From 31c34397f28b96e5862bba57d33316dd12d60d3e Mon Sep 17 00:00:00 2001 From: lkugler <lukas.kugler@gmail.com> Date: Tue, 21 Feb 2023 18:58:21 +0100 Subject: [PATCH] docs --- analysis_only.py | 7 +-- docs/source/index.rst | 4 +- docs/source/tutorial1.ipynb | 122 +++++++++++++++++++++++------------- docs/source/tutorial2.ipynb | 85 ++++++++++++------------- docs/source/tutorial3.ipynb | 33 +++++----- 5 files changed, 139 insertions(+), 112 deletions(-) diff --git a/analysis_only.py b/analysis_only.py index c1ae8b9..27f8cf6 100755 --- a/analysis_only.py +++ b/analysis_only.py @@ -5,7 +5,6 @@ running the forecast model without assimilation import os, sys, shutil import datetime as dt -from dartwrf import utils from dartwrf.workflows import WorkFlows @@ -16,8 +15,6 @@ assim_time = prior_valid_time w = WorkFlows(exp_config='cfg.py', server_config='srvx1.py') -w.assimilate(assim_time, prior_init_time, prior_valid_time, prior_path_exp) +id = w.assimilate(assim_time, prior_init_time, prior_valid_time, prior_path_exp) - - -# id_sat = create_satimages(time, depends_on=id) +# w.create_satimages(time, depends_on=id) diff --git a/docs/source/index.rst b/docs/source/index.rst index ef7c001..703f525 100644 --- a/docs/source/index.rst +++ b/docs/source/index.rst @@ -1,7 +1,9 @@ Welcome to the DART-WRF documentation! ====================================== -DART-WRF is a python package to run an Ensemble Data Assimilation system using the data assimilation suite `DART <https://docs.dart.ucar.edu/en/latest/README.html>`_ and the weather research and forecast model `WRF <https://www2.mmm.ucar.edu/wrf/users/docs/docs_and_pubs.html>`_. +**DART-WRF** is a python package to run an Ensemble Data Assimilation system using the data assimilation suite `DART <https://docs.dart.ucar.edu/en/latest/README.html>`_ and the weather research and forecast model `WRF <https://www2.mmm.ucar.edu/wrf/users/docs/docs_and_pubs.html>`_. + +DART-WRF is available at `github.com/lkugler/DART-WRF <https://github.com/lkugler/DART-WRF>`. Installation ------------ diff --git a/docs/source/tutorial1.ipynb b/docs/source/tutorial1.ipynb index 256149a..018a319 100644 --- a/docs/source/tutorial1.ipynb +++ b/docs/source/tutorial1.ipynb @@ -7,36 +7,97 @@ "source": [ "# Tutorial 1: The assimilation step\n", "DART-WRF is a python package which automates many things like configuration, saving configuration and output, handling computing resources, etc.\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "id": "93d59d4d-c514-414e-81fa-4ff390290811", + "metadata": {}, + "source": [ + "### Configuring the experiment\n", + "Firstly, you need to configure the experiment in `config/cfg.py`.\n", "\n", - "**Goal**: Using a predefined configuration file, run an example of Data Assimilation.\n", + "Let's go through the most important settings:\n", "\n", - "**What you need to know**:\n", + "```python\n", + "exp = utils.Experiment()\n", + "exp.expname = \"test_newcode\"\n", + "exp.model_dx = 2000\n", + "exp.n_ens = 10\n", + "exp.update_vars = ['U', 'V', 'W', 'THM', 'PH', 'MU', 'QVAPOR', 'QCLOUD', 'QICE', 'PSFC']\n", + "exp.filter_kind = 1\n", + "exp.prior_inflation = 0\n", + "exp.post_inflation = 4\n", + "exp.sec = True\n", + "exp.cov_loc_vert_km_horiz_km = (3, 20)\n", + "```\n", + "In case you want to generate new observations (observing system simulations experiment, OSSE), set `sxp.use_existing_obsseq = False`.\n", "\n", - "- There is a config/ folder with experimental configuration in config/cfg.py.