¥ institut fir TR 1 i e
astrophysik Lniversitat

UNIVERSITATSSTERNWARTE WIEN

PLATO

Data Compression User Manual

Data Compression User Manual

Reference: PLATO-UVIE-PL-UM-0001

Version: Issue 1.0, 1. July 2022

Prepared by: Dominik Loidolt’
Checked by: Roland Ottensamer’
Approved by: Franz Kerschbaum!'

' Department of Astrophysics, University of Vienna

Copyright ©2022

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with no
Front-Cover, no Logos of the University of Vienna.

V. institut flr PLATO-UVIE-PL-UM-0001 Issue 1.0, 1. July 2022
aStrOphySl k Data Compression User Manual

UNIVERSITATSSTERNWARTE WIEN Page 2 of 52

Contents

1

Terms, Definitions and Abbreviated Items 6
1.1 ACTONYMS o o o e 6
Introduction 7
2.1 PurposeoftheDocument it 7
2.2 The Data Compression Algorithm 7
2.3 The RDCU Hardware COMPressor . . . v v v v v v v v e e e e e e e et e e e e e e 9
24 ThelCU Software COmMPressor . . v v v v v v e e e e e e e e e et e et e 9
Hardware & Software Compression Parameters 11
3.1 GenericCompressionParameters i e 11
3.1.1 Compression Data Product Type (data_type) 11
3.1.2 Compression Mode (cmp_mode) 11
3.1.3 Model Weighting Parameter (model_value) 14
3.14 Lossy Rounding Parameter (lossy_parorround) 14
3.2 DataBuffersParameters e 14
3.2.1 Datato be Compressed Buffer (data_to_compress) 14
3.2.2 DataSamples(data_samples) 14
3.2.3 Model of Data Buffer (model_of data) 15
3.24 Updated/New Model Buffer (updated_model) 15
3.2.5 Compressed Data Buffer (compressed_data) 15
3.2.6 Compressed Data Buffer Length (compressed_data_len_samples) 15

3.2.7 RDCU Addresses (rdcu_data_adr, rdcu_model_adr, rdcu_new_model_adr,
rdcu_buffer_adr) 16
3.3 RDCU Imagette Specific Compression Parameters 16
3.3.1 Golomb Parameter (golomb_par) 16
3.3.2 Spillover Threshold Parameter (spillover_par) 16
3.3.3 Adaptive Golomb Parameter, Adaptive Spillover Threshold 17
3.4 Software Specific Compression Parameters 17

3.4.1 Data Type Specific Compression (cmp_par_*) and Spillover Threshold
(spillover_*) Parameters i e e 17

i institut fUI‘ PLATO-UVIE-PL-UM-0001 Issue 1.0, 1. July 2022
aStrOphySl k Data Compression User Manual

UNIVERSITATSSTERNWARTE WIEN Page 3 of 52
3.5 Compression ParameterErrors e e 20
351 SpillGolomb Error 21

4 Hardware/RDCU Compression 23
4.1 Configure and Start the Hardware/RDCU Compressor 24

4.2 Readingthe RDCU StatusRegister 25
4.2.1 HW Compression Status Structure 26

4.2.2 RDCU Status Register Read Function 27

4.3 RDCU Compression Information Register Read Function. 28
4.3.1 Compression Information Structure 28

4.3.2 Compressor errors (CMP_eIT) v v v v v v v v e e e e e e e e e e e e e e e 29

433 Read out the RDCU Hardware Information Registers 30

44 RDCUSRAMRead Function i 31

5 Software Compression 32
51 MaximumUsed Bits e 32

5.2 How to compress data with the Software CompressoronthelCU 33

6 Compression Entity Format 34
6.1 Specific Compression EntityHeader 34

7 Frame Processing 39
7.1 ChunkProcessing v v v v i i e e e e e e e e e 39

7.2 1D-Differencing Modeand ModelMode, 42
7.2.1 1D-DifferencingMode e 42

722 ModelMode e e e 42

7.3 ChunkProcedureOrder e 43
73.1 Optimised ChunkProcessing i it i 44

732 ChunkSize e 44

A Hardware Compression Example 46

B Software Compression Example 50

Y institut fUr
astrophysik

UNIVERSITATSSTERNWARTE WIEN

PLATO-UVIE-PL-UM-0001 Issue 1.0, 1. July 2022

Data Compression User Manual

Page 4 of 52

Revision History

Revision

Draft 1
Draft 2
Draft 3
Draft 4

Draft 5

Draft 6

Issue 1

Date

12.06.2019
12.09.2019
03.02.2020
24.03.2020

05.06.2021

25.01.2022

01.07.2022

Author(s)

DL
DL
DL
DL

DL

DL

DL

Description

draft document created

updated chapter 1-6

updated code listings, incorporate feedback
updated to meet the FPGA Requirement Specific-
ationV 1.1

corrected minimum allowed spill value, updated
compressed data header, corrected Fig 7.3, 7.4,
corrected listing 4.6

change the size of the ASW Version ID from 16 to
32 bits in the generic header, add spare bits to the
adaptive imagette header and the non-imagette
header, so that the compressed data start address
is 4 byte-aligned.

major restructuring of the chapters, add HW con-
figuration functions, add SW compression for
non-imagette data (compression parameters, con-
figuartion function), add max bit used section, add
max bits used version in compression entity

The documents in Table 2 form an integral part of the present document. The documents
in Table 3 are referenced in the present document and are for information only.

Table 2: Applicable Documents

ID Title, Reference Number, Revision Number

AD-1 | Space engineering - Software, ECSS-E-ST-40C, 6th March 2009

AD-2 | Space product assurance - Software product assurance, ECSS-
Q-ST-80C, 15th February 2017

Table 3: Reference Documents

ID | Title, Reference Number, Revision Number

RD-1 | PLATO Data Compression Concept, PLATO-UVIE-PL-TN-0001

RD-2 | PLATO ICU RDCU User Manual, PLATO-IWF-PL-UM-0076 Is-
sue 1.2, 7. October 2021

{q institut fur PLATO-UVIE-PL-UM-0001 Issue 1.0, 1. July 2022
L{i[; aStrOthSIk Data Compression User Manual

UNIVERSITATSSTERNWARTE WIEN Page 5 of 52

ID | Title, Reference Number, Revision Number
RD-3 | PLATO RDCU Data Throughput, PLATO-IWF-PL-TN-059, 19. Au-
gust 2019
RD-4 | FPGA Requirement Specification, PLATO-IWF-PL-RS-0005 Is-
sue 1.2, 05. March 2021
RD-5 | LevelO data generation from the payload science data, PLATO-
DLR-MIS-TN-0002, 14. October 2020
RD-6 | PLATO N-DPU ASW Data Rate and Memory Budget (B Phase)
Issue 2.9, PLATO-LESIA-PL-RP-0031, 14. October 2020

L institut far PLATO-UVIE-PL-UM-0001 Issue 1.0, 1. July 2022

LE[= astrOthS[k Data Compression User Manual

UNIVERSITATSSTERNWARTE WIEN Page 6 of 52

1. Terms, Definitions and Abbreviated
ltems

1.1 Acronyms

API Application Programming Interface

CE Compression Entity 34, 39, 44

CPU Central Processing Unit

FPGA Field-Programmable Gate Array 7, 9

HW Hardware 7, 15-17, 23-25, 27-29, 31, 44

ICU Instrument Control Unit 7, 9, 20, 23, 33, 39, 44

ISR Interrupt Service Routine

MMU Memory Management Unit

PUS Packet Utilisation Standard

RDCU Router and Data Compression Unit 7, 9-11, 15, 16, 21, 23-27, 30, 31, 34, 39,
43,44, 46

RISC Reduced Instruction Set Computing

RMAP Remote Memory Access Protocol 9, 11, 23-25

SRAM Static Random Access Memory 9, 15, 16, 21, 23, 24, 30, 31, 39, 44

Sw Software 7, 15

TBC To Be Confirmed 12, 19

UVIE University of Vienna 7, 9, 23

institut fur PLATO-UVIE-PL-UM-0001 Issue 1.0, 1. July 2022
L{i[; aStrOthSIk Data Compression User Manual

UNIVERSITATSSTERNWARTE WIEN Page 7 of 52

L
il |

=)

2. Introduction

The University of Vienna (UVIE) team provides a set of compression algorithms to support the
Instrument Control Unit (ICU) in compressing the different PLATO data products. Unlike the
non-imagette compression algorithms, which are only available in the form of software librar-
ies, the imagette compression algorithms have also been implemented in hardware on a Field-
Programmable Gate Array (FPGA) on the Router and Data Compression Unit (RDCU) board. Fur-
thermore, an interface has been created which abstracts the Software (SW) and Hardware (HW)
imagette compression so that both compressors can be controlled with the same parameters.

2.1 Purpose of the Document

This document is about the handling of the provided compression algorithms in software and
hardware.

2.2 The Data Compression Algorithm

The compression algorithm consists of several stages connected in series as shown in Figure 2.1.
A brief introduction to the compression algorithm follows, for more details see [RD-1].

The first stage is an optional lossy compression stage. This stage can achieve a significantly
higher compression ratio at the expense of data loss. This is accomplished by rounding down
the least significant digits of the input values so that the output of this stage is smaller than the
input. This stage is controlled by the lossy/round parameter, which determines how many bits
should be rounded.

The second stage in the compression chain is the precompression or preprocessing stage.
This stage uses correlations in the data to reduce the dynamics of the data set. The precom-
pression stage has several modes to accomplish this task, which are briefly introduced here.
The raw mode writes the input data into the area of the memory which is intended for the com-
pressed data so that no data compression takes place. Therefore, the input is the same as the
output. This mode is intended as a label for uncompressed data or for debugging the com-
pressor. Another mode is the 1d-differencing mode. This mode calculates the difference to the
left neighbouring pixel to reduce the dynamics of the input data. The model mode is used to
perform a compression of recurring data of the same object. In addition to the input data of the
current object, a model of the input data is also required. The model roughly corresponds to
an average of the past data of the object. In this mode, the difference between the input data
and a model of this data is formed. The model is updated after a compression and is used to

Y institut fUr PLATO-UVIE-PL-UM-0001 Issue 1.0, 1. July 2022
i aStrOphySlk Data Compression User Manual

U \l IVERSITATSSTERNWARTE WIEN Page 8 of 52
round cmp_mode model_value cmp_mode spill golomb par
Input Data ¢ 32-Bits encoded
Lossy Compression . Mapping to Escape Symbol Bitstream Bitstream
Model (Rounding) Precompression positive integers Mechanism Golomb Encoder Encoder

—

updated Model Pixel

cmp_mode apl_spill apl_ golomb par

Escape Symbol
‘){ Mechanism Golomb Encoder

Length ap1_cmp_size
Counter

{

cmp_mode ap2_spill ap2_ golomb par

Escape Symbol Length ap2_cmp_size
»{ Mechanism Golomb Encoder Counter

Semi Adaptive Compression (HW only)

Figure 2.1: Visualization of the compression algorithm.

compress the next data of the same target object at a later point in time.

The next stage maps the output data of the precompression which are signed integers into
positive integers. This is necessary because the Golomb encoder can only work with positive
integers.

The escape symbol mechanism becomes active whenever outliers occur. Two mechanisms
are implemented to handle outliers, the zero escape symbol mechanism and the multi escape
symbol mechanism. Depending on the distribution of outliers, one mechanism has slight ad-
vantages over the other.

The Golomb encoder is the heart of the compression process. The Golomb code is an al-
gorithm that assigns an input value to a code word. The Golomb encoder assigns short code
words to small values and long code words to large values.

The BitstreamEncoder generates a bitstream of code words. The Bitstream encoder has the
task of stringing the generated codewords of different lengths together and dividing them into
32-bit long pieces to make it possible to write them to the memory.

It can be assumed that the structure of the data to be compressed will change due to vari-
ous effects such as ageing processes. Therefore, an adaptive compression technique is needed
to change the compressor settings whenever the data changes. This is needed to ensure good
data compression over time. This feature is only supported by the hardware data compressor.

4 institut far PLATO-UVIE-PL-UM-0001 Issue 1.0, 1. July 2022
ﬁ{i[aStrOthSIk Data Compression User Manual

UNIVERSITATSSTERNWARTE WIEN Page 9 of 52

2.3 The RDCU Hardware Compressor

The data compressor is implemented in the FPGA of the RDCU. It is connected via a SpW link to
the SpW router on the RDCU board, see Figure 2.2. The router is connected to the ICU via two
SpW links. Therefore, the communication from the ICU to the hardware compressor always runs
via the SpW router. It must be ensured that the route between the ICU and the compressor is
correctly configured before communication with the hardware compressor can be started.

