¥ institut fir TR 1 i e
astrophysik Lniversitat

UNIVERSITATSSTERNWARTE WIEN

PLATO

Data Compression User Manual

Data Compression User Manual

Reference: PLATO-UVIE-PL-UM-0001

Version: Draft 6, January. 25, 2022

Prepared by: Dominik Loidolt’
Checked by: Roland Ottensamer’
Approved by: Franz Kerschbaum!'

' Department of Astrophysics, University of Vienna

Copyright ©2022

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with no
Front-Cover, no Logos of the University of Vienna.

V. institut flr PLATO-UVIE-PL-UM-0001 Draft 6, January. 25, 2022
aStrOphySl k Data Compression User Manual

UNIVERSITATSSTERNWARTE WIEN Page 2 of 42

Contents

1 Terms, Definitions and Abbreviated Items 5
2 Introduction 6
2.1 PurposeoftheDocument it 6

2.2 The Data Compression Algorithm 6

2.3 ThelCU Software COmPressor . . . v v v v v v e e e e e e e e e e e e e e e 8

2.4 The RDCU Hardware COMPressor . . . v v v v v v v o e e e e e e e et e e e e e 8

3 Controlling the Compression 10
3.1 The Compression Parameters Structure 10

3.2 Compression Parameters i e e e e e 11
3.2.1 Compression Mode (cmp_mode), 11

3.2.2 Golomb Parameter (golomb_par) 12

3.2.3 Spillover Threshold Parameter (spill) 13

3.24 Model Weighting Parameter (model_value) 13

3.25 RoundingParameter(round) o o 13

3.2.6 Adaptive Golomb Parameter, Adaptive Spillover Threshold 13

3.2.7 ICU Buffers (input_buf, model_buf, icu_new_model_buf, icu_output_buf) 14

3.2.8 RDCU Addresses (rdcu_data_adr,rdcu_model_adr, rdcu_new_model_adr,

rdcu_buffer_adr) e e 14

3.29 Numberof Samples (samples) 15

3.2.10 Compressed Data Buffer Length (buffer_length) 15

3.3 Differences between SW and HW CompressionSetup 15

3.4 Compression ParameterErrors e 15
34.1 SpillGolomb Error e 16

3.5 DefaultConfiguration 16
3.6 SetuptheHardware Compressor i i i i i i it e 18

4 The Status of a Compression 19
4.1 Compression Status Structure i e e e e e e e 19

4.1.1 DataCompressor Ready (cmp_ready) 19

V. institut flr PLATO-UVIE-PL-UM-0001 Draft 6, January. 25, 2022
aStrOphySl k Data Compression User Manual

UNIVERSITATSSTERNWARTE WIEN Page 3 of 42
4.1.2 Data Compressor Active (cmp_active) o ... 19

4.1.3 Data Compressor Data Valid (data_valid) 20

414 Data Compressor Interrupted (cmp_interrupted) 20

4.1.5 RDCU Interrupt Enable (rdcu_interrupt_en) 20

4.2 Read the Status of the Hardware Compressor 20

5 The Metadata of a Compression 22
5.1 Compression Information Structure o ... 22
5.1.1 Used Compression Parameters (*_used) 23

5.1.2 Compressed Data Size (cmp_size) o v v i i v i 23

5.1.3 Adaptive Compressed Data Size 1/2 (ap1_cmp_size, ap2_cmp_size) . .. 23

514 Compressor errors (CMpP_Err) . . v v v v v v v v e e e e et e et e e oo 23

5.2 Read out the RDCU Hardware Information Registers 24

53 Readoutthe RDCUSRAM e et 25

6 Compressing Data 26
6.1 How to compress data with the Software CompressoronthelCU 26
6.1.1 Software CompressionExample 27

6.2 How to compress data with the Hardware Compressoronthe RDCU 28
6.2.1 Hardware CompressionExample 29

7 Frame Processing 31
7.1 ChunkProcessing v o v i i i e e e e e e e e e 31

7.2 1d-Differencing Modeand ModelMode, 34
7.2.1 1d-DifferencingMode e 34

722 ModelMode e 34

7.3 ChunkProcedureOrder e 35
73.1 Optimised Chunk Processing i it i e 36

73.2 ChunkSize 36

8 Compression Entity Format 38
8.1 Specific Compression EntityHeader 38

LE[-

¢ institut far
astrophysik

UNIVERSITATSSTERNWARTE WIEN

PLATO-UVIE-PL-UM-0001 Draft 6, January. 25, 2022

Data Compression User Manual

Page 4 of 42

Revision History

Revision

Draft 1
Draft 2
Draft 3
Draft 4

Draft 5

Draft 6

Date Author(s) Description

12.06.2019 DL draft document created

12.09.2019 DL updated chapter 1-6

03.02.2020 DL updated code listings, incorporate feedback

24.03.2020 DL updated to meet the FPGA Requirement Specific-
ationV 1.1

05.06.2021 DL corrected minimum allowed spill value, updated
compressed data header, corrected Fig 7.3, 7.4,
corrected listing 5.3

25.01.2020 DL change the size of the ASW Version ID from 16 to

32 bits in the generic header, add spare bits to the
adaptive imagette header and the non-imagette
header, so that the compressed data start address

is 4 byte-aligned.

The documents in Table 2 form an integral part of the present document. The documents
in Table 3 are referenced in the present document and are for information only.

Table 2: Applicable Documents

Title, Reference Number, Revision Number

AD-1

Space engineering - Software, ECSS-E-ST-40C, 6th March 2009

AD-2

Space product assurance - Software product assurance, ECSS-
Q-ST-80C, 15th February 2017

Table 3: Reference Documents

Title, Reference Number, Revision Number

RD-1

PLATO Data Compression Concept, PLATO-UVIE-PL-TN-0001

RD-2

PLATO Router and Data Compression Unit (RDCU) Prototype
User Manual, PLATO-IWF-PL-UM-0040

RD-3

PLATO RDCU Data Throughput, PLATO-IWF-PL-TN-059, 19th
August 2019

RD-4

FPGA Requirement Specification, PLATO-IWF-PL-RS-0005, 10.
March 2020

! institut fUr PLATO-UVIE-PL-UM-0001 Draft 6, January. 25, 2022
aStrOthSlk Data Compression User Manual

UNIVERSITATSSTERNWARTE WIEN Page 5 of 42

RD-5 | Level0 data generation from the payload science data, PLATO-
DLR-MIS-TN-0002, 14. October 2020

4o Insti i -UVIE-PL-UM- Draft 6, J 25,2022
=i [[’]St[tut fur PLATO-UVIE-PL-UM-0001 raft 6, January.
ﬁﬁ[aStrOphySI k Data Compression User Manual

UNIVERSITATSSTERNWARTE WIEN Page 6 of 42

1. Terms, Definitions and Abbreviated
ltems

1.1 Acronyms

API Application Programming Interface

CPU Central Processing Unit

FPGA Field-Programmable Gate Array 6, 8

HW Hardware 6, 10, 13-15, 19, 20, 22, 23, 26, 28, 36

ICU Instrument Control Unit 6, 8, 14, 26-28, 31, 36

ISR Interrupt Service Routine

MMU Memory Management Unit

PUS Packet Utilisation Standard

RDCU Router and Data Compression Unit 3, 6, 8-11, 14-16, 18-21, 24, 25, 28, 29,
31, 35, 36, 38

RISC Reduced Instruction Set Computing

RMAP Remote Memory Access Protocol 8, 10, 18, 19, 28

SRAM Static Random Access Memory 8, 14-16, 18, 24, 25, 28, 29, 31, 36

Sw Software 6, 10, 15, 19, 22, 23, 26, 28

UVIE University of Vienna 6, 8, 28

institut fur PLATO-UVIE-PL-UM-0001 Draft 6, January. 25, 2022
L{i[; aStrOthSIk Data Compression User Manual

UNIVERSITATSSTERNWARTE WIEN Page 7 of 42

L
il |

=)

2. Introduction

The University of Vienna (UVIE) team provides a set of compression algorithms to support the
Instrument Control Unit (ICU) in compressing the different PLATO data products. Unlike the
non-imagette compression algorithms, which are only available in the form of software libraries,
the imagette compression algorithms have also been implemented in hardware on the Field-
Programmable Gate Array (FPGA) on the RDCU board. Furthermore, an interface has been cre-
ated which abstracts the Software (SW) and Hardware (HW) imagette compression so that both
compressors can be controlled with the same parameters.

2.1 Purpose of the Document

This document is about the handling of the provided imagette compression algorithms in soft-
ware and hardware.

2.2 The Data Compression Algorithm

The compression algorithm consists of several stages connected in series as shown in Figure 2.1.
A brief introduction to the compression algorithm follows, for more details see [RD-1].

The first stage is an optional lossy compression stage. This stage can achieve a significantly
higher compression ratio at the expense of data loss. This is accomplished by rounding down
the least significant digits of the input values so that the output of this stage is smaller than the
input. This stage is controlled by the round parameter, which determines how many bits should
be rounded.

The second stage in the compression chain is the precompression or preprocessing stage.
This stage uses correlations in the data to reduce the dynamics of the data set. The precom-
pression stage has several modes to accomplish this task, which are briefly introduced here.
The raw mode writes the input data into the area of the memory which is intended for the com-
pressed data so that no data compression takes place. Therefore, the input is the same as the
output. This mode is intended as a label for uncompressed data or for debugging the com-
pressor. Another mode is the 1d-differencing mode. This mode calculates the difference to the
left neighboring pixel to reduce the dynamics of the input data. The model mode is used to
perform a compression of recurring data of the same object. In addition to the input data of the
current object, a model of the input data is also required. The model roughly corresponds to
an average of the past data of the object. In this mode, the difference between the input data
and a model of this data is formed. The model is updated after a compression and is used to

Y institut fUr PLATO-UVIE-PL-UM-0001 Draft 6, January. 25, 2022
' aStrOphySlk Data Compression User Manual

U \l IVERSITATSSTERNWARTE WIEN Page 8of42
round cmp_mode model_value cmp_mode spill golomb par
Input Data ¢ 32-Bits encoded
Lossy Compression . Mapping to Escape Symbol Bitstream Bitstream
Model (Rounding) Precompression positive integers Mechanism Golomb Encoder Encoder

—

updated Model Pixel

cmp_mode apl_spill apl_ golomb par

Escape Symbol
‘){ Mechanism Golomb Encoder

Length ap1_cmp_size
Counter

{

cmp_mode ap2_spill ap2_ golomb par

Escape Symbol Length ap2_cmp_size
»{ Mechanism Golomb Encoder Counter

Semi Adaptive Compression (HW only)

Figure 2.1: Visualization of the compression algorithm.

compress the next data of the same target object at a later point in time.

