from dartwrf.utils import append_file from dartwrf.exp_config import exp from dartwrf.server_config import cluster earth_radius_km = 6370 def read_namelist(filepath): """Read the DART namelist file into a dictionary. Args: filepath (str): Path to namelist file Returns: dict: namelist[section][parameter] = [[arg1, arg2,], [arg3, arg4]] """ d = dict() # read file into a list of strings with open(filepath, 'r') as f: lines = f.readlines() for line in lines: # skip whitespace line = line.strip() if line.startswith('#') or line.startswith('!'): continue # skip this line # skip empty lines if len(line) > 0: # namelist section if line.startswith('&'): section = line d[section] = dict() continue if line == '/': continue # skip end of namelist section line = line.strip().strip(',') try: # split line into variable name and value param, val = line.split('=') param = param.strip() param_data = [] except ValueError: # If the above split failed, # then there is additional data for the previous variable val = line # in this line, there is only param_data # param is still the one from previously val = val.strip().strip(',').split(',') # # ensure that we have list of strings # if isinstance(val, list) and len(val) == 1: # val = [val] # try: # # convert to float/int # val = [float(v) for v in val] # # convert to int when they are equal # val = [int(v) for v in val if int(v)==v] # except: # it is not a numeric value => string val = [v.strip() for v in val] param_data.append(val) # print('this iteration var, val ...', {param: param_data}) # add variable to dictionary d[section][param] = param_data return d def write_namelist_from_dict(d, filepath): """Write a DART namelist dictionary to a file. Args: d (dict): keys are namelist sections, values are dictionaries. these dictionaries contain keys (=parameters) and values (list type) every item in values is a line (list type) every line contains possibly multiple entries filepath (str): Path to namelist file """ with open(filepath, 'w') as f: for section in d: f.write(section+'\n') try: parameters = d[section].keys() # print(parameters, [len(p) for p in parameters]) max_width_of_parameter_name = max([len(p) for p in parameters]) width = max_width_of_parameter_name + 1 except: width = None for parameter in parameters: lines = d[section][parameter] # lines (list(list(str))): # outer list: one element per line in the text file # inner list: one element per value in that line # we should have a list here # if we instead have a single value, then make a list # because we assume that lines consists of multiple lines assert isinstance(lines, list) for i, line in enumerate(lines): assert isinstance(line, list) if line == []: line = ['',] first_entry = line[0] if isinstance(first_entry, str) and not first_entry.startswith('.'): try: float(first_entry) line = ', '.join(str(v) for v in line) except: # contains strings line = [entry.strip("'").strip('"') for entry in line] # remove pre-existing quotes line = ', '.join('"'+v+'"' for v in line) else: # numerical values line = ', '.join(str(v) for v in line) if i == 0: f.write(' '+parameter.ljust(width)+' = '+line+',\n') else: f.write(' '+' '*width+' '+line+',\n') f.write(' /\n\n') def _get_list_of_localizations(): """Compile the list of localizations for the DART namelist variables Vertical localization can be defined in section &location_nml of 'input.nml' using following namelist variables: special_vert_normalization_obs_types (list of str) special_vert_normalization_pressures (list of float) special_vert_normalization_heights (list of float) special_vert_normalization_levels (list of float) special_vert_normalization_scale_heights (list of float) To use scale height normalization, set obsdict['loc_vert_scaleheight'] = 0.5 To use height normalization, set obsdict['loc_vert_km'] = 3.0 Args: exp (Experiment): Experiment object Returns: l_obstypes (list of str): entries for `special_vert_normalization_obs_types` l_loc_horiz_rad (list of str): entries for `special_localization_cutoffs` l_loc_vert_km (list of str): entries for `special_vert_normalization_heights` l_loc_vert_scaleheight (list of str): entries for `special_vert_normalization_scale_heights` """ def to_radian_horizontal(cov_loc_horiz_km): cov_loc_radian = cov_loc_horiz_km / earth_radius_km return cov_loc_radian def to_vertical_normalization(cov_loc_vert_km, cov_loc_horiz_km): vert_norm_rad = earth_radius_km * cov_loc_vert_km / cov_loc_horiz_km * 1000 return vert_norm_rad l_obstypes = [] l_loc_horiz_rad = [] l_loc_vert_km = [] l_loc_vert_scaleheight = [] for obscfg in exp.observations: l_obstypes.append(obscfg["kind"]) loc_horiz_km = obscfg["loc_horiz_km"] if not loc_horiz_km >= 0: raise ValueError('Invalid value for `loc_horiz_km`, set loc_horiz_km >= 0 !') # compute horizontal localization loc_horiz_rad = to_radian_horizontal(loc_horiz_km) l_loc_horiz_rad.append(loc_horiz_rad) # compute