On the one hand, the interface of the hardware compressor consists of registers that con-
trol the compressor and provide the metadata of a compression. On the other hand, it consists
of the Static Random Access Memory (SRAM) that contains the data to be compressed and, if ne-
cessary, the corresponding model, as well as the result of the data compression, the compressed
bitstream. The registers, as well as the SRAM, are written and read via the Remote Memory Ac-
cess Protocol (RMAP) protocol.

To compress data with the hardware compressor, the data to be compressed are written
into the SRAM. Before or after the data transfer the data compressor registers are set with the
parameters necessary for the data compression. Once these two steps have been completed,
the compression can be started by setting the compressor start bit in the compressor control re-
gister. While the compression is running, the SRAM is not accessible via RMAP, only the com-
pressor status register is readable. The completion of the data compression is signalled to the
ICU by an interrupt signal or by setting the compressor ready bit in the compressor status register.
Before the data can be read, it must be checked if an error occurred during compression. This
is ensured by checking that the compressor data valid bit is set in the compressor status register
and that no error bit is set in the compression error register. If this is the case, everything worked
fine during compression and the remaining metadata and compressed data can be read out.

2.4 ThelCU Software Compressor

The UVIE team provides the imagette compression algorithms which are used in the hardware
compressor and also in a separate software package. The software package also includes the
algorithms used to compress the non-imagette data products.

The task of the software compressor should be to process small data products that do not
occur frequently. Chapter 5.2 discusses the provided function for software compression in de-
tail.

institut fur PLATO-UVIE-PL-UM-0001 Issue 1.0, 1. July 2022
astrOthSI k Data Compression User Manual

UNIVERSITATSSTERNWARTE WIEN Page 10 of 52

Sub Units SpW1 SpW2 SpW3 SpW4 SpWw5 SpWe6 SpW7 Spws

SpW LVDS SpW LVD
SpW LVD! | |—SpW LVD!

SpW LVDS—— I SpW LVD

ICU SpW N1 @—SDW LVDS— SpW Router Spw LVDS——@ ICU SpW R1
GR718B
SpW N2 @—swv yca— CQFP 256 Sow Lvos—@ SpW R2

snlrs >]
i

—5.0 V:

Power FPGA ADC
POL RTAX2000 ADC1285102
33V CQFP 256 12 bit

G| DAT
ADR
POL
1.8V
SRAM
UTBER2M392
8 MB
POL (2Mx32)
15V

Figure 2.2: RDCU Electrical Concept.

institut fur PLATO-UVIE-PL-UM-0001 Issue 1.0, 1. July 2022
L{i[; aStrOthSIk Data Compression User Manual

UNIVERSITATSSTERNWARTE WIEN Page 11 of 52

L
il |

=)

3. Hardware & Software Compression
Parameters

The compression is controlled by several compression parameters. For software and hardware
compression a structure and setter functions are provided to configure all compression para-
meters. This structure is passed to the software compression function to start a compression.

For hardware compression, this configuration structure can also be used to generate the
necessary RMAP packets that set the corresponding hardware compressor registers. Alternat-
ively, you can build the required RMAP package “by yourself”, the required information can be
found in the RDCU user manual [RD-2].

In the following section, the compression parameters and their effect on the compres-
sion are briefly introduced. To get more detailed information about the parameters you can
read [RD-1].

3.1 Generic Compression Parameters

The following generic compression parameters are required for the compression of any data
product.

3.1.1 Compression Data Product Type (data_type)

The compression data product type specifies which type of scientific data is compressed. The
Table 3.1 lists all available compression data product types.

3.1.2 Compression Mode (cmp_mode)

The compression mode parameter controls the precompression/preprocessing as well as the
escape symbol mechanism stage of the compressor. The current implementation of the com-
pressor supports five different compression modes. The cmp_mode parameter controls which
mode is used. The cmp_mode parameter can be 0 for raw mode, 1 or 3 for model mode and 2
or 4 for the 1d-differencing mode.

Table 3.1: Defined compression data product types. é
Data Size of a % QJ‘;@
Product Type Description/Constant Name Sample [Byte] Specific Compression Header z <2} S

0 DATA_TYPE_UNKOWN 0 invalid data type % 5 §

1 DATA_TYPE_IMAGETTE 2 imagette header ;gg

2 DATA_TYPE_IMAGETTE_ADAPTIVE 2 adaptive imagette header AN

3 DATA_TYPE_SAT IMAGETTE 2 imagette header ; £ E

4 DATA_TYPE_SAT_IMAGETTE_ADAPTIVE 2 adaptive imagette header 2N

5 DATA_TYPE_OFFSET 8 non-imagette header

6 DATA_TYPE_BACKGROUND 10 non-imagette header o

7 DATA_TYPE_SMEARING 8 non-imagette header E’(; o

8 DATA_TYPE_S_FX 5 non-imagette header S g

9 DATA_TYPE_S_FX_DFX 9 non-imagette header T Z

10 DATA_TYPE_S_FX_NCOB 13 non-imagette header E é

11 DATA_TYPE_S_FX_DFX_NCOB_ECOB 25 non-imagette header S 2

12 DATA_TYPE_L_FX 11 non-imagette header % %

13 DATA_TYPE_L_FX_DFX 15 non-imagette header % 8

14 DATA_TYPE_L_FX_NCOB 27 non-imagette header % <

15 DATA_TYPE_L_FX_DFX_NCOB_ECOB 39 non-imagette header 2

16 DATA_TYPE_F_FX 4 non-imagette header

17 DATA_TYPE_F_FX_DFX 8 non-imagette header

18 DATA_TYPE_F_FX_NCOB 12 non-imagette header

19 DATA_TYPE_F _FX_DFX_NCOB_ECOB 24 non-imagette header

20 DATA_TYPE_F_CAM_IMAGETTE To Be Confirmed (TBC) imagette header @

21 DATA_TYPE_F_CAM_IMAGETTE_ADAPTIVE TBC adaptive imagette header E

22 DATA_TYPE_F_CAM_OFFSET TBC non-imagette header 3 o

23 DATA_TYPE_F_CAM_BACKGROUND 0 non-imagette header S a
— c
N <
e, N
SN

3,% institut flr PLATO-UVIE-PL-UM-0001 Issue 1.0, 1. July 2022
Q:[' aStrOphySlk Data Compression User Manual

UNIVERSITATSSTERNWARTE WIEN Page 13 of 52

cmp_mode=0: raw mode

The raw mode is intended for testing and debugging operations. In this mode, the input data
are read in and written back unchanged to the memory area provided for the compressed data.
No compression takes place in this mode. It has to be ensured that the data buffer length for
the compressed data is at least as large as the size of the input data.

cmp_mode=1,3: model mode

The model mode is the default mode of the compressor. In addition to the data to be com-
pressed, a model of the input data is required for this mode. In the model mode, the compressor
forms the difference between input data and their models. It also updates the models according
to the method described in Section 7.2.2. In this compression mode, not only the compressed
data must be read out, but also the updated model. The updated model is required again if the
data for the same target object is to be compressed at a later point in time. When using the
hardware compressor, the upload of the model is not necessary if the next data to be processed
are from the same object as the last compression.

The difference between cmp_mode 1and 3 is the different handling of outliers. cmp_mode
=1 uses the zero escape symbol mechanism, while cmp_mode = 3 uses the multi escape symbol
mechanism. Depending on the distribution of outliers, one mechanism has slight advantages
over the other. For more information about the exact function of the different escape symbol
mechanisms, see [RD-1].

cmp_mode=2,4: 1d-differencing without input model mode

As the name suggests, the 1d-differencing without input model mode does not require a model.
With this method, the difference between neighbouring pixels or values is formed. This method
usually has a poorer compression ratio than the model mode. It is used to compress the first
image of a series of images because no model exists for that data. This mode can also be used
to compress data that does not occur repeatedly.

The difference between cmp_mode 2 and 4 is the different handling of outliers. cmp_mode
=2 uses the zero escape symbol mechanism, while cmp_mode =4 uses the multi escape symbol
mechanism. Depending on the distribution of outliers, one mechanism has slight advantages
over the other. For more information about the exact function of the different escape symbol
mechanisms, see [RD-1].

4 institut far PLATO-UVIE-PL-UM-0001 Issue 1.0, 1. July 2022
ﬁ{i[aStrOthSIk Data Compression User Manual

UNIVERSITATSSTERNWARTE WIEN Page 14 of 52

3.1.3 Model Weighting Parameter (model_value)

The model weighting parameter or model_value controls the model update process in the pre-
compression/preprocessing stage. The weighting parameter only affects the compression pro-
cess if the compressor is in the model mode. As the name indicates the weighting parameters
weigh the ratio between the model and the current imagette in the model update equation.
The weighting parameter is a natural number in the range between [0,16]. From the model
update equation 7.5 in Section 7.2.2, you can see that the larger the weighting parameter is,
the slower the updated model changes compared to the current model. The largest value is 16,
which means that the updated model is the same as the current model. The lowest value is zero,
which means that the updated model always corresponds to the current data to be compressed.

3.1.4 Lossy Rounding Parameter (lossy_par or round)

The lossy rounding parameter controls the lossy compression stage. The value specifies how
many bits of the input value in the lossy compression stage are shifted to the right. The larger the
rounding parameter, the higher the compression ratio, at the expense of data loss. A rounding
parameter equal to zero means lossless data compression. Since the imagette compression also
treats the header of the imagette collection like normal data, it must be ensured that this header
is not corrupted by rounding the last bits.

3.2 Data Buffers Parameters

The following section describes the parameters related to the different data buffers.

3.2.1 Data to be Compressed Buffer (data_to_compress)

The data to be compressed buffer contains the input data for the compression located on the
ICU, including the collection header.

3.2.2 Data Samples (data_samples)

The data samples parameter describes the length of the data to be compressed. A sample is the
size that an entry in a collection has. The size of a collection entry can be seen in Table 3.1.

NOTE: There is a difference in the data_samples parameter when compressing im-
agette data compared to compressing non-imagette data! When compressing non-imagette
data, the compressor expects that the collection header will always prefix the non-imagette

o 3 institut flr PLATO-UVIE-PL-UM-0001 Issue 1.0, 1. July 2022
L@[; aStrOphySlk Data Compression User Manual

UNIVERSITATSSTERNWARTE WIEN Page 15 of 52

data. Therefore, the data_samples parameter is simply the number of entries in the col-
lection. It is not intended to join multiple non-imagette collections and compress them
together.

When compressing imagette data, the length of the entire data to be compressed,
including the collection header, is measured in 16-bit samples. The compressor makes no
distinction between header and imagette data. Therefore, the data_samples parameteris
the number of imagette pixels plus the length of the collection header, measured in 16-bit
units. The compression of multiple joined collections is possible.

3.2.3 Model of Data Buffer (model_of data)

If a model compression mode is used, a model of the data to be compressed is required. The
model of the data buffer contains this model data. The length of the model buffer is the same
as that of the buffer for the data to be compressed.

3.2.4 Updated/New Model Buffer (updated_model)

The updated or new model buffer is needed for model compression for the next data set for an
object. The buffer specifies where this data is stored. It can be the same buffer as the model data
buffer for an in-place update of the model. This buffer is used only for the model compression
mode and has the same size as the data buffer to be compressed.

3.2.5 Compressed Data Buffer (compressed_data)

The result of the compression, the compressed data bitstream, is stored in the compressed data
buffer on the ICU.

3.2.6 Compressed Data Buffer Length (compressed_data_len_samples)

The compressed data buffer length parameter specifies the length of the reserved buffer for
the compressed data in the same unit as the samples parameter. For SW compression this para-
meter specifies the length of the compressed_data buffer. When using HW compression, this
parameter specifies the length of the reserved area for compressed data after the rdcu_buffer_adr
in the RDCU SRAM. If the compressed data buffer is too small to store all the compressed data,
the small_buffer_err error is returned.