The next stage maps the output data of the precompression which are signed integers into
positive integers. This is necessary because the Golomb encoder can only work with positive
integers.

The escape symbol mechanism becomes active whenever statistical outliers occur. Two
mechanisms are implemented to handle outliers, the zero escape symbol mechanism and the
multi escape symbol mechanism. Depending on the distribution of outliers, one mechanism
has slight advantages over the other.

The Golomb encoder is the heart of the compression process. The Golomb code is an al-
gorithm that assigns an input value to a code word. The Golomb encoder assigns short code
words to small values and long code words to large values.

The BitstreamEncoder generates a bitstream of code words. The Bitstream encoder has the
task of stringing the generated codewords of different lengths together and dividing them into
32-bit long pieces to make it possible to write them to the memory.

It can be assumed that the structure of the data to be compressed will change due to vari-
ous effects such as ageing processes. Therefore, an adaptive compression technique is needed
to change the compressor settings whenever the data changes. This is needed to ensure good
data compression over time. This feature is only supported by the hardware data compressor.

4 institut far PLATO-UVIE-PL-UM-0001 Draft 6, January. 25, 2022
ﬁ{i[aStrOthSIk Data Compression User Manual

UNIVERSITATSSTERNWARTE WIEN Page 9 of 42

2.3 The ICU Software Compressor

The UVIE team provides the imagette compression algorithms which are used in the hardware
compressor and also in a separate software package. The software package also included the
algorithms used to compress the non-imagette data products.

The task of the software compressor should be to process small data products that do not
occur frequently. Chapter 6.1 discusses the provided function for software compression in de-
tail.

2.4 The RDCU Hardware Compressor

The data compressor is implemented in the FPGA of the RDCU. It is connected via a SpW link to
the SpW router on the RDCU board, see Figure 2.2. The router is connected to the ICU via two
SpW links. Therefore, the communication from the ICU to the hardware compressor always runs
via the SpW router. It must be ensured that the route between the ICU and the compressor is
correctly configured before communication with the hardware compressor can be started.

On the one hand, the interface of the hardware compressor consists of registers that con-
trol the compressor and provide the metadata of a compression. On the other hand, it consists
of the Static Random Access Memory (SRAM) that contains the data to be compressed and, if ne-
cessary, the corresponding model, as well as the result of the data compression, the compressed
bitstream. The registers, as well as the SRAM, are written and read via the Remote Memory Ac-
cess Protocol (RMAP) protocol.

To compress data with the hardware compressor, the data to be compressed are written
into the SRAM. Before or after the data transfer the data compressor registers are set with the
parameters necessary for the data compression. Once these two steps have been completed,
the compression can be started by setting the data compressor start bit in the compressor control
register. While the compression is running the SRAM is not accessible via RMAP only the com-
pressor status register is readable. The completion of the data compression is signaled to the ICU
by an interrupt signal or by setting the data compressor ready bit in the compressor status register.
Before the data can be read, it must be checked if an error occurred during compression. This
is ensured by checking that the compressor data valid bit is set in the compressor status register
and that no error bit is set in the compression error register. If this is the case, everything worked
fine during compression and the remaining metadata and compressed data can be read out.

institut fur PLATO-UVIE-PL-UM-0001 Draft 6, January. 25, 2022
astrOthSI k Data Compression User Manual

UNIVERSITATSSTERNWARTE WIEN Page 10 of 42

Sub Units SpW1 SpW2 SpW3 SpW4 Spw5 SpW6 SpW7 Spws

()] ((wm))]
SpW L\/DS SpW LVD
SpW LVD! SpW LVD
SpW LVDS—— SpW LVD
ICU SpW N1 @—SDW LVDS— SpW Router Spw LVDS——@ ICU SpW R1
GR718B
SpW N2 @—swv yca— CQFP 256 Sow Lvos—@ SpW R2

snlrs >]
i

—5.0 V:

Power FPGA ADC
POL RTAX2000 ADC1285102
33V CQFP 256 12 bit

G| DAT
ADR
POL
1.8V
SRAM
UTBER2M392
8 MB
POL (2Mx32)
15V

Figure 2.2: RDCU Electrical Concept.

PLATO-UVIE-PL-UM-0001 Draft 6, January. 25, 2022

institut fUr
astrophysik

UNIVERSITATSSTERNWARTE WIEN

Data Compression User Manual
Page 11 of 42

3. Controlling the Compression

The compression is controlled by the compression parameters. For software compression, a
structure is provided that contains all compression parameters, see Section 3.1. This structure
is passed to the software compression function. For hardware compression, this structure can
also be used to generate the necessary RMAP packets that set the corresponding hardware com-
pressor registers. Alternatively, you can build the required RMAP package “by yourself”, the re-
quired information can be found in the RDCU user manual [RD-2].

3.1 The Compression Parameters Structure

The compression parameters control the SW as well as the HW compressor. The structure cmp_cfg
as seen in listing 3.1, contains all parameters for the HW as well as for the SW compression. In
the following, the individual parameters will be briefly discussed and their function and valid
value range will be explained in more detail.

*

@brief The cmp_cfg structure can contain the complete configuration of the HW as
well as the SW compressor.

@note when using the 1d-differentiating mode or the raw mode (cmp_error =

0,2,4), the model parameters (model_value, model_buf, rdcu_model_adr,

rdcu_new_model_adr) are ignored

@note the icu_output_buf will not be used for HW compression

@note the rdcu_x%%_adr parameters are ignored for SW compression

@note semi adaptive compression not supported for SW compression;

configuration parameters ap1_golomb_par, ap2_golomb_par, ap1_spill,

ap2\ _spill will be ignored;

k% %k % % %k %k *x %)k *x X

*
~

struct cmp_cfg {

uint32_t cmp_mode; /% 0: raw mode
% 1: model mode with zero escape symbol mechanism

% 2: 1d differencing mode without input

* model with zero escape symbol mechanism

% 3: model mode with multi escape symbol mechanism

% 4: 1d differencing mode without input

* model multi escape symbol mechanism x/
uint32_t golomb_par; /% Golomb parameter for dictionary selection %/
uint32_t spill; /% Spillover threshold for encoding outliers %/
uint32_t model_value; /% Model weighting parameter x/
uint32_t round; /% Number of noise bits to be rounded x/
uint32_t apl_golomb_par; /% Adaptive 1 spillover threshold; HW only x/
uint32_t ap1_spill; /% Adaptive 1 Golomb parameter; HW only x/
uint32_t ap2_golomb_par; /% Adaptive 2 spillover threshold; HW only =/
uint32_t ap2_spill; /% Adaptive 2 Golomb parameter; HW only x/
uint16_t xinput_buf; /% Pointer to the data to be compressed x/
uint32_t rdcu_data_adr; /* RDCU data to be compressed start address,

% the first data address in the RDCU SRAM; HW only =%/
uint16_t xmodel_buf; /% Pointer to the model buffer x/
uint32_t rdcu_model_adr; /% RDCU model start address, the first model

inStitut fur PLATO-UVIE-PL-UM-0001 Draft 6, January. 25, 2022
LE[astrothSI k Data Compression User Manual

UNIVERSITATSSTERNWARTE WIEN Page 12 of 42

=

35 % address in the RDCU SRAM x/
36 Uint16_t xicu_new_model_buf;/x Pointer to the updated model buffer x/
37 uint32_t rdcu_new_model_adr; /% RDCU updated model start address, the

38 % address in the RDCU SRAM where the

39 % updated model is stored %/

% uint32_t samples; /% Number of samples (16 bit value) to

41 % compress, length of the data and

2 % (updated) model buffer %/

53 uint32_t xicu_output_buf; /% Pointer to the compressed data buffer
44 % (not used for RDCU compression) x/

s uint32_t rdcu_buffer_adr; /% RDCU compressed data start address, the
46 % first output data address in the RDCU SRAM «x/
47 uint32_t buffer_length; /% Length of the compressed data buffer in
48 * number of samples (16 bit values)x/

Listing 3.1: C-Implementation of the compressor configuration structure.

3.2 Compression Parameters

In the following section, the compression parameters and their effect on the compression are
briefly introduced. To get more detailed information about the parameters you can read [RD-1].

3.2.1 Compression Mode (cmp_mode)

The compression mode parameter controls the precompression/preprocessing as well as the
escape symbol mechanism stage of the compressor. The current implementation of the com-
pressor supports five different compression modes. The cmp_mode parameter controls which
mode is used. The cmp_mode parameter can be 0 for raw mode, 1 or 3 for model mode and 2
or 4 for the 1d-differencing mode.

cmp_mode=0: raw mode

The raw mode is intended for testing and debugging operations. In this mode, the input data
are read in and written back unchanged to the memory area provided for the compressed data.
No compression takes place in this mode. It has to be ensured that the data buffer length for
the compressed data is at least as large as the size of the input data.

Note: Including RDCU FPGA version 0.7 there is an error in the raw mode which triggers a
small_buffer_err if the samples parameter is equal to the buffer_length parameter. The work-
around is to choose a larger buffer_length parameter than the samples parameter.