\n", - "- There is an example script analysis_only.py which handles the DA programs.\n", + "`exp.nature` defines where observations will be drawn from, e.g.:\n", + "```python\n", + "exp.nature = '/mnt/jetfs/scratch/lkugler/data/sim_archive/exp_v1.18_P1_nature/2008-07-30_06:00/1'\n", + "```\n", + "\n", + "`exp.input_profile` is used, if you create initial conditions from a so called wrf_profile (see WRF guide).\n", + "```python\n", + "exp.input_profile = '/mnt/jetfs/home/lkugler/data/initial_profiles/wrf/ens/2022-03-31/raso.fc.<iens>.wrfprof'\n", + "```\n", + "\n", + "Vertical localization is tricky to set.\n", + "For horizontal localization half-width of 20 km and 3 km vertically, set\n", + "`exp.cov_loc_vert_km_horiz_km = (3, 20)`\n", + "You can also set it to zero for no vertical localization.\n", + "\n", + "\n", + "Set you desired observations like this. \n", + "```python\n", + "t = dict(plotname='Temperature', plotunits='[K]',\n", + " kind='RADIOSONDE_TEMPERATURE', \n", + " n_obs=1, obs_locations=[(45., 0.)],\n", + " error_generate=0.2, error_assimilate=0.2,\n", + " heights=[1000,], # range(1000, 17001, 2000),\n", + " cov_loc_radius_km=50)\n", "\n", - "**To-Do**:\n", + "exp.observations = [t,]\n", + "```\n", "\n", - "- Go into the DART-WRF folder that we created and installed last time.\n", - "- Copy the configuration file from `` to your config/ folder.\n" + "To generate a grid of observations, use\n", + "```python\n", + "vis = dict(plotname='VIS 0.6µm', plotunits='[1]',\n", + " kind='MSG_4_SEVIRI_BDRF', sat_channel=1, \n", + " n_obs=961, obs_locations='square_array_evenly_on_grid',\n", + " error_generate=0.03, error_assimilate=0.03,\n", + " cov_loc_radius_km=20)\n", + "```\n", + "But caution, n_obs should only be one of the following:\n", + "- 22500 for 2km observation density/resolution \n", + "- 5776 for 4km; \n", + "- 961 for 10km; \n", + "- 256 for 20km; \n", + "- 121 for 30km\n", + "For vertically resolved data, like radar, n_obs is the number of observations at each observation height level." ] }, { "cell_type": "markdown", - "id": "24b23d8c-29e6-484c-ad1f-f2bc07e66c66", + "id": "16bd3521-f98f-4c4f-8019-31029fd678ae", "metadata": {}, "source": [ + "### Configuring the hardware\n", + "In case you use a cluster which is not supported, configure paths inside `config/clusters.py`.\n", + "\n", + "\n", + "\n", + "\n", + "### Assimilate observations with a prior given by previous forecasts\n", "We start by importing some modules:\n", "```python\n", - "import os, sys, shutil\n", "import datetime as dt\n", - "\n", - "from dartwrf import utils\n", - "from config.cfg import exp\n", - "from config.clusters import cluster\n", + "from dartwrf.workflows import WorkFlows\n", "```\n", "\n", - "Then, we set the directory paths and times of the prior ensemble forecasts:\n", + "To assimilate observations at dt.datetime `time` we set the directory paths and times of the prior ensemble forecasts:\n", "\n", "```python\n", "prior_path_exp = '/mnt/jetfs/scratch/lkugler/data/sim_archive/exp_v1.19_P3_wbub7_noDA'\n", @@ -47,43 +108,14 @@ "\n", "Finally, we run the data assimilation by calling\n", "```python\n", - "cluster.setup()\n", - "\n", - "os.system(\n", - " cluster.python+' '+cluster.scripts_rundir+'/assim_synth_obs.py '\n", - " +assim_time.strftime('%Y-%m-%d_%H:%M ')\n", - " +prior_init_time.strftime('%Y-%m-%d_%H:%M ')\n", - " +prior_valid_time.strftime('%Y-%m-%d_%H:%M ')\n", - " +prior_path_exp\n", - " )\n", + "w = WorkFlows(exp_config='cfg.py', server_config='srvx1.py')\n", "\n", - "create_satimages(time)\n", + "w.assimilate(assim_time, prior_init_time, prior_valid_time, prior_path_exp)\n", "```\n", "\n", "Congratulations! You're done!" ] }, - { - "cell_type": "markdown", - "id": "31b23faf-0986-407f-b07f-d635a71ec2c6", - "metadata": {}, - "source": [ - "---\n", - "#### Queueing systems\n", - "Note: In case you have to use a queueing system, use the builtin job scheduler, e.g.:\n", - "```python\n", - "id = cluster.create_job(\"Assim\", \n", - " cfg_update={\"ntasks\": \"12\", \"time\": \"60\", \"mem\": \"200G\", \n", - " \"ntasks-per-node\": \"12\", \"ntasks-per-core\": \"2\"}\n", - " ).run(cluster.python+' '+cluster.scripts_rundir+'/assim_synth_obs.py '\n", - " +assim_time.strftime('%Y-%m-%d_%H:%M ')\n", - " +prior_init_time.strftime('%Y-%m-%d_%H:%M ')\n", - " +prior_valid_time.strftime('%Y-%m-%d_%H:%M ')\n", - " +prior_path_exp, depends_on=[depends_on])\n", - "```\n", - "where `depends_on` is either `None` or `int` (a previous job's SLURM id)." - ] - }, { "cell_type": "code", "execution_count": null, diff --git a/docs/source/tutorial2.ipynb b/docs/source/tutorial2.ipynb index 79f0df0..df58b78 100644 --- a/docs/source/tutorial2.ipynb +++ b/docs/source/tutorial2.ipynb @@ -7,36 +7,24 @@ "tags": [] }, "source": [ - "# Tutorial 2: Cycled experiment\n", + "# Tutorial 2: Forecast after DA\n", "\n", "\n", "**Goal**: To run a cycled data assimilation experiment.\n", "[`cycled_exp.py`](https://github.com/lkugler/DART-WRF/blob/master/generate_free.py) contains an example which will be explained here:\n", "\n", - "#### Configure your experiment\n", - "We start again by configuring `config/cfg.py`.\n", + "Now there are two options:\n", + "1) To start a forecast from an existing forecast, i.e. from WRF restart files\n", + "2) To start a forecast from defined thermodynamic profiles, i.e. from a `wrf_profile`\n", "\n", - "Then we write a script (or edit an existing one) in the main directory `DART-WRF/`.\n", - "`nano new_experiment.py`\n", "\n", - "---\n", - "Any script needs to import some modules:\n", + "### Restart a forecast\n", + "To run a forecast from initial conditions of a previous forecasts, we import these modules\n", "```python\n", - "import os, sys, shutil\n", "import datetime as dt\n", - "\n", - "from dartwrf import utils\n", - "from config.cfg import exp\n", - "from config.clusters import cluster\n", + "from dartwrf.workflows import WorkFlows\n", "```\n", "\n", - "---\n", - "Now there are two options:\n", - "- To start a forecast from an existing forecast, i.e. from WRF restart files\n", - "- To start a forecast from defined thermodynamic profiles, i.e. from a `wrf_profile`\n", - "\n", - "\n", - "#### Run a forecast from initial conditions of a previous forecasts\n", "Let's say you want to run a forecast starting at 9 UTC until 12 UTC.\n", "Initial conditions shall be taken from a previous experiment in `/user/test/data/sim_archive/exp_abc` which was initialized at 6 UTC and there are WRF restart files for 9 UTC.\n", "Then the code would be\n", @@ -46,50 +34,59 @@ "prior_init_time = dt.datetime(2008,7,30,6)\n", "prior_valid_time = dt.datetime(2008,7,30,9)\n", "\n", - "cluster.setup()\n", + "w = WorkFlows(exp_config='cfg.py', server_config='srvx1.py')\n", "\n", "begin = dt.datetime(2008, 7, 30, 9)\n", "end = dt.datetime(2008, 7, 30, 12)\n", "\n", - "prepare_WRFrundir(begin)\n", + "w.prepare_WRFrundir(begin)\n", "\n", - "prepare_IC_from_prior(prior_path_exp, prior_init_time, prior_valid_time)\n", + "w.prepare_IC_from_prior(prior_path_exp, prior_init_time, prior_valid_time)\n", "\n", - "run_ENS(begin=begin, # start integration from here\n", - " end=end, # integrate until here\n", - " output_restart_interval=9999, # do not write WRF restart files\n", - " )\n", + "w.run_ENS(begin=begin, # start integration from here\n", + " end=end, # integrate until here\n", + " output_restart_interval=9999, # do not write WRF restart files\n", + " )\n", "```\n", "Note that we use predefined workflow functions like `run_ENS`.