vertical localization # do we have vertical localization? if not hasattr(obscfg, "loc_vert_km") and not hasattr(obscfg, "loc_vert_scaleheight"): l_loc_vert_km.append(-1) l_loc_vert_scaleheight.append(-1) # if not add dummy value # choose either localization by height or by scale height if hasattr(obscfg, "loc_vert_km") and hasattr(obscfg, "loc_vert_scaleheight"): raise ValueError("Observation config contains both loc_vert_km and loc_vert_scaleheight. Please choose one.") elif hasattr(obscfg, "loc_vert_km"): # localization by height loc_vert_km = obscfg["loc_vert_km"] vert_norm_hgt = to_vertical_normalization(loc_vert_km, loc_horiz_km) l_loc_vert_km.append(vert_norm_hgt) elif hasattr(obscfg, "loc_vert_scaleheight"): # localization by scale height loc_vert_scaleheight = obscfg["loc_vert_scaleheight"] # no conversion necessary, take the values as defined in obscfg l_loc_vert_scaleheight.append(loc_vert_scaleheight) # set the other (unused) list to a dummy value if len(l_loc_vert_km) > 0: l_loc_vert_scaleheight = [-1,] else: l_loc_vert_km = [-1,] return l_obstypes, l_loc_horiz_rad, l_loc_vert_km, l_loc_vert_scaleheight # def _fortran_format(l): # # do we have multiples entries? # # Caution: a string is iterable # if isinstance(l, list): # pass # else: # l = [l,] # # do we have strings as elements? # if isinstance(l[0], str): # return l # def _as_fortran_list(l): # """Convert parameter list # if l contains strings: # output: "arg1", "arg2", "arg3" # else # output 1,2,3 # """ # assert isinstance(l, list) # if isinstance(l[0], str): # # contains strings # l = ['"'+a+'"' for a in l] # add quotation marks def write_namelist(just_prior_values=False): """Write a DART namelist file ('input.nml') 1. Uses the default namelist (from the DART source code) 2. Calculates localization parameters from the experiment configuration 3. Overwrites other parameters as defined in the experiment configuration 4. Writes the namelist to the DART run directory Note: Vertical localization in pressure or levels is not implemented. Args: just_prior_values (bool, optional): If True, only compute prior values, not posterior. Defaults to False. Raises: ValueError: If both height and scale-height localization are requested Returns: None """ list_obstypes, list_loc_horiz_rad, list_loc_vert_km, list_loc_vert_scaleheight = _get_list_of_localizations() nml = read_namelist(cluster.dart_srcdir + "/input.nml") # make sure that observations defined in `exp.observations` are assimilated nml['&obs_kind_nml']['assimilate_these_obs_types'] = [list_obstypes] # dont compute posterior, just evaluate prior if just_prior_values: nml['&filter_nml']['compute_posterior'] = [['.false.']] nml['&filter_nml']['output_members'] = [['.false.']] nml['&filter_nml']['output_mean'] = [['.false.']] nml['&filter_nml']['output_sd'] = [['.false.']] nml['&obs_kind_nml']['assimilate_these_obs_types'] = [[]] nml['&obs_kind_nml']['evaluate_these_obs_types'] = [list_obstypes] # write localization variables nml['&assim_tools_nml']['special_localization_obs_types'] = [list_obstypes] nml['&assim_tools_nml']['special_localization_cutoffs'] = [list_loc_horiz_rad] nml['&location_nml']['special_vert_normalization_obs_types'] = [list_obstypes] nml['&location_nml']['special_vert_normalization_heights'] = [list_loc_vert_km] nml['&location_nml']['special_vert_normalization_scale_heights'] = [list_loc_vert_scaleheight] nml['&location_nml']['special_vert_normalization_levels'] = [[-1,]] nml['&location_nml']['special_vert_normalization_pressures'] = [[-1,]] # overwrite namelist parameters as defined in the experiment configuration for section, sdata in exp.dart_nml.items(): # if section is not in namelist, add it if section not in nml: nml[section] = {} for parameter, value in sdata.items(): if isinstance(value, list) and len(value) > 1: # it is a list if isinstance(value[0], list): pass # nothing to do, value is list(list()) else: value = [value] # value was a list of parameter values, but just one line else: value = [[value]] # value was a single entry # overwrite entry in each dictionary nml[section][parameter] = value # every entry in this list is one line # final checks # fail if horiz_dist_only == false but observations contain a satellite channel if nml['&location_nml']['horiz_dist_only'][0] == '.false.': for obscfg in exp.observations: if hasattr(obscfg, "sat_channel"): raise ValueError("Selected vertical localization, but observations contain satellite obs -> Not possible.") # write to file write_namelist_from_dict(nml, cluster.dart_rundir + "/input.nml") # append section for RTTOV rttov_nml = cluster.dartwrf_dir + "/templates/obs_def_rttov.VIS.nml" append_file(cluster.dart_rundir + "/input.nml", rttov_nml) # alternatively, we could do this in cfg.py or the template input.nml in DART's model/wrf/work folder return nml # in case we want to access namelist settings in python