
FAIR Data Austria
Requirement Specification

Work Package 2

Cornelia Michlits1 and Martin Weise1

1Institute for Information Systems Engineering, Vienna University of Technology

1 Introduction

1.1 Scope of this Document
This document is used to derive the functional specification of the FAIR Data Austria Database
Repository work package.

1.2 Overview
FAIR Data Austria is a cooperation project with Graz University of Technology, University of
Vienna and Vienna University of Technology and aims in providing a infrastructure for knowledge
transfer between universities, business and society.

The Vienna University of Technology is responsible for the implementation of a prototype for a
database repository (structured data, SQL). A main focus is on the inclusion of the FAIR principles,
i.e. research data should be findable, accessible, interoperable and reusable. The observance of these
principles is necessary to use the recorded data collectively.

1.3 The Importance of a Database Repository
At the moment databases usually set up and used locally at each research unit. This local usage
requires database administration skills and does not motivate to collect metadata, which is necessary
to make data machine-readable, understandable and reusable. Moreover, data versioning is hardly
used due to a lack of resources. The consequence is that reproducibility cannot be guaranteed.

In order to overcome these issues a private cloud hosted database repository is suggested. The
database administration is outsourced to the repository and supported by experts in this field.
Therefore, no local administrators are required. The generated Metadata makes the databases
searchable and shareable. The uploaded data gets versioned and timestamped. Hence, repro-
ducibility is guaranteed and data is cite-able at fine granularity.

1.4 Timeframe
January 2020 until December 2022 (3 years)

1



Figure 1: Schematic overview of the repository. Each database is encapsulated in a docker container.
The meta-database contains the meta-information of the databases contained in the repository.

2 Overall project description
This project [1] contributes to the strengthening of the knowledge transfer between universities,
business and society and supports the sustainable implementation of the European Open Science
Cloud (EOSC). The implementation of the FAIR principles (“findable”, “accessible”, “interopera-
ble” and “reusable”) plays a major role. Compliance is ensured by (1) integrated research data
management (FDM), which is tailored to the discipline-specific and generic needs of the research
groups, (2) by setting up and developing next-generation repositories for research data, code and
other research outcomes and (3) by the Development of training and support services for efficient
research data management. In this way, "FAIR Data Austria" forms complementary modules in
the FDM area for the “Austrian DataLab and Services” and “RIS Synergy” projects.

For efficient research data management in accordance with the FAIR principles, it is essential
to support the entire life cycle of research data - from generation to archiving - with specialist
knowledge and the associated tools. This cannot be done in isolation. The project promotes
collaboration between Austrian universities in developing coherent and robust research data services.
This is how Austrian universities secure their role in the international research landscape.

3 The Repository
The repository should consist of the databases created by database users. Each database should be
encapsulated in a docker container. This makes the system flexible and scalable. A major roles plays
the so called meta-database, which should contain the metadata like table names, column names, SI
units etc. of the databases running in the repository. The meta-database makes databases findable.
Different levels of SQL-knowledge should be supported, e.g. forms to create tables, faceted-browsing
to find databases and query builder for those who are not able to write SQL.

2



Figure 2: Database creation: There should be three possibilities to create a database. Either upload
a csv file(s), support an SQL script or use a form. In the background a docker container with the
database gets created. By default Postgres is used as database engine. The meta-information, e.g.
database name, is written to the meta-database. Data can be uploaded automatically by a sensor
via REST Interface.

Figure 3: Update Database: Similar to the creation there are the possibilities of updating the
database via csv, sql upload or by using a form provided in the UI. The system access the cor-
responding docker container updates and versions the data. Changes are reported to the meta-
database.

3.0.1 Background Processes

A schematic overview of the most import processes (namely database creation, data uploads and
searching databases) that should be implemented can be found in Figure 2, 3 and 4.

4 Interfaces
In the pre-meeting of 25.01. we discussed with colleagues of University Vienna to have RESTful
interfaces.

4.1 Content Endpoint
4.1.1 Metadata Service

GET /meta “list all metadata resources”
POST /meta “create metadata resource”
GET /meta/:id “get metadata resource info”
PUT /meta/:id “update metadata resource”
DELETE /meta/:id “delete metadata resource”

3



Figure 4: Find database: Using the web-interface the meta-database can be queried via SQL or
faceted-browsing in order to find certain databases. For example, searching all databases containing
personal data. Depending on the access rights the database can be queried or downloaded.

