
PLATO

Data Compression User Manual

Data Compression User Manual

Reference: PLATO-UVIE-PL-UM-0001

Version: Draft 6, January. 25, 2022

Prepared by: Dominik Loidolt1

Checked by: Roland Ottensamer1

Approved by: Franz Kerschbaum1

1 Department of Astrophysics, University of Vienna

Copyright ©2022
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with no
Front-Cover, no Logos of the University of Vienna.

PLATO-UVIE-PL-UM-0001

Data Compression User Manual

Draft 6, January. 25, 2022

Page 2 of 42

Contents

1 Terms, Definitions and Abbreviated Items 5

2 Introduction 6

2.1 Purpose of the Document . 6

2.2 The Data Compression Algorithm . 6

2.3 The ICU Software Compressor . 8

2.4 The RDCU Hardware Compressor . 8

3 Controlling the Compression 10

3.1 The Compression Parameters Structure . 10

3.2 Compression Parameters . 11

3.2.1 Compression Mode (cmp_mode) . 11

3.2.2 Golomb Parameter (golomb_par) . 12

3.2.3 Spillover Threshold Parameter (spill) . 13

3.2.4 Model Weighting Parameter (model_value) 13

3.2.5 Rounding Parameter (round) . 13

3.2.6 Adaptive Golomb Parameter, Adaptive Spillover Threshold 13

3.2.7 ICU Buffers (input_buf, model_buf, icu_new_model_buf, icu_output_buf) 14

3.2.8 RDCUAddresses (rdcu_data_adr, rdcu_model_adr, rdcu_new_model_adr,
rdcu_buffer_adr) . 14

3.2.9 Number of Samples (samples) . 15

3.2.10 Compressed Data Buffer Length (buffer_length) 15

3.3 Differences between SW and HW Compression Setup 15

3.4 Compression Parameter Errors . 15

3.4.1 Spill Golomb Error . 16

3.5 Default Configuration . 16

3.6 Setup the Hardware Compressor . 18

4 The Status of a Compression 19

4.1 Compression Status Structure . 19

4.1.1 Data Compressor Ready (cmp_ready) . 19

PLATO-UVIE-PL-UM-0001

Data Compression User Manual

Draft 6, January. 25, 2022

Page 3 of 42

4.1.2 Data Compressor Active (cmp_active) . 19

4.1.3 Data Compressor Data Valid (data_valid) 20

4.1.4 Data Compressor Interrupted (cmp_interrupted) 20

4.1.5 RDCU Interrupt Enable (rdcu_interrupt_en) 20

4.2 Read the Status of the Hardware Compressor . 20

5 TheMetadata of a Compression 22

5.1 Compression Information Structure . 22

5.1.1 Used Compression Parameters (*_used) 23

5.1.2 Compressed Data Size (cmp_size) . 23

5.1.3 Adaptive Compressed Data Size 1/2 (ap1_cmp_size, ap2_cmp_size) . . . 23

5.1.4 Compressor errors (cmp_err) . 23

5.2 Read out the RDCU Hardware Information Registers 24

5.3 Read out the RDCU SRAM . 25

6 Compressing Data 26

6.1 How to compress data with the Software Compressor on the ICU 26

6.1.1 Software Compression Example . 27

6.2 How to compress data with the Hardware Compressor on the RDCU 28

6.2.1 Hardware Compression Example . 29

7 Frame Processing 31

7.1 Chunk Processing . 31

7.2 1d-Differencing Mode and Model Mode . 34

7.2.1 1d-Differencing Mode . 34

7.2.2 Model Mode . 34

7.3 Chunk Procedure Order . 35

7.3.1 Optimised Chunk Processing . 36

7.3.2 Chunk Size . 36

8 Compression Entity Format 38

8.1 Specific Compression Entity Header . 38

PLATO-UVIE-PL-UM-0001

Data Compression User Manual

Draft 6, January. 25, 2022

Page 4 of 42

Revision History

Revision Date Author(s) Description

Draft 1 12.06.2019 DL draft document created
Draft 2 12.09.2019 DL updated chapter 1-6
Draft 3 03.02.2020 DL updated code listings, incorporate feedback
Draft 4 24.03.2020 DL updated to meet the FPGA Requirement Specific-

ation V 1.1
Draft 5 05.06.2021 DL corrected minimum allowed spill value, updated

compressed data header, corrected Fig 7.3, 7.4,
corrected listing 5.3

Draft 6 25.01.2020 DL change the size of the ASW Version ID from 16 to
32 bits in the generic header, add spare bits to the
adaptive imagette header and the non-imagette
header, so that the compressed data start address
is 4 byte-aligned.

The documents in Table 2 form an integral part of the present document. The documents
in Table 3 are referenced in the present document and are for information only.

Table 2: Applicable Documents

ID Title, Reference Number, Revision Number
AD-1 Space engineering - Software, ECSS-E-ST-40C, 6th March 2009
AD-2 Space product assurance – Software product assurance, ECSS-

Q-ST-80C, 15th February 2017

Table 3: Reference Documents

ID Title, Reference Number, Revision Number
RD-1 PLATO Data Compression Concept, PLATO-UVIE-PL-TN-0001
RD-2 PLATO Router and Data Compression Unit (RDCU) Prototype

User Manual, PLATO-IWF-PL-UM-0040
RD-3 PLATO RDCU Data Throughput, PLATO-IWF-PL-TN-059, 19th

August 2019
RD-4 FPGA Requirement Specification, PLATO-IWF-PL-RS-0005, 10.

March 2020

PLATO-UVIE-PL-UM-0001

Data Compression User Manual

Draft 6, January. 25, 2022

Page 5 of 42

ID Title, Reference Number, Revision Number
RD-5 Level0 data generation from the payload science data, PLATO-

DLR-MIS-TN-0002, 14. October 2020

PLATO-UVIE-PL-UM-0001

Data Compression User Manual

Draft 6, January. 25, 2022

Page 6 of 42

1. Terms, Definitions andAbbreviated
Items

1.1 Acronyms

API Application Programming Interface
CPU Central Processing Unit
FPGA Field-Programmable Gate Array 6, 8
HW Hardware 6, 10, 13–15, 19, 20, 22, 23, 26, 28, 36
ICU Instrument Control Unit 6, 8, 14, 26–28, 31, 36
ISR Interrupt Service Routine
MMU Memory Management Unit
PUS Packet Utilisation Standard
RDCU Router and Data Compression Unit 3, 6, 8–11, 14–16, 18–21, 24, 25, 28, 29,

31, 35, 36, 38
RISC Reduced Instruction Set Computing
RMAP Remote Memory Access Protocol 8, 10, 18, 19, 28
SRAM Static Random Access Memory 8, 14–16, 18, 24, 25, 28, 29, 31, 36
SW Software 6, 10, 15, 19, 22, 23, 26, 28
UVIE University of Vienna 6, 8, 28

PLATO-UVIE-PL-UM-0001

Data Compression User Manual

Draft 6, January. 25, 2022

Page 7 of 42

2. Introduction

The University of Vienna (UVIE) team provides a set of compression algorithms to support the
Instrument Control Unit (ICU) in compressing the different PLATO data products. Unlike the
non-imagette compression algorithms,which are only available in the formof software libraries,
the imagette compression algorithms have also been implemented in hardware on the Field-
Programmable Gate Array (FPGA) on the RDCU board. Furthermore, an interface has been cre-
atedwhich abstracts the Software (SW) and Hardware (HW) imagette compression so that both
compressors can be controlled with the same parameters.

2.1 Purpose of the Document

This document is about the handling of the provided imagette compression algorithms in soft-
ware and hardware.

2.2 The Data Compression Algorithm

The compression algorithmconsists of several stages connected in series as shown in Figure 2.1.
A brief introduction to the compression algorithm follows, for more details see [RD-1].

The first stage is an optional lossy compression stage. This stage can achieve a significantly
higher compression ratio at the expense of data loss. This is accomplished by rounding down
the least significant digits of the input values so that the output of this stage is smaller than the
input. This stage is controlled by the round parameter, which determines howmany bits should
be rounded.

The second stage in the compression chain is the precompression or preprocessing stage.
This stage uses correlations in the data to reduce the dynamics of the data set. The precom-
pression stage has several modes to accomplish this task, which are briefly introduced here.
The rawmodewrites the input data into the area of thememory which is intended for the com-
pressed data so that no data compression takes place. Therefore, the input is the same as the
output. This mode is intended as a label for uncompressed data or for debugging the com-
pressor. Another mode is the 1d-differencing mode. This mode calculates the difference to the
left neighboring pixel to reduce the dynamics of the input data. The model mode is used to
perform a compression of recurring data of the same object. In addition to the input data of the
current object, a model of the input data is also required. The model roughly corresponds to
an average of the past data of the object. In this mode, the difference between the input data
and a model of this data is formed. The model is updated after a compression and is used to

PLATO-UVIE-PL-UM-0001

Data Compression User Manual

Draft 6, January. 25, 2022

Page 8 of 42

Figure 2.1: Visualization of the compression algorithm.

compress the next data of the same target object at a later point in time.

The next stagemaps the output data of the precompressionwhich are signed integers into
positive integers. This is necessary because the Golomb encoder can only work with positive
integers.

The escape symbol mechanism becomes active whenever statistical outliers occur. Two
mechanisms are implemented to handle outliers, the zero escape symbol mechanism and the
multi escape symbol mechanism. Depending on the distribution of outliers, one mechanism
has slight advantages over the other.

The Golomb encoder is the heart of the compression process. The Golomb code is an al-
gorithm that assigns an input value to a code word. The Golomb encoder assigns short code
words to small values and long code words to large values.

The BitstreamEncoder generates a bitstreamof codewords. The Bitstreamencoder has the
task of stringing the generated codewords of different lengths together and dividing them into
32-bit long pieces to make it possible to write them to the memory.

It can be assumed that the structure of the data to be compressed will change due to vari-
ous effects such as ageing processes. Therefore, an adaptive compression technique is needed
to change the compressor settings whenever the data changes. This is needed to ensure good
data compression over time. This feature is only supported by the hardware data compressor.