Note: If the compression parameters are not set correctly, it is possible that the “com-
pressed data” will be larger than the original data.

institut fur PLATO-UVIE-PL-UM-0001 Issue 1.0, 1. July 2022
L{i[; aStrOthSIk Data Compression User Manual

UNIVERSITATSSTERNWARTE WIEN Page 16 of 52

)

iy
il |

Note: Including RDCU FPGA version 0.7 there is an error in the raw mode which triggers a
small_buffer_err if the samples parameter is equal to the buffer_length parameter. The work-
around is to choose a larger buffer_length parameter than the samples parameter.

3.2.7 RDCU Addresses (rdcu_data_adr,rdcu_model_adr, rdcu_new_model_adr,
rdcu_buffer_adr)

The different RDCU address parameters are only used for the HW compression. These para-
meters determine the memory address of the RDCU SRAM where the uncompressed data, the
model data, the new updated model and the buffer for the compressed bitstream begin. The
RDCU addresses have to be 4-byte aligned. The user of the HW compressor must take care that
the different memory areas do not overlap.

If rdcu_new_model_adr is set equal to rdcu_model_adr, the compressor simply overwrites
the old model with the new updated one. This setting also has a small speed advantage, be-
cause if parts of the updated model did not change, some expensive write access can be skipped.
If rdcu_new_model_adr and rdcu_model_adr are different, the rdcu_new_model_adr can be
used to specify where in the SRAM the updated model should be written. The old model will
not be overwritten.

3.3 RDCU Imagette Specific Compression Parameters

The following compression parameters are needed to compress imagette data on the RDCU.

3.3.1 Golomb Parameter (golomb_par)

Based on the Golomb parameter (golomb_par) and the input value of the Golomb encoder
stage the code words are formed. As shown in document [RD-1], a larger Golomb parameter
causes the code word length to grow slower, but code words for smaller values are longer. The
input data of the Golomb encoder follow approximately a geometric distribution. The Golomb
parameter should be adapted to this distribution so that the length of all code words is min-
imal. In the current implementation, a Golomb parameter in the range between 1 and 63 is
supported. 0 is not a valid value for the Golomb parameter.

3.3.2 Spillover Threshold Parameter (spillover_par)

The escape symbol mechanism is controlled by the spillover threshold parameter (spill or spillover_-
par). The spill parameter controls if a value is considered to be an outlier. If an outlier is recog-
nized, the raw value is encoded with a prefixed escape symbol. The maximum value of the spill

institut fur PLATO-UVIE-PL-UM-0001 Issue 1.0, 1. July 2022
L{i[; aStrOthSIk Data Compression User Manual

UNIVERSITATSSTERNWARTE WIEN Page 17 of 52

)

iy
il |

parameter depends on the Golomb parameter selected. Because the HW Golomb encoder can
only generate code words with a maximum length of 16 bits, the spill must be set to become
active before a 17-bit long or longer code word would be generated. As you can see in Table 3.5
the maximum spill value is smaller for lower golomb_par values because the codeword length
increases rapidly with low golomb_par values. For more information see [RD-11.

3.3.3 Adaptive Golomb Parameter 1/2 (ap1_golomb_par, ap2_golomb_par), Ad-
aptive Spillover Threshold 1/2 (ap1_spillover_par, ap2_spillover_par)

Semi-adaptive compression is controlled by the ap1_golomb_par, ap2_golomb_par, ap1_spill
and ap2_spill parameters. This feature is only supported by the HW compressor. The semi-
adaptive compression is a mechanism that allows, in addition to the compression parameters
(golomb_par, spill pair) actually used for the compression, to use two additional golomb_par,
spill pairs. At the end of the compression process, it is possible to read out how long the re-
spective bitstream would have been if the additional two pairs had been used. This inform-
ation can then be used to choose a better golomb_par, spill pair for the next compression.
Note that ap1_spill or ap2_spill cannot be selected independently of ap1_golomb_par and
ap2_golomb_par. As explained in more detail in Section 3.5.1, an ap_spill parameter can be
selected up to a specific value depending on the set ap_golomb_par parameter.

3.4 Software Specific Compression Parameters

The following section describes the data type specific parameters required for the software com-
pression.

3.4.1 DataType Specific Compression (cmp_par_*)and Spillover Threshold (spill-
over_%*) Parameters

The data type specific compression parameters are one or many pairs consisting of a compres-
sion parameter with cmp_par_ prefix and a spillover threshold parameter with a spillover_
prefix. These parameters allow adapting the compression to the properties of the different sci-
ence data. The maximum spillover threshold parameter depends on the chosen compression
parameter. The provided function get_max_spill() returns the maximum allowed value.

The way the PLATO science data are organised is, that one or many parameters like the flux
and the center of brightness are combined in one entry. Many entries together with a collection
header build a collection. For the definition of science packets see [RD-6]. Depending on the
number of parameters in an entry, a different number of data type specific compression para-
meter pairs are needed. For the software compression we group the science data types in three

5 Institut fUI’ PLATO-UVIE-PL-UM-0001 Issue 1.0, 1. July 2022
L{y : aStrOphySlk Data Compression User Manual

UNIVERSITATSSTERNWARTE WIEN Page 18 of 52

Table 3.2: Specific compression parameters needed for the different flux/COB data types.

. ¢
& &
o © R
$ & s’
s Y S ¢ & 7
Data Type < 2 < < 7 <
DATA_TYPE_S_FX X X - - - -
DATA_TYPE_S_FX_DFX X X - X - -
DATA_TYPE_S_FX_NCOB X X X - - -
DATA_TYPE_S_FX_DFX_NCOB_ECOB X X X X X -
DATA_TYPE_L_FX X X - - - X
DATA_TYPE_L_FX_DFX X X - X - X
DATA_TYPE_L_FX_NCOB X X X - - X
DATA_TYPE_L_FX_DFX_NCOB_ECOB X X X X X X
DATA_TYPE_F_FX - X - - - -
DATA_TYPE_F_FX_DFX - X - X - -
DATA_TYPE_F_FX_NCOB - X X - - -
DATA_TYPE_F_FX_DFX_NCOB_ECOB - X X X X -

groups: imagette, flux/COB and auxiliary science data types. For every group there is a specific
compression parameter configuration function to configure the for the data type needed para-
meters (cmp_cfg_icu_imagette(), cmp_cfg fx_cob(), cmp_cfg aux(),seelisting3.1). A
software configuration is first created with the function cmp_cfg_icu_create().

Not every data type needs the full set of parameter pairs. The table 3.2 shows which para-
meter pairs are needed to compress the different flux/COB compression data types and Table 3.3
shows the parameter pairs needed for the auxiliary science data types. For imagette data, only
one pair of compression and spillover threshold parameters is needed.

*

@brief create an ICU compression configuration

@param data_type compression data product type

@param cmp_mode compression mode

@param model_value model weighting parameter (only needed for model compression mode)
@param lossy_par lossy rounding parameter (use CMP_LOSSLESS for lossless compression)

@returns a compression configuration containing the chosen parameters;
on error the data_type record is set to DATA_TYPE_UNKOWN

~

1
1
1struct cmp_cfg cmp_cfg_icu_create (enum cmp_data_type data_type, enum cmp_mode cmp_mode,
14 uint32_t model_value, uint32_t lossy_par)

15

16

17/ %%

18 % @brief setup the different data buffers for an ICU compression

19 %

institut fur PLATO-UVIE-PL-UM-0001 Issue 1.0, 1. July 2022
aStrOthSl k Data Compression User Manual

UNIVERSITATSSTERNWARTE WIEN Page 19 of 52

Table 3.3: Specific compression parameters needed for the different auxiliary science data types.

&
<
&
S
L

Me o0

Data Type

DATA_TYPE_OFFSET
DATA_TYPE_BACKGROUND X X X
DATA_TYPE_SMEARING
DATA_TYPE_F_CAM_OFFSET TBC
DATA_TYPE_F_CAM_BACKGROUND TBC

x
x
1

x
x
x

@param cfg pointer to a compression configuration (created
with the cmp_cfg_icu_create () function)
@param data_to_compress pointer to the data to be compressed
@param data_samples length of the data to be compressed measured in
data samples/entitys (collection header not
included by imagette data)
@param model_of_data pointer to model data buffer (can be NULL if no
27 model compression mode is used)

20 %
*
*
*
*
*
*
*

28 % @param updated_model pointer to store the updated model for the next
*
*
*
*
*
*
*
*

21
22
23
24
25
26

model mode compression (can be the same as the model_of_data
buffer for in—place update or NULL if updated model is not needed)
@param compressed_data pointer to the compressed data buffer (can be NULL)
@param compressed_data_len_samples length of the compressed_data buffer in
measured in the same units as the data_samples

29
30
31
32
33
34
@returns the size of the compressed_data buffer on success; 0 if the
parameters are invalid

35
36
37 %/
38
s9size_t cmp_cfg_icu_buffers(struct cmp_cfg xcfg, void xdata_to_compress,

40 uint32_t data_samples, void xmodel_of_data,

41 void xupdated_model, uint32_t xcompressed_data,
2 uint32_t compressed_data_len_samples)

43

a4 [% %

45 % @brief set up the configuration parameters for an ICU imagette compression
46
47 @param cfg pointer to a compression configuration (created

by the cmp_cfg_icu_create () function)
@param cmp_par imagette compression parameter (Golomb parameter)

@param spillover_par imagette spillover threshold parameter

48
49
50
51

k ko ok ok ok ok ok

52 @returns 0 if parameters are valid , non-zero if parameters are invalid

53 %/

54

ssint cmp_cfg_icu_imagette (struct cmp_cfg xcfg, uint32_t cmp_par,

56 uint32_t spillover_par)

57

58

59 /% %

o0 % @brief set up the configuration parameters for a flux/COB compression

61 % @note not all parameters are needed for every flux/COB compression data type

institut fur PLATO-UVIE-PL-UM-0001 Issue 1.0, 1. July 2022
aStrOthSlk Data Compression User Manual

UNIVERSITATSSTERNWARTE WIEN Page 20 of 52
62 %

63 * @param cfg pointer to a compression configuration (created

64 % by the cmp_cfg_icu_create () function)

65 % @param cmp_par_exp_flags exposure flags compression parameter

66 % @param spillover_exp_flags exposure flags spillover threshold parameter

67 % @param cmp_par_fx normal flux compression parameter

68 * @param spillover_fx normal flux spillover threshold parameter

60 % @param cmp_par_ncob normal center of brightness compression parameter

70 % @param spillover_ncob normal center of brightness spillover threshold parameter
71 % @param cmp_par_efx extended flux compression parameter

72 % @param spillover_efx extended flux spillover threshold parameter

73 % @param cmp_par_ecob extended center of brightness compression parameter

74 % @param spillover_ecob extended center of brightness spillover threshold parameter
75 % @param cmp_par_fx_cob_variance flux/COB variance compression parameter

76 % @param spillover_fx_cob_variance flux/COB variance spillover threshold parameter
77 %

78 % @returns 0 if parameters are valid, non—zero if parameters are invalid

79 %/

80

siint cmp_cfg_fx_cob(struct cmp_cfg xcfg,

82 uint32_t cmp_par_exp_flags, uint32_t spillover_exp_flags ,

83 uint32_t cmp_par_fx, uint32_t spillover_fx,

84 uint32_t cmp_par_ncob, uint32_t spillover_ncob,

85 uint32_t cmp_par_efx, uint32_t spillover_efx,

86 uint32_t cmp_par_ecob, uint32_t spillover_ecob,

87 uint32_t cmp_par_fx_cob_variance, uint32_t spillover_fx_cob_variance)

88

89

90 /% %

9 % @brief set up the configuration parameters for an auxiliary science data compression
2 % @note auxiliary compression data types are: DATA_TYPE_OFFSET, DATA_TYPE_BACKGROUND,
93 DATA_TYPE_SMEARING, DATA_TYPE_F_CAM_OFFSET, DATA_TYPE_F_CAM_BACKGROUND
94 @note not all parameters are needed for the every auxiliary compression data type
95
@param cfg pointer to a compression configuration (

created with the cmp_cfg_icu_create () function)
@param cmp_par_mean mean compression parameter
@param spillover_mean mean spillover threshold parameter
@param cmp_par_variance variance compression parameter
@param spillover_variance variance spillover threshold parameter
@param cmp_par_pixels_error outlier pixels number compression parameter
@param spillover_pixels_error outlier pixels number spillover threshold parameter

96
97
98
929
100
101
102
103
104

% sk ok ok sk ok ok ok ok ok ok 3k

105 @returns 0 if parameters are valid, non-zero if parameters are invalid

*
~

106
107
wsint cmp_cfg_aux(struct cmp_cfg xcfg,

109 uint32_t cmp_par_mean, uint32_t spillover_mean,

110 uint32_t cmp_par_variance, uint32_t spillover_variance ,

m uint32_t cmp_par_pixels_error, uint32_t spillover_pixels_error)

Listing 3.1: Declaration of the ICU software configuration compression function.

