Skip to content
Snippets Groups Projects
Select Git revision
  • 731b680af333bddf9ea87ceefccdc6b1c308d371
  • master default protected
  • dev protected
  • 553-semantic-recommendation-2
  • 553-semantic-recommendation
  • replication_test
  • release-1.10 protected
  • release-1.9 protected
  • 551-init-broker-service-permissions
  • 549-test-oai-pmh
  • 545-saving-multiple-times-breaks-pid-metadata
  • 499-standalone-compute-service-2
  • 539-load-tests
  • hotfix/helm-chart
  • luca_ba_new_interface
  • 534-bug-when-adding-access-to-user-that-is-not-registered-at-dashboard-service
  • release-1.8 protected
  • 533-integrate-semantic-recommendation
  • feature/openshift
  • 518-spark-doesn-t-map-the-headers-correct
  • 485-fixity-checks
  • v1.10.3 protected
  • v1.10.2 protected
  • v1.10.1 protected
  • v1.10.0-rc13 protected
  • v1.10.0-rc12 protected
  • v1.10.0-rc11 protected
  • v1.10.0-rc10 protected
  • v1.10.0-rc9 protected
  • v1.10.0-rc8 protected
  • v1.10.0-rc7 protected
  • v1.10.0-rc6 protected
  • v1.10.0-rc5 protected
  • v1.10.0-rc4 protected
  • v1.10.0-rc3 protected
  • v1.10.0-rc2 protected
  • v1.10.0rc1 protected
  • v1.10.0rc0 protected
  • v1.10.0 protected
  • v1.9.3 protected
  • v1.9.2 protected
41 results

extra.js

Blame
  • cfg.py 4.98 KiB
    from dartwrf import utils
    from config import clusters  # from . = problem in archivedir
    cluster = clusters.jet  # change cluster configuration here
    
    exp = utils.ExperimentConfiguration()
    exp.expname = "test_jet" #"exp_v1.22_P3_wbub7_WV62_obs10_loc20_oe1"
    exp.model_dx = 2000
    exp.n_ens = 40
    exp.n_nodes = 40
    
    exp.filter_kind = 1
    exp.inflation = True
    exp.sec = True
    exp.reject_smallFGD = False
    exp.cov_loc_vert_km_horiz_km = False #(3, 20)
    exp.superob_km = False  # False or int (spatial averaging of observations)
    
    exp.use_existing_obsseq = False  # False or pathname (use precomputed obs_seq.out files)
    #exp.use_existing_obsseq = '/jetfs/home/lkugler/data/sim_archive/exp_v1.21_P3_wbub7_VIS_obs10_loc20/obs_seq_out/2008-07-30_%H:%M_obs_seq.out'  
    #exp.use_existing_obsseq = '/gpfs/data/fs71386/lkugler/sim_archive/exp_v1.21_P3_wbub7_REFL2D_obs10_loc20_oe5/obs_seq_out/2008-07-30_%H:%M_obs_seq.out'
    #exp.use_existing_obsseq = '/gpfs/data/fs71386/lkugler/sim_archive/exp_v1.21_P2_rr_VIS_obs20_loc4/obs_seq_out/2008-07-30_%H:%M_obs_seq.out'
    
    
    #exp.nature_wrfout = '/home/fs71386/lkugler/data/sim_archive/exp_v1.19_P5+su_nat2/2008-07-30_07:00/1/wrfout_d01_%Y-%m-%d_%H:%M:%S'
    exp.nature_wrfout = '/jetfs/home/lkugler/data/sim_archive/exp_v1.19_P3_wbub7_nat/2008-07-30_12:00/1/wrfout_d01_%Y-%m-%d_%H:%M:%S'
    #exp.nature_wrfout = '/home/fs71386/lkugler/data/sim_archive/exp_v1.19_Pwbub5_nat/2008-07-30_12:00/1/wrfout_d01_%Y-%m-%d_%H:%M:%S'
    #exp.nature_wrfout = '/home/fs71386/lkugler/data/sim_archive/exp_v1.18_P1_nature/2008-07-30_06:00/1/wrfout_d01_%Y-%m-%d_%H:%M:%S'
    #exp.nature_wrfout = '/home/fs71386/lkugler/data/sim_archive/exp_v1.19_P4_nat/2008-07-30_07:00/1/wrfout_d01_%Y-%m-%d_%H:%M:%S'
    