) institut flr PLATO-UVIE-PL-UM-0001 Draft 6, January. 25, 2022
Q:[' aStrOphySlk Data Compression User Manual

UNIVERSITATSSTERNWARTE WIEN Page 13 of 42

cmp_mode=1,3: model mode

The model mode is the default mode of the compressor. In addition to the data to be com-
pressed, a model of the input data is required for this mode. In the model mode, the compressor
forms the difference between input data and their models. It also updates the models according
to the method described in Section 7.2.2. In this compression mode, not only the compressed
data must be read out, but also the updated model. The updated model is required again if the
data for the same target object is to be compressed at a later point in time. When using the
hardware compressor, the upload of the model is not necessary if the next data to be processed
are from the same object as the last compression.

The difference between cmp_mode 1 and 3 is the different handling of outliers. cmp_mode
=1 uses the zero escape symbol mechanism, while cmp_mode = 3 uses the multi escape symbol
mechanism. Depending on the distribution of outliers, one mechanism has slight advantages
over the other. For more information about the exact function of the different escape symbol
mechanisms, see [RD-1].

cmp_mode=2,4: 1d-differencing without input model mode

As the name suggests, the 1d-differencing without input model mode does not require a model.
With this method, the difference between neighbouring pixels is formed. This method usually
has a poorer compression ratio than the model mode. It is used to compress the firstimage of a
series of images because no model exists for that data. This mode can also be used to compress
data that does not occur repeatedly.

The difference between cmmp_mode 2 and 4 is the different handling of outliers. cnp_mode
=2 uses the zero escape symbol mechanism, while cmp_mode =4 uses the multi escape symbol
mechanism. Depending on the distribution of outliers, one mechanism has slight advantages
over the other. For more information about the exact function of the different escape symbol
mechanisms, see [RD-1].

3.2.2 Golomb Parameter (golomb_par)

Based on the Golomb parameter (golomb_par) and the input value of the Golomb encoder
stage the code words are formed. As shown in document [RD-1], a larger Golomb parameter
causes the code word length to grow slower, but code words for smaller values are longer. The
input data of the Golomb encoder follow approximately a geometric distribution. The Golomb
parameter should be adapted to this distribution so that the length of all code words is min-
imal. In the current implementation, a Golomb parameter in the range between 1 and 63 is
supported. 0 is not a valid value for the Golomb parameter.

institut fur PLATO-UVIE-PL-UM-0001 Draft 6, January. 25, 2022
L{i[; aStrOthSIk Data Compression User Manual

UNIVERSITATSSTERNWARTE WIEN Page 14 of 42

3.2.3 Spillover Threshold Parameter (spill)

The escape symbol mechanism is controlled by the spillover threshold parameter (spill). The
spill parameter controls if a value is considered to be an outlier. If an outlier is recognized, the
16-bit raw value is encoded with a prefixed escape symbol. The maximum value of the spill
parameter depends on the Golomb parameter selected. Because the HW Golomb encoder can
only generate code words with a maximum length of 16 bits, the spill must be set to become
active before a 17-bit long or longer code word would be generated. As you can see in Table 3.2
the maximum spill value is smaller for lower golomb_par values because the codeword length
increases rapidly with low golomb_par values. For more information see [RD-1].

3.2.4 Model Weighting Parameter (model_value)

The model weighting parameter or model_value controls the model update process in the pre-
compression/preprocessing stage. The weighting parameter only affects the compression pro-
cess if the compressor is in the model mode. As the name indicates the weighting parameters
weight the ratio between the model and the current imagette in the model update equation.
The weighting parameter is a natural number in the range between [0,16]. From the model
update equation 7.5 in Section 7.2.2, you can see that the larger the weighting parameter is,
the slower the updated model changes compared to the current model. The largest value is 16,
which means that the updated model is the same as the current model. The lowest value is zero,
which means that the updated model always corresponds to the current data to be compressed.

3.2.5 Rounding Parameter (round)

The rounding parameter controls the lossy compression stage. The value specifies how many
bits of the input value in the lossy compression stage are shifted to the right. The larger the
rounding parameter, the higher the compression ratio, at the expense of data loss. A rounding
parameter equal to zero means lossless data compression. Since the imagette collection header
is also treated like normal data during compression, it must be ensured that this header is not
corrupted by rounding the last bits.

3.2.6 Adaptive Golomb Parameter 1/2 (ap1_golomb_par, ap2_golomb_par), Ad-
aptive Spillover Threshold 1/2 (ap1_spill, ap2_spill)

Semi-adaptive compression is controlled by the ap1_golomb_par, ap2_golomb_par, ap1_spill
and ap2_spill parameters. This feature is only supported by the HW compressor. The semi-
adaptive compression is a mechanism that allows, in addition to the compression parameters
(golomb_par, spill pair) actually used for the compression, to use two additional golomb_par,

Q) institut fur PLATO-UVIE-PL-UM-0001 Draft 6, January. 25, 2022
L{i[; aStrOthSIk Data Compression User Manual

UNIVERSITATSSTERNWARTE WIEN Page 15 of 42

spill pairs. At the end of the compression process, it is possible to read out how long the re-
spective bitstream would have been if the additional two pairs had been used. This information
can then be used to choose a better golomb_par, spill pair for the next compression. Note that
ap1_spill orap2_spill cannot be selected independently of ap1_golomb_par, ap2_golomb_par.
As explained in more detail in Section 3.4.1, an ap_spill parameter can be selected up to a spe-
cific value depending on the set ap_golomb_par parameter.

3.2.7 ICUBuffers (input_buf, model_buf,icu_new_model_buf, icu_output_buf)

There are four different buffers for the ICU. The input_buf is intended for the data to be com-
pressed.

The model_buf is intended for the model of the data. This buffer is not needed for 1d-
differencing and raw mode.

The icu_new_model_buf is only intended for compression with the ICU compressor. If the
icu_new_model_bufis setto NULL or equal to model_buf, the compressor simply overwrites the
model_buf with the calculated updated model. If this is not desired, the icu_new_model_buf
buffer can be used to specify where the updated model should be written. The size of the input,
model_buf and icu_new_model_buf is described by the parameter samples in 16-bit values.

Theicu_output_buf bufferisintended for the compressed data. The size of the icu_output_buf
is described by the buffer_length parameter in units of 16-bit values. The icu_output_buffer is
not needed to set up the HW compression.

3.2.8 RDCU Addresses (rdcu_data_adr,rdcu_model_adr, rdcu_new_model_adr,
rdcu_buffer_adr)

The different RDCU address parameters are only used for the HW compression. These paramet-
ers determine the memory address of the SRAM where the uncompressed data, the model data,
the updated model and the buffer for the compressed bitstream begin. The rdcu addresses have
to be 4-byte aligned. The user of the HW compressor must take care that the different memory
areas do not overlap.

If rdcu_new_model_adr is set equal to rdcu_model_adr, the compressor simply overwrites
the old model with the new updated one. This setting also has a small speed advantage, be-
causeif parts of the updated model did not change, some expensive write access can be skipped.
If rdcu_new_model_adr and rdcu_model_adr are different, the rdcu_new_model_adr can be
used to specify where in the SRAM the updated model should be written. The old model will
not be overwritten.

institut fur PLATO-UVIE-PL-UM-0001 Draft 6, January. 25, 2022
L{i[; aStrOthSIk Data Compression User Manual

UNIVERSITATSSTERNWARTE WIEN Page 16 of 42

3.29 Number of Samples (samples)

The number of samples parameter determines the length of the data to be compressed in 16-
bit words. The uncompressed data also corresponds to the length of the (updated) model data
because there is a model for each data record.

3.2.10 Compressed Data Buffer Length (buffer_length)

The compressed data buffer length specifies the length of the reserved area in the unit as the
samples parameter. For SW compression this parameter specifies the length of the output_buf.
When using HW compression, this parameter specifies the length of the reserved area for com-
pressed data after the rdcu_buffer_adr in the RDCU SRAM. The HW compressor does not check
the overlapping of different memory spaces.

3.3 Differences between SW and HW Compression Setup

Since the SW and the HW compression are conceptually slightly different but are set up with
the same structure, there are a few things to keep in mind. The parameters that control the
compression itself (cmp_mode, golomb_par, spill, model_value, round) are the same for SW
and HW.

The SW compressor takes the data from the input_buf and the model_buf and writes the
result, which is the compressed bitstream, into the output_buf. The semi-adaptive compression
parameters (ap1_***, ap2_***) and the rdcu_***_adr parameters are not used. The HW com-
pressor transfers the data from the input_buf and the model_buf to the designated area in the
RDCU SRAM, defined by the rdcu_data_adr and rdcu_model_adr addresses. Then the registers
used for the compression are set. Finally, the compression is started. The icu_output_buf and
the icu_new_model_buf of the cmp_cfg structure are not used for the HW compression.

Another difference between the SW and HW compressors is the starting of the compression
process. With the SW compressor, the start is simply done by calling the compression function.
In contrast, the HW compressor starts by setting the data compressor start bit in the compressor
control register. The compressor control register can also be used to enable or disable the RDCU
interrupt and to interrupt the compression process by setting the data compressor interrupt bit.

34 Compression Parameter Errors

A large number of compression parameters only accepts values within a specified range. If a
compression parameter has an invalid value outside its range, this will cause errors in the com-
pression process. Therefore the compressor detects possible errors and informs the user about

'ﬁ institut fur PLATO-UVIE-PL-UM-0001 Draft 6, January. 25, 2022
ﬂ@[aStrOphySlk Data Compression User Manual

UNIVERSITATSSTERNWARTE WIEN Page 17 of 42

them. It checks the input parameters for their correctness and blocks the start of the compressor
in the event of an error to prevent a possible unpredictable behaviour.

The hardware compressor indicates an error in the compression error register. The software
compressor displays an error in the compression information structure. Table 3.1 lists the valid
value ranges of the different parameters. The maximum spill parameter is slightly more complex
to determine which is described in detail in the next section.

Table 3.1: Valid value ranges for the different parameters of the compressor.

