeof(unsigned int))
n = XEN_TCM_BANK_SIZE / sizeof (unsigned int);

/* retrieve data to TCM */
xen_noc_dma_req_lin_xfer(m->dma, p, tcm_ext, n, WORD, LOW, DMA_MTU);

/* mo processing */

/* back to main memory */
xen_noc_dma_req_lin_xfer(m->dma, tcm_ext, p, n, WORD, LOW, DMA_MTU);

m->cmd = TASK_SUCCESS;
}
With the exception of the DMA access and message exchange instead of return codes, the struc-
ture of such a function is very similar to a non-DSP op function in how it accesses the data con-
tents of the processing task. In addition, it must also take care of data exchange between remote
system memory and the TCM to achieve proper perfomance.

This kernel program can then be added to dsp/xentium/kernels/ and dsp/xentium/Makefile must
be edited to include the program in the build process.

’,,% institut fUI’ LEANOS-UVIE-UM-001 Issue 1.0, June 1,2017

t{i[aStrOthSI k User Manual

UNIVERSITATSSTERNWARTE WIEN Page 27 of 33

7. Custom Xentium DSP Assembly

7.1 Overview

With an architecture like the Xentium, compilers have a hard time optimising for instruction
parallelism, hence the “human code generator” is still most effective in designing efficient im-
plementations.

While assembly is usually a subject that tends to intimidate many programmers, the simplic-
ity and straightforwardness of the Xentium assembly language [2] along with the architectural
concept of the DSP registers and functional units, makes it easy to grasp and use once a certain
level of familiarity has been established.

Still, the design of what are mostly functionally sequential, but very often data parallel algo-
rithms, such as in BASKET [1], requires a certain level of twisted thinking, as this is usually not
how our minds work. To help oneself, one must conceive a method to facilitate the develop-
ment of such tasks, one which will presented here.

Please note, that this chapter does not intend to teach how to write Xentium assembly, but
merely demonstrates a method that can be a very useful approach in development.

]nSt[tut fur LEANOS-UVIE-UM-001 Issue 1.0, June 1, 2017

LE[ﬁaStl‘OphySI k User Manual

UNIVERSITATSSTERNWARTE WIEN Page 28 of 33

7.2 Rampfit Optimisation Example

/% author: R. Ottensamer */
int FastIntFixedRampFitBuffer(long *data, unsigned int n_samples,
unsigned int ramplen, long *slopes)

{
int i = 0;
int r = 0;
int ampl = ramplen;
int SyTerm = 0;
int pos = 0; /* temporary offset storage */
int value = 0; /* temporary sample storage */
int Sy;
int Sxy;
for (pos = 0; pos < (n_samples - ramplen + 1);)
{
Sy = 0;
Sxy = 0;
for (i = 1; i <= ramplen; i++) /* equation starts with 1 */
{
value = datal[pos++];
Sy += value;
Sxy += i * value;
}
SyTerm = ampl * ((ramplen + 1) * Sy) >> 1;
slopes[r++] = ampl * Sxy - iSyTerm;
/* denomination has to be done outside */
}
return r;
}

Let us consider the above example of a fast ramp fitting routine. Looking at the inner loop, we
can immediately spot one load operation, three additions, and one multiplication. We can put
pos++ anywhere after the load, but the operations

[load] - [add,mull] - [add]

must occur in this sequence. Note that the operations that can be executed in parallel are al-
ready grouped by brackets.

Now, this is actually incorrect, because the results of load and mul are not available in the next
cycle, so we introduce a [wait] tag:

[load] - [wait] - [add Sxy,mul value] - [wait] - [add Sxy]

This actually takes 5 cycles to complete. There are lots of inactive units, so instead of loading
one word, we'll load two and increment the missing pos++ (we need one per sample) in the first
free cycle:

[loadl,l0ad2] - [posl,pos2] - [Syl1,Sy2,mull,mul2] - [wait] - [Sxyl,Sxy2]

’ ’:% institut fur LEANOS-UVIE-UM-001 Issue 1.0, June 1,2017

' aStrOthSIk User Manual
UNIVERSITATSSTERNWARTE WIEN Page 29 of 33
<| e e] | =) = = =
<|] — == = = = | =
(o 1 [o eyt = e | =
| R B
= =
+ [T J% ==
= e = | =
T e Gt = | =
\ = = |

] __ = | =
: = |
: = | =

: &= | T =

= = Bl = e Bl T e

Figure 7.1: A swimlane graph of the rampfit in parallelised Xentium assembly (symbolic).

So we doubled our processing speed, but there are still lots of inactive units. We can actually
load 4 words at once, using 2 E units, so let’s try that:

[loadl,lo0ad2,l0ad3,load4]-[wait-][addl,add2,add3,add4,mull ,mul2,mul3,muld4] - [wait] -
[...]