\n", "\n", "\n", - "#### Assimilate observations with a prior given by previous forecasts\n", - "To assimilate observations at dt.datetime `time` use this command:\n", + "### Forecast run after Data Assimilation\n", + "In order to continue after assimilation you need the posterior = prior (1) + increments (2)\n", "\n", + "1. Set posterior = prior\n", "```python\n", - "prior_path_exp = '/user/test/data/sim_archive/exp_abc'\n", - "prior_init_time = dt.datetime(2008,7,30,6)\n", - "prior_valid_time = dt.datetime(2008,7,30,9)\n", - "time = dt.datetime(2008,7,30,9) # time of assimilation\n", - "\n", - "assimilate(time, prior_init_time, prior_valid_time, prior_path_exp)\n", + "id = w.prepare_IC_from_prior(prior_path_exp, prior_init_time, prior_valid_time, depends_on=id)\n", "```\n", "\n", + "2) Update posterior with increments from assimilation\n", + "After this, the wrfrst files are updated with assimilation increments from DART output and copied to the WRF's run directories so you can continue to run the forecast ensemble.\n", + "```python\n", + "id = w.update_IC_from_DA(time, depends_on=id)\n", + "```\n", "\n", - "#### Update initial conditions from Data Assimilation\n", - "In order to continue after assimilation you need the posterior = prior (1) + increments (2)\n", - "\n", - "1. Set prior with this function:\n", - "\n", - "`id = prepare_IC_from_prior(prior_path_exp, prior_init_time, prior_valid_time, depends_on=id)`\n", + "3) Define how long you want to run the forecast and when you want WRF restart files. Since they take a lot of space, we want as few as possible.\n", "\n", - "where path is `str`, times are `dt.datetime`.\n", + "```python\n", + "timedelta_integrate = dt.timedelta(hours=5)\n", + "output_restart_interval = 9999 # any value larger than the forecast duration\n", + "```\n", "\n", - "2. To update the model state with assimilation increments, you need to update the WRF restart files by running\n", + "If you run DA in cycles of 15 minutes, it will be\n", + "```python\n", + "timedelta_integrate = dt.timedelta(hours=5)\n", + "timedelta_btw_assim = dt.timedelta(minutes=15)\n", + "output_restart_interval = timedelta_btw_assim.total_seconds()/60\n", + "```\n", "\n", - "`id = update_IC_from_DA(time, depends_on=id)`\n", "\n", - "After this, the wrfrst files are updated with assimilation increments (filter_restart) and copied to the WRF's run directories so you can continue to run the ENS after assimilation using function `run_ENS()`." + "3) Run WRF ensemble\n", + "```python\n", + "id = w.run_ENS(begin=time, # start integration from here\n", + " end=time + timedelta_integrate, # integrate until here\n", + " output_restart_interval=output_restart_interval,\n", + " depends_on=id)\n", + "```\n" ] }, { diff --git a/docs/source/tutorial3.ipynb b/docs/source/tutorial3.ipynb index 9769038..d3018ab 100644 --- a/docs/source/tutorial3.ipynb +++ b/docs/source/tutorial3.ipynb @@ -4,17 +4,16 @@ "cell_type": "markdown", "id": "fd5c3005-f237-4495-9185-2d4d474cafd5", "metadata": { - "jp-MarkdownHeadingCollapsed": true, "tags": [] }, "source": [ - "# Tutorial 3: Cycled experiment\n", + "# Tutorial 3: Cycle forecast and assimilation\n", "\n", "\n", "**Goal**: To run a cycled data assimilation experiment.