diff --git a/Scripts_for_analysis/Adjustment_of_steps_2_and_3_for_single_timesteps/Check_mod_of_PTEstep2.ipynb b/Scripts_for_analysis/Adjustment_of_steps_2_and_3_for_single_timesteps/Check_mod_of_PTEstep2.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..87777ecbe2c706a6b6483b76b68cebd66bfb6126 --- /dev/null +++ b/Scripts_for_analysis/Adjustment_of_steps_2_and_3_for_single_timesteps/Check_mod_of_PTEstep2.ipynb @@ -0,0 +1,3154 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "tags": [] + }, + "source": [ + "# Check of PTE calculation step 2" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Christoph Braun, IMKTRO, KIT" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "exp='channel_2km_0004'\n", + "dt = 6\n", + "data_res = '1x1latlon'\n", + "#data_res = '0p05x0p05latlon'\n", + "if dt == 1:\n", + " data_dt = '1hrly'\n", + "elif dt == 6:\n", + " data_dt = '6hrly'\n", + " \n", + "p2level=50\n" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "import xarray as xr" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "ipath = '/work/bb1152/Module_A/A6_CyclEx/b380782_Christoph/temp_PTE_out/PTE/maps/'\n", + "\n", + "ifile = \"PTE_map_for_\"+exp+\"_\"+data_dt+\"_\"+data_res+\"_upper\"+str(int(p2level))+\"hPa_day*.nc\"\n", + "ifile_orig = \"PTE_map_for_\"+exp+\"_\"+data_dt+\"_\"+data_res+\"_upper\"+str(int(p2level))+\"hPa.nc\"\n", + "\n", + "# read the data\n", + "data_file= ipath+ifile\n", + "data_file_orig= ipath+ifile_orig" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "ds = xr.open_mfdataset(data_file)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "ds_orig = xr.open_dataset(data_file_orig)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "<div><svg style=\"position: absolute; width: 0; height: 0; overflow: hidden\">\n", + "<defs>\n", + "<symbol id=\"icon-database\" viewBox=\"0 0 32 32\">\n", + "<path d=\"M16 0c-8.837 0-16 2.239-16 5v4c0 2.761 7.163 5 16 5s16-2.239 16-5v-4c0-2.761-7.163-5-16-5z\"></path>\n", + "<path d=\"M16 17c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n", + "<path d=\"M16 26c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n", + "</symbol>\n", + "<symbol id=\"icon-file-text2\" viewBox=\"0 0 32 32\">\n", + "<path d=\"M28.681 7.159c-0.694-0.947-1.662-2.053-2.724-3.116s-2.169-2.030-3.116-2.724c-1.612-1.182-2.393-1.319-2.841-1.319h-15.5c-1.378 0-2.5 1.121-2.5 2.5v27c0 1.378 1.122 2.5 2.5 2.5h23c1.378 0 2.5-1.122 2.5-2.5v-19.5c0-0.448-0.137-1.23-1.319-2.841zM24.543 5.457c0.959 0.959 1.712 1.825 2.268 2.543h-4.811v-4.811c0.718 0.556 1.584 1.309 2.543 2.268zM28 29.5c0 0.271-0.229 0.5-0.5 0.5h-23c-0.271 0-0.5-0.229-0.5-0.5v-27c0-0.271 0.229-0.5 0.5-0.5 0 0 15.499-0 15.5 0v7c0 0.552 0.448 1 1 1h7v19.5z\"></path>\n", + "<path d=\"M23 26h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n", + "<path d=\"M23 22h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n", + "<path d=\"M23 18h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n", + "</symbol>\n", + "</defs>\n", + "</svg>\n", + "<style>/* CSS stylesheet for displaying xarray objects in jupyterlab.\n", + " *\n", + " */\n", + "\n", + ":root {\n", + " --xr-font-color0: var(--jp-content-font-color0, rgba(0, 0, 0, 1));\n", + " --xr-font-color2: var(--jp-content-font-color2, rgba(0, 0, 0, 0.54));\n", + " --xr-font-color3: var(--jp-content-font-color3, rgba(0, 0, 0, 0.38));\n", + " --xr-border-color: var(--jp-border-color2, #e0e0e0);\n", + " --xr-disabled-color: var(--jp-layout-color3, #bdbdbd);\n", + " --xr-background-color: var(--jp-layout-color0, white);\n", + " --xr-background-color-row-even: var(--jp-layout-color1, white);\n", + " --xr-background-color-row-odd: var(--jp-layout-color2, #eeeeee);\n", + "}\n", + "\n", + "html[theme=dark],\n", + "body[data-theme=dark],\n", + "body.vscode-dark {\n", + " --xr-font-color0: rgba(255, 255, 255, 1);\n", + " --xr-font-color2: rgba(255, 255, 255, 0.54);\n", + " --xr-font-color3: rgba(255, 255, 255, 0.38);\n", + " --xr-border-color: #1F1F1F;\n", + " --xr-disabled-color: #515151;\n", + " --xr-background-color: #111111;\n", + " --xr-background-color-row-even: #111111;\n", + " --xr-background-color-row-odd: #313131;\n", + "}\n", + "\n", + ".xr-wrap {\n", + " display: block !important;\n", + " min-width: 300px;\n", + " max-width: 700px;\n", + "}\n", + "\n", + ".xr-text-repr-fallback {\n", + " /* fallback to plain text repr when CSS is not injected (untrusted notebook) */\n", + " display: none;\n", + "}\n", + "\n", + ".xr-header {\n", + " padding-top: 6px;\n", + " padding-bottom: 6px;\n", + " margin-bottom: 4px;\n", + " border-bottom: solid 1px var(--xr-border-color);\n", + "}\n", + "\n", + ".xr-header > div,\n", + ".xr-header > ul {\n", + " display: inline;\n", + " margin-top: 0;\n", + " margin-bottom: 0;\n", + "}\n", + "\n", + ".xr-obj-type,\n", + ".xr-array-name {\n", + " margin-left: 2px;\n", + " margin-right: 10px;\n", + "}\n", + "\n", + ".xr-obj-type {\n", + " color: var(--xr-font-color2);\n", + "}\n", + "\n", + ".xr-sections {\n", + " padding-left: 0 !important;\n", + " display: grid;\n", + " grid-template-columns: 150px auto auto 1fr 20px 20px;\n", + "}\n", + "\n", + ".xr-section-item {\n", + " display: contents;\n", + "}\n", + "\n", + ".xr-section-item input {\n", + " display: none;\n", + "}\n", + "\n", + ".xr-section-item input + label {\n", + " color: var(--xr-disabled-color);\n", + "}\n", + "\n", + ".xr-section-item input:enabled + label {\n", + " cursor: pointer;\n", + " color: var(--xr-font-color2);\n", + "}\n", + "\n", + ".xr-section-item input:enabled + label:hover {\n", + " color: var(--xr-font-color0);\n", + "}\n", + "\n", + ".xr-section-summary {\n", + " grid-column: 1;\n", + " color: var(--xr-font-color2);\n", + " font-weight: 500;\n", + "}\n", + "\n", + ".xr-section-summary > span {\n", + " display: inline-block;\n", + " padding-left: 0.5em;\n", + "}\n", + "\n", + ".xr-section-summary-in:disabled + label {\n", + " color: var(--xr-font-color2);\n", + "}\n", + "\n", + ".xr-section-summary-in + label:before {\n", + " display: inline-block;\n", + " content: '►';\n", + " font-size: 11px;\n", + " width: 15px;\n", + " text-align: center;\n", + "}\n", + "\n", + ".xr-section-summary-in:disabled + label:before {\n", + " color: var(--xr-disabled-color);\n", + "}\n", + "\n", + ".xr-section-summary-in:checked + label:before {\n", + " content: '▼';\n", + "}\n", + "\n", + ".xr-section-summary-in:checked + label > span {\n", + " display: none;\n", + "}\n", + "\n", + ".xr-section-summary,\n", + ".xr-section-inline-details {\n", + " padding-top: 4px;\n", + " padding-bottom: 4px;\n", + "}\n", + "\n", + ".xr-section-inline-details {\n", + " grid-column: 2 / -1;\n", + "}\n", + "\n", + ".xr-section-details {\n", + " display: none;\n", + " grid-column: 1 / -1;\n", + " margin-bottom: 5px;\n", + "}\n", + "\n", + ".xr-section-summary-in:checked ~ .xr-section-details {\n", + " display: contents;\n", + "}\n", + "\n", + ".xr-array-wrap {\n", + " grid-column: 1 / -1;\n", + " display: grid;\n", + " grid-template-columns: 20px auto;\n", + "}\n", + "\n", + ".xr-array-wrap > label {\n", + " grid-column: 1;\n", + " vertical-align: top;\n", + "}\n", + "\n", + ".xr-preview {\n", + " color: var(--xr-font-color3);\n", + "}\n", + "\n", + ".xr-array-preview,\n", + ".xr-array-data {\n", + " padding: 0 5px !important;\n", + " grid-column: 2;\n", + "}\n", + "\n", + ".xr-array-data,\n", + ".xr-array-in:checked ~ .xr-array-preview {\n", + " display: none;\n", + "}\n", + "\n", + ".xr-array-in:checked ~ .xr-array-data,\n", + ".xr-array-preview {\n", + " display: inline-block;\n", + "}\n", + "\n", + ".xr-dim-list {\n", + " display: inline-block !important;\n", + " list-style: none;\n", + " padding: 0 !important;\n", + " margin: 0;\n", + "}\n", + "\n", + ".xr-dim-list li {\n", + " display: inline-block;\n", + " padding: 0;\n", + " margin: 0;\n", + "}\n", + "\n", + ".xr-dim-list:before {\n", + " content: '(';\n", + "}\n", + "\n", + ".xr-dim-list:after {\n", + " content: ')';\n", + "}\n", + "\n", + ".xr-dim-list li:not(:last-child):after {\n", + " content: ',';\n", + " padding-right: 5px;\n", + "}\n", + "\n", + ".xr-has-index {\n", + " font-weight: bold;\n", + "}\n", + "\n", + ".xr-var-list,\n", + ".xr-var-item {\n", + " display: contents;\n", + "}\n", + "\n", + ".xr-var-item > div,\n", + ".xr-var-item label,\n", + ".xr-var-item > .xr-var-name span {\n", + " background-color: var(--xr-background-color-row-even);\n", + " margin-bottom: 0;\n", + "}\n", + "\n", + ".xr-var-item > .xr-var-name:hover span {\n", + " padding-right: 5px;\n", + "}\n", + "\n", + ".xr-var-list > li:nth-child(odd) > div,\n", + ".xr-var-list > li:nth-child(odd) > label,\n", + ".xr-var-list > li:nth-child(odd) > .xr-var-name span {\n", + " background-color: var(--xr-background-color-row-odd);\n", + "}\n", + "\n", + ".xr-var-name {\n", + " grid-column: 1;\n", + "}\n", + "\n", + ".xr-var-dims {\n", + " grid-column: 2;\n", + "}\n", + "\n", + ".xr-var-dtype {\n", + " grid-column: 3;\n", + " text-align: right;\n", + " color: var(--xr-font-color2);\n", + "}\n", + "\n", + ".xr-var-preview {\n", + " grid-column: 4;\n", + "}\n", + "\n", + ".xr-index-preview {\n", + " grid-column: 2 / 5;\n", + " color: var(--xr-font-color2);\n", + "}\n", + "\n", + ".xr-var-name,\n", + ".xr-var-dims,\n", + ".xr-var-dtype,\n", + ".xr-preview,\n", + ".xr-attrs dt {\n", + " white-space: nowrap;\n", + " overflow: hidden;\n", + " text-overflow: ellipsis;\n", + " padding-right: 10px;\n", + "}\n", + "\n", + ".xr-var-name:hover,\n", + ".xr-var-dims:hover,\n", + ".xr-var-dtype:hover,\n", + ".xr-attrs dt:hover {\n", + " overflow: visible;\n", + " width: auto;\n", + " z-index: 1;\n", + "}\n", + "\n", + ".xr-var-attrs,\n", + ".xr-var-data,\n", + ".xr-index-data {\n", + " display: none;\n", + " background-color: var(--xr-background-color) !important;\n", + " padding-bottom: 5px !important;\n", + "}\n", + "\n", + ".xr-var-attrs-in:checked ~ .xr-var-attrs,\n", + ".xr-var-data-in:checked ~ .xr-var-data,\n", + ".xr-index-data-in:checked ~ .xr-index-data {\n", + " display: block;\n", + "}\n", + "\n", + ".xr-var-data > table {\n", + " float: right;\n", + "}\n", + "\n", + ".xr-var-name span,\n", + ".xr-var-data,\n", + ".xr-index-name div,\n", + ".xr-index-data,\n", + ".xr-attrs {\n", + " padding-left: 25px !important;\n", + "}\n", + "\n", + ".xr-attrs,\n", + ".xr-var-attrs,\n", + ".xr-var-data,\n", + ".xr-index-data {\n", + " grid-column: 1 / -1;\n", + "}\n", + "\n", + "dl.xr-attrs {\n", + " padding: 0;\n", + " margin: 0;\n", + " display: grid;\n", + " grid-template-columns: 125px auto;\n", + "}\n", + "\n", + ".xr-attrs dt,\n", + ".xr-attrs dd {\n", + " padding: 0;\n", + " margin: 0;\n", + " float: left;\n", + " padding-right: 10px;\n", + " width: auto;\n", + "}\n", + "\n", + ".xr-attrs dt {\n", + " font-weight: normal;\n", + " grid-column: 1;\n", + "}\n", + "\n", + ".xr-attrs dt:hover span {\n", + " display: inline-block;\n", + " background: var(--xr-background-color);\n", + " padding-right: 10px;\n", + "}\n", + "\n", + ".xr-attrs dd {\n", + " grid-column: 2;\n", + " white-space: pre-wrap;\n", + " word-break: break-all;\n", + "}\n", + "\n", + ".xr-icon-database,\n", + ".xr-icon-file-text2,\n", + ".xr-no-icon {\n", + " display: inline-block;\n", + " vertical-align: middle;\n", + " width: 1em;\n", + " height: 1.5em !important;\n", + " stroke-width: 0;\n", + " stroke: currentColor;\n", + " fill: currentColor;\n", + "}\n", + "</style><pre class='xr-text-repr-fallback'><xarray.Dataset>\n", + "Dimensions: (lon: 51, lat: 65, time: 30)\n", + "Coordinates:\n", + " * lon (lon) float32 12.5 13.5 14.5 15.5 16.5 ... 59.5 60.5 61.5 62.5\n", + " * lat (lat) float32 15.5 16.5 17.5 18.5 19.5 ... 76.5 77.5 78.5 79.5\n", + " * time (time) float32 1.75 2.0 2.25 2.5 2.75 ... 8.0 8.25 8.5 8.75 9.0\n", + "Data variables:\n", + " mslp (time, lat, lon) float32 dask.array<chunksize=(1, 65, 51), meta=np.ndarray>\n", + " dpsfc_dt (time, lat, lon) float32 dask.array<chunksize=(1, 65, 51), meta=np.ndarray>\n", + " dfi_dt (time, lat, lon) float32 dask.array<chunksize=(1, 65, 51), meta=np.ndarray>\n", + " EP (time, lat, lon) float32 dask.array<chunksize=(1, 65, 51), meta=np.ndarray>\n", + " ITT (time, lat, lon) float32 dask.array<chunksize=(1, 65, 51), meta=np.ndarray>\n", + " Eq1res (time, lat, lon) float32 dask.array<chunksize=(1, 65, 51), meta=np.ndarray>\n", + " TADV (time, lat, lon) float32 dask.array<chunksize=(1, 65, 51), meta=np.ndarray>\n", + " VMT (time, lat, lon) float32 dask.array<chunksize=(1, 65, 51), meta=np.ndarray>\n", + " DIABres (time, lat, lon) float32 dask.array<chunksize=(1, 65, 51), meta=np.ndarray>\n", + "Attributes:\n", + " description: PTE data</pre><div class='xr-wrap' style='display:none'><div class='xr-header'><div class='xr-obj-type'>xarray.Dataset</div></div><ul class='xr-sections'><li class='xr-section-item'><input id='section-476798e5-6ff6-4db5-bf50-4857dde76b3c' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-476798e5-6ff6-4db5-bf50-4857dde76b3c' class='xr-section-summary' title='Expand/collapse section'>Dimensions:</label><div class='xr-section-inline-details'><ul class='xr-dim-list'><li><span class='xr-has-index'>lon</span>: 51</li><li><span class='xr-has-index'>lat</span>: 65</li><li><span class='xr-has-index'>time</span>: 30</li></ul></div><div class='xr-section-details'></div></li><li class='xr-section-item'><input id='section-26fe6c09-5807-4fb5-9817-87a6242f52df' class='xr-section-summary-in' type='checkbox' checked><label for='section-26fe6c09-5807-4fb5-9817-87a6242f52df' class='xr-section-summary' >Coordinates: <span>(3)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>lon</span></div><div class='xr-var-dims'>(lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>12.5 13.5 14.5 ... 60.5 61.5 62.5</div><input id='attrs-330ff80c-6276-4eef-96b7-2efd8f191f4c' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-330ff80c-6276-4eef-96b7-2efd8f191f4c' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-9f8559cd-4596-4128-8d6b-f8b1de22884d' class='xr-var-data-in' type='checkbox'><label for='data-9f8559cd-4596-4128-8d6b-f8b1de22884d' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>long_name :</span></dt><dd>longitude</dd><dt><span>units :</span></dt><dd>degrees east</dd></dl></div><div class='xr-var-data'><pre>array([12.5, 13.5, 14.5, 15.5, 16.5, 17.5, 18.5, 19.5, 20.5, 21.5, 22.5, 23.5,\n", + " 24.5, 25.5, 26.5, 27.5, 28.5, 29.5, 30.5, 31.5, 32.5, 33.5, 34.5, 35.5,\n", + " 36.5, 37.5, 38.5, 39.5, 40.5, 41.5, 42.5, 43.5, 44.5, 45.5, 46.5, 47.5,\n", + " 48.5, 49.5, 50.5, 51.5, 52.5, 53.5, 54.5, 55.5, 56.5, 57.5, 58.5, 59.5,\n", + " 60.5, 61.5, 62.5], dtype=float32)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>lat</span></div><div class='xr-var-dims'>(lat)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>15.5 16.5 17.5 ... 77.5 78.5 79.5</div><input id='attrs-a2ec71a0-dee2-4d55-99e8-2bb684aa45e1' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-a2ec71a0-dee2-4d55-99e8-2bb684aa45e1' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-484068f1-1073-4107-ae86-f3133ad40c34' class='xr-var-data-in' type='checkbox'><label for='data-484068f1-1073-4107-ae86-f3133ad40c34' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>long_name :</span></dt><dd>latitude</dd><dt><span>units :</span></dt><dd>degrees north</dd></dl></div><div class='xr-var-data'><pre>array([15.5, 16.5, 17.5, 18.5, 19.5, 20.5, 21.5, 22.5, 23.5, 24.5, 25.5, 26.5,\n", + " 27.5, 28.5, 29.5, 30.5, 31.5, 32.5, 33.5, 34.5, 35.5, 36.5, 37.5, 38.5,\n", + " 39.5, 40.5, 41.5, 42.5, 43.5, 44.5, 45.5, 46.5, 47.5, 48.5, 49.5, 50.5,\n", + " 51.5, 52.5, 53.5, 54.5, 55.5, 56.5, 57.5, 58.5, 59.5, 60.5, 61.5, 62.5,\n", + " 63.5, 64.5, 65.5, 66.5, 67.5, 68.5, 69.5, 70.5, 71.5, 72.5, 73.5, 74.5,\n", + " 75.5, 76.5, 77.5, 78.5, 79.5], dtype=float32)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>time</span></div><div class='xr-var-dims'>(time)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>1.75 2.0 2.25 2.5 ... 8.5 8.75 9.0</div><input id='attrs-43b05c8c-ae70-4df2-a6ef-36fd2d637c90' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-43b05c8c-ae70-4df2-a6ef-36fd2d637c90' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-be7299cb-6f7f-4253-8d5a-d9ea2d0cc5d4' class='xr-var-data-in' type='checkbox'><label for='data-be7299cb-6f7f-4253-8d5a-d9ea2d0cc5d4' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>long_name :</span></dt><dd>time</dd></dl></div><div class='xr-var-data'><pre>array([1.75, 2. , 2.25, 2.5 , 2.75, 3. , 3.25, 3.5 , 3.75, 4. , 4.25, 4.5 ,\n", + " 4.75, 5. , 5.25, 5.5 , 5.75, 6. , 6.25, 6.5 , 6.75, 7. , 7.25, 7.5 ,\n", + " 7.75, 8. , 8.25, 8.5 , 8.75, 9. ], dtype=float32)</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-fb5ab4e1-0b61-4263-a64c-b4e913342461' class='xr-section-summary-in' type='checkbox' checked><label for='section-fb5ab4e1-0b61-4263-a64c-b4e913342461' class='xr-section-summary' >Data variables: <span>(9)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span>mslp</span></div><div class='xr-var-dims'>(time, lat, lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(1, 65, 51), meta=np.ndarray></div><input id='attrs-c02e1eb1-71e1-40c3-ac2c-3b5912fad7ab' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-c02e1eb1-71e1-40c3-ac2c-3b5912fad7ab' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-6e023b17-cda7-4ea5-96f4-1dfa2b0d023e' class='xr-var-data-in' type='checkbox'><label for='data-6e023b17-cda7-4ea5-96f4-1dfa2b0d023e' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>long_name :</span></dt><dd>mean sea level pressure</dd></dl></div><div class='xr-var-data'><table>\n", + " <tr>\n", + " <td>\n", + " <table style=\"border-collapse: collapse;\">\n", + " <thead>\n", + " <tr>\n", + " <td> </td>\n", + " <th> Array </th>\n", + " <th> Chunk </th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " \n", + " <tr>\n", + " <th> Bytes </th>\n", + " <td> 388.48 kiB </td>\n", + " <td> 12.95 kiB </td>\n", + " </tr>\n", + " \n", + " <tr>\n", + " <th> Shape </th>\n", + " <td> (30, 65, 51) </td>\n", + " <td> (1, 65, 51) </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Dask graph </th>\n", + " <td colspan=\"2\"> 30 chunks in 61 graph layers </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Data type </th>\n", + " <td colspan=\"2\"> float32 numpy.ndarray </td>\n", + " </tr>\n", + " </tbody>\n", + " </table>\n", + " </td>\n", + " <td>\n", + " <svg width=\"186\" height=\"202\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"42\" y2=\"32\" style=\"stroke-width:2\" />\n", + " <line x1=\"10\" y1=\"120\" x2=\"42\" y2=\"152\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"120\" style=\"stroke-width:2\" />\n", + " <line x1=\"11\" y1=\"1\" x2=\"11\" y2=\"121\" />\n", + " <line x1=\"13\" y1=\"3\" x2=\"13\" y2=\"123\" />\n", + " <line x1=\"14\" y1=\"4\" x2=\"14\" y2=\"124\" />\n", + " <line x1=\"16\" y1=\"6\" x2=\"16\" y2=\"126\" />\n", + " <line x1=\"17\" y1=\"7\" x2=\"17\" y2=\"127\" />\n", + " <line x1=\"19\" y1=\"9\" x2=\"19\" y2=\"129\" />\n", + " <line x1=\"21\" y1=\"11\" x2=\"21\" y2=\"131\" />\n", + " <line x1=\"23\" y1=\"13\" x2=\"23\" y2=\"133\" />\n", + " <line x1=\"25\" y1=\"15\" x2=\"25\" y2=\"135\" />\n", + " <line x1=\"26\" y1=\"16\" x2=\"26\" y2=\"136\" />\n", + " <line x1=\"28\" y1=\"18\" x2=\"28\" y2=\"138\" />\n", + " <line x1=\"29\" y1=\"19\" x2=\"29\" y2=\"139\" />\n", + " <line x1=\"31\" y1=\"21\" x2=\"31\" y2=\"141\" />\n", + " <line x1=\"33\" y1=\"23\" x2=\"33\" y2=\"143\" />\n", + " <line x1=\"34\" y1=\"24\" x2=\"34\" y2=\"144\" />\n", + " <line x1=\"37\" y1=\"27\" x2=\"37\" y2=\"147\" />\n", + " <line x1=\"38\" y1=\"28\" x2=\"38\" y2=\"148\" />\n", + " <line x1=\"40\" y1=\"30\" x2=\"40\" y2=\"150\" />\n", + " <line x1=\"42\" y1=\"32\" x2=\"42\" y2=\"152\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"10.0,0.0 42.579185520361996,32.579185520361996 42.579185520361996,152.579185520362 10.0,120.0\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"104\" y2=\"0\" style=\"stroke-width:2\" />\n", + " <line x1=\"11\" y1=\"1\" x2=\"105\" y2=\"1\" />\n", + " <line x1=\"13\" y1=\"3\" x2=\"107\" y2=\"3\" />\n", + " <line x1=\"14\" y1=\"4\" x2=\"108\" y2=\"4\" />\n", + " <line x1=\"16\" y1=\"6\" x2=\"110\" y2=\"6\" />\n", + " <line x1=\"17\" y1=\"7\" x2=\"111\" y2=\"7\" />\n", + " <line x1=\"19\" y1=\"9\" x2=\"113\" y2=\"9\" />\n", + " <line x1=\"21\" y1=\"11\" x2=\"116\" y2=\"11\" />\n", + " <line x1=\"23\" y1=\"13\" x2=\"117\" y2=\"13\" />\n", + " <line x1=\"25\" y1=\"15\" x2=\"119\" y2=\"15\" />\n", + " <line x1=\"26\" y1=\"16\" x2=\"120\" y2=\"16\" />\n", + " <line x1=\"28\" y1=\"18\" x2=\"122\" y2=\"18\" />\n", + " <line x1=\"29\" y1=\"19\" x2=\"123\" y2=\"19\" />\n", + " <line x1=\"31\" y1=\"21\" x2=\"125\" y2=\"21\" />\n", + " <line x1=\"33\" y1=\"23\" x2=\"128\" y2=\"23\" />\n", + " <line x1=\"34\" y1=\"24\" x2=\"129\" y2=\"24\" />\n", + " <line x1=\"37\" y1=\"27\" x2=\"131\" y2=\"27\" />\n", + " <line x1=\"38\" y1=\"28\" x2=\"132\" y2=\"28\" />\n", + " <line x1=\"40\" y1=\"30\" x2=\"134\" y2=\"30\" />\n", + " <line x1=\"42\" y1=\"32\" x2=\"136\" y2=\"32\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"42\" y2=\"32\" style=\"stroke-width:2\" />\n", + " <line x1=\"104\" y1=\"0\" x2=\"136\" y2=\"32\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"10.0,0.0 104.15384615384616,0.0 136.73303167420815,32.579185520361996 42.579185520361996,32.579185520361996\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"42\" y1=\"32\" x2=\"136\" y2=\"32\" style=\"stroke-width:2\" />\n", + " <line x1=\"42\" y1=\"152\" x2=\"136\" y2=\"152\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"42\" y1=\"32\" x2=\"42\" y2=\"152\" style=\"stroke-width:2\" />\n", + " <line x1=\"136\" y1=\"32\" x2=\"136\" y2=\"152\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"42.579185520361996,32.579185520361996 136.73303167420815,32.579185520361996 136.73303167420815,152.579185520362 42.579185520361996,152.579185520362\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Text -->\n", + " <text x=\"89.656109\" y=\"172.579186\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >51</text>\n", + " <text x=\"156.733032\" y=\"92.579186\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,156.733032,92.579186)\">65</text>\n", + " <text x=\"16.289593\" y=\"156.289593\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,16.289593,156.289593)\">30</text>\n", + "</svg>\n", + " </td>\n", + " </tr>\n", + "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>dpsfc_dt</span></div><div class='xr-var-dims'>(time, lat, lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(1, 65, 51), meta=np.ndarray></div><input id='attrs-5046eb39-0046-465d-8344-cd3c0bbccf11' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-5046eb39-0046-465d-8344-cd3c0bbccf11' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-7c48c878-8fa9-4222-9f8e-fb84b54a6c9c' class='xr-var-data-in' type='checkbox'><label for='data-7c48c878-8fa9-4222-9f8e-fb84b54a6c9c' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>long_name :</span></dt><dd>surface pressure tendency</dd><dt><span>units :</span></dt><dd>Pa/6h</dd></dl></div><div class='xr-var-data'><table>\n", + " <tr>\n", + " <td>\n", + " <table style=\"border-collapse: collapse;\">\n", + " <thead>\n", + " <tr>\n", + " <td> </td>\n", + " <th> Array </th>\n", + " <th> Chunk </th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " \n", + " <tr>\n", + " <th> Bytes </th>\n", + " <td> 388.48 kiB </td>\n", + " <td> 12.95 kiB </td>\n", + " </tr>\n", + " \n", + " <tr>\n", + " <th> Shape </th>\n", + " <td> (30, 65, 51) </td>\n", + " <td> (1, 65, 51) </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Dask graph </th>\n", + " <td colspan=\"2\"> 30 chunks in 61 graph layers </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Data type </th>\n", + " <td colspan=\"2\"> float32 numpy.ndarray </td>\n", + " </tr>\n", + " </tbody>\n", + " </table>\n", + " </td>\n", + " <td>\n", + " <svg width=\"186\" height=\"202\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"42\" y2=\"32\" style=\"stroke-width:2\" />\n", + " <line x1=\"10\" y1=\"120\" x2=\"42\" y2=\"152\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"120\" style=\"stroke-width:2\" />\n", + " <line x1=\"11\" y1=\"1\" x2=\"11\" y2=\"121\" />\n", + " <line x1=\"13\" y1=\"3\" x2=\"13\" y2=\"123\" />\n", + " <line x1=\"14\" y1=\"4\" x2=\"14\" y2=\"124\" />\n", + " <line x1=\"16\" y1=\"6\" x2=\"16\" y2=\"126\" />\n", + " <line x1=\"17\" y1=\"7\" x2=\"17\" y2=\"127\" />\n", + " <line x1=\"19\" y1=\"9\" x2=\"19\" y2=\"129\" />\n", + " <line x1=\"21\" y1=\"11\" x2=\"21\" y2=\"131\" />\n", + " <line x1=\"23\" y1=\"13\" x2=\"23\" y2=\"133\" />\n", + " <line x1=\"25\" y1=\"15\" x2=\"25\" y2=\"135\" />\n", + " <line x1=\"26\" y1=\"16\" x2=\"26\" y2=\"136\" />\n", + " <line x1=\"28\" y1=\"18\" x2=\"28\" y2=\"138\" />\n", + " <line x1=\"29\" y1=\"19\" x2=\"29\" y2=\"139\" />\n", + " <line x1=\"31\" y1=\"21\" x2=\"31\" y2=\"141\" />\n", + " <line x1=\"33\" y1=\"23\" x2=\"33\" y2=\"143\" />\n", + " <line x1=\"34\" y1=\"24\" x2=\"34\" y2=\"144\" />\n", + " <line x1=\"37\" y1=\"27\" x2=\"37\" y2=\"147\" />\n", + " <line x1=\"38\" y1=\"28\" x2=\"38\" y2=\"148\" />\n", + " <line x1=\"40\" y1=\"30\" x2=\"40\" y2=\"150\" />\n", + " <line x1=\"42\" y1=\"32\" x2=\"42\" y2=\"152\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"10.0,0.0 42.579185520361996,32.579185520361996 42.579185520361996,152.579185520362 10.0,120.0\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"104\" y2=\"0\" style=\"stroke-width:2\" />\n", + " <line x1=\"11\" y1=\"1\" x2=\"105\" y2=\"1\" />\n", + " <line x1=\"13\" y1=\"3\" x2=\"107\" y2=\"3\" />\n", + " <line x1=\"14\" y1=\"4\" x2=\"108\" y2=\"4\" />\n", + " <line x1=\"16\" y1=\"6\" x2=\"110\" y2=\"6\" />\n", + " <line x1=\"17\" y1=\"7\" x2=\"111\" y2=\"7\" />\n", + " <line x1=\"19\" y1=\"9\" x2=\"113\" y2=\"9\" />\n", + " <line x1=\"21\" y1=\"11\" x2=\"116\" y2=\"11\" />\n", + " <line x1=\"23\" y1=\"13\" x2=\"117\" y2=\"13\" />\n", + " <line x1=\"25\" y1=\"15\" x2=\"119\" y2=\"15\" />\n", + " <line x1=\"26\" y1=\"16\" x2=\"120\" y2=\"16\" />\n", + " <line x1=\"28\" y1=\"18\" x2=\"122\" y2=\"18\" />\n", + " <line x1=\"29\" y1=\"19\" x2=\"123\" y2=\"19\" />\n", + " <line x1=\"31\" y1=\"21\" x2=\"125\" y2=\"21\" />\n", + " <line x1=\"33\" y1=\"23\" x2=\"128\" y2=\"23\" />\n", + " <line x1=\"34\" y1=\"24\" x2=\"129\" y2=\"24\" />\n", + " <line x1=\"37\" y1=\"27\" x2=\"131\" y2=\"27\" />\n", + " <line x1=\"38\" y1=\"28\" x2=\"132\" y2=\"28\" />\n", + " <line x1=\"40\" y1=\"30\" x2=\"134\" y2=\"30\" />\n", + " <line x1=\"42\" y1=\"32\" x2=\"136\" y2=\"32\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"42\" y2=\"32\" style=\"stroke-width:2\" />\n", + " <line x1=\"104\" y1=\"0\" x2=\"136\" y2=\"32\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"10.0,0.0 104.15384615384616,0.0 136.73303167420815,32.579185520361996 42.579185520361996,32.579185520361996\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"42\" y1=\"32\" x2=\"136\" y2=\"32\" style=\"stroke-width:2\" />\n", + " <line x1=\"42\" y1=\"152\" x2=\"136\" y2=\"152\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"42\" y1=\"32\" x2=\"42\" y2=\"152\" style=\"stroke-width:2\" />\n", + " <line x1=\"136\" y1=\"32\" x2=\"136\" y2=\"152\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"42.579185520361996,32.579185520361996 136.73303167420815,32.579185520361996 136.73303167420815,152.579185520362 42.579185520361996,152.579185520362\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Text -->\n", + " <text x=\"89.656109\" y=\"172.579186\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >51</text>\n", + " <text x=\"156.733032\" y=\"92.579186\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,156.733032,92.579186)\">65</text>\n", + " <text x=\"16.289593\" y=\"156.289593\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,16.289593,156.289593)\">30</text>\n", + "</svg>\n", + " </td>\n", + " </tr>\n", + "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>dfi_dt</span></div><div class='xr-var-dims'>(time, lat, lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(1, 65, 51), meta=np.ndarray></div><input id='attrs-6f4aaf07-b0b8-4e97-a48a-db3e55cbea35' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-6f4aaf07-b0b8-4e97-a48a-db3e55cbea35' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-4f9efab2-e0c4-4338-8899-e8b21cef84ca' class='xr-var-data-in' type='checkbox'><label for='data-4f9efab2-e0c4-4338-8899-e8b21cef84ca' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>long_name :</span></dt><dd>contribution by change in geopotential at the upper boundary</dd><dt><span>units :</span></dt><dd>Pa/6h</dd></dl></div><div class='xr-var-data'><table>\n", + " <tr>\n", + " <td>\n", + " <table style=\"border-collapse: collapse;\">\n", + " <thead>\n", + " <tr>\n", + " <td> </td>\n", + " <th> Array </th>\n", + " <th> Chunk </th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " \n", + " <tr>\n", + " <th> Bytes </th>\n", + " <td> 388.48 kiB </td>\n", + " <td> 12.95 kiB </td>\n", + " </tr>\n", + " \n", + " <tr>\n", + " <th> Shape </th>\n", + " <td> (30, 65, 51) </td>\n", + " <td> (1, 65, 51) </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Dask graph </th>\n", + " <td colspan=\"2\"> 30 chunks in 61 graph layers </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Data type </th>\n", + " <td colspan=\"2\"> float32 numpy.ndarray </td>\n", + " </tr>\n", + " </tbody>\n", + " </table>\n", + " </td>\n", + " <td>\n", + " <svg width=\"186\" height=\"202\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"42\" y2=\"32\" style=\"stroke-width:2\" />\n", + " <line x1=\"10\" y1=\"120\" x2=\"42\" y2=\"152\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"120\" style=\"stroke-width:2\" />\n", + " <line x1=\"11\" y1=\"1\" x2=\"11\" y2=\"121\" />\n", + " <line x1=\"13\" y1=\"3\" x2=\"13\" y2=\"123\" />\n", + " <line x1=\"14\" y1=\"4\" x2=\"14\" y2=\"124\" />\n", + " <line x1=\"16\" y1=\"6\" x2=\"16\" y2=\"126\" />\n", + " <line x1=\"17\" y1=\"7\" x2=\"17\" y2=\"127\" />\n", + " <line x1=\"19\" y1=\"9\" x2=\"19\" y2=\"129\" />\n", + " <line x1=\"21\" y1=\"11\" x2=\"21\" y2=\"131\" />\n", + " <line x1=\"23\" y1=\"13\" x2=\"23\" y2=\"133\" />\n", + " <line x1=\"25\" y1=\"15\" x2=\"25\" y2=\"135\" />\n", + " <line x1=\"26\" y1=\"16\" x2=\"26\" y2=\"136\" />\n", + " <line x1=\"28\" y1=\"18\" x2=\"28\" y2=\"138\" />\n", + " <line x1=\"29\" y1=\"19\" x2=\"29\" y2=\"139\" />\n", + " <line x1=\"31\" y1=\"21\" x2=\"31\" y2=\"141\" />\n", + " <line x1=\"33\" y1=\"23\" x2=\"33\" y2=\"143\" />\n", + " <line x1=\"34\" y1=\"24\" x2=\"34\" y2=\"144\" />\n", + " <line x1=\"37\" y1=\"27\" x2=\"37\" y2=\"147\" />\n", + " <line x1=\"38\" y1=\"28\" x2=\"38\" y2=\"148\" />\n", + " <line x1=\"40\" y1=\"30\" x2=\"40\" y2=\"150\" />\n", + " <line x1=\"42\" y1=\"32\" x2=\"42\" y2=\"152\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"10.0,0.0 42.579185520361996,32.579185520361996 42.579185520361996,152.579185520362 10.0,120.0\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"104\" y2=\"0\" style=\"stroke-width:2\" />\n", + " <line x1=\"11\" y1=\"1\" x2=\"105\" y2=\"1\" />\n", + " <line x1=\"13\" y1=\"3\" x2=\"107\" y2=\"3\" />\n", + " <line x1=\"14\" y1=\"4\" x2=\"108\" y2=\"4\" />\n", + " <line x1=\"16\" y1=\"6\" x2=\"110\" y2=\"6\" />\n", + " <line x1=\"17\" y1=\"7\" x2=\"111\" y2=\"7\" />\n", + " <line x1=\"19\" y1=\"9\" x2=\"113\" y2=\"9\" />\n", + " <line x1=\"21\" y1=\"11\" x2=\"116\" y2=\"11\" />\n", + " <line x1=\"23\" y1=\"13\" x2=\"117\" y2=\"13\" />\n", + " <line x1=\"25\" y1=\"15\" x2=\"119\" y2=\"15\" />\n", + " <line x1=\"26\" y1=\"16\" x2=\"120\" y2=\"16\" />\n", + " <line x1=\"28\" y1=\"18\" x2=\"122\" y2=\"18\" />\n", + " <line x1=\"29\" y1=\"19\" x2=\"123\" y2=\"19\" />\n", + " <line x1=\"31\" y1=\"21\" x2=\"125\" y2=\"21\" />\n", + " <line x1=\"33\" y1=\"23\" x2=\"128\" y2=\"23\" />\n", + " <line x1=\"34\" y1=\"24\" x2=\"129\" y2=\"24\" />\n", + " <line x1=\"37\" y1=\"27\" x2=\"131\" y2=\"27\" />\n", + " <line x1=\"38\" y1=\"28\" x2=\"132\" y2=\"28\" />\n", + " <line x1=\"40\" y1=\"30\" x2=\"134\" y2=\"30\" />\n", + " <line x1=\"42\" y1=\"32\" x2=\"136\" y2=\"32\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"42\" y2=\"32\" style=\"stroke-width:2\" />\n", + " <line x1=\"104\" y1=\"0\" x2=\"136\" y2=\"32\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"10.0,0.0 104.15384615384616,0.0 136.73303167420815,32.579185520361996 42.579185520361996,32.579185520361996\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"42\" y1=\"32\" x2=\"136\" y2=\"32\" style=\"stroke-width:2\" />\n", + " <line x1=\"42\" y1=\"152\" x2=\"136\" y2=\"152\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"42\" y1=\"32\" x2=\"42\" y2=\"152\" style=\"stroke-width:2\" />\n", + " <line x1=\"136\" y1=\"32\" x2=\"136\" y2=\"152\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"42.579185520361996,32.579185520361996 136.73303167420815,32.579185520361996 136.73303167420815,152.579185520362 42.579185520361996,152.579185520362\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Text -->\n", + " <text x=\"89.656109\" y=\"172.579186\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >51</text>\n", + " <text x=\"156.733032\" y=\"92.579186\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,156.733032,92.579186)\">65</text>\n", + " <text x=\"16.289593\" y=\"156.289593\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,16.289593,156.289593)\">30</text>\n", + "</svg>\n", + " </td>\n", + " </tr>\n", + "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>EP</span></div><div class='xr-var-dims'>(time, lat, lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(1, 65, 51), meta=np.ndarray></div><input id='attrs-e57a2f25-cee2-4c54-a181-cef44865fea6' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-e57a2f25-cee2-4c54-a181-cef44865fea6' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-ce3faec2-8c70-49de-a981-2c094293e930' class='xr-var-data-in' type='checkbox'><label for='data-ce3faec2-8c70-49de-a981-2c094293e930' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>long_name :</span></dt><dd>mass change by precipitation/evaporation</dd><dt><span>units :</span></dt><dd>Pa/6h</dd></dl></div><div class='xr-var-data'><table>\n", + " <tr>\n", + " <td>\n", + " <table style=\"border-collapse: collapse;\">\n", + " <thead>\n", + " <tr>\n", + " <td> </td>\n", + " <th> Array </th>\n", + " <th> Chunk </th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " \n", + " <tr>\n", + " <th> Bytes </th>\n", + " <td> 388.48 kiB </td>\n", + " <td> 12.95 kiB </td>\n", + " </tr>\n", + " \n", + " <tr>\n", + " <th> Shape </th>\n", + " <td> (30, 65, 51) </td>\n", + " <td> (1, 65, 51) </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Dask graph </th>\n", + " <td colspan=\"2\"> 30 chunks in 61 graph layers </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Data type </th>\n", + " <td colspan=\"2\"> float32 numpy.ndarray </td>\n", + " </tr>\n", + " </tbody>\n", + " </table>\n", + " </td>\n", + " <td>\n", + " <svg width=\"186\" height=\"202\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"42\" y2=\"32\" style=\"stroke-width:2\" />\n", + " <line x1=\"10\" y1=\"120\" x2=\"42\" y2=\"152\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"120\" style=\"stroke-width:2\" />\n", + " <line x1=\"11\" y1=\"1\" x2=\"11\" y2=\"121\" />\n", + " <line x1=\"13\" y1=\"3\" x2=\"13\" y2=\"123\" />\n", + " <line x1=\"14\" y1=\"4\" x2=\"14\" y2=\"124\" />\n", + " <line x1=\"16\" y1=\"6\" x2=\"16\" y2=\"126\" />\n", + " <line x1=\"17\" y1=\"7\" x2=\"17\" y2=\"127\" />\n", + " <line x1=\"19\" y1=\"9\" x2=\"19\" y2=\"129\" />\n", + " <line x1=\"21\" y1=\"11\" x2=\"21\" y2=\"131\" />\n", + " <line x1=\"23\" y1=\"13\" x2=\"23\" y2=\"133\" />\n", + " <line x1=\"25\" y1=\"15\" x2=\"25\" y2=\"135\" />\n", + " <line x1=\"26\" y1=\"16\" x2=\"26\" y2=\"136\" />\n", + " <line x1=\"28\" y1=\"18\" x2=\"28\" y2=\"138\" />\n", + " <line x1=\"29\" y1=\"19\" x2=\"29\" y2=\"139\" />\n", + " <line x1=\"31\" y1=\"21\" x2=\"31\" y2=\"141\" />\n", + " <line x1=\"33\" y1=\"23\" x2=\"33\" y2=\"143\" />\n", + " <line x1=\"34\" y1=\"24\" x2=\"34\" y2=\"144\" />\n", + " <line x1=\"37\" y1=\"27\" x2=\"37\" y2=\"147\" />\n", + " <line x1=\"38\" y1=\"28\" x2=\"38\" y2=\"148\" />\n", + " <line x1=\"40\" y1=\"30\" x2=\"40\" y2=\"150\" />\n", + " <line x1=\"42\" y1=\"32\" x2=\"42\" y2=\"152\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"10.0,0.0 42.579185520361996,32.579185520361996 42.579185520361996,152.579185520362 10.0,120.0\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"104\" y2=\"0\" style=\"stroke-width:2\" />\n", + " <line x1=\"11\" y1=\"1\" x2=\"105\" y2=\"1\" />\n", + " <line x1=\"13\" y1=\"3\" x2=\"107\" y2=\"3\" />\n", + " <line x1=\"14\" y1=\"4\" x2=\"108\" y2=\"4\" />\n", + " <line x1=\"16\" y1=\"6\" x2=\"110\" y2=\"6\" />\n", + " <line x1=\"17\" y1=\"7\" x2=\"111\" y2=\"7\" />\n", + " <line x1=\"19\" y1=\"9\" x2=\"113\" y2=\"9\" />\n", + " <line x1=\"21\" y1=\"11\" x2=\"116\" y2=\"11\" />\n", + " <line x1=\"23\" y1=\"13\" x2=\"117\" y2=\"13\" />\n", + " <line x1=\"25\" y1=\"15\" x2=\"119\" y2=\"15\" />\n", + " <line x1=\"26\" y1=\"16\" x2=\"120\" y2=\"16\" />\n", + " <line x1=\"28\" y1=\"18\" x2=\"122\" y2=\"18\" />\n", + " <line x1=\"29\" y1=\"19\" x2=\"123\" y2=\"19\" />\n", + " <line x1=\"31\" y1=\"21\" x2=\"125\" y2=\"21\" />\n", + " <line x1=\"33\" y1=\"23\" x2=\"128\" y2=\"23\" />\n", + " <line x1=\"34\" y1=\"24\" x2=\"129\" y2=\"24\" />\n", + " <line x1=\"37\" y1=\"27\" x2=\"131\" y2=\"27\" />\n", + " <line x1=\"38\" y1=\"28\" x2=\"132\" y2=\"28\" />\n", + " <line x1=\"40\" y1=\"30\" x2=\"134\" y2=\"30\" />\n", + " <line x1=\"42\" y1=\"32\" x2=\"136\" y2=\"32\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"42\" y2=\"32\" style=\"stroke-width:2\" />\n", + " <line x1=\"104\" y1=\"0\" x2=\"136\" y2=\"32\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"10.0,0.0 104.15384615384616,0.0 136.73303167420815,32.579185520361996 42.579185520361996,32.579185520361996\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"42\" y1=\"32\" x2=\"136\" y2=\"32\" style=\"stroke-width:2\" />\n", + " <line x1=\"42\" y1=\"152\" x2=\"136\" y2=\"152\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"42\" y1=\"32\" x2=\"42\" y2=\"152\" style=\"stroke-width:2\" />\n", + " <line x1=\"136\" y1=\"32\" x2=\"136\" y2=\"152\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"42.579185520361996,32.579185520361996 136.73303167420815,32.579185520361996 136.73303167420815,152.579185520362 42.579185520361996,152.579185520362\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Text -->\n", + " <text x=\"89.656109\" y=\"172.579186\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >51</text>\n", + " <text x=\"156.733032\" y=\"92.579186\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,156.733032,92.579186)\">65</text>\n", + " <text x=\"16.289593\" y=\"156.289593\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,16.289593,156.289593)\">30</text>\n", + "</svg>\n", + " </td>\n", + " </tr>\n", + "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>ITT</span></div><div class='xr-var-dims'>(time, lat, lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(1, 65, 51), meta=np.ndarray></div><input id='attrs-b4e3b048-0648-4f27-9e21-8dc4979519f4' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-b4e3b048-0648-4f27-9e21-8dc4979519f4' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-0f31707e-77fd-4f54-a143-d3fb0700c9e8' class='xr-var-data-in' type='checkbox'><label for='data-0f31707e-77fd-4f54-a143-d3fb0700c9e8' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>long_name :</span></dt><dd>vertically integrated virtual temperature tendency</dd><dt><span>units :</span></dt><dd>Pa/6h</dd></dl></div><div class='xr-var-data'><table>\n", + " <tr>\n", + " <td>\n", + " <table style=\"border-collapse: collapse;\">\n", + " <thead>\n", + " <tr>\n", + " <td> </td>\n", + " <th> Array </th>\n", + " <th> Chunk </th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " \n", + " <tr>\n", + " <th> Bytes </th>\n", + " <td> 388.48 kiB </td>\n", + " <td> 12.95 kiB </td>\n", + " </tr>\n", + " \n", + " <tr>\n", + " <th> Shape </th>\n", + " <td> (30, 65, 51) </td>\n", + " <td> (1, 65, 51) </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Dask graph </th>\n", + " <td colspan=\"2\"> 30 chunks in 61 graph layers </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Data type </th>\n", + " <td colspan=\"2\"> float32 numpy.ndarray </td>\n", + " </tr>\n", + " </tbody>\n", + " </table>\n", + " </td>\n", + " <td>\n", + " <svg width=\"186\" height=\"202\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"42\" y2=\"32\" style=\"stroke-width:2\" />\n", + " <line x1=\"10\" y1=\"120\" x2=\"42\" y2=\"152\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"120\" style=\"stroke-width:2\" />\n", + " <line x1=\"11\" y1=\"1\" x2=\"11\" y2=\"121\" />\n", + " <line x1=\"13\" y1=\"3\" x2=\"13\" y2=\"123\" />\n", + " <line x1=\"14\" y1=\"4\" x2=\"14\" y2=\"124\" />\n", + " <line x1=\"16\" y1=\"6\" x2=\"16\" y2=\"126\" />\n", + " <line x1=\"17\" y1=\"7\" x2=\"17\" y2=\"127\" />\n", + " <line x1=\"19\" y1=\"9\" x2=\"19\" y2=\"129\" />\n", + " <line x1=\"21\" y1=\"11\" x2=\"21\" y2=\"131\" />\n", + " <line x1=\"23\" y1=\"13\" x2=\"23\" y2=\"133\" />\n", + " <line x1=\"25\" y1=\"15\" x2=\"25\" y2=\"135\" />\n", + " <line x1=\"26\" y1=\"16\" x2=\"26\" y2=\"136\" />\n", + " <line x1=\"28\" y1=\"18\" x2=\"28\" y2=\"138\" />\n", + " <line x1=\"29\" y1=\"19\" x2=\"29\" y2=\"139\" />\n", + " <line x1=\"31\" y1=\"21\" x2=\"31\" y2=\"141\" />\n", + " <line x1=\"33\" y1=\"23\" x2=\"33\" y2=\"143\" />\n", + " <line x1=\"34\" y1=\"24\" x2=\"34\" y2=\"144\" />\n", + " <line x1=\"37\" y1=\"27\" x2=\"37\" y2=\"147\" />\n", + " <line x1=\"38\" y1=\"28\" x2=\"38\" y2=\"148\" />\n", + " <line x1=\"40\" y1=\"30\" x2=\"40\" y2=\"150\" />\n", + " <line x1=\"42\" y1=\"32\" x2=\"42\" y2=\"152\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"10.0,0.0 42.579185520361996,32.579185520361996 42.579185520361996,152.579185520362 10.0,120.0\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"104\" y2=\"0\" style=\"stroke-width:2\" />\n", + " <line x1=\"11\" y1=\"1\" x2=\"105\" y2=\"1\" />\n", + " <line x1=\"13\" y1=\"3\" x2=\"107\" y2=\"3\" />\n", + " <line x1=\"14\" y1=\"4\" x2=\"108\" y2=\"4\" />\n", + " <line x1=\"16\" y1=\"6\" x2=\"110\" y2=\"6\" />\n", + " <line x1=\"17\" y1=\"7\" x2=\"111\" y2=\"7\" />\n", + " <line x1=\"19\" y1=\"9\" x2=\"113\" y2=\"9\" />\n", + " <line x1=\"21\" y1=\"11\" x2=\"116\" y2=\"11\" />\n", + " <line x1=\"23\" y1=\"13\" x2=\"117\" y2=\"13\" />\n", + " <line x1=\"25\" y1=\"15\" x2=\"119\" y2=\"15\" />\n", + " <line x1=\"26\" y1=\"16\" x2=\"120\" y2=\"16\" />\n", + " <line x1=\"28\" y1=\"18\" x2=\"122\" y2=\"18\" />\n", + " <line x1=\"29\" y1=\"19\" x2=\"123\" y2=\"19\" />\n", + " <line x1=\"31\" y1=\"21\" x2=\"125\" y2=\"21\" />\n", + " <line x1=\"33\" y1=\"23\" x2=\"128\" y2=\"23\" />\n", + " <line x1=\"34\" y1=\"24\" x2=\"129\" y2=\"24\" />\n", + " <line x1=\"37\" y1=\"27\" x2=\"131\" y2=\"27\" />\n", + " <line x1=\"38\" y1=\"28\" x2=\"132\" y2=\"28\" />\n", + " <line x1=\"40\" y1=\"30\" x2=\"134\" y2=\"30\" />\n", + " <line x1=\"42\" y1=\"32\" x2=\"136\" y2=\"32\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"42\" y2=\"32\" style=\"stroke-width:2\" />\n", + " <line x1=\"104\" y1=\"0\" x2=\"136\" y2=\"32\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"10.0,0.0 104.15384615384616,0.0 136.73303167420815,32.579185520361996 42.579185520361996,32.579185520361996\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"42\" y1=\"32\" x2=\"136\" y2=\"32\" style=\"stroke-width:2\" />\n", + " <line x1=\"42\" y1=\"152\" x2=\"136\" y2=\"152\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"42\" y1=\"32\" x2=\"42\" y2=\"152\" style=\"stroke-width:2\" />\n", + " <line x1=\"136\" y1=\"32\" x2=\"136\" y2=\"152\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"42.579185520361996,32.579185520361996 136.73303167420815,32.579185520361996 136.73303167420815,152.579185520362 42.579185520361996,152.579185520362\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Text -->\n", + " <text x=\"89.656109\" y=\"172.579186\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >51</text>\n", + " <text x=\"156.733032\" y=\"92.579186\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,156.733032,92.579186)\">65</text>\n", + " <text x=\"16.289593\" y=\"156.289593\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,16.289593,156.289593)\">30</text>\n", + "</svg>\n", + " </td>\n", + " </tr>\n", + "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>Eq1res</span></div><div class='xr-var-dims'>(time, lat, lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(1, 65, 51), meta=np.ndarray></div><input id='attrs-4dc08137-0da8-4704-9621-d4bb09d64b62' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-4dc08137-0da8-4704-9621-d4bb09d64b62' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-ef1c5a7b-ef75-4a3a-8b07-5ee7b7ab1b6d' class='xr-var-data-in' type='checkbox'><label for='data-ef1c5a7b-ef75-4a3a-8b07-5ee7b7ab1b6d' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>long_name :</span></dt><dd>residual of PTE eq1</dd><dt><span>units :</span></dt><dd>Pa/6h</dd></dl></div><div class='xr-var-data'><table>\n", + " <tr>\n", + " <td>\n", + " <table style=\"border-collapse: collapse;\">\n", + " <thead>\n", + " <tr>\n", + " <td> </td>\n", + " <th> Array </th>\n", + " <th> Chunk </th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " \n", + " <tr>\n", + " <th> Bytes </th>\n", + " <td> 388.48 kiB </td>\n", + " <td> 12.95 kiB </td>\n", + " </tr>\n", + " \n", + " <tr>\n", + " <th> Shape </th>\n", + " <td> (30, 65, 51) </td>\n", + " <td> (1, 65, 51) </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Dask graph </th>\n", + " <td colspan=\"2\"> 30 chunks in 61 graph layers </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Data type </th>\n", + " <td colspan=\"2\"> float32 numpy.ndarray </td>\n", + " </tr>\n", + " </tbody>\n", + " </table>\n", + " </td>\n", + " <td>\n", + " <svg width=\"186\" height=\"202\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"42\" y2=\"32\" style=\"stroke-width:2\" />\n", + " <line x1=\"10\" y1=\"120\" x2=\"42\" y2=\"152\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"120\" style=\"stroke-width:2\" />\n", + " <line x1=\"11\" y1=\"1\" x2=\"11\" y2=\"121\" />\n", + " <line x1=\"13\" y1=\"3\" x2=\"13\" y2=\"123\" />\n", + " <line x1=\"14\" y1=\"4\" x2=\"14\" y2=\"124\" />\n", + " <line x1=\"16\" y1=\"6\" x2=\"16\" y2=\"126\" />\n", + " <line x1=\"17\" y1=\"7\" x2=\"17\" y2=\"127\" />\n", + " <line x1=\"19\" y1=\"9\" x2=\"19\" y2=\"129\" />\n", + " <line x1=\"21\" y1=\"11\" x2=\"21\" y2=\"131\" />\n", + " <line x1=\"23\" y1=\"13\" x2=\"23\" y2=\"133\" />\n", + " <line x1=\"25\" y1=\"15\" x2=\"25\" y2=\"135\" />\n", + " <line x1=\"26\" y1=\"16\" x2=\"26\" y2=\"136\" />\n", + " <line x1=\"28\" y1=\"18\" x2=\"28\" y2=\"138\" />\n", + " <line x1=\"29\" y1=\"19\" x2=\"29\" y2=\"139\" />\n", + " <line x1=\"31\" y1=\"21\" x2=\"31\" y2=\"141\" />\n", + " <line x1=\"33\" y1=\"23\" x2=\"33\" y2=\"143\" />\n", + " <line x1=\"34\" y1=\"24\" x2=\"34\" y2=\"144\" />\n", + " <line x1=\"37\" y1=\"27\" x2=\"37\" y2=\"147\" />\n", + " <line x1=\"38\" y1=\"28\" x2=\"38\" y2=\"148\" />\n", + " <line x1=\"40\" y1=\"30\" x2=\"40\" y2=\"150\" />\n", + " <line x1=\"42\" y1=\"32\" x2=\"42\" y2=\"152\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"10.0,0.0 42.579185520361996,32.579185520361996 42.579185520361996,152.579185520362 10.0,120.0\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"104\" y2=\"0\" style=\"stroke-width:2\" />\n", + " <line x1=\"11\" y1=\"1\" x2=\"105\" y2=\"1\" />\n", + " <line x1=\"13\" y1=\"3\" x2=\"107\" y2=\"3\" />\n", + " <line x1=\"14\" y1=\"4\" x2=\"108\" y2=\"4\" />\n", + " <line x1=\"16\" y1=\"6\" x2=\"110\" y2=\"6\" />\n", + " <line x1=\"17\" y1=\"7\" x2=\"111\" y2=\"7\" />\n", + " <line x1=\"19\" y1=\"9\" x2=\"113\" y2=\"9\" />\n", + " <line x1=\"21\" y1=\"11\" x2=\"116\" y2=\"11\" />\n", + " <line x1=\"23\" y1=\"13\" x2=\"117\" y2=\"13\" />\n", + " <line x1=\"25\" y1=\"15\" x2=\"119\" y2=\"15\" />\n", + " <line x1=\"26\" y1=\"16\" x2=\"120\" y2=\"16\" />\n", + " <line x1=\"28\" y1=\"18\" x2=\"122\" y2=\"18\" />\n", + " <line x1=\"29\" y1=\"19\" x2=\"123\" y2=\"19\" />\n", + " <line x1=\"31\" y1=\"21\" x2=\"125\" y2=\"21\" />\n", + " <line x1=\"33\" y1=\"23\" x2=\"128\" y2=\"23\" />\n", + " <line x1=\"34\" y1=\"24\" x2=\"129\" y2=\"24\" />\n", + " <line x1=\"37\" y1=\"27\" x2=\"131\" y2=\"27\" />\n", + " <line x1=\"38\" y1=\"28\" x2=\"132\" y2=\"28\" />\n", + " <line x1=\"40\" y1=\"30\" x2=\"134\" y2=\"30\" />\n", + " <line x1=\"42\" y1=\"32\" x2=\"136\" y2=\"32\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"42\" y2=\"32\" style=\"stroke-width:2\" />\n", + " <line x1=\"104\" y1=\"0\" x2=\"136\" y2=\"32\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"10.0,0.0 104.15384615384616,0.0 136.73303167420815,32.579185520361996 42.579185520361996,32.579185520361996\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"42\" y1=\"32\" x2=\"136\" y2=\"32\" style=\"stroke-width:2\" />\n", + " <line x1=\"42\" y1=\"152\" x2=\"136\" y2=\"152\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"42\" y1=\"32\" x2=\"42\" y2=\"152\" style=\"stroke-width:2\" />\n", + " <line x1=\"136\" y1=\"32\" x2=\"136\" y2=\"152\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"42.579185520361996,32.579185520361996 136.73303167420815,32.579185520361996 136.73303167420815,152.579185520362 42.579185520361996,152.579185520362\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Text -->\n", + " <text x=\"89.656109\" y=\"172.579186\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >51</text>\n", + " <text x=\"156.733032\" y=\"92.579186\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,156.733032,92.579186)\">65</text>\n", + " <text x=\"16.289593\" y=\"156.289593\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,16.289593,156.289593)\">30</text>\n", + "</svg>\n", + " </td>\n", + " </tr>\n", + "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>TADV</span></div><div class='xr-var-dims'>(time, lat, lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(1, 65, 51), meta=np.ndarray></div><input id='attrs-e0dd40f3-4c65-4495-9a87-01588e9ce9c6' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-e0dd40f3-4c65-4495-9a87-01588e9ce9c6' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-71604c87-cbe5-4ca4-9e3d-1cbfd94dcec4' class='xr-var-data-in' type='checkbox'><label for='data-71604c87-cbe5-4ca4-9e3d-1cbfd94dcec4' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>long_name :</span></dt><dd>contribution by horizontal temperature advection</dd><dt><span>units :</span></dt><dd>Pa/6h</dd></dl></div><div class='xr-var-data'><table>\n", + " <tr>\n", + " <td>\n", + " <table style=\"border-collapse: collapse;\">\n", + " <thead>\n", + " <tr>\n", + " <td> </td>\n", + " <th> Array </th>\n", + " <th> Chunk </th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " \n", + " <tr>\n", + " <th> Bytes </th>\n", + " <td> 388.48 kiB </td>\n", + " <td> 12.95 kiB </td>\n", + " </tr>\n", + " \n", + " <tr>\n", + " <th> Shape </th>\n", + " <td> (30, 65, 51) </td>\n", + " <td> (1, 65, 51) </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Dask graph </th>\n", + " <td colspan=\"2\"> 30 chunks in 61 graph layers </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Data type </th>\n", + " <td colspan=\"2\"> float32 numpy.ndarray </td>\n", + " </tr>\n", + " </tbody>\n", + " </table>\n", + " </td>\n", + " <td>\n", + " <svg width=\"186\" height=\"202\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"42\" y2=\"32\" style=\"stroke-width:2\" />\n", + " <line x1=\"10\" y1=\"120\" x2=\"42\" y2=\"152\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"120\" style=\"stroke-width:2\" />\n", + " <line x1=\"11\" y1=\"1\" x2=\"11\" y2=\"121\" />\n", + " <line x1=\"13\" y1=\"3\" x2=\"13\" y2=\"123\" />\n", + " <line x1=\"14\" y1=\"4\" x2=\"14\" y2=\"124\" />\n", + " <line x1=\"16\" y1=\"6\" x2=\"16\" y2=\"126\" />\n", + " <line x1=\"17\" y1=\"7\" x2=\"17\" y2=\"127\" />\n", + " <line x1=\"19\" y1=\"9\" x2=\"19\" y2=\"129\" />\n", + " <line x1=\"21\" y1=\"11\" x2=\"21\" y2=\"131\" />\n", + " <line x1=\"23\" y1=\"13\" x2=\"23\" y2=\"133\" />\n", + " <line x1=\"25\" y1=\"15\" x2=\"25\" y2=\"135\" />\n", + " <line x1=\"26\" y1=\"16\" x2=\"26\" y2=\"136\" />\n", + " <line x1=\"28\" y1=\"18\" x2=\"28\" y2=\"138\" />\n", + " <line x1=\"29\" y1=\"19\" x2=\"29\" y2=\"139\" />\n", + " <line x1=\"31\" y1=\"21\" x2=\"31\" y2=\"141\" />\n", + " <line x1=\"33\" y1=\"23\" x2=\"33\" y2=\"143\" />\n", + " <line x1=\"34\" y1=\"24\" x2=\"34\" y2=\"144\" />\n", + " <line x1=\"37\" y1=\"27\" x2=\"37\" y2=\"147\" />\n", + " <line x1=\"38\" y1=\"28\" x2=\"38\" y2=\"148\" />\n", + " <line x1=\"40\" y1=\"30\" x2=\"40\" y2=\"150\" />\n", + " <line x1=\"42\" y1=\"32\" x2=\"42\" y2=\"152\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"10.0,0.0 42.579185520361996,32.579185520361996 42.579185520361996,152.579185520362 10.0,120.0\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"104\" y2=\"0\" style=\"stroke-width:2\" />\n", + " <line x1=\"11\" y1=\"1\" x2=\"105\" y2=\"1\" />\n", + " <line x1=\"13\" y1=\"3\" x2=\"107\" y2=\"3\" />\n", + " <line x1=\"14\" y1=\"4\" x2=\"108\" y2=\"4\" />\n", + " <line x1=\"16\" y1=\"6\" x2=\"110\" y2=\"6\" />\n", + " <line x1=\"17\" y1=\"7\" x2=\"111\" y2=\"7\" />\n", + " <line x1=\"19\" y1=\"9\" x2=\"113\" y2=\"9\" />\n", + " <line x1=\"21\" y1=\"11\" x2=\"116\" y2=\"11\" />\n", + " <line x1=\"23\" y1=\"13\" x2=\"117\" y2=\"13\" />\n", + " <line x1=\"25\" y1=\"15\" x2=\"119\" y2=\"15\" />\n", + " <line x1=\"26\" y1=\"16\" x2=\"120\" y2=\"16\" />\n", + " <line x1=\"28\" y1=\"18\" x2=\"122\" y2=\"18\" />\n", + " <line x1=\"29\" y1=\"19\" x2=\"123\" y2=\"19\" />\n", + " <line x1=\"31\" y1=\"21\" x2=\"125\" y2=\"21\" />\n", + " <line x1=\"33\" y1=\"23\" x2=\"128\" y2=\"23\" />\n", + " <line x1=\"34\" y1=\"24\" x2=\"129\" y2=\"24\" />\n", + " <line x1=\"37\" y1=\"27\" x2=\"131\" y2=\"27\" />\n", + " <line x1=\"38\" y1=\"28\" x2=\"132\" y2=\"28\" />\n", + " <line x1=\"40\" y1=\"30\" x2=\"134\" y2=\"30\" />\n", + " <line x1=\"42\" y1=\"32\" x2=\"136\" y2=\"32\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"42\" y2=\"32\" style=\"stroke-width:2\" />\n", + " <line x1=\"104\" y1=\"0\" x2=\"136\" y2=\"32\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"10.0,0.0 104.15384615384616,0.0 136.73303167420815,32.579185520361996 42.579185520361996,32.579185520361996\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"42\" y1=\"32\" x2=\"136\" y2=\"32\" style=\"stroke-width:2\" />\n", + " <line x1=\"42\" y1=\"152\" x2=\"136\" y2=\"152\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"42\" y1=\"32\" x2=\"42\" y2=\"152\" style=\"stroke-width:2\" />\n", + " <line x1=\"136\" y1=\"32\" x2=\"136\" y2=\"152\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"42.579185520361996,32.579185520361996 136.73303167420815,32.579185520361996 136.73303167420815,152.579185520362 42.579185520361996,152.579185520362\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Text -->\n", + " <text x=\"89.656109\" y=\"172.579186\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >51</text>\n", + " <text x=\"156.733032\" y=\"92.579186\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,156.733032,92.579186)\">65</text>\n", + " <text x=\"16.289593\" y=\"156.289593\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,16.289593,156.289593)\">30</text>\n", + "</svg>\n", + " </td>\n", + " </tr>\n", + "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>VMT</span></div><div class='xr-var-dims'>(time, lat, lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(1, 65, 51), meta=np.ndarray></div><input id='attrs-04e9b96d-0750-4573-a743-013e6d57f352' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-04e9b96d-0750-4573-a743-013e6d57f352' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-7922c643-f2a4-428a-8bcb-1601f12218f2' class='xr-var-data-in' type='checkbox'><label for='data-7922c643-f2a4-428a-8bcb-1601f12218f2' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>long_name :</span></dt><dd>contribution by vertical motion</dd><dt><span>units :</span></dt><dd>Pa/6h</dd></dl></div><div class='xr-var-data'><table>\n", + " <tr>\n", + " <td>\n", + " <table style=\"border-collapse: collapse;\">\n", + " <thead>\n", + " <tr>\n", + " <td> </td>\n", + " <th> Array </th>\n", + " <th> Chunk </th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " \n", + " <tr>\n", + " <th> Bytes </th>\n", + " <td> 388.48 kiB </td>\n", + " <td> 12.95 kiB </td>\n", + " </tr>\n", + " \n", + " <tr>\n", + " <th> Shape </th>\n", + " <td> (30, 65, 51) </td>\n", + " <td> (1, 65, 51) </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Dask graph </th>\n", + " <td colspan=\"2\"> 30 chunks in 61 graph layers </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Data type </th>\n", + " <td colspan=\"2\"> float32 numpy.ndarray </td>\n", + " </tr>\n", + " </tbody>\n", + " </table>\n", + " </td>\n", + " <td>\n", + " <svg width=\"186\" height=\"202\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"42\" y2=\"32\" style=\"stroke-width:2\" />\n", + " <line x1=\"10\" y1=\"120\" x2=\"42\" y2=\"152\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"120\" style=\"stroke-width:2\" />\n", + " <line x1=\"11\" y1=\"1\" x2=\"11\" y2=\"121\" />\n", + " <line x1=\"13\" y1=\"3\" x2=\"13\" y2=\"123\" />\n", + " <line x1=\"14\" y1=\"4\" x2=\"14\" y2=\"124\" />\n", + " <line x1=\"16\" y1=\"6\" x2=\"16\" y2=\"126\" />\n", + " <line x1=\"17\" y1=\"7\" x2=\"17\" y2=\"127\" />\n", + " <line x1=\"19\" y1=\"9\" x2=\"19\" y2=\"129\" />\n", + " <line x1=\"21\" y1=\"11\" x2=\"21\" y2=\"131\" />\n", + " <line x1=\"23\" y1=\"13\" x2=\"23\" y2=\"133\" />\n", + " <line x1=\"25\" y1=\"15\" x2=\"25\" y2=\"135\" />\n", + " <line x1=\"26\" y1=\"16\" x2=\"26\" y2=\"136\" />\n", + " <line x1=\"28\" y1=\"18\" x2=\"28\" y2=\"138\" />\n", + " <line x1=\"29\" y1=\"19\" x2=\"29\" y2=\"139\" />\n", + " <line x1=\"31\" y1=\"21\" x2=\"31\" y2=\"141\" />\n", + " <line x1=\"33\" y1=\"23\" x2=\"33\" y2=\"143\" />\n", + " <line x1=\"34\" y1=\"24\" x2=\"34\" y2=\"144\" />\n", + " <line x1=\"37\" y1=\"27\" x2=\"37\" y2=\"147\" />\n", + " <line x1=\"38\" y1=\"28\" x2=\"38\" y2=\"148\" />\n", + " <line x1=\"40\" y1=\"30\" x2=\"40\" y2=\"150\" />\n", + " <line x1=\"42\" y1=\"32\" x2=\"42\" y2=\"152\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"10.0,0.0 42.579185520361996,32.579185520361996 42.579185520361996,152.579185520362 10.0,120.0\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"104\" y2=\"0\" style=\"stroke-width:2\" />\n", + " <line x1=\"11\" y1=\"1\" x2=\"105\" y2=\"1\" />\n", + " <line x1=\"13\" y1=\"3\" x2=\"107\" y2=\"3\" />\n", + " <line x1=\"14\" y1=\"4\" x2=\"108\" y2=\"4\" />\n", + " <line x1=\"16\" y1=\"6\" x2=\"110\" y2=\"6\" />\n", + " <line x1=\"17\" y1=\"7\" x2=\"111\" y2=\"7\" />\n", + " <line x1=\"19\" y1=\"9\" x2=\"113\" y2=\"9\" />\n", + " <line x1=\"21\" y1=\"11\" x2=\"116\" y2=\"11\" />\n", + " <line x1=\"23\" y1=\"13\" x2=\"117\" y2=\"13\" />\n", + " <line x1=\"25\" y1=\"15\" x2=\"119\" y2=\"15\" />\n", + " <line x1=\"26\" y1=\"16\" x2=\"120\" y2=\"16\" />\n", + " <line x1=\"28\" y1=\"18\" x2=\"122\" y2=\"18\" />\n", + " <line x1=\"29\" y1=\"19\" x2=\"123\" y2=\"19\" />\n", + " <line x1=\"31\" y1=\"21\" x2=\"125\" y2=\"21\" />\n", + " <line x1=\"33\" y1=\"23\" x2=\"128\" y2=\"23\" />\n", + " <line x1=\"34\" y1=\"24\" x2=\"129\" y2=\"24\" />\n", + " <line x1=\"37\" y1=\"27\" x2=\"131\" y2=\"27\" />\n", + " <line x1=\"38\" y1=\"28\" x2=\"132\" y2=\"28\" />\n", + " <line x1=\"40\" y1=\"30\" x2=\"134\" y2=\"30\" />\n", + " <line x1=\"42\" y1=\"32\" x2=\"136\" y2=\"32\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"42\" y2=\"32\" style=\"stroke-width:2\" />\n", + " <line x1=\"104\" y1=\"0\" x2=\"136\" y2=\"32\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"10.0,0.0 104.15384615384616,0.0 136.73303167420815,32.579185520361996 42.579185520361996,32.579185520361996\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"42\" y1=\"32\" x2=\"136\" y2=\"32\" style=\"stroke-width:2\" />\n", + " <line x1=\"42\" y1=\"152\" x2=\"136\" y2=\"152\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"42\" y1=\"32\" x2=\"42\" y2=\"152\" style=\"stroke-width:2\" />\n", + " <line x1=\"136\" y1=\"32\" x2=\"136\" y2=\"152\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"42.579185520361996,32.579185520361996 136.73303167420815,32.579185520361996 136.73303167420815,152.579185520362 42.579185520361996,152.579185520362\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Text -->\n", + " <text x=\"89.656109\" y=\"172.579186\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >51</text>\n", + " <text x=\"156.733032\" y=\"92.579186\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,156.733032,92.579186)\">65</text>\n", + " <text x=\"16.289593\" y=\"156.289593\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,16.289593,156.289593)\">30</text>\n", + "</svg>\n", + " </td>\n", + " </tr>\n", + "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>DIABres</span></div><div class='xr-var-dims'>(time, lat, lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(1, 65, 51), meta=np.ndarray></div><input id='attrs-4adc8210-b220-4356-9633-c8a1d804fd17' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-4adc8210-b220-4356-9633-c8a1d804fd17' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-b00e4574-1467-4200-8b46-01d75b22f6ab' class='xr-var-data-in' type='checkbox'><label for='data-b00e4574-1467-4200-8b46-01d75b22f6ab' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>long_name :</span></dt><dd>Contribution by diabatic processes (residual)</dd><dt><span>units :</span></dt><dd>Pa/6h</dd></dl></div><div class='xr-var-data'><table>\n", + " <tr>\n", + " <td>\n", + " <table style=\"border-collapse: collapse;\">\n", + " <thead>\n", + " <tr>\n", + " <td> </td>\n", + " <th> Array </th>\n", + " <th> Chunk </th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " \n", + " <tr>\n", + " <th> Bytes </th>\n", + " <td> 388.48 kiB </td>\n", + " <td> 12.95 kiB </td>\n", + " </tr>\n", + " \n", + " <tr>\n", + " <th> Shape </th>\n", + " <td> (30, 65, 51) </td>\n", + " <td> (1, 65, 51) </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Dask graph </th>\n", + " <td colspan=\"2\"> 30 chunks in 61 graph layers </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Data type </th>\n", + " <td colspan=\"2\"> float32 numpy.ndarray </td>\n", + " </tr>\n", + " </tbody>\n", + " </table>\n", + " </td>\n", + " <td>\n", + " <svg width=\"186\" height=\"202\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"42\" y2=\"32\" style=\"stroke-width:2\" />\n", + " <line x1=\"10\" y1=\"120\" x2=\"42\" y2=\"152\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"120\" style=\"stroke-width:2\" />\n", + " <line x1=\"11\" y1=\"1\" x2=\"11\" y2=\"121\" />\n", + " <line x1=\"13\" y1=\"3\" x2=\"13\" y2=\"123\" />\n", + " <line x1=\"14\" y1=\"4\" x2=\"14\" y2=\"124\" />\n", + " <line x1=\"16\" y1=\"6\" x2=\"16\" y2=\"126\" />\n", + " <line x1=\"17\" y1=\"7\" x2=\"17\" y2=\"127\" />\n", + " <line x1=\"19\" y1=\"9\" x2=\"19\" y2=\"129\" />\n", + " <line x1=\"21\" y1=\"11\" x2=\"21\" y2=\"131\" />\n", + " <line x1=\"23\" y1=\"13\" x2=\"23\" y2=\"133\" />\n", + " <line x1=\"25\" y1=\"15\" x2=\"25\" y2=\"135\" />\n", + " <line x1=\"26\" y1=\"16\" x2=\"26\" y2=\"136\" />\n", + " <line x1=\"28\" y1=\"18\" x2=\"28\" y2=\"138\" />\n", + " <line x1=\"29\" y1=\"19\" x2=\"29\" y2=\"139\" />\n", + " <line x1=\"31\" y1=\"21\" x2=\"31\" y2=\"141\" />\n", + " <line x1=\"33\" y1=\"23\" x2=\"33\" y2=\"143\" />\n", + " <line x1=\"34\" y1=\"24\" x2=\"34\" y2=\"144\" />\n", + " <line x1=\"37\" y1=\"27\" x2=\"37\" y2=\"147\" />\n", + " <line x1=\"38\" y1=\"28\" x2=\"38\" y2=\"148\" />\n", + " <line x1=\"40\" y1=\"30\" x2=\"40\" y2=\"150\" />\n", + " <line x1=\"42\" y1=\"32\" x2=\"42\" y2=\"152\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"10.0,0.0 42.579185520361996,32.579185520361996 42.579185520361996,152.579185520362 10.0,120.0\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"104\" y2=\"0\" style=\"stroke-width:2\" />\n", + " <line x1=\"11\" y1=\"1\" x2=\"105\" y2=\"1\" />\n", + " <line x1=\"13\" y1=\"3\" x2=\"107\" y2=\"3\" />\n", + " <line x1=\"14\" y1=\"4\" x2=\"108\" y2=\"4\" />\n", + " <line x1=\"16\" y1=\"6\" x2=\"110\" y2=\"6\" />\n", + " <line x1=\"17\" y1=\"7\" x2=\"111\" y2=\"7\" />\n", + " <line x1=\"19\" y1=\"9\" x2=\"113\" y2=\"9\" />\n", + " <line x1=\"21\" y1=\"11\" x2=\"116\" y2=\"11\" />\n", + " <line x1=\"23\" y1=\"13\" x2=\"117\" y2=\"13\" />\n", + " <line x1=\"25\" y1=\"15\" x2=\"119\" y2=\"15\" />\n", + " <line x1=\"26\" y1=\"16\" x2=\"120\" y2=\"16\" />\n", + " <line x1=\"28\" y1=\"18\" x2=\"122\" y2=\"18\" />\n", + " <line x1=\"29\" y1=\"19\" x2=\"123\" y2=\"19\" />\n", + " <line x1=\"31\" y1=\"21\" x2=\"125\" y2=\"21\" />\n", + " <line x1=\"33\" y1=\"23\" x2=\"128\" y2=\"23\" />\n", + " <line x1=\"34\" y1=\"24\" x2=\"129\" y2=\"24\" />\n", + " <line x1=\"37\" y1=\"27\" x2=\"131\" y2=\"27\" />\n", + " <line x1=\"38\" y1=\"28\" x2=\"132\" y2=\"28\" />\n", + " <line x1=\"40\" y1=\"30\" x2=\"134\" y2=\"30\" />\n", + " <line x1=\"42\" y1=\"32\" x2=\"136\" y2=\"32\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"42\" y2=\"32\" style=\"stroke-width:2\" />\n", + " <line x1=\"104\" y1=\"0\" x2=\"136\" y2=\"32\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"10.0,0.0 104.15384615384616,0.0 136.73303167420815,32.579185520361996 42.579185520361996,32.579185520361996\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"42\" y1=\"32\" x2=\"136\" y2=\"32\" style=\"stroke-width:2\" />\n", + " <line x1=\"42\" y1=\"152\" x2=\"136\" y2=\"152\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"42\" y1=\"32\" x2=\"42\" y2=\"152\" style=\"stroke-width:2\" />\n", + " <line x1=\"136\" y1=\"32\" x2=\"136\" y2=\"152\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"42.579185520361996,32.579185520361996 136.73303167420815,32.579185520361996 136.73303167420815,152.579185520362 42.579185520361996,152.579185520362\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Text -->\n", + " <text x=\"89.656109\" y=\"172.579186\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >51</text>\n", + " <text x=\"156.733032\" y=\"92.579186\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,156.733032,92.579186)\">65</text>\n", + " <text x=\"16.289593\" y=\"156.289593\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,16.289593,156.289593)\">30</text>\n", + "</svg>\n", + " </td>\n", + " </tr>\n", + "</table></div></li></ul></div></li><li class='xr-section-item'><input id='section-0be5a9d3-e8f5-48f9-a7ba-e81175bcee64' class='xr-section-summary-in' type='checkbox' ><label for='section-0be5a9d3-e8f5-48f9-a7ba-e81175bcee64' class='xr-section-summary' >Indexes: <span>(3)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-index-name'><div>lon</div></div><div class='xr-index-preview'>PandasIndex</div><div></div><input id='index-d6c21c7e-b200-4257-b344-fccb3a46ccc8' class='xr-index-data-in' type='checkbox'/><label for='index-d6c21c7e-b200-4257-b344-fccb3a46ccc8' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(Index([12.5, 13.5, 14.5, 15.5, 16.5, 17.5, 18.5, 19.5, 20.5, 21.5, 22.5, 23.5,\n", + " 24.5, 25.5, 26.5, 27.5, 28.5, 29.5, 30.5, 31.5, 32.5, 33.5, 34.5, 35.5,\n", + " 36.5, 37.5, 38.5, 39.5, 40.5, 41.5, 42.5, 43.5, 44.5, 45.5, 46.5, 47.5,\n", + " 48.5, 49.5, 50.5, 51.5, 52.5, 53.5, 54.5, 55.5, 56.5, 57.5, 58.5, 59.5,\n", + " 60.5, 61.5, 62.5],\n", + " dtype='float32', name='lon'))</pre></div></li><li class='xr-var-item'><div class='xr-index-name'><div>lat</div></div><div class='xr-index-preview'>PandasIndex</div><div></div><input id='index-c7de8413-8b43-4194-aa12-0db7e3aa2414' class='xr-index-data-in' type='checkbox'/><label for='index-c7de8413-8b43-4194-aa12-0db7e3aa2414' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(Index([15.5, 16.5, 17.5, 18.5, 19.5, 20.5, 21.5, 22.5, 23.5, 24.5, 25.5, 26.5,\n", + " 27.5, 28.5, 29.5, 30.5, 31.5, 32.5, 33.5, 34.5, 35.5, 36.5, 37.5, 38.5,\n", + " 39.5, 40.5, 41.5, 42.5, 43.5, 44.5, 45.5, 46.5, 47.5, 48.5, 49.5, 50.5,\n", + " 51.5, 52.5, 53.5, 54.5, 55.5, 56.5, 57.5, 58.5, 59.5, 60.5, 61.5, 62.5,\n", + " 63.5, 64.5, 65.5, 66.5, 67.5, 68.5, 69.5, 70.5, 71.5, 72.5, 73.5, 74.5,\n", + " 75.5, 76.5, 77.5, 78.5, 79.5],\n", + " dtype='float32', name='lat'))</pre></div></li><li class='xr-var-item'><div class='xr-index-name'><div>time</div></div><div class='xr-index-preview'>PandasIndex</div><div></div><input id='index-ac7fc701-e9e4-4e8b-b29f-edc570289790' class='xr-index-data-in' type='checkbox'/><label for='index-ac7fc701-e9e4-4e8b-b29f-edc570289790' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(Index([1.75, 2.0, 2.25, 2.5, 2.75, 3.0, 3.25, 3.5, 3.75, 4.0, 4.25, 4.5,\n", + " 4.75, 5.0, 5.25, 5.5, 5.75, 6.0, 6.25, 6.5, 6.75, 7.0, 7.25, 7.5,\n", + " 7.75, 8.0, 8.25, 8.5, 8.75, 9.0],\n", + " dtype='float32', name='time'))</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-45aac180-62e8-41d2-9d19-1865d0dedfd5' class='xr-section-summary-in' type='checkbox' checked><label for='section-45aac180-62e8-41d2-9d19-1865d0dedfd5' class='xr-section-summary' >Attributes: <span>(1)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><dl class='xr-attrs'><dt><span>description :</span></dt><dd>PTE data</dd></dl></div></li></ul></div></div>" + ], + "text/plain": [ + "<xarray.Dataset>\n", + "Dimensions: (lon: 51, lat: 65, time: 30)\n", + "Coordinates:\n", + " * lon (lon) float32 12.5 13.5 14.5 15.5 16.5 ... 59.5 60.5 61.5 62.5\n", + " * lat (lat) float32 15.5 16.5 17.5 18.5 19.5 ... 76.5 77.5 78.5 79.5\n", + " * time (time) float32 1.75 2.0 2.25 2.5 2.75 ... 8.0 8.25 8.5 8.75 9.0\n", + "Data variables:\n", + " mslp (time, lat, lon) float32 dask.array<chunksize=(1, 65, 51), meta=np.ndarray>\n", + " dpsfc_dt (time, lat, lon) float32 dask.array<chunksize=(1, 65, 51), meta=np.ndarray>\n", + " dfi_dt (time, lat, lon) float32 dask.array<chunksize=(1, 65, 51), meta=np.ndarray>\n", + " EP (time, lat, lon) float32 dask.array<chunksize=(1, 65, 51), meta=np.ndarray>\n", + " ITT (time, lat, lon) float32 dask.array<chunksize=(1, 65, 51), meta=np.ndarray>\n", + " Eq1res (time, lat, lon) float32 dask.array<chunksize=(1, 65, 51), meta=np.ndarray>\n", + " TADV (time, lat, lon) float32 dask.array<chunksize=(1, 65, 51), meta=np.ndarray>\n", + " VMT (time, lat, lon) float32 dask.array<chunksize=(1, 65, 51), meta=np.ndarray>\n", + " DIABres (time, lat, lon) float32 dask.array<chunksize=(1, 65, 51), meta=np.ndarray>\n", + "Attributes:\n", + " description: PTE data" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ds" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "<div><svg style=\"position: absolute; width: 0; height: 0; overflow: hidden\">\n", + "<defs>\n", + "<symbol id=\"icon-database\" viewBox=\"0 0 32 32\">\n", + "<path d=\"M16 0c-8.837 0-16 2.239-16 5v4c0 2.761 7.163 5 16 5s16-2.239 16-5v-4c0-2.761-7.163-5-16-5z\"></path>\n", + "<path d=\"M16 17c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n", + "<path d=\"M16 26c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n", + "</symbol>\n", + "<symbol id=\"icon-file-text2\" viewBox=\"0 0 32 32\">\n", + "<path d=\"M28.681 7.159c-0.694-0.947-1.662-2.053-2.724-3.116s-2.169-2.030-3.116-2.724c-1.612-1.182-2.393-1.319-2.841-1.319h-15.5c-1.378 0-2.5 1.121-2.5 2.5v27c0 1.378 1.122 2.5 2.5 2.5h23c1.378 0 2.5-1.122 2.5-2.5v-19.5c0-0.448-0.137-1.23-1.319-2.841zM24.543 5.457c0.959 0.959 1.712 1.825 2.268 2.543h-4.811v-4.811c0.718 0.556 1.584 1.309 2.543 2.268zM28 29.5c0 0.271-0.229 0.5-0.5 0.5h-23c-0.271 0-0.5-0.229-0.5-0.5v-27c0-0.271 0.229-0.5 0.5-0.5 0 0 15.499-0 15.5 0v7c0 0.552 0.448 1 1 1h7v19.5z\"></path>\n", + "<path d=\"M23 26h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n", + "<path d=\"M23 22h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n", + "<path d=\"M23 18h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n", + "</symbol>\n", + "</defs>\n", + "</svg>\n", + "<style>/* CSS stylesheet for displaying xarray objects in jupyterlab.\n", + " *\n", + " */\n", + "\n", + ":root {\n", + " --xr-font-color0: var(--jp-content-font-color0, rgba(0, 0, 0, 1));\n", + " --xr-font-color2: var(--jp-content-font-color2, rgba(0, 0, 0, 0.54));\n", + " --xr-font-color3: var(--jp-content-font-color3, rgba(0, 0, 0, 0.38));\n", + " --xr-border-color: var(--jp-border-color2, #e0e0e0);\n", + " --xr-disabled-color: var(--jp-layout-color3, #bdbdbd);\n", + " --xr-background-color: var(--jp-layout-color0, white);\n", + " --xr-background-color-row-even: var(--jp-layout-color1, white);\n", + " --xr-background-color-row-odd: var(--jp-layout-color2, #eeeeee);\n", + "}\n", + "\n", + "html[theme=dark],\n", + "body[data-theme=dark],\n", + "body.vscode-dark {\n", + " --xr-font-color0: rgba(255, 255, 255, 1);\n", + " --xr-font-color2: rgba(255, 255, 255, 0.54);\n", + " --xr-font-color3: rgba(255, 255, 255, 0.38);\n", + " --xr-border-color: #1F1F1F;\n", + " --xr-disabled-color: #515151;\n", + " --xr-background-color: #111111;\n", + " --xr-background-color-row-even: #111111;\n", + " --xr-background-color-row-odd: #313131;\n", + "}\n", + "\n", + ".xr-wrap {\n", + " display: block !important;\n", + " min-width: 300px;\n", + " max-width: 700px;\n", + "}\n", + "\n", + ".xr-text-repr-fallback {\n", + " /* fallback to plain text repr when CSS is not injected (untrusted notebook) */\n", + " display: none;\n", + "}\n", + "\n", + ".xr-header {\n", + " padding-top: 6px;\n", + " padding-bottom: 6px;\n", + " margin-bottom: 4px;\n", + " border-bottom: solid 1px var(--xr-border-color);\n", + "}\n", + "\n", + ".xr-header > div,\n", + ".xr-header > ul {\n", + " display: inline;\n", + " margin-top: 0;\n", + " margin-bottom: 0;\n", + "}\n", + "\n", + ".xr-obj-type,\n", + ".xr-array-name {\n", + " margin-left: 2px;\n", + " margin-right: 10px;\n", + "}\n", + "\n", + ".xr-obj-type {\n", + " color: var(--xr-font-color2);\n", + "}\n", + "\n", + ".xr-sections {\n", + " padding-left: 0 !important;\n", + " display: grid;\n", + " grid-template-columns: 150px auto auto 1fr 20px 20px;\n", + "}\n", + "\n", + ".xr-section-item {\n", + " display: contents;\n", + "}\n", + "\n", + ".xr-section-item input {\n", + " display: none;\n", + "}\n", + "\n", + ".xr-section-item input + label {\n", + " color: var(--xr-disabled-color);\n", + "}\n", + "\n", + ".xr-section-item input:enabled + label {\n", + " cursor: pointer;\n", + " color: var(--xr-font-color2);\n", + "}\n", + "\n", + ".xr-section-item input:enabled + label:hover {\n", + " color: var(--xr-font-color0);\n", + "}\n", + "\n", + ".xr-section-summary {\n", + " grid-column: 1;\n", + " color: var(--xr-font-color2);\n", + " font-weight: 500;\n", + "}\n", + "\n", + ".xr-section-summary > span {\n", + " display: inline-block;\n", + " padding-left: 0.5em;\n", + "}\n", + "\n", + ".xr-section-summary-in:disabled + label {\n", + " color: var(--xr-font-color2);\n", + "}\n", + "\n", + ".xr-section-summary-in + label:before {\n", + " display: inline-block;\n", + " content: '►';\n", + " font-size: 11px;\n", + " width: 15px;\n", + " text-align: center;\n", + "}\n", + "\n", + ".xr-section-summary-in:disabled + label:before {\n", + " color: var(--xr-disabled-color);\n", + "}\n", + "\n", + ".xr-section-summary-in:checked + label:before {\n", + " content: '▼';\n", + "}\n", + "\n", + ".xr-section-summary-in:checked + label > span {\n", + " display: none;\n", + "}\n", + "\n", + ".xr-section-summary,\n", + ".xr-section-inline-details {\n", + " padding-top: 4px;\n", + " padding-bottom: 4px;\n", + "}\n", + "\n", + ".xr-section-inline-details {\n", + " grid-column: 2 / -1;\n", + "}\n", + "\n", + ".xr-section-details {\n", + " display: none;\n", + " grid-column: 1 / -1;\n", + " margin-bottom: 5px;\n", + "}\n", + "\n", + ".xr-section-summary-in:checked ~ .xr-section-details {\n", + " display: contents;\n", + "}\n", + "\n", + ".xr-array-wrap {\n", + " grid-column: 1 / -1;\n", + " display: grid;\n", + " grid-template-columns: 20px auto;\n", + "}\n", + "\n", + ".xr-array-wrap > label {\n", + " grid-column: 1;\n", + " vertical-align: top;\n", + "}\n", + "\n", + ".xr-preview {\n", + " color: var(--xr-font-color3);\n", + "}\n", + "\n", + ".xr-array-preview,\n", + ".xr-array-data {\n", + " padding: 0 5px !important;\n", + " grid-column: 2;\n", + "}\n", + "\n", + ".xr-array-data,\n", + ".xr-array-in:checked ~ .xr-array-preview {\n", + " display: none;\n", + "}\n", + "\n", + ".xr-array-in:checked ~ .xr-array-data,\n", + ".xr-array-preview {\n", + " display: inline-block;\n", + "}\n", + "\n", + ".xr-dim-list {\n", + " display: inline-block !important;\n", + " list-style: none;\n", + " padding: 0 !important;\n", + " margin: 0;\n", + "}\n", + "\n", + ".xr-dim-list li {\n", + " display: inline-block;\n", + " padding: 0;\n", + " margin: 0;\n", + "}\n", + "\n", + ".xr-dim-list:before {\n", + " content: '(';\n", + "}\n", + "\n", + ".xr-dim-list:after {\n", + " content: ')';\n", + "}\n", + "\n", + ".xr-dim-list li:not(:last-child):after {\n", + " content: ',';\n", + " padding-right: 5px;\n", + "}\n", + "\n", + ".xr-has-index {\n", + " font-weight: bold;\n", + "}\n", + "\n", + ".xr-var-list,\n", + ".xr-var-item {\n", + " display: contents;\n", + "}\n", + "\n", + ".xr-var-item > div,\n", + ".xr-var-item label,\n", + ".xr-var-item > .xr-var-name span {\n", + " background-color: var(--xr-background-color-row-even);\n", + " margin-bottom: 0;\n", + "}\n", + "\n", + ".xr-var-item > .xr-var-name:hover span {\n", + " padding-right: 5px;\n", + "}\n", + "\n", + ".xr-var-list > li:nth-child(odd) > div,\n", + ".xr-var-list > li:nth-child(odd) > label,\n", + ".xr-var-list > li:nth-child(odd) > .xr-var-name span {\n", + " background-color: var(--xr-background-color-row-odd);\n", + "}\n", + "\n", + ".xr-var-name {\n", + " grid-column: 1;\n", + "}\n", + "\n", + ".xr-var-dims {\n", + " grid-column: 2;\n", + "}\n", + "\n", + ".xr-var-dtype {\n", + " grid-column: 3;\n", + " text-align: right;\n", + " color: var(--xr-font-color2);\n", + "}\n", + "\n", + ".xr-var-preview {\n", + " grid-column: 4;\n", + "}\n", + "\n", + ".xr-index-preview {\n", + " grid-column: 2 / 5;\n", + " color: var(--xr-font-color2);\n", + "}\n", + "\n", + ".xr-var-name,\n", + ".xr-var-dims,\n", + ".xr-var-dtype,\n", + ".xr-preview,\n", + ".xr-attrs dt {\n", + " white-space: nowrap;\n", + " overflow: hidden;\n", + " text-overflow: ellipsis;\n", + " padding-right: 10px;\n", + "}\n", + "\n", + ".xr-var-name:hover,\n", + ".xr-var-dims:hover,\n", + ".xr-var-dtype:hover,\n", + ".xr-attrs dt:hover {\n", + " overflow: visible;\n", + " width: auto;\n", + " z-index: 1;\n", + "}\n", + "\n", + ".xr-var-attrs,\n", + ".xr-var-data,\n", + ".xr-index-data {\n", + " display: none;\n", + " background-color: var(--xr-background-color) !important;\n", + " padding-bottom: 5px !important;\n", + "}\n", + "\n", + ".xr-var-attrs-in:checked ~ .xr-var-attrs,\n", + ".xr-var-data-in:checked ~ .xr-var-data,\n", + ".xr-index-data-in:checked ~ .xr-index-data {\n", + " display: block;\n", + "}\n", + "\n", + ".xr-var-data > table {\n", + " float: right;\n", + "}\n", + "\n", + ".xr-var-name span,\n", + ".xr-var-data,\n", + ".xr-index-name div,\n", + ".xr-index-data,\n", + ".xr-attrs {\n", + " padding-left: 25px !important;\n", + "}\n", + "\n", + ".xr-attrs,\n", + ".xr-var-attrs,\n", + ".xr-var-data,\n", + ".xr-index-data {\n", + " grid-column: 1 / -1;\n", + "}\n", + "\n", + "dl.xr-attrs {\n", + " padding: 0;\n", + " margin: 0;\n", + " display: grid;\n", + " grid-template-columns: 125px auto;\n", + "}\n", + "\n", + ".xr-attrs dt,\n", + ".xr-attrs dd {\n", + " padding: 0;\n", + " margin: 0;\n", + " float: left;\n", + " padding-right: 10px;\n", + " width: auto;\n", + "}\n", + "\n", + ".xr-attrs dt {\n", + " font-weight: normal;\n", + " grid-column: 1;\n", + "}\n", + "\n", + ".xr-attrs dt:hover span {\n", + " display: inline-block;\n", + " background: var(--xr-background-color);\n", + " padding-right: 10px;\n", + "}\n", + "\n", + ".xr-attrs dd {\n", + " grid-column: 2;\n", + " white-space: pre-wrap;\n", + " word-break: break-all;\n", + "}\n", + "\n", + ".xr-icon-database,\n", + ".xr-icon-file-text2,\n", + ".xr-no-icon {\n", + " display: inline-block;\n", + " vertical-align: middle;\n", + " width: 1em;\n", + " height: 1.5em !important;\n", + " stroke-width: 0;\n", + " stroke: currentColor;\n", + " fill: currentColor;\n", + "}\n", + "</style><pre class='xr-text-repr-fallback'><xarray.Dataset>\n", + "Dimensions: (lon: 51, lat: 65, lev: 100, time: 31)\n", + "Coordinates:\n", + " * lon (lon) float32 12.5 13.5 14.5 15.5 16.5 ... 59.5 60.5 61.5 62.5\n", + " * lat (lat) float32 15.5 16.5 17.5 18.5 19.5 ... 76.5 77.5 78.5 79.5\n", + " * lev (lev) float32 1e+03 2e+03 3e+03 4e+03 ... 9.8e+04 9.9e+04 1e+05\n", + " * time (time) float32 1.5 1.75 2.0 2.25 2.5 ... 8.0 8.25 8.5 8.75 9.0\n", + "Data variables:\n", + " mslp (time, lat, lon) float32 ...\n", + " dpsfc_dt (time, lat, lon) float32 ...\n", + " dfi_dt (time, lat, lon) float32 ...\n", + " EP (time, lat, lon) float32 ...\n", + " ITT (time, lat, lon) float32 ...\n", + " Eq1res (time, lat, lon) float32 ...\n", + " TADV (time, lat, lon) float32 ...\n", + " VMT (time, lat, lon) float32 ...\n", + " DIABcomp (time, lat, lon) float32 ...\n", + " Eq2res (time, lat, lon) float32 ...\n", + " DIABres (time, lat, lon) float32 ...\n", + " TADV_3D (time, lev, lat, lon) float32 ...\n", + "Attributes:\n", + " description: PTE data</pre><div class='xr-wrap' style='display:none'><div class='xr-header'><div class='xr-obj-type'>xarray.Dataset</div></div><ul class='xr-sections'><li class='xr-section-item'><input id='section-ccf819ed-5b83-4b9f-94e7-df3092d9ce4b' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-ccf819ed-5b83-4b9f-94e7-df3092d9ce4b' class='xr-section-summary' title='Expand/collapse section'>Dimensions:</label><div class='xr-section-inline-details'><ul class='xr-dim-list'><li><span class='xr-has-index'>lon</span>: 51</li><li><span class='xr-has-index'>lat</span>: 65</li><li><span class='xr-has-index'>lev</span>: 100</li><li><span class='xr-has-index'>time</span>: 31</li></ul></div><div class='xr-section-details'></div></li><li class='xr-section-item'><input id='section-2de32663-e6cd-4148-8eb7-ed7358899869' class='xr-section-summary-in' type='checkbox' checked><label for='section-2de32663-e6cd-4148-8eb7-ed7358899869' class='xr-section-summary' >Coordinates: <span>(4)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>lon</span></div><div class='xr-var-dims'>(lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>12.5 13.5 14.5 ... 60.5 61.5 62.5</div><input id='attrs-444a7fce-60f6-4704-b46d-0cabdc4632f1' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-444a7fce-60f6-4704-b46d-0cabdc4632f1' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-9ca7e1bb-a5bb-4425-8765-8aeff9b8b28e' class='xr-var-data-in' type='checkbox'><label for='data-9ca7e1bb-a5bb-4425-8765-8aeff9b8b28e' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>long_name :</span></dt><dd>longitude</dd><dt><span>units :</span></dt><dd>degrees east</dd></dl></div><div class='xr-var-data'><pre>array([12.5, 13.5, 14.5, 15.5, 16.5, 17.5, 18.5, 19.5, 20.5, 21.5, 22.5, 23.5,\n", + " 24.5, 25.5, 26.5, 27.5, 28.5, 29.5, 30.5, 31.5, 32.5, 33.5, 34.5, 35.5,\n", + " 36.5, 37.5, 38.5, 39.5, 40.5, 41.5, 42.5, 43.5, 44.5, 45.5, 46.5, 47.5,\n", + " 48.5, 49.5, 50.5, 51.5, 52.5, 53.5, 54.5, 55.5, 56.5, 57.5, 58.5, 59.5,\n", + " 60.5, 61.5, 62.5], dtype=float32)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>lat</span></div><div class='xr-var-dims'>(lat)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>15.5 16.5 17.5 ... 77.5 78.5 79.5</div><input id='attrs-30be2986-9df0-4c27-a0b9-0729c5c80fd8' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-30be2986-9df0-4c27-a0b9-0729c5c80fd8' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-d6908d08-6891-48c9-9ff2-94635cfbc7b1' class='xr-var-data-in' type='checkbox'><label for='data-d6908d08-6891-48c9-9ff2-94635cfbc7b1' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>long_name :</span></dt><dd>latitude</dd><dt><span>units :</span></dt><dd>degrees north</dd></dl></div><div class='xr-var-data'><pre>array([15.5, 16.5, 17.5, 18.5, 19.5, 20.5, 21.5, 22.5, 23.5, 24.5, 25.5, 26.5,\n", + " 27.5, 28.5, 29.5, 30.5, 31.5, 32.5, 33.5, 34.5, 35.5, 36.5, 37.5, 38.5,\n", + " 39.5, 40.5, 41.5, 42.5, 43.5, 44.5, 45.5, 46.5, 47.5, 48.5, 49.5, 50.5,\n", + " 51.5, 52.5, 53.5, 54.5, 55.5, 56.5, 57.5, 58.5, 59.5, 60.5, 61.5, 62.5,\n", + " 63.5, 64.5, 65.5, 66.5, 67.5, 68.5, 69.5, 70.5, 71.5, 72.5, 73.5, 74.5,\n", + " 75.5, 76.5, 77.5, 78.5, 79.5], dtype=float32)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>lev</span></div><div class='xr-var-dims'>(lev)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>1e+03 2e+03 3e+03 ... 9.9e+04 1e+05</div><input id='attrs-880d6b59-02db-4907-a231-30af5f614af1' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-880d6b59-02db-4907-a231-30af5f614af1' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-f2b57114-5555-4f00-8fce-87db05c0b086' class='xr-var-data-in' type='checkbox'><label for='data-f2b57114-5555-4f00-8fce-87db05c0b086' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>long_name :</span></dt><dd>pressure level</dd><dt><span>units :</span></dt><dd>Pa</dd></dl></div><div class='xr-var-data'><pre>array([ 1000., 2000., 3000., 4000., 5000., 6000., 7000., 8000.,\n", + " 9000., 10000., 11000., 12000., 13000., 14000., 15000., 16000.,\n", + " 17000., 18000., 19000., 20000., 21000., 22000., 23000., 24000.,\n", + " 25000., 26000., 27000., 28000., 29000., 30000., 31000., 32000.,\n", + " 33000., 34000., 35000., 36000., 37000., 38000., 39000., 40000.,\n", + " 41000., 42000., 43000., 44000., 45000., 46000., 47000., 48000.,\n", + " 49000., 50000., 51000., 52000., 53000., 54000., 55000., 56000.,\n", + " 57000., 58000., 59000., 60000., 61000., 62000., 63000., 64000.,\n", + " 65000., 66000., 67000., 68000., 69000., 70000., 71000., 72000.,\n", + " 73000., 74000., 75000., 76000., 77000., 78000., 79000., 80000.,\n", + " 81000., 82000., 83000., 84000., 85000., 86000., 87000., 88000.,\n", + " 89000., 90000., 91000., 92000., 93000., 94000., 95000., 96000.,\n", + " 97000., 98000., 99000., 100000.], dtype=float32)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>time</span></div><div class='xr-var-dims'>(time)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>1.5 1.75 2.0 2.25 ... 8.5 8.75 9.0</div><input id='attrs-56e4b464-1aee-4003-a3c3-e825df7be203' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-56e4b464-1aee-4003-a3c3-e825df7be203' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-09823523-5d07-4ff3-abd4-e0a9d738e2d9' class='xr-var-data-in' type='checkbox'><label for='data-09823523-5d07-4ff3-abd4-e0a9d738e2d9' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>long_name :</span></dt><dd>time</dd></dl></div><div class='xr-var-data'><pre>array([1.5 , 1.75, 2. , 2.25, 2.5 , 2.75, 3. , 3.25, 3.5 , 3.75, 4. , 4.25,\n", + " 4.5 , 4.75, 5. , 5.25, 5.5 , 5.75, 6. , 6.25, 6.5 , 6.75, 7. , 7.25,\n", + " 7.5 , 7.75, 8. , 8.25, 8.5 , 8.75, 9. ], dtype=float32)</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-ca81414c-f7ad-48d8-9770-cbb86d6ac877' class='xr-section-summary-in' type='checkbox' checked><label for='section-ca81414c-f7ad-48d8-9770-cbb86d6ac877' class='xr-section-summary' >Data variables: <span>(12)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span>mslp</span></div><div class='xr-var-dims'>(time, lat, lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>...</div><input id='attrs-9000d019-c25d-48bf-9e48-7f5c2b4c1e19' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-9000d019-c25d-48bf-9e48-7f5c2b4c1e19' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-ac68fd49-c3cd-4f07-8ece-6635dd538afd' class='xr-var-data-in' type='checkbox'><label for='data-ac68fd49-c3cd-4f07-8ece-6635dd538afd' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>long_name :</span></dt><dd>mean sea level pressure</dd></dl></div><div class='xr-var-data'><pre>[102765 values with dtype=float32]</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>dpsfc_dt</span></div><div class='xr-var-dims'>(time, lat, lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>...</div><input id='attrs-e24d7234-8966-41b7-865e-3f59cd911d95' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-e24d7234-8966-41b7-865e-3f59cd911d95' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-92b4bd79-9876-4dad-b909-c026f1073333' class='xr-var-data-in' type='checkbox'><label for='data-92b4bd79-9876-4dad-b909-c026f1073333' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>long_name :</span></dt><dd>surface pressure tendency</dd><dt><span>units :</span></dt><dd>Pa/6h</dd></dl></div><div class='xr-var-data'><pre>[102765 values with dtype=float32]</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>dfi_dt</span></div><div class='xr-var-dims'>(time, lat, lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>...</div><input id='attrs-3aa7c497-c826-4f9a-a73a-52667f009263' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-3aa7c497-c826-4f9a-a73a-52667f009263' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-75720d7b-38c1-4638-9be7-bfefffe4370a' class='xr-var-data-in' type='checkbox'><label for='data-75720d7b-38c1-4638-9be7-bfefffe4370a' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>long_name :</span></dt><dd>contribution by change in geopotential at the upper boundary</dd><dt><span>units :</span></dt><dd>Pa/6h</dd></dl></div><div class='xr-var-data'><pre>[102765 values with dtype=float32]</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>EP</span></div><div class='xr-var-dims'>(time, lat, lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>...</div><input id='attrs-0d7aeb2f-b7a8-421d-b974-30f3f15cd2ad' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-0d7aeb2f-b7a8-421d-b974-30f3f15cd2ad' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-8338266e-9f1b-4b1c-b5d0-521f635f1717' class='xr-var-data-in' type='checkbox'><label for='data-8338266e-9f1b-4b1c-b5d0-521f635f1717' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>long_name :</span></dt><dd>mass change by precipitation/evaporation</dd><dt><span>units :</span></dt><dd>Pa/6h</dd></dl></div><div class='xr-var-data'><pre>[102765 values with dtype=float32]</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>ITT</span></div><div class='xr-var-dims'>(time, lat, lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>...</div><input id='attrs-46a6596e-287e-4ddc-aeba-d1172cdea2ae' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-46a6596e-287e-4ddc-aeba-d1172cdea2ae' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-72a7e57e-18bd-4741-96a3-687db5ec798d' class='xr-var-data-in' type='checkbox'><label for='data-72a7e57e-18bd-4741-96a3-687db5ec798d' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>long_name :</span></dt><dd>vertically integrated virtual temperature tendency</dd><dt><span>units :</span></dt><dd>Pa/6h</dd></dl></div><div class='xr-var-data'><pre>[102765 values with dtype=float32]</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>Eq1res</span></div><div class='xr-var-dims'>(time, lat, lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>...</div><input id='attrs-3d1112c1-683b-4bf0-99a7-d033f363e4c4' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-3d1112c1-683b-4bf0-99a7-d033f363e4c4' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-d5a9c9f3-4f94-4008-812c-dfcf10ea228e' class='xr-var-data-in' type='checkbox'><label for='data-d5a9c9f3-4f94-4008-812c-dfcf10ea228e' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>long_name :</span></dt><dd>residual of PTE eq1</dd><dt><span>units :</span></dt><dd>Pa/6h</dd></dl></div><div class='xr-var-data'><pre>[102765 values with dtype=float32]</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>TADV</span></div><div class='xr-var-dims'>(time, lat, lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>...</div><input id='attrs-1a1d06b5-dd06-4ef8-a78a-fe50e637e886' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-1a1d06b5-dd06-4ef8-a78a-fe50e637e886' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-4b8d2dde-860c-46f1-8dac-4530ef17c151' class='xr-var-data-in' type='checkbox'><label for='data-4b8d2dde-860c-46f1-8dac-4530ef17c151' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>long_name :</span></dt><dd>contribution by horizontal temperature advection</dd><dt><span>units :</span></dt><dd>Pa/6h</dd></dl></div><div class='xr-var-data'><pre>[102765 values with dtype=float32]</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>VMT</span></div><div class='xr-var-dims'>(time, lat, lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>...</div><input id='attrs-d7e91d80-0893-40da-b122-43106cfcd9aa' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-d7e91d80-0893-40da-b122-43106cfcd9aa' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-7121310f-2de9-4cdb-af07-595734a1af60' class='xr-var-data-in' type='checkbox'><label for='data-7121310f-2de9-4cdb-af07-595734a1af60' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>long_name :</span></dt><dd>contribution by vertical motion</dd><dt><span>units :</span></dt><dd>Pa/6h</dd></dl></div><div class='xr-var-data'><pre>[102765 values with dtype=float32]</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>DIABcomp</span></div><div class='xr-var-dims'>(time, lat, lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>...</div><input id='attrs-562d322d-3f92-4266-b408-b8c45bd56169' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-562d322d-3f92-4266-b408-b8c45bd56169' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-0fe4790f-7a5a-4cc8-8fa7-99d1dcc8a6ba' class='xr-var-data-in' type='checkbox'><label for='data-0fe4790f-7a5a-4cc8-8fa7-99d1dcc8a6ba' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>long_name :</span></dt><dd>contribution by diabatic processes (computed)</dd><dt><span>units :</span></dt><dd>Pa/6h</dd></dl></div><div class='xr-var-data'><pre>[102765 values with dtype=float32]</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>Eq2res</span></div><div class='xr-var-dims'>(time, lat, lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>...</div><input id='attrs-5c10948c-0121-4654-876e-4c34a24bb9d3' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-5c10948c-0121-4654-876e-4c34a24bb9d3' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-9c9a86a8-2d7e-4cc4-8d4b-b2afab52e69b' class='xr-var-data-in' type='checkbox'><label for='data-9c9a86a8-2d7e-4cc4-8d4b-b2afab52e69b' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>long_name :</span></dt><dd>Eq.2 residual (DIAB is calculated explicitly)</dd><dt><span>units :</span></dt><dd>Pa/6h</dd></dl></div><div class='xr-var-data'><pre>[102765 values with dtype=float32]</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>DIABres</span></div><div class='xr-var-dims'>(time, lat, lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>...</div><input id='attrs-3bfa3dec-4fcd-4cd6-a259-7d3f6f96989f' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-3bfa3dec-4fcd-4cd6-a259-7d3f6f96989f' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-5ffc4a2a-bc73-4b16-907c-3e05234e3af3' class='xr-var-data-in' type='checkbox'><label for='data-5ffc4a2a-bc73-4b16-907c-3e05234e3af3' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>long_name :</span></dt><dd>Contribution by diabatic processes (residual)</dd><dt><span>units :</span></dt><dd>Pa/6h</dd></dl></div><div class='xr-var-data'><pre>[102765 values with dtype=float32]</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>TADV_3D</span></div><div class='xr-var-dims'>(time, lev, lat, lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>...</div><input id='attrs-97c395b7-ee99-45c4-b046-e9635df64dd8' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-97c395b7-ee99-45c4-b046-e9635df64dd8' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-d9e7c789-c717-4548-a24b-49668b3a126e' class='xr-var-data-in' type='checkbox'><label for='data-d9e7c789-c717-4548-a24b-49668b3a126e' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>long_name :</span></dt><dd>Contribution by horizontal temperature advection for all single levels</dd><dt><span>units :</span></dt><dd>Pa/6h</dd></dl></div><div class='xr-var-data'><pre>[10276500 values with dtype=float32]</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-e5bcf6f6-9efd-438b-a4b2-b2ef2296d535' class='xr-section-summary-in' type='checkbox' ><label for='section-e5bcf6f6-9efd-438b-a4b2-b2ef2296d535' class='xr-section-summary' >Indexes: <span>(4)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-index-name'><div>lon</div></div><div class='xr-index-preview'>PandasIndex</div><div></div><input id='index-f947d76f-462e-425f-b570-727596d0f730' class='xr-index-data-in' type='checkbox'/><label for='index-f947d76f-462e-425f-b570-727596d0f730' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(Index([12.5, 13.5, 14.5, 15.5, 16.5, 17.5, 18.5, 19.5, 20.5, 21.5, 22.5, 23.5,\n", + " 24.5, 25.5, 26.5, 27.5, 28.5, 29.5, 30.5, 31.5, 32.5, 33.5, 34.5, 35.5,\n", + " 36.5, 37.5, 38.5, 39.5, 40.5, 41.5, 42.5, 43.5, 44.5, 45.5, 46.5, 47.5,\n", + " 48.5, 49.5, 50.5, 51.5, 52.5, 53.5, 54.5, 55.5, 56.5, 57.5, 58.5, 59.5,\n", + " 60.5, 61.5, 62.5],\n", + " dtype='float32', name='lon'))</pre></div></li><li class='xr-var-item'><div class='xr-index-name'><div>lat</div></div><div class='xr-index-preview'>PandasIndex</div><div></div><input id='index-37421897-b586-441f-868a-96f31cad17bf' class='xr-index-data-in' type='checkbox'/><label for='index-37421897-b586-441f-868a-96f31cad17bf' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(Index([15.5, 16.5, 17.5, 18.5, 19.5, 20.5, 21.5, 22.5, 23.5, 24.5, 25.5, 26.5,\n", + " 27.5, 28.5, 29.5, 30.5, 31.5, 32.5, 33.5, 34.5, 35.5, 36.5, 37.5, 38.5,\n", + " 39.5, 40.5, 41.5, 42.5, 43.5, 44.5, 45.5, 46.5, 47.5, 48.5, 49.5, 50.5,\n", + " 51.5, 52.5, 53.5, 54.5, 55.5, 56.5, 57.5, 58.5, 59.5, 60.5, 61.5, 62.5,\n", + " 63.5, 64.5, 65.5, 66.5, 67.5, 68.5, 69.5, 70.5, 71.5, 72.5, 73.5, 74.5,\n", + " 75.5, 76.5, 77.5, 78.5, 79.5],\n", + " dtype='float32', name='lat'))</pre></div></li><li class='xr-var-item'><div class='xr-index-name'><div>lev</div></div><div class='xr-index-preview'>PandasIndex</div><div></div><input id='index-d84d4772-7b6c-4b9a-98c4-aa9021eb9732' class='xr-index-data-in' type='checkbox'/><label for='index-d84d4772-7b6c-4b9a-98c4-aa9021eb9732' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(Index([ 1000.0, 2000.0, 3000.0, 4000.0, 5000.0, 6000.0, 7000.0,\n", + " 8000.0, 9000.0, 10000.0, 11000.0, 12000.0, 13000.0, 14000.0,\n", + " 15000.0, 16000.0, 17000.0, 18000.0, 19000.0, 20000.0, 21000.0,\n", + " 22000.0, 23000.0, 24000.0, 25000.0, 26000.0, 27000.0, 28000.0,\n", + " 29000.0, 30000.0, 31000.0, 32000.0, 33000.0, 34000.0, 35000.0,\n", + " 36000.0, 37000.0, 38000.0, 39000.0, 40000.0, 41000.0, 42000.0,\n", + " 43000.0, 44000.0, 45000.0, 46000.0, 47000.0, 48000.0, 49000.0,\n", + " 50000.0, 51000.0, 52000.0, 53000.0, 54000.0, 55000.0, 56000.0,\n", + " 57000.0, 58000.0, 59000.0, 60000.0, 61000.0, 62000.0, 63000.0,\n", + " 64000.0, 65000.0, 66000.0, 67000.0, 68000.0, 69000.0, 70000.0,\n", + " 71000.0, 72000.0, 73000.0, 74000.0, 75000.0, 76000.0, 77000.0,\n", + " 78000.0, 79000.0, 80000.0, 81000.0, 82000.0, 83000.0, 84000.0,\n", + " 85000.0, 86000.0, 87000.0, 88000.0, 89000.0, 90000.0, 91000.0,\n", + " 92000.0, 93000.0, 94000.0, 95000.0, 96000.0, 97000.0, 98000.0,\n", + " 99000.0, 100000.0],\n", + " dtype='float32', name='lev'))</pre></div></li><li class='xr-var-item'><div class='xr-index-name'><div>time</div></div><div class='xr-index-preview'>PandasIndex</div><div></div><input id='index-f135b6f2-56e6-4bf8-851b-f4835e9cd0ba' class='xr-index-data-in' type='checkbox'/><label for='index-f135b6f2-56e6-4bf8-851b-f4835e9cd0ba' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(Index([ 1.5, 1.75, 2.0, 2.25, 2.5, 2.75, 3.0, 3.25, 3.5, 3.75, 4.0, 4.25,\n", + " 4.5, 4.75, 5.0, 5.25, 5.5, 5.75, 6.0, 6.25, 6.5, 6.75, 7.0, 7.25,\n", + " 7.5, 7.75, 8.0, 8.25, 8.5, 8.75, 9.0],\n", + " dtype='float32', name='time'))</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-2b96ed94-a5f2-4176-85c9-9f945f4a7bf7' class='xr-section-summary-in' type='checkbox' checked><label for='section-2b96ed94-a5f2-4176-85c9-9f945f4a7bf7' class='xr-section-summary' >Attributes: <span>(1)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><dl class='xr-attrs'><dt><span>description :</span></dt><dd>PTE data</dd></dl></div></li></ul></div></div>" + ], + "text/plain": [ + "<xarray.Dataset>\n", + "Dimensions: (lon: 51, lat: 65, lev: 100, time: 31)\n", + "Coordinates:\n", + " * lon (lon) float32 12.5 13.5 14.5 15.5 16.5 ... 59.5 60.5 61.5 62.5\n", + " * lat (lat) float32 15.5 16.5 17.5 18.5 19.5 ... 76.5 77.5 78.5 79.5\n", + " * lev (lev) float32 1e+03 2e+03 3e+03 4e+03 ... 9.8e+04 9.9e+04 1e+05\n", + " * time (time) float32 1.5 1.75 2.0 2.25 2.5 ... 8.0 8.25 8.5 8.75 9.0\n", + "Data variables:\n", + " mslp (time, lat, lon) float32 ...\n", + " dpsfc_dt (time, lat, lon) float32 ...\n", + " dfi_dt (time, lat, lon) float32 ...\n", + " EP (time, lat, lon) float32 ...\n", + " ITT (time, lat, lon) float32 ...\n", + " Eq1res (time, lat, lon) float32 ...\n", + " TADV (time, lat, lon) float32 ...\n", + " VMT (time, lat, lon) float32 ...\n", + " DIABcomp (time, lat, lon) float32 ...\n", + " Eq2res (time, lat, lon) float32 ...\n", + " DIABres (time, lat, lon) float32 ...\n", + " TADV_3D (time, lev, lat, lon) float32 ...\n", + "Attributes:\n", + " description: PTE data" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ds_orig" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "<div><svg style=\"position: absolute; width: 0; height: 0; overflow: hidden\">\n", + "<defs>\n", + "<symbol id=\"icon-database\" viewBox=\"0 0 32 32\">\n", + "<path d=\"M16 0c-8.837 0-16 2.239-16 5v4c0 2.761 7.163 5 16 5s16-2.239 16-5v-4c0-2.761-7.163-5-16-5z\"></path>\n", + "<path d=\"M16 17c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n", + "<path d=\"M16 26c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n", + "</symbol>\n", + "<symbol id=\"icon-file-text2\" viewBox=\"0 0 32 32\">\n", + "<path d=\"M28.681 7.159c-0.694-0.947-1.662-2.053-2.724-3.116s-2.169-2.030-3.116-2.724c-1.612-1.182-2.393-1.319-2.841-1.319h-15.5c-1.378 0-2.5 1.121-2.5 2.5v27c0 1.378 1.122 2.5 2.5 2.5h23c1.378 0 2.5-1.122 2.5-2.5v-19.5c0-0.448-0.137-1.23-1.319-2.841zM24.543 5.457c0.959 0.959 1.712 1.825 2.268 2.543h-4.811v-4.811c0.718 0.556 1.584 1.309 2.543 2.268zM28 29.5c0 0.271-0.229 0.5-0.5 0.5h-23c-0.271 0-0.5-0.229-0.5-0.5v-27c0-0.271 0.229-0.5 0.5-0.5 0 0 15.499-0 15.5 0v7c0 0.552 0.448 1 1 1h7v19.5z\"></path>\n", + "<path d=\"M23 26h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n", + "<path d=\"M23 22h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n", + "<path d=\"M23 18h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n", + "</symbol>\n", + "</defs>\n", + "</svg>\n", + "<style>/* CSS stylesheet for displaying xarray objects in jupyterlab.\n", + " *\n", + " */\n", + "\n", + ":root {\n", + " --xr-font-color0: var(--jp-content-font-color0, rgba(0, 0, 0, 1));\n", + " --xr-font-color2: var(--jp-content-font-color2, rgba(0, 0, 0, 0.54));\n", + " --xr-font-color3: var(--jp-content-font-color3, rgba(0, 0, 0, 0.38));\n", + " --xr-border-color: var(--jp-border-color2, #e0e0e0);\n", + " --xr-disabled-color: var(--jp-layout-color3, #bdbdbd);\n", + " --xr-background-color: var(--jp-layout-color0, white);\n", + " --xr-background-color-row-even: var(--jp-layout-color1, white);\n", + " --xr-background-color-row-odd: var(--jp-layout-color2, #eeeeee);\n", + "}\n", + "\n", + "html[theme=dark],\n", + "body[data-theme=dark],\n", + "body.vscode-dark {\n", + " --xr-font-color0: rgba(255, 255, 255, 1);\n", + " --xr-font-color2: rgba(255, 255, 255, 0.54);\n", + " --xr-font-color3: rgba(255, 255, 255, 0.38);\n", + " --xr-border-color: #1F1F1F;\n", + " --xr-disabled-color: #515151;\n", + " --xr-background-color: #111111;\n", + " --xr-background-color-row-even: #111111;\n", + " --xr-background-color-row-odd: #313131;\n", + "}\n", + "\n", + ".xr-wrap {\n", + " display: block !important;\n", + " min-width: 300px;\n", + " max-width: 700px;\n", + "}\n", + "\n", + ".xr-text-repr-fallback {\n", + " /* fallback to plain text repr when CSS is not injected (untrusted notebook) */\n", + " display: none;\n", + "}\n", + "\n", + ".xr-header {\n", + " padding-top: 6px;\n", + " padding-bottom: 6px;\n", + " margin-bottom: 4px;\n", + " border-bottom: solid 1px var(--xr-border-color);\n", + "}\n", + "\n", + ".xr-header > div,\n", + ".xr-header > ul {\n", + " display: inline;\n", + " margin-top: 0;\n", + " margin-bottom: 0;\n", + "}\n", + "\n", + ".xr-obj-type,\n", + ".xr-array-name {\n", + " margin-left: 2px;\n", + " margin-right: 10px;\n", + "}\n", + "\n", + ".xr-obj-type {\n", + " color: var(--xr-font-color2);\n", + "}\n", + "\n", + ".xr-sections {\n", + " padding-left: 0 !important;\n", + " display: grid;\n", + " grid-template-columns: 150px auto auto 1fr 20px 20px;\n", + "}\n", + "\n", + ".xr-section-item {\n", + " display: contents;\n", + "}\n", + "\n", + ".xr-section-item input {\n", + " display: none;\n", + "}\n", + "\n", + ".xr-section-item input + label {\n", + " color: var(--xr-disabled-color);\n", + "}\n", + "\n", + ".xr-section-item input:enabled + label {\n", + " cursor: pointer;\n", + " color: var(--xr-font-color2);\n", + "}\n", + "\n", + ".xr-section-item input:enabled + label:hover {\n", + " color: var(--xr-font-color0);\n", + "}\n", + "\n", + ".xr-section-summary {\n", + " grid-column: 1;\n", + " color: var(--xr-font-color2);\n", + " font-weight: 500;\n", + "}\n", + "\n", + ".xr-section-summary > span {\n", + " display: inline-block;\n", + " padding-left: 0.5em;\n", + "}\n", + "\n", + ".xr-section-summary-in:disabled + label {\n", + " color: var(--xr-font-color2);\n", + "}\n", + "\n", + ".xr-section-summary-in + label:before {\n", + " display: inline-block;\n", + " content: '►';\n", + " font-size: 11px;\n", + " width: 15px;\n", + " text-align: center;\n", + "}\n", + "\n", + ".xr-section-summary-in:disabled + label:before {\n", + " color: var(--xr-disabled-color);\n", + "}\n", + "\n", + ".xr-section-summary-in:checked + label:before {\n", + " content: '▼';\n", + "}\n", + "\n", + ".xr-section-summary-in:checked + label > span {\n", + " display: none;\n", + "}\n", + "\n", + ".xr-section-summary,\n", + ".xr-section-inline-details {\n", + " padding-top: 4px;\n", + " padding-bottom: 4px;\n", + "}\n", + "\n", + ".xr-section-inline-details {\n", + " grid-column: 2 / -1;\n", + "}\n", + "\n", + ".xr-section-details {\n", + " display: none;\n", + " grid-column: 1 / -1;\n", + " margin-bottom: 5px;\n", + "}\n", + "\n", + ".xr-section-summary-in:checked ~ .xr-section-details {\n", + " display: contents;\n", + "}\n", + "\n", + ".xr-array-wrap {\n", + " grid-column: 1 / -1;\n", + " display: grid;\n", + " grid-template-columns: 20px auto;\n", + "}\n", + "\n", + ".xr-array-wrap > label {\n", + " grid-column: 1;\n", + " vertical-align: top;\n", + "}\n", + "\n", + ".xr-preview {\n", + " color: var(--xr-font-color3);\n", + "}\n", + "\n", + ".xr-array-preview,\n", + ".xr-array-data {\n", + " padding: 0 5px !important;\n", + " grid-column: 2;\n", + "}\n", + "\n", + ".xr-array-data,\n", + ".xr-array-in:checked ~ .xr-array-preview {\n", + " display: none;\n", + "}\n", + "\n", + ".xr-array-in:checked ~ .xr-array-data,\n", + ".xr-array-preview {\n", + " display: inline-block;\n", + "}\n", + "\n", + ".xr-dim-list {\n", + " display: inline-block !important;\n", + " list-style: none;\n", + " padding: 0 !important;\n", + " margin: 0;\n", + "}\n", + "\n", + ".xr-dim-list li {\n", + " display: inline-block;\n", + " padding: 0;\n", + " margin: 0;\n", + "}\n", + "\n", + ".xr-dim-list:before {\n", + " content: '(';\n", + "}\n", + "\n", + ".xr-dim-list:after {\n", + " content: ')';\n", + "}\n", + "\n", + ".xr-dim-list li:not(:last-child):after {\n", + " content: ',';\n", + " padding-right: 5px;\n", + "}\n", + "\n", + ".xr-has-index {\n", + " font-weight: bold;\n", + "}\n", + "\n", + ".xr-var-list,\n", + ".xr-var-item {\n", + " display: contents;\n", + "}\n", + "\n", + ".xr-var-item > div,\n", + ".xr-var-item label,\n", + ".xr-var-item > .xr-var-name span {\n", + " background-color: var(--xr-background-color-row-even);\n", + " margin-bottom: 0;\n", + "}\n", + "\n", + ".xr-var-item > .xr-var-name:hover span {\n", + " padding-right: 5px;\n", + "}\n", + "\n", + ".xr-var-list > li:nth-child(odd) > div,\n", + ".xr-var-list > li:nth-child(odd) > label,\n", + ".xr-var-list > li:nth-child(odd) > .xr-var-name span {\n", + " background-color: var(--xr-background-color-row-odd);\n", + "}\n", + "\n", + ".xr-var-name {\n", + " grid-column: 1;\n", + "}\n", + "\n", + ".xr-var-dims {\n", + " grid-column: 2;\n", + "}\n", + "\n", + ".xr-var-dtype {\n", + " grid-column: 3;\n", + " text-align: right;\n", + " color: var(--xr-font-color2);\n", + "}\n", + "\n", + ".xr-var-preview {\n", + " grid-column: 4;\n", + "}\n", + "\n", + ".xr-index-preview {\n", + " grid-column: 2 / 5;\n", + " color: var(--xr-font-color2);\n", + "}\n", + "\n", + ".xr-var-name,\n", + ".xr-var-dims,\n", + ".xr-var-dtype,\n", + ".xr-preview,\n", + ".xr-attrs dt {\n", + " white-space: nowrap;\n", + " overflow: hidden;\n", + " text-overflow: ellipsis;\n", + " padding-right: 10px;\n", + "}\n", + "\n", + ".xr-var-name:hover,\n", + ".xr-var-dims:hover,\n", + ".xr-var-dtype:hover,\n", + ".xr-attrs dt:hover {\n", + " overflow: visible;\n", + " width: auto;\n", + " z-index: 1;\n", + "}\n", + "\n", + ".xr-var-attrs,\n", + ".xr-var-data,\n", + ".xr-index-data {\n", + " display: none;\n", + " background-color: var(--xr-background-color) !important;\n", + " padding-bottom: 5px !important;\n", + "}\n", + "\n", + ".xr-var-attrs-in:checked ~ .xr-var-attrs,\n", + ".xr-var-data-in:checked ~ .xr-var-data,\n", + ".xr-index-data-in:checked ~ .xr-index-data {\n", + " display: block;\n", + "}\n", + "\n", + ".xr-var-data > table {\n", + " float: right;\n", + "}\n", + "\n", + ".xr-var-name span,\n", + ".xr-var-data,\n", + ".xr-index-name div,\n", + ".xr-index-data,\n", + ".xr-attrs {\n", + " padding-left: 25px !important;\n", + "}\n", + "\n", + ".xr-attrs,\n", + ".xr-var-attrs,\n", + ".xr-var-data,\n", + ".xr-index-data {\n", + " grid-column: 1 / -1;\n", + "}\n", + "\n", + "dl.xr-attrs {\n", + " padding: 0;\n", + " margin: 0;\n", + " display: grid;\n", + " grid-template-columns: 125px auto;\n", + "}\n", + "\n", + ".xr-attrs dt,\n", + ".xr-attrs dd {\n", + " padding: 0;\n", + " margin: 0;\n", + " float: left;\n", + " padding-right: 10px;\n", + " width: auto;\n", + "}\n", + "\n", + ".xr-attrs dt {\n", + " font-weight: normal;\n", + " grid-column: 1;\n", + "}\n", + "\n", + ".xr-attrs dt:hover span {\n", + " display: inline-block;\n", + " background: var(--xr-background-color);\n", + " padding-right: 10px;\n", + "}\n", + "\n", + ".xr-attrs dd {\n", + " grid-column: 2;\n", + " white-space: pre-wrap;\n", + " word-break: break-all;\n", + "}\n", + "\n", + ".xr-icon-database,\n", + ".xr-icon-file-text2,\n", + ".xr-no-icon {\n", + " display: inline-block;\n", + " vertical-align: middle;\n", + " width: 1em;\n", + " height: 1.5em !important;\n", + " stroke-width: 0;\n", + " stroke: currentColor;\n", + " fill: currentColor;\n", + "}\n", + "</style><pre class='xr-text-repr-fallback'><xarray.DataArray 'time' (time: 30)>\n", + "array([1.75, 2. , 2.25, 2.5 , 2.75, 3. , 3.25, 3.5 , 3.75, 4. , 4.25, 4.5 ,\n", + " 4.75, 5. , 5.25, 5.5 , 5.75, 6. , 6.25, 6.5 , 6.75, 7. , 7.25, 7.5 ,\n", + " 7.75, 8. , 8.25, 8.5 , 8.75, 9. ], dtype=float32)\n", + "Coordinates:\n", + " * time (time) float32 1.75 2.0 2.25 2.5 2.75 3.0 ... 8.0 8.25 8.5 8.75 9.0\n", + "Attributes:\n", + " long_name: time</pre><div class='xr-wrap' style='display:none'><div class='xr-header'><div class='xr-obj-type'>xarray.DataArray</div><div class='xr-array-name'>'time'</div><ul class='xr-dim-list'><li><span class='xr-has-index'>time</span>: 30</li></ul></div><ul class='xr-sections'><li class='xr-section-item'><div class='xr-array-wrap'><input id='section-d627e712-122d-47b8-8edd-08302401c3b1' class='xr-array-in' type='checkbox' checked><label for='section-d627e712-122d-47b8-8edd-08302401c3b1' title='Show/hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-array-preview xr-preview'><span>1.75 2.0 2.25 2.5 2.75 3.0 3.25 3.5 ... 7.5 7.75 8.0 8.25 8.5 8.75 9.0</span></div><div class='xr-array-data'><pre>array([1.75, 2. , 2.25, 2.5 , 2.75, 3. , 3.25, 3.5 , 3.75, 4. , 4.25, 4.5 ,\n", + " 4.75, 5. , 5.25, 5.5 , 5.75, 6. , 6.25, 6.5 , 6.75, 7. , 7.25, 7.5 ,\n", + " 7.75, 8. , 8.25, 8.5 , 8.75, 9. ], dtype=float32)</pre></div></div></li><li class='xr-section-item'><input id='section-f033207d-31bf-4f0d-a953-3bc10b289863' class='xr-section-summary-in' type='checkbox' checked><label for='section-f033207d-31bf-4f0d-a953-3bc10b289863' class='xr-section-summary' >Coordinates: <span>(1)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>time</span></div><div class='xr-var-dims'>(time)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>1.75 2.0 2.25 2.5 ... 8.5 8.75 9.0</div><input id='attrs-63897520-936f-4067-aa5f-83d5bd9ac033' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-63897520-936f-4067-aa5f-83d5bd9ac033' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-887674b9-db38-4c77-a02b-53066285dd83' class='xr-var-data-in' type='checkbox'><label for='data-887674b9-db38-4c77-a02b-53066285dd83' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>long_name :</span></dt><dd>time</dd></dl></div><div class='xr-var-data'><pre>array([1.75, 2. , 2.25, 2.5 , 2.75, 3. , 3.25, 3.5 , 3.75, 4. , 4.25, 4.5 ,\n", + " 4.75, 5. , 5.25, 5.5 , 5.75, 6. , 6.25, 6.5 , 6.75, 7. , 7.25, 7.5 ,\n", + " 7.75, 8. , 8.25, 8.5 , 8.75, 9. ], dtype=float32)</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-ca0e5778-a3d7-41be-9545-d13f65a2e994' class='xr-section-summary-in' type='checkbox' ><label for='section-ca0e5778-a3d7-41be-9545-d13f65a2e994' class='xr-section-summary' >Indexes: <span>(1)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-index-name'><div>time</div></div><div class='xr-index-preview'>PandasIndex</div><div></div><input id='index-8c2499ce-e36c-4c29-ae0d-6ee2f6a52307' class='xr-index-data-in' type='checkbox'/><label for='index-8c2499ce-e36c-4c29-ae0d-6ee2f6a52307' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(Index([1.75, 2.0, 2.25, 2.5, 2.75, 3.0, 3.25, 3.5, 3.75, 4.0, 4.25, 4.5,\n", + " 4.75, 5.0, 5.25, 5.5, 5.75, 6.0, 6.25, 6.5, 6.75, 7.0, 7.25, 7.5,\n", + " 7.75, 8.0, 8.25, 8.5, 8.75, 9.0],\n", + " dtype='float32', name='time'))</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-192153f4-710a-4cd9-a0bb-98c7a78c5b90' class='xr-section-summary-in' type='checkbox' checked><label for='section-192153f4-710a-4cd9-a0bb-98c7a78c5b90' class='xr-section-summary' >Attributes: <span>(1)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><dl class='xr-attrs'><dt><span>long_name :</span></dt><dd>time</dd></dl></div></li></ul></div></div>" + ], + "text/plain": [ + "<xarray.DataArray 'time' (time: 30)>\n", + "array([1.75, 2. , 2.25, 2.5 , 2.75, 3. , 3.25, 3.5 , 3.75, 4. , 4.25, 4.5 ,\n", + " 4.75, 5. , 5.25, 5.5 , 5.75, 6. , 6.25, 6.5 , 6.75, 7. , 7.25, 7.5 ,\n", + " 7.75, 8. , 8.25, 8.5 , 8.75, 9. ], dtype=float32)\n", + "Coordinates:\n", + " * time (time) float32 1.75 2.0 2.25 2.5 2.75 3.0 ... 8.0 8.25 8.5 8.75 9.0\n", + "Attributes:\n", + " long_name: time" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ds.time" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "<div><svg style=\"position: absolute; width: 0; height: 0; overflow: hidden\">\n", + "<defs>\n", + "<symbol id=\"icon-database\" viewBox=\"0 0 32 32\">\n", + "<path d=\"M16 0c-8.837 0-16 2.239-16 5v4c0 2.761 7.163 5 16 5s16-2.239 16-5v-4c0-2.761-7.163-5-16-5z\"></path>\n", + "<path d=\"M16 17c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n", + "<path d=\"M16 26c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n", + "</symbol>\n", + "<symbol id=\"icon-file-text2\" viewBox=\"0 0 32 32\">\n", + "<path d=\"M28.681 7.159c-0.694-0.947-1.662-2.053-2.724-3.116s-2.169-2.030-3.116-2.724c-1.612-1.182-2.393-1.319-2.841-1.319h-15.5c-1.378 0-2.5 1.121-2.5 2.5v27c0 1.378 1.122 2.5 2.5 2.5h23c1.378 0 2.5-1.122 2.5-2.5v-19.5c0-0.448-0.137-1.23-1.319-2.841zM24.543 5.457c0.959 0.959 1.712 1.825 2.268 2.543h-4.811v-4.811c0.718 0.556 1.584 1.309 2.543 2.268zM28 29.5c0 0.271-0.229 0.5-0.5 0.5h-23c-0.271 0-0.5-0.229-0.5-0.5v-27c0-0.271 0.229-0.5 0.5-0.5 0 0 15.499-0 15.5 0v7c0 0.552 0.448 1 1 1h7v19.5z\"></path>\n", + "<path d=\"M23 26h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n", + "<path d=\"M23 22h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n", + "<path d=\"M23 18h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n", + "</symbol>\n", + "</defs>\n", + "</svg>\n", + "<style>/* CSS stylesheet for displaying xarray objects in jupyterlab.\n", + " *\n", + " */\n", + "\n", + ":root {\n", + " --xr-font-color0: var(--jp-content-font-color0, rgba(0, 0, 0, 1));\n", + " --xr-font-color2: var(--jp-content-font-color2, rgba(0, 0, 0, 0.54));\n", + " --xr-font-color3: var(--jp-content-font-color3, rgba(0, 0, 0, 0.38));\n", + " --xr-border-color: var(--jp-border-color2, #e0e0e0);\n", + " --xr-disabled-color: var(--jp-layout-color3, #bdbdbd);\n", + " --xr-background-color: var(--jp-layout-color0, white);\n", + " --xr-background-color-row-even: var(--jp-layout-color1, white);\n", + " --xr-background-color-row-odd: var(--jp-layout-color2, #eeeeee);\n", + "}\n", + "\n", + "html[theme=dark],\n", + "body[data-theme=dark],\n", + "body.vscode-dark {\n", + " --xr-font-color0: rgba(255, 255, 255, 1);\n", + " --xr-font-color2: rgba(255, 255, 255, 0.54);\n", + " --xr-font-color3: rgba(255, 255, 255, 0.38);\n", + " --xr-border-color: #1F1F1F;\n", + " --xr-disabled-color: #515151;\n", + " --xr-background-color: #111111;\n", + " --xr-background-color-row-even: #111111;\n", + " --xr-background-color-row-odd: #313131;\n", + "}\n", + "\n", + ".xr-wrap {\n", + " display: block !important;\n", + " min-width: 300px;\n", + " max-width: 700px;\n", + "}\n", + "\n", + ".xr-text-repr-fallback {\n", + " /* fallback to plain text repr when CSS is not injected (untrusted notebook) */\n", + " display: none;\n", + "}\n", + "\n", + ".xr-header {\n", + " padding-top: 6px;\n", + " padding-bottom: 6px;\n", + " margin-bottom: 4px;\n", + " border-bottom: solid 1px var(--xr-border-color);\n", + "}\n", + "\n", + ".xr-header > div,\n", + ".xr-header > ul {\n", + " display: inline;\n", + " margin-top: 0;\n", + " margin-bottom: 0;\n", + "}\n", + "\n", + ".xr-obj-type,\n", + ".xr-array-name {\n", + " margin-left: 2px;\n", + " margin-right: 10px;\n", + "}\n", + "\n", + ".xr-obj-type {\n", + " color: var(--xr-font-color2);\n", + "}\n", + "\n", + ".xr-sections {\n", + " padding-left: 0 !important;\n", + " display: grid;\n", + " grid-template-columns: 150px auto auto 1fr 20px 20px;\n", + "}\n", + "\n", + ".xr-section-item {\n", + " display: contents;\n", + "}\n", + "\n", + ".xr-section-item input {\n", + " display: none;\n", + "}\n", + "\n", + ".xr-section-item input + label {\n", + " color: var(--xr-disabled-color);\n", + "}\n", + "\n", + ".xr-section-item input:enabled + label {\n", + " cursor: pointer;\n", + " color: var(--xr-font-color2);\n", + "}\n", + "\n", + ".xr-section-item input:enabled + label:hover {\n", + " color: var(--xr-font-color0);\n", + "}\n", + "\n", + ".xr-section-summary {\n", + " grid-column: 1;\n", + " color: var(--xr-font-color2);\n", + " font-weight: 500;\n", + "}\n", + "\n", + ".xr-section-summary > span {\n", + " display: inline-block;\n", + " padding-left: 0.5em;\n", + "}\n", + "\n", + ".xr-section-summary-in:disabled + label {\n", + " color: var(--xr-font-color2);\n", + "}\n", + "\n", + ".xr-section-summary-in + label:before {\n", + " display: inline-block;\n", + " content: '►';\n", + " font-size: 11px;\n", + " width: 15px;\n", + " text-align: center;\n", + "}\n", + "\n", + ".xr-section-summary-in:disabled + label:before {\n", + " color: var(--xr-disabled-color);\n", + "}\n", + "\n", + ".xr-section-summary-in:checked + label:before {\n", + " content: '▼';\n", + "}\n", + "\n", + ".xr-section-summary-in:checked + label > span {\n", + " display: none;\n", + "}\n", + "\n", + ".xr-section-summary,\n", + ".xr-section-inline-details {\n", + " padding-top: 4px;\n", + " padding-bottom: 4px;\n", + "}\n", + "\n", + ".xr-section-inline-details {\n", + " grid-column: 2 / -1;\n", + "}\n", + "\n", + ".xr-section-details {\n", + " display: none;\n", + " grid-column: 1 / -1;\n", + " margin-bottom: 5px;\n", + "}\n", + "\n", + ".xr-section-summary-in:checked ~ .xr-section-details {\n", + " display: contents;\n", + "}\n", + "\n", + ".xr-array-wrap {\n", + " grid-column: 1 / -1;\n", + " display: grid;\n", + " grid-template-columns: 20px auto;\n", + "}\n", + "\n", + ".xr-array-wrap > label {\n", + " grid-column: 1;\n", + " vertical-align: top;\n", + "}\n", + "\n", + ".xr-preview {\n", + " color: var(--xr-font-color3);\n", + "}\n", + "\n", + ".xr-array-preview,\n", + ".xr-array-data {\n", + " padding: 0 5px !important;\n", + " grid-column: 2;\n", + "}\n", + "\n", + ".xr-array-data,\n", + ".xr-array-in:checked ~ .xr-array-preview {\n", + " display: none;\n", + "}\n", + "\n", + ".xr-array-in:checked ~ .xr-array-data,\n", + ".xr-array-preview {\n", + " display: inline-block;\n", + "}\n", + "\n", + ".xr-dim-list {\n", + " display: inline-block !important;\n", + " list-style: none;\n", + " padding: 0 !important;\n", + " margin: 0;\n", + "}\n", + "\n", + ".xr-dim-list li {\n", + " display: inline-block;\n", + " padding: 0;\n", + " margin: 0;\n", + "}\n", + "\n", + ".xr-dim-list:before {\n", + " content: '(';\n", + "}\n", + "\n", + ".xr-dim-list:after {\n", + " content: ')';\n", + "}\n", + "\n", + ".xr-dim-list li:not(:last-child):after {\n", + " content: ',';\n", + " padding-right: 5px;\n", + "}\n", + "\n", + ".xr-has-index {\n", + " font-weight: bold;\n", + "}\n", + "\n", + ".xr-var-list,\n", + ".xr-var-item {\n", + " display: contents;\n", + "}\n", + "\n", + ".xr-var-item > div,\n", + ".xr-var-item label,\n", + ".xr-var-item > .xr-var-name span {\n", + " background-color: var(--xr-background-color-row-even);\n", + " margin-bottom: 0;\n", + "}\n", + "\n", + ".xr-var-item > .xr-var-name:hover span {\n", + " padding-right: 5px;\n", + "}\n", + "\n", + ".xr-var-list > li:nth-child(odd) > div,\n", + ".xr-var-list > li:nth-child(odd) > label,\n", + ".xr-var-list > li:nth-child(odd) > .xr-var-name span {\n", + " background-color: var(--xr-background-color-row-odd);\n", + "}\n", + "\n", + ".xr-var-name {\n", + " grid-column: 1;\n", + "}\n", + "\n", + ".xr-var-dims {\n", + " grid-column: 2;\n", + "}\n", + "\n", + ".xr-var-dtype {\n", + " grid-column: 3;\n", + " text-align: right;\n", + " color: var(--xr-font-color2);\n", + "}\n", + "\n", + ".xr-var-preview {\n", + " grid-column: 4;\n", + "}\n", + "\n", + ".xr-index-preview {\n", + " grid-column: 2 / 5;\n", + " color: var(--xr-font-color2);\n", + "}\n", + "\n", + ".xr-var-name,\n", + ".xr-var-dims,\n", + ".xr-var-dtype,\n", + ".xr-preview,\n", + ".xr-attrs dt {\n", + " white-space: nowrap;\n", + " overflow: hidden;\n", + " text-overflow: ellipsis;\n", + " padding-right: 10px;\n", + "}\n", + "\n", + ".xr-var-name:hover,\n", + ".xr-var-dims:hover,\n", + ".xr-var-dtype:hover,\n", + ".xr-attrs dt:hover {\n", + " overflow: visible;\n", + " width: auto;\n", + " z-index: 1;\n", + "}\n", + "\n", + ".xr-var-attrs,\n", + ".xr-var-data,\n", + ".xr-index-data {\n", + " display: none;\n", + " background-color: var(--xr-background-color) !important;\n", + " padding-bottom: 5px !important;\n", + "}\n", + "\n", + ".xr-var-attrs-in:checked ~ .xr-var-attrs,\n", + ".xr-var-data-in:checked ~ .xr-var-data,\n", + ".xr-index-data-in:checked ~ .xr-index-data {\n", + " display: block;\n", + "}\n", + "\n", + ".xr-var-data > table {\n", + " float: right;\n", + "}\n", + "\n", + ".xr-var-name span,\n", + ".xr-var-data,\n", + ".xr-index-name div,\n", + ".xr-index-data,\n", + ".xr-attrs {\n", + " padding-left: 25px !important;\n", + "}\n", + "\n", + ".xr-attrs,\n", + ".xr-var-attrs,\n", + ".xr-var-data,\n", + ".xr-index-data {\n", + " grid-column: 1 / -1;\n", + "}\n", + "\n", + "dl.xr-attrs {\n", + " padding: 0;\n", + " margin: 0;\n", + " display: grid;\n", + " grid-template-columns: 125px auto;\n", + "}\n", + "\n", + ".xr-attrs dt,\n", + ".xr-attrs dd {\n", + " padding: 0;\n", + " margin: 0;\n", + " float: left;\n", + " padding-right: 10px;\n", + " width: auto;\n", + "}\n", + "\n", + ".xr-attrs dt {\n", + " font-weight: normal;\n", + " grid-column: 1;\n", + "}\n", + "\n", + ".xr-attrs dt:hover span {\n", + " display: inline-block;\n", + " background: var(--xr-background-color);\n", + " padding-right: 10px;\n", + "}\n", + "\n", + ".xr-attrs dd {\n", + " grid-column: 2;\n", + " white-space: pre-wrap;\n", + " word-break: break-all;\n", + "}\n", + "\n", + ".xr-icon-database,\n", + ".xr-icon-file-text2,\n", + ".xr-no-icon {\n", + " display: inline-block;\n", + " vertical-align: middle;\n", + " width: 1em;\n", + " height: 1.5em !important;\n", + " stroke-width: 0;\n", + " stroke: currentColor;\n", + " fill: currentColor;\n", + "}\n", + "</style><pre class='xr-text-repr-fallback'><xarray.DataArray 'time' (time: 31)>\n", + "array([1.5 , 1.75, 2. , 2.25, 2.5 , 2.75, 3. , 3.25, 3.5 , 3.75, 4. , 4.25,\n", + " 4.5 , 4.75, 5. , 5.25, 5.5 , 5.75, 6. , 6.25, 6.5 , 6.75, 7. , 7.25,\n", + " 7.5 , 7.75, 8. , 8.25, 8.5 , 8.75, 9. ], dtype=float32)\n", + "Coordinates:\n", + " * time (time) float32 1.5 1.75 2.0 2.25 2.5 2.75 ... 8.0 8.25 8.5 8.75 9.0\n", + "Attributes:\n", + " long_name: time</pre><div class='xr-wrap' style='display:none'><div class='xr-header'><div class='xr-obj-type'>xarray.DataArray</div><div class='xr-array-name'>'time'</div><ul class='xr-dim-list'><li><span class='xr-has-index'>time</span>: 31</li></ul></div><ul class='xr-sections'><li class='xr-section-item'><div class='xr-array-wrap'><input id='section-4a6178de-6ca3-4358-89ec-e0b96d930bd7' class='xr-array-in' type='checkbox' checked><label for='section-4a6178de-6ca3-4358-89ec-e0b96d930bd7' title='Show/hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-array-preview xr-preview'><span>1.5 1.75 2.0 2.25 2.5 2.75 3.0 3.25 ... 7.5 7.75 8.0 8.25 8.5 8.75 9.0</span></div><div class='xr-array-data'><pre>array([1.5 , 1.75, 2. , 2.25, 2.5 , 2.75, 3. , 3.25, 3.5 , 3.75, 4. , 4.25,\n", + " 4.5 , 4.75, 5. , 5.25, 5.5 , 5.75, 6. , 6.25, 6.5 , 6.75, 7. , 7.25,\n", + " 7.5 , 7.75, 8. , 8.25, 8.5 , 8.75, 9. ], dtype=float32)</pre></div></div></li><li class='xr-section-item'><input id='section-9d7d3bd7-209f-4b07-bc54-bc840447eed8' class='xr-section-summary-in' type='checkbox' checked><label for='section-9d7d3bd7-209f-4b07-bc54-bc840447eed8' class='xr-section-summary' >Coordinates: <span>(1)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>time</span></div><div class='xr-var-dims'>(time)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>1.5 1.75 2.0 2.25 ... 8.5 8.75 9.0</div><input id='attrs-114eb558-43ff-430b-a03c-e31eab63a97e' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-114eb558-43ff-430b-a03c-e31eab63a97e' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-ec3f4eec-3b0b-40dd-9acb-a404d9be776a' class='xr-var-data-in' type='checkbox'><label for='data-ec3f4eec-3b0b-40dd-9acb-a404d9be776a' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>long_name :</span></dt><dd>time</dd></dl></div><div class='xr-var-data'><pre>array([1.5 , 1.75, 2. , 2.25, 2.5 , 2.75, 3. , 3.25, 3.5 , 3.75, 4. , 4.25,\n", + " 4.5 , 4.75, 5. , 5.25, 5.5 , 5.75, 6. , 6.25, 6.5 , 6.75, 7. , 7.25,\n", + " 7.5 , 7.75, 8. , 8.25, 8.5 , 8.75, 9. ], dtype=float32)</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-57609eba-9875-477a-be36-7e45a7f7f178' class='xr-section-summary-in' type='checkbox' ><label for='section-57609eba-9875-477a-be36-7e45a7f7f178' class='xr-section-summary' >Indexes: <span>(1)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-index-name'><div>time</div></div><div class='xr-index-preview'>PandasIndex</div><div></div><input id='index-21132589-14aa-424a-9fda-df5c636fc5ca' class='xr-index-data-in' type='checkbox'/><label for='index-21132589-14aa-424a-9fda-df5c636fc5ca' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(Index([ 1.5, 1.75, 2.0, 2.25, 2.5, 2.75, 3.0, 3.25, 3.5, 3.75, 4.0, 4.25,\n", + " 4.5, 4.75, 5.0, 5.25, 5.5, 5.75, 6.0, 6.25, 6.5, 6.75, 7.0, 7.25,\n", + " 7.5, 7.75, 8.0, 8.25, 8.5, 8.75, 9.0],\n", + " dtype='float32', name='time'))</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-2c26f227-c5ed-42ec-b9ed-7820405cc9f2' class='xr-section-summary-in' type='checkbox' checked><label for='section-2c26f227-c5ed-42ec-b9ed-7820405cc9f2' class='xr-section-summary' >Attributes: <span>(1)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><dl class='xr-attrs'><dt><span>long_name :</span></dt><dd>time</dd></dl></div></li></ul></div></div>" + ], + "text/plain": [ + "<xarray.DataArray 'time' (time: 31)>\n", + "array([1.5 , 1.75, 2. , 2.25, 2.5 , 2.75, 3. , 3.25, 3.5 , 3.75, 4. , 4.25,\n", + " 4.5 , 4.75, 5. , 5.25, 5.5 , 5.75, 6. , 6.25, 6.5 , 6.75, 7. , 7.25,\n", + " 7.5 , 7.75, 8. , 8.25, 8.5 , 8.75, 9. ], dtype=float32)\n", + "Coordinates:\n", + " * time (time) float32 1.5 1.75 2.0 2.25 2.5 2.75 ... 