Parameter Name Abbreviation Valid Value Range
Compression Mode cmp_mode [0,4]

Weighting Parameter model_value [0,16]

Rounding Parameter round [0,2]

Golomb Parameter golomb_par [1,63]

Spillover Threshold Parameter spill [2, see Section 3.4.1]
Adaptive Golomb Parameter 1/2 ap1/2_golomb_par [1,63]

Adaptive Spillover Threshold 1/2 ap1/2_spill [2, see Section 3.4.1]
RDCU SRAM Addresses rdcu_***_adr [0x000000, Ox7FFFFF]

3.4.1 Spill Golomb Error

The choice of the spill parameter is closely related to the Golomb parameter. This connection
exists because the Golomb encoder can only generate code words with a maximum length of
16 bits. The spill parameter must be set in a way that too large input values do not reach the
Golomb encoder. A too high input value would result in a codeword longer than 16 bits being
generated. The limitation of the spill parameter ensures that the escape symbol mechanism
becomes active before the encoder produces a code word which is too long. Table 3.2 shows the
maximum allowed spill parameter depending on the selected golomb_par. Since the code word
length increases rapidly with smaller Golomb parameters, it is not surprising that the allowed
spill parameter is smaller with small golomb_par than with large ones.

The validity ranges for the spill parameter from Table 3.2 are the same for ap1_spill and
ap2_spill parameters.

3.5 Default Configuration

In order to set up the compressor quickly and with the appropriate configuration, we provide
a default configuration for various applications. Currently, two default configurations are avail-
able for the compression of imagette data in 1d-differencing mode and in model mode, see List-
ing 3.2. The standard configurations are not yet finished and can still be adapted. It is planned

5 institut fur PLATO-UVIE-PL-UM-0001 Draft 6, January. 25, 2022
: aStrOphySIk Data Compression User Manual

UNIVERSITATSSTERNWARTE WIEN Page 18 of 42

Table 3.2: Valid spillover threshold parameters (spill) range in relation to the used Golomb para-
meter (golomb_par).

golomb_par spill< | golomb_par spill< | golomb_par spill< | golomb_par spill<

1 8 17 194 33 353 49 497
2 22 18 204 34 362 50 506
3 35 19 214 35 371 51 515
4 48 20 224 36 380 52 524
5 60 21 234 37 389 53 533
6 72 22 244 38 398 54 542
7 84 23 254 39 407 55 551
8 96 24 264 40 416 56 560
9 107 25 274 41 425 57 569
10 118 26 284 42 434 58 578
11 129 27 294 43 443 59 587
12 140 28 304 44 452 60 596
13 151 29 314 45 461 61 605
14 162 30 324 46 470 62 614
15 173 31 334 47 479 63 623
16 184 32 344 48 488

to provide default configuration for other data products as well.

1/ %%

> ¥ @brief Default configuration of the Compressor in model mode.
3 %/

4

sconst struct cmp_cfg DEFAULT_CFG_MODEL = {
s MODE_MODEL_MULTI, /% cmp_mode x/
7 4, /% golomb_par %/

s 48, /% spill %/

9 8, /% model_value %/

o 0, /% round %/

13, /% apl_golomb_par %/

2 35, /% apl_spill %/

5, /¥ ap2_golomb_par %/

4 60, /x ap2_spill %/

NULL, /% xinput_buf %/

6 0x000000, /% rdcu_data_adr =%/

17 NULL, /% smodel_buf %/

18 Ox2AAAAC, /% rdcu_model_adr «/

19 NULL, /% xup_model_buf x/

20 O0x2AAAAC, /% rdcu_up_model_adr x/
2 0, /% samples x/

2 NULL, /% xicu_output_buf %/

23 0x555554, /% rdcu_buffer_adr x/
24 0x155556 /% buffer_length %/

@ @

27

28 /%%

29 % @brief Default configuration of the Compressor in 1d-differencing mode.
30 %/

ﬁ ins’[itut fur PLATO-UVIE-PL-UM-0001 Draft 6, January. 25, 2022
ﬁﬁ[: aStrOphySIk Data Compression User Manual

UNIVERSITATSSTERNWARTE WIEN Page 19 of 42

31

»const struct cmp_cfg DEFAULT_CFG_DIFF = {
33 MODE_DIFF_ZERO, /% cmp_mode %/
4 7, /% golomb_par %/

35 60, /% spill x/

36 8, /% model_value %/

37 0, /% round %/

8 6, /% apl_golomb_par %/

39 48, /% apl_spill x/

40 8, /% ap2_golomb_par %/

a1 72, /% ap2_spill x/

2 NULL, /% xinput_buf x/

43 0x000000, /% rdcu_data_adr %/
44 NULL, /% xmodel_buf x/

45 Ox2AAAAC, /% rdcu_model_adr %/
4 NULL, /% xup_model_buf %/

47 Ox2AAAAC, /% rdcu_up_model_adr x/
4 0, /% samples =%/

49 NULL, /% xicu_output_buf %/

5o 0x555554, /% rdcu_buffer_adr «/
s1. 0x155556 /% buffer_length x/

52};

Listing 3.2: C-implementation of various default compressor configurations.

3.6 Setup the Hardware Compressor

The provided function rdcu_compress_data, see Listing 3.3, checks the given configuration for
validity and generates the RMAP packets to set the compressor registers with the parameters
defined in the cmp_cfg configuration structure. The data to be compressed is then also packed
into RMAP packets to be sent to the RDCU SRAM.

When the model mode is used, the model is also uploaded to the RDCU. If another com-
pressor mode is used the model will be ignored. Finally, the RMAP package is created to start the
compression. The rdcu_compress_data function only sets up and starts compression. Reading
the compressed data is done by another function so that the icu_output_buf buffer_adr para-
meter in the configuration is not used for the hardware compression.

@brief compressing data with the help of the RDCU hardware compressor

@param cfg configuration contains all parameters required for compression

%3
*
*
*
*
6 * @note when using the 1d-differencing mode or the raw mode (cmp_mode = 0,2,4),
* the model parameters (model_value, model_buf, rdcu_model_adr) are ignored
% @note the icu_output_buf will not be used for the RDCU compression
* @note the validity of the cfg structure is checked before the compression is
* started

*

*

@returns 0 on success, error otherwise

4
sint rdcu_compress_data(const struct cmp_cfg xcfg)

Listing 3.3: Declaration of the RDCU compression function.

1
1
1
13 %/
1
1

s institut fur PLATO-UVIE-PL-UM-0001 Draft 6, January. 25, 2022
E{i[\ aStrOphySI k Data Compression User Manual

UNIVERSITATSSTERNWARTE WIEN Page 20 of 42

4. The Status of a Compression

During a HW compression, only the compressor status register is readable via RMAP.

4.1 Compression Status Structure

The compression status structure reflects the contents of the RDCU compressor status register.
Unlike the other registers, this register can also be queried during compression. The structure
can also be used for SW compression if needed. However, the SW compressor does not use the
cmp_interrupted and the rdcu_interrupt_en flag in the structure.

/%%

% @brief The cmp_status structure can contain the information of the
* compressor status register from the RDCU, see RDCU-FRS-FN-0632,
* but can also be used for the SW compression.

struct cmp_status {
uint8_t cmp_ready; /x Data Compressor Ready; 0: Compressor is busy 1: Compressor is
ready %/
9 uint8_t cmp_active; /* Data Compressor Active; 0: Compressor is on hold; 1: Compressor
is active %/

1
2
3
4
5 %/
6
7
8

10 uint8_t data_valid; /% Compressor Data Valid; 0: Data is invalid; 1: Data is valid =%/
1 uint8_t cmp_interrupted; /x Data Compressor Interrupted; HW only; 0: No compressor
interruption; 1: Compressor was interrupted =/

12 uint8_t rdcu_interrupt_en; /% RDCU Interrupt Enable; HW only; 0: Interrupt is disabled;
1: Interrupt is enabled %/

Listing 4.1: C-Implementation of the compressor status structure.

4.1.1 Data Compressor Ready (cmp_ready)

The data compressor ready value indicates whether compression is complete and the com-
pressor is ready to start a new compression. When a data compression is running, the value
of the bit is 0, when compression is finished cmp_ready is set to 1.

4.1.2 Data Compressor Active (cmp_active)

In the current implementation, the active compressor bit is the inverted compressor ready bit.
This means that while acompressionis runningitis 1. If the compression is completed, cmp_active
is 0.

) Institut fUI’ PLATO-UVIE-PL-UM-0001 Draft 6, January. 25, 2022
ﬁ{i[i aStrOthSIk Data Compression User Manual

UNIVERSITATSSTERNWARTE WIEN Page 21 of 42

4.1.3 Data Compressor Data Valid (data_valid)

The data valid value indicates whether the compressed data (and, in model mode, the updated
model) is valid or not. If an error occurs during compression or if compression is interrupted, the
value of this bit remains 0 after compression. If compression worked and everything went well,
the bit changes to 1 after compression is complete. The value remains 1 until a new compression
is started.

4.1.4 Data Compressor Interrupted (cmp_interrupted)

The data compressor interrupted bit is set when the hardware compressor is interrupted by set-
ting the data compressor interrupt bit in the compression control register. This bit is reset when
a new compression is started. It is a status value that is only used by the hardware compressor.

4.1.5 RDCU Interrupt Enable (rdcu_interrupt_en)

The RDCU interrupt enable bit is mirroring the RDCU interrupt enable value in the compression
control register. This bit is therefore only used by the HW compression.

4.2 Read the Status of the Hardware Compressor

You can use the rdcu_read_cmp_status function to request the content of the compressor status
register of the RDCU HW compressor. The cmp_status structure represents the contents of the
compressor status register. This register is the only register that can be read out during a com-
pression process. The function can be used to poll the status of a compression to find out when
the compression is finished.