PLATO-UVIE-PL-UM-0001

Data Compression User Manual

Draft 6, January. 25, 2022

Page 9 of 42

2.3 The ICU Software Compressor

The UVIE team provides the imagette compression algorithms which are used in the hardware
compressor and also in a separate software package. The software package also included the
algorithms used to compress the non-imagette data products.

The task of the software compressor should be to process small data products that do not
occur frequently. Chapter 6.1 discusses the provided function for software compression in de-
tail.

2.4 The RDCU Hardware Compressor

The data compressor is implemented in the FPGA of the RDCU. It is connected via a SpW link to
the SpW router on the RDCU board, see Figure 2.2. The router is connected to the ICU via two
SpW links. Therefore, the communication from the ICU to the hardware compressor always runs
via the SpW router. It must be ensured that the route between the ICU and the compressor is
correctly configured before communication with the hardware compressor can be started.

On the one hand, the interface of the hardware compressor consists of registers that con-
trol the compressor and provide the metadata of a compression. On the other hand, it consists
of the Static RandomAccessMemory (SRAM) that contains thedata tobe compressed and, if ne-
cessary, the correspondingmodel, aswell as the result of the data compression, the compressed
bitstream. The registers, as well as the SRAM, are written and read via the Remote Memory Ac-
cess Protocol (RMAP) protocol.

To compress data with the hardware compressor, the data to be compressed are written
into the SRAM. Before or after the data transfer the data compressor registers are set with the
parameters necessary for the data compression. Once these two steps have been completed,
the compression can be started by setting the data compressor start bit in the compressor control
register. While the compression is running the SRAM is not accessible via RMAP only the com-
pressor status register is readable. The completion of the data compression is signaled to the ICU
by an interrupt signal or by setting thedata compressor readybit in the compressor status register.
Before the data can be read, it must be checked if an error occurred during compression. This
is ensured by checking that the compressor data valid bit is set in the compressor status register
and that no error bit is set in the compression error register. If this is the case, everything worked
fine during compression and the remaining metadata and compressed data can be read out.

PLATO-UVIE-PL-UM-0001

Data Compression User Manual

Draft 6, January. 25, 2022

Page 10 of 42

Sub Units SpW1

ICU SpW N1

DAT

ADR

FPGA
RTAX2000
CQFP 256

SpW LVTTL

SRAM
UT8ER2M392

8 MB

(2Mx32)

SpW Router
GR718B

CQFP 256

POL
1.5 V

POL
1.8 V

ADC
ADC128S102

12 bit

Control
Status

SpW8

SpW N2

SpW LVDS

SpW LVDS

SpW LVDSSpW LVDS

SpW LVDS

SpW LVDS

SpW LVDS

SpW LVDS

SpW2 SpW3 SpW4 SpW5 SpW6 SpW7

SpW LVDS

SpW LVDS

ICU SpW R1

SpW R2

JTAG

5.0 V

Power

POL
3.3 V

Figure 2.2: RDCU Electrical Concept.

PLATO-UVIE-PL-UM-0001

Data Compression User Manual

Draft 6, January. 25, 2022

Page 11 of 42

3. Controlling the Compression

The compression is controlled by the compression parameters. For software compression, a
structure is provided that contains all compression parameters, see Section 3.1. This structure
is passed to the software compression function. For hardware compression, this structure can
alsobeused togenerate thenecessary RMAPpackets that set the correspondinghardware com-
pressor registers. Alternatively, you can build the required RMAP package “by yourself”, the re-
quired information can be found in the RDCU user manual [RD-2].

3.1 The Compression Parameters Structure

Thecompressionparameters control theSWaswell as theHWcompressor. The structure cmp_cfg
as seen in listing 3.1, contains all parameters for the HW as well as for the SW compression. In
the following, the individual parameters will be briefly discussed and their function and valid
value range will be explained in more detail.

1 /**
2 * @br i e f The cmp_cfg s t r u c t u r e can con ta in the complete c on f i g u r a t i o n of the HW as
3 * we l l as the SW compressor .
4 * @note when us ing the 1d− d i f f e r e n t i a t i n g mode or the raw mode (cmp_error =
5 * 0 , 2 , 4) , the model parameters (model_value , model_buf , rdcu_model_adr ,
6 * rdcu_new_model_adr) a re ignored
7 * @note the i cu_output_bu f w i l l not be used f o r HW compress ion
8 * @note the rdcu_*** _adr parameters a re ignored f o r SW compress ion
9 * @note semi adapt i ve compress ion not supported f o r SW compress ion ;

10 * c on f i g u r a t i o n parameters ap1 \ _golomb \ _par , ap2 \ _golomb \ _par , ap1 \ _ s p i l l ,
11 * ap2 \ _ s p i l l w i l l be ignored ;
12 * /
13

14 s t r u c t cmp_cfg {
15 u in t 32_ t cmp_mode ; /* 0 : raw mode
16 * 1 : model mode with zero escape symbol mechanism
17 * 2 : 1d d i f f e r e n c i n g mode without input
18 * model with zero escape symbol mechanism
19 * 3 : model mode with mu l t i escape symbol mechanism
20 * 4 : 1d d i f f e r e n c i n g mode without input
21 * model mu l t i escape symbol mechanism * /
22 u in t 32_ t golomb_par ; /* Golomb parameter f o r d i c t i o n a r y s e l e c t i o n * /
23 u in t 32_ t s p i l l ; /* S p i l l o v e r th r e sho ld f o r encoding o u t l i e r s * /
24 u in t 32_ t model_value ; /* Model weight ing parameter * /
25 u in t 32_ t round ; /* Number o f no i se b i t s to be rounded * /
26 u in t 32_ t ap1_golomb_par ; /* Adapt ive 1 s p i l l o v e r th r e sho ld ; HW only * /
27 u in t 32_ t a p 1 _ s p i l l ; /* Adapt ive 1 Golomb parameter ; HW only * /
28 u in t 32_ t ap2_golomb_par ; /* Adapt ive 2 s p i l l o v e r th r e sho ld ; HW only * /
29 u in t 32_ t a p 2 _ s p i l l ; /* Adapt ive 2 Golomb parameter ; HW only * /
30 u in t 16_ t * i nput_bu f ; /* Po i n t e r to the data to be compressed * /
31 u in t 32_ t rdcu_data_adr ; /* RDCU data to be compressed s t a r t address ,
32 * the f i r s t data address i n the RDCU SRAM ; HW only * /
33 u in t 16_ t *model_buf ; /* Po i n t e r to the model bu f f e r * /
34 u in t 32_ t rdcu_model_adr ; /* RDCU model s t a r t address , the f i r s t model

PLATO-UVIE-PL-UM-0001

Data Compression User Manual

Draft 6, January. 25, 2022

Page 12 of 42

35 * address i n the RDCU SRAM * /
36 u in t 16_ t * icu_new_model_buf ; /* Po i n t e r to the updated model bu f f e r * /
37 u in t 32_ t rdcu_new_model_adr ; /* RDCU updated model s t a r t address , the
38 * address i n the RDCU SRAM where the
39 * updated model i s s to red * /
40 u in t 32_ t samples ; /* Number o f samples (16 b i t va lue) to
41 * compress , l ength of the data and
42 * (updated) model bu f f e r * /
43 u in t 32_ t * i cu_output_bu f ; /* Po i n t e r to the compressed data bu f f e r
44 * (not used f o r RDCU compress ion) * /
45 u in t 32_ t rd cu_bu f f e r _ad r ; /* RDCU compressed data s t a r t address , the
46 * f i r s t output data address i n the RDCU SRAM * /
47 u in t 32_ t bu f f e r _ l eng th ; /* Length of the compressed data bu f f e r i n
48 * number o f samples (16 b i t v a l ue s) * /
49 } ;

Listing 3.1: C-Implementation of the compressor configuration structure.

3.2 Compression Parameters

In the following section, the compression parameters and their effect on the compression are
briefly introduced. To getmore detailed information about the parameters you can read [RD-1].

3.2.1 Compression Mode (cmp_mode)

The compression mode parameter controls the precompression/preprocessing as well as the
escape symbol mechanism stage of the compressor. The current implementation of the com-
pressor supports five different compression modes. The cmp_mode parameter controls which
mode is used. The cmp_mode parameter can be 0 for raw mode, 1 or 3 for model mode and 2
or 4 for the 1d-differencing mode.

cmp_mode=0: rawmode

The raw mode is intended for testing and debugging operations. In this mode, the input data
are read in andwritten back unchanged to thememory area provided for the compressed data.
No compression takes place in this mode. It has to be ensured that the data buffer length for
the compressed data is at least as large as the size of the input data.

Note: Including RDCU FPGA version 0.7 there is an error in the rawmode which triggers a
small_buffer_err if the samples parameter is equal to the buffer_length parameter. The work-
around is to choose a larger buffer_length parameter than the samples parameter.

PLATO-UVIE-PL-UM-0001

Data Compression User Manual

Draft 6, January. 25, 2022

Page 13 of 42

cmp_mode=1,3: model mode

The model mode is the default mode of the compressor. In addition to the data to be com-
pressed, amodel of the input data is required for thismode. In themodelmode, the compressor
forms thedifferencebetween input data and theirmodels. It also updates themodels according
to the method described in Section 7.2.2. In this compression mode, not only the compressed
data must be read out, but also the updatedmodel. The updatedmodel is required again if the
data for the same target object is to be compressed at a later point in time. When using the
hardware compressor, the upload of themodel is not necessary if the next data to be processed
are from the same object as the last compression.

Thedifferencebetweencmp_mode1and3 is thedifferenthandlingofoutliers. cmp_mode
=1uses the zero escape symbolmechanism,while cmp_mode=3uses themulti escape symbol
mechanism. Depending on the distribution of outliers, one mechanism has slight advantages
over the other. For more information about the exact function of the different escape symbol
mechanisms, see [RD-1].

cmp_mode=2,4: 1d-differencing without input model mode

As thename suggests, the 1d-differencingwithout inputmodelmodedoes not require amodel.
With this method, the difference between neighbouring pixels is formed. This method usually
has a poorer compression ratio than themodel mode. It is used to compress the first image of a
series of images because nomodel exists for that data. This mode can also be used to compress
data that does not occur repeatedly.

