diff --git a/pangeo/load_data.ipynb b/pangeo/load_data.ipynb
deleted file mode 100644
index 0375e485d6aec01e3f0f257f2443cd787655e36b..0000000000000000000000000000000000000000
--- a/pangeo/load_data.ipynb
+++ /dev/null
@@ -1,252 +0,0 @@
-{
- "cells": [
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "# How to access and load TRACMIP data from the Pangeo cloud\n",
-    "\n",
-    "1. \"load\" the Tracmip collection \n",
-    "2. get some basic info on Tracmip collection\n",
-    "3. load monthly mean precip for the aquaControl simulation\n",
-    "4. plot meridional zonal-mean time-mean profile for one model"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 1,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "from matplotlib import pyplot as plt\n",
-    "import numpy as np\n",
-    "import pandas as pd\n",
-    "import xarray as xr\n",
-    "import zarr\n",
-    "import gcsfs\n",
-    "\n",
-    "xr.set_options(display_style='html')\n",
-    "%matplotlib inline\n",
-    "%config InlineBackend.figure_format = 'retina' "
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "df = pd.read_csv('https://storage.googleapis.com/cmip6/tracmip.csv')\n",
-    "df.head()"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 3,
-   "metadata": {},
-   "outputs": [
-    {
-     "ename": "NameError",
-     "evalue": "name 'df' is not defined",
-     "output_type": "error",
-     "traceback": [
-      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
-      "\u001b[0;31mNameError\u001b[0m                                 Traceback (most recent call last)",
-      "\u001b[0;32m<ipython-input-3-36bdea2f3883>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mdf_pr\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdf\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mquery\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"frequency == 'Amon' & variable == 'pr' & experiment == 'aquaControl'\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
-      "\u001b[0;31mNameError\u001b[0m: name 'df' is not defined"
-     ]
-    }
-   ],
-   "source": [
-    "df_pr = df.query(\"frequency == 'Amon' & variable == 'pr' & experiment == 'aquaControl'\")"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "## 1. \"Load\" Tracmip collection"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "from intake import open_catalog\n",
-    "\n",
-    "# get whole pangeo catalogue\n",
-    "cat = open_catalog(\"https://raw.githubusercontent.com/pangeo-data/pangeo-datastore/master/intake-catalogs/climate.yaml\")\n",
-    "# select tracmip collection\n",
-    "col = cat.tracmip()"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "## 2. Basic info on the collection"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "print collection to screen: this shows that there is 3 output frequencies (monthly-mean, daily-mean, 3-hr snapshots), \n",
-    "11 experiments (6 are due to the CALTECH model with changed atmosperic opacity), and 47 variables"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "col"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "print starting and end portion of the collection"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "col.df.head()"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "col.df.tail()"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "print some further information on the collection (i.e., dataframe)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "col.df.columns.unique()"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "col.df.model.unique()\n"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "col.df.experiment.unique()"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "## 3. Now actually load the monthly-mean precip data for the aquaControl experiment, use a dictionary for this"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "note: the option \"zarr_kwargs={'consolidated': True}\" for to_dataset_dicts does not seem necessary but is still included here"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "ds_dict = col.search(frequency=\"Amon\", experiment=\"aquaControl\",\n",
-    "                     variable=\"pr\").to_dataset_dict(zarr_kwargs={'consolidated': True})"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "## 4. Plot zonal-mean time-mean precip for last 20 years for CNRM-AM5 model"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "import matplotlib.pyplot as plt"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "ds_dict['CNRM-AM5.aquaControl.Amon']['pr']"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "plt.plot(ds_dict['CNRM-AM5.aquaControl.Amon'].lat, \n",
-    "         ds_dict['CNRM-AM5.aquaControl.Amon']['pr'].isel(time=slice(120,360)).mean(['lon', 'time'])*86400)\n",
-    "plt.xlabel('degree latitude')\n",
-    "plt.ylabel('precipitation (mm/day)')\n",
-    "plt.title('CNRM-AM5.aquaControl.Amon')"
-   ]
-  }
- ],
- "metadata": {
-  "kernelspec": {
-   "display_name": "Python 3",
-   "language": "python",
-   "name": "python3"
-  },
-  "language_info": {
-   "codemirror_mode": {
-    "name": "ipython",
-    "version": 3
-   },
-   "file_extension": ".py",
-   "mimetype": "text/x-python",
-   "name": "python",
-   "nbconvert_exporter": "python",
-   "pygments_lexer": "ipython3",
-   "version": "3.8.5"
-  }
- },
- "nbformat": 4,
- "nbformat_minor": 4
-}
diff --git a/pangeo/load_data_from_pangeo.ipynb b/pangeo/load_data_from_pangeo.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..8800d4ab011bdc1daa5881c66ff2a104ee0deb30
--- /dev/null
+++ b/pangeo/load_data_from_pangeo.ipynb
@@ -0,0 +1,2105 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# How to access and load TRACMIP data from the Pangeo cloud\n",
+    "\n",
+    "This notebook presents two approaches of accessing TRACMIP data in the Pangeo cloud from your own computer. Both appraoches access zarr-based data in the Google Cloud and in the example provided here result in a dictionary of monthly-mean precipitation in the aquaControl from all TRACMIP models.\n",
+    "\n",
+    "As a proof of concept, the notebook closes with plotting the time-averaged precipitation for one of the TRACMIP models using the dictionaries generated by both approaches. Naturally, and in fact naecessarily, the plot is the same for both dictionaries."
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Approach 1 via tracmip.csv\n",
+    "\n",
+    "Based on \"Way 2: Do the same thing with the Google Cloud Zarr-based data (still from your laptop)\" described in Ryan Abernathey's blog post \"CMIP6 in the Cloud Five Ways\", https://medium.com/pangeo/cmip6-in-the-cloud-five-ways-96b177abe396"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "import numpy as np\n",
+    "import pandas as pd\n",
+    "import xarray as xr\n",
+    "import zarr\n",
+    "import gcsfs"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Browse Catalog: The data catatalog is stored as a CSV file. Here we read it with Pandas."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<style scoped>\n",
+       "    .dataframe tbody tr th:only-of-type {\n",
+       "        vertical-align: middle;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe tbody tr th {\n",
+       "        vertical-align: top;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe thead th {\n",
+       "        text-align: right;\n",
+       "    }\n",
+       "</style>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>frequency</th>\n",
+       "      <th>experiment</th>\n",
+       "      <th>model</th>\n",
+       "      <th>variable</th>\n",
+       "      <th>version</th>\n",
+       "      <th>source</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>0</th>\n",
+       "      <td>A3hr</td>\n",
+       "      <td>aqua4xCO2</td>\n",
+       "      <td>AM21</td>\n",
+       "      <td>hur</td>\n",
+       "      <td>v20190116</td>\n",
+       "      <td>gs://cmip6/tracmip/A3hr/aqua4xCO2/AM21/hur/v20...</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>1</th>\n",
+       "      <td>A3hr</td>\n",
+       "      <td>aqua4xCO2</td>\n",
+       "      <td>AM21</td>\n",
+       "      <td>hus</td>\n",
+       "      <td>v20190116</td>\n",
+       "      <td>gs://cmip6/tracmip/A3hr/aqua4xCO2/AM21/hus/v20...</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2</th>\n",
+       "      <td>A3hr</td>\n",
+       "      <td>aqua4xCO2</td>\n",
+       "      <td>AM21</td>\n",
+       "      <td>ta</td>\n",
+       "      <td>v20190116</td>\n",
+       "      <td>gs://cmip6/tracmip/A3hr/aqua4xCO2/AM21/ta/v201...</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>3</th>\n",
+       "      <td>A3hr</td>\n",
+       "      <td>aqua4xCO2</td>\n",
+       "      <td>AM21</td>\n",
+       "      <td>ua</td>\n",
+       "      <td>v20190116</td>\n",
+       "      <td>gs://cmip6/tracmip/A3hr/aqua4xCO2/AM21/ua/v201...</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>4</th>\n",
+       "      <td>A3hr</td>\n",
+       "      <td>aqua4xCO2</td>\n",
+       "      <td>AM21</td>\n",
+       "      <td>va</td>\n",
+       "      <td>v20190116</td>\n",
+       "      <td>gs://cmip6/tracmip/A3hr/aqua4xCO2/AM21/va/v201...</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "  frequency experiment model variable    version  \\\n",
+       "0      A3hr  aqua4xCO2  AM21      hur  v20190116   \n",
+       "1      A3hr  aqua4xCO2  AM21      hus  v20190116   \n",
+       "2      A3hr  aqua4xCO2  AM21       ta  v20190116   \n",
+       "3      A3hr  aqua4xCO2  AM21       ua  v20190116   \n",
+       "4      A3hr  aqua4xCO2  AM21       va  v20190116   \n",
+       "\n",
+       "                                              source  \n",
+       "0  gs://cmip6/tracmip/A3hr/aqua4xCO2/AM21/hur/v20...  \n",
+       "1  gs://cmip6/tracmip/A3hr/aqua4xCO2/AM21/hus/v20...  \n",
+       "2  gs://cmip6/tracmip/A3hr/aqua4xCO2/AM21/ta/v201...  \n",
+       "3  gs://cmip6/tracmip/A3hr/aqua4xCO2/AM21/ua/v201...  \n",
+       "4  gs://cmip6/tracmip/A3hr/aqua4xCO2/AM21/va/v201...  "
+      ]
+     },
+     "execution_count": 2,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "df = pd.read_csv('https://storage.googleapis.com/cmip6/tracmip.csv')\n",
+    "df.head()"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "For the purpose of this example, we filter the data to find monthly precipitation for the aquaControl simulation."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "df_pr = df.query(\"frequency == 'Amon' & variable == 'pr' & experiment == 'aquaControl'\")"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "We check the content of the dataframe. As desired it contains monthly precipitation for the 14 TRACMIP models. The entries in the source column point to the data location in the Google Cloud and are needed to read the data."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 4,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<style scoped>\n",
+       "    .dataframe tbody tr th:only-of-type {\n",
+       "        vertical-align: middle;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe tbody tr th {\n",
+       "        vertical-align: top;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe thead th {\n",
+       "        text-align: right;\n",
+       "    }\n",
+       "</style>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>frequency</th>\n",
+       "      <th>experiment</th>\n",
+       "      <th>model</th>\n",
+       "      <th>variable</th>\n",
+       "      <th>version</th>\n",
+       "      <th>source</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>4844</th>\n",
+       "      <td>Amon</td>\n",
+       "      <td>aquaControl</td>\n",
+       "      <td>AM21</td>\n",
+       "      <td>pr</td>\n",
+       "      <td>v20190116</td>\n",
+       "      <td>gs://cmip6/tracmip/Amon/aquaControl/AM21/pr/v2...</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>4879</th>\n",
+       "      <td>Amon</td>\n",
+       "      <td>aquaControl</td>\n",
+       "      <td>CALTECH</td>\n",
+       "      <td>pr</td>\n",
+       "      <td>v20181025</td>\n",
+       "      <td>gs://cmip6/tracmip/Amon/aquaControl/CALTECH/pr...</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>4913</th>\n",
+       "      <td>Amon</td>\n",
+       "      <td>aquaControl</td>\n",
+       "      <td>CAM3</td>\n",
+       "      <td>pr</td>\n",
+       "      <td>v20190129</td>\n",
+       "      <td>gs://cmip6/tracmip/Amon/aquaControl/CAM3/pr/v2...</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>4953</th>\n",
+       "      <td>Amon</td>\n",
+       "      <td>aquaControl</td>\n",
+       "      <td>CAM4</td>\n",
+       "      <td>pr</td>\n",
+       "      <td>v20190409</td>\n",
+       "      <td>gs://cmip6/tracmip/Amon/aquaControl/CAM4/pr/v2...</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>4996</th>\n",
+       "      <td>Amon</td>\n",
+       "      <td>aquaControl</td>\n",
+       "      <td>CAM5Nor</td>\n",
+       "      <td>pr</td>\n",
+       "      <td>v20190305</td>\n",
+       "      <td>gs://cmip6/tracmip/Amon/aquaControl/CAM5Nor/pr...</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>5032</th>\n",
+       "      <td>Amon</td>\n",
+       "      <td>aquaControl</td>\n",
+       "      <td>CNRM-AM5</td>\n",
+       "      <td>pr</td>\n",
+       "      <td>v20180423</td>\n",
+       "      <td>gs://cmip6/tracmip/Amon/aquaControl/CNRM-AM5/p...</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>5067</th>\n",
+       "      <td>Amon</td>\n",
+       "      <td>aquaControl</td>\n",
+       "      <td>ECHAM61</td>\n",
+       "      <td>pr</td>\n",
+       "      <td>v20180423</td>\n",
+       "      <td>gs://cmip6/tracmip/Amon/aquaControl/ECHAM61/pr...</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>5110</th>\n",
+       "      <td>Amon</td>\n",
+       "      <td>aquaControl</td>\n",
+       "      <td>ECHAM63</td>\n",
+       "      <td>pr</td>\n",
+       "      <td>v20190129</td>\n",
+       "      <td>gs://cmip6/tracmip/Amon/aquaControl/ECHAM63/pr...</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>5153</th>\n",
+       "      <td>Amon</td>\n",
+       "      <td>aquaControl</td>\n",
+       "      <td>GISS-ModelE2</td>\n",
+       "      <td>pr</td>\n",
+       "      <td>v20190114</td>\n",
+       "      <td>gs://cmip6/tracmip/Amon/aquaControl/GISS-Model...</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>5199</th>\n",
+       "      <td>Amon</td>\n",
+       "      <td>aquaControl</td>\n",
+       "      <td>LMDZ5A</td>\n",
+       "      <td>pr</td>\n",
+       "      <td>v20190114</td>\n",
+       "      <td>gs://cmip6/tracmip/Amon/aquaControl/LMDZ5A/pr/...</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>5242</th>\n",
+       "      <td>Amon</td>\n",
+       "      <td>aquaControl</td>\n",
+       "      <td>MIROC5</td>\n",
+       "      <td>pr</td>\n",
+       "      <td>v20181025</td>\n",
+       "      <td>gs://cmip6/tracmip/Amon/aquaControl/MIROC5/pr/...</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>5284</th>\n",
+       "      <td>Amon</td>\n",
+       "      <td>aquaControl</td>\n",
+       "      <td>MPAS</td>\n",
+       "      <td>pr</td>\n",
+       "      <td>v20190131</td>\n",
+       "      <td>gs://cmip6/tracmip/Amon/aquaControl/MPAS/pr/v2...</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>5324</th>\n",
+       "      <td>Amon</td>\n",
+       "      <td>aquaControl</td>\n",
+       "      <td>MetUM-CTL</td>\n",
+       "      <td>pr</td>\n",
+       "      <td>v20180423</td>\n",
+       "      <td>gs://cmip6/tracmip/Amon/aquaControl/MetUM-CTL/...</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>5365</th>\n",
+       "      <td>Amon</td>\n",
+       "      <td>aquaControl</td>\n",
+       "      <td>MetUM-ENT</td>\n",
+       "      <td>pr</td>\n",
+       "      <td>v20180423</td>\n",
+       "      <td>gs://cmip6/tracmip/Amon/aquaControl/MetUM-ENT/...</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "     frequency   experiment         model variable    version  \\\n",
+       "4844      Amon  aquaControl          AM21       pr  v20190116   \n",
+       "4879      Amon  aquaControl       CALTECH       pr  v20181025   \n",
+       "4913      Amon  aquaControl          CAM3       pr  v20190129   \n",
+       "4953      Amon  aquaControl          CAM4       pr  v20190409   \n",
+       "4996      Amon  aquaControl       CAM5Nor       pr  v20190305   \n",
+       "5032      Amon  aquaControl      CNRM-AM5       pr  v20180423   \n",
