
Singularity
User Workshop on Singularity on HPC
24.11.2021, MB



#2Agenda
● Introduction

– What is a container
– Difference to docker
– Security on HPC + MPI + Infiniband
– Building a container

● Hands on
– Build a container
– Modify a definition files / customized image

● Examples & Problems
– MPI
– Performance
– Cloud.sylabs.io
– Build service, overlay, signing, best practices



#3Before containerization
● Goods must be loaded and 

unloaded individually, many 
times by hand

● Inefficient – more time spend 
loading and unloading goods than 
transporting them

● Insecure – goods must be stored 
and handled by intermediaries 
during transport; potential loss 
and theft of goods

● Local – only luxury and specialty 
goods shipped long-distance



#4After containerization
● Standardized – containers of 

known dimensions and 
permissible weight tolerance

● Efficient – portable containers 
allow fast loading and 
unloading from multiple modes 
of transportation

● Secure – goods remained 
stored within the same 
container

● Global – cost effective shipping



#5What is the problem?



#6What is a container?
● A (software) container is an abstraction for a set of 

technologies that aim to solve the problem of how to get 
software to run reliably when moved from one computing 
environment to another.

● A container image is simply a file (or collection of files) saved 
on disk that stores everything you need to run a target 
application or applications: code, runtime, system tools, 
libraries, etc.

● A container process is simply a standard (Linux) process 
running on top of the underlying host’s operating system 
and kernel



#7

Containers vs. Virtual 
Machines

Container-based applications have direct access to the host kernel
and hardware and, thus, are able to achieve similar performance to
native applications. In contrast, VM-based applications only have
indirect access via the guest OS and hypervisor, which creates a
significant performance overhead.



#8Advantages of Containers

● Performance – Near-native application performance
● Freedom – Bring your own software environment
● Reproducibility – Package complex software 

applications into easy to manage, verifiable software 
units

● Compatibility – Built on open standards available in 
all major Linux distributions

● Portability – Build once, run (almost) anywhere



#9Limitations of Containers

● Architecture dependent – Always limited by CPU 
architecture (x86_64, ARM) and binary format (ELF)

● Portability - Requires glibc and kernel 
compatibility between host and container; also 
requires any other kernel-user space API 
compatibility (e.g., OFED/IB, NVIDIA/GPUs)

● Filesystem isolation - filesystem paths are 
(mostly) different when viewed inside and outside 
container



#10Why singularity? DOCKER?

● Docker is the most common container format.
● Provides container environment
● For network services
● Easy to use
● DockerHub
● Industry Standard.



#11Docker on HPC?
● HPC systems are shared resources
● Docker’s security model is 

designed to support trusted users 
running trusted containers; e.g., 
users can escalate to root 

● Docker not designed to support 
batch-based workflows

● Docker not designed to support 
tightly-coupled, highly distributed 
parallel applications (MPI).

● Docker is changing



#12Singularity ?
● A Container Platform for HPC
● Reproducible, portable, 

sharable, and distributable 
containers

● No trust security model: 
untrusted users running 
untrusted containers

● Support HPC hardware and 
scientific applications



#13Features of Singularity
● Each container is a single image file
● No root owned daemon process
● No user contextual changes or root 

escalation allowed; user inside 
container is always the same user who 
started the container

● Supports shared/multitenant resource 
environments

● Supports HPC hardware: Infiniband, 
GPUs

● Supports HPC applications: MPI, SLURM



#14Essential Singularity
singularity [options] <subcommand> [subcommand options] …

● build: Build your own container from scratch using a 
Singularity definition file; download and assemble any 
existing Singularity container; or convert your 
containers from one format to another (e.g., from 
Docker to Singularity)

● shell: Spawn an interactive shell session in your 
container.

● exec: Execute an arbitrary command within your 
container.



#15Build a singularity container



#16Pull a singularity container

Singularity Registries: Docker, shub, sylab cloud, datalad, ...



#17

Interacting with a Singularity 
container

● SHELL
● Overlapping e.g. /etc
● Apps inside: apt



#18

Running a Singularity 
Container

● EXEC
● Simply run an application inside like a normal 

bash command
● Arguments allowed, Pipes welcome.



#19Singularity Definition Files

● Definition files == Recipe
● It is a manifest of all software to be 

installed within the container, 
environment variables to be set, files 
to be added, directories to be 
mounted, container metadata, etc.

● You can even write a help section, or 
define modular components in the 
container (apps)

● Miniconda3 Example → Hands-On
● IMGW Repository - Gitlab

https://gitlab.phaidra.org/imgw/singularity/-/blob/master/definition-files/miniconda/Singularity.miniconda3-py39-4.9.2-ubuntu-18.04
https://gitlab.phaidra.org/imgw/singularity


#20Singularity Recipes @IMGW

● A repository of definition files for building 
Singularity containers around the software 
applications, frameworks, and libraries you need 
to run on high-performance computing systems.
– JET – Multi-Node, MPI
– SRVX1
– VSC 4, 5, 6 – Multi-Node, MPI, GPU

● Not complete yet, but it will grow.



#21Workflow
● Build your Singularity containers on a local 

system where you have root or sudo access
– Sign your container

● Transfer your Singularity containers to the HPC 
system where you want to run them
– Share your container

● Run your Singularity containers on that HPC 
system



22

Questions?



#23Hands-On - 30min
● Please go to 

https://gitlab.phaidra.org/imgw/singularity/workshop

● Schedule:
– Introduction to commandline of singularity
– Definition files
– Connecting to VM on JET01 (Credential via Zoom)
– Building containers

https://gitlab.phaidra.org/imgw/singularity/workshop


24


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