3.5 Compression Parameter Errors

A large number of compression parameters only accept values within a specified range. If a
compression parameter has an invalid value outside its range, this will cause errors in the com-

institut flr PLATO-UVIE-PL-UM-0001 Issue 1.0, 1. July 2022
ﬂ@[; aStrOphySlk Data Compression User Manual

UNIVERSITATSSTERNWARTE WIEN Page 21 of 52

pression process. Therefore the compressor detects possible errors and informs the user about
them. It checks the input parameters for their correctness and blocks the start of the compressor
in the event of an error to prevent possible unpredictable behaviour.

The hardware compressor indicates an error in the compression error register. The software
compressor displays an error in the return value of the compression function call. All hardware
or software configuration setup functions return a non-zero value if a value is not in the correct
range. Table 3.4 lists the valid value ranges of the different parameters. The maximum spill
parameter is slightly more complex to determine which is described in detail in the next section.

Table 3.4: Valid value ranges for the different parameters of the compressor.

Parameter Name Abbreviation Valid Value Range
Compression Mode cmp_mode [0,4]

Weighting Parameter model_value [0,16]

Rounding Parameter round [0,2]

Golomb Parameter golomb_par [1,63]

Spillover Threshold Parameter spill [2, see Section 3.5.1]
Adaptive Golomb Parameter 1/2 ap1/2_golomb_par [1,63]

Adaptive Spillover Threshold 1/2 ap1/2_spill [2, see Section 3.5.1]
RDCU SRAM Addresses rdcu_***_adr [0x000000, Ox7FFFFF]

3.5.1 Spill Golomb Error

The choice of the spill parameter is closely related to the Golomb parameter. This connection ex-
ists because the RDCU Golomb encoder can only generate code words with a maximum length
of 16 bits. The spill parameter must be set in a way that too large input values do not reach
the Golomb encoder. A too high input value would result in a codeword longer than 16 bits
being generated. The limitation of the spill parameter ensures that the escape symbol mech-
anism becomes active before the encoder produces a code word which is too long. Table 3.5
shows the maximum allowed spill parameter depending on the selected golomb_par. Since the
code word length increases rapidly with smaller Golomb parameters, it is not surprising that the
allowed spill parameter is smaller with small golomb_par than with large ones.

The validity ranges for the spill parameter from Table 3.5 are the same for ap1_spill and
ap2_spill parameters.

y) institut fur PLATO-UVIE-PL-UM-0001 Issue 1.0, 1. July 2022
L{i[; aStrOthSIk Data Compression User Manual

UNIVERSITATSSTERNWARTE WIEN Page 22 of 52

Table 3.5: Valid spillover threshold parameter (spill) range in relation to the used Golomb para-
meter (golomb_par).

golomb_par spill< | golomb_par spill< | golomb_par spill< | golomb_par spill<

1 8 17 194 33 353 49 497
2 22 18 204 34 362 50 506
3 35 19 214 35 371 51 515
4 48 20 224 36 380 52 524
5 60 21 234 37 389 53 533
6 72 22 244 38 398 54 542
7 84 23 254 39 407 55 551
8 96 24 264 40 416 56 560
9 107 25 274 41 425 57 569
10 118 26 284 42 434 58 578
11 129 27 294 43 443 59 587
12 140 28 304 44 452 60 596
13 151 29 314 45 461 61 605
14 162 30 324 46 470 62 614
15 173 31 334 47 479 63 623
16 184 32 344 48 488

4 institut far PLATO-UVIE-PL-UM-0001 Issue 1.0, 1. July 2022
ﬁ{i[aStrOthSIk Data Compression User Manual

UNIVERSITATSSTERNWARTE WIEN Page 23 of 52

4, Hardware/RDCU Compression

The UVIE team provides for the ICU a set of software to simplify the set up of an RDCU hardware
compression. The HW compressor can only compress imagette data.

By not compressing the data itself, but controlling the HW compressor that compresses the
data, the HW compression is more complicated than just calling a function. First, the data and if
needed the model must be written into the SRAM of the RDCU and the compressor configura-
tion must be set into the appropriate registers. Then the hardware compressor is started. These
setup steps are done with the rdcu_compress_data() function. The parameters necessary for
this step are stored in the compression configuration structure. This is discussed in detail in
Section 4.1

If the compression is running it is not possible to access the SRAM via RMAP. Only the
compression status register is accessible. With the provided function rdcu_read_cmp_status
these registers can be read. The function reads these registers and writes the content into
the cmp_status structure. The cmp_ready bit in the structure can now be used to find out
if a compression is still running (cmp_ready = 0) or the compression is finished and the com-
pressor is ready to start a new one (cmp_ready = 1). If this is the case, the data_valid bit can
also be checked to indicate that the compressed data is valid. Alternatively, you can wait for
an interrupt from the RDCU, which tells you when the compressor is ready. It is also possible
to query the status register afterwards to control the data_valid bit. More information on this
topic can be found in Section 4.2. If the compression takes too long it can be interrupted with
the rdcu_interrupt_compression() function. After interrupting the compression, the data
in the SRAM is invalid and cannot be processed any further.

When the compression is finished, the required metadata of the compression can be read
from the RDCU. This is done with the rdcu_read_cmp_info () function. It reads the corres-
ponding registers and writes the content into the passed cmp_info structure. Before the data
of SRAM can be read, it must be checked that no error occurred during compression. If the com-
pression error parameter is zero (cmp_err = 0), no error occurred and the data can be read, see
Section 4.3.

In the next step, the data can finally be read from the SRAM. The rdcu_read_cmp_bitstream()
function can be used to read the compressed data. To read the updated model from the SRAM
the rdcu_read_model () function can be used, see Section 4.4. After these steps, the compres-
sion is finished and a new one can be started. Appendix A shows a detailed example of the
whole hardware compression process.

In the end, the compressed data is prefixed with a compression entity header that contains
the information necessary to decompress the compressed data. The compression entity header
is described in Chapter 6.

5 institut fUI’ PLATO-UVIE-PL-UM-0001 Issue 1.0, 1. July 2022
qif\ - astrothSIk Data Compression User Manual

UNIVERSITATSSTERNWARTE WIEN Page 24 of 52

4.1 Configure and Start the Hardware/RDCU Compressor

Listing 4.1 shows the functions required to configure and set up a HW compression. The first
step to start a hardware compression is to create a compression configuration with the rdcu_-
cfg_create() function. The parameters of the function are the generic compression paramet-
ers, see Section 3.1.

The returned configuration can now be used as input to the rdcu_cfg_buffers() func-
tion for configuring the buffer-related parameters described in Section 3.2. The configuration
structure is also an input for the rdcu_cfg_imagette () function for configuring the RDCU im-
agette compression parameters, see Section 3.3.

The provided function rdcu_compress_data() checks the given configuration for validity
and generates the RMAP packets to set the compressor registers with the parameters defined
in the cmp_cfg configuration structure. The function also packs the data to be compressed
into RMAP packets which are sent to the RDCU SRAM. If model mode is used, the model is also
uploaded to the RDCU SRAM. If non-model compression mode is used, the model is ignored.
Finally, an RMAP packet is created to start the compression.

The rdcu_compress_data() function only sets up and starts the compression, the down-
load of the compressed data is done by another function, see Section 4.4. Note: Before the
rdcu_compress_data() function can be used, an initialisation of the RMAP library is required.
This is achieved with the functions rdcu_ctrl_init () and textttrdcu_rmap_init().

1/%%

> % @brief create an RDCU compression configuration

3 0%

4+ % @param data_type compression data product type

5 % @param cmp_mode compression mode

6 % @param model_value model weighting parameter (only needed for model compression mode)
7 % @param lossy_par lossy rounding parameter (use CMP_LOSSLESS for lossless compression)
8 %

9 % @returns a compression configuration containing the chosen parameters;

10 * on error the data_type record is set to DATA_TYPE_UNKOWN

n %/

istruct cmp_cfg rdcu_cfg_create (enum cmp_data_type data_type, enum cmp_mode cmp_mode,
14 uint32_t model_value, uint32_t lossy_par)

*
8 @brief setup of the different data buffers for an RDCU compression
9
20 @param cfg pointer to a compression configuration (created
21 with the rdcu_cfg_create() function)

@param data_to_compress pointer to the data to be compressed (if NULL no
data transfer to the RDCU)

24 @param data_samples length of the data to be compressed measured in
25 16—bit data samples (ignoring the collection header)
26 @param model_of_data pointer to the model data buffer (only needed for

model compression mode, if NULL no model data is

transferred to the RDCU)
@param rdcu_data_adr RDCU SRAM data to compress start address
@param rdcu_model_adr RDCU SRAM model start address (only needed for

~
@
k %k ok sk ok ok x ok 3k k %k x 3k k

31
32
33
34
35
36
37
38
39
40
4
42
43
44
45
46

47 /%%

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

68 /% %

69
70
71
72
73
74
75
76
77
78
79
80
81
82

institut fur PLATO-UVIE-PL-UM-0001 Issue 1.0, 1. July 2022
aStrOthSlk Data Compression User Manual

UNIVERSITATSSTERNWARTE WIEN Page 25 of 52

*
*
*
*
*
*
*
*

*/

int

k okok ok ok ok ok ok ok ok ok ok

*
~

@param

@param
@param

model compression mode)

rdcu_new_model_adr RDCU SRAM new/updated model start address (can be
the same as rdcu_model_adr for in—place model update)

rdcu_buffer_adr RDCU SRAM compressed data start address
rdcu_buffer_lenght length of the RDCU compressed data SRAM buffer
measured in 16—bit units (same as data_samples)

@returns 0 if parameters are valid, non-zero if parameters are invalid

rdcu_

@brief
@param

@param
@param
@param
@param
@param
@param

cfg_buffers(struct cmp_cfg xcfg, uint16_t xdata_to_compress,
uint32_t data_samples, uint16_t xmodel_of_data,

uint32_t rdcu_data_adr, uint32_t rdcu_model_adr,

uint32_t rdcu_new_model_adr, uint32_t rdcu_buffer_adr,

set up the configuration parameters for an RDCU imagette compression

cfg pointer to a compression configuration (created

with the rdcu_cfg_create () function)

golomb_par imagette compression parameter

spillover_par imagette spillover threshold parameter
apl_golomb_par adaptive 1 imagette compression parameter
ap1_spillover_par adaptive 1 imagette spillover threshold parameter
ap2_golomb_par adaptive 2 imagette compression parameter
ap2_spillover_par adaptive 2 imagette spillover threshold parameter

@returns 0 if parameters are valid, non-zero if parameters are invalid

int rdcu_cfg_imagette(struct cmp_cfg x%cfg,

*

k ok ok sk ok ok ok ok ok ok

*
~

int

@brief
@param

@note

uint32_t golomb_par, uint32_t spillover_par,
uint32_t apl_golomb_par, uint32_t apl1_spillover_par,
uint32_t ap2_golomb_par, uint32_t ap2_spillover_par)

compressing data with the help of the RDCU hardware compressor
cfg configuration contains all parameters required for compression

Before the rdcu_compress function can be used, an initialisation of

the RMAP library is required. This is achieved with the functions
rdcu_ctrl_init () and rdcu_rmap_init() .

@note The validity of the cfg structure is checked before the compression is
started .

@returns 0 on success, error otherwise

rdcu_compress_data(const struct cmp_cfg xcfg)

Listing 4.1: Declaration of the RDCU configuration and compression function.

4.2 Reading the RDCU Status Register

During a HW compression, only the compressor status register is readable via RMAP.

1

2
3
4
5
6
7
8

f Institut fUI’ PLATO-UVIE-PL-UM-0001 Issue 1.0, 1. July 2022
L{y : aStrOphySlk Data Compression User Manual

UNIVERSITATSSTERNWARTE WIEN Page 26 of 52

4.2.1 HW Compression Status Structure

The compression status structure reflects the contents of the RDCU compressor status register.
Unlike the other registers, this register can also be queried during compression.