This is getting complicated, and we're out of M units. Let’s try to rewrite this:

|loadl||posi++|ladd 1,2]|mul3
|load2| | pos2++]||add 3,4]||mul4d
|load3| | pos3++|| | ladd 12,34
|load4 | | posd++]| I

| I | |mulil I

| Il | [mul2 |

add mull,mul2l|add mul3,mul4|ladd mi12,m34]

We managed to process 4 samples in 7 cycles instead of 2 in 5 (second try) or 1in 5 (first try), so
we're down to 1.75 cycles per sample instead of 5, that's a speed-up of about 2.85x.

Not bad. But there are still many unused units per cycle. And we're still missing a lot of other
code, this is actually only the three lines of the inner loop. Besides, constructing the assembly
in this manner is really tedious. Luckily, this can be helped.

It turns out that this is best done in a diagramming program with swim lane support (Figure
7.1), such as yEd:

Create 10 swim lanes to represent the functional units, along with a few lanes for flow tags, such
as

[wait] or [delayl]

Add an arbitrary number of columns to represent cycles.

Insert one operation per cycle and swim lane and connect the processing steps for reference,
and remember to insert delays and wait states when they occur. In addition, add special tags

]nSt[tut fur LEANOS-UVIE-UM-001 Issue 1.0, June 1, 2017

ﬁaS’[l‘OphySI k User Manual

UNIVERSITATSSTERNWARTE WIEN Page 30 of 33

to outline register write operations, so the location of variables can be tracked.

Using this method, the ramp fit example above can be tuned even more, down to to a process-
ing time of 0.75 cycles per sample, not including overhead (see listing below). Obviously not
all algorithms need this kind of optimisation, but this one benefits a lot with greater than 6.5x
speed-up over the serial version, as it is usually applied to large datasets. In addition it is a great
showcase of the potential of the Xentium DSP, especially regarding the hardware LOOP sup-
port, which allows us to efficiently schedule repetitive instructions in parallel by “overlapping”
instruction blocks. This is demonstrated in the listing below, where the instruction blocks in
loop body block 1-3 start being executed in parallel starting with block 4.

.globl FastIntFixedRampFitBuffer

.align 4

.type FastIntFixedRampFitBuffer,@function

;3 input data length must be a multiple of 4!

;; function call arguments

%define RFdatabufil RAG6
%define RFdatabuf?2 RB6
%define num_samples RC6
%define ramp_len RD6
%define RFslopebuf RE6
;; reserved registers

%define RFretptr RA7
%define RFretval RAG6
%define condO RCO
%define condl RBO

;3 constants and local variables

%define RFdatal RAS
%define RFdata2 RC2
%define rlil RC5
%define Sy RE2
%define Sxy RD5
%define r RAG
%define RFiloop RE1

%define tmp RA4

%define RFoloop RD4

%define i1l RA2
%define i2 RB2
%define i3 RC3
%define i4d RD3

%define RFamp RE3

FastIntFixedRampFitBuffer:

53 block 1

A0 ADD ramp_len, 1 ; calculate ramplen +1 = rli

A1 OR 0, RFdatabufl ; RFdatal

S1 OR 0, RFdatabuf2 ; RFdata2

CO LINK

SO SL num_samples, 1 ; RFns * 4 / 2 = offset to end of buffer in

words, split into two banks

institut fur LEANOS-UVIE-UM-001 Issue 1.0, June 1, 2017
aStrOphySl k User Manual

UNIVERSITATSSTERNWARTE WIEN Page 31 of 33

condO 0
r =0

;3 block 2

SO ADD A1X, SOX ; end of buffer

S1 SRU ramp_len, 2 ; RFiloop = ramp_len/4
rli = AOX

RFdatal = A1X

RFdata2 S1X

RFretptr CcoXx

;3 block 3
RFiloop = S1X
tmp = SO0X

.RFloop:
;; block 4
CO LOOP 3, 8, RFiloop
MO MUL ramp_len, rlil ; RFamp - compute every time, saves 1 cycle
during lead in plus unit is free anyway
AO SUB tmp, 8

Sy =0

;3 block 5; loop delay slot 1

A0 SUB 0, 3 HE B prepare indices with negative offset

A1 SUB 0, 2 ; i2 before entering the loop, they are

CO SUB 0, 1 ; i3 incremented to 1,2,3,4 on the first pass

RFoloop = AOX

;3 block 6; loop delay slot 2

S1 OR 0, O ; prep initial Sxy (need that to properly fold
the loop)

RFamp = MOX

i1 = AOX

i2 = A1X

i3 = COX

i4 =0

;3 block 7; loop body block 1

A0 ADD RFdatal, 8 ; forwared 2 samples (words)
A1 ADD i1, 4 ; increment loop indices