The time a compression takes depends on the size of the data to be compressed, the com-
pression mode and the compression rate (CR) reached can be estimated as follows:
Model Mode:
O(tma1) = samples - (20 + 6/CR) - 20 ns (4.1)

1-D Differencing mode:
O(tqit) = samples - (8 + 6/CR) - 20 ns (4.2)

*
@brief read out the status register of the RDCU compressor

@param status compressor status contains the stats of the HW compressor

@note access to the status registers is also possible during compression

institut far PLATO-UVIE-PL-UM-0001 Draft 6, January. 25, 2022
astrOthSI k Data Compression User Manual

UNIVERSITATSSTERNWARTE WIEN Page 22 of 42

8 % @returns 0 on success, error otherwise

9 %/

10

1nint rdcu_read_cmp_status(struct cmp_status xstatus)

Listing 4.2: Declaration of the RDCU read status function.

iN<ti ¥ -UVIE-PL-UM- Draft 6,) . 25,2022
: lnStltUt fur PLATO-UVIE-PL-UM-0001 raft 6, January
aStrOphySl k Data Compression User Manual

UNIVERSITATSSTERNWARTE WIEN Page 23 of 42

5. The Metadata of a Compression

Once the compression is complete, we need more information than the compressed bitstream
to process the data further. This metadata can be stored in the provided compressor information
structure (cmp_info).

5.1 Compression Information Structure

The cmp_info structure shown in Listing 5.1 contains all readable information registers of the
HW compressor. These registers are only readable when the compressor is not active. They
are also used by the SW compressor to return the metadata of a compression. Before the com-
pressed data from the compressor can continue to be used, it must be checked that there is no
compression error. Only if cmp_err = 0 the data of the compressor are valid. The meanings of
the error codes are explained in Section 3.4.

1/%%

2> % @brief The cmp_info structure can contain the information and metadata of an

3 % executed compression of the HW as well as the SW compressor.

4 *

s * @note if SW compression is used the parameters rdcu_new_model_adr_used,
rdcu_cmp_adr_used,

6 % apl_cmp_size, ap2_cmp_size are not used and are therefore set to zero

7 %/

8

sstruct cmp_info {

10 uint8_t cmp_mode_used; /% Compression mode used x/

11 uint8_t model_value_used; /* Model weighting parameter used x/

12 uint8_t round_used; /% Number of noise bits to be rounded used %/

13 uint16_t spill_used; /% Spillover threshold used %/

12 uint8_t golomb_par_used; /% Golomb parameter used x/

15 uint32_t samples_used; /% Number of samples (16 bit value) to be stored =x/

16 uint32_t cmp_size; /% Compressed data size; measured in bits %/

17 uint32_t apl_cmp_size; /% Adaptive compressed data size 1; measured in bits %/

18 uint32_t ap2_cmp_size; /% Adaptive compressed data size 2; measured in bits %/

19 uint32_t rdcu_new_model_adr_used; /x Updated model start address used =/

20 uint32_t rdcu_cmp_adr_used; /% Compressed data start address x/

21 uint16_t cmp_err; /% Compressor errors

2 % [bit 0] small_buffer_err; The length for the compressed data buffer is
too small

23 % [bit 1] cmp_mode_err; The cmp_mode parameter is not set correctly

24 % [bit 2] model_value_err; The model_value parameter is not set correctly

25 % [bit 3] cmp_par_err; The spill , golomb_par combination is not set
correctly

26 % [bit 4] apl_cmp_par_err; The ap1_spill, apl_golomb_par combination is
not set correctly (only HW compression)

27 % [bit 5] ap2_cmp_par_err; The ap2_spill, ap2_golomb_par combination is
not set correctly (only HW compression)

28 * [bit 6] mb_err; Multi bit error detected by the memory controller (only

HW compression)

Institut fUI‘ PLATO-UVIE-PL-UM-0001 Draft 6, January. 25, 2022

Fi
; astrOthSIk Data Compression User Manual

&

UNIVERSITATSSTERNWARTE WIEN Page 24 of 42

29 % [bit 7] slave_busy_err; The bus master has received the ”"slave busy”
status (only HW compression)

30 % [bit 8] slave_blocked_err; The bus master has received the “slave
"blocked status (only HW compression)

31 % [bit 9] invalid address_err; The bus master has received the “invalid

"address status (only HW compression) %/

Listing 5.1: C-Implementation of the compressor information structure.

5.1.1 Used Compression Parameters (*_used)

The compression parameters used are a copy of the respective parameters from the configura-
tion. They are required for decompression, which must be performed with the same parameters
as the compression.

5.1.2 Compressed Data Size (cmp_size)

The cmp_size parameter describes the length of the compressed bitstream located at the cmp_adr
address. The compression rate (CR) can be easily calculated by:
CR — model_length_used - 16 Bit (5.1)

cmp_size

5.1.3 Adaptive Compressed Data Size 1/2 (ap1_cmp_size, ap2_cmp_size)

ap1_cmp_size shows the length of the bitstream if ap1_golomb_par and ap1_spill were used
instead of the used compression parameters. This information can be used to select better com-
pression parameters for the next compression operation. This also applies to the parameter
ap2_cmp_size. This feature of semi-adaptive compression is only provided by the HW com-
pressor. When using the SW compressor ap1_cmp_size and ap2_cmp_size are always set to
0.

5.1.4 Compressor errors (cmp_err)

The compression error register consists of eight error bits. Each bit indicates a different error.
If one or more bits are set, an error occurred during compression. If this is the case, the com-
pressed bitstream (and, in model mode, the updated model) is invalid and can no longer be
used.

9 institut fur PLATO-UVIE-PL-UM-0001 Draft 6, January. 25, 2022
ﬂ@[i aStrOphySlk Data Compression User Manual

UNIVERSITATSSTERNWARTE WIEN Page 25 of 42

Small Buffer Error

If the compressed bitstream is larger than the space defined by the buffer_length parameter
in the configuration, there is not enough space to write the entire bitstream to memory. The
compressor, therefore, stops compression and sets the small_buffer_err bit. Note that when
using the compression method with wrong parameters or unfavorably distributed data, the
“compressed” bitstream may be larger than the input data.

Compression Parameter Errors

The error bits 1 to 5 deal with incorrectly set compression parameters and have already been
discussed in detail in Section 3.4.

Multi-Bit Error (mb_err)

Due to the design of the RDCU SRAM, it is checked at each read access whether a multi-bit error
has occurred. If this is the case, this is indicated by setting the mb_err bit. The compression will
be stopped. This error can only occur when using the hardware compressor.

Compressor Bus Access Error (slave_busy_err, slave_blocked_err)

If the hardware compressor does not get access to the SRAM via the internal bus, this is signaled
by setting the slave_busy_err respectively the slave_blocked_err bit. The compression will be
stopped. Also, this error can only occur when using the hardware compressor.

Invalid Address Error (invalid_address_err)

If the hardware compressor accesses an address that is outside the valid SRAM range, it receives
an error on the internal bus and stops the compression. This behavior is indicated by setting
the error bit invalid_address_err.

5.2 Read out the RDCU Hardware Information Registers

To read all metadata of the hardware compressor we provide the rdcu_read_cmp_info function.
This function queries all compressor information registers and writes them into the cmp_info
structure.

1/ %%
2> % @brief read out the metadata of a RDCU compression

ins’[itut fUI‘ PLATO-UVIE-PL-UM-0001 Draft 6, January. 25, 2022
aStrOthSl k Data Compression User Manual

UNIVERSITATSSTERNWARTE WIEN Page 26 of 42
3 %

4 % @param info compression information contains the metadata of a compression

5 %

6 * @note the compression information registers cannot be accessed during a compression

7 *¥

8 % @returns 0 on success, error otherwise

9 %/

10
nint rdcu_read_cmp_info(struct cmp_info xinfo)

Listing 5.2: Declaration of the read metadata from the RDCU function.

5.3 Read out the RDCU SRAM

The function rdcu_read_cmp_bitstream and rdcu_read_model can be used to read the bit-
stream as well as the updated model from the RDCU SRAM.

1/%%

> % @brief read the compressed bitstream from the RDCU SRAM

3 0%

4 % @param info compression information contains the metadata of a compression
5 %

6 % @param output_buf the buffer to store the bitstream (if NULL, the required
7 % size is returned)

8 *

9 % @returns the number of bytes read, < 0 on error

10 %/

1int rdcu_read_cmp_bitstream (const struct cmp_info xinfo, void xoutput_buf)

16 * @brief read the model from the RDCU SRAM
*
% @param info compression information contains the metadata of a compression
*
20 % @param model_buf the buffer to store the model (if NULL, the required size
* is returned)

*

*

@returns the number of bytes read, < 0 on error

25
%int rdcu_read_model(const struct cmp_info xinfo, void xmodel_buf)

Listing 5.3: Declaration of the RDCU read bitstream and model functions.

/o institut fur PLATO-UVIE-PL-UM-0001 Draft 6, January. 25, 2022
L{i[i aStrOthSIk Data Compression User Manual

UNIVERSITATSSTERNWARTE WIEN Page 27 of 42

6. Compressing Data

Finally, we get to the core of the whole thing — compressing data.

6.1 How to compress data with the Software Compressor on the ICU

We provide the function icu_compress_data for compression in software, see Listing 6.1. The
function has three pointers to different structures as function parameters. The first structure
is the compressor configuration structure cmp_cfg. It contains all parameters that control the
compression. The structure and its parameters are explained in more detail in Chapter 3.

The second structure passed to the icu_compress_data function is the status structure
cmp_status. This structure can be used to check the status of the compression. More details
are explained in Chapter 4.

The cmp_info structure, which is also passed to the ICU compression function, contains
all metadata such as the length of the compressed data of a compression. The content of the
structure is the subject of Chapter 5.

The function takes the data and model (if necessary) from the buffers referenced in cmp_cfg
and compresses them. The compressed bitstream is written to the icu_output_buf buffer. The
metadata of the compression including the length of the compressed bitstream is written into
the compressor information structure (cmp_info). This structure also contains the error codes
to indicate that an error occurred during the compression. After each compression, it must
be checked that no errors have occurred to verify that the compression data and the updated
model are valid. The SW imagette compression works with the same algorithms as the HW com-
pression. It is therefore controlled with the same configuration structure as the compressor.
Since the parameters rdcu_***_adr are not needed to set up the SW compression, they are ig-
nored. When compressing in 1d-differencing mode, no model is needed to compress data, so
model-specific parameters (model_value, model_adr, rdcu_new_model_adr) are ignored.