+       "5067      Amon  aquaControl       ECHAM61       pr  v20180423   \n",
+       "5110      Amon  aquaControl       ECHAM63       pr  v20190129   \n",
+       "5153      Amon  aquaControl  GISS-ModelE2       pr  v20190114   \n",
+       "5199      Amon  aquaControl        LMDZ5A       pr  v20190114   \n",
+       "5242      Amon  aquaControl        MIROC5       pr  v20181025   \n",
+       "5284      Amon  aquaControl          MPAS       pr  v20190131   \n",
+       "5324      Amon  aquaControl     MetUM-CTL       pr  v20180423   \n",
+       "5365      Amon  aquaControl     MetUM-ENT       pr  v20180423   \n",
+       "\n",
+       "                                                 source  \n",
+       "4844  gs://cmip6/tracmip/Amon/aquaControl/AM21/pr/v2...  \n",
+       "4879  gs://cmip6/tracmip/Amon/aquaControl/CALTECH/pr...  \n",
+       "4913  gs://cmip6/tracmip/Amon/aquaControl/CAM3/pr/v2...  \n",
+       "4953  gs://cmip6/tracmip/Amon/aquaControl/CAM4/pr/v2...  \n",
+       "4996  gs://cmip6/tracmip/Amon/aquaControl/CAM5Nor/pr...  \n",
+       "5032  gs://cmip6/tracmip/Amon/aquaControl/CNRM-AM5/p...  \n",
+       "5067  gs://cmip6/tracmip/Amon/aquaControl/ECHAM61/pr...  \n",
+       "5110  gs://cmip6/tracmip/Amon/aquaControl/ECHAM63/pr...  \n",
+       "5153  gs://cmip6/tracmip/Amon/aquaControl/GISS-Model...  \n",
+       "5199  gs://cmip6/tracmip/Amon/aquaControl/LMDZ5A/pr/...  \n",
+       "5242  gs://cmip6/tracmip/Amon/aquaControl/MIROC5/pr/...  \n",
+       "5284  gs://cmip6/tracmip/Amon/aquaControl/MPAS/pr/v2...  \n",
+       "5324  gs://cmip6/tracmip/Amon/aquaControl/MetUM-CTL/...  \n",
+       "5365  gs://cmip6/tracmip/Amon/aquaControl/MetUM-ENT/...  "
+      ]
+     },
+     "execution_count": 4,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "df_pr"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "We are now going to read the data into a dictionary of xarray datasets."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 5,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# this only needs to be created once\n",
+    "gcs = gcsfs.GCSFileSystem(token='anon')\n",
+    "\n",
+    "# initialize an empty dictionary\n",
+    "ds_dict1=dict()"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "To this end, we loop over the source values to read the data of the individual models and to fill the dictionary. \n",
+    "As for the dictionary keys we use the model names."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 6,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "for zstore in df_pr.source.values:\n",
+    "    mapper = gcs.get_mapper(zstore)\n",
+    "    ds = xr.open_zarr(mapper, consolidated=True)\n",
+    "    ds_dict1[ds.attrs['model_id']] = ds"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "For the sake of demonstration, we print the dictionary content for the ECHAM61 model. "
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 7,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<div><svg style=\"position: absolute; width: 0; height: 0; overflow: hidden\">\n",
+       "<defs>\n",
+       "<symbol id=\"icon-database\" viewBox=\"0 0 32 32\">\n",
+       "<title>Show/Hide data repr</title>\n",
+       "<path d=\"M16 0c-8.837 0-16 2.239-16 5v4c0 2.761 7.163 5 16 5s16-2.239 16-5v-4c0-2.761-7.163-5-16-5z\"></path>\n",
+       "<path d=\"M16 17c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
+       "<path d=\"M16 26c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
+       "</symbol>\n",
+       "<symbol id=\"icon-file-text2\" viewBox=\"0 0 32 32\">\n",
+       "<title>Show/Hide attributes</title>\n",
+       "<path d=\"M28.681 7.159c-0.694-0.947-1.662-2.053-2.724-3.116s-2.169-2.030-3.116-2.724c-1.612-1.182-2.393-1.319-2.841-1.319h-15.5c-1.378 0-2.5 1.121-2.5 2.5v27c0 1.378 1.122 2.5 2.5 2.5h23c1.378 0 2.5-1.122 2.5-2.5v-19.5c0-0.448-0.137-1.23-1.319-2.841zM24.543 5.457c0.959 0.959 1.712 1.825 2.268 2.543h-4.811v-4.811c0.718 0.556 1.584 1.309 2.543 2.268zM28 29.5c0 0.271-0.229 0.5-0.5 0.5h-23c-0.271 0-0.5-0.229-0.5-0.5v-27c0-0.271 0.229-0.5 0.5-0.5 0 0 15.499-0 15.5 0v7c0 0.552 0.448 1 1 1h7v19.5z\"></path>\n",
+       "<path d=\"M23 26h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
+       "<path d=\"M23 22h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
+       "<path d=\"M23 18h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
+       "</symbol>\n",
+       "</defs>\n",
+       "</svg>\n",
+       "<style>/* CSS stylesheet for displaying xarray objects in jupyterlab.\n",
+       " *\n",
+       " */\n",
+       "\n",
+       ":root {\n",
+       "  --xr-font-color0: var(--jp-content-font-color0, rgba(0, 0, 0, 1));\n",
+       "  --xr-font-color2: var(--jp-content-font-color2, rgba(0, 0, 0, 0.54));\n",
+       "  --xr-font-color3: var(--jp-content-font-color3, rgba(0, 0, 0, 0.38));\n",
+       "  --xr-border-color: var(--jp-border-color2, #e0e0e0);\n",
+       "  --xr-disabled-color: var(--jp-layout-color3, #bdbdbd);\n",
+       "  --xr-background-color: var(--jp-layout-color0, white);\n",
+       "  --xr-background-color-row-even: var(--jp-layout-color1, white);\n",
+       "  --xr-background-color-row-odd: var(--jp-layout-color2, #eeeeee);\n",
+       "}\n",
+       "\n",
+       ".xr-wrap {\n",
+       "  min-width: 300px;\n",
+       "  max-width: 700px;\n",
+       "}\n",
+       "\n",
+       ".xr-header {\n",
+       "  padding-top: 6px;\n",
+       "  padding-bottom: 6px;\n",
+       "  margin-bottom: 4px;\n",
+       "  border-bottom: solid 1px var(--xr-border-color);\n",
+       "}\n",
+       "\n",
+       ".xr-header > div,\n",
+       ".xr-header > ul {\n",
+       "  display: inline;\n",
+       "  margin-top: 0;\n",
+       "  margin-bottom: 0;\n",
+       "}\n",
+       "\n",
+       ".xr-obj-type,\n",
+       ".xr-array-name {\n",
+       "  margin-left: 2px;\n",
+       "  margin-right: 10px;\n",
+       "}\n",
+       "\n",
+       ".xr-obj-type {\n",
+       "  color: var(--xr-font-color2);\n",
+       "}\n",
+       "\n",
+       ".xr-sections {\n",
+       "  padding-left: 0 !important;\n",
+       "  display: grid;\n",
+       "  grid-template-columns: 150px auto auto 1fr 20px 20px;\n",
+       "}\n",
+       "\n",
+       ".xr-section-item {\n",
+       "  display: contents;\n",
+       "}\n",
+       "\n",
+       ".xr-section-item input {\n",
+       "  display: none;\n",
+       "}\n",
+       "\n",
+       ".xr-section-item input + label {\n",
+       "  color: var(--xr-disabled-color);\n",
+       "}\n",
+       "\n",
+       ".xr-section-item input:enabled + label {\n",
+       "  cursor: pointer;\n",
+       "  color: var(--xr-font-color2);\n",
+       "}\n",
+       "\n",
+       ".xr-section-item input:enabled + label:hover {\n",
+       "  color: var(--xr-font-color0);\n",
+       "}\n",
+       "\n",
+       ".xr-section-summary {\n",
+       "  grid-column: 1;\n",
+       "  color: var(--xr-font-color2);\n",
+       "  font-weight: 500;\n",
+       "}\n",
+       "\n",
+       ".xr-section-summary > span {\n",
+       "  display: inline-block;\n",
+       "  padding-left: 0.5em;\n",
+       "}\n",
+       "\n",
+       ".xr-section-summary-in:disabled + label {\n",
+       "  color: var(--xr-font-color2);\n",
+       "}\n",
+       "\n",
+       ".xr-section-summary-in + label:before {\n",
+       "  display: inline-block;\n",
+       "  content: '►';\n",
+       "  font-size: 11px;\n",
+       "  width: 15px;\n",
+       "  text-align: center;\n",
+       "}\n",
+       "\n",
+       ".xr-section-summary-in:disabled + label:before {\n",
+       "  color: var(--xr-disabled-color);\n",
+       "}\n",
+       "\n",
+       ".xr-section-summary-in:checked + label:before {\n",
+       "  content: '▼';\n",
+       "}\n",
+       "\n",
+       ".xr-section-summary-in:checked + label > span {\n",
+       "  display: none;\n",
+       "}\n",
+       "\n",
+       ".xr-section-summary,\n",
+       ".xr-section-inline-details {\n",
+       "  padding-top: 4px;\n",
+       "  padding-bottom: 4px;\n",
+       "}\n",
+       "\n",
+       ".xr-section-inline-details {\n",
+       "  grid-column: 2 / -1;\n",
+       "}\n",
+       "\n",
+       ".xr-section-details {\n",
+       "  display: none;\n",
+       "  grid-column: 1 / -1;\n",
+       "  margin-bottom: 5px;\n",
+       "}\n",
+       "\n",
+       ".xr-section-summary-in:checked ~ .xr-section-details {\n",
+       "  display: contents;\n",
+       "}\n",
+       "\n",
+       ".xr-array-wrap {\n",
+       "  grid-column: 1 / -1;\n",
+       "  display: grid;\n",
+       "  grid-template-columns: 20px auto;\n",
+       "}\n",
+       "\n",
+       ".xr-array-wrap > label {\n",
+       "  grid-column: 1;\n",
+       "  vertical-align: top;\n",
+       "}\n",
+       "\n",
+       ".xr-preview {\n",
+       "  color: var(--xr-font-color3);\n",
+       "}\n",
+       "\n",
+       ".xr-array-preview,\n",
+       ".xr-array-data {\n",
+       "  padding: 0 5px !important;\n",
+       "  grid-column: 2;\n",
+       "}\n",
+       "\n",
+       ".xr-array-data,\n",
+       ".xr-array-in:checked ~ .xr-array-preview {\n",
+       "  display: none;\n",
+       "}\n",
+       "\n",
+       ".xr-array-in:checked ~ .xr-array-data,\n",
+       ".xr-array-preview {\n",
+       "  display: inline-block;\n",
+       "}\n",
+       "\n",
+       ".xr-dim-list {\n",
+       "  display: inline-block !important;\n",
+       "  list-style: none;\n",
+       "  padding: 0 !important;\n",
+       "  margin: 0;\n",
+       "}\n",
+       "\n",
+       ".xr-dim-list li {\n",
+       "  display: inline-block;\n",
+       "  padding: 0;\n",
+       "  margin: 0;\n",
+       "}\n",
+       "\n",
+       ".xr-dim-list:before {\n",
+       "  content: '(';\n",
+       "}\n",
+       "\n",
+       ".xr-dim-list:after {\n",
+       "  content: ')';\n",
+       "}\n",
+       "\n",
+       ".xr-dim-list li:not(:last-child):after {\n",
+       "  content: ',';\n",
+       "  padding-right: 5px;\n",
+       "}\n",
+       "\n",
+       ".xr-has-index {\n",
+       "  font-weight: bold;\n",
+       "}\n",
+       "\n",
+       ".xr-var-list,\n",
+       ".xr-var-item {\n",
+       "  display: contents;\n",
+       "}\n",
+       "\n",
+       ".xr-var-item > div,\n",
+       ".xr-var-item label,\n",
+       ".xr-var-item > .xr-var-name span {\n",
+       "  background-color: var(--xr-background-color-row-even);\n",
+       "  margin-bottom: 0;\n",
+       "}\n",
+       "\n",
+       ".xr-var-item > .xr-var-name:hover span {\n",
+       "  padding-right: 5px;\n",
+       "}\n",
+       "\n",
+       ".xr-var-list > li:nth-child(odd) > div,\n",
+       ".xr-var-list > li:nth-child(odd) > label,\n",
+       ".xr-var-list > li:nth-child(odd) > .xr-var-name span {\n",
+       "  background-color: var(--xr-background-color-row-odd);\n",
+       "}\n",
+       "\n",
+       ".xr-var-name {\n",
+       "  grid-column: 1;\n",
+       "}\n",
+       "\n",
+       ".xr-var-dims {\n",
+       "  grid-column: 2;\n",
+       "}\n",
+       "\n",
+       ".xr-var-dtype {\n",
+       "  grid-column: 3;\n",
+       "  text-align: right;\n",
+       "  color: var(--xr-font-color2);\n",
+       "}\n",
+       "\n",
+       ".xr-var-preview {\n",
+       "  grid-column: 4;\n",
+       "}\n",
+       "\n",
+       ".xr-var-name,\n",
+       ".xr-var-dims,\n",
+       ".xr-var-dtype,\n",
+       ".xr-preview,\n",
+       ".xr-attrs dt {\n",
+       "  white-space: nowrap;\n",
+       "  overflow: hidden;\n",
+       "  text-overflow: ellipsis;\n",
+       "  padding-right: 10px;\n",
+       "}\n",
+       "\n",
+       ".xr-var-name:hover,\n",
+       ".xr-var-dims:hover,\n",
+       ".xr-var-dtype:hover,\n",
+       ".xr-attrs dt:hover {\n",
+       "  overflow: visible;\n",
+       "  width: auto;\n",
+       "  z-index: 1;\n",
+       "}\n",
+       "\n",
+       ".xr-var-attrs,\n",
+       ".xr-var-data {\n",
+       "  display: none;\n",
+       "  background-color: var(--xr-background-color) !important;\n",
+       "  padding-bottom: 5px !important;\n",
+       "}\n",
+       "\n",
+       ".xr-var-attrs-in:checked ~ .xr-var-attrs,\n",
+       ".xr-var-data-in:checked ~ .xr-var-data {\n",
+       "  display: block;\n",
+       "}\n",
+       "\n",
+       ".xr-var-data > table {\n",
+       "  float: right;\n",
+       "}\n",
+       "\n",
+       ".xr-var-name span,\n",
+       ".xr-var-data,\n",
+       ".xr-attrs {\n",
+       "  padding-left: 25px !important;\n",
+       "}\n",
+       "\n",
+       ".xr-attrs,\n",
+       ".xr-var-attrs,\n",
+       ".xr-var-data {\n",
+       "  grid-column: 1 / -1;\n",
+       "}\n",
+       "\n",
+       "dl.xr-attrs {\n",
+       "  padding: 0;\n",
+       "  margin: 0;\n",
+       "  display: grid;\n",
+       "  grid-template-columns: 125px auto;\n",
+       "}\n",
+       "\n",
+       ".xr-attrs dt, dd {\n",
+       "  padding: 0;\n",
+       "  margin: 0;\n",
+       "  float: left;\n",
+       "  padding-right: 10px;\n",
+       "  width: auto;\n",
+       "}\n",
+       "\n",
+       ".xr-attrs dt {\n",
+       "  font-weight: normal;\n",
+       "  grid-column: 1;\n",
+       "}\n",
+       "\n",
+       ".xr-attrs dt:hover span {\n",
+       "  display: inline-block;\n",
+       "  background: var(--xr-background-color);\n",
+       "  padding-right: 10px;\n",
+       "}\n",
+       "\n",
+       ".xr-attrs dd {\n",
+       "  grid-column: 2;\n",
+       "  white-space: pre-wrap;\n",
+       "  word-break: break-all;\n",
+       "}\n",
+       "\n",
+       ".xr-icon-database,\n",
+       ".xr-icon-file-text2 {\n",
+       "  display: inline-block;\n",
+       "  vertical-align: middle;\n",
+       "  width: 1em;\n",
+       "  height: 1.5em !important;\n",
+       "  stroke-width: 0;\n",
+       "  stroke: currentColor;\n",
+       "  fill: currentColor;\n",
+       "}\n",
+       "</style><div class='xr-wrap'><div class='xr-header'><div class='xr-obj-type'>xarray.Dataset</div></div><ul class='xr-sections'><li class='xr-section-item'><input id='section-2a2b574d-05ae-4617-8050-ab559d9a32bd' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-2a2b574d-05ae-4617-8050-ab559d9a32bd' class='xr-section-summary'  title='Expand/collapse section'>Dimensions:</label><div class='xr-section-inline-details'><ul class='xr-dim-list'><li><span>bnds</span>: 2</li><li><span class='xr-has-index'>lat</span>: 96</li><li><span class='xr-has-index'>lon</span>: 192</li><li><span class='xr-has-index'>time</span>: 360</li></ul></div><div class='xr-section-details'></div></li><li class='xr-section-item'><input id='section-21d90331-39b1-499a-8967-55e2cc9575f1' class='xr-section-summary-in' type='checkbox'  checked><label for='section-21d90331-39b1-499a-8967-55e2cc9575f1' class='xr-section-summary' >Coordinates: <span>(3)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>lat</span></div><div class='xr-var-dims'>(lat)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>-88.57 -86.72 ... 86.72 88.57</div><input id='attrs-505b83f3-dbd4-49ba-84dd-1aa0f1fc800d' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-505b83f3-dbd4-49ba-84dd-1aa0f1fc800d' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-443a559e-b368-43b3-86e3-3cde1cb464f6' class='xr-var-data-in' type='checkbox'><label for='data-443a559e-b368-43b3-86e3-3cde1cb464f6' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>axis :</span></dt><dd>Y</dd><dt><span>bounds :</span></dt><dd>lat_bnds</dd><dt><span>long_name :</span></dt><dd>latitude</dd><dt><span>standard_name :</span></dt><dd>latitude</dd><dt><span>units :</span></dt><dd>degrees_north</dd></dl></div><pre class='xr-var-data'>array([-88.572169, -86.722531, -84.86197 , -82.998942, -81.134977, -79.270559,\n",
+       "       -77.405888, -75.541061, -73.676132, -71.811132, -69.946081, -68.080991,\n",
+       "       -66.215872, -64.35073 , -62.485571, -60.620396, -58.755209, -56.890013,\n",
+       "       -55.024808, -53.159595, -51.294377, -49.429154, -47.563926, -45.698694,\n",
+       "       -43.833459, -41.96822 , -40.102979, -38.237736, -36.372491, -34.507243,\n",
+       "       -32.641994, -30.776744, -28.911492, -27.046239, -25.180986, -23.315731,\n",
+       "       -21.450475, -19.585219, -17.719962, -15.854704, -13.989446, -12.124187,\n",
+       "       -10.258928,  -8.393669,  -6.528409,  -4.66315 ,  -2.79789 ,  -0.93263 ,\n",
+       "         0.93263 ,   2.79789 ,   4.66315 ,   6.528409,   8.393669,  10.258928,\n",
+       "        12.124187,  13.989446,  15.854704,  17.719962,  19.585219,  21.450475,\n",