8.0 8.25 8.5 8.75 9.0\n", + "Attributes:\n", + " long_name: time" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ds_orig.time" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "<matplotlib.collections.QuadMesh at 0x7fff94594fd0>" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAHFCAYAAADv8c1wAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAACYvUlEQVR4nOzdeVxUVf8H8M/MwAyLMOLCpoZYhhJaLoWoj0sp2KOp6ZMW5R5ZakqumZmYimsuaWmaTypq9pRSWolgpoYKGsrjRi6JigVihoDKMsv5/cHP+zjCnDMzl2FAvu/Xa17lnHvPvXOZGQ7nfr/nq2CMMRBCCCGEEC6lo0+AEEIIIaQmoEETIYQQQogFaNBECCGEEGIBGjQRQgghhFiABk2EEEIIIRagQRMhhBBCiAVo0EQIIYQQYgEaNBFCCCGEWIAGTYQQQgghFqBBEyGV6PDhw4iJicGtW7fKtXXr1g3dunWr8nOqKjk5ORg3bhyaNWsGV1dXBAQEYNSoUbh69apF++t0OsyePRtNmzaFRqNBixYtsHLlSjufNSGEWM7J0SdAyMPk8OHDmD17NoYPH466deuatH366aeOOakqUFJSgi5duiAvLw+zZ89GcHAwzp07h1mzZmHPnj3IyMiAh4cHt48xY8YgLi4Oc+bMwdNPP409e/ZgwoQJKCwsxHvvvVdFr4QQQsyjQRMhVSQ4ONjRp2A3v/zyCy5cuIDPP/8co0aNAlA2s+bp6YnIyEjs3bsXL774otn9z5w5g/Xr12PevHmYMmWKtP/Nmzcxd+5cvPnmm6hXr16VvBZCCDGHbs8RUkliYmKkX/iBgYFQKBRQKBTYv38/gPK35y5fvgyFQoHFixdj4cKFaNq0KVxdXdGtWzecP38eOp0O7777Lvz9/aHVavHiiy8iNze33HG/+uorhIWFwd3dHXXq1EFERAROnDhRFS9Z4uzsDADQarUmz9+bbXNxceHu/+2334IxhhEjRpg8P2LECBQVFSEhIaHyTpYQQmxEgyZCKsnrr7+Ot99+GwCwY8cOHDlyBEeOHEHbtm25+33yySc4dOgQPvnkE3z++ef47bff8MILL2DUqFG4ceMG/v3vf2PRokXYu3cvXn/9dZN9Y2Nj8corryA4OBj/+c9/EBcXh8LCQvzjH//A2bNnhees1+stejDGuP106tQJ7dq1Q0xMDI4dO4bbt2/j+PHjeO+999C2bVv06NGDu//p06fRsGFD+Pr6mjzfunVrqZ0QQhyNbs8RUkkaN26MRx55BADQpk0bNG3a1KL96tati2+//RZKZdnfMH/99Reio6PRokULfPfdd9J2v/32G5YvX46CggJ4enoiKysLs2bNwrhx4/Dxxx9L2/Xs2RPNmzfH7Nmz8dVXX5k97uXLlxEYGGjROf7888/cIHYnJyf8/PPPePXVV/HMM89Iz3fr1g3bt2+XZqLMuXnzZoW339zd3aFWq3Hz5k2LzpMQQuyJBk2EONg///lPacAEAC1btgQA9O7d22S7e89fvXoVISEh2LNnD/R6PYYOHQq9Xi9t5+Ligq5du+Lnn3/mHtff3x/Hjh2z6ByDgoK47TqdDoMHD8bp06exbt06BAUFITMzE3PnzkXPnj2xb9++crfuHqRQKGxqI4SQqkKDJkIc7MEZFrVazX2+uLgYAHD9+nUAwNNPP11hv/cPxCqiVqvx1FNPWXSOKpWK275+/Xrs3r0bx44dQ/v27QEA//jHP9C5c2c8+uijWL58OWbNmmV2//r16yM9Pb3c83fu3EFpaSkFgRNCqgUaNBFSQzVo0AAA8M033yAgIMDq/Svz9lx6ejpUKlW5+K1mzZqhfv36wpikVq1aYdu2bcjJyTGJazp16hQAICQkxKLzJIQQe6JBEyGVSKPRAACKiorsfqyIiAg4OTnh999/x8CBA63evzJvz/n7+8NgMODYsWMIDQ2Vnj9//jxu3ryJxo0bc/fv168f3n//fWzcuBHTpk2Tnt+wYQNcXV3Rq1cvi86TEELsiQZNhFSiVq1aAQBWrFiBYcOGwdnZGUFBQcKFHW3RtGlTfPjhh5gxYwYuXbqEXr16wcvLC9evX8fRo0fh7u6O2bNnm91frVZLt9LkGjFiBJYtW4aBAwfi/fffR1BQEC5duoTY2Fi4u7vjzTfflLbdtGkTRo4ciX//+98YOnQoAOCJJ57AqFGjMGvWLKhUKjz99NNITEzE2rVrMXfuXLo9RwipFmjQREgl6tatG6ZPn46NGzdi3bp1MBqNwltbckyfPh3BwcFYsWIFvvzyS5SUlMDX1xdPP/20yUDF3po0aYJjx47hww8/xMKFC5GdnQ0fHx+EhYXhgw8+MJmpMhqNMBgMMBqNJn18+umnaNSoEVauXImcnBw0bdoUK1askJZxIIQQR1Mw0QIshBBCCCGEFrckhBBCCLEEDZoIIYQQQixAgyZCCCGEEAs4dNCk1+vx/vvvIzAwEK6urmjWrBk+/PBDkwBRxhhiYmLg7+8vFTM9c+aMA8+aEEIIIbWRQwdNCxcuxJo1a7Bq1SpkZGRg0aJFWLx4MVauXClts2jRIixduhSrVq3CsWPH4Ovri549e6KwsNCBZ04IIYSQ2sah2XN9+vSBj48P1q9fLz03cOBAuLm5IS4uDowx+Pv7Izo6WlrwrqSkBD4+Pli4cCFGjx7tqFMnhBBCSC3j0HWaOnfujDVr1uD8+fN4/PHH8d///hfJyclYvnw5ACAzMxM5OTkIDw+X9tFoNOjatSsOHz5c4aCppKQEJSUl0r+NRiP+/vtv1K9fn4p+EkII4WKMobCwEP7+/sL6jXIUFxejtLRUdj9qtRouLi4WbXvw4EEsXrwYaWlpyM7ORnx8PPr37y+1M8Ywe/ZsrF27Fnl5eQgNDcUnn3yCJ554AgDw999/Y9asWUhMTERWVhYaNGiA/v37Y86cOSYFufPy8jB+/Hjs3LkTANC3b1+sXLkSdevWlba5evUqxo4di3379sHV1RWRkZFYsmSJVGMTKCujNG7cOBw9ehT16tXD6NGjMXPmTMf+LmcOZDQa2bvvvssUCgVzcnJiCoWCxcbGSu2HDh1iANgff/xhsl9UVBQLDw+vsM9Zs2YxAPSgBz3oQQ962PzIysqy2+++oqIi5uutqpTz9PX1ZUVFRRYd98cff2QzZsxg27dvZwBYfHy8SfuCBQuYh4cH2759Ozt16hQbPHgw8/PzYwUFBYwxxk6dOsUGDBjAdu7cyS5evMh++ukn1rx5czZw4ECTfnr16sVCQkLY4cOH2eHDh1lISAjr06eP1K7X61lISAjr3r07O378OEtKSmL+/v5s3Lhx0jb5+fnMx8eHvfzyy+zUqVNs+/btzMPDgy1ZssTGq145HHp7btu2bZgyZQoWL16MJ554Aunp6YiOjsbSpUsxbNgwHD58GJ06dcKff/4JPz8/ab+oqChkZWUhISGhXJ8PzjTl5+fjkUcewU+p3qhTh5IF72cAzbwRy6ngsK+KGk103ez5OaSfmfVu3zaiW+gN3Lp1y2T2pDIVFBRAq9XiSlpTeHrY/nupoNCIgHaXkZ+fD09PT6v2VSgUJjNNzMZwmK+//hqvvfYa7ty5AycnJ2RkZCA4OBgpKSlSHcqUlBSEhYXht99+Q1BQEHbv3o0+ffogKysL/v7+AMrGA8OHD0dubi48PT2xevVqTJ8+HdevX5dqei5YsAArV67EtWvXHDbb5NDbc1OmTMG7776Ll19+GUBZ3a4rV65g/vz5GDZsmFTtPCcnx2TQlJubCx8fnwr71Gg00gW+X506StSR8eZ8GNGgiViDfgHbhgZNNVNV/FKu46FAHQ/bj2OsxPeOLeEwAKQBm5NT2XDiyJEj0Gq1JoW7O3ToAK1Wi8OHDyMoKAhHjhxBSEiINGACygqQl5SUIC0tDd27d8eRI0fQtWtXk9/nERERmD59Oi5fvozAwMBKe+3WcOgo4u7du+XuGatUKmnJgcDAQPj6+iIpKUlqLy0txYEDB9CxY8cqPVdCCCGkMhmYUfYDKJu5uv9x/90WS+Xk5ABAuQkJHx8fqe1BN2/exJw5c0wGVDk5OfD29i63rbe3t9RPTk5OueN4eXlBrVZzt7n3b3PnUxUcOmh64YUXMG/ePPzwww+4fPky4uPjsXTpUrz44osAykb60dHRiI2NRXx8PE6fPo3hw4fDzc0NkZGRjjx1QgghRBYjmOwHUFYwW6vVSo/58+fbfE4PzrAxxiqcdSsoKEDv3r0RHByMWbNmcfuoqB9btrkXTeTIQHCH3p5buXIlZs6ciTFjxiA3Nxf+/v4YPXo0PvjgA2mbqVOnoqioCGPGjJGi+RMTE+Hh4eHAMyeEEEKqh6ysLJOYpopCVESsCYcpLCxEr169UKdOHcTHx8PZ2dmkn+vXr5fr/8aNG1I/vr6+SE1NNWnPy8uDTqcz2ebBGaXc3FwA5WfDqpJDB00eHh5Yvny5tMRARRQKBWJiYhATEyPrWCowur//AHteD4qXevg8zJ8fpQPfrsqH+LrWRFX5XjDCCKN4M+7+AODp6Wl1IPiD7g+HadOmDYD/hcMsXLhQ2q6goAARERHQaDTYuXNnueUOwsLCkJ+fj6NHj+KZZ54BAKSmpiI/P18KqwkLC8O8efOQnZ0tDdASExOh0WjQrl07aZv33nsPpaWl0jIEiYmJ8Pf3R9OmTWW9VjkoMpoQQghxAANjsh/WuH37NtLT05Geng6gLPg7PT0dV69etSgcprCwEOHh4bhz5w7Wr1+PgoIC5OTkICcnBwaDAQDQsmVL9OrVC1FRUUhJSUFKSgqioqLQp08fBAUFAQDCw8MRHByMIUOG4MSJE/jpp58wefJkREVFSYO/yMhIaDQaDB8+HKdPn0Z8fDxiY2MxceLE2nt7jhBCCCFV49dff0X37t2lf0+cOBEAMGzYMGzYsEEYDpOWlibdVnvsscdM+s7MzJRmgLZs2YLx48dLmXh9+/bFqlWrpG1VKhV++OEHjBkzBp06dTJZ3PIerVaLpKQkjB07Fu3bt4eXlxcmTpwonbOjOHSdpqpwbz2MX8/40JIDVYhuzz186PYcqQ1uFxrRNvi6TWsfWUpap+k3f/nrNLX4067nSkzRTBMhhBDiAEYwGGT8MWJ8iP+Qqa5qzaBJqaC/Jh9ktOPnrTrPSjzMs2COvO41+fNVnd+vclTnuXU5AdByXxfv2BSYT3hqzaCJEEIIqU7uX2vJ1v1J1aJBEyGEEOIAtmTAPbg/qVrVefaWEEIIIaTaoJkmQgghxAGMkBfbJWdfYhsaNBFCCCEOYJCZPSdnX2IbGjTVYvbMdrJnZp5cokwpe2bX1eQsLUdmx1Xn61adYxxU1TijUSVjX4PMtwPvZ1aVP08Dk/da5F4HYr3q/HknhBBCCKk2aKaJEEIIcQCKaap5aNBECCGEOIARClnhAMaHeKHe6opuzxFCCCGEWIBmmgghhBAHMDJ5STPVOeHmYVVrBk1KsGqdgWOLh7mGmj058rrZ+9j2fI/L/YKuqbXp7D0dX50z3Kore16zqvx5GGTenqPfAVWPbs8RQgghhFig1sw0EUIIIdUJzTTVPDRoIoQQQhzAyBQwMhnZczL2Jbah23OEEEIIIRagmSZCCCHEAej2XM1TawZNchcRcxRHZvw5Mp3Vnj+rmvg+qAlE71VZ7yeFvJ+ZnM+RaNVludP1vPphjs6sU1XTz8rDUqjWACUMMt5Bhko8F2KZWjNoIoQQQqoTJjOmiVFMU5WjmCZCCCGEEAvQTBMhhBDiABTTVPPQoIkQQghxAANTwsBkxDQ9HKFdNQoNmqo53l8S9g7UrsnB2LV1/RI5Vc+VCnlvKNHPVFZSA5P5ZpcRSC4McLe55zK8X5lyfynKDSS3Z8B1dQ0yJ4SHBk2EEEKIAxihgFFGaLHxIckirElo0EQIIYQ4AMU01TyUPUcIIYQQYgGaaSKEEEIcQH4gON2eq2o0aCKEEEIcoCymSUbBXro9V+Vo0ORgcjLg7H0/W07/crPX5L42OaUJai3Be1ElM09Mx+2bf3CDzMw+lYy/yIVlVGR/DG0/N9G73J4p6dU5M094bM6hKY2f8NCgiRBCCHEAo8zac5Q9V/Vo0EQIIYQ4AMU01Tw0aCKEEEIcwAglrdNUw1DgByGEEEKIBWimiRBCCHEAA1PAICNpRs6+xDa1ZtBkZPav1WYLe64G68gMNrnZa6Jzt2tdPBkxBg8zlUJe9hwvQ06YHSczs4+XuVe2v+3nJsrME9euM/9eFmXmGfjN8ur9iVTD71NL8d4tcmsJWsMgMxDckRmItRX9diCEEEIIsUCtmWkihBBCqhMjU8IoY2bbSNlzVY4GTYQQQogD0O25moduzxFCCCGEWKDWzDQZoLB72RFzx5WDFxAt6rs6B2PLDbYWrW3iyHOTw961pJQy/jKVW0aFF5SsZDL7FgSpyynTohKcm2itHFEQupJ7bPsFmVuCF4guCkIXsWeQuqwSUFX4e8IIeRlw1n5qDh48iMWLFyMtLQ3Z2dmIj49H//79pXbGGGbPno21a9ciLy8PoaGh+OSTT/DEE09I26xduxZbt27F8ePHUVhYiLy8PNStW9fkOHl5eRg/fjx27twJAOjbty9Wrlxpst3Vq1cxduxY7Nu3D66uroiMjMSSJUugVqulbU6dOoVx48bh6NGjqFevHkaPHo2ZM2dCoXBc1iDNNBFCCCEOcG9xSzkPa9y5cwdPPvkkVq1aVWH7okWLsHTpUqxatQrHjh2Dr68vevbsicLCQmmbu3fvolevXnjvvffMHicyMhLp6elISEhAQkIC0tPTMWTIEKndYDCgd+/euHPnDpKTk7Ft2zZs374dkyZNkrYpKChAz5494e/vj2PHjmHlypVYsmQJli5datVrrmwOnWlq2rQprly5Uu75MWPG4JNPPrFo1EsIIYQQseeffx7PP/98hW2MMSxfvhwzZszAgAEDAAAbN26Ej48Ptm7ditGjRwMAoqOjAQD79++vsJ+MjAwkJCQgJSUFoaGhAIB169YhLCwM586dQ1BQEBITE3H27FlkZWXB398fAPDRRx9h+PDhmDdvHjw9PbFlyxYUFxdjw4YN0Gg0CAkJwfnz57F06VJMnDjRYbNNDp1pOnbsGLKzs6VHUlISAOCll14CYNmolxBCCKmJ7tWek/MAymZl7n+UlJRYfS6ZmZnIyclBeHi49JxGo0HXrl1x+PBhi/s5cuQItFqtNGACgA4dOkCr1Ur9HDlyBCEhIdKACQAiIiJQUlKCtLQ0aZuuXbtCo9GYbPPnn3/i8uXLVr++yuLQQVPDhg3h6+srPb7//ns8+uij6Nq1a7lRb0hICDZu3Ii7d+9i69atjjxtQgghRDYjFLIfANCkSRNotVrpMX/+fKvPJScnBwDg4+Nj8ryPj4/UZmk/3t7e5Z739vaW+snJySl3HC8vL6jVau429/5tzflUtmoTCF5aWorNmzdL026XLl3ijnrvTRU+qKSkxGSUXVBQYPdzJ4QQQqx1/2yRrfsDQFZWFjw9PaXn75+dsdaDt70YY1bfCqto+wf7sWUb9v+JEY4MBK82g6Zvv/0Wt27dwvDhwwHwR70VxUHdM3/+fMyePbvc8/bKnrN3qRJeBpy9S42IPsy8IETh65KdPWf7dbN35p4c9q4lpRKVK+ER7KqUkV0nzn7jtytFWWai/jn7i16X3Mw9Xkaj6HUL+xaVgBFlFcp4u9g7s89eqmO5LRFPT0+TQZMtfH19AZT97vXz85Oez83NLfd7WNTP9evXyz1/48YNqR9fX1+kpqaatOfl5UGn05ls8+CMUm5uLoDy44KqVG2y59avX4/nn3/e5B4nYP2od/r06cjPz5ceWVlZdjlfQgghRI57i1vKeVSWwMBA+Pr6SrHFQNkdoAMHDqBjx44W9xMWFob8/HwcPXpUei41NRX5+flSP2FhYTh9+jSys7OlbRITE6HRaNCuXTtpm4MHD6K0tNRkG39/fzRt2tTWlylbtRg0XblyBXv37sXrr78uPXf/qPd+olGvRqORRt2VMfomhBBC7MHIFLIf1rh9+zbS09ORnp4OoCz4Oz09HVevXoVCoUB0dDRiY2MRHx+P06dPY/jw4XBzc0NkZKTUR05ODtLT03Hx4kUAZWsppaen4++//wYAtGzZEr169UJUVBRSUlKQkpKCqKgo9OnTB0FBQQCA8PBwBAcHY8iQIThx4gR++uknTJ48GVFRUdLv7MjISGg0GgwfPhynT59GfHw8YmNjHZo5B1STQdMXX3wBb29v9O7dW3quska9hBBCCAF+/fVXtGnTBm3atAEATJw4EW3atMEHH3wAAJg6dSqio6MxZswYtG/fHn/88QcSExPh4eEh9bFmzRq0adMGUVFRAIAuXbqgTZs20kKWALBlyxa0atUK4eHhCA8PR+vWrREXFye1q1Qq/PDDD3BxcUGnTp0waNAg9O/fH0uWLJG20Wq1SEpKwrVr19C+fXuMGTMGEydOxMSJE+16jUQUjDm24p/RaERgYCBeeeUVLFiwwKRt4cKFmD9/Pr744gs0b94csbGx2L9/P86dO2fyQ+QpKCgoS3U844c6HpU/RqSYJtuOTTFNFavWMU0CDo1pEsTPyIk7sntME29FcAfHNMlhz77t6XahEe2fuI78/Hy73am493tpwbGucKlje2hx8W093n36gF3PlZhyeCD43r17cfXqVYwcObJc29SpU1FUVIQxY8ZIi1s+OOolhBBCaiIjU8Io4484OfsS2zh80BQeHg5zk10KhQIxMTGIiYmRfRxb7v/eI6uOmWBWQs5skZyZIFHflvXPq4snOLbccxdeN94MnbwvGvFrk1NLquZ+CYpnZGyfUVHKnIkSzbA5K/Q2923PzD3eeQHyMvPK9pcxO2jHmnuOVCrehNRiDh80EUIIIbWR3KVwHFGEvrajQRMhhBDiAHR7ruahK04IIYQQYgGaaSKEEEIcwAC5MbOkqtWaQVMpVCi1cWKNF6xt77R+HVQ27ysnLd+y/s23lzLz5w2Ip5XlBlvzzk0nODfR65azCq848F/mcgh2nK6XG4wtK7VecGxRwLMwoJpzbuJgbPsFoTsL3qtygswBecspyF3uQM6KBKJrLudzVMxsD463Ft2eq3lqzaCJEEIIqU4qq2AvqTp0xQkhhBBCLEAzTYQQQogDMCiEYRSi/UnVokETIYQQ4gB0e67moStOCCGEEGKBWjPTVGJ0gpPRxuw5GWNLe5YqKWX8H5/cUiQ6Qf+8DBVRhprcDDbh/jLOTZzZJ8jc4+wvO+OxGv9lKSfDTbSvs4KfXC3K7BPtz2sXZWqJ++Zn36k5+4teF29fS44tp0SMvTP3uH0Lji2Hvgqru8gp73Vvf1K1as2giRBCCKlODFDKWh5B7hIlxHp0xQkhhBBCLEAzTYQQQogD0O25mocGTYQQQogDGKGUFTMrZ19iG7rihBBCCCEWqDUzTcXMCSpB1pQ5vIwmuYF4crLERMcWZb/ZM4NNnD0n79zktMvNzNMLr5v594toOl1+5p7jputFtcZ4tcqE2W9KfruTjOw4Ubuzkp+BJurbRaGzeX+5WYV2zewT1GhTC/oW1QvkEuwqJ7uumFVdGVwDUwizmEX7k6pVawZNhBBCSHVCMU01Dw2aCCGEEAdgTCmcXRbtT6oWXXFCCCGEEAvQTBMhhBDiAAYohHGKov1J1ao1g6YS5iwjEJxXFkNQ9kIwmScO/LVfqRJRGRY5/Yv2LTE68/s2ynttJUbzr00Y6C08tu0/U71wX/77SXRuciqmyyUK7OUFiosCwZ1E7UpRwDN/fw0n2Fuj4gc0i4LQXZS2B4JrZOxrSbsoWJsbIG/nEi4q3vtFVIJFRoz5XWPVBYIbmby4JGMVlnwhZej2HCGEEEKIBWrNTBMhhBBSnRhlBoLL2ZfYhgZNhBBCiAMYoZB1S92Rt+NrKxqmEkIIIYRYgGaaCCGEEAegFcFrnlozaCpmzlCayZqSc19YlB0nelOLyonwpl/lZr8JM9hkZM8VC/rmZbdZ0i7KIuPtL8pgKzXwj10qOLbeaHv2HG9fADAI2kXT9fZcQVhURoWXXacSlUkRtKsF2XNy9lcLyqiIMvd4mXmidlcVP3tOTmZe2bFt39+emXmidlHmnRxVmz1HMU01DV1xQgghhBAL1JqZJkIIIaQ6MUJm7TkKBK9yNGgihBBCHIDJzJ5jNGiqcjRoIoQQQhzAyGTONFEgeJWjmCZCCCGEEAvUmpmmIqYGzGRUGeRkLwimR0V9izPUbK+hJrddTgacKPutVNBeZOAfW06Gmyj7rdQguG6i2nSc/fUGUbalILtOsD8T/OXJ+8uUyaxjpRD80cutPSfKnlPZXqcMANROovpx5vt3Vglqywlq06mF+5vPYBNlz4ky+0SZe27KUm67Mycz0N518Xjtosw8UR1EniLG77syUfZczVNrBk2EEEJIdUK352oeGqYSQgghhFiAZpoIIYQQB6DaczUPDZoIIYQQB6DbczVPrRk0FRpcoBcED9tCVEZFFKgnJ1hbbiC3XrD/XVEwNi8QXHCti4V9C16boP8Sve3nJgoEFwVj6/S8QHB+30aDIJBbFAgu2J8bKC6MnRV9QfM7UCjNt/PaAECh4rerRIHignZeoLmzk6BciCDQWxSEruEEkrs5CcqoiILQBYHgokBzV5X5QHFRkLm4hItgf0673CBzXhmWIkGpoprs4MGDWLx4MdLS0pCdnY34+Hj0799fameMYfbs2Vi7di3y8vIQGhqKTz75BE888YS0TUlJCSZPnowvv/wSRUVFeO655/Dpp5+icePG0jZ5eXkYP348du7cCQDo27cvVq5cibp160rbXL16FWPHjsW+ffvg6uqKyMhILFmyBGq1Wtrm1KlTGDduHI4ePYp69eph9OjRmDlzJhSirJP7xMXFYc2aNcjMzMSRI0cQEBCA5cuXIzAwEP369bP6Glo0ijh58qTVHQcHB8PJqdaMyQghhBCrVPVM0507d/Dkk09ixIgRGDhwYLn2RYsWYenSpdiwYQMef/xxzJ07Fz179sS5c+fg4eEBAIiOjsauXbuwbds21K9fH5MmTUKfPn2QlpYGlarsj8LIyEhcu3YNCQkJAIA33ngDQ4YMwa5duwAABoMBvXv3RsOGDZGcnIybN29i2LBhYIxh5cqVAICCggL07NkT3bt3x7Fjx3D+/HkMHz4c7u7umDRpkkWvd/Xq1fjggw8QHR2NefPmwWAoG0zXrVsXy5cvt9+g6amnnoJCoQCzMCdZqVTi/PnzaNasmdUnRAghhNQGVT1oev755/H8889X2MYYw/LlyzFjxgwMGDAAALBx40b4+Phg69atGD16NPLz87F+/XrExcWhR48eAIDNmzejSZMm2Lt3LyIiIpCRkYGEhASkpKQgNDQUALBu3TqEhYXh3LlzCAoKQmJiIs6ePYusrCz4+/sDAD766CMMHz4c8+bNg6enJ7Zs2YLi4mJs2LABGo0GISEhOH/+PJYuXYqJEydaNNu0cuVKrFu3Dv3798eCBQuk59u3b4/Jkydbde3usXgeMjU1FZmZmcLHpUuX4OLiYtPJEEIIIaTqZWZmIicnB+Hh4dJzGo0GXbt2xeHDhwEAaWlp0Ol0Jtv4+/sjJCRE2ubIkSPQarXSgAkAOnToAK1Wa7JNSEiINGACgIiICJSUlCAtLU3apmvXrtBoNCbb/Pnnn7h8+bLFr6lNmzblntdoNLhz545FfTzIopmmrl274rHHHjO5H8nTpUsXuLq62nRChBBCSG1QWTNNBQUFJs9rNBqTwYYlcnJyAAA+Pj4mz/v4+ODKlSvSNmq1Gl5eXuW2ubd/Tk4OvL29y/Xv7e1tss2Dx/Hy8oJarTbZpmnTpuWOc68tMDBQ+JoCAwORnp6OgIAAk+d3796N4OBg4f4VsWjQ9PPPP1vV6Y8//mjTyRBCCCG1BYO8ZQPuBcw0adLE5PlZs2YhJibGpj4fvO3FGBPeCntwm4q2r4xt7oUIWRoIPmXKFIwdOxbFxcVgjOHo0aP48ssvMX/+fHz++ecW9fGgWhOpfduogV6QTWYPsrPnOFlkJYz/enSCLBBRqZMig5rbzsuAk5v9VqQTlHCRkT3Hy24DgFJBu14nyIDTm7/uTJT9puN/GSg4fQMA+ElDUAiy67j7yiyzwvuD2ijIjgP/kkPvxM+OUziJsvPM768U7KtyFmRyCbLvNM7ms8RuCzLvXATZdcLsO1H/KvPfAcLMO0GZFSdOiRaAn10nO3uOUzan2MA/78pUWTNNWVlZ8PT0lJ63dpYJAHx9fQGUzeL4+flJz+fm5kozPL6+vigtLUVeXp7JbFNubi46duwobXP9+vVy/d+4ccOkn9TUVJP2vLw86HQ6k23uzTrdfxyg/GyYOSNGjIBer8fUqVNx9+5dREZGolGjRlixYgVefvlli/p4kNW5lQaDAevXr0dkZCR69OiBZ5991uRBCCGEkKrj6elp8rBl0BQYGAhfX18kJSVJz5WWluLAgQPSgKhdu3ZwdnY22SY7OxunT5+WtgkLC0N+fj6OHj0qbZOamor8/HyTbU6fPo3s7Gxpm8TERGg0GrRr107a5uDBgygtLTXZxt/fv9xtu4ro9Xps3LgRL7zwAq5cuYLc3Fzk5OQgKysLo0aNsvr63GP1oGnChAmYMGECDAYDQkJC8OSTT5o8rPXHH3/gtddeQ/369eHm5oannnpKCgQDyqbjYmJi4O/vD1dXV3Tr1g1nzpyx+jiEEEJIdXJvpknOwxq3b99Geno60tPTAZQFSqenp+Pq1atQKBSIjo5GbGws4uPjcfr0aQwfPhxubm6IjIwEAGi1WowaNQqTJk3CTz/9hBMnTuC1115Dq1atpGy6li1bolevXoiKikJKSgpSUlIQFRWFPn36ICgoCAAQHh6O4OBgDBkyBCdOnMBPP/2EyZMnIyoqSpoxi4yMhEajwfDhw3H69GnEx8cjNjbW4sw5JycnvPXWWygpKQEANGjQoMJYK2tZfXtu27Zt+M9//oN//vOfsg+el5eHTp06oXv37ti9eze8vb3x+++/mwScW7JuBCGEEFLTVPWSA7/++iu6d+8u/XvixIkAgGHDhmHDhg2YOnUqioqKMGbMGGlxy8TERJPftcuWLYOTkxMGDRokLW65YcMGaY0mANiyZQvGjx8vZdn17dsXq1atktpVKhV++OEHjBkzBp06dTJZ3PIerVaLpKQkjB07Fu3bt4eXlxcmTpwonbMlQkNDceLEiXKB4HIomKWLL/0/f39/7N+/H48//rjsg7/77rs4dOgQfvnllwrbGWPw9/dHdHQ0pk2bBqBsNVIfHx8sXLgQo0ePFh6joKAAWq0WH6T2gEsdimky2Z9imipEMU1m9rVjTBOTGdPEHtKYJo3DY5rM7//QxjTd1mFuh0Tk5+ebxAlVpnu/l7rsGgMnd+tvpd2jv1OCgy98atdzrcm+/vprvPvuu3jnnXfQrl07uLu7m7S3bt3a6j6tvj03adIkrFixwuKFLnl27tyJ9u3b46WXXoK3tzfatGmDdevWSe2WrBvxoJKSEhQUFJg8CCGEkOqmqm/P1TaDBw9GZmYmxo8fj06dOuGpp55CmzZtpP/awqLbc/dWB71n37592L17N5544gk4O5vOCOzYscPig1+6dAmrV6/GxIkT8d577+Ho0aMYP348NBoNhg4datG6EQ+aP38+Zs+eXe75O3oX6PW2zTQpOX9iy33Tyqk9J5op4tWGA+TXh+PNFt0VXGvhTJFOcG6CmSjebJJOMFNkKBWlagn+1uDMFilK+fsq9fz3k+CPdygE+/P+AOf88V3WLnemifPSBROyEHxMYHQSzOAJvukYZzbJ4Mx/4Xpn/oUrFbQXq83/UJwFs1gaNf8NUcSZxQLEM1WuzubbRXXv3JzM160DxHXxeDNN4rp1/Guu5NSe481SVzbGFPx6kBbsT8zLzMys9D4tendotVqTf7/44ouVcnCj0Yj27dsjNjYWANCmTRucOXMGq1evxtChQ6XtrFk3Yvr06Sb3PAsKCsqtYUEIIYSQh1tlxjLdY9Gg6Ysvvqj0AwOAn59fuVU5W7Zsie3btwOwbN2IB9myEiohhBBS1YxQyFrcUs6+tcGmTZu47fdPzljK6nnIZ599Fjt27ChXUqWgoAD9+/fHvn37LO6rU6dOOHfunMlz58+fl0aH968bce/+4711IxYuXGjtqRNCCCHVRlVnz9U2EyZMMPm3TqfD3bt3oVar4ebmVjWDpv3795ssNnVPcXGx2Sw4c9555x107NgRsbGxGDRoEI4ePYq1a9di7dq1AGCybkTz5s3RvHlzxMbGmqwbQQghhBDyoLy8vHLPXbhwAW+99RamTJliU58WD5pOnjwp/f/Zs2dNljc3GAxISEhAo0aNrDr4008/jfj4eEyfPh0ffvghAgMDsXz5crz66qvSNpasG0EIIYTUNBQIXvWaN2+OBQsW4LXXXsNvv/1m9f4WD5qeeuopKBQKKBSKCsuluLq6YuXKlVafQJ8+fdCnTx+z7QqFAjExMTYXH7ynUO+KEjMZXUpB2hAve05ENH0qWseJlyGnE+wryp4TZscJskh4GXLFouw5Qd+i7LnSUn67npMBx3SCVK0SfqqWolSU4Wa+XVkiLzvOnu12z57jvXTBd79g2S8wJ8HnTJA4a3Q2v79guTIYNfz3k1GQfWdQm39xBg3/h6JTCz7jakGGmjP/wrhxsvNEmXfFzvxzE2Xf8daIUgvWeHIWtPMy90oFa6lVJro95xgqlQp//vmnTftaPGjKzMwEYwzNmjXD0aNH0bBhQ6lNrVbD29vbZEVQQgghhJhHM032tXPnTpN/M8aQnZ2NVatWoVOnTjb1afGgKSAgADqdDkOHDkW9evXskspHCCGEEFIZ+vfvb/JvhUKBhg0b4tlnn8VHH31kU59WBYI7Ozvju+++wwcffGDTwQghhBBShsm8PUczTXxGoyDmwAZW37zt378/vv3220o/EUIIIaQ2YQAYk/Fw9AuoYQwGA9LT0yvMqrOU1UsOPPbYY5gzZw4OHz5cYQG88ePH23wy9nTb4Ay1mYhOlYwIV6XMt61ocTJewV5RUVxhILggGFtUVLeU0y4K9C4WBHLrBIHgekGwtpETCK4oFpQyEZU6EQRzq0o4bcXcXbn7AuJAbxW/cgWUOvPvV0FlCmGguByyy6ioZAaCc4K9RYHgelfBsTX8dgOnXRRkbhC2C8o0CYK1SzXm2104bYC4VJIokNzFiXNsQRC5KFCcGwguKpNEaozo6Gi0atUKo0aNgsFgQJcuXXDkyBG4ubnh+++/R7du3azu0+pB0+eff466desiLS0NaWlpJm0KhaLaDpoIIYSQ6sQIBRS0IrjdfPPNN3jttdcAALt27cLly5fx22+/YdOmTZgxYwYOHTpkdZ9WD5rsUQCPEEIIqW0oe86+/vrrL6kc248//oiXXnoJjz/+OEaNGoWPP/7Ypj5lzUMyxsAY3VUlhBBCSPXi4+ODs2fPSgtw9+jRAwBw9+5dm5dIsmnQtGnTJrRq1Qqurq5wdXVF69atERcXZ9MJEEIIIbXRvcUt5TyIeSNGjMCgQYMQEhIChUKBnj17AgBSU1PRokULm/q0+vbc0qVLMXPmTIwbNw6dOnUCYwyHDh3Cm2++ib/++gvvvPOOTSdCCCGE1Cb3suDk7E/Mi4mJQUhICLKysvDSSy9Bo9EAKFsR/N1337WpT6sHTStXrsTq1atNqgP369cPTzzxBGJiYqrtoKnIoIFeX3EajD3LqIiy60SBfHpOhpxeVEbFwJ9+FGXHibJfeNl3ojIoej3/3HhlUAB+dhzAz5BTCbLnVMWCUieCDDenIl7ftu8LAE7F/PeTUxH/vawqNb+/Qs/vW2mw3zc0U/KvubBMiqDdwCmTAgBGtfl2vYa7Kwwugs+wK39/XvadqG+DIHPPIMgEFWXfFXMyyfSCLDOdIHOvlFM+BgBKDeYz3IoF2XNugsw8NefWjE5PszcPk3/9618m/7516xaGDRtmc39W357Lzs5Gx44dyz3fsWNHZGdn23wihBBCSG1yLxBczoOYt3DhQnz11VfSvwcNGoT69eujcePGOHnypE19Wj1oeuyxx/Cf//yn3PNfffUVmjdvbtNJEEIIIbUNDZrs67PPPkOTJk0AAElJSUhKSsLu3bvRq1cvTJ482aY+rb49N3v2bAwePBgHDx5Ep06doFAokJycjJ9++qnCwRQhhBBCyjMyBRQyBj4UCM6XnZ0tDZq+//57DBo0COHh4WjatClCQ0Nt6tPqmaaBAwciNTUVDRo0wLfffosdO3agQYMGOHr0KF588UWbToIQQgghpDJ5eXkhKysLAEyWHGCMwWDgrxpvjtUzTQDQrl07bN682aYDEkIIIYSy5+xtwIABiIyMRPPmzXHz5k08//zzAID09HQ89thjNvVp06DJaDTi4sWLyM3NLVdFuEuXLjadiL3d1qnhrKs4e85JaXv2nJzMOkvwpl9F2XGi2nS8unYAoBf0rzeYn6g0cNoAQK/j980EmTkKUX04TrsoO05YH06U4cZpd77Df7+obwuy4+7w/zpyusvPKlIVm29XlPD7VsitGK4wf92ZE//nKW4XZFs68/c3qjnvZRfBe1nQrnMT1Jd052TuCTLvDII6iKK6eAbBuRk5mWR6g2Bf0XeAqJ3zM9EIft6i7zYNJ/tOL6jfWJnKBk1yVgSvxJN5CC1btgxNmzZFVlYWFi1ahDp16gAou203ZswYm/q0etCUkpKCyMhIXLlypdxq4AqFwuYpL0IIIYSQyuLs7FxhwHd0dLTNfVod0/Tmm2+iffv2OH36NP7++2/k5eVJj7///tvmEyGEEEJqE8qes7+4uDh07twZ/v7+uHLlCgBg+fLl+O6772zqz+pB04ULFxAbG4uWLVuibt260Gq1Jg9CCCGEiLFKeBDzVq9ejYkTJ+L555/HrVu3pDthdevWxfLly23q0+pBU2hoKC5evGjTwQghhBBCqsLKlSuxbt06zJgxw6RAb/v27XHq1Cmb+rQ6puntt9/GpEmTkJOTg1atWsHZ2dmkvXXr1jadiL0V6Z2g0ztX2CYKBOe1i8qkyA0U5wWCi8qo6I2CEgqCdp2g3chpNxoFZTEEQaRMUMpAqRO0l5pvV/IrLIhLnQjaecHe6kL+e01dyI8JdC7gR6kqC/gnp7hz13xjEX9fJohXVIiqhjuZ/7oR7quu+LMrEezPNPyvOuZsfn+jC//YTm78vp2K+efmVGL+c1RaR5RQwW0Wvtf1gs+Z3o2X7CEIMhd9xmUEkuvV/IQHg+C2Fe+7T6+ruvkbubfY6PYcX2ZmJtq0aVPueY1Ggzt37tjUp9WDpoEDBwIARo4cKT2nUCjAGKNAcEIIIcRScu+x0f05rsDAQKSnpyMgIMDk+d27dyM4ONimPq0eNGVmZtp0IEIIIYTcR24wN800cU2ZMgVjx45FcXExGGM4evQovvzyS8yfPx+ff/65TX1aPWh6cMRGCCGEEFLdjBgxAnq9HlOnTsXdu3cRGRmJRo0aYcWKFXj55Zdt6tOmxS0JIYQQIg+tCG4/er0eW7ZswQsvvICoqCj89ddfMBqN8Pb2ltUvDZoIIYQQB6BAcPtxcnLCW2+9hYyMDABAgwYNKqffSumlBijSqeFkroyKSpCxpDTfLqcEiyV42XOiCtcGQXadaH/RB9LAyZAT7StqVwiy70SXVcH5kSr4iTdQitoFZRacSsyfnNNdQabmbX66kzA7Lr+Q284KzLcbbt/m7iuicOJnmSmcZWTPcTLvLNlfoRKU5XE2f+5KVxfuvio3Db+9Dr9dWco5din/jV6qE7wuQXac6LOg4GS48doAwCCousMEn3Edp12UnStqN3Cy7wx6meWCSLURGhqKEydOVGpYUa0ZNBFCCCHVClPIC+ammSauMWPGYNKkSbh27RratWsHd3d3k3ZblkiyetCUlZUFhUKBxo0bAwCOHj2KrVu3Ijg4GG+88YbVJ0AIIYTURhTTZF+DBw8GAIwfP156Tu4SSVYPmiIjI/HGG29gyJAhyMnJQc+ePfHEE09g8+bNyMnJwQcffGD1SRBCCCGEVCZ7LJFk9aDp9OnTeOaZZwAA//nPfxASEoJDhw4hMTERb775Jg2aCCGEEEvQ4pZ2ZY8lkqweNOl0Omg0ZYGNe/fuRd++fQEALVq0QHZ2duWeHSGEEPKQouw5+zt37hxWrlyJjIwMKBQKtGjRAm+//TaCgoJs6s/qQdMTTzyBNWvWoHfv3khKSsKcOXMAAH/++Sfq169v00lUhRKDE/T6il+us6hOmpP5dgPjZ1qoFPbLrhPVjpObHSeHo++18y6r4EcibFfqBfUGOQlwwn1LBfXdSgXFxEr4qX1MZz5rSJj9phS8X0QZcApOtqUotoBz3oAFf3ALPqfMaL4HUfacol5dbrtK9GHgHFth4P9MOIm9Ze16/neEsIYjLwtVcGwFp3YcwM++BfgZcKLacqUyvvsMJQ93KbDCwkLMnDkT8fHxyM3NRZs2bbBixQo8/fTTAIDr169j2rRpSExMxK1bt9ClSxesXLkSzZs3l/ooKSnB5MmT8eWXX6KoqAjPPfccPv30UynWGQDy8vIwfvx47Ny5EwDQt29frFy5EnXr1pW2uXr1KsaOHYt9+/bB1dUVkZGRWLJkCdTqijPdrfXNN9/glVdeQfv27REWFgYASElJQUhICLZu3YqXXnrJ6j757+oKLFy4EJ999hm6deuGV155BU8++SQAYOfOndJtO0IIIYRYgMl42OD1119HUlIS4uLicOrUKYSHh6NHjx74448/wBhD//79cenSJXz33XdSun6PHj1MCtxGR0cjPj4e27ZtQ3JyMm7fvo0+ffqYBFZHRkYiPT0dCQkJSEhIQHp6OoYMGSK1GwwG9O7dG3fu3EFycjK2bduG7du3Y9KkSba9sApMnToV06dPx5EjR7B06VIsXboUhw8fxnvvvYdp06bZ1KeCMevnBAwGAwoKCuDl5SU9d/nyZbi5uclebbOyFRQUQKvVIuQ/U8yup8JbhwkA1E7m21WCdZocOdOkF6zTpDfwZwZKBe3FpeYnKks5bQCgLxFMcgoqwyuL+K/N6bb5didBcWtnUXsh/2emKTDfrs7nz5io8/jrMClvCU7uVgG32Xjb/P6i2R57zjQJpyY5szEWceBME/N057Yb3M2v46Svw59p0rsLPsN1+J8TnRv/Z6rnnLqO/7Kgd+O3G9z4P1OjC+dn5sJ/r6o0grX3eOs03S3GxSHzkZ+fD09PT24/trr3e6nJZ7OE7y8eY1ExskbPtvhci4qK4OHhge+++w69e/eWnn/qqafQp08fDB06FEFBQTh9+jSeeOIJAGW/7729vbFw4UK8/vrryM/PR8OGDREXFydlp/35559o0qQJfvzxR0RERCAjIwPBwcFISUlBaGgogLIZnrCwMPz2228ICgrC7t270adPH2RlZcHf3x8AsG3bNgwfPhy5ubmVcu3d3Nxw8uRJPPbYYybPX7hwAU8++STu3r1rdZ9WzzQBAGMMaWlp+Oyzz1BYWLZYnlqthpub4FNCCCGEkDJyZpnum20qKCgweZSUlFR4OL1eD4PBABcX04Gaq6srkpOTpf3ub1epVFCr1UhOTgYApKWlQafTITw8XNrG398fISEhOHz4MADgyJEj0Gq10oAJADp06ACtVmuyTUhIiDRgAoCIiAiUlJQgLS3N0ivI1a1bN/zyyy/lnk9OTsY//vEPm/q0OqbpypUr6NWrF65evYqSkhL07NkTHh4eWLRoEYqLi7FmzRqbToQQQggh1mvSpInJv2fNmoWYmJhy23l4eCAsLAxz5sxBy5Yt4ePjgy+//BKpqalo3rw5WrRogYCAAEyfPh2fffYZ3N3dsXTpUuTk5EiJXjk5OVCr1SZ3mgDAx8cHOTk50jYV3XXy9vY22cbHx8ek3cvLC2q1WtpGrr59+2LatGlIS0tDhw4dAJTNeH399deYPXu2FG91b1tLWD1omjBhAtq3b4///ve/JoHfL774Il5//XVru6syJaUqqMyUYjByAr1FnFSiWxb8ZhvujkqMcFygtwjvTowlRKcubOfNocrsW7S/nH2Z6MIpBZPDakEwN+dWgEJu9L7cHzqPXhAIbhRE7wtjezkbiK6LIEhdUcQPzldxrpvoZyIKFFcYBbe5BcHaCk4IgNyECoXgg8YLLxDdrRX9uHmX1SgKHahUClTGF0pWVpbJ7ax7Ge4ViYuLw8iRI9GoUSOoVCq0bdsWkZGROH78OJydnbF9+3aMGjUK9erVg0qlQo8ePfD8888Lz+TegpHSmVXwvrZlGznGjBkDAPj000/x6aefVth27zwsXejS6ndHcnIyDh06VC66PSAgAH/88Ye13RFCCCG1UyWt0+Tp6WlxDNCjjz6KAwcO4M6dOygoKICfnx8GDx6MwMBAAEC7du2Qnp6O/Px8lJaWomHDhggNDUX79u0BAL6+vigtLUVeXp7JbFNubi46duwobXP9+vVyx75x44Y0u+Tr64vU1FST9ry8POh0unIzULYyiv6YsoHVMU1Go7HCEdm1a9fg4eFRKSdFCCGEEPtxd3eHn58f8vLysGfPHvTr18+kXavVomHDhrhw4QJ+/fVXqb1du3ZwdnZGUlKStG12djZOnz4tDZrCwsKQn5+Po0ePStukpqYiPz/fZJvTp0+brO+YmJgIjUaDdu3a2e11y2X1TFPPnj2xfPlyrF27FkDZtNbt27cxa9Ys/POf/6z0EySEEEIeSg5YEXzPnj1gjCEoKAgXL17ElClTEBQUhBEjRgAAvv76azRs2BCPPPIITp06hQkTJqB///5S4LdWq8WoUaMwadIk1K9fH/Xq1cPkyZPRqlUr9OjRAwDQsmVL9OrVC1FRUfjss88AAG+88Qb69OkjLSoZHh6O4OBgDBkyBIsXL8bff/+NyZMnIyoqym5Zi5XB6kHTsmXL0L17dwQHB6O4uBiRkZG4cOECGjRogC+//NIe50gIIYQ8fJjCgiBKwf5Wys/Px/Tp03Ht2jXUq1cPAwcOxLx58+DsXBYfl52djYkTJ+L69evw8/PD0KFDMXPmTJM+li1bBicnJwwaNEha3HLDhg1Q3bfsyJYtWzB+/HhpsNW3b1+sWrVKalepVPjhhx8wZswYdOrUyWRxy+rMpnWaioqK8OWXX+L48eMwGo1o27YtXn31Vbi6utrjHGW5tx5G883vQuVWcRCsM2cdJgDQOJkP9HRS8e+ZOqv4fStl/JkhCgQXreMkapezTpNOxx+P64r57axE5jpNd8y3O9/m7ipcx0ktWqcpn7NOUwE/aNg5r+JU4XtU+YJ1RTjrMAEAK+KsA/VQB4IL1mniBIEqXcwH1QKAwlMQluDG/15kZtaPAwCjq2CdJjdBex3+50jnLvgO4LTz1nAq65vfLtpfz1nHibuGEwC4Cr531ebbjXeLceX1OVWzTtMns+Wv0zR2ll3PlZiyKU3A1dUVI0eOxMiRIyv7fOxGr1PBqKv4C0SUZabgLEApTHYSLV4pWBzTkXivGwBUSvPtesG+Cs6+AMAE7cIsNBXnC1eQLSlYExRGQcak0ZlzbLWg9I0L/5ecQsf/BS4KUlTwsusEAwuIBibCBSo5+4v2FS2cKVi8UkSp4Fw5lU3L2f1PKT97jvduUgqui5Mou46Jsuv4vwJ4pVIUgjIo4hRXfjM4/YsW7hW9G3jt5n5P2ANj8v5WcXS5qtrIpm+DuLg4dO7cGf7+/rhy5QqAsum67777zqp+YmJioFAoTB6+vr5SO2MMMTEx8Pf3h6urK7p164YzZ87YcsqEEEJI9VJJi1uS/3lwoU/ewxZWD5pWr16NiRMn4vnnn0deXp6USefl5YXly5dbfQJPPPEEsrOzpcepU6ektkWLFmHp0qVYtWoVjh07Bl9fX/Ts2VNahZwQQggh5J66devCy8uL+7i3jS2svj23cuVKrFu3Dv3798eCBQuk59u3b4/JkydbfwJOTiazS/cwxrB8+XLMmDEDAwYMAABs3LgRPj4+2Lp1K0aPHm31sQghhJBqwwGB4A+7n3/+2a79Wz1oyszMRJs2bco9r9FoTKogW+rChQvw9/eHRqNBaGgoYmNj0axZM2RmZiInJ8ekvo1Go0HXrl1x+PBhGjQRQgip0RSs7CFnf2Kqa9eudu3f6ttzgYGBSE9PL/f87t27ERwcbFVfoaGh2LRpE/bs2YN169YhJycHHTt2xM2bN6XaMw+uDHp/fZuKlJSUVMp9S0IIIcSuKKbJ7n755Re89tpr6Nixo1S1JC4uTipAbC2rZ5qmTJmCsWPHori4GIwxHD16FF9++SXmz5+Pzz//3Kq+7q9n06pVK4SFheHRRx/Fxo0bpeJ6D9agEdWlmT9/PmbPnl3ueYNOBVZaDbPnBFQysutE2W8iouUQlJxzUwqy35Sc7DaAn/0GAMyJ387LkBMkDMHAT1CDUsdv1+vMH1upE9T60vOznYRvOCdB/6Xm+1foBLWX9DLbjZx2Ueae4OetsLBulE1EmXtyl1rgXDdFMf/NJjOvz4IibpwPCxNkeoq+fkTfu7z9Bddcz8uGBGDkfT+VyL6qpJrYvn07hgwZgldffRXHjx9HSUnZki6FhYWIjY3Fjz/+aHWfVr87RowYgVmzZmHq1Km4e/cuIiMjsWbNGqxYsQIvv/yy1SdwP3d3d7Rq1QoXLlyQ4pwenFXKzc3l1qWZPn068vPzpUdWVpascyKEEELs4l5Mk5wHMWvu3LlYs2YN1q1bJy3eCQAdO3bE8ePHberTqkGTXq/Hxo0b8cILL+DKlSvIzc1FTk4OsrKyMGrUKJtO4H4lJSXIyMiAn58fAgMD4evra1LfprS0FAcOHJBq11REo9FIxQutKWJICCGEVCm6PWdX586dQ5cuXco97+npiVu3btnUp1WDJicnJ7z11lvSFFeDBg3g7e1t04EBYPLkyThw4AAyMzORmpqKf/3rXygoKMCwYcOgUCgQHR2N2NhYxMfH4/Tp0xg+fDjc3NwQGRlp8zEJIYQQ8vDz8/PDxYsXyz2fnJyMZs2a2dSn1TFNoaGhOHHiBAICAmw64P2uXbuGV155BX/99RcaNmyIDh06ICUlRep76tSpKCoqwpgxY5CXl4fQ0FAkJibCw0NQtoAQQgip7hxQsLc2GT16NCZMmIB///vfUCgU+PPPP3HkyBFMnjwZH3zwgU19Wj1oGjNmDCZNmoRr166hXbt2cHc3LSDUunVri/vatm0bt12hUCAmJgYxMTHWnmY5TKcCc6o4cFEUam3glFEwGPiTdTqlIDBXVG6Ec89aFGQuahcFmRsFgZ68Miqien5Gwb14o0FUqkRQCkXPCQQXBHqLjm3gl0GDjldeQvAlxxT8a84EJWCMgkBwVbH5/hU6/vtBFCiuKOVfGAUvUFxUokVQew6Cz5mQknNdRYHegqBjbt+i/kVlUgTXXFhWRy/4mXMCxXltZe2i0jfCszO/q6hCi+CaM853uqIqA8Fp0GRXU6dORX5+Prp3747i4mJ06dIFGo0GkydPxrhx42zq0+pB0+DBgwEA48ePl55TKBRSVpvBnlkshBBCCCEWmjdvHmbMmIGzZ8/CaDQiODgYderUsbk/mxa3JIQQQohMtCK4XW3cuBH/+te/4O7ujvbt21dKn1YPmiojlokQQgip7WhFcPuaPHkyxowZgxdeeAGvvfYaevXqBScnq4c9Jqzee+fOnRU+r1Ao4OLigsceewyBgYGyTooQQgghRI7s7GwkJCTgyy+/xMsvvwxXV1e89NJL0grhtrB60NS/f38phul+98c1de7cGd9++63NVYQJIYSQhx4FgtuVk5MT+vTpgz59+uDu3buIj4/H1q1b0b17dzRu3Bi///679X1au0NSUhJmzJiBefPm4ZlnngEAHD16FO+//z5mzpwJrVaL0aNHY/LkyVi/fr3VJ2Q3JUqzGTZMMMdp0JvPAtGr+NknKk6WBgAwGWVSRGVOxB3YfmwRo4p/r92JV1IDAFPz9+dmqAFgnHaDKGtH0Lesyy7IxBKdGhNkxzkJsusMGvP7q0r47welINNKWSIoq1HCKRciyI5TcD6DAMTlQETkZM8JMGGtJRmdCz7CwoxHUekcAyd7jtMGWHDrSMZngQm+XwSJv/zsuWIqo/IwcnNzQ0REBPLy8nDlyhVkZGTY1I/Vg6YJEyZg7dq1JlNbzz33HFxcXPDGG2/gzJkzWL58OUaOHGnTCRFCCCG1gQIyY5oq7UweXvdmmLZs2YK9e/eiSZMmeOWVV/D111/b1J/Vg6bff/+9wtIknp6euHTpEgCgefPm+Ouvv2w6IUIIIYQQuV555RXs2rULbm5ueOmll7B//36bY5nusXrQ1K5dO0yZMgWbNm1Cw4YNAQA3btzA1KlT8fTTTwMALly4gMaNG8s6MUIIIeShRksO2JVCocBXX32FiIgI2Vlz91jdy/r169GvXz80btwYTZo0gUKhwNWrV9GsWTN89913AIDbt29j5syZlXKChBBCyEOJAsHtauvWrdL/FxcXw8XFRXafVg+agoKCkJGRgT179uD8+fNgjKFFixbo2bMnlP8faN2/f3/ZJ0YIIYQQYiuj0Yh58+ZhzZo1uH79Os6fP49mzZph5syZaNq0KUaNGmV1nzbNVykUCvTq1QvdunWDRqOBQmZ2SVVQ6hRQmsm4MArqVhlU5ofzBmf+vkZBJpaoBhuvfpyobp2o9hyvrh0AKDm15QB+7TrRseUSlOQCLxdLdGbCQkCiWmO8UmKi7DhBVpBRlB2nFvzMSszvrxLU3BJl16nU/P2VavNXVlkqyLwTZXnZLxFUPmGJNTtm7ok+KKIMOE5NQOVdHXdflSiDVvB+MXDajYLsWqPgN5tRzWks4e9bqWimya7mzp2LjRs3YtGiRYiKipKeb9WqFZYtW2bToMnq3Eqj0Yg5c+agUaNGqFOnjlRWZebMmdVriQFCCCGkGru3IricBzFv06ZNWLt2LV599VWoVP/7w6x169b47bffbOrT6kHT3LlzsWHDBixatAhq9f+G661atcLnn39u00kQQgghhFSmP/74A4899li5541GI3Q6/kypOVYPmuwxciOEEEJqHVYJD2LWE088gV9++aXc819//TXatGljU59WxzTZY+RGCCGE1DoU02RXs2bNwpAhQ/DHH3/AaDRix44dOHfuHDZt2oTvv//epj6tHjTdG7kFBASYPC9n5FYVFKUKKMyUSlAIAsGZ2nwwpEEvCGYUlL0QxWnyiIKtnWSWSREFqfPalU6CAFMH3oznF+wQV1ERYZySHLw2AGCiAFZhgCu/fxWnXSUKItcI+hYFknMCe1XCQHBBCRdBuxDnpSvkfEhhSRkVzvtFVC7Ezjk4vI+p6Ni8UiUAhKVvVKWctmLBvqJAcV6wN+e4pGZ54YUX8NVXXyE2NhYKhQIffPAB2rZti127dqFnz5429Wn1oMkeIzdCCCGktpEbzE2B4GIRERGIiIiotP6sjmm6N3L78ccfpZFbRkaGrJEbIYQQUuvcWxFczoNUKZvWaarskRshhBBS61BMU6Xz8vKyeO3Iv//+2+r+K6cYCyGEEEKIgy1fvtyu/Vs0aLL3yI0QQgipbSimqfINGzbMrv1bNGi6f+R28+ZNzJ07FxEREQgLCwMAHDlyBHv27KnWRXp5ZVSYM39fo4GT3cJpA8RlVAyCuhrcDDVR9pxCkHEk8xPHOzejIOuHV4IFEJ+bSsl/68qpTKEXHNuo5Gd68bKGRBlFojIpRtF7VdBu4LSLs+ME7RpRNhTnvVwqyLzTCbIx9YJ2YbkQTpvM7DkRWdmWor9l5Ya8CI7PY+R/TGRlBioFKbC8zDsAMHDaWVVmz9HtuRrHokHT/SO3gQMH4sMPP8S4ceOk58aPH49Vq1Zh7969eOeddyr/LAkhhBBCHMzq7Lk9e/agV69e5Z6PiIjA3r17K+WkCCGEkIee3LpzNNNU5aweNNWvXx/x8fHlnv/2229Rv379SjkpQggh5KFHZVRqHKuz52bPno1Ro0Zh//79UkxTSkoKEhISqGAvIYQQQh5aVg+ahg8fjpYtW+Ljjz/Gjh07wBhDcHAwDh06hNDQUHucIyGEEPLwoUBwuzt27Bi+/vprXL16FaWlplH+O3bssLo/m9ZpCg0NxZYtW2zZ1XGM5jNkFAb+rgpe9pyM+myW4PUvt/acqF0p4xOpF2QFqpX8iy46N2H2HefcRdetRMlv16sE2XUq82lDRkFNPiaoVWgUZLCJsu+Uas6+oowjzr5AWYYqDzd7TpAdJ8qWUoqy5wSl6bj9C7Ln5KZ9c78iLFzqxaa+AfnZdbxji7LnRJmBnI+C6HUpBO8X3ne+6PdBZXLEkgOFhYWYOXMm4uPjkZubizZt2mDFihV4+umnAQC3b9/Gu+++i2+//RY3b95E06ZNMX78eLz11ltSHyUlJZg8eTK+/PJLFBUV4bnnnsOnn36Kxo0bS9vk5eVh/Pjx2LlzJwCgb9++WLlyJerWrSttc/XqVYwdOxb79u2Dq6srIiMjsWTJEqjVgi8bC23btg1Dhw5FeHg4kpKSEB4ejgsXLiAnJwcvvviiTX1aFNNUUFBgVaeFhYU2nQwhhBBC7Of1119HUlIS4uLicOrUKYSHh6NHjx74448/AADvvPMOEhISsHnzZmRkZOCdd97B22+/je+++07qIzo6GvHx8di2bRuSk5Nx+/Zt9OnTBwbD/0ackZGRSE9PR0JCAhISEpCeno4hQ4ZI7QaDAb1798adO3eQnJyMbdu2Yfv27Zg0aVKlvdbY2FgsW7YM33//PdRqNVasWIGMjAwMGjQIjzzyiE19WjRo8vLyQm5ursWdNmrUCJcuXbLphAghhBBS+YqKirB9+3YsWrQIXbp0wWOPPYaYmBgEBgZi9erVAMrWXRw2bBi6deuGpk2b4o033sCTTz6JX3/9FQCQn5+P9evX46OPPkKPHj3Qpk0bbN68GadOnZIy6DMyMqQ457CwMISFhWHdunX4/vvvce7cOQBAYmIizp49i82bN6NNmzbo0aMHPvroI6xbt87qiRpzfv/9d/Tu3RsAoNFocOfOHSgUCrzzzjtYu3atTX1adHuOMYbPP/8cderUsahTnU5n08kQQgghtUYVxzTp9XoYDAa4uLiYPO/q6ork5GQAQOfOnbFz506MHDkS/v7+2L9/P86fP48VK1YAANLS0qDT6RAeHi7t7+/vj5CQEBw+fBgRERE4cuQItFqtSZxzhw4doNVqcfjwYQQFBeHIkSMICQmBv7+/tE1ERARKSkqQlpaG7t27W3s1yqlXr55056tRo0Y4ffo0WrVqhVu3buHu3bs29WnRoOmRRx7BunXrLO7U19cXzs6CpYkJIYSQWqyyYpoenJnRaDTQaDTltvfw8EBYWBjmzJmDli1bwsfHB19++SVSU1PRvHlzAMDHH3+MqKgoNG7cGE5OTlAqlfj888/RuXNnAEBOTg7UajW8vLxM+vbx8UFOTo60jbe3d7nje3t7m2zj4+Nj0u7l5QW1Wi1tI9c//vEPJCUloVWrVhg0aBAmTJiAffv2ISkpCc8995xNfVo0aLp8+bJNnRNCCCHEvpo0aWLy71mzZiEmJqbCbePi4jBy5Eg0atQIKpUKbdu2RWRkJI4fPw6gbNCUkpKCnTt3IiAgAAcPHsSYMWPg5+eHHj16mD0HxphJjdqK6tXaso0cq1atQnFxMQBg+vTpcHZ2RnJyMgYMGGBz2TebsudqIgUne06Ik6rBBLXlRNl1BsH+Chl/hogy0FxU/NuocrLnjIK0HFFWoTDzT/DDVHHanVSCfQXtJYK6dzrO/gZOZh0AGJ0Ede0E2XVMLcie42TfGTnZbQCgFNx1F7Xz6n0p9YJjC7PnBJ8jUYas0fx7XSH4jIo+JvYsqiozOVdMRv9yM/e49Svt/bqrUiW8P7KysuDp6Sn9u6JZpnseffRRHDhwAHfu3EFBQQH8/PwwePBgBAYGoqioCO+99x7i4+OlWKDWrVsjPT0dS5YsQY8ePeDr64vS0lLk5eWZzDbl5uaiY8eOAMruNl2/fr3csW/cuCHNLvn6+iI1NdWkPS8vDzqdrtwMlK3q1asn/b9SqcTUqVMxdepUWX1avSI4IYQQQipBJa0I7unpafLgDZrucXd3h5+fH/Ly8rBnzx7069cPOp0OOp0OSqXp0EClUsFoLPtjsF27dnB2dkZSUpLUnp2djdOnT0uDprCwMOTn5+Po0aPSNqmpqcjPzzfZ5vTp08jOzpa2SUxMhEajQbt27Sy7fhb4/fff8f777+OVV16REtoSEhJw5swZm/qjQRMhhBBSS+zZswcJCQnIzMxEUlISunfvjqCgIIwYMQKenp7o2rUrpkyZgv379yMzMxMbNmzApk2bpHWNtFotRo0ahUmTJuGnn37CiRMn8Nprr6FVq1bS7buWLVuiV69eiIqKQkpKClJSUhAVFYU+ffogKCgIABAeHo7g4GAMGTIEJ06cwE8//YTJkycjKirKZNZMjgMHDqBVq1ZITU3Fjh07cPv2bQDAyZMnMWvWLJv6pEETIYQQ4gByivXaGkSen5+PsWPHokWLFhg6dCg6d+6MxMREKXlr27ZtePrpp/Hqq68iODgYCxYswLx58/Dmm29KfSxbtgz9+/fHoEGD0KlTJ7i5uWHXrl1Q3Rd+sGXLFrRq1Qrh4eEIDw9H69atERcXJ7WrVCr88MMPcHFxQadOnTBo0CD0798fS5Yssf2CPuDdd9/F3LlzkZSUZLJgZvfu3XHkyBGb+qw1MU2EEEJIteKAMiqDBg3CoEGDzLb7+vriiy++4Pbh4uKClStXYuXKlWa3qVevHjZv3szt55FHHsH333/PP2EZTp06ha1bt5Z7vmHDhrh586ZNfdo0aPrll1/w2Wef4ffff8c333yDRo0aIS4uDoGBgVJaYnXDlOaX5RcHLHKCRGVGeYqSBHglP0TlQESB3KJgamdBqRN7BoqrjfxjqwWRwWqV+f3vctoAwFnQXqziL6dR7GT+Y1XCaQMAvaDMikEQCG7QCcqwOJtvF5VBUQjalaJAcs6PTBRELiqLIQoUFweCmz93UQKJMMHEgYHicskKNJcZrM0toyK4RyK6prwSL6LyL6TmqFu3LrKzsxEYGGjy/IkTJ9CoUSOb+rT69tz27dsREREBV1dXnDhxAiUlJQDKSqfExsbadBKEEEJIbeOI23O1SWRkJKZNm4acnBwoFAoYjUYcOnQIkydPxtChQ23q0+pB09y5c7FmzRqsW7fOZAHLjh07Sus8EEIIIUSgkrLnSMXmzZuHRx55BI0aNcLt27cRHByMLl26oGPHjnj//fdt6tPq23Pnzp1Dly5dyj3v6emJW7du2XQShBBCCCGVydnZGVu2bMGcOXNw/PhxGI1GtGnTRlr93BZWD5r8/Pxw8eJFNG3a1OT55ORkNGvWzOYTIYQQQmoVBwSC10bNmjVDs2bNYDAYcOrUqXILc1rD6ttzo0ePxoQJE5CamgqFQoE///wTW7ZsweTJkzFmzBibToIQQgipbSimyb6io6Oxfv16AIDBYEDXrl3Rtm1bNGnSBPv377epT6tnmqZOnYr8/Hx0794dxcXF6NKlCzQaDSZPnoxx48bZdBJVgTkBRjOvlgkylniZGkqlIINNlOEmIwNOLchucxK0i7LjXAUpTUpO2pDodYmIyqyUmPth/j/etRFdNxcVPxXrrqBd7WQ+u66I0wYApU78cytx5r9ug46f+mPgZM8Z9Py/oRSlgsw8jSD7jlPqRJw9J6/MijADjnPZxZl3/HaIjs35qNhc+slCdi/DIgM3Q05uZh7nY8SpqFP5aKbJrr755hu89tprAIBdu3bh0qVL+O2337Bp0ybMmDEDhw4dsrpPmxa3nDdvHv766y8cPXoUKSkpuHHjBubMmWNLV5L58+dDoVAgOjpaeo4xhpiYGPj7+8PV1RXdunWzeelzQgghhNQef/31F3x9fQEAP/74IwYNGoTHH38co0aNwqlTp2zq0+YVwd3c3NC+fXs888wzqFOnjq3dAACOHTuGtWvXonXr1ibPL1q0CEuXLsWqVatw7Ngx+Pr6omfPnigsLJR1PEIIIcThKHvOrnx8fHD27FkYDAYkJCRIZV7u3r1rsnq5NSy6PTdgwACLO9yxY4dVJ3D79m28+uqrWLduHebOnSs9zxjD8uXLMWPGDOn4GzduhI+PD7Zu3YrRo0dbdRxCCCGkOpEbl0QxTXwjRozAoEGD4OfnB4VCgZ49ewIoKx7cokULm/q0aKZJq9VKD09PT/z000/49ddfpfa0tDT89NNP0Gq1Vp/A2LFj0bt3b2kEeE9mZiZycnIQHh4uPafRaNC1a1ccPnzY6uMQQgghpPaIiYnB559/jjfeeAOHDh2CRqMBUFb37t1337WpT4tmmu6vQzNt2jQMGjQIa9askaa3DAYDxowZY3Vl4m3btuH48eM4duxYubacnBwAZdNr9/Px8cGVK1fM9llSUiKtUg4ABQUFVp0TIYQQUiUoENzu/vWvf5V7btiwYTb3Z3X23L///W8kJyeb3A9UqVSYOHEiOnbsiMWLF1vUT1ZWFiZMmIDExES4uLiY3U7xQHE2xli55+43f/58zJ49u9zzRjUD1BW/w0TZcwpn8yksChV/X5WKn/7ipBTUf+PUQRNmzwlSb0T12zSCLDGNwnzKk9zsORFR9pyryvy5FRn4GWxFBjW3XU52neiaFguy64oF2XOlOn47L/tOlHlnVPNTlpgg+87IaTeK6t4Z5LZzmwXZc4K+ZWTmAeD+4pNb165G4112Ufac4LrxsucMVXhN6fZczWN1ILher0dGRka55zMyMmA0Wp4fm5aWhtzcXLRr1w5OTk5wcnLCgQMH8PHHH8PJyUmaYbo343RPbm5uudmn+02fPh35+fnSIysry+JzIoQQQggxx+qZphEjRmDkyJG4ePEiOnToAABISUnBggULMGLECIv7ee6558ql/I0YMQItWrTAtGnT0KxZM/j6+iIpKQlt2rQBAJSWluLAgQNYuHCh2X41Go1035IQQgiptuj2XI1j9aBpyZIl8PX1xbJly5CdnQ2grLTK1KlTMWnSJIv78fDwQEhIiMlz7u7uqF+/vvR8dHQ0YmNj0bx5czRv3hyxsbFwc3NDZGSktadNCCGEVC80aKpxrB40KZVKTJ06FVOnTpWCrK0NALfU1KlTUVRUhDFjxiAvLw+hoaFITEyEh4eHXY5HCCGEkIeH0WjExYsXkZubWy6EqEuXLlb3Z/Wg6X6VPVh6sBaMQqFATEwMYmJiZPdtVBsBTcUxV0zNj8VSOplvV3HaAMBZUBbDxZlfP4IXdOzCCXYGAHenEm67m2B/V2WpYH/z/TsLo1/5jNwaCoCLkh+0rGPm2zWCAHheEDkgDkJ3UZm/PewmCPS+q5fXLiqzUsIJFC/RywsyNxj4PzNemRZekDgAMEEwtlFmoDg47cJ9BX/tywkkFweRyzs3OewdhMx9aaJAcBknZ6zC6RsF5FWEqcZVcKqFlJQUREZG4sqVK2DM9OeqUChgMFj/e8rqQVNgYCA3e+3SpUtWnwQhhBBS69DtObt688030b59e/zwww/SApdyWT1our82HADodDqcOHECCQkJmDJliuwTIoQQQmoDWnLAvi5cuIBvvvkGjz32WKX1afWgacKECRU+/8knn5isEk4IIYQQ4iihoaG4ePGiYwdN5jz//POYPn26yerhhBBCCDGDbs/Z1dtvv41JkyYhJycHrVq1grOzaUxo69atre6z0gZN33zzDerVq1dZ3RFCCCEPPxr42M3AgQMBACNHjpSeUygUUmWRKgkEb9OmjUkwFWMMOTk5uHHjBj799FOrT6DKuBrLHhVQOvMvnLOGk8GmFmSwqfkZaO7O/PY6zuYz1ETZcXWc+H2LsuM8VMXcdjel/bLnRAyCxex52XO8NgAoMQoy2ARlVnhZiXcFJVzE2XX8hVuLDfyP9F1O/yWCfYt1/HMrNQgyGvXm2/WCzDuj7HZBCRhOOxNkqIky+2CUkdknKrIg6lv0C7ka/8LmnbsoaVBOWllVZs8R+8rMzKz0Pq0eNPXr189k0KRUKtGwYUN069YNLVq0qNSTI4QQQh5WFAhuXwEBAZXep9WDpspYM4kQQgip9SimqUqcPXsWV69eRWmp6d2Vvn37Wt2X1YMmlUqF7OxseHt7mzx/8+ZNeHt723SPkBBCCCGkMl26dAkvvvgiTp06JcUyAZDultkyXuEHAlTgwVU17ykpKYFazY/1IIQQQkiZe7fn5DyIeRMmTEBgYCCuX78ONzc3nDlzBgcPHkT79u3LVSCxlMUzTR9//DGAshHa559/jjp16khtBoMBBw8epJgmQgghxFJ0e86ujhw5gn379qFhw4ZQKpVQKpXo3Lkz5s+fj/Hjx+PEiRNW92nxoGnZsmUAymaa1qxZA5Xqf5kwarUaTZs2xZo1a6w+gaqictFD6VpxFpxKkD3Hy5Bz1wiy39T8DDdPTnYcAHhwMuRE2XF1hNlv/P21qrvcdhel+eti7+w5ETnZc6VK/sdCdN2Kmfn9XZX87LciFX+2to6Kf+wiQeZfESd7766ef+xiQV27YlHtOk52nk6QeSfKzBPVvRNm53HSsYSZeYIMNiZq52XuCfYVpZGZuTFg+f6i7D0ZFKLrwmtTCl6Y4HUpVOb3Z0oKMXlYGAwGaYKnQYMG+PPPPxEUFISAgACcO3fOpj4tHjTdS93r3r07duzYAS8vL5sOSAghhBDKnrO3kJAQnDx5Es2aNUNoaCgWLVoEtVqNtWvXolmzZjb1aXUg+M8//2zTgQghhBByH7o9Z1fvv/8+7ty5AwCYO3cu+vTpg3/84x+oX78+vvrqK5v6tGjQNHHiRMyZMwfu7u6YOHEid9ulS5fadCKEEEJIrUKDJruKiIiQ/r9Zs2Y4e/Ys/v77b3h5eZmsN2kNiwZNJ06cgE5XFr9y/Phxmw9GCCGEEFKVLl68iN9//x1dunRBvXr1zK4CYAmLBk3335KzNU3P0dQuOqhcKg7odFGbL5MCAG6cUihaNT/Y2lPQrnUu4rbzgr1Fgd6idg+l7WVSAMBdRhkVlUJehKmBCYJzOatplAoCwY2CvouV/GDrYk4wtiiIXFjCRRAozjs2wA8EFwWhlxgFgeCCEjG8Ei+lRv7PRBRkrhPsbzDaHigu6lsUCC4MQuecGy9AHRAHiovOTVYguSgWW1TrRPR7i7O7UhDMI7ouSmfz3z8K8EtjVSaKabKvmzdvYtCgQfj555+hUChw4cIFNGvWDK+//jrq1q2Ljz76yOo+rV6naeTIkSgsLCz3/J07d0yK4hFCCCGEg1XCg5j1zjvvwNnZGVevXoWbm5v0/ODBg5GQkGBTn1YPmjZu3IiiovKzI0VFRdi0aZNNJ0EIIYQQUpkSExOxcOFCNG7c2OT55s2b48qVKzb1aXH2XEFBARhjYIyhsLAQLi4uUpvBYMCPP/5YrrQKIYQQQiqmYAwKGfE1cvatDe7cuWMyw3TPX3/9BY2Gv2aeORYPmurWrQuFQgGFQoHHH3+8XLtCocDs2bNtOglCCCGk1qHsObvq0qULNm3ahDlz5gAoG6cYjUYsXrwY3bt3t6lPiwdNP//8MxhjePbZZ7F9+3bUq1dPalOr1QgICIC/v79NJ0EIIYQQUpkWL16Mbt264ddff0VpaSmmTp2KM2fO4O+//8ahQ4ds6tPiQVPXrl0BlK0M3qRJEyiVVodDOVRdtyI4uVecMeHixM+WqONsPuPJ01mQoSZo93SyvdSJ1olf5oSX3SbqGwBcFPx2Xv8uCn5GohIy6zMIEnNkZc8JOi/llEkB+Nl1ouy2EkFmnptg/2Im6F/FKaNiEGTPCfq+K8ieK+Vk35VwMusAoFRQwkWUfScqw8LbXy/IvJObucdrNwgy0ER9C0u8CPvnlJcRHNuekyDC7DhBmRW1s/nvJwP433uVibLn7Cs4OBgnT57E6tWroVKpcOfOHQwYMABjx46Fn5+fTX1aPfIJCAiAUqnE3bt38dtvv+HkyZMmD0IIIYRYwAHZc4WFhYiOjkZAQABcXV3RsWNHHDt2TGq/F4bz4GPx4sXSNiUlJXj77bfRoEEDuLu7o2/fvrh27ZrJcfLy8jBkyBBotVpotVoMGTIEt27dMtnm6tWreOGFF+Du7o4GDRpg/PjxKC2t3EGrr68vZs+eje+//x4//vgj5s6da/OACbChjMqNGzcwYsQI7N69u8J2g4GKHRJCCCHV0euvv47Tp08jLi4O/v7+2Lx5M3r06IGzZ8+iUaNGyM7ONtl+9+7dGDVqFAYOHCg9Fx0djV27dmHbtm2oX78+Jk2ahD59+iAtLQ0qVdnMa2RkJK5duyal9r/xxhsYMmQIdu3aBaBsrNC7d280bNgQycnJuHnzJoYNGwbGGFauXFlpr7e4uBgnT55Ebm4ujEbTOxx9+/a1uj+rB03R0dHIy8tDSkoKunfvjvj4eFy/fh1z5861aaEoQgghpDaq6ttzRUVF2L59O7777jt06dIFABATE4Nvv/0Wq1evxty5c+Hr62uyz3fffYfu3btLBW7z8/Oxfv16xMXFoUePHgCAzZs3o0mTJti7dy8iIiKQkZGBhIQEpKSkIDQ0FACwbt06hIWF4dy5cwgKCkJiYiLOnj2LrKwsKR76o48+wvDhwzFv3jx4enrafmH+X0JCAoYOHYq//vqrXJtCobBpksfq23P79u3DsmXL8PTTT0OpVCIgIACvvfYaFi1ahPnz51t9AoQQQkitVEm35woKCkweJSUVx5vq9XoYDAaTJYMAwNXVFcnJyeW2v379On744QeMGjVKei4tLQ06nQ7h4eHSc/7+/ggJCcHhw4cBAEeOHIFWq5UGTADQoUMHaLVak21CQkJMEsgiIiJQUlKCtLQ0wYWzzLhx4/DSSy8hOzsbRqPR5GHrXTGrB0137tyR1mOqV68ebty4AQBo1aoVjh8/btNJEEIIIbXNvZkmOQ8AaNKkiRQ7pNVqzU5geHh4ICwsDHPmzMGff/4Jg8GAzZs3IzU1tdxtOaBsMWsPDw8MGDBAei4nJwdqtRpeXl4m2/r4+CAnJ0fapqJ1G729vU228fHxMWn38vKCWq2WtpErNzcXEydOLHccOay+PRcUFIRz586hadOmeOqpp/DZZ5+hadOmWLNmjazgKnur73oXzq4VZ0y4qPiZXrwMOA9B9lsdFT+DzUNQH45X/020r4uCnxUop7acqH9R9pzKzguMGDgZcAbB3wo6Qe05Ud07XgabTimosSbKjlPKqz3Hy+wTZVMWC7IG63Ay8wD+uYnq2onaeZl5gAXZeZz99YKftyi7TtjO6V+0r7CmnujcBVmF3Ow5QZapnMw8gJ+dp1Tys281TvxZBDdORrSe8b/3qqOsrCyT21m8hRvj4uIwcuRINGrUCCqVCm3btkVkZGSFkx7//ve/8eqrr5abmaoIYwwKxf9+pvf/v5xt5PjXv/6F/fv349FHH62U/gAbY5rujUhnzZqFiIgIbNmyBWq1Ghs2bKi0EyOEEEIeapW0uKWnp6fFMUCPPvooDhw4gDt37qCgoAB+fn4YPHgwAgMDTbb75ZdfcO7cOXz11Vcmz/v6+qK0tBR5eXkms025ubno2LGjtM3169fLHfvGjRvSrI+vry9SU1NN2vPy8qDT6SptZmjVqlV46aWX8Msvv6BVq1Zwdjb9w238+PFW92n1oOnVV1+V/r9Nmza4fPkyfvvtNzzyyCNo0KCB1SdACCGE1FaOWmvJ3d0d7u7uyMvLw549e7Bo0SKT9vXr16Ndu3Z48sknTZ5v164dnJ2dkZSUhEGDBgEAsrOzcfr0aamPsLAw5Ofn4+jRo3jmmWcAAKmpqcjPz5cGVmFhYZg3bx6ys7Olu1SJiYnQaDRo165dpbzGrVu3Ys+ePXB1dcX+/fvLzXJVyaDpQW5ubmjbtq3cbgghhBBiZ3v27AFjDEFBQbh48SKmTJmCoKAgjBgxQtqmoKAAX3/9dYUZ8VqtFqNGjcKkSZNQv3591KtXD5MnT0arVq2kbLqWLVuiV69eiIqKwmeffQagbMmBPn36ICgoCAAQHh6O4OBgDBkyBIsXL8bff/+NyZMnIyoqqlIy5wDg/fffx4cffoh333230hbktmjQNHHiRIs7XLp0qc0nQwghhNQajJU95Oxvpfz8fEyfPh3Xrl1DvXr1MHDgQMybN8/k1tW2bdvAGMMrr7xSYR/Lli2Dk5MTBg0ahKKiIjz33HPYsGGDtEYTAGzZsgXjx4+Xsuz69u2LVatWSe0qlQo//PADxowZg06dOsHV1RWRkZFYsmSJ1a/JnNLSUgwePLhSK5goGBNfdUsL2ykUCuzbt0/2SVWmgoKCstVIf34F6joVB9G6KvkB0+5Otgdji4JrRcHYvP7llDkBADfB/i5KfjA3L9hbLSiTohTE+ckNFOcFghsFXZfKDBTXccq0iEq46CAIFBeUMtGJSrxwgrFFfYuCzHmvW9R/iSiAXVR+RhAILjo33v56QZkU0bHFgeScEi4yg9BF5WXkBLGLEiJEQeqlev65qTilUESlr9w5gd4AvzSW7k4p4nt+gfz8/Eqb8XjQvd9L7f81F07O4iBrc/S6Yvz6zft2Pdea7J133kHDhg3x3nvvVVqfFs00/fzzz5V2QEIIIYQQezMYDFi0aBH27NmD1q1blwsEt+XOmOyYJkIIIYTYoJKy50jFTp06hTZt2gAATp8+bdJm67IGNGgihBBCHEBhLHvI2Z+YZ4+7ZJUXHUUIIYQQ8hCjmSZCCCHEEej2XI1TawZN9dV3oFFXnDHhIsie42XA1RFkzwkz2GSUKpFT5gQA3AXtzoK5XxdOu7MwO46/gVLQLsI7c4NgNTkN45dg0Amui46zvyjzrlSQPefC+D8zUQacMyfjUdi3gt+3KDPQhXNuor7dlPKy4+Rk/tkzMw/gZ8+J3i+izD5ReRlRdl4pp8yKKDOPty8gzoBz47Tz2sra+d+Nrirz+5fq+H1Xpvvrx9m6P6latWbQRAghhFQrDlinichDMU2EEEIIIRagmSZCCCHEAej2XM1DgyZCCCHEESgQvMah23OEEEIIIRaoNTNN9Z1vw8W54pcryjLjZdd5KPnZc6LMPFH9OF59OFFtODX4WWBuSn67s+DPGDVnRVVnwWqrouw4UXadHAbB6zIK5rx1guBLAye7Tsdsz7wDgFIF/+8cZ0H/vAw5Uead6L1azCqu7Si1G82/No3gM1giOLdSQc09jeBzyKt956IU1AuUmbmn5+yvE9RvE2XmOXGuOSDOrlNyPitKwedElOHmwslgE7Xzst8AwE3Qzst6LlFT9hwxz6EzTatXr0br1q3h6ekJT09PhIWFYffu3VI7YwwxMTHw9/eHq6srunXrhjNnzjjwjAkhhJBKci97Ts6DVCmHDpoaN26MBQsW4Ndff8Wvv/6KZ599Fv369ZMGRosWLcLSpUuxatUqHDt2DL6+vujZsycKCwsdedqEEEIIqYUcOmh64YUX8M9//hOPP/44Hn/8ccybNw916tRBSkoKGGNYvnw5ZsyYgQEDBiAkJAQbN27E3bt3sXXrVkeeNiGEECLbvdtzch6kalWbQHCDwYBt27bhzp07CAsLQ2ZmJnJychAeHi5to9Fo0LVrVxw+fNhsPyUlJSgoKDB5EEIIIdUOq4QHqVIODwQ/deoUwsLCUFxcjDp16iA+Ph7BwcHSwMjHx8dkex8fH1y5csVsf/Pnz8fs2bPLPa9V3YWrquKXKwpC5QVzyy1lIm7nlL1QCAK5BX+GuAjanQXB2M6coGRnwXhcJQwUlzeeN3IKqfDDcgGDIE5AdF113GML9hX9TASB4mpuARmgmFOmRVQ2R1TSQ3RuvEByURB5qajEi7BMCv+rzpnzWRIFeovaeX0D/HN3UvD7FgVji9rlcHPiJwZoBIkqonZXlfn+Rfu6qUTlqzjvRSd+36R2c/hMU1BQENLT05GSkoK33noLw4YNw9mzZ6V2xQO/XBlj5Z673/Tp05Gfny89srKy7HbuhBBCiK3o9lzN4/CZJrVajcceewwA0L59exw7dgwrVqzAtGnTAAA5OTnw8/OTts/NzS03+3Q/jUYDjUZj35MmhBBC5DKysoec/UmVcvhM04MYYygpKUFgYCB8fX2RlJQktZWWluLAgQPo2LGjA8+QEEIIqQQU01TjOHSm6b333sPzzz+PJk2aoLCwENu2bcP+/fuRkJAAhUKB6OhoxMbGonnz5mjevDliY2Ph5uaGyMhIR542IYQQQmohhw6arl+/jiFDhiA7OxtarRatW7dGQkICevbsCQCYOnUqioqKMGbMGOTl5SE0NBSJiYnw8PBw5GkTQgghsikgc0XwSjsTYimHDprWr1/PbVcoFIiJiUFMTIzsY3kqi+CmqjgTRS3IbuFl/fCy28rabc+OK2s3f26iLC5nwSdKTnYcALhwMntE2W/CMiqCY4uZPzeDoNSIKOOIl5kHAEpm/rXpBBlqKsF8u6idV/YCAJS895OoxIsoI1Jw7GJO3qLwvAU5jyqlvPI0Ks5rF2XmqQTvB1lBEIKujYIsVD3ncwCIs9Dq8DLYVPx9nUTfq4LSNrysQ1FZHF52HMDPei4SvK5KJXdVb1oRvMpVu5gmQgghhJDqyOHZc4QQQkhtRAV7ax4aNBFCCCGOIDcDjgZNVY5uzxFCCCGEWIBmmgghhBAHUDAGhYxgbjn7EtvUmkGTi0IHFzOZS2phBhuv/pu87DhRvS9ehpy9s+NE9eN4GXKi7DhnhePeekrB6xZlxxk42XFl/XO+yATfcUbRBoL3ixDvS1aYvyy4LuBnS9mTSnRdBM0GznvZIDOTk9c3AOg4WajC1yUgynBzF9av5GXvCvYVZOaJ9ud9t4oy7+TUE4XgvCqVEcL3pnB/UqXo9hwhhBBCiAVqzUwTIYQQUp3Q7bmahwZNhBBCiCNQ9lyNQ4MmQgghxBFoRfAap9YMmpwVeqjNBOgKAxo5wdyifUUlOUSlUHhBZyphKRJBu8z95RCWIqnB4Xa8IHjhNRV8B4oD7Pn7848tKh/DJ0pq4AVEO4MfNGwQvG6jIDhfJfic8cqoiIKxixm/zIqRCRIPBO08bpwyJ4C4PI2cYG1R2RxRqRNRAg7v3MUlWGwvb2WsykBwUuPUmkETIYQQUp3QiuA1Dw2aCCGEEEeg23M1Ts29B0IIIYQQUoVopokQQghxAIVR3nq1cte6JdajQRMhhBDiCHR7rsapNYMmZ4XBbGaRs6D8Ay9LRJRBImqvzgyiDyT3zxzBnV9OtlJZ3/xmezKIzk1AWArFTvsC4p+ZgdO/vf9oVXGOoJMZKSAqVSIqfcPbX8fMlzkBxJl7osw/OaVKlIKpBtH3jyjLjJf9Kyf7zZJj8zIeRfuqBdeNlxEpt3QNebhRTBMhhBDiCKwSHlYqLCxEdHQ0AgIC4Orqio4dO+LYsWMm22RkZKBv377QarXw8PBAhw4dcPXqVam9pKQEb7/9Nho0aAB3d3f07dsX165dM+kjLy8PQ4YMgVarhVarxZAhQ3Dr1i2Tba5evYoXXngB7u7uaNCgAcaPH4/SUv4yGo5GgyZCCCHEAe6VUZHzsNbrr7+OpKQkxMXF4dSpUwgPD0ePHj3wxx9/AAB+//13dO7cGS1atMD+/fvx3//+FzNnzoSLi4vUR3R0NOLj47Ft2zYkJyfj9u3b6NOnDwyG/83wRUZGIj09HQkJCUhISEB6ejqGDBkitRsMBvTu3Rt37txBcnIytm3bhu3bt2PSpEkyrqj9KRh7uG+KFhQUQKvVYufJR+HuUfE0u+j2HG+q10UwTSxa8E+0uKUz508JtWChRGdRu2DMLFpIkbdQo2hxSnHfjhvP2/P2nGhRT53g2Lzba5bsr+PsrxN8E+gEt6FKBT9zHWcRx2LGjxQQLSApbDeK9lebbbtrNN9mWd/yFr/kodtzFRPdnuPtf7fQgJee/A35+fnw9PTk9mOre7+Xurd/D05OLuIdzNDri/Hzr7EWn2tRURE8PDzw3XffoXfv3tLzTz31FPr06YO5c+fi5ZdfhrOzM+Li4irsIz8/Hw0bNkRcXBwGDx4MAPjzzz/RpEkT/Pjjj4iIiEBGRgaCg4ORkpKC0NBQAEBKSgrCwsLw22+/ISgoCLt370afPn2QlZUFf39/AMC2bdswfPhw5Obm2u3ay0UzTYQQQogj3AsEl/Owgl6vh8FgMJk1AgBXV1ckJyfDaDTihx9+wOOPP46IiAh4e3sjNDQU3377rbRtWloadDodwsPDpef8/f0REhKCw4cPAwCOHDkCrVYrDZgAoEOHDtBqtSbbhISESAMmAIiIiEBJSQnS0tKsel1ViQZNhBBCiCMwlGVg2Pr4/zFTQUGByaOkpKTCw3l4eCAsLAxz5szBn3/+CYPBgM2bNyM1NRXZ2dnIzc3F7du3sWDBAvTq1QuJiYl48cUXMWDAABw4cAAAkJOTA7VaDS8vL5O+fXx8kJOTI23j7e1d7vje3t4m2/j4+Ji0e3l5Qa1WS9tUR7Ume85eRJkxwttQonpfnN1Ft2qUoj9CRLcOhRlwtvctugFmFFwX0XWVm4XG71twC41z7qLzEv1MRfuLrquBs7vovSy3/hsvC80guEUlt10nuP3HO7dSwb6izD1RBhy49d3k3SoWHVuUKca7xSbel98uuoXGu/Uoui6iY/P2F+1bmWyNS7p/fwBo0qSJyfOzZs1CTExMhfvExcVh5MiRaNSoEVQqFdq2bYvIyEgcP34cRmPZa+/Xrx/eeecdAGW37g4fPow1a9aga9euZs+FMQbFfSEbigrCN2zZprqhmSZCCCGkBsvKykJ+fr70mD59utltH330URw4cAC3b99GVlYWjh49Cp1Oh8DAQDRo0ABOTk4IDg422adly5ZS9pyvry9KS0uRl5dnsk1ubq40c+Tr64vr16+XO/aNGzdMtnlwRikvLw86na7cDFR1QoMmQgghxBEYZMY0lXXj6elp8tBoNMJDu7u7w8/PD3l5edizZw/69esHtVqNp59+GufOnTPZ9vz58wgICAAAtGvXDs7OzkhKSpLas7Ozcfr0aXTs2BEAEBYWhvz8fBw9elTaJjU1Ffn5+SbbnD59GtnZ2dI2iYmJ0Gg0aNeunU2XsyrQ7TlCCCHEERywIviePXvAGENQUBAuXryIKVOmICgoCCNGjAAATJkyBYMHD0aXLl3QvXt3JCQkYNeuXdi/fz8AQKvVYtSoUZg0aRLq16+PevXqYfLkyWjVqhV69OgBoGxmqlevXoiKisJnn30GAHjjjTfQp08fBAUFAQDCw8MRHByMIUOGYPHixfj7778xefJkREVFVdvMOYBmmgghhJBaIz8/H2PHjkWLFi0wdOhQdO7cGYmJiXB2Llsa48UXX8SaNWuwaNEitGrVCp9//jm2b9+Ozp07S30sW7YM/fv3x6BBg9CpUye4ublh165dUKn+Fxu4ZcsWtGrVCuHh4QgPD0fr1q1NljFQqVT44Ycf4OLigk6dOmHQoEHo378/lixZUnUXwwa0ThPkrdMkCrQUrdOkFgQd8tZxMlcWRmqXsc5S2f62r7Uk6ltE7jpPtTUQXCf4OJdy2nWCaypap4m3DhPAX4upVFCqRO46TXeN/NsVvP3vCPYVlVmRgwLBzRxb+L0p+k43v07TnUIDBj55vkrWaXq21TQ4qcS30szRG0qw79RCu54rMUW35wAYRXWruJkWMjLMAHGNNe5ihfJ+AYsWvhPuz1vcUvALViV84aIvZNsHZfYcUAGi+m6Cay4Y9PAWpyzbn9vMHRjZc1AE8AdGshevFLSLBmW87DvRL2hH1iqTM+ixZH9+36Lr8lD/PV4pKit7jlQduj1HCCGEEGIBmmkihBBCHMEBgeBEHho0EUIIIY5Ag6Yah27PEUIIIYRYoNbMNBmY0nywpygYkhvgyq+2bRSWpuCPW42czL5SmYHeohIuvMw9AFBy9lcJ4rTFgeB89hztyw3r5QWCiwK1hWVQ7JjhVgp+sLQoEFxUqoSfPSfalx/obRScm4gjg7ntyZGvyyB4L0Ihp0wTf1dxkov5Y9s7UcQEzTTVOLVm0EQIIYRUK0aIM6hF+5MqRYMmQgghxAFoyYGah2KaCCGEEEIsQDNNhBBCiCNQTFONQ4MmQgghxBGMDJCzcrqRBk1VrdYMmvRQQWcmO8goyPLgZkOJ6rsJMjGU3DIpgI6TYSLKflMKPozC8hAy+hftK7ouIkp5yXeyiL+nzJ+c6P0izo4TlfwRZbiZbxdlv4lKkZj7fFnSvzDTSoBXpwwA1IL9Szk/U1HfIqIyTaRivPeyqISL+P1k/r0oykAltVutGTQRQggh1QrdnqtxaNBECCGEOITMQVNVrilFAFD2HCGEEEKIRWimiRBCCHEEuj1X49CgiRBCCHEEI4OsW2yUPVflas2giVd7TpRxxKvfpBNkFIky1ET49d1kZr+Jsudk9s89tszMPrN1BC3cn9u3zLvWvGxMUXaciOh1izK1eMcXvZdF10V0btz3m7AOmeD9IPNnppKR9i3K1BJ9zuxJbuaenHOXc01FhLUGRR8zzvtJbiYnebg5NKZp/vz5ePrpp+Hh4QFvb2/0798f586dM9mGMYaYmBj4+/vD1dUV3bp1w5kzZxx0xoQQQkglYUb5D1KlHDpoOnDgAMaOHYuUlBQkJSVBr9cjPDwcd+7ckbZZtGgRli5dilWrVuHYsWPw9fVFz549UVhY6MAzJ4QQQmS6F9Mk50GqlENvzyUkJJj8+4svvoC3tzfS0tLQpUsXMMawfPlyzJgxAwMGDAAAbNy4ET4+Pti6dStGjx7tiNMmhBBC5KOYphqnWi05kJ+fDwCoV68eACAzMxM5OTkIDw+XttFoNOjatSsOHz5cYR8lJSUoKCgweRBCCCGEyFVtAsEZY5g4cSI6d+6MkJAQAEBOTg4AwMfHx2RbHx8fXLlypcJ+5s+fj9mzZ5d7XsdUwkBXc3j7iYIddYK+ZQVaigK5ZQagOsMga38euUHqcgJc5fYtZ3+5geAi4kBxXpC6ff+GcmQ5EWEpFDl/sIuC2AXsGXhszyB0ewZ6A/K+v+QEivPKZlU6WnKgxqk2M03jxo3DyZMn8eWXX5ZrUyhM3+GMsXLP3TN9+nTk5+dLj6ysLLucLyGEECILg8yYJke/gNqnWsw0vf3229i5cycOHjyIxo0bS8/7+voCKJtx8vPzk57Pzc0tN/t0j0ajgUajse8JE0IIIaTWcehME2MM48aNw44dO7Bv3z4EBgaatAcGBsLX1xdJSUnSc6WlpThw4AA6duxY1adLCCGEVB7KnqtxHDrTNHbsWGzduhXfffcdPDw8pBgmrVYLV1dXKBQKREdHIzY2Fs2bN0fz5s0RGxsLNzc3REZGOvLUCSGEEHmMRkBO3JmR1mmqag4dNK1evRoA0K1bN5Pnv/jiCwwfPhwAMHXqVBQVFWHMmDHIy8tDaGgoEhMT4eHhUcVnSwghhJDazKGDJmbB1KJCoUBMTAxiYmLsf0I2KJVbRkWQecPLfhFlSokStUTnJso2VMqIQhTn5dmW6WgJlZkkAksZ7Hhuwp+pAC87jtiHsOSPsEyT/Uq4iNgzA05u9i7vuon6FmZLVheUPVfjVItAcEIIIaTWoUFTjVNtlhwghBBCCKnOaKaJEEIIcQQqo1Lj0KCJEEIIcQDGjGDM9vgrOfsS29CgiRBCCHEExuTNFlFMU5WrNYMmA5R2r61V3dg7u86RmVqyMvdkZqg5ktxrLuczUJOvmz3Zs66dPTPvLMH7DhCdm/DcZdTOFF1zUe25GpNdR6qdWjNoIoQQQqoVJjOmiWaaqhwNmgghhBBHMBoBObNeFNNU5Wi+nRBCCCHEAjTTRAghhDgC3Z6rcWrNoMnIlGaDAx0ZFCgsg8Aps8IrsVIZ5AZy2pMoIFpOoLg9OTKQW9i37BIuNXfi2p7fAXKCluWWaLEnR37+HxbMaAST8d6jJQeqXs39liOEEEIIqUI0aCKEEEIc4V7tOTkPKxUWFiI6OhoBAQFwdXVFx44dcezYMal9+PDhUCgUJo8OHTqY9FFSUoK3334bDRo0gLu7O/r27Ytr166ZbJOXl4chQ4ZAq9VCq9ViyJAhuHXrlsk2V69exQsvvAB3d3c0aNAA48ePR2lpqdWvqSrRoIkQQghxBCOT/7DS66+/jqSkJMTFxeHUqVMIDw9Hjx498Mcff0jb9OrVC9nZ2dLjxx9/NOkjOjoa8fHx2LZtG5KTk3H79m306dMHBoNB2iYyMhLp6elISEhAQkIC0tPTMWTIEKndYDCgd+/euHPnDpKTk7Ft2zZs374dkyZNsuFCVp1aE9NECCGE1GZFRUXYvn07vvvuO3Tp0gUAEBMTg2+//RarV6/G3LlzAQAajQa+vr4V9pGfn4/169cjLi4OPXr0AABs3rwZTZo0wd69exEREYGMjAwkJCQgJSUFoaGhAIB169YhLCwM586dQ1BQEBITE3H27FlkZWXB398fAPDRRx9h+PDhmDdvHjw9Pe19OWxCM02EEEKIIzBWttaSzY+ymaaCggKTR0lJSYWH0+v1MBgMcHFxMXne1dUVycnJ0r/3798Pb29vPP7444iKikJubq7UlpaWBp1Oh/DwcOk5f39/hISE4PDhwwCAI0eOQKvVSgMmAOjQoQO0Wq3JNiEhIdKACQAiIiJQUlKCtLQ0W6+o3dFME+y75L7s7BZedgQnsw4QZ9eJsqVUgtfNe22OzqxxZIkXHntnO9mz1Ik9s+OEWaSkQs4KPbdd9N0mwvvus2ff9sY7d2MVpvEzIwOTUQqH/f+5NmnSxOT5WbNmISYmptz2Hh4eCAsLw5w5c9CyZUv4+Pjgyy+/RGpqKpo3bw4AeP755/HSSy8hICAAmZmZmDlzJp599lmkpaVBo9EgJycHarUaXl5eJn37+PggJycHAJCTkwNvb+9yx/f29jbZxsfHx6Tdy8sLarVa2qY6okETIYQQ4gjMCMj5A/P//6jOysoyuZ2l0WjM7hIXF4eRI0eiUaNGUKlUaNu2LSIjI3H8+HEAwODBg6VtQ0JC0L59ewQEBOCHH37AgAEDzJ8KY1Ao/vfHz/3/L2eb6oZuzxFCCCE1mKenp8mDN2h69NFHceDAAdy+fRtZWVk4evQodDodAgMDK9zez88PAQEBuHDhAgDA19cXpaWlyMvLM9kuNzdXmjny9fXF9evXy/V148YNk20enFHKy8uDTqcrNwNVndCgiRBCCHEAZmSyH7Zyd3eHn58f8vLysGfPHvTr16/C7W7evImsrCz4+fkBANq1awdnZ2ckJSVJ22RnZ+P06dPo2LEjACAsLAz5+fk4evSotE1qairy8/NNtjl9+jSys7OlbRITE6HRaNCuXTubX5e90e05QgghxBEq6facNfbs2QPGGIKCgnDx4kVMmTIFQUFBGDFiBG7fvo2YmBgMHDgQfn5+uHz5Mt577z00aNAAL774IgBAq9Vi1KhRmDRpEurXr4969eph8uTJaNWqlZRN17JlS/Tq1QtRUVH47LPPAABvvPEG+vTpg6CgIABAeHg4goODMWTIECxevBh///03Jk+ejKioqGqbOQfUgkHTvUC5otsGwZbmOTJgkRdQrRIEEMotsyIKBLfnsR9WRjuXdzHYMYjVnucuNxDcUE3L5lhCTuCxuESLvOvCDwS3X99yyTm3e78rWBUEhOuhk1V6Tg+d1fvk5+dj+vTpuHbtGurVq4eBAwdi3rx5cHZ2hl6vx6lTp7Bp0ybcunULfn5+6N69O7766it4eHhIfSxbtgxOTk4YNGgQioqK8Nxzz2HDhg1QqVTSNlu2bMH48eOlLLu+ffti1apVUrtKpcIPP/yAMWPGoFOnTnB1dUVkZCSWLFli+wWpAgpWFe8MB7p27Vq5zAJCCCGEJysrC40bN7ZL38XFxQgMDKyULDFfX19kZmaWW0aA2MdDP2gyGo34888/4eHhUa0j8itbQUEBmjRpUi6rgvDRdbMNXTfb0HWznr2vGWMMhYWF8Pf3h1Jpv7Df4uLiSikZolaracBUhR7623NKpdJufy3UBPeyKYh16LrZhq6bbei6Wc+e10yr1dql3/u5uLjQYKcGouw5QgghhBAL0KCJEEIIIcQCNGh6SGk0GsyaNYu7yBkpj66bbei62Yaum/XomhFHeugDwQkhhBBCKgPNNBFCCCGEWIAGTYQQQgghFqBBEyGEEEKIBWjQRAghhBBiARo01WDz58/H008/DQ8PD3h7e6N///44d+6cyTaMMcTExMDf3x+urq7o1q0bzpw546Azrh5Wr16N1q1bS4vjhYWFYffu3VI7XTPLzJ8/HwqFAtHR0dJzdO3Ki4mJgUKhMHn4+vpK7XTNzPvjjz/w2muvoX79+nBzc8NTTz2FtLQ0qZ2uHalqNGiqwQ4cOICxY8ciJSUFSUlJ0Ov1CA8Px507d6RtFi1ahKVLl2LVqlU4duwYfH190bNnTxQWFjrwzB2rcePGWLBgAX799Vf8+uuvePbZZ9GvXz/py5aumdixY8ewdu1atG7d2uR5unYVe+KJJ5CdnS09Tp06JbXRNatYXl4eOnXqBGdnZ+zevRtnz57FRx99hLp160rb0LUjVY6Rh0Zubi4DwA4cOMAYY8xoNDJfX1+2YMECaZvi4mKm1WrZmjVrHHWa1ZKXlxf7/PPP6ZpZoLCwkDVv3pwlJSWxrl27sgkTJjDG6P1mzqxZs9iTTz5ZYRtdM/OmTZvGOnfubLadrh1xBJppeojk5+cDAOrVqwcAyMzMRE5ODsLDw6VtNBoNunbtisOHDzvkHKsbg8GAbdu24c6dOwgLC6NrZoGxY8eid+/e6NGjh8nzdO3Mu3DhAvz9/REYGIiXX34Zly5dAkDXjGfnzp1o3749XnrpJXh7e6NNmzZYt26d1E7XjjgCDZoeEowxTJw4EZ07d0ZISAgAICcnBwDg4+Njsq2Pj4/UVludOnUKderUgUajwZtvvon4+HgEBwfTNRPYtm0bjh8/jvnz55dro2tXsdDQUGzatAl79uzBunXrkJOTg44dO+LmzZt0zTguXbqE1atXo3nz5tizZw/efPNNjB8/Hps2bQJA7zfiGE6OPgFSOcaNG4eTJ08iOTm5XJtCoTD5N2Os3HO1TVBQENLT03Hr1i1s374dw4YNw4EDB6R2umblZWVlYcKECUhMTORWZ6drZ+r555+X/r9Vq1YICwvDo48+io0bN6JDhw4A6JpVxGg0on379oiNjQUAtGnTBmfOnMHq1asxdOhQaTu6dqQq0UzTQ+Dtt9/Gzp078fPPP6Nx48bS8/cydB78qys3N7fcX2e1jVqtxmOPPYb27dtj/vz5ePLJJ7FixQq6ZhxpaWnIzc1Fu3bt4OTkBCcnJxw4cAAff/wxnJycpOtD147P3d0drVq1woULF+j9xuHn54fg4GCT51q2bImrV68CoO834hg0aKrBGGMYN24cduzYgX379iEwMNCkPTAwEL6+vkhKSpKeKy0txYEDB9CxY8eqPt1qjTGGkpISumYczz33HE6dOoX09HTp0b59e7z66qtIT09Hs2bN6NpZoKSkBBkZGfDz86P3G0enTp3KLaFy/vx5BAQEAKDvN+IgjotBJ3K99dZbTKvVsv3797Ps7GzpcffuXWmbBQsWMK1Wy3bs2MFOnTrFXnnlFebn58cKCgoceOaONX36dHbw4EGWmZnJTp48yd577z2mVCpZYmIiY4yumTXuz55jjK5dRSZNmsT279/PLl26xFJSUlifPn2Yh4cHu3z5MmOMrpk5R48eZU5OTmzevHnswoULbMuWLczNzY1t3rxZ2oauHalqNGiqwQBU+Pjiiy+kbYxGI5s1axbz9fVlGo2GdenShZ06dcpxJ10NjBw5kgUEBDC1Ws0aNmzInnvuOWnAxBhdM2s8OGiia1fe4MGDmZ+fH3N2dmb+/v5swIAB7MyZM1I7XTPzdu3axUJCQphGo2EtWrRga9euNWmna0eqmoIxxhw500UIIYQQUhNQTBMhhBBCiAVo0EQIIYQQYgEaNBFCCCGEWIAGTYQQQgghFqBBEyGEEEKIBWjQRAghhBBiARo0EUIIIYRYgAZNpMbo1q0boqOjH6rjDh8+HP3795fVR9OmTaFQKKBQKHDr1i2z223YsAF169aVdSxiav/+/dK1l/tzJIRUfzRoIkRgx44dmDNnjvTvpk2bYvny5Y47oQp8+OGHyM7OhlardfSpPLQq+rl37NgR2dnZGDRokGNOihBSpZwcfQKEVHf16tVz9CkIeXh4SFXfHU2n08HZ2dnRp1El1Go1fH194erqipKSEkefDiHEzmimidRYeXl5GDp0KLy8vODm5obnn38eFy5ckNrv3Y7as2cPWrZsiTp16qBXr17Izs6WttHr9Rg/fjzq1q2L+vXrY9q0aRg2bJjJrZb7b89169YNV65cwTvvvCPdlgGAmJgYPPXUUybnt3z5cjRt2lT6t8FgwMSJE6VjTZ06FQ9WMWKMYdGiRWjWrBlcXV3x5JNP4ptvvrHp+mzYsAGPPPII3Nzc8OKLL+LmzZvlttm1axfatWsHFxcXNGvWDLNnz4Zer5faf/vtN3Tu3BkuLi4IDg7G3r17oVAo8O233wIALl++DIVCgf/85z/o1q0bXFxcsHnzZgDAF198gZYtW8LFxQUtWrTAp59+anLsP/74A4MHD4aXlxfq16+Pfv364fLly1L7/v378cwzz8Dd3R1169ZFp06dcOXKFbOvV9TfsWPH0LNnTzRo0ABarRZdu3bF8ePHTfqIiYnBI488Ao1GA39/f4wfPx6A+Z87IaR2oUETqbGGDx+OX3/9FTt37sSRI0fAGMM///lP6HQ6aZu7d+9iyZIliIuLw8GDB3H16lVMnjxZal+4cCG2bNmCL774AocOHUJBQYE0IKjIjh070LhxY+l22P0DMJGPPvoI//73v7F+/XokJyfj77//Rnx8vMk277//Pr744gusXr0aZ86cwTvvvIPXXnsNBw4csPzCAEhNTcXIkSMxZswYpKeno3v37pg7d67JNnv27MFrr72G8ePH4+zZs/jss8+wYcMGzJs3DwBgNBrRv39/uLm5ITU1FWvXrsWMGTMqPN60adMwfvx4ZGRkICIiAuvWrcOMGTMwb948ZGRkIDY2FjNnzsTGjRsBlP1cunfvjjp16uDgwYNITk6WBrWlpaXQ6/Xo378/unbtipMnT+LIkSN44403zA5WRP0BQGFhIYYNG4ZffvkFKSkpaN68Of75z3+isLAQAPDNN99g2bJl+Oyzz3DhwgV8++23aNWqFQB5P3dCyEPEoeWCCbFC165d2YQJExhjjJ0/f54BYIcOHZLa//rrL+bq6sr+85//MMYY++KLLxgAdvHiRWmbTz75hPn4+Ej/9vHxYYsXL5b+rdfr2SOPPML69etX4XEZYywgIIAtW7bM5NxmzZrFnnzySZPnli1bxgICAqR/+/n5sQULFkj/1ul0rHHjxtKxbt++zVxcXNjhw4dN+hk1ahR75ZVXzF6Xis7nlVdeYb169TJ5bvDgwUyr1Ur//sc//sFiY2NNtomLi2N+fn6MMcZ2797NnJycWHZ2ttSelJTEALD4+HjGGGOZmZkMAFu+fLlJP02aNGFbt241eW7OnDksLCyMMcbY+vXrWVBQEDMajVJ7SUkJc3V1ZXv27GE3b95kANj+/fvNvu77ifqriF6vZx4eHmzXrl2MMcY++ugj9vjjj7PS0tIKt6/oOt8zbNgwk/cMIeThRDNNpEbKyMiAk5MTQkNDpefq16+PoKAgZGRkSM+5ubnh0Ucflf7t5+eH3NxcAEB+fj6uX7+OZ555RmpXqVRo165dpZ9vfn4+srOzERYWJj3n5OSE9u3bS/8+e/YsiouL0bNnT9SpU0d6bNq0Cb///rtVx8vIyDA5FoBy/05LS8OHH35ocqyoqChkZ2fj7t27OHfuHJo0aWISK3X/tbrf/a/jxo0byMrKwqhRo0z6njt3rvQ60tLScPHiRXh4eEjt9erVQ3FxMX7//XfUq1cPw4cPR0REBF544QWsWLGCO7sj6g8AcnNz8eabb+Lxxx+HVquFVqvF7du3cfXqVQDASy+9hKKiIjRr1gxRUVGIj483uVVJCCEUCE5qJPZALND9z99/C+fBgGSFQlFu3wdv+Zjrm0epVJbb7/7bhJYwGo0AgB9++AGNGjUyadNoNFb1ZclrMBqNmD17NgYMGFCuzcXFpdy15HF3dzfpFwDWrVtnMqgFygal97Zp164dtmzZUq6vhg0bAiiLiRo/fjwSEhLw1Vdf4f3330dSUhI6dOhQ4WsR9Td8+HDcuHEDy5cvR0BAADQaDcLCwqTbd02aNMG5c+eQlJSEvXv3YsyYMVi8eDEOHDhQawLbCSF8NGgiNVJwcDD0ej1SU1PRsWNHAMDNmzdx/vx5tGzZ0qI+tFotfHx8cPToUfzjH/8AUBasfeLEiXJB3fdTq9UwGAwmzzVs2BA5OTkmA4309HSTY/n5+SElJQVdunQBUBaEnpaWhrZt20qvSaPR4OrVq+jatatFr8Gc4OBgpKSkmDz34L/btm2Lc+fO4bHHHquwjxYtWuDq1au4fv06fHx8AJQFU4v4+PigUaNGuHTpEl599dUKt2nbti2++uoreHt7w9PT02xfbdq0QZs2bTB9+nSEhYVh69atFQ6aLOnvl19+waeffop//vOfAICsrCz89ddfJtu4urqib9++6Nu3L8aOHYsWLVrg1KlTaNu2bYU/d0JI7UK350iN1Lx5c/Tr1w9RUVFITk7Gf//7X7z22mto1KgR+vXrZ3E/b7/9NubPn4/vvvsO586dw4QJE5CXl8edYWnatCkOHjyIP/74Q/ql261bN9y4cQOLFi3C77//jk8++QS7d+822W/ChAlYsGAB4uPj8dtvv2HMmDEmi1F6eHhg8uTJeOedd7Bx40b8/vvvOHHiBD755BMpgNpS92ZoFi1ahPPnz2PVqlVISEgw2eaDDz7Apk2bEBMTgzNnziAjI0Oa0QGAnj174tFHH8WwYcNw8uRJHDp0SAoEF81AxcTEYP78+VixYgXOnz+PU6dO4YsvvsDSpUsBAK+++ioaNGiAfv364ZdffkFmZiYOHDiACRMm4Nq1a8jMzMT06dNx5MgRXLlyBYmJidwBsag/AHjssccQFxeHjIwMpKam4tVXX4Wrq6vUx4YNG7B+/XqcPn0aly5dQlxcHFxdXREQEACg4p87IaSWcVw4FSHWeTAg+++//2ZDhgxhWq2Wubq6soiICHb+/Hmp/YsvvjAJfGaMsfj4eHb/216n07Fx48YxT09P5uXlxaZNm8Zeeukl9vLLL5s97pEjR1jr1q2ZRqMx6Wv16tWsSZMmzN3dnQ0dOpTNmzfPJBBcp9OxCRMmME9PT1a3bl02ceJENnToUJMAYqPRyFasWMGCgoKYs7Mza9iwIYuIiGAHDhwwe13MBSivX7+eNW7cmLm6urIXXniBLVmypNz1SEhIYB07dmSurq7M09OTPfPMM2zt2rVSe0ZGBuvUqRNTq9WsRYsWbNeuXQwAS0hIYIz9LxD8xIkT5Y6/ZcsW9tRTTzG1Ws28vLxYly5d2I4dO6T27OxsNnToUNagQQOm0WhYs2bNWFRUFMvPz2c5OTmsf//+zM/Pj6nVahYQEMA++OADZjAYzF4HXn+MMXb8+HHWvn17ptFoWPPmzdnXX39tcu3i4+NZaGgo8/T0ZO7u7qxDhw5s7969Uv/mfu6MUSA4IbWFgjEbAjgIeUgZjUa0bNkSgwYNMlkFvDpr2rQpoqOjq6TEzKFDh9C5c2dcvHjRJMC+ths+fDhu3brFXa6CEFLz0e05UqtduXIF69atk24hvfXWW8jMzERkZKSjT80q06ZNQ506dZCfn1+p/cbHxyMpKQmXL1/G3r17/699u7eREAYCMDoiNhllEJKRUgsVILqgBwohQZRCCRTAJaeNNphgV/ez7xVgO/ykGcc4jtH3vWD6dhxHlFKeLqAD/49FcD5aVVWxrmtM0xT3fUfbtrFtW3qZ/DfY9/3xU6+u65eefV1XzPMc53lG0zQxDEMsy/LSO/6yruseC/+llJ99DPB2xnMAAAnGcwAACaIJACBBNAEAJIgmAIAE0QQAkCCaAAASRBMAQIJoAgBIEE0AAAlfMM4CyaCBK3MAAAAASUVORK5CYII=", + "text/plain": [ + "<Figure size 640x480 with 2 Axes>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ds.sel(time=8).mslp.plot()" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "<matplotlib.collections.QuadMesh at 0x7fff944beec0>" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAHFCAYAAADv8c1wAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAACYvUlEQVR4nOzdeVxUVf8H8M/MwAyLMOLCpoZYhhJaLoWoj0sp2KOp6ZMW5R5ZakqumZmYimsuaWmaTypq9pRSWolgpoYKGsrjRi6JigVihoDKMsv5/cHP+zjCnDMzl2FAvu/Xa17lnHvPvXOZGQ7nfr/nq2CMMRBCCCGEEC6lo0+AEEIIIaQmoEETIYQQQogFaNBECCGEEGIBGjQRQgghhFiABk2EEEIIIRagQRMhhBBCiAVo0EQIIYQQYgEaNBFCCCGEWIAGTYQQQgghFqBBEyGV6PDhw4iJicGtW7fKtXXr1g3dunWr8nOqKjk5ORg3bhyaNWsGV1dXBAQEYNSoUbh69apF++t0OsyePRtNmzaFRqNBixYtsHLlSjufNSGEWM7J0SdAyMPk8OHDmD17NoYPH466deuatH366aeOOakqUFJSgi5duiAvLw+zZ89GcHAwzp07h1mzZmHPnj3IyMiAh4cHt48xY8YgLi4Oc+bMwdNPP409e/ZgwoQJKCwsxHvvvVdFr4QQQsyjQRMhVSQ4ONjRp2A3v/zyCy5cuIDPP/8co0aNAlA2s+bp6YnIyEjs3bsXL774otn9z5w5g/Xr12PevHmYMmWKtP/Nmzcxd+5cvPnmm6hXr16VvBZCCDGHbs8RUkliYmKkX/iBgYFQKBRQKBTYv38/gPK35y5fvgyFQoHFixdj4cKFaNq0KVxdXdGtWzecP38eOp0O7777Lvz9/aHVavHiiy8iNze33HG/+uorhIWFwd3dHXXq1EFERAROnDhRFS9Z4uzsDADQarUmz9+bbXNxceHu/+2334IxhhEjRpg8P2LECBQVFSEhIaHyTpYQQmxEgyZCKsnrr7+Ot99+GwCwY8cOHDlyBEeOHEHbtm25+33yySc4dOgQPvnkE3z++ef47bff8MILL2DUqFG4ceMG/v3vf2PRokXYu3cvXn/9dZN9Y2Nj8corryA4OBj/+c9/EBcXh8LCQvzjH//A2bNnhees1+stejDGuP106tQJ7dq1Q0xMDI4dO4bbt2/j+PHjeO+999C2bVv06NGDu//p06fRsGFD+Pr6mjzfunVrqZ0QQhyNbs8RUkkaN26MRx55BADQpk0bNG3a1KL96tati2+//RZKZdnfMH/99Reio6PRokULfPfdd9J2v/32G5YvX46CggJ4enoiKysLs2bNwrhx4/Dxxx9L2/Xs2RPNmzfH7Nmz8dVXX5k97uXLlxEYGGjROf7888/cIHYnJyf8/PPPePXVV/HMM89Iz3fr1g3bt2+XZqLMuXnzZoW339zd3aFWq3Hz5k2LzpMQQuyJBk2EONg///lPacAEAC1btgQA9O7d22S7e89fvXoVISEh2LNnD/R6PYYOHQq9Xi9t5+Ligq5du+Lnn3/mHtff3x/Hjh2z6ByDgoK47TqdDoMHD8bp06exbt06BAUFITMzE3PnzkXPnj2xb9++crfuHqRQKGxqI4SQqkKDJkIc7MEZFrVazX2+uLgYAHD9+nUAwNNPP11hv/cPxCqiVqvx1FNPWXSOKpWK275+/Xrs3r0bx44dQ/v27QEA//jHP9C5c2c8+uijWL58OWbNmmV2//r16yM9Pb3c83fu3EFpaSkFgRNCqgUaNBFSQzVo0AAA8M033yAgIMDq/Svz9lx6ejpUKlW5+K1mzZqhfv36wpikVq1aYdu2bcjJyTGJazp16hQAICQkxKLzJIQQe6JBEyGVSKPRAACKiorsfqyIiAg4OTnh999/x8CBA63evzJvz/n7+8NgMODYsWMIDQ2Vnj9//jxu3ryJxo0bc/fv168f3n//fWzcuBHTpk2Tnt+wYQNcXV3Rq1cvi86TEELsiQZNhFSiVq1aAQBWrFiBYcOGwdnZGUFBQcKFHW3RtGlTfPjhh5gxYwYuXbqEXr16wcvLC9evX8fRo0fh7u6O2bNnm91frVZLt9LkGjFiBJYtW4aBAwfi/fffR1BQEC5duoTY2Fi4u7vjzTfflLbdtGkTRo4ciX//+98YOnQoAOCJJ57AqFGjMGvWLKhUKjz99NNITEzE2rVrMXfuXLo9RwipFmjQREgl6tatG6ZPn46NGzdi3bp1MBqNwltbckyfPh3BwcFYsWIFvvzyS5SUlMDX1xdPP/20yUDF3po0aYJjx47hww8/xMKFC5GdnQ0fHx+EhYXhgw8+MJmpMhqNMBgMMBqNJn18+umnaNSoEVauXImcnBw0bdoUK1askJZxIIQQR1Mw0QIshBBCCCGEFrckhBBCCLEEDZoIIYQQQixAgyZCCCGEEAs4dNCk1+vx/vvvIzAwEK6urmjWrBk+/PBDkwBRxhhiYmLg7+8vFTM9c+aMA8+aEEIIIbWRQwdNCxcuxJo1a7Bq1SpkZGRg0aJFWLx4MVauXClts2jRIixduhSrVq3CsWPH4Ovri549e6KwsNCBZ04IIYSQ2sah2XN9+vSBj48P1q9fLz03cOBAuLm5IS4uDowx+Pv7Izo6WlrwrqSkBD4+Pli4cCFGjx7tqFMnhBBCSC3j0HWaOnfujDVr1uD8+fN4/PHH8d///hfJyclYvnw5ACAzMxM5OTkIDw+X9tFoNOjatSsOHz5c4aCppKQEJSUl0r+NRiP+/vtv1K9fn4p+EkII4WKMobCwEP7+/sL6jXIUFxejtLRUdj9qtRouLi4WbXvw4EEsXrwYaWlpyM7ORnx8PPr37y+1M8Ywe/ZsrF27Fnl5eQgNDcUnn3yCJ554AgDw999/Y9asWUhMTERWVhYaNGiA/v37Y86cOSYFufPy8jB+/Hjs3LkTANC3b1+sXLkSdevWlba5evUqxo4di3379sHV1RWRkZFYsmSJVGMTKCujNG7cOBw9ehT16tXD6NGjMXPmTMf+LmcOZDQa2bvvvssUCgVzcnJiCoWCxcbGSu2HDh1iANgff/xhsl9UVBQLDw+vsM9Zs2YxAPSgBz3oQQ962PzIysqy2+++oqIi5uutqpTz9PX1ZUVFRRYd98cff2QzZsxg27dvZwBYfHy8SfuCBQuYh4cH2759Ozt16hQbPHgw8/PzYwUFBYwxxk6dOsUGDBjAdu7cyS5evMh++ukn1rx5czZw4ECTfnr16sVCQkLY4cOH2eHDh1lISAjr06eP1K7X61lISAjr3r07O378OEtKSmL+/v5s3Lhx0jb5+fnMx8eHvfzyy+zUqVNs+/btzMPDgy1ZssTGq145HHp7btu2bZgyZQoWL16MJ554Aunp6YiOjsbSpUsxbNgwHD58GJ06dcKff/4JPz8/ab+oqChkZWUhISGhXJ8PzjTl5+fjkUcewU+p3qhTh5IF72cAzbwRy6ngsK+KGk103ez5OaSfmfVu3zaiW+gN3Lp1y2T2pDIVFBRAq9XiSlpTeHrY/nupoNCIgHaXkZ+fD09PT6v2VSgUJjNNzMZwmK+//hqvvfYa7ty5AycnJ2RkZCA4OBgpKSlSHcqUlBSEhYXht99+Q1BQEHbv3o0+ffogKysL/v7+AMrGA8OHD0dubi48PT2xevVqTJ8+HdevX5dqei5YsAArV67EtWvXHDbb5NDbc1OmTMG7776Ll19+GUBZ3a4rV65g/vz5GDZsmFTtPCcnx2TQlJubCx8fnwr71Gg00gW+X506StSR8eZ8GNGgiViDfgHbhgZNNVNV/FKu46FAHQ/bj2OsxPeOLeEwAKQBm5NT2XDiyJEj0Gq1JoW7O3ToAK1Wi8OHDyMoKAhHjhxBSEiINGACygqQl5SUIC0tDd27d8eRI0fQtWtXk9/nERERmD59Oi5fvozAwMBKe+3WcOgo4u7du+XuGatUKmnJgcDAQPj6+iIpKUlqLy0txYEDB9CxY8cqPVdCCCGkMhmYUfYDKJu5uv9x/90WS+Xk5ABAuQkJHx8fqe1BN2/exJw5c0wGVDk5OfD29i63rbe3t9RPTk5OueN4eXlBrVZzt7n3b3PnUxUcOmh64YUXMG/ePPzwww+4fPky4uPjsXTpUrz44osAykb60dHRiI2NRXx8PE6fPo3hw4fDzc0NkZGRjjx1QgghRBYjmOwHUFYwW6vVSo/58+fbfE4PzrAxxiqcdSsoKEDv3r0RHByMWbNmcfuoqB9btrkXTeTIQHCH3p5buXIlZs6ciTFjxiA3Nxf+/v4YPXo0PvjgA2mbqVOnoqioCGPGjJGi+RMTE+Hh4eHAMyeEEEKqh6ysLJOYpopCVESsCYcpLCxEr169UKdOHcTHx8PZ2dmkn+vXr5fr/8aNG1I/vr6+SE1NNWnPy8uDTqcz2ebBGaXc3FwA5WfDqpJDB00eHh5Yvny5tMRARRQKBWJiYhATEyPrWCowur//AHteD4qXevg8zJ8fpQPfrsqH+LrWRFX5XjDCCKN4M+7+AODp6Wl1IPiD7g+HadOmDYD/hcMsXLhQ2q6goAARERHQaDTYuXNnueUOwsLCkJ+fj6NHj+KZZ54BAKSmpiI/P18KqwkLC8O8efOQnZ0tDdASExOh0WjQrl07aZv33nsPpaWl0jIEiYmJ8Pf3R9OmTWW9VjkoMpoQQghxAANjsh/WuH37NtLT05Geng6gLPg7PT0dV69etSgcprCwEOHh4bhz5w7Wr1+PgoIC5OTkICcnBwaDAQDQsmVL9OrVC1FRUUhJSUFKSgqioqLQp08fBAUFAQDCw8MRHByMIUOG4MSJE/jpp58wefJkREVFSYO/yMhIaDQaDB8+HKdPn0Z8fDxiY2MxceLE2nt7jhBCCCFV49dff0X37t2lf0+cOBEAMGzYMGzYsEEYDpOWlibdVnvsscdM+s7MzJRmgLZs2YLx48dLmXh9+/bFqlWrpG1VKhV++OEHjBkzBp06dTJZ3PIerVaLpKQkjB07Fu3bt4eXlxcmTpwonbOjOHSdpqpwbz2MX8/40JIDVYhuzz186PYcqQ1uFxrRNvi6TWsfWUpap+k3f/nrNLX4067nSkzRTBMhhBDiAEYwGGT8MWJ8iP+Qqa5qzaBJqaC/Jh9ktOPnrTrPSjzMs2COvO41+fNVnd+vclTnuXU5AdByXxfv2BSYT3hqzaCJEEIIqU7uX2vJ1v1J1aJBEyGEEOIAtmTAPbg/qVrVefaWEEIIIaTaoJkmQgghxAGMkBfbJWdfYhsaNBFCCCEOYJCZPSdnX2IbGjTVYvbMdrJnZp5cokwpe2bX1eQsLUdmx1Xn61adYxxU1TijUSVjX4PMtwPvZ1aVP08Dk/da5F4HYr3q/HknhBBCCKk2aKaJEEIIcQCKaap5aNBECCGEOIARClnhAMaHeKHe6opuzxFCCCGEWIBmmgghhBAHMDJ5STPVOeHmYVVrBk1KsGqdgWOLh7mGmj058rrZ+9j2fI/L/YKuqbXp7D0dX50z3Kore16zqvx5GGTenqPfAVWPbs8RQgghhFig1sw0EUIIIdUJzTTVPDRoIoQQQhzAyBQwMhnZczL2Jbah23OEEEIIIRagmSZCCCHEAej2XM1TawZNchcRcxRHZvw5Mp3Vnj+rmvg+qAlE71VZ7yeFvJ+ZnM+RaNVludP1vPphjs6sU1XTz8rDUqjWACUMMt5Bhko8F2KZWjNoIoQQQqoTJjOmiVFMU5WjmCZCCCGEEAvQTBMhhBDiABTTVPPQoIkQQghxAANTwsBkxDQ9HKFdNQoNmqo53l8S9g7UrsnB2LV1/RI5Vc+VCnlvKNHPVFZSA5P5ZpcRSC4McLe55zK8X5lyfynKDSS3Z8B1dQ0yJ4SHBk2EEEKIAxihgFFGaLHxIckirElo0EQIIYQ4AMU01TyUPUcIIYQQYgGaaSKEEEIcQH4gON2eq2o0aCKEEEIcoCymSUbBXro9V+Vo0ORgcjLg7H0/W07/crPX5L42OaUJai3Be1ElM09Mx+2bf3CDzMw+lYy/yIVlVGR/DG0/N9G73J4p6dU5M094bM6hKY2f8NCgiRBCCHEAo8zac5Q9V/Vo0EQIIYQ4AMU01Tw0aCKEEEIcwAglrdNUw1DgByGEEEKIBWimiRBCCHEAA1PAICNpRs6+xDa1ZtBkZPav1WYLe64G68gMNrnZa6Jzt2tdPBkxBg8zlUJe9hwvQ06YHSczs4+XuVe2v+3nJsrME9euM/9eFmXmGfjN8ur9iVTD71NL8d4tcmsJWsMgMxDckRmItRX9diCEEEIIsUCtmWkihBBCqhMjU8IoY2bbSNlzVY4GTYQQQogD0O25moduzxFCCCGEWKDWzDQZoLB72RFzx5WDFxAt6rs6B2PLDbYWrW3iyHOTw961pJQy/jKVW0aFF5SsZDL7FgSpyynTohKcm2itHFEQupJ7bPsFmVuCF4guCkIXsWeQuqwSUFX4e8IIeRlw1n5qDh48iMWLFyMtLQ3Z2dmIj49H//79pXbGGGbPno21a9ciLy8PoaGh+OSTT/DEE09I26xduxZbt27F8ePHUVhYiLy8PNStW9fkOHl5eRg/fjx27twJAOjbty9Wrlxpst3Vq1cxduxY7Nu3D66uroiMjMSSJUugVqulbU6dOoVx48bh6NGjqFevHkaPHo2ZM2dCoXBc1iDNNBFCCCEOcG9xSzkPa9y5cwdPPvkkVq1aVWH7okWLsHTpUqxatQrHjh2Dr68vevbsicLCQmmbu3fvolevXnjvvffMHicyMhLp6elISEhAQkIC0tPTMWTIEKndYDCgd+/euHPnDpKTk7Ft2zZs374dkyZNkrYpKChAz5494e/vj2PHjmHlypVYsmQJli5datVrrmwOnWlq2rQprly5Uu75MWPG4JNPPrFo1EsIIYQQseeffx7PP/98hW2MMSxfvhwzZszAgAEDAAAbN26Ej48Ptm7ditGjRwMAoqOjAQD79++vsJ+MjAwkJCQgJSUFoaGhAIB169YhLCwM586dQ1BQEBITE3H27FlkZWXB398fAPDRRx9h+PDhmDdvHjw9PbFlyxYUFxdjw4YN0Gg0CAkJwfnz57F06VJMnDjRYbNNDp1pOnbsGLKzs6VHUlISAOCll14CYNmolxBCCKmJ7tWek/MAymZl7n+UlJRYfS6ZmZnIyclBeHi49JxGo0HXrl1x+PBhi/s5cuQItFqtNGACgA4dOkCr1Ur9HDlyBCEhIdKACQAiIiJQUlKCtLQ0aZuuXbtCo9GYbPPnn3/i8uXLVr++yuLQQVPDhg3h6+srPb7//ns8+uij6Nq1a7lRb0hICDZu3Ii7d+9i69atjjxtQgghRDYjFLIfANCkSRNotVrpMX/+fKvPJScnBwDg4+Nj8ryPj4/UZmk/3t7e5Z739vaW+snJySl3HC8vL6jVau429/5tzflUtmoTCF5aWorNmzdL026XLl3ijnrvTRU+qKSkxGSUXVBQYPdzJ4QQQqx1/2yRrfsDQFZWFjw9PaXn75+dsdaDt70YY1bfCqto+wf7sWUb9v+JEY4MBK82g6Zvv/0Wt27dwvDhwwHwR70VxUHdM3/+fMyePbvc8/bKnrN3qRJeBpy9S42IPsy8IETh65KdPWf7dbN35p4c9q4lpRKVK+ER7KqUkV0nzn7jtytFWWai/jn7i16X3Mw9Xkaj6HUL+xaVgBFlFcp4u9g7s89eqmO5LRFPT0+TQZMtfH19AZT97vXz85Oez83NLfd7WNTP9evXyz1/48YNqR9fX1+kpqaatOfl5UGn05ls8+CMUm5uLoDy44KqVG2y59avX4/nn3/e5B4nYP2od/r06cjPz5ceWVlZdjlfQgghRI57i1vKeVSWwMBA+Pr6SrHFQNkdoAMHDqBjx44W9xMWFob8/HwcPXpUei41NRX5+flSP2FhYTh9+jSys7OlbRITE6HRaNCuXTtpm4MHD6K0tNRkG39/fzRt2tTWlylbtRg0XblyBXv37sXrr78uPXf/qPd+olGvRqORRt2VMfomhBBC7MHIFLIf1rh9+zbS09ORnp4OoCz4Oz09HVevXoVCoUB0dDRiY2MRHx+P06dPY/jw4XBzc0NkZKTUR05ODtLT03Hx4kUAZWsppaen4++//wYAtGzZEr169UJUVBRSUlKQkpKCqKgo9OnTB0FBQQCA8PBwBAcHY8iQIThx4gR++uknTJ48GVFRUdLv7MjISGg0GgwfPhynT59GfHw8YmNjHZo5B1STQdMXX3wBb29v9O7dW3quska9hBBCCAF+/fVXtGnTBm3atAEATJw4EW3atMEHH3wAAJg6dSqio6MxZswYtG/fHn/88QcSExPh4eEh9bFmzRq0adMGUVFRAIAuXbqgTZs20kKWALBlyxa0atUK4eHhCA8PR+vWrREXFye1q1Qq/PDDD3BxcUGnTp0waNAg9O/fH0uWLJG20Wq1SEpKwrVr19C+fXuMGTMGEydOxMSJE+16jUQUjDm24p/RaERgYCBeeeUVLFiwwKRt4cKFmD9/Pr744gs0b94csbGx2L9/P86dO2fyQ+QpKCgoS3U844c6HpU/RqSYJtuOTTFNFavWMU0CDo1pEsTPyIk7sntME29FcAfHNMlhz77t6XahEe2fuI78/Hy73am493tpwbGucKlje2hx8W093n36gF3PlZhyeCD43r17cfXqVYwcObJc29SpU1FUVIQxY8ZIi1s+OOolhBBCaiIjU8Io4484OfsS2zh80BQeHg5zk10KhQIxMTGIiYmRfRxb7v/eI6uOmWBWQs5skZyZIFHflvXPq4snOLbccxdeN94MnbwvGvFrk1NLquZ+CYpnZGyfUVHKnIkSzbA5K/Q2923PzD3eeQHyMvPK9pcxO2jHmnuOVCrehNRiDh80EUIIIbWR3KVwHFGEvrajQRMhhBDiAHR7ruahK04IIYQQYgGaaSKEEEIcwAC5MbOkqtWaQVMpVCi1cWKNF6xt77R+HVQ27ysnLd+y/s23lzLz5w2Ip5XlBlvzzk0nODfR65azCq848F/mcgh2nK6XG4wtK7VecGxRwLMwoJpzbuJgbPsFoTsL3qtygswBecspyF3uQM6KBKJrLudzVMxsD463Ft2eq3lqzaCJEEIIqU4qq2AvqTp0xQkhhBBCLEAzTYQQQogDMCiEYRSi/UnVokETIYQQ4gB0e67moStOCCGEEGKBWjPTVGJ0gpPRxuw5GWNLe5YqKWX8H5/cUiQ6Qf+8DBVRhprcDDbh/jLOTZzZJ8jc4+wvO+OxGv9lKSfDTbSvs4KfXC3K7BPtz2sXZWqJ++Zn36k5+4teF29fS44tp0SMvTP3uH0Lji2Hvgqru8gp73Vvf1K1as2giRBCCKlODFDKWh5B7hIlxHp0xQkhhBBCLEAzTYQQQogD0O25mocGTYQQQogDGKGUFTMrZ19iG7rihBBCCCEWqDUzTcXMCSpB1pQ5vIwmuYF4crLERMcWZb/ZM4NNnD0n79zktMvNzNMLr5v594toOl1+5p7jputFtcZ4tcqE2W9KfruTjOw4Ubuzkp+BJurbRaGzeX+5WYV2zewT1GhTC/oW1QvkEuwqJ7uumFVdGVwDUwizmEX7k6pVawZNhBBCSHVCMU01Dw2aCCGEEAdgTCmcXRbtT6oWXXFCCCGEEAvQTBMhhBDiAAYohHGKov1J1ao1g6YS5iwjEJxXFkNQ9kIwmScO/LVfqRJRGRY5/Yv2LTE68/s2ynttJUbzr00Y6C08tu0/U71wX/77SXRuciqmyyUK7OUFiosCwZ1E7UpRwDN/fw0n2Fuj4gc0i4LQXZS2B4JrZOxrSbsoWJsbIG/nEi4q3vtFVIJFRoz5XWPVBYIbmby4JGMVlnwhZej2HCGEEEKIBWrNTBMhhBBSnRhlBoLL2ZfYhgZNhBBCiAMYoZB1S92Rt+NrKxqmEkIIIYRYgGaaCCGEEAegFcFrnlozaCpmzlCayZqSc19YlB0nelOLyonwpl/lZr8JM9hkZM8VC/rmZbdZ0i7KIuPtL8pgKzXwj10qOLbeaHv2HG9fADAI2kXT9fZcQVhURoWXXacSlUkRtKsF2XNy9lcLyqiIMvd4mXmidlcVP3tOTmZe2bFt39+emXmidlHmnRxVmz1HMU01DV1xQgghhBAL1JqZJkIIIaQ6MUJm7TkKBK9yNGgihBBCHIDJzJ5jNGiqcjRoIoQQQhzAyGTONFEgeJWjmCZCCCGEEAvUmpmmIqYGzGRUGeRkLwimR0V9izPUbK+hJrddTgacKPutVNBeZOAfW06Gmyj7rdQguG6i2nSc/fUGUbalILtOsD8T/OXJ+8uUyaxjpRD80cutPSfKnlPZXqcMANROovpx5vt3Vglqywlq06mF+5vPYBNlz4ky+0SZe27KUm67Mycz0N518Xjtosw8UR1EniLG77syUfZczVNrBk2EEEJIdUK352oeGqYSQgghhFiAZpoIIYQQB6DaczUPDZoIIYQQB6DbczVPrRk0FRpcoBcED9tCVEZFFKgnJ1hbbiC3XrD/XVEwNi8QXHCti4V9C16boP8Sve3nJgoEFwVj6/S8QHB+30aDIJBbFAgu2J8bKC6MnRV9QfM7UCjNt/PaAECh4rerRIHignZeoLmzk6BciCDQWxSEruEEkrs5CcqoiILQBYHgokBzV5X5QHFRkLm4hItgf0673CBzXhmWIkGpoprs4MGDWLx4MdLS0pCdnY34+Hj0799fameMYfbs2Vi7di3y8vIQGhqKTz75BE888YS0TUlJCSZPnowvv/wSRUVFeO655/Dpp5+icePG0jZ5eXkYP348du7cCQDo27cvVq5cibp160rbXL16FWPHjsW+ffvg6uqKyMhILFmyBGq1Wtrm1KlTGDduHI4ePYp69eph9OjRmDlzJhSirJP7xMXFYc2aNcjMzMSRI0cQEBCA5cuXIzAwEP369bP6Glo0ijh58qTVHQcHB8PJqdaMyQghhBCrVPVM0507d/Dkk09ixIgRGDhwYLn2RYsWYenSpdiwYQMef/xxzJ07Fz179sS5c+fg4eEBAIiOjsauXbuwbds21K9fH5MmTUKfPn2QlpYGlarsj8LIyEhcu3YNCQkJAIA33ngDQ4YMwa5duwAABoMBvXv3RsOGDZGcnIybN29i2LBhYIxh5cqVAICCggL07NkT3bt3x7Fjx3D+/HkMHz4c7u7umDRpkkWvd/Xq1fjggw8QHR2NefPmwWAoG0zXrVsXy5cvt9+g6amnnoJCoQCzMCdZqVTi/PnzaNasmdUnRAghhNQGVT1oev755/H8889X2MYYw/LlyzFjxgwMGDAAALBx40b4+Phg69atGD16NPLz87F+/XrExcWhR48eAIDNmzejSZMm2Lt3LyIiIpCRkYGEhASkpKQgNDQUALBu3TqEhYXh3LlzCAoKQmJiIs6ePYusrCz4+/sDAD766CMMHz4c8+bNg6enJ7Zs2YLi4mJs2LABGo0GISEhOH/+PJYuXYqJEydaNNu0cuVKrFu3Dv3798eCBQuk59u3b4/Jkydbde3usXgeMjU1FZmZmcLHpUuX4OLiYtPJEEIIIaTqZWZmIicnB+Hh4dJzGo0GXbt2xeHDhwEAaWlp0Ol0Jtv4+/sjJCRE2ubIkSPQarXSgAkAOnToAK1Wa7JNSEiINGACgIiICJSUlCAtLU3apmvXrtBoNCbb/Pnnn7h8+bLFr6lNmzblntdoNLhz545FfTzIopmmrl274rHHHjO5H8nTpUsXuLq62nRChBBCSG1QWTNNBQUFJs9rNBqTwYYlcnJyAAA+Pj4mz/v4+ODKlSvSNmq1Gl5eXuW2ubd/Tk4OvL29y/Xv7e1tss2Dx/Hy8oJarTbZpmnTpuWOc68tMDBQ+JoCAwORnp6OgIAAk+d3796N4OBg4f4VsWjQ9PPPP1vV6Y8//mjTyRBCCCG1BYO8ZQPuBcw0adLE5PlZs2YhJibGpj4fvO3FGBPeCntwm4q2r4xt7oUIWRoIPmXKFIwdOxbFxcVgjOHo0aP48ssvMX/+fHz++ecW9fGgWhOpfduogV6QTWYPsrPnOFlkJYz/enSCLBBRqZMig5rbzsuAk5v9VqQTlHCRkT3Hy24DgFJBu14nyIDTm7/uTJT9puN/GSg4fQMA+ElDUAiy67j7yiyzwvuD2ijIjgP/kkPvxM+OUziJsvPM768U7KtyFmRyCbLvNM7ms8RuCzLvXATZdcLsO1H/KvPfAcLMO0GZFSdOiRaAn10nO3uOUzan2MA/78pUWTNNWVlZ8PT0lJ63dpYJAHx9fQGUzeL4+flJz+fm5kozPL6+vigtLUVeXp7JbFNubi46duwobXP9+vVy/d+4ccOkn9TUVJP2vLw86HQ6k23uzTrdfxyg/GyYOSNGjIBer8fUqVNx9+5dREZGolGjRlixYgVefvlli/p4kNW5lQaDAevXr0dkZCR69OiBZ5991uRBCCGEkKrj6elp8rBl0BQYGAhfX18kJSVJz5WWluLAgQPSgKhdu3ZwdnY22SY7OxunT5+WtgkLC0N+fj6OHj0qbZOamor8/HyTbU6fPo3s7Gxpm8TERGg0GrRr107a5uDBgygtLTXZxt/fv9xtu4ro9Xps3LgRL7zwAq5cuYLc3Fzk5OQgKysLo0aNsvr63GP1oGnChAmYMGECDAYDQkJC8OSTT5o8rPXHH3/gtddeQ/369eHm5oannnpKCgQDyqbjYmJi4O/vD1dXV3Tr1g1nzpyx+jiEEEJIdXJvpknOwxq3b99Geno60tPTAZQFSqenp+Pq1atQKBSIjo5GbGws4uPjcfr0aQwfPhxubm6IjIwEAGi1WowaNQqTJk3CTz/9hBMnTuC1115Dq1atpGy6li1bolevXoiKikJKSgpSUlIQFRWFPn36ICgoCAAQHh6O4OBgDBkyBCdOnMBPP/2EyZMnIyoqSpoxi4yMhEajwfDhw3H69GnEx8cjNjbW4sw5JycnvPXWWygpKQEANGjQoMJYK2tZfXtu27Zt+M9//oN//vOfsg+el5eHTp06oXv37ti9eze8vb3x+++/mwScW7JuBCGEEFLTVPWSA7/++iu6d+8u/XvixIkAgGHDhmHDhg2YOnUqioqKMGbMGGlxy8TERJPftcuWLYOTkxMGDRokLW65YcMGaY0mANiyZQvGjx8vZdn17dsXq1atktpVKhV++OEHjBkzBp06dTJZ3PIerVaLpKQkjB07Fu3bt4eXlxcmTpwonbMlQkNDceLEiXKB4HIomKWLL/0/f39/7N+/H48//rjsg7/77rs4dOgQfvnllwrbGWPw9/dHdHQ0pk2bBqBsNVIfHx8sXLgQo0ePFh6joKAAWq0WH6T2gEsdimky2Z9imipEMU1m9rVjTBOTGdPEHtKYJo3DY5rM7//QxjTd1mFuh0Tk5+ebxAlVpnu/l7rsGgMnd+tvpd2jv1OCgy98atdzrcm+/vprvPvuu3jnnXfQrl07uLu7m7S3bt3a6j6tvj03adIkrFixwuKFLnl27tyJ9u3b46WXXoK3tzfatGmDdevWSe2WrBvxoJKSEhQUFJg8CCGEkOqmqm/P1TaDBw9GZmYmxo8fj06dOuGpp55CmzZtpP/awqLbc/dWB71n37592L17N5544gk4O5vOCOzYscPig1+6dAmrV6/GxIkT8d577+Ho0aMYP348NBoNhg4datG6EQ+aP38+Zs+eXe75O3oX6PW2zTQpOX9iy33Tyqk9J5op4tWGA+TXh+PNFt0VXGvhTJFOcG6CmSjebJJOMFNkKBWlagn+1uDMFilK+fsq9fz3k+CPdygE+/P+AOf88V3WLnemifPSBROyEHxMYHQSzOAJvukYZzbJ4Mx/4Xpn/oUrFbQXq83/UJwFs1gaNf8NUcSZxQLEM1WuzubbRXXv3JzM160DxHXxeDNN4rp1/Guu5NSe481SVzbGFPx6kBbsT8zLzMys9D4tendotVqTf7/44ouVcnCj0Yj27dsjNjYWANCmTRucOXMGq1evxtChQ6XtrFk3Yvr06Sb3PAsKCsqtYUEIIYSQh1tlxjLdY9Gg6Ysvvqj0AwOAn59fuVU5W7Zsie3btwOwbN2IB9myEiohhBBS1YxQyFrcUs6+tcGmTZu47fdPzljK6nnIZ599Fjt27ChXUqWgoAD9+/fHvn37LO6rU6dOOHfunMlz58+fl0aH968bce/+4711IxYuXGjtqRNCCCHVRlVnz9U2EyZMMPm3TqfD3bt3oVar4ebmVjWDpv3795ssNnVPcXGx2Sw4c9555x107NgRsbGxGDRoEI4ePYq1a9di7dq1AGCybkTz5s3RvHlzxMbGmqwbQQghhBDyoLy8vHLPXbhwAW+99RamTJliU58WD5pOnjwp/f/Zs2dNljc3GAxISEhAo0aNrDr4008/jfj4eEyfPh0ffvghAgMDsXz5crz66qvSNpasG0EIIYTUNBQIXvWaN2+OBQsW4LXXXsNvv/1m9f4WD5qeeuopKBQKKBSKCsuluLq6YuXKlVafQJ8+fdCnTx+z7QqFAjExMTYXH7ynUO+KEjMZXUpB2hAve05ENH0qWseJlyGnE+wryp4TZscJskh4GXLFouw5Qd+i7LnSUn67npMBx3SCVK0SfqqWolSU4Wa+XVkiLzvOnu12z57jvXTBd79g2S8wJ8HnTJA4a3Q2v79guTIYNfz3k1GQfWdQm39xBg3/h6JTCz7jakGGmjP/wrhxsvNEmXfFzvxzE2Xf8daIUgvWeHIWtPMy90oFa6lVJro95xgqlQp//vmnTftaPGjKzMwEYwzNmjXD0aNH0bBhQ6lNrVbD29vbZEVQQgghhJhHM032tXPnTpN/M8aQnZ2NVatWoVOnTjb1afGgKSAgADqdDkOHDkW9evXskspHCCGEEFIZ+vfvb/JvhUKBhg0b4tlnn8VHH31kU59WBYI7Ozvju+++wwcffGDTwQghhBBShsm8PUczTXxGoyDmwAZW37zt378/vv3220o/EUIIIaQ2YQAYk/Fw9AuoYQwGA9LT0yvMqrOU1UsOPPbYY5gzZw4OHz5cYQG88ePH23wy9nTb4Ay1mYhOlYwIV6XMt61ocTJewV5RUVxhILggGFtUVLeU0y4K9C4WBHLrBIHgekGwtpETCK4oFpQyEZU6EQRzq0o4bcXcXbn7AuJAbxW/cgWUOvPvV0FlCmGguByyy6ioZAaCc4K9RYHgelfBsTX8dgOnXRRkbhC2C8o0CYK1SzXm2104bYC4VJIokNzFiXNsQRC5KFCcGwguKpNEaozo6Gi0atUKo0aNgsFgQJcuXXDkyBG4ubnh+++/R7du3azu0+pB0+eff466desiLS0NaWlpJm0KhaLaDpoIIYSQ6sQIBRS0IrjdfPPNN3jttdcAALt27cLly5fx22+/YdOmTZgxYwYOHTpkdZ9WD5rsUQCPEEIIqW0oe86+/vrrL6kc248//oiXXnoJjz/+OEaNGoWPP/7Ypj5lzUMyxsAY3VUlhBBCSPXi4+ODs2fPSgtw9+jRAwBw9+5dm5dIsmnQtGnTJrRq1Qqurq5wdXVF69atERcXZ9MJEEIIIbXRvcUt5TyIeSNGjMCgQYMQEhIChUKBnj17AgBSU1PRokULm/q0+vbc0qVLMXPmTIwbNw6dOnUCYwyHDh3Cm2++ib/++gvvvPOOTSdCCCGE1Cb3suDk7E/Mi4mJQUhICLKysvDSSy9Bo9EAKFsR/N1337WpT6sHTStXrsTq1atNqgP369cPTzzxBGJiYqrtoKnIoIFeX3EajD3LqIiy60SBfHpOhpxeVEbFwJ9+FGXHibJfeNl3ojIoej3/3HhlUAB+dhzAz5BTCbLnVMWCUieCDDenIl7ftu8LAE7F/PeTUxH/vawqNb+/Qs/vW2mw3zc0U/KvubBMiqDdwCmTAgBGtfl2vYa7Kwwugs+wK39/XvadqG+DIHPPIMgEFWXfFXMyyfSCLDOdIHOvlFM+BgBKDeYz3IoF2XNugsw8NefWjE5PszcPk3/9618m/7516xaGDRtmc39W357Lzs5Gx44dyz3fsWNHZGdn23wihBBCSG1yLxBczoOYt3DhQnz11VfSvwcNGoT69eujcePGOHnypE19Wj1oeuyxx/Cf//yn3PNfffUVmjdvbtNJEEIIIbUNDZrs67PPPkOTJk0AAElJSUhKSsLu3bvRq1cvTJ482aY+rb49N3v2bAwePBgHDx5Ep06doFAokJycjJ9++qnCwRQhhBBCyjMyBRQyBj4UCM6XnZ0tDZq+//57DBo0COHh4WjatClCQ0Nt6tPqmaaBAwciNTUVDRo0wLfffosdO3agQYMGOHr0KF588UWbToIQQgghpDJ5eXkhKysLAEyWHGCMwWDgrxpvjtUzTQDQrl07bN682aYDEkIIIYSy5+xtwIABiIyMRPPmzXHz5k08//zzAID09HQ89thjNvVp06DJaDTi4sWLyM3NLVdFuEuXLjadiL3d1qnhrKs4e85JaXv2nJzMOkvwpl9F2XGi2nS8unYAoBf0rzeYn6g0cNoAQK/j980EmTkKUX04TrsoO05YH06U4cZpd77Df7+obwuy4+7w/zpyusvPKlIVm29XlPD7VsitGK4wf92ZE//nKW4XZFs68/c3qjnvZRfBe1nQrnMT1Jd052TuCTLvDII6iKK6eAbBuRk5mWR6g2Bf0XeAqJ3zM9EIft6i7zYNJ/tOL6jfWJnKBk1yVgSvxJN5CC1btgxNmzZFVlYWFi1ahDp16gAou203ZswYm/q0etCUkpKCyMhIXLlypdxq4AqFwuYpL0IIIYSQyuLs7FxhwHd0dLTNfVod0/Tmm2+iffv2OH36NP7++2/k5eVJj7///tvmEyGEEEJqE8qes7+4uDh07twZ/v7+uHLlCgBg+fLl+O6772zqz+pB04ULFxAbG4uWLVuibt260Gq1Jg9CCCGEiLFKeBDzVq9ejYkTJ+L555/HrVu3pDthdevWxfLly23q0+pBU2hoKC5evGjTwQghhBBCqsLKlSuxbt06zJgxw6RAb/v27XHq1Cmb+rQ6puntt9/GpEmTkJOTg1atWsHZ2dmkvXXr1jadiL0V6Z2g0ztX2CYKBOe1i8qkyA0U5wWCi8qo6I2CEgqCdp2g3chpNxoFZTEEQaRMUMpAqRO0l5pvV/IrLIhLnQjaecHe6kL+e01dyI8JdC7gR6kqC/gnp7hz13xjEX9fJohXVIiqhjuZ/7oR7quu+LMrEezPNPyvOuZsfn+jC//YTm78vp2K+efmVGL+c1RaR5RQwW0Wvtf1gs+Z3o2X7CEIMhd9xmUEkuvV/IQHg+C2Fe+7T6+ruvkbubfY6PYcX2ZmJtq0aVPueY1Ggzt37tjUp9WDpoEDBwIARo4cKT2nUCjAGKNAcEIIIcRScu+x0f05rsDAQKSnpyMgIMDk+d27dyM4ONimPq0eNGVmZtp0IEIIIYTcR24wN800cU2ZMgVjx45FcXExGGM4evQovvzyS8yfPx+ff/65TX1aPWh6cMRGCCGEEFLdjBgxAnq9HlOnTsXdu3cRGRmJRo0aYcWKFXj55Zdt6tOmxS0JIYQQIg+tCG4/er0eW7ZswQsvvICoqCj89ddfMBqN8Pb2ltUvDZoIIYQQB6BAcPtxcnLCW2+9hYyMDABAgwYNKqffSumlBijSqeFkroyKSpCxpDTfLqcEiyV42XOiCtcGQXadaH/RB9LAyZAT7StqVwiy70SXVcH5kSr4iTdQitoFZRacSsyfnNNdQabmbX66kzA7Lr+Q284KzLcbbt/m7iuicOJnmSmcZWTPcTLvLNlfoRKU5XE2f+5KVxfuvio3Db+9Dr9dWco5din/jV6qE7wuQXac6LOg4GS48doAwCCousMEn3Edp12UnStqN3Cy7wx6meWCSLURGhqKEydOVGpYUa0ZNBFCCCHVClPIC+ammSauMWPGYNKkSbh27RratWsHd3d3k3ZblkiyetCUlZUFhUKBxo0bAwCOHj2KrVu3Ijg4GG+88YbVJ0AIIYTURhTTZF+DBw8GAIwfP156Tu4SSVYPmiIjI/HGG29gyJAhyMnJQc+ePfHEE09g8+bNyMnJwQcffGD1SRBCCCGEVCZ7LJFk9aDp9OnTeOaZZwAA//nPfxASEoJDhw4hMTERb775Jg2aCCGEEEvQ4pZ2ZY8lkqweNOl0Omg0ZYGNe/fuRd++fQEALVq0QHZ2duWeHSGEEPKQouw5+zt37hxWrlyJjIwMKBQKtGjRAm+//TaCgoJs6s/qQdMTTzyBNWvWoHfv3khKSsKcOXMAAH/++Sfq169v00lUhRKDE/T6il+us6hOmpP5dgPjZ1qoFPbLrhPVjpObHSeHo++18y6r4EcibFfqBfUGOQlwwn1LBfXdSgXFxEr4qX1MZz5rSJj9phS8X0QZcApOtqUotoBz3oAFf3ALPqfMaL4HUfacol5dbrtK9GHgHFth4P9MOIm9Ze16/neEsIYjLwtVcGwFp3YcwM++BfgZcKLacqUyvvsMJQ93KbDCwkLMnDkT8fHxyM3NRZs2bbBixQo8/fTTAIDr169j2rRpSExMxK1bt9ClSxesXLkSzZs3l/ooKSnB5MmT8eWXX6KoqAjPPfccPv30UynWGQDy8vIwfvx47Ny5EwDQt29frFy5EnXr1pW2uXr1KsaOHYt9+/bB1dUVkZGRWLJkCdTqijPdrfXNN9/glVdeQfv27REWFgYASElJQUhICLZu3YqXXnrJ6j757+oKLFy4EJ999hm6deuGV155BU8++SQAYOfOndJtO0IIIYRYgMl42OD1119HUlIS4uLicOrUKYSHh6NHjx74448/wBhD//79cenSJXz33XdSun6PHj1MCtxGR0cjPj4e27ZtQ3JyMm7fvo0+ffqYBFZHRkYiPT0dCQkJSEhIQHp6OoYMGSK1GwwG9O7dG3fu3EFycjK2bduG7du3Y9KkSba9sApMnToV06dPx5EjR7B06VIsXboUhw8fxnvvvYdp06bZ1KeCMevnBAwGAwoKCuDl5SU9d/nyZbi5uclebbOyFRQUQKvVIuQ/U8yup8JbhwkA1E7m21WCdZocOdOkF6zTpDfwZwZKBe3FpeYnKks5bQCgLxFMcgoqwyuL+K/N6bb5didBcWtnUXsh/2emKTDfrs7nz5io8/jrMClvCU7uVgG32Xjb/P6i2R57zjQJpyY5szEWceBME/N057Yb3M2v46Svw59p0rsLPsN1+J8TnRv/Z6rnnLqO/7Kgd+O3G9z4P1OjC+dn5sJ/r6o0grX3eOs03S3GxSHzkZ+fD09PT24/trr3e6nJZ7OE7y8eY1ExskbPtvhci4qK4OHhge+++w69e/eWnn/qqafQp08fDB06FEFBQTh9+jSeeOIJAGW/7729vbFw4UK8/vrryM/PR8OGDREXFydlp/35559o0qQJfvzxR0RERCAjIwPBwcFISUlBaGgogLIZnrCwMPz2228ICgrC7t270adPH2RlZcHf3x8AsG3bNgwfPhy5ubmVcu3d3Nxw8uRJPPbYYybPX7hwAU8++STu3r1rdZ9WzzQBAGMMaWlp+Oyzz1BYWLZYnlqthpub4FNCCCGEkDJyZpnum20qKCgweZSUlFR4OL1eD4PBABcX04Gaq6srkpOTpf3ub1epVFCr1UhOTgYApKWlQafTITw8XNrG398fISEhOHz4MADgyJEj0Gq10oAJADp06ACtVmuyTUhIiDRgAoCIiAiUlJQgLS3N0ivI1a1bN/zyyy/lnk9OTsY//vEPm/q0OqbpypUr6NWrF65evYqSkhL07NkTHh4eWLRoEYqLi7FmzRqbToQQQggh1mvSpInJv2fNmoWYmJhy23l4eCAsLAxz5sxBy5Yt4ePjgy+//BKpqalo3rw5WrRogYCAAEyfPh2fffYZ3N3dsXTpUuTk5EiJXjk5OVCr1SZ3mgDAx8cHOTk50jYV3XXy9vY22cbHx8ek3cvLC2q1WtpGrr59+2LatGlIS0tDhw4dAJTNeH399deYPXu2FG91b1tLWD1omjBhAtq3b4///ve/JoHfL774Il5//XVru6syJaUqqMyUYjByAr1FnFSiWxb8ZhvujkqMcFygtwjvTowlRKcubOfNocrsW7S/nH2Z6MIpBZPDakEwN+dWgEJu9L7cHzqPXhAIbhRE7wtjezkbiK6LIEhdUcQPzldxrpvoZyIKFFcYBbe5BcHaCk4IgNyECoXgg8YLLxDdrRX9uHmX1SgKHahUClTGF0pWVpbJ7ax7Ge4ViYuLw8iRI9GoUSOoVCq0bdsWkZGROH78OJydnbF9+3aMGjUK9erVg0qlQo8ePfD8888Lz+TegpHSmVXwvrZlGznGjBkDAPj000/x6aefVth27zwsXejS6ndHcnIyDh06VC66PSAgAH/88Ye13RFCCCG1UyWt0+Tp6WlxDNCjjz6KAwcO4M6dOygoKICfnx8GDx6MwMBAAEC7du2Qnp6O/Px8lJaWomHDhggNDUX79u0BAL6+vigtLUVeXp7JbFNubi46duwobXP9+vVyx75x44Y0u+Tr64vU1FST9ry8POh0unIzULYyiv6YsoHVMU1Go7HCEdm1a9fg4eFRKSdFCCGEEPtxd3eHn58f8vLysGfPHvTr18+kXavVomHDhrhw4QJ+/fVXqb1du3ZwdnZGUlKStG12djZOnz4tDZrCwsKQn5+Po0ePStukpqYiPz/fZJvTp0+brO+YmJgIjUaDdu3a2e11y2X1TFPPnj2xfPlyrF27FkDZtNbt27cxa9Ys/POf/6z0EySEEEIeSg5YEXzPnj1gjCEoKAgXL17ElClTEBQUhBEjRgAAvv76azRs2BCPPPIITp06hQkTJqB///5S4LdWq8WoUaMwadIk1K9fH/Xq1cPkyZPRqlUr9OjRAwDQsmVL9OrVC1FRUfjss88AAG+88Qb69OkjLSoZHh6O4OBgDBkyBIsXL8bff/+NyZMnIyoqym5Zi5XB6kHTsmXL0L17dwQHB6O4uBiRkZG4cOECGjRogC+//NIe50gIIYQ8fJjCgiBKwf5Wys/Px/Tp03Ht2jXUq1cPAwcOxLx58+DsXBYfl52djYkTJ+L69evw8/PD0KFDMXPmTJM+li1bBicnJwwaNEha3HLDhg1Q3bfsyJYtWzB+/HhpsNW3b1+sWrVKalepVPjhhx8wZswYdOrUyWRxy+rMpnWaioqK8OWXX+L48eMwGo1o27YtXn31Vbi6utrjHGW5tx5G883vQuVWcRCsM2cdJgDQOJkP9HRS8e+ZOqv4fStl/JkhCgQXreMkapezTpNOxx+P64r57axE5jpNd8y3O9/m7ipcx0ktWqcpn7NOUwE/aNg5r+JU4XtU+YJ1RTjrMAEAK+KsA/VQB4IL1mniBIEqXcwH1QKAwlMQluDG/15kZtaPAwCjq2CdJjdBex3+50jnLvgO4LTz1nAq65vfLtpfz1nHibuGEwC4Cr531ebbjXeLceX1OVWzTtMns+Wv0zR2ll3PlZiyKU3A1dUVI0eOxMiRIyv7fOxGr1PBqKv4C0SUZabgLEApTHYSLV4pWBzTkXivGwBUSvPtesG+Cs6+AMAE7cIsNBXnC1eQLSlYExRGQcak0ZlzbLWg9I0L/5ecQsf/BS4KUlTwsusEAwuIBibCBSo5+4v2FS2cKVi8UkSp4Fw5lU3L2f1PKT97jvduUgqui5Mou46Jsuv4vwJ4pVIUgjIo4hRXfjM4/YsW7hW9G3jt5n5P2ANj8v5WcXS5qtrIpm+DuLg4dO7cGf7+/rhy5QqAsum67777zqp+YmJioFAoTB6+vr5SO2MMMTEx8Pf3h6urK7p164YzZ87YcsqEEEJI9VJJi1uS/3lwoU/ewxZWD5pWr16NiRMn4vnnn0deXp6USefl5YXly5dbfQJPPPEEsrOzpcepU6ektkWLFmHp0qVYtWoVjh07Bl9fX/Ts2VNahZwQQggh5J66devCy8uL+7i3jS2svj23cuVKrFu3Dv3798eCBQuk59u3b4/JkydbfwJOTiazS/cwxrB8+XLMmDEDAwYMAABs3LgRPj4+2Lp1K0aPHm31sQghhJBqwwGB4A+7n3/+2a79Wz1oyszMRJs2bco9r9FoTKogW+rChQvw9/eHRqNBaGgoYmNj0axZM2RmZiInJ8ekvo1Go0HXrl1x+PBhGjQRQgip0RSs7CFnf2Kqa9eudu3f6ttzgYGBSE9PL/f87t27ERwcbFVfoaGh2LRpE/bs2YN169YhJycHHTt2xM2bN6XaMw+uDHp/fZuKlJSUVMp9S0IIIcSuKKbJ7n755Re89tpr6Nixo1S1JC4uTipAbC2rZ5qmTJmCsWPHori4GIwxHD16FF9++SXmz5+Pzz//3Kq+7q9n06pVK4SFheHRRx/Fxo0bpeJ6D9agEdWlmT9/PmbPnl3ueYNOBVZaDbPnBFQysutE2W8iouUQlJxzUwqy35Sc7DaAn/0GAMyJ387LkBMkDMHAT1CDUsdv1+vMH1upE9T60vOznYRvOCdB/6Xm+1foBLWX9DLbjZx2Ueae4OetsLBulE1EmXtyl1rgXDdFMf/NJjOvz4IibpwPCxNkeoq+fkTfu7z9Bddcz8uGBGDkfT+VyL6qpJrYvn07hgwZgldffRXHjx9HSUnZki6FhYWIjY3Fjz/+aHWfVr87RowYgVmzZmHq1Km4e/cuIiMjsWbNGqxYsQIvv/yy1SdwP3d3d7Rq1QoXLlyQ4pwenFXKzc3l1qWZPn068vPzpUdWVpascyKEEELs4l5Mk5wHMWvu3LlYs2YN1q1bJy3eCQAdO3bE8ePHberTqkGTXq/Hxo0b8cILL+DKlSvIzc1FTk4OsrKyMGrUKJtO4H4lJSXIyMiAn58fAgMD4evra1LfprS0FAcOHJBq11REo9FIxQutKWJICCGEVCm6PWdX586dQ5cuXco97+npiVu3btnUp1WDJicnJ7z11lvSFFeDBg3g7e1t04EBYPLkyThw4AAyMzORmpqKf/3rXygoKMCwYcOgUCgQHR2N2NhYxMfH4/Tp0xg+fDjc3NwQGRlp8zEJIYQQ8vDz8/PDxYsXyz2fnJyMZs2a2dSn1TFNoaGhOHHiBAICAmw64P2uXbuGV155BX/99RcaNmyIDh06ICUlRep76tSpKCoqwpgxY5CXl4fQ0FAkJibCw0NQtoAQQgip7hxQsLc2GT16NCZMmIB///vfUCgU+PPPP3HkyBFMnjwZH3zwgU19Wj1oGjNmDCZNmoRr166hXbt2cHc3LSDUunVri/vatm0bt12hUCAmJgYxMTHWnmY5TKcCc6o4cFEUam3glFEwGPiTdTqlIDBXVG6Ec89aFGQuahcFmRsFgZ68Miqien5Gwb14o0FUqkRQCkXPCQQXBHqLjm3gl0GDjldeQvAlxxT8a84EJWCMgkBwVbH5/hU6/vtBFCiuKOVfGAUvUFxUokVQew6Cz5mQknNdRYHegqBjbt+i/kVlUgTXXFhWRy/4mXMCxXltZe2i0jfCszO/q6hCi+CaM853uqIqA8Fp0GRXU6dORX5+Prp3747i4mJ06dIFGo0GkydPxrhx42zq0+pB0+DBgwEA48ePl55TKBRSVpvBnlkshBBCCCEWmjdvHmbMmIGzZ8/CaDQiODgYderUsbk/mxa3JIQQQohMtCK4XW3cuBH/+te/4O7ujvbt21dKn1YPmiojlokQQgip7WhFcPuaPHkyxowZgxdeeAGvvfYaevXqBScnq4c9Jqzee+fOnRU+r1Ao4OLigsceewyBgYGyTooQQgghRI7s7GwkJCTgyy+/xMsvvwxXV1e89NJL0grhtrB60NS/f38phul+98c1de7cGd9++63NVYQJIYSQhx4FgtuVk5MT+vTpgz59+uDu3buIj4/H1q1b0b17dzRu3Bi///679X1au0NSUhJmzJiBefPm4ZlnngEAHD16FO+//z5mzpwJrVaL0aNHY/LkyVi/fr3VJ2Q3JUqzGTZMMMdp0JvPAtGr+NknKk6WBgAwGWVSRGVOxB3YfmwRo4p/r92JV1IDAFPz9+dmqAFgnHaDKGtH0Lesyy7IxBKdGhNkxzkJsusMGvP7q0r47welINNKWSIoq1HCKRciyI5TcD6DAMTlQETkZM8JMGGtJRmdCz7CwoxHUekcAyd7jtMGWHDrSMZngQm+XwSJv/zsuWIqo/IwcnNzQ0REBPLy8nDlyhVkZGTY1I/Vg6YJEyZg7dq1JlNbzz33HFxcXPDGG2/gzJkzWL58OUaOHGnTCRFCCCG1gQIyY5oq7UweXvdmmLZs2YK9e/eiSZMmeOWVV/D111/b1J/Vg6bff/+9wtIknp6euHTpEgCgefPm+Ouvv2w6IUIIIYQQuV555RXs2rULbm5ueOmll7B//36bY5nusXrQ1K5dO0yZMgWbNm1Cw4YNAQA3btzA1KlT8fTTTwMALly4gMaNG8s6MUIIIeShRksO2JVCocBXX32FiIgI2Vlz91jdy/r169GvXz80btwYTZo0gUKhwNWrV9GsWTN89913AIDbt29j5syZlXKChBBCyEOJAsHtauvWrdL/FxcXw8XFRXafVg+agoKCkJGRgT179uD8+fNgjKFFixbo2bMnlP8faN2/f3/ZJ0YIIYQQYiuj0Yh58+ZhzZo1uH79Os6fP49mzZph5syZaNq0KUaNGmV1nzbNVykUCvTq1QvdunWDRqOBQmZ2SVVQ6hRQmsm4MArqVhlU5ofzBmf+vkZBJpaoBhuvfpyobp2o9hyvrh0AKDm15QB+7TrRseUSlOQCLxdLdGbCQkCiWmO8UmKi7DhBVpBRlB2nFvzMSszvrxLU3BJl16nU/P2VavNXVlkqyLwTZXnZLxFUPmGJNTtm7ok+KKIMOE5NQOVdHXdflSiDVvB+MXDajYLsWqPgN5tRzWks4e9bqWimya7mzp2LjRs3YtGiRYiKipKeb9WqFZYtW2bToMnq3Eqj0Yg5c+agUaNGqFOnjlRWZebMmdVriQFCCCGkGru3IricBzFv06ZNWLt2LV599VWoVP/7w6x169b47bffbOrT6kHT3LlzsWHDBixatAhq9f+G661atcLnn39u00kQQgghhFSmP/74A4899li5541GI3Q6/kypOVYPmuwxciOEEEJqHVYJD2LWE088gV9++aXc819//TXatGljU59WxzTZY+RGCCGE1DoU02RXs2bNwpAhQ/DHH3/AaDRix44dOHfuHDZt2oTvv//epj6tHjTdG7kFBASYPC9n5FYVFKUKKMyUSlAIAsGZ2nwwpEEvCGYUlL0QxWnyiIKtnWSWSREFqfPalU6CAFMH3oznF+wQV1ERYZySHLw2AGCiAFZhgCu/fxWnXSUKItcI+hYFknMCe1XCQHBBCRdBuxDnpSvkfEhhSRkVzvtFVC7Ezjk4vI+p6Ni8UiUAhKVvVKWctmLBvqJAcV6wN+e4pGZ54YUX8NVXXyE2NhYKhQIffPAB2rZti127dqFnz5429Wn1oMkeIzdCCCGktpEbzE2B4GIRERGIiIiotP6sjmm6N3L78ccfpZFbRkaGrJEbIYQQUuvcWxFczoNUKZvWaarskRshhBBS61BMU6Xz8vKyeO3Iv//+2+r+K6cYCyGEEEKIgy1fvtyu/Vs0aLL3yI0QQgipbSimqfINGzbMrv1bNGi6f+R28+ZNzJ07FxEREQgLCwMAHDlyBHv27KnWRXp5ZVSYM39fo4GT3cJpA8RlVAyCuhrcDDVR9pxCkHEk8xPHOzejIOuHV4IFEJ+bSsl/68qpTKEXHNuo5Gd68bKGRBlFojIpRtF7VdBu4LSLs+ME7RpRNhTnvVwqyLzTCbIx9YJ2YbkQTpvM7DkRWdmWor9l5Ya8CI7PY+R/TGRlBioFKbC8zDsAMHDaWVVmz9HtuRrHokHT/SO3gQMH4sMPP8S4ceOk58aPH49Vq1Zh7969eOeddyr/LAkhhBBCHMzq7Lk9e/agV69e5Z6PiIjA3r17K+WkCCGEkIee3LpzNNNU5aweNNWvXx/x8fHlnv/2229Rv379SjkpQggh5KFHZVRqHKuz52bPno1Ro0Zh//79UkxTSkoKEhISqGAvIYQQQh5aVg+ahg8fjpYtW+Ljjz/Gjh07wBhDcHAwDh06hNDQUHucIyGEEPLwoUBwuzt27Bi+/vprXL16FaWlplH+O3bssLo/m9ZpCg0NxZYtW2zZ1XGM5jNkFAb+rgpe9pyM+myW4PUvt/acqF0p4xOpF2QFqpX8iy46N2H2HefcRdetRMlv16sE2XUq82lDRkFNPiaoVWgUZLCJsu+Uas6+oowjzr5AWYYqDzd7TpAdJ8qWUoqy5wSl6bj9C7Ln5KZ9c78iLFzqxaa+AfnZdbxji7LnRJmBnI+C6HUpBO8X3ne+6PdBZXLEkgOFhYWYOXMm4uPjkZubizZt2mDFihV4+umnAQC3b9/Gu+++i2+//RY3b95E06ZNMX78eLz11ltSHyUlJZg8eTK+/PJLFBUV4bnnnsOnn36Kxo0bS9vk5eVh/Pjx2LlzJwCgb9++WLlyJerWrSttc/XqVYwdOxb79u2Dq6srIiMjsWTJEqjVgi8bC23btg1Dhw5FeHg4kpKSEB4ejgsXLiAnJwcvvviiTX1aFNNUUFBgVaeFhYU2nQwhhBBC7Of1119HUlIS4uLicOrUKYSHh6NHjx74448/AADvvPMOEhISsHnzZmRkZOCdd97B22+/je+++07qIzo6GvHx8di2bRuSk5Nx+/Zt9OnTBwbD/0ackZGRSE9PR0JCAhISEpCeno4hQ4ZI7QaDAb1798adO3eQnJyMbdu2Yfv27Zg0aVKlvdbY2FgsW7YM33//PdRqNVasWIGMjAwMGjQIjzzyiE19WjRo8vLyQm5ursWdNmrUCJcuXbLphAghhBBS+YqKirB9+3YsWrQIXbp0wWOPPYaYmBgEBgZi9erVAMrWXRw2bBi6deuGpk2b4o033sCTTz6JX3/9FQCQn5+P9evX46OPPkKPHj3Qpk0bbN68GadOnZIy6DMyMqQ457CwMISFhWHdunX4/vvvce7cOQBAYmIizp49i82bN6NNmzbo0aMHPvroI6xbt87qiRpzfv/9d/Tu3RsAoNFocOfOHSgUCrzzzjtYu3atTX1adHuOMYbPP/8cderUsahTnU5n08kQQgghtUYVxzTp9XoYDAa4uLiYPO/q6ork5GQAQOfOnbFz506MHDkS/v7+2L9/P86fP48VK1YAANLS0qDT6RAeHi7t7+/vj5CQEBw+fBgRERE4cuQItFqtSZxzhw4doNVqcfjwYQQFBeHIkSMICQmBv7+/tE1ERARKSkqQlpaG7t27W3s1yqlXr55056tRo0Y4ffo0WrVqhVu3buHu3bs29WnRoOmRRx7BunXrLO7U19cXzs6CpYkJIYSQWqyyYpoenJnRaDTQaDTltvfw8EBYWBjmzJmDli1bwsfHB19++SVSU1PRvHlzAMDHH3+MqKgoNG7cGE5OTlAqlfj888/RuXNnAEBOTg7UajW8vLxM+vbx8UFOTo60jbe3d7nje3t7m2zj4+Nj0u7l5QW1Wi1tI9c//vEPJCUloVWrVhg0aBAmTJiAffv2ISkpCc8995xNfVo0aLp8+bJNnRNCCCHEvpo0aWLy71mzZiEmJqbCbePi4jBy5Eg0atQIKpUKbdu2RWRkJI4fPw6gbNCUkpKCnTt3IiAgAAcPHsSYMWPg5+eHHj16mD0HxphJjdqK6tXaso0cq1atQnFxMQBg+vTpcHZ2RnJyMgYMGGBz2TebsudqIgUne06Ik6rBBLXlRNl1BsH+Chl/hogy0FxU/NuocrLnjIK0HFFWoTDzT/DDVHHanVSCfQXtJYK6dzrO/gZOZh0AGJ0Ede0E2XVMLcie42TfGTnZbQCgFNx1F7Xz6n0p9YJjC7PnBJ8jUYas0fx7XSH4jIo+JvYsqiozOVdMRv9yM/e49Svt/bqrUiW8P7KysuDp6Sn9u6JZpnseffRRHDhwAHfu3EFBQQH8/PwwePBgBAYGoqioCO+99x7i4+OlWKDWrVsjPT0dS5YsQY8ePeDr64vS0lLk5eWZzDbl5uaiY8eOAMruNl2/fr3csW/cuCHNLvn6+iI1NdWkPS8vDzqdrtwMlK3q1asn/b9SqcTUqVMxdepUWX1avSI4IYQQQipBJa0I7unpafLgDZrucXd3h5+fH/Ly8rBnzx7069cPOp0OOp0OSqXp0EClUsFoLPtjsF27dnB2dkZSUpLUnp2djdOnT0uDprCwMOTn5+Po0aPSNqmpqcjPzzfZ5vTp08jOzpa2SUxMhEajQbt27Sy7fhb4/fff8f777+OVV16REtoSEhJw5swZm/qjQRMhhBBSS+zZswcJCQnIzMxEUlISunfvjqCgIIwYMQKenp7o2rUrpkyZgv379yMzMxMbNmzApk2bpHWNtFotRo0ahUmTJuGnn37CiRMn8Nprr6FVq1bS7buWLVuiV69eiIqKQkpKClJSUhAVFYU+ffogKCgIABAeHo7g4GAMGTIEJ06cwE8//YTJkycjKirKZNZMjgMHDqBVq1ZITU3Fjh07cPv2bQDAyZMnMWvWLJv6pEETIYQQ4gByivXaGkSen5+PsWPHokWLFhg6dCg6d+6MxMREKXlr27ZtePrpp/Hqq68iODgYCxYswLx58/Dmm29KfSxbtgz9+/fHoEGD0KlTJ7i5uWHXrl1Q3Rd+sGXLFrRq1Qrh4eEIDw9H69atERcXJ7WrVCr88MMPcHFxQadOnTBo0CD0798fS5Yssf2CPuDdd9/F3LlzkZSUZLJgZvfu3XHkyBGb+qw1MU2EEEJIteKAMiqDBg3CoEGDzLb7+vriiy++4Pbh4uKClStXYuXKlWa3qVevHjZv3szt55FHHsH333/PP2EZTp06ha1bt5Z7vmHDhrh586ZNfdo0aPrll1/w2Wef4ffff8c333yDRo0aIS4uDoGBgVJaYnXDlOaX5RcHLHKCRGVGeYqSBHglP0TlQESB3KJgamdBqRN7BoqrjfxjqwWRwWqV+f3vctoAwFnQXqziL6dR7GT+Y1XCaQMAvaDMikEQCG7QCcqwOJtvF5VBUQjalaJAcs6PTBRELiqLIQoUFweCmz93UQKJMMHEgYHicskKNJcZrM0toyK4RyK6prwSL6LyL6TmqFu3LrKzsxEYGGjy/IkTJ9CoUSOb+rT69tz27dsREREBV1dXnDhxAiUlJQDKSqfExsbadBKEEEJIbeOI23O1SWRkJKZNm4acnBwoFAoYjUYcOnQIkydPxtChQ23q0+pB09y5c7FmzRqsW7fOZAHLjh07Sus8EEIIIUSgkrLnSMXmzZuHRx55BI0aNcLt27cRHByMLl26oGPHjnj//fdt6tPq23Pnzp1Dly5dyj3v6emJW7du2XQShBBCCCGVydnZGVu2bMGcOXNw/PhxGI1GtGnTRlr93BZWD5r8/Pxw8eJFNG3a1OT55ORkNGvWzOYTIYQQQmoVBwSC10bNmjVDs2bNYDAYcOrUqXILc1rD6ttzo0ePxoQJE5CamgqFQoE///wTW7ZsweTJkzFmzBibToIQQgipbSimyb6io6Oxfv16AIDBYEDXrl3Rtm1bNGnSBPv377epT6tnmqZOnYr8/Hx0794dxcXF6NKlCzQaDSZPnoxx48bZdBJVgTkBRjOvlgkylniZGkqlIINNlOEmIwNOLchucxK0i7LjXAUpTUpO2pDodYmIyqyUmPth/j/etRFdNxcVPxXrrqBd7WQ+u66I0wYApU78cytx5r9ug46f+mPgZM8Z9Py/oRSlgsw8jSD7jlPqRJw9J6/MijADjnPZxZl3/HaIjs35qNhc+slCdi/DIgM3Q05uZh7nY8SpqFP5aKbJrr755hu89tprAIBdu3bh0qVL+O2337Bp0ybMmDEDhw4dsrpPmxa3nDdvHv766y8cPXoUKSkpuHHjBubMmWNLV5L58+dDoVAgOjpaeo4xhpiYGPj7+8PV1RXdunWzeelzQgghhNQef/31F3x9fQEAP/74IwYNGoTHH38co0aNwqlTp2zq0+YVwd3c3NC+fXs888wzqFOnjq3dAACOHTuGtWvXonXr1ibPL1q0CEuXLsWqVatw7Ngx+Pr6omfPnigsLJR1PEIIIcThKHvOrnx8fHD27FkYDAYkJCRIZV7u3r1rsnq5NSy6PTdgwACLO9yxY4dVJ3D79m28+uqrWLduHebOnSs9zxjD8uXLMWPGDOn4GzduhI+PD7Zu3YrRo0dbdRxCCCGkOpEbl0QxTXwjRozAoEGD4OfnB4VCgZ49ewIoKx7cokULm/q0aKZJq9VKD09PT/z000/49ddfpfa0tDT89NNP0Gq1Vp/A2LFj0bt3b2kEeE9mZiZycnIQHh4uPafRaNC1a1ccPnzY6uMQQgghpPaIiYnB559/jjfeeAOHDh2CRqMBUFb37t1337WpT4tmmu6vQzNt2jQMGjQIa9askaa3DAYDxowZY3Vl4m3btuH48eM4duxYubacnBwAZdNr9/Px8cGVK1fM9llSUiKtUg4ABQUFVp0TIYQQUiUoENzu/vWvf5V7btiwYTb3Z3X23L///W8kJyeb3A9UqVSYOHEiOnbsiMWLF1vUT1ZWFiZMmIDExES4uLiY3U7xQHE2xli55+43f/58zJ49u9zzRjUD1BW/w0TZcwpn8yksChV/X5WKn/7ipBTUf+PUQRNmzwlSb0T12zSCLDGNwnzKk9zsORFR9pyryvy5FRn4GWxFBjW3XU52neiaFguy64oF2XOlOn47L/tOlHlnVPNTlpgg+87IaTeK6t4Z5LZzmwXZc4K+ZWTmAeD+4pNb165G4112Ufac4LrxsucMVXhN6fZczWN1ILher0dGRka55zMyMmA0Wp4fm5aWhtzcXLRr1w5OTk5wcnLCgQMH8PHHH8PJyUmaYbo343RPbm5uudmn+02fPh35+fnSIysry+JzIoQQQggxx+qZphEjRmDkyJG4ePEiOnToAABISUnBggULMGLECIv7ee6558ql/I0YMQItWrTAtGnT0KxZM/j6+iIpKQlt2rQBAJSWluLAgQNYuHCh2X41Go1035IQQgiptuj2XI1j9aBpyZIl8PX1xbJly5CdnQ2grLTK1KlTMWnSJIv78fDwQEhIiMlz7u7uqF+/vvR8dHQ0YmNj0bx5czRv3hyxsbFwc3NDZGSktadNCCGEVC80aKpxrB40KZVKTJ06FVOnTpWCrK0NALfU1KlTUVRUhDFjxiAvLw+hoaFITEyEh4eHXY5HCCGEkIeH0WjExYsXkZubWy6EqEuXLlb3Z/Wg6X6VPVh6sBaMQqFATEwMYmJiZPdtVBsBTcUxV0zNj8VSOplvV3HaAMBZUBbDxZlfP4IXdOzCCXYGAHenEm67m2B/V2WpYH/z/TsLo1/5jNwaCoCLkh+0rGPm2zWCAHheEDkgDkJ3UZm/PewmCPS+q5fXLiqzUsIJFC/RywsyNxj4PzNemRZekDgAMEEwtlFmoDg47cJ9BX/tywkkFweRyzs3OewdhMx9aaJAcBknZ6zC6RsF5FWEqcZVcKqFlJQUREZG4sqVK2DM9OeqUChgMFj/e8rqQVNgYCA3e+3SpUtWnwQhhBBS69DtObt688030b59e/zwww/SApdyWT1our82HADodDqcOHECCQkJmDJliuwTIoQQQmoDWnLAvi5cuIBvvvkGjz32WKX1afWgacKECRU+/8knn5isEk4IIYQQ4iihoaG4ePGiYwdN5jz//POYPn26yerhhBBCCDGDbs/Z1dtvv41JkyYhJycHrVq1grOzaUxo69atre6z0gZN33zzDerVq1dZ3RFCCCEPPxr42M3AgQMBACNHjpSeUygUUmWRKgkEb9OmjUkwFWMMOTk5uHHjBj799FOrT6DKuBrLHhVQOvMvnLOGk8GmFmSwqfkZaO7O/PY6zuYz1ETZcXWc+H2LsuM8VMXcdjel/bLnRAyCxex52XO8NgAoMQoy2ARlVnhZiXcFJVzE2XX8hVuLDfyP9F1O/yWCfYt1/HMrNQgyGvXm2/WCzDuj7HZBCRhOOxNkqIky+2CUkdknKrIg6lv0C7ka/8LmnbsoaVBOWllVZs8R+8rMzKz0Pq0eNPXr189k0KRUKtGwYUN069YNLVq0qNSTI4QQQh5WFAhuXwEBAZXep9WDpspYM4kQQgip9SimqUqcPXsWV69eRWmp6d2Vvn37Wt2X1YMmlUqF7OxseHt7mzx/8+ZNeHt723SPkBBCCCGkMl26dAkvvvgiTp06JcUyAZDultkyXuEHAlTgwVU17ykpKYFazY/1IIQQQkiZe7fn5DyIeRMmTEBgYCCuX78ONzc3nDlzBgcPHkT79u3LVSCxlMUzTR9//DGAshHa559/jjp16khtBoMBBw8epJgmQgghxFJ0e86ujhw5gn379qFhw4ZQKpVQKpXo3Lkz5s+fj/Hjx+PEiRNW92nxoGnZsmUAymaa1qxZA5Xqf5kwarUaTZs2xZo1a6w+gaqictFD6VpxFpxKkD3Hy5Bz1wiy39T8DDdPTnYcAHhwMuRE2XF1hNlv/P21qrvcdhel+eti7+w5ETnZc6VK/sdCdN2Kmfn9XZX87LciFX+2to6Kf+wiQeZfESd7766ef+xiQV27YlHtOk52nk6QeSfKzBPVvRNm53HSsYSZeYIMNiZq52XuCfYVpZGZuTFg+f6i7D0ZFKLrwmtTCl6Y4HUpVOb3Z0oKMXlYGAwGaYKnQYMG+PPPPxEUFISAgACcO3fOpj4tHjTdS93r3r07duzYAS8vL5sOSAghhBDKnrO3kJAQnDx5Es2aNUNoaCgWLVoEtVqNtWvXolmzZjb1aXUg+M8//2zTgQghhBByH7o9Z1fvv/8+7ty5AwCYO3cu+vTpg3/84x+oX78+vvrqK5v6tGjQNHHiRMyZMwfu7u6YOHEid9ulS5fadCKEEEJIrUKDJruKiIiQ/r9Zs2Y4e/Ys/v77b3h5eZmsN2kNiwZNJ06cgE5XFr9y/Phxmw9GCCGEEFKVLl68iN9//x1dunRBvXr1zK4CYAmLBk3335KzNU3P0dQuOqhcKg7odFGbL5MCAG6cUihaNT/Y2lPQrnUu4rbzgr1Fgd6idg+l7WVSAMBdRhkVlUJehKmBCYJzOatplAoCwY2CvouV/GDrYk4wtiiIXFjCRRAozjs2wA8EFwWhlxgFgeCCEjG8Ei+lRv7PRBRkrhPsbzDaHigu6lsUCC4MQuecGy9AHRAHiovOTVYguSgWW1TrRPR7i7O7UhDMI7ouSmfz3z8K8EtjVSaKabKvmzdvYtCgQfj555+hUChw4cIFNGvWDK+//jrq1q2Ljz76yOo+rV6naeTIkSgsLCz3/J07d0yK4hFCCCGEg1XCg5j1zjvvwNnZGVevXoWbm5v0/ODBg5GQkGBTn1YPmjZu3IiiovKzI0VFRdi0aZNNJ0EIIYQQUpkSExOxcOFCNG7c2OT55s2b48qVKzb1aXH2XEFBARhjYIyhsLAQLi4uUpvBYMCPP/5YrrQKIYQQQiqmYAwKGfE1cvatDe7cuWMyw3TPX3/9BY2Gv2aeORYPmurWrQuFQgGFQoHHH3+8XLtCocDs2bNtOglCCCGk1qHsObvq0qULNm3ahDlz5gAoG6cYjUYsXrwY3bt3t6lPiwdNP//8MxhjePbZZ7F9+3bUq1dPalOr1QgICIC/v79NJ0EIIYQQUpkWL16Mbt264ddff0VpaSmmTp2KM2fO4O+//8ahQ4ds6tPiQVPXrl0BlK0M3qRJEyiVVodDOVRdtyI4uVecMeHixM+WqONsPuPJ01mQoSZo93SyvdSJ1olf5oSX3SbqGwBcFPx2Xv8uCn5GohIy6zMIEnNkZc8JOi/llEkB+Nl1ouy2EkFmnptg/2Im6F/FKaNiEGTPCfq+K8ieK+Vk35VwMusAoFRQwkWUfScqw8LbXy/IvJObucdrNwgy0ER9C0u8CPvnlJcRHNuekyDC7DhBmRW1s/nvJwP433uVibLn7Cs4OBgnT57E6tWroVKpcOfOHQwYMABjx46Fn5+fTX1aPfIJCAiAUqnE3bt38dtvv+HkyZMmD0IIIYRYwAHZc4WFhYiOjkZAQABcXV3RsWNHHDt2TGq/F4bz4GPx4sXSNiUlJXj77bfRoEEDuLu7o2/fvrh27ZrJcfLy8jBkyBBotVpotVoMGTIEt27dMtnm6tWreOGFF+Du7o4GDRpg/PjxKC2t3EGrr68vZs+eje+//x4//vgj5s6da/OACbChjMqNGzcwYsQI7N69u8J2g4GKHRJCCCHV0euvv47Tp08jLi4O/v7+2Lx5M3r06IGzZ8+iUaNGyM7ONtl+9+7dGDVqFAYOHCg9Fx0djV27dmHbtm2oX78+Jk2ahD59+iAtLQ0qVdnMa2RkJK5duyal9r/xxhsYMmQIdu3aBaBsrNC7d280bNgQycnJuHnzJoYNGwbGGFauXFlpr7e4uBgnT55Ebm4ujEbTOxx9+/a1uj+rB03R0dHIy8tDSkoKunfvjvj4eFy/fh1z5861aaEoQgghpDaq6ttzRUVF2L59O7777jt06dIFABATE4Nvv/0Wq1evxty5c+Hr62uyz3fffYfu3btLBW7z8/Oxfv16xMXFoUePHgCAzZs3o0mTJti7dy8iIiKQkZGBhIQEpKSkIDQ0FACwbt06hIWF4dy5cwgKCkJiYiLOnj2LrKwsKR76o48+wvDhwzFv3jx4enrafmH+X0JCAoYOHYq//vqrXJtCobBpksfq23P79u3DsmXL8PTTT0OpVCIgIACvvfYaFi1ahPnz51t9AoQQQkitVEm35woKCkweJSUVx5vq9XoYDAaTJYMAwNXVFcnJyeW2v379On744QeMGjVKei4tLQ06nQ7h4eHSc/7+/ggJCcHhw4cBAEeOHIFWq5UGTADQoUMHaLVak21CQkJMEsgiIiJQUlKCtLQ0wYWzzLhx4/DSSy8hOzsbRqPR5GHrXTGrB0137tyR1mOqV68ebty4AQBo1aoVjh8/btNJEEIIIbXNvZkmOQ8AaNKkiRQ7pNVqzU5geHh4ICwsDHPmzMGff/4Jg8GAzZs3IzU1tdxtOaBsMWsPDw8MGDBAei4nJwdqtRpeXl4m2/r4+CAnJ0fapqJ1G729vU228fHxMWn38vKCWq2WtpErNzcXEydOLHccOay+PRcUFIRz586hadOmeOqpp/DZZ5+hadOmWLNmjazgKnur73oXzq4VZ0y4qPiZXrwMOA9B9lsdFT+DzUNQH45X/020r4uCnxUop7acqH9R9pzKzguMGDgZcAbB3wo6Qe05Ud07XgabTimosSbKjlPKqz3Hy+wTZVMWC7IG63Ay8wD+uYnq2onaeZl5gAXZeZz99YKftyi7TtjO6V+0r7CmnujcBVmF3Ow5QZapnMw8gJ+dp1Tys281TvxZBDdORrSe8b/3qqOsrCyT21m8hRvj4uIwcuRINGrUCCqVCm3btkVkZGSFkx7//ve/8eqrr5abmaoIYwwKxf9+pvf/v5xt5PjXv/6F/fv349FHH62U/gAbY5rujUhnzZqFiIgIbNmyBWq1Ghs2bKi0EyOEEEIeapW0uKWnp6fFMUCPPvooDhw4gDt37qCgoAB+fn4YPHgwAgMDTbb75ZdfcO7cOXz11Vcmz/v6+qK0tBR5eXkms025ubno2LGjtM3169fLHfvGjRvSrI+vry9SU1NN2vPy8qDT6SptZmjVqlV46aWX8Msvv6BVq1Zwdjb9w238+PFW92n1oOnVV1+V/r9Nmza4fPkyfvvtNzzyyCNo0KCB1SdACCGE1FaOWmvJ3d0d7u7uyMvLw549e7Bo0SKT9vXr16Ndu3Z48sknTZ5v164dnJ2dkZSUhEGDBgEAsrOzcfr0aamPsLAw5Ofn4+jRo3jmmWcAAKmpqcjPz5cGVmFhYZg3bx6ys7Olu1SJiYnQaDRo165dpbzGrVu3Ys+ePXB1dcX+/fvLzXJVyaDpQW5ubmjbtq3cbgghhBBiZ3v27AFjDEFBQbh48SKmTJmCoKAgjBgxQtqmoKAAX3/9dYUZ8VqtFqNGjcKkSZNQv3591KtXD5MnT0arVq2kbLqWLVuiV69eiIqKwmeffQagbMmBPn36ICgoCAAQHh6O4OBgDBkyBIsXL8bff/+NyZMnIyoqqlIy5wDg/fffx4cffoh333230hbktmjQNHHiRIs7XLp0qc0nQwghhNQajJU95Oxvpfz8fEyfPh3Xrl1DvXr1MHDgQMybN8/k1tW2bdvAGMMrr7xSYR/Lli2Dk5MTBg0ahKKiIjz33HPYsGGDtEYTAGzZsgXjx4+Xsuz69u2LVatWSe0qlQo//PADxowZg06dOsHV1RWRkZFYsmSJ1a/JnNLSUgwePLhSK5goGBNfdUsL2ykUCuzbt0/2SVWmgoKCstVIf34F6joVB9G6KvkB0+5Otgdji4JrRcHYvP7llDkBADfB/i5KfjA3L9hbLSiTohTE+ckNFOcFghsFXZfKDBTXccq0iEq46CAIFBeUMtGJSrxwgrFFfYuCzHmvW9R/iSiAXVR+RhAILjo33v56QZkU0bHFgeScEi4yg9BF5WXkBLGLEiJEQeqlev65qTilUESlr9w5gd4AvzSW7k4p4nt+gfz8/Eqb8XjQvd9L7f81F07O4iBrc/S6Yvz6zft2Pdea7J133kHDhg3x3nvvVVqfFs00/fzzz5V2QEIIIYQQezMYDFi0aBH27NmD1q1blwsEt+XOmOyYJkIIIYTYoJKy50jFTp06hTZt2gAATp8+bdJm67IGNGgihBBCHEBhLHvI2Z+YZ4+7ZJUXHUUIIYQQ8hCjmSZCCCHEEej2XI1TawZN9dV3oFFXnDHhIsie42XA1RFkzwkz2GSUKpFT5gQA3AXtzoK5XxdOu7MwO46/gVLQLsI7c4NgNTkN45dg0Amui46zvyjzrlSQPefC+D8zUQacMyfjUdi3gt+3KDPQhXNuor7dlPKy4+Rk/tkzMw/gZ8+J3i+izD5ReRlRdl4pp8yKKDOPty8gzoBz47Tz2sra+d+Nrirz+5fq+H1Xpvvrx9m6P6latWbQRAghhFQrDlinichDMU2EEEIIIRagmSZCCCHEAej2XM1DgyZCCCHEESgQvMah23OEEEIIIRaoNTNN9Z1vw8W54pcryjLjZdd5KPnZc6LMPFH9OF59OFFtODX4WWBuSn67s+DPGDVnRVVnwWqrouw4UXadHAbB6zIK5rx1guBLAye7Tsdsz7wDgFIF/+8cZ0H/vAw5Uead6L1azCqu7Si1G82/No3gM1giOLdSQc09jeBzyKt956IU1AuUmbmn5+yvE9RvE2XmOXGuOSDOrlNyPitKwedElOHmwslgE7Xzst8AwE3Qzst6LlFT9hwxz6EzTatXr0br1q3h6ekJT09PhIWFYffu3VI7YwwxMTHw9/eHq6srunXrhjNnzjjwjAkhhJBKci97Ts6DVCmHDpoaN26MBQsW4Ndff8Wvv/6KZ599Fv369ZMGRosWLcLSpUuxatUqHDt2DL6+vujZsycKCwsdedqEEEIIqYUcOmh64YUX8M9//hOPP/44Hn/8ccybNw916tRBSkoKGGNYvnw5ZsyYgQEDBiAkJAQbN27E3bt3sXXrVkeeNiGEECLbvdtzch6kalWbQHCDwYBt27bhzp07CAsLQ2ZmJnJychAeHi5to9Fo0LVrVxw+fNhsPyUlJSgoKDB5EEIIIdUOq4QHqVIODwQ/deoUwsLCUFxcjDp16iA+Ph7BwcHSwMjHx8dkex8fH1y5csVsf/Pnz8fs2bPLPa9V3YWrquKXKwpC5QVzyy1lIm7nlL1QCAK5BX+GuAjanQXB2M6coGRnwXhcJQwUlzeeN3IKqfDDcgGDIE5AdF113GML9hX9TASB4mpuARmgmFOmRVQ2R1TSQ3RuvEByURB5qajEi7BMCv+rzpnzWRIFeovaeX0D/HN3UvD7FgVji9rlcHPiJwZoBIkqonZXlfn+Rfu6qUTlqzjvRSd+36R2c/hMU1BQENLT05GSkoK33noLw4YNw9mzZ6V2xQO/XBlj5Z673/Tp05Gfny89srKy7HbuhBBCiK3o9lzN4/CZJrVajcceewwA0L59exw7dgwrVqzAtGnTAAA5OTnw8/OTts/NzS03+3Q/jUYDjUZj35MmhBBC5DKysoec/UmVcvhM04MYYygpKUFgYCB8fX2RlJQktZWWluLAgQPo2LGjA8+QEEIIqQQU01TjOHSm6b333sPzzz+PJk2aoLCwENu2bcP+/fuRkJAAhUKB6OhoxMbGonnz5mjevDliY2Ph5uaGyMhIR542IYQQQmohhw6arl+/jiFDhiA7OxtarRatW7dGQkICevbsCQCYOnUqioqKMGbMGOTl5SE0NBSJiYnw8PBw5GkTQgghsikgc0XwSjsTYimHDprWr1/PbVcoFIiJiUFMTIzsY3kqi+CmqjgTRS3IbuFl/fCy28rabc+OK2s3f26iLC5nwSdKTnYcALhwMntE2W/CMiqCY4uZPzeDoNSIKOOIl5kHAEpm/rXpBBlqKsF8u6idV/YCAJS895OoxIsoI1Jw7GJO3qLwvAU5jyqlvPI0Ks5rF2XmqQTvB1lBEIKujYIsVD3ncwCIs9Dq8DLYVPx9nUTfq4LSNrysQ1FZHF52HMDPei4SvK5KJXdVb1oRvMpVu5gmQgghhJDqyOHZc4QQQkhtRAV7ax4aNBFCCCGOIDcDjgZNVY5uzxFCCCGEWIBmmgghhBAHUDAGhYxgbjn7EtvUmkGTi0IHFzOZS2phBhuv/pu87DhRvS9ehpy9s+NE9eN4GXKi7DhnhePeekrB6xZlxxk42XFl/XO+yATfcUbRBoL3ixDvS1aYvyy4LuBnS9mTSnRdBM0GznvZIDOTk9c3AOg4WajC1yUgynBzF9av5GXvCvYVZOaJ9ud9t4oy7+TUE4XgvCqVEcL3pnB/UqXo9hwhhBBCiAVqzUwTIYQQUp3Q7bmahwZNhBBCiCNQ9lyNQ4MmQgghxBFoRfAap9YMmpwVeqjNBOgKAxo5wdyifUUlOUSlUHhBZyphKRJBu8z95RCWIqnB4Xa8IHjhNRV8B4oD7Pn7848tKh/DJ0pq4AVEO4MfNGwQvG6jIDhfJfic8cqoiIKxixm/zIqRCRIPBO08bpwyJ4C4PI2cYG1R2RxRqRNRAg7v3MUlWGwvb2WsykBwUuPUmkETIYQQUp3QiuA1Dw2aCCGEEEeg23M1Ts29B0IIIYQQUoVopokQQghxAIVR3nq1cte6JdajQRMhhBDiCHR7rsapNYMmZ4XBbGaRs6D8Ay9LRJRBImqvzgyiDyT3zxzBnV9OtlJZ3/xmezKIzk1AWArFTvsC4p+ZgdO/vf9oVXGOoJMZKSAqVSIqfcPbX8fMlzkBxJl7osw/OaVKlIKpBtH3jyjLjJf9Kyf7zZJj8zIeRfuqBdeNlxEpt3QNebhRTBMhhBDiCKwSHlYqLCxEdHQ0AgIC4Orqio4dO+LYsWMm22RkZKBv377QarXw8PBAhw4dcPXqVam9pKQEb7/9Nho0aAB3d3f07dsX165dM+kjLy8PQ4YMgVarhVarxZAhQ3Dr1i2Tba5evYoXXngB7u7uaNCgAcaPH4/SUv4yGo5GgyZCCCHEAe6VUZHzsNbrr7+OpKQkxMXF4dSpUwgPD0ePHj3wxx9/AAB+//13dO7cGS1atMD+/fvx3//+FzNnzoSLi4vUR3R0NOLj47Ft2zYkJyfj9u3b6NOnDwyG/83wRUZGIj09HQkJCUhISEB6ejqGDBkitRsMBvTu3Rt37txBcnIytm3bhu3bt2PSpEkyrqj9KRh7uG+KFhQUQKvVYufJR+HuUfE0u+j2HG+q10UwTSxa8E+0uKUz508JtWChRGdRu2DMLFpIkbdQo2hxSnHfjhvP2/P2nGhRT53g2Lzba5bsr+PsrxN8E+gEt6FKBT9zHWcRx2LGjxQQLSApbDeK9lebbbtrNN9mWd/yFr/kodtzFRPdnuPtf7fQgJee/A35+fnw9PTk9mOre7+Xurd/D05OLuIdzNDri/Hzr7EWn2tRURE8PDzw3XffoXfv3tLzTz31FPr06YO5c+fi5ZdfhrOzM+Li4irsIz8/Hw0bNkRcXBwGDx4MAPjzzz/RpEkT/Pjjj4iIiEBGRgaCg4ORkpKC0NBQAEBKSgrCwsLw22+/ISgoCLt370afPn2QlZUFf39/AMC2bdswfPhw5Obm2u3ay0UzTYQQQogj3AsEl/Owgl6vh8FgMJk1AgBXV1ckJyfDaDTihx9+wOOPP46IiAh4e3sjNDQU3377rbRtWloadDodwsPDpef8/f0REhKCw4cPAwCOHDkCrVYrDZgAoEOHDtBqtSbbhISESAMmAIiIiEBJSQnS0tKsel1ViQZNhBBCiCMwlGVg2Pr4/zFTQUGByaOkpKTCw3l4eCAsLAxz5szBn3/+CYPBgM2bNyM1NRXZ2dnIzc3F7du3sWDBAvTq1QuJiYl48cUXMWDAABw4cAAAkJOTA7VaDS8vL5O+fXx8kJOTI23j7e1d7vje3t4m2/j4+Ji0e3l5Qa1WS9tUR7Ume85eRJkxwttQonpfnN1Ft2qUoj9CRLcOhRlwtvctugFmFFwX0XWVm4XG71twC41z7qLzEv1MRfuLrquBs7vovSy3/hsvC80guEUlt10nuP3HO7dSwb6izD1RBhy49d3k3SoWHVuUKca7xSbel98uuoXGu/Uoui6iY/P2F+1bmWyNS7p/fwBo0qSJyfOzZs1CTExMhfvExcVh5MiRaNSoEVQqFdq2bYvIyEgcP34cRmPZa+/Xrx/eeecdAGW37g4fPow1a9aga9euZs+FMQbFfSEbigrCN2zZprqhmSZCCCGkBsvKykJ+fr70mD59utltH330URw4cAC3b99GVlYWjh49Cp1Oh8DAQDRo0ABOTk4IDg422adly5ZS9pyvry9KS0uRl5dnsk1ubq40c+Tr64vr16+XO/aNGzdMtnlwRikvLw86na7cDFR1QoMmQgghxBEYZMY0lXXj6elp8tBoNMJDu7u7w8/PD3l5edizZw/69esHtVqNp59+GufOnTPZ9vz58wgICAAAtGvXDs7OzkhKSpLas7Ozcfr0aXTs2BEAEBYWhvz8fBw9elTaJjU1Ffn5+SbbnD59GtnZ2dI2iYmJ0Gg0aNeunU2XsyrQ7TlCCCHEERywIviePXvAGENQUBAuXryIKVOmICgoCCNGjAAATJkyBYMHD0aXLl3QvXt3JCQkYNeuXdi/fz8AQKvVYtSoUZg0aRLq16+PevXqYfLkyWjVqhV69OgBoGxmqlevXoiKisJnn30GAHjjjTfQp08fBAUFAQDCw8MRHByMIUOGYPHixfj7778xefJkREVFVdvMOYBmmgghhJBaIz8/H2PHjkWLFi0wdOhQdO7cGYmJiXB2Llsa48UXX8SaNWuwaNEitGrVCp9//jm2b9+Ozp07S30sW7YM/fv3x6BBg9CpUye4ublh165dUKn+Fxu4ZcsWtGrVCuHh4QgPD0fr1q1NljFQqVT44Ycf4OLigk6dOmHQoEHo378/lixZUnUXwwa0ThPkrdMkCrQUrdOkFgQd8tZxMlcWRmqXsc5S2f62r7Uk6ltE7jpPtTUQXCf4OJdy2nWCaypap4m3DhPAX4upVFCqRO46TXeN/NsVvP3vCPYVlVmRgwLBzRxb+L0p+k43v07TnUIDBj55vkrWaXq21TQ4qcS30szRG0qw79RCu54rMUW35wAYRXWruJkWMjLMAHGNNe5ihfJ+AYsWvhPuz1vcUvALViV84aIvZNsHZfYcUAGi+m6Cay4Y9PAWpyzbn9vMHRjZc1AE8AdGshevFLSLBmW87DvRL2hH1iqTM+ixZH9+36Lr8lD/PV4pKit7jlQduj1HCCGEEGIBmmkihBBCHMEBgeBEHho0EUIIIY5Ag6Yah27PEUIIIYRYoNbMNBmY0nywpygYkhvgyq+2bRSWpuCPW42czL5SmYHeohIuvMw9AFBy9lcJ4rTFgeB89hztyw3r5QWCiwK1hWVQ7JjhVgp+sLQoEFxUqoSfPSfalx/obRScm4gjg7ntyZGvyyB4L0Ihp0wTf1dxkov5Y9s7UcQEzTTVOLVm0EQIIYRUK0aIM6hF+5MqRYMmQgghxAFoyYGah2KaCCGEEEIsQDNNhBBCiCNQTFONQ4MmQgghxBGMDJCzcrqRBk1VrdYMmvRQQWcmO8goyPLgZkOJ6rsJMjGU3DIpgI6TYSLKflMKPozC8hAy+hftK7ouIkp5yXeyiL+nzJ+c6P0izo4TlfwRZbiZbxdlv4lKkZj7fFnSvzDTSoBXpwwA1IL9Szk/U1HfIqIyTaRivPeyqISL+P1k/r0oykAltVutGTQRQggh1QrdnqtxaNBECCGEOITMQVNVrilFAFD2HCGEEEKIRWimiRBCCHEEuj1X49CgiRBCCHEEI4OsW2yUPVflas2giVd7TpRxxKvfpBNkFIky1ET49d1kZr+Jsudk9s89tszMPrN1BC3cn9u3zLvWvGxMUXaciOh1izK1eMcXvZdF10V0btz3m7AOmeD9IPNnppKR9i3K1BJ9zuxJbuaenHOXc01FhLUGRR8zzvtJbiYnebg5NKZp/vz5ePrpp+Hh4QFvb2/0798f586dM9mGMYaYmBj4+/vD1dUV3bp1w5kzZxx0xoQQQkglYUb5D1KlHDpoOnDgAMaOHYuUlBQkJSVBr9cjPDwcd+7ckbZZtGgRli5dilWrVuHYsWPw9fVFz549UVhY6MAzJ4QQQmS6F9Mk50GqlENvzyUkJJj8+4svvoC3tzfS0tLQpUsXMMawfPlyzJgxAwMGDAAAbNy4ET4+Pti6dStGjx7tiNMmhBBC5KOYphqnWi05kJ+fDwCoV68eACAzMxM5OTkIDw+XttFoNOjatSsOHz5cYR8lJSUoKCgweRBCCCGEyFVtAsEZY5g4cSI6d+6MkJAQAEBOTg4AwMfHx2RbHx8fXLlypcJ+5s+fj9mzZ5d7XsdUwkBXc3j7iYIddYK+ZQVaigK5ZQagOsMga38euUHqcgJc5fYtZ3+5geAi4kBxXpC6ff+GcmQ5EWEpFDl/sIuC2AXsGXhszyB0ewZ6A/K+v+QEivPKZlU6WnKgxqk2M03jxo3DyZMn8eWXX5ZrUyhM3+GMsXLP3TN9+nTk5+dLj6ysLLucLyGEECILg8yYJke/gNqnWsw0vf3229i5cycOHjyIxo0bS8/7+voCKJtx8vPzk57Pzc0tN/t0j0ajgUajse8JE0IIIaTWcehME2MM48aNw44dO7Bv3z4EBgaatAcGBsLX1xdJSUnSc6WlpThw4AA6duxY1adLCCGEVB7KnqtxHDrTNHbsWGzduhXfffcdPDw8pBgmrVYLV1dXKBQKREdHIzY2Fs2bN0fz5s0RGxsLNzc3REZGOvLUCSGEEHmMRkBO3JmR1mmqag4dNK1evRoA0K1bN5Pnv/jiCwwfPhwAMHXqVBQVFWHMmDHIy8tDaGgoEhMT4eHhUcVnSwghhJDazKGDJmbB1KJCoUBMTAxiYmLsf0I2KJVbRkWQecPLfhFlSokStUTnJso2VMqIQhTn5dmW6WgJlZkkAksZ7Hhuwp+pAC87jtiHsOSPsEyT/Uq4iNgzA05u9i7vuon6FmZLVheUPVfjVItAcEIIIaTWoUFTjVNtlhwghBBCCKnOaKaJEEIIcQQqo1Lj0KCJEEIIcQDGjGDM9vgrOfsS29CgiRBCCHEExuTNFlFMU5WrNYMmA5R2r61V3dg7u86RmVqyMvdkZqg5ktxrLuczUJOvmz3Zs66dPTPvLMH7DhCdm/DcZdTOFF1zUe25GpNdR6qdWjNoIoQQQqoVJjOmiWaaqhwNmgghhBBHMBoBObNeFNNU5Wi+nRBCCCHEAjTTRAghhDgC3Z6rcWrNoMnIlGaDAx0ZFCgsg8Aps8IrsVIZ5AZy2pMoIFpOoLg9OTKQW9i37BIuNXfi2p7fAXKCluWWaLEnR37+HxbMaAST8d6jJQeqXs39liOEEEIIqUI0aCKEEEIc4V7tOTkPKxUWFiI6OhoBAQFwdXVFx44dcezYMal9+PDhUCgUJo8OHTqY9FFSUoK3334bDRo0gLu7O/r27Ytr166ZbJOXl4chQ4ZAq9VCq9ViyJAhuHXrlsk2V69exQsvvAB3d3c0aNAA48ePR2lpqdWvqSrRoIkQQghxBCOT/7DS66+/jqSkJMTFxeHUqVMIDw9Hjx498Mcff0jb9OrVC9nZ2dLjxx9/NOkjOjoa8fHx2LZtG5KTk3H79m306dMHBoNB2iYyMhLp6elISEhAQkIC0tPTMWTIEKndYDCgd+/euHPnDpKTk7Ft2zZs374dkyZNsuFCVp1aE9NECCGE1GZFRUXYvn07vvvuO3Tp0gUAEBMTg2+//RarV6/G3LlzAQAajQa+vr4V9pGfn4/169cjLi4OPXr0AABs3rwZTZo0wd69exEREYGMjAwkJCQgJSUFoaGhAIB169YhLCwM586dQ1BQEBITE3H27FlkZWXB398fAPDRRx9h+PDhmDdvHjw9Pe19OWxCM02EEEKIIzBWttaSzY+ymaaCggKTR0lJSYWH0+v1MBgMcHFxMXne1dUVycnJ0r/3798Pb29vPP7444iKikJubq7UlpaWBp1Oh/DwcOk5f39/hISE4PDhwwCAI0eOQKvVSgMmAOjQoQO0Wq3JNiEhIdKACQAiIiJQUlKCtLQ0W6+o3dFME+y75L7s7BZedgQnsw4QZ9eJsqVUgtfNe22OzqxxZIkXHntnO9mz1Ik9s+OEWaSkQs4KPbdd9N0mwvvus2ff9sY7d2MVpvEzIwOTUQqH/f+5NmnSxOT5WbNmISYmptz2Hh4eCAsLw5w5c9CyZUv4+Pjgyy+/RGpqKpo3bw4AeP755/HSSy8hICAAmZmZmDlzJp599lmkpaVBo9EgJycHarUaXl5eJn37+PggJycHAJCTkwNvb+9yx/f29jbZxsfHx6Tdy8sLarVa2qY6okETIYQQ4gjMCMj5A/P//6jOysoyuZ2l0WjM7hIXF4eRI0eiUaNGUKlUaNu2LSIjI3H8+HEAwODBg6VtQ0JC0L59ewQEBOCHH37AgAEDzJ8KY1Ao/vfHz/3/L2eb6oZuzxFCCCE1mKenp8mDN2h69NFHceDAAdy+fRtZWVk4evQodDodAgMDK9zez88PAQEBuHDhAgDA19cXpaWlyMvLM9kuNzdXmjny9fXF9evXy/V148YNk20enFHKy8uDTqcrNwNVndCgiRBCCHEAZmSyH7Zyd3eHn58f8vLysGfPHvTr16/C7W7evImsrCz4+fkBANq1awdnZ2ckJSVJ22RnZ+P06dPo2LEjACAsLAz5+fk4evSotE1qairy8/NNtjl9+jSys7OlbRITE6HRaNCuXTubX5e90e05QgghxBEq6facNfbs2QPGGIKCgnDx4kVMmTIFQUFBGDFiBG7fvo2YmBgMHDgQfn5+uHz5Mt577z00aNAAL774IgBAq9Vi1KhRmDRpEurXr4969eph8uTJaNWqlZRN17JlS/Tq1QtRUVH47LPPAABvvPEG+vTpg6CgIABAeHg4goODMWTIECxevBh///03Jk+ejKioqGqbOQfUgkHTvUC5otsGwZbmOTJgkRdQrRIEEMotsyIKBLfnsR9WRjuXdzHYMYjVnucuNxDcUE3L5lhCTuCxuESLvOvCDwS3X99yyTm3e78rWBUEhOuhk1V6Tg+d1fvk5+dj+vTpuHbtGurVq4eBAwdi3rx5cHZ2hl6vx6lTp7Bp0ybcunULfn5+6N69O7766it4eHhIfSxbtgxOTk4YNGgQioqK8Nxzz2HDhg1QqVTSNlu2bMH48eOlLLu+ffti1apVUrtKpcIPP/yAMWPGoFOnTnB1dUVkZCSWLFli+wWpAgpWFe8MB7p27Vq5zAJCCCGEJysrC40bN7ZL38XFxQgMDKyULDFfX19kZmaWW0aA2MdDP2gyGo34888/4eHhUa0j8itbQUEBmjRpUi6rgvDRdbMNXTfb0HWznr2vGWMMhYWF8Pf3h1Jpv7Df4uLiSikZolaracBUhR7623NKpdJufy3UBPeyKYh16LrZhq6bbei6Wc+e10yr1dql3/u5uLjQYKcGouw5QgghhBAL0KCJEEIIIcQCNGh6SGk0GsyaNYu7yBkpj66bbei62Yaum/XomhFHeugDwQkhhBBCKgPNNBFCCCGEWIAGTYQQQgghFqBBEyGEEEKIBWjQRAghhBBiARo01WDz58/H008/DQ8PD3h7e6N///44d+6cyTaMMcTExMDf3x+urq7o1q0bzpw546Azrh5Wr16N1q1bS4vjhYWFYffu3VI7XTPLzJ8/HwqFAtHR0dJzdO3Ki4mJgUKhMHn4+vpK7XTNzPvjjz/w2muvoX79+nBzc8NTTz2FtLQ0qZ2uHalqNGiqwQ4cOICxY8ciJSUFSUlJ0Ov1CA8Px507d6RtFi1ahKVLl2LVqlU4duwYfH190bNnTxQWFjrwzB2rcePGWLBgAX799Vf8+uuvePbZZ9GvXz/py5aumdixY8ewdu1atG7d2uR5unYVe+KJJ5CdnS09Tp06JbXRNatYXl4eOnXqBGdnZ+zevRtnz57FRx99hLp160rb0LUjVY6Rh0Zubi4DwA4cOMAYY8xoNDJfX1+2YMECaZvi4mKm1WrZmjVrHHWa1ZKXlxf7/PPP6ZpZoLCwkDVv3pwlJSWxrl27sgkTJjDG6P1mzqxZs9iTTz5ZYRtdM/OmTZvGOnfubLadrh1xBJppeojk5+cDAOrVqwcAyMzMRE5ODsLDw6VtNBoNunbtisOHDzvkHKsbg8GAbdu24c6dOwgLC6NrZoGxY8eid+/e6NGjh8nzdO3Mu3DhAvz9/REYGIiXX34Zly5dAkDXjGfnzp1o3749XnrpJXh7e6NNmzZYt26d1E7XjjgCDZoeEowxTJw4EZ07d0ZISAgAICcnBwDg4+Njsq2Pj4/UVludOnUKderUgUajwZtvvon4+HgEBwfTNRPYtm0bjh8/jvnz55dro2tXsdDQUGzatAl79uzBunXrkJOTg44dO+LmzZt0zTguXbqE1atXo3nz5tizZw/efPNNjB8/Hps2bQJA7zfiGE6OPgFSOcaNG4eTJ08iOTm5XJtCoTD5N2Os3HO1TVBQENLT03Hr1i1s374dw4YNw4EDB6R2umblZWVlYcKECUhMTORWZ6drZ+r555+X/r9Vq1YICwvDo48+io0bN6JDhw4A6JpVxGg0on379oiNjQUAtGnTBmfOnMHq1asxdOhQaTu6dqQq0UzTQ+Dtt9/Gzp078fPPP6Nx48bS8/cydB78qys3N7fcX2e1jVqtxmOPPYb27dtj/vz5ePLJJ7FixQq6ZhxpaWnIzc1Fu3bt4OTkBCcnJxw4cAAff/wxnJycpOtD147P3d0drVq1woULF+j9xuHn54fg4GCT51q2bImrV68CoO834hg0aKrBGGMYN24cduzYgX379iEwMNCkPTAwEL6+vkhKSpKeKy0txYEDB9CxY8eqPt1qjTGGkpISumYczz33HE6dOoX09HTp0b59e7z66qtIT09Hs2bN6NpZoKSkBBkZGfDz86P3G0enTp3KLaFy/vx5BAQEAKDvN+IgjotBJ3K99dZbTKvVsv3797Ps7GzpcffuXWmbBQsWMK1Wy3bs2MFOnTrFXnnlFebn58cKCgoceOaONX36dHbw4EGWmZnJTp48yd577z2mVCpZYmIiY4yumTXuz55jjK5dRSZNmsT279/PLl26xFJSUlifPn2Yh4cHu3z5MmOMrpk5R48eZU5OTmzevHnswoULbMuWLczNzY1t3rxZ2oauHalqNGiqwQBU+Pjiiy+kbYxGI5s1axbz9fVlGo2GdenShZ06dcpxJ10NjBw5kgUEBDC1Ws0aNmzInnvuOWnAxBhdM2s8OGiia1fe4MGDmZ+fH3N2dmb+/v5swIAB7MyZM1I7XTPzdu3axUJCQphGo2EtWrRga9euNWmna0eqmoIxxhw500UIIYQQUhNQTBMhhBBCiAVo0EQIIYQQYgEaNBFCCCGEWIAGTYQQQgghFqBBEyGEEEKIBWjQRAghhBBiARo0EUIIIYRYgAZNpMbo1q0boqOjH6rjDh8+HP3795fVR9OmTaFQKKBQKHDr1i2z223YsAF169aVdSxiav/+/dK1l/tzJIRUfzRoIkRgx44dmDNnjvTvpk2bYvny5Y47oQp8+OGHyM7OhlardfSpPLQq+rl37NgR2dnZGDRokGNOihBSpZwcfQKEVHf16tVz9CkIeXh4SFXfHU2n08HZ2dnRp1El1Go1fH194erqipKSEkefDiHEzmimidRYeXl5GDp0KLy8vODm5obnn38eFy5ckNrv3Y7as2cPWrZsiTp16qBXr17Izs6WttHr9Rg/fjzq1q2L+vXrY9q0aRg2bJjJrZb7b89169YNV65cwTvvvCPdlgGAmJgYPPXUUybnt3z5cjRt2lT6t8FgwMSJE6VjTZ06FQ9WMWKMYdGiRWjWrBlcXV3x5JNP4ptvvrHp+mzYsAGPPPII3Nzc8OKLL+LmzZvlttm1axfatWsHFxcXNGvWDLNnz4Zer5faf/vtN3Tu3BkuLi4IDg7G3r17oVAo8O233wIALl++DIVCgf/85z/o1q0bXFxcsHnzZgDAF198gZYtW8LFxQUtWrTAp59+anLsP/74A4MHD4aXlxfq16+Pfv364fLly1L7/v378cwzz8Dd3R1169ZFp06dcOXKFbOvV9TfsWPH0LNnTzRo0ABarRZdu3bF8ePHTfqIiYnBI488Ao1GA39/f4wfPx6A+Z87IaR2oUETqbGGDx+OX3/9FTt37sSRI0fAGMM///lP6HQ6aZu7d+9iyZIliIuLw8GDB3H16lVMnjxZal+4cCG2bNmCL774AocOHUJBQYE0IKjIjh070LhxY+l22P0DMJGPPvoI//73v7F+/XokJyfj77//Rnx8vMk277//Pr744gusXr0aZ86cwTvvvIPXXnsNBw4csPzCAEhNTcXIkSMxZswYpKeno3v37pg7d67JNnv27MFrr72G8ePH4+zZs/jss8+wYcMGzJs3DwBgNBrRv39/uLm5ITU1FWvXrsWMGTMqPN60adMwfvx4ZGRkICIiAuvWrcOMGTMwb948ZGRkIDY2FjNnzsTGjRsBlP1cunfvjjp16uDgwYNITk6WBrWlpaXQ6/Xo378/unbtipMnT+LIkSN44403zA5WRP0BQGFhIYYNG4ZffvkFKSkpaN68Of75z3+isLAQAPDNN99g2bJl+Oyzz3DhwgV8++23aNWqFQB5P3dCyEPEoeWCCbFC165d2YQJExhjjJ0/f54BYIcOHZLa//rrL+bq6sr+85//MMYY++KLLxgAdvHiRWmbTz75hPn4+Ej/9vHxYYsXL5b+rdfr2SOPPML69etX4XEZYywgIIAtW7bM5NxmzZrFnnzySZPnli1bxgICAqR/+/n5sQULFkj/1ul0rHHjxtKxbt++zVxcXNjhw4dN+hk1ahR75ZVXzF6Xis7nlVdeYb169TJ5bvDgwUyr1Ur//sc//sFiY2NNtomLi2N+fn6MMcZ2797NnJycWHZ2ttSelJTEALD4+HjGGGOZmZkMAFu+fLlJP02aNGFbt241eW7OnDksLCyMMcbY+vXrWVBQEDMajVJ7SUkJc3V1ZXv27GE3b95kANj+/fvNvu77ifqriF6vZx4eHmzXrl2MMcY++ugj9vjjj7PS0tIKt6/oOt8zbNgwk/cMIeThRDNNpEbKyMiAk5MTQkNDpefq16+PoKAgZGRkSM+5ubnh0Ucflf7t5+eH3NxcAEB+fj6uX7+OZ555RmpXqVRo165dpZ9vfn4+srOzERYWJj3n5OSE9u3bS/8+e/YsiouL0bNnT9SpU0d6bNq0Cb///rtVx8vIyDA5FoBy/05LS8OHH35ocqyoqChkZ2fj7t27OHfuHJo0aWISK3X/tbrf/a/jxo0byMrKwqhRo0z6njt3rvQ60tLScPHiRXh4eEjt9erVQ3FxMX7//XfUq1cPw4cPR0REBF544QWsWLGCO7sj6g8AcnNz8eabb+Lxxx+HVquFVqvF7du3cfXqVQDASy+9hKKiIjRr1gxRUVGIj483uVVJCCEUCE5qJPZALND9z99/C+fBgGSFQlFu3wdv+Zjrm0epVJbb7/7bhJYwGo0AgB9++AGNGjUyadNoNFb1ZclrMBqNmD17NgYMGFCuzcXFpdy15HF3dzfpFwDWrVtnMqgFygal97Zp164dtmzZUq6vhg0bAiiLiRo/fjwSEhLw1Vdf4f3330dSUhI6dOhQ4WsR9Td8+HDcuHEDy5cvR0BAADQaDcLCwqTbd02aNMG5c+eQlJSEvXv3YsyYMVi8eDEOHDhQawLbCSF8NGgiNVJwcDD0ej1SU1PRsWNHAMDNmzdx/vx5tGzZ0qI+tFotfHx8cPToUfzjH/8AUBasfeLEiXJB3fdTq9UwGAwmzzVs2BA5OTkmA4309HSTY/n5+SElJQVdunQBUBaEnpaWhrZt20qvSaPR4OrVq+jatatFr8Gc4OBgpKSkmDz34L/btm2Lc+fO4bHHHquwjxYtWuDq1au4fv06fHx8AJQFU4v4+PigUaNGuHTpEl599dUKt2nbti2++uoreHt7w9PT02xfbdq0QZs2bTB9+nSEhYVh69atFQ6aLOnvl19+waeffop//vOfAICsrCz89ddfJtu4urqib9++6Nu3L8aOHYsWLVrg1KlTaNu2bYU/d0JI7UK350iN1Lx5c/Tr1w9RUVFITk7Gf//7X7z22mto1KgR+vXrZ3E/b7/9NubPn4/vvvsO586dw4QJE5CXl8edYWnatCkOHjyIP/74Q/ql261bN9y4cQOLFi3C77//jk8++QS7d+822W/ChAlYsGAB4uPj8dtvv2HMmDEmi1F6eHhg8uTJeOedd7Bx40b8/vvvOHHiBD755BMpgNpS92ZoFi1ahPPnz2PVqlVISEgw2eaDDz7Apk2bEBMTgzNnziAjI0Oa0QGAnj174tFHH8WwYcNw8uRJHDp0SAoEF81AxcTEYP78+VixYgXOnz+PU6dO4YsvvsDSpUsBAK+++ioaNGiAfv364ZdffkFmZiYOHDiACRMm4Nq1a8jMzMT06dNx5MgRXLlyBYmJidwBsag/AHjssccQFxeHjIwMpKam4tVXX4Wrq6vUx4YNG7B+/XqcPn0aly5dQlxcHFxdXREQEACg4p87IaSWcVw4FSHWeTAg+++//2ZDhgxhWq2Wubq6soiICHb+/Hmp/YsvvjAJfGaMsfj4eHb/216n07Fx48YxT09P5uXlxaZNm8Zeeukl9vLLL5s97pEjR1jr1q2ZRqMx6Wv16tWsSZMmzN3dnQ0dOpTNmzfPJBBcp9OxCRMmME9PT1a3bl02ceJENnToUJMAYqPRyFasWMGCgoKYs7Mza9iwIYuIiGAHDhwwe13MBSivX7+eNW7cmLm6urIXXniBLVmypNz1SEhIYB07dmSurq7M09OTPfPMM2zt2rVSe0ZGBuvUqRNTq9WsRYsWbNeuXQwAS0hIYIz9LxD8xIkT5Y6/ZcsW9tRTTzG1Ws28vLxYly5d2I4dO6T27OxsNnToUNagQQOm0WhYs2bNWFRUFMvPz2c5OTmsf//+zM/Pj6nVahYQEMA++OADZjAYzF4HXn+MMXb8+HHWvn17ptFoWPPmzdnXX39tcu3i4+NZaGgo8/T0ZO7u7qxDhw5s7969Uv/mfu6MUSA4IbWFgjEbAjgIeUgZjUa0bNkSgwYNMlkFvDpr2rQpoqOjq6TEzKFDh9C5c2dcvHjRJMC+ths+fDhu3brFXa6CEFLz0e05UqtduXIF69atk24hvfXWW8jMzERkZKSjT80q06ZNQ506dZCfn1+p/cbHxyMpKQmXL1/G3r17/699u7eREAYCMDoiNhllEJKRUgsVILqgBwohQZRCCRTAJaeNNphgV/ez7xVgO/ykGcc4jtH3vWD6dhxHlFKeLqAD/49FcD5aVVWxrmtM0xT3fUfbtrFtW3qZ/DfY9/3xU6+u65eefV1XzPMc53lG0zQxDEMsy/LSO/6yruseC/+llJ99DPB2xnMAAAnGcwAACaIJACBBNAEAJIgmAIAE0QQAkCCaAAASRBMAQIJoAgBIEE0AAAlfMM4CyaCBK3MAAAAASUVORK5CYII=", + "text/plain": [ + "<Figure size 640x480 with 2 Axes>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ds_orig.sel(time=8).mslp.plot()" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "ds_vars = list(ds.keys())" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "['mslp', 'dpsfc_dt', 'dfi_dt', 'EP', 'ITT', 'Eq1res', 'TADV', 'VMT', 'DIABres']" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ds_vars" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "mslp\n", + "dpsfc_dt\n", + "dfi_dt\n", + "EP\n", + "nan\n", + "2.3841858e-07\n", + "4.7683716e-07\n", + "9.536743e-07\n", + "1.9073486e-06\n", + "3.8146973e-06\n", + "3.8146973e-06\n", + "7.6293945e-06\n", + "3.8146973e-06\n", + "7.6293945e-06\n", + "7.6293945e-06\n", + "7.6293945e-06\n", + "7.6293945e-06\n", + "7.6293945e-06\n", + "7.6293945e-06\n", + "7.6293945e-06\n", + "7.6293945e-06\n", + "7.6293945e-06\n", + "7.6293945e-06\n", + "1.9073486e-06\n", + "7.6293945e-06\n", + "7.6293945e-06\n", + "3.8146973e-06\n", + "7.6293945e-06\n", + "3.8146973e-06\n", + "3.8146973e-06\n", + "3.8146973e-06\n", + "3.8146973e-06\n", + "1.9073486e-06\n", + "1.9073486e-06\n", + "ITT\n", + "Eq1res\n", + "nan\n", + "3.8146973e-06\n", + "3.8146973e-06\n", + "3.8146973e-06\n", + "3.8146973e-06\n", + "7.6293945e-06\n", + "7.6293945e-06\n", + "7.6293945e-06\n", + "1.1444092e-05\n", + "1.5258789e-05\n", + "1.5258789e-05\n", + "3.0517578e-05\n", + "1.5258789e-05\n", + "1.5258789e-05\n", + "1.5258789e-05\n", + "1.5258789e-05\n", + "1.5258789e-05\n", + "1.5258789e-05\n", + "1.5258789e-05\n", + "1.5258789e-05\n", + "3.0517578e-05\n", + "1.5258789e-05\n", + "1.5258789e-05\n", + "1.5258789e-05\n", + "1.5258789e-05\n", + "1.5258789e-05\n", + "7.6293945e-06\n", + "7.6293945e-06\n", + "7.6293945e-06\n", + "7.6293945e-06\n", + "TADV\n", + "VMT\n", + "DIABres\n" + ] + } + ], + "source": [ + "for var in ds_vars:\n", + " print(var)\n", + " for itime in range(0,30):\n", + " val = (ds.isel(time=itime)[var]-ds_orig.isel(time=itime+1)[var]).max().values\n", + " \n", + " if val!=0:\n", + " print((ds.isel(time=itime)[var]-ds_orig.isel(time=itime+1)[var]).max().values)" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "var='Eq1res'" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[ -0.8535566 , 4.6565027 , -18.071442 , ..., 6.0058103 ,\n", + " 20.28558 , -8.410409 ],\n", + " [-39.822205 , -38.51429 , -26.991413 , ..., -11.49919 ,\n", + " -12.980565 , -28.433146 ],\n", + " [ -3.8573184 , -22.9379 , -25.37486 , ..., -14.517625 ,\n", + " 0.60518444, -17.683876 ],\n", + " ...,\n", + " [ -3.733842 , -4.0554185 , -3.692524 , ..., -0.5601136 ,\n", + " 4.0102687 , -2.591478 ],\n", + " [ 0.969735 , 0.6880663 , 1.2451386 , ..., -14.437107 ,\n", + " -18.855675 , -10.727182 ],\n", + " [ 8.199163 , 9.465551 , 9.360575 , ..., -10.630647 ,\n", + " 6.7898026 , 6.1830993 ]], dtype=float32)" + ] + }, + "execution_count": 38, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ds_orig.isel(time=itime+1)[var].values" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[ -0.85355604, 4.656503 , -18.07144 , ..., 6.0058107 ,\n", + " 20.28558 , -8.410408 ],\n", + " [-39.822205 , -38.51429 , -26.991413 , ..., -11.499189 ,\n", + " -12.980565 , -28.433146 ],\n", + " [ -3.8573182 , -22.937902 , -25.37486 , ..., -14.517624 ,\n", + " 0.6051846 , -17.683876 ],\n", + " ...,\n", + " [ -3.733842 , -4.0554185 , -3.692524 , ..., -0.5601136 ,\n", + " 4.0102687 , -2.591478 ],\n", + " [ 0.969735 , 0.6880663 , 1.2451386 , ..., -14.437107 ,\n", + " -18.855675 , -10.727182 ],\n", + " [ 8.199163 , 9.465552 , 9.360575 , ..., -10.630647 ,\n", + " 6.789803 , 6.1830993 ]], dtype=float32)" + ] + }, + "execution_count": 39, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ds.isel(time=itime)[var].values" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "1 Python 3 (based on the module python3/2023.01)", + "language": "python", + "name": "python3_2023_01" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.10" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/Scripts_for_analysis/Adjustment_of_steps_2_and_3_for_single_timesteps/Check_mod_of_PTEstep3.ipynb b/Scripts_for_analysis/Adjustment_of_steps_2_and_3_for_single_timesteps/Check_mod_of_PTEstep3.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..74cb1f3e5be2cb043a78abd56746b3b92cb758bd --- /dev/null +++ b/Scripts_for_analysis/Adjustment_of_steps_2_and_3_for_single_timesteps/Check_mod_of_PTEstep3.ipynb @@ -0,0 +1,2599 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "tags": [] + }, + "source": [ + "# Check modification of step 3 of PTE analysis" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Christoph Braun, KIT" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "There are very minor quantitative differences in the final results. I classify these as acceptable." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "exp='channel_2km_0004'\n", + "dt = 6\n", + "data_res = '1x1latlon'\n", + "#data_res = '0p05x0p05latlon'\n", + "if dt == 1:\n", + " data_dt = '1hrly'\n", + "elif dt == 6:\n", + " data_dt = '6hrly'\n", + " \n", + "p2level=50" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "import numpy as np\n", + "import pandas as pd\n", + "import scipy as sp\n", + "import scipy.ndimage\n", + "from netCDF4 import Dataset\n", + "import matplotlib.pyplot as plt\n", + "import matplotlib.ticker as mticker\n", + "import matplotlib.patches as patches\n", + "import psutil\n", + "import datetime\n", + "import time as tm\n", + "import seaborn as sns\n", + "import cartopy.crs as ccrs\n", + "from cartopy.mpl.gridliner import LONGITUDE_FORMATTER, LATITUDE_FORMATTER\n", + "import warnings\n", + "warnings.filterwarnings(\"ignore\")" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "scrolled": true, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "<div>\n", + "<style scoped>\n", + " .dataframe tbody tr th:only-of-type {\n", + " vertical-align: middle;\n", + " }\n", + "\n", + " .dataframe tbody tr th {\n", + " vertical-align: top;\n", + " }\n", + "\n", + " .dataframe thead th {\n", + " text-align: right;\n", + " }\n", + "</style>\n", + "<table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: right;\">\n", + " <th></th>\n", + " <th>Unnamed: 0</th>\n", + " <th>time</th>\n", + " <th>pmin</th>\n", + " <th>lon</th>\n", + " <th>lat</th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <th>0</th>\n", + " <td>0</td>\n", + " <td>0.00</td>\n", + " <td>1000.991638</td>\n", + " <td>56.5</td>\n", + " <td>27.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1</th>\n", + " <td>1</td>\n", + " <td>0.25</td>\n", + " <td>997.934448</td>\n", + " <td>61.5</td>\n", + " <td>23.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2</th>\n", + " <td>2</td>\n", + " <td>0.50</td>\n", + " <td>998.462646</td>\n", + " <td>21.5</td>\n", + " <td>42.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>3</th>\n", + " <td>3</td>\n", + " <td>0.75</td>\n", + " <td>997.014771</td>\n", + " <td>32.5</td>\n", + " <td>28.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>4</th>\n", + " <td>4</td>\n", + " <td>1.00</td>\n", + " <td>999.559631</td>\n", + " <td>27.5</td>\n", + " <td>42.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>5</th>\n", + " <td>5</td>\n", + " <td>1.25</td>\n", + " <td>997.670227</td>\n", + " <td>27.5</td>\n", + " <td>43.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>6</th>\n", + " <td>6</td>\n", + " <td>1.50</td>\n", + " <td>998.062012</td>\n", + " <td>31.5</td>\n", + " <td>44.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>7</th>\n", + " <td>7</td>\n", + " <td>1.75</td>\n", + " <td>997.686157</td>\n", + " <td>40.5</td>\n", + " <td>42.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>8</th>\n", + " <td>8</td>\n", + " <td>2.00</td>\n", + " <td>997.231018</td>\n", + " <td>45.5</td>\n", + " <td>44.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>9</th>\n", + " <td>9</td>\n", + " <td>2.25</td>\n", + " <td>995.639587</td>\n", + " <td>49.5</td>\n", + " <td>43.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>10</th>\n", + " <td>10</td>\n", + " <td>2.50</td>\n", + " <td>993.030029</td>\n", + " <td>52.5</td>\n", + " <td>44.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>11</th>\n", + " <td>11</td>\n", + " <td>2.75</td>\n", + " <td>988.784302</td>\n", + " <td>56.5</td>\n", + " <td>44.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>12</th>\n", + " <td>12</td>\n", + " <td>3.00</td>\n", + " <td>985.596008</td>\n", + " <td>59.5</td>\n", + " <td>45.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>13</th>\n", + " <td>13</td>\n", + " <td>3.25</td>\n", + " <td>981.169678</td>\n", + " <td>14.5</td>\n", + " <td>45.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>14</th>\n", + " <td>14</td>\n", + " <td>3.50</td>\n", + " <td>976.026123</td>\n", + " <td>17.5</td>\n", + " <td>46.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>15</th>\n", + " <td>15</td>\n", + " <td>3.75</td>\n", + " <td>970.745728</td>\n", + " <td>19.5</td>\n", + " <td>46.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>16</th>\n", + " <td>16</td>\n", + " <td>4.00</td>\n", + " <td>967.672241</td>\n", + " <td>23.5</td>\n", + " <td>47.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>17</th>\n", + " <td>17</td>\n", + " <td>4.25</td>\n", + " <td>966.600647</td>\n", + " <td>28.5</td>\n", + " <td>47.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>18</th>\n", + " <td>18</td>\n", + " <td>4.50</td>\n", + " <td>963.127014</td>\n", + " <td>34.5</td>\n", + " <td>48.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>19</th>\n", + " <td>19</td>\n", + " <td>4.75</td>\n", + " <td>961.268616</td>\n", + " <td>37.5</td>\n", + " <td>48.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>20</th>\n", + " <td>20</td>\n", + " <td>5.00</td>\n", + " <td>960.033142</td>\n", + " <td>42.5</td>\n", + " <td>49.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>21</th>\n", + " <td>21</td>\n", + " <td>5.25</td>\n", + " <td>959.165527</td>\n", + " <td>46.5</td>\n", + " <td>49.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>22</th>\n", + " <td>22</td>\n", + " <td>5.50</td>\n", + " <td>954.482788</td>\n", + " <td>54.5</td>\n", + " <td>50.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>23</th>\n", + " <td>23</td>\n", + " <td>5.75</td>\n", + " <td>950.702515</td>\n", + " <td>60.5</td>\n", + " <td>50.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>24</th>\n", + " <td>24</td>\n", + " <td>6.00</td>\n", + " <td>944.416199</td>\n", + " <td>13.5</td>\n", + " <td>51.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>25</th>\n", + " <td>25</td>\n", + " <td>6.25</td>\n", + " <td>939.254089</td>\n", + " <td>14.5</td>\n", + " <td>51.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>26</th>\n", + " <td>26</td>\n", + " <td>6.50</td>\n", + " <td>943.386414</td>\n", + " <td>15.5</td>\n", + " <td>50.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>27</th>\n", + " <td>27</td>\n", + " <td>6.75</td>\n", + " <td>944.307129</td>\n", + " <td>23.5</td>\n", + " <td>52.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>28</th>\n", + " <td>28</td>\n", + " <td>7.00</td>\n", + " <td>945.061279</td>\n", + " <td>28.5</td>\n", + " <td>53.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>29</th>\n", + " <td>29</td>\n", + " <td>7.25</td>\n", + " <td>945.369507</td>\n", + " <td>34.5</td>\n", + " <td>52.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>30</th>\n", + " <td>30</td>\n", + " <td>7.50</td>\n", + " <td>945.417725</td>\n", + " <td>34.5</td>\n", + " <td>53.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>31</th>\n", + " <td>31</td>\n", + " <td>7.75</td>\n", + " <td>945.800781</td>\n", + " <td>39.5</td>\n", + " <td>53.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>32</th>\n", + " <td>32</td>\n", + " <td>8.00</td>\n", + " <td>948.895386</td>\n", + " <td>39.5</td>\n", + " <td>53.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>33</th>\n", + " <td>33</td>\n", + " <td>8.25</td>\n", + " <td>952.656189</td>\n", + " <td>45.5</td>\n", + " <td>53.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>34</th>\n", + " <td>34</td>\n", + " <td>8.50</td>\n", + " <td>955.252869</td>\n", + " <td>55.5</td>\n", + " <td>50.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>35</th>\n", + " <td>35</td>\n", + " <td>8.75</td>\n", + " <td>962.483459</td>\n", + " <td>54.5</td>\n", + " <td>51.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>36</th>\n", + " <td>36</td>\n", + " <td>9.00</td>\n", + " <td>963.767273</td>\n", + " <td>24.5</td>\n", + " <td>46.5</td>\n", + " </tr>\n", + " </tbody>\n", + "</table>\n", + "</div>" + ], + "text/plain": [ + " Unnamed: 0 time pmin lon lat\n", + "0 0 0.00 1000.991638 56.5 27.5\n", + "1 1 0.25 997.934448 61.5 23.5\n", + "2 2 0.50 998.462646 21.5 42.5\n", + "3 3 0.75 997.014771 32.5 28.5\n", + "4 4 1.00 999.559631 27.5 42.5\n", + "5 5 1.25 997.670227 27.5 43.5\n", + "6 6 1.50 998.062012 31.5 44.5\n", + "7 7 1.75 997.686157 40.5 42.5\n", + "8 8 2.00 997.231018 45.5 44.5\n", + "9 9 2.25 995.639587 49.5 43.5\n", + "10 10 2.50 993.030029 52.5 44.5\n", + "11 11 2.75 988.784302 56.5 44.5\n", + "12 12 3.00 985.596008 59.5 45.5\n", + "13 13 3.25 981.169678 14.5 45.5\n", + "14 14 3.50 976.026123 17.5 46.5\n", + "15 15 3.75 970.745728 19.5 46.5\n", + "16 16 4.00 967.672241 23.5 47.5\n", + "17 17 4.25 966.600647 28.5 47.5\n", + "18 18 4.50 963.127014 34.5 48.5\n", + "19 19 4.75 961.268616 37.5 48.5\n", + "20 20 5.00 960.033142 42.5 49.5\n", + "21 21 5.25 959.165527 46.5 49.5\n", + "22 22 5.50 954.482788 54.5 50.5\n", + "23 23 5.75 950.702515 60.5 50.5\n", + "24 24 6.00 944.416199 13.5 51.5\n", + "25 25 6.25 939.254089 14.5 51.5\n", + "26 26 6.50 943.386414 15.5 50.5\n", + "27 27 6.75 944.307129 23.5 52.5\n", + "28 28 7.00 945.061279 28.5 53.5\n", + "29 29 7.25 945.369507 34.5 52.5\n", + "30 30 7.50 945.417725 34.5 53.5\n", + "31 31 7.75 945.800781 39.5 53.5\n", + "32 32 8.00 948.895386 39.5 53.5\n", + "33 33 8.25 952.656189 45.5 53.5\n", + "34 34 8.50 955.252869 55.5 50.5\n", + "35 35 8.75 962.483459 54.5 51.5\n", + "36 36 9.00 963.767273 24.5 46.5" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#####################################################\n", + "# Read in track data from file\n", + "#####################################################\n", + "#Cyclone Track\n", + "#path_track = '/scratch/b/b380782/check_remapping_on_PTE/channel_2km_0004/PTE_out/cyclone_tracks/'\n", + "path_track = '/work/bb1152/Module_A/A6_CyclEx/pp_data/cyclone_tracks/'\n", + "#path_track = '/work/bb1152/Module_A/A6_CyclEx/b382037_TingChen/Task3/PTE/cyclone_tracks/'\n", + "\n", + "df_track = pd.read_csv(path_track+'Track_for_'+exp+'_'+str(dt)+'hrly_1x1latlon.csv')\n", + "#df_track = pd.read_csv(path_track+'Track_for_'+exp+'_'+str(dt)+'hrly_0p05x0p05latlon.csv')\n", + "\n", + "# get timesteps from map\n", + "#tmin = time.min()\n", + "#tmax = time.max()\n", + "\n", + "# select timesteps from track\n", + "#df_track = df_track.loc[(df_track['time']>=tmin) & (df_track['time']<=tmax)]\n", + "\n", + "# determine timesteps of track\n", + "ntrack = len(df_track['lat'])\n", + "\n", + "track_dur = df_track['time']\n", + "track_lon = df_track['lon']\n", + "track_lat = df_track['lat']\n", + " \n", + "df_track" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "import xarray as xr" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "ipath = '/work/bb1152/Module_A/A6_CyclEx/b380782_Christoph/temp_PTE_out/PTE/maps/'\n", + "#ipath = '/work/bb1152/Module_A/A6_CyclEx/pp_data/PTE_maps/'\n", + "\n", + "#ifile = \"PTE_map_for_\"+exp+\"_\"+data_dt+\"_\"+data_res+\"_upper\"+str(int(p2level))+\"hPa.nc\"\n", + "ifile = \"PTE_map_for_\"+exp+\"_\"+data_dt+\"_\"+data_res+\"_upper\"+str(int(p2level))+\"hPa_day*.nc\"\n", + "\n", + "\n", + "# read the data\n", + "data_file= ipath+ifile" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "ds = xr.open_mfdataset(data_file)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "ds_vars = list(ds.keys())\n", + "lon_cen = ds.lon[int(ds.lon.size/2)]\n", + "dlon = 1\n", + "#dlon = 0.05\n", + "boxsize = 6" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "def get_boxmean(ds):\n", + " \n", + " weights = np.cos(np.deg2rad(ds.lat))\n", + " ds_mean = ds.weighted(weights=weights).mean(dim=['lat','lon'])\n", + " \n", + " return ds_mean" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "for var in ds_vars:\n", + " df_track[var] = pd.Series()" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "for ftime in ds.time:\n", + " ds_temp = ds.sel(time=ftime)\n", + " \n", + " # get index of panda dataframe fitting current timestep\n", + " itime_df = float(df_track.index[df_track['time']==float(ftime)].values)\n", + " \n", + " lon_pmin = df_track['lon'][itime_df]\n", + " lat_pmin = df_track['lat'][itime_df]\n", + " \n", + " lon_to_roll = int((lon_cen - lon_pmin)/dlon)\n", + " #print(lon_to_roll)\n", + " \n", + " ds_temp['lon'] = ds_temp['lon']-lon_cen\n", + " \n", + " ds_box = ds_temp.roll(shifts={'lon':lon_to_roll}).sel(lat=slice(lat_pmin-boxsize/2,lat_pmin+boxsize/2),lon=slice(-boxsize/2,boxsize/2))\n", + " #ds_box.mslp.plot.pcolormesh()\n", + " #plt.show()\n", + " ds_boxmean = get_boxmean(ds_box)\n", + " for var in ds_vars:\n", + " df_track[var][itime_df] = float(ds_boxmean[var].values)/100" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "<div>\n", + "<style scoped>\n", + " .dataframe tbody tr th:only-of-type {\n", + " vertical-align: middle;\n", + " }\n", + "\n", + " .dataframe tbody tr th {\n", + " vertical-align: top;\n", + " }\n", + "\n", + " .dataframe thead th {\n", + " text-align: right;\n", + " }\n", + "</style>\n", + "<table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: right;\">\n", + " <th></th>\n", + " <th>Unnamed: 0</th>\n", + " <th>time</th>\n", + " <th>pmin</th>\n", + " <th>lon</th>\n", + " <th>lat</th>\n", + " <th>mslp</th>\n", + " <th>dpsfc_dt</th>\n", + " <th>dfi_dt</th>\n", + " <th>EP</th>\n", + " <th>ITT</th>\n", + " <th>Eq1res</th>\n", + " <th>TADV</th>\n", + " <th>VMT</th>\n", + " <th>DIABres</th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <th>0</th>\n", + " <td>0</td>\n", + " <td>0.00</td>\n", + " <td>1000.991638</td>\n", + " <td>56.5</td>\n", + " <td>27.5</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1</th>\n", + " <td>1</td>\n", + " <td>0.25</td>\n", + " <td>997.934448</td>\n", + " <td>61.5</td>\n", + " <td>23.5</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2</th>\n", + " <td>2</td>\n", + " <td>0.50</td>\n", + " <td>998.462646</td>\n", + " <td>21.5</td>\n", + " <td>42.5</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>3</th>\n", + " <td>3</td>\n", + " <td>0.75</td>\n", + " <td>997.014771</td>\n", + " <td>32.5</td>\n", + " <td>28.5</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>4</th>\n", + " <td>4</td>\n", + " <td>1.00</td>\n", + " <td>999.559631</td>\n", + " <td>27.5</td>\n", + " <td>42.5</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>5</th>\n", + " <td>5</td>\n", + " <td>1.25</td>\n", + " <td>997.670227</td>\n", + " <td>27.5</td>\n", + " <td>43.5</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>6</th>\n", + " <td>6</td>\n", + " <td>1.50</td>\n", + " <td>998.062012</td>\n", + " <td>31.5</td>\n", + " <td>44.5</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>7</th>\n", + " <td>7</td>\n", + " <td>1.75</td>\n", + " <td>997.686157</td>\n", + " <td>40.5</td>\n", + " <td>42.5</td>\n", + " <td>997.960469</td>\n", + " <td>-1.528532</td>\n", + " <td>-1.410422</td>\n", + " <td>-0.001115</td>\n", + " <td>-0.113506</td>\n", + " <td>-0.00349</td>\n", + " <td>-3.250336</td>\n", + " <td>0.124568</td>\n", + " <td>3.012262</td>\n", + " </tr>\n", + " <tr>\n", + " <th>8</th>\n", + " <td>8</td>\n", + " <td>2.00</td>\n", + " <td>997.231018</td>\n", + " <td>45.5</td>\n", + " <td>44.5</td>\n", + " <td>997.782266</td>\n", + " <td>-1.064874</td>\n", + " <td>-3.222407</td>\n", + " <td>-0.015798</td>\n", + " <td>2.413954</td>\n", + " <td>-0.240624</td>\n", + " <td>-5.094301</td>\n", + " <td>1.223247</td>\n", + " <td>6.285009</td>\n", + " </tr>\n", + " <tr>\n", + " <th>9</th>\n", + " <td>9</td>\n", + " <td>2.25</td>\n", + " <td>995.639587</td>\n", + " <td>49.5</td>\n", + " <td>43.5</td>\n", + " <td>996.2725</td>\n", + " <td>-2.315292</td>\n", + " <td>-1.436804</td>\n", + " <td>-0.053651</td>\n", + " <td>-0.899242</td>\n", + " <td>0.074405</td>\n", + " <td>-4.800681</td>\n", + " <td>3.946058</td>\n", + " <td>-0.044619</td>\n", + " </tr>\n", + " <tr>\n", + " <th>10</th>\n", + " <td>10</td>\n", + " <td>2.50</td>\n", + " <td>993.030029</td>\n", + " <td>52.5</td>\n", + " <td>44.5</td>\n", + " <td>994.170234</td>\n", + " <td>-2.972349</td>\n", + " <td>-0.213752</td>\n", + " <td>-0.116417</td>\n", + " <td>-2.771031</td>\n", + " <td>0.128852</td>\n", + " <td>-5.994471</td>\n", + " <td>7.113004</td>\n", + " <td>-3.889565</td>\n", + " </tr>\n", + " <tr>\n", + " <th>11</th>\n", + " <td>11</td>\n", + " <td>2.75</td>\n", + " <td>988.784302</td>\n", + " <td>56.5</td>\n", + " <td>44.5</td>\n", + " <td>990.658906</td>\n", + " <td>-5.030021</td>\n", + " <td>-3.906765</td>\n", + " <td>-0.196581</td>\n", + " <td>-1.021318</td>\n", + " <td>0.094642</td>\n", + " <td>-7.971294</td>\n", + " <td>7.949547</td>\n", + " <td>-0.999571</td>\n", + " </tr>\n", + " <tr>\n", + " <th>12</th>\n", + " <td>12</td>\n", + " <td>3.00</td>\n", + " <td>985.596008</td>\n", + " <td>59.5</td>\n", + " <td>45.5</td>\n", + " <td>988.819922</td>\n", + " <td>-3.317254</td>\n", + " <td>-1.654068</td>\n", + " <td>-0.266696</td>\n", + " <td>-1.545979</td>\n", + " <td>0.14949</td>\n", + " <td>-9.712738</td>\n", + " <td>8.732941</td>\n", + " <td>-0.566181</td>\n", + " </tr>\n", + " <tr>\n", + " <th>13</th>\n", + " <td>13</td>\n", + " <td>3.25</td>\n", + " <td>981.169678</td>\n", + " <td>14.5</td>\n", + " <td>45.5</td>\n", + " <td>986.357344</td>\n", + " <td>-5.949769</td>\n", + " <td>1.65093</td>\n", + " <td>-0.427943</td>\n", + " <td>-7.510536</td>\n", + " <td>0.337782</td>\n", + " <td>-15.538982</td>\n", + " <td>14.034597</td>\n", + " <td>-6.006152</td>\n", + " </tr>\n", + " <tr>\n", + " <th>14</th>\n", + " <td>14</td>\n", + " <td>3.50</td>\n", + " <td>976.026123</td>\n", + " <td>17.5</td>\n", + " <td>46.5</td>\n", + " <td>982.967266</td>\n", + " <td>-6.545591</td>\n", + " <td>0.411215</td>\n", + " <td>-0.523898</td>\n", + " <td>-6.928629</td>\n", + " <td>0.495721</td>\n", + " <td>-18.411635</td>\n", + " <td>18.481935</td>\n", + " <td>-6.99893</td>\n", + " </tr>\n", + " <tr>\n", + " <th>15</th>\n", + " <td>15</td>\n", + " <td>3.75</td>\n", + " <td>970.745728</td>\n", + " <td>19.5</td>\n", + " <td>46.5</td>\n", + " <td>978.919062</td>\n", + " <td>-4.308632</td>\n", + " <td>-3.457062</td>\n", + " <td>-0.498384</td>\n", + " <td>-0.806854</td>\n", + " <td>0.453668</td>\n", + " <td>-12.67807</td>\n", + " <td>12.82146</td>\n", + " <td>-0.950243</td>\n", + " </tr>\n", + " <tr>\n", + " <th>16</th>\n", + " <td>16</td>\n", + " <td>4.00</td>\n", + " <td>967.672241</td>\n", + " <td>23.5</td>\n", + " <td>47.5</td>\n", + " <td>975.420391</td>\n", + " <td>-3.763589</td>\n", + " <td>-2.606672</td>\n", + " <td>-0.446437</td>\n", + " <td>-1.043626</td>\n", + " <td>0.333146</td>\n", + " <td>-14.725007</td>\n", + " <td>14.394435</td>\n", + " <td>-0.713054</td>\n", + " </tr>\n", + " <tr>\n", + " <th>17</th>\n", + " <td>17</td>\n", + " <td>4.25</td>\n", + " <td>966.600647</td>\n", + " <td>28.5</td>\n", + " <td>47.5</td>\n", + " <td>971.898516</td>\n", + " <td>-3.444295</td>\n", + " <td>-0.566895</td>\n", + " <td>-0.379188</td>\n", + " <td>-3.099083</td>\n", + " <td>0.600871</td>\n", + " <td>-17.850734</td>\n", + " <td>15.63005</td>\n", + " <td>-0.878398</td>\n", + " </tr>\n", + " <tr>\n", + " <th>18</th>\n", + " <td>18</td>\n", + " <td>4.50</td>\n", + " <td>963.127014</td>\n", + " <td>34.5</td>\n", + " <td>48.5</td>\n", + " <td>968.725547</td>\n", + " <td>-5.224357</td>\n", + " <td>0.228285</td>\n", + " <td>-0.434726</td>\n", + " <td>-5.521007</td>\n", + " <td>0.503092</td>\n", + " <td>-23.477888</td>\n", + " <td>19.594417</td>\n", + " <td>-1.637538</td>\n", + " </tr>\n", + " <tr>\n", + " <th>19</th>\n", + " <td>19</td>\n", + " <td>4.75</td>\n", + " <td>961.268616</td>\n", + " <td>37.5</td>\n", + " <td>48.5</td>\n", + " <td>966.840078</td>\n", + " <td>-2.697195</td>\n", + " <td>-0.917072</td>\n", + " <td>-0.276577</td>\n", + " <td>-2.143372</td>\n", + " <td>0.639826</td>\n", + " <td>-19.239303</td>\n", + " <td>17.812955</td>\n", + " <td>-0.717026</td>\n", + " </tr>\n", + " <tr>\n", + " <th>20</th>\n", + " <td>20</td>\n", + " <td>5.00</td>\n", + " <td>960.033142</td>\n", + " <td>42.5</td>\n", + " <td>49.5</td>\n", + " <td>965.723984</td>\n", + " <td>-3.248944</td>\n", + " <td>-0.140291</td>\n", + " <td>-0.27059</td>\n", + " <td>-3.194694</td>\n", + " <td>0.356631</td>\n", + " <td>-22.355459</td>\n", + " <td>20.558325</td>\n", + " <td>-1.397559</td>\n", + " </tr>\n", + " <tr>\n", + " <th>21</th>\n", + " <td>21</td>\n", + " <td>5.25</td>\n", + " <td>959.165527</td>\n", + " <td>46.5</td>\n", + " <td>49.5</td>\n", + " <td>963.251406</td>\n", + " <td>-3.423848</td>\n", + " <td>-2.804657</td>\n", + " <td>-0.240178</td>\n", + " <td>-1.122276</td>\n", + " <td>0.743263</td>\n", + " <td>-20.977805</td>\n", + " <td>19.972286</td>\n", + " <td>-0.11676</td>\n", + " </tr>\n", + " <tr>\n", + " <th>22</th>\n", + " <td>22</td>\n", + " <td>5.50</td>\n", + " <td>954.482788</td>\n", + " <td>54.5</td>\n", + " <td>50.5</td>\n", + " <td>960.745625</td>\n", + " <td>-8.634359</td>\n", + " <td>-0.696433</td>\n", + " <td>-0.303275</td>\n", + " <td>-8.197736</td>\n", + " <td>0.563085</td>\n", + " <td>-35.144216</td>\n", + " <td>30.370542</td>\n", + " <td>-3.424063</td>\n", + " </tr>\n", + " <tr>\n", + " <th>23</th>\n", + " <td>23</td>\n", + " <td>5.75</td>\n", + " <td>950.702515</td>\n", + " <td>60.5</td>\n", + " <td>50.5</td>\n", + " <td>956.412891</td>\n", + " <td>-11.277213</td>\n", + " <td>-4.148116</td>\n", + " <td>-0.636343</td>\n", + " <td>-7.44595</td>\n", + " <td>0.953196</td>\n", + " <td>-40.768042</td>\n", + " <td>39.075059</td>\n", + " <td>-5.752964</td>\n", + " </tr>\n", + " <tr>\n", + " <th>24</th>\n", + " <td>24</td>\n", + " <td>6.00</td>\n", + " <td>944.416199</td>\n", + " <td>13.5</td>\n", + " <td>51.5</td>\n", + " <td>953.267812</td>\n", + " <td>-10.513564</td>\n", + " <td>-0.136953</td>\n", + " <td>-0.800777</td>\n", + " <td>-10.432903</td>\n", + " <td>0.857068</td>\n", + " <td>-39.406682</td>\n", + " <td>36.354031</td>\n", + " <td>-7.380251</td>\n", + " </tr>\n", + " <tr>\n", + " <th>25</th>\n", + " <td>25</td>\n", + " <td>6.25</td>\n", + " <td>939.254089</td>\n", + " <td>14.5</td>\n", + " <td>51.5</td>\n", + " <td>949.747031</td>\n", + " <td>-4.175635</td>\n", + " <td>-2.641836</td>\n", + " <td>-0.631913</td>\n", + " <td>-1.927561</td>\n", + " <td>1.025675</td>\n", + " <td>-24.771606</td>\n", + " <td>25.964612</td>\n", + " <td>-3.120565</td>\n", + " </tr>\n", + " <tr>\n", + " <th>26</th>\n", + " <td>26</td>\n", + " <td>6.50</td>\n", + " <td>943.386414</td>\n", + " <td>15.5</td>\n", + " <td>50.5</td>\n", + " <td>952.24</td>\n", + " <td>4.132575</td>\n", + " <td>1.120163</td>\n", + " <td>-0.307091</td>\n", + " <td>2.882501</td>\n", + " <td>0.437001</td>\n", + " <td>-1.462401</td>\n", + " <td>5.00208</td>\n", + " <td>-0.657178</td>\n", + " </tr>\n", + " <tr>\n", + " <th>27</th>\n", + " <td>27</td>\n", + " <td>6.75</td>\n", + " <td>944.307129</td>\n", + " <td>23.5</td>\n", + " <td>52.5</td>\n", + " <td>949.676719</td>\n", + " <td>-3.798563</td>\n", + " <td>-4.334128</td>\n", + " <td>-0.681526</td>\n", + " <td>0.092857</td>\n", + " <td>1.124235</td>\n", + " <td>-25.865251</td>\n", + " <td>26.155693</td>\n", + " <td>-0.197583</td>\n", + " </tr>\n", + " <tr>\n", + " <th>28</th>\n", + " <td>28</td>\n", + " <td>7.00</td>\n", + " <td>945.061279</td>\n", + " <td>28.5</td>\n", + " <td>53.5</td>\n", + " <td>951.351328</td>\n", + " <td>-4.223829</td>\n", + " <td>-2.24774</td>\n", + " <td>-0.750874</td>\n", + " <td>-2.000004</td>\n", + " <td>0.774788</td>\n", + " <td>-30.28657</td>\n", + " <td>30.029995</td>\n", + " <td>-1.743427</td>\n", + " </tr>\n", + " <tr>\n", + " <th>29</th>\n", + " <td>29</td>\n", + " <td>7.25</td>\n", + " <td>945.369507</td>\n", + " <td>34.5</td>\n", + " <td>52.5</td>\n", + " <td>949.983047</td>\n", + " <td>-7.115826</td>\n", + " <td>-5.5578</td>\n", + " <td>-0.683829</td>\n", + " <td>-1.809311</td>\n", + " <td>0.935113</td>\n", + " <td>-31.097805</td>\n", + " <td>31.797603</td>\n", + " <td>-2.509108</td>\n", + " </tr>\n", + " <tr>\n", + " <th>30</th>\n", + " <td>30</td>\n", + " <td>7.50</td>\n", + " <td>945.417725</td>\n", + " <td>34.5</td>\n", + " <td>53.5</td>\n", + " <td>951.252813</td>\n", + " <td>-0.704494</td>\n", + " <td>0.980719</td>\n", + " <td>-0.41384</td>\n", + " <td>-2.048983</td>\n", + " <td>0.777609</td>\n", + " <td>-17.849187</td>\n", + " <td>19.567002</td>\n", + " <td>-3.766798</td>\n", + " </tr>\n", + " <tr>\n", + " <th>31</th>\n", + " <td>31</td>\n", + " <td>7.75</td>\n", + " <td>945.800781</td>\n", + " <td>39.5</td>\n", + " <td>53.5</td>\n", + " <td>951.946406</td>\n", + " <td>-2.020101</td>\n", + " <td>-2.759457</td>\n", + " <td>-0.400762</td>\n", + " <td>0.845936</td>\n", + " <td>0.294183</td>\n", + " <td>-19.114169</td>\n", + " <td>20.307427</td>\n", + " <td>-0.347323</td>\n", + " </tr>\n", + " <tr>\n", + " <th>32</th>\n", + " <td>32</td>\n", + " <td>8.00</td>\n", + " <td>948.895386</td>\n", + " <td>39.5</td>\n", + " <td>53.5</td>\n", + " <td>955.078281</td>\n", + " <td>3.131887</td>\n", + " <td>0.431377</td>\n", + " <td>-0.231426</td>\n", + " <td>2.6733</td>\n", + " <td>0.258636</td>\n", + " <td>-6.450124</td>\n", + " <td>9.494901</td>\n", + " <td>-0.371476</td>\n", + " </tr>\n", + " <tr>\n", + " <th>33</th>\n", + " <td>33</td>\n", + " <td>8.25</td>\n", + " <td>952.656189</td>\n", + " <td>45.5</td>\n", + " <td>53.5</td>\n", + " <td>958.661719</td>\n", + " <td>1.878386</td>\n", + " <td>-2.67739</td>\n", + " <td>-0.239762</td>\n", + " <td>4.896032</td>\n", + " <td>-0.100492</td>\n", + " <td>-11.137411</td>\n", + " <td>14.651873</td>\n", + " <td>1.381571</td>\n", + " </tr>\n", + " <tr>\n", + " <th>34</th>\n", + " <td>34</td>\n", + " <td>8.50</td>\n", + " <td>955.252869</td>\n", + " <td>55.5</td>\n", + " <td>50.5</td>\n", + " <td>962.395781</td>\n", + " <td>0.550036</td>\n", + " <td>0.365238</td>\n", + " <td>-0.233314</td>\n", + " <td>-0.086868</td>\n", + " <td>0.50498</td>\n", + " <td>-10.591898</td>\n", + " <td>13.431272</td>\n", + " <td>-2.926242</td>\n", + " </tr>\n", + " <tr>\n", + " <th>35</th>\n", + " <td>35</td>\n", + " <td>8.75</td>\n", + " <td>962.483459</td>\n", + " <td>54.5</td>\n", + " <td>51.5</td>\n", + " <td>967.968672</td>\n", + " <td>4.417296</td>\n", + " <td>-1.242212</td>\n", + " <td>-0.136354</td>\n", + " <td>5.92864</td>\n", + " <td>-0.132778</td>\n", + " <td>-3.232213</td>\n", + " <td>9.121556</td>\n", + " <td>0.039298</td>\n", + " </tr>\n", + " <tr>\n", + " <th>36</th>\n", + " <td>36</td>\n", + " <td>9.00</td>\n", + " <td>963.767273</td>\n", + " <td>24.5</td>\n", + " <td>46.5</td>\n", + " <td>968.786562</td>\n", + " <td>-2.618322</td>\n", + " <td>-5.267679</td>\n", + " <td>-0.248519</td>\n", + " <td>2.393764</td>\n", + " <td>0.504112</td>\n", + " <td>-9.757031</td>\n", + " <td>7.297751</td>\n", + " <td>4.853043</td>\n", + " </tr>\n", + " </tbody>\n", + "</table>\n", + "</div>" + ], + "text/plain": [ + " Unnamed: 0 time pmin lon lat mslp dpsfc_dt \n", + "0 0 0.00 1000.991638 56.5 27.5 NaN NaN \\\n", + "1 1 0.25 997.934448 61.5 23.5 NaN NaN \n", + "2 2 0.50 998.462646 21.5 42.5 NaN NaN \n", + "3 3 0.75 997.014771 32.5 28.5 NaN NaN \n", + "4 4 1.00 999.559631 27.5 42.5 NaN NaN \n", + "5 5 1.25 997.670227 27.5 43.5 NaN NaN \n", + "6 6 1.50 998.062012 31.5 44.5 NaN NaN \n", + "7 7 1.75 997.686157 40.5 42.5 997.960469 -1.528532 \n", + "8 8 2.00 997.231018 45.5 44.5 997.782266 -1.064874 \n", + "9 9 2.25 995.639587 49.5 43.5 996.2725 -2.315292 \n", + "10 10 2.50 993.030029 52.5 44.5 994.170234 -2.972349 \n", + "11 11 2.75 988.784302 56.5 44.5 990.658906 -5.030021 \n", + "12 12 3.00 985.596008 59.5 45.5 988.819922 -3.317254 \n", + "13 13 3.25 981.169678 14.5 45.5 986.357344 -5.949769 \n", + "14 14 3.50 976.026123 17.5 46.5 982.967266 -6.545591 \n", + "15 15 3.75 970.745728 19.5 46.5 978.919062 -4.308632 \n", + "16 16 4.00 967.672241 23.5 47.5 975.420391 -3.763589 \n", + "17 17 4.25 966.600647 28.5 47.5 971.898516 -3.444295 \n", + "18 18 4.50 963.127014 34.5 48.5 968.725547 -5.224357 \n", + "19 19 4.75 961.268616 37.5 48.5 966.840078 -2.697195 \n", + "20 20 5.00 960.033142 42.5 49.5 965.723984 -3.248944 \n", + "21 21 5.25 959.165527 46.5 49.5 963.251406 -3.423848 \n", + "22 22 5.50 954.482788 54.5 50.5 960.745625 -8.634359 \n", + "23 23 5.75 950.702515 60.5 50.5 956.412891 -11.277213 \n", + "24 24 6.00 944.416199 13.5 51.5 953.267812 -10.513564 \n", + "25 25 6.25 939.254089 14.5 51.5 949.747031 -4.175635 \n", + "26 26 6.50 943.386414 15.5 50.5 952.24 4.132575 \n", + "27 27 6.75 944.307129 23.5 52.5 949.676719 -3.798563 \n", + "28 28 7.00 945.061279 28.5 53.5 951.351328 -4.223829 \n", + "29 29 7.25 945.369507 34.5 52.5 949.983047 -7.115826 \n", + "30 30 7.50 945.417725 34.5 53.5 951.252813 -0.704494 \n", + "31 31 7.75 945.800781 39.5 53.5 951.946406 -2.020101 \n", + "32 32 8.00 948.895386 39.5 53.5 955.078281 3.131887 \n", + "33 33 8.25 952.656189 45.5 53.5 958.661719 1.878386 \n", + "34 34 8.50 955.252869 55.5 50.5 962.395781 0.550036 \n", + "35 35 8.75 962.483459 54.5 51.5 967.968672 4.417296 \n", + "36 36 9.00 963.767273 24.5 46.5 968.786562 -2.618322 \n", + "\n", + " dfi_dt EP ITT Eq1res TADV VMT DIABres \n", + "0 NaN NaN NaN NaN NaN NaN NaN \n", + "1 NaN NaN NaN NaN NaN NaN NaN \n", + "2 NaN NaN NaN NaN NaN NaN NaN \n", + "3 NaN NaN NaN NaN NaN NaN NaN \n", + "4 NaN NaN NaN NaN NaN NaN NaN \n", + "5 NaN NaN NaN NaN NaN NaN NaN \n", + "6 NaN NaN NaN NaN NaN NaN NaN \n", + "7 -1.410422 -0.001115 -0.113506 -0.00349 -3.250336 0.124568 3.012262 \n", + "8 -3.222407 -0.015798 2.413954 -0.240624 -5.094301 1.223247 6.285009 \n", + "9 -1.436804 -0.053651 -0.899242 0.074405 -4.800681 3.946058 -0.044619 \n", + "10 -0.213752 -0.116417 -2.771031 0.128852 -5.994471 7.113004 -3.889565 \n", + "11 -3.906765 -0.196581 -1.021318 0.094642 -7.971294 7.949547 -0.999571 \n", + "12 -1.654068 -0.266696 -1.545979 0.14949 -9.712738 8.732941 -0.566181 \n", + "13 1.65093 -0.427943 -7.510536 0.337782 -15.538982 14.034597 -6.006152 \n", + "14 0.411215 -0.523898 -6.928629 0.495721 -18.411635 18.481935 -6.99893 \n", + "15 -3.457062 -0.498384 -0.806854 0.453668 -12.67807 12.82146 -0.950243 \n", + "16 -2.606672 -0.446437 -1.043626 0.333146 -14.725007 14.394435 -0.713054 \n", + "17 -0.566895 -0.379188 -3.099083 0.600871 -17.850734 15.63005 -0.878398 \n", + "18 0.228285 -0.434726 -5.521007 0.503092 -23.477888 19.594417 -1.637538 \n", + "19 -0.917072 -0.276577 -2.143372 0.639826 -19.239303 17.812955 -0.717026 \n", + "20 -0.140291 -0.27059 -3.194694 0.356631 -22.355459 20.558325 -1.397559 \n", + "21 -2.804657 -0.240178 -1.122276 0.743263 -20.977805 19.972286 -0.11676 \n", + "22 -0.696433 -0.303275 -8.197736 0.563085 -35.144216 30.370542 -3.424063 \n", + "23 -4.148116 -0.636343 -7.44595 0.953196 -40.768042 39.075059 -5.752964 \n", + "24 -0.136953 -0.800777 -10.432903 0.857068 -39.406682 36.354031 -7.380251 \n", + "25 -2.641836 -0.631913 -1.927561 1.025675 -24.771606 25.964612 -3.120565 \n", + "26 1.120163 -0.307091 2.882501 0.437001 -1.462401 5.00208 -0.657178 \n", + "27 -4.334128 -0.681526 0.092857 1.124235 -25.865251 26.155693 -0.197583 \n", + "28 -2.24774 -0.750874 -2.000004 0.774788 -30.28657 30.029995 -1.743427 \n", + "29 -5.5578 -0.683829 -1.809311 0.935113 -31.097805 31.797603 -2.509108 \n", + "30 0.980719 -0.41384 -2.048983 0.777609 -17.849187 19.567002 -3.766798 \n", + "31 -2.759457 -0.400762 0.845936 0.294183 -19.114169 20.307427 -0.347323 \n", + "32 0.431377 -0.231426 2.6733 0.258636 -6.450124 9.494901 -0.371476 \n", + "33 -2.67739 -0.239762 4.896032 -0.100492 -11.137411 14.651873 1.381571 \n", + "34 0.365238 -0.233314 -0.086868 0.50498 -10.591898 13.431272 -2.926242 \n", + "35 -1.242212 -0.136354 5.92864 -0.132778 -3.232213 9.121556 0.039298 \n", + "36 -5.267679 -0.248519 2.393764 0.504112 -9.757031 7.297751 4.853043 " + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df_track" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Load original data" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "df_track_orig = pd.read_csv('/work/bb1152/Module_A/A6_CyclEx/pp_data/cyclone_PTE_timeseries/PTE_for_channel_2km_0004_6hrly_1x1latlon_upper50hPa_box6.csv')\n" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "<div>\n", + "<style scoped>\n", + " .dataframe tbody tr th:only-of-type {\n", + " vertical-align: middle;\n", + " }\n", + "\n", + " .dataframe tbody tr th {\n", + " vertical-align: top;\n", + " }\n", + "\n", + " .dataframe thead th {\n", + " text-align: right;\n", + " }\n", + "</style>\n", + "<table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: right;\">\n", + " <th></th>\n", + " <th>Unnamed: 0.1</th>\n", + " <th>Unnamed: 0</th>\n", + " <th>time</th>\n", + " <th>pmin</th>\n", + " <th>lon</th>\n", + " <th>lat</th>\n", + " <th>dp</th>\n", + " <th>dfi</th>\n", + " <th>ep</th>\n", + " <th>itt</th>\n", + " <th>eq1res</th>\n", + " <th>tadv</th>\n", + " <th>vmt</th>\n", + " <th>diab</th>\n", + " <th>eq2res</th>\n", + " <th>diabres</th>\n", + " <th>diabptend</th>\n", + " <th>magres1</th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <th>0</th>\n", + " <td>0</td>\n", + " <td>0</td>\n", + " <td>0.00</td>\n", + " <td>1000.991638</td>\n", + " <td>56.5</td>\n", + " <td>27.5</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1</th>\n", + " <td>1</td>\n", + " <td>1</td>\n", + " <td>0.25</td>\n", + " <td>997.934448</td>\n", + " <td>61.5</td>\n", + " <td>23.5</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2</th>\n", + " <td>2</td>\n", + " <td>2</td>\n", + " <td>0.50</td>\n", + " <td>998.462646</td>\n", + " <td>21.5</td>\n", + " <td>42.5</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>3</th>\n", + " <td>3</td>\n", + " <td>3</td>\n", + " <td>0.75</td>\n", + " <td>997.014771</td>\n", + " <td>32.5</td>\n", + " <td>28.5</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>4</th>\n", + " <td>4</td>\n", + " <td>4</td>\n", + " <td>1.00</td>\n", + " <td>999.559631</td>\n", + " <td>27.5</td>\n", + " <td>42.5</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>5</th>\n", + " <td>5</td>\n", + " <td>5</td>\n", + " <td>1.25</td>\n", + " <td>997.670227</td>\n", + " <td>27.5</td>\n", + " <td>43.5</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>6</th>\n", + " <td>6</td>\n", + " <td>6</td>\n", + " <td>1.50</td>\n", + " <td>998.062012</td>\n", + " <td>31.5</td>\n", + " <td>44.5</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>0.000000</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>7</th>\n", + " <td>7</td>\n", + " <td>7</td>\n", + " <td>1.75</td>\n", + " <td>997.686157</td>\n", + " <td>40.5</td>\n", + " <td>42.5</td>\n", + " <td>-1.524770</td>\n", + " <td>-1.383483</td>\n", + " <td>NaN</td>\n", + " <td>-0.139179</td>\n", + " <td>NaN</td>\n", + " <td>-3.278262</td>\n", + " <td>0.135743</td>\n", + " <td>2.536982</td>\n", + " <td>0.466358</td>\n", + " <td>3.003340</td>\n", + " <td>94.921158</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>8</th>\n", + " <td>8</td>\n", + " <td>8</td>\n", + " <td>2.00</td>\n", + " <td>997.231018</td>\n", + " <td>45.5</td>\n", + " <td>44.5</td>\n", + " <td>-1.069876</td>\n", + " <td>-3.226608</td>\n", + " <td>-0.015867</td>\n", + " <td>2.412867</td>\n", + " <td>-0.240268</td>\n", + " <td>-5.108050</td>\n", + " <td>1.300298</td>\n", + " <td>3.947564</td>\n", + " <td>2.273055</td>\n", + " <td>6.220619</td>\n", + " <td>75.222332</td>\n", + " <td>22.457584</td>\n", + " </tr>\n", + " <tr>\n", + " <th>9</th>\n", + " <td>9</td>\n", + " <td>9</td>\n", + " <td>2.25</td>\n", + " <td>995.639587</td>\n", + " <td>49.5</td>\n", + " <td>43.5</td>\n", + " <td>-2.321588</td>\n", + " <td>-1.431471</td>\n", + " <td>-0.054107</td>\n", + " <td>-0.911131</td>\n", + " <td>0.075121</td>\n", + " <td>-4.832134</td>\n", + " <td>3.987414</td>\n", + " <td>0.976318</td>\n", + " <td>-1.042728</td>\n", + " <td>-0.066410</td>\n", + " <td>19.669037</td>\n", + " <td>3.235755</td>\n", + " </tr>\n", + " <tr>\n", + " <th>10</th>\n", + " <td>10</td>\n", + " <td>10</td>\n", + " <td>2.50</td>\n", + " <td>993.030029</td>\n", + " <td>52.5</td>\n", + " <td>44.5</td>\n", + " <td>-2.990081</td>\n", + " <td>-0.227541</td>\n", + " <td>-0.115441</td>\n", + " <td>-2.774673</td>\n", + " <td>0.127574</td>\n", + " <td>-6.031978</td>\n", + " <td>7.124756</td>\n", + " <td>-1.840393</td>\n", + " <td>-2.027059</td>\n", + " <td>-3.867452</td>\n", + " <td>23.377873</td>\n", + " <td>4.266562</td>\n", + " </tr>\n", + " <tr>\n", + " <th>11</th>\n", + " <td>11</td>\n", + " <td>11</td>\n", + " <td>2.75</td>\n", + " <td>988.784302</td>\n", + " <td>56.5</td>\n", + " <td>44.5</td>\n", + " <td>-5.055136</td>\n", + " <td>-3.907526</td>\n", + " <td>-0.194425</td>\n", + " <td>-1.048631</td>\n", + " <td>0.095447</td>\n", + " <td>-8.037870</td>\n", + " <td>7.918819</td>\n", + " <td>-1.064185</td>\n", + " <td>0.134604</td>\n", + " <td>-0.929581</td>\n", + " <td>11.691698</td>\n", + " <td>1.888122</td>\n", + " </tr>\n", + " <tr>\n", + " <th>12</th>\n", + " <td>12</td>\n", + " <td>12</td>\n", + " <td>3.00</td>\n", + " <td>985.596008</td>\n", + " <td>59.5</td>\n", + " <td>45.5</td>\n", + " <td>-3.353602</td>\n", + " <td>-1.661278</td>\n", + " <td>-0.264434</td>\n", + " <td>-1.574067</td>\n", + " <td>0.146178</td>\n", + " <td>-9.813810</td>\n", + " <td>8.754335</td>\n", + " <td>-0.396583</td>\n", + " <td>-0.118009</td>\n", + " <td>-0.514592</td>\n", + " <td>3.884112</td>\n", + " <td>4.358828</td>\n", + " </tr>\n", + " <tr>\n", + " <th>13</th>\n", + " <td>13</td>\n", + " <td>13</td>\n", + " <td>3.25</td>\n", + " <td>981.169678</td>\n", + " <td>14.5</td>\n", + " <td>45.5</td>\n", + " <td>-5.994007</td>\n", + " <td>1.667370</td>\n", + " <td>-0.424664</td>\n", + " <td>-7.574016</td>\n", + " <td>0.337304</td>\n", + " <td>-15.649766</td>\n", + " <td>14.116293</td>\n", + " <td>-5.600531</td>\n", + " <td>-0.440012</td>\n", + " <td>-6.040544</td>\n", + " <td>26.355072</td>\n", + " <td>5.627351</td>\n", + " </tr>\n", + " <tr>\n", + " <th>14</th>\n", + " <td>14</td>\n", + " <td>14</td>\n", + " <td>3.50</td>\n", + " <td>976.026123</td>\n", + " <td>17.5</td>\n", + " <td>46.5</td>\n", + " <td>-6.623694</td>\n", + " <td>0.413370</td>\n", + " <td>-0.519789</td>\n", + " <td>-7.013312</td>\n", + " <td>0.496036</td>\n", + " <td>-18.551805</td>\n", + " <td>18.586736</td>\n", + " <td>-8.544503</td>\n", + " <td>1.496260</td>\n", + " <td>-7.048243</td>\n", + " <td>31.533828</td>\n", + " <td>7.488814</td>\n", + " </tr>\n", + " <tr>\n", + " <th>15</th>\n", + " <td>15</td>\n", + " <td>15</td>\n", + " <td>3.75</td>\n", + " <td>970.745728</td>\n", + " <td>19.5</td>\n", + " <td>46.5</td>\n", + " <td>-4.369829</td>\n", + " <td>-3.462807</td>\n", + " <td>-0.502404</td>\n", + " <td>-0.857915</td>\n", + " <td>0.453295</td>\n", + " <td>-12.869100</td>\n", + " <td>13.135464</td>\n", + " <td>-2.599338</td>\n", + " <td>1.475060</td>\n", + " <td>-1.124278</td>\n", + " <td>16.804140</td>\n", + " <td>10.373299</td>\n", + " </tr>\n", + " <tr>\n", + " <th>16</th>\n", + " <td>16</td>\n", + " <td>16</td>\n", + " <td>4.00</td>\n", + " <td>967.672241</td>\n", + " <td>23.5</td>\n", + " <td>47.5</td>\n", + " <td>-3.810261</td>\n", + " <td>-2.614022</td>\n", + " <td>-0.451344</td>\n", + " <td>-1.084327</td>\n", + " <td>0.339431</td>\n", + " <td>-14.895649</td>\n", + " <td>14.650202</td>\n", + " <td>0.432076</td>\n", + " <td>-1.270956</td>\n", + " <td>-0.838880</td>\n", + " <td>2.864791</td>\n", + " <td>8.908339</td>\n", + " </tr>\n", + " <tr>\n", + " <th>17</th>\n", + " <td>17</td>\n", + " <td>17</td>\n", + " <td>4.25</td>\n", + " <td>966.600647</td>\n", + " <td>28.5</td>\n", + " <td>47.5</td>\n", + " <td>-3.476231</td>\n", + " <td>-0.580904</td>\n", + " <td>-0.386173</td>\n", + " <td>-3.113185</td>\n", + " <td>0.604032</td>\n", + " <td>-18.012339</td>\n", + " <td>15.824947</td>\n", + " <td>-0.534239</td>\n", + " <td>-0.391554</td>\n", + " <td>-0.925793</td>\n", + " <td>2.880528</td>\n", + " <td>17.376062</td>\n", + " </tr>\n", + " <tr>\n", + " <th>18</th>\n", + " <td>18</td>\n", + " <td>18</td>\n", + " <td>4.50</td>\n", + " <td>963.127014</td>\n", + " <td>34.5</td>\n", + " <td>48.5</td>\n", + " <td>-5.311000</td>\n", + " <td>0.231428</td>\n", + " <td>-0.437539</td>\n", + " <td>-5.608984</td>\n", + " <td>0.504095</td>\n", + " <td>-23.658221</td>\n", + " <td>19.838339</td>\n", + " <td>-3.282714</td>\n", + " <td>1.493612</td>\n", + " <td>-1.789102</td>\n", + " <td>12.184854</td>\n", + " <td>9.491532</td>\n", + " </tr>\n", + " <tr>\n", + " <th>19</th>\n", + " <td>19</td>\n", + " <td>19</td>\n", + " <td>4.75</td>\n", + " <td>961.268616</td>\n", + " <td>37.5</td>\n", + " <td>48.5</td>\n", + " <td>-2.719412</td>\n", + " <td>-0.920923</td>\n", + " <td>-0.284051</td>\n", + " <td>-2.158937</td>\n", + " <td>0.644499</td>\n", + " <td>-19.381837</td>\n", + " <td>17.983743</td>\n", + " <td>-0.849564</td>\n", + " <td>0.088721</td>\n", + " <td>-0.760843</td>\n", + " <td>4.199233</td>\n", + " <td>23.699926</td>\n", + " </tr>\n", + " <tr>\n", + " <th>20</th>\n", + " <td>20</td>\n", + " <td>20</td>\n", + " <td>5.00</td>\n", + " <td>960.033142</td>\n", + " <td>42.5</td>\n", + " <td>49.5</td>\n", + " <td>-3.278760</td>\n", + " <td>-0.123684</td>\n", + " <td>-0.276547</td>\n", + " <td>-3.237937</td>\n", + " <td>0.359408</td>\n", + " <td>-22.430533</td>\n", + " <td>20.677957</td>\n", + " <td>0.919103</td>\n", + " <td>-2.404463</td>\n", + " <td>-1.485360</td>\n", + " <td>4.255686</td>\n", + " <td>10.961694</td>\n", + " </tr>\n", + " <tr>\n", + " <th>21</th>\n", + " <td>21</td>\n", + " <td>21</td>\n", + " <td>5.25</td>\n", + " <td>959.165527</td>\n", + " <td>46.5</td>\n", + " <td>49.5</td>\n", + " <td>-3.416591</td>\n", + " <td>-2.806445</td>\n", + " <td>-0.247299</td>\n", + " <td>-1.111028</td>\n", + " <td>0.748180</td>\n", + " <td>-21.054266</td>\n", + " <td>20.120395</td>\n", + " <td>-0.007731</td>\n", + " <td>-0.169426</td>\n", + " <td>-0.177157</td>\n", + " <td>0.036704</td>\n", + " <td>21.898439</td>\n", + " </tr>\n", + " <tr>\n", + " <th>22</th>\n", + " <td>22</td>\n", + " <td>22</td>\n", + " <td>5.50</td>\n", + " <td>954.482788</td>\n", + " <td>54.5</td>\n", + " <td>50.5</td>\n", + " <td>-8.724039</td>\n", + " <td>-0.680355</td>\n", + " <td>-0.307195</td>\n", + " <td>-8.303829</td>\n", + " <td>0.567340</td>\n", + " <td>-35.186934</td>\n", + " <td>30.452544</td>\n", + " <td>-3.964070</td>\n", + " <td>0.394631</td>\n", + " <td>-3.569439</td>\n", + " <td>10.125078</td>\n", + " <td>6.503179</td>\n", + " </tr>\n", + " <tr>\n", + " <th>23</th>\n", + " <td>23</td>\n", + " <td>23</td>\n", + " <td>5.75</td>\n", + " <td>950.702515</td>\n", + " <td>60.5</td>\n", + " <td>50.5</td>\n", + " <td>-11.366186</td>\n", + " <td>-4.151740</td>\n", + " <td>-0.630934</td>\n", + " <td>-7.534452</td>\n", + " <td>0.950940</td>\n", + " <td>-40.922430</td>\n", + " <td>39.156152</td>\n", + " <td>-11.262865</td>\n", + " <td>5.494690</td>\n", + " <td>-5.768175</td>\n", + " <td>21.582450</td>\n", + " <td>8.366390</td>\n", + " </tr>\n", + " <tr>\n", + " <th>24</th>\n", + " <td>24</td>\n", + " <td>24</td>\n", + " <td>6.00</td>\n", + " <td>944.416199</td>\n", + " <td>13.5</td>\n", + " <td>51.5</td>\n", + " <td>-10.644620</td>\n", + " <td>-0.104620</td>\n", + " <td>-0.793779</td>\n", + " <td>-10.601242</td>\n", + " <td>0.855020</td>\n", + " <td>-39.570175</td>\n", + " <td>36.428533</td>\n", + " <td>-11.337231</td>\n", + " <td>3.877630</td>\n", + " <td>-7.459600</td>\n", + " <td>22.270298</td>\n", + " <td>8.032413</td>\n", + " </tr>\n", + " <tr>\n", + " <th>25</th>\n", + " <td>25</td>\n", + " <td>25</td>\n", + " <td>6.25</td>\n", + " <td>939.254089</td>\n", + " <td>14.5</td>\n", + " <td>51.5</td>\n", + " <td>-4.240595</td>\n", + " <td>-2.657471</td>\n", + " <td>-0.639727</td>\n", + " <td>-1.974837</td>\n", + " <td>1.031441</td>\n", + " <td>-25.157101</td>\n", + " <td>26.443056</td>\n", + " <td>-5.659222</td>\n", + " <td>2.398430</td>\n", + " <td>-3.260792</td>\n", + " <td>18.364365</td>\n", + " <td>24.323030</td>\n", + " </tr>\n", + " <tr>\n", + " <th>26</th>\n", + " <td>26</td>\n", + " <td>26</td>\n", + " <td>6.50</td>\n", + " <td>943.386414</td>\n", + " <td>15.5</td>\n", + " <td>50.5</td>\n", + " <td>4.205340</td>\n", + " <td>1.154922</td>\n", + " <td>-0.319036</td>\n", + " <td>2.929329</td>\n", + " <td>0.440125</td>\n", + " <td>-1.640357</td>\n", + " <td>5.373003</td>\n", + " <td>-1.109275</td>\n", + " <td>0.305958</td>\n", + " <td>-0.803317</td>\n", + " <td>40.342656</td>\n", + " <td>10.465864</td>\n", + " </tr>\n", + " <tr>\n", + " <th>27</th>\n", + " <td>27</td>\n", + " <td>27</td>\n", + " <td>6.75</td>\n", + " <td>944.307129</td>\n", + " <td>23.5</td>\n", + " <td>52.5</td>\n", + " <td>-3.898076</td>\n", + " <td>-4.333317</td>\n", + " <td>-0.692164</td>\n", + " <td>-0.004103</td>\n", + " <td>1.131509</td>\n", + " <td>-26.342438</td>\n", + " <td>26.742041</td>\n", + " <td>-5.821429</td>\n", + " <td>5.417724</td>\n", + " <td>-0.403705</td>\n", + " <td>18.099282</td>\n", + " <td>29.027362</td>\n", + " </tr>\n", + " <tr>\n", + " <th>28</th>\n", + " <td>28</td>\n", + " <td>28</td>\n", + " <td>7.00</td>\n", + " <td>945.061279</td>\n", + " <td>28.5</td>\n", + " <td>53.5</td>\n", + " <td>-4.344801</td>\n", + " <td>-2.220293</td>\n", + " <td>-0.758293</td>\n", + " <td>-2.143275</td>\n", + " <td>0.777060</td>\n", + " <td>-30.737172</td>\n", + " <td>30.572628</td>\n", + " <td>-5.647775</td>\n", + " <td>3.669044</td>\n", + " <td>-1.978731</td>\n", + " <td>15.522285</td>\n", + " <td>17.884833</td>\n", + " </tr>\n", + " <tr>\n", + " <th>29</th>\n", + " <td>29</td>\n", + " <td>29</td>\n", + " <td>7.25</td>\n", + " <td>945.369507</td>\n", + " <td>34.5</td>\n", + " <td>52.5</td>\n", + " <td>-7.236033</td>\n", + " <td>-5.570192</td>\n", + " <td>-0.689141</td>\n", + " <td>-1.917405</td>\n", + " <td>0.940705</td>\n", + " <td>-31.433734</td>\n", + " <td>32.111517</td>\n", + " <td>-7.443328</td>\n", + " <td>4.848139</td>\n", + " <td>-2.595188</td>\n", + " <td>19.145808</td>\n", + " <td>13.000292</td>\n", + " </tr>\n", + " <tr>\n", + " <th>30</th>\n", + " <td>30</td>\n", + " <td>30</td>\n", + " <td>7.50</td>\n", + " <td>945.417725</td>\n", + " <td>34.5</td>\n", + " <td>53.5</td>\n", + " <td>-0.751102</td>\n", + " <td>1.017853</td>\n", + " <td>-0.420817</td>\n", + " <td>-2.131007</td>\n", + " <td>0.782870</td>\n", + " <td>-18.238116</td>\n", + " <td>19.966568</td>\n", + " <td>-4.149480</td>\n", + " <td>0.290020</td>\n", + " <td>-3.859460</td>\n", + " <td>18.534728</td>\n", + " <td>104.229527</td>\n", + " </tr>\n", + " <tr>\n", + " <th>31</th>\n", + " <td>31</td>\n", + " <td>31</td>\n", + " <td>7.75</td>\n", + " <td>945.800781</td>\n", + " <td>39.5</td>\n", + " <td>53.5</td>\n", + " <td>-2.111114</td>\n", + " <td>-2.772627</td>\n", + " <td>-0.403680</td>\n", + " <td>0.776996</td>\n", + " <td>0.288197</td>\n", + " <td>-19.509751</td>\n", + " <td>20.762361</td>\n", + " <td>-4.069986</td>\n", + " <td>3.594373</td>\n", + " <td>-0.475613</td>\n", + " <td>17.260524</td>\n", + " <td>13.651396</td>\n", + " </tr>\n", + " <tr>\n", + " <th>32</th>\n", + " <td>32</td>\n", + " <td>32</td>\n", + " <td>8.00</td>\n", + " <td>948.895386</td>\n", + " <td>39.5</td>\n", + " <td>53.5</td>\n", + " <td>3.091955</td>\n", + " <td>0.432388</td>\n", + " <td>-0.239517</td>\n", + " <td>2.630060</td>\n", + " <td>0.269025</td>\n", + " <td>-6.742869</td>\n", + " <td>9.913919</td>\n", + " <td>1.089976</td>\n", + " <td>-1.630966</td>\n", + " <td>-0.540990</td>\n", + " <td>9.905368</td>\n", + " <td>8.700792</td>\n", + " </tr>\n", + " <tr>\n", + " <th>33</th>\n", + " <td>33</td>\n", + " <td>33</td>\n", + " <td>8.25</td>\n", + " <td>952.656189</td>\n", + " <td>45.5</td>\n", + " <td>53.5</td>\n", + " <td>1.786963</td>\n", + " <td>-2.709863</td>\n", + " <td>-0.244734</td>\n", + " <td>4.844051</td>\n", + " <td>-0.102491</td>\n", + " <td>-11.510792</td>\n", + " <td>15.065191</td>\n", + " <td>-0.316211</td>\n", + " <td>1.605864</td>\n", + " <td>1.289653</td>\n", + " <td>2.673636</td>\n", + " <td>5.735513</td>\n", + " </tr>\n", + " <tr>\n", + " <th>34</th>\n", + " <td>34</td>\n", + " <td>34</td>\n", + " <td>8.50</td>\n", + " <td>955.252869</td>\n", + " <td>55.5</td>\n", + " <td>50.5</td>\n", + " <td>0.464534</td>\n", + " <td>0.357921</td>\n", + " <td>-0.232189</td>\n", + " <td>-0.167584</td>\n", + " <td>0.506386</td>\n", + " <td>-10.783333</td>\n", + " <td>13.550329</td>\n", + " <td>-1.748774</td>\n", + " <td>-1.185805</td>\n", + " <td>-2.934579</td>\n", + " <td>13.954346</td>\n", + " <td>109.009426</td>\n", + " </tr>\n", + " <tr>\n", + " <th>35</th>\n", + " <td>35</td>\n", + " <td>35</td>\n", + " <td>8.75</td>\n", + " <td>962.483459</td>\n", + " <td>54.5</td>\n", + " <td>51.5</td>\n", + " <td>4.338640</td>\n", + " <td>-1.268699</td>\n", + " <td>-0.137703</td>\n", + " <td>5.877027</td>\n", + " <td>-0.131985</td>\n", + " <td>-3.404504</td>\n", + " <td>9.262778</td>\n", + " <td>1.266369</td>\n", + " <td>-1.247616</td>\n", + " <td>0.018753</td>\n", + " <td>12.027268</td>\n", + " <td>3.042093</td>\n", + " </tr>\n", + " <tr>\n", + " <th>36</th>\n", + " <td>36</td>\n", + " <td>36</td>\n", + " <td>9.00</td>\n", + " <td>963.767273</td>\n", + " <td>24.5</td>\n", + " <td>46.5</td>\n", + " <td>-2.708739</td>\n", + " <td>-5.281558</td>\n", + " <td>-0.246777</td>\n", + " <td>2.322801</td>\n", + " <td>0.496795</td>\n", + " <td>-9.851435</td>\n", + " <td>7.347227</td>\n", + " <td>0.728904</td>\n", + " <td>4.098105</td>\n", + " <td>4.827009</td>\n", + " <td>9.025414</td>\n", + " <td>18.340458</td>\n", + " </tr>\n", + " </tbody>\n", + "</table>\n", + "</div>" + ], + "text/plain": [ + " Unnamed: 0.1 Unnamed: 0 time pmin lon lat dp \n", + "0 0 0 0.00 1000.991638 56.5 27.5 NaN \\\n", + "1 1 1 0.25 997.934448 61.5 23.5 NaN \n", + "2 2 2 0.50 998.462646 21.5 42.5 NaN \n", + "3 3 3 0.75 997.014771 32.5 28.5 NaN \n", + "4 4 4 1.00 999.559631 27.5 42.5 NaN \n", + "5 5 5 1.25 997.670227 27.5 43.5 NaN \n", + "6 6 6 1.50 998.062012 31.5 44.5 NaN \n", + "7 7 7 1.75 997.686157 40.5 42.5 -1.524770 \n", + "8 8 8 2.00 997.231018 45.5 44.5 -1.069876 \n", + "9 9 9 2.25 995.639587 49.5 43.5 -2.321588 \n", + "10 10 10 2.50 993.030029 52.5 44.5 -2.990081 \n", + "11 11 11 2.75 988.784302 56.5 44.5 -5.055136 \n", + "12 12 12 3.00 985.596008 59.5 45.5 -3.353602 \n", + "13 13 13 3.25 981.169678 14.5 45.5 -5.994007 \n", + "14 14 14 3.50 976.026123 17.5 46.5 -6.623694 \n", + "15 15 15 3.75 970.745728 19.5 46.5 -4.369829 \n", + "16 16 16 4.00 967.672241 23.5 47.5 -3.810261 \n", + "17 17 17 4.25 966.600647 28.5 47.5 -3.476231 \n", + "18 18 18 4.50 963.127014 34.5 48.5 -5.311000 \n", + "19 19 19 4.75 961.268616 37.5 48.5 -2.719412 \n", + "20 20 20 5.00 960.033142 42.5 49.5 -3.278760 \n", + "21 21 21 5.25 959.165527 46.5 49.5 -3.416591 \n", + "22 22 22 5.50 954.482788 54.5 50.5 -8.724039 \n", + "23 23 23 5.75 950.702515 60.5 50.5 -11.366186 \n", + "24 24 24 6.00 944.416199 13.5 51.5 -10.644620 \n", + "25 25 25 6.25 939.254089 14.5 51.5 -4.240595 \n", + "26 26 26 6.50 943.386414 15.5 50.5 4.205340 \n", + "27 27 27 6.75 944.307129 23.5 52.5 -3.898076 \n", + "28 28 28 7.00 945.061279 28.5 53.5 -4.344801 \n", + "29 29 29 7.25 945.369507 34.5 52.5 -7.236033 \n", + "30 30 30 7.50 945.417725 34.5 53.5 -0.751102 \n", + "31 31 31 7.75 945.800781 39.5 53.5 -2.111114 \n", + "32 32 32 8.00 948.895386 39.5 53.5 3.091955 \n", + "33 33 33 8.25 952.656189 45.5 53.5 1.786963 \n", + "34 34 34 8.50 955.252869 55.5 50.5 0.464534 \n", + "35 35 35 8.75 962.483459 54.5 51.5 4.338640 \n", + "36 36 36 9.00 963.767273 24.5 46.5 -2.708739 \n", + "\n", + " dfi ep itt eq1res tadv vmt diab \n", + "0 NaN NaN NaN NaN NaN NaN NaN \\\n", + "1 NaN NaN NaN NaN NaN NaN NaN \n", + "2 NaN NaN NaN NaN NaN NaN NaN \n", + "3 NaN NaN NaN NaN NaN NaN NaN \n", + "4 NaN NaN NaN NaN NaN NaN NaN \n", + "5 NaN NaN NaN NaN NaN NaN NaN \n", + "6 NaN NaN 0.000000 NaN NaN NaN NaN \n", + "7 -1.383483 NaN -0.139179 NaN -3.278262 0.135743 2.536982 \n", + "8 -3.226608 -0.015867 2.412867 -0.240268 -5.108050 1.300298 3.947564 \n", + "9 -1.431471 -0.054107 -0.911131 0.075121 -4.832134 3.987414 0.976318 \n", + "10 -0.227541 -0.115441 -2.774673 0.127574 -6.031978 7.124756 -1.840393 \n", + "11 -3.907526 -0.194425 -1.048631 0.095447 -8.037870 7.918819 -1.064185 \n", + "12 -1.661278 -0.264434 -1.574067 0.146178 -9.813810 8.754335 -0.396583 \n", + "13 1.667370 -0.424664 -7.574016 0.337304 -15.649766 14.116293 -5.600531 \n", + "14 0.413370 -0.519789 -7.013312 0.496036 -18.551805 18.586736 -8.544503 \n", + "15 -3.462807 -0.502404 -0.857915 0.453295 -12.869100 13.135464 -2.599338 \n", + "16 -2.614022 -0.451344 -1.084327 0.339431 -14.895649 14.650202 0.432076 \n", + "17 -0.580904 -0.386173 -3.113185 0.604032 -18.012339 15.824947 -0.534239 \n", + "18 0.231428 -0.437539 -5.608984 0.504095 -23.658221 19.838339 -3.282714 \n", + "19 -0.920923 -0.284051 -2.158937 0.644499 -19.381837 17.983743 -0.849564 \n", + "20 -0.123684 -0.276547 -3.237937 0.359408 -22.430533 20.677957 0.919103 \n", + "21 -2.806445 -0.247299 -1.111028 0.748180 -21.054266 20.120395 -0.007731 \n", + "22 -0.680355 -0.307195 -8.303829 0.567340 -35.186934 30.452544 -3.964070 \n", + "23 -4.151740 -0.630934 -7.534452 0.950940 -40.922430 39.156152 -11.262865 \n", + "24 -0.104620 -0.793779 -10.601242 0.855020 -39.570175 36.428533 -11.337231 \n", + "25 -2.657471 -0.639727 -1.974837 1.031441 -25.157101 26.443056 -5.659222 \n", + "26 1.154922 -0.319036 2.929329 0.440125 -1.640357 5.373003 -1.109275 \n", + "27 -4.333317 -0.692164 -0.004103 1.131509 -26.342438 26.742041 -5.821429 \n", + "28 -2.220293 -0.758293 -2.143275 0.777060 -30.737172 30.572628 -5.647775 \n", + "29 -5.570192 -0.689141 -1.917405 0.940705 -31.433734 32.111517 -7.443328 \n", + "30 1.017853 -0.420817 -2.131007 0.782870 -18.238116 19.966568 -4.149480 \n", + "31 -2.772627 -0.403680 0.776996 0.288197 -19.509751 20.762361 -4.069986 \n", + "32 0.432388 -0.239517 2.630060 0.269025 -6.742869 9.913919 1.089976 \n", + "33 -2.709863 -0.244734 4.844051 -0.102491 -11.510792 15.065191 -0.316211 \n", + "34 0.357921 -0.232189 -0.167584 0.506386 -10.783333 13.550329 -1.748774 \n", + "35 -1.268699 -0.137703 5.877027 -0.131985 -3.404504 9.262778 1.266369 \n", + "36 -5.281558 -0.246777 2.322801 0.496795 -9.851435 7.347227 0.728904 \n", + "\n", + " eq2res diabres diabptend magres1 \n", + "0 NaN NaN NaN NaN \n", + "1 NaN NaN NaN NaN \n", + "2 NaN NaN NaN NaN \n", + "3 NaN NaN NaN NaN \n", + "4 NaN NaN NaN NaN \n", + "5 NaN NaN NaN NaN \n", + "6 NaN NaN NaN NaN \n", + "7 0.466358 3.003340 94.921158 NaN \n", + "8 2.273055 6.220619 75.222332 22.457584 \n", + "9 -1.042728 -0.066410 19.669037 3.235755 \n", + "10 -2.027059 -3.867452 23.377873 4.266562 \n", + "11 0.134604 -0.929581 11.691698 1.888122 \n", + "12 -0.118009 -0.514592 3.884112 4.358828 \n", + "13 -0.440012 -6.040544 26.355072 5.627351 \n", + "14 1.496260 -7.048243 31.533828 7.488814 \n", + "15 1.475060 -1.124278 16.804140 10.373299 \n", + "16 -1.270956 -0.838880 2.864791 8.908339 \n", + "17 -0.391554 -0.925793 2.880528 17.376062 \n", + "18 1.493612 -1.789102 12.184854 9.491532 \n", + "19 0.088721 -0.760843 4.199233 23.699926 \n", + "20 -2.404463 -1.485360 4.255686 10.961694 \n", + "21 -0.169426 -0.177157 0.036704 21.898439 \n", + "22 0.394631 -3.569439 10.125078 6.503179 \n", + "23 5.494690 -5.768175 21.582450 8.366390 \n", + "24 3.877630 -7.459600 22.270298 8.032413 \n", + "25 2.398430 -3.260792 18.364365 24.323030 \n", + "26 0.305958 -0.803317 40.342656 10.465864 \n", + "27 5.417724 -0.403705 18.099282 29.027362 \n", + "28 3.669044 -1.978731 15.522285 17.884833 \n", + "29 4.848139 -2.595188 19.145808 13.000292 \n", + "30 0.290020 -3.859460 18.534728 104.229527 \n", + "31 3.594373 -0.475613 17.260524 13.651396 \n", + "32 -1.630966 -0.540990 9.905368 8.700792 \n", + "33 1.605864 1.289653 2.673636 5.735513 \n", + "34 -1.185805 -2.934579 13.954346 109.009426 \n", + "35 -1.247616 0.018753 12.027268 3.042093 \n", + "36 4.098105 4.827009 9.025414 18.340458 " + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df_track_orig" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Compare single coordinates for sanity" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "[<matplotlib.lines.Line2D at 0x7fff954809d0>]" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAAGiCAYAAABH4aTnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAABXBElEQVR4nO3deXhU5d3/8feZSWayTlayACGGXfZNNhcQhYqWqqh1F9we99aq1aq1Yqti/VWr1t0qxa1YF6ytoqIILuybICCGPSwhZJ3JNpnMnN8fA7GRAJnMJJPl87quuZ7MWe7zPT15zIf7nHPfhmmaJiIiIiItxBLuAkRERKRjUfgQERGRFqXwISIiIi1K4UNERERalMKHiIiItCiFDxEREWlRCh8iIiLSohQ+REREpEUpfIiIiEiLUvgQERGRFhVQ+JgxYwaGYdT7ZGRk1K2fPn36YetHjx4d8qJFRESk7YoIdIf+/fvz2Wef1X23Wq311p9xxhnMmjWr7rvNZguiPBEREWlvAg4fERER9Xo7fsputx91vYiIiHRsAYeP3NxcOnfujN1uZ9SoUTz88MN07969bv3ChQtJS0sjMTGRcePG8dBDD5GWlnbE9txuN263u+67z+ejuLiYlJQUDMMItDwREREJA9M0cblcdO7cGYvl6E91GKZpmo1teN68eVRWVtK7d2/279/Pgw8+yPfff8+GDRtISUnhrbfeIi4ujuzsbLZv3859991HbW0tq1atwm63N9jmjBkzeOCBBwI7QxEREWmV8vLy6Nq161G3CSh8/FRFRQU9evTgzjvv5Lbbbjts/b59+8jOzmbOnDlMnTq1wTZ+2vNRVlZGt27dyMvLw+FwNLU0ERERaUFOp5OsrCxKS0tJSEg46rYB33b5X7GxsQwcOJDc3NwG12dmZpKdnX3E9eB/RqShXhGHw6HwISIi0sY05pGJoMb5cLvdbNq0iczMzAbXFxUVkZeXd8T1IiIi0vEEFD7uuOMOFi1axPbt21m2bBnnn38+TqeTadOmUV5ezh133MGSJUvYsWMHCxcuZMqUKaSmpnLuuec2V/0iIiLSxgR022X37t1cfPHFFBYW0qlTJ0aPHs3SpUvJzs6mqqqK9evX8+qrr1JaWkpmZiannnoqb731FvHx8c1Vv4iIiLQxQT1w2hycTicJCQmUlZXpmQ8REZE2IpC/35rbRURERFqUwoeIiIi0KIUPERERaVEKHyIiItKiFD5ERESkRSl8iIiISItS+BAREZEWpfAhIiIiLSqoieVERESOprKmljeW7uKEnGSGZCU2yzGqPV5eW7KTvWVVnL77Gaymp8HtSuydWZ72y7rvp+55EZuvssFtnZFpLMm4pO77KftmEV1b1uC2FRFJfJ05re77ifmvEecpAsCMSmTIhX8gOlYjff8vhQ8REWkWxUUHuPKfm/l2dxk2q4XHz+/Hz4dmh/QYZVUern11Jcu3FwNwu/1d4ozqBrdd5uvLrNyRdd9vtM+lk9FwoFjvO45ZW8fWfb/S9j7dLAca3HarL5Ort42r+36h7b/0teTVfV/yjo0x0x5q/El1AAofIiIScnu2bcL32lQmeUbwneViIryVdJ17Lks3ncvoS+4LyTH2795K7j9uYkv5NOLtyVwyuhvf7rkcyxF6Ppz2TG5K71H3fdOeS9jirWpw2wpbKjdl/Ljttr0XsafW1eC2VRGJ3NT5x2337LuAEk8xNudOhru+oMvOuZi+P2FY9KTDIZrbRUREQmrLt1+TOPdSUillr5FG1ZVfsPGz2UzZ9SgASzMuYeS1T2OxWpt8jB2bVhL91i9Jp4iFxkjS/+9djs9sXX8zyp3FWB/rQ7RRw/c/n0vfERPCXVKz0twuIiISFusXvUfme+eRSilbrd2xXfsZPbp15efT72Zp918BMDr/TVY/+Utq3A3fHjmWjUs/JvmtX5BOETstXekz/elWFzwA4hzJbEjw344pWzI7zNW0LgofIiISEis/eI6+C64h1qjmO/sQ0n71Oamd/c94GBYLo6/4EyuGzsRjWhnh/IwfHj8DV1lxQMdY8/E/6DHvMhxU8H1kPxJv+pzM7D7NcTohEXXC5ewxU1hcFEu1xxvucloNhQ8REQmKaZosfm0GI1b/jkjDy8r40+l92yfEJyQftu0JZ9/I9xP+TqVpZ4B7DQVPnUbh3p2NOs6yOTMZvORW7IaHtTFjOe4380lIyQj16YRUv7E/55f2F3iy+iw+27Q/3OW0GgofIiLSZF6fyQP/2chbm9wALE2/mGG3/gubPeqI+wwcN5U9575LEQk4aou4YfZith4oP+L2pmny1w/XkL5xFhbDZHnK2Qy87QOiYuJCfj6hZrFaOWd4FgDvrtod5mpaD4UPERFpkmqPl1v+uZp/LN7Bv30nMfeENxh9w/ONepC015CTqb7iE+6Ovp8VZQ7Of24xq3eVHLadx+vjjrfX8eRXe7nC8zu+zvk1J9z0D6wRkc1xSs3ivGFdiaCWiC0fc2DfrnCX0yoofIiISMDKSgpZ/vj5rFi/iUirwVMXD+Xcs34eUBtduh/Pn2++jMFdEyip9PDiS8+w9rN/1q2vcJXyxPPP8e7q3VgtBjdPnchJ0/7Y5l5Z7d4pjrccf+OlyMfY+vnL4S6nVdA4HyIiEpD9u7dS+cq5nOLbybP2fDyXfcDYXp2a1FZKnJ1//t9oHp71LvfufRLbVx6Wl+XT/cTzKXnpHH5Tu40tkXdy4aVXMaFveojPpOV4e50BG1aQvm0upu/+NhegQk3jfIiISKPt3LSKqLcuIJ0iDpCE87y36DFwVNDtemrcrH12OieUfgRAMQ6ScVKCgwO/eI3ew8YHfYxwKispJOqJvtgND7nnfEivISeFu6SQ0zgfIiISctVVFUT+62LSKWKXpQu1V34SkuABEGmzM+JXb7Ck61UAJONkr5FO+WUftfngAZCQlMp3Dn/gKP5mVpirCT+FDxERaZQ17/yZzuZ+CkjGceOCkI+vYVgsjLnmr6wc9meWJ0/Bdt1nZPUcGNJjhFPksMsA6H3gkyYPsNZeKHyIiMgxFRfspf+WlwDYMfh2ElObb3yNEb+4npG/ep3UjG7Ndoxw6H/yORwgiSRcfLfw7XCXE1YKHyIickyvLlzHZrMrW6w9GPGLG8JdTptkjYhgS+ZZABRt+CLM1YSXwoeIiBzVloJy/rbWxwU191N87pygJoTr6DJO/xWT3TO5ofB8isrd4S4nbBQ+RETkqB6Ztwmvz+T049MZOaB3uMtp03J69CGyyyBqfSb/Xrs33OWEjcKHiIgc0Xff/JcRuU+SYKnid5OPD3c57cL5w7sC8N+VuWGuJHw0yJiIiDTI6/USteAPXB+xlQFpcfRMOz/cJbULUwZmEjXvVqaUfMPW9f+hx8DR4S6pxannQ0REGrTqg+fo6d2Ky4ym3/n3hbucdiMpzk7PeC/RRg0Hvu6YY34ofIiIyGEqy8s47tvHANjQ41qS07qEuaL2xTL0EgB67Z+Hp6bjPXiq2y4iIq1U4d6dVJQV1n332hPwxh6c38RXi61022H7JGZkk5CUGvSxv/3XQ4yhmL1GGkMu+F3Q7Ul9/U+ZStHXd5FCGWu/fI8hp1/cpHZMn4/Sov0kdcoMcYXNS+FDRKSVMX0+lr58G2P2zOJ/Y8Trtafx+9qrAUjCyZqo6w/bt8q0sXrM/2PYGdObfPzCvTsZvPMfYMC+EXfROTq2yW1JwyJtdnLTJ5Oyfw6+NW9CE8JHZU0tnz17K78ofY21J7/AkNMuaoZKm4duu4iItCKeGjcrn7qEMXv8zwKUEE8JDkpw4IuMJTnWRnKsjcQYe93yQx8nMUQbNQxZcitfvfN0k2vY8vZ9xBhuNkf0Zdjkq0J1avITnU7y/287oHwxpYX5Ae1bVO7m4peWsfGABwDPdx+EvL7mpJ4PEZFWosJdy7K/XcWE8nnUmhZWD/oDI8/7Td36Kw5+fjS13jdvbS3LnruanMKF3L0qll/Efc9vf9YHwzAaXcOmfU5uzZ/I7dYSBp75qw4/9Xtz6jFwFFvf704P7zbWfP4PRl3YuNtbe/bu4bI3c9leWEG61f8sTqeydc1Zasjpt0pEpBUoLHdz8UtLeaBoArvNTnx3ynP1gkdjWCMiGHnTLP4zeg67zTSeXbiV29/+Fk+tt1H7m6bJQx9uIt9MZuHxD9B35MSmnIoEYNfx1/Co50JeyO/bqO23fPs19hfHMr7kHbokRnP9pf5bLcf58igrKTzG3q2HwoeISJjt2l/Iec8tZt3uMpzRWRRO/6bJ9+8Ni4WrJ4/h0fMGYbUYuNb+mw1/OYMKV+kx9/3qu+18vaUQm9XCXWc07o+hBGfgGdfwonkOC/ZFkrvfddRt1385l8z3ziOVUi6NWsx7141gWL/e7Db8k/zt/HZRS5QcEgofIiJhlLvmS6KeO4GcksV0TYrm3RvGMiQnPeh2f3lCFq9c3Jc/R77EkOrl7H3iNArz8464fa2nhqy5Z/N85F+5+YRYuqXEBF2DHFtqnJ3xfdIAeGf17iNut/KD5+j7+dXEGtV8Zx9C2i3zSU9yAJAfPxCAyq2Lm7/gEFH4EBEJk28XvkuX988njWLuiPmQ924YQ/dOcSFrf9zA7hSe/TolOOjl3YL7hdPYveW7BrddNfcpcny7GGX9nmnj+oWsBjm2C4amMcWymGHLb6fWU1NvnenzsfTV+xix+ndEGl5WxU+g12/m4UhMqdvG2/UEAGILVrdo3cFQ+BARCYPl7z9Dvy+uJcZws94+jOxb/kuaIzrkx+k9bDzll/6XvUY6Xcz9xLw+mR9W1++ed5UV03PjUwBs7nNjSMYJkcY7tU8af7TN5mfmN2z8+se3Vnw+k2XPX8/obf5rszT9Yobe+g72qPq9Uql9T2avmcwP1Yn4fGaL1t5UCh8iIi3I9PlYMvteRq69h0jDy0rH6fS5bR7xCcnNdsysXoOxXfcZW6w9SMZJ139fwLdfvF23/ru3ZpBCGXlGZ4afd3uz1SENs9mj+CF1EgCe1W8AUO3xcsucNczfEwnAsp6/YfQNz2OxWg/bP7vfKE43n+N29zXkFpS3XOFBUPgQEWkhXq+XZc9ew5jt/jE4lmRexrBf/wubParZj52a0Y2MX3/OevswYgw3axe8zdsr88jflcvQPW8CUDjmXiJt9mavRQ6XfNKVAAxwfsWe/H1Me2U5H67bx6ucxcLx7zDqshlH3DciwsqQrEQAVu0saYFqg6fwISLSAqo9Xm56Yw3b84vxmQZLe9/JmOueafBfss0lzpFEn9vm8W76r3nAczm/fWcd61+9nSjDwwbbQIacfkmL1SL19Rx0Ijss3bAbHro835dN2/OIs0fwjytHMn78sV95HtYtCTDZvG178xcbAhpkTEQkQCv+/Swla//LLZ5b6pZ9ab2BBBru8l5PDy6pvR+P12SR9RqyT5nO2NPOaaFq67PZozj3ugfI/WQzry36juM9G8AA+5kzNaBYGBkWC/k553Lc1icB+Ev0P+hy7T/p3zmhUfuPi9vFVfbrKM9NADY2Y6WhofAhItJIps/H0td+z5jtz7DE24/aWg9e/D0XNquHKMPT4H6RPg8er0liTCTPXTqcMT1SGtyupVgsBr+b3Jd0h53J8x7n3j77uGjIyWGtSaDnxGsp2foKZZZEBlzxVzo3MngA9Oo9gMT55ST7yiktzCcxNaMZKw2eYZpmq3o01ul0kpCQQFlZGQ6HI9zliIgA/qHLVz5/LaMK3wNgScalZP3yUTD8vQVW1x4wfQ3ua1pt+GLTSY2zExXZcrdZGsNd68Ue0bpq6siqK8uJtEVhjQi8byDvgePJMvfy7SkvMHhCy08yF8jf74D62GbMmIFhGPU+GRk/pivTNJkxYwadO3cmOjqa8ePHs2HDhqadhYhIK1FdVcG3fz2XUYXvHXxe47eMuf5ZuibH0TUphq5JMWR260Vmdp8GP5275tA1KabVBQ9AwaOViYqJa1LwAMhPGARA5daloSypWQR8g69///7s27ev7rN+/fq6dY8++iiPP/44Tz/9NCtWrCAjI4OJEyfich19yFgRkdaqrPgA2x6fxLCKL6kxI1gz6jFGX/L7cJclchhfl5EAxBeuCXMlxxZw+IiIiCAjI6Pu06lTJ8Df6/HEE09w7733MnXqVAYMGMDs2bOprKzkzTffDHnhIiLNbW9pFe+9cD/9PN/hMqP5YdJshp95dbjLEmlQWr+TAOhevemwkVJbm4DDR25uLp07dyYnJ4eLLrqIbdu2AbB9+3by8/OZNGlS3bZ2u51x48axePGRx5t3u904nc56HxGRcNuc72Lqs4v5U9lk3rVM4sAF/2bAiT8Pd1kiR9Stz3DKzWhiDDc7N60MdzlHFdCNpVGjRvHqq6/Su3dv9u/fz4MPPsjYsWPZsGED+fn5AKSn158QKT09nZ07dx6xzZkzZ/LAAw80oXQRkeaxbsWXTPvQRUk19ExzMPqqV+mSGPqhz0VCyRoRwSLHWewqcZNRaNIj3AUdRUA9H5MnT+a8885j4MCBnH766Xz44YcAzJ49u24bwzDq7WOa5mHL/tfdd99NWVlZ3Scv78izLoqINLfV82bR97/ncq/3eYZ3S+Sd68coeEibsXnQXfy59mK+OhAb7lKOKqgRZWJjYxk4cCC5ubl1b70c6gE5pKCg4LDekP9lt9txOBz1PiIi4bD0nw8zZOlvsBm19Ij38saVQ0mMsYW7LJFGG9YtEYDVu1r3MOtBhQ+3282mTZvIzMwkJyeHjIwM5s+fX7e+pqaGRYsWMXbs2KALFRFpLqbPx5IXbmH05j9jMUyWpZzDoNs+ICo65tg7i7QiQ7sl4aCC7JIlFBUWhLucIwromY877riDKVOm0K1bNwoKCnjwwQdxOp1MmzYNwzC49dZbefjhh+nVqxe9evXi4YcfJiYmhksu0XwBItIy1q1bDR/dSaS3osH11UY0DyU9WPd9uut5+ld/yxjfDgCWHHcDo694WEONS5uUEB3JBzF/5DhfHmvXHEfKxNb59zeg8LF7924uvvhiCgsL6dSpE6NHj2bp0qVkZ2cDcOedd1JVVcWNN95ISUkJo0aN4tNPPyU+Pr5ZihcR+V8frd/HbW/t4zGLwVnWhue3cJoxrPyfmT9/HbmVHOsOak0Lq4c8wJhzf9VS5Yo0i4KEQRxXkkfV9iVA6wwfGl5dRNqF2d9sY8Z/N2GacHbvKK7M3IlpOXz0Tp8RwYHOE+q+Jxauwu4uIrX7ELJ6DW7JkkWaxfJ3n2Dk+vvZaBtIv3u+brHjBvL3WxPLiUibZvp8LP37r3HkbQXzBi4ddRx/PHsAVsuR37KrT2N3SPuS3v9kWA857s14atxE2uzhLukwCh8i0mZ5atysfeZyxpR9AlYwhlzK2ecMOOrr/SLtXVavITiJxWFUkLtxOb1a4YzFeqJKRNqkClcpmx4/kxPKPqHWtLB80J8457xLFTykw7NYreyI6gdA8fdfhbmahil8iEibU5ifx94nTmNQ9UoqTTsbxr3AyKl6UFTkkIq0YQBY97TOYdZ120VE2pTdW77DeGMqvcz9lODgwNmvMXjY+HCXJdKq2Aeezd1ba9lZM4TWOLWrej5EpM34Nq+UP705n06+QvYY6ZRfNo/eCh4ih+k1cCRzfKexuCyFAld1uMs5jMKHiLQJX2wu4KIXl/JJZW8ectyH/brPyeo5INxlibRK8VGR9En3j7G1emdpeItpgG67iEirt+z9Z3lkeQRVvi6c3CuV3172M+Ls+s+XyNGcmlHNiAPzqV6zFQa0rmei9P+9ItJi9m7/np3zn8Worapb9kXna6mx+mfgPL5kAd3K19XbJ6K6hFHO+bwSmcLzvV/hvgtPwBahTluRY5kQtZkTImexaVc/QOFDRDqgH1YvIvWDyxiDs97ym3edSiEJADwQsYjREfMb2p1dXc7ijxefojlXRBopo9/JsBa61+RS467GZo8Kd0l1FD5EpNl9+8Xb9Fp4EzGGm63W7hRknFK37rIuffFY/bPHxhf/jCXlXQ7bP/q4UYxppRNkibRWXXsOopQ4Eo1yfvhuCb2HnxrukuoofIhIs/r34nWcfjB4rIsaTvcb36WHI6lu/Zh6W/dt6fJE2i3DYmFndH8Sq5ZRvPlraEXhQ/2XItIsTNPkmS+28OsP8rjDcz3LE86g728+Iu5/goeINK+q9OEARO5tXYONqedDRELOW1vL4+8t4pnV/vEFsk++hBPO6KOhz0VaWFyvsbDjWbqUfxfuUupRz4eIhFR1ZTnf/vUcLttwDZ2NImZM6cfvJvdV8BAJg5xBJ+M1DdLMIvbv3RXucuoofIhIyDiLCtj+10kMq/iKFJw8eaqN6SfmhLsskQ4rNj6R3zoeZZD7JVYWRoa7nDoKHyISEvm7cil5ZgLHezbgJIbcn73GCZMuCndZIh1ebI+xlBPD6l0l4S6ljsKHiARt+4ZlWF6ZRLYvjwKSKbrg3/Qfe2a4yxIRYFh2IkCrCh964FREgrJ++Rdkf3QJDirZYcki6sr3ycnqGe6yROSgYZ2juSfiDYbkb6W6agFR0bHhLknhQ0T8Kty1LNx8AHetF4A41zaSSo/8hPyB1FHk1SbywqfFvGFNZY89ni7Xv48jJa2lShaRRujWKYnzI74iGSffr19M35ETw12SwoeIQH7eFvb84ypmVl7FbrMTANOsn/BA5Owj7jOt5i4W+QYDUbzS83H+dOEYomLiWqhiEWksw2JhV8wAkisXU/rDN6DwISLhtn3DMmLfvojhFPNY1N95JutxAJIqu7OufMQR9zsuPQvT3olROclcP64HVotepRVpraoyRsC2xdj2rQp3KYDCh0iHtmHxR2R9enXd8xrZV/6DV+ue1xgJ3HrEfQe1RIEiEhIJvcbCtqfIqliP6fOFfYJGve0i0kGt+mgWvT65HAeVbIrsT9JNn5OhB0VF2qWcQSfhMa10ooT8vNxwl6PwIdIRLf3nwwxd9htsRi2rY08m57b5JKSkh7ssEWkm0bHx7Ij0D/i357svw1yNwodIh+LzmTz64bfEbnoLi2GyLHUqg3/zfqt49U5Emldx0hAOmAns3X8g3KXomQ+RjqKm1sdd765j7po9vM2dPDZgBydfcnfY7/2KSMsoGH0vF759LoMqE/lFmGtR+BDpAMqdJcya/RJz9/THajG467xxnDL80nCXJSItaEhOBrCJjXudVHu8REVaw1aL/skj0s4V5u8i/8nTuKXoIS60fcPL00Zw/vCu4S5LRFpY16Ro0uLt1Pp8rN9VGNZaFD5E2rG8LeupeeF0enq3UoyDa849g/F9NAKpSEdkGAZ3xX/CcvtNeL95Oqy16LaLSBtg+nzs2bYRr8fd4PramE74opIAMDxVRLryKNu/g6yFt5KEk91GBlz6Lr16DmjJskWklemSHENacSl78sM72JjCh0grV+6u5cunr+dM19tH3OYBz+XM8k4GYLixmXftD9Sty43oRfK175OSrlstIh1dYq8Tqcx9jsIqH6ZpYhjhGZlY4UOkFStwVXPVP1aw78AEhto/J8rwAIf/x8JqiyHZYgMg1rRT4nMAsNUxkuOvfZnY+MQWrFpEWqvjhoxn+H9eJispgROqPCTG2MJSh2GaphmWIx+B0+kkISGBsrIyHA5HuMsRCZude/Zy2Rvfk1dcRUqsjVemDWdwt+RwlyUibVxzvekSyN9vPXAq0gr9sHoh8S+NYnTZPLJTYnj3hrEKHiISEuF8xfYQhQ+RVubbBXPo+u9fkoyTa6IX8e51ozguVSOQikj7ofAh0oqseO9J+i+6gRjDzbqoEXT99aekOmLCXZaISEjpgVORVsD0+Vg6+27G7HweDFiR8DOG3PQakTZ7uEsTEQk5hQ+RMPN6fax89krGFL0PwNIu0xh19ROac0VE2i39100kjKo9Xq5/YzXf5EfgMw2W9f0do699SsFDRNo19XyIhElpZQ1Xz17Jqp0lLIo4j1GnXcSJp0wMd1kiIs1O4UMkDPbt3Mx3r93JxvIrcETF8fdpJzAyR6/SikjHoPAhEgRvbS0rXrqJgfnvY8ULwL/M03jINx2AJJwstN502H6d8DLR8PFITATHX/cPeqfHt2TZIiJhpfAh0kTVleVsevoCRlcurjfiueGtxV3rA8CNj6gIT4P7b7XmMPrKR0lX8BCRDkbhQ6QJyor2s+/5cxjq2YjbjGT9iIfoMmg8AKdFxnJq9MFbKD4v+8qXH7a/YVjI6dIdizX8Iw2KiLS0oB6pnzlzJoZhcOutt9Ytmz59OoZh1PuMHj062DpFWo3dJZW88uLj9PVsxEksW894jRFTriMzuw+Z2X3o3LkrXZNi/J+U+Lrl//vJ6NZLwUNEOqwm93ysWLGCF198kUGDBh227owzzmDWrFl132228MyaJxJqm/Y5mT5rOfudJxMfW8zp519Hv+NHhLssEZE2pUnho7y8nEsvvZSXXnqJBx988LD1drudjIyMoIsTaU3WLf2Ua+ZVUeCOoHd6PGde+RSdE6PDXZaISJvTpNsuN910E2eddRann356g+sXLlxIWloavXv35tprr6WgoOCIbbndbpxOZ72PSGuz6sO/03fexfw/318Yc5yDt68bq+AhItJEAfd8zJkzh9WrV7NixYoG10+ePJkLLriA7Oxstm/fzn333ceECRNYtWoVdvvh81TMnDmTBx54IPDKRVrI0jf+yOjcx8CAeEcis6YNIyo6MtxliYi0WYZpmmZjN87Ly2PEiBF8+umnDB48GIDx48czZMgQnnjiiQb32bdvH9nZ2cyZM4epU6cett7tduN2u+u+O51OsrKyKCsrw+FwBHg6IqHj83pZ/uJNjN7/TwCWpZ7HiOtfxBqhl8RERH7K6XSSkJDQqL/fAf1XdNWqVRQUFDB8+PC6ZV6vly+//JKnn34at9uN9SdP8GdmZpKdnU1ubm6Dbdrt9gZ7RETCqcZdzbpnLmW08zMAlubcwqjL/6g5V0REQiCg8HHaaaexfv36esuuvPJK+vbty1133XVY8AAoKioiLy+PzMzM4CoVaSGuag/rnrqYEysX4DGtfDvsT4w++/BRSkVEpGkCCh/x8fEMGDCg3rLY2FhSUlIYMGAA5eXlzJgxg/POO4/MzEx27NjBPffcQ2pqKueee25IC5fmY5omS998CEvJVgZf9TeiYuKa5TgfrtrCwm0V3PGzPqQ7oprlGP9aupV3vi3A5/PfXby35D6izMoGt90d0Y0XHL9mX1k1iWWnM8u2hvxTH2PE+POapTYRkY4qpDevrVYr69ev59VXX6W0tJTMzExOPfVU3nrrLeLjNYR0W+Dx+rjr3XX03rSJ6yP+y5K30hhz5Z9Dfpw9277npA8msNU7kQu2XMYrV4+mZ1rofkd8Xi/LXrqZznu+ZY3nLjwHf9Vz7JtINCoa3KfaXcPKkhIA3HG9KbhsGYOOSw9ZTSIi4hfQA6ctIZAHViS0Kty13PDGar784QBTLIv5m+1pKk07ldetILVzdkiPteovZzO8fCFfeQdwueduEmNsvHpBFoOOPz7otg89rzHi4PMa7/X5f8QMnAJAp70LsJi1De7niXRQnDYawzAYeVwySbEaHE9EpLGa7YFTab8K8/NY98qvWOu8mOhIB+decgub351Pn9rNfPf2PaT++o2QHev7FZ8xvHwhPtMg/hePMGS5hZ57/02vObNYe9KTDJl4SZPbdpUVs+PZqYxwr8FjWlk79I9MPef/ftxgwKUhOAMREQmGHt0Xdm/5DvcLpzGhZgGPR73MP/9vNBOOz8Cc9BAAw4s/ZPuGZSE5lunzYXxyLwArk89kyAkn8+Y1I7k4YQPRRg0Dv76RZW8/1qS2C/N3UfDUaQx0r6HStLPp1Bc54ZybQ1K3iIiEjsJHB/fD6kXEvD6ZLuZ+9hrp9Ln0UYZkJQLQd+REVsedgtUwcf3n7pAcb/W8V+hT+z0Vpp2cC2YCEGOPZPBv5rI86SyshsmoDX9kyd9vx/T5Gt1uXu631LxwGj282ygigT3nvMOg8eeHpGYREQkthY8O7Nsv3qbrvy8gGSdbrD2wXfc5Wb0G19smfeoj1JgRDKpexbov3gnqeNVVFWSu9D+8ui57Gp3+5zmSiEgbJ9zyOkuyrgFgzO6/s+Jvl1HrqTlmu2t2lXDbm8uJ87nYY2RQfcU8eg09JahaRUSk+Sh8dFDL5/6N/gv/jxjDzXr7MDJ+/TmpGVmHbdele39WZF7CK7Vn8MBqO7XexvdG/NSnn35Iiq+EApIZ/MvfH7besFgYc/VjLOv/B7ymwciSD/nu8SlUVrsbaM3v8037ufilpayo6syfEh8k6vrP6dK9f5NrFBGR5qfw0cGYpskLn62ny9q/EmH4WOmYSJ/b5hHnSDriPgOueJynbFez6oCFt1bmNem4xRU13LsmgdNq/sKGMY8RE5dwxG1HXXA76056hmozkkWuzlzy8kqKyg8PIMvffYIXX3udao+P8X06MePG6aSkd21SfSIi0nIUPjoQr8/kD//ewMzPdjGt5i6+6nItw2/9Fzb70Qf4SoiJ5Nen9QLgr59uxlXR8CBdR/PkZz/gqq7FkdGDcROPPeDc0ImXsuW8T5gVeRFr80o5//kl5BX7j2v6fCx55U5Grr+fFyP/wjWDInnpihHE2vXylohIW6Dw0UFUV5bz17/P4rWlOzEMuOznkzj52r80eq6SS0dlc1rSAZ6quZ/v3gzs4dOduev5bvnnAPz+rOOxWIxG7Tdg0HDeueFEuiRGs6+wmC1/O5sfVi9i+dPTGLPrBQA2dr2Qey86nUirfpVFRNoK/VOxA3AWFbD3+bO5peYHvo24m4t+eSlnDQpsrh1bhIWbh0YwdPFGqnfnkp93CxlZPRu1b/Hc3/Ju5BLeSruesT3PCui4PdPieO/GsXz9zHWc6l4OH/wCAJ9psKL/PYz55Z0BtSciIuGnfy62c/m7cil5ZgJ9PRtxGzZ+d2a/gIPHIUNOv4SNtoFEGR52v/27Ru3z3Tf/ZWjlEmpNC6PPuLhJx013RDHxhsf5zj4EgGozkrVj/8YoBQ8RkTZJ4aMd275hGZZXJpHty6OAZIoueJ/+Y89scnuGxULk5IcBGOGcT+6aRUfd3uf1ErXgDwCs7HQO2X2GNPnYjsQUev1mHsv638ee8//LsJ9d3uS2REQkvBQ+2qmNiz8k5e1zSKOYHZYsfFfPJ6f/qKDb7TX0FFY6JgLg+eieow4Etuo/z9HTuxWXGU3vXz4Y9LHtUTGMuuAOegwcHXRbIiISPgof7dBXXy6g5ydX4KCSjZEDSLp5QaOfz2iMrhc8QrUZST/Pd6yZ3/CcL1UVLrLX+odJ39DjWpLTuoTs+CIi0rYpfLQzs77ZzrR5FXzkG8nq2JPpftunJCSnhfQYGVk9WdvVP0Fb9fJ/UFN7eO/H2n89SBrF7KMTQy5o3PMhIiLSMSh8tBM+r5c/f7iOB/6zEZ9pYe3Qhxn8m/eJio5tluMNuHAGD1mu44qKX/H60p311hU4q5m7PYL9ZiJ7Tvhds9UgIiJtk8JHO1Djrmb1kxfSf+kdGPj47c/6cP+5Q7BGNN+b1HGOJHJ+djO1RPDUglzKKj116x6f/wP/qhnLrzq9wvDJVzVbDSIi0jYpfLRx5c4Svv/rmYxwzucMywpePt3CTaf2xDAaN5BXMH45oiu90+OorKzk3/9+C4BN+5x1Q7DfOWVoowcxExGRjkODjLVhhfm7KH3pHAZ5t1Jp2tky/lkmnBrYIF7BiLBauP+0dLq+cw2Z3xexe+tQCt57gLONHnj6T2V4dnKL1SIiIm2HwkcblbdlPdY3zqOnuZ9iHBSe/TqDho1r8TpOHNSXdR91I7u6AO8bFzLOl8eYyAgKTpze4rWIiEjboD7xENu95Tu2rlvcrMf4YfUi4l4/k87mfnYbGVReNo/eYQgeh8T9YiZe0yDb57/dsjrjArrm9AlbPSIi0rqp5yPEur5+IgDOzhtxpDbP2Ba58/6G6XNQYMsg9dq5YZ9Gvnu/kSxP+Tkji/9DKXEcf+GfwlqPiIi0bgofIeSursR+8OeSXRuaJXz4fCa3lF+J1axl0c0nkpKWGvJjNEWfSx9j+es+ogZNZVByp3CXIyIirZjCRwiVlxXXhY8iM5HsZjhGWZUHnwk+IkhNbj0PdCakpDPy12+GuwwREWkD9MxHCFW6SgBwmdHsjWyeWyHFlTUAxEdFYIvQ5RMRkbZHPR8hVH0ofBBNcUVNsxyjZvsSVtivZ6u1J/CzZjmGiIhIc9I/nUOoutwfPtxmJK6ykuY5Rmk+nQwnSUZls7QvIiLS3BQ+QuiAPZvdZio5lv2M2PJUsxzD4zwAQFVkYrO0LyIi0twUPkKo0Ejh5drJAERUFzfLMXzlhQDU2FvPw6YiIiKBUPgIIWe1h2IzHgC7p7R5DlJVBIAvKql52hcREWlmCh8hZCvezEDLdgBimil8WA/2qJixrWN8DxERkUDpbZcQ6r1nLqMj5gEQ7ytrlmPY3f4HWa1xCh8iItI2KXyEkKXGVfdzgunE9PlCPqX8Hjph82URkRDeIdVFRESaSuEjhCI8P4YPm+HF5SwhPjElpMd4yLiW3TVVvNdzbEjbFRERaSl65iOEbLU/ho93vKdQWlEV8mMcGrwsOcYW8rZFRERagno+QsjurQDgqpo7WOAbxlxvLFkhbL/a46WyxgtAcpzCh4iItE0KHyEUdTB8uMwYgJAPsV6av4OV9us5QBLxtskhbVtERKSl6LZLCMWY/vBhi03ATg1lztC+8VJenE+q4STVcIb8QVYREZGWor9gIfSI91L+5LmMX0W8x+ao6XT+4fWQtl9Vth+AcktCSNsVERFpSbrtEiLVHi9ve04CYFzs+1ANZmVRSI/hLvPP61KheV1ERKQNU89HiLiqa+t+jjw4AFhEVWjnd/GW+8OHW+FDRETaMPV8hEi5s4Rxlm9xRyZgje8EQGRNSUiP4avw96TURmlSORERabsUPkLEs/8HZtv+zH5S2BP/AADRIQ4f1kOTykWHduAyERGRlqTbLiHirvAHjUpLHNGJ/p6PWG9o33Yp8CWwyZeF1xHK0UNERERalno+QsRTUQpAtTWWmMQMABxmaMPHa1GXsKzmDP7We2hI2xUREWlJ6vkIkdpKf9CoiYgjIbUzn3mH8kntCDy13pAdo25o9ViNbioiIm1XUOFj5syZGIbBrbfeWrfMNE1mzJhB586diY6OZvz48WzYsCHYOls9X1UpAJ6IeOKTOvF/tb/lt7XXU1LlCdkxSioVPkREpO1rcvhYsWIFL774IoMGDaq3/NFHH+Xxxx/n6aefZsWKFWRkZDBx4kRcLtcRWmofzGonAF5bPFaLQeLBid9CNcS6z+vlI881zLf9lhRLeUjaFBERCYcmhY/y8nIuvfRSXnrpJZKSkuqWm6bJE088wb333svUqVMZMGAAs2fPprKykjfffDNkRbdGhtsfPny2eMDfO2GnhhJnaEKXq7SQNKOUXpY9JCbqVVsREWm7mhQ+brrpJs466yxOP/30esu3b99Ofn4+kyZNqltmt9sZN24cixcvbrAtt9uN0+ms92mLVsecxJ88l7IvbRwAj1XPYHPUdOxbPglJ+86ifQC4zGhs9qiQtCkiIhIOAYePOXPmsHr1ambOnHnYuvz8fADS09PrLU9PT69b91MzZ84kISGh7pOV1TZfI11n7c/L3rOoyDgBAF+kf2Zbj+tASNqvKCkAwGlxhKQ9ERGRcAkofOTl5fHrX/+a119/naioI//r2zCMet9N0zxs2SF33303ZWVldZ+8vLxASmo1XG7/g6XxUZEA1Nj9t0bMisKQtF9V5g8f5dbEkLQnIiISLgGN87Fq1SoKCgoYPnx43TKv18uXX37J008/zebNmwF/D0hmZmbdNgUFBYf1hhxit9ux2+1Nqb1V6exazzCjnERrXwDMaH/4MEI0udyhHpRqzesiIiJtXEDh47TTTmP9+vX1ll155ZX07duXu+66i+7du5ORkcH8+fMZOtQ/EFZNTQ2LFi3iz3/+c+iqboV+5XycLPteNlYeD/SA2IOTy7lDM7mct9zfg3KoR0VERKStCih8xMfHM2DAgHrLYmNjSUlJqVt+66238vDDD9OrVy969erFww8/TExMDJdccknoqm6FYswKAKLi/G//RByc2dYeovldSrzRbPJ1oyKuW0jaExERCZeQD69+5513UlVVxY033khJSQmjRo3i008/JT4+PtSHalXizEowIDo+EQCbIw2A6NrQDLH+WdzPea9mKL/r1ZfxIWlRREQkPIIOHwsXLqz33TAMZsyYwYwZM4Jtus2orqokyvA/cBrj8M84G5V6HJ95h7Lf0pUeIThG3dDqMRrdVERE2jZNLBcC5c5iDr37E3ew5yO2az+u8fwWm8/CJUd526exSjSvi4iItBMKHyFQ6fQ/VOoyo4mP8P9PeqiHosbro9xdW/cKblP9uehXRNiqcNfMAhp+c0hERKQt0Ky2IVDtKgWgwoitWxZtsxIdaSUKNyWuqqCPkeXbQ0/LXhLiYo+9sYiISCum8BECpdYU/uS5lLejzqu3/OOI2/g+6kqqd60Kqv3qqgpijWoA4lMyj7G1iIhI66bwEQJFlmRe9p7FwoRz6i33WPxPglSV7Q+q/bIi/9D0HtOKI0HjfIiISNum8BECrupaAOKj6j9CUxnpH/Ojxhnc/C7lxf7wUWbEY1h0yUREpG3TX7IQ8JXsZKiRS1drab3lNTZ/+Dg0OmlTVZYemlQuMah2REREWgOFjxDIznufufb7mVL2Rr3ltVEHb5FUBDe/i/tgz0lVREJQ7YiIiLQGCh8hYLidAPhsP5nuPsY/4JilKrjwUeaxstGXTVF0dlDtiIiItAYa5yMELDUu/w9R9YeQNw5OLhdZUxpU+9/GnsTVNRlcnpPNKUG1JCIiEn7q+QiBCI8/fFiifnJbJLUn873D2Gj0Cqr9ooOjmyZpdFMREWkH1PMRArZaf/iwRtcPH8ZxJ3OtJ4IcI5ZLg2i/pNIfPlIUPkREpB1Qz0cI2GsrAIiITay3PDnWP6R6Ubk7qPav3HUvn9tup1fFyqDaERERaQ0UPkIgyucPH7bDwocdAE91OZ7a2ia338mzhx6WfcTbg5sfRkREpDXQbZcQeJWfE1d7gDNTc+otT4iy8p39KuKMagoL15Oa0a1J7cf7ygCISdKEciIi0vYpfITA7JoJ1Hh9nJeSVW+51WrFY0QC1biK9zcpfPi8XhJMFxgQn5wRoopFRETCR7ddglTt8VLj9QEQH3X4bRGnxf8QamVJQZPad5UVE2H4209ISWtilSIiIq2HwkeQXOUVDDG20N3YS5z98I6kSqs/fFSXNS18OIv2+o9jRmOPiml6oSIiIq2EbrsEqapwB+/b/0C5GY3Vcu1h66ttieCB2vKmTS5XUXJoXhcH8cfYVkREpC1Qz0eQql2lAJQbsQ2u99j987v4mji5XFmVhw2+bHZH5hx7YxERkTZAPR9BcleUAFBlaTh8+KL94aOp87vsiBnAXTUzmdA9jVFNK1FERKRVUc9HkDwVpQBUWxsOH5VJxzPfO4ztlqa9Zls3tHqMRjcVEZH2QT0fQfJWlgJQExHX4PqyHlP4zcpunBSZykVNaL/kYPhIiVP4EBGR9kE9H0HyVvkHAPNENPw46KEei+KDISJQp2z9C5/bbmekc37TChQREWllFD6CZFY7AfDaGg4fKbF2wKSi3NWk9h1VefSw7MNhM5taooiISKui2y5Byo0ezIrac+iccmKDD4Sm+g7wvX06Rg2YvgIMS2B5L9pTCkCkQwOMiYhI+6CejyCtjxzE47W/ZH/mhAbXJyanEWV4sBseKsrLAm4/zuvfJzqhU1B1ioiItBYKH0FyVnsAcEQ13IkUHeegyvQ/9+Es2h9w+w6f/7ZOrCaVExGRdkLhI0jxrm30MPaQGFF7xG3KDAcA5SX5AbXtrq4kzqgCwJGc2fQiRUREWhGFjyBdV/Qon9t/S5Zz5RG3KT84v0tVaWDzu5Qd7CnxmFYciclNL1JERKQV0QOnQYryVQBgi0084jaVkYnghRpnYOGj1OXigC8bq8VC3wAfVBUREWmtFD6CFGP6w0dUXNIRt6mxJUE1eAOc36XA2pnLambSJz2eT4KqUkREpPVQ+AhSnFkJBkTHJx5xmwMJA5hfUkK5EdjrskUVbgCSYiODKVFERKRVUV9+EKqrKrEb/rddYhwpR9xua85lXOu5naX2kwJq/9DQ6smxGlpdRETaD/V8BKHcWUzUwZ/jjtLzkXQwPBRXBjbEevcfXmaB7W02V0wFhjetSBERkVZGPR9BqHQWA+Ayo7FGHDnHpcTaAJPyAIdYt5fn0d2ST6KlafPCiIiItEbq+QiCy4zmqdpziLNHctVRtsuq2MBm+3QKDnQCNjW6/Uh3CQBG7JFv6YiIiLQ1Ch9BKDGSeLz2l/RJiT9q+IhzJGE3PDjMwIZXt9f4w0dEvIZWFxGR9kO3XYLgOji0evwRhlY/JD4lA4AEKqj1NP4WSkytP6zYNamciIi0IwofQXA7D9Dd2EtGZOVRt0tITsdnGgCUBjC/S7zv4KRySQofIiLSfih8BCFjx1wW2O9getmzR93OGhFBmREHQHlJ48KH6fORaPonlXMkZwRXqIiISCui8BEEs9ofDry2+GNu67L4J5erKG5c+HA6nXxvdmOvmUxCima0FRGR9kMPnAbBcPvDh8/mOOa2FdZE8O3B3cj5XYprI/l5zcPE2SP4LiommDJFRERaFYWPIFhrDo7bEXXsno/tsYPIK4oC37G3BSjW0OoiItJO6bZLECI8/vBhiUo45rZfdbuR//PczvdRgxvVdnGF/02a5BgNrS4iIu1LQOHjueeeY9CgQTgcDhwOB2PGjGHevHl166dPn45hGPU+o0ePDnnRrUVkbTkA1uhjh4+kgyGiuKJxr9rG/zCXBbbbuKFmVtMLFBERaYUCuu3StWtXHnnkEXr27AnA7NmzOfvss1mzZg39+/cH4IwzzmDWrB//YNps7fdf7vaD4SMiNvGY2yYfHGLd6SpvVNumcw/dLfkUGo3bXkREpK0IKHxMmTKl3veHHnqI5557jqVLl9aFD7vdTkZGx3g19GPrOL5292B4So9jbjug7As22+/ih10DgS+Oub1RWQSALyop2DJFRERalSY/cOr1enn77bepqKhgzJgxdcsXLlxIWloaiYmJjBs3joceeoi0tCMPkuV2u3G73XXfnU5nU0tqcf/wTqaotoZ56X2OuW10bAJ2w0NMbWmj2rZW+cOHGZsaTIkiIiKtTsAPnK5fv564uDjsdjvXX389c+fOpV+/fgBMnjyZN954gwULFvDYY4+xYsUKJkyYUC9c/NTMmTNJSEio+2RlZTX9bFqYq7oWOPbw6gAxif4AFudt3PwutoPzulgVPkREpJ0JuOejT58+rF27ltLSUt59912mTZvGokWL6NevHxdeeGHddgMGDGDEiBFkZ2fz4YcfMnXq1Abbu/vuu7ntttvqvjudzjYRQKrdNXT17cZFDI5GhI/YJP9AYYmmE9Pnw7AcPfdFeUoBiHRoUjkREWlfAg4fNput7oHTESNGsGLFCp588kleeOGFw7bNzMwkOzub3NzcI7Znt9ux2+2BlhF25SX7WWC/AwBf5IXH2BoSU/3PwdgNDxUVTmLjE4+6fZy3FIDoBM3rIiIi7UvQ43yYpnnE2ypFRUXk5eWRmZkZ7GFanSpXMQAuMxpLxLEzXHSsgyrT/+ZPWSMml9vrS2GPmUJMUsd4eFdERDqOgHo+7rnnHiZPnkxWVhYul4s5c+awcOFCPv74Y8rLy5kxYwbnnXcemZmZ7Nixg3vuuYfU1FTOPffc5qo/bKpcpQBUGLE0ZsxSwzAoMxxEU0h5cT4cd+SHVN21Xi5w/x6AtV2O/TCriIhIWxJQ+Ni/fz+XX345+/btIyEhgUGDBvHxxx8zceJEqqqqWL9+Pa+++iqlpaVkZmZy6qmn8tZbbxEf37ghxdsSd3kpAFWW2Ebvs842hG+rSknyHL3DqbTSP7qp1WLgiNLw6iIi0r4EFD5efvnlI66Ljo7mk08+CbqgtqK2wn/bpdra+PDxWvqdfJVbyGMROYw8ynZF5f5RUJNiIrFYjGDKFBERaXU0sVwTeSr9r8zWRMQ1eh//KKdQUnn0Ida9O77hC9tv2Gb0BSY2uUYREZHWSBPLNZGv2h8+PBGNv6Xkn9/FpMRVedTt3CW7ybHsJ8MoCaZEERGRVknho4nybD35R+0kdiSOavQ+E0rfYbN9GuNyZx51O6+rEAC3LTGYEkVERFol3XZpoo1RQ5hVm8j1nY89r8sh9qhY7EYtke6j92j4Kvzhw2NPDqpGERGR1kg9H00UyNDqh0Q6/EOlR3mOHj4sVf6HWc3olCZWJyIi0nopfDSRUZ5PKmUk2MxG72NP8A+xHlt79PldIqv9k8oRq/AhIiLtj8JHE03Lf5iVUTfQt+jzRu8Td3ByOYd59PBhPzipXES85nUREZH2R+Gjiey15QBExCY2ep+4ZH/Ph8OsoNZz5NdtC00Hu81UbAkaWl1ERNofhY8mivZVAGCPS2z0PgnJafhMA4thUlZccMTt7uA3nOR+Ckv3ccGWKSIi0urobZcmijH94SMqLqnR+0RE2vjKGEKFN4LeFdU09ESHaZqUVPh7RVLibKEoVUREpFVR+GiiOLMSDIiOb3z4ALg/bgbbCiuYQxLdG1jvrK6l1ud/iNU/KJmIiEj7ovDRBNVVFUQZ/ldtYxyBjcWRHGtjW2FFXe/GT7n25rLQ9hv2GZ2Iijwr6FpFRERaG4WPJigvKyYK8JkGcQH2fCTF+odYLz7CEOvlxXvpa9mPTfPJiYhIO6UHTpug3GMyu3Yi73EqFqs1oH0vd77ED/Yr6L75xQbXV5f6H0QttyYEXaeIiEhrpJ6PJijFwf21V9I5NorzA9w30mbHZngxKosbXO9xHQCgKkLhQ0RE2if1fDSBq9oDQHxUZMD7GgdHLY1wNxw+vOX+eV1qNK+LiIi0UwofTVBZXkYKZSTZfQHva431z+9iqznC/C6V/qHVvVEKHyIi0j7ptksTJG37L6ui7udb10hgfED72hL8Q6zHeEobXG89OK+LGaN5XUREpH1Sz0cT+Kr9c7N4IuID3jf6YPiI8zY8v0upN4bdZipGfGbTCxQREWnFFD6awKx2AuC1BR4+4pL987UkmE5M8/AZcZ+JuoaT3E9R1ifQR1lFRETaBoWPJjDc/vDhszkC3jchJYNlvr4s8g2mqrr6sPUllQeHVo/V6KYiItI+6ZmPJrDWuPw/RAXe8xET5+By3wxqan18VWUSE11/fXG5P3wkKXyIiEg7pfDRBBEef/iwRAc+FodhGKTE2thXVk1JZQ1ZyTF162qqq/iPeQsltnhSIueHrF4REZHWRLddmiCythyAiCaEDzg0YZxJkauq3vKy4v0cZ9nPQGMbjngNMiYiIu2TwkcTLLcO4z3vSfiSezRp/z9U/z9+sF9B3A9z6y13FecDUGbEBzxsu4iISFuh2y5N8KrxC3Z4Knm7y/Am7R8REYHN8OItP1BveWXJfgBcFgca5UNERNor9Xw0gau6FoD4qKZlt9qDo5eaFUX1lrud/knlKiISm16ciIhIK6fw0QSR1UXY8DRpbhf4cfRSa1X98FHr8s/r4o5MCq5AERGRVky3XQJUXVXB0sjrIBKcbAOij7nPTxkH53eJdNef38V3sCfEo3ldRESkHVPPR4BcZf6A4DMN4uITm9SGLd4fPqI99cOHyxvBbjMVT2xGUDWKiIi0ZgofAapy+QNDBVFNfiPFnpAOQMxP5nf5d9wvOcn9FD/0vj64IkVERFoxhY8AVblKAagwYpvcRkxqV5b5+rLG16ve8pKKg0Orx2l0UxERab/0zEeAasqLAaiyND18xGX24dSaP2AY8HOfidViAFB8MHz4ByETERFpnxQ+AuSpKAWg2tr08JEU439LxjShtLKGlDg7AP+v7Ha8Ni8x3llAp2BLFRERaZV02yVAtZX+5zRqIuKa3EaE1UJCdCRgUlzun9nW9Pno69vKEMtWHHFNDzYiIiKtncJHgA5EZPCe9yS2xw0Lqp3XjT+Qa78Cz/bFALicxUQaXgASU/S2i4iItF+67RKgzTHDeMoTz6Wdu3FOEO1EWg0ifV6qy/yjmjoL83EAlaadmJim96qIiIi0dur5CJCr2gOAI7ppo5seUhWZCIDH5Z/fpbzUP69LqUWz2YqISPum8BEgd4Xz4NDqwXUaeez+IdR95f4h1atLD87rYlX4EBGR9k3hI0AX5D3ID1HTGFbwflDteKP887sYB+d3qTnYA1KpSeVERKSdU/gIUGRtOQAR0fFBtWPE+sNHRLV/3JDyGpNdvk5URGUGV6CIiEgrpwdOA2Q/GD4iY4O7PWKN88/vYqvxD9e+LH4SV9X05OqeOYwNrkQREZFWTT0fAYr2VQBgiw1u2ntrcg5LfceTSzbw4+imybEa3VRERNo39XwEKMb0h4+ouMSg2rHknMhFNffROTqK81D4EBGRjkM9HwEwTZM4sxKA6PjkoNpKORgyiiv9oeOafX/gfdvvyaneEFyRIiIirVxA4eO5555j0KBBOBwOHA4HY8aMYd68eXXrTdNkxowZdO7cmejoaMaPH8+GDe3nj6m7uhKbUQtATEJKUG0lHQwf1R4vlW4PWTXbGGLZRoJdeVBERNq3gP7Sde3alUceeYSVK1eycuVKJkyYwNlnn10XMB599FEef/xxnn76aVasWEFGRgYTJ07E5XI1S/EtzVVZzVzviXzuHUpcXHAPnMbarHxt/xW59isoy9+Gw3QCEJOYHopSRUREWq2AwseUKVM488wz6d27N7179+ahhx4iLi6OpUuXYpomTzzxBPfeey9Tp05lwIABzJ49m8rKSt58883mqr9FOX12fuO5iVstd2OxWoNqyzAMbIaPSMNLWUEeDvy3cxI0r4uIiLRzTe7j93q9zJkzh4qKCsaMGcP27dvJz89n0qRJddvY7XbGjRvH4sWLj9iO2+3G6XTW+7RWrmr/LZdgRzeta8+aCIBz90YAvKaBI6lTSNoWERFprQIOH+vXrycuLg673c7111/P3Llz6devH/n5+QCkp9e/bZCenl63riEzZ84kISGh7pOVlRVoSS2mvLKSSGqJjwpuXpdDKiP8t258+78HoMyID7pHRUREpLULOHz06dOHtWvXsnTpUm644QamTZvGxo0b69YbhlFve9M0D1v2v+6++27KysrqPnl5eYGW1GJitn1CbtQV/KXq9yFpr8bmHyskqmwrAC5NKiciIh1AwPcPbDYbPXv2BGDEiBGsWLGCJ598krvuuguA/Px8MjN/HCK8oKDgsN6Q/2W327Hb7YGWERa1lWUA+KxRoWkvKhlcEOUuZJevE0X2jINDjomIiLRfQb/XaZombrebnJwcMjIymD9/ft26mpoaFi1axNix7WPAcF+1P3x4IoOb16WuvWj/67prPFmcUvMkL3b9c0jaFRERac0C6vm45557mDx5MllZWbhcLubMmcPChQv5+OOPMQyDW2+9lYcffphevXrRq1cvHn74YWJiYrjkkkuaq/4WZVb7H4b1RsaFpD1PUk+W7jieHT7/Gy7JcRrdVERE2r+Awsf+/fu5/PLL2bdvHwkJCQwaNIiPP/6YiRMnAnDnnXdSVVXFjTfeSElJCaNGjeLTTz8lPj40PQXhZrj94cNnd4SkPVePKdy0rEvd9+QYhQ8REWn/AgofL7/88lHXG4bBjBkzmDFjRjA1tVrWmoODpYUofByax+X+iNkMs+RyoOJmoE9I2hYREWmtNJZ3ACI8/vBhiQ7NWymHwkcfI4/Blm0kRnhC0q6IiEhrplltA7DZ2osibwUxiTkhaS/Z4mKF/Xo6Gf7bOTaHBhgTEZH2T+EjAK9Hnsd3nom80m1ESNpLTEwh0vhxRNeYJM3rIiIi7Z9uuwTgx+HVQzPCaaTNjpPYuu9xCh8iItIBKHwEoKqqGgjd3C4AtcaPbWlSORER6Qh026WRTNPka+9leO0WSmuXAaF548XCj0PPR8e2j1eSRUREjkY9H43krq7EZtQSbdQQGxe6OVhqrNEha0tERKQtUPhoJFdZEQA+0yAuPjFk7e6IGwrAa9GXh6xNERGR1kzho5GqXCUAlBMd0mnvnY7eLPH2ozpaD5uKiEjHoPDRSFWuUgAqjdijbxigfcdfycWe37Ot69khbVdERKS10gOnjVRTXgxAlSW04WPqsK6YwKR+etNFREQ6BoWPRvJUlAJQbQ1t+Ii1R3DFmONC2qaIiEhrptsujVRqOPjcO5Tt0QPCXYqIiEibpvDRSNtih3K157d80vmGcJciIiLSpil8NJKzbmh13akSEREJhsJHI7mq3EDo5nURERHpqBQ+Gmny1ofYZJ/O2MJ3wl2KiIhIm6bw0UgRHhfRRg02my3cpYiIiLRpCh+NZKstB8AaHbp5XURERDqiDhM+amp9fLOlkH98s71J+9u9/vARGavwISIiEowOEz4OlLv508tvkz/vz5QVFwa8f7SvAgBbbFKoSxMREelQOkz46JIYzQvRz/C7iH+yddl/At4/xvSHj6i4xBBXJiIi0rF0mPABsK/TiQDU/vBZQPuZpkmcWQlAdHxyyOsSERHpSDpU+Ig5fhIA2SVLMH2+Ru/nrqnhK99AVvh6E5uQ0lzliYiIdAgdarjO3iN/RvUXkaQbRezYvJrjjh/RqP2cNSZXe36LYcDWeD3zISIiEowO1fMRFRPHD9GDAchf9WGj93MdHFo9zh6BxWI0S20iIiIdRYcKHwCV3cYDEJu3sNH7HAofDg2tLiIiErQOFz4yh50FQFb1Zqqqqhu1j3X7Qjbar+Tp2vubszQREZEOocOFj269h3BL5B8Z5X6GpbucjdrHU1FCjOEmyvA2c3UiIiLtX4cLH4bFQtzxE3BjY9HmA43ap7ayDICaiLjmLE1ERKRD6HDhA2Bc71QAvsxtXPjwVfvDhycyvtlqEhER6Sg6ZPgY2yOFuyP/yfNlN7J3x+Zjbm9W+W/PeCPV8yEiIhKsDhk+HNE2TonaRm/LHvJWHHuodcPtDx8+u6O5SxMREWn3OmT4ACjtcgoAtu0Ljrmtpcbl/0HhQ0REJGgdNnykDj4TgF4Vq/HUuI+67V5LJit8vfE4sluiNBERkXatw4aPHoNOpAQHcUYVuauO3vvxVvSFXFAzg5Kcs1qoOhERkfarw4YPi9XKVsdIAMrWzzvqti63B4D4qA41FY6IiEiz6LDhA8DscRoAnfZ/fdTtDg2vHq/h1UVERILWocNHzqgp7DWTWeHuxoGyyiNu92bF/7HMfiMp1XktWJ2IiEj71KHvI6RmZHFW8mw27HMRta2Yc4fGHLaNaZp0MouxGbXsjzl8vYiIiASmQ/d8AIzrkwZwxKHW3dWV2Az/bZeYhJQWq0tERKS96vDh45TenTDwUfTDUnzewyeOc5UVAeAzDWLjElq6PBERkXanQ992ARiWlciX9tvJ8u1ny7r+9Bx6Sr31Va4SAMqNaBxWazhKFBERaVc6fM+HLdJKYWwPAAq/PfyV2+qD4aOS2BatS0REpL3q8OEDoOa4CQAk7Fl02Dp3uT98VFkUPkREREIhoPAxc+ZMTjjhBOLj40lLS+Occ85h8+b6s8JOnz4dwzDqfUaPHh3SokMt64QpAPSq2YSztKjeOldtJCt8vdlp6xGO0kRERNqdgMLHokWLuOmmm1i6dCnz58+ntraWSZMmUVFRUW+7M844g3379tV9Pvroo5AWHWqdc/qSZ3QmwvCxddmH9dbtihvEBTUzeDXj7jBVJyIi0r4E9MDpxx9/XO/7rFmzSEtLY9WqVZxyyo8PatrtdjIyMkJTYQvZk3oiWQfepmbzfPjZFXXLfxzdtMM/mysiIhISQT3zUVZWBkBycnK95QsXLiQtLY3evXtz7bXXUlBQcMQ23G43Tqez3iccoo+fBEB28RJMn69uuata87qIiIiEUpPDh2ma3HbbbZx00kkMGDCgbvnkyZN54403WLBgAY899hgrVqxgwoQJuN0NT1s/c+ZMEhIS6j5ZWVlNLSkovUadwXO+c/iV+3q2HvjxNtLIrU+xzH4jE0reDktdIiIi7U2T/zl/8803s27dOr7+uv6kbBdeeGHdzwMGDGDEiBFkZ2fz4YcfMnXq1MPaufvuu7ntttvqvjudzrAEkJhYB990u5HlWwr5MreQnunxANirC0k3StlmOXwAMhEREQlck3o+brnlFj744AO++OILunbtetRtMzMzyc7OJjc3t8H1drsdh8NR7xMu43p3AmDRDz8OtR7hcQFgidbopiIiIqEQUPgwTZObb76Z9957jwULFpCTk3PMfYqKisjLyyMzM7PJRbaUU3qlcJplFafveIzqynIAbLX+/2tV+BAREQmJgMLHTTfdxOuvv86bb75JfHw8+fn55OfnU1VVBUB5eTl33HEHS5YsYceOHSxcuJApU6aQmprKueee2ywnEEq90+OZaZvF5ZaPyV3+CQB278EQEpsYxspERETaj4DCx3PPPUdZWRnjx48nMzOz7vPWW28BYLVaWb9+PWeffTa9e/dm2rRp9O7dmyVLlhAfH98sJxBKhsXCjqQxAFRs+hSAKF8loPAhIiISKgE9cGqa5lHXR0dH88knnwRVULhZe02E5R+SeeAbAGJM/5sv9rikcJYlIiLSbmhul5/oOfrneE2DbF8e+3flstnXlc2+rkQnpIa7NBERkXZBI2f9REJyJ76P7Evf2k1sWfJvLq35PQDrU8Mz/oiIiEh7o56PBpR09g8Vb922AADDgFibcpqIiEgoKHw0IHnQGQDEVe0BTOLsEVgsRniLEhERaSf0z/kG9BxyCr/48El8HhdL7TeTZ8kCfhbuskRERNoF9Xw0wBoRQXbvwSQaFWQYJaQSnsnuRERE2iOFjyM4pVcq8fjH+Ki2xoa5GhERkfZDt12OYFyPRC6wPQmAzdCkciIiIqGino8jSEv6cUTWnJrNYaxERESkfVH4OIqtif6h1r9POjXMlYiIiLQfuu1yFJ2mv8HSec/T89Qrwl2KiIhIu6HwcRSOxBRGX3xvuMsQERFpV3TbRURERFqUwoeIiIi0KIUPERERaVEKHyIiItKiFD5ERESkRSl8iIiISItS+BAREZEWpfAhIiIiLUrhQ0RERFqUwoeIiIi0KIUPERERaVEKHyIiItKiFD5ERESkRbW6WW1N0wTA6XSGuRIRERFprEN/tw/9HT+aVhc+XC4XAFlZWWGuRERERALlcrlISEg46jaG2ZiI0oJ8Ph979+4lPj4ewzBC2rbT6SQrK4u8vDwcDkdI227tOuq5d9TzBp17Rzz3jnre0HHPvTWdt2mauFwuOnfujMVy9Kc6Wl3Ph8VioWvXrs16DIfDEfaLFC4d9dw76nmDzr0jnntHPW/ouOfeWs77WD0eh+iBUxEREWlRCh8iIiLSojpU+LDb7dx///3Y7fZwl9LiOuq5d9TzBp17Rzz3jnre0HHPva2ed6t74FRERETatw7V8yEiIiLhp/AhIiIiLUrhQ0RERFqUwoeIiIi0KIUPERERaVEdJnw8++yz5OTkEBUVxfDhw/nqq6/CXVKzmzFjBoZh1PtkZGSEu6xm8eWXXzJlyhQ6d+6MYRi8//779dabpsmMGTPo3Lkz0dHRjB8/ng0bNoSn2BA71rlPnz79sN+D0aNHh6fYEJo5cyYnnHAC8fHxpKWlcc4557B58+Z627TH696Y826v1/y5555j0KBBdaN5jhkzhnnz5tWtb4/X+5BjnXtbu+YdIny89dZb3Hrrrdx7772sWbOGk08+mcmTJ7Nr165wl9bs+vfvz759++o+69evD3dJzaKiooLBgwfz9NNPN7j+0Ucf5fHHH+fpp59mxYoVZGRkMHHixLqJDNuyY507wBlnnFHv9+Cjjz5qwQqbx6JFi7jppptYunQp8+fPp7a2lkmTJlFRUVG3TXu87o05b2if17xr16488sgjrFy5kpUrVzJhwgTOPvvsuoDRHq/3Icc6d2hj19zsAEaOHGlef/319Zb17dvX/N3vfhemilrG/fffbw4ePDjcZbQ4wJw7d27dd5/PZ2ZkZJiPPPJI3bLq6mozISHBfP7558NQYfP56bmbpmlOmzbNPPvss8NST0sqKCgwAXPRokWmaXac6/7T8zbNjnPNTdM0k5KSzL///e8d5nr/r0Pnbppt75q3+56PmpoaVq1axaRJk+otnzRpEosXLw5TVS0nNzeXzp07k5OTw0UXXcS2bdvCXVKL2759O/n5+fV+B+x2O+PGjesQvwMACxcuJC0tjd69e3PttddSUFAQ7pJCrqysDIDk5GSg41z3n573Ie39mnu9XubMmUNFRQVjxozpMNcbDj/3Q9rSNW91s9qGWmFhIV6vl/T09HrL09PTyc/PD1NVLWPUqFG8+uqr9O7dm/379/Pggw8yduxYNmzYQEpKSrjLazGHrnNDvwM7d+4MR0ktavLkyVxwwQVkZ2ezfft27rvvPiZMmMCqVava3JDMR2KaJrfddhsnnXQSAwYMADrGdW/ovKF9X/P169czZswYqquriYuLY+7cufTr168uYLTn632kc4e2d83bffg4xDCMet9N0zxsWXszefLkup8HDhzImDFj6NGjB7Nnz+a2224LY2Xh0RF/BwAuvPDCup8HDBjAiBEjyM7O5sMPP2Tq1KlhrCx0br75ZtatW8fXX3992Lr2fN2PdN7t+Zr36dOHtWvXUlpayrvvvsu0adNYtGhR3fr2fL2PdO79+vVrc9e83d92SU1NxWq1HtbLUVBQcFhCbu9iY2MZOHAgubm54S6lRR16w0e/A36ZmZlkZ2e3m9+DW265hQ8++IAvvviCrl271i1v79f9SOfdkPZ0zW02Gz179mTEiBHMnDmTwYMH8+STT7b76w1HPveGtPZr3u7Dh81mY/jw4cyfP7/e8vnz5zN27NgwVRUebrebTZs2kZmZGe5SWlROTg4ZGRn1fgdqampYtGhRh/sdACgqKiIvL6/N/x6YpsnNN9/Me++9x4IFC8jJyam3vr1e92Odd0PayzVviGmauN3udnu9j+bQuTek1V/zcD3p2pLmzJljRkZGmi+//LK5ceNG89ZbbzVjY2PNHTt2hLu0ZnX77bebCxcuNLdt22YuXbrU/PnPf27Gx8e3y/N2uVzmmjVrzDVr1piA+fjjj5tr1qwxd+7caZqmaT7yyCNmQkKC+d5775nr1683L774YjMzM9N0Op1hrjx4Rzt3l8tl3n777ebixYvN7du3m1988YU5ZswYs0uXLm3+3G+44QYzISHBXLhwoblv3766T2VlZd027fG6H+u82/M1v/vuu80vv/zS3L59u7lu3TrznnvuMS0Wi/npp5+aptk+r/chRzv3tnjNO0T4ME3TfOaZZ8zs7GzTZrOZw4YNq/daWnt14YUXmpmZmWZkZKTZuXNnc+rUqeaGDRvCXVaz+OKLL0zgsM+0adNM0/S/dnn//febGRkZpt1uN0855RRz/fr14S06RI527pWVleakSZPMTp06mZGRkWa3bt3MadOmmbt27Qp32UFr6JwBc9asWXXbtMfrfqzzbs/X/Kqrrqr773inTp3M0047rS54mGb7vN6HHO3c2+I1N0zTNFuun0VEREQ6unb/zIeIiIi0LgofIiIi0qIUPkRERKRFKXyIiIhIi1L4EBERkRal8CEiIiItSuFDREREWpTCh4iIiLQohQ8RERFpUQofIiIi0qIUPkRERKRF/X8gS0oeuYSfTQAAAABJRU5ErkJggg==", + "text/plain": [ + "<Figure size 640x480 with 1 Axes>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(df_track['lat'])\n", + "plt.plot(df_track_orig['lat'],ls='--')" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "[<matplotlib.lines.Line2D at 0x7fff951fbf70>]" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAAGdCAYAAACyzRGfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAACHnUlEQVR4nO3deXhU5fn/8feZfSY7hGyEJUDY9x1cQFTc911btXbRurTWtrbWtvK1LaitW0trf1br0taqrWtdwQ1UQAFZwxYgkEAIISF7Zj/n98dJosiWZWbOmZn7dV25GjLL+UxnnLnnOc9zP4qmaRpCCCGEEDFiMTqAEEIIIZKLFB9CCCGEiCkpPoQQQggRU1J8CCGEECKmpPgQQgghRExJ8SGEEEKImJLiQwghhBAxJcWHEEIIIWLKZnSAr1NVlcrKStLS0lAUxeg4QgghhOgETdNoamqioKAAi+XYYxumKz4qKyvp16+f0TGEEEII0Q0VFRUUFhYe8zqmKz7S0tIAPXx6errBaYQQQgjRGY2NjfTr16/jc/xYTFd8tJ9qSU9Pl+JDCCGEiDOdmTIhE06FEEIIEVNSfAghhBAipqT4EEIIIURMSfEhhBBCiJiS4kMIIYQQMSXFhxBCCCFiSooPIYQQQsSUFB9CCCGEiCkpPoQQQggRU1J8CCGEECKmpPgQQgghRExJ8SGEEEKImJLi4xhamupZ8c951FSVGx1FCCGESBim29XWTOoeO5vprSWU1JWQfdt/jI4jhBBCJAQZ+TiKYMBPYWsJAP3rVxqcRgghhEgcUnwcxaZPXuv4fadrhIFJhBBCiMQixcdRBNa80PG7Eg4YmEQIIYRILDLn4wia/SFurb+Si9Rsdmr5hHKm8XejQwkhhBAJQoqPI1hUUsX+oIe/cj4AI4OpBicSQgghEoecdjmCV9bsBeCk4mwAvMGwkXGEEAlgw9JXWPnyo0bHEMIUulx87N27l2984xv07t0bj8fD+PHjWb16dcflmqYxb948CgoKcLvdzJ49m5KSkoiGjqaaqnJ+uPtWvmFdzPVjPfzU9jzfaP2H0bGEEHHM19rMmA+uZ8r6X1NdvtXoOEIYrkvFR11dHSeccAJ2u523336bTZs28eCDD5KZmdlxnQceeICHHnqIhQsXsnLlSvLy8jj99NNpamqKdPao2P7BM0y2bOMb7hUMzVK4xfY6l4ffNDqWECKObV3+RsfvzY11BiYRwhy6NOfj/vvvp1+/fjz11FMdfxs4cGDH75qm8cgjj3D33Xdz8cUXA/DMM8+Qm5vLc889x4033hiZ1FHUe+erADQUX0hvTxoAHnxoqopikbNUQoiu8216q+P3gK/FwCRCmEOXPk1ff/11Jk+ezGWXXUZOTg4TJkzgb3/7W8flZWVlVFVVMXfu3I6/OZ1OZs2axbJly454n36/n8bGxkN+jLJ761qKQ9sJalaKT/kmrhS9+LAqGn6/17BcQoj4pakqRbUfd/w75G81MI0Q5tCl4mPnzp089thjFBcX8+6773LTTTfxgx/8gGeffRaAqqoqAHJzcw+5XW5ubsdlX7dgwQIyMjI6fvr169edxxERlR8/A8Amz2R65fTFk5LecZm32biiSAgRvzbta+D2wE28Hp7BTN8fOZA1wehIQhiuS6ddVFVl8uTJzJ8/H4AJEyZQUlLCY489xrXXXttxPUVRDrmdpmmH/a3dXXfdxR133NHx78bGRkMKEE1VGbBXn9sRHH0ZAFabDZ9mx6UE8bU2AvkxzyWEiG/vb6lhmTqaZepoAFpDVoMTCWG8Lo185OfnM3LkyEP+NmLECMrL9V1f8/LyAA4b5aiurj5sNKSd0+kkPT39kB8jbF31PgXaflo0F6NmX9nxd6/iAiDQGh8TZkXsVZSuY8U/5xHw+4yOIkzo/S3Vh/xblu4L0cXi44QTTmDr1kOXiW3bto0BAwYAUFRURF5eHosXL+64PBAIsGTJEmbOnBmBuNHz0fZ63gtPYEPWqbjb5noA+NCLD78UH+IIvC1N9PvXyUzf/jAlHz5vdBxhMjVV5Zy/70/MsJTwoz6r+T/bU2RUrTA6lhCG69Jplx/96EfMnDmT+fPnc/nll/P555/z+OOP8/jjjwP66Zbbb7+d+fPnU1xcTHFxMfPnz8fj8XD11VdH5QFEQiCk8v+2Z1AX/CnPnjXlkMt+mXIPOw/6mZ821KB0wszWPj+PGW2/q/UVhmYR5lO27BW+bXubk23baVAGMNn2HivqxwCXGh1NCEN1qfiYMmUKr7zyCnfddRf33nsvRUVFPPLII1xzzTUd17nzzjvxer3cfPPN1NXVMW3aNBYtWkRaWtox7tlYS7cdoK41SJ80JzOHZB9yWY1nEGW19bSEpBO9ONTumiaU3cs6xg+DYc3YQMJ0bDsWAVBTMAdrs945WQvIyjkhuvyJeu6553Luuece9XJFUZg3bx7z5s3rSa6Y2vnx8xQqGZwxbio266Fnojx2fXJYq5ynFV9z7xtb+CDwC1Y4byVXqUcLyBJK8SWft4VhzStBgT6Tzqfmk6f1C4JSfAiR9F2zmhoOcm3lb/jE+UOuGHD4h8dJwU/5se1F3FWrj3Brkaze37yf97dUY7NaWZs2W/+jfKiIr9j22Tt4FD/V9GLwmJlodjcASkheJ0IkffGx5cPncClBdlsKKR418bDLp/k+4Tbbq6TVro19OGFKPm8L21++Fw8+bjixiIpBV/CNwF183uvoI4Ii+Xg36i3Vy3qdqHdHtnsAKT6EgG6cdkk0rs3/BaCy37kMOEL79LBNf8PQAtISWejWPH8vNwb/yQnuzxh4ynKe+tTGJ6pGP8uRl5OL5KOpKv1r9K6mzpFnA6C0jXxYpfgQIrlHPg5U7mKUby0A/Wddf8TrqO3fVqT4EEDlrq1M2PUkAL7JN5LqsuN26POCvAGZFyR0O3aVoWlhfJqdYTP0ETGl7b3EEpZ+MEIk9cjHjg+foY+isdk+khGDRhzxOlp78RGUyYQC9v/nDgqUICWOsUw669sA9AlUcJX1ffrWDQSkdbaAReUaD/j/xBWDw9zf1jdoX7+zOXltNmMK+3P4CV4hkktSj3xk73wNgMbii45+JUcKABYpPpLe+o9eYkLLJ4Q0C54LH+rY5bigaSML7E9ycsNrBicUZvH+5mpAYcyY8R1/s6X2olzLpSacYlguIcwiaYuPnWU7yA/tIahZGTbn2qNeT2kvPkJSfCQzv6+VrCW/BGBV3uUUjfyyGZ3VqY+O2cNyLl/AwcZm1pbXAjBneE7H391ty/Z9smxfiOQtPl7aFmSK/zEeyb+fzOy8o17P6kwFwCYfLEntixfn00+rpIZMRl294JDLrC79NWJX5Vy+gJ0fPsNKx038LvN/FGS6O/6e4a/kTtvznN/0goHphDCHpJzzoaoar66ppBUXI2aec8zrHiycw3krLQzI6cfCGOUT5lJZ7+Wu0hH8mOnkTb6AKRm9Drnc5tRHx+ya34h4wmQspe/SS2lmULb7kL+nBmu52fY6ewOyKkqIpCw+viirYm+9l1SnjdNGHPuNwJ6ewwZtEIqaEaN0wmx+99ZmdgUzeXbgPbx4/ozDLre79OLDKSMfSS/g91Hc9Dko0GvC+YdcZm8bIXNKkSpEchYf4bd+xjuOL/hkwK242s7DHo3brv9f1CrLKJPSis27eHP9PiwK/N/5o1EU5bDrONxtxQfyoZLsSj9/l1GKl1oyKB5/8iGXdbxOpPgQIvmKj4DPy/Da98iwtBAqzj/u9dPDddxkfZ2UFgcwK/oBhWkE/D7y/3Muf7QXsmXc3YwsSD/i9RxufSmlSz5Ukl7ThjcB2JF5AlOth36xcbj0iclOAjHPJYTZJF3xUbL0JSbQQjW9GDHj2PM9AFLVRn5uf576cCrwp+gHFKbxxX/uY7paQZq1gVmnHrkPDIA9PZcbA7fjw8lTqobFcvjoiEh8mqpSeGAJALYRZx12ucutn3ZxKGGCAT92hzOm+YQwk6QrPrT1+kzznblnkGM7/sN3evRvtR5NzucnkwOVuxhT+hgosH3cT5malX3U63pSUnlXnQqAP6R2dDwVyaVi+3r6a1UENBtDZ5x32OVOT2rH7z5vixQfIqkl1VLbxvoaRjUtB6DPCUfv7fFV7hR9qN2hhAgGZFg9Wex+/sekKD622oYx+fxbjnndr84b8koPh6T18a5WFoYuYEna2aSmZx12udPpRtX0UTG/tznW8YQwlaQa+dj6/j+ZogTZZenHoNHTO3UbV1trZIDWliYy5NtKwtu0/G0mN76HqilYzn0Qi/XYIxlWi8J59s9xqa14myZDiiylTEavlyl8FrqCeTNGHvFyxWLhIvU+GkI2nrFmxjacECaTVCMfnq0vA7BvwPkdrbGPx+FwEdT0Dx9/a1PUsglzCAUDuBf/HICV2RdQPP6kTt3uN9Yn+L39cUL1e6MZT5hUQ2uQVbvrADj1GMv3yx2DKdPy8akyL0gkt6QpPqoafPy+5QxeC89k4OzrOn07xWLBq+ijHf6WhmjFEyaxZNknpIUPUk8qw666v9O386O/RgI+2f04Ga1bsZhTWMWYHDv9enmOer32FuuyA7JIdklz2iXVZWPu+d9kzf4LuWDAsC7d1oeLdFrlPG2C0zSNB9fa2eH/I/NmOrjqGG33v86vOEGDoBQfSSll7RM84Xif5SnXAnOPer1LtUXYbZWotXnQb1LsAgphMslTfDhtXD2tf7due6/7Z1TU+/mVe2BkQwlTWb6zlk37GnHZXZx56qldum3Q4oIwhKT4SDqhYIDixhUAZI0/fJXLV50XWsQQ2w7W1Z0HSPEhklfSnHbpiV2eUazThtCkOYyOIqLog8VvoqBy6aRCslK69lwHLS4AQn7Z/TjZbFv5Hum0UEcaxZPmHPO6QYt+ek71S5EqklvSjHz0hKetxbqcp01cu7eu5ZdVP+BKRwHWqUu7fPv2D5WwfKgkncb1bwCwPWMGU47TOyjUVqSGA7JLtkhuUnx0wvTwKsZbS7BVO4Djt2QX8afq3YcYADSlDmRCQZ8u3z5k1XcwlW+0ySe/Wu9qahl25nGvG7K2FR8yQiaSnJx26YTZ3kX8wv5vMmpWGx1FRMHB6r2Mq30LAOdJP+jWfSzpfQXfD/yQXZnTIhlNmNzeHRsZoO4hqFkZMuOC414/3FakakEpPsSRffafP7D6zSdQw4k90i7FRyeErPpulPKtNjFtfeOPuJQgpdYhjJh2RrfuY1/GRN5Wp1Fj6/wKGRH/yla9C8A252gyjtGCv51q1U/PaUE57SIOV7ZpJdNKfsOklT9m5/wplHz6ptGRokaKj07Q7Pq3FSUgxUei8XlbGFr+bwAaJtzY6eZzX9e+n4vMC0ouf206kVP8D7Jt3J2dur5m099LkOJDHEHNts87fh8S3sGoxVfz94W/Y8eBxGvzIMVHJ6h2feSDoBQfiWb920/Qmwb205txczvffO7r+obKOceygsy69RFMJ8ysyRfks7JayrR8xk87pVO3Wd33Gs71/5YVvS+OcjoRj8L7NgCwKv00Psu+mCoti4f2DOWMh5dyz2sbOdicOPuLSfHRGQ69+FDkPG1C0TSN5k3vAVA25Js92mV0dP2H/NnxR8ZU/y9S8YTJfVxaQzCsMahPCkXZKZ26jT+1Hxu1QdSQGd1wIi6l1G8FIDzgRKbd+hQt3/uMacMHElI1nlm+i01/mMuKf/wavy/+P4tktUsnKG3FhzUU/0+4+NKSbQe4oflGZjtm88dzuz/qAYBDb6ktr5Hkkf7BXTxm30NV4Y2dvk376TlfUI1WLBHHngidRVFoIHOH6ntKDe6by5PX57Jsew2LXnmGE1vWwo61VN7/b/ZN+TkTz/xWt08VGy0+U8dYe/Fhkw+WhPLkJ2WAwqApZ5GeefzJgsdisevFhyXsi0AyYXbhUIhRde9zlnUlUwuPvpfL1xX4tvN96+uMPPheFNOJeFTT7Oe1llE8Gr6UAUPHH3LZzCHZ/OpHP+Tzcb+lml4UaNVM+vwOts6fyZaV8flakuKjE+r6zuaawF08l/Yto6OICNm2YztrSsuxKPCtEwb2+P4sTv0DyCbFR1IoXfMRWTTSiIehU07r9O3ymjfzM/vzTGpYFMV0Ih5trdJ3TR/Qy0OK8/CTElabjakX3UbqT9ayvP+NtGhOhoc2M/zNS1j9hwtoqKuJdeQekeKjE5SMvnyqjqFU62t0FBEhDf/7Jcuct/Hr/huPuQtpZ1naR8dUKT6SQf36dwAoTZvWpblCUqSKo6nZsoxTLGuYkh065vU8qRnMuOEBvDeu5POscwhpFjIbt/LFhy/FKGlkSPHRCSkOaa+eSGoqdzOubhHpipcZU6ZE5D5tLn0JpV0+VJJCSrXecDDUb0aXbmdtmxtklyJVfE3B9ud4yvF7LtY6NyqWXTCAqT98jgdGvcqpgQdZk9a5FVdmIcVHJ6SqDVxtfZ9TWt82OoqIgNI3H8ahhNliH8mwycfeCKyzrE595MOuyYdKolNDIQb6NgOQPfykLt3W5mp7nUjxIb4ms6kUAFff0V26nTU9F4BGbzDimaJJVrt0Qkaohvn2JzkYSAcWGB1H9EBrSyMj9v4HAO/kmyJ2v1rvofw0+D3wZPP7iN2rMKPdW7+gSPHSqjkZMGJyl25razvtYtcC0Ygm4lQoGKBfaDco0GfwpC7dNt1lB6DJd+zTNWYjxUcnONwZALi0xGnwkqw2vPlXptHMXiWXsadeE7H7dWQW8J/wbHqrjojdpzCn0j37qVWHYnVnMMHetefb3jby4ZQRMvEVe3duYoASpFVzUlA0oku3HdHwMW87HqS6Yizwr+gEjAI57dIJrpRUADyKP+E3+0lkajhMweanAKgYej3W42x/3hVue1t79aC8PhLdosb+XBqYx/sTFnb5tnaX/l7iRL7IiC/V7NDnEFXYB2KxWrt021RrgBGWcnr7K6IRLWpk5KMT3ClpHb97W5tIScs0LozotpXLP2Syuo9GJYUx594c0ft2WUPMtqzFHQ6gqXPjtvGPOL4vyusAmDgwq8u3tffqx5WBXxKwuHk50sFE3Ars1duqN6QP7fJt7R79degKx9f+L1J8dILLnYqqKVgUDW+LFB/x6sGSFCoDj/DDMSEui/Bz6FZCPO14AACf/05c7s612xbxpb6xieoDBwAPE/p1vfhwulNZoY4EFcKqhtWiRD6kiDvuui0AqH1Gdfm2ztRM/T5UKT4SjsVqpRUHHvwEWpuMjiO6Yf2eej4vO4jNksOJ50R+SZrLk9rxu6+lSYqPBFW+6i3WO29kmW0qWSnndPn27e3VAXzB8BGbSYnk8/vwVfQJTOC6EXO7fFtXml4Ee7T46sAtr/xOalXcePDjk+IjLj3/4RcAnDeugPwMd8Tv3253ENBsOJQQPm98fQMRndeyYzkWRcOZ1vVRDwCXzco3rIvx4MPXMp0UZ+8IJxTxptEX5NOGbOBE5g0d0+Xbu9N7AZCqtaKpatyc8pXio5MWOH9IdZOfO5z5RkcRXbS/vJR7tl/GbPs4+k7/d9SO41OcOAgRkOIjYaXVrAFA7Tu1W7e3WBR+afsnLiXIvqYfQS8pPpLdtra26vkZLjI9XV8tl9pWfNiVMK2tTXhSMyKaL1rio0QygRL3ZD5Wx9JM5L81i+gqe+thnEqIvu4QowbkRu04PvQ22wFvS9SOIYwTDgUZ1NZcLGfkid2+H58irxPxpYMlH/At69uc3qu6W7f3pKRTpWWxQ82nuSV+vvjIyEcnedrO1bZKi/W40txYx6h9L4MCwWmRXeHydQHFCRoEffHzBiA6b9emVQxW/DRrbvoP61ojqK/y4wSaCfik+BCQsfN/3GN/leWKAlzV5dsrFgtnWB6nwRvkPSWdnMhHjAoZ+eikSepGrrR+gLV2q9FRRBdsfGMhaYqXcktfxs6+LKrH8isuAELyoZKQarZ8DECZa0SPesQE2kY+Qv74miAooiO9cRsA9vyutVX/qjSX/nps8MZPl1MZ+eiks1tfY4L9Uz7bnw/MMjqO6ITG+lqGbHsCgH0jbqB/F5v3dNXLqVdQU1vL2Z6iqB5HGMO653MAmnMm9uh+AhYnhKVIFaCpKv0CZaBA78Hdf13pLda9NPniZ38XGfnopLBNn+uh+WVIPV5seu4usqmnQilg/HnRPeUCsDb9FF4In0K9PV4GPkVXvOUfy8vhE3EN7dlmhMH2ETIZ+Uh6+8pLSVW8BDQrhUPGdvt+bvX/jbcdP8ddtjiC6aJLRj46KWzX+zZoAXnDiAfb9hwgf/9HoEDdrN/Sz+WJ+jE7WqzLvKCEU9vs5+8Nk4BJrJvU9V4MXxWyOiEEYb+MfCS76tLVFAAVtv4Mdji7fT/5HGCEpZzPm/ZFLlyUychHJ2k2/cNLCcjIh9lpmsav3tzOGf77eCLnF4ydfUlMjjtA28tJlvXYGnbF5Hgidr4orwegOCeVDI+9R/f1aq/vcFXgbvZkTYlAMhHPfHvWAXAwtbhH9xOy600OVW9DjzPFihQfnWVvKz5CXoODiOP53/p9fFZ2EM3m5syrbovZcc+of4F/OO6jb+W7MTumiI19mz5hmFLOpH7pPb+vtFEsV0dRr3SvUZlIHI5afel2KHtkj+5HdeivS83f2ONMsSLFR2c59NMulqAMlZpZc2Md61//IxZUbjllCIVZ0T/d0k5tmxdEUArURDN528O86/w5F1uX9vi+XLb2HZDVHt+XiG+/5iYu8v8fyuiLe3Q/qlMvPixxVHzInI9OUpx68WGVkQ9T2/jc3fwy/C9OSFnHjJPfiOmxNXt78SHzghJJMOCnyL8VFMgd0f3mYu2Kg5u5xvoZmbVeYHDPA4q45AuG2VSroWrFDBo8rEf3pbjaio9A/Gz/IcVHJx3MP5mb1nnJzR1CzxbaiWjZvWUNk/Y9Dwr0OuE6XPboLq09TNupOYsUqAll16bPKVYCNJJCv6Hje3x/4xs/4ib7v1lxwA9c2uP7E/GpdH8zqga9Uhz0Sev+ZFMAizsTAHswfooPOe3SSVpWEe+oU9mkyDcVM9JUlcZXfoRdCbPWPYNxc66MeQalbeRDio/EcrCtudgu10gskegVI/PHBFC3/i3m2Z7myszNKIrSo/uyeHpzQMugSYuf7T9k5KOTpL26ua159xkm+tfg1+z0uexhQzIoDv1DxRqWD5VEYqtcBUBLD5uLtdPsep8PJeSLyP2J+OTY9SHX2xaxwprZ4/tqHXwWU5b0ZnhWGu/0PFpMyMhHJ6VpzZxrWc6U1p5POBOR1drcQMFnvwXgi/7X0XfQCENyKG2Tkq1h+VBJJPlNGwBIHTIjIven2NuLVHmdJLPUBn2rDmte99uqt2tvr97kk/bqCSfDv4+Fjj9R7esF3G10HPEV6/79a2ZQQ6WSw4Sr/s+wHC3Z4/hN8Bs4soYwzrAUIpJq9u2mQKtG1RQGjovMtgqWthEyixQfSUtTVfr6dwKQWTShx/eX7tZ7zzTGUXt1KT46yeFJA8ClyRuGmZTVtPDArqH82joE7cQfUeBJNSyLmj2MJ8NnM86aYVgGEVlfVGv8K/AzpmXUcXNGr4jcp8Whn5e3SfGRtGqr95BNI2FNoXBoBIoPWnjBcS+pqhc1fFpk5iZFmRQfneRO0ZcyefChqSqKRc5YGU3TNOa9XsKa8EAeHfRnnjptqqF5OtqrB2VeUKJYvdfLEnUcBcX9I3afVqc+8mFTpfhIVpVbV5MNVFry6ZeS1uP7S0tNZZplCwBNzQ2kRahQjqYufYLOmzcPRVEO+cnLy+u4XNM05s2bR0FBAW63m9mzZ1NSUhLx0EZwthUfNkXF75c3DTN4b2MFS7YdwGG1cM8FYwwvCD2Kn4nKNob4NhiaQ0TO6t11AEzsnxmx+/TmTOS7gTv4m/uGiN2niC+tFXpb9QMpPWur3s7p8hDQ9LGElobaiNxntHX53XrUqFHs27ev42fDhi/faB944AEeeughFi5cyMqVK8nLy+P000+nqSl+1h4fjcfzZXXqa4mfLnKJytfazLCXz+BO2/PcNDOfouwUoyOR7t3Dy8553Ov/vdFRRAQE/D5O3/dXTresikhb9XbWjAIWq5NZq0Xmg0fEn1DtLgD8vSMzOV5RFJoVfUTN23QwIvcZbV0uPmw2G3l5eR0/ffr0AfRRj0ceeYS7776biy++mNGjR/PMM8/Q2trKc889F/HgsWaz2/Fp+qQeX2v8F1Pxbu2/76G/VsnFtmXcNKvI6DgAONz6fBO3zAtKCLs2LudGy2s84PgbRX16PjTezt22bN8ny/aT1ny+zUTfX/GNuy5i99mq6F/AfM31EbvPaOpy8VFaWkpBQQFFRUVceeWV7Nypz9gtKyujqqqKuXO/3G7a6XQya9Ysli1bdtT78/v9NDY2HvJjVl5FX5/vl5EPQ+3duZkJ5c8AUDntl3hSzTHB09lWfLjwo6myb0e8O7j1EwDK3SMjekrPrXm5wPIJpwY+iNh9ivgRDKtsr27mIOkMGTgwYvfrtejFR6C5LmL3GU1d+i9q2rRpPPvss7z77rv87W9/o6qqipkzZ1JbW0tVVRUAubm5h9wmNze347IjWbBgARkZGR0//fr168bDiI0H7Tdyc+AHNDr6GB0lqR34749wKkE2OCcw4YzIfXPoKWfbShurohEIyOhHvLO3NRdrzY3shgopoQYedfyFu9S/RfR+RXwoq2khEFZJddromxm5jqR+m/7+E2ypj9h9RlOXio+zzjqLSy65hDFjxnDaaafx5ptvAvDMM890XOfrbWI1TTtm69i77rqLhoaGjp+KioquRIqpFe6TeUudThOx2ylVHGrdB88zvnU5Qc1K+kUPGT7J9KvcX1nm62uV3Y/jXd/mjQCkFZ8Q0ft1uPVvqB5FRsiSUd2a13nafj+3pS/FYulZW/WvarX34oCWji8YH43GevTOnZKSwpgxYygtLe1Y9fL1UY7q6urDRkO+yul0kp6efsiPWaW0nav1yrlaQ/i8LfT++B4AVudfyYDh5triz+5wEtT014jf22xwGtET1Xt2kkcNYU2haOxJEb1v11eKVL9PdkBONmr5Z8y2rmO8I7JftP8zYB5T/H9lXa8zI3q/0dKj4sPv97N582by8/MpKioiLy+PxYsXd1weCARYsmQJM2fO7HFQMxhDKWdbVqDV7TI6SlJa+sHb9FFrOUAWo6/+ndFxjsiHQ/9fmZQc1/ZsWALALlsRKWmZEb1vl/vLlVm+VilSk42nTu/HQc6oiN5vmiu+upx2qcnYT37yE8477zz69+9PdXU1v/3tb2lsbOS6665DURRuv/125s+fT3FxMcXFxcyfPx+Px8PVV18drfwxdWnL84x3rGDlvl7ANKPjJBVV1ViwOZtf+P/IvJNSODc9y+hIR/SE9XJa/CEutUZudYSIPe/u1QAcyBpHpPexttkdBDQrDiWM3yen55JNrncHAOkDx0f0ftPd8bW/S5eKjz179nDVVVdRU1NDnz59mD59OitWrGDAgAEA3HnnnXi9Xm6++Wbq6uqYNm0aixYtIi0tMd6IwzZ9clDYL28Ysfb+lmrKalpIc/XmlNNONTrOUb3iuojy1lbOkhbrce0P4Sv5pX88Px8f2W+n7XyKEwetBOT0XFJpOHiAPGoA6DtsckTve2TTMp53/JXGignAYxG972joUvHx/PPPH/NyRVGYN28e8+bN60km0wrb2iaaBqT4iLU3PlwKeLh6Wn9SnObdFcDTMS9IJhLGK18wTEllEwEtn+EjxkblGH6cQCsBr7yXJJO921aTAVTRh7zM3hG970wamWrZzLpW4/a36grzvoubkNpWfGhSfMRU6ZqlPHrgO1ziGEvx9LeNjnNMAy3VOJW9hJoHAdlGxxHdUFLZQCCs0jvFQf9e0VnZ9rDjRg42+7jJlR+V+xfm1LR7LQD73YPJO/ZVu8zu0UdbneH4GE2T4qMLNIc+UUwJygz1WGr44BEA3Jm55GeZu6q/rfmPjHKuY1WlByZEpnWyiK3m5U+z0P4OZdnnoiinR+UYq90nsLWxiW9aEuOUtOic2roGGjUPrb2GR/y+7Sn6PDhXnBQf5mmSEAcUu158WKX4iJmqiu2Mb/wQgKxTf2RwmuMLWfUuuKpfXiPxKr3iA861fsbklANRO4ZLlu0npb+p5zLW/zcOTro94vftTNWLD48aHyPzMvLRFW0jH5awfLDEyq43HyJPUdnoGMfocZFt9hQNIas+KVmKj/ikqSqFLXpzsYzi6LUIGKdupr+lDKU+Gzh6HySROFRVY2tVE6AwrDDyp2TdbcVHihYf7z1SfHRBXd4M7iz5Lr1TRjDJ6DBJoLmxjlH7XgYFQtNuNjpOp6htK6I0GR2LS1UVpeRTR1CzUjT2xKgd55KW5xnnWMnn+/OQZfvJYU+dl9ZAGIfNwsDekd+F29PWfiBF8REKBrDZHRE/RiTJaZcuCPYezovhU1hjGWl0lKSw8Y2FpCleyi19GTv7MqPjdEp78YEUH3Fp78algN5czJ0SvfkY4bYRMi0gr5NkUbP6ZT50/Ij5qf/BZo38R29qRm/8mo0aLZ3mZvNvfiojH10g7dVjJxRW8Wx/A4B9I26gv9VqcKLO0dqKDyXoNTiJ6I7wrhUAHOw1PrrHselzg2SELHkE9qyjyLKfGmd05mQ4nC6Gq//EF1T5WPOQGZWjRI6MfHRBKi3MsqxjeOsqo6MkvEWb9nNJ6y/4hfIDxp1zk9FxOk2zty3NDMmHSjzqVbcOAOuA6J4K0domJmuy+3HScNTqbdXDOdEbOY+nFusy8tEFWd4KnnHcT1VrH+B2o+MktL99vJMgNrJnfOOQjbjMrrrXZB4tq8XjnsZ0o8OILvEFgjQGFIKKlYLRs6J6LDk9l3z6tG4HIKXf+KgdI91l40CTn0av+VusS/HRBU63/iHoQobUo2nt1h2sL6/FYbXzzRkDjY7TJXU503g4lMY50jwq7qzf28TlgXkUpsLH/YujeizN3nZ6LiTvJcnA29xIX3UfKFAwLHrLFW4NPUu+YxPW8rtg8AVRO04kyGmXLnCmpAPg1vwGJ0ls6uu385HjDn5avJc+aU6j43SJx6HX896gzAuKN1+U1wEwekAeiiXKb41txYdFio+kULFtDRZFo5YMeucWRu04g7VdTLdshoaKqB0jUmTkowtcHn32u1MJxsVSpni0d+dmxjV/jNWicfq08UbH6bIUi48hyh4yW1uBKUbHEV2wdpe+4dfEAZlRP9a+nFn8eJtG3/SxTI360YTR6svWAFDpHERkd3Q5VMimj86HvQ1RPEpkSPHRBe7UL5fetbY0kR7hjYEEVLz9IH0VjfWuyYwdEdldH2Oh78GVvOe8k60HhwHxsTxY6M3F/q/sSm52ZEDWs1E/Xmuvkbykqsy1SoOxZFDRpOFSi2jMis5Ghe1CDn10XvPJUtuE4nC4CWkWbIqKv7UJpPiIqIa6A4ytfh0UUGbeanScbrE69eZBdlVOzcWTyl1b6ctBspQG1CGDo348t11fOu4Lye7HyeA/gemsCAzlD1PGRfU4alvxofjMP/Ihcz66QLFY8KLPQfC1mP/JjTeb//dHPIqfMstARp9o7slSR2N36UttHZosoYwn+zYuAaDMPgSXO/LdJ78uQ61njuULBjd9EfVjCWNpmsaWqiYAhudFdyNBzanfvyXQFNXjRIKMfHTRQtu1NPjCXGvNNDpKQgkGfAza+U8ADoz5DkXRnvAXJXa3/h+/S4qPuBIu/wyAuig3F2vXp6mEvzv+QGnjECB++tiIrquub6al1YvVYmdITnTbBiiuTABsQTntknAWuc+mrKWFixXZCjuSVr3/MjM4SA2ZjDvr20bH6TZH27dmp6yIiiu925qL2QfGZp+V9tNzDnmdJLz9a9+lxPk9PrdPwWU/O6rHsnoy8Gs2QmEtqseJBCk+usjT1mK9NWD+Ji7xQtM0fre9Hw7/PL4zIYWz205dxKMve8EEDE4iOmvf7q0UhXaCAoVjZ8fkmHan/hq3S/GR8For1uFQwrjd7qgfq37IxQxbPoBxOZm8FvWj9YwUH100XCmnl6WccENfIMfoOAlhxc6DbNzbiMs+nBnnnGp0nB5pLz7sSphgwI/dEV99SpLRrrceJl/R2OCcwJjC6E82BRkhSybWms0ABHtHf0PSNLfeXr1J2qsnnutanmKsYyUrK9OA8UbHSQj/WFoCwKWTCslKie/eKa6UNP4WOhsvDq7zB8mQ4sPUGn1B/lI1gmZ1EjnTb47Zce2uthEyKT4SXu/mUgDchWOifqz09r1dpL164gm1bYWt+qOzM2GyKd+2lgd2XcZU2yxOnvmE0XF6zOFwsiD8DVQNrtBsZBgdSBzTC59X8LF/CFU597Bo9skxO66zfeSDAJqqRr+jqjBEwO+jMFwBCuQOjV5b9XYZWiOP2x/EEwgAp0X9eD0hr/guCtv0c7Wav9ngJIlh37sPk6r4GJfexKCcdKPj9JiiKF+2WA9Ii3UzC4VVnvq0DIBvn1iEoigxO7aj7fScTVEJBmV+UKLau12f79GEm9zCIVE/XqrbxVzrak60bCDgN/eKOyk+ukht2zJdC8hulD1Vd2Af42reBMBx4m0Gp4mcQlsDg5RKfF4pUM3si0X/5FstTzDK08CFE/rG9NjulHR+HbyOnwa/hzcojcYSVe0Ova36HvugmIxupaZndvze3FAb9eP1hJx26aL24kMJymmXntryxiPMUIKUWocwcvqZRseJmL+rv6TAuZ8t+wdBP2mfbUaaqpK1+o9811bK6MJCXParY3p8u93OP9UzUDX4iWqR03MJaltrCvvC03HnjWVEDI5ntdlo1tykKl5aGg/SKye2RXVXyMhHV9n1c7VKUEY+ekINhxm0+z8ANIz7bkKd8/YrLgBCMvJhWps/X0RxqBSfZmfYubfH/PiKonS0WJfTc4nrtYYh3Bb8AfsnxG67iBZF/4Lsa6qL2TG7I3He8WNEcejFhzUkIx89sWnFW+RSSyMpjJl7rdFxIipo0Ve4hPxSoJqVf+kfAVjX+yzDvh1Ose9glmUdgRZzf0iI7mnwBlm1W39uTxrSJ2bH9Vr0zyh/s7lfV1J8dFFdzlR+E7yGTzzmnklsdq0rnwNgS685OOO4qdiRBC36yEdYVkSZUsX2DYxrWQZA3hk/NizHAvVhnnHcj1ZTalgGET1frFrOYK2c4j4p9O8du/c4r1WfzBxoqY/ZMbtD5nx0ka/PGJ4Mq5xoyzY6StzyBcPcU3cWp4U8nDH9GqPjRFzI2lZ8yKRkU6p85yH6KRrr3NMYN2y8YTkCigs0CPqkSE1EqSv/yCLnYpZkfA+YHbPjBmypBAJWAj5zv//IyEcXtS+jlPbq3ffBlmo2+3vzUurVjJx8itFxIi7cVnzIiijzaajdz5gD+gor6wmxOw9/JAFFPz0nI2SJJxQMUNy4HIA+o2PbtfmpfvMZ6n+Wjb3PiOlxu0pGProoVfExQSmlf6sHOMHoOHHp1TV7AbhgQl8sltj1VoiVcFsjOik+zOe/q8vRwnOY5qpg9MxzDc0StLggDGGZG5RwSr/4kBE000AKQyfNiemxU9wuQKHJZ+4vyFJ8dFHvlu284ryHypZc4HtGx4k7DbX7uXT7z7FaZnLhuJOMjhMVZRnT2FCrkO4aanQU8RWBkMr/W9lAdeibPHTWWMYYvMIqbHVCEMJ+r6E5ROTVr/0fAKXpM5hsj+2WEelt+7s0mnx/Fyk+usjhTgPAqZm7e5xZbfngH8y1rGSwu4bB+fcaHScqtuWcxRPbhnNjyiCjo4iv+N+6Sqqb/OSmOzl3nPH9D0JtE5NVGSFLOPn7P9J/GRb7/kWjW5bzuP0fBPZMAe6P+fE7S+Z8dJHTo7cAd0vx0S3p214G4EDRBQYniR6Po61/Q1D6N5iFpqpY3r2LqcpmrpsxAIfN+Le+sK3t9Jz0DEooe3duZqBaQUizUDzzwpgfPzt8gLnW1fRt3hjzY3eFjHx0kdOjL2PyKH7UcBiL1Wpwovixb/dWRgRLUDWFQadcb3ScqEmxBsmhDktritFRRJuST//HRYHXOcPxLsFx1xsdB4D1vc7gjdoChqdNYLrRYUTEVHz2Cn2Bbc5RjMyKXX+Pdla33i/XHjJ3k0Pjy/8440n9cvMz2buja3Z/+AwAm1zjyOlbZHCa6BlX/Rqfu27hvMpHjI4i2oQ//RMAG/qcS0YvcyyTL+91Ak+Hz6TCWWx0FBFBj7ecxLWBn1E28hZDjm9PyQLAFWoy5PidJcVHF7nadqMEaG1uNDBJfNFUlfzy1wFoHX6JwWmiy+LQGwpZw3Jqzgx2b17NON9KVE2h8Gzjmop9naujvbpsLJcomv0hPi5rYqk6jhEnnGdIBmdKJgAu1dxLuKX46CKL1UqLpq/P97fKyEdn7diwnAFqBX7NzvBTEq+x2Fe1Fx+2sKxiMIP9ix4CYF3qCfQdNMrgNF/qrdUxWdlCWtN2o6OICPl42wGCYY2i7BQG9Uk9/g2iwJmmj3ykaOaeSyRzPrrhCevlNPvDXGZJrLbg0bRs826a1cGo6YVMzOxtdJyosjr1uR62sN/gJKKmqoJxB98FBdwn/9DoOIcYc/Advut8hJX75wLnGx1HRIB16X3cZTtAaKBx+1W524qPVK0FTVVNu2mnFB/d8F/XxVS0ejlTST/+lQVhVWPhjhyqA7/hb3PHGB0n6mwuvfhwqDLyYbTtbz7CdCXINttQhk0x135Mir3t9FxITs8lAjUcZvKBl5lra2Rj/lWG5UjN6AWABvi8rbhTjBmBOR4pProhpa3FumyF3TnLd9RS3eQn02Nn1shCo+NEnb1t5MOhyciHkXzBMG/ucZOr5tI08SbTfQNUOuYGSZGaCLat+YjhNNKkuRk2Za5hOVJSMxnhfxqvZufzsA23YUmOzVz/NcaJAdYDjFO2E2iqNjpKXFj/6Zuk08w5Y/JN0V8h2jpGPqT4MNQra/byD+8MrnX/mXGnGzcMfjRWh/6xYFPldZII6tboXU23pU3D7nAalkOxWLA7PYBCo4lbrMvIRzfc2vwnxjjXsGqPEyaONDqOqflam7i27Gd82xlkW9HbRseJCVtGLi+EZtNiS+cGo8MkKVXVeOLjnQBcd+JgbHa7wYkO1z43yK7KaZdEkFP1EQDa0Nh3Nf26NJedRl/I1C3WpfjohlDbxmFhv6x2OZ6Sj15gkuKlUslh1JhJRseJCUdmX34W+h52TZHiwyBrP3mTSQc/ot45iyum9DM6zhHZnPppF7uMfMS9qvJSBofLCGsKg2dcaHQcbuEFsu2lsMcJ/c0116ld4o+BR0HYpr9paAFzr6M2A+vG/wJQXnB20nSDbW+vHgxrBMPSw8EIjk9/zwP2v/HHgsWkucw36gFfPT0nIx/xbveKVwDY5hhBVp98g9PAeLWEudbVaPW7jI5yVDLy0Q0dxYdfio9jqTuwj1Etn4MC+SeZ75x7tLhsFlLw4sGPzx/A7nEZHSmp7Fi/jNH+tYQ0C4PPus3oOEelZPXn98HLCbqy+IXRYUSPlO6rp0jLpL6fOUYZArZUCEC4tcHoKEclIx/doLUtkSMoxcexbPvwH9iVMNutgxkwPDlOuQA4bRY2OL/DStfN+BtlUnKs1Sz5KwDr0meR19+8rcvtGQX8OXwh/w6fanQU0QOtgRD3HjiJaf6FZJ/6A6PjABC067uvq14pPhKLXR8uVWQ3ymPKKNWHImsGJe4OtkeiWCz4cADgb5UCNZYCPi/Da98DwDn1WwanOTZ32+k5n+x+HNc+3V5LIKTSNyuFIQXm2DdIbSs+NJ95twCR4qMbNIdefFil+DiqPeW7GBLYQlhTGHLKdUbHiTmf0taC32fuzZ0STcnSl8ighQNkMWLGOUbHOSaXBUYouxmjbiUYMu+SSHFsX6xfh4LKaSNyURTF6DgAqE69AabFb97iQ+Z8dEN99kQe3XYxTs8EphgdxqReKQ3yrH8h1/at5LaCgUbHiTmf4gKtkaDs/xNT2voXANiRdxZ9bOZ+e3Nbw7ztvAuAppbrsLd1phTxQw2HuWHL97jBGWZ33vNGx/mSKwMAa8C8xYeMfHRDc85kHg5dynL7dKOjmJKmabyydi8HyCR/pnFtho0UaBv5CMqk5Jhp9AZoamxE1RT6zPyG0XGOy+n6cm8ov1deJ/Fox4Zl9KEODwHGjJ1gdJwOVndb8REy7+vK3F8NTCrFKe3Vj2XjngZ2HmjBZbdwxqhco+MYImhxgQphKT5i5p2N+7kzcCfT+/j59+gZRsc5LsViwas5cCsBAj45hRuPale/RjGwNXUKE13m2Wi0ZvBFDF81kLF5ebxodJijkOKjG1IsQQYre+nlrQfM/yYXa83/+zn/sq9n1cDvmLbHQrQFLfry2pBP9u2IlVfW7AXgpIljTbePy9H4FCduAgS8cnouHvWu/BCA0BDj9nI5kpSUVHw4afKb9wuyFB/dkNNYwvvOn1LRWABcY3QcUwkFAxRXv022tZ6Ugeb5JhBrJe4plLRm0duRY3SUpFC1fx/by3YCGVwwvsDoOJ3mxwk0EZDTLnHnQOUuisPbUTWFQTMuMjrOIdJc+kd7k7RXTyx2j76MySmdCQ+z+dP/MYZ66khj1Enm+g8ylt7P/gbv7K/iNymjjI6SFHYteozljj/xZuolFGaZe5XLVwUVB2gQktNzcads2cv0AUrtQxmWZ64W/llqA3+w/xWXVwXmGB3niKT46AZnW/HhQoqPr/Ot0Wd8b8s+nWkG7uxotPYW617p4RATfcpex6ao5A0cYXSULglYXBCGoF/mfMQb+87FABzse4rBSQ6X5lC41LqUsKagqaopT0NK8dENTo++htqt+U37xBqhtbmBUfVLQIGMacl9OsptV3DhJ+CVD5VoKyv5jMFqGQHNxvBT46uN//ues3j9YBWTnPFzqkjojeEeaDqLk7XenD71UqPjHCalbdm2VdFobm4gNT3L4ESHk0/NbnCm6MWHXQkTCMjoR7tNHz6PR/GzV8ll2CRzDvXFyrn7H2OL61tM2vW40VESXtUn/wSgJGUaGb36GJyma5ZmXMCj4Us46OpvdBTRBct31rI8OJhnU77F4JGTjY5zGJc7haCmj742N9QanObIpPjoBk9KWsfv3mbpYNnOvknfwbai77kyGmRzA2AJychHNKnhMEX73gJAG3u5wWm6zmWX03Px6P3N+wGYMzzHNF1Nv0qxWGhW9E7c3qY6g9McWZJ/QnSP3e7Ar+lLSH2t5u0gF0u1zX6ebZrMJ+FRFJwcX0PfUeHQiw/Z/ye6Nn/2LnnU0IiHkbMuMzpOl+VYGhiqVKA1yQaE8UJTVYZv+AOzLWs4bZj5Tme0a1H01Yb+RCw+FixYgKIo3H777R1/0zSNefPmUVBQgNvtZvbs2ZSUlPQ0p+n8QzmXP4YupJXknVT5VR9uPcBLoRO5P+cB+g8db3QcwyltOx9bw3JaLpqaVz4HwJasU3C5UwxO03UX1j7BIufPKNrzstFRRCeVbfqcb4Rf5TH7o8wYmGl0nKPyWfT/Hvwt9cYGOYpuFx8rV67k8ccfZ+zYsYf8/YEHHuChhx5i4cKFrFy5kry8PE4//XSamhLr9MTfnd/kodDlNCnpRkcxhQ176gGYViT7UwBYHHrxYZHiI2p8wTB31F3Ez4PfwTXje0bH6RbNpjejU4LyOokX+1e9CsDWlEm4PKnGhjkGn02fHhBsrTc2yFF0q/hobm7mmmuu4W9/+xtZWV8OO2maxiOPPMLdd9/NxRdfzOjRo3nmmWdobW3lueeei1hoM/C0tVhvlRbrAFh3fsAgpZIxfdOOf+Uk0F582MLS4TRaPtpazV6fiyWpZzN68iyj43SL1jY3CDk9Fzd67fkAAP8gc3U1/bon8+cx3PcUm3ubM2e3io9bbrmFc845h9NOO+2Qv5eVlVFVVcXcuV8+WKfTyaxZs1i2bNkR78vv99PY2HjITzzItzVRpOzD32zO82mxFAoG+Gn9b/jA+RMmpJhzZnWsWZz6kKdd9RucJHG1t1M/f3wBFov5Jv11htZ2ek4JSZEaD2r3V1Ac3AZAkcm6mn6dNaVXW4v1kNFRjqjLxcfzzz/PF198wYIFCw67rKqqCoDc3EM3E8vNze247OsWLFhARkZGx0+/fubqFHc0P2++nw+dPyZtz4dGRzFcRek63EqAFs1F4eAxRscxBS2jkLfDU1hrlf8/oqHh4AG+U3oL11rf5aJxeUbH6T5728TkkBSp8WDHslexKBrbrYPJ6VtkdJxj+rLFegIUHxUVFfzwhz/kn//8Jy6X66jX+/rSI03Tjroc6a677qKhoaHjp6KioiuRDBOy6m8aYZ+0Ra7Z9hkAux1DsFitBqcxh3DuOL4f/BH/z3a10VES0tYP/sEUyxa+5fyI4QXmXXFwPEpb8WGV03Nxwb79XQAOFJi/j9EY70p+b/srw/b8x+goR9SlDqerV6+murqaSZMmdfwtHA6zdOlSFi5cyNatWwF9BCQ/P7/jOtXV1YeNhrRzOp04nfG3YiRk04dL1YAUH+reNQA0Zsk+Ju062qvLnKCoSN2mrw7ZP/ACzP3989ja5wbJqqjY21TZyMtf7CGsaUw68ArZvt1HuabCu/1+CJrGFc3loED2xPNjmrU7CoLlTLctZVWDOXcW71Lxceqpp7Jhw4ZD/vatb32L4cOH87Of/YxBgwaRl5fH4sWLmTBhAgCBQIAlS5Zw//33Ry61CYTbRj6QDaHIqN8EgK1wgsFJzENvHqURDsg32kirKi9lZEB/Hxp4ynUGp+kZb68R/L/QOWjO4Yw3OkyS+fF/1rF5nz7HcLb9XaZb1x/xemFN4cryCwB4ivlMS6vh32NPiFnO7rK6MwCwh8y50rRLxUdaWhqjR48+5G8pKSn07t274++333478+fPp7i4mOLiYubPn4/H4+HqqxNr+Fm16xMKtWByFx/hUIj+gR2gQJ+h04yOYxqp/ip2Or9BULMBNUbHSShlHz5NHrDJMYaR/YYYHadHfDnjWBC6hgmOTG4yOkwS2bFlHSP3v8E+61SuPmkULQcuYLlv4lGurXBL/8FtvymcNvLEuDi9bEvJBMAZajY2yFFEfGO5O++8E6/Xy80330xdXR3Tpk1j0aJFpKUl1hLMjlnqSX7aZU/pWgYoflo1J4VDxh7/BknC6UrBomg4CRIOhbDaZA/HSNBUlfzdrwPQMuwSg9P0nLutvbovqBqcJLlUL3mCBx3PsiplM5PPfB0Yfszrz4hNrIiyezIBcIUTtPj46KOPDvm3oijMmzePefPm9fSuzc2hj3wk+94d65rS+G3gDiZlh7hJPmA7fLX5kM/bTEpapnFhEsjOks8ZrJYT0GwMnfNNo+P0mMcaplA5QC9/fLQYSARqOMygfW8CYBlzscFposeZqk/Edqvm/IIsnxbd1JA1lqe2nwGuiUw1OoyB1uwPsVidTGHxQKOjmIrT9WWrb2+rFB+R8uGW/ewMTyQzI4MpWdlGx+mxjKZSPnH+kP2tvYGrjI6TFLZ89g4jqY3b/YA6y5WmFx+pmjmLD9lYrpvq80/g/0LX8YkzPjsrRsrGvQ0AjOmbYXASc7FYLbRq+iquQKs5hz3jTVjVeKI0le8Gf8LBMx8zOk5EONqKVCfS5yNWvtwPaE5c7gfUWSltxUeK4iMcMl+vDxn56CZpr65PNj2x8inSLP0ZnT/T6Dim41ecePAT8EnxEQmf7aylqtFHusvG7OE5RseJCEfbh59Lk+IjFnzeFobX6e3RUyYn1iKIr0vtlcdU359pws0Kv0qGyT7tTRYnfqRYVXKow+MNGB3FMHu2r+eHlhdptTtx9rnL6Dim42/b8TjgNeewZ7zZuvRFChU3J42djNNm/tUGneF063ODXEoQNRyOi1UU8Wzz0v8ygVb205sR0880Ok5UOew2Gmy98YdUGv0hMlIcRkc6hBQf3ZTbsIbPXbewq6EfYO4e/9FyYNtnDADKHYMZLpNND/OFfRxWXz25HL0bsOgcX2szl+6+l285vWzs/z+j40RMe/EB4PO14EmRXbKjae+WlYzTFHYWnE1uEhR6aS47/ma/KVusyydGNznc+tJhl5q8nQlDe/TOpg2ZIw1OYk5/Sb+djU2NPOWJ5x6c5lDy0X+YpHipog8jJ5i/wVNnHbIqqqVZio8oamgNckf1Ofw2PJV/nBqPi2e77kbLq2TadhOs6gUF5nrMMuG0m9q/sThJ3uIjva4EAEtf6Wx6JB67Xtt7g8k7LyhSLBtfBKCs4OyEOjVhtVrxa3r764DsExVVb23cRyCskpk3kOIhxUbHiYlZ6mdcZluKVltmdJTDyMhHNzk8+siHR0vO4kMNhxkQ2K7vcyCdTY/I1b6/i0m3tI4XDbX7GdXyGSiQf9K1RseJuBeVufhDKnO0+NvjKp4sWr0FgAsn9DU4Sez4rakQgmBrvdFRDiMjH93k8ujDo04lSCgYNDhN7O3ZsYEUxYdXc9CveJzRcUzploP3Uer8JoU7nzc6Slzb8sE/cChhdlgHMXDEZKPjRNxCxw38NvRNWm2yXD1aqspLebzqSp523M/5o/sYHSdmAnb9S7LqbTA4yeGk+Ogmd+qX52ZbW825cU80VW/9DIDd9sHY7OaaRW0WVouCXQmjBZO7C25PpbftYHug6AKDk0RHe4t1OT0XPWUfPo1dCdPHpVHQO3nm1YQ7io96Y4McgRQf3eR0uglrCgD+luRrjfwuM5jrv5+lg35kdBTTUm36zsdaQIqP7vpi6y4yA/sIawqD4nwH26PpbfWSRy0Br/SDiYZE2w+oK1SHXnwofvN9QZY5H92kWCz8l9PwhhROCSfOBLjOWl/ZwjatH5lDZTO5o1Ft+uaDyMhHt4TCKr94u5xy/x/4xbC9fKNvYq4amt/6fwxzbWFNxZ9hxDeMjpNwvrof0LA5yfX/r+bST+VZAub7gizFRw886LiJ6iY/ky3JM4wHoKoaJZX6i1naqh+dZtdHPpSg1+Ak8emfK3azpaqJTE8aZ1+euBvOBy16H5iwjJBFxYFPn2UwsDF1JhMTYD+grlDaig+bFB+JJcVpgyZ/0p2r3VO2mXvVP7LOPozinLOMjmNebcWHJSTFR1fV7t9D6eLHUZjJT+YOo5fJujNGUtiqr3JRA/I6ibRwKMSgqrf1f4y93NgwBthfdBFT1/VnTN9+PGl0mK+R4qMHMm1B+lCPt6UJ6GV0nJip3vwJF1s/YZTtADarTBs6GsWun3axhJNzOXZP7Pj3T/kdb3Fixk7mTk3s1UJhqz7yIXODIm/zircYzUEaSWHUrOSa7wHgTsuimixqA+b7qJdPjh5Y0PJrVrpuJrXiQ6OjxFRoz1oA6jNHGRvE5Pxp/fk0PIo91v5GR4krW1a+x9T6twAoOu27WC2KwYmiK2yVicnR8uLeXvw8+B2W5n8Lp8tjdJyYS3PpDeyafOZrB2G+ciiOBKweCEIoyToTph3cCIClYLyxQUyutvA07ljWh5NSs7nQ6DBxIhwKYXvnTgA+zzybqVNOMzhR9Km2tpEPmRsUUb5gmFc2tdAUnsNFp083Oo4hemkH+ZXtH3haLMBso+McQoqPHghZ9Upa8yfPEjlNVekXKAWgV7F0Nj0WT3uH00ByzQnqiVUvP8y08A4a8TD4qt8bHScmtLYl2cjcoIh6f3M1Tf4QfTPdTBmYPKfFvyrNGubbtrfxhs03Z0pOu/RAuO1NQw0kz8jH3p2bSKcVv2an/zDZ0+VYXNI8qkvqDuxj+KaHAdg07DZ65xYanCg2DmSM4d+hUyh3Djc6SkJRPvg/rrW+y2WjU7Ek+Km7o0lJzwLArQQIBsw190xGPnog3DahkCQqPvZvXUEhsNtexFCH7EVxLNn1G1jr/C619X2AdUbHMb3Sf/+UqbSw0zKQyZf+xOg4MVOefwa/Xz+Qy1MLucLoMAmiobaK0+pe5Gx7mF2DE7M5XWe0Fx8AzQ0HyepTYGCaQ8nIR0/Ykq/4aKgqI6wp1GWMNDqK6TmdDjKVFlJV83UXNJv1e+q5r2oSG9SB+M+4P6la9n85QqYanCRxbD1kP6BJRscxjM3uoEXT5xS1NBw0OM2hpPjoAc2RAiRXH4cn1PMY7X+SyvG3Gx3F9Owu/fXhxG9wEnNTVY1fvVbCF+pQnhr5NCOmnWl0pJjy2CCNVhQT7r8Rr9K2vQJAdYLuB9QVLYr+JdnbXGdwkkNJ8dEDjZkjeSl8EjscyXGuVtM0Nu5twIuL4kGDjI5jeo624sOlSfFxLC99voN1FfWkOm38/OwRRseJueLqd9jg+g7f3X+v0VESQmXZFkYES1A1hcGnXG90HMO1WvT3Ib8UH4njQMEcfhz8Ph+5Tzc6SkyUH2yl0RfCYbUwNDfN6Dim5/Kk6v+rBFHDMun0SBpq93PSO3P5ke2/3DFnADnpLqMjxZzVqX8ztalSpEZC+ZJnANjkGkdO34HGhjEBn1V/rw60NBic5FBSfPRAijO5VjNUr3yVlxz38LPM93DY5KVzPO3FB4BPdiw9oi3//jl51HKBYxXfnJGYG8cdj6Xt9K1dNddqhHikqSr55foOtq3DLzU4jTk8nnM303wL2Zl1gtFRDiGfID3gtllx4UdLknO1od0rmGQpZbTrgNFR4oLL/ZXio1WKj6/bvu5TJh/Qz823nHof9iRdPWVrOz1nl9NzPbZ59z62BXNo0twMn3ON0XFMIZjal/30oiFgruXGstS2B/rWrWCL61vsPDgQOMPoOFGXenADAEr+OIOTxAeL1coqbRhB1cqAJBkd6yw1HCb0xo+xKhqr0+Yw6YRzjI5kGHvbaRennHbpsZdLGngi+BMuHJXFIxnJ2Vjs69Jc+se82VqsS/HRA3aX/s3WoSX+cKmmqvT3bwOg15CpBqeJH9+x/pZ6f5D37FnHv3ISWf2/x5gS3Eyr5qTflQ8ZHcdQDresioqEsKrx+rpKAM6ZNNjgNOYxxr+GX9neIqtyBjDU6Dgd5LRLD9jd6QC4kqD42Ld7Gxm0ENCs9B8+2eg4ccPd1sOhVVqsd2ioq2HQ2gcAWD/4RnL6Judcj3Z2p/4lximnXXpkzdovcDRXkOmxM2toH6PjmMZA/xa+bXubwoMrjI5yCCk+esCVor9puJOg+KjashyActtAHC63wWnih1v2dznM/958jRStld2WQiZecbfRcQznSMvk9fAMXg/PQNM0o+PELW3JA3zivJ37cj+QCfFfYXFlAGALmqvZoZx26QGHR1/C5MaPGlaxWBP3Be+v+AKAg9LZtEvu9/2GQc6t7Cn/Iwy62Og4httS1cg9m/L5q/Z7/nTBQAY4k29p7de50nrzg+BtAFwYUjs6niaz0jVLqV3xL9C+7Pq6OXMW5Wn6flJZ/j1Mrf7vIbcZU/8RKDBw/JxYRjU9qycTAEdIio+E4UnRT7tYFI1WX3PHvxPRvmaNfVovtPzxRkeJK6m00ltpotxvrv/wjfK3pWWEVY3Ro8YyYXrytr3+qq8WG75gWIoPwPG/7zNd3XPI397Z6+LpsD53aoqyhR84Xzz0RgpUKrkMm3JarGLGBXuKPvLhDJlrxZ0UHz3g9nzZaMvb3JiwxYemadzbfD71/rN4ffoMo+PElZBF/2Yf9rcanMR44VCIbVs2AFlcO3OA0XFMw2614LBo2FUfXn+ATE/y7GtzJBWl6xig7iGoWVnV9xug6EtEi7NO4JY0fSJpus/N8urrD72hYiFn6mUolsQdge4OR0rbzraqufYgk+KjByxWK2+qM/FrFqaFjE4TPXvrvdS3BrFbFYblZxgdJ66ErFJ8tCtd8xH/U29hjWsYowcsNzqOqay2f4c0xUt5zceQNdboOIba+/mr9AO2usYw43t/7Pj7oV97hgNyeqUzXKmZAKRoUnwklF/b76C2JcA71sQc9QAoqTgAaAzNTcdpkyHhrgi37XysJdHOx0dTt/Z/AKhpBdjldXQIv+IkDS9BnxSpZVX1DNdSaB6QHNtWRJsnTe93kqK1oKmqaUaGpPjoIY/TSm1LYi+lzPjsQVY5X2G58zrgJKPjxBW1beRDC8qHSu6+jwDQihO/IV9X+RUnaBD0meu8fKw1eIP8qvZ0fqmewoenzjQ6TkLwZBdymv8BmjU3H4VUXA4pPhKCx2bFSQCvN3GX26bUbiRbaSQnK3FHd6JFtbUtSw56jQ1isH27tzJI3UVYUxgy8yKj45hOsK34CCX56bml2w4QUjUG90mnf2620XESQorLxQ4K0YBGfwiXwxwf++YogeLYI96fs9V1PZ7d7xsdJSo0VaXQVwpAlnQ27bIWT1/Wq0XUW5K71XP5ilcB2OYYSWZ2nrFhTCjQNjE5lOSnXVZv2AhonDYi1+goCcNiUUh1trdYN8/kRHOUQHEsbNFnpocTdLh0/54d5NFIULPSf8QUo+PEnZL+3+ChrVO5Kqs/ZxkdxkCussUA1Pc71eAk5hS06JvqhZN4blA4FOL27d/iu04nB/r+9/g3EJ12g+1d0m2V+KsLoY859uaSkY8eClr1CYVhf2K+aVRu1lvyltv642rbg0J0Xnt7dW/APN84Yq21uYHh3rUAFEy50NAsZiVLsmHb6vfJpJlUxcfokaONjpNQLlDf59u2twnX7DA6SgcZ+eihRF/N4C9fDUBt2ghkq6au62ivnsS72n66s4H/Bm/hFM9Orhg2weg4plTmGcueFgWHPcfoKIapX/sGAKXpM5hsT+5eJ5Hms6aCCoGWBqOjdJDio4faJxQmavHhqd0IIJ1Nu2lQ7RKWOu5l775RwGtGxzHE+6X1vKtOJX/s5aZZ5mc2S3Kv5ZXKvfwifbjRUQyTv/8j/ZehZxqaIxEFbKkQhLC33ugoHaT46CHV3nYqIgGLD03TWBYYjFdtJrNYOpt2h8sSpr/lAM3BGqOjGEJVNd7fUg3AqSOS91v98bS3VPcF1eNcMzFVlm1hoFpOSLNQPPNCo+MknJA9Dbygmqj4kK8hPaTZ9dMulmDiFR9VjT7ubz2fa0K/ZuCYE4yOE5esTr04tauJuxT7WEo3fs413n8xyVHO1KLkXvFzLPrcIA1fwG90FEOUr3gZgK3OUWT06mNwmsQTduhbgWi+RoOTfEmKjx5qSi9mUXgSFfaibt3eGwjz/5bsYH+j+T6cNuzRzw8W56TKZlfdZHOlAuDQzPf8xkLdyhe53fYyd6e9Jd1xj+HUqifY5bqGk3c+YnQUQ3h2vwdAY3/ZFC4aVGfbJqh+KT4Sxr7Cs/le8Md8kHpOt27/r892s+DtLdz18oYIJ+u53Tu2kEYrY/rKfi7dZXfpIx9ONTm/0WZXfghAaMhcg5OYm8WmT7C0hJKvGV2zP8Tvm8/m76EzKZh2idFxEpLSXnwEzFN8yJyPHvK0rWbobnt1//alTFTqWLnNT03zWLJTnZGM1yNTN/+ODa7P+UT5LWCOteHxxtG2PNlJ8hUf1XvLGBLegaopDJKupsekOPSJ65Zw8o2QfVJ6gI9DI6joPYlvDZElttFQOfAiTt9cyKiMIZilW5OMfPSQp61VrdcX6Nbt5+5dyMvOeWxwfIttb/0pktF6RFNV+nq3AZA9YKTBaeKXo+20i1NLvuJj13L9PP42+zCycwsNTmNuStvcMWsSFh/vb9YnJM8ZnouiKAanSUz2jDxKtUL2BT1GR+kgxUcP9a1dxjbnN/ldzQ+6fFs1HKZvsLzj3722/SeS0XrkwL7dZFNPSLMwYOQ0o+PELYcnnR1qPju1fDQ1uVYyOHbqXU3rCk8xOIn5KY7kLD7UcJgRmx5mhqWEU4f1NjpOwkpzSXv1hONweXAoYRzdWM1QvXcHecqX34iHh7awZ/tGCk0w9Fi5aTk5QIW1H0UpqUbHiVuuzBwmBx4EYEtYw5Uk5b6vtZlhLatBgZxJFxodx/SsbcWHLcmKj9K1S7lBe4XL7O/gHND1L3Cic3ppdfzQ+hJpzQ7MsjN5krwVRo/drX8wu7SuTxSr3rEegF2Wfqx3TQagYukzkQvXA762zqY1aSMMThLf3F9ZJdTdeUHxaMO6VQSwUUU2g0bJhoTHY3Ppcz7sSXZ67uCa1wEoTZuKw+kyOE3iyqCFH9lf4rLg60ZH6SDFRw85Pfr6aVc3JhS2VpYAcNBTRGDkpQAUVrxhiuF5V43e2TScJxNNe8JqUXDY9P/MkqnF+qtVvZnk/yvPjVgoXU07Iy2fj8Lj2GBJrg6nOfs+AkAtPsPYIAnOk6732EnVWk3x+QJSfPSYM0VfwuTWfGia1qXbWmu2AuDPGsqIU66iVXPST6ukdO3SiOfsiubGOgZ71wGQOUS+tfbUc7b/4yPHjwgd2G50lJjQNI0PtlQTwsaEcZOMjhMXwrljuT74Mx6y3mB0lJipqtjB4PBOVE1h8MyLjY6T0FLSswCwKhqtzebY30WKjx5yefTiw66ECQS6dr42rXmnftu84aSkZbIpQz8Xd3D5PyMbsov+u76WnwZu5D3byQydKJMFe6of1Qy07CfYao7/6KNt855a9jV4cdktzBgskwg7w52E7dV3t6+Gcowgq0++wWkSm9uTRlDTX2MtjXUGp9FJ8dFDnpS0jt99LU2dvp2madwXvIpfB68jo/hEAOwTrmStOph3anIIho15EwqrGk8uK+cddSpVpy3EYpWulD3lV/TeLUFf4rXgP5KG9/7AJ84fclfO59IZt5O+LD7Msxoh2pxl+mqoelkNFXWKxUKzok9qbm06aHAanax26SG7w8nH6lh8mo3R/iCd7QV6oNnPR74hWJQh/KJoKACjTr6EaZ9kUtsSYNb2Gk4ZFvuNuBaVVFFx0EuWx84lE6U3QyQELS4IQyhJio9eez+gUKlhRH7a8a8sAEgJ1lLi/BY2wmhaTcL3u2j1+cls3Q0K5E6RBnSx0Kp4yNKa8DXJyEfCuNX6K74b/Akt1vRO32b7/mYA+vfydHw7tFktnDeuAIBX1+yNfNBOyHzj29xsfY0bJvfG7ZBvrZEQtOiz+JNh5KOmqoLioN6crkjO43eaw+kmRfHjVEIEA91rWBhPPt1Zz2z/g1zneIiBw2VeUCx4LfrKTH9LvbFB2kjxEQEp3WixXl/6KRdZPmZm1qHzAC4YX0A6zWRseo6WpvpIxjyuLSvfY4b/U263vcRVE2VnyUgJWvTTLqo/8YuPnctfxaJolFqH0KdgoNFx4obLk9Lxu8/bbGCS2Phgy35AYeCoabIaKkb+X687Od3/ABVp442OAkjxERHtIwQt/s4XH723v8LDjsc4X33/kL+P75fJq+7fcq/lcTZ/+O+I5jye1iWPArA2ay7Zef1jeuxEFrLqPRzUQKvBSaLPtv1dAGoK5Dx+VzgcLsKafqol0JrYxYemqny4aR8Ac0bkGpwmeTSkDaFUK6Q+5DA6CtDF4uOxxx5j7NixpKenk56ezowZM3j77bc7Ltc0jXnz5lFQUIDb7Wb27NmUlJREPLTZPOj7NVud1+HZvbjTt0lt2gGANefQdf2KorC/35kAODb9N3Ihj6OybAvjmj4GoM/cO2J23GTQ5MihTM3Fq5njP/po8ftaGda8EoA+E883OE18USwW/OivD3+Cn57bvn4Zbwa/zXzn00wr6mV0nKSR5rID5mmx3qXio7CwkPvuu49Vq1axatUq5syZwwUXXNBRYDzwwAM89NBDLFy4kJUrV5KXl8fpp59OU1PnV4HEI7ui4lSCBL2df9PIC+wGIHPAmMMu63fydQCM8q6mpqoiMiGPo+LtP2BVNNa7JlE00iz7HiaGNwrv4JTAw2zMPtPoKFG19bN3SVF8HCCLQWNPMDpO3PG1rYry+xJ75KPmi9forTQxIrVFVkPF0JjQBn5ofYk++z40OgrQxeLjvPPO4+yzz2bo0KEMHTqU3/3ud6SmprJixQo0TeORRx7h7rvv5uKLL2b06NE888wztLa28txzz0UrvykErfoSJs3fuTeNhtoqeqPP9SgYMvawywuHjGarbRhWRWP7B9Fvt95QV8OY/XrbXWXGrVE/XrL5chllYnc4/bjKxtOhuazPOV+WaHeDH734CPkS+/RcdqX+4RcaLF1NY2mYdw0/sr9Ev5qPjY4C9GDORzgc5vnnn6elpYUZM2ZQVlZGVVUVc+fO7biO0+lk1qxZLFu27Kj34/f7aWxsPOQn3oTbzumHOzmhcN92vXtoFX1IScs84nXqBuvLz3rvfLXH+Y5n8/8exaP4KbMMYPRJF0b9eMnG7dBXtCfy3i6apvHvXSnMC12POvtuo+PEpRL7SJaGx9CqJu7puQOVuykOlQJQNFOW2MaS4tJXY1qD5hhZ63LxsWHDBlJTU3E6ndx000288sorjBw5kqqqKgBycw+dQJSbm9tx2ZEsWLCAjIyMjp9+/fp1NZLhwra2kY9A557Uxgr9NFW1a+BRr1M855uENAvFoVIqtq3tacSjCoZVFlYU8VL4JKrH3igzz6Ng0sE3edNxFzMrHjc6StSUVjezp86Lw2bhhCHS1bQ7Hkn/KdcG76IudYjRUaKmrL2rqW2oTGqPMYs7EwB70BzTILr8STNs2DDWrl3LihUr+P73v891113Hpk2bOi7/enMcTdOO2TDnrrvuoqGhoeOnoiI2cxwiSbPrxQedXM2gVm8BoDVj8FGv0zu3kBLPZMKaQsnn7x/1ej311oZ9fNKUywLn7Yw/96aoHSeZpWmNjLLsJt1nTO+WWNi87E2mKZs5cVAmHof0LuyO9tNzibwBoX3HIgBq+84xOEnysXn0FpiOkDlGPrr8LuFwOBgyRK/MJ0+ezMqVK3n00Uf52c9+BkBVVRX5+V/26a+urj5sNOSrnE4nTqezqzFMRW0rPpRg5067/Mt+EX8NDOCK4mNv2lYz89dMf7Mcd2UBZxyniOsOTdP428f6/jLXzRiA0ybn6aNBaXt9WENd2/snngzd9EdecJawIvWXwAyj48QlV4LPDfJ5WxjWshoUyJkkq6Fize7RN5dzhc1RfPR4jF3TNPx+P0VFReTl5bF48ZfLTQOBAEuWLGHmzJk9PYyptaYOZIU6gmpr5zZHWl3j4CN1PDnFx+7sN2PaDFocvSk/2MoX5fURSHqoTSve4dr9v2eMfS/XTB8Q8fsXOsWhN5Cyhr0GJ4mOupoqhgb00c+B0y80Nkwcu6nuIdY7v0PBzheNjhIVK7fv4+/hM/lMGceg0VKgxpozNRMAt2qOpdxdGvn4xS9+wVlnnUW/fv1oamri+eef56OPPuKdd95BURRuv/125s+fT3FxMcXFxcyfPx+Px8PVV18drfymsKv/xfxm/XDOSy/gePV8sz9EZYP+DXhIn2PvfeFx2DhjVB6vrNnLW6u3M2lAZJfABj9+lMttyxnQO4teKd+L6H2LL1mdevFhVxNz5GPHsleYrGjstAxkUP9io+PELacSIl1phU6umos3i3b4+EfoCq6e1J9pMrcs5txtixtStDgsPvbv3883v/lN9u3bR0ZGBmPHjuWdd97h9NNPB+DOO+/E6/Vy8803U1dXx7Rp01i0aBFpaYm9wVR7e3Vv4PjNWypKN3C77b/sdg4jw3POca9/+XA7l278HcPX7yF4bil2R2ROUVWUrmN863IACs74UUTuUxyZzaWvhkrU4oNSvatpdf5sBhkcJZ6pNn0PIC2YeEttNU3j/c37AThtROw3zBTg7jOQS/z30KSk8I6qYbEYu3lhl4qPJ5988piXK4rCvHnzmDdvXk8yxZ2utFdv3v4pt9teZqNtPPDz415/yshi6q176U0D6z55hXFzruxhWl3lOw/RD1jrmcH4oeMjcp/iyBJ55CMY8DO08TNQIHOCnMfvCa2t+CCYeK+THaWbGNH0Ka32scwcnG10nKSUlprKam0YaNDkD5HhthuaR8a+IqCw7jNWOW/i7gM/Pu51Q/s3A9CS1rnviDa7g+05eu+U0JoXuh/yK+oO7GNszVsAOE68LSL3KY7O5k7ngJZOPYk3Arh15SLSlVYOkk7x+FlGx4lratuSfSWUeHODapb9iycdD/L3tMelq6lBnDYrDpv+kd/kCxqcRoqPiHDabWQrjaSGG457XXeDvqcLfYYf+4pf0XvGNwEY2fgJzY113cr4VVveeAS3EmC7dTAjpp/V4/sTx1EwgSn+v/Idy71GJ4m4uo3vAbAj8wSsNlli2yN2feQjEYuPzD0fABAqkiW2RvqmYwk/sL6Mt9b4lhZSfESA3ZUKgLMTw+rZ3jIAUgtHd/r+h4w7kXKlL24lwOYPetaq3u9rpXj38wDUj5emYrHQ0b8hATuc3tN4Aef5f4tvys1GR4l/bUuyLQlWfNTu38PQoN7baODMSwxOk9yu117jDvt/CR7YaXQUKT4iwZmit611ceziw9faTIGqT7rKHXz4ni5Ho1gs7O1/nn6MzT3b6faNtRU8EzyNTcpgxp1xfY/uS3RO+5yg1mAYTdMMThM5W6ua2FnrZYtlMOMnydLJngqm5POFOoT9nVyyHy92fPwiFkVju3UwOX2LjI6T1LxW/YtyoKXe2CBI8RERDrd+Lt+tHbv42LtjIxZFo55Ueuf07dIx+s+6HoCRvjXUVO7uVk5N03h8+X7+FL6Yj2e9GLGVM+LY3Ph5wXEvr9nvxp9Am4a9umYPALOH5XRs1y26r6r/OVwcuJeX0r5hdJSIStmmt1Q/MOD4q/tEdPmt+uT3UGu9sUHoRodTcTh3+8iHEiQcCh313Hfd7vUA7LMPILOLpzv6DhrBG+4L+Kgxj9Hbmrm+oOs5Py6tYev+JlIcVq6cJk3FYsXldDHNog87N7Q243KnGJyo59RwmEs+v4IBtiKyR/zO6DgJwZWA7dWryksZFdgAQNEp1xmcRgTtaeCHsAmKDxn5iAB3yperGFpbjr4r78f2E5jtf5DFA4+/KuZI6k6+l/+GZ/HfDQe7dfuGN37JaZbVXD65r+HLrJKJ3eEkoLW1zvYmRgOpLZ8vYoi2m3Osn3HiaBlKj4Qv93ZRDU4SOZs/fR2ATY4x5PVL3A3z4kXIrn9Wqb7jL46INik+IsDp8rBBLeIzdTg+n/+o19t2wMcuLZ+UARO7dZxzxhZgsyhs3NvI9uqu7UxYtmkl5zU+z/+zP8R3xybult1m5VP0lQyBBCk+mlf+C4DNWackxEiOGeTUr2WZ81Z+d/AnRkeJCE3TWFA1mTn+P1Ax+W6j4whAdeij9Irv6F+SY0WKjwhQLBauUu7nisCvabamH/V6pdX6B8+QnNRuHadXioPzBtv4tvUtdr6zsEu3PbDoIQDWpZ1EwcBh3Tq+6D4f+vyagNccrY17wu9rZfhBfemkZ0pib50QS06bhQLlIJlq90Y2zWbzvia27W9mj6WQ6SedZnQcAWhO/fPJEjC++JA5HxHicVhp9odoPUqL9WDAz611D7DNWkBxrxO6fZxv5JUzqeKf1OzMZMVfDl0u1WTvw7K8azr+fdK+p/CEGkDTmFi3CBTwzL6928cW3RdQnKBBwBf/xUfJkpeYSAvV9GLk9LONjpMwbE59qa1DCxicJDJeX6NPjJ8zPEdO85rEnv7nc0lpHiMzRnDsPdWjT4qPCPG0L6c8Si+Hyp0lXGj9hBaLC0+v/9ft44ycfQVNn/+SbKWe7OpDd7/cpA7gqR1fFjbXOl6nyKIv7UWBLbYRDJ98arePLbqvvfgI+RLgtMt6vdPuzryzyLFKt8pIcbSdvnJx9FO38SIcCnHNyksZa++Pe/iDRscRbZSsgazWGkgJ9zY6ihQfkXJ/4HcMcm6lsnwhDLzgsMtrd61nALDX3p+hPWjs5U5JY9NZT9Ow4e3DLmux9+aW/MEd/95VeSVVobaJRRYb/U+5odvHFT3TbM2gNpxGIHj8zQfNrOFgDaObl4MCOSfK6oVIcrj107EuLf6Lj80r3mI0VWRYm3COkYmmZpHm0j/yzdBeXYqPCEmnhT5KIxVHWcLk36fv6dKQ0vN9P0dOPxOmn3nEyw49s5p47bzj1X05D7BsRy2P9h7PJKPD9MD7myqpCJ/PVNceZoyeZnSchOJqKz4cSohQMIjNHr+nKlpX/RuAzb1OZZrLY3Aa0a63Vs/11nfo1egBun/6PxJkwmmEBK36tunhowyr2w+W6pf3HhqzTMI82pdR+uK8h8MLJS08HLqUtSf+1egoCcf5lVVDvjieG+RrbWZE3YcApMmEZFPJDNcyz/4sV/kis0lpT0jxESHhtuJD9R/5TSOrVZ8c6ioYFbNMwjzcx5kTFA/21nv5rExfiXH++G50uRPH5HR52KoWslYddMwl+2a3acl/SFO8VJHN8KlzjY4jvsKd1guAFM34Tsty2iVCQm3bYWuBw0c+wqEQhaE9oECfQWNiHU2YwOmNL3GN/QNaK64Abjc6Tresf+855loqaOl/Cn0z3UbHSTgWq5ULtD/gC6p8bE07/g1MStmgT4QvKzibPJmQbCop6VkAeBQ/wYDf0C02ZOQjQtSO4uPwinLfnh1YCePT7OT1lx4bySgvVMkM6yZSmsuNjtJtwzc9yuOOh/lhny+MjpKw4v30XEPtfka1fAZAnkxINp3UjF4dv7c0GNtPRkY+IkSzt52vDR5+2mWrN5M5/qc4KcfHk0fZ90UkNs3WNlIQNH64szt2bvyMQepuApqNYXMSa+MzM9H3dwnG7f4u724+wNbQVZyQsoc5IycbHUd8jc3uoFVz4lH8tDQdJLOPcTsoy8hHhHg9+ZSoA6hXMg+7rLS6mQB2UvJl1CNZaXZ9ZEwJeQ1O0j3VnzwDQEnqdDKy+hicJnE9Evodnzh/gHXvKqOjdMt/NjbyZPhstp/4kNFRxFE0K/oXZW9TnaE5pPiIkNKBV3NOYAGLMq84/LL9PWurLuKfYtdHPixxWHyooRCDqtr6yoy93NgwCS6bOgqVGsJe4zf+6qqKg62s3FWHosD54/oaHUccRatFLz58zcYWH3IOIELcDv3/yiO1Vz9z52+ZZvOT674LKI5xMmEGilP/D94ajr/iY9NnbzOagzSSwoiTLzU6TkILWlwQhpA//k7PbVr8NJdad1HX/wzyMlxGxxFH8Xj6D9i2v4nvpwxntIE5pPiIkJSjLKXUVJWZ3qWk2Hzs7jUv9sGEKSgO/bSLNewzOEnXta58DoAtvU5hquxgG1VBi7764GhL9s1KU1WGb/0LZ9grWNmnLyDbOJjV3vTxrKo6wMGQsQWiFB8RUli/kg8dP+NAdRHwbsff9+/dSZ7iI6hZKRgkPT6SldXhwa/ZCamK0VG6xBcIodXtBgVSJl9z/BuIHglb9Q+EcDC+Rsh2bFjOELUCv2aXCckm92WLdWO3epDiI0LcVo0iy37U4KGthA/sWEceUGktYICBa6qFseoGnsuwj/MZl5PJa0aH6YIPth7gZv/dzEir4V/TzjA6TsJrLz6OtGTfzA4s+wdDgJK0mUzMNH7TMnF0o9StZFuXkba/GSgyLIdMOI0Qm1tvCuTUDv3G0lK5CYBat3FPsjCe26nX+b4463D6ypq9AIybOA2LNIyKuvZOyfFUfIRDIYbsfwcAZdzhE+6FuUxo+Zh59mfpV/2BoTmk+IgQR1vx4dIOPadvqdkKgD9LdnZMZu3t1eOpf0N9fR2rtu4C4KIJsnohFlqcuZSqfWlR4mcztk3L3qQPddSTyqiTLzE6jjgeZyYAFn+joTHktEuEOD168eH+WvGR3rQDAHveiJhnEuaR5qvib/Y/YPE6gFOMjtMpWxc/yXLbfbySeiHD8s4xOk5SWD7gRh7ffTrf7V30tR2qzcu7Wt/Bdmvv05jmlFUuZqe40wGwBY+8CWqsSPERIa6UtuIDP5qqolgsaJpGOKgXI1n9jVzUJIzmtoQ53foFzWr87ImStu0VXEqQgYUy6hErro726qrBSTrHGwjTVH8AFYX0qTIhOR5Y3RkAOEJNhuaQ4iNCXG0jHxZFw+ttwZ2SRm1LgHN8v8Wj+PhimLQaTmZOj95gzvWV4tTMKndtZWRwI6qmMGiO7NERK+17u8TL6bn3Nu/nNv8djM9s5eXJ8TJWk9xsKfrmcs6wsSMf5n4HjCPulHR2qzlsVvvh9eqTTts7m/bp1QuX02FkPGEwR1txalNUgsGAwWmOr/wjvZ36Juc4cvsOMjhN8hhRu5h3HXdyzt5HjI7SKa+2TUg+YcIYLFb5OIkHjpRMAFxhY3vJyMhHhFitVs7Q/qhvh21JpRewvVof1hrSR9qqJzu3+8vXgLe1CYeJz41rqkp++esAeIdfbHCa5OLByzDLHrz+fkZHOa6DB2sp2VYKZHDheDk1Fy9cqfrIh0eT4iNheBw2fMFAR5fT/msf4gXHZ+yxXwdMMTacMJTD6SSoWbErYfytzWDizdmkYZRxLG2dcG2q+ZuMlS5+gk/tC3jDdS7FuTIhOV64cgbzrcBPabGk8aKBOaT4iCCPw8rBFmhp298lu24toyxbsKTEx/lbEV0+HNjx4vcae671eNobRm1Mm8kkaRgVU1Zne/HhNzjJ8WVsfwWropHbX/ariieZmZkMOeFi0lx2VFXDYjGm67IUHxH0u9AfKHTspGXPI9D/THIDuwHI6D/G2GDCFPyKE7fmJ+AzbwOpsKrxu9pTmBmE0yedZXScpGNtG/mwm7z42LtzM8ODmwlrCoNPkQnJ8cTjsHH3OSONjiETTiMpT6thsGUf4eYaGmuryaYegIIh44wNJkzhMveTDPH/k/q0oUZHOarlO2rZ2JzKC46LGXfSeUbHSTo2l75xn1019waE5UueBmCTazx9CgYamkXEJyk+IijY1ho57G+hcsdaAPbTm9T0LANTCbNwOPQVTz4TL6N8da2+euGcsfk4bPL2EGv2tuLDqZl35ENTVfpW/A8A34hLDU4j4pW8u0RQ0KoPmYb9LTRWlACw3zXQwETCTDparJt0fxdvSzNnbbyDiywfc+HYXKPjJCWHJ519Wi8OkGl0lKPavv5T+qt78Wl2hp9ytdFxRJySOR8R1LEplL8ZrVH/BtmaLnu6CN2Vvhf5vn0j7srbYOSFRsc5TMlHL3CqsoqRjt3kDvyd0XGSkiW7mBn+hThtFrYaHeYoapf9k2KgJP1EJmX0MjqOiFNSfESQatdHPrRACzVeqNKyUHKGG5xKmMWI0GbGWVexsnG30VGOyLX+WQB2FZxNvuxga4j20TF/SDV0JcKx/F/jOYwLpnLxFOloKrpPTrtEkGpr24ky0Mp9gSuY7v8zlkkyE1zowla9sZhqwu3Sd2xYwWj/WsKawsAzbjE6TtJqb68OegFiNvsbfWyut/KiOoeR0043Oo6IYzLyEUEBVzYVah/qww721utNgobkpBmcSphFx2k5ExYfB997iMHA2rRZTBowzOg4Sctls/Cy49e4CeBrnIw721xzb77YXQfA0Nw0Up3y8SG6T149EbRx0A1cu+0EhvtTgWayUx1kpcieLkKn2vSRDy1oru6VByp3Ma7+PVAgbc6PjI6T1KxWC6OU3TiVIFWtjYC5io/AF8/xXet2XHmyDFv0jBQfEeRpGzIdVfMWTztfYKVzDiBDk0Kntc0JUoLmGvnY/sbDzFDCbLaPZMTE2UbHSXp+xYGTIH6vsXtvHMmwPf/lAvsmVrpGGx1FxDkpPiLI0zYMOUTZS55SR45bMziRMJOO4iNknpGP1kCIf1bmY1OHYp18s9FxBODDSTotBH3mKj78vlaKAqWgQN7oWUbHEXFOio8I6tewitcc9zLOslP/Q7Z5O1kKA7QVHxYTFR//Xb2HN31j2Nh7Gh+cJh8oZhBQnKBByGTFR9nG5QxXgtSRTuEg49tzi/gmq10iyKMEvyw8gJTCUQamEWZTWvQNhvme5uk+PzU6CqDv4/L3T8oAuOGEIqxWeTswg4DiBCDoN1fxUb/1UwB2e0ahWOS1InpGXkERZHOlHvLvvMHjjQkiTMnpcuPHgS9ojiWUaz58ibPrn6Ofy8ulkwqNjiPaBC168RHym2tukGPfKgC8uRMNTiISgZx2iSCn+8vio5EUeufKG7r4kqttQrLXJHu7eFY8zJ32jZxY4CHFKXt0mEWzNYv9wUzM1oW/b/NGANKLTzQ4iUgEMvIRQXZPesfvlfYBMjQpDpHTWspD9r9wycEnjI7Cti+WMDK4kYBmpfhcWV5rJgvzfsM0/1/Y3ftko6N0qKosJ0urJ6RZKBp7gtFxRAKQT8cIcqV8OfJRnT7WwCTCjFJDDVxs/YSJ/pVGR6Hpw0cAWJd5mmyJbjIdGxCaZIQMYFWNjTH+J/lR5iN4UjOMjiMSgBQfEeTyfPkf5faxdxiYRJiR3aWvdrFrPkNzVJWXMq7xIwCyTpNRD7Mx2+k5gC921+PHQdagSUZHEQlCio8IcqekcVBLZY+WTXFvmU4jDmV3pQDg1PyG5tj15oPYFJWNzvEMGTPD0CzicHPqX+Y/jnkMqfiP0VE6rC7X26pP7J9lcBKRKOQTMoIcThenWJ6i0Rdkeb++RscRJuNw68WHC+NGPpoaDjKq6lVQIDxNNpAzo+zwfqZYtrG8ZY/RUQDweVv4zf5bWWsbzMSCx42OIxKEFB8R9tg1E2n0hcjLcBkdRZiMs21CsksLGJbh9ZWluNTJjLPvYcysSwzLIY5Os+kbEJqlE+6u9Z8y1rKTAstBevfJNDqOSBBSfETYzCHZRkcQJtW+FNuuhAkG/NgdzpgePxRW+cuqFvYGv89954xgiNV6/BuJmFNM1gm3vlRvLlbhGUW2rOATESKvJCFixOVJ6fjd29oc8+O/vbGKvfVeeqc4uHDSgJgfX3SSXR81tYSMnZjcztnWXMyXP9ngJCKRyMiHEDHicLiY7P8rzZqTpYqH9OPfJGI0VaXx3d8xVBnDWdPndKyoEOajOPSRD2vY+OJDU1X6tejNxTKKpb+HiBwpPoSIEcViwWvPwhcI4w3FtsX6lpXvcU3rP7nEYadlwqaYHlt0jaW9+FCNLz72lZdSQD1BzcogaS4mIkhOuwgRQ0Y1kPItfRSA9b3OoHd2TkyPLbrG6kylWXMR0IwfnarcuASAMvtgXJ7U41xbiM7rUvGxYMECpkyZQlpaGjk5OVx44YVs3br1kOtomsa8efMoKCjA7XYze/ZsSkpKIhpaiHh1Cy/ye9tfUQ+UxuyYe3aUMK5ZnzSYO1ea35ldQ9GZjPb/nXmpvzY6CuXV9VSofTiYNd7oKCLBdKn4WLJkCbfccgsrVqxg8eLFhEIh5s6dS0vLl1s/P/DAAzz00EMsXLiQlStXkpeXx+mnn05TU1PEwwsRb05RV3CZbSlqw96YHXPv2w9iUTTWuaYwYIR0qDQ7l61tdMwEO8s91TKTkwKPcmDmL42OIhJMl+Z8vPPOO4f8+6mnniInJ4fVq1dz8skno2kajzzyCHfffTcXX3wxAM888wy5ubk899xz3HjjjZFLLkQcClhcoMZuu/SGg9WMOfAGKGA54baYHFP0TPupOV8wtvOCvq41EGLTvkYAJhbJqToRWT2a89HQ0ABAr169ACgrK6Oqqoq5c+d2XMfpdDJr1iyWLVt2xPvw+/00NjYe8iNEogpa9GWUYX/Lca4ZGZv+9ygexc9Oy0BGn3BeTI4peibNV8XT9vuZ7/udoTk27K5GVcPkpjspkKaJIsK6XXxomsYdd9zBiSeeyOjRowGoqqoCIDc395Dr5ubmdlz2dQsWLCAjI6Pjp1+/ft2NJITphaz6m7gag+IjEFL5pNzHAS2d2rHfQ5EGUXHBZdWYbV3HFG2DoTnU5X9hrfN7/CL1TRRFMTSLSDzdfje69dZbWb9+Pf/+978Pu+zrL1RN04764r3rrrtoaGjo+KmoqOhuJCFML9xefASif9rljfWV/LllDhfZ/x/jzvpO1I8nIsPZsQdQAE017tSLq2o1GUorub0yDcsgEle3+nzcdtttvP766yxdupTCwsKOv+fl5QH6CEh+fn7H36urqw8bDWnndDpxOmPbZloIo4St+r4dWpSLD03TeOLjMgCuOmEoDvlvLG60b0BoUTR8fh8utyfmGTRVZUCr3lwsc5j09xCR16WRD03TuPXWW3n55Zf54IMPKCoqOuTyoqIi8vLyWLx4ccffAoEAS5YsYebMmZFJLEQcU9s2DdOC0d23Y/kTP2J89Su47VaumdY/qscSkeX+Sj8Nvzc2c4O+bm/ZZnrRSECzUTRG3rtF5HVp5OOWW27hueee47XXXiMtLa1jHkdGRgZutxtFUbj99tuZP38+xcXFFBcXM3/+fDweD1dffXVUHoAQ8eTjfjdxy94zuCJ3BDOidIzPnl/AzL1PMdMOs086k0yPI0pHEtFgdzgJalbsShi/txnoE/MM+zYuoRDYaS9muCv2Iy8i8XWp+HjssccAmD179iF/f+qpp7j++usBuPPOO/F6vdx8883U1dUxbdo0Fi1aRFpaWkQCCxHPFE8vajhIc8gelfv/4p2nmbL5flBg+YCbmHvq3OPfSJiODwd2vG3FR+yp5Z8BUN97vCHHF4mvS8WHpmnHvY6iKMybN4958+Z1N5MQCat9Q7dotFfftPxtRi3/CRZF47PeFzL9ugURP4aIDb/ixKaFCfiie3ruaLLr1wPgGDjNkOOLxCcbywkRQwNb1zPP9m9cB0YD4yJ2v2WbVlL47g04lSBrPCcw+ftPytLaOHaR++9U1Pl4Ob045sdu9gV5wz+eyYqb4rGzY358kRyk+BAihvr4dnOObRFrI7jdwL6qSlJevJx0WtlsH8mIW1/EapP/tOOZ26E/fz4DWqyv39PAw6FLKchwsaxv0fFvIEQ3yFcjIWKofbt0Wzgyw+kNrUGu/dc2ng6ezm5LPwpuelV2H00A0Tw9dzxflNcBMHFAVsyPLZKHFB9CxJDVqfdwsIX9Pb4vXzDMd59dRemBFl5KuRzbzUvJ6H3kfjoivnzT9xx/tz+Ap3J5zI99cNtysmhkYn8pPkT0SPEhRAzZnPrIh13z9eh+wqEQbz92JyW79pLmtPHMDVPpm90rEhGFCQwLbWOOdS22pj0xPa6mqvyg6i7WuG7ihNTKmB5bJBc5MSxEDNld+siHQ+3+yIemqqz663e56ODL9HcsJfDNtxielx6piMIEwla9I204ENvVLhXb19OfZnyanaIRk2J6bJFcZORDiBiyufT5GM4ejHys+McvmVbzMqqmwPSbmDEk9k2oRHS17wFEDPYA+qqqko8BKHMMxeGUnWxF9EjxIUQMOTo2DeveyMfKVxcyo+zPAHw+7CdMOvvbEcsmzOPLNvyxLT60is8BaJDmYiLK5LSLEDFk613ELP9DhC0uPunibdd/+F8mrPkVKLAi7xqmX/3LqGQUxmsvPojyHkBfl1O/DgBHkeznIqJLig8hYsjtcrNby4MwhMIqNmvnBh9L137MkI9uxqaorEo/janf/VOUkwpD2fRTHkqoZxOTu6KxvpYB4XJQoN+4k2N2XJGc5LSLEDHkdlg7fveF1E7dJhBSeeLdldSTwgbnRMbe8i8sVuvxbyjilmZv28wtAkuyO2v3+qVYFI1KJZc+ebITsoguGfkQIoacNgs/sb1ICl58jVNI7ZNz3Ns8vayMF+qG8annUd686USZCJgESopu4JqtJ3J+n0Kmx+iYy5vzeDb4PSb2S+eqGB1TJC8pPoSIIUVRuMH6Nh7Fz96mWjhO8bG/0cej75UC8IOzJ5CRJb08koHT5ULFgi/YudGxSPikysrS8GxGjx0Vs2OK5CWnXYSIMZ+i93AI+I6/XfqWv3+fc8LvMbFfOpdOLIx2NGES7hi3V1dVjTXtbdWls6mIARn5ECLG/OjFR9DXcszrlSx7i1n1L3OSTWHHyZdjsSixiCdMILephD/Z/0iodgAwNerH271zK5cE32C9fSTD89OifjwhpPgQIsYCFheoEPQefeQjGPDjee/nAKzMvoBpY6L/ASTMIy1cx0nWFWzzH4zJ8Q6se4d59mcpcYzFbv1+TI4pkpucdhEixgIWfcJo2H/0kY/V/32AInU3daQx/OoHYhVNmET7HkAONUZLbffozcUasyfE5ngi6UnxIUSMBduKj5D/yN0ra6rKGbVV72JaOvoO2ak2Cdna9wDSYrPUNrdhPQCuQTNicjwhpPgQIsZCxxn5KPv3T0hTvGyzDWXSRT+MZTRhEnZn7IqPhoPVDFArABgwVpqLidiQ4kOIGHsh53bm+P/A9uw5h122Yf0aJtUv0jeNO/v3WKWZWFJq3wPIGYPiY9e6pQBUKAX0yukb9eMJATLhVIiYa00pZKem0Kwe2iwsFFa588NmnIH/43sDKjl74mxjAgrDOd367scuAlE/lnfHMgCq0sfQL+pHE0InxYcQMeY6Sg+H5z4vZ/O+RtJdw5n2jZuMiCZMor34sCthggE/doczasdKObAGgHDfKVE7hhBfJ8WHEDE20vcFd9g+IL/6JKAYgIPVlbzw7hIgm5+eMYzeqdH7sBHm50zNYozvCXw4WB1WsEfpOGFV41veHzIkVMq9Ey+M0lGEOJzM+RAixoa0rOEHtlfpf3B5x9+2//snvKzdwY96LePqaQMMTCfMwGm30qx4CGKLaov1DXsbqAnY2WAbw+BBQ6J2HCG+TkY+hIgxpW3HUiXkBWDLqg+YWvcmKHDG7NlYpZNp0lMUBbfdSmsgHJXio6WpnvUv/oYNuw8AVzB5YC953YmYkuJDiFhzuAGwhHyEQyGsb/8UgJUZZzJl6ulGJhMm8gvrP0m11xI8OBh6D4/IfYZDIVa/tpBBGx5mBvVMVqx8UXgRd10gm8mJ2JLiQ4gYUxz6Mkpb2MuqVx5lWng7jZqHoqv+YHAyYSanaSvIsx5ga9N+oOfFx4alr5Dy0TymqrsA2KPkUT39Lh6bewGKRc7Ai9iS4kOIGLM49NMuqf79DCx5CIBNw25lep4sdBRf8lucoELoOBsQHk/Z9s00/fc2xvpWAtBICpuKb2LCJT+h0OWJRFQhukyKDyFizNrWvXJIeAcAZZaBTL7sp0ZGEiYUVPQVT6Fj7AF0LDXNfh5evI3FKzfyvn0jQayszr2E4Zf/hunZeZGMKkSXSfEhRIy1bxoG4NUceE+/D5vdYWAiYUZBiwvCx96A8Eh8rc0s/d/T3LGpmGZ/CEjnn3k/59zTT2X6kDHRCStEF0nxIUSMBfMncZ7/tzTiYebowSyYMdvoSMKEglYXBCF8lA0Iv04Nh/nizb9R+MXvmUsNE4I/p6HwJO4+ewTTBp0T5bRCdI0UH0LEWFavbDZog0hxWLn9vOlGxxEmFbbop13UgPe419204h3s7/2SyaFSAKrI5uaTBzBt7glYZAmtMCEpPoSIsUF9Ull49QQG9EohN911/BuIpBS26kuyteDRRz4qtm+g5pWfM6HlEwCaNTcbBt3AhMt+wQxPakxyCtEdUnwIYYBzxxYYHUGY3P8K7+Dba67gptyxfH18rL41wKPvbeOa1ZczQakkrCmsyr6AwZf9lhmyakrEASk+hBDCjFyZNNBAS+jLHhx+Xyv//GwPj35YRqMvRJXlMm5KX0bGBfcxbcRkA8MK0TVSfAghhAm5HF/ufqypKmvefYbczxdQFjibxvDpDM9L4+qzb2Xc0HsNTipE10nxIYQQJjS8+XN+Z3uNlC3ZbFm3gYnBTQBca/+AMRf8iEsn95f9WETckuJDCCFMKM+3gxm296FZ/7dXc7C2/7WMvfxXDE3LNDSbED0lxYcQQpiQNTUbAFVTWJ11JgMuW8CMvkUGpxIiMqT4EEIIExoz91t85m8he+QspoydaXQcISJKig8hhDAhd0oa0668y+gYQkSF7KMshBBCiJiS4kMIIYQQMSXFhxBCCCFiSooPIYQQQsSUFB9CCCGEiCkpPoQQQggRU1J8CCGEECKmpPgQQgghRExJ8SGEEEKImJLiQwghhBAxJcWHEEIIIWJKig8hhBBCxJQUH0IIIYSIKdPtaqtpGgCNjY0GJxFCCCFEZ7V/brd/jh+L6YqPpqYmAPr162dwEiGEEEJ0VVNTExkZGce8jqJ1pkSJIVVVqaysJC0tDUVRInrfjY2N9OvXj4qKCtLT0yN632aXrI89WR83yGNPxseerI8bkvexm+lxa5pGU1MTBQUFWCzHntVhupEPi8VCYWFhVI+Rnp5u+JNklGR97Mn6uEEeezI+9mR93JC8j90sj/t4Ix7tZMKpEEIIIWJKig8hhBBCxFRSFR9Op5N77rkHp9NpdJSYS9bHnqyPG+SxJ+NjT9bHDcn72OP1cZtuwqkQQgghEltSjXwIIYQQwnhSfAghhBAipqT4EEIIIURMSfEhhBBCiJhKmuLjL3/5C0VFRbhcLiZNmsTHH39sdKSomzdvHoqiHPKTl5dndKyoWLp0Keeddx4FBQUoisKrr756yOWapjFv3jwKCgpwu93Mnj2bkpISY8JG2PEe+/XXX3/Y62D69OnGhI2gBQsWMGXKFNLS0sjJyeHCCy9k69ath1wnEZ/3zjzuRH3OH3vsMcaOHdvRUGvGjBm8/fbbHZcn4vPd7niPPd6e86QoPl544QVuv/127r77btasWcNJJ53EWWedRXl5udHRom7UqFHs27ev42fDhg1GR4qKlpYWxo0bx8KFC494+QMPPMBDDz3EwoULWblyJXl5eZx++ukdewnFs+M9doAzzzzzkNfBW2+9FcOE0bFkyRJuueUWVqxYweLFiwmFQsydO5eWlpaO6yTi896Zxw2J+ZwXFhZy3333sWrVKlatWsWcOXO44IILOgqMRHy+2x3vsUOcPedaEpg6dap20003HfK34cOHaz//+c8NShQb99xzjzZu3DijY8QcoL3yyisd/1ZVVcvLy9Puu+++jr/5fD4tIyND++tf/2pAwuj5+mPXNE277rrrtAsuuMCQPLFUXV2tAdqSJUs0TUue5/3rj1vTkuc51zRNy8rK0p544omkeb6/qv2xa1r8PecJP/IRCARYvXo1c+fOPeTvc+fOZdmyZQalip3S0lIKCgooKiriyiuvZOfOnUZHirmysjKqqqoOeQ04nU5mzZqVFK8BgI8++oicnByGDh3Kd7/7Xaqrq42OFHENDQ0A9OrVC0ie5/3rj7tdoj/n4XCY559/npaWFmbMmJE0zzcc/tjbxdNzbrqN5SKtpqaGcDhMbm7uIX/Pzc2lqqrKoFSxMW3aNJ599lmGDh3K/v37+e1vf8vMmTMpKSmhd+/eRseLmfbn+Uivgd27dxsRKabOOussLrvsMgYMGEBZWRm/+tWvmDNnDqtXr467rohHo2kad9xxByeeeCKjR48GkuN5P9LjhsR+zjds2MCMGTPw+XykpqbyyiuvMHLkyI4CI5Gf76M9doi/5zzhi492iqIc8m9N0w77W6I566yzOn4fM2YMM2bMYPDgwTzzzDPccccdBiYzRjK+BgCuuOKKjt9Hjx7N5MmTGTBgAG+++SYXX3yxgcki59Zbb2X9+vV88sknh12WyM/70R53Ij/nw4YNY+3atdTX1/PSSy9x3XXXsWTJko7LE/n5PtpjHzlyZNw95wl/2iU7Oxur1XrYKEd1dfVhFXKiS0lJYcyYMZSWlhodJabaV/jIa0CXn5/PgAEDEuZ1cNttt/H666/z4YcfUlhY2PH3RH/ej/a4jySRnnOHw8GQIUOYPHkyCxYsYNy4cTz66KMJ/3zD0R/7kZj9OU/44sPhcDBp0iQWL158yN8XL17MzJkzDUplDL/fz+bNm8nPzzc6SkwVFRWRl5d3yGsgEAiwZMmSpHsNANTW1lJRURH3rwNN07j11lt5+eWX+eCDDygqKjrk8kR93o/3uI8kUZ7zI9E0Db/fn7DP97G0P/YjMf1zbtRM11h6/vnnNbvdrj355JPapk2btNtvv11LSUnRdu3aZXS0qPrxj3+sffTRR9rOnTu1FStWaOeee66WlpaWkI+7qalJW7NmjbZmzRoN0B566CFtzZo12u7duzVN07T77rtPy8jI0F5++WVtw4YN2lVXXaXl5+drjY2NBifvuWM99qamJu3HP/6xtmzZMq2srEz78MMPtRkzZmh9+/aN+8f+/e9/X8vIyNA++ugjbd++fR0/ra2tHddJxOf9eI87kZ/zu+66S1u6dKlWVlamrV+/XvvFL36hWSwWbdGiRZqmJebz3e5Yjz0en/OkKD40TdP+/Oc/awMGDNAcDoc2ceLEQ5alJaorrrhCy8/P1+x2u1ZQUKBdfPHFWklJidGxouLDDz/UgMN+rrvuOk3T9GWX99xzj5aXl6c5nU7t5JNP1jZs2GBs6Ag51mNvbW3V5s6dq/Xp00ez2+1a//79teuuu04rLy83OnaPHekxA9pTTz3VcZ1EfN6P97gT+Tm/4YYbOt7H+/Tpo5166qkdhYemJebz3e5Yjz0en3NF0zQtduMsQgghhEh2CT/nQwghhBDmIsWHEEIIIWJKig8hhBBCxJQUH0IIIYSIKSk+hBBCCBFTUnwIIYQQIqak+BBCCCFETEnxIYQQQoiYkuJDCCGEEDElxYcQQgghYkqKDyGEEELElBQfQgghhIip/w/6cKbBXNGGygAAAABJRU5ErkJggg==", + "text/plain": [ + "<Figure size 640x480 with 1 Axes>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(df_track['lon'])\n", + "plt.plot(df_track_orig['lon'],ls='--')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Compare variables" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "keys = list(df_track.keys()[6:])" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "['dpsfc_dt', 'dfi_dt', 'EP', 'ITT', 'Eq1res', 'TADV', 'VMT', 'DIABres']" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "keys" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "keys_orig = list(df_track_orig.keys()[6:-5])" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [], + "source": [ + "keys_orig.append(df_track_orig.keys()[-3])" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAisAAAGxCAYAAACju/aQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAACBUUlEQVR4nO3dd3hUZdrH8e+ZnjrpBRISeheQoqDSFFZfde1dV13Luop1113dJrsW7F1sa1srumIFFaSKdJDeS0ggvc2kTj3vHyeJskBImcmZSe7Pdc21ZObMOXdmx8w95zzP71FUVVURQgghhAhRBr0LEEIIIYRojjQrQgghhAhp0qwIIYQQIqRJsyKEEEKIkCbNihBCCCFCmjQrQgghhAhp0qwIIYQQIqRJsyKEEEKIkCbNihBCCCFCmjQrQohWmz59OoqiBG3/L7zwAn369MFisaAoCpWVlUE7FsDixYtRFIXFixc33ffBBx/w7LPPBvW4QoiWkWZFCBFSNmzYwB133MGkSZNYuHAhK1asICYmpsPrkGZFiNBh0rsAIYT4pa1btwJw0003MWbMGJ2rEUKEAjmzIoRo1pw5cxg+fDhWq5WePXvy5JNPHrGNoihMmzaNV199lX79+mG1Whk0aBAfffTRYdvV1tbyxz/+kZ49e2Kz2UhISGDUqFF8+OGHAEycOJGrr74agJNOOglFUbjuuuuanv/tt99y+umnY7fbiYyMZODAgcyYMaNVv8+OHTs488wziYyMJCkpiVtuuYWqqqrDtpk4cSJz5szhwIEDKIrSdBNC6EPOrAghjmnBggWcd955jB07lo8++gifz8fjjz9OUVHREdt++eWXLFq0iH/9619ERUUxc+ZMrrjiCkwmExdffDEA99xzD++++y4PPfQQI0aMoKamhi1btlBWVgbAzJkz+fDDD3nooYd46623GDBgAMnJyQC88cYb3HTTTUyYMIFXXnmFlJQUdu3axZYtW1r8+xQVFTFhwgTMZjMzZ84kNTWV999/n2nTph223cyZM7n55pvZu3cvn332WVtfPiFEgCiqqqp6FyGECE0nn3wyeXl57N27F5vNBkBVVRXZ2dmUl5fT+OdDURQiIiLYv38/qampAPh8PoYMGYLX62X37t0ADB06lD59+jTbALz99ttcf/31rFmzhlGjRgFQXV1N9+7dOeGEE1i6dGmbz3Lcd999PP744/z0008MGzas6f6pU6cyf/58Fi1axMSJEwE455xz2LJlCzk5OW06lhAicOQykBDiqGpqalizZg0XXnhhU6MCEBMTw7nnnnvE9qeffnpTowJgNBq57LLL2LNnDwcPHgRgzJgxfPPNN9x3330sXryYurq6FtWyfPlynE4nt956a7suxyxatIjBgwcf1qgAXHnllW3epxAi+KRZEUIcVUVFBX6/n7S0tCMea+19jZd5nn/+ef785z/z+eefM2nSJBISEjj//PObzrwcS0lJCQAZGRmt/j1+qaysrMW1CyFChzQrQoijio+PR1EUCgsLj3istfclJiYCEBUVxT//+U927NhBYWEhL7/8MitXrjzqmZpfahy30niGpq0SExNbXLsQInRIsyKEOKqoqCjGjBnD7Nmzqa+vb7q/qqqKr7766ojtFyxYcNjAW5/Px6xZs+jdu/dRz4ikpqZy3XXXccUVV7Bz505qa2uPWcu4ceOw2+288sortGeY3aRJk9i6dSsbN2487P4PPvjgiG2tVmuLL1MJIYJLZgMJIY7pwQcf5Mwzz2TKlCn84Q9/wOfz8dhjjxEVFUV5eflh2yYlJTF58mT+/ve/N80G2rFjx2HTl0866STOOeccTjjhBOLj49m+fTvvvvsuY8eOJTIy8ph1REdH89RTT3HjjTdyxhlncNNNN5GamsqePXvYuHEjL774Yot+n7vuuos333yTs88+m4ceeqhpNtCOHTuO2Hbo0KHMnj2bl19+mZEjR2IwGJoG/AohOpgqhBDN+PLLL9UTTjhBtVgsao8ePdRHH31UfeCBB9Rf/vkA1Ntuu02dOXOm2rt3b9VsNqsDBgxQ33///cP2dd9996mjRo1S4+PjVavVqvbq1Uu9++671dLS0qZt3nrrLRVQ16xZc0Qtc+fOVSdMmKBGRUWpkZGR6qBBg9THHnusVb/Ptm3b1ClTpqg2m01NSEhQb7jhBvWLL75QAXXRokVN25WXl6sXX3yxGhcXpyqKosqfSyH0I1OXhRDtpigKt912W4vPcAghRGvImBUhhBBChDQZsyKECHuqquLz+Zrdxmg0SmS+EGFKzqwIIdpNVVVdLwEtWbIEs9nc7O2dd97RrT4hRPvImBUhRNirqqpi586dzW7Ts2fPprwXIUR4kWZFCCGEECFNLgMJIYQQIqSF/QBbv99Pfn4+MTExMnhOCCGECBOqqlJVVUW3bt0wGJo/dxL2zUp+fj6ZmZl6lyGEEEKINsjLyzvuIqVh36zExMQA2i8bGxurczVCCCGEaAmn00lmZmbT53hzwr5Zabz0ExsbK82KEEIIEWZaMoRDBtgKIYQQIqRJsyKEEEKIkCbNihBCCCFCmjQrQgghhAhp0qwIIYQQIqRJsyKEEEKIkCbNihBCCCFCmjQrQgghhAhp0qwIIYQQIqRJsyKEEEKIkCbNihBCCCFCmjQrQgghhAhp0qwIIYQQndi3WwqYu7lA7zLaJexXXRZCCCHE0TlqPdz2wU8owIR+yURZw/NjX86sCCGEEJ3UtgInPr+K169S4KjXu5w2k2ZFCCGE6KS25jsw4CeZCkoqnHqX02bSrAghhBCd1LYCJz9a72CN7TZq87fqXU6bSbMihBBCdFIRBxaTrpQDUF9+UOdq2k6aFSGECCdeNznfPMvG794Gv0/vakQIc3l9TKz6qulnvyNfx2raJ6SalRkzZqAoCnfddZfepQghREhSq4vIXvUAA5ffQ1mNR+9yRAjbXVTNQCWn6WelqlC/YtopZJqVNWvW8Nprr3HCCSfoXYoQQoSs6nLtA8ei+Cg9sE3nakQo252TS4ZS2vSzta5Ix2raJySalerqaq666ipef/114uPjm93W5XLhdDoPuwkhRFdRVfZzuJeyb6GOlYhQV7l//WE/R7lLdKqk/UKiWbnttts4++yzOeOMM4677YwZM7Db7U23zMzMDqhQCCFCQ13lz6fyvc7w/aYsgs9QtBkAj8EKQJy3DL9f1bOkNtO9Wfnoo49Yv349M2bMaNH2999/Pw6Ho+mWl5cX5AqFECJ0uB3FTf9Wq4ub2VJ0ZX6/SpxzBwA1vc/hS99YvvONoqzGrXNlbaNr7m5eXh533nkn8+bNw2azteg5VqsVq9Ua5MqEECI0+at/PptiqittZkvRleWW19JPzQEFYk68iAdzrJRUuZjirCc5Jvw+Q3U9s7Ju3TqKi4sZOXIkJpMJk8nEkiVLeP755zGZTPh8Mi1PCCF+San5edyBtV6aFXF02wqcXOu+j3/GTseYPY7UWK1BKXKGZ+S+rmdWTj/9dDZv3nzYfddffz0DBgzgz3/+M0ajUafKhBAiNM2Pv4KlBUZuMX1NlLdc73JEiNqa76CYeOqzT4CIeNJjzBRTQWl5OZCqd3mtpmuzEhMTw5AhQw67LyoqisTExCPuF0IIAVu93dnmO4NbTF9j91WAqoKi6F2WCDHb8rWZsoPSYwH4a8m9ZNs28VXuDDhloJ6ltUl4rhUthBBdVFmNm2I1nj97bqLWHM8L0qyIo+h38L+MMBUx0nYzkI0nIgVqQHUUHPe5oSjkmpXFixfrXYIQQoQmVeXUis9INdj4zHcqbp+ZJ3wqNt3ndYpQUlrt4gzPIkabdlHvPxM4BTUmHUrBVBueKbYh16wIIYQ4hvpK7na/BhboX/82oJ1p6R4XoW9dIqRsO1TJiUouALbM4QAY7enaz3XhOd1d+nEhhAgTLoc2bdmpRjDcWsB5hmU4D27XuSoRag7u20a0Uo9bsUBiXwAiEjMAiPGEZ4qtNCtCCBEmHKXaqrnl2LnT+hXPWWai7F2kc1Ui1NTlbQCgIrovGLULKDFJPQBI8Jfj8oZfLIg0K0IIESZqGhYxdBrsuKyJAHirJHJfHM5WugUAX8rPs2qjk7WlaVKVCoqdLl3qag8ZsyKEEGGi8TJQjSkBb0QyVEnkvjhcrdtLet0eMEJM9oim+5XYbnxvPI39rhhGVFaTmRCpY5WtJ82KEEKECa9Ta0xc1gSIToZiidwXh9tRWEW2op2Bi8ke+fMDlkheTf4La3IqeLHaq1N1bSeXgYQQIkyoNVqz4rElYorRUkhtErkvfmFbvpMz3E/yp/S3IH3YYY+lxmpr8BXJZSAhhBDBsjTuQl7MyWBM+mgGxmtBcBK5L35pa74TPwaSsgaB6fAFC9NizKRQgbOsCOipT4FtJGdWhBAiTOz0deM7/xjUlEFExXcDILYxcl8ItAUMAQZ1iz3isUsPPcpq2230zvtvR5fVbnJmRQghwkRptXb6Pinaij21B3/y3ES1MZ6ZOtfVFfj8KmU1LlJibHqXckxen59zil7mt+YyRij3Ad0O3yAmDQrBUht+M8ikWRFCiDAxpvxL4g1Gkm1DSYyL5WPfJPBBrcdHpEX+nAfTs3PWsWLFUq677DLOGdZd73KOan9pDZNYRx9jPn6r+4jHLfFaMFyEK/xmkMllICGECAdeN3fVvcRLludJtqlEW03YzNqf8NKqIz+YRGAN2fI4/7X8k9wvHqLaFZqzaXbmFdJL0RYqNKSfcMTjkUla1kqctxQ1zC4dSrMihBBhwFutxaR7VQNxickoisJpkbmcb1iG89AOnavr3FRV5Veu7wC41f8Br3y/ReeKjq5s3wYMikqVKQEaZov9kj1Fa1aSqMBZH5oN17FIsyKEEGHAWaZ9Yy4nloQobdzEDepnPGuZibJ/sY6VdX6VNW7qVAsA09y389ryAnJKa3Su6ki+/E0AVMcNPOrj1obLQClUUuSo7bC6AkGaFSGECAPVDc1KpWLHZNT+dDdG7vuc4TdgMpzkHTpAhOLGj0Jt7zNx+/w8NGeb3mUdRlVVYhzaGTZj92FH3yg6FT8KZsVHeXF+B1bXftKsCCFEGKir1BqSalNc033eyGTtHxK5H1QVeVoTUGpM5i/nDsdkUNi8fQdLdoXOCsZFThd9fPsAiOt14tE3MppYFHU2r3rPpijMxjlJsyKEEGHA3bAuUK054ec7o7RmxVgXOh+anVF90R4AHLZM+iRH8V7mFyyz3snnn83C4/PrXJ1m66FKVMCLEUv34cfc7tvsPzHDexUH3VEdVlsgSLMihBBhwF/9c9R+I1NsQ+S+q0yXmrqKDZ4ePOW5mLyMc0FROLGbDbPi4/qaf/POj/v0Lg+AbQVVXOj+F/f3/wYSeh9zu8bI/UJHfUeVFhDSrAghRBhYaT+b37nvZmfq2U33WePSAIjySOR+MC2vSecF34W4hlwOgOX0v+ExRXGCYT97F7xFSZX+a+00Jtf2z0gGw7E/2tNiTKRSTn35wY4qLSCkWRFCiDCwx5fKd/7R+FJ/zs+ITtTCyWL9lTpV1TUcKNNm/mQnNVw6iU7GOP6PANzOBzz3zUa9SmuyNb8hZj/9yJj9Xzr50Nussk1jatEbHVFWwEizIoQQYaAxaj8xytJ0nz2lB/d6buZu3x2o/tAYO9HZVNa4OKF+LdlKAVkJP0ftG8beiiuqG92UcuI2vc7mgw7danTWe/hb1YN8bvkbQ33NZ8BYE7Tpy1Hu8BrnJM2KEEKEgRFlX3OOYQWpVk/TfYnxdj7xTeQ7z3BqPNKsBENefj7/sTzGYusfiDT4fn7AbMP6q38B8HvjFzz7+Q+6pcJuP+TgRMNuhhv2ERMV0+y20Q0ptvG+Mnz+8EmxlWZFCCFCnaryu+qZvGh5gRTTz2FkkRYTURYjQEiMm+iMKvK2A1BmSAJzxOEPDrkId+pw/Bjw5m/iiw36ZJfsP7CPJMWJHwOkHD0QrlFsSg8AUpXyprN14UCaFSGECHGqy4kV7YyKPenwlXRPizzABYYfJHI/SGoLtWnLlbaMIx80GLBc/Dofj/uKJf5hzPhmOzU6rBtUk7MegPKILLBENrut0a69fxKUaoor9Lt01VrSrAghRIirrigEoEa1khgff9hjN6qf8ozlZQw5S/UorfMr16Ymu2Kzjv54cj+umnwiPRIiKXK6eGnRng4sTmMs3gqAO3nw8TeOiMeNGYDKotxglhVQ0qwIIUSIqyptXBfITkTDZZ9G9RK5H1S2qhwADInHzi6xmY387eyBTDBsZMOyuU2zhzqC2+snpXYnAJGZI47/BEXBYUoCoKbsUDBLCyiT3gUIIYRoXk25dmbFaYw74jFfRDI4kcj9IIl3aR/oUel9m91uSu1cploeY4c/k4e/PoXXrj2pI8pjT3E1A8kBwN5rZIuesznp/9h9sBCTq/lLRqFEzqwIIUSIczm0ZqXWFH/EY2pD5L6prrRDa+oKHHUeuqvaa5/Yo/mBq8qQC/BZ4xhgyCNh18f8sLtjpgZvPVTOdjWLYmMqStrQFj1ne/9bmeG9iu2e1CBXFzjSrAghRIjzOrWzJvXWhCMeM9m1DxyrS5qVQDtQWs2Dnqt51XAZkanNn1khIh7jpPsA+IPpYx7/cm2HrBu0rbCGWz138crwzyEqqUXPSYmxAlDkDJ/IfWlWhBAixP1kP4Ob3XezKfWCIx6zxmmzO6I8FR1dVqeXU17HF/5TmZ98HVijj/+EUTfgi+9FsuJkasVHvLviQNBr3NaQXDu4W/PJtb+UFmMijTIMFfuDVVbASbMihBAhbq8vmXn+0dSnDD/iseiEdADsfmlWAu1A6f/E7B+PyYJx6oMA3GScwwffL6csiFkmqqqSV1AAqAxqRbPSp+R7VtpuZ1r1c0GrLdB0b1ZmzJjB6NGjiYmJISUlhfPPP5+dO3fqXZYQQoSMsmo3AEnR1iMes6dlc6/nZu7ySuR+oHkOrme8YSODomtb/qQBZ6P2GIdN8XCr7wOenBe8z7ODFXW84v8XG6w307eu5esTxSRrKbaJ/nLqPb7jbB0adG9WlixZwm233cbKlSuZP38+Xq+XqVOnUlPTcVO/hBAilA0qmcu5huWkWY4cY5AQF8cnvonM9w7DWR8eHzzhYljBJ/zH8hjjnHNb/iRFQTnzEepjs/nON5qP1uSx5VBwwte2HSyjv3KQOKUGU1z3Fj8vqiFyP02poMhRF5TaAk33qcvffvvtYT+/9dZbpKSksG7dOsaPH69TVUIIETqucbxGnMXJRuXsIx6zmY3E2kw4672UVLuwR5p1qLBziq8/CEBUer/WPbHbCGx3rcc6axPqxnymf7mVT24Zi6IoAa2vaO8mrIqHOkMUEXHZLX6eEqNdOoxUXJSUlpCV1ILxODrT/czK/3I4tA40IeHIUe8ALpcLp9N52E0IITotn5dYqgCITex21E1Oi8zhQsNSqg7JJfRAqar30F3VwvjiM/u3fgcGI/f/3wAizEbWHijny42BXzfIfUi79OOI7Q+GVnycWyKpVrQGxVkcHim2IdWsqKrKPffcw6mnnsqQIUOOus2MGTOw2+1Nt8zMzA6uUgghOo6rqgQDKn5VIT7p6LkYv/X9l6ctr6Ac+KGDq+u8cgtLSVUqAYhOO8605WNIjzbxSr+1zLY8wBNzNlPrDuy6QVEV2wBQ0luWr/JLVWZtmnNdeXik2IZUszJt2jQ2bdrEhx9+eMxt7r//fhwOR9MtLy+vAysUQoiO5WiI2q8gBnuU7ajbuJoi9yXFNlBK87SFIauUGIg4MoyvRbz1jC98hxMNe5ha+zUzF+0NWH0VNW6y3Nr+Ynu2LLn2l+psKVqJldKstMrtt9/Ol19+yaJFi8jIOMrqlg2sViuxsbGH3YQQorOqLtOalUqD/ZhjHnwRWootNdKsBEptwW4Ayq3H/jw6LmsMyuS/AnCHaTazftjEocrADGjdlu9gkEHLcYnIHN7q5+d3m8qr3rPZ5Tv6pcVQo3uzoqoq06ZNY/bs2SxcuJCePXvqXZIQQoSMukot7r3a2My3+2iJ3A80X5l21qIu5hirLbfUiGtQUwYRp9RwC5/yVICmMu84WMJHvklsixwFyQNa/fzKQVcxw3sVqz3h8Zmre7Ny22238d577/HBBx8QExNDYWEhhYWF1NWFx3QqIYQIJo9DW025znL0SQcAptg0QCL3A+k73yjucd9CWb9L27cjgxGlISjuGuM81v20nq357Z/KvLnIxaPeK1k46hUwHZm/czxpsdolxcIwidzXvVl5+eWXcTgcTJw4kfT09KbbrFmz9C5NCCF0tzn2NG5y38PqlEuOuY0tTpuKKpH7gbPSEc9s/3hiBp7e/p31OQN6n45F8XGv6SNmzN2Bqqrt2uW2Am0mbGuSa38pNdpMOmXEOve0u5aOoHvOSji8SEIIoZcD3kTm+0fRM6XXMbeJksj9gKpxeSmp0mLysxJaGLV/PFP+hbp3IWcZVvPY3q0s2dWTif1T2rSreo8PU+k24ohncDd7m/aRWruDFbbbKVATqKy9jvgoS5v201F0b1aEEEIcW2nD2jJJ0cf+MLGn9+Rez82UEc+//SoGQ2DDx7qaA0VlXG2cT6mlO3bbWYHZadoQlDNn8EZuN/LWm3j0mx2c1jcZYxv+v9pZWMWrxqfINJegVmRB7NhW78MSpw0cTqaSPY6akG9WdL8MJIQQ4tj6lnzHrw3LSTcdewmShPh4PvFNZKFvGJV1ng6srnMqzdvFQ+a3eIqnIZCpsyf/nkvPOYtYm4kdhVV8uv5gm3azO/cgmYYSAJSUgW2rJSoZHwZMip/y4tCfvizNihBChLCLKt7gecuLZDSkqR6N2WggviFmv/HyhWi76oJdQMO05QBH5MdFWrh9cl+ylEKe/W4rde7Wr+fk2LcOgEprOkTEta0QowlnwwyzmtK2NU0dSZoVIYQIYXa/NnMkKiGt2e1Oi9jPhYalTR+0ou18pfsAqIvuEZT9X+f5iAXWezmjdi5v/ri/1c9XirYAUJcwqF11VFu0Ke/15dKsCCGEaCN/fTURaGdK4pKbX1X3t95PeNryCoYDP3ZEaZ2axZmj/SPh2IOa28Mcm4oJH3eZPuXdxZubxiW1hM+vEl+lZbVYMoa3qw5XhLZ8g98R+HWLAk2aFSGECFHOhvTaetVMfFzzke8umxa5760qCnpdnZ29TlvGxZbatjWBjuvEa1GT+pGgVPMb32yeX7C7xU/NKauhv5oDQFyvE9tVhj9aO1tnqCls1346gjQrQggRopxl2jfecsWO2WRsdltvY+R+tUTut0et20u6r2G15Yw2rLbcEkYTypR/AXCD8RsWrVrPvpLqFj11+8FS+ijaZRtj+gntKqOuxwRe8Z7LKl/rE3A7mjQrQggRomrKtW+8TkPc8TeO1jI7JHK/fQ4UV5KhaDNtYroFqVkB6HcmZJ2KVfFwl3EWj3/bshj+nQWV/MN7PT8mXQr2zHaVYBx4Do96r+C7+vaNfekI0qwIIUSIcjm0ZqXWfPxVf02x2vgDq6ssqDV1drnldVzu/jvPx9wF0anBO5CiQEMM/0XGZeRtW8HanPLjPm1joZuPfJPJGf23ds9USm2I3C+tduHx+du1r2CTZkUIIULUzuiTuNH9B5YkX3XcbX+O3D/+B544tv0VbtaoA9jb/fyAT1s+QvcTYegl1Bsi6akU8sjc7cdNdd+W3xCzn962mP1fSow0kWkoZyh7WzXIVw/SrAghRIjK9cbxvX8klcmjj7tttETuB0ROqRa+l5UYoJj945n6EFU3r2ah6VTW51byzZZjD3YtrqpnRO2PjDDsYUBS6xcv/F8Gt5MfLNP40vp3isoq272/YJJmRQghQlRZtRuAxOjjfzDFdOvFH9y3cKf7Nnx+WXOtrRIPfc8VxgUMsZV0zAFj0khOy+Sm07Rp0o9/uwO39+iXZLYequQp88t8ZvkHEVWtz2c5gi0OF1rMvqM4r/37CyJpVoQQIkT1KJrPrw0/kmFyHnfbxLgEPlPHs8Q/jPIadwdU1zmNq/yKGeY36F+3oUOPe/P4XpwduZ3+FUv4YNWBo25zcN8OYpU6vIoZkvq1/6CKgsOcBEBtWWgHw0mzIoQQIer/yv7D85aX6OHLOe62RoNCQsNidBK53zb1Hh9p3sZpyx07nTdq7xxe8j/IQ+Y3ee37TTjrj1zjqS5vAwAVUb3BaA7Iceus2pR3d0Vorw8kzYoQQoSoGF8lAJHxzUftNzrNto+LjUuoksj9NjlQ4iRT0XJqYroFKRDuWPqdhRrfk2TFwaWez3l58d4jNrGVbgXAlzokYId1Rza8t6pCO8VWmhUhhAhFfj9xqrYuUGxieouecr33Y540v4oxd0UwK+u0ig7uwaL4cGNGic3o2IObLChnTAfgZuMcvl62jvzKuqaHq11eutdrSbcxWSMDd9yGFFtTTWgnH0uzIoQQIajGUYJR0QbKxie1rFlxWSVyvz2q8rUzUmWWbmDQ4eNx0HmoGWOIVFzcyic8Ne/nM2Q7CpwMNGhjWaKyRgTskKY4bc2piPrQTj6WZkUIIUKQo1Q7LV+pRhMZYWvRc7yR2vgDRSL328Rdoq22XBsVnNWWj0tRUKY+BMClxsVs2bCiKVdl74EDdFMaMnRSBwfskKbsk3nFey5feY4/PV5P0qwIIUQIqmpYxLDSYEdpYTiZEtUQuV8vkfttYXZo04H98T31K6LHSTDw1xgVlfuMHzDjm+0AbCr2cYX7r8zr/RewtT8QrlF8/1N41HsFn7lGUePyBmy/gSbNihBChKD6Si0crNp0/Kj9RhK53z4ve87hMtffcQ+7Wt9CzpiOJ74vs9VJ/LC7hKW7SthUWM8K/2B8w38T0ENFW01EW00AFDnrA7rvQJJmRQghQtDeyOHc4P4D3ya2/MPJFq+NbYmWyP1Wq/f42Oa0skodSGrv4foWk9gb8x1rSD35MkDhkbnb2VlUBcCgboE7q9JoSLSTEcpuiiocAd93oEizIoQQIeiQJ4YF/pGUJI1t8XOiJHK/zfLKa1FViLGaSGzIq9GVojBtch9ibSZ2FDq5Tv2Cy6wryYwM/KWaf9fexWfWB6gt2B3wfQeKSe8ChBBCHKlxYbmkmJZ/cNq79eEe9y2UEMebPj9mo3wfbalDh/L4k+kj6qN7oyi/0rscAOKsCi/3W4t9x8cMUHIxKX7w3AoR9oAex2lJJtpVTV156KbYSrMihBAhKL1oEb82FNDDmNDi58TZ4/mCCfj8KmXVbtLsLZtFJKDm4BZuNX1Jsbs7MF3vcjR+L+MK30cxaOmyNaY4omJaFhDYGvW2FHDtx1sZusFw0nYLIUQImlTyPs9bXqKXe2eLn2MwKCRFa2diGs/MiJZxl+wBoFqvactHY45AOf2Bn39OHwYtnBnWGr4orQEyVBcEfN+BIs2KEEKEoGivNu7EFte6b9LjrXu4xLiYqhAefxCKTJU5APjidJy2fDRDL9GaFCAq68SgHEKJ7QaAuTZ0wwSlWRFCiBBkb4jaj25h1H6jaz2zeML8Goa8lcEoq9OKrskFwJrSR+dK/ofBABe/BSfdAif9PiiHsMRrzUqUqyQo+w8EGbMihBAhxlNfQzTaujD2VjYrLmsS1IPPGbrfkkONy+sj1ZsPBojt3k/vco6U2BvOeixou49K0i592b1l+P0qBkPgLzW1l5xZEUKIEFNZqo0dcKtG4uKTWvVcX2TD9jUSud9SeWW1ZClaCJ+9W3+dq+l4sVkn8LL3XN71nUFFrVvvco5KmhUhhAgxzjJtVkaFYsfQ2unHjZH7dRK531IFhw4QpbjwYUCJz9K7nA5nTurFG7Zr+a9vAoUhmmIrzYoQQoSY2nLtEk6VMa7VzzXZtch9m0Tut9iumgjG1r/AMxnPgsmqdzm6SI3VprmHauS+jFkRQogQk2vrxzPuPzKgWzx/auVzbXENkfteidxvqQPldRSQiD+jt96l6GZgZBVWZRcVpT2AVL3LOUJInFmZOXMmPXv2xGazMXLkSH744Qe9SxJCCN0c8kSz0H8i+UmntPq5jbOH7P7KAFfVee0vrQEgOzFK50r0c2fZv5htnY7pYGjOItO9WZk1axZ33XUXf/3rX/npp5847bTTOOuss8jNzdW7NCGE0EVZtTbIMTG69Zck7On9uNv9e+5030q9xxfo0jql0YWz+KNpFgMMXfdzxxXRcDbFGZoptro3K08//TQ33HADN954IwMHDuTZZ58lMzOTl19+We/ShBBCF4mFSznPsIyextaPO4mNi2eOMoFl/qGU1YTmzI5Q4vb6meRayDTTF/RQuu50b39MY4ptoc6VHJ2uzYrb7WbdunVMnTr1sPunTp3K8uXLj/ocl8uF0+k87CaEEJ3J2OJZPGeZSV/XxlY/V1F+jtwvqZLI/eM5WF5DVkOTYu/e9aYtNzLZtWA4W31oTnnXtVkpLS3F5/ORmnr4YJ7U1FQKC4/e3c2YMQO73d50y8zM7IhShRCiw0R6GqL27W1btG6CbTeXGBdTXbAngFV1TvkFh4hVagFQ4kMsar8D2RIyAIh2h2aKre6XgUD7JvBLqqoecV+j+++/H4fD0XTLy8vriBKFEKLDxPgqAYiMb9usjGtcH/GE+TWMh1YFsKrOqeLQLgDKjclgidS5Gv1EJ2tf/BP8Zbi8oTfWSdepy0lJSRiNxiPOohQXFx9xtqWR1WrFau2a8+CFEJ2f6vcTrzpAgZjEbm3ax8+R+6F5Sj+UuIu1s09VkZkk6FyLnmIampU0pZySKhcZ8aHVuOl6ZsVisTBy5Ejmz59/2P3z589n3LhxOlUlhBD6cVaWYVa0b7ZxSa1bF6iRRO63nKFiPwDeUFttuYMp9gzeNV3I095LKHLU6V3OEXQPhbvnnnu45pprGDVqFGPHjuW1114jNzeXW265Re/ShBCiw1WWHMIOOIkkNqJt326VaIncb6nIhtWWTUldNxAOAGsMXyTexNoDFZxUFXqzyHRvVi677DLKysr417/+RUFBAUOGDGHu3LlkZXW99RmEEKKmXFvE0KHEEdvGfZhiJXK/JTw+P7fX3kSKegGfjpmsdzm6a4zcL3SEXuS+7s0KwK233sqtt96qdxlCCKG7g+ZsnnDfS7+UKO5v4z4aI/ejJHK/WYcq6nD7FUrNqSSnyszS3hHVnKjsorY0Cgity2IhMRtICCGEptATwSL/CA4kjm/zPpoi9xtmFYmjyynTYvazEqIwGI4+A7Ur+XXRS8y2Tifj0Ld6l3KEkDizIoQQQlPaEOSWFGNp8z5iu/fnbvfvKSKef7u9RFrkT/3RVB7YwvPmF3AZTwDa3hx2FmpMOhSBuTb0UmzlHSyEECHEXvgj5xt208twRpv3ER0bzzfGCdR7/JRWuemRKH/qj8ZTsIVLjCvIc9foXUpIMMdpU+UjXKEXDCeXgYQQIoSMKJzNs5aZDK5b2+Z9KIpCcoyWR1VSLZH7x6JU7APAY8/Wt5AQEZmojduxe0pRVVXnag4n7bYQQoQQm0cbFGuJTWnXfsZbduE27qW6MBWyRgWitE4nqlqmLf9SbEoPAJLUcqpdXmJsZp0r+pk0K0IIEUKivdq6QBFtjNpvdE39hwwwb2DZoZ6ANCv/y+vzk+Q+BAaI7tZ1FzD8JVtCdwDSlAryHHUh1azIZSAhhAghdr8DgKj4tqXXNnLZEgHwdqLI/d1FVcxak4vP3/5LFPmV9fRQtIGkcV14teXDxGjvOaviobQktN43cmZFCCFCRH19HXZFG+wZl9K2dYEa+SKSoRKUThS5/8onX2MuWEtV7S3cOKFvu/aVW1TCqUolAIbE0MoU0Y3JyuzYa9hQZmBktVfvag4jZ1aEECJElJfkA+BVDUTbk9q1r84YuX9D2RM8av43xkX/orK2fZHwZYf24lGNVBliISI+QBWGvx8zbuI/vl9xsC60zmVIsyKEECGiqlSL2q9UYlEMxnbtqyly3905IvfdXj+D1L0AXM+XvDZvQ7v2t8mVxgDX27w19N0AVNd5pNm1WWTFztCK3JdmRQghQkSBIY3r3Pfyasy0du/L1jDmJdrTOSL3iyqch/1csfYTDpS1PR8lp7QGH0YS0uUS0C9lWWsYqeyE0p16l3IYaVaEECJEFLktLPaPYE/ChHbvKyahIXLfXxlymRltUZqf0/Tvx5Jn8KF3Io99u6PN+2uM2s9OjGpvaZ3KicWf8qn1n5xc8l+9SzmMNCtCCBEiSqu1cRiJ0dZ27ys2YwB3uW/lbs/vqXH72r0/vVUV5wBQaEznvIuuxqDA3M2FrDvQ+jNHPr/K9ZUv8Yz5Jfqq+wNcaXizxmvTl6PdoTUwW5oVIYQIEVEFK7nQsJR+xoJ27ysyNoH5pgms8A+mpCr8U2y3Gvoz3vUM72c9xIC0WC4ZmUkiDmZ++UOrzxzlV9YxybCOC4w/kmT1B6ni8BSdpKXYxnnLAjJFPFCkWQmCSoeD71+5l8VPXkVlZYXe5QghwsTAwi952vIKw2t+DMj+GiP3SztB5P6hKi+5aiqkDQXg/qxtLLXezQXFLzF3c+sW3ssrKqe7og08Nkp67WFikrVmJVWpoKwmdN430qwEkKqqLJ//X5zPjOGMwtcorKzmpe+3612WECJMWF3aJQ1TTPui9huNt+zkUuMiqgv3BmR/eiqo1GanpNsjAIjrMZRIxcU5xlV8MecrXN6WX+oqO7QLgFolEiITA19sGDPZtXyfJBwUVYTOAo/SrATIoYMHWPnEhYz78QZ6UEgVUcz2ncYb6yrYXuA8/g6EEF1eZEPUviWufVH7ja6u+4DHza9jONT2RRFDxaiij7nH9DF9lDztjtTBeIdcCsC1tW/z7vKcFu+rrnA3AI6ITFCUQJca3qKS8WHAoKhUFh/Uu5om0qy0k9fr5YePniD69bGMrV2IT1XY0O1yrPduI3nIZPwqTP9ya6cYjS+ECK5YXyUAUfFpAdlfY+S+ryq0Bku2xcS6+dxh+pzu6s+/i/mMv+EzmDnFuJW1C2e3OChOLddWW3bFZgWl1rBmMOAwau+b6tJcnYv5mTQr7bDlkIPHnnuG03Y8hF2pYZ+pDwWXzmH4za9iiYrj/v8bQD9TETcfvJ9V34fWNDAhRGjx+fzEq9q6QDFJ7VsXqGmfkclA+Efu17q9pKhaEm9cWvbPD8T1QBl9EwC3+9/lhQW7WrS/iKoDABgSZbzK0SxLv4a/e64j1xs6yb7SrLRBndvHjLnbOe+lH3m9ZCBLGcH6gX8m+76VZAw+pWm7jPhIHu2xmtONP5G6fDp1daGVCCiECB0VFeVYFQ8AcYmBaVY6S+R+QWkFiUoVAFHJh58NMYz/I15zNIMNByhf9eFxg+L8fhW/qxqfqhCd3i9oNYez3F5X8q5vKnvrY/QupYk0K620efF/2fnoqby3dCs+v8rZJ3RjwD3fcOJlf8FgOnI57YGXP0IFsfRUD7Ly40d1qFgIEQ4cZYcAqMGGyRYdkH2aGyP3XeEduV9emANAPdYj1/GJSsR02l14MZGulvD4t80nrxY467nL/XuGev9D7OjLg1RxeEuJtQFQ6JTZQGGnvDCXn546n6GLb2C4fxt/jPqGf/9mFC9deSIpsRHHfF5EbAIHT/wjACP3vcqhg6FzDVAIETqKfHFc5/4TT0feGbB9NkXue8M7QqG6SPu7WW5KOfqA2JNvJefyRbzsP485mwtYd+DYv++BUu3MS1p8LCZrZFDqDXcZNhcjlZ3ElW/Su5Qm0qwch+rz8tOnT2B+ZQwjqhbhVQ0sT7mcS+56ijMGtWzE/pCzb2OfuQ+xSi37P/5zkCsWQoSjEreJxf7hbIubHLB9RjVF7leE9SB/d7nWrNTajjGl2xJFnwEncMnIDAAenrPtmL9vTlktANlJErN/LD3LfuBT6z+5svptvUtpIs1KM/J3rGLvo+MYsfkhYqhjh7Efey/4mnG3vkp0TFyL96MYTRj/73EAxjm+YeOqRUGqWAgRrhpTZpNi2h+138ieMYg73Ldxj+f3OOu8AdtvR1Md2hRad1S3Zre7Z0p/TjTnknFwLt9sOXpQnLp/Kf+1TOe6+vcCXmdn0RgMl+gvp94TGks1SLNyDB+uzmXdB/+kj2cnVWoES/r8md73Laf/8FOO/+SjyBpxOhvjp2BQVMq/fxqvTyKehRA/sxWu5SLDUgYa8gK3z5h4FlsmsNI/iJIwTrGdZTmf8a5nyBlye7PbpTk3Mdt4H4+Y/80rc1fi9h75d9ZQsp1Rhl1k+eWS/LFEJWlnqFKVCopDZNyKNCvHkBBl4V/uq1gSOYWK639kwtV/wWw+cgBta2Rf/hTPKVdyS9VveX+V/IcihPhZz4K5PGV5hdE1iwO638YzNeG8PlCuw0eumkpc+nGmGncfhS9tONFKPRdUfci7Kw8csYmtYdqyktArGKV2CkqsdvkwVqmlpLz1C0UGgzQrx/CrwWk8c8OvGH/vJ/TIDsxcfHtqFom/ug8XFp6at5PympYFGAkhOj9LvTZjxxCdHND9TjTv4HLjQmqK9wV0vx1FVVUKHA1R+3HHnswAgMGAceo/AbjK+D2ffr/ssKA4v18l3qVdUopK7x+cgjsDayz1ijYjyFEcGl+spVlpxql9k1ACHMV8xZgeDEyPpabexceffRrQfQshwpfN3RC1HxuYqP1GV9a9x6Pmf2PMXxfQ/XYUZ52Xv/hf4x7Tx6RbW3B2qNdE1F6TsSg+bvZ9wIsL9zQ9VFRVT6aqjWWJy5Bm5ZgUBacpCYC6stCI3JdmpYMZDQoPTu3GHMtfuH73NHZt36h3SUKIEBDt05oVW3xgmxW3VYtO94Zp5H5BaSlXmxZwh+lzbGZTi56jTJkOwPnG5axZsYjchhlAOcVOMhXtdZDVlpvXOPPKU3lI50o00qzoYNSAXqjRqVgVL5Wf/zmspxQKIdpPVVXi/FrUfnRC8zNeWqspcr86PJuVioL9ANQokWCLbdmT0oehDrkYgHsMH/HYdzsAKD20F4viw4MZYgL7Onc2e7Mu4++e69ik9tG7FECaFX0oCokXP41HNTLGtYKV82XdICG6suq6euIb4uTjkgL7IdoYuW+uD8/I/ZoSbcyEw9S6sTzK5L/iiUpjoX8Eczbls+5ABaWlReT5kym3ZYJBPv6aU9v317zrm8qW+iS9SwF0bFZycnK44YYb6NmzJxEREfTu3ZsHHngAt7trDDpN6TWMLd215c3Tlk+ntq5O54qEEHqpKNHGUfhUhQh7YD8cwj1y39MQCFdja+VK1Am9MN+zldrhNwAKj8zdzsq6TE5zP8c3p34S+EI7mTS7NsC2yBkaa9rp1qzs2LEDv9/Pq6++ytatW3nmmWd45ZVX+Mtf/qJXSR1u4BUN6wZxkFWzHtO7HCGEToo9Vq51/5kHrfeAwRjQfdvitGmoUeEaue/MB8Ab3YYzTkYTf5janwizkXUHKli0owSArOQWXk7qwtKsXkYpO+jpXBMSQxV0a1bOPPNM3nrrLaZOnUqvXr349a9/zR//+Edmz56tV0kdzhaTwKGR9wIwav8rHMwLjSliQoiOVVqvsMQ/jE1xpwd839ENKzjH+Svw+/X/0GktS02B9g979zY9Py3WyhOD9vKm+XH8Pu3MfXaiRO0fT0rdbv5r/RcPKq+FRPpxy4ZWdxCHw0FCQkKz27hcLlyun6evOZ3OYJcVVIP/71b2b3qHYpeJL+dv4OHf9tC7JCFEByup1j5EE6MDF7XfKLbHEO5wT6NIjeflOg8JUZaAHyOYol1FANgSM9u2A3cNZ+c9jWIsZY/xN6zx9yfDnQUMCVyRnZA1XkuxTVEqyHHUYY9sXyhqe4XMCKO9e/fywgsvcMsttzS73YwZM7Db7U23zMw2voFDhGI04btqNld6/8H7u4ws2x2eg+CEEG1nLPiJi41LGGo8MnG1vcxR8fxgm8AqdWDYpdj6/Sq/dd3FeNczWIee17adWKNRJvyp6cfRhp2YbXJm5bhitDFCVsVLWUmBzsUEoVmZPn06iqI0e1u7du1hz8nPz+fMM8/kkksu4cYbb2x2//fffz8Oh6PplpcXuHU09NInO4trTs4G4J9fbcUj6wYJ0aV0L5jPk+ZXOaV6XlD2n9wQuV8aZusDlda4qPGZOUgqKcntyJ8ZeT2q4RdnBuzh/SW3Q5isOA12AKpK9f+cDfhloGnTpnH55Zc3u012dnbTv/Pz85k0aRJjx47ltddeO+7+rVYrVmvgT5Xq7e4z+rHgp11cWv4Kyz7bxqSLf693SUKIDmKq02bqKFGBjdpvNMG0jZHG3VQXpUCf0JiK2hIFldpMlJQYGyZjO75bmywoZz0Kc/4ASf3AGFIjIEJWtSWZ2HoHrnL9g+EC/v9YUlISSUkt+4/h0KFDTJo0iZEjR/LWW29h6MLz3u2RZp7rv4UTd8ylaMsKyiZfSmJCot5lCSE6gNWtNSvGmOA0K1fUvkcv8xa+LxwAjA7KMYKhMn83T5pfodbcG2jn4ONRN0BkktasiBapt6VC/R58jny9S9FvzEp+fj4TJ04kMzOTJ598kpKSEgoLCyksLNSrJN0Nu/CPFBjSSKWCTR/+Q+9yhBAdJMrTELUf18oskRZqjNz3OYuCsv9gqS/YycXGpUz2LGn/zhQFBp8PqYPav68uwhetXXpTqvT/XNatWZk3bx579uxh4cKFZGRkkJ6e3nTrqoyWCKonaiuGjiv+iJ3bZN0gIbqCGH8lAJEBXheoUWPkPjUlQdl/sHgrtbESdRHBaeJE85y9z+NvnutZxIl6l6Jfs3LdddehqupRb11Z39MuY3vkaKyKF89/b+ZQFz7TJERX4PL6SFC1CAZ7gKP2GzVG7pvqwmu2oeLUxkp4o9uWsSLax9J3Eu/5prCiRv/Xv+sOEglVikLypc9STSRD/DuofuVMdu3dq3dVQoggKa+oIFLRZulEJwTnzLLJ3hC57w6vyH1rrTZl1hin/4dlV5Rq/3kWmVfnWarSrISgpOwh1F/1JRVKHFFqFb//z2pW7A2vPzJCiJYpq1X5jfvPPGC8A4MtJijHiGiI3I/2hFfkfqxLWynalihhmXpIssJJxp1MUdZQWq3vun3SrISopL6jMd04jyeSH2WvK5Zr31zN3M36B/MIIQKrpE5lqX8Ya2KnBu0YTZH7agW+MInc9/r8JPq0MTYxqVk6V9M1GdxVzDL/k5fNz1JUWaVvLboeXTQrpnt/HvvdhZw5OA23z8/cj2by7ZxP9S5LCBFAjUFtSTHBy4+KzRzKnZ5p3Ov+HeU14bGyfZGznlSlHAB7ak+dq+miIhPxYMKgqFQWH9S1FGlWQpzNbOSlq07kL0Mqecb0EhNX/47ZH77W5QciC9FZqIVbuNi4hOGGfUE7hjEqnh8jJrI6jCL3Cxz1jHC9xqW2lzHEy5kVXRgMOE3aen01OqfYSrMSBowGhZsuvYC8xFOwKR5+vePPfPz6o7oPeBJCtF9y/iKeNL/K5Jqvg3qcpOjwitw/VFmHGzNKfE9JnNVRrUWb9u6u0DfFVpqVMKFYIul122fsyzgfk+LnsvxHmf3in6h16790twhvqqpS7/HpXUaXZWiYTqxGBDcGf4J5G1cYF1BdnBPU4wRKgUOL2u8WF6FzJV2bK1LLuPE79R0zKc1KODGa6HXD2+T0vwmASyte57tnbqa8ul7nwkQ4m/nmG7z94PXMWrpJLi/qwOLSZvoZYlKCepwrqt9hhvkNDIUbgnqcQIk58D1PmV/mdM9ivUvp0pLStUtwk7rp+4VGmpVwoyhkX/EkB0fdD8AFdZ/ywotPkldeq3NhIhxV13u4IPcRbjF8wbjvL+Txtz6iqt6jd1ldis2tDSI1xwa3WXFbtTM3/jCJ3I8r38BFxh/o496udyldWtykO+CWZcRP/ZOudUizEqYyzrmPosnP8IVhCm9VDueil5ezvcCpd1kizGxYv5JuivbNPtNQwl0HpvH6M39n2yGHzpV1HTHeSgAi4oMbKd8Yua/UhkfkfkRDIJwpLkPnSrq4hJ6QNhRsdl3LkGYljKWO/y0n3fke/VNjKa5ycfUrS1i9fb/eZYkwMi/fwu/cd7Gg2++o7DEFq+LlHtfL7H71Sj5evkMuCwWZ368Sp1YCEBOk9NpG4Ra5H+uWQDjxM2lWwlya3cbHt4zl5Gw7j/ifJfajX/P9qg16lyXCgKqqzNtVzXf+MZgm3kvc9Z9QO+EBfBgYq2zhiS/Xcc/HG6lxySDuYKmsqSceLWwrNkjrAjUyxzZE7rtCPw273uMjya81VXFp2foWI0KCNCudgD3CzDsXdedkyz4GKLn0n3sxs+cHYEl10antKKyi0FmPzWzgpJ4JoChETroH5dqvWDbiScoN8Xz20yF+/eIydhXpm17ZWZVWu7je8yf+wu1YYpKDeixbw2WmaG95UI8TCAWVdaQ3BMJFJcuZFSHNSqdhTe5J9K0LKbVkkKmUcNqyq1mzcbPeZYkQtn31PO4y/ZcrMiqwmY1N9xt6nsqF51/CBzeeREqMlUFl81n10o18uiZ4oWVdVWmtl6X+YayKOSPoWSIxDWdu4vyVeEI8o6mk6BBWxYMfBSVWFjEU0qx0KsbEniTevpACa0+SFSdlS1/TuyQRwiJ2fsFdptlcblp01MdP6pXINzcP5nHrm1xj+JZeX13CIx/Mo84tmSyB0rg4XGJ08KL2G0VnDOVO7+3c6/kdZTovSnc8jmItLdVpiAeTRedqRCiQZqWTUWJScZ18FwCDSr+jRqahiqNw1HoYWLMagIRh/3fM7RKT07Fc9hb1plhGGPbw+53X89Czz7O3pLqjSu3UvIXbuMS4mNHGvUE/liEqgZWRE1mrDgj5FNsdahb96t/hxb6v612KCBHSrHRCWeMuphYbPZQi1v44X+9yRAhat2Et2UohHkwkDz2j2W2NA87EdtsyqhOGEq9U82DNP/nuxTv44qfcDqq287IXLOMJ82ucVd0xC5Q2Ru6H+vpA+Y563JiJSpLxKkIjzUonpFij2ZvyK+b6xrBgT6Xe5YgQVLnpGwAOxQwDa8zxnxCfRfStC6gddj0GReVW5VMSZl/B32b/JFH97aDUaDNefEGO2m800bSFK40LqC7J6ZDjtVV+ZR0A3SVqXzSQZqWTirr4JW713MX7B+JC/pSv6Fh+v0py0Q/aD31Pb/kTTVYiL3gW/wWv4zHY2KZm897qfC6cuZzV+8txe0N70GYoaso8iQ7uTKBGl1W9wyPmNzAWbuqQ47XVhKJ3eMr8Mv3dW/QuRYQIWcqyk+qVEsMJGXY2HXQwd3MBvxmbrXdJIkRszS1ipH8rKNB95Lmtfr5h2KUYMkYysCSChE+2sq3AyazXH+M7Uz3e5CEk9xnJ8D49GNEjjiir/IlpjtVdAYApyOsCNXLZkqAOfFWhHbk/rH4tI407KOQKvUsRIUL+knRi5w3vjvPQDgpWbIWxHbOuw5yN+fx70VaeuHIsfVKiO+SYonU2bvyJHhipNCYS121o23aS2JvxiTDnjnhmzN3BDTvnMYh9UAaUQc6KVJaSRVl0f0zdh5Mw/BxGZycQHyUzO34pyqNlidjiUjvkeP6IJKgApSZ0I/er6j2k0hAIl95T52pEqJBmpRO7IK2MG6x/oNphI6/wt2SmBfe6uMfn59CX0/nU+zHvznuOPldfG9Tjibb578FYHnC9ynOTEjlHUdq1r3R7BM9fMQL/kiup3rcSpWgzUfVFZBuKyKYIaleTs3MeEzdrUfL9UqO5LXop3dNT6THoJFKyh4DBeJyjdF6xfgcoEBXkdYEaKTGhH7lfUFFDT7QzThK1LxpJs9KJJfQeSbExlRRfEcsWzyLz8tuCerwFG3Zzs28WKDBy30xAmpWWqqr34PGpJAT5zENZtYuNBytRMTL6xJEB269hwr1ET2j4oaYMCjdRuX89zpz15NVH0dsVxd6SGnYVVTGpciaxh2phLdRj4VDUEFKvf5fopK61YF2Ny0sC2oKRMUGO2m9kjtWaogh36Ebulxbm0U/x4cOAMbpjmjgR+qRZ6cwUhbKevyZlz+vE7v4MVb0VpZ3fpJvzn9UF1PvGcb5xOam+AvLKashMjAra8TqDPcVVvLNsD46fvsBsgLvv+hMZ8ZFBO97SXYWoqsqgdDupsbbgHCQqEXpPIq73JOKAHsACtGj59XsOsfPHM4mq2E6WZx9RioveNetZt/hDRl58b3DqCVFlVS7+6rmLNFMVjydmdsgxG1d2jgnhyP2qYm1KvMOYSEKQU31F+JB3QifXY+J1sOd1RnvXs2PfAQb2zg7KcbbmO1h+oIYNhlv4lXEdyYqDOet/JHPK1KAcL5ypqsrS3aW8uWw/q3fl8a3lPrKM2gqz78/vz1WXBm9QYf2q//CD5R32xF4JnBa04xxNUrSVqcN7wfC3AKiqrWfZqzdyquMrfGVdL8q/pMbND/4T6B4ZgWIJXoP6S9EJP0fuu7w+rKbQuwTnKtealWprKgk61yJCh0xd7uSiMoaQZ+2DWfGxf+n7QTvOO8tzADh9aA8KE0YDUL99XtCOF45q3V7eW3mAc5/6hmvfXM2SXSXUKzYqovugop3xit/+Pi5vcHJLfA1TljMNJfRL0P8//ZhIG4a0wQBYnAd0rqbjlTVECiTFBD9qv1FU5lDu8t7BvZ7fNUX9hxq3Qxv864pK17kSEUr0/4slgq6u/wUApOd+hc+vBnz/5TVuhm16kKuN8/nt6GTM/bRE1O5lK0J+wbSOkF9Zx6Pf7ODyR97F+PWdzKq6jn7Wcn57Sk+W/HESw295E9+1XwNwun8lC9bvCEodGw4UM0bV8jVST2z9lOVgMGecyGzfqSxTh+ldSoerL9rDJcbFnGzc2WHHVKISWR01kXVq/5BNsZ1tnEq/+nfYOeqfepciQohcBuoCsidei3/Tk/T2H2DtjhxOGhTY6YDfLV7CVYb5+AwGDIl34befw86Vb7Ha1wdjXiWjs7vmydz1uRW8uWw/xVuXcJPhK+4zrmv6L+7LSaXYJgxq2DISU0waxVH9SKnZRfEP78CYxwNez661ixip1FFltBPTfUTA998W8f1P4ZI5XqKqjdymqkEdUxVqIgtW8oT5NXZUnwz8tsOOmxxjJd9RT2mINisFDVH7SckyuFb8TJqVLsCSkMnrvZ7jyW2xnLfNyUmDjv+clvL6/FjW/RuAwtSJdI/Pxgi80O9tvt5UwO27SrpUs+Lx+flmSyFv/7CH5PyF3Gz6mpHm3U2Pq/3OQjnlTmw9Tj78iYqC9aQbYOGfOcXxNTsL/kb/9NiA1mbY+z0AFWmnEWMIjZOqmQkRKArUuH2UVrtJ7sBLInpTq7XLHZ6IxA497gTjZoYYd1Fdkgx0TL5LS6mq2hS1380uUfviZ6HxF0sE3dBTz8GFhW82FwZ0LZfFG3dzpm8RAMln3NF0//h+Wnz40l2hGz4VSHVuHzMX7+G0xxZxx4c/sftgEU+ZX2GkYTd+gwVO/A3ctgblyo8gaywc5QyCfcwV1Bhi2K724JMV2wNaX5GznsG1awCIH3ZWQPfdHlaTkcxYM1lKIQfz8/Uup0MZGrJO1MiOidpvdKnzLR42v4mxaHOHHrclymvcPKU8y1Pml0lVQjcLRnQ8aVa6iDHZCXSz26hyeViy9WDA9pu/+N9EKS5KInph6TOx6f7xfZOx4iYifyXlNaE5kC9QdhdVcemLCzg4fyaFzjqSoq3cNGU4yql3wml/wHD3Fvj1C5Dcr/kd2exsvGQld3hu56ONldS4vAGrcdXG7Qwx5AAQM+hXAdtvILzEDJZY78G7fY7epXQoS72WdWLooHWBGrmtWjhkbXkBqhr4MWztUVBRzVmGVVxk/AGryax3OSKEyGWgLsJgULg3cxsn1L3ErsUTYfgr7d7njvwKJlR+DgYwj/v9YWcL0iJVNthuIYJ65m+awJSxo9t9vFD0ydo83vxiPs8oTzPAnMeZ40/hpNPPapgSen+r93dy/+70TNrD/tIavtiQz5UnBSbBc8XeIsq9UxmX6qNfB384Hk9dVAa41uMr7VrTlyM8Wkqr1d7Bl2KiU6AScvMOcPUbq3jg3MH0S23BytsdoKwwF6Oi4sWIKbpj1ksS4SEkzqy4XC6GDx+Ooihs2LBB73I6rdHZCfQ2FDC0Yj6OAJztWDVvFlmGYmoMMcSddNXhD5ojKI3uC0Dlpm/bfaxQU+v2cs/HG1g0+zU+NvyFAYY8/JHJjO+X3K7sCoNB4aqTetBbOcRPP8wJyDdfj8/PV/sVpnuvo+78N9u9v0Dzx2sDvk2OrjV9OcbXECnfQVH7jbKysgHoZqzkxz1lnPXcD0z/ciuOWk+H1nE0NSUNgXCmpC69DIM4Ukg0K3/605/o1q1j4qa7sowxF1BLBBlKKWt++KZd+6qsdfPlXh/zfCNxDLwSLEcm1fp7TQYgqfCHkDvd3B47C6u44PlFDN30CDMtzxOj1KFmnYLh98ug5/h27/+KqHUssN7LDc6XWH+got37W5tTQbXLS2KUhaHd7e3eX6BZU/oAEFuXq3MlHcfj8xOnNkTtJ3RsnogxsRcAVxq/582Uj4n01/D28hwmPrmI91cdCEq8QUs1BcLZZCaQOJzuzco333zDvHnzePLJJ/UupfOzRJKbqjUQvk0ft2tXH6/NY50nm6cTp5N+0aNH3SbtxLMBGOnfzM6C9n/o6k1VVWatyeXmFz9nhvM+rjd9pz1w6t0ov/kSYgLzBzZq4BTcipUBhjyWLZrb7v39tGkDJynbmdQvHoMh9KYGx3XXxvIkewt0rqTjlNe4udtzK3d7biWmW9+OPfgJl8PQS1BUP5Odn/PRr1T6pUZTUevhr59t4dwXlrFqn05rBzkOAeCRQDjxP3RtVoqKirjpppt49913iYxsWdy0y+XC6XQedhMtlzhWu1wzqmYJBeVte+18fpX/rNBO2V83LhvlGNNgrT1GUW2IIVapZee6xW06Vqiodnm5e9YG/vzpZgb693CiYQ9+qx2u+AjOmA6BXMMkIo6qPlpoW8b+j6lo5yW76B2fMMv6IHdVPR2I6gIuNas/APFUUVnRNWaAlFa7WO4fwg8Rp2OM6OCzXSYLXPRv+M0XcNLvGTzpUubecRrTzx1Eis3HtgInl722kmkfrG+aRtxRzDUNM8Ls3Tv0uCL06dasqKrKddddxy233MKoUaNa/LwZM2Zgt9ubbpmZHbMAWGeRPPRXVBriSFSq2LB4dpv2sXTTHq6ueoNBtnLOG97MHxWDkeLksQD4di1o07FCwbZ8J79+YRmfb8jHaFAYNvU3+H81A8PvlkD/4EwDTjjtZgD+T1nBFyu3tXk/BytqGVKnTVlOGHxGQGoLtMiYeMqIA6AoJ7BTtkNVY9R9UnRwV9luVq+JcJZ2VtRkNHDdsGhWRt7DWz2+JUJx8fWmAiY/tZjnvt8d0LiDZrmqALAmyN91cbiANyvTp09HUZRmb2vXruWFF17A6XRy//2tmzFx//3343A4mm55eXmB/hU6N6OJwsz/A8C2o23NSv6i17jF9DVvRT5HhKX5QXBRg7SFDHs5V1Ln7qA/eAGiqirvrzrA9TO/4Q7HYwyNreWjm0/m9xN7Yxh7KyQENgn4l5TMMVRG9yFCcVOx6n38bRxHsHzzboYpewGIDLEpy7+0MPpsnvNewIHarhEKV1u8n0uNizjNFELN2eaPMdSWMKn4P2xM+ge/S9tNvcfPM9/v4vSnljB3c3CnOvv8KnfW3UTf+v9gHn1d0I4jwlPAm5Vp06axffv2Zm9Dhgxh4cKFrFy5EqvVislkok8fbZDdqFGjuPbaa4+5f6vVSmxs7GE30Trdxl/Pf30TeLX6NHYXVbXquXsKKzmt4jMAzCfffNztU0acw/PG67jXfTMr9+t0HbwNquo93P7hT3z6+Ww+N97H+cblfNrt/Y5L41UUIsfeAMCZ9d+ybHfbwvUqNn+HUVEpi+od0qfW12T/jme8l7C9Ll7vUjqEqXA9j5tf5/Kad/Uu5Wcn3wqXvQex3bFU5XF/5QOs6Pkmw2OrOVRZx63vr+fK11exozA4l95Lqlz4/CqqwUxyfFxQjiHCV8CblaSkJAYMGNDszWaz8fzzz7Nx40Y2bNjAhg0bmDtXG0g4a9YsHn744UCXJX4htvcYvu3zd1b6B/H5hkOteu6q7z6kh6GEGkMMCSdffdztldh08gfdwG41I2zSbLcccnDu8z+QsvVNZlkeJF0pR03sg+WsRzq0DsuJV+BRLKQq5Xz947pWP7/e4yOlaBkAau/QvATUKCtRm012oLxG50o6hs9ZDIDblqRzJb+gKDDwXLhtNYy7Awwm0gu+5zP1bt4esBqrycCKfWX833M/8Mjc7QE/y5Lv0MbHpMbaMIbgQHChL93GrPTo0YMhQ4Y03fr102YE9O7dm4yMDL3K6jIax5p8sSG/xX90nPUeeu57H4DKAVeApWWDosMlel9VVf6zIodrZn7PvVUz+If5XcyKDwZfgHLzYkgN4KJKLRERT8H5n3Cy6yX+u9tPgaN1gx1X7yvlVGUDAInD/i8IBQZOz3grGUoxxsKNepfSIfzVWrNCZMeuC9Qi1miY+iD87gfoMRbFU8PElFoW/GEC/zc0Db8Kry3dx6r95QE9bEV+Dh+aH+KfyqsB3a/oHHSfuiz0ccbAVEZZDnBt1ets3LmnRc+Zv3gJ45TN+DDQbcq0Fh/rlB6RXGJcwvUVz3OooratJQfdfZ9u5vUvF/Kp8S+cbVyNajDDWY/DxW+BVZ+Ezx7DJjK8Zyp+FT5c3brxWds2LCdZceAyRKBkjQ1ShYHR37+bZda7+EP5P/UupUNYawsBMIbwpTlSB8F1c+H8V2DSX8mIj2TmVSP5zSADCThZvjewl3Vri/cy1riNYd5NAd2v6BxCplnJzs5GVVWGDx+udyldQoTFyDORb3OTaS65yz447vZ+v4pp7esAHEqdhBKf1eJj2SPMPGx+k6tNC9iwflWbaw6mvSXVzFqbRwV24mMiUWMzUK7/Bk763VEXHexIV5+chYKf+as24vH5W/y8j3PtnON6iO2jHwZTaA9cTckeCEAaZVRVdf44ghhXEQDWpMAspxA0BgMMvwIi4rSfVZXbHE/zjfU+tuzeH9BDuSu0ZrzWFlorQYvQEDLNiuh47oEXAtDj4Jzjfggu2VVCbr2NKiJIPv2OZrc9giWSgrgTAajdPq9NtQbbt1u0b7qj+mUSf8OnKL9bCpmhsZ7RWfH5/GD7A0+6H+T7rYUtes7+0hr2ldWx09Cb3pN+E+QK2y8mPo1qIgAoPLBT52qCy+Pzk+jTLonGpmbrW0xr1ZaT7NxKqlJJfP7igM7wUxxaxoo3WtLMxZGkWenCsiZcgx+F4exkzU/rm9327eU5POW9lJdGfE1E3wmtPpaprzbAM710Od5WnB3oKHM3aX8ozxqSBgm9ICp0xhKYk3qRplQw2HCAH5d936LnLN6pjYkYnZ1AjC0MVq9VFIpNWmpp5aFdOhcTXEWOOtIVbbyHPTV409+DIioRZbQ2S20M21ifG7hkakut9t+gYpcxi+JI0qx0Yaa47uTEaGc8ylZ+eMzt9pVUs2RXCYoCV5w6sE2XRdJGNkTvq9vYlFPUtoKDJLeslmml/+Jty+OcmVisdzlHikzA1e8cAAblz2ZfSfVxn1K84VueML3C1Unh88FfFaEFgdUX79W5kuDKr6zjt557echyJ4a48PtgVhrWvxpr2MqKAI5biW64NGZLlEA4cSRpVro40/DLABhY8i019UdfdXXB93M5SdnO5H7JTVNMW8uYOohKYxIRipt961t2dqCjfL9hN5MNPzHRsAF7dLTe5RxV1NgbATjPuJxPljcfJFbn9tGj6HsuMS1lnL/5M2ahxGPPBsBQEdixEKGmwOlipX8QmxPPCvmxREfV42T8ipEehhL27G57uvIvuby+pktj0SktHw8nug5pVrq4zHGX4sZEH+UgK1cuOeLxapeXoTueY5b1Qf6S0I7IfEWhIv1UAEz7FrZ9P0FQseErrIoXR1Q2JPfXu5yjyxpHTUwvohQXrp8+bjb+fMXeEk5rmLJsHxqc5QCCwZSkrQYcUdO5U6kPNay30z0uQudK2sgagydlGAAxhSupdXvbvcsihwsT2ns6RpoVcRTSrHRxSkQ8BxJPo0SNZfOWLUc8vmDxIk5WtuDDQM/xV7XrWHEnnIlfVVCqC6msbd/ifIFyqLKOgZVak2Yacp7uM3+OSVGIOPl6AM73z+erjfnH3HTLxrVkKKV4FAtK9qkdVWG72XqO5QXv+czyTdK7lKAyHFrPFcYFDDPl6F1Km1kbxq2dpGxjbU77x63kO+o4y/0YU6L+i5I6pN37E52PNCsCy/nPc7LrJV7I70dptavpfr9fxdAwXTkvZTKG+PZNs4wffh6Xxf6HOz3TWLYnNFbXnb9xPxMNWhBZ1LALda6meYbhV+FTzJxg2M+yHxcfdRtVVWGvdpnNmTIaLG27bKeH1D4jeMp7KbOqh4fdOlKtkVm8gBnmNzjZ+a3epbRd/7NZkngpn/pOY8W+9o9baQw8TI6LAUPz642JrkmaFUFWZg+GZCTg86t8/Ytv7Cu37eUM9yIAUqbc2f4DWSIZ1l9bAypU0mxLfppDpOKiytYN0ofpXU7zohKpm/wgl3sf4IuCeLYcchyxyd6SaobXrwUgZsiZHV1hu8RFmom1mQDILQ/d8MD2iqhrCISLC+OBpJmjKRn3ACv8g1kZgGYlv7IegHR7mF4aE0EnzYoAtPh9A37WrFvddN/BBa8SobgpjOhLZJ/TAnKcxuj9H3cWBnUF15YoctbTt0wbP2MYHMKXgH4h+rTfkzJ4EqDw3soDRzy+dGsuJxl2AGAZELqrLB+NoiicGF/HWMNWCvI674wgu1ub9RKZHN5jM8b21qb3bzrooNrVvnEr9tx5fGh+iPNqPg5EaaITkmZFAHBelosfrXfwUNk9HCiu4ECJk3HlswEwnnxLwD7IxyS5mGV9kNnum9ldeOSZgY703dZCfvQPYbP5BKKGX6RrLa1x9cnah9wXGw7h/J8ZXFu3b2O/mka1LR2S+ulRXrvc636ZDy0PY9gTmuGB7VXj8pLi1y6B2tOy9S2mnbpHwQX23fyKFazJad86QREVuxlr3EZ3b+ceXC3aTpoVAUBi977YjBCvVLNp8ad8sXQNbtVElSGW5HHtG1j7SzZ7KkMNB0hVKtm2/oeA7bctvtlcyCe+iaw87Z2QSattidGJLp6NfZ9XeZjZ6w423V9V7+HLQ1Gc6X6Mst8sDoszRf/LFdtwtqG8c05fLqisIbUhEC4qKbzPrJC3imdcD/A383us3Nu+MWi22gIAjGGYOyM6hjQrQmMwUpKtBY9F7vyM1zd7Od39JFvP+hTMAbyObDRTnHQyAN6d8wO331Yqq3axar92rf3MIWm61dEWisHEuZ7vGG/czIrli5sup/24pwyPT6VnUhRZ3cLrd2pkSNCmL9uqj7zE1RmUFh7EovjwYYCYdL3LaZ+MMfgVE92UcnJ2HzmTsDViGi6NRYT6WklCN9KsiCbdT7sGgHHe1fjrq8hKjGbMyMCfcYgcOAWAbMfKZvNCgmn+loNcYljE+G5+MhMidamhzaKT8ffXEoFPccxh1X7tm/qP2w9gxc3E/sl6VtcuUWnaAOz4+kM6VxIcziLtjFGlMRGMJp2raSdLJJ5uowBIKF51xCXJlqp1e0luuDQmGSviWKRZEU2iskdTZM4kQnHza+NyrhmbjcEQ+EsJycO1oLLh7GbtLn2+QR9Y9x2PmV/n5eo7wR96axUdj3nMbwE437iMWct3oKoqMTs+YYP1Zq6ve1vf4tohMXMAAOn+Qlye9oeNhZqdvu5c7v4bX2b+Se9SAsLapyFvxbCNtW0ct5JfWU+6op3ljAz3S2MiaKRZET9TFGr6nAvADPMbXNovOGMelISelFgyMCl+8td/F5RjNKey1k1moZZF4utzJhjC8D+D7PG4YrOIVeqw7PiCpbtLGeFeR4TiJj01PC8BAcR374NfVYhW6inIP3j8J4SZA9UGVvoHUdOjkwTfNYQOjjVsY0Ubs5OKysqIU2q0H+zdA1WZ6GTC8K+0CKbsKb/DZYymIuUkYoI4tbImQ/tGFpG7OGjHOJb5W/OZYlgDQOyJoR0Ed0wGA9YxWqLtZYYF/P2/6xhn2AqAud8UPStrF8Vso8SYBEBpXvNrIIWjxvCzTpMnkjEGn8FCqlLJgT2b27SLiuJCitU4apQosNkDXKDoLKRZEYcxJGRjvXc78Td/FdTZJMkjz+d734nMr+lNfsNaKR1l77oFJCtO6k0xkD2+Q48dUMOvwq+YONGwhzNqviZKcVFnTYK0oXpX1i7zE6/hT56b2O1K0ruUgOtfMo8rjAvoaQrcasW6MtvwNYxbSSxZg6Ou9eNW9njiGeOaySNDvg50daITCfMRXiIobLFBP0TU4Km8lB7FT7mVjNtVwuVjOmYWgLPeQ9qh+WAEd69fYTNZOuS4QRGdgv/Ea3lrXRlDDfsA8PeaHJZTln/pYK/L+DhvLxHVneTsQwNVVTmv/nOGmfdS7BoHhHhicgtZznyQGz/YzILyJCbvL2fKoNRWPb/xy0paXEwwyhOdhJxZEboZ31ebtbJ0d8dF7y/cVsQUg5bSG3ti+ATBHYvp3KcpHP1nBii5AEQNCq/U2qPJTtRmZ+WUda7I/fIaN2loZ1TiwjwQ7jAZo0jtOwoVAyv2tv6MUYGjIWo/XFehFh1CmhWhm/H9kslQSlB3f4/X1zEzctavX00qFbgNkdB7coccM9huPTGSgYY8VMXQKX6nnrFwsmEb3YsW6V1KQBWWO0lGS222JHSuPJGTe2nR+21ZJ2hq0b/50PwQQxxLAl2W6ETkMpDQzTDzQZZZ76RatbHpwHWc2Kt1p49bq8blZVZOBF95Z/LZxfFkm21BPV5HiY+NgakPoVTmQWSC3uW0Wy9jIR9ZHqK0PhaP717Mxs7xnaq08AAGRcWDCXNk5xqPc5phI0+ZZ7K0eBiVtScRF9myy6uqqpLt2sVY4zZKTB07dk2El87xV0CEJVPaYKqMcUQr9exZvzDox1u0sxiX1489MY2skeF/uaRJVCKMux3+73G9KwmIxIz+ACQpTgqKQ2N17kCoKdYyhSpMKeE5Xb4ZceVbuMi4jCmGtazc1/K8FWedlxS1Ya2kVMlYEcfWuf6LEeHFYKAs9RTtn/uC36x8s1lbf+TMIekoYT4ItTMzRNipVLRB3iW5O3SuJnDc5doifbW28M3BOaaGvJWTDdtbtU5QvqOuKRCus10aE4ElzYrQlX3omQD0r16No7Ztcd0tUef2MWjXTD6xTOcy+9agHUcERrlFCwerzt+tcyWBozi1kDtPdJivCXQ03UfiNUZoZ8P2/NTipxWVlBCrNFz+iZVAOHFs0qwIXcUP0S7HDDXksHrLzqAdZ8muEqaoKxht2EV2VPCaIhEYNVHat2xP6T6dKwmcz5nEZa6/Uzj4Rr1LCTyTBX/GGABSy9dQVu1q0dOcRTkA1BiiwRodrOpEJyDNitBXTCqFEX0BKN0UvOj99etW0s9wCJ9iQul3ZtCOIwLDH58NgNm5X99CAmhHlY1V6kBisk/Uu5SgsPTWAhbHGraxen/Lxq24yrQp91WW4A6uF+FPmhWhO3f2RADs+UtRVTXg+3d5fUTv+waA6m6nQkRcwI8hAsuWoq2+HFPbOdYH8vr8FDm1PJFu9s4xC+0IPbVmRRu30rKB0c7qaorVOOqjugWzMtEJSLMidJdy6vVM893NfbVXsae4OuD7/3FPKZPVlQDEhOtaQF1MTL/x3Oe5kUddF+PzB76B7WhFVS5uNXzG1aaFJFk66WXIbiPwmqIoUBPZvqdll+/m+UYxxjWTjae+HOTiRLiTZkXoztZ9MI7ss3ASxZJdgZ+qunLdeoYYcvBjxDDgnIDvXwReSo9+fMrprPb2obDhjEQ4Kywt54/mT3jI9G8Mqk/vcoLDaKbqti2c7ZnB6lIzpS0Yt9KYXtstPirY1YkwJ82KCAk/R++3bZn5Y/H4/Fh3zwGgKm2MlkkiQp7JaCAzXovdP1Bao3M17VdZoI29qVMiOvXKwvHxCQxI06adHy/N1u9Xf7EKdSe9NCYCRhJsRUiY1N1HtfFTEnJqqfe8j81sDMh+V+wtY5O7G0usozht1BUB2afoGOOjDzGyYgNlB6KhzwS9y2mXmhJtIKnDnEpEJ8/4OblXAvsKSlm5p4RzTjj2WJTSGhdvGB7BbPSR6uoFDOy4IkXY0f3Mypw5czjppJOIiIggKSmJCy+UMQVdUW873G3+lMuV+azdHbhBld9sKWCJfxjzTngWw6hrA7ZfEXyX1c3iCfNr2HLDf40gX6UWCFcX0QkD4f7H7/P/yibrjZTsWdfsdgUVdYwy7GKsYRtmcxivfi46hK7Nyqeffso111zD9ddfz8aNG/nxxx+58sor9SxJ6ERJ7EO5OQ2r4uXg+nkB2afX52fe1iIAzhrSCYO4OjlvnBa/bqw8oHMl7ac4DwHgjen8s17iI4xYFS8ZjrUUNzPeqLS0kEilYVxLbOd/XUT76NaseL1e7rzzTp544gluueUW+vXrR//+/bn44ov1KknoSVGo6q5NfTTnLMJZ3/4ZE6tzyjmlbjFDIso5qVf4L/DX1ViSewMQVZOrcyXtZ6vVlnowxWXoXEnwmXtrl+zGGraxoplxK86ihowVox3MER1SmwhfujUr69ev59ChQxgMBkaMGEF6ejpnnXUWW7c2H4XucrlwOp2H3UTnkDT8/wA4ybOK37z4LfvbObBy6U/becb8El+r0zDXFAaiRNGBYrv1AyDJkx+U/J2OFOPWzvDZkrrAYn09TwNgjGEHq5rJW3GXa81KtVUC4cTx6das7NunzcOfPn06f/vb3/j666+Jj49nwoQJlJcfO/1wxowZ2O32pltmZmZHlSyCLGrA6Xit8WQopTzlvJfbXvxvm6cy+/0qvu1fY1RUnAlD5DRzGErM1AZcZlBMiaNW52rartbt5Y/1N3KZ6+9ED+lEq30fS9oJeMwxxCp1lO1Zc8zN/JXapTF3pFyiFccX8GZl+vTpKIrS7G3t2rX4/X4A/vrXv3LRRRcxcuRI3nrrLRRF4ZNPPjnm/u+//34cDkfTLS8vL9C/gtCLLRbTb+fgi+lOb0MBv/Iu4vq3VvP60n2t/ma9LreCU93LAYgcdkEwqhVBZknIxIs2/iE/L3zXCMqvrKeARLZahhKT1AW+XBmMkDUOgCznOgodRx+3YqrJ1/5hlwUMxfEFfOrytGnTuPzyy5vdJjs7m6qqKgAGDRrUdL/VaqVXr17k5h77GrXVasVqtQamWBF6UgdjvGkB3pWvku84D/+6fB6eu53tBU4euXBoi6c0L/ppF3cbtEuKpsHnB7FgETRGE6WmVNK8+VQc2gVDh+pdUZs0Zol0i+s6WSLm3hNgz3eMNWxj5b4yzh9xZEPiqFcpVuMwJ3SBS2Oi3QLerCQlJZGUlHTc7UaOHInVamXnzp2ceuqpAHg8HnJycsjKkjdvlxabjmnqdB5VVQZ2i+OxOZvwb5zFZSXVvPabUaTGNv9HX1VVXFu/xqz4qLL3IyapTwcVLgJtXuZdfLezgjG+LCbpXUwbVRbs4w+mj7GY+gPhnRfTYr0msjvuVL4v6Yd375HNitfn55G683lIPZ/Vp03WqUgRTnQbsxIbG8stt9zCAw88wLx589i5cye///3vAbjkkkv0KkuEEEVRuG5cNkv6z+ZZy0wuK3yS859fzE+5Fc0+b+NBBye7fgQg4oTzO6BSESzuXlP40T+UXQ7dI6HazFewldtNn3NuzWy9S+k4qYM5eOZbvO8746gzgoqqXPhVMBsVkqK7zhkn0Xa6/gV44oknuPzyy7nmmmsYPXo0Bw4cYOHChcTHx+tZlgglikJK/7GoioErTYt4zPUQN7y6kP+uO3Zw3Hcbcxlt2AmAacj5HVSoCIasRG3NmNyy8B1g66vU3qv1kZ0/EO6XRvdMwGhQyC2v5VBl3WGPFTT8nGa3YTB07kRfERi6Nitms5knn3ySoqIinE4n8+fPZ/DgwXqWJELRybegXP4BqjmS8cbNfGB8gKc/WcCDX2/D6/Mftqmqqny9rZSxrhdYO+5lSBl0jJ2KcNAzysVFhqWcVDY7bKcvm6q1gaRqbOfPWPmlaKuJyWn1nGbYxMq9h59dKSnKZ4nlLl72Tge//+g7EOIXwvfcquha+p+Fcv1c1OhUBhjy+Nz6D1b9uIDr316Do/bnALmt+U7yyutQzZEMmngpdPJ1WDq7THMVT1le4Q71Aypq3HqX0yYRdQ2BcPFdYCbQLxXv4PXy63nF/Ayr9hYd9lBNSQ5ZhmJ6+PLAIB9D4vjkXSLCR7cRKDcugJTBpCiV/NvyNKt2F3DeS8vYU6zNLvtms/YtdlL/FCItsk5nuLMm9wIgVqkjLz9wa0Z1FFVVifNoH9SRyT10rqaDJfXDY40nSnHh3LPqsIfcZVrkRI1NAuFEy0izIsJLXCb89lvodyb1575MclwsOWW1nP/SchZsL8K54Qu+sfyZ30cu1LtSEQjmCMoM2uzCirydOhfTehW1HlJV7RKIPa2nztV0MIMBJfsUAHrV/ERe+S/GHTWsleSJlrBG0TLSrIjwY4uFK2eRPepMvpx2Cif1TCDVfYCb3lnNiJofGGjIY4Clbcm3IvQ4IrSxHrVFe3SupPXyK2pIU7REbktXuwwEmHodfZ0gc412aUyJlUA40TLSrIiwlhht5b3z7Hwd8U9eNT/NGYb1AFhOuFDnykSguGK03CWlPPxSbPMr6znD/QT32x+FrvjB3LBO0CjDLtbs/Xl9rmiX9m9LQtdr4ETbSLMiwp7ZcYAIg5cpxvXEKrW4I1IgY4zeZYkAMSRql0+sVeG3+nKB00WemkpF0hgwdsExVMkDcFsTiFDcVO1Zhaqq1Ht8JPhKAYhOkQBQ0TLSrIjw1/8suPYriEwEwDLkPJlh0IlEpfUFIN51SOdKWi+/IU8kvQtF7R9GUTA0nF3pW/sTueW1FDjqqVBjKFbjiUyWZkW0TBds9UWnlDkGbloEmz+BkdfpXY0IoPjBk7nmm/vYr6Yzp86DPcKsd0ktFpO/jD+YltHb/yuga2ZImcbewlOFg3mvsAcZ+8rIjI/kFs/d9E6OYkGPk/UuT4QJ+fopOo/4LBj/R4g6/tpUInxEJXRje+RoDqrJYZdkm1m+nNtNnzOgatXxN+6sssbBoPOpIJYVe8vIb1iFuVtchM6FiXAizYoQIuRlJ0YCkFNWo3MlrRNV3zCQNLFrDyQd20u7RLtiX1lT1H66vYteGhNtIpeBhBAhb6p1C6eaVlCX44Vh5+ldTot4fX7ivSVggOjkbL3L0dXIyCLuMn/Ggeok6remscTyEhWl44E39C5NhAk5syKECHkT6+Zzl2k2Efkr9C6lxYqrXKQrWrZIbGq2vsXozJq/iruMn3CZaTG1RXvIMhSTiEPvskQYkWZFCBH6EhqmLzsP6FxIy+WXV5FKBQCGuK61iOERsscDMELZQ5aiLT+gdPXXRLSKNCtCiJAXkapNX7bXh8/6QBVFuRgVFS8miErRuxx9JfbGHZGKVfFwtlEbbGxN7GJrJYl2kWZFCBHy4rv3ByDdV0CNy6tzNS1TU6ydBXKYkyT3R1Ew9tLyVpIV7fJPbEq2jgWJcNPF/wsSQoSD6HTtzEp3pZTckkp9i2mhjWpvTnM9w1cDntC7lJBg7DX+sJ+tErUvWkGaFSFE6ItJw4UVo6JSkrdb72paJM/hJU9Nxdh9mN6lhIaGJNsm9i64VpJoM2lWhBChT1Eot6QDUFUQHs1KgUPLE+neVaP2/1d8T/zmqJ9/jk7VrxYRdiRnRQgRFhYMfJB/ry7mFHUIZ+tdTAtMqPiUM00VZPlSAPlgRlEw3LocYjO65qKOol3kHSOECAuRWSeSs2oj6WVuvUs5rjq3j7N8ixhqyqHGf4ne5YSO+Gy9KxBhSi4DCSHCQlaidgnhQBhE7uc76khXygGITJIpukK0l5xZEUKEhZ7WKu40foqtxk29ZyI2s1Hvko6pqLSS3ooTAMUu4WdCtJc0K0KIsBBv9nK3+VPqVTN5ZdX0TbPrXdIxVRblAOBSbFgj4vUtRohOQC4DCSHCghKXiQ8DNsVDwcEcvctpVm1pQyCcJQUURedqhAh/0qwIIcKD0Uy5OQ0AZ/5OnYtpnq8iD4D6iDSdKxGic5BmRQgRNqojtdRTT8k+nStpnrEqHwBfjASfCREI0qwIIcKGz54NgKEyR9c6juc1/7mc6nqW8pF3612KEJ2CNCtCiLBhTu4NQHRtns6VHJuqquQ5fBxUU0jM6KN3OUJ0CtKsCCHChr17PwCSPfm4vX6dqzm6yloPdR4fAGl2idoXIhBk6rIQImzYB03mrM+eZq8nke8q6+iZFHX8J3WwfEcdj5hep86cgM13KphDd4q1EOFCzqwIIcKGYrOjJvbFjZmcEE2yLS4u4UrTIm5QPwUldIPrhAgn0qwIIcJKVmIkAAdKQ7NZqSreD0CNIQas0TpXI0TnoGuzsmvXLs477zySkpKIjY3llFNOYdGiRXqWJIQIceeoS3jS/ArK/qV6l3JUdWW5AFRZZaVlIQJF12bl7LPPxuv1snDhQtatW8fw4cM555xzKCws1LMsIUQIG+TayMXGpcSU/qR3KUelVh4CwB2ZrnMlQnQeujUrpaWl7Nmzh/vuu48TTjiBvn378uijj1JbW8vWrVv1KksIEeJMSb0AiKjO1bmSozNVa4Fw/lgJhBMiUHRrVhITExk4cCD/+c9/qKmpwev18uqrr5KamsrIkSOP+TyXy4XT6TzsJoToOqLT+wKQ5D6Ez6/qXM2RIuu0M8PmhEydKxGi89CtWVEUhfnz5/PTTz8RExODzWbjmWee4dtvvyUuLu6Yz5sxYwZ2u73plpkpfxCE6EriuvcHIFMpIr+yTudqDufzq8R5iwGISs7WtxghOpGANyvTp09HUZRmb2vXrkVVVW699VZSUlL44YcfWL16Needdx7nnHMOBQUFx9z//fffj8PhaLrl5YVukqUQIvCMidploDSlgryicp2rOVxxVT3Xuf/ERPdzxJxwjt7lCNFpBDwUbtq0aVx++eXNbpOdnc3ChQv5+uuvqaioIDY2FoCZM2cyf/583nnnHe67776jPtdqtWK1WgNdthAiXETEU2OIJspfTdnBnTAwQ++KmuRX1uHGjCe2B8bIOL3LEaLTCHizkpSURFJS0nG3q62tBcBgOPzkjsFgwO8PzRhtIUQIUBQctgyiandQXZKjdzWHya+sB6B7XITOlQjRueg2ZmXs2LHEx8dz7bXXsnHjRnbt2sW9997L/v37Ofvss/UqSwgRBn4c/QL9699moXeY3qUcpiZ/B0+ZZ3KV7zO9SxGiU9GtWUlKSuLbb7+lurqayZMnM2rUKJYtW8YXX3zBsGGh9QdICBFakrtl48JCblmt3qUcRi3ZyUXGZYypDc3AOiHCla4LGY4aNYrvvvtOzxKEEGEoO1FbwPBAeQ1+v4rBoOhckUZ1NATCRXXTuRIhOhdZdVkIEXa6G8p43PwaVtwUV00izW7TuyQArDVas6LYQ2fQrxCdgTQrQoiwYzYaudS4GI9qZH1JJWn2NL1LAiDKVQSAJVHyn4QIJFl1WQgRfmLScWPGrPgoObhX72oAqPf4SPSVABCbkq1vMUJ0MtKsCCHCj8FApU1be6emcLfOxWjyK+tIV7SQuojkLJ2rEaJzkWZFCBGW6qN7AOAv26dzJZqCihpSqABkzIoQgSbNihAiPCVosfsWZ2isvnzI6Waw6y3uSX8HokNjDI0QnYU0K0KIsBSZ1gcAe10e9R6fztVAQWU9HkxYknqBQf60ChFI8l+UECIsJWZoqy9HqHWs2q//goaNK0Cn2yVqX4hAk2ZFCBGWlF4T+OugeVzl+StLd5XoXQ4ZBd/xlHkmY2oX612KEJ2ONCtCiPBksjJ2gJZnEgrNSnfnBi4yLiOzfpfepQjR6UizIoQIW6f2ScKgwN5iJwWOOt3qUFWVGLcWCGdL6qFbHUJ0VtKsCCHCVlxdHl9EP8q3lj/zw65S3epw1HlIUcsACYQTIhikWRFChK+oZAZ5t9LPcIgtWzfqVsahyjq6KVqzYkmQqH0hAk2aFSFE+LLFUptyIgCWnEX4/KouZRSWOUlWHNoPdmlWhAg0aVaEEGEtcuBUAEb7NrD5kEOXGhzFBwBwKxaITNClBiE6M2lWhBBhzdj3DADGGbaybEeBLjXUlB0CoMqSCoqiSw1CdGbSrAghwlv6MOrNccQodRRt+0GXEtb4+tG3/j/MHfWGLscXorOTZkUIEd4MRnw9JwKQWrocZ72nw0socNThwURcioxXESIYpFkRQoS9qKHnssI4mq2+HizfU9bhx8+vrAegW5xE7QsRDCa9CxBCiHYbejHf7R/IN8tziN9dwplDOm7VY59f5aqat0k1l5FVnwCM7bBjC9FVyJkVIUSnML5fEqBF76tqx01hLq6qZ5KynouMy4hXqjvsuEJ0JdKsCCE6hZN6JtLDWEb3yvXklNV22HHzK+ubAuGMcRkddlwhuhJpVoQQnUJU4WqWmm/nOcuLLN1Z3GHHLSopxa40NEex3TvsuEJ0JdKsCCE6h24n4jHYSFMq2Lt1TYcdtrokB4BaQxTYYjvsuEJ0JdKsCCE6B7ON+u4nAxB9cAlur79DDusqywWg2tpxg3qF6GqkWRFCdBpRDdH7J6sbWXegokOOqVYeBMAdld4hxxOiK5JmRQjRaRj6nA7ASYYdLN+Z1yHH9NWW41cViJXBtUIEizQrQojOI7k/tbY0rIqHym2LO+SQL7rOob/rHarG/71DjidEVyTNihCi81AUlIazK1mVKympcgX1cPUeH2U1bjyYSE9JCeqxhOjKJMFWCNGpRIy9gYf3ZzKrrBdJe0o5f0TwphMXOLSY/QizEXuEOWjHEaKrkzMrQojOpftIjEMuwEk0S3eVBPVQ+RW1/Mc8g+etL6PUVwb1WEJ0ZdKsCCE6nabo/d2l+P3Bi94vLSlkvHEzU7yLwSSLGAoRLEFtVh5++GHGjRtHZGQkcXFxR90mNzeXc889l6ioKJKSkrjjjjtwu93BLEsI0cmNslfzB8tnXF3/PtsLnUE7TnXxAe1/jXFgtgXtOEJ0dUEds+J2u7nkkksYO3Ysb7zxxhGP+3w+zj77bJKTk1m2bBllZWVce+21qKrKCy+8EMzShBCdmKW2iNsNn1CpRDFrVxGDu9mDchxvhTY9uiYineigHEEIAUFuVv75z38C8Pbbbx/18Xnz5rFt2zby8vLo1q0bAE899RTXXXcdDz/8MLGxR0ZXu1wuXK6fR/g7ncH71iSECFPdR+I2RRPnrebg1uUwsV9QDqM6tEA4jwTCCRFUuo5ZWbFiBUOGDGlqVAB+9atf4XK5WLdu3VGfM2PGDOx2e9MtMzOzo8oVQoQLowl31ngAkgqXUev2BuUwttoCAAyy2rIQQaVrs1JYWEhqauph98XHx2OxWCgsLDzqc+6//34cDkfTLS+vY1IqhRDhpTF6/xRlIyv3lQV8/6qqEu3S/k5ZE3oEfP9CiJ+1ulmZPn06iqI0e1u7dm2L96coyhH3qap61PsBrFYrsbGxh92EEOJ/NYbDDVf2sHrb/oDv31nnxeKvx68qxKRmB3z/QoiftXrMyrRp07j88sub3SY7O7tF+0pLS2PVqlWH3VdRUYHH4znijIsQQrRKXA+qY3oSXbWful2LgJMDuvtDlXXc7PkDKZEKq4ecHtB9CyEO1+pmJSkpiaSkpIAcfOzYsTz88MMUFBSQnq4NUJs3bx5Wq5WRI0cG5BhCiK7L3G8KzrXv4a0q5mBFLRnxkQHbd4GjDoDkuBgwWQO2XyHEkYI6ZiU3N5cNGzaQm5uLz+djw4YNbNiwgerqagCmTp3KoEGDuOaaa/jpp59YsGABf/zjH7npppvk8o4Qot2sU/7Gjakf877vDH7YXRrQfedXas1KtzgJgxMi2ILarPzjH/9gxIgRPPDAA1RXVzNixAhGjBjRNKbFaDQyZ84cbDYbp5xyCpdeeinnn38+Tz75ZDDLEkJ0FTY7p/ZPAwh49L4nfxMfWR7k+qrXA7pfIcSRgpqz8vbbbx8zY6VRjx49+Prrr4NZhhCiCzutbxJPz9/Fuj0H8fpGYDIG6Dta2V5ONmyn0GUJzP6EEMckqy4LITq1E1zr+cF2N7t83dh48DRGZiUEZL/GqkMA+GK6HWdLIUR7yUKGQohOzRidTCZFjDVs48cd+QHbr61Wy1gxxksgnBDBJs2KEKJzSx1CnTWRSMVFyfalAdmlx+fH7ikCICIxKyD7FEIcmzQrQojOzWBA7TUJgO6ly3HUetq1O79f5U//3UQaWipudIo0K0IEmzQrQohOL3LgrwA4zbCJZXvaPoVZVVX++vkWPvvpEOmK1qwYZV0gIYJOmhUhROfXcGZlsOEAP23b2aZdqKrKg19v58PVuRgVP7GRNkABuzQrQgSbzAYSQnR+0clUxQ8ipmIbvj0LUdUJx1x/7Fienr+LN3/U1hiacdFwIkbtBK8bjOZgVCyE+AU5syKE6BJso67mff9U1tQks7ekulXPnbl4Dy8s3EMSDmaclcGlozK1B0wWaGXTI4RoPWlWhBBdgvmU2/g2649sUXuxZFfLx6289eN+Hv92J8lUMi/hca7YcTvUVQSxUiHE/5JmRQjRZYzvmwzAD7tbFr0/a00u//xqGylU8F38YyTU7oeaUqirDGKVQoj/Jc2KEKLLGN87jjHKdrz7llHv8TW77RcbDnHf7M2kUs439kdJqDsA9ky4bg4k9OygioUQIM2KEKIL6Xfwv3xsfZBb+YS1Oce+lPPd1kLu+XgjqWoZc2IfJdGVB/Ye0qgIoRNpVoQQXYbS53QARhl2snLHgaNus2RXCbd/8BOp/hK+jplBkvsgxGXB9XMgXgLghNCDNCtCiK4joRc1kd2xKD6cOxYd8fDKfWXc/J+1uH1+pvRPINEGxGdrZ1TienR4uUIIjeSsCCG6DkXB1PcM2PgOPR2rKXbWkxJrA2B9bgU3vL0Gl9fP5AEp/PXqkSiOQWCygb27zoUL0bXJmRUhRJdiHTAFgPGGTSzdrU1h3prv4Lo3V5Poyed33XOYedWJWEwGSOwtjYoQIUDOrAghupae4/FjpLehgPe2bmJYhp1r3lhNvOsgn0Y8QmKlEyVvCPSaoHelQogGcmZFCNG12OzUpIzQ/r1/CVf9exX22gPMtj1Mkr8UJaEXJA/Qt0YhxGHkzIoQosuJOOtfXP72BlbX96Cnso+PbTNIVMsheSBc+xVEJ+tdohDiF+TMihCiyzH1PAV7n5PoqRTwie1hrVFJGQzXfS2NihAhSM6sCCG6pPsmpRN76AUS6ishdSj85guIStS7LCHEUUizIoToknpSCP1PgdJkuOq/EJmgd0lCiGOQy0BCiK4ptht0GwFXz5ZGRYgQJ2dWhBBdU2w6nPQ7vasQQrSAnFkRQgghREiTZkUIIYQQIU2aFSGEEEKENGlWhBBCCBHSpFkRQgghREiTZkUIIYQQIU2aFSGEEEKEtKA2Kw8//DDjxo0jMjKSuLi4Ix7fuHEjV1xxBZmZmURERDBw4ECee+65YJYkhBBCiDAT1FA4t9vNJZdcwtixY3njjTeOeHzdunUkJyfz3nvvkZmZyfLly7n55psxGo1MmzYtmKUJIYQQIkwoqqqqwT7I22+/zV133UVlZeVxt73tttvYvn07CxcubNG+nU4ndrsdh8NBbGxsOysVQgghREdozed3yMXtOxwOEhKOvU6Hy+XC5XI1/ex0OjuiLCGEEELoJKQG2K5YsYKPP/6Y3/3u2Ot1zJgxA7vd3nTLzMzswAqFEEII0dFa3axMnz4dRVGava1du7bVhWzdupXzzjuPf/zjH0yZMuWY291///04HI6mW15eXquPJYQQQojw0erLQNOmTePyyy9vdpvs7OxW7XPbtm1MnjyZm266ib/97W/Nbmu1WrFarU0/Nw65kctBQgghRPho/NxuydDZVjcrSUlJJCUltb6qY9i6dSuTJ0/m2muv5eGHH27186uqqgDkcpAQQggRhqqqqrDb7c1uE9QBtrm5uZSXl5Obm4vP52PDhg0A9OnTh+joaLZu3cqkSZOYOnUq99xzD4WFhQAYjUaSk5NbdIxu3bqRl5dHTEwMiqIE61cJK06nk8zMTPLy8mSGVCvI69Y28rq1jbxurSevWduE6uumqipVVVV069btuNsGtVn5xz/+wTvvvNP084gRIwBYtGgREydO5JNPPqGkpIT333+f999/v2m7rKwscnJyWnQMg8FARkZGQOvuLGJjY0PqjRku5HVrG3nd2kZet9aT16xtQvF1O94ZlUZBnQ309ttvo6rqEbeJEycC2mDdoz3e0kZFCCGEEJ1fSE1dFkIIIYT4X9KsdEJWq5UHHnjgsFlT4vjkdWsbed3aRl631pPXrG06w+vWIXH7QgghhBBtJWdWhBBCCBHSpFkRQgghREiTZkUIIYQQIU2aFSGEEEKENGlWhBBCCBHSpFkJY0uXLuXcc8+lW7duKIrC559/ftjjqqoyffp0unXrRkREBBMnTmTr1q36FBtCjve6XXfddUesJH7yySfrU2yImDFjBqNHjyYmJoaUlBTOP/98du7cedg28n47UkteN3m/He7ll1/mhBNOaEpbHTt2LN98803T4/I+O7rjvW7h/j6TZiWM1dTUMGzYMF588cWjPv7444/z9NNP8+KLL7JmzRrS0tKYMmVK0+KPXdXxXjeAM888k4KCgqbb3LlzO7DC0LNkyRJuu+02Vq5cyfz58/F6vUydOpWampqmbeT9dqSWvG4g77dfysjI4NFHH2Xt2rWsXbuWyZMnc9555zU1JPI+O7rjvW4Q5u8zVXQKgPrZZ581/ez3+9W0tDT10Ucfbbqvvr5etdvt6iuvvKJDhaHpf183VVXVa6+9Vj3vvPN0qSdcFBcXq4C6ZMkSVVXl/dZS//u6qaq831oiPj5e/fe//y3vs1ZqfN1UNfzfZ3JmpZPav38/hYWFTJ06tek+q9XKhAkTWL58uY6VhYfFixeTkpJCv379uOmmmyguLta7pJDicDgASEhIAOT91lL/+7o1kvfb0fl8Pj766CNqamoYO3asvM9a6H9ft0bh/D4L6qrLQj+FhYUApKamHnZ/amoqBw4c0KOksHHWWWdxySWXkJWVxf79+/n73//O5MmTWbduXVjHVQeKqqrcc889nHrqqQwZMgSQ91tLHO11A3m/Hc3mzZsZO3Ys9fX1REdH89lnnzFo0KCmhkTeZ0d3rNcNwv99Js1KJ6coymE/q6p6xH3icJdddlnTv4cMGcKoUaPIyspizpw5XHjhhTpWFhqmTZvGpk2bWLZs2RGPyfvt2I71usn77Uj9+/dnw4YNVFZW8umnn3LttdeyZMmSpsflfXZ0x3rdBg0aFPbvM7kM1EmlpaUBP3/jbVRcXHzEtxLRvPT0dLKysti9e7fepeju9ttv58svv2TRokVkZGQ03S/vt+Yd63U7Gnm/gcVioU+fPowaNYoZM2YwbNgwnnvuOXmfHcexXrejCbf3mTQrnVTPnj1JS0tj/vz5Tfe53W6WLFnCuHHjdKws/JSVlZGXl0d6errepehGVVWmTZvG7NmzWbhwIT179jzscXm/Hd3xXrejkffbkVRVxeVyyfuslRpft6MJt/eZXAYKY9XV1ezZs6fp5/3797NhwwYSEhLo0aMHd911F4888gh9+/alb9++PPLII0RGRnLllVfqWLX+mnvdEhISmD59OhdddBHp6enk5OTwl7/8haSkJC644AIdq9bXbbfdxgcffMAXX3xBTExM0zdbu91OREQEiqLI++0ojve6VVdXy/vtf/zlL3/hrLPOIjMzk6qqKj766CMWL17Mt99+K++zZjT3unWK95lu85BEuy1atEgFjrhde+21qqpq00kfeOABNS0tTbVarer48ePVzZs361t0CGjudautrVWnTp2qJicnq2azWe3Ro4d67bXXqrm5uXqXraujvV6A+tZbbzVtI++3Ix3vdZP325F++9vfqllZWarFYlGTk5PV008/XZ03b17T4/I+O7rmXrfO8D5TVFVVO7I5EkIIIYRoDRmzIoQQQoiQJs2KEEIIIUKaNCtCCCGECGnSrAghhBAipEmzIoQQQoiQJs2KEEIIIUKaNCtCCCGECGnSrAghhBAipEmzIoQQQoiQJs2KEEIIIUKaNCtCCCGECGn/D8/2Z6jeFvDvAAAAAElFTkSuQmCC", + "text/plain": [ + "<Figure size 640x480 with 1 Axes>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiIAAAGxCAYAAABfrt1aAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAADAn0lEQVR4nOydd3gj1dWH31Hvkm257dreXoFdFlhqaAk1vYd0EggBUoEvhRRCCh9fekIKaUB6DxASQggQCD0sZSnbu3u3rN7n++NK3uaiMiPJ3vs+zz7sSjP3Xmxp5jfnnvM7iqqqKhKJRCKRSCRVwFDtBUgkEolEIjlykUJEIpFIJBJJ1ZBCRCKRSCQSSdWQQkQikUgkEknVkEJEIpFIJBJJ1ZBCRCKRSCQSSdWQQkQikUgkEknVkEJEIpFIJBJJ1ZBCRCKRSCQSSdWQQkQikZTF9ddfj6IoE/8eHR3loosuoqmpCUVReP3rXw+Aoihcf/31msx56FiPP/44119/PYFAQJPxJRJJ5TBVewESiWRu8eUvf5k77riDW2+9lSVLllBfXw/AE088QVtbmy5zPv7443zxi1/k4osvxufz6TKHRCLRBylEJBKJprz00kssWbKEd77znQe9fvLJJ1dpRRKJpJaRWzMSiaRg7r77bo499lisViuLFi3iG9/4xsR7e/fuRVEU7r//frZs2YKiKCiKwkMPPQSUtjUTDAb5wAc+QENDAy6XiwsuuIDt27cfdMz111/PJz7xCQAWLVp02LwSiaS2kRERiURSEA888ACve93rOOWUU/j9739PJpPha1/7GgMDAwC0trbyxBNPcOWVVzI+Ps5vfvMbAFavXl3SfKqq8vrXv57HH3+c6667jvXr1/PYY49x4YUXHnTcpZdeyujoKN/73ve4/fbbaW1tLWteiURSWaQQkUgkBfHZz36W5uZm7rvvPmw2GwDnn38+CxcuBMBqtXLyySfj8XhIJpNlb8Xce++9PPjgg3z3u9/lox/9KADnnnsuFouFz372sxPHtbW10dHRAcC6desm1iORSGYHcmtGIpHMSCQSYcOGDbzxjW+cECEAbreb17zmNbrM+eCDDwIclmvyjne8Q5f5JBJJdZBCRCKRzMjY2BjZbJaWlpbD3pvsNS0YGRnBZDLR0NBQkfkkEkl1kEJEIpHMSF1dHYqi0N/ff9h7k72mBQ0NDaTTaUZGRioyn0QiqQ5SiEgkkhlxOp2ceOKJ3H777cTj8YnXQ6EQf/vb33SZ8+yzzwaYSHrN89vf/vawY61WKwCxWEyXtUgkEv2QyaoSiaQgvvzlL3PBBRdw7rnncs0115DJZPjqV7+K0+lkdHRU8/nOO+88zjjjDD75yU8SiUQ44YQTeOyxx/jVr3512LHHHHMMAN/97nd573vfi9lsZsWKFbjdbs3XJZFItEVGRCQSSUGce+653HnnnQSDQd72trdx9dVX86Y3vYn3v//9usxnMBi46667eOc738nXvva1iVLef/zjH4cde9ZZZ3Httdfyt7/9jZe97GWsX7+eZ555Rpd1SSQSbVFUVVWrvQiJRCKRSCRHJjIiIpFIJBKJpGrIHBGJRFJx0un0tO8bDAYMBvmcJJEcCchvukQiqThms3naP3rlnUgkktpDRkQkEknF2bBhw7Tv+/3+Cq1EIpFUG12TVW+88UZuv/12tm7dit1u59RTT+WrX/0qK1as0GtKiUQikUgkswhdt2b+85//8KEPfYgnn3yS++67j3Q6zXnnnUckEtFzWolEIpFIJLOEipbvDg0N0dTUxH/+8x/OOOOMGY/PZrP09vbidrtRFKUCK5RIJBKJRFIuqqoSCoWYN2/ejInnFc0RGR8fB6C+vn7S9xOJBIlEYuLfPT09rF69uiJrk0gkEolEoi1dXV20tbVNe0zFIiKqqvK6172OsbExHnnkkUmPuf766/niF7942OtdXV14PB69lyiRSCQSiUQDgsEg7e3tBAIBvF7vtMdWTIh86EMf4u677+bRRx+dUh0dGhHJ/4+Mj49LISKRSCQSySwhGAzi9XoLun9XZGvmIx/5CHfddRcPP/zwtCEaq9U60UVTIpFIJBLJ3EdXIaKqKh/5yEe44447eOihh1i0aJGe00kkEolEIpll6CpEPvShD/Hb3/6Wv/71r7jdbvr7+wHwer3Y7XY9p5ZIJBKJRDIL0DVHZKqS29tuu42LL754xvOL2WOSSCQSiURSG9RMjkgFLUokEolEIpHMQmTTO4lEIpFIJFVDChGJRCKRSCRVQwoRiUQikUgkVUMKEYlEIpFIJFVDChGJRCKRSCRVQwoRiUQikUgkVUMKEYlEIpFIJFVDChGJRCKRSCRVQwoRScX48UM7+fEf7yIbHq72UiQSiURSI0ghIqkIyXSWhQ98kA9ufjc9j/+u2suRSCQSSY0ghYikIgyFE7yQXQxActsDVV6NRCKRSGoFKUQkFSG841HeY/oXAC2jT0E2U+UVSSQSiaQWkEJEUhFSfZtpVgIAONUIsX1PV3dBEolEIqkJpBCRVIT0eN9B/+579p4qrUQikUgktYQUIpLKEBJCZFj1AGDY859qrkYikUgkNYIUIpKKYI4OAvCw/RUAzAu/AMlINZckkUgkkhrAVO0FSI4M7IkhAFzLz+Rbzxp5NruMb4SztNRXeWESiUQiqSoyIiKpCN70CAD++Qt5qOV9PJo9hkf3jFd5VRKJRCKpNlKISPQnm8Guim0Yb2M7py/zA/DojqFqrkoikUgkNYAUIhLdiWdgdfxW1sR/gr+5nZctbeQMw/Mcv+1bqOHBai9PIpFIJFVEChGJ7gyFEoBCwuTB47Bw3AIfnzb/gXerd9H73D+rvTyJRCKRVBEpRCS6MxCMA9DssaEoClaTkX3e9QCEN99fzaVJJBKJpMpIISLRn61382Pzt3iX6QDRsfhsABoGHwdVrdLCJBKJRFJtpBCR6I5x4EXONz7NKmXfxGtLjj+XhGrCnxkiMbC9iquTSCQSSTWRQkSiP+F+ADKO5omXlrU18qJhJQDdz0i7d4lEIjlSkUJEojuWmKiMUTwtE68pisJA4ykAZHb+uyrrkkgkEkn1kUJEojuOnKuqxTf/4NdXCrt3a3CPzBORSCSSIxQpRCS6400PA+DwHyxEjjr+DM5JfI2zojcyEklWY2kSiUQiqTJSiEj0JZPGlxVW7t6mjoPeavI6MTWvQlUVHts1Uo3VSSQSiaTKSCEi0ZVoYIAEZtKqAX/z/MPef9nSnN37dumwKpFIJEcisvuuRFcGVB9nJ26j2ZLkvzbLYe+fscjJ2v/exEmbtqO+9kUUq6sKq5RIJBJJtZAREYmuCFdVBaenftL31y+dz7GGXTQxSv+LsnpGIpFIjjSkEJHoSt7evdFtnfR9u9XEDufxAIy++K+KrUsiqVWyD/4f8Ye+CRGZNyU5MpBCRKIr9Vt+y0/N3+RCHpvymPTCMwHw9E19jERyRKCqpB/+JraHvsTQ6HC1VyORVAQpRCS64hp5nnONz7DI0D/lMW3HXQhAe3I3qfGpj5NI5jyJEBZVlLJvD9urvBiJpDJIISLRlf2uqq1THrNy8UK2sAiATmn3LjmCSYf2V49Z9z1cxZVIJJVDVyHy8MMP85rXvIZ58+ahKAp33nmnntNJahBHQoSXD3VVPRCDQaG77kQAYlsfqMi6JJJaJDTSO/F3y8imKq5EIqkcugqRSCTC2rVr+f73v6/nNJIaxpsRQsTZ0Dbtcabl5/B8djEbos3THieRzGUio30Tf1fjwSquRCKpHLr6iFx44YVceOGFBR+fSCRIJBIT/w4G5RdxNqOmk9SreVfV9mmPXX7KazjtP06Mowpviqfw2MyVWKJEUlPExvbnSBni41VcSRUI57albD4wHe45JJm71FSOyI033ojX6534094+/c1LUttERkWYOaUa8TdPnSMCMN9nZ7HfSSar8oS0e5ccoaRCAxN/N6RCVVxJ5Qn+4YPwjWWEN/ym2kuRVJiaEiLXXnst4+PjE3+6urqqvSRJGYwO9xNTLQwrPhzWmZ9wXrbMj5MYe55/pAKrk0hqjw2Nb+VH6VcDYEoeWRHhwWGxjbuhTzbAPNKoKYt3q9WK1Tq58ZVk9tFtWcoZids4utHM3ws4/rymcT5vvYzkdgtk3gDGmvp4SiS605uwsj27isv5O9Z0uNrLqSj+RDcArsFnq7wSSaWpqYiIZG4xEBL27l6vt6Dj16w9ngg2nMQY2Pq4vouTSGqQ4XCSoOoAwJo5soSILzsKwPr+31d5JZJKI4WIRDcGgiLxuNltK+h4j8PGZts6ce5G6SciOfI4uec2TjVs4hWJr/N+5w+rvRyJpCLoGvsOh8Ps3Llz4t979uxh48aN1NfX09HRoefUkhpg+bab+an5Wcay7wKOLeicWNvpsOtRHF2P6ro2iaQWuTD4R1zmCPckTiSQyFZ7ORJJRdA1IvL000+zbt061q0TT7lXX30169at47rrrtNzWkmN0BwQ9u6txsLLEJvWXQDAgvgmMvEjq2pAcoSTTuJSIwAMq15C8XSVF1RBMof8vyaj1VmHpCroGhE566yzUFVVzykkNYwzOQSAtW5qV9VDWbVqDd1qE23KIHue/ReLTn2TXsuTSGqKbHgQA6Lc/RrTn/Blw6RDx2FyN1Z7afqjZvh15lzeZbxP/DMyiGJZWN01SSqGzBGR6IYvLfxAXP7ChYjJaGCXZz0A45vu12VdEkktkndVHcXNq41P8hrjk0QDAzOcNTdIYOJzqffRrfoBCI/0zXCGZC4hhYhEF9R0Ah/CB8HbVFw+UHTVW/h86mJuS52jx9Ikkpok32dmVPERRlTOxIKj1VxSxYgkMgAMqx7g4J47krmPNGqQ6EJwuAcvkFSN+Jumd1U9lBXrz+WKhy2YexRuTKZxWOTHVDL3iY6J6EfY6EPJKqBCLHRkCJFwJEID4/wk/WoMqFzsWMW8ai9KUjFkRESiC4GBTgCGlXqs5uKExCK/k/k+O6mMyn/3HBkXYokkOS6ESNTcQMzgEq+Fj4zPv7r3cZ6xXcFHTXfw9+wp9GV91V6SpIJIISLRheDYMFHVSsBYX/S5iqJw4UIDbzc+QOyxH+uwOomk9niu8bW8MvG/PNj8HpJGIURSkSOj8V0yJrZxIwjPoeFwYrrDJXMMGfOW6MJW10m8JnErL2/3cmsJ57/CP8Ip5lsY7qoH9XOgKJqvUSKpJfoSNjarCzmhfgHJYTckIRMLVHtZFSGVEyJO4pxv2ICzewRYVN1FSSqGjIhIdGEwlAAU6r2eks5fuf5c4qoZvzrKyN4XtV2cRFKD5KMAfpeVtMUNgBo7MiIimZwQWWno4seWb3N8ZymPL5LZihQiEl0YDMYBaPaU1sSwzuthi+UoALqekXbvkrnP8d2/5ArjXbQZR3l0/qWsif+EB+d/sNrLqgjZnHlhvnzXljwycmMkAilEJLpw5u5v8FPzNzg6s7XkMQKtLwPAtPchjVYlkdQurxj/C58y/54WUxiLq54gLsaPEJt3NSEa/HXTDIA7PVbN5UgqjBQiEl1YHH6Oc43P4reUblNdf/S5ACwMP4eaTmq1NImk9shm8WQDALjq5+GxmQGOHJv3pBAio9Y2ADxqEDKpaq5IUkGkEJHogi+Tc1VtbCt5jJXrTmNMdeMiRudLsgmeZO6ixsYwIaIfPn8rbam93GC6hbN6flLllVWGLttK7sicRnfdSWRUkZiuRoarvCpJpZBCRKI52WQcH2LP19dcepdlq9nMdudxZFSFzq3PaLU8iaTmiAaEpXlAdeL3uahXgrzT9ADHhh+u8soqwxPuc7kq9SFGFrySUUSibnRM2rwfKUghItGc8aEuABKqGb+/uayx9hz7SdYlfsLPomdqsTSJpCYJDeX7zHhxWExYnT4A7JlwFVdVOSIJsQXV6LYyig+A0LAUIkcKUohINCcwIITIsFKH2WQsa6xj16whiJP/7hkhkc5osTyJpOaI5J7+g0YfAFa3MAJ0qJFqLamiZGMBLKRwWk380vYOPpT8KH32pdVelqRCSCEi0ZzIiBAi48aGssda0eym0W0lnsryjLR7l8xREhP27kKAOD11ANhJHBFJm5/o+Tjbbe9lwfhTbPWdyd3Zk+nPlOZBJJl9SGdVieZEwkGiqpWI1V/2WIqi8MHmbaxL3Ebm3+th2c0arFAiqS1ebLiQqxMu1rc1cyrg8uxvjaDGx1Gc5X+XahlrNgqAxeGhwWkBpM37kYSMiEg057+eC1iduJU7F31Rk/GObrFxvGEHLYOyckYyN+lLWNiqdpCuXwaAx2knrIq+K9Hg3I8E2rIxACx2D0usAc43PIWt+7Eqr0pSKaQQkWjOQDAOKDT43JqMt2T9K8mqCh2ZzomuvhLJXGK/vbuIBlhNBsI4AIgGR6q2rkrhQAgRq9PLsamN/NjyHdZ0/qJyC1BVRrq2gqpWbk7JBFKISDRnICguqqXaux9KY3MrO0xLANiz4W5NxpRIaom1Xb/hSuOdLDAK0aEoCu8z3sia+E8Y8ayq8up0Jp3AjKiasbu8mD1N4u+Jygmw5377eRpuOYmNf/rfis0p2Y8UIhLNubjnC/zM/HUWqd2ajTnceAoAmd2PaDamRFIrnB64g0+a/8g8w35r87ijhSAuQnPc5j3fZwaEELH6WgBwVtDmfd2O7wFw7OavVWxOyX5ksqpEc45JbsRrDLPdadZsTFPzSugHa7RfszElklrBmwkA4KhrmXjNYxOX52BsblfNRMMBXEBMteCy23A1zAPAmw2IrRJFqer6KkEsmcFuKc/qYDYjIyISTckkongRJkx1ZbiqHorVK8K1jpRshiWZYyQj2BHdqj2N8ydePjf7KDeYbsG+9/5qrawiRDNG7sycyj+zJ2IzG/A2tAJgIgOxynzfB5XyrQZK5clnnubhr5zP3/5+R9XWUG2kEJFoytig8BCJq2bqG5o0G9fe0M7WbDt71JaZD5ZIZhF5D5G4aqbBt79sd01mE+80PYBzaGOVVlYZguZGPp76MF8wfhRFUWjweQiqIlE3HhjQfX5VVflA5tMAiNhMZWl45DrON2zgNU9fXPG5awW5NSPRlPGBLvzAsFJPm1E7netacCynJb+KJWNgm6qiHAHhWsmRwfhwL03AMF7mO/ZvZ2YsOUOveLA6C6sQeXt3l9U08d+9ePEQJTjcg22evsm6oUSaXck6fmp6Jf1qPZ9IprFZKndrdEe7Jv6ezmQxaXjdnC0cef/HEl2JjooE1XGTtgZMeZOjZCZLKHGEtEaXHBFERnL27gbfQQI7a/UCoCTmthCJxmKYSePMCRFFUfip5d1ckfwY/daFus8/OB4jjIMb0u/ilswrGQhV1khtGOGi+8nUB9g5dGT0FjoUKUQkmpIc6wUgatV2z9VmNk48MY2Ek5qOLZFUk3hAJGCHTfUHva7YhBAxpua2EHFv/ws7bO/hK/H9pbObfGdxT/Yk+tP6b5XEtj3I89ZL+bH5WwD0jcd1n/NA8nlvfWoDz3cFKjp3rSCFiERTotEoEdVK0l5e193J+Knpqzxj/SCJXdJhVTJ32NxwDucn/o+/+i876HWjQwgRcyo02Wlzhnz5bta433eo0ZW3edf/oSM+2oVXiTJfGWaNsotA/17d58yTzao0ZIVfSp9az/Pd4xWbu5aQQkSiKf/wvpWjErfxzIprNB/bZ4jRoISIjR05JbzxVIbP3vEif93YU+2lSHSiP25mm9pBon75Qa+bnD4ArOk5LkQSYjsibXJOvLbUMsaFhv9irYDNeyYgorhHG/Zyl/XzeHf9Vfc584wGxvAqosPyZ02/4cytX6rY3LWEFCISTcm7qjZ5nTMcWTyxXGfSZFD/TPpa4U9P7cbw9M9w3/ke0vEjoyX8kcZQKG/vfrATsdkhPu+2zNz+vasJIbQy5v3XjOOST3Oz5bus7vyN7vMr4b6D/x3sm+JI7emPGlgT/ymfSl/O2cbnOTH+OPHkkZcDJ4WIRFNEnxlo9tg0HztlE3knamhQ87FrEVVV+fkT3VxhuouX8zQ7N9xb7SVJdOCo7t9zpfFOFhkOFthK6zG8LPEdLrV/q0orqwxKLiKiWvbngxg9YmvXWgGbd0tU/Nz3GdoBMFfQNLEvmCCIk+1NF5DERJ0SZuf2TRWbv1aQQkSiKV8a/SS3mL/OPJP2e51ZRyMAhtiw5mPXIhuffhTDyHYeyhwLQPile6q7IIkunDJ6J580/5E2w9BBr7tdTrrVJvoS2vRsqlWUVK5S5AAhYvUKIVIJA0NnUvzcBz1HiX8nhqY7XFP6x0Wzv0afmx7LYgCGtz1RsflrBekjItGMVDzM8WwGI4zU+TQfX3GJkmBzfO53IwUw/ftL3Gd9iqcMayEL84YePmIsr48kXDl7d7u39aDX3TbhKRKMpVHnsHeOMSW2nhTr/m7dzjrxs/Bm9BcivrR4sFHnHQeBf+JLV06IeHbfzZdMD2LgPEL1a6B/O9me5yo2f60gIyISzRgbEMY8MdVCnU97y2RTLlxrS45qPnat0b93C0dFNwDgfPX/klBNzMv2M7DnpSqvTKIpmTQeVeRIuBsPFiIem4mrTH/iOuWnJMbn7nbkLssK7s+sI+lZMPGap1H0m7ETh6R+OTLpdIaXMgvYkm2nfvmpADSoY6TTlcnT8A89yXtM97Eysx3zguMBqB8/8r7jUohINGM8Z+8+otRj0MEd0FLfzpZsO/tU7UuDa419934fg6LyvPV4jjruZWy1HgNA13/vrO7CJJqSDg9hQCWjKtQ1HNy+wGkx8U7jA7zL9ACRkblbNfUX50VcmvoEwXkvm3itoa6euCoiQnkLfD0YjqR4f+oTvDr9NRYcdRIZVcGsZBgZrMzP2xYT/2+muvnMW3UaAEvTOxmPVtZUrdpIISLRjOhIzlXVrE8DKduik7kw+VU+nblcl/FrhXgswvI+UUKYOeESAELtLwfAse+Bqq1Loj3BYVE6OoabOpf9oPcMBoWIIipJYqG52+xxv8X7/u6zXoeFYYSPSv5npAf9ueT6JrcVs9nCz01v4cupdzEQUXWb80DcKbENZKtvx9t+FCEc7FVb2LZrT0XmrxUqIkR++MMfsmjRImw2G8cffzyPPPJIJaaVVJj9rqqNuoyft3kPRFOkMlld5qgFXrz3F9QRoh8/a856KwCt619HSjUyEssST87ttvBHEsER8Z0JKD6MhsNzQPJCJB6eu0IkFhdP/3mLdxA27z80X8wVyY8xaJ4/1all0x8QyaL5Kr+7Gy7mlswr6YnrnyCsqioNGZGf4m1eCEYTn1n2V16d/F+eHjmy0jd1FyJ/+MMf+PjHP85nP/tZnnvuOU4//XQuvPBCOjs79Z5aUmHUkKi/T+ngqgpQ57CQv1aPReauzbv7pV8AsHfhWzGZRXh68Yo1XGj9Je9OfIonds/dm9KRRmxMhOZDprpJ348bRQJnag4LkT+Ov4Nt1vdSlzh4O+QFr7B5H0g7dJvbt+kXvGC9lI8mfwpAi1cIknykRE8CwRANirDvr2tdCMAx7SKafKRZvesuRL71rW9xySWXcOmll7Jq1Sq+853v0N7ezs0336z31JIKE0ukCKl2cLfMfHAJGAwKf7LewLPWywjvfVaXOarNi9t34U/1klSNLL/wionXFUXhxFUime/BbXM3cfFIY5vvdM5LfJXfN3xo0veTObfRdDRQwVVVEFXFTgyrksLudB/0Vt7gbTik30OHGuzFo0RxmsUTzkJHkrXKTlL9W3SbM89w3z4A4liwuYUAWdvmA2BT19xPyD8QXYVIMpnkmWee4bzzzjvo9fPOO4/HH3/8sOMTiQTBYPCgP5LZwy3OSzkmcQs9qy7RbY46Q4R6JUxkrHLuh5XktudCnJr4Hj9e9B3qmzsOeu/lK5oAeHbLdtTs3N2aOpIYTJjYrraTqFs+6ftJsweATCxQwVVVkFQUIyIfw+7yHvTWcssIFxr+i6n7Sd2mN0ZEREp1i4qls0J/56/W61i77+e6zZknOCCEyIjBP1GSf3Rdhrssn+MfifcyODa3rf0PRFchMjw8TCaTobn54FB9c3Mz/f2Hu9fdeOONeL3eiT/t7e16Lk+iMYN5V1WvfqHUiFmEsJNzsJxxJJzg7y/0kcTMGa947WHvn7qknt9ZbuCu2Pvp3PJUFVYo0Zp8U7dD7d3zZM25KEF8bjZDS0TF/1dGVXA6PQe9d2Lyv9xs+S7LO3+n2/z2eK5qxSfyUEx1bQe9ridbLEezJv5TvjfvaxOvOX2NLDIM4FGi7N78tO5rqBUqkqx6qBHPVOY81157LePj4xN/urq6KrE8iUboae+eJ2ERIcz0HOw38/dHNpDKpFnb7mNtu++w9x1WM1anB4OiMvD0XZVfoERzlnX+kQ8b72CJcfII39Nt7+L0xLd5sOV9FV5ZZYiFhRCJYDsoWRXA4BIRQIuOBoaeXNWKvV4IEIdfPPx6U/qbmvXn7N3N/kX7X1QU+pyrAAjuPnIeNnRNzfX7/RiNxsOiH4ODg4dFSQCsVitW69y2M56rJKJBfpX+BAPmOprsZ+g2T8reACFQI3PL5j2dznDGUx/kP5YEO1b+cMrjEgtfAVuewNv9YAVXJ9GL40f+xlvMO3gke9ak7xvdLXSpIUZSlsourELEwwEAotjxHOI9ZJmwedcvX6I+MwIKuJtF/pW3SWyHNmRHdHez7RsXD275BNk8yaa1sOdpzP0bdZu71tA1ImKxWDj++OO57777Dnr9vvvu49RTT9VzakmFGevv5GjDXk42bMbn1r7z7gROURpsnGP9Zp555G4Wqd34DSFOO3H9lMctOPn1ACxNbiE4OveiQkca7rSohrHXTZ7g7baJZ8VgbG52ZE1ERB5gTLEf9p4jZ/Pu0cnmPRwK4FZE+W5DixAi9a3ivy4lztiYvgmj67t/zpdNt7JK3XXQ667F4vvfGtmMqlbGz6Ta6L41c/XVV/Ozn/2MW2+9lS1btnDVVVfR2dnJ5ZfPbVOqI43xIWFmNmqoRzHo97EyunPh2gp05awk2adE+eD2pguwuScv5QSYt2AZuw0LMCoqO5/4q/4L634ahnfoP8+RiKriVQMAuBvmTXrIvGwfnzL9jtMHflXBhVWOCHYeyKzjRdNRh73n9oufiUcNQUZ775yhkQAPZtbyvLoMp0d856wOLyFEjtto317N5zyQteFHeLfpfloNBwueeatzDqtqJ12Dc+s6NxW6C5G3ve1tfOc73+FLX/oSxx57LA8//DD/+Mc/WLBgwcwnS2YNsbyrqsmv6zymuna2ZDvoVpt0naeS7N6zixOijwEw75wPz3h8X5PY+lK3/0vXdandz8DPXkHiZxfqOk/Nkc3wm3se4gt/fIKsjsZ52VgACyLS4fVPLkQasmNcYfobp4b+qds6qsmgayWXpD7Bj9wfPey9On8zaVXcolIh7ZPTe9Mu3pf6FFd7vnHQ66NGcQ0LDe3TfM48qqpSnzcza1p40HuW+nYCig+TkmXf5iMjT6Qi9m1XXnklV155ZSWmklSJZEA4RMas+goRZcnZXHivlfkOO6/SdabKsfvem1msZNhlXc2S5VNvy+TxrHkV9P+KJeNPkk2nMZj0+Rr3P/A9WoGNsSZOnMPdXw9FDQ/yzv++DoCdx29g6ZLJS2vLJTjSjw8IqnbqvZ5Jj7G6fAA4smFd1lBtIokMAC7r4Z/hOqeNETw0ESA43EuDT1uH1f4pcjQe8r2Rff0jrFFbWKfpjPsJhmM0EgCgPmdmNoGisLP+DAYG++kdTHC6TmuoJWSvGYk25F1VHfo2pJswOQon5sT+aSga46i+2wHIHF+Y/8rK9a/gr+oZfCn5Tl7s1mkfOzZG/d57APhm8o2MzGEn20MJj+1Prlee+blu84SGhZPomOLFYpr8Umz31APgUKO6raOaROJiy8V5QJ+ZPEaDwreN7+fy5McZNGofAe0fFz/TQ6v8tre9mVszF7I7pU/PLICh/n0YFJUURmzew6+Z+069kQ+lPs6/xuZ+g0+QQmTWkc2q9ARiNXcTNuWMgXC3Tn9gmTS4RPVAIp0lkszoOlclePL+O2hVRhhX3Cw7+50FnWM2W7h3+fXcnj2DB3YEdFnX8KO3YVXjbMm285S6ku6xmC7z1CLh0f1CJDu6V7d5IjnBEzROnRPkcAshYiUFKf1txyvN0i3fZ4v1Yt4ZvGXS95/znM0/sycymNLem+j4LV/jBeulvCb8l4Neb81FSPJVLXowfqCZ2SQ5dWvbhbnbSz1B0nO4r1YeKURmGTf9ewen/d+/+ffW2jL0iqQVgqodk1dfIeKwmPib9XM8Z72M8e6tus6lN6qqcuP2Vt6U+ALPH/NZFPPhlQNTcXbOZfVBPT4H2SzK0+LG0KU28TnTr0ls/of289QoscD+aiRLSD8vo13ekzkv8VV+UXd4fkQet9dHVhVbYqk5aPOuJEPYlSRm0+Tbfo3uvM17QvO5zdF+Ye/uOPh7N9+RYa2yE+fQc5rPmSc2InqtBc2TNwhd7HfhshppSvews3duVQhOhhQis4w7nxPh3Gc7a6sJ1pdMH2VN4hZSq96o+1z1hgh1SpjQyOHuvLOJx3aOsHs4yjbLURz3qg8Ude5ZK5pYovRwcv9vGO7TtoFkZOu/aEh0E1QdhC2NXGq6B1vXo5rOUcskDnDt9cS7dZtnIGZku9pOrH7llMe4bBZCiBtlJDj3+o8oSZH7oppdk76/wjLMKw1PYuz+r+ZzOxPCtMxSd3DuyfLYC/zVeh3vGL5J8znzpHKdyuNTNAg1GBT+bv4M/7FeTe+mud+tXgqRWUTn4DgXjd/CywwvMhKsrVD5hKuqVz9X1TyhXCg7FpjdQuSXjwv/gDcdN3/SZL3paHRbudn5Uz5r/i17Hr9d03UNPPQzAO6znoOn4xgATDpGBmqNTHi/q2ZdZhRS+nzXhsPiKb9xCnt3AJPRQBjhyxMdn3ulnIZURPzFOrkQOSXxGD+03MTizj9qPrcvLSINTv/BrUTcTeLf9Vn9IhH/cLyeY+I/Y8PKT055TNwtzNUS++a+1bsUIrOIrU/fz+Wmv/Fry40sGtC3dLMYYskMwbgoQ2zS0d59Yj6LECKp4OwVIt1DI3x+9zv5ouk23nN8aZVGI61nAWDcfb9m68pkVa4IvZ/PpC7BdPIHsTYsBMAZ7dVsjlpHOcS1NzuqTxnnos6/8GHjHSxjepF3jeXznJ74NiNufap3qokxJ0QMVvek7xtcYuvCHNc2GpTJZGhQRVTZ13KwlUT9PGG5Xq8GCUf1EaH9oQQhHHgb26Y+aL6o2XGOvKjLGmoJKURmEZnt+x1qTx6/u4orOZjR7q3cbbmWmy034S7yyb4UUlaRzZ4N6d8PQi+e/+fPaVeGeKX1BZbMm3yfeCYa1r0agOXhp0kmtEmse3DrINvGVP5uPp9zX3YyrpbFANSnZq/oK5attjX8Nv3yiX+P9W7XZZ61I//gf8x/YoE6/fbPmGMRXWozwdThlSWzHXM6J0RskwsRs0c4ztqT2kaDRgd7MCsZsqpC3SFiwOVrJqmaMCiq5tueefKJsK3TRJD9y08BYGFiG/HU7E/Mnw4pRGYJ6UyWBWP722G707WzXxwc2MdRhn0cZeysiNdExi4iCEp0diZxxVMZOnb9FoCx1e8CQ2k3mKVrX8YIXlxKjO0bNIiQZTPc9thuAN5+YgcOiwn//GUAeAijztVW9IfwsPUsPpO+lC+n3sVN6dfrZp7nzPVQsfomt3fPs9/mXXt30WpjyYgSWqN9ciFirxc/m7wVvlaM9Yso15jixWQ5ZGtMURgxiGql4OBeTefN86Hxb/EV0y3MNwWmPKZhmfAU6lAG2bZHn3XUClKIzBI27djJamXPxL992UDNlPDmXVWDZn3NzPIouXCtaZb2m3n04fs5hp2kMLH43A+WPI7BaGS3Tzw1hV4sv6ql/+Fb+VzXB3i18UnedbIIVzc3NjCiipvEaN+u6U6fM4yEhWfKLZlX8q30W9mW1dZIK48nGwDAWT+9EHmZ+gyfNP0ee9d/dFlHNdlmXMpT2RUY3JP/DJy5fjNedRyy2pWxDkUzPJhZyybLmknfz1ezRIa1T1YOReO8mkd4l+kBmt1TNzNU7HX0m0S0pn/Lk1MeNxeQQmSW0PuMMJcay9kP1yshgpHaSFhNTbiqVsZ2XanrYHN2Ab1qZYSPlqiqSvYpkQy6p+kcTJ7yDIuMK84HYN5QmZn1qkrmvz9hlaGLs5tjtNcL3waLycCgQfxeA71HhhAxBztxE6XNJ8LmXaPam4mpqRhuxLieKfrM5Dku9SxXmu7CNzj37L6/ar6Stya/gNoyuSCoaxI/GxMZMlHtoiK7DQt5X+pT/LrtC5O+H7WJ72U60KPZnHkG+7sxKxnSGLDXTS9yA3VHA5DpfkbzddQSUojMEuxdDwEwsOA1ZHK+AqNDNZJAGBb5A2lHZYRIetkreWXyRr5nek9F5tOSF3fu4/T4QwA0v7z8tgdLT3ktadVAU2aQrq7SkypDOx9nfmw7cdXMgnMObkj5w4bPcnz8Zja5Tit3ubVPJsVtwUt50XYpZ8yHNmVINP7TmPCY8CpJqkYaGqb/3mQsOfv3eFDzdVSbcEIkuU9VNVbvcTGuClEcHNZOFPQHJ7d3z7N33qv4UurdPG86WrM58+TNzMaUuhm3ZVMrXsMP06/lnvAyzddRS0ghMgsYj6XwR8XevX/dqwgYfACEhmtDiFTKVTVP3l01H0KfTey6/2fYlSR91kV4V5xR9ngen58vNX6TYxM/4f7O0kPX/fd/D4CHrWdw/KolB71nblrCCF66A7URgdMTNSqSIrOqwgmNWR61fowru64BjbdBg7mHiFG82GdK8LYJIWJIjGu6hlogMoMQMRsN/J/hUj6Y/DhDytQOtMUyGBBJsofau0+sa+G53Jq5kI3J9knfL4fo8PRmZgcy/5S38rX0RfxtrIPxOZgjlEcKkVnA4zuHeXXyBj7g/C7+VWfu99EY66vyygT2nDGQ2VchIeIUyWWj0eSssj8eDif4bvdyfpB+LcmTPwoaJfa2rzmLBJaS3XbT4/0sHBAVWcqJlx2WcNxWJ55IjwSb93ykYgwXi5aLp2G7GoOotsnhkdx3d9zom/FYxSaOMaZCmq6h2mSjATYo72GD9Qqcpqm/x0+7z+He7IkMJgt3Hp6Jd+3+JC9YL+H48OR5N/lqlnzkREtSYyLvJDqFmdmB1DsttNeL/++XeuaeEM0jhcgs4OEdw4BC28r1YLLwp5areH3iS+ywHlXtpQEQzpgIqnbsDdPUxGtInd3EfZZP8JzlAwSGtN/D1Ys/bOhib6aBf7VezoKz36/ZuGevFE9W/909OtFErBh2/+tmzKR5gWWcfua5h72/3DrK50y/4mW7vl32WmudfJ+ZAB6WzPPTrwrRHx3cqek8e5zrODfxNX7su2bGY40OHwDmOSZEYpFxHEoCL2Fcjql7yeQbXY5EtLN5d6eG8Cgx3N7JoyytTjhW2cniscc1mzOPEhTRsLRz+tygPCe3GjjD8Dx7t23UfC21ghQiNY6qqjy8TTzpnrFM3HBCjcexUV1KX1x/z45CeH/6WtYkbsG+5GUVmc9kMtJgCOFTIoRGamN7aibSmSy/flLsDb/3lAUzHF0cSxpd/I/7X/zN+D9sf/QvM59wIJk09Vt+DUDnkndiMx++Z93myHCp6R5eFr5Xi+XWNNHRfCM6Hx6bmV5FPLWOdu/QdJ7BuIEdahth39T27nnMTtEAzZYJa7qGahMLiyf8CHZs5qlvRausg7zK8CR0b9Bs7vqM2IJzN06+9dJqDHKn9Tq+nvkaSY09PAy5aj+DpzAhckn0Vn5p+Sq+nXdouo5aQgqRGmdf3xB/jl/KTZYfcFK7CNHlnxCGQ9XPkQgn0hMJZ01e7UKnMxHM5clERmeH0dYjz77AF6M38GrHJl55jLZbWIqicJI3wApDN/Et/yzq3M39Ya6OX8JdmVM5/pXvm/QYf9t+L5HsHGy8diDJoBD9UZN4Ug5YRVVDdEDbiqGhXH6T3z21vXsei1N4Wsw1IRIPBwCIKvZp/YdOTzzMDyw3sWCfNq0MIuEQPkX8LOtaF056jK9Z2KtblTRDA9pGXb9i/BDHxH9GZM27Cjre2nE8AA2BlzRdRy0hhUiNs3vDP2hVRjnJvBuHU/g5LFZ6uMT4Dxb331Pl1cFgbg/VZTUV3S+lHCK5G0V8fGCGI2uD4Yd/xnnGZ/i08++TRh3Kxbb6QgAWjjyKWoTfws+f2MfD2bXcu+oGWht8kx7T3OhnVBW9QMbmuJdIvs9M0pr7fLnEdmN2ZM+U55RCR+edfMR4OyuVmZ07jS2reFXiBq40f0XTNVSbZFRUAcWV6R9gFGfONyiujW/QSL/4mcdVM27v5BYAisnKGCJJODCgrbtqX1DYuzf5C3NUbll1KgArsjsZHJ+beVpSiNQ6Ox8AYKh5/7bHgsQOPm/+dU3YvEd3PsY/LNfyv5ZbKjpvLGfzng7WvhDZ3jvK6cG/A+A8rXQDs+lYdtIrSahmWhli15ZnCzpnNJLkzo1ia+t9py6c8jiz0cCgQWxRjM1xL5G91hX8Jv0Ken3HiRfqFgJg1rjp3+rhe7jG/GcWZ2YWOC6Xm03qIrYl6zVdQ7VJRsXWTNwwdX4IMOG1Y09oY/M+PiiExYihYdqE8TGTEArhYe2ESDiRJpTry9VSYATZ3raWJCbqlDDbt83NqIgUIjVMKpNlaVC0v3Yfdf7E63Zf3va4+jbvieE9rDbsY7FSWUGQtgkhooZrv9/MM//6LS3KGEGDj7oT3qzLHDanhx2OtQAMPnNXQefs+sOn+Ti/5cyWFMcvmL40MmAV20mxwd3lLbTGecZ2Mp9NX0L3/FeKF+Yfx/fTr+Me2wWazjNh7+6duXLCYzMD4iaWzdaGm7IWpKIi+TY5gxCx1YnrnVMjm/fYiBCVM5XPRnIGjclR7bZmBgd6+Zn56/yf9ee4LAVGRk0W+u1LARjb+V/N1lJLSCFSw2x+6Xk6lAHSGGk/7ryJ1105J8a6GrB5z7uqxm2VdTlVHWI+4yyweV/UJfa2R1e8DUwz5wSUSmzhOQB4uh6c8dhUNMDqzt9wpekuLlmVnrFHUNwhciUyo/o0AasV8t40DU7hVePrOJpvpN/GX+LrNZ3HlQkAYK+bOV/IbTNxifEffML4e8JjsyMnqhDCBicbssvptS6e9jhXfc7mPWeJXy4DKQf/zhxLr3tyN9c8KacQQGpQOyEy3reHc4zPcZ7hqaLK92N+sVZD33OaraWWkEKkhhnaKPqH7LEfjcHunXjd1yRuCnW1YPMeyruqlmdVXixq3UI2ZRcwoGpncqQH8VSGpWlRceE57g26ztV+0usAWJHcxNjo9AJt270/xUmc3bRx0stfP+PYWZ9I3jOEZ0eVUqko4114iFDvEFGIBQ1OALrHomS0ikZkM/iyYlvC3TCzELGZjXzQdDdXmu6aeJqfC+ysO4O3JK/nruYrpj3O4xfXOzsJ1ET5JczPmNbx/tQneXrZR6c9TnXl7OUj2om//DbPeAFmZgfiWCSEcHNoc9UfPvVACpEaxt0jzHbiC84+6HWbp5G0Kn51Y1V2VzXHciZansqYmeUJL3s9r0reyC3md1R03mLp7OrCr4ikvLqOY3Sdq2Xhal4wHsWdmdP479Zp7N5VlbqXfg7AnsVvx2qeOck4uOwNnBC/ma+7P63RamuTLw18iBdsH6A9I24YLR4b7cZRTlBfYrB3ryZzxMaHMSriZlLXWNj3JqwIQRQLatuFtprkXVWdMyS51/t8xFQRodLCTbp/PGfvPoWrap74grP4Yurd3G18edlz5pkwM7MW9+DWvPYCPpu+jM8k3kunDr2Pqo0UIjXKWCTJo9EONmUXMO/4Vx38psHIuEFESEJVNvSyx/OuqoXVxGtFgw4mR3rQ1dvDC9lFdBoXoFhdus93z/pb+UT6cu7pnPqrvfupu5mf6Sas2lhzYWHJsy3NLQzjpTugvdNkzZDN4FbFE7erTtwojAaFr9tu43eWG4i+pE2V2niuZ8qY6sLtKCxhMWYQQiQRrn5emFbMZO+ex2Yx8SXlMj6YvIoh1VP2vCPj4sGg2TP9Nql90Xpuy1zIQ7GlZc85Qc7MLOUs7sHN0tDBS62vZ7vazsaugHbrqRGkEKlRHts1zPfSb+Dquu/TsOzEw97fb/Ne3T1jT1psATgq5Kqaxz9L+s08H/Xz2uQN3Lz6VxWZ7+UrRYLdf7YPTbmVEHn0ZgCeq7uAxsbCQsRtdeKG2TMWq1zC5KY7YNOdlZkL0WfGgPh/8zbsf2IN24XITgxpUzEUGhH27gGDb8bcnDxxoxCxqUhAkzXUAmfs+D+esl7JqYGZk6v/6zqXe7PrGUxYyp7328Mf5EXrJSxMTm9Sl4+YDATjmn3mLRHxu1e8xT+4rW0TD58vdM89q/fasOaUHMYj28UN/vRlkyeB/rHlah7bNcpbrEdxuEypDKqqEsg68ODAO4VDoV40WLM8YLmGBiVINLwZh8tX0fkLZcegME5a2lz+k1whrGv34bMZaYtt46Ut81l71MFtAEZ6drE6+Bgo4H/5hwoet8Vj4+Omv7BC6WS0qwP/An3bC6jRUZQ/XSz+sbQHKhBNCo8O4EZEKurd+ys5Up4FEAYlsFeTeTodR3NF4msc3WzjOwWekzK5IAWZOWQoZ02M0KQEsBdQPOJ3Wdk9HGE4XF4ENJvJ0qiOYlVS1Pun73rc6LKwzrCTZkYZHj+NpjrvtMcXgjMhtrItdcVfL0+pj6Aa/4VnRyOwuuy11BIyIlKDqKpKaNtD2Ilz+vLJn1jDjet4Xl1Kf9xc4dXtJxhP8+rEV1iT+Bn17SsqOrfT4WS+MoxPiRAYqt1Kgp0DIgy8rEn/GymAyWjgx55b+bv1cwSf+Plh79+xsZ9fZc7lv5aTWbWmcAlrMhq4wLyRC40bGNunv5fBQHL//n1wqDIJmqFR8bQ6hvcg0zlTwyIA7BFttkEH4wo71TaCvsJvJimLELLZWECTNdQCprTogGuwOmc89ihrP682PAE9T5c158hIP1ZF9GOqb56+1YLZaOA3lv/lR5bvMNqrTdm6LS2uB87GjqLPXads48vmn3Nm4M5Z1eyzEKQQqUH27tvLD1OfZ6P1g5zYMnnQasLmvcwnhHLIu6p67WZd3EKnQzEYCCg+gJrtN5NMZ7kteCn/tHyKldbKlRlbFp8GgL/v4M6iyXSWH2+McX36YvovLN6AbjzvJTK0t+w1zsTOoSh7smJ7ZLxCeVD5bc6Q8eAnX0fzEgDqEtqsYyT3nc1vLxZC1iJclYnPnbC8OS2SLo0294zHnhX/N9+3fI+2fYV55ExFoE8kIY/hwWSdIT9HURgzCr+i0GD5ZeuxZIYL4zdwdPxn+FYW35eraYVwWF3JXnb0zZ2kZZBCpCbp2iBcOPssC7B7Ji9PXUwPlxjvrqrN+0BQXFBnSvrSi5DJB0AsUJvuql29PbQpw6w0dNHYPL9i8y48+fUArEhvp793fzThHy/2MRRK0OS2cuExxe9Rx5x5L5FpKnI0YtdQmCF8AERGKiNEEuMi8Tpq9h30ekOu145XDYIG5aOtnX/no8bbOUop3Db+pflv4VWJG3iosbD+JLMBS1YIEbOjgG1Lp9hGMZZp8x4aFt+HvMCY8XiLmDc+Wn5Uri9nz65a3Lin6TY8FQb/EsKKC5uSonNreZGhWkMKkRrEvFcYUo3NO33KYzoS2/m8+TecFKiezbtx613cY/k0H8n+pirzR81CpCVrtN/M4K4XABgyNKLYKpMjAlDXsoA9psUYFJVdT+5/gkzc9yVOULby7pM6sJiK/+qrXhFONoe6NVvrVDS99FNONGwDIBGoTMSr17KA36RfwQ7XwVtWba0tE712who0v1s29C+uNv+ZJemdhZ/k7WCTuoi+zMzRg9mCLVO4EDG5hSCwlmnznsiVz0YshSVpx20iKpfR4DM4UTbstRWcpHwQisKQexUAkT1zS4jIZNUaI5FKsTy8ARSoX3PhlMc5co6MniravKtje1hl6CRiWFWV+RNWP8QgEx6syvwzEenZBMCoYxHF2ReVz0jrmSzq2o1p133Ah9j67H94W/T3vMFiIrTm7SWNafEvhN3gjOkfoTh2YH/L80yF+gltta3lG2k7b2s9OJHQZTXxVcPbGEsqXJxys7LMeexJcTM1e6ZPljwQj01cqoOxdJmz1w42VQgRi2PmJFCLTwgCR6q8LYlsTlAk7IX5eGTdrTAGxnBfWfMCJPY8wc/M32RUORY4q6Qxsq3HQnADjuHny15PLSEjIjXG1ucepUEJEsFGx9qzpjzOlXMb9FXR5t2Qd1V1VtZVNU/GLiqKlEht2rwbhnNP9HXLKj53/bpXA7Ai/BTxRJLAQz8E4AXfy2loKs3zxd0srLjrUzoLg3SCxsz+C78hUhkhMpwrBa+fJHfjCf+b+H3m5eyNFR9SPxRXrmeK3Ve4l0SzOsTlxrs4efjPZc9fK2xnAVuy7VjdMzfzc9aLz6w3U54Q2as28UBmHaGGwswFjV7xO7LGyv8MqkNbOcf4HEdnt5Y8hm/ZyQB0xLYST2XKXlOtIIVIjRF48V4A9riOR5mmL4mvcb/NeyhaHZt3c+7LqbhbqjJ/2ruAl7ILGcxWbtujGLxhEca3tFS+1G7R2jMZx4VPifD0fb9n3bjo4lx35pUlj+lvF4LKqsbJxMOarHMywn3bMSGqAq5PvYeHHNo2nJuKbKAbD2EaHIdXonXUCwFStqulquJTAwC4/YULkYbsCJ82/57zQ7eXN38N8c7U57kw+VVs9TN7EHlzPysPYdR06Qn6/zScwSWpTzC8ojBHZmu92I50J8uPuqrjIpKY72FTCvVLTwJgidLD5q7ab/hZKFKI1Bj1fY8AkF48va3wQTbvQ9WpGnEkxBfBUldZV9U8wysu4tXJ/+UPNn062pZDOpNlfkokddYt1NfafTIUo5l/tl/FRcnP8eyGx7AqKXaZlrFk3Vklj9ns93Ny8mZWJW5jMKFfldTgnhcBeC67lJ9nLuCJ9HLd5jqQyzo/wQu2y1gZe/aw95Z6spykbMG09z+TnFk4qXgIOyLy4vUXnsBsdfoAcGQjZc1fKyTTWZK5ElSXZeYMgTp/88T1LjJWenRiILg/T6MQnAuP4/rUe/h26k1lR57N+Z41ntIT1xVvG//X8k2OT/yI5/uq3GdMQ6QQqSFGwgk+FrmYL6beTdtJMzRIMxgI5Gzeg1WyefekxV63vYAnGj3IlzDXorvqvuEgG7LL2a6207hw+i6felF38rt4KruSN3I/AJG1FxfV8fNQjAYFi68VFQPdY/pdBCM9mwHYixC4Q6HKlKjnO+LafIc/sa417OQP1i9zfue3y5ojMCgeGqKqFZ/XV/B5Do/YvnASgTnQ9Cxv7w7gtM4sah1WC59TL+ey5FUMpwuzxZ+M8fEAMHOfmTyNbUIM/yu1hmC8vPwcR1wIKEtdGddLRcG+9EzCOOaUw6oUIjXEozuH2a3O48mmt+Gfv2TG46tp865mszRkRaKst6myrqp5Gpx5L5XaEyI7huJ8JPVRrvH/CIOzOh2CT1vq5zzTRtqUYcZxsfrc95U9Zt7qvXtMv8ZbyvB2AFJ1SzhO2c6a0H8go3OS5oF9ZuoPz3nyzBPbUv50f1lCIJjzvBlTvBgMhYtCp0eUm5rIoib12xarFPHeTfzXeiV/sX4Rk7Gw29DjrvP4V3Y9QyVG42KxGP/lPbxovYRma2E9k2xmI77cVl2+6qVUfGkRQXaUYGZ2IGvaxQPo83Oo54yuQuSGG27g1FNPxeFw4PP59JxqTvDIDpF0ecYUtu6H8seWa3ht4svssB2t57ImJTA+TqfaxLjqoL6lOkKk0RjmAcs1/Cv1XrKZ2krc2jkobmqVclSdDKfVxHHNRrqyjXTOfxUm28wOljNxrvFZfmj+Dg0vFm+IViiOsNjS8rSt5g+WL/Md5VvEdC7hVaOjGHN5Kd6GwyMizW1LyagKVpJkgqUL/x7bMl6R+Do3uj9T1Hkut2diayIenv1mVsnwKM1KgCal8Kf6vAHccIkRsuGcmZmVFG5PYT4iAKc5erjA8BSjA6WbmsVTGZpUEUGua1lY8jgAx/rifM70Kz48/nXGY6myxqoVdBUiyWSSt7zlLVxxxRV6TjMnULNZTt5yA28zPshZiwu7YYT9x/KCuoT+eOWrsAcSRs5Lfp2zTb/EqsENrhR8dQ0sMfRRr4QJjNSWl0h3Xx8KWZY2V0+IALzxvLOJLT6fVe/4qibjLTKP8krjU9QN6+dj8AHjV3hF4uvUHXUuI4inv7F+fb1LwqPi8zOuOqj3HP55bq5z04e4eQ13by95nsGYwi51PuNF2LsDOKwmgoiE2Uhg9nfgTUSE1XncUPg2yzGWPl5jeJxsz3MlzRnIuaOOGOpRDIXf+q5K/pgfWb5DpvOpkuYFGBwZxZATuu4y+3LVOe1carqH1xseY/Oe6nZf1wpdhcgXv/hFrrrqKo45pvLJerONvTte5M3Ze/my6VbWtRfWXKmaNu95V9Umd3VcVQHMFisBxI0+OFJ+nb+WvGnP9Wy2vp/TEo9WdR3+Faew/OIfYNJoe8jSsBAAV0yfCEUinWHPWJJd6nwWtbUSyG0/hkf0FSL5PjOjeLGaDg/9Gw0KQyYRKRnvmb5r63Tkv6uNruK+N4qiEFGEQIqGZr8QScWEEEkYCi+HPidxH9+zfJ/mzr+XNGdsRLijBk2FRZwnzrMLv5fUWOmfwZ6IgaMTt/Jq5+/KNzd0NTJqasagqPRve7K8sWqEmsoRSSQSBIPBg/4cKfQ9IxxSd9mOxuYsTIgsVrq51Hg3i/r+oefSJiWffd5cYNKXXowbfACER2tHiGSyKq2pfdiVJE2t5e0H1xruFn29RPYOR8mq4LaZaHRbCZtEFCI+pu/vN5prExAy+qY8JmQTSYaJodLdVRv33c3HjH/hGIoXM1+xXcOrE19hxFWZKiI9ScfE1mXSWLgQUR1CEBhipfkGpcZE9CBqK9xIDiDtEAJUCZX+GewPiuRuj29mz5RCCNSJ7fhM9+EVXrORmhIiN954I16vd+JPe3t1cg+qgb1TlAWG2s4s+JwFiR18zvwbTgpUXog0b/kF91g+zVuSd8x8sI5ETOKJORGonQ68PQNDtCniYtm0eG2VV6MtjW1LAfASIhPTPms//Oyf+ab5Zt7peR5FUYjbhCdtelxfITJkaOLX6VfwnP3kKY9JeXLXo0DpvXYWDz3AVea/sDy9rehze5yreUldTCBdeLO8WiUbFw+ZKWPh27pGt/gsWOMl2rznhESxPh4Gr6jeskRLv8b0jRdXNjwTprbjAPCNvajJeNWmaCFy/fXXoyjKtH+efrq0/eNrr72W8fHxiT9dXZVp/11t4rEoy2Ni37P5uFcVfJ495zZYDZt3y7iwd280VtfXIG4RTxipYO3YvPflesyMKj6MrsKT4mYDjf5GxnJ9V0Z6yu+7cijmrkd5k/ER1lv2ApB25CpYIvr+fvdYV/K59CU80jR1U7lg+8u5NnUJ/7C/puR5bEnxXc33TikGj01UbwTjsz9BMZszxEubChciFq8QEI5Uadc7czRvwFi4kRyAOVdum/dNKoV5u/7ILeavc07y3yWPcSCNK08BYHl6x0QX9NlM0VmOH/7wh7noooumPWbhwoUlLcZqtWK1Vi/noFrsePp+jlESjOCjY9X6gs9zNwghkrd5L6mRUolY8q6qnuK+1FqTsjVAGNRI7bgMRrpfAmDYvghtArG1g9GgMGhsoi4bJtC7i6alx2k6vm1ciBulcYV4wd0E/WCO6itERnK5Gw3OqaMNzgXH8buHVdZEC9s6nXSM3E3UVle8u+YJ6ibWGJ/C3hODY2vPxK8YQoqTbdk2IvbCrx+OenGsu0Sb95fURYQy6/A0FZco7MqV29alS7/G1AU2cabxOZ5XT5z54AKwdxwPQIdhiId27aFpXXX6fWlF0ULE7/fj9xeX7COZnvDmnK279yQaDIXXyOedGeuUEMFoDI+z/D4YheJIiK0Hi686rqp54u5FvDi4kOFsdatTDmJI9JKI+5ZWeSH6MG5tJRHtYnxUe3HQEBPbHs554sIan3cK121+LzbbUeiZ8p4I9OIlTINz6ktiR0P5Nu+ebAAAZylCJP4EZ5j/xLP9VmB2C5En/G/kx5uO5ZL2RZxX4DnuBiFEfNlxyGahiMoXgFvSr6QndTa3rzi1qPPqmhcA0KiOEk+msRXgBHsompiZHYjdx6ClHSUxTtfubTDLhYiuOSKdnZ1s3LiRzs5OMpkMGzduZOPGjYTDs9+QR0vCI31kVAWWvqKo8+zeA2zeBytbxuXNuao6G6rjqpqna8V7eU3yf7nL9rqqruNAXEHxVG9snt0Xh6m4a9EXWJm4jcddhd5CCiMbDdCgiohB82IhO2zzVvPLzPk8nNL3Z/naXV/gedtlrA8/OOUx7XUOjlO284r4AyVVaWVSSXyIa5+nsXibb9WWi8QkZn8Sf95Z1Wkt/KZe1ygeekxKlliwuITVbFbdb+9eZIK9q6mDG7IXc3XqCvrHS3MU9qRyZmZ+7ZLX/33671ifuJl/BaobldYCXQ0orrvuOn7xi19M/HvdunUAPPjgg5x11ll6Tj1rGAzF+UDwEnzK23jgtHOLOzln8+5XxwiN9MGiynR5zWay4oahgLe5ulUheZOjkSqUME9GNqvyQGIlY2qWo5ZoE4atNZob6lEZ1txddWjvSzQDA2odbS0iN6TJLW4aetu825Mi3G/2NE55jNNq4uvWW1hCF3t3nIan4bVFzTE+0kc9kFYN1DWU0LHaKoSIcU4IEWFA6CrA3j2Py2Hn2szlDGccfCFppJhHoJFQDFs2QkRx0Fik5YBitvOA5w3sHo7w3mCShVN/RCYlkc7QqA6DAr4yzcwOZPWidqCTF7rHK741rzW6RkR+/vOfo6rqYX+kCNnPYzuFsm+fN5+G+uIzCvbbvFeufHV0ZBCrIp5o6puqGxGZ6DcTqQ2b997xGD9OXsCHs9fQsuq0ai9HF9pznWi17jczuk/k1vSa2idsv5s8Vo5TtrM+9igpHTv+OnN9Zuy+6QXCiEU8lYcHik/UDQ6L7+iY4sFsKv4Z0OAQQsSUChV9bq1xUef13G/5H5YF/1vwOYqi8LDzfO7LnsBgvLhbV6BrEy/ZLuUJ60cwF2gpfyB5m4KBEhJDh0YD1Cu5SFjTgqLPn4qVLR4sRgPjsRT7RvRruVAJKm/JKTmIx7eJi9PpBdq6H8ofmq/hsd1jvN12NIWnuZbHyOgwo9n52A0Z2q2lN6DSgiZ1mH9brsYeTgG7q7oWgB2D4oKz2O8quIfGbGOhLcwPzN+hpT8GaGfYFhruIaMqBF2LJl6rd1i4xfIN6pQwQz2vp3HJOs3mmyCbxaOKKMNMuRsxZxsk/0t6uPjPWq+5nUsSX2dlvYEflLBMo90HgDU9+4VIQ7KHpYZeho3Zos7zuyz0BGJF27yHBkUFZqKIcuEDWWvrx2d4lnivGdYVt6020rePNiCGFXvud6gFFgP8wnkTixOb2bjjThb6dfhuVIi5eaWcJWTTaT619c38yXI9r5hXWlOvcONaXlQX0xernKbsoZHzkl/nioafVWzOqfDV1bPY0E+rMkI8Vv0W6T2de2lmlKVN1bG9rwStDfW8yvgUx2dfJB3VzkvkDudbWJ24jZdWfGTiNYNBYdQgon7BYX3yoNTYGKaJPjPTR0SyXvFEawoW33dkKAa71PmMekvrDWV2+gCwZmZ/jp01K57gzY7iXEbXWnp5reFx0r0vFHVeIueKGjYXua+S48LQX7jZ8l2au+8t+tzA6ABh1caY0V9W9+vDMBhYZBigWQkQ2Fl4ZKkWkUKkiux96XH8BFildHH0itIqLBpdImRYSZv3vL17s7u6rqoAbk89SVXsM48N6dsYrRDmbfsF/7V9mEsjP6n2UnSj0e+f8BIZ1tBLZOdgmAQW2uYdXIkVMokty+ioPr/ffJ+ZoOqg3uue9lhzo3CWdUaLt/vO57k0uEozJLO6xc/Bnp39QsSWFdt6liKFyPnxe7jJ8n0aO4szccyMi89O3F5Cbg5AzqbAGCl+C3yLYTlHJ27lO0tvK23uaYg1CsNEY39p/XdqBSlEqsjw8/cAsN15HFZraTf1xUo3HzD+ncUVtHnP75M2VdneHUAxGAgoYu88NFJ9d1VncCcA5sa5WboLIkoxaBSGXIHenZqNu2tIRLSWNB5cih2ziKfYlE4deIO59gBjeCbtM3MgnpYlAPhTxd+Q6jv/xcdNf2YdpTXNMzcu4e3Jz/Ix42dLOr+WsKtCiFgdxXmyZJ3is6BEi6uaMYTF7yvrKr5sGsDky5maxYpvbdCfc1VtqCvdf2YqnItOAKA5vIV0prhtrlpCCpEq4u15GIB4x1klj7EgsYPPmn9bUZv3tdtv4h7Lpzg7VnyYUg+CEwm71Y2IqKpKS2IvAN6Oud3oMWgVUYvY0B5Nxgt0beHHqc9wnemXhwmRlD2XPxXSp7/NqOrmV+lzeNjyshmPbV4gjNbcREiHi3P47Bj8Nx833c6q1KaS1uly+3giexRPx6ubIF42qjohRGyu4m7OBpcQIpZ4cULEGhOeN3m79mJx+MXP3JMuvs9NX67kt1Uje/cD8S8XDqtHs4u9w7M3UiaFSJWIBcdYktgMwLwTXl3yOLY68cVyV9Dm3RPewypDF/XmTMXmnI6oWYSsE+PVtXkfGA3QhrhZNi+ZWz1mDiXuFAl72dG9mow3tGsj6w3bOcW8E7vl4KhE/inWqJO7ao+pnc+n388dde+f8djG+no+nbmcdyc/TV+RhQrWhPDeyfdMKRaPXVi8J9JZEuna+O6VgpqMYFRUAGzu4oSI2SM+C/Zkcdc7V1J8dmz1xfu3AHhz1S4N2ZGiIw8X9nyfW8xfZ1X8+ZLmng5Dy1EkMVGnhBnvr36yfqlIIVIldm34ByYlyz5lHguWlG7W5PEfbPNeCZzJnKtqXXVdVfMkrEKIZELVFSK9u17EqKgEcU30xZizeEUDOHOo9NboBxLtFaJ81H54eaMpd/OxxvWx8c+Xftc7Z/aXMBgUNvgu5JHsGjqDxd2QHCnhVWLxlpan4LaaeJPxYT5o/Bvh0epvQ5ZKNBZje3Y+3aofl7O4HBF7ncjVcKWLs3l/NHM092fW4WxdUdR5eXzNCwFoUEIMBYpL0F6eeIFXGJ+j0aKDxYDJyqhRRAzjI7O3N5sUIlUiuUVsa3TXnVKWEc2BNu/hqLa+DlPOmQtPVttVNU/EvYgXsosYzVTO4n4ygp3CB2PQtlDb7PgaxOJfSEI1E0+WVu11KMqIyJtI1B2eW6POP4HPpy7mt5a3aDLXocRG+/ERonEae/cD6cj5qBTr3eDJ9Uhx1Jcm4A0Ghf8x/Ylrzb8jNrS3pDFqgYjBzXnJr3NG8ibsRdqluxuEKPWpASjwwSueyvDl+Fu5NPUJ6hasKXa5ABic9SQQEamRvsIrplKZLP6siIR5NTQzO5Ae23Keyy5lPCFzRCRF8s/ICu7NnIBx9SvLGucgm/cKVI2k0xkaVHFB9Ta36z5fIWxffhmvTd7AffYLqrqO7KDoMRP1zt1E1TymleezMnEbVymf0GQ8V0jkmpiaVh72nnveMn6VOY/7EsU1KyuUk7Z/jY22D3Ju6I6Cjl/rCvJGw8OYd/2r4DnUbBafKp6kPQ2lR8uiBlEWHg+V1vitFggdYO9e7EOYL2eNbydJosDS8Xxyvc1swGMv0eZAUfiJ+8N8MPlxepOFP/AMjAXxI9bp1dDM7ED+svR/eUPyS2w1zd6WElKIVIH+8Tg/GTuWy9NXs/LU4myiDyNn8w4QGtFfiIyO9GNRxP50XVNtCJEGZ224qz6SWsFP0q8itrC4nkGzkbYGDyoG+oPx8rP1VZXmpHjK9HUcddjbeUvuoVCCbFb77UdLQuQbGJyFmQoel32Rb1l+xFHdvyt4jlBgGHP+e1NCn5k8MYNI5E2GZ68QyfeZcRXRZyaP1+vj2vRlXJq8hpECA8ADo+O4idLitpYVfd7a8lruzZ5Id7TwdY/2d2JQVJKYCv58FUu+Y/RopDbaXJTCkS1EMqmqTPvIDrHXvabNh89RmqfAgeSrRqKj+tu8B/rFDWMUD0ZzcT0b9CLvyzAcrp4QUVWV2wPL+N/0O3GvfX3V1lEpGl1WLCYDmaxK33jxttcHEhvtxkmMtGqgbckkQsRlZZ2yg/N4gvGx4qsWZsKWy90wF5i74WgWJbzeeOHCPzAsjg2qDmz20rcQEybhc5KOBkoeo9oY9j7MfZZP8IVs8f6yiqLwoOMC7s8ez3ChH7sd9/Gi7VJ+kL6u6PkOpCVX9dJfhM17cFBcL8eM/qK7BRfKfiFSG20uSuGItHjf/NJzNNz1bmwk8X6mtJr+chh77i46FDtnLNMmhP/H5mt4dPcY76iAzftYKMLWbDspi4/iO+Pow7x0Fw9ZroIxI7ClKmsYDicZj6UwKLC4ce66quYxGBS+aP8jqxMbCW36Apz++pLH6unuxKb6SSkWFnlch71vMRn4nvUHtDHIvs6zqGvQNuLkTgcAsHmbCjq+br5oLtmUHYBsBgwzN27rV5q5OPENlnuz/KjklULK5IIEZGaxEFHDQywz9BCjoaTz/W4L/cF4wSaOqYBIqE5bfCXNl2epeZQLDf/F2TcEFLYNksglkIYsTZRopTYjx4z9i0etX2NH9zrgzzrNoi9HZEQkYPDRnOzCmxyAyEhF584mY7y754s8bL2KcxsDmowZblzLS+pi+itg877DtIwLkl/lpo7v6D5Xofi8PhYaBpivDpCtkqnPns59nKhs4Zi6NDZz4R1FZzNLTQOsNewm3r+trHE2qQt5WeImPtM89S163ChuWhGttx9VdaLPjKu+sNyN1vbFpFQjZjIEBwurVBiKwW51HsPe8vxl0hZRZZKNaWetX2nSMfHzThlLiwyts3TzWsNjpHpeLOh4NSgqjFKO8qTAMeFHudnyXU4cKvxmHwkHCap2Enb9qujcFiNtyjDeZHWrBsvhiBQiyzvmsTcrPpTx7o0Vnbtz0xPYSTCsell1zAmajJnvQDtUga2JwVxYstlTG9syAD6/KOkzKxlC49qH7gshtv1B/mj9Mt/K3FiV+atBwimqprJj+8oaZ1euUeDC5ropj4lahBBJaOyumo0GMCFyN7wNrQWd47BZ6VOEF8hwV2EibCS3f5//rpZK1iqEiJKYvUIkGxdN+1Km0iKHr4zdzU2WH+DrLCxZ2BTJlTq7C/v9ToUtVyXoShZeRv5PyzmsSdzC0+tuKGvu6bDXiUieOzN784aOSCHid1nZY1wIwPCuZys69+juZwDYZ1uBeQY76UJZQjeXGf/Gkr6/azLedNRSn5k8FpuDEKILcKBK/WYy/WJLKOKZ+xUzeVSNvER2Dgkhcqij6oEkbOLGnw1q658RHhPjhVQ7dd6p5z+UUYu4qYX6dhR0vGff/Vxl+jMnKKW5qubZ2fpq3pH8DP+pf3NZ41QTNSGESKZEIZJ1iKRPQ7QwQeBIiEiBua70JGEAd2MHAHWZ4YI9m3oDuQe3uuL8UorBmfNW8apBMjokc1eCI1KIAAQ8wtgm0V1cF8dyUftEODFad3iZYqksSO7kM+bfcWIFbN5fs+dL/NPyKdbFntB9rmIYV3wAhCuQsDsZ9vFcz5VJyk/nKhb/QgBcRSRtTsZVuy7ld+avcJQjMOUxGad46lMi2oafR5MGfpk+l7uV02fsM3MgUYcQYamRvQUd3zr4MB8z3c5RycK2E6YiU7eUx7NHsy9bWD5LTZIQwjNrKVz4HYiSs3k3xQrbVnenRJTUXqbvUV3OB6SJMcYKrFDJ95nRw949T95bpY4QY5HyEserxRGZrAqgNh0F42Af21rReb3j4snZNE87C/BK2rz74/tYaejiJXtt5UGETXWQ6iMe0KcfyUw0xvcC4G6b2z1mDsTTKqpHGlKlRynS0QDLsrtZZoTueVOHzg3unLtqTFt31UGlkevS72Oh18FFRZy3a8Fb+dHgKlY5TqKQDdZ8b5R8r5RSyftgBOPaGMlVA0Mq1xOlRCFi8ohtdVtyZiGiqqowFFPA09RR0nx5LL5WsihYlAyD/d3UL50++pnOZPla/AukzUbm81PAV9b8U2F2C1FqVjIERofwu8v7/6wGR2xExLNoHQCNsd0VK+NVMynaUsK4yb9Mm/wQAHeDECJ1FbB592WE2HH6a8NVNU/MImp4UsHKJ2yNjIfpUEVUoGXp3O4xcyD+NnEh9hEiVaC51KEM7Mm50ao+5jVPndBn8QmR4khqmwOU916odxZXRu/oWMfD2bW8FCpse8GWEt+bUu3d8/gJ8A7jA5wwqv82rF6EVRu9aj0Ze2lVM3af+JwUYvM+GopxV+ZU7s+so75cZ1OjmUAu8hocmNlddSgY5VRlEy83bqRukmowzTBZCSMSf0Mj1XkQK5cjVogsXLKSZ7LL+Id6Ctl4ZboWDuzdhI0UEdXKgqVHazautzHXb0YJE4npF5pLptITrqq+Zn1cAktl3LWI57OLGU1XPom2e9cmLEqGKDbs/tr6ueiJv6GRQdXH7mwLQ4OlRUUC+4QQ6TN3YDBMbTZlnr+Gz6cu5mbjO0qaZypCY0PUEcTvNBd1XkeDuPB3jhZm8+7O3TTzN9FSaUgP8b/mW3hj6LdljVNN/lB/Bacmvs/ehW8r6XxnLqnYmw3MeGx/OMVn05fwaetnsTiLa7A3GUGziGhFC+jrMjzQjUnJksaA0a1X8a5gj2UZz2aXMl6hNh9ac+QKEb+bd2S/zMcSV7AvVr6pWCFsCrn4QPJqfub8ABazdrtiDm/ThM376GCPZuMeyshQL2YlQ1ZV8Plro+FdnueWfpTXJb/CY46XV3zuQKfY9++3LJjzPWYORFEULnL/nJcnv8XedGlPt4l+sTUadC2a9ri6loX8KnMef49pJ+ABlm75Ic/ZLucd4Z8XdV5HnY03GB7hjcHfkIpHZjzelxURI1dDed8bu9sHgFOdvS3fwwdYvJeCN3ft8RAhlZj+xjswUeWnTY7Gw/Mv5YPJq9hiWDbjseP9oppszNBQkNdMOXy//Vu8MfklOo2zb1sGjmAhYjIaWNkiXAq39AUrMueLw1nuy55A58K3ajtwhWzeAwPiKSCgeFBMlRFvheKfcFetvM3xc6mFfDb1fl5sKybLYG7QVi+2JrrHSnsSM4+JJN9M/fQX9qaczXs0mZm4kWmBMZfwqDqKE1KNLhtfNP+Cq0x/ZqhrelPEaCSESxE/H18Z9u4Ado9Yp1ONQXZ2Njkrx+IdwFffxKdTH+CS5DWMRaffVh8eHpmwd9eCYPvLuTe7nt2xmbfk4iNi+yZk0T+xuCFXFj5SRXfpcjhihQjAqlYPRjJ07SmsBK9cNvcKwbN6nvalXHmb95iOQiQyLMo0A6bSnn71pJpfxA3jLn6TOYfEan26w9Yy7XWibLp7rLhOtHnqonsBsLdOX23ktJo4ybKHVxmeZKRfu3bn5ok+M8UlkRqMBgaNItw+1j29EBkbFN/JhGrGmYtolIrTI77nBkUlPUtNzT458jnusFwn8vNKwGg0cr/9Ah7IHs9QbPqcuJYdv+VF26VcEfpOSXMdNp5XfN4LsXnPBER0Om7Xd1sG9tu8j8zSfjNHbNUMwKmuPr5ofT/R5z3w2tK+FMWwtvMXZAyNHNW0TvOxf998DY/tDvAu+5qCsvhLIRBLszXbTsi2kMU6zVEq7fEd/MfyceJDbqCy3jA7BkSYfFmTjglpNcqp2Wd5q+U7xDavgvOKy1tQs1n2ZeoxqyH8i2Zuz/4V089YZtjD1n1rYcH0WzmFYs/3mfEU/9Q6bpsP0T1EB6e/dvRTx7sS32SpO81Py+w34na5SahmrEqKSGgMr3NqE7haZUl6Fw2GAJuLS8s5CL/LwnA4MWN/KUM4V87v0KbhXIc1zCsNT9I87ABOmmFuIUCzrvKM1ArhtJHbucj6UzbvOwf4ie7zac0RLUTmL16F9YkU1syIsHp36vekHxzq5kPpX5IxK4SbP6b5+BH/Wjbt6qQvrt+v9BnL8Vya/CrvXbZA9542xeL1uOkwDDKenXm/XkvGwzHOjN7LDqWNpY3nVHTuWqDRaWStYTc7w8XvgQ+Fk7wz/ikMCmxZOLMRXMjkh+Qe4mPaRf1cE0mkxT+1xl0dEAV1bO+0x41Es+xRW/F4fSWs8GAsJgNDOGhknOj4KN6WWnskmBkHYpvKVkby6AnWLlYYXiLR64TlZ015nDUqqkgMHm3EwPzEbn5ouYld0fnAtdMeG02kCap2jL7ytuMKwWVRma+MsDemreFfpTiit2aWt7dOWL2HOzfqOlfP1qcA6DbMw+stP3v7UA5sla4X+0bETb6jofaauuWTZ71ESMyQwKYlXbs38XXzT/id9Qbc1jIe8WYp7tyNsCFdfNngzpy1e0e9oyAzsbhNPNVmxjW62Koq3lyfGWd98UJEqRMVUtbQ9FtF+af2Rpc2eVVRRXz/YiH9fYM0J5vBjrhG2VylXwdfF/8r37X8EE/nA9Me58zZsVvqtbEb8LUuBKCR0Rlzlb6WfRdrErcQP+FyTeaeDkvOS8SeCug+lx4c0ULEbTOzz7wQgCGdrd7D+zYCMOCYOdu6FJbQzQeNf2Opjjbvu3M3jsX+2hMi7jr/ROVQYLhyTwVje0XFTJ+5Q7c237VMY5v4PNcRJBktLul716A4fmmBW1ppR277JKKNV0I2No4ZcTPxFNhn5kDsTcLQzROfvlLN2fkgV5n+xEmU56qa53uOK3hH8jMMOWdfO4EDPyNOV+nbSml7bqslMr3BXV1G+M64GrWpJnE2CEddjxJjYGhqT5tMVp3II2n16X+9tPlmd7+ZI+/KeQhBj0iSS/Xoa/VuGhR+CUn/UbqM35HcxbU62rxnsyq3BN7PPZZPs8xSe09iisFIQBFJwMEK9ptJDQin3JB7ScXmrCUaGvwEVHGhHe7eWdS5Rz/9GR63fpjXKo8WdLziElELc1Qb07pQPMkv0udyR+Y06kuIUta1LQegKd2POk0FS9PgI3zMdAdrEs+VvNYD2e06nsezRzOWKa17bTWJhkWCbVI14nSWsX5n3uZ9ajEQT6bw53yP6po1Kmu1uonkzMMC/VM3exwOJ8hkVYwGZSJarSeu+tndb+aIFyI0C2HgGNui6zQNYdGl095xrC7j2+uEUZJeNu8Dg/3MV4ZZZeikpbW2PETyBI0+AKKBykVEbGOi4kptXFGxOWsJRVEYylWPBHp3FXWuO7SbecooDXWFiQCTV1xsbQlt3FWH0g6+kH4f1xk/hsVU/KWwuWM5701+ilcnb2A8NnUZaf5mqZRp757HYxdbgMF4ZRyhtSQWDgAQwY7JWPrtJ28QZk1MbfM+PLDf98jj1y5PI2AS0ZjI8NRbcoP9Pdxj+TS/sH0TYwWshfL9ZuoJEpiF/WaOeCHizVm9N8f3QEaf/g3JWJj5GRG+bVl+oi5zuBrEF82nk8374N7NAAwpDZjs+nWSLIeoSYR6ExXsN+OPCct+53x9Il2zgXGrEAixoSIqz1SVlpS4kNd1FPazs9eLz7gnpY0QGY2I3A2/q7QnVrvdzhbniexRW+mcxkfFlhRP5fkeKeVylLqLdxgfwN7/tCbjVZJ4IkGfWs+IUl/WONZccrEzNfWD12Aozq/Tr+A+85ma+h5FrGIbJDE2tRAJDexhlaGT1eyuiMlhvt+MSckyNqptP6ZKcERXzQAsWrqav2ZOZS/zuSIRw+Jwaz5H97ZnWKyojOBlXps+FuDenFGSTwkTjsVwObQN24Z6RMRo2NqONs912jPiXMrG2DiBdGU+1qFonI5sNyjQsuTYisxZi0TdC9kT2clorHCDrfBwFy6iZFSF+YsLEyKO+Sv5XOp9hCxNfLfUxR5AMDBMHUEaHKUnTXbUOxgMJdg3EmVNm2/SY5y5yhxbmX1m8pwc+w+nm3/H071x4A2ajFkpRl3LeFPi+3TUO3i4jHGcua0IzzQ2790pN59LX8KJjfWcX8Zch5J0tEAE1PGpt4CjuWhJyNxIeZKrQExWdhgWMZ42Q3D2ue4e8RGRtnonnzN+nG+n3sCucX321p5LLeDcxNf4Yf2nUXRSx05v40Sy5pgONu/ZIbEFEXMv1HxsrXh0ydW8PvkVnnacXpH5uvZsw6akSGDG3Tr7Ege1YvNR13B28tvcbbmg4HP6d4vEzW6lBa+7sGRVf2Mrv86cy19ja0mmy3cVbdj8K56zXc5V0ZtKHuN0+24+YrwdZcc/pzzGlxVCxFlCQuxkqDYhnAzJyjhCa0k4kQFKt3fPk7d596lBMpnMpMcMjIstihaN7N3zdC95Gx9MXsW/TVNfZzIBYf4Yq4CZWZ7PNP2QNyevZ0Cdfd4yR7wQURSFVS1iq0Evq/dN/VF2qG1kF52py/jAwTbvw9ona9qCYguChtq94ebdVStl8741bOddyWu5pe4q3XtJ1DJtE+6qhZdNh7rFVt+wtfAIYZ3DjDm34T6kxe84KrZ40iV2gQU4Mfs815j/TFPP5GWkiWQSnxoCwFtmn5k8ilVcr4zJkCbjVZL99u7lfV98jfP4ZOoDXJa6mrEpciKCI/14iNDs1rYdhWXhSdybXc+L0alv+EpIGKllKmBmlqd+FrurHvFCBGB1q5s2ZYjgjsd0GX9z33huHn1zK/I279GxPs3HrouLvgn21tpNyszbHM/ktqgV20YyPJo9hsFFr6/IfLVKW53YBixGiGQHRfJ21Fu4IZeiKLzM0c2rDU8wVmRi7GQYoqX1mTkQU4NweHVEuyd9PzDSj0FRRcJkQ3mdd/MYHD4AzKnZFxGp2/M3/mL5AhfF/lDWOGazhfus5/Hv7HEMRyePiJyy5yZesH2A88a07VScb6A3MI3NuzUqEuYNXv3NzPLUO2dvv5kjPkcE4GX23Vxv/Rij2xqA0lpTT4WazfDW3q9ylHEeRzXpZb4u+H3z//DY7jHeZdPW5j2ZzvJSaj5ZJUXjQm27n2rJktiL/MfyccZ7mwB9ROWB7Mj5qhTqgzFXaXcr3Gn5HG2JYRKRF7E6fTOeszPlJ5tdTrZ5Zmv3A7mKX7HG8gIv7FsAq8v7LOb7zChF9pk5EHeLKNuuS04u/gdTTt6W+CZLnAluMWljeGfKCRFrevZFRMzBLo437CCpll/u7ndZGYumprzx2uMiadPs1TYq0WrP8irDk/hiYRLpl09qxudKioR5W853pBK8euyXfMT6Z17a/Tbg/yo2rxZIIQK0LD0OHof67AhqZBjFqU1fAoCBvVt4Iw9yocmCsUWLFLupifjX6GLz3jka5arUlTgtRl7qWKXp2FridjpYYBikT4P8gUI4uucPuA1mVnpr92dSCeq9HkzKAF4lQk/3LuavOH7Gc36cuoDdydP59Zrp+3UcSszihxQkA+VH/fJ9Ziye0oWIv0NECJuzQyQTCSzWgytwhqMZ9qqtOD3aRUMtOaFny1S2nYEmJIR4yprLN/k60bKP1YYtxPs8sPTwfA1PSggRR4M2rqp56kxJfmC5iayq0DN2Pe2NByc7Z7MqwbSZoOLA1aRPccJkuIxp5imjbI/OPpt3uTUDLG1vZZ8qyp/G9mhjOpRnYPsGAPaZFmKx6GsB7tcpR2LPsLjgLWp06pZsqwXuXDJgnTo+rcGUFkQTST6Y/CXftfyQpa7ZV7evJcJLRHx/An0zl/Am01n2jYhuvUuairshJR050RAqv0TblQ4AYCuhz0yehuZ2EqoZk5JlsPvw7aJ8LktDiSXCk2FxiToMR3b2VUeQFGtWzeVHEd+UuJ3vWn6Io/Ohw95TVZX6rNh68zRpZGaWQ3E2ksKEQVEZHTy8hHckkuR9yU9wbPJn+Faepenc02HI+dTkI32zCd2EyN69e7nkkktYtGgRdrudJUuW8IUvfIFksvb2r2xmI11msVc9orHVe6L7eQDG3PrnVixRurnceBdLe7W1ee8cGAFUFvlrewvC588ZXikpgsGArnN17dmOU0mQwoRv3nJd55oNjFtFImZshk60AJ0Dw5iyCVxWU9EVDapTiAZjtEwhoqp4VJG75aorPXSvGIwM5AzdRnt2HPa+rfNhrjb9kVN5vuQ5DhuzcSGXJz/OJ7hKszErhSElHmpUa/nXkpRN5Paok9i8j40HqVOE6KlvWVj2XAdhMBAwCjEYHOw87O2+cZEr1ei2Yi6gh5JWWHMdpB2p2WfzrpsQ2bp1K9lslh//+Mds2rSJb3/72/zoRz/iM5/5jF5TlkXIK4RCulebfhB57COiOkBt1j+3YkFyF582/571Gtu8r9j0bV6yXsKbE3doOq7W2Jweoqp48hzXoXLoQEb2ipYAfaY2MModzoRLJOVlx6a2vc4T2XgHW6zv44fW7xcdYTN5RMKnLV6eqVk2neIPmbP5e+ZkPP7ykkjzIiw6cLjFfcPgE3zUdCfHJzaUNceBuD11/DN7Iv9OrNDFvFBPjDkhomggRNRcbo8xergQGekXAiGOBUsZPW2mImQWN/34yOFJyn35smGvXfN5pyMf2XNlAhWdVwt0u4JecMEFXHDBfl+BxYsXs23bNm6++Wa+8Y1v6DVtySgtx8AIOANbNR23OSYuTu6Fx2k67mTYc092Wtu820N7cSlxvBq0MdebMYMPhzpAeKQPluon/hK9QmAGXEvQNvA7O1F9C2AIzOHJq0cOJNW/BYOiTiRdFoO1Ttz0namprb0LYTwJ16UuBmB7mZ/rhxd9jI8/18t59hM5+ZD3jPleKGUkxB5K3uI9q0IkmcFVpidHJTGlhRAx2Mo3jjRN2Lwffr0L5SIVI4YG5uuwnZxwNEP8JTKBSTybdv+Heyxfpi95AnCa5nNPhateCOp8vxmjoXa30Q+lop/g8fFx6uun9plLJBIkEvvzG4LBypWn1S05DjZBS2KvsHrX4Ck3ONJHEyNkVYWOlfpWzAC4cj4FvmncBkuhMSG+1K75tZ+UGTbVQWqA2Ji+CVvmURGGzzTIbRkAq38R7AB3bOZIlHlM5FJkGorvRO3K9QzxZsoT2yM5e3ePzVRSn5kDcc4/il3PKuwZO7yMNN8LxVhGQuxhY5oMXGB6hjo1QHh0La5WbZMx9SSumgirNoy28pN3zTmnWkfycFHan3Lwq/Q51NX70aOANuNsgVEwRg5Pms6O7maVoQuDWtlHlEP7zTS4KxuRKYeKJavu2rWL733ve1x++eVTHnPjjTfi9Xon/rS3V670adHSVXw//To+kfogsYQ2eSydO14goyr0GFrw1ulv9OttFBcknxImEo1qMmY4GmWeKrqdNi2s/X4qA7YlbMwuJpDS92mgPipyIRzzav9nUgncrUvZk21mb3bmirO62F4A7POKF7belsV8LvU+PpW6jEym9ITksbFR6gnS6Cz/gaOjQfiodI4e/p1z5HqhWDzaeIiASA7+vOlX3Gi+hfhgcR2Pq82XXJ/n6MSthBYW7sI7FY58o89JtiK2q/P5fPr9PLbwQ2XPMxlGn5A31klylQxBIcYz7sqZmYHoN7OPVp5TlzI2Prs8ZooWItdffz2Kokz75+mnD27G1NvbywUXXMBb3vIWLr300inHvvbaaxkfH5/409U1dVMhrWnyOPi57d38NXMq20a0ESJPpZdzVOJWbm77qibjzYTT6yeliuSosSFtbN5792zFpGSJYsPTWDlhWCr3LLqW1ye/wot2fZoLAsSTadoz4rPpX1KcD8ZcpXHJOs5OfptLox8hkZ7cYApEbkZrWnw2/QuPKXqehvp6fpM9l39mTmBsmo63M2HbfhfP2i7na6kbSx4jz0Jnmg8b7+Bdo98/LGfDk7tJ5nujaEXUIKqNEqHZlZgYzjmrlmvxDuDO2bzXqYHDquTyZmPNGtu751GXX8hlyau4OfvGw94z58pnlQqamQFgsvI+1494S/J6hpOzZ7sOStia+fCHP8xFF1007TELFy6c+Htvby9nn302p5xyCj/5yU+mPc9qtWK1alfmViyrWj08smOYLX1Bjm33lT3e5r4gcaw0dhQfgi6JnM17ozpKcKgXFpQ/71iXaHbXb5rP4hou3c3T6MrZHOvoLrh7KMJlyRs51trP99pqf7uqEtQ5zDgsRqLJDD1jMRY3Tp6MONS1jWYlQ1S1Mn9B8e0CzEYD9Q4LI5Ekg8FEyZ1zUyGR4Jiw+Eo6/0Dm1Tn4H/OfABgNjFGfi35mMlnq1XFQwO3XVojEDS7IQioyu0o1I7leM1rktfiaOvhE6jKGVS/fjiXxOfeLjvhINx4itLj1uZ/UdaziX9k+TBHlsHwMV0JEkK31lX9wq3da2D0cmXXuqkV/Gvx+P35/YYZfPT09nH322Rx//PHcdtttGAy1bVuytslEdteLsHk3nPiRssfb3CvCY6vn6WvtfiAhYx2N6VFiY9pUjST6twMQdFbOmKcc8n4NevZb2DEUplttoqV5habtxWcziqLQVmdn+0CY7tHo1EJkz4s0Az3G+SwzlXYzOtnejSG2k1BvE8xbX9IYaiTXZ8ZWur17HpurjgBufIQY7NxGfd0pgNj+8SsiauPTqOFdnoTJBWlIRcc1HVdvvpf4HFGzCY/6W6D0rscANruDf5rPIRRPMxxJHSRELhn4Mt+2beal4E3Ae8tb9CQ0uqwYFEhnVUbCCZpykRdVVanLDIMCrsbKp7E35B7ERmdZvxndlEFvby9nnXUW7e3tfOMb32BoaIj+/n76+2vX9e1ERx+/sdzIeZ3fLnusZDzKF0eu4cumW1ndWLmb1W+b/4dXJf6X7fZjNRlvV9LHfZnjCDXqn2yrBSsiG3jY8jEu7fyUbnPszFm7L2uubV+VSnOV+ms2WC/H/vxtUx6zJ+bgz5kz2OYtvZrgfZk/8T3L9zHtfajkMfLVLKpDGxflYbMQGsHe/V4iQwkjZya+xfsMX8FkL79K5EDSZjFeNhrQdFw9UVNx1iubOdP4Ag6bNtfExtyDx1Do4AiALy1+vy6/Pom8JqOBtzmf4RLj3QwO7y8lH40kaUYkz/q09i8pgHeP/5gnrB+mZdefKj53Oei2kfSvf/2LnTt3snPnTtraDv4w1Grte+vy4+ERaMiOkA0PY3CVfpHq3v4c6w3bWGroxef3abfIGYj6j2HTrk76Y9oY6dyZXM/zqeX86NiZbbtrAbfdSodhiGxKn71hgOYdv+djxn0scLxdtzlmI16rQqMSZM80XiJPJBfz29TlfGjlEl5d4jxJWyPEIBss/aHGHBdbGuV8xw8kbJ8Pqe0kh/Ybug1H0+xTW7C6tResGYuIsqrx2ZOUGA2Pk/fRdbrLi4bkOcmyl7WGrcT662DJqQAkUmka1TFQoE5jV9UD+XTmp3jNQR7reyssFve4/pEAJrUBgzKKy1fhHBHAY0jQqoyyOVy7D/yToVtE5OKLL0ZV1Un/1CqL5jXTmbN6H9r5TFljje4S53dblqBUcEtKS5t3VVXZnbN3X9xYfm+ISpCvpfdoXMJ8IOtG7uYq819YZdQmIXjO4BMXfXNoai+RXRo0CszkPDkMkdLdVfN9Zsw5N8pySXnE1qUS2C/C8t/BUvNYpiNrFUJEScyerZlYOCD+q1qwa5QLeFHij3zbcjP2rkcnXhse7Mea2xLzNOmXpzGeMzWLHWBq1heB85Nf4x3+P4EGpm3Fku8kbYyV57NTaWo7aaPCmIwGeizC6n20zJ4zmV7hvBn2VTaZcWnO5n2JBjbvI8EIlvgIiqLSUe/QYHX648ll0vvUsC7tBJKpzP6KmcWyYuZArP6FALjjU+QnqSrpwW2YSLNkihySQjC4hdi0xA531CwUZ77PjFebslpTw0IA7JH9lX7mrse5xvRHzkDbthEAnS3ncXny4zzsfZ3mY+tFPCxEUxS7Zj2rkjYR0cqGBydeCwwIMRjAg2LWLzIatwkhkh47QIjkqnWKbV2gFfl+M5ZZ1m9GCpFDCPtWApDpK8/q3T0uHFqN8yp7s9LS5r1/x7M8Y7uC/9g+gc1cuZ4J5eCtbyarKhgUlfER7cOTXV278ShRMqqCv2O15uPPZjwtorV7Q3rySMX4UDd/yXyMTdZLWFJfeo6AxSfEpiNZus37vZzC3zIn4/Br88TsbBEVQPXJ/SLMM/AUHzHdyfrEk5rMcSBp/yr+mT2RHdR+SX2eRERsI0UV7Yy28jk+huj+z0J4WIjBgEm7LuqTkXblRGxov6lZX0D0mWn1VkeIWDzC5M0+y/rNSCFyCMZW4W3gDmwreQw1m6U9KYyGGpZWNrfCpqHNe7BHlO7GzPqbsWmFwWQmoIhEvvGR8lvFH8rQbhHp6jfN0/VpazbS2CZuxnUEiUcOz13o3y3E/ZDSgNNReoTN0SD23j0luqtmsypfTLydj6Q+irdZmxyCuuWn8orE17kgfgPJtPC0yPdAUZ3a3xA9dpHeF4qnNR9bL5JR8ZmIG7QTIga3iEqYD+g9lBwVEYqwVTs328lQPOJzaInuf+BZvvuX3GP5FOcFb9d17qmw+cTPY7b1m5FC5BDqloieMC3JvcLqvQT6O7fjJkZSNdG+7FjtFlcArnrtbN4zg6J0N+xeWPZYlSRo8AEQGdU+IhLv3QTAmGOx5mPPdrz1fsZVkUs02H2442eoW/zshmzllYLnHYTrsgHUEr6j47EUmazIVatzaFO94a+vp9fUQVy10JN7KjbHxT69wdWsyRwHUk+YVxme5OjAvzUd9+4X+rj0FxsIRLXf1kwkE0RUKwmDdvlm5nwEILlflO5hHr9Kn0NXw+mazTMZljohRJyJ/dtCrvAeVhm6aDDFdJ17Kty5HDmfOk42W7v5mIcyu+zXKsDiZUfxydQH2Jrt4FfxNN4SLKA7O/egqvVETXUsrbBBm6/pYJv3cp48LeN7AFDrizeeqiY91iUEImaC8dItwKfCOCLEWaq+QiZ1swhFUdhsPpp0IoJ9PHpYM8BsTthGPUvKmqehuY3PpC5hSPXyzUQKj6O47+joeIAGxsnY6sruM5NHURQ66h1sGwixbyTCIr9zv727V5uE2ANpyAzwA8tNDIUbgGu1GTSdoPWut/PORJanN3yRc848W5txc+zzn8HrE7dxWls9v9FoTNuEzfv+rYgN6ir+ln4/n1umb36e0y8+4b70MKqqoijKhCixVMHMDITb7K5sK0P4MEaT1OuQKK0HUogcgtdh5TH3K+kJxNgyEOHkxcWH359ILuFtie9z0epG/k+HNU5H3ubdrGQYG+rBWYa7qi8qkr7sLSu0Wl5F+OOCL/DXjb181raKMzQe2xPeC4ClVfaYmYxb2m/g/i2D3KC2c6jzjCMomt0ZmsprFGi3Wfmb6XxCiTSD4QyeIrV2eudDPGO7gm2GJcCFZa3lQN5sfQK36XFSO0Kw4iJcuYTYfFdsLbG7fQA41YhmY2aGd3Jc+jkwwqZtvwaNhch+e3ezZmO6D4gA58XAwLi+9u55fEvXc1nyKrrVRn4XS+Oxm6hLD1bNzAzA7JvPGwzfJRhPc19k9ggRuTUzCataRWnclr7SavTzjqrL5+u7RzkpOZt3gNBw6e6qmUyWeRlRnlrfMbtszBucuRJmjd0F05ksF8U/ySsSX8e75pWajj1XaKsTqqBr9PDQdGNCCFv3/PKTfBtz1t2DoXjR5ybGxVNr1OQrex0HckL2RS4yPYSld4Nw2FQDALg1dlUFcHhEmaaDOGqm9J47BzK676WJvxvLKI2einAun0ULe/c8vnmL+ETqMj6a+hDhuPg5GAJ78BCmxaPvTdjmbWKD7VQ2qwvpD8YJRFM0I6Jg3ubqOVH7J9ylZ4/NuxQik7Den+Sdxvupe2lqh8jp2NxXeWv3AwkaRXJpdLT0ZM3+vi7cSoysqtC0YHYJEb9bn34z+0ajxDJGek0dzGupbGfN2UJbnUhE7B0NHfR6PDJOsyoSCls0aBR4vK2H1xgeJ97z0swHH0K+z0zcom0StupbCIA51Ml4OIJXEdEKj197YyuXZ//aEzl/jnIJdm2a+LstXnpp9FQs2fcHfm7+KqdF7tNsTIfTw93GV/BQdh3DkRSqqvKD2Kd4wXYZbYldms0zFfmoS994jP6RMeoU4ZNTjT4zeeqdeZv32SNE5NbMJKx1jvFB860MDzQAXyrq3PGxIe6IvpfN5oWsarpXnwXOwG+br+GJ3WO8276WUmt29o1EuDd9AW32JOdZZld1yJrQozxi+Qp9e1YDd2k27o6B/WZcBkPtNwCsBsekX2KD9cOM7WkGNky8vm8oxN9Tb2aBeYw3NZbv3fGm5F2cbPknG/YBnFXcyRGRRJq2aStErI2LYCe4oj0MRzO8NvFtOqwRfu3SvurMabcTUa04lQTh8RFs3vKjr9mh7RN/d6VKL42eCm9oB+uNz/NoRtt2EX6Xlc7RKMPhBHVWlQZFPAjWtegflTjP8gKnGTcT7vVidYktpzhWbDZtnGNL4erIt1lkfZqtu6+DY95XtXUUgxQikzBvxQnwEPizI6RDw5jchZff9Wx5itVKkGWmfryu6piAxfzHsLlMm/ftYTtfSr+H8zuaOU/DtVUCt91Mu2GISFLbqhl10x180/x3grbzgZdpOvZcoaGhkUZlHGP64Iz97eMGvpd5I8fN9/FmDcys0o4mCALh4rcQDBr3mcnjnSfysRrT/ewNp+lUmzG5nKCDs7LBoBBRHDhJEAtp4xlhH99f6eTLjkE2q+najUkh5BWLto6jp1p3cYJhB9E+P8MpNz4ghRGbDknCh/K6yJ9ZYn6Oe/pWMtq4kq3Zdqw2B4uq2Knca4gJm/cyWiBUGrk1MwltzU10qaIsrG/H00WdG9wrXBQH7NWrqtDC5n1Pztp9kX/2NXaz+3KZ9LlkQa1w9T3Jm4yPstaof8h3ttLYJj739Yd4iezUwNr9QBS3+H6ao4MzHHk45pzrpKKxv4e/XSR1NzPKrn4RddHD3j1PRBE/y1hIAxfNbJbGeOfEP01kUKPaRkWMaXFNUWzaNgB8V/z3fMvyI8w9TxAcEP8Po0oDVEAMpBziWqMGe9mqLuCC5Fe5dfWtus87HZl8pE/j35+eSCEyCQaDQq9N+EQEdhdn9W4cFHvWcX/1qiqW0skVxrtY2ve3kseI9m3DS5jF/tnRY+ZAXPUif8OnBjTtbeQNiydGS4t0VJ0KT10DwZyXyEDX/ifsZNczLFD6WdaojZmVySt+x/ZE8RdbW1JEECwebZPJbd4motgwKCqGF//MNaY/8nJlw8wnlsgvHBdzefLjDNnL97RRw/0YSJNQTYyqQuCEh6buGVQK5owQIgaNhUgiZ/OeCQ0SGxWuqkGLvq6qeVSP+ByaIn305ap1WqrkqponH+kzRmdPvxkpRKYgkusRk+0vLhmuPiT2WW1tazVfU6F0pPbwKfPvWT92T8ljXDlwHc/bLmNtqryeO9WgrlGU9DmVBOGQNk3BMlmV+SnxtFW/UPaYmQpFURg0iWhFoG+/EHlr9438x3o16zMbNZnHnjOTcqWKv9g+ZjiBuzKnYGrU2B9HURgyiSfkpYP38hHTnZwUf0zbOQ5gq/c0/pk9kRHKz0cYop5V8ds4N/kNfsKb+FLq3Qyq2ibbWzJRAEwaC5Fs7sarRIZJj4kE/ZhNexO5yTD5hG+TPT5I33h17d3zzMZ+M1KITIF5vrB69+R6xhRCMhGnPS1KFFtWrNdlXYWQ9y1wlWjzHk8kmZ8VX+jGWVYxA2B3eYmrInFsfFgbm/fe3q6JJLjmxcdoMuZcJWgVn7/4kDDEy6TTzM+VgvsXaSPi3DmxWa+OQZFRr+9l3shHUx/BMV/7qOWvFn+dVfFbeT4p1pd16FfC77aJz3goXn757s7BMGlMGOoX8qDvzdyauZDejLYJl3khYnZoK3CU3I3XHB+GsPi+px3aNDOcCadfCBFPaoj39t/IPy2fYlXo8YrMPRWzsd+MFCJT0JCzep+X2lew1XvX9o1YlAxBHLS0Vy9HpFyb975927AoGRKYqWudhVbmikIgZ/MeGi3dS+VABnaJHjN9hmaMttmXN1NJki4RrVDHhCgf2LcNi5Imrppp7dDme1GXa+9uJ0E8UnjUK5tVJ8oaG5za2LsfiLd5ETFsE6JVcem3RbBM6eFVhiexDL5Q9lg7h/bn8DTl/DcGgtr68CiqcDq2OLQVOGaPEB325AjPKyv4Zfpcwq0naTrHVHiaRGVOozpCa6qTlYYu6hzaGbaVQr7fjHsW9ZuRQmQKFi09ircnP8eJ8R8wGC1MiOwdHOOJzGq229ag6JApXyjeA2zeo7Fo0eeP7NsMQJ9xHophdnTdPZR95iU8l11KIJrRZLxIrk/KqH2RJuPNZRL+o3k0cxR7MuKCOLRXNLvrMbZhNGrzefJ6fXw2cxmXJq9hKFq4lX8gHKFeHcdIhjodhEhHg6iU8yPEUf4mqQenRu7jB5abWNRTei5YnpVPX8c3zT/kJNcgC50pjlV2kul9XoNV7ud1hptYHP81hnnablvbfCIC4EyNcW/6eK5Lv4/08soYDjpz3ZubCDAP4b1S17KwInNPhdPfxq5sK7szjbOm34wUIlNgt5oZaFjPOC629IVmPgF4LLqAt6c+xz+O+rbOq5sep7eBlCou+GODxUcE4gMiz2XcXj13wHL56fwbeEPyS+y2amNPHwv0kVEVEnWyx8xMxI96G+9KfZbfq+cCEOsTXZzHnNqJOEVReMh5Ifdnj2cwVnh1RKRzI0/bruAx28cxG7W//C0xDfG/pp9yhlGIr/xNUg9Uq4gsGJKFXZ+mY8XYQ7zJ+CgLfSbOSPyHO63XsWbnzWWPeyDhRJosBpw2bSMGrgYRAfZmAwwEK2Pvnkdxt/A522d4a/I6GhTxe6immRmAp2MNr0h+k8tS1xCIaeO6qzdSiEzD6pzVe96yfSY294mnoGo5quZRDEYCirhIBUuweTeMiCTDpG8Wbsvk8Lu0dVf9ofpmViduY/S4j2oy3lwm767aMyaicYbhXKNAn7bJofkthKEibN7zHZlDBn2+o/NdBt5henDi304d7N3zKDbx/2BMltaKYoLoKN6suHY1LTwak0/c2LV0V01lsiTTInKlpcU7gLt1Kf+T+iDXpC6nPrILL2Fa3BXqsWIwsrvhTAapAyCFCRwNlZl7CiwmAx6b+BmPatzmQi+kodk0nOIdZY3pNyx4oQ7O+sG0x6rZLPt6+wHLhICpJkFTPY3pUaIl5Eg4I2Jv39Q0e5/+GyaESPlfxGxWZedgmAQWFrXPK3u8uU6+30woHCYaT+CJ7AXArHHzxDWWPtoNz5LuMcDRhd3wE0F9+szk8c07uLOwz6/f58Xo8AFgToXLGifcswkX0K36WTS/iUiPyPFxa+iuGg0Mcqv5a4Sx47RcoNm4AG5PHXcpZ2PNhHnRdikAqvXVms4xHS1eG0lE9daYqZGmKpqZ5WlwWQnG0wyHkyzV39etbKQQmYZVnhTHme5maGxmhdvfvYsnuJjd1lba/C9WYHXT89vma3h8d4D3lGDz/pfUaTyXbuS0RSfqsrZKcGLoft5u/Tadu9YDvy9rrN7xGNFkBrNRYUF9ddxyZxNeu5kHbf/DInrZu+ff/Cj1KhalV/DKJSdrOs/58X9yquVPPLUvSKFddNM69ZnJo1icjCo+6tUAX86+n8/X6SdEzE7xFG7LlLc1M7z3JSFEDPM52WbG05jLMdPQXTU2PszLjRsJq3bMJm3zzhRFodFlxT4uyutDOHFbKud/dDxbeY/51wBErJUpG56Jr6b+jw7rVvbs+wEsflW1lzMjUohMQ9vKE+ABkREdHx+atp9D/7YNtAKYrFgs1c2aBog2HMOWXZ0MxIv70o9HU/wydipwKi8tP06fxVUAt9VEmzLMaLx8m+Oelx7lz5br2Wlfi8kou+4WQtZohQx07t7KnfF1KMo6PrhE21Jw1dUMw2Aswl1VDYun/JRNv/D5mGUe9YkASVsDGPW7xFqcPgDsmfIiIoneg3N46pvayKoKJiVDNjKMwV3+I3XeZTeq2NGj5uxl1p2cZBJ9pcaMfrR1Kpme48MPsdKwG4Cwuza2s+sJ0qKMsW1cG/sCvZE5ItPQ6PfTjfgS9myb3iEx1rURgFGXtuHnUmnMbU0Ua/O+Z0S4HzZ7rJrv5VYSqzeXSZ8uv5Y+8NydnGDYzlrr7PhS1wKhnJdI775tgMgbsZm1fRI25lwti8llMMRECF3VcR8/6hTJikvN+lps290iquNQI2WNYxzdAUC6bjkAjT4XI4jt5eBQ55TnFUMiKnJQYoo2zrqHcnHiN7zR+CgAYat+3i2TYfCKqNdfMi9j2/ovV3TuqUhYxWcjE9K+i7IeSCEyDYqi0GcTCXbBvdM7jNqGRclrpulo3ddVCEuVLq40/pWlRZb29Xdu5xhlN6v1iVxXDGfO5t1TopdKntFghHUjd4sx17+z3GUdMcRdIrzfNvgfzjA8z/F12ifNWXN+Oc4i3FXzfWYMGveZORC/QUQo3hi/Xbc5AGwNHXwq9QE+n7msrHGSiRgZVcHSuhIAs9HAqCK2fYJDPWWvEyAVFRGRhEGfrc2Edb+wTNoruz1iz1XJtDBWdVfVPOl8xC8ihcicIF4vvpxq/6Zpj2uKiacK98J1uq+pEDpSe/ik+Q+cEPhHUee5tt3O36yf4yPxn+i0ssrg8QshUqcGSacL84GZjGfu/z1NSoCA4qXjlDdrtby5j68DgJexkV9avsrb03dqPoWrQSRV+jKFOwg/a1zDXzOnkvGv1Hw9eepPEYJVWahvh2a318cfMmdzV+oEUpnCvVQO5XLDF1iduA3vstMmXrvb8TquT72HXlObFkslHRNCJGnUR4hk7PuFSNZVGVfVPK6cuV6LMlr1PjN58v1mDPHZYfM+e2PvFcI8bw30gi+4bcpjxgOjtKkiF6FtVW0keNpyNu/uIrcmTAGx15mp17gPR4Xx5somTUqWoZEBGpvnFz2Gqqp4Nv8WgJ6Fb8Bn0t4Aa65i9S+C7fv/rTRqv2U5YdxHiEwqgdE8c8nmb5RXsT11Jr9ZoJ/zpvW4d0DrUbh0+H8+kAO3TkPxNPUlGLTFUxm6xqKoWFjSUjfx+guNr+ah0SFWZ5vQIsU4HRMJtXoJEVz781iMvuK/6+XgbVoIwBJDH4lMD1D97XmjO9dvZpYIERkRmQH/UlFz4kyPoGYnd+ns3vIUAAOKH099bWRN77d5L06IeHOlltbm5VovqaIYzRYCubS44EhpuR0vbN7ECalnAFhw7uWare1IwNt6cBmrp137jsX1DS0k88Z9A10FnZO3dy/lpl0wigLzjgWzPvkQeUxGA2datvFKw5OExwpP2D2Q3UMRVFVUOuW9dwCa3eLJPm8QVi6ZhMhjSZv0aY9gOiCh1ji/slHpfI4IgNVeG93KzTkh4kjNDiEiIyIz0LFkNaenfkBXxscjgQTtk5Rvbh838Hz6bPwNfs6rwhonw9skngq8SoRYNIrdMfOTiKqqtKZ7QIG6jtnX7O5QdpmWoiTDqOHSLqb9D/2MtYrKLsexLJk3+38elcTfvoxns0s5ziDM8VoWa9+x2GQy8nnjh+iNm7k67WSmrI9sOo0hMogRty59ZqrBV4w/od3Qx87+M6Ct+G2U7GPf5S+Wv/KE+zUoyv6rV7sjxXHKdiz9QaB8P6ENLRfxjhfWctHqVvSIGVu9IgL6fHYxviWV6TMzgcUB590AyTB4tdnKKhdbQzs7s/PoUho4ttqLKQApRGbAYjbhbloAfUE29wUnFSKPhZr5c/oDfPyYZTUjRFxePynViFnJMDbUg33BzBeTocE+mhSRaNe8QPsn2Erzzeav8viuEb5jXlS0l0ownuKn/UsJqmdw3Ilv1WV9cxmPz8//GS7jj3ySAG58jfr4aTzjPY/N0SDvihuZqZducKiLp6xXklBNGBylRRBqjajBCRlIhgMlnW/u38jRhh30Ow4W60enXuTD1uvZ3bkSeHvZ6wwnMmQw6hYxcDaISLRfGaehQvbuB3Hqhys/5zTYl53BSclvYFDgVVkVg6H6JmvTIbdmCmBVzil1S9/kVsp5C/hacFTNc6DN+3iBNu8De0RC7qDSgMVRyUp8fWhwiZyBYkuYAf66sZenU4v4Sf3/sPjMd2m9tCOCE5wiY7/frF/vjbzN+2ABNu/BEfE9GFfcmptqVYuEUWx1JCOllam7QiInzNh0cPKuPZcI7NHIXTWSEAnjLqs+P/fmRWv4huPj/Lb5E5qXic9G6hwi4pdVmRX9ZmREpADOcHZyvvnb2J9vhnN+d9B7yWQS8+ALWJhf9R4zhzJh8z5WWI5EuGcrAMPWdmaBK/CM5MPvI5Hi+838/inhn3DRiR0oNWDZPBtZbemHCCQd+lUxHGUZwGN4AkN3DNZ3THtsZGwAgJDBOyc+3wBJkxuSkIkGij85m6ExKXJrvB0Hx5PcjUI8auWuemLvr1hvfh5D5D3okcxpcdVxzSeul9/VHPl+M8F4mtFIQt+cKA2QEZECWFxv5jzjM6wI//ew97q2P89fzZ9hg+1K5tdI6VaeXzf9Dxck/o8d9sLabj+vLuHLqXexpfUNOq+sMpwZ+juPWj/Kadu/VtR5W7bv4G2D32WtcR9vXFfZDPy5RFOz2I5Rlp2j2xynxv7DTZYfsLD7rhmPTYyL7ZiIqW6GI2cPabOIXGZj48WfO7oPCykSqpm2hQeLg4bmnLsqGTKR8qMiC0PP8VrjE/gzA2WPNRVShBzMrwxf5L/WK4nkHjBrGSlECqB95XoAmtQRQmMHf5GGd4mqij7LAhQNejJoSdx/NFvVDgZihQW+no40ckvmlURXzA0h4rIYaFOGcRRp877v3z/lPab7+I7719TV+JNELXPi264leuVGjnnVlbrNYXCL3ABLbOacj3RIHBO3zB0hkrHkorDx4oXI0J4XANhDK/PrD65maXA7JtxVxwfLd1c1Z0TVjNE++7d8ZwuNSoBmJUCswIh4NamtO2eN4qtroAdxwevZ+vRB72V6nwcg5NXPIKlU8jbvQwVWjeweEheLxf7aKEErF0vO5t2eLLyELRJPsrrvTgAy696jx7KOHBQFR9MiUc6qE5Zcy3pHcmZ3VTX3ZJ+2zXLb4ANQreLGriQnz1+bjmCXcIMetC44LJnRZDQwqoifU3CwsNLo6bBko2JcW21tX89lornIX77jdC0jhUiBDNqFL0Jw78aDXneNiYZRhlbtyxPLZYnSxZXGO1nWM3PYOpVOc3TgAY5S9rKovra2mErF5hNCxJUJFHzOhofuokMZIIxDJqnOAhw54zpPZmYhYoiKY7J2/frMVJqBlrP4VOoDPOY6v+hzhyJpulU/Yc/k5oVBs/g5xUbLt3m3ZoQQMTukEKkUCasQIrOh34xMVi2QWMNq6H4cw+BLE6+p2SxtyV0A1C0utkBUfzpSe3md+Y9sChwDfHbaY/u6dnGT6SaSRiMmT3m9K2oFd67fjC8bQFXVgvaQjc/9EoC98y7kaJs+5ksS7fDmkirrswHUbAbFMHXFxFbTSroyozgbZir0nT0km9bwh4zCOUrxRoq3W1/L7YnjuWbl5KX9T/lexd29q1lvO4pyXXTsagwAq8Nb5kiSQknb6iHIrOg3o2tE5LWvfS0dHR3YbDZaW1t597vfTW9vYaWktYat7RgAfKH9vtV9PXupJ0hGVWhbUXtCxOYTN2JXATbvI/tE6W6/sRWDyazruiqFt1EkmrqVGNHozB1Kd+7dx4nxxwCY93LppDobqG8WBlJmJUNodPoL7t9M5/Dx1IeJLTq3EkurCG6beJYMxosv0dw1KDyDljZPnrfR3XouP89cwA61/ITtCSHilBGRSqE6hLvqbOg3o6sQOfvss/njH//Itm3b+Mtf/sKuXbt485tnZ+OwxqUnEFMtjKTMpNPC6r1/2wYAeoxtWGrE2vdA3P7Cbd6jvaKXzph9+hLI2YTDXTdhAR4Ymjlha9f9P8OqpNlnWUb90troGSSZHpvNzhjiRjo2Q1LlSFiUcc8VV1WAOmOc0w0vsCz4ZFHnqdksO/NCpGnyyF9zzqNlIFhe52Q1k8auiJ+93SUjIpViNvWb0XVr5qqrrpr4+4IFC/j0pz/N61//elKpFGbz7Hrqnr9oNWvUXxBOqtw/GmVpk5vnY43cm3o7K9ubqMXbtzfnZlmIzbsyKqy4E55FFVlbJVAMBrYYlpHOZLCGI0z3XBdPZXimJ8qxqo/4GpkbMpu4yXYF+4JZLqORBdMcp4QHMGGlwTV3hEhDqp//b+/eo+Mqy/2Bf/fc7zPJTK7NrRdaKG2BUigFFEEpoHLTn0fES1HpD4H68wAHtN6oHjytLg4qFuUo6sErLLUgHkSK0Bah9JRiKwWktNCmSZt7MpfM/fL+/tgzk6aZJDOTzOydyfez1iwms/dkP9nsJs+8+32f55eGTegPVgG4bdL9Mwbe2Ibt0lrs1C9Fq/uKnPs0WlJYLr2F6p5jAJYWHWM4CSyL/AJWRLDTVSkVXNRPWyWXee9JqT/5K9sckcHBQfz617/G+eefP24SEo1GEY2OZN9+f+EzwUtFo9VgYb0Tfz/qxRtdASyoteOlIQe2Jq/E15eosxy6zelBTGhhyKPMuyVwBACgrZl6Xwk1+brnPvyjw4sfS/VYMsF+T7/ejR+HL8FTjsuwffW7yxYfTd2b1e/FS94BXBUdP8FIxiLYmloLmIA+7QEAlXGLwGyXJyTaMFzQ+4baX8cpkh/1hggMutwD43NFB7YYN6CvzwOg+Hljw9EEEtDBL9lgMc6sD6AzmTj1g3jfVhc8BgPUXpCh5KtmvvjFL8JqtcLtduPo0aP44x//OO6+GzduhNPpzD6am0tXGroYmVLvbxyT1+y/kS75rraKqhlymXcXAMDfP/HMd09UXqJnn6O+ZchT4cmzuuoju+Wf/0PntEFrqIxVQ7NFPmXeMx2YE0IDV9Vk7fFmDqtDXtliQhypWP7NHWPd8mo/n238EVC7R/79W5UalKurFikYlW9l2ww6Fh0rI0+6xcVQKI5USigczcQKTkQ2bJDL6E702LNnpNbGnXfeib1792Lr1q3QarX41Kc+BSFyn5T169fD5/NlHx0dU1+/Pp0u1r+Opw134dL9t8Pn9+EM3zbMlbpwWr16i/QE0mvJQ4Pjz5EIhYJoEPJa87q5lbOiAEB2GH5ggn4z7ce6YD7yDLRSCv9yjrqSX5rcIn0vrta8AHPnznH3CQzIRe28kh16XeUsFrQ5XNnnw/785wLovfKt2FT1+COgI9VVU9licMWI97yF7+s34w7to0V/Dypcpt9MMiXgU3m/mYL/Ra5btw7XXXfdhPu0tbVln3s8Hng8HixcuBCnnXYampubsWvXLqxatWrM+4xGI4xGY6EhlU1TrRuLNJ3oCYfR8c+X8YDhfvSjCk7LjUqHNq5f1d6JnYeH8GnLmVg+zj5HBsK4L347TjP24Y6ayvpDfFlgC75g/CXeOfAB4JIf5NznzWd+ip8Z7sVrpuWY47qyzBHSVJ0V2Y1bDD/E37suBvDJnPsEvXJFZJ/GhcoZDwFMRgMCwiyvDPMPwuHJr8txVegIAMDcOP7CXLfDikHY4YEf3t5OeJzF9QyKD3Xgau1OHFblTLrKZdAAfzGtR7XwYWjgb6iyqvf8F5yIZBKLYmRGQk6cBzKTNJ96NvBnoA4DOPDaXwEA3eYFqv7FFvEsxoF3OiYs8354KI6/ps7GYI0Ld1TY0KlND8yRBnAsnLvMezyRRNuR3wMAtIsKLwpFytM55WXqpuj4PVEiXvkTfUjnKkdIZTUsWWGHnIjkJRZETVI+H5654xdi1GgkDGrc8Ag/Av1H4TllRVHxJcLyLeyoZvzJ8lQCGg3moB92KYiu/i6gRb2JSMnmiOzevRubN2/Gvn370N7ejm3btuH666/H/Pnzc46GzARWRzWOpwsHtaabbIXd6pyompG5T9g/wa2Jw/3yRLe5nsor4KWzy7P0jdHclTdf3vksFuEwYtBhwfvUO7JF4zNXyYmIPT5+ddWRPjOVU949I6SRSwdEh/NLRPydcmn3AWFH2yTz8Pw6eQ5KaKD4+k+JcAAAENMyESk3v9YFAAh7S9dscDqU7Gap2WzGli1bcPfddyMYDKKhoQGXX345HnnkEVXffplMr2UBGoM9aBXy5E9D05nKBjSJBejArdrHUXe8FRhn3Yjx8LO4XNOFJY7K+yVtSvebscRz11KJ7v5vAMAh9yVYbFfz2BaNx14jFzWrFuP/IRbp6pIJY+Vd449bP4rewSG839iWVwXUjsEgvMnTEdM7cLFx4j8BYVMNEAcS3uITkWREHhGJ69RXa6nShXRVQPKY6vvNlCwRWbp0KZ577rlSfXvFxNyLgeCL2a/rFhY3XFkuLYl0mfehpQC+mnOf87t/gbWG17EvOQfAzBytGo+lWr6v7Uh5x2w73tuPcwLPAhJQ/a61ZY6MpourVv5Ub0UEkaAPJuvYugmHtfNwLHkBjNVnlDu8ktvneh/+1tePczX5JdKvpuZhffwrePfcGlw8yb6Halfjr4O1OMWyEsWeORGVR1wTTETKLmasAqLq7zfDpncFMjWP3FMNw4i6VnXfmsmnzHtdvBMA4GxW989SDHu6KVqV8CGZHL0E8bWtP4dNiqBL24j6Myqn7Pds43BWISjkUdbB7s6c+zxveBdui9+K3raryhlaWTjMcm2OfMu8Zyuq1kx+K3a48V14OHkZ9qeKL3SYSURS+sq79at2CVO6waPK+80wESlQ3SnnZJ936udC0qp7KaDNPXGZ96HBfngg10Wpr7CluwDg8siJiEFKwjs08o8xmRKIvyOPbA0uuq6kreqptCRJwpBGXqbu78+95D8zR6raNnNvC4+nRdOPCzX7oe9/M6/9j3bLk3rHK+1+ojqHXFOnZ4IaLZORYulExMARkXITFnmUTKvyMu/q/iuqQrWtp+Ji6SEsjL6Gi+c3Qu11SJ21cmFzpxREJByCyTx6wlj3O/tRBaAfLnjSVRoric5owZtoQyBlQJXPD7dHnjPy/Ft9uDV0I35tvgw/u+zDCkdJU/VL50042BvEx3StyFWSLxXohR4jBe4qyYX+J/FFw39j97H/AyB3ufasZAIPdF6LfqMD3fanJ/3e9VZgufQWWvvfBFBc/6Unaj6Hm46+Fze3LcIFRX0HKpZwteBgag76EupOApmIFEiSJLS2tOLpAxZ8YNlZSoczKfsJZd4He4+h8aQy7/5O+VNUn6FZ1cuQp2Kd434c6h3Gb0QVFqRf++3uowAknLr8Ipic7H8x07W7L8Jz3d14dyR3VdyfDt8MhymIdxLbgUq70k3ynBhtLDDprqGeQ7AgAReCMOWxnLNBH8IW4wYkglogdRugKXwQ3ReX4IUdBqur4PfS1Ayffj2u3bUAi7R2qLndLG/NFOHfr16Cb394KT64tEHpUCYlaTQYSpd5D+Qo857oOwgACNrayhhVeXnS1VX70sPzvUM+7HqzHQBw3bmVVcBtthop8z52mXoyHoUDQQCAvbqurHGVgyadiOhik/fm6j28HwDQLjWi2jZ5K4OR6qpJxIqc8DgcTQAArJOs0KHpV51niwulMREpQnO1BR89pwUazcyYV5Ap8x7MUebd4HsHAJCqnl/WmMrJnZ4XkGkD/+rTD+Ml/c34TvWfsLBOveX5KX/z9QO4RvMCqo/vGLPNly7vnhAaVFVX3uiXLj3SYEhMPiIyfOx1AMCAaaI+xSOq7BYMQv434u05WlR8Vww8jG/pfor6yDtFvZ+K57Zm+s3EVN1vhonILPCr2juxOvptHLSOLfL+I+k63BT7V6QWvl+ByMrj2sBv8aLx81jw1n8hlRLwvPUIrFIUi5vcSodG0+S0yKv4nuGHWNk7tp9Jps+MT7JDV0F9ZjL0VvmDhik5eQde0fcWACDsXDDJnjJJkqurAoC/r7jeX+eG/oaP656Fc5wJ81Q61Zog/mL4Il7U3wJfSL0VzZmIzAIR92K8JZrREx79vzuVEnhxyImnU+eifl7uYmeVwK5LYY40AP1wN/btfRlnpl5HUkiYv7r41uakLsZqeXWYNUd11eCQnIj4NWPri1QCY3pExJwKTrqv1S+PSmhrF+b9/QN6OREJD07cwXs8JhECABgsHH0sN4PFgVM1HaiXhjA0oN6iZkxEZoEae+4y713+CKKJFPRaCU1VZiVCKwuNvQYAoI8MYPCFhwAAB52rYPbkNzxN6mfNLFNPjl2mGPXJv4CDFdhnBgBMDjlRsIpJRkSEQG1Uvr3iaM7/g0fYKN/OSviKq65qFmEAgNFSmYmgqmn18ENepj08mLvflhpU3jgljbFAHMU67WOoPdaGE8u8dx96FTdp/4QBx2nQaSv31ow+3W/GHOnB3OA+QALM531G2aBoWmWqq7pEAIlYFDrDSL2QeLrPTFRfecvTAcBSPQffil+PYcmK/xAC0jg1ceKxMP4nuRJzpeNonpd/zaCkpQYIAAgU16/EIsKAhJwVb6n0AlonHMlhhIaYiJCCmhPtuFr/uzFl3mPvvID1+t9iP84F8AXF4is1c5Vc5v301AFAAgakarSuvFbhqGg6VXkakBAa6KQU+vuOo3bOSCXQY5pGbEleCJ1rOc5WMMZSsTlc+EnygwCAr8WTsBhy/1pv9yXxpfiNsBq0eM2df1LQ13gxvt4J1FhWotCCBYloGAYpCQCw2FwFvpumQ6bfTMyv3sZ3vDUzC2T+EJ9c5l0MHAIAhB3zyh5TOdmqRy+zPj73w4DKK+JSYbRaLQbTy9T9vaMnVf7dcA5uj9+CQ60fUyCy0rMYtNCmV/D5w4lx98uUdp9faxt31CSnpnPwi+Rl2J3Ib4LriUIB30icdo6IKCGabvSYDPQrHMn4mIjMAja3XF216qRZ6+b0xDXJU/gvmJnEUdOYff5g6lq0rf6cgtFQqfi08i/c4cHRcxkGguny7hVYVRWQV7asMHbgQs1+DPvGr/VxvOMIjIjl1WPmRHWZGi3+wlddhIJeAEBYGGAwVOb5V7uEKd1xOqTeRIQfC2eBTJl3x0ll3qsj8idHa+MixWIrB5vTg3dEIwaEDccW3wh7fWUnXrPVE54bsb9jAFcZTsWZJ7we8/dBj0S2nkwl+g6+j1bDMRzoWga05C7Sd8H+r+Cfxr/jGXwLGHWGJlZn0+Ns6QDm+QNA6sKCqqv6DA24IvIgGi0CT+b9LppOcUcr3uqeg4GEeq9/JiKzQK4y77FYDI2pbkACatsqr9ndiSSNFrdW/xhvdvux5fzK/llns77aC7C9vQNnRUf31fh63+1oMR3D/uAjABpzv3mGC2ttQAKIBbzj7uMOH4FGEnA2FHYrts5mwO8M34RGCET8N8Hkqs/7vcOxFIbggM1Uuavy1O7Y6TfhI6+txPkGt2rLvPPWzCyQq8x7V/sB6KUkwsIAd0ObcsGVyYOfWI7f3bQKZ7VU5soJAmrtmTLvozvFOlLyPAWbq/KqqmbEtPLtlngod9GwVNgPj5BrrNTNXVrQ93bYzBiEA0Dh1VWDmfLu40ygpdLL3JIcVHGZdyYis0SmzHtmCdfg0TcAAN26RkgarWJxlUur24oVbdVKh0El1KobwrWav2FO97PZ15LxGFyQJ2na3fl/kp9pYjq5WFgy5M25ve/Ia/J/hRPNjYWNCsnVVeV/O/6+zoLeq+v6O/5d9zNcm9xa0Pto+rjTvbb6h9WbiDBNnSV+VXsnXjzsw1rrWTgLwCvSEnwl+h943ykO3K50cETTYG78ID5s+BEODCwC8K8AAO9gN9wAUkKCqwL7zGQkDHYgCKTCvpzbB9r3ow7AMV0LarSFf/4cNniA6GFECqyuqh94E5/U/RX/iOeOi0qvNt6Fpw13QYoBqdRrquyRxhGRWSLiXoyDogndIfl/+aGhJN4QbUDzSmUDI5omlnR1VUdipLrqSJ8ZG3R6vSJxlUPKIN86QTR3B95Y15sAAH+RXbbDRrk6ccI3tnHmhHFF5UZ8cV1hK3Vo+jgcdizSdGK+dAz+sDr7zTARmSU8ttFl3t/pl/tSzPNYx30P0UzirGkCALjFEEQqBQAIDspFnCq1z0yWSf75NOMkIvqhgwCAZHX+PWZOlLDWyU8ChVXnFFH5tlhKz98zSjE65JFArSQw2K/OfjO8NTNLLMBRfF67BbXH5gJYgg/0PIilWivm2yu32R3NLtV18rJVg5SAd7APLk8dIulqkkFtZU9SHqhbhW8d8sJhWY5zcmzfgbPxRkJCbUuurZOT7A1AF6APFVidM5uIcEREMel+Mw4MY3iwC2htUTqiMZiIzBItiXZco/89Xh9aioB/HdakHgf0gL96g8KREU0Po8kCH6xwIoih3k64PHXoQzW2JC+EtnohFisdYAlF65bjJ0kt3q2tGbNNCIEfD18Ab+JcPLno/KK+f2zOSnzt9RtgNC1GIWtuNHE5EREGJiJKyvSbCXvV2W+Gt2ZmCVOVXObcnhhE9+F/AgCG4ICjgifw0ewzlF7dMTwgr+74p34Jbo/fgt3Nld3k0GGSP1P6w/Ex2waCMXhDcUgSML/AqqoZljlL8MvkamyPnVrQ+zSxdEdgIxMRJYXSDR9jPnXemmEiMkvYMm3SU154O18HAPTom5QMiWjaDevdAIBIusx7prx7JVdVBQCnPoll0ttoGf7HmG3tR97GfOkY2lw6mPTFLdWvdZgAAD3+yCR7jqZLyHPRNEZ7Ucel6RE1yAl6IjB+CwAl8dbMLOGqGSnzHj8u1xQIWFuVDIlo2m2v+zTuPdSJi83yXImwfwAGxOGu0D4zGe7YMTxh/BqGwg4At4zapvnHb/Cs8Qd4UfM+AJcV9f3rHEYsl95CfWwQoeGVeXfSfcB1Ow4MfQRfbD2vqOPS9AhaW3HA2wRfQp1/8jkiMkvYXXKZdwBw9u4BACSr5isZEtG0C9SvxPbUWWiPyp/AP9v5VbxlWoPTvduVDazELHZ56N0mgoAQo7ZpBuQVMzFX8f/ebUYdfmz4Ln5ouB/ejgN5v683bsFRUQeD3V30sWnq9i++HZfFvoNnTZcqHUpOTERmiRPLvJ8ak0dETPXFLeUjUquak8q8WxNeAIDJWdl/CK3pn08vJREJD4/aZg/IXbb1dYXN7ziRJEkYSnc39vfnX101W+LdWPnVm9UsU75hYFiddUTUOU5DJRHQVaEuMQCtJH9iqmo+TeGIiKZXsyGAD2meR2uvE8DybJ8Za1XllncHALvdhaSQoJUEgr5BmCzpORlCoC4u94epap3aUv2AvvDqqp8IPoyQLg5X8hQAnikdn4qn9n4zTERmkV/W3oUXD3vhFXY0aAbw+/mFNb8iUrvmZCfuMzyIdl8Tkom74BQBQALs1ZWdiGi0GnhhhQvDCPkH4W6Q538N9x2FDRHEhRZN86aWiERMNUAUSPiO5/2eDyf/DLsujA7p36Z0bJqaxvABPG24C0GfA8BLSoczBm/NzCKR6tNwSDShH054XafDaGRrbqosNo88KbsqNQjvQDc06dE/l7tOybDKIqiRq5eGAyMl7rvf2Q8AOCbVwWm3TOn7Jy3yOZSG8ytqJlIpWIR8i8xsdU3p2DQ1LqsZizSdaE11IpUSk7+hzJiIzCKZ++cAMNfDdf1Ueapq5eqqDimEvmNvAwCGYIdOX9mrZgAgnE5EosND2dcC6aX6faa2KX9/ySHXIsq3umokNJy9DWy2V3iJfZXLdJ6uQgD+UGFLsMuBicgsskC042+GL+BN4xpcYsx/5jvRTGFzVCEi5OZ2vsP7AMyCPjNpz1ivwn/EP4Z+Q3P2tX1YhHvjH8E7dcUt2z2R3iUnIpZofrUogsNeAHLnY4vVMeXjU/Ey/WY0ksDQoPqKmjERmUWaU0fRrOmDSYrjNM1RpcMhmnaSRoPBdHXVviE//pC8EP8wz44O06+4P4gfJ69Et64h+9qLwSZsTl6LyKJrpvz99U1n4avxT+PH2uvz2j88LE8UDsEEScM/NYpK95sBgOGBwjoolwOvjlnE7Br5BWVpKH4pH5Ga+XXyUtYDwybcEb8FTzXcqnBE5eEwySNBJ5Z5f7tPXsq7oHbqt2KrGubhV8lL8WQov9V20WA6EZE4F00NAlp5ZDA8pL5+M0xEZhFr9Ugi4m49XcFIiEonbJATkahXXt3htlX+/BAAaNAFsEx6G5ohuW5INOTH/KHn0Sp1T0siUpueYxaMJTGcrg8ykWjQDwCIaJiIqEFQJxe9i/rVV+ady3dnkdo587LP65oXKBgJUem8MucT+P5rq9AhamBEDNXWyu4zk3HB0OO40/gQdndeA+BSdB/8Ox7S/yd6RBVq7VNv+mc16rDKeATV8W70d58OW2vbhPv3Opbgluh9WFxnxY+mfHSaKq+lFW+GffCrsKZZWUZEotEozjzzTEiShH379pXjkJSD2e5C1yf/hr7P7IZWxxyUKlO0YQW2p87Ebbrf44DpBpw/+LjSIZWFZHYBALSxAABgqF2uoNxtaIUkSdNyjG9qf4IHDPcj1L5n0n39CS3aRT28lrZpOTZNzfZFX8flsW/jZfP5SocyRlkSkbvuuguNjY3lOBRNomH+MtS0LFI6DKKSydxCcEP+g2ywVSkZTtlozfLKFH1c/rkTPfLKuGH73Gk7xrC+BgAQHZy8qFkwmgQA2Ez80KMGmeqqAyqsrlryROSpp57C1q1bce+995b6UEREaDSE8GHN81ilfQMAYHTWKhxReegscsJlSMgTVI3eQwCAlHv6ekpFTHKZ9oRv8pUXzq6duFP3CFbG/nfajk/Fy8yVGgyq795MSVPVnp4erF27Fo8//jgslsmr+kWjUUSjIyfJ7/eXMjwiqkAN0gD+0/Bg9mtrhZd3z9Bb5UTEnJRHRKrCRwAA1jnT11Mqaa0HfIA0PPnKi+qBPfiA7gn8b1gDYHasXFKz+YG/Y6vhS+jraQHwF6XDGaVkIyJCCNxwww343Oc+hxUrVuT1no0bN8LpdGYfzc3Nk7+JiOgErtqmUV/bT1gtVslMdhcAwJIKIhmLoCEpj1rUzl02bceQHHJSl1d11Zg8MiMM1mk7PhXPbtJioeYYGuIdSocyRsGJyIYNGyBJ0oSPPXv24Ac/+AH8fj/Wr1+f9/dev349fD5f9tHRob4TRkTq5nI3nvT17BgRMdvlZctWEUTPkTeglQQCwoyGpumbI2JwyefWEuufdF9NOhGBwT5tx6fi2dIjgy7hgxDq6jdT8K2ZdevW4brrrptwn7a2Ntxzzz3YtWsXjMbRS+dWrFiBj3/843j44YfHvM9oNI7Zn4ioEJqTVoRpZ0GfGQAwV9Vhc+Jq+IUF5wWt2BRbhwXOFP6fdvoGvq1uuamgMzF5IqJNBOUnRva1UgOHRx4ZdGEY/mAUTptJ4YhGFJyIeDweeDyeSfe7//77cc8992S/Pn78OC677DI8+uijWLlydpRcJiJlDEtW2EQQ/VI1Jv9tVRnsjircm/goAEDbI/BE6nx8sHl6b0vZG0/FV+OfxoDGgx8KMeGyYF06EdEaOSKiBka7vOJJIwkMDvbAaWtVOKIRJZus2tLSMuprm03OiufPn4+mpqZcbyEimhbvmE7HsvBu/M6xBjcrHUyZGHQamPVahONJ7D0qd+CdjoqqJ6qprcOvkpcCScAfScBp1o8fTyIEYGRZMSks3W/GgWG530zLLEhEiIiUEjXVAGFgjs6ndChltcg0iGRiAIs7/wqjpgaLqqdv6S4AmPRaOM16+MJx9PojEyciKTkR0Zk5IqIWfq0LjuQwwkN5TDYuo7IlIm1tbaqbIENElal9/vXYvHMJzp6zSulQyuq7yY2Ya0x31jYAb1veP+3HuMDaCU30HXiPNwJ1Z42731cMd2HY2497ms6Z9hioOL3GVgSGJfgi8cl3LiOOiBBRxbnsfZchWrMUl58+O1bMZES0NiAlP48JLZrmTV8NkYybEr/BGYaX8cqRGuCs8RORt+Nu9As7zPbqaY+BivPovE14dE8H7jAuxKVKB3MCdt8loopjN+nx8ZWtcNtm1yq8mG5kTsgxTSOMhun/+cMmuVJtcpLqqpkOvVYDP++qRbVNnWXeeYUQEVWImG5kYuiAuQ3TV0FkRNJaB3gnrq6aiMexTvwWQa0ZNu27ShAFFcNtzZR5ZyJCREQlkDKMjIhEXQtKcgyNXb7dZQj3jrtPMODDOt0fAQAx43dLEgcVbql/O54x3IvOzqUAHlU6nCwmIkREFSJldGaf6+pOLckxDFVyUTNzdPyiZuGgF04AcaGFwWguSRxUOLtewimaYwhH1NWRmnNEiIgqhWkkEXG1nF6SQ1gy1VWT4ycikWF52XRIMgETFD2j8jK75Pk9tqRX2UBOwhERIqIK4a9ZjucPLkUYRpy/YPqa3Z3IVSs3I61OeSFSSUga7Zh9IkE5EQlLFjjHbCWl2NzpMu/pfjMTVcYtJyYiREQVItq4EjfF16PeYcIue2lSgOq6Jnw1/mn0iCp8JxhFld0yZp94OAAAiEi8LaMmjnQDSLX1m+GtGSKiCrGk0QGDToP3LKop2TGMRhP+bPoAnkmtQE8wkXOfeMgPAIhqxyYppJwT+80MDYy/6qncOCJCRFQh5tXYsPdrl8JiGHu7ZDrV2o0YDMbQ44/i1Bw14xLpEZE4ExF10erhgx1OBBAY7AZa25SOCAATESKiimI1lv7X+tmmLpyieRXhTjOw8JIx29+uuhD/Hr0HK1sasaTk0VAhOvWtOB71wx8MKx1KFm/NEBFRQa6K/BE/MGyGq/3pnNsHUxbsF/Pgd5SmlgkV77tN38MVsU1o189XOpQsJiJERFSQlLUOAKAJ5u7imi3vXobRGSqM2yqX/R8MRhWOZAQTESIiKojGIS8DNYRyJyKNvc/jJu2fsCD2ZjnDojxk+s30D6unzDsTESIiKoihqhEAYInlLmq2cPA5rNf/FvODe8sZFuVhle9J/NXwb7jwyA+UDiWLiQgRERXE6mkCADgTAzm36+JBAIBktJctJsqPU5fAAs1x2MOdSoeSxUSEiIgK4sxUVxVepJLJMdv1iRAAQGdiIqI2eoc8v8ccG1Q4khFMRIiIqCDVtU1ICQl6KYmh/q4x2/VJeUREa2YiojZmZ6bfjE/hSEZwSjMRERVEbzBig/YWdEZMuD2qg/uk7caUPCKitzjKHxxNyJYp866ifjMcESEiooK97LoCf02djZ7Q2D8jppRcLMvARER1HJnGdxiGP6SOJbxMRIiIqGB1DrlhWo8/MmabGXIiYrSy967aGO01SAlJ7jfTr45+M7w1Q0REBTvd0AOb5iVInVHg3Jbs60IIrIl9EVaE8T1Pm3IBUm5aHY5omhFNAnG/X+loAHBEhIiIinBB6Fncb9iMtmN/HPV6JJ7Cq6l5eCl1Oqw23ppRoztqHsQVsU3o0tQqHQoAJiJERFSETHVVfbhv1OuZ8u4AYNGXtgswFcdtlaurDqikuipvzRARUcGMVXMAANbY6EQk7OvD/9X+CWGtAxrNB5QIjSZRnU5E1NJvhiMiRERUMKtbrq7qOqm6anSwE1/W/xa3aX6rRFiUh8v9v8ezhjuw6O2fKR0KACYiRERUBFfdSHXV5AnVVWMhuVBWRLIoEhdNzqUJY76mC6bgMaVDAcBEhIiIilB1QnXVwb7j2dfjYXklRkRjVio0moTGXgMAMEZz9woqNyYiRERUMK3eAK8kr4rx9ow0UIuHAwCAmJYjImplyPSbiXuVDSSNk1WJiKgoP7HfjLcG4vik8OCU9GvJkJyIxLVW5QKjCWX7zSS8ygaSxhERIiIqykHPpXg2dTaORQ3Z11JRORFJ6JiIqJW1Wu434xReCCEUjoaJCBERFanOYQQA9PhHloGKdCKS1DMRUauRfjNBVfSb4a0ZIiIqygJ9P67SvAjH8R4ACwEArzgvwwOxalzSuBgrlA2PxmFy1KBbVGNQ2GHxDsFpbVA0Ho6IEBFRUZaG9+B+wwNY3vP77Gtdkgc7U0sQrjpVwchoQlod/sX6M7w/thH9caPS0TARISKi4mSrq0ZHqqsOR+WaIlYjB9zVLFNddSCofJn3kiYibW1tkCRp1ONLX/pSKQ9JRERlYvHI1VWdyZF6FKcM7cD12mdRnzg+3ttIBTy2TJl35RORkqes3/zmN7F27drs1zabrdSHJCKiMqhKV1d1Cy/iiQT0Oh3e430My/T7sDd4KoALlA2QxnXd8C+w3vAMjhz8LHDunYrGUvJExG63o76+vtSHISKiMnN55mSrq/b0HUddQwuMyRAAQGe2KxwdTaRaCmK+pgudw8qPXJV8jsi3v/1tuN1unHnmmfjWt76FWGz8YaBoNAq/3z/qQURE6qQZVV21AwBgTMmJiMHsVCwuyoPVDQDQhpUv817SEZEvfOELWL58OaqqqrB7926sX78ehw8fxkMPPZRz/40bN+Ib3/hGKUMiIqJp5NW5UZ3wYbhfLvNuEmEAgMHqUDIsmoTG5gEAGFTQb6bgEZENGzaMmYB68mPPnj0AgNtuuw0XXXQRli1bhhtvvBEPPvggfvrTn2JgIPcPvn79evh8vuyjo6Njaj8dERGV1P94bsRnY3fgbb1c5N2STkRMVo6IqJleRf1mCh4RWbduHa677roJ92lra8v5+nnnnQcAOHToENxu95jtRqMRRqPya5qJiCg//Q0X4dkj7TgtYkUikYQV6UTExkREzSwuORFRQ7+ZghMRj8cDj8dT1MH27t0LAGhoULaKGxERTY9ae6bMewTB0DCckty7xGJnIqJm1io5Ecn0m5EkSbFYSjZH5KWXXsKuXbtw8cUXw+l04uWXX8Ztt92Gq666Ci0tLaU6LBERlVGr3oerNC+iqacGwfhncUtsPVyaKB4wcdWMmjk8jegS1egXDmjDMTgtyt2NKFkiYjQa8eijj+Ib3/gGotEoWltbsXbtWtx1112lOiQREZXZ3PhbuN/wAN4cWohg4ka8mFqKKpMe0LBwt5qZXPV4n/gRgrEktoUSlZmILF++HLt27SrVtyciIhWwueUy787kILqjCQAs7z5TuG1GBAdDGAxGMdejXLdkpqxERFQ0V10rAMAjhhDqO4LrtM/hYs0+ZYOivGT7zQwrW+adiQgRERXN6WnMVldNHNqOTfqHsCb6G6XDojx8PvJfeM5wO0xvP6VoHExEiIioaJJupLoq+g8CAGJa5Yb5KX81kg/zNN2AX9ky70xEiIhoSrw6uS6UOXAYABDXWZQMh/KUMMn/30SwX9E4mIgQEdGUhAxybSlP5CgAIKnjiMhMICzy/zdtmIkIERHNYC/PWYNPx+7ErsRCAEBKb1M4IsqH1p7pNzOoaBxcY0VERFMSnnMetu2vwvma1wEAwsARkZnAfu4n8BPzu9A0Z46icTARISKiKamzmwAg22dGGFlVdSaY39yI+c2NSofBWzNERDQ1cwxBXKN5AQFY8LnYv6J7zmqlQ6IZhIkIERFNSaPowfcMP8SV2pfwl9S5SLoXKh0SzSBMRIiIaEoy1VVr4IOEFKwG3vWn/DERISKiKbG7G7LVVT+lfQYu4VM6JJpBmIgQEdGUnFhd9Rv6h1EdPqpwRDSTMBEhIqIp86erqwKAwepQMBKaaZiIEBHRlAUNNdnnFptTwUhopmEiQkREUxY3e7LPTXaXcoHQjMNEhIiIpqyj+crsc4uVIyKUPyYiREQ0ZfpauXZIXGih0ZsUjoZmEiYiREQ0ZXWmOAAgJJkBSVI4GppJWHWGiIimbNGChfi2fT1OrbfhaqWDoRlFEkIIpYMYj9/vh9PphM/ng8PB5WBEREQzQSF/v3lrhoiIiBTDRISIiIgUw0SEiIiIFMNEhIiIiBTDRISIiIgUw0SEiIiIFMNEhIiIiBTDRISIiIgUw0SEiIiIFMNEhIiIiBTDRISIiIgUw0SEiIiIFMNEhIiIiBTDRISIiIgUo1M6gIkIIQDI7YSJiIhoZsj83c78HZ+IqhORQCAAAGhublY4EiIiIipUIBCA0+mccB9J5JOuKCSVSuH48eOw2+2QJEnpcFTB7/ejubkZHR0dcDgcSoczY/C8FYfnrTg8b4XjOSuOWs+bEAKBQACNjY3QaCaeBaLqERGNRoOmpialw1Alh8OhqotupuB5Kw7PW3F43grHc1YcNZ63yUZCMjhZlYiIiBTDRISIiIgUw0RkhjEajbj77rthNBqVDmVG4XkrDs9bcXjeCsdzVpxKOG+qnqxKRERElY0jIkRERKQYJiJERESkGCYiREREpBgmIkRERKQYJiJERESkGCYiKvX888/jyiuvRGNjIyRJwuOPPz5quxACGzZsQGNjI8xmM97znvfg9ddfVyZYFZnsvN1www2QJGnU47zzzlMmWJXYuHEjzjnnHNjtdtTW1uKaa67BgQMHRu3D622sfM4br7exfvSjH2HZsmXZSqCrVq3CU089ld3Oa22syc7ZTL/OmIioVDAYxBlnnIHNmzfn3P6d73wH9913HzZv3oyXX34Z9fX1uPTSS7ONAmeryc4bAFx++eXo6urKPv785z+XMUL12bFjB2699Vbs2rULzzzzDBKJBFavXo1gMJjdh9fbWPmcN4DX28mampqwadMm7NmzB3v27MEll1yCq6++Opts8Foba7JzBszw60yQ6gEQjz32WPbrVCol6uvrxaZNm7KvRSIR4XQ6xYMPPqhAhOp08nkTQog1a9aIq6++WpF4Zore3l4BQOzYsUMIwestXyefNyF4veWrqqpKPPTQQ7zWCpA5Z0LM/OuMIyIz0OHDh9Hd3Y3Vq1dnXzMajbjooouwc+dOBSObGbZv347a2losXLgQa9euRW9vr9IhqYrP5wMAVFdXA+D1lq+Tz1sGr7fxJZNJPPLIIwgGg1i1ahWvtTycfM4yZvJ1puruu5Rbd3c3AKCurm7U63V1dWhvb1cipBnjiiuuwEc+8hG0trbi8OHD+NrXvoZLLrkEr7zyyowukTxdhBC4/fbbceGFF2LJkiUAeL3lI9d5A3i9jWf//v1YtWoVIpEIbDYbHnvsMSxevDibbPBaG2u8cwbM/OuMicgMJknSqK+FEGNeo9E++tGPZp8vWbIEK1asQGtrK5588kl86EMfUjAydVi3bh1effVVvPDCC2O28Xob33jnjddbbosWLcK+ffvg9Xrxhz/8AWvWrMGOHTuy23mtjTXeOVu8ePGMv854a2YGqq+vBzDySTWjt7d3zCcJmlhDQwNaW1tx8OBBpUNR3Oc//3k88cQT2LZtG5qamrKv83qb2HjnLRdebzKDwYAFCxZgxYoV2LhxI8444wx8//vf57U2gfHOWS4z7TpjIjIDzZ07F/X19XjmmWeyr8ViMezYsQPnn3++gpHNPAMDA+jo6EBDQ4PSoShGCIF169Zhy5YteO655zB37txR23m95TbZecuF11tuQghEo1FeawXInLNcZtx1ptg0WZpQIBAQe/fuFXv37hUAxH333Sf27t0r2tvbhRBCbNq0STidTrFlyxaxf/9+8bGPfUw0NDQIv9+vcOTKmui8BQIBcccdd4idO3eKw4cPi23btolVq1aJOXPmzOrzdvPNNwun0ym2b98uurq6so9QKJTdh9fbWJOdN15vua1fv148//zz4vDhw+LVV18VX/7yl4VGoxFbt24VQvBay2Wic1YJ1xkTEZXatm2bADDmsWbNGiGEvKTy7rvvFvX19cJoNIp3v/vdYv/+/coGrQITnbdQKCRWr14tampqhF6vFy0tLWLNmjXi6NGjSoetqFznC4D4+c9/nt2H19tYk503Xm+5feYznxGtra3CYDCImpoa8d73vjebhAjBay2Xic5ZJVxnkhBClG/8hYiIiGgE54gQERGRYpiIEBERkWKYiBAREZFimIgQERGRYpiIEBERkWKYiBAREZFimIgQERGRYpiIEBERkWKYiBAREZFimIgQERGRYpiIEBERkWL+P07TTQyk/SASAAAAAElFTkSuQmCC", + "text/plain": [ + "<Figure size 640x480 with 1 Axes>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi8AAAGxCAYAAACqUFbqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB5V0lEQVR4nO3dd3yV9fn/8dd9ZvZJQsiCDDZhbwgiLkRURHEibeposVbRaqut2J+WDotaV9Wv2qJ14moVtY64wQEBGWGGsLIge5yTfXLG/fvjhCgSQsY5uc9JrufjcR7lnNzjndNjcuW+P5/ro6iqqiKEEEIIESB0WgcQQgghhOgKKV6EEEIIEVCkeBFCCCFEQJHiRQghhBABRYoXIYQQQgQUKV6EEEIIEVCkeBFCCCFEQJHiRQghhBABRYoXIYQQQgQUKV6EEH7lhRdeQFGUkz7WrVsHQGpq6nGvh4WFMXPmTF566SVtvwEhhM8ZtA4ghBDtef755xk9evQJr48ZM6bt36eddhoPPfQQAEeOHOGhhx7immuuoaGhgV/96le9llUI0bukeBFC+KVx48Yxbdq0DreJjIxk1qxZbc/nzZtHSkoKjzzyiBQvQvRhcttICNFnREZGMmrUKAoKCrSOIoTwIbnyIoTwSy6XC6fTedxriqKg1+tPuo/D4aCgoICBAwf6Op4QQkNy5UUI4ZdmzZqF0Wg87mE2m4/bRlVVnE4nTqeT/Px8li1bRnl5OT/5yU80Si2E6A1y5UUI4Zdeeukl0tLSjntNUZTjnn/44YcYjca258HBwdxyyy389a9/7ZWMQghtSPEihPBLaWlppxywO2fOHB599FEURSEkJIRhw4ZhMpl6KaEQQitSvAghApbFYjllgSOE6HtkzIsQQgghAopceRFC+KXdu3efMNsIYNiwYTKbSIh+TooXIYRfuu6669p9ffXq1fziF7/o5TRCCH+iqKqqah1CCCGEEKKzZMyLEEIIIQKKFC9CCCGECChSvAghhBAioEjxIoQQQoiAIsWLEEIIIQKKFC9CCCGECCh9rs+L2+2muLiY8PDwExZxE0IIIYR/UlWVuro6EhMT0ek6vrbS54qX4uJikpKStI4hhBBCiG4oKipi8ODBHW7T54qX8PBwwPPNR0REaJxGCCGEEJ1RW1tLUlJS2+/xjvS54uXYraKIiAgpXoQQQogA05khHzJgVwghhBABRYoXIYQQQgQUKV6EEEIIEVCkeBFCCCFEQJHiRQghhBABRYoXIYQQQgQUKV6EEEIIEVCkeBFCCCFEQJHiRQghhBABpVeKl6eeeoohQ4YQFBTE1KlT+frrrzvcfv369UydOpWgoCCGDh3KM8880xsxhRBCCBEAfF68vPHGG9x222384Q9/YPv27Zx++umcf/75FBYWtrt9Xl4eF1xwAaeffjrbt2/n7rvv5tZbb+Wtt97ydVQhhBBCBABFVVXVlyeYOXMmU6ZM4emnn257LS0tjUsuuYRVq1adsP3vf/973nvvPXJyctpeu/HGG9mxYwcbN2485flqa2uxWCzYbDZZ20gIIYQIEF35/e3TKy8tLS1s3bqV+fPnH/f6/Pnz2bBhQ7v7bNy48YTtzzvvPLZs2YLD4Thhe7vdTm1t7XEPX/l/7+ziX18doqre7rNzCCGEEKJjPi1eKisrcblcxMXFHfd6XFwcpaWl7e5TWlra7vZOp5PKysoTtl+1ahUWi6XtkZSU5L1v4AeKqhtZs6mQv324j1mrPufmV7fx7cFK3G6fXrgSQgghxI/0yoDdHy9vrapqh0tet7d9e68DrFixApvN1vYoKiryQuITDQgz8bfF45k42ILDpfLBzhJ+8uwmznxoHU+tO0h5XbNPziuEEEKI4xl8efCYmBj0ev0JV1nKy8tPuLpyTHx8fLvbGwwGBgwYcML2ZrMZs9nsvdAnEWIycPWMZK6ekczuozZe/66Qd7cXU1jdyIOZuTzyyX7mpcVx9cxkTh8eg0538uJMCCGEEN3n0ysvJpOJqVOn8umnnx73+qeffsrs2bPb3Sc9Pf2E7T/55BOmTZuG0Wj0WdauGDfIwl8vGc+mP5zDg5dPYEpyJE63SuaeUq7592ZOf/BLnvj8AKU2uRojhBBCeJvPZxu98cYbZGRk8Mwzz5Cens6//vUvVq9ezZ49e0hJSWHFihUcPXqUl156CfBMlR43bhy//OUvWbZsGRs3buTGG2/ktdde47LLLjvl+bSabZRbWsdrmwt5e9sRapudAOgUOHt0HEtnJnHGyFj0cjVGCCGEaFdXfn/7vHgBT5O6Bx98kJKSEsaNG8ejjz7K3LlzAbj22mvJz89n3bp1bduvX7+e22+/nT179pCYmMjvf/97brzxxk6dS+up0s0OFx/uKuH1zUVszq9uez3BEsSV05K4/rRULCGmXs8lhBBC+DO/K156k9bFyw8dLK/j9c1FvLXtCDWNDs7Ubee3IR+SdPN7REbFaJpNCCGE8CdSvPhJ8XJMs8PFpzvzmfm/ecRSzV5DGoNu+QiLJUrraEIIIYRf8JsmdcIjyKjnoqnDaLr8VWoJZYwzh8InF1FXZ9M6mhBCCBFwpHjpRSnj0qm85DXqCWa8YyeHnriEhoZ6rWMJIYQQAUWKl142dNIZlF/0Mk2YmdSyjZzHL6WxqVHrWEIIIUTAkOJFA0Onnkvx+c/TrBqZZt/Ef/75F5odLq1jCSGEEAFBiheNDJt5IUXnreZN9Rz+VDqbG17eKgWMEEII0QlSvGhoxOzFpFyzGrPRyFf7K7j5lS20OJxaxxJCCCH8mhQvGps5dADPXTONEIPKBYf/zIYnrsPhlCswQgghxMlI8eIHZg+P4bXzYLHuW86sfY+vnrwBpxQwQgghRLukePETE09fyP4Z9wFwjvW/fPn0Lbhcbo1TCSGEEP5Hihc/MvrCm8mZfC8A51at4ZNn7sDt7lMNkIUQQogek+LFz6Rd/Ftyxv8egPMrniPzX3dJASOEEEL8gBQvfijtsrvJGXMbAOeUPMuj//mEPrYElRBCCNFtBq0DiPalXfkn9r7m5IFdoazf7qQ+ZC/3LhyDoihaRxNCCCE0JVde/NiYq+/jwsUZADz/bT4PfZCtbSAhhBDCD0jx4ueunJ7EfYvHMUQp4ervLmfzhi+0jiSEEEJoSoqXAPCTmSk8MvgrBiuVhH32e+wOh9aRhBBCCM1I8RIgRl51H/UEM8a9n2//85jWcYQQQgjNSPESIEJjkjg89hYAJuf+g9LSoxonEkIIIbQhxUsAGX/p7ygwpBKl1HHwtd9rHUcIIYTQhBQvAUTRG3Et+DsAs63vs2uzDN4VQgjR/0jxEmCGTpvPtqgF6BSVos+ewSnrHwkhhOhnpHgJQEOvfph7uYmbazNYs6lQ6zhCCCFEr5LiJQBFxg5mxHm/REXHw5/kUlVv1zqSEEII0WukeAlQS2emkJYQgbO5nsw3n9E6jhBCCNFrZG2jAKXXKfxlQTIJr17DoMIqDm4dx/Cp52gdSwghhPA5ufISwKaNSqEociYAuo/uwO10apxICCGE8D0pXgLckCV/x6aGMtR5mJ3vPKx1HCGEEMLnpHgJcHEJg9kx8lYAhu1+jPoq6bwrhBCib5PipQ+YecVvyNUNI5xGDr/6W63jCCGEED4lxUsfYDaZqJv3AG5VYULVRxzJ/kzrSEIIIYTP+LR4qampISMjA4vFgsViISMjA6vV2uE+b7/9Nueddx4xMTEoikJ2drYvI/YZ02afy9fh5/M/1ywe3GRHVVWtIwkhhBA+4dPiZenSpWRnZ5OZmUlmZibZ2dlkZGR0uE9DQwOnnXYa999/vy+j9UkpP/snv3Xfxnt58PGeMq3jCCGEED7hsz4vOTk5ZGZmkpWVxcyZnum8q1evJj09ndzcXEaNGtXufseKm/z8fF9F67NSYyNYNncI//flIf76wV7OHB5JUFCQ1rGEEEIIr/LZlZeNGzdisVjaCheAWbNmYbFY2LBhg9fOY7fbqa2tPe7Rn9181nAmRDRwV/0D5D/3M63jCCGEEF7ns+KltLSU2NjYE16PjY2ltLTUa+dZtWpV25gai8VCUlKS144diEJMBu44LYoLdJsYXfEx5Ts+1TqSEEII4VVdLl5WrlyJoigdPrZs2QKAoign7K+qaruvd9eKFSuw2Wxtj6KiIq8dO1CdPncen4ZeCIDr/d+Cs0XjREIIIYT3dHnMy/Lly1myZEmH26SmprJz507Kyk4cNFpRUUFcXFxXT3tSZrMZs9nsteP1BYqiMOSqVVT9+ysSHAXkffAQQy6+W+tYQgghhFd0uXiJiYkhJibmlNulp6djs9nYvHkzM2bMAGDTpk3YbDZmz57d9aSiS0amJPNO6i1cUnAf8dv/gWNuBsao/n1LTQghRN/gszEvaWlpLFiwgGXLlpGVlUVWVhbLli1j4cKFx800Gj16NGvXrm17Xl1dTXZ2Nnv37gUgNzeX7Oxsr46T6S/OuvLXbGc0wTRT9NrtWscRQgghvMKnfV7WrFnD+PHjmT9/PvPnz2fChAm8/PLLx22Tm5uLzWZre/7ee+8xefJkLrzQM2ZjyZIlTJ48mWeeecaXUfskS6iZsjl/xaUqhJRto6K8WOtIQgghRI8pah9rxVpbW4vFYsFmsxEREaF1HM253Sp/e/RhXq0YwqLpI7j/sglaRxJCCCFO0JXf37K2UR+n0ymcd9n1NBLEW9uOUFbbrHUkIYQQokekeOkHpqdGMz01CqfLxacfvaV1HCGEEKJHfLY8gPAvN85JJqH4RsbkFNBweBihQ2dpHUkIIYToFrny0k+cNWYQR8zDACj7UBa9FEIIEbikeOkndDoF9+xfAzC08ktaSvdqnEgIIYToHile+pGzT5/LemU6AEfff0DjNEIIIUT3SPHSj5gMOmqm3AzA4CPv47Ye0TiREEII0XVSvPQz55y7kO/UMRhxUvThQ1rHEUII0cu25lfyhzXrqay3ax2l26R46WfCg4wcHn0DAPV5W6Bv9SgUQgjRAVVVOfja7/nL/ov5/L01WsfpNile+qGzLljCUucfubDuLrYU1GgdRwghRC/JKSjhKvt/0Skq5sOZBGqTfSle+qFYSzDJk+cBCs+sP6x1HCGEEL0k9wvP+oLFajS31f+M3UdrNU7UPVK89FPL5g5FUSArJ4+i3d9qHUcIIYSPNTtcDCn8LwDvGC8EFD7cXaJtqG6S4qWfGjYwjGVDathgvpWwd68Dl0PrSEIIIXxoY9Y3TGI/TvQMO3cZoLJtR3ZA3jqS4qUfW3DOOdgxEuUow/bd61rHEUII4UPNm14AIC/6dOaMTuJz85280ngTuXmF2gbrBile+rEpwxL4JPxSAFrWPwJut8aJhBBC+MLRmkZiancDYDntF4RaojGbgzAqLvK/eUPjdF0nxUs/N+jc5dSqwQxsOkzjng+0jiOEEMIH3t52lCta/sgfBzxE7OQLAKgbvgiAAQUfBNytIyle+rm544fxodnzQa799EHp+yKEEH2M263yn61HAIWJp50POj0AyXN/CsBk504O5OVrF7AbpHjp53Q6hdC5y7GrRuJrd9KSJzOPhBCiL9mSm09ZtZUws4HzxyW0vR4aP4J800gMipvCb17TMGHXSfEiOG/WJD7Qn4VLVcjZ/IXWcYQQQniR7bOH2Wy+ib8M3kSwSX/c1+qHXwRATIDdOpLiRWAy6GhM/w1ntjzCb47Oxe0OnA+wEEKIk6trbGJC5ftYlEYmjhx6wtdT5/4EgAnOPRzOD5ympVK8CAAuPn0aVvMgDlU08Pm+cq3jCCGE8IJtn/+XOKUGqxLBkNOuOOHrYfHDeCfyGq5z/I4PDgTOQo1SvAjAs2DjT2elAPDe5+uhtljjREIIIXoqeNcrABQMvhjFYG53G9fpv2O9eyLv76nozWg9IsWLaHPd7FRuMb7HPypvoPzD+7SOI4QQogfy8g4wxb4ZgMHn3HDS7eaNicOoV9hfVs/B8rreitcjUryINrERQYQPn41OUYnMfRPq5faREEIEqoLPn8OguDlgHseA1Akn3c4SbOTK5AbuMrzK4c+e7cWE3SfFizjOOedfynb3cExqC9VfPK51HCGEEN3gcLoYemQtAM0TfnLK7S+PPsSNhvdJOhQYU6aleBHHGRYbzsbEDACCs5+H5sBcLl0IIfqzdfsr+Zn9Tv6tXMroszNOuf3QM5biVhXSXLkUHtrXCwl7RooXcYJZ52dw0J1IsLueum9Xax1HCCFEF/1nSxH5agIl0+7EGBx+yu0tscnkBnluLR359lVfx+sxKV7ECaakDODjyCWeJ1lPgTNwps8JIUR/V1Fn54vWlhdXTEvq9H4NIzxrHQ0s8P917qR4Ee1Km389xWo0rpZm6o/s0jqOEEKITsr936M8oX+Eq+KPMjLu1Fddjhl+xlKcqo4RroMcObjbhwl7TooX0a4zxwzmL2H3MNv+OK8URGkdRwghRCeobjeDDr7K+frvuCyxpkv7Rg5MJCdoEuD/t46keBHt0ukUzj7rXBoJ4t/f5GF3urSOJIQQ4hQObF/PEHcBTaqJ0fN/3uX9G0cuolKNIKes0QfpvMenxUtNTQ0ZGRlYLBYsFgsZGRlYrdaTbu9wOPj973/P+PHjCQ0NJTExkZ/97GcUF0u3Vy1cPGkQ8RFBlNc1s+GzdyCAFu0SQoj+yPbtcwDsspxFRGRMl/cffs7PSW/5P/5UfS6FVf5bwPi0eFm6dCnZ2dlkZmaSmZlJdnY2GRknn7LV2NjItm3buOeee9i2bRtvv/02+/fvZ9GiRb6MKU7CZNDx89NSeNv0R87Kuh73/k+1jiSEEOIkmuqsjK36BIDgWdd16xgDIiOYPjQWgI92l3gtm7cZfHXgnJwcMjMzycrKYubMmQCsXr2a9PR0cnNzGTVq1An7WCwWPv30+F+QTzzxBDNmzKCwsJDk5GRfxRUnsWRmCm99OZopHKTuw3uxjJgHOrnbKIQQ/mbf5y8yWbFTqCQyduZ53T7OBeMT2HiogoPb18HcoaAo3gvpJT77LbRx40YsFktb4QIwa9YsLBYLGzZs6PRxbDYbiqIQGRnZ7tftdju1tbXHPYT3hAcZaZrxa+rUYCy2HFy739Y6khBCiHaE7fEMsi1IuRydvvu/3s9Li+FL82/5u/U3lB7c5q14XuWz4qW0tJTY2NgTXo+NjaW0tLRTx2hubuauu+5i6dKlREREtLvNqlWr2sbUWCwWkpI6P6dddM5Pz57MK7qLAGj8+M/gcmicSAghxA8VVdWzpnEGu92pDJv3ix4da6AllIrgoQCU+Omsoy4XLytXrkRRlA4fW7ZsAUBp51KTqqrtvv5jDoeDJUuW4Ha7eeqpp0663YoVK7DZbG2PoqKirn5L4hTCg4yEzL2VSjWC8IYCHFte0jqSEEKIH/jvtmJecC3g/uR/kTg4pcfHa25tWBdX9KFfTtbo8piX5cuXs2TJkg63SU1NZefOnZSVlZ3wtYqKCuLi4jrc3+FwcOWVV5KXl8cXX3xx0qsuAGazGbPZ3LnwotuumjOGp7+5nNtd/6bli1UYpywFY7DWsYQQot9zu1X+u/UIAFdMG+yVY44+40qad95LoquY8gPfETtyhleO6y1dLl5iYmKIiTn19Kv09HRsNhubN29mxgzPN71p0yZsNhuzZ88+6X7HCpcDBw7w5ZdfMmDAgK5GFD4QZNQz+NybOfLRe9TZw0iuOkJo/AitYwkhRL+355v3mF33DeuD5nDe2HivHHNgTAxZQTOZZf+Gkm9f9bvixWdjXtLS0liwYAHLli0jKyuLrKwsli1bxsKFC4+baTR69GjWrvUs2+10Orn88svZsmULa9asweVyUVpaSmlpKS0tLb6KKjpp8fSh3Bm2igua/8Lq3f53GVEIIfojU9Zj/N34L1bFryPIqPfacZtGeW4dxfvhrSOfznlds2YN48ePZ/78+cyfP58JEybw8ssvH7dNbm4uNpsNgCNHjvDee+9x5MgRJk2aREJCQtujKzOUhG8Y9Dp+et7pqOhY/dVhquplwUYhhNBS3dH9jGrchltVSJjb9Y66HUmbewUNqpk4dxmV+7O8euye8lmfF4Do6GheeeWVDrdRf1DNpaamHvdc+J/zx8UzblAEh4+Ws+O1ezj76jsg7MRZZUIIIXwv//NnGA9sNU5mWtpYrx47PiaaJyw382VFBIsqYrn2xPZsmpFuY6JLdDqFO88bzRPGJzj76D+p/+wBrSMJIUT/5HIyKM/Te8uWdnWnZvJ2VciMn7FNHcmHu8u9fuyekOJFdNncETFsGHglAEE7XoCaAm0DCSFEP3Rk81qi1Rqq1Agmz7vaJ+c4f5xnAPB3BdWU1zb75BzdIcWL6DJFUbjg4qv5xjUWg+qk9uO/aB1JCCH6ncas5wHYGrmAAZZwn5wjMTKYixOt/FX/HCXv/tEn5+gOKV5Et0xNiWJd0k0AhO17C8pzNE4khBD9R0uLgzJbE25VIXz29T491wWDHfzE8DlJeW+C2+XTc3WWFC+i265YdDEfuaajw43tA/+pyIUQoq/7Yn8lGc13cIFxNdOnzTz1Dj0wdu4l2NQQot3VWPd95dNzdZYUL6LbRsWHkz1iOS5VwVLwMRzZonUkIYToFXXNDm5as5VbX9vOixvy2X3UhtPl7qWTl/HO5kMAnDF1HIYeLMLYGYNjIvku6DQAyjb6x1pHPp0qLfq+n1w4n7cfOwMzdgZX6pninc7UQgjh1z7YWcKHuzyLDL+3oxiAYKOeiUkWpqZEMTUlislJUUSFmnp8roo6O4fy83HteZf4og8Z0pCN0XEzMJsrpvbOYsT2URfDzk+JP/oxuJyg17Z8kOJF9EjygBCenfJnXtp0hMkbGnl7YucW3hRCiEC2vdAKwPTUKEJMBrYV1lDX7CTrcDVZh6vbths6MJQpyVFtBc3wgWHodO3/jKy3O9lfVsf+0jr2ldZxpPgoyWVfcKbzG2br9mBQvr+yM1YpoHH0JQyPDfPp93nMhNMXUb3jLqLdNmz7vsQy9txeOe/JSPEiemz5OaN4c1sx2wutfJZTzrljOl54U4iO2J0uTHqdFMHCr20vqgHghrnDOHdkJG63yqEaB1sLathaUMO2whoOVTRwuPVxbOHE8CADk5OjmJocRVJ0MIcq6sktrSO3rI6i6qa240dTS5b5ZkyKC1o7/heYR1IQfx7O0Rczb1gaN8SE9tr3mzTQQmbQaSywf0xF1mtSvIjAFxsRxHWnDeF/6zeirP0lLvU69GMv1jqWCDCqqvLcN3k8+HEuV0wdzH2Lx2sdSYh21TY7OFBeD8CkpEjY9z66t37BCMtgRkQPZUn0UEgfSn1IMnvsA9hQbWFzUQPZRVbqmp18tb+Cr/ZXtB0vlCbO0W3jYn05b4YsYVR8OKPihlB3cCwhOieG8ZdinHApKQOGkaLR9wxgH30JRdu3sbXWwnANc4AUL8JLbpw7DEvW35nn+JK6j/IJH32h5vdEReCwO138Ye3utr9O12wq5KKJicwaKqvKC/+zs8hGhFpPRFQMA8PNnkadqhushZ7H4XUAhAEzgZlLXoPzL8DpcpO/6xtsez5jR0M0dY2NnKNmMbouC4Pbjqozcsdv/g7BUZ4T2T8Es2/6t3THxDkXcfqmCPQVOuY3tHhlPE93yW8X4RWWECP6ObdQ/XUm0fV5OLe/imHaz7SOJQJAeV0zN768lW2FVnQKTEoIZltxIyvf28P7t8zx+UwKIbpqe2EN/zI9wtiWYjj0Isy5HSb/FKoPn/ioOgzRQwHP4rbD67bAgX8w9ccHjR6GMu5ScP9gxpIfFS4AqQPDGZNgYW9JLZ/sLeWq6cmaZZHiRXjNT+eO558bLuM294vYP7sPw8QrwRikdSzhx3YftbHspS2U2JoJD9Lz7qQtDNn1D+4OupHXSmfx2uZCMtJTtY4pxHF2FlayTDlEkMsBEYNBUTwL1IbFQvKs4zf+8WLDA0fDhKug6hA4mmDkfBh7KcSP9xzHz104IYG9JbV8uEvb4kX+pBFeE2zSE3v2TRSr0YQ2l9KyabXWkYQfe39nMZc/s4ESWzNjYxQ2DnuRodl/Rxm5gIlne9bOeuiT/dQ0tGicVIjvqapKY+F2ghQHTnMkDDjF6A9FOb4oGX0BXPovWPY53LQB5q2EhAkBUbjA92sdfXuwEmujdv9tSvEivOryWSN52bwEANf6h6C5VuNEwt+43SoPf5LL8le30+xwc9WQZt4z/5GwQx+CzgjDzuby08YyOj4cW5ODhz/N1TqyEG0KqhoZ2bIXACVpOuj616/RoQPD+PmcITy2ZBJBRr1mOfrXuy58zmTQMeq8X3LInUCww0rzt09rHUn4kQa7kxtf2coTXxwE4O/jiri/6tfoq/ZDeAJc9xFMuw6DXsffzo5kkW4Dr24qZE+xTePkQnhkF1mZojsAgD7Zt235/dU9C8ewcEKipsWLjHkRXnfR5BT+8vl1RNbuQ206h9u1DiT8QlF1I8te2sK+0jpMeh1vTdjE+JxHPV9MOQ2ueMEzZgCgOo8p/1vABJOdPfYUVr63hzd/mS69X4TmthfWcENr8UJS/yxe/IFceRFep9cpzFl4LY85L+efmyoor23WOpLQWNbhKi7+v2/ZV1pHTJiZ126YxfgppwEKzLoJfvbu94ULQFQqDDkdA05Wmf7Nd/nVbS3YhdBSYf5BBilVqOggcYrWcfotKV6ET5yTFsuU5EiaHW4e/3w/tDRqHUlo5NVNhfz02U1UN7QwOTGI/91yGlNTomDEuXDTRliwCvTG43dSFDj/QTAEM0PJ4TLd16z6cB8Ndqc234QQQLPDRW5ZPU85F9EwdgmYe6c1vziRFC/CJxRF4XcLRjNBOcTl26+l7t07tI4kepnD5ebed3dz99pdON0qK1N387bjZhLcZd9vFJt28gNEpcCZdwFwj+lVmmsreGrdQR+nFuLkdh+1UeyO4vngawi9/Cmt4/RrUrwIn5k1dADpSWYm6Q6h7Hv/xH4Hos+qaWjhmn9v5qWNBRhw8s6w/3Ft6d9Q6kpg0z87f6D0m2FgGpHU8nvD66z+Ko+CqgbfBReiA8cWY5ycFCnjrzQmxYvwqXnzF2FXjYS5bLgrDmgdR/iQqqpU1tv5an8Flzz1LRsOVZFsqmPz4CeYdPQ1z0an3wHz/9r5g+qNsNAzqPdqw5eMc+/jL+/n+CC9EKe2q6CMM3XZzEzQbpaN8JDZRsKnJg2JYwdDmUYuFTnriYsdqXUk0UOqqlJsa+ZgeX3ro46D5fUcKK/H2uho2+48SyFP6h/FWFkGpnBY/AykLez6CVPSYdr1VLtD2J+VSn1OGetyyzlzVOyp9xXCi+yFW3nB9CAt216AefsDprFcXyTFi/Apo17HkbCJTGvIpeHAt3DGMq0jiU5yutwU1TRxoKyOgxX1HCyr52BFPYfK62locbW7j6LA4KhglsQUctORe1DsDogZBUvWQMyI7oe58BGiFYUlur08+00ef/7fXmYPi8FkkIvHoneU2JpIadwNRtAlz5DCRWNSvAifcw2eAblvEla+VesoohMOV9Rz+xvZ5JTU0eJyt7uNQaeQGhPKiNgwhg8MZXx4HaN0RcROuZhgkx4czfD8i2AZDJc81fMF5lp/Udw6bwTvbS+ksrKcFzbkccPcYT07rhCdlF1oZWprfxdDP21O50+keBE+N3DM6ZALsS2F0FAFoQO0jiQ68MaWInYc8XS0DTLqGDYwjOGxYZ5CJTaMUaH1JDXlYij9Boq3w47t0Fjp2Xn8ITDFeBbkzFgLQRav/oUaUXuQj8L+wrYWE7d99jsumTSI2AhZ/FP43vbCGpbp9nueSHM6zUnxInxuwoihZLnTsKmhzKipJEqKF7+2Jb8GgD8tGkvGuGB0odHf92H59F749h8n7qQzeKY915dDaIznteBI74dTdETX5XKu3sFpLZt4IDORh6+c6P3zCPEjxXl7GajU4tIZ0SfIZ05rUrwIn4sMMfH/Ih/gYHk9q2sjOVfrQOKkmh0uSo7k8aTxJRZsKED3SQn8/DNImu7ZIGYkKDoYmAaJkyFxkqfLaNxYz9UWXxs4CuW0W+Hrh1lpfJF528bzk1nJTEmO8v25Rb/lcLkJLtsGenAMHI++Nz7rokNSvIheMS0lioPl9WwpqObcMXFaxxEnsfOIjauUz1ioz4J6AAWqDn5fvIxdDGMvBVOIdiFPvwN2/ZdEawG3Gd5i5XtxvHPTaeh0MoBS+Ma+kjomqJ7Vzc1D0jVOI0D6vIheMjUlClApOpQDzhat44iT+C6/mhnKPs+TM1fAiiMw6ervNzCFalu4gOf8Fz4MwPX6j3Ac3cl/tx7RNpPo07YX1fCc63z+HX07yvjLtI4jkOJF9JJpqdF8YLqbpyqvo6XoO63jiJPIzitl8rEVc8de6r9rt4w4F8ZcgkFxc5/xOR78aC+2Jsep9xOiG7YXWslXE7ClLYVBU7WOI/Bx8VJTU0NGRgYWiwWLxUJGRgZWq7XDfVauXMno0aMJDQ0lKiqKefPmsWnTJl/GFL0gdUAI5TrP7aLyPV9pnEa0x+1WaS7cSpDiwBk0oGd9WXrDglWopnBCDApqYxWPfy4dnIVvbC/0DGKfnBypbRDRxqfFy9KlS8nOziYzM5PMzEyys7PJyMjocJ+RI0fy5JNPsmvXLr755htSU1OZP38+FRUVvowqfExRFCqjJwPgzN+ocRrRnv3ldYx17AVAl3qa/zfhikhE+fnHlF/5PlVYeHFDPgfK6rROJfqY6oYWRtasJ0P/CVPCarSOI1r5rHjJyckhMzOTZ599lvT0dNLT01m9ejXvv/8+ubm5J91v6dKlzJs3j6FDhzJ27FgeeeQRamtr2blzp6+iil5iTJ0FwIDqbFmk0Q99l1/DateF3BP7JLq5v9U6TufEjWXu6HjOHRPnWbn6f3tQ5bMlvCi7qIal+i/4i/EFIo6s1zqOaOWz4mXjxo1YLBZmzvy+mc+sWbOwWCxs2LChU8doaWnhX//6FxaLhYkT259Xb7fbqa2tPe4h/FPyuHTsqpFwtw21Ui7x+5st+dW40BM9YqZnCnQAuXd+KneZ3sB9+Cs+3lOmdRzRh2QXVDPl2DiwpBnahhFtfFa8lJaWEht74sJpsbGxlJaWdrjv+++/T1hYGEFBQTz66KN8+umnxMTEtLvtqlWr2sbUWCwWkpKSvJJfeN+YpFh2qUMBqMqRcS/+5lhzuump0Ron6bqkvc9wo+5d/mr4Nw+8v4NmR/trLwnRVWV5u4hQGnHqgyBunNZxRKsuFy8rV65EUZQOH1u2bAE84xx+TFXVdl//obPOOovs7Gw2bNjAggULuPLKKykvL2932xUrVmCz2doeRUVFXf2WRC8JMuopDPNcQas78K3GacQPFVubmF77KQ8YVzPVvUPrOF03+xbU0DiG6UpYWPcmGw9VaZ1I9AFut0pQief3mT12MuilNZq/6HLxsnz5cnJycjp8jBs3jvj4eMrKTrx8W1FRQVxcx03KQkNDGT58OLNmzeK5557DYDDw3HPPtbut2WwmIiLiuIfwX/Up5/Cs83y+MMzROor4gS0FNSzQf8dV+i8JLg/A4iXIgnL+KgCWG96luiRP40C96387ipn218/YdFiKNm86VFHPWJen71HwUGlO50+6XEbGxMSc9BbOD6Wnp2Oz2di8eTMzZnjuE27atAmbzcbs2bO7dE5VVbHb7V2NKvxQ/LgzuWF7OCOqwvi51mFEmy15Vfxa19qcLuU0bcN019hLKf7gfhKb9mM8uhnoP4vnZe4upbLezpe5FcwcKmuHecv2QmvbeBddyiyN04gf8tmYl7S0NBYsWMCyZcvIysoiKyuLZcuWsXDhQkaNGtW23ejRo1m7di0ADQ0N3H333WRlZVFQUMC2bdv4xS9+wZEjR7jiiit8FVX0oikpnjVoDpTXY2uUpmL+ovTwLgYodbh0Zs+aRYFIUagPH+b5Z23/6rhbbGsCoLyuWeMkfcve/COkKq1jNAdP1zaMOI5P+7ysWbOG8ePHM3/+fObPn8+ECRN4+eWXj9smNzcXm80GgF6vZ9++fVx22WWMHDmShQsXUlFRwddff83YsWN9GVX0kpgwM2kD9MzW7SZv8/taxxFAbbODmCrPfX3XoGlgMGmcqAciBgFgbCjROEjvKrF6ipbyWrlC7U1ZRx1MtK9m01lrICTwBrL3ZT4dfRQdHc0rr7zS4TY/7MkQFBTE22+/7ctIwg9cY8lmScMqjm6dAGcu1jpOv7etoIbprbeMTENP1zhNz+jjRrF7fyqFLeFaR+k1Tpe77YqLXHnxnnq7k9yyOlSCGTL5HK3jiB+RtY1Erwsb4RlTEVuXAw75Yau1LXnVzNTleJ6kBPagROOUn7Kw5W883LSw3zSrK6uzc56yiQ3m5STWZmsdp8/YWWRFVWFQZDCxEUFaxxE/IsWL6HWj0iZSqUZgxIHz6Dat4/R7e/KKaFSDcCmGgL+vH2cxA2B3uqnpJ2OqSqxNPG36B4lKNfe5/4HdKT1uvCG7sJLXjH/lz8Gvgr1e6zjiR6R4Eb1uWGw4O5TRgCzSqLUWp5uNxU7mtTxEwfU7wBSqdaQeMRv0xISZAJUSa6PWcXrFUWtT278tNMi4Fy+pPLiNdP1e5tR9BMYQreOIH5HiRfQ6nU6hMsozo8WRJ4s0amlPsY1mh5uoECNDBg/SOo5XvK7+nhzzdViP7Nc6Sq8osX1/67WRIMrrpHjpKVVVMbc2p2uOmwI6+VXpb+T/EaEJfapnbEV0zXZZpFFDW/Jr0ONiakr0KTtfB4pQXQvBSgsNlQVaR+kVZTXfr6R9of1vVMig3R4rqm5itNMzDixkWNf6koneIcWL0ETSmFk0q0bCXbJIo5b2HTzITvMv+KP1D+Byah3HKxqDPB28HdWFGifpHdU1NXzlGk+OO5lKIiiT20Y9tr2ohimK5+eSUZrT+SVZqEFoYkJKLHc4bybPPZBnlHhkOc3ep6oquiNZhCp2FMXWZ9ZtaQlNhDpQao9qHaVXHKo38DPHCgZHBaO2NMl0aS84ePAAF+sqUFFQBk3VOo5oh1x5EZoINukpSpzPHnUIW4vqTr2D8LrDlQ2MadkNgHlo31lrSrF4xu6Y+kmjumMN6v5meoHnjQ9gr5LFaXvKUbAJgNqIkRAk6+X5IylehGamJnuWCthSUK1xkv5pS341M1ub0+mHBOh6Ru0wRScDEGYv1TiJ7zU7XNQ0eIqXyfbvOEu/A7etfy2N4G3NDhfVNdWUq5HoU/rP+liBRooXoZlpKZFcoV/H3L0roaFS6zj9zq5DhYxWWseFJPedQYlhsakARDvL+3yjuhJbM38yvEC2eRnhzcUAKHV9v2jzpT3FNt50zuUCw2pCL3pA6zjiJKR4EZqZlhrNMv0HzG/5jKZD32odp99x5m1Ep6g0hqdCeJzWcbwmctBwdrtT2eNO6fON6kqsTSQoVUQqDW2vmZoqNEwU+LYXWgGYlByNYpL+Lv5KihehmdiIIPYZxwBQmfO1xmn6l4o6O6kNOwAw9KFbRgCm2JFca3qI2x03U2JrOvUOAazY1swgpQoAV+QQAMIcFThcbi1jBbQdhZWAyuTkSK2jiA5I8SI0VRfrGcmvO7JJ4yT9y9aCanLdg/nOMAXTyHlax/G6BEsw8P1g1r7q2JUXAF2SZ2mHWKxUSKO6bhuRt4bvzDexsPZ1raOIDkjxIjQVOtwzy0UWaexd3+XXsNZ9Ou+OexzGXap1HK+LtwQBKqW2hlNuG8gqq6vbbhkdm9Ibq1ily243ldU2M9y+l4GKjfhIuWXkz6R4EZoalTaBimOLNB7ZqnWcfmNLvmeG1/TUaI2T+MYNtsfZa76egfvf0DqKT9lbG/G1GMIhZgQAYUoT5bXyh0B3bC+oYZrOs6yEOVWa0/kzKV6EpkbGR7ADzyKNlXtlkcbe0NjixF6yh4HUMK2PFi/BZhMhih2ltljrKD6ltE6LdoQmQOrp3Jz6AZe1/IkyufLSLYcP7SVWseJCD4mTtY4jOiDFi9CUXqdQHjkJAGtpnrZh+onsQiv36l7gu6CbGVTwrtZxfOJYo7qgxr5dvBQ3KKx3TcA5eCYYTERFWgCokCsv3eLI94y9s0aOAWOwxmlER6R4EZqrTVvCxOZ/8VTIr7SO0i9sPVzOZN1Bz5OESZpm8RXzgGON6so0TuI7dc0O1ttHcI3jLowXPwZAbHgQgIx56Qany82A6mwA9MkztA0jTkmKF6G58cNTsBHG1oIaraP0C9UHNxGstNBsjIKBo7SO4xPhsSkARLsq+myjuhKb5+qKJdhIiMmzLtW8o0/xgvEBjJV7tYwWkPaV1jGRXAAiRvSd5TL6KilehOYmJUWiU+CotanP9+XQmtPlJrx0MwAtg2aComicyDciE4YCkEAVNQ0tGqfxjWJrEyYcJFiC2l4bZNvGmfodmOsKNEwWmLYX1vCNezwHTGPQyZUXvyfFi9BcqNnA0piDvG76C83v/kbrOH3avtI6Jqo5AISNnKtxGt8xRw3GjYJZcVBe1jfX+im2NvOx6Xf8t3YpHN3meTE8HgBjo3TZ7artRVYecF7N/6a/CJbBWscRp2DQOoAQAKMHBjOrLofKo327L4fWtuRVcKnOc2lcl9p31jM6gcFEtnEylc0KwTX1rfPZ+pYSayOJSjVmtwNCPLPGjJYEAEJbKnC63Bj08vdpZ2W3LgswOSlS0xyic+STLfzCgDTPPeYYeyHUy1+NvlKyfxsRSiMt+lCIG691HJ96Ounv3OD4LfnOSK2j+ERtVSlmxYGKAuGJAARFe2ZZDcRKVR+9XeYLNQ0tBFXtIZQmJknxEhCkeBF+YeKIIex3e37wNudt0DhN36SqKp+VmLm1ZTnFU34L+r594TWxdSxIibVvjqNy1hQB0GyOAYMJAF3rbaNYpYbyWplx1FnZRTWsMf2NnUHLiKrbr3Uc0QlSvAi/kBgZzF6DZ5HGKmlW5xNHapo4VGfgI+U04s69Tes4PhdvCQZUKmtsWkfxCV2dZyyPq/WqCwDhnttGcYqV8jrp9dJZ+bk7iFLqcSsGiBmpdRzRCVK8CL9RN3AKALojmzVOor1DFfX85s1sDpTVee2Y37UuCTBukIVgk95rx/VXM60fkGO+jksK7tM6itepqoq5oQQAXWTS918IjwMgCDtlcuWl0xz5WQBUR45ru4ol/JsUL8JvhAw/DYCYfr5Io6qq3PGfHby97Si/WrONZofLK8c9sD+HX+r/x6KYUq8cz9+FR0QRrLQQ3tL3GtVVN7QQq1YCYBrwg+Ildgz3jPucs1sekSsvneR2q0TXbAdAlyRTpAOFFC/Cb4xKm8gB9yA2MB53Q5XWcTTz4a5StrfOfDhYXs9jnx3wynGN+etYYXyNiyue8crx/F143BAABvTBRnUltmby1Hg2KJMwJE76/gs6PdGWCEC67HbW4cp6Jrg9M/CiRp+ucRrRWVK8CL8xOiGCi3mEa5rvYH9zuNZxNNHidPPgx/sYo+TzVuTjjFcO86+vDpFdZO3RcWsaWkhpyAYgaFj/6B4alZgKQBzV1NT3rUG7xdYmXnOdwwMD7oOJS477WmyEGUBWlu6kXYcKGak7CoAheabGaURnSfEi/IZBr2ubpthflwp4JauAgqpGwkOCmBxcwX+D/kq4Ws8d/9nRo9tHWwtqmKnbB0DIiP7x16XZkoATPXpFpaKkb3WcPbY0QILlxMUDZxb9mxeN9xNb9V1vxwpI1v2e2Y015sEQNlDjNKKzpHgRfmVaShQABw/shz52qf9UbE0OHv/Cc4vo0rNno1PArDbzaPBzHCyv69Hto9z9exmsVOJCD4P7yX19nZ4q3QAAakvztc3iZcXWBkJoJiEy6ISvDazbyxn6nVga8ns/WAD6ojqG/+e4juIxv9A6iugCnxYvNTU1ZGRkYLFYsFgsZGRkYLVaO73/L3/5SxRF4bHHHvNZRuFfpiRH8pnpDv548HKo9M5Yj0Dx9LpDWBtbGB4bxmWzRsHlz4HOyNnqJpbov+zR7SPH4W8BsEWmgTnMi6n9m83kmX3TVFWocRLvslcWsDfoeu7cteiEIv9Yl93glgrc7v71B0BXNdidfFtu4hXXucScJavaBxKfFi9Lly4lOzubzMxMMjMzyc7OJiMjo1P7vvPOO2zatInExMRTbyz6jCmp0VThGXBYu7//9Hs5am3i39/mcafhDV6KfgFDQxkkToZz7gXgz6aXGcLRbt0+ana4iK/xrH2jH3Ka17P7sxLLFD5xTaW4JUTrKF7lqvH0eFGNIScsrmmO8vzMjFFrpMvuKew8YsOtehoaxkWceBVL+C+fFS85OTlkZmby7LPPkp6eTnp6OqtXr+b9998nNze3w32PHj3K8uXLWbNmDUaj0VcRhR+KCDKSF+xpW1+7/xuN0/Sehz/OJdZVyg2Gj0jMfxtKdni+kL4chp6JSbXzlPkpCstr+MfnXbsiteuojfHKQQAiRp3h7eh+bW/ar7nB8Vs207eWQjDUewaYusNP/ONOH+HpsiuN6k7t4P49LNF/wYL4Wq2jiC7yWfGyceNGLBYLM2d+P3p71qxZWCwWNmw4eft3t9tNRkYGd955J2PHjj3leex2O7W1tcc9RGBrSZwOQHDpFo2T9I7dR22szT7KCsOrGHHA0DNh5HmeL+p0sPifEDKAUeRxhX49/1zftdtH3+VXs7jlz/x90OMoqf1jsO4xCceWCLD1nV/iLrdKcJOnV48hKvnEDVq77MYqNTJdugNHrU007v2Y+43P8vO6p7WOI7rIZ8VLaWkpsbGxJ7weGxtLaenJm2Q98MADGAwGbr311k6dZ9WqVW1jaiwWC0lJSafeSfi1qFGeWxsD7EV9fpFGVVVZ9VEO09jHhfrNoOjgvL8dfysgPB4ueRrm30fDuJ/iVuHOLtw+2pJfQwtGotPmQlCEj74T/+QpXlRs1r7TN6iizk4CngZ15gHtFC9hnnE+cYpVpkv/SE1DC69kFXDlMxs57f4viLV6mtPpU2ZpnEx0VZeLl5UrV6IoSoePLVs8fzErP7oXC54f1u29DrB161b+8Y9/8MILL5x0mx9bsWIFNput7VFUVNTVb0n4mYkjhpLrHgxAS/5GjdP41rr9FWw4WMG9xlc8L0y5BuLaueI48jyYvZw/LhpPTJiZA+X1nbp95HarbGldFmB6apQ3oweEJFcROebreLnhxj7TqK7Y1kSC4inGdJGDT9ygdXFGPS7KbX2rv013NLW4eG9HMT9/4Tum3/cZ/++dXQQXfslrpr+yWO8ZyB43tn/dTu0Lurys7PLly1myZEmH26SmprJz507Kyk5sy11RUUFcXFy7+3399deUl5eTnPz9XxMul4vf/va3PPbYY+Tn55+wj9lsxmw2d+2bEH4tKTqYtYY0RrmPUJXzFQnjFmkdySdcbpX7P9zHpbpvGK87DOYIOOsPHe4TFWri/ouG8u2bj/DP9QtYMDaeia29cdpzoLye+1yPUG8OZ0zIOODk2/ZFA+IGYVZaCKaF6tq6tu6zgazE2szQ1uIFSzvFS1gc/5j5FY+uP0JGvaN3w/kJh8vNNwcreS+7mI/3lNLY4rlKOUk5yCOh/2aoK9+zoc4A036OMvQs7cKKbuly8RITE0NMTMwpt0tPT8dms7F582ZmzPD0ldi0aRM2m43Zs2e3u09GRgbz5s077rXzzjuPjIwMrrvuuq5GFQFKURSK487i+SId0YYpXKx1IB95a+sRcstqeSwo0/PC3DtO3STL7WLehp8xz7gLHHDHf8L53y1zCDK2v9Bi9oECLtdtQq+oYOh/g9/N4TE0YSYYO1XFeURbJmodqceKrU0Uu8ehhsUxJnroiRsoCtGRFuAIZf3otpGqqmwrtPJu9lE+2Fly3Eyr5OgQLp6UyGVDkkl9dSWYwmDqtTDrV+0XgMLvdbl46ay0tDQWLFjAsmXL+Oc//wnADTfcwMKFCxk1alTbdqNHj2bVqlUsXryYAQMGMGDAgOOOYzQaiY+PP24f0fcFjTmfP+Wlco4ttk8WL40tTh7+NBdQ2Hz6S6QZPoGZN556R50epl4DH97BCuNrXFKRxj8+j+P3C0a3u7k19xv0ioo1aDCREf2w7YCiUKUbyGD3EWrL8iGtDxQvtiaed/6UX44bypgBw9rdJrZ12m9/GLB7sLyOd7YX8+6OoxRVf3+bbFhoM/cM/IaxliZiljz9/VCEK16EIadDcP+7jdqX+Kx4AVizZg233nor8+fPB2DRokU8+eSTx22Tm5uLzWbzZQwRgKa2dtrdWljT4TipQPXc13mU1doZHBXMkjPGgaELv1Sn/wIOfYEp90MeNz7JovUJJ719FFKyCQB7Yv8dkFhrjoWmIzRX9Y0lAkqsnqspiZEnLg1wzNjCV3nRuJZPrAuAvtvb59uDlfz0uU1tffpCTXquHqFyne59EvPeQiltglIFqu+EY4XemL55G7q/8WnxEh0dzSuvvNLhNqcaRNfeOBfR941NtBBhcDKiaR9HdplJmtB3BtRV1Nl5Zv0hJikHuW7+ZZgN7d/yOSlFgUVPwtOzGV5fzP/Tv8wd/xlwwu2jElsTox27QQeWtL7z/nVVc3ACNIG7tbFboKuy1niWBrCcvKlaVMNhztDvJLt5RJ8s/o/ZlFeNqsKouHDuntLCaWWvYsh5B9TWmXgJk2DObRCVql1I4ROytpHwSyaDjt9Gfc1/zH9G983DWsfxqn98vp8RjlzeMd/LouwbwNmNLqihA+DSf6KisNTwBUMrv+DxH80+2naohInKIaD/rCTdHlf4IAAM9cUaJ/GOSdZP2Rt0PTO3/Oak2wS1ddm1UtPYdwftFlY1AHD7oL2c8eVlGPa+5Slchp0DP3sPblgHYxd7breKPkWKF+G3lGTPrY7Iqu3gdmucxjsOltfz2uZC7jW+BIASlQoGU/cONvRMlNM8/ZB+Z3iDf60/wI4fNK8r3/sNJsVFrTEGoob0MHngcsVN4BPXVPaqqVpH6TG700WY3TOL0xxx8okTeotnurSnUV3fHbRbUN3o+cfweRASA+OvgF9+DRlvw9AzTlg6QfQdPr1tJERPDE6bSfNuI6GuWqg6AAMDf9D2A5n7uJANTNEdBGMonH1Pzw541v8Dl4PnK87BucfOHf/Zwfu3zsFs0FNYUk6+Ow5j3FQi+vEPcWX0BdzwVTSpzhB+rnWYHiqz2RnUOk263QZ1x7R12bVSXmtndHxvpOt9hVWe4mVw3ED49Y5+tehofydXXoTfmjI0ju3uEQA07v5Q4zQ9tzmvmq/2FnGX8TXPC3Nug4iEnh3UYIIFq/jNpXOJCTN5mtd9doDaZgcvVqdxZsujGC59psfZA1mCxTOwtcTWHPCN6optTSTgKV4USwfdxNu67Nb02enSdc0ORjRlM1PJISXUKYVLPyPFi/BbkSEmskLPBMC97WUI4F88qqpy34c5/EL/IYlKFUQM9iy66CXRoSb+esl4Fug2k/VVJi9+m49b9fS3iIu2eO08gSjOYgZUgp02auoDu+Nsia2JRMWzNACWQSffsLXLbgw2KmobeyFZ7yuoauQuw6u8Yf4L4SUnXy9P9E1SvAi/5hxzKY2qmbC6Q1C0Wes43fbBrhKKi/K42fCu54V5K8EU4tVzLGj5lGdMj/GY4Ule/PQ7dLiZ1g+XBPgxs0FPVtCtZAf9kuqC3VrH6ZHimiYSFc9yDx02VwuNxY2OeoKp60PrOv1QYXUjKUq550k/HtPVX0nxIvzaJTNH84HLszJ5w57AvHVkd7p4MDOXAUodjaGDYdA0GH+59080ZhEuSzLJugo+Md9JtnkZ1zre9P55AlCT3rMsQF1ZvrZBeqi2qgSz4kBFgfAOmg7qDaw5eyOT7KvJb+yby6eUlJYSpdR7nshU6H5Hihfh10bEhbMu9qcssv+Fl4MztI7TLa9kFVJY3UhV2AiCb9kAS9b4ZhZEkAX95c/hVvREK/VEKE0kDoz2/nkCUJ3Zs8K9vTqwF24ttzXxqvMsChIWnHKWWkyU53ZhX+2y21TmaQ1Qbxwg4136ISlehN+bMyudneow3tx6JOAGXNqaHDzxheeH7G/OHUlocFDbeASfSJqB7sy72p7GjJEF5wCaQzxXKdzWwC5ecuqDudu5jLwzHz/ltrERnisufXWqtLvqMADNYR3MuhJ9lhQvwu8tnJBAsFHP4YoGth8KrEZjT315kKnNWdxj+YgrJp56QVOvOP23MHEpjLkEEif1zjn9nLu1UZ0xwBvVldhalwawnHxpgGOGFL3DS8ZVnFn3QcAV/Z1hrmtd7iFaxrv0R9LnRfi98CAjF46PZ+LOvzDm1W/hl59D3FitY53SkZpGXtlwgA8NL5NiL4fvhsGc231/Yp0eFj/t+/MEEGP0YMiDkKZSraN0W2OLE31TFSGYSIw8+dIAx0Q0H2WufhcFzjhqm5xYQvrOquItTjfR9qOgh6DY4VrHERqQKy8iIFw1I5kYxUaQu4mW717UOk6nPPRxLkvVj0jRlaOGxcP0ZVpH6reCB6QAYHGUa5yk+4qtzfzZ+AJ7g64nfOcLp9zeYPHcKovrg112j9Q08qLzXP7o/gWh4y/QOo7QgBQvIiBMS4niq9AFAKg7Xgenfw9C/PpABV9n53CLYS0Ayjn3yqBCDVkGjeQT11Q+dk0N2Fsox/V4CYs99Q7hx5YIsPa5QbsF1Y3sVoeSFXUxSuJkreMIDUjxIgKCoiikzFxEiRqN2WGDfe9rHemkqhta+O2bO7jd8F8ilCZImAgTr9Y6Vr8WM2gINzh+y19algbsQoUl1mYSOtPj5Ziw79c36mtddo8tC5AywLu9kkTgkOJFBIxLpyXzlvsMABqzXtA2zEmoqsrv39pJcv0OrjZ86Xlxwf2gk//UtGQ26IkJ80wtLrEFZpfdkuo64qjxPInoRPES7lkiYCA2ymsD83s+mcrSIi7XryfdnKd1FKER+YkqAkZseBBHUi4DIOTIV1BToHGiE722uYhP95byV9Pz6HF7Zv2kzNY6lgASIoKIopby8gqto3RLQ1UROkXFpRghdOCpd2hd38iouKivDtyxPu0xlW7jIeM/WXT0Ya2jCI1I8SICytnp0/nG5Zlp5Nr2isZpjnewvJ4/v78HUMie/TSMvwIueFDrWKLVPfaH2R50I2H7ArPrsKu1R01TcHznruTpjTSZoqlRw2isDcyC7WQMNs8fLq5ImSbdX8lUaRFQzhodyx3Gi9nSMopJYQs4U+tArVqcbn79+naaHW7mDI/hynNngO50rWOJH3CFDIQGUG1HtI7SLbraowC4OloW4Ee+uGAdN7++mxnNfafTstutEtFUBDowDxymdRyhEbnyIgKKUa8jfvoiHnNezks5bq3jtHn4k1yaS3I4P3gPD185EZ3OB+3/RY+4W8eJGBtKNE7SdaqqsrfRwqvOs3AOm9/p/QZawoG+1WW3rK6ZwaqnX09owgiN0witSPEiAs4VU5MAWJdb7hezKL49WMkLX+3jSeMTPK3eR9zB/2gdSbTDGO353ARio7raJifftozgbucyQs/qfKPD2PBjSwTYA3aK+I8VVDWSrJQBYIiRKy/9lRQvIuAMjw1jWnIk85TvaHzxCqjX7n5+Teu06LsMr5GmK4SQGBjR+b+MRe8JifE0qot0Bt7g1aNWz2yh6FATQUZ9p/dLKP6Yl4yruNb1NvV2p6/i9aqiiloGH+t3EyVjXvorKV5EQLpyRjI3Gd5jSNVXqDte0ySDqqqseHsXY+u/5TrDx54XFz/TNkVV+JeoeM8vuhh3FaorsHq9lNiaSFLKGBLRtasn5uYq5up3MUF3uM80qqspPYxRceFQTBCeoHUcoREpXkRAunB8Au9wNgDNm18ADS6Jv7mliG17cvi78Z+eF2bdDCPO7fUconNiEgbjUPXoFRVbeWAN2i22NfM/0//jrZoroHxf53cM/75RXXlt3yhe9tUF8dOWFXyV9kfpn9SPyf/zIiCFmg24x15Go2om2HYIijb36vkPV9Tz5/d286jxKaKVeoifAPP+2KsZRNeYTSbe153J887zKKtv0TpOl1RWVRGpNHieRHR+ttH3XXatfWbQ7kGryjfu8TjHXq51FKEhKV5EwLp41mjed80CoOW7F3rtvC1ON7e9kc0s1xZO0+9BNYbA5f8Gg7nXMoju+Xf0b/iT8xqKHJFaR+mS5qpCAOyGMAiK6PyObV12rZTb+kbxUiBLAwikeBEBbEpyJN9GnA+Abu/b0FzbK+d97LP97DxiY4t5FjUL/g9l4WMQI1M2A0G8JQiAEj+YpdYVamuDOntIF8d4tHbZNStO6qyBN1D5x2yNDuba17NY9zUpRpvWcYSGpHgRAUtRFMbNnM9BdyIGVzPsedvn58w6XMXT6w8BcP+l44ma9VOYeJXPzyu8IzHCTBS11JX739ISHdHXFwPf96rpNIOZZmMkAPaaYi+n6n0F1Q3cZHiXR01PE1zdhbE/os+R4kUEtMVTB/Mf91lku4dytCXMp+eyNTq4/fXtXKf7iOsmhXH+eJnpEGjOafiA7UE3cvr+B7SO0mlut0poa28aQ2QXixfAHhxLtRpGU12Nt6P1uoLKBlKU1itI0UO1DSM0JcWLCGgxYWYKRl7DJS1/5bnKMT47j6qq3L12F+n1n3Kv8WXuKf4VtDT67HzCN0zRnl/+ofbAaVRX2WAnTvX0NQkemNLl/fde9AFT7P/im5bh3o7W6ypKCglR7LjRgSVJ6zhCQ1K8iIB35YxUANZuP4Ld6fLJOd7adpS9u7fxF+PzAOimXQcmGTAYaEJbf/lHOQJnocISazPfuMfxju5c9Ekzurx/bKTnc1rRB6ZKN5UdBKDOHA8Gk8ZphJakeBEBb+6IgcRFmHE1WjnwwePg9O4P6fzKBv76bjb/MD5JqGKH1NNhzm+8eg7RO441qovChupo0jhN55TYmnjXPYcXY26HoWd0ef9jSwTU2Z00tgR4l92aPADsEV2/AiX6Fp8WLzU1NWRkZGCxWLBYLGRkZGC1Wjvc59prr0VRlOMes2bN8mVMEeAMeh2XTR7EWtO9jNu+Eva977VjO1yeadG/cr/KBF0eanAULP4n6Drfol34j4Fx8TSqnl/mtrLAGLRbbPXMjEq0BHdr/7Cj3/CqeRV/MLwS8I3qgus8/58p0bIsQH/n0+Jl6dKlZGdnk5mZSWZmJtnZ2WRkZJxyvwULFlBSUtL2+PDDD30ZU/QBV05P5n23p8ht3vyi1477xOcHiDi6nl8aPgBAufj/wDLIa8cXvctsNFCuDADAWnJY4zSdU1ZtZZhylOSw7q2irthrma3sYrLuYEAvEdDscDHA4ZkxFRIvrQn6O4OvDpyTk0NmZiZZWVnMnDkTgNWrV5Oenk5ubi6jRo066b5ms5n4+HhfRRN9UGpMKAcSLsZd/g5BheuhJh+iUnt0zPX7K3jyywO8aVzreWH6L2D0hT3OKrRVY4wl1VFMQ0VgXHlRKvbxuflOGvfEwMWHun6AY112qWFHgPW3+aGi6kYedFzFh7ozeWbCJVrHERrz2ZWXjRs3YrFY2goXgFmzZmGxWNiwYUOH+65bt47Y2FhGjhzJsmXLKC8/eXMlu91ObW3tcQ/RP52dPp1v3WMBULe90u3j2J0uVn2Uw7XPb8atKryd9g/PGJf5f/VWVKGhvRGn87zzPAqVALmCVutZh6kltAvLAvxQa5fdOMVKeQAXLwVVjRxlIEcGzEYZINOk+zufFS+lpaXExsae8HpsbCylpSefpnj++eezZs0avvjiCx5++GG+++47zj77bOz29i93rlq1qm1MjcViISlJps/1V+ePS+Bd3TwAWra+DO6uzzzaW1zLxU9+y2dffc1AtYbLpw7mnstmetYtMnZvzIHwL/uTl/An5zXsUkZqHaVTTPUlnn9Yut7jBWi78mJWHNRaA2eW1Y8VVMuyAOJ7XS5eVq5cecKA2h8/tmzZAng6oP6Yqqrtvn7MVVddxYUXXsi4ceO46KKL+Oijj9i/fz8ffPBBu9uvWLECm83W9igqKurqtyT6iGCTnuAJi6hRwzA3lsKhLzq9r8ut8tS6g9zz1AvcVvVnPjX/jv+O28hDV0wk2CSDc/uS+NaBr6UBsNaP0+UmvLUnjWlAN/8wMwbRbPCsh9QSwF1264r382v9W8zjO62jCD/Q5TEvy5cvZ8mSJR1uk5qays6dOykrKzvhaxUVFcTFxXX6fAkJCaSkpHDgwIF2v242mzGbZUE84XH5jGGs3T6Hn+k/wVm0g6AR555yn4LKel585XnmVb3KTYa9ba8nBzWDqkIHxbYIPIkWzxIBSmUDMEnrOB0qq7OToFQBEDSg+9ODW4IHElRXi6u2xFvRep2pfAc3Gd+iovIQcKPWcYTGuly8xMTEEBMTc8rt0tPTsdlsbN68mRkzPI2VNm3ahM1mY/bs2Z0+X1VVFUVFRSQkSCt2cWoTBlu4P+pqnq64iFuD59DR3DZVVfnqfy8Rs/VR7lXyQA9uxYAy8UqU026DgScfVC4CVyrFbA+6kfqKEOBKreN0qNjaRKLi6a6r68bSAMe4whKoqi2nuaHeW9F6nanWM8BajZJp0sKHY17S0tJYsGABy5YtIysri6ysLJYtW8bChQuPm2k0evRo1q71zOaor6/njjvuYOPGjeTn57Nu3TouuugiYmJiWLx4sa+iij5EURTmzZxIBVG8seXktxDLa5u5/oXv2Lv5U8YqeTQrZuom/QLdr7NRLnlaCpc+bECiZ7BnGI2oTVZtw5xCsbWJBKXa86S7Y16AyotfZar9n7zbPMk7wXqZy60S2ez579kcG/jLHIie89lUaYA1a9Zw6623Mn/+fAAWLVrEk08+edw2ubm52Gyepc31ej27du3ipZdewmq1kpCQwFlnncUbb7xBeHi4L6OKPmTx5EHc/1EOu4/Wsj93DyNHjvHc+rHXwZbn2WAfyk3fmLA2Osg1XMjMIYlMuux3BIWd+oqiCHwDB0RhVUOJVBqoLSvAkhqpdaSTKrE187JzHqcPbCS9B1ccYiM8g1xtTQ6aHS6CjIE1jqvE1kQSnmEI4QmBMdBa+JZPi5fo6GheeaXjKauqqrb9Ozg4mI8//tiXkUQ/EB1qYn5aHBfn3snI17bCVWugJBt1079Q7DacrvFYHSsYmxjBo1fNZWTc1VpHFr3IbNBToMQQSQPW0jwsqRO1jnRSJdYmXnRdAqOHkR4S3e3jRAQbMBt02J1uKursJEUH1oydgqpGhrauJq2TadICHxcvQmjliulJlO8L8zx54ycAKMAhdwLvu9O55axh3HLOSEwGWd6rP7Ia48BRQKOfN6orbp0RlRDZs2n6ytFtrDH9jQLFQnldesAVL0fKqznt2O0zGfMikOJF9FGnjxjIjcELuNKxHoAd7qE85VzEwai5/P2qKUxJjtI4odBSQ3A8OMBhPaJ1lA411xxlmFLG4NAxPTuQq4Vp7p3EKHHsDcD1jWwlntWkm/RhBPfgCpToO6R4EX2SXqeQNv0cfrpuBS2qgc3qaH6Wnsqj548mxCQf+/7OFZoAtaCz+XfxMt36Mbea12DdeTmMf677B2rrslvDOltgrKb9QzsaB3C2/SF+MzuahdK6QCDFi+jDrpqRzEtZUzAbdLx0+UTmjhyodSThJ+rjpvF8UT4683TGaR3mJJodLqIcZWCAoJgedg5v7bIbrLRgtVYDgTVuJK+6hcNqIsHDp2kdRfgJKV5EnzUoMpivf3cWwUY9Br2MbRHfU1JP409ZoaSrA7hG6zAnUWJrbmtQZ+5BgzoATCHY9WGYXfXYrYHVZVdVVQplaQDxI1K8iD4tPMiodQThh+IjggDPFFx/VWJtYlBr8aL0oMfLMfbgWMz19bhtgVW8VDe0sMT5LiEGO0mMAqRthvBhkzohhPBXiZHBRFFLpC0HtaVR6zjtKv7BlZeeNKg7xhXqGfeiayjv8bF6U0F1Iz/Rf8ZvDP/F3BC4yxsI75IrL0KIfic2wkym+S7iFCu2oulYhk3XOtIJKquqiFQaPE8iBvX4eDpLIpWlETQ1+e/VpvYUVdQyvnWJBKJlmrTwkCsvQoh+x2zQU6F4OirbyvI0TtO+xkpPD5pmfRgERfT4eK5FTzPN/gwvNM2hxenu8fF6S3XJYYyKC4digvBEreMIPyHFixCiX7KZPLdRmsr9s1FdQb2BhxxXcHBoR8uLdl5UqAmj3jPNuKI+cHq92Ms9PV7qggeBTn5lCQ/5JAgh+qXGYM/0Yaf15At4aimnIZQnXYupmfFbrxxPURRiwz0Dlctrm71yzN6gq8kHoCWihzOuRJ8iY16EEP2SKywRbKCrO6p1lHaVWFuXBrD0bGmANpUHeNq1kiojlNW+6Z1j9oKg+kIA9LKmkfgBKV6EEP2SYkmCoxDUWKp1lBPUNTtIaMkjVtGRGKqeeofOUHRMcOygXhfE2rrAuPLSYHcS5ywGPYTJatLiB6R4EUL0S0EDkwGIsPtf8VJia+aPhpc4Tb8HDlpg4lU9P2iYZ4xPmNJMjbUaSO35MX2ssLqRWx3LSdPX8M6ki7SOI/yIjHkRQvRLYXEjeN55Hq8ZFmkd5QRHrU0kHpsebOn5NGkAzGG06EMBsFcHRqO6gqpG7JhQY0ZCmCzvIb4nV16EEP1SbHwif3Jeg7lRx82qiuJHC/6V1DQxW6n2PPFCg7pjmoMGYmpowFUbGM3eCqs9fW6SB4RqnET4G7nyIoTol2IjzADYnW5qGh0apzmetbIYs+LAjeLV3ibHuuwq9WVeO6YvNR/ZyYOGf7Ko5SOtowg/I8WLEKJfMhv0DA21M1bJo6LYvxrV2as807ebTAPAYPLacZVwz/RwU1NgLBEQVLmbKw3rGV+3Xusows9I8SKE6Lfu1b/IB+Y/oNv1X62jHEe1eYoXe0iCV49rihpEhRpBY4sTp8v/u+yaaz0NBBVZFkD8iIx5EUL0W40hCdACLusRraMcx1jvGVCrenG8C0DQ+fcxfsPpuNwqP69vId4S5NXje5PD5SbKfhT0EBw3Qus4ws/IlRchRL/lDvOMJ/GnRnWqqrKucQgPOa7AnbbYq8fW6XUMDPOM9Sn3814vxdYmkhXPNPaw+OEapxH+RooXIUS/pYtMAiC4yX9m31Q3tLDVOYQnXYuJmHa5149/bKByWa1/r29UUNVIiuIZm6MbMEzjNMLfyG0jIUS/FXysUV2L/8y+KbF5rogMDDdjNui9e/C6Mh6o/wMOk41dde9699heVlJWylyl3vMkKlXTLML/yJUXIUS/FR6bCoDFbQNHk7ZhWhVbm0jX7WFGaDm4nN49uDGYtOZsJujyqK6xevfYXlZbcgiAekM0mMM0TiP8jRQvQoh+Ky42ngbVcxtFtfnHuJfSmjrWGP/G/1l/BY1V3j24ORyHzjNI117j3112NzcPZnTz83w862Wtowg/JLeNhBD9VqwliMedF9OCgZvcwURpHQioqyxCp6g4FSOGUC+3xFcUmoNiMTYW4rL5d/FSWNVIM2YGJMmCjOJEUrwIIfots0HPG8FXUVlv5xJnmF8UL47WBnWN5jgidN6/OO4MjYXGQvDjLruqqlJY3QhAiiwNINohxYsQol9LsARRWW+nxNrM2ESL1nFQWhvUtYR5b1mA444fngAVYGry3+Klos7OHeoLhBmbGOQYAozROpLwM1K8CCH6tZRwN24lj+YjRhgzX+s4mBo907aVSO82qDvGGOnp2htir8TlVtHr/GdBymMKqhu5QL+JBKUaXI1axxF+SAbsCiH6tXPd3/KB+Q+M2fOI1lFwuVXC7Z7GbOboZJ+cIyg6iUo1Agd6qhr8s9dLUXm1p3ABiJKlAcSJ5MqLEKJf00UmQyEEN5dqHYWKOjvxeGYYhQxM9ck59HNu5fz1Y6ios3NmrZ3YcP9bIqCueD8AzbpQgkKiNU4j/JFPr7zU1NSQkZGBxWLBYrGQkZGB1Wo95X45OTksWrQIi8VCeHg4s2bNorCw0JdRhRD9VEhrozqLHzSqK7Y18arrHP5lWIoueYbPzhMb7t9LBLRUHAagLiQJFP+7rSW059PiZenSpWRnZ5OZmUlmZibZ2dlkZGR0uM+hQ4eYM2cOo0ePZt26dezYsYN77rmHoCD/++tACBH4Ilob1YWojdBs0zRLibWZL9xT+GRABsSN9dl54iI8P0/L/XSJAJ01HwCnJVXTHMJ/+ey2UU5ODpmZmWRlZTFz5kwAVq9eTXp6Orm5uYwaNard/f7whz9wwQUX8OCDD7a9NnToUF/FFEL0c/EDB1CjhhGl1KPajqAEaTfjqNjq6fKbEBnsu5M4mvlDxe/4g6mETOt/fHeeHghv9FxpNwyUn/2ifT678rJx40YsFktb4QIwa9YsLBYLGzZsaHcft9vNBx98wMiRIznvvPOIjY1l5syZvPPOOyc9j91up7a29riHEEJ0VmyEmRJ1AAD15QWaZqmuKmOubgfjzOW+O4nBTErTHobpSmiu8Y+uwj9U2+wgyOn5OR6eIA3qRPt8VryUlpYSGxt7wuuxsbGUlrY/MK68vJz6+nruv/9+FixYwCeffMLixYu59NJLWb9+fbv7rFq1qm1MjcViISkpyavfhxCibzMb9FTqPZ1s68rzNc0SXL6Dl0wPcOXhu313EkWhyez5fp02/1lN+5jCqkZuddzCabpXCJp8pdZxhJ/qcvGycuVKFEXp8LFlyxYAlHYGWqmq2u7r4LnyAnDxxRdz++23M2nSJO666y4WLlzIM8880+4+K1aswGaztT2Kioq6+i0JIfq5b0PP5T7HUgqCx2maQ1fnuRLiDBvk0/M4Q1r/sPTDLrsFVZ6+LnEx0WCS7rqifV0e87J8+XKWLFnS4Tapqans3LmTsrIT/8OoqKggLi6u3f1iYmIwGAyMGXN8N8W0tDS++eabdvcxm82YzeZOphdCiBMdjp3Hp5VlJOtSSNcwR1CjZ70hvY8a1LWJSIAqMDX48PZUNxVUNwCyLIDoWJeLl5iYGGJiYk65XXp6Ojabjc2bNzNjhmfK36ZNm7DZbMyePbvdfUwmE9OnTyc3N/e41/fv309KSkpXowohRKckWjyzb0paB8xqwe50YWkpBwMExfj2553J0tplt6UCt1tF50dddpXCLNYYn0JXfxowSes4wk/5bMxLWloaCxYsYNmyZWRlZZGVlcWyZctYuHDhcTONRo8ezdq1a9ue33nnnbzxxhusXr2agwcP8uSTT/K///2Pm266yVdRhRD9XGK4nrFKHhFHv9YsQ5nNTqLiaVAXHOOb7rrHBEV71k2KoYaaxhafnqurTFX7OE2/h9SW3FNvLPotn/Z5WbNmDePHj2f+/PnMnz+fCRMm8PLLLx+3TW5uLjbb970VFi9ezDPPPMODDz7I+PHjefbZZ3nrrbeYM2eOL6MKIfqxoeZaPjD/geuLVoCqapKh2NZEQmvxokT6duKB3jKYSiJpUk2U1/lXr5fges80ad2AYRonEf7Mp8sDREdH88orr3S4jdrOD4rrr7+e66+/3lexhBDiOJbYZNyqgklxQEMlhA3s9Qwl1kYmtxYvRPh2wC4Tr+KnXyawr7SOF2qbSUuI8O35OsnudDGg5SjoISR+hNZxhB+ThRmFEP1ewgALFXia06m2I5pkKLE2sMLxcz4a+HPfFy/8oMuuH115OVLTRLLimegRFj9c4zTCn0nxIoTo945rVFehTaO64loHb7vnsnfEL8Fg8vn5jq1vVOFHxUthZQMpimcGlCK3jUQHpHgRQvR7nkZ1nt4n9eV5mmQosXoWSUyw+HBpgB/41dHf87npt9gr83vlfJ1RXlJAiGLHjQ4s0nBUnJwUL0IIAdSbPf2n7FXaNLo0VO1jrm4HqcaaXjnfQHsBw3QlOKzFvXK+zqipKKZCtVBriuuVq08icEnxIoQQgD3E0/sEmzbr/cyu+5iXTA+Qlv/yqTf2Amew50qTUuc/SwR81zSI6fan+ejM97SOIvycT2cbCSFEoKgeOIP7ymwMizqN1F4+d2OLkwGuCtBD8MBeasgZHg/VYGiq6J3zdUJBtWdpgKSB0RonEf5OrrwIIQRAwkRWuxaymd5f36igqpFEpRKAoAG9U7wYIz2N6kKay9ttWdHb3G6VwtbiJWVAiMZphL+TKy9CCAEkRrYuEWBr7vVz7yiycuaxHi8W30+TBgiK8hQvA9QabE0OIkO0HWNSWtvMP5SHCTc1k9A0GJioaR7h3+TKixBCAIMigxlIDUPLPoHCrF49946CSmKxep700iwbg8VTvMQpNX7R66WgqpFZuhzm6HZh0MuvJtEx+YQIIQQwJjGCnxk/5z7XwzRuXN2r5z5aeACdouLWGSHk1AvfekVEAlVKFLWEUlbb+1ebfqykrIQopd7zJGqItmGE35PiRQghgBCTgYpIz60KtXBzr523ttlBZPVOAFwxaaDrpR/Lw87mtsFvsNxxK+W12l95qSs+4PlfQzSYwzROI/ydFC9CCNEqOHUmblUhtKEQ6st75Zw7i2x86xrLn023YTzjN71yzmMGtnbZ9YfbRs6qQwA0hPp2RW3RN0jxIoQQrcYMS2a/OtjzpKh3rr5sL6yhCguVQy6BsYt75ZzHxIYfW99I+9tGRqtnWQZ3ZKq2QURAkOJFCCFaTUmOYpvbs5qxs2Bjr5xze5EVgMnJkb1yvh+6Mv+PfG76LUHlO3v93D8W1uTpbGwaKGsaiVOT4kUIIVoNjgpmv3kMAE2HfF+8qKqKs2ATv9T/j9mhvd+mP6qlhGG6EnR12qykfYy1sYUGp54qNZyIQaM0zSICgxQvQgjRSlEUXINmAhBSuROcvh0Lkl/VyOmOb1lhfI3hhW/69FztCves52Ro7J3xPSdTUNXIPc7rucD8AqZJV2qaRQQGKV6EEOIHkoeN5Vctv2ZF0ktgMPv0XNsLa5iu2weAPvU0n56rPcd6vQQ1V2jaZffYsgAp0aGgKJrlEIFDihchhPiBKalRfOSeyedHjT7/hb4nr5hxSr7nScpsn56rPUHRnuIl2l1Dnd3Z6+c/prCqAYBkWRZAdJIUL0II8QNjEy2Y9DqqGlra1trxFXt+FgbFTWNIIlgG+/Rc7TG2XnmJVWo07fUSlP8560y3k1H9pGYZRGCR4kUIIX4gyKhneoKBX+nfQ3n7BvDR1ZemFhfx1m2eJxpcdQE8K0sDcYqVcg277BprDpGqKyNGsWmWQQQWWZhRCCF+ZFxyDLdX/AfTURfU5EO099vV7zpqY5riGe8SPOx0rx+/U8ITqNFFU+mKoFrDRnUhDYUAGGJkmrToHLnyIoQQPzJpSDy71daCxUfN6rILKhmteH5pKxoM1gUgfhx/Gvk2P3Os0KxRXbPDRazDM008LGG4JhlE4JHiRQghfmRKShRb3SMBcOT7pt/LtqI6Ztif4p0pz8MA7X5px0a0dtnVaMxLYXUjyUoZACHxIzTJIAKPFC9CCPEjcRFB5AePAzyDar1NVVW2FdbQgpHE8WdqOj04tnV9ozKNbhsVVtQyWKkEQIkeqkkGEXikeBFCiHYoyTMACKnJheZarx67xNZMeZ0dg05h/CCLV4/dVfMO388Xpt+QWP61JuevLD6MUXHhUIwQnqhJBhF4pHgRQoh2DB86nCL3QHS44ehWrx57e0EVb5vu5fHwlwl213v12F0V4ahiqK6UoMajmpy/srqGbPdQykLTQCe/kkTnyCdFCCHaMTUlmq3qCJox4rYWefXYxbnfMUV3kLMd68AU5tVjd5Uh0nO1w9xcocn5v2uM55KWv/LtGWs0Ob8ITFK8CCFEO0YnhPMA1zG++TkODV7s1WPrCjcAYI2ZAjq9V4/dVcFRnuIlylXN5rzqXj//sUaAydGhvX5uEbikeBFCiHYY9TqSByfhwMDWghqvHdfudDGoNhsA81CN+rv8gDHyWJddKw9k7uvVNY52HrGSV+m5bTYsVooX0XlSvAghxElMTYkCYFthjdc67eYU17Y1p4tMm+uVY/ZIa5fdeF0NWwtq+Cynd1aYVlWVv32Yw3um/8fmiN8RW7u3V84r+gYpXoQQ4iSmJEdxvf4jfrX3p7DtRa8c89C+bGKUWhwYUQZN9coxeyQsDoAUUx0Af/94Hy6376++fJ5TzuHDhxitFBHbcgSCtJ11JQKLT4uXmpoaMjIysFgsWCwWMjIysFqtHe6jKEq7j7///e++jCqEECeYkhKFRalniLuQlsPfeuWYLYe+AaA8YjwYzF45Zo+EJ4DOgHHCpViCDOwvq2ftdt/OPHK63Kz6KIdfG97GpDghaSZIjxfRBT4tXpYuXUp2djaZmZlkZmaSnZ1NRkZGh/uUlJQc9/j3v/+NoihcdtllvowqhBAniA41URw2AQBngXea1RXVNFDgjsWVnO6V4/VYWCws34L5ooe46SxPp99HP91Ps8Pls1O+saUId+VBrjJ86Xlh3p80bdQnAo/PFmbMyckhMzOTrKwsZs6cCcDq1atJT08nNzeXUaNGtbtffHz8cc/fffddzjrrLIYOlapcCNH7DCkzcO9TCKkvhPpyzy/7bqqos/NU7ek8rZzOzgvO9mLKHlCUtoUnr5mdyvPf5nPU2sSaTYX8fI73F6Sstzt59NMDrDS8iQE3jFwAKX5SyImA4bMrLxs3bsRisbQVLgCzZs3CYrGwYcOGTh2jrKyMDz74gJ///Ocn3cZut1NbW3vcQwghvGXs0GT2q4M9T3q4SGN2kRWAkbHhhIcE9zCZ9wVV7uFfqZ6rIf/35UHqmh1eP8e/1h8ioSGHhfpNqChwzr1eP4fo+3xWvJSWlhIbe+JfKLGxsZSWlnbqGC+++CLh4eFceumlJ91m1apVbWNqLBYLSUlJ3c4shBA/NiUlkm1uz4KB7sKe3Trac7gIHW4mJ0d6IZmX1ZbA6rOYsP8JFkUVUN3QwuqvDnv1FGW1zaz+Oo/z9Z4iUJm4BOLGevUcon/ocvGycuXKkw6qPfbYsmUL4Bl8+2Oqqrb7env+/e9/85Of/ISgoKCTbrNixQpsNlvbo6jIu50whRD924jYcPboRwPQfLhzV41PZtzeh8k2L+MyPvNGNO+KSIBJPwHgz0GvouDm2W/yqPDigo2PfLKfJoeLzxNvRP3pWjjrbq8dW/QvXR7zsnz5cpYsWdLhNqmpqezcuZOysrITvlZRUUFcXNwpz/P111+Tm5vLG2+80eF2ZrMZs9kPRuwLIfokvU7BnjCdQ8UJuIxDGNnN4zhdboY07CBCaSJxkJ9eIT7rD7D7LSJrdrE8ZgdPVE7myS8O8KeLx/X40PtKa3lzq+ePy7svHIPS2kNHiO7ocvESExNDTEzMKbdLT0/HZrOxefNmZszwrM66adMmbDYbs2fPPuX+zz33HFOnTmXixIldjSiEEF41aNg4zsl/mEvCEnmsm8c4lF/AKMUzBTlh3Fley+ZV4XEw5zb44q8sV9fwL8by6uZCfj5nKMkDQnp06FUf7mMMeYwZM6at+Z8Q3eWzMS9paWksWLCAZcuWkZWVRVZWFsuWLWPhwoXHzTQaPXo0a9euPW7f2tpa/vOf//CLX/zCV/GEEKLTvu+0a+32MUp3ewbCHjGkoAs79R+Ampl1M0QMwtxQzJ/jvsLhUnnk09weHfLrAxV8u7+E/zM9wQNFGVDQs9tvQvi0z8uaNWsYP3488+fPZ/78+UyYMIGXX375uG1yc3Ox2WzHvfb666+jqipXX321L+MJIUSnTEqORFHgSHU9lUf2d+8ghRsBqBzgB111O2IKaZsBdHnjmwzAxrs7itlb3L2ZnC63yt8+3McS/ZekKqXoTCEQP8GbiUU/5NPiJTo6mldeeaVtCvMrr7xCZGTkcduoqsq111573Gs33HADjY2NWCzSLloIob2IICPnDqhmp/kXhL98frfWOYqv2QqAcchp3o7nfeOvhOHz0J+7ktPGD0dV4cGP93XrUGu3HyW/pJxfG1uvsJ/xOzCHeTGs6I9kbSMhhOiEuNQ0TDgw2yuhJr9L+9pqqhnu8kw7HjTxHB+k8zKdDn76FsxYxm/OG4tBp7Aut4Ksw1VdOkyzw8XDn+RyvT6TgVghKhWmXOOTyKJ/keJFCCE6YUJqHLvV1o6zXWxWt/tIFU+4FvO5YS6RCd7vWutLqTGhXD0tAYAHMvehduGq03Pf5NFkq+BXxvc9L5x9DxhMvogp+hkpXoQQohOmpkSx1e2ZKO3qYrO678pUHnNezgcj/uKLaL6V8z9WFlzD2cbdbC+08uneE1tgtKey3s7T6w5xs+Fdwmj0jHMZe/KGo0J0hRQvQgjRCUNiQsk1pgFgz9vYpX23t85S8svOuqeS/w16WwH3h7+JDjd//zgXl/vUV18e//wA9XYnA8OMqDoDzPuj53aUEF4gnyQhhOgERVFQB00HIKg6F5o7N/vG3dJMdOHHRFPL5OQA7G9yxu8hyEJs40F+FvQNB8rreWvbkQ53OVRRz6ubCgGIveIRlF/vgGEBMNZHBAwpXoQQopOGDhtBkXsgOtxwdGun9inO2cCjPESm+S5GxQXgLJuQaJj7OwB+Z/ovITTz2Kf7aXa4TrrLAx/tw+lWOWd0LLOHxYBlsGf1aiG8RIoXIYTopCnJUbzsmsc/9UtQI1M6tU/NXk9zukNB4zAa9L6M5zszlkFUKiEtldwR+hHFtmZeySpod9PNedV8sreM5YZ3uHeGu5eDiv5CihchhOikiUkWnlMXsaphEcX6hE7tYyreBEBd3AxfRvMtgxnO/TMAP1P/RzxVPPnlQWqbHcdtpqoqf/swh2nKPu4wvEnKfy+E+nItEos+TooXIYTopBCTgTEJEQBsK6g59Q5uF0l1OwEIHXm6L6P5XtoiSE7H4G7mGst2rI0OVn91+LhNPthVQnZRDStMrQvqTloKYbEahBV9nRQvQgjRBVOSI4nBRmP2WrAd7XDbpqJsQmiiVg1h+LiZvZTQRxQFzn8AMtYy5CLPGJhnv86jvK4ZALvTxQOZ+zhHt42pSi4YguDMu7RMLPowKV6EEKILpqRE8ZjxSa7KuxsOfNzhtqW7vgBgtz6NuMjQ3ojnWwkTYdjZnDc2nolJkTQ5XDzx+UEAXt5YwNHqBu42venZduaNEJGoYVjRl0nxIoQQXTA1JYqtqqdZnbNgU4fbuvM9qyeXR/v5YoxdpCgK/++MAYxR8nltcyE7j1h54ouDXKL7hmEUQZAF5tymdUzRh0nxIoQQXTAoMphD5rEAOPM7blb3bPD13OH4JS0jLuiNaL0n72umvzePZ0OfBreDpas30dTUyO/Mb3u+Puc3EByAPW1EwJDiRQghukBRFAzJM3CrCkF1BVBf0e52qqryaUkw/3WdwbDRk3o3pK8lTASDmURnEUv1n1Nvd6KiUDd5mWcZgJm/1Dqh6OOkeBFCiC5KG5LEfnWw50lR+7eOjtQ0UVlvx6hXGJsY0YvpekFQBJy1AoDfBa0lggZmDo9n+EV3wi+/AmOwxgFFXyfFixBCdNGUlCi2uUcAoJ6keLGue4Kf6z9kblwLQcYAbU7XkSnXQswowly1vDD8ax65aiKKokgnXdErpHgRQoguGjcogh2MAk6+SGPSvue4x/gKZ0RbezFZL9IbYP5fAZhy5CVid/4T1FMv2CiEN0jxIoQQXWQ26KmMm81tLTexLu0vJ25gLSKypQynqiN69OzeD9hbRpwLg1s7B29fo20W0a9I8SKEEN0wdOhw3nHP4euqExdbbMn7FoDd6hAmDh3c29F6j6LA5f+GaT+HJa/KLSPRa6R4EUKIbpia4pkKvLWdZQJsOesA2KUfy+CoPj54NTIJFj4CMcO1TiL6ESlehBCiG6YkR5FAFadXvk7z+keP+5rhSBYAttjpnkGsQgivkuJFCCG6ITYiiMkRtfzBsAbdxv/7frBqQyVRjXkABA/vw+NdhNCQFC9CCNFNwSnTaFH1mJorwFrgebE8BwcG9rmTGDN0iLYBheijpHgRQohumjAknj1qa4FStBmAsgHTGd+8mpuctzFhsEXDdEL0XVK8CCFEN01NiWLrsWZ1hZ5xLtsLrTRjxhw3ilCzQct4QvRZUrwIIUQ3jY4PZ6eSBnzfrG57kWf20eTkSK1iCdHnSfEihBDdZNDrcCROBcBUtQ/2vstVW3/CTfp3mZwUqW04IfowKV6EEKIHhgwZTpF7IG5Fj/u75xjqPMRQXQmTk6O0jiZEnyXFixBC9MDUlCgyHHdxYeirNDU2Ap7mdENjQjVOJkTfJaPJhBCiByYnR5GvJmCubCCoIRuApoQZ6HTSnE4IX5HiRQgheiA61MTQmFBiqnLQqw7K1UgSh47VOpYQfZpPbxvV1NSQkZGBxWLBYrGQkZGB1WrtcJ/6+nqWL1/O4MGDCQ4OJi0tjaefftqXMYUQokempETxptmzurRNDWVySrTGiYTo23xavCxdupTs7GwyMzPJzMwkOzubjIyMDve5/fbbyczM5JVXXiEnJ4fbb7+dW265hXfffdeXUYUQotumpkRRoXoa0n3onsGkwZHaBhKij/NZ8ZKTk0NmZibPPvss6enppKens3r1at5//31yc3NPut/GjRu55pprOPPMM0lNTeWGG25g4sSJbNmyxVdRhRCiR6YkR3FFy73c51jKB5E/xRJi1DqSEH2az4qXjRs3YrFYmDlzZttrs2bNwmKxsGHDhpPuN2fOHN577z2OHj2Kqqp8+eWX7N+/n/POO6/d7e12O7W1tcc9hBCiN42IDaPKlMRq10ImpAzUOo4QfZ7PipfS0lJiY2NPeD02NpbS0tKT7vf4448zZswYBg8ejMlkYsGCBTz11FPMmTOn3e1XrVrVNqbGYrGQlJTkte9BCCE6Q6dTmDnUM85lxhAZ7yKEr3W5eFm5ciWKonT4OHaLR1FOnCqoqmq7rx/z+OOPk5WVxXvvvcfWrVt5+OGHuemmm/jss8/a3X7FihXYbLa2R1FRUVe/JSGE6LE/XTyO+y8dz2VTBmsdRYg+r8tTpZcvX86SJUs63CY1NZWdO3dSVlZ2wtcqKiqIi4trd7+mpibuvvtu1q5dy4UXXgjAhAkTyM7O5qGHHmLevHkn7GM2mzGbzV39NoQQwqsGRQazZEay1jGE6Be6XLzExMQQExNzyu3S09Ox2Wxs3ryZGTNmALBp0yZsNhuzZ89udx+Hw4HD4UCnO/6CkF6vx+12dzWqEEIIIfogn415SUtLY8GCBSxbtoysrCyysrJYtmwZCxcuZNSoUW3bjR49mrVr1wIQERHBGWecwZ133sm6devIy8vjhRde4KWXXmLx4sW+iiqEEEKIAOLTDrtr1qzh1ltvZf78+QAsWrSIJ5988rhtcnNzsdlsbc9ff/11VqxYwU9+8hOqq6tJSUnhvvvu48Ybb/RlVCGEEEIECEVVVVXrEN5UW1uLxWLBZrMRERGhdRwhhBBCdEJXfn/LqtJCCCGECChSvAghhBAioEjxIoQQQoiAIsWLEEIIIQKKFC9CCCGECChSvAghhBAioEjxIoQQQoiAIsWLEEIIIQKKFC9CCCGECCg+XR5AC8caBtfW1mqcRAghhBCddez3dmca//e54qWurg6ApKQkjZMIIYQQoqvq6uqwWCwdbtPn1jZyu90UFxcTHh6Ooihax/EbtbW1JCUlUVRUJGs+dZK8Z90j71v3yPvWPfK+dZ2/vmeqqlJXV0diYiI6XcejWvrclRedTsfgwYO1juG3IiIi/OrDGgjkPeseed+6R9637pH3rev88T071RWXY2TArhBCCCECihQvQgghhAgoUrz0E2azmT/+8Y+YzWatowQMec+6R9637pH3rXvkfeu6vvCe9bkBu0IIIYTo2+TKixBCCCECihQvQgghhAgoUrwIIYQQIqBI8SKEEEKIgCLFixBCCCECihQvfchXX33FRRddRGJiIoqi8M477xz3dVVVWblyJYmJiQQHB3PmmWeyZ88ebcL6kVO9b9deey2Kohz3mDVrljZh/cSqVauYPn064eHhxMbGcskll5Cbm3vcNvJ5O1Fn3jf5vJ3o6aefZsKECW0dYdPT0/noo4/avi6ftfad6n0L5M+aFC99SENDAxMnTuTJJ59s9+sPPvggjzzyCE8++STfffcd8fHxnHvuuW2LWfZXp3rfABYsWEBJSUnb48MPP+zFhP5n/fr13HzzzWRlZfHpp5/idDqZP38+DQ0NbdvI5+1EnXnfQD5vPzZ48GDuv/9+tmzZwpYtWzj77LO5+OKL2woU+ay171TvGwTwZ00VfRKgrl27tu252+1W4+Pj1fvvv7/ttebmZtVisajPPPOMBgn904/fN1VV1WuuuUa9+OKLNckTKMrLy1VAXb9+vaqq8nnrrB+/b6oqn7fOioqKUp999ln5rHXRsfdNVQP7syZXXvqJvLw8SktLmT9/fttrZrOZM844gw0bNmiYLDCsW7eO2NhYRo4cybJlyygvL9c6kl+x2WwAREdHA/J566wfv2/HyOft5FwuF6+//joNDQ2kp6fLZ62Tfvy+HROon7U+t6q0aF9paSkAcXFxx70eFxdHQUGBFpECxvnnn88VV1xBSkoKeXl53HPPPZx99tls3bo1oNtre4uqqvzmN79hzpw5jBs3DpDPW2e0976BfN5OZteuXaSnp9Pc3ExYWBhr165lzJgxbQWKfNbad7L3DQL7sybFSz+jKMpxz1VVPeE1cbyrrrqq7d/jxo1j2rRppKSk8MEHH3DppZdqmMw/LF++nJ07d/LNN9+c8DX5vJ3cyd43+by1b9SoUWRnZ2O1Wnnrrbe45pprWL9+fdvX5bPWvpO9b2PGjAnoz5rcNuon4uPjge//Ij6mvLz8hL9YRMcSEhJISUnhwIEDWkfR3C233MJ7773Hl19+yeDBg9tel89bx072vrVHPm8eJpOJ4cOHM23aNFatWsXEiRP5xz/+IZ+1UzjZ+9aeQPqsSfHSTwwZMoT4+Hg+/fTTttdaWlpYv349s2fP1jBZ4KmqqqKoqIiEhASto2hGVVWWL1/O22+/zRdffMGQIUOO+7p83tp3qvetPfJ5a5+qqtjtdvmsddGx9609gfRZk9tGfUh9fT0HDx5se56Xl0d2djbR0dEkJydz22238be//Y0RI0YwYsQI/va3vxESEsLSpUs1TK29jt636OhoVq5cyWWXXUZCQgL5+fncfffdxMTEsHjxYg1Ta+vmm2/m1Vdf5d133yU8PLztr16LxUJwcDCKosjnrR2net/q6+vl89aOu+++m/PPP5+kpCTq6up4/fXXWbduHZmZmfJZ60BH71vAf9Y0m+ckvO7LL79UgRMe11xzjaqqnumrf/zjH9X4+HjVbDarc+fOVXft2qVtaD/Q0fvW2Niozp8/Xx04cKBqNBrV5ORk9ZprrlELCwu1jq2p9t4vQH3++efbtpHP24lO9b7J5619119/vZqSkqKaTCZ14MCB6jnnnKN+8sknbV+Xz1r7OnrfAv2zpqiqqvZmsSSEEEII0RMy5kUIIYQQAUWKFyGEEEIEFClehBBCCBFQpHgRQgghRECR4kUIIYQQAUWKFyGEEEIEFClehBBCCBFQpHgRQgghRECR4kUIIYQQAUWKFyGEEEIEFClehBBCCBFQ/j+nXmcqcq9mVwAAAABJRU5ErkJggg==", + "text/plain": [ + "<Figure size 640x480 with 1 