4.2 Container Endpoint
4.2.1 Container Managing Service

GET /container “view container resources”
POST /container “create container resource”
GET /container/:id “get container resource info”
PUT /container/:id “update container resource (e.g. "action":"start")”
DELETE /container/:id “delete container resource”

4.3 Database Endpoint
4.3.1 Database Managing Service

GET /database “list the created databases”
POST /database “creates a new database IN:databasename, DB engine, Owner,

Creator, Publisher, PublicationYear, ResourceType, description,
Separator OUT:Status, SQL for metadatabase”

GET /database/:id “get info about database including connection”
PUT /database/:id “update database resource”
DELETE /database/:id “deletes the corresponding database”

4.3.2 Table Service

GET /database/:id/table “view table resources”
POST /database/:id/table “create table resource”
GET /database/:id/table/:id “get table info”
PUT /database/:id/table/:id “update table resource (Andreas: this is not trivial!!)”
DELETE /database/:id/table/:id “delete table resource”

4.3.3 Query Service

POST /database/:id/query “store query (normalization › hash key computa-
tion)”

PUT /database/:id/query “execute query”
PUT /database/:id/query/version/:timestamp “execute query against timestamp”
PUT /database/:id/query/version/:timestamp “execute query against timestamp”

4



4.3.4 Data Manipulation Service

IN: dbid, tablename, values, boolean (for update) OUT: status

POST /database/row?csv “generate SQL statement from csv”
POST /database/row?json “generate SQL statement from json”
POST /database/row?dump “generate SQL statement from dump”
DELETE /database/row/:id “delete row resource”

4.3.5 Analyze Service

PUT /database/analyze/datatypes “determine data types”
PUT /database/analyze/sql “analyze SQL”
PUT /database/analyze/ontology “map ontology (keep original and mapped)”

4.3.6 Content Service

GET /database/:id/download “make temporary tarball and get download link”

4.3.7 DOI Service

GET /doi/:id “resolve DOI (not trivial, may include query re-execution, provide
landing page)”

5 User Stories
This section covers the user stories, which are enumerated for better referencing in sprints and
Gitlab.

5.1 Create database
5.1.1 "As a researcher without SQL knowledge I would like to create a database simply by using a

graphical interface or by providing a CSV/Excel file / DB-dump. I am able to simply upload
e.g. the CSV files and the system automatically creates a relational database that can be
queried."

5.1.2 "As a database creator with a solid SQL background I would like to use a SQL interface in
order to type in SQL commands for database creation, share my research findings and be
connected to other researchers in that area."

5.1.3 "As a database creator I want to choose a certain RDBMS engine (MySQL, Postgres, Mari-
aDB) for my database that provides the desired features I need." (low priority)

5.1.4 "As an unskilled SQL user I would like to have a supporting UI interface that helps me create
tables."

5



5.2 Feed database
5.2.1 "As an unauthorized person or machine I am not able to access the database or insert data.

So, the database owner keeps control of the added records."

5.2.2 "As an authorized person without SQL knowledge I want to use the graphical interface in
order to store data or alternatively automatically by supplying a DB-dump, CSV/Excel file,
i.e. upload the files to the system. The software makes me aware if the data is not schema
conform. "

5.2.3 "As a researcher I want automate data insertion via a REST interface, e.g. using a sensor
that send measurement data via internet. "

5.2.4 "As an authorized person with SQL skills I can simply insert the data in a SQL interface."

5.2.5 "As a database owner I would like to set an embargo period in order to have the sole access
to the data for a given time."

5.2.6 "As a researcher I want to add data description and rich meta data such that other peoples
can find my database."

5.3 Update database
5.3.1 "As an authorized person I can update or delete (also physically) data by either using an SQL

interface, graphical interface, uploading CSV/Excel/ JSON files."

5.3.2 "As a machine I can update the database after an authorization step via REST interface."

5.4 Query database
5.4.1 "As a database user, I want to create queries via SQL interface directly so I can benefit of

the flexibility of SQL."

5.4.2 "As a database user, I want to create queries via faceted browsing so I can set filters without
having any skills in SQL."

5.4.3 "As a database user, I want to store my queries and respective metadata in a query store so
I can reproduce my result sets by using the corresponding PID."

5.4.4 "As a database user, I want to obtain the result sets of executed queries as CSV/Excel file /
JSON format so I can easily store and provide it."