+       "        23.315731,  25.180986,  27.046239,  28.911492,  30.776744,  32.641994,\n",
+       "        34.507243,  36.372491,  38.237736,  40.102979,  41.96822 ,  43.833459,\n",
+       "        45.698694,  47.563926,  49.429154,  51.294377,  53.159595,  55.024808,\n",
+       "        56.890013,  58.755209,  60.620396,  62.485571,  64.35073 ,  66.215872,\n",
+       "        68.080991,  69.946081,  71.811132,  73.676132,  75.541061,  77.405888,\n",
+       "        79.270559,  81.134977,  82.998942,  84.86197 ,  86.722531,  88.572169])</pre></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>lon</span></div><div class='xr-var-dims'>(lon)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>0.0 1.875 3.75 ... 356.2 358.1</div><input id='attrs-5e1367e3-119c-4c3c-ac7a-7a06e7a34db3' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-5e1367e3-119c-4c3c-ac7a-7a06e7a34db3' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-f0b6cdac-2f13-4dd2-abdf-f3cdc88a8fb4' class='xr-var-data-in' type='checkbox'><label for='data-f0b6cdac-2f13-4dd2-abdf-f3cdc88a8fb4' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>axis :</span></dt><dd>X</dd><dt><span>bounds :</span></dt><dd>lon_bnds</dd><dt><span>long_name :</span></dt><dd>longitude</dd><dt><span>standard_name :</span></dt><dd>longitude</dd><dt><span>units :</span></dt><dd>degrees_east</dd></dl></div><pre class='xr-var-data'>array([  0.   ,   1.875,   3.75 ,   5.625,   7.5  ,   9.375,  11.25 ,  13.125,\n",
+       "        15.   ,  16.875,  18.75 ,  20.625,  22.5  ,  24.375,  26.25 ,  28.125,\n",
+       "        30.   ,  31.875,  33.75 ,  35.625,  37.5  ,  39.375,  41.25 ,  43.125,\n",
+       "        45.   ,  46.875,  48.75 ,  50.625,  52.5  ,  54.375,  56.25 ,  58.125,\n",
+       "        60.   ,  61.875,  63.75 ,  65.625,  67.5  ,  69.375,  71.25 ,  73.125,\n",
+       "        75.   ,  76.875,  78.75 ,  80.625,  82.5  ,  84.375,  86.25 ,  88.125,\n",
+       "        90.   ,  91.875,  93.75 ,  95.625,  97.5  ,  99.375, 101.25 , 103.125,\n",
+       "       105.   , 106.875, 108.75 , 110.625, 112.5  , 114.375, 116.25 , 118.125,\n",
+       "       120.   , 121.875, 123.75 , 125.625, 127.5  , 129.375, 131.25 , 133.125,\n",
+       "       135.   , 136.875, 138.75 , 140.625, 142.5  , 144.375, 146.25 , 148.125,\n",
+       "       150.   , 151.875, 153.75 , 155.625, 157.5  , 159.375, 161.25 , 163.125,\n",
+       "       165.   , 166.875, 168.75 , 170.625, 172.5  , 174.375, 176.25 , 178.125,\n",
+       "       180.   , 181.875, 183.75 , 185.625, 187.5  , 189.375, 191.25 , 193.125,\n",
+       "       195.   , 196.875, 198.75 , 200.625, 202.5  , 204.375, 206.25 , 208.125,\n",
+       "       210.   , 211.875, 213.75 , 215.625, 217.5  , 219.375, 221.25 , 223.125,\n",
+       "       225.   , 226.875, 228.75 , 230.625, 232.5  , 234.375, 236.25 , 238.125,\n",
+       "       240.   , 241.875, 243.75 , 245.625, 247.5  , 249.375, 251.25 , 253.125,\n",
+       "       255.   , 256.875, 258.75 , 260.625, 262.5  , 264.375, 266.25 , 268.125,\n",
+       "       270.   , 271.875, 273.75 , 275.625, 277.5  , 279.375, 281.25 , 283.125,\n",
+       "       285.   , 286.875, 288.75 , 290.625, 292.5  , 294.375, 296.25 , 298.125,\n",
+       "       300.   , 301.875, 303.75 , 305.625, 307.5  , 309.375, 311.25 , 313.125,\n",
+       "       315.   , 316.875, 318.75 , 320.625, 322.5  , 324.375, 326.25 , 328.125,\n",
+       "       330.   , 331.875, 333.75 , 335.625, 337.5  , 339.375, 341.25 , 343.125,\n",
+       "       345.   , 346.875, 348.75 , 350.625, 352.5  , 354.375, 356.25 , 358.125])</pre></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>time</span></div><div class='xr-var-dims'>(time)</div><div class='xr-var-dtype'>object</div><div class='xr-var-preview xr-preview'>0016-01-16 00:00:00 ... 0045-12-16 00:00:00</div><input id='attrs-9c1b7247-cd33-4ab5-afcc-037676588cdc' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-9c1b7247-cd33-4ab5-afcc-037676588cdc' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-ab18aedc-6e03-4752-a811-b0e0e6031bf1' class='xr-var-data-in' type='checkbox'><label for='data-ab18aedc-6e03-4752-a811-b0e0e6031bf1' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>axis :</span></dt><dd>T</dd><dt><span>bounds :</span></dt><dd>time_bnds</dd><dt><span>long_name :</span></dt><dd>time</dd><dt><span>standard_name :</span></dt><dd>time</dd></dl></div><pre class='xr-var-data'>array([cftime.Datetime360Day(0016-01-16 00:00:00),\n",
+       "       cftime.Datetime360Day(0016-02-16 00:00:00),\n",
+       "       cftime.Datetime360Day(0016-03-16 00:00:00), ...,\n",
+       "       cftime.Datetime360Day(0045-10-16 00:00:00),\n",
+       "       cftime.Datetime360Day(0045-11-16 00:00:00),\n",
+       "       cftime.Datetime360Day(0045-12-16 00:00:00)], dtype=object)</pre></li></ul></div></li><li class='xr-section-item'><input id='section-30d66e1c-0a49-44f4-bec2-e456e01aca8d' class='xr-section-summary-in' type='checkbox'  checked><label for='section-30d66e1c-0a49-44f4-bec2-e456e01aca8d' class='xr-section-summary' >Data variables: <span>(4)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span>lat_bnds</span></div><div class='xr-var-dims'>(lat, bnds)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(96, 2), meta=np.ndarray&gt;</div><input id='attrs-066b77b0-0049-42a4-a1ff-7046adf21e98' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-066b77b0-0049-42a4-a1ff-7046adf21e98' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-b84a1c14-876f-4fed-a910-09f661b6e6d8' class='xr-var-data-in' type='checkbox'><label for='data-b84a1c14-876f-4fed-a910-09f661b6e6d8' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><pre class='xr-var-data'><table>\n",
+       "<tr>\n",
+       "<td>\n",
+       "<table>\n",
+       "  <thead>\n",
+       "    <tr><td> </td><th> Array </th><th> Chunk </th></tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr><th> Bytes </th><td> 1.54 kB </td> <td> 1.54 kB </td></tr>\n",
+       "    <tr><th> Shape </th><td> (96, 2) </td> <td> (96, 2) </td></tr>\n",
+       "    <tr><th> Count </th><td> 2 Tasks </td><td> 1 Chunks </td></tr>\n",
+       "    <tr><th> Type </th><td> float64 </td><td> numpy.ndarray </td></tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</td>\n",
+       "<td>\n",
+       "<svg width=\"79\" height=\"170\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
+       "\n",
+       "  <!-- Horizontal lines -->\n",
+       "  <line x1=\"0\" y1=\"0\" x2=\"29\" y2=\"0\" style=\"stroke-width:2\" />\n",
+       "  <line x1=\"0\" y1=\"120\" x2=\"29\" y2=\"120\" style=\"stroke-width:2\" />\n",
+       "\n",
+       "  <!-- Vertical lines -->\n",
+       "  <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"120\" style=\"stroke-width:2\" />\n",
+       "  <line x1=\"29\" y1=\"0\" x2=\"29\" y2=\"120\" style=\"stroke-width:2\" />\n",
+       "\n",
+       "  <!-- Colored Rectangle -->\n",
+       "  <polygon points=\"0.000000,0.000000 29.261234,0.000000 29.261234,120.000000 0.000000,120.000000\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
+       "\n",
+       "  <!-- Text -->\n",
+       "  <text x=\"14.630617\" y=\"140.000000\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >2</text>\n",
+       "  <text x=\"49.261234\" y=\"60.000000\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,49.261234,60.000000)\">96</text>\n",
+       "</svg>\n",
+       "</td>\n",
+       "</tr>\n",
+       "</table></pre></li><li class='xr-var-item'><div class='xr-var-name'><span>lon_bnds</span></div><div class='xr-var-dims'>(lon, bnds)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(192, 2), meta=np.ndarray&gt;</div><input id='attrs-f79badef-7c67-4045-b2ea-b414761754c6' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-f79badef-7c67-4045-b2ea-b414761754c6' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-7a16d737-8373-432f-8d08-366dbb48350a' class='xr-var-data-in' type='checkbox'><label for='data-7a16d737-8373-432f-8d08-366dbb48350a' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><pre class='xr-var-data'><table>\n",
+       "<tr>\n",
+       "<td>\n",
+       "<table>\n",
+       "  <thead>\n",
+       "    <tr><td> </td><th> Array </th><th> Chunk </th></tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr><th> Bytes </th><td> 3.07 kB </td> <td> 3.07 kB </td></tr>\n",
+       "    <tr><th> Shape </th><td> (192, 2) </td> <td> (192, 2) </td></tr>\n",
+       "    <tr><th> Count </th><td> 2 Tasks </td><td> 1 Chunks </td></tr>\n",
+       "    <tr><th> Type </th><td> float64 </td><td> numpy.ndarray </td></tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</td>\n",
+       "<td>\n",
+       "<svg width=\"75\" height=\"170\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
+       "\n",
+       "  <!-- Horizontal lines -->\n",
+       "  <line x1=\"0\" y1=\"0\" x2=\"25\" y2=\"0\" style=\"stroke-width:2\" />\n",
+       "  <line x1=\"0\" y1=\"120\" x2=\"25\" y2=\"120\" style=\"stroke-width:2\" />\n",
+       "\n",
+       "  <!-- Vertical lines -->\n",
+       "  <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"120\" style=\"stroke-width:2\" />\n",
+       "  <line x1=\"25\" y1=\"0\" x2=\"25\" y2=\"120\" style=\"stroke-width:2\" />\n",
+       "\n",
+       "  <!-- Colored Rectangle -->\n",
+       "  <polygon points=\"0.000000,0.000000 25.609134,0.000000 25.609134,120.000000 0.000000,120.000000\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
+       "\n",
+       "  <!-- Text -->\n",
+       "  <text x=\"12.804567\" y=\"140.000000\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >2</text>\n",
+       "  <text x=\"45.609134\" y=\"60.000000\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,45.609134,60.000000)\">192</text>\n",
+       "</svg>\n",
+       "</td>\n",
+       "</tr>\n",
+       "</table></pre></li><li class='xr-var-item'><div class='xr-var-name'><span>pr</span></div><div class='xr-var-dims'>(time, lat, lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(360, 96, 192), meta=np.ndarray&gt;</div><input id='attrs-e7b5cb01-fd78-45a7-9bb8-05b683d2c5c4' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-e7b5cb01-fd78-45a7-9bb8-05b683d2c5c4' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-0fba956a-f60c-425f-b762-dd030bdadf21' class='xr-var-data-in' type='checkbox'><label for='data-0fba956a-f60c-425f-b762-dd030bdadf21' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>associated_files :</span></dt><dd>baseURL: https://www.sites.google.com/site/tracmip/ gridspecFile: gridspec_atmos_fx_ECHAM61_aquaControlTRACMIP_r0i0p0.nc areacella: areacella_fx_ECHAM61_aquaControlTRACMIP_r0i0p0.nc</dd><dt><span>cell_measures :</span></dt><dd>area: areacella</dd><dt><span>cell_methods :</span></dt><dd>time: mean</dd><dt><span>comment :</span></dt><dd>at surface; includes both liquid and solid phases from all types of clouds (both large-scale and convective)</dd><dt><span>history :</span></dt><dd>2018-02-25T12:21:01Z altered by CMOR: replaced missing value flag (-9e+33) with standard missing value (1e+20). 2018-02-25T12:21:01Z altered by CMOR: Inverted axis: lat.</dd><dt><span>long_name :</span></dt><dd>Precipitation</dd><dt><span>original_name :</span></dt><dd>pr</dd><dt><span>standard_name :</span></dt><dd>precipitation_flux</dd><dt><span>units :</span></dt><dd>kg m-2 s-1</dd></dl></div><pre class='xr-var-data'><table>\n",
+       "<tr>\n",
+       "<td>\n",
+       "<table>\n",
+       "  <thead>\n",
+       "    <tr><td> </td><th> Array </th><th> Chunk </th></tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr><th> Bytes </th><td> 26.54 MB </td> <td> 26.54 MB </td></tr>\n",
+       "    <tr><th> Shape </th><td> (360, 96, 192) </td> <td> (360, 96, 192) </td></tr>\n",
+       "    <tr><th> Count </th><td> 2 Tasks </td><td> 1 Chunks </td></tr>\n",
+       "    <tr><th> Type </th><td> float32 </td><td> numpy.ndarray </td></tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</td>\n",
+       "<td>\n",
+       "<svg width=\"194\" height=\"163\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
+       "\n",
+       "  <!-- Horizontal lines -->\n",
+       "  <line x1=\"10\" y1=\"0\" x2=\"80\" y2=\"70\" style=\"stroke-width:2\" />\n",
+       "  <line x1=\"10\" y1=\"43\" x2=\"80\" y2=\"113\" style=\"stroke-width:2\" />\n",
+       "\n",
+       "  <!-- Vertical lines -->\n",
+       "  <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"43\" style=\"stroke-width:2\" />\n",
+       "  <line x1=\"80\" y1=\"70\" x2=\"80\" y2=\"113\" style=\"stroke-width:2\" />\n",
+       "\n",
+       "  <!-- Colored Rectangle -->\n",
+       "  <polygon points=\"10.000000,0.000000 80.588235,70.588235 80.588235,113.723911 10.000000,43.135675\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
+       "\n",
+       "  <!-- Horizontal lines -->\n",
+       "  <line x1=\"10\" y1=\"0\" x2=\"74\" y2=\"0\" style=\"stroke-width:2\" />\n",
+       "  <line x1=\"80\" y1=\"70\" x2=\"144\" y2=\"70\" style=\"stroke-width:2\" />\n",
+       "\n",
+       "  <!-- Vertical lines -->\n",
+       "  <line x1=\"10\" y1=\"0\" x2=\"80\" y2=\"70\" style=\"stroke-width:2\" />\n",
+       "  <line x1=\"74\" y1=\"0\" x2=\"144\" y2=\"70\" style=\"stroke-width:2\" />\n",
+       "\n",
+       "  <!-- Colored Rectangle -->\n",
+       "  <polygon points=\"10.000000,0.000000 74.000000,0.000000 144.588235,70.588235 80.588235,70.588235\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
+       "\n",
+       "  <!-- Horizontal lines -->\n",
+       "  <line x1=\"80\" y1=\"70\" x2=\"144\" y2=\"70\" style=\"stroke-width:2\" />\n",
+       "  <line x1=\"80\" y1=\"113\" x2=\"144\" y2=\"113\" style=\"stroke-width:2\" />\n",
+       "\n",
+       "  <!-- Vertical lines -->\n",
+       "  <line x1=\"80\" y1=\"70\" x2=\"80\" y2=\"113\" style=\"stroke-width:2\" />\n",
+       "  <line x1=\"144\" y1=\"70\" x2=\"144\" y2=\"113\" style=\"stroke-width:2\" />\n",
+       "\n",
+       "  <!-- Colored Rectangle -->\n",
+       "  <polygon points=\"80.588235,70.588235 144.588235,70.588235 144.588235,113.723911 80.588235,113.723911\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
+       "\n",
+       "  <!-- Text -->\n",
+       "  <text x=\"112.588235\" y=\"133.723911\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >192</text>\n",
+       "  <text x=\"164.588235\" y=\"92.156073\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,164.588235,92.156073)\">96</text>\n",
+       "  <text x=\"35.294118\" y=\"98.429793\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,35.294118,98.429793)\">360</text>\n",
+       "</svg>\n",
+       "</td>\n",
+       "</tr>\n",
+       "</table></pre></li><li class='xr-var-item'><div class='xr-var-name'><span>time_bnds</span></div><div class='xr-var-dims'>(time, bnds)</div><div class='xr-var-dtype'>object</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(360, 2), meta=np.ndarray&gt;</div><input id='attrs-766fd7de-6a82-4990-9e37-5c01c79c2b06' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-766fd7de-6a82-4990-9e37-5c01c79c2b06' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-e16cef48-1614-430e-b519-d25c068c383b' class='xr-var-data-in' type='checkbox'><label for='data-e16cef48-1614-430e-b519-d25c068c383b' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><pre class='xr-var-data'><table>\n",
+       "<tr>\n",
+       "<td>\n",
+       "<table>\n",
+       "  <thead>\n",
+       "    <tr><td> </td><th> Array </th><th> Chunk </th></tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr><th> Bytes </th><td> 5.76 kB </td> <td> 5.76 kB </td></tr>\n",
+       "    <tr><th> Shape </th><td> (360, 2) </td> <td> (360, 2) </td></tr>\n",
+       "    <tr><th> Count </th><td> 2 Tasks </td><td> 1 Chunks </td></tr>\n",
+       "    <tr><th> Type </th><td> object </td><td> numpy.ndarray </td></tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</td>\n",
+       "<td>\n",
+       "<svg width=\"75\" height=\"170\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
+       "\n",
+       "  <!-- Horizontal lines -->\n",
+       "  <line x1=\"0\" y1=\"0\" x2=\"25\" y2=\"0\" style=\"stroke-width:2\" />\n",
+       "  <line x1=\"0\" y1=\"120\" x2=\"25\" y2=\"120\" style=\"stroke-width:2\" />\n",
+       "\n",
+       "  <!-- Vertical lines -->\n",
+       "  <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"120\" style=\"stroke-width:2\" />\n",
+       "  <line x1=\"25\" y1=\"0\" x2=\"25\" y2=\"120\" style=\"stroke-width:2\" />\n",
+       "\n",
+       "  <!-- Colored Rectangle -->\n",