Axes>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjgAAAGxCAYAAABvIsx7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAACCj0lEQVR4nO3dd3gc1fXw8e9sVe+9y713cKGZZnoJhBIIJZSEACEJIfwCKZBCDAkBAoSQBEIJJJC81IRmA7YxuNty77Zk9S7tqm6d94+RhYXVtbuzuzqf59kHe3fmztF6kY7u3HuOoqqqihBCCCFEGDHoHYAQQgghhK9JgiOEEEKIsCMJjhBCCCHCjiQ4QgghhAg7kuAIIYQQIuxIgiOEEEKIsCMJjhBCCCHCjiQ4QgghhAg7kuAIIYQQIuxIgiOECAkvvvgiiqKwadMmFEXx6aOkpETvL08I4WMmvQMQQoih8Hg8rF27tsdzt99+OzabjVdffbX7OYfDAYDVau33OIDMzEw/RiyE0IMkOEKIkGI0Gpk3b16P5+Li4nA6nSxYsKDfcwd7nBAi9MktKiGEEEKEHUlwhBBCCBF2JMERQgghRNiRBEcIIYQQYUcSHCGEEEKEHUlwhBBCCBF2JMERQgghRNiRBEcIIYQQYUcSHCGEEEKEHUVVVVXvIIQQQgghfElmcIQQQggRdiTBEUIIIUTYkQRHCCGEEGFHEhwhhBBChB1JcIQQQggRdiTBEUIIIUTYMekdgB68Xi+VlZXExsaiKIre4QghhBBiEFRVpaWlhaysLAyG/udoRmWCU1lZSW5urt5hCCGEEGIYysrKyMnJ6feYUZngxMbGAtobFBcXp3M0QgghhBgMu91Obm5u98/x/ozKBOfobam4uDhJcIQQQogQM5jlJbLIWAghhBBhRxIcIYQQQoQdSXCEEEIIEXYkwRFCCCFE2JEERwghhBBhRxIcIYQQQoQdSXCEEEIIEXYkwRFCCCFE2JEERwghhBBhRxIcIYQQQoQdSXCEEEIIEXYkwRFCCCFE2JEERwghhBA9eL0qz60+zLayZr1DGTZJcIQQQgjRw7pD9Rz48Bn+9Po7eocybCa9AxBCCCFEcHHueY9HzH+DVrB3XkNchFnvkIZMZnCEEEII0YOxdlf3n3eW23SMZPgkwRFCCCFEDx3tbQC85D6breXN+gYzTHKLSgghhBA9RLRVAFChplBaJjM4QgghhAgDcc5qALKVemKPLNc5muGRBEcIIYQQ3RxuD+neWgBuMC3ne87nqLV36hzV0EmCI4QQQohulQ120mnq/nueoY7dB4t1jGh4JMERQgghRLeKZifnOh/mp5E/p86SA0DD/nU6RzV0kuAIIYQQolu5zcF+NZeKtFNpSZmlPVm5RdeYhkMSHCGEEEJ0q2juACA7IZKIvHkApNh3oaqqnmENmSQ4QgghhOgWV/oJtxvfYY7xEKmTFgIwRT3Akfo2nSMbGklwhBBCCNFtfP0n3Gt+nSmdRZizZ+LGSKpiZ/+BPXqHNiRS6E8IIYQQ3WIdWg2ciNQCMEfyTsHP+cc+A/PqLCzRN7QhkRkcIYQQQgDg8nhJ9dYAkJAxBgBlxhVsVcdRVCm3qIQQQggRgqqb2sikEYD4zLEAzMxNAGBXpQ2Xx6tXaEOme4Lz4IMPoihKj0dGRka/56xatYq5c+cSERHBmDFjePbZZwMUrRBCCBG+aitLMCse3BgxxGUCUBhv4jrrZ/yf+gL7q0OnL5XuCQ7A1KlTqaqq6n7s2LGjz2OLi4s5//zzOeWUUygqKuL+++/nrrvu4o033ghgxEIIIUT4sVcfBqDRmAoGIwAGo4mfGV7gW6aPKN67Tc/whiQoFhmbTKYBZ22OevbZZ8nLy+OJJ54AYPLkyWzatIlHH32Uyy+/vNdzHA4HDoej++92u33EMQshhBDhprO+BICWiCzSjj5pNFEXM5Gclu20F28AFusT3BAFxQzOgQMHyMrKorCwkKuvvprDhw/3eezatWtZsqTnOu5zzjmHTZs24XK5ej1n6dKlxMfHdz9yc3N9Gr8QQggRDlYbF7DE8QgbJt7T43l3xhwArLWhM4Oje4Izf/58Xn75ZT766CP+9re/UV1dzaJFi2hoaOj1+OrqatLT03s8l56ejtvtpr6+vtdz7rvvPmw2W/ejrKzM51+HEEII4Wser8oLXxSzv6YlINcrtqnsV3OJyJ3Z4/mEcfMByOvcS7vTHZBYRkr3BOe8887j8ssvZ/r06Zx11lm89957ALz00kt9nqMoSo+/Hy0f/dXnj7JarcTFxfV4CCGEEMHu3xuPsOv9P/PMG8sCcr0v2zRE9Xj+aIIzRTnC7rLeJxOCje4JzldFR0czffp0Dhw40OvrGRkZVFdX93iutrYWk8lEcnJyIEIUQgghAmPNkzxq/gs/qP2Z3y/l8apc0fIytxvfIc/S2vPFpDG0GWKxKi7K9m7yeyy+EHQJjsPhYM+ePWRmZvb6+sKFC1m+fHmP55YtW8a8efMwm82BCFEIIYTwu4ZWB2/XZQNQQCW29t7XmfpKrb2DWw3/5V7z66RGeHq+qCg0xE8FoLVsp1/j8BXdE5x77rmHVatWUVxczPr16/n617+O3W7nhhtuALT1M9dff3338bfddhtHjhzh7rvvZs+ePfz973/n+eef55577unrEkIIIUTI+WhXDbu9ed1/P1JV5dfrVVeVEaG48KJgjM8+7vWak3/DnM5nea5lvl/j8BXdE5zy8nK+8Y1vMHHiRC677DIsFgvr1q0jPz8fgKqqKkpLS7uPLyws5P3332flypXMmjWLX//61zz55JN9bhEXQgghQtH7O6poIYo6NR6AhiO7/Xo9e+UhAJoMyWCyHPf6hMmzaCSOIw3tNLU5/RqLL+heB+e1117r9/UXX3zxuOdOO+00tmzZ4qeIhBBCCH01tDpYcuT3zDXG4TFHg9tGe9V+4Fy/XbOjqwaOPSKT3la0xkeZKUyJpri+je0VNk6bkOq3WHxB9wRHCCGEED2tKNrHNwyfYjZ6qIqeDbZKaDzk12t6m7S7JZ1RWX0ec1fURySbV1O9626YcJlf4xkp3W9RCSGEEKKnpi1vYlY81EdPoDXvTACiWor9ek1za4X2h4S8Po+Zo+7hVOMO1NL1fo3FF2QGRwghhAgijW1OJjZ8AgYwTv8a1sJz+eHmNg57x7BYVfus+TZSMR2VAFiS8/s8xpQ7D+pWkNi8A9WPsfiCJDhCCCFEEFlRtJdLFG0rduK8K4lOGMO7VONxqtS2OEiPi/D5Nb1eldsdd5DqqeWF6ef3eVzqpIWwBSZ6DlBp6yQ7IdLnsfiK3KISQgghgkjT5jcxKV7qoydAyjgsJgO5iVoicbiuzS/XrG9z0OS2cpBc0jJz+jzOkjsXgHxDLXsO+veW2UhJgiOEEEIEicY2JxMaPgHAOP3LRbxnxxRznXEZdUf2+OW6FU1ai4aMuAjMxn5Sg8gE6i1aAtRwYJ1fYvEVuUUlhBBCBImPdlaheJNoNUaTeMKV3c9f3fEaY83r+V9pFnCyz6/bWLaXh0zP02GZCJzZ77FtKTNIqSxHqSzyeRy+JDM4QgghRJB4f2c1P3F/m3+c/Akkj+1+3pVQCICxyT9bxV1VO7nW9Alnu1YMeKy14ETsahSN9la8XtUv8fiCzOAIIYQQQaCxzcmaQw0AnDez51ZtS9p4KIWYtiN+ubansasGTnTfNXCOSjntNmasnki7S+Ws+lbGpcX6JaaRkhkcIYQQIgis2LqfSWoxUzJiKUiJ7vFafM5kANKd5bg9Xp9f29RSDoA3LnfgY62RTM1OAGBrmc3nsfiKJDhCCCFEEGje9B/es97P08Y/HPdaYu4UAPKVGsobfb+TKrqrBo45ue8if8eamZMAwPbSRp/H4iuS4AghhBA6O3b3VOL4hce9bkjIxYUJq+KisvSgT6+tqipJrmoAYtLHDnC05iL3Mj6zfJ/p+5/yaSy+JAmOEEIIobOVRXtYqOwCIPGEK44/wGiiwaytj7GV+3areFO7i0zqtWtnDS7ByUmMJM9QR1bbbhxuj0/j8RVJcIQQQgidHS3uVxczscfuqWN9Nu7HXO54gI3uwSUhg1VVU0ei0gqAtZ82DcdKmrAAgOnKIfZWBuc6HElwhBBCCB01tTmZ2PAx0LO431cZxp3BZnUi+5p8uzW7tM3AtM7n+H7SMxARN6hzlLQpOBULcUoHxfu3+zQeX5EERwghhNDRqqLdLFB2A5B0THG/ryrs2llV7ON2DRXNHbQShSdl8uBPMpqpj5kIQNvhjT6Nx1ckwRFCCCF0VL/lHUyKl9qYSZA0ps/jxsa4ucb4CV9rfY0Op+/WvZR3tWnISYwa0nmejNkARNVv9VksviQJjhBCCKGTpjYnv6+ewzed9+FZ/LN+j00wu/mt+Xl+aPp/lNQ2+SyG/NK3+I3peeZ6tw3pvPjx2jqc/M69tHS6fBaPr0iCI4QQQuhk2e5qHF4DDeknkTnvov4Pjs2gQ4nQZntK9/kshjG2tXzT9AkF7pIhnRc3dgF7lTFs9Y5jR0XwLTSWBEcIIYTQyXs7tPozF0zPGPhgRaHBqnXybq3wXYKT4KoBIDqtcGgnJo/lyXHP8Sv39WwvlwRHCCGEEEBzu5NLin/Nz0z/4KKCwbVf6IjVkhB3vW+K/dk6XGSptQAkZg99+/nRisbbypp9Eo8vSYIjhBBC6GDVlj1caljNLaYPyE8wD+6kpHEARNgO+ySGyromUhVt9iUyZYgzOMCMnAQsuKgp3e+TeHxJEhwhhBBCB41b3sSoqAPunjpWVKa2NTuxs9Q3MVRpiVK7EgmRiUM+f5Z7GzutN/GbzqXUtnT6JCZfkQRHCCGECLDmdicT6gcu7vdVyflarZpctYqmNueI42itOaTFY04HRRny+ZEZE7EoHiYoZewsrh5xPL4kCY4QQggRYKu27GFBV++p5H6K+31VRPYMvmv+NRc7fk1xw8gL/jkbKwBoj8wa3gBxWdhMydrOrv0bRhyPL0mCI4QQQgRY4+Y3MCoqNTGTIWkIa18sUdjSTqSORJ9UNH7PeCbTOp9j88xfDm8ARcGeOB0AT/mWEcfjS5LgCCGEEAHU3O5kQsMnAJimf23I53e3bKgfeYJztE1Dcsbgmmz2xpw3F4DE5h2oqm/7ZI2EJDhCCCFEAC3bVc1eby4NStKQbk8dtdC4l5+Y/kVC8fsjjqW8qR2A7MTIYY+RPGEhAJO9ByhtbB9xTL4iCY4QQggRQO/vrObX7ut49aQPh3Z7qstk1y5uM/2XgsbPRhRHm8PNz1x/5Dem58kxD79QnzlXm8EpNNSw+7Bvdnf5gknvAIQQQojRwtbu4ouD9QCcPyN7WGPEZE+CHZDiKMPrVTEYhr77CaCiwc6lhi8wKipYLcMaA4CoJNanXMYnVVbMFTbOO2H4Q/mSzOAIIYQQAbJy617meHczJT2KcWkxwxojKVfbKp5PFTUjqD3TUFmMUVFxYobo1GGPA1C+8Nf81XMRG6oHV5E5ECTBEUIIIQKkedO/ed36a54x/G7YY5hTtWrGiUorZeXlwx6npUYr8tdkTgPDyNKBmbkJAOyosOH2BEeSIwmOEEIIEQC2dld3cb+YSWcMfyBLNI3GFAAay/YMexhnQwkArRHDrIFzjDHJUUyx1nOGZw37a1pHPJ4vSIIjhBCjVVs9rHwE2hv1jmRUWFW0kxMVLSFJOfGKEY1lj9K2dTuqh98DSrFpsz+u2JwRxQJg8HTwP+UHPGN5kgMHfdfpfCQkwRFCiFHKtmcFjWv/QceyX+sdyqjQvFnrPVUdMwUSC0Y0litB612lNBUPewxrm1bF2JCYN6JYALBEUx+pxWQ/tH7k4/mAJDhCCDFKfbinniRHGfY9n+odStizdbgY33V7ajjF/Y4b74Tvs6DzKZ5wXz7sMSyOJgAiU4e+Vb03jvRZAJhrtvlkvJGSBEcIIUapFR3j8KoK6Y4SaKnRO5yw9lnRrmNuT1014vFy8sdTTTJHmjpxDWNRb6fLw/UddzO98zliZl464ngAYsecCEB2+x46nB6fjDkSkuAIIcRo5HYSWbeVVrQKtvU7ZRbHn+o2v3vM7anht0U4Kj3OSqTZiMerUjaM6sGVzR0AeC2xJCQkjDgegPhxWoIzQznE7spmn4w5EpLgCCHEKNRRs5/HXb8hTtF+ODbt/kTniMKXrcPF0uq5XOr4FZ4zH/TJmIqi8LPot/mT+QkqykqGfH55k5bgZCdGoijDKxR4XEzp03ApZuKVdg7v3+GTMUdC9wRn6dKlnHDCCcTGxpKWlsall17Kvn39r8BeuXIliqIc99i7d2+AohZCiNBWV7yzx9/jqtfpFEn4+3BnFS4PtKfNInv2OT4b92zPZ1xg3IC9fPeQz20/soUXzI9wJ//2WTwYzdTHTAKgo3ij78YdJt0TnFWrVnHHHXewbt06li9fjtvtZsmSJbS1Ddwldd++fVRVVXU/xo8fH4CIhRAi9LVWar8QrlTnaOtwXGV4bZU6RxWe/rnuCACXzRn5duxjtUYXAOCsHfpWcXfNXk43bmO6e5dPY2qYfSffcf6QN2wTfDrucOjei+rDDz/s8fcXXniBtLQ0Nm/ezKmnntrvuWlpaT67dyiEEKOJWn8AgI7UWeyua8bidWAoPsi4WSMv+ia+tLO8mQfrfsA+Sx5LJv7Rp2N7ksZA8xeYhrNV3FYGgDN2eP2w+pKz4DI+WrYcGqG53UlC1Ah6XI2Q7jM4X2WzaR1Nk5KSBjx29uzZZGZmcuaZZ7JixYo+j3M4HNjt9h4PIYQYzSLt2g9FU/oEnsp/miXO3/OJzbc/7AR8vuI9ZhsOcpnxC5IS4n06dkS6NksS335kyOdaWrUif0pCrk9jSoiyUJAcBcD28uF3KPeFoEpwVFXl7rvv5uSTT2batGl9HpeZmclf//pX3njjDd58800mTpzImWeeyWef9d46funSpcTHx3c/cnN9+w8aDNxuD16vqncYQogQkeIoBSAmaxLzJ2izNp93dbkWvtHS6SLj4GsANI+5CCJ8m+AkdjXdzPJU0OZwD+ncuM4qACJ8VAPnWJcnFfM945sU79858MF+pPstqmPdeeedbN++nc8//7zf4yZOnMjEiRO7/75w4ULKysp49NFHe72tdd9993H33Xd3/91ut4dVktPR1kLdo/NpN8Yy8f61KCNsmiaECG/e1gbi1BYA0gunkmzUtopvLanB0dmGNSJaz/DCxvsb93IJawFIXXybz8ePydIW9OYpNRyoszE1J3lQ5zndXlI8tWCAuPQxPo/r8tZ/kWXewEslecDpPh9/sILmJ+H3vvc93n33XVasWEFOztAXYi1YsIADBw70+prVaiUuLq7HI5zsW/Nf8tQKJrn3UnZI34xZCBH8atpV7nbexqPuq8hNT2F8WgwPR73CBsPNlK5+Te/wwoKqqjSu+QcRiouGmAkoOfN8f5G4bBxYUDFQVV4y6NOqmzvIVrTZuvjMsT4PS8meo4XXsB1V1e/Ogu4Jjqqq3Hnnnbz55pt8+umnFBYOb7qsqKiIzMxMH0cXGjr3ftT95+pdq3WMRAgRCg7Z4E3vqbyfeA1mowFFUUhLiCNScdK5v+/1jGLwikqbOL3tfQAiF9wEPqo104PBwMPj/8VkxwvsaRv8L+5VNdU4MeFFQYn37c4ugKSJJ9EUVcgJ06f4fOyh0P0W1R133ME///lP3nnnHWJjY6murgYgPj6eyEht2vS+++6joqKCl19+GYAnnniCgoICpk6ditPp5JVXXuGNN97gjTfe0O3r0IuqqlQ1fVnFUi3bANyhX0BCiKB3uL4VgDEpMd3PmcedBhteI7VB//ol4eCLle/zPUMZTsVK1Nxv+O06KVkFeHfso7h+4NIqRx3psHCV4zmWjIvirybf73KyTr8Y6/SLSfT5yEOje4Lz5z//GYDFixf3eP6FF17gxhtvBKCqqorS0tLu15xOJ/fccw8VFRVERkYydepU3nvvPc4///xAhR009lS18MP2G1lpGMcfLc+Q0hQcTc6EEMFLObCckwwNTElK7X5u3Lyzca83kOGtxl5TTFy67xefjha2dhevHzDg5TKump1GRmSC365VmKKtlzo8hATnaBXj5KQUv8QULHRPcAZzf+7FF1/s8fd7772Xe++9108RhZYV+2oBaMpYyCu1+9ikTuTXnS5iI8w6RyaECFanlz7FdZYjfGbIB7T+QZlpqew2jmOKdz9HNn3E9At8vyh2tHhjSznl7ng+yPgWd112il+vNVk9zFPmJ2mri0NVFw2q7UJFV4KTkxjp19j0pvsaHDEym3ZrFSyXnDiTP8fcyduek9lWpm/tASFEEPN6SHVrFYsT8ib3eKkhRUt2XIdWBTyscKGqKv/coN1xuHZ+ns/6PPUlKxouMq7jZHULTe2uQZ0zr+zv/N38O+Z1rvFrbHqTBCeENTXW89fab7LM8mPOKIxgbr52x3NLaZPOkQkhglVHfQlWXDhUM7kFE3u8FjlxMQCZTZt0iCw8bDjcwPWNT3GhZQuXzkz3+/WsXcX+smigpLphUOfkte3kDONW0g3hXfRWEpwQdmDtfzErHqJMkJWezrycKOYo+2Hvf/UOTQgRpGq7mmyWKRkkxva8RTF+3lms9MzkReeZVDW16BFeyPvisw+53rScx41PEqs4/H/B6BTalGgMikpd6cANp90eL8nuGgDiMnxfAyeYSIITwrz7lwFQlaYVN1wYXcmb1gf5Zt1jeD1ePUMTQgSplgrth2C99fhip/HxiTyRsZS/eC7ii8Nyq3uoGlod5Bdr3blbx10Mflxc3E1RaIrQ/i3bq/YNeHiNvZOsrho4CZLgiGDk8XgZa9Pun8bN0HaPFUxbiEM1k0SLFPwTQvTKU6et22uP7X2X1EnjtGq4X0jbhiF7d90ezle0ysWJp3w7YNftjO/6t2w4OOCx1TU1xCnaImNDYvhU9O+NJDghau/WL0ilmXasjJ17NgBmSwTFlvEAVO/qvS+XEGJ0i7AdBkBJGd/r6yeNSyGdRiz7/4vqlZngwfJ6VWwbXiVScdIcMw5yTwzYtY1d/5ZRLSUDHttcpSVBNkM8WMK7JYckOCGqYev/ADgYMw+T9cv76LbkWcDRgn9CCNHTM6br+LHr25jGnNzr63Myray2fp9HPI9Scmh3gKMLXWsO1nNO5weAHysX9yEmayJO1Yijs2PApssddSUA2K3hX/lfEpwQlVypbeP0jD27x/PWwgUApDZvD3hMQojgpqoqy5uz+I9nMVmFk3s9JiIqlhKrtruqfMvyQIYX0tZ89iGTDWW4FAvWudcE9NqJ877OdNdL3OW8nSp7Z7/HttqbsauRdEZlBSg6/UiCE4Iqmzt4suNcXvcspnDBpT1ey52xGIACTwl2W2PggxNCBK1qeyftTg8mg0JeUlSfx7VmLgTAVPp5oEILabX2TrYW17DNO4b28RdDZGCbFJgsEWQnxwJQXNd/ReP/cSozHM+zY8EfAhGariTBCUEr9tXykfcEXs+8l4TMngsFkzPzqVZSMSoqJdvkm5MQ4kvVezdyjfETzoyvwmzs+9t/4tQzAShsLcLl9gQqvJD1701lrPFM5leZfyL+ij/pEsOYrpYNxV19xvpS3tW7MCs53u8x6U0SnBC0Yq/WnuGMSWm9vv7frB/wdccvWNUpvWSEEMc48CG/NT/P9caP+j0sf+ZiXBjJUBrYt0f62/XH41X514YyQKtcjDlClzi+6fw371h+huXAe30e4/WqVDZrt7DCvU0DSIITcjodTqYeeo4ZyiFOn9h7ozTrtAvZpE5iY3lHgKMTQgQzQ6O2g8aV0H/9E4M1miMRUwGo3vaJ3+MKZZ/tq2WefTnZEU7On67fwt0cpZ6ZhsNYGvou9lfX6uAV4wO8YPkdGUr4V7yXBCfE7N60gh8aXuNV61KmZMT0esycPO3+b1Fp04Ar6oUQo0dMawkAprQJAx7bka2tw7GWf+HPkELemtXL+aPlGZabvk+E4tYtDnOatlX86L9xbyprGzjRsI/TDVsxRfT+8yOc6N5NXAxNy473ASiOX8AMY+8dwydlxHKJeSNz3DspOZTDmPFTAxmiECIYqSppTu1WSkJu7zuojpW84Bru2mNmo3MKHzvcRFvlx8VXVTZ3MK7sP2AE95izwGTVLZb47EmwBdJd5TjdXiym4+cvmiq1Gbw2JZroCFmDI4KIqqpk1GgF/AwTlvR5nMlo4LsRH3GDaTm1Oz4NVHhCiCDW0VRNLO14VYWsMQP/0pM1fhZFCWdS5U1gQ7HsyOzNm2v3cJFBq1wcd9KtusYSnzMJgAKlmtKG3ndStdcVA9BsCf8aOCAJTkgpKTnMRFWrQlq48JJ+j7WnzNb+IAX/hBBAdfEOACqVVJLi4wZ1zsnjtHV+0rbheG6Pl9ZN/yJKcdASOxbyFugaj5I0Bi8KcUo75RVlvR7jaSwFoGMU1MABSXBCSun6dwE4ZJlIdFL/H9Dugn82KfgnhAB7+R4A6iyD7z90VpaD7xrfJXPns/4KK2R9sqeGi1zabrTIBTcHtHJxr8wRNJrSAbCV916B2thSDoA3PidgYelJEpwQYi3RdjPYcxYPeOyXBf+OYGuS6WUhRru11pO5yvFzvsi+adDnzItv5f/Mr3Fxx9vUDVAhd7RZs/pjphqO4FYsmGZ/Q+9wAGiJGUOxN52Gpt53SEW3VwBgTsoPZFi6kQQnRNg7nOR2aL+Bpc+9eMDjkzLyugv+FW+XxptCjHa7mwysVydjKlg46HPixy3EiZlUxcb2bRv9GF1oKW1oRy3fhFs10DnhIohK0jskALae+ldOdz7OR53TjntNVVXsTrCrkUSn9V8mIFxIghMiPj/YwGmOx/hB5G/JmrxoUOdUxU4HoO3gGn+GJoQIAYe7KtwerXg7KOYIKmNnAGDbLRsWjvrXxlJe9izh7qxXiDn3F3qH060wtatdQ/3xi4wb25x833k7M53PEz/3a4EOTReS4ISIT/fW4sZE8tTTwTC4fzZ31jwAvA2H/BmaECLIqW4nl9b/lSuNKxiTNLStzGrBKQDE1axDVaWultPt5T+btEW85580FxIL9A3oGIXJWvJa2+Kg1dGzJk95k1b4NS3WitXce4mRcCOFDUKA16uycm8N0Hd7ht7EnfhNTtyaT7uayjavitGg8yI4IYQu6soPcIvyLh0mC6bUh4d0bubMs2DHE8z07KSkvo3C1PAvENefZbuqMLdWkRabxZmTB//9OBDiVTvvRjxIqlpPSd0WpuV82fSzollLcHIS+26yGm5kBicE7N27izddt/Mb6z84IX/wXWrHFeTRZkmh1eHmQG2LHyMUQgSz+pJdAFQaszCbhvZ7bUTBiTgUK6mKnZ3bpOzE2s8/YW3E9/hXzBOYg+2Xxoh4JnOYTKWRqrKDPV5yH17NR5Z7+YFj9OyIkwQnBFRt/i95hjrmR5ZjMRsHfZ7RoDAzNwGALUea/ROcECLotVdpGxQaI/OGfrLJSm38TNpVK+UHd/o4stByqK6VqVVvApCZlqr/1vCvMppotGglRFoq9vV4SW04xERDOVnU6hGZLiTBCQGxpdrivo78M4Z87qVxB3jB/AiZG37r67CEEKGiax2eM37ssE5vPvcpZjr+xrM1k/CM4v52b6zZwyVGbdNG1MKbdY6md+2xBQB46g70eF6xaTVwPLGjowYOSIIT9OqabEx3bgUg58T+qxf3ZnKSyunGbeQ1yU4qIUar6BatRL8xdfywzp88fgIR1ghsHS52Vdp8GVrI6HR5cGz9N9GKg7bYQsg/Se+QepekJbFWW3GPp6O6auCYRkkNHJAEJ+jtWfsBkYqTBiWZpDFzhnz+0YJ/hZ5SmhobfBydECIUpDq0XT9xOQM32eyNyWhgwdhkAD4/UOezuELJx3tquMSzHIDIBTcF3+2pLpGZEwFI7Czt3vWmqirxzmoAokZJDRyQBCfoefZrpcAr004e1v9QCel5VCtpGBSVku2rfB2eECLIdbQ0kYJW2TZzzPRhj3OLZTkfW+4hatvffRVaSDm07QtmGIpxK2YMs67VO5w+JeVNASDHW0ljmxMAe4ebTLTENDFLEhwRBFxuD2ObvgAgZtoFwx6nu+DfoXU+iUsIETqK7QYWdD7FLcqDJCanDnuccfEwzlBJZuMmOl0eH0YYGuKPLAOgMedMiE7WOZq+WdImUKGkU6xmUlynFXcsa7CTgdayx5pcoGN0gSUJThDbdLiaFZ4ZlJBF/rzzhj2OJ/sEAGJqt/gqNCFEiDhU30Y1yTSmnjiicZKmapscTlR2s7lkdN3uLm9q50+ti/mB+05iTr1D73D6F5fJT3L+wU2ueznc0A5AbV0NB9QcmpV4iEnXOcDAkQQniH16wMYD7m/x5JR/YYiMG/Y4KZO1xXCFnbvxeEbfb15CjGaH67Sy/WNHWKBPyZ6DQ4kkUWll3/b1vggtZKw91EAdCRzJOp+o8afqHc6ACrvacRxt2VDcHsl5zof56bi3B10JPxyMnq80BH26V6tXMJTqxb3JnTyfRjWWXd58Dhwp90VoQogQkbv/Be4xvc68yOqRDWQ005yibXTwHB5dDXzXHtZmrBaNDd5bU8c6muAcqbUDUNF0tIpxpG4x6UESnCBVVl1Pcv0mrAYPp4wf/n1zAKPZyvdz/sM1rp+xafTUeBJCADMaPuRO0zuMt9aPeKyoiacDkG/fTHO7c8TjhQJVVUnc///4rvFdTk8JjYrwi5r/x0brbVxQ/iig3WIDyJYERwSDA+v+x7+tv+bDqAeJjxx5Y7TZ+UkAbDnSNOKxhBChQfV6yXJrs7bJeVNHPF7spK51OIa9rD04OraLH2lo5wLnB/yf+TVmePfoHc6gJCfEkarYSeosx+tVuaDiCT6y3Mtc+yd6hxZQkuAEq4Paiv229Hk+GW52Vw+rfXKLSohRo67qCFGKA7dqILNg0sgHzJxJVeR4PvCcyMb9pSMfLwRs2FfKDOUwAJbxi/UNZpASc7Wt4gVKFZW2DtIdJUw0lJMUMbp+5I+urzZEtDtcTGrRtnQnzhz+9vBjzUk384nlR7zTdh2NDSOfqhZCBL/aYq13VJUhA4s1YuQDGk3suug97nPfyqfFnSMfLwQ07F6FSfFis2ZBwjB6eenAmKJVM85UGtlzpJIMr7Y2IX4U1cABSXCC0rbNa8lSGujEQtass30yZnxCItFGDybFS8n20bVAUIjRqrWyq8lmRK7Pxpw/JgmjQaGkob17bUe4UlWV6EqtzY0jN0hbM/QmKokWg7bzdv+urWQq2iLpqNRCPaMKOElwgpBtx3sAHImbh2KJ8tm41XFHC/6t9dmYQojgpdYfBKAz3ne/ucdGmJmTE8tM5SBrD4T3roWDta3M8mwHIHHqmTpHMzS2KK3nlKdkDVbFjQcDxGbpHFVgSYITZFRVJb26a4ZlwhKfjt1d8K+uyKfjCiGCk8WurZMxpozz3aCqyt+bb+Id6y8o3hXe9XA27StmqlICgHnsafoGM0SueG22ZmqnVuC12ZQCRpOeIQWcJDhBZv+RcqZ79wJQMH/o3cP7kzL5ZEAr+Od2S8E/IcLdD9QfcbLjjximX+a7QRUFd6q2I8tc+jler+q7sYNM+b4inJhpisyHuBCb/ciey+eeqRjxAtAaEWLx+0BQJDjPPPMMhYWFREREMHfuXFavXt3v8atWrWLu3LlEREQwZswYnn322QBF6n8fH+7ga85f8c+kO7Cm+nZBWO6kE+nETILSxuF923w6thAiuHQ4PZTZnJSrqeRnZ/t07NjJ2nbxGe4d7KsJjdowQ+X1qrxalckMx3OUX/APvcMZsuhTbuObrp/yumcxe7y5tCeM1zukgNM9wXn99df5wQ9+wE9/+lOKioo45ZRTOO+88ygt7X0LYnFxMeeffz6nnHIKRUVF3H///dx111288cYbAY7cP1bsq2eHOgbPid/x+dgGs5US60QA6vb0n0QKIULb0TL9CVFmkqItPh3bNEZrV3CCYS9f7BthheQgtbe6heZ2FxaLlUmTh9+FXS+pMVZirCY+8M7nPOcjlC78jd4hBZzuCc5jjz3GzTffzC233MLkyZN54oknyM3N5c9//nOvxz/77LPk5eXxxBNPMHnyZG655RZuuukmHn300QBH3g91eFO2TW1OtpRqhfhG2p6hL9VZS3jNvZhN9gS/jC+ECA62PZ/ylPlJvh29GkVRfDt4xnQcpljilA72b/vCt2MHiTVdhQxPKEzCbNT9R+WQKYpCYUo0UXRiwj3q2jSAzgmO0+lk8+bNLFnSczHtkiVLWLNmTa/nrF279rjjzznnHDZt2oTL5er1HIfDgd1u7/HwG1cHPJwPzy+B934Em1+Eis3a8wPYumk1Dxv/wvVJe8hO8M+H0bDwdn7i/jZv1IdGPQchxPB4yjZykXEdCwy7fT+4wQj5iwBIrF1PaUP4bRd37HyX5ZYf813ju3qHMmxPt93N7oibmK4Uk5Pgux25oULXBKe+vh6Px0N6es/27enp6VRX9z7tWV1d3evxbreb+vreC9gtXbqU+Pj47kduru9qQhyndjc4bFC2HjY+B//9PvztDPhtNvxpgfZcHzp3/JcrTau41uq/20ez8hJQFChtbKe+1eG36wgh9GVq0qrvehLH+mV864SzADjHuJF3t1X45Rp6cXu8JNasY7yhgnERfvyF2M8UaywAb1kfIM49+gq8BsW821enT1VV7XdKtbfje3v+qPvuuw+bzdb9KCsrG2HE/ciYCXdsgMufh0V3wZjTISoZVA/U7ek5k1O3Hx6bAv+8Cu8nv2ZivdaewTz5XL+FFxdhZlJqBNOUw+zes8tv1xFC6CuurQQAS/oE/1xgyiXsGXszP3XdzNtbK7u/D4eDXZV25qpaFeiEqWfoHM3wmaKTuv+sRCbqGIk+dN0Un5KSgtFoPG62pra29rhZmqMyMjJ6Pd5kMpGc3Hsre6vVitVq9U3QAzGaIHWi9pj+de05VYWWaqjeASnHrGSv3g72CrBXYNj/IUf3TOWdeLFfQ3zI8BfmWD9i9dZb4YQ5fr2WECLwVFUl3VUOCiTlTfHPRWLTyb7iEQ795mOcta3sqWphSlacf64VYEV7D3CjQevbZyw4Redohi81IRYqu/5i9kGrjhCj6wyOxWJh7ty5LF++vMfzy5cvZ9GiRb2es3DhwuOOX7ZsGfPmzcNsHnnXbb9QFIjL1Ar3JR1TKnvieXDTR3D+o3hmXU9L8kz2jbsJU4Jvt3QeJ0tLaqLrtvr3OkIIXdTW1pCsaLdW0gtG3kW8L3ERZs7s2hDxztbwuU3VunclAI0xEyC691+cQ4F56kXaH6JC92sYCd3LGt59991cd911zJs3j4ULF/LXv/6V0tJSbrvtNkC7vVRRUcHLL78MwG233cbTTz/N3Xffza233sratWt5/vnn+de//qXnlzE8lmjIWwB5CzACscDEAFw2dcrJsBvGOHbjcrsxm3T/GAghfKjm8A7SgTolidToeL9e6+aMw5y970X+XXQl3nMnYTD4eMdWgLk8XlLq14MChPDsDQBTLoUr/wFZs/SORBe6/2S76qqraGho4Fe/+hVVVVVMmzaN999/n/x8rY9GVVVVj5o4hYWFvP/++/zwhz/kT3/6E1lZWTz55JNcfvnlen0JISd74ol0YCFBaWPf3q1MnDZP75CEED7UWFOKUzVSH5FHqp+vNbv6P8wzfk5ZRyobSi5kwZjQni3YXt7MCepOUEJ7/Q2g3T2Y4t8lD8FM9wQH4Pbbb+f222/v9bUXX3zxuOdOO+00tmzZ4ueowpfBbKHUOpGJjh3U7V4tCY4QYWalYQE3O17kzjmpTPbztYwzroCDH3GRYS1/K6oI+QRn3f4akr0TibUaSCsIoQ7i4jhBsYtKBF5L6mwAlIpNOkcihPC1w/VteDCSmenn9XwAE8/DY4xgjKGa4h1f4HR7/X9NP/qixMZP3N/mozPeh1G48yicSIIzSkWNWQhAhn27zpEIIXztUG0rAGNSY/x/MWsMykSttMXp7tWs2l/n/2v6SafLw+YjWjX5hWNTdI5GjJQkOKNU3qzTedR9JT91XE+tvVPvcIQQPtLpdPFE+//xuPlPjIvzBOSahq6SGBca1/FOkR/rjPlZUWkz4zyHSY8xMTY1Wu9wxAhJgjNKxSRl8nHKdazzTunufyWECH1lJQc4wbCfC43rSExICMxFx52NxxxLttJA457VtDrcgbmuj+3cs4v3rPfziXoLisepdzhihCTBGcVm52n3l7eUNusbiBDCZxqOaBXKq41ZKMYA1QYzR2CYciElhlzM3g4+2hmaHcYdB1YA0BlbAKYAFYcVfiMJzii2IMvI+YZ1JO15Ve9QhBA+0lm9DwBbVH5Ar6tc+DjvLHqLVd6ZvLOtcuATgkyH00NWk7bpwjz2VJ2jEb4gCc4oNje2iWcsT3K1/e84XaE5pSyE6MnQcBAAZ4J/mmz2yRzJJbOyAPjiYD11LaHVzHdTSQMnKlrn9bjJIV7/RgCS4Ixq2RNP6C74d2jvVr3DEUL4QEzbEcCPTTb7UZASzQk5EUxTD/De9tCaxdm1ewc5Sj1uTCh5C/QOR/iAJDijmGLSCv4B1O9ZrXM04W/lvloeem83q/bXhXytEBGcVFUl3antYkrI9XeJv17U7eefTdfyD8vDvLf1SOCvPwLug6sAaE6crrXRESEvKCoZC/20ps6G8h0YKjbqHUrYe+P//YsJHVu4b/UZtERkcNbkdM6ZmsFpE1KJtBj1Dk+EgZrmNjpVE24MpBVMD3wAyeMwRCYQ11pFQsUqjjScQH5y8CcLLZ0ucm2bwAiWCYv1Dkf4iMzgjHLRY48W/NuhcyThzeH2cK/jKb5nepuCqE5aOt28VVTBb179gFN+/Ta3/WMzbxdVYOtw6R2qCGGHGzo50/kHzov5N5Y4f3eh6oXBgHG61hfwYuMa3t0aGrepNpY08oL7HP5uvpq4mZfqHY7wEZnBGeVyZy6GVVDoLWPv3j1MmqTDtPYoUNVgp8CgVXj9xw+/RlGDiQ93VnP6lsc4wVPEuv1T+HjvHB5jHoVjJ3HutAzOnpJOSoxsVRWDd6i+DYC81ASt0aIepl0Ga5/mTEMRVxQd4s4zxqHoFcsgrT3UwFZ1HJMnnw5ZM/QOR/iIJDijXHRSFvsjZzGufRs7vvhvQBOc2pZO3B6VrITIgF1TLw2VhykAOrEQEZPKvFiFeXkJqOVOlGoPpxp3cKpxB/ASu0ryWX54Lje8PY/o/DmcOzWDc6ZlkD0K3icxMl+2aNDxtlDWHLwJhUQ1FzO2cTW7KhcyLTtev3gGYc2hBoCQbxQqepIER9B+xm849c2DNJdmcb7DTbTV/x+LNoebVx7/CQcd8YxffC3fO2McJmP43jG1V5cA0GhKJ+vob7MGA8ptq6H+IOx7H/Z9gFq2jqmGI0w1HGGhdzdXFRewobiRX/1vN4vHJ/Gnb54QkH8fEZoW7v8dF1t20uq9C5iiTxCKgmH65bD6US4yruWdrRVBneA0tzuZWvMuuYYoFmWfoHc4wofC9yeKGLQZc0/GmFRAq8PNe9urAnLNFZ+t4FrPW5R7k/njJwe48i9rKW1oD8i19eBoKAGgNSLz+BdTxsFJd8FNH6DccwAu/TNMupCJZ97ILy6cwomFSSQrdh44cgPvr9sW2MBDkNvjpbwpfD9L/clu280cw0EyY3T+1t7Vm+pUwzY+3noIj1fVN55+rD/cwI9Nr/Gs5QlS2w/qHY7wIUlwBAaDwtUn5AHw7vpdfr+eqqoYNvyVJFp4IPljYiNMbClt4sk/LuXNjcWoavB+MxwuxaZt3XXFZPV/YHQKzLoGrn6VhNO+y00nF/Lv7yzkL5O2UWiowbnxpQBEG9oe/O8uTn5kBesPN+gdSkB1Ot3keCsASCmYqm8waZNxnfcolyqPU9xiYH1x8P5bHNy1iVTFjlOxQvZcvcMRPiQJjgDg6zNTec7yB56v+yYHDx3w67U27TnE6c6VmBUPEy/5MR98/xR+lL6VRw1PMua/l/HLl/6LrT28dhNZWrUfPEpC3rDOHz9eq1c0376c0q6FpOJ4rW2tvLm5FIDNo6yJbGl5GQmK9tlIyJ6kczRgnn8rM6fPAgju3VTFWg0we+pc6T8VZiTBEQCkJsaRH+XEqrg48vFf/Xqtsk/+QqTipDJyAjHjTiYnMYrbz5lBpymOWYbD3Ft8C3967BesPVjv1zgC6bd8i7Mcv8M545phnR8/53KcioVxhkrWfL7cx9GFj4PvP81u4zWURFzDjD2P6R1OQNUf0doM1BpSUSxROkejuWRWNgDv76jC4fboHM3x6lsdjGnbAkDUxMX6BiN8ThIc0c096zoAJlW9RafTPzMolY0tzK9/EwBl/ne6t7Iap1xMxPfW0ZK5kCjFwf3uZ2h+6WqeeHd9yFf99XhVim1wUM0hLatgeINExFGddRYAll3/DsvbeL4QfeDt7j/HthzWLxAdtFfuAaApMrBNNvsz37uNlyMf5wLXR6zcV6d3OMdZd6iOBQbtfYuacLrO0QhfkwRHdJtw+nXYiSabOjaveMsv19jw4atkK/XYDfFknvTNni/GZxN763s4T38At2LiPONGrt58FQ88+WcO1bX6JZ5AqGtx4PaqmAwK6XERwx4n9aQbADjN+RnbS8NndstX6sv3Md65p/vv0c7g+4HqT8rRJpvxY3SO5EuG+r2cqm7kMuPqoLxNVbxrA4lKK05DJGTN1jsc4WOS4IhuRmsUhzMv1P5c5PvFrJ0uD1n7/wFA3YSrwdzLD3uDEctpd2O69RNaYwvJUJo4Ut/KBU+u5tX1R0Jy5qK6upzfmp7jnqj3MBqGX/AscuJZ2I2JJCst7Fr1pg8jDA/FK7TPlg2tBky8O3gXtvpDTaeBMm8qxjT91990m3opKgonGPaza88uWjqDa22d84jWosaeNg+MZp2jEb4mCY7oIfus2wCY27GWkiPFPh37/R1V/LDzVl4xXkr+Od/r/+CsWcR8bw3NF/0dw5jFdLq8/PStndzx4hc0tDp8Gpe/2Sv2c43pU77u/XBkAxlN2MZdik2N4lDxYVye0L5152spJf8FYFuudqs1SW3G6w6uH6j+oqoqD7VezCnOP2Je+G29w/lSXBbkLwJgifoFH+2q0TmgL9XYO3nKdjKnOP6I9fyH9A5H+IEkOKKH1LFzOGSdjFnxcHi5bxcbv7T2CBWkYjv555gScwc+wRJFwtzLefmmE/nZBZMZa6zjlyXf4LnHfsrKvcHzjXIgHfUlANitvdTAGaLMi37BucbneL7jVD4Po0XYI1W6dzOFnhKcqpHJF34ft2rAqKg01pbrHVpA1LY4aHN6MBoU8pKDY4HxUUpXTZyjRf+Cxdqu6sWJ2eOIzZupczTCHyTBEcexn/B9fub6Fr+snO+zBb5bS5vYVtaMxWjgqhMGkdwcw2BQuOWUMbw+by+pip3/8/4Nz6tX8cz/1vokNn/zNmk1cBzRA9TAGQRTTBLnzCoA4O2i4PlhobfKz7XbU7uiTiQ1PYsGJRGA5poyPcMKmEO1LQDkJkZiNQVZZ/rJl6AaTEw3lFB5aAe1LZ16RwTAmkPaLwgLpT1D2JIERxxn+ulXsTz6Qo60m1m+2zczJaX/e4TnzL/njvENw24gmXLJb3EtWYpbsXCmsYjzN9xAeV3w1zoxt2qzCGr80BK7vnxtdjagUrxrA60Ot0/GDGWqqvKX+hn8zX0+jpna7alKcx77vdk0toTu4vSh6NjzERutt/Eb5c96h3K86GSUMdoOpQuUtfxvW2CqpQ8kfd+r/M38By6M2Kp3KMJPJMERxzEZDVwxV/th/NrG0hGPV29vY27NfzjLWMTXckdQQt9gwLzodky3raSNSAoMNdQX7xhxfP4W3VENgCXZN9t3Z6RbWB35Y9413svqDZt9MmYo21LazIrmdB433MCMM64C4JncR1ni/D37LTpX9A0QV81+UhU7yWan3qH0bvrXqY2fQbGawTvb9N9NVdbYzpzOdZxt3MwEs9zqDVeS4IheXTUvm28YP+GHR26nonxkSc6Gj7St4TYljrxTrx95cOlTqbFoCVhrTXDXOlFVlUSXluDEpPtm+65iiUKNzwGgbeOrPhkzlB1d13HO1AyiLFoj0vQ4bZawxh4ct0P8zdx8CABv0lidI+nDjKtQbvmY9zmJbWXNFOtcjXvdwWpOMOwDwDruNF1jEf4jCY7oVW5yDLdGrWaO4SAHlj837HHcHi/pu7Ut59Xjrup9a/gwtEVq61lcDUd8Mp6/NLe7yEL7DTExs9Bn40bPuxaAuc0fUWPr8Nm4ocblcjFp60OcbNjBpTMzup/P6Ko3VG0bHQlOfLv2/0FkRhBtET+WopAaa+WkcSmA/q0bKnetIUbppMMUB+nTdI1F+I8kOKJPrdO0H6IFR/6De5hl1tet+4y56k7cGCg4d4Ct4UPQlHoi//Ms4JAnxWdj+kNFcwcLHU9xpfFxrGnjfTZu8gmX04mVQkM161Yv89m4oWbHmve5Rn2fZyxPclJhfPfz0x1b+MDyEy4//HMdowuMTpeHbI82i5WUP0XnaPp3xZQovmZYzTtby4dd06rV4WbzkSZsHcMrAaCqKpbyLwBoz1wABvkxGK5Megcggteks75Fe9FSCqhk4+fvc8Lii4Y8huOLZwE4lHw6E320BgWgadqNfH/nLE50J3GLz0b1vfKmDtqIxJGUCSaL7wa2xlKZeRZjqt7DsON1uPAS340dQjq2/BuAg8lnMMca2f18UrSFyYZSSkKrZNKwlFTVMklpBCA+Z7LO0fTD4+bClRdykaWJyxrS2Vkxh+k58QOe1unysOVIE2sONbDmUD3bym14vCpmo8KisSmcNy2Ds6ekkzzIzQslDe1Mc24HI8RNPmOkX5UIYpLgiD5ZouPZnbqEWXXv4tr4IgwxwTlQUsqitk9AgeQzfDd7A5CTqNX6qGgK7tszFc1afDkJkQMcOXSpJ10P/+89Tu5cxf7KBiZkja7trq3t7UxtXgEKxJ94dY/XYlO1NVqJ3vCvZlxXsptJgE2JIz4qSe9w+mY0oUxYAttf76qJc06vCY7L42V7eTNrDjaw5lADm0ubjitXkRoJdR1eVu2vY9X+Ou5/awfzC5M5b3oG50zN6Lclyvr9VVxi2A+AeaysvwlnkuCIfqWe9h34f+8yt3UV1TWVZKQPvpbLK5trcbu/ydcSi5k3ZbFP48pNjETBi8dWicvjxWwMzmnmqOLl/Nb0AVb1LGCOT8eOnXwWzcZkEj0NfLrqLSZ8I5jnsnxv+8o3WaS00aAkMmbeuT1eS8zQZgvjaaOzvZWIqBg9QgyIisY2vvBMJSYhhaAvVzftctj+OhcY13Px1jLuO1+bcdpTZWfNoXrWHGpgQ3Ej7c6et8TTutbvXJhUxikHfoeldjvOtHz2xCzgDfsUXq/PZ+3hBtYebuCBd3cxJy+R86ZlcO60jO5fho7aeeAgheoYplgbiU0L4hkvMWKS4Ih+ZU89iZK3x1DgPsy+D58j44ZfDOo8W4eLf2+tp8NzFhd+bUF313BfSbG42We9AYviobxuCTkZaT4d31eSGzaxxPQpu50jr2J8HKOJw3N/xu8/r6espICveVUMI+h1FXJ2vgFAacYSko09v5XFxSfToVqIVJzUVx0hZ2z4bhcvchfwE9dPuXvWhOBPcMacjhqZSFpHE4Xt27j2uTj2VLUct54mMcrMyWPiuCShhEn5mWRPOxVFUaAhFr7YDoDFfoSZ9iPMBB6MiaA8fh5/8VzEq9W5bD7SxOYjTfzmvT1Mz47n3GkZnDctg8KUaD4sM/KK8xf8+4YTONHH35dEcJEER/RPUWieeh2fbHmXt8oTONmrDqph5Buby+lweZiYHsuCMb6fNjdExNChRGGhhfryg0Gb4ES2a7tFTIl5fhl/ytk3sHP9x7TYHGwsaWT+KKnKWtvYyMy2L0CBjK92pQcUg4FGQxLZajX22lII4wSnoU1baDTcApoBZbKgTL4YtrzExYY13HdY+3eJsZqYX5jEaXlmzjBtI7t6BcqhT+CgHdouguldt5KSx8LX/w7Zc6FmFxxYBgeWY7BXkNfwOQ9d+0PuTDuJj3ZWs3XrJuorDrO+YhI7Kmz8/qN9jEmJpr7VSYTZwMz80fH/ymgmCY4Y0KQLv8/87dOwtbj4+oE6Fk/sP5nwelWSV/6Eq405zJp/q/ablx80mdOJd7XQWnMIWOSXa4xUvFOrBB2V5rst4seKMBs5f3omr28q462iilGT4Hy+YTOz1ESijJA59ZRej7GbU8h2VtPWEN4tLepbtAQnOcaHi9j9afrXYctLXGLdRPPpS5k/Lp2Zlf/GuO8pWL0G1GNuT0WnQVxOz/OnXa79N7EAJl0Aqgq1u7Vkp+AkMs2R3HhSIbT9HeqexGWMYptlFm+1TGFVwzTiiWJGQUHwtbQQPicJjhhQhNnI12Zn8+KaEl7bUDZggrN54+dc4v6QC8wGnOPv8ltcrZFZ4DqIM0hr4bQ73aSrtaBAQrZvivz15sqJRiZufZm8HY10XvwhEebg+MZ9pL6FHYdKOXfeZEw+XiP10sFI7nb+gUcWp3NVHwl0U2QB+zqbae4cXomDUPHrxh+RYa2kyf5n4EK9wxlY/kkQk0FUWy3fHW+HvMmw/A0o36C9njoZJp0PE8+HrDkDb+NWFEifqj2OZYmG6DTMbbXM61jDPNOa7p94LZwOvO3rr0wEGUlwxKB848Q8lq/ZyNT9/4+6uodJTU3v89i21Vo/nP0JpzEl1Xdbw7/KHZsNdjDYgrOhYmVDM+OUZgBiUv0zgwMwOy+RWaZlGPGyatMmTls432/XGoqDf7+VJW3LeKf4D1x+9bd8Nu7hula2ldswGgyceeKMPo9bNfFn/OWzw9xkLeRsn109+CR4GklV7LhjY/UOZXAMRrjiBUgeBzFdvywtuA1avgYTz4UkH/0ysPgncOq9UL0dDizXZnjKNwIqsWn++74kgockOGJQJmbE8mrMExS4i/ls2XhSr72/1+PKKsqZ37Jcm7U4w3+zNwCGxAKoAGtbcN6CqK8oZhzQiYWIKP/dOjLEZ1EcN49C+wZsG16FIEhwnC4Ps9s+x6J4OHXPAxTtPYXZk8b5ZOxP1m/BipOF47P7XXdydKtwTZB0r/aHdqebJGwAxKWMvFt9wOR/5Zby0dtOvmYwQNYs7XHaj6GtAWp2QPY8/1xPBJXg3FsrglLTRK2RYdah1/F6vL0es/+DZ4hUnJSax5A1/XS/xhOVWgBAvCM4uhN/VUut1sOryZzh811kXxUx7xoAZjZ+SHOb/tXtDu3fRZLSAkCqYqPpP9+jpWPkjSBVVWX2lp+x0fpdbsvY3++x3QlOGLdraGxqJlrR/r2jEvqeVRVdopNhzGKwhm/ZAPElSXDEoE1ccgudqplx3hJ2blxx3OsdnU4mlWuVZdtm3+L3H+rxedP4n2c+H7pm4+4j4dJTkWEqUzuf518THvf7tTLnX0EnVvKVGtav/sjv1xtI1f6NADQYUnBj5AzPGt5+5ekRj7tj335me7YTp3Qwc07/M1UFnmI+sPwfv6r170yinprrtV16Diwo1hC5RSVEgOiW4JSUlHDzzTdTWFhIZGQkY8eO5YEHHsDp7P+3vBtvvBFFUXo8FixYEKCoR7eo+FT2JGmlzVvXHt+Ac+OyV8mmjmZimXim79Zc9CU5fyo/9P6AJ91fo6ZF/1mLr6po1to0RPtpB1UP1hjK0s8EQNn2L/9fbwDvOOYwr/PPfDDraWpm3cUyz1z+eCiD97aPbLat/PN/YlRUjkRMJjK9/95eSQnxTDaUUeAtRfUGXwLsC22NWqd6myHe779QCBFqdEtw9u7di9fr5S9/+Qu7du3i8ccf59lnn+X++3tf23Gsc889l6qqqu7H+++/H4CIBUD8SVq13JnNn9DY+GUZfFVVeWO/m089sygpuBKDNaqvIXzGYFDI6mqBUN7Y7vfrDdXRNhLZib5v09Cb5JNuBODE9lWU1TYF5Jp9KSptpp548ifPI/vin7Pj5GeoJ57739pB1TC7n7s8XrLLtf/XnZO/NuDxyV3VjKMUB83NjcO6ZrBzNGtlCNpMiTpHIkTw0S3BOffcc3nhhRdYsmQJY8aM4eKLL+aee+7hzTffHPBcq9VKRkZG9yMpKYj7r4SZMXPPpsyYQ7TiYPdHz3c/v7GkiXfqs7iD+yi84uGAxZObYCWNJmpqawJ2zcG6uP5v/Nb0HGPV0oBcL2naWRw2j+c/ntP4YGtxQK7Zm/pWB6WN7SgKzMxNAIORu86awIyceGwdLh7+1zK83qF3kt5UtJWZ7MeLQuFpxxf3+ypLZAx2ogFoqCoZ8vVCQYPbzBeeqVTFBHcXcSH0EFRrcGw226CSlZUrV5KWlsaECRO49dZbqa2t7fd4h8OB3W7v8RDDpCjUjruaVjWC3SXlqKr2g+qltSUAXDo7m/jowBUcu8/+EBsi7iDm4DsBu+ZguDxeTnV/wTWmT8mwBGiRq8HIlnPf5iH3N3l9h7373ybQDm5fy8vmpfwkbjlxEWYAzEYDf7xsIk9anmFp1a38v+Wrhjxu/fp/AnAkZjamhOxBndNk0HavtdYFZymBkdpmnM61rp+yesJ9eociRNAJmgTn0KFDPPXUU9x22239Hnfeeefx6quv8umnn/KHP/yBjRs3csYZZ+Bw9L0GY+nSpcTHx3c/cnNzfR3+qDLhgjs5zfsXfms7h81HmqipqWLanifIpIHrFwa2voQ7pmtrbHNw/QCrbm4nE+0WXnx6ANbgdDlnajoRZgOH6trYWaFPIt96YDWnGnew2Lyrx/OFGcmcmOIgSnEw9ot72Vs5+NtobQ4342u1xdPGmVcOPhZLCgAdjcFZSmCkGtq0NYvJAfylQohQ4fME58EHHzxuEfBXH5s2bepxTmVlJeeeey5XXHEFt9zSf0fkq666igsuuIBp06Zx0UUX8cEHH7B//37ee++9Ps+57777sNls3Y+ysuD6YRhqYuMSOXOm9kP7nxtK2ff+n/iu8R1eiX2SyZlxAY1FSdQSqoggq4VTU1mKVXHjwYAhfnCzDb4QG2FmyeRUTjbsoGjV2wG77rGs1UUAuDK+0j3dYCD9uufpUKKYa9jH5y8/SKdrcFWGl+2u5nbnXbxovorck64adCydkdrWaa8tuD4fvtLQVeMnJPpQCRFgPi/0d+edd3L11Vf3e0xBQUH3nysrKzn99NNZuHAhf/3rX4d8vczMTPLz8zlw4ECfx1itVqxW+QbgS1efmMe/N5VRuX0l000vAdA6/caAxxHZVQsnLshq4bRUHwagyZhCijGw9TTviFnJRMtSth2YgNtznc/bJPTH41XJad+tFXocv/C415XEfNxLlsJH3+e6jld48a0z+c6VFw847ttFlRxWs2g68R6UqMGvueuMK2RfQw4NrvCc4bi79n6etB6ktukR4Bq9wxEiqPj8O29KSgopKSmDOraiooLTTz+duXPn8sILL2AYqOdILxoaGigrKyMzM3PI54rhm52bwCsxT3Oyey0AzcQyZYn/t4Z/VULWWABSPTV4BtnpPBA6u/pjtVgzGNz/Db4z5tRr8Gx5iJnsZ33RZubPOyFg1z5UVsYERUs2M6ee3OsxsQtuoG7HO6RWfsopO3/GmpnzWDSx7yq8dS0OPj9YD2hrvIaibOp3uXbfyZxuTmXgNCr0xLobSVHstEdH6x2KEEFHtzU4lZWVLF68mNzcXB599FHq6uqorq6murq6x3GTJk3irbfeAqC1tZV77rmHtWvXUlJSwsqVK7noootISUnha18beNuo8B1FUbAWntj994M5l2OOCPw32aRsrRZKutJMbZMt4Nfvi9qk7ZxyRAfu9tRR5oQsDsdqSU3T2n8E9NoVO9cAUG3MxBjTR2qnKKR+41najPFMMRxh3+s/p7m97/pXaz//mKeMj3Nz2j4KU4b2GUuP16oZV9uDr07SSHm8KglqMwAxyfILnhBfpVuCs2zZMg4ePMinn35KTk4OmZmZ3Y9j7du3D5tN+8FlNBrZsWMHl1xyCRMmTOCGG25gwoQJrF27lthQaTQXRiYuuY1O1YxTNVF4nj7VYo3RyXSg3X6sqzikSwy9aqvT/huvz4J28xztdsWU+g9p63QF7LrOEq0jdGNi300wAYhNx3TJE9QriazqHMNP39rZ564vdfu/Od+4gWsj1w85noyudg219vBr19DU5iAJrR1GnCQ4QhxHt2abN954IzfeeOOAxx37TS8yMpKPPtK/DL3QxKVmUXHVf1G9HnKyx+oThKKwIvp8ymxO8lthgB+rAfN7rufHnefz4ry5ulw//6QraF/1f+QpNaz6/ANOOyswN2jqbS20qJEYcwe+LWadcRn7Yxfw+d+24t5RxZlFaVw2J6fHMcW1dua3rwIFkhcMfY1JhqmNDy3/R7LbjsN1CKvZPOQxglVTYx0pirZI2xSbpnM0QgSfoNkmLkJT9pSF5Ezrfa1FoHxa8EOWuq/lYGdgd3D1xetVu9s0ZKTp0wBRsURTkqa1bvBsfS0g17R1uPip/VJmOP5GymnfHtQ50wuz+MFZ2m3G372zkbKvVKTe9Nl7ZChNtCkxxE8/d8gxJSQmM0EpJ1WxUV8TXAvRR6qlXvt6WokGk2yiEOKrJMERIS+nqxVCedPwWgD4Wn2bA6fbi0GBjK41IHpIWng9APH2/dTa/f/ebCtrBiAvOYbkhPhBn/fdxeP4UdpmlnE7f//HC3i6qhyrqop1r1bZvC73nGH9EFdMFpoULZbmmiNDPj+YtTVpCU6LMUHfQIQIUpLgiJCXkxBBGk246g7qHQoAVTW1vGR+mD9EvohZx01dGTPP5p7EJ7jc+SD/3V498AkjVHRE6/c0OzdhSOcZDQrfyq8nTmnn1sZH+fsnWwHYfqSOU1zaouX0k64ddlw2k1bNuL2+fNhjBKMmh8IXnqkciZ6qdyhCBCVJcETIm2lbwYaIO7ih9vd6hwJAc9UhTjNu5wx1HQyj9IHPGIzMPPF0QOHtIv8Xupu0/WFWWH7I5abPh3xuzEVLaY3KJUtpJPmzn7Oj3MbO1W+TqLRiMyYROX7xsONqs6YC4GgOr2J/+0wTuNb1Uz4c96DeoQgRlCTBESEvLmMMAKme6mE1cfS1jlqt0aXdkqFzJHDBjCxMBoX9FXUcqui/Z9tIqKpKestOCg015CcPo1yAJZroq/6GFwOXGVfzn1eeYX1xE9u9hdjHXggG47Bjc3ZVM1ZtlcMeIxjVt0ibBiH6IwmOCHnJOeMASKOJOluLztGAu6sGTkdU38XrAiUp2sLDacvYaP0uJZ+94rfrFNc0MVnVEruMqacMawwlfyHOE+8A4K6OZ/iiPZdvmX9PxhV/GFlwsdoWakNb8HWcH4mGVm3re7K0aRCiV5LgiJBnisvAgQWjolJbcVjvcDDZtbUenvicAY4MjAkpEcQpHUSVLPfbNYp3bcCquGhRYrGkjhv2OBFLfk5bwkRSFDtLzc9x4fQMzOaRzVAoSYXs9eZS7QmvWlk3Vv2KzdbvMK3hA71DESIoSYIjQp+i0GDU1lnYq/RPcKI6tFsh5sQ8nSPRZM/XqnxP79zit2rP7YfXAVAbNxWUEaysNlmJvvp53IqFJms2NywceaFE19QrONf5CE+pg2/SGQpiXA0kKy3EREXpHYoQQUkSHBEW7BHa7aDO+hJ9AwESXNqtkOi0An0D6ZI89gQalURilE52r/vQL9eIqtsKgDfLB4UNM6Zj+uE2rvrZPxiTnjDy4brbNXT2WS05FMV6mgGIStR/rZcQwUgSHBEWnDFaz6ejPaD0Yu90EeXVitUdbQSqO4OBqrRTAXDt8X2C0+50U+jYC0DyxOM7iA9LnO/WL6V3tWvodHmxd7h9Nq6e2p1ukrAD0qZBiL5IgiPCQkvOYv7ivoCN6iRd46ho6uAs56OcbPgHkTmzdI3lWHEzLwRgou1zOhy+/SG/o6yJtZ4p7FcKSBq/yKdj+0KEycD7ET9lq/VWGiqDqF/ZCDTY2khUWgGITNCnWrYQwU4SHBEWlCkXsdR9Lcs79U9wABITk8CoW6u34+TMPQ8nJvKUWrYUbfDp2EXldn7qvpnHx/4dopN9OrZPKArJSisJShu2Wn1n+HyluUEr3OjBgBKVpHM0QgQnSXBEWMhJ0BZaVjR16LrOoqJZS3CyEyJ1i6E3ijWWzWmX85jr66wo9m1n7aLSJgBm5yX4dFxfajGnANDeEB7VjFsbu9o0KHEjqhEkRDiTBEeEhYw4KxlKE1M9e6mztw98gp9EF3/Ii+ZHuNT5P91i6Ivn7N/ypOcy3j7k8VlBRFVVqTuyGzNuZucl+mRMf+iI0HbZuZvDo9hfc7ubzz1TORQ5Te9QhAhawTOHLsQIWIyw2vp9zLjZWXE2afH6fOOPbNjNYuM29nqHXwvGX+aPSSI2wkR9q5Ot5c3M8UFCUtncwd9c9xNr7cBrWgkE5+0Sd1QG2IGW8OgofthYwO9dP+WKwhx8sG9NiLAkMzgiPBiMNBi12xA2HWvhRLRp/Y4MCcFRA+dYZqOBc8dFc55hPbvWf+yTMfft3UGy0oKiQETGBJ+M6Rdx2k4jc3t4VDOua3EAkBIrVYyF6IskOCJs2K1dtXDqinWLIc6pLf6MTM3XLYb+fFt5kz9b/kjmft+0bWg+oBX4q4kaD6bg/WFrSdA+G5GOOp0j8Y2GVi3BkT5UQvRNEhwRNo7WwvE267NTptPlIc2jNbRMyByjSwwDyZx3KQBznZsoqbWPeDxz1RYAnOmzRzyWP0WmjWGvN5diT6reofjEZeWPsMX6bebVvaV3KEIELUlwRNhQE7Sy/pZWfXbKVDa1kak0ABCTXqhLDAOJGbeIViWGRKWVHSO8TeVwe8hu3wVA3DgfFfjzk9iJp3Gu8xF+1PEt3B6v3uGMWKSzgSSllehImcERoi+S4IiwYU0uACC2Q5+FpHVVR7AoHq02Saz+ncR7ZTRRk3YyAJ59I2vSuLe8gamUAJA8MfgK/B0rOdqCyaCgqlDXdXsnlMW4ta35EQnSpkGIvkiCI8JGbIbWGiHJXaNLLZymumqa1WiajClBVeTvqxJmXQTAZPtamtudwx6nZLfWQbzNEIuSHCRtKfpgMCikdS3Irbb5tg5QoHm8KnGq1jQ1OkkSHCH6IgmOCBtJ+VP5m/sC/uq+gIa24f/gHq5d3jxmOf7GU1P+FfBrD0XyzPPxYGCioYz1RVuHPc6mejMPu65mR+61I+sgHiBPqkvZar0V56HP9A5lRJranSQf7UOVFKQzhUIEAUlwRNiwJmTyfNTN/NNzZnfLhEA6WsU4PTkh4NcekqgkKmNnAFC1Y8Wwh1lRZeZZz8V4TvmxryLzqziDkwSlDUdjaBf7a2xqJlrRbrOZ4tJ0jkaI4CUJjggr2Ylai4RyPRKcpuBs09Cb9jN+w8mOP/Jo1Swcbs+Qz69t6aS8qQNFgRk58X6I0Pc6I7WmlB5bhc6RjIy9QVtj5sAClhidoxEieEmCI8LKxFgHs5UDNFcdDPi1r6p9ghfNjzDJsSPg1x6q8TNPxhGTQ6vDzfrDjUM+f8ehci4yrOGUlDZiI8x+iND3vDFagqO0Vuscycg0tXWy2jONvdZpIXFrUAi9SIIjwso1tr/ylvUB0kr+G9DrerwqU127WGzcRmqEfs0+B8tgUDhrsnZ74+M9Q6/u27D3c56yPM1jjgd9HJn/GOK1asbWjlqdIxmZMjWd61z389f8P+gdihBBTRIcEVbUeK1FgqklsLchamwdZCn1QPAW+fuqr6eW8Zz590zb/tuh7zqr2ARAW8pMP0TmH9bEHABinKFdzbihTVt/kxoTvJWjhQgGkuCIsGJJ1lokxHQGNsGprq0hVtHW4BgScgJ67eGanmrmLGMRp7m/YHelbdDnuT1e0uxagb/Iwvn+Cs/nYlK0QpAJ7gadIxmZeru0aRBiMCTBEWElNkObPUlyBbYWTnNXg0+7IR4s0QG77khYxp5KpxJButLMto2rB33e/uoWpnMAgJSJJ/krPJ9LzCxkjzeP3d5cWh1uvcMZtjPLnqTI+m1Orv2n3qEIEdQkwRFhJTl7HABZ1NMcwFo4HXUlANgsIVR4zRxBfZpWgdi778NBn3Zg/06SlRZcmDFkzfBXdD4XlVbIlcqjfMd1d0gX+7M4GkhUWom0hsbibiH0IgmOCCvWpDy8KEQqTqqqAteTytOkNfjsjA6twmvxXVWNp7Wtpco2uK31LYe0DuL1MROCuoN4b9LjIwCosYdughPl0na9WeOlBo4Q/ZEER4QXk4VGQxIAzZWB2yre2t5BsxqNGhca62+Oip12PgCzDIf4fOueQZ0TUVMEgDszuDuI9yY9TkvIagaZzAWjWE8zAFGJITRbKIQOJMERYWdFyrX8wnUDxc7AFaB73nM+sxx/o27hzwN2TZ+IzaA2dgoAtm3/G/BwW7uL37Wcy3ed3yduwY1+Ds737mx9mm3WW4jf/x+9QxmWdqebJLQF4bHJmTpHI0RwkwRHhJ3DY67lZc85HOiIDcj1VFXtbtOQnRR6lWWNky9knXcym2qVARffbi1vppZE9iSeTvzYEwIUoe9EmyFeaQe7Ph3nR6qhpZMkWgCITEjXORohgpskOCLsHG2VUN7UHpDrNbY56XR5AchMiAjINX0p6bz7uS/uYT50z2H1/v5rxBSVNgEwOy8xEKH5Xqx2W8fYFprVjJsa6zArWmsNJTpV52iECG6S4Iiwkx/jZbZygIS6jQG5XlV9M8ssP+afkb/H6nUE5Jq+pChfVjVePkBVY8++j7jT+BZnJoTmDIgxXlsEHtEZmsX+muytfOaZzh7T5JBb4C1EoEmCI8LOmM7dvGV9gO+0PBOQWjiNVYeZYKhgjrobzMHfaLM3Z01OJwk7NXvW4PZ4ez3G61WZULeMe8z/4YTOdQGO0Dcik7VF4HGu0ExwqjzxXO+6j9/nPKV3KEIEPUlwRNhJyRkLQBa12Ntdfr9ea20xAE2WjJBtfjhP3cmmiO/yW8/jbC7pvflmcUMbU7xagb/kSYsCGZ7PxKVq1YwTvY14vMHfM+yrGrpqO0kVYyEGJgmOCDvWrnYN0YqDyupKv1/P3ajVwGmPDN1dLcacOXgVE/mGWoqKNvR6zM6DRxhr0G5NmXJDb4ExQEK61qsslWYa7IFZo+VL9S1a/Z6UWLk9JcRAJMER4cccSaNBWwTbFIBaOAZbGQCe2NCqgdODNZam1BMBUPd/1Outvcb9awFosuZAVFJAw/MVU2w6+yhktXc6dY1NeoczZPOOPMdW662cXf2c3qEIEfR0TXAKCgpQFKXH4yc/+Um/56iqyoMPPkhWVhaRkZEsXryYXbt2BShiESqOtkxo72qh4E8R7dqshiExz+/X8qe4mRcCMLtzPYfq2o573VS1BYCOtFmBDMu3jCZ+nPI033L9H5WdodfqwNxZT4LSRpTFpHcoQgQ93WdwfvWrX1FVVdX9+NnPftbv8b/73e947LHHePrpp9m4cSMZGRmcffbZtLS0BChiEQo6orIB8DSW+P1a8U5ty3FUaoHfr+VP1snnATBP2cdn23vOfLU73eS0ab9IxIxdEPDYfCk9TtvKXx2C7RoiHNr6KFOcbBEXYiC6JzixsbFkZGR0P2Ji+i6UpqoqTzzxBD/96U+57LLLmDZtGi+99BLt7e3885/SWVd8ydvVMsFo928/qjaHG5vHQrMaTULmGL9ey++SCmmOGYtJ8dK844MeL20vtzHeoL2XceMW6hGdz2R0JTg1zaG3Bifard1Wi0iQNg1CDET3BOeRRx4hOTmZWbNm8dBDD+F09t0Buri4mOrqapYsWdL9nNVq5bTTTmPNmjV9nudwOLDb7T0eIrw5xp3HA64b+K96sl+vU9HcwS2uH3Oq8gJR4/x7rUAwTToXgDGNq6lv/bKmz5bSJhY7HmNp7l8hI3Q6iPfmwqaX2G69hZmH/qx3KEPi8arEe5sBiE6SBEeIgeh6I/f73/8+c+bMITExkQ0bNnDfffdRXFzMc8/1voCuulq7FZCe3rNEeXp6OkeOHOnzOkuXLuWXv/yl7wIXQS9u/Em89D8PcS3+/YhXNHW1aEiMCtkt4seKOeGbPLHHzCsNE7l3by1XztO2VReVNuPGROqEE8AU2luUoyOsxCntmNv7L2oYbJranSQr2i9nsUmhu2NPiEDx+QzOgw8+eNzC4a8+Nm3aBMAPf/hDTjvtNGbMmMEtt9zCs88+y/PPP09DQ0O/11C+8oNEVdXjnjvWfffdh81m636UlZWN/AsVQS07USu4Z+90Y+vwXy2c8qM9qBJCs8DfcdKnoMz+JvXE8/FuLQFQVZWi0mYAZucl6Bebj1gStWrGUY7QKvbXYGsjUWkFtN1gQoj++fzX2zvvvJOrr76632MKCgp6fX7BAm3x4sGDB0lOTj7u9YwMbVq2urqazMwvf4Opra09blbnWFarFatV6kaMJlEWE6dGlRDXWUVl3Tzi8/zzAyH60PssszxFXdtiYJ5frhFoZ01J4/GP97P6QD2dLg91LQ7udzyO12JkWsR4IDS3iB8V3VXNON5dr3MkQ9Nks/GZZzqZ5jbGR4ZoLzAhAsjnCU5KSgopKSnDOreoqAigR/JyrMLCQjIyMli+fDmzZ88GwOl0smrVKh555JHhBSzC1lPqw8Rb7KwpOwv8lOCYmg4xwVCBojT7ZXw9TEn0cnf0MtIdJaw5NJu2jg4uMKzHqrjAZNQ7vBGLS9cKQaaojXQ4PURaQuNrqnFa+L7rPhbkJvGaQfflk0IEPd3+L1m7di2PP/44W7dupbi4mH//+9985zvf4eKLLyYv78t6IpMmTeKtt94CtFtTP/jBD/jtb3/LW2+9xc6dO7nxxhuJiorimmuu0etLEUGq2aIlyu1drRT8wdKmVUpWEnP9do1AU1SVOz0vc5VpJRu3bqN630asiot2YxwkhfhOMSCmawYnWWmhpsmmczSD19Da1aYhRmajhRgM3RYZW61WXn/9dX75y1/icDjIz8/n1ltv5d577+1x3L59+7DZvvwmdO+999LR0cHtt99OU1MT8+fPZ9myZcTGxgb6SxBBrj0qCxz7cDf2vQB9pGI7tSJ/1uQCv10j4KKSaEmdS3zdRpT9H+GN1L5NtCTPICoMFlIrUUk4MWHBTVNNGQXpoXHLraG1q02D9KESYlB0S3DmzJnDunUDdyT+asl4RVF48MEHefDBB/0UmQgX3rhcaAKj3T+Lyp1uLymeWjBAXGahX66hl+jpF8CnGznBtZFGVywYIaJgvt5h+YaisMs6m+Z2J+6W0KmFM6nkFbZZ/87hmkuAZ/UOR4igJzdyRdgydTXdjGr3T8PN6uYOshVtoWpceujfujnW0Xo4iwy7WWTYDUDcuNCuYHysFwt/z7dc/0exJ03vUAbN2FFPvNJOlFm+bQsxGPJ/ighb0Wla0pHoqvLL+FW11cQo2m0DJSF81uAAkDqJtqhsrIqLTEVrD6DkhMcuMfiymnG1zTHAkcHD3NWmwRArbRqEGAxJcETYSsoeB0CGWkdLp+9r4dTX17Hbm0+VKQfMYVIH5yhF6Z7FAWiKzA/ZDuK9OdqPqs52fFPRYBXp0to0WOJCZ9ZJCD1JgiPCVlT6WB5WbuJe13eoaPL9WosDziTOdy7lj5P/5fOxg4F1yvm4FDP/9iym6pqP9Q7Hp+Y1/o/t1pv5evlv9Q5l0GK7+lBFJkqbBiEGQ9dWDUL4lSWaz5MuY2eFnW80dzIpM96nw3e3aQiXKsZfVXga7h8dZpHLRE5ilN7R+FRsTDRxSgcxzlq9QxmUdqebRNUGCsQkZekdjhAhQWZwRFjLSdB+MJd3JSO+VHG0TUNimCY4RjORMXFhl9wAxKRqtbYSPY3H7dQMRg2tX/ahikyQNg1CDIYkOCKszYis5ULDWlzlRT4f+7qaR1hm+THT7Kt9Prbwr/g0LcFJpYnGNqfO0Qys3t7KJu9E9iljUGJkkbEQgyEJjghrp9nf5WnLU+RVfuDTcb1elWznESYYKkiKkcJrocaSoFW5jlU6qK0P/p5U9e0qN7h+wr3JT4FVipoKMRiS4IiwZkoqACDSx7Vw6lodZHbVwEnICK8aOKOCNZZ2tFuLtlr/FIL0pYZWbTu7tGkQYvAkwRFhLSq1AIAEp29r4VTUNZGqaC1ETEn5Ph1bBIbNpDUFbmso1zmSgXUnONKmQYhBk11UIqwldNfCqaXN4Sba6puPfFPVYQA6lQgiIhN9MqYIrNK42eypS6a2I/j7a+UceZNt1icorj0beFnvcIQICTKDI8JabJrWIypVsVNZ3+izcTvqSgBoNmdAGDSgHI3WTfkFN7nuZZs6Xu9QBqS01WltGkxevUMRImRIgiPCW2Ri91qLxopDPhvW1VgKdHUsFyEpPU5bz1Jj79Q5koGZOhoAUKJlB5UQgyUJjghvikKjWav82lp92GfD1nUo7Pbm40ia6LMxRWClx2vtGuptrTpHMjCrU5t9NMZKmwYhBkvW4IiwtzrvNj7ZU8s0tZAzfTTmG65F/NY5nZcWnMhkH40pAmusbR07rN/mUHMesEHvcPoV7dYSHGu8FPkTYrBkBkeEvfbCc/jYO5cDrRE+GU9V1S+rGIdrm4ZRICEhmVilg2RvIw63R+9w+uTxqsR5tB170UnSh0qIwZIER4S9nK5WCuXNvmnXYO9w0+pwA5LghLLY1BwA0pQmam3Buw6nqd1JcldJgpikTJ2jESJ0yC0qEfbyIjq5wLCOpAaAk0Y8XnljC1utt9KgJBLpXgiWpBGPKQJPidVmQ6yKm4a6KnKTx+kcUe8aWp2UeQtpMDYzJU5mcIQYLElwRNjLpYY/WZ6k2pNIh/NBIi3GEY1XX1XKVKWNGDohwrcdykUAmazYlTjiVDu2ujKYFKwJjoNbXD9mfGIMy+NkBkeIwZJbVCLsRadrrRTSaKaioXnE47XWaruxmk2pYBhZsiT0Zbdo2647griacV13mwapYizEUEiCI8KeEp1CJxYMikpDxci3ijvrjwDQFiG/TYe6Dqu27dpj822vMl9qaJE+VEIMhyQ4IvwdUwunpWbkCY5i037bd8Vmj3gsoS9b8iw+8cym3Bmjdyh9Si77kO3Wm/lu7a/1DkWIkCIJjhgV2iK1isNHZ19GwtpeAYCSkDvisYS+Kmfdxc2uH/OJd47eofTJ21JHnNJBpFHVOxQhQookOGJUcMdqW4IVe9mIx4rtrAYgoqtTuQhdGXFabaRgbtdg6KgHwBuVonMkQoQWSXDEqGBIzAMgom1ki0k7XR4OulPZ480jPmuSL0ITOjraj6rZbkdVg3OGxNyp9aEyxEgfKiGGQraJi9Fh0kXcugUaTIWcPoJhKpo7eNB9IzFWEzsmnuaz8IQ+MhzF7LDeTDtW7B3nEx9l1juk40S6tDYN5jjpQyXEUEiCI0aFtMJpLPdWQas2CxNhHt727oqmL1s0KIriyxCFDqyxqViVDqLUTg42txIflah3SMeJcTeDApGJUuRPiKGQW1RiVEiIMhPdVeCvcgQtGyqa2gCVrATf9LUSOotOxYMBo6LSWBt8tXDanW4SVWnTIMRwSIIjRgVFUbgyZivfNv6Xmqrh/yCLOLyMndab+aHtYR9GJ3RjMNBsTAagtX7kC9B9raHVyW41n53qGCKSpCyBEEMht6jEqPEd58tkmCv4uPxsmDG8BcJqcykxSifRZrk9FS7aLCkkd9ThaKzQO5Tj1Lc6uMv1PbITIvkiZbze4QgRUmQGR4ward21cIqHPYa5RfshqMZLDZxw4YhMB8AbhNWM61udAKRImwYhhkwSHDFquGJGVgtnQ3Ej1jYtwbEk5/ksLqEvb4y2eNfQWq1zJMdraNHq80ibBiGGThIcMWoYEvMBsLYO7VaEqqq88EUx1/xtHelqHQBZ+RN8Hp/Qhzt9Jp94ZnPAna53KMeJLF/NDuvN3FP/c71DESLkyBocMWpEpGoJTpyjatDntDvd3PfmDv63tYy7Tf9hpkHrZWVKGeeXGEXgqbOu5ebV+aQ6rfxQ72C+wtNSS6zSQZTBpXcoQoQcSXDEqJGQORaANG8NDrcHq6n/WjhHGtr4zj82s7e6hXiDk+tii6ADWHgnpEkV43CR3tWuob7VgcvjxWwMoontNq1NgycyWedAhAg9kuCIUSOuK8HJpJGKxjYK0uL6PPbTvTX84LWt2DvdpMRYePqaBcRFjoeGgzDt8kCFLAIgOdqCyaBg8XZQ1+IgKyFS75C6Gbv6UBEtbRqEGCpJcMSoocRm8ovI+9nUHMP9zZ29Jjher8qTnx7gyY/3cYfxbWJS0rjk1gfIiI8AkiFzZuADF35lcLWyzfItoulka+PeoEpwrA6tTYMxVto0CDFUkuCI0cNgpDTtdHY31VHefHz3aFu7ix/+eyvb9h7gRfMznGrcgdpuRvHeBuQHPl4RGJYYTGiNNm21ZTAmeCoGR7m1BMcSF3wLoIUIdkF0s1kI/8tJ1H47r/hKu4Y9VXYu/tPntOz7jPet93OqcQeYIlEufhISJbkJa4qCzaytcWmrD552DR6vSpynGYCoJElwhBgqmcERo8psYzGRxg+IKZsFTATgna0V/OSNrVzv/S8/tr6OCS+kTIArXoL0KbrGKwKjw5oKrkqczcFT7K+p3ck+by4KKlNTC/QOR4iQo9sMzsqVK1EUpdfHxo0b+zzvxhtvPO74BQsWBDByEcqmta3np+Z/Mrb+U1weLw++u4vvv1bE4zzOfeZ/acnN9Cvg1hWS3IwizqiuTt324ElwGlqd/J/729xoegRTzmy9wxEi5Og2g7No0SKqqnrWI/n5z3/Oxx9/zLx58/o999xzz+WFF17o/rvFImXMxeBEpBbAXojpqOTav61nQ0kjoBBZeAJqxXaU8x6BuTeCIr2mRpXYDKgFU3vNsIfYWNLIfzaVcc+SiaTFjbzbfEOrA5AqxkIMl24JjsViISMjo/vvLpeLd999lzvvvBNlgB8uVqu1x7kDcTgcOByO7r/b7fahByzCQnzXVvF0bw37SkqJsSbwhytnctrk86DxZpACfqOSKUHr1B3RWTus89ccrOdbL27E4faSGmvlx+eMvE5SXVeCI32ohBieoFlk/O6771JfX8+NN9444LErV64kLS2NCRMmcOutt1Jb2/83paVLlxIfH9/9yM2VRomjVXzmGAAKDTW8HfUb3v3ObM6ZmgEGgyQ3o5g1axrLPXPY4hz6gvL1hxu4+aVNfE39mPct91G9b7NPYlIqNrPDejO/abrXJ+MJMdoETYLz/PPPc8455wyYfJx33nm8+uqrfPrpp/zhD39g48aNnHHGGT1maL7qvvvuw2azdT/KyobXbFGEPiUuG7XrY19AJWPad+gckQgG8dPO4VbXPTzjPI9Wh3vQ520qaeRbL24k3lXLw+bnmGI4wpy6N+lwekYck6urTUOk4hzxWEKMRj5PcB588ME+Fw8ffWzatKnHOeXl5Xz00UfcfPPNA45/1VVXccEFFzBt2jQuuugiPvjgA/bv3897773X5zlWq5W4uLgeDzFKGc0oM66E1Eko3/oQxp2pd0QiCERbTcRatTv21bbjayT1ZvORJm74+wbanR7Gj5+Ie+Y3AZilHGBLadOIY1JbtMauTqu0aRBiOHy+BufOO+/k6quv7veYgoKCHn9/4YUXSE5O5uKLLx7y9TIzM8nPz+fAgQNDPleMUpf9Re8IRBBKj7Oi1tmpaW5jXFpMv8duLWvmxr9vwOXsZOGYDP563TxMnXmw7RUmK6U8s/8IJ41LGVE8SruW4HijRjaOEKOVzxOclJQUUlIG/z+kqqq88MILXH/99ZjN5iFfr6GhgbKyMjIzg6f6qBAi9LzefjPJEfUsq3wXJvRdWG9HuY3rnl/PPNdGHol+mdgL3ybSYgRLJi1RecS2l9Jy4HNg7ojiMXU2AGCIkT5UQgyH7mtwPv30U4qLi/u8PTVp0iTeeustAFpbW7nnnntYu3YtJSUlrFy5kosuuoiUlBS+9rWvBTJsIUSYcZm0WZuOxoo+j9lVaeObz69nhrOIv1ieIM1TQ2TR818ekL8IgOT6TXS6RrYOJ9KptWkwxUkfKiGGQ/cE5/nnn2fRokVMnjy519f37duHzWYDwGg0smPHDi655BImTJjADTfcwIQJE1i7di2xsbGBDFsIEWY6IrREwtPce4Kzp8rON59bz4TOHTxveQwLLph0IZz7cPcxMRNOBWCOspei0uYRxRPt1s6PiB98SQwhxJd0b9Xwz3/+s9/XVVXt/nNkZCQfffSRv0MSQoxCnugMsAGt1ce9tq+6hWufW09exx5eivg9EaoDxp0FX/87GL+8ta6MO4sXM3/On4vTufpwAwvHDm+BcLvTzX5PJtGGViakFw73SxJiVNM9wRFCiGCgxGrr+CwdPetqHaxt4drn1pHRvp9XIx4hSu2AglPgqlfA9JUqw7HpmGddQU3xTtYXNww7loZWJ79034DVZGDvuFOGPY4Qo5kkOEIIAViTtGrG0cdUMz5U18o3/rae+lYnz8b8P2LcbZBzInzjNTBH9jrOgjHarE1RaTOdLg8RZuOQY6nvrmJsHbCyuxCid7qvwRFCiGAQnaIVGY33NODxqpTUt3HN39ZR1+JgUkYs4777b61P2Tf/H1j73kY+xmrnR1HvcRf/ZFtZ87BiqW/VivslS5sGIYZNZnCEEAKIzZrAx5457FHz8JY28b1/FWGz25mQnsyrt8wnIcYKF/1xwHGUThvf875Kh9HC84dqmD9m6OtwnNV72Wm9iQZ7DuCb1g9CjDaS4AghBGDKnMb9ET+ltsVB9N83EO2s55PIXxM/+w5iYk4b/EApE+k0JxDpaqZ2/3o4e8qQY3HYaolROulgcFWVhRDHk1tUQgjRJSM+AoAIZyP/iVxKtlpNzNbnwNE6+EEMBtw58wGIqdmI0+0dchzulhoAOi1JQz5XCKGRBEcIIbpkx0eQo9TyZuRD5KvlEJcNN7zb75qb3kSP13Y+zVF3s728echxqK31AHgipU2DEMMlt6iEEKLL4423E2HdByoQnQbXvwuJBUMeR8k/CYATDfv4x6Fa5hUMbSbG2KElOGq0JDhCDJfM4AghRJeI+GPaIlz/DqSMG95AGTNwGaOIU9qp3L9lyKdbHFoNHWOMtGkQYrgkwRFCiKNO/qFWofg7n0H60BcHdzOacGaeQIdqoaXyAC7P0NbhRLm0PlTmuL6bfgoh+ie3qIQQ4qhxZ2oPH4i84i/Mf2ILdQ64odzG3PzEQZ3n8aoccKWRYhhDgbRpEGLYZAZHCCH8wBCfyZwx2gzMUNo2NLU7ecR9NZc6f0PMtAv8FZ4QYU8SHCGE8JOjbRvWHRp8gtPQVcU4McqMySjfooUYLvm/Rwgh/OS8ljdZbvkxeUfexD3IdTgNXX2okmOsAxwphOiPrMERQgg/STe1k2GoYLZnFzsr7czKTRjwHHt9Obus38LelgzqbpBmm0IMi8zgCCGEnygFiwA4UdnLusODu03V2VRNtOIgmg5JboQYAUlwhBDCX3JPxIuBXEMdB/bvGdQpTrvWpqHDPLhdV0KI3kmCI4QQ/mKNpTNlGgCm8vWDWofjbakDwGkdehdyIcSXJMERQgg/ihin9aWa4dnF7ir7gMcr7VqC44mSNg1CjIQkOEII4UeGAq0v1QmGvaw/3Djg8cYOba2OIn2ohBgRSXCEEMKf8hZii8xji3c8Gw7XDnh4hFNLgkxx0odKiJGQBEcIIfwpKokj167mJ+5vs67Ehser9nv4YVcyRd5xmFOH2ehTCAFIgiOEEH43JTOOGKuJlk43e/pZh9PudPOY81K+5vwVUXOuDGCEQoQfSXCEEMLPTEYD8/PjGKeU91sP52ibBqvJQLTFGKjwhAhLUslYCCH8raOJP1dcjtHSzg8OTYJTxvR6WH1Xm4aUGCuKFPkTYkQkwRFCCH+LTESNSsbY0oa7ZB1e76kYDMcnME3Nzey2fosWZwI4t4IlKuChChEu5BaVEEIEgHnMyQBMde9ib3VLr8e0NVYTpThIVJvAHBnI8IQIO5LgCCFEABjyu/pSGfayvrj3dTidNq1NQ5spUfpQCTFCkuAIIUQgdCU4M5VDbDlY1eshLrtWJ6fTkhSwsIQIV5LgCCFEICSNwRmZhlVx01GyHm8v9XDUNq1NgytC+lAJMVKS4AghRCAoCqZCrW3DZOdODtS2HneIob0eAFX6UAkxYrKLSgghAsQw8yr+X3ksn9RNIuVwAxMzYnu8bunU1uYYYqVNgxAjJTM4QggRKBPPo3rWXexWC3pdaFzqTqDIOw5jyngdghMivMgMjhBCBND8Mdr6mvWHG1FVtbugn8er8lTHOfxRPYcN887UM0QhwoLM4AghRADNSHJzsXkjEzqKOHjMOpymdidH1x0nRVt0ik6I8CEJjhBCBJB1x2s8aXycm4wfsq64sfv5o32oEqPMmIzyrVmIkZL/i4QQIpDytZ1UJxj2suFQXffTDS2dbLfewgfqHdBa19fZQohBkgRHCCECKXMGHlMUCUobtYe3oarafanmpjrilHYy1FqIiNM5SCFCnyQ4QggRSEYz5J4AwPjOHRyubwOgvUlr09BuiAaTVbfwhAgXfk1wHnroIRYtWkRUVBQJCQm9HlNaWspFF11EdHQ0KSkp3HXXXTidzn7HdTgcfO973yMlJYXo6GguvvhiysvL/fAVCCGE7xkLtMab8w17WH9YW4fjtFcD0G6WNg1C+IJfExyn08kVV1zBd7/73V5f93g8XHDBBbS1tfH555/z2muv8cYbb/CjH/2o33F/8IMf8NZbb/Haa6/x+eef09rayoUXXojH4/HHlyGEEL51TOPNdYe06sXeFm3djdMqCY4QvuDXOji//OUvAXjxxRd7fX3ZsmXs3r2bsrIysrKyAPjDH/7AjTfeyEMPPURc3PH3oW02G88//zz/+Mc/OOusswB45ZVXyM3N5eOPP+acc87xzxcjhBC+kj0Xr8FCureZsuLdqOps6OpD5Y6UNg1C+IKua3DWrl3LtGnTupMbgHPOOQeHw8HmzZt7PWfz5s24XC6WLFnS/VxWVhbTpk1jzZo1vZ7jcDiw2+09HkIIoRtzJO4r/sFi11MUtSRS0tCOsUOrbKxES4IjhC/omuBUV1eTnp7e47nExEQsFgvV1dV9nmOxWEhMTOzxfHp6ep/nLF26lPj4+O5Hbm6ub74AIYQYJsvkc0nL1VoyrD/cQIUrhi3ecZAyQefIhAgPQ05wHnzwQRRF6fexadOmQY93tEz5sY4tXz5Y/Z1z3333YbPZuh9lZWVDGlsIIfxhwRhtvc364kb+7jiDy5y/wnNi72sWhRBDM+Q1OHfeeSdXX311v8cUFBQMaqyMjAzWr1/f47mmpiZcLtdxMzvHnuN0Omlqauoxi1NbW8uiRYt6PcdqtWK1yrZLIURwudT5LtPMH/CHfd+h3RkDQHKMtGkQwheGnOCkpKSQkuKbe8QLFy7koYceoqqqiszMTEBbeGy1Wpk7d26v58ydOxez2czy5cu58sorAaiqqmLnzp387ne/80lcQggRCAXl/2WMcRv/7dzOPhZhNRmIsUoPZCF8wa9rcEpLS9m6dSulpaV4PB62bt3K1q1baW3VGswtWbKEKVOmcN1111FUVMQnn3zCPffcw6233tq9g6qiooJJkyaxYcMGAOLj47n55pv50Y9+xCeffEJRURHf/OY3mT59eveuKiGECAWGAq1tw4mGvay13skq0/dQmkr0DUqIMOHXXxV+8Ytf8NJLL3X/ffbs2QCsWLGCxYsXYzQaee+997j99ts56aSTiIyM5JprruHRRx/tPsflcrFv3z7a29u7n3v88ccxmUxceeWVdHR0cOaZZ/Liiy9iNBr9+eUIIYRv5S2Edc+wyLCLTKWr8aY1Vt+YhAgTinq0EcooYrfbiY+Px2az9VprRwghAqKtHn4/tvuvXgwYflEPBvllTYjeDOXnt/SiEkIIvUSn4E3+clt4mzFekhshfEQSHCGE0JGh4Mvdnx0WadMghK9IgiOEEHrKP6n7j+bYNB0DESK8SIIjhBB6mnwRnPkLABLTsgY4WAgxWJLgCCGEnsyREJcNOSdC2mS9oxEibEhFKSGE0NvMq7WHEMJnZAZHCCGEEGFHEhwhhBBChB1JcIQQQggRdiTBEUIIIUTYkQRHCCGEEGFHEhwhhBBChB1JcIQQQggRdiTBEUIIIUTYkQRHCCGEEGFHEhwhhBBChB1JcIQQQggRdiTBEUIIIUTYkQRHCCGEEGFHEhwhhBBChB1JcIQQQggRdkx6B6AHVVUBsNvtOkcihBBCiME6+nP76M/x/ozKBKelpQWA3NxcnSMRQgghxFC1tLQQHx/f7zGKOpg0KMx4vV4qKyuJjY1FUZTjXrfb7eTm5lJWVkZcXJwOEYYOea8GT96rwZP3avDkvRoaeb8GLxjfK1VVaWlpISsrC4Oh/1U2o3IGx2AwkJOTM+BxcXFxQfOPGuzkvRo8ea8GT96rwZP3amjk/Rq8YHuvBpq5OUoWGQshhBAi7EiCI4QQQoiwIwlOL6xWKw888ABWq1XvUIKevFeDJ+/V4Ml7NXjyXg2NvF+DF+rv1ahcZCyEEEKI8CYzOEIIIYQIO5LgCCGEECLsSIIjhBBCiLAjCY4QQgghwo4kOEIIIYQIO5LgdHnwwQdRFKXHIyMjQ++wgsZnn33GRRddRFZWFoqi8Pbbb/d4XVVVHnzwQbKysoiMjGTx4sXs2rVLn2B1NtB7deONNx73WVuwYIE+wepo6dKlnHDCCcTGxpKWlsall17Kvn37ehwjn6svDeb9ks+W5s9//jMzZszorsC7cOFCPvjgg+7X5XP1pYHeq1D+TEmCc4ypU6dSVVXV/dixY4feIQWNtrY2Zs6cydNPP93r67/73e947LHHePrpp9m4cSMZGRmcffbZ3Y1NR5OB3iuAc889t8dn7f333w9ghMFh1apV3HHHHaxbt47ly5fjdrtZsmQJbW1t3cfI5+pLg3m/QD5bADk5OTz88MNs2rSJTZs2ccYZZ3DJJZd0JzHyufrSQO8VhPBnShWqqqrqAw88oM6cOVPvMEICoL711lvdf/d6vWpGRob68MMPdz/X2dmpxsfHq88++6wOEQaPr75XqqqqN9xwg3rJJZfoEk8wq62tVQF11apVqqrK52ogX32/VFU+W/1JTExUn3vuOflcDcLR90pVQ/szJTM4xzhw4ABZWVkUFhZy9dVXc/jwYb1DCgnFxcVUV1ezZMmS7uesViunnXYaa9as0TGy4LVy5UrS0tKYMGECt956K7W1tXqHpDubzQZAUlISIJ+rgXz1/TpKPls9eTweXnvtNdra2li4cKF8rvrx1ffqqFD9TI3KbuK9mT9/Pi+//DITJkygpqaG3/zmNyxatIhdu3aRnJysd3hBrbq6GoD09PQez6enp3PkyBE9Qgpq5513HldccQX5+fkUFxfz85//nDPOOIPNmzeHbEn0kVJVlbvvvpuTTz6ZadOmAfK56k9v7xfIZ+tYO3bsYOHChXR2dhITE8Nbb73FlClTupMY+Vx9qa/3CkL7MyUJTpfzzjuv+8/Tp09n4cKFjB07lpdeeom7775bx8hCh6IoPf6uqupxzwm46qqruv88bdo05s2bR35+Pu+99x6XXXaZjpHp584772T79u18/vnnx70mn6vj9fV+yWfrSxMnTmTr1q00NzfzxhtvcMMNN7Bq1aru1+Vz9aW+3qspU6aE9GdKblH1ITo6munTp3PgwAG9Qwl6R3ebHf2N+6ja2trjfksSx8vMzCQ/P3/Ufta+973v8e6777JixQpycnK6n5fPVe/6er96M5o/WxaLhXHjxjFv3jyWLl3KzJkz+eMf/yifq1709V71JpQ+U5Lg9MHhcLBnzx4yMzP1DiXoFRYWkpGRwfLly7ufczqdrFq1ikWLFukYWWhoaGigrKxs1H3WVFXlzjvv5M033+TTTz+lsLCwx+vyueppoPerN6P1s9UbVVVxOBzyuRqEo+9Vb0LqM6Xb8uYg86Mf/UhduXKlevjwYXXdunXqhRdeqMbGxqolJSV6hxYUWlpa1KKiIrWoqEgF1Mcee0wtKipSjxw5oqqqqj788MNqfHy8+uabb6o7duxQv/GNb6iZmZmq3W7XOfLA6++9amlpUX/0ox+pa9asUYuLi9UVK1aoCxcuVLOzs0fde/Xd735XjY+PV1euXKlWVVV1P9rb27uPkc/VlwZ6v+Sz9aX77rtP/eyzz9Ti4mJ1+/bt6v33368aDAZ12bJlqqrK5+pY/b1Xof6ZkgSny1VXXaVmZmaqZrNZzcrKUi+77DJ1165deocVNFasWKECxz1uuOEGVVW1Lb0PPPCAmpGRoVqtVvXUU09Vd+zYoW/QOunvvWpvb1eXLFmipqamqmazWc3Ly1NvuOEGtbS0VO+wA6639whQX3jhhe5j5HP1pYHeL/lsfemmm25S8/PzVYvFoqampqpnnnlmd3KjqvK5OlZ/71Wof6YUVVXVwM0XCSGEEEL4n6zBEUIIIUTYkQRHCCGEEGFHEhwhhBBChB1JcIQQQggRdiTBEUIIIUTYkQRHCCGEEGFHEhwhhBBChB1JcIQQQggRdiTBEUIIIUTYkQRHCCGEEGFHEhwhhBBChJ3/D6KCMzAW+ugjAAAAAElFTkSuQmCC", + "text/plain": [ + "<Figure size 640x480 with 1 Axes>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi8AAAGxCAYAAACqUFbqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAACJyklEQVR4nOzddZhc5fXA8e8dX3f3uDshioUEAoRSaIFiRUt+AVJIgWLFKikUaGgpLikUd1qCBI0hcXfbTdZtdtZG7++Pu7tks5usje6ez/PM02Tm3vseppPdM+9933MUVVVVhBBCCCFChC7QAQghhBBCdIUkL0IIIYQIKZK8CCGEECKkSPIihBBCiJAiyYsQQgghQookL0IIIYQIKZK8CCGEECKkSPIihBBCiJAiyYsQQgghQookL0IIr1i8eDGKohzz8c0333Tpejabjdtvv51Zs2aRlJSEoijcf//9PoldCBFaDIEOQAjRu7z00ksMGTKkzfPDhg3r0nUqKip49tlnGT16NOeddx7PP/+8t0IUQoQ4SV6EEF41YsQIJkyY0OPr5OTkUFVVhaIolJeXdzl5aWhoICwsrMdxCCGCj9w2EkL4VU1NDddddx0JCQlERkZy5plnsmvXrja3hZpvN3VGbm4u55xzDu+99x5jx47FYrHwwAMPAFBcXMz1119PZmYmJpOJvLw8HnjgAVwuV6trPPXUU4wePZrIyEiioqIYMmQId911l9f+u4UQ3iMzL0IIr3K73W0SA0VR0Ov1qKrKeeedx6pVq7j33ns54YQTWLlyJbNnz+7xuOvWrWP79u3cc8895OXlERERQXFxMRMnTkSn03HvvffSv39/vvvuO/70pz9x4MABXnrpJQDeeOMN5s2bx0033cQjjzyCTqdjz549bNu2rcdxCSG8T5IXIYRXTZo0qc1zer0el8vFZ599xtdff83jjz/O/PnzAZg5cyYmk4m77767R+OWlpaybds2Bg0a1PLc3LlzqaqqYuvWrWRnZwMwY8YMwsLCuPXWW7ntttsYNmwYK1euJDY2ln/84x8t586YMaNH8QghfEduGwkhvOrll19m9erVrR4//PADAF9//TUAl156aatzLrnkkh6PO2rUqFaJC8D//vc/Tj31VNLT03G5XC2P5pmeb7/9FoCJEydSXV3Nr371Kz788EPKy8t7HI8Qwndk5kUI4VVDhw495oLdiooKDAYDCQkJrZ5PTU3t8bhpaWltnispKeG///0vRqOx3XOak5TLL78cl8vFc889xwUXXIDH4+GEE07gT3/6EzNnzuxxbEII75LkRQjhNwkJCbhcLioqKlolMMXFxT2+dnuLexMTExk1ahR//vOf2z0nPT295c9XXXUVV111FXV1dSxbtoz77ruPc845h127dpGTk9Pj+IQQ3iPJixDCb0499VQefvhhXn311ZY1LwCvvfaaT8Y755xzWLJkCf379ycuLq5T50RERDB79mwcDgfnnXceW7duleRFiCAjyYsQwqu2bNnSZrcRQP/+/Zk1axYnnXQSt99+O3V1dUyYMIGVK1fyyiuvtHutTz75hLq6Omw2GwDbtm3jnXfeAeCss84iPDz8uLE8+OCDLF26lClTpjB//nwGDx5MY2MjBw4cYMmSJTz99NNkZmZy3XXXERYWxtSpU0lLS6O4uJiFCxcSExPDCSec0MN3RAjhbZK8CCG86qqrrmr3+eeee45rr72Wjz76iAULFvDwww/jcDiYOnUqS5Ysabcq7//93/9x8ODBlr+//fbbvP322wDs37+f3Nzc48aSlpbGmjVr+OMf/8jf/vY3Dh06RFRUFHl5eZx55pktszHTp09n8eLFvPXWW1RVVZGYmMi0adN4+eWXSUpK6uY7IYTwFUVVVTXQQQghhKIo3HfffdK/SAjRIdkqLYQQQoiQIsmLEEIIIUKKrHkRQgQFuYMthOgsn868LFu2jDlz5pCeno6iKHzwwQfHPf69995j5syZJCUlER0dzeTJk/nss898GaIQQgghQoxPk5e6ujpGjx7NE0880anjly1bxsyZM1myZAlr167l1FNPZc6cOaxfv96XYQohhBAihPhtt5GiKLz//vucd955XTpv+PDhXHTRRdx7772+CUwIIYQQISWo17x4PB5sNhvx8fHHPMZut2O321udU1lZSUJCQrvlwoUQQggRfFRVxWazkZ6ejk53/BtDQZ28PProo9TV1XHhhRce85iFCxfywAMP+DEqIYQQQvhKQUEBmZmZxz0maG8bvf7661x77bV8+OGHnH766cc87uiZF6vVSnZ2NgUFBURHR/c0bCGEEEL4QU1NDVlZWVRXVxMTE3PcY4Ny5uXNN9/kmmuu4e233z5u4gJgNpsxm81tno+OjpbkRQghhAgxnVnyEXRF6l5//XWuvPJKXnvtNc4+++xAhyOEEEKIIOPTmZfa2lr27NnT8vf9+/ezYcMG4uPjyc7O5s477+Tw4cO8/PLLgJa4XHHFFTz++ONMmjSJ4uJiAMLCwjqcQhJCCCFE3+DTmZc1a9YwduxYxo4dC8CCBQsYO3Zsy7bnoqIi8vPzW45/5plncLlc3HDDDaSlpbU8fvvb3/oyTCGEEEKEkF7XVbqmpoaYmBisVquseRFCCCFCRFd+fwfdmhchhBBCiOOR5EUIIYQQIUWSFyGEEEKEFElehBBCCBFSJHkRQgghREiR5EUIIYQQIUWSFyGEEEKEFElehBBCCBFSJHkRQoi+bst7sP2/gY5CiE4Lyq7SQggh/KSxBt65SvvzXUVgCg9sPEJ0gsy8CCFEX1ZbAoBdHyGJiwgZkrwIIUQfZis/BMAhZzSltsYARyNE50jyIoQQfZitvAiAcmLYUWQLcDRCdI4kL0II0Yc1VBUCcKJuB+lfzAtwNEJ0jiQvQgjRh7lqSlr+nFm+AlQ1gNEI0TmSvAghRF9W+1PyYvHUQ3V+AIMRonMkeRFCiD5st2UE77mntfzdWbQlgNEI0TmSvAghRB/2pWUWC5zzWhKYqn3rAxyREB2T5EUIIfqw8lo7ADs8WQA4CjcHMhwhOkWSFyGE6KtUFdV6GCMuqqMGAWCp3B7goITomCQvQgjRVzVU8Z+aq9htuYK0fiOpV81UeSLA4w50ZEIcl/Q2EkKIPspVU4wBqFYjGDl8JCPWvUC80cIanT7QoQlxXDLzIoQQfZStXCtQV04MkwYkoio6ymsdlNnsAY5MiOOT5EUIIfqo2koteanWxRFpNpCbEAHA9kJrIMMSokOSvAghRB9lr9L6GtUaEgA4N2Yfn5luJ++zywMZlhAdkjUvQgjRRzW3BrBbtOQlLSmRwYcPUWu1aW0CFCWQ4QlxTDLzIoQQfVVtKQCusCQAkvqNxq0qRLqtrdoGCBFsJHkRQog+apdlBO+6p2GLGw7A4Kwk9qtpADgLpU2ACF6SvAghRB+11HIGv3POoy7rZAAyYsPYq8sGoHL/ukCGJsRxSfIihBB9VHnTlujESBMAiqJQFalV2m08JG0CRPCS5EUIIfoijwdqDmHCSVKUueVpd/IwQNoEiOAmu42EEKIvaqjk9dpr8JgV9obta3k6MmcsO/dkUkouKbLjSAQpSV6EECIY+DlRcFiLMAFVRJIUG9nyfHbeYM5wPEyiw8waSVxEkJLbRkIIEWgN1fDECfDWFX4bsqapNUAFMcSEGVueH5wahaJAea1d2gSIoCXJixBCBJhafRAqdsO2D/3W0bmu4jAAVl08yhEzLOEmrU2ADg97Dhb4JRYhukqSFyGECLBVtlRcqvbjWPVTcThHdTEAdab4Nq9dErmWrearyfj6t36JRYiukuRFCCEC7O11hZQSC0BduX9mO1w2rbquw5zQ5rXY5GzCFAdR1p1+iUWIrpLkRQghAqh+6xLKtn5NqRoHQE3JQb+MqzTN8DS3BjhSYr+xAMS5yqChyi/xCNEVPk1eli1bxpw5c0hPT0dRFD744IMOz/n2228ZP348FouFfv368fTTT/syRCGECBxVxbXkTl7VP8AY3V7AfzMvOy2jeNc9ndr4EW1eG5CdToFHS2qkTYAIRj5NXurq6hg9ejRPPPFEp47fv38/Z511FtOnT2f9+vXcddddzJ8/n3fffdeXYQohRGAUrie67gANqom3XFqJflf1Yb8M/Zl5Fr9z/h8NWdPbvJYZF8YeRWsTULFvvV/iEaIrfFrnZfbs2cyePbvTxz/99NNkZ2ezaNEiAIYOHcqaNWt45JFHuOCCC3wUpRBCBIb1h/8QA3zhGY+aOAh71SoaGhr8MnZZS2sAc5vXFEWhMnIg1K2l4dBGv8QjRFcE1ZqX7777jlmzZrV67owzzmDNmjU4nc52z7Hb7dTU1LR6CCFE0HO7MGx/D4C9aWdTPPRqBtsX83biPN+P7fGgqzncpjXAkVxJWpsAU7m0CRDBJ6iSl+LiYlJSUlo9l5KSgsvlory8vN1zFi5cSExMTMsjKyvLH6EKIUSPuPd+TYSzigo1isFTf0ZyXCSgUGz1w8xLfTlv1l/LdvOVJEXo2z0kLHs8n7knsMJwou/jEaKLgip5AVoVSwJQVbXd55vdeeedWK3WlkdBgRRVEkIEv4qVLwPwuTKV04ZnkBpjAaDI2ujzsRurigCoJIrE6PB2j8kaMJzrnQv4W93ZPo9HiK4Kqt5GqampFBcXt3qutLQUg8FAQkLbWgQAZrMZs7n9aU8hhAhKHg+uok0A2AZdgNmgJy3axNPGv5NZXQkNX0JYnM+Gt5UfwgJUEMtgc/u/Bo5uE3Cs20tCBEJQzbxMnjyZpUuXtnru888/Z8KECRiNxmOcJYQQocVqd3Nq/V/4uf0BJk/X1vmlxoQzUbedEezFXnnIp+PXVmozLzX6uGPOaoebDOTGh5NKBQd2b/JpPEJ0lU+Tl9raWjZs2MCGDRsAbSv0hg0byM/PB7RbPldc8VMjsrlz53Lw4EEWLFjA9u3befHFF3nhhRe49dZbfRmmEEL41X83FmJ3QUPKOEZkxgAQE2akBG2GudrHheoc1VryUmdqf0a72fVhX/K95SYSv/uLT+MRoqt8mrysWbOGsWPHMnasVq1xwYIFjB07lnvvvReAoqKilkQGIC8vjyVLlvDNN98wZswY/vjHP/KPf/xDtkkLIXoPRz0frNkPwC/GZ7bMfCiKQrUhEYDasvxjnu4N7pbWAInHPc6Upu04iqqWNgEiuPh0zcspp5zSsuC2PYsXL27z3Mknn8y6det8GJUQQgRO2bdP82zZozxp+DnnjT291Wt15mSoB4ePbxs1twZwh7dtDXCkuLwxsBkSnYfBXgvmSJ/GJURnBdWaFyGE6O1c698gXqklNyWuTYE4Z3iq9oeaQp/GsN0yhnfcJ1EfP/y4xw3IzaVEjdViK9rq05iE6ApJXoQQwk9cxdtIq9+JU9WTNuVXbV5Xo9IBMNQVt3nNmz41zeJW51was6Yd97jMuDD2kANAubQJEEFEkhchhPCTQ8u02i6rlLFMHz2kzevGuAwaVSONLo9P4yir1VoDdLT9WVEUKiIGAFBfIG0CRPCQ5EUIIYBau4u7/rmYp5b86JsBPB6id2ntAErzfobJ0PbHr6ffqQyxL+aeiPt8EwOAx43OWoAZR7t9jY7mSNQW7RqlTYAIIkFVpE4IIQJl/eoV/KXitxwsS2ZZ9uecNCLPq9e37V5GvKuEGjWMEade1O4xqTHh+LpFgFpbwrv263GZdRRFdlyR3JQ7iWf2nY3dNJb5PotKiK6RmRchhACcB34AIEdXSsl7d1LT2H4z2O4qWq7dMvrOPI2h2SntHpPW1CKgzGbH5fbNraP6Sm0xcAXRJEaFdXh81oDhLHRdyis1Y30SjxDdIcmLEEIAuoqfapn80vMJb7z1mlev/3jt6TzlmoNz1KXHPCYh0swDxn/znvEeqnet9Or4zWrKteSlkljCTO03ZTxSc5uAMpud8qa1Ml715R/h/bng9m6yKHo3SV6EEAKItu0DoMaYhF01smfnZlbsbr+bfVftLLbxcXEMj6mXMOXUYzc61OsUhhsKGaPbR23xHq+MfbSG5tYAhvhOHR9uMjA8XmWSbhuHtng5oSrfDcsfgY2vw/b/evfaoleT5EUI0ee5PSrv2CfyuutU6s59nmeGLeYt96n8/t1N1NpdPb7+O2u1tSWnDUkmPsJ03GNrzVrhOHtFx+tRusNh1bZhNxg7l7wAXGP5mjdMfyJy/TNejcW++t8tfy7Jlyq+ovMkeRFC9HmHqup5zXky93E9ycNP5przziQzLozD1Q089MmOHl3bWVvB2DW/5xTden45LrPD4xvDtEJ1LqtvCtV5bFp1XXvY8VsDHEmXOgKACG+2CXA78ax/FYA7nNfyT8c53ru26PUkeRFC9Hm7S2oB6J8UiV6nEGE28NAFoxir7OaktfP5YWf3y/Xv+fo/nKUu4y7TW5w8JLnD4z2RaQAYan2TvCh1ZQCoHbQGOFJsrrZYN9l+EFxeWvey6zPCHJWUqTG84z6JD9YXUueFWS7RN0jyIoTo80rztzNUOciQRGPLc1PzYngx8klm6tey/+27qHd07xerYevbAORnnoNR3/GPXH1sBgDmhtJujdeRreYxvO3quDXAkfr1G0i1GoEeD86Sns1ENatZ9QIA73tOIiU2ilq7i29WLPdeciR6NUlehBB9XsauV/nEfCdX1C3+6Um9EfN5iwC40PkRr73zTpevW314NwMbN+NRFXJP+XWnzrEkZAEQ7fBN8vKJaRa3uebiyJra6XMy48PZQzYAZXu90zh3uXs4ezzplAy4kCsm5/BP4z84e/l5snBXdIokL0KIPi/Kpu3sMaQOa/V8+PCzKM47H52icuqO+1mzp2u3cvZ+9RIAm0yjGDBgcKfOiU7OoVE1YlMt4PF+rZfOtgY4kqIolDW1CajL73mbgDq7i98fns7pjr8xY9oUfjE+k4NofZ1qVz3f4+uL3k+SFyFEn6aqKmmOgwDE5oxs83rqhY9hNSTQX1fE7jfvpsHh7uyFSd7/IQC1gy7odDyJKZkMsS9mpvNRVEXp9Hmd4nGjr+l8a4Aj2RO0xE5fuq3HYfxvUyG1dhe5CRFM7pdAQqSZ0oEX4VYVIou+07ZQC3EckrwIIfq04tIy0pQKAFL6j2l7QFgchnMXAXCh433eeP+9Tl1336YVZHkO0aCaGD7jsk7HkxxjARQcLg9V9d4t3KbWFPK+Yy6bzdeQFGns+IQjKP1O5i7nNbwUdnnPgijcQOGyf2PGwcUTs1GaErSzpp3AN54xADh+eKFnY4heT5IXIUSfVrRXuw1SrsRjioxr95iIUedSlHMuekXFuOUN1uVXdXjdlVv2sdOTyZaoqcTFJ3Q6HrNBT2KkVgumyMs9jmortAJ1FcSQEGXp0rlZ/YfxmnsGn1am9SgG61eLuMX2CHcbX+OCI7aOn5gXz1eRWgE/dcNr4Gzs0Tiid5PkRQjRp9UWbAGgzHL8RoxpFz3OG2m3c4/zKm57eyONzmPfPnK4PPx9XzpnOB6i/szHuxzT/xk/5kPTPSjr/9Plc4/HVn4YgEolFrOh49YARxqc4oU2AQ1VhO/9GICi3PNarbtRFIV+k8/jsJqA2WlF3fZh98YQfYIkL0KIvq1M2/rbEDvg+MeFx3Pm5beRFGVhb1kdj3957HUZX+8spbLOQVKUhalDs7ocUrbRymjdPijf1eVzj6e+Spt5qe1ka4AjRZgNTI2t4iL91xSt/7xb4zvWv4VRdbDdk8XkaTPbvH7BhBze8ZwGQM2at7o1hugbJHkRQvRpn3hOZKHzVzT0O7PDY2PDTfzpvBFEUo95xcNsPljS7nHrV35GGI2cPzYDQydquxzNFaFV2VVsRV0+93icVu169abO38Y60sVhP/KQ8TlMW7uXWNR9r+2++tw8k2kD2xbJiw03UTn4Ym5y3MjCyDu6NYboGyR5EUL0WaqqsqQqk2fcc4gdPqNT55wxLIWPY//GzYZ32fTaH7C7Wt8+Kq+sYP7h21hj/j8uHti9rc66GK1Qnam+uFvnH4vHptWOcVg6X123lWStTUB4dTcK1RVuIK5mO3bVQMSES9Dp2t9JNWfaOP7rmcIHW8qxNkinadE+SV6EEH1Wea0Da4MTRdFaA3SKohA/6zYALmx8h7c++rjVy1u+eJVwxU61IYG8AcPau0KHzPHaraZIu3cL1enqm1oDRHQveYnJGwNASuN+cHet4nD1yhcBWOo5gTmT225JbzY+J45BKZE0Oj18sK6gy+OIvkGSFyFEn3Vw/y7O1P3I5NhqLMbOL2CNGvdLitJnYVTcjN9wD1vzm5ICVSVql7aVujzvPOhmnZaIJK2abZy7HFS1W9doz2bzON5ynUxjQveSqtwBw6hTzZhw4izrWi2W4sP7AdiVcR4p0cfe6aQoCpdMzOYi/dfM/HI26ua3uxWr6N0keRFC9FmOXV/ytGkR96jPdfnctEv+Ra0ummG6g6x77T4cLg879+xmjHMDAP1OvarbccWlasmLCSfUV3b7Okf7n3EWt7uux5k5uVvnZ8ZHtLQJKN3T+TYBjU43v6q5iZPtjzHm5J91ePzPx2WSpreS7imWiruiXZK8CCH6LE+ptnajPqaDnUbtiUzGc+bDAFzc8AZvf/wpB755Bb2iss8ynKiMQd2OKzU+hkNqIvs8qdTZvJe8lNu63hrgSIqiUBreH4DaLrQJ+GxrMVX1ThzRuZw8OLXD42PCjNiGXIxL1RFVugZKt3crXtF7SfIihOizIqx7AdAlD+3W+dEnXExR2gyMipvstQvJPqQ1FXSP+GWP4oo0G5jNk5zmeIwiXc+KwrVwuzDYtNYA3U1eAOzx2nulK93auRPqyvnku00AXDghC/0xFuoe7Zxp4/jCM14b83uZfRGtSfIihOizUuzaOoyo7GMvID0uRSH1kidZEXkmjzh/wTBlPy709DulhyX0gdQYbV1IsdU7lWbd1kN85Po/NpmvIynC1O3rOAfO5hLHXSyK+G2njq/+ahH/LL6UGw0fcOEJna95MyYrluUx52h/2fQGOOq7E67opSR5EUL0SdbqKtLRFtqmDRjT7esoUakM+s2/2W8ewjT7IpYMuB99ZGKP42tOXrzVIsBWoXXELieG+C42ZTxSTr9BrPKM4MfSTvz6cLvQb3odo+LGkjqEjNiwTo+jKApDpv6MfE8SZlct6tbO9ZQSfYMkL0KIPqmwqadRJTFExiX36FrJ0Raevmw8J44dx/Sfz/VGeMxSV/Gh6R76b3jIK9drbg1QpcR2q3Bes660CXDu/IwoZznlajSDTu76rbTzxmbyLlr9ndqVcutI/MQQ6ACEECIQrAc3A1BszqXrxfLbmjIgkSkDej7j0izZ7Ga0bh+7rN65ZkOVVvCuO60BjhRhNvCzmL0Mrv2RkjX1JJ5y7KSkYvkLpAKf6U/mwmGZxzzuWKIsRuqH/4r3thwiP+xCbu5+2KKXkZkXIUSf9B2jmeu4mQ1Zvw50KO0yxGlVdiMavVOozmXVkpcGc/daAxzpTMs2/s/wX3S7Pz32QbYSkoq+BqBxxCUYuznbc+7UsSxwzuPJfclU1jm6dQ3R+0jyIoTokzZUW/jUMxFlUNsGgcGguVBdjKvMK9dTa7U+TM7utgY48lopwwGwVB67TUD1d/9Gj4e1noHMPPmUbo81MjOGkRkxONwe3llb0O3riN5FkhchRJ+0p7QWgAHJnWwL4GcxKVryEqnWgaOux9fT1ZcDoEb2PHmJyhkDQErDXvC037/JueFNANYlnEN2QniPxrvkxGwGKIdIWn4Pno3SbVpI8iKE6IPqamuYY3uT03TrGJAYEehw2pWSmEytqu04clQd6vH1NpnH8abrFOwJw3t8rZyBo7CrBsJpwFl5sM3rLreHSxz3cJ/z12RNu7TH4507Op3Zpo383LmEumX/7PH1ROiT5EUI0ecU7tnIHcY3eNT0LHE92DbsS3ERJkqalhJXF+f3+HofGWbxe9dvcGed2ONrZSZGsw9tAW7p7rVtXv9qRym7a038zzKH00b37/F4EWYDjhEX41D1RFVsgqLOV/cVvZMkL0KIPqf6gLbTqMiUE+BIjk1RFIoNGezzpFJV2/PbRmXNrQEij90UsbMURaE0TEtKrAePSiRUlTdWa2tTLhificngnV8zP5s6hs88JwDQ8J1sm+7rJHkRQvQ5rhKtV44tqhs9jfzo8eQ/cprjMXZGTuzZhdwuzLYCwmjsUWuAIzXEDwHAU7ar1fPVy5/lxn1zmaVbzcVdqKjbkWHp0fwQrzV11G99B+w2r11bhB5JXoQQfU6Ydbf2h6TBgQ2kA2ktLQJ6VmXXWZXPfz03sM48l8QIozdCo3bIL5nS+A8eDl/Q6vnGHxczTreHaQm19Evy7mLo0dPOYa8nDZO7Hs+md7x6bRFa/JK8PPnkk+Tl5WGxWBg/fjzLly8/7vGvvvoqo0ePJjw8nLS0NK666ioqKir8EaoQog9IatB6GkVkjghwJMeXGt2cvBy/km1Hasq06rrlxBAX4Z2Zl365uRSSyI7in2ZA3EWbSa3dhkPVkzjV+/VzzhmdwXu60wGoW/UsqKrXxxChwefJy5tvvsnNN9/M3Xffzfr165k+fTqzZ88mP7/9BWgrVqzgiiuu4JprrmHr1q28/fbbrF69mmuvvdbXoQoh+oDGehtpHq3mScqA0QGO5vhGsJuPTHdzwfbONUE8ltqmvkbVujh0nezq3JHmNgGlNjsVTW0CCr9+FoBvlQmcNn6YV8Y5UphJjzrqVxxSE1mhjga30+tjiNDg8+Tlscce45prruHaa69l6NChLFq0iKysLJ566ql2j//+++/Jzc1l/vz55OXlMW3aNK6//nrWrFnj61CFEH1A4d7N6BSVaiJJTO56yXp/io8MY5RuP+mNu3t0ncbqIgBsPWwNcKQIs4Fro37gKePfKf3xHXDZidvzPgAlAy7CYtR7bawjnTd1FNPti7ix9FxK6tuvMSN6P58mLw6Hg7Vr1zJr1qxWz8+aNYtVq1a1e86UKVM4dOgQS5YsQVVVSkpKeOeddzj77LPbPd5ut1NTU9PqIYQQx7LVlc5Z9r/wj9g7UHTBvewvOkXbDRXjqe7RLENzawC7F1oDHGlS2CFm61fj2r8S6/r3ifTYOKwmMHHGBV4d50iDUqIYn5OA26Py1mqpuNtX+fRfbnl5OW63m5SUlFbPp6SkUFxc3O45U6ZM4dVXX+Wiiy7CZDKRmppKbGws//xn+4WJFi5cSExMTMsjK8t7q9uFEL3P7jI729Rc6rNODnQoHUpKycSh6tGh4q4p6vZ11FqtP5IzrOfVdY/kSW5qE1CxnZqVLwKwKnIWg9JivTrO0S6dlI0ODwe+/wD3rqU+HUsEJ7987VCU1vdYVVVt81yzbdu2MX/+fO69917Wrl3Lp59+yv79+5k7t/0283feeSdWq7XlUVAgmbgQ4tj2lAV3W4AjJUZZKCUOAGtJ20q2naWv1/ojqRHJXomrWWSOtmYouWE3z9SfzLfuUYSf6PtGl7NHpHFV2DIedf6J+iX3yMLdPsjgy4snJiai1+vbzLKUlpa2mY1ptnDhQqZOncptt90GwKhRo4iIiGD69On86U9/Ii0trdXxZrMZszk4K2QKIYLPtINPkaq3MCRmYKBD6ZBBr6NCl0imWk5NaT5NpVW6bIN5PBtdOiITvbuINmvQWNxLFWKw8VlNDh9a7uHHST2sSdMJFqMey+jzsa9/iajqHXB4LWRO8Pm4Inj4dObFZDIxfvx4li5tPa23dOlSpkyZ0u459fX16I66D63Xawu/VMmuhRA94LTXc5H9He41vkL/hND40mMzabd6Giq6P6v8gf4M7nD9BtULrQGOlJ4Yz0HSARiqy+e8MRmEmXyzUPdoP58ykv95tP+euh/+7ZcxRfDw+W2jBQsW8Pzzz/Piiy+yfft2brnlFvLz81tuA915551cccUVLcfPmTOH9957j6eeeop9+/axcuVK5s+fz8SJE0lPT/d1uEKIXqxo72b0iopVjSA1LTTWx9WEZbPXk0a1o/s/rsuatjInermPk06nEG5wA3CKbiMXT/TfezogOZKCxJMAsB7Y4LdxRXDw6W0jgIsuuoiKigoefPBBioqKGDFiBEuWLCEnR1tFX1RU1Krmy5VXXonNZuOJJ57gd7/7HbGxsZx22mk89NBDvg5VCNHLVR3YRDZw2JhDTJDvNGr2Y78bmFd8NnOj+zO5OxdwO7HYDhJGpNdaAxzph7TL+NmhR0iMNDM8Pcbr1z+eYUNHwioIq+t5120RWnyevADMmzePefPmtfva4sWL2zx30003cdNNN/k4KiFEX2Mv0noaWSN73unYX1KbWgSU1DR263x7+X6WMJ86sxlX1GFvhgbAoNk3cse7Gfz8rHO8fu2OJGYNAiDOUwnOBjCG+T0GERih8dVDCCG8wFylNRF0JwZ3T6MjNfc3KupmfyNrS2uAWKIt3v++OjQjjr/Ov5oTB3h3J1NnpKdlUKtq74+rsv2q7aJ38svMixBCBIP4eq2nUVj68ABH0nmZpno+Mt1NclEtqLvhGGUmjqWu8qfWADldPDfYJUdbuMz9e0rckSzWpRIaq5iEN8jMixCiT3A77aS6tUJvyf2Cu6fRkRITExml20+qWoZaV97l8xurtFIVdUbvtQYIFjqdQnHcOPaqGRRYpc9RXyLJixCiTzhc42as/Rl+4foT6Vl5gQ6n01LioilTtYWwtWVdvzXirtGSl0ZzolfjChbZ8eEAFFTVBzgS4U+SvAghgoezAT75PRz8zuuX3l1qo5ZwahNHo9eHzo8+i1FPmaLNmlSXdqPKbp1WXdcd3juTl7FhZdykf4/4bS8HOhThR6HzL1gI0eupPzwLPzwNL53p9ZLvu0u1tgADU6K8el1/sBq1xbD15V0vVGeo1/oaqRHtVzUPdUOMJfzO+A6DCz8MdCjCjyR5EUIEjUP7tv70l8L1Xr12vy3/4AHDS0wOL/Tqdf2hwaIlL86qrtczWWuayOuuU3Elebc1QLCISOkHQKyj+40rReiR5EUIETSclT/NLByu9+6Pp6GVX/Jrw1IGhNd59br+4Ixo6unWjc7S7+tncafrOpTME7wcVXBIyNR6VEWrNmisCXA0wl8keRFCBI3o2r0A/NJ+L+/mR3jtuqrLTppLq3eSFEI7jZp5YnLY60mj3NP1TtgtrQF8UF03GGSkJlOpau9LQ+m+AEcj/EWSFyFEcLDXkugqAWC3msEHGw57rRlr+cGtGBQPNjWMjOwBXrmmP9kG/owZjkd5Kfzqrp3odhJmO0g4jSR5ua9RsIi2GClStPU8FYd3Bzga4S9SpE4IERTsDjsvuM8jhXJsuiiyyzdxaHkBWSdd3uNrl+3bRBJQYMhmmNE/XY+9KTVaqyJbbO1ai4D6kj18qvstNeYw9FG9t/9PlSkNHHupLd4b6FCEn0jyIoQICgfqTDzsvJAoi4H/yynm1kN/oPHbSJhyIRh6NmvQWLgNgKrwft4I1e+62yKgpvww4UAFseSZe++P+4aIDHCAu/JAoEMRfiK3jYQQQWF3qQ2AgcmRjJw0kyI1Hou7Fveuz3t8bWPlTgCcCYN6fK1ASImx8LrxT3ypXktDU3PJzqir0HZW1ejjfBVaUNidcwkz7H/j/YTfBDoU4SeSvAghgkLVvnUkU8XApEhOGZLCZ8pU7fkfXuvxtfX1Wll9c1pobheOMhtI0tWQpNRQVXSg0+c5qrXdSXXGBB9FFhxi0/qxV81gX7U70KEIP5HkRQgRFM7Yejs/Wm7gJNN2zAY9NQPOAyAm/4sebYFVVZVL3PcxpvEZYoae6qVo/UtRFKoNWoXcuvLOtwhw2bQCdXZz705esuLDACiolBYBfYUkL0KIwHM2kODUZgnickYCMGHSyezxpGNUHTi3/bfbl66oc1Bd78SqRNEvLXRL5NeatUJ1jsrDnT5HqdV2b7nCk3wSU7DIjgtjnv4Drq9+DLW+KtDhCD+Q5EUIEXDO0l3o8VCtRpCTozVNPLFfIl8aTwLA2oNbR7tLtLYA2fHhWEJwp1EzZ3gqAJ6azicvhoYKAJTI3tkaoFl6XDi/NnzOL3TfUHVoR6DDEX4gyYsQIuAqDmwBYB+ZpMdqtwD0OgXX0PO1P1fsBGfXtgk3069+lsXGh/hV+GrvBBsgarRWZddQV9zpc340TeQ116k4e2lrgGZGvY4SnZbcVRdKrZe+QJIXIUTA1R7SkpcySy6KorQ8f9KkSfzc/gBTGh+n1tO9rb7hxT9yin4jA8NCu3S8ITYTgPCGkk6f865uFne5rkOfOd5XYQWNGks6APVSZbdPkORFCBF4pdpUf0PswFZPj8iIxpo4hgYXfL618zMOR4qu1X6ZmVNDe/YhLDGXvZ40Cuj8LaBym9YaIKmXtgY4kj0yCwC18mCAIxH+IMmLECLgIm1aZVRDypBWzyuKws9GZwDw4foCcHRxN4nbRZpLqywblzuq54EGUFTOaGY4HuUW9ZZOHa+67ITXHiCCBhJ7aWuAVuKyATDZCjo4UPQGkrwIIQLuP4bzedZ1NjG5Y9u8du6YdC7Rf8nf8i+mbtk/u3RdW+EujLioU83k9AvNAnXNUpuq7JbX2nG6PR0eX1u0m6WGW1hpnt8nZl4sSVr15KjGwgBHIvxBkhchREC5PSrP1pzIX1yXkpPTtnx/XmIEaXERJCvVODa81aVrl+7bAEC+LpNIi8kb4QZMfLgJk16HqkJp0+2g47GVazNOlUpsSO+y6qyYdK3hZoK7FDwdJ3citEnyIoQIqILKehwuDxajjoy4sHaPiRv/C+yqgbjaPVCytdPXrj+sHVseFpo9jY6k0yk8anme1ea5NG54p8Pj6yq1ujnWXt4aoFlq1gBOtz/MGPuz2D3e6UYugpckL0KIgCre+QMTle2MStC2R7dn1vjBfOMZA4D1x87XfKmy1VOjhmOPC+1bRs3ijE6SlBoaKzpe12Gv1hY41/fy1gDNEqLCKDTm0KCaOVzVtQaWIvRI8iKECKj4jU/zlvmPXGb8+pjHJEdb2Jl0JgDKlndB7dw36xeMv2KU/TnKR17jlVgDzR6m7TTyWDsuVOexaVuq7ZbQrSrcFYqikBUXDkCBJC+9niQvQoiAirBqO410R+00OlrGiedRq1qIthehFvzQqWvvKa0FFPqn9o5bJ+5IrVCdzlbU4bFKndbXyNPLWwMc6SzLJhYankO/5e1AhyJ8TJIXIUTgeNwk2bW6HDFZI4976MzRuSxVJwJQ9X3Ht47q7C4OV2vfwAckRfYw0OCgj9W2jVs6UajO2KB10laiendrgCON0h/kV4aviSpcGehQhI91r2SlEEJ4gafyACacNKgmMvMGH/fYaIuR/Vk/54WDESjKqVzdwbXL1rzP16a7Wa4/kbiIs70XdABZ4rVCbFGO0g6P/cF0IutcESQmDvV1WEFDF58DhWCpOxToUISPycyLEKI1VYXC9eD0/bqBigObANhPOlkJHc+ODJs8mz+6Lue5PdF4OthRUlewiTxdCbmWOq/EGgyikrVCbHGeyg63A7+tzOIu17UYssb5I7SgEJHSH4BYu9R66e0keRFCtLb6eXj2FNQv/+jzoWryNwNQbMrBoO/4x9Epg5OJMhsosjay+kDl8Q8u2wlAY2zv2GkEkJCazR5POqs9g/HYa497bLnNAUBSpMUfoQWFuAytvUSipwzczgBHI3xJkhchxE/cLlhyKwDK9//y/XAlWk+jupgBnTreYtQze3gyU3RbUP5383HbBUTZ9gBgSD3+QuBQkhwbyUznI1ziuJsK17Gr5nqcdiJqDxBJPYlRoV2cryvSM3JpVI3oUakpORDocIQPSfIihGjh2fpB6ycaqnw63scR53G382psWTM6fc7PxmbykOE5JlZ+hGvHJ+0f5HGT6sgHICb7+AuBQ4lRryOpqU9RSU3jMY+zHd7Bl6YFLDPfTEJE728N0CzMbKBISQagvGBXgKMRviTJixCixbeeUTzkvLjl7437f/TpeN/YMnjVfTpx/Tq/LmNS/0S+MEwHoPL7V9s9xl62r2UhcFa/3jPzAj/1OCqqPvaaJFuFVgemUonDZOhbP+arTKkA2MryAxyJ8KW+9akWQhzXE9+V85T7XN51a8lB2Y7lPhtLVVX2lNgAGJjS+a3Mep1C45DzAYgv/Lbd2aHmnkYHlAySosN7HmwQudL9HmvMc0ld+8gxj6lvag1g6yOtAY70fvZdDG18ke+iZgU6FOFDkrwIIQBYfaCStQerMOl1bEs6iz84r+Rb08k+G69s/ybOcn/JCH0+OQkRXTp3yuTpbPdkYcCFfdMHbV4vsjrY5MnjUNhgFKX9lgOhKtpiIFGpQbEde0eNo1pLXupNfaM1wJHikrNowEJB5bHXQ4nQJ8mLEALKdhL/+lmcqfuRC8ZnkDFuNq+4Z/FVeazPhrRtXsLfjM9yW9h/MXZip9GRRmXGsNxyCgA1q19v8/oK/Qmc6/gzXw642xuhBhUlJh0AU33xMY9pbg3gsPSd6rrNMuO1mbZ8SV56NSlSJ4Sg+su/09++nZ/rIxg4/TZqGl0ArMuvQlVVn8xeuIq3A1Ab3b/L5yqKgn7kL2DtKySU/wg1hRCd3vL6nlLtdtSA5N5RWfdIpvhMACLsxy5Up9SVAeDuQ60BmvUPq2Oh4TnSCu3AMRZ0i5Dnl5mXJ598kry8PCwWC+PHj2f58uPfR7fb7dx9993k5ORgNpvp378/L774oj9CFaLvqS0lYue7AGzKvoJ+SZEMS4tmgKGUM+2fUbjxC58Ma2nqaaQmdW9B7SmTJrDGM4h8NQVr0d6fXlBV9pdUA70zeYlIbCpU5yo75jGmRu01XXTfaQ3QLD0+il8ZvuYU9yrcdpl96a18PvPy5ptvcvPNN/Pkk08ydepUnnnmGWbPns22bdvIzs5u95wLL7yQkpISXnjhBQYMGEBpaSkul8vXoQoRPJwNsPdrGDADDL7d6mpb/iRRqoP1ngHMPONcAEwGHfNivuP8ujfZv6Ycxsz07qCqSmLDfgAiM4d36xL9kyK5JOEBVhV5+GNlFpc3Pe+s2M+H1l+yw5RNQvIqLwUcPOJTcwEIpxG10YpiiWlzzHemyay1RpOcNMzP0QVecnIatWoYkUoD5Yd3k9JvdKBDEj7g85mXxx57jGuuuYZrr72WoUOHsmjRIrKysnjqqafaPf7TTz/l22+/ZcmSJZx++unk5uYyceJEpkyZ4utQhQgati8fhTd+RcPrV/p2IEc9+jUvAPBNwkWMyf5pd4o7/QQAIsrWeX1Y1VZEhFqHS9WR1q97yQvAaeOGAAofbvhp8WrZvg2YFDcmxUN6bJgXog0uKYkJWFVtXUddefs9fN5QtdYAxswxfowsOOj1Okr02oxT5aE9AY5G+IpPkxeHw8HatWuZNav1lrVZs2axalX734g++ugjJkyYwMMPP0xGRgaDBg3i1ltvpaGh/ZoGdrudmpqaVg8hQp26RrtNGrZ3Ce6dn/tsnPrVLxPuriHfk8TYWZe3ei1h6FQAku35UN9BKf4uqj6otQXIV1PITYnv9nXmjE5HUWDTwVKK9mrXtOVvAaDEktvrdhoBhJn0rFOGsdw9gnJb+z8Xy2vtAC0F7fqaanMaAPWl+wIcifAVnyYv5eXluN1uUlJa33dNSUmhuLj9lfL79u1jxYoVbNmyhffff59FixbxzjvvcMMNN7R7/MKFC4mJiWl5ZGVlef2/Qwi/cjtxu3+6TVr//nzooI9Nt3jcOJY/AcD/Is7n5CGprV4eObA/+zzac/X7v/fq0FUHtQSj0JiN2aDv9nVSoi1ckVHCGvP/YXnnUlBV1FJtIXBd9ECvxBqMHoq9j8udd5Gvz2nzmtvRSEz9AaKoJymqbyYvjRHa7wFP5YHABiJ8xi8Ldo/+9nO83QsejwdFUXj11VeZOHEiZ511Fo899hiLFy9ud/blzjvvxGq1tjwKCgp88t8ghL9UNaqMa/gX59kf5JCaSFRjEdYlD3h9nEaXhz85LuIb92iyZ1zX5t9kUpSZXcahAJRtW+HVsX+IOI1LHXeyIuXSHl9r1PjJmHAS13AQijYSXqPdKtAl967KukdqrrJbbG3bIsBasJUvTbfytXkB8RF9p69RK7HaekqjTars9lY+TV4SExPR6/VtZllKS0vbzMY0S0tLIyMjg5iYnxahDR06FFVVOXSo7f1ds9lMdHR0q4cQoWzNwSpUdNQkjOY/iTcD4NzyPqqXZ1/eXnuYd+rHcU/k/Zw5tv3tyjWJYwBQDnm3TcCWagMrPSPR55zY42udPmYAX6njAaj8/hWSGw8CENWLehodLTW6uUVA2900NeU/tQbQ63rfbbPOMCf1A0BplGUEvZVPkxeTycT48eNZunRpq+eXLl16zAW4U6dOpbCwkNran35Q79q1C51OR2Zmpi/DFSIorDmgrS+ZmBfPJZdcw52euZxat5A3Nnpv3YnL7eHZ5dp6gOum98NwjCJxYf0mA5BYsxU8Hq+Nv7tU+/c9MDmqx9eKCTNyIP0sAOI3PY8FO3bVQEbe0B5fO1hNc65kjXkuMzcvaPNaY5X2ZbHW0P21RKEubMjpDGt8kWvUPwQ6FOEjPr9ttGDBAp5//nlefPFFtm/fzi233EJ+fj5z584FtNs+V1xxRcvxl1xyCQkJCVx11VVs27aNZcuWcdttt3H11VcTFtb7dg4I0YrbyWVrf8nfjf9iUoaJ7IRw+s+8Hhvh/OXj7e3eJuiOgv/MY471DbLCHFw44djrxPKGncCVjtuZ6XkCD176Fl9fyRnFz3KubqXX6rD0m3Reyw6cUjWWr9TxZCX23lnYqMgoEpUaIhrbrh10WPtua4BmmUnx1GOhvNZOg8Md6HCED/g8ebnoootYtGgRDz74IGPGjGHZsmUsWbKEnBxtoVlRURH5+T/dl4yMjGTp0qVUV1czYcIELr30UubMmcM//vEPX4cqRMA15q8jy13AKbqNjBugzTReNTWPMVmx2OxOlrzyKGpFz3ZQqBX7yNn/Brcb3+S6MRbCTMdeMDskPZYfDeM5bLe0zJb0lPXgRq5R3+NW41v0T/JO8nLK8EyWMgmAL9xjeTz+nl59yyQ8UUs4Y5xtC9V5bFrlXWdYol9jCiYx4UaiLVoZs4IqKVTXG/mlPcC8efOYN29eu68tXry4zXNDhgxpc6tJiL6gZPNX5ACbdEM5qalZoV6n8PAvRvHVE/O4uvwjSt9cQfL/LYFubgMu/PRRMlD5Vh3LnNNnHPdYg17H6MxYvttXwbr8Kgan9vw2T8X+TcQAhww5ZB8nceoKi1FPae65cPArztL/yA/JvXuWNi4lF4BY1Qoue6tChvp6LXnx9MHWAEdaEP4x/d1rqd1mh5TzAx2O8DJpzChEEHEfWAlARcKEVrt/BqVEETbxSuyqkeTSVdSufrV7A9RXkrjnbQD2D7qauE7sRpmW7uF2wxsMWvm77o15FEfxNgBqIvO8cr1mI6fM5mHnRVzguJ/+KbFevXawSUpOw64aAbBXHW71mqmxHAB9VN9rDXCkEbqDTNdvwVm0JdChCB+Q5EWIYOHxkFy9AQBT/2ltXv7V7FN5LexX2l8+uxPqyrs8RPGX/8Ks2tniyeX02Rd06pwRmQnMM3zEeOvnXilWZ6zUtjK7Ewb3+FpHmjwgmbfCLmSvmsGglN7X0+hI0eFGitEW5FYVH2j12grjFF51zUBN7r0LljvDGdW0lqvqYGADET4hyYsQQcJVvJVIj4061Uy/kW1345kMOsb96l52eLKIdNdQ/NYtXRvA2Uj4Bq0VwPrMy8iMj+jUaSMH5rHXo1Uste3pea+g+HptzU5YevfbArTHoNfxyC9HcfXUPGYM7d2zDoqiUK3X1rTYSlvXMnlDncXdrmsw9cHWAEfSxeUCYKltv4WCCG2SvAgRJEq2fAPARmUwg9Pj2j1mdE4S34+4D4+qkHrwI+q3fdbp65d/9wrR7ioOqwmccPbVnT4vPsLEbpP2Lb5iRw+L1TVUEefRZm+S+3m/Dsspg5O5d84wjMfY+t2b5Ic1tQhwWVo9X9bcGqCPVtdtFpas3ZaMsRd2cKQIRb3/X7gQIWJvtZttnhwKY8cfd6fMReedz3vGswFo+OBmcHeu4/p/Difzrnsa38RfxJCMrm2jtSWNA0A5tLpL5x2tpmArAEVqPHkZaT26Vl/3dfaNXO68i42WE1qeczTWk9BwgGjq+mxfo2ZxGVp7iGR3CaoXaxSJ4CDJixBB4jX7dM5yLKRkVPt9vJqFmfRk/eIvfOMezXW23/D9QWuH1y61NfLkVhO/c85jwJxbuxxbeH+tWF2ybSt4ul83Y6dxCNPsi7jPfDsRZr9sduy1UtppEWAt2MKX5ttYar6NmDBjoEILCslZA/CoCuGKncoymX3pbSR5ESIIqKrKmoNNlXX7dTwrcuKQHD4f9y/WqYO4491NNDqPn1AsXnkAh8vDmKxYJuZ1vfJq/2HjsalhhKkNuHqwe2N3aT2H1GQcaeO7fQ2hSWtKXkqrf6q/U9vUGqBaF4euF9e56QyzJZxyJY4KNYqSYln30ttI8iJEEDhYkI+tthaTQceozJiOTwDumD2E1GgLByrqefF/3xzz9lHdgdUM+P4OBiqHmHty/2M2RT2egamxbGEAVWokhwu6XyRvd6lNu56XKuv2ZQPUg6w1X8/9B35qbtlQqVXX7cutAY60IHUx4+3PsFs9dhVpEZokeREiCHg+v49N5mu5LX45ZkPnCrdFW4z86bwRXKH/jKs3XETh539v97iiJX/jfL7m9oiPmTWse7tw9DqFxZkPMNb+DMvUsd26BsDUnQuZr3+P4bFSsr2n4hKSSVBsxHsqW/pOOWu0dgENJkleAFITYgEoqJQqu72NJC9CBIGo0h8xKy7i0trv7nwspw9LYWhmEhbFSfwPf8NRtr/V647yA+SWatWqPZNu7NGthCG5WYDCuvzq7l3AXsvptf9lgfEd8pI6t01bHFtCahZuVcGAG5etBAC1trk1QN+urtssO17rd5UvyUuvI8mLEIFmKybJcRiPqpA84pQunz7rsttYwzAs2Cl6bR6oastr+z9+FAMeflRGcsopx28F0JFxOdr27bUHq1qN0Vm1hVpl3TI1hrxsmcbvqcSoCMqIBaC6qVCdvl7rdaRGJAcoquAyml28bFzI7H1/DnQowsskeREiwKw7vgVgu5rN6AHZXT4/IcpC9emPYFeN5FStonjFKwB46qvI2v8WAOUjf9Pp21HHMiYrljsNr/J63TVYN/2vy+eX79sEwEFdFtGWvr0Txht0OoUKnVaorqapUJ25qTWAro+3BmiWGqFwkn4zAxo2BToU4WWSvAgRYJXbteRlT9iobm9vnTF1CkvitIWbYV/dg7u2gj2fPEE4jewmi+mzL+5xnDFhRnLDGslQKqjY3vVidQ1NMy/VEd7tadSX2Uza7aGGigIAlhmn8h/XDJSUYYEMK2gkZGm1XlI8pTidzgBHI7xJkhchAiys6AcAGtNO7PY1FEVh0hUPskvNIka1sv8/N5Cw9SUAdvW7kqiwjhswdkZtslasTlfY9WJ1+opdADjiBnklFgGNFm2GxVWtbZF+zTOLe1zXYMnwfvXiUJSQmodT1WNS3JQc3t/xCSJkSPIiRCA1VJHcsBeAuGEn9+hSafEx7J/8FxpUE0sPm/i3/VS2qzmcMOc6b0QKQER/redSqm1rpyv7Nouu1f47TWkyK+AtNXFDWeYeyWG0NS5lNq01QGIfbw3QTNEbKNNps1MVh/cEOBrvqrO7cHu6vvasp1RVRe3Gmjdvk+RFiACqsbtY6LqEV10zGD2k5zMSM2fNYX7qKzzkvIh/uM/n5VGvkBzXuboxnTFg+ARq1DAsaiPOoq2dP9HlIM6lrcdIyJNZAW8p6fdLrnDeyafmM2lsqCPZcZBoavt8X6MjVZu1NhR1JXsDHIn3lNnsTPzzF1z/yhq/j13T6GLQPZ8w9a9f4XAFru2CJC9CBNDaEpXnXGfzTPRNpERbOj6hAzqdwt2/nI7FqMOgU7jupK5tve5Iv6QotiraOoKSbcs6fV6dW8ewxhc4zf4IuVm5Xo2pL0ttbhFQ04j1wEa+NN/G5+Y7iJLWCy0aIjIBcFccDHAk3nNo/Wf8U13I8P0v+n3s0ppGnG4VW6MTkyFwKYR8wkWvVV9TyaEnf4bDGE36ZU8TnxJ823PXHNBaApyQ672iYrmJEXx4wzQanW76JXm3kq1Op1AaMwqsm2jc/z1wU6fO21tWixs9NRF5xPXxhoHe1NwioLK6BluFjRS01gCp3aii3FupsdlUlkdS0+AIdChe4ynexmn6DTS6TTQ43ISZeraTsCtKrXVkUEZcVGAbq8rMi+i1tn3yNIMaNzHCtoJzntnI/zYVBsW92haOesK2vU2mUsYJObFevfTg1ChGZ3n3ms3UrEls9PRjm6Pz23F3l2j9d6QtgHelhCusNV/PFw0X4irVFkTXGqW67pGqxt3EOPuzPKO7MNCheI2nRms0eZb+R6oObPDr2CW1LgpJICMysAmyzLyIXkn1eEja9ToA73AahfUKN762niXDD/HH01NJSOt6PRVvc+T/yI3WR7jAFE993gWBDqfTksfM5mdr4smoC+PcTp6TvuYhHjXuoyzySmCSD6PrW1LiY6hHW3egK9oAQKO548aefUlWglbNuTdV2dXXFrf82VZ+CAb5r9Fpqc2Oio6I2MAWQpSZF9Er7Vn3JTnufOpVMyff8Ay/nTEQg04hbce/MT1zIus++heqJ3CLzQDKtnwNwCbdUK/f3vGl0Vmx6BQ4XN1AsbWxU+fklH/DBfoVDIiSWhveZDLoKFO0ZCW6WltA7bRIa4AjZcVpLQKq653UNPaOz5+lsbTlz/UVh/06dkmN9m8+KTqwt38leRG9Us2K5wDYFDuDpKRkbpk5iA9vmMLPwjYQRT3j1t3FxkfOorwwcIv4PAdWAVCRMKFbnZ4DJcJsYHBqNBbsbNu+peMTXA6SndoP2PjcUT6Oru+xGrVkJdV5SHsiUloDHCnCbOAlyyK+Mi2g+MC2QIfjFZGOspY/u61Ffh0779CHPGlcxOS6r/w67tEkeRG9Tk1VKSOqtH9YUVN/qnEyPCOWob//mpW5N+JQDYyp/w7js5P58aOn/T8L43aSbNVKlpv7T/Pv2F5wWcxGNpuvpd/K2zo8trFkNwbc2NQwcnIH+CG6vqXe3HrtkT5KkpejDdAX0U9XjPXw7kCH4hXxnoqWP6u24uMc6X0pNVs4S/8j6a4Cv457NEleRK+zbenLmBUne3R5DJtwSqvXjEYTU6/8M4cu+oQ9+v7EUMfEdb9n3SNzKCvK91uMnsMbMKuNVKmRDBwxwW/jekty7giMirtTxepK920E4ICSSUJUz7eDi9ZcET8lLy+7ZqJLGRrAaIJTjSUDgIbS0K+ya2+wcWRtOmN9iV/HD2+a9THFZvh13KNJ8iJ6FVVVeeDwBK5w/J69o25F0bX/Ee83bCI5v/+OH3Ln4lT1jKz7jv975hPeXlPglx1JZdu09S7rGcKw9Fifj+dtg0aMp0YNx4Ide+Hm4x5bd1hbi1EeluuHyPoeJSYdgK/cY7jXdRVhmVIE8Gj2SK3Wi1oV+rVeShv0jLK/wG3O3wAQZi/329iqqhLj0mZ9whMkeRHCa9YXVLO9pI4fdGOZNOui4x5rNJk58cqHKLxwCU9H3ciaxkxue2cTVy1eTVGl1adxOvZqjQ2LY8dh0IfeP8PshMifitVt7aBYXdkOABpjB/o6rD5JSRzMMvdINqn9AEiUOjpt6OJyADDXBvZWhzc0L5jd6cliiyeXvar/kgib3UUSVQBEJwd2x6ZslRa9yuvfHwDg7FFpxIR3rkNzzvBJzBsyEdOK/Ty2dBdlu1ajPH4xKyb8gannXOmTxbT/ivot1YfHcuLAU71+bX9QFIWy2NFQvRH7/h+Oe6yjoQ63qmBMGeKn6PoWY7+pXP2Vh0yljGhqJXlphyW5H+yA6MbCQIfSY8VNyUt+2BDOqf8L0ToDZ/lp7NLqOnKpBsASJzMvQnhFTWUpN2/9BXcYXueyCZ0voAZg0OuYe3J/lsyfxh3Rn5KqVDBt7c2s/NsFVFdXeTVOVVX5+pDKp56JDB46wqvX9idd9kQAYirXH/e4W3R3MMz+EuFDZ/ojrD4nNcbCUCWfL8238an5LiKkNUAbsenaQvFkdwmeADQz9KboHW/xkvEhboj5DtB6DTU63X4Zu6qsGIPiwY0OIgK7JV+SF9Fr7PjsOTKUcmaZNjM2t2vJS7MByVFM+d3bbMi5CreqMK3+S7a+8juvxnmoqoGSGjsGncLYrDivXtufUodpu6SSnYWotaXtHmN3uTlQUYcdEwPSpPKrL6RGW0hUtNuctfroAEcTnBIzB1GtRlCoxlNSbQt0OD0SXr6ZU/UbGWYua+ktVNrJeks9Za0swqHqqdHFgj6wSbIkL6JXUD0eUnZrFXVLB11yzIW6naE3WRhz1SL2nPYsABPLP6Bg90avxAlg/fwh5uvfY0ZqvV97knjb8H7ZvOg+iwedl1Noa7/41/7yOjwqRFsM0unYRyLMBp43PQpAhurfnSehwhAZz7kRr3Ku488UWI+/Oy7YGeqbvihEp7PY9Dc2m6+hYZd/aq7sJZtB9pd5eMDLfhnveCR5Eb3CzjVLyfEUUK+aGXrmtV655uCTL2RT2ESMipvKD+7yyjVRVbL3vMIC4ztMT/bPtyVfCTPp+SDlBl50z2bNMX5nulY9xbum+5gbtTKkCvGFKj3+uX0QirLjtUq7od4mINyuJS/GuAwiDW6ilAYaqvyzlqekxg4oRMcm+mW845HkRfQKtpXPA7AlbgYxsd7r7RIxZyEuVcfouhXsW7u05xes2k+0qwKHqidt2PSeXy/AxmVrt73W51e3+7quaD3jdbvpFx7avzBCRYUlJ9AhBK2sXpK8xLi0rdERCZk0mLV1J85q/7QIKLFpX7iSowNfr0mSFxHyaipKGVWt1U2JmXZdB0d3Tf9hE/g64SL+7LyEhRvDeny92l3LAdik9mdc/8C2lPeGcdmx9FMKid31Nrjb3jqKrNkDgD5Zdhr50rP9/8Uy90iWjfhzoEMJWrMaP+FL0+8YtWNRoEPpNtXjJt6jbSCITcnBGd5UTdnmn9uFkwv/w1PGvzOi7nu/jHc8kryIkLfts2cxK0726XIZNO4Ur19/4CWP8pI6h6W7rPy4v7JH16re8Q0AeywjiYsweSG6wBqXHcP7pnu5ufbvNB7a1PpFj4cku1a1OCZHCqf50uyzz2fDKS9x5iknBzqUoJUUptBfV0RUbehW2bWVF2FU3LhVhYTULIhKBcDgpyq7/Ro2Mlu/mmQqOj7YxyR5ESFNVVWeOZzHS64zKBp2TY8W6h5LbmIEF56QBcAjn2xFddm7fa3woh8BaMyY5JXYAi0jLoJtukEAFB9VrM5ZlU8Ydhyqnsx+wwIRXp+RFR/O/BkDe0VC7CsRKVoRv1iHfxsZelNFeTE1ajgVSiwWsxlDU3Xl8MayDs7sOVVViXZpX97C4zN9Pl5HJHkRIW31gSq+rojlYeVqRp7zfz4bZ/5pAznZuI0/FV/Pvo8e6t5FbMXE2w/hURWShob+ehfQitVVxI0GwHGg9VRy2b4NABwgnbS4SH+HJkQr8Rlahec0T4nf6qJ4W74hh1H257kmRlvjFxavFYqLdPm+RYBWXVdLXqJTsnw+XkckeREh7bUftF4l545OJ9rSuYq63ZEaY+GCgXoG6Q6TtulJPLb265ocT0PxTmxqGDvUbMYMyvV+kAGiyzoRgLjK1tvJa/K3AFBqyZWdRiLgolO1mZdopZ7CotCstFvSVM8lPkar5xOZnMtmTy7bPLk+H7u0uo5EtHpCYXEy8yJEt1VXlHLytnuZqGznkom+/yYw/fx5bFH7E04DB9/7Q5fPX6cMZ4z9We6w3ENGbM8X/waLtBHTtNkkVxHqEQsHS+tcHFITqYseEMDohNAo5kiqlFgAKg7vCWww3dTcGiC1abdPQkZ/5jj+wnWN830+m1RVehi9ojZV1+0jW6WffPJJ8vLysFgsjB8/nuXLl3fqvJUrV2IwGBgzZoxvAxQhaftnz/Jz3TL+Gv4KozJjfD5eXKSFnaN/D0D2/rdwFm/v0vk/7q/EjZ68fr2rQeGwvEz2oE1fl23/6d/228afMc3+Dw4MvzFQoQnRSpVJ2+FXW7w3wJF0z7BdT/KS8SEmuVcDEBNmbKmyW2br/lq8zqgrPwRAtS4edIEvrunz5OXNN9/k5ptv5u6772b9+vVMnz6d2bNnk5+ff9zzrFYrV1xxBTNmzPB1iCIEqR4PqXveBKB8cM8q6nbFmWdfwNdMRI+H0ndv7/yJqsrqA9r94hNye1eZfLNBz8Gw4QBU7VrZ8vzuEq0M+8DUqIDEJcTRqqMHs9mTS2ldaK55SbFu4lT9RtIMtYC25iy5qXJ1aU2DT8eus5ZhVw3UmgI/6wJ+SF4ee+wxrrnmGq699lqGDh3KokWLyMrK4qmnnjrueddffz2XXHIJkydP9nWIIgRt/XEpeZ586lUzw87wbm2X44kwG6iYfDdOVU9G2TIcnSzL7dr5KQsP/ZpbDG/3uuQFID/vIq51/I53zOcD4HK52VdeB8DAZEleRHDYMu4B5jj+wpee8YEOpVuinNquIkv8Tx2d/6T+ky3mqzFsfdenY68zjmOw/d+8PfxJn47TWT5NXhwOB2vXrmXWrFmtnp81axarVq065nkvvfQSe/fu5b777utwDLvdTk1NTauH6P3qVr0AwNb404mM8W8yMGfGdD4wnAnA7m9f69Q5FVu/IUcpJstgZWBy79t5kzZsCl94xrOiaR1k2ebPWan/DX83Pd2r1veI0BbqVXZj3Vp9lYjE7Jbnwgw6IpVGHD6usltS0wgoxMYGRzNZnyYv5eXluN1uUlJad/hNSUmhuLi43XN2797NHXfcwauvvorB0HHXyoULFxITE9PyyMoK/BYu4VtVFaWMtmozHvEn/cbv45sNeowz7uQ6xwIuLfwltsb2mxK2clBL1qsSJ6DT9b6dN+NztB9oO4trqLW7qD64mSSlhhSLs1f+94rQ1Nzf6FBVPaqqBjiarnE21hGLdrsoPu2nNhD+qrJb2rSmJiUIWgOAnxbsHr1NUlXVdrdOut1uLrnkEh544AEGDRrUqWvfeeedWK3WlkdBQYFXYhbBa9unz2JRnOzX59F/TGAqip5z4nD2JZxMdYOL55Z3ULHTUU9CzVYAwgb0jvouR0uJtjAj+jC/1b9Nwap3cJfsAKAuSnYaieCRYajhC9OtLOcaquocgQ6nSypKtN9tDaqJuLikn15oqbLb9fINXXFB2VM8bfw7/Rq2+HSczvJp8pKYmIher28zy1JaWtpmNgbAZrOxZs0abrzxRgwGAwaDgQcffJCNGzdiMBj46qu26wvMZjPR0dGtHqL3UlWVZfkODnhSqBhyCQSofohBr+PWWYMBeHv5Jmq2fHbMY9VDqzHgpkiNZ/CQEf4K0e9+HrWd3xreR7ftfcKqd2tPJg8ObFBCHMESlUg/XRFxSi2Fhw8GOpwusRZr8Vbo4tHpf/rVrY/RdlCF2X2XvKiqyijnRs7UrybR6NtdTZ3l0+TFZDIxfvx4li5t3Y136dKlTJkypc3x0dHRbN68mQ0bNrQ85s6dy+DBg9mwYQMnnniiL8MVIeC7vRU8Yz2ROcrjDD37poDGcuaIVM5Iq+MTZT6W934NtvZvhVZu/waAteoQRmbG+i9APzPkTAQgrmoDiY0HAIjK7L3JmghBBhOVOm23TPXh3QEOpmtqrFXUqOFYDa13+4Q3V9l1+q7fUK3dRWJzdd3k4Fia0fGikh5asGABl19+ORMmTGDy5Mk8++yz5OfnM3fuXEC77XP48GFefvlldDodI0a0/mGXnJyMxWJp87zom179Udtif+6YTCLCA7sQVFEULpt9Cvv/k8ZYzx7qPnuQiF+0XYnv3KdtHy6JG9dSk6E3yhg+Dc9ahWSXlsR5VIW0fvLvVgQXqyWdxPoy6stCq0HjlogT+aX9eeYMTOKfRzwfmaRVu433+C55Ka2upb+ibYYJC4K+RuCHNS8XXXQRixYt4sEHH2TMmDEsW7aMJUuWkJOjLTgqKirqsOaLEAAV5SWYt72LCSeXnJjd8Ql+MG1gEu8nzwMgbMvrULK1zTE71Bx2eTLQ5031d3h+NSQ3g9389K3sEElkpgRHTQghmtkjtV++nsoDgQ2ki5qr6ybGRLR6Pj45m82eXFa5h2G3+6bWS1WpVqDOhR7CgqPUg1++Bs6bN48DBw5gt9tZu3YtJ510Ustrixcv5ptvvjnmuffffz8bNmzwfZAi6G3/9DkeMzzBO1GPMjzd9xV1O0NRFM4793w+dk9Eh4e6/93V5ph7Gn7FLMff6DfshABE6D9GvY788OEtf99hHoVedhqJYBOrfXE214bW5o7mvkapR+32iY2N5QL3X7nWeRtl9b7ZQVVX0VRdVx8PfioI2pHgiEKIDnjcHjL2vgGAc9C5AY6mtXHZcazIuQmHqiei4BvY80XLa0XWBg5VNaBTYFxOcNRH8CVH2gQAfvAM4X959wQ4GiHasiRrDRqjGkKrOeN5B//MYuNDDPG0XqujKApJTVV2S2p8s5i2sVKrIVNrDJ6ZVEleREjY/P3n5KkF1Ktmhp5xTaDDaePKc07lZbdWjLHx47vAo5Uf37ZpLUZcDE+PIdLs8yVmARczSFuI308pYmBSeICjEaKt2MyhbPHkss2ZisvtCXQ4nTaocROn6DeS2E6ZleRoLXkpq/FN8b1GWzV21Yg9LNkn1+8OSV5ESGj8/nkAtifMJDw6OO65HmlwahT7h82jQo3iO0d/cNaDx8Pkby5mk/lazkyxBjpEvxgyfByz7A8x0f4vBqZK2QIRfGIHTeV8z1+513klRU23YoKd6vGQ4NF2+8Sk5LR5/Qb7i2w1X0XC5ud9Mv4X5hkMti9m1ei/+uT63SHJiwh6ZaVFjKn5BoCEk/1fUbezrj9jAjOci7iq4jK+P+yAsu2Eu22oKPQfPDLQ4flFYpSFyKyRhJmMjMnq/bfJROjR6RSy4rSdiqHSJsBWXYZZ0Sp5J6a1TV7CzEYiFPsxyzX0VGlTa4CEuFifXL87JHkRQW/HZ89jVpzsN/Qjd9RJHZ8QINkJ4cyZOASAhz/dQcOeFQCs9QxkfL+2RRl7q5eumshXvzuF1JjgKCMuxNG0Hkcqh8pDoxdeVfEB7X+JwhLW9nasGqlV2dX7qMpuc2uA5g7WwUCSFxHUPB4V64ENAFQNDVxF3c666bQBWIw6rAVbCVt6OwB7wka2LKjrC2LCjJK4iKB2k+1xdpivJGrXe4EOpVNspdrOqEpdQruvt1TZbfRN8rLA9jeeNv6dTFfw7NDq/SsIRUhbvqecG+uu5lnL2bx1xs8DHU6HkqMtXDU1j5NWPtjynD19UgAjEkIcLcJiwqI4oTo0WgQ0VGpblWtNSe2+HtZUZTfKB1V2a+0uprCRBL2N+rDgme8InkiEaMebq7UChuPGnYglMjTWUMw9qT9P6C8BtCZqyUPbtsIQQgSOLj4XgLC6Q4ENpJPq6uuxquE0Wtq//RyVqBXei/NBld2SKisJig2A8ITgqK4LMvMiglhtfT0/bD8AWPjlhOD5R9ORmHAjU06ezSVL62lQzSwakBHokIQQRwhvqvUSYy8KcCSd80XkHK60j2b+0Dza6/AXl6pVHI+gEUd9DaZw7+30qy7Rarw4MGAKC54vkDLzIoLW1m/fZZX+N/wz8t8MSwutbbdXTc2lLn0qsYOmkB0v9U6ECCZxmQMBSFVLqLW7AhxNx4qtTQtmj2oN0CwuNo7VniF84R5LRbV3yzLUVWjrXKr1CUG15lBmXkTQ8mz9ALPiIiMpDiWI/tF0RrjJwIc3Tgt0GEKIdkQk9wcglSp2lVUxJLP9tSTBoqSm/dYAzRRF4bdhf6HQ2sh7rkjSvDi2vaW6bhLBU6JOZl5EkKqprWWETevGnDjxogBHI4ToVSISacSMTlEpO7Q30NF06L7K37PY+BCZuspjHpPclNiUerlFgLtGu7VmDwuuBE9mXkRQ2rLsfaYoDZQpCWSNPjnQ4QghehNFYVvkJEqt9dRYfdOJ2VtcDjvjPFvR6VXK4qKOeZxWg0WlzFrr1fHt9XU0qkbcEalevW5PycyLCE5bPwDgUOrpKDp9YGMRQvQ6S0c8zFznLWxtDK4ZhaNVlOSjU1Qcqp6ExGPfEPplw5tsNV/NkC2PeXX814w/Z4h9MfvG/d6r1+0pSV5E0LHW1DKytumW0Ylyy0gI4X3NC+mDvUVAdYlWi6ZCiUenP/YXuTBLGBGKHX19iVfHL7PZAYXk2ODaNCHJiwg6m5e/T5TSQLkST9aoUwMdjhCiF8qK01oElFd6vzaKN9WXa7VorIbE4x5niEkHIKyxzKvjNy8WDqbWACBrXkQQeqsomS+cV3Dq4GRO1kl+LYTwvkG1q9lmvprdNZmo6plBu6PRUaXt9qkzH//2ljleS14ivVhlt9bu4hn1QeqMYaToxgCRXrt2T0nyIoJKVZ2DJfvcuDxncvlsWagrhPCNuOR0jIqdDLWMQmsjGbFhgQ6pXWrTbh9n+PEXzEYlZgEQ5zn2jqSuKqusYpp+q/aX8OCqVyVfa0VQ+XxbMS6PytC0aPonBU+WL4ToXYwJuQAkKjVc8sQXvLW6ALdHDWxQ7ahzuLGq4ahRx09e4lK05CWSepwNNq+MXV2q3bKyYwJLrFeu6S2SvIig4lr5Ty7Wf8UFQ9uvJCmEEF5hicFligHgT/a/sumDR7ny8Q9Ysbs8wIG19oLl14y2P0/xiN8c97i42HjqVG1dSmWJd7o/1zatt6kKsuq6ILeNRBCpsNo4p+pVLjXWUZRyVqDDEUL0cobhc2D9f5iu38J0/RZKqt/nxBf+xWlDUrjrrCEMSD52XRV/KW5aMJsSc/zbWjq9jtX6MTidTjJq7bTfwrFrHFWFANSZjr9YOBAkeRFBY/OyDzlFqaNSiSNt5CmBDkcI0dud+wRMvhF2foJr+xIKHBkYCnV8taOUZbtK+DbmQRIGTsQyYg7knQRG/6+LKbEevzXAkf6ecB8bC6p5RkljmBfGdlu15KXREkyNATSSvIigoWz/AIDC9JnES2E6IYSvKQokD4XkoRimL2CCx8PnFfUs/GQH5dtXkNGwEzbthE2voBrCUPqfCoPO1B5R3pjbOD6btZJ3uZVSYyypkad1eHzzduZSm3daBOjqtJoxnsjgqq4LkryIIFFWbWNM3UpQIFkK0wkhAkGno19SJM9dMYHvd6Vz739hQNUKZujXkeGqgJ1LtAfAmQ/BpLk+Daey6ABDdAWkU0F4WMezPinRWouA8mrvLNi12xtpVI3oooMveZEFuyIobFr+ITFKPVVKLMkjpDCdECKwJg1K5/5bfkvEzxdxgelZzrL/hUedv2CXYZB2QPoYn8dgK9MW3lbqEjp1/Km1S9hmvpqTtz/glfEf1V3JEPtiasZc75XreZPMvIigoNv2IQCF6WcQJ7eMhBBBQKdTuGB8JmeNTOO55Tk8/W1//ll7PslUMXGZnttn15Od4Lv6Jw0V2m4fm7Fz/ZciIqMIV+xY7KVeGV/rUK2QHBt8uz9l5kUEXGlNI/W1VtyqQtKkCwMdjhBCtBJm0jN/xkC+ufUULpqQRZkSx/+2lPLcoj+w/9/XQ613S/I3c1m16rqdXTBrjssAINLR8yq7dXYXtXYXACmdWCzsb5K8iID7ZEsxNzh/y9VJr5E8XG4ZCSGCU3K0hYd+MYol86czpX8CVyofk7f/DSjZ7JPxdDatuq6rkwtmI5MyAYjz9Dx5Kaus4gPTPbxgfoxIvbvH1/M2SV5EwH28SfsHetKYoSC3jIQQQW5oWjR/v2gMO1Wtqq2zaKtPxjHWa7d/dNHpnTo+LjkbgCjqcTbW9mjs6pJ8xuj2MUXZAnpTj67lC5K8iIAqrrSx/+A+AM4aGXwr2oUQoj3JUWYK9FqyUJvvm5kXm1tPtRqBqel2UEfi4xJoULVEo6qHVXZrK4K3ui5I8iICbOOyD/nBdAOvxTxFWgcVJIUQIlgoikJ9rLbzyFO63Sdj3K7OZ4z9OXRDzu7U8Tq9jnIlHoCapr5E3eWobOpmHYTVdUF2G4kAM+z4EJ2iEp8ksy5CiNBiSBsO1RBZswc8HtB5bz7A7VEpayo2l9qFjtdbLWPYXldGlF1hQA/G9zR1s7aHBV91XZCZFxFAhRU1jGtYBUDypIsDHI0QQnRNUs5Q7KoBs6cerN5phtisvNaORwW9TiEx0tzp895Ju43fOH/HXsPAHo2vNFXXdUcE5xdLSV5EwGxc/hFxSi3Vuljih8kuIyFEaBmUHs8+tWkxbcVur167et86PjPdzr8sT6HXdX7NiVZlVytB0RPmBm2xsD4Iq+uC3DYSAWTYoRWmK8mYSazsMhJChJhBKVGc65xPuRrNN2knEe/Fa9eV7Wec7hCKrmtF8JKjLIBKpbWmR+M3Ot00qCZMcZ3b6eRvMvMiAqKgzMqElltG0stICBF6Is0GXHEDqCGSHcU9SxaO1rxgtr6LC2bH1a9gu/kqfrX39h6Nf4vzRobaX0I/8oIeXcdXJHkRAbGp6ZaRVRdL3BC5ZSSECE2DU6MA2FnsnWaIzTw1hQA4wrt22yYyOpYwxUGks7zbY9c7XNjsLkAhOcZ37Q96Qm4biYD4z6EkvnZez4WjE5mol4+hECI0jUgycKLhFSZ/VwWTl3it0KahacGsJzKtS+dFJjZV2XV3v8qu1tMIwk16Is3B+fPZLzMvTz75JHl5eVgsFsaPH8/y5cuPeex7773HzJkzSUpKIjo6msmTJ/PZZ5/5I0zhJwcr6viu0M17npPpf9ZvAx2OEEJ0W//0RC7Vf8mQ2u+hcr/Xrmtp0JIXfWzX1pzEpmiF86Kpw9VY162xqw/v4kPTPTxu/BdKEBaoAz8kL2+++SY333wzd999N+vXr2f69OnMnj2b/Pz8do9ftmwZM2fOZMmSJaxdu5ZTTz2VOXPmsH79el+HKvzk481a/YAp/RNJ6MIWQCGECDZD0mLZpWqzHZ4S77UJiHJqzR7DEjK7dF58fBKNqhHofpXd+rKDjNbtYxj7unW+P/g8eXnssce45ppruPbaaxk6dCiLFi0iKyuLp556qt3jFy1axO23384JJ5zAwIED+ctf/sLAgQP573//6+tQhZ+Yf3iCa/Uf84vBxkCHIoQQPZKbEM4etB5HNfmbvHbdSncElWokUUnZXTpPf0SVXWtZ95IXe5W2WLjWlNSt8/3BpzezHA4Ha9eu5Y477mj1/KxZs1i1alWnruHxeLDZbMTHt78JzW63Y7fbW/5eU+PdFd/Cu/aXVPPz+reJN9ZiSzg/0OEIIUSPGPQ6qiP6Q8O3NB7e4pVr1tldXGD/AwBb8kZ1+fwaQwK4SqirONyt8Zur6zqCtLou+Hjmpby8HLfbTUpKSqvnU1JSKC4u7tQ1Hn30Uerq6rjwwgvbfX3hwoXExMS0PLKysnoct/CdTSv+S7xSS40uhqjBpwQ6HCGE6DF30hAAjBU7vXK94qYCc5FmQ7cWzO6PGMPn7vGUuSO6Nb6+Vvv97I5I6eDIwPHLgt2jF/yoqtqpRUCvv/46999/P2+++SbJye1ngHfeeSdWq7XlUVDg3RLNwruMO7Xbf2WZs0B2GQkheoHITG12JLYhH1z2Do7uWIlVS16So7u3JnBl7jx+4/wdm4yju3W+ubGpum5McBaoAx/fNkpMTESv17eZZSktLW0zG3O0N998k2uuuYa3336b008//ZjHmc1mzGZZ9BkK9hRXc6J9FSiQIr2MhBC9RGZOf2pWhoOiI7rmMMT369H19Dv/y2emR9itTgJO6fL5yVHa78QyW/daBEQ4tMXCwVpdF3w882IymRg/fjxLly5t9fzSpUuZMmXKMc97/fXXufLKK3nttdc4++zOtQIXwW/Tiv+RoNiw6WKIlFtGQoheYkhaNNPtixhjf4bGqJweX89dcYDBukOk6aq7dX5KtNYioKq6e+fXufU0qCYiEoN3GYbP5+0XLFjA5ZdfzoQJE5g8eTLPPvss+fn5zJ07F9Bu+xw+fJiXX34Z0BKXK664gscff5xJkya1zNqEhYURExPj63CFD5l3fQRAeeZMouSWkRCil0iKMqMLj8NT72R3SS0jM3v2u0qp1RbMurrZ0XlQ4yZ2mK+k5HAasLlL5zY43Pyq8U5AZdOgad0a3x98vubloosuYtGiRTz44IOMGTOGZcuWsWTJEnJytOy0qKioVc2XZ555BpfLxQ033EBaWlrL47e/lWJmoWxXiQ1rvYNG1Uiy3DISQvQiiqIwJDUawCs9jkx12pd2Jbp7t22i45KxKE5i3JVdPre06VZTmNFAlCV4y1n45evvvHnzmDdvXruvLV68uNXfv/nmG98HJPzuf5uK+IfrOlb2v4V/DZ4a6HCEEMKrToyzcbXxUQZ8C0z4qkfXCrNra06M3VxzEpus3e6JpRaXvR6DufP9iUqaWgMkR5uDtrouSG8j4QeqqvLxJq3J2MwxA2SXkRCi18lJTWLm1rV4bAo46sHU/YaGsS6tqWJEQvfWnMQnpmBXjZgVJ1Wlh0jKGtTpc50HVvGR6R4OqyOB4G2aK12lhc/tKKzCVb4Xk0HHjKHBW/RICCG6Kzcnh3I1Gh0qlHe/3ovH7SFB1W73xKZ2rbpuM71eR4USB0BN6aEunesq388o3X7y6Np5/ibJi/C5TSuX8K15AR9EPRzU91CFEKK7BqVEtfQ4qu1Bm4CK6kr2qWlUqpHEJ3d/t0+1IQGAuoquJSGeGm2W3G4J7i+akrwIn1JVFcsurTBdRHJegKMRQgjfiDAbKDJpP+OsB7ufvBQ3GJnteIgzTf/GYA7r9nXqTYkAOKoLu3SerlYrUOeJ7N5OJ3+RxQfCp95bm89JTilMJ4To/RpiB0I5qKXbu32N5tYAqTGWHsVSEjOKz2wN2NWELp1nbiwBQBed1qPxfU1mXoRPqKrKk19sx/bBrSQpNdTro7EMCt7FX0II0VOG1OEARFp3dfsazcmLVmiu+3b1u5LrnQv4zjipS+dFOrTFwpa4jB6N72sy8yK8zun2sPDtbzlj2x2caNgBgGXWH0Av612EEL1XfN5o6jabKSWOWJcdDF1vXZO1/Xk+N73LnsYLgAndjqW5L1JXWwTEuisAiEjM7PbY/iDJi/Aqa4OTea+uZfaBf3KiYQcOfQSmXz6PbshZgQ5NCCF8qn92BiPsL2DxGNmqM3Xr1oalZj+DdIepMnavL1GzlCitRUBNdVWnz2lwuLF5zNQrZmJSurfTyV8keekjOtvJuycOVdVz9eLV7CqpZafpcmZl6kj+2V8gqfM1BoQQIlTlJkRgMhhocLrJr6wnNzGiy9ewNGhrTvTdrK7bLMtTwE7zlTRUWaCT255LbY3MdjyExaiwPcg3WMialz7grTUFjLz/c+556lW2HCjxyRib8st4/ok/s6vERnKUmcXXn0byte9I4iKE6DP0OoWBKZEA7CiydusaUU0dnS0JPbttE5eUjllxEosNt6NzszilNq26bkp0GIouuNMDmXnpxTwelUc+38mT3+wljEZuLr4D10t63kq5ghN/cTM5yfFeGeebtVuI/Oga7ld2kB7bwDlz/0x6bPe3+AkhRKg6O2ovj5kexvxlFoz8rMvnx3m0NSdRST27bROfkIJdNWBWXFSVFZCYMbDDc0qaFgsnR3V9rY6/BXdqJbqt0eHilWf/yr+/2QLA78Yb0BstpCpVXFj6OKZ/jee/L/yRsmpbj8b56OOPGPzRHCYoO6hXwrns7FMlcRFC9FlpSQkM0h0mztb1KrsN9fXEozV2jE/L6VEcBoOeSiUWAGtJ524bhe/+Hx+Z7uYqx+s9GtsfZOalF6qw2lj71LX8uvFTMkzjqT53Mb+YkA2uMyn85jks3/2dNHc5cwoeofDvi1k64DdMvmA+keGdTzrcHpX//vthZh/4G2bFSak5h7ir38aYMtiH/2VCCBHckvqNgtUQ7a6C2jKITOr0ueXF+WQBDtVAZGzPK9xW6xNIc5dTX1HQqeN1VfsYpduPWxna47F9TWZeepl9Bw9S8PgsZjV+igeFASecwS/GN5WYNphJP/1G4u/Yyr4T7qVSF0+6Us7MvX/h6kde49+rDuBweToco76hnm//fgXnHfwLZsXJgcSTSbpluSQuQog+b2BmCgc9WuJhL9zapXMrqq1s92SzX5/jlTUn9WYtcbJXFXXqeH1dMQBqkFfXBUleepUNq1difmkGYzzbqCWc4rP/Te6c38PRu4yMFvqd/Tvi7tjKtlF38r7xLH6sT+W+j7Zy+mPfsvyrj/G4nO2OUVrTyF1Pv8H0mo8B2Dn0JnLnfYBiifH1f54QQgS9pEgz+3XaepXy/Ru6dO4BJZPZjr9yX+q/vBJLc38iT03nkhdzo9YaINir64LcNuo1VvzvZcasvo1IpZEifRphl79Feu6o456jmMIZdv4dDHR7qFtdwKIvdqNW7WfSt7dStCKF2km/Y/DpV4FOD8CO4hqufmk1hdYUEsOu5eLTTmDw9F/64z9PCCFCgqIoVEcOgNo1NB7e0qVzmxfMpvawum6zmoSRfFpWQI0uk4mdOL65uq45yKvrgiQvIc/jUXn8041cvPo+IpVGdoaNJWfu21hiOn+f1ajXcdmkHH4+NoMvPnqV2i3hZHgKYdXvKPzx77in3059fR2//95MoT2VfokRXH7VfeQkdL2GgRBC9HbupCFQC8aKri3abWkN0MO+Rs3K+1/APZsHc7o+hQs7cXyMuxII/uq6ILeNQlqj0838N9bz+LLDXO+4hbWpFzNwweddSlyOFGE28LNf/hrPbzfyZfpcqtRI0l2HyPp6PoN/uJO/qw9zUraF9+ZNkcRFCCGOISJrNNs92ewiq0vnnbZ7IUtNtzGpYZlX4mjuj1TaiRYBjQ4XSaqWvMSm9Gynkz9I8hKiKosP8vAT/+J/m4ow6BQuu+DnjJ/7DDqjqcfXTohPYMZvHqJu7jo+TrwaqxqOR1XYnnwWz113ErHhPR9DCCF6q7SB45jt+Ct32K/q0nlxDQcYqDtMnMU7v5q1ei0qDdaKDo8tq6igQE2mVg0jKkHWvAgfKNiyEsu7l3G7x8Y2y4PMv+xCpgxI9Po4mWkpZN74d3bl38amkmLOmjDW5y0GhBAi1A1KiUJRoLzWQZnNTlIni75Fu7Q1J+GJXZuxOZZUUyM7zVdidjpxO0vRG48dR4ndyC8cj5IdH86ybjSU9DeZeQkxO794iaR3fkaSWkmxLoW/XnqSTxKXIw3KTmf6CeMkcRFCiE4IM+nJiQ9Hh4c9BYWdOsfj9pDo0W7bRCd7pyliQkISClr5i+rS4xeqK6nRWgOEQnVdkOQldHg8bHv1dgavuBkLTtaYTiD6xm/JHTgi0JEJIYQ4ynVh37DNfBUJy+/t1PFVVeWEK1oCkZDqneRFq7IbB0B16fEL1TWvi0nx0k4nX5PkJURse/4ahu1+BoClcRcx4ndLiE/w7YyLEEKI7olOSMOiOAmr2tWp4yuLDgBQQwRGS6TX4qjWJwBQX3H8mZfMXS/zX9NdnNPwodfG9iVJXkKAs7GOQYc/AODjfn9gxk3PYDHLolkhhAhWMTkjAUhq3A+ejiuX15ZryUVVU7LhLXUm7Uuuver4t6/Ca/YyUneAJH2tV8f3FVmwGwL2Fpazwn0G/Q1lzL50ATqdrD0RQohgltl/OHbVgEWx4646iD4h77jHV9Y72ebJoTYiD29uVLaHJUMDeGqKj3ucuaEMAH0IVNcFmXkJCRsrFP7kupxn0/+MTi//lwkhRLDLSYphH1ql2rK96zs8fqNxDGc5FvLhgD95NQ41QmsRoKs7fvIS6Qyd6rogyUtI2HTICsCoTOkfJIQQoUCvUyixaLMt1oObOjy+pbqulxfM2pNG8Kn7BHYq/Y97XKxbqwUTmRT81XVBkpeQ4DjwA5HUMyJDkhchhAgV9TGDAPCUbOvw2OKmrcre6mvUzNV/FnOdt/CWcsYxj2l0OElUqwCITQ7+6rogyUvQc9Tb+Gv1rWyxXMuYeEegwxFCCNFJauYJfOI+gXUM7fDYWwpv5QvTrQx0dJzodEVyS4sA+zGPqSgtxKB48KgKUYmhseZFFuwGuYIdP9JfUSkljszM0MiIhRBCQOyw07h0VQS5DeFc2sGxGa58knVVHIjybt+4lGitRYDTVo7H7Uan17c5pqqqgkZPGiY9ZOmNXh3fVyR5CXLVe34E4JBlEMlS4VYIIULG4NQoAA5W1lPvcBFuav9XbqPdToJaDQrEp3r3S2pihIkt5muIVBqpLJ1IfFrbXU/5pDHP8SgTcuJ4x6uj+47cNgpyStEGAOoSRgU2ECGEEF2SGGkmMcJIqlrB/gP7j3lcefEh9IqKS9V5vSmi0aCnVtFmc6pK2q+yW9q0WDg5OjRaA4AkL0EvsUa7/2nJHhfgSIQQQnTVQ5aX+M5yE+rqF455THXJQQAqdXEoeu/fEOmoym6JrbmvUWi0BgBJXoKavd5KhkvLlNOHTQ5wNEIIIbrKHTcAAKVsxzGPqSvXfs5bDb5p+VLfQZXdCbv/wf9MdzG14UufjO8LkrwEsUPbfkTftFg3PTM30OEIIYToInPGcABia/cc8xhn9WEA6s1JPomhMUwrVOexFrX7elzdXkboDpBgdPlkfF+Q5CWIbayL5R7nVXwWezGKLNYVQoiQk9RvLAAprsOozoZ2j6lwGNnqyaE26viF5LpLjUgBQFdX0u7roVZdFyR5CWo/lpv5j3smRUOuDHQoQgghuiEvtz/VagQGPFTlt1/D5XPTDM52LGTH8Ft8EoMuOhUAc0Npu6//VF03yyfj+4IkL0Fs82GtLcBIqawrhBAhKcxsIF+vbX8u3buh3WNKrNpuH29X122mpAxliXsia3XD2rzWaHdo27SB2OTQaA0AfkpennzySfLy8rBYLIwfP57ly5cf9/hvv/2W8ePHY7FY6NevH08//bQ/wgwqjXVWRpV+xDDlACMzogMdjhBCiG6qjtRuBzUe3tLu6819jVJjfLNV2Zw7iXnOm3nWNafNaxWlh9ErKm5VIToh3Sfj+4LPk5c333yTm2++mbvvvpv169czffp0Zs+eTX5+frvH79+/n7POOovp06ezfv167rrrLubPn8+7777r61CDSsHW71loeJYXzY+SERce6HCEEEJ0U2XmaTztmsN3Stt6Xaqq8mb9dXxhupU0yn0yfnOzx7JaOx6P2uq1mlLtd3Gl4ptt2r7i8+Tlscce45prruHaa69l6NChLFq0iKysLJ566ql2j3/66afJzs5m0aJFDB06lGuvvZarr76aRx55xNehBhXrvtUAHAobIot1hRAihFmGzeavrl/xsW1Am9cqq6rIUMoZoCskMTHZJ+MnRmotAiLdVqpsta1eq7bVsteTRrExdNa7gI+TF4fDwdq1a5k1a1ar52fNmsWqVavaPee7775rc/wZZ5zBmjVrcDqdbY632+3U1NS0evhCRa2dhZ9s5/pX1vjk+kfTF60HoDFxhF/GE0II4RtDUrVb/7tLanEfNfPRXPW2DgumiFifjG8y6FhpuYX1lrnUHNzQ6rWdxmHMcDzKkzl/98nYvuLT5KW8vBy3201KSkqr51NSUiguLm73nOLi4naPd7lclJe3nVJbuHAhMTExLY+sLN9kj0aDjueX7+ezrSUcqqr3yRhHSrRpBY3Ccif4fCwhhBC+kx0fTrqxjnGezRTkt24TYGu6bVOlS/BpDHV6LYGqLW9dZbe523SKjxYL+4pfFuwefdtDVdXj3gpp7/j2nge48847sVqtLY+CgvZ7N/RUtMXImKxYAFbu8c19yWaNtVVkebQPWMZQqawrhBChTKdTeMryBK+b/ox105JWrzVUar+zbCbfFKhrVnuMKrslNVrykhQVOn2NwMfJS2JiInq9vs0sS2lpaZvZlWapqantHm8wGEhIaJuZms1moqOjWz18ZeoA7f/85bt9m7zkb/0egCISSUkLna1rQggh2meLHgiAs2hrq+dd1VrV20ZL+78TvcVuab/K7s8PPMjHpjsZ1bjap+N7m0+TF5PJxPjx41m6dGmr55cuXcqUKVPaPWfy5Mltjv/888+ZMGECRqPRZ7F2xvSBWvKyam9FmxXb3lSz70cADocNlsW6QgjRGyQPBSCselerp3W1WjLhivRt8uI+RpXdlMZ9DNcdJNYSOjuNwA+3jRYsWMDzzz/Piy++yPbt27nlllvIz89n7ty5gHbb54orrmg5fu7cuRw8eJAFCxawfft2XnzxRV544QVuvfVWX4faoTFZsUSY9FTWOdhW5JuFwQAfKjO43HEHe/pf6bMxhBBC+E90trZNOqmx9ZqXInc0Wz05qHG+aQ3QTB+dBoDpqCq7cR6tum5UCFXXBfB5qnXRRRdRUVHBgw8+SFFRESNGjGDJkiXk5GgVB4uKilrVfMnLy2PJkiXccsst/Otf/yI9PZ1//OMfXHDBBb4OtUNGvY5J/RL4ckcpK/eUM8JHlW9XF3vY4RnFFcNksa4QQvQGmYPGwWeQrFZQV11ORKw2k/8C57HDMYOXRpzg0/FNcVoBugjHT8se7PZG4tUaUCAuRZKXNubNm8e8efPafW3x4sVtnjv55JNZt26dj6PqnqkDEvlyRykr9pRz/cnez5QbHG52ldgAaQsghBC9RXxCIkUkkkY5h3etY9BErSRI824fX7UGaGZJHcgS90RK9Dk0/+aqLDlEmqLiVPVEJ6T6dHxvk95GXdS87uXH/ZU0Ot1ev/7+Ld9xq/4N5kRsIyU6tFZ/CyGEOLZSSx4A1oObALC73FTWOQDfJy8xmcOY57yZvzSe37KDt7pU2+lUqYtD0el9Or63SfLSRQOSI0mJNmN3eVh7sMrr16/b/gXzDB/xa/O3slhXCCF6kZ0Zv+BO5zV8p44EoLz4MFvMV/Ol+VZiLb79ddy8FdrpVqmq1wq+NlQeBsCq922NGV+Q5KWLFEVp2TK9wgf1XgwlGwFoTGrbA0MIIUToUoaezevuGayq1kp6VJccJFJpJE6p83lfIbNBT3yYnnhqKKvSvnhX1zvZ40mnKiy01ruAJC/dMq05efFBvZfk2u0AREhlXSGE6FWGpmlJy85iG6qqUluu3bapNiT6ZfxXdfeyzjIXx+5vAFgbNpnTHY+wZMADfhnfm0JrY3eQaE5ethRaqapzEBdh8sp166wVZHi0Pf+Zw6SyrhBC9CYDkiMZq9vDYHs+5WWjcFRpt23qzL5pyHi0RmMsuMHedLuoubpucoi1BgCZeemW5GgLg1IiUVWtYJ23FGz7DoDDJJOUkua16wohhAg8i1HPP81P8Vfj8xTt+BFqtFL9jnDfFqhr1hjWVGW3Rqti37zTKTnEWgOAJC/dNm2A1odixZ4yr13TtlerrFsYMcRr1xRCCBE8ysP7AWAr2IS+udptpH+2KXuakiRdrZa83FL4Oz423Ul/1x6/jO9Nkrx0U/OWaa8u2i3TOknbZbGuEEL0So547cuprmw7lqZqt/rYDL+MrcRoM/rGpnFzXfsZrjtIXFS4X8b3JkleumliXjxGvUJBZQMHK+q8cs07PfM4yf53GHOpV64nhBAiuJjThwMQW7uHfZ5ktnhysST7tjVAy9hNyUuEoxy7vYE4tIKoccnZfhnfmyR56aYIs4Gx2XGAd2Zfau0u9pbXka+mMLi/fz7IQggh/Cup/xgAMp0HuavxMs5x/IXwQaf6ZezwRG1LdIyrgspibaeTQ9UTk+CfNTfeJMlLD3hzy/TWw1ZUFdJiLC3FhIQQQvQuqXkjcKp6opQGElza745kP1VTj07J5WP3RP7nnoS1qbpuhRKPogu9VCD0Ig4i05rWvazaW4Hbo/boWo4fX+JfxkVcGrvFG6EJIYQIQjqjmUJDJgCDdfnEhRuxGP1Tmj8xNYMbnDfzgPMyyosOAmD1U40Zb5PkpQdGZcQQZTFgbXCy5bC1R9eKPLyMs/U/Mibc+4XvhBBCBI8vs27kUecvWGz6Gy/o/uy3cc0GPbHhRgCqSvIBqDcn+W18b5LkpQcMeh2T+2k9IXq67iW1qbJupFTWFUKIXk0ZOJN9ajoAEXqXX8dOjTSRgJWS6lp2ezKojQy9xbogyUuPNd866sm6F1tVCWmqtnUte7hU1hVCiN5scGoUqUolAI0W/1TXbfYXx0LWWv6PAzUw0/E3Ng+5xa/je4skLz3UvGh37cEqGhzubl2jYItWWbdASSM+0b8fZCGEEP41JMnCXMN/AXCH+/dnvsOi/c6K92jNGUN1g4gkLz2UlxhBeowFh9vDjwcqu3WNuv2rASiWyrpCCNHrxUeGkaRo6ySjDB6/ju2O0LZFpyha8pISgn2NQJKXHlMU5YhbR91rFWAs3QSAI3m01+ISQggRpHQ/7S6KSvNvXS9dlNaK4FLDlywx3Uk63mtx40+SvHjBtIHNfY6616SxtsGOXTUQmSeLdYUQoi9wX/YB9aOvIvX0+X4d1xj3UyuCYbqDJCaE5lZpQ6AD6A2m9Nd2HG0vqqHMZu/SPURrg5PL6n6LERc/jpnhqxCFEEIEEf2AUwkf4J/KukeKSEhv+XOjaiQ2LjSTF5l58YLESDPD0qIBWLW3a7uOtjbVh0mJiwrJ5lhCCCFCR0xSVsufK3VxIVldFyR58ZrubpnefKgagFGZMd4OSQghhGglPiUTj6oAUK+PDnA03SfJi5c0b5leuaccVe18q4AJa37Hx6Y7mR22zVehCSGEEABYLBb+plwJQLU54/gHBzFJXrzkhNx4THodhdZG9pXXdfq8zLotDNcdJCc5wYfRCSGEEJoccw0ATj/XmPEmSV68JMykZ0JuHKDNvnRGTVkhKWo5HlUhe/gkX4YnhBBCAKCYY9jtycAZnRPoULpNkhcvmtp062h5J9e9FGxdpf2vLoPYuHifxSWEEEI0qxx3I2e5H8Ey7YZAh9Jtkrx40fSmRbvf763A5e64amLdgTUAlERKZV0hhBD+8X+n9Gfz/WcwMS90vzRL8uJFw9NjiAkzYrO72HjI2uHx5rKNADhTpLKuEEII/7EY9R0fFMQkefEivU5h6gBt4W1ntkyn1e8EILrfRJ/GJYQQQvQmkrx42dQjtkwfT5XVxg+ugez1pJE9/ER/hCaEEEL0CtIewMumD9D6HK3Lr6LW7iLS3P5bvLmkkZuc88lNCOebmDh/hiiEEEKENJl58bLshHCy48NxeVR+3H/sRo2bm9oCjMyM9VNkQgghRO8gyYsPdGbL9MED+1DwMDIjdMszCyGEEIEgyYsPNG+ZPt66l9sP/oaN5us4MbzYX2EJIYQQvYIkLz4wuV8CigK7SmopqWls83pl8UESqSKCRvIGDQ9AhEIIIUTokuTFB+IiTIzM0LpEtzf7cnibVlk3X59FdHSsP0MTQgghQp4kLz7SvO6lvXovDQfWAlAaOdSvMQkhhBC9gSQvPjK9OXnZU46qqq1es5RvAsCdKpV1hRBCiK7yafJSVVXF5ZdfTkxMDDExMVx++eVUV1cf83in08nvf/97Ro4cSUREBOnp6VxxxRUUFhb6MkyfGJcTh9mgo9RmZ3dp7U8vqCoZTZV1Y/pLZV0hhBCiq3yavFxyySVs2LCBTz/9lE8//ZQNGzZw+eWXH/P4+vp61q1bxx/+8AfWrVvHe++9x65duzj33HN9GaZPWIz6lqZXR26Zrig6SALVuFQdOVJZVwghhOgyn1XY3b59O59++inff/89J56o/ZJ+7rnnmDx5Mjt37mTw4MFtzomJiWHp0qWtnvvnP//JxIkTyc/PJzs721fh+sS0AYks313Oyj3lXDMtD4AdJbWsc51HblgDcyKlxosQQgjRVT6befnuu++IiYlpSVwAJk2aRExMDKtWrer0daxWK4qiEBsb2+7rdrudmpqaVo9gMa2p3sv3+ypwuDwArK0086jrQr4acFcgQxNCCCFCls+Sl+LiYpKTk9s8n5ycTHFx5wqzNTY2cscdd3DJJZcQHd3+LMXChQtb1tTExMSQlZXVo7i9aWhqNAkRJuodbjYUVAOw6ZDWFmBE01ZqIYQQQnRNl5OX+++/H0VRjvtYs2YNAIqitDlfVdV2nz+a0+nk4osvxuPx8OSTTx7zuDvvvBOr1dryKCgo6Op/ks/odApTWrZMl4GqEl7wDQlYGZUpyYsQQgjRHV1e83LjjTdy8cUXH/eY3NxcNm3aRElJSZvXysrKSElJOe75TqeTCy+8kP379/PVV18dc9YFwGw2YzabOxd8AEwfkMh/NxayYk85Vww38A/XH3GZddiTgifJEkIIIUJJl5OXxMREEhMTOzxu8uTJWK1WfvzxRyZO1LYE//DDD1itVqZMmXLM85oTl927d/P111+TkJDQ1RCDytSmdS8bD1nZu3EPicBBfQ79IyIDG5gQQggRony25mXo0KGceeaZXHfddXz//fd8//33XHfddZxzzjmtdhoNGTKE999/HwCXy8UvfvEL1qxZw6uvvorb7aa4uJji4mIcDoevQvWpjNgw+iVG4Pao7N+0EoDyaKmsK4QQQnSXT+u8vPrqq4wcOZJZs2Yxa9YsRo0axSuvvNLqmJ07d2K1aotYDx06xEcffcShQ4cYM2YMaWlpLY+u7FAKNs2tAlLrdgDgTh0TwGiEEEKI0OazOi8A8fHx/Oc//znuMUeWzs/NzW1TSr83mDYwkVe+P8BI3T4A4gacEOCIhBBCiNAlvY38YFK/BDKVChIUG05VT+4wqawrhBBCdJckL34QE2ZkTpK28+qAPoew8IgARySEEEKELkle/CRh8DRudV7P2ozLAh2KEEIIEdJ8uuZF/OSyWSfyTkIGM0ekBjoUIYQQIqRJ8uInFqOeyyblBDoMIYQQIuTJbSMhhBBChBRJXoQQQggRUiR5EUIIIURIkeRFCCGEECFFkhchhBBChBRJXoQQQggRUiR5EUIIIURIkeRFCCGEECFFkhchhBBChBRJXoQQQggRUiR5EUIIIURIkeRFCCGEECFFkhchhBBChJRe11VaVVUAampqAhyJEEIIITqr+fd28+/x4+l1yYvNZgMgKysrwJEIIYQQoqtsNhsxMTHHPUZRO5PihBCPx0NhYSFRUVEoihLocIJGTU0NWVlZFBQUEB0dHehwQoK8Z90j71v3yPvWPfK+dV2wvmeqqmKz2UhPT0enO/6qll4386LT6cjMzAx0GEErOjo6qD6soUDes+6R96175H3rHnnfui4Y37OOZlyayYJdIYQQQoQUSV6EEEIIEVIkeekjzGYz9913H2azOdChhAx5z7pH3rfukfete+R967re8J71ugW7QgghhOjdZOZFCCGEECFFkhchhBBChBRJXoQQQggRUiR5EUIIIURIkeRFCCGEECFFkpdeZNmyZcyZM4f09HQUReGDDz5o9bqqqtx///2kp6cTFhbGKaecwtatWwMTbBDp6H278sorURSl1WPSpEmBCTZILFy4kBNOOIGoqCiSk5M577zz2LlzZ6tj5PPWVmfeN/m8tfXUU08xatSoloqwkydP5pNPPml5XT5r7evofQvlz5okL71IXV0do0eP5oknnmj39YcffpjHHnuMJ554gtWrV5OamsrMmTNbmln2VR29bwBnnnkmRUVFLY8lS5b4McLg8+2333LDDTfw/fffs3TpUlwuF7NmzaKurq7lGPm8tdWZ9w3k83a0zMxM/vrXv7JmzRrWrFnDaaedxs9+9rOWBEU+a+3r6H2DEP6sqaJXAtT333+/5e8ej0dNTU1V//rXv7Y819jYqMbExKhPP/10ACIMTke/b6qqqr/+9a/Vn/3sZwGJJ1SUlpaqgPrtt9+qqiqft846+n1TVfm8dVZcXJz6/PPPy2eti5rfN1UN7c+azLz0Efv376e4uJhZs2a1PGc2mzn55JNZtWpVACMLDd988w3JyckMGjSI6667jtLS0kCHFFSsVisA8fHxgHzeOuvo962ZfN6Oze1288Ybb1BXV8fkyZPls9ZJR79vzUL1s9brukqL9hUXFwOQkpLS6vmUlBQOHjwYiJBCxuzZs/nlL39JTk4O+/fv5w9/+AOnnXYaa9euDeny2t6iqioLFixg2rRpjBgxApDPW2e0976BfN6OZfPmzUyePJnGxkYiIyN5//33GTZsWEuCIp+19h3rfYPQ/qxJ8tLHKIrS6u+qqrZ5TrR20UUXtfx5xIgRTJgwgZycHD7++GPOP//8AEYWHG688UY2bdrEihUr2rwmn7djO9b7Jp+39g0ePJgNGzZQXV3Nu+++y69//Wu+/fbbltfls9a+Y71vw4YNC+nPmtw26iNSU1OBn74RNystLW3zjUUcX1paGjk5OezevTvQoQTcTTfdxEcffcTXX39NZmZmy/PyeTu+Y71v7ZHPm8ZkMjFgwAAmTJjAwoULGT16NI8//rh81jpwrPetPaH0WZPkpY/Iy8sjNTWVpUuXtjzncDj+v337dV0cjuM4/jaoKIgwHLjgxLB/wmARBKPYLAOrBvOKJv8Nm5gEmxj88R8IVkHRbHIIpveF44TjO5Tjjtt9jucDFsYW3rx5hdfYJrvdTqrVaoyTmed2u8n1ehXHceIeJTaqKv1+X+bzuazXa6lUKj9dJ2/RPu0tCnmLpqryfD7J2i/6sbcoJmWN10b/kTAM5Xg8vs5Pp5Ps93uxLEtc15XBYCDj8Vg8zxPP82Q8Hks2m5VOpxPj1PF7tzfLsmQ0Gkm73RbHceR8PksQBFIoFKTVasU4dbx6vZ5Mp1NZLBaSy+VeT735fF4ymYwkEgnyFuHT3sIwJG8RgiCQZrMppVJJ7ve7zGYz2W63slwuydob7/ZmfNZi+88Jf9xms1ER+XL4vq+q339fHQ6HWiwWNZ1Oa61W08PhEO/Q/4B3e3s8HtpoNNS2bU0mk+q6rvq+r5fLJe6xYxW1LxHRyWTyuoe8ffVpb+QtWrfb1XK5rKlUSm3b1nq9rqvV6nWdrEV7tzfTs5ZQVf2bZQkAAOB38M0LAAAwCuUFAAAYhfICAACMQnkBAABGobwAAACjUF4AAIBRKC8AAMAolBcAAGAUygsAADAK5QUAABiF8gIAAIzyDdBlrkrd3mJCAAAAAElFTkSuQmCC", + "text/plain": [ + "<Figure size 640x480 with 1 Axes>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAisAAAGxCAYAAACju/aQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB+fklEQVR4nO3dd3hUZfbA8e+dmkmvpEAIvUtHCaKCBUHUtaGsruKquK6yNvS3ort2xV17x4quvVcsICCI0nuXlgLpdZKZZOr9/TEhigRImZk7k5zP89zHZObe956MQ3Lm3vc9R1FVVUUIIYQQIkTptA5ACCGEEOJoJFkRQgghREiTZEUIIYQQIU2SFSGEEEKENElWhBBCCBHSJFkRQgghREiTZEUIIYQQIU2SFSGEEEKENElWhBBCCBHSJFkRQviFoijN2n788cfGY5555hkURWHQoEHNGlev15OQkMCQIUP429/+xooVKw7Z9/zzz8disVBVVXXE8S677DKMRiPFxcVt/ZGFEEGiSLl9IYQ//DFxeOCBB1i8eDGLFi065PEBAwYQGxsLwNChQ9m4cWPj8SeccMJh4yqKwkUXXcTMmTNRVRWr1cqWLVv43//+x6ZNm7jxxht5+umnAfj6668555xzeP7557n++usPG6u6upr09HTOPPNMPvvsM7/83EKIIFCFECIApk2bpkZFRR3x+dWrV6uAOnnyZBVQp0+f3uR+gHrDDTcc9rjb7VavuuoqFVBfeOGFxscyMjLUESNGNDnWiy++qALqV1991YqfSAihFbkNJITQxGuvvQbAI488wpgxY3j//fex2+3NPl6v1/Pcc8+RnJzMo48+2vjYtGnTWLt2LZs3bz7smLlz55Kens6kSZP880MIIYJCkhUhRNDV1dXx3nvvMWrUKAYNGsRVV11FTU0NH330UYvGsVgsnH766ezbt4/9+/cDcNVVV6EoCq+//voh+27bto1Vq1Yxbdo09Hq9334WIUTgSbIihAi6jz/+mOrqaq6++moALrnkEqKjoxuvtrREVlYWAAUFBQD06tWLk08+mbfffhuXy9W438Hk5aqrrmpr+EKIIJNkRQgRdK+99hoWi4WpU6cCEB0dzZQpU/jpp5/YtWtXi8ZSm1gjcPXVV1NWVsaXX34JgNvt5u233+akk06id+/ebf8BhBBBJcmKECKodu/ezdKlS5k8eTKqqlJVVUVVVRUXXXQRwGG3b44lNzcXgIyMjMbHLrroIuLi4pg7dy4A33zzDcXFxY1XcoQQ4UWSFSFEUL3++uuoqsrHH39MQkJC4zZ58mQA3nzzTTweT7PGqqur44cffqBnz5506dKl8XGLxcKf//xnvvvuOwoLC3n99deJiYlhypQpAfmZhBCBJcmKECJoPB4Pb775Jj179mTx4sWHbTNnzqSwsJBvv/22WWPNmDGD8vJy/vnPfx72/NVXX43H4+HRRx/lm2++YerUqURGRgbixxJCBJhB6wCEEB3Ht99+S0FBAf/5z38YN27cYc8PGjSI5557jtdee42zzz678fHi4mJWrFiBqqrU1NQ0FoXbuHEjt9xyC9OnTz9srJEjRzJ48GCeeuopVFWVW0BChDFJVoQQQfPaa69hMpn461//2uTzycnJnH/++Xz88ccUFxeTmpoK+FYPffzxx+h0OqKjo8nKyiI7O5s5c+YwevToI57v6quv5qabbmLAgAFNVscVQoQHKbcvhBBCiJAmc1aEEEIIEdIkWRFCCCFESJNkRQghhBAhTZIVIYQQQoQ0SVaEEEIIEdIkWRFCCCFESAv7Oiter5eCggJiYmJQFEXrcIQQQgjRDAeLPGZkZKDTHePaiRoCnn/+ebVbt26q2WxWhw8fri5durTZx+bn56uAbLLJJptssskWhlt+fv4x/9ZrfmXlgw8+4Oabb+aFF17gxBNP5KWXXmLSpEls27aNrl27HvP4mJgYAPLz84mNjQ10uEIIIYTwA6vVSmZmZuPf8aPRvILtCSecwPDhw3nxxRcbH+vfvz/nnXces2fPPubxVquVuLg4qqurJVkRQgghwkRL/n5rOsHW6XSydu1aJkyYcMjjEyZM4JdffmnyGIfDgdVqPWQTQgghRPulabJSVlaGx+NpbFZ2UGpqKkVFRU0eM3v2bOLi4hq3zMzMYIQqhBBCCI2ExNLlP67iUVX1iCt7Zs2aRXV1deOWn58fjBCFEEIIoRFNJ9gmJyej1+sPu4pSUlJy2NWWg8xmM2azORjhCSGEECIEaHplxWQyMWLECBYsWHDI4wsWLGDMmDEaRSWEEEKIUKL50uVbb72Vyy+/nJEjR5Kdnc3LL79MXl4e1113ndahCSGEECIEaJ6sXHLJJZSXl3P//fdTWFjIoEGD+Oabb8jKytI6NCGEEEKEAM3rrLSV1FkRQgghwk/Y1FkRQgghhDgWSVaEEEIIEdIkWRFCCCFESJNkRQghhBAhTZIVIYQIM4t3lPDZ+v1ahyFE0Gi+dFkIIUTzqarKjHfXUudyM7ZXCikxUtFbtH+SrAghRBix1rt5QX2YdGM5pVWjSYlJ0TokIQJObgMJIUQYqbTWcop+E310B3Ad2KR1OEIEhSQrQggRRqyVJY1f19bVaRiJEMEjyYoQQoQRe2Vx49cVbpmvIjoGSVaEECKM1FeXArDbm8E+XTdtgxEiSCRZEUKIMFJvr8ahGqkghkq7U+twhAgKWQ0khBBhZINlDNc53sCMi3NqbVqHI0RQyJUVIYQII5U2J3/Tf81W81VMPvCU1uEIERSSrAghRBipsDupx4RB8WJ0VWsdjhBBIbeBhBAijJxW/AZTjW8BYJFkRXQQcmVFCCHCSI/6LY1fR3mtGkYiRPBIsiKEEGEk2vPb1ZRYtQa3x6thNEIEhyQrQggRJjxelVj1t6spCdRSVefSMCIhgkOSlSPweFWeWPArZbUOrUMRQggAqutcJFDT+L1FcVJtlXkr4uhW7i1n5d5yrcNoE0lWjuCRb7fz7sI1LHzmOsqtUstACKG9ymorUYrvA9QOXS/meY6nusaucVQilFXZnVz++iouf20V5WH84VuSlSO4dFQX3rb8l0ucn7Ll2YupkF8IQgiNWSt8TQw96Lgj8WlucN1MmTtC46hEKFu1rwKn24vL42bZrpJjHxCiJFk5gu6dYombdDcuDJziWsbmZ6ZQKQmLEEJDtupyHKoRqy6OhCgTAFV2mbMijmzF3gruMbzJKvP15GxYonU4rSbJylGkH38BpWe90piwbHrmYqpqJWERQmgj35hFX8cbzOryNgmRJhS8VMrvJHEUK/eVk6JUk6JYicxbjNerah1Sq0iycgwZx19A6aSXGxKWn9j4zCVU19ZpHZYQogOqsDkBheiYGKYVz2aX+Qq65n6idVgiRFXbXRQX5rPEOxiAUZ51bCsMz9o8kqw0Q8YJF1I6sSFhcS5l0XN/p1qWCwohgqzS5uuynBhlwmD0ldxX7BUaRyVC1ep9ZSww3c4jxlcBGKzsY+WWXzWOqnUkWWmmjNEXUnLmS+wjg8eqxnHFayslYRFCBFXPgs95xfg4J1jnQ2QiADpHpcZRiVC1d+tqEpRa3DozldE90Skq9u3ztQ6rVSRZaYHO2RfhmL4Me2QGG/dXc8Xrq7DWS8IihAiOlJodnKFfS7orH11kEgAmR5W2QYnQlbMMgKrkEej6TgKga/nP1ITh3y1JVlqoX+ck3rlmNPGRRtIPzGftU5dQY5c5LEKIwDM5qwDQRydjjPYlK2a3FIUTh7PWu+hasw6AyD6nEHecL1kZq9vEL7tLtQytVSRZaYUBGbG8f2kPnjS9wPj6hax/Ziq1dfVahyWEaOcsrioATLHJmGOTAYiUZEU0Yc2+Mo7XbQcgpu84yDyBvKjj+NAzjhU78rUNrhUkWWmlfr16UXL6c7jQc3L9j6x/+hJq68K3OqAQIvRFeXwrOSLiOhEZnwJAjFqDqobnclQROHu2riVRqcWpREDGMNAb2XX2J/zH/WcW7LGF3XtGkpU2yBp7CQWnv4gLPSc1JCw2SViEEAHgdHuJw5esRCekEp3SlV88A1jl6UuNw61xdCLUePcdnK8yHPRGAEb3SMKk17G/so59ZeHVRkbTZKVbt24oinLIdscdd2gZUotljb2EA6c9j0vVc1L9YtY9fQn2+rYlLKqqUl7rCLvMVwgROFV2J4kNTQyj4jth7tSLq7ibO9zXUmULvwmTInBq6l18W5nOq+5JmIZNaXw8ymxgTFcL43Qb+GXrXg0jbDmD1gHcf//9TJ8+vfH76OhoDaNpnW4n/Zm9KmQuvIGT6hfz4pxHuPL6f2Ex6Y96nNvjJbfCzu6SWmy/LsVdvANj1V7i63JJU8tYEjGU3lMf4bgenYP0kwghQlWltZpYfB9gdNG++SoJkSYKq+uptDvpmhSpZXgihKzJrWSDtxeVCYO5Zsz4Q557tOafpJh28PwWE4wbrFGELad5shITE0NaWprWYbRZj5P/zB5VZeWiz/lv0XB+enM1r00bhcWkp97lYW9BCcX7tmIr2IG3bDflNicP156Ny+P75bPMPIsuSplvMMW39Xfmsf/NX3iv392cf9FfiDAePfkRQrRf5Q49ZzreZGCKkXkm34e6hEgTRdV2Km0ywV/8ZsXecgBO6J542HO6nifDxh2kl/xEvevWsPm7onmy8p///IcHHniAzMxMpkyZwu23347JZDri/g6HA4fjt9ssVmvolA7uecqlVHWbSORrq/hlTzkfPXodAzw7yPDsZ4BSwYDf7VuixnOfZzIWo56enaI44B6JR2dFTepFZEY/IiJjcf3wAF3cxdRvncekA1n858LBHN/Em08I0f5VNtzqiYqKAUUB4Pnam+lq3sNPB96FfmdpGZ4IIeU7V5CtK2VMVt/DnkscPBk2vsxYZSOr95VxUp9UDSJsOU2TlZtuuonhw4eTkJDAqlWrmDVrFvv27ePVV1894jGzZ8/mvvvuC2KULTMiK5E3rjqeaa+volf9Fkbqt/mulABWJZYKS1cccT0xdOrNslNOISM+Cp1OAU46fLBh57P384d4c/cYcspsXPzScq46IY1bzxpCtFnzPFMIEUQVdl+p/YQoY+Njep2CXlFx1pRpFZYIMbUON+PKP+Bs03KsFS7grkOeV7KycegsdPJW8cWG5ZzU5zxN4mwpv//Fu/fee4+ZTKxevZqRI0dyyy23ND42ePBgEhISuOiii/jPf/5DUlJSk8fOmjWLW2+9tfF7q9VKZmamf4L3k1HdEvn0+jGUrLqW3RFOkrIGEt+lP7FRScS2ZCBzND0umc0XdS5mf7OdD1bnMmH9DSzb3InY8x9jzHF9AvUjCCFCTPT+pbxifB2X7QRgJABOUzw4wFNbrmlsInSszalorK8S23fc4TsYzFR2Gk1a0WL0e34AzgtmeK3m92RlxowZTJ069aj7dOvWrcnHR48eDcDu3buPmKyYzWbMZnObYgyGfmmx9Dv3r34ZK85i5JELB/Pn9EIGzd+J3rud0o9P43+rbuNPf76euEjjsQcRQoS1iKrdnKFfxw5nQuNjbnMC1IAqzQxFg1+3recUpQqXYsLYeUST+8QMmgRFixlYt5qCqjoy4i1BjrLl/J6sJCcnk5yc3Kpj169fD0B6ero/Q2o3how5k7q0b6j98DpS6nO4Iv9uFj76LfqzH2fciIFahyeECKQ6X8NCr+W3eWveCF/iotRLM0Ph49r7EwCViUPoZIxocp+ogWfCD//HCOVXvti6lwtPDP2/H5rVWVm+fDlPPvkkGzZsYN++fXz44Yf87W9/49xzz6Vr165ahRXyLD2ySbltFQWDb8CDjtPU5Qz+cgJvzPkv5TWyIkCI9sro8F09USJ/u+qsRCU2PCfJigCbw03nKl8/IHPPk4+8Y0I3FvS8izOd/2HhvvDobadZsmI2m/nggw8YN24cAwYM4O6772b69Om89957WoUUPgxmMi54GPfViyiO7E2iUssJBf9j4hOL+GLDASkmJ0Q71NjEMOa3K9f6qIbOyy7pDyR881VO0G0DIK7/uKPum3TKdPaonflpdzlujzcI0bWNZktKhg8fzooVK7Q6fbtgzhxG6szlFH3zMM/vzKS0TOWm9zfw9YZ8HjhvCGlhcB9SCNE8kY1NDFMaH9Mn9+Rnz0B2eDpzlM/RooPYuX0jJyuVuBUjhi6jjrrvkC7xxFmMVNe52Li/ihFZoV0WQ3oDhTu9kbRz7uGJm6/kltP7YNQr9N31KrufOpMNv+7TOjohhJ9Ee31XTyLjOjU+Zuh7Jpe57uJJ5/lahSVCyPyCCM5yPMzqYQ+D8egfVvU6hZtTN/Cc8Wk2r18VpAhbT5KVdsJk0HHT6b355toh/N00j7FsxPvuJezML9Y6NCFEG9U5PVhU35y0qITfkpX4SF8BzTqXh3qXR5PYRGiwO91sOFDDNrUbnU/8S7OOmehZwtn6lai/fh/g6NpOkpV2pndWZ3RXfYNNiWI4Oyl5/c/klYZOlV8hRMtV2J2c4nyKwa43icwc0vh4bIQBvU5BwUuVXZoZdmTrcqtweVQy4iLITGzeFICogWcC0Lt2JRU2ZyDDazNJVtohS+YwvFPfw4GJk9S1bJ5zJSXW8JjxLYQ4XGXDHxJLVDSK/re6SoqzlrWma9ltvpyqEGo90l55vaG7eGHb9i08ZpzD9UlrURraMRxL7CBfi4ZRyk5+2Z4TwOjaTpKVdiqm7ynU/ekV3OiY7FnI4udvoLpOPnkJEY4OfupNiPxD3zRTNDHY0CsqtVUlGkTWcby0ZA8D7vmONTmhWYDPtftHLtIvZWLdvOYflNSTSnNnzIqboo0LAhecH0iy0o7FDzuPqlMfBeASxyc89vJc6pxyX1uIcOMq3s6rxkeZ4X7j0CcUhVpdDAD2KukPFEjfbS2i3uXlpaV7tQ7lMHVOD+lVawEw9GjBujBFoT5rPABx+5eE9JUjSVbaueSTr6H4+Fk8yhW8VdiZ699ZiysM1tQLIX7jqcjjdP16hrg2HvacXR8HgMMqyUogqaW/cr3+c37esZ8Sa2gV4FyfV8kofP2AjlVf5Y+Sh00GYLRnHdsLQ7dejyQrHUDqWXcw7sr7iDDqWLyzlNs+2hjSGbQQ4lCeWl8i4jDGH/ZcvdGXrLhrJVkJlGq7i4c8T/J/xg85hXV8vG6/1iEdYuv2rWTqSvGgR8k8oUXHGnueglMxUU4sy7eFbrkLSVY6iFHdEnnxshEk6Oyct/UmXnv/A6l0K0SY8Np8XZXdEYcX7nKbfMmKR5oZBsy+chtxig2AKqL5cHV+SP3+dOxeCkBl/EAwR7fsYFMUH43/kfOcD/DDvtC6YvR7kqx0IOP7deLjfj8yXr+Ri3bO5H9fzdc6JCFEM+jqfImIajk8WfEcbGZYJ8lKoOSVVpOKr/9SqbEzOeV2Vu4Ljde73uUhrXINAIYeJ7VqjBMHdANgTU4ltQ63v0LzK0lWOpiel/yH0thBJCi1nL7273y0SFoeCBHqGpsYRiUd9lxdYn9+9gykwBva5dLDWVnBHoyKB5diYtzALozTreeD1flahwXA+rwq4lXfXJO4/uNbNUa35CiykiKJ8NpY/muBP8PzG0lWOhpzNCl/+5IKSxadlXKG/HgV36zaqnVUQoijMDf0BTJEJx/2XMnAq7nMdRff6E4JclQdh7Nol+8LRcedOy7kJeNTLNu8KyTKQazcV841rtuZ1fNzlO6t7xD1jOl51pv/RuH67/wYnf9IstIRRSWR8LevqTam0Ed3gLSvp7FkS67WUQkhjsDo9s2X+H0Tw4MO1l6pDPEKpOFMqfJNPK1IOxEluTdmxcWZ6s98ueGAxpHBir2++UyD+vQAg7nV4yQlJGJUPETm/RhS83EOkmSlg1LiuxJz9ZfYdDEM1+2i+sPrWR2ixY6E6MhUVeVy5x30q5+LYcA5hz2fEOmraCvJSuBE1fo+zBlSeqEMuxyAKfolvK/xraB6l4cNeb7f26N7HH6LsCUOLmEe4VxDTrm9zbH5myQrHZgubQDmKz6i0NCFZ13nctUbq9leKCW7hQglNQ43Lo9KPWYSYmMOez65ejPrzNfykfcWPFKSwO8qbU52uVJY4e1PTLeRMPhiVJ2RIbq9eAq3sOWAdrVJNuZX8ZnuDj62PEQPXdua1kb0Ho8bPd11xaxbv8ZPEfqPJCsdnKFbNvG3rSOu63HU1Lu54vVV5JbbtA5LCNGgsS+QUY/FpD/s+ejoGBKVWpIUa0jMoWhv9pXbeNNzJjdHPIRp2MUQlYzSdxJw8OpKnmaxbdmxk/66PIar21GiDp/P1CIRsZTEDwWgblvodWGWZEVgiTDz2pWj6JcWQy/bOj6fc3fIVWgUoqOqqqrgVeOjPGZ6CbyHt8swNky6jaeWSpv8u/W3nDLfh7duyZG/PdhwK+h8/U/M25CnWRsT+64lAFTG9oOIuDaPZ+g7AYAuFcupd4VWaxZJVgQAcRYj75yfxJum/3CT61XefOFhSViECAH2iiJO16/nVM8voDv8ygqRviXLekWlpqo8yNG1f3klVZhx0j056rcHe56KGpNOjFJPd8evfLulMOhxOdweUsp9t2t03cf6ZcyUob4uzCewhbV7ivwypr9IsiIaJWUNpH7YdABm1j3D6889yP7K0JtoJURHUlddCkCt/gifnA1m6ojw7VNZGqywOgzT/mXsjLiSG/Jn/vag3oAy5Q3eGP0d69Q+mky03bS/mlH4yk7Et7Af0JEoacexJu5MHnJfxs+/SrIiQljsubOpGXQFOkXlDuezvPP8vewrkzksQmjFafUlIHXGI1/mt+ljAai3SrLib7oK37JloyX20Ce6jubs7EHoFFi1r4K9pbVBjWvT9p301BXiRUHJGuOfQRWFwlOf4m3PGSzcE1q/9yVZEYdSFGIufAbb0GsA+Kf7JT5+4d/sLKrRODAhOiZ3Q18gpynhiPvUGXyJjKtGmhn6k6qqRNt9y5aNKT0Pez49zsK4vp2Ioo4P1wS3uaF9108AVMX0AcuR3xstNbZXMooCO4trKKyu89u4bSXJijicohD1p8ewj7oBgNu9r/HcS8+xeX/otg8Xot2y+RIQt/nI5fSLYgaxzDOQCrcpWFF1CBU2Jxke33yUmIy+h+9QvofHav7JV6a7+HhNPi6PNyhxOd1e1pXCD55hqH0m+nXshCgTZ6Q7uEz/A6s2hU51c0lWRNMUhcizHqI+eybLzCfxTd1ALn1lBWukcJwQQaWrb/g3F3nkT8+/9LuLv7juYothYJCi6hhyym10U3xzN4wpvQ7fITqVhJqd9NAV0d2+iUU7SoIS1+YDVSx2DeT/THeRePZ9fh//HtdTPGR8Hfvmr/0+dmtJsiKOTFGIOPNuhtz0MSO6p1DjcHPFayv4eZfcFxciWHRO3y1Y3VHqaCRGHaxiK3VW/CmnxEqm0vD7Lunw20CYo1EGng/Axfof+TBIE21X7PUlsCd0T0RRFP+foPcZAHQqWYY7SFeLjkWSFXFMMZERvPnX4zmldxL3qS+y9a1b+GFraM0UF6K9elQ/nb71b1A5+Noj7hPf2B/IEaywOoSK33VbJiaj6Z0aaq5M1q9k1c5ciqoDX/Jh16/bSKecE7oHptN26nBf6f0T1M1syg2ND6eSrIhmsZj0vHJyHVMMS7lW9xX579/E1xu1b+IlRHtXaXfhwER8fPwR9+lb9BXrzdfyt/LZwQusA8ivqudD9ynkpJ4BuiP8ucw8HpJ6E6k4mKRbwcdrA3t1xeXxMqrgbZZH/IOzK+YG5ByGjKFY9QlEK/XsXrcoIOdoKUlWRLOZeo/Hc9YTAPxV/x1VH9/Ih6ulW7MQgeLxqlTZfeX2Expu9TTFYjaRoNQS5a4KUmQdw9rqWP7P/TdyTn7yyDspCgz7CwCX6H/kgzX5eAPYo2nzgWpGqNsASOwxPDAn0emoSPMVmtPv+SEw52ghSVZEi+iPvxrvuc/hReEv+h/wfnEjb/2yR+uwhGiXrHUunjA8x2PGOSR4K4+4nyXON58l2mtFVaWZoT+oqtpYar/770vtN2XIVFRFzwjdLkyVu1mxN3CVhDfs2E0/ne/qja6bfyrXNiV+sK+a7UDbypDo6C3Jimgx3fDLUc6fgxcdUw0/EvntjcxZtFPrsIRodyps9ZytW8FF+qUYdUeeSBkdnwJAHLXYNOpT096U1jqIdZYQobjITDxGshKThnLy7XzQ9R72qykBrWhb++tSACqjekJbmxceRfygM/Gi0FMpYOXWXQE7T3NJsiJaRRkyFeWi1/Ci5xzdcuYtmM/j83fKpzoh/MhaWY5BaViNYTnyZEpzrC9ZSaAmJD4Ftwc5ZXbeMT3ENvOVmAtWH/uA8bMYMOFqHJj4bktRQP4/uD1eEkp9sahZJ/p9/ENEJfF+32cY7niJBTnuwJ6rGSRZEa2mDLoA3SX/Y+Gg/7JZ7cGzi3bz4LztkrAI4Se2ymIA7IoFDEcu+KY0NDOMUhxU1wS37Ht7lVtSTaZSig4V4ro065hBnWMZkB6L0+Pl8w3+X4CwpcDKSLWhH9CAU/0+/h9ljTqLGiJZuqtU89/rAU1WHnroIcaMGUNkZOQRZ7Ln5eVxzjnnEBUVRXJyMjfeeCNOp3wyCBv9z2bSlGu471xfMapvl63m7k/W4gngBDMhOop6q6/ImO1ITQwPMsfhafh1XlMZnMJk7V1F4e5jL1v+A8VewQPJ87nb8D8+WJ3v9z/w63fupa9ycL5KgK+sACO7JWAx6imtcbC9UNuWKwFNVpxOJ1OmTOHvf/97k897PB4mT56MzWZj2bJlvP/++3zyySfMnDmzyf1F6Jo2phvPnZXEx+b7OGPjzXy+erfWIQkR9hxWX6n9OkP80XfU6dhhOo5lnoFY7YGv89ERuEp8v8NqIrseednyH9lKGbHrGa7Qz6e8KJ9Nfm5RsiK3ln+4/sG67n+D6E5+HbspZoOeu5MX87np3+xcvSDg5zuagCYr9913H7fccgvHHXdck8/Pnz+fbdu28fbbbzNs2DBOP/10Hn/8cV555RWsVmsgQxMBcHaWl2S9nZP1m6lf/prW4QgR9ry1vmTFZY4/5r7PZz3JX1x3UagmBTiqjkFf6eu27E7o3vyDOvWDLqMwKF7O0y/z60Rbt8fLz3l1zPOOxnT6XX4b91hGm3PIVEooObAvaOdsiqZzVpYvX86gQYPIyPjtEtuZZ56Jw+Fg7dq1TR7jcDiwWq2HbCJEZI3BOuYOAPpULMZaL6W/hWgLb53vk7k74tiVShur2Nrl311bqapKTEO3ZVNTPYGOpqHmysX6JXy18QB2p38mp24rtFLrcBMTYaB/eqxfxmyO2IueoeCazUy/Tts7HpomK0VFRaSmph7yWEJCAiaTiaKipsu5z549m7i4uMYtMzMzGKGKZkoeeSEAw5Wd/LJph8bRCBHevrCcR9/6N9g8+N/H3Dch0lc07mAROdF6JTUOOnt93Zajm+q2fDQDL0A1WOitO0Bv5w7mbSr0S0zrduYwQ/8Zl6UfQH+UZez+lpScynGZCeiCeM6mtDhZuffee1EU5ajbmjVrmj1eU02YVFU9YnOmWbNmUV1d3bjl5wencZRopvhMCqP6oVdUytd+rnU0QoS1CpsTByZi4o99ZWVCwYusN1/L8Pz/BSGy9m1fmY0fvCP4zjAeQ+dhLTs4IhZl4HkATNH/yAd+uhVk3bmU24wfcV31U34ZL9wYWnrAjBkzmDp16lH36datW7PGSktLY+XKlYc8VllZicvlOuyKy0Fmsxmz2dys8YVG+k6GdTvoXLQIh/tOzAa91hEJEZYqG66SJEYdednyQRa9SoJSi8ERuOqpHUVOmY13PKezPyOFiRlDWz7AsL/Axvc4R7+CB3IL2V1SQ69OMa2Ox+NViS1eCQp4M8e0epxw1uJkJTk5meRk/1TNy87O5qGHHqKwsJD09HTAN+nWbDYzYsQIv5xDBF/q8RfCusfJZjMrduZzysBuWockRFi60vYascYq0upSgOOPuq8+ynf1xeSsCnxg7dy+cl+Z/W5Jx6hceyRZJ0KngWy2pxPtqOPDNfu586z+rY5ne6GV4epWUCB+wPhWjxPOAjpnJS8vjw0bNpCXl4fH42HDhg1s2LCB2lpf0aIJEyYwYMAALr/8ctavX8/ChQu57bbbmD59OrGxwZtAJPxLlzqArzvfxGTnQ3y3QyZAC9EaLo+Xk71ruFD/E/GK7Zj7G2N8HyIjXP5dLtsRlRUfoLtSSI/EY1/RapKiwHU/YTvrBUpJ4JO1+3G6vS0ept7lYdGOYl74bh0DlRwgsP2AQlmLr6y0xN13382bb77Z+P2wYb57f4sXL2bcuHHo9XrmzZvH9ddfz4knnojFYuHSSy/lscceC2RYItAUhdhT/sHuPauo2l7CQ15V88lZQoSbSruTBMVXiCsy/tg1NQ6W3I/yyAeEtupR9D2Pm1+mdOcZcNLHrRtEp2d83xQ6xZgpqXGwcHsxk45LP+ZhxdZ6Fu0oYeH2YpbtLqPe5WWcbj16k4o1MpPYuM6tiyfMBTRZeeONN3jjjTeOuk/Xrl35+uuvAxmG0MDoHknERBgoq3WwPr+KEVkJWockRFiprKmnN74rKvpmNKyLivMlK7FqDU63F5NBuqm0hterEmPPA10rli3/gUGv4+/96li6diPvr05pMlnxelW2FFSzcHsJi3aUsPnAoVfGusUqPKW+CS6I6TuuTfGEs4AmK6LjMhl0/KPzbtLyvmL78mpGZF2qdUhChBVrZSk6paFce+SxVwNFNnRejldqqbI76RQbEcjw2q0iaz2ZaiuXLf/Rrh/46+a/MNGYyNhdQyioqiMj3oLd6ebn3eUs3F7Moh0llNQ4Gg8xKB4uTC2my3HjOK1/Kv3TY1DefQMOrEEZPq1t8YQxSVZEwEw0rKOrfjmf7k5AVf98xOXoQojD2asa+gIpUUTpjcfcXxfdie10p9gbS7pNkpXWyimz0U3x1fnSJ/ds22DdTwJLAul1FYxVNnP3F+l4vF5+2VOO43dzWCJNev7UzcPl5iX0LfwCfVUxjNgM8Q1zN895CiKTwNBxV8JKsiICJuX4CyH3Y0a7VrC7uIbeaTJpWojmqreWAr4mhlHNOSAmlRtinmJvqY33pIptq+WWVnO84nvtSWxjsmIww+BLYOUcpuh/ZMb2IY1PdY63MKFfIhfGbKN/wSfo9ywEDl5JS4KyXyG+oehpbPMaKbZnkqyIgLH0OZV6JYIMKvhw1Y/0PvdcrUMSImw4a3z1UuqN8c0+JiHSBNikim0bVBXuwaB4cSlmjDHHnhB7TMP+AivnMFG/lvFpOkYO6M3p/VPp49mF8t4lUPu7au3dT4ERV0K/yR36KkpTZAaWCBxjBCWpJwGgbpdJ1EK0xDrLaPrWv8FnA55q9jEHS+5Lf6DWc5bsAqA2KrP53ZaPJu04SB+CATdzey7lhvG96JsWg5LcG5y1EJUCJ94M/1gH076EQRdIotIESVZEQMUPPx+AobafKaiq0zgaIcJHZUOp/ciGVT7NcXPZvWwwTyd6/4+BC6yd21ATz5OuC6noc4n/Bh12ue+/K14AteFWjzkGrvwabtkGZ9wHSW285dTOSbIiAir2uLNwo6evbj8r16zSOhwhwkZFw9WRhGaU2j8oSqknXrHhtUnJ/dbwelV+rk7kac+FmMbO8N/Ax02B+K4Q1QlqfnfbJ2MYGFpZeK6DkTkrIrAsCRQljKKivJiNO/dy/umnaB2REGHh5LIP+JNxBz1qrgG6NOsYj7mhnpG9InCBtWMF1XU43V6MeoWMeIv/BrbEw82bfVdVZFVkq8iVFRFw7qnvca7zId4+kEq13EsXoln61W/gQv0yklyFzT5GtfjqsejqKwMVVruWU2ZntG4bJ8RXo6fl5fGPSRKVVpNkRQRct9RE+qbG4PaqLNpZrHU4QoSFaI+vkmlE3LFL7R+kNBSPMzgkWWmNnNIq3jY+zNu266BWfleFEklWRFBMGJhKNHbWbtigdShChLw6p4c41dfjJyqh+cmKIToJkGaGrVVd0LBsWWeG6DStwxG/I8mKCIop5pWsNV/H6TmPU+/yaB2OECHN18TQ150+sgVXVswNnZctbklWWsNZshuA2siu/lm2LPxG/m+IoMjsNxKz4iabTazYnqN1OEKEtIoaO/GKr4mh0owmhgdFJGWy2duN3Z5UvF41UOG1W4bqvQB4EnpoHIn4I0lWRFAonfpTbu6CWXGTv/orrcMRIqTVVvnKvXtRICK+2cdF9TuVc5wP82/XX7HWy2T2lvB4VeLs+QCYO7Wt27LwP0lWRHAoCvU9JwGQtH8BnhD81KeqakjGJToeW2MTw2jQN7/ChMmgI9rs21+q2LZMQVUdXfHVQIlKb2O3ZeF3kqyIoEk9/kIAxnrXsW5vaM2093pVznvhF05/YolU2hWay9dl0qf+TR7q9kaLj41vKLlfYZP+QC2x73fdlnVJchso1EiyIoLG0PV4rPpEYhU7v678TutwDrEurxJ1/1pSytdw5dxVUg9GaKrC7sKJEUNcassOVFXed8xgo/ka7OX7AxNcO5VTbuMJ90V8Ff8X6NRf63DEH0iyIoJHp6e66+kAWPZ9i6qGzi2XHzfu5n3Tg3xofoB+pfOZ/tYaWbUkNFPZcFUkMbKFpdgVhThqiFPs1FWXBSCy9mtfmY0vvSeyuc8MaMGkZhEckqyIoEo5+Woe9Ezj8dpJ7Ciq0TocwDdXZcv2zUQqDgAeN76IMXcJt364QeawCE10K/6ex40vMLxmUYuPtevjAHDWlPo7rHYtp8y3+qpbUpTGkYimSLIigiqi+2hyel3BAVKYvzU05q1sL6zhx6o0+nvexdN9HEbFw0vGJ8ndspwHvt4WUleARMeQbt3ChfpldK77tcXHOky+ZMVdK/2BWkIp2cZY3WZ6R9m0DkU0QZIVEXQTBvruw8/fVnSMPYPju62+OE7qnYr+sg+h+8lEK/W8YfoPi5av5OWlezWOUHQ0RmcVAProlt+OcJviAfBKM8Nmc3u8jKudx9um2fTb95bW4YgmSLIigu70nlH8Wb+IS0ueJL/CrnU4rNy0HTNOJg5KA4MZLnkH0o4jRbHyovEpHvl2G5+tl8mKIngi3VUAmGJTWnysN8LXeVmpk2SlufZX1tEV35VeWbYcmiRZEUGXGKHjAeNcLjMsZOXqVZrGsq/MxiVVL7PWfB0T3T/6HoyIhcs+gS6jWD7wXlR03P7RJn7aJXMAROCpqtrYxNDSglL7jRqaGeql83Kz7SuXZcuhTpIVEXyWeIoSjwfAseVLTUNZsDmf03XriFbqiUz7XdXKmFS4egFXTTmfc4Zk4PaqXPfWWrYckJ4rIrBsTg/x+CafR7egieFBakJ3Nnu7UeSJ83do7VZuSRVdlIYPI0k9tQ1GNEmSFaGJyMF/AqBf9dLGZZpaKNrwPbGKHbs5Gbocf+iTioJOp/DYlMH8pUspt3tf46q5K0Pi1pVovyptThIUX7Jijm15slI/9CrOcT7Ma96z/B1au3VIt+WYdK3DEU2QZEVoInG4L1kZpuxm2fotmsRQVF1Pr/LFvm/6nX3ELqtml5UHav7NlYb5XFP/BtNeXyXVQUXAVFpriVUaqig33NJpiYMVbCvtLlnJ1kzuMl+3ZVtUV1AUjaMRTZFkRWgjNoOi6IHoFJXKDdrcCvph6wEm6NcCEDn4vCPvaElAOetRAK41zOPUyg+5+s3V1DmlaJzwv3IH9Kl/k7/E/w8sCS0+PiHKV0jO6fZSJ4UNm8VYnQNIt+VQJsmK0IzS/2wAskoXa/KHf9/6hSQrVuoNsdBt7NF3HjIVzrgfgH8Z36Hr/q/5x3vrcXu8QYhUdCQVtU6cGFFi0lr1KT+qJocl5ltYaJopzQybweXx8lntIG5z/Q3dyL9qHY44AklWhGY6jboADzrweln6a3ALxFXZnWQWLQTA3Wsi6I3HPmjMjTD6egAeM76EY+cC/v3FVrnULvyq0u67xZjQ0lL7DRSjhSylmK5KCZW1Dn+G1i7lV9jZ5+3EN/pTiT9uotbhiCOQZEVoRunUjyeGfsM01x18v60kqOf+YXsJb7rPYG7E5USPvrJ5BykKTHgIBl2EUfEwx/gk61Yv49lFuwMaq+hYLIWreML4AhNtX7RugIZ5LkbFg7Vaaq0cS065r2JtVlIUisxXCVmSrAhNnTy4DwALt5cE9ZbK91uL2KemUzXiRuh2YvMP1OngvBehxzgqOmWTo6bxxIJf+XB1fuCCFR1KZPWvXKBfRh/7+tYNYLTgwAyAvVpqAx1LTkk1l+oXMjFyB3hljk+okmRFaGpEVgKJUSYMdWWs3hOc8vt2p5ulv/p+iU8clNbyAQwmmPoumdd9wjXjfa3kZ322mcU7gnt1SLRPuobKs6ql5SuBDrLpYwFwWCVZOZbqwj08bHyNvxf+CxT5kxiqAvp/5qGHHmLMmDFERkYSHx/f5D6Kohy2zZkzJ5BhiRBi0OuYG/Ucq83Xs3vVt0E555IdJczida6MXUu/5GbMVWmKKQr0Bm6b0JcLh3XmMuU7bnvnZzbtr/JrrKLjMTRUnlWiklo9Rr3RVxDOVVPul5jaM0+p7zauXZYthzRDIAd3Op1MmTKF7OxsXnvttSPuN3fuXCZO/G1iU1ycVF7sSJKS09BZVaL3fY+qXhXw+8Yb1y/nDsN83K4fUby3tGksRVH4b9xH6I1vMsGzhlkfxvDFTadi0MsnNNE6ZpcvWTHEtLyJ4UEuUzzUg8cmycqxGKr3AeCVZcshLaC/Ue+77z5uueUWjjvuuKPuFx8fT1paWuNmsVgCGZYIMZ2OvwCAMe6VbD1QFdBzOd1eYvZ+B0Btl5PAHNPmMfXHXYhqjGSsfisXVbzM2yty2zym6LgsLl9Lh9Y0MTyoNrYnm7zdqXQF9PNo2HO4PSTU++abmVN7HWNvoaWQ+Pg3Y8YMkpOTGTVqFHPmzMHrPfJES4fDgdVqPWQT4c3Uaxx1SiSpShWbVi4K6Ll+2VPGqeoKAGKHXeCfQTsPR5nyBgBX6Ofz1YIfpMKtaBWvVyXG6/udFtmaJoYNtg39N+c6H2KpfrS/QmuX8ivsdMM3Vy4yrY/G0Yij0TxZeeCBB/joo4/44YcfmDp1KjNnzuThhx8+4v6zZ88mLi6uccvMzAxitCIgDGbK0k8BQP/rNwE91Zp1a+mvy8ODHl0/P/ZO6XMmav9z0Ssqt3le57Hvd/hvbNFhWOtdJDQ0MYxKSG31OAdrtFTZJWk+mn1ldrIUX40nRRoYhrQWJyv33ntvk5Nif7+tWbOm2eP961//Ijs7m6FDhzJz5kzuv/9+Hn300SPuP2vWLKqrqxu3/HxZMtoeJI44H4ARdb+Q21D3wN88XhXjrnkAWNNGt6rvytEoEx7EqzeTrd9G9dqPpEOzaLEKm5NTnY8zTn0ZY+chrR4nIepgfyBJVo4mr/R33ZYTJVkJZS2+oTljxgymTp161H26devW2ngYPXo0VquV4uJiUlMP/2RhNpsxm82tHl+EpqiBk3B/ZaCXroAPV60ga9Jpfj/H2txKTnIvBx3EDjvf7+OTkIVu7C2w5BFmGd7lti/P4L3rTpJCU6LZKu1OXBjwRnUCQ+t/z2WULGWJ6XZ22roDp/ovwHYmp9zOpc67uGqAysSYVpQxEEHT4mQlOTmZ5OTWz1I/lvXr1xMREXHEpc6inYqIZXPP6byzw0vJXi8XB+AUP2zO4yxUvOjQDzgnAGcATryJugObuWVnNqtza/hqUyHnDskIzLlEu1Nh8/XyOdiMsLWizQZidCVUe6NwebwYZXVak/ZWOFil9ufiAUNk2XKIC+hU8by8PCoqKsjLy8Pj8bBhwwYAevXqRXR0NF999RVFRUVkZ2djsVhYvHgxd911F9dee61cPemAUs+5h0+3LcKb72Tpr6Wc3Kf1qyH+SFVV5m2r4GXnA8ydksX4QH2KMkVi+cu7nLxwF6sX/MrD87Zzev9ORJpkVYY4NmfJbp4wvoDe2Q1oQWXlP4iM8/3bSaCWKruLlBj5fdqUnDI7AN2TIzWORBxLQNPtu+++m2HDhnHPPfdQW1vLsGHDGDZsWOOcFqPRyAsvvEB2djaDBw/m6aef5v777+fxxx8PZFgiRGXEW7giuxsA//5sA3an229jby2wcqCqjgijjtHH9ffbuEcy/eQedEmw4LEW8eKPewJ+PtE+eCtzuUC/jOPrf27TOPqGgnLxSq3MWzmCepeHgTU/MVW/iB56qT4d6gKarLzxxhuoqnrYNm7cOAAmTpzI+vXrqampwWazsXnzZm666SYMBvkU2lHddkZPbo5awCu2m3j++41+G3fhpn3EYGdcn05YTHq/jXskEUY9b3RbwDLzjWz+6Qvyyu0BP6cIf57aMgCcxvi2DdQweTxGqaPKWtvGqNqnvAo7l+l+4BHjq8QXr9Q6HHEMciNThJRovZe/RSygj+4ASSsf9duKGs+mj1hr/hu3qXP9Ml5z9IzxYFbc3Km8wex5m4J2XhG+1IaKs66INq5Ui4jDi28ORm11WVvDapf2ldnopvhqrMiy5dAnyYoILaZILOc/DcA0/Xe8+uEnbe7GvLe0lqG1yzApHrp0Dl5dHmX8LNwRifTRHSBt59ss2yV/NMTRKQ19gdrSxBAAnR67LhqAeum83KS8Elm2HE4kWRGhp9fp1Pc7H72iMr3yKd74aXebhlu8cTdjdZsBiBh8nh8CbCZLAoYz7gHgFsMnPP3Fz7jamHiJ9s3g8CUrujY0MTyoIKI3G709qKmTOStNsRbtRq+ouHQRIMuWQ54kKyIkRZz9X5yGGAbqcilf9DT5Fa2f81G18WtMiofqqO6Q0tePUTbDsMvxpA4mVrFzQdVc3loufYPEkUU4G5oYRre9PMSHA57nT84H2avLavNY7ZG7oduyLVq6LYcDSVZEaIruhHHSQwD8Q/mIJz5agKqqLR6msLqO/lVLADAMOtevITaLTo9+sq8i8yX6H/n+h+8or3UEPw4RFiI9vjlaEXFtT1YO1mqRPlVNM1XnAKDKLaCwIMmKCFnKsMupSz8BI27IXc4XGwpaPMbCTTmM0/lWFUUN8VPjwpbqOhrvcRfjVExkOHN5bP5ObeIQIc3l8TKt/jZG1b+AYWDbE+v4yIMl911tHqu9qXN6SHTsByAitbfG0YjmkGRFhC6dDstFL/LxyHf4zHsS93+9rcWfEkvWf0uk4qAmIh3SW99rpa10Ex5k55RFfOY9ifdX50vfIHGYKrsLFwbKlHji49vet2rYgXdZarqJM0qCtwIuXORW2HjWfQHXcA+WkZdrHY5oBklWRGhL6smFk86kb2oMFTYnD87b1uxDK21OPihK427XNFyjb9L2vnRMKkMGDuJPQzNQVbjny62tuq0l2q+DxdviLUb0ura/V6MVB111pcQ4i9o8VnuTU2ajjDhKU06AlD5ahyOaQZIVEfJMBh2zLzyOAbocEje+zE+7mrcU84ftxRR741jdaQqJ4/4e4CibZ9ak/pxs2smA/R+06raWaL8qq608aXyef+nfBE/bb90YY3zzXiwua5vHam/2HSyznyRl9sOFlIoVYWF4bA1fmf6NHg/XfzyIkTP/dsxKtN9v9X2inDgwdJYlptm28z/dfTgVPZd+M4IzBlxKlFn+GQqwVxZzvv5nXC4D6Nr+nrDE+voDRXmtqKoq3b9/p7JwH7cb3qeHdxQwTOtwRDPIlRURHuK74h08FYCb657jmQVbj7q7zeGm6+63+bN+IZN6ta2DrV+lD8XT83RMiofr61/j+cVtqyEj2o+6al9/Gps+zi+3LCPjfclKPDVY6/3XZ6s9UEq2cIPhS8YUva11KKKZJFkRYcM48UGcZl9FWMPyZ486SfXHHUX8Xfcps42v0duzN4hRHoOioJ/0CF7FyKn6Dexe9gm55TatoxIhwFXju71ZZ4jzy3imhttA8YqNSlm+fAizLFsOO5KsiPARmYhp8n8BmKH/jGc++u6Ipfh3rfmBFMVKnT4WpdvYYEZ5bMm9UbJ9c2hm6d5k9lf+a9gowpe71tcXyGlO8M+ADc0M46mh0ia1fQ6yOdwkOWXZcriRZEWEl+MuwpE1DrPiYlr507zx877DdnG4PSTlfQ+AvfsZoDcGO8pjUk6+HXdkJ7rrium2602W/Cr9Wzo6xe5LVtxtbWJ4kCWRIl0q29UsrLVy9e6gnHIb3RsaGEqyEj4kWRHhRVEw/+kp3LoITtRvZcOCdw8rxf/LrjJOxdfyPWHEhVpEeWwRsRgm3A/ADMPnPCt9gzo8XV2F7wuLn66smCK5LeMt/uR8kHKHTK49KKfM3thtmcQe2gYjmk2SFRF+Erujm3Afr8Vezzeuofzr8y2H1CzZuuZHOivlOHQWdL1O1TDQYxh8Ca6+5/Kw7jrWlBt485ccrSMSGjI6DzYxbHup/YPaYxXbttYnyiutorPS0AE9SeashAtJVkRY0o2+jnGX34VBb2DJr6V8udFXs8TjVYna+y0A1i7jwWjRMsyj0+kw/vkthpx1NaDw9A+7qG5Hf1REy/yXKxlZ/yLWYdf6bcyESN9KuCp7+5hg+8i3Oxj2wALeWZnb6qTFWujrtuzUWSA61c8RikCRZEWErZ4p0cw4tRdmnLz55QIqbU7W5FRgcVXiRkfCyBC9BfQHU0Zk0qtTNKrDyvdbpVBcR1Vm91JGHHEJnfw25kVFT7DUdBNpBxb4bUwtfbO5kCq7i7s+28JVb6ympKa+xWOsq4lnrONpVo59TbothxFJVkRY+3t/B4sj7+Bx98P85+sNfLe1iDvc13Jvn88x9J+sdXjNotMpzEzfxGLzTHLWfK91OEID9S4PNqcH+K1bsj/EeavpqivFaC/225hacXm8HKiqA8CgU1i8s5Qzn1zKt5sLWzTOnnIH+9UU4vuE2CpBcVSSrIiwZkzMJDlCpbuumM6bn+ejNb4liScP6Rvat4D+YIyymRSlmoyCBdTUy62gjqbK7uI+w1zuM75JrKvMb+OqDZN1dfWVfhtTKwcq6ziFtTxuepnvp3VhQHoslXYXf39nHbd+uAFrM/7d1NS7KKv1LePuliyl9sOJJCsivEXEYTr7MQCu03/FQOdmLEY9J/dJ0Tiwlokd7rtldYZuFYu2S+O5jqa8tp6p+h+Zpv8exeu/ZFUXlQSA0VnltzG1klthp0KNxWw20/PTyXw5Zi83jOuBToFP1x1g0lM/sXxP+dHHKLdzvf4L/mX5hBhbXpAiF/4gyYoIf/3PwdVrIkbFwwfmB/gi6iEijt42KOQoPcbh0EeRqlSxc80ircMRQVZdXY1ZaUhSLH6qswIYo33JSoSrym9jaiWv3MZeNY3e+kJwWDHMu5HbKx/gs2m96ZoYyYGqOv78ygoe/Hob9S5Pk2PsK7MxVb+Ia9RPoDb8b411JJKsiPCnKBjPebzx265mO+jCLFsxmKnrdgYAyfnfY3dKL5eOxFbl6wvkxAimKL+Na25oZhjpCf/OyznldqxE89HAF+CMB0Bvgp3zGPLVWcw/y8afj88E4NVl+zj3uWVNtuPIK/ndsmWpsRJWJFkR7UNcFzjvRTDFEHHWg1pH0ypxIy4A4AxW8eOOEo2jEcHk8HMTw4Mscb6aLbFqDXXOpq82hIvaor1coFvKUNN+OPFGmL4YOg0EWykRH1/GbMOrvH75EJKjzfxaXMv5L/zM84t34/H+tsTZWuRbtuySZcthR5IV0X4MvRTu3A99J2kdSasovc7AqYsgU1fK5rU/aR2OCCLnwSaGxni/jmtJyCBP7USRmkhlmNdaSS5fxROmOZy49xnfA2mDYPoiGPMPQAF7OacO6Mz3N5/EmQNTcXlUHv1+Jxe/tLyxWai3zNfl3B6TJcuWw4wkK0KEClMk1b3P5333OH7aV3vE++6i/fHafBNDXf5qYthA6TKCC4wv8jfXrWGdrHi9KlENE2L1yb+rOmuMgAkPwpVfwzlPg6KQFG1mzpQ+PH5hf6LNBtbmVjLp6Z94d2UeZmuu7zi5BRR2JFkRIoQkXfIiT0XeyBZnGst2+W8JqwhxDU0MPf5qYvg7CQ0l96vCuDpySY2DzqpvQmxkWq/Dd+g2Fn7XpkD5+mYuXHclCy5P5YTuididHu78bDOdXAcAsKRJA8NwI8mKECFEp1OYOCgNgG+3BGcJc73L01h7QmjjC9NkRtS/yM6hd/p97IMl98P5ykpuuY2shuaDhuRj9POpPgB7FkHhRtLfP5P3hmzkrkl9Mel1dFV8c4NMKZKshBtJVoQIMRMHpjJU2Y112w9B6cR83dtrGTN7EWtzKwJ+LtG0MruXcuKITOrs97Hvq76Tn0w34Sn51e9jB0tuhZ2shkSDhO5H3zmuM/x9OfQ8Fdz16L77J9Nzb+Obv/bg7R7/5dOT5kH/swMftPArSVaECDHH1y7kc/Pd3OJ985hFrtpqy4FqRu95hm/0t/LCpwsPWTkhgqfS5rvqkRjpv1L7B6V4SsjUleK2hu8Ks6LiQhKUWt83icdIVgBi0+Evn8JZj4EhAvYuptfHE3h1VAEXnDYWLP6dGyQCT5IVIUKMrvcZeNAzQJfLyrVrA3quz5as5DrDV/TSFXB1xRO8v1qqegabqqpcUvc+9xjeJKVuj9/HdxjjAHDZApv4BlJ9se91sZuSm1+HRlHg+Onwt58gfSjUV8H3d4HTFrA4ReAELFnJycnh6quvpnv37lgsFnr27Mk999yD03nofdO8vDzOOeccoqKiSE5O5sYbbzxsHyE6lMhErGmjATDv+ipgVzvKah1s3LYTp+oroDdGv41V371DVRjPbQhHdqeHScpy/mr4nniv/xMKd8MKI9Uevrf51tYmcYXzn+wcfnfLD07pA9f8ACf/H5z3gl+L7ongCViysmPHDrxeLy+99BJbt27lySefZM6cOdx5528TyDweD5MnT8Zms7Fs2TLef/99PvnkE2bOnBmosIQIC7HDzgfgJPcKVucE5o/MeyvzWOPuwZSUL/EMnwbAbZ7Xefb7zQE5n2hahc1JolIDgDnG/z2tVEs8ALq68G1muKMSlnqHYBl6fusG0Bvh1Lug53j/BiaCJmDJysSJE5k7dy4TJkygR48enHvuudx22218+umnjfvMnz+fbdu28fbbbzNs2DBOP/10Hn/8cV555RWs1vAvDy1Ea+kHnIsXhWG63fyybpPfx3d5vLy1wldz4qqx3dGf+TCOyDQydaXErn2OHUXy7y9YKm0OEvAlK8rvlt/6ixLpWw5tcFT5fexgqLI7qa7zLbvumiidkjuqoM5Zqa6uJjHxtzoCy5cvZ9CgQWRkZDQ+duaZZ+JwOFh7hHv1DocDq9V6yCZEuxOTSnXycN/X27/C6+dbQd9sKmC0bTFdo71MGpQO5mjMZ80G4HTdWu77YhOqKpNtg6G6ugKj0lAA0I9NDA/SNzQzNIdpM8PccjtT9D9yRdQKIsP0ZxBtF7RkZc+ePTz77LNcd911jY8VFRWRmnpof4aEhARMJhNFRU3XmJg9ezZxcXGNW2ZmZkDjFkIr0cN8vYIGOTewYX+VX8deueQbnjE9xze6mzHR0DRx4PmUn/k8l3gfYvm+ar7ZHJw6Lx2dvaGJYb1iBpP/rxwY4zuT6+1Eqdvi97GDIbfCzkzDR9zveQYqc7UOR2ikxcnKvffei6IoR93WrFlzyDEFBQVMnDiRKVOmcM011xzynNJEfwZVVZt8HGDWrFlUV1c3bvn5+S39EYQIC8YhF/NU5tNc57qFbzcX+m3cDflVjCn/BAB934lgaFguqygkZf+Fq0/pC8BD87aFffO7cFBf7esLZNfHB2R8w4grOMX5FPfVT8UdhLo9/naguJw0pWG+TXOWLYt2ydDSA2bMmMHUqVOPuk+3bt0avy4oKGD8+PFkZ2fz8ssvH7JfWloaK1euPOSxyspKXC7XYVdcDjKbzZjN5paGLUT4ie5E3+PPxLtrHd9uKeLOs/ofMYlvic+XrOJfulUAWE78+2HPX3dKTz5bk8PJtV/x8uJO3HTmcW0+pzgyd42vrUK9n5sYHhRnMTZ+XVXnIjk6vH5/2op9zQfrDTFERPr/NpkIDy1OVpKTk0lObt4ksAMHDjB+/HhGjBjB3Llz0ekOvZCTnZ3NQw89RGFhIenp6YBv0q3ZbGbEiBEtDU2IdueUvilEGHXsr7SztcDKoM5xbRqvxFpPp53vYNB7qU07gei0QYftYzHp+STuKVIcP/P0slryRz1DpkxsDJi1xuE8XP8i14/swtUBGN+g1xEbYcBa76bK7gy7ZMVbvg+AuugsIjSORWgnYHNWCgoKGDduHJmZmTz22GOUlpZSVFR0yFyUCRMmMGDAAC6//HLWr1/PwoULue2225g+fTqxsbGBCk2IsBGpV5mT8B7LzDexaMPONo/3/vJdXKxbBED0Sdcfcb/kk323a/+m+5w5ny9q83nFkVXYPZQThzGpa2BOYCvjQ90sFplubayUG07MNTm+L45VZl+0awFLVubPn8/u3btZtGgRXbp0IT09vXE7SK/XM2/ePCIiIjjxxBO5+OKLOe+883jssccCFZYQ4UVvZDjb6KKUYd/8dZtW6DjcHspXfkCyYqXOkgb9jtwfRRl4PrbOJxKhuBi37wnpAB1AFQ1F+BICUGofAKOFft499NAVYa0Or1ordU4PiQ5fp+SI1GM0MBTtWsCSlSuvvBJVVZvcfq9r1658/fXX2O12ysvLefbZZ2VOihC/Yz7uPABG2H5iV0ltq8f5ZnMh6c4cvCiYRk8H/VHuAisKUec9iQc9Z+jX8u2nbwalqWJHNLrya+41vEG32vWBOYExEhe+eSt11eGVdOZV2MlSigGI6NRL42iElqQ3kBAhzjzYV7XzZN1mfljfut4xqqoy9+ccHnH/mXeO/xz98c2YHZHSF/fxvgm4020v8e4y/3ftLampZ/GOEr/XkQknQx2ruNIwn2T73sCcQFGwGXxznRw1pYE5R4Dkltu4030198Tci9LzVK3DERqSZEWIUNdpADVRWZgVF1Wb5rVqiHV5VWzaX43JoGPyKWOa3XXWfNod2M2d6KYrpmbx45TVOlp1/qYs3l7Ms088QOU7f2XpRv8nQuHA61WJ8vgKW1riOgXsPI3NDGvCq5lhbrmd/WonytJPgbjOWocjNCTJihChTlEwDPoTAINrlpBT1vKusR/+tJEuSinnDc0gMaoFcyPMMURMns0Gw2A+c4zise/bPsnX7fHyxLx1VL57FQ+oz+FQjew/0DG7PdfUuxtL7UcmBC5ZcZniAfDawquZYW6F772eJavROjxJVoQIA5aGW0HjdRuYvzGnRccWVdfTeef/WGK6mdtMn7T43LrjLsR92efsUTvzwZp8NrWhmm5RdT3/98IHnLvyMi7QL8ONjt1qBpvrm66r1N5V2J0kNDQxNAWgieFBngjflTSlLrySFW/hFv6h/5QTPE23XxEdhyQrQoSDjGEUJ4zgPc+pLN3aspLj7/6ymz/rfkCvqHTqMbTl51YURnZP4ryhGagqPPTF+lbNMVn6aykvPnU/D5XdSC9dAfURnfj5xDd4zTOZ/Ep7y+NqBypq60mgYdJ0ZFLAzuOO6UKONxWrK7x+5adUrmOm8WOOK/pM61CExsLrnStER6UoKFd9w0Oey1lWoHKgqq5Zh9W7PJSv+oAUpZp6Syr0P6fVIcw6tQsPmd/k4eK/8+Xa5k8G9XhVnv52I8VvXcV96vNYFCf2zFOImPELkT3H0EUpxVK+udVxhbOaqnIMSsMqqwBWZy0a/W/GOZ/kY04L2Dn8zeXxElu3HwBTSg+NoxFak2RFiDDRKSaCUVm+P2jfbWlek8GvNhZwkecbAIwnXAN64zGOOLLUuAjOM6+lp66Qwm8fpdbhPuYxJdZ6Lnt1BXOW7GaIsgcvOlyn3EnkXz+H6BS6e3JYZr6J/9bdH5Z9a9rqYBPDOiUSDIEr2RAf6fv/Xml3Bewc/lZQVUdXfO/zyNTeGkcjtCbJihBh5KyBSYzVbWbrul+Oua+qqvy85HuG6XbjUYzoR/61bSc3x2A6azYAV3o+4X/fLjnq7r/sLuOsp39ixd4KdKYo8s+Yg27aFxjH/xMaWm8kdvbVzkhSrBSVhtdKFX/IJ5Xh9XN4sscrAT3PwUnVVXZnmwoLBlNu+W81VnRJcmWlo5NkRYgwMqXiZd42zeb40o8osdYfdd/VOZWcXOW71+8ZcD5Et30Cp3HIFCpTjseiOOm17mH2lh5epM7jVXnu+83kvnkNU+o/pl9aDF/+YyynnXQydD/5kH11kQlYiQagbH/HW75cUeemglg8CYH9Y5xYuZGvTHfygv4xappxRSwU5JbVkKX4rjxJt2UhyYoQYSRq0GQAztCtYf7m/Ufd951lOzhFtxEA05jDuyu3iqIQf9FTeNAxQbeGzz5685Cny2od/POlTznt50v5s34xM00f89lfutEzJfqIQ5YbfS04aooCVBQthB3s1dOi5eStYNbBcboc+ir5VNnC41ZQRVEeZsWFBz3EBahvkggbkqwIEU66jaXeEEeSUkPO+h+OuNuBqjq+3l7FyY6nKDj9eeg83G8hKKkDqRnia3R4QdHTLN6aD8CKveU8+eRs7i26nv66POpNSRj+8jGW5KP/obFF+op9uRq663YkXUqXcq/hDY6z/hTYE1l8c50SlFoq7eHRzNBZ6qvWbLNkHL01hOgQJFkRIpzojbh7TwKga/FCKo7QRfet5bl4vCpDenYhY+xf/B5G/KR/U2tMIlGp4f2vvuOFBVvYM3c6D3meJFqpx54xmogZP0PP8cccyx2bCYC+KsfvcYa6zJqNXGmYT9eaAPUFOqhhpVGsYqeqNjyWif9o68ZpjkfZNfYJrUMRIUCSFSHCTPSwCwCYoFvNgq0Fhz1f5/Qwb9U2QOWvJwboXn9ELLqp7zDF+Bzzq9IY/dM0LtMvxIuCa8ytRF49D2LTjz0OYGiYj2CxHwhMrCHM5PR1QdZHJwf2RBHxjV/awqCZoaqq7Kl0skftTGLfE7UOR4QASVaECDc9xuHQR5GmVPLruh8Pe/qLDQd40jObBZa7ODXu8GTGXyJ7ZnPdWSegouMr9STqTQno/vIxxgn3tOiyvanHaJ53n8vH7pMCFmuoinRXA2CKDVz1WgD0Buw637yh+urQb2ZYUuOg3uVFp0DneIvW4YgQIDcChQg3BjPOHmdg3vU5MQeWUV13GXEWXx0NVVVZtvQHpup+xYMBfWxGQEO5YHgXOsVE0DVhHBGWf0NUy6uwpvQaxaPuKnDD/S4PEUa93+MMRW6Pl2hvNejAEh/gZAWoM8QR6azFGQbNDHPL7dxs+JjIiAhM9mEQ4PexCH2SrAgRhmLOuIO/FYzj+/IUsnYUc/6wLgAs31vOuOrPQA+e/uehjwl8z52xvQ/ewohq1fHxkUaizQZqHW72V9bRq9ORVw61J1V1rsZS+5Hxgf//VGPpQk29m9r60J9gm1NWy1X6b4l110H9jZKsCLkNJERY6tSfPkPGAArfbv6tmu0nS9dzjs5XMM5vy5UDTFEUhsTZOUHZTlFhvtbhBE2l7bcmhoZAz1kBFo56iXHOJ9mgGxDwc7VVaXEhsUpDS4mEbprGIkKDJCtChKmJg9IAWPJrCTaHm/wKO+l7PsSsuKnvNBS6jNQ2wBa41/EYH5gfwLvn6FVx25OKmjrig9DE8KCEhpL7VWFQcr+uZDcAteZOYJQ5K0JuAwkRtgZE1fBS1Eskuwr4cecwNuWWcqXeV3sl4sTrNY6uZeqiuoBjC56KlnWUDmeVdW5GOl5kbIbCs0FJVnyF58Khzoquwlcg0BnTTdtARMiQZEWIMKWYYzjd+zN6nZt/rfgZa8EO0pUKnOYkTAPP0zq8FvHGdYUKMFjztA4laCrsbiqJpS6uE+gCP6m4e8HXfGV6mvXVI4DQXnkVUet7H+iSpMy+8JHbQEKEq4g4ajv7/ugk5H7LV/VD+Kf5XxjOmh3QDr6BYEz2/VGKqus4tVYOXuEIdKn9g2IUO8fpckhzh/a8oGq7i1RPIQCRadJtWfhIsiJEGIsd7isQN1G/GhUd/U6+CN2QSzSOquVi0noCkOQq1DiS4DGXbOQ+w1zG2b4NyvksDbVcYtUa6l2eoJyzNXIrbHRt6LZsSumpcTQiVEiyIkQYU/qdjRc9A3W59DOXc9GILlqH1CrJmX0ASFdLsdY5NI4mOKKrdjDNsICBge4L1MAS50tW4qkN6Um2ueV2/uK8k5uT5kDPU7UOR4QISVaECGeRibiS+wHwtX4mMUaN42mlyOSuuNFjUjwU5neMhoZKXQUAXkvgJ9cCKJEHmxnWhPQk29xyGw5M6FL7gyVe63BEiJBkRYgwZz7+rwAYojuBLkznzOv0vBN1BbNcV5Nf2zF+LRkdvr5AuiCsBAIamxnGY6PSFrpXr3LLfY0WsxJbV2RQtE9h+ptNCNFo5FW+JKXnqaAoWkfTaqs7X8HX5YX0tHWMX0vmg00MYwJfEA4AS4LvvIqLmhorEPgS/60RWbiSRwzz6G2fCMgEW+HTMX4rCNGe6fQw8q9aR9FmmYmRAORX2DWOJDgi3dWgQESgmxgeZIqmWp9AhctEbU11cM7ZCsnVm5hq+JGKqjggPKowi8DrGNdbhRAhr0e0m+OV7UQUrtI6lIBzuD3EqlYALHGdgnNSReGh/l8w3vkkhe6Y4JyzhepdHpIcvuXrltReGkcjQokkK0KIkHBc3Wo+ND/A5NJXtA4l4KrsLhLw9QU6uEonGH6rYhuaq4HyKuxkNSxbjpBkRfyO3AYSQoSE2HTfH6cUdzGqqqKE8fybY6mwOfmz8z56RtXzSedhQTtvfIiX3M8tt9Nf50tWlMQeGkcjQolcWRFChISDtVZSqaCsqkbjaAKr0uakihisUd3BFBm084498Cpfm+6kX0lwCtG1VH5pJRmU+76RZEX8jiQrQoiQYIrtRB1mdIpKyf5dWocTUBUNVzYSglRq/6B4dymDdDlE1+0P6nmbq6ZwDzpFxamzQFRorlYS2ghYspKTk8PVV19N9+7dsVgs9OzZk3vuuQen89DLj4qiHLbNmTMnUGEJIUKVolBqSAOgumC3xsEEVn15Pvcb5jLV8WlQz6tvqLVicobmaiBHua/rtj0qM6yX4Qv/C9iclR07duD1ennppZfo1asXW7ZsYfr06dhsNh577LFD9p07dy4TJ05s/D4uLi5QYQkhQlhNRGeozcVZ1r6r2HorcrjCsICy2i7Ao0E7r7GhpkuEqypo52yJefb+vF4/l3cu6M0IrYMRISVgycrEiRMPSUB69OjBzp07efHFFw9LVuLj40lLSwtUKEKIMOGMyYRaoDJX61ACymEtBcBpTgjqeQ/WdInyWPF4VfS60Ll64fZ4OVBZhxsz6V1lJZA4VFDnrFRXV5OYmHjY4zNmzCA5OZlRo0YxZ84cvF7vEcdwOBxYrdZDNiFE+1DdfTJ3uq7me91YrUMJKGdDskKwSu03sMT7kpUEpZbqutBavlxQVY/bq2Iy6EiLjdA6HBFigrZ0ec+ePTz77LM8/vjjhzz+wAMPcNppp2GxWFi4cCEzZ86krKyMf/3rX02OM3v2bO67775ghCyECLLI3ifx7iIDXWuDt0JGC16bb8WLITpIpfYbGKJ8yVE8tVTanSQGeYLv0eRW2Hjc+CIRERZ01kEQn6l1SCKEtPjKyr333tvkpNjfb2vWrDnkmIKCAiZOnMiUKVO45pprDnnuX//6F9nZ2QwdOpSZM2dy//338+ijR76HO2vWLKqrqxu3/Pz8lv4IQogQlZloAaCgqg6PV9U4msDwelXMdb4rKxHxQb79HZmElWisRFIVYrVWcstqOEf3C5Nd80E98tV10TG1+MrKjBkzmDp16lH36datW+PXBQUFjB8/nuzsbF5++eVjjj969GisVivFxcWkpqYe9rzZbMZsNrc0bCFEGEiNNjPGsJN0bzFFZcfTuVNwrzwEQ2mtg3RKAIhK7R7ck6f04S/JH7BpfzWv2kLrNlBl4T5MigePYkAf10XrcESIaXGykpycTHJy836BHDhwgPHjxzNixAjmzp2LTnfsCznr168nIiKC+Pj4loYmhAhzOr2OFw1PEEcNG/POoXOn9jd3ZX+lnUzFd2VFn9gt6OcP1Sq2rtI9ANRaOhOn02scjQg1AZuzUlBQwLhx4+jatSuPPfYYpaWljc8dXPnz1VdfUVRURHZ2NhaLhcWLF3PXXXdx7bXXytUTITqocmMaca4aaor2AO0xWanjDud9nNXFyeOZJwT9/ImRRiD0khVdVQ4A7vhumsYhQlPAkpX58+eze/dudu/eTZcuh17SU1XfvWij0cgLL7zArbfeitfrpUePHtx///3ccMMNgQpLCBHibJGdoXoXrnZaa2V/ZR11RECnXmAOfvfjK0v+yzWmbawtuRfoGfTzN0VVVWJseaADQ1JoxCRCS8CSlSuvvJIrr7zyqPv8sRaLEEK4Y7OgGvTVeVqHEhD7K+0AdEmwaHL+NGcOaboc1tYWaXL+ppTWOMhQffFEpffROBoRiqQ3kBAipOiTugFgsYVm/5q2iixaxWzDK4yxLdAmAIuv1lVxUWHjVW6t5VbYicWXxBmS5cqKOJwkK0KIkBKd6vtjleAq1DiSwEip2sSfDYvpUbVCk/MnpfhWWTprylixt0KTGP4op8zGZa67uCrjc+hxitbhiBAkyYoQIqQkdvHdBsjwFlPvdGscjX95vSoxdb4kzJzcTZMYjA2F6BKUGt5eGRptDfIqfFdV0lKSwSCLK8ThJFkRQoSUuLTu3Oe9hutcN3Ogyq51OH5VWusgg2IAotI0ut3R0Hk5gVq+31JEibVemzh+J7fc9/85K7F9Vy4WrSfJihAipCjGCJYn/oml3iHkV2r/h9Sf9lfa6aKUAaBPyNImiNgMAMZE7MPt9fL+au2rgKcV/MBbxoc5ueJjrUMRIUqSFSFEyOmS4PuEnV9Zp3Ek/rW/wk6XhoJwaJWs9DsbTDGYUnoRRT3vrszD7dG2vH1SzQ5O0m8hzZGjaRwidEmyIoQIOUMjSzhf9xPk/qJ1KH5VXnIAi+LEiwKxGpWUj0yEW7eRdPUHRETFUWStZ+GOEm1iAarrXKR6CgCISu+tWRwitEmyIoQIOSfaF/Ok6UW6H/hK61D8qq7UN6HVZkoBg4YdjyNiMRv0XDzK19n47RXaTbTNK7eTpfiSJVOKLFsWTZNkRQgRcozJPQCIqjugcST+tcKRxYD611k69n9ahwLA5X28nKjbwk+7ythXZtMkhpxyG1lKQ4G6xB6axCBCnyQrQoiQE5Pu+6OV1M5qrRyorMNOBAmdQ+B2x+6FZPwvm2csr6DDyzsaXV0pKikmUan1fZPQTZMYROiTZEUIEXJSuvQFIE0to8bePlYEeb0q+6t8E4YzE0JgiW7WiWBJIMlTyqm69Xy0dj91Tk/Qw7AX7fL915ioSa8kER4kWRFChJzI5ExcGDApHgr3t4+GhmW1Dm7iXR42vkpa/W6twwFjBAy7HIBrIxZSXefiq00FQQ/DWllKmRpLXYxGq6NEWJBkRQgRenR6ynQpAFQV7NI4GP/Ir6xjom41l+oXYXRUaR2Oz8irAIXjvRvophRqMtF2Xm0/RjrmkHfOB0E/twgfkqwIIUJSVYSveFld8V6NI/GP/RW1v9VYiQ+RqwiJ3aH3GQBcYVjEpv3VbMyvCtrp610eihoq6GZ1SgjaeUX4kWRFCBGS1mVdwzTnP1llGKF1KH5RUbwfs+LGgx5iO2sdzm9GXQPAVOMSInAE9epKfkNPoBizgYRIY9DOK8KPJCtCiNDU7USWeIewoyZC60j8or7UN/em1pwKeoPG0fxOr9MhPguTQUc/JZ8vNxZQZXcG5dQ55XY+Mt3Lm8bZKFV5QTmnCE+SrAghQlJmY8n9dtLMsDIHAEd0CF1VAdDp4c/vob9tB4604TjcXj5euz8op95fUs4o3a8Md68HU3RQzinCkyQrQoiQ1DVa5TzdMk6t/AhVVbUOp81MtQ0JQHxXbQNpSupAFFMUl4/2zaV5Z2UeXm/gX/PaIt+qqHp9dGM3aCGaIsmKECIkpUepPGV6gf9T3qa8ukbrcNrE61Ux1JcDYE4O3SqtfxqSzmBzMfvKbPy8pyzg53OX+SZP26MyQVECfj4RviRZEUKEJHNsJ+xEoFNUSvLDe/lyWa2De5xXMMjxOpEn36B1OE2zVxD12lg+1f2TBKy8tTzwE21N1hwAvAndA34uEd4kWRFChCZFocyQBkB14R6Ng2mb/Epf5dq4uASMUSG6RNeSAIYIDKqTi/VL+GF7MYXVdQE7ndvjJa7Od2vM3KlXwM4j2gdJVoQQIcvaUGvFURretVb2N0wS7pxg0TiSo1CUxmXMV0UsBtXLeysDt0KnsLqeTIoBiEqTZEUcnSQrQoiQ5YrJBECpytE2kDaqLMrlf8bZ/KP+Ja1DObpBF0JEPKmeIk7WbeS91fm4PN6AnCqn3EYtEVQrMeiSegbkHKL9kGRFCBGylMRuAETUBmcpbaA4S3Zzsn4zx9Wt1jqUozNFwrC/AHCNeSGlNQ7mby0OyKlyy+3c4LqZW7M+8zVVFOIoJFkRQoSsyBTfypk4R/Ab7PmTWuWbrOqI7qJxJM0w8ioATlTXk6kU89aKnICcJq+hem3XpEhZCSSOSZIVIUTIiu1zIlc6/48ZjhvwBKHuR6CYaw/4vgjFGit/lNQTep6Ggsq5+hWs2FvBrmL/Lx3PKbMBkJUY6fexRfsjyYoQImSlpHXhZ2UYuz1pjQ3vwo2qqsTW+5IVc3KYLNEdfydc/jl7+vgm3AaiX9CAws9YbLqFUwpf9/vYov2RZEUIEbL0OoXO8b4VNAeb3oWb0loHGfi6LUenhm5BuEN0GQk9x3NZti+5+nTdAWwOt9+GV1WVePs+uuuKSdAHbnm0aD8kWRFChLSzLNuYof+Mmn1rtA6lVfZX1tFF8SUrhqQwubLS4MSeyfRJMlHjcPPFBv/NGyqtdZDhLQIgOr2338YV7ZckK0KIkDbR9QO3GT/CmP+L1qG0yv6KWsw0dDEOhzkrv6Nb/CBfOq7mOGUvb63I9VuPptxyO1mKb5WRIVmWLYtjk2RFCBHS3LG+Wiv66sCXfw+E/VUORjnmMKvPNxCTpnU4LVOVS4S7miuNP7C90Mq6vCq/DJtbVktXpcT3jZTaF80gyYoQIqQdvHUSaT+gcSSts7+h1H5KcnL4LdEdNR2Ac/W/EEet3ybaVhTmYlGceNCH3dUmoY2AJivnnnsuXbt2JSIigvT0dC6//HIKCg6975mXl8c555xDVFQUycnJ3HjjjTidzkCGJYQII1GpvtsECc5CjSNpnYPJSpeEMFyim3k8pB6HUXVykX4J8zYVUl7raPOw9aW+Xk+1EemgN7Z5PNH+BTRZGT9+PB9++CE7d+7kk08+Yc+ePVx00UWNz3s8HiZPnozNZmPZsmW8//77fPLJJ8ycOTOQYQkhwkhiF98EzDRvCQ6X/1akBMuo4g950/gIQ6sWaB1KyykKjLoagGvMi3B53Hy4pu3VhIur69jo7YE9eVCbxxIdQ0CTlVtuuYXRo0eTlZXFmDFjuOOOO1ixYgUulwuA+fPns23bNt5++22GDRvG6aefzuOPP84rr7yC1WptckyHw4HVaj1kE0K0X/HpPfCqCpGKg6KCfK3DaRFVVelat51T9JtIUcu0Dqd1Bl8M5ljSvYWcpNvMu6ty21yg75uanvzJ+SCVZ73ipyBFexe0OSsVFRW88847jBkzBqPRd9lv+fLlDBo0iIyMjMb9zjzzTBwOB2vXrm1ynNmzZxMXF9e4ZWZmBiV+IYQ2FIOZMl0SAOUHdmkcTcv4aqz4JpLGpIXpqhdTFAy9FICrTD+QX1HH0l9LWz1cdZ2LSrvvA2vXpDC8NSY0EfBk5Z///CdRUVEkJSWRl5fHF1980fhcUVERqamph+yfkJCAyWSiqKioyfFmzZpFdXV145afH16ftIQQLfdq2t2c5niUHYRJUbUGvhorvisqhoamjGFp1DUw+nq2DbodgLfaMNE2r9wOqCRHm4g2G/wUoGjvWpys3HvvvSiKctRtzZrfijfdfvvtrF+/nvnz56PX67niiisOWauvNDE7XlXVJh8HMJvNxMbGHrIJIdo3Z/pI9qidya12aR1KixSUVZNKpe+bhCxtg2mL5N4wcTaTxp0MwOKdJdz6wQa2FlS3eKjc8lpWm//OF+pNUJXn70hFO9XitHbGjBlMnTr1qPt069at8evk5GSSk5Pp06cP/fv3JzMzkxUrVpCdnU1aWhorV6485NjKykpcLtdhV1yEEB1XZkOzu/0V4VWavbpoLzpFxaFEYI5M0jqcNuueHMXlo7N4a0Uun64/wKfrD5DdI4mrx3bn1H6d0OmOvTS7qLiQFMUKHitEJgchatEetDhZOZh8tMbBKyoOh2/pW3Z2Ng899BCFhYWkp6cDvkm3ZrOZESNGtOocQoj2p4+pjBv0n5N0IBoYrnU4zeYoywGgJiIdc7jVWGlK/ioecL3ANZNO4/GCQczbXMjyveUs31tOj+Qo/jq2OxcO70yk6ch/WuqKdgNQa0oh2iRzVkTzBGzOyqpVq3juuefYsGEDubm5LF68mEsvvZSePXuSnZ0NwIQJExgwYACXX34569evZ+HChdx2221Mnz5dbu8IIRplGqq43fghE+xfax1Ki9RaK6lUo3HGtJOFAHt/hK2fkbXrfzwzdSg//d94/nZyD2IiDOwts/Hvz7cw5pFFPPr9DoqP0CVbrdgLQH2MFIMTzRewZMVisfDpp59y2mmn0bdvX6666ioGDRrEkiVLMJvNAOj1eubNm0dERAQnnngiF198Meeddx6PPfZYoMISQoShlMw+AKSpZdTWNf1HMBR97hjBMMfL5J72ktah+MfwK0BngP2r4NkRZGx+gVlj41gx6zTuPWcAXRMjqbK7eH7xHsb+ZxG3frCBLQcOndcSUdMwOTcxvCZLC20pqr86U2nEarUSFxdHdXW1XI0Ror3yenHen4IJN7sv/YVefQZqHdExqapKv39/h8PtZcnt48hKitI6JP9Y+RIsvB+ctb7vFR30PA3OfAhPUh9+2F7Maz/tY1VOReMho3skcs3YHpzYK5l5D5zHRfql2MfOIvL0OzT6IUQoaMnfb1k3JoQIfTodpbpOdPYWUHlgF4RBslJW68Th9qIokB5n0Toc/znhbzD0Mtj+Jax/G3J/hj0Lwfwsep3CmQPTOLNXNJtK3by2bB9fbypkxd4KVuytID0ugmcUX1kKS2pvjX8QEU4kWRFChIXqiAw62wuoK9mndSjNsr/Szoem+/DqLZhsQyCui9Yh+Y852lcobuilUL4H8lZAbPpvz394OYNtZTw97HLuGHc2b6yv5r2VeRRW17PD0JV4o4feyZKsiOaTZEUIERbqozPBvga1MkfrUJqloKySybqdoALGdrzqJamnbzvIXgG5v4C7Hr69nXT9XczqN5lbLrmUDyv6MW/rbcSdkEXv9IwjjynEHwSt3L4QQrRJvK+omrkmPKpWWwsbVr3oIsGSoHE0QRSZCLdsg4n/gdTjwOOErZ8R8cEUrlh5Du+P2sO5QyRRES0jV1aEEGHBMfBizticgSW2O19qHUwzOMt8yYo1IoOI9lBjpSWikmD0db6tcKNvbsumD8F6AMJ7TYfQiCQrQoiwkJqRxS41h8gq71FbcoSMKt8VIFdMO5qr0hrpQ3zbGQ/Azm+g9xlaRyTCkNwGEkKEhc4JFhQF7E4PFTan1uEck9m2HwAlPox7AvmTMQIGXQDmGK0jEWFIrqwIIcKC2aDnxsgFpDlyKMrLImnAIK1DOiJVVYmrLwAdRHSS4mdCtJVcWRFChI0LlMX82bCY2vwtWodyVGW1TuyqgSo1ipi0nsc+QAhxVHJlRQgRNqwRXaA2h/qGyauhan+lnZmu60mPi2D5gFO1DkeIsCdXVoQQYeNgQ0ClMk/jSI5uf2UdAF0SLBDqE4GFCAOSrAghwoYu0TdZNcIW2rVWfktW2nExOCGCSJIVIUTYsHTyzf+IdxRoHMnRReQu5gfTbVxe+bzWoQjRLkiyIoQIGwmdewGQ6inG4w3d4mKGqr300hXQSS3XOhQh2gVJVoQQYSO5i6/5XZxio6S0RONojiyitqHGSmI3bQMRop2QZEUIETb0ETFcYXmW/vWvk2cLzcWMqqoS6ygEwJLSTdtghGgnJFkRQoQVb1Jf6oggv2ESa6gpq3WSge+qj9RYEcI/JFkRQoSVzEQLAPkVdo0jadr+SjuZSikAxqTuGkcjRPsgyYoQIqwcr2zjYcMrdN3zjtahNKm4tIR4xeb7Jr6rtsEI0U6E5k1fIYQ4gh5KEUMMi1lXWat1KE0qKythi7cbncxuOpmjtQ5HiHZBrqwIIcJKVKqvMWCCs1DjSJq2oy6es50P87+Rn2odihDthiQrQoiwktiwfDnNW4LD5dY4msMdUmpfCOEXkqwIIcJKQnoPvKqCRXFSXBB6Zfel1L4Q/ifJihAirCgGM2W6JADK9/+qcTSHUlWVW6oeYYHpdnpX/6x1OEK0G5KsCCHCTqUpAwB7yR6NIzlUuc1JD/LprTtAQkyE1uEI0W5IsiKECDv2qC4AOCpDq6Hh/go7XZQyAEyJUmNFCH+RZEUIEXa2DpzJgPrX+STiAq1DOURxSSExSkNl3fhMbYMRoh2RZEUIEXZS0rpgJ4L9IVbFtqbId1uqWp8IRlkNJIS/SLIihAg7mQ0rbUKtP5CzLAcAmyVD20CEaGekgq0QIuxkxqg8bHiVzs4ybHUnEWUJjcmsuqo8AFwxcgtICH+SKytCiLATExXDhYafOEW/iaL80FkRVFhvYKs3C7VTf61DEaJdCWiycu6559K1a1ciIiJIT0/n8ssvp6Dg0Nn7iqIcts2ZMyeQYQkhwp1OR6kuFYDKgt0aB+Ojqiov2U5msnM2nHSb1uEI0a4ENFkZP348H374ITt37uSTTz5hz549XHTRRYftN3fuXAoLCxu3adOmBTIsIUQ7UB3hmxdSV7xX40h8ym1O6l1eFAXS40PjtpQQ7UVA56zccsstjV9nZWVxxx13cN555+FyuTAajY3PxcfHk5aWFshQhBDtjCO6C9hXoVbu0zoUgIaVSSqdYiIwG/RahyNEuxK0OSsVFRW88847jBkz5pBEBWDGjBkkJyczatQo5syZg9frPeI4DocDq9V6yCaE6HjUhCwATDX7NY7Ep6RoP9vNf+Ujz63g9WgdjhDtSsCTlX/+859ERUWRlJREXl4eX3zxxSHPP/DAA3z00Uf88MMPTJ06lZkzZ/Lwww8fcbzZs2cTFxfXuGVmyqx7ITqiiGRfhdjY+gMaR+JTW7wXi+IkVrGBTq6sCOFPLU5W7r333iYnxf5+W7NmTeP+t99+O+vXr2f+/Pno9XquuOIKVFVtfP5f//oX2dnZDB06lJkzZ3L//ffz6KOPHvH8s2bNorq6unHLzw+9rqtCiMBLyuwLQLVLR3WdS+NowFXmux1Va+mscSRCtD8tnrMyY8YMpk6detR9unXr1vh1cnIyycnJ9OnTh/79+5OZmcmKFSvIzs5u8tjRo0djtVopLi4mNTX1sOfNZjNms7mlYQsh2pm03iO4IvollpbF8MT2Yi4Y3kXTeHTVUmNFiEBpcbJyMPlojYNXVBwOxxH3Wb9+PREREcTHx7fqHEKIDkJvZOjgYSxdtJtvtxRpnqxE2Hy3o/SJWZrGIUR7FLDVQKtWrWLVqlWMHTuWhIQE9u7dy913303Pnj0br6p89dVXFBUVkZ2djcViYfHixdx1111ce+21cvVECHFMEwel88yi3az+NR9b/RCiIozHPigAVFUl3lkIClg69dAkBiHas4BNsLVYLHz66aecdtpp9O3bl6uuuopBgwaxZMmSxkTEaDTywgsvkJ2dzeDBg3n66ae5//77efzxxwMVlhCiHemfHsMrUXNYoZ/O2pU/ahZHhc1JhloCQFx6T83iEKK9CtiVleOOO45FixYddZ+JEycyceLEQIUghGjnFEWha6yOiEoXto1fwClnaBLH/so6ctVueBQzfVIkWRHC36Q3kBAirEUM/hMAvcsXU+/Spr7J/so6bnT9g1mdXoT4rprEIER7JsmKECKsdR19Pm709FL2s2btSk1i2F9pB6BLgkWT8wvR3kmyIoQIa4olgdzYkQBUrf1MkxgKKmoAVZIVIQJEkhUhRNjTDzgHgK6li3C6j9yuI1COy32DbearOKvklaCfW4iOQJIVIUTY65p9EV4UBrObNZs3B/38kbYDRCoOoiMjg35uITqCgHZdFkKIYNDFpbMi+Tx+KIzEs9PKmGHBO/fva6xESo0VIQJCrqwIIdoF78THeNUzmc9/rcPtCd6toAqbk/SDNVYyegXtvEJ0JJKsCCHaheO7J5IQaaTS7mLVvoqgnXd/eS2dlTIATEndgnZeIToSSVaEEO2CQa/jvD4WLtIvYcfyeUE7b1lhHibFgxs9xGYE7bxCdCSSrAgh2o0rDPN5zPgSPfe+hderBuWctcW7AagypoJOH5RzCtHRSLIihGg3uoy5GIDR3g2s37M/KOcssMF8zwj2JxwflPMJ0RFJsiKEaDeM6YMoNXbGrLjYu/zzoJxzlSOLa10z2TbigaCcT4iOSJIVIUT7oSjU9vA1R43L+R5VDfytoANVdYCU2hcikCRZEUK0KxnZvltB2Z41bM4tCei5VFWlsrIcKbUvRGBJsiKEaFfMXY+nSp9EjFIX8FVBlXYXn/J/bDFfTee6XwN6LiE6MklWhBDti05HVdYEvKpC1d51Ab0VtL/cSrpSTrRSjzk+LWDnEaKjk2RFCNHudJo0i7GeF3m4ZhI7imoCdp7ygn0YFC8uDBAtyYoQgSLJihCi3YlMyWJgn94AfLulKGDnqS3eC0ClMQ108utUiECRf11CiHZp0iDflY4fNuUF7Bzu8hwAbJFSuVaIQJKuy0KIdun0DAfvmR4ko7qM3cXr6JUa4/dz6Kt9iZA7tqvfxxZC/EaurAgh2qXYpAyG6/eSpSth7YrFATmHxX4AAENiVkDGF0L4SLIihGifjBZKUk8CQN3+td+HV1WVVY4sFnhGEJE5zO/jCyF+I8mKEKLdShhxAQAj7MvIK7f7dexKu4tXnBOY7ppJwpCz/Dq2EOJQkqwIIdqt6EFn4cZAb90Blq/6xa9j76/0JT+dYsxEGKXbshCBJMmKEKL9ssRTnOTrhuzc8qVfhy4oqyIBK53jI/w6rhDicJKsCCHatZhh5wNwXM1PFFbX+W1cT84vrI+4jqett/htTCFE0yRZEUK0a7FDz2OdaSTveU7j+82Ffhv3YI0VlyXZb2MKIZomyYoQon2L7sS6k17hA894vtla7Ldh9dZ8ADyxmX4bUwjRNElWhBDt3sSGararcyoorXH4ZcxI+34A9Ind/DKeEOLIJFkRQrR7XRIiOS3dyRW67/lxw442j6eqKglOX8+hqNQebR5PCHF0kqwIITqER1yPcJ/xTSrXfdGmcWodbm75YAMZlACQkNHLH+EJIY5CkhUhRIdgGHA2AD3LF1Nld7ZqjG0FVs59dhkLNuwhVakCwJzc3V8hCiGOICjJisPhYOjQoSiKwoYNGw55Li8vj3POOYeoqCiSk5O58cYbcTpb94tECCGOJGHEhQCMVTazeNPeFh2rqirvrMzlvBd+Zm+ZjZjYBPJH3gFZYyEyMRDhCiF+Jyhdl//v//6PjIwMNm7ceMjjHo+HyZMnk5KSwrJlyygvL2fatGmoqsqzzz4bjNCEEB1Fp/5URnQloT6PorVfweh+zTqspt7FrE83s3rTVjKVOrL6DeOxKUNItIwHz82gKIGNWwgR+GTl22+/Zf78+XzyySd8++23hzw3f/58tm3bRn5+PhkZGQA8/vjjXHnllTz00EPExsYGOjwhREehKKj9JsOGF8ksXkRN/c3ERBiPesiWA9Xc8O46elT+zLfmF1Gikomb+jO6CJNvB50lCIELIQJ6G6i4uJjp06fz1ltvERkZedjzy5cvZ9CgQY2JCsCZZ56Jw+Fg7dq1TY7pcDiwWq2HbEII0RwHbwWdoqznx637j7ifqqq8+UsOl7ywlMuqX2Gu6VESlVoS4uLQOaqDFa4QokHAkhVVVbnyyiu57rrrGDlyZJP7FBUVkZqaeshjCQkJmEwmioqKmjxm9uzZxMXFNW6ZmVKQSQjRPErnEdQYUzDhYuu6n5vcp7rOxfXvrOOVrxbzjv4erjXM8z1xwnVw9QKI6xzEiIUQ0Ipk5d5770VRlKNua9as4dlnn8VqtTJr1qyjjqc0cb9XVdUmHweYNWsW1dXVjVt+fn5LfwQhREel01E8eS4jHHN4Iy8Ju9N9yNMb86s4+9mfYNsXfGO6k6G6PagRcXDJOzDpP2AwaxS4EB1bi+eszJgxg6lTpx51n27duvHggw+yYsUKzOZD/3GPHDmSyy67jDfffJO0tDRWrlx5yPOVlZW4XK7DrrgcZDabDxtTCCGaq+eQsSTMX0x+RR1LdpYy6bh0VFXl9Z9zeOTb7bg8Xp6KXEis1w5djke56DWI76p12EJ0aC1OVpKTk0lOPnbjrmeeeYYHH3yw8fuCggLOPPNMPvjgA0444QQAsrOzeeihhygsLCQ9PR3wTbo1m82MGDGipaEJIcQxKYrCpEHpvLx0L99tPkB2zyRu/3gTC7b5+gZNHJhO7zPfg23vwkkzQX/0SbhCiMBTVFVVg3GinJwcunfvzvr16xk6dCjgW7o8dOhQUlNTefTRR6moqODKK6/kvPPOa/bSZavVSlxcHNXV1bJ6SAjRLLuXfYx9/oNsVPoxx3Itx1vnM0C/H/NZD3L56Kwj3oYWQvhPS/5+B6XOypHo9XrmzZvH9ddfz4knnojFYuHSSy/lscce0zIsIUQ71yPJgk63jyTVSkStjSmmpb4nUq8BpZumsQkhDhe0KyuBIldWhBAt5qrDObs7Jm8dAKqiQznlDjj5NtDpNQ5OiI6hJX+/pTeQEKLjMVow9psIgBqTjjLtKxj3T0lUhAhRmt4GEkIIrSgTH4bM41EGXwxRx140IITQjiQrQoiOKTYDsq/XOgohRDPIbSAhhBBChDRJVoQQQggR0iRZEUIIIURIk2RFCCGEECFNkhUhhBBChDRJVoQQQggR0iRZEUIIIURIk2RFCCGEECFNkhUhhBBChDRJVoQQQggR0iRZEUIIIURIk2RFCCGEECFNkhUhhBBChLSw77qsqioAVqtV40iEEEII0VwH/24f/Dt+NGGfrNTU1ACQmZmpcSRCCCGEaKmamhri4uKOuo+iNielCWFer5eCggJiYmJQFEXrcEKC1WolMzOT/Px8YmNjtQ4nbMjr1jryurWOvG4tJ69Z64Tq66aqKjU1NWRkZKDTHX1WSthfWdHpdHTp0kXrMEJSbGxsSL0xw4W8bq0jr1vryOvWcvKatU4ovm7HuqJykEywFUIIIURIk2RFCCGEECFNkpV2yGw2c88992A2m7UOJazI69Y68rq1jrxuLSevWeu0h9ct7CfYCiGEEKJ9kysrQgghhAhpkqwIIYQQIqRJsiKEEEKIkCbJihBCCCFCmiQrQgghhAhpkqyEsaVLl3LOOeeQkZGBoih8/vnnhzyvqir33nsvGRkZWCwWxo0bx9atW7UJNoQc63W78sorURTlkG306NHaBBsiZs+ezahRo4iJiaFTp06cd9557Ny585B95P12uOa8bvJ+O9SLL77I4MGDG6utZmdn8+233zY+L++zph3rdQv395kkK2HMZrMxZMgQnnvuuSaf/+9//8sTTzzBc889x+rVq0lLS+OMM85obP7YUR3rdQOYOHEihYWFjds333wTxAhDz5IlS7jhhhtYsWIFCxYswO12M2HCBGw2W+M+8n47XHNeN5D32+916dKFRx55hDVr1rBmzRpOPfVU/vSnPzUmJPI+a9qxXjcI8/eZKtoFQP3ss88av/d6vWpaWpr6yCOPND5WX1+vxsXFqXPmzNEgwtD0x9dNVVV12rRp6p/+9CdN4gkXJSUlKqAuWbJEVVV5vzXXH183VZX3W3MkJCSor776qrzPWujg66aq4f8+kysr7dS+ffsoKipiwoQJjY+ZzWZOOeUUfvnlFw0jCw8//vgjnTp1ok+fPkyfPp2SkhKtQwop1dXVACQmJgLyfmuuP75uB8n7rWkej4f3338fm81Gdna2vM+a6Y+v20Hh/D4L+67LomlFRUUApKamHvJ4amoqubm5WoQUNiZNmsSUKVPIyspi3759/Pvf/+bUU09l7dq1YV2u2l9UVeXWW29l7NixDBo0CJD3W3M09bqBvN+asnnzZrKzs6mvryc6OprPPvuMAQMGNCYk8j5r2pFeNwj/95kkK+2coiiHfK+q6mGPiUNdcskljV8PGjSIkSNHkpWVxbx587jgggs0jCw0zJgxg02bNrFs2bLDnpP325Ed6XWT99vh+vbty4YNG6iqquKTTz5h2rRpLFmypPF5eZ817Uiv24ABA8L+fSa3gdqptLQ04LdPvAeVlJQc9qlEHF16ejpZWVns2rVL61A0949//IMvv/ySxYsX06VLl8bH5f12dEd63Zoi7zcwmUz06tWLkSNHMnv2bIYMGcLTTz8t77NjONLr1pRwe59JstJOde/enbS0NBYsWND4mNPpZMmSJYwZM0bDyMJPeXk5+fn5pKenax2KZlRVZcaMGXz66acsWrSI7t27H/K8vN+adqzXrSnyfjucqqo4HA55n7XQwdetKeH2PpPbQGGstraW3bt3N36/b98+NmzYQGJiIl27duXmm2/m4Ycfpnfv3vTu3ZuHH36YyMhILr30Ug2j1t7RXrfExETuvfdeLrzwQtLT08nJyeHOO+8kOTmZ888/X8OotXXDDTfw7rvv8sUXXxATE9P4yTYuLg6LxYKiKPJ+a8KxXrfa2lp5v/3BnXfeyaRJk8jMzKSmpob333+fH3/8ke+++07eZ0dxtNetXbzPNFuHJNps8eLFKnDYNm3aNFVVfctJ77nnHjUtLU01m83qySefrG7evFnboEPA0V43u92uTpgwQU1JSVGNRqPatWtXddq0aWpeXp7WYWuqqdcLUOfOndu4j7zfDnes103eb4e76qqr1KysLNVkMqkpKSnqaaedps6fP7/xeXmfNe1or1t7eJ8pqqqqwUyOhBBCCCFaQuasCCGEECKkSbIihBBCiJAmyYoQQgghQpokK0IIIYQIaZKsCCGEECKkSbIihBBCiJAmyYoQQgghQpokK0IIIYQIaZKsCCGEECKkSbIihBBCiJAmyYoQQgghQtr/A9ZUcfL5bmIuAAAAAElFTkSuQmCC", + "text/plain": [ + "<Figure size 640x480 with 1 