\n", "[`cycled_exp.py`](https://github.com/lkugler/DART-WRF/blob/master/generate_free.py) contains an example which will be explained here:\n", "\n", - "After configuring your experiment the loop looks like\n", + "For example, your experiment can look like this\n", "\n", "```python\n", "prior_path_exp = '/jetfs/home/lkugler/data/sim_archive/exp_v1.19_P2_noDA'\n", @@ -24,8 +23,8 @@ "last_assim_time = dt.datetime(2008, 7, 30, 14)\n", "forecast_until = dt.datetime(2008, 7, 30, 14, 15)\n", "\n", - "prepare_WRFrundir(init_time)\n", - "id = run_ideal(depends_on=id)\n", + "w.prepare_WRFrundir(init_time)\n", + "id = w.run_ideal(depends_on=id)\n", "\n", "prior_init_time = init_time\n", "prior_valid_time = time\n", @@ -37,13 +36,13 @@ " # i.e. 13z as a prior to assimilate 12z observations\n", " prior_valid_time = time\n", "\n", - " id = assimilate(time, prior_init_time, prior_valid_time, prior_path_exp, depends_on=id)\n", + " id = w.assimilate(time, prior_init_time, prior_valid_time, prior_path_exp, depends_on=id)\n", "\n", " # 1) Set posterior = prior\n", - " id = prepare_IC_from_prior(prior_path_exp, prior_init_time, prior_valid_time, depends_on=id)\n", + " id = w.prepare_IC_from_prior(prior_path_exp, prior_init_time, prior_valid_time, depends_on=id)\n", "\n", " # 2) Update posterior += updates from assimilation\n", - " id = update_IC_from_DA(time, depends_on=id)\n", + " id = w.update_IC_from_DA(time, depends_on=id)\n", "\n", " # How long shall we integrate?\n", " timedelta_integrate = timedelta_btw_assim\n", @@ -53,15 +52,15 @@ " output_restart_interval = 9999 # no restart file after last assim\n", "\n", " # 3) Run WRF ensemble\n", - " id = run_ENS(begin=time, # start integration from here\n", - " end=time + timedelta_integrate, # integrate until here\n", - " output_restart_interval=output_restart_interval,\n", - " depends_on=id)\n", + " id = w.run_ENS(begin=time, # start integration from here\n", + " end=time + timedelta_integrate, # integrate until here\n", + " output_restart_interval=output_restart_interval,\n", + " depends_on=id)\n", "\n", " # as we have WRF output, we can use own exp path as prior\n", " prior_path_exp = cluster.archivedir \n", "\n", - " id_sat = create_satimages(time, depends_on=id)\n", + " id_sat = w.create_satimages(time, depends_on=id)\n", "\n", " # increment time\n", " time += timedelta_btw_assim\n", @@ -69,13 +68,13 @@ " # update time variables\n", " prior_init_time = time - timedelta_btw_assim\n", " \n", - "verify_sat(id_sat)\n", - "verify_wrf(id)\n", - "verify_fast(id)\n", + "w.verify_sat(id_sat)\n", + "w.verify_wrf(id)\n", + "w.verify_fast(id)\n", "```\n", "\n", "#### Job scheduling status\n", - "The script submits jobs into the SLURM queue with dependencies so that SLURM starts the jobs itself as soon as resources are available. Most jobs need only a few cores, but model integration is done across many nodes:\n", + "If you work on a server with a queueing system, the script submits jobs into the SLURM queue with dependencies so that SLURM starts the jobs itself as soon as resources are available. Most jobs need only a few cores, but model integration is done across many nodes. You can look at the status with\n", "```bash\n", "$ squeue -u `whoami` --sort=i\n", " JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)\n", -- GitLab