+       "  <polygon points=\"0.000000,0.000000 25.412617,0.000000 25.412617,120.000000 0.000000,120.000000\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
+       "\n",
+       "  <!-- Text -->\n",
+       "  <text x=\"12.706308\" y=\"140.000000\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >2</text>\n",
+       "  <text x=\"45.412617\" y=\"60.000000\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,45.412617,60.000000)\">360</text>\n",
+       "</svg>\n",
+       "</td>\n",
+       "</tr>\n",
+       "</table></pre></li></ul></div></li><li class='xr-section-item'><input id='section-a9fe80b9-902b-4fe8-8759-af952f6c8417' class='xr-section-summary-in' type='checkbox'  ><label for='section-a9fe80b9-902b-4fe8-8759-af952f6c8417' class='xr-section-summary' >Attributes: <span>(28)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><dl class='xr-attrs'><dt><span>Conventions :</span></dt><dd>CF-1.4</dd><dt><span>branch_time :</span></dt><dd>0.0</dd><dt><span>cmor_version :</span></dt><dd>2.9.1</dd><dt><span>comment :</span></dt><dd>aqua planet control of TRACMIP; for TRACMIP see Voigt et al., 2016, The Tropical Rain belts with an Annual cycle and a Continent Model Intercomparison Project: TRACMIP, 9, 1868–1891, doi:10.1002/2016MS000748</dd><dt><span>contact :</span></dt><dd>aiko@ldeo.columbia.edu; aiko.voigt@kit.edu</dd><dt><span>creation_date :</span></dt><dd>2018-02-25T12:21:01Z</dd><dt><span>experiment :</span></dt><dd>aqua planet control of TRACMIP</dd><dt><span>experiment_id :</span></dt><dd>aquaControlTRACMIP</dd><dt><span>forcing :</span></dt><dd>CTRL</dd><dt><span>frequency :</span></dt><dd>mon</dd><dt><span>history :</span></dt><dd>N/A 2018-02-25T12:21:01Z CMOR rewrote data to comply with CF standards and TRACMIP requirements.</dd><dt><span>initialization_method :</span></dt><dd>1</dd><dt><span>institute_id :</span></dt><dd>LDEO</dd><dt><span>institution :</span></dt><dd>Lamont-Doherty Earth Observatory, Columbia University; Karlsruhe Institute of Technology</dd><dt><span>model_id :</span></dt><dd>ECHAM61</dd><dt><span>modeling_realm :</span></dt><dd>atmos</dd><dt><span>parent_experiment :</span></dt><dd>N/A</dd><dt><span>parent_experiment_id :</span></dt><dd>N/A</dd><dt><span>parent_experiment_rip :</span></dt><dd>N/A</dd><dt><span>physics_version :</span></dt><dd>1</dd><dt><span>product :</span></dt><dd>output</dd><dt><span>project_id :</span></dt><dd>TRACMIP</dd><dt><span>realization :</span></dt><dd>1</dd><dt><span>references :</span></dt><dd>ECHAM6.1: Stevens et al., 2013, Atmospheric component of the MPI-M Earth System Model: ECHAM6, JAMES, 5, 146-172, doi:10.1002/jame.2015;</dd><dt><span>source :</span></dt><dd>ECHAM61, 2013, T63, 47 levels;</dd><dt><span>table_id :</span></dt><dd>Table Amon (11 September 2017) b0abd1a83fe45ef2ed9e415b249165bd</dd><dt><span>title :</span></dt><dd>ECHAM61 model output prepared for TRACMIP aqua planet control of TRACMIP</dd><dt><span>tracking_id :</span></dt><dd>a6042360-356a-4d4e-8357-9699f6c18da1</dd></dl></div></li></ul></div></div>"
+      ],
+      "text/plain": [
+       "<xarray.Dataset>\n",
+       "Dimensions:    (bnds: 2, lat: 96, lon: 192, time: 360)\n",
+       "Coordinates:\n",
+       "  * lat        (lat) float64 -88.57 -86.72 -84.86 -83.0 ... 84.86 86.72 88.57\n",
+       "  * lon        (lon) float64 0.0 1.875 3.75 5.625 ... 352.5 354.4 356.2 358.1\n",
+       "  * time       (time) object 0016-01-16 00:00:00 ... 0045-12-16 00:00:00\n",
+       "Dimensions without coordinates: bnds\n",
+       "Data variables:\n",
+       "    lat_bnds   (lat, bnds) float64 dask.array<chunksize=(96, 2), meta=np.ndarray>\n",
+       "    lon_bnds   (lon, bnds) float64 dask.array<chunksize=(192, 2), meta=np.ndarray>\n",
+       "    pr         (time, lat, lon) float32 dask.array<chunksize=(360, 96, 192), meta=np.ndarray>\n",
+       "    time_bnds  (time, bnds) object dask.array<chunksize=(360, 2), meta=np.ndarray>\n",
+       "Attributes:\n",
+       "    Conventions:            CF-1.4\n",
+       "    branch_time:            0.0\n",
+       "    cmor_version:           2.9.1\n",
+       "    comment:                aqua planet control of TRACMIP; for TRACMIP see V...\n",
+       "    contact:                aiko@ldeo.columbia.edu; aiko.voigt@kit.edu\n",
+       "    creation_date:          2018-02-25T12:21:01Z\n",
+       "    experiment:             aqua planet control of TRACMIP\n",
+       "    experiment_id:          aquaControlTRACMIP\n",
+       "    forcing:                CTRL\n",
+       "    frequency:              mon\n",
+       "    history:                N/A 2018-02-25T12:21:01Z CMOR rewrote data to com...\n",
+       "    initialization_method:  1\n",
+       "    institute_id:           LDEO\n",
+       "    institution:            Lamont-Doherty Earth Observatory, Columbia Univer...\n",
+       "    model_id:               ECHAM61\n",
+       "    modeling_realm:         atmos\n",
+       "    parent_experiment:      N/A\n",
+       "    parent_experiment_id:   N/A\n",
+       "    parent_experiment_rip:  N/A\n",
+       "    physics_version:        1\n",
+       "    product:                output\n",
+       "    project_id:             TRACMIP\n",
+       "    realization:            1\n",
+       "    references:             ECHAM6.1: Stevens et al., 2013, Atmospheric compo...\n",
+       "    source:                 ECHAM61, 2013, T63, 47 levels;\n",
+       "    table_id:               Table Amon (11 September 2017) b0abd1a83fe45ef2ed...\n",
+       "    title:                  ECHAM61 model output prepared for TRACMIP aqua pl...\n",
+       "    tracking_id:            a6042360-356a-4d4e-8357-9699f6c18da1"
+      ]
+     },
+     "execution_count": 7,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "ds_dict1['ECHAM61']"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Aproach 2 via intake\n",
+    "\n",
+    "This approach was developed with help by Charles Christopher Blackmon Luca."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 8,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "from intake import open_catalog"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 9,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# get the entire Pangeo catalogue ...\n",
+    "cat = open_catalog(\"https://raw.githubusercontent.com/pangeo-data/pangeo-datastore/master/intake-catalogs/climate.yaml\")\n",
+    "# ... and select TRACMIP collection\n",
+    "col = cat.tracmip()"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "For illustration, we look at some basic information of the TRACMIP collection. AS expected, there is 3 output frequencies (monthly-mean, daily-mean, 3-hr snapshots), 11 experiments (6 are due to the CALTECH model with changed atmosperic opacity), and 47 variables"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 10,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<p><strong>pangeo-tracmip catalog with 187 dataset(s) from 7067 asset(s)</strong>:</p> <div>\n",
+       "<style scoped>\n",
+       "    .dataframe tbody tr th:only-of-type {\n",
+       "        vertical-align: middle;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe tbody tr th {\n",
+       "        vertical-align: top;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe thead th {\n",
+       "        text-align: right;\n",
+       "    }\n",
+       "</style>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>unique</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>frequency</th>\n",
+       "      <td>3</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>experiment</th>\n",
+       "      <td>11</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>model</th>\n",
+       "      <td>14</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>variable</th>\n",
+       "      <td>47</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>version</th>\n",
+       "      <td>10</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>source</th>\n",
+       "      <td>7067</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "<pangeo-tracmip catalog with 187 dataset(s) from 7067 asset(s)>"
+      ]
+     },
+     "execution_count": 10,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "col"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "To make ourselves a bit more familiar with the collection we print its starting and end portion to screen. This looks just as for appraoch 1, as it must be."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 11,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<style scoped>\n",
+       "    .dataframe tbody tr th:only-of-type {\n",
+       "        vertical-align: middle;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe tbody tr th {\n",
+       "        vertical-align: top;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe thead th {\n",
+       "        text-align: right;\n",
+       "    }\n",
+       "</style>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>frequency</th>\n",
+       "      <th>experiment</th>\n",
+       "      <th>model</th>\n",
+       "      <th>variable</th>\n",
+       "      <th>version</th>\n",
+       "      <th>source</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>0</th>\n",
+       "      <td>A3hr</td>\n",
+       "      <td>aqua4xCO2</td>\n",
+       "      <td>AM21</td>\n",
+       "      <td>hur</td>\n",
+       "      <td>v20190116</td>\n",
+       "      <td>gs://cmip6/tracmip/A3hr/aqua4xCO2/AM21/hur/v20...</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>1</th>\n",
+       "      <td>A3hr</td>\n",
+       "      <td>aqua4xCO2</td>\n",
+       "      <td>AM21</td>\n",
+       "      <td>hus</td>\n",
+       "      <td>v20190116</td>\n",
+       "      <td>gs://cmip6/tracmip/A3hr/aqua4xCO2/AM21/hus/v20...</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2</th>\n",
+       "      <td>A3hr</td>\n",
+       "      <td>aqua4xCO2</td>\n",
+       "      <td>AM21</td>\n",
+       "      <td>ta</td>\n",
+       "      <td>v20190116</td>\n",
+       "      <td>gs://cmip6/tracmip/A3hr/aqua4xCO2/AM21/ta/v201...</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>3</th>\n",
+       "      <td>A3hr</td>\n",
+       "      <td>aqua4xCO2</td>\n",
+       "      <td>AM21</td>\n",
+       "      <td>ua</td>\n",
+       "      <td>v20190116</td>\n",
+       "      <td>gs://cmip6/tracmip/A3hr/aqua4xCO2/AM21/ua/v201...</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>4</th>\n",
+       "      <td>A3hr</td>\n",
+       "      <td>aqua4xCO2</td>\n",
+       "      <td>AM21</td>\n",
+       "      <td>va</td>\n",
+       "      <td>v20190116</td>\n",
+       "      <td>gs://cmip6/tracmip/A3hr/aqua4xCO2/AM21/va/v201...</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "  frequency experiment model variable    version  \\\n",
+       "0      A3hr  aqua4xCO2  AM21      hur  v20190116   \n",
+       "1      A3hr  aqua4xCO2  AM21      hus  v20190116   \n",
+       "2      A3hr  aqua4xCO2  AM21       ta  v20190116   \n",
+       "3      A3hr  aqua4xCO2  AM21       ua  v20190116   \n",
+       "4      A3hr  aqua4xCO2  AM21       va  v20190116   \n",
+       "\n",
+       "                                              source  \n",
+       "0  gs://cmip6/tracmip/A3hr/aqua4xCO2/AM21/hur/v20...  \n",
+       "1  gs://cmip6/tracmip/A3hr/aqua4xCO2/AM21/hus/v20...  \n",
+       "2  gs://cmip6/tracmip/A3hr/aqua4xCO2/AM21/ta/v201...  \n",
+       "3  gs://cmip6/tracmip/A3hr/aqua4xCO2/AM21/ua/v201...  \n",
+       "4  gs://cmip6/tracmip/A3hr/aqua4xCO2/AM21/va/v201...  "
+      ]
+     },
+     "execution_count": 11,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "col.df.head()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 12,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<style scoped>\n",
+       "    .dataframe tbody tr th:only-of-type {\n",
+       "        vertical-align: middle;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe tbody tr th {\n",
+       "        vertical-align: top;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe thead th {\n",
+       "        text-align: right;\n",
+       "    }\n",
+       "</style>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>frequency</th>\n",
+       "      <th>experiment</th>\n",
+       "      <th>model</th>\n",
+       "      <th>variable</th>\n",
+       "      <th>version</th>\n",
+       "      <th>source</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>7062</th>\n",
+       "      <td>Amon</td>\n",
+       "      <td>landOrbit</td>\n",
+       "      <td>MetUM-ENT</td>\n",
+       "      <td>uas</td>\n",
+       "      <td>v20180423</td>\n",
+       "      <td>gs://cmip6/tracmip/Amon/landOrbit/MetUM-ENT/ua...</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>7063</th>\n",
+       "      <td>Amon</td>\n",
+       "      <td>landOrbit</td>\n",
+       "      <td>MetUM-ENT</td>\n",
+       "      <td>va</td>\n",
+       "      <td>v20180423</td>\n",
+       "      <td>gs://cmip6/tracmip/Amon/landOrbit/MetUM-ENT/va...</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>7064</th>\n",
+       "      <td>Amon</td>\n",
+       "      <td>landOrbit</td>\n",
+       "      <td>MetUM-ENT</td>\n",
+       "      <td>vas</td>\n",
+       "      <td>v20180423</td>\n",
+       "      <td>gs://cmip6/tracmip/Amon/landOrbit/MetUM-ENT/va...</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>7065</th>\n",
+       "      <td>Amon</td>\n",
+       "      <td>landOrbit</td>\n",
+       "      <td>MetUM-ENT</td>\n",
+       "      <td>wap</td>\n",
+       "      <td>v20180423</td>\n",
+       "      <td>gs://cmip6/tracmip/Amon/landOrbit/MetUM-ENT/wa...</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>7066</th>\n",
+       "      <td>Amon</td>\n",
+       "      <td>landOrbit</td>\n",
+       "      <td>MetUM-ENT</td>\n",
+       "      <td>zg</td>\n",
+       "      <td>v20180423</td>\n",
+       "      <td>gs://cmip6/tracmip/Amon/landOrbit/MetUM-ENT/zg...</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "     frequency experiment      model variable    version  \\\n",
+       "7062      Amon  landOrbit  MetUM-ENT      uas  v20180423   \n",
+       "7063      Amon  landOrbit  MetUM-ENT       va  v20180423   \n",
+       "7064      Amon  landOrbit  MetUM-ENT      vas  v20180423   \n",
+       "7065      Amon  landOrbit  MetUM-ENT      wap  v20180423   \n",
+       "7066      Amon  landOrbit  MetUM-ENT       zg  v20180423   \n",
+       "\n",
+       "                                                 source  \n",
+       "7062  gs://cmip6/tracmip/Amon/landOrbit/MetUM-ENT/ua...  \n",
+       "7063  gs://cmip6/tracmip/Amon/landOrbit/MetUM-ENT/va...  \n",
+       "7064  gs://cmip6/tracmip/Amon/landOrbit/MetUM-ENT/va...  \n",
+       "7065  gs://cmip6/tracmip/Amon/landOrbit/MetUM-ENT/wa...  \n",
+       "7066  gs://cmip6/tracmip/Amon/landOrbit/MetUM-ENT/zg...  "
+      ]
+     },
+     "execution_count": 12,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "col.df.tail()"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Now we load the monthly-mean precip data for the aquaControl experiment into a dictionary, in analogy to what we did for approach 1.\n",
+    "\n",
+    "Note: the option \"zarr_kwargs={'consolidated': True}\" for to_dataset_dicts does not seem necessary but is still included here."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 13,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Dataset(s):   0%|                                       | 0/14 [00:00<?, ?it/s]"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "\n",
+      "--> The keys in the returned dictionary of datasets are constructed as follows:\n",
+      "\t'model.experiment.frequency'\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Dataset(s): 100%|██████████████████████████████| 14/14 [00:07<00:00,  1.79it/s]\n"
+     ]
+    }
+   ],
+   "source": [
+    "ds_dict2 = col.search(frequency=\"Amon\", experiment=\"aquaControl\",\n",
+    "                     variable=\"pr\").to_dataset_dict(zarr_kwargs={'consolidated': True})"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "For the sake of demonstration, we print the dictionary content for the ECHAM61 model. Note that the keys are now 'model.experiment.frequency'."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 14,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<div><svg style=\"position: absolute; width: 0; height: 0; overflow: hidden\">\n",
+       "<defs>\n",
+       "<symbol id=\"icon-database\" viewBox=\"0 0 32 32\">\n",