*
% @brief The cmp_status structure can contain the information of the
* compressor status register from the RDCU, see RDCU-FRS-FN-0632,
* but can also be used for the SW compression.

struct cmp_status {
uint8_t cmp_ready; /x Data Compressor Ready; 0: Compressor is busy 1: Compressor is

ready %/
uint8_t cmp_active; /% Data Compressor Active; 0: Compressor is on hold; 1: Compressor

is active %/

10 uint8_t data_valid; /% Compressor Data Valid; 0: Data is invalid; 1: Data is valid =%/

uint8_t cmp_interrupted; /x Data Compressor Interrupted; HW only; 0: No compressor
interruption; 1: Compressor was interrupted x/

12 uint8_t rdcu_interrupt_en; /x RDCU Interrupt Enable; HW only; 0: Interrupt is disabled;

1: Interrupt is enabled x/

Listing 4.2: C-Implementation of the compressor status structure.

Data Compressor Ready (cmp_ready)

The data compressor ready value indicates whether compression is complete and the com-
pressor is ready to start a new compression. When a data compression is running, the value
of the bit is 0, when compression is finished cmp_ready is set to 1.

Data Compressor Active (cmp_active)

In the current implementation, the active compressor bit is the inverted compressor ready bit.
This means that while acompressionis runningitis 1. If the compression is completed, cmp_active
is 0.

Data Compressor Data Valid (data_valid)

The data valid value indicates whether the compressed data (and, in model mode, the updated
model) is valid or not. If an error occurs during compression or if compression is interrupted, the
value of this bit remains 0 after compression. If compression worked and everything went well,
the bit is set to 1 after compression is complete. The value remains 1 until a new compression
is started.

1

’;% Institut fUI’ PLATO-UVIE-PL-UM-0001 Issue 1.0, 1. July 2022
L{i[i aStrOthSIk Data Compression User Manual

UNIVERSITATSSTERNWARTE WIEN Page 27 of 52

Data Compressor Interrupted (cmp_interrupted)

The data compressor interrupted bit is set when the hardware compressor is interrupted by
setting the data compressor interrupt bit in the compression control register. This bit is reset
when a new compression is started. To interrupt a compression use the rdcu_interrupt -
compression() function.

RDCU Interrupt Signal Enable (rdcu_interrupt_en)

The RDCU interrupt signal enable bit is mirroring the RDCU interrupt signal enable value in the
compression control register. To enable or disable the interrupt signal use the rdcu_enable -
interrput_signal () respectivelyrdcu_disable_interrput_signal () function before start-
ing a RDCU compression.

4.2.2 RDCU Status Register Read Function

You can use the rdcu_read_cmp_status () function to request the content of the compressor
status register of the RDCU HW compressor. The cmp_status structure represents the contents
of the compressor status register. This register is the only register that can be read out during a
HW compression process. The function can be used to poll the status of a compression to find
out when the compression is finished.

The time a HW compression takes depends on the size of the data to be compressed, the
compression mode and the compression rate (CR) reached can be estimated as follows:
Model Mode:
O(tma1) = samples - (20 + 6/CR) - 20 ns (4.1)

1-D Differencing mode:

O(tair) = samples - (8 4+ 6/CR) - 20 ns (4.2)

*

@brief read out the status register of the RDCU compressor
@param status compressor status contains the stats of the HW compressor

@note access to the status registers is also possible during compression

@returns 0 on success, error otherwise

k
~

int rdcu_read_cmp_status(struct cmp_status xstatus)

Listing 4.3: Declaration of the RDCU read status function.

1nstitut fur PLATO-UVIE-PL-UM-0001 Issue 1.0, 1. July 2022
aStrOphySl k Data Compression User Manual

UNIVERSITATSSTERNWARTE WIEN Page 28 of 52

4.3 RDCU Compression Information Register Read Function

Once the HW compression is complete, we need more information than the compressed bit-
stream to process the data further. This metadata can be stored in the provided compressor
information structure cmp_info.

4.3.1 Compression Information Structure

The cmp_info structure shown in Listing 4.4 contains all readable information registers of the
HW compressor. These registers are only readable when the compressor is not active. Before
the compressed data from the compressor can be used, it must be checked that there is no
compression error. Only if cmp_err = 0 the data of the compressor are valid. The meanings of
the error codes are explained in Section 3.5.

1/%* The cmp_info structure can contain the information and metadata of an
2 % executed RDCU compression.

3 %/

4

sstruct cmp_info {

6 uint32_t cmp_mode_used; /% Compression mode used x/

7 uint32_t spill_used; /% Spillover threshold used %/

s uint32_t golomb_par_used; /% Golomb parameter used x/

9o uint32_t samples_used; /% Number of samples (16 bit value) to be stored x/

10 uint32_t cmp_size; /% Compressed data size; measured in bits %/

1 uint32_t apl_cmp_size; /% Adaptive compressed data size 1; measured in bits x/

12 uint32_t ap2_cmp_size; /% Adaptive compressed data size 2; measured in bits x/

13 uint32_t rdcu_new_model_adr_used; /% Updated model start address used x/

14 uint32_t rdcu_cmp_adr_used; /% Compressed data start address x/

15 uint8_t model_value_used; /% Model weighting parameter used %/

16 uint8_t round_used; /% Number of noise bits to be rounded used %/

17 uint16_t cmp_err; /% Compressor errors

18 % [bit 0] small_buffer_err; The length for the compressed data buffer is
too small

19 % [bit 1] cmp_mode_err; The cmp_mode parameter is not set correctly

20 % [bit 2] model_value_err; The model_value parameter is not set correctly

21 % [bit 3] cmp_par_err; The spill , golomb_par combination is not set
correctly

2 % [bit 4] apl_cmp_par_err; The ap1_spill, apl_golomb_par combination is
not set correctly (only HW compression)

23 % [bit 5] ap2_cmp_par_err; The ap2_spill, ap2_golomb_par combination is
not set correctly (only HW compression)

24 % [bit 6] mb_err; Multi bit error detected by the memory controller (only
HW compression)

25 % [bit 7] slave_busy_err; The bus master has received the "slave busy”
status (only HW compression)

26 % [bit 8] slave_blocked_err; The bus master has received the “slave
"blocked status (only HW compression)

27 % [bit 9] invalid address_err; The bus master has received the “invalid
"address status (only HW compression)

28 */

2 };

Listing 4.4: C-Implementation of the compressor information structure.

9——% institut fur PLATO-UVIE-PL-UM-0001 Issue 1.0, 1. July 2022
ij[' aStrOphySlk Data Compression User Manual

UNIVERSITATSSTERNWARTE WIEN Page 29 of 52

Used Compression Parameters (*_used)

The compression parameters used are a copy of the respective parameters from the configura-
tion. They are required for decompression, which must be performed with the same parameters
as the compression.

Compressed Data Size (cmp_size)

The cmp_size parameter describes the length of the compressed bitstream located at the cmp_adr
address. The compression rate (CR) can be easily calculated by:

model_length_used - 16 Bit
cmp_size

CR = (4.3)

Note: This calculation assumes imagette compression, where one sample has 16 bits.

Adaptive Compressed Data Size 1/2 (ap1_cmp_size, ap2_cmp_size)

ap1_cmp_size shows the length of the bitstream if ap1_golomb_par and ap1_spill were used
instead of the used compression parameters. This information can be used to select better com-
pression parameters for the next compression operation. This also applies to the parameter
ap2_cmp_size. This feature of semi-adaptive compression is only provided by the HW com-
pressor.

4.3.2 Compressor errors (cmp_err)

The compression error register consists of eight error bits. Each bit indicates a different error.
If one or more bits are set, an error occurred during compression. If this is the case, the com-
pressed bitstream (and, in model mode, the updated model) is invalid and can no longer be
used.

Small Buffer Error

If the compressed bitstream is larger than the space defined by the buffer_length parameter
in the configuration, there is not enough space to write the entire bitstream to memory. The
compressor, therefore, stops compression and sets the small_buffer_err bit. Note that when
using the compression method with wrong parameters or unfavourably distributed data, the
“compressed” bitstream may be larger than the input data.

’;% Institut fUI’ PLATO-UVIE-PL-UM-0001 Issue 1.0, 1. July 2022
L{i[i aStrOthSIk Data Compression User Manual

UNIVERSITATSSTERNWARTE WIEN Page 30 of 52

Compression Parameter Errors

The error bits 1 to 5 deal with incorrectly set compression parameters and have already been
discussed in detail in Section 3.5.

Multi-Bit Error (mb_err)

Due to the design of the RDCU SRAM, it is checked at each read access whether a multi-bit error
has occurred. If this is the case, this is indicated by setting the mb_err bit. The compression will
be stopped. This error can only occur when using the hardware compressor.

Compressor Bus Access Error (slave_busy_err, slave_blocked_err)

If the hardware compressor does not get access to the SRAM via the internal bus, this is signalled
by setting the slave_busy_err respectively the slave_blocked_err bit. The compression will be
stopped. Also, this error can only occur when using the hardware compressor.

Invalid Address Error (invalid_address_err)

If the hardware compressor accesses an address that is outside the valid SRAM range, it receives
an error on the internal bus and stops the compression. This behaviour is indicated by setting
the error bit invalid_address_err.

4.3.3 Read out the RDCU Hardware Information Registers

To read all metadata of the hardware compressor we provide the rdcu_read_cmp_info function.
This function queries all compressor information registers and writes them into the cmp_info
structure.

/

%
@brief read out the metadata of an RDCU compression

*

*

*

% @param info compression information contains the metadata of a compression

*

* @note the compression information registers cannot be accessed during a compression
*
*

@returns 0 on success, error otherwise
*/

© ® N O U A W N =

10
1nint rdcu_read_cmp_info(struct cmp_info %info)

Listing 4.5: Declaration of the read metadata from the RDCU function.

‘ institut fur PLATO-UVIE-PL-UM-0001 Issue 1.0, 1. July 2022
astrOthSI k Data Compression User Manual

UNIVERSITATSSTERNWARTE WIEN Page 31 of 52

44 RDCU SRAM Read Function

After verifying that the RDCU HW compression is complete (by reading the status register and
checking the data compressor ready flag) and verifying that no compression error occurred (by
reading the metadata and checking the cmp_err register is zero), we can read the results from
the RDCU SRAM.Therdcu_read_cmp_bitstream() and rdcu_read_model () functions can be
used to get either the bitstream or respectively the updated model from the RDCU SRAM.

1/%%

> * @brief read the compressed bitstream from the RDCU SRAM

3 %

4 % @param info compression information contains the metadata of a compression
5 % @param compressed_data the buffer to store the bitstream (if NULL, the

6 % required size is returned)

7 %

8 % @returns the number of bytes read, < 0 on error

9 %/

1int rdcu_read_cmp_bitstream (const struct cmp_info xinfo, void xcompressed_data)

s/
@brief read the updated model from the RDCU SRAM

@param info compression information contains the metadata of a compression

* %
*
*
*

19 %
% @param updated_model the buffer to store the updated model (if NULL, the required size
* is returned)
*
* @returns the number of bytes read, < 0 on error

u %/

25

%int rdcu_read_model(const struct cmp_info xinfo, void xupdated_model)

Listing 4.6: Declaration of the RDCU read bitstream and model functions.

1;% inStitUt fur PLATO-UVIE-PL-UM-0001 Issue 1.0, 1. July 2022
LE[- astrothSIk Data Compression User Manual

UNIVERSITATSSTERNWARTE WIEN Page 32 of 52

5. Software Compression

5.1 Maximum Used Bits

For most scientific parameters, the entire possible range of values is not used. This means that
the maximum value can be represented with fewer bits than it is actually stored. The software
compression tries to take advantage of this and therefore has a registry that stores the maximum
used bits of each scientific parameter. The problem is that the maximum used bits are based
on assumptions about the instrument (maximum value of a parameter, conversion factors from
float to integer, etc.) and may change during instrument calibration. To adapt to changes it
is possible to read the parameters with the cmp_get _max_used_bits() function. This func-
tion returns a structure containing the maximum bit parameters for the various scientific para-
meters. These parameters can be changed. If the registry is changed, the version record of
the registry must also be changed to another unique value. The structure is the input for the
cmp_set_max_used_bits() function which changes the values in the maximum used bits re-

gistry.

During software compression, a check is made whether a parameter value is greater than
the corresponding maximum used bit value allows. If the value is greater, the software com-
pression function fails and returns CMP_ERROR_HIGH_VALUE.