The feature of semi adaptive compression is not supported by the SW compressor. As a
result, the SW compressor will ignore the configuration parameters with the prefix ap1 or ap2.
For this reason, the result of the adaptive compression the status parameters ap1_cmp_size and
ap2_cmp_size will always be zero.

/

*
@brief compress data on the ICU

*
*
*
% @param cfg compressor configuration contains all parameters required for compression
% @param info compressor information contains information of an executed compression

*

*

1
2
3
4
5
6
7

@note the validity of the cfg structure is checked before the compression is started

institut fur PLATO-UVIE-PL-UM-0001 Draft 6, January. 25, 2022
aStrOphySl k Data Compression User Manual

UNIVERSITATSSTERNWARTE WIEN Page 28 of 42

s % @note when using the 1d-differencing mode or the raw mode (cmp_error 0-2), the model
is ignored and not used
@note the rdcu_xxx%_adr configuration parameters are ignored for SW compression

9 *

10 % @note the rdcu_xx%x%_used info parameters are always set to zero

11 % @note semi adaptive compression not supported; configuration parameters apl_golomb\
_par,

12 % ap2_golomb\ _par, ap1\ _spill ap2_spill will be ignored;

13 % information parameters apl_cmp_size, ap2_cmp_size will always be zero

14 %

15 % @returns 0 on success, error otherwise

16 %/

isint icu_compress_data(struct cmp_cfg xcfg, struct cmp_status xstatus, struct cmp_info x
info)

Listing 6.1: Declaration of the ICU compress function.

6.1.1 Software Compression Example

Listing 6.2 shows an example of using the software compressor.

1#define DATA_LEN 6 /x number of 16 bit samples to compress x/

2

3size_t i;

4/% declare configuration and information structure x/

sstruct cmp_cfg example_cfg;

sstruct cmp_status example_status;

7struct cmp_info example_info;

s/% declare data buffers x/

souint16_t example_data[DATA_LEN] = {42, 23, 1, 13, 20, 1000};

ouint16_t example_model [DATA_LEN] = {0, 22, 3, 42, 23, 16};

1nuint32_t xexample_output_buf;

12

13/% we make the buffer for the compress data as long as the input data buffer %/

1zexample_output_buf = (uint32_t x)malloc(sizeof (uint16_t[DATA_LEN]));

15

16if (example_output_buf == NULL) {

17 printf("Error allocating memory for the output buffer\n”);

18 return -—1;

19}

20/% set up compressor configuration x/

s1example_cfg = DEFAULT_CFG_MODEL;

»example_cfg.input_buf = example_data;

s example_cfg.model_buf = example_model;

uexample_cfg.samples = DATA_LEN;

25

ssexample_cfg.icu_output_buf = example_output_buf;

7example_cfg. buffer_length = DATA_LEN; /% we allocated the same buffer length as for the
input_buf %/

28

2/% start SW compression x/

soicu_compress_data(&example_cfg, &example_status, &example_info);

31

2/% check if data are valid %/

3if (example_status.data_valid == 0) {

2 printf(”Data are not valid. cmp_err = %d\n”, example_info.cmp_err);

35 free (example_output_buf);

36 return —-1;

37}

7]) institut fur PLATO-UVIE-PL-UM-0001 Draft 6, January. 25, 2022
L{i[i aStrOthSIk Data Compression User Manual

UNIVERSITATSSTERNWARTE WIEN Page 29 of 42

38

soprintf (”“\nHere’s the compressed data:\n”

40 " \n”);

sfor (i = 0; i < (example_info.cmp_size + 31)/32; i++) {
2 printf(”"%08X ", example_output_buf[il]);

43}

44

sprintf (“\n\ncompressed data: %d bits\n”, example_info.cmp_size);
46

a7 printf (“\n\nHere'’s the updated model:\n”"

48 " \n") ;

49 for (i = 0; i < example_info.samples_used; i++) {
so printf (”%04X ”, example_model[i]);

s1}

sprintf (“\n”);

53

safree (example_output_buf) ;

ssreturn 0;

Listing 6.2: Example of a software compression.

6.2 How to compress data with the Hardware Compressor on the RDCU

The UVIE team provides for the ICU a set of software to simplify the set up of an RDCU hardware
compression. The functionality of the hardware compressor is very similar to that of the SW
compressor.

By not compressing the data itself, but controlling the HW compressor that compresses
the data, the HW compression is more complicated than just calling a function. First, the data
and if needed the model must be written into the SRAM of the RDCU and the compressor con-
figuration must be set into the appropriate registers. Then the hardware compressor is started.
This is done with the rdcu_compress_data function. The parameters necessary for this step are
stored in the cmp_cfg structure. For more information see Chapter 3

If the compression is running it is not possible to access the SRAM via RMAP. Only the
compression status register is accessible. With the provided function rdcu_read_cmp_status
these registers can be read. The function reads these registers and writes the content into
the cmp_status structure. The cmp_ready bit in the structure can now be used to find out if
a compression is still running (cmp_ready = 0) or the compression is finished and the com-
pressor is ready to start a new one (cmp_ready = 1). If this is the case, the data_valid bit can
also be checked to indicate that the compressed data is valid. Alternatively, you can wait for
an interrupt from the RDCU, which tells you when the compressor is ready. It is also possible
to query the status register afterwards to control the data_valid bit. More information on this
topic can be found in Chapter 4. If the compression takes too long it can be interrupted with
the rdcu_interrupt_compression function. After interrupting compression, the data in SRAM is
invalid and cannot be processed any further.

When the compression is finished, the required metadata of the compression can be read
by the RDCU. This job takes over the rdcu_read_cmp_info function. It reads the corresponding

© ® N O U A W N =

@

Q,% inStitut fur PLATO-UVIE-PL-UM-0001 Draft 6, January. 25, 2022
LE[- astrothSIk Data Compression User Manual

UNIVERSITATSSTERNWARTE WIEN Page 30 of 42

registers and writes the content into the passed cmp_info structure. Before the data of SRAM
can be read, it must be checked that no error occurred during compression. If the parameter
cmp_err =0 no error occurred and the data can be read, see Chapter 5.

In the last step, the data can finally be read from the SRAM. The rdcu_read_cmp_bitstream
function can be used to read the compressed data. To read the updated model from the SRAM
the rdcu_read_model function can be used. After these steps, the compression is finished and
a new one can be started.

6.2.1 Hardware Compression Example

Listing 6.3 shows a sample compression of the RDCU hardware compressor, it demonstrates
how the different functions play together to achieve a compression of the data.

#define DATA_LEN 6 /% number of 16 bit samples to compress x/

int error;

int cnt = 0;

/% declare configuration and information structure x/

struct cmp_cfg example_cfg;

struct cmp_status example_status;

struct cmp_info example_info;

/% declare buffers x/

uint16_t example_data[DATA_LEN] = {42, 23, 1, 13, 20, 1000};
uint16_t example_model [DATA_LEN] = {0, 22, 3, 42, 23, 16};

/% set up compressor configuration x/
example_cfg = DEFAULT_CFG_MODEL;
example_cfg.input_buf = example_data;
example_cfg.model_buf = example_model;
example_cfg.samples = DATA_LEN;

/% start HW compression %/
error = rdcu_compress_data(&example_cfg);
if (error !'= 0)
printf (“An error occurred during rdcu_compress_data\n”);

/% start polling the compression status =x/
error = rdcu_read_cmp_status(&example_status);
if (error !'= 0)
printf (“An error occurred during rdcu_read_cmp_status\n”);

cnt = 0;
while (example_status.cmp_ready != 0) {
/% check compression status x/
error = rdcu_read_cmp_status(&example_status);
if (error !'= 0)
printf ("An error occurred during rdcu_read_cmp_status\n”);

cnt++;

if (cnt < 5) /% wait for 5 polls %/
continue;

printf (”“Not waiting for compressor to become ready, will check status and abort\n”);

institut fur PLATO-UVIE-PL-UM-0001 Draft 6, January. 25, 2022
astrOthSI k Data Compression User Manual

UNIVERSITATSSTERNWARTE WIEN Page 31 of 42
43 /% interrupt the data compression %/

44 rdcu_interrupt_compression () ;

45

46 /* now we may read the error code x/

47 error = rdcu_read_cmp_info(&example_info);

48 if (error !'= 0){

49 printf ("An error occurred during rdcu_read_cmp_info\n”);

50 return;

51 }

52 printf (”“Compressor error code: 0x%02X\n”, example_info.cmp_err);
53 return;

54}

55
ss printf(”Compression took %d polling cycles\n\n”, cnt);
57

ss printf(”Compressor status: ACT: %d, RDY: %d, DATA VALID: %d, INT: %d, INT_EN: %d\n”,

59 example_status.cmp_active,

60 example_status.cmp_ready,

61 example_status.data_valid ,

62 example_status.cmp_interrupted,

63 example_status.rdcu_interrupt_en);

64
s /% now we may read the error code x/

s error = rdcu_read_cmp_info(&example_info);

7 if (error != 0)

68 printf (“An error occurred during rdcu_read_cmp_info\n");

69

70 printf(”“Compressor error code: 0x%02X\n”,

71 example_info.cmp_err);

72

73 printf ("Compressed data size: %u bits\n”, example_info.cmp_size);
74

75 /% issue sync back of compressed data x/

76 /% read compressed data to some buffer and print %/

77 if (1) {

78 uint32_t i;

79 uint32_t s = (((example_info.samples_used >> 3) + 3) & ~0x3UL);
80 uint8_t xmyresult = malloc(s);

81

82 error = rdcu_read_cmp_bitstream(&example_info, myresult);
83 if (error !'= 0)

84 printf (”"Error occurred by reading in the compressed data\n”);
85

86 printf (“\n\nHere’'s the compressed data:\n”

87 " \n") ;

88

89 for (i = 0; i < s; i++) {

90 printf ("%02X ", myresult[il);

91 if (i & '((i+1) % 40))

) printf(“\n");

93 }

o4 printf(“\n");

95

9% free (myresult);

97}

¢ return;

Listing 6.3: Example of a hardware compression.