+       "<title>Show/Hide data repr</title>\n",
+       "<path d=\"M16 0c-8.837 0-16 2.239-16 5v4c0 2.761 7.163 5 16 5s16-2.239 16-5v-4c0-2.761-7.163-5-16-5z\"></path>\n",
+       "<path d=\"M16 17c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
+       "<path d=\"M16 26c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
+       "</symbol>\n",
+       "<symbol id=\"icon-file-text2\" viewBox=\"0 0 32 32\">\n",
+       "<title>Show/Hide attributes</title>\n",
+       "<path d=\"M28.681 7.159c-0.694-0.947-1.662-2.053-2.724-3.116s-2.169-2.030-3.116-2.724c-1.612-1.182-2.393-1.319-2.841-1.319h-15.5c-1.378 0-2.5 1.121-2.5 2.5v27c0 1.378 1.122 2.5 2.5 2.5h23c1.378 0 2.5-1.122 2.5-2.5v-19.5c0-0.448-0.137-1.23-1.319-2.841zM24.543 5.457c0.959 0.959 1.712 1.825 2.268 2.543h-4.811v-4.811c0.718 0.556 1.584 1.309 2.543 2.268zM28 29.5c0 0.271-0.229 0.5-0.5 0.5h-23c-0.271 0-0.5-0.229-0.5-0.5v-27c0-0.271 0.229-0.5 0.5-0.5 0 0 15.499-0 15.5 0v7c0 0.552 0.448 1 1 1h7v19.5z\"></path>\n",
+       "<path d=\"M23 26h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
+       "<path d=\"M23 22h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
+       "<path d=\"M23 18h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
+       "</symbol>\n",
+       "</defs>\n",
+       "</svg>\n",
+       "<style>/* CSS stylesheet for displaying xarray objects in jupyterlab.\n",
+       " *\n",
+       " */\n",
+       "\n",
+       ":root {\n",
+       "  --xr-font-color0: var(--jp-content-font-color0, rgba(0, 0, 0, 1));\n",
+       "  --xr-font-color2: var(--jp-content-font-color2, rgba(0, 0, 0, 0.54));\n",
+       "  --xr-font-color3: var(--jp-content-font-color3, rgba(0, 0, 0, 0.38));\n",
+       "  --xr-border-color: var(--jp-border-color2, #e0e0e0);\n",
+       "  --xr-disabled-color: var(--jp-layout-color3, #bdbdbd);\n",
+       "  --xr-background-color: var(--jp-layout-color0, white);\n",
+       "  --xr-background-color-row-even: var(--jp-layout-color1, white);\n",
+       "  --xr-background-color-row-odd: var(--jp-layout-color2, #eeeeee);\n",
+       "}\n",
+       "\n",
+       ".xr-wrap {\n",
+       "  min-width: 300px;\n",
+       "  max-width: 700px;\n",
+       "}\n",
+       "\n",
+       ".xr-header {\n",
+       "  padding-top: 6px;\n",
+       "  padding-bottom: 6px;\n",
+       "  margin-bottom: 4px;\n",
+       "  border-bottom: solid 1px var(--xr-border-color);\n",
+       "}\n",
+       "\n",
+       ".xr-header > div,\n",
+       ".xr-header > ul {\n",
+       "  display: inline;\n",
+       "  margin-top: 0;\n",
+       "  margin-bottom: 0;\n",
+       "}\n",
+       "\n",
+       ".xr-obj-type,\n",
+       ".xr-array-name {\n",
+       "  margin-left: 2px;\n",
+       "  margin-right: 10px;\n",
+       "}\n",
+       "\n",
+       ".xr-obj-type {\n",
+       "  color: var(--xr-font-color2);\n",
+       "}\n",
+       "\n",
+       ".xr-sections {\n",
+       "  padding-left: 0 !important;\n",
+       "  display: grid;\n",
+       "  grid-template-columns: 150px auto auto 1fr 20px 20px;\n",
+       "}\n",
+       "\n",
+       ".xr-section-item {\n",
+       "  display: contents;\n",
+       "}\n",
+       "\n",
+       ".xr-section-item input {\n",
+       "  display: none;\n",
+       "}\n",
+       "\n",
+       ".xr-section-item input + label {\n",
+       "  color: var(--xr-disabled-color);\n",
+       "}\n",
+       "\n",
+       ".xr-section-item input:enabled + label {\n",
+       "  cursor: pointer;\n",
+       "  color: var(--xr-font-color2);\n",
+       "}\n",
+       "\n",
+       ".xr-section-item input:enabled + label:hover {\n",
+       "  color: var(--xr-font-color0);\n",
+       "}\n",
+       "\n",
+       ".xr-section-summary {\n",
+       "  grid-column: 1;\n",
+       "  color: var(--xr-font-color2);\n",
+       "  font-weight: 500;\n",
+       "}\n",
+       "\n",
+       ".xr-section-summary > span {\n",
+       "  display: inline-block;\n",
+       "  padding-left: 0.5em;\n",
+       "}\n",
+       "\n",
+       ".xr-section-summary-in:disabled + label {\n",
+       "  color: var(--xr-font-color2);\n",
+       "}\n",
+       "\n",
+       ".xr-section-summary-in + label:before {\n",
+       "  display: inline-block;\n",
+       "  content: '►';\n",
+       "  font-size: 11px;\n",
+       "  width: 15px;\n",
+       "  text-align: center;\n",
+       "}\n",
+       "\n",
+       ".xr-section-summary-in:disabled + label:before {\n",
+       "  color: var(--xr-disabled-color);\n",
+       "}\n",
+       "\n",
+       ".xr-section-summary-in:checked + label:before {\n",
+       "  content: '▼';\n",
+       "}\n",
+       "\n",
+       ".xr-section-summary-in:checked + label > span {\n",
+       "  display: none;\n",
+       "}\n",
+       "\n",
+       ".xr-section-summary,\n",
+       ".xr-section-inline-details {\n",
+       "  padding-top: 4px;\n",
+       "  padding-bottom: 4px;\n",
+       "}\n",
+       "\n",
+       ".xr-section-inline-details {\n",
+       "  grid-column: 2 / -1;\n",
+       "}\n",
+       "\n",
+       ".xr-section-details {\n",
+       "  display: none;\n",
+       "  grid-column: 1 / -1;\n",
+       "  margin-bottom: 5px;\n",
+       "}\n",
+       "\n",
+       ".xr-section-summary-in:checked ~ .xr-section-details {\n",
+       "  display: contents;\n",
+       "}\n",
+       "\n",
+       ".xr-array-wrap {\n",
+       "  grid-column: 1 / -1;\n",
+       "  display: grid;\n",
+       "  grid-template-columns: 20px auto;\n",
+       "}\n",
+       "\n",
+       ".xr-array-wrap > label {\n",
+       "  grid-column: 1;\n",
+       "  vertical-align: top;\n",
+       "}\n",
+       "\n",
+       ".xr-preview {\n",
+       "  color: var(--xr-font-color3);\n",
+       "}\n",
+       "\n",
+       ".xr-array-preview,\n",
+       ".xr-array-data {\n",
+       "  padding: 0 5px !important;\n",
+       "  grid-column: 2;\n",
+       "}\n",
+       "\n",
+       ".xr-array-data,\n",
+       ".xr-array-in:checked ~ .xr-array-preview {\n",
+       "  display: none;\n",
+       "}\n",
+       "\n",
+       ".xr-array-in:checked ~ .xr-array-data,\n",
+       ".xr-array-preview {\n",
+       "  display: inline-block;\n",
+       "}\n",
+       "\n",
+       ".xr-dim-list {\n",
+       "  display: inline-block !important;\n",
+       "  list-style: none;\n",
+       "  padding: 0 !important;\n",
+       "  margin: 0;\n",
+       "}\n",
+       "\n",
+       ".xr-dim-list li {\n",
+       "  display: inline-block;\n",
+       "  padding: 0;\n",
+       "  margin: 0;\n",
+       "}\n",
+       "\n",
+       ".xr-dim-list:before {\n",
+       "  content: '(';\n",
+       "}\n",
+       "\n",
+       ".xr-dim-list:after {\n",
+       "  content: ')';\n",
+       "}\n",
+       "\n",
+       ".xr-dim-list li:not(:last-child):after {\n",
+       "  content: ',';\n",
+       "  padding-right: 5px;\n",
+       "}\n",
+       "\n",
+       ".xr-has-index {\n",
+       "  font-weight: bold;\n",
+       "}\n",
+       "\n",
+       ".xr-var-list,\n",
+       ".xr-var-item {\n",
+       "  display: contents;\n",
+       "}\n",
+       "\n",
+       ".xr-var-item > div,\n",
+       ".xr-var-item label,\n",
+       ".xr-var-item > .xr-var-name span {\n",
+       "  background-color: var(--xr-background-color-row-even);\n",
+       "  margin-bottom: 0;\n",
+       "}\n",
+       "\n",
+       ".xr-var-item > .xr-var-name:hover span {\n",
+       "  padding-right: 5px;\n",
+       "}\n",
+       "\n",
+       ".xr-var-list > li:nth-child(odd) > div,\n",
+       ".xr-var-list > li:nth-child(odd) > label,\n",
+       ".xr-var-list > li:nth-child(odd) > .xr-var-name span {\n",
+       "  background-color: var(--xr-background-color-row-odd);\n",
+       "}\n",
+       "\n",
+       ".xr-var-name {\n",
+       "  grid-column: 1;\n",
+       "}\n",
+       "\n",
+       ".xr-var-dims {\n",
+       "  grid-column: 2;\n",
+       "}\n",
+       "\n",
+       ".xr-var-dtype {\n",
+       "  grid-column: 3;\n",
+       "  text-align: right;\n",
+       "  color: var(--xr-font-color2);\n",
+       "}\n",
+       "\n",
+       ".xr-var-preview {\n",
+       "  grid-column: 4;\n",
+       "}\n",
+       "\n",
+       ".xr-var-name,\n",
+       ".xr-var-dims,\n",
+       ".xr-var-dtype,\n",
+       ".xr-preview,\n",
+       ".xr-attrs dt {\n",
+       "  white-space: nowrap;\n",
+       "  overflow: hidden;\n",
+       "  text-overflow: ellipsis;\n",
+       "  padding-right: 10px;\n",
+       "}\n",
+       "\n",
+       ".xr-var-name:hover,\n",
+       ".xr-var-dims:hover,\n",
+       ".xr-var-dtype:hover,\n",
+       ".xr-attrs dt:hover {\n",
+       "  overflow: visible;\n",
+       "  width: auto;\n",
+       "  z-index: 1;\n",
+       "}\n",
+       "\n",
+       ".xr-var-attrs,\n",
+       ".xr-var-data {\n",
+       "  display: none;\n",
+       "  background-color: var(--xr-background-color) !important;\n",
+       "  padding-bottom: 5px !important;\n",
+       "}\n",
+       "\n",
+       ".xr-var-attrs-in:checked ~ .xr-var-attrs,\n",
+       ".xr-var-data-in:checked ~ .xr-var-data {\n",
+       "  display: block;\n",
+       "}\n",
+       "\n",
+       ".xr-var-data > table {\n",
+       "  float: right;\n",
+       "}\n",
+       "\n",
+       ".xr-var-name span,\n",
+       ".xr-var-data,\n",
+       ".xr-attrs {\n",
+       "  padding-left: 25px !important;\n",
+       "}\n",
+       "\n",
+       ".xr-attrs,\n",
+       ".xr-var-attrs,\n",
+       ".xr-var-data {\n",
+       "  grid-column: 1 / -1;\n",
+       "}\n",
+       "\n",
+       "dl.xr-attrs {\n",
+       "  padding: 0;\n",
+       "  margin: 0;\n",
+       "  display: grid;\n",
+       "  grid-template-columns: 125px auto;\n",
+       "}\n",
+       "\n",
+       ".xr-attrs dt, dd {\n",
+       "  padding: 0;\n",
+       "  margin: 0;\n",
+       "  float: left;\n",
+       "  padding-right: 10px;\n",
+       "  width: auto;\n",
+       "}\n",
+       "\n",
+       ".xr-attrs dt {\n",
+       "  font-weight: normal;\n",
+       "  grid-column: 1;\n",
+       "}\n",
+       "\n",
+       ".xr-attrs dt:hover span {\n",
+       "  display: inline-block;\n",
+       "  background: var(--xr-background-color);\n",
+       "  padding-right: 10px;\n",
+       "}\n",
+       "\n",
+       ".xr-attrs dd {\n",
+       "  grid-column: 2;\n",
+       "  white-space: pre-wrap;\n",
+       "  word-break: break-all;\n",
+       "}\n",
+       "\n",
+       ".xr-icon-database,\n",
+       ".xr-icon-file-text2 {\n",
+       "  display: inline-block;\n",
+       "  vertical-align: middle;\n",
+       "  width: 1em;\n",
+       "  height: 1.5em !important;\n",
+       "  stroke-width: 0;\n",
+       "  stroke: currentColor;\n",
+       "  fill: currentColor;\n",
+       "}\n",
+       "</style><div class='xr-wrap'><div class='xr-header'><div class='xr-obj-type'>xarray.Dataset</div></div><ul class='xr-sections'><li class='xr-section-item'><input id='section-cf22e0f1-e901-4086-90d9-7faa38e684f8' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-cf22e0f1-e901-4086-90d9-7faa38e684f8' class='xr-section-summary'  title='Expand/collapse section'>Dimensions:</label><div class='xr-section-inline-details'><ul class='xr-dim-list'><li><span>bnds</span>: 2</li><li><span class='xr-has-index'>lat</span>: 96</li><li><span class='xr-has-index'>lon</span>: 192</li><li><span class='xr-has-index'>time</span>: 360</li></ul></div><div class='xr-section-details'></div></li><li class='xr-section-item'><input id='section-b0ebef32-7d55-449e-9f9d-504a494c7351' class='xr-section-summary-in' type='checkbox'  checked><label for='section-b0ebef32-7d55-449e-9f9d-504a494c7351' class='xr-section-summary' >Coordinates: <span>(3)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>lat</span></div><div class='xr-var-dims'>(lat)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>-88.57 -86.72 ... 86.72 88.57</div><input id='attrs-6bdcbfb9-c2c4-407d-9c99-875718ab5d3d' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-6bdcbfb9-c2c4-407d-9c99-875718ab5d3d' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-2705f8c0-ef9e-4b47-ac06-a843bd1509d6' class='xr-var-data-in' type='checkbox'><label for='data-2705f8c0-ef9e-4b47-ac06-a843bd1509d6' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>axis :</span></dt><dd>Y</dd><dt><span>bounds :</span></dt><dd>lat_bnds</dd><dt><span>long_name :</span></dt><dd>latitude</dd><dt><span>standard_name :</span></dt><dd>latitude</dd><dt><span>units :</span></dt><dd>degrees_north</dd></dl></div><pre class='xr-var-data'>array([-88.572169, -86.722531, -84.86197 , -82.998942, -81.134977, -79.270559,\n",
+       "       -77.405888, -75.541061, -73.676132, -71.811132, -69.946081, -68.080991,\n",
+       "       -66.215872, -64.35073 , -62.485571, -60.620396, -58.755209, -56.890013,\n",
+       "       -55.024808, -53.159595, -51.294377, -49.429154, -47.563926, -45.698694,\n",
+       "       -43.833459, -41.96822 , -40.102979, -38.237736, -36.372491, -34.507243,\n",
+       "       -32.641994, -30.776744, -28.911492, -27.046239, -25.180986, -23.315731,\n",
+       "       -21.450475, -19.585219, -17.719962, -15.854704, -13.989446, -12.124187,\n",
+       "       -10.258928,  -8.393669,  -6.528409,  -4.66315 ,  -2.79789 ,  -0.93263 ,\n",
+       "         0.93263 ,   2.79789 ,   4.66315 ,   6.528409,   8.393669,  10.258928,\n",
+       "        12.124187,  13.989446,  15.854704,  17.719962,  19.585219,  21.450475,\n",
+       "        23.315731,  25.180986,  27.046239,  28.911492,  30.776744,  32.641994,\n",
+       "        34.507243,  36.372491,  38.237736,  40.102979,  41.96822 ,  43.833459,\n",
+       "        45.698694,  47.563926,  49.429154,  51.294377,  53.159595,  55.024808,\n",
+       "        56.890013,  58.755209,  60.620396,  62.485571,  64.35073 ,  66.215872,\n",
+       "        68.080991,  69.946081,  71.811132,  73.676132,  75.541061,  77.405888,\n",
+       "        79.270559,  81.134977,  82.998942,  84.86197 ,  86.722531,  88.572169])</pre></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>lon</span></div><div class='xr-var-dims'>(lon)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>0.0 1.875 3.75 ... 356.2 358.1</div><input id='attrs-c5fe4eb7-0f1d-4c70-bee9-585a223790d8' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-c5fe4eb7-0f1d-4c70-bee9-585a223790d8' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-eac6b863-de29-46f6-afe2-0ef8164de635' class='xr-var-data-in' type='checkbox'><label for='data-eac6b863-de29-46f6-afe2-0ef8164de635' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>axis :</span></dt><dd>X</dd><dt><span>bounds :</span></dt><dd>lon_bnds</dd><dt><span>long_name :</span></dt><dd>longitude</dd><dt><span>standard_name :</span></dt><dd>longitude</dd><dt><span>units :</span></dt><dd>degrees_east</dd></dl></div><pre class='xr-var-data'>array([  0.   ,   1.875,   3.75 ,   5.625,   7.5  ,   9.375,  11.25 ,  13.125,\n",
+       "        15.   ,  16.875,  18.75 ,  20.625,  22.5  ,  24.375,  26.25 ,  28.125,\n",
+       "        30.   ,  31.875,  33.75 ,  35.625,  37.5  ,  39.375,  41.25 ,  43.125,\n",
+       "        45.   ,  46.875,  48.75 ,  50.625,  52.5  ,  54.375,  56.25 ,  58.125,\n",
+       "        60.   ,  61.875,  63.75 ,  65.625,  67.5  ,  69.375,  71.25 ,  73.125,\n",
+       "        75.   ,  76.875,  78.75 ,  80.625,  82.5  ,  84.375,  86.25 ,  88.125,\n",
+       "        90.   ,  91.875,  93.75 ,  95.625,  97.5  ,  99.375, 101.25 , 103.125,\n",
+       "       105.   , 106.875, 108.75 , 110.625, 112.5  , 114.375, 116.25 , 118.125,\n",
+       "       120.   , 121.875, 123.75 , 125.625, 127.5  , 129.375, 131.25 , 133.125,\n",
+       "       135.   , 136.875, 138.75 , 140.625, 142.5  , 144.375, 146.25 , 148.125,\n",
+       "       150.   , 151.875, 153.75 , 155.625, 157.5  , 159.375, 161.25 , 163.125,\n",
+       "       165.   , 166.875, 168.75 , 170.625, 172.5  , 174.375, 176.25 , 178.125,\n",
+       "       180.   , 181.875, 183.75 , 185.625, 187.5  , 189.375, 191.25 , 193.125,\n",
+       "       195.   , 196.875, 198.75 , 200.625, 202.5  , 204.375, 206.25 , 208.125,\n",
+       "       210.   , 211.875, 213.75 , 215.625, 217.5  , 219.375, 221.25 , 223.125,\n",
+       "       225.   , 226.875, 228.75 , 230.625, 232.5  , 234.375, 236.25 , 238.125,\n",
+       "       240.   , 241.875, 243.75 , 245.625, 247.5  , 249.375, 251.25 , 253.125,\n",
+       "       255.   , 256.875, 258.75 , 260.625, 262.5  , 264.375, 266.25 , 268.125,\n",
+       "       270.   , 271.875, 273.75 , 275.625, 277.5  , 279.375, 281.25 , 283.125,\n",