CO ADD i2, 4

EO LD2 RFdatal ; load from current

E1 LD2 RFdata2

;3 block 8; loop body block 2

AO ADD RFdata2, 8 ; forward 2 samples

A1 ADD i3, 4 ; increment loop indices
CO ADD i4, 4

i1 = A1X ; update loop indices

i2 = CoX

RFdatal = AOX ; updated bufferl pointer

;3 block 9; loop body block 3

A0 ADD EOX, EOY ; sum first pair

A1 ADD E1X, E1Y ; and second pair

MO MUL EOX, il ; multiply first two samples with
M1 MUL E1X, i2 ; loop index

CO CMPGT RFdatal, RFoloop ; check if we reached end of buffer
i3 = A1X ; update loop indices

i4 = COX

institut fUr
astrophysik

NIVERSITATSSTERNWARTE WIEN

LEANOS-UVIE-UM-001

Issue 1.0, June 1, 2017

User Manual

Page 32 of 33

RFdata2 = AOX

updated buffer2 pointer

;3 block 10; loop body block 4

PO ADD AOX, A1lX ; final sum of all samples

MO MUL EOY, i3 ; multiply 3rd and 4th sample with loop

M1 MUL E1Y, i4 ; index

cond0 = COX ; update result of condition

;3 block 11; loop body block 5

SO ADD Sy, POX ; add sum of 4 samples to Sy

PO ADD MOX, MiX ; add result of first two samples * loop idx

;3 block 12; loop body block 6

SO ADD MOX, MiX ; add result of 3rd and 4th sample * loop idx

Sy = S0X ; assign new Sy

;3 block 13; loop body block 7

SO ADD POX, SOX ; final sum of idx * sample multiplications

Sxy = S1X ; update Sxy from previous cycle

;3 block 14; loop body block 8

S1 ADD Sxy, SO0X ; add new idx * sample to Sxy

;3 block 15 - back in outer loop (the inner loop ends automatically)

MO MUL Sy, RFamp ; mulitply Sy with amplifier

M1 MUL S1X, ramp_len ; use latest Sxy and multiply with ramplen (
ampl)

;3 block 16 - wait

A1 ADD r, 1 ; increment number of ramps processed

;3 block 17

CO BRZ, cond0 .RFloop ; init branch to start of outer loop

SO SRU MOX, 1 ; divide iSyTerm

;3 block 18

A0 SUB Mi1X, SOX ; calculate slope

;3 block 19 - BR delay slot 1
EO STW RFslopebuf [r], AOX

r = A1X

;3 block 20 - BR delay slot 2
CO BRA RFretptr

;3 block 21+22

NOP 2

;3 Elvis has left the building

AOX from block 18
update r (in loop) ; RFretval == r!

init branch back to caller

final delay slots

= Institut fur LEANOS-UVIE-UM-001 Issue 1.0, June 1,2017

LE[’ aStrOthSI k User Manual

UNIVERSITATSSTERNWARTE WIEN Page 33 of 33

A. Changes from NGAPP to LeanOS
Xentium Processing Concept

The following sections look at the major differences between the NGAPP and LeanOS concepts.

A.1 Processing Chain

In contrast to the implementation of the Xentium processing chain for NGAPP, a processing
chain is not set up statically but defined individually on a per-task basis by selecting from a set
of processing kernel nodes. Each of these nodes define their own capabilities as an op code,
which is used to construct a proccessing chain on-the-fly on a per-task basis.

A.2 Input buffering

Contrary to the fixed-size circular input buffers originally used in NGAPP processing chain de-
sign, pending items are now tracked as doubly-linked lists, where each item provides the stor-
age space for the links itself. This means that, while nodes may reach a critical level, they can
never run out of memory space.

	Introduction
	Purpose of the Document

	Applicable and Reference Documents
	Terms, Definitions and Abbreviated Items
	Acronyms
	Glossary

	Software Overview
	Function and Purpose
	Build Requirements
	Build System
	Source and Support Documentation
	Xentium Kernel Programs
	Xentium Processing Demo
	Sample Code
	Features Overview
	Memory Management
	Loadable Modules
	Payload Images
	Xentium and NoC support

	Structure and Concept
	Source Code Organisation
	Processor Architectures
	Common Kernel Code
	Xentium Processing Kernels
	Example Code and Testing

	Processing Networks in LeanOS
	Overview
	Processing Tasks
	Processing Trackers
	Processing Networks
	Building a Generic Processing Network
	Building a Xentium Processing Network
	Xentium Kernel Programs

	Custom Xentium DSP Assembly
	Overview
	Rampfit Optimisation Example

	Changes from NGAPP to LeanOS Xentium Processing Concept
	Processing Chain
	Input buffering