    #exp.input_profile = '/home/fs71386/lkugler/wrf_profiles/data/wrf/ens/2021-05-04/raso.nat.001.wrfprof'
    #exp.input_profile = '/home/fs71386/lkugler/wrf_profiles/data/wrf/ens/2021-05-04/raso.nat.<iens>.wrfprof'
    #exp.input_profile = '/home/fs71386/lkugler/wrf_profiles/data/wrf/ens/2021-05-04/raso.fc.<iens>.wrfprof'
    #exp.input_profile = '/home/fs71386/lkugler/data/initial_profiles/wrf/ens/large_mean_error/raso.nat.<iens>.wrfprof'
    exp.input_profile = '/jetfs/home/lkugler/data/initial_profiles/wrf/ens/2022-03-31/raso.fc.<iens>.wrfprof'
    #exp.input_profile = '/gpfs/data/fs71386/lkugler/initial_profiles/wrf/ens/2022-03-31/raso.nat.<iens>.wrfprof'
    #exp.input_profile = '/gpfs/data/fs71386/lkugler/initial_profiles/wrf/ens/2022-05-18/raso.fc.<iens>.wrfprof'
    
    
    # localize vertically, if it has a vertical position
    # needs a horizontal scale too, to calculate the vertical normalization
    # since you can not specify different vertical localizations for diff. variables
    
    n_obs = 961  # 22500: 2km, 5776: 4km, 121: 30km, 256:16x16 (20km); 961: 10km resoltn # radar: n_obs for each observation height level
    
    vis = dict(plotname='VIS 0.6µm', plotunits='[1]',
               kind='MSG_4_SEVIRI_BDRF', sat_channel=1, n_obs=n_obs, 
               error_generate=0.03, error_assimilate=0.03,
               cov_loc_radius_km=20)
    
    wv62 = dict(plotname='Brightness temperature WV 6.2µm', plotunits='[K]',
                kind='MSG_4_SEVIRI_TB', sat_channel=5, n_obs=n_obs, 
                error_generate=1., error_assimilate=1., 
                cov_loc_radius_km=20)
    
    wv73 = dict(plotname='Brightness temperature WV 7.3µm', plotunits='[K]',
                kind='MSG_4_SEVIRI_TB', sat_channel=6, n_obs=n_obs, 
                error_generate=1., error_assimilate=1., 
                cov_loc_radius_km=10)
    
    ir108 = dict(plotname='Brightness temperature IR 10.8µm', plotunits='[K]',
                 kind='MSG_4_SEVIRI_TB', sat_channel=9, n_obs=n_obs, 
                 error_generate=5., error_assimilate=10.,
                 cov_loc_radius_km=32)
    
    radar = dict(plotname='Radar reflectivity', plotunits='[dBz]',
                 kind='RADAR_REFLECTIVITY', n_obs=n_obs, 
                 error_generate=2.5, error_assimilate=5,
                 heights=range(2000, 14001, 2000),
                 cov_loc_radius_km=20)
    
    t = dict(plotname='Temperature', plotunits='[K]',
             kind='RADIOSONDE_TEMPERATURE', n_obs=n_obs,
             error_generate=0.2, error_assimilate=0.4,
             heights=[5000,], #range(1000, 17001, 2000),
             cov_loc_radius_km=4)
    
    q = dict(plotname='Specific humidity', plotunits='[kg/kg]',
             kind='RADIOSONDE_SPECIFIC_HUMIDITY', n_obs=n_obs,
             error_generate=0., error_assimilate=5*1e-5,
             heights=[1000], #range(1000, 17001, 2000),
             cov_loc_radius_km=0.1)
    
    t2m = dict(plotname='SYNOP Temperature', plotunits='[K]',
               kind='SYNOP_TEMPERATURE', n_obs=n_obs, 
               error_generate=0.1, error_assimilate=1.,
               cov_loc_radius_km=20)
    
    psfc = dict(plotname='SYNOP Pressure', plotunits='[Pa]',
                kind='SYNOP_SURFACE_PRESSURE', n_obs=n_obs, 
                error_generate=50., error_assimilate=100.,
                cov_loc_radius_km=32)
    
    
    exp.observations = [t]
    exp.update_vars = ['U', 'V', 'W', 'THM', 'PH', 'MU', 'QVAPOR', 'QCLOUD', 'QICE', 'PSFC']
    #exp.update_vars = ['U', 'V', 'W', 'T', 'PH', 'MU', 'QVAPOR', 'PSFC']
    
    # directory paths depend on the name of the experiment
    cluster.expname = exp.expname