Thedifferencebetweencmp_mode2and4 is thedifferenthandlingofoutliers. cmp_mode
=2uses the zero escape symbolmechanism,while cmp_mode=4uses themulti escape symbol
mechanism. Depending on the distribution of outliers, one mechanism has slight advantages
over the other. For more information about the exact function of the different escape symbol
mechanisms, see [RD-1].

3.2.2 Golomb Parameter (golomb_par)

Based on the Golomb parameter (golomb_par) and the input value of the Golomb encoder
stage the code words are formed. As shown in document [RD-1], a larger Golomb parameter
causes the code word length to grow slower, but code words for smaller values are longer. The
input data of the Golomb encoder follow approximately a geometric distribution. The Golomb
parameter should be adapted to this distribution so that the length of all code words is min-
imal. In the current implementation, a Golomb parameter in the range between 1 and 63 is
supported. 0 is not a valid value for the Golomb parameter.

PLATO-UVIE-PL-UM-0001

Data Compression User Manual

Draft 6, January. 25, 2022

Page 14 of 42

3.2.3 Spillover Threshold Parameter (spill)

The escape symbol mechanism is controlled by the spillover threshold parameter (spill). The
spill parameter controls if a value is considered to be an outlier. If an outlier is recognized, the
16-bit raw value is encoded with a prefixed escape symbol. The maximum value of the spill
parameter depends on the Golomb parameter selected. Because the HW Golomb encoder can
only generate code words with a maximum length of 16 bits, the spill must be set to become
active before a 17-bit long or longer codewordwould be generated. As you can see in Table 3.2
the maximum spill value is smaller for lower golomb_par values because the codeword length
increases rapidly with low golomb_par values. For more information see [RD-1].

3.2.4 Model Weighting Parameter (model_value)

Themodel weighting parameter or model_value controls themodel update process in the pre-
compression/preprocessing stage. The weighting parameter only affects the compression pro-
cess if the compressor is in the model mode. As the name indicates the weighting parameters
weight the ratio between the model and the current imagette in the model update equation.
The weighting parameter is a natural number in the range between [0,16]. From the model
update equation 7.5 in Section 7.2.2, you can see that the larger the weighting parameter is,
the slower the updatedmodel changes compared to the current model. The largest value is 16,
whichmeans that the updatedmodel is the same as the currentmodel. The lowest value is zero,
whichmeans that the updatedmodel always corresponds to the current data tobe compressed.

3.2.5 Rounding Parameter (round)

The rounding parameter controls the lossy compression stage. The value specifies how many
bits of the input value in the lossy compression stage are shifted to the right. The larger the
rounding parameter, the higher the compression ratio, at the expense of data loss. A rounding
parameter equal to zeromeans lossless data compression. Since the imagette collection header
is also treated like normal data during compression, it must be ensured that this header is not
corrupted by rounding the last bits.

3.2.6 AdaptiveGolombParameter 1/2 (ap1_golomb_par, ap2_golomb_par), Ad-
aptive Spillover Threshold 1/2 (ap1_spill, ap2_spill)

Semi-adaptive compression is controlled by the ap1_golomb_par, ap2_golomb_par, ap1_spill
and ap2_spill parameters. This feature is only supported by the HW compressor. The semi-
adaptive compression is a mechanism that allows, in addition to the compression parameters
(golomb_par, spill pair) actually used for the compression, to use two additional golomb_par,

PLATO-UVIE-PL-UM-0001

Data Compression User Manual

Draft 6, January. 25, 2022

Page 15 of 42

spill pairs. At the end of the compression process, it is possible to read out how long the re-
spective bitstreamwould have been if the additional two pairs had been used. This information
can then be used to choose a better golomb_par, spill pair for the next compression. Note that
ap1_spill or ap2_spill cannot be selected independently of ap1_golomb_par, ap2_golomb_par.
As explained in more detail in Section 3.4.1, an ap_spill parameter can be selected up to a spe-
cific value depending on the set ap_golomb_par parameter.

3.2.7 ICUBuffers (input_buf,model_buf, icu_new_model_buf, icu_output_buf)

There are four different buffers for the ICU. The input_buf is intended for the data to be com-
pressed.

The model_buf is intended for the model of the data. This buffer is not needed for 1d-
differencing and rawmode.

The icu_new_model_buf is only intended for compression with the ICU compressor. If the
icu_new_model_buf is set toNULLor equal tomodel_buf, the compressor simplyoverwrites the
model_buf with the calculated updated model. If this is not desired, the icu_new_model_buf
buffer can be used to specify where the updatedmodel should bewritten. The size of the input,
model_buf and icu_new_model_buf is described by the parameter samples in 16-bit values.

The icu_output_bufbuffer is intended for the compresseddata. The sizeof the icu_output_buf
is described by the buffer_length parameter in units of 16-bit values. The icu_output_buffer is
not needed to set up the HW compression.

3.2.8 RDCUAddresses (rdcu_data_adr, rdcu_model_adr, rdcu_new_model_adr,
rdcu_buffer_adr)

The different RDCU address parameters are only used for the HW compression. These paramet-
ers determine thememory address of the SRAMwhere the uncompressed data, themodel data,
theupdatedmodel and thebuffer for the compressedbitstreambegin. The rdcuaddresses have
to be 4-byte aligned. The user of the HW compressor must take care that the different memory
areas do not overlap.

If rdcu_new_model_adr is set equal to rdcu_model_adr, the compressor simply overwrites
the old model with the new updated one. This setting also has a small speed advantage, be-
cause if parts of theupdatedmodeldidnot change, someexpensivewrite access canbe skipped.
If rdcu_new_model_adr and rdcu_model_adr are different, the rdcu_new_model_adr can be
used to specify where in the SRAM the updated model should be written. The old model will
not be overwritten.

PLATO-UVIE-PL-UM-0001

Data Compression User Manual

Draft 6, January. 25, 2022

Page 16 of 42

3.2.9 Number of Samples (samples)

The number of samples parameter determines the length of the data to be compressed in 16-
bit words. The uncompressed data also corresponds to the length of the (updated) model data
because there is a model for each data record.

3.2.10 Compressed Data Buffer Length (buffer_length)

The compressed data buffer length specifies the length of the reserved area in the unit as the
samples parameter. For SW compression this parameter specifies the length of the output_buf.
When using HW compression, this parameter specifies the length of the reserved area for com-
pressed data after the rdcu_buffer_adr in the RDCU SRAM. The HW compressor does not check
the overlapping of different memory spaces.

3.3 Differences between SW and HW Compression Setup

Since the SW and the HW compression are conceptually slightly different but are set up with
the same structure, there are a few things to keep in mind. The parameters that control the
compression itself (cmp_mode, golomb_par, spill, model_value, round) are the same for SW
and HW.

The SW compressor takes the data from the input_buf and the model_buf and writes the
result, which is the compressed bitstream, into the output_buf. The semi-adaptive compression
parameters (ap1_***, ap2_***) and the rdcu_***_adr parameters are not used. The HW com-
pressor transfers the data from the input_buf and the model_buf to the designated area in the
RDCU SRAM, defined by the rdcu_data_adr and rdcu_model_adr addresses. Then the registers
used for the compression are set. Finally, the compression is started. The icu_output_buf and
the icu_new_model_buf of the cmp_cfg structure are not used for the HW compression.

Anotherdifferencebetween theSWandHWcompressors is the startingof the compression
process. With the SW compressor, the start is simply done by calling the compression function.
In contrast, theHWcompressor starts by setting the data compressor start bit in the compressor
control register. The compressor control register can also be used to enable or disable the RDCU
interrupt and to interrupt the compression process by setting the data compressor interrupt bit.

3.4 Compression Parameter Errors

A large number of compression parameters only accepts values within a specified range. If a
compression parameter has an invalid value outside its range, this will cause errors in the com-
pression process. Therefore the compressor detects possible errors and informs the user about

PLATO-UVIE-PL-UM-0001

Data Compression User Manual

Draft 6, January. 25, 2022

Page 17 of 42

them. It checks the inputparameters for their correctness andblocks the start of the compressor
in the event of an error to prevent a possible unpredictable behaviour.

Thehardware compressor indicates anerror in the compressionerror register. The software
compressor displays an error in the compression information structure. Table 3.1 lists the valid
value rangesof thedifferent parameters. Themaximumspill parameter is slightlymore complex
to determine which is described in detail in the next section.

Table 3.1: Valid value ranges for the different parameters of the compressor.
Parameter Name Abbreviation Valid Value Range
Compression Mode cmp_mode [0,4]
Weighting Parameter model_value [0,16]
Rounding Parameter round [0,2]
Golomb Parameter golomb_par [1,63]
Spillover Threshold Parameter spill [2, see Section 3.4.1]
Adaptive Golomb Parameter 1/2 ap1/2_golomb_par [1,63]
Adaptive Spillover Threshold 1/2 ap1/2_spill [2, see Section 3.4.1]
RDCU SRAM Addresses rdcu_***_adr [0x000000, 0x7FFFFF]

3.4.1 Spill Golomb Error

The choice of the spill parameter is closely related to the Golomb parameter. This connection
exists because the Golomb encoder can only generate code words with a maximum length of
16 bits. The spill parameter must be set in a way that too large input values do not reach the
Golomb encoder. A too high input value would result in a codeword longer than 16 bits being
generated. The limitation of the spill parameter ensures that the escape symbol mechanism
becomes activebefore the encoder produces a codewordwhich is too long. Table 3.2 shows the
maximumallowedspill parameterdependingon the selectedgolomb_par. Since the codeword
length increases rapidly with smaller Golomb parameters, it is not surprising that the allowed
spill parameter is smaller with small golomb_par than with large ones.

The validity ranges for the spill parameter from Table 3.2 are the same for ap1_spill and
ap2_spill parameters.