Axes>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAAGxCAYAAADCo9TSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB0YklEQVR4nO3deXhTZfbA8e/N2i1N942W0kLLVvYdERAEREUE9xXEcdeRUcdxGUd0HHGc0dH56eCOu7jiiigzCKjsCLLvBQp0ofueNMn9/ZG2ihTokuQm7fk8T56ZJjf3PY2hOXnv+56jqKqqIoQQQgjhIzqtAxBCCCFExyLJhxBCCCF8SpIPIYQQQviUJB9CCCGE8ClJPoQQQgjhU5J8CCGEEMKnJPkQQgghhE9J8iGEEEIIn5LkQwghhBA+JcmHEKLZpk2bRnBwMKWlpSc95qqrrsJoNJKfn4+iKCiKwsyZM5s89tFHH2085sCBAyxbtqzx59PdhBCBS5Hy6kKI5vryyy+ZMmUKzz//PLfeeusJj5eVlZGYmMikSZNYuHAhiqJgsVhwOp3k5eVhsVgaj1VVla5du1JUVER5eTnZ2dlERUWxffv24845bdo0unbtyj//+c/j7h8+fLh3fkkhhNfJzIcQotkmT55MUlISr732WpOPv/fee9TU1HD99dc33jd16lRUVWXBggXHHbt06VKys7O57LLLGu8LDw9n+PDhx93MZjMREREn3C+ECFySfAghmk2v1zNjxgw2bNjAli1bTnh8/vz5JCYmMnny5Mb7rFYr06ZNOyFhee211zjjjDPIzMz0etxCCP8iyYcQokVmzZqFoignJBPbt29n7dq1zJgxA71ef9xj119/PatXr2bHjh0AlJaW8sknnxw3QyKE6Dgk+RBCtEi3bt0YPXo0b7/9NnV1dY33NyQjs2bNOuE5Z511FmlpaY3HvPvuuxgMBi655BLfBC2E8CuSfAghWuz666+nsLCQzz//HACHw8Hbb7/NmWeeSUZGxgnHN+x4eeutt3A4HLz66qtceumlhIWF+Tp0IYQfkORDCNFiF198MVarlfnz5wOwaNEi8vPzT3kZ5brrruPYsWM8/vjj/PTTT3LJRYgOTJIPIUSLBQcHc8UVV7B48WJyc3N57bXXsFgsp7yMkpKSwtlnn80jjzxC9+7dGTlypA8jFkL4E0k+hBCtcv311+N0OvnHP/7BokWLuPzyywkJCTnlc+6++26mTJnCQw895KMohRD+yKB1AEKIwDR48GD69u3LM888g6qqzbqMMnHiRCZOnOiD6IQQ/kxmPoQQrXb99dejqiq9evVi2LBhWocjhAgQUl5dCCGEED4lMx9CCCGE8ClJPoQQQgjhU5J8CCGEEMKnJPkQQgghhE9J8iGEEEIIn5LkQwghhBA+5XdFxlwuF0ePHsVisaAoitbhCCGEEKIZVFWloqKCpKQkdLpTz234XfJx9OhRUlJStA5DCCGEEK2Qk5NDcnLyKY/xu+TDYrEA7uDDw8M1jkYIIYQQzVFeXk5KSkrj5/ip+F3y0XCpJTw8XJIPIYQQIsA0Z8mELDgVQgghhE9J8iGEEEIIn2pT8jF37lwURWH27NmN96mqypw5c0hKSiI4OJixY8eybdu2tsYphBBCiHai1cnHunXreOmll+jbt+9x9z/55JM8/fTTPPfcc6xbt46EhAQmTJhARUVFm4MVQgghROBrVfJRWVnJVVddxcsvv0xkZGTj/aqq8swzz/Dggw8yffp0srKyeOONN6iurubdd9/1WNBCCCGECFytSj5uu+02zjvvPM4+++zj7s/OziYvL4+JEyc23mc2mxkzZgwrV65s8lw2m43y8vLjbkIIIYRov1q81XbBggX89NNPrFu37oTH8vLyAIiPjz/u/vj4eA4ePNjk+ebOncsjjzzS0jCEEEIIEaBaNPORk5PDnXfeydtvv01QUNBJj/vtHl9VVU+67/f++++nrKys8ZaTk9OSkIQQQggRYFo087FhwwYKCgoYNGhQ431Op5MVK1bw3HPPsWvXLsA9A5KYmNh4TEFBwQmzIQ3MZjNms7k1sQshhBAiALVo5mP8+PFs2bKFTZs2Nd4GDx7MVVddxaZNm0hPTychIYElS5Y0Psdut7N8+XJGjhzp8eCFEEIIEXhaNPNhsVjIyso67r7Q0FCio6Mb7589ezaPP/44GRkZZGRk8PjjjxMSEsKVV17puaiFEEIIEbA83tvl3nvvpaamhltvvZWSkhKGDRvGt99+26xGM0IIIYRo/xRVVVWtg/i18vJyrFYrZWVl0lhOCCGECBAt+fyW3i5CiHahyubg2tfW8p9le7UORQhxGpJ8CCHahZUbt7B292GeXryNXd+8DP41qSuE+BWPr/kQQggtpK5+iO3mH9ApKqyC2kgTQUNnaB2WEKIJMvMhhGgXYsq3oVNUvnW66xCpix+AsiMaRyWEaIokH0KIgOcsPUKUqxiHqqPg7H+z0dWNYFclJe/fKpdfhPBDknwIIQJe3o4fAdhLMlec2ZsVvR7GphqIPLoM24Z3NI5OCPFbknwIIQJe+b41ABwJ6Ylep3D9tHN5zXg5AK6v74PyXC3DE0L8hiQfQoiAZ8zbBIAtrh8AYWYDfS99iJ9d6QQ7Kyj8+C4NoxNC/JYkH0KIwKaqJFTtACAsfWjj3WdkJrCsxxx+dPbm9/nnUm13aBWhEOI3JPkQQgQ0m72WZxwX8bFzFF16Dj3usVnTz+Xe0MdYWRrFk4t3aRShEOK3JPkQQgS0nQU2Xqk7h8eMd5ISe3xJZ0uQkScu6gPA6ysPsPmn1bL7RQg/IMmHECKg/Xy4FIA+yREoinLC42dmxHLF0BTuM7xH1ufnYN/0oY8jFEL8liQfQoiAZtu+mG7KYQZ0CjvpMQ+c2xODOQQdKo4v74HKAh9GKIT4LUk+hBCBy+ngmpyH+K/5XoZZS096mCXISObFD7PD1ZkQZxnFH/7edzEKIU4gyYcQImBVH91GEHbK1WC69ep/ymNH9+zENxl/waHqiDr4NbafP/ZNkEKIE0jyIYQIWLnb3ZVNd+u6Ehcectrjr7v4Qt7UTwfA8cXdUFXo1fiEEE2T5EMIEbDsB9cBUGTt3azjrcFG0i+aw05XCqGOEoo/mu3F6IQQJyPJhxAiYIUWbQFATRrY7OeM7Z3C4m4PUayG8fLRNGql+JgQPifJhxAiMNXVkmTbD0B0xogWPfW6i6czzfQi88qG8/R/93gjOiHEKUjyIYQISGUHfsKAk0I1nMzuPVv0XGuIkYcvGgLAK9/v56d90nhOCF+S5EMIEZB+tsUzy34PLwfNwhpiavHzx/WIZ/rAToxWNpLy9hnYt33phSiFEE2R5EMIEZA25rlY6hpIftqFrT7Hw+f3ZlzQHmLVImyf3gk1JZ4LUAhxUpJ8CCEC0ub6sup9kyNafQ5riJHkaX9lnysRS10hRR/f7ZnghBCnJMmHECLgqLVlDD/4AuN1G+iXHH76J5zCuD6d+TLtz7hUhei9H2Pb/6OHohRCnIwkH0KIgFO0Zy03qB8xx/gmvZIi2ny+GZddyhLdSAD2rf6qzecTQpyaJB9CiIBTtGsVANmm7gSb9G0+X0SICToNAkAp2Nrm8wkhTk2SDyFE4Dn6EwCV0X08dkpTp74ARFVI3Q8hvM2gdQBCCNFS0WXbADB1HuKxc8ZkDOWhH2ZyVN+NVz12ViFEUyT5EEIEFFd5PjHOAlyqQqdewz123vSUTrzlnAhVUFRpIzrM7LFzCyGOJ5ddhBABJX/XSgD2k0S3lESPnTfUbKBzlLsz7q78Co+dVwhxIkk+hBABpWSfu5PtoeCeGPWe/RM2LLqGi/XLsf38iUfPK4Q4nlx2EUIElA+Dr2CFrQsX9kpmnIfPPca8h/ONL3Jgbx/gRg+fXQjRoEVfG+bNm0ffvn0JDw8nPDycESNG8PXXXzc+PnPmTBRFOe42fLjnrskKIcTPR8rZp3YiOaOvx88dmtoPgLiavaCqHj+/EMKtRclHcnIyTzzxBOvXr2f9+vWMGzeOqVOnsm3btsZjzjnnHHJzcxtvixYt8njQQoiOqc7pYtvRcqBtZdVPplPXvthVPSFqDWrJAY+fXwjh1qLLLlOmTDnu57/97W/MmzeP1atX07t3bwDMZjMJCQmei1AIIeodWf8lTyrz+ME8hLTocz1+/rT4CPaSTE8OUrR/IzFRaR4fQwjRhgWnTqeTBQsWUFVVxYgRIxrvX7ZsGXFxcWRmZnLDDTdQUFBwyvPYbDbKy8uPuwkhRFNqdi1lqn4lk8L2otMpHj+/Ua/jsKkrAGUHNnn8/EIItxYnH1u2bCEsLAyz2czNN9/MwoUL6dWrFwCTJ0/mnXfeYenSpTz11FOsW7eOcePGYbPZTnq+uXPnYrVaG28pKSmt/22EEO2aKX8TAPa4/l4bozKiOwBqvpRZF8JbFFVt2aoqu93OoUOHKC0t5eOPP+aVV15h+fLljQnIr+Xm5pKamsqCBQuYPn16k+ez2WzHJSfl5eWkpKRQVlZGeHjbulUKIdoRl5PqRzsRQg0/TPiMUWeM9cown338NlO33EaBMZm4B7ed/glCCMD9+W21Wpv1+d3irbYmk4lu3boBMHjwYNatW8ezzz7Liy++eMKxiYmJpKamsmfPyXslmM1mzGapJCiEOLXa3J2EUEO1aia95yCvjRPebQQzNvyJuvCevOu1UYTo2NpcoUdV1ZNeVikqKiInJ4fERM9VIRRCdEy5O9yVTXcp6SRGhnltnG4piSx39WNdkZk6p8tr4wjRkbVo5uOBBx5g8uTJpKSkUFFRwYIFC1i2bBmLFy+msrKSOXPmcNFFF5GYmMiBAwd44IEHiImJYdq0ad6KXwjRQdQccFc2PRbeC0Xx/GLTBp0iggk16amyOzlQWEVGvMVrYwnRUbUo+cjPz+eaa64hNzcXq9VK3759Wbx4MRMmTKCmpoYtW7bw5ptvUlpaSmJiImeddRbvv/8+Fov84xVCtE1VeTEOVYczcaBXx9HpFCZGF9D12H+pXrUHLpzt1fGE6IhalHy8+urJG00HBwfzzTfftDkgIYRoyp9ct3PUdiUv9h3s9bGGh+ZxWcln5Ow/BMz2+nhCdDTSWE4I4ffKaurYX1hFLWb6dPF+EUNzsrt0e3TlbimzLoQXSPIhhPB7W4+UAZAcGUxUqMnr48Wn9aFO1RPiqoKyw14fT4iORpIPIYTfsy79E5+aHuKqyO0+GS+zUwx71SQAao9s9smYQnQkknwIIfxeZOEG+uv2kR4d7JPxosPMZOu7AFCyf6NPxhSiI5HkQwjh3+xVJNgPAhDTfcRpDvacsvBMAOqOysyHEJ4myYcQwq+V7FuHHhd5aiTdMzJ9Nq4z1t2p21iW7bMxhegoJPkQQvi1YztXAbDPmEmYucUdIVotqOsZjLb9i3sj/+2zMYXoKHz3L1kIIVrBdeQnAMoi+/h03K6d4jmkxlNTUOXTcYXoCGTmQwjh1yJL3a3tjZ2910yuKZn1ZdWPVdgorrL7dGwh2jtJPoQQfkt11rHFkcIRNZqEniN9Onao2cA06x7+z/hvKv73T5+OLUR7J5ddhBB+63BZHb+rvROjXmFrlxSfj9/HUskU22pys53AAz4fX4j2SmY+hBB+a1NOKQA9E8MxG/Q+H9+Q6F5nYi3fJWXWhfAgST6EEH5rb3Y2oNI32arJ+FFpfXGoOkKc5VCRq0kMQrRHknwIIfzWjM1X85P5JkZZCzUZP7NTDPvVRADUvK2axCBEeyTJhxDCLzlLjxDlKiacatK79dYkhrSYUHbTGYDyA1JmXQhPkeRDCOGX8nauBGAvyXTtFKtJDEa9jmMhGQDUHJYy60J4iiQfQgi/VL53DQBHQnqi1ymaxWGL7oVd1VNVXa1ZDEK0N5J8CCH8kjHPfZnDFtdP0zjU9LH0ts3n/2L+omkcfqmmFD64Ft6cCs46raMRAUSSDyGE/1FVEqp2ABCWPlTTUDISo6jDwM68Ck3j8DvF2fDqBNj+GRhDwCavj2g+ST6EEH7HfmwPYWoVNtVIl57aJh/dE9xl1vcfq6LO6dI0Fr9xaA28Mh4Kd+OyJFE67G4IidI6KhFAJPkQQvidvUV1vOCYwkJlHCmx4ZrG0ikimEtNq/hYfx8VXz6kaSx+YctH8MYUqC6iNqYP51Y/wplvFFFeK5ddRPNJ8iGE8DsbSkN5wnEFizrfg6Jot9gUQKdT6GzV0Ud3AOfh9ZrGoilVheVPwsfXg9NGeZdJjCv+E7uqggm15XNgx09aRygCiCQfQgi/8/PhMgD6aVTZ9LfUuCwAQkt2dtwy66oLjmwA4FjfmxhzcBZHq3VM1G1gddAddFp2l8YBikAiyYcQwr84HRiyvyOcSvomR2gdDQDW1D44VYUQRylUFmgdjjZ0erjoFQ6e9RzjN4+npMZJ/5QI0nu4dyOFVh7ouImZaDFJPoQQfqX66DaeqH6YH8yz6dfJonU4AHRLiiW7vsw6+Vu0DcaXCvfA0scak4oNeQ7OXxpHea2DwamRvHX9UJK69MSlKgQ5K6FKmzL4IvBI8iGE8Ct5238EYLcunThriMbRuHVPsLBTdZdZtx/tIMlH9gr3jpYV/4C1L7M2u5hrX11Dhc3BsLQo3pg1FEuQkc4J0RxRY9zPKdqrbcwiYEjyIYTwK7aD7kWdRVZt+rk0JTrMzCFjGgCVB3/WOBof2Pg2vDUNassgeSjrQkcz47W1VNmdnNEtmvnXDSHUbAAgPSaUbDUBAFfhHi2jFgFEkg8hhF8JK3L3UFGTBmocyfEqI3uR7YqnQPWPRbBe4XLBf+fAZ7eBywFZF/HDqPlc8342NXVORmfG8uqMIYSYDI1PSYoI5iBJAFQe3aVR4CLQGE5/iBBC+EhdLYm2/QBEZ4zQOJjj1XQZz1lHunJ9VBrtstqHvRoW3gQ7Pnf/PPpevku6npve3ojd4WJcjzj+c9VAgoz6456m1ymUhqZCLdjzd2sQuAhEMvMhhPAbZQd+woCTQjWczO49tQ7nOD3qK53uzm+nZcRzf4adX4HOCNNe5L8Jv+Omt9yJx4Re8bxw9aATEo8GJdEDecExhS0x5/g4aBGoZOZDCOE3CnauxArsMWQyIsSkdTjHyYx3Jx87c8uhrhaMQRpH5GGpI+CC/4PILiyuTOf2tzfgcKmc2yeBZy8fgFF/8u+qxk79eWJfODN1XTjLhyGLwCUzH0IIv/GjMoj7665nS8J0rUM5QWa8hev1i/hf3bXUfPuo1uF4x4Cr+LI8jdve3YjDpXJBvyT+fZrEAyAtJhSA7MIqX0Qp2oEWJR/z5s2jb9++hIeHEx4ezogRI/j6668bH1dVlTlz5pCUlERwcDBjx45l27ZtHg9aCNE+/VAUxnvO8eh7nqt1KCcINRswh1oIV6qxHd6sdTiecWw3vHSWuzMt8OnGI/z+vY04XSrTB3TiX5f1x3CaxAPcyUc0ZYTnr4Wyw96OWrQDLUo+kpOTeeKJJ1i/fj3r169n3LhxTJ06tTHBePLJJ3n66ad57rnnWLduHQkJCUyYMIGKinZ6jVQI4VHbj5YD0KeTf+4oqYt2b/81F23XOBIP+fEZOPoTbP6AjzYc5g8fbMKlwqWDk/nHJf3Q65rXVyctNpS/GV/j/2wP4tj+pXdjFu1Ci5KPKVOmcO6555KZmUlmZiZ/+9vfCAsLY/Xq1aiqyjPPPMODDz7I9OnTycrK4o033qC6upp3333XW/ELIdqJioIDjKn8ij7KfrrH+0dl098KTcnCpSoE24sCv8x6aQ5sfh+Ab6Ou4I8f/YyqwpXDOvPE9L7NTjwAYsPMHNY1bLfd6ZVwRfvS6jUfTqeTBQsWUFVVxYgRI8jOziYvL4+JEyc2HmM2mxkzZgwrV6486XlsNhvl5eXH3YQQHc+xLUuZa3yVvwa9gzXEqHU4TUrvFM8BNd79Q36AX1Je9Ry4HBTFDuPGpQqqCjNGpPK3C7PQtSDxAFAUhaqwVAAcBVJoTJxei5OPLVu2EBYWhtls5uabb2bhwoX06tWLvLw8AOLj4487Pj4+vvGxpsydOxer1dp4S0lJaWlIQoh2oOaIu2x5UWg3jSM5ue7xv5RZV/MCuMx6VRFseAOAf1S519dcNawzcy7ojaK0LPFo4Ipy/3czle33TIyiXWtx8tG9e3c2bdrE6tWrueWWW5gxYwbbt/9y/fO3b1xVVU/5Zr7//vspKytrvOXk5LQ0JCFEO2As3AFAXXQPjSM5ubSYUHbj/oZfE8iLTte8AI4ayiOzWFDcjTCzgXvP6dHqxAMgKKE7AGG1ue6tyEKcQovrfJhMJrp1c2e4gwcPZt26dTz77LP86U9/AiAvL4/ExMTG4wsKCk6YDfk1s9mM2WxuaRhCiHYmqtLdlCyoUx+NIzk5k0FHvqUPyyp2kxTcnUytA2oNWwWsfQmAl9ULAIWrhnXGGty2S12JicmUqyGEK9VQkg1x/lUkTviXNtf5UFUVm81GWloaCQkJLFmypPExu93O8uXLGTlyZFuHEUK0Y2pNKTGuYwDEdeuvbTCnUZUympl1f+J/4f5Xi6RZjKFw4X8oSpvC83m9MOl1zBqV1ubTdokNY399gznpbitOp0UzHw888ACTJ08mJSWFiooKFixYwLJly1i8eDGKojB79mwef/xxMjIyyMjI4PHHHyckJIQrr7zSW/ELIdqB0gObiQSOqlGkpyRrHc4pdU+wwM+wKy9AF8frdNDjPP60Jg4XBUwb0In48LZXa02LDuUvjnMIVWz8Oao3IR4IVbRfLUo+8vPzueaaa8jNzcVqtdK3b18WL17MhAkTALj33nupqanh1ltvpaSkhGHDhvHtt99isfjntjkhhH8o3L+RSCDH0IWkk/QP8RcN24Dzco9AZScIi9M4ohZQVVAUdudX8N8dBSgK3Dgm3SOntoYY+SF4HEVVdq50RJPlkbOK9qpFycerr756yscVRWHOnDnMmTOnLTEJITqYVcFj+Iv9QQalxTFM62BOo3uChfsM73Jz2Zc4V96JfmKAlFp3OWH+ZMiYyGtH3ZfCJ/VKoGtsmMeGSIsJpajKTnZhFVl+WihO+Afp7SKE0NyWIoVVrt4Y0vx/fViniGDydO61DbWHf9Y4mhbY/hnkrMG18jkWbXaXP7h5bFePDtE12swgZRem7R969Lyi/ZGutkIIze2qb1Pvr5VNf02nU6iJ6gmloC8IkDLrqgo/PA3A95HTKS81MyI9mv4pER4dpmuUkb+bH4FdQM0MCPbs+UX7ITMfQghNuSoKuKDgBS7Q/ehezBkAzEnuFQ1BtQXugl3+bu//IG8LqjGE+w6PADw/6wGQEh9Lnhrp/qFon8fPL9oPST6EEJo6tnstv9N9wZ3GhaRGh2odTrN0SYrngKuhzPpWbYNpjh/+BcDG2AvJrQuhV2I4ozNiPD5MWmwo2S53nSe1SMqsi5OT5EMIoanSg5sAOGpOb1EzMy31SPilzLrf93jJWQsHf0DVGbk/dzTgnvVoSzXTk+kSHUp2fa2P2rzdHj+/aD8k+RBCaMqV5143UWXN0DiS5stMsLBTdfehcuT6eZn1+lmPPQnnsasmnJSoYM7NSvDKUEFGPUVB7qSsJm+XV8YQ7YMsOBVCaCq0zP0NWZfQW+NImi8mzMw2c39et1UyNn4cXbQO6FTG/wWXycLDu84E4MbRXTHovfe902ZNgyJQZM2HOAWZ+RBCaMfpIMF2AABran9NQ2mpqoRhzHHMZK15hNahnFpcTz5Pf5hV5VHEhJm4ZJB3K8gaYt0zWKGVB9y7bIRogiQfQgjN2I/twUQd1aqZzt16aR1OizTszNmdV6FxJCdR/8GvqiovLHfPQswc2YUgL1eQtSZl8FDdTF5IeARUl1fHEoFLkg8hhGby97qLdO1TkkmwBlY3kO7xFkKoxXForX9uK118Pyy8mTXr17Mzr4JQk55rhnfx+rBd4iJ4yzmRRdU9QeffpfKFdiT5EEJoZkPIKEbW/pvXo+/2yu4Lb+qeYOFBwzvMKbgTNr6tdTjHqyyADfPh5/f4ZtUGAK4c1hlriNHrQ6fFuLdLHyiqwuWSyy6iaZJ8CCE0s6ugkqPEEJzSV+tQWiwj3sKO+u229qNbNI7mN1bPA0ctlbH9mX80GaNe4fpRnmkgdzrJkcGk6gqZ7FxOyeZFPhlTBB5JPoQQmtmVFzhl1X8rzGygOKwbAGqeHxUaqy2Dda8A8LpuOqAwbUAnEqxBPhneoNdxoWU7/zLNQ1l36makouOS5EMIoY26Gq499Gf+YPiIHnHBWkfTKvr67cHm6lyoLtY4mnrrXgVbObbITJ46mI6iuLfX+pIjwj2evtQP18IIvyDJhxBCE1VHtjLWtZqr9UvITIjUOpxW6ZyUSI4r1v2DPzSZq6txX3IBPgm5GBUdE3rG0y0uzKdhmOIzAQirzgGnw6dji8AgyYcQQhPH9m4EIFuXijXUpHE0rZMZ72dl1je9C1UFOMKTefRAT8A7DeROJyYplWrVjF51QulBn48v/J8kH0IITdQcdi/SLArtpnEkrdcjIZwd9WXW1Tw/WHSaNR3O+jOLomZS49QzLC2KgZ19P6uUFmPhQH2PF7/chiw0J8mHEEITpqIdADhiemocSeulxYTynTqYR+qu4ViPq7QOB4IjKR1yJ/ft7wNoM+sB7u62++uTD2ehdLcVJ5LkQwihicgq9zfi4OQ+GkfSeiaDjuqYfsx3Tmabqs0HPeCuZlpf0fStVQeptjvpkWBhbGasJuHEW4I4rCQBUHVUGsyJE0nyIYTwObWqiCiXe3dIQtf+2gbTRpn1ZdZ3allmffc38OoEbDsW8/rKAwDcMrarZoXbdDqFnyImMsP+J7akX69JDMK/SfIhhPC5kqN7qFWNHFJjSU/2Tnt3X+mRYCFNySV890eg1bqPH/4Fh9exZ83XFFXZSY4M5rw+idrEUs8Y34Plrn7sqAq8Gi7C+wxaByCE6Hi2041rbfMZFGXnQy83OvO2zHgLN+q/5Iqj38H2Okjw8WWkmhLIWQ3Ag3lnAnDj6HQMem2/W3aJcffqyS6s0jQO4Z9k5kMI4XM788pxoSM6sYvWobRZj4Rfttu6cjWY+ag8BkCdwcLPpcFEhZq4ZFCK7+P4jbSYMCbq1jFg/4tQckDrcISfkZkPIYTP7c6vL6ueEPhT8p0igtmv7wKAM2+r77/RVbmTj3yX+7W8bmQXgk3azyalxYRyk+FLBlXsgaPjIbKL1iEJPyIzH0II31JVZu28kWeMz5EV5dQ6mjbT6RSMMfXlxCvzwOXybQDVhQDkOsIIMem5ZkSqb8c/ifSYULJV97qTugLZbiuOJzMfQgifcpUcpIdjJ+k6PTmdAnuxaYOEhGQoBp3qgNpSCIny3eD1Mx/FajhXDOtMRIh/VIuNDDWRa+gEKlTl7iJC64CEX5GZDyGETxXt3wTAfjqRGmvVNhgP6ZYURZnqXmBJVaFPx66pc5GnRpKnRnL9qDSfjn06NRZ3PKoUGhO/IcmHEMKnSg/8DECuOU3zHRme0j3BQqFan0hVFfh07KMZVzLc9jz/NNxAUoR/dQdWot2l84PLD2gbiPA7ctlFCOFTan0Dtiprd40j8ZwuMaH82XE1Bh28FNsTX5b2Kqq0AxATZvbhqM0TlpgJ2RDkKIPqYt9ejhJ+rX187RBCBIywst0A6BJ6axyJ50SHmvjONYAljgGU68J9OnZRpQ2AKD/sDJySEM1hNcb9Q9FebYMRfkVmPoQQvuOwE2c/BEBEWn9tY/GgIKMei9lAhc1BUaUNa7DRZ2P3WXEjH5jy+dp4j8/GbK60mFB+b78dV3AUnyYN1Doc4Uck+RBC+Iy9PJ9DagJRlNElLVPrcDyqb0gRsXVbqNvjhNgLfDZuVOkWknUlrAz2v5mPLtGh/KRmQjWU2lxEhGgdkfAXLbrsMnfuXIYMGYLFYiEuLo4LL7yQXbuO71g4c+ZMFEU57jZ8+HCPBi2ECEz77VbOtv2DccrLJPrZ4si2GmvYwjOm/2Dd9pbvBnU5CaorBcBsjfPduM0UajYQH+5eiyJl1sWvtSj5WL58ObfddhurV69myZIlOBwOJk6cSFXV8W+qc845h9zc3MbbokWLPBq0ECIw7arv/NotPkKzjqve4gp2r21Qqn241ba6GB0qACHWWN+N2wL9I23crl9IyPd/0zoU4UdadNll8eLFx/08f/584uLi2LBhA6NHj26832w2k5DQPooHCSE8Z1duOdA+yqr/lhIWCwVgrC3y3aCNBcbCiAoP9d24LdAtQs89+R/i2GcG15Ogk30Ooo27XcrKygCIijp++9SyZcuIi4sjMzOTG264gYKCk+97t9lslJeXH3cTQrRPV/50OQtNf2GwpVjrUDzOGO6+7BFk9+HvVj/LUqRaiQ7zvzUfAJGJ6dhVPQaXDcqPaB2O8BOtTj5UVeWuu+5i1KhRZGVlNd4/efJk3nnnHZYuXcpTTz3FunXrGDduHDabrcnzzJ07F6vV2nhLSdG+G6MQwgtsFSTXHWCAbi8pnZK1jsbjgqzxAIQ4K8Bh982gDTMfWIgO9b86HwBd4qwcUt2vjWy3FQ1anXzcfvvtbN68mffee++4+y+77DLOO+88srKymDJlCl9//TW7d+/mq6++avI8999/P2VlZY23nJyc1oYkhPBj1Ye3ApCnRtIttf19yQiLjMWh1v9JrfbNpRen00muGkWeGuW3Mx9dftVgTpXkQ9Rr1VbbO+64g88//5wVK1aQnHzqbzCJiYmkpqayZ0/Ttf3NZjNms39m7EIIzzm27ydSgWxdKiP8pPmZJ0VbgigmnDhK3TMS4YleH7M4fSojbKEoCuz109e0c1QIS1X3GsCa3F3IblsBLUw+VFXljjvuYOHChSxbtoy0tNM3MSoqKiInJ4fERO//QxRC+C/bkS0AlIR10zgS74gJM/Pnuuswm4P4v0jftLUvqqqvbhpiQq/zz91DJoOOspBUsIOtYLckHwJo4WWX2267jbfffpt3330Xi8VCXl4eeXl51NTUAFBZWck999zDqlWrOHDgAMuWLWPKlCnExMQwbdo0r/wCQojAYCxy1wRyxPTQOBLviA418a1rCF/U9MFh9M1unoa+Lv56yaWBIzIdAENJtsaRCH/RouRj3rx5lJWVMXbsWBITExtv77//PgB6vZ4tW7YwdepUMjMzmTFjBpmZmaxatQqLpf1trRNCNJOqElPtvt4fnNxX42C8IyLERMPkQ3GVbxacdl72ez40zWG40b/XUriSBnK27Un+0+ttrUMRfqLFl11OJTg4mG+++aZNAQkh2qG6Gn5yZZLqyiGxa3+to/EKvU5hYEgBnWt2Ur3HCIMmen3M8OKtpOgO8mOQf15yaZASF81eNZkuRXVahyL8hPR2EUJ4XaFdz4zau1AU2J4Uo3U4XnOecQPXOd8ib3uhT5IPs81dU0Rv8b/S6r+WFuMugJZdWKlxJMJfSPIhhPC6hrLqqVEhBJv0GkfjPY7gaKgFKn1QYt1hJ8jpfl3N9TVG/FVaTChn6zZwTtl6XJuPoet7idYhCY1JnVshhNftO5wHqO2yrPqvqSHu/iq6Gh8kH/W1RJyqQmiEf88mJVmD6W84wMW65VTvXKp1OMIPSPIhhPC6catnsdF8E+ODmq73017owtzJh8nmgyJjv65uGubfHYJ1OoXK0C4AOI617/eAaB5JPoQQ3uVyElubTaRSSVySb+pfaKXh8keIvcT7g/2qr0uMn2+1BXBFdQXAVCbbbYUkH0IIL3MV7ceMnRrVRHLXXlqH41XBEe5Knia1FuxV3h3M6SCvsbS6/1eJDk7oDkCIvRBqpYFoRycLToUQXlWcvYkYYK+aTM/YcK3D8SqrNYIa1USwYndfFjF5r819bdp4htueA2BzAMx8dEqI55hqJVYpg+J9kDRA65CEhmTmQwjhVWUHfwYgLygNg759/8mJtpi5u+5m7jH9GUJjvTpWUX0hM6NewWL2/++RabGh7K9vMEfRPm2DEZpr338JhBCaU/O3A1Ad0V3jSLwvJtTMItdwvqrp49VZD4DihtLqoWYUxb+LjIF7u222y31Zqq70iMbRCK1J8iGE8CpL2W4AdAm9NY7E+xp6rNTUOam2O7w6VtSy+/jINIcJpi1eHcdTokNNPKe/hu61r5OdOUvrcITGJPkQQniPqrJCGcz3ziyi0tr/Nf4Qk56+xsNM162gYu9qr44VVLSNwbrdxAS5vDqOpyiKQlRsAjZM7D/m5cW4wu/5/4VCIUTAsjtV7q+8FIdL5ce0dK3D8TpFUbjEtIprnAsp2FYHvUZ5bSxDjbuWiOLltSWelBYTyubDZRwokuSjo5OZDyGE12QXVuFwqVjMBpKsQVqH4xP2oGgAnBXHvDpOkN3d18UYHkDJR3QIjxleZeKa66CyQOtwhIYk+RBCeM2h/TsJp5LMBEtALIr0BGewu9S5Uu3F5KOuBrOrGgCzNcF743hYWmwYo3WbSa/+GYr2ah2O0JAkH0IIr+m25s9sDrqRy00/aB2Kzyih7uSj4bKIV1S5q5vaVT1h1ijvjeNhaTGhZDdsty2UMusdmSQfQgiviah0f8CEJrb/bbYN9BZ3iXVz/WURr6gvrV5MODEW/69u2qBLzC+1PuwFuzWORmhJkg8hhHdUFxPpdH/7j03vp3EwvhMUEQdASF0JuLy0E8VhI48YctVookMDJ/kIDzJSYEoBoCZPko+OTHa7CCG8oubIVoKBw2oM3VKStA7HZ0Ii3cmHHifUlkKI5y+LqCnDGO14DrvDxQ8BUFr91+zWdCgBXbGs+ejIZOZDCOEVhfs2ApCtSyUyNLA+INsiOtzC7+238WDoHDCGeGWMSpsDu8M9qxJIMx8AhtgMAEIqD4HLqXE0QiuSfAghvMJ21F15syQsQ+NIfCs61MznrjP4xtYHjN7ZXlxUX1o91KQn2KT3yhjeEpGYRq1qpEIf4W6+JzokST6EEF5hKtoFgDOmh8aR+FZM/WWQ4iobLpfqlTHMy//Kx6aHmR60wSvn96a0WAv9bC9zbcQbYAmcbcLCs2TNhxDCKxaZJhJaFkd0l6Fah+JTkaEmeivZ9FByqDgQjzV9sMfHMBzbziDdHlaZbB4/t7elx4Ziw0T2sSpUVe0w9V/E8ST5EEJ4xSsVIyh0DOSz9PbfUO7XjHodM83LuIQlFG0PBi8kH7oa91Zbtb6mSCDpHBWCokCFzUFRlZ2YsMBasyI8Qy67CCE8rqjSRmGlDUWBjPgwrcPxuVpTJAB15d4pIW6sddcQ0QVQX5cGQUY9Ey0Hecf4N/jkRq3DERqRmQ8hhMfl7FxPX2UftZGZhJg63p8Ze1AM2EGt9MKCSlUluL6AmSE8zvPn94FOEUGcYd9GVW6J1qEIjcjMhxDC4yzrn+Nz80PcYv5G61A0oYa4L4fo6iuRepS9CqPqXusRHBHv+fP7gCmufrttTS7U1WgcjdCCJB9CCI8LKXXvdCG+Y633aNDQ5t5o80J/l/qEplY1YrVGeP78PhCf0IkyNQQFFYr3ax2O0IAkH0IIz3LWEVN7EIDw1I5TVv3XjFb35ZAgb/R3sVdToMRwRI0hOsw7dUS8LS027JcGc9LdtkOS5EMI4VFq0V6MOKhUg+ic1nEayv1aUIS7fkWIswKcdZ49eXwvztW/wHj7U0QFaOXY9Jgw9tUnH65CST46Ikk+hBDHO7wB1r0KxdmtenrR/k0A7FFT6BLb8Xa6AFgiYrnLfjN/jXgM8GwdC5dLpbjKXeE0JsD6ujToFBnMIdzJR03urpafoHAvfHU3HN3o4ciEr3S8ZehCiJMrOYDz9fPRO6rdP8f1hh7nQvfJkDQQmlEQquLQz8QAuUHpDNB3zO830ZZgPnGNJs0RykN6z/6ZLa2po6FwaqD2zNHrFCpCu3CsJpw6h57Q5jxJVSF7OayeB7sXu++rLYeLXvZmqMJLJPkQQri5XNg+vhWzo5pCNZwIKjEUbIOCbbhWz0N3734w1BeEUtWTJyL52wGoieiYl1wAoutnJAorPF+B1LXiKT4xfcRn+okY9ed5/Py+cihhEkN2DuDR9N5ce6oD62ph60fupCN/a/2dCmSeAwNP+UzhxyT5EEIAoFYXkp+fS4xq5hoe46gtiHG6jUzQb6CyOph3XlzP5KwEJveOJ/WT8yGyC3Q/DzImQHBE43k+D72IirxkuqaeqdnvorWYUDP9lb10cxzBdrQT5qQsj51bLdjJQN1e1pnO8Ng5tZAeFwY7C8gurDr1gfPP+eXyijEE+l8Fw2+B6K4c27WKoHevwxKdBJP+5v2ghce0KPmYO3cun3zyCTt37iQ4OJiRI0fy97//ne7df/mGo6oqjzzyCC+99BIlJSUMGzaM559/nt69O+aWOyECxSe77NxXMYd+hoP83++nE2IysHjrUF7fmse6g8WoOaX8nFPKh4v/x//MG90fCNsWgs4AqWdAj/Og+7l8XZ7GTmcMr3XtmDtdAMKDDcwyLOYC/UrKdiZ5Nvmo7wTrCAq80uq/lhbjvthyQvKRvx1iMqHhclWvqVBZAENvhEEzcJojWL67gLe/WIdt9wreMX1CnTUdoyQfAaVFycfy5cu57bbbGDJkCA6HgwcffJCJEyeyfft2QkPdb6Qnn3ySp59+mtdff53MzEwee+wxJkyYwK5du7BYLF75JYQQbVNQXssjX2yjDgNnjT+XbnHuf6uzRqUxa1QaBRW1fLstn6+35rJmv8pU26NM0G9gom49mRxxX4vPXg5f38tk50Xs5CIy4zvuv3dFUag2RoILbGX5Hj23vsZdOyQQ+7r8WlpMKPcZ3mPqoTXw818hKAJW/8f9Prp4PmRNdx847GYYcTuFNS7eX53Du2s2cqTUXZgslmQADGUH3JdnjIG59bgjalHysXjx4uN+nj9/PnFxcWzYsIHRo0ejqirPPPMMDz74INOnu984b7zxBvHx8bz77rvcdNNNJ5zTZrNhs/1yXbS8vLw1v4cQopXUtS+zetUWqmvH06dTNDeNTj/hmDhLEFcPT+Xq4amUVNlZsj2fxdtG8u89hSTWHWWCbgMT9BsYrNvNJmc6YWYDnSKCNfht/EetKRpqwVHh2f4uJlt9X5ewwOvr8mtpMaHso5pEtQD189+jOOs/BxQdHHPvgFFVlbU51by95hCLt+ZS53SvtLUGG7lkUDKHi6sp3RdKhFIFRXsgoY9Wv45ooTat+SgrKwMgKioKgOzsbPLy8pg4cWLjMWazmTFjxrBy5comk4+5c+fyyCOPtCUMIURrFe3D9c2fucBZyzKDhRsu/hOG0+xQiQw1cemQFC4dkkJ5bR3f7Sxg0ZZ+zNg9hZDaUioJpm+CpcO3SneGuJMPqjzY30VVCa5zJx+m8MAsrd4gzmLmkK4TgDvxMFth0LUw9EbKgxL55Mds3llziD0FlY3P6Z8SwdXDUzm/byJBRj1vrTrA7r3JDFV2QcFOST4CSKuTD1VVueuuuxg1ahRZWe7rmXl5eQDExx//jyI+Pp6DBw82eZ7777+fu+66q/Hn8vJyUlJSWhuWEIHPXgU7v4Le00Bv9N44Lid1n9yM0VnLD87edB5zDT0Tw1t0ivAgI1P7d2Jq/05U2x0s33WMNdnFTO2f5KWgA0hILBSDvtqDJdZt5RhUh/v0EYHZVK6BoihsiD6ft44dZeiQ4XQ/52a2Frp4+38H+WzTdmrqnAAEG/VcOCCJq4alktXJetw5MuIt7HElM1S3C47t0OLXEK3U6uTj9ttvZ/Pmzfzwww8nPPbbbzyqqp70W5DZbMZsNrc2DCHan03vwqJ7cKx/HcOsRd4bZ80LGI+spVIN4qXIu3jlrMw2nS7EZGByn0Qm90n0UICBTWdxXxYxe7K/i62CAl0cirOWCKv19Mf7uYTYWB7KncXZpfEce2UzP+eUNj6WERfG1cNTmTawE+FBTSfhGXFhLFbdsyeO/B2yfTOAtOq/1R133MHnn3/OihUrSE5Obrw/IcFdUjgvL4/ExF/+ABUUFJwwGyKEaILLibryORTg74e6M/lQCQONOe7ZkNQRnhuncC/OJY+gB+Y6r+aPl07AZOiYBcG8xWR1/80LrvNg23hrMpeHvMz+wireD9ACY7+WXr/j5b873ItyjXqFc7ISuXpYZ4amRZ320l10mJk8cxccTh3V1VW0bN5OaKlFf21UVeX222/nk08+YenSpaSlpR33eFpaGgkJCSxZsqTxPrvdzvLlyxk5cqRnIhaiPdv5FUrpAUrVUN6uHcUjr36MY/758M4lcHi9Z8ZwOXF8cjN6l40Vzj5Yz/gdfZID/1u0vwmK7MQf7Lfw75i/uIuyeUhhpXthZnRY4M8Yj+keh6JAp4hg/jipOyvvG8//XTGAYenRzV4zVBE/lF62+Xw74D9ejlZ4UotmPm677TbeffddPvvsMywWS+MaD6vVSnBwMIqiMHv2bB5//HEyMjLIyMjg8ccfJyQkhCuvvNIrv4AQ7UnDrMdbzgkEh4azs0rHelIYrmyFt6bDjM8gaUDbBsnbgit3MxVqMC9YZ/Pa2W273CKaFmUNZ6HrTLJc4fzRQ4tv7Q4X5bXuNR+B2tfl1walRrL9kXMwGXToda17jbomRPJjdjl7Cio8HJ3wphbNfMybN4+ysjLGjh1LYmJi4+39999vPObee+9l9uzZ3HrrrQwePJgjR47w7bffSo0PIU4nZx3K4TXYVAMf6c9l8ewzGdItietsd7Fe7QG2MnjzQsjb0qZhlpYnMrH2cWY7buOeS8cTZNR7Jn5xnIYS60WVdo+ds2blS3xi+gvXGb456TqIQBNs0rc68QD3ug+APfmVpzlS+JMWX3Zp6jZz5szGYxRFYc6cOeTm5lJbW8vy5csbd8MIIU5h1f8B8JnzDCYN60ucJYhXZgxmcEYyM2x/ZJOaAbWl8OZUKGjdyv7y2joe+GQrB9RE0kZcxMDOkR78BcSvRYeZGaTsYkzVt6geahvvqC+tnmoqR9eGD+z2JCPewnTdCu4+eCt8/5TW4YhmkhVmQvgDp4OKUnc9iPnqecwc2QWAIKOel68dzJDunbnWdi9b1XSoLoI3LoCifS0b46e3eOeD98krr6VLdAh3T+y4jd98ITrUxG2Gz3jC8AK1+773yDmdFe73iM0U5ZHztQeZ8RbClWp6q7tx5HhoXZTwOkk+hPAHegP3hf2Ns2xP0bPvMJJ+VR00yKjnxWsGMbhHGlfZ7mOHmkpJWDqEtWAHWcFOXF/+gZv23U4/ZS9/v6gvwSa53OJNQUY9ZboIAGpKPFRivaoQAGdIYJdW96SoUBMF5i4AOPOk1kegkORDCD+QU1zN11tyyVYTuaGJ8uZmg555Vw9kaK+uXGF7gDFHbuG77OrmndzpwPnJTehcdSxz9aPfsHEMS4/28G8gmlJjcl/Wqiv3TPJhqK2vGRLgfV08TY3tAYCp/KC7x4vwe5J8CP+28yvI/VnrKLzr4CoWfLcBlwpnZsSctMqo2aDn+SsHMqx3N8odRm56awP/254Hq+dB2eGTn3/ls+jzNlGmhvBsyO38aXJPL/0i4rfsZneS5/RQf5eGvi76sMCubuppsYmdKVVDUXC5e7wIvyfJh/Bb6oEfYMGV1L1+ITjrtA7HOxx2XB/M4PebpzFQ2c1No7ue8nCTQcdzVw7k3D4J2J0uVr/3GCy+D96YAuW5Jz4hfxuu7+YC8Ejdtfzx4rMINUsdSF9xBrtnKJTqwrafzOUiuK4U+KWAmXDLSAhnT32l04amdMK/SfIh/FbBUnfRIKOtGPveZdoG4y1bP0JXlU8JYTji+3FGt9NfDjHqdfz78gGc3zeRL+uGkqPGQvF+ePMCqPzVN2xnHa6Ft6Bz1bHEORDzoCsZlSHT9b6khLlfb0ONB0qs2ysp0cdQrZoJDfC+Lp6WGRfGHld9te1W7gQTviXJh/BPlceIPvRN44+Faz/UMBgvUVVcK93ba193TGLWmO7Nrupo0Ot45rL+DO3fhyvsD3JUjYbC3e5tuFX1H3TbPkWX9zOlaijPBN3K/ef18tZvIk7CYHHPUJjtxW0/WVA410fNp5dtPpHhYW0/XzuSGW9hl5pCjisWuxL4xdc6Akk+hF86Wmvgj3U38qOzNwDhBxaD06FxVB62/zt0BdupUs18F3ou5/VtWUM2g17H05f2Z2j/AVxhf5B8NQIKtsNbU6G6mJ+s47mn7iYeqLueey4a026KUgUSXXQad9pv5fX4+z1yvqLG0uryAftrkaEmvgo6nzPtz7Ij4yatwxHNIMmH8EsLNh5joXMUfzD+hWI1jEJnKM7SHK3D8ih15XMAfOAcyyVn9sGob/k/R71O4R+X9GPIwMFcaX+QY6rVXT79rYu478Of+Mg5hqD+F3FWD5mm10J4RDSfuUbxo8szhRYbqqXGhAZ+XxdPy4h3L9TenS9l1gOBJB/C79Q5XSxYewiABy/owyXK04yt/Qfry9pRz8r8bSj7/odTVXjfMIXLh3Zu9an0OoUnL+rLkMHDucr+AIVqOK/VjGJ3oY1Yi5m/nC+XW7TS0H+lqKrtJdZtGxfwnvIAt+k/lZmPJmTGuy9F7S2oBJdL42jE6UjyIfzO4QV3MbX6Y9JD7UzOSqRfr+6AwuJteVqH5jm5P2PHyNeuoYwdNoSwNu5A0ekUHp/Wh8FDz2Cc7SkeyxsOwGMXZhERIh9UWokJMzNct51RFV9DG2fuavP20F+3j876IkKkQNwJMuItzDG8zu3rJ8G2T7QOR5yGJB/Cv1Tk0XnPGzxofJdrehsxGXSc0zsBgGVbc1CrPLBl0Q9sjJrMyNp/80/XVVx3RhePnFOnU3hsahYXjnDPdEwb0IlJ9a+d0EZ0qIm7DB8yR52Hs42lv+1l7kJlNcaoZi9M7kgy4sIwUYfFVSY7XgKAJB/Cr5T8+Bp6XKx3ZXL22HEAjM6M5RrTMr6onUHxFw9rHKFnvLRiP4VYGdy/P/HhQR47r06n8OjULFb88SyevrSfx84rWicixESx6r5cWF3atpk7V6U78bYHSV+XpmTGW9ijurfbOvIl+fB3knwI/+FyovvpDQB+ir2QlKgQwN0jI7ZTV8KUWoL2fQUup5ZRto29iqM7VzdeQrrhzBNLqXtC5+gQ+XbsB/Q6hUqDu8R6bWnbSqwr1e6mcs5gKY3flMhQE/nmNECSj0AgyYfwG3W7l2C151GqhtJ1zNXHPdZlyDmUqGGE1pXAwR81itADNr5D0oJJPKF/ibHdY+meYNE6IuFltfUdaB3lbSuxbqh11wpRQmPbHFO7Fefu8WIuOwAOm7axiFOS5EP4jcJlLwDwtWEcY3qnHPfY2F6d+K86GICy9QFacMzlxLnyeQC2ql24sYkGcqL9qQtyz1SoVcfadJ6GQmX6cNk2fTKxCZ0pU0PcPV4KpceLP5PkQ/iHssPE5y0HoK7fDAy/qXkRHmTkUPwEAIy7A/TSy86v0JcdoEQNY3v8+YyQzrIdgqt+pkLXlv4uLhc1SgjVqplg6etyUu4eL/Vl1o/t1DYYcUqSfAi/cCC/hC+cw1nh6svEMWc2eUzyoMmUqSGE1BXBoVU+jrDtXD/+G4C3nWczY0xvWZPRQehD3f1djLVt6O+i0/GHhNfpZZtPSKTsYDqZzHgLa109WKfrB2a5pOnPJPkQfuH1nTrurLudd7s9RYK16d0f47OS+dblvvRS+dNHvgyv7XLWojuyDptq4NvQCzg3Sz5AOgpHTA/utN/KRwl3t+k8hfXVTaMtntsd1d5kxIXxpONyLqn+E1Wp47UOR5yCJB9CczV2Jx//dBiAK4ennfS4mDAzm2Mv4B91l7I47EIfRecZan0Duc+cZzDtzIEnXFYS7VdoZDyfuUaxTmlbpdnGvi6hUjTuZCJDTcSEuUvP7ymo1DgacSryF1BobvsX/yLOdpDOUSGM6nbqlu9dBp7N884L+SA7gHpb2KupPbAOgAWGKVw2JOU0TxDtSUOycKyy9SXW1V2Lecl2L380LJDS6qfRUGY9+/CR9teMsh2R5ENoq+QAA7Y8xhLTvdzQz4xOd+p1EJN6uxfbrTtQTGFlgGylM4Uw0/Ii19jvY/jwMwltYyl1EViiw8yM0m1heOlXUNG6Wh+1Bfvpr9tHqpJPlMx8nFJmvIVvTPcy7ZuRsujUj0nyITR1bPlL6FBZqWZx7hmDTnt8cmQI/ZOCOU9ZRfmCmwKigdSGg8WsOVTJGqU/M0d20Toc4WMxYSYeNLzN/XXPQ/7WVp2jpsxdlK5Sb8VskL4up5IRH0YF7gKFknz4L0k+hHacdQRtfQ+AXckXEx3WvEspE3vF87jxFdIPL4ScNd6MsO0K9/DyMne9gWkDOhHnwVLqIjBEh5kpqi+xbitv3cyHo9xdI6TGJNuzTycz3sJuVyf3D5J8+C1JPoRmarZ8jsVRTIEaQZ9xlzf7eRP7dmaJyz1LYtvsx90rHXYcr53Hg/uvoqtyhBtGn3wxrWi/Qk16ShQrANXFrevv4qp0Jx91ZunrcjoZcWHsbejxkrdd42jEyUjyITRT+v2LACwxT2RI1+YXTuoWZ2Fj2BgAXNs+9d9LL1s/wlCdjxEHXTOz6BYndQc6IkVRqDG6k4aGzrQtPkeNu0CZS/q6nFZEiIn8oPoeL3nS48VfSfIhNKEW7iWxaA0uVcE4dGaLC25F9jmHCjWY4NoCOLzWS1G2gari+MFdVOx1xyRmjemucUBCS7b6GQtnRetKrDcUKFPCpLR6cyhx7n9vpvID0uPFT0nyITSxd+fPFKkWVtCfSSOHtvj5E/p25r+ugQA4tvjhpZctH2Eo3EGVamZz/IUMS5Pp8o7MEVy/hby6dclHLUFUqkGYwqWpXHPEJHShXA1BJz1e/JYkH0IT8452ZYTtOb7v/mesIcYWP79PJyurze4y7I6tn/nPpZeaEvj0VvjkdwC85xzHVWP7Syn1ji7EnXzoa1pXYv1vyS+SZXsNJSbTk1G1WxkJFj5zjmRp2HlgkEXe/kiSD+FzpdV2vtycix0jU84c3KpzKIqCJWsS5Wow+WoktKVplyftWgyb3sGFwnzHJN6zzGisTSI6rqqYvvzefhuLku5o1fMbatpIafXmyYy38JBjFn+uux5iumkdjmiCVDsSPrd86SLqHHp6J0XQL9na6vOc3TeVUaufRdFFsj44hpbPn3iIywU6dx6/IWIiOYZzeLNqOD+pmfxrYh8ppS4IiurE564zUJSkVj2/qKq+r4tUN22WzPrF3UfLaqmorcMSpNlfB3ESknwIn1ILdjB1/QyyTImsG/xlmy5HDOkShTE0iqIqO2uziznjNKXZPU5V4ef3YOVz2K79imd+yOfF5ftwqdeSaA3i7Yv7MSrDxzEJv9SQNBS1psT6wVU8U/4H1hu6EhM22sORtU/WECNxFjPlFeUc3rWBnv2Gax2S+I0WfyVbsWIFU6ZMISkpCUVR+PTTT497fOZM986FX9+GD5f/8MItd+kLABxQOnH+oC5tOpdep3B2T/cljWWb9kBl6xbztUrpIXj7Ivj0FijYxoLn/sy8ZftwqTB9YCcWzx4tiYdoFB1qZqxuE4OLPofq4hY911lykCz20U05IqXVW2BQTB3bzbPo/um5suPFD7U4+aiqqqJfv34899xzJz3mnHPOITc3t/G2aNGiNgUp2om6GiJ2fwTA4a6XE+aBHifnZCVwg/5L7t16PuoPz7T5fKflcsHal+E/I2Df/3AoJv7hvJxHSycRHWrixWsG8fSl/bEGyzSv+EV0mInHjK8xu+Y5KN7foudWl7prgxQTTmSIJB/NFZ+QQgXB6FSnd3a8OB2+/cLTzrT4r//kyZOZPHnyKY8xm80kJCQ063w2mw2b7ZestLy8vKUhiQBRvuEDwl2V5LhiGTL+Eo+cc2S3aD41JGHEgW3rQsyTHgNv7Swp3AOf3wGHVgGw3dib2yuvY7+axKTe8fxtWp/Gdt5C/FpMmJlcNZxkpRBXRUGLvvXZSvOxAFWGSPSnabwofpGZEM4eNZnBym53mfWELM8O8OktsOVDmPx3GHaTZ8/dAXhlJdyyZcuIi4sjMzOTG264gYKCgpMeO3fuXKxWa+MtJUXajbdXVStfAWC55Vx6dYrwyDnNBj36zAlUqWbMlUfgyE8eOW+Tvn8KDq2iTh/Mo67rOK/ifo6ZOvPUJf144epBkniIk4oMMVGkuhdX15S2rMR6Q2EymynS43G1Z5nxYd7r8VJdDFs+AFSwJnv23B2Ex5OPyZMn884777B06VKeeuop1q1bx7hx446b3fi1+++/n7KyssZbTk6Op0MSfsCZu4XE8s3UqXoiRl7n0XOP75PKUtcAANRtCz16blS18f/mDXuQlcFjGVv1BK/ZJ3BGtzi++cNoLhqULHU8xCmZDDoq9BEA1Ja2rMS6q6q+r0uQrCFqiYw4S2OPlzpP93jZ/pn7f01h0OO8X+73l3pDAcDjycdll13GeeedR1ZWFlOmTOHrr79m9+7dfPXVV00ebzabCQ8PP+4m2p9DP34AwFJlKGcP7evRc4/tHss3jACgbsvC4xKGVnM54bvH4aNZqKrKRxsOM+HF7VxZciNFxngendqbN2cNJSkiuO1jiQ6hpn7mwtbC/i4NhcnUUEk+WsIaYqSgvseLM9/DPV62uNeu/dBpFgUVte77cjfDvJGQv82zY7VTXt9qm5iYSGpqKnv2SInbjuxvlRdQaotgwoAMJhn1Hj13qNmAK/1sqg/8h5DKw3D0J+g0qPUntFXAx7+D3YsBeLJkDPP2u8taD+gcwVOX9CM9NswToYsOxG6OBjuoVS1bpFirGqhUg9CHSWn1FovrCblgKj/o3vFi8MCl0bIjqAd/RAHu3dGNmn+t4NGpWUzZ9CAc2wGvToSLX4PMSW0fqx3zevWjoqIicnJySExM9PZQwk8dLa1h6a4C1qs9GD92nFfGOOtXl17Y9mnrT1R6CF6dBLsX49SZeVD5PfP2x2LUK9x7Tnc+unmkJB6iVRo60iotrMb7n9RnybK9RlVcGxLqDio2sTPvOMaztNMt4KzzzEm3fYKCyhpXD44SQ0l1HXe8t5E/6u6mrvMosFfCe5fDquc9MwvbTrU4+aisrGTTpk1s2rQJgOzsbDZt2sShQ4eorKzknnvuYdWqVRw4cIBly5YxZcoUYmJimDZtmqdjFwHio9V7cKkwPD2KbnHe+eA+u2c877gm8HDdDA53n9m6k+SshZfHQcE2qozRTK95kHdqhtMjwcJnt43i1rHdZLeBaLWimMH83n47y5JubNHzCusLk0VbZEFzS2XEh/Og43re1E0Fs4f+9mR/D8DnzpFMzkrgzvEZ6HUKH26rYtSR2zmcdimoLvjmAfjiTnC0orBcB9Di5GP9+vUMGDCAAQPc3zLvuusuBgwYwF/+8hf0ej1btmxh6tSpZGZmMmPGDDIzM1m1ahUWi8XjwQv/58jZwKzVk3jA8A5XDUv12jiRoSZ0aaN4wzmJRQdbcYKtH8Pr50HVMY4EZXB2xRx+Vrsx64w0Prv9DHolyVok0Tb6yFQ+d41kq65lzeGKqur7uoRK8tFSmfHuhGNPfoXHzum8/D1uNDzGl87hTB+YzB8mZPLprWeQGR9GfpWLUTum8mn87aiKDn56A96eDrVSQuK3WrzmY+zYsainmEr65ptv2hSQaF9yl75ACtWkGMsY37t5tV9aa1LvBH7cW8TirXncOLpry54cEo3qcrIheCTXlvyOWiWIv17Qm2tGdPFKrKLjiWkssd6Capv525hb+Hu2GpOICXvDS5G1XxnxFgw4sJTvoXqvmZBuo9p8zjUHSvi2Mh1rsJExme51OH2SrXxxxyj+tWQPL63Yx+yDI1kRFs6TPItBbwJjSJvHbW+k45XwHoedyINfA1Da4wpMBu++3Sb2SiAIG92PfEzNBze06HprbvQw/hD6BJeU3IpqDOXlawdL4iE8KjrMzNm6DQwo+AzsVc17UvlRerj20kM5RLTUkWkxa7CRc8P28K35T+i+aF1H4UaqCs46Pt90FIBz+yQc9zfNbNBz3+QefHTLSNJjQvmkMotzqh7mYdM9VNTJ2o/fkuRDeE3FjiWEuSooUCMYNnaK18dLsAbRP8XKXwxvEbz9A8jbfPKDy4/CGxfAsd1sP1rOtOdX8mlhJ2IswXxw0wjG1/eMEcJTokNNPGWcx80V/4ayI816jr3cXaCxWLVIR9tWUmN7Ar/a8dJaRzeiPtWdHlueBGBKv6Y7FA/sHMlXvz+T60elsY9k3thYwjnPfM+Pe47BV3e72zMIST6E9xxbvQCA1UGjSI+3+mTMsVld+M7V3/3DyXa9HN3oXliavZyy92/k0hdXkldeS0ZcGAtvHUmfZN/EKjqWGIuZwvoqpzRzu21DNdQSxYrFA72QOqKYxFTK1RB3j5eiva0/0ZaPUKqLiHYeIz7czLC06JMeGmzS89D5vVhww3BSooI5UlrDy/NfgnWvwKJ7YNEf3b1hOjBJPoR3OGzEH/0fAK6eF/ps2Em9E1jkHAaAc2sTBce2fQqvTYaKXMrCunHB0ZlU2pyMSI/mo1tGkhwp12aFd8SEminCvXC5rqJ5hcZs9dVQqw2RUkW3ldw9XurLrBe0stiYy+lelA585jyDKX2TmrXzbVh6NIvvHM3VwzuzzNWPJ+sucz+w9iV491KoLWtdPO2AJB/CK8q2fkOoWkW+GsGgM0/diNCT0mJCORx7JrWqEX1pNuRtcT+gqrD8H/DhDHDUsD9iJGcU3sdBVyzTBnTijVlDpROt8KrwYAPFuGc+qkua19/FWd811WaO8lpc7Z27x0t9/5Vju1p3koM/QmUepWooy139uKB/05dcmhJqNvDYhX14+/rhfBp2GTfZZ1OtmmHf/3C9e0Xr4mkHJPkQXvG/oij+z3Ehi8OmkRLt26Jco7PSWNZw6WX7p1BXC5/cCN89BsCyyIuZkHcLlYRwx7huPH1pP68vhhVCURSqDBHALzMap1V/ecYRLKXVW6tbnIU9be3xsuVDABY5h5IcY6VPp5Zfmh2VEcPiP4zGOnA6l9j/gk01oDv0Ixze0LqYApz8xRVesWCPnqccl1I3/Pc+H/ucX116cW37FBQFyg6j6gy8bL2DmbnTUXQGnryoL3dP7C7T2cJnak3udQJ15Sfv9H3c8S4DFWowhJx8fYE4NWuwkcLgLgA4WtPjxWFrbCT3uesMLuiX1Oq/GeFBRp68uB93z7iEr1R3P6qS5c+36lyBTpIP4XG5ZTWsPVAMwLl9fF9Wv2eihV3WM6hUgyg2xIOjliOTXuKeoEf4W/4IwswGXps5hEuHpPg8NtGxOYLcSURz+7u8lz6XPrZXyU8Y68Wo2j9HXB/+UXcp67rNbvmT9/4XasvIUyNZ6+rRoksuJzOuRzzZaVey1tWdL2r7tfl8gUiWTwuP27/oWc7W2alOGa1J11dFURjTJ42hK/7DhKh0ri9UmfX6Lgor00gID2L+dUPomSgVS4XvHY4ewR0FcFan4SQ34/jC+oJk0ZYg7wbWziUkpvD8/gupVdIY3dInx/Vka9osvtxdTa9OEXT1UG+nsePO4aJ5VszZOqZU2YkM7VhbqWXmQ3hWXQ0Ddz/DK6anuCpVu5LCk3rHU00Q327L57IXV1NYaaNnYjif3naGJB5CM2pkOl+4RrJL161Zxxc19HXpYB9MntZQZn13a8qsR6XzaM2lvOC8gKn9OnkspoGdI+mVGI7N4eLDDTkeO2+gkORDeFThxi8JVms4osYwZNQEzeIYkBJJrMVMTZ2TmjonozNj+eCm4SRY5Ruk0E5DldJjzSmxXprDn4/cwjzjv6TAWBtlxIcRSwmJuf+DAz+26LlHS92XkRUFzu/nucvIiqIwY2QqkZTj+v4ZnHv+57FzBwJJPoRHlaz7AICNYWOIC/f9JZcGOp3CRQPdE9uXD0nh1RmDsQTJVlqhrZgQHRN16+iTt/D0Ld4r88lw7qWPLluayrVRtzgLF+hX8aTj79StnNf8J/74bzYt/RADDoZ2iSLR6tm/aRf068StQd9wc92blC150qPn9ney5kN4jr2alGPLATD0vVjjYOCPk7pz5dDOdI6WwmHCP0RbgphnfAZ9sQpVN0P4yb9Jq1XHUIAiNVxmPtrIGmzkWHA6OMCRv51mfQ2pKoT/zuFc1ck/lX9yQf/+Ho8r2KSnps+1ODd/SlTBancdktjuHh/HH8nMh/CY/J++IAgbOWosQ88Yr3U46HWKJB7Cr0SHBVNcX+X0dCXWa+trgRSp4TLz4Qn1H+rm8gPN6/GybSGoTja70jikdOLcLO/s3LtgzDCWuAYDUL7iP14Zwx9J8iE8pnz9+wD8HH4WUdKBU4gTRIeZKFTdycfpttvW1vd1KddZCTbpvR5bexeTmEa5Glzf42Xf6Z9QX079c+dIxmTGem03SpeYUH5OvAQA87YPoFa7hfq+JMmH8AxVxVFyGABzv4s0DkYI/xQdaqaoPvloSC5OpqGjbbUx0utxdQSZCb9UOuXYaYqNlR6CQ6twofClc7hHanucypCzprLH1Qmzqxr7T+96dSx/IcmH8IjdBZVMrnqYiXVPMXTEOK3DEcIvBZv0lOkiAKguOXWJdWeFe2bEHiTVTT0hI97CHlf9VtnT9Xipn/VY4+xJmTGOs3vGezW2Md3j+dJ8HgC1P75wYkPMdkiSD+ERX/58FIDOmf2wSk0CIU6qYSbDfpoS6zVOhXI1GJckHx6RER/2S4+X3NP0eNnyEQCfuUYyoVc8oWbv7s3Q6xQiRlxDkWphfV0XVFv7v/QiyYdoM7Wuhv/+nA3A+X29Oz0pRKCzmd3JhLPi1MnHovSH6Gt7lV3x5/sirHYvPMjI5pDh3G6/g11Zs09+YE0pqrOOOgx87RzKBf188zdt2vAenOV8nlnlN/BTvtMnY2pJkg/RZkdWfcDHldfwkOldzu7l3elJIQLd7ojR3G6/g587XX7K44qq6qubWmTxtqcEJWTypWsEW2rjTn5QcASrJn3FWbanIDiS0ZmxPoktIsTEpH5dAHhz1UGfjKklST5Em1Vv/IhgxU5CdARhXp6eFCLQ1UW7PwD36dJOeVxj8iE7xzwmM94CwJ78ylMe99nPuRxWYzm3TyImg+8+JmeM7ALAni1rKftpoc/G1YIkH6JN1NoyupSsBCBs4CUaRyOE/2uo2VF0qhLrteXctf93vG78O7Eh8mfaUzLjwxig7KHb3vlweMOJB1QVYaupYNHWXACfXXJpkNXJytUJOSwy3otp0Z1QV+vT8X1J3tWiTQ6t+hgTDvapSQwZeobW4Qjh92JDYJJuHZlHPjn5QVXHSKvbyyDdbqIsob4Lrp3rFmfhMv13XFn2Euz55sQDVjyJ/qlMLqhbTEJ4EEPTonwe4+Azz+GwGkOwowznlo99Pr6vSPIh2sS2yb0qfFfMBELM0jtFiNOJCdHxoulfXFXwFNirmj6oqhCAYtUipdU9yL3jxb3d9oQdL04HbP0Eg6OaI2o0U/olotcpPo9xcr8UFuomAVC54vl2u+1Wkg/Raq7qEtLK1gAQPkguuQjRHJHhEdSo9QnFSaqcOivdO2GKCCdatq57THiQkaKQdMDd4+U4B1ZAVQElqoUfXH24oF8nDSIEs0GPMugabKoRa+k2ONLE5aF2QJIP0WoHVn6EEQd71BQGDxmpdThCBIRoSxBFjf1dCps8puZXfV28Vda7o1JjewINPV7svzxQX9vjK+dQOsdYyeoUrkF0btNG9ecL1wgAylc8r1kc3iTJh2i1hSVdmVt3BRuSriDIKL0nhGiOX/d3cVY0XeW0oalchT4Co17+THtSbGKXX/V42eu+s64WdnwBwGfOM7igfxKK4vtLLg06RQSzu/NlAITs+QIqT90HKBDJu1q0itOlsmC3ixedU4gfc4PW4QgRMCJDTBSpVgCqSpru71JXX/201uT7BY/tXUaChb1qQ5n1+h4ve74FWzlH1WjWq5k+3+XSlDFnncMmV1dKXSFUH92mdTgeJ8mHaJU12UUcq7BhDTZyRrcYrcMRImDodQpVhgjglxmO36pxuChXQ6Svixe4e7zUN5gr2On+3y0fAu4OtlmdIkmPDdMoul+M7BrNPyx/YqTt33xU1EXrcDxOkg/RKtXfPMY03fdc0CPcp0V4hGgPaur7u9SdpL/L9+l309f2CmvjLvVlWB1CRlwYLzvPZYrtMcoG3ua+c8KjvBd2LR87z2SqlzvYNpeiKEwYORQ7Rt5cdRC1ne16kU8N0WJ1FccYW/AG/zLNY2o3eQsJ0VKbrOO5zf57diVd2OTjDQXIosOCfBhVx2AJMlId3o0tajp7Sl0AHNElcH/hOewl2a/6U100KJlQk579BeVsXdVEXZIAJp8cosX2f78AAy520oX+/QdrHY4QAacishdfuYaTrUtt8vHC+tLqUbLTxSu61ZdZ311fZv2L+q7cw9KiSLD6T8JnCTJySf8Y/mu6hz7fXgYFO7QOyWNanHysWLGCKVOmkJTkXg386aefHve4qqrMmTOHpKQkgoODGTt2LNu2tb/FMh2Zsu1TAA4lTsIgK/GFaLGYsFOUWHe5uHHn9bxhfIJEc/str62lzLgwLtEvo/+qO+A/Iyle+z6gMrW/NrU9TuXKM7qzW00BoOqHeRpH4zkt/uSoqqqiX79+PPfcc00+/uSTT/L000/z3HPPsW7dOhISEpgwYQIVFRVtDlZoz1aWT9cqd9Gb2OGn7sophGhafJCTSbp1pOZ8duKDtaV0se1ijH4zVqvV98F1AJnxFq7QL6VX6TIo2Ma5FR9h1OuYnJWgdWgnyIy3sC7uIgCMWz+A2jKNI/KMFicfkydP5rHHHmP69OknPKaqKs888wwPPvgg06dPJysrizfeeIPq6mrefffdJs9ns9koLy8/7ib81/7l76FHZYfSlb59BmgdjhABKcFs40XTv7j4yBPgch3/YH3V0zI1hCiL9rsu2qOM+DB2N+x4AT5zjmRMZiwRIf55mWvQmKnscXXC5KqhbmPTn6WBxqNz5tnZ2eTl5TFx4sTG+8xmM2PGjGHlypVNPmfu3LlYrdbGW0pKiidDEh6m3/kpAIcTJ2nS90CI9iA0Kh4APS6oLT3+wfqqp4Wqlej6yzPCs7rFhVHKL4ndl87hXOCHl1waTOidwELjuQDYfnzhxIQ1AHk0+cjLcxfMiY+PP+7++Pj4xsd+6/7776esrKzxlpOT48mQhAfV1tZSWmXDpSokjLxC63CECFjR4WGUqSHuH37T36Wuwr39thgLMdJUzissQUZWB4/FqSp87RxCpTGGs3vGaR3WSRn1OixDr6ZCDSas8gBkL9M6pDbzymrB35alVVX1pKVqzWYz4eHhx92Ef1q2t4RLbX9mStBrZPXuo3U4QgSs6FAzhfVVTn+bfFTXVz0txkp4kHSK9hY1sR9n2p5ldt1tTOwdT4jJoHVIp3TRyB4sdJ0JQOHGLzSOpu08mnwkJLgX6/x2lqOgoOCE2RAReL7YnAvAGf16atr3QIhAF2MxNzaXs5UdX+W0oepppSESnVza9JrM+DCOEoMNk1+UUz+dOEsQ+zKu4yLbw/xDnal1OG3m0eQjLS2NhIQElixZ0nif3W5n+fLljBwpXU8DWVV5MRt27AHg/L6JGkcjRGALNekpwT3zUV1yfPJRY3dQpoZQW18FVXhHRpy71kdEiJEzM2I1jqZ5zh89nA1qdz79+Sil1fbTP8GPtTj5qKysZNOmTWzatAlwLzLdtGkThw4dQlEUZs+ezeOPP87ChQvZunUrM2fOJCQkhCuvvNLTsQsf2v/fV/hBdzNPhL1Pn06y/U+ItlAUher65OK3Mx8/pd9MP9srfB0zS4vQOoxJWQmM7R7Lg+f2DJgWEYNTI+mZGI7N4eLT1TvB0USdmADR4otc69ev56yzzmr8+a677gJgxowZvP7669x7773U1NRw6623UlJSwrBhw/j222+xWCyei1r4XNDuzzAoLuKS0+SSixAe8EPYJJYc687ViZP5dXWJ4vrqptEW2eniTdZgI69fN1TrMFpEURSuHZHK4c/+yqUrPkd13IQy8VGtw2qVFicfY8eOPWWDG0VRmDNnDnPmzGlLXMKPVBw7REbtVgBSRskMlhCeUBzRh+/yExirHL/Fs7CyPvkIleRDnGhq/yT+uiiOEGph5bMQEgWjZmsdVosFxlyT0NT+Ze8AsEXfi25dMzWORoj2oaGGx7HflFi/eOvNvGmcS2djiRZhCT8XYjIQO/JanqirrzD934dh3avaBtUKknyI0wrZ+zkAhZ3PlUsuQnhIUpCdc3RrSTz0q22TLifpVZsYrd9CRFiwdsEJv3bn2ZkU9LuF5x0XAKB+dTds/lDjqFpGkg9xSvuWvUWGbTsuVaHLaOnlIoSnpBjKeMH0DJMOPvXLndXF6FBxqQphEVKeQDRNr1P4x8X92Jt1F284JqCg4lp4E+xcpHVozSbJhziB3eHis01HmPr8j7y/5EcA1pqGkpaWoXFkQrQfwZHuZaahrgpw1G+brC84VkIYUeEhWoUmAoBep/DPS/uzsff9fOwchU51krPuc63Dajb/LukmfKo47xDZX/6Td3MT+biqLwA5+gn0iY9k0EV3axydEO2LJTIWh6rDoLigugjCExuTj2I1nBhZcCpOw52ADODu9+ewetsHfLZzDP/Zns/Zvfx/1kySD8He7Rsp+vafDChZzCDFgdGVxoqwwVwzogtXDutMTNhFWocoRLsTHRZEMeHEUepOOsITsZXlYwaKCKeP9HURzWDQ63jqskHc+b4e++ZcbnlnAy9d1Y+zEusgsovW4Z2UJB8dlNOlsvb7b9GvfIbBtavopqigwA5DT6oH3saPE8ZhMuq1DlOIdismzEyRGk6cUoqr8hg6oLrUnXyUKuGEmOTfn2geg17HM5f1R1VV/rslB9uCmdiD92G64VuI6aZ1eE2S5KODKaup44N1OUQs/zOXOL9y36nA5tCRmMbcRY8hZ8uOFiF8ICrUxF7VXXyxpiSPUKCq1oaihlJliJJ/h6JFjHodz14+gD/WVZK8vwCTrYja184n6MZvIaKz1uGdQJKPDmJfXgnvrtrHexsLqbY7majL5ELTYnbETiZx8h/pm95f6xCF6FBMBh3l+ggAakrdycfO1Gv43fKe9IsJRy52ipYy6nU8efWZ3PfWU9yafQfdqo9S8+r5BN+4BCz+tQ5Edru0Y6qqsmHXARY8+yeC5g0iaP2LVNuddI+3MG7qTJx3/Ezf294hVhIPITSxOPh8brX/npx4d8uKoip3wbGoMFlsKlrHZNDxxDXjeDH1aQ6rMQRXHKTq1SlQXax1aMeRmY92yOVS+WHdOsqX/R9jq79lkFILClweup4zLnmcEd1iZEpXCD+Qa+3PupJUzlMSGcCvSqtL8iHawGTQ8diMiTw8/2n+cPj3xJfuouLVC7Hc+BWY/aPPmiQf7YjN4eSH/32Oed08RtWtRVe/iDQ/KA39iFtJGXktKcYgrcMUQtRr6N/SMONx9qbZ9DGWskP/INBPw8hEoDMb9Dxy3fk8+qqNe47+gaDCHWzZuJo+wydoHRogyUe7UF5bx7trDvHaD9ncUzOfSw1rQIH9ESOIGv8H4rMmgsx0COF3koNqmKxbQ+SBQzDiFjpX/ER3fRX5wUatQxPtgNmg56FZFzH3FRvbDhWw7Ssnr8cVMSw9WuvQJPkIZMfyctjxxbM8eziTDTZ3Z8zPwi6kT3wsnc+7m/SkXhpHKIQ4la76fP5sepbi7ERwXE+wqwr4pfqpEG0VZNRz/++u5IY311Ozp5DrXl/He5cl069nT9Bpt51bko8AlLNzHXmL/0Xfkm8ZrdSR7xxNedw93DSmKxf0S8JkmKV1iEKIZgiyuncghNaVQHUhAA5VhyUyVsuwRDsTZNTz8rWD+d0b6ynat4FOH9zIoWF30vlc7SpXS/IRKFwu9q76FPsP/0evmp9IAVBgrzGTHiMv4puzR6PTyaUVIQJJSJR7hsOs1kLpIQBKsBAdJmuzhGc1JCAvvrCCtce68+c1mXw4pJKusWGaxCPJRwAoOrKP6vnT6OY4CIBTVdgYdiZhY35PjyFny3oOIQJURHgENaqJYMWOK387OqBQDSdaSqsLLwg26bnp5ruYNX8U46NC6BIdqlksknwEgMdWFBNSM55bDZ+zN2Y8qZNnM7ibrOcQItBFW4IoIpxkCqnL3YoZd1O59FBJPoR3BJv0zJ81FJNep+lsuSQffm7DwRIW/lyAopzNJbMeYEyqXAsWor2ICTNxQA0nWSnEVnyEGjWUMn0EZoP0dRHeE+QHfbsk+fBjrjo7f/9iIwAXD0ymvyQeQrQr4UFGirECsC/iDKbZriUtOoRzNY5LCG+T8up+bOtnT/P0sRs417SJP07qrnU4QggP0+kUPjRO5Wb7bNbo+gJS3VR0DDLz4aeqS/PpsvXfhCtVXJJpJC5cVr8L0R4dCB/MjqpyHCVhQJUsNhUdgsx8+Kk97z9AOFXsUbow4uLZWocjhPCSmPpk4+JDf+Ut4+P01WVrHJEQ3iczH37o2L6fyDr6MShwbNQjZJjlm5AQ7VWquZIw3RrOcS4DPRw2q1qHJITXycyHv1FVSj6+G72isso8ihHjpmodkRDCi3oqh5hnerbxZ1N4nIbRCOEbknz4mf0/vE9m9U/YVCMRFz6BIgXEhGjXDL9JNkKiEjWKRAjfkeTDj6iqyvaVXwHwfezl9OzZR+OIhBDeFhzxSxO5OlWPNSJKw2iE8A1Z8+FHPv/5KHeWXM4nxj48cfn1WocjhPCBsMhfZj6c6IixyM420f7JzIefqK1z8vevdwIwYOw04mKiNY5ICOELUVbLcT9HS2l10QFI8uEnvv/wWerK8kiyBnHD6HStwxFC+Mivkw0VhYgQST5E+yfJhx8o2rOG8bse5X/mu/nL+Di/qLsvhPCNmDAza13uCsZz9Lej17DZlxC+Ims+tKaqlH9yN9GKykbzcCYNydI6IiGEDwWb9LzCdF6111AWLYvMRcfg8ZmPOXPmoCjKcbeEhITTP7GDOrjibdJqtlCtmomZNle21grRAe0MG8Y3rqEoliStQxHCJ7wy89G7d2/++9//Nv6s18tlhKao9ipClj8CwIrYKzmnR0+NIxJCaCE6zMSh4mrp6yI6DK8kHwaDQWY7mmH3wsfp7jrGUTWGfpc/pHU4QgiNRIe6O9nGSEdb0UF4ZcHpnj17SEpKIi0tjcsvv5z9+/ef9FibzUZ5eflxt46gtuggqTteAmBTj7tIlK21QnRYyZHBACRFSI0P0TF4fOZj2LBhvPnmm2RmZpKfn89jjz3GyJEj2bZtG9HRJ37Azp07l0ceecTTYfi9t34qBsfZDDDmcNb0m7QORwihoVvHdqVzVAgXD07WOhQhfEJRVdWrLRSrqqro2rUr9957L3fdddcJj9tsNmw2W+PP5eXlpKSkUFZWRnh4uDdD00xBeS1j/7mMaruTZy/rw9QBnbUOSQghhGiT8vJyrFZrsz6/vb7VNjQ0lD59+rBnz54mHzebzZjNHeg6p6ryj8U7qbY7GdA5ggv6p2gdkRBCCOFTXi8yZrPZ2LFjB4mJ0qkRIOe7V7lo6830Ug7w0Pm9ZGutEEKIDsfjycc999zD8uXLyc7OZs2aNVx88cWUl5czY8YMTw8VcNTackJ/+BvDdTu4OfkgAztHah2SEEII4XMev+xy+PBhrrjiCgoLC4mNjWX48OGsXr2a1NRUTw8VcPYt/CvdXMUcVOMZfNkDWocjhBBCaMLjyceCBQs8fcp2wXZsPym75gOwqecfmRoToW1AQgghhEaksZyPHHn/LszUsU7py4RpM7UORwghhNCMJB8+cGz1+6QXfodD1VE+9hFCzEatQxJCCCE0I8mHl7lcKjnfvQLAZ5bLOOvMszSOSAghhNCWJB9e9s7aQ1xSdgcPu37H4GvnotPJ1lohhBAdmyQfXpRTXM3cRTtwoqfLpNtJjZOttUIIIYQkH16iVuSxdv49OO01DO0SxYwRXbQOSQghhPALXi+v3iGpKoffupmLKr4jyJRNr4s/ksstQgghRD2Z+fCC4tVvkVLwHXZVj23EbNJiQrUOSQghhPAbknx4mFp2BPO39wPwUdhVTJ00UeOIhBBCCP8iyYcnqSq5b99EqFrJFjWd4df+Fb1cbhFCCCGOI8mHB5WsnE/Sse+xqQZ2Dn+S9PgIrUMSQggh/I4kHx6iOmy4lj4OwIKwa5g+6WyNIxJCCCH8kyQfHvLhpgIuqPoz812TOeOaR+RyixBCCHESstXWA3LLavjrl9upIBb7+L/RLcGqdUhCCCGE35KZjzZSSw7y9jtvUFHroH9KBL87M13rkIQQQgi/JjMfbeFyceydG/hj4Rpsxmu57OLH5XKLEEIIcRoy89EG5T++RFzhGmpUE2kjppERb9E6JCGEEMLvSfLRSmpxNqalDwPwVth1XDZprLYBCSGEEAFCko/WcLkofOcGgtRa1rp6MubqBzHo5aUUQgghmkM+MVuhYsXzxBato0o1s2v4E3RPlN0tQgghRHNJ8tFCavlRTMv/CsCbYbO4YtJojSMSQgghAovsdmmhz/e5WGK7kcmGdZx19X1yuUUIIYRoIUk+WuBYhY2Hv9hOqWsEmWNmcF5ihNYhCSGEEAFHko9mUg9v4In/llBaXUevxHBuGdtV65CEEEKIgCTJx+nYq7Av+SvGdS9wv2rhqH42D11yA0a53CKEEEK0iiQfp6Du+47qj28ntPowACtcfRk/dhy9ksI1jkwIIYQIXJJ8NKW6mIrP/4Rl5weEAofVGJ4NupXzpl/D9O5xWkcnhBBCBDRJPn6jpiQf13+GY6krxqUqvK1OomLkffx1fF+CjHqtwxNCCCECniQfv/K/Hfk8/Pk27q7tSZZygAWJf+TaSy8lNTpU69CEEEKIdkOSD5eL4h9fZe6eZD7c7QLg+fCb+eN5/fhz384oinSpFUIIITypQycf9oK9FLxzI8llG5joHMRC3d1cf2Y6vx+XQai5Q780QgghhNd0zE9Yp4MDX/6dxI3PkIydatXM0YhBLLpqFJkJ0qdFCCGE8CavFav4z3/+Q1paGkFBQQwaNIjvv//eW0O1SPHe9eQ8OYIuG5/EjJ01Sl++n/A51971pCQeQgghhA94Jfl4//33mT17Ng8++CAbN27kzDPPZPLkyRw6dMgbwzWLw+liyadvEv7WBFJsuylVQ1nY+QF6/PF/TBo1XNZ2CCGEED6iqKqqevqkw4YNY+DAgcybN6/xvp49e3LhhRcyd+7cUz63vLwcq9VKWVkZ4eGeK+a1/Wg5F//fEhYb/8ShoO5EX/wMPTMzPHZ+IYQQoiNryee3x9d82O12NmzYwH333Xfc/RMnTmTlypUnHG+z2bDZbI0/l5eXezokAHolhTNzTG/WhH7M9DP6otfJTIcQQgihBY8nH4WFhTidTuLj44+7Pz4+nry8vBOOnzt3Lo888oinw2jSvef08Mk4QgghhDg5ry04/e0aClVVm1xXcf/991NWVtZ4y8nJ8VZIQgghhPADHp/5iImJQa/XnzDLUVBQcMJsCIDZbMZsNns6DCGEEEL4KY/PfJhMJgYNGsSSJUuOu3/JkiWMHDnS08MJIYQQIsB4pcjYXXfdxTXXXMPgwYMZMWIEL730EocOHeLmm2/2xnBCCCGECCBeST4uu+wyioqKePTRR8nNzSUrK4tFixaRmprqjeGEEEIIEUC8UuejLbxV50MIIYQQ3tOSz2+v7XYRQgghhGiKJB9CCCGE8ClJPoQQQgjhU5J8CCGEEMKnJPkQQgghhE9J8iGEEEIIn5LkQwghhBA+5ZUiY23RUHakvLxc40iEEEII0VwNn9vNKR/md8lHRUUFACkpKRpHIoQQQoiWqqiowGq1nvIYv6tw6nK5OHr0KBaLBUVRtA7Hb5SXl5OSkkJOTo5Ufm0mec1aR1631pHXrXXkdWs5f33NVFWloqKCpKQkdLpTr+rwu5kPnU5HcnKy1mH4rfDwcL96swUCec1aR1631pHXrXXkdWs5f3zNTjfj0UAWnAohhBDCpyT5EEIIIYRPSfIRIMxmMw8//DBms1nrUAKGvGatI69b68jr1jryurVce3jN/G7BqRBCCCHaN5n5EEIIIYRPSfIhhBBCCJ+S5EMIIYQQPiXJhxBCCCF8SpIPIYQQQviUJB9+ZMWKFUyZMoWkpCQUReHTTz897nFVVZkzZw5JSUkEBwczduxYtm3bpk2wfuR0r9vMmTNRFOW42/Dhw7UJ1k/MnTuXIUOGYLFYiIuL48ILL2TXrl3HHSPvtxM153WT99uJ5s2bR9++fRsrco4YMYKvv/668XF5rzXtdK9bIL/XJPnwI1VVVfTr14/nnnuuyceffPJJnn76aZ577jnWrVtHQkICEyZMaGzG11Gd7nUDOOecc8jNzW28LVq0yIcR+p/ly5dz2223sXr1apYsWYLD4WDixIlUVVU1HiPvtxM153UDeb/9VnJyMk888QTr169n/fr1jBs3jqlTpzYmGPJea9rpXjcI4PeaKvwSoC5cuLDxZ5fLpSYkJKhPPPFE4321tbWq1WpVX3jhBQ0i9E+/fd1UVVVnzJihTp06VZN4AkVBQYEKqMuXL1dVVd5vzfXb101V5f3WXJGRkeorr7wi77UWanjdVDWw32sy8xEgsrOzycvLY+LEiY33mc1mxowZw8qVKzWMLDAsW7aMuLg4MjMzueGGGygoKNA6JL9SVlYGQFRUFCDvt+b67evWQN5vJ+d0OlmwYAFVVVWMGDFC3mvN9NvXrUGgvtf8rqutaFpeXh4A8fHxx90fHx/PwYMHtQgpYEyePJlLLrmE1NRUsrOzeeihhxg3bhwbNmwI6PLEnqKqKnfddRejRo0iKysLkPdbczT1uoG8305my5YtjBgxgtraWsLCwli4cCG9evVqTDDkvda0k71uENjvNUk+AoyiKMf9rKrqCfeJ41122WWN/z8rK4vBgweTmprKV199xfTp0zWMzD/cfvvtbN68mR9++OGEx+T9dnIne93k/da07t27s2nTJkpLS/n444+ZMWMGy5cvb3xc3mtNO9nr1qtXr4B+r8lllwCRkJAA/PKNtEFBQcEJ3xjEqSUmJpKamsqePXu0DkVzd9xxB59//jnfffcdycnJjffL++3UTva6NUXeb24mk4lu3boxePBg5s6dS79+/Xj22WflvXYaJ3vdmhJI7zVJPgJEWloaCQkJLFmypPE+u93O8uXLGTlypIaRBZ6ioiJycnJITEzUOhTNqKrK7bffzieffMLSpUtJS0s77nF5vzXtdK9bU+T91jRVVbHZbPJea6GG160pAfVe02ypqzhBRUWFunHjRnXjxo0qoD799NPqxo0b1YMHD6qqqqpPPPGEarVa1U8++UTdsmWLesUVV6iJiYlqeXm5xpFr61SvW0VFhXr33XerK1euVLOzs9XvvvtOHTFihNqpU6cO/brdcsstqtVqVZctW6bm5uY23qqrqxuPkffbiU73usn7rWn333+/umLFCjU7O1vdvHmz+sADD6g6nU799ttvVVWV99rJnOp1C/T3miQffuS7775TgRNuM2bMUFXVvf3x4YcfVhMSElSz2ayOHj1a3bJli7ZB+4FTvW7V1dXqxIkT1djYWNVoNKqdO3dWZ8yYoR46dEjrsDXV1OsFqPPnz288Rt5vJzrd6ybvt6bNmjVLTU1NVU0mkxobG6uOHz++MfFQVXmvncypXrdAf68pqqqqvptnEUIIIURHJ2s+hBBCCOFTknwIIYQQwqck+RBCCCGET0nyIYQQQgifkuRDCCGEED4lyYcQQgghfEqSDyGEEEL4lCQfQgghhPApST6EEEII4VOSfAghhBDCpyT5EEIIIYRP/T9gowwPrh7cmAAAAABJRU5ErkJggg==", + "text/plain": [ + "<Figure size 640x480 with 1 Axes>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiIAAAGxCAYAAABfrt1aAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAACCT0lEQVR4nO3dd3hb1fnA8e/V9N47XhnO3gmQQdiEvUcplFWgrDDKDyihpaSUEnah0EIZDXsVCFB2WEkgCWTv5XjvLXlq3t8f1zEJcRI7lnQl+/08jx5i6d5zXgtZenXuOe9RVFVVEUIIIYTQgUHvAIQQQggxcEkiIoQQQgjdSCIihBBCCN1IIiKEEEII3UgiIoQQQgjdSCIihBBCCN1IIiKEEEII3UgiIoQQQgjdSCIihBBCCN1IIiLEAPfSSy+hKErXLSwsjLS0NI499ljmz59PTU3NXsfPmzcPRVGoq6vrtr1zzz0XRVGYM2dOt49/9913e/WnKArx8fEcccQRvPzyyz7//YQQwU0SESEEAAsWLGD58uUsWrSIf/7zn0ycOJGHHnqIUaNG8dVXX/WojZqaGj7++GMAXn/9dTo6OvZ77AMPPMDy5ctZvnw5r776Kjk5OVxxxRU89dRTPvl9hBChQRIRIQQAY8eOZdq0acyaNYvzzjuPv//972zYsIHIyEjOPfdcqqurD9rGK6+8gsvl4rTTTqOpqYn3339/v8fm5eUxbdo0pk2bxumnn85bb71Fbm4ub7755gH7UFWV9vb2Xv9+QojgJImIEGK/srOzeeyxx2hububf//73QY//z3/+Q2pqKi+//DLh4eH85z//6XFfBoOBqKgozGbzXvfvvszz7LPPMmrUKKxWa9clnJ07d3LxxReTkpKC1Wpl1KhR/POf/9zrfK/Xy/3338+IESMIDw8nLi6O8ePH8+STT/Y4NiGE/5j0DkAIEdxOPfVUjEYjS5YsOeBxy5YtY+vWrdxxxx0kJiZy3nnn8frrr1NYWMjgwYP3Od7r9eJ2uwGor69nwYIFbNq0ieeee26fYz/44AOWLl3Kn//8Z9LS0khJSWHLli3MmDGjK1lKS0vjiy++4Oabb6auro57770XgIcffph58+bxpz/9iaOOOgqXy8W2bdtoamrq+5MjhOgzSUSEEAcUGRlJUlISFRUVBzzuxRdfBOC3v/0tAFdddRWvvfYaCxYs4L777tvn+F/96ld7/WwwGPjjH//INddcs8+xLS0tbNy4kfj4+K77Tj75ZKKjo/n++++JiYkB4MQTT8ThcPDggw9y8803Ex8fzw8//MC4ceOYN29e17knnXRSz355IYTfyaUZIcRBqap6wMdbWlp45513mDFjBiNHjgTg6KOPZujQobz00kt4vd59znnooYdYuXIlK1euZNGiRdx55508+OCD3HHHHfsce9xxx+2VhHR0dPD1119zzjnnEBERgdvt7rqdeuqpdHR0sGLFCgAOP/xw1q9fzw033MAXX3yB3W7vy1MhhPAxSUSEEAfU2tpKfX09GRkZ+z3m7bffpqWlhQsvvJCmpiaampqw2WxceOGFlJaWsmjRon3OGTJkCFOnTmXq1KmccMIJzJ8/n6uvvprHHnuMbdu27XVsenr6Xj/X19fjdrt56qmnMJvNe91OPfVUgK7lxXPnzuXRRx9lxYoVnHLKKSQmJnL88cezatWqvj41QggfkEszQogD+uSTT/B4PBxzzDH7PWb3ZZlbb72VW2+9tdvHe3I5ZPz48aiqyoYNG7pGVkCbsLqn+Ph4jEYjl156KTfeeGO3be2el2Iymbjtttu47bbbaGpq4quvvuLuu+/mpJNOorS0lIiIiIPGJYTwH0lEhBD7VVJSwu23305sbCzXXnttt8ds3bqV5cuXc95553VbxOz+++/nww8/pL6+nsTExAP2t27dOgBSUlIOeFxERATHHnssa9euZfz48Vgslh79PnFxcZx//vmUl5dz6623UlRUxOjRo3t0rhDCPyQREUIAsGnTpq55FjU1NSxdupQFCxZgNBpZuHAhycnJ3Z63ezTkzjvv5PDDD9/n8ebmZr7++mtee+01brnllq77d+7c2TWPw2az8dVXX/Hiiy8ydepUZs2addB4n3zySY488khmzZrF9ddfT25uLs3NzeTn5/O///2Pb775BoAzzjiDsWPHMnXqVJKTkykuLuaJJ54gJyeHvLy8Xj9PQgjfkkRECAHAlVdeCYDFYiEuLo5Ro0bxhz/8gauvvnq/SYjL5eLVV19l4sSJ3SYhoC3/zczM5MUXX9wrEbn77ru7/h0ZGUlOTg733HMPt912G0aj8aDxjh49mjVr1vDXv/6VP/3pT9TU1BAXF0deXl7XPBGAY489lvfee48XXngBu91OWloaJ554Ivfcc88+NUuEEIGnqAebDi+EEEII4SeyakYIIYQQupFERAghhBC6kURECCGEELqRREQIIYQQupFERAghhBC6kURECCGEELoJ6joiXq+XiooKoqOj9ynxLIQQQojgpKoqzc3NZGRkYDAceMwjqBORiooKsrKy9A5DCCGEEIegtLSUzMzMAx4T1IlIdHQ0oP0iMTExOkcjhBBCiJ6w2+1kZWV1fY4fSFAnIrsvx8TExEgiIoQQQoSYnkyrkMmqQgghhNCNJCJCCCGE0I0kIkIIIYTQjSQiQgghhNCNJCJCCCGE0I0kIkIIIYTQjSQiQgghhNCNJCJCCCGE0I0kIkIIIYTQjSQiQgghhNCNJCJCCCGE0I0kIkIIIYTQjSQih2BHdTP/XrwLh9ujdyhCCCFESAvq3XeD1byPNrNsVz2D4sM5fXyG3uEIIYQQIUtGRHrJ61WZVPY6P1hvwl62Xe9whBBCiJAmiUgvlTS0cYfyCoOUekbuelHvcIQQQoiQJolIL20tqej6d5vLq2MkQgghROjzeyJSXl7Ob37zGxITE4mIiGDixImsXr3a3936TUlxYde/O5xuHSMRQgghQp9fE5HGxkZmzpyJ2Wzms88+Y8uWLTz22GPExcX5s1u/+r4hljtcvwMgylmrczRCCCFEaPPrqpmHHnqIrKwsFixY0HVfbm7ufo93OBw4HI6un+12uz/D6zVVVdlcYUdVEylXE6l2R6CqKoqi6B2aEEIIEZL8OiLy0UcfMXXqVC644AJSUlKYNGkSzz///H6Pnz9/PrGxsV23rKwsf4bXa5W2DppaO1jOeGY6nuIW5w3Y2+XyjBBCCHGo/JqIFBQU8Mwzz5CXl8cXX3zBddddx80338wrr7zS7fFz587FZrN13UpLS/0ZXq9tKa5ig/VqPg6fR3q4loBUN3foHJUQQggRuvx6acbr9TJ16lQeeOABACZNmsTmzZt55plnuOyyy/Y53mq1YrVa/RlSn9TlryZK6WCQUkt0TByV7S3U2B0MT43WOzQhhBAiJPl1RCQ9PZ3Ro0fvdd+oUaMoKSnxZ7d+46lYB4AtbjT3Ox9hieUWnCUr9Q1KCCGECGF+TURmzpzJ9u17Vx/dsWMHOTk5/uzWb2IaNwNgGDSJFBrINtTibAiuy0dCCCFEKPFrIvL73/+eFStW8MADD5Cfn88bb7zBc889x4033ujPbv2irsXBUPcuABKGHYYjPBkAj71Kz7CEEEKIkObXROSwww5j4cKFvPnmm4wdO5a//vWvPPHEE1xyySX+7NYvtpTWkqeUARCePQVvZBoAxhZJRIQQQohD5ffdd08//XROP/10f3fjd9U7VmFWPDQb44iOGYQhJh0AS3uNzpEJIYQQoUv2mumh/Lp2vvBMpSJ5FigKlvhBAERKdVUhhBDikEki0kOf1adxres26k54AoCopEwA4jz1qKqqY2RCCCFE6JJEpAds7S5KGtoAGJMRA0BsWg7laiJV3nhs7S49wxNCCCFClt/niPQHW8vqyaAOJTaTuAgLAJa00ZxufJZGh4sv7I6u+4UQQgjRczIi0gOVO1azLOxm3vPestf9qTFhAFTbpcy7EEIIcSgkEekBR+kaAJyR6XvdnxytlaOvaXbsc44QQgghDk4SkR6Iqt8EgJo+ca/7r2/5J0sttxBR8JkOUQkhhBChTxKRg2hzusly7AAgbsjUvR5LMLSQZaiFpjI9QhNCCCFCniQiB7G1vIGRirafTOzQw/Z6bHd1VUOrVFcVQgghDoUkIgdRsWMNVsVFmxIJ8YP3eswYoyUiYR1SXVUIIYQ4FJKIHERHyVoA6qJHgqLs9Zg1YXd11bqAxyWEEEL0B1JH5CB+aE6hwX0aM4cdvs9jUUlZAMR3VldVfpGoCCGEEOLAZETkABxuD5/UpzPffQmxR/5un8djUrREJIVGmtqkuqoQQgjRW5KIHMDO6hZcHpXYcDOZ8eH7PG6Jy6CSJPLVDKqbmnWIUAghhAhtcmnmAPILdzHdsJmo9MndX3YJi+XKuAVsq2rm5VYvIwMfohBCCBHSJBE5AO/2RbxpeYCS5knACd0ekxoTxraqZinzLoQQQhwCuTRzAJY6raKqM2X8fo9J6SzzXitl3oUQQohek0RkPzxelYy2bQBED56y3+POsb3CUsst5Ox6LVChCSGEEP2GJCL7UVBtYyTFACTnHbHf4+KMDrIMtViaywMVmhBCCNFvSCKyH8U71hGhOOhQwjAk5+33OENsBgBWqa4qhBAihGyttHP3wo289VOJrnFIIrIfLUVrAKiJGA4G436PC4vXEpFol1RXFUIIETo2ljXxxo8lfLKxUtc4ZNXMfphrNgDgSB53wOOikrWiZnGeerxeFYNBqqsKIYQIfklbXmKl9QU2O84A9j8Fwd8kEemG16vyXMsslrnjuWbCGQc8NjYlG9Cqqza2OUmMsgYiRCGEEKJPPjcfz6PORK7IGaprHHJpphuljW2sd6TxX2U2g8Yfc8BjzbHpAEQpHdTV1wcgOiGEEKLv8ptgi5pLVPYEXeOQEZFubCq3AzAyLRqz8SC5mjWKIkM29W4rjsYGyMkIQIRCCCFE35Q0tAOQnRChaxySiHSjfscyfm38geSEY3t0/LysF/luey0Pu2L9HJkQQgjRd20OFzd2PEe5MYmsqCN1jUUSkW4kFX/KfPO7bO9oBQ48RwQgNToMQMq8CyGECAkVFWVcafoCLwqGyCd0jUXmiPyCqqqkNG8FIDxn/xVV95QSo01QrZEy70IIIUJAQ9kOAOoMSWCy6BqLJCK/UGVrY7haAEDqiJ4tZ5rVuJDvrTczo/Apf4YmhBBC+ERbdT4ATVb95zVKIvILu7ZvJkZpx4kZa/roHp0TY4FMpY6ojgo/RyeEEEL0nbe+EID2qCydI5FEZB+2gpUAVIUNBaO5R+eEJwwCIMop1VWFEEIEP0tzZ1n3uFxd4wBJRPZhqFoPQFvSgSuq7ikyKROABK9WXVUIIYQIZtHt2kat1qTBOkciicg+Eu3aRFVr1qQen7NnddWGVpmwKoQQInipqkqSuwqA2Iz9b+oaKLJ8dw/1LQ6uaZ/DWEMhz005s8fn7a6uGq44KaqrISk6218hCiGEEH1S2+LgFMcD5BhqeW9Yz1aH+pOMiOxhc4UdG1FUJkwjMqkXE3gsETQrkQDYa0v9FJ0QQgjRd6UNbdiJoiFmNJbwKL3DkRGRPW2qsAEwZlDvK6QWW0fS0dZMY3Obr8MSQgghfKakQfuc0ru0+24yIrKH6C1vc5fpTY6J6v2oxmt5T3C+cx47yPV9YEIIIYSPGHYu4i+mBZxsWq13KEAAE5H58+ejKAq33nproLrstRH1X3Kd6X9MMBb1+tyUGCnzLoQQIvjFVK/gctMiJng26h0KEKBEZOXKlTz33HOMHz8+EN0dEnu7k2FurdJcyvCeVVTdU0q0lHkXQggR/CJatFF/Y0KuvoF08nsi0tLSwiWXXMLzzz9PfHy8v7s7ZPk7t5GgtODGSEzOhF6fP972Dd9bb+Y35ff5ITohhBDCN+KdWhXwiNRhOkei8XsicuONN3LaaadxwgknHPRYh8OB3W7f6xYo9Tt/AqDSkgvmsF6fHxNhJVOpI95Z5ePIhBBCCN/ocLpJ82qfU4mZw3WORuPXVTNvvfUWa9asYeXKlT06fv78+fzlL3/xZ0j7V7EOAHv8mEM6PSZZW+4b723A41UxGhRfRSaEEEL4RGV1BYOVdgBiM4bqHI3GbyMipaWl3HLLLbz22muEhfVshGHu3LnYbLauW2lp4GpyxNq2AGDKnHhI5+9ORFJopKFF5okIIYQIPvWlO7X/Kgkolkido9H4bURk9erV1NTUMGXKz1XbPB4PS5Ys4emnn8bhcGA0Gvc6x2q1YrVa/RXSfrU7PdolFQMk5/V+oiqAqbO6qlVxU1dbRXJMrg8jFEIIIfqupboAgAZLBok6x7Kb3xKR448/no0b914adOWVVzJy5Ej+8Ic/7JOE6GlrlZ1znQ8zPsrOR8MOP7RGTFZsSgyxql2rrjo016cxCiGEEH31vXkmN3c8x9XjktB/lxmN3xKR6Ohoxo4du9d9kZGRJCYm7nO/3jZX2AGFhEHDwGQ55HbspkRiXXba68t9F5wQQgjhI6WNWnn32PTgmB8CUuIdgM3lWmn3sRm9L+2+p+qoUVTXm6lvV30RlhBCCOFTJQ3aRNVgKe8OAU5Evvvuu0B212NH7/gbR5vriQ2/ExhxyO0sHf0Xnvx6JxcbsznPd+EJIYQQfaaqKtc0PIbNZCHXOgJI0TskQEZEcLq9TOr4kTRjI9UJh35ZBiC1s8x7jZR5F0IIEWQam9s4k8WYTF46Yh7TO5wuA37Tu8KiXaQpjXhQSMmb2qe2usq8SyIihBAiyFSV7sKkeHFgJix+kN7hdBnwIyI1235kBFBpyiLTGtWntoa0ruMH603UNqQAK3wSnxBCCOELTRU7AKg1ppFpCJ5xiAGfiDjL1wLQGDuazD62FRcTTYJSj+JFqqsKIYQIKo5arYaIPTx4RkNALs0QVb9J+0f6xD63FZuaDUAyTdQ3t/e5PSGEEMJnGosAcEZn6xvHLwzoRMTjVcl2aOVu4w+1kNkejNGpeFEwKx7qa2XzOyGEEMEjrEXbNsWQkKtvIL8woBORoqpaqtVY2lUL6SMO63uDRjM2RatFYq8p6Xt7QgghhI+EOeoACE8NnmJmMMDniGysdnGr834Oz47hnfAYn7TZbE4k3tlEW4NUVxVCCBEcXB4v57X/kRi1hS/GzNY7nL0M6BGRTZ0VVUdnJviszTarViDG3VThszaFEEKIvqhs6sCrKrSbYkmOj9c7nL0M6BGRLeWNAIzO8M1oCIA9diQrbfXUOAO/i7AQQgjRnZKGNgCyEiIwBNmKzgGbiKiqyvzK39JmsWCOeBnI8km7u8bfxtz8EznekMIlPmlRCCGE6BvHjm943vwMdcYjgKP1DmcvAzYRKS8vJ4cqMIArZ7DP2k2N0UZCqpuluqoQQojgoFRv4ETjGjaSqHco+xiwc0QqtmmVTysMGZgjfXe9LCW6c78ZmyQiQgghgoPRpq3kdMfm6BzJvgbsiEh7yRoA6qJHkuHDdtNdxSyzzsHrMuD27MRkHLC5nhBCiCAR1VYGgDnJd1cAfGXAJiLhdRsBcKeO92m7cfFJGJUGPKpCXXM7qXGRPm1fCCGE6K1El7aSMyY9T+dI9jUgv66rqkpG23YAYob6oJDZHoxRKXgwYFRU6mvKfNq2EEII0Vu21g7S1VoAkrJG6BzNvgZkIlJTU00m1QBkjprm28aNJpoMcQA010pRMyGEEPqqKivEqrhxYSIiyTcrRH1pQCYiO8uq+dAzgzWmiYTFJPm8/WaT1mZ7g4yICCGE0FdddSktahi1xhQwGPUOZx8Dco5IevZQVh/9DxrCTUz2Q/vtYcng3IFLqqsKIYTQ2SZ1KJc4XuSC4fE8oncw3RiQicjQ5ChuOcF/E3bcEalgB6VZduAVQgihL62qqkJqku+vAPjCgLw042+OhJH85B1BuSdW71CEEEIMcKWN7QBkJ0ToHEn3BuSIiL81j7+SK9eMZYwaw+V6ByOEEGJA+03F37jU3EwK9+Gr7Ux8SRIRP0jZXebd7tA5EiGEEAOZx6syybWWZKONmliz3uF0Sy7N+MHuMu8Nre24PV6doxFCCDFQVdfXk6zYAEjMHK5zNN2TRMQPEg1tLLfOYavlCursbXqHI4QQYoCqKd4BgJ0ojBG+21fNlyQR8QNDeCzJig2r4qa+WmqJCCGE0EdLVT4AdeZ0nSPZP0lE/MFgoMmgZZ7NtSU6ByOEEGKgctUVANAakalzJPsniYif2M3aeu2OBilqJoQQQh8GWzEAnthsnSPZP0lE/KQjLBkAt032mxFCCKGPtg4HraoVU+JgvUPZL0lE/MQdkQaA0lytcyRCCCEGqntcVzLG8R+YfJneoeyXJCL+Eq0lIuY2SUSEEEIEXqvDTV2LE1DISorRO5z9kkTET5SUEfzoHUmBJ0XvUIQQQgxAZZ2l3WPDzcSGB2cxM5DKqn5jHH0Wv/oqgSSLhSv0DkYIIcSA07RzOZ9Z/kCRZSwwW+9w9ksSET9J7SzzXtfixOXxYjbK4JMQQojA6ajazhGGUgyG4Nx1dzf5dPST+AgLJoOCAS91zR16hyOEEGKA8TYUAtAeFbxLd0ESEb8xKLDYcis7rJfRUFGgdzhCCCEGGIu9s6BmfI6+gRyEJCL+oiiYDSomxUtzXane0QghhBhgYjq0OlbW5KE6R3Jgkoj4UXNXdVUpaiaEECJwVFUlxV0JQFzGMJ2jOTC/JiLz58/nsMMOIzo6mpSUFM4++2y2b9/uzy6DSkeYtnTXY6vUORIhhBADSW1DE6lKIwBJ2SN0jubA/JqILF68mBtvvJEVK1awaNEi3G43s2fPprW11Z/dBg13ZCoASnOVzpEIIYQYSCqrKtnmzaKOeMxRwb1qxq/Ldz///PO9fl6wYAEpKSmsXr2ao446yp9dBwUlJh0qwNwu1VWFEEIEzi5HDLc5H2LGkATeUBS9wzmggNYRsdlsACQkJHT7uMPhwOFwdP1st9sDEpe/mOMyAIh01OkciRBCiIGkpKENgKyESJ0jObiATVZVVZXbbruNI488krFjx3Z7zPz584mNje26ZWVlBSo8vwhPzeNH70g2eoJ7DbcQQoj+ZXcikp0YoXMkBxewRGTOnDls2LCBN998c7/HzJ07F5vN1nUrLQ3tZa8xw4/kV84/c2/7r3C6vXqHI4QQYoA4p2Aen1rmMsW5Su9QDiogl2ZuuukmPvroI5YsWUJmZuZ+j7NarVit1kCEFBDxEWbMRgWXR6W2xcGguHC9QxJCCDEApDsKGGYoZldMmN6hHJRfR0RUVWXOnDm8//77fPPNNwwePNif3QUdRVFIiQ7DgJeapoGxUkgIIYS+Opxu0r3aas3EzOBeugt+TkRuvPFGXnvtNd544w2io6OpqqqiqqqK9vZ2f3YbVF7w3M1O66U4in7UOxQhhBADQEVlOZGKA6+qEJsW/AMAfk1EnnnmGWw2G8cccwzp6eldt7ffftuf3QYVk9GEUVFxNEp1VSGEEP7XWKYVDq03JKKYg//SjF/niKiq6s/mQ0JHWDJ0gNtWoXcoQgghBoDW6l0ANFozSNY5lp6QvWb8zBOZBoBBqqsKIYQIAE9dIQDtkaFRAkMSET9TYrRExNJeo3MkQgghBoJqh4kd3kG4E/P0DqVHJBHxM2vcIAAinLU6RyKEEGIgeMlzMrOdj2CfcqPeofSIJCJ+FpGkJSJx7nqdIxFCCNHfqapK6e6qqgnBX1UVArzXzEAUmzqEFd5RFHrTyHB7sJqMeockhBCin2pocdDqdANKyBTRlETEz2IGDecyz704PV5mNTvIjA+NDFUIIUToqS7ZxgbrNRQasgkzn6Z3OD0il2b8TFEUkqO1svXVdsdBjhZCCCEOna18JzFKGwnGNr1D6TFJRAIgNcaKEQ91tma9QxFCCOFjr/9YzEs/FOodBgCOWq2GiD1s//u6BRtJRALgntYH2GG9jPCdn+gdihBCCB8qqmvljws3Me9/W6i2d+gdDjQWAeCMztY3jl6QRCQATJZwjIqK216pdyhCCCF8aOHacsYohUxSdrKrtkXvcAhrKQPAkJirbyC9IJNVA8AdmQqNUl1VCCH6E1VV+Wrtdj6x/hGAdyqPh6FJusYU59D2NYtIHaprHL0hIyIBYIhJB8DSIdVVhRCiv1hT0shY2+Kun1vLtuoYDbg8XtK92hfehEHDdY2lN2REJACs8VpRs0iHVFcVQoj+4v015ZjwdP2s1u3UMRqoqG8i3zuCXEM1QwYN0zWW3pBEJAAik7TZy3Eeqa4qhBD9gcPt4eMNldg8J3B+Rj2Taj/EYi/QNaYSm4erXHeQlxLFImuUrrH0hlyaCYDYFG0HxES1EYfbc5CjhRBCBLvvttdia3eRGmMld+RkAJI6SnB7vLrFVBJipd13k0QkAKKTMvlRHcXX3snUNOo/q1oIIUTfLFxTzgQln7MnpBGbOZomNZI21UJZY7tuMZXV2QHICrFERC7NBIBijeL2yAcobWjnvTYPWXoHJIQQ4pDZ2lzs2LaJb6x/xrXlGQwnruGiuDfZVt3CgvpWcpMidYlrxvYHuc76DZtbbwHG6BLDoZARkQBJiQ4DpMy7EEKEuo83VnAyPwBgThkOlghyk7Q5GYW1rbrFFdVeRqzSRkxMrG4xHApJRAJkd5n3+kab3qEIIYTog4VryjnDuEz7Ydz5AAxO1kZBCuv0S0SSXFrRzJj00FkxA5KIBMwVjU+zw3oZmfmv6h2KEEKIQ1RS34atZCOjDKWoBjOMOgOAUxtf4xvLbQwueluXuGwt7aSpdQAkZ4dODRGQRCRgzOHRGBUVQ0u13qEIIYQ4RAvXlnNm52iIkncihMcDkGR2MsRQRUxzvi5xVZXtwqx4cGIiPCG0ZiJKIhIgu6urWtuluqoQQoQiVVVZuKaUMw2dl2XGntf1WPSgUQCkuErpcAW+TENTuVZMrcaYBobQ+mgPrWhDmGV3dVWnVFcVQohQtK60iajGzeQYalDNETDilK7HIjNGADBEqaS4vi3gsXXU7ALAHjYo4H33lSQiARIl1VWFECKkLVxbziZ1MI/nPINy2uNg+XmZrpKkzcvIoJ7i6rqAx1biiOQbz0QaEicFvO++kjoiARKbql2zS1Yb6HC6CbPIUy+EEKHC6fbyv/UVgMKUmSfC8OS9D4hIpNUQTaS3mYbSbTBhcEDj+9IzmaWubB4ePz6g/fqCjIgESHSiNlwWprioq5N5IkIIEUoW76ilsc1FcrSVmUMT9z1AUbBH5gDgrNoR4OigNETLu4OMiASMYongB8NUal0Wcm0tZGboHZEQQoieWri2jLtMbzAtFkx1GZA6ep9jOpLHs97WRlWLK6CxebwqTY31QLgkIuLAnkj5KyuLGvmnK5qJegcjhBCiR2ztLhZvreAB47fE1bVC6zXAvolIy3EPctaW70lqsXBnAOOrqqlhneUqmtRIosN3BrBn35BLMwH0c5n3Dp0jEUII0VOfbqzkCO864pRW1KhUyJ3V7XG5SdpoRF2LE1t74EZF6ko7kw/FiNGqzz43fSGJSACldJZ5b2xq0jsUIYQQPbRwzR5FzMacAwZjt8dFh5lJjtbe54tqA7fTekuVlojUW0Lzmr8kIgF0SsNr7LRexuG7/qF3KEIIIXqgtKGNDUWVnGhYrd0x9vz9H+xx8776e7Zar6C8ojwwAQKuukIAWiNCr4YISCISUNaoOAyKirVDVs0IIUQo+HBdOScY1hCpOCAuBzKn7v9go4koxYFF8dBcvjVgMRptxQB4YnMC1qcvSSISQJZ4rahZpDPwxW6EEEL0jqqqvL/H3jKMPQ8U5YDntERp9UPctYGbNBrRVgaAKWlIwPr0JUlEAigqSRs2k+qqQggR/DaU2SiobWWzMgxv/BAYd4DLMp28icMAsDbt8nd4XRKdFQBEpQ0LWJ++JIlIAMWlasNmSWoj7Q63ztEIIYQ4kIVrtXkehaOux3DzGkgdc9BzwtO0Uu/x7cWoqurX+ABaHW6+ck/gO88EknL2XVIcCqSOSABFJWozmq2Km9LaSrIyQ2urZiGEGChcnt0l3eGcyYMOeklmt7gsLRnIUiuobXF0lW3wl9LGNu53X0pchJl1KTJHRByEYrLSRAwAttpSnaMRQgixP0t21KK21nFexDpm5Ub3+DxLijYikqNUU1TT7K/wupTUh25p990kEQmw1eHTWeiZSW2b/4fshBBCHJr315ZzunE5j3kfxvTWhT0/MTaLXZYRLPJOpaza/yskq6qriKaNLElEDuxf//oXgwcPJiwsjClTprB06dJAdBuUFmbdxe9dN1KghmbhGSGE6O/sHS6+2lLNmcbl2h3DT+n5yQYDr4z5D3NcN7Pd5v+P2OwdL7Ex7GqusP/b7335i9+fpbfffptbb72VP/7xj6xdu5ZZs2ZxyimnUFJS4u+ug9Lu64U1UuZdCCGC0ucbq0hyVzPVsAMVBcac06vzBydpZdYLa1v9Ed5eLM3aZ6kpNt3vffmL3xORxx9/nKuuuoqrr76aUaNG8cQTT5CVlcUzzzzj766DUmqMFRNu7E2yhFcIIYLR+2vLOKNzNETJPRJievchPzg5CgUvNbXV/ghvLzEd2sqesOTQrCECfk5EnE4nq1evZvbs2XvdP3v2bJYtW7bP8Q6HA7vdvtetvzms8VN2WC/n3JK/6R2KEEKIXyhvamdFQcPPl2V6UDvkl8bYlrDVeiV/sP0Nj9d/8wE7nG7S3drKnsSsPL/1429+TUTq6urweDykpqbudX9qaipVVVX7HD9//nxiY2O7bllZ/W95a3hcEgZFJcpZq3coQgghfuGDteUMVcoZbSgGgxlGndnrNuJTswhTXOQolVQ0tfshSs3OnVtIVOy4MZI8eILf+vG3gExWVX6x/lpV1X3uA5g7dy42m63rVlra/5a4xiZnA5DgqfNrpixEMAhEQSchfEVVVRauLWemYZN2x7DjISKh1+0Yk7QKpxlKA8VV/vvSWbNVu7JQZhmKYpFVM91KSkrCaDTuM/pRU1OzzygJgNVqJSYmZq9bf5OSMxKAVKWRimoZFRH91xs/ljDins9ZskNe5yI0bCq3k1/TwtvKKbRcsxyO+9OhNRSRQLMhFoCGEj9ufle+CoDmpNAdDQE/JyIWi4UpU6awaNGive5ftGgRM2bM8GfXQcsUlUiDEg9A1a51+gYjhJ80d7hY8NkPXKe+yzdrd+gdzoDi9aoyEnWI3l+rbR53wuhUogaNhrRxh9yWLUIb/XZUbfdJbN35rHUEr7uPxzj8JL/1EQh+L/F+2223cemllzJ16lSmT5/Oc889R0lJCdddd52/uw5ateGDSWhrpKV0IzD7oMcLEWpeWV7MG+ofSDbbeLfQC8zUO6R+z+tV+c8Phfx90Q4umJrFvDMPvi+K+Jm7s6S7AS/nThrU5/accUOhZSOGRv9sflfX4uBd+2jeU0azYVpof474PRH51a9+RX19Pffddx+VlZWMHTuWTz/9lJyc0KyJ7wvtccOhbQ1K7Ta9QxHC51ocbn5c8hk3KjYAnm4+hjPdXiwmKeTsL7XNDm7/73oWd14Ge3VFMdcePYT02HCdIwsdS/PrqG/pYHHY7WRuOAIyH4HofacQ9JQpOQ/KILqlyHdB7mFdSRMAw5KjiA4z+6WPQAnIO8MNN9xAUVERDoeD1atXc9RRRwWi26DlzTmShZ6Z/OgK3XXfQuzPK8uLuNL9XwDe4ziKPEnsDMCeGwPVd9trOOXJJSzeUYvVZCAzPhyPV+XNn/rfZH9/WrimnMOV7WRThaHgOwiP61N70UOP4DPPYSztGILD7fFJjHsq27aKiUo+kweF7iTV3WT3XR3ETj6H33+bQHiTkTu8KgZDz3Z1FCLYtTrcfL94ETcY16NiYEnKb6AENlfYGZMRq3d4/YrD7eHhz7fz4veFAIxMi+Yfv57Etqpmbn5zLW/9VMJNxw3DbBwYI1E/FtSzo6aFMJOBcIuRcLORsM5buNlIuMVImNnQdb/VZOhavdnicPPlliruMXbWtxp1BpisfYonbswJ3K54aPV4uLyhjWEpPd84ryeG5v+HD6xfscF5LXCYT9sONElEdJCTEIHFaKDd5aG8qT2kNysSYk+vrijmcve7YAR13Pkc35zPsebvqN1xOUy9SO/w+o1dtS3c/OZaNldoRR8vn57D3FNHEWY2kpsYSVKUhZpmB19tqeaUcaFb+runapo7uOSFH3H3oiSCokCYSUtQDAq4XU5OD/8JVGDceX2OSVEUBidHsqncTkFtq08TEa9XJbN1CygQM2yaz9rVy8BIlYOMyWhgWFIYg5VKivphrRQxMLU53Xyz+FtOMq5CRcFw1O1MdqzibOMyrBU/6R1ev6CqKm+vLOH0f3zP5go78RFmXrhsKn85ayxhZiN4PViem8kzye8DWmI4EGwqt+H2qsSGmzl6eDJHDE5gQmYsw1OjyE6IIDnaSrTVhNn48+izqkK7y0NDq5O6FidHGjYSqzZDZDLk+mb6wODESFJpoKKbAp59UVRWxmBFq6iaOXaWT9vWg4yI6OQR1wOMsf7Ed1v+DBNG6B2OEH326vJi3O3N7AzPZeiIiSjJIwjLmgiVXxLfvB2vXIbsE1u7i7sXbuSTDZUAzByWyOMXTiQ1Juzng5wtEJ3OYbveIFk5kmW7tNGToclROkUdGFsq7GQqNVyYpXDzWUMhPhcMxm6PdXm8dLg8dLi0/7a7PLQ7PeQs/i/ko21wZ/TNR+MtdfMYFraY9wvugOMn+qRNgPLNyxgCVBnTSYtO9lm7epFERCfOuKHQ9hNKXQitnHG1Q+lPkD2tz9dPRf/S5nTz3JIC6tXhrD3lf+SNiwMgfshk+AmGq0UU1bcypJ9/IPrLqqIGbnlrHeVN7ZgMCv83ewTXHjUEg9MOn/wRMg+DCRdBWCw4tMs1d6Wu4v+qTuD1FSX8+YzROv8G/lVUVsHnlruIKumAp4A7C3+uiPrjc1CxBqLTIDoDc3Qa5uh0omPSITYVjBHae1tJZ72rsb3fW2a/4rKgAUxNBb5rE3AUayOMdbHjSPNpy/qQREQnprRRUAHR9ny9Q+kZVwc8fTjYSuC4e+Co2/WOSASR11eUUN/qJDshgnMmZ0LnBEljhlbxcahSwRelNZKI9JLHq/L0N/k8+fUOvCrkJEbw5EWTmJgZC1s/gk/vhJYq2LxQm2BpiYSpv4WylZzq+pLbOY53V5dyx0kjCLd0P0LQL1SsJUrpwGswY7BGQXj8z48VLoZtH+/nRAX+UKjtKXP0H6B4GWQd7rOwrKkjoADi2nx7iSymfj0ASuZUn7arF5kjopP4nPEApDuLQ6IKYrPHqCUhQNn2VTpHI4JJu9PDx4uX8Tvj/7h1VsbeqzSi02k1xmFSvNRIJeFeKW9q59fPreDvX2lJyLmTBvHJzbOYGN0Mb/4a3rlMS0IShsD5C7QkBLRLC2GxhLeWcW7sduwdbv63vkLfX8aPWh1uElu0kWXXsFPgD0XaTNTdplwBx98Lh1+rJWuZh0FsFhhM2shuWBxYo2DmzXDxW3uf20fx2VpRuUGeclocbp+02eF0M8yplY1PHnWkT9rUm4yI6CR12EQA0pV6KmpqyOhm7x3d5X8FcTksa4rnjnc3MM15HY9ZnsXVWKZ3ZCKIvP5jMb9yvMfF5m/wlrTB9Fd+flBRsMeNJLJ+BZ6KDcC5usUZSj7dWMld723A3uEmymri/rPHcvb4VPjpOfjmfnC1at/ij7wVZt0O5j3miZjDYcLF8OMzzIn+nvdso3jtx2IuPKz/7WYOsK2qmVGKNuJgzexmz5W8E7XbL3m90N7o08Tjl6IytPl/2UoN22uaGJuV1Oc2N5U38bDz98wML+LmYVP63F4wkBERnZgj46lTtGuYlfnr9A3ml9oaYOH18Np5lCy4kt+8sJzypnZKDVrZ4yhHtc4BimDR4fLwweKfON+4GADDtOv3OcaYMR63asDRVBkSo396e+rrndzw+hrsHW4mZMXx6c2zOHvSIKhaD1/M1ZKQrGlw3ffapmx7JiG7Tb0SgNz6JWQam9hQZmN9aVNgf5EA2VJpZ3RnIkJ6LzZ/MxggMtE/Qe0WnUEHVsyKh5oS3+y5tK7Mzk/qKDblXoHS3f/7ECSJiI5qw7XKqq2lm3SOZA9bPoJ/HgHr38CLwiJbJiY8XHJENrecdywACZ468Pq+UmCwKmts45XlRXy+qZKmNqfe4fRKi8PN0p21eHpRX6E3Xv+xhPM63seiePBmz4Sc6fscEzN7LuNcC3ik/Uyq7B1+iaO/cHm8PLtY25vk2qOH8O61R5Cd2FlnaNAUmHETnP4EXPkZpIzcf0PJIyB7BkriMM7TdqTntX66lHdneS1DO5ey9mWTOr8wGKgP00aiWsp9szBhbWdCOTErziftBQO5NKOjkkGn8cXWbFRXDroXvW+pgU9vhy0fArDTO4g/uK6hIno8z58/nqOHJ1Na14xLNWJWPHjtlRjiMnUO2n9aHW4+21TFe6vLWF5Q33W/osCYjBhmDE1ixtBEDh+cQIQlOP+MXB4vl/57Kc7KLYyYMINHL5zo0+WzHS4P//1uFR8YvwHAcMyd3R4XFp1AdnIC26ub2VRul/1PDmBDWROtTg/xEWb+kFuI4ZlL4ZL/QsJg7YDZ9/e8sYteh/B4jipp5Mnty/lofQV/Om00sRGhvS/JL22qbOM053wemGlkclTwXeIuzjiNj3fkY2uP5UwftDey4GWMhkimpPaflVDB+Q46QLjH/ZonNo5goj2O3+sZSPVmeOk0aG/Eg4F/uc/kaffZnDZpMAvOHENsuPbGlRYfSRUJDFLrsNWWEd/PEhGvV+XHwgbeXV3GZ5sqaXP+POpzWG48jW0u8mta2FRuZ1O5neeWFGA2KkzMiutKTCZlxwfN5m5PfbWD39few1HWjfx702n8Jfxu5p05pqusdV+9+VMJ53QsJMzkwjvoMAyDj97vsWMyYthe3czmChsnjg6+D4tgsSy/nmSa+HfEWxjeXqLdueQROPtfvW+sc/nq5Ox4RqZFs62qmf+uLuXqWf1njyuPV2VLdSsdajaxRxzt1/keh8o26Xrmb1nDhJa4PrdV22jnd67XsFrctMRf0ef2goUkIjrKS9WWMubXtKCqqs8+IHrLHT+MRkMytWoMdzivpSpiOE9eNI6Tx+69Qt1sNHCt5UF2Npt5N2wk8ftpL9QU17fy3ppy3l9TRllje9f9OYkRnD85k3MmDyIzXhser7a18dOOMpYUtbNsVz3lTe2sLGpkZVEjT369k3Czkam58cwclsTMoUmMzojBqEMRr7UljZQtfZnbTBsBuNb0CX/+KYm/h9/IbbP7XkCvw+Xhze/WstD4FQCGo+884IfAr13vcZnlY77feQWcMLzP/fdXy3bV80/Lk0xu2Q6KEabfCMfc1ac2FVc7dwwt46qqWN74sYSrjhys23uNrxXVt9Lh8hLeWdo+GA1O1uIqrO37+3zBphUcobhpUmKIS8vzVYi6k0RER7mJkWQb6hjiKqW6fgppSX2fUd0jXi9s/C+MOZv8Bhf/9846qupvpp4Yjh8ziJfPGUdSVPcFy6zx6biam6hoamdCCF+jbO5w8enGSt5bXc5PRQ1d90dbTZw2Pp3zp2QyJb4dZeXzUDsd4k8CINVTxRmfHMYZkcmoSYNpzcmi0JPCmpY4vquJZE1bCkt3eli6sw6A2HAz04YkcPyoVM6fnBmQyqJtTjd/eHslrxtf1+7ImAwVa5hneoVrv0vkhfBL+/yt+O2VpTQ3t7A8YgrHpbZj6G5Vwh6yqSbVUMC6ug196rc/63B5KCwp4nDTdu2Oa76GjEl9a7StAf4xkeM67ORZn2ZnnZbszBwWoPcaP9tSYWeOcSGxMQkY26ZAVPBVGc1NiCAJG9mOahrbjiUh0nLIbbXsWgFAReQY4vpJMgmSiOjKYjLwnvUvJKv1rN1+GGlJJ/m/0/pd8NHNUPw9a9at4tc7j8Ph9hIdlsIjZ43h7ImDDpixZ8SFs7akifKm9v0eE6w8XpXlu+p5b4126aXD5QW0L/JHDkvi/CmZzB6dRnjDFlg2Fza9B14XZC2D4Z3/b5q0Wiq01qK01hLFT4wDxgGXA3Uzb+HD+CtZvquOXQW7uMj1ESXbUnl5yzAKao/nrlMOMMHQR+Z/uo0d9S7uirqLZ4b9iOX85+GzOzCsfon7zf/hqE/GExNmPuTlnA63h2e+20UViVTOfhbD1LSDDonHDJ4M+W+T5dxFY6uT+D68GfdXa4obmeLdDICaOhalr0kIaJdn0iegFC7hj2k/cUXxSby6vLjfJCLbKhq5wfQRka0OaL86KBORMG8rq8K01WRrK84lIS/n0NuqXgOAK32yT2ILFpKI6Kw2bDDJ7fW0lG4E/JyIONtgwanQUkWHYmXhDicOj5ejhifz0HnjejSJ8DDTLo43v0TS5mEw60n/xutD760u47Evt1Nh+3nVxpDkSM6fksk5kwaRHhOm1U1583qtEuNu2TO04XFV1T5shxwDfyiGxkJoKNzjv0XQUEhS9miumjCYq44cjGdnM8bXP+lq6talN/Buyo2cP8V/c2sW76jt2ujsil9dgCXvBu2BUx9DVVU+dJ6EYxXc9f4GosNMh7Qz6zsrS6myd5AeG8aFUzPBdPCKneFZEwEYbShmc4WdI/P6xwehLy3bVc9Mg7aCTjnAfJtem3IlFC7hyObPMXE8i7ZWU2XrIC029Jd+1pVuJ1Jx4DaEYUocqnc43QuLpckQT5y3kbrirXCIiYjXq5LVpu24G5u37+q0UCaJiM7a4/KgfRVKbQD2nKlYAy1V1KsxnO34C/XmDP525iguPjy7x9ctMy1tnGD8nuKG0Kol8uDn26htdhATZuLMiRmcNzmTiVlxP//e710DG9/R/q0YYfRZMH0OZHZTMCg8DsInHXTY3BiTBkdcD5XroWQZfzO/yNnvDyMn8RwOy03w7S8INLU5mfvf1WQp1Rw37XBm5e3x7dBoQjnzH1yjqhQoG3lrZSk3v7WWF60mjhre82+RDreHl77dxF9MLxFz2M1Ye5CEAJCqVZhMVxr4sqhIEpFuLNtVx2g1h9qEKSQPPc53DY88HSKTMbVWc13aDp6uGs1bK0u4tR/M1TFWa3OgOhJHErWfTe6CQVN4NnGtjXRUbQdOPqQ2ikpLGKJo77uZY/pHRdXdgmN6/wBmTNOWYEUFYM+Zll3LAfjRO5L0nFF8fstRXHJETq8mT0Uka9l8nCt0EhGn20ttswOAr247mvvPHsekRC+Ks+Xng0acApZomHYj3LIOLljQfRLSG6mj4ZQH4YqPUXOOJFJx8ITxSea8soKS+ra+td2Nez7czKltH/G19U7+mPhdt8coisLfzhnHrUOreM7wIDe/upzVxQ3dHtudd1aVcULrx1xuWsRZ2/5PGynqCWs0TeHapaDm4rU97m+gaHG4WV9m4zXPiTgu/RjyTvBd4yYLTPoNAJdZvgW0FU8uj9d3feigrsXBIIf2vmnNnKhvMAfhiNXmZBkaDv19vnSLNj+k3JiJKbK/LBXQSCKis7jczj1nXEV+rzrZWvAjAKURY3jzd9N+LpTUC3HpWj2DWNWu7VgZAmqatcsxFqOBZEcJ/O9W+PtoWPnizweNOhNu2wwnPwBx2b4NwGBEOe8F1PBExhiKuc75Ele9vJLmDpfPuvhofQWr12/gNtO7WHBhiYjd77FGdzu32B7iWON6HuQfXLXgR7ZW2g/ah8Pt4T/fbOZqk3a5yXDk73u1XNKZpI2KmGqDqIBfkFhZ2IDHq5KTGNG1QsunJl8OQErND4yPaKTa7uDrraHzZaI7WyvtjOmsqGrOGK9zNAdmTNZWuEQ2Fx1yG192jOaIjqf5YsRffRRV8JBERGfpw7SSxKk0Ultb47+OVJXIGm2iE5lTD3lJaXpKGq2qtqLGUV/iq+j8qtrewSilmP9YH0P552GwegG4O6D0x58PMpq0LdT9JSYd5ZxnAZhqLqSkpoGb3lyL2wffSqtsHfxp4UbmmV8mQnFo81omXrL/EywRKBe8hGq0cLJxJbe4F3DpCz9SWNd6wH7eXV3GMa2fkqzY8cZmw7gLehVnRPZESr3J1La6afXRBmD9xQ/5dYxVCjgux0+TeBMGw9DjAbghR9sr6tUQr7S6tdLOaEPn75AW3IlI9CBtknqyswTvIVY5XlfaRDUJpI3qX/NDQBIR3Vkj46lRtP0OKnf6ccja6+Zj62l85ZlE0vBD3+Y6LtJCJdr1/cbKQl9F51dVNgdPm//Bkd6VgAIjToUrPoGL3ghsIMNnw8XvoF75KYo5jO+21/LAp32bG6SqKne8u54jnCuYbVyNajDB6Y9r+2gcSM6MrsToStMXnNWxkN+88COVtu5HuZxuLy98s5VrTdp26oZZt4GxdxU6o064i/Osz/Ki+1S2VR18BGYgWZZfx/OWx/nzltOg9Cf/dDL7r3DzWsaccTOKAj/k11NQ23Lw84JUcUkJSdhQUbTLoEEsIUcbDcylkqr9/I0dSLvTw7aqZoCQLpuwP5KIBIHPkq7kVucNbHb4b+mZCyPzbKdytesOJgzu/UqJ3RRFodGkxdlSU+Sj6Pyr2tZKttI52nT11/DrNyH3SH2qMA4/ifHZyTx+4UQA/vNDAW/8eOgjS6+uKGb1zjL+Yn4ZAGXGzZAyqmcnjz0PTtSGee8xv84E+7f85oUfqW9x7HPoe2vKmNHyBWlKI2p0Bky8uPfBKgpjMmIA2Fwhichuja1O2qt3kK40aMmdv/ZLSR0DCUPISojg2BEpgLZXUKhaWWtgnOMFVs1+FyzBWcxsN3PiEN41n8ED7ksoqrX1+vyd29bznPFhfh/xORn9YLXTL0kiEgTq8i7kA++RbGzyX22F7VXNdLi8xISZGJIU1ae2WsLS8aoKrU21PorOv1rqK7X9cTD0bndOPzp1VCLvD/2M20z/5c8fbmJZfl2v29hV28IDn27lFtN7ZCj1EJcDR93Ru0Zm3ASHXQPA3y3PEFa3iSsW7D1/xen28uw327je9BEAypG3gqn7gncHMyYjFlDZWtbzCbL93YqCPZbtZh0BZv/vxXPlJC0h/O+qUtqdobeBZYfLw67aVloJJysUVpCYLHw26BZe95xAQUPvN85s2LqU441rOdW8pt9Uxd2TJCJBYFiKlhjsrG72Wx8Va78glQYmZsf3ubrndzm3MNzxMt8lXuSj6PyrstXLQ66LWJ9zuTYXJBgULmZy+avMMX3IEWzg+tfX9GqY3O3xcts767XkMiEV1RQGpz4Kll5OdFQUOOUhGHEazrwzqAsfwsZyG1e9vIoOl/YB9f6aMqqbWvjUcCzexDyYfFnv+tjDufX/Zq31WtIK3z/kNvqbZbvqmW7QCpnhy/oh3fF64O1LOfLDGUyPbcDe4eZ/Gyr826cf7KxuweNViY8wkxpzaElxoA1O6iz1fpC5WN1RKlYD0JocHF+kfE0SkSCQl2hlhmET46sX+mfljMfFMatv5MewORyb1PthwV9KTEzCjYmKEKmuWtBi4RnPmZRM6uVogT/lnQiTL8eAytPWZzG313H1y6uwtfVsJc2/vtvF+tImosNMHP3bB1Bu2aDNQTkUBiNcsIDoX7/Ii1fNJNpq4qfCBm54fQ3tTg9Pf5tPB1YMx92N4caf+vSNPSnSQrzSQkLzdpzu0F4+6ivL82uYbtii/TDYz/twG4zgcaJ43fwhWVsO+noITlrdUmnj7+Z/8mDEayjNlXqH0yN5cSqTlR2o5at7fW6qXRsxCx98hK/DCgqSiASBIfEm3rA8wJ95jrraKt93UL0Zi+rEpkYwZETfZ5dnxGkfRBWHMOlKD9V2bfluWkyQXVs9+UFIHkW82sg/w/9NYV0zN7yx+qD1HTaW2fjH1zsB+OtZY7X/H9F93NHWZAWDgbGDYnnx8in8zvwZy7eVcPpTSylrbCcpysIlR+QcfBLsQUTnakXgRipF7Kzx3whgqKi2d2Cu30aC0oJqjoRBASjdPeVKAMbXfUKUUatfsqGsyf/9+lB+WQ1nGZZxUsuHYAiSUc6DmGr/mvet85hds6BX59U2NDHUWwTAoLGz/BCZ/iQRCQJhUXFUKdoE0Mr89T5vv7VA++azzjuMiVl9r+iZHd7B4+Z/cVPFH3pe0EonqqoSZi9glFJMerjv6nb4hCVCK5xmCucIdR1zLJ/yQ3498z7avN+RsQ6Xh1vfXkuct4kv4x/irMRSn4d1+Oa/crfxVf5peZriWhuPmJ7lL2OqCTf3/e1CSdcS4VFKCZvLm/rcXqhbvqueGbvnh+TM6PVKpEOSdyLEZGLoaOTObG2DvddCbFSktXQjBkWlw5oEUSl6h9MjcdnaJPI0d3mviskVblqGWfHQoMQRlTLYX+HpShKRIFEblgvQueeMb9nztYqqxeGjiI3o+xtdakIc5xq/53DPWtT2pj6350/2djfX8D6fWeeSvvNNvcPZV8oobY4G8Hvj20w27OD1H0t4eVlRt4c/9Pk2dtW2cl/4mwxvX4/ymR+SwYmXgCmM4wxr+K/lPi4wLeHUbXeBwwcjGIl5uBULUUoHVYUB2NYgyC3bVccnnml8OnguHH5NYDo1GGGKVuDsHO+XgFYQr6eXBfWmqiph9Vry5k4Zq3M0PRefpS3hzaSGsrqeXyJv7dxxtzJqjD4r/QJAEpEg0RGnVd7DD3vOWKu0QmbOtD6WLO+UmhhPvRoNgL06uGuJVNk7SEdboWGOG6RzNPsx+TIYex4GczjXTtYmLt/38Ra+2753gbsf8utY8EMR0w2bOVVdAihazRBfvzllHQ7nvQAoTDJoJamVI66DsJi+t2000Ryrvdad5ev63l4IU1WVH/LrqSKRyOlX/bzDcyBMuhQUI9HVKzkpuYEOl5d315QFrv8+KGtsZ6hHe9/ZvZliKDDEpNNGOCbFS3XRlh6f19BQT5tqxZXum/fvYCSJSJAwpvppz5m2BhI6tFoBcT7asTHMbKSm81JSU5AXNauyd5CmdC4VjcnQN5j9URQ4/Qm4dgmzz7uaC6Zk4lXhpjfWdq2ksrW7uP2/67Hg4h/Rr2jnHXY1DPLTm9OoM7Q5LACWKJh2g8+aNnRenolq2nbIVSb7g9KGdsqb2jEZFA7LDfDeITHp2v5KwK0JnZNWfyz2+zYTvrC54ueKqsYgL+2+F0WhzqrtvG0v79kXTq9XZZ79TMY5XsA680Z/RqcrSUSCRGxO554zTt/uOeMp02ZoF3jTGDMs12ft2izaddnW2iKftekP1U3tpCmN2g/Rh17Ize/CYiBxKIqicP85Y5mWE0uzw81VL6+iodXJvI82U2nr4K7oz0l2lEJUKhx/j39jmnYdXPQmXP4RRPhut+CovFl87x3HLncSRfW9X8rYXyzbVccphh+5O3ExEa06jEbMuAlOfZSsc/9KpMVIQW0ry3fVBz6OXtpW0chIpbMQW5CXdv+l1qhcALy1O3t0/K7aFpodbixmC3mZoTEX5lBIIhIkBuVp68OTaaK+1nebURWYh3Gzcw7/5nyGp0b7rN32cO1D3d0Y3MO5jQ212v4rELwjIr9gLfme1ztu4Ji4Kkoa2jjnXz+wcG05QwyVXOF9Tzvo5Pn+3Rtnt5Gn+nzUxTj5Eh5JfYj/eo4Z0BVWl+2q5zfGr/ht87Owc1HgA8ieBodfQ1RsAudM1i5bhsL+M+VlRdiJwGUIg4QheofTK2qidlnSauvZSPLaEu1L1LhBsZiM/ffjuv/+ZiEmLCqOv1p/z7mOeexs8l19hVW1Rj7yzqA064xD3uiuO55o7UPdYA/uRKSjQYuv3RQbkIqVPvHjvzHainku7J+kWN0U17cBMD93HQaPU9u8bMy5OgfZN7tLvW+q6Htdm1Ckqiqr8iuZatih3eHvQmYH8ZtpOQB8uaW6a7l7sFpea+UIx79Yd8FybeJtCFFGnMw9rit4zXVsj45PWvkoiyx3cFn4936OTF+SiASR4ozTWKMOZ2d970sA78+aYi2jnpQd57M2AQxx2XhVBbejzaft+pq3SUtEOsJDaFjzzKcgOgNL0y4+HPIBVpOBKTnxTLrySTjrX3DaoyE/e35sRiyxtFBUVq53KLrIr2khp30TVsWFGpUGSXn6BbPuDUZ+dCbnZzTg8aq89ZPvl4T7iq3dRVmjVr9oeE6WztH0XtrI6bzqmc3XzVk9Kq0f37COPEM5OXEBWNatI0lEgkhe56WTHb4q9W4rJy//RaYo25mc7dvJcK7hpzDc8TJ/ibzbp+362hZnEg+5LqI67xA2adNLZKK2akUxkF74PmvPauCda6djMRth0iUhNxzdndmFD7I+7HeMrPggJCZI+tqeZd2VIUfrm1ju+AIq1nJjzFIA3vypBHcv6lwE0tZK7VLeoLhwn5QiCLT4SAtxnXEfbH5Ue4eTYS5txCx1dAjsp9MHkogEkbExHVxs/JohBb7Znr5t53f8zvEyd5vfYKKPt45OT4gNiTLva1sSecZzJu4pV+kdSu/kzoSj7wIg4pMbMFat0zceH4tNzQUg111AVZBfCvCHZbvqmNm1v4yfy7ofzNTfApBb8QmZER6q7B3854fgXA23tcLGp5a5PKvMB3vo7ZEDcGxsFWcbvqey5MATVvO3riFaaacdK8lD+uceM7tJIhJERoTbecD8ImfafZOING5fBsAuyygSo3y7MdTuMu81zY6g3TPE5fFS36pNVE0Lxa2zj7odcmZq/37uGGhv1DUcXzIP0t5YRyvFbC4fWBNWPV6VDbvKmaDs0u7QOxEZfBQkDEVxtvDISO3D8cHPtvHttpqDnBh4pSWFjDYUM6Z9FYTF6R3OIbnR8SJPWP6Fp/DA8z4aOt+/S8NGoASi4q6OJBEJIrtXziTRRENt3zdyMlZqS3fbUyf1ua1fSoy08GfL67xlvo+GXat83r4v1DQ7GMcuxhlLSDC79Q6n9wxGOO9FyJ4Os26H8ADXmvCntHEADFUq2Frqu1VioWBLhZ10RwEqCmp8LsRl6xuQosBUbf+ZaY0fcdFhWXhVuPnNtX7dEfxQuCs2ANAWPbj3O00HiY6YzjLtdQeuGWXs2nF3op8j0p/fEpGioiKuuuoqBg8eTHh4OEOHDuXee+/F6fTdRMz+JjwqlsquPWfW9a0xVztJLdr1xaih0/oY2b4UReEwUwFHGLZhL9/u8/Z9ocrWwUPm5/mf+S4MJcv1DufQxKTDbz/3f82QQItOp90cj0nxYivx/bYGwWzZrjrWqMO5JfcDlF+/rXc4mgkXg9GCUrmOvx7m4vDBCV11bBpbg+M92+XxEmvTCoHt3rMoFCnJwwGIbD7w5a/U5v694+6e/JaIbNu2Da/Xy7///W82b97M3//+d5599lnuvju4JzfqrSZMy5b7uueMt2I9JjzUqrEMzxvti9D20WzVdnztqA/O2gPV9g5Su6qqBnExs4FIUXAkaa9LU/UmnYMJrGWdRcOm5GVBykido+kUmQijzwbAvO4lnv3NFLISwilpaOP611cHxeXXXbUtjKAICK3S7r8UlTECgETH/lcn1djbWeUazE7vILLG9c8dd/fkt0Tk5JNPZsGCBcyePZshQ4Zw5plncvvtt/P+++/7q8t+oX33njM1W/vUTsP2HwBYTx4jM3ywR0g3HBHah/vuJbLBprahiQSlRfshRIqZDSS7P0zSO3YGzbduf3O6vaws0pLjGUMTdY7mF6b+FoadCCPPICHSwouXH0akxciKggbuPcCO0IGytdLOaKUIAEP6OF1j6YvkXG2jvmy1gqbW7idqryu1Mdd9DXPinyUyOSeQ4ekioHNEbDYbCQn7LxXtcDiw2+173QYaX+0501a0EoCa6LGY/VSRT43V9k0wNQdnLYi2ei1BcinWkJ3Y1p9Zhx/PQtPJLPGOHzAVVjeUNTHLvYJPw/7EiKLX9A5nbznT4TfvwvDZAAxPjeYfv56EomhLeve3I3Sg5JdWkqt0zidKC91EJCJlCG6MhCtOyop3dXvMutImAJ+vdgxWAUtEdu3axVNPPcV1112332Pmz59PbGxs1y0rK/QK1vRV3B57zvTFcwl3cJbjPhqHnt33oPbDnKD9/4noqPJbH33h6hypaQ1LDfkCYP3SsONZNPhOvvZOYfMAqbC6bFc9Rxo2MpoCDE3BeUmzy/q3OH5wGHNP0S4f3ffxFpbsqNUtnLKKclaqI7BH5kJUCBUo/CWjmWqTNprcVNb9yHdZ4XaMeJggiUj35s2bh6IoB7ytWrX3KoqKigpOPvlkLrjgAq6++ur9tj137lxsNlvXrbQ0eCv8+UvG8Mlc5PwTJ3Q83Kfh6lVlraxXhzE0b5QPo9vb7iHDeFeQrnqwayuPXJFpOgci9mdMhrZfzkAZEVm2q44ZwVI/5EB+eh4WXguvnMU1U+M5v3NH6BvfWMOu2paAh6OqKktrI/mV888UX7Q44P372teD5nCF807Wu/e97OLxqtxd9Xs2Wq9mWnhwXvb2NVNvT5gzZw4XXXTRAY/Jzc3t+ndFRQXHHnss06dP57nnnjvgeVarFavVt/UuQk1kZBSlMVNoaGpnZ00Lhw/u/a6nLQ53V3VWX5d231N8xhC8qkKHakJ1O1FMFr/1dSjMrdpIjSLzQ4LW2BQzE5R8GsqaAd8vMw8mHS4P5cUFDDVXoioGlN01YoJR1hEQngAVa1FeOZO//fo9iupaWVXcyNUvr2LhDTOIiwjc33u13UFDqxOjQSEvzXebd+rFMfQkvtu+laimfffKKS7cyRClHo+qkJ03VofoAq/XiUhSUhJJSUk9Ora8vJxjjz2WKVOmsGDBAgwGKVvSE8NToyhvamdnTfMhJSI1Xz3N/cbFLI04ntQY/xXySkvJYLjjZdyYWO9UiO31q8l/VFXl647h2LwXceWok/QOR+zH4dse4kPr6zxtO5s25/lEWILoReRjq4sbmap2roZLnwDhcbrGc0Dp4+GKT+CVs6BqI9bXzuLf57/DmQs6KKxr5cY31vDSlYf7bf7ZL22ttGPFSU5yAmHm0Nrorju5SZEAFNbtW+a9csv3DAFKzYPJDffPQoNg47dXUUVFBccccwxZWVk8+uij1NbWUlVVRVVVcM4nCCazosq5y/QGsZtePaTzLTv/x8Wmbzgy3r+VOMOtJmIitaJC5UFW6t3e7maVazDPes4kduJZeocj9iM8SxsFGaUUd+0j0l/9kP/zZRklmC/L7JY6Gq78FKLToXYrie+cw0vnDyLCYuSH/Hr++vGWgIWytaKBtdZrea3tBmgJvoqvvTUkFs4wLGNW3Tv7rEZyl2gLDRrjQ7dWSm/5LRH58ssvyc/P55tvviEzM5P09PSumziwMeZyrjN9zJDqL3p/stdDkk17swtEIZyMOG3EpdIWXIlIdbO2LC423NwvvkH1W52rH0Ybivv9PJFl+XVMN3Z+eA8+Wt9geiopT0tGYrOgPp+8Ty7kqfPyUBR4ZXkxr64IzITb+qItRCgO4r31ENGzEflglhWp8pTlae5UXqW2ce+J2vGNWvVYU/ZheoSmC78lIldccQWqqnZ7EwcWl6OVek87hJUzas1WwtR2WtQwckdO9nFk+7pQ+Ya3LfcRteElv/fVG1W2DmYaNjIjsgLcA6NGRUhKHQNAutJAUXGQryLpA3uHix3lNaz2DscdPQiyfV/t2G8ShmjJSHwuTP0tx08Yyh0naUW55n20mWX5dX4PQanWLmm1xY+CfnCJ3xKbSgsRGBSVyqKfV860dzgY6tL2+0kbHcRziHws9P+P9kOD8ibgVRUSsGOv692eMw07tI2SNqpDGZPp/71Jsk1NHGHYhrVus9/76o1qWysvmx/imZZboK1e73DE/lijaY3UVg44yjfoHIz/rCxsoE218veYOzHdthkskXqH1Dtx2XDd9zDzFgCuP3oo50wahMercv3ra7qd6+ArrQ43ya3adhWWzIl+6yegFIUai1b+wL7HEt78zSuJVBy0Ek7yYLk0I3QUFRVDpaKtk6/cubZX5zbnrwCgPGoMVpP/L0kocdofk6Wt75v0+VJzbQUmxYsHY2jXHBgAlM4qmdFNW4OilLg/7C7rPn1oUujWtLH+vFpFcdh51PUAZ2U0YWt3cdXLK7G1u/zS7baq5q6KqqFc2v2XWjoTcHfNzq77NtQrPOq6gMVx52qbXg4QkogEqd17zjT3cs+Z8BotcfGkT/F5TN0JS9R2Do3qCK5aIo5GrQZNmyVxQP1Bh6LdHy4jKGJnTXDt9uory/NryVPKmDGk96vggtKiP2PM/4K/t/2Jo6MrKKht5aY31+L2+D6R3FphY7Sh87JdCFdU/SVP4jAALE0/V1f9oTaMpz3nUDzx//QKSxeSiASpts49Z9TabT0/ye3E7dQmaSaMmO6PsPYRnZYLQKInuGaye20VAHRESDGzYKcMn80rMdfwsvukfjlhtaHViad6C4usd3LqtyeDtx+M+pwwDzImY+ho4D/KfRxuLmTJjlr+9mnf9sjqTllpAYlKM16MkOK/Ao2BFpaqzbOJbf95btS6kiZg4JR2300SkSBlTNX+4CzNJT0+p91r5OiOx5jU8Syjhw/3V2h7ScoYAkAk7bhb/btcuDeMLdqlIjVKVmkFvfQJFA//LevUYWzph4nIioL6rmW7xqRh/WKyJeHxcNmHkDUNo9POG9YHmKJsZ8EPRbz1U8/fs3qioLqJd9xHU5VxApjDfdq2nhJytH3FMtxleLwqtXX1jG9eQrpSz7jMWJ2jC6x+8BfRP4WNO51pHU/xO89dPT5nY7kNt1fFEpNMRqz/CpntKSk+ngY1CoD6ysKA9NkTYe3apSJD3CCdIxE9MaZzh+hN5f1vzxmtrHuILdvtibAY+M17kDsLk7uVN8MfZrphM3/9eAsNPtpN2eNVWVoTwZ3ua2k7+z8+aTNYJOeO4zrP7ZzvnEd5QxtFG5fwrOUJFob9lShr/y3s1x1JRILUkMwMqkikutnZ40lga4u17cUnZcWjBGhCnMGgUGtIoUqNp6He/8v4esLl8RLn1jbnCk/I1Dka0RMTo22cafgBU+VqvN7+tcR/xc4ajuhKREKgkFlvWKPg4ndg6HFYvO08HvYiDqeD55cW+KT5ovpW2l0ewswGBieF2EqjgzBYwilIOIoCNYOC+lbaCn4EoDp6YJR135MkIkEqJsxMWmd59vyaHmwypaqc9cNZvGp+gCNTHH6Obm/3pj7NNMc/2WEdE9B+96em2cF/PUfxiOfXhA8/Vu9wRA/kFrzBPyz/5BTvYorq/bcUNNAqbe1ENmwiRmlHtcZqpd37G0sEXPQmTLyEohP/gxsTLy8ror6l7+9DWyvtDFXKGZMagdEQoquNDmB3clVU10pk7ToAPBn+r/8UbCQRCWKXRf3Es+a/41j79kGPVZuKSXOVMc2wlZFDc/0f3B4y4rU/pmAp815l6+AH7zg+iLwQQ+bA+6MORYbOD+j+VmF1+a76rssyyuBZ/XcFlzkMzv4X06bNYHxmLG1OD88t6fuoSH5pJV9b7+Dt+vOgvanvcQaZaeFl3Gj8AOvO/5HTrk30TRgxQ+eoAk8SkSA23lLOycaVWMpXHPTYxh3LAdiq5jAmO9Xfoe0lI06bQFYRJIlItV1bOZQaM7B3cg4pncsyRyklbC5v0jcWH1q2q57pnRNV+91lmW4oisLvTxjOeGUX7y7fQm1z30ZFWkvWA+CwxAf3JoGHaKJ3C3eY32Fi8UskK024VCNZowOz4jGYSCISxHavnImy5x/02KbOiqol4aMJtwT2W9d4dTtvW+7j9J33BLTf/alrbOQ4wxqmhpXpHYroqcQ8PAYLUUoHtSW9WLIexFRVZfmuep7xnEnpqN/BsBP0Dikgjil4lI+s93CR93P+vXjXwU84AEtnxWZXcv+cNxGZMRKAUar2PJVYhmC0RugZki4kEQlisTlaid80RxEcZI8ec9UaABxpgb8UkRxl4gjDNnLaA7cb54E4a3fxH8uj3FJxp96hiJ4ymnAkaG/KhppN/WJPqpKGNsqb2lmljCXxnPmQOFTvkAJCydQ2a7vG9Anvr9hKTecIZW/VtzjIdGgf0BHZk3wWXzBJyt17Xl3TANpxd0+SiASxQcO0PWfiaKaloWL/B7qdpLZuByBmWOA304pL02qJJHnrgqJYk6exHID2MCntHkosmdo8kWznLqoO8cMrmOwu6z4pK54IywBajjn2XNSkEcQprVysfsYzhzgqsrWymTGGIuDn10Z/E58+FKeqvTYedv0K59hf6RyRPiQRCWKxMTGUK9p8j8qd6/Z7nLNiPRZcNKpRDB8V+D/Y5EG5eFQFMx5aGsoD3v8+mrWkzR0pxcxCiSmjc8KqUszm8tCfsLpsVz2XGr/kooTt4AqO+VMBYTCiHK2NRl5j+oQPf9xGla33ieXW8jpGKJ2XV/tRafc9KUYTVaYMADapuQye0I/qzPSCJCJBrmvPmZL97zlTUNPMEs84fjRMJDsx8Gvto8LDqFW0PTQaKvQvamZt04qZKTEZOkciemX4SbyY+QB/cv2WTRWhXdhMVVXW5pfxZ9OrnLvlFmiu0jukwBpzDmrSCGKVNn6jfsoz3x18ntsv1Rdvxqq4cBojIS7X9zEGicZwbfO7CeF1pAWoEGWwkUQkyLXF5tGhmrHb9r+V/Q8dg7nMNZd3c+cFrJDZLzUYkwGwV+ubiKiqSqRD2/fGIsXMQktcNow8lUoSQ34J747qFoa0b8SseFBjsyA+V++QAstgRDnmDwBcbfqUj3/a1utVdRvqDDzsupDyEZf3j7L4+2GN0CpTT4oKni0yAq3//t/tJyomzGG0YwEvmS7Y7zFrSrQX8KTs+ECFtY+WMG1zOUd9qW4xANg73CSrWtIWlZSlayyi93aXeg/1PWe0su7aig9l8NGg0xcEXY0+B5JH4TJGkOkt51+9GBXpcHn4sd7KvzxnE3bSn/0YpP7Sz/gzZRGjGTHrfL1D0Y0kIkFuSEYyXgzsrN5PdVVXO0XFRQBMyo4LWFy/5IjMpEqN73E5en+ptneQqmil7s3xMiISasYq+dxsfJ9R9u9p9NF+JXpYtuvnje4YMjCv+2MwwEWvk//rpaxXh/H2ylLKGtt6dGp+TQser0p8xM8Vpvur2KzRZN65nEFTT9M7FN1IIhLk8lK0YbvypnZaHO59Hm/c/BWfOK7kNcsDjM+MC3B0P9s8+vdMc/yT/0Wco1sMoFVVfcJ9Hs+HXQkpo3WNRfReVOkSbjO/y6nGH9lSGZqjIh6vypaCYsYqRdodubN0jUdXiUM5Ii+DGUMTcXlU/vltz1bQbCm3MduwkqOTWxmAY0kDjiQiQS4uwsJfI97iM8tdVK3/ap/H67drhczarSm67tiYEa8V4dG7zHuVvYMvvIezNOViiJFVMyEnTaujMFopDtmdeDdX2Bjj3IhBUVETh8vrEPj98UM52/A9X67aSmnDwUdFykryec7ydx6vvgrcgd07SwSeJCIhYKSljlGGEpqL1+7zmKF8NQBtKfoW/MnonO2td5n36s5lgmlS3j00dS7THKaUs72sVudgDs2a4kYmG7T5EMpAvSzzC4et/D1PWP7F5YZPePqbg88VcZVrpd2bo4do+9iIfk0SkRDQHjtM+0fNL0pfe72kNm8CIGLIEQGOam+DIry8bbmPN9quxePUrxhVW30pxxnWMMpUqVsMog+i03Fa4zEpXtrL979kPZgV1rXyoPsinh/3Jky7Xu9wgsO4CwG40vgFi9Zso/gAOyyrqkpko1alWU0bmJVGBxpJREKAoWvPmZ173e+q3UGk2kq7amHw6MP1CK1LckI8E5RdZCs1NFQW6RZHYu2P/MfyKCeXPKZbDKIPFAVStVGRWNt22pz7zosKdgV1rYBCbM64AVPW/aBGng6pY4lW2rnS8AlPHWBUpKyxnaEerQxAVE7/LO0u9iaJSAiIzda+FaQ6ivfac6Zq8/cAbFWGMCQ1To/QuphMRmoMSQA0VOlXS8TU2lk4Klquy4eq3eW8RylFbA3BCasFtdq3/SFJgS8uGLQMBjjmLgCuNH7ON2u2UljX/ajIlko7o5ViAEwZMiIyEEgiEgIG5Y3HoyrE0EJb488l1NsKVwBQHT0Wg0H/ueU2s7a3S1tNkW4xhHdoVVVNsnQ3dHUOxw9XykOusFmHy8Mxzf/jSfPTDLf9oHc4wWXk6ZA2jiilg6uMn/DU1zu7PSy/pIIcg1aUsL+Wdhd7k0QkBCTExlCmaAXDqvbYc2axOonX3MfTlnOsTpHtrS1cG4VwNehT1Mzl8RLrqgMgTKqqhq68E1kw4S1+45obcnvOFNe3McOwibOMy4huLdI7nOCiKHDMXAAuN37J4nVb2VW7b32k1pJ1ALRY0yAiIZARCp1IIhIiKsLy2OEdRGX9z2/MrzeO5k/uq0gef5KOkf3MHaXt7WJo1mfju9pmB2mKVlU1MjlblxiED4THkzZsIh6MbK4MrSW8hXUtDFG0idJK0nCdowlCI06FtPFUhA0jlhb+0c2oyHeNCdzgvJnKKbfrEKDQgyQiIeLTEQ8w2/kIS5XJANS3OCiu19bjT8iK0zGynxnitJLqllZ9VqxU2TtIU7Ry9wbZ8C6kjcmIBWBHVQsdLo/O0fTcrppmBiud85QSh+kbTDBSFLjsQ5yXfkKBmsFH6yvYWd3c9bCt3cWWJjOfeqeRcuQV+sUpAkoSkRAxPC0aoOuPNn/d90xSdjIq2UpsuFnP0LqEJedSpcZT7wnXpf+axmZSaNJ+kEQkpGU1ruBf4f/mQr5gTXHobAbWVFlImOLCo5ggLkfvcIJTRAJjM+M4aUwqqgpP7jEqsq1zcvKguHBiI4LjfU34nyQiIWJYipaI5FfbQVWJW/MUC633Midikc6R/Sx85AlMc/yT29w36tJ/tb2DW1038H7S7yAyWZcYhG8oDbs4VV3MsYZ1LNlZp3c4Peap3QFAW1QOGPWrdBwKbjsymd+b/suKjdvYXqV9wdpaXs+1xv9xXuwO8IbOSJjoG0lEQkReSgTvW/7Mp22/pr2hnCSbVuzJmqtv/ZA9ZcRpIyGNbS5d6j9UtHj4yDuTjTlXgMEY8P6FD3WulhhtKGbpztCpsGq1aUvX1QSpH3IwI5bcxC2mhVxj/Jgnv9YSuIbiTcw1v8mNdfeBIh9PA4X8nw4RSdHhJBjaiFQc1K77jERPHR5VIXvskXqH1iUmzEx05343FU2Br676c3l3KQkd8lLHoCoG0pUGGisKqGsJ/v1GmtqcmJ02XKqR8PQReocT/KbPAeAy4yJ+2ridLRV2qNoAQGv8KG0+iRgQJBEJIdXWXO0f614HYCfZDB2Uol9A3XjY8jxLLLfQtjXwl4zM9Vs53rCaIabQ+QYt9sMajZKpjfYdY1zPD/nBf3mmoK6Vf3jO5Vjrm5iP/YPe4QS/vBNh0BTCFSe/M33MY19uJ962HQDzoAk6BycCSRKRENIWlwdAdrO2+V151BiMQVDIbE/ppmayDbU4agsC3veUpi950fIYY0rfCnjfwg/yTgTgWMNaluwI/kSksLOianZyLFijdY4mBOxRV+RS4yI2bNvBCIoAiMyZrGNgItAkEQkhhpRRe/3sSpuiUyT71xGhFV7zNJUFtF9VVYlyaNUYrVLMrH/Imw3ATMNmftxRjrrH9gbBaHfJ8sFS2r3nhp0Ag6YSrji51vQ/Rhu00u6GdCntPpBIIhJCdu85s1vc8Ok6RbJ/aoyWBBgDXNSs2eEmGa2YWbQUM+sf0sahRqezi0EorVXsqN63CmcwaS/fzAeWe7i4/im9QwkdigLHaqMiV5s+I05pxa2YIHmkzoGJQJJEJIQMGjYOr6pdinnefSrDxwTfiIgpXitqFtFeFdB+q20dpNEAgEVGRPoHRUG5aTWP5PybUjU16FfPGOq2MdGwi8z27XqHElqGHg85M2k2xQPQHjsMTBadgxKBJAvdQ0hSXDTLlPG0eYx8F3Mm10QF3+qQyGStiFOsqzqg/VbZ2jm8s6qqFDPrRyyRHJWXxJIdtSzdWcfVs4boHVG3vF6VyJZCMIAxWUq794qiwGUfEeFxU75rHYPCpX7IQBOQERGHw8HEiRNRFIV169YFost+SVEUnkh7kGtct5OaM+rgJ+ggLl37oEj21uP1BO4NpaGuGqvi0n6ITg9Yv8L/ZuUlE0k7mwpLg7bce5W9g2y1AkCW7h4KowmjJYxBo6ZB7ky9oxEBFpBE5M477yQjQ76l+sKsPK1i6OwxqTpH0r3kjFwq1AQ2qznUNzYErN+2uhIAWoxxYLIGrF/hf8M3PMy6sGs5w/sdq4O03HthXStDFC0RMSbn6RyNEKHF74nIZ599xpdffsmjjz7q764GhBuOGcrSO4/l5LHB+a3fbLFyrvUFznXeR0V74PaKKHDGcbNzDksH3xywPkVgKFEpmHF3lnsPznkiBTXNXbvukiiJiBC94ddEpLq6mmuuuYZXX32ViIiIgx7vcDiw2+173cTeTEYDWQkHfy71lBGnzV2paGoPWJ+FrVY+8s6gftj5AetTBEjnMt5phq38tD2wy8J7qrqqlBilHRUFEoJzHosQwcpviYiqqlxxxRVcd911TJ06tUfnzJ8/n9jY2K5bVlaWv8ITfrR7z5nyACYi1XYp795vJQ3HE5ONVXERX7OC2ubgK/feWFtJsTeFlogsMMtrUIje6HUiMm/ePBRFOeBt1apVPPXUU9jtdubOndvjtufOnYvNZuu6lZaW9jY8EQTOcHzCEsstjNz8eMD6zGhaxfGG1WSamgLWpwgQRcE4QhsVOdawLijLvX9vT+Fo5xNsPvdrvUMRIuT0evnunDlzuOiiiw54TG5uLvfffz8rVqzAat174uDUqVO55JJLePnll/c5z2q17nO8CD3xYQayDbXUNpcEpD+Xx8vFrvc42rIBe302IKsW+p282bDyBY41ruPxHTWcPWmQ3hF1cbg9lDa0ATAkJUbnaIQIPb1ORJKSkkhKSjrocf/4xz+4//77u36uqKjgpJNO4u233+aII47obbcihFgTtUtqUY7AFDWrbXZ0FTOLSpKqqv1S7iy8BguZ3jrKdq5DVbVyAMGgtKENrwpRVhPJ0fJFSoje8ltBs+zsvT8QoqKiABg6dCiZmVL5sj+LSskFIN4dmBUOVfYOhipaImKIlWXi/ZIlAu/MW7h/cR07W8LYXt3MyLTgGH0oqG3lXcs8IsxGlLpcSJYROSF6Q0q8C59LGqStGkhSG+no6PB7f3X1DcQq2tC4VFXtv0zH/4lduRfTSAxLg2g33uKaJiYouxjt3gqWKL3DESLkBCwRyc3NRVVVJk6cGKguhU5iEtNxqiYMikptRZHf+2up1SY1tysREBYc35KFf8zK0y4LLw2iCau2ynzMigeXIUwSYSEOgYyICJ9TDEZqDdoHRlNVod/7czRotSVaLMl+70vo67gMF782fo2zYFnQlHv31OwEoDU6V9s3RQjRK5KICL8oDRvBGu+wgNR88NrLAXBEpPm9L6GvwTsWMN/8ImfzLauKgqPcu9VeoP1DKqoKcUgkERF+8cGw+znXeR8bjKP93tdy9yhuds6hZMSVfu9L6EsZ3llPxLiOpTtqdI4G7B0uUp3apUHZ7E6IQyOJiPCL3dVVA1HmfUtbDB95Z6B0lgIX/VjOTNzGcFKVJsq2rdQ7GorqWhli0PaYsaaO1DkaIUKTJCLCL7oSkUb/JiKqqlK1u7x7rJTW7vdMVry5RwOQ2/A9Nc3+X5V1IAW1rVSr8dQaUyBJLs0IcSgkERF+Mdy1jaWWW/hT5Y1+7afZ4eYY9w+cYFhNmiX49iARvmcZdRKgXZ7Ru9x7QV0rN7tu4vEx70HGRF1jESJUSSIi/CIpIYEsQy1pnkpUVfVbP9W2DuaZX+EFy2OEtwSmpLzQ2bATAZik7GT1ll26hlJY1wrA4KRIXeMQIpRJIiL8InHQYADilFYam/y3uqG6qZkkbNoPMcGz/4jwo7gsWuOGo6LQuGulXxPdgymqtQMwOEkKmQlxqCQREX5hjYynmQgA6ssL/NZPU00ZBkXFjQkiEv3Wjwgu5gteZKb3eT5pG8W2qmZdYlBVldPrF7DSej2TSl/VJQYh+gNJRITf1Bu1AmO26iK/9dFRry2dtJuTwCAv54HCMmg8o4do+1kt3RmYPY1+qabZQaa3nGTFRlykbHYnxKGSd27hNy1WrcBYR12x3/pwNWlVVdvCUv3WhwhOR+Zpie7SHfokIgW1rQxRtB2mTSnDdYlBiP5AEhHhN47IdABUW5nf+lCatQ8Cd2dfYuA4xfgT71nu5bDi53Up915Y20xuZyJC4rCA9y9EfyGJiPAbZ8JIVnvzKHf5byM6a5tWTEqJkURkoEm3Opli2MnRyhpWFjUEvP/6il2EK048ignicgLevxD9hSQiwm9s467kPOdfeAv/VTx903UMNznn4Bx9nt/6EMFJydOW8U4wFLBmy/aA9++s1ja7a4nIAqMp4P0L0V9IIiL8JiNOq3TqrzLvbo+XVa3J/M87g9ihh/mlDxHEotNoitP2MnJtXxTw7s2NWg0Td/zQgPctRH8iiYjwm91l3mub23G43D5vv7bFgVcFk0EhSVYtDEjWUacAMLJ5BTX2wJV7d3m85LeFscwzGnPOEQHrV4j+SBIR4TeJ4UaWWG9lu/VyaqsrfN5+VVM7vzEu4tyI9Ri8Lp+3L4Jf+GgtETnKsIEfdlQFrN+yxnY+ck/jKu4l6vg7AtavEP2RJCLCbxSjiUiDC4vioaGi0OftN9RVcr95AQ+7H/R52yJEDJpMmymWGKWNso2LA9ZtQW0LALlJkRgMSsD6FaI/kkRE+FWTSav10FpT5PO2W2u0vWVsxngwWXzevggBBiP2IafzqedwVpa14/UGptx7Ua2dcDoYInvMCNFnkogIv2oN15bVOht8vyGdo7Fc68OS4vO2ReiIv/Apblf+jyWtWQEr995atomtYb/l3vJrAtKfEP2ZJCLCr9yRGQAo9nLfN97ZpiMyzfdti5BhNRmZNkTbZyhQ5d69tdrSXaNVRkSE6CtJRIRfGeKyALB0Fh7zJWOLNjlRjZJEZKA7cmgig5VKCresDEh/4fbOjRyloqoQfSaJiPAra5K2MVm0w/crGiI6tDaNcYN83rYILWd0fMi31v/j+MoX/F7uvdXhJtmpbbYYmT7Sr30JMRBIIiL8Kjo9j9XePNa7c1BV300kVFWVaFcdAOGJWT5rV4SmpDHHADBd2cjKfN+Pvu2psK6VIYq2HD0sfYRf+xJiIJBERPhVUt5hnOf8C3c7Lsfe7ruiZi0ONw84f8VNzjlEjzjGZ+2K0KSkTcBuSiBK6aBk7Vd+7auwtqVr110S8/zalxADgSQiwq/CzEYSI7WlteU+LPVebe9gszqY7yxHEZ4yxGftihBlMNCUcQwA4cXf+LWrqspSYpQ2vCiQMNivfQkxEEgiIvwuIy4cA14qG+w+a7PK5gAgLSbMZ22K0BY/8TQAJrT/5Ndy72V1dt5yH0NB8vFgDvdbP0IMFJKICL+7t+MRtlsvx7zjfz5rs7G2jEuNXzLbssFnbYrQFj36RDwYGGqoZM26NX7rZ50tgrvcvyP/6Kf91ocQA4kkIsLvzFYrZsWDu7HUZ216qzbzV/NLXNb8vM/aFCEuLJbymIkAtG76zC9dqKpKQV0rAEOSo/zShxADjSQiwu+80dryWlOz74qauZu0ttrDpIaI+Fnr4bfwW+ft/L3+cL+Ue69vdRLdUYVVcZKdEOHz9oUYiCQREX5nitdqiYS1+66WiKFZW6LplmJmYg9Dp53JCtNhlLUa2FrluzlJuxXUtvKqZT5brVcSVvGjz9sXYiCSRET4XUSylojEOat91qa1M6kxxEgxM/Ezi8nA9K5y73U+b7+oppFspQYDKsRl+7x9IQYiSUSE38WlaUsck7y1uDxen7QZ6dD2FLEmSCIi9nZaRiu3m94mZs2/fN52Y/lOzIoHpyEMojN83r4QA5EkIsLv4tO1RCRBaaGmvqHP7bk9XhI8WiISmSzfSsXepsU2MMf0IbOaPqTd4bsiegCu6h0ANEfmgEHePoXwBflLEn5nCI9jtWEcH3umUdPQ1Of2alscpCmNAERLIiJ+IX3iiTgxkaXUsnGDbzfBMzdpm9154mWzOyF8RRIR4X+KwiNpjzDHdTMlHX0vAFVl6+Ba5+/5k+n/MCbJB4LYm2KNpihqEgCNaz/2Wbser0p8ezEA1jTZY0YIX5FERARERpyWgPiizHu13cEadTib4o8Hq9RyEN0YcQoAmRWf+mw33vLGdnLQNruLHiS77grhK5KIiIAY1FnmvdYHc0SqO8t3S3l3sT9Dj70cFybGUMDy5Ut90mZBXQsfe6bxpfk4DBkTfdKmECIAicgnn3zCEUccQXh4OElJSZx77rn+7lIEoWOa3me79XKOK3ysz215KjdyqfFLDjdu90Fkoj8yRiVRlHAkAO0/veyTNgvrWnnVM5v3s/8EyXJpRghf8Wsi8t5773HppZdy5ZVXsn79en744Qcuvvhif3YpglRkTAJmxUNER9+LmiVWL+Ov5peY1fRB3wMT/VbcjCtpVKPY0QQl9W19bq+gVivtPjg5ss9tCSF+ZvJXw263m1tuuYVHHnmEq666quv+ESPkm8RAFJ2aA0CCu6bPbZlbO5OZ6PQ+tyX6r+RJp3PlukS+zbfjXlXK7Sf17b3HVlXEUKWCoQmjfBShEAL8OCKyZs0aysvLMRgMTJo0ifT0dE455RQ2b96833McDgd2u32vm+gf4tOGAJCq1lNt69uE1XCHVqHVFJ/Z57hEP2Y0cf7h2qqq/64uxd3HYnqTaz/ga+sdHL3rEV9EJ4To5LdEpKBAW28/b948/vSnP/Hxxx8THx/P0UcfTUND9xMW58+fT2xsbNctKyvLX+GJAItI0up9RCgOnl/4RZ/ainNpxcwiEiUREQd2wugUEiLM5DSv44eNOw+5nQ6XhyRnCQCR6bJiRghf6nUiMm/ePBRFOeBt1apVeL3at48//vGPnHfeeUyZMoUFCxagKAr//e9/u2177ty52Gy2rltpqe+2jRc6M4fRnHksAMfuephvth7aXJHmDhfJaIlsbGqur6IT/ZTVZOSNmKd5x/pXKpa+csjtFNW3MlTRNloMT5fLy0L4Uq/niMyZM4eLLrrogMfk5ubS3NwMwOjRo7vut1qtDBkyhJKSkm7Ps1qtWK3W3oYkQkT0uY/jemoaM42buen9Nzn89puIsvbuJVhtayMbrapqWIKMiIiDSxh7Any/mHG1H1Njv4eUQ1j2XVDTzLGKljwrSXm+DlGIAa3XiUhSUhJJSUkHPW7KlClYrVa2b9/OkUdqy+hcLhdFRUXk5OT0PlIR+hKGoJ48n7u/ruF/9uEkfrGdeWeO6VUT9dWVDFM8eFEwRKf5KVDRn6TM+A2u7//CWEMRby/5hl+dfmqv26gtLyBcceLGhClO3r+E8CW/zRGJiYnhuuuu49577+XLL79k+/btXH/99QBccMEF/upWBDnLEVdx6gXXAPDy8iJWFzf26vzyDgvnOe7lycQ/g9HsjxBFfxORQHWadllQWfcmqqr2uomOSq1mjT08E4x+W2woxIDk1zoijzzyCBdddBGXXnophx12GMXFxXzzzTfEx8f7s1sR5I7MS+L8KZkkqDaef+cDnO6er2aobPWyWh1BWerxfoxQ9DdJs64E4DjXd/yYX93r8w0N+QA444b6NC4hhJ8TEbPZzKOPPkp1dTV2u51FixYxZkzvhuJF//TnCS18E3YHc5sf4Pmv97+k+5eqbJ3l3WNlLpHoubCRJ9FsSiBJsbPpu+4nyx/I1625POY6H/eoc/wQnRADm+w1I3QRkzMeS3gUOYYajN8/zM7q5h6dl1j1PZcZv2AUxX6OUPQrRhMdo84HILr0G2xtrh6f2tjqZEV7Fk95ziVh2q/9FaEQA5YkIkIf1mjCztT2nbnK8AnPvP0RXu/Br92Pa/yS+8wvM6J5hb8jFP1M0nE3ckfUg9zl/C0frCvv8XkFdVpp94zYMCIsMj9ECF+TREToRhl1Ou3DTsOseLi07nHeWFFw0HOinVqJeGuiFLsTvaPE5zJ2ximoGHjzp5IeT1otrm7kOMMapsU1wSFMdBVCHJgkIkJX4Wc+itMYySRDPkVfPE1F0/7Lv7s9XhI89QBEJ0siInrv7ImDsJgM7KpqZEOZrUfn2Eo38x/Lo9xfd4ufoxNiYJJEROgrJgPT7L8AcAtv8vi73+73m2pdi5M0RauqGiNVVcUhiI0w82zKQn6y3sDiJd/06Bx37Q4AWqIGg6L4MzwhBiRJRITuDIddRXvaVD7wzuLz/FY+2VjZ7XE1dbVEKdqqGWNsRiBDFP3I+OgW4pUW4ne8Q6vDfdDjLU3aJUNPvCzdFcIfJBER+jMYCL/6M+qP/hstRDDvo800tTn3OcxWra2UaVGiwBIZ6ChFP5E48woATuV7Plvf/XYTu3m9KrFt2usuLE32mBHCHyQREcHBZOH6Y4aSlxJFXYuDB/+3fp9D2uu1TRBt5uRARyf6EWXocbRakkhUmtn1w3sHPLbS3kEuFQDEZI4KRHhCDDiSiIigYTUZ+fuJMbxueYBRGx/i+511ez2+WcnjXMc8vsy5XacIRb9gNMF4bePOyQ2fHbCGTUFNM0M6d901Jstmd0L4gyQiIqiMjbQx07CZS41f8dq779Lu9HQ9VtpqYo06nPZB03SMUPQHkUdcBsCxhrV8vGzf0bfdKitKiVHa8KJAwpBAhSfEgCKJiAguQ47BNe4iDIrKre1P848vt3Q9VGXvLO9+CNu4C7GX5BHYEiZgUrx4N7yDw+3p9rD8Rg83O2/k26w5YA4PcJBCDAySiIigYz75AZyWOEYaSlFWPM3GznoP4+s/5TLjF+QYanWOUPQHUUfP4VXD2XzcMZ6vttR0e8z2RvjIO5Pacb8LcHRCDBySiIjgE5mI5bSHALjZ+B5/f+cLXB4vZ7V/yH3ml8lwHXilgxA9YZxwITXT7qZQTeetld2/pgrqWgAYnCSrtITwF0lERHAa/yucOUcRpri4svFJnly0g2S0YmZxqTk6Byf6iwunahV6v8+vo7Shba/HHG4PI2zfc5RhPUOiD15vRAhxaCQREcFJUbCc9SQeg5VUpZH3Fv9EkmIHIDwpW+fgRH+RFRfGDZmFPGx8lvdX7r3XUUl9G3ONb/CK5SGS7Fv204IQoq8kERHBK2EIhis+4m9Zz2FEm0zoxAzh8ToHJvoPlZta/sEFpiVUrfwAzx47QBfWNJGtaHNHlCRZuiuEv0giIoKakj2Nv547mRxTIwCNxmTZ70P4jsGIefLFAJzg+IolO3+eCF1fthOz4sGhhEG0bCkghL9IIiKCXnZiBNeONwOQ4K3XORrR35gmXwLA0Yb1fLZsXdf9HZXbALBFZINB3iqF8Bf56xIh4ahw7fq9YdJFOkci+p2kPNpTp2BSvMTv+oDaZgcAxsZ8AFxxUshMCH+SRESEhlMehvNexHjcPXpHIvqh8MMuBeA8w3e8v1rb0yiqRdvszpwim90J4U+SiIjQYDTDuPMhSja8E34w9lzcBivDDeWs+/FbbO0uBnnKANnsTgh/M+kdgBBC6C4sFkaewc7NK7Db6nlnZSkfuC7lsIgq5g2bpXd0QvRrkogIIQRgOvsfvGjI54dVZWz6Nh+bOpiolCkQm6l3aEL0a3JpRgghACyR/OpwrVierd0FwJBkKe0uhL/JiIgQQnSamBXH+BQzM+vfo5lwJltPBMbrHZYQ/ZokIkII0Ulpb+Td1iuwmFsBKKtvA07TNygh+jm5NCOEELtFJGBIG/PzjxkjdQxGiIFBEhEhhNiDafJvuv6dkDVax0iEGBgkERFCiD2NOefnf6fIiIgQ/iZzRIQQYk9hMXDVImirh/hcvaMRot+TREQIIX4p63C9IxBiwJBLM0IIIYTQjSQiQgghhNCNJCJCCCGE0I0kIkIIIYTQjSQiQgghhNCNJCJCCCGE0I0kIkIIIYTQjV8TkR07dnDWWWeRlJRETEwMM2fO5Ntvv/Vnl0IIIYQIIX5NRE477TTcbjfffPMNq1evZuLEiZx++ulUVVX5s1shhBBChAi/JSJ1dXXk5+dz1113MX78ePLy8njwwQdpa2tj8+bN/upWCCGEECHEb4lIYmIio0aN4pVXXqG1tRW3282///1vUlNTmTJlSrfnOBwO7Hb7XjchhBBC9F9+22tGURQWLVrEWWedRXR0NAaDgdTUVD7//HPi4uK6PWf+/Pn85S9/8VdIQgghhAgyvR4RmTdvHoqiHPC2atUqVFXlhhtuICUlhaVLl/LTTz9x1llncfrpp1NZWdlt23PnzsVms3XdSktL+/wLCiGEECJ4Kaqqqr05oa6ujrq6ugMek5ubyw8//MDs2bNpbGwkJiam67G8vDyuuuoq7rrrroP2ZbPZiIuLo7S0dK82hBBCCBG87HY7WVlZNDU1ERsbe8Bje31pJikpiaSkpIMe19bWBoDBsPegi8FgwOv19qiv5uZmALKysnoZpRBCCCH01tzc7PtEpKemT59OfHw8l19+OX/+858JDw/n+eefp7CwkNNOO61HbWRkZFBaWkp0dDSKovgr1JCyO8uUUaLekeft0Mjzdmjkees9ec4OTbA+b6qq0tzcTEZGxkGP9VsikpSUxOeff84f//hHjjvuOFwuF2PGjOHDDz9kwoQJPWrDYDCQmZnprxBDWkxMTFC96EKFPG+HRp63QyPPW+/Jc3ZogvF5O9hIyG5+S0QApk6dyhdffOHPLoQQQggRwmSvGSGEEELoRhKREGO1Wrn33nuxWq16hxJS5Hk7NPK8HRp53npPnrND0x+et14v3xVCCCGE8BUZERFCCCGEbiQREUIIIYRuJBERQgghhG4kERFCCCGEbiQREUIIIYRuJBEJUkuWLOGMM84gIyMDRVH44IMP9npcVVXmzZtHRkYG4eHhHHPMMWzevFmfYIPIwZ63K664Yp/doqdNm6ZPsEFi/vz5HHbYYURHR5OSksLZZ5/N9u3b9zpGXm/76snzJq+3fT3zzDOMHz++qxLo9OnT+eyzz7oel9favg72nIX660wSkSDV2trKhAkTePrpp7t9/OGHH+bxxx/n6aefZuXKlaSlpXHiiSd2bRQ4UB3seQM4+eSTqays7Lp9+umnAYww+CxevJgbb7yRFStWsGjRItxuN7Nnz6a1tbXrGHm97asnzxvI6+2XMjMzefDBB1m1ahWrVq3iuOOO46yzzupKNuS1tq+DPWcQ4q8zVQQ9QF24cGHXz16vV01LS1MffPDBrvs6OjrU2NhY9dlnn9UhwuD0y+dNVVX18ssvV8866yxd4gkVNTU1KqAuXrxYVVV5vfXUL583VZXXW0/Fx8erL7zwgrzWemH3c6aqof86kxGREFRYWEhVVRWzZ8/uus9qtXL00UezbNkyHSMLDd999x0pKSkMHz6ca665hpqaGr1DCio2mw2AhIQEQF5vPfXL5203eb3tn8fj4a233qK1tZXp06fLa60Hfvmc7RbKrzO/bnon/KOqqgqA1NTUve5PTU2luLhYj5BCximnnMIFF1xATk4OhYWF3HPPPRx33HGsXr06pEsk+4qqqtx2220ceeSRjB07FpDXW09097yBvN72Z+PGjUyfPp2Ojg6ioqJYuHAho0eP7ko25LW2r/09ZxD6rzNJREKYoih7/ayq6j73ib396le/6vr32LFjmTp1Kjk5OXzyySece+65OkYWHObMmcOGDRv4/vvv93lMXm/7t7/nTV5v3RsxYgTr1q2jqamJ9957j8svv5zFixd3PS6vtX3t7zkbPXp0yL/O5NJMCEpLSwN+/qa6W01NzT7fJMSBpaenk5OTw86dO/UORXc33XQTH330Ed9++y2ZmZld98vr7cD297x1R15vGovFwrBhw5g6dSrz589nwoQJPPnkk/JaO4D9PWfdCbXXmSQiIWjw4MGkpaWxaNGirvucTieLFy9mxowZOkYWeurr6yktLSU9PV3vUHSjqipz5szh/fff55tvvmHw4MF7PS6vt+4d7HnrjrzeuqeqKg6HQ15rvbD7OetOyL3OdJsmKw6oublZXbt2rbp27VoVUB9//HF17dq1anFxsaqqqvrggw+qsbGx6vvvv69u3LhR/fWvf62mp6erdrtd58j1daDnrbm5Wf2///s/ddmyZWphYaH67bffqtOnT1cHDRo0oJ+366+/Xo2NjVW/++47tbKysuvW1tbWdYy83vZ1sOdNXm/dmzt3rrpkyRK1sLBQ3bBhg3r33XerBoNB/fLLL1VVlddadw70nPWH15kkIkHq22+/VYF9bpdffrmqqtqSynvvvVdNS0tTrVaretRRR6kbN27UN+ggcKDnra2tTZ09e7aanJysms1mNTs7W7388svVkpISvcPWVXfPF6AuWLCg6xh5ve3rYM+bvN6699vf/lbNyclRLRaLmpycrB5//PFdSYiqymutOwd6zvrD60xRVVUN3PiLEEIIIcTPZI6IEEIIIXQjiYgQQgghdCOJiBBCCCF0I4mIEEIIIXQjiYgQQgghdCOJiBBCCCF0I4mIEEIIIXQjiYgQQgghdCOJiBBCCCF0I4mIEEIIIXQjiYgQQgghdPP/CIoKTItKicUAAAAASUVORK5CYII=", + "text/plain": [ + "<Figure size 640x480 with 1 Axes>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "for key,key_orig in zip(keys,keys_orig):\n", + " plt.plot(df_track[key])\n", + " plt.plot(df_track_orig[key_orig],ls='--')\n", + " plt.title(key)\n", + " plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### " + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "1 Python 3 (based on the module python3/2023.01)", + "language": "python", + "name": "python3_2023_01" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.10" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/Scripts_for_analysis/Adjustment_of_steps_2_and_3_for_single_timesteps/PTEstep2_Compute_all_terms_in_2D_single_timesteps.ipynb b/Scripts_for_analysis/Adjustment_of_steps_2_and_3_for_single_timesteps/PTEstep2_Compute_all_terms_in_2D_single_timesteps.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..548d2acab5d9f3da0478a7cff6333f8a52e3f522 --- /dev/null +++ b/Scripts_for_analysis/Adjustment_of_steps_2_and_3_for_single_timesteps/PTEstep2_Compute_all_terms_in_2D_single_timesteps.ipynb @@ -0,0 +1,3952 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "tags": [] + }, + "source": [ + "# (Step 2 for PTE) PTE analysis " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Original script taken from Georgios Papavasileiou (https://publikationen.bibliothek.kit.edu/1000123919)\n", + "\n", + "Modified by Ting-Chen Chen (ting-chen.chen@kit.edu) in Feb, 2023\n", + "\n", + "Modifications by Christoph Braun in January, 2024: Calculation is done and written to netcdf file for each timestep separately. Since this is only for a quick check of the sensitivity of the results to the remapping procedure, 3d data is not written to netcdf. Furthermore, diabatic tendency terms were excluded from the calculation. Check performed, see below.\n", + "\n", + "Check of the modifications introduced has been performed via comparison with previous results. See: Check_mod_of_PTEstep2.ipynb. -> Yields same results for PTE_map_for_channel_2km_0004_6hrly_1x1latlon_upper50hPa.nc with very minor differences in EP and Eq1res (difference between results calculated from this script and the original script is an order of 1e-7 lower than values themselves). " + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "#####################################################\n", + "# cyclone specific data\n", + "#####################################################\n", + "# channel_Xkm_0001: control simulations\n", + "# channel_Xkm_0002: +4K, qv consistent with T\n", + "# channel_Xkm_0003: +4k, qv from control\n", + "# channel_Xkm_0004: +temperature anomaly from MPI-ESM1-2-LR far future\n", + "# channel_Xkm_0005: +tropical temperature anomaly from MPI-ESM1-2-LR far future\n", + "# channel_Xkm_0006: +polar temperature anomaly from MPI-ESM1-2-LR far future\n", + "\n", + "# Note that the 2-km experiments contain outputs every 6 hrs\n", + "# Note that the 80-km experiments contain outputs every 1 hrs\n", + "\n", + "res = '2km'\n", + "exp = 'channel_'+res+'_0004'\n", + "\n", + "compute_DIAB = True # Always set 'True' when the explicity-calculated diabatic heating rate is available\n", + "\n", + "data_res = '1x1latlon'\n", + "#data_res = '0p05x0p05latlon'\n", + "dt = 6 # INTENDED delta t in hrs for the PTE analysis \n", + " # (not the time interval of the input data) \n", + "\n", + "if dt == 1:\n", + " data_dt = '1hrly'\n", + "elif dt == 6:\n", + " data_dt = '6hrly'" + ] + }, + { + "cell_type": "raw", + "metadata": { + "tags": [] + }, + "source": [ + "# PTE analysis in ICON simulations over the North Atlantic domain\n", + "# author: Georgios Papavasileiou, KIT, MAR 2018 \n", + "# for any comments of feedback please contact me georgios.papavasileiou@kit.edu\n", + "#\n", + "#\n", + "######################################################################################################################## \n", + "#################################### Surface Pressure Tendency Equation ###############################################\n", + "######################################################################################################################## \n", + "## This script is used to calculate the components of the surface pressure tendency equation and its residuals ##\n", + "## based on the work from Fink, Pohle, Pinto and Knippertz 2011: The role of diabatic processes in explosive ##\n", + "## cyclogenesis over the eastern Atlantic ocean and western Europe (GRL) & 2012:Diagnosing the influence of ##\n", + "## diabatic processes on the explosive deepening of extratropical cyclones ##\n", + "## ## \n", + "## ##\n", + "## dP_sfc / dt = ro * (dfi / dt) + ro * (vertical integratl of dT / dt) + g*(E-P) + residual [Eq.1] ##\n", + "## ##\n", + "## where, ##\n", + "## P_sfc = surface pressure ##\n", + "## fi = geopotential ##\n", + "## T = temperature ##\n", + "## E = evaporation ##\n", + "## P = precipitation ##\n", + "## ro = air density at the surface ##\n", + "## ##\n", + "## The temperature term dT / dt (ITT: vertically integrated virtual temperature tendency) can be further expanded to: ##\n", + "## ##\n", + "## ITT = TADV + VMT + DIAB + RES [Eq.2] ##\n", + "## ##\n", + "## where, ##\n", + "## TADV = temperature advection ##\n", + "## VMT = vertical motion ##\n", + "## DIAB = diabatic processes (such as radiative cooling/warming, latend heat release due to phase changes of water) ##\n", + "## ##\n", + "## ##\n", + "## author: Georgios Papavasileiou, KIT, MAR 2018 ##\n", + "######################################################################################################################## " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "we load libraries" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "import numba\n", + "from numba import njit\n", + "import math\n", + "import psutil\n", + "import numpy as np\n", + "import pandas as pd\n", + "import xarray as xr\n", + "import matplotlib.pyplot as plt\n", + "import datetime \n", + "import cartopy.crs as ccrs\n", + "import matplotlib.ticker as mticker\n", + "from cartopy.mpl.gridliner import LONGITUDE_FORMATTER, LATITUDE_FORMATTER\n", + "import warnings\n", + "warnings.filterwarnings(\"ignore\")\n", + "from platform import python_version" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "3.10.10\n" + ] + } + ], + "source": [ + "#print(numba.__version__)\n", + "print(python_version())" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "def print_memory(msg=None):\n", + " process = psutil.Process()\n", + " if (msg):\n", + " print(msg, ':', 'memory =', np.round(process.memory_info().rss/(1024*1024)), 'MB')\n", + " else:\n", + " print('memory =', np.round(process.memory_info().rss/(1024*1024)), 'MB')" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# Some functions: to be used for the calculations in the SPTE script\n", + "\n", + "def get_es(t): \n", + " '''\n", + " # t is the temperature in Kelvin\n", + " # function that calculates the saturation vapour pressure\n", + " '''\n", + " es = 6.112 * np.exp((17.67*(t-273.15))/((t-273.15)+243.5))\n", + " return es\n", + "\n", + "def get_e(t, rh):\n", + " '''\n", + " # rh is the relative_humidity & es is the saturation_vapour_pressure\n", + " # function that calculates the vapour pressure\n", + " '''\n", + " e = rh*get_es(t)/100\n", + " return e\n", + "\n", + "def get_shu(rh, t, p):\n", + " '''\n", + " # function that calculates the specific humidity\n", + " # pressure must be given in hPa\n", + " '''\n", + " shu = (0.622 * get_e(t,rh))/(p-(0.378*get_e(t,rh)))\n", + " return shu\n", + " \n", + "def get_mix(e,p,t,rh):\n", + " '''\n", + " # function that calculates the mixing ratio\n", + " # e : vapour pressure\n", + " # p : pressure in Pa\n", + " # t : temperature\n", + " # rh: relative humidity\n", + " '''\n", + " mix = (0.622 * get_e(t,rh)) / ((p/100)-get_e(t,rh)) \n", + " return mix\n", + " \n", + "def get_adia_lr(t,rh,p):\n", + " '''\n", + " # function that calculates the dry/moist adiabatic lapse rate\n", + " # t : temperature\n", + " # rh: relative humidity\n", + " '''\n", + " if rh < 95.:\n", + " adia = g/C_p\n", + " else:\n", + " e_h = get_e(t,rh)\n", + " mix_h = get_mix(e_h, p, t, rh)\n", + " adia = g * ((1 + ((LV * mix_h) / (R * t))) / (C_p + ((LV**2 * mix_h * 0.622) / (R * t**2))))\n", + " return adia\n", + "\n", + "def get_rhm_sfc(t2m ,td2m):\n", + " '''\n", + " # function that calculates the relative humidity in the sfc\n", + " '''\n", + " rhm_sfc = 100 * (get_es(td2m)/get_es(t2m))\n", + " return rhm_sfc\n", + "\n", + "def get_theta(t, p):\n", + " '''\n", + " # function that calculates the potential temperature for given Temperature(t in Kelvin) and pressure,\n", + " '''\n", + " theta = t * ( 1.e5 / p) ** 0.286\n", + " return theta\n", + "\n", + "def get_T_v(t, shu):\n", + " '''\n", + " # function that calculates the virtual temperature for given Temperature(t in Kelvin),\n", + " # Relative Humidity(rh [0-100]) & Pressure(p in hPa)\n", + " # we calculate the specific humidity\n", + " '''\n", + " T_v = t * (1 + 0.608 * shu)\n", + " return T_v\n", + "\n", + "@njit\n", + "def get_T_adv(T, u, v, lat, lon, ntimes, nlevs, nlats, nlons):\n", + " '''\n", + " # function that calculates the Horizontal Temperature Advection (T_adv)\n", + " # we use as imput the u and v wind components with shape (ntimes, nlevs, nlats, nlons)\n", + " # and the temperature gradient components with shape (ntimes, nlevs, nlats, nlons)\n", + " '''\n", + " deg2rad = np.pi/180.0\n", + " \n", + " T_adv = np.full((ntimes,nlevs,nlats,nlons),np.nan,dtype=np.float64)\n", + " \n", + " for lati in range(nlats):\n", + " for loni in range(nlons):\n", + " \n", + " latiU = min (lati+1, nlats-1)\n", + " latiL = max (lati-1, 0)\n", + " #loniU = min (loni+1, nlons-1)\n", + " #loniL = max (loni-1, 0)\n", + " loniU = loni+1\n", + " loniL = loni-1\n", + " londis = lon[loniU]-lon[loniL]\n", + " if loni == nlons-1:\n", + " loniU = 0\n", + " londis = 2.\n", + " if loni == 0: \n", + " londis = 2.\n", + " \n", + " # Zonal distance between two points at the same latitude \n", + " #------------------------------------------------------------------------------------------------------------------------------\n", + " # Based on an ellipsoid (e.g. WGS84):\n", + " # ps., more realistic for the Earth but not necessary the assumption used in the numerical NWP/climate models!\n", + " #\n", + " # zon = u[:,:,lati,loni]/(rearth*np.cos(lat[lati]*deg2rad)) * (T[:,:,lati,loniU]-T[:,:,lati,loniL])/(deg2rad*(lon[loniU]-lon[loniL]))\n", + " #------------------------------------------------------------------------------------------------------------------------------\n", + " #------------------------------------------------------------------------------------------------------------------------------\n", + " # Based on a sphere with a constant radius:\n", + " # ps., likely used in ICON-NWP models!\n", + " # \n", + " zon = u[:,:,lati,loni]/rearth * (T[:,:,lati,loniU]-T[:,:,lati,loniL])/(deg2rad*(londis))\n", + " mer = v[:,:,lati,loni]/rearth * (T[:,:,latiU,loni]-T[:,:,latiL,loni])/(deg2rad*(lat[latiU]-lat[latiL])) \n", + " T_adv[:,:,lati,loni] = -1* (zon + mer)\n", + " \n", + " return T_adv\n", + " \n", + "def get_ro_sfc(t_sfc, p_sfc, ntimes, nlons, nlats):\n", + " '''\n", + " # function that calculates the density in the surface for given surface pressure\n", + " # and temperature (conventionally we can use temprature at 2 m)\n", + " # Pressure in Pa\n", + " # Temperature in K\n", + " '''\n", + " ro = np.full((ntimes,nlats,nlons),np.nan,dtype=float)\n", + " ro = p_sfc / (t_sfc * R) \n", + " return ro \n", + "\n", + "\n", + "def get_ro_lpl(tv, p, ntimes, nlats, nlons, nlevs):\n", + " '''\n", + " # function that calculates the 4D density \n", + " '''\n", + " \n", + " ro_lpl = np.full(tv.shape,np.nan,dtype=np.float64) \n", + " for ti in range(ntimes):\n", + " for la in range(nlats):\n", + " for lo in range(nlons):\n", + " for il in range (nlevs):\n", + " ro_lpl[ti,la,lo] = p[ti,il,la,lo] / (tv[ti,il,la,lo] * R)\n", + " return ro_lpl\n", + "\n", + "@njit\n", + "def get_dT_dp(t, p, ntimes, nlevs, nlats, nlons):\n", + " '''\n", + " # function that calculates the vertical temperature gradient\n", + " '''\n", + " dT_dp = np.full((ntimes,nlevs,nlats,nlons),np.nan,dtype=np.float64)\n", + " #dT_dp = np.full((ntimes,nlevs+1,nlats,nlons), np.nan,dtype=float)\n", + " for ti in range(ntimes):\n", + " for le in range(nlevs):\n", + " leU = min (le+1, nlevs-1)\n", + " leL = max (le-1, 0)\n", + " dT_dp[ti,le,:,:] = (t[ti,leU,:,:]-t[ti,leL,:,:]) / (p[ti,leU,:,:]-p[ti,leL,:,:]) \n", + " \n", + " return dT_dp\n", + "\n", + "def get_dT_dz(dT_dp, ro):\n", + " '''\n", + " # function that calculates the tempertature advetion due to vertical motions\n", + " '''\n", + " dT_dz = dT_dp * ( -ro ) * g \n", + " \n", + " return dT_dz\n", + " \n", + "def get_T_vmt_dry(T_v, dTv_dp, omega, level):\n", + " '''\n", + " # function that calculates the tempertature advetion due to vertical motions\n", + " '''\n", + " T_vmt = omega * ( (R * T_v ) / ( C_p * level) - dTv_dp) \n", + " \n", + " return T_vmt \n", + "\n", + "@njit\n", + "def get_p_levs(level,ntimes,nlevs,nlats,nlons):\n", + " \n", + " p_levs = np.full((ntimes,nlevs,nlats,nlons), np.nan , dtype=np.float64)\n", + " for ti in range(ntimes):\n", + " for la in range(nlats):\n", + " for lo in range(nlons):\n", + " p_levs[ti,:,la,lo] = level\n", + "\n", + " return p_levs\n", + "\n", + "@njit\n", + "def logp_integral(var_datanan0,logp1D,ro,ntimes,nlats,nlons):\n", + " \n", + " I_var = np.full((ntimes,nlats,nlons), np.nan, dtype=np.float64)\n", + " for ti in range(ntimes):\n", + " for la in range(nlats):\n", + " for lo in range(nlons):\n", + " I_var[ti,la,lo] = np.trapz(var_datanan0[ti,:,la,lo],x=logp1D)*-1 *dt * h_in_sec * ro[ti,la,lo] * R\n", + " return I_var\n", + "\n", + "\n", + "def get_pv(vor,dT_dp):\n", + "\n", + " PV = (vor+f) * dT_dp * -g\n", + " \n", + " return PV\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "<div>\n", + "<style scoped>\n", + " .dataframe tbody tr th:only-of-type {\n", + " vertical-align: middle;\n", + " }\n", + "\n", + " .dataframe tbody tr th {\n", + " vertical-align: top;\n", + " }\n", + "\n", + " .dataframe thead th {\n", + " text-align: right;\n", + " }\n", + "</style>\n", + "<table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: right;\">\n", + " <th></th>\n", + " <th>Unnamed: 0</th>\n", + " <th>time</th>\n", + " <th>pmin</th>\n", + " <th>lon</th>\n", + " <th>lat</th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <th>0</th>\n", + " <td>0</td>\n", + " <td>0.00</td>\n", + " <td>1000.991638</td>\n", + " <td>56.5</td>\n", + " <td>27.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1</th>\n", + " <td>1</td>\n", + " <td>0.25</td>\n", + " <td>997.934448</td>\n", + " <td>61.5</td>\n", + " <td>23.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2</th>\n", + " <td>2</td>\n", + " <td>0.50</td>\n", + " <td>998.462646</td>\n", + " <td>21.5</td>\n", + " <td>42.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>3</th>\n", + " <td>3</td>\n", + " <td>0.75</td>\n", + " <td>997.014771</td>\n", + " <td>32.5</td>\n", + " <td>28.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>4</th>\n", + " <td>4</td>\n", + " <td>1.00</td>\n", + " <td>999.559631</td>\n", + " <td>27.5</td>\n", + " <td>42.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>5</th>\n", + " <td>5</td>\n", + " <td>1.25</td>\n", + " <td>997.670227</td>\n", + " <td>27.5</td>\n", + " <td>43.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>6</th>\n", + " <td>6</td>\n", + " <td>1.50</td>\n", + " <td>998.062012</td>\n", + " <td>31.5</td>\n", + " <td>44.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>7</th>\n", + " <td>7</td>\n", + " <td>1.75</td>\n", + " <td>997.686157</td>\n", + " <td>40.5</td>\n", + " <td>42.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>8</th>\n", + " <td>8</td>\n", + " <td>2.00</td>\n", + " <td>997.231018</td>\n", + " <td>45.5</td>\n", + " <td>44.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>9</th>\n", + " <td>9</td>\n", + " <td>2.25</td>\n", + " <td>995.639587</td>\n", + " <td>49.5</td>\n", + " <td>43.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>10</th>\n", + " <td>10</td>\n", + " <td>2.50</td>\n", + " <td>993.030029</td>\n", + " <td>52.5</td>\n", + " <td>44.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>11</th>\n", + " <td>11</td>\n", + " <td>2.75</td>\n", + " <td>988.784302</td>\n", + " <td>56.5</td>\n", + " <td>44.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>12</th>\n", + " <td>12</td>\n", + " <td>3.00</td>\n", + " <td>985.596008</td>\n", + " <td>59.5</td>\n", + " <td>45.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>13</th>\n", + " <td>13</td>\n", + " <td>3.25</td>\n", + " <td>981.169678</td>\n", + " <td>14.5</td>\n", + " <td>45.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>14</th>\n", + " <td>14</td>\n", + " <td>3.50</td>\n", + " <td>976.026123</td>\n", + " <td>17.5</td>\n", + " <td>46.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>15</th>\n", + " <td>15</td>\n", + " <td>3.75</td>\n", + " <td>970.745728</td>\n", + " <td>19.5</td>\n", + " <td>46.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>16</th>\n", + " <td>16</td>\n", + " <td>4.00</td>\n", + " <td>967.672241</td>\n", + " <td>23.5</td>\n", + " <td>47.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>17</th>\n", + " <td>17</td>\n", + " <td>4.25</td>\n", + " <td>966.600647</td>\n", + " <td>28.5</td>\n", + " <td>47.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>18</th>\n", + " <td>18</td>\n", + " <td>4.50</td>\n", + " <td>963.127014</td>\n", + " <td>34.5</td>\n", + " <td>48.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>19</th>\n", + " <td>19</td>\n", + " <td>4.75</td>\n", + " <td>961.268616</td>\n", + " <td>37.5</td>\n", + " <td>48.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>20</th>\n", + " <td>20</td>\n", + " <td>5.00</td>\n", + " <td>960.033142</td>\n", + " <td>42.5</td>\n", + " <td>49.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>21</th>\n", + " <td>21</td>\n", + " <td>5.25</td>\n", + " <td>959.165527</td>\n", + " <td>46.5</td>\n", + " <td>49.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>22</th>\n", + " <td>22</td>\n", + " <td>5.50</td>\n", + " <td>954.482788</td>\n", + " <td>54.5</td>\n", + " <td>50.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>23</th>\n", + " <td>23</td>\n", + " <td>5.75</td>\n", + " <td>950.702515</td>\n", + " <td>60.5</td>\n", + " <td>50.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>24</th>\n", + " <td>24</td>\n", + " <td>6.00</td>\n", + " <td>944.416199</td>\n", + " <td>13.5</td>\n", + " <td>51.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>25</th>\n", + " <td>25</td>\n", + " <td>6.25</td>\n", + " <td>939.254089</td>\n", + " <td>14.5</td>\n", + " <td>51.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>26</th>\n", + " <td>26</td>\n", + " <td>6.50</td>\n", + " <td>943.386414</td>\n", + " <td>15.5</td>\n", + " <td>50.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>27</th>\n", + " <td>27</td>\n", + " <td>6.75</td>\n", + " <td>944.307129</td>\n", + " <td>23.5</td>\n", + " <td>52.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>28</th>\n", + " <td>28</td>\n", + " <td>7.00</td>\n", + " <td>945.061279</td>\n", + " <td>28.5</td>\n", + " <td>53.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>29</th>\n", + " <td>29</td>\n", + " <td>7.25</td>\n", + " <td>945.369507</td>\n", + " <td>34.5</td>\n", + " <td>52.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>30</th>\n", + " <td>30</td>\n", + " <td>7.50</td>\n", + " <td>945.417725</td>\n", + " <td>34.5</td>\n", + " <td>53.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>31</th>\n", + " <td>31</td>\n", + " <td>7.75</td>\n", + " <td>945.800781</td>\n", + " <td>39.5</td>\n", + " <td>53.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>32</th>\n", + " <td>32</td>\n", + " <td>8.00</td>\n", + " <td>948.895386</td>\n", + " <td>39.5</td>\n", + " <td>53.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>33</th>\n", + " <td>33</td>\n", + " <td>8.25</td>\n", + " <td>952.656189</td>\n", + " <td>45.5</td>\n", + " <td>53.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>34</th>\n", + " <td>34</td>\n", + " <td>8.50</td>\n", + " <td>955.252869</td>\n", + " <td>55.5</td>\n", + " <td>50.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>35</th>\n", + " <td>35</td>\n", + " <td>8.75</td>\n", + " <td>962.483459</td>\n", + " <td>54.5</td>\n", + " <td>51.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>36</th>\n", + " <td>36</td>\n", + " <td>9.00</td>\n", + " <td>963.767273</td>\n", + " <td>24.5</td>\n", + " <td>46.5</td>\n", + " </tr>\n", + " </tbody>\n", + "</table>\n", + "</div>" + ], + "text/plain": [ + " Unnamed: 0 time pmin lon lat\n", + "0 0 0.00 1000.991638 56.5 27.5\n", + "1 1 0.25 997.934448 61.5 23.5\n", + "2 2 0.50 998.462646 21.5 42.5\n", + "3 3 0.75 997.014771 32.5 28.5\n", + "4 4 1.00 999.559631 27.5 42.5\n", + "5 5 1.25 997.670227 27.5 43.5\n", + "6 6 1.50 998.062012 31.5 44.5\n", + "7 7 1.75 997.686157 40.5 42.5\n", + "8 8 2.00 997.231018 45.5 44.5\n", + "9 9 2.25 995.639587 49.5 43.5\n", + "10 10 2.50 993.030029 52.5 44.5\n", + "11 11 2.75 988.784302 56.5 44.5\n", + "12 12 3.00 985.596008 59.5 45.5\n", + "13 13 3.25 981.169678 14.5 45.5\n", + "14 14 3.50 976.026123 17.5 46.5\n", + "15 15 3.75 970.745728 19.5 46.5\n", + "16 16 4.00 967.672241 23.5 47.5\n", + "17 17 4.25 966.600647 28.5 47.5\n", + "18 18 4.50 963.127014 34.5 48.5\n", + "19 19 4.75 961.268616 37.5 48.5\n", + "20 20 5.00 960.033142 42.5 49.5\n", + "21 21 5.25 959.165527 46.5 49.5\n", + "22 22 5.50 954.482788 54.5 50.5\n", + "23 23 5.75 950.702515 60.5 50.5\n", + "24 24 6.00 944.416199 13.5 51.5\n", + "25 25 6.25 939.254089 14.5 51.5\n", + "26 26 6.50 943.386414 15.5 50.5\n", + "27 27 6.75 944.307129 23.5 52.5\n", + "28 28 7.00 945.061279 28.5 53.5\n", + "29 29 7.25 945.369507 34.5 52.5\n", + "30 30 7.50 945.417725 34.5 53.5\n", + "31 31 7.75 945.800781 39.5 53.5\n", + "32 32 8.00 948.895386 39.5 53.5\n", + "33 33 8.25 952.656189 45.5 53.5\n", + "34 34 8.50 955.252869 55.5 50.5\n", + "35 35 8.75 962.483459 54.5 51.5\n", + "36 36 9.00 963.767273 24.5 46.5" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#####################################################\n", + "# Read in track data from file\n", + "#####################################################\n", + "#Cyclone Track\n", + "#path_track = '/scratch/b/b380782/check_remapping_on_PTE/channel_2km_0004/PTE_out/cyclone_tracks/'\n", + "path_track = '/work/bb1152/Module_A/A6_CyclEx/pp_data/cyclone_tracks/'\n", + "#path_track = '/work/bb1152/Module_A/A6_CyclEx/b382037_TingChen/Task3/PTE/cyclone_tracks/'\n", + "\n", + "#df_track = pd.read_csv(path_track+'Track_for_'+exp+'_'+str(dt)+'hrly_0p05x0p05latlon.csv')\n", + "df_track = pd.read_csv(path_track+'Track_for_'+exp+'_'+str(dt)+'hrly_1x1latlon.csv')\n", + "\n", + "# get timesteps from map\n", + "#tmin = time.min()\n", + "#tmax = time.max()\n", + "\n", + "# select timesteps from track\n", + "#df_track = df_track.loc[(df_track['time']>=tmin) & (df_track['time']<=tmax)]\n", + "\n", + "# determine timesteps of track\n", + "ntrack = len(df_track['lat'])\n", + "\n", + "track_dur = df_track['time']\n", + "track_lon = df_track['lon']\n", + "track_lat = df_track['lat']\n", + " \n", + "df_track" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "/work/bb1152/Module_A/A6_CyclEx/sim_data/production/channel_2km_0004/remapped_atm2d_latlon/icon-atm2d_ML_reg_con_202101*.nc\n", + "/work/bb1152/Module_A/A6_CyclEx/sim_data/production/channel_2km_0004/remapped_atm3d_latlon/icon-atm3d_PL_reg_con_202101*.nc\n", + "/work/bb1152/Module_A/A6_CyclEx/sim_data/production/channel_2km_0004channel_2km_0004/remapped_ddt3d_latlon_only_totnwpphy/icon-ddt3d_PL_reg_con_202101*.nc\n" + ] + } + ], + "source": [ + "# Path on Levante for the input data\n", + "# Interpolated up to 10hPa\n", + "#datapath='/scratch/b/b380782/check_remapping_on_PTE/'+exp+'/'\n", + "datapath='/work/bb1152/Module_A/A6_CyclEx/sim_data/production/'+exp\n", + "\n", + "\n", + "#----2D atmospheric variables----\n", + "ipath2d = datapath+\"/remapped_atm2d_latlon/\"\n", + "#ipath2d = datapath+\"/remapped_atm2d_latlon_0p05x0p05/\"\n", + "ifile2d = \"icon-atm2d_ML_reg_con_202101*.nc\"\n", + "\n", + "print(ipath2d+ifile2d)\n", + "\n", + "#----3D atmospheric variables----\n", + "ipath3d = datapath+\"/remapped_atm3d_latlon/\"\n", + "#ipath3d = datapath+\"/remapped_atm3d_latlon_0p05x0p05/\"\n", + "ifile3d = \"icon-atm3d_PL_reg_con_202101*.nc\"\n", + "\n", + "print(ipath3d+ifile3d)\n", + "\n", + "#----tendency terms----\n", + "ipathddt3d = datapath+exp+\"/remapped_ddt3d_latlon_only_totnwpphy/\"\n", + "ifileddt3d = \"icon-ddt3d_PL_reg_con_202101*.nc\"\n", + "\n", + "print(ipathddt3d+ifileddt3d)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "ds2d = xr.open_mfdataset(ipath2d+ifile2d)" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "ds3d = xr.open_mfdataset(ipath3d+ifile3d)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "#ds3dddt = xr.open_mfdataset(ipathddt3d+ifileddt3d)" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# select required variables\n", + "\n", + "ds3d = ds3d[['temp',\n", + " 'qv',\n", + " 'u',\n", + " 'v',\n", + " #'w',\n", + " 'omega',\n", + " 'geopot',\n", + " 'vor']]\n", + "\n", + "# total temperature tendency from NWP physics [K/s]\n", + "#ds3dddt = ds3dddt[['ddt_temp_totnwpphy']] \n", + "\n", + "# pres_sfc: surface pressure [Pa]\n", + "# pres_msl: mea-sea-level pressure [Pa]\n", + "# tot_prec: total precipitation [kg m-2]\n", + "# qhfl_s: surface moisture flux [Kg m-2 s-1]\n", + "# t_2m: temperature in 2m [K]\n", + "# qv_2m: specific water vapor content in 2m \n", + "ds2d = ds2d[['pres_sfc',\n", + " 'pres_msl',\n", + " 'tot_prec',\n", + " 'qhfl_s',\n", + " 't_2m',\n", + " 'qv_2m']] \n", + "\n", + "# get precipitation rate for entire period\n", + "# prec_rate: precipitation rate [kg m-2 dt-1] with dt being the precipitation rate per delta time\n", + "# ATTENTION: REQUIRES ADJUSTMENT FOR HOURLY OUTPUT\n", + "prec_rate = ds2d.tot_prec.diff(dim='time')\n", + "ds2d['prec_rate'] = prec_rate\n", + "\n", + "ds = xr.merge([ds2d,ds3d])#,ds3dddt])\n", + "#ds = xr.merge([ds2d,ds3d,ds3dddt])" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# Select timesteps every 6 hours. \n", + "# NOT REQUIRED FOR 2KM SIMS AS OF NOW BECAUSE DATA IS ONLY AVAILABLE EVERY 6 HRS!\n", + "\n", + "\n", + "def createList(r1, r2, r3):\n", + " return list(range(r1, r2+1, r3))\n", + "\n", + "# Note that I name the first day (time index starting from 0) as day 1 instead of day 0 \n", + "\n", + "if res == '80km': \n", + " \n", + " if data_dt =='6hrly':\n", + " \n", + " ds = ds.isel(time=createList(36,216+1,6)) # day 2.5- 9, every 6 hr (starting from t=0)\n", + " \n", + " elif data_dt =='1hrly':\n", + " \n", + " ds = ds.isel(time=slice(36,216+1)) # day 2.5- 9, every 1 hr\n", + "\n", + "else : #2-km experiments\n", + " \n", + " ds = ds.isel(time=slice(6,36+1)) # day 2.5-9, every 6 hr " + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# set relative time-axis\n", + "\n", + "ds[\"time\"] = ds.time - 20210101" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "<div><svg style=\"position: absolute; width: 0; height: 0; overflow: hidden\">\n", + "<defs>\n", + "<symbol id=\"icon-database\" viewBox=\"0 0 32 32\">\n", + "<path d=\"M16 0c-8.837 0-16 2.239-16 5v4c0 2.761 7.163 5 16 5s16-2.239 16-5v-4c0-2.761-7.163-5-16-5z\"></path>\n", + "<path d=\"M16 17c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n", + "<path d=\"M16 26c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n", + "</symbol>\n", + "<symbol id=\"icon-file-text2\" viewBox=\"0 0 32 32\">\n", + "<path d=\"M28.681 7.159c-0.694-0.947-1.662-2.053-2.724-3.116s-2.169-2.030-3.116-2.724c-1.612-1.182-2.393-1.319-2.841-1.319h-15.5c-1.378 0-2.5 1.121-2.5 2.5v27c0 1.378 1.122 2.5 2.5 2.5h23c1.378 0 2.5-1.122 2.5-2.5v-19.5c0-0.448-0.137-1.23-1.319-2.841zM24.543 5.457c0.959 0.959 1.712 1.825 2.268 2.543h-4.811v-4.811c0.718 0.556 1.584 1.309 2.543 2.268zM28 29.5c0 0.271-0.229 0.5-0.5 0.5h-23c-0.271 0-0.5-0.229-0.5-0.5v-27c0-0.271 0.229-0.5 0.5-0.5 0 0 15.499-0 15.5 0v7c0 0.552 0.448 1 1 1h7v19.5z\"></path>\n", + "<path d=\"M23 26h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n", + "<path d=\"M23 22h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n", + "<path d=\"M23 18h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n", + "</symbol>\n", + "</defs>\n", + "</svg>\n", + "<style>/* CSS stylesheet for displaying xarray objects in jupyterlab.\n", + " *\n", + " */\n", + "\n", + ":root {\n", + " --xr-font-color0: var(--jp-content-font-color0, rgba(0, 0, 0, 1));\n", + " --xr-font-color2: var(--jp-content-font-color2, rgba(0, 0, 0, 0.54));\n", + " --xr-font-color3: var(--jp-content-font-color3, rgba(0, 0, 0, 0.38));\n", + " --xr-border-color: var(--jp-border-color2, #e0e0e0);\n", + " --xr-disabled-color: var(--jp-layout-color3, #bdbdbd);\n", + " --xr-background-color: var(--jp-layout-color0, white);\n", + " --xr-background-color-row-even: var(--jp-layout-color1, white);\n", + " --xr-background-color-row-odd: var(--jp-layout-color2, #eeeeee);\n", + "}\n", + "\n", + "html[theme=dark],\n", + "body[data-theme=dark],\n", + "body.vscode-dark {\n", + " --xr-font-color0: rgba(255, 255, 255, 1);\n", + " --xr-font-color2: rgba(255, 255, 255, 0.54);\n", + " --xr-font-color3: rgba(255, 255, 255, 0.38);\n", + " --xr-border-color: #1F1F1F;\n", + " --xr-disabled-color: #515151;\n", + " --xr-background-color: #111111;\n", + " --xr-background-color-row-even: #111111;\n", + " --xr-background-color-row-odd: #313131;\n", + "}\n", + "\n", + ".xr-wrap {\n", + " display: block !important;\n", + " min-width: 300px;\n", + " max-width: 700px;\n", + "}\n", + "\n", + ".xr-text-repr-fallback {\n", + " /* fallback to plain text repr when CSS is not injected (untrusted notebook) */\n", + " display: none;\n", + "}\n", + "\n", + ".xr-header {\n", + " padding-top: 6px;\n", + " padding-bottom: 6px;\n", + " margin-bottom: 4px;\n", + " border-bottom: solid 1px var(--xr-border-color);\n", + "}\n", + "\n", + ".xr-header > div,\n", + ".xr-header > ul {\n", + " display: inline;\n", + " margin-top: 0;\n", + " margin-bottom: 0;\n", + "}\n", + "\n", + ".xr-obj-type,\n", + ".xr-array-name {\n", + " margin-left: 2px;\n", + " margin-right: 10px;\n", + "}\n", + "\n", + ".xr-obj-type {\n", + " color: var(--xr-font-color2);\n", + "}\n", + "\n", + ".xr-sections {\n", + " padding-left: 0 !important;\n", + " display: grid;\n", + " grid-template-columns: 150px auto auto 1fr 20px 20px;\n", + "}\n", + "\n", + ".xr-section-item {\n", + " display: contents;\n", + "}\n", + "\n", + ".xr-section-item input {\n", + " display: none;\n", + "}\n", + "\n", + ".xr-section-item input + label {\n", + " color: var(--xr-disabled-color);\n", + "}\n", + "\n", + ".xr-section-item input:enabled + label {\n", + " cursor: pointer;\n", + " color: var(--xr-font-color2);\n", + "}\n", + "\n", + ".xr-section-item input:enabled + label:hover {\n", + " color: var(--xr-font-color0);\n", + "}\n", + "\n", + ".xr-section-summary {\n", + " grid-column: 1;\n", + " color: var(--xr-font-color2);\n", + " font-weight: 500;\n", + "}\n", + "\n", + ".xr-section-summary > span {\n", + " display: inline-block;\n", + " padding-left: 0.5em;\n", + "}\n", + "\n", + ".xr-section-summary-in:disabled + label {\n", + " color: var(--xr-font-color2);\n", + "}\n", + "\n", + ".xr-section-summary-in + label:before {\n", + " display: inline-block;\n", + " content: '►';\n", + " font-size: 11px;\n", + " width: 15px;\n", + " text-align: center;\n", + "}\n", + "\n", + ".xr-section-summary-in:disabled + label:before {\n", + " color: var(--xr-disabled-color);\n", + "}\n", + "\n", + ".xr-section-summary-in:checked + label:before {\n", + " content: '▼';\n", + "}\n", + "\n", + ".xr-section-summary-in:checked + label > span {\n", + " display: none;\n", + "}\n", + "\n", + ".xr-section-summary,\n", + ".xr-section-inline-details {\n", + " padding-top: 4px;\n", + " padding-bottom: 4px;\n", + "}\n", + "\n", + ".xr-section-inline-details {\n", + " grid-column: 2 / -1;\n", + "}\n", + "\n", + ".xr-section-details {\n", + " display: none;\n", + " grid-column: 1 / -1;\n", + " margin-bottom: 5px;\n", + "}\n", + "\n", + ".xr-section-summary-in:checked ~ .xr-section-details {\n", + " display: contents;\n", + "}\n", + "\n", + ".xr-array-wrap {\n", + " grid-column: 1 / -1;\n", + " display: grid;\n", + " grid-template-columns: 20px auto;\n", + "}\n", + "\n", + ".xr-array-wrap > label {\n", + " grid-column: 1;\n", + " vertical-align: top;\n", + "}\n", + "\n", + ".xr-preview {\n", + " color: var(--xr-font-color3);\n", + "}\n", + "\n", + ".xr-array-preview,\n", + ".xr-array-data {\n", + " padding: 0 5px !important;\n", + " grid-column: 2;\n", + "}\n", + "\n", + ".xr-array-data,\n", + ".xr-array-in:checked ~ .xr-array-preview {\n", + " display: none;\n", + "}\n", + "\n", + ".xr-array-in:checked ~ .xr-array-data,\n", + ".xr-array-preview {\n", + " display: inline-block;\n", + "}\n", + "\n", + ".xr-dim-list {\n", + " display: inline-block !important;\n", + " list-style: none;\n", + " padding: 0 !important;\n", + " margin: 0;\n", + "}\n", + "\n", + ".xr-dim-list li {\n", + " display: inline-block;\n", + " padding: 0;\n", + " margin: 0;\n", + "}\n", + "\n", + ".xr-dim-list:before {\n", + " content: '(';\n", + "}\n", + "\n", + ".xr-dim-list:after {\n", + " content: ')';\n", + "}\n", + "\n", + ".xr-dim-list li:not(:last-child):after {\n", + " content: ',';\n", + " padding-right: 5px;\n", + "}\n", + "\n", + ".xr-has-index {\n", + " font-weight: bold;\n", + "}\n", + "\n", + ".xr-var-list,\n", + ".xr-var-item {\n", + " display: contents;\n", + "}\n", + "\n", + ".xr-var-item > div,\n", + ".xr-var-item label,\n", + ".xr-var-item > .xr-var-name span {\n", + " background-color: var(--xr-background-color-row-even);\n", + " margin-bottom: 0;\n", + "}\n", + "\n", + ".xr-var-item > .xr-var-name:hover span {\n", + " padding-right: 5px;\n", + "}\n", + "\n", + ".xr-var-list > li:nth-child(odd) > div,\n", + ".xr-var-list > li:nth-child(odd) > label,\n", + ".xr-var-list > li:nth-child(odd) > .xr-var-name span {\n", + " background-color: var(--xr-background-color-row-odd);\n", + "}\n", + "\n", + ".xr-var-name {\n", + " grid-column: 1;\n", + "}\n", + "\n", + ".xr-var-dims {\n", + " grid-column: 2;\n", + "}\n", + "\n", + ".xr-var-dtype {\n", + " grid-column: 3;\n", + " text-align: right;\n", + " color: var(--xr-font-color2);\n", + "}\n", + "\n", + ".xr-var-preview {\n", + " grid-column: 4;\n", + "}\n", + "\n", + ".xr-index-preview {\n", + " grid-column: 2 / 5;\n", + " color: var(--xr-font-color2);\n", + "}\n", + "\n", + ".xr-var-name,\n", + ".xr-var-dims,\n", + ".xr-var-dtype,\n", + ".xr-preview,\n", + ".xr-attrs dt {\n", + " white-space: nowrap;\n", + " overflow: hidden;\n", + " text-overflow: ellipsis;\n", + " padding-right: 10px;\n", + "}\n", + "\n", + ".xr-var-name:hover,\n", + ".xr-var-dims:hover,\n", + ".xr-var-dtype:hover,\n", + ".xr-attrs dt:hover {\n", + " overflow: visible;\n", + " width: auto;\n", + " z-index: 1;\n", + "}\n", + "\n", + ".xr-var-attrs,\n", + ".xr-var-data,\n", + ".xr-index-data {\n", + " display: none;\n", + " background-color: var(--xr-background-color) !important;\n", + " padding-bottom: 5px !important;\n", + "}\n", + "\n", + ".xr-var-attrs-in:checked ~ .xr-var-attrs,\n", + ".xr-var-data-in:checked ~ .xr-var-data,\n", + ".xr-index-data-in:checked ~ .xr-index-data {\n", + " display: block;\n", + "}\n", + "\n", + ".xr-var-data > table {\n", + " float: right;\n", + "}\n", + "\n", + ".xr-var-name span,\n", + ".xr-var-data,\n", + ".xr-index-name div,\n", + ".xr-index-data,\n", + ".xr-attrs {\n", + " padding-left: 25px !important;\n", + "}\n", + "\n", + ".xr-attrs,\n", + ".xr-var-attrs,\n", + ".xr-var-data,\n", + ".xr-index-data {\n", + " grid-column: 1 / -1;\n", + "}\n", + "\n", + "dl.xr-attrs {\n", + " padding: 0;\n", + " margin: 0;\n", + " display: grid;\n", + " grid-template-columns: 125px auto;\n", + "}\n", + "\n", + ".xr-attrs dt,\n", + ".xr-attrs dd {\n", + " padding: 0;\n", + " margin: 0;\n", + " float: left;\n", + " padding-right: 10px;\n", + " width: auto;\n", + "}\n", + "\n", + ".xr-attrs dt {\n", + " font-weight: normal;\n", + " grid-column: 1;\n", + "}\n", + "\n", + ".xr-attrs dt:hover span {\n", + " display: inline-block;\n", + " background: var(--xr-background-color);\n", + " padding-right: 10px;\n", + "}\n", + "\n", + ".xr-attrs dd {\n", + " grid-column: 2;\n", + " white-space: pre-wrap;\n", + " word-break: break-all;\n", + "}\n", + "\n", + ".xr-icon-database,\n", + ".xr-icon-file-text2,\n", + ".xr-no-icon {\n", + " display: inline-block;\n", + " vertical-align: middle;\n", + " width: 1em;\n", + " height: 1.5em !important;\n", + " stroke-width: 0;\n", + " stroke: currentColor;\n", + " fill: currentColor;\n", + "}\n", + "</style><pre class='xr-text-repr-fallback'><xarray.Dataset>\n", + "Dimensions: (time: 31, lon: 51, lat: 65, height_2: 1, plev_3: 100)\n", + "Coordinates:\n", + " * time (time) float64 1.5 1.75 2.0 2.25 2.5 ... 8.0 8.25 8.5 8.75 9.0\n", + " * lon (lon) float64 12.5 13.5 14.5 15.5 16.5 ... 59.5 60.5 61.5 62.5\n", + " * lat (lat) float64 15.5 16.5 17.5 18.5 19.5 ... 76.5 77.5 78.5 79.5\n", + " * height_2 (height_2) float64 2.0\n", + " * plev_3 (plev_3) float64 1e+03 2e+03 3e+03 ... 9.8e+04 9.9e+04 1e+05\n", + "Data variables: (12/14)\n", + " pres_sfc (time, lat, lon) float32 dask.array<chunksize=(1, 65, 51), meta=np.ndarray>\n", + " pres_msl (time, lat, lon) float32 dask.array<chunksize=(1, 65, 51), meta=np.ndarray>\n", + " tot_prec (time, lat, lon) float32 dask.array<chunksize=(1, 65, 51), meta=np.ndarray>\n", + " qhfl_s (time, lat, lon) float32 dask.array<chunksize=(1, 65, 51), meta=np.ndarray>\n", + " t_2m (time, height_2, lat, lon) float32 dask.array<chunksize=(1, 1, 65, 51), meta=np.ndarray>\n", + " qv_2m (time, height_2, lat, lon) float32 dask.array<chunksize=(1, 1, 65, 51), meta=np.ndarray>\n", + " ... ...\n", + " qv (time, plev_3, lat, lon) float32 dask.array<chunksize=(1, 100, 65, 51), meta=np.ndarray>\n", + " u (time, plev_3, lat, lon) float32 dask.array<chunksize=(1, 100, 65, 51), meta=np.ndarray>\n", + " v (time, plev_3, lat, lon) float32 dask.array<chunksize=(1, 100, 65, 51), meta=np.ndarray>\n", + " omega (time, plev_3, lat, lon) float32 dask.array<chunksize=(1, 100, 65, 51), meta=np.ndarray>\n", + " geopot (time, plev_3, lat, lon) float32 dask.array<chunksize=(1, 100, 65, 51), meta=np.ndarray>\n", + " vor (time, plev_3, lat, lon) float32 dask.array<chunksize=(1, 100, 65, 51), meta=np.ndarray>\n", + "Attributes:\n", + " CDI: Climate Data Interface version 2.0.5 (https://...\n", + " Conventions: CF-1.6\n", + " source: @\n", + " institution: Max Planck Institute for Meteorology/Deutscher...\n", + " title: ICON simulation\n", + " history: Thu Jul 14 23:02:03 2022: cdo -P 32 remapcon,/...\n", + " references: see MPIM/DWD publications\n", + " comment: Nicole Knopf (b380906) on l40462 (Linux 4.18.0...\n", + " cdo_openmp_thread_number: 32\n", + " CDO: Climate Data Operators version 2.0.5 (https://...</pre><div class='xr-wrap' style='display:none'><div class='xr-header'><div class='xr-obj-type'>xarray.Dataset</div></div><ul class='xr-sections'><li class='xr-section-item'><input id='section-2c520f8d-96d9-4b78-9237-0c3e10a85808' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-2c520f8d-96d9-4b78-9237-0c3e10a85808' class='xr-section-summary' title='Expand/collapse section'>Dimensions:</label><div class='xr-section-inline-details'><ul class='xr-dim-list'><li><span class='xr-has-index'>time</span>: 31</li><li><span class='xr-has-index'>lon</span>: 51</li><li><span class='xr-has-index'>lat</span>: 65</li><li><span class='xr-has-index'>height_2</span>: 1</li><li><span class='xr-has-index'>plev_3</span>: 100</li></ul></div><div class='xr-section-details'></div></li><li class='xr-section-item'><input id='section-0f7cc544-625c-4b72-b906-047f0e1b2bba' class='xr-section-summary-in' type='checkbox' checked><label for='section-0f7cc544-625c-4b72-b906-047f0e1b2bba' class='xr-section-summary' >Coordinates: <span>(5)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>time</span></div><div class='xr-var-dims'>(time)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>1.5 1.75 2.0 2.25 ... 8.5 8.75 9.0</div><input id='attrs-e4024c95-f06b-455c-b3b3-ac1b7284c60f' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-e4024c95-f06b-455c-b3b3-ac1b7284c60f' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-b47761c2-386e-4f11-8b4a-ba41ddc47819' class='xr-var-data-in' type='checkbox'><label for='data-b47761c2-386e-4f11-8b4a-ba41ddc47819' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([1.5 , 1.75, 2. , 2.25, 2.5 , 2.75, 3. , 3.25, 3.5 , 3.75, 4. , 4.25,\n", + " 4.5 , 4.75, 5. , 5.25, 5.5 , 5.75, 6. , 6.25, 6.5 , 6.75, 7. , 7.25,\n", + " 7.5 , 7.75, 8. , 8.25, 8.5 , 8.75, 9. ])</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>lon</span></div><div class='xr-var-dims'>(lon)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>12.5 13.5 14.5 ... 60.5 61.5 62.5</div><input id='attrs-a9c37bc3-1678-4600-be02-dfc7256eb227' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-a9c37bc3-1678-4600-be02-dfc7256eb227' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-d5a2454d-e603-4210-84be-ce909e50af99' class='xr-var-data-in' type='checkbox'><label for='data-d5a2454d-e603-4210-84be-ce909e50af99' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>standard_name :</span></dt><dd>longitude</dd><dt><span>long_name :</span></dt><dd>longitude</dd><dt><span>units :</span></dt><dd>degrees_east</dd><dt><span>axis :</span></dt><dd>X</dd></dl></div><div class='xr-var-data'><pre>array([12.5, 13.5, 14.5, 15.5, 16.5, 17.5, 18.5, 19.5, 20.5, 21.5, 22.5, 23.5,\n", + " 24.5, 25.5, 26.5, 27.5, 28.5, 29.5, 30.5, 31.5, 32.5, 33.5, 34.5, 35.5,\n", + " 36.5, 37.5, 38.5, 39.5, 40.5, 41.5, 42.5, 43.5, 44.5, 45.5, 46.5, 47.5,\n", + " 48.5, 49.5, 50.5, 51.5, 52.5, 53.5, 54.5, 55.5, 56.5, 57.5, 58.5, 59.5,\n", + " 60.5, 61.5, 62.5])</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>lat</span></div><div class='xr-var-dims'>(lat)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>15.5 16.5 17.5 ... 77.5 78.5 79.5</div><input id='attrs-0f486598-a231-4b0a-8eda-5659b772345b' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-0f486598-a231-4b0a-8eda-5659b772345b' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-cbabb684-ea27-4ffb-ac8a-1f6267107547' class='xr-var-data-in' type='checkbox'><label for='data-cbabb684-ea27-4ffb-ac8a-1f6267107547' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>standard_name :</span></dt><dd>latitude</dd><dt><span>long_name :</span></dt><dd>latitude</dd><dt><span>units :</span></dt><dd>degrees_north</dd><dt><span>axis :</span></dt><dd>Y</dd></dl></div><div class='xr-var-data'><pre>array([15.5, 16.5, 17.5, 18.5, 19.5, 20.5, 21.5, 22.5, 23.5, 24.5, 25.5, 26.5,\n", + " 27.5, 28.5, 29.5, 30.5, 31.5, 32.5, 33.5, 34.5, 35.5, 36.5, 37.5, 38.5,\n", + " 39.5, 40.5, 41.5, 42.5, 43.5, 44.5, 45.5, 46.5, 47.5, 48.5, 49.5, 50.5,\n", + " 51.5, 52.5, 53.5, 54.5, 55.5, 56.5, 57.5, 58.5, 59.5, 60.5, 61.5, 62.5,\n", + " 63.5, 64.5, 65.5, 66.5, 67.5, 68.5, 69.5, 70.5, 71.5, 72.5, 73.5, 74.5,\n", + " 75.5, 76.5, 77.5, 78.5, 79.5])</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>height_2</span></div><div class='xr-var-dims'>(height_2)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>2.0</div><input id='attrs-5d3b1f6f-5586-4ba4-840c-bc2277c9b075' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-5d3b1f6f-5586-4ba4-840c-bc2277c9b075' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-8c337aca-87b9-49eb-b16f-8d79a832b195' class='xr-var-data-in' type='checkbox'><label for='data-8c337aca-87b9-49eb-b16f-8d79a832b195' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>standard_name :</span></dt><dd>height</dd><dt><span>long_name :</span></dt><dd>height</dd><dt><span>units :</span></dt><dd>m</dd><dt><span>positive :</span></dt><dd>up</dd><dt><span>axis :</span></dt><dd>Z</dd></dl></div><div class='xr-var-data'><pre>array([2.])</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>plev_3</span></div><div class='xr-var-dims'>(plev_3)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>1e+03 2e+03 3e+03 ... 9.9e+04 1e+05</div><input id='attrs-cd057016-e2c7-4775-9968-650db80fa727' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-cd057016-e2c7-4775-9968-650db80fa727' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-ab9160be-e98f-4a65-b6f4-ddf1601a5053' class='xr-var-data-in' type='checkbox'><label for='data-ab9160be-e98f-4a65-b6f4-ddf1601a5053' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>standard_name :</span></dt><dd>air_pressure</dd><dt><span>long_name :</span></dt><dd>pressure</dd><dt><span>units :</span></dt><dd>Pa</dd><dt><span>positive :</span></dt><dd>down</dd><dt><span>axis :</span></dt><dd>Z</dd></dl></div><div class='xr-var-data'><pre>array([ 1000., 2000., 3000., 4000., 5000., 6000., 7000., 8000.,\n", + " 9000., 10000., 11000., 12000., 13000., 14000., 15000., 16000.,\n", + " 17000., 18000., 19000., 20000., 21000., 22000., 23000., 24000.,\n", + " 25000., 26000., 27000., 28000., 29000., 30000., 31000., 32000.,\n", + " 33000., 34000., 35000., 36000., 37000., 38000., 39000., 40000.,\n", + " 41000., 42000., 43000., 44000., 45000., 46000., 47000., 48000.,\n", + " 49000., 50000., 51000., 52000., 53000., 54000., 55000., 56000.,\n", + " 57000., 58000., 59000., 60000., 61000., 62000., 63000., 64000.,\n", + " 65000., 66000., 67000., 68000., 69000., 70000., 71000., 72000.,\n", + " 73000., 74000., 75000., 76000., 77000., 78000., 79000., 80000.,\n", + " 81000., 82000., 83000., 84000., 85000., 86000., 87000., 88000.,\n", + " 89000., 90000., 91000., 92000., 93000., 94000., 95000., 96000.,\n", + " 97000., 98000., 99000., 100000.])