From 9cf456714ee0bc7b28c5fb6daa753e488eca551d Mon Sep 17 00:00:00 2001
From: lkugler <lukas.kugler@gmail.com>
Date: Sat, 27 May 2023 11:37:19 +0200
Subject: [PATCH] docs

---
 dartwrf/obs/obsseq.py | 40 ++++++++++++++++++++++++----------------
 1 file changed, 24 insertions(+), 16 deletions(-)

diff --git a/dartwrf/obs/obsseq.py b/dartwrf/obs/obsseq.py
index 66c0777..4b22334 100755
--- a/dartwrf/obs/obsseq.py
+++ b/dartwrf/obs/obsseq.py
@@ -1,22 +1,30 @@
 """Read, modify and save DART obs_seq.out/obs_seq.final files in DART format.
 
 Examples:
-    $ from dartwrf.obs.obsseq import ObsSeq
-    $ obs = ObsSeq('path/to/obs_seq.final')
-
-    $ obs.df  # pandas.DataFrame with all observations (rows) 
-
-    $ obs.df['observations']  # observation values (np.array)
-    $ obs.df['truth']  # truth values (np.array)
-    $ obs.df['prior ensemble spread']  # spread of prior ensemble (np.array)
-    $ obs.df['variance']  # observation error variances (np.array)
-
-    $ obs.df.get_prior_Hx()  # H(x_prior) for all ensemble members (np.array)
-    $ obs.df.get_posterior_Hx()  # H(x_posterior) for all ensemble members (np.array)
-
-    $ obs.df.get_lon_lat()  # longitude and latitude of observations (pd.DataFrame)
-
-    $ obs.to_dart('path/to/obs_seq.final')  # write to file
+    >>> from dartwrf.obs.obsseq import ObsSeq
+    >>> osf = ObsSeq('path/to/obs_seq.final')
+    
+    pandas.DataFrame with all observations (rows) 
+    >>> osf.df
+        observations     truth  prior ensemble mean  posterior ensemble mean  ...  kind                                           metadata             time  variance
+    0        0.292800  0.289466             0.360284                 0.330799  ...   262  [ visir\n,    180.000000000000        45.00000...  (50400, 148864)    0.0009
+    1        0.292800  0.289466             0.398444                 0.380152  ...   262  [ visir\n,    180.000000000000        45.00000...  (50400, 148864)    0.0009
+    2        0.310016  0.289466             0.355061                 0.369988  ...   262  [ visir\n,    180.000000000000        45.00000...  (50400, 148864)    0.0009
+    3        0.297182  0.289466             0.305424                 0.302489  ...   262  [ visir\n,    180.000000000000        45.00000...  (50400, 148864)    0.0009
+    4        0.292800  0.293797             0.306238                 0.303252  ...   262  [ visir\n,    180.000000000000        45.00000...  (50400, 148864)    0.0009
+    ..            ...       ...                  ...                      ...  ...   ...                                                ...              ...       ...
+    956      0.762274  0.796486             0.664451                 0.833559  ...   262  [ visir\n,    180.000000000000        45.00000...  (50400, 148864)    0.0009
+    957      0.525743  0.500751             0.534391                 0.653267  ...   262  [ visir\n,    180.000000000000        45.00000...  (50400, 148864)    0.0009
+    958      0.341627  0.348115             0.405534                 0.447314  ...   262  [ visir\n,    180.000000000000        45.00000...  (50400, 148864)    0.0009
+    959      0.826649  0.835491             0.374459                 0.785951  ...   262  [ visir\n,    180.000000000000        45.00000...  (50400, 148864)    0.0009
+    960      0.320477  0.343154             0.303468                 0.325203  ...   262  [ visir\n,    180.000000000000        45.00000...  (50400, 148864)    0.0009
+
+    [961 rows x 93 columns]
+
+    >>> osf.df.get_prior_Hx()  # H(x_prior) for all ensemble members (np.array)
+    >>> osf.df.get_posterior_Hx()  # H(x_posterior) for all ensemble members (np.array)
+
+    >>> osf.to_dart('path/to/obs_seq.final')  # write to file
 
 Note:
     Can not create obs_seq from scratch, since it does not know which metadata is necessary for each observation type
-- 
GitLab