3.5 Default Configuration

In order to set up the compressor quickly and with the appropriate configuration, we provide
a default configuration for various applications. Currently, two default configurations are avail-
able for the compression of imagette data in 1d-differencingmode and inmodelmode, see List-
ing 3.2. The standard configurations are not yet finished and can still be adapted. It is planned

PLATO-UVIE-PL-UM-0001

Data Compression User Manual

Draft 6, January. 25, 2022

Page 18 of 42

Table 3.2: Valid spillover threshold parameters (spill) range in relation to the used Golomb para-
meter (golomb_par).
golomb_par spill≤ golomb_par spill≤ golomb_par spill≤ golomb_par spill≤

1 8 17 194 33 353 49 497
2 22 18 204 34 362 50 506
3 35 19 214 35 371 51 515
4 48 20 224 36 380 52 524
5 60 21 234 37 389 53 533
6 72 22 244 38 398 54 542
7 84 23 254 39 407 55 551
8 96 24 264 40 416 56 560
9 107 25 274 41 425 57 569
10 118 26 284 42 434 58 578
11 129 27 294 43 443 59 587
12 140 28 304 44 452 60 596
13 151 29 314 45 461 61 605
14 162 30 324 46 470 62 614
15 173 31 334 47 479 63 623
16 184 32 344 48 488

to provide default configuration for other data products as well.
1 /**
2 * @br i e f De f au l t c on f i g u r a t i o n of the Compressor i n model mode .
3 * /
4

5 cons t s t r u c t cmp_cfg DEFAULT_CFG_MODEL = {
6 MODE_MODEL_MULTI , /* cmp_mode * /
7 4 , /* golomb_par * /
8 48 , /* s p i l l * /
9 8 , /* model_value * /

10 0 , /* round * /
11 3 , /* ap1_golomb_par * /
12 35 , /* a p 1 _ s p i l l * /
13 5 , /* ap2_golomb_par * /
14 60 , /* a p 2 _ s p i l l * /
15 NULL , /* * i nput_bu f * /
16 0x000000 , /* rdcu_data_adr * /
17 NULL , /* *model_buf * /
18 0x2AAAAC , /* rdcu_model_adr * /
19 NULL , /* *up_model_buf * /
20 0x2AAAAC , /* rdcu_up_model_adr * /
21 0 , /* samples * /
22 NULL , /* * i cu_output_bu f * /
23 0x555554 , /* r d cu_bu f f e r _ad r * /
24 0x155556 /* bu f f e r _ l eng th * /
25 } ;
26

27

28 /**
29 * @br i e f De f au l t c on f i g u r a t i o n of the Compressor i n 1d−d i f f e r e n c i n g mode .
30 * /

PLATO-UVIE-PL-UM-0001

Data Compression User Manual

Draft 6, January. 25, 2022

Page 19 of 42

31

32 cons t s t r u c t cmp_cfg DEFAULT_CFG_DIFF = {
33 MODE_DIFF_ZERO , /* cmp_mode * /
34 7 , /* golomb_par * /
35 60 , /* s p i l l * /
36 8 , /* model_value * /
37 0 , /* round * /
38 6 , /* ap1_golomb_par * /
39 48 , /* a p 1 _ s p i l l * /
40 8 , /* ap2_golomb_par * /
41 72 , /* a p 2 _ s p i l l * /
42 NULL , /* * i nput_bu f * /
43 0x000000 , /* rdcu_data_adr * /
44 NULL , /* *model_buf * /
45 0x2AAAAC , /* rdcu_model_adr * /
46 NULL , /* *up_model_buf * /
47 0x2AAAAC , /* rdcu_up_model_adr * /
48 0 , /* samples * /
49 NULL , /* * i cu_output_bu f * /
50 0x555554 , /* r d cu_bu f f e r _ad r * /
51 0x155556 /* bu f f e r _ l eng th * /
52 } ;

Listing 3.2: C-implementation of various default compressor configurations.

3.6 Setup the Hardware Compressor

The provided function rdcu_compress_data, see Listing 3.3, checks the given configuration for
validity and generates the RMAP packets to set the compressor registers with the parameters
defined in the cmp_cfg configuration structure. The data to be compressed is then also packed
into RMAP packets to be sent to the RDCU SRAM.

When the model mode is used, the model is also uploaded to the RDCU. If another com-
pressormode is used themodelwill be ignored. Finally, the RMAPpackage is created to start the
compression. The rdcu_compress_data function only sets up and starts compression. Reading
the compressed data is done by another function so that the icu_output_buf buffer_adr para-
meter in the configuration is not used for the hardware compression.

1 /**
2 * @br i e f compress ing data with the help of the RDCU hardware compressor
3 *
4 * @param cfg con f i g u r a t i o n con t a i n s a l l parameters r equ i r ed f o r compress ion
5 *
6 * @note when us ing the 1d−d i f f e r e n c i n g mode or the raw mode (cmp_mode = 0 , 2 , 4) ,
7 * the model parameters (model_value , model_buf , rdcu_model_adr) a re ignored
8 * @note the i cu_output_bu f w i l l not be used f o r the RDCU compress ion
9 * @note the v a l i d i t y o f the c fg s t r u c t u r e i s checked be fo re the compress ion i s

10 * s t a r t e d
11 *
12 * @returns 0 on success , e r r o r o the rw i se
13 * /
14

15 i n t rdcu_compress_data (cons t s t r u c t cmp_cfg * c fg)

Listing 3.3: Declaration of the RDCU compression function.

PLATO-UVIE-PL-UM-0001

Data Compression User Manual

Draft 6, January. 25, 2022

Page 20 of 42

4. The Status of a Compression

During a HW compression, only the compressor status register is readable via RMAP.

4.1 Compression Status Structure

The compression status structure reflects the contents of the RDCU compressor status register.
Unlike the other registers, this register can also be queried during compression. The structure
can also be used for SW compression if needed. However, the SW compressor does not use the
cmp_interrupted and the rdcu_interrupt_en flag in the structure.

1 /**
2 * @br i e f The cmp_status s t r u c t u r e can con ta in the i n fo rma t i on of the
3 * compressor s t a t u s r e g i s t e r from the RDCU , see RDCU−FRS−FN−0632 ,
4 * but can a l s o be used f o r the SW compress ion .
5 * /
6

7 s t r u c t cmp_status {
8 u i n t 8 _ t cmp_ready ; /* Data Compressor Ready ; 0 : Compressor i s busy 1 : Compressor i s

ready * /
9 u i n t 8 _ t cmp_act ive ; /* Data Compressor Ac t i v e ; 0 : Compressor i s on hold ; 1 : Compressor

i s a c t i v e * /
10 u i n t 8 _ t d a t a _ v a l i d ; /* Compressor Data V a l i d ; 0 : Data i s i n v a l i d ; 1 : Data i s v a l i d * /
11 u i n t 8 _ t cmp_inte r rupted ; /* Data Compressor I n t e r r up t ed ; HW only ; 0 : No compressor

i n t e r r u p t i o n ; 1 : Compressor was i n t e r r up t ed * /
12 u i n t 8 _ t r d cu_ i n t e r r up t _en ; /* RDCU I n t e r r u p t Enable ; HW only ; 0 : I n t e r r u p t i s d i s ab l ed ;

1 : I n t e r r u p t i s enabled * /
13 } ;

Listing 4.1: C-Implementation of the compressor status structure.

4.1.1 Data Compressor Ready (cmp_ready)

The data compressor ready value indicates whether compression is complete and the com-
pressor is ready to start a new compression. When a data compression is running, the value
of the bit is 0, when compression is finished cmp_ready is set to 1.

4.1.2 Data Compressor Active (cmp_active)

In the current implementation, the active compressor bit is the inverted compressor ready bit.
Thismeans thatwhile a compression is running it is 1. If the compression is completed, cmp_active
is 0.

PLATO-UVIE-PL-UM-0001

Data Compression User Manual

Draft 6, January. 25, 2022

Page 21 of 42

4.1.3 Data Compressor Data Valid (data_valid)

The data valid value indicates whether the compressed data (and, in model mode, the updated
model) is valid or not. If an error occurs during compression or if compression is interrupted, the
value of this bit remains 0 after compression. If compression worked and everything went well,
thebit changes to1 after compression is complete. The value remains 1until a newcompression
is started.

4.1.4 Data Compressor Interrupted (cmp_interrupted)

The data compressor interrupted bit is set when the hardware compressor is interrupted by set-
ting the data compressor interrupt bit in the compression control register. This bit is reset when
a new compression is started. It is a status value that is only used by the hardware compressor.

4.1.5 RDCU Interrupt Enable (rdcu_interrupt_en)

The RDCU interrupt enable bit is mirroring the RDCU interrupt enable value in the compression
control register. This bit is therefore only used by the HW compression.

4.2 Read the Status of the Hardware Compressor

Youcanuse the rdcu_read_cmp_status function to request the contentof the compressor status
register of the RDCU HW compressor. The cmp_status structure represents the contents of the
compressor status register. This register is the only register that can be read out during a com-
pression process. The function can be used to poll the status of a compression to find out when
the compression is finished.

The time a compression takes depends on the size of the data to be compressed, the com-
pression mode and the compression rate (CR) reached can be estimated as follows:
Model Mode:

O(tmdl) = samples · (20 + 6/CR) · 20 ns (4.1)

1-D Differencing mode:

O(tdif) = samples · (8 + 6/CR) · 20 ns (4.2)

1 /**
2 * @br i e f read out the s t a t u s r e g i s t e r o f the RDCU compressor
3 *
4 * @param s t a t u s compressor s t a t u s con t a i n s the s t a t s o f the HW compressor
5 *
6 * @note acce s s to the s t a t u s r e g i s t e r s i s a l s o po s s i b l e dur ing compress ion
7 *

PLATO-UVIE-PL-UM-0001

Data Compression User Manual

Draft 6, January. 25, 2022

Page 22 of 42

8 * @returns 0 on success , e r r o r o the rw i se
9 * /

10

11 i n t rdcu_read_cmp_status (s t r u c t cmp_status * s t a t u s)
Listing 4.2: Declaration of the RDCU read status function.