1/ %%

2 % @brief get the maximum length of the different data product types

3 %

4 % @returns a structure with the used maximum length of the different data

s ¥ product types in bits

6 %/

7

sstruct cmp_max_used_bits cmp_get_max_used_bits(void)

9

10

11 /%%

12 % @brief sets the maximum length of the different data product types

13 %

14 % @param set_max_used_bits pointer to a structure with the maximum length

15 % of the different data product types in bits

16 %/

17

isvoid cmp_set_max_used_bits(const struct cmp_max_used_bits xset_max_used_bits)
Listing 5.1: Getter and setter function for the max used bits registry.

YA ﬁ inStitut fur PLATO-UVIE-PL-UM-0001 Issue 1.0, 1. July 2022
LE[astrothSI k Data Compression User Manual

UNIVERSITATSSTERNWARTE WIEN Page 33 of 52

5.2 How to compress data with the Software Compressor on the ICU

We provide thefunction icu_compress_data() to compress data with the software compressor,
see Listing 5.2. The function takes as an input parameter a compression configuration. It con-
tains all parameters that control the compression. The process to create and setting up a con-
figuration is explained in more detail in Chapter 3.

The function takes the data and model (if necessary) from the buffers referenced in the con-
figuration and compresses them. The compressed bitstream is written to the compressed_data
buffer. The length of the compressed bitstream is the return value of the icu_compress_data()
function. After each compression,, it is necessary to check that the return value is not negative.
If it is negative, an error has occurred and the compression data and the updated model are
invalid.

Appendix B shows a detailed example of how to set up and run a software compression.

1/ %%

> % @brief compress data on the ICU in software

3 %

4 % @param cfg pointer to a compression configuration (created with the

5 % cmp_cfg_icu_create () function, setup with the cmp_cfg_xxx () functions)
6 *

7 % @note the validity of the cfg structure is checked before the compression is
8 % started

9 *

10 % @returns the bit length of the bitstream on success; negative on error,
11 % CMP_ERROR_SAMLL_BUF (-2) if the compressed data buffer is too small to
12 * hold the whole compressed data, CMP_ERROR_HIGH_VALUE (-3) if a data or
13 ¥ model value is bigger than the max_used_bits parameter allows (set with
12 % the cmp_set_max_used_bits() function)

15 %/

17int icu_compress_data(const struct cmp_cfg xcfg)
Listing 5.2: Declaration of the ICU software compress function.

Q) institut fur PLATO-UVIE-PL-UM-0001 Issue 1.0, 1. July 2022
L{i[; aStrOthSIk Data Compression User Manual

UNIVERSITATSSTERNWARTE WIEN Page 34 of 52

6. Compression Entity Format

All compressed data has to be prefixed by a header. This header contains the necessary para-
meters for decompressing the compressed data and the required information for reconstructing
the original data. We call the compressed data together with the header a compression entity
Compression Entity (CE). The compression entity header consists of two parts:

- generic compression entity header containing all parameters that are needed for all data
product types. This header is used for all data product types.

« specific compression entity header containing parameters that are specific for the com-
pressed data product type. This header is different for different data product types.

The structure of a compression entity can be seen in Figure 6.1. A detailed description of the
header parameters can be found in Table 6.1. The compressed data from the RDCU does not
contain the compression entity header and therefore the header must be added after down-
loading the compressed data from the RDCU.

Note: As described in [RD-5] a PLATO science packet is limited to 64 kilobytes. Therefore,
the compression entity has to be split into several packets, each containing a chunk header,
to restructure the compression unit and map the compressed data to a chunk ID. This chunk
header is not part of the compression entity described in this document.

6.1 Specific Compression Entity Header

There are two specific compression entity headers for compressed imagette data defined. The
one shown in Figure 6.2 includes additional to the imagette specific decompression paramet-
ers and also the parameters which control the semi-adaptive compression feature. If the semi-
adaptive compression parameters are not needed or available the specific compression entity
shown in Figure 6.3 can be used for compressed imagette data.

For non-imagette data, the specific compression entity header shown in Figure 6.4 should
be used. Table 3.1 lists which data product can be used for which data product type.

For uncompressed data (raw mode) indicated by the uncompressed data bit in the data
product type field, no specific compression entity header is used.

PLATO

/s institut fur
47 astrophysik

UNIVERSITATSSTERNWARTE WIEN

-UVIE-PL-UM-0001

Data Compression User Manual

Issue 1.0, 1. July 2022

Page 35 of 52
ICU ASW / cmp_tool
Version ID
Compression Entity Size MSB
Compression Entity Size LSB Original Data Size MSB
Original Data Size LSB
Compression Start Timestamp
Generic
Compression
Entity
Header

Compression End Timestamp

uncomp.
Dat. Flag

Data P

roduct Type

used Compression Mode

used Model Updating Weighing Value

Mod

el ID

Model Update Counter

Max. Used Bits Registry Version

used Lossy Compression Parameters

Specific Compression Entity Header
Variab

for the different Data Product Types
le Size

Compressed Data
Variable Size

Figure 6.1: Structure of a compression entity consisting of a generic header, a data product type

specific header and the compressed data.

Y institut fUr
astrophysik

PLATO-UVIE-PL-UM-0001

Data Compression User Manual

Issue 1.0, 1. July 2022

UNIVERSITATSSTERNWARTE WIEN Page 36 of 52
Length Parameter Description Value Range
[Bit]

32 ICU ASW Version ID ICU application software/cmp_tool uint32_t
identifier. The first bit is used to dis-
tinguish betw. ICU ASW and cmp_tool.

24 Compression Entity Size Describes the size of the entity [0.2%]
(header + compressed data)
in bytes

24 Original Data Size Size of the data before [0.2%]
compression in bytes

48 Comp. Start Timestamp Time when the compression CUCtime
was started

48 Comp. End Timestamp Time when the compression CUCtime
was finished

16 Data Product Type To specify which data product uint16_t
is compressed see Table 3.1.
The MSB in the data product type
is set for uncompressed data.

8 used Compression Mode Selected compression mode uint8_t

8 u. Model Upd. Weigh. Val. Used model weighting parameter 0..16

16 Model ID Model identifier for identifying uint16_t
entities that originate from
the same starting model.

8 Model Update Counter Counts how many times the model uint8_t
was updated.

8 Maximum Used Bits Version identifier for the max. used uint8_t

Registry Version bits registry, see Section 5.1

16 used Lossy Comp. Par. Parameter controlling the uint16_t
lossy compression

96,32, Specific Entity Header Data product type specific header custom see

256,0 for imagette and non-imagette data Fig. 6.2,6.3,6.4

var. Compressed Data Compressed data custom

Table 6.1: Compression entry header parameters description.

institut fur PLATO-UVIE-PL-UM-0001 Issue 1.0, 1. July 2022
L{i[; aStrOthSIk Data Compression User Manual

UNIVERSITATSSTERNWARTE WIEN Page 37 of 52

L
il |

=)

used Spillover Threshold Parameter

used Golomb Parameter used Adap. 1 Spill. Thres. Par. MSB

used Adap. 1 Spill. Thres. Par. LSB used Adaptive 1 Golomb Par.

used Adaptive 2 Spillover Threshold Parameter

used Adaptive 2 Golomb Par. Spare

Spare

Figure 6.2: Specific compression entity header for RDCU imagette compression containing the
semi-adaptive compression feature.

used Spillover Threshold Parameter

used Golomb Parameter Spare

Figure 6.3: Specific compression entity header for RDCU (or ICU) imagette compression without
containing the semi-adaptive compression feature.

L{i[; aStrOthSIk Data Compression User Manual

v) Institut fUI’ PLATO-UVIE-PL-UM-0001 Issue 1.0, 1. July 2022

UNIVERSITATSSTERNWARTE WIEN Page 38 of 52

used Spillover Threshold Parameter 1 MSB

used Spillover Threshold Par. 1 LSB used Compression Par. 1 MSB

used Compression Parameter 1 LSB used Spillover Threshold Par. 2 MSB

used Spillover Threshold Parameter 2 LSB

used Compression Parameter 2

used Spillover Threshold Parameter 5 MSB

used Spillover Threshold Par. 5 LSB used Compression Par. 5 MSB

used Compression Parameter 5 LSB used Spillover Threshold Par. 6 MSB

used Spillover Threshold Parameter 6 LSB

used Compression Parameter 6

Spare

Figure 6.4: Specific compression entity header for non-imagette data compression.

'ﬁ institut fur PLATO-UVIE-PL-UM-0001 Issue 1.0, 1. July 2022
L@[; aStrOphySlk Data Compression User Manual

UNIVERSITATSSTERNWARTE WIEN Page 39 of 52

/. Frame Processing

There’s a problem with compressing imagettes: the memory of the RDCU SRAM is much smaller
than the sum of all imagettes of a readout cycle. For this reason, all imagettes must be divided
into several chunks and each chunk must be individually compressed. Note that the imagettes
in a chunk must be in the same order over time. The sum of all imagettes generated during
a readout cycle of all cameras (every 25 seconds) is called a frame. As shown in Figure 7.1, de-
pending on the processing strategy of the chunks, it may be necessary to wait until enough data
is available for compression. If enough data is available, it can be divided into chunks. These
data chunks are compressed individually by the RDCU, a detailed description of the process can
be found in Section 7.1. After successful compression, a CE header is added to the compressed
data. This CE header contains the necessary information to decompress the data again. The
header is described in Chapter 6.

Once a chunk is compressed, the next one can be compressed. With an optimized pro-
cessing order of the chunks, the throughput performance can be increased significantly, which
is discussed in detail in Section 7.3.1.

7.1 Chunk Processing

The necessary data and configuration are transferred to the RDCU with the rdcu_compress_-
data() function. Once these steps have been taken, the function also starts the compression
of the chunk. When the compression has finished the metadata of the compression can be read
out from the compressor registers. A part of the metadata is the error register, which has to
be checked. If an error occurs for example if the buffer for the compressed data was too small
(small_buffer_err) or there was a multi-bit error (mb_err) when reading the SRAM, we suggest
to letting the data uncompressed because there is no time for further compression. In this case,
the uncompressed data flag in the compression entity header should be set to "uncompressed”
as well as the used Compression Mode should be set to raw mode.

If no error occurred, the compressed data can be read from the RDCU SRAM with the rdcu-
_read_cmp_bitstream() function. The compressed data must then be prefixed by a header that
allows the data to be decompressed later.

If the updated model is still needed it can be transferred from the RDCU to the ICU with the
function rdcu_read_model(). After that, the chunkis finished processing.

A institut fUI’ PLATO-UVIE-PL-UM-0001
Lﬁf aStrOthSI k Data Compression User Manual

UNIVERSITATSSTERNWARTE WIEN

i

Issue 1.0, 1. July 2022

Page 40 of 52

new frame
available?

Ye

enough frames
stored?

Yes+

configure chunk
processing

Y

frame loop

process chunk

chunk loop

Y
add CE header

all chunks
processed?

Ye

all frames
processed?

Ye

Figure 7.1: Frame processing workflow.

L institut fUr
astrophysik

PLATO-UVIE-PL-UM-0001

Data Compression User Manual

UNIVERSITATSSTERNWARTE WIEN

Issue 1.0, 1. July 2022

Page 41 of 52

chunk processing
start

upload the model

Y

upload the data

rdcu_compress_data(&cmp_cfg) *

configure compressor

¥

start the compressor

]

: rdcu_read_cmp_status(&cmp_status) compression
i or rdcu interrupt finished?

]

read compressor
metadata

rdcu_read_cmp_info(&cmp_info)

cmp_err?

Y

use the uncompressed
data (raw mode)

v

Tt T i
: rdcu_read_cmp_bitstream(&cmp_info, :
i output_buf) download compressed i
i data i
1 1
PP _._l_._._._‘_,_¢ ____________________ i
add CE header
to compressed data

add CE header
to uncompressed data

1
!
: int rdcu_read_model(&cmp_info,
i model_buf) model
1

end

chunk prml

Figure 7.2: Chunk processing workflow.

institut fur PLATO-UVIE-PL-UM-0001 Issue 1.0, 1. July 2022
L{i[; aStrOthSIk Data Compression User Manual

UNIVERSITATSSTERNWARTE WIEN Page 42 of 52

L
il |

=)

7.2 1D-Differencing Mode and Model Mode

The provided algorithms basically distinguish between repeating data and uniquely occurring
data without “prehistory”. It is important to understand how these modes work and how to use
them to achieve good data compression. For single or first time data the 1d-differencing mode
is used, for repeating data the model mode is used.