+       "       285.   , 286.875, 288.75 , 290.625, 292.5  , 294.375, 296.25 , 298.125,\n",
+       "       300.   , 301.875, 303.75 , 305.625, 307.5  , 309.375, 311.25 , 313.125,\n",
+       "       315.   , 316.875, 318.75 , 320.625, 322.5  , 324.375, 326.25 , 328.125,\n",
+       "       330.   , 331.875, 333.75 , 335.625, 337.5  , 339.375, 341.25 , 343.125,\n",
+       "       345.   , 346.875, 348.75 , 350.625, 352.5  , 354.375, 356.25 , 358.125])</pre></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>time</span></div><div class='xr-var-dims'>(time)</div><div class='xr-var-dtype'>object</div><div class='xr-var-preview xr-preview'>0016-01-16 00:00:00 ... 0045-12-16 00:00:00</div><input id='attrs-671900c1-0da3-465d-9e5e-61ee5cf408f1' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-671900c1-0da3-465d-9e5e-61ee5cf408f1' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-8a90b3f8-8a26-482c-bb1f-94caaedfe988' class='xr-var-data-in' type='checkbox'><label for='data-8a90b3f8-8a26-482c-bb1f-94caaedfe988' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>axis :</span></dt><dd>T</dd><dt><span>bounds :</span></dt><dd>time_bnds</dd><dt><span>long_name :</span></dt><dd>time</dd><dt><span>standard_name :</span></dt><dd>time</dd></dl></div><pre class='xr-var-data'>array([cftime.Datetime360Day(0016-01-16 00:00:00),\n",
+       "       cftime.Datetime360Day(0016-02-16 00:00:00),\n",
+       "       cftime.Datetime360Day(0016-03-16 00:00:00), ...,\n",
+       "       cftime.Datetime360Day(0045-10-16 00:00:00),\n",
+       "       cftime.Datetime360Day(0045-11-16 00:00:00),\n",
+       "       cftime.Datetime360Day(0045-12-16 00:00:00)], dtype=object)</pre></li></ul></div></li><li class='xr-section-item'><input id='section-561e58a1-d4eb-4e7a-8736-24e29d687cb9' class='xr-section-summary-in' type='checkbox'  checked><label for='section-561e58a1-d4eb-4e7a-8736-24e29d687cb9' class='xr-section-summary' >Data variables: <span>(4)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span>lat_bnds</span></div><div class='xr-var-dims'>(lat, bnds)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(96, 2), meta=np.ndarray&gt;</div><input id='attrs-de2d9e02-66c4-463b-a2f1-ef7bef3291b7' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-de2d9e02-66c4-463b-a2f1-ef7bef3291b7' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-d436b60c-434b-4ff9-8873-c58c3e907265' class='xr-var-data-in' type='checkbox'><label for='data-d436b60c-434b-4ff9-8873-c58c3e907265' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><pre class='xr-var-data'><table>\n",
+       "<tr>\n",
+       "<td>\n",
+       "<table>\n",
+       "  <thead>\n",
+       "    <tr><td> </td><th> Array </th><th> Chunk </th></tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr><th> Bytes </th><td> 1.54 kB </td> <td> 1.54 kB </td></tr>\n",
+       "    <tr><th> Shape </th><td> (96, 2) </td> <td> (96, 2) </td></tr>\n",
+       "    <tr><th> Count </th><td> 2 Tasks </td><td> 1 Chunks </td></tr>\n",
+       "    <tr><th> Type </th><td> float64 </td><td> numpy.ndarray </td></tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</td>\n",
+       "<td>\n",
+       "<svg width=\"79\" height=\"170\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
+       "\n",
+       "  <!-- Horizontal lines -->\n",
+       "  <line x1=\"0\" y1=\"0\" x2=\"29\" y2=\"0\" style=\"stroke-width:2\" />\n",
+       "  <line x1=\"0\" y1=\"120\" x2=\"29\" y2=\"120\" style=\"stroke-width:2\" />\n",
+       "\n",
+       "  <!-- Vertical lines -->\n",
+       "  <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"120\" style=\"stroke-width:2\" />\n",
+       "  <line x1=\"29\" y1=\"0\" x2=\"29\" y2=\"120\" style=\"stroke-width:2\" />\n",
+       "\n",
+       "  <!-- Colored Rectangle -->\n",
+       "  <polygon points=\"0.000000,0.000000 29.261234,0.000000 29.261234,120.000000 0.000000,120.000000\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
+       "\n",
+       "  <!-- Text -->\n",
+       "  <text x=\"14.630617\" y=\"140.000000\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >2</text>\n",
+       "  <text x=\"49.261234\" y=\"60.000000\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,49.261234,60.000000)\">96</text>\n",
+       "</svg>\n",
+       "</td>\n",
+       "</tr>\n",
+       "</table></pre></li><li class='xr-var-item'><div class='xr-var-name'><span>lon_bnds</span></div><div class='xr-var-dims'>(lon, bnds)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(192, 2), meta=np.ndarray&gt;</div><input id='attrs-2b47e201-8b7c-4b65-a217-83d857fb7eb0' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-2b47e201-8b7c-4b65-a217-83d857fb7eb0' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-f0071bcd-d1e5-4dc5-aa8d-a9c8e2eac01e' class='xr-var-data-in' type='checkbox'><label for='data-f0071bcd-d1e5-4dc5-aa8d-a9c8e2eac01e' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><pre class='xr-var-data'><table>\n",
+       "<tr>\n",
+       "<td>\n",
+       "<table>\n",
+       "  <thead>\n",
+       "    <tr><td> </td><th> Array </th><th> Chunk </th></tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr><th> Bytes </th><td> 3.07 kB </td> <td> 3.07 kB </td></tr>\n",
+       "    <tr><th> Shape </th><td> (192, 2) </td> <td> (192, 2) </td></tr>\n",
+       "    <tr><th> Count </th><td> 2 Tasks </td><td> 1 Chunks </td></tr>\n",
+       "    <tr><th> Type </th><td> float64 </td><td> numpy.ndarray </td></tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</td>\n",
+       "<td>\n",
+       "<svg width=\"75\" height=\"170\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
+       "\n",
+       "  <!-- Horizontal lines -->\n",
+       "  <line x1=\"0\" y1=\"0\" x2=\"25\" y2=\"0\" style=\"stroke-width:2\" />\n",
+       "  <line x1=\"0\" y1=\"120\" x2=\"25\" y2=\"120\" style=\"stroke-width:2\" />\n",
+       "\n",
+       "  <!-- Vertical lines -->\n",
+       "  <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"120\" style=\"stroke-width:2\" />\n",
+       "  <line x1=\"25\" y1=\"0\" x2=\"25\" y2=\"120\" style=\"stroke-width:2\" />\n",
+       "\n",
+       "  <!-- Colored Rectangle -->\n",
+       "  <polygon points=\"0.000000,0.000000 25.609134,0.000000 25.609134,120.000000 0.000000,120.000000\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
+       "\n",
+       "  <!-- Text -->\n",
+       "  <text x=\"12.804567\" y=\"140.000000\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >2</text>\n",
+       "  <text x=\"45.609134\" y=\"60.000000\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,45.609134,60.000000)\">192</text>\n",
+       "</svg>\n",
+       "</td>\n",
+       "</tr>\n",
+       "</table></pre></li><li class='xr-var-item'><div class='xr-var-name'><span>pr</span></div><div class='xr-var-dims'>(time, lat, lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(360, 96, 192), meta=np.ndarray&gt;</div><input id='attrs-839e6f30-2711-4d00-92ff-f0945d4389dd' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-839e6f30-2711-4d00-92ff-f0945d4389dd' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-cf8ea54f-89d6-49f6-acd9-8b92a59c78a0' class='xr-var-data-in' type='checkbox'><label for='data-cf8ea54f-89d6-49f6-acd9-8b92a59c78a0' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>associated_files :</span></dt><dd>baseURL: https://www.sites.google.com/site/tracmip/ gridspecFile: gridspec_atmos_fx_ECHAM61_aquaControlTRACMIP_r0i0p0.nc areacella: areacella_fx_ECHAM61_aquaControlTRACMIP_r0i0p0.nc</dd><dt><span>cell_measures :</span></dt><dd>area: areacella</dd><dt><span>cell_methods :</span></dt><dd>time: mean</dd><dt><span>comment :</span></dt><dd>at surface; includes both liquid and solid phases from all types of clouds (both large-scale and convective)</dd><dt><span>history :</span></dt><dd>2018-02-25T12:21:01Z altered by CMOR: replaced missing value flag (-9e+33) with standard missing value (1e+20). 2018-02-25T12:21:01Z altered by CMOR: Inverted axis: lat.</dd><dt><span>long_name :</span></dt><dd>Precipitation</dd><dt><span>original_name :</span></dt><dd>pr</dd><dt><span>standard_name :</span></dt><dd>precipitation_flux</dd><dt><span>units :</span></dt><dd>kg m-2 s-1</dd></dl></div><pre class='xr-var-data'><table>\n",
+       "<tr>\n",
+       "<td>\n",
+       "<table>\n",
+       "  <thead>\n",
+       "    <tr><td> </td><th> Array </th><th> Chunk </th></tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr><th> Bytes </th><td> 26.54 MB </td> <td> 26.54 MB </td></tr>\n",
+       "    <tr><th> Shape </th><td> (360, 96, 192) </td> <td> (360, 96, 192) </td></tr>\n",
+       "    <tr><th> Count </th><td> 2 Tasks </td><td> 1 Chunks </td></tr>\n",
+       "    <tr><th> Type </th><td> float32 </td><td> numpy.ndarray </td></tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</td>\n",
+       "<td>\n",
+       "<svg width=\"194\" height=\"163\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
+       "\n",
+       "  <!-- Horizontal lines -->\n",
+       "  <line x1=\"10\" y1=\"0\" x2=\"80\" y2=\"70\" style=\"stroke-width:2\" />\n",
+       "  <line x1=\"10\" y1=\"43\" x2=\"80\" y2=\"113\" style=\"stroke-width:2\" />\n",
+       "\n",
+       "  <!-- Vertical lines -->\n",
+       "  <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"43\" style=\"stroke-width:2\" />\n",
+       "  <line x1=\"80\" y1=\"70\" x2=\"80\" y2=\"113\" style=\"stroke-width:2\" />\n",
+       "\n",
+       "  <!-- Colored Rectangle -->\n",
+       "  <polygon points=\"10.000000,0.000000 80.588235,70.588235 80.588235,113.723911 10.000000,43.135675\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
+       "\n",
+       "  <!-- Horizontal lines -->\n",
+       "  <line x1=\"10\" y1=\"0\" x2=\"74\" y2=\"0\" style=\"stroke-width:2\" />\n",
+       "  <line x1=\"80\" y1=\"70\" x2=\"144\" y2=\"70\" style=\"stroke-width:2\" />\n",
+       "\n",
+       "  <!-- Vertical lines -->\n",
+       "  <line x1=\"10\" y1=\"0\" x2=\"80\" y2=\"70\" style=\"stroke-width:2\" />\n",
+       "  <line x1=\"74\" y1=\"0\" x2=\"144\" y2=\"70\" style=\"stroke-width:2\" />\n",
+       "\n",
+       "  <!-- Colored Rectangle -->\n",
+       "  <polygon points=\"10.000000,0.000000 74.000000,0.000000 144.588235,70.588235 80.588235,70.588235\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
+       "\n",
+       "  <!-- Horizontal lines -->\n",
+       "  <line x1=\"80\" y1=\"70\" x2=\"144\" y2=\"70\" style=\"stroke-width:2\" />\n",
+       "  <line x1=\"80\" y1=\"113\" x2=\"144\" y2=\"113\" style=\"stroke-width:2\" />\n",
+       "\n",
+       "  <!-- Vertical lines -->\n",
+       "  <line x1=\"80\" y1=\"70\" x2=\"80\" y2=\"113\" style=\"stroke-width:2\" />\n",
+       "  <line x1=\"144\" y1=\"70\" x2=\"144\" y2=\"113\" style=\"stroke-width:2\" />\n",
+       "\n",
+       "  <!-- Colored Rectangle -->\n",
+       "  <polygon points=\"80.588235,70.588235 144.588235,70.588235 144.588235,113.723911 80.588235,113.723911\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
+       "\n",
+       "  <!-- Text -->\n",
+       "  <text x=\"112.588235\" y=\"133.723911\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >192</text>\n",
+       "  <text x=\"164.588235\" y=\"92.156073\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,164.588235,92.156073)\">96</text>\n",
+       "  <text x=\"35.294118\" y=\"98.429793\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,35.294118,98.429793)\">360</text>\n",
+       "</svg>\n",
+       "</td>\n",
+       "</tr>\n",
+       "</table></pre></li><li class='xr-var-item'><div class='xr-var-name'><span>time_bnds</span></div><div class='xr-var-dims'>(time, bnds)</div><div class='xr-var-dtype'>object</div><div class='xr-var-preview xr-preview'>dask.array&lt;chunksize=(360, 2), meta=np.ndarray&gt;</div><input id='attrs-b9c3d8e8-75f1-4532-b850-821193a61236' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-b9c3d8e8-75f1-4532-b850-821193a61236' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-51ac5365-c498-4d35-87a7-99ab923a2479' class='xr-var-data-in' type='checkbox'><label for='data-51ac5365-c498-4d35-87a7-99ab923a2479' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><pre class='xr-var-data'><table>\n",
+       "<tr>\n",
+       "<td>\n",
+       "<table>\n",
+       "  <thead>\n",
+       "    <tr><td> </td><th> Array </th><th> Chunk </th></tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr><th> Bytes </th><td> 5.76 kB </td> <td> 5.76 kB </td></tr>\n",
+       "    <tr><th> Shape </th><td> (360, 2) </td> <td> (360, 2) </td></tr>\n",
+       "    <tr><th> Count </th><td> 2 Tasks </td><td> 1 Chunks </td></tr>\n",
+       "    <tr><th> Type </th><td> object </td><td> numpy.ndarray </td></tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</td>\n",
+       "<td>\n",
+       "<svg width=\"75\" height=\"170\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
+       "\n",
+       "  <!-- Horizontal lines -->\n",
+       "  <line x1=\"0\" y1=\"0\" x2=\"25\" y2=\"0\" style=\"stroke-width:2\" />\n",
+       "  <line x1=\"0\" y1=\"120\" x2=\"25\" y2=\"120\" style=\"stroke-width:2\" />\n",
+       "\n",
+       "  <!-- Vertical lines -->\n",
+       "  <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"120\" style=\"stroke-width:2\" />\n",
+       "  <line x1=\"25\" y1=\"0\" x2=\"25\" y2=\"120\" style=\"stroke-width:2\" />\n",
+       "\n",
+       "  <!-- Colored Rectangle -->\n",
+       "  <polygon points=\"0.000000,0.000000 25.412617,0.000000 25.412617,120.000000 0.000000,120.000000\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
+       "\n",
+       "  <!-- Text -->\n",
+       "  <text x=\"12.706308\" y=\"140.000000\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >2</text>\n",
+       "  <text x=\"45.412617\" y=\"60.000000\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,45.412617,60.000000)\">360</text>\n",
+       "</svg>\n",
+       "</td>\n",
+       "</tr>\n",
+       "</table></pre></li></ul></div></li><li class='xr-section-item'><input id='section-35b1e177-36b1-4cf6-9cf8-af2f9f7f0f07' class='xr-section-summary-in' type='checkbox'  ><label for='section-35b1e177-36b1-4cf6-9cf8-af2f9f7f0f07' class='xr-section-summary' >Attributes: <span>(30)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><dl class='xr-attrs'><dt><span>Conventions :</span></dt><dd>CF-1.4</dd><dt><span>branch_time :</span></dt><dd>0.0</dd><dt><span>cmor_version :</span></dt><dd>2.9.1</dd><dt><span>comment :</span></dt><dd>aqua planet control of TRACMIP; for TRACMIP see Voigt et al., 2016, The Tropical Rain belts with an Annual cycle and a Continent Model Intercomparison Project: TRACMIP, 9, 1868–1891, doi:10.1002/2016MS000748</dd><dt><span>contact :</span></dt><dd>aiko@ldeo.columbia.edu; aiko.voigt@kit.edu</dd><dt><span>creation_date :</span></dt><dd>2018-02-25T12:21:01Z</dd><dt><span>experiment :</span></dt><dd>aqua planet control of TRACMIP</dd><dt><span>experiment_id :</span></dt><dd>aquaControlTRACMIP</dd><dt><span>forcing :</span></dt><dd>CTRL</dd><dt><span>frequency :</span></dt><dd>mon</dd><dt><span>history :</span></dt><dd>N/A 2018-02-25T12:21:01Z CMOR rewrote data to comply with CF standards and TRACMIP requirements.</dd><dt><span>initialization_method :</span></dt><dd>1</dd><dt><span>institute_id :</span></dt><dd>LDEO</dd><dt><span>institution :</span></dt><dd>Lamont-Doherty Earth Observatory, Columbia University; Karlsruhe Institute of Technology</dd><dt><span>model_id :</span></dt><dd>ECHAM61</dd><dt><span>modeling_realm :</span></dt><dd>atmos</dd><dt><span>parent_experiment :</span></dt><dd>N/A</dd><dt><span>parent_experiment_id :</span></dt><dd>N/A</dd><dt><span>parent_experiment_rip :</span></dt><dd>N/A</dd><dt><span>physics_version :</span></dt><dd>1</dd><dt><span>product :</span></dt><dd>output</dd><dt><span>project_id :</span></dt><dd>TRACMIP</dd><dt><span>realization :</span></dt><dd>1</dd><dt><span>references :</span></dt><dd>ECHAM6.1: Stevens et al., 2013, Atmospheric component of the MPI-M Earth System Model: ECHAM6, JAMES, 5, 146-172, doi:10.1002/jame.2015;</dd><dt><span>source :</span></dt><dd>ECHAM61, 2013, T63, 47 levels;</dd><dt><span>table_id :</span></dt><dd>Table Amon (11 September 2017) b0abd1a83fe45ef2ed9e415b249165bd</dd><dt><span>title :</span></dt><dd>ECHAM61 model output prepared for TRACMIP aqua planet control of TRACMIP</dd><dt><span>tracking_id :</span></dt><dd>a6042360-356a-4d4e-8357-9699f6c18da1</dd><dt><span>intake_esm_varname :</span></dt><dd>pr</dd><dt><span>intake_esm_dataset_key :</span></dt><dd>ECHAM61.aquaControl.Amon</dd></dl></div></li></ul></div></div>"