5.5 Find database
5.5.1 "As a researcher I would like to find other for me relevant databases in the repository. Via

a web interface I can easily access the meta data of the database owners and a description
of the data set. The open meta data can be queried by using faceted browsing such that no
SQL skills are necessary. For example, I am able to search by data owners and his meta data
or by meta data of the database (column names, units, min/max/avg or range of values) and
by data openness (open access, embargo period, )."

6



5.5.2 "As a database user I am able to find and access a specific version of data to run queries in
a reproducible way and download the data for further use (e.g. statistic, ml, ...) as described
below."

5.6 Download data
5.6.1 "As a researcher I want to download the database as ZIP consisting of CSV / JSON files and

single tables as CSV / JSON files or alternatively as a database dump."

5.7 Manage database
5.7.1 "As an administrator I want to have an overview of the different numbers of Postgres, MySQL,

MariaDB versions and some statistics (dashboard)."

5.7.2 "As an administrator I would like to reset passwords, lock users and grant access to certain
database."

5.7.3 "As an administrator I am aware of the access rights of different users."

5.7.4 "As a system administrator, I want to manage Docker containers so I can maintain them."

5.7.5 "As a system administrator, I want to upgrade database engines in specific Docker containers
so I can keep the functionalities of the repository up to date and provide new features of the
engines."

5.8 Monitoring
5.8.1 "As a system administrator, I want to analyse and monitor logs in any component of the

application so I can detect misbehavior."

5.8.2 "As a system administrator, I want to monitor containers so I can check the status and
behaviour."

5.9 Merge databases
5.9.1 "As a researcher I would like to merge semantically similar databases, e.g. heart diseases in

Austria and heart diseases in Germany to one database that can be queried."

5.10 Extensions
5.10.1 "As a database owner I would like to modify the schema in hindsight to make refinements

and adjustments."

5.10.2 "As a researcher I am able to query the meta database in order to find relevant databases."

5.10.3 "As a researcher, I want to store my queries regarding the meta database in a query store so
I can reproduce my result sets by using the corresponding PID."

5.10.4 "As a database owner I want to have the possibility to upload sensitive data that gets en-
crypted and still can be queried using SQL commands or graphical interface. So, in case of a
data leak the records are useless."

7



6 Roles
A detailed description of their scope can be found in Table 1, in the following we give a short
description of the roles:

System Administrator is responsible for supporting the infrastructure of the repository. He or
she is responsible for grant- or release locks, viewing the dashboard, overview data versions,
physically delete staff, block databases, set databases invisible or setting databases inaccessi-
ble. He or she should not be able to overwrite data in the database, including deletion;

Database Owner is the owner of a specific database. He or she creates one or multiple databases,
releases data, block data, embargo period and access meta data;

Database User typically queries data (SQL, faceted browsing, landing page) and query data time
series (reproducible);

Database Provider is considered to be a machine (e.g. a sensor measuring water pollution)
automatically uploads data via REST interface as CSV or JSON.

Privileges System Admin Database Owner Database Provider Database User
SELECT X X X X
INSERT × X X ×
UPDATE × X × ×
DELETE × X × ×
TRUNCATE × X × ×
REFERENCES X X × X
TRIGGER X X × ×
CREATE X X × X
CONNECT X X X X
TEMPORARY X X × X
EXECUTE X X X X
USAGE X X × X

Table 1: Roles with use cases and permissions

7 Metadatabase
The meta-database should contain (all) the information required to make data understandable,
findable and machine readable (SI units). At least it should support information of the data and
the databases included in the repository, i.e. database, table and column information. Moreover
statics of user access, access rights and information about the data itself (File encoding, type,
version, provenance). Moreover, for each database there should be a contact person that can be
reached to obtain further information or access (if the database is private or there is an embargo-
period). A general (and open) problem is which information we receive about the user (and TISS).
An ER-Schema can be found in Figure 5.

8



Figure 5: ER-Schema of the meta-database.