PLATO-UVIE-PL-UM-0001

Data Compression User Manual

Draft 6, January. 25, 2022

Page 23 of 42

5. The Metadata of a Compression

Once the compression is complete, we need more information than the compressed bitstream
toprocess thedata further. Thismetadata canbe stored in theprovidedcompressor information
structure (cmp_info).

5.1 Compression Information Structure

The cmp_info structure shown in Listing 5.1 contains all readable information registers of the
HW compressor. These registers are only readable when the compressor is not active. They
are also used by the SW compressor to return the metadata of a compression. Before the com-
pressed data from the compressor can continue to be used, it must be checked that there is no
compression error. Only if cmp_err = 0 the data of the compressor are valid. The meanings of
the error codes are explained in Section 3.4.

1 /**
2 * @br i e f The cmp_info s t r u c t u r e can con ta in the i n fo rma t i on and metadata o f an
3 * executed compress ion of the HW as we l l as the SW compressor .
4 *
5 * @note i f SW compress ion i s used the parameters rdcu_new_model_adr_used ,

rdcu_cmp_adr_used ,
6 * ap1_cmp_size , ap2_cmp_size a re not used and are t h e r e f o r e s e t to zero
7 * /
8

9 s t r u c t cmp_info {
10 u i n t 8 _ t cmp_mode_used ; /* Compression mode used * /
11 u i n t 8 _ t model_value_used ; /* Model weight ing parameter used * /
12 u i n t 8 _ t round_used ; /* Number o f no i se b i t s to be rounded used * /
13 u in t 16_ t s p i l l _ u s e d ; /* S p i l l o v e r th r e sho ld used * /
14 u i n t 8 _ t golomb_par_used ; /* Golomb parameter used * /
15 u in t 32_ t samples_used ; /* Number o f samples (16 b i t va lue) to be s to red * /
16 u in t 32_ t cmp_size ; /* Compressed data s i z e ; measured in b i t s * /
17 u in t 32_ t ap1_cmp_size ; /* Adapt ive compressed data s i z e 1 ; measured in b i t s * /
18 u in t 32_ t ap2_cmp_size ; /* Adapt ive compressed data s i z e 2 ; measured in b i t s * /
19 u in t 32_ t rdcu_new_model_adr_used ; /* Updated model s t a r t address used * /
20 u in t 32_ t rdcu_cmp_adr_used ; /* Compressed data s t a r t address * /
21 u in t 16_ t cmp_err ; /* Compressor e r r o r s
22 * [b i t 0] sma l l _ b u f f e r _ e r r ; The length f o r the compressed data bu f f e r i s

too sma l l
23 * [b i t 1] cmp_mode_err ; The cmp_mode parameter i s not s e t c o r r e c t l y
24 * [b i t 2] mode l_va lue_er r ; The model_value parameter i s not s e t c o r r e c t l y
25 * [b i t 3] cmp_par_err ; The s p i l l , golomb_par combinat ion i s not s e t

c o r r e c t l y
26 * [b i t 4] ap1_cmp_par_err ; The ap1_ sp i l l , ap1_golomb_par combinat ion i s

not s e t c o r r e c t l y (on ly HW compress ion)
27 * [b i t 5] ap2_cmp_par_err ; The ap2_ sp i l l , ap2_golomb_par combinat ion i s

not s e t c o r r e c t l y (on ly HW compress ion)
28 * [b i t 6] mb_err ; Mu l t i b i t e r r o r detec ted by the memory c o n t r o l l e r (on ly

HW compress ion)

PLATO-UVIE-PL-UM-0001

Data Compression User Manual

Draft 6, January. 25, 2022

Page 24 of 42

29 * [b i t 7] s l a v e_bu s y_e r r ; The bus master has r e ce i v ed the ” s l a v e busy ”
s t a t u s (on ly HW compress ion)

30 * [b i t 8] s l a v e_b l o c k ed_e r r ; The bus master has r e ce i v ed the “ s l a v e
”blocked s t a t u s (on ly HW compress ion)

31 * [b i t 9] i n v a l i d add r e s s _e r r ; The bus master has r e ce i v ed the “ i n v a l i d
”address s t a t u s (on ly HW compress ion) * /

32 } ;

Listing 5.1: C-Implementation of the compressor information structure.

5.1.1 Used Compression Parameters (*_used)

The compression parameters used are a copy of the respective parameters from the configura-
tion. They are required for decompression, whichmust beperformedwith the sameparameters
as the compression.

5.1.2 Compressed Data Size (cmp_size)

Thecmp_sizeparameterdescribes the lengthof the compressedbitstream locatedat the cmp_adr
address. The compression rate (CR) can be easily calculated by:

CR = model_length_used · 16 Bit
cmp_size

(5.1)

5.1.3 Adaptive Compressed Data Size 1/2 (ap1_cmp_size, ap2_cmp_size)

ap1_cmp_size shows the length of the bitstream if ap1_golomb_par and ap1_spill were used
instead of the used compression parameters. This information canbe used to select better com-
pression parameters for the next compression operation. This also applies to the parameter
ap2_cmp_size. This feature of semi-adaptive compression is only provided by the HW com-
pressor. When using the SW compressor ap1_cmp_size and ap2_cmp_size are always set to
0.

5.1.4 Compressor errors (cmp_err)

The compression error register consists of eight error bits. Each bit indicates a different error.
If one or more bits are set, an error occurred during compression. If this is the case, the com-
pressed bitstream (and, in model mode, the updated model) is invalid and can no longer be
used.

PLATO-UVIE-PL-UM-0001

Data Compression User Manual

Draft 6, January. 25, 2022

Page 25 of 42

Small Buffer Error

If the compressed bitstream is larger than the space defined by the buffer_length parameter
in the configuration, there is not enough space to write the entire bitstream to memory. The
compressor, therefore, stops compression and sets the small_buffer_err bit. Note that when
using the compression method with wrong parameters or unfavorably distributed data, the
“compressed” bitstreammay be larger than the input data.

Compression Parameter Errors

The error bits 1 to 5 deal with incorrectly set compression parameters and have already been
discussed in detail in Section 3.4.

Multi-Bit Error (mb_err)

Due to the design of the RDCU SRAM, it is checked at each read access whether amulti-bit error
has occurred. If this is the case, this is indicated by setting the mb_err bit. The compression will
be stopped. This error can only occur when using the hardware compressor.

Compressor Bus Access Error (slave_busy_err, slave_blocked_err)

If the hardware compressor does not get access to the SRAMvia the internal bus, this is signaled
by setting the slave_busy_err respectively the slave_blocked_err bit. The compression will be
stopped. Also, this error can only occur when using the hardware compressor.

Invalid Address Error (invalid_address_err)

If the hardware compressor accesses an address that is outside the valid SRAM range, it receives
an error on the internal bus and stops the compression. This behavior is indicated by setting
the error bit invalid_address_err.

5.2 Read out the RDCU Hardware Information Registers

To read allmetadata of the hardware compressorweprovide the rdcu_read_cmp_info function.
This function queries all compressor information registers and writes them into the cmp_info
structure.

1 /**
2 * @br i e f read out the metadata o f a RDCU compress ion

PLATO-UVIE-PL-UM-0001

Data Compression User Manual

Draft 6, January. 25, 2022

Page 26 of 42

3 *
4 * @param i n f o compress ion in fo rma t i on con t a i n s the metadata o f a compress ion
5 *
6 * @note the compress ion in fo rma t i on r e g i s t e r s cannot be accessed dur ing a compress ion
7 *
8 * @returns 0 on success , e r r o r o the rw i se
9 * /

10

11 i n t rdcu_read_cmp_info (s t r u c t cmp_info * i n f o)

Listing 5.2: Declaration of the read metadata from the RDCU function.

5.3 Read out the RDCU SRAM

The function rdcu_read_cmp_bitstream and rdcu_read_model can be used to read the bit-
stream as well as the updated model from the RDCU SRAM.

1 /**
2 * @br i e f read the compressed b i t s t r e am from the RDCU SRAM
3 *
4 * @param i n f o compress ion in fo rma t i on con t a i n s the metadata o f a compress ion
5 *
6 * @param output_buf the bu f f e r to s t o r e the b i t s t r e am (i f NULL , the r equ i r ed
7 * s i z e i s re tu rned)
8 *
9 * @returns the number o f by tes read , < 0 on e r r o r

10 * /
11

12 i n t rdcu_read_cmp_bi ts t ream (cons t s t r u c t cmp_info * i n fo , vo id *output_buf)
13

14

15 /**
16 * @br i e f read the model from the RDCU SRAM
17 *
18 * @param i n f o compress ion in fo rma t i on con t a i n s the metadata o f a compress ion
19 *
20 * @param model_buf the bu f f e r to s t o r e the model (i f NULL , the r equ i r ed s i z e
21 * i s r e tu rned)
22 *
23 * @returns the number o f by tes read , < 0 on e r r o r
24 * /
25

26 i n t rdcu_read_model (cons t s t r u c t cmp_info * i n fo , vo id *model_buf)

Listing 5.3: Declaration of the RDCU read bitstream and model functions.

PLATO-UVIE-PL-UM-0001

Data Compression User Manual

Draft 6, January. 25, 2022

Page 27 of 42

6. Compressing Data

Finally, we get to the core of the whole thing— compressing data.

6.1 How to compress data with the Software Compressor on the ICU

We provide the function icu_compress_data for compression in software, see Listing 6.1. The
function has three pointers to different structures as function parameters. The first structure
is the compressor configuration structure cmp_cfg. It contains all parameters that control the
compression. The structure and its parameters are explained in more detail in Chapter 3.

The second structure passed to the icu_compress_data function is the status structure
cmp_status. This structure can be used to check the status of the compression. More details
are explained in Chapter 4.

The cmp_info structure, which is also passed to the ICU compression function, contains
all metadata such as the length of the compressed data of a compression. The content of the
structure is the subject of Chapter 5.