'ﬁ institut fur PLATO-UVIE-PL-UM-0001 Draft 6, January. 25, 2022
L@[; aStrOphySlk Data Compression User Manual

UNIVERSITATSSTERNWARTE WIEN Page 32 of 42

/. Frame Processing

There’s a problem with compressing imagettes: the memory of the RDCU SRAM is much smaller
than the sum of all imagettes of a readout cycle. For this reason, all imagettes must be divided
into several chunks and each chunk must be individually compressed. Note that the imagettes
in a chunk must be in the same order over time. The sum of all imagettes generated during a
readout cycle of all cameras (every 25 seconds) is called a frame. As shown in Figure 7.1, depend-
ing on the processing strategy of the chunks, it may be necessary to wait until enough data is
available for compression. If enough data is available, it can be divided into chunks. These data
chunks are compressed individually by the RDCU, a detailed description of the process can be
found in Section 7.1. After successful compression, a header is added to the compressed data.
This header contains the necessary information to decompress the data again. The header is
described in Section 8.

Once a chunk is compressed, the next one can be compressed. With an optimized pro-
cessing order of the chunks, the throughput performance can be increased significantly, which
is discussed in detail in Section 7.3.1.

7.1 Chunk Processing

The necessary data and configuration are transferred to the RDCU with the rdcu_compress_data()
function. Once these steps have been taken, the function also starts the compression of the
chunk. When the compression has finished the metadata of the compression can be read out
from the compressor registers. A part of the metadata is the error register, which has to be
checked. If an error occurs for example if the buffer for the compressed data was too small
(small_buffer_err) or there was a multi-bit error (mb_err) when reading the SRAM, we suggest
to let the data uncompressed because there is no time for further compression. In this case, the
uncompressed data flag in the compression entity header should be set to “uncompressed” as
well as the used Compression Mode should be set to raw mode.

If no error occurred, the compressed data can be read from the RDCU SRAM with the rdcu-
_read_cmp_bitstream() function. The compressed data must then be prefixed by a header that
allows the data to be decompressed later.

If the updated model is still needed it can be transferred from the RDCU to the ICU with the
function rdcu_read_model(). After that, the chunkis finished processing.

;ﬁ inStitut fur PLATO-UVIE-PL-UM-0001 Draft 6, January. 25, 2022
L{y : astrothSIk Data Compression User Manual

UNIVERSITATSSTERNWARTE WIEN Page 33 of 42

new frame
available?

Ye

enough frames
stored?

Yes+

configure chunk
processing

Y

frame loop

process chunk

chunk loop

Y
add CE header

all chunks
processed?

Ye

all frames
processed?

Ye

Figure 7.1: Frame processing workflow.

f Institut fUI’ PLATO-UVIE-PL-UM-0001
astrOthSIk Data Compression User Manual

UNIVERSITATSSTERNWARTE WIEN

Draft 6, January. 25, 2022

Page 34 of 42

chunk processing
start

upload the model

Y

upload the data

rdcu_compress_data(&cmp_cfg) *

configure compressor

¥

start the compressor

]

: rdcu_read_cmp_status(&cmp_status) compression
i or rdcu interrupt finished?

]

rdcu_read_cmp_info(&cmp_info) read compressor
metadata

cmp_err?

Y

rdcu_read_cmp_bitstream(&cmp_info,

data

] }
1 1
: output_buf) download compressed : use the uncompressed
i i
1 1

data (raw mode)

e e e - i

v

add CE header

add CE header
to compressed data to uncompressed data

1
!
: int rdcu_read_model(&cmp_info,
i model_buf) model
1

end

chunk prml

Figure 7.2: Chunk processing workflow.

institut fur PLATO-UVIE-PL-UM-0001 Draft 6, January. 25, 2022
L{i[; aStrOthSIk Data Compression User Manual

UNIVERSITATSSTERNWARTE WIEN Page 35 of 42

L
il |

=)

7.2 1d-Differencing Mode and Model Mode

The provided algorithms basically distinguish between repeating data and uniquely occurring
data without “prehistory”. It is important to understand how these modes work and how to use
them to achieve good data compression. For single or first time data the 1d-differencing mode
is used, for repeating data the model mode is used.

7.2.1 1d-Differencing Mode

This procedure considers all the data as a 1-dimensional array. The 1d-differencing algorithm is
straightforward. The first value is the first value of the data chunk, after that only the difference
to the left value is written. Example: the value series 100, 102, 99, 99, 105 will be processed in
100, 2, -3, 0, 6. That can be mathematically expressed as:

outputy = input (7.1)

output; = input,; — input,_, i1=1,...,n (7.2)

The results are then further processed and finally encoded with the Golomb code. The com-
pression ratio, however, is usually not as good with this method as with the model method.

7.2.2 Model Mode

The output of this preprocessing process is simply the difference between the input data and
its model:

output, = input; — model; (7.3)
The model should be understood as an average of the input data over time, which has the same
size as the input data. The model is updated after every compression for the next compression
of the same object in the following way:

model; = input, (7.4)

model_value - model; + (16 — model_value) - input;
16

The model_value determines how fast the model changes. It is an integer value in the range
[0,16].

model;11 = (7.5)

The first input data in the model mode are preprocessed differently because no model is
yet available. Depending on the input data, the first frame is preprocessed as 1d-differencing
or raw mode (uncompressed) and used as the model for the next time. All other frames are
preprocessed in model mode, where the input data is subtracted from the model data to reduce

/o institut fur PLATO-UVIE-PL-UM-0001 Draft 6, January. 25, 2022
L{i[i astrothSIk Data Compression User Manual

UNIVERSITATSSTERNWARTE WIEN Page 36 of 42

new unique Model ID

v Y

Y

Model Update Model Update
Counter =0 Counter + 1
Compression Mode = Compression Mode =

Raw or 1d-diff. Mode Model Mode

v Y

Compress Data(t)
with Model(t)

Compress Data(t)

Model(t+1) =
Model(t+1) = Data(t) Updated Model(t)
with Data(t)

t=t+1

false

Update Valuez —
Figure 7.3: Flowchart of the 1d-differencing and model mode.

the data value to be compressed. The flowchart for using the 1d differencing and model modes
together can be seen in Figure 7.3.

We recommend resetting the model after 8 model compression operations and starting
again with a transfer using the 1d-differencing or raw mode. The model update counter counts
how often the model is updated. It is zero if a non-model mode is used. A new unique model ID
must be used for the next data sets when using a new start model (using raw or 1d-dif. mode).
The model ID, together with the model update counter, can be used to determine which data
set was compressed and in which order. Both parameters, the model update counter and the
model ID, are part of the compression entity header (see section 8) to ensure the correct order
in the decompression process.

7.3 Chunk Procedure Order

The not optimised chunk processing order works as follows. The chunk and his model are trans-
ferred to the RDCU. The data get compressed with RDCU. The compressed bitstream is (together

o 3 institut flr PLATO-UVIE-PL-UM-0001 Draft 6, January. 25, 2022
L@[; aStrOphySlk Data Compression User Manual

UNIVERSITATSSTERNWARTE WIEN Page 37 of 42

with the metadata) downloaded from the RDCU and prefixed with a header. Also, the uploaded
model is downloaded from the RDCU, which is needed to compress the same chunk of the next
frame. Then the next chunk and its model will be uploaded and compressed for compression
and so on.

7.3.1 Optimised Chunk Processing

Data throughput analyses of the compressor have shown that without optimisation chunk pro-
cessing order it is not possible to compress the required 23,400 imagettes (assuming a com-
pression factor of 3) in the given time. However, this problem can be solved by an optimized
chunk processing order we suggested in [RD-3]. With this procedure, it is necessary to store 2
complete sets of imagettes. We call these sets N and N+1. First, the imagettes are divided into
chunks. Then a chunk from the set N and its model is sent to the RDCU and processed. In the
next step, the metadata and the compressed bitstream are downloaded from the RDCU but not
the updated model. Now the same chunk but from the N+1 set is sent to the RDCU. An upload
of the model is not necessary because it is already in the RDCU SRAM. Now the 2nd chunk can
be compressed. After the compression the bitstream and now also the updated model will be
downloaded from the RDCU. The updated model is needed to compress the same chunk from
the N+2 set. Then the process starts from the beginning and the next part of the N+2 set can
be compressed.

By this procedure, an upload and download of the model can be saved and the required
data throughput can be achieved. A more detailed analysis of the data throughput of the HW
compressor can be found in [RD-3]. Figure 7.4 shows a visualization of the optimised chunk
processing order.

7.3.2 Chunk Size

Since the RDCU has an 8 MB SRAM of memory available we propose to divide the SRAM into
three parts and use a chunk size of 2.6 MB. The first third should be used for the input data,
the second third for the model data, and the last third for the compressed bitstream. It is also
possible to shorten the memory area for the compressed data to create more space for the other
areas. Even smaller chunk sizes are an option. The only disadvantage with small chunk sizes is
that the overhead is increased by adding the header. So it is up to the ICU team to decide for
larger chunks and a few compressions per frame or small chunks and more compressions.

) Institut fUI’ PLATO-UVIE-PL-UM-0001 Draft 6, January. 25, 2022

L{i[aStrOthSIk Data Compression User Manual

UNIVERSITATSSTERNWARTE WIEN Page 38 of 42
1a'a'mi'dee”°'"g ‘ Model mode ‘ 19 P
‘ Frame N ‘ ‘ Frame N+1 ‘ ‘ Frame N+2 Frame N+6 ‘ ‘ Frame N+7 ‘ ‘ Frame N+8 ‘
Chunk 0 Chunk 0 Chunk 0 Chunk 0 Chunk 0 Chunk 0
Chunk 1 Chunk 1 Chunk 1 L] Chunk 1 Chunk 1 Chunk 1
Chunk 2 Chunk 2 Chunk 2 Chunk 2 Chunk 2 Chunk 2

Model Update
Counter

Figure 7.4: Visualization of the optimised chunk processing order.

institut fur PLATO-UVIE-PL-UM-0001 Draft 6, January. 25, 2022
L{i[; aStrOthSIk Data Compression User Manual

UNIVERSITATSSTERNWARTE WIEN Page 39 of 42

L
il |

=)

8. Compression Entity Format

All compressed data has to be prefixed by a header. This header contains the necessary para-
meters for decompressing the compressed data and the required information for reconstructing
the original data. We call the compressed data together with the header a compression entity.
The compression entity header consists of two parts:

- generic compression entity header containing all parameters that are needed for all data
product types. This header is used for all data product types.