</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-4044cbf0-2ff0-4f4f-9eb9-e9679be5baa2' class='xr-section-summary-in' type='checkbox' checked><label for='section-4044cbf0-2ff0-4f4f-9eb9-e9679be5baa2' class='xr-section-summary' >Data variables: <span>(14)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span>pres_sfc</span></div><div class='xr-var-dims'>(time, lat, lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(1, 65, 51), meta=np.ndarray></div><input id='attrs-4ea3cacd-965d-430a-b823-6f60aa709929' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-4ea3cacd-965d-430a-b823-6f60aa709929' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-2406ca54-e425-41ba-873e-7b284229f54e' class='xr-var-data-in' type='checkbox'><label for='data-2406ca54-e425-41ba-873e-7b284229f54e' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>standard_name :</span></dt><dd>surface_air_pressure</dd><dt><span>long_name :</span></dt><dd>surface pressure</dd><dt><span>units :</span></dt><dd>Pa</dd><dt><span>param :</span></dt><dd>0.3.0</dd></dl></div><div class='xr-var-data'><table>\n", + " <tr>\n", + " <td>\n", + " <table style=\"border-collapse: collapse;\">\n", + " <thead>\n", + " <tr>\n", + " <td> </td>\n", + " <th> Array </th>\n", + " <th> Chunk </th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " \n", + " <tr>\n", + " <th> Bytes </th>\n", + " <td> 401.43 kiB </td>\n", + " <td> 12.95 kiB </td>\n", + " </tr>\n", + " \n", + " <tr>\n", + " <th> Shape </th>\n", + " <td> (31, 65, 51) </td>\n", + " <td> (1, 65, 51) </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Dask graph </th>\n", + " <td colspan=\"2\"> 31 chunks in 77 graph layers </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Data type </th>\n", + " <td colspan=\"2\"> float32 numpy.ndarray </td>\n", + " </tr>\n", + " </tbody>\n", + " </table>\n", + " </td>\n", + " <td>\n", + " <svg width=\"187\" height=\"203\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"43\" y2=\"33\" style=\"stroke-width:2\" />\n", + " <line x1=\"10\" y1=\"120\" x2=\"43\" y2=\"153\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"120\" style=\"stroke-width:2\" />\n", + " <line x1=\"11\" y1=\"1\" x2=\"11\" y2=\"121\" />\n", + " <line x1=\"13\" y1=\"3\" x2=\"13\" y2=\"123\" />\n", + " <line x1=\"14\" y1=\"4\" x2=\"14\" y2=\"124\" />\n", + " <line x1=\"16\" y1=\"6\" x2=\"16\" y2=\"126\" />\n", + " <line x1=\"18\" y1=\"8\" x2=\"18\" y2=\"128\" />\n", + " <line x1=\"19\" y1=\"9\" x2=\"19\" y2=\"129\" />\n", + " <line x1=\"21\" y1=\"11\" x2=\"21\" y2=\"131\" />\n", + " <line x1=\"24\" y1=\"14\" x2=\"24\" y2=\"134\" />\n", + " <line x1=\"25\" y1=\"15\" x2=\"25\" y2=\"135\" />\n", + " <line x1=\"27\" y1=\"17\" x2=\"27\" y2=\"137\" />\n", + " <line x1=\"28\" y1=\"18\" x2=\"28\" y2=\"138\" />\n", + " <line x1=\"30\" y1=\"20\" x2=\"30\" y2=\"140\" />\n", + " <line x1=\"32\" y1=\"22\" x2=\"32\" y2=\"142\" />\n", + " <line x1=\"33\" y1=\"23\" x2=\"33\" y2=\"143\" />\n", + " <line x1=\"36\" y1=\"26\" x2=\"36\" y2=\"146\" />\n", + " <line x1=\"38\" y1=\"28\" x2=\"38\" y2=\"148\" />\n", + " <line x1=\"39\" y1=\"29\" x2=\"39\" y2=\"149\" />\n", + " <line x1=\"41\" y1=\"31\" x2=\"41\" y2=\"151\" />\n", + " <line x1=\"43\" y1=\"33\" x2=\"43\" y2=\"153\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"10.0,0.0 43.665158371040725,33.665158371040725 43.665158371040725,153.66515837104072 10.0,120.0\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"104\" y2=\"0\" style=\"stroke-width:2\" />\n", + " <line x1=\"11\" y1=\"1\" x2=\"105\" y2=\"1\" />\n", + " <line x1=\"13\" y1=\"3\" x2=\"107\" y2=\"3\" />\n", + " <line x1=\"14\" y1=\"4\" x2=\"108\" y2=\"4\" />\n", + " <line x1=\"16\" y1=\"6\" x2=\"110\" y2=\"6\" />\n", + " <line x1=\"18\" y1=\"8\" x2=\"112\" y2=\"8\" />\n", + " <line x1=\"19\" y1=\"9\" x2=\"113\" y2=\"9\" />\n", + " <line x1=\"21\" y1=\"11\" x2=\"116\" y2=\"11\" />\n", + " <line x1=\"24\" y1=\"14\" x2=\"118\" y2=\"14\" />\n", + " <line x1=\"25\" y1=\"15\" x2=\"119\" y2=\"15\" />\n", + " <line x1=\"27\" y1=\"17\" x2=\"121\" y2=\"17\" />\n", + " <line x1=\"28\" y1=\"18\" x2=\"122\" y2=\"18\" />\n", + " <line x1=\"30\" y1=\"20\" x2=\"124\" y2=\"20\" />\n", + " <line x1=\"32\" y1=\"22\" x2=\"126\" y2=\"22\" />\n", + " <line x1=\"33\" y1=\"23\" x2=\"128\" y2=\"23\" />\n", + " <line x1=\"36\" y1=\"26\" x2=\"130\" y2=\"26\" />\n", + " <line x1=\"38\" y1=\"28\" x2=\"132\" y2=\"28\" />\n", + " <line x1=\"39\" y1=\"29\" x2=\"133\" y2=\"29\" />\n", + " <line x1=\"41\" y1=\"31\" x2=\"135\" y2=\"31\" />\n", + " <line x1=\"43\" y1=\"33\" x2=\"137\" y2=\"33\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"43\" y2=\"33\" style=\"stroke-width:2\" />\n", + " <line x1=\"104\" y1=\"0\" x2=\"137\" y2=\"33\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"10.0,0.0 104.15384615384616,0.0 137.81900452488688,33.665158371040725 43.665158371040725,33.665158371040725\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"43\" y1=\"33\" x2=\"137\" y2=\"33\" style=\"stroke-width:2\" />\n", + " <line x1=\"43\" y1=\"153\" x2=\"137\" y2=\"153\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"43\" y1=\"33\" x2=\"43\" y2=\"153\" style=\"stroke-width:2\" />\n", + " <line x1=\"137\" y1=\"33\" x2=\"137\" y2=\"153\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"43.665158371040725,33.665158371040725 137.81900452488688,33.665158371040725 137.81900452488688,153.66515837104072 43.665158371040725,153.66515837104072\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Text -->\n", + " <text x=\"90.742081\" y=\"173.665158\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >51</text>\n", + " <text x=\"157.819005\" y=\"93.665158\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,157.819005,93.665158)\">65</text>\n", + " <text x=\"16.832579\" y=\"156.832579\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,16.832579,156.832579)\">31</text>\n", + "</svg>\n", + " </td>\n", + " </tr>\n", + "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>pres_msl</span></div><div class='xr-var-dims'>(time, lat, lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(1, 65, 51), meta=np.ndarray></div><input id='attrs-53d3ee11-7eae-4f08-b0b0-fa9a3b5ae7f0' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-53d3ee11-7eae-4f08-b0b0-fa9a3b5ae7f0' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-d3f71b59-f269-456a-ba76-10040f90ad11' class='xr-var-data-in' type='checkbox'><label for='data-d3f71b59-f269-456a-ba76-10040f90ad11' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>standard_name :</span></dt><dd>mean sea level pressure</dd><dt><span>long_name :</span></dt><dd>mean sea level pressure</dd><dt><span>units :</span></dt><dd>Pa</dd><dt><span>param :</span></dt><dd>1.3.0</dd></dl></div><div class='xr-var-data'><table>\n", + " <tr>\n", + " <td>\n", + " <table style=\"border-collapse: collapse;\">\n", + " <thead>\n", + " <tr>\n", + " <td> </td>\n", + " <th> Array </th>\n", + " <th> Chunk </th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " \n", + " <tr>\n", + " <th> Bytes </th>\n", + " <td> 401.43 kiB </td>\n", + " <td> 12.95 kiB </td>\n", + " </tr>\n", + " \n", + " <tr>\n", + " <th> Shape </th>\n", + " <td> (31, 65, 51) </td>\n", + " <td> (1, 65, 51) </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Dask graph </th>\n", + " <td colspan=\"2\"> 31 chunks in 77 graph layers </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Data type </th>\n", + " <td colspan=\"2\"> float32 numpy.ndarray </td>\n", + " </tr>\n", + " </tbody>\n", + " </table>\n", + " </td>\n", + " <td>\n", + " <svg width=\"187\" height=\"203\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"43\" y2=\"33\" style=\"stroke-width:2\" />\n", + " <line x1=\"10\" y1=\"120\" x2=\"43\" y2=\"153\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"120\" style=\"stroke-width:2\" />\n", + " <line x1=\"11\" y1=\"1\" x2=\"11\" y2=\"121\" />\n", + " <line x1=\"13\" y1=\"3\" x2=\"13\" y2=\"123\" />\n", + " <line x1=\"14\" y1=\"4\" x2=\"14\" y2=\"124\" />\n", + " <line x1=\"16\" y1=\"6\" x2=\"16\" y2=\"126\" />\n", + " <line x1=\"18\" y1=\"8\" x2=\"18\" y2=\"128\" />\n", + " <line x1=\"19\" y1=\"9\" x2=\"19\" y2=\"129\" />\n", + " <line x1=\"21\" y1=\"11\" x2=\"21\" y2=\"131\" />\n", + " <line x1=\"24\" y1=\"14\" x2=\"24\" y2=\"134\" />\n", + " <line x1=\"25\" y1=\"15\" x2=\"25\" y2=\"135\" />\n", + " <line x1=\"27\" y1=\"17\" x2=\"27\" y2=\"137\" />\n", + " <line x1=\"28\" y1=\"18\" x2=\"28\" y2=\"138\" />\n", + " <line x1=\"30\" y1=\"20\" x2=\"30\" y2=\"140\" />\n", + " <line x1=\"32\" y1=\"22\" x2=\"32\" y2=\"142\" />\n", + " <line x1=\"33\" y1=\"23\" x2=\"33\" y2=\"143\" />\n", + " <line x1=\"36\" y1=\"26\" x2=\"36\" y2=\"146\" />\n", + " <line x1=\"38\" y1=\"28\" x2=\"38\" y2=\"148\" />\n", + " <line x1=\"39\" y1=\"29\" x2=\"39\" y2=\"149\" />\n", + " <line x1=\"41\" y1=\"31\" x2=\"41\" y2=\"151\" />\n", + " <line x1=\"43\" y1=\"33\" x2=\"43\" y2=\"153\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"10.0,0.0 43.665158371040725,33.665158371040725 43.665158371040725,153.66515837104072 10.0,120.0\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"104\" y2=\"0\" style=\"stroke-width:2\" />\n", + " <line x1=\"11\" y1=\"1\" x2=\"105\" y2=\"1\" />\n", + " <line x1=\"13\" y1=\"3\" x2=\"107\" y2=\"3\" />\n", + " <line x1=\"14\" y1=\"4\" x2=\"108\" y2=\"4\" />\n", + " <line x1=\"16\" y1=\"6\" x2=\"110\" y2=\"6\" />\n", + " <line x1=\"18\" y1=\"8\" x2=\"112\" y2=\"8\" />\n", + " <line x1=\"19\" y1=\"9\" x2=\"113\" y2=\"9\" />\n", + " <line x1=\"21\" y1=\"11\" x2=\"116\" y2=\"11\" />\n", + " <line x1=\"24\" y1=\"14\" x2=\"118\" y2=\"14\" />\n", + " <line x1=\"25\" y1=\"15\" x2=\"119\" y2=\"15\" />\n", + " <line x1=\"27\" y1=\"17\" x2=\"121\" y2=\"17\" />\n", + " <line x1=\"28\" y1=\"18\" x2=\"122\" y2=\"18\" />\n", + " <line x1=\"30\" y1=\"20\" x2=\"124\" y2=\"20\" />\n", + " <line x1=\"32\" y1=\"22\" x2=\"126\" y2=\"22\" />\n", + " <line x1=\"33\" y1=\"23\" x2=\"128\" y2=\"23\" />\n", + " <line x1=\"36\" y1=\"26\" x2=\"130\" y2=\"26\" />\n", + " <line x1=\"38\" y1=\"28\" x2=\"132\" y2=\"28\" />\n", + " <line x1=\"39\" y1=\"29\" x2=\"133\" y2=\"29\" />\n", + " <line x1=\"41\" y1=\"31\" x2=\"135\" y2=\"31\" />\n", + " <line x1=\"43\" y1=\"33\" x2=\"137\" y2=\"33\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"43\" y2=\"33\" style=\"stroke-width:2\" />\n", + " <line x1=\"104\" y1=\"0\" x2=\"137\" y2=\"33\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"10.0,0.0 104.15384615384616,0.0 137.81900452488688,33.665158371040725 43.665158371040725,33.665158371040725\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"43\" y1=\"33\" x2=\"137\" y2=\"33\" style=\"stroke-width:2\" />\n", + " <line x1=\"43\" y1=\"153\" x2=\"137\" y2=\"153\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"43\" y1=\"33\" x2=\"43\" y2=\"153\" style=\"stroke-width:2\" />\n", + " <line x1=\"137\" y1=\"33\" x2=\"137\" y2=\"153\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"43.665158371040725,33.665158371040725 137.81900452488688,33.665158371040725 137.81900452488688,153.66515837104072 43.665158371040725,153.66515837104072\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Text -->\n", + " <text x=\"90.742081\" y=\"173.665158\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >51</text>\n", + " <text x=\"157.819005\" y=\"93.665158\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,157.819005,93.665158)\">65</text>\n", + " <text x=\"16.832579\" y=\"156.832579\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,16.832579,156.832579)\">31</text>\n", + "</svg>\n", + " </td>\n", + " </tr>\n", + "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>tot_prec</span></div><div class='xr-var-dims'>(time, lat, lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(1, 65, 51), meta=np.ndarray></div><input id='attrs-217bf078-c67d-4ec0-a935-1d575bcde9b0' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-217bf078-c67d-4ec0-a935-1d575bcde9b0' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-00302069-78b0-4d8f-b5ba-83b978ff8f26' class='xr-var-data-in' type='checkbox'><label for='data-00302069-78b0-4d8f-b5ba-83b978ff8f26' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>standard_name :</span></dt><dd>tot_prec</dd><dt><span>long_name :</span></dt><dd>total precip</dd><dt><span>units :</span></dt><dd>kg m-2</dd><dt><span>param :</span></dt><dd>52.1.0</dd></dl></div><div class='xr-var-data'><table>\n", + " <tr>\n", + " <td>\n", + " <table style=\"border-collapse: collapse;\">\n", + " <thead>\n", + " <tr>\n", + " <td> </td>\n", + " <th> Array </th>\n", + " <th> Chunk </th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " \n", + " <tr>\n", + " <th> Bytes </th>\n", + " <td> 401.43 kiB </td>\n", + " <td> 12.95 kiB </td>\n", + " </tr>\n", + " \n", + " <tr>\n", + " <th> Shape </th>\n", + " <td> (31, 65, 51) </td>\n", + " <td> (1, 65, 51) </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Dask graph </th>\n", + " <td colspan=\"2\"> 31 chunks in 77 graph layers </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Data type </th>\n", + " <td colspan=\"2\"> float32 numpy.ndarray </td>\n", + " </tr>\n", + " </tbody>\n", + " </table>\n", + " </td>\n", + " <td>\n", + " <svg width=\"187\" height=\"203\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"43\" y2=\"33\" style=\"stroke-width:2\" />\n", + " <line x1=\"10\" y1=\"120\" x2=\"43\" y2=\"153\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"120\" style=\"stroke-width:2\" />\n", + " <line x1=\"11\" y1=\"1\" x2=\"11\" y2=\"121\" />\n", + " <line x1=\"13\" y1=\"3\" x2=\"13\" y2=\"123\" />\n", + " <line x1=\"14\" y1=\"4\" x2=\"14\" y2=\"124\" />\n", + " <line x1=\"16\" y1=\"6\" x2=\"16\" y2=\"126\" />\n", + " <line x1=\"18\" y1=\"8\" x2=\"18\" y2=\"128\" />\n", + " <line x1=\"19\" y1=\"9\" x2=\"19\" y2=\"129\" />\n", + " <line x1=\"21\" y1=\"11\" x2=\"21\" y2=\"131\" />\n", + " <line x1=\"24\" y1=\"14\" x2=\"24\" y2=\"134\" />\n", + " <line x1=\"25\" y1=\"15\" x2=\"25\" y2=\"135\" />\n", + " <line x1=\"27\" y1=\"17\" x2=\"27\" y2=\"137\" />\n", + " <line x1=\"28\" y1=\"18\" x2=\"28\" y2=\"138\" />\n", + " <line x1=\"30\" y1=\"20\" x2=\"30\" y2=\"140\" />\n", + " <line x1=\"32\" y1=\"22\" x2=\"32\" y2=\"142\" />\n", + " <line x1=\"33\" y1=\"23\" x2=\"33\" y2=\"143\" />\n", + " <line x1=\"36\" y1=\"26\" x2=\"36\" y2=\"146\" />\n", + " <line x1=\"38\" y1=\"28\" x2=\"38\" y2=\"148\" />\n", + " <line x1=\"39\" y1=\"29\" x2=\"39\" y2=\"149\" />\n", + " <line x1=\"41\" y1=\"31\" x2=\"41\" y2=\"151\" />\n", + " <line x1=\"43\" y1=\"33\" x2=\"43\" y2=\"153\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"10.0,0.0 43.665158371040725,33.665158371040725 43.665158371040725,153.66515837104072 10.0,120.0\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"104\" y2=\"0\" style=\"stroke-width:2\" />\n", + " <line x1=\"11\" y1=\"1\" x2=\"105\" y2=\"1\" />\n", + " <line x1=\"13\" y1=\"3\" x2=\"107\" y2=\"3\" />\n", + " <line x1=\"14\" y1=\"4\" x2=\"108\" y2=\"4\" />\n", + " <line x1=\"16\" y1=\"6\" x2=\"110\" y2=\"6\" />\n", + " <line x1=\"18\" y1=\"8\" x2=\"112\" y2=\"8\" />\n", + " <line x1=\"19\" y1=\"9\" x2=\"113\" y2=\"9\" />\n", + " <line x1=\"21\" y1=\"11\" x2=\"116\" y2=\"11\" />\n", + " <line x1=\"24\" y1=\"14\" x2=\"118\" y2=\"14\" />\n", + " <line x1=\"25\" y1=\"15\" x2=\"119\" y2=\"15\" />\n", + " <line x1=\"27\" y1=\"17\" x2=\"121\" y2=\"17\" />\n", + " <line x1=\"28\" y1=\"18\" x2=\"122\" y2=\"18\" />\n", + " <line x1=\"30\" y1=\"20\" x2=\"124\" y2=\"20\" />\n", + " <line x1=\"32\" y1=\"22\" x2=\"126\" y2=\"22\" />\n", + " <line x1=\"33\" y1=\"23\" x2=\"128\" y2=\"23\" />\n", + " <line x1=\"36\" y1=\"26\" x2=\"130\" y2=\"26\" />\n", + " <line x1=\"38\" y1=\"28\" x2=\"132\" y2=\"28\" />\n", + " <line x1=\"39\" y1=\"29\" x2=\"133\" y2=\"29\" />\n", + " <line x1=\"41\" y1=\"31\" x2=\"135\" y2=\"31\" />\n", + " <line x1=\"43\" y1=\"33\" x2=\"137\" y2=\"33\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"43\" y2=\"33\" style=\"stroke-width:2\" />\n", + " <line x1=\"104\" y1=\"0\" x2=\"137\" y2=\"33\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"10.0,0.0 104.15384615384616,0.0 137.81900452488688,33.665158371040725 43.665158371040725,33.665158371040725\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"43\" y1=\"33\" x2=\"137\" y2=\"33\" style=\"stroke-width:2\" />\n", + " <line x1=\"43\" y1=\"153\" x2=\"137\" y2=\"153\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"43\" y1=\"33\" x2=\"43\" y2=\"153\" style=\"stroke-width:2\" />\n", + " <line x1=\"137\" y1=\"33\" x2=\"137\" y2=\"153\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"43.665158371040725,33.665158371040725 137.81900452488688,33.665158371040725 137.81900452488688,153.66515837104072 43.665158371040725,153.66515837104072\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Text -->\n", + " <text x=\"90.742081\" y=\"173.665158\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >51</text>\n", + " <text x=\"157.819005\" y=\"93.665158\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,157.819005,93.665158)\">65</text>\n", + " <text x=\"16.832579\" y=\"156.832579\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,16.832579,156.832579)\">31</text>\n", + "</svg>\n", + " </td>\n", + " </tr>\n", + "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>qhfl_s</span></div><div class='xr-var-dims'>(time, lat, lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(1, 65, 51), meta=np.ndarray></div><input id='attrs-91936b13-42c7-4a52-8fec-6fa3cefb5a34' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-91936b13-42c7-4a52-8fec-6fa3cefb5a34' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-6954a4db-3b7f-455d-a7db-59b069b12c55' class='xr-var-data-in' type='checkbox'><label for='data-6954a4db-3b7f-455d-a7db-59b069b12c55' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>standard_name :</span></dt><dd>qhfl_s</dd><dt><span>long_name :</span></dt><dd>surface moisture flux</dd><dt><span>units :</span></dt><dd>Kg m-2 s-1</dd><dt><span>param :</span></dt><dd>6.0.2</dd></dl></div><div class='xr-var-data'><table>\n", + " <tr>\n", + " <td>\n", + " <table style=\"border-collapse: collapse;\">\n", + " <thead>\n", + " <tr>\n", + " <td> </td>\n", + " <th> Array </th>\n", + " <th> Chunk </th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " \n", + " <tr>\n", + " <th> Bytes </th>\n", + " <td> 401.43 kiB </td>\n", + " <td> 12.95 kiB </td>\n", + " </tr>\n", + " \n", + " <tr>\n", + " <th> Shape </th>\n", + " <td> (31, 65, 51) </td>\n", + " <td> (1, 65, 51) </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Dask graph </th>\n", + " <td colspan=\"2\"> 31 chunks in 77 graph layers </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Data type </th>\n", + " <td colspan=\"2\"> float32 numpy.ndarray </td>\n", + " </tr>\n", + " </tbody>\n", + " </table>\n", + " </td>\n", + " <td>\n", + " <svg width=\"187\" height=\"203\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"43\" y2=\"33\" style=\"stroke-width:2\" />\n", + " <line x1=\"10\" y1=\"120\" x2=\"43\" y2=\"153\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"120\" style=\"stroke-width:2\" />\n", + " <line x1=\"11\" y1=\"1\" x2=\"11\" y2=\"121\" />\n", + " <line x1=\"13\" y1=\"3\" x2=\"13\" y2=\"123\" />\n", + " <line x1=\"14\" y1=\"4\" x2=\"14\" y2=\"124\" />\n", + " <line x1=\"16\" y1=\"6\" x2=\"16\" y2=\"126\" />\n", + " <line x1=\"18\" y1=\"8\" x2=\"18\" y2=\"128\" />\n", + " <line x1=\"19\" y1=\"9\" x2=\"19\" y2=\"129\" />\n", + " <line x1=\"21\" y1=\"11\" x2=\"21\" y2=\"131\" />\n", + " <line x1=\"24\" y1=\"14\" x2=\"24\" y2=\"134\" />\n", + " <line x1=\"25\" y1=\"15\" x2=\"25\" y2=\"135\" />\n", + " <line x1=\"27\" y1=\"17\" x2=\"27\" y2=\"137\" />\n", + " <line x1=\"28\" y1=\"18\" x2=\"28\" y2=\"138\" />\n", + " <line x1=\"30\" y1=\"20\" x2=\"30\" y2=\"140\" />\n", + " <line x1=\"32\" y1=\"22\" x2=\"32\" y2=\"142\" />\n", + " <line x1=\"33\" y1=\"23\" x2=\"33\" y2=\"143\" />\n", + " <line x1=\"36\" y1=\"26\" x2=\"36\" y2=\"146\" />\n", + " <line x1=\"38\" y1=\"28\" x2=\"38\" y2=\"148\" />\n", + " <line x1=\"39\" y1=\"29\" x2=\"39\" y2=\"149\" />\n", + " <line x1=\"41\" y1=\"31\" x2=\"41\" y2=\"151\" />\n", + " <line x1=\"43\" y1=\"33\" x2=\"43\" y2=\"153\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"10.0,0.0 43.665158371040725,33.665158371040725 43.665158371040725,153.66515837104072 10.0,120.0\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"104\" y2=\"0\" style=\"stroke-width:2\" />\n", + " <line x1=\"11\" y1=\"1\" x2=\"105\" y2=\"1\" />\n", + " <line x1=\"13\" y1=\"3\" x2=\"107\" y2=\"3\" />\n", + " <line x1=\"14\" y1=\"4\" x2=\"108\" y2=\"4\" />\n", + " <line x1=\"16\" y1=\"6\" x2=\"110\" y2=\"6\" />\n", + " <line x1=\"18\" y1=\"8\" x2=\"112\" y2=\"8\" />\n", + " <line x1=\"19\" y1=\"9\" x2=\"113\" y2=\"9\" />\n", + " <line x1=\"21\" y1=\"11\" x2=\"116\" y2=\"11\" />\n", + " <line x1=\"24\" y1=\"14\" x2=\"118\" y2=\"14\" />\n", + " <line x1=\"25\" y1=\"15\" x2=\"119\" y2=\"15\" />\n", + " <line x1=\"27\" y1=\"17\" x2=\"121\" y2=\"17\" />\n", + " <line x1=\"28\" y1=\"18\" x2=\"122\" y2=\"18\" />\n", + " <line x1=\"30\" y1=\"20\" x2=\"124\" y2=\"20\" />\n", + " <line x1=\"32\" y1=\"22\" x2=\"126\" y2=\"22\" />\n", + " <line x1=\"33\" y1=\"23\" x2=\"128\" y2=\"23\" />\n", + " <line x1=\"36\" y1=\"26\" x2=\"130\" y2=\"26\" />\n", + " <line x1=\"38\" y1=\"28\" x2=\"132\" y2=\"28\" />\n", + " <line x1=\"39\" y1=\"29\" x2=\"133\" y2=\"29\" />\n", + " <line x1=\"41\" y1=\"31\" x2=\"135\" y2=\"31\" />\n", + " <line x1=\"43\" y1=\"33\" x2=\"137\" y2=\"33\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"43\" y2=\"33\" style=\"stroke-width:2\" />\n", + " <line x1=\"104\" y1=\"0\" x2=\"137\" y2=\"33\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"10.0,0.0 104.15384615384616,0.0 137.81900452488688,33.665158371040725 43.665158371040725,33.665158371040725\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"43\" y1=\"33\" x2=\"137\" y2=\"33\" style=\"stroke-width:2\" />\n", + " <line x1=\"43\" y1=\"153\" x2=\"137\" y2=\"153\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"43\" y1=\"33\" x2=\"43\" y2=\"153\" style=\"stroke-width:2\" />\n", + " <line x1=\"137\" y1=\"33\" x2=\"137\" y2=\"153\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"43.665158371040725,33.665158371040725 137.81900452488688,33.665158371040725 137.81900452488688,153.66515837104072 43.665158371040725,153.66515837104072\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Text -->\n", + " <text x=\"90.742081\" y=\"173.665158\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >51</text>\n", + " <text x=\"157.819005\" y=\"93.665158\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,157.819005,93.665158)\">65</text>\n", + " <text x=\"16.832579\" y=\"156.832579\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,16.832579,156.832579)\">31</text>\n", + "</svg>\n", + " </td>\n", + " </tr>\n", + "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>t_2m</span></div><div class='xr-var-dims'>(time, height_2, lat, lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(1, 1, 65, 51), meta=np.ndarray></div><input id='attrs-52beed8e-acf0-48f5-b9db-dc26dd0a5733' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-52beed8e-acf0-48f5-b9db-dc26dd0a5733' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-ddc99fea-dc17-4dea-9174-52876b021113' class='xr-var-data-in' type='checkbox'><label for='data-ddc99fea-dc17-4dea-9174-52876b021113' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>standard_name :</span></dt><dd>t_2m</dd><dt><span>long_name :</span></dt><dd>temperature in 2m</dd><dt><span>units :</span></dt><dd>K</dd><dt><span>param :</span></dt><dd>0.0.0</dd></dl></div><div class='xr-var-data'><table>\n", + " <tr>\n", + " <td>\n", + " <table style=\"border-collapse: collapse;\">\n", + " <thead>\n", + " <tr>\n", + " <td> </td>\n", + " <th> Array </th>\n", + " <th> Chunk </th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " \n", + " <tr>\n", + " <th> Bytes </th>\n", + " <td> 401.43 kiB </td>\n", + " <td> 12.95 kiB </td>\n", + " </tr>\n", + " \n", + " <tr>\n", + " <th> Shape </th>\n", + " <td> (31, 1, 65, 51) </td>\n", + " <td> (1, 1, 65, 51) </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Dask graph </th>\n", + " <td colspan=\"2\"> 31 chunks in 77 graph layers </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Data type </th>\n", + " <td colspan=\"2\"> float32 numpy.ndarray </td>\n", + " </tr>\n", + " </tbody>\n", + " </table>\n", + " </td>\n", + " <td>\n", + " <svg width=\"414\" height=\"186\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"0\" y1=\"0\" x2=\"57\" y2=\"0\" style=\"stroke-width:2\" />\n", + " <line x1=\"0\" y1=\"27\" x2=\"57\" y2=\"27\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"27\" style=\"stroke-width:2\" />\n", + " <line x1=\"1\" y1=\"0\" x2=\"1\" y2=\"27\" />\n", + " <line x1=\"3\" y1=\"0\" x2=\"3\" y2=\"27\" />\n", + " <line x1=\"5\" y1=\"0\" x2=\"5\" y2=\"27\" />\n", + " <line x1=\"7\" y1=\"0\" x2=\"7\" y2=\"27\" />\n", + " <line x1=\"9\" y1=\"0\" x2=\"9\" y2=\"27\" />\n", + " <line x1=\"11\" y1=\"0\" x2=\"11\" y2=\"27\" />\n", + " <line x1=\"12\" y1=\"0\" x2=\"12\" y2=\"27\" />\n", + " <line x1=\"14\" y1=\"0\" x2=\"14\" y2=\"27\" />\n", + " <line x1=\"16\" y1=\"0\" x2=\"16\" y2=\"27\" />\n", + " <line x1=\"18\" y1=\"0\" x2=\"18\" y2=\"27\" />\n", + " <line x1=\"20\" y1=\"0\" x2=\"20\" y2=\"27\" />\n", + " <line x1=\"22\" y1=\"0\" x2=\"22\" y2=\"27\" />\n", + " <line x1=\"24\" y1=\"0\" x2=\"24\" y2=\"27\" />\n", + " <line x1=\"25\" y1=\"0\" x2=\"25\" y2=\"27\" />\n", + " <line x1=\"27\" y1=\"0\" x2=\"27\" y2=\"27\" />\n", + " <line x1=\"29\" y1=\"0\" x2=\"29\" y2=\"27\" />\n", + " <line x1=\"31\" y1=\"0\" x2=\"31\" y2=\"27\" />\n", + " <line x1=\"33\" y1=\"0\" x2=\"33\" y2=\"27\" />\n", + " <line x1=\"35\" y1=\"0\" x2=\"35\" y2=\"27\" />\n", + " <line x1=\"36\" y1=\"0\" x2=\"36\" y2=\"27\" />\n", + " <line x1=\"38\" y1=\"0\" x2=\"38\" y2=\"27\" />\n", + " <line x1=\"40\" y1=\"0\" x2=\"40\" y2=\"27\" />\n", + " <line x1=\"42\" y1=\"0\" x2=\"42\" y2=\"27\" />\n", + " <line x1=\"44\" y1=\"0\" x2=\"44\" y2=\"27\" />\n", + " <line x1=\"46\" y1=\"0\" x2=\"46\" y2=\"27\" />\n", + " <line x1=\"48\" y1=\"0\" x2=\"48\" y2=\"27\" />\n", + " <line x1=\"49\" y1=\"0\" x2=\"49\" y2=\"27\" />\n", + " <line x1=\"51\" y1=\"0\" x2=\"51\" y2=\"27\" />\n", + " <line x1=\"53\" y1=\"0\" x2=\"53\" y2=\"27\" />\n", + " <line x1=\"55\" y1=\"0\" x2=\"55\" y2=\"27\" />\n", + " <line x1=\"57\" y1=\"0\" x2=\"57\" y2=\"27\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"0.0,0.0 57.23076923076923,0.0 57.23076923076923,27.592633883233734 0.0,27.592633883233734\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Text -->\n", + " <text x=\"28.615385\" y=\"47.592634\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >31</text>\n", + " <text x=\"77.230769\" y=\"13.796317\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,77.230769,13.796317)\">1</text>\n", + "\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"127\" y1=\"0\" x2=\"143\" y2=\"16\" style=\"stroke-width:2\" />\n", + " <line x1=\"127\" y1=\"120\" x2=\"143\" y2=\"136\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"127\" y1=\"0\" x2=\"127\" y2=\"120\" style=\"stroke-width:2\" />\n", + " <line x1=\"143\" y1=\"16\" x2=\"143\" y2=\"136\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"127.0,0.0 143.23096110778454,16.23096110778455 143.23096110778454,136.23096110778454 127.0,120.0\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"127\" y1=\"0\" x2=\"221\" y2=\"0\" style=\"stroke-width:2\" />\n", + " <line x1=\"143\" y1=\"16\" x2=\"237\" y2=\"16\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"127\" y1=\"0\" x2=\"143\" y2=\"16\" style=\"stroke-width:2\" />\n", + " <line x1=\"221\" y1=\"0\" x2=\"237\" y2=\"16\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"127.0,0.0 221.15384615384616,0.0 237.38480726163073,16.23096110778455 143.23096110778454,16.23096110778455\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"143\" y1=\"16\" x2=\"237\" y2=\"16\" style=\"stroke-width:2\" />\n", + " <line x1=\"143\" y1=\"136\" x2=\"237\" y2=\"136\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"143\" y1=\"16\" x2=\"143\" y2=\"136\" style=\"stroke-width:2\" />\n", + " <line x1=\"237\" y1=\"16\" x2=\"237\" y2=\"136\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"143.23096110778454,16.23096110778455 237.3848072616307,16.23096110778455 237.3848072616307,136.23096110778454 143.23096110778454,136.23096110778454\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Text -->\n", + " <text x=\"190.307884\" y=\"156.230961\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >51</text>\n", + " <text x=\"257.384807\" y=\"76.230961\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,257.384807,76.230961)\">65</text>\n", + " <text x=\"125.115481\" y=\"148.115481\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,125.115481,148.115481)\">1</text>\n", + "</svg>\n", + " </td>\n", + " </tr>\n", + "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>qv_2m</span></div><div class='xr-var-dims'>(time, height_2, lat, lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(1, 1, 65, 51), meta=np.ndarray></div><input id='attrs-9492a1a9-f9b1-4596-b6f6-61f546c8aac7' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-9492a1a9-f9b1-4596-b6f6-61f546c8aac7' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-1d108f60-8705-41b1-897e-1b0560004679' class='xr-var-data-in' type='checkbox'><label for='data-1d108f60-8705-41b1-897e-1b0560004679' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>standard_name :</span></dt><dd>qv_2m</dd><dt><span>long_name :</span></dt><dd>specific water vapor content in 2m</dd><dt><span>units :</span></dt><dd>kg kg-1</dd><dt><span>param :</span></dt><dd>0.1.0</dd></dl></div><div class='xr-var-data'><table>\n", + " <tr>\n", + " <td>\n", + " <table style=\"border-collapse: collapse;\">\n", + " <thead>\n", + " <tr>\n", + " <td> </td>\n", + " <th> Array </th>\n", + " <th> Chunk </th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " \n", + " <tr>\n", + " <th> Bytes </th>\n", + " <td> 401.43 kiB </td>\n", + " <td> 12.95 kiB </td>\n", + " </tr>\n", + " \n", + " <tr>\n", + " <th> Shape </th>\n", + " <td> (31, 1, 65, 51) </td>\n", + " <td> (1, 1, 65, 51) </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Dask graph </th>\n", + " <td colspan=\"2\"> 31 chunks in 77 graph layers </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Data type </th>\n", + " <td colspan=\"2\"> float32 numpy.ndarray </td>\n", + " </tr>\n", + " </tbody>\n", + " </table>\n", + " </td>\n", + " <td>\n", + " <svg width=\"414\" height=\"186\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"0\" y1=\"0\" x2=\"57\" y2=\"0\" style=\"stroke-width:2\" />\n", + " <line x1=\"0\" y1=\"27\" x2=\"57\" y2=\"27\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"27\" style=\"stroke-width:2\" />\n", + " <line x1=\"1\" y1=\"0\" x2=\"1\" y2=\"27\" />\n", + " <line x1=\"3\" y1=\"0\" x2=\"3\" y2=\"27\" />\n", + " <line x1=\"5\" y1=\"0\" x2=\"5\" y2=\"27\" />\n", + " <line x1=\"7\" y1=\"0\" x2=\"7\" y2=\"27\" />\n", + " <line x1=\"9\" y1=\"0\" x2=\"9\" y2=\"27\" />\n", + " <line x1=\"11\" y1=\"0\" x2=\"11\" y2=\"27\" />\n", + " <line x1=\"12\" y1=\"0\" x2=\"12\" y2=\"27\" />\n", + " <line x1=\"14\" y1=\"0\" x2=\"14\" y2=\"27\" />\n", + " <line x1=\"16\" y1=\"0\" x2=\"16\" y2=\"27\" />\n", + " <line x1=\"18\" y1=\"0\" x2=\"18\" y2=\"27\" />\n", + " <line x1=\"20\" y1=\"0\" x2=\"20\" y2=\"27\" />\n", + " <line x1=\"22\" y1=\"0\" x2=\"22\" y2=\"27\" />\n", + " <line x1=\"24\" y1=\"0\" x2=\"24\" y2=\"27\" />\n", + " <line x1=\"25\" y1=\"0\" x2=\"25\" y2=\"27\" />\n", + " <line x1=\"27\" y1=\"0\" x2=\"27\" y2=\"27\" />\n", + " <line x1=\"29\" y1=\"0\" x2=\"29\" y2=\"27\" />\n", + " <line x1=\"31\" y1=\"0\" x2=\"31\" y2=\"27\" />\n", + " <line x1=\"33\" y1=\"0\" x2=\"33\" y2=\"27\" />\n", + " <line x1=\"35\" y1=\"0\" x2=\"35\" y2=\"27\" />\n", + " <line x1=\"36\" y1=\"0\" x2=\"36\" y2=\"27\" />\n", + " <line x1=\"38\" y1=\"0\" x2=\"38\" y2=\"27\" />\n", + " <line x1=\"40\" y1=\"0\" x2=\"40\" y2=\"27\" />\n", + " <line x1=\"42\" y1=\"0\" x2=\"42\" y2=\"27\" />\n", + " <line x1=\"44\" y1=\"0\" x2=\"44\" y2=\"27\" />\n", + " <line x1=\"46\" y1=\"0\" x2=\"46\" y2=\"27\" />\n", + " <line x1=\"48\" y1=\"0\" x2=\"48\" y2=\"27\" />\n", + " <line x1=\"49\" y1=\"0\" x2=\"49\" y2=\"27\" />\n", + " <line x1=\"51\" y1=\"0\" x2=\"51\" y2=\"27\" />\n", + " <line x1=\"53\" y1=\"0\" x2=\"53\" y2=\"27\" />\n", + " <line x1=\"55\" y1=\"0\" x2=\"55\" y2=\"27\" />\n", + " <line x1=\"57\" y1=\"0\" x2=\"57\" y2=\"27\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"0.0,0.0 57.23076923076923,0.0 57.23076923076923,27.592633883233734 0.0,27.592633883233734\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Text -->\n", + " <text x=\"28.615385\" y=\"47.592634\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >31</text>\n", + " <text x=\"77.230769\" y=\"13.796317\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,77.230769,13.796317)\">1</text>\n", + "\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"127\" y1=\"0\" x2=\"143\" y2=\"16\" style=\"stroke-width:2\" />\n", + " <line x1=\"127\" y1=\"120\" x2=\"143\" y2=\"136\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"127\" y1=\"0\" x2=\"127\" y2=\"120\" style=\"stroke-width:2\" />\n", + " <line x1=\"143\" y1=\"16\" x2=\"143\" y2=\"136\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"127.0,0.0 143.23096110778454,16.23096110778455 143.23096110778454,136.23096110778454 127.0,120.0\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"127\" y1=\"0\" x2=\"221\" y2=\"0\" style=\"stroke-width:2\" />\n", + " <line x1=\"143\" y1=\"16\" x2=\"237\" y2=\"16\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"127\" y1=\"0\" x2=\"143\" y2=\"16\" style=\"stroke-width:2\" />\n", + " <line x1=\"221\" y1=\"0\" x2=\"237\" y2=\"16\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"127.0,0.0 221.15384615384616,0.0 237.38480726163073,16.23096110778455 143.23096110778454,16.23096110778455\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"143\" y1=\"16\" x2=\"237\" y2=\"16\" style=\"stroke-width:2\" />\n", + " <line x1=\"143\" y1=\"136\" x2=\"237\" y2=\"136\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"143\" y1=\"16\" x2=\"143\" y2=\"136\" style=\"stroke-width:2\" />\n", + " <line x1=\"237\" y1=\"16\" x2=\"237\" y2=\"136\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"143.23096110778454,16.23096110778455 237.3848072616307,16.23096110778455 237.3848072616307,136.23096110778454 143.23096110778454,136.23096110778454\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Text -->\n", + " <text x=\"190.307884\" y=\"156.230961\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >51</text>\n", + " <text x=\"257.384807\" y=\"76.230961\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,257.384807,76.230961)\">65</text>\n", + " <text x=\"125.115481\" y=\"148.115481\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,125.115481,148.115481)\">1</text>\n", + "</svg>\n", + " </td>\n", + " </tr>\n", + "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>prec_rate</span></div><div class='xr-var-dims'>(time, lat, lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(1, 65, 51), meta=np.ndarray></div><input id='attrs-8e170937-3073-4390-905b-d4c67d824086' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-8e170937-3073-4390-905b-d4c67d824086' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-4d101bc7-e0fc-4d65-a765-1ce6763af84c' class='xr-var-data-in' type='checkbox'><label for='data-4d101bc7-e0fc-4d65-a765-1ce6763af84c' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><table>\n", + " <tr>\n", + " <td>\n", + " <table style=\"border-collapse: collapse;\">\n", + " <thead>\n", + " <tr>\n", + " <td> </td>\n", + " <th> Array </th>\n", + " <th> Chunk </th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " \n", + " <tr>\n", + " <th> Bytes </th>\n", + " <td> 401.43 kiB </td>\n", + " <td> 12.95 kiB </td>\n", + " </tr>\n", + " \n", + " <tr>\n", + " <th> Shape </th>\n", + " <td> (31, 65, 51) </td>\n", + " <td> (1, 65, 51) </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Dask graph </th>\n", + " <td colspan=\"2\"> 31 chunks in 91 graph layers </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Data type </th>\n", + " <td colspan=\"2\"> float32 numpy.ndarray </td>\n", + " </tr>\n", + " </tbody>\n", + " </table>\n", + " </td>\n", + " <td>\n", + " <svg width=\"187\" height=\"203\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"43\" y2=\"33\" style=\"stroke-width:2\" />\n", + " <line x1=\"10\" y1=\"120\" x2=\"43\" y2=\"153\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"120\" style=\"stroke-width:2\" />\n", + " <line x1=\"11\" y1=\"1\" x2=\"11\" y2=\"121\" />\n", + " <line x1=\"13\" y1=\"3\" x2=\"13\" y2=\"123\" />\n", + " <line x1=\"14\" y1=\"4\" x2=\"14\" y2=\"124\" />\n", + " <line x1=\"16\" y1=\"6\" x2=\"16\" y2=\"126\" />\n", + " <line x1=\"18\" y1=\"8\" x2=\"18\" y2=\"128\" />\n", + " <line x1=\"19\" y1=\"9\" x2=\"19\" y2=\"129\" />\n", + " <line x1=\"21\" y1=\"11\" x2=\"21\" y2=\"131\" />\n", + " <line x1=\"24\" y1=\"14\" x2=\"24\" y2=\"134\" />\n", + " <line x1=\"25\" y1=\"15\" x2=\"25\" y2=\"135\" />\n", + " <line x1=\"27\" y1=\"17\" x2=\"27\" y2=\"137\" />\n", + " <line x1=\"28\" y1=\"18\" x2=\"28\" y2=\"138\" />\n", + " <line x1=\"30\" y1=\"20\" x2=\"30\" y2=\"140\" />\n", + " <line x1=\"32\" y1=\"22\" x2=\"32\" y2=\"142\" />\n", + " <line x1=\"33\" y1=\"23\" x2=\"33\" y2=\"143\" />\n", + " <line x1=\"36\" y1=\"26\" x2=\"36\" y2=\"146\" />\n", + " <line x1=\"38\" y1=\"28\" x2=\"38\" y2=\"148\" />\n", + " <line x1=\"39\" y1=\"29\" x2=\"39\" y2=\"149\" />\n", + " <line x1=\"41\" y1=\"31\" x2=\"41\" y2=\"151\" />\n", + " <line x1=\"43\" y1=\"33\" x2=\"43\" y2=\"153\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"10.0,0.0 43.665158371040725,33.665158371040725 43.665158371040725,153.66515837104072 10.0,120.0\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"104\" y2=\"0\" style=\"stroke-width:2\" />\n", + " <line x1=\"11\" y1=\"1\" x2=\"105\" y2=\"1\" />\n", + " <line x1=\"13\" y1=\"3\" x2=\"107\" y2=\"3\" />\n", + " <line x1=\"14\" y1=\"4\" x2=\"108\" y2=\"4\" />\n", + " <line x1=\"16\" y1=\"6\" x2=\"110\" y2=\"6\" />\n", + " <line x1=\"18\" y1=\"8\" x2=\"112\" y2=\"8\" />\n", + " <line x1=\"19\" y1=\"9\" x2=\"113\" y2=\"9\" />\n", + " <line x1=\"21\" y1=\"11\" x2=\"116\" y2=\"11\" />\n", + " <line x1=\"24\" y1=\"14\" x2=\"118\" y2=\"14\" />\n", + " <line x1=\"25\" y1=\"15\" x2=\"119\" y2=\"15\" />\n", + " <line x1=\"27\" y1=\"17\" x2=\"121\" y2=\"17\" />\n", + " <line x1=\"28\" y1=\"18\" x2=\"122\" y2=\"18\" />\n", + " <line x1=\"30\" y1=\"20\" x2=\"124\" y2=\"20\" />\n", + " <line x1=\"32\" y1=\"22\" x2=\"126\" y2=\"22\" />\n", + " <line x1=\"33\" y1=\"23\" x2=\"128\" y2=\"23\" />\n", + " <line x1=\"36\" y1=\"26\" x2=\"130\" y2=\"26\" />\n", + " <line x1=\"38\" y1=\"28\" x2=\"132\" y2=\"28\" />\n", + " <line x1=\"39\" y1=\"29\" x2=\"133\" y2=\"29\" />\n", + " <line x1=\"41\" y1=\"31\" x2=\"135\" y2=\"31\" />\n", + " <line x1=\"43\" y1=\"33\" x2=\"137\" y2=\"33\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"43\" y2=\"33\" style=\"stroke-width:2\" />\n", + " <line x1=\"104\" y1=\"0\" x2=\"137\" y2=\"33\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"10.0,0.0 104.15384615384616,0.0 137.81900452488688,33.665158371040725 43.665158371040725,33.665158371040725\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"43\" y1=\"33\" x2=\"137\" y2=\"33\" style=\"stroke-width:2\" />\n", + " <line x1=\"43\" y1=\"153\" x2=\"137\" y2=\"153\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"43\" y1=\"33\" x2=\"43\" y2=\"153\" style=\"stroke-width:2\" />\n", + " <line x1=\"137\" y1=\"33\" x2=\"137\" y2=\"153\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"43.665158371040725,33.665158371040725 137.81900452488688,33.665158371040725 137.81900452488688,153.66515837104072 43.665158371040725,153.66515837104072\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Text -->\n", + " <text x=\"90.742081\" y=\"173.665158\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >51</text>\n", + " <text x=\"157.819005\" y=\"93.665158\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,157.819005,93.665158)\">65</text>\n", + " <text x=\"16.832579\" y=\"156.832579\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,16.832579,156.832579)\">31</text>\n", + "</svg>\n", + " </td>\n", + " </tr>\n", + "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>temp</span></div><div class='xr-var-dims'>(time, plev_3, lat, lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(1, 100, 65, 51), meta=np.ndarray></div><input id='attrs-3c5a3122-bd96-4507-8f34-e7dcd785c6a1' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-3c5a3122-bd96-4507-8f34-e7dcd785c6a1' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-bd3491b5-2d62-43d1-8b91-8eac61d6624a' class='xr-var-data-in' type='checkbox'><label for='data-bd3491b5-2d62-43d1-8b91-8eac61d6624a' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>standard_name :</span></dt><dd>air_temperature</dd><dt><span>long_name :</span></dt><dd>Temperature</dd><dt><span>units :</span></dt><dd>K</dd><dt><span>param :</span></dt><dd>0.0.0</dd></dl></div><div class='xr-var-data'><table>\n", + " <tr>\n", + " <td>\n", + " <table style=\"border-collapse: collapse;\">\n", + " <thead>\n", + " <tr>\n", + " <td> </td>\n", + " <th> Array </th>\n", + " <th> Chunk </th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " \n", + " <tr>\n", + " <th> Bytes </th>\n", + " <td> 39.20 MiB </td>\n", + " <td> 1.26 MiB </td>\n", + " </tr>\n", + " \n", + " <tr>\n", + " <th> Shape </th>\n", + " <td> (31, 100, 65, 51) </td>\n", + " <td> (1, 100, 65, 51) </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Dask graph </th>\n", + " <td colspan=\"2\"> 31 chunks in 77 graph layers </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Data type </th>\n", + " <td colspan=\"2\"> float32 numpy.ndarray </td>\n", + " </tr>\n", + " </tbody>\n", + " </table>\n", + " </td>\n", + " <td>\n", + " <svg width=\"407\" height=\"198\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"0\" y1=\"0\" x2=\"43\" y2=\"0\" style=\"stroke-width:2\" />\n", + " <line x1=\"0\" y1=\"25\" x2=\"43\" y2=\"25\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"25\" style=\"stroke-width:2\" />\n", + " <line x1=\"1\" y1=\"0\" x2=\"1\" y2=\"25\" />\n", + " <line x1=\"2\" y1=\"0\" x2=\"2\" y2=\"25\" />\n", + " <line x1=\"4\" y1=\"0\" x2=\"4\" y2=\"25\" />\n", + " <line x1=\"5\" y1=\"0\" x2=\"5\" y2=\"25\" />\n", + " <line x1=\"7\" y1=\"0\" x2=\"7\" y2=\"25\" />\n", + " <line x1=\"8\" y1=\"0\" x2=\"8\" y2=\"25\" />\n", + " <line x1=\"9\" y1=\"0\" x2=\"9\" y2=\"25\" />\n", + " <line x1=\"11\" y1=\"0\" x2=\"11\" y2=\"25\" />\n", + " <line x1=\"12\" y1=\"0\" x2=\"12\" y2=\"25\" />\n", + " <line x1=\"14\" y1=\"0\" x2=\"14\" y2=\"25\" />\n", + " <line x1=\"15\" y1=\"0\" x2=\"15\" y2=\"25\" />\n", + " <line x1=\"16\" y1=\"0\" x2=\"16\" y2=\"25\" />\n", + " <line x1=\"18\" y1=\"0\" x2=\"18\" y2=\"25\" />\n", + " <line x1=\"19\" y1=\"0\" x2=\"19\" y2=\"25\" />\n", + " <line x1=\"21\" y1=\"0\" x2=\"21\" y2=\"25\" />\n", + " <line x1=\"22\" y1=\"0\" x2=\"22\" y2=\"25\" />\n", + " <line x1=\"23\" y1=\"0\" x2=\"23\" y2=\"25\" />\n", + " <line x1=\"25\" y1=\"0\" x2=\"25\" y2=\"25\" />\n", + " <line x1=\"26\" y1=\"0\" x2=\"26\" y2=\"25\" />\n", + " <line x1=\"28\" y1=\"0\" x2=\"28\" y2=\"25\" />\n", + " <line x1=\"29\" y1=\"0\" x2=\"29\" y2=\"25\" />\n", + " <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"25\" />\n", + " <line x1=\"32\" y1=\"0\" x2=\"32\" y2=\"25\" />\n", + " <line x1=\"33\" y1=\"0\" x2=\"33\" y2=\"25\" />\n", + " <line x1=\"35\" y1=\"0\" x2=\"35\" y2=\"25\" />\n", + " <line x1=\"36\" y1=\"0\" x2=\"36\" y2=\"25\" />\n", + " <line x1=\"38\" y1=\"0\" x2=\"38\" y2=\"25\" />\n", + " <line x1=\"39\" y1=\"0\" x2=\"39\" y2=\"25\" />\n", + " <line x1=\"40\" y1=\"0\" x2=\"40\" y2=\"25\" />\n", + " <line x1=\"42\" y1=\"0\" x2=\"42\" y2=\"25\" />\n", + " <line x1=\"43\" y1=\"0\" x2=\"43\" y2=\"25\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"0.0,0.0 43.65344710026747,0.0 43.65344710026747,25.412616514582485 0.0,25.412616514582485\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Text -->\n", + " <text x=\"21.826724\" y=\"45.412617\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >31</text>\n", + " <text x=\"63.653447\" y=\"12.706308\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,63.653447,12.706308)\">1</text>\n", + "\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"113\" y1=\"0\" x2=\"183\" y2=\"70\" style=\"stroke-width:2\" />\n", + " <line x1=\"113\" y1=\"78\" x2=\"183\" y2=\"148\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"113\" y1=\"0\" x2=\"113\" y2=\"78\" style=\"stroke-width:2\" />\n", + " <line x1=\"183\" y1=\"70\" x2=\"183\" y2=\"148\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"113.0,0.0 183.58823529411765,70.58823529411765 183.58823529411765,148.58823529411765 113.0,78.0\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"113\" y1=\"0\" x2=\"174\" y2=\"0\" style=\"stroke-width:2\" />\n", + " <line x1=\"183\" y1=\"70\" x2=\"244\" y2=\"70\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"113\" y1=\"0\" x2=\"183\" y2=\"70\" style=\"stroke-width:2\" />\n", + " <line x1=\"174\" y1=\"0\" x2=\"244\" y2=\"70\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"113.0,0.0 174.2,0.0 244.78823529411764,70.58823529411765 183.58823529411765,70.58823529411765\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"183\" y1=\"70\" x2=\"244\" y2=\"70\" style=\"stroke-width:2\" />\n", + " <line x1=\"183\" y1=\"148\" x2=\"244\" y2=\"148\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"183\" y1=\"70\" x2=\"183\" y2=\"148\" style=\"stroke-width:2\" />\n", + " <line x1=\"244\" y1=\"70\" x2=\"244\" y2=\"148\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"183.58823529411765,70.58823529411765 244.78823529411767,70.58823529411765 244.78823529411767,148.58823529411765 183.58823529411765,148.58823529411765\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Text -->\n", + " <text x=\"214.188235\" y=\"168.588235\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >51</text>\n", + " <text x=\"264.788235\" y=\"109.588235\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,264.788235,109.588235)\">65</text>\n", + " <text x=\"138.294118\" y=\"133.294118\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,138.294118,133.294118)\">100</text>\n", + "</svg>\n", + " </td>\n", + " </tr>\n", + "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>qv</span></div><div class='xr-var-dims'>(time, plev_3, lat, lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(1, 100, 65, 51), meta=np.ndarray></div><input id='attrs-681b7cc6-4704-431b-afd7-466db1516896' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-681b7cc6-4704-431b-afd7-466db1516896' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-c37d3108-233a-4245-bdc8-785d1d6196f6' class='xr-var-data-in' type='checkbox'><label for='data-c37d3108-233a-4245-bdc8-785d1d6196f6' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>standard_name :</span></dt><dd>specific_humidity</dd><dt><span>long_name :</span></dt><dd>Specific humidity</dd><dt><span>units :</span></dt><dd>kg kg-1</dd><dt><span>param :</span></dt><dd>0.1.0</dd></dl></div><div class='xr-var-data'><table>\n", + " <tr>\n", + " <td>\n", + " <table style=\"border-collapse: collapse;\">\n", + " <thead>\n", + " <tr>\n", + " <td> </td>\n", + " <th> Array </th>\n", + " <th> Chunk </th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " \n", + " <tr>\n", + " <th> Bytes </th>\n", + " <td> 39.20 MiB </td>\n", + " <td> 1.26 MiB </td>\n", + " </tr>\n", + " \n", + " <tr>\n", + " <th> Shape </th>\n", + " <td> (31, 100, 65, 51) </td>\n", + " <td> (1, 100, 65, 51) </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Dask graph </th>\n", + " <td colspan=\"2\"> 31 chunks in 77 graph layers </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Data type </th>\n", + " <td colspan=\"2\"> float32 numpy.ndarray </td>\n", + " </tr>\n", + " </tbody>\n", + " </table>\n", + " </td>\n", + " <td>\n", + " <svg width=\"407\" height=\"198\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"0\" y1=\"0\" x2=\"43\" y2=\"0\" style=\"stroke-width:2\" />\n", + " <line x1=\"0\" y1=\"25\" x2=\"43\" y2=\"25\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"25\" style=\"stroke-width:2\" />\n", + " <line x1=\"1\" y1=\"0\" x2=\"1\" y2=\"25\" />\n", + " <line x1=\"2\" y1=\"0\" x2=\"2\" y2=\"25\" />\n", + " <line x1=\"4\" y1=\"0\" x2=\"4\" y2=\"25\" />\n", + " <line x1=\"5\" y1=\"0\" x2=\"5\" y2=\"25\" />\n", + " <line x1=\"7\" y1=\"0\" x2=\"7\" y2=\"25\" />\n", + " <line x1=\"8\" y1=\"0\" x2=\"8\" y2=\"25\" />\n", + " <line x1=\"9\" y1=\"0\" x2=\"9\" y2=\"25\" />\n", + " <line x1=\"11\" y1=\"0\" x2=\"11\" y2=\"25\" />\n", + " <line x1=\"12\" y1=\"0\" x2=\"12\" y2=\"25\" />\n", + " <line x1=\"14\" y1=\"0\" x2=\"14\" y2=\"25\" />\n", + " <line x1=\"15\" y1=\"0\" x2=\"15\" y2=\"25\" />\n", + " <line x1=\"16\" y1=\"0\" x2=\"16\" y2=\"25\" />\n", + " <line x1=\"18\" y1=\"0\" x2=\"18\" y2=\"25\" />\n", + " <line x1=\"19\" y1=\"0\" x2=\"19\" y2=\"25\" />\n", + " <line x1=\"21\" y1=\"0\" x2=\"21\" y2=\"25\" />\n", + " <line x1=\"22\" y1=\"0\" x2=\"22\" y2=\"25\" />\n", + " <line x1=\"23\" y1=\"0\" x2=\"23\" y2=\"25\" />\n", + " <line x1=\"25\" y1=\"0\" x2=\"25\" y2=\"25\" />\n", + " <line x1=\"26\" y1=\"0\" x2=\"26\" y2=\"25\" />\n", + " <line x1=\"28\" y1=\"0\" x2=\"28\" y2=\"25\" />\n", + " <line x1=\"29\" y1=\"0\" x2=\"29\" y2=\"25\" />\n", + " <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"25\" />\n", + " <line x1=\"32\" y1=\"0\" x2=\"32\" y2=\"25\" />\n", + " <line x1=\"33\" y1=\"0\" x2=\"33\" y2=\"25\" />\n", + " <line x1=\"35\" y1=\"0\" x2=\"35\" y2=\"25\" />\n", + " <line x1=\"36\" y1=\"0\" x2=\"36\" y2=\"25\" />\n", + " <line x1=\"38\" y1=\"0\" x2=\"38\" y2=\"25\" />\n", + " <line x1=\"39\" y1=\"0\" x2=\"39\" y2=\"25\" />\n", + " <line x1=\"40\" y1=\"0\" x2=\"40\" y2=\"25\" />\n", + " <line x1=\"42\" y1=\"0\" x2=\"42\" y2=\"25\" />\n", + " <line x1=\"43\" y1=\"0\" x2=\"43\" y2=\"25\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"0.0,0.0 43.65344710026747,0.0 43.65344710026747,25.412616514582485 0.0,25.412616514582485\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Text -->\n", + " <text x=\"21.826724\" y=\"45.412617\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >31</text>\n", + " <text x=\"63.653447\" y=\"12.706308\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,63.653447,12.706308)\">1</text>\n", + "\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"113\" y1=\"0\" x2=\"183\" y2=\"70\" style=\"stroke-width:2\" />\n", + " <line x1=\"113\" y1=\"78\" x2=\"183\" y2=\"148\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"113\" y1=\"0\" x2=\"113\" y2=\"78\" style=\"stroke-width:2\" />\n", + " <line x1=\"183\" y1=\"70\" x2=\"183\" y2=\"148\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"113.0,0.0 183.58823529411765,70.58823529411765 183.58823529411765,148.58823529411765 113.0,78.0\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"113\" y1=\"0\" x2=\"174\" y2=\"0\" style=\"stroke-width:2\" />\n", + " <line x1=\"183\" y1=\"70\" x2=\"244\" y2=\"70\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"113\" y1=\"0\" x2=\"183\" y2=\"70\" style=\"stroke-width:2\" />\n", + " <line x1=\"174\" y1=\"0\" x2=\"244\" y2=\"70\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"113.0,0.0 174.2,0.0 244.78823529411764,70.58823529411765 183.58823529411765,70.58823529411765\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"183\" y1=\"70\" x2=\"244\" y2=\"70\" style=\"stroke-width:2\" />\n", + " <line x1=\"183\" y1=\"148\" x2=\"244\" y2=\"148\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"183\" y1=\"70\" x2=\"183\" y2=\"148\" style=\"stroke-width:2\" />\n", + " <line x1=\"244\" y1=\"70\" x2=\"244\" y2=\"148\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"183.58823529411765,70.58823529411765 244.78823529411767,70.58823529411765 244.78823529411767,148.58823529411765 183.58823529411765,148.58823529411765\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Text -->\n", + " <text x=\"214.188235\" y=\"168.588235\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >51</text>\n", + " <text x=\"264.788235\" y=\"109.588235\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,264.788235,109.588235)\">65</text>\n", + " <text x=\"138.294118\" y=\"133.294118\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,138.294118,133.294118)\">100</text>\n", + "</svg>\n", + " </td>\n", + " </tr>\n", + "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>u</span></div><div class='xr-var-dims'>(time, plev_3, lat, lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(1, 100, 65, 51), meta=np.ndarray></div><input id='attrs-b7d459d7-4691-43a1-9550-53dbfc1c1b84' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-b7d459d7-4691-43a1-9550-53dbfc1c1b84' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-465eae60-681b-464b-922b-65919f46f911' class='xr-var-data-in' type='checkbox'><label for='data-465eae60-681b-464b-922b-65919f46f911' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>standard_name :</span></dt><dd>eastward_wind</dd><dt><span>long_name :</span></dt><dd>Zonal wind</dd><dt><span>units :</span></dt><dd>m s-1</dd><dt><span>param :</span></dt><dd>2.2.0</dd></dl></div><div class='xr-var-data'><table>\n", + " <tr>\n", + " <td>\n", + " <table style=\"border-collapse: collapse;\">\n", + " <thead>\n", + " <tr>\n", + " <td> </td>\n", + " <th> Array </th>\n", + " <th> Chunk </th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " \n", + " <tr>\n", + " <th> Bytes </th>\n", + " <td> 39.20 MiB </td>\n", + " <td> 1.26 MiB </td>\n", + " </tr>\n", + " \n", + " <tr>\n", + " <th> Shape </th>\n", + " <td> (31, 100, 65, 51) </td>\n", + " <td> (1, 100, 65, 51) </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Dask graph </th>\n", + " <td colspan=\"2\"> 31 chunks in 77 graph layers </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Data type </th>\n", + " <td colspan=\"2\"> float32 numpy.ndarray </td>\n", + " </tr>\n", + " </tbody>\n", + " </table>\n", + " </td>\n", + " <td>\n", + " <svg width=\"407\" height=\"198\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"0\" y1=\"0\" x2=\"43\" y2=\"0\" style=\"stroke-width:2\" />\n", + " <line x1=\"0\" y1=\"25\" x2=\"43\" y2=\"25\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"25\" style=\"stroke-width:2\" />\n", + " <line x1=\"1\" y1=\"0\" x2=\"1\" y2=\"25\" />\n", + " <line x1=\"2\" y1=\"0\" x2=\"2\" y2=\"25\" />\n", + " <line x1=\"4\" y1=\"0\" x2=\"4\" y2=\"25\" />\n", + " <line x1=\"5\" y1=\"0\" x2=\"5\" y2=\"25\" />\n", + " <line x1=\"7\" y1=\"0\" x2=\"7\" y2=\"25\" />\n", + " <line x1=\"8\" y1=\"0\" x2=\"8\" y2=\"25\" />\n", + " <line x1=\"9\" y1=\"0\" x2=\"9\" y2=\"25\" />\n", + " <line x1=\"11\" y1=\"0\" x2=\"11\" y2=\"25\" />\n", + " <line x1=\"12\" y1=\"0\" x2=\"12\" y2=\"25\" />\n", + " <line x1=\"14\" y1=\"0\" x2=\"14\" y2=\"25\" />\n", + " <line x1=\"15\" y1=\"0\" x2=\"15\" y2=\"25\" />\n", + " <line x1=\"16\" y1=\"0\" x2=\"16\" y2=\"25\" />\n", + " <line x1=\"18\" y1=\"0\" x2=\"18\" y2=\"25\" />\n", + " <line x1=\"19\" y1=\"0\" x2=\"19\" y2=\"25\" />\n", + " <line x1=\"21\" y1=\"0\" x2=\"21\" y2=\"25\" />\n", + " <line x1=\"22\" y1=\"0\" x2=\"22\" y2=\"25\" />\n", + " <line x1=\"23\" y1=\"0\" x2=\"23\" y2=\"25\" />\n", + " <line x1=\"25\" y1=\"0\" x2=\"25\" y2=\"25\" />\n", + " <line x1=\"26\" y1=\"0\" x2=\"26\" y2=\"25\" />\n", + " <line x1=\"28\" y1=\"0\" x2=\"28\" y2=\"25\" />\n", + " <line x1=\"29\" y1=\"0\" x2=\"29\" y2=\"25\" />\n", + " <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"25\" />\n", + " <line x1=\"32\" y1=\"0\" x2=\"32\" y2=\"25\" />\n", + " <line x1=\"33\" y1=\"0\" x2=\"33\" y2=\"25\" />\n", + " <line x1=\"35\" y1=\"0\" x2=\"35\" y2=\"25\" />\n", + " <line x1=\"36\" y1=\"0\" x2=\"36\" y2=\"25\" />\n", + " <line x1=\"38\" y1=\"0\" x2=\"38\" y2=\"25\" />\n", + " <line x1=\"39\" y1=\"0\" x2=\"39\" y2=\"25\" />\n", + " <line x1=\"40\" y1=\"0\" x2=\"40\" y2=\"25\" />\n", + " <line x1=\"42\" y1=\"0\" x2=\"42\" y2=\"25\" />\n", + " <line x1=\"43\" y1=\"0\" x2=\"43\" y2=\"25\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"0.0,0.0 43.65344710026747,0.0 43.65344710026747,25.412616514582485 0.0,25.412616514582485\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Text -->\n", + " <text x=\"21.826724\" y=\"45.412617\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >31</text>\n", + " <text x=\"63.653447\" y=\"12.706308\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,63.653447,12.706308)\">1</text>\n", + "\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"113\" y1=\"0\" x2=\"183\" y2=\"70\" style=\"stroke-width:2\" />\n", + " <line x1=\"113\" y1=\"78\" x2=\"183\" y2=\"148\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"113\" y1=\"0\" x2=\"113\" y2=\"78\" style=\"stroke-width:2\" />\n", + " <line x1=\"183\" y1=\"70\" x2=\"183\" y2=\"148\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"113.0,0.0 183.58823529411765,70.58823529411765 183.58823529411765,148.58823529411765 113.0,78.0\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"113\" y1=\"0\" x2=\"174\" y2=\"0\" style=\"stroke-width:2\" />\n", + " <line x1=\"183\" y1=\"70\" x2=\"244\" y2=\"70\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"113\" y1=\"0\" x2=\"183\" y2=\"70\" style=\"stroke-width:2\" />\n", + " <line x1=\"174\" y1=\"0\" x2=\"244\" y2=\"70\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"113.0,0.0 174.2,0.0 244.78823529411764,70.58823529411765 183.58823529411765,70.58823529411765\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"183\" y1=\"70\" x2=\"244\" y2=\"70\" style=\"stroke-width:2\" />\n", + " <line x1=\"183\" y1=\"148\" x2=\"244\" y2=\"148\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"183\" y1=\"70\" x2=\"183\" y2=\"148\" style=\"stroke-width:2\" />\n", + " <line x1=\"244\" y1=\"70\" x2=\"244\" y2=\"148\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"183.58823529411765,70.58823529411765 244.78823529411767,70.58823529411765 244.78823529411767,148.58823529411765 183.58823529411765,148.58823529411765\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Text -->\n", + " <text x=\"214.188235\" y=\"168.588235\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >51</text>\n", + " <text x=\"264.788235\" y=\"109.588235\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,264.788235,109.588235)\">65</text>\n", + " <text x=\"138.294118\" y=\"133.294118\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,138.294118,133.294118)\">100</text>\n", + "</svg>\n", + " </td>\n", + " </tr>\n", + "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>v</span></div><div class='xr-var-dims'>(time, plev_3, lat, lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(1, 100, 65, 51), meta=np.ndarray></div><input id='attrs-bd79ade4-b94f-4da0-9d44-5d1785faf67a' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-bd79ade4-b94f-4da0-9d44-5d1785faf67a' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-1af785b5-34d4-4303-aed5-b1a6cd8ad552' class='xr-var-data-in' type='checkbox'><label for='data-1af785b5-34d4-4303-aed5-b1a6cd8ad552' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>standard_name :</span></dt><dd>northward_wind</dd><dt><span>long_name :</span></dt><dd>Meridional wind</dd><dt><span>units :</span></dt><dd>m s-1</dd><dt><span>param :</span></dt><dd>3.2.0</dd></dl></div><div class='xr-var-data'><table>\n", + " <tr>\n", + " <td>\n", + " <table style=\"border-collapse: collapse;\">\n", + " <thead>\n", + " <tr>\n", + " <td> </td>\n", + " <th> Array </th>\n", + " <th> Chunk </th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " \n", + " <tr>\n", + " <th> Bytes </th>\n", + " <td> 39.20 MiB </td>\n", + " <td> 1.26 MiB </td>\n", + " </tr>\n", + " \n", + " <tr>\n", + " <th> Shape </th>\n", + " <td> (31, 100, 65, 51) </td>\n", + " <td> (1, 100, 65, 51) </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Dask graph </th>\n", + " <td colspan=\"2\"> 31 chunks in 77 graph layers </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Data type </th>\n", + " <td colspan=\"2\"> float32 numpy.ndarray </td>\n", + " </tr>\n", + " </tbody>\n", + " </table>\n", + " </td>\n", + " <td>\n", + " <svg width=\"407\" height=\"198\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"0\" y1=\"0\" x2=\"43\" y2=\"0\" style=\"stroke-width:2\" />\n", + " <line x1=\"0\" y1=\"25\" x2=\"43\" y2=\"25\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"25\" style=\"stroke-width:2\" />\n", + " <line x1=\"1\" y1=\"0\" x2=\"1\" y2=\"25\" />\n", + " <line x1=\"2\" y1=\"0\" x2=\"2\" y2=\"25\" />\n", + " <line x1=\"4\" y1=\"0\" x2=\"4\" y2=\"25\" />\n", + " <line x1=\"5\" y1=\"0\" x2=\"5\" y2=\"25\" />\n", + " <line x1=\"7\" y1=\"0\" x2=\"7\" y2=\"25\" />\n", + " <line x1=\"8\" y1=\"0\" x2=\"8\" y2=\"25\" />\n", + " <line x1=\"9\" y1=\"0\" x2=\"9\" y2=\"25\" />\n", + " <line x1=\"11\" y1=\"0\" x2=\"11\" y2=\"25\" />\n", + " <line x1=\"12\" y1=\"0\" x2=\"12\" y2=\"25\" />\n", + " <line x1=\"14\" y1=\"0\" x2=\"14\" y2=\"25\" />\n", + " <line x1=\"15\" y1=\"0\" x2=\"15\" y2=\"25\" />\n", + " <line x1=\"16\" y1=\"0\" x2=\"16\" y2=\"25\" />\n", + " <line x1=\"18\" y1=\"0\" x2=\"18\" y2=\"25\" />\n", + " <line x1=\"19\" y1=\"0\" x2=\"19\" y2=\"25\" />\n", + " <line x1=\"21\" y1=\"0\" x2=\"21\" y2=\"25\" />\n", + " <line x1=\"22\" y1=\"0\" x2=\"22\" y2=\"25\" />\n", + " <line x1=\"23\" y1=\"0\" x2=\"23\" y2=\"25\" />\n", + " <line x1=\"25\" y1=\"0\" x2=\"25\" y2=\"25\" />\n", + " <line x1=\"26\" y1=\"0\" x2=\"26\" y2=\"25\" />\n", + " <line x1=\"28\" y1=\"0\" x2=\"28\" y2=\"25\" />\n", + " <line x1=\"29\" y1=\"0\" x2=\"29\" y2=\"25\" />\n", + " <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"25\" />\n", + " <line x1=\"32\" y1=\"0\" x2=\"32\" y2=\"25\" />\n", + " <line x1=\"33\" y1=\"0\" x2=\"33\" y2=\"25\" />\n", + " <line x1=\"35\" y1=\"0\" x2=\"35\" y2=\"25\" />\n", + " <line x1=\"36\" y1=\"0\" x2=\"36\" y2=\"25\" />\n", + " <line x1=\"38\" y1=\"0\" x2=\"38\" y2=\"25\" />\n", + " <line x1=\"39\" y1=\"0\" x2=\"39\" y2=\"25\" />\n", + " <line x1=\"40\" y1=\"0\" x2=\"40\" y2=\"25\" />\n", + " <line x1=\"42\" y1=\"0\" x2=\"42\" y2=\"25\" />\n", + " <line x1=\"43\" y1=\"0\" x2=\"43\" y2=\"25\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"0.0,0.0 43.65344710026747,0.0 43.65344710026747,25.412616514582485 0.0,25.412616514582485\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Text -->\n", + " <text x=\"21.826724\" y=\"45.412617\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >31</text>\n", + " <text x=\"63.653447\" y=\"12.706308\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,63.653447,12.706308)\">1</text>\n", + "\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"113\" y1=\"0\" x2=\"183\" y2=\"70\" style=\"stroke-width:2\" />\n", + " <line x1=\"113\" y1=\"78\" x2=\"183\" y2=\"148\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"113\" y1=\"0\" x2=\"113\" y2=\"78\" style=\"stroke-width:2\" />\n", + " <line x1=\"183\" y1=\"70\" x2=\"183\" y2=\"148\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"113.0,0.0 183.58823529411765,70.58823529411765 183.58823529411765,148.58823529411765 113.0,78.0\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"113\" y1=\"0\" x2=\"174\" y2=\"0\" style=\"stroke-width:2\" />\n", + " <line x1=\"183\" y1=\"70\" x2=\"244\" y2=\"70\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"113\" y1=\"0\" x2=\"183\" y2=\"70\" style=\"stroke-width:2\" />\n", + " <line x1=\"174\" y1=\"0\" x2=\"244\" y2=\"70\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"113.0,0.0 174.2,0.0 244.78823529411764,70.58823529411765 183.58823529411765,70.58823529411765\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"183\" y1=\"70\" x2=\"244\" y2=\"70\" style=\"stroke-width:2\" />\n", + " <line x1=\"183\" y1=\"148\" x2=\"244\" y2=\"148\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"183\" y1=\"70\" x2=\"183\" y2=\"148\" style=\"stroke-width:2\" />\n", + " <line x1=\"244\" y1=\"70\" x2=\"244\" y2=\"148\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"183.58823529411765,70.58823529411765 244.78823529411767,70.58823529411765 244.78823529411767,148.58823529411765 183.58823529411765,148.58823529411765\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Text -->\n", + " <text x=\"214.188235\" y=\"168.588235\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >51</text>\n", + " <text x=\"264.788235\" y=\"109.588235\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,264.788235,109.588235)\">65</text>\n", + " <text x=\"138.294118\" y=\"133.294118\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,138.294118,133.294118)\">100</text>\n", + "</svg>\n", + " </td>\n", + " </tr>\n", + "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>omega</span></div><div class='xr-var-dims'>(time, plev_3, lat, lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(1, 100, 65, 51), meta=np.ndarray></div><input id='attrs-1f250205-eac2-407c-addd-7d2a449cb688' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-1f250205-eac2-407c-addd-7d2a449cb688' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-9d80d20b-820e-4802-878c-ac5da2290a6f' class='xr-var-data-in' type='checkbox'><label for='data-9d80d20b-820e-4802-878c-ac5da2290a6f' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>standard_name :</span></dt><dd>omega</dd><dt><span>long_name :</span></dt><dd>vertical velocity</dd><dt><span>units :</span></dt><dd>Pa s-1</dd><dt><span>param :</span></dt><dd>8.2.0</dd></dl></div><div class='xr-var-data'><table>\n", + " <tr>\n", + " <td>\n", + " <table style=\"border-collapse: collapse;\">\n", + " <thead>\n", + " <tr>\n", + " <td> </td>\n", + " <th> Array </th>\n", + " <th> Chunk </th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " \n", + " <tr>\n", + " <th> Bytes </th>\n", + " <td> 39.20 MiB </td>\n", + " <td> 1.26 MiB </td>\n", + " </tr>\n", + " \n", + " <tr>\n", + " <th> Shape </th>\n", + " <td> (31, 100, 65, 51) </td>\n", + " <td> (1, 100, 65, 51) </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Dask graph </th>\n", + " <td colspan=\"2\"> 31 chunks in 77 graph layers </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Data type </th>\n", + " <td colspan=\"2\"> float32 numpy.ndarray </td>\n", + " </tr>\n", + " </tbody>\n", + " </table>\n", + " </td>\n", + " <td>\n", + " <svg width=\"407\" height=\"198\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"0\" y1=\"0\" x2=\"43\" y2=\"0\" style=\"stroke-width:2\" />\n", + " <line x1=\"0\" y1=\"25\" x2=\"43\" y2=\"25\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"25\" style=\"stroke-width:2\" />\n", + " <line x1=\"1\" y1=\"0\" x2=\"1\" y2=\"25\" />\n", + " <line x1=\"2\" y1=\"0\" x2=\"2\" y2=\"25\" />\n", + " <line x1=\"4\" y1=\"0\" x2=\"4\" y2=\"25\" />\n", + " <line x1=\"5\" y1=\"0\" x2=\"5\" y2=\"25\" />\n", + " <line x1=\"7\" y1=\"0\" x2=\"7\" y2=\"25\" />\n", + " <line x1=\"8\" y1=\"0\" x2=\"8\" y2=\"25\" />\n", + " <line x1=\"9\" y1=\"0\" x2=\"9\" y2=\"25\" />\n", + " <line x1=\"11\" y1=\"0\" x2=\"11\" y2=\"25\" />\n", + " <line x1=\"12\" y1=\"0\" x2=\"12\" y2=\"25\" />\n", + " <line x1=\"14\" y1=\"0\" x2=\"14\" y2=\"25\" />\n", + " <line x1=\"15\" y1=\"0\" x2=\"15\" y2=\"25\" />\n", + " <line x1=\"16\" y1=\"0\" x2=\"16\" y2=\"25\" />\n", + " <line x1=\"18\" y1=\"0\" x2=\"18\" y2=\"25\" />\n", + " <line x1=\"19\" y1=\"0\" x2=\"19\" y2=\"25\" />\n", + " <line x1=\"21\" y1=\"0\" x2=\"21\" y2=\"25\" />\n", + " <line x1=\"22\" y1=\"0\" x2=\"22\" y2=\"25\" />\n", + " <line x1=\"23\" y1=\"0\" x2=\"23\" y2=\"25\" />\n", + " <line x1=\"25\" y1=\"0\" x2=\"25\" y2=\"25\" />\n", + " <line x1=\"26\" y1=\"0\" x2=\"26\" y2=\"25\" />\n", + " <line x1=\"28\" y1=\"0\" x2=\"28\" y2=\"25\" />\n", + " <line x1=\"29\" y1=\"0\" x2=\"29\" y2=\"25\" />\n", + " <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"25\" />\n", + " <line x1=\"32\" y1=\"0\" x2=\"32\" y2=\"25\" />\n", + " <line x1=\"33\" y1=\"0\" x2=\"33\" y2=\"25\" />\n", + " <line x1=\"35\" y1=\"0\" x2=\"35\" y2=\"25\" />\n", + " <line x1=\"36\" y1=\"0\" x2=\"36\" y2=\"25\" />\n", + " <line x1=\"38\" y1=\"0\" x2=\"38\" y2=\"25\" />\n", + " <line x1=\"39\" y1=\"0\" x2=\"39\" y2=\"25\" />\n", + " <line x1=\"40\" y1=\"0\" x2=\"40\" y2=\"25\" />\n", + " <line x1=\"42\" y1=\"0\" x2=\"42\" y2=\"25\" />\n", + " <line x1=\"43\" y1=\"0\" x2=\"43\" y2=\"25\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"0.0,0.0 43.65344710026747,0.0 43.65344710026747,25.412616514582485 0.0,25.412616514582485\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Text -->\n", + " <text x=\"21.826724\" y=\"45.412617\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >31</text>\n", + " <text x=\"63.653447\" y=\"12.706308\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,63.653447,12.706308)\">1</text>\n", + "\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"113\" y1=\"0\" x2=\"183\" y2=\"70\" style=\"stroke-width:2\" />\n", + " <line x1=\"113\" y1=\"78\" x2=\"183\" y2=\"148\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"113\" y1=\"0\" x2=\"113\" y2=\"78\" style=\"stroke-width:2\" />\n", + " <line x1=\"183\" y1=\"70\" x2=\"183\" y2=\"148\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"113.0,0.0 183.58823529411765,70.58823529411765 183.58823529411765,148.58823529411765 113.0,78.0\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"113\" y1=\"0\" x2=\"174\" y2=\"0\" style=\"stroke-width:2\" />\n", + " <line x1=\"183\" y1=\"70\" x2=\"244\" y2=\"70\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"113\" y1=\"0\" x2=\"183\" y2=\"70\" style=\"stroke-width:2\" />\n", + " <line x1=\"174\" y1=\"0\" x2=\"244\" y2=\"70\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"113.0,0.0 174.2,0.0 244.78823529411764,70.58823529411765 183.58823529411765,70.58823529411765\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"183\" y1=\"70\" x2=\"244\" y2=\"70\" style=\"stroke-width:2\" />\n", + " <line x1=\"183\" y1=\"148\" x2=\"244\" y2=\"148\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"183\" y1=\"70\" x2=\"183\" y2=\"148\" style=\"stroke-width:2\" />\n", + " <line x1=\"244\" y1=\"70\" x2=\"244\" y2=\"148\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"183.58823529411765,70.58823529411765 244.78823529411767,70.58823529411765 244.78823529411767,148.58823529411765 183.58823529411765,148.58823529411765\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Text -->\n", + " <text x=\"214.188235\" y=\"168.588235\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >51</text>\n", + " <text x=\"264.788235\" y=\"109.588235\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,264.788235,109.588235)\">65</text>\n", + " <text x=\"138.294118\" y=\"133.294118\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,138.294118,133.294118)\">100</text>\n", + "</svg>\n", + " </td>\n", + " </tr>\n", + "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>geopot</span></div><div class='xr-var-dims'>(time, plev_3, lat, lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(1, 100, 65, 51), meta=np.ndarray></div><input id='attrs-8fdb266c-024f-4cc1-b166-587b8e938be4' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-8fdb266c-024f-4cc1-b166-587b8e938be4' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-c6623b9c-0917-46d2-a3a7-fd55cce74435' class='xr-var-data-in' type='checkbox'><label for='data-c6623b9c-0917-46d2-a3a7-fd55cce74435' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>standard_name :</span></dt><dd>geopotential</dd><dt><span>long_name :</span></dt><dd>geopotential at full level cell centre</dd><dt><span>units :</span></dt><dd>m2 s-2</dd><dt><span>param :</span></dt><dd>4.3.0</dd></dl></div><div class='xr-var-data'><table>\n", + " <tr>\n", + " <td>\n", + " <table style=\"border-collapse: collapse;\">\n", + " <thead>\n", + " <tr>\n", + " <td> </td>\n", + " <th> Array </th>\n", + " <th> Chunk </th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " \n", + " <tr>\n", + " <th> Bytes </th>\n", + " <td> 39.20 MiB </td>\n", + " <td> 1.26 MiB </td>\n", + " </tr>\n", + " \n", + " <tr>\n", + " <th> Shape </th>\n", + " <td> (31, 100, 65, 51) </td>\n", + " <td> (1, 100, 65, 51) </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Dask graph </th>\n", + " <td colspan=\"2\"> 31 chunks in 77 graph layers </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Data type </th>\n", + " <td colspan=\"2\"> float32 numpy.ndarray </td>\n", + " </tr>\n", + " </tbody>\n", + " </table>\n", + " </td>\n", + " <td>\n", + " <svg width=\"407\" height=\"198\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"0\" y1=\"0\" x2=\"43\" y2=\"0\" style=\"stroke-width:2\" />\n", + " <line x1=\"0\" y1=\"25\" x2=\"43\" y2=\"25\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"25\" style=\"stroke-width:2\" />\n", + " <line x1=\"1\" y1=\"0\" x2=\"1\" y2=\"25\" />\n", + " <line x1=\"2\" y1=\"0\" x2=\"2\" y2=\"25\" />\n", + " <line x1=\"4\" y1=\"0\" x2=\"4\" y2=\"25\" />\n", + " <line x1=\"5\" y1=\"0\" x2=\"5\" y2=\"25\" />\n", + " <line x1=\"7\" y1=\"0\" x2=\"7\" y2=\"25\" />\n", + " <line x1=\"8\" y1=\"0\" x2=\"8\" y2=\"25\" />\n", + " <line x1=\"9\" y1=\"0\" x2=\"9\" y2=\"25\" />\n", + " <line x1=\"11\" y1=\"0\" x2=\"11\" y2=\"25\" />\n", + " <line x1=\"12\" y1=\"0\" x2=\"12\" y2=\"25\" />\n", + " <line x1=\"14\" y1=\"0\" x2=\"14\" y2=\"25\" />\n", + " <line x1=\"15\" y1=\"0\" x2=\"15\" y2=\"25\" />\n", + " <line x1=\"16\" y1=\"0\" x2=\"16\" y2=\"25\" />\n", + " <line x1=\"18\" y1=\"0\" x2=\"18\" y2=\"25\" />\n", + " <line x1=\"19\" y1=\"0\" x2=\"19\" y2=\"25\" />\n", + " <line x1=\"21\" y1=\"0\" x2=\"21\" y2=\"25\" />\n", + " <line x1=\"22\" y1=\"0\" x2=\"22\" y2=\"25\" />\n", + " <line x1=\"23\" y1=\"0\" x2=\"23\" y2=\"25\" />\n", + " <line x1=\"25\" y1=\"0\" x2=\"25\" y2=\"25\" />\n", + " <line x1=\"26\" y1=\"0\" x2=\"26\" y2=\"25\" />\n", + " <line x1=\"28\" y1=\"0\" x2=\"28\" y2=\"25\" />\n", + " <line x1=\"29\" y1=\"0\" x2=\"29\" y2=\"25\" />\n", + " <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"25\" />\n", + " <line x1=\"32\" y1=\"0\" x2=\"32\" y2=\"25\" />\n", + " <line x1=\"33\" y1=\"0\" x2=\"33\" y2=\"25\" />\n", + " <line x1=\"35\" y1=\"0\" x2=\"35\" y2=\"25\" />\n", + " <line x1=\"36\" y1=\"0\" x2=\"36\" y2=\"25\" />\n", + " <line x1=\"38\" y1=\"0\" x2=\"38\" y2=\"25\" />\n", + " <line x1=\"39\" y1=\"0\" x2=\"39\" y2=\"25\" />\n", + " <line x1=\"40\" y1=\"0\" x2=\"40\" y2=\"25\" />\n", + " <line x1=\"42\" y1=\"0\" x2=\"42\" y2=\"25\" />\n", + " <line x1=\"43\" y1=\"0\" x2=\"43\" y2=\"25\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"0.0,0.0 43.65344710026747,0.0 43.65344710026747,25.412616514582485 0.0,25.412616514582485\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Text -->\n", + " <text x=\"21.826724\" y=\"45.412617\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >31</text>\n", + " <text x=\"63.653447\" y=\"12.706308\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,63.653447,12.706308)\">1</text>\n", + "\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"113\" y1=\"0\" x2=\"183\" y2=\"70\" style=\"stroke-width:2\" />\n", + " <line x1=\"113\" y1=\"78\" x2=\"183\" y2=\"148\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"113\" y1=\"0\" x2=\"113\" y2=\"78\" style=\"stroke-width:2\" />\n", + " <line x1=\"183\" y1=\"70\" x2=\"183\" y2=\"148\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"113.0,0.0 183.58823529411765,70.58823529411765 183.58823529411765,148.58823529411765 113.0,78.0\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"113\" y1=\"0\" x2=\"174\" y2=\"0\" style=\"stroke-width:2\" />\n", + " <line x1=\"183\" y1=\"70\" x2=\"244\" y2=\"70\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"113\" y1=\"0\" x2=\"183\" y2=\"70\" style=\"stroke-width:2\" />\n", + " <line x1=\"174\" y1=\"0\" x2=\"244\" y2=\"70\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"113.0,0.0 174.2,0.0 244.78823529411764,70.58823529411765 183.58823529411765,70.58823529411765\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"183\" y1=\"70\" x2=\"244\" y2=\"70\" style=\"stroke-width:2\" />\n", + " <line x1=\"183\" y1=\"148\" x2=\"244\" y2=\"148\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"183\" y1=\"70\" x2=\"183\" y2=\"148\" style=\"stroke-width:2\" />\n", + " <line x1=\"244\" y1=\"70\" x2=\"244\" y2=\"148\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"183.58823529411765,70.58823529411765 244.78823529411767,70.58823529411765 244.78823529411767,148.58823529411765 183.58823529411765,148.58823529411765\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Text -->\n", + " <text x=\"214.188235\" y=\"168.588235\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >51</text>\n", + " <text x=\"264.788235\" y=\"109.588235\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,264.788235,109.588235)\">65</text>\n", + " <text x=\"138.294118\" y=\"133.294118\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,138.294118,133.294118)\">100</text>\n", + "</svg>\n", + " </td>\n", + " </tr>\n", + "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>vor</span></div><div class='xr-var-dims'>(time, plev_3, lat, lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(1, 100, 65, 51), meta=np.ndarray></div><input id='attrs-dedc0cea-ed09-469f-9c1b-99bbd7e76200' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-dedc0cea-ed09-469f-9c1b-99bbd7e76200' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-704f90f2-f8d8-43f5-9ead-6891797996aa' class='xr-var-data-in' type='checkbox'><label for='data-704f90f2-f8d8-43f5-9ead-6891797996aa' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>standard_name :</span></dt><dd>relative_vorticity_on_cells</dd><dt><span>long_name :</span></dt><dd>Vorticity</dd><dt><span>units :</span></dt><dd>s-1</dd><dt><span>param :</span></dt><dd>12.2.0</dd></dl></div><div class='xr-var-data'><table>\n", + " <tr>\n", + " <td>\n", + " <table style=\"border-collapse: collapse;\">\n", + " <thead>\n", + " <tr>\n", + " <td> </td>\n", + " <th> Array </th>\n", + " <th> Chunk </th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " \n", + " <tr>\n", + " <th> Bytes </th>\n", + " <td> 39.20 MiB </td>\n", + " <td> 1.26 MiB </td>\n", + " </tr>\n", + " \n", + " <tr>\n", + " <th> Shape </th>\n", + " <td> (31, 100, 65, 51) </td>\n", + " <td> (1, 100, 65, 51) </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Dask graph </th>\n", + " <td colspan=\"2\"> 31 chunks in 77 graph layers </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Data type </th>\n", + " <td colspan=\"2\"> float32 numpy.ndarray </td>\n", + " </tr>\n", + " </tbody>\n", + " </table>\n", + " </td>\n", + " <td>\n", + " <svg width=\"407\" height=\"198\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"0\" y1=\"0\" x2=\"43\" y2=\"0\" style=\"stroke-width:2\" />\n", + " <line x1=\"0\" y1=\"25\" x2=\"43\" y2=\"25\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"25\" style=\"stroke-width:2\" />\n", + " <line x1=\"1\" y1=\"0\" x2=\"1\" y2=\"25\" />\n", + " <line x1=\"2\" y1=\"0\" x2=\"2\" y2=\"25\" />\n", + " <line x1=\"4\" y1=\"0\" x2=\"4\" y2=\"25\" />\n", + " <line x1=\"5\" y1=\"0\" x2=\"5\" y2=\"25\" />\n", + " <line x1=\"7\" y1=\"0\" x2=\"7\" y2=\"25\" />\n", + " <line x1=\"8\" y1=\"0\" x2=\"8\" y2=\"25\" />\n", + " <line x1=\"9\" y1=\"0\" x2=\"9\" y2=\"25\" />\n", + " <line x1=\"11\" y1=\"0\" x2=\"11\" y2=\"25\" />\n", + " <line x1=\"12\" y1=\"0\" x2=\"12\" y2=\"25\" />\n", + " <line x1=\"14\" y1=\"0\" x2=\"14\" y2=\"25\" />\n", + " <line x1=\"15\" y1=\"0\" x2=\"15\" y2=\"25\" />\n", + " <line x1=\"16\" y1=\"0\" x2=\"16\" y2=\"25\" />\n", + " <line x1=\"18\" y1=\"0\" x2=\"18\" y2=\"25\" />\n", + " <line x1=\"19\" y1=\"0\" x2=\"19\" y2=\"25\" />\n", + " <line x1=\"21\" y1=\"0\" x2=\"21\" y2=\"25\" />\n", + " <line x1=\"22\" y1=\"0\" x2=\"22\" y2=\"25\" />\n", + " <line x1=\"23\" y1=\"0\" x2=\"23\" y2=\"25\" />\n", + " <line x1=\"25\" y1=\"0\" x2=\"25\" y2=\"25\" />\n", + " <line x1=\"26\" y1=\"0\" x2=\"26\" y2=\"25\" />\n", + " <line x1=\"28\" y1=\"0\" x2=\"28\" y2=\"25\" />\n", + " <line x1=\"29\" y1=\"0\" x2=\"29\" y2=\"25\" />\n", + " <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"25\" />\n", + " <line x1=\"32\" y1=\"0\" x2=\"32\" y2=\"25\" />\n", + " <line x1=\"33\" y1=\"0\" x2=\"33\" y2=\"25\" />\n", + " <line x1=\"35\" y1=\"0\" x2=\"35\" y2=\"25\" />\n", + " <line x1=\"36\" y1=\"0\" x2=\"36\" y2=\"25\" />\n", + " <line x1=\"38\" y1=\"0\" x2=\"38\" y2=\"25\" />\n", + " <line x1=\"39\" y1=\"0\" x2=\"39\" y2=\"25\" />\n", + " <line x1=\"40\" y1=\"0\" x2=\"40\" y2=\"25\" />\n", + " <line x1=\"42\" y1=\"0\" x2=\"42\" y2=\"25\" />\n", + " <line x1=\"43\" y1=\"0\" x2=\"43\" y2=\"25\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"0.0,0.0 43.65344710026747,0.0 43.65344710026747,25.412616514582485 0.0,25.412616514582485\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Text -->\n", + " <text x=\"21.826724\" y=\"45.412617\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >31</text>\n", + " <text x=\"63.653447\" y=\"12.706308\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,63.653447,12.706308)\">1</text>\n", + "\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"113\" y1=\"0\" x2=\"183\" y2=\"70\" style=\"stroke-width:2\" />\n", + " <line x1=\"113\" y1=\"78\" x2=\"183\" y2=\"148\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"113\" y1=\"0\" x2=\"113\" y2=\"78\" style=\"stroke-width:2\" />\n", + " <line x1=\"183\" y1=\"70\" x2=\"183\" y2=\"148\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"113.0,0.0 183.58823529411765,70.58823529411765 183.58823529411765,148.58823529411765 113.0,78.0\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"113\" y1=\"0\" x2=\"174\" y2=\"0\" style=\"stroke-width:2\" />\n", + " <line x1=\"183\" y1=\"70\" x2=\"244\" y2=\"70\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"113\" y1=\"0\" x2=\"183\" y2=\"70\" style=\"stroke-width:2\" />\n", + " <line x1=\"174\" y1=\"0\" x2=\"244\" y2=\"70\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"113.0,0.0 174.2,0.0 244.78823529411764,70.58823529411765 183.58823529411765,70.58823529411765\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"183\" y1=\"70\" x2=\"244\" y2=\"70\" style=\"stroke-width:2\" />\n", + " <line x1=\"183\" y1=\"148\" x2=\"244\" y2=\"148\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"183\" y1=\"70\" x2=\"183\" y2=\"148\" style=\"stroke-width:2\" />\n", + " <line x1=\"244\" y1=\"70\" x2=\"244\" y2=\"148\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"183.58823529411765,70.58823529411765 244.78823529411767,70.58823529411765 244.78823529411767,148.58823529411765 183.58823529411765,148.58823529411765\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Text -->\n", + " <text x=\"214.188235\" y=\"168.588235\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >51</text>\n", + " <text x=\"264.788235\" y=\"109.588235\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,264.788235,109.588235)\">65</text>\n", + " <text x=\"138.294118\" y=\"133.294118\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,138.294118,133.294118)\">100</text>\n", + "</svg>\n", + " </td>\n", + " </tr>\n", + "</table></div></li></ul></div></li><li class='xr-section-item'><input id='section-89179ade-fcf1-4b8f-a8eb-ce848e03fdc5' class='xr-section-summary-in' type='checkbox' ><label for='section-89179ade-fcf1-4b8f-a8eb-ce848e03fdc5' class='xr-section-summary' >Indexes: <span>(5)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-index-name'><div>time</div></div><div class='xr-index-preview'>PandasIndex</div><div></div><input id='index-aaef74a2-af2f-4d79-9f41-83369d4521b4' class='xr-index-data-in' type='checkbox'/><label for='index-aaef74a2-af2f-4d79-9f41-83369d4521b4' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(Index([ 1.5, 1.75, 2.0, 2.25, 2.5, 2.75, 3.0, 3.25, 3.5, 3.75, 4.0, 4.25,\n", + " 4.5, 4.75, 5.0, 5.25, 5.5, 5.75, 6.0, 6.25, 6.5, 6.75, 7.0, 7.25,\n", + " 7.5, 7.75, 8.0, 8.25, 8.5, 8.75, 9.0],\n", + " dtype='float64', name='time'))</pre></div></li><li class='xr-var-item'><div class='xr-index-name'><div>lon</div></div><div class='xr-index-preview'>PandasIndex</div><div></div><input id='index-ef250a4a-c0e3-4093-9933-ed09df25a1d4' class='xr-index-data-in' type='checkbox'/><label for='index-ef250a4a-c0e3-4093-9933-ed09df25a1d4' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(Index([12.5, 13.5, 14.5, 15.5, 16.5, 17.5, 18.5, 19.5, 20.5, 21.5, 22.5, 23.5,\n", + " 24.5, 25.5, 26.5, 27.5, 28.5, 29.5, 30.5, 31.5, 32.5, 33.5, 34.5, 35.5,\n", + " 36.5, 37.5, 38.5, 39.5, 40.5, 41.5, 42.5, 43.5, 44.5, 45.5, 46.5, 47.5,\n", + " 48.5, 49.5, 50.5, 51.5, 52.5, 53.5, 54.5, 55.5, 56.5, 57.5, 58.5, 59.5,\n", + " 60.5, 61.5, 62.5],\n", + " dtype='float64', name='lon'))</pre></div></li><li class='xr-var-item'><div class='xr-index-name'><div>lat</div></div><div class='xr-index-preview'>PandasIndex</div><div></div><input id='index-ef84a129-17c2-4402-aaad-7c4158a2ba6f' class='xr-index-data-in' type='checkbox'/><label for='index-ef84a129-17c2-4402-aaad-7c4158a2ba6f' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(Index([15.5, 16.5, 17.5, 18.5, 19.5, 20.5, 21.5, 22.5, 23.5, 24.5, 25.5, 26.5,\n", + " 27.5, 28.5, 29.5, 30.5, 31.5, 32.5, 33.5, 34.5, 35.5, 36.5, 37.5, 38.5,\n", + " 39.5, 40.5, 41.5, 42.5, 43.5, 44.5, 45.5, 46.5, 47.5, 48.5, 49.5, 50.5,\n", + " 51.5, 52.5, 53.5, 54.5, 55.5, 56.5, 57.5, 58.5, 59.5, 60.5, 61.5, 62.5,\n", + " 63.5, 64.5, 65.5, 66.5, 67.5, 68.5, 69.5, 70.5, 71.5, 72.5, 73.5, 74.5,\n", + " 75.5, 76.5, 77.5, 78.5, 79.5],\n", + " dtype='float64', name='lat'))</pre></div></li><li class='xr-var-item'><div class='xr-index-name'><div>height_2</div></div><div class='xr-index-preview'>PandasIndex</div><div></div><input id='index-d7edf10f-a758-493a-970b-5d330f35f239' class='xr-index-data-in' type='checkbox'/><label for='index-d7edf10f-a758-493a-970b-5d330f35f239' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(Index([2.0], dtype='float64', name='height_2'))</pre></div></li><li class='xr-var-item'><div class='xr-index-name'><div>plev_3</div></div><div class='xr-index-preview'>PandasIndex</div><div></div><input id='index-9c8c9175-8962-4809-b7ba-02e9acb57787' class='xr-index-data-in' type='checkbox'/><label for='index-9c8c9175-8962-4809-b7ba-02e9acb57787' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(Index([ 1000.0, 2000.0, 3000.0, 4000.0, 5000.0, 6000.0, 7000.0,\n", + " 8000.0, 9000.0, 10000.0, 11000.0, 12000.0, 13000.0, 14000.0,\n", + " 15000.0, 16000.0, 17000.0, 18000.0, 19000.0, 20000.0, 21000.0,\n", + " 22000.0, 23000.0, 24000.0, 25000.0, 26000.0, 27000.0, 28000.0,\n", + " 29000.0, 30000.0, 31000.0, 32000.0, 33000.0, 34000.0, 35000.0,\n", + " 36000.0, 37000.0, 38000.0, 39000.0, 40000.0, 41000.0, 42000.0,\n", + " 43000.0, 44000.0, 45000.0, 46000.0, 47000.0, 48000.0, 49000.0,\n", + " 50000.0, 51000.0, 52000.0, 53000.0, 54000.0, 55000.0, 56000.0,\n", + " 57000.0, 58000.0, 59000.0, 60000.0, 61000.0, 62000.0, 63000.0,\n", + " 64000.0, 65000.0, 66000.0, 67000.0, 68000.0, 69000.0, 70000.0,\n", + " 71000.0, 72000.0, 73000.0, 74000.0, 75000.0, 76000.0, 77000.0,\n", + " 78000.0, 79000.0, 80000.0, 81000.0, 82000.0, 83000.0, 84000.0,\n", + " 85000.0, 86000.0, 87000.0, 88000.0, 89000.0, 90000.0, 91000.0,\n", + " 92000.0, 93000.0, 94000.0, 95000.0, 96000.0, 97000.0, 98000.0,\n", + " 99000.0, 100000.0],\n", + " dtype='float64', name='plev_3'))</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-fe0ab324-58c3-44d7-b4f8-c4d0afa0cf97' class='xr-section-summary-in' type='checkbox' ><label for='section-fe0ab324-58c3-44d7-b4f8-c4d0afa0cf97' class='xr-section-summary' >Attributes: <span>(10)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><dl class='xr-attrs'><dt><span>CDI :</span></dt><dd>Climate Data Interface version 2.0.5 (https://mpimet.mpg.de/cdi)</dd><dt><span>Conventions :</span></dt><dd>CF-1.6</dd><dt><span>source :</span></dt><dd>@</dd><dt><span>institution :</span></dt><dd>Max Planck Institute for Meteorology/Deutscher Wetterdienst</dd><dt><span>title :</span></dt><dd>ICON simulation</dd><dt><span>history :</span></dt><dd>Thu Jul 14 23:02:03 2022: cdo -P 32 remapcon,/work/bb1152/Module_A/A6_CyclEx/b380782_Christoph/icon-climxtreme/postprocessing_scripts/grid_info_1x1.txt icon-atm2d_ML_reg_20210101T000000Z.nc icon-atm2d_ML_reg_con_20210101T000000Z.nc\n", + "Thu Jul 14 23:01:58 2022: cdo -P 38 remap,/work/bb1152/Module_A/A6_CyclEx/b380782_Christoph/icon-climxtreme/postprocessing_scripts/grid_info_2km.txt,remapweights_2km.nc ../icon-atm2d_ML_20210101T000000Z.nc icon-atm2d_ML_reg_20210101T000000Z.nc\n", + "/home/b/b380906/icon-on-jet/bin/icon at 20220714 143547</dd><dt><span>references :</span></dt><dd>see MPIM/DWD publications</dd><dt><span>comment :</span></dt><dd>Nicole Knopf (b380906) on l40462 (Linux 4.18.0-305.25.1.el8_4.x86_64 x86_64)</dd><dt><span>cdo_openmp_thread_number :</span></dt><dd>32</dd><dt><span>CDO :</span></dt><dd>Climate Data Operators version 2.0.5 (https://mpimet.mpg.de/cdo)</dd></dl></div></li></ul></div></div>" + ], + "text/plain": [ + "<xarray.Dataset>\n", + "Dimensions: (time: 31, lon: 51, lat: 65, height_2: 1, plev_3: 100)\n", + "Coordinates:\n", + " * time (time) float64 1.5 1.75 2.0 2.25 2.5 ... 8.0 8.25 8.5 8.75 9.0\n", + " * lon (lon) float64 12.5 13.5 14.5 15.5 16.5 ... 59.5 60.5 61.5 62.5\n", + " * lat (lat) float64 15.5 16.5 17.5 18.5 19.5 ... 76.5 77.5 78.5 79.5\n", + " * height_2 (height_2) float64 2.0\n", + " * plev_3 (plev_3) float64 1e+03 2e+03 3e+03 ... 9.8e+04 9.9e+04 1e+05\n", + "Data variables: (12/14)\n", + " pres_sfc (time, lat, lon) float32 dask.array<chunksize=(1, 65, 51), meta=np.ndarray>\n", + " pres_msl (time, lat, lon) float32 dask.array<chunksize=(1, 65, 51), meta=np.ndarray>\n", + " tot_prec (time, lat, lon) float32 dask.array<chunksize=(1, 65, 51), meta=np.ndarray>\n", + " qhfl_s (time, lat, lon) float32 dask.array<chunksize=(1, 65, 51), meta=np.ndarray>\n", + " t_2m (time, height_2, lat, lon) float32 dask.array<chunksize=(1, 1, 65, 51), meta=np.ndarray>\n", + " qv_2m (time, height_2, lat, lon) float32 dask.array<chunksize=(1, 1, 65, 51), meta=np.ndarray>\n", + " ... ...\n", + " qv (time, plev_3, lat, lon) float32 dask.array<chunksize=(1, 100, 65, 51), meta=np.ndarray>\n", + " u (time, plev_3, lat, lon) float32 dask.array<chunksize=(1, 100, 65, 51), meta=np.ndarray>\n", + " v (time, plev_3, lat, lon) float32 dask.array<chunksize=(1, 100, 65, 51), meta=np.ndarray>\n", + " omega (time, plev_3, lat, lon) float32 dask.array<chunksize=(1, 100, 65, 51), meta=np.ndarray>\n", + " geopot (time, plev_3, lat, lon) float32 dask.array<chunksize=(1, 100, 65, 51), meta=np.ndarray>\n", + " vor (time, plev_3, lat, lon) float32 dask.array<chunksize=(1, 100, 65, 51), meta=np.ndarray>\n", + "Attributes:\n", + " CDI: Climate Data Interface version 2.0.5 (https://...\n", + " Conventions: CF-1.6\n", + " source: @\n", + " institution: Max Planck Institute for Meteorology/Deutscher...\n", + " title: ICON simulation\n", + " history: Thu Jul 14 23:02:03 2022: cdo -P 32 remapcon,/...\n", + " references: see MPIM/DWD publications\n", + " comment: Nicole Knopf (b380906) on l40462 (Linux 4.18.0...\n", + " cdo_openmp_thread_number: 32\n", + " CDO: Climate Data Operators version 2.0.5 (https://..." + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Select subdomain without meridional boundaries\n", + "\n", + "latmin = 15 # idea: could use the minimum domain required in terms of lat here\n", + "latmax = 80 # should be reduced to 65; at higher latitudes regridded data is broken due to skewed triangles in original grid\n", + "\n", + "# Do not cut the west-east sides of the domains as the cyclone\n", + "# moves periodically in the zonal direction! \n", + "ds = ds.sel(lat=slice(latmin,latmax))\n", + "ds" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "ncompsteps = len(ds.time)" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "31" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ncompsteps" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "import copy" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# Define some constant values\n", + "rearth = 6.356766E+06 # earth's radius\n", + "R = 287.04 # gas constant\n", + "C_p = 1005.7 # specific heat capacity\n", + "g = 9.81 # gravitational acceleration\n", + "LV = 2.501E+06 # latent heat of vaporization at 0C\n", + "f = 1.0E-04 # Coriolis parameter\n", + "h_in_sec = 3600 # 1 hour in seconds\n", + "\n", + "##########################################################################\n", + "# IMPORTANT: Set an upper integration level geopotential height (p2) #\n", + "##########################################################################\n", + "# --------------------------------------------\n", + "lev = 4 \n", + "#lev = 4: 50hPa in our intepolated input data\n", + "#lev = 9: 100hPa in our intepolated input data\n", + "# --------------------------------------------" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# Read the data from model outputs\n", + "\n", + "def get_model_data(ds_temp):\n", + "\n", + " lons = ds_temp['lon'][:].to_numpy()\n", + " lats = ds_temp['lat'][:].to_numpy()\n", + " time = ds_temp['time'][:].to_numpy()\n", + " level = ds_temp['plev_3'][:].to_numpy() # pressure [Pa]\n", + " t = ds_temp['temp'][:].to_numpy() # temperature [K]\n", + " shu = ds_temp['qv'][:].to_numpy() # specific humidity [kg/kg]\n", + " u = ds_temp['u'][:].to_numpy() # u wind [m/s]\n", + " v = ds_temp['v'][:].to_numpy() # v wind [m/s]\n", + "\n", + " omega = ds_temp['omega'][:].to_numpy() # vertical velocity [Pa/s]\n", + " vor = ds_temp['vor'][:].to_numpy() # relative vorticity\n", + " geopot = ds_temp['geopot'][:].to_numpy() \n", + " p_sfc = ds_temp['pres_sfc'][:].to_numpy()\n", + " t_2m = ds_temp['t_2m'][:,0,:,:].to_numpy()\n", + " shu_2m = ds_temp['qv_2m'][:,0,:,:].to_numpy()\n", + " mslp = ds_temp['pres_msl'][:].to_numpy()\n", + " # CB; 2024-01-25. adjusted this. care needs to be taken of timesteps, if they differ between input data and calculation\n", + " # e.g. summing of prec_rate over hourly input to obtain prec_rate per 6 hours\n", + " precip = ds_temp['prec_rate'][:].to_numpy()\n", + " evapor_per_s = ds_temp['qhfl_s'][:].to_numpy() # surface moisture flux [Kg m-2 s-1]\n", + "\n", + " #dTdt_nwp_phy = ds_temp['ddt_temp_totnwpphy'][:].to_numpy() # total temperature tendency from NWP physics [K/s]\n", + " # --> Diabatic heating \n", + " # Note the unit. According to first law of thermodynamis:\n", + " # dT/dt = dp/dt / ro / C_p + dQ/dt / C_p \n", + " # So this term should be the complete second term (dQ/dt)/(C_p),\n", + " # not just the dQ/dt.\n", + "\n", + " # Dimensions of time-lon-lat-plvl and time interval\n", + " ntimes = len(time)\n", + " nlevs = len(level)\n", + " nlons = len(lons)\n", + " nlats = len(lats)\n", + "\n", + " # get pressure levels\n", + " p_levs = get_p_levs(level,ntimes,nlevs,nlats,nlons)\n", + " \n", + " return lons, lats, time, level, t, shu, u, v, omega, vor, geopot, p_sfc, t_2m, shu_2m, mslp, precip, evapor_per_s, ntimes, nlevs, nlons, nlats, p_levs" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# Derive other variables that are not directly output from the model:\n", + "\n", + "def get_derived_vars(t,p_levs,shu,t_2m,shu_2m,p_sfc,geopot,evapor_per_s, ntimes, nlons, nlats):\n", + "\n", + " theta = get_theta(t,p_levs)\n", + " T_v = get_T_v(t,shu)\n", + "\n", + " T_v_sfc = get_T_v(t_2m,shu_2m)\n", + " ro_sfc = get_ro_sfc(T_v_sfc,p_sfc, ntimes, nlons, nlats)\n", + "\n", + " # Convert precipitation and evaporation to the values over the 1-h/6-h intervals\n", + " # NOTE THAT THIS IS EXPLICITLY FOR ICON AS WE WANT ACCUMULATED PRECIP AND EVAPOR OVER THE 1-H INTERVALS\n", + " # In ICON output we have accumulated total precipitation since the start of the model run\n", + "\n", + " # Evaporation \n", + " evapor = dt * h_in_sec * evapor_per_s #--> evapor: [Kg m-2]\n", + " \n", + " # get geopotential of upper level\n", + " geopot_upper_int_lvl = geopot[:,lev,:,:]\n", + " \n", + " return theta, T_v, T_v_sfc, ro_sfc, evapor, geopot_upper_int_lvl" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + " \n", + "# Below we start calculating the terms in the PTE equations \n" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "def set_nan_values(t,shu,u,v,omega):\n", + "\n", + " na_value = -1000.\n", + "\n", + " t[t<na_value] = np.nan\n", + " shu[shu<na_value] = np.nan \n", + " u[u<na_value] = np.nan\n", + " v[v<na_value] = np.nan\n", + " omega[omega<na_value] = np.nan\n", + " \n", + " return t,shu,u,v,omega" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "## [Eq. 1] dp_sfc / dt = ro_sfc * (dfi / dt) + ro_sfc * (vertical integratl of dT / dt) + g*(E-P) + res \n" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "def get_dp_sfc_dt(p_sfc,ntimes,nlats,nlons):\n", + " # calculate the pressure drop over the applied timestep\n", + "\n", + " dp_sfc_dt = np.full((ntimes,nlats,nlons), np.nan, dtype=float)\n", + " for ti in range(1,ntimes):\n", + " dp_sfc_dt[ti,:,:] = (p_sfc[ti,:,:]-p_sfc[ti-1,:,:])\n", + " \n", + " return dp_sfc_dt" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "def get_dfi_upl_dt(ro_sfc,geopot_upper_int_lvl,ntimes,nlats,nlons):\n", + "\n", + " dfi_upl_dt = np.full((ntimes,nlats,nlons),np.nan,dtype=float)\n", + " for ti in range(1,ntimes):\n", + " dfi_upl_dt[ti,:,:] = ro_sfc[ti,:,:] * (geopot_upper_int_lvl[ti,:,:]-geopot_upper_int_lvl[ti-1,:,:])\n", + " \n", + " return dfi_upl_dt" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "def get_ITT(T_v,ro_sfc,ntimes,level,nlevs,nlats,nlons,p_levs):\n", + "\n", + " dTv_dt = np.full((ntimes,nlevs,nlats,nlons),np.nan,dtype=float)\n", + "\n", + " for ti in range(1,ntimes):\n", + " dTv_dt[ti,:,:,:] = (T_v[ti,:,:,:] - T_v[ti-1,:,:,:]) / (dt * h_in_sec) #unit K s-1\n", + "\n", + " \n", + " # Since the vertical integral is taken from the sfc to p2 (upper level), here I mask all levels above p2:\n", + " itt_data = np.ma.masked_where(p_levs<level[lev], dTv_dt)\n", + " #itt_data = np.ma.masked_where(p_levs>p_sfc, dTv_dt)\n", + " #itt_datanan0 = itt_data.filled(0.0)\n", + " itt_datanan0 = np.nan_to_num(itt_data.filled(0.0), copy=False, nan=0.0)\n", + " ######### Set all nan values into zero! #########################\n", + " # This is important in case there're nan values in the middle layers between sfc and p2. \n", + " # Nan values with np.trapz may lead to a wrongly-calculated dp (infinitesimal step widths in the vertical integral) \n", + " # for the layers above/below the nan level. \n", + " # Instead, setting nan to zero means having zero contribution of that layer, and the next level can still be \n", + " # counted using the true, correspoinding dp. \n", + "\n", + " #################################################################\n", + "\n", + " # We calculate the vertical integral @ each timestep-lat-lon\n", + " ITT = logp_integral(itt_datanan0,np.log(level),ro_sfc,ntimes,nlats,nlons)\n", + " \n", + " return ITT" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "def get_emp(evapor,precip):\n", + "\n", + " emp = evapor - precip\n", + " emp = g * emp\n", + " \n", + " return emp" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## [Eq. 2] ITT = TADV + VMT + DIAB + RES " + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "from netCDF4 import Dataset as nc\n", + "##########################\n", + "# Write out the PTE data \n", + "##########################\n", + "\n", + "### ONLY POSSIBLE IF FILE DOES NOT EXIST YET ###\n", + "\n", + "def write_data_to_netcdf(ds_temp, lons, lats, time, level, ntimes, nlats, nlons, mslp,\n", + " dp_sfc_dt, dfi_upl_dt, EP_avg, ITT, PTEeq1_RES, TADV_avg, VMT_avg, DIAB_res,\n", + " compute_DIAB=False, DIABcomp_avg=None, ITTeq2_RES=None):\n", + "\n", + " outpath = \"/work/bb1152/Module_A/A6_CyclEx/b380782_Christoph/temp_PTE_out/PTE/maps/\"\n", + " outfile = \"PTE_map_for_\"+exp+\"_\"+data_dt+\"_\"+data_res+\"_upper\"+str(int(level[lev]/100))+\"hPa_day\"+str(ds_temp.time.data[-1])+\".nc\"\n", + "\n", + " #Creating a netcdf dataset\n", + " fout = nc(outpath+outfile, 'w', format='NETCDF4')\n", + "\n", + " #Specifying dimenstions\n", + " fout.createDimension('lon', nlons)\n", + " fout.createDimension('lat', nlats)\n", + " #fout.createDimension('lev', nlevs)\n", + " fout.createDimension('time', 1)\n", + "\n", + " #Building variables\n", + " lon_out = fout.createVariable('lon', 'f4', 'lon')\n", + " lat_out = fout.createVariable('lat', 'f4', 'lat') \n", + " #lev_out = fout.createVariable('lev', 'f4', 'lev')\n", + " time_out = fout.createVariable('time', 'f4', 'time') \n", + " mslp_out = fout.createVariable('mslp', 'f4', ('time', 'lat', 'lon'))\n", + " # --------Eq.1--------\n", + " dp_out = fout.createVariable('dpsfc_dt', 'f4', ('time', 'lat', 'lon'))\n", + " dfi_out = fout.createVariable('dfi_dt', 'f4', ('time', 'lat', 'lon'))\n", + " ep_out = fout.createVariable('EP', 'f4', ('time', 'lat', 'lon'))\n", + " itt_out = fout.createVariable('ITT', 'f4', ('time', 'lat', 'lon'))\n", + " eq1res_out = fout.createVariable('Eq1res', 'f4', ('time', 'lat', 'lon'))\n", + " # --------Eq.2--------\n", + " tadv_out = fout.createVariable('TADV', 'f4', ('time', 'lat', 'lon'))\n", + " vmt_out = fout.createVariable('VMT', 'f4', ('time', 'lat', 'lon'))\n", + " if compute_DIAB: \n", + " diab_comp_out = fout.createVariable('DIABcomp', 'f4', ('time', 'lat', 'lon'))\n", + " eq2res_out = fout.createVariable('Eq2res', 'f4', ('time', 'lat', 'lon'))\n", + " diab_res_out = fout.createVariable('DIABres', 'f4', ('time', 'lat', 'lon'))\n", + " # --------Extra terms--------\n", + "\n", + "\n", + " #Passing data into variables\n", + " lon_out[:] = lons\n", + " lat_out[:] = lats\n", + " #lev_out[:] = level\n", + " time_out[:] = time[1]\n", + " mslp_out[:,:,:] = mslp[1,:,:]\n", + "\n", + " # Eq.1:\n", + " dp_out[:,:,:] = dp_sfc_dt[:,:]\n", + " dfi_out[:,:,:] = dfi_upl_dt[:,:]\n", + " ep_out[:,:,:] = EP_avg[:,:,:]\n", + " itt_out[:,:,:] = ITT[:,:]\n", + " eq1res_out[:,:,:] = PTEeq1_RES[:,:,:]\n", + "\n", + " # Eq.2:\n", + " tadv_out[:,:,:] = TADV_avg[:,:,:]\n", + " vmt_out[:,:,:] = VMT_avg[:,:,:] \n", + " if compute_DIAB:\n", + " diab_comp_out[:,:,:] = DIABcomp_avg[0:ntimes,:,:]\n", + " eq2res_out[:,:,:] = ITTeq2_RES[0:ntimes,:,:]\n", + " diab_res_out[:,:,:] = DIAB_res[:,:,:]\n", + "\n", + " #Add global attributes\n", + " fout.description = \"PTE data\"\n", + "\n", + " #Add local attributes to variable instances\n", + " lon_out.long_name = 'longitude'\n", + " lon_out.units = 'degrees east'\n", + " lat_out.long_name = 'latitude'\n", + " lat_out.units = 'degrees north'\n", + " #lev_out.long_name = 'pressure level'\n", + " #lev_out.units = 'Pa'\n", + " time_out.long_name= 'time'\n", + " #time_out.units = 'days since Jan 01, 0001'\n", + " mslp_out.long_name = 'mean sea level pressure'\n", + " # Eq.1:\n", + " dp_out.long_name = 'surface pressure tendency'\n", + " dp_out.units = 'Pa/'+str(dt)+'h'\n", + " dfi_out.long_name = 'contribution by change in geopotential at the upper boundary'\n", + " dfi_out.units = 'Pa/'+str(dt)+'h'\n", + " ep_out.long_name = 'mass change by precipitation/evaporation'\n", + " ep_out.units = 'Pa/'+str(dt)+'h'\n", + " itt_out.long_name = 'vertically integrated virtual temperature tendency'\n", + " itt_out.units = 'Pa/'+str(dt)+'h'\n", + " eq1res_out.long_name= 'residual of PTE eq1'\n", + " eq1res_out.units = 'Pa/'+str(dt)+'h'\n", + "\n", + " # Eq.2:\n", + " tadv_out.long_name= 'contribution by horizontal temperature advection'\n", + " tadv_out.units = 'Pa/'+str(dt)+'h'\n", + " vmt_out.long_name = 'contribution by vertical motion'\n", + " vmt_out.units = 'Pa/'+str(dt)+'h'\n", + " if compute_DIAB:\n", + " diab_comp_out.long_name = 'contribution by diabatic processes (computed)'\n", + " diab_comp_out.units = 'Pa/'+str(dt)+'h'\n", + " eq2res_out.long_name = 'Eq.2 residual (DIAB is calculated explicitly)'\n", + " eq2res_out.units = 'Pa/'+str(dt)+'h'\n", + " diab_res_out.long_name= 'Contribution by diabatic processes (residual)'\n", + " diab_res_out.units = 'Pa/'+str(dt)+'h'\n", + "\n", + " #Closing the dataset\n", + " fout.close()\n", + "\n", + " print('Finished writing data.')\n", + "\n", + " return" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "def run_PTE_calc(ds,itime):\n", + "\n", + " print('Calculation for timestep '+str(ds.time[itime].data))\n", + " ds_temp = copy.deepcopy(ds.isel(time=[itime-1,itime]))\n", + "\n", + " compute_DIAB = False\n", + "\n", + " [lons, lats, time, level, t, shu, u, v, omega,\n", + " vor, geopot, p_sfc, t_2m, shu_2m, mslp, precip,\n", + " evapor_per_s, ntimes, nlevs, nlons, nlats, p_levs] = get_model_data(ds_temp)\n", + "\n", + " # Derive other variables that are not directly output from the model:\n", + "\n", + " [theta, T_v, T_v_sfc, ro_sfc, evapor, geopot_upper_int_lvl] = get_derived_vars(t,p_levs,shu,t_2m,shu_2m,p_sfc,geopot,evapor_per_s, ntimes, nlons, nlats)\n", + "\n", + " [t,shu,u,v,omega] = set_nan_values(t,shu,u,v,omega)\n", + "\n", + " # implemented quick fix to select only relevant timestep\n", + " dp_sfc_dt = get_dp_sfc_dt(p_sfc,ntimes,nlats,nlons)[1,:,:]\n", + "\n", + " # implemented quick fix to select only relevant timestep\n", + " dfi_upl_dt = get_dfi_upl_dt(ro_sfc,geopot_upper_int_lvl,ntimes,nlats,nlons)[1,:,:]\n", + "\n", + " # implemented quick fix to select only relevant timestep\n", + " ITT = get_ITT(T_v,ro_sfc,ntimes,level,nlevs,nlats,nlons,p_levs)[1,:,:]\n", + "\n", + " emp = get_emp(evapor,precip)\n", + "\n", + " # Virtual temperature T_v\n", + "\n", + " # correct no of timesteps\n", + " T_v_adv= get_T_adv(T_v, u, v, lats, lons, ntimes, nlevs, nlats, nlons)\n", + "\n", + " # Only the levels below upper pressure level (p2) should be considered for the vertical integral later\n", + " tadv_data = np.ma.masked_where(p_levs<level[lev], T_v_adv)\n", + "\n", + " # Vertical temperature gradient\n", + "\n", + " # correct no of timesteps\n", + " dTv_dp = get_dT_dp(T_v, p_levs, ntimes, nlevs, nlats, nlons)\n", + " T_v_vmt = get_T_vmt_dry(T_v, dTv_dp, omega, p_levs) \n", + " vmt_data = np.ma.masked_where(p_levs<level[lev], T_v_vmt)\n", + "\n", + " # Set all nan values into zero, just for the vertical integration!\n", + " tadv_datanan0 = np.nan_to_num(tadv_data.filled(0.0), copy=False, nan=0.0)\n", + " vmt_datanan0 = np.nan_to_num(vmt_data.filled(0.0), copy=False, nan=0.0)\n", + "\n", + " # vertical integration \n", + " TADV = logp_integral(tadv_datanan0,np.log(level),ro_sfc,ntimes,nlats,nlons) \n", + " VMT = logp_integral(vmt_datanan0,np.log(level),ro_sfc,ntimes,nlats,nlons) \n", + "\n", + " if compute_DIAB: \n", + " print(\"The DIAB contribution to PTE is now explicitly computed\")\n", + "\n", + " Tv_T = T_v / t\n", + "\n", + " # diab_data represents [(T_v/T) * (Q/C_p)] \n", + " diab_data0 = Tv_T * dTdt_nwp_phy \n", + " diab_data = np.ma.masked_where(p_levs<level[lev], diab_data0)\n", + " # Set all nan values into zero, just for the vertical integration!\n", + " #diab_datanan0 = np.nan_to_num(diab_data, copy=True, nan=0.0)\n", + " diab_datanan0 = np.nan_to_num(diab_data.filled(0.0), copy=False, nan=0.0)\n", + " DIABcomp = logp_integral(diab_datanan0,np.log(level),ro_sfc,ntimes,nlats,nlons) \n", + "\n", + "\n", + " else:\n", + " print(\"DIAB is not computed -- use only the DIABres term\")\n", + "\n", + " ############################################### \n", + " # Final step for both Eq. 1&2 : Time averages #\n", + " ###############################################\n", + " # Compute time averages: \n", + " # For PTE, instaneous temrs are computed as averages over t0-dt and t0.\n", + " # For Eq.1 ----------------------------------------------------------\n", + " EP_avg = np.full((1,nlats,nlons),np.nan,dtype=float)\n", + " PTEeq1_RES = np.full((1,nlats,nlons),np.nan,dtype=float)\n", + " # For Eq.2 ----------------------------------------------------------\n", + " TADV_avg = np.full((1,nlats,nlons),np.nan,dtype=float)\n", + " VMT_avg = np.full((1,nlats,nlons),np.nan,dtype=float)\n", + " if compute_DIAB:\n", + " DIABcomp_avg = np.full((1,nlats,nlons),np.nan,dtype=float)\n", + " DIAB_res = np.full((1,nlats,nlons), np.nan, dtype=float)\n", + " ITTeq2_RES = np.full((1,nlats,nlons),np.nan,dtype=float)\n", + "\n", + "\n", + " for ti in range(1,ntimes):\n", + " EP_avg[ti-1,:,:] = (emp[ti-1,:,:] + emp[ti,:,:]) /2\n", + " TADV_avg[ti-1,:,:] = (TADV[ti-1,:,:] + TADV[ti,:,:]) /2\n", + " VMT_avg[ti-1,:,:] = (VMT[ti-1,:,:] + VMT[ti,:,:]) /2\n", + " if compute_DIAB:\n", + " DIABcomp_avg[ti-1,:,:] = (DIABcomp[ti-1,:,:] + DIABcomp[ti,:,:]) /2\n", + "\n", + " # =========== The residual terms ===========\n", + "\n", + " # For Eq.1 ----------------------------------------------------------\n", + " PTEeq1_RES = dp_sfc_dt- dfi_upl_dt- ITT- EP_avg\n", + "\n", + " # For Eq.2 ----------------------------------------------------------\n", + " if compute_DIAB:\n", + " ITTeq2_RES = ITT - TADV_avg - VMT_avg - DIABcomp_avg\n", + "\n", + " DIAB_res = ITT - TADV_avg - VMT_avg \n", + " # If DIAB is calculated via residual (DIAB_res), then thre's no extra \"res\" term (no ITTeq2_RES).\n", + "\n", + " print('')\n", + " print('###################################')\n", + " print('')\n", + " print('Data is finalized at: ', datetime.datetime.now().time()) \n", + "\n", + " write_data_to_netcdf(ds_temp, lons, lats, time, level, ntimes, nlats, nlons, mslp,\n", + " dp_sfc_dt, dfi_upl_dt, EP_avg, ITT, PTEeq1_RES, TADV_avg, VMT_avg, DIAB_res)\n", + " \n", + " return" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Calculation for timestep 1.75\n", + "DIAB is not computed -- use only the DIABres term\n", + "\n", + "###################################\n", + "\n", + "Data is finalized at: 08:23:35.140511\n", + "Finished writing data.\n", + "Calculation for timestep 2.0\n", + "DIAB is not computed -- use only the DIABres term\n", + "\n", + "###################################\n", + "\n", + "Data is finalized at: 08:23:35.575367\n", + "Finished writing data.\n", + "Calculation for timestep 2.25\n", + "DIAB is not computed -- use only the DIABres term\n", + "\n", + "###################################\n", + "\n", + "Data is finalized at: 08:23:35.967704\n", + "Finished writing data.\n", + "Calculation for timestep 2.5\n", + "DIAB is not computed -- use only the DIABres term\n", + "\n", + "###################################\n", + "\n", + "Data is finalized at: 08:23:36.359527\n", + "Finished writing data.\n", + "Calculation for timestep 2.75\n", + "DIAB is not computed -- use only the DIABres term\n", + "\n", + "###################################\n", + "\n", + "Data is finalized at: 08:23:36.789827\n", + "Finished writing data.\n", + "Calculation for timestep 3.0\n", + "DIAB is not computed -- use only the DIABres term\n", + "\n", + "###################################\n", + "\n", + "Data is finalized at: 08:23:37.203261\n", + "Finished writing data.\n", + "Calculation for timestep 3.25\n", + "DIAB is not computed -- use only the DIABres term\n", + "\n", + "###################################\n", + "\n", + "Data is finalized at: 08:23:37.636961\n", + "Finished writing data.\n", + "Calculation for timestep 3.5\n", + "DIAB is not computed -- use only the DIABres term\n", + "\n", + "###################################\n", + "\n", + "Data is finalized at: 08:23:38.013997\n", + "Finished writing data.\n", + "Calculation for timestep 3.75\n", + "DIAB is not computed -- use only the DIABres term\n", + "\n", + "###################################\n", + "\n", + "Data is finalized at: 08:23:38.582469\n", + "Finished writing data.\n", + "Calculation for timestep 4.0\n", + "DIAB is not computed -- use only the DIABres term\n", + "\n", + "###################################\n", + "\n", + "Data is finalized at: 08:23:38.975617\n", + "Finished writing data.\n", + "Calculation for timestep 4.25\n", + "DIAB is not computed -- use only the DIABres term\n", + "\n", + "###################################\n", + "\n", + "Data is finalized at: 08:23:39.379434\n", + "Finished writing data.\n", + "Calculation for timestep 4.5\n", + "DIAB is not computed -- use only the DIABres term\n", + "\n", + "###################################\n", + "\n", + "Data is finalized at: 08:23:39.835873\n", + "Finished writing data.\n", + "Calculation for timestep 4.75\n", + "DIAB is not computed -- use only the DIABres term\n", + "\n", + "###################################\n", + "\n", + "Data is finalized at: 08:23:40.208833\n", + "Finished writing data.\n", + "Calculation for timestep 5.0\n", + "DIAB is not computed -- use only the DIABres term\n", + "\n", + "###################################\n", + "\n", + "Data is finalized at: 08:23:40.602856\n", + "Finished writing data.\n", + "Calculation for timestep 5.25\n", + "DIAB is not computed -- use only the DIABres term\n", + "\n", + "###################################\n", + "\n", + "Data is finalized at: 08:23:41.030082\n", + "Finished writing data.\n", + "Calculation for timestep 5.5\n", + "DIAB is not computed -- use only the DIABres term\n", + "\n", + "###################################\n", + "\n", + "Data is finalized at: 08:23:41.431484\n", + "Finished writing data.\n", + "Calculation for timestep 5.75\n", + "DIAB is not computed -- use only the DIABres term\n", + "\n", + "###################################\n", + "\n", + "Data is finalized at: 08:23:41.809037\n", + "Finished writing data.\n", + "Calculation for timestep 6.0\n", + "DIAB is not computed -- use only the DIABres term\n", + "\n", + "###################################\n", + "\n", + "Data is finalized at: 08:23:42.208922\n", + "Finished writing data.\n", + "Calculation for timestep 6.25\n", + "DIAB is not computed -- use only the DIABres term\n", + "\n", + "###################################\n", + "\n", + "Data is finalized at: 08:23:42.667556\n", + "Finished writing data.\n", + "Calculation for timestep 6.5\n", + "DIAB is not computed -- use only the DIABres term\n", + "\n", + "###################################\n", + "\n", + "Data is finalized at: 08:23:43.042975\n", + "Finished writing data.\n", + "Calculation for timestep 6.75\n", + "DIAB is not computed -- use only the DIABres term\n", + "\n", + "###################################\n", + "\n", + "Data is finalized at: 08:23:43.495891\n", + "Finished writing data.\n", + "Calculation for timestep 7.0\n", + "DIAB is not computed -- use only the DIABres term\n", + "\n", + "###################################\n", + "\n", + "Data is finalized at: 08:23:43.949710\n", + "Finished writing data.\n", + "Calculation for timestep 7.25\n", + "DIAB is not computed -- use only the DIABres term\n", + "\n", + "###################################\n", + "\n", + "Data is finalized at: 08:23:44.376888\n", + "Finished writing data.\n", + "Calculation for timestep 7.5\n", + "DIAB is not computed -- use only the DIABres term\n", + "\n", + "###################################\n", + "\n", + "Data is finalized at: 08:23:44.744611\n", + "Finished writing data.\n", + "Calculation for timestep 7.75\n", + "DIAB is not computed -- use only the DIABres term\n", + "\n", + "###################################\n", + "\n", + "Data is finalized at: 08:23:45.122607\n", + "Finished writing data.\n", + "Calculation for timestep 8.0\n", + "DIAB is not computed -- use only the DIABres term\n", + "\n", + "###################################\n", + "\n", + "Data is finalized at: 08:23:45.536556\n", + "Finished writing data.\n", + "Calculation for timestep 8.25\n", + "DIAB is not computed -- use only the DIABres term\n", + "\n", + "###################################\n", + "\n", + "Data is finalized at: 08:23:45.945149\n", + "Finished writing data.\n", + "Calculation for timestep 8.5\n", + "DIAB is not computed -- use only the DIABres term\n", + "\n", + "###################################\n", + "\n", + "Data is finalized at: 08:23:46.372358\n", + "Finished writing data.\n", + "Calculation for timestep 8.75\n", + "DIAB is not computed -- use only the DIABres term\n", + "\n", + "###################################\n", + "\n", + "Data is finalized at: 08:23:46.760298\n", + "Finished writing data.\n", + "Calculation for timestep 9.0\n", + "DIAB is not computed -- use only the DIABres term\n", + "\n", + "###################################\n", + "\n", + "Data is finalized at: 08:23:47.146144\n", + "Finished writing data.\n" + ] + } + ], + "source": [ + "for itime in range(1,31):\n", + " run_PTE_calc(ds,itime)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "1 Python 3 (based on the module python3/2023.01)", + "language": "python", + "name": "python3_2023_01" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.10" + }, + "toc-showtags": false + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/Scripts_for_analysis/Adjustment_of_steps_2_and_3_for_single_timesteps/PTEstep3_Cyclone_centered_analysis_single_timesteps.ipynb b/Scripts_for_analysis/Adjustment_of_steps_2_and_3_for_single_timesteps/PTEstep3_Cyclone_centered_analysis_single_timesteps.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..414b6f4a9d22b3779fa0acc9f6c6fc3b102993c3 --- /dev/null +++ b/Scripts_for_analysis/Adjustment_of_steps_2_and_3_for_single_timesteps/PTEstep3_Cyclone_centered_analysis_single_timesteps.ipynb @@ -0,0 +1,3377 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "tags": [] + }, + "source": [ + "# (Step 3 for PTE) PTE analysis for the cyclone core " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Original script written by Georgios Papavasileiou \n", + "\n", + "Modified by Ting-Chen Chen (ting-chen.chen@kit.edu) \n", + "\n", + "Adjusted to multiple timestep input, simplified and strongly reduced functionality by Christoph Braun in January, 2024. The modifications introduced have been checked using the script Check_mod_of_PTEstep3.ipynb. There are very minor quantitative differences in the final results. I classify these as acceptable." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "exp='channel_2km_0004'\n", + "dt = 6\n", + "#data_res = '1x1latlon'\n", + "data_res = '0p05x0p05latlon'\n", + "if dt == 1:\n", + " data_dt = '1hrly'\n", + "elif dt == 6:\n", + " data_dt = '6hrly'\n", + " \n", + "p2level=50\n" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "import numpy as np\n", + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "\n", + "# required\n", + "import xarray as xr" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "scrolled": true, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "<div>\n", + "<style scoped>\n", + " .dataframe tbody tr th:only-of-type {\n", + " vertical-align: middle;\n", + " }\n", + "\n", + " .dataframe tbody tr th {\n", + " vertical-align: top;\n", + " }\n", + "\n", + " .dataframe thead th {\n", + " text-align: right;\n", + " }\n", + "</style>\n", + "<table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: right;\">\n", + " <th></th>\n", + " <th>Unnamed: 0</th>\n", + " <th>time</th>\n", + " <th>pmin</th>\n", + " <th>lon</th>\n", + " <th>lat</th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <th>0</th>\n", + " <td>0</td>\n", + " <td>0.00</td>\n", + " <td>1000.992554</td>\n", + " <td>63.45</td>\n", + " <td>21.85</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1</th>\n", + " <td>1</td>\n", + " <td>0.25</td>\n", + " <td>997.893372</td>\n", + " <td>24.90</td>\n", + " <td>21.70</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2</th>\n", + " <td>2</td>\n", + " <td>0.50</td>\n", + " <td>998.454346</td>\n", + " <td>21.00</td>\n", + " <td>42.75</td>\n", + " </tr>\n", + " <tr>\n", + " <th>3</th>\n", + " <td>3</td>\n", + " <td>0.75</td>\n", + " <td>997.009277</td>\n", + " <td>32.05</td>\n", + " <td>28.00</td>\n", + " </tr>\n", + " <tr>\n", + " <th>4</th>\n", + " <td>4</td>\n", + " <td>1.00</td>\n", + " <td>999.555908</td>\n", + " <td>27.65</td>\n", + " <td>42.70</td>\n", + " </tr>\n", + " <tr>\n", + " <th>5</th>\n", + " <td>5</td>\n", + " <td>1.25</td>\n", + " <td>997.663269</td>\n", + " <td>27.25</td>\n", + " <td>43.50</td>\n", + " </tr>\n", + " <tr>\n", + " <th>6</th>\n", + " <td>6</td>\n", + " <td>1.50</td>\n", + " <td>998.044556</td>\n", + " <td>31.80</td>\n", + " <td>44.90</td>\n", + " </tr>\n", + " <tr>\n", + " <th>7</th>\n", + " <td>7</td>\n", + " <td>1.75</td>\n", + " <td>997.646118</td>\n", + " <td>40.00</td>\n", + " <td>42.25</td>\n", + " </tr>\n", + " <tr>\n", + " <th>8</th>\n", + " <td>8</td>\n", + " <td>2.00</td>\n", + " <td>996.952942</td>\n", + " <td>45.55</td>\n", + " <td>44.45</td>\n", + " </tr>\n", + " <tr>\n", + " <th>9</th>\n", + " <td>9</td>\n", + " <td>2.25</td>\n", + " <td>995.527344</td>\n", + " <td>50.15</td>\n", + " <td>43.70</td>\n", + " </tr>\n", + " <tr>\n", + " <th>10</th>\n", + " <td>10</td>\n", + " <td>2.50</td>\n", + " <td>992.900330</td>\n", + " <td>52.20</td>\n", + " <td>44.45</td>\n", + " </tr>\n", + " <tr>\n", + " <th>11</th>\n", + " <td>11</td>\n", + " <td>2.75</td>\n", + " <td>988.245789</td>\n", + " <td>57.35</td>\n", + " <td>44.85</td>\n", + " </tr>\n", + " <tr>\n", + " <th>12</th>\n", + " <td>12</td>\n", + " <td>3.00</td>\n", + " <td>985.206177</td>\n", + " <td>59.70</td>\n", + " <td>45.40</td>\n", + " </tr>\n", + " <tr>\n", + " <th>13</th>\n", + " <td>13</td>\n", + " <td>3.25</td>\n", + " <td>980.555298</td>\n", + " <td>14.55</td>\n", + " <td>45.65</td>\n", + " </tr>\n", + " <tr>\n", + " <th>14</th>\n", + " <td>14</td>\n", + " <td>3.50</td>\n", + " <td>974.838745</td>\n", + " <td>16.80</td>\n", + " <td>46.55</td>\n", + " </tr>\n", + " <tr>\n", + " <th>15</th>\n", + " <td>15</td>\n", + " <td>3.75</td>\n", + " <td>969.989685</td>\n", + " <td>18.90</td>\n", + " <td>46.50</td>\n", + " </tr>\n", + " <tr>\n", + " <th>16</th>\n", + " <td>16</td>\n", + " <td>4.00</td>\n", + " <td>967.316772</td>\n", + " <td>23.65</td>\n", + " <td>47.70</td>\n", + " </tr>\n", + " <tr>\n", + " <th>17</th>\n", + " <td>17</td>\n", + " <td>4.25</td>\n", + " <td>966.005371</td>\n", + " <td>29.80</td>\n", + " <td>48.15</td>\n", + " </tr>\n", + " <tr>\n", + " <th>18</th>\n", + " <td>18</td>\n", + " <td>4.50</td>\n", + " <td>962.631165</td>\n", + " <td>36.00</td>\n", + " <td>48.70</td>\n", + " </tr>\n", + " <tr>\n", + " <th>19</th>\n", + " <td>19</td>\n", + " <td>4.75</td>\n", + " <td>960.460876</td>\n", + " <td>38.80</td>\n", + " <td>49.25</td>\n", + " </tr>\n", + " <tr>\n", + " <th>20</th>\n", + " <td>20</td>\n", + " <td>5.00</td>\n", + " <td>959.456299</td>\n", + " <td>42.30</td>\n", + " <td>49.90</td>\n", + " </tr>\n", + " <tr>\n", + " <th>21</th>\n", + " <td>21</td>\n", + " <td>5.25</td>\n", + " <td>958.772339</td>\n", + " <td>47.30</td>\n", + " <td>50.25</td>\n", + " </tr>\n", + " <tr>\n", + " <th>22</th>\n", + " <td>22</td>\n", + " <td>5.50</td>\n", + " <td>953.865234</td>\n", + " <td>54.35</td>\n", + " <td>50.60</td>\n", + " </tr>\n", + " <tr>\n", + " <th>23</th>\n", + " <td>23</td>\n", + " <td>5.75</td>\n", + " <td>949.932861</td>\n", + " <td>60.85</td>\n", + " <td>50.05</td>\n", + " </tr>\n", + " <tr>\n", + " <th>24</th>\n", + " <td>24</td>\n", + " <td>6.00</td>\n", + " <td>942.506226</td>\n", + " <td>13.05</td>\n", + " <td>51.05</td>\n", + " </tr>\n", + " <tr>\n", + " <th>25</th>\n", + " <td>25</td>\n", + " <td>6.25</td>\n", + " <td>938.006470</td>\n", + " <td>14.15</td>\n", + " <td>51.65</td>\n", + " </tr>\n", + " <tr>\n", + " <th>26</th>\n", + " <td>26</td>\n", + " <td>6.50</td>\n", + " <td>941.526733</td>\n", + " <td>14.55</td>\n", + " <td>50.20</td>\n", + " </tr>\n", + " <tr>\n", + " <th>27</th>\n", + " <td>27</td>\n", + " <td>6.75</td>\n", + " <td>943.383057</td>\n", + " <td>23.35</td>\n", + " <td>53.05</td>\n", + " </tr>\n", + " <tr>\n", + " <th>28</th>\n", + " <td>28</td>\n", + " <td>7.00</td>\n", + " <td>944.365479</td>\n", + " <td>28.90</td>\n", + " <td>53.40</td>\n", + " </tr>\n", + " <tr>\n", + " <th>29</th>\n", + " <td>29</td>\n", + " <td>7.25</td>\n", + " <td>944.550171</td>\n", + " <td>34.20</td>\n", + " <td>52.85</td>\n", + " </tr>\n", + " <tr>\n", + " <th>30</th>\n", + " <td>30</td>\n", + " <td>7.50</td>\n", + " <td>944.470642</td>\n", + " <td>35.00</td>\n", + " <td>53.40</td>\n", + " </tr>\n", + " <tr>\n", + " <th>31</th>\n", + " <td>31</td>\n", + " <td>7.75</td>\n", + " <td>944.843750</td>\n", + " <td>39.45</td>\n", + " <td>53.30</td>\n", + " </tr>\n", + " <tr>\n", + " <th>32</th>\n", + " <td>32</td>\n", + " <td>8.00</td>\n", + " <td>947.720947</td>\n", + " <td>46.60</td>\n", + " <td>52.05</td>\n", + " </tr>\n", + " <tr>\n", + " <th>33</th>\n", + " <td>33</td>\n", + " <td>8.25</td>\n", + " <td>951.256653</td>\n", + " <td>46.00</td>\n", + " <td>53.45</td>\n", + " </tr>\n", + " <tr>\n", + " <th>34</th>\n", + " <td>34</td>\n", + " <td>8.50</td>\n", + " <td>954.463806</td>\n", + " <td>55.20</td>\n", + " <td>50.85</td>\n", + " </tr>\n", + " <tr>\n", + " <th>35</th>\n", + " <td>35</td>\n", + " <td>8.75</td>\n", + " <td>960.283997</td>\n", + " <td>54.00</td>\n", + " <td>51.25</td>\n", + " </tr>\n", + " <tr>\n", + " <th>36</th>\n", + " <td>36</td>\n", + " <td>9.00</td>\n", + " <td>962.847351</td>\n", + " <td>23.70</td>\n", + " <td>46.70</td>\n", + " </tr>\n", + " </tbody>\n", + "</table>\n", + "</div>" + ], + "text/plain": [ + " Unnamed: 0 time pmin lon lat\n", + "0 0 0.00 1000.992554 63.45 21.85\n", + "1 1 0.25 997.893372 24.90 21.70\n", + "2 2 0.50 998.454346 21.00 42.75\n", + "3 3 0.75 997.009277 32.05 28.00\n", + "4 4 1.00 999.555908 27.65 42.70\n", + "5 5 1.25 997.663269 27.25 43.50\n", + "6 6 1.50 998.044556 31.80 44.90\n", + "7 7 1.75 997.646118 40.00 42.25\n", + "8 8 2.00 996.952942 45.55 44.45\n", + "9 9 2.25 995.527344 50.15 43.70\n", + "10 10 2.50 992.900330 52.20 44.45\n", + "11 11 2.75 988.245789 57.35 44.85\n", + "12 12 3.00 985.206177 59.70 45.40\n", + "13 13 3.25 980.555298 14.55 45.65\n", + "14 14 3.50 974.838745 16.80 46.55\n", + "15 15 3.75 969.989685 18.90 46.50\n", + "16 16 4.00 967.316772 23.65 47.70\n", + "17 17 4.25 966.005371 29.80 48.15\n", + "18 18 4.50 962.631165 36.00 48.70\n", + "19 19 4.75 960.460876 38.80 49.25\n", + "20 20 5.00 959.456299 42.30 49.90\n", + "21 21 5.25 958.772339 47.30 50.25\n", + "22 22 5.50 953.865234 54.35 50.60\n", + "23 23 5.75 949.932861 60.85 50.05\n", + "24 24 6.00 942.506226 13.05 51.05\n", + "25 25 6.25 938.006470 14.15 51.65\n", + "26 26 6.50 941.526733 14.55 50.20\n", + "27 27 6.75 943.383057 23.35 53.05\n", + "28 28 7.00 944.365479 28.90 53.40\n", + "29 29 7.25 944.550171 34.20 52.85\n", + "30 30 7.50 944.470642 35.00 53.40\n", + "31 31 7.75 944.843750 39.45 53.30\n", + "32 32 8.00 947.720947 46.60 52.05\n", + "33 33 8.25 951.256653 46.00 53.45\n", + "34 34 8.50 954.463806 55.20 50.85\n", + "35 35 8.75 960.283997 54.00 51.25\n", + "36 36 9.00 962.847351 23.70 46.70" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#####################################################\n", + "# Read in track data from file\n", + "#####################################################\n", + "#Cyclone Track\n", + "path_track = '/work/bb1152/Module_A/A6_CyclEx/pp_data/cyclone_tracks/'\n", + "\n", + "#df_track = pd.read_csv(path_track+'Track_for_'+exp+'_'+str(dt)+'hrly_1x1latlon.csv')\n", + "df_track = pd.read_csv(path_track+'Track_for_'+exp+'_'+str(dt)+'hrly_0p05x0p05latlon.csv')\n", + " \n", + "df_track" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "#ipath = '/work/bb1152/Module_A/A6_CyclEx/b380782_Christoph/temp_PTE_out/PTE/maps/'\n", + "ipath = '/work/bb1152/Module_A/A6_CyclEx/pp_data/PTE_maps/'\n", + "\n", + "#ifile = \"PTE_map_for_\"+exp+\"_\"+data_dt+\"_\"+data_res+\"_upper\"+str(int(p2level))+\"hPa.nc\"\n", + "# files for 0.05° analysis are located in a subdirectory\n", + "ifile = \"PTE_map_for_\"+exp+\"_\"+data_dt+\"_\"+data_res+\"_upper\"+str(int(p2level))+\"hPa/PTE_map_for_\"+exp+\"_\"+data_dt+\"_\"+data_res+\"_upper\"+str(int(p2level))+\"hPa_day*.nc\"\n", + "\n", + "# read the data\n", + "data_file= ipath+ifile" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "ds = xr.open_mfdataset(data_file)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Make some definitions" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# list all vars\n", + "ds_vars = list(ds.keys())\n", + "\n", + "# get lon of central point of lon-coordinate\n", + "lon_cen = ds.lon[int(ds.lon.size/2)]\n", + "\n", + "# get dlon assuming equidistand spacing\n", + "dlon = ds.lon[1].values-ds.lon[0].values\n", + "\n", + "# set boxsize\n", + "boxsize = 6" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# calculation of boxmean weighted by lat\n", + "def get_boxmean(ds: xr.Dataset) -> xr.Dataset:\n", + " \n", + " weights = np.cos(np.deg2rad(ds.lat))\n", + " ds_mean = ds.weighted(weights=weights).mean(dim=['lat','lon'])\n", + " \n", + " return ds_mean" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# initialize empty slots for all vars\n", + "for var in ds_vars:\n", + " df_track[var] = pd.Series()" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# loop over timesteps\n", + "for ftime in ds.time:\n", + " # select timestep\n", + " ds_temp = ds.sel(time=ftime)\n", + " \n", + " # get index of panda dataframe fitting current timestep\n", + " itime_df = float(df_track.index[df_track['time']==float(ftime)].values)\n", + " \n", + " # get lon and lat of pmin from cyclone track data\n", + " lon_pmin = df_track['lon'][itime_df]\n", + " lat_pmin = df_track['lat'][itime_df]\n", + " \n", + " # center map on cyclone center\n", + " lon_to_roll = int((lon_cen - lon_pmin)/dlon)\n", + " \n", + " # set lon at cyclone center to 0\n", + " ds_temp['lon'] = ds_temp['lon']-lon_cen\n", + " \n", + " # select box around cyclone center and calculate weighted boxmean\n", + " ds_box = ds_temp.roll(shifts={'lon':lon_to_roll}).sel(lat=slice(lat_pmin-boxsize/2,lat_pmin+boxsize/2),lon=slice(-boxsize/2,boxsize/2))\n", + " ds_boxmean = get_boxmean(ds_box)\n", + " \n", + " # Plotting to check centering and box\n", + " #ds_box.mslp.plot.pcolormesh()\n", + " #plt.show()\n", + " \n", + " # Write results in hPa/6hrs into dataframe \n", + " for var in ds_vars:\n", + " df_track[var][itime_df] = float(ds_boxmean[var].values)/100" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "<div>\n", + "<style scoped>\n", + " .dataframe tbody tr th:only-of-type {\n", + " vertical-align: middle;\n", + " }\n", + "\n", + " .dataframe tbody tr th {\n", + " vertical-align: top;\n", + " }\n", + "\n", + " .dataframe thead th {\n", + " text-align: right;\n", + " }\n", + "</style>\n", + "<table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: right;\">\n", + " <th></th>\n", + " <th>Unnamed: 0</th>\n", + " <th>time</th>\n", + " <th>pmin</th>\n", + " <th>lon</th>\n", + " <th>lat</th>\n", + " <th>mslp</th>\n", + " <th>dpsfc_dt</th>\n", + " <th>dfi_dt</th>\n", + " <th>EP</th>\n", + " <th>ITT</th>\n", + " <th>Eq1res</th>\n", + " <th>TADV</th>\n", + " <th>VMT</th>\n", + " <th>DIABres</th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <th>0</th>\n", + " <td>0</td>\n", + " <td>0.00</td>\n", + " <td>1000.992554</td>\n", + " <td>63.45</td>\n", + " <td>21.85</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1</th>\n", + " <td>1</td>\n", + " <td>0.25</td>\n", + " <td>997.893372</td>\n", + " <td>24.90</td>\n", + " <td>21.70</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2</th>\n", + " <td>2</td>\n", + " <td>0.50</td>\n", + " <td>998.454346</td>\n", + " <td>21.00</td>\n", + " <td>42.75</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>3</th>\n", + " <td>3</td>\n", + " <td>0.75</td>\n", + " <td>997.009277</td>\n", + " <td>32.05</td>\n", + " <td>28.00</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>4</th>\n", + " <td>4</td>\n", + " <td>1.00</td>\n", + " <td>999.555908</td>\n", + " <td>27.65</td>\n", + " <td>42.70</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>5</th>\n", + " <td>5</td>\n", + " <td>1.25</td>\n", + " <td>997.663269</td>\n", + " <td>27.25</td>\n", + " <td>43.50</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>6</th>\n", + " <td>6</td>\n", + " <td>1.50</td>\n", + " <td>998.044556</td>\n", + " <td>31.80</td>\n", + " <td>44.90</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>7</th>\n", + " <td>7</td>\n", + " <td>1.75</td>\n", + " <td>997.646118</td>\n", + " <td>40.00</td>\n", + " <td>42.25</td>\n", + " <td>997.894609</td>\n", + " <td>-1.439854</td>\n", + " <td>-1.298455</td>\n", + " <td>-0.001039</td>\n", + " <td>-0.132859</td>\n", + " <td>-0.007501</td>\n", + " <td>-3.161065</td>\n", + " <td>-0.070707</td>\n", + " <td>3.098913</td>\n", + " </tr>\n", + " <tr>\n", + " <th>8</th>\n", + " <td>8</td>\n", + " <td>2.00</td>\n", + " <td>996.952942</td>\n", + " <td>45.55</td>\n", + " <td>44.45</td>\n", + " <td>997.684531</td>\n", + " <td>-1.111958</td>\n", + " <td>-3.201873</td>\n", + " <td>-0.017426</td>\n", + " <td>2.351068</td>\n", + " <td>-0.243726</td>\n", + " <td>-4.989049</td>\n", + " <td>1.071043</td>\n", + " <td>6.269072</td>\n", + " </tr>\n", + " <tr>\n", + " <th>9</th>\n", + " <td>9</td>\n", + " <td>2.25</td>\n", + " <td>995.527344</td>\n", + " <td>50.15</td>\n", + " <td>43.70</td>\n", + " <td>996.184141</td>\n", + " <td>-2.578686</td>\n", + " <td>-1.398549</td>\n", + " <td>-0.057437</td>\n", + " <td>-1.202944</td>\n", + " <td>0.080246</td>\n", + " <td>-4.445321</td>\n", + " <td>3.817695</td>\n", + " <td>-0.575318</td>\n", + " </tr>\n", + " <tr>\n", + " <th>10</th>\n", + " <td>10</td>\n", + " <td>2.50</td>\n", + " <td>992.900330</td>\n", + " <td>52.20</td>\n", + " <td>44.45</td>\n", + " <td>993.917891</td>\n", + " <td>-2.956397</td>\n", + " <td>-0.172485</td>\n", + " <td>-0.129516</td>\n", + " <td>-2.791819</td>\n", + " <td>0.137424</td>\n", + " <td>-4.784492</td>\n", + " <td>5.993924</td>\n", + " <td>-4.001249</td>\n", + " </tr>\n", + " <tr>\n", + " <th>11</th>\n", + " <td>11</td>\n", + " <td>2.75</td>\n", + " <td>988.245789</td>\n", + " <td>57.35</td>\n", + " <td>44.85</td>\n", + " <td>990.409219</td>\n", + " <td>-5.800087</td>\n", + " <td>-3.933174</td>\n", + " <td>-0.189275</td>\n", + " <td>-1.771041</td>\n", + " <td>0.093405</td>\n", + " <td>-7.069056</td>\n", + " <td>6.309308</td>\n", + " <td>-1.011294</td>\n", + " </tr>\n", + " <tr>\n", + " <th>12</th>\n", + " <td>12</td>\n", + " <td>3.00</td>\n", + " <td>985.206177</td>\n", + " <td>59.70</td>\n", + " <td>45.40</td>\n", + " <td>988.273047</td>\n", + " <td>-3.635371</td>\n", + " <td>-1.594907</td>\n", + " <td>-0.288197</td>\n", + " <td>-1.922625</td>\n", + " <td>0.170357</td>\n", + " <td>-7.716262</td>\n", + " <td>7.215748</td>\n", + " <td>-1.422113</td>\n", + " </tr>\n", + " <tr>\n", + " <th>13</th>\n", + " <td>13</td>\n", + " <td>3.25</td>\n", + " <td>980.555298</td>\n", + " <td>14.55</td>\n", + " <td>45.65</td>\n", + " <td>985.688516</td>\n", + " <td>-6.590565</td>\n", + " <td>1.728497</td>\n", + " <td>-0.448578</td>\n", + " <td>-8.195584</td>\n", + " <td>0.3251</td>\n", + " <td>-13.919763</td>\n", + " <td>13.281652</td>\n", + " <td>-7.557469</td>\n", + " </tr>\n", + " <tr>\n", + " <th>14</th>\n", + " <td>14</td>\n", + " <td>3.50</td>\n", + " <td>974.838745</td>\n", + " <td>16.80</td>\n", + " <td>46.55</td>\n", + " <td>982.148984</td>\n", + " <td>-6.076429</td>\n", + " <td>0.243146</td>\n", + " <td>-0.544442</td>\n", + " <td>-6.269291</td>\n", + " <td>0.494159</td>\n", + " <td>-16.537777</td>\n", + " <td>16.941552</td>\n", + " <td>-6.673063</td>\n", + " </tr>\n", + " <tr>\n", + " <th>15</th>\n", + " <td>15</td>\n", + " <td>3.75</td>\n", + " <td>969.989685</td>\n", + " <td>18.90</td>\n", + " <td>46.50</td>\n", + " <td>978.316641</td>\n", + " <td>-3.669097</td>\n", + " <td>-3.539189</td>\n", + " <td>-0.505526</td>\n", + " <td>-0.083318</td>\n", + " <td>0.458938</td>\n", + " <td>-9.565486</td>\n", + " <td>10.467845</td>\n", + " <td>-0.985677</td>\n", + " </tr>\n", + " <tr>\n", + " <th>16</th>\n", + " <td>16</td>\n", + " <td>4.00</td>\n", + " <td>967.316772</td>\n", + " <td>23.65</td>\n", + " <td>47.70</td>\n", + " <td>974.079922</td>\n", + " <td>-4.638983</td>\n", + " <td>-2.647679</td>\n", + " <td>-0.50931</td>\n", + " <td>-1.865762</td>\n", + " <td>0.383768</td>\n", + " <td>-15.656307</td>\n", + " <td>15.339648</td>\n", + " <td>-1.549105</td>\n", + " </tr>\n", + " <tr>\n", + " <th>17</th>\n", + " <td>17</td>\n", + " <td>4.25</td>\n", + " <td>966.005371</td>\n", + " <td>29.80</td>\n", + " <td>48.15</td>\n", + " <td>971.166875</td>\n", + " <td>-5.70832</td>\n", + " <td>-0.41179</td>\n", + " <td>-0.465855</td>\n", + " <td>-5.45233</td>\n", + " <td>0.621658</td>\n", + " <td>-22.70552</td>\n", + " <td>18.081868</td>\n", + " <td>-0.828678</td>\n", + " </tr>\n", + " <tr>\n", + " <th>18</th>\n", + " <td>18</td>\n", + " <td>4.50</td>\n", + " <td>962.631165</td>\n", + " <td>36.00</td>\n", + " <td>48.70</td>\n", + " <td>968.000156</td>\n", + " <td>-7.191995</td>\n", + " <td>0.826998</td>\n", + " <td>-0.565388</td>\n", + " <td>-7.894081</td>\n", + " <td>0.440473</td>\n", + " <td>-27.529888</td>\n", + " <td>22.372354</td>\n", + " <td>-2.736542</td>\n", + " </tr>\n", + " <tr>\n", + " <th>19</th>\n", + " <td>19</td>\n", + " <td>4.75</td>\n", + " <td>960.460876</td>\n", + " <td>38.80</td>\n", + " <td>49.25</td>\n", + " <td>966.171875</td>\n", + " <td>-4.696962</td>\n", + " <td>-1.132389</td>\n", + " <td>-0.374526</td>\n", + " <td>-3.936702</td>\n", + " <td>0.746655</td>\n", + " <td>-23.046897</td>\n", + " <td>20.01478</td>\n", + " <td>-0.904582</td>\n", + " </tr>\n", + " <tr>\n", + " <th>20</th>\n", + " <td>20</td>\n", + " <td>5.00</td>\n", + " <td>959.456299</td>\n", + " <td>42.30</td>\n", + " <td>49.90</td>\n", + " <td>965.544141</td>\n", + " <td>-3.059304</td>\n", + " <td>-0.061974</td>\n", + " <td>-0.292501</td>\n", + " <td>-3.060555</td>\n", + " <td>0.355725</td>\n", + " <td>-20.849607</td>\n", + " <td>19.665959</td>\n", + " <td>-1.876904</td>\n", + " </tr>\n", + " <tr>\n", + " <th>21</th>\n", + " <td>21</td>\n", + " <td>5.25</td>\n", + " <td>958.772339</td>\n", + " <td>47.30</td>\n", + " <td>50.25</td>\n", + " <td>963.336016</td>\n", + " <td>-4.394081</td>\n", + " <td>-2.826512</td>\n", + " <td>-0.299641</td>\n", + " <td>-2.047927</td>\n", + " <td>0.779998</td>\n", + " <td>-23.15416</td>\n", + " <td>21.710461</td>\n", + " <td>-0.604224</td>\n", + " </tr>\n", + " <tr>\n", + " <th>22</th>\n", + " <td>22</td>\n", + " <td>5.50</td>\n", + " <td>953.865234</td>\n", + " <td>54.35</td>\n", + " <td>50.60</td>\n", + " <td>959.865156</td>\n", + " <td>-8.597279</td>\n", + " <td>-0.780871</td>\n", + " <td>-0.321078</td>\n", + " <td>-8.047802</td>\n", + " <td>0.552474</td>\n", + " <td>-34.074131</td>\n", + " <td>29.905378</td>\n", + " <td>-3.879072</td>\n", + " </tr>\n", + " <tr>\n", + " <th>23</th>\n", + " <td>23</td>\n", + " <td>5.75</td>\n", + " <td>949.932861</td>\n", + " <td>60.85</td>\n", + " <td>50.05</td>\n", + " <td>954.789219</td>\n", + " <td>-11.560167</td>\n", + " <td>-4.298826</td>\n", + " <td>-0.715242</td>\n", + " <td>-7.557877</td>\n", + " <td>1.011777</td>\n", + " <td>-38.546389</td>\n", + " <td>38.551975</td>\n", + " <td>-7.563468</td>\n", + " </tr>\n", + " <tr>\n", + " <th>24</th>\n", + " <td>24</td>\n", + " <td>6.00</td>\n", + " <td>942.506226</td>\n", + " <td>13.05</td>\n", + " <td>51.05</td>\n", + " <td>950.683047</td>\n", + " <td>-9.615369</td>\n", + " <td>-0.220053</td>\n", + " <td>-0.813619</td>\n", + " <td>-9.426051</td>\n", + " <td>0.844352</td>\n", + " <td>-35.325706</td>\n", + " <td>33.826089</td>\n", + " <td>-7.926447</td>\n", + " </tr>\n", + " <tr>\n", + " <th>25</th>\n", + " <td>25</td>\n", + " <td>6.25</td>\n", + " <td>938.006470</td>\n", + " <td>14.15</td>\n", + " <td>51.65</td>\n", + " <td>948.713906</td>\n", + " <td>-3.863569</td>\n", + " <td>-2.749285</td>\n", + " <td>-0.647558</td>\n", + " <td>-1.5678</td>\n", + " <td>1.101073</td>\n", + " <td>-21.423789</td>\n", + " <td>24.18929</td>\n", + " <td>-4.333295</td>\n", + " </tr>\n", + " <tr>\n", + " <th>26</th>\n", + " <td>26</td>\n", + " <td>6.50</td>\n", + " <td>941.526733</td>\n", + " <td>14.55</td>\n", + " <td>50.20</td>\n", + " <td>953.324922</td>\n", + " <td>6.527158</td>\n", + " <td>1.368573</td>\n", + " <td>-0.22956</td>\n", + " <td>5.051227</td>\n", + " <td>0.336916</td>\n", + " <td>6.720546</td>\n", + " <td>-2.10338</td>\n", + " <td>0.434058</td>\n", + " </tr>\n", + " <tr>\n", + " <th>27</th>\n", + " <td>27</td>\n", + " <td>6.75</td>\n", + " <td>943.383057</td>\n", + " <td>23.35</td>\n", + " <td>53.05</td>\n", + " <td>949.918906</td>\n", + " <td>-4.134673</td>\n", + " <td>-4.391496</td>\n", + " <td>-0.724569</td>\n", + " <td>-0.1947</td>\n", + " <td>1.176093</td>\n", + " <td>-24.947764</td>\n", + " <td>26.521653</td>\n", + " <td>-1.768596</td>\n", + " </tr>\n", + " <tr>\n", + " <th>28</th>\n", + " <td>28</td>\n", + " <td>7.00</td>\n", + " <td>944.365479</td>\n", + " <td>28.90</td>\n", + " <td>53.40</td>\n", + " <td>950.232813</td>\n", + " <td>-4.783029</td>\n", + " <td>-2.44151</td>\n", + " <td>-0.836429</td>\n", + " <td>-2.352258</td>\n", + " <td>0.847168</td>\n", + " <td>-29.157607</td>\n", + " <td>29.891204</td>\n", + " <td>-3.085858</td>\n", + " </tr>\n", + " <tr>\n", + " <th>29</th>\n", + " <td>29</td>\n", + " <td>7.25</td>\n", + " <td>944.550171</td>\n", + " <td>34.20</td>\n", + " <td>52.85</td>\n", + " <td>949.471641</td>\n", + " <td>-7.052899</td>\n", + " <td>-5.614992</td>\n", + " <td>-0.744046</td>\n", + " <td>-1.679874</td>\n", + " <td>0.986014</td>\n", + " <td>-28.081633</td>\n", + " <td>30.370903</td>\n", + " <td>-3.969156</td>\n", + " </tr>\n", + " <tr>\n", + " <th>30</th>\n", + " <td>30</td>\n", + " <td>7.50</td>\n", + " <td>944.470642</td>\n", + " <td>35.00</td>\n", + " <td>53.40</td>\n", + " <td>949.993594</td>\n", + " <td>-1.37561</td>\n", + " <td>0.724622</td>\n", + " <td>-0.465745</td>\n", + " <td>-2.471496</td>\n", + " <td>0.83701</td>\n", + " <td>-16.677505</td>\n", + " <td>19.290656</td>\n", + " <td>-5.084645</td>\n", + " </tr>\n", + " <tr>\n", + " <th>31</th>\n", + " <td>31</td>\n", + " <td>7.75</td>\n", + " <td>944.843750</td>\n", + " <td>39.45</td>\n", + " <td>53.30</td>\n", + " <td>950.553437</td>\n", + " <td>-1.844292</td>\n", + " <td>-2.734636</td>\n", + " <td>-0.416865</td>\n", + " <td>0.996857</td>\n", + " <td>0.310353</td>\n", + " <td>-16.004153</td>\n", + " <td>18.036377</td>\n", + " <td>-1.03537</td>\n", + " </tr>\n", + " <tr>\n", + " <th>32</th>\n", + " <td>32</td>\n", + " <td>8.00</td>\n", + " <td>947.720947</td>\n", + " <td>46.60</td>\n", + " <td>52.05</td>\n", + " <td>954.337344</td>\n", + " <td>-1.915869</td>\n", + " <td>-2.208984</td>\n", + " <td>-0.414247</td>\n", + " <td>-0.077302</td>\n", + " <td>0.784663</td>\n", + " <td>-19.46762</td>\n", + " <td>20.612842</td>\n", + " <td>-1.222526</td>\n", + " </tr>\n", + " <tr>\n", + " <th>33</th>\n", + " <td>33</td>\n", + " <td>8.25</td>\n", + " <td>951.256653</td>\n", + " <td>46.00</td>\n", + " <td>53.45</td>\n", + " <td>957.996484</td>\n", + " <td>1.707187</td>\n", + " <td>-2.883271</td>\n", + " <td>-0.26549</td>\n", + " <td>4.914998</td>\n", + " <td>-0.059051</td>\n", + " <td>-10.017431</td>\n", + " <td>14.13973</td>\n", + " <td>0.7927</td>\n", + " </tr>\n", + " <tr>\n", + " <th>34</th>\n", + " <td>34</td>\n", + " <td>8.50</td>\n", + " <td>954.463806</td>\n", + " <td>55.20</td>\n", + " <td>50.85</td>\n", + " <td>961.748359</td>\n", + " <td>0.423549</td>\n", + " <td>0.486786</td>\n", + " <td>-0.261374</td>\n", + " <td>-0.369265</td>\n", + " <td>0.567402</td>\n", + " <td>-9.389152</td>\n", + " <td>12.846891</td>\n", + " <td>-3.827003</td>\n", + " </tr>\n", + " <tr>\n", + " <th>35</th>\n", + " <td>35</td>\n", + " <td>8.75</td>\n", + " <td>960.283997</td>\n", + " <td>54.00</td>\n", + " <td>51.25</td>\n", + " <td>966.938437</td>\n", + " <td>4.830325</td>\n", + " <td>-1.055995</td>\n", + " <td>-0.140769</td>\n", + " <td>6.207072</td>\n", + " <td>-0.179984</td>\n", + " <td>-0.924984</td>\n", + " <td>7.761099</td>\n", + " <td>-0.629045</td>\n", + " </tr>\n", + " <tr>\n", + " <th>36</th>\n", + " <td>36</td>\n", + " <td>9.00</td>\n", + " <td>962.847351</td>\n", + " <td>23.70</td>\n", + " <td>46.70</td>\n", + " <td>968.162344</td>\n", + " <td>-2.145798</td>\n", + " <td>-5.129966</td>\n", + " <td>-0.259678</td>\n", + " <td>2.764014</td>\n", + " <td>0.479833</td>\n", + " <td>-5.396989</td>\n", + " <td>4.961616</td>\n", + " <td>3.199387</td>\n", + " </tr>\n", + " </tbody>\n", + "</table>\n", + "</div>" + ], + "text/plain": [ + " Unnamed: 0 time pmin lon lat mslp dpsfc_dt \n", + "0 0 0.00 1000.992554 63.45 21.85 NaN NaN \\\n", + "1 1 0.25 997.893372 24.90 21.70 NaN NaN \n", + "2 2 0.50 998.454346 21.00 42.75 NaN NaN \n", + "3 3 0.75 997.009277 32.05 28.00 NaN NaN \n", + "4 4 1.00 999.555908 27.65 42.70 NaN NaN \n", + "5 5 1.25 997.663269 27.25 43.50 NaN NaN \n", + "6 6 1.50 998.044556 31.80 44.90 NaN NaN \n", + "7 7 1.75 997.646118 40.00 42.25 997.894609 -1.439854 \n", + "8 8 2.00 996.952942 45.55 44.45 997.684531 -1.111958 \n", + "9 9 2.25 995.527344 50.15 43.70 996.184141 -2.578686 \n", + "10 10 2.50 992.900330 52.20 44.45 993.917891 -2.956397 \n", + "11 11 2.75 988.245789 57.35 44.85 990.409219 -5.800087 \n", + "12 12 3.00 985.206177 59.70 45.40 988.273047 -3.635371 \n", + "13 13 3.25 980.555298 14.55 45.65 985.688516 -6.590565 \n", + "14 14 3.50 974.838745 16.80 46.55 982.148984 -6.076429 \n", + "15 15 3.75 969.989685 18.90 46.50 978.316641 -3.669097 \n", + "16 16 4.00 967.316772 23.65 47.70 974.079922 -4.638983 \n", + "17 17 4.25 966.005371 29.80 48.15 971.166875 -5.70832 \n", + "18 18 4.50 962.631165 36.00 48.70 968.000156 -7.191995 \n", + "19 19 4.75 960.460876 38.80 49.25 966.171875 -4.696962 \n", + "20 20 5.00 959.456299 42.30 49.90 965.544141 -3.059304 \n", + "21 21 5.25 958.772339 47.30 50.25 963.336016 -4.394081 \n", + "22 22 5.50 953.865234 54.35 50.60 959.865156 -8.597279 \n", + "23 23 5.75 949.932861 60.85 50.05 954.789219 -11.560167 \n", + "24 24 6.00 942.506226 13.05 51.05 950.683047 -9.615369 \n", + "25 25 6.25 938.006470 14.15 51.65 948.713906 -3.863569 \n", + "26 26 6.50 941.526733 14.55 50.20 953.324922 6.527158 \n", + "27 27 6.75 943.383057 23.35 53.05 949.918906 -4.134673 \n", + "28 28 7.00 944.365479 28.90 53.40 950.232813 -4.783029 \n", + "29 29 7.25 944.550171 34.20 52.85 949.471641 -7.052899 \n", + "30 30 7.50 944.470642 35.00 53.40 949.993594 -1.37561 \n", + "31 31 7.75 944.843750 39.45 53.30 950.553437 -1.844292 \n", + "32 32 8.00 947.720947 46.60 52.05 954.337344 -1.915869 \n", + "33 33 8.25 951.256653 46.00 53.45 957.996484 1.707187 \n", + "34 34 8.50 954.463806 55.20 50.85 961.748359 0.423549 \n", + "35 35 8.75 960.283997 54.00 51.25 966.938437 4.830325 \n", + "36 36 9.00 962.847351 23.70 46.70 968.162344 -2.145798 \n", + "\n", + " dfi_dt EP ITT Eq1res TADV VMT DIABres \n", + "0 NaN NaN NaN NaN NaN NaN NaN \n", + "1 NaN NaN NaN NaN NaN NaN NaN \n", + "2 NaN NaN NaN NaN NaN NaN NaN \n", + "3 NaN NaN NaN NaN NaN NaN NaN \n", + "4 NaN NaN NaN NaN NaN NaN NaN \n", + "5 NaN NaN NaN NaN NaN NaN NaN \n", + "6 NaN NaN NaN NaN NaN NaN NaN \n", + "7 -1.298455 -0.001039 -0.132859 -0.007501 -3.161065 -0.070707 3.098913 \n", + "8 -3.201873 -0.017426 2.351068 -0.243726 -4.989049 1.071043 6.269072 \n", + "9 -1.398549 -0.057437 -1.202944 0.080246 -4.445321 3.817695 -0.575318 \n", + "10 -0.172485 -0.129516 -2.791819 0.137424 -4.784492 5.993924 -4.001249 \n", + "11 -3.933174 -0.189275 -1.771041 0.093405 -7.069056 6.309308 -1.011294 \n", + "12 -1.594907 -0.288197 -1.922625 0.170357 -7.716262 7.215748 -1.422113 \n", + "13 1.728497 -0.448578 -8.195584 0.3251 -13.919763 13.281652 -7.557469 \n", + "14 0.243146 -0.544442 -6.269291 0.494159 -16.537777 16.941552 -6.673063 \n", + "15 -3.539189 -0.505526 -0.083318 0.458938 -9.565486 10.467845 -0.985677 \n", + "16 -2.647679 -0.50931 -1.865762 0.383768 -15.656307 15.339648 -1.549105 \n", + "17 -0.41179 -0.465855 -5.45233 0.621658 -22.70552 18.081868 -0.828678 \n", + "18 0.826998 -0.565388 -7.894081 0.440473 -27.529888 22.372354 -2.736542 \n", + "19 -1.132389 -0.374526 -3.936702 0.746655 -23.046897 20.01478 -0.904582 \n", + "20 -0.061974 -0.292501 -3.060555 0.355725 -20.849607 19.665959 -1.876904 \n", + "21 -2.826512 -0.299641 -2.047927 0.779998 -23.15416 21.710461 -0.604224 \n", + "22 -0.780871 -0.321078 -8.047802 0.552474 -34.074131 29.905378 -3.879072 \n", + "23 -4.298826 -0.715242 -7.557877 1.011777 -38.546389 38.551975 -7.563468 \n", + "24 -0.220053 -0.813619 -9.426051 0.844352 -35.325706 33.826089 -7.926447 \n", + "25 -2.749285 -0.647558 -1.5678 1.101073 -21.423789 24.18929 -4.333295 \n", + "26 1.368573 -0.22956 5.051227 0.336916 6.720546 -2.10338 0.434058 \n", + "27 -4.391496 -0.724569 -0.1947 1.176093 -24.947764 26.521653 -1.768596 \n", + "28 -2.44151 -0.836429 -2.352258 0.847168 -29.157607 29.891204 -3.085858 \n", + "29 -5.614992 -0.744046 -1.679874 0.986014 -28.081633 30.370903 -3.969156 \n", + "30 0.724622 -0.465745 -2.471496 0.83701 -16.677505 19.290656 -5.084645 \n", + "31 -2.734636 -0.416865 0.996857 0.310353 -16.004153 18.036377 -1.03537 \n", + "32 -2.208984 -0.414247 -0.077302 0.784663 -19.46762 20.612842 -1.222526 \n", + "33 -2.883271 -0.26549 4.914998 -0.059051 -10.017431 14.13973 0.7927 \n", + "34 0.486786 -0.261374 -0.369265 0.567402 -9.389152 12.846891 -3.827003 \n", + "35 -1.055995 -0.140769 6.207072 -0.179984 -0.924984 7.761099 -0.629045 \n", + "36 -5.129966 -0.259678 2.764014 0.479833 -5.396989 4.961616 3.199387 " + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df_track" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "df_track_orig = pd.read_csv('/work/bb1152/Module_A/A6_CyclEx/pp_data/cyclone_PTE_timeseries/PTE_for_channel_2km_0004_6hrly_1x1latlon_upper50hPa_box6.csv')\n" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "<div>\n", + "<style scoped>\n", + " .dataframe tbody tr th:only-of-type {\n", + " vertical-align: middle;\n", + " }\n", + "\n", + " .dataframe tbody tr th {\n", + " vertical-align: top;\n", + " }\n", + "\n", + " .dataframe thead th {\n", + " text-align: right;\n", + " }\n", + "</style>\n", + "<table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: right;\">\n", + " <th></th>\n", + " <th>Unnamed: 0.1</th>\n", + " <th>Unnamed: 