The function takes thedata andmodel (if necessary) fromthebuffers referenced in cmp_cfg
and compresses them. The compressed bitstream is written to the icu_output_buf buffer. The
metadata of the compression including the length of the compressed bitstream is written into
the compressor information structure (cmp_info). This structure also contains the error codes
to indicate that an error occurred during the compression. After each compression, it must
be checked that no errors have occurred to verify that the compression data and the updated
model are valid. The SW imagette compressionworkswith the same algorithms as theHWcom-
pression. It is therefore controlled with the same configuration structure as the compressor.
Since the parameters rdcu_***_adr are not needed to set up the SW compression, they are ig-
nored. When compressing in 1d-differencing mode, no model is needed to compress data, so
model-specific parameters (model_value, model_adr, rdcu_new_model_adr) are ignored.

The feature of semi adaptive compression is not supported by the SW compressor. As a
result, the SW compressor will ignore the configuration parameters with the prefix ap1 or ap2.
For this reason, the result of the adaptive compression the status parameters ap1_cmp_size and
ap2_cmp_size will always be zero.

1 /**
2 * @br i e f compress data on the ICU
3 *
4 * @param cfg compressor c on f i g u r a t i o n con t a i n s a l l parameters r equ i r ed f o r compress ion
5 * @param i n f o compressor i n f o rma t i on con t a i n s i n f o rma t i on of an executed compress ion
6 *
7 * @note the v a l i d i t y o f the c fg s t r u c t u r e i s checked be fo re the compress ion i s s t a r t e d

PLATO-UVIE-PL-UM-0001

Data Compression User Manual

Draft 6, January. 25, 2022

Page 28 of 42

8 * @note when us ing the 1d−d i f f e r e n c i n g mode or the raw mode (cmp_error 0 −2) , the model
i s ignored and not used

9 * @note the rdcu_*** _adr c on f i g u r a t i o n parameters a re ignored f o r SW compress ion
10 * @note the rdcu_***_used i n f o parameters a re a lways s e t to zero
11 * @note semi adapt i ve compress ion not supported ; c on f i g u r a t i o n parameters ap1 \ _golomb \

_par ,
12 * ap2 \ _golomb \ _par , ap1 \ _ s p i l l ap2 \ _ s p i l l w i l l be ignored ;
13 * i n f o rma t i on parameters ap1_cmp_size , ap2_cmp_size w i l l a lways be zero
14 *
15 * @returns 0 on success , e r r o r o the rw i se
16 * /
17

18 i n t i cu_compress_data (s t r u c t cmp_cfg *cfg , s t r u c t cmp_status * s t a tu s , s t r u c t cmp_info *
i n f o)

Listing 6.1: Declaration of the ICU compress function.

6.1.1 Software Compression Example

Listing 6.2 shows an example of using the software compressor.
1 # de f i ne DATA_LEN 6 /* number o f 16 b i t samples to compress * /
2

3 s i z e _ t i ;
4 /* dec l a r e c on f i g u r a t i o n and in fo rma t i on s t r u c t u r e * /
5 s t r u c t cmp_cfg example_cfg ;
6 s t r u c t cmp_status example_s ta tus ;
7 s t r u c t cmp_info example_ in fo ;
8 /* dec l a r e data b u f f e r s * /
9 u in t 16_ t example_data [DATA_LEN] = { 4 2 , 23 , 1 , 13 , 20 , 1 0 0 0 } ;

10 u in t 16_ t example_model [DATA_LEN] = { 0 , 22 , 3 , 42 , 23 , 1 6 } ;
11 u in t 32_ t *example_output_buf ;
12

13 /* we make the bu f f e r f o r the compress data as long as the input data bu f f e r * /
14 example_output_buf = (u i n t 32_ t *) ma l loc (s i z e o f (u i n t 16_ t [DATA_LEN])) ;
15

16 i f (example_output_buf == NULL) {
17 p r i n t f (” E r r o r a l l o c a t i n g memory f o r the output bu f f e r \ n ”) ;
18 r e t u r n −1;
19 }
20 /* s e t up compressor c on f i g u r a t i o n * /
21 example_cfg = DEFAULT_CFG_MODEL ;
22 example_cfg . input_bu f = example_data ;
23 example_cfg . model_buf = example_model ;
24 example_cfg . samples = DATA_LEN ;
25

26 example_cfg . i cu_output_bu f = example_output_buf ;
27 example_cfg . bu f f e r _ l eng th = DATA_LEN ; /* we a l l o c a t e d the same bu f f e r l ength as f o r the

input_bu f * /
28

29 /* s t a r t SW compress ion * /
30 i cu_compress_data (& example_cfg , &example_status , &example_ in fo) ;
31

32 /* check i f data a re v a l i d * /
33 i f (example_s ta tus . d a t a _ v a l i d == 0) {
34 p r i n t f (” Data a re not v a l i d . cmp_err = %d \n ” , example_ in fo . cmp_err) ;
35 f r e e (example_output_buf) ;
36 r e t u r n −1;
37 }

PLATO-UVIE-PL-UM-0001

Data Compression User Manual

Draft 6, January. 25, 2022

Page 29 of 42

38

39 p r i n t f (” \ nHere ’ s the compressed data : \ n ”
40 ”================================\n ”) ;
41 f o r (i = 0 ; i < (example_ in fo . cmp_size + 31) / 3 2 ; i ++) {
42 p r i n t f (”%08X ” , example_output_buf [i]) ;
43 }
44

45 p r i n t f (” \ n \ ncompressed data : %d b i t s \ n ” , example_ in fo . cmp_size) ;
46

47 p r i n t f (” \ n \ nHere ’ s the updated model : \ n ”
48 ”================================\n ”) ;
49 f o r (i = 0 ; i < example_ in fo . samples_used ; i ++) {
50 p r i n t f (”%04X ” , example_model [i]) ;
51 }
52 p r i n t f (” \ n ”) ;
53

54 f r e e (example_output_buf) ;
55 r e t u r n 0 ;

Listing 6.2: Example of a software compression.

6.2 How to compress data with the Hardware Compressor on the RDCU

The UVIE team provides for the ICU a set of software to simplify the set up of an RDCU hardware
compression. The functionality of the hardware compressor is very similar to that of the SW
compressor.

By not compressing the data itself, but controlling the HW compressor that compresses
the data, the HW compression is more complicated than just calling a function. First, the data
and if needed the model must be written into the SRAM of the RDCU and the compressor con-
figuration must be set into the appropriate registers. Then the hardware compressor is started.
This is done with the rdcu_compress_data function. The parameters necessary for this step are
stored in the cmp_cfg structure. For more information see Chapter 3

If the compression is running it is not possible to access the SRAM via RMAP. Only the
compression status register is accessible. With the provided function rdcu_read_cmp_status
these registers can be read. The function reads these registers and writes the content into
the cmp_status structure. The cmp_ready bit in the structure can now be used to find out if
a compression is still running (cmp_ready = 0) or the compression is finished and the com-
pressor is ready to start a new one (cmp_ready = 1). If this is the case, the data_valid bit can
also be checked to indicate that the compressed data is valid. Alternatively, you can wait for
an interrupt from the RDCU, which tells you when the compressor is ready. It is also possible
to query the status register afterwards to control the data_valid bit. More information on this
topic can be found in Chapter 4. If the compression takes too long it can be interrupted with
the rdcu_interrupt_compression function. After interrupting compression, the data in SRAM is
invalid and cannot be processed any further.

When the compression is finished, the required metadata of the compression can be read
by the RDCU. This job takes over the rdcu_read_cmp_info function. It reads the corresponding

PLATO-UVIE-PL-UM-0001

Data Compression User Manual

Draft 6, January. 25, 2022

Page 30 of 42

registers and writes the content into the passed cmp_info structure. Before the data of SRAM
can be read, it must be checked that no error occurred during compression. If the parameter
cmp_err = 0 no error occurred and the data can be read, see Chapter 5.

In the last step, the data can finally be read from the SRAM. The rdcu_read_cmp_bitstream
function can be used to read the compressed data. To read the updated model from the SRAM
the rdcu_read_model function can be used. After these steps, the compression is finished and
a new one can be started.

6.2.1 Hardware Compression Example

Listing 6.3 shows a sample compression of the RDCU hardware compressor, it demonstrates
how the different functions play together to achieve a compression of the data.

1 # de f i ne DATA_LEN 6 /* number o f 16 b i t samples to compress * /
2

3 i n t e r r o r ;
4 i n t cnt = 0 ;
5 /* dec l a r e c on f i g u r a t i o n and in fo rma t i on s t r u c t u r e * /
6 s t r u c t cmp_cfg example_cfg ;
7 s t r u c t cmp_status example_s ta tus ;
8 s t r u c t cmp_info example_ in fo ;
9 /* dec l a r e bu f f e r s * /

10 u in t 16_ t example_data [DATA_LEN] = { 4 2 , 23 , 1 , 13 , 20 , 1 0 0 0 } ;
11 u in t 16_ t example_model [DATA_LEN] = { 0 , 22 , 3 , 42 , 23 , 1 6 } ;
12

13 /* s e t up compressor c on f i g u r a t i o n * /
14 example_cfg = DEFAULT_CFG_MODEL ;
15 example_cfg . input_bu f = example_data ;
16 example_cfg . model_buf = example_model ;
17 example_cfg . samples = DATA_LEN ;
18

19 /* s t a r t HW compress ion * /
20 e r r o r = rdcu_compress_data (& example_cfg) ;
21 i f (e r r o r != 0)
22 p r i n t f (”An e r r o r occur red dur ing rdcu_compress_data \ n ”) ;
23

24 /* s t a r t p o l l i n g the compress ion s t a t u s * /
25 e r r o r = rdcu_read_cmp_status (& example_s ta tus) ;
26 i f (e r r o r != 0)
27 p r i n t f (”An e r r o r occur red dur ing rdcu_read_cmp_status \ n ”) ;
28

29 cnt = 0 ;
30 whi le (example_s ta tus . cmp_ready != 0) {
31 /* check compress ion s t a t u s * /
32 e r r o r = rdcu_read_cmp_status (& example_s ta tus) ;
33 i f (e r r o r != 0)
34 p r i n t f (”An e r r o r occur red dur ing rdcu_read_cmp_status \ n ”) ;
35