7.2.1 1D-Differencing Mode

This procedure considers all the data as a 1-dimensional array. The 1d-differencing algorithm is
straightforward. The first value is the first value of the data chunk, after that only the difference
to the left value is written. Example: the value series 100, 102, 99, 99, 105 will be processed in
100, 2, -3, 0, 6. That can be mathematically expressed as:

outputy = input (7.1)

output; = input,; — input,_, i1=1,...,n (7.2)

The results are then further processed and finally encoded with the Golomb code. The com-
pression ratio, however, is usually not as good with this method as with the model method.

7.2.2 Model Mode

The output of this preprocessing process is simply the difference between the input data and
its model:

output, = input; — model; (7.3)
The model should be understood as an average of the input data over time, which has the same
size as the input data. The model is updated after every compression for the next compression
of the same object in the following way:

model; = input, (7.4)

model_value - model; + (16 — model_value) - input;
16

The model_value determines how fast the model changes. It is an integer value in the range
[0,16].

model;11 = (7.5)

The first input data in the model mode are preprocessed differently because no model is
yet available. Depending on the input data, the first frame is preprocessed as 1d-differencing
or raw mode (uncompressed) and used as the model for the next time. All other frames are
preprocessed in model mode, where the input data is subtracted from the model data to reduce

’;% Institut fUI’ PLATO-UVIE-PL-UM-0001 Issue 1.0, 1. July 2022
L{i[i astrothSIk Data Compression User Manual

UNIVERSITATSSTERNWARTE WIEN Page 43 of 52

new unique Model ID

v Y

Y

Model Update Model Update
Counter =0 Counter + 1
Compression Mode = Compression Mode =

Raw or 1d-diff. Mode Model Mode

v Y

Compress Data(t)
with Model(t)

Compress Data(t)

Model(t+1) =
Model(t+1) = Data(t) Updated Model(t)
with Data(t)

t=t+1

false

Update Valuez —
Figure 7.3: Flowchart of the 1d-differencing and model mode.

the data value to be compressed. The flowchart for using the 1d differencing and model modes
together can be seen in Figure 7.3.

We recommend resetting the model after 8 model compression operations and starting
again with a transfer using the 1d-differencing or raw mode. The model update counter counts
how often the model is updated. It is zero if a non-model mode is used. A new unique model ID
must be used for the next data sets when using a new start model (using raw or 1d-dif. mode).
The model ID, together with the model update counter, can be used to determine which data
set was compressed and in which order. Both parameters, the model update counter and the
model ID, are part of the compression entity header (see Chapter 6) to ensure the correct order
in the decompression process.

7.3 Chunk Procedure Order

The not optimised chunk processing order works as follows. The chunk and his model are trans-
ferred to the RDCU. The data get compressed with RDCU. The compressed bitstream is (together

o 3 institut flr PLATO-UVIE-PL-UM-0001 Issue 1.0, 1. July 2022
L@[; aStrOphySlk Data Compression User Manual

UNIVERSITATSSTERNWARTE WIEN Page 44 of 52

with the metadata) downloaded from the RDCU and prefixed with a header. Also, the uploaded
model is downloaded from the RDCU, which is needed to compress the same chunk of the next
frame. Then the next chunk and its model will be uploaded and compressed for compression
and so on.

7.3.1 Optimised Chunk Processing

Data throughput analyses of the compressor have shown that without optimisation chunk pro-
cessing order it is not possible to compress the required 23,400 imagettes (assuming a com-
pression factor of 3) in the given time. However, this problem can be solved by an optimized
chunk processing order we suggested in [RD-3]. With this procedure, it is necessary to store 2
complete frames of imagettes. We call these frames N and N+1. First, the imagettes are divided
into chunks. Then a chunk from the frame N and its model is sent to the RDCU and processed. In
the next step, the metadata and the compressed bitstream are downloaded from the RDCU but
not the updated model. Now the same chunk but from the N+1 frame is sent to the RDCU. An
upload of the model is not necessary because it is already in the RDCU SRAM. Now the 2nd chunk
can be compressed. After the compression the bitstream and now also the updated model will
be downloaded from the RDCU. The updated model is needed to compress the same chunk
from the N+2 frame. Then the process starts from the beginning and the next chunks of the
N+2 and N+3 frame can be compressed.

By this procedure, an upload and download of the model can be saved and the required
data throughput can be achieved. A more detailed analysis of the data throughput of the HW
compressor can be found in [RD-3]. Figure 7.4 shows a visualization of the optimised chunk
processing order.

7.3.2 Chunk Size

Since the RDCU has an 8 MB SRAM of memory available we propose to divide the SRAM into
three parts and use a chunk size of 2.6 MB. The first third should be used for the input data,
the second third for the model data, and the last third for the compressed bitstream. It is also
possible to shorten the memory area for the compressed data to create more space for the other
areas. Even smaller chunk sizes are an option. The only disadvantage with small chunk sizes is
that the overhead is increased by adding the CE header. So it is up to the ICU team to decide
oon larger chunks and a few compressions per frame or small chunks and more compressions.

i% Institut fUI’ PLATO-UVIE-PL-UM-0001 Issue 1.0, 1. July 2022

L{i[aStrOthSIk Data Compression User Manual

UNIVERSITATSSTERNWARTE WIEN Page 45 of 52
1a'a'mi'dee”°'"g ‘ Model mode ‘ 19 P
‘ Frame N ‘ ‘ Frame N+1 ‘ ‘ Frame N+2 Frame N+6 ‘ ‘ Frame N+7 ‘ ‘ Frame N+8 ‘
Chunk 0 Chunk 0 Chunk 0 Chunk 0 Chunk 0 Chunk 0
Chunk 1 Chunk 1 Chunk 1 L] Chunk 1 Chunk 1 Chunk 1
Chunk 2 Chunk 2 Chunk 2 Chunk 2 Chunk 2 Chunk 2

Model Update
Counter

Figure 7.4: Visualization of the optimised chunk processing order.

s institut fur PLATO-UVIE-PL-UM-0001 Issue 1.0, 1. July 2022
LE[R astrothSIk Data Compression User Manual

UNIVERSITATSSTERNWARTE WIEN Page 46 of 52

A. Hardware Compression Example

Listing A.1 shows a sample compression of the RDCU hardware compressor, it demonstrates
how the different functions play together to achieve a compression of the data.

1#include <stdint.h>

c#include <stdlib.h>

s#include <stdio.h>

4

s#tinclude <cmp_data_types.h>

s#include <cmp_rdcu.h>

7#include <cmp_entity .h>

8

o#tdefine MAX_PAYLOAD_SIZE 4096

o#define DATA_SAMPLES 6 /% number of 16 bit samples to compress x/

n#define CMP_ASW_VERSION_ID 1

n#define CMP_BUF_LEN_SAMPLES DATA_SAMPLES /% compressed buffer has the same sample size as
the data buffer x/

13/% The start_time , end_time, model_id and counter have to be managed by the ASW

12 % here we use arbitrary values for demonstration x/

is#define START_TIME 0

w#define END_TIME O

17#define MODEL_ID 42

is#define MODEL_COUNTER 1

19

oUint32_t rmap_rx(uint8_t xpkt);

21

2int32_t rmap_tx(const void xhdr, uint32_t hdr_size, const uint8_t non_crc_bytes,

23 const void xdata, uint32_t data_size);

24

»svoid demo_rdcu_compression(void) {

wint cnt = 0;

27

/% declare configuration, status and information structure x/

nstruct cmp_cfg example_cfg;

s;ostruct cmp_status example_status;

sistruct cmp_info example_info;

32

3/% declare data buffers with some example data %/

ssenum cmp_data_type example_data_type = DATA_TYPE_IMAGETTE_ADAPTIVE;

s;suint16_t data [DATA_SAMPLES] = {42, 23, 1, 13, 20, 1000};

s;suint16_t model [DATA_SAMPLES] = {0, 22, 3, 42, 23, 16};

37

38/% initialise the libraries %/

sordcu_ctrl_init () ;

sordcu_rmap_init (MAX_PAYLOAD_SIZE, rmap_tx, rmap_rx);

41

2/% set up compressor configuration x/

szexample_cfg = rdcu_cfg_create (example_data_type, CMP_DEF_IMA_MODEL_CMP_MODE,

44 CMP_DEF_IMA_MODEL_MODEL_VALUE, CMP_DEF_IMA_MODEL_LOSSY_PAR) ;

45 if (example_cfg.data_type == DATA_TYPE_UNKOWN) {

4 printf("Error occurred during rdcu_cfg_create ()\n");

47 return ;

48 }

49

soif (rdcu_cfg_buffers(&example_cfg, data, DATA_SAMPLES, model,
CMP_DEF_IMA_MODEL_RDCU_DATA_ADR,

institut fur PLATO-UVIE-PL-UM-0001 Issue 1.0, 1. July 2022
astrOthSI k Data Compression User Manual

UNIVERSITATSSTERNWARTE WIEN Page 47 of 52
51 CMP_DEF_IMA_MODEL_RDCU_MODEL_ADR, CMP_DEF_IMA_MODEL_RDCU_UP_MODEL_ADR,
52 CMP_DEF_IMA_MODEL_RDCU_BUFFER_ADR, CMP_BUF_LEN_SAMPLES)) {

53 printf ("Error occurred during rdcu_cfg_buffers ()\n");
54 return;

55}

seif (rdcu_cfg_imagette (&example_cfg,

57 CMP_DEF_IMA_MODEL_GOLOMB_PAR, CMP_DEF_IMA_MODEL_SPILL_PAR,

58 CMP_DEF_IMA_MODEL_AP1_GOLOMB_PAR, CMP_DEF_IMA_MODEL_AP1_SPILL_PAR,

59 CMP_DEF_IMA_MODEL_AP2_GOLOMB_PAR, CMP_DEF_IMA_MODEL_AP2_SPILL_PAR)) {

e printf(”"Error occurred during rdcu_cfg_imagette ()\n");
61 return;

62}

63

64/% start HW compression %/

6sif (rdcu_compress_data(&example_cfg)) {

66 printf(”"Error occurred during rdcu_compress_data()\n");
& return;

68 }

eo/% start polling the compression status =/

70/% alternatively you can wait for an interrupt from the RDCU x/
71do {

72 /% check compression status x/

73 if (rdcu_read_cmp_status(&example_status)) {

74 printf (“Error occurred during rdcu_read_cmp_status()”);

75 return;

76}

77 cnt++;

7 if (cnt > 5) { /% wait for 5 polls x/

79 printf (“Not waiting for compressor to become ready, will ”

80 "check status and abort\n”);

81 /% interrupt the data compression %/

82 rdcu_interrupt_compression () ;

83 /% now we may read the compression info register to get the error code x/
84 if (rdcu_read_cmp_info(&example_info)) {

85 printf(”"Error occurred during rdcu_read_cmp_info()");

86 return ;

87 }

88 printf (”"Compressor error code: 0x%02X\n”, example_info.cmp_err);
89 return;

0 |}

91} while (!example_status.cmp_ready);

92

s printf(”Compression took %d polling cycles\n\n”, cnt);

94

os printf ("Compressor status: ACT: %d, RDY: %d, DATA VALID: %d, INT: %d, INT_EN: %d\n”,
9% example_status.cmp_active, example_status.cmp_ready, example_status.data_valid,
97 example_status.cmp_interrupted, example_status.rdcu_interrupt_en);

98

99/% now we may read the compressor registers x/

10 if (rdcu_read_cmp_info(&example_info)) {

101 printf(”Error occurred during rdcu_read_cmp_info()");

102 return ;

103 }

104

osprintf (“\n\nHere’s the content of the compressor registers:\n”

106 " \n");

107 print_cmp_info(&example_info);

108

1w9/% check if data are valid or a compression error occurred x/

noif (example_info.cmp_err != 0 || example_status.data_valid == 0) {

1 printf (”"Compression error occurred! Compressor error code: 0x%02X\n”,
112 example_info.cmp_err);

institut fur PLATO-UVIE-PL-UM-0001 Issue 1.0, 1. July 2022
aStrOphySl k Data Compression User Manual

UNIVERSITATSSTERNWARTE WIEN Page 48 of 52

113 return;

114 }

115

ne/% build a compression entity and put compressed data from the RDCU into it and print =/
n7if (1) {

118 struct cmp_entity xcmp_ent;

119 void xcmp_ent_data;

120 size_t cmp_ent_size;

121 uint32_t i, s;