+      ],
+      "text/plain": [
+       "<xarray.Dataset>\n",
+       "Dimensions:    (bnds: 2, lat: 96, lon: 192, time: 360)\n",
+       "Coordinates:\n",
+       "  * lat        (lat) float64 -88.57 -86.72 -84.86 -83.0 ... 84.86 86.72 88.57\n",
+       "  * lon        (lon) float64 0.0 1.875 3.75 5.625 ... 352.5 354.4 356.2 358.1\n",
+       "  * time       (time) object 0016-01-16 00:00:00 ... 0045-12-16 00:00:00\n",
+       "Dimensions without coordinates: bnds\n",
+       "Data variables:\n",
+       "    lat_bnds   (lat, bnds) float64 dask.array<chunksize=(96, 2), meta=np.ndarray>\n",
+       "    lon_bnds   (lon, bnds) float64 dask.array<chunksize=(192, 2), meta=np.ndarray>\n",
+       "    pr         (time, lat, lon) float32 dask.array<chunksize=(360, 96, 192), meta=np.ndarray>\n",
+       "    time_bnds  (time, bnds) object dask.array<chunksize=(360, 2), meta=np.ndarray>\n",
+       "Attributes:\n",
+       "    Conventions:             CF-1.4\n",
+       "    branch_time:             0.0\n",
+       "    cmor_version:            2.9.1\n",
+       "    comment:                 aqua planet control of TRACMIP; for TRACMIP see ...\n",
+       "    contact:                 aiko@ldeo.columbia.edu; aiko.voigt@kit.edu\n",
+       "    creation_date:           2018-02-25T12:21:01Z\n",
+       "    experiment:              aqua planet control of TRACMIP\n",
+       "    experiment_id:           aquaControlTRACMIP\n",
+       "    forcing:                 CTRL\n",
+       "    frequency:               mon\n",
+       "    history:                 N/A 2018-02-25T12:21:01Z CMOR rewrote data to co...\n",
+       "    initialization_method:   1\n",
+       "    institute_id:            LDEO\n",
+       "    institution:             Lamont-Doherty Earth Observatory, Columbia Unive...\n",
+       "    model_id:                ECHAM61\n",
+       "    modeling_realm:          atmos\n",
+       "    parent_experiment:       N/A\n",
+       "    parent_experiment_id:    N/A\n",
+       "    parent_experiment_rip:   N/A\n",
+       "    physics_version:         1\n",
+       "    product:                 output\n",
+       "    project_id:              TRACMIP\n",
+       "    realization:             1\n",
+       "    references:              ECHAM6.1: Stevens et al., 2013, Atmospheric comp...\n",
+       "    source:                  ECHAM61, 2013, T63, 47 levels;\n",
+       "    table_id:                Table Amon (11 September 2017) b0abd1a83fe45ef2e...\n",
+       "    title:                   ECHAM61 model output prepared for TRACMIP aqua p...\n",
+       "    tracking_id:             a6042360-356a-4d4e-8357-9699f6c18da1\n",
+       "    intake_esm_varname:      pr\n",
+       "    intake_esm_dataset_key:  ECHAM61.aquaControl.Amon"
+      ]
+     },
+     "execution_count": 14,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "ds_dict2['ECHAM61.aquaControl.Amon']"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Plot zonal-mean time-mean precip for last 20 years for ECHAM61 model using the dictionaries from the two approaches"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 15,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "import matplotlib.pyplot as plt"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 16,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAEWCAYAAABsY4yMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOydd3iUVfbHPyeNNEhCQg019N6CFBGwLvby07XXXVn72tZdXVQsa0VXsbs2VFRcRbGujSZNei9SAyGBhEB6Qsqc3x8zmXeAlMlkJjMZ7ud53if3fd/73ntmknznzrnnniuqisFgMBiCjxB/G2AwGAwG32AE3mAwGIIUI/AGg8EQpBiBNxgMhiDFCLzBYDAEKUbgDQaDIUgxAm8wGOqFiFwnIgv8bYehbozAG45BRHaJSImIFLocL7vcbycib4tIpogUiMhmEXlERGIc91VEuh/V5mQR+fCoayIiO0RkYzU2zHW0M+io6186ro93uZYiIt84bDkgIs+43LtNRJaLyGERea+h701jUdd73IB2uzjevzBv2WoIXIzAG2riXFWNdTluAxCRlsBiIAoYparNgdOBeKBbPfsYC7QGUkRkeDX3fweuqToRkURgJJDtci0C+AmYDbQFOgCuHyQZwOPAO/W0zW94+T32pH8j/kGCEXhDfbkbKACuUtVdAKq6R1X/qqpr69nWtcAs4DtH+WimA5eKSKjj/HLgC6DMpc51QIaqPq+qRapa6mqHqs5U1S+BnHrahoicLSKrRCRfRPaIyOSj7l8tImkikiMi/3R88znNce89EXncpe54EUl3Of+HiGx3jM43isiFLk3X+R6LyGgRWSYieY6fo13anisij4nIQkf7P4pIkuP2fMfPXMc3s1EOl8tCEfm3iBwEJotInIi8LyLZjtc4SUSMXjQxzC/MUF9OA2aqqq0hjYhINHAxdhGfDlzmGI27kgFsBM5wnF8DvH9UnZHALhH53uGemSsiAxpimwtFjj7jgbOBm0XkAof9fYHXgKuB9kAi9m8P7rIdOAmIAx4BPhSRdo57tb7HjhH+t8BUR7/PA986vuFUcQVwPfZvSBHAvY7rYx0/4x3fzBY7zkcAOxz1/wW85LAtBRjneB+ur8frMwQARuANNfGliOS6HDc6ricCmW48v9L1eeAfR92/CDgM/Ah8A4RhF9GjeR+4RkR6YRelxUfd7wBchl3s2mMXvlnVfFjUG1Wdq6rrVNXmGDl/jF3swP7h9I2qzlfVw8CDgNsfeqr6X1XNcLQ9A9gKnOC4Xdd7fDawVVU/UNUKVf0Y2Ayc61LnXVX9XVVLgE+BwXWYlKGqL6lqBfZvSJcC96tqgeNbxHPYP8wMTQgj8IaauEBV412O/ziu5wDtanvQwVDX54Gnjrp/LfCpQ6AOAzOp3k0zEzgFuB34oJr7JcACVf1eVcuAKdgFso8bNtaKiIwQkTkON0UecBNQ5epoD+ypqquqRdTDDSQi14jIapcPwP4ubdf1HrcH0o66lgYku5zvcykXA7F1mLTHpZyEfdTv2sfR7RuaAEbgDfXlZ+DChvhjRaQDdtG+SkT2icg+7CPis1x8xQCoajHwPXAz1Qv8WsBXKVE/Ar4COqpqHPA6II57mUDHqooOl5Ori6QIiHY5b+tStzPwH+A2INHxAbjepe263uMMoPNR1zoBe914TTW9V67XDwDlR/XhbvuGAMIIvKG+PA+0AKY5hAoRSRaR50VkoJttXI09QqYXdtfBYKAnkI59IvVoHgDGVU04HsWHwEgROc0xGXsndoHa5LAtTEQigVAgVEQiXaNEjg65PIrmwEFVLRWRE7D7tav4DDhHRMY43EGPcuT/02rsH1gtRaStw64qYrALarbDhuuxj+CrqOs9/g7oKSJXOF7fpUBf7K6uusjG7kpKqamCqlZid+v8S0SaO2y4myOjkwxNACPwhpr4Wo6Mg/8CQFUPAqOxj/B+E5EC4BcgD9jmZtvXAq+q6j7XA/sI+Rg3jcNXXe3CGlXdAlzlePYQcD5wnsNdAzAJuxvnH456JY5rVd8kCoF1Ndh5C/Co4zU+hF30qvrdANyKfZSf6eg73eXZD4A1wC7s8wwzXJ7diN2nvRjYDwwAFrrcr/U9VtUc4BzgHuzunPuAc1T1QA2vw/X9KsY+ibrQ4R4aWUPV27F/C9kBLHC8ziYTamqwI2bDD8PxiohcBfRT1fu91N4u4M+q+rM32jMYGopZ0GA4blFV43IwBDXGRWMwGAxBinHRGAwGQ5BiRvAGg8EQpASUDz4pKUm7dOnibzMMBoOhybBixYoDqtqqunsBJfBdunRh+fLl/jbDYDAYmgwicvSqZifGRWMwGAxBihF4g8FgCFKMwBsMBkOQElA+eIPB0LQoLy8nPT2d0tJSf5sS9ERGRtKhQwfCw8PdfsYIvMFg8Jj09HSaN29Oly5dEJG6HzB4hKqSk5NDeno6Xbt2dfs546IxGAweU1paSmJiohF3HyMiJCYm1vubkhF4g8EP7Ph+C4e2H/S3GV7BiHvj4Mn7bATeYGhk5l7wb1LO6g09upO9Icvf5hiCGCPwBkMjkr5gF+Nn3Q1Agh5iy3Pu7NFhaMrExta1WyJs3ryZUaNG0axZM6ZMmeK1vo3AGwyNSPql9xxxblux0k+WGGqjoqKiUftr2bIlU6dO5d577/Vqu0bgDYZGYuUzPzMyY+YR11qk1bSZlMFdLrjgAoYNG0a/fv148803nddjY2O55557GDp0KKeeeirZ2dkAjB8/njvvvJPRo0fTv39/li5dCsDkyZOZOHEiZ5xxBtdccw1paWmceuqpDBw4kFNPPZXdu3cD8PXXXzNixAiGDBnCaaedxv79+wEoLCzk+uuvZ8CAAQwcOJDPP//cacs///lPBg0axMiRI531XWndujXDhw+vVwikO/hU4EXkryKyXkQ2iMiddT9hMAQn5cXlxD14xxHX/sGTPFTxMMGSsVvEd0dtvPPOO6xYsYLly5czdepUcnJyACgqKmLo0KGsXLmScePG8cgjjzifKSoqYtGiRbz66qvccMMNzusrVqxg1qxZfPTRR9x2221cc801rF27liuvvJI77rD//saMGcOSJUtYtWoVl112Gc888wwAjz32GHFxcaxbt461a9dyyimnOPsaOXIka9asYezYsfznP//x5tteKz6LgxeR/sCNwAlAGfA/EflWVbf6qk+DIVBZeMXLjC/bBEA+zRkW+zvbCttCEaSlgUmi6jlTp07liy++AGDPnj1s3bqVxMREQkJCuPTSSwG46qqruOiii5zPXH65fW/3sWPHkp+fT25uLgDnnXceUVFRACxevJiZM+3fuK6++mruu+8+wB77f+mll5KZmUlZWZkzLv3nn3/mk08+cfaRkJAAQEREBOeccw4Aw4YN46effvLNG1ENvhzB9wGWqGqxqlYA84ALfdifwRCwpHz7krO88uyH6Di8rfN89Wp/WBQczJ07l59//pnFixezZs0ahgwZUmOsuGuY4dEhh1XnMTExNfZVVef222/ntttuY926dbzxxhvO/lS12lDG8PBw5/XQ0NBG9e/7UuDXA2NFJFFEooGzgI5HVxKRiSKyXESWV/nIDIZgomBfEckV9oyuFYQy6sNbGTzYur9mjZ8M8zKqvjtqIi8vj4SEBKKjo9m8eTNLlixx3rPZbHz22WcAfPTRR4wZM8Z5b8aMGQAsWLCAuLg44uLijml79OjRzhH59OnTnc/n5eWRnJwMwLRp05z1zzjjDF5++WXn+aFDh+r7Fnodn7loVHWTiDwN/AQUAmuAYz66VPVN4E2A1NTUIPFGGgwWv++N4USK6M42Tuy4hzfio44Q+LUrKzBZQzxjwoQJvP766wwcOJBevXoxcuRI572YmBg2bNjAsGHDiIuLc4o62N0no0ePJj8/n3feeafatqdOncoNN9zAs88+S6tWrXj33XcB+2TsJZdcQnJyMiNHjmTnzp0ATJo0iVtvvZX+/fsTGhrKww8/fIRbqDb27dtHamoq+fn5hISE8MILL7Bx40ZatGjh6VsDNOKerCLyBJCuqq/WVCc1NVXNhh+GYOOjj+DKK+3lCy+EmTNh/dwDrD35DgazmuiwMrqUb/OvkR6yadMm+vTp428zqiU2NpbCwsJjro8fP54pU6aQmprqB6saRnXvt4isUNVqX4xPhw0i0lpVs0SkE3ARMMqX/RkMgcjmzVa5Vy/7z56pLejJZ0RQDhWQl5ZLXOd4/xhoCFp8HQf/uYhsBL4GblVV/zulDIZGxlXge/e2/4yIjWBHVD/n9V1frW1kq4Kf6kbvYJ+YbYqjd0/wqcCr6kmq2ldVB6nqL77sy2AIVKJX/EpndiHYnAIPkJ1sOeJz55pQGoP3MTM7BoMPqSyr5PUdpxPJYYqJoqz9fqA5ALb+g8Dheg9ZZwTe4H1MqgKDwYdkLNlNJIcBKAxpQXzH5s57ceOsEXxSepDEShoCCiPwBoMP2TfXcsBnNO91xL0u5w9yllNK1lNeXN5odhmOD4zAGww+pHilJfD57XofcS++awLpoZ0BaEYZO7/fjCH4cCdd8PTp0xk4cCADBw5k9OjRrPHS6jcj8AaDD5HftzjLtl69j7m/t5U1is/6yfjhA4XGThfctWtX5s2bx9q1a3nwwQeZOHGiV9o1Am8w+JAWGdaoPGZIr2Pul3Qf6CxXrDMjeE8IhnTBo0ePdiYnGzlyJOnp6V55b4zAGww+pH2BJdptxh07gg/p1MFZDj1w7D9+k2PyZPdzAFc3Sp048cg6kyfX2WWwpQt+++23OfPMM+t83e5gwiQNBh+Rl5ZLa5tdtEtpRvLozsfUKTztAoZ+NJwsWjO8e2tOamwjg4BgShc8Z84c3n77bRYsWNDAd8WOGcEbDD5iz8+W/31Psx6ERoQeUye+VxtWMZS9dCDjQERjmhcUBFO64LVr1/LnP/+ZWbNmkZiYWKMd9cEIvMHgI3J/s9wzB5KOdc8AtGljlatxzTY9Jk92Pwewi7/cyZtvHlmnDhdNsKQL3r17NxdddBEffPABPXv2dPu5ujACbzD4iD1ZkSxnGIXEcLhr9QLfurVVzsqqPfe54VgmTJhARUUFAwcO5MEHH6wxXfDs2bN56KGHnPeq0gXfdNNNvP3229W2PXXqVN59910GDhzIBx98wIsvvghY6YJPOukkkpKSnPUnTZrEoUOH6N+/P4MGDWLOnDluv45HH32UnJwcbrnlFgYPHuy1XDmNli7YHUy6YEMwcdFFYHcNK9PfPswVN0QeU0cVYqNtRJYeog37+S2nB81benfjZV9i0gU3LvVNF2xG8AaDj7CySAo9Bx4r7mAPFNlQ0ZMckthIPw6uSms0+wzBj4miMRh8QEUFbHPZw6PXsSHwTgqbJULFdgDyt2XBqd19bN3xQW3pgo8XzAjeYPABaWlQ7kgt064dNG9ec93iGMsRX7yz6c20BpKbN5jx5H02I3iDwQfs/3kdk/iS7XQjtN1goG+NdQ/Ht4EsR3lPVuMY6CUiIyPJyckhMTGx2hBBg3dQVXJycoiMrN7VVxO+3rLvLuDPgALrgOtVtfogVYMhiKiY8yuPYY/a+DX/eqD6jZ0BKhOtEbwts2mN4Dt06EB6erozDYDBd0RGRtKhQ4e6K7rgM4EXkWTgDqCvqpaIyKfAZcB7vurTYHCHbbM2cHDiPyjuN5zxsx+q+wEPsG3b4SxXdO5Wa11pawXDy4GmNYIPDw93ruQ0BB6+9sGHAVEiEgZEAxk+7s9gqJODE//OCVnf0GvOa6z4+Hef9BGZsd1ZbtYnpda64cnWCD7iYNMawRsCG58JvKruBaYAu4FMIE9Vfzy6nohMFJHlIrLcfM0z+Bq1KSdkfQtAO/axeOmx6QO8QctDlsC3GFL7CD6qizWCjypsWiN4Q2DjM4EXkQTgfKAr0B6IEZGrjq6nqm+qaqqqprZq1cpX5hgMAOxbaX2JLCCWbzZ4372gNqV9qeWiaTemdoFv3s0awbcoMSN4g/fwpYvmNGCnqmarajkwExjtw/4MhjpJ/9baKWctA1m4OARv7+1wYGMWsRQBkEscLbu3rLV+fC9rBJ9QbkbwBu/hS4HfDYwUkWixx0+dCmzyYX8GQ50ULbIEfg2DKCyEdeu828e+hZZ7JjMqBQmpPXywZY9EKgmhnDCKNJqy4sbdTcgQvPjSB/8b8BmwEnuIZAhQTfo4g6HxiNhkCXwINm5nKnve/N6rfeStsgQ+t2Xt7hmAkLAQ+rY6QARldCSd7ENmeYrBO/j0L0lVHwYe9mUfBkN9aLPfEvibeAOAxd9cAq95ZwcdgIrNlsCXdqhb4AEi2yWAI8Zg/35wZKM1GBqESVVgOG4oOVhCl7JjwyK7ZixAbd5bbh+2x5pgDe3hnsC7pg0OirzwhoDAfBc0HDfs/Ho9fbEBkBbWjfiKbOLIp60tk93zd9JpfO3x6u7yY9jZrKYF3dhO0gkD3HrGdeOPLDPPavASRuANxw05sy33TEbboWSVFjD8wP8A2P3RAq8J/Jt5l7If+16gO89175kuLQ4ylJ20YT+VqzvCte59MBgMtWFcNIbjBtsqS+AP9x5E0WBrCzfbr97Z5Liw0HKxhIWBu6lDTtv5H1aQynecTcqv0+p+wGBwAyPwhuOGx5o/QyrL+BNvIeefR/w5lsAn7/COwO/caZW7dLGLvDuEtbec8GEmXYHBSxgXjeG4QBWWb4gij1RWkMrk8yEppoSyO8OJoJxuZZvI2XKAxF5JdTdWC9utABq6uTe/CkCzTpYTPjLfOOEN3sGM4A3HBWlpkJdnLyck2F0nUS2j2BJrbWW5bdrCBvfT7JNpfMeZvMRtnNlsttvPxXazBL55kRnBG7xDrQIvIqNE5BURWSsi2SKyW0S+E5FbRSSusYw0GBrKGsv9zqBB9r1QAXJ6jXJeL1na8CWt0euXcib/4zZeYZBtldvPxfWwXDRxZWYEb/AONQq8iHyPfbOOH4AJQDvs29JMAiKBWSJyXmMYaTA0lN2zt9GevYAyaJB1Xbp0cZZDMvc2uJ+YfZaPJqq/+z6axD6WwCfZsrBV2Bpsi8FQmw/+alU9cNS1QuypB1YCz4lIwxyWBkMjMfyzv7OXmRwgkZXyAWBfuaqDBvP+51ezl2QqYk9kbAP7Scq3BD4h1X2Bb9aiGXnEEUceYVRycMdBWvY0/16GhlHjCL5K3EXkNkfq3xrrGAyBTrssu48miRw6prpMaJ5+EtfyPg/wJLMqz2lQHxWlFSSX73KeJ59Uv7j6g+GWXQc3GzeNoeG4M8naFlgmIp+KyAQxO+samhhqU9pXpDnPO/+ht7Pcvr1VL6OB+41lLt1DOPZMkFkhbYhpHVOv5/OjLDdNwTYz0WpoOHUKvKpOAnoAbwPXAVtF5AkRqUcQmMHgP/L35DmFt4BYopOinffatrXq7d9Pg3LDZy+x3DP7Yur/71Hc3BrBl6SZEbyh4bgVJqmqCuxzHBVAAvCZiDzjQ9sMBq+Qu83yJOaGHenXjoiwEn3ZbA1L9FWw1NruIK9Nz3o/X9SqK1vpzgJO5EBprOeGGAwO6hR4EblDRFYAzwALgQGqejMwDPg/H9tnMDSY/O3WXr/5zY7dFvKe8BeZzhXMZRyH5q31vKONG5xFW+9+9X584QXP0pOtnMQClrY623M7DAYH7qxkTQIuUtU014uqahORGmelRKQXMMPlUgrwkKq+4JGlBoOHlOyxRvDF0cdGpowv/4kTsG/E/dva7XDFQI/6SUhf7yzHjOhf7+ddM0qalMEGb1CnwKvqQwAi0hp7/HvV9d2qWuMWfKq6BRjseDYU2At80VCDDYb6cnivJfBlzY8V+NKW7cHh8j6807OZVrUpnQqsEXzyGfUfwZuc8AZvU6fAi8i5wPNAe+z/Bp2x761an7/gU4HtR38LMBgag8p9loumPOFYF42tbTJsdpTTPVvslJEBZzGXfmxgUMRm7kt1M42kC61cTMvJ8cgMg+EI3HHRPA6MBH5W1SEicjJweT37uQz4uLobIjIRmAjQqVOnejZrMLjBAZflGonHjuBDOlqxkmH7PRvBr98grGUQaxlEWir83YMsT0lRRfyRb0gkhzbbFLjVI1sMhircEfhyVc0RkRARCVHVOSLytLsdiEgEcB5wf3X3VfVNHJtxp6amem/fNIPBQXlhKRWEEkYloW2OFfiobtYGqFGHPBP4DZZ3hn71984AkBRZyAwuA+BAdhJG4A0NxZ1xRq6IxALzgeki8iJQn2jhM4GVqmq8iga/MLXbVCIoI4GD5J51xTH3W/S2RvBxRZ65aNZb86v0r//8KgDxKS2d5QQ9aPLRGBqMOwJ/PlAC3AX8D9gOuLkRGWB351TrnjEYGoMDB0AJIZcEEjocu7q05QBrBJ9U5tkIPnPVPsD+BdRTgQ+PDiePFgCEYiMvLdezhgwGB+6sZC1S1UpVrVDVaao6VVXdmgISkWjgdGBmQw01GDwl25pjPWIis4rEnomUEQ5AvOZSklNcr/ZtFTb+u7o7ecSxmJH061Lksa2uC7HydpiZVkPDqC1dcIGI5Nd0uNO4qharaqKq5nnPZIOhfrjOsSZVk6AxJCyE/aGWmyZrdf1G8XsXpRFLES0ooLtsp3XX+uWgcaWwWaJVTjMCb2gYtWWTbK6qLYAXgH8AyUAH4O/YI2sMhoCnvKSCEXk/MJQVdJbdJFSbFxVyoyyBz91QPz985s/WDOueFv1pSDq+4ihL4It3m2SthobhThTNH1R1hMv5ayLyG/bUBQZDQHPw9wP8wAQAsmlFSEj1Sbx+7ns7ry6154W/Lqo/g6qtVT3FS60Z1vxOHobQOCiLTQSHrpdlmhG8oWG4I/CVInIl8An2WaTLgUqfWmUweIm8bdlUZQDID0+iGhc8ALtGXs7rS+3lcW45IC3CfrdG8OLpDKuDijhrBF+RZQTe0DDciaK5AvgjsN9xXOK4ZjAEPIW7LDdHQVRN8t6wvPBJ+6wRfNzoho3gtaUl8BwwAm9oGDWO4EXkcuBHVd2FPVTSYGhylKZbITSlMTVvgZdsRUqytx4u+MqySrqUWCmZOp3ZMIGX1paNIYeMD97QMGpz0XQG/isi4cAvwPfAUkdueIOhSVCe6ZJorEXNAn/ECH6vAu7NlO6es52uHAYgM6Q97bq1rOOJ2tFuPfgffyCHRPKiRzR4j1jD8U2NAq+qTwFPiUhz4DTgBuB1EdmEfcHTD2Z1qiHQ0f3WCN6WWLOLplN4Jgu4mPZkUPlbFLDRrfazZq+nq6OcEd+Pdg2wFaDi5NM584nTARjfHG5pYHuG4xt30gUXYE/z+wWAiPTFnn7gfeAPPrXOYGggkmON4KVVzSP4Nt1i6c4iAErKI1GbIiF1j+JLlln+94IuDZtgBUh0ccGbjJKGhuJOFA0iMhDo4lJ/p6oacTcEPGF5lsCHta1Z4Ju3b04BsTSnkChKyd116IjcMDVxIL2EQmKIpYiwIZ5tFOKKEXiDN3Fny753gHewb893ruOocScngyGQiCqwXDTNOtTsogHIjrBmWrPXuBdKc2fxk8SRR182kHj9eZ4Z6YLrStucHDAzXoaG4M4IfqSq9vW5JQaDD4gpsUbwMZ1rHsED5EW3h7ItAORvzgBqd7ns21cVcRNKWnRfeoyotbpbREfDfWHP06oig8TDORQfeIWYVtENb9hwXOKOwC8Wkb6q6t6sk8EQQOyiMyEU0YpsWqTULvBFCcngSOBYvLXuWMkVK6zy4MEQ5pbDs27utD1PO+z97906mZhWnb3TsOG4w50/yWnYRX4fcBh7/JiqasMdjgaDD1GF82yzKHOcFw2uvX5Fq/aw016u3FO3i2b5cqucmuqZjdWRH5FIu1K7wOfvzCF5tBF4g2e4I/DvAFcD6wCzA4GhyVBYCGUOdY+Ksrs/akM6JIMjXUFIZt0j+PiZ73Ap0SwnldRh3XA3dr4uiiMTodRR3mNmWg2e447A71bVr3xuicHgZerKA380ESnWJGtk9p4661+6fhJ/JROAbfEbAO9MVZXGJDpdRYf3mtWsBs9xR+A3i8hHwNfgWLIHqKrZxMMQ0NSVB/5oEoamOMuJudtrrbtvZQZtbXZxLySGrhN6eWRjdZTHJeFwwVOx34zgDZ7jjsBHYRf2M1yuKW7s0iQi8cBb2MMRFLhBVRd7YKfBUG+KVm/lJn4mm1a0iuwJ1D5t1P6kbs5yctkObBU2QsKqjyTe/cUK2jrK21sMYVBEqJesBluCFQxvyzYCb/Acd1ayXt+A9l8E/qeqF4tIBGDivQyNRviyRbzmWOy/MONK4MNa67fo0IJrW3zBmvwu7CCFDZkhdOxYfd3i+dYMa243L86wAiRZAi+HjMAbPKdOgReRrsDtHLmSFVWtdVWHiLQAxgLXOeqXgTOgwWDwORX7LB9NebwbTnjg974XsGaJvbx9OzUKfMwmS+DDRnpX4MNaWwIflmsE3uA57uSD/xLYBbwEPOdy1EUKkA28KyKrROQtETlms0oRmSgiy0VkebbrrJjB0EC0vk54oJvlpWHbthratSmdc6wg+HbnDPPEvBpp1t4S+GaFRuANnuOOwJeq6lRVnaOq86oON54LA4YCr6nqEKAI+96uR6Cqb6pqqqqmtnIn1MFgcJOwg9aAIaR1/QV+ew3zrPtW7KW1zZ5ItYBYupzR02MbqyOqgyXw0SVG4A2e484k64si8jDwI0dG0ays47l0IF1Vf3Ocf0Y1Am8w+IqIfGsEH97evcFD9+4g2GhPBqWr8qku9HH3FyucaYG3xw1lcA0TsZ4S07czr3ETOSSSH93NbH5s8Bh3BH4A9oVOp2AtdFLHeY2o6j4R2SMivVR1C3Aq7ibZNhi8QFSRNYKP7uTeCH5g5SqKGE0UpWyaPwQ4dhxT8qvLBGt3L0+wAvF92nELrwHQoszsbm/wHHcE/kIgxTFJWl9uB6Y7Imh2AA2JyDEY6kXzUvcTjVXRPrU9UY5lpO1LtlebFz5201JnOWKU9wU+Lg5CQsBmg/x8KC+H8HCvd2M4DnBH4NcA8UBWfRtX1dWA9/8DDAY3iKuwBD6uu3sumqS+rZ353ePIJ+f3AyT2tp6tqIBni25lDNLC//IAACAASURBVD0Zy3w6XuyFFJJHERICLVtaC7VycqBt29qfMRiqwx2Bb4N9NesyjvTBNzz5tcHgIypKK2ipBwGwISSkJLj1nIQIeyO706t0DQCZC7YfIfBr1sCnpefxKefRoQPs9tGmqYmJRuANDccdgX/Y51YYDF7m0PaDVMlyriTQMtL9XL6HWnaDDLvA563cDox03ps/36o3diyId/KLHcPtpc/SliUkksPhhVOgn/kibKg/Nf7Vi4ionRpDIqvq+MY0g8FzDh6w8TOXkcQBiI7l9Ho8W5rcDRzZgss3HxkrebTA+4rUwwsYgT3H32/bd2M8nQZPqG1YM0dEPgdmqeruqouOCdMxwLXAHOA9n1poMHjAfmnLFXwMwOhB1EvgQ3p2h2X2cniatdrJVqksnl8B2Gc8fSnwZc0TYZ+jnGli4Q2eUVsA7wSgEvhYRDJEZKOI7AC2ApcD/1bV9xrBRoOh3niwiNVJ7CBrtVPzbGsEv+PbTWw7mMCPnM79MVPp3buhVtZMZZy12KnSJBwzeEiNI3hVLQVeBV4VkXAgCShR1dzGMs5g8JSGCHzrUZbAty2yBH7vx/PpThGn8zPN41ogckdDzayZREvgOWAE3uAZbi3BU9VyVc004m5oKuS4aKKrVrpDuxM6UuZww7S27acwswCAsEWWA/7wCSc12MbaCHFJOBaaZwTe4Ble2ibYYAgskhd+ylOs4ABJ9C6fgH1BtnuERoSyO7wrbcr3sJ1uhK7KoU+bWFLSLYFvfbEPHfBARFtL4CMKjMAbPMMIvCEoSdn0LdfwPgC/5iZSH4EH+Pu4Jfz353hA+LwUYufvoJPNsRE2zel5ySAvW3wkUR0tv1JUkRF4g2d4N0uSwRAgRLik2XVNv+subfskULWJ9vbtsPtDa/S+pdUYQr24g1N1xHSybI45bATe4Bl1CryIXCQiW0UkT0TyRaRARPIbwziDwVOii6xZ1sgO9ZxlxUobHEIle37cRLOv/uu8VzTUt+4ZgBZdLYGPLzf7JBg8wx0XzTPAuaq6ydfGGAzeovlhS+Bju3gu8P9jAqf//PMR9xIv9L3At+yZhA0hBCVBD1JRUk5YlMk4Zqgf7rho9htxNzQ14iott0Z89/oLfI8e9p8b6HfE9YzQDvS60verSsMiw5gcM4U/8Rbn8jVmszODJ7gzgl8uIjOwb93nmmxsps+sMhgaQHlxOfGOiF4bQlzn+Hq30bMnTJgAy/+XSlZIG3YlDae4byrdH7+OiNgIb5tcLV90vZv16+3lfTnQrlOjdGsIItwR+BZAMXCGyzUFjMAbApLcHVaisUPSkkQPJkRF4LvvoLjwCmJir6S1r7KK1ULbtjgFfv/+Ru/eEATUKfCq6vEmHSKyCyjAnvKgQlVNxiSDz8nbkeMU+LzwJOofQ2NHBGKa+y/QrE0bq7xvn9/MMDRh3Imi6SAiX4hIlojsF5HPRaRDPfo4WVUHG3E3NBZFadYEa2EzT+Xd/7jmgDcjeIMnuDM8eRf4CmgPJANfO64ZDAFJyR5L4Eti6j/BGiiclPU5yxnGHjow/L/3+dscQxPEHR98K1V1FfT3RORON9tX4EcRUeANVX3z6AoiMhGYCNCpk5lFMjScPVE9+IUHSOIAMV0G4v1N9RqHxMgihjk2/U47kO5nawxNEXcE/oCIXAWO5Nr2VMHuLq07UVUzRKQ18JOIbFbV+a4VHKL/JkBqaqrZPMTQYLZFDmCSIzXB33ybE8ynRHW1fDTRecYJb6g/7rhobgD+iH37gUzgYse1OlHVDMfPLOAL4ATPzDQY3KchqYIDidhu1ixr8xLjhDfUH3eiaHYD9d5gW0RigBBVLXCUzwAerb+JBkP9CBaBb9nHEviEMiPwhvpT256s96nqMyLyEnZf+hGoal27HbQBvhB7/HAY8JGq/q8hxhoM7uCaC75JC3yvVlQSQig2EjWH8uJywqNNugKD+9Q2gq9KT7Dck4ZVdQfg25yqBkM1XLfsVq4liwMk0a78fqBpTt6HRoSSLUm00iwADmzMol1qsp+tMjQlatuy72tHsVhV/+t6T0Qu8alVBkMDSD30I12wb5a9I9rdgK/A5FCzNrQqtQt87pb9RuAN9cKdSdb73bxmMAQE8RWWEz6+W9Nd6ARQEG1F0hRuM5E0hvpRmw/+TOAsIFlEprrcagFU+Nowg8ETjkk01iXBzxY1jNK4NnDQUU4zE62