36 cnt ++;
37 i f (cnt < 5) /* wai t f o r 5 p o l l s * /
38 cont inue ;
39

40

41 p r i n t f (” Not wa i t i ng f o r compressor to become ready , w i l l check s t a t u s and abor t \ n ”) ;
42

PLATO-UVIE-PL-UM-0001

Data Compression User Manual

Draft 6, January. 25, 2022

Page 31 of 42

43 /* i n t e r r u p t the data compress ion * /
44 r dcu_ in te r rup t_compre s s i on () ;
45

46 /* now we may read the e r r o r code * /
47 e r r o r = rdcu_read_cmp_info (& example_ in fo) ;
48 i f (e r r o r != 0) {
49 p r i n t f (”An e r r o r occur red dur ing rdcu_read_cmp_info \ n ”) ;
50 r e t u r n ;
51 }
52 p r i n t f (” Compressor e r r o r code : 0x%02X \ n ” , example_ in fo . cmp_err) ;
53 r e t u r n ;
54 }
55

56 p r i n t f (” Compression took %d po l l i n g c y c l e s \ n \ n ” , cnt) ;
57

58 p r i n t f (” Compressor s t a t u s : ACT : %d , RDY : %d , DATA VALID : %d , INT : %d , INT_EN : %d \n ” ,
59 example_s ta tus . cmp_act ive ,
60 example_s ta tus . cmp_ready ,
61 example_s ta tus . da t a_va l i d ,
62 example_s ta tus . cmp_inter rupted ,
63 example_s ta tus . r d cu_ i n t e r r up t _en) ;
64

65 /* now we may read the e r r o r code * /
66 e r r o r = rdcu_read_cmp_info (& example_ in fo) ;
67 i f (e r r o r != 0)
68 p r i n t f (”An e r r o r occur red dur ing rdcu_read_cmp_info \ n ”) ;
69

70 p r i n t f (” Compressor e r r o r code : 0x%02X \ n ” ,
71 example_ in fo . cmp_err) ;
72

73 p r i n t f (” Compressed data s i z e : %u b i t s \ n ” , example_ in fo . cmp_size) ;
74

75 /* i s s u e sync back of compressed data * /
76 /* read compressed data to some bu f f e r and p r i n t * /
77 i f (1) {
78 u in t 32_ t i ;
79 u in t 32_ t s = (((example_ in fo . samples_used >> 3) + 3) & ~0x3UL) ;
80 u i n t 8 _ t *myresu l t = mal loc (s) ;
81

82 e r r o r = rdcu_read_cmp_bi ts t ream (& example_info , myresu l t) ;
83 i f (e r r o r != 0)
84 p r i n t f (” E r r o r occur red by read ing in the compressed data \ n ”) ;
85

86 p r i n t f (” \ n \ nHere ’ s the compressed data : \ n ”
87 ”================================\n ”) ;
88

89 f o r (i = 0 ; i < s ; i ++) {
90 p r i n t f (”%02X ” , my resu l t [i]) ;
91 i f (i && ! ((i +1) % 40))
92 p r i n t f (” \ n ”) ;
93 }
94 p r i n t f (” \ n ”) ;
95

96 f r e e (myresu l t) ;
97 }
98 r e t u r n ;

Listing 6.3: Example of a hardware compression.

PLATO-UVIE-PL-UM-0001

Data Compression User Manual

Draft 6, January. 25, 2022

Page 32 of 42

7. Frame Processing

There’s a problemwith compressing imagettes: thememory of the RDCU SRAM ismuch smaller
than the sum of all imagettes of a readout cycle. For this reason, all imagettes must be divided
into several chunks and each chunk must be individually compressed. Note that the imagettes
in a chunk must be in the same order over time. The sum of all imagettes generated during a
readout cycle of all cameras (every 25 seconds) is called a frame. As shown in Figure 7.1, depend-
ing on the processing strategy of the chunks, it may be necessary to wait until enough data is
available for compression. If enough data is available, it can be divided into chunks. These data
chunks are compressed individually by the RDCU, a detailed description of the process can be
found in Section 7.1. After successful compression, a header is added to the compressed data.
This header contains the necessary information to decompress the data again. The header is
described in Section 8.

Once a chunk is compressed, the next one can be compressed. With an optimized pro-
cessing order of the chunks, the throughput performance can be increased significantly, which
is discussed in detail in Section 7.3.1.

7.1 Chunk Processing

Thenecessarydata andconfigurationare transferred to theRDCUwith the rdcu_compress_data()
function. Once these steps have been taken, the function also starts the compression of the
chunk. When the compression has finished the metadata of the compression can be read out
from the compressor registers. A part of the metadata is the error register, which has to be
checked. If an error occurs for example if the buffer for the compressed data was too small
(small_buffer_err) or there was a multi-bit error (mb_err) when reading the SRAM, we suggest
to let the data uncompressed because there is no time for further compression. In this case, the
uncompressed data flag in the compression entity header should be set to ”uncompressed” as
well as the used CompressionMode should be set to rawmode.

If no error occurred, the compressed data can be read from the RDCU SRAMwith the rdcu-
_read_cmp_bitstream() function. The compressed data must then be prefixed by a header that
allows the data to be decompressed later.

If the updatedmodel is still needed it can be transferred from the RDCU to the ICUwith the
function rdcu_read_model(). After that, the chunk is finished processing.

PLATO-UVIE-PL-UM-0001

Data Compression User Manual

Draft 6, January. 25, 2022

Page 33 of 42

Figure 7.1: Frame processing workflow.

PLATO-UVIE-PL-UM-0001

Data Compression User Manual

Draft 6, January. 25, 2022

Page 34 of 42

Figure 7.2: Chunk processing workflow.

PLATO-UVIE-PL-UM-0001

Data Compression User Manual

Draft 6, January. 25, 2022

Page 35 of 42

7.2 1d-Differencing Mode and Model Mode

The provided algorithms basically distinguish between repeating data and uniquely occurring
data without “prehistory”. It is important to understand how thesemodes work and how to use
them to achieve good data compression. For single or first time data the 1d-differencingmode
is used, for repeating data the model mode is used.

7.2.1 1d-Differencing Mode

This procedure considers all the data as a 1-dimensional array. The 1d-differencing algorithm is
straightforward. The first value is the first value of the data chunk, after that only the difference
to the left value is written. Example: the value series 100, 102, 99, 99, 105 will be processed in
100, 2, -3, 0, 6. That can be mathematically expressed as:

output0 = input0 (7.1)

outputi = inputi − inputi−1 i = 1, . . . , n (7.2)

The results are then further processed and finally encoded with the Golomb code. The com-
pression ratio, however, is usually not as good with this method as with the model method.

7.2.2 Model Mode

The output of this preprocessing process is simply the difference between the input data and
its model:

outputi = inputi − modeli (7.3)

Themodel should be understood as an average of the input data over time, which has the same
size as the input data. The model is updated after every compression for the next compression
of the same object in the following way:

model1 = input0 (7.4)

modelj+1 =
⌊

model_value · modelj + (16 − model_value) · inputj

16

⌋
(7.5)

The model_value determines how fast the model changes. It is an integer value in the range
[0,16].

The first input data in the model mode are preprocessed differently because no model is
yet available. Depending on the input data, the first frame is preprocessed as 1d-differencing
or raw mode (uncompressed) and used as the model for the next time. All other frames are
preprocessed inmodelmode, where the input data is subtracted from themodel data to reduce

PLATO-UVIE-PL-UM-0001

Data Compression User Manual

Draft 6, January. 25, 2022

Page 36 of 42

Figure 7.3: Flowchart of the 1d-differencing and model mode.

the data value to be compressed. The flowchart for using the 1d differencing andmodelmodes
together can be seen in Figure 7.3.

We recommend resetting the model after 8 model compression operations and starting
again with a transfer using the 1d-differencing or rawmode. Themodel update counter counts
how often themodel is updated. It is zero if a non-model mode is used. A new uniquemodel ID
must be used for the next data sets when using a new start model (using raw or 1d-dif. mode).
The model ID, together with the model update counter, can be used to determine which data
set was compressed and in which order. Both parameters, the model update counter and the
model ID, are part of the compression entity header (see section 8) to ensure the correct order
in the decompression process.

7.3 Chunk Procedure Order

The not optimised chunk processing order works as follows. The chunk and hismodel are trans-
ferred to the RDCU. Thedata get compressedwith RDCU. The compressedbitstream is (together

PLATO-UVIE-PL-UM-0001

Data Compression User Manual

Draft 6, January. 25, 2022

Page 37 of 42

with themetadata) downloaded from the RDCU and prefixedwith a header. Also, the uploaded
model is downloaded from the RDCU, which is needed to compress the same chunk of the next
frame. Then the next chunk and its model will be uploaded and compressed for compression
and so on.

7.3.1 Optimised Chunk Processing

Data throughput analyses of the compressor have shown that without optimisation chunk pro-
cessing order it is not possible to compress the required 23,400 imagettes (assuming a com-
pression factor of 3) in the given time. However, this problem can be solved by an optimized
chunk processing order we suggested in [RD-3]. With this procedure, it is necessary to store 2
complete sets of imagettes. We call these sets N and N+1. First, the imagettes are divided into
chunks. Then a chunk from the set N and its model is sent to the RDCU and processed. In the
next step, themetadata and the compressed bitstream are downloaded from the RDCU but not
the updated model. Now the same chunk but from the N+1 set is sent to the RDCU. An upload
of the model is not necessary because it is already in the RDCU SRAM. Now the 2nd chunk can
be compressed. After the compression the bitstream and now also the updated model will be
downloaded from the RDCU. The updated model is needed to compress the same chunk from
the N+2 set. Then the process starts from the beginning and the next part of the N+2 set can
be compressed.

By this procedure, an upload and download of the model can be saved and the required
data throughput can be achieved. A more detailed analysis of the data throughput of the HW
compressor can be found in [RD-3]. Figure 7.4 shows a visualization of the optimised chunk
processing order.