0</th>\n", + " <th>time</th>\n", + " <th>pmin</th>\n", + " <th>lon</th>\n", + " <th>lat</th>\n", + " <th>dp</th>\n", + " <th>dfi</th>\n", + " <th>ep</th>\n", + " <th>itt</th>\n", + " <th>eq1res</th>\n", + " <th>tadv</th>\n", + " <th>vmt</th>\n", + " <th>diab</th>\n", + " <th>eq2res</th>\n", + " <th>diabres</th>\n", + " <th>diabptend</th>\n", + " <th>magres1</th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <th>0</th>\n", + " <td>0</td>\n", + " <td>0</td>\n", + " <td>0.00</td>\n", + " <td>1000.991638</td>\n", + " <td>56.5</td>\n", + " <td>27.5</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1</th>\n", + " <td>1</td>\n", + " <td>1</td>\n", + " <td>0.25</td>\n", + " <td>997.934448</td>\n", + " <td>61.5</td>\n", + " <td>23.5</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2</th>\n", + " <td>2</td>\n", + " <td>2</td>\n", + " <td>0.50</td>\n", + " <td>998.462646</td>\n", + " <td>21.5</td>\n", + " <td>42.5</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>3</th>\n", + " <td>3</td>\n", + " <td>3</td>\n", + " <td>0.75</td>\n", + " <td>997.014771</td>\n", + " <td>32.5</td>\n", + " <td>28.5</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>4</th>\n", + " <td>4</td>\n", + " <td>4</td>\n", + " <td>1.00</td>\n", + " <td>999.559631</td>\n", + " <td>27.5</td>\n", + " <td>42.5</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>5</th>\n", + " <td>5</td>\n", + " <td>5</td>\n", + " <td>1.25</td>\n", + " <td>997.670227</td>\n", + " <td>27.5</td>\n", + " <td>43.5</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>6</th>\n", + " <td>6</td>\n", + " <td>6</td>\n", + " <td>1.50</td>\n", + " <td>998.062012</td>\n", + " <td>31.5</td>\n", + " <td>44.5</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>0.000000</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>7</th>\n", + " <td>7</td>\n", + " <td>7</td>\n", + " <td>1.75</td>\n", + " <td>997.686157</td>\n", + " <td>40.5</td>\n", + " <td>42.5</td>\n", + " <td>-1.524770</td>\n", + " <td>-1.383483</td>\n", + " <td>NaN</td>\n", + " <td>-0.139179</td>\n", + " <td>NaN</td>\n", + " <td>-3.278262</td>\n", + " <td>0.135743</td>\n", + " <td>2.536982</td>\n", + " <td>0.466358</td>\n", + " <td>3.003340</td>\n", + " <td>94.921158</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>8</th>\n", + " <td>8</td>\n", + " <td>8</td>\n", + " <td>2.00</td>\n", + " <td>997.231018</td>\n", + " <td>45.5</td>\n", + " <td>44.5</td>\n", + " <td>-1.069876</td>\n", + " <td>-3.226608</td>\n", + " <td>-0.015867</td>\n", + " <td>2.412867</td>\n", + " <td>-0.240268</td>\n", + " <td>-5.108050</td>\n", + " <td>1.300298</td>\n", + " <td>3.947564</td>\n", + " <td>2.273055</td>\n", + " <td>6.220619</td>\n", + " <td>75.222332</td>\n", + " <td>22.457584</td>\n", + " </tr>\n", + " <tr>\n", + " <th>9</th>\n", + " <td>9</td>\n", + " <td>9</td>\n", + " <td>2.25</td>\n", + " <td>995.639587</td>\n", + " <td>49.5</td>\n", + " <td>43.5</td>\n", + " <td>-2.321588</td>\n", + " <td>-1.431471</td>\n", + " <td>-0.054107</td>\n", + " <td>-0.911131</td>\n", + " <td>0.075121</td>\n", + " <td>-4.832134</td>\n", + " <td>3.987414</td>\n", + " <td>0.976318</td>\n", + " <td>-1.042728</td>\n", + " <td>-0.066410</td>\n", + " <td>19.669037</td>\n", + " <td>3.235755</td>\n", + " </tr>\n", + " <tr>\n", + " <th>10</th>\n", + " <td>10</td>\n", + " <td>10</td>\n", + " <td>2.50</td>\n", + " <td>993.030029</td>\n", + " <td>52.5</td>\n", + " <td>44.5</td>\n", + " <td>-2.990081</td>\n", + " <td>-0.227541</td>\n", + " <td>-0.115441</td>\n", + " <td>-2.774673</td>\n", + " <td>0.127574</td>\n", + " <td>-6.031978</td>\n", + " <td>7.124756</td>\n", + " <td>-1.840393</td>\n", + " <td>-2.027059</td>\n", + " <td>-3.867452</td>\n", + " <td>23.377873</td>\n", + " <td>4.266562</td>\n", + " </tr>\n", + " <tr>\n", + " <th>11</th>\n", + " <td>11</td>\n", + " <td>11</td>\n", + " <td>2.75</td>\n", + " <td>988.784302</td>\n", + " <td>56.5</td>\n", + " <td>44.5</td>\n", + " <td>-5.055136</td>\n", + " <td>-3.907526</td>\n", + " <td>-0.194425</td>\n", + " <td>-1.048631</td>\n", + " <td>0.095447</td>\n", + " <td>-8.037870</td>\n", + " <td>7.918819</td>\n", + " <td>-1.064185</td>\n", + " <td>0.134604</td>\n", + " <td>-0.929581</td>\n", + " <td>11.691698</td>\n", + " <td>1.888122</td>\n", + " </tr>\n", + " <tr>\n", + " <th>12</th>\n", + " <td>12</td>\n", + " <td>12</td>\n", + " <td>3.00</td>\n", + " <td>985.596008</td>\n", + " <td>59.5</td>\n", + " <td>45.5</td>\n", + " <td>-3.353602</td>\n", + " <td>-1.661278</td>\n", + " <td>-0.264434</td>\n", + " <td>-1.574067</td>\n", + " <td>0.146178</td>\n", + " <td>-9.813810</td>\n", + " <td>8.754335</td>\n", + " <td>-0.396583</td>\n", + " <td>-0.118009</td>\n", + " <td>-0.514592</td>\n", + " <td>3.884112</td>\n", + " <td>4.358828</td>\n", + " </tr>\n", + " <tr>\n", + " <th>13</th>\n", + " <td>13</td>\n", + " <td>13</td>\n", + " <td>3.25</td>\n", + " <td>981.169678</td>\n", + " <td>14.5</td>\n", + " <td>45.5</td>\n", + " <td>-5.994007</td>\n", + " <td>1.667370</td>\n", + " <td>-0.424664</td>\n", + " <td>-7.574016</td>\n", + " <td>0.337304</td>\n", + " <td>-15.649766</td>\n", + " <td>14.116293</td>\n", + " <td>-5.600531</td>\n", + " <td>-0.440012</td>\n", + " <td>-6.040544</td>\n", + " <td>26.355072</td>\n", + " <td>5.627351</td>\n", + " </tr>\n", + " <tr>\n", + " <th>14</th>\n", + " <td>14</td>\n", + " <td>14</td>\n", + " <td>3.50</td>\n", + " <td>976.026123</td>\n", + " <td>17.5</td>\n", + " <td>46.5</td>\n", + " <td>-6.623694</td>\n", + " <td>0.413370</td>\n", + " <td>-0.519789</td>\n", + " <td>-7.013312</td>\n", + " <td>0.496036</td>\n", + " <td>-18.551805</td>\n", + " <td>18.586736</td>\n", + " <td>-8.544503</td>\n", + " <td>1.496260</td>\n", + " <td>-7.048243</td>\n", + " <td>31.533828</td>\n", + " <td>7.488814</td>\n", + " </tr>\n", + " <tr>\n", + " <th>15</th>\n", + " <td>15</td>\n", + " <td>15</td>\n", + " <td>3.75</td>\n", + " <td>970.745728</td>\n", + " <td>19.5</td>\n", + " <td>46.5</td>\n", + " <td>-4.369829</td>\n", + " <td>-3.462807</td>\n", + " <td>-0.502404</td>\n", + " <td>-0.857915</td>\n", + " <td>0.453295</td>\n", + " <td>-12.869100</td>\n", + " <td>13.135464</td>\n", + " <td>-2.599338</td>\n", + " <td>1.475060</td>\n", + " <td>-1.124278</td>\n", + " <td>16.804140</td>\n", + " <td>10.373299</td>\n", + " </tr>\n", + " <tr>\n", + " <th>16</th>\n", + " <td>16</td>\n", + " <td>16</td>\n", + " <td>4.00</td>\n", + " <td>967.672241</td>\n", + " <td>23.5</td>\n", + " <td>47.5</td>\n", + " <td>-3.810261</td>\n", + " <td>-2.614022</td>\n", + " <td>-0.451344</td>\n", + " <td>-1.084327</td>\n", + " <td>0.339431</td>\n", + " <td>-14.895649</td>\n", + " <td>14.650202</td>\n", + " <td>0.432076</td>\n", + " <td>-1.270956</td>\n", + " <td>-0.838880</td>\n", + " <td>2.864791</td>\n", + " <td>8.908339</td>\n", + " </tr>\n", + " <tr>\n", + " <th>17</th>\n", + " <td>17</td>\n", + " <td>17</td>\n", + " <td>4.25</td>\n", + " <td>966.600647</td>\n", + " <td>28.5</td>\n", + " <td>47.5</td>\n", + " <td>-3.476231</td>\n", + " <td>-0.580904</td>\n", + " <td>-0.386173</td>\n", + " <td>-3.113185</td>\n", + " <td>0.604032</td>\n", + " <td>-18.012339</td>\n", + " <td>15.824947</td>\n", + " <td>-0.534239</td>\n", + " <td>-0.391554</td>\n", + " <td>-0.925793</td>\n", + " <td>2.880528</td>\n", + " <td>17.376062</td>\n", + " </tr>\n", + " <tr>\n", + " <th>18</th>\n", + " <td>18</td>\n", + " <td>18</td>\n", + " <td>4.50</td>\n", + " <td>963.127014</td>\n", + " <td>34.5</td>\n", + " <td>48.5</td>\n", + " <td>-5.311000</td>\n", + " <td>0.231428</td>\n", + " <td>-0.437539</td>\n", + " <td>-5.608984</td>\n", + " <td>0.504095</td>\n", + " <td>-23.658221</td>\n", + " <td>19.838339</td>\n", + " <td>-3.282714</td>\n", + " <td>1.493612</td>\n", + " <td>-1.789102</td>\n", + " <td>12.184854</td>\n", + " <td>9.491532</td>\n", + " </tr>\n", + " <tr>\n", + " <th>19</th>\n", + " <td>19</td>\n", + " <td>19</td>\n", + " <td>4.75</td>\n", + " <td>961.268616</td>\n", + " <td>37.5</td>\n", + " <td>48.5</td>\n", + " <td>-2.719412</td>\n", + " <td>-0.920923</td>\n", + " <td>-0.284051</td>\n", + " <td>-2.158937</td>\n", + " <td>0.644499</td>\n", + " <td>-19.381837</td>\n", + " <td>17.983743</td>\n", + " <td>-0.849564</td>\n", + " <td>0.088721</td>\n", + " <td>-0.760843</td>\n", + " <td>4.199233</td>\n", + " <td>23.699926</td>\n", + " </tr>\n", + " <tr>\n", + " <th>20</th>\n", + " <td>20</td>\n", + " <td>20</td>\n", + " <td>5.00</td>\n", + " <td>960.033142</td>\n", + " <td>42.5</td>\n", + " <td>49.5</td>\n", + " <td>-3.278760</td>\n", + " <td>-0.123684</td>\n", + " <td>-0.276547</td>\n", + " <td>-3.237937</td>\n", + " <td>0.359408</td>\n", + " <td>-22.430533</td>\n", + " <td>20.677957</td>\n", + " <td>0.919103</td>\n", + " <td>-2.404463</td>\n", + " <td>-1.485360</td>\n", + " <td>4.255686</td>\n", + " <td>10.961694</td>\n", + " </tr>\n", + " <tr>\n", + " <th>21</th>\n", + " <td>21</td>\n", + " <td>21</td>\n", + " <td>5.25</td>\n", + " <td>959.165527</td>\n", + " <td>46.5</td>\n", + " <td>49.5</td>\n", + " <td>-3.416591</td>\n", + " <td>-2.806445</td>\n", + " <td>-0.247299</td>\n", + " <td>-1.111028</td>\n", + " <td>0.748180</td>\n", + " <td>-21.054266</td>\n", + " <td>20.120395</td>\n", + " <td>-0.007731</td>\n", + " <td>-0.169426</td>\n", + " <td>-0.177157</td>\n", + " <td>0.036704</td>\n", + " <td>21.898439</td>\n", + " </tr>\n", + " <tr>\n", + " <th>22</th>\n", + " <td>22</td>\n", + " <td>22</td>\n", + " <td>5.50</td>\n", + " <td>954.482788</td>\n", + " <td>54.5</td>\n", + " <td>50.5</td>\n", + " <td>-8.724039</td>\n", + " <td>-0.680355</td>\n", + " <td>-0.307195</td>\n", + " <td>-8.303829</td>\n", + " <td>0.567340</td>\n", + " <td>-35.186934</td>\n", + " <td>30.452544</td>\n", + " <td>-3.964070</td>\n", + " <td>0.394631</td>\n", + " <td>-3.569439</td>\n", + " <td>10.125078</td>\n", + " <td>6.503179</td>\n", + " </tr>\n", + " <tr>\n", + " <th>23</th>\n", + " <td>23</td>\n", + " <td>23</td>\n", + " <td>5.75</td>\n", + " <td>950.702515</td>\n", + " <td>60.5</td>\n", + " <td>50.5</td>\n", + " <td>-11.366186</td>\n", + " <td>-4.151740</td>\n", + " <td>-0.630934</td>\n", + " <td>-7.534452</td>\n", + " <td>0.950940</td>\n", + " <td>-40.922430</td>\n", + " <td>39.156152</td>\n", + " <td>-11.262865</td>\n", + " <td>5.494690</td>\n", + " <td>-5.768175</td>\n", + " <td>21.582450</td>\n", + " <td>8.366390</td>\n", + " </tr>\n", + " <tr>\n", + " <th>24</th>\n", + " <td>24</td>\n", + " <td>24</td>\n", + " <td>6.00</td>\n", + " <td>944.416199</td>\n", + " <td>13.5</td>\n", + " <td>51.5</td>\n", + " <td>-10.644620</td>\n", + " <td>-0.104620</td>\n", + " <td>-0.793779</td>\n", + " <td>-10.601242</td>\n", + " <td>0.855020</td>\n", + " <td>-39.570175</td>\n", + " <td>36.428533</td>\n", + " <td>-11.337231</td>\n", + " <td>3.877630</td>\n", + " <td>-7.459600</td>\n", + " <td>22.270298</td>\n", + " <td>8.032413</td>\n", + " </tr>\n", + " <tr>\n", + " <th>25</th>\n", + " <td>25</td>\n", + " <td>25</td>\n", + " <td>6.25</td>\n", + " <td>939.254089</td>\n", + " <td>14.5</td>\n", + " <td>51.5</td>\n", + " <td>-4.240595</td>\n", + " <td>-2.657471</td>\n", + " <td>-0.639727</td>\n", + " <td>-1.974837</td>\n", + " <td>1.031441</td>\n", + " <td>-25.157101</td>\n", + " <td>26.443056</td>\n", + " <td>-5.659222</td>\n", + " <td>2.398430</td>\n", + " <td>-3.260792</td>\n", + " <td>18.364365</td>\n", + " <td>24.323030</td>\n", + " </tr>\n", + " <tr>\n", + " <th>26</th>\n", + " <td>26</td>\n", + " <td>26</td>\n", + " <td>6.50</td>\n", + " <td>943.386414</td>\n", + " <td>15.5</td>\n", + " <td>50.5</td>\n", + " <td>4.205340</td>\n", + " <td>1.154922</td>\n", + " <td>-0.319036</td>\n", + " <td>2.929329</td>\n", + " <td>0.440125</td>\n", + " <td>-1.640357</td>\n", + " <td>5.373003</td>\n", + " <td>-1.109275</td>\n", + " <td>0.305958</td>\n", + " <td>-0.803317</td>\n", + " <td>40.342656</td>\n", + " <td>10.465864</td>\n", + " </tr>\n", + " <tr>\n", + " <th>27</th>\n", + " <td>27</td>\n", + " <td>27</td>\n", + " <td>6.75</td>\n", + " <td>944.307129</td>\n", + " <td>23.5</td>\n", + " <td>52.5</td>\n", + " <td>-3.898076</td>\n", + " <td>-4.333317</td>\n", + " <td>-0.692164</td>\n", + " <td>-0.004103</td>\n", + " <td>1.131509</td>\n", + " <td>-26.342438</td>\n", + " <td>26.742041</td>\n", + " <td>-5.821429</td>\n", + " <td>5.417724</td>\n", + " <td>-0.403705</td>\n", + " <td>18.099282</td>\n", + " <td>29.027362</td>\n", + " </tr>\n", + " <tr>\n", + " <th>28</th>\n", + " <td>28</td>\n", + " <td>28</td>\n", + " <td>7.00</td>\n", + " <td>945.061279</td>\n", + " <td>28.5</td>\n", + " <td>53.5</td>\n", + " <td>-4.344801</td>\n", + " <td>-2.220293</td>\n", + " <td>-0.758293</td>\n", + " <td>-2.143275</td>\n", + " <td>0.777060</td>\n", + " <td>-30.737172</td>\n", + " <td>30.572628</td>\n", + " <td>-5.647775</td>\n", + " <td>3.669044</td>\n", + " <td>-1.978731</td>\n", + " <td>15.522285</td>\n", + " <td>17.884833</td>\n", + " </tr>\n", + " <tr>\n", + " <th>29</th>\n", + " <td>29</td>\n", + " <td>29</td>\n", + " <td>7.25</td>\n", + " <td>945.369507</td>\n", + " <td>34.5</td>\n", + " <td>52.5</td>\n", + " <td>-7.236033</td>\n", + " <td>-5.570192</td>\n", + " <td>-0.689141</td>\n", + " <td>-1.917405</td>\n", + " <td>0.940705</td>\n", + " <td>-31.433734</td>\n", + " <td>32.111517</td>\n", + " <td>-7.443328</td>\n", + " <td>4.848139</td>\n", + " <td>-2.595188</td>\n", + " <td>19.145808</td>\n", + " <td>13.000292</td>\n", + " </tr>\n", + " <tr>\n", + " <th>30</th>\n", + " <td>30</td>\n", + " <td>30</td>\n", + " <td>7.50</td>\n", + " <td>945.417725</td>\n", + " <td>34.5</td>\n", + " <td>53.5</td>\n", + " <td>-0.751102</td>\n", + " <td>1.017853</td>\n", + " <td>-0.420817</td>\n", + " <td>-2.131007</td>\n", + " <td>0.782870</td>\n", + " <td>-18.238116</td>\n", + " <td>19.966568</td>\n", + " <td>-4.149480</td>\n", + " <td>0.290020</td>\n", + " <td>-3.859460</td>\n", + " <td>18.534728</td>\n", + " <td>104.229527</td>\n", + " </tr>\n", + " <tr>\n", + " <th>31</th>\n", + " <td>31</td>\n", + " <td>31</td>\n", + " <td>7.75</td>\n", + " <td>945.800781</td>\n", + " <td>39.5</td>\n", + " <td>53.5</td>\n", + " <td>-2.111114</td>\n", + " <td>-2.772627</td>\n", + " <td>-0.403680</td>\n", + " <td>0.776996</td>\n", + " <td>0.288197</td>\n", + " <td>-19.509751</td>\n", + " <td>20.762361</td>\n", + " <td>-4.069986</td>\n", + " <td>3.594373</td>\n", + " <td>-0.475613</td>\n", + " <td>17.260524</td>\n", + " <td>13.651396</td>\n", + " </tr>\n", + " <tr>\n", + " <th>32</th>\n", + " <td>32</td>\n", + " <td>32</td>\n", + " <td>8.00</td>\n", + " <td>948.895386</td>\n", + " <td>39.5</td>\n", + " <td>53.5</td>\n", + " <td>3.091955</td>\n", + " <td>0.432388</td>\n", + " <td>-0.239517</td>\n", + " <td>2.630060</td>\n", + " <td>0.269025</td>\n", + " <td>-6.742869</td>\n", + " <td>9.913919</td>\n", + " <td>1.089976</td>\n", + " <td>-1.630966</td>\n", + " <td>-0.540990</td>\n", + " <td>9.905368</td>\n", + " <td>8.700792</td>\n", + " </tr>\n", + " <tr>\n", + " <th>33</th>\n", + " <td>33</td>\n", + " <td>33</td>\n", + " <td>8.25</td>\n", + " <td>952.656189</td>\n", + " <td>45.5</td>\n", + " <td>53.5</td>\n", + " <td>1.786963</td>\n", + " <td>-2.709863</td>\n", + " <td>-0.244734</td>\n", + " <td>4.844051</td>\n", + " <td>-0.102491</td>\n", + " <td>-11.510792</td>\n", + " <td>15.065191</td>\n", + " <td>-0.316211</td>\n", + " <td>1.605864</td>\n", + " <td>1.289653</td>\n", + " <td>2.673636</td>\n", + " <td>5.735513</td>\n", + " </tr>\n", + " <tr>\n", + " <th>34</th>\n", + " <td>34</td>\n", + " <td>34</td>\n", + " <td>8.50</td>\n", + " <td>955.252869</td>\n", + " <td>55.5</td>\n", + " <td>50.5</td>\n", + " <td>0.464534</td>\n", + " <td>0.357921</td>\n", + " <td>-0.232189</td>\n", + " <td>-0.167584</td>\n", + " <td>0.506386</td>\n", + " <td>-10.783333</td>\n", + " <td>13.550329</td>\n", + " <td>-1.748774</td>\n", + " <td>-1.185805</td>\n", + " <td>-2.934579</td>\n", + " <td>13.954346</td>\n", + " <td>109.009426</td>\n", + " </tr>\n", + " <tr>\n", + " <th>35</th>\n", + " <td>35</td>\n", + " <td>35</td>\n", + " <td>8.75</td>\n", + " <td>962.483459</td>\n", + " <td>54.5</td>\n", + " <td>51.5</td>\n", + " <td>4.338640</td>\n", + " <td>-1.268699</td>\n", + " <td>-0.137703</td>\n", + " <td>5.877027</td>\n", + " <td>-0.131985</td>\n", + " <td>-3.404504</td>\n", + " <td>9.262778</td>\n", + " <td>1.266369</td>\n", + " <td>-1.247616</td>\n", + " <td>0.018753</td>\n", + " <td>12.027268</td>\n", + " <td>3.042093</td>\n", + " </tr>\n", + " <tr>\n", + " <th>36</th>\n", + " <td>36</td>\n", + " <td>36</td>\n", + " <td>9.00</td>\n", + " <td>963.767273</td>\n", + " <td>24.5</td>\n", + " <td>46.5</td>\n", + " <td>-2.708739</td>\n", + " <td>-5.281558</td>\n", + " <td>-0.246777</td>\n", + " <td>2.322801</td>\n", + " <td>0.496795</td>\n", + " <td>-9.851435</td>\n", + " <td>7.347227</td>\n", + " <td>0.728904</td>\n", + " <td>4.098105</td>\n", + " <td>4.827009</td>\n", + " <td>9.025414</td>\n", + " <td>18.340458</td>\n", + " </tr>\n", + " </tbody>\n", + "</table>\n", + "</div>" + ], + "text/plain": [ + " Unnamed: 0.1 Unnamed: 0 time pmin lon lat dp \n", + "0 0 0 0.00 1000.991638 56.5 27.5 NaN \\\n", + "1 1 1 0.25 997.934448 61.5 23.5 NaN \n", + "2 2 2 0.50 998.462646 21.5 42.5 NaN \n", + "3 3 3 0.75 997.014771 32.5 28.5 NaN \n", + "4 4 4 1.00 999.559631 27.5 42.5 NaN \n", + "5 5 5 1.25 997.670227 27.5 43.5 NaN \n", + "6 6 6 1.50 998.062012 31.5 44.5 NaN \n", + "7 7 7 1.75 997.686157 40.5 42.5 -1.524770 \n", + "8 8 8 2.00 997.231018 45.5 44.5 -1.069876 \n", + "9 9 9 2.25 995.639587 49.5 43.5 -2.321588 \n", + "10 10 10 2.50 993.030029 52.5 44.5 -2.990081 \n", + "11 11 11 2.75 988.784302 56.5 44.5 -5.055136 \n", + "12 12 12 3.00 985.596008 59.5 45.5 -3.353602 \n", + "13 13 13 3.25 981.169678 14.5 45.5 -5.994007 \n", + "14 14 14 3.50 976.026123 17.5 46.5 -6.623694 \n", + "15 15 15 3.75 970.745728 19.5 46.5 -4.369829 \n", + "16 16 16 4.00 967.672241 23.5 47.5 -3.810261 \n", + "17 17 17 4.25 966.600647 28.5 47.5 -3.476231 \n", + "18 18 18 4.50 963.127014 34.5 48.5 -5.311000 \n", + "19 19 19 4.75 961.268616 37.5 48.5 -2.719412 \n", + "20 20 20 5.00 960.033142 42.5 49.5 -3.278760 \n", + "21 21 21 5.25 959.165527 46.5 49.5 -3.416591 \n", + "22 22 22 5.50 954.482788 54.5 50.5 -8.724039 \n", + "23 23 23 5.75 950.702515 60.5 50.5 -11.366186 \n", + "24 24 24 6.00 944.416199 13.5 51.5 -10.644620 \n", + "25 25 25 6.25 939.254089 14.5 51.5 -4.240595 \n", + "26 26 26 6.50 943.386414 15.5 50.5 4.205340 \n", + "27 27 27 6.75 944.307129 23.5 52.5 -3.898076 \n", + "28 28 28 7.00 945.061279 28.5 53.5 -4.344801 \n", + "29 29 29 7.25 945.369507 34.5 52.5 -7.236033 \n", + "30 30 30 7.50 945.417725 34.5 53.5 -0.751102 \n", + "31 31 31 7.75 945.800781 39.5 53.5 -2.111114 \n", + "32 32 32 8.00 948.895386 39.5 53.5 3.091955 \n", + "33 33 33 8.25 952.656189 45.5 53.5 1.786963 \n", + "34 34 34 8.50 955.252869 55.5 50.5 0.464534 \n", + "35 35 35 8.75 962.483459 54.5 51.5 4.338640 \n", + "36 36 36 9.00 963.767273 24.5 46.5 -2.708739 \n", + "\n", + " dfi ep itt eq1res tadv vmt diab \n", + "0 NaN NaN NaN NaN NaN NaN NaN \\\n", + "1 NaN NaN NaN NaN NaN NaN NaN \n", + "2 NaN NaN NaN NaN NaN NaN NaN \n", + "3 NaN NaN NaN NaN NaN NaN NaN \n", + "4 NaN NaN NaN NaN NaN NaN NaN \n", + "5 NaN NaN NaN NaN NaN NaN NaN \n", + "6 NaN NaN 0.000000 NaN NaN NaN NaN \n", + "7 -1.383483 NaN -0.139179 NaN -3.278262 0.135743 2.536982 \n", + "8 -3.226608 -0.015867 2.412867 -0.240268 -5.108050 1.300298 3.947564 \n", + "9 -1.431471 -0.054107 -0.911131 0.075121 -4.832134 3.987414 0.976318 \n", + "10 -0.227541 -0.115441 -2.774673 0.127574 -6.031978 7.124756 -1.840393 \n", + "11 -3.907526 -0.194425 -1.048631 0.095447 -8.037870 7.918819 -1.064185 \n", + "12 -1.661278 -0.264434 -1.574067 0.146178 -9.813810 8.754335 -0.396583 \n", + "13 1.667370 -0.424664 -7.574016 0.337304 -15.649766 14.116293 -5.600531 \n", + "14 0.413370 -0.519789 -7.013312 0.496036 -18.551805 18.586736 -8.544503 \n", + "15 -3.462807 -0.502404 -0.857915 0.453295 -12.869100 13.135464 -2.599338 \n", + "16 -2.614022 -0.451344 -1.084327 0.339431 -14.895649 14.650202 0.432076 \n", + "17 -0.580904 -0.386173 -3.113185 0.604032 -18.012339 15.824947 -0.534239 \n", + "18 0.231428 -0.437539 -5.608984 0.504095 -23.658221 19.838339 -3.282714 \n", + "19 -0.920923 -0.284051 -2.158937 0.644499 -19.381837 17.983743 -0.849564 \n", + "20 -0.123684 -0.276547 -3.237937 0.359408 -22.430533 20.677957 0.919103 \n", + "21 -2.806445 -0.247299 -1.111028 0.748180 -21.054266 20.120395 -0.007731 \n", + "22 -0.680355 -0.307195 -8.303829 0.567340 -35.186934 30.452544 -3.964070 \n", + "23 -4.151740 -0.630934 -7.534452 0.950940 -40.922430 39.156152 -11.262865 \n", + "24 -0.104620 -0.793779 -10.601242 0.855020 -39.570175 36.428533 -11.337231 \n", + "25 -2.657471 -0.639727 -1.974837 1.031441 -25.157101 26.443056 -5.659222 \n", + "26 1.154922 -0.319036 2.929329 0.440125 -1.640357 5.373003 -1.109275 \n", + "27 -4.333317 -0.692164 -0.004103 1.131509 -26.342438 26.742041 -5.821429 \n", + "28 -2.220293 -0.758293 -2.143275 0.777060 -30.737172 30.572628 -5.647775 \n", + "29 -5.570192 -0.689141 -1.917405 0.940705 -31.433734 32.111517 -7.443328 \n", + "30 1.017853 -0.420817 -2.131007 0.782870 -18.238116 19.966568 -4.149480 \n", + "31 -2.772627 -0.403680 0.776996 0.288197 -19.509751 20.762361 -4.069986 \n", + "32 0.432388 -0.239517 2.630060 0.269025 -6.742869 9.913919 1.089976 \n", + "33 -2.709863 -0.244734 4.844051 -0.102491 -11.510792 15.065191 -0.316211 \n", + "34 0.357921 -0.232189 -0.167584 0.506386 -10.783333 13.550329 -1.748774 \n", + "35 -1.268699 -0.137703 5.877027 -0.131985 -3.404504 9.262778 1.266369 \n", + "36 -5.281558 -0.246777 2.322801 0.496795 -9.851435 7.347227 0.728904 \n", + "\n", + " eq2res diabres diabptend magres1 \n", + "0 NaN NaN NaN NaN \n", + "1 NaN NaN NaN NaN \n", + "2 NaN NaN NaN NaN \n", + "3 NaN NaN NaN NaN \n", + "4 NaN NaN NaN NaN \n", + "5 NaN NaN NaN NaN \n", + "6 NaN NaN NaN NaN \n", + "7 0.466358 3.003340 94.921158 NaN \n", + "8 2.273055 6.220619 75.222332 22.457584 \n", + "9 -1.042728 -0.066410 19.669037 3.235755 \n", + "10 -2.027059 -3.867452 23.377873 4.266562 \n", + "11 0.134604 -0.929581 11.691698 1.888122 \n", + "12 -0.118009 -0.514592 3.884112 4.358828 \n", + "13 -0.440012 -6.040544 26.355072 5.627351 \n", + "14 1.496260 -7.048243 31.533828 7.488814 \n", + "15 1.475060 -1.124278 16.804140 10.373299 \n", + "16 -1.270956 -0.838880 2.864791 8.908339 \n", + "17 -0.391554 -0.925793 2.880528 17.376062 \n", + "18 1.493612 -1.789102 12.184854 9.491532 \n", + "19 0.088721 -0.760843 4.199233 23.699926 \n", + "20 -2.404463 -1.485360 4.255686 10.961694 \n", + "21 -0.169426 -0.177157 0.036704 21.898439 \n", + "22 0.394631 -3.569439 10.125078 6.503179 \n", + "23 5.494690 -5.768175 21.582450 8.366390 \n", + "24 3.877630 -7.459600 22.270298 8.032413 \n", + "25 2.398430 -3.260792 18.364365 24.323030 \n", + "26 0.305958 -0.803317 40.342656 10.465864 \n", + "27 5.417724 -0.403705 18.099282 29.027362 \n", + "28 3.669044 -1.978731 15.522285 17.884833 \n", + "29 4.848139 -2.595188 19.145808 13.000292 \n", + "30 0.290020 -3.859460 18.534728 104.229527 \n", + "31 3.594373 -0.475613 17.260524 13.651396 \n", + "32 -1.630966 -0.540990 9.905368 8.700792 \n", + "33 1.605864 1.289653 2.673636 5.735513 \n", + "34 -1.185805 -2.934579 13.954346 109.009426 \n", + "35 -1.247616 0.018753 12.027268 3.042093 \n", + "36 4.098105 4.827009 9.025414 18.340458 " + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df_track_orig" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Comparison" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAG1CAYAAAAMU3WaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAABwIElEQVR4nO3dd3xUVfrH8c/MJDPplSQECKGG3kGaiIoioNhdCwrYVuzounZX9CdgX6woroJ1wb4qimChSZGqKEVaIEBCCCmTOsnM3N8fE4IRAimTTMr3/XrNy8y95577DFHm8dxzzmMyDMNAREREpIEy+zoAERERkZpQMiMiIiINmpIZERERadCUzIiIiEiDpmRGREREGjQlMyIiItKgKZkRERGRBk3JjIiIiDRoSmZERESkQVMyIyIiIg2aT5OZKVOmYDKZyr2aN29edn7ixInHnB80aJAPIxYREZH6xs/XAXTr1o3vvvuu7L3FYil3ftSoUcyePbvsvdVqrbPYREREpP7zeTLj5+dXbjTmr2w22wnPn4zb7ebAgQOEhoZiMpmq3Y+IiIjUHcMwyM3NpUWLFpjNJ36Q5PNkZvv27bRo0QKbzcbAgQOZNm0a7dq1Kzu/ePFiYmNjiYiIYPjw4UydOpXY2NgK+3M4HDgcjrL3+/fvp2vXrrX6GURERKR2pKSk0KpVqxO2MRmGYdRRPMf45ptvKCgoICkpiYMHD/LEE0+wdetWfv/9d6Kjo5k3bx4hISEkJiaye/duHnnkEZxOJ+vWrcNmsx23zylTpvDYY48dczwlJYWwsLDa/kgiIiLiBXa7nYSEBLKzswkPDz9hW58mM3+Vn59P+/btuffee7n77ruPOZ+amkpiYiJz587l4osvPm4ffx2ZOfKHkZOTo2RGRESkgbDb7YSHh1fq+9vnj5n+LDg4mB49erB9+/bjno+PjycxMbHC8+CZY1PRqI2IiIg0PvVqnxmHw8GWLVuIj48/7vnDhw+TkpJS4XkRERFpenyazNxzzz0sWbKE3bt3s3r1ai699FLsdjsTJkwgLy+Pe+65h5UrV5KcnMzixYsZO3YszZo146KLLvJl2CIiIlKP+PQx0759+7jyyivJyMggJiaGQYMGsWrVKhITEyksLGTTpk288847ZGdnEx8fzxlnnMG8efMIDQ31eiwul4uSkhKv9yu+4e/vf8yeRSIi0jjVqwnAteFkE4gMwyAtLY3s7Oy6D05qVUREBM2bN9f+QiIiDVCDnQDsC0cSmdjYWIKCgvTF1wgYhkFBQQHp6ekAmmMlItLINelkxuVylSUy0dHRvg5HvCgwMBCA9PR0YmNj9chJRKQRq1ermerakTkyQUFBPo5EasOR36vmQomING5NOpk5Qo+WGif9XkVEmgYlMyIiItKgKZkRERGRBk3JTAP26quv0rZtWwICAujXrx/Lli07YfslS5bQr18/AgICaNeuHa+99lq583PmzMFkMh3zKioqqlJcJ7vP8ezdu5exY8cSHBxMs2bNuOOOOyguLi47n5ycfNzYFixYUKXYRESk8WnSq5kasnnz5jF58mReffVVhg4dyuuvv87o0aPZvHkzrVu3Pqb97t27GTNmDDfeeCPvvfceP/30E7fccgsxMTFccsklZe3CwsLYtm1buWsDAgIqHVdl7/NnLpeLc889l5iYGJYvX87hw4eZMGEChmHw0ksvlWv73Xff0a1bt7L3UVFRlY5NRBoBw4CSArAG1+597KngPs7iAbM/hMWfvB2AyQLhLY++z00DV3EFbc0Q3upPbQ+Cy3Fsu9AWYNFX91/pT6SBev7557n++uu54YYbAJgxYwbffvstM2fOZPr06ce0f+2112jdujUzZswAoEuXLqxdu5Znn322XJJhMplo3rz5ce956NAhevTowR133MGDDz4IwOrVqxk2bBhfffUVI0eOrPR9/mzhwoVs3ryZlJQUWrRoAcBzzz3HxIkTmTp1arnNkqKjoyuMT0QaufzDGB9eA/vWYDpnGpxyo/fv4ciFjybCju+Ofz6mM9y6+uj7dy+EQ1uP3za8Ndy16ej7/14BBzYcv21QNNy76+j7j6+DPcuPaZYT2Z3wO5aDFjiUo8dMf2EYBgXFzjp/VWUj5uLiYtatW8fIkSPLHR85ciQrVqw47jUrV648pv0555zD2rVryy1dzsvLIzExkVatWnHeeeexYcPR//BiYmJ46623mDJlCmvXriUvL4+rr76aW265pazvyt7nr7F17969LJE5co3D4WDdunXl2p5//vnExsYydOhQPv7444r+iESkESkqcfHj1nRmf/o/3HtWYnIVw9f3kPPJXeByeu0+LrfBgq1Z/LonHbdhosjwx4EVB1aKTVZKTFZS893MXLyTD9ek8P2WgxS4LbgtARh+AXDMy1r+Bhbbcdr86VWurX+5c06zDYDwrN/I/P17r33mxkIjM39RWOKi67++rfP7bn78HIKslft1ZGRk4HK5iIuLK3c8Li6OtLS0416TlpZ23PZOp5OMjAzi4+Pp3Lkzc+bMoUePHtjtdl544QWGDh3KL7/8QseOHQHKHiGNGzeOAQMGEBAQwJNPPlml+1QmtsjISKxWa9nnCQkJ4fnnn2fo0KGYzWa++OILLr/8ct5++22uvvrqSv25iUjDkZpTyA9b0/lhSzo/7cygqMQNxPGb+e90NO9jkt9XhG96i992/Ibrkv/Qq0Nite9VVOLisw37mbV0F7sz8gnnNlqYDrPFOE6fhcCCP4/EPFT201ldYnn5qr4E+FewSef1VfhuGf952Y+fb9jP5Hkbmer3JqdbNrL6l+1c3P2syvfVBCiZacD+uo+KYRgn3FvleO3/fHzQoEEMGjSo7PzQoUPp27cvL730Ei+++GLZ8WeffZbu3bvz4Ycfsnbt2mPm1JzsPpWJ7a+fp1mzZtx1111l5/r3709WVhZPP/20khmRRsDlNtiYks2PW9P5fms6W1LtAFxu+ZFYd1dKwhM5s3MsZ3a+m2CbH68u6Me1B6fTvfBntr0zhtvinuCSs4ZyelJMpfeYyiks4f3Ve0hfNpt4x252O8cRHujP+MG9ufKU1rgNg8z8Yg7nFZOR5/D8XPr+cL6Dw3nFZOZ7zjmcbr7bks6k99Yx65r+WP288+Bj3Z5M7v34VwAWtbyFR/YUErzdykiHkxCbvsKP0J/EXwT6W9j8+Dk+uW9lNWvWDIvFcswoTHp6+jEjHEc0b978uO39/PwqLOVgNpsZMGAA27dvL3d8165dHDhwALfbzZ49e+jZs2eN7tO8eXNWr15d7lhWVhYlJSUVfh7wJF//+c9/KjwvIvXf0j8O8fnG/SzedojM/KOTY/1MLl6I+JhzC/+HI6ID1psXY7KFlp0fdMvd7P1tIOGfX0PHkv049v/KtbOtdG4eyk3D23Fezxb4W46fUKTlFPHWT7v57+pkbnZ9wBS/L8APEvuPYdjoKwj+U5LQKvLkO8QbhsGa5CwmvPUzi7cdYvK8Dbx4RR/8Krh/ZaVkFvD3d9ZR7HIzsmscr47ry8gZS9l1KJ+5P+/lhmHtatR/Y6I5M39hMpkIsvrV+asqu9VarVb69evHokWLyh1ftGgRQ4YMOe41gwcPPqb9woUL6d+/P/7+/se9xjAMNm7cWO7RUHFxMePGjePyyy/niSee4Prrr+fgwYM1us/gwYP57bffSE1NLXeNzWajX79+x70GYMOGDSoiKdKALd6Wzvi3fubT9fvJzC8mNMCP83rG89LF7dnceQ7nFv4PAFu/cZisIcdc37r7UMJvX4Z91Au0GXoZwVYLW9NyuWveL5z+zGJm/7SbguKjc2p2pOdx78e/MOzpH3h36Waedj/HLX5fAOA69R5GnX9VuUSmskwmE6e0jWLW+H5YLWa+3pTGfZ9swu2u/FzIv7IXlXDdnDUczi+me8swZlzRGz+LmRuHtcMPJ5uXfEKJ01Xt/hsdo5HLyckxACMnJ+eYc4WFhcbmzZuNwsJCH0RWM3PnzjX8/f2NN99809i8ebMxefJkIzg42EhOTjYMwzDuv/9+45prrilrv2vXLiMoKMi46667jM2bNxtvvvmm4e/vb3z88cdlbaZMmWIsWLDA2Llzp7Fhwwbj2muvNfz8/IzVq1eXtbnnnnuMNm3aGDk5OYbL5TJOO+0049xzz63SfT799FOjU6dOZe+dTqfRvXt3Y8SIEcb69euN7777zmjVqpVx2223lbWZM2eO8f777xubN282tm7dajzzzDOGv7+/8fzzz1f4Z9SQf78iTcE1b642Eu/7yrh29s/Gyp0ZRrHTZRiZuw3j5YGG8WiYYfxfnGH8/nml+8vOLzbmfL3UePGxm402931hJN73ldHrsW+NpxdsMW54e42ReN9XRuJ9Xxmn3PeOsfP/+hrGo2GG+/FmhrFxrtc+04LfUo12D8w3Eu/7yvjX55sMt9td5T5KnC7j6v+s8sQ6dZGRmn3077DCIoex99Ekw3g0zFj63Rdei7s+OtH3918pmWnAX3avvPKKkZiYaFitVqNv377GkiVLys5NmDDBGD58eLn2ixcvNvr06WNYrVajTZs2xsyZM8udnzx5stG6dWvDarUaMTExxsiRI40VK1aUnf/xxx8NPz8/Y9myZWXH9uzZY4SHhxuvvvpqpe8ze/Zs46959J49e4xzzz3XCAwMNKKioozbbrvNKCoqKjs/Z84co0uXLkZQUJARGhpq9OvXz3j33XdP+OfT0H+/Io3Z7kN5RuJ9Xxlt7v/KSM7I8xzcs8ownmrnSWSeSTKM/eur1mmJwzBeHWIYj4YZu2deZpz11DdlCcyR1+Oz3jccT3X03OOptoaxZ6XXP9tn6/cZbe733O+pb7ZU6Vq322089NmvRuJ9XxmdH/7G2LQv+5g2v786zjAeDTMWTr2oWslSQ1GVZMZkGFVYE9wA2e12wsPDycnJKbdfCUBRURG7d+8u20VXGhf9fkXqrye+2sx/lu/m9E4xzLn2FM9meHPOhT0/QfOecOXc8hvOVdaG9+HLO8FdgtGiH9/3nsEHmx3Ehdm4/tR2dDi8GOZdDTGdPPeIauv1zwbw/uo9PPTZbwD885xO3HpGh0pdN/un3Tz25WZMJnjt6n6c0+3YfbXsf/xE2AdjKDSsbPzbagZ3a5xzZ070/f1XmjMjIiJ1qrDYxUfr9gEwfnDp8meTCS6dDf2vg2u/qV4iA9BnHIz/HwRGYjqwjrOWX8lbowKYfnFPOsSGQJfz4LLZcP3CWktkAMYNTOTBMZ0BeObbbcz5afdJr/lh60H+76vNANw/qvNxExmAsI5DSA9oS6CpmD8Wvem9oBswJTMiIlKnvvzlADmFJSRG+DPc+aeNPkPj4Lx/g+3Yyb5V0mYo3PA9RHcE+z547VTYt/bo+W4XQUB4ze5RCX8/rT13jPDs0TXly818tDalwrZbUu3c/sEG3AZc3j+Bv592gtEWkwn/U64DYEDml2w5kOPVuBsiJTMiIlJnDMPgnVXJADzVYhmWjyfCL3O9f6Po9nDDImg73PP+q7vAXferf+46qyPXn+oZAbrvk1+Z/2vqMW3Sc4u4fs4a8otdDG4Xzf9d2P2kK1wjB11NicmfruY9LFj4da3E3pAomRERkTqzMSWb3/bbSfDLZmBK6T5RrgoKNdZUYCRc/YlntGfMs2Cu/H5e3mIymXj43C5cMSABtwF3zt3Aj1vTy84Xlbi48Z11HMgpol2zYGZe3bdyG+4FRZHX7lwAjB3fcyC7sLY+QoOgZEZEROrMu6v2APBC1CeYSgogYSD0Hld7N7T4e+bhtB5Ye/c4CZPJxNSLenB+rxY43QaT3lvHyp2HcbsN/vHRL/ySkk1EkD9vThxARJD15B2Wihz1EPc2e5UXnRcxZ0Vy7X2ABkDJjIiI1InM/GK++jWVgaYt9LV/D5hgzDNgbvxfRRazief+1ouzusThcLq54e013PPRL8z/NRV/i4nXru5H22bBVes0JolRZ3lqNH2wei/2oloa4WoAGv+/QSIiUi98uDYFl7OEp4Le8Rzofy3E9/JtUHXI32Lm5av6MLRDNPnFLj7dsB+AaRf1YFC745d7OZnTk2LpGBuC4cjlv6v3ejPcBkXJjIiI1DqX2+C9VXu4xrKINq49nvksZz7i67DqXIC/hVnX9KdfYiQAN5/ensv6J1S7P7MJXg9/m7W2m1m2bDHFTrd3Am1gVGhSRERq3ZI/0tmXVUhJQBhGYCSmEf+CoChfh+UTwTY/5v59ELsz8kmKCz35BSdiMpEYUoLFVMxZRQv48pdzuKRfK+8E2oBoZEZERGrduys9E38D+4/DdPt66DvBxxH5lr/FXPNEppSl30QALrYs552lm2nkG/sfl5KZBmrp0qWMHTuWFi1aYDKZ+Pzzz6t0/e+//84ll1xCmzZtMJlMzJgxo1biFJGGaX92IS99v53f9td8Q7a9hwtY/MchAK4elOgZkfHBMulGq90ZuMNbE2YqoP2h71lS+mfdlCiZaaDy8/Pp1asXL7/8crWuLygooF27djz55JM0b378LbNFpOlJzSnk4c83cfozP/Lcoj+46o1V7M7Ir1Gf76/azSt+M7i71VbaRAd5KVIpYzZj7jcegCv8fuSNZbt8HFDd05yZBmr06NGMHj36uOe2bt1K3759+c9//sNVV10FwKeffspVV13FmjVr6NGjBwMGDGDAgAEA3H///XUWt4jUA2+NhpRV5Q55StlDkBHIe443AAgL8COkKI2b56zgw9tOJyzAv8q3KipxUbz2HcZYfsaZsxkKr22yc2VqVe+rMX6czinmbRzc+Qu/7e9C95ZVLNmQlQzzroHQeLhqnqdeVgOhkZmKFOdX/CopqkLbwpO39bLOnTvz7LPPcsstt7Bnzx4OHDjAjTfeyJNPPkmPHj28fj8Rqccyd3u+oIr+9LjIcB/zMhluzLgx4eaUtlH898ZBfH9LD+YFTOf/7A/yyPuLcbmrPhfj27VbuN39HgDmMx5UIlNbwuIxJY0C4ArLj8xaWo3RmcBISPsVtn/rSWwaEI3MVGRai4rPdRwJ4z46+v6ZDlBScPy2iafCtfOPvp/RAwoOl28zxftFwm655Ra+/vprrrnmGqxWK/369ePOO+/0+n1EpB7bswLmjoPCTLCFwoWveo5f8QGH7fm8uzKZTzbso6jEs5y3V6sIbhrennndO3tqA+1bi8uaT0JxKnF7bmbO5y9y/cVjqhSC35LpRJnyOBzUnuiBf/f2J5Q/G3QzB0O78fryRDI3pXLvqE60iqz8Yz2XNQxXUDzWglTYu6pWq4p7m5KZRuytt94iKSkJs9nMb7/9dtLCZSLSiGz8L3xxO7hLIL532Z4uh/MczFqazjsr91BY4gLC6dM6grvPTuLUDs3K/z3Rqj+WG78nb87FtM5P4bJfrmNF8AsMOefySoWwbeMKRhXOBxP4nfeMp7SA1J62w4hrO4yktFX8tOMwby1P5l9ju1bc3u3CvfAR9hWH8h9jLF9vSuOGov5M8vsSV/JPWHpfWXex15CSmYo8eKDic6a/zML/544TtP3Lk7zJm6ofUxX98ssv5OfnYzabSUtLo0WLE4w2iUjj4HbDD/8Hy5/3vO9yPlz0OtlOP15fsJW3VyRTUOypHt2rVTh3nZ3E8KSYiv9nJyaJkFuWkPLaxSTkbmTgipvYTyotz5l84jgMA/+F92ExGWwIPYM+XUd47zPKCf39tPb8tOMwc9fs5c4RHQkPKp9Eut0GG3emEPzlJDrZf6KlYWJZcQwZRjw/mzsxiS8p3vUTgT6KvzqUzFTEWoUaGbXVtgYyMzOZOHEiDz30EGlpaYwbN47169cTGNiQ/vUUkSopLoDP/g5bvvS8H/YPOONhfk/L5Ya3V5Ka45nv171lGHefncQZnWIrN2IbHE2L279l+YvjOTXvW1qufJTcAAuhw2+v8JLcrYtpV/ArBYYNy6ip3vh0UkmnlfzEpyH/5q788by3eg+3ntEBwzDYkJLN/F9TWffrr0wvmkon816KDH8eNt1Kv74D+FfPeOavDoJdzxJo3wX5GRDczNcfp1KUzDRQeXl57NhxdERo9+7dbNy4kaioKFq3bs2kSZNISEjg4Ycfpri4mL59+3LPPffwyiuvAFBcXMzmzZvLft6/fz8bN24kJCSEDh06+OQziUgNOXJh/3ow+8P5L0HvK1n4exqT522koNhF22bBPDimC2d1qWQS8ycWawA9b32PN/79D84u+pYpm9rz+lAXNr/j7xfz30OtWVZ8P/0iC7iz6wkedYjXmTa8S1/nRi63tGb2ikRyCkuY/2sq+7ML6W3awRvW54gx52C3RLHtjNeZOmhE2e/xYE4RW3ck0NmcAntXQpexPv40lWMyGvlWgXa7nfDwcHJycggLCyt3rqioiN27d9O2bVsCAgJ8FGH1LF68mDPOOOOY4xMmTODMM8/klltuYcOGDXTs2BGAdevWMWTIED777DPGjBlDcnIybdseO7lr+PDhLF68uLbDrxMN+fcrUm2pv0JxHkbrwbyxbBfTv9mKYcCwjs14+aq+hAfWbN7K7ox8Ln/5e9KLLFzWrxVPX9oTU1G2ZyVMKbfb4PRnF7M3s4AnL+7BFae0ruGHkirZ/AV8eA2HiWBg0Ys4S8ctLrb+zJOWV7Eaxbhju2G+ah5ElK8LtfdwAZ//+2Y6mlM5ffwjBHYY5otPAJz4+/uvNDLTQJ1++ukn3LJ6/Pjx5d7369cPh8NR9r5NmzZNcstrkUZny1fgckD3Szzv43tS7HTzyCebmLc2BYBxA1sz5fxu+FtqvhtH22bBPHvVYCbO/pmP1u3jfPf3DNvzMlz+PiQOhqw9rNyTy97MAkID/Ligd8sa31OqqNNoCI4lOj+dS0N+I7fdaM7rEc9Z+QfwX1AMSaMwX/Ifzwq3v2gdHcSHoRPYl1XIbFcnjv1f5vpJyYyIiA/lFJawbPshnC6Dc7o1J9BayW3+DQN+egG+mwIWKzTrBM27k11QzKT31rFqVyZmEzxyXlcmDmnj1dWMpyXF8OCYLkyb/zvBv78P5sPwzvmeR1u//Je+u3/mbPMkEvpdVvnPI95j8Yc+42D5v3myzXq46qHSEzdCeLwn2TlBOYmh7Zsxb20KK3ZkcEan2LqJuYaUzIiI1CHDMNh5KI8ftqbz/ZZ01u7Jor2xl0HmzWz7wo+B7aI4pW0UQf5+ENkGkkYevfjnNzxJDMC+n2FT6X5XfcdDTGd2Hcrj+rfXsjsjnxCbHy9d2YczOtfOl9H1p7ZlS2ou49Y/yEsBr3OWazV8dhMAZsOfbUYCDwzS4yWf6Tselv8bdnznefQY39NzvMt5J710SIdo5q3dS/Ifv8KwCAir/ythlcyIiNQyh9PF6l2Z/LA1nR+2prM38+gmm5daljDd+ib+OD01BXaWvoDC9mMI/HMy8829nh17jzCZYdRTMPDvrNiRwaT31mEvctIyIpA3J/anc/MTzzOoCZPJxNSLurPzUB43ptzO1LAErir+GIDXXeeS2KEb7WJCau3+chJR7aDtabB7KSx8CCZ8WelLB7ePZqrfW4zL+Z7ClfcQeM4jtRiodyiZERGpBen2In7c5hl9Wb4jo2xvFwCrxczAdlGM7BjKlWvvw8/uxEgYyAF3JDvS88ktKgFg07ZIDn24kZtOa0+n5qHQ9UI8GQ+eFUt9roZ2w5n7814e/vw3nG6DPq0jmHVNf2JCbbX+GQP8Lcy6ph9jX17Og/aLyUzojjXjd15xnstLgxJr/f5yEqOfhjVvwsBJVbosNjSAjJBOUPQ9+TuWEXhOLcXnRT5NZqZMmcJjjz1W7lhcXBxpaWmAZzj2scceY9asWWRlZTFw4EBeeeUVunXr5tU4NBG2cdLvVeqS222waX8O329N58et6WzaX75MSWyojTM7x3JG51hO7dCMYFvpX7+dP4LNX2A67Z+0NJtpYRgs3Z7Ba4t3snLXYVi/n0/X7+fMzrFMGv4cA9pEls1/cbkNnpy/mTeW7Qbg/F4tePrSngT41908ldiwAGZd05/LXl/JsylJQBItwgM4s5Yeb0kVxHaBc5+t1qV+bYfAllcJy9gIrpJ6v3uzz0dmunXrxnfffVf23mI5+h/h008/zfPPP8+cOXNISkriiSee4Oyzz2bbtm2Ehh47C7uq/P09v5yCggJtJtcIFRR4hvKP/J5FvC3P4WT59kN8vyWdH7cdIiPPUe58r4QIzuwUy4gusXSND8NsNoH9AOz+Fjqf62kU28XzKmUymRieFMPwpBh+Scnm9aU7+ea3tLJHVH1bRzBpeHsGt4/mrnkb+W5LOgB3nZXEHSM6+KRsSa+ECJ66pAd3zfsFgHGDEvHzwsop8Z2O3fqRtTmESPIg9Rdo1d/XIZ2Qz5MZPz8/mjdvfsxxwzCYMWMGDz30EBdffDEAb7/9NnFxcXzwwQfcdNNNNb63xWIhIiKC9HTPXwZBQUGqX9QIGIZBQUEB6enpRERElEuQRWoqOSO/LLFYvfswJa6jI4DBVgunJcVwRudYTu8UQ2zoX/Y3OrAB/nulZ2fV8Z9Dm1NPeK9eCRG8Oq4fuzPymbV0F5+s38f6vdn8/d112PzMOJxubH5mnr2sF2N7+XaS5kV9WnE4r5ifdmRw9UA9YmroBraP4Wd3J862rMO+bQlhSmZObPv27bRo0QKbzcbAgQOZNm0a7dq1Y/fu3aSlpTFy5NHJbzabjeHDh7NixYoKkxmHw1FuPxW73X7C+x9JpI4kNNJ4REREHDdRFqmKEpebNcmZ/Lg1ne+3prPrUH65822igzizcxwjusQyoE0UVr8KRiQ2f+FZ7VNSADGdIbxVpWNo2yyY6Rf34K6zOzLnp2TeXbWH3CInzUJsvDG+H31aR568kzpww7B23DCsna/DEC8ID/RnX1hvyF9H3h/LCBvxD1+HdEI+TWYGDhzIO++8Q1JSEgcPHuSJJ55gyJAh/P7772XzZuLi4spdExcXx549eyrsc/r06cfMwzkRk8lEfHw8sbGxlJSUVO+DSL3j7++vERmpEbfb4LMN+3lu4TYOlNY0AvAzmzilbRRndo7lzM6xJ1+xYxieJbLfl/691H4EXDYbAsKrHFNsaAD3jurMzae358dthxjUNorYMO1uLbXD0mYI/P4m4RnrPAVMzfX30aFPk5nRo0eX/dyjRw8GDx5M+/btefvttxk0aBDAMY99DMM44aOgBx54gLvvvrvsvd1uJyEhocL2R1gsFn35iQgAy7YfYtrXW9mS6hnZjQq2ckbp3JdTOzYjLKCS87CcDvhyMvzygef9KTfBOdPAUrO/ekMD/Dnfx4+VpPFr32MIM38Zy06/7jxjuDChZKZSgoOD6dGjB9u3b+fCCy8EIC0tjfj4+LI26enpx4zW/JnNZsNmq/0liSLS+Gw+YOfJBVtZ+schAEID/Lj1jA5MHNKmeiuEfv3Qk8iYLDD6KTjlRi9HLFJ7+rWP41pjHMV5bm7OdNA+pv4upqhXyYzD4WDLli0MGzaMtm3b0rx5cxYtWkSfPn0AT3XnJUuW8NRTT/k4UhFpTA5kF/Lcwj/4dMM+DAP8LSauGdSG28/sQGSwtfod97ka9q/z7Lra4SzvBSxSBwL8LfRNjGDVrkxW7DxM+3q8CaJPk5l77rmHsWPH0rp1a9LT03niiSew2+1MmDABk8nE5MmTmTZtGh07dqRjx45MmzaNoKAgrrrqKl+GLSKNhL2ohJmLd/LW8t04nJ6ddc/rGc+953SmdXQQFOfDF/+A5OUw/H7odbnnwn1r4dMTjLIMvRP6TQSTCcbOqPXPIVJbhrUNx5r8IyFrfoRB1duzpi74NJnZt28fV155JRkZGcTExDBo0CBWrVpFYqJnWd+9995LYWEht9xyS9mmeQsXLvTKHjMi0nQVO928v3oPL36/nawCz8T/U9pG8eCYLvROiPA0ytkP/70C0n71vHf8aWVkSSFk7qr4BkU5FZ8TaUCGtA1l0vKnsRw2cGfdiTny5HNQfcFkNPJtUu12O+Hh4eTk5BAWVnt1SkSk/nO7Db75LY2nv93KnsOeTRU7xIZw/6jOjOgSe3Rxwf71nv1g8tIgOAbO+ze0GgChpUv9i3IgfWvFN4pIaBDF+UROxulys+3xfnQz7SLljJdIGD6+zu5dle/vejVnRkSkNhQ73XzxywFeX7KT7el5AMSE2rjrrCT+1r9V+d1qN/8PPr0JnIUQ2xWunAuRf9kELiAcWg+sw08g4ht+FjP7w3vTzb4L+x9LoQ6TmapQMiMijVaew8ncn/fy5vLdpJbuFRNq8+P6YW25cVi7o/WRjkhZAx+W/mXd4Wy49C0I0IiuNG3mxCGw6VPC0tf4OpQKKZkRkUYnI8/BnJ+SeWdlMvYiJ+AZibluaFvGDWpd8T4xrfpD76vBFgojn6jxfjAijUHr3mfCJkgoSaY4NxNraJSvQzqG/ksVkUZjz2FPDaOP1+0rW53Urlkwfz+tHRf1bYnN7zh7xeQfBj+rJ4ExmeD8F8GsDTRFjujQth3JtKANB0je+D1Jwy7zdUjHUDIjIg3eb/tzmLlkJ99sSsVduqShV0IENw9vx9ldm2MxV7Br+KFt8MHfPLWSrvjAk8QokREpx2w2sT+sN23sB8je9hMomRER8Q7DMPhpx2FeW7KT5Tsyyo6f3imGScPbM7Bt1AlLn7Dje/joWnCULqPOS4ew+IrbizRhWb1uYtR3pxFe0pN5vg7mOJTMiEiD4nS5+ea3NF5fupPf9nv2frGYTYztGc9Nw9vTJb4SE3bX/Ae+vhcMF7QeApe/B8HRtRy5SMPVvdcAti7Kx39fDgXFToKs9St9qF/RiIhUoKjExUdrU3hj2W72Znr2iAnwN3NrD4MrOriICTkEuYcg9y8Xth54tEL14Z2w9NmjhR97XeXZoddP9dxETiQxOoiWEYHszy5kTXIWw5NifB1SOUpmRKReyy4o5t2Ve5izIpnD+cUARAb5M2FIG8YPbkPUqqfgixNss/73JdCit+fnzZ8fTWRGPAqn3uWZ9CsiJ2QymRgfl0xM/icUrtgISQ/5OqRylMyISL10ILuQ/yzbzdw1eykodgHQKjKQG09ty2W9owkKLn2cFBYPLfpU3JF/0NGfQ5p7HisNvtVT/FFEKm1QWAa9LMtZt78AqF/JjMoZiEi9si0tl9eX7uSLjQdwli5N6hIfxqTh7Ti3SxR+8+/0TNYd97H2gRGpQ4d3rCX6vRHkGoG4/rmbiJDAWr2fyhmISIPidLlZtj2Dd1ft4Yet6WXHB7eLZtLp7TmtYzNM+Rnw3gWQshpMFtj3MyQO8WHUIk1LdLs+5BNEqKmAnzasYOiwEb4OqYySGRHxmZ2H8vho7T4+27CPg3YH4JnCMrp7c246rT29jlSwTt/i2Q8mey/YwuFvbyuREalrZgv7w3qSZF9F9taloGRGRJqq3KIS5v+aykfr9rFuT1bZ8cggfy7o3ZIJQ9rQtlnw0Qt2fFe6H4wdItvCVR9CTJIPIhcREgbD76sIOfizryMpR8mMiNQ6t9tg9e5MPlqbwje/pVFY4pnQazbB6Z1iuaxfK0Z0icPqZy5/4cYP4H+3guGGxKGe/WCC6l9dGJGmokXPM+H3f9O15HfSsgtpHlG782YqS8mMiNSafVkFfLJuPx+vTyEls7DsePuYYC7rn8DFfVoSGxZQcQfNe3pWI3W9EM77t6eGkoj4TEi7U3Bg45ARwc6tOxk7qLuvQwKUzIhILSgodvKPD39hwe9pHFkvGWLzY2yveC7rn0CfhIiKSw243WAuHaFp3h1uWgpR7bQfjEh94B/AS/0X8PLyVC5NcTF2kK8D8lAyIyJeVVjs4ro5a1i1KxOAIe2juax/K0Z1iyfQepIijpm74cPxMOYZaF36t2R0+1qOWESq4pSkBFieyoodGRiGceIaaHVEyYyIeE1hsYvr317Dhl1pPGz7nMtaHiY8wB9+A/4IgcvfPdp40aOQ9mv5Dg5shMJM+PoeuGmZRmNE6qEBbaKwWsxk5OSSfLig/IR9H1EyIyJeUVTi4sZ31rJt5y7m2v5NH9MfcOBPDQIiyl9wYAPsXnJsR/G94Mq5SmRE6qlAi8H/gp+gnWMrX21eSNvT+vk6JCUzIlJzRSUu/v7uOg7u3MgXtmdoaTrkKe545iNgK9250+Jf/qJT74Le48ofswZBh7PAv36skBCR47D40czPga3YSdbmpaBkRkQaOofTxc3vrWPpH4fo7m8hzloIoe08+8E061jxhe3PqLsgRcSrjNaDYOt2gtJW43YbmM2+HUlVMiMi1eZwurjlvfX8uO0QAf5mHpp4EX7WnhDdQfvBiDRiUV1Ph63v0tO9hS1pdrq1CPdpPOaTNxEROVax080d763h1B3PcJr/Ft6cMIDB7aMh4RQlMiKNnF8bTzmRLqY9rN22x8fRKJkRkWoocbm5972ljNt5D9f6fcubQS8ztJU2tBNpMsJaYA9oicVkkLFlma+jUTIjIlVT4nLz+DtfcduumznNsgmXJRD/i16BgDBfhyYidcid4NkLKuTgGkpcbp/GomRGRCrN6XLz0ux3uCv5ZjqYD1AUGIflhm+h87m+Dk1E6lhYj9H8wAB+KUng133ZPo1FE4BFpFKcLjdz33iK21KfwWpyYY/sTti1H0NYvK9DExEfMPe8jI83tePrTWl03nGYfom+myunZEakiSkodvLKjztIzigg0Goh0N9CK1cKAf4WAvzNBPhZSn+2EGA1Yw0IwRKZwOzluzl1/3KsFhcHW51D3Pg5nn1hRKTJGtK+GVvTcgkN8G06YTKMI2XgGie73U54eDg5OTmEhemZvjRtO9JzmT37dVJyilnq7lV2PDngqgqv+cHVm+tK7gUgyOzko4G76Db2zqPFIEWkyTLc7qO1mby8a3dVvr81MiPSRPxvwz42f/YUj5vepdAayFeDPiAroDWFxU4KVnv+ojCgtMq1gWF43mMLIT4oAJufmftHd6Fb9wt89yFEpF4xmUz1ovSIkhmRRq6oxMUTX/5Kl/X/xwN+3wNg6XExV5x96tESAyNTKrz+TGBlHcQpIg1QPUhkQMmMSKO253A+/3xnKXdk/h+n+v2OgQnj7McJHHJ7vflLSESkppTMiDRSC35L5cWPFvKSMZ32llRcfkFYLn0TU+cxvg5NRMSrlMyINDLFTjdPfrOVt37azSN+39DeLxVXSAss4+ZBfE9fhyci4nVKZkQakf3Zhdz2wXo27M0G4NCgB3GZW2MZdjeENvdtcCIitUTJjEgj8ePWdO6et56zir8nOeAMnrqsLyO7NQee9nVoIiK1SsmMSANXVOLixe+3M3vx7/zbfyaj/NeQ28tFaDfNjRGRpkHJjEgD4nIb7DyUx8aUbH5JyeaXfdlsTc0l2n2Yj6zP0t2cjGGxEtpuoK9DFRGpM0pmROoTVwn8PAsO78AwPKUHDucVk5Hv4HBeMXPzevN9cTcAEkwHucnyFZhhpHUDsWRCUDNMV7wPrQf5+IOIiNQdJTMi9UjhyjcI/O5BAExAcOmrden5Va4Igqw96dEynDER+Vy95fujF8d0hqvmQWSbug1aRMTHlMyI1ANpOUW89dNu5q1uwzT3KSQbzXEYVkwmiAm10TwsgObhAYzvOpIHew7HYjZBTgLEeRIfAiOg1xUQEO7TzyEi4gv1ptDk9OnTefDBB7nzzjuZMWMGABMnTuTtt98u127gwIGsWrWq0v2q0KTUZzvS85j/7de8tjWAQpcFgE5xoVzWvxV9WkfQrUU4Af4WH0cpIlL3GlyhyTVr1jBr1ix69jx2Q69Ro0Yxe/bssvdWq7UuQxOpFev2ZPHakp1EbJvHVL83iTEN5/M2/2TS6e05o1Ps0Sq0IiJyUj5PZvLy8hg3bhxvvPEGTzzxxDHnbTYbzZtrsy9p+AzD4Mdt6by2eBdrkjO4z28uk/y/AmBUxyCuunrA0cKPIiJSaWZfB3Drrbdy7rnnctZZZx33/OLFi4mNjSUpKYkbb7yR9PT0E/bncDiw2+3lXuJ7yRn5FBQ7fR2GT5S43Hyybh+jZizjujlr+S35ALOsM5jk50lkGH4/UePfUyIjIlJNPh2ZmTt3LuvXr2fNmjXHPT969Gguu+wyEhMT2b17N4888ghnnnkm69atw2azHfea6dOn89hjj9Vm2FJFH6zey4OfbeLMzrG8NXGAr8OpMzvS8/jq1wN8uCaFAzlFALS35fB+8L9pXvAHWGxwwSvQ8zIfRyoi0rD5bAJwSkoK/fv3Z+HChfTq1QuA008/nd69e5dNAP6r1NRUEhMTmTt3LhdffPFx2zgcDhwOR9l7u91OQkKCJgD7yPLtGUyY/TMut+dfs/l3nEq3Fo13xc2uQ3nM/zWV+ZtS2ZqWW3a8WYiN64cm8PdN47BkboegZnDFB9Bam9uJiBxPg5gAvG7dOtLT0+nXr1/ZMZfLxdKlS3n55ZdxOBxYLOVXccTHx5OYmMj27dsr7Ndms1U4aiN1a0d6Hje/vw6X2yDIaqGg2MWby3fz/N96+zo0r9pzOJ+vfk1l/q+pbE49+ljT32JiWMcYzusZz5ge8Z5VSa2mw3ePwRXvQ2SiD6MWEWk8fJbMjBgxgk2bNpU7du2119K5c2fuu+++YxIZgMOHD5OSkkJ8fHxdhSnVlJlfzHVz1pBb5KR/YiT3jerEZa+v4stfDnDfqM7EhQV4/6aGAbW9CsjtBreTlKwC5v9+iPmbDrJpfw5m3FhwE2g2Mbh9NGN6xHN2lzjCA/0gNxWOLK/ueDa0PxPMWm4tIuItPktmQkND6d69e7ljwcHBREdH0717d/Ly8pgyZQqXXHIJ8fHxJCcn8+CDD9KsWTMuuugiH0UtleFwurjp3bXszSwgISqQN890Ev7JEGZED2Py4Yt4e0Uy947q7NV7GhnbKXjrQkpiuhFxxSzPJnJeVrJjCcUfXU+w4xAJwOeOJ9lqtMZiNvFUs0Vcai/dEyml9PV16YW2cLhpMUS187xXIiMi4lU+X81UEYvFwqZNm7jgggtISkpiwoQJJCUlsXLlSkJDQ30dnlTAMAwe+GQTa5KzCLX58daEAYS37gl5aVyY/xF9TX/w/uq93l3ZZBgcnHs7wQX7iNjzLdtfuZScwhLv9Q8kL3oV03sXEew4VHasV6twpl7UnZ8fHMGl/RIqvthdAvvXezUeERE5qt7sAFxbtANw3Xr5h+08u/APAswu3pg4iGFJsZ4Tc8fB1q/4w9yOUQWPM+WCHowf3MYr9yze9D+sn4zHYfixz4jhjpLbSQ/pxJSx3RjTo3mNNqCzFxTx6+w7OfXQXAAWmIaSedoTnN2jFTFR0UdHWUqKwOU4fid+AeCneVwiIlVRle/vejsyIw3P/F9TeXbhH0RiZ2nc8wxL/VMpirEvQEA4Se5dXGn5gTeX7y5b4VQjxQU45t8HwH/9LuLAuMUUNuvGoVwHt36wnvvenM/+7MIqd2sYBgt+S2XZM5eXJTILY69l0D2fcdUZfYlpFlv+cZF/gKcu0vFeSmRERGqVkhnxio0p2dz94UY6mPbxQ9jjxGZtgJUvQX6Gp0FwMzjjYQD+6f8hOYcP8t2WgzW+b9Hi5wgtSmWf0YyIkfcxrFNzvr5jGHeM6MgAvx08njKRr/59M28t21np5Ck1p5C/v7uOSe+t533HEAoIYNupMxh5ywwigpWYiIjUN0pmpMb2Zxdyw9trOcW9kS8CphBZfAAi28B1Cz1JzBH9r4PYbkSQxz1+H/KfZbtqdmPDIHnLOgBmB9/A2AEdAAjwt3D32UnMPLWQAFMJN5k+o/nCSVz+yvf8fiCnwu5cboO3VyRz7nOLWLT5IH5mE/1OvxDzXb/R6axraxariIjUGiUzUiN5DifXz1nDqMKvmGN9miCjAFoPhht+gNi/rFiy+MGYZwAYbNnCr8kH2ZiSXe17H8gp4vxDN3Gp41+cOvY6LObyc2Oajbof9wUzcZn8GGP5mUcO/ZPrX/6K6d9sobDYVa7tllQ7l8xcwc9fvck3ptsZ2yKX+XcM4x8jOxEQHlPtGEVEpPYpmZFqc7kN7vjvBi7OeI0n/GdjwQ29roTx/4Pg6ONf1GYoXP4+r3V5GwfWGo3O/HvRHxQ73VjaDOH0zrHHbWPucxWWiV/iDoiil3kXn/o/zPKlPzByxhKW/nGIohIXTy/YytiXlnHqgdm8Yn2ROFM2L7b7mU7NtWpORKQh8HnVbGm4ps7fwg9b04nzT8DAhGnEv+DUu06+cV2X87g23M5HGw/xzW9p7MsqoFVkUOVv7HRweP7j/Li+OxDG/aM7n3jFUuIQzH//Hj64nBYZf/Cx7TEuyHqc8W8VEh1sJS8/j2f83+Aiy0+e9oNuwTTy2AruIiJSP2lkRqrlvZXJvPXTbgBOvWwypptXwLC7K70Db9cWYQxrH8GVpoX8d8lvVbv5yleI3vAy//X/P8Z0i6VP68iTXxPVDq5fBO3OwD/pLIYOGuoJNf8QHwVO9yQyJguc+zyMmq6N7UREGhCNzEiVrV++gG4LHyKKe7huZH/O7RkPVL3ExHOmGcT6L+TtDenkjnqb0AD/k1+Usx/XkmewAK+5L+Afo7pU/oaBETDuI/xcJTxqDeLS7uGELLiDxEPbPLv0/u1taH9GlT+HiIj4lkZmpNIcThdfvDuDbovG0ce8g1eaz+fWMzpUu79mwycBMI5v+PbHxZW6xlj0CBZnAWvcSdj6Xkn7mJCq3dTiD1bPI61u7RJIbN4MItvCDd8pkRERaaCUzEilbErJ4qNnbub8nY9iMznZFHoqff/+So121zV3HEFK3Aj8TG7arpmC0+k68QW7l2H67RNcholpxvVMPiup2vcGwH4AIlrDDd9DTA37EhERn1EyIydU7HTz4je/sHfWFVztmAfA7k430OOuL7EFhde4/9hLn6MIK/3cv7Hx2zkVN3Q5Mb7+JwAfuEYw9NQziK1p5e3wljDiXxWvvBIRkQZByYxUaPMBOxNf+orTVl7LuZZVOPEjb9QLtL3yOTB7518dW0xbNrSeCECbddMwHHnHb7huNqZDW8g0QviP/1X8fXg7r9xfREQaPiUzcgyny81L32/ngleW8/vBQiLNBRRbw/Gb+D9CBk30+v06XvQQKUYMzdwZpH419bhtCjtdxEfmUTzlvJLxI/oSVpnJwiIi0iRoNZOUs/1gLv/46Bd+3efZ9n9g1/aEDv8Ua4gNotvXyj2bRUbwTpu76LjrPRZm9eXR47SZvSGbpwvG0zIikMcHta6VOEREpGFSMiOAZzff/yzbxXOLtnGN8RUDAgLpccHdXNC7RY0m+VbWkDHXcNa/EzHtNDEhI582zYI9JwoyyXIHM3PxTgDuOScJm5/2gBERkaOUzNRjBcVO5v6cwtld40iIqsIOuVW061Ae93z0C7/uzeBxv9lc5f8jhsmCqeWNld4Er6Y6xIVxRqdYftx2iNk/7eaxMR08y6jfvYjsfD/CHdfQsnk7LujVsk7iERGRhkPJTD321S+pPP7VZn47kMPzf+tdK/fYe7iAc19cjn9JDu/ZXmSQ6TdPaYKRT0BMp1q5Z0VuHNaOn7ftpf26J3Al/4Fl0E2QupFmRiBFhpX/G90Zs7lukisREWk4lMzUY+m5RQAcyC6stXss2X6IOOc+3g16ngT3frCGYLrkTeg0qtbuWZHB7aNJah7GyKxVWLKy4Jt7Afi381I6tGvL6UmqXi0iIsfSaqZ6zD97F/+zPkyX7CW1do/iwyl8bv2XJ5EJT4DrvvVJIgNgMpm45rSuTCsZV3Zsm7sV77jO5v7RXepk7o6IiDQ8SmbqsRG7nqKXeRePFkyvtXvEpi0hwpRPvn+kZyfc5t1r7V6VcV7PFqwOPp0lrp6U4Me/Sq5lZI9W9E6I8GlcIiJSf+kxUz0WUJJd9rPbbdTKfJGfrEOY7ZjC+FM6c2FonNf7ryqrn5kJQ9tyw4J7CC/JJ8scwaKRdTt3R0REGhaNzNRjy4LOKvs5t8hZK/dIcQSy3kjCiO9RK/1Xx1WntMbP30YG4VwxIIF2VS0mKSIiTYqSmXpsheUUAPKMAA7nO2rlHpn5JQBEBdtqpf/qiAiy8ujYrozoHMvdZ6sApIiInJgeM9Vj+0s8IxIhpiL+sOdALYxQDLXPZ6Aln+buNkD9WS10xSmtueIU7fQrIiInp2SmHoss3MN6dwfWujvRPq/I6/0bhsHfnF+S5L+PjOLzgG5ev4eIiEht02Omeuze4lfoa97BUndPDjm8X1gxz+EkCjsAoVHxXu9fRESkLiiZqacMwyDEyAfAbgSRWVDs9Xtk5hYSSS4AtvBYr/cvIiJSF5TM1FOFJS5C8SQzcaYsHFmpXr9HTmY6FpPheRMU7fX+RURE6oKSmXoqr8BBmMlTxuAN6/N0SP3S6/coyDoIgN0U6inqKCIi0gApmamn8uxZ5d77FWV6/R6F2Wmee1kivN63iIhIXVEyU08V5ZVPXmwO7yczztx0AAr9I73et4iISF3R0ux6qii3fPISWJJVQcvq+83Wl5mOKZzXuRXtvd67iIhI3dDITD2VbYpkaslVrDb1BCDUle31e+x3BLDeSKIwro/X+xYREakrSmbqqQxzFG+4zuOTyOsAiCSHohKXV++Rle9Z7h0dbPVqvyIiInVJj5nqqSOFJQPC4yATorGTmeegRWSQ1+7R9fBCEixptHJHAyodICIiDZOSmXrKlL2PnqadhNqSmGcewz5HEOfkFXo1mTkr/yt6+W9mZ9EpwCCv9SsiIlKXlMzUUx32f8oXtrdYl3kJD4XdzNa0XAYUur16jzBXNpggMCLOq/2KiIjUJSUz9ZSl2FMzybCFEeXvmdOSme+9kgYOp4uIsrpMLbzWr4iISF3TBOB6qiyZCQinZUARHU37yC/dsdcbsuwFRJryAAiOau61fkVEROqakpl6yur0FIA0B0Zww6GnWWS7l2b7Fnmtf3umZ/dfF2bMQVFe61dERKSuKZmpp2ylyYwlKAJnQGmyUXDYa/3nlyYzdlMYmPWvgYiINFz15lts+vTpmEwmJk+eXHbMMAymTJlCixYtCAwM5PTTT+f333/3XZB1KMDleQTkHxyJEdwMAL/CDK/1f7QuU7jX+hQREfGFepHMrFmzhlmzZtGzZ89yx59++mmef/55Xn75ZdasWUPz5s05++yzyc3N9VGkdSfI7UlmbCFRmEJiAbB6sT7TbltnLnI8xofN/+G1PkVERHzB58lMXl4e48aN44033iAy8mjBQ8MwmDFjBg899BAXX3wx3bt35+2336agoIAPPvjAhxHXjbeM83nJeSH+0a3xD/UkM0El3ktmDjqsbDA6ktWsr9f6FBER8QWfJzO33nor5557LmeddVa547t37yYtLY2RI0eWHbPZbAwfPpwVK1bUdZh1yu02eMNxFs85/0ZwVDyBkZ5kJsSV47V7ZBZ4lnlHBdu81qeIiIgv+HSfmblz57J+/XrWrFlzzLm0NM+cjri48hu6xcXFsWfPngr7dDgcOByOsvd2u91L0dad/GJn2c8hNj/MkfEARBjZuNwGFrOpxvdIOPgD11q2095tBZJq3J+IiIiv+GxkJiUlhTvvvJP33nuPgICACtuZTOW/uA3DOObYn02fPp3w8PCyV0JCgtdirit5uXZ6mHbR3pKOzc9MaFwbZjvPYY5zFDmFJV65R9/Mr3nU/13aFP7mlf5ERER8xWfJzLp160hPT6dfv374+fnh5+fHkiVLePHFF/Hz8ysbkTkyQnNEenr6MaM1f/bAAw+Qk5NT9kpJSanVz1EbitO386XtYeb6P4bJZMI/NIZ/+13PTNf5XtsFOMiZDYA1LNYr/YmIiPhKpR4z3X333VXu+OGHHyYqquLN2EaMGMGmTZvKHbv22mvp3Lkz9913H+3ataN58+YsWrSIPn36AFBcXMySJUt46qmnKuzXZrNhszXseSBFuZ6JvvmmYGJKj0UFW7EXOb2WzIS5sgHVZRIRkYavUsnMjBkzGDx4MFartVKdLl++nNtuu+2EyUxoaCjdu3cvdyw4OJjo6Oiy45MnT2batGl07NiRjh07Mm3aNIKCgrjqqqsqFUdDVZKfBUChJaTsWGJgIVZTCvasDtC2Zjv2ut0GEUYOmCAkOr5GfYmIiPhapScAf/bZZ8TGVu6RRGhoaLUD+rN7772XwsJCbrnlFrKyshg4cCALFy70Wv/1VUl+NgBFlqOf85HcJ+hg+51lKc9D30416t+el0uEqRCAsGgVmRQRkYatUsnM7NmzCQ+v/E6xr7/++gnntVRk8eLF5d6bTCamTJnClClTqtxXQ2YUZgNQ7Hc0mSmyRoEDnLnpNe4/OyOVCKAEC9bgiBr3JyIi4kuVSmYmTJhQpU4b+2Og2mYUevaTKfE/msyUBEZDLpjya17S4EhdpmxTODEnWBkmIiLSEPh0nxk5PpPDk8y4rGFlx4zAaADMhTUvNpnqn8DDjsfoFmfjiRr3JiIi4luVTmbatm17wv1dwPNYaOfOnTUOqqnbEjyAn5xFxEYNKDtmLq3PZCuueUmDQw4/NhgdiY7UsmwREWn4Kp3M/Lma9V8lJyfz+uuvl9t5V6pvg20AHzvjubf50Ym+/mGeRdqBXkhmjizvjgyq3Oo0ERGR+qzSycydd955zLHMzEz+7//+j5kzZzJw4MAT7v8ilZdX5ClnEBrgX3bMVrofTEjp/jA1EXlgCddZNpBgGgH0qnF/IiIivlStHYALCwuZOnUq7dq148cff+TTTz9lyZIlDBo0yNvxNUnheTtINKUR7ucuOxYY25G3nKP4r+uMGvffPn0h//J/l64F62rcl4iIiK9VaQKwy+XijTfe4LHHHiMgIICXXnqJq6+++qRzaaRq7j70MHG2dH4u/AhoC0B4i/Y87hwPwF3FToKs1Z+7bXN4HlWZQ5rVOFYRERFfq/Q34ocffsjDDz9MTk4ODz74IDfffHOldwSWqgl25wNgC408esxqwWoxU+xyk5lfXKNkJqgkGwBruEoZiIhIw1fpb8QrrriCwMBArrzySvbs2cP9999/3HbPP/+814JrktxugigAwBZ6tGyByWSifVAB7rx0srOzaBUZVO1bhLo85RICwrWaSUREGr5KJzOnnXbaSZde63GTFzjsmDEACA4tX4Ppdde/aG3bx4aUltC2ZfX6N/5UlylKpQxERKThq3Qy89dSA1I7Sgqy8QcKDSshwcHlzuX7RULxPopzql/SoDDfTqDJszQ7PEZFJkVEpOGr1momqT1Fds8Ov3aCCAkon2sWWT0jNa4a1GfKzkj19GX4ExwcdpLWIiIi9V+VZpH+97//JScnh/HjxxMUVP05G1KxwtwsQoFcgomzlM81SwKiIQ/IP1Tt/g8Tyc2Ox2kd7ORFs3JZERFp+CqdzNx2223s3r2btm3bMnLkSJYvX16bcTVZdv8Y5jkvxGUNY/JfzhlBNa/PlOEwsdHoQHGoRmVERKRxqHQy89lnn7FgwQK6d++OzWYjPT2d2FithvG2zIAEnnP+jXYRwcckM4R4ShpYi6pf0uBIKYOoYC2rFxGRxqHSyUyvXr345JNP2Lp1K1FRUTRrpg3XakNuUQnAMfNlAPxDPcljYEn1kxnrvhVcb1lCsHkwMLDa/YiIiNQXlZ40MXv2bPbv389HH33E/PnzMWu+Ra1wZh8g0ZRGrPXYop3muK685RzFN+bTqt1/3IEfeMT/PQYWrahJmCIiIvVGpUdm4uLieOONN2ozFgFab32DJbb3+abgSmBEuXNBLbvyuHM8ESX+3F3N/i1Fnvk2RnB0zQIVERGpJzS8Us+YiuwAuKzhx5w7Ms8lu6AEp8t9zPnKOFqXKaaaEYqIiNQvlUpm7r77bvLz8yvd6QMPPEBmZvXndTRlluIcAIyAY1cbRQT6E0M2nU17yc7NrVb/QaXzbfzDVJdJREQah0olMy+88AIFBQWV7vSVV14hOzu7ujE1aX4lpUlKwLEjM34WM98EPMAC2/3k7d9arf5DXJ5kKSBCyYyIiDQOlZozYxgGSUlJla69VJVRHCnPWprMmAMjjns+xxxBM3cOhVmpVe/cMIgwsgEIiWxezQhFRETql0olM7Nnz65yx3Fx+j//6rC5PMmMX1Dkcc8X+EVA8R4c1ajP5CzIxh8XAKHRSmZERKRxqFQyM2HChNqOQ0oFuvIA8A+OOO75Qv8oKIaSatRnynb6c73jcaLMufwn/NjHWCIiIg1RlWozSe37MuA8inMzaRt+/JGtkoBoyAfyM6rcd2aRwS9GByJt/ljMlXtkKCIiUt8pmalnZpqvZI+zgI9Do4573h3o2R/GUlD1ZOZwnqeUQaRKGYiISCOifWbqmbwiJwChAf7Hb1C6P4y/o+pL39371nC9ZT7D/Kq3EkpERKQ+UjJTnxQXEFm0jwhyj1ubCaAktgdvOkfzk/+QKncfvG8Zj/i/z1nOJTWNVEREpN6ocjJz3XXXkXucDdvy8/O57rrrvBJUU1W8dw3f+U/mY+tjhFaQzJhb9uX/nNfwP4ZX/QZ5hwBwBhz/EZaIiEhDVOVk5u2336awsPCY44WFhbzzzjteCaqpKsr1PDqyE0Sw9fjJzJGSBln5xVXu/2hdJlU8FxGRxqPSE4DtdjuGYWAYBrm5uQQEBJSdc7lcfP3118TGxtZKkE1FcV4WAPmmkApXG0UF+RNDFrH5eRiu0zBZKphbcxzWI3WZglWXSUREGo9KJzMRERGYTCZMJhNJSUnHnDeZTDz22GNeDa6pKcn3JDOFlpAK20QFW/nJdgdWk4v8zNEExyRWuv+gYk8y4xempFNERBqPSiczP/74I4ZhcOaZZ/LJJ58QFXV03oXVaiUxMZEWLVrUSpBNhbMgGwDHCZKZIJs/aYTTnEzsGQeqlMwEuzz9B0Ro918REWk8Kp3MDB/umXC6e/duEhISMJu1EMrb3IXZABT7h56wXY45nOZGJgVZaVXo3E24YQcgWEUmRUSkEanypnmJiZ6RgIKCAvbu3UtxcfmJqD179vROZE1RkaeidYl/2Amb5flFQsluHDmVT2YMDC53Pk6oO4cnYjSCJiIijUeVk5lDhw5x7bXX8s033xz3vMvlqnFQTdWeiIEs2V1AVkiXE7Yr8o+EEiixH6p033nFbtY62wEQFRJUozhFRETqkyo/K5o8eTJZWVmsWrWKwMBAFixYwNtvv03Hjh354osvaiPGJmNT1Dn8y3ktByIHnrBdsc1T0oD8yiczmaVLuQP9LQRaLdWOUUREpL6p8sjMDz/8wP/+9z8GDBiA2WwmMTGRs88+m7CwMKZPn865555bG3E2CfaiEoAKd/89whXUDLLAVIX6TAUpv3CDZT6HA9oDo2oSpoiISL1S5ZGZ/Pz8sv1koqKiOHTIMzrQo0cP1q9f793omhg/ewqR2Am1nfjXYo/uxX+co/k18JRK923eu5KH/d/nMtN3NQ1TRESkXqlyMtOpUye2bdsGQO/evXn99dfZv38/r732GvHx8V4PsCm5ddtENgRMoqXrwAnbFbUcwhPOa1jsd2ql+3bmepLOImtkjWIUERGpb6r8mGny5MmkpqYC8Oijj3LOOefw/vvvY7VamTNnjrfjazrcbgLcBQBYQ06ccEQFe3b9zaxKSYN8zyMpZ0B09eITERGpp6qczIwbN67s5z59+pCcnMzWrVtp3bo1zZqp5k+1OeyYMQCwnSyZKS1pEGk/CMYQMB2/9MGfmQs9dZncQfodiYhI41Ljne+CgoLo27dvtRKZmTNn0rNnT8LCwggLC2Pw4MHllnxPnDixrITCkdegQYNqGnL9VLrHTJHhT1BQ8AmbRtvcrAm4lTeL7oLi/Ep1b3V4khmT6jKJiEgjU6mRmbvvvrvSHT7//POVbtuqVSuefPJJOnToAHgqcl9wwQVs2LCBbt26ATBq1Chmz55ddo3Vaq10/w1KaTJjJ5jQk6xmioyIoMCwEWRyUJKbjr+t4vIHRwSWeOo++asuk4iINDKVSmY2bNhQqc5MlXjc8Wdjx44t937q1KnMnDmTVatWlSUzNpuN5s2bQC0hh6fUgN0IOmkyEx7oTyqhBOEgN+MAUc3anbT7EGc2ALZwlTIQEZHGpVLJzI8//ljbceByufjoo4/Iz89n8ODBZccXL15MbGwsERERDB8+nKlTp5YtDT8eh8OBw+Eoe2+322s1bm8xCrMxAXaCaBngf8K2FrOJbFMErcigIPsgUSds7fEP678oyT3IHbEnT3xEREQaEp9Xi9y0aRMhISHYbDYmTZrEZ599RteuXQEYPXo077//Pj/88APPPfcca9as4cwzzyyXrPzV9OnTCQ8PL3slJCTU1UepEUdwC95xns1CV39CbCfPMfP8IgAoyj5Yqf5XFbVmsbsPEeHhNQlTRESk3qnyaiZv69SpExs3biQ7O5tPPvmECRMmsGTJErp27crll19e1q579+7079+fxMRE5s+fz8UXX3zc/h544IFyc3zsdnuDSGjsEV35l/NazCa4rxLlBgr9I8FZufpMDqeLXIcTgKjgRjrnSEREmiyfJzNWq7VsAnD//v1Zs2YNL7zwAq+//voxbePj40lMTGT79u0V9mez2bDZbLUWb205kmyE2PwqNfeo2BYNhWDkp5+87/3buMEynz3EExYwpsaxioiI1Cc+f8z0V4ZhVPgY6fDhw6SkpDTKnYYLstOJxE7ESUoZHJEa2Y83nGPYHtTnpG2L9qzlYf/3ucn6DWZz1SZpi4iI1Hc+TWYefPBBli1bRnJyMps2beKhhx5i8eLFjBs3jry8PO655x5WrlxJcnIyixcvZuzYsTRr1oyLLrrIl2HXitiV/8eGgElMMH1ZqfYZzYcz1Xk16wJOvu+OI8czepPnp1IGIiLS+Pj0MdPBgwe55pprSE1NJTw8nJ49e7JgwQLOPvtsCgsL2bRpE++88w7Z2dnEx8dzxhlnMG/ePEJDQ30Zdu0o9Owz4/QPq1TzI3NfDleipIErz5PMFFkrs+5JRESkYfFpMvPmm29WeC4wMJBvv/22DqPxLVOxZwm521bJZCbIQhyZhGTbgb4nbGvkeSYJO21KZkREpPHx+QRg8bCUbprnDqjc0ul4UxarA26jJN0PjCtOWJ/JUugpMulSXSYREWmE6t0E4KbKryQXAFMlk5mQKM+uyP44y0ohVMTf4SllYFZdJhERaYSUzNQTVqcnmbEERlSqfWR4GLlGIABG/on3mgkszgTAT3WZRESkEVIyUx+43dhceQBYgiIqdUlUsJXDhmd+TX5W2gnbPhv+IBOL78WI7VqjMEVEROojJTP1gbuEZeHn87lrCNaQyi2fDvC3kGXyPJIqyDxxSYONJQksdvcmPFJzZkREpPHRBOD6wM/GW+G3seTgIZ4NCq70ZXmWcHBDYfaJR2YyS5dvq5SBiIg0Rkpm6oncohKAShWZPKLAPwocUGKvuKSBO3sflxZ9yh5zDFHBI2ocp4iISH2jZKY+KCnCVJiJBYOwgMr/SraHnsKefD+SQrrToYI2Bfs2cb/fB2x2JxIZNMUr4YqIiNQnmjNTH+z8nk9yr+Zj62OEVCGZ2RVzFtOc49gS2K/CNvnZnvk0OaYwrH76dYuISOOjb7f6oHSfGLsRRGiAf6UvOzIHJqug4pIGxaXJjOoyiYhIY6Vkph5wF2YDYCeoSnNmooPMxJGJ5fAfFbYpyfXsQVOoukwiItJIac5MPVCSn4UNsBvBhFbhMVNbdwqrA24jZ3cEcMHxG5VuqFeiukwiItJIaWSmHijJzwYgzxSMrQrzWgIi4gAIcdvB7T5uG3OBpy6TW3WZRESkkVIyUw+4CrIBcPiFYDpBwci/Co3yJDMW3FCYddw2/g5PKQNClMyIiEjjpGSmHjgyZ6bYL6xK10WGBpNtlG6yV0F9pvdi/8mE4vsoiOlbkxBFRETqLSUz9UBGswF87hpCui2xStdFB9vK6jMV249f0mCzqxVL3L0Iimxe4zhFRETqIyUz9cC2NlczueQ29oT2qdJ1oQF+HMZTnyk/6/jJzJFSBtEhKmUgIiKNk1Yz1QN5RU6AKq1kAjCbTeRaIsCAouPVZyrIZFTOPNqaQ4kMGuKFSEVEROofJTP1QHHuYSy4qrTHzBHrAwayIzeawUFJxP/1ZOZubnW+w37/aFzBD3slVhERkfpGj5l8ze3mmmVnsDPgGuIt9ipfvi5yNNOd49gd3OOYc47SApSHjTCi9JhJREQaKSUzvlaciwkDAEtwRJUvP1LS4MjcmD/Lz0wFIItwgq2W6scoIiJSjymZ8bXSukwOw5+goOAqX94syEw8hzEyth9zzpFzpC5TRJX2rxEREWlIlMz42pEikwQRWo05M91dW1kZcDvnbb7nmHPO0sdMhf4qZSAiIo2Xkhlfq2bF7CP8Q2MACCo5dgdgI99TyqAkQMmMiIg0XkpmfK3IM+nXTnC1VjMFlm6GF+K2g6uk3DlTaV0mV2B0DYMUERGpv7Q029f+NDITUsV9ZgBCwmNwGSYsJgMKMiE0ruzctwl3sjRtGL2bDfZauCIiIvWNRmZ8Lbwl35pOZZW7a5U3zQOICg0ki1DPm7/UZ9pptGCpuxd+ka28EamIiEi9pJEZX2t7GpOdBRS6XFxpq/qcmahgK4eNMJqZ7LjzDpXLTg/nFZe1ERERaayUzPiY0+WmsMQFVL2cAUBksD+7SotNFmanUba4u7iA09LfI9ziT1RQ1Wo+iYiINCRKZnwsP9eOBRcuLARXYwKwzc/CD+bBbHK2ZUxg4tFkJjeVq/Nmc5GfjU0h93s1ZhERkfpEc2Z8zP+Lm9gZcA1X+/+I1a96v46FwWOZ7hzHweDORw+WLss+bIQRrcdMIiLSiCmZ8TGjdDWT2z+k2n0cmRNz+E8lDVy5pXWZCCdSyYyIiDRiSmZ8rTSZcVrDqt1FTJCJeA5TnL6z7FhBaSmDw0YYkUFKZkREpPFSMuNjZodn0zzDVv1kZqh7LSsDbqf/hqNzYxzZpXWZLOFYzKrLJCIijZeSGR+zFNc8mTGHeEoa2ByHy46VlNZlKrCqlIGIiDRuSmZ8ye3GryQPAFNgRLW78Q/z7PobWJJddswo3UCv2KZSBiIi0rhpabYvFedhxg2AuQbJTEB4LACB7nwoKQL/AH5uM4lPd3anZUQPb0QqIiJSb2lkxpcMF5ujR/Kdqw+BQcEnb1+B0PBmlBgWz5vS4pJ7iWepuxdEJnojUhERkXpLyYwvBUYyr/Wj3FDyz2rt/ntEVKiNw5TOuSndXyYzX6UMRESkadBjJh/LLXICEFKN3X+PiAry1GdqbsryJDNuN332ziHfAtEB7b0VqoiISL2kkRlfcpWQX+QAIDSg6kUmj4gKsfK5ayivOcdSFBQPRdlckDGLZ/xnERWikRkREWncNDLjS5s+5vXdk1jk34/CgPeq3U2ozY85jKXEaTA2uB0t81MAyDGCiAwN9Va0IiIi9ZJPR2ZmzpxJz549CQsLIywsjMGDB/PNN9+UnTcMgylTptCiRQsCAwM5/fTT+f33330YsZeV7v7rwJ/QGjxmMplMZbv8ZuUXQ+my7MNGGFHa/VdERBo5nyYzrVq14sknn2Tt2rWsXbuWM888kwsuuKAsYXn66ad5/vnnefnll1mzZg3Nmzfn7LPPJjc315dhe09pMmM3gmo0ARggLshESw6Rd3BX2R4zhwnTYyYREWn0fJrMjB07ljFjxpCUlERSUhJTp04lJCSEVatWYRgGM2bM4KGHHuLiiy+me/fuvP322xQUFPDBBx/4MmzvOZLMEExIDZOZsaZl/BRwJ21WP4qjrC5TuEZmRESk0as3E4BdLhdz584lPz+fwYMHs3v3btLS0hg5cmRZG5vNxvDhw1mxYkWF/TgcDux2e7lXvVVuZKb6E4AB3EHNALAUZlBUWpcpxxRGoNVSsxhFRETqOZ8nM5s2bSIkJASbzcakSZP47LPP6Nq1K2lpaQDExcWVax8XF1d27nimT59OeHh42SshIaFW468JV2E2AHaCarQ0G8Ac4klmrI7MsrpMhf6qyyQiIo2fz5OZTp06sXHjRlatWsXNN9/MhAkT2Lx5c9l5k6l8xWfDMI459mcPPPAAOTk5Za+UlJRai72m3AXZANiN4BonM35hpSUNirP4o/1Eri5+gNWhZ9U0RBERkXrP50uzrVYrHTp0AKB///6sWbOGF154gfvuuw+AtLQ04uPjy9qnp6cfM1rzZzabDZvNVrtBe0lBXF/WJ+eS4ReHxVxxglYZAeGePxOrUUSaK5Tl7h4MD4vxRpgiIiL1ms9HZv7KMAwcDgdt27alefPmLFq0qOxccXExS5YsYciQIT6M0HtS+tzDtSX3sTOga437CguLoMjwzLtxlM6ZiVYpAxERaQJ8OjLz4IMPMnr0aBISEsjNzWXu3LksXryYBQsWYDKZmDx5MtOmTaNjx4507NiRadOmERQUxFVXXeXLsL3mSCmDmk7+BYgKsZFBOK3IoPcfL/I3SxuiAy6vcb8iIiL1nU+TmYMHD3LNNdeQmppKeHg4PXv2ZMGCBZx99tkA3HvvvRQWFnLLLbeQlZXFwIEDWbhwIaGNYVdbwyCvoBCoWV2mI6KCrXzkHE4zfwfXZH7F0/7wVsBlNe5XRESkvjMZhmH4OojaZLfbCQ8PJycnh7CwMF+Hc1SRHZ5MIM8I4I6Ej3nrhmE16i49t4hTpn5PjCmHNbabcRsmPhq9nssHtfNSwCIiInWnKt/f9W7OTJNRuseMP04CAgJr3N2RcgZRePrNIoSI0KAa9ysiIlLfKZnxlbLdf4MI8cKcGX+LmWYBbnqadwGeukyaACwiIk2Bz5dmN1llu/8Ge2UCMMAN1kVM4m0AMgkjVsmMiIg0ARqZ8ZXSZCbXC7v/HlFsiy77OcMII0rJjIiINAFKZnzF4akZ5Y2K2UcYpfWZADIJJ8xLIz4iIiL1mZIZX/lTxWxvJTOmkKPJzHzrKMw13FVYRESkIVAy4yuh8ay3DuA3dxuvzZnxC/WUNCg2LGQFt/dKnyIiIvWdJgD7StfzeWhRJFvsdt7x0pwZW7inFpPV5KJlkNMrfYqIiNR3GpnxodyiEgBCvPSYKTwsvOznrv5pXulTRESkvlMy4yuGQZ7DM3oS5qVkJjrYyiJXP7KMEIrD23qlTxERkfpOyYyPGO+cz3LXeEaa1xBi886cmchgK38vuYtBjpcJLH3kJCIi0tgpmfERoyCbEFMhxfh7bTVTdLAVAzMOrEQFaVm2iIg0DUpmfMQoygY85QyCrBav9Bn5p03yokJsXulTRESkvlMy4ytFnk3znNYwTCbv7AcTbLVg9fP8SlWXSUREmgolM77gdmMu9iQz2MJP3LYKTCYTbaODAWgdpYrZIiLSNGifGV8ozsNkuAEwvJjMALwxvj+pOYUkKJkREZEmQsmML5SWMnAYftgCvJt0tI4OonW0EhkREWk6lMz4SGrMMLam2QkJ1KojERGRmtCcGV+ISOCbXi9xbcl9XqvLJCIi0lRpZKa6inJg+yIozod+E6p8+ZHdf0O8VJdJRESkqdI3aXUd2ACfXA/BsdDnGjBXbZDrSF0mb22YJyIi0lTpMVN1tR4C1lDIT4fUDVW7dvUs/rFuBE/4vUmoRmZERERqRMlMdflZocOZnp//+LZq1xZlE+AuwIzbaxWzRUREmiolMzWRNMrzzz8WVO260qXZdoI1AVhERKSGlMzURIezAROk/gL2A5W/7khdJiNIE4BFRERqSMlMTYTEQKv+np+3L6z8deVGZpTMiIiI1ISSmZpKOsfzz/Qtlb/mSDJjBCmZERERqSF9k9ZU34nQ6yoIb1n5a8pGZvSYSUREpKb0TVpTITFVvsSI68H6/QUcMiI1AVhERKSGlMx4k9sFZstJm+WPfoFLVnmWc+sxk4iISM1ozow3ZKfAe5fAK6eAYZy0+ZHdf/0tJmx++hWIiIjUhL5JvSEoGpKXw+EdkL75pM3zio7WZTKZTLUdnYiISKOmZMYbrEHQ9jTPzyfbDThnH+3+05kl1sna/VdERMQLlMx4y5El2idLZopysJTkEWwqItSmyb8iIiI1pWTGWzqWJjP7fob8wxW3+9MeMxqZERERqTklM94SkQBx3cFww47vKm73pz1mwpTMiIiI1JiSGW868qhp+wkeNZWNzARrwzwREREv0LepN3UaA/vWHp0MfDx/3v1XIzMiIiI1pm9Tb2rVHyZ8ceI25eoyaQKwiIhITekxU10LiWVPYDd2G/F6zCQiIuIFSmZqQ+5B+O2T45/rN5EnW77EG67zNAFYRETEC/Rt6m3F+fDvbuAugfjeEN3+mCZ5jtIdgJXMiIiI1JhPR2amT5/OgAEDCA0NJTY2lgsvvJBt27aVazNx4kRMJlO516BBg3wUcSVYg6F1aXzbFx63ib20nIE2zRMREak5nyYzS5Ys4dZbb2XVqlUsWrQIp9PJyJEjyc/PL9du1KhRpKamlr2+/vprH0VcSUmjPP/8Y8Gx52aPYVbGeE4xbdHIjIiIiBf49Nt0wYLyX/azZ88mNjaWdevWcdppR5c322w2mjdvXtfhVV/SKFj4ECT/BI5csIUePWffT5yRgROLJgCLiIh4Qb2aAJyT41m2HBUVVe744sWLiY2NJSkpiRtvvJH09PQK+3A4HNjt9nKvOtesA0S198yb2flj+XPldgDWYyYREZGaqjfJjGEY3H333Zx66ql079697Pjo0aN5//33+eGHH3juuedYs2YNZ555Jg6H47j9TJ8+nfDw8LJXQkJCXX2E8soeNf1pN2DDwPjzDsB6zCQiIlJjJsMwDF8HAXDrrbcyf/58li9fTqtWrSpsl5qaSmJiInPnzuXiiy8+5rzD4SiX6NjtdhISEsjJySEsLKxWYj+uXUvgnfMhpDn8YyuYTJ5HTtM9n61z0Wx+feJCrH71Jp8UERGpN+x2O+Hh4ZX6/q4XQwO33347X3zxBUuXLj1hIgMQHx9PYmIi27dvP+55m82GzWarjTCrpvVguGgWdDjLk8hA2SOmYsOC4RegREZERMQLfJrMGIbB7bffzmeffcbixYtp27btSa85fPgwKSkpxMfH10GENeBnhV6Xlz9WNl8mWKUMREREvMSnQwO33nor7733Hh988AGhoaGkpaWRlpZGYWEhAHl5edxzzz2sXLmS5ORkFi9ezNixY2nWrBkXXXSRL0OvJhN5MX343d1GyYyIiIiX+DSZmTlzJjk5OZx++unEx8eXvebNmweAxWJh06ZNXHDBBSQlJTFhwgSSkpJYuXIloaGhJ+m9HjAMWPESvDUacvZDXFfWjPiQCSX3a1m2iIiIl/j8MdOJBAYG8u23356wTb1mMsHm/8G+NZ7dgPtfi72oBIBQrWQSERHxCs1ArW1J53j+WbpEu6wuk0ZmREREvELJTG07st/MrsWw5GnO/2Ekk/0+1pwZERERL1EyU9viukNYS3AWwqaPCXWkEYhDj5lERES8RMlMbTOZoONIz88ZnorgdiNYj5lERES8RMlMXTjyqKmUnSCNzIiIiHiJkpm60PY0CDxaPNNuBKkuk4iIiJcomakL1iC4ZzvE9wa0A7CIiIg3KZmpKxa/o+UMjCBCNWdGRETEK/SNWpei27Mnu4QsQvWYSURExEs0MlOXrv6ESywz2GW00ARgERERL1EyU8dyi7QDsIiIiDcpmalDxU43DqcbQBOARUREvETJTB06UpcJNDIjIiLiLUpm6lBuacXsYKsFi9nk42hEREQaByUzdahsvowm/4qIiHiNkpk6pMm/IiIi3qdkpg4dmTOjyb8iIiLeo2SmDuU5PHNmtMeMiIiI9yiZqUNHHjMpmREREfEeJTN1SHNmREREvE/JTB06msxozoyIiIi3KJmpQ5ozIyIi4n1KZupQnubMiIiIeJ2SmTqkCcAiIiLep2SmDuU6NGdGRETE2zREUE3f/p7Ge6v20CoyiFaRgSREef7ZKjKQmBAbJtOxtZc0MiMiIuJ9+latps0H7CzbnnHcczY/c7kEJyEyiFaRQRzOcwCqzSQiIuJN+latprG94mkVGUhKViH7sgrYl1XIvswCUu1FOJxudh7KZ+eh/ONeG6p9ZkRERLxG36rV1CE2lA6xocccL3a6Sc0pZF9WISmZniQnpTTZScksoE2zYNo2C/ZBxCIiIo2Tkhkvs/qZSYwOJjFaCYuIiEhd0GomERERadCUzIiIiEiDpmRGREREGjQlMyIiItKgKZkRERGRBk3JjIiIiDRoSmZERESkQVMyIyIiIg2akhkRERFp0JTMiIiISIOmZEZEREQaNCUzIiIi0qApmREREZEGTcmMiIiINGh+vg6gthmGAYDdbvdxJCIiIlJZR763j3yPn0ijT2Zyc3MBSEhI8HEkIiIiUlW5ubmEh4efsI3JqEzK04C53W4OHDhAaGgoJpPJq33b7XYSEhJISUkhLCzMq31L1en3Ub/o91G/6PdRv+j3cXKGYZCbm0uLFi0wm088K6bRj8yYzWZatWpVq/cICwvTv4z1iH4f9Yt+H/WLfh/1i34fJ3ayEZkjNAFYREREGjQlMyIiItKgKZmpAZvNxqOPPorNZvN1KIJ+H/WNfh/1i34f9Yt+H97V6CcAi4iISOOmkRkRERFp0JTMiIiISIOmZEZEREQaNCUzIiIi0qApmammV199lbZt2xIQEEC/fv1YtmyZr0NqkqZPn86AAQMIDQ0lNjaWCy+8kG3btvk6LCk1ffp0TCYTkydP9nUoTdr+/fu5+uqriY6OJigoiN69e7Nu3Tpfh9UkOZ1OHn74Ydq2bUtgYCDt2rXj8ccfx+12+zq0Bk3JTDXMmzePyZMn89BDD7FhwwaGDRvG6NGj2bt3r69Da3KWLFnCrbfeyqpVq1i0aBFOp5ORI0eSn5/v69CavDVr1jBr1ix69uzp61CatKysLIYOHYq/vz/ffPMNmzdv5rnnniMiIsLXoTVJTz31FK+99hovv/wyW7Zs4emnn+aZZ57hpZde8nVoDZqWZlfDwIED6du3LzNnziw71qVLFy688EKmT5/uw8jk0KFDxMbGsmTJEk477TRfh9Nk5eXl0bdvX1599VWeeOIJevfuzYwZM3wdVpN0//3389NPP2n0uJ4477zziIuL48033yw7dskllxAUFMS7777rw8gaNo3MVFFxcTHr1q1j5MiR5Y6PHDmSFStW+CgqOSInJweAqKgoH0fStN16662ce+65nHXWWb4Opcn74osv6N+/P5dddhmxsbH06dOHN954w9dhNVmnnnoq33//PX/88QcAv/zyC8uXL2fMmDE+jqxha/SFJr0tIyMDl8tFXFxcueNxcXGkpaX5KCoBT4XVu+++m1NPPZXu3bv7Opwma+7cuaxfv541a9b4OhQBdu3axcyZM7n77rt58MEH+fnnn7njjjuw2WyMHz/e1+E1Offddx85OTl07twZi8WCy+Vi6tSpXHnllb4OrUFTMlNNJpOp3HvDMI45JnXrtttu49dff2X58uW+DqXJSklJ4c4772ThwoUEBAT4OhwB3G43/fv3Z9q0aQD06dOH33//nZkzZyqZ8YF58+bx3nvv8cEHH9CtWzc2btzI5MmTadGiBRMmTPB1eA2WkpkqatasGRaL5ZhRmPT09GNGa6Tu3H777XzxxRcsXbqUVq1a+TqcJmvdunWkp6fTr1+/smMul4ulS5fy8ssv43A4sFgsPoyw6YmPj6dr167ljnXp0oVPPvnERxE1bf/85z+5//77ueKKKwDo0aMHe/bsYfr06UpmakBzZqrIarXSr18/Fi1aVO74okWLGDJkiI+iaroMw+C2227j008/5YcffqBt27a+DqlJGzFiBJs2bWLjxo1lr/79+zNu3Dg2btyoRMYHhg4desx2BX/88QeJiYk+iqhpKygowGwu/9VrsVi0NLuGNDJTDXfffTfXXHMN/fv3Z/DgwcyaNYu9e/cyadIkX4fW5Nx666188MEH/O9//yM0NLRsxCw8PJzAwEAfR9f0hIaGHjNfKTg4mOjoaM1j8pG77rqLIUOGMG3aNP72t7/x888/M2vWLGbNmuXr0JqksWPHMnXqVFq3bk23bt3YsGEDzz//PNddd52vQ2vYDKmWV155xUhMTDSsVqvRt29fY8mSJb4OqUkCjvuaPXu2r0OTUsOHDzfuvPNOX4fRpH355ZdG9+7dDZvNZnTu3NmYNWuWr0Nqsux2u3HnnXcarVu3NgICAox27doZDz30kOFwOHwdWoOmfWZERESkQdOcGREREWnQlMyIiIhIg6ZkRkRERBo0JTMiIiLSoCmZERERkQZNyYyIiIg0aEpmREREpEFTMiMi1bJ48WJMJhPZ2dl1fm+TyYTJZCIiIuKE7aZMmULv3r3rJKYj9zsS24wZM+rsviJNnZIZETmp008/ncmTJ5c7NmTIEFJTUwkPD/dJTLNnz+aPP/7wyb0rcs8995CamqpipyJ1TLWZRKRarFYrzZs399n9IyIiiI2N9dn9jyckJISQkBAV1BSpYxqZEZETmjhxIkuWLOGFF14oe4SSnJx8zGOmOXPmEBERwVdffUWnTp0ICgri0ksvJT8/n7fffps2bdoQGRnJ7bffjsvlKuu/uLiYe++9l5YtWxIcHMzAgQNZvHhxtWJ98skniYuLIzQ0lOuvv56ioqJy59esWcPZZ59Ns2bNCA8PZ/jw4axfv77s/HXXXcd5551X7hqn00nz5s156623APj444/p0aMHgYGBREdHc9ZZZ5Gfn1+teEXEO5TMiMgJvfDCCwwePJgbb7yR1NRUUlNTSUhIOG7bgoICXnzxRebOncuCBQtYvHgxF198MV9//TVff/017777LrNmzeLjjz8uu+baa6/lp59+Yu7cufz6669cdtlljBo1iu3bt1cpzg8//JBHH32UqVOnsnbtWuLj43n11VfLtcnNzWXChAksW7aMVatW0bFjR8aMGUNubi4AN9xwAwsWLCA1NbXsmq+//pq8vDz+9re/kZqaypVXXsl1113Hli1byj6fStyJ+JiPC12KSANwvMrXP/74owEYWVlZhmEYxuzZsw3A2LFjR1mbm266yQgKCjJyc3PLjp1zzjnGTTfdZBiGYezYscMwmUzG/v37y/U9YsQI44EHHqgwHsD47LPPyh0bPHiwMWnSpHLHBg4caPTq1avCfpxOpxEaGmp8+eWXZce6du1qPPXUU2XvL7zwQmPixImGYRjGunXrDMBITk6usE/DMIzExETj3//+9wnbiIj3aGRGRLwmKCiI9u3bl72Pi4ujTZs2hISElDuWnp4OwPr16zEMg6SkpLL5JiEhISxZsoSdO3dW6d5btmxh8ODB5Y799X16ejqTJk0iKSmJ8PBwwsPDycvLY+/evWVtbrjhBmbPnl3Wfv78+Vx33XUA9OrVixEjRtCjRw8uu+wy3njjDbKysqoUp4h4nyYAi4jX+Pv7l3tvMpmOe8ztdgPgdruxWCysW7fumEmzf06AvGXixIkcOnSIGTNmkJiYiM1mY/DgwRQXF5e1GT9+PPfffz8rV65k5cqVtGnThmHDhgFgsVhYtGgRK1asYOHChbz00ks89NBDrF69mrZt23o9XhGpHI3MiMhJWa3WcpN2vaVPnz64XC7S09Pp0KFDuVdVV0p16dKFVatWlTv21/fLli3jjjvuYMyYMXTr1g2bzUZGRka5NtHR0Vx44YXMnj2b2bNnc+2115Y7bzKZGDp0KI899hgbNmzAarXy2WefVSlWEfEujcyIyEm1adOG1atXk5ycTEhICFFRUV7pNykpiXHjxjF+/Hiee+45+vTpQ0ZGBj/88AM9evRgzJgxle7rzjvvZMKECfTv359TTz2V999/n99//5127dqVtenQoQPvvvsu/fv3x263889//pPAwMBj+rrhhhs477zzcLlcTJgwoez46tWr+f777xk5ciSxsbGsXr2aQ4cO0aVLl5r9QYhIjWhkRkRO6p577sFisdC1a1diYmLKzTGpqdmzZzN+/Hj+8Y9/0KlTJ84//3xWr15d4Yqpilx++eX861//4r777qNfv37s2bOHm2++uVybt956i6ysLPr06cM111zDHXfccdy9as466yzi4+M555xzaNGiRdnxsLAwli5dypgxY0hKSuLhhx/mueeeY/To0dX78CLiFSbD0JpCEWlYTCYTn332GRdeeGGt9F9QUECLFi146623uPjii6t8fZs2bZg8efIxuyaLSO3QyIyINEhXXnml18sGuN1uDhw4wCOPPEJ4eDjnn39+la6fNm0aISEhXh25EpGT08iMiDQ4O3bsADyri7y5iig5OZm2bdvSqlUr5syZw4gRI6p0fWZmJpmZmQDExMT4rG6VSFOjZEZEREQaND1mEhERkQZNyYyIiIg0aEpmREREpEFTMiMiIiINmpIZERERadCUzIiIiEiDpmRGREREGjQlMyIiItKgKZkRERGRBu3/AcSpyoiiMmdXAAAAAElFTkSuQmCC", + "text/plain": [ + "<Figure size 640x480 with 1 Axes>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "var = 'lat'\n", + "\n", + "plt.plot(df_track['time'],df_track[var],label='0.05x0.05')\n", + "plt.plot(df_track_orig['time'],df_track_orig[var],ls='--',label='1x1')\n", + "plt.xlabel('time [days]')\n", + "plt.ylabel('lat [°N]')\n", + "plt.legend()\n", + "plt.savefig('/home/b/b380782/CyclEx_figs/'+var+'.png')" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAGwCAYAAABcnuQpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAAChiklEQVR4nOzdd3hT5/nw8e/RljyxwQsbMHuPsMIIMyEhZI9mjzZNM5vZZnbwtvmRhCSUtFnNaPZqsycrAQIh7L03BoNt8La1pfP+cSQZMyVb0tF4PtflK7bGOXdsoXPrGfctybIsIwiCIAiCEKc0agcgCIIgCILQGiKZEQRBEAQhrolkRhAEQRCEuCaSGUEQBEEQ4ppIZgRBEARBiGsimREEQRAEIa6JZEYQBEEQhLimUzuASPN6vRw8eJC0tDQkSVI7HEEQBEEQgiDLMvX19RQUFKDRnHrsJeGTmYMHD1JUVKR2GIIgCIIgtMD+/fspLCw85WMSPplJS0sDlF9Genq6ytEIgiAIghCMuro6ioqKAtfxU0n4ZMY/tZSeni6SGUEQBEGIM8EsERELgAVBEARBiGsimREEQRAEIa6JZEYQBEEQhLiW8GtmBEEQhMTg8XhwuVxqhyGEiV6vR6vVhuVYIpkRBEEQYposy5SVlVFTU6N2KEKYZWZmkpeX1+o6cCKZEQRBEGKaP5HJycnBYrGIAqgJQJZlrFYrFRUVAOTn57fqeCKZEQRBEGKWx+MJJDLZ2dlqhyOEkdlsBqCiooKcnJxWTTmJBcCCIAhCzPKvkbFYLCpHIkSC/+/a2rVQIpkRBEEQYp6YWkpM4fq7imRGEARBEIS4JpIZQRAEQRDimkhmBEEQBEGIayKZaSGr001pjY3D9Q61QxEEQRBi1EsvvURxcTEmk4nBgwezaNGiUz5+4cKFDB48GJPJROfOnXnllVea3f/WW28hSdJxX3a7PaS4TneeEykpKeHCCy8kJSWFtm3bcs899+B0OgP3792794SxzZo1K6TYWkIkMy306k+7GfXUj/xj3na1QxEEQRBi0Mcff8x9993H448/zpo1azjrrLOYPHkyJSUlJ3z8nj17OP/88znrrLNYs2YNjz32GPfccw+ffvpps8elp6dz6NChZl8mkynouII9z9E8Hg9TpkyhsbGRxYsX89FHH/Hpp5/y4IMPHvfYefPmNYttwoQJQcfWUqLOTAulGpVfXaPDrXIkgiAIyUOWZWwujyrnNuu1Ie2+mTFjBrfccgu//e1vAZg5cyazZ8/m5Zdf5sknnzzu8a+88godOnRg5syZAPTq1YuVK1fy7LPPcvnllwceJ0kSeXl5Jzzn4cOH6devH/fccw+PPfYYAMuWLeOss87im2++YdKkSUGf52hz5sxh8+bN7N+/n4KCAgCee+45br75Zv7v//6P9PT0wGOzs7NPGl+kiGSmhSwGfzKjzj8qQRCEZGRzeej9l9mqnHvz384NvPefjtPpZNWqVTzyyCPNbp80aRJLliw54XN++eUXJk2a1Oy2c889lzfeeAOXy4VerwegoaGBjh074vF4GDhwIH//+98ZNGgQAO3ateM///kPl1xyCZMmTaJnz55cf/313HnnnYFjB3ueY2Pr27dvIJHxP8fhcLBq1SrGjx8fuP2iiy7CbrfTrVs37r//fq644oqgfmetIaaZWijFqFQqFCMzgiAIwrGOHDmCx+MhNze32e25ubmUlZWd8DllZWUnfLzb7ebIkSMA9OzZk7feeouvvvqKDz/8EJPJxKhRo9ixY0fgOeeffz633nor1113Hbfffjsmk4mnnnoqpPMEE1ubNm0wGAyB/5/U1FRmzJjBJ598wnfffcfEiRO56qqreO+99071qwoLMTLTQim+7NzqFMmMIAhCtJj1Wjb/7VzVzh2qY6elZFk+5VTViR5/9O1nnnkmZ555ZuD+UaNGccYZZ/Cvf/2Lf/7zn4Hbn332Wfr27ct///tfVq5cedyamtOdJ5jYjv3/adu2Lffff3/gviFDhlBdXc306dO5/vrrT3rccBDJTAul+NfMOMU0kyAIQrRIkhT0VI+a2rZti1arPW4UpqKi4rgRDr+8vLwTPl6n0520L5VGo2Ho0KHNRmYAdu/ezcGDB/F6vezbt4/+/fu36jx5eXksW7as2W3V1dW4XK6T/v+Akny9/vrrJ70/XMQ0UwuJaSZBEAThZAwGA4MHD2bu3LnNbp87dy4jR4484XNGjBhx3OPnzJnDkCFDTriOBZSRkbVr1zbrOu10Ornuuuu46qqreOKJJ7jlllsoLy9v1XlGjBjBxo0bOXToULPnGI1GBg8efMLnAKxZs6bVHbGDIie42tpaGZBra2vDetydFfVyx4e/kfv9dVZYjysIgiA0sdls8ubNm2WbzaZ2KCH76KOPZL1eL7/xxhvy5s2b5fvuu09OSUmR9+7dK8uyLD/yyCPyDTfcEHj87t27ZYvFIt9///3y5s2b5TfeeEPW6/XyJ598EnjM1KlT5VmzZsm7du2S16xZI//617+WdTqdvGzZssBj/vCHP8idOnWSa2trZY/HI48ZM0aeMmVKSOf57LPP5B49egR+drvdct++feWJEyfKq1evlufNmycXFhbKd999d+Axb731lvz+++/Lmzdvlrdu3So/88wzsl6vl2fMmHHS39Gp/r6hXL9FMtNCh2pscseHv5E7P/qt7PV6w3psQRAEQRHPyYwsy/KLL74od+zYUTYYDPIZZ5whL1y4MHDfTTfdJI8dO7bZ4xcsWCAPGjRINhgMcqdOneSXX3652f333Xef3KFDB9lgMMjt2rWTJ02aJC9ZsiRw//z582WdTicvWrQocNu+ffvkjIwM+aWXXgr6PG+++aZ87HjHvn375ClTpshms1nOysqS7777btlutwfuf+utt+RevXrJFotFTktLkwcPHiy/++67p/z9hCuZkWTZt+onQdXV1ZGRkUFtbW2zffCtVW930W/qHAC2/v08TC1YGCYIgiCcmt1uZ8+ePYEqukJiOdXfN5Trt1gz00JHL0AT62YEQRAEQT0imWkhrUYKbNOzih1NgiAIgqAakcy0gn9HU0OwIzMeN3i9EYxIEARBEJKPSGZawV9rJqjCebIM71wMM/uB0xrhyARBEAQheYhkphX862YagunPVLIU9i2GugNQvSfCkQmCIAhC8hDJTCuk+qaZrMFMM234b9P3LluEIhIEQRCE5COSmVZoGpkJIpk5d1rT986GCEUkCIIgCMlHJDOt4F8AHNRuJr0ZCocq3zsbIxiVIAiJrqLOzm/fXsnC7YfVDkUQYkLsd+uKYSmhjMwAGFKU/4pkRhCEVnhvWQnztpQjyzJju7dTOxxBUJ0YmWmFoHYz1ZTAC8Ng8Uy48J9wz1roeUFU4hMEITEt2FrOuZoV6G1iZCaW/fTTT1x44YUUFBQgSRJffPFFSM/ftGkTl19+OZ06dUKSJGbOnBmROBOB6slMaWkp119/PdnZ2VgsFgYOHMiqVasC98uyzNSpUykoKMBsNjNu3Dg2bdqkYsRNmjpnn2Kaad1HcGQb7PoB2nSErGIwWKIUoSAIieZwvYPsQwv5t+Ef/Kb6H2qHI5xCY2MjAwYM4IUXXmjR861WK507d+app54iLy8vzNElFlWTmerqakaNGoVer+f7779n8+bNPPfcc2RmZgYeM336dGbMmMELL7zAihUryMvL45xzzqG+vl69wH38C4BP2s5AlmHt+8r3A6+LUlSCICSyhdsPk44yVW3yiCnrWDZ58mSeeOIJLrvssuPu27p1KxaLhQ8++CBw22effYbJZGLDhg0ADB06lGeeeYarr74ao9EYtbjjkaprZp5++mmKiop48803A7d16tQp8L0sy8ycOZPHH3888GJ4++23yc3N5YMPPuC2226LdsjNpPqmmRpPNs1U8gtU7wVDGvS6EHYvgF3zlYXAvcRUkyAIoZu/rQIXyoVNIydxX7hTrT2UtKA3BflYjbJB43SP9a95DJOePXvy7LPPcueddwY+1N9666089dRT9OvXL6znSgaqJjNfffUV5557LldeeSULFy6kffv23Hnnndx6660A7Nmzh7KyMiZNmhR4jtFoZOzYsSxZsuSEyYzD4cDhcAR+rquri1j8FsNpppn8ozJ9LlH+IZQshZ9nwpDfiGRGEISQuT1edm3fRDdcABi8jtM8I4FNKzj5fd0mwXX/a/r5ma7gOknl9Y6j4dffNv08sx9YK49/3NTalsV5CnfeeSffffcdN9xwAwaDgcGDB3PvvfeG/TzJQNVppt27d/Pyyy/TrVs3Zs+eze23384999zDO++8A0BZWRkAubm5zZ6Xm5sbuO9YTz75JBkZGYGvoqKiiMUfGJk50TSTsxE2faF8759iEruZhCDYXR5kWVY7DCEGrS6p4W7Pu/zLoKzBMMhJnMwkiP/85z+sX7+e1atX89ZbbyFJktohxSVVR2a8Xi9Dhgxh2jSloNygQYPYtGkTL7/8MjfeeGPgccf+cWVZPukf/NFHH+WBBx4I/FxXVxexhMYSmGY6wcjMlq+V4nhtiqHDmcptIpkRTmNbWT3XvraUfoUZvPXrYWqHI8SYn7bs53bNusDPJuwqRqOyxw6e/D5J2/znP+48xWOP+Ux/34aWx9QC69ato7GxEY1GQ1lZGQUFpxhxEk5K1WQmPz+f3r17N7utV69efPrppwCB1dtlZWXk5+cHHlNRUXHcaI2f0WiM2kKpQDuDE62ZadsN+v0K8vqBP/EypCr/FRWAhROotbq4+50lPOh4hV17OwMimRGaq9s0j1SpKYEx48Dl8aLXqr4xNfpCWcMSqce2UlVVFTfffDOPP/44ZWVlXHfddaxevRqz2Xz6JwvNqPovYNSoUWzbtq3Zbdu3b6djx44AFBcXk5eXx9y5cwP3O51OFi5cyMiRI6Ma64mccjdT+8Fw+Wsw6p6m28TIjHASHq/MPR+t4bd1L3Gt7kf+LL0uppqEZg7V2uhVuwgAe+dzATDhxOYKogK5oIqGhgbWrl3L2rVrAWUd6Nq1aykpKQHg9ttvp6ioiD/96U/MmDEDWZb5wx/+EHi+0+kMPN/pdFJaWsratWvZufMUI01JStWRmfvvv5+RI0cybdo0fvWrX7F8+XJeffVVXn31VUCZXrrvvvuYNm0a3bp1o1u3bkybNg2LxcK1116rZujA0WtmgnwzEcmMcBIz5m6jdMcarjIuCNzm9Hgx6rQnf5KQVBZuLeNsrVKDyzjidwzbcjFW2cCPTg/pJr3K0QknsnLlSsaPHx/42b8E4qabbmLChAl89913rFmzBp1Oh06n4/3332fkyJFMmTKF888/n4MHDzJo0KDA85999lmeffZZxo4dy4IFC6L9vxPTVE1mhg4dyueff86jjz7K3/72N4qLi5k5cybXXddUk+Whhx7CZrNx5513Ul1dzfDhw5kzZw5paWkqRq7w72ayuTx4vDJajQReL/w0XdmKndun+RPENJNwAt9vOMRL83fwseENAOZ5BvFb1x9Y5xTJjNBk37qFtJPqcGhTMXYeS6P+BxqdHjEyE8PGjRt3yhHWo9eGAgwePLjZbtxOnTqJEdogqd6b6YILLuCCC06+TVmSJKZOncrUqVOjF1SQ/O0MQFk3k2bSQ8kSWPAkLHkB/rijef2CnF5w+2Iwqp+ICbFhW1k9D/5vHVdqFzJMsw30KfzN9RtAwupyk4H4xC2Aw+2hXek8kMDa6RyMWj1mg1YkM4Lgo3oyE8+MOg1ajYTHK9Po8CjJzBpfbZm+lzZPZECZZsoTxZAERa3Vxe/eXYnBWcNfzB+CDIx/jJo5ueBxB9eNXUgKK/dW87JjMocsBTw6+mIAHuRdNLpaXLXdIC9d5QgFQV0imWkFSZJIMWips7uVKsCOBtj8pXKnaF8gnILHK3Pvx2vYV2mlfUY7mPAUbPsUht/Ou3NHkmaoxVX5KbTrq3aoQgyYv7WCw2RS3es6NMUDAJjsWUCmrpa19YeB7uoGKAgqE8lMK6UYdUoy43DD5m/B1QhZnaFo+PEP9nph8QxlAfCYP4qGk0lsxtxtLNh2GJNew79vHEJq+wwYfgMARZSRpallozX8FUeF+DR/WwUA43vkBG5zSEaQweUQGwoEQSQzrZRy9I6mtb6GYQOvbaotczRJUtbTeN0w7FaRzCSp7zcc4sX5uzDi5LmLetG3fUaz+x2SCeRanHZxkRKgpNLKTdUvsEdXwOijPiS5NCbwgtt+kjL9CUYshE1M4fq7JmGlpfBK8e1o8lbuhn2LAQkGXHPiB0uS2J6d5LaXKwt+Ad7oNJ8pP10C22c3e4xTo6y1ctvEa0SA5evWc6NuLn/WvUOGvumN36VRioN6HImdzOj1yiJ4qzWx/z+Tlf/v6v87t5QYmWkl/8iMpnoXWLIhrz9kFJ78CYZUsNeK7dlJqNbq4nfvrMTq9HBlh3pGVbyvjNJ5XM0e5w5cpOrVCFOIMfYNXwFQnjGA/NR2gdtdvqTX40js9xKtVktmZiYVFcpUm8ViEf2LEoAsy1itVioqKsjMzESrbV0ZCpHMtJK/CvCezJGMeGArWI+c+gliZCYp+Rf87q20UphhZJruH0heN/SYclwH9aaLlHiNJDu7y0PnyoWgAW3v5q8Tj9YEgNeZ+CMW/tY2/oRGSByZmZmBv29riGSmlZr1Z9IZIP00TcL8yUyCf5oSmvvH3O2BBb8fD92OfvEKZZTu/OnHPdatVZIZWSQzSW/F1t2MkDYD0G7IZc3u8+h8rxOnLepxRZskSeTn55OTk4PL5Tr9E4S4oNfrWz0i4yeSmVayGHV0kUppsHcJ7gmiCnDSmbXxEC/MV3qpzJyST/sFtyl3TPjTCackG405lNS3wyaLgnnJrmLlV+gkL2WmzuRlN3+PmdPpIX6z7Ff8KqsvE1SKL9q0Wm3YLn5CYhELgFupjdbO14Y/cfOKi6Hu0OmfIKaZksr28noe+K+y4PeW0cWcd+Bfypqp/IEw7HcnfM6s4ocZ43yeNW3OjWKkQqyRZZm2B+YA0Fh83nH3ey3tqKANDR6R9AqCSGZaaUD9QiySA5dkgLQg5v3O+Rv8bqHSu0lIeH//ZjNWp4eRXbJ59NyuoNGCpIULn1e+P4FAzy9RATip7T7cQKPTi1PWUnDmFcfdbxavE0EIENNMrdTv8LcALE0/lwuDWWHfrkeEIxJiRVmtncU7lQXhT13WH53eAJe9CmMfhuyTT0v6F5WLi1Rym7/tME+47uOczmZe63DGcfd3rlvOX3RfoqkcCvSPfoCCEEPEyExrVO0mv2Y1HllioWmi2tEIMeaLtaXIMgzt1IYO2UcVSDxFIgPQ7/A3fG14jLGHXo9whEIsW7DtMADDe3U6YRHO/Mat/EY3iy4NK6McmSDEHpHMtMbaDwFY7O3HQW+b4J6zfwUseg62fR/BwAS1ybLM56tLAfh1Vyv890aoLQ3quWneevpp9tLGHtzjhcTTaHOwb892AMb3zDnhYzQGZTeT1mOPWlyCEKtEMtNSXi+sU5KZTzxjlN5Mwdi3GH74G2z+KoLBCWrbfKiObeX1GHUwafdTSgPSeX8N6rkaozKKo/Mk/pZb4cQ2L5vDIv3d/Ncync5tU074GI3B/zoRyYwgiGSmpUp+gdr9uPVpzPEOoTHY9Q1ia3ZS+Mw3KjO1YAW6gyvAkKYs/g6CxrfjTesVF6lk5dj4NQCGzLyTVrv1J716kfQKglgA3GIdR8Jv5nBw92YcswzBj8yIrdkJz+3x8uXagxhwcWn9+8qNE/50+oKKPlqT8hoxiItUUpK9XoqPLABA2/vkux51RuV1ohdJryCIkZkWkyToMBxn7ysBRDIjBCzaeYQjDQ6uMy/FZKuAtAIY8uugn683KaN3BllcpJLR3i0raE85dllPtxEXnfRxTa8TR7RCE4SYJZKZVkr1NZq0Oj3BtTIXyUzC+3x1KRq83GVQtu0z4i7QGYN+vs4/MiM+cSelIys+BWCLZQimlPSTPk5v9r1ORNIrCGKaqbUsvt5Mbq+Mw+3FpD9NqW3/mhmXSGYSUb3dxZzNZUzSrKStowRMmTD4ppCOYbBkUCmnUcuJF34Kia3tgXkAWLscX/X3aFL+ACY4nsWts/BTNAIThBgmkplWSjE0/QqtTk8QyYwYmUlk328sw+7ycrDtUORhf0bSmcCYFtIxdO0HMNjxb7QaiZ2yfNIFoELiqSvbRbF7Fx5ZouOZl5/ysSZLGrvlAnCB1yuj0YjXiZC8RDLTSlqNhEmvwe7y0uhwk5ViOPUTsjrDzd+GfIET4oO/tsy5g3sijbmgRcfwJ8Qer4zLI2PQiYtUslhyEL513s2Q1CPcVFh0ysf62xkA2N2eQOVoQWjG0QDGVLWjiDjx6g+DVKMOu8tJozOIRcCGFOg0OvJBCVFXWmPjl92VAFw8MLidSydiOeoiZXN6MOjE0rZkMW9XA197R5Lbv/i0jzXJTh7Q/RczTmz28SKZEY73y0sw+1HocT5M+DPk9lY7oogRr/4wUN5EnMHvaBIS0hdrSukv7eLZ1PcprNBAm8ktOo4eDx8b/o4JB7bGYWRY2oU5UiEWeb1yoIXByar+Hk2jkbhH9wUApbYGSLec+glC8tnuqzS/7Tul6vzEv8BZD6gbU4SIj3xhkOLb0dToCLJw3oo3YPFMcNRHLighqmRZ5vM1pdyh+4rurq1Kxd+W0ugYqtnKAM1uHI114QtSiGn7ln3Jr2z/pZehgiGdgmiPojMFvnXaRBFO4RiyjP3AOgB2WQYAMhQOVTemCBIjM2GQ4psWCHpkZu5flArAvS8Sa2cSxIbSWuTD2zjX4Gv6N+relh9MkrBhJAU7DnGRShrelW/ykH4BPduYMOqCqEvke52YceCwiQ0FwjHqSjG5anHJWs6vup8+llpurOnMxf5NBYv/AS47jLw7Ia5DYmQmDAIjM0G3NPDtaHKIC1Wi+Gx1Kb/TfotGkqHHFMjp1arjOSTlU7f4xJ0knFYKK38BQN/n5FV/j+VAqV/kEsmMcAzPwfUA7JQLaNcmg9XWdtz38VpuenMFpQdKYOEzsPApeH4ALH0Z3PFdfFEkM2GQYgxxZEZsz04oLo+XZWs3cKl2kXLD6PtbfUx/MuMSyUxSqN88FyMO9nvbMXDIqKCf59D4Xid28ToRmtuX0pdbnA/yonwV8x4Yyx8mdceg0/DT9sOc8++N/NDjr8hZXcBaCbMegX8NgbUfgjfID+UxRiQzYeCvNRPUbiYQyUyC+Wn7YS53foFB8iB3HAVFrZ+XdgYuUtZWH0uIfVWrPgNghXkE+ZnBL+R1SsrIjNsu3kuE5tYc1vCDdzDl7Sdi0mu5e0I3vr/3LIYVZ2F1ydyyspDLpBkcPOtpSMuH2hL44nZ4eRTsXqB2+CETyUwYNC0ADjaZ8c1Pis7ZCWHWyi1co/0RAGl0eHYKuHzJjEcsEk98skzWwQUA2DufuurvsQKvE/HBSDjGhtJaAPq1zwzc1qVdKh/deiZPXtaPNJOONaWNnPVDB57r+RGuCVPBlKE0xN30BQTTnieGiAXAYdA0zRTimhnxBhT3am0uvt7WSIP3dqb1OUCbrhPDclybNp1qORWn2xuW4wmxy3t4O2meGmyyga5nTAjpuf/JeYyluw9zW/oZEYpOiEv2Onpue5FzNLn0bz+g2V0ajcQ1wzowoWcOf/1yE7M2lfGvRaV8nT2Qpy+az/CiFEjLUynwlhMjM2HgL1Yl1swkn+83HMLuhl3tJpJ57RtKN/UweL3jdAY5XmVHmzFhOZ4Qu/bv3IhNNrCBbgzqnBvSc2tTi9kpF1LvDb6RqZD43AfXcXXj+/xV/w79izJP+JjcdBOv3DCYV64fTE6akb2VVq56ZysPz66g1uqKbsBhIJKZMPBvzbYGu5vprAfhpq+hV/C7FoTY9NnqAwBcOqgwrD2UzL6WBrZgX1NC3PreNZB+jtf5uMOf0WtDe0s265XH21zidSI0ObJzFQDb6USn7FM3rD2vbx7zHhzLdcM7APDxyv1c9fJCZE98JTRimikM/GtmGoIdmcnvH8FohGjZf7iGxw7ezSzdMC7pNyKsx/b33REXqcT3884juNHRt2fPkJ87wLaMAt0vZB+ZBHQNf3BCXLKWrAGgKq1nUA1I0016/u/Sfkzpn0/m2xPoXb8Px56vMXaNn5FhMTITBv5kxhrsbiYhIWyd+yYDNbu4zTCb/DCXkj+z+ive1/8fvUo/Detxhdhid7pZvqcKgNFd24b8/N71P3Of7jPyqleFOzQhjpkqNyvf5PcL6XlnFmfjQA+Ara4y3GFFlEhmwqBpZCbIT9Hlm2DF67BjXgSjEiJJ9nrotuN1APb3uBn0plM/IURtXYcYpd1EpnVvWI8rxJa9iz7kW80DPJzyNV1zWtDZWGcGQHKJLfyCj9tJO9tuALI6Dw7pqRqNhFWjTEs5GqrDHlokiWQmDJrWzAQ5MrNnEXz7IKx9P4JRCZG05+f/0Uk+QJ1sofPk34f/BHrlDUXjtoX/2ELMaNjxE101B+mbbm/RmitZr4wIajzidSIonOVb0eOmTrbQrXvoXbLtWqV0iLNRJDNJJ/Q6M2I3U1yTZQy/PA/AsraXkpqeFfZTaAzKRUrrFp+4E1nmYWV6yNA5+Kq/R5N8rxON2x62mIT4VrZ9BQDbpU4UZoU+/e3QKSOEbmtNOMOKOLEAOAwCFYBFnZmk4Nr1E4XWzdhlPSljIjAqQ9NFSusRF6lEVVNdRbF7N0jQ+YyzW3QMyT8yI0bwBJ9FxnH8x/EMozpaGNKC0T6XPh0c4LXWRiC6yBEjM2HgL5pnc3nweIOommjwzY2LCsBxqXbudAC+1k5kWN8eETmH1qgkvDqvuEglqu2rfkQryRyScmnXvrhFx9AYlWRGJ6aZBJ91BxvYJbcnvbhlbVU8hnQAZLtIZpKOf5oJglw3I0Zm4torhpv40jOSij6/RRdiXZBg+ZMZg7hIJaz6HYsBqGgzqMXH0PjeS/ReMYInKNYf8LUxKMxo0fNrU4qZ5xlEmalLOMOKODHNFAZGnQatRsLjlbE6PaSZ9Kd+gkhm4lat1cU7u9Nweu7muxHDI3YenSkVp6zFLYevEJ8QWzIPrwTA0Hlki49hLRrDJT/9jYzUXN4OV2BC3LIdKeG2yqdZp+1M/8LQWmP47c+ZwP/bUcztbbswOszxRZJIZsJAkiQsBi31djcNDjenLUgemGYSyUxccTv4ZkMZTo+Xnnlp9C5Ij9ipXMXj6e54l5w0I8sjdhZBLfurrKx3FpCpraTDoJb389Kl57BW7kqR1xzG6IR4Vbr5Fy7VLqaP9gB56S0rF5FuVtKCOruoAJyUUo066u1urMEsAk4vgKs/BGML6koI6vB64Z1LyK9IIZMruOyM0Ku1hsLsW1Qu2hkkpsU7j/D/3DcxpH0bPmnft8XHaWp7IRqSClC/dzUAh1O6072F7VXSfTMLjbb4mroUyUyYWHy1ZoJqaWCwQM/zIxyREFZr3oGSJQyXjaRKF3LxwPYRPZ2/ealoZ5CYFu88AsDobqFX/T1airuGW7XfoHPpgJbtiBISh65iIwDunD4tPka+9yBbjDfj3WEASsMUWeSJZCZMUkVLg8TVUIFn9l/QAjPcVzJkQH9yWziEGyyLp45X9c9hwI3TfR4GnVirnyi8Xpl9OzahJaNFLQyOZvHU8rj+A2rkFGT5n2FtdirEn7aN2wFI7xRa5d+jmVPSMUtOvLJLGZHWxMd7j0hmwsT/STroZpMbPwN7DfS5DMyZEYtLaL3Grx4ixVnLBm8nNhVew1uXR75RqEmvZZJWKahWa3dgSBVrIhLF5oO1vOV9DIvRgd44H2h50UWDWZmqNuPE5ZEx6EQyk6waaivJlysAKOo9rMXHMadnA6BBBmc9mFq2Kyra4iPligNNzSaDnBb47o/wzf1QdzCCUQmtVbPhe1K2f45Hlng14z7+ffNwTL51CpFkMKUEvrdb6yN+PiF6NmxYTVupDr3kRd+udZ2uTb5kxii5sDmc4QhPiFMlm5YCcJAc2rY77TaUk0pNScEh+3bkxlGtGZHMhIm/cJ5oaZA4autqsX1+LwCf6afw599dQ4b5NNvuw0VnxIPyKVskM4mlYfsiACoz+4HO2Kpj6Y9Keh02UYQzmVXs34FHlihP6daq46Sb9NTie12JZCb5NPVnCralgagCHMvsLg//985X6Dw2yshm+C0zyEmL7DqZZiQJO8qFzmEVr5FEYXd5yKr09WMqbnl9GT9J3zT9aBevk6T2qXcsvR1vsrbfn1t1nHSznjpZqSwdT52zRTITJv7O2Y3BLgAWIzMxy+3xcvcHa/jvgSwuYSaNl75Nh/yWD9u2lENSkieXXYzMJIrV+6o5g60AtOk1tvUHlCRsvqTXKUZmktr6AzU4MNC1S+umLtOMOupQkhl7fVU4QosKsQA4TETn7MQgyzKPfraBeVvKMeg0PHfTOLp0zlYlFodkAhmcNvEaSRRrNm9jpKYcLxKaopYv0jyaAyNmHDjt4nWSrGqtLvZVWgHo1751C3Y1Gon1mp5Ue9LopUklPpb/imQmbJo6Z4eazIhPU7HkqVlbca35iIu0Gi64+m7OVCmRAXBKRjyyhMsh+jMlijpfP6a69G5khmkX499THmNPlZ2HjPlhOZ4Qf3ZtXM5nhr+w1diPTMuUVh/vNdMtlNbY+CJrCAVhiC8aRDITJoGRmWB3M4mWBjHn1Z928dnCVfxgfIt0yQqa4cBFqsXzl7yXWLirhpmtaEQoxI4aq5O5ldnopSv53ZCW1wE51k5Lf9ZV1tDgbd1iYiF+Ve9axkTNTlJ14akqn27WU1pjo84WPy0NRDITJiHvZhp2K/S6EHJ7RzAqIVj/W7mfad9t5V/6d5VEpmAQ9Gz9J5zWMBhNgBT8dn8hpv2yq5Ld3nxm59zAH8aEYb2Mj1mvLH0U1aKTWNkGABxtw3M9STf5+jPZHGE5XjSIZCZM/EXzgh6ZKRwSwWiEUMzbXM4jn21gnGYtF2qXgqSBC58HTeTryZyKv++OqCqdGPwtDEa1survsc50LaePdju6qhSIm0kBIZza1G0DwFwUnlHci5zf8qbxVQ4tPw8GvBOWY0aaqruZpk6diiRJzb7y8vIC98uyzNSpUykoKMBsNjNu3Dg2bdqkYsQnF/LIjBATlu+p4q4PVmPw2piR4vtHe+adkD9A3cCACfVf8or+H+Qf+kHtUIQwKNm+lsmaZUxoL4f1uOc0fs2f9e+RVrk+rMcV4sORejtdvXsAyO8xNCzHNBgMWCQHGkddWI4XDapvze7Tpw+HDh0KfG3YsCFw3/Tp05kxYwYvvPACK1asIC8vj3POOYf6+tjbqupfAGwNNpmp2g3r/we7F0YwKuFUthyq45a3V+Bwe5mRM5ssVxlkFMG4R9UODYCOjh2cp11BWv0utUMRWml/lZXB9T/ysuF5Ruz6R1iP7dEqtWZkpzWsxxXiw45tm0iXrDjRkdK+5Q0mmzEqe5i0TlE0L2g6nY68vLzAV7t27QBlVGbmzJk8/vjjXHbZZfTt25e3334bq9XKBx98oHLUx/MvAA66N9PuhfDZb2HZvyMYlXAqj3y6nnq7m3OL3JzX8Kly4/nPgjE8i+hay6tXaj3gEhepePfzziMMkZSpAH3xiLAe26MTyUwyq9ypFGGsMBaDzhCWY2osmQDoXLE3cHAyqiczO3bsoKCggOLiYq6++mp2794NwJ49eygrK2PSpEmBxxqNRsaOHcuSJUtOejyHw0FdXV2zr2jwTzNZnR5kOYhh5MBupvh5sSSS9QdqWHegFoNWwxM3nod0wxcw8vfQ4zy1Q2viq+6qEclM3Fuyo4xBmp3KDx1aX/n3aLLWV5naLbbwJ6ODlVUckNtizQ7fZhKdL5kxuuPn+qRqMjN8+HDeeecdZs+ezWuvvUZZWRkjR46ksrKSsrIyAHJzm1dezc3NDdx3Ik8++SQZGRmBr6Kiooj+P/j5R2bcXhmH23v6J4iieap6f2kJAJP75dEuzQjFZ8GkJ1SOqjnZNzIjiYtUXPN6ZSp3rSJFcuA2pEO7nuE9vv91IkZmktLrNUMY7fgn9ec8G7ZjGlLbAGAWyUxwJk+ezOWXX06/fv04++yz+fbbbwF4++23A4+RpOYt7WVZPu62oz366KPU1tYGvvbv3x+Z4I9hOaqTclBbaUUyo5pam4uv1h2kHTX8uo+6O5ZOReN7jWhFMhPXNh+qo4dD2big6XgmaML8tiuS3qRVVmunot6BRoLe7cNX4NOYmgWASbaCN4gP5zFA9Wmmo6WkpNCvXz927NgR2NV07ChMRUXFcaM1RzMajaSnpzf7igadVoPJV+8hqB1Nomieaj5ffQCby8NTaR8z4KtzYcMnaod0QhqDcpHSecRFKp79vPMIQzTKehlNh/CulwGapiPF6yTprN9fBch0z03DbAjfBzNzehtWeLuzXDcY3PawHTeSYiqZcTgcbNmyhfz8fIqLi8nLy2Pu3LmB+51OJwsXLmTkyPDOOYdLoKVBMHVBjKJrthpkWeb9ZSV0kMoZ71qE5LJCdusas0WKxqiMzIhkJr4t3nGYob5kho7hf+86VHg+Nzgf4bvUK8N+bCG21WyZzyrj7TzBi2E9blpKKlc6p3Kv5lHwfaiKdaoWzfvDH/7AhRdeSIcOHaioqOCJJ56grq6Om266CUmSuO+++5g2bRrdunWjW7duTJs2DYvFwrXXXqtm2CeVYtRR2eik0SGmmWLV8j1V7Kho4CnDt2jwQrdJUDBQ7bBOqLbzhfRclEOnjGxmqR2M0CJ2l4cV+6q4xPU3PpkikZ8/MOzn8GR2YpG3BlkKbzE+Ifa5SteTLdXTaAxv24F0kx6AOlv81E1TNZk5cOAA11xzDUeOHKFdu3aceeaZLF26lI4dOwLw0EMPYbPZuPPOO6murmb48OHMmTOHtLQ0NcM+KYshhMJ5lmy45BUlqZFlOMU6ICF83l9WQjuquUK7EGRg9P1qh3RSZrMZO0bswSwoF2LS6n3V2F0yrrRC8kZPjMi/c5NvvZ5oZ5BcZFkmo2YzAIb24S3ymW5WUgOby4PT5cGgj921hX6qJjMfffTRKe+XJImpU6cyderU6ATUSqm+HU1BlZ/Xm2HgNRGOSDjakQYH3288xAO6WehkFxQNh0isYQgTk75pu78Qn/wtDEZ3bXvKjQutkekq5yrtfDIasoHYnIIXwu9AtY0u3j2ggeyu4WtcCsq17DX9s4zSbMK+8d8YBl0a1uNHgujNFEaWQOE8cfGJRf9duR+zp4GbzPOaRmVieEQszVHGc/qXkV0G4Gy1wxFa4OedR3hC9wb9pUFg6wjmNmE/Rxvrbp7Wv8YOWzEQG9WrhcjbVFLBROkgAPr2A8N6bJ1Wg0njxSI5ONJQHdZjR0pMLQCOd6nGEBsD7voRNn4Ktvh4scQzr1fmg2UlnKHZjlFyQ05v6Hau2mGdkkVycbl2EefIS9UORWiBWquL0tISrtf9QP/N4asBciy9b6G4QY6fDsdC6x3cuQa95MGqTYf09mE/vl2rbFJxNsbH9UmMzISRv3N20C0NvroHavfDrT9C+/AOEwrNLdxxmAPVNupMQ3HetRaz43D4632EmdGirA0zY8fp9mLQxXa8QnNLdh1hsLRd+SGnd0RGZQD0ZuV1YpLjYwutEB6uA0pj0frMXlgiMMLs0KWBE9yNNWE/diSId8cwCqyZCXaaSexoihp/xd8rBhdhzi6EgkEqR3R6JovyycggebDZxYUq3iw+qr4MHc6M2HkMZuV9xChGZpKG1yuzuUbDz54+SJ1GReQcLr2SJHtsNRE5friJkZkw8u9mCnpkRiQzUVFaY2Ph1oP0kg5w7fCxaocTNIO5qeGl3dpARmp81HsQFD/vPMKVgWQmcgvNjb7XiRknHq+MVhO768CE8Nhb2ciX9jOYpRvCxvMjM13uMaRDIxAnyYwYmQmjlFB2M4FIZqLk4+UlTJaW8r3xUbouflDtcIKnNeCRlQuT3RqdhqlCeOyvslJeWUUfaa9yQxSSGaPkwu5wRuw8QuzYUFoLQO+CdPTayFzGvcYMACRHfLz3iGQmjFICdWaCnWYSVYAjzeXx8tHyEu7QfaXc0DY2q/2ekCRhk5SOyE6beI3EkyW7jjBQswu95IH0QsiMXMNb49EjeOJ1khQ27ysnnUYGFGZG7ByOlAJWeLtTbugYsXOEk5hmCiP/yExQ7QxAjMxEwbzN5fSxLqOXYT+yIRVp6G/VDikkDslEqmwTyUycWbTjCIXSYdySAV0E18sAaAxm7vXcR63HwN89WsLXblCIVfo9P7De9ASHSscCX0XkHBW5Z/HnTfncmNuR4RE5Q3iJZCaMAsmMWDMTM95bto97faMy0pBfR2xHSaTckfYvNlY4eSWlm9qhCEHyemWW7KqkyjOOq657gCF5Ea6eKkn8pB9FtcuF3Rv7lVqF1vF4ZSzVW0ACS5u8iJ3H39Kg3h4fLQ1EMhNGTclMkNNM/a+GwmGQH95S1IJi9+EGHLt+ZphxG7LWgHTmXWqHFDK3KQsrNdjcstqhCEHaUlZHVaOTFIOWAcW5EKE1DUcz67VU4xItDZLArsMNdPPuAS2kdTojYufxtzSos4W371OkiGQmjAJrZoKdZuo4QvkSIuKDZSXcofsaAGnANZCer3JEofPXLrKJlgZx48ctFYDM8M7ZEVuceaxxmtW4tBW4artABNdRCOpbf6CWEZp9AGjy+0fsPNlSA0uNd5G5zwbeg6CJ7VE/sQA4jEIemREixu7yMGvVNvpo9iIjwah71Q6pRSbbvuYZ3SuklK1QOxQhCLIs8+nqA9yoncOMqjthxetROe/tjrd5Rv8q2sodUTmfoJ4de/fRXqpUfsjtG7HzWNIyyJOqlWKMjvqInSdcRDITRimGENfM1B2C7XOgRJSrD7dv1x/igM3A1aZ/473uM8juonZILdLfvoordT9hrtupdihCEFbtq2ZvpZWRum1k1m2PWo0Ol0bZ9eZ2iPV3ic5WshaAhpQiMKVH7DypKSnYZWXdDPbaiJ0nXEQyE0YWX28mm8uDxxvEGoc9C+GDK2Hh0xGOLPm8t0wZhr3yzC5ou01QOZqW8+jMAMjiIhUXPll1AJAZofeNkESpK7tLawTAIzYTJDSXx4ulajMAUl7kpphAWQBci2+Tikhmkou/nQEEWThP7GaKiE0Ha3HuX4tBI/OrIZGr7xENXp1S9Vd22VSORDgdm9PDN+sP0UGqIMNdCVpD1HquuTRK0uu1W6NyPqH1ftlVyW/eWsG/ftjBjvJ6ZPn0H4C3l9ez3tOB/3E2lr7nRzS+dLOeOlm5RnmsNRE9VziIBcBhZNRp0EjglcHq9JDm29p2UiKZiYgvFq/jU8NfqTPk0E5aCLRTO6QWk/XKRUpyiddIrJu16RANDjc3pO8AJ0r/L70pKuf2aH3JjEskM/FixtxtrNhbzY9bK3hu7nY6t0vh3D55nNcnj/6FGUgnaB65/kAtS7x9kQrHcuWgyNYvSjPp2IPyYcpWX0XqaR6vNpHMhJEkSaQYddTb3cGtmxEVgMOuweGm7ab/YJJcuDLaQUpbtUNqFdk3MiOJkZmY559iukU3R0lmukemZ86JeHW+pMkpkpl40Ohws6akBoDRXduyfE8Vuw838vKCXby8YBcFGSYm9cnjvL55DO2UFei3tf6AMt3Tr31mxGPUazU0SsoHbkdDtUhmkk2KwZ/MBLGjSYzMhN03K7ZxNbMBSJ34BzjBp5u4YvAlM26RzMSyA9VWluyqZLxmLW2tO5UPKkN+E7Xze/1rq0TSGxeW76nC7ZUpyjLz3m+HU293MX/bYWZvLGP+tgoO1tp5a8le3lqyl+wUA2f3yuW8vnns2beXftJeBuX3iUqc+7SdWOG2kiOlxHxlaZHMhFmKMYRaMyKZCStZlmlY/BoZkpUaSzGZPaaoHVKraXzJjM4jLlKx7PPVpcgypBf1gaKbwdI2qtWmN+ddzJsHO9I3fQSjo3ZWoaV+3nkEgFFdlJHjNJOeiwYUcNGAAuwuD4t3HGHWpjLmbSmnstHJxyv38/HK/fxKu5Dpxtewr5oDA7+OeJzvpv2G7eUNfJA7nFjv0CSSmTALqaWBf5rJZQWvJ+aLEsW6NbvLuMj2OUhgGPsAaOJ/fXtp5yu5bW0x/QsK46I/SjKSZZlPVh8AYMzwoTD40qjHUNOmP996TaRr43vBe7L4eZdSJ2Zk1+OnwU16LWf3zuXs3rm4PV6W76li1qYyZm8qo7dV2aVpLIzsTiY/f0uDOnvsVwEWyUyYBWrNBFOx1ZgO5z2tjNAEsZJdOLWdc1/nDKmGan0ObQZfrXY4YaG3ZHKYNlS7T7OYXFDNyn3V7Ku0kmLQMrlf5HrlnIpZr3wQsot2BjGvssHBlkN1AIzscurJG51Ww8iubRnZtS1TL+yD/dWnoCzy27L90kz+lgax358p/j+6xpjANFMwIzM6A5x5O5xxA2hFXtka1Y1OjAeV4oPWM+5QfrcJwGLw1y7yqhyJcDL/W7mfHlIJ72e+gqVykyoxtHUfYrJmGe1r16hyfiF4S3yjMj3z0mibagz6eRpkLFVblR8i2MbgaGNci1lqvIvBKx+MyvlaQyQzYRZy52whLL7ZcIh7nXfwcNqTtJ94m9rhhE2mvYS/6t7mVw3vqR2KcAJWp5tv1x/iNt03DKybD4tmqBJHh5plvGx4ngnVH6tyfiF4S3b51sucYIrplI5sA2c9aI2Q3S0CkR3PoteSJ1VjsB2OyvlaQwwHhJnFEGJ/ptJVYK2GwsFRXTCYaL5dfxCQ6DL03KaF1Qkg1VXFr3WzKXGpM30hnNqsjWW0cR3iIuMS5YbR96sSh8a3/k7nsatyfiF4P+9URmZGdQ1xf9C275T/Fo+J2ki+xpIBgN4lejMlnVTfNFNQFYABPvsdvH85VGyJYFSJraKykg17DgIwpX+BytGEl8GcBoARh8qRCCfyyaoD3Kr9Fh1e6DIBCgaqEofWpGzN1ntFMhPL9ldZKamyotNIDCsOMZnZ+q3y357R26WptSgfsA3u2E9mxMhMmPlHZhqCnWYS27Nbbc+cl1lm+Bdfpl5F+8z43459NINZeX2YZZHMxJoD1Va27drNf4wLlBtUGpUB0BmV14lIZmKbf0v2wKLMZu1vgnLhP5WEpkdk2xgczZCiJDMmkcwkH/8L1BrMbiZo2p4dBy3WY1XOrk9JlewUF+arHUrYmSxKV1wzDlweL3qtGEyNFZ+tLuVm3WxMkgvaD4FOZ6kWiz+ZMcoimYllp9qSfVp5fZWvKDKmZgFgkRtjvnyIeGcMM3/nbDEyEx2Hd6yg2L0bh6yjy/ib1A4n7EwWZZpJL3mw2sSFKlZ4vTLfrdzOTdo5yg2j71e12rTerHwoMogRvJjl9cos8Y3MjG5JMqMCc3pm0w+OOtXiCIZIZsKsaWRGJDPRUP7TfwBYbTqT3LzEWi8DoDdZAt/bG8XoXaxYsbeKvdUO/s3leDqNierQ/4kYTMr7iEkkMzFrW3k9lY1OzHotA4syg3+irUZZW7npi6jXI0tNSWWDtxPrpJ7gie3CeWKaKcya1swEO83kT2ZEs8mQuZ0UHfgGgMbeiVEk71iSzohb1qCTvDhs9UCu2iEJKAt/7Rg50u93aK+ITs2PUzFktuch161YMfMvWT5hx2VBXf71MsOKszDoQhhH2DEX1n8Mh9ZBn0siE9xJpJt0THBOI82oY0NqTlTPHSqRzISZv2ieNehpJmUaQYzMhO7I2q9pK9dRIWfSf1z0S8hHhSTxK/0/KW2A/+iy1I5GQKkh9e2GQwBcMaRQ5WgUxrRM/usZD8BzHi9GXeyubUhW/mJ5IW/J3qp8YIvmLia/dLNSebze4cbjlQPdu2ORSGbCLNDOINhkpucUaNMR2g+OYFSJqX7pO7QFlqWew4UZsd6gvuUqjYWUN1iJg4riSWHWhlKek59lWcZYhhSdq3Y4QFM7AwC7UyQzscbl8bJstz+ZCWG9jMsOO+cp36uQzPjbGQA02N1kWGK3rYpIZsIsUAE42N1MxWcpX0LI/s9zI71cbek26Hq1Q4ko/4XKJvruxIQDP3/EvdoVjPNsR3LfD1r1E2m9VsM47QaMsg2bdQQZFjGKF0vW7a+h0ekhK8VAr7z04J+45ydlCUJaAeQPilyAJ2HUaXnS8B/GS6twr/0bjLwx6jEESyQzYXZ0byZZzF1HzL7KRuYdMjFfcznLzxyhdjgRdZn7O7S6vUhHMqBbO7XDSWr7KxuZWPkBaMA15FbMRvUTGb+X9DOw4GB/3dXQViQzscRf9XdE52w0oUzVBKaYzgeNOvt12mgd5MnVlNXFdksDsZspzPwjM26vjNMTRHNAaxWULIODayMbWIL5Zr2yZmFkl2yyQ2jWFo/GORdwi+579NW71A4l6a348VP6avZil4ykj7lL7XCacaD8O3BaxWaCWPOzrx/TyFDWy3g9TS0MVJhi8nPolHWdLmu1ajEEQyQzYWY5au46qP5Me36C/0yCWY9GMKoEc2gdQ5bczjmalUzpl3iF8o7l1iil6j0Oq8qRJDevV6bTln8DcKD4KoixqRy75Etm7GILfyyxOt2sKVESgZDqyzSUQ2oemDKg4+gIRXd6Lr2SzHitNarFEAwxzRRmOq0Go06Dw+2l0eEmK8Vw6if4KwCLrdlBq/nlbYa7VnBEq2Vkn8RPAt06JZnxih1vqtq84gfO8G7EJWspPP8PaodzHKdkAhncdpH0xpLle6pweWTaZ5rpkGU5/RP80gvgjsXK6L3uNNeRCPIY0sAKsr1WtRiCIUZmIiA1sAg4iO0nomheaNxOjJs/AWBr3oW0OV2ymAA8WiWZkR3iNaImefFMANZlnYupbUd1gzkBl0YZmXGL10lMOXpLdovWUKo8Aug1Kp2zJbuoAJx0LIFFwEFMMxl8mbpIZoKzfRZmdy3lciYdhyZWU8mTkX0jM7jEJ261NDrcvFQ7guXeHpjHqddQ8lRcGhMgkplY4y+WF9KWbFsNOGJktN6k7L7SOsXITNLx15oJqqVBYJpJvAEFo2HZOwB84R3DOf1io2BZpHn1IplR23cbDvG9cyAPp0+nd/+haodzQm7fCJ5XrK2KGVWNTjYdVEY0RnYJIZlZ8RpM7wwLp0cosuB5U3LZ7m3PEV2e2qGcklgzEwGBWjPBFM47up2BLKvarC7mNVRg2fcjAPuLLibDHLsFnMJKr7xGJJdN5UCS1yerDgBwxeDCmC23sDjzUj6o68+w1Oh2VhZO7hffFFOP3DTapYWw63Lrt+BxQKr67UvqcoYxyfkMV+QXMlDtYE5BjMxEQFMyE8w0ky+ZQQZxsTolef3HaPCwxtuVwUPPVDucqNnW8RomOp7h26zELg4Yq2q++zvDSl4nU2rg0kHt1Q7npHa2Gc2HnomUG4rUDkXwadGW7NoDcHANIKnewBQg3axcz+psotFk0kkx+NbMBDPNpE+BcY+BMRUkkVueSqncjsPernwmj+OhXup/YomatDx2yUfo7ImdAm1Jw1GPZeWLPKi34W53BgWZZrUjOimzQXn/sAVbfVyIOP96mZC2ZG/11ZbpcCakql8kM92kjIDX2UUyk3RCGpnRaGDcwxGOKDF82DCQF51/Y1KvHNJMSTLFBFh8ybG4SEWfe+MXGLw2dnnz6TnyYrXDOaU8bzmjNRtIqZOA7mqHk/QOVFvZV2lFq5EYVhzCjiQVG0ueSLpRYrbhIbIPWcG2Gsxt1A7phIJKZurqQt+SlZ4eQv+JBBMYmQm22aRwWrIsB6r+XjAwdof6I6GtbS/36/6HsbYQGK52OEmlcvGb5ALf6ybw276xXaBxSNU33G14k6VlVwDqT08kuyW+FgYDCjOC//Blq4a9i5XvY2CKCSDNYqKDVIFZdoK9Nr6TmczMzJAWvUmSxPbt2+ncuXOLA4tnKaHUmQE4skN5EbftDubMyAUWr9wODi54g+rKbEz6dCb2zFE7oqhqY9vHvbrP2WTtBTyhdjhJw1q2g9zqVXhkibyzbsKkj/FO1HqlzINYKB4b/OtlQtqSvX0OyB7I6Q3ZXSIUWWjSTXrqsGDGl8zEqKCnmT755BOysk4/VCbLMuefHxsZpVpC2s0E8L+boXwjXP8ZdJ0YucDi1fZZtF/8KF8Zcpne/YPA7zdZ6E3KInGjLC5S0bTh21cYDqzSDeTiMbG5Hftokm8Lv9YjXidqk2U50FwypGSm02g4dxqYMiMTWAukm3XUyCnkSjV4rTUxu2soqKtCx44dGTNmDNnZwa3I7ty5M3p98qxpOFbTAuAg1ziIKsCnJK99Hwn41jucCwYk1xQTgN6kLPw1eu0qR5I8KuttFJV8ARJoz7gOvTZW38KbSL73Ea1HvE7Utr28gSMNDkx6DYM6ZAb/xIz2MCK2Gpimm/SUoLy27A3VhNCQIaqCSmb27NkT0kE3btzYomAShSXUkRlROO/k6sthxzwAvtWM59MeyTXFBKA3+5IZHCpHkjxe+2E9XTy9GWfYzKBz4mNLvNaoXGZ0IplRnX8X09BOWRh1MT49eRomvZYGXzLjaKiK2WQm6I8bO3fujGQcCcXfm8kazG4maF44T2hu/cdIsodV3m506TUIsyG+3xhawmhRkhmTLJKZaNhfZeWNFZX80X072676GY0hdrdjH01jVN5HdGIET3VLWrJeZtmrsOY9Zf1kjLFplfcgZ0PsxeYX9OKD7t270759e8aPHx/46tSpUwRDi1/+rbQNYmSmdWQZee0HSMAnnjFc0D+2d5NEisms7Aw048Dl8cbFlEc8mzF3Oy6PzOiubRndI7ZLuB9N5xuZMYhkRlVuj5elu6uAEOrLeD2w8CmwVkJGEXQeG8EIQ1epz2O7vT062aR2KCcV9LviwoULue222zh48CB33303Xbp0obi4mFtuuYX33nuP0tLSSMYZVwIjM8HuZhJrZk7s4Bqkw1uwy3oW6EYztrv6BaTUYLQorw+95MFqE4s7I2nzwTr2rZtPH2kvD5/bQ+1wQiJnd+fvrut4X3ep2qEktXUHamlwuMm06OmdH2SJkpKlSiJjyoSOIyMaX0t8kvFrJjmfYVeHK9QO5aSCHpk566yzOOuss/jTn/6Ey+Xil19+YcGCBSxYsIAPP/wQh8NB165d2bZtWyTjjQsWX6PJhpCnmUQy08zB1XjRMts7lDP7do79rbERYrBkcKnr7zR6DbzrkchQO6AENn32Vh7RfcgwzTYot0DRr9UOKWiaNh14wzOFXNnIX9QOJokt8a2XGdE5G40myJImW79V/ttjMmhjb/NMmin2Wxq0aI+rXq9nzJgxDB06lBEjRjB79mxee+01sa7GJ+SRmc7jQG+Gwtjf/hlNnsG3cMHsDOodDfy/JJ1iApC0OnboetDgcGN1yWqHk7B+2VXJnu0bGGbchixpkLqfp3ZIITGLStExYfFOfz+mIKeYZDnmqv4eK90c+y0NQkpm7HY7S5YsYf78+SxYsIAVK1ZQXFzM2LFjefnllxk7Nrbm+dRiMSpvKlanB69XPn123mW88iU0s2JvFVsaLKSZ0jmrW3JOMfmZDVolmQk2QRZCIssyT83ayuXanwCQukyE9PhKoM0aL4OkHaS63cC5aoeTlGxOD2tKaoAQ1suUb4KafaAzQZcJkQuuFQa613OvYTrS6h4w6nO1wzmhoJOZsWPHsmLFCrp06cKYMWP4/e9/z9ixY8nNTaKGf0FKPaqom9XlafazECSvh2997QvO7ZOHQZfci16vluai1VXgqSmGAjHRFG6zN5Wxfn8VLxsXKTcMvFbdgFrA4m3kc+NfAXC77kWXxLW+1LJibxVOj5eCDBOdsoPcxOyfYuoyoWnJQYxJNUB3TSnl1tjd2Rf0FWLJkiW0bduW8ePHM3HiRCZMmBDWRObJJ59EkiTuu+++wG2yLDN16lQKCgowm82MGzeOTZs2he2ckWLUafAPxgRVa8bZCBVb4bBYbwQou5ie68HVa28kl6qk3cV0tGvcX3Kf7jPk6hK1Q0k4bo+X6bO3MUKzmQKpEkwZMdMXJxSmlLTA93abKPOgBn8Lg5Fd2wbfAqjuACDF7BQTgM7Xj8ngrlc5kpMLOpmpqanh1VdfxWKx8PTTT9O+fXv69evH3XffzSeffMLhw4dbHMSKFSt49dVX6d+/f7Pbp0+fzowZM3jhhRdYsWIFeXl5nHPOOdTXx+4vFJTeVCG1NNizCF4aDp/fHuHI4kTVbqTGw3SRS/CYs0Or1ZCgHBplS6TLLi5S4fa/VQfYfbiR6/2jMn2vAH3sbkE9GaOpaSTAbhWvEzX4i+UFPcUEcNG/4A87oPclkQkqDPSpSjJj8sTu6yroZCYlJYXzzjuPp556imXLlnHkyBGmT5+OxWJh+vTpFBYW0rdv35ADaGho4LrrruO1116jTZumbpyyLDNz5kwef/xxLrvsMvr27cvbb7+N1Wrlgw8+OOnxHA4HdXV1zb7UkGLwJzNBLMYTu5maK10FwCa5E2f3LRR1VQCXL5nxOMRrJJxsTg8z521Hg5fRJl+l84HXqRtUC0kaDVbZCIDTJl4n0VZjdbLpoHK9GdkluNY/AantwJgagajCw+hLZszeRqUmTgxq8VUiJSWFrKwssrKyaNOmDTqdji1btoR8nLvuuospU6Zw9tlnN7t9z549lJWVMWnSpMBtRqORsWPHsmTJkpMe78knnyQjIyPwVVRUFHJM4eBfBBxU52yRzDRXuhqA9d7OTO4nppgA3BplrlokM+H15pI9lNc5yM9MwXj/arjxS2h/htphtZhD8iUzYgQv6n7ZVYksQ7ecVHLSgxzZc8T2LIOfOa1poCFWO2cHncx4vV6WL1/O9OnTmTx5MpmZmYwcOZKXXnqJvLw8XnzxRXbv3h3SyT/66CNWr17Nk08+edx9ZWVlAMety8nNzQ3cdyKPPvootbW1ga/9+/eHFFO4hLQ9O1ABWLwBAThLVgCwXu7CkI5tTvPo5ODWKcmMVyQzYVNjdfLygl0APDipO0aDUSmTEOxahxjkQIzMqMW/JTvoaXFrFUzvDG9OAVdsF8NMS7EERv1iNZkJeptNZmYmjY2N5OfnM27cOGbMmMH48ePp0qVLi068f/9+7r33XubMmYPJdPIs9thFVLIsn3JhldFoxGg0tiimcGpqaSCmmULicaEt3wBAQ9sBgbVHyc6j9e0icFnVDSSBvLRgF/V2NwNy9VzcP37aFpyKQ2MEL7js4r0k2qRt33Grdi9Xuovg5x/AYIGhv216wIZPoO5g08+Ht4HHqSQH+tjdJQRK5+xdcj4WyU0Xb2yWhwj6SvHMM88wfvx4unfvHpYTr1q1ioqKCgYPHhy4zePx8NNPP/HCCy8EKgmXlZWRn9801VBRUREX28Gbmk2GMM3kdYHbCTpDBCOLcRVb0Hod1MkW2hf3VjuamOH1jczIIuENi4M1Nt5asheA59v/iPb5e2HiX2DgNeoG1kpfmy+mrqaKcSYxPRtN5ZsX84R9GuiB9b4bU3ObJzPLX4P9S49/cgzvYvJLN+s5xzkNrUZiZ3ZXYnHsMuhk5rbbbgvriSdOnMiGDRua3fbrX/+anj178vDDD9O5c2fy8vKYO3cugwYNAsDpdLJw4UKefvrpsMYSCU0tDUKYZgJlqkmXFaGo4oCkYbFhNOU2iTOKxS4mv1WFN/LEwSGMbjOIs9QOJgHMnLcdp9vL8E4ZdDzwFdQfjMsdTMdamHYBKyqrGaRPjJGmeFG24FVygRJdMR36nKncaDymL1PXsyGruPltxnQ4M/Z3saablJpFHq+M1emJyRHzoCOy2WzMnDmT2tpa7r333majJS2RlpZ23O6nlJQUsrOzA7ffd999TJs2jW7dutGtWzemTZuGxWLh2mtjv6BVSmDNTBDTTFodjLxHGWqMwb4c0WTN6slNDXfh8cr8LNbLBDjSi1kju+iJ+J201o7yej5ZdQCAJwZUIc0uVRr8dZ+sbmBh4O9fZnPF5o6TRGS31tO5Yi4AZSOn0mHCJSd+4Ng/Ri+oMDPpNei1Ei6PTJ3dFd/JzC233ILZbKZnz56cffbZUSle99BDD2Gz2bjzzjuprq5m+PDhzJkzh7S0tNM/WWUpvjUzQdWZAZj09whGEz/W7q/B45XJzzDRPjO255Gjyd93J6jkWDil6bO34ZXh3D65dDv4inJjv/isLXOsAqmS/tIuqM8BCtUOJyn8suQnhspeDko5nDHmArXDiQhJknjQ8AXjPT8jrfo9TIi90aSgk5kFCxYwd+5c+vTpw+OPP05FRQU5OTlhDWbBggXNfpYkialTpzJ16tSwnicaAkXzRC+d4Lkd7Nq6HpAZLEZlmsl37OIW7bdkV3cHBqkdTtxasbeKuZvL0Ujw8Lh8ePtr5Y44rS1zrCtq/sNQ41yWHngAEI1ro2Hm1gy2O17ir6MsXK2LvRGLcMnV1dNDPkBp7QG1QzmhkHozPf/883Tv3p0OHTqEPZFJNCn+OjPB7GYCqC9TVrWn5YMp/fSPT0Slq7lhxaUMNRTxS8ev1Y4mphTUb2CK/n1W1Y4A7lM7nLhkd3l45FNldeavhhQpUwNuO7TrBQWJkSA2LRQXu96iYe3+GtYdqMWgtXD2+NhsEhkuLl0auMBrrVE7lBMKus7M66+/TseOHSkvL+eHH36IZEwJIaR2BgAfXw8vDoO9iyMYVWzzHlgJQImcw5COSbwI+gQ0vuqgOq9d5Uji1z/mbmfX4UbapRl5ZHJPWOurJD7w2riuLXM02ZfMSGILf1R8+tNaQOaCAfm0TVW/JEgkeQzKh2zZFud1ZlJSUnj88ccjGUtCCbQzCHaaSdSaoWHPCtKBTVI3JuTH/rqoaNIaldeH3hPbxbVi1ap91by2SCnqOe3SfmRaDHDek0pC0/9XKkcXPoFkxi1eJ5F2pN7OLdtv4zqDHnr+R+1wIs7j250lOeI8mRFC0zQyE+Q0k6gCjHRQaWNga9sfnejH1IzepCQzRlmMzITK7vLwx/+twyvDZWe055zevjpV7QcrX4lErzSbFMlM5C384Rsul8qwSSbMPZKgJpYpAwCNQ51+h6cT1BXjsssuC6lh43XXXUdFRUWLg0oEIe9m8r0JJe3IjLWKNKvSeiK96zCVg4k9epOS7BrENFPInp29jd1HGslNN/LXC/qoHU5kGZT3Ea1IZiLK7fGiW/8hABVF58V0k8hw0ZgzAdC74jiZ+fLLLzl8+PBx3ahP9FVbW8vXX39NQ0PyjjBAiHVmQEwz+UZldnvz6NOlo8rBxB69WXmzNOJQOZL4smJvFW/8rHTDfuqy/mRY9LDnJ/jybti/QuXowk8SyUxU/LhhLxM8PwOQN+63p3l0YtCkZFEmt6FWk6l2KCcU1DSTLMtha2OQLPy7mYKqAAxHJTPJmQQ27l5OCrBe7sz4DmJb9rEMZmUNkVlMMwXN5lSml2QZrhxcyPievh2Yq96CjZ8qRSqLEmv7cmNWX553X4rO3IuBageTwHYs+JBJko0aY3syi0epHU5UONv140zHi5zfPY+X1A7mBIJKZubPnx/ygdu3bx/ycxJJSihds+GoNTPJOTKzwTSI1e6LOJzel0vMyV0F+USMWYVc73wUq2zkY48XvVhTdFrTZ29lb6WV/AwTf7rAt6bBVgNbvlG+Hxj7lcRD5cjpzz/cbobps7hL7WAS1PbyegZUfgta0Ay6FjTJ8W/R39KgzhabtdOCSmbGjh0b6TgSjr83k8sj43B7MOq0p35C0TA48y7oMDwK0cWeHxs68ar7aq7p2kHtUGKSOSWVxd5+gDJ1mWFOjjfQllq6u5I3f94LwFOX9yfDnyCvfR88DsjpDfkDVYsvUsyinUHEfblwKQ9qNgOQPvwGlaOJnnSzck2rs7tUjuTExG6mCPEvAAawOoJIZrpOVL6S1Mq9VQAMEZV/T8ig1aCRwCsru3MyxOjVSVmdbh76RCmOd/XQIsZ2b6fcUXcI5j+pfD/s1oSpLXM0s8ZNF6mUHHsVMFrtcBJOnd3F2xtdbHQ/xN+HOujQJnnW96Wb9Lyjf5Kiylqo+RYyY+uDp0hmIkSn1WDUaXC4vTQ43LRJMagdUsxyHNpMm4M/kUkxQzqJZOZEJEniOsNP6NyN2BoGQ7roinwyT3+/lZIqKwUZJh6f0qvpjlkPg7Ne2Y59xk3qBRhBbRp38YPxj5Q3ZgPJM2oQLZ+uOkCDU+ZQ7iiKLhmjdjhRlWbSU6g5QJ5cDdaqmEtmxFh1BKWGsqPJ7YS6g1CzP8JRxZ6qn9/mDd1T/MX8PzpkWdQOJ2Y9JL3DX/Xv4q4pUzuUmLVk1xHe/mUfANOvGECab56f3Qth85cgaeHC50FzmpHSOGXw1yMSu97CzuuVedf32rpxRCekBBzZO5V0s446WXl/lu016gZzAmJkJoIsRi2VjUHuaNr3M7x7iTKXf+cvEY8tlngOrAKgoW3/pHuDCIVDMpImW3Ha69UOJSY1OJqml64b3oHR3do23dlxFJw7Dex1kNdPpQgjz5/MmGSRzITbop1HuLLmdYxGics6/03tcKIu3aTnAMrry9lQQ6w1bxDJTAT5WxoEtaMpWSsAe71k1SqL6VI6iWJ5p+KQTCCDy5acO95O58nvtnCg2kb7TDOPnt+r+Z1aHYxI/P09BovyPmKSXMgeN5JWvMWHy8eLt/CMdg4pkgNsdwDFaocUVRaDlnpfMmNvqIq5ZCbkaaby8nJuuOEGCgoK0Ol0aLXaZl9Ck5CaTSZp0Ty5cgcWuRGbbKBT7yFqhxPTnBql747bnmQJbxAW7zjC+8tKAHjmiv6BKV5qD4AreWrzmCxNlWgd9uR6L4mkkkor5l3fkiI5cKV3hA4j1A4p6iRJwqZRXl/OhmqVozleyGn7zTffTElJCX/+85/Jz88X0wKnEFJ/JmNy1pk5vHUJOcBmiulbJDpln4pTYwLA40iu18jp1NtdPPypMr1044iOjOzqm17yeuDjG8BeC1e+CfkDVIwyOszmlMD3DmsDppQMFaNJHO8t28flmp8A0A++PiF3wgXDoUsDN7gaEyCZWbx4MYsWLWLgwIERCCex+LdnhzTN5LaDx60MiyeB2l3LyQEOpfRi8Om2ryc5jy+ZcYtkpplp322htMZGhywLD5/Xs+mOFW8obTKM6ZCaq16AUaTT6bDJBsySE7u1AZHKtJ7N6WHR8lU8pt2MjIQ04Gq1Q1KNVZ9FuSsTuzf2rk8hTzMVFRUhy3IkYkk4/sJ5DcGMzBiaPlHhSp6LlbF8DQCe/DNUjiT2uXXKNJMskpmAhdsP8+FyZQfg9Cv6B0ZDqTsIP/gWaZ79V0hLnq3s70lTeMF9MVbJrHYoCeGrdaWc4/JVwS8eE3NbkqPp++wbGO54iQ1dblU7lOOEnMzMnDmTRx55hL1790YgnMSSagxhZEZrAI3vjTiJppr+rrmDh123ktl7gtqhxLwFOTdyk/NhdmSOVDuUmOD2eHnssw0A3DyyE2d2zm668/uHlJoyhUNh8G9UilAdrxuu51n3VTRqxbhMa8myzDs/7+EK7UIApIHXqRyRutKM/pYGsVcFOOSxoquuugqr1UqXLl2wWCzo9c0rkVZVVYUtuHhnMfpHZoJIZiQJhvxGqYOhjbV14pFRY3Uyt7ItMJ6He/ZQO5yYV5XZj4XeNPpK2ad/cBJYXVJDaY2NDLOeh8476vWz9TvY8rXy4eDC55Omd46fv6WBXbQ0aLVV+6rZU3aEnwxncE3GFrS9LlA7JFU1tTSIvf5MISczM2fOjEAYiSlQNC+YaSaA85+JYDSxZ3WJsoisc9sUskSF5NMy+9Zg2ZxelSOJDT9sKQdgQs+cwJQujnr47g/K9yPuhtw+KkWnnlxtPUgVOK01gFhU3xpv/7IPKyY2DvgT2kv7Jl1ifKxu3j38z/B/pK/Ph/FfqR1OMyEnMzfdlJhlwCPB4rv4NATbOTvJOJe/zQ3aUkz5U9QOJS4UOndzpXYBudWVQG+1w1HdXF8yM7FXTtONTqtSeFKjg7EPqxSZuv5qe4rexk2s2/889O6sdjhxq6LOzvcbDgFww4iOSZ/IAKQZJIZqtlPTUKN2KMdp0ZJkj8fDF198wZYtW5Akid69e3PRRReJOjPHSAmMzASZzDgalE+WpvTmC4ITVJ+S9zhPv49FGWLxbzB61CzmOv2r/FJ5PnCj2uGoavfhBnYfbkSvlRjjbyQJkJYL1/0PGg+DITlbY7gCW/itKkcS3z5YXsJAeQu9C1Lpk5+udjgxQZ+SCYDRE3u1rkJOZnbu3Mn5559PaWkpPXr0QJZltm/fTlFREd9++y1dunSJRJxxyV8BOKg6MwAfXg17F8EV/4G+l0cwMvW5rLW0d5WABIV9RqkdTnzwXZw17uQpAncyP2ypAGB4cTbppmM6iEsSpOac4FnJwa1VdjF5nSKZaSmn28v7y0r4p+4TRlRthmVeOPMOtcNSnTFVmbY0e60xV0Ik5HGze+65hy5durB//35Wr17NmjVrKCkpobi4mHvuuScSMcatFN9upsZgp5mSqArwvo2/oJFkysimY0eRAAdD40tmdB6bypGozz/FdLZ/imnpK/Dl3Uo33yTn0SojMyKZabkv1pRiaihhhK+2DL0uVDukmGBOa9P0g6NOvUBOIOS0auHChSxdupSsrKaFZdnZ2Tz11FOMGiU+YR8tpHYGkFTJTOWOpXQFSi29yNMkZzXNUGlNSmFFvTe5k5nqRier9imLxyf2ylVaFvz4d6WvWdEwOCO5p+C8vnpEiGQmJC6Pl1kby3h7yV5W7qvmPt0iAKTO4yCjUN3gYkRaioVG2aj0p7LXgCV2FpiHnMwYjUbq64/v2tvQ0IDBIHakHC0wzeQMcpopkMzE3nxkuOkOKcXynLkD1Q0kjmiNyutD50nuaaYF2yvweGV65qVRlGWBD3/rS2TOhIHXqx2e6gLJjEskM8E4XO/gw+UlvL9sH+V1SrdxvUbmBvMScAFJXlvmaGkmHXWkkIJDaRMSQ0JOZi644AJ+97vf8cYbbzBsmNLleNmyZdx+++1cdNFFYQ8wngWmmYIemUmO/kyyLJPfoHTKzuw6XOVo4ofOl8wY5eROZub51suc3SsXtnwD27711ZSZKXacALIvmZHcyT2Cd5zaUpCbPlhuOljHp6sP8OOWCqweDRW0oV2akWuHdeA36cvJ+L5MaYXRU+y29Es366mQM9Egk+uJrcJ5IScz//znP7npppsYMWJEoGCe2+3moosu4vnnnw97gPEssJvJ6cHrldGcbjolSaaZSg8dokA+DBIU9z9L7XDihsGsJLsGb/ImM063l4XbDgMwsUcWfObbfj3qXsjppWJksaMicyBv7i/DZO7PULWDiSVvnAN1pYEf+/i+/qKHvaZOrLvwOyb3zceg08BU32+u72VJuyvuRNJNOkY5nwBga95gTCrHc7SQk5nMzEy+/PJLduzYwdatW5Flmd69e9O1a9dIxBfX/NNMAFaXJ1BE76SSJJlZWS7zJ8drnJ9Xy/SjF5QJp9auO3c678FpyOR1tWNRybI9lTQ43LRNNTLAuxXqDoC5DYz5o9qhxYyy3LE8vSaXK1IKuUbtYGJEeZ0do1PChAGO6i2o1UhoNRKdctvQaWD7pifk9AFbFQwXO5iOlmLQoZHAK0Od3YVJHzvlWFq8r6pbt25069YtnLEkHJNeE/jDWx3u0yczef2UOf8OZ0YnQJWs2ldNAxbSuiZfddbWMKW34zvvmehdybtg2r8le2LPHDTbP1Ru7HE+6EVTRT+zXplqs4l2BgDsr7Iy5Z+LqLNPByAv3cT1Z3bg6mEdaJt6ktYxdy6JYoTxQ6ORSDPpqbW5qLO5yUlTO6ImQSUzDzzwQNAHnDFjRouDSTSSJJFi0FHvcNPgcHPayhddz1a+EtxK306UIR3FqEwo/BWlXR4Zl8eLXptc60NkWWbuZt+W7N65UHCH0sE4f6C6gcWYFJ2XdlRjtMbOp2bVNBxmzexPcdnb0bltNg9O6sGkPrlJ928nnG7QzWOsYT7G1dfBefepHU5AUMnMmjVrgjqYJCXvJ8aTSTEqyYw12B1NCa7e5uSPR/7Mbl0eQ3JE5d9QmLQyUzRLMUsObI4J6C3JNRqxrbye0hobRp2G0V3bgkErCpmdQMfKRaww3cvWij7AeWqHoyp585dctO1hcgy9KD/7U6b0z1c7pLjXXlvDUM12DlTuVDuUZoJKZubPnx/pOBKWxbejKajO2bKsrJfxOGNq/344bdm6iQnaNYxBiy5LjMyEwqiVeNHwTwAqGh4gPcmSmXm+UZnRXdsGmm4Kx/PvetMn8UJxv/p1X5AOLGYQd/bOVTuchOAxpIMdZHuN2qE0I8baIizQOTuYKsD7l8OT7eH1iRGOSj0VW38B4JCpC+hjaS187JN0BlyychG3W4+v9ZToAluye+fCdw/B6neUfmZCMzpfcUVjsiczthpSSpW1L46uk5s6qwut4jEofaqkeK8zI4Qm0Dk7mP5M/i2ACbybSSpdBYC13QCVI4lPdsmIHitOa3JdxCvq7azdXwPAOfk2+O7fIGmh5wXqBhaD9CblfcSQ5PWIPNvnoMXDDm97Rg5P7E0VUWXOAEDjjK12BmJkJsJSQ+mcneBbsz1emXb1SrG8tM7DVI4mPtklZTTLaU+uZOZH36jMgMIM2h6Yp9zYcWTCTse2hs7kL67oUDkSdVWu/AyARdphyhorISw0pkwA9M7YGh0WyUyEWUJpaXB0BWCvN4JRqWPrwWr6sAuA3F6ij1dLOCVlK6nblpgJ78n4p5gm9sqFrd8qN4pRmRMy+qaZTCRxMuOyk166AABntyli91IYaVMyAdC7RTKTVEJqNukfmUGGBCxFvmvLalIkB3bJhDanp9rhxCWnpCz6ddlj640kkuwuD4t3KlV/z+2kgxJl3RU9z1cxqthlSPGtmcEF3uTcRenYsxST18YhOYuhIyeoHU5C0VvaYJMNOImtXoxizUyEpfjWzDQGswBYZwYkwLerKZDcJIb9JXs4LGfgSO9CoUbsRmkJp9YEHvA4kqeJ4M87j2B3eWmfaaZ77WKQvZDXX6kxIxzHZEnnf+4x2DByjduFPgl3fs22dec5xwwGpdfxj45iKjKcpOzO9HK8xdiO7Xhb7WCOIkZmIswSysiMRpPQnbM/ONyFoY6XODD5TbVDiVvftbme3zvv5lBK8vQhmrdF2ZI9sVcOkphiOi2TOYU/um/nL+5fY/cmXyID8OWaUvbJeRSecb6ofxZm6SblmlZnj61GkyKZibBUX50ZazC7mQD6XAoDrgVdC7ctr3wTvr4P3LE1X15Wa6e0xoZGkujbuVDtcOLWrowRfO0dSaW2ndqhRIXXKwdaGJzdM0epwSRpRCfjUzDqNPiv38nY0qC60cnC7cq05CWDClSOJvGkm5UG03W22EpmxDRThPkXAAdVNA/g4hdafjJZhm/uU77P6Q3Df9fyY4XZqr1VgEyv/IzT96gSTsq/1T9ZLlIbSmupqHeQYtAyvEs29PgMGivFLqZTkCSJLL0LnFbsNjukJVc9p/2f/ZkXtSv5IfsKusZS86AEkWbS8YzuFbo1VEDFWzHTrV6MzERYU9G8KFx8HEctCt3yVeTPF4KDW35mufEunuAltUOJa508+zhPs5yU6q1qhxIVP/immMb2aIdR55sySckGMXVwSt9oHmSV6Q7ksg1qhxJdsky7vV9xrnYl53QUl7dISDfp6a/ZzUB5KzSUqx1OgPhrR1hT0bwgR2ZkGZzWlk0TmdL5atz3ymH2LobaA6EfI0K8+1eRI9VQoE+eXTiRMLT6G14xzKRrxSy1Q4mKuf4ppu7Z0HhE5Wjih8O3hd9pT64t/GW71pLvOYhD1tN/7OVqh5OQ0s16alHWdroaq1WOpolIZiIspHYGAO9fCdPyYcMnIZ9LlmUem1/PL57eSMiw7qOQjxEJNqeHdnUbATB3GqpyNHFOr1R31bgSfzfTgWorWw7VoZHg7JRd8Gw3+PgGtcOKC05fcUV3kiUz+37+LwCbTIPIbScK5UVCmlFHvay8D9kbRDKTNJp2MwU5zdSKlgYHD1fS4HDziWcMAPLaD5SRHpWtLqmmn7QbgPTOw1WOJs7plU9EUgLWITrWj1uVUZkhHbNI3ztb2ZJtSlc5qvjg1CjJjCfJeldllswBwNNd1CCKFI1GwqpVahk566tUjqaJSGYizL+bKag6M3BUFeDQ34TSP7yQFcY7OEwGjbIRT2Ml1JSEfJxw+2rZVrpIB5Uf2p+hbjBxTjIoRfO0SZDMzPV1yZ7Ys52o+hsidyCZSfwRPL8dO7bSw7MTryzRY+yv1A4noTm0ysJql7VG3UCOIpKZCAu0Mwh2zUxL+zN5PZhrd9JOqmWvnMfVzj/zYOHH0KZjaMcJsyMNDg5vWYxGknGmtofUHFXjiXcao/L60HkSO5mpt7tYursSgPNzDkPdAWVUqvM4dQOLE25t8iUzuxf/T/mvuQ/pbdurHE1ic+qVZMYjkpnk4W9n4PLION1B9Fs6uj9TKKr2oPM6sckG+vftzwa5M99sqeJgjboXvf+u3M+1krJY1dBjkqqxJAKNL9nVeRO7I/KiHUdweWSK26ZQVPajcmPXiaA3qxtYnPD4khmvMzmSGa9X5qdSWOHtjqubqEEUaR59OjbZgMsd5If0KBDJTISlHFVKPKT+TKFOMx3eAsAOuT0XDizkzM5ZeLwy7y/dC1Z15jU9XpkPlu5jrncIdSnFMPL3qsSRSPwdkfUJPjLjr/p7dq8cMcXUAvtSB/KpZzRHjMnR8mHF3irebziD30hPUHzhQ2qHk/AWZl9FL8dbLOnxmNqhBIhkJsJ0Wg1GnfJrDmrdTAtHZrzlmwHYLhfRPTeNm0d2Ypi0hauXXoznvzeHdKxwWbi9ggM1dmYZJmG4dyVkd1EljkTizunHI67f8rY+cdcEuD1e5vsW/04ptEPFJpC00F2M7AVrTc6lPOi6k+0ZI9UOJSq+WKusyTuvbx4mgyjKGWnpFl8V4BhqaSD+6lGQYtThcDuD29HUtqvyCTTEhbLWAxtIBXZRxKVZForamHk1rT1FznLkvRXKQuAoN+Z795d9APxqSKF4gwkTbZuOfOSZQJ43cau6ri6podrqIsOsp2/XYrjoBajZB+Y2aocWN8z65KkU7XR7qVg/j0zyuWSQWCsTDekmJZmpF8lMckkxaqlqDHJkpuvZyleI5AqlImxjRne0GgmQOGfkMJb80JuR2s3I6z5CGhu94df9VVZ67XqdPG0q1w35U9TOm+jMvmnLoOsWxSF/1d8JPXPQpbSBM0RtmVCZ9RJGnLhtib81e9Hm/fxTfhKjyYWUvgwQ9WUirVA6zOv6ZyjYnAbnfq12OICYZoqKlFB3NLXAzrSh/OLpjTavT+C2q4cW8QXjAHCsfC+qNWc+X7yWe7Sf8aT+DTpZN0btvInOonFxlmY9I9zL1Q4lYuYe1SVbaJkzK/7LNtPNTNn7pNqhRNz2pd+QIjmw6tuibddN7XCSQppB4mztGjrXr1A7lABVk5mXX36Z/v37k56eTnp6OiNGjOD7778P3C/LMlOnTqWgoACz2cy4cePYtGmTihG3TEqohfNkOeR2Bv9J/R3XuP5EblHnwG1tUgzo+11Mg2zCVL8PSn4J6ZgtZXd5SFnzGibJRW1Wf+h0VlTOmwwsnnreNTzFS9rncLkTbwph9+EGdh9uRK+VmKBdC7+8GBO1kuKOr/imJsEXitfbXbQ9MBcAZ7fzRc+uKDGmKY1eTV4beGJjlFjVZKawsJCnnnqKlStXsnLlSiZMmMDFF18cSFimT5/OjBkzeOGFF1ixYgV5eXmcc8451NfHV38ff3+moEZmDq2Hv2XD8wNDOsf2MuV30j03tdnt147uxbeeMwGwLX8npGO21Nw1O7jSq2zHTp34R/EGE0Ymi1LfQSvJ2OyJd6H6wdeLaXhxNpZ1b8Psx2DdxypHFX80vmRG50nsLfyzNx5kvLQKgOzBl6ocTfIwpx61fs1Rp14gR1E1mbnwwgs5//zz6d69O927d+f//u//SE1NZenSpciyzMyZM3n88ce57LLL6Nu3L2+//TZWq5UPPvhAzbBDFlJ/Jr0FZE9Iu5lc1QcoP3IYgO65zVve9ynIYFOOsqVVu+XLFrVJCFXVwn+TLlmpNndE20tspw0nozkl8L29Mb6S+mD4t2Sf1y0Fds1XbhSvoZBpfcmMNsGTmS3L59JWqsOuS0fqNErtcJJGWoqJBtm3CcEWG/2ZYmbNjMfj4aOPPqKxsZERI0awZ88eysrKmDSpaTum0Whk7NixLFmy5KTHcTgc1NXVNftSm78KcEMw00xH15kJco2L46sHWKv/DTcaFtA+8/iiYsPHTuFV9xTukh7BIRmCjrslNpeUM7nhMwC0Y+4HTcy8xBKCpDPgkpWRPoc1sZKZ6kYnK/cpb4znmTaDxwFZnaFdT5Ujiz9aX6VogzfxRu/8Kurt5B/8AQB3l0mg1ascUfJIN+mpw9dH0F6rbjA+ql9pNmzYQGpqKkajkdtvv53PP/+c3r17U1ZWBkBubm6zx+fm5gbuO5Enn3ySjIyMwFdRUVFE4w+Gvz9TUCMz/mRG9gS9bkby7WSS23RCOsGUzqS+efzHcgtzG7vy7Yby4IJuoa2zXyNHqqFa1470oddF9FzJyubriOywJVZH5AXbK/B4ZXrmpQXWQdBzipimbAGtv7iiN7S1d/Hkm3WHmKhRpphSB1yscjTJJd2kp072XatEMqPo0aMHa9euZenSpdxxxx3cdNNNbN68OXD/sRdnWZZPeMH2e/TRR6mtrQ187d+/P2KxByukztmGpmmEoKaEnFYsjcoCSX1+7xM+RK/VcMMIpUfTW0v2IkdoV1Od3cXHJRnM9wygduBtoIvsKFCyckhGAJwJtu12nm+9zDk9smD7bOVGUfW3RfS+ZMYgJ+4005drS/mV868s6fUn6DJB7XCSSrpZRx0WbLIBd4y0zFC9zozBYKBr164ADBkyhBUrVvD888/z8MMPA1BWVkZ+fn7g8RUVFceN1hzNaDRiNBojG3SIUo0hbM3WaEFnBrdNmWpKyT71449sR0KmUk6joODkRfGuHlrENz8s4NKytzkwaxlFkx8M5X8hKJ+tOsAyV2eqcv7OnPPFDqZIcUgmkMFtT5xkxuH2sHCbsu7r4jZ7wFELKe2gcKjKkcUnbWo7ZnmGYje04RK1g4mAPUcaWXegFq2mDd3OvwJi7D0/0aUadVzj/BMetKzucA5ZagdEDIzMHEuWZRwOB8XFxeTl5TF37tzAfU6nk4ULFzJyZHyV6A7sZgq20FkonbMrlJ5M271FdM9LP+nDslONXN+xml/rZmNe/Rp4g2h6GQJZlnlvmTJCdMOIjkhirUzEfJJyDY+5bqHaWKB2KGGzbHcVDQ437dKMdNaUg9YIPSYryb0QMl1WB2533c/f+J3aoUTEl2tLARjVtS3t0kQiE206rQazL4Gss8VGFWBVR2Yee+wxJk+eTFFREfX19Xz00UcsWLCAWbNmIUkS9913H9OmTaNbt25069aNadOmYbFYuPbaa9UMO2QhF83rOlFJZHSn/0fqLtuEDtgmFzI5L+2Ujx1wzg3Uv/kcbV2HqN66kDa9xwcXTxA2//w1V1Z9xAeGC7hUlBSPqOXpk1hyuJLhusSpdHp0Y0nNsLNhwFVR2XmXqALtDJyJV4tIlmWWrl7Le/qZpGRcBgxTO6SklG7S0eBwx0x/JlWTmfLycm644QYOHTpERkYG/fv3Z9asWZxzzjkAPPTQQ9hsNu68806qq6sZPnw4c+bMIS3t1BftWBMomhfsG8tlrwZ9bFvpJtKAEl1Hck7zCaVvpzzmWsZyjm0WpQveCGsyo//5OW7TraVP2xTSTPGVbMabRLtQybLMvM1KMnNOb98UsjFN+RJaxKTXAjJulwOvx4tGmzgjpesP1NKzdhGj9Zvw1GQAf1A7pKQ0WbucEfrZpK7eBIXqdypXNZl54403Tnm/JElMnTqVqVOnRiegCLEYQyiaF6Id7c5m2x6ZutyBp1wY7WceegP8NIvOFXNxWuswWE4+NRWsqq2L6W5bi0vWkjMp/GtxhOY6UspIzTY0tRlAdJuHRsKmg3UcrLVj1msZWZS4DTSjyazXsMN4I3rJg61uG+Y2eWqHFDZfrj3IJM1KALS9xQJxtXTQVnK2dg2lhwvVDgWIwTUziaipaF4In6RlOah1LfMME3nUfSuGwgFBHXb4mMnsJw8LdjbOezf4eE6heu4zACwyT6B7d1ETJNIuqH6PDwzTKDg0T+1QwsI/xXRWt7aY3poEr4yG8s2neZZwKmaDDje+ekQJtOvN45VZtG4bwzRKOQp6nK9uQEnMa/B9EBZbs5OHfwFwQ7AjM5/9Dv7eFla9edqHbi9X3qh65AY3JK/XadnfUSn7rd/wUXDxnIK7bDNdKhfglSW8I+9p9fGE0/PqfIURXbGxJbK1/MnMJR1scHirsqg9PXEWN6tBq5GwoUw7O2yJU1xx5d4q+lmXopO8eHP6QFax2iElLdmUCYDWqX5hWhDJTFQERmaCnmaSwOs+/QLIyl14Dq3HiJNux/RkOpUek26lTM5isa0j60qqgn7eiZR/Px2ABdJQzhopyolHg6xXKm9KMVLfoTUO1drYWFqHJMFYz1Llxk5ngTlT1bgSgd1fj8iaOAupv1l/iPO0SqdmjWhzoSqNOQMAnUhmkoe/nUGj04PXG0TBuiC3ZruW/ps37ffzR93HQY/MAGS378L0Xp/ytPsa3v6lFR2Ja/aTu+8rAA70uQ2jTmyjjYZAMuOO/1L1/kJ5g4sySdn6iXJjb1HNNRycvpEZlyMxkhm3x8uSDdsYp1mr3CBeJ6rSWjIB0LtjY+RPJDNR4B+ZAbC5QuzPdAr20o0AlOo7kZ0aWq2Fm0Z1BuDr9Qc5XN+ykuf7at286z6bHzyDGD9RzF1Hi+RLZjTu+B+ZmevbxXRNUaUyxaQzQd/LVI4qMTg1ymLqRCmuuHxPFR5rNcuk/ngLBkNuH7VDSmr6FKVztskdG68vkcxEgUmvQePbaBTUjiaDb8roNCMz+kplEZwrO/RFtwOKMjmjMI2R8lrmzP8x5OcDvLPBxv9z38T7nadTlGVp0TGEFvB3RI7zZKbe7uKXXUcAmOjwLWbudSGYMlSMKnE4AslMYozMfL3+EHvlfL7t9080t8xWO5ykZ0xt4/vOC57w79QNlUhmokCSpKbCecHsaApmmqmxEpOjEgBzwYl7Mp3O9IxPeNvwNBlrXsHlCa0isM3p4X8rlb5XN4zo1KLzCy2j8b0+tJ747ruzaMcRXB6Z7tl6MnZ+qdw4UNQoCpftht7M9QymQdfm9A+OcS6Pl1kbDwFwQf8C0SE7BpjSsuluf5vrc78AreqdkUQyEy0h1ZoJJpk5rLQx2O9tR6f2J+9VdSodR18DwHjvL7w5f2Pw002OBg6/dR1dHZspbGNmTPd2LTq/0DLWnIH8n+ta5hjPVTuUVvEXyhvfOx/pkpdh0PVQPFblqBLHZ1m/5VbXgxzKPEPtUFrtl12V9LGvpo+lljM7x0InICHdYsCJnjqb+qMyEAONJpOFUgXYEVwyk1kExWMg9xQjLr6eTNvkQrqHsPj3aPpOZ1Jl6kCWvYSMBX/m1fkFZJj1VLUfT36XAQwoyqS/+QimXbOaP7F8Ix0Ofs+z+jXMHvYNWs3pi/UJ4eNp15vXPBfQW5POI2oH00Juj5cftymLfyf2bg/F/aCnWHcVTolUKfq7dSXM1L9IlrceTWkX6DBc7ZCSXppJSR9EO4Mk0zTNFEQy0/Vs5esUnIc2YgC2y0Vcl9PCsu+SRMrwG2HhE1ylW6Dc5oZ7dqTyn20GACZrV/KyfsYJn/6G9yIeGBr/FWjjjf8iZQ9mMXmMWrmvmhqrizYWPWd0yFQ7nIRkCiQzsfHJuaWcbi/WTbNoK9XhNLXF0H6w2iEJQLpJzx91H9HHfgBK20B7dUcARTITJSmBaabwXIB2F1zIF8vt7DL3405Ly+ePjSPvAEcV2KpxebxUW52MzRiCoy6Xtftr2F+fxaees4573kE5G3vfq0LeRSW0XorGxQBpJ23temCc2uG0iH+K6ZHcFegWLlemmNp0UjeoBHNZ1es8Z/yYTduvh9HPqx1Oi/288wjne+aDFnSDromJ9RkCpJv1DNVsY5i0DU/VPrQimUkOIXfOPo01cnde8VzEWfmt7JxsTIXzngRAD+QAl/u+AMpqR7N2/xWs3V/L2v3VbDhQS6PTg0aCz0Z1bd25hRZJt+7jS+NfOOLOAO5UO5yQybLM3C3lgMyUhk/hp12QUQSDO6kdWkLRarUYJTe44rse0Y+rN/MXzWoANGKBeMxIM+molZX1nY6GKtTezyqSmSgJqXN25S54fSJojfCHbSd8yPZypVBRS9fLBCsvw8R5Gfmc1zcfUHqj7KxoQJIif27hxAwW5fdukltWH0htOysa2FdpZYhuD6n1u0Bnhj6Xqh1W4tErbS+kOE5mHG4PKds+Ry95aMzuT8qp1hEKUaXXarBq/MlMjUhmkkVKKLuZtAawVSvJzIlU7iJzz3d0kLLpkds/jFEGEZpGokeeSGLUZDIrdYjMOHC7PejirPLyXF8vpjsyl0ED0PsiMLW+e7vQnJwAxRV/2n6EC+X5IIF52A1qhyMcw6FNAy+4GqvVDkVszY6WkBYA+7dmexzgOcFK8e2zuLfqCR7RfUh3kVgkHZNvZEYryVjt8Xehmre5HCNORtsXKDeIqYOIkHzFFTVxXI9o0ap1FEtluCU9mn5XqB2OcAynXnkv8lhr1A0EkcxEjSXQbDKYonlHNY08Qa0Zx0GljcF2uZBuOcE3mBQSg9HS9Dd3NMZGX5RgHa53sGZ/DedoVmF010N6IXQao3ZYCUnjG5nReeJzmsnu8vDpDi9DHS+x+9y3wSLqy8Qat14ZUZXtNeoGgkhmoiY1lGkmnQE0vh1KJ0hmXIc2AVBp6RxYiyMkD0mrxykrf3e7NTb6ogRr/tYKZBl+nbJEuWHgNaARb0ORoPG3vYjTkZkF2ypodHrIzMyi23BRgygWeY1KMuONgWam4l0kSiyhTDOBsssIjk9mvF6M1duVb9v2Cld4QpyxS8p6KoctvpKZOZuVXUz6tp3BmAEDrlE7pITlTctjiac3u3Rd1A6lReas3Q3ITOmfjySJwpyxaGPb8+huf5tZfZ9TOxSxADha/J2zg64zY0hVFgEf2zm7dj96jw2HrCOjfegNJoXE8K7+CuqtDiZr42fhrM3pYfHOw4CE7sIZkGMEnahTFCmO3MH81vUnBlgymax2MCGyOt2cv+Mv3Goox9DuOUB8cItFKWaL0tLArn5hRpHMRInF4JtmCnZkpnCIUkTs2Dd7XxuD3XI+XfMzwxegEFe+slzBtvp6Rmsy1Q4laD/vPILd5aV9pple+WkgPm1HlNn3nmOPw3YGi9duYTxr0Gs8yB2K1A5HOIl0s6+lgU39lgYimYmSQJ2ZYIvmXfnWCW+WKzYjobQxEHVekpfJd6GyxVFLg3lbyukkHeK6DqmINCbyAu0M4ug14le77H30koeDKb0pELVlYlY7bSMz9C/RZYcW+ErVWEQyEyUpoU4znURll0v40/e1VJPO22InU9LqIB3GK+3HXd8RaFnX9GjyemXmbangfu13XLf9B5i7ESY9oXZYCS3NWcFq4+/QWgFK1Q4naA12F/2PfAsSMOg6tcMRTiHNZOAy7WKoRykjom15a53WEguAoyQl1Gmmk9hmTWeWdxgVWYMDn7yE5HNb3T/52vgn2pQuUDuUoKw9UEN9Qz0Xan9Rbuh6jroBJQGjyUyW1EAGDeCNn9GZlUsX0EMqwYmO/JEimYll5tTMph/sdarFASKZiZqUUOrMAHz/CEzvAstfa3bztjKlroioL5Pc3Dpl263XGR9F8+ZtLmeSZiXpklXpw9Tp+OalQngZzUe9R8RRSwP36vcB2JM9DsnSRuVohFNJSzFRLyttM1C51oxIZqLEXwHY6fHidHtP/wS3DaxHwFbTdFvdQfI3vsJZmvWipUCS82pNAMgnqEMUi+ZtKecK7U/KDwNEbZloMJtTAt+7YqAOSDDqGhsZXDsPgJThN6ocjXA6aSY9df6uTCKZSQ4WY9OUkDWolgb+OjNHbc0+sJLJZa/wB91/6SYW/yY1r29khjgYmdlX2UhteQmjNRuUGwaK2jLRYDLqsMkGIH6KK87dcoQHXLfznf4c2g8WhfJiXbpJR53sT2ZqVY1FJDNRotdqMOiUX3e1NYhtbP7+TEd98pYrNgOw3VtID5HMJDWvryMy7tifPpi7uZzLtYvQSjJ0HAVZndUOKSkYtBqsKKUdnHFSXPGbDeXM9w5i+/BpSCouJhWCk27WU4dyrfLaRDKTNPq3zwDg4xX7T//gEyQz9lKlJ9NOiihum3KiZwnJwtd3R3LF/sjMvC3ljNQor13RVDJ6JEnCEUhmYn+aqdbqYtGOIwBc0D9f5WiEYKQdNTJjb1C3c7ZIZqLo9rFKWfF3f9lLjdV56gcHkpmmT1TecmVkpi69a2CUR0hSvmRG647tZKbG6mTF3mpucD1K+cUfQ++L1Q4pqWzWdGWZtyd2OfZ3Pm6b9TIPaD5kfLsGuuaIked4YNRpeYTf093+NpXdr1Y1FnFFjKKJvXLomZdGo9PDW0v2nvrB+mOSGbcDc/0+ADQ5fSIXpBAXqtuewb/cl7DKfKbaoZzSgm2H8XhluudmkDvoPDCKi1Q0TTU9zFXOv1CT1l3tUE5Nlsnf8gZ36r7ixtzdakcjhEBrSve1NFC3CrBIZqJIkiTuGt8VgDd/3kvDqaoBp+VC/oCm9QWVO9HIbupkMznti6MQrRDLGnKH85z7V/yiH6F2KKf0w6ZSdLg5u3eO2qEkJbO/CnCMtzSo3b2SItdeHLKezuPELqZ4km5W1jbV2dTtzySSmSg7v18+ndumUGtz8d7SfSd/YJcJcNtPMMXXjdTXk2m7XER3sS076fl7fcXyRcrh9mDe8TW/GO/mWvcXaoeTlMxx0vai7Kc3AFhqHEHHwvYqRyOEIt3k688kRmaSi1Yjccc4Ze3M64v2YA/yTcbb4wIu8TzNE67rRTIjYNE46SwdJMt+ioRYZct2V3GBdz7tpDoKzEHUVhLC7vfWF1lpvJ22Oz5WO5STczsoKPkGgPqev1I5GCFUaSb/yIxIZpLOJYPa0z7TzJEGR3A7m4AD9V7WuorYrOlOxyxLhCMUYl1OzTp+NP6Bh+ufVDuUk1qxbh2jfbuYJFFbRhUpOGgr1SGrXGr+VGrXfU2aXM8hOYsBYy5ROxwhRP5ppnq7mGZKOnqthtt9ozOvLNx14orAdQfh+QHwj34AbCtX2hh0yUlFpxV/tmRnMClFFY1eu8qRnJgsy6Ru/RSNJFPdbhhkiXVeavDolErRsVxcsX7p2wAstpxNUVsx6hxvxDRTkrtycCE5aUYO1dr5fM2B4x+gNUD1XqgtAUc9BT89xK+139Mjxxz1WIXYo/eVqjcRm8nMst2VTHL9AEDKmTepHE3ykrXK+4Ucq/WIZJkNjZnUyhbk/mL0Lh6lm/UYdRo8XlnVOEQyoxKTXsutZyk7lV5esAu355jRGcNRRfEOrqFP2RfcpfuSbnmZ0QtSiFkGSzoAJtmhciQntn7+fynWlOPQmDH0vUTtcJKWx18p2hmblaLL6x3cWX01QxyvMGpEbO/ME07sj5N6sO2JyTw4qYeqcYhkRkXXDu9AG4uevZVWvt1wqPmdOhNIvj/PgZWA0sagu2hjIAAm38iMBQdud2ztVKmxOhm4/x0AavvcAEbR4V01vh5eUoy2vfh55xFkGXoXZtM+U4w6xyONRlI7BEAkM6pKMer4zShlLcGL83fiPXqYTpICzSa9+1cAsF0WPZkEhSlFeR1oJBmbPbamED5fU8ofnbfyreE82p1zv9rhJDffyIwmRpOZ/TvWIeFlSKcstUMR4pxIZlR248hOpBl1bC9vYO6W8uZ3+qaa/MnMHk0HCtuITy8CGM1Nox32xnoVI2lOlmU+XF7CPjmPyvFPI6UXqB1SUnNactno7USltp3aoRyv8Qj3brmWVcbbGZxvVDsaIc6JZEZlGWY9N47sCMALP+5Elo8anfElMzrbYQDsbXrEzJCeoC5Jq+cteQovui/C6omdf8ar91WxvbwBk17DxQNF8TO1HWg/mQuc0/g8+1a1QzmOc88SACrkNvQrFo0lhdaJnXfBJPabUcWY9Vo2lNbyk69rLADtekKbToEf9fm9ox+cELNe0P+aZ9xXY5Vip+6Q/PkdvKD/Jzd1d5Phqz8hqCfQziAGKwBXb1kIwEZtLzHiLLSaSGZiQHaqkWuGdQDgxR93Nt1x9ftwxX8AOCRn0aFAfHoRmvhL1VtjpKVBfdlOBtbM5QLtUi7ula52OAJgNihv8cFWGo8mzf6lAFRlD0aSxIiz0DoimYkRvxvTGYNWw/K9VSzbXdl0R/vBXJT2Edc7HxU7mYRm8rX1dJIO4WiMjequpd89g07yslI7kF6Dx6gdjgDkNmxhoeE+HiuLsYXYzkay6pR+c/rikSoHIyQCkczEiLwME1cMKQTghflNozNOt5fNlTK75PYimRGaeco2lQXGBzEdWq52KNBQQXHJZwCU979TfNKOEQadlo6aCrI9FWqH0lzpKrR4OChn0aVrT7WjERKASGZiyB1ju6DVSCzacYR1+2tg/pPwz0FcJ80izagjP8OkdohCDHFqlHUGbnuDypFAxdznMeJknbcLIyZeonY4go/eqGwiMMqxVSnatvNnAFZ6ezCgqI3K0QiJQCQzMaQoy8LFA5StrC/M3wn2Ggx1e/l/+rc5o51HfNoVmnFrlORWdjaqG4i9jrQNbwGwovBmslLFNttYYfC3vYixStGbUobyT/clLE8ZT4ZFLBQXWk8kMzHmzvFdkCSYu7mcmrqmtRAd87JVjEqIRW5fdVePQ92ieY7lb2L2NrDTW0DvCVerGovQnL8ekREneE/Q0FYlixo7MMP9K6zF56odipAgdGoHIDTXNSeNyX3z+G5DGYf27SDTd3unvBw1wxJikMffRFDlkZlv9JPY4tqGK7U9U7vEYHG2JGY4qrgiblvznm8qWnegBoCBHTJVjUNIHGJkJgbdOa4rAL/UtQ3c1iNPLP4VmvPqfLU5VO6I/O7qKl73TCFvxNViKjTGmCxNyYtX5RE8P7lkKeklP5BOAwMKM9UOR0gQYmQmBvVtn8GEnjnM3HopdvR84RnFe7miWZ/QnOzruyOplcx4vWwpq2ft/hp0GokrBheqE4dwUhajni3eImQ0dHI5iIXyitafXuCf8tfM0F9Fr/wr1Q5HSBAimYlRd43vyuVbK5juvpo2Fj3txKJK4RgVmYN560AVGmMfVKnUsflzMr99krM1F6HvPYV2aeI1GmtMOi2TnU8DsMrQTv1kRpbRHFgGQGX2GRh0YnJACA/xSopRgzu2YURnZdFvt9w0MXwvHOdgwUSmum9mjUWFVEaW8S76B/m2HfSR9nK1r4K1EFs0GgmjL2GIiZYG1Xsx2ytwylrMnYapHY2QQEQyE8Men9KLzu1SuHpokdqhCDHIbFAGVq1Od/RPvusHNOUbaJSNzEm9iLO6tj39cwRV+NtexERLgxKlhcEGuTP9OuWqHIyQSMQ0Uwzr2z6DHx8cp3YYQoxK0XpoSy06mzb6J188E4APPRM4f1gf0c09hk3neboadsLemZAzWdVYPPt+QQus8PZgclGmqrEIiUWMzAhCnCo+/AMrTXdwx5Fp0T3x/hWwdxFOWct/POdz5RAxchjL8qiis6YMj7VK7VBw7VEq/27V96ZDluoreIQEomoy8+STTzJ06FDS0tLIycnhkksuYdu2bc0eI8syU6dOpaCgALPZzLhx49i0aZNKEQtC7NAalR1ueo8tuif+eSYAX3hG07tnL/JEm42Y5tIoC7PdDpUrRVurMNUofefc7YeJdYBCWKmazCxcuJC77rqLpUuXMnfuXNxuN5MmTaKxsekf3fTp05kxYwYvvPACK1asIC8vj3POOYf6+noVIxcE9elNSg0RfTRL1R/ZCVu/wYvEvz0XcPVQsfA31rm1SrKpep0Zcxue7Pwudzt/T5eOHdWNRUg4qq6ZmTVrVrOf33zzTXJycli1ahVjxoxBlmVmzpzJ448/zmWXXQbA22+/TW5uLh988AG33XabGmELQkzwJzNGbxSbCGZ1ZtmZL7F08Twa07owroeo+Bvr/D28vGqPzEgScyvS2e0dwZui8q8QZjG1Zqa2thaArKwsAPbs2UNZWRmTJk0KPMZoNDJ27FiWLFlywmM4HA7q6uqafQlCIvKXqjcRxWRGo+H5/V34h/sKfjWkEJ02pt5ChBPw9/CSVa4UXWt1sfuIklANFJV/hTCLmXciWZZ54IEHGD16NH379gWgrKwMgNzc5lv4cnNzA/cd68knnyQjIyPwVVQkFicKiUlvVlpcmOQoJTNeD/sqG1myqxJJgl+JkgFxwavzd1dXMZlx2XB8fDM3aWfTOctImxSDerEICSlmkpm7776b9evX8+GHHx5337ELxWRZPunisUcffZTa2trA1/79+yMSryCozWRRkhkzTtzuCNcQaayE5wdS8vlUdLg5q1s7CtuI3SjxwGbIZp83B6uk4t+rdBU5+77hDt1X9CvKUi8OIWHFRJ2Z3//+93z11Vf89NNPFBY29XfJy8sDlBGa/Pz8wO0VFRXHjdb4GY1GjEZRVl1IfOa0TD71nIVVNnKJ00mav/FkuMkyzPsr1JaQXfsDbsZy7TAxKhMvlhXcxJ37xvH7/K6MUCuIkl8AWOntwcAObdSKQkhgqo7MyLLM3XffzWeffcaPP/5IcXFxs/uLi4vJy8tj7ty5gducTicLFy5k5EhVutEIQswwmlP5g/sO/uz+DTZ3BLe5/vA3WPMuMhJPO6+gbaqJib1E9dZ4YfJVALY61asALPsq/67w9mCAKJYnRICqycxdd93Fe++9xwcffEBaWhplZWWUlZVhsyl1MyRJ4r777mPatGl8/vnnbNy4kZtvvhmLxcK1116rZuiCoDpJkjDrlQtVxPruLP4HLJ4BwFtt7mGhdwBXDC5ELxb+xo2Iv0ZOx+tBLlGaS66lB73z09WJQ0hoqk4zvfzyywCMGzeu2e1vvvkmN998MwAPPfQQNpuNO++8k+rqaoYPH86cOXNIS0uLcrSCEHva6N2YnPVYbXYgJbwHX/EGzJsKQM2oP/G3H3sDiF5hcaZb3TK+NjxL494+wAfRD6B8ExpnPfWyGU1eX0x6FdpvCAlP1WRGluXTPkaSJKZOncrUqVMjH5AgxJnPvPeQa6pkS/nXUDgmfAeu2ALfPgiAPPpBnqo9F1nez8gu2XRqG+akSYioFMlBP81edjpU+gDom2Ja4+1Kvw7Z6sQgJLyYWAAsCELLOCUTyOC2N4T3wDm9YPLTULmTV7TX8tEKpc3IbWO7hPc8QsRpjEryqfNGue2FX/0hPGhY4e3BQLFeRogQkcwIQhxzakzgBVe4kxmA4bfx6aoDPP2/dQD8+YLejO0uKv7GG51J2ZKt90SxuOJRXOP/zLAF/fF4nHwhkhkhQsQqPkGIYy5fqXq3PQyl6g+shHcuBl935QXbKnj40/UA/G5MZ24ZXXyqZwsxSucbmTFEs4fXUbaV1VPtNoApk07ZYopSiAyRzAhCHHNplNoysrOVyUz5Znjvcti9AOb/H+sP1HDn+6txe2UuGVjAI+f1bH2wgir0gWRGhZEZWWbN/hoABhRlotGITtlCZIhkRhDimNtXKM/TmiaClbvg3UvAXgPth1ByxsP85q0VWJ0eRndty/QrBoiLUBzTW3w9vNQYmfnuj4xd8CvO1qxikJhiEiJIJDOCEMe8Wt/ITEubCNaWwjuXQEM55PSh8pL3ueG9TRxpcNI7P52Xrz8Dg068TcQzgymNI3I6lWSA1xvdk+9dRAf7VjR4RbE8IaLEAmBBiGOl6QPYV2UFfYfQn9x4RBmRqS2BrM5Yr/ofv/5wJ/sqrRS2MfPWb4aSZtKHPWYhugzp7RjieIVUo46NmigmptYqOLwVUNoYPCmSGSGCxEcuQYhjmwou5wHXnWxKbUHXnc9vhyPbIb0Q13Wfc8eXpaw/UEsbi553fjOMnDRT+AMWos5saKoAHExtr7DZr1T93eXNJyUrl+xU0TNPiByRzAhCHGtVqfrznoL8gcg3fM4jP9SycPthTHoN/7l5KJ3bpYY5UkEt/oq7Hq+MyxPFZMbXXHK5tycDCjOjd14hKYlpJkGIYxa9BiNOPC2pM9O2K/xuAc/O2canqw+g1Ui8eO0ZDBJdjROKWa/lVf1z5EjVOCq6YSjoHp0T+yr/rhTF8oQoECMzghDHBpb9j22mm/9/e3ceXVV5r3H8u3MykwkCCYQhCWIgECSBKDeAYguipIgpiMpVBpFe6EJIRKhUsIoVUFssiEIblNBiKXZpaaUiC0QZRAmYEFDgitHLIEQDJZAJMpyz7x+BtBGBJITs7Jzns1b+2O/ZZ+9f2FmcZ73nHRj1zfO1e0PBEfgmq/pw1c4jvPrhVwDMS4nTbtjNkJfDIM7jMPEeX1NefLpxblpxDvN4NgC7TYUZuf4UZkRszMO7anVXT2ctlqo3TXh3Orw2CHa/xobP8/jVO/sBeGxwDA/cUo9BxNLkGYbBearGq5Sfa4DFFWvjfCHnbhjKZ64oThjhxLUPbpz7ittSmBGxMUf1vju1WBBt/1rIfR8cXuzz6sW0NTmYJoy+pRPTBnW5zpWKlcqMqsHcFeeuw7YXPyQwnA97vsjd5fPp1i5IO2XLdacwI2JjF8OM19V6Zs6dgQ2zADjdeyoP/f005ZUuBseG8+t7emAYWhSvOSv3qOqZqbiWxRXrKOdYAYAG/0qjUJgRsTFP31ouVb95LhR/h7NVFx44kETh+UoSOoWwZHQCng79N9DcXdzD65pWiq4tlwtOfcneo2cANF5GGoX+FxOxMW+/qinU3q4rLFV/bBd8ugKA+Y5JHPpXOe1D/Egfk1i9Bok0b5XVYaaeK0XXRf4BeCWR3347HjBJ6BRy/e8pbk9hRsTGvHwv7LvDZXpmnBWwLhWArJbJvH6sPf7eDl4bl0ibQC1i5i7OOQIpMAMob4x1Zi6sL3PYFUagjxedW2vNIrn+FGZEbMwrqA0bnX34wJXwwycYDug7mbP+nXgk7x4MAxY/kEBsu6DGLVQs9aewmSSUpfNFh5HX/2b/sb7MTR2DtUmpNAotmidiY74t2/M/FY8DMMJl4vj+B4eHB9sCk3nkTCgVGMy6qxt3dNdaMu7m4teJ5+uzUnRdXQgzu82u9NZ4GWkk6pkRsTG//5jyWlpe+e8XTBPKS8nNL2bK6mwqXAYje3dg0m2dLahSrHZxavS58uscZs4cg8JvcOJBjusGzWSSRqMwI2Jjvl4eGAZ4Usm58op/v/D527iWJPLa60spOl9JYmRL5o+I0xRsN3VL8RZWez1H3NevXd8bXeiV+dwVxTl8idfgX2kkCjMiNmYYBvu8HyHXdyzl/zpW1XiuAHPDLDyKjtO6+BAdWvrxhzF98PHUzCV31cr1L/o5DhBSnHt9b3Rh8O9uV1fah/hp53VpNBozI2JzTqMqpJRdWN3V3PQMRslJvnS15w3HPbw57mZCAzRzyZ0ZF7a98KisxUrR1yJuJNnfVbIptxO9OmoLA2k86pkRsbky48LqrueL4ehOjOyVAMypnMDC0bfQtW2ghdVJk3AxzNRmD6+6OHsc1qVB4Ymq46j+/MF7LJlmrBbLk0alnhkRmys3fMGEypIzlGx5lhbAmsrbGXzXCO2CLQB4eNVhQ9LaKD0NH70EmengLAPTBcNfBiDn2BkA4ju2bJh7idSCwoyIzV3cRDD005doUZjLKTOIg3EzeObWaIsrk6bCcWHbC0/nNX7NVF4CO5fCjpehrLCqLbI/JDwEQN7Zc3xXWIbDwyCuvdYyksajMCNic5UOX3BC0JmDYMDqlpOZfW9/zVySag7vCxuS1mZ39cvJ/hNs/jWU5Fcdh/eEwU9Dl8Fw4W9t74VemZjwQPy99fEijUd/bSI2V+HhB8BTFQ9zLjCSeRMfwdtTw+Hk3xw+/pSbDpzmNfxdnPqyKsi0jIIfzYG4keBR83p7qr9iCqn/fUTqQWFGxOaO+vfg2xIXRV6tmTlhDK00c0m+pyK8FzFlq4htFcR7tXmDaULu+9CiDUTEV7UNeAxaRkLCWPD0xjRNjpwqYe83Z9hz9Ax7vznD/uNVXz3FayaTNDKFGRGbM2+fxfyNh5g7vAcx4Zq5JJfyu/CVT622Mzi2C95/Bo7sqBoPM/5dMAxOmwHsDRxOzoeHyTlWFV7OlFZc8vb2IX78qFtYA/8GIlemMCNic8NuimDYTRFWlyFNmF9ttjPIP1g1JuaLdwEwPX054HEjy//yKdnfFHP0dOklb/F2eNA9Ioj4jiHVP5Gh/hqvJY1OYUZEpJnzc1Sy3GshAeXlUJ5Uve4MAGeOwocLYO9fABPT8OBY5Eim5Q0h52ALIL/61M6tW1SFlk4h9OoQQmy7II3PkiZBYUZEpJnz9fHhDkdW1UFFac0w8/UW2LsagMLOycwt+ilv/2/V7Kf2IX7cf3NH4jtWhZdgf69GrlykdhRmRESaOT9vL86bXvgaFTiLvsNReALa3VT1Yq//puz/PmFl2Y958fMWOF0mPp4eTB54A5MH3oCft/b0kqZPYUZEpJnz9/akFB98qcDj9TvAvxVMzcLp4c2aT4/z2/0/paC0AjAZGteWJ5Nj6djK/6rXFWkqFGZERJo5H08PTuMDFGNUlICjLfv2f8asLec4kFc1nTomPIBn7u5Bvy6trS1WpB4UZkREmjkPD4ON5n9xm5mNx4CpLD51C3//y3cABPl6Mv2OGB76r0g8HRrMK/akMCMi4gZe9hzP3NIHcWwxcLryMQx44OZOzBgSQ6gWWhSbU5gREXEDfl4OCqjA6TLpE9mSucN7ENdeK/VK86AwIyLiBob1iuD9g98x7cc3ck98hBa2k2bFME3TtLqI66mwsJDg4GDOnj1LUJC2pBcREbGDunx+a7SXiIiI2JrCjIiIiNiawoyIiIjYmsKMiIiI2JrCjIiIiNiawoyIiIjYmsKMiIiI2JrCjIiIiNiawoyIiIjYmsKMiIiI2JrCjIiIiNiawoyIiIjYmsKMiIiI2JrCjIiIiNiap9UFXG+maQJVW4mLiIiIPVz83L74OX4lzT7MFBUVAdCxY0eLKxEREZG6KioqIjg4+IrnGGZtIo+NuVwuTpw4QWBgIIZhNOi1CwsL6dixI8eOHSMoKKhBry11p+fRtOh5NC16Hk2LnsfVmaZJUVEREREReHhceVRMs++Z8fDwoEOHDtf1HkFBQfpjbEL0PJoWPY+mRc+jadHzuLKr9chcpAHAIiIiYmsKMyIiImJrCjPXwMfHh6effhofHx+rSxH0PJoaPY+mRc+jadHzaFjNfgCwiIiING/qmRERERFbU5gRERERW1OYEREREVtTmBERERFbU5ipp6VLlxIdHY2vry99+vRh+/btVpfklhYsWMDNN99MYGAgYWFhpKSk8MUXX1hdllywYMECDMMgLS3N6lLc2vHjx3nooYcIDQ3F39+f+Ph4srKyrC7LLVVWVjJnzhyio6Px8/Ojc+fOPPvss7hcLqtLszWFmXp48803SUtLY/bs2ezZs4dbb72VoUOHcvToUatLcztbt25lypQp7Ny5k02bNlFZWcmQIUMoKSmxujS3t3v3btLT07npppusLsWtFRQU0L9/f7y8vHjvvfc4cOAACxcuJCQkxOrS3NILL7zA73//e1555RUOHjzIiy++yG9+8xuWLFlidWm2pqnZ9dC3b1969+7NsmXLqttiY2NJSUlhwYIFFlYmJ0+eJCwsjK1bt3LbbbdZXY7bKi4upnfv3ixdupTnnnuO+Ph4Fi1aZHVZbmnWrFns2LFDvcdNxLBhwwgPD+f111+vbhs5ciT+/v6sWrXKwsrsTT0zdVReXk5WVhZDhgyp0T5kyBA+/vhji6qSi86ePQtAq1atLK7EvU2ZMoWf/OQnDB482OpS3N4777xDYmIio0aNIiwsjISEBJYvX251WW5rwIABbN68mUOHDgGwd+9ePvroI5KTky2uzN6a/UaTDe3UqVM4nU7Cw8NrtIeHh/Ptt99aVJVA1Q6r06dPZ8CAAcTFxVldjttas2YN2dnZ7N692+pSBPj6669ZtmwZ06dP58knn2TXrl1MmzYNHx8fxo4da3V5bueJJ57g7NmzdOvWDYfDgdPpZN68eYwePdrq0mxNYaaeDMOocWya5iVt0rgeffRR9u3bx0cffWR1KW7r2LFjpKamsnHjRnx9fa0uRwCXy0ViYiLz588HICEhgf3797Ns2TKFGQu8+eabvPHGG6xevZoePXqQk5NDWloaERERjBs3zurybEthpo5at26Nw+G4pBcmPz//kt4aaTxTp07lnXfeYdu2bXTo0MHqctxWVlYW+fn59OnTp7rN6XSybds2XnnlFcrKynA4HBZW6H7atWtH9+7da7TFxsby9ttvW1SRe5s5cyazZs3igQceAKBnz54cOXKEBQsWKMxcA42ZqSNvb2/69OnDpk2barRv2rSJfv36WVSV+zJNk0cffZS//e1vfPDBB0RHR1tdklsbNGgQn332GTk5OdU/iYmJPPjgg+Tk5CjIWKB///6XLFdw6NAhIiMjLarIvZWWluLhUfOj1+FwaGr2NVLPTD1Mnz6dMWPGkJiYSFJSEunp6Rw9epTJkydbXZrbmTJlCqtXr+Yf//gHgYGB1T1mwcHB+Pn5WVyd+wkMDLxkvFKLFi0IDQ3VOCaLPPbYY/Tr14/58+dz3333sWvXLtLT00lPT7e6NLd09913M2/ePDp16kSPHj3Ys2cPL730EhMmTLC6NHszpV5effVVMzIy0vT29jZ79+5tbt261eqS3BLwgz8ZGRlWlyYXDBw40ExNTbW6DLe2bt06My4uzvTx8TG7detmpqenW12S2yosLDRTU1PNTp06mb6+vmbnzp3N2bNnm2VlZVaXZmtaZ0ZERERsTWNmRERExNYUZkRERMTWFGZERETE1hRmRERExNYUZkRERMTWFGZERETE1hRmRERExNYUZkRERMTWFGZEpF62bNmCYRicOXOm0e9tGAaGYRASEnLF85555hni4+MbpaaL97tY26JFixrtviLuTmFGRK7q9ttvJy0trUZbv379yMvLIzg42JKaMjIyOHTokCX3vpwZM2aQl5enndtFGpk2mhSRevH29qZt27aW3T8kJISwsDDL7v9DAgICCAgI0O7gIo1MPTMickXjx49n69atLF68uPorlMOHD1/yNdPKlSsJCQnhn//8J127dsXf3597772XkpIS/vjHPxIVFUXLli2ZOnUqTqez+vrl5eX84he/oH379rRo0YK+ffuyZcuWetX6/PPPEx4eTmBgII888gjnz5+v8fru3bu54447aN26NcHBwQwcOJDs7Ozq1ydMmMCwYcNqvKeyspK2bduyYsUKAN566y169uyJn58foaGhDB48mJKSknrVKyINQ2FGRK5o8eLFJCUl8bOf/Yy8vDzy8vLo2LHjD55bWlrKyy+/zJo1a9iwYQNbtmxhxIgRrF+/nvXr17Nq1SrS09N56623qt/z8MMPs2PHDtasWcO+ffsYNWoUd911F19++WWd6vzrX//K008/zbx58/j0009p164dS5curXFOUVER48aNY/v27ezcuZMbb7yR5ORkioqKAJg4cSIbNmwgLy+v+j3r16+nuLiY++67j7y8PEaPHs2ECRM4ePBg9e+n/XpFLGbxrt0iYgMDBw40U1NTa7R9+OGHJmAWFBSYpmmaGRkZJmDm5uZWnzNp0iTT39/fLCoqqm678847zUmTJpmmaZq5ubmmYRjm8ePHa1x70KBB5i9/+cvL1gOYa9eurdGWlJRkTp48uUZb3759zV69el32OpWVlWZgYKC5bt266rbu3bubL7zwQvVxSkqKOX78eNM0TTMrK8sEzMOHD1/2mqZpmpGRkebvfve7K54jIg1HPTMi0mD8/f254YYbqo/Dw8OJiooiICCgRlt+fj4A2dnZmKZJTExM9XiTgIAAtm7dyldffVWnex88eJCkpKQabd8/zs/PZ/LkycTExBAcHExwcDDFxcUcPXq0+pyJEyeSkZFRff67777LhAkTAOjVqxeDBg2iZ8+ejBo1iuXLl1NQUFCnOkWk4WkAsIg0GC8vrxrHhmH8YJvL5QLA5XLhcDjIysq6ZNDsfwaghjJ+/HhOnjzJokWLiIyMxMfHh6SkJMrLy6vPGTt2LLNmzeKTTz7hk08+ISoqiltvvRUAh8PBpk2b+Pjjj9m4cSNLlixh9uzZZGZmEh0d3eD1ikjtqGdGRK7K29u7xqDdhpKQkIDT6SQ/P58uXbrU+KnrTKnY2Fh27txZo+37x9u3b2fatGkkJyfTo0cPfHx8OHXqVI1zQkNDSUlJISMjg4yMDB5++OEarxuGQf/+/Zk7dy579uzB29ubtWvX1qlWEWlY6pkRkauKiooiMzOTw4cPExAQQKtWrRrkujExMTz44IOMHTuWhQsXkpCQwKlTp/jggw/o2bMnycnJtb5Wamoq48aNIzExkQEDBvDnP/+Z/fv307lz5+pzunTpwqpVq0hMTKSwsJCZM2fi5+d3ybUmTpzIsGHDcDqdjBs3rro9MzOTzZs3M2TIEMLCwsjMzOTkyZPExsZe2z+EiFwT9cyIyFXNmDEDh8NB9+7dadOmTY0xJtcqIyODsWPH8vjjj9O1a1eGDx9OZmbmZWdMXc7999/Pr371K5544gn69OnDkSNH+PnPf17jnBUrVlBQUEBCQgJjxoxh2rRpP7hWzeDBg2nXrh133nknERER1e1BQUFs27aN5ORkYmJimDNnDgsXLmTo0KH1++VFpEEYpqk5hSJiL4ZhsHbtWlJSUq7L9UtLS4mIiGDFihWMGDGizu+PiooiLS3tklWTReT6UM+MiNjS6NGjG3zbAJfLxYkTJ3jqqacIDg5m+PDhdXr//PnzCQgIaNCeKxG5OvXMiIjt5ObmAlWzixpyFtHhw4eJjo6mQ4cOrFy5kkGDBtXp/adPn+b06dMAtGnTxrJ9q0TcjcKMiIiI2Jq+ZhIRERFbU5gRERERW1OYEREREVtTmBERERFbU5gRERERW1OYEREREVtTmBERERFbU5gRERERW/t/PP/AxDNKnH0AAAAASUVORK5CYII=", + "text/plain": [ + "<Figure size 640x480 with 1 Axes>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "var ='lon'\n", + "\n", + "plt.plot(df_track['time'],df_track[var],label='0.05x0.05')\n", + "plt.plot(df_track_orig['time'],df_track_orig[var],ls='--',label='1x1')\n", + "plt.xlabel('time [days]')\n", + "plt.ylabel('lon [°W]')\n", + "plt.legend()\n", + "\n", + "plt.savefig('/home/b/b380782/CyclEx_figs/'+var+'.png')" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "keys = list(df_track.keys()[6:])" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "['dpsfc_dt', 'dfi_dt', 'EP', 'ITT', 'Eq1res', 'TADV', 'VMT', 'DIABres']" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "keys" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "keys_orig = list(df_track_orig.keys()[6:-5])" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "keys_orig.append(df_track_orig.keys()[-3])" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "['dp', 'dfi', 'ep', 'itt', 'eq1res', 'tadv', 'vmt', 'diabres']" + ] + }, + "execution_count": 30, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "keys_orig" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAksAAAHFCAYAAADi7703AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAACkHUlEQVR4nOzdd3hUZfbA8e+dmt57AiT03kGKCIiggqhr19UV264iKig/y7rr6q6rrquua0HdVbG3tSvYKTZUuvSaUFJIb5MymZn7++POTBJIQspMpnA+zzMPyZ1b3tBy8r7nPUdRVVVFCCGEEEK0SOfrAQghhBBC+DMJloQQQggh2iDBkhBCCCFEGyRYEkIIIYRogwRLQgghhBBtkGBJCCGEEKINEiwJIYQQQrRBgiUhhBBCiDZIsCSEEEII0QYJloQQAenee+9FURSv3f/JJ5+kb9++mEwmFEWhvLzca88CWLVqFYqisGrVKvexN954g8cff9yrzxVCHJ8ES0IIcZRNmzZx8803M336dFasWMGaNWuIjIzs9nFIsCSEfzD4egBCCOFvtm3bBsB1113H+PHjfTwaIYSvycySEMLvLVu2jJEjR2I2m8nKyuKRRx455hxFUViwYAHPPfcc/fv3x2w2M3jwYN56661m59XU1LB48WKysrIICQkhLi6OsWPH8uabbwIwbdo0Lr/8cgBOOukkFEVh3rx57us///xzZsyYQXR0NGFhYQwaNIgHH3ywQ1/Pzp07OeOMMwgLCyMhIYHrr7+eqqqqZudMmzaNZcuWceDAARRFcb+EEN1PZpaEEH7tm2++4ZxzzmHixIm89dZb2O12Hn74YY4cOXLMuR9//DErV67kr3/9K+Hh4SxZsoRLL70Ug8HABRdcAMCtt97Kq6++yv3338+oUaOwWCxs3bqVkpISAJYsWcKbb77J/fffz9KlSxk4cCCJiYkAvPDCC1x33XVMnTqVZ599lqSkJHbv3s3WrVvb/fUcOXKEqVOnYjQaWbJkCcnJybz++ussWLCg2XlLlizh97//Pfv27eODDz7o7G+fEMIDFFVVVV8PQgghWjNhwgQOHTrEvn37CAkJAaCqqorMzExKS0tx/RemKAqhoaFkZ2eTnJwMgN1uZ+jQodhsNvbs2QPAsGHD6Nu3b5sByEsvvcRVV13F2rVrGTt2LADV1dWkp6czfPhwvv32207P8tx55508/PDDbNy4kREjRriPz5o1i6+++oqVK1cybdo0AM466yy2bt1KTk5Op54lhPAMWYYTQvgti8XC2rVrOe+889yBEkBkZCRz58495vwZM2a4AyUAvV7PxRdfzN69ezl8+DAA48eP57PPPuPOO+9k1apV1NbWtmssP/74I5WVlcyfP79Ly2ErV65kyJAhzQIlgMsuu6zT9xRCeJcES0IIv1VWVobD4SAlJeWY9zp6zLXM9sQTT3DHHXfw4YcfMn36dOLi4jj33HPdM0+tKSoqAiAjI6PDX0dTJSUl7R67EMI/SLAkhPBbsbGxKIpCQUHBMe919Fh8fDwA4eHh3HfffezcuZOCggKeeeYZfvrppxZnqppy5S25Zqg6Kz4+vt1jF0L4BwmWhBB+Kzw8nPHjx/P+++9TV1fnPl5VVcUnn3xyzPnffPNNs8Rvu93O22+/TZ8+fVqcEUpOTmbevHlceuml7Nq1i5qamlbHMmnSJKKjo3n22WfpSqrn9OnT2bZtG5s3b252/I033jjmXLPZ3O5lQiGE98huOCGEX/vb3/7GGWecwcyZM7ntttuw2+384x//IDw8nNLS0mbnJiQkcOqpp/LnP//ZvRtu586dzcoHnHTSSZx11lkMHz6c2NhYduzYwauvvsrEiRMJCwtrdRwRERE8+uijXHvttZx22mlcd911JCcns3fvXjZv3sxTTz3Vrq9n4cKFvPjii8yZM4f777/fvRtu586dx5w7bNgw3n//fZ555hnGjBmDTqdzJ5wLIbqRKoQQfu7jjz9Whw8frppMJrVnz57qQw89pP7lL39Rm/4XBqg33nijumTJErVPnz6q0WhUBw4cqL7++uvN7nXnnXeqY8eOVWNjY1Wz2az27t1bXbRokVpcXOw+Z+nSpSqgrl279pixLF++XJ06daoaHh6uhoWFqYMHD1b/8Y9/dOjr2b59uzpz5kw1JCREjYuLU6+55hr1o48+UgF15cqV7vNKS0vVCy64QI2JiVEVRVHlv2whfENKBwghgoKiKNx4443tnuERQoj2kpwlIYQQQog2SM6SEEJ4gKqq2O32Ns/R6/XSskSIACQzS0KIoKCqqk+X4FavXo3RaGzz9fLLL/tsfEKIzpOcJSGE8ICqqip27drV5jlZWVnuek9CiMAhwZIQQgghRBtkGU4IIYQQog2S4O0BDoeDvLw8IiMjJXlTCCGECBCqqlJVVUVaWho6XevzRxIseUBeXh49evTw9TCEEEII0QmHDh1qs0m2BEseEBkZCWi/2VFRUT4ejRBCCCHao7Kykh49eri/j7dGgiUPcC29RUVFSbAkhBBCBJjjpdBIgrcQQgghRBskWBJCCCGEaIMES0IIIYQQbZCcpW5kt9tpaGjw9TCEhxiNRvR6va+HIYQQwsskWOoGqqpSUFBAeXm5r4ciPCwmJoaUlBSpryWEEEFMgqVu4AqUkpKSCAsLk2+sQUBVVWpqaigsLAQgNTXVxyMSQgjhLRIseZndbncHStJAM7iEhoYCUFhYSFJSkizJCSFEkJIEby9z5SiFhYX5eCTCG1x/rpKLJoQQwUuCpW4iS2/BSf5chRAi+EmwJIQQQgjRBgmWhBBCCCHaIMGSaNOSJUvIysoiJCSEMWPG8N1337V5/urVqxkzZgwhISH07t2bZ599ttn7L730EoqiHPOqq6vr0LiO95yWHDx4kLlz5xIeHk5CQgI333wzVqvV/X5OTk6LY/v88887NDYhhBDBRXbDiVa9/fbbLFy4kCVLljB58mSee+45zjzzTLZv307Pnj2POT87O5vZs2dz3XXX8dprr/HDDz8wf/58EhMTOf/8893nRUVFsWvXrmbXhoSEtHtc7X1OU3a7nTlz5pCYmMj3339PSUkJV155Jaqq8uSTTzY79+uvv2bIkCHuz+Pi4to9NiFOFHUNdkx6HTqd5O2JE4AquqyiokIF1IqKimPeq62tVbdv367W1tb6YGRdM378ePX6669vdmzgwIHqnXfe2eL5t99+uzpw4MBmx/7whz+oEyZMcH++dOlSNTo6utVnFhYWqsnJyerf//5397GffvpJNRqN6hdffNHu5xxt+fLlqk6nU3Nzc93H3nzzTdVsNrv/3LKzs1VA3bhxY6v3OVog//kK0VkVtVZ11F+/VH/3ws++HooQXdLW9++mZBmum6mqSo3V5pOXqqrtHqfVamX9+vXMmjWr2fFZs2bx448/tnjNmjVrjjn/9NNPZ926dc221ldXV9OrVy8yMjI466yz2Lhxo/u9xMREXnzxRe69917WrVtHdXU1l19+OfPnz3ffu73POXpsQ4cOJS0trdk19fX1rF+/vtm5Z599NklJSUyePJl33323td8iIU5Ye45UU2qx8nN2ia+HIkS3kGW4blbbYGfwPV/45Nnb/3o6Yab2/ZEXFxdjt9tJTk5udjw5OZmCgoIWrykoKGjxfJvNRnFxMampqQwcOJCXXnqJYcOGUVlZyb///W8mT57M5s2b6devH4B7ie23v/0t48aNIyQkhIceeqhDz2nP2GJjYzGZTO6vJyIigscee4zJkyej0+n4+OOPufjii3n55Ze5/PLL2/X7JsSJoNSi5frVNTiotdoJNUlBVhHcJFgSbTq6jpCqqm3WFmrp/KbHJ0yYwIQJE9zvT548mdGjR/Pkk0/yxBNPuI8/8sgjDB06lHfeeYd169Ydk9N0vOe0Z2xHfz0JCQksWrTI/d7YsWMpKyvj4YcflmBJiCZKLfWNH9dYSTeF+nA0QnifBEvdLNSoZ/tfT/fZs9srISEBvV5/zCxSYWHhMTM0LikpKS2ebzAYWm31otPpGDduHHv27Gl2fP/+/eTl5eFwODhw4ADDhw/v0nNSUlL4+eefmx0rKyujoaGh1a8HtODu+eefb/V9IU5EpZbG5e4yi5X0GAmWRHCTnKVupigKYSaDT14dqTZtMpkYM2YMX331VbPjX331FZMmTWrxmokTJx5z/pdffsnYsWMxGo0tXqOqKps2bWq2dGa1Wvntb3/LxRdfzP33388111zDkSNHuvSciRMnsnXrVvLz85tdYzabGTNmTIvXAGzcuFGa5ApxlGYzSxZrG2cKESS8nWl+IgjW3XBvvfWWajQa1RdeeEHdvn27unDhQjU8PFzNyclRVVVV77zzTvWKK65wn79//341LCxMXbRokbp9+3b1hRdeUI1Go/ruu++6z7n33nvVzz//XN23b5+6ceNG9aqrrlINBoP688+Nu2oWL16sZmZmqhUVFardbldPOeUUdc6cOR16zvvvv68OGDDA/bnNZlOHDh2qzpgxQ92wYYP69ddfqxkZGeqCBQvc57z00kvq66+/rm7fvl3duXOn+s9//lM1Go3qY4891urvUSD/+QrRWYve3qj2uuNTtdcdn6ofbjzs6+EI0Wnt3Q0nwZIHBGuwpKqq+vTTT6u9evVSTSaTOnr0aHX16tXu96688kp16tSpzc5ftWqVOmrUKNVkMqmZmZnqM8880+z9hQsXqj179lRNJpOamJiozpo1S/3xxx/d769cuVI1GAzqd9995z524MABNTo6Wl2yZEm7n7N06VL16J8FDhw4oM6ZM0cNDQ1V4+Li1AULFqh1dXXu91966SV10KBBalhYmBoZGamOGTNGffXVV9v8/Qn0P18hOmPeiz+7g6UXv9/v6+EI0WntDZYUVe3AfnLRosrKSqKjo6moqCAqKqrZe3V1dWRnZ7urYIvgIn++4kR0zlPfs/lwBQA3n9qXW2cN8PGIhOictr5/NyU5S0IIITqktKYxT6lEcpbECUCCJSGEEB1SWt0YIJXVSLAkgp8ES0IIIdqtrsGOxWp3fy674cSJQIIlIYQQ7Xb0TFKZpeUWQ0IEEwmWhBBCtFtJdfNgqVSW4cQJQIIlIYQQ7eaaWYoK0RpAlFmsHWrSLUQgkmBJCCFEu7lylPokRQBgc6hU1dt8OSQhvE6CJSGEEO3mWoZLiw4lzKT1myyTJG8R5CRYEkII0W6uZbi4cBNx4SZAdsSJ4CfBkhBCiHZzFaFsGixJrSUR7CRYEq369ttvmTt3LmlpaSiKwocfftih67dt28b5559PZmYmiqLw+OOPe2WcQoju4ypIGRduIjZMC5aO3iEnRLCRYEm0ymKxMGLECJ566qlOXV9TU0Pv3r156KGHSElJ8fDohBC+UNrCMpzMLIlgJ8GSaNWZZ57J/fffz3nnnXfMezt37iQsLIw33njDfez9998nJCSELVu2ADBu3Dj++c9/cskll2A2m7tt3EII73HlJ8U3mVkqlcKUIsgZfD2AE5bV0vp7ih6MIe08VwfG0OOfawrv2PiOY+DAgTzyyCPMnz+fyZMnYzQaue6663jooYcYNmyYR58lhPAfrp1vseEm4sKNzY4JEawkWPKVB9Jaf6/fLPjt/xo//2dfaKhp+dxeJ8NVyxo/f3wY1JQce969FZ0bZxvmz5/P8uXLueKKKzCZTIwZM4ZbbrnF488RQvgHh0N1L7nFh5uIde2Gk2U4EeQkWBJd8uKLL9K/f390Oh1bt25FURRfD0kI4SXltQ04nMW6Y8JMxDmX4WRmSQS7oAqW7r33Xu67775mx5KTkykoKGj1mtWrV3Prrbeybds20tLSuP3227n++uu9PVT4Y17r7yn65p//3942zj0q7Wzhls6PqRM2b96MxWJBp9NRUFBAWlobM2ZCiIDmyleKDDFgMuhkZkmcMIIqWAIYMmQIX3/9tftzvV7f6rnZ2dnMnj2b6667jtdee40ffviB+fPnk5iYyPnnn+/dgXYkh8hb53ZRaWkp8+bN4+6776agoIDf/va3bNiwgdDQ0ONfLIQIOE2Tu4HG3XAysySCXNAFSwaDod3b1J999ll69uzprv8zaNAg1q1bxyOPPOL9YCkAVFdXs3dv46xWdnY2mzZtIi4ujp49e3L99dfTo0cP/vSnP2G1Whk9ejSLFy/m6aefBsBqtbJ9+3b3x7m5uWzatImIiAj69u3rk69JCNF5pU2Su6ExWCqvbcDuUNHrZBleBKegC5b27NlDWloaZrOZk046iQceeIDevXu3eO6aNWuYNWtWs2Onn346L7zwAg0NDRiNxhavq6+vp76+3v15ZWWl574AP7Ju3TqmT5/u/vzWW28F4Morr+TUU09l+fLlbNy4EYPBgMFg4PXXX2fSpEnMmTOH2bNnk5eXx6hRo9zXP/LIIzzyyCNMnTqVVatWdfeXI4TooqNnlmJCtf8jVRUqahvcwZMQwSaogqWTTjqJV155hf79+3PkyBHuv/9+Jk2axLZt24iPjz/m/IKCApKTk5sdS05OxmazUVxcTGpqaovPefDBB4/JjQpG06ZNQ1XVVt//3e9+1+zzMWPGNAsiMzMz27xeCBFYSi3av29XUGTQ64gONVJR20CppV6CJRG0gqoo5Zlnnsn555/PsGHDOO2001i2TNtS//LLL7d6zdG7t1zf3Nva1XXXXXdRUVHhfh06dMgDoxdCCP/mKj4Z2yQoamymK4UpRfAKqpmlo4WHhzNs2DD27NnT4vspKSnH7JQrLCzEYDC0OBPlYjabpSK1EOKE45pZim8SLMWGGcmmcYlOiKOpqspz3+5nREYME/u0/r3VnwXVzNLR6uvr2bFjR6vLaRMnTuSrr75qduzLL79k7NixreYrCSHEiarEleAdduzMkvSHE61Zs7+Ehz7byd0fdm9pG08KqmBp8eLFrF69muzsbH7++WcuuOACKisrufLKKwFt+axpns3111/PgQMHuPXWW9mxYwcvvvgiL7zwAosXL/bVlyCEEH7LXb07ounMkmsZToIl0bIth7UOEodKa3A4AjOPNaiW4Q4fPsyll15KcXExiYmJTJgwgZ9++olevXoBkJ+fz8GDB93nZ2VlsXz5chYtWsTTTz9NWloaTzzxhFfKBkiic3CSP1dxIimt1gKiuPDGNASptSSOZ3u+tmO8wa5SWFVPSnTIca7wP0EVLL311lttvv/SSy8dc2zq1Kls2LDBSyPCvZxXU1MjxRqDUE2N1rNPlm3FicBVqTuuyTKcVPEWx7Mtr7G8Tm55jQRL4lh6vZ6YmBgKCwsBCAsLk/5pQUBVVWpqaigsLCQmJqbNSvFCBIMaq426BgcAcU2W4aQ/nGhLrdXO/qJq9+e55XWM6eXDAXWSBEvdwFVR3BUwieARExPT7orxQgSyEucSnMmgI9zU+MNB48ySlA4Qx9pZUEnTNKXcslrfDaYLJFjqBoqikJqaSlJSEg0N8h9KsDAajTKjJE4YZU2W4JrOjkvOkmhL0yU40JbhApEES91Ir9fLN1chREBylQ04ukq3BEuiLa7k7vhwEyUWK3nldT4eUecEVekAIYQQ3tG4E+6oYMmZs1RVb6PeZu/2cQn/5ppZWpi2nb7K4YBdhpNgSQghxHG5l+GOCpYiQwzoddqyXLnkLYkmbHYHO/MrmarbzBWH7uFL0x3kltcGZMkVCZaEEEIcV2vLcDqdQmyYVjpDClOKprKLLdTbHMw2rgdAp6hU1zdQWWvz8cg6ToIlIYQQx1XWNFiy1sAzk+Hjm4DGKt6StySaci3B7Y2d4j4WTyW55YG3FCfBkhBCiONqNrO09ys4shU2vAKqKoUpRYtcyd11madBhFZiJU0pkWBJCCFEcCptGizZmgRFdeVSmFK0aFue1hNuSFoUxPQAIF0pJrcs8MoHSOkAIYQQx9VsGa6orPGNyvzGmSWLJHgLjaqqbMurpKdyhDGmKIhIBrRgKa8i8MoHyMySEEKI43Itw8WHm6ChycyAw0ZcuJbgXSbLcMIpv6KO8poGLjd8Q78Pz4LaMj4c/yZv26cFZPkAmVkSQgjRJpvdQUWtNmsUG26CkxfC5FvAbgWDmbh92YDshhONXMndE03ZYAdGXkaIcTTVrOdwAOYsSbAkhBCiTWXO+kmK0rjzDUUBgxlAZpbEMbblVaDHTn/HPu1A+lgyGkKBwOwPJ8twQggh2uSaMYoJNboLUDblCqBczXaF2J5XyQDlEGa1DsxREJlC790vcofhTYqr66lrCKxq7xIsCSGEaJMrWHIlcvPa+XBvNPwtEf43r7E/nMwsCadteZWM1LlmlUYDELb6Xm4wfEII9eQHWJK3BEtCCCHaVNo0udtmhb1fa2/YrVB2wD2zVGqxBmQrC+FZFTUN5JbXMlLZqx1IHwsh0WCKBJy1lgJsKU6CJSGEEG0qtdQDzuU2S2HzN6vy3TNL9TYHtQG2vCI8b1u+Vl9pnNE5s5QxTstxi84AnOUDAizJW4IlIYQQbXLVT4qPMEFVgXZQ59wfVH2EMAOYDDrnubIUd6Lb7twJ937qQphxD/QYr73hLEyZppQE3I44CZaEEEK0yTWzFBfeJFhKGQaKDlQHiqWoSRVvKUx5onMFS4be02DKbRAWp73hnFlKU4plGU4IIURwKXWWDogNM0G1M1iKSndXZaYqX/rDCTdXjaUhaVHN33AGSxlKMbnlgdXyRIIlIYQQbXLNLDVbhotIhshU7eOq/MZaS7IMd0Kra7Czt6iai/UrGVO9EmqbtMaJ7glAGiXklctuOCGEEEHEVT8pLtys7YDTm7VAKXU4ZIwHvVl7D8lZOtHtPlKF3eHgTuNbxC7/AxTvbXyz7wwKL/uK6xsWkl9Ri8MRODsnpYK3EEKINrnqJ8WFmWDmX+G0+8BhA73RfU7c9q3NzhUnpm15lfRQComlCnRGLbfNJSyOuD5jqdYVY7erFFbVkxId4rvBdoDMLAkhhGiVqqru2aK4iCatTpoEStBYsFJmlk5s2/MqGaU4SwakDgdj82DIoNeREqUdyw2gHXESLAkhhGhVdb2NBru2XOLa8XYMVXXXWpJg6cS2La+CUbo92ifpY489YcMr/Em3lD5KrgRLQgghgoMr+Ak16gnVq/D8afDWb6G+Gg6vg38Ng/9MbVbFW5yY7A6VHflVjW1OMloIlja9yZk1HzNYORBQ5QMkZ0kIIUSrSlxLcOHO6t2H14KiB2OY9qo4CNYq6Q/XHSwlUFsKCf18PZIW5ZRYsDfUMcScox1oKVhy11oqCajyATKzJIQQolVlTYOlqnztYEQy6HQQ5SwdUFtGnElrc1IqRSm9542L4OmTIPtbX4+kRdvyKhmgHMKk2CAsHmKzjj3JXcW7OKDKB0iwJIQQolXNZpaqjmgHI53FKENiwKAl6yaoWj2dshpppusVDXWQtwFUO3xyCzT43xLWtrwKtqhZ/HPQu3DRq9pGgKM16Q8XSMtwEiwJIYRolSsHKT68SfXuiBTtV0VxF6aMspcAWt5KZZ2t28cZ9Er2gurQPi7dD6v/4dvxtEBrc6KQltkfMie3fJKzMGW6UkJueW3ABNYSLAkhhGiVaxkutmlfuMiUxhOcwZK5poBwk77ZNcKDVDv0mQEJA7TPf3gC8n/17ZiaUFXV3RNuSFp06yc26Q9XXW8LmMBagiUhhBCtar4M10Kw5MpbqiqQ/nDelDoCrngfFvwCg8+FjHFagr2fKKyqx2Ep5j/GRxmy/0VobcbIGSxFKzVEUBMwS3ESLAkhhGhVswRv1aHlKLka6AIkDdZanoTGaUt1yMyS153zNFz1GST09fVI3LblVTBSt49Z+vUYt7zZcr4SgDkCrv+eS2PfoprQgKm1JKUDhBBCtKrZzNI5T8HZTzbmzgCcslh7AbEbfwGk1pJX1FVCSJT2sTmi+XsOO+j03T+mJrblVrZdjLKplGFEx1khv4DcssAoHxBUM0sPPvgg48aNIzIykqSkJM4991x27drV5jWrVq1CUZRjXjt37uymUQshhP9qluAN2oxBK9+Y46QwpXfYbfDPPvDPvo07EgGsFvjibnjt/NaXvbrJ9vxKRrranGSMOe75aTGhAORVBEb5gKCaWVq9ejU33ngj48aNw2azcffddzNr1iy2b99OeHh4m9fu2rWLqKgo9+eJiYneHq4QQvi9ZgnebVFVyVnylvIDYLdqVdPDm3xvqj4Ca18AWy1seh1GXe6zIW7PLW9SuXtc2yfvX835hW9SposhtyzV+4PzgKAKlj7//PNmny9dupSkpCTWr1/PKaec0ua1SUlJxMTEeHF0QggRWOptdqrqtd1KCVTAf8+GqHS46JXGnJTKfHhhFtRXEDf+G0ByljyuyLlCktBPKwbqEtcbpt8FX92jzTD1ndlYA6sbVdY1YCjfR5S5BtUQipI0pO0L8jcz5NCbTNNP4sXyud0zyC4KqmW4o1VUVAAQFxd33HNHjRpFamoqM2bMYOXKld4emhBC+L0yZzVuvU4h0loIuevh0C/Nk3dDY7SWJ3UVJJnqAani7XHFzmApccCx7024EVKGQ105fH5Htw7LZUde4xKckjYS9MeZh2lSPiAvQBK8gzZYUlWVW2+9lZNPPpmhQ4e2el5qair/+c9/eO+993j//fcZMGAAM2bM4NtvWy8nX19fT2VlZbOXEEIEG1fuUWyYEZ2lUDt49MyFMVSr5A2k6BqreAsPKtqt/ZrQQrCkN2iJ94oetn0AO5d379jQ2pzEKxVYFVPL/eCOFuMqTFlMUVU9dQ12L4+w64JqGa6pBQsW8Ouvv/L999+3ed6AAQMYMKDxL+DEiRM5dOgQjzzySKtLdw8++CD33XefR8crhBD+prRZjaVs7WBEyrEnRqZCXTkJjhLAKMtwnuaeWerf8vupI2DSTfDD47DsNsg8uXHnXDfYnl/Ju/a5hE24mYWnpB//AufMUjJlGLCRX1FHVkLbecW+FpQzSzfddBMff/wxK1euJCMjo8PXT5gwgT179rT6/l133UVFRYX7dejQoa4MVwgh/JIrUTs2rGlfuBaCJWdhylh7abPrhAeoatszSy7T7tQa11qr4cjW7hmb0zZn5e5BGXEQ0kb1bpfwJNCb0CsqKUpZQBSmDKqZJVVVuemmm/jggw9YtWoVWVktdDxuh40bN5Ka2nqGvtlsxmw2d3aYQggREEqrtRyk+AgTVOVrB1sKlpwtTyIbioBkKmobsNkdGPRB+fN497LVwYiLoXiPltDdGmMoXPSyFohEdd8Os3qbnT1HXG1O2jmbpdNpGwXKskkjMPKWgipYuvHGG3njjTf46KOPiIyMpKBAK80fHR1NaKhW0+Guu+4iNzeXV155BYDHH3+czMxMhgwZgtVq5bXXXuO9997jvffe89nXIYQQ/qDZMly1c2YpooXdVs4AKrSuEEXRJkMqahuIj5AfKrvMGApzHm3fuakjvDuWFuw5Us2VynIuCVlN+p6FMP7a9l0Y00MLlpQSDkuw1L2eeeYZAKZNm9bs+NKlS5k3bx4A+fn5HDx40P2e1Wpl8eLF5ObmEhoaypAhQ1i2bBmzZ8/urmELIYRfci2nxYWZoE6ntTqJbGHWInEg9DgJXWxPokONlNc0UFZjlWDJl/Z8BSV7YcINXn3M9rxKRut2049DYK1q/4XnLOH5X47w4YoCzpdluO6ltqOC6UsvvdTs89tvv53bb7/dSyMSQojA1Wxmadbr2pRRS//PDr9IewFxa1ZRXtMg5QM8pfyQVp7BHNn+aw6vg9cvAJ0Bsk6B5OPUPeqCbXkV/N5VjPJ4bU6aiulBQqIOOBIQy3CyoCyEEKJF7mDJNUOkKM2LIrbAXcXbUu/VsZ0wPvgDPJihlQVor/QxMPAscNjg45u03nFekn84m3SlBBUdpI3q0LWulieB0ExXgiUhhBAtcgdLYcdpdeLicBAbanReKzNLHuGq3h2b2f5rFAVm/xPMUVoh0V/+45WhORwqIUc2AlAfP+DYBr9tKT/E4M33c59hKfkVtTgcvu1tdzwSLAkhhGiRK1hKsebAf6bDh/NbPtHhgMeHwf2J9DRreStSmNIDakqhplj7OKGVGkutiUqDmc56gN/8DcoOeHZswIHSGgY5tLIGpp7jO3ax3UrEphe4QP8tDXYHRdX+PRMpwZIQQohjOBwqZTXa7FBcwxHI2wD5v7Z8sk4HNis4bGQYtTZTpVKYsutcs0rRPcDUiaKNo+dBr8nQYIFPF7Wcb9YF2/MqGaXbC4Cux3Ga5x4tSiteGa7UE42Fw36e5C3BkhBCiGNU1jVgdy6NaPWTaLnGkouztk+a4mx5IsFS17kqd3d0VslFp4O5/wa9GfZ9Azltd7ToqG15FexxpFNk6tG+NidNGUO0mlBAhlLs93lLQbUbTgghhGeUOIOdSLMBY40rWGqjo31kKrCRBMqAZKni7Qmuyt2JAzt/j4R+cMYD2p9P1hTPjMtpe34lS2xXw/QhXJGU2fEbRGeApZA0pdjvq3hLsCSEEOIYrpmh2HATVGsFflusseTifC/OXtLsetEFRTu1X1vrCdde49pZKLKDXG1OBqe1o8VJS2J6QN4G0hX/r+ItwZIQQohjlDRrousMllqq3u3iDJaibFpCsswsecDQ87XZl47UL2qFze7gv99lM70HDAytgrSRXbpfYVUdSlUBeiWaQakdqAHVVHQPANKUEn6SYEkIIUSgKWspWGpHzlJYXaHzeikd0GWjfqu9POCTX/P48otPuMz8T+zRcehv/KlzSeNO2/MqedX0ID10xYQVfAQ9J3T8Js5gKTkAmulKgrcQQohjNJtZ0pvAENr2Mlxcb+gxAX2KVi26ut5Gvc17xRBFx/ySXcpuNYNq1Yy+4iCseqhL99t9MI9+Si5h1LXd4LctIy9l/9VbuKXhRr9fhpNgSQghxDFcW//jw01w9Wdwd75WGbo1vSbBNV9gOvN+9DoFkNmlLik7AAVboMEzQcS6nDIshPLnhqsAcKx5GvI3d/p+dTlr0SkqlSFpEJHUuZuERJOSkgYoVNXbqKj1378vEiwJIYQ4RrMEb9CqQivKca9TFIXYMFfLE8lb6rT1L8GzJ8Pnd3X5VuU1VvYUVgMQM3Iun9onoFPt2D/qfCuUsKJNANQldazFyTH3MRm02Uvw66U4CZaEEEIco9kyXEc4HCSEad9apIp3FxR7oGyA0/oDWu2r3gnh/P3cYTwf8Qcq1TD0BZvh5+c6fL/qehu9arcDENb7pK4N7qu/sET3COkU+XWtJQmWhBBCHMMV6PSxbIb/TIPP7jj+RS+eAfcnMt64H5CZpS5xVe/uatkAYJ0zWBrTK5ZQk57bLziFB2yXAWD/5m9QfrBD99uZV8FIZ+XuiD4Tuza4XcuZ0PATvXRH/DpvSYIlIYQQxyipduYs2fIgbyMU72nfhQ4bPQxayxOZWeokmxVKtYCThAFdvt36HC1YGpsZC8CkPgnoRv+OnxyD+Ihp1Oo7tvU/Z/9OEpVKbBggZXjXBufcEZfu51W8pXSAEEKIY7hmhaIbtCKTbZYNcHGek6ovb3YP0UGl+0G1gylSa4jbBVabg82HywEYmxnnPn7nnMGcufM+cqts7Pg2n7vnxLb7njsK6/hXw/lM7WlgtDGkS+MjOgPQgqU9krMkhBAiUNRa7dQ2aIm/4VZn1/u2ClK6RGrf2JPVUkCqeHda08rd7Uiqb8vWvArqbQ7iwk30TmisqxQVYuRv548E4IXvs9l0sAwa6tp1z5+LTfzbfj5HJt3XpbEBjYUpKfHrmSUJloQQQjTjqr5t1CsYa7Uik23WWHJxzizFqSXO+/jvVnC/5kru9uAS3OiesShHBV6nDkzm3JFp9KAAXp6Lffn/Hfd+DXYHuwu0nXVDOtvmpKmYwFiGk2BJCCFEM6XVjTvhlOoj2sG2mui6OJeMohu02SiZWeqkfjPhtHthyG+6fKt1B7RZPle+0tHumTuEvqHVjLRvQb/xFcj5oc377ckrZZr6M5nmajJiQ7s8PtcyXJpSTFFVPXUN/lnIVIIlIYQQzbhmlmLDTFCVrx3swMxSmLVIu48ES52TNgpOXgT9Z3XpNqqqss6V3N2r5WApLtzEb869kDdspwJQ/+FNYKtv9Z75u9fyH9O/+ER3G7qurRBqnMtwsYoFUMmvaN9SYHeTYEkIIUQzpRbtm2V8hAlMEWAMa1/OUnQP6DGBupRxzvtIsORLOSU1lFismPQ6hqa3vmQ2Z1gqP/e5hUI1BnP5PhzfPtrqufU5vwBQEDm0y/lUgPZ35vZszo98DVD8tnyABEtCCCGaKXW2KYkLN8P8NfDHPIjpefwLY3vBNV9QM/sJ7T41VlRV9eZQg09NKWz/CIp2d/lW63K0JbhhGdGEGPWtnqcoCnefP4F/KForFPW7RxvrPB0longTANaUrlXudtPpICyO9Dgt+dxfq3hLsCSEEKIZ18xSXJhRO9DOVicurqrfVpuDGqt/5qD4rcNr4Z3fwf/mdflWrsrdrS3BNZUUFcJJs6/ma/so9KqN2vcXgMPR7BxVVd2Vu7tcjPIo6TFa/tNhmVkSQggRCErdrU7Mnbo+1KAQbnA0u5doJy9U7m5aX6ktF47rwacZt2FRzRQVHcFRdaTZ+7m5ufSiAIDUwSd3eXxum97kuty7OVf3vSzDCSGECAyuAGdk1Wp4biqs+Hv7L373GpT7k7g45GdAqnh3WLEzWOpi2YDyGit7nc1zx7RjZgm05bjbLpzB1eo9zKj+G69vb57oXbBD2yl3WJeOKbJ9AVi7FO2kd8lqRuj2yTKcEEKIwOAKlpJtuZC/CSoOtf9ivUlreWKsbHYv0U6uXKUuziy5m+cmhneoGXKPuDDOPH0ODRh46LOdHC6rcb/XcMCZ3B01tEtjO0aTKt7+WmtJgiUhhBDNlLhandi1BOF27YRzidJKDKTrygGZWeoQVW2cWUoc2KVbrT1OyYC2/G5iJmN7xVJvrefHl+5G3fUZAO8xnUXWGyjqe1GXxnYM5+aBNKWE/IpaHA7/2xQgwZIQQohmXMUk3a1O2lNjycV5bpKifbN27awT7VB9BOoqQNFBfN8u3Wq9qxhlr44vl+l0Cv+4YDjXGr/goooXqf1gIdRX8X1hKB84ppAw9NQuje0YTQpTNthViqpbr/PkKxIsCSGEcLM7VMprtQAntF4rLtmu6t0uzmApwaG1PJEq3h3gSu6OzQRD55LrAeptdjYfrgBgTCuVu4+nT2IEcdNu4KAjkbC6Ako//QsFlVrByEGpUZ0eW4ucwVKcUk0odRz2w7wlCZaEEEK4lddYcZVGMtS4Wp10fGYp2q7NSpXKMlz7JQ+FC1+G6Xd36TZbcyuxttA8t6OunjaE/0bfBEDclhd40vgEp8YWEmE2dGl8xwiJBrNWNDNN8c+GuhIsCSGEcHMlZEeHGFBcW8c7kbMUbi1BwSEzSx0RHg9DzoVhF3TpNq4luDG9jm2e2xEGvY5LL72KD+1amYC5+p+4wvxtl8bWqugM6pUQ4qn0y/IBEiwJIYRwcyV3p4WjBT7GcHfPt3YJT4KeEylIO40QrO77ie5zvH5wHTE4LYq8CX92f16XNqHL92zRNV/yxEmr+EUd5JflAzw8lyaEECKQuWaCwiIi4YaNHb+B3gBXf07O3mJq9/0sM0sd8fNz2s6w3tPBGNKpW6iq2li5u5P5Ske75vRx3Lj9UTLK1zFz7HkeuecxzBGkxzpbnvjhzJIES0IIIdxK3NW721+bpyWxzuuldEA71ZbDZ7drH995qNPBUnaxRWuea2i7eW5HmA16HrjxSvYWnceYTuyua6/0WK3liT/OLMkynBBCCDfXTFB8F4OluFA9ZqyU1TT4Zd0cv1PsLEYZmQYhnd9t5mpxMjw9GrOh9ea5HRUdZvRqoETeJsasuZGHDP+RnCUhhBD+zTWzNK36U63VyY9PdfwmX91D0r97MN/wMXaHSlWdzcOjDEIe6gm33pmv1NmSAT5jqyci+wtO1m+lqt5GRa1/1ecKymBpyZIlZGVlERISwpgxY/juu+/aPH/16tWMGTOGkJAQevfuzbPPPttNIxVCCP/i2g2XbjustTqpPtL2BS0xRaCodtL15do9ZSnu+DzUE25dF4pR+lRMDwBSlFJ0OPxuKS7ogqW3336bhQsXcvfdd7Nx40amTJnCmWeeycGDB1s8Pzs7m9mzZzNlyhQ2btzIH//4R26++Wbee++9bh65EEL4nivHKMbhbHXSkZ1wLs5r3MGSJHkfn7snXOeDpTKLlX1FFqD9zXP9RkQy6AwYcJBMmd8txQVdsPTYY49xzTXXcO211zJo0CAef/xxevTowTPPPNPi+c8++yw9e/bk8ccfZ9CgQVx77bVcffXVPPLII908ciGE8L2Sai2wiXS3OulMsJQGQLJSDkgV73Yp2qn92oVgybULrk8Hm+f6BZ0eotIBre2Jv+2IC6pgyWq1sn79embNmtXs+KxZs/jxxx9bvGbNmjXHnH/66aezbt06GhpaXjOtr6+nsrKy2UsIIYKBaxYotN4ZLEV0fmYpUdVansgy3HE01EK5c/WjC8twruTugFuCc4nWluLS/bCKd1AFS8XFxdjtdpKTm1ebTU5OpqCgoMVrCgoKWjzfZrNRXFzc4jUPPvgg0dHR7lePHj088wUIIYQPqarqDmyMta5WJ50IlqK0maVIRwUmGmRm6Xj0JvjDt3DBixCe0OnbuCt3B1pyt4uzR1y6Uiw5S93h6PLuqqq2WfK9pfNbOu5y1113UVFR4X4dOnSoiyMWQgjfs1jtWG0OwqlF11CjHexIqxOX0FjQa41gEymXnKXj0ekhdTgMPR862Z6kafNcT1Tu9omYHtj0oZgVq9/NLAVVUcqEhAT0ev0xs0iFhYXHzB65pKSktHi+wWAgPj6+xWvMZjNmc+c7QgshhD9yzQAlGmshrg9YLWCO6PiNFAUGzmZ3YQ0ckgTv7rA1twKrzUF8uImsLjTP9ampd7Cj3wIef/oHEv0sWAqqmSWTycSYMWP46quvmh3/6quvmDRpUovXTJw48Zjzv/zyS8aOHYvRaPTaWIUQwt+4aixZw9Lg5g2weFfnb3bhS6wf9wi5JEoV7+NZ9yKsWQJlOZ2/hbO+0uguNs/1Kb2R9LgwAIqq6qlrsPt4QI2CKlgCuPXWW3n++ed58cUX2bFjB4sWLeLgwYNcf/31gLaE9rvf/c59/vXXX8+BAwe49dZb2bFjBy+++CIvvPACixcv9tWXIIQQPlFqqQcgLsIzO6liw0zO+0qw1Kafn4Mv7oLivZ2+RWNyd4AuwTnFhhkJMWqhSUFFnY9H0yioluEALr74YkpKSvjrX/9Kfn4+Q4cOZfny5fTq1QuA/Pz8ZjWXsrKyWL58OYsWLeLpp58mLS2NJ554gvPPP99XX4IQQvhEqUXbARwX7pk0g7hQPWHUUVbjX9WY/YrdBiX7tI87Wb1bVVU2uJvnBuhOOACHHeXtK/jEuIPzG+4it7yWTD9ZUgy6YAlg/vz5zJ8/v8X3XnrppWOOTZ06lQ0bNnh5VEII4d9cM0sX17wJz94G466FMVd27ma//Jdxn93O340Tudey0HODDDZl2eBoAGMYRGV06hbNm+d2vq+cz+n0cHAN/RylpCklfrUjLuiW4YQQQnSOK2epp+MwFPwK9V2oIRcSg6Jq1Zgrahuw2R0eGmWQcfWES+gHus59S3YtwY3I8GzzXJ+IcdVaKuKwHyV5S7AkhBACaNwNF2vXikl2qiCli7M+U4qifSMv97PGqH7D1RMucWCnb7Eux1lfKVCLUTblLEyZppT4VcsTCZaEEEIAjYnYkTZnsBTZiRpLLs7ClMk6LViSwpStcM8sdS5fCYInuRtoUsXbvwpTSrAkhBACaAyWwuuLtAORqZ2/mbOYZTh1RFAjO+Ja4wqWOtkTrtRiZX+gNs9tSdMq3n40sxSUCd5CCCE6rtRiJZQ6DDbtm2+nqne7mCPAHAX1lSQrZVJrqTVXfgLFeyC+d6cub9o8NzbQmue2JKZxGS6/ohaHQ0Wn833dKJlZEkIIAWgJ3klKufaJMRzMkV27oXNmKlkpcyePi6OEREHGGK1FTCesc/aDC9jmuUeLzkA1htGAkQa7SlF1va9HBEiwJIQQAmiwO6iqsxFGPfbYPhDfp9N9ytz6nsam6BlUqmGSs+Ql63Nc9ZWCYAkOIG00yh/zuC3s7wAc9pO8JVmGE0II4Q5mdtEL5ab14ImljzMe4HN1J1uP7GO8JQh2w1lr4MPrIaYXzPgL6Lv4LXT7x5D9LfQ/A/qd1uHL6xrs/OpqnhvIxSibcgboaTEh5JbXklte6xe5WO3+k/711187fPPBgwdjMEg8JoQQ/q7UmVMUG2byaI5IXLjWYzMocpbKD8D2j8AcDbP+1vX77f0aNrwMoTGdCpa25lZgtWvNczPjw7o+Hj+SHhPKWsr8pnxAuyOZkSNHoigKqqq263ydTsfu3bvp3btzSWtCCCG6T2m1M1jycJJwbKieKCzBsRuu7ID2a2xPyP8VNr0BZzzY+eXK4t3arwmd2wnnKhkwJpCb57Zk5YPcdfB9rLozyC3r5evRAB1chvv5559JTEw87nmqqjJ06NBOD0oIIUT3ciVg32Z7Hp69G6YshiHndu2mu7/gguWX0MfUm3tr/t31QfpaubOvaGgcLJ0N1ipIGwkjLunc/dxlAzpXY2ldsOUruVQeJrlmN72VEWwPtJmlqVOn0rdvX2JiYtp1/imnnEJoaGhnxyWEEKIbuZbJstRDULAFbB7YhRQah6I6SFLKg2Nmqdw5s5QyDHpPg2/ugy/uhn6zIKyDOUOWYqgtBRSI79fhoaiqyoaDrpmlIMlXconuCWi1lr72k2Cp3bvhVq5c2e5ACWD58uWkpnahoJnoPFWFbR9ie3oitufP0JIShRCiDSXOZbg4h/YNuEvVu12inKUDKKPcUtf1+/laWY72a0wvmLhAa1FSUwzf/LXj9yra6bxXTzB1PN9of7G2tBnwzXNb0rQwpZ/shvNI6QC73c6mTZsoKyvzxO1EF9j2f0f5k1Phf1diKNqO9fBGKnJ3+npYQgg/55r5ibIVawe6Ur3bJSIZFQWjYsdsLaeuwd71e/qSa2YpthcYTDDnMe3z9S/BobUdu1cXK3e7SgaMzIgJ/Oa5R2sSLFXV26jwg76CnQqWFi5cyAsvvABogdLUqVMZPXo0PXr0YNWqVZ4cn2inw7s3sufxszC8chYxpZupUc18Yx/FrPp/8OivQVDVVQjhVaU1VsxYCbFXawe6Ur3bRW+EcC3PNVkpo7zG99/0uqTqiPZrjDPpOHMyjPwtoMKni8Bua/+9Kg5pv3ayJ5yrGOWYYMtXgsYq3roSQPWL2aVOBUvvvvsuI0aMAOCTTz4hOzubnTt3snDhQu6++26PDlC0rq7Bzocbc1m05H+kvj6dfuXfYVN1vKvM4vnR71N27mscVhN5/eeD7D5S5evhCiH8WGm1lSTFuTpgCIWQaI/cV4lMAVxVvP2jGnOn3bYLbt0B8X0bj838K4TEwJEtsOWd9t/rtHvh9myYvLBTQ3End/tBDSKPi0oHIBQrcVT5RfmAThVBKi4uJiVF+wewfPlyLrzwQvr3788111zDE0884dEBimPtyK/knV9yeH9TgXN6MoyzjCOJjgyndsrdnDN+Aka9Fgd/tb2AL7YV8PXbT9FvGCjT7/Lt4IUQfqmsxkoyTfKVPLUVPSoNCn7V+sMFemFKnU77epoKT4AzH4b6Shh+ccfu19GkcKeS6nr2FwdR89yjGcwQm0V+tZ2oeotfNNTtVLCUnJzM9u3bSU1N5fPPP2fJkiUA1NTUoNcH2dqpn6iut/HJ5jze/XkfIwre4xrDZ3xa/1fSY1K5aGwPBo38kLSEmGOu++PsQRTuWsP80odQVyvQeyr0mtT9X4AQwq+VWKzEKA7qo/tgjs/y3I0zp/DDoTpyrQnuwpeBLLe8Fku9jf7JTfrmjehgkNRFrua5fZMiiAkL0jSLWzbxn0+2kfNDTuAGS1dddRUXXXQRqampKIrCzJkzAa0O08CBAz06wBOZtjW0nLfXHmTZr7nMsH3Pvwzv0NNYBMC7Y7eTcd5l6NuottsrPpzxk07j7R+/5mLDKtSPbkS5/odO7b4QQgQnVVUps1j5yTGY0qt/IDXag2VfJi3g9eyJfFdWwGmBXD5g89uou5bzzK4sXrOMY86wVO44YyA9j66c3VCr1WNqK3G7YAt8fS/0OAmm3t7hobiCpaBcgmsiPUb7exiwwdK9997LsGHDOHjwIBdeeCFmsxkAvV7PnXfe6dEBnshueG0Dn28rYJJuK28Z3mCYKQcAe3gy+lP/SK+Rl7erf9ONp/Zl7rqrmGL/lbTS/do21zMf8vLohRCBorLOhs2hdWeI9cJMheueAV1r6dDPKNs/JMV2DjCOZVvy+Wr7EeZNzuTG6X2JDjVC4Q548xKtfMv8n1r/obRgi9bqxFbfqWCpaeXuYJYR6wyWAjHBu6GhgenTpzNs2DAWLVpERkaG+70rr7ySc845x6MDPJGN7RXDC+ZHecP0AMN0OaimSDj1T+hv2Qhj5rW7iWNUiJE/nD6aOxuuA0D9+VnI+cGLIxdCBBJXEBNu0hNi9HwqRXyYjjgqA7s/nLNswCE1iaRIM1P6JWC1O/jPt/uZ9s+VvPxjDg2R6WBv0M797tHW79WFsgF1DXa2BFvz3Jbs/oKpKy/gYcNzfjGz1OFgyWg0snXr1uDqQ+OnLjmpFyePGwc6I4z/A8otm+CU/wNTeIfvdfG4HhQmncxbtmkoqPDRfLBaPD9oIUTAcQVL/zY+Cc+eDPtXee7mR7azcM3JfGm+PbBnlspcwVIiQ9KieOXq8Sy9ahx9kyIoq2ngLx9v4/QlG9g01LmJ5od/NwZFR+tCTzhX89yEiOBrntuMw05oyVYG6A5RVFXv8xpdnSod8Lvf/c5dZ0l4T4TZgPnUO2DBLzD7YW3XRSfpdQr3nDWYv9suJ0+N1yrR7vnSc4MVQgQsVxDTD2erE9XhuZtHJKHDQYJSSaUlQH9AczjcfeEOqYlkJUSgKArTByTx+S1TuP/cocSHm9hfZOHcFbGsN58EjgZYdpu2JHe0LswsBW3z3KM5C1NmKFqR1IIK31aA71TOktVq5fnnn+err75i7NixhIc3n+l47LHHPDI4gba1tJPbS482qW8CEwZncevOGxiZEcWdQ37jkfsKIQJbqbP+UbyqFTr0SPVul9A4HDojOkcDSlWh5+7bnaqPgL0eBzry1XiyEhpndAx6HZdP6MU5I9N4ZtU+nv8+m1sqL+Mr00ZCc76j/KfXiJl4ReO9GuqgLFv7uDPBUo72ZzQ22PrBHc0ZLMUrlZixklteS2ZCx1dVPKVTwdLWrVsZPXo0ALt37272XlBHukHgj7MHMWtXIT8dVDlpVyHTByT5ekhCCB8rtTRgooEIh7N4rSeqd7vodNjCkjFVH8ZYc8Rz9+1OznylQiUBGwayEiKOOSUyxMjtZwzkspN68s8vdvHvLedxp/Et7J//kSVlA7lyxijCzQYo3afN3JmjO/z7rKqqeydcUFbubio0FkwRYK0mTSnxeZJ3p4KllStXenocoptkJYQzb1Im//0um/s/3c7J8RaM2d/AuGt9PTQhhI+