G+lHbCD4Du/+9FFjhcnwF/MH3phl8xaHtB9kyYzXFB4r9bYrXyd1x0Fk+JC19vvOSr6lItCJpKjKMwBvqR20++DXAGhH5SFXLG9Emgw9Y8dRPVLz4CsnZq+hQuZsE4KC0ZMW1zzLm7euRkMbPlugLXBON5YclepxoLFDYPv5PPLL8LPbThnO6duRkfxtkaFK4s5K1i4g8CfQFIqsuqmqKz6wyeA21KfPOeZbx3//9mHst9SAnvfcn1sx8j5gPXqf7eX39YKF3cU00VhDZhGMkHUQM6sMc+gAwMNfPxhiaHO4I/LvAw8C/gZOB66najdgQ0JQVlvHbsFsY//vbR1w/TARFEktLtbszBuX/SsH5I9j442b6nt60ozSCJdFYFcGQMlgVVqyAmTPtWTHz8iA/Hy6p+Jjh57dn0O1jg+YbZKDhThRNlKr+AoiqpqnqZOAU35plaCilpXD9hEz6/P6l89qaFiexZcZqQooKiczaw9wRf6ecMFYziAn8j4mPJGOz+dFoL1CWaa1yKmve9AW+KacMLtxXyPzLX2Ne/PmcMNzGk0/CO+/A55/D3J/KuHDO7Qy+czy7m/Vg7oSnKDlY4m+Tgw53BL5UREKArSJym4hcCLT2sV2GBqAKN98MHy3szIV8wWEiWJByDb33/ESvPw4iPDqc6KRoxi95is0z1jIqbDmLOJGFC+GDD/xtfcOwZVkj+MqEpu6Bt0bwYZRDRoZ/jXETtSmL7vqUguRejP3kFsbnf8VpHLlx+bl8TZIjZ2Hniu2M/+F+dnQax76VTeM1NhXcEfg7gWjgDmAYcBVwjS+NMjSMV16B996zlxdwEm/9ZTknbn2PZi2aHVN3wB/78Nd7LE/dffdBblP29ea4JKJJbPoj+MQEG/toQzkRbMxLpqywzN8m1crOH35nZaszGP3CpbSzWWJ9Y8g7XHMNvPkmzJgBt77cl/n9biaPOGedfkXL0OHD2ThtmT9MD05UtdYDuMSda944hg0bpoaGMXeuamioqn0cr3rttao2W+3PFBSoduhgPXPXLaWNYqsveOjs5fon/qN/50md9c/f/G2OV9gf0sb5y8lYusff5tTImld+1XxirT8k0P0hbXTuRS/qoR0Hq32mOKdY55wzRcux/miLidQl93/ZyNY3XYDlWpN+13TDWQFWunPNG4cR+IaRsSxdfw0fr93YqqA6fLhqSYl7z376qapQqdfxju6lnW6esdq3xvqIs8+29GXWLH9b4x02Rw5yvqgN05b525xqOVrcKwjRuYPu0Ny0XLeeX/H0T3pQEpzPFxGlmz9Z5WOrg4PaBL5GF42InOnIJJksIlNdjvcwK1kDkrTz72BM+VyWMZyL439i5kyIjKz7OYCLL4ZPO/2Nd7mB9mRy4L6nfWusj3BNFZzY9F3wABTGWKE0RTsCb6Z17asL6HrrmTSnEICskDb8/sFSxq1+kbhOcXU8bWfofaeR98NvpIV1AyCaEmKuvIADm7J9ZvfxgFnJGiQse/R7RmbMBCCBXP75cDgd6rE1ugj0f+oq5/mwtJnk7jzkbTN9TrDkgnelJM4KpSndFVixkls+XXOMuBfMmkOfq4bVu60up/egctY35NECgA6VaXx+zruUm2WWHlOjwKvqGlWdBnRT1Wkux0xVbXr/+UFMaW4prR+73Xn+a/frGHzn+Hq30/vyIWyMtv9jRnKYNfdN95aJjUaw5IJ3xTVdQWUApSsoKIAn78qiHHuO+ipx73ZOH4/bTDmrN1senE45YdzDFG7a8TfuvddbFh9/1Oai+dRRXCUia48+Gsk+gxssufBpOldsByBX4un9pefulQPn/clZbvvNW6it6WyTW15SwYrcFJaRyrecRXxc07G9NqStJfCSFRgCrwp/+QtMyzidIaxidshp5M/8pUHiXsUJj57D6/ds43nuAYSpU+GHHxpu83FJTc55oJ3jZ+fqjpqeq6adUGAV8E1ddc0ka/3Z9cs2LaGZc3Jq3uWvNai93F2HtJhIZ3sbP1juJUt9z/51+512H5BEf5vjNRbc/KHzdS3s+Ed/m6Oqqm+8cUSwjH74oXfbt9lUzz/faj85WfXQIe/2ESzgySSrqmY6fqYBh7HvzjQQOOy45i5/xdodyuBlMq/6G5EcBmBjdConvndjg9qL6xzPiq4XO8+zn3q7ltqBRf4OywGfFx4k/hkgqos1go/O9/8Ifu1auMNlw84bb4Qrr/RuHyL2mPkqN9u+vRW8d9FX3u3kOKDOhU4i8mdgKXARcDGwRERucKdxEekAnA281RAjDdWz4b1ljMz8wnmuL7/ilfS4sX/9s7M8aMNHTWYJuWuiscJmQRJCAzTvYU2ytijx7ySrrcLG76ffSu/DqwEYMABefNE3fbVuDW+8Ab3ZxCJGc+ec8/ntn0bk60VNQ/uqA9gCJLqcJwJb6nrOUfcz7Ktfx1ODiwaYiD1aZ3mnTp18/nUmmFje8nTnd9hFHS7xWru2SpvuDO/ubHvBTR94rW1fsvhvnzttXtL2PH+b4zWyN2Y5X1e6JPvVlvnXve2Mc/93yN26aZPv+5zX9Vrn698f0qbGRVPHK3jionEhHShwOS8A9tT1kIicA2Sp6oo6PmDeVNVUVU1t1apVbVUNLix7dSnDDv4EQAWhtHnzMa+1LSHCrpOtL2lRM97zWtu+5PBua3R7OC540iW17JFIz5BtxFJAB03n8GH/2JG78xC9p/0DgFBsDBoVTe/evu93wE/Psy+kHQCtbftZc/6Dvu80SHBH4PcCv4nIZBF5GFgCbBORu0Xk7lqeOxE4T0R2AZ8Ap4jIhw222IAq3D5tOGfzDasZxOKe15FyZi+v9tHrX/Z0Q4eIZ11uBw4dDPyIFN2d7izb2tVjEUCAExIWQlHbbhQRC0Bmpn/sWHP+Q7RS+8Kj9NBOjPiycbZmTujWkl33vOw8H7PuNbbMWN0ofTd13BH47cCXQNV/+CwgE2juOKpFVe9X1Q6q2gW4DJitqlfVVN/gPl99Bb8tFb7jbEaGr6TLly94vY92qclc32cJrcniOn2P774P/HzdYfv3OsuhnYNH4AE6d7bKO3Y0fv9bPl3DmHWvOs/33PU80UnRjdb/iKcuZEXL0wH7t4fDN97WpEJ4/UWdAq+qj9R2NIaRBovKSpg0yTq/+dYQOvaJ9Ulf3a8cQYVjEcusWT7pwqtEH7JG8FHdm/bGJUfTvbtV3rat8fsv/stdhGLfLGBFy9MZ+fRFjdq/hAgJH75EmePvcWDBQhbe1MRzWzcCtS10esHx82sR+erooz6dqOpcVT2nocYa7KlW16+3l2Ni4H4ffks+/3yr/P33+M336y4JhZbAx/ULrhF89xQbHdnNyczm8PzfGrXv1S/MZUjuHADKCSPhg6l+2YEp5cxeLDrhLud5z7fvI293XqPb0ZSobQRf9fE4BXiumsPQyJQXl9PuxnP4IzMQbNx5pz2UzFf06wcpjp13Cwthzhzf9dVQ1Ka0KrdcNK2HBpfAn5r9CbvpzGxOZfjsxksEpzaFyQ87zxf3uo6UsxphZrUGUmc9SGZIe8A+4brq/x73my1NgdoWOlVFvywHflXVeao6D1gAmIz8fmDJzdM4ufhbZnAZ88JO5d57fOuDFIFLzizkEj7lQ65E7j924+5AIS8PhrKSU/iFP0e8T4uO7mUxbCokDLd8NC0PNZ6PZvW/5zA4bz5gH72nvPXPRuu7OmLbxrLzlinO89HLXyTtFz/4rJoI7kyy/oJ9R6cqouCo/bcMPudw/mFSpj/qPK88+XTiE3z/Nfmyniv5lEu5ko8YtPYDbBWBuWlr+l5hKz2Zwyn82uXqoNvEuf1YS+A7lG5rlAlGtSmhjz7kPF/c+wY6jOni837rYtSLl7G2+WjKCeMVbuWB54JnUZu3cUfgI1W1sOrEUW686XMDAEuuf4PkSvvyg2xpTer7d9TxhHfoP3E0OWL/B2pry2Tzh8sbpd/6km653+uVJrmpEJ/SkkOSANhzpe9f7ftYyV9mC7fmP8kvnEIZ4XR7x7+j9yokRJA332QA67ibf/PR9wn88ou/rQpM3BH4IhEZWnUiIsOAprF2PUgo3FdIny+fcJ5vPP9+Ytv6JnLmaMIiw9iUYs2PZ/0nMMNpgl3gATKirVH8/gVbfd7f5Mn2PX1P4xcev3wjyaM6+bxPdxlwWT9GXGPNBdx1lz3CzHAk7m66/V8R+VVEfgVmALf51iyDK8uveoHWNnuSqYzQDox496ZG7T/s/6xwmuQVgSnwB7bnEeFIuhasAp+b1MNZzl/pW7/zb7/BwoX2cng43Ph099of8ANPPAHRDl/CunXwlsl4dQzuxMEvA3oDNwO3AH3qSj9g8B45Ww4w9JdnnOfbr5pMZLyb+/B5iQH3nEEpzQDocXgD6Qt2NWr/7jD6i3s5TCT7ac24fTP8bY5PKO9siWzlFt8K/EsvWeUrr4SOHX3anUckJ1thwu3IIOzO20zY5FG4k00yGvg78FdVXQd0ceSZMTQC6y//Fy0cqYC2R/Rm1OvXNroNMa1jWJd0svN8+8vfNboNdRGVY/fRtCabuLZRfrbGN4T1sQS+2R7fCXzWuv3oJzMIw75X3u231/GAH7nnHngg/lW20oM/lb7CqkueqPuh4wh3XDTvAmXAKMd5OmCCTxuB9IVpjFxlLQ8/cNcThEWG+cWW4vFnO8vRs7/1iw21EV9gOeFb9A1OH03cUEvgEw76TuA3/vUNpldeRhqdebT7+wwdWvcz/iIqCs66Ip4YigEYtfQFds/1Qy6HAMUdge+mqs+A/eNcVUuA4IpBC1C2Xfc4zSgDYH3sSE544gK/2dL11rOc5f7ZswMuR3xSmbXIKWlQcKUpqKLdSZbAJ5f4JlSyrLCM3vNeB6A9mZw6IdzrfXib0S9dzvqYEQA0o4y9VwXueo3Gxh2BLxORKBzJxkSkGxDgi9abPmvXwmXbHuclbqOcMCr/9ZRfY7s7jU9he4Q9aiGKUta/FDjLWouyikhw7ANfRjiJvYMz7XRiryQypD2rGcQP/IGsNO9/yC5/YCZtbfYQzP0hbRn+1P95vQ9vIyGCPv9v5/movZ+x5uVf/WhR4OCOwD8M/A/oKCLTsS98us+nVh3nqNp9i/tpwx28xA2npDHojnH+Nos9A+xumkpC2PNj4OzCmLXKGr3vD0smJMydP+umh4QI5w5OZwiruYTP2Jbh/eUose9Zs6ubxt1MeEyE1/vwBQMmjmJRp8uc5xH33UllmYmbrPU/QURCgATs2/VdB3wMpKrqXJ9bdhzz/ffws2OtcEgI/GNqe/8a5CDq5uu4jI9J4gD3ZNyDBki21tz1lv/9YHRw+t+r6N7D+hbn7aySW2asZmDBIsD+TajvCxO924GP6fTRU5RgjzDrU7KSBde84WeL/E+tAq+qNuA2Vc1R1W9V9RtVPVDbM4aGUVEB995rnU+caE/6FQgMubo/3zW/jFwS2LULNgXIIL5oqzWCL4wPcoH3Ydrg/Y+87iwv63wJrQe2raV24NHhxM78dsoDzvNBn/6T7A1ZfrTI/7jzXfYnEblXRDqKSMuqw+eWHacsuPZN7tp0I23YR/Pm8EgAZdyPiIAzzrDOvwuQaMmKndYIvry1EXhPKMgoYMim6c7z2HsbdzGdtxj5+d9IC+sGQLzmsvmCf/jZIv/ijsDfANwKzAdWOI46E5KISKSILBWRNSKyQUQCSKoCk7zdefT7eBI38hbb6M4rVyz0aTpgTzjLCqbh2wCJlpQMS+ClQ3BG0FTRK7mQPzKDB/gXJ8+b7LV2V933Mc2xp5zaHtGHgbeM8VrbjUlkfCTZD1vb+5207V1WfrjRjxb5lzqDqlW1q4dtHwZOUdVCEQkHFojI96q6xMP2gp5VFz7CeMeel7mhiVzyZOAFIJ91FoRSwWgWcea878jbfT9xnfycmvdQrrMYkRLkI/i2hczAPpmYlxmH2h72SnRVq5mWvzr97L/QrQln40ydNIHFr11Eq4w13MFU0p/py4pL7SkXjjfcWcka6dhge6aIfC4id4pInWvl1U5VFspwxxEg03KBx5YZqzlp5YvO8923PE1kQuCtyGzbFhY3P4P5jOM+fZoNU773t0nc03Y60RTRg98JnXC6v83xKa36t6GQGADiyOPg1pwGt7n26zS6lmwAoIRIBj13TYPb9Dcdv32D4ZHr+Z6zWLcOnm68PVICCndcNO8D/YCXgJeBvli7PdWKiISKyGogC/hJVY/Za0xEJorIchFZnp2d7b7lQYStwkbZn2927nm5MuFURr1wqZ+tqpmi4VbaAr780n+GOEhPhxKi2UYP2vUOro0+jkZChL2RliM+89eGO+KnzupMMnu5i+f5YeDfiO+a0OA2/U2HwUlMetwahz72GGzY4EeD/IWq1noAa9y5Vkcb8cAcoH9t9YYNG6bHI/OufEPVHv6upUTo9u82+9ukWtny2VqnvXk019K8Ur/Zcviw0xQNCVEtK/ObKY3Gog6XOF/0vMtfa1Bbubmq0dHWe7hwoZeMDAAqKlRPOMF6bacOO6QVhyv8bZbXAZZrDZrqzgh+lYiMrDoRkRHAwnp+iOQCc4EJ9XnueCB7QxYDPrJm+hePuY+UM3v50aK66XFhf9LC7Ju1tqCAdVP9t6o1I8Mqt217fPhZy1JHO8thCxr23r//PhTb07jQvz+MGlV7/aZEaCi88479b+I8ZvH+ir78esmLdT8YRLgj8COARSKyS0R2AYuBcSKyTkTW1vSQiLQSkXhHOQo4DdjsBZuDit/PvtO5zD4tLIURsx6o4wn/IyHCzkFWXpzij/3npslan8VY5pHCdrq2K/WbHY1JuytPcZZ7pM/xOCdNZSW88IJ1ftNN9n14g4l+/WD6RZ8ziwtoTyYnfDWJHd8dPzLkjsBPALoC4xxHV+As4Bzg3FqeawfMcXwILMPug/+mYeYGF4v/9jknpn3sPM9++BWiWgbexGp1JFxnCXyvzbP8tldrxU9zmMd4ttOdKRlX+MWGxqb7Bf2d2yi20my2zfLMubz0n7N4eMc1DGI1CQlw3XVeNDKAuOCd89gSORCwb3dYdvHlHM4/PtJpubPhR1ptRy3PrVXVIao6UFX7q+qjNdU9HsnKgnUvz3eeL+h2LamTmo4Hq//E0RyQJADa2PaxadpSv9hRtsOKgT/cKrhDJKsICQvh9/bjnecZ0z1z08S8+gzX8AGrGcJbI/9DTIyXDAwwwqPDkQ8+cG5a07tkNUvGHx8LoIIzK1OAowp/+Qv8pfRF/o/PWBc+hAG/vFD3gwFEaEQom7qf5zzPfss/bhrZbY0xtH1wL3JypfxEK5Kp2aLZ9X5+/VtLjsg7M/rxs+t4omnT8+KB/HbxFOf5uFUvsOxR/4f4+hoj8H5g+nQrunAm/0fm1yuI6xzvX6M8oNmllpum00r/CHyL3eud5aghvWupGVwkX2354Xvtm0dlef1cZAWPPO8sL+12BW2HBkZCO18ydsat/NbG8ip3mXwt+1Zm1PJE08cIfCOzbRvccot1ftNNcMYfmubM1oC7TqMIe8ralLItbP/Bt/uEHo3alE551jx/+wkDG7V/f5JyVm8+ibqOW3mZE3UBa9a6/ze0Z/5OTkj/3Hne6sm7fWFiwCEhQvd577AvpB1gn7/IGXtBwG1e402MwDcih/MPM3/MA0iBfWPglBR49lk/G9UAolpG8V3ve7iXZ+nB73y4pHvdD3mRrLX7SFT7Ss58mpM8unOj9u9PJET46oJ3eZVb2URf5sx1X+B33vS0c1Hdipan0euS4+eDMbFXEpnPTqeCUAD6FS1j1eDrfbI7ViBgBL4RWXzS37hh/5OsYggjQpczYwbExvrbqgby6KM8x71sowfTpoGtEYNp9nxrjd53NR8QtBt91MTJLguK57g5z7plxmpO3PQf57nefW8ttYOTIXefzEKXePjRe2bw3o31WtrTZDi+/iP8yOK/fc74tfbdclLYydMXLCY11c9GeYFzz4UEx8r2nTvh10bcKa1wkSXwuR0HNF7HAcIplhue+fPtewnUhtqUkol3OEfvyxPPYNj9Z9T+UJAy7tNbmd/vZoqI5kJmcsM7Y/jArQQsTQsj8I3Aju8203fKDc7zJe0vYuynt/nRIu8RGQmXX26dT5vWeH2HbbIEXgccP26GKlJSoGNHAKV1wTbW/riv1vqLbv+Ywfn2T+Bywmj5/ot+3efX34xa+iJ3jFrOl1wI2NcBfPihf23yNkbgfUxeWi5ywfnEkQ/AnrAu9Fn0dlD9Y117rf1nT7bQ+8NJFO0vrP0BL9Eq0xL4hLHHn8CLwOTk/7CbTmyjB4WTnqqxbmFuBZ3fuN95vjD1TlLOOn6ijqojPDqcKd/2YYDjy5/NBtdcA9PfLfOvYV7ECLwPqSyr5PfUy+la/jsAxURR9P7MJhkSWRvDh8MXcdeyhd7cV/4vVj800+d9lpXB3LLRLCOVYqLofM7x56IB6DOmJR2xL/Yavepltny6ptp6kyaHcVbl18xlHPtD2jL0iwcb08yAJSEBfvkFp8i30UyG3DCYBX9+z692eY2aspD54wi2bJJzhv/NSmUHuvCOT/xtks+YM+Ep5+tckXCKz/tbayW01K6dgi9DoLvYKm26Km6s881YF3PCMRkTn3/e9c/Qpp89n+YnawOX7GzVk/tk6iZ6Od+suRe/5G+z3IIGZpM0eMC8y15l/DIrBnLu6AcY/WLg5nhvKL0eu4pKPMzhNgAAE01JREFUx5/T0EOzSV9YYxYLr7DWJc1d/0GhPu0rkJEQocVHb3CYCAD6Fy1lwZWvOe9PmwZ3u4S5n3OOcOFfOzW2mQFPUhJ89mUYRFm5oMZ9djtzz3iiSYdQGoH3Ab888DMnzbAmUX9rcy5j5z3mR4t8T7vUZFYlWrspbZv0nk/7cxX4gcef+/0IUs7qzeLxVhbSIZ89wNzRD7Cm6/nMv/5d5/UxY2DGDAgx//XV0rJnEm03zGZdrJUzefxP/2TeuIf8aFUDqWlo748jGFw033yjGh1aqjOwb8qwNnakFmQW+NusRmHhHZ84v95mSWstOVTis77OPNNyO8yY4bNumgyleaW6LaL3ES5BBa1E9CZe1UGDVA8d8reVTYOCzAJdkXDqEe/jyim/+NusGsG4aBqH2bPh4ouhuLIZl/MxL7d+lA6rvyW2bVNfzeQew5+8iMxQe8KvVprFsrs+8llf1827jkd5kIv5LwN7B0/Ug6c0a9GMwilvYOPI6KwQlPvC/80PXxQTH1xz+z4jtm0sfXd8w/JEa41Ay3/cSPGBYj9a5Rli/wAIDFJTU3X58uX+NsMjfvgBLrgASh17TnTtCgsWQPvgz+F0BPPOfoZx3/0dgK3N+tG9eJ3XQ0IPbs2hZU97quJSmhFWUkhYZJhX+2iqrHpuNnmz5kJEBMREE57chqGPX9Rk9hkIJPavzqTZ0L7Eay4Ac1PvPWJeLVAQkRWqWv2yyZqG9v44mqqL5rcHv9bnQu5VsCmoJierbt3qb6v8Q+6uQ1pAjPOr7bLH/+f1Plb9e46z/Y1RQ73evsFQxfxr33L+rVUQohumLfO3SceAP1w0ItJRROaIyCYR2SAif/VVX/5k8T2fMfixi7jbNoWn+TudOirz5kH3xs27FTDEdY5nxeA/WRf+/XzNlT0k71drhvVA8nE+w2rwKWPeuYGVCfacEKHY2HPbUyz1z942HuFLH3wFcI+q9gFGAreKSF8f9tfozL/idUY8/0ciKAfg0rDPWfBNLt26+dkwP5Pywl+dIZOlOUWsX+bddKwh6y2Br+xnBN7gOyRESPr8TfJowRPcz/kFHzJiBPzhDzB3rn1oH8j4TOBVNVNVVzrKBcAmICi23FGbMvfUxxj78c2EYP8N7wzvScSieXQcmOBn6/xPx3EpfDBwCiNYwkksYMor3vX/tt+1yFlucaIReINv6XRyN755aReT5AkOEwnAjz/as3lOj7+VuSc/Qtrs7X62sgZq8t148wC6ALuBFtXcmwgsB5Z36tTJh54q71C4v1Dn97jhiBCqDdGpmr0xy9+mBRSLF1tvUWio6vbt3ml3+3ebnQ0XEaVF2UXeadhgqIMNG1SvvFI1JMT+J9iK/VpOqPPvcXWLMTrv6jc1d1ft8aiVlarr16vu2eMdu6jFB+/zKBoRiQXmAf9S1VqTlAR6FM3G95cT9ecrnbllwL5hQs91M2nevrkfLQtMTjnFylP+pz/BW281vM25E55i/A/2pFm/tbuAERlfNLxRg6EebNsGzz3H/7d379FVlWcex78/CIIYLopBqSBBq4irKhRGEQSylKKwVESrArZFxVFmqlSxM1rtuFA7jhcUR5laLwXsEgRbxSJLBLXclTsoICIIoUYREOUmckl45o/9JpxAEhKSk31yeD5rnXX2fvflPHnPyXv2effez0uD0c/y+O7BhyzfSx1y653FN1lt2JvdGjXNYnerNmxp152ZM2HiRNiwAerWhWn/MC7sVLmrzGK7igaoA0wBhpRn/VS+imb6VcNtLxnFjtxnZ99gu7ftjju0lDV9+oHqql97t+Uu+bbS+1x23PlFO51121+qIErnjswP3/1gH9z1ms1renmxI/mSHuO47sAvWvZZLybZeK61Gaf0rXQclHEEn8zGXcBfgKfLu02qNvAv/uFr28LxRW/WdjJt1i2jbX/B/rhDS3k9uu2223jO1tPCZrS+pVL7+mr+F0XvwV4y7Lu1lf/CcK4qbFq+0ab3eTq6bLeEBv4FbimaPYNVReV7qGObV26u1GuX1cAnrYtG0kXALGAZUDiQ231m9nZp26RiF8348dGAFm1sBVO4lK3HNafBxDG0vPgov1SmnJY+O4u2g7sC0SATG2etpvlF2Ue0r6k3jqXHyzcAUddY+y3vVlWYzlWZreu+I+/9VWyd+yn5K1ejHdtY0agz7zftx2mnwZVXQuNeF3LOzrkATL/mGXL+dscRv57f6HSEpk41q1PnwBfxFe2+sO837Yw7rBpnSaNuRZVYmaP4iy82a8k6+w3D7e3b3qy6AJ2rZjP6PVf0P7GifuXaPTwXTcWsHLOYyW2GcEWvAvZFl7jTpg2Merc59bOOize4mmjo0KLJTqtGsWr80grvYssWmDED1pPN/3In5z3QuwoDdK56nfvf17ObugCcvWsRqycsT8rreAMfbM/bzqybR/FRoy60+UV7en46nEvzJwHQvHmUa6ZJk5iDrKHa3pnDohO6A5BBAfsGDmJ//v7DbFXcW29BQUE03bHj0Zfjx6WXxq2OZ0nzK4vmv3wkOYMZH9UN/J7te5h3/0TmZPcno8XJdBl1M+dtn120/C6G06VLNKRXNLixO1LHvzIiYVCKecwe8GKFtp+QcDXk1VdXZWTOxSNj4ICi6TaLXyF/d36Vv8ZR18Dv2LCTufdMYPbpA9jdqCkXPNKbzutfpT4HbqffRwZzWvan6egnmDkTzjwzxoDTxGk9W/Nh13uL5s999V42L99Yrm0/HbeUIRNzOJsVAPTpk5QQnatW7e69lE21TgLgpP1fs+Txqr9oIO1zrJrBqlUweTK8/TY0mfYO4wquLXHdz+qdw1fdB9Dm4f50btusmiNNfx3//jvWZ42hZf7nNLatzLnibrLWvVLmNgV7CygY+K90YyFLaMdTbV7ixz/+VTVF7FzyZNTL4JN2vyBz0R95g6tZNqcZ/1LVr1HF+4vV3p17+aD3Y9T5fCW19+2BggIG1BvPZ+vrFq3TkJ+xjwzqEP0c+mdGK9a2v45md/Wl9fVt8YP15KnXuB6bh/4fLX9/GQCdc8cw9apO9Hjz30vdZvb1z9JtV3Tp7H5qcf3wjtUSq3PVoelT93JytwfYQUPOzoNHCqB2VQ4xXNrlNXE8KnuZ5LScoYfcYHAx7x1y38H4JoNsWqf7bMXo+X6zUgxmt+xvBraWbGvJOnvqqZLX+2J2brHc8tMuebh6A3WuGjzwgNmMGVGOmiNBGZdJps0R/K5vdnHujGcOKe/JZOZnXkL37tCzJ/TqBc2bP1fCHlx1abfwRSafU5dbv36QPFowZEhUfscdkBE+kevfX8N31wykOd8D0ehQnd78z5gidi55HnwweftOmwZ+we2j6WbfAvBFRjZ5g5+gVr1j6H7GqQzuH41g5lJD/RPr02X1SLJ7Ql64aGnIEHj7wQX810nPU+f7bVzw5eu0DKmY9yN2P/Mix2T6m+hcRaRFA1+wt4CWbwwvml/bewjdnvx5jBG5w8nMjE569+gBc6M7trls2zi6bvvzIevO7HwfObdeWM0ROlfzpcVlkgseeIvsfWsA2KrGtB9xU8wRufJo0CC6gezuu+FHzYxreL3Y8oVNLmXJsPfJmf2HmCJ0rmZLiyP4+n8cVjS9tOMgck7OjDEaVxENG8KwYfD4Y/DJqHFMHxXdstpsSD86XHde3OE5V6PV+AZ++UtzOXfHHCBKtH/WiCPPyubiU6u2+MktHeEWvwzSuapS47toxo0pYB7nAzD/9P6c/FNPUuKcc1DDG/gdO+BPyzrTkblcxCyynr4/7pCccy5lJK2LRtJI4HJgk5n9JBmv0aAB5ObCyJFi2bKLaH15Ml7FOedqpmT2wY8GRhAN25c0mZkw+NBxb51z7qiXtC4aM5sJfJus/TvnnCtbje6Dd845V7rYG3hJt0paKGnh5s2b4w7HOefSRuwNvJm9YGYdzKxDVlZW3OE451zaiL2Bd845lxxJa+AlvQp8CLSWlCdpYLJeyznn3KGSdpmkmfVL1r6dc84dnqIBQVKDpM3A+rjjKMGJwDdxB1FOHmtyeKzJ4bFWXkszK/EEZko18KlK0kIz6xB3HOXhsSaHx5ocHmty+UlW55xLU97AO+dcmvIGvnxeiDuACvBYk8NjTQ6PNYm8D94559KUH8E751ya8gbeOefSlDfwZZA0XtLS8MiVtDSUZ0v6IWHZn1Ig1qGSvkyIqVfCst9JWiNplaRL44wzxPOEpE8lfSxpgqTGoTwV6/WyUG9rJN0bdzyJJLWQNE3SSkkrJP0mlJf6WYhT+B9aFmJaGMpOkPSupNXh+fgUiLN1Qt0tlbRd0p2pWq9l8T74cpL0JLDNzB6SlA1MStZIVUdC0lBgp5kNO6j8bOBV4HzgR8B7wJlmVlDtQR6IqQfwDzPLl/QYgJndk2r1Kqk28BnwMyAPWAD0M7NPYg0skNQMaGZmiyU1ABYBVwHXUcJnIW6ScoEOZvZNQtnjwLdm9mj4Aj3ezO6JK8aDhc/Al8AFwE2kYL2WxY/gy0GSiP5pXo07liPQGxhnZnvMbB2wBsIo5TExs6lmlh9m5wLN44ynDOcDa8xsrZntBcYR1WdKMLMNZrY4TO8AVgKnxBtVhfUGXg7TLxN9QaWSS4DPzSwV77A/LG/gy6cLsNHMVieUtZK0RNIMSV3iCuwgt4duj5EJP3VPAb5IWCeP1GoEbgYmJ8ynUr2met0VCb9+2gHzQlFJn4W4GTBV0iJJt4ayk8xsA0RfWEDT2KIrWV+KH9ilYr2W6qhv4CW9J2l5CY/EI7V+FH+TNwCnmlk7YAgwVlLDmGN9DjgdaBvie7JwsxJ2lfR+ufLUq6T7gXxgTCiKpV7LEEvdVZSkTOB14E4z207pn4W4dTaznwI9gV9L6hp3QGWRdAxwJfDXUJSq9VqqZA66XSOYWfeylkvKAK4G2idsswfYE6YXSfocOBNYmMRQDxtrIUkvApPCbB7QImFxc+CrKg7tEOWo1wHA5cAlFk4ExVWvZYil7ipCUh2ixn2Mmb0BYGYbE5YnfhZiZWZfhedNkiYQdYFtlNTMzDaEcwqbYg2yuJ7A4sL6TNV6LctRfwRfDt2BT80sr7BAUlY4+YKk04AzgLUxxVcYU7OE2T7A8jA9Eegrqa6kVkSxzq/u+BJJugy4B7jSzHYllKdavS4AzpDUKhzN9SWqz5QQzg39GVhpZk8llJf2WYiNpOPCiWAkHQf0IIprIjAgrDYA+Hs8EZao2C/3VKzXwznqj+DL4eA+OICuwEOS8oECYJCZfVvtkRX3uKS2RF0IucBtAGa2QtJrwCdE3SG/jvMKmmAEUBd4N2qjmGtmg0ixeg1X+dwOTAFqAyPNbEVc8ZSgM/BLYJnCJbzAfUC/kj4LMTsJmBDe7wxgrJm9I2kB8JqiAYH+CVwbY4xFJNUnunoqse5K/B9LZX6ZpHPOpSnvonHOuTTlDbxzzqUpb+Cdcy5NeQPvnHNpyht455xLU97Au5QWMvj9Nu44oCgb4omHWee+g+Y/CM/ZkvofwWveKGlERbdzDryBd0eJwhuoqkGxBt7MOoXJbKDCDbxzleENvEs5ku5XlIP9PaB1Qvnpkt4JyapmSToroXyupAWSHpK0M5TnKMqXPpboZqDainLRLwgJo25L2Pd/JJQ/WI4Y3wxxrChMnCXpUeBYRbnCx4SynWGTR4EuYdldBx+ZS5okKSdM3yTpM0kziG5mKlwnS9LrIc4FkoqWOVciM/OHP1LmQZTzZxlQH2hIlN74t2HZ+8AZYfoCopzyEOUE6RemBxHl7AbIAb4HWoX5W4Hfh+m6RDluWhHdNv8CUXKxWmF/XUuILRc4MUyfEJ6PJbplvUmY33nQNomxTEoovxEYkTA/KazTjOiOzizgGGBO4XrAWOCiMH0qUYqC2N8zf6Tuw1MVuFTTBZhgIUeNpInhORPoBPw13O4OUSMNcCEH8oiPBRIHZJhvUR58iBrycyX9PMw3Isp30yM8loTyzFA+s4w4B0vqE6ZbhPW3lP/PLNUFwHQz2wzRqGJECdcgyot0dsLf31BSA4tywTt3CG/gXSoqKX9GLWCrmbWt4L6+T5gWcIeZTUlcQdEwhv9jZs+XZ4ehK6U7cKGZ7ZI0HahXwbjyKd5Fmrh9aflDaoXX/KGCr+WOUt4H71LNTKCPpGND9sErACzKc75O0rUQZVKUdF7YZi5wTZjuW8a+pwD/FlLsIunMkNlwCnBz+JWApFMklTXwRCPgu9C4nwV0TFi2r3D/B9kBNEiYzwXaSqolqQUHRtmaB+RIahL2k5h8aypwe+FMSHzlXKm8gXcpxaIh6MYDS4nynM9KWHwDMFDSR8AKDgyfdycwRNJ8oj7sbaXs/iWirJqLJS0HngcyzGwqUdfOh5KWAX+jeGN8sHeADEkfAw8TfcEUegH4uPAka4KPgXxJH0m6i6hvfR3R+YZhQOHQexuAocCHROPnLk7Yx2CgQzgR/AnR+QbnSuXZJF2NF1K7/mBmJqkv0QnXlBk71bm4eB+8SwftgRFhAIytROO8OnfU8yN455xLU94H75xzacobeOecS1PewDvnXJryBt4559KUN/DOOZem/h9jY2Xf4q68EAAAAABJRU5ErkJggg==\n",
+      "text/plain": [
+       "<Figure size 432x288 with 1 Axes>"
+      ]
+     },
+     "metadata": {
+      "needs_background": "light"
+     },
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "plt.plot(ds_dict1['ECHAM61'].lat, \n",
+    "         ds_dict1['ECHAM61']['pr'].isel(time=slice(120,360)).mean(['lon', 'time'])*86400,\n",
+    "        'b', linewidth=3, label='approach 1')\n",
+    "plt.plot(ds_dict2['ECHAM61.aquaControl.Amon'].lat, \n",
+    "         ds_dict2['ECHAM61.aquaControl.Amon']['pr'].isel(time=slice(120,360)).mean(['lon', 'time'])*86400,\n",
+    "        'r--', linewidth=3, label='approach 2')\n",
+    "plt.xlabel('degree latitude')\n",
+    "plt.ylabel('precipitation (mm/day)')\n",
+    "plt.title('ECHAM61, aquaControl');\n",
+    "plt.legend();"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Closing remark"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "The above hopefully provides a helpful and clear recipe for accessing TRACMIP data from the Pangeo Cloud. It should be straightforward to condense the approaches into wrapper functions."
+   ]
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.7.4"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}