7.3.2 Chunk Size

Since the RDCU has an 8MB SRAM of memory available we propose to divide the SRAM into
three parts and use a chunk size of 2.6MB. The first third should be used for the input data,
the second third for the model data, and the last third for the compressed bitstream. It is also
possible to shorten thememory area for the compresseddata to createmore space for the other
areas. Even smaller chunk sizes are an option. The only disadvantage with small chunk sizes is
that the overhead is increased by adding the header. So it is up to the ICU team to decide for
larger chunks and a few compressions per frame or small chunks and more compressions.

PLATO-UVIE-PL-UM-0001

Data Compression User Manual

Draft 6, January. 25, 2022

Page 38 of 42

Figure 7.4: Visualization of the optimised chunk processing order.

PLATO-UVIE-PL-UM-0001

Data Compression User Manual

Draft 6, January. 25, 2022

Page 39 of 42

8. Compression Entity Format

All compressed data has to be prefixed by a header. This header contains the necessary para-
meters for decompressing the compresseddata and the required information for reconstructing
the original data. We call the compressed data together with the header a compression entity.
The compression entity header consists of two parts:

• generic compressionentityheader containingall parameters that areneeded for all data
product types. This header is used for all data product types.

• specific compression entity header containing parameters that are specific for the com-
pressed data product type. This header is different for different data product types.

The structure of a compression entity can be seen in Figure 8.1. A detailed description of the
header parameters can be found in Table 8.1. The compressed data from the RDCU does not
contain the compression entity header and therefore the header must be added after down-
loading the compressed data from the RDCU.

Note: As described in [RD-5] a PLATO science packet is limited to 64 kilobytes. Therefore,
the compression entity has to be split into several packets, each containing a chunk header,
to restructure the compression unit and map the compressed data to a chunk ID. This chunk
header is not part of the compression unit described in this document.

8.1 Specific Compression Entity Header

There are two specific compression entity headers for compressed imagette data defined. The
one shown in 8.2 includes additional to the imagette specific decompression parameters also
theparameterswhich control the semi-adaptive compression feature. If the semi-adaptive com-
pression parameters are not needed or available the specific compression entity shown in 8.3
can be used for compressed imagette data.

For non-imagette data, the specific compression entity header shown in Figure 8.4 should
be used. Table 8.2 lists which data product can be used for which data product type.

For uncompressed data (raw mode) indicated by the uncompressed data bit in the data
product type field, no specific compression entity header is used.

PLATO-UVIE-PL-UM-0001

Data Compression User Manual

Draft 6, January. 25, 2022

Page 40 of 42

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ICU ASW / cmp_tool
Version ID

Compression Entity Size MSB

Compression Entity Size LSB Original Data Size MSB

Original Data Size LSB

Compression Start Timestamp

Compression End Timestamp

uncomp.
Dat. Flag Data Product Type

used Compression Mode used Model Updating Weighing Value

Model ID

Model Update Counter Spare

used Lossy Compression Parameters



Generic
Compression
Entity
Header

Specific Compression Entity Header for the different Data Product Types
Variable Size

Compressed Data
Variable Size

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Figure 8.1: Structure of a compression entity consisting of a generic header, a data product type
specific header and the compressed data.

PLATO-UVIE-PL-UM-0001

Data Compression User Manual

Draft 6, January. 25, 2022

Page 41 of 42

Length Parameter Description Value Range
[Bit]

32 ICU ASW Version ID ICU application software/cmp_tool uint32_t
identifier. The first bit is used to dis-
tinguish betw. ICU ASW and cmp_tool.

24 Compression Entity Size Describes the size of the entity [0..224[
(header + compressed data)
in bytes

24 Original Data Size Size of the data before [0..224[
compression in bytes

48 Comp. Start Timestamp Time when the compression CUC time
was started

48 Comp. End Timestamp Time when the compression CUC time
was finished

16 Data Product Type To specify which data product uint16_t
is compressed see Table 8.2.
The MSB in the data product type
is set for uncompressed data.

8 used Compression Mode Selected compression mode uint8_t
8 u. Model Upd. Weigh. Val. Used model weighting parameter 0..16
16 Model ID Model identifier for identifying uint16_t

entities that originate from
the same starting model.

8 Model Update Counter Counts howmany times the model uint8_t
was updated.

8 Spare
16 used Lossy Comp. Par. Parameter controlling the uint16_t

lossy compression
96, 32, Specific Entity Header Data product type specific header custom see
256, 0 for imagette and non-imagette data Fig. 8.2, 8.3, 8.4
var. Compressed Data Compressed data custom

Table 8.1: Compression entry header parameters description.

PLATO-UVIE-PL-UM-0001

Data Compression User Manual

Draft 6, January. 25, 2022

Page 42 of 42

Data
Product Type Description specific compression header

1 NCxx_S_SCIENCE_IMAGETTE (adaptive) imagette header
2 NCxx_S_SCIENCE_SAT_IMAGETTE TBC (adaptive) imagette header
3 NCxx_S_SCIENCE_OFFSET non-imagette header
4 NCxx_S_SCIENCE_BACKGROUND non-imagette header
5 NCxx_S_SCIENCE_SMEARING non-imagette header
6 NCxx_S_SCIENCE_S_FX non-imagette header
7 NCxx_S_SCIENCE_S_FX_DFX non-imagette header
8 NCxx_S_SCIENCE_S_FX_NCOB non-imagette header
9 NCxx_S_SCIENCE_S_FX_DFX_NCOB_ECOB non-imagette header
10 NCxx_S_SCIENCE_L_FX non-imagette header
11 NCxx_S_SCIENCE_L_FX_DFX non-imagette header
12 NCxx_S_SCIENCE_L_FX_NCOB non-imagette header
13 NCxx_S_SCIENCE_L_FX_DFX_NCOB_ECOB non-imagette header
14 NCxx_S_SCIENCE_F_FX non-imagette header
15 NCxx_S_SCIENCE_F_FX_DFX non-imagette header
16 NCxx_S_SCIENCE_F_FX_NCOB non-imagette header
17 NCxx_S_SCIENCE_F_FX_DFX_NCOB_ECOB non-imagette header
18 FCx_R_SCIENCE_IMAGETTE TBC (adaptive) imagette header
19 FCx_R_SCIENCE_OFFSET_VALUES TBC (adaptive) imagette header
20 FCx_R_BACKGROUND_VALUES non-imagette header

Table 8.2: Which specific compression header can be used for which data product type.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

used Spillover Threshold Parameter

used Golomb Parameter used Adap. 1 Spill. Thres. Par. MSB

used Adap. 1 Spill. Thres. Par. LSB used Adaptive 1 Golomb Par.

used Adaptive 2 Spillover Threshold Parameter

used Adaptive 2 Golomb Par. Spare

Spare

Figure 8.2: Specific compression entity header for RDCU imagette compression containing the
semi-adaptive compression feature.

PLATO-UVIE-PL-UM-0001

Data Compression User Manual

Draft 6, January. 25, 2022

Page 43 of 42

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

used Spillover Threshold Parameter

used Golomb Parameter Spare

Figure 8.3: Specific compression entity header for RDCU (or ICU) imagette compressionwithout
containing the semi-adaptive compression feature.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

used Spillover Threshold Parameter 1 MSB

used Spillover Threshold Par. 1 LSB used Compression Par. 1 MSB

used Compression Parameter 1 LSB used Spillover Threshold Par. 2 MSB

used Spillover Threshold Parameter 2 LSB

used Compression Parameter 2

...

used Spillover Threshold Parameter 5 MSB

used Spillover Threshold Par. 5 LSB used Compression Par. 5 MSB

used Compression Parameter 5 LSB used Spillover Threshold Par. 6 MSB

used Spillover Threshold Parameter 6 LSB

used Compression Parameter 6

Spare

Figure 8.4: Specific compression entity header for non-imagette data compression.

	Terms, Definitions and Abbreviated Items
	Introduction
	Purpose of the Document
	The Data Compression Algorithm
	The ICU Software Compressor
	The RDCU Hardware Compressor

	Controlling the Compression
	The Compression Parameters Structure
	Compression Parameters
	Compression Mode (cmp_mode)
	Golomb Parameter (golomb_par)
	Spillover Threshold Parameter (spill)
	Model Weighting Parameter (model_value)
	Rounding Parameter (round)
	Adaptive Golomb Parameter, Adaptive Spillover Threshold
	ICU Buffers (input_buf, model_buf, icu_new_model_buf, icu_output_buf)
	RDCU Addresses (rdcu_data_adr, rdcu_model_adr, rdcu_new_model_adr, rdcu_buffer_adr)
	Number of Samples (samples)
	Compressed Data Buffer Length (buffer_length)

	Differences between SW and HW Compression Setup
	Compression Parameter Errors
	Spill Golomb Error

	Default Configuration
	Setup the Hardware Compressor

	The Status of a Compression
	Compression Status Structure
	Data Compressor Ready (cmp_ready)
	Data Compressor Active (cmp_active)
	Data Compressor Data Valid (data_valid)
	Data Compressor Interrupted (cmp_interrupted)
	RDCU Interrupt Enable (rdcu_interrupt_en)

	Read the Status of the Hardware Compressor

	The Metadata of a Compression
	Compression Information Structure
	Used Compression Parameters (*_used)
	Compressed Data Size (cmp_size)
	Adaptive Compressed Data Size 1/2 (ap1_cmp_size, ap2_cmp_size)
	Compressor errors (cmp_err)

	Read out the RDCU Hardware Information Registers
	Read out the RDCU SRAM

	Compressing Data
	How to compress data with the Software Compressor on the ICU
	Software Compression Example

	How to compress data with the Hardware Compressor on the RDCU
	Hardware Compression Example

	Frame Processing
	Chunk Processing
	1d-Differencing Mode and Model Mode
	1d-Differencing Mode
	Model Mode

	Chunk Procedure Order
	Optimised Chunk Processing
	Chunk Size

	Compression Entity Format
	Specific Compression Entity Header