8 Microservice Architecture
createDB

generate URL, create Docker Container, start Docker Container, create Database, save URL,
DBID, DB engine
IN: Databasename, DB engine, Owner, Creator, Publisher, PublicationYear, Resource type,
description, Seperator
OUT: status

determine_datatypes
determine columns of csv file, determine datatypes of csv file, ok user
IN: csv, delimiter, header (boolean) OUT: datatype for each column (json) Endpoint: /de-
termine: determines table datatypes of given csv content

create_table
creates SQL statement for tables
IN: table name, column name, data types OUT: SQL statements for table creation
Endpoint: /create: creates sql statements for table creation

insert_update
inserts tuple or update, in case of update comparing if tuple already exists with earlier version
(using ids)

9



IN: table name, values, boolean for update OUT: SQL statement for inserting or updating
Endpoint: /insert: inserts/updates values to corresponding table

execute_query
executes SQL queries either on a database or on the meta database, (check access rights and
initial view - later if user clicks on found database?)
IN: Query, UserID, DatabaseID OUT: result of applied query (considering rights resp. view
of user)
Endpoint: /execute: executes SQL query on corresponding db and returns the result

analyzeSQL
analyzes SQL statements in order to find out relevant information for meta database and
produces SQL statements (inserts into meta database)
IN: SQL statement (this method searches for databasename, created tables, views in an SQL
dump or SQL statement typed by a user directly into UI)
OUT: SQL statement for metadatabase inserts

determine_connection
gets as input database id, finds url, establishes a connection to the database and seperates
connection if no longer used
IN: databaseid OUT: connection
Endpoint: /determine: returns db connection for corresponding dbid

execute_databaseoperations
executes SQL statements like insert into, update, ... (access rights?)
IN: databaseid, SQL statement OUT: status
Endpoint: /execute: executes corresponding sql statements

store_query
save query to Query Store, finds query for given DOI and creates pid
IN: result set, query, execution timestamp OUT: pid (dbid + generic id)
Endpoints:
/save: saves query to corresponding query store
/find: finds query for given DOI

mapvocabularies
suggestion for vocabularies, ontology mapping
IN: usage (e.g. databasename), word OUT: group, suggestion (dynamic implementation)

9 Technical Requirements

9.1 Operating System
• Ubuntu 20.04 LTS

9.2 Technology
• Java 11 JRE and JDK

10



• Docker Engine v20+

• PostgreSQL 10 with additional extensions:

– Temporal Tables

9.3 Testing Environment
Server at Uni Wien for Gitlab testing (static IP address is required and SSH public key):

HTTPS dbrepo.phaidra.org
SSH adminp7@dbrepo.phaidra.org1

Gitlab contains all code, the wiki documentaiton, etc..

HTTPS gitlab.phaidra.org/fair-data-austria-db-repository/fda-services
GIT git@gitlab.phaidra.org/fair-data-austria-db-repository/fda-services.git

...

10 Milestones

10.1 Sprint 0 (01.02.2021 to 22.02.2021)
• Preparation (what is already implemented?)

• Backend implementation for meta database (most important use-cases)

• Create database with x columns with data types as list (e.g. “int,timestamp,string,int,int”
etc.)

• Import use cases to Gitlab

10.2 Sprint Review 0 (22.02.2021)

10.3 Sprint 1 (22.02.2021 to 15.03.2021)
• Roles (who can append data?, who can overwrite?) → JSON-Web-Token

• Test Deployment Server both at Uni Wien and TU Wien

• Docker Context ()

10.4 Sprint Review 1

10.5 Sprint 2
• tbd

11



11 Branching Strategy & Release
We follow the progressive-stability branching strategy [2] where the “master” branch is a relase
branch. All development must only merge into the development branch “dev” which is the main
stable branch for all features. The branching tree therefore looks like:

Figure 6: A “silo” view of progressive-stability branching

12 Organizational Environment

12.1 Project Owner
• Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Andreas Rauber for Vienna University of Technology

• Dipl.-Ing. (FH) Raman Ganguly for University Vienna

12.2 Project Employees
In alphabetic order (sorted by last name and their roles within the team):

• Eva Gergely (Project manager)

• Markus Lindner (Back-end Developer)

• Cornelia Michlits (FAIR Principles, Metadata, Databases)

• Moritz Staudinger (Data versioning, Column-Store Databases)

• Kirill Stytsenko (Front-end Developer)

• Martin Weise (Back-end Developer)

12.3 Other
• Tomasz Miksa (provides us with test data, Vienna University of Technology)

• Christoph Jokubonis (system administrator, University of Vienna)

12



12.4 Meetings
• Andreas: https://tuwien.zoom.us/j/98122298379

• Team: https://www.gotomeet.me/CorneliaMichlits/fair-data

References
[1] Technische Universität Wien. Fair Data Austria. [Online; accessed January 19th, 2021]. URL:

https://forschungsdaten.at/fda/, 2020.

[2] Git branching - branching workflows. [Online; accessed January 25th, 2021]. URL: https:
//git-scm.com/book/en/v2/Git-Branching-Branching-Workflows, 2021.

13