122

123 /% get the size of the compression entity x/

124 cmp_ent_size = cmp_ent_build (NULL, CMP_ASW_VERSION_ID,

125 START_TIME, END_TIME, MODEL_ID, MODEL_COUNTER,
126 &example_cfg, example_info.cmp_size);

17 if (cmp_ent_size) {

128 printf (“"Error occurred during cmp_ent_build ()\n");

129 return ;

130}

131

132 /% get memory for the compression entity %/
133 cmp_ent = malloc(cmp_ent_size);

13 if (!cmp_ent) {

135 printf ("Error occurred during malloc()\n");
136 return ;
137}

138
139 /% now let us build the compression entity x/
120 cmp_ent_size = cmp_ent_build (cmp_ent, CMP_ASW_VERSION_ID,

141 START_TIME, END_TIME, MODEL_ID, MODEL_COUNTER,
142 &example_cfg, example_info.cmp_size);

143 if (!cmp_ent_size) {

144 printf (“Error occurred during cmp_ent_build()\n");

145 return;

46}

147

148 /% get the address to store the compressed data in the
149 % compression entity %/

150 cmp_ent_data = cmp_ent_get_data_buf(cmp_ent);

151 if (!cmp_ent_data) {

152 printf(”"Error occurred during cmp_ent_get_data_buf()\n");
153 return;
154}

155

156 /% now get the compressed data form RDCU and copy it into the
157 % compression entity x/

158 if (rdcu_read_cmp_bitstream (&example_info, cmp_ent_data) < 0) {

159 printf (”"Error occurred while reading in the compressed data from the RDCU\n");
160 return;
161}

162
63 S = cmp_ent_get_size(cmp_ent);
164 printf(”“\n\nHere'’'s the compressed data including the header (size %lu):\n”

165 \n”, s);
6 for (i = 0; i < s; i++) {

167 uint8_t xp = (uint8_t x)cmp_ent;

168 printf ("%02X ", pl[il);

169 if (i & !'((i+1) % 40))

170 printf("\n");

71}

172 printf ("\n");
173
174 /% now have a look into the compression entity x/

‘ institut fur PLATO-UVIE-PL-UM-0001 Issue 1.0, 1. July 2022
astrOthSI k Data Compression User Manual

UNIVERSITATSSTERNWARTE WIEN Page 49 of 52

75 printf(“\n\nParse the compression entity header:\n”
176 " \n") ;
177 cmp_ent_parse (cmp_ent) ;

178

179 free (cmp_ent);

180 }

181

182/% read updated model to some buffer and print =/

weif (1) {

184 uint32_t i;

185 Uuint32_t s = cmp_cal_size_of_data (DATA_SAMPLES, example_data_type);
186 uint8_t xmymodel = malloc(s);

187

s if (!'mymodel) {

189 printf(“malloc failed!\n");

190 return;

191}

192

193 if (rdcu_read_model(&example_info, mymodel) < 0)

194 printf (“Error occurred while reading in the updated model\n");
195

196 printf(”“\n\nHere'’'s the updated model (size %lu):\n"
197 " \n", s);
ws for (i = 0; i < s; i++) {

199 printf (”%02X ”, mymodel[i]);

200 if (i & '((i+1) % 40))

201 printf(”“\n");

202}

203 printf(”"\n");
204
205 free (mymodel) ;
206 }
207 }

Listing A.1: Example of a hardware compression.

institut fur PLATO-UVIE-PL-UM-0001 Issue 1.0, 1. July 2022
astrOthSI k Data Compression User Manual

UNIVERSITATSSTERNWARTE WIEN Page 50 of 52

B. Software Compression Example

Listing B.1 shows an example of using the software compressor.

1#include <stdint.h>

>#include <stdlib.h>

s#include <stdio.h>

4

s#include <cmp_icu.h>

s#include <cmp_data_types.h>

7#include <cmp_entity .h>

8

s#tdefine DATA_SAMPLES 6 /% number of 16 bit samples to compress %/

o#define CMP_BUF_LEN_SAMPLES DATA_SAMPLES /% compressed buffer has the same sample size as
the data buffer x/

n#define CMP_ASW_VERSION_ID 1

12/% The start_time , end_time, model_id and counter have to be managed by the ASW

13 % here we use arbitrary values for demonstration =%/

1u#define START_TIME 0

is#define END_TIME O

w#define MODEL_ID 42

17#define MODEL_COUNTER 1

18

1vvoid demo_icu_compression(void) {

nstruct cmp_max_used_bits max_used_bits;

sstruct cmp_cfg example_cfg;

nstruct cmp_entity xcmp_entity;

»uint32_t i, cmp_buf_size, entity_size;

2#int cmp_size_bits;

s void xent_cmp_data;

26

27/% declare data buffers with some example data x/

ssenum cmp_data_type example_data_type = DATA_TYPE_IMAGETTE;

2Uint16_t example_data[DATA_SAMPLES] = {42, 23, 1, 13, 20, 1000};

souint16_t example_model [DATA_SAMPLES] {0, 22, 3, 42, 23, 16};

s1uint16_t updated_model [DATA_SAMPLES] {0};

32

33/% change the max_used_bit parameter for N-CAM imagette data x/

s:amax_used_bits = cmp_get_max_used_bits () ;

ssmax_used_bits.version = 0;

ssmax_used_bits.nc_imagette = 16; /% an imagette value uses a maximum of 16 bits %/

s;7cmp_set_max_used_bits (&max_used_bits) ;

38

39/% create a compression configuration with default values %/

wexample_cfg = cmp_cfg_icu_create (example_data_type, CMP_DEF_IMA_MODEL_CMP_MODE,

a1 CMP_DEF_IMA_MODEL_MODEL_VALUE, CMP_LOSSLESS) ;

2 if (example_cfg.data_type == DATA_TYPE_UNKOWN) {

53 printf(”"Error occurred during cmp_cfg_icu_create ()\n");

4 return;

45}

4% /% configure imagette specific compression parameters with default values x/

7if (cmp_cfg_icu_imagette (&example_cfg, CMP_DEF_IMA_MODEL_GOLOMB_PAR,

48 CMP_DEF_IMA_MODEL_SPILL_PAR)) {

49 printf ("Error occurred during cmp_cfg_icu_imagette ()\n");

50 return;

51}

52

institut fur PLATO-UVIE-PL-UM-0001 Issue 1.0, 1. July 2022
astrOthSI k Data Compression User Manual

UNIVERSITATSSTERNWARTE WIEN Page 51 of 52

s3s/% calculate the size of the buffer for the compressed data in bytes x/

sscmp_buf_size = cmp_cal_size_of_data (CMP_BUF_LEN_SAMPLES, example_data_type);

ssif (lcmp_buf_size) {

ss printf(”"Error occurred during cmp_cal_size_of_data ()\n");

57 return;

58}

so/% Create a compression entity x/

so#tdefine NO_CMP_MODE_RAW_USED 0

sientity_size = cmp_ent_create (NULL, example_data_type, NO_CMP_MODE_RAW_USED, cmp_buf_size
)8

eif (lentity_size) {

s printf(”"Error occurred during cmp_ent_create()\n");

64 return ;

65 }

sscmp_entity = malloc(entity_size); /% allocated memory for the compression entity =/

e if (!cmp_entity) {

e printf(”"malloc failed!\n");

69 return;

70}

7entity_size = cmp_ent_create(cmp_entity, example_data_type, NO_CMP_MODE_RAW_USED,
cmp_buf_size) ;

2if (lentity_size) {

73 printf(”"Error occurred during cmp_ent_create()\n");

74 return;

75 }

76

77/% Configure the buffer related settings. We put the compressed data directly into

78 % the compression entity. In this way we do not need to copy the compressed data

79 % into the compression entity x/

soent_cmp_data = cmp_ent_get_data_buf(cmp_entity) ;

s1if (lent_cmp_data) {

22 printf(”"Error occurred during cmp_ent_get_data_buf()\n");

83 return;

84 }

sscmp_buf_size = cmp_cfg_icu_buffers(&example_cfg, example_data, DATA_SAMPLES,
86 example_model, updated_model,

87 ent_cmp_data, CMP_BUF_LEN_SAMPLES) ;

ssif (!cmp_buf_size) {

o printf(”"Error occurred during cmp_cfg_icu_buffers ()\n");
0 free(cmp_entity);

91 return;

2}

93

/% now we compress the data on the ICU %/
osscmp_size_bits = icu_compress_data(&example_cfg);

wif (cmp_size_bits < 0) {

97 printf(”"Error occurred during icu_compress_data()\n");
s if (cmp_size_bits == CMP_ERROR_SAMLL_BUF)

99 printf (“The compressed data buffer is too small to hold all compressed data!\n");
w0 if (cmp_size_bits == CMP_ERROR_HIGH_VALUE)
101 printf (”“A data or model value is bigger than the max_used_bits parameter allows (set

with the cmp_set_max_used_bits() function)!\n");
102 free (cmp_entity);
103 return;
104 }
105
106/% now we set all the parameters in the compression entity header x/
7entity_size = cmp_ent_build(cmp_entity, CMP_ASW_VERSION_ID, START_TIME, END_TIME,
108 MODEL_ID, MODEL_COUNTER, &example_cfg, cmp_size_bits);
wo if (lentity_size) {
10 printf(”Error occurred during cmp_ent_build () \n");
1 free (cmp_entity);

‘ institut fur PLATO-UVIE-PL-UM-0001 Issue 1.0, 1. July 2022
astrOthSI k Data Compression User Manual

UNIVERSITATSSTERNWARTE WIEN Page 52 of 52

112 return;

13}

114

nsprintf(”Here's the compressed entity (size %u):\n”

116 " \n”, entity_size);
nz7for (i = 0; i < entity_size; i++) {

s uint8_t xp = (uint8_t x)cmp_entity; /x the compression entity is big—endian x/
1o printf(”7%02X ", plil);
o if (i && '((i+1) % 40))

121 printf(“\n");

122 }

3printf(“\n\nHere’s the updated model (samples=%u) :\n"

124 " \n”, DATA_SAMPLES) ;

sfor (i = 0; i < DATA_SAMPLES; i++) {
126 printf(”%04X ”, updated_model[i]);
7 if (i && M((i+1) % 20))

128 printf(“\n");

129 }

oprintf (“\n");

131

132 free (cmp_entity) ;

133 }

Listing B.1: Example of a software compression.

	Terms, Definitions and Abbreviated Items
	Acronyms

	Introduction
	Purpose of the Document
	The Data Compression Algorithm
	The RDCU Hardware Compressor
	The ICU Software Compressor

	Hardware & Software Compression Parameters
	Generic Compression Parameters
	Compression Data Product Type (data_type)
	Compression Mode (cmp_mode)
	Model Weighting Parameter (model_value)
	Lossy Rounding Parameter (lossy_par or round)

	Data Buffers Parameters
	Data to be Compressed Buffer (data_to_compress)
	Data Samples (data_samples)
	Model of Data Buffer (model_of_data)
	Updated/New Model Buffer (updated_model)
	Compressed Data Buffer (compressed_data)
	Compressed Data Buffer Length (compressed_data_len_samples)
	RDCU Addresses (rdcu_data_adr, rdcu_model_adr, rdcu_new_model_adr, rdcu_buffer_adr)

	RDCU Imagette Specific Compression Parameters
	Golomb Parameter (golomb_par)
	Spillover Threshold Parameter (spillover_par)
	Adaptive Golomb Parameter, Adaptive Spillover Threshold

	Software Specific Compression Parameters
	Data Type Specific Compression (cmp_par_*) and Spillover Threshold (spillover_*) Parameters

	Compression Parameter Errors
	Spill Golomb Error

	Hardware/RDCU Compression
	Configure and Start the Hardware/RDCU Compressor
	Reading the RDCU Status Register
	HW Compression Status Structure
	RDCU Status Register Read Function

	RDCU Compression Information Register Read Function
	Compression Information Structure
	Compressor errors (cmp_err)
	Read out the RDCU Hardware Information Registers

	RDCU SRAM Read Function

	Software Compression
	Maximum Used Bits
	How to compress data with the Software Compressor on the ICU

	Compression Entity Format
	Specific Compression Entity Header

	Frame Processing
	Chunk Processing
	1D-Differencing Mode and Model Mode
	1D-Differencing Mode
	Model Mode

	Chunk Procedure Order
	Optimised Chunk Processing
	Chunk Size

	Hardware Compression Example
	Software Compression Example