« specific compression entity header containing parameters that are specific for the com-
pressed data product type. This header is different for different data product types.

The structure of a compression entity can be seen in Figure 8.1. A detailed description of the
header parameters can be found in Table 8.1. The compressed data from the RDCU does not
contain the compression entity header and therefore the header must be added after down-
loading the compressed data from the RDCU.

Note: As described in [RD-5] a PLATO science packet is limited to 64 kilobytes. Therefore,
the compression entity has to be split into several packets, each containing a chunk header,
to restructure the compression unit and map the compressed data to a chunk ID. This chunk
header is not part of the compression unit described in this document.

8.1 Specific Compression Entity Header

There are two specific compression entity headers for compressed imagette data defined. The
one shown in 8.2 includes additional to the imagette specific decompression parameters also
the parameters which control the semi-adaptive compression feature. If the semi-adaptive com-
pression parameters are not needed or available the specific compression entity shown in 8.3
can be used for compressed imagette data.

For non-imagette data, the specific compression entity header shown in Figure 8.4 should
be used. Table 8.2 lists which data product can be used for which data product type.

For uncompressed data (raw mode) indicated by the uncompressed data bit in the data
product type field, no specific compression entity header is used.

& = astrothSIk Data Compression User Manual

UNIVERSITATSSTERNWARTE WIEN

y) Institut fUI’ PLATO-UVIE-PL-UM-0001 Draft 6, January. 25, 2022

Page 40 of 42
ICU ASW / cmp_tool
Version ID
Compression Entity Size MSB
Compression Entity Size LSB Original Data Size MSB
Original Data Size LSB
Compression Start Timestamp
Generic
Compression
Entity
Header
Compression End Timestamp
Dat. Fog Data Product Type
used Compression Mode used Model Updating Weighing Value
Model ID
Model Update Counter Spare
used Lossy Compression Parameters

Specific Compression Entity Header for the different Data Product Types
Variable Size

Compressed Data
Variable Size

Figure 8.1: Structure of a compression entity consisting of a generic header, a data product type

specific header and the compressed data.

Y institut fUr
astrophysik

UNIVERSITATSSTERNWARTE WIEN

PLATO-UVIE-PL-UM-0001

Data Compression User Manual

Draft 6, January. 25, 2022

Page 41 of 42

Length Parameter Description Value Range

[Bit]

32 ICU ASW Version ID ICU application software/cmp_tool uint32_t
identifier. The first bit is used to dis-
tinguish betw. ICU ASW and cmp_tool.

24 Compression Entity Size Describes the size of the entity [0..2%%]
(header + compressed data)
in bytes

24 Original Data Size Size of the data before [0.2%]
compression in bytes

48 Comp. Start Timestamp Time when the compression CUCtime
was started

48 Comp. End Timestamp Time when the compression CUCtime
was finished

16 Data Product Type To specify which data product uint16_t
is compressed see Table 8.2.
The MSB in the data product type
is set for uncompressed data.

8 used Compression Mode Selected compression mode uint8_t

8 u. Model Upd. Weigh. Val. Used model weighting parameter 0..16

16 Model ID Model identifier for identifying uint16_t
entities that originate from
the same starting model.

8 Model Update Counter Counts how many times the model uint8_t
was updated.

8 Spare

16 used Lossy Comp. Par. Parameter controlling the uint16_t
lossy compression

96,32, Specific Entity Header Data product type specific header custom see

256,0 for imagette and non-imagette data Fig. 8.2,8.3,8.4

var. Compressed Data Compressed data custom

Table 8.1: Compression entry header parameters description.

Y institut fUr
47 astrophysik

UNIVERSITATSSTERNWARTE WIEN

PLATO-UVIE-PL-UM-0001

Draft 6, January. 25, 2022

Data Compression User Manual

Page 42 of 42

Data

Product Type Description

specific compression header

NCxx_S_SCIENCE_
NCxx_S_SCIENCE_

NCxx_S_SCIENCE_|
NCxx_S_SCIENCE_
NCxx_S_SCIENCE_
NCxx_S_SCIENCE_
NCxx_S_SCIENCE_

NCxx_S_SCIENCE_
NCxx_S_SCIENCE_
NCxx_S_SCIENCE_

NCxx_S_SCIENCE_|
NCxx_S_SCIENCE_|
NCxx_S_SCIENCE_|

el PR IovwoNGUAWN =

N
o

IMAGETTE
SAT_IMAGETTE

NCxx_S_SCIENCE_OFFSET

BACKGROUND
SMEARING
S_FX
S_FX_DFX
S_FX_NCOB

NCxx_S_SCIENCE_S_FX_DFX_NCOB_ECOB

L_FX
L_FX_DFX
L_FX_NCOB

NCxx_S_SCIENCE_L_FX_DFX_NCOB_ECOB

F_FX
F_FX_DFX
F_FX_NCOB

NCxx_S_SCIENCE_F_FX_DFX_NCOB_ECOB
FCx_R_SCIENCE_IMAGETTE
FCx_R_SCIENCE_OFFSET_VALUES
FCx_R_BACKGROUND_VALUES

(adaptive) imagette header

TBC (adaptive) imagette header

non-imagette header
non-imagette header
non-imagette header
non-imagette header
non-imagette header
non-imagette header
non-imagette header
non-imagette header
non-imagette header
non-imagette header
non-imagette header
non-imagette header
non-imagette header
non-imagette header
non-imagette header

TBC (adaptive) imagette header
TBC (adaptive) imagette header

non-imagette header

Table 8.2: Which specific compression header can be used for which data product type.

0 1 2 3 4 5 6

7 8 9 10

n 12 13 14 15

used Spillover Threshold Parameter

used Golomb Parameter

used Adap. 1 Spill. Thres. Par. MSB

used Adap. 1 Spill. Thres. Par. LSB

used Adaptive 1 Golomb Par.

used Adaptive 2 Spillover Threshold Parameter

used Adaptive 2 Golomb Par.

Spare

Spare

Figure 8.2: Specific compression entity header for RDCU imagette compression containing the

semi-adaptive compression feature.

{q institut fur PLATO-UVIE-PL-UM-0001 Draft 6, January. 25, 2022
L{i[; aStrOthSIk Data Compression User Manual

UNIVERSITATSSTERNWARTE WIEN Page 43 of 42

0 1 2 3 4 5 6 7 8 9 10 n 12 13 14 15

used Spillover Threshold Parameter

used Golomb Parameter Spare

Figure 8.3: Specific compression entity header for RDCU (or ICU) imagette compression without
containing the semi-adaptive compression feature.

used Spillover Threshold Parameter 1 MSB

used Spillover Threshold Par. 1 LSB used Compression Par. 1 MSB

used Compression Parameter 1 LSB used Spillover Threshold Par. 2 MSB

used Spillover Threshold Parameter 2 LSB

used Compression Parameter 2

used Spillover Threshold Parameter 5 MSB

used Spillover Threshold Par. 5 LSB used Compression Par. 5 MSB

used Compression Parameter 5 LSB used Spillover Threshold Par. 6 MSB

used Spillover Threshold Parameter 6 LSB

used Compression Parameter 6

Spare

Figure 8.4: Specific compression entity header for non-imagette data compression.

	Terms, Definitions and Abbreviated Items
	Introduction
	Purpose of the Document
	The Data Compression Algorithm
	The ICU Software Compressor
	The RDCU Hardware Compressor

	Controlling the Compression
	The Compression Parameters Structure
	Compression Parameters
	Compression Mode (cmp_mode)
	Golomb Parameter (golomb_par)
	Spillover Threshold Parameter (spill)
	Model Weighting Parameter (model_value)
	Rounding Parameter (round)
	Adaptive Golomb Parameter, Adaptive Spillover Threshold
	ICU Buffers (input_buf, model_buf, icu_new_model_buf, icu_output_buf)
	RDCU Addresses (rdcu_data_adr, rdcu_model_adr, rdcu_new_model_adr, rdcu_buffer_adr)
	Number of Samples (samples)
	Compressed Data Buffer Length (buffer_length)

	Differences between SW and HW Compression Setup
	Compression Parameter Errors
	Spill Golomb Error

	Default Configuration
	Setup the Hardware Compressor

	The Status of a Compression
	Compression Status Structure
	Data Compressor Ready (cmp_ready)
	Data Compressor Active (cmp_active)
	Data Compressor Data Valid (data_valid)
	Data Compressor Interrupted (cmp_interrupted)
	RDCU Interrupt Enable (rdcu_interrupt_en)

	Read the Status of the Hardware Compressor

	The Metadata of a Compression
	Compression Information Structure
	Used Compression Parameters (*_used)
	Compressed Data Size (cmp_size)
	Adaptive Compressed Data Size 1/2 (ap1_cmp_size, ap2_cmp_size)
	Compressor errors (cmp_err)

	Read out the RDCU Hardware Information Registers
	Read out the RDCU SRAM

	Compressing Data
	How to compress data with the Software Compressor on the ICU
	Software Compression Example

	How to compress data with the Hardware Compressor on the RDCU
	Hardware Compression Example

	Frame Processing
	Chunk Processing
	1d-Differencing Mode and Model Mode
	1d-Differencing Mode
	Model Mode

	Chunk Procedure Order
	Optimised Chunk Processing
	Chunk Size

	Compression Entity Format
	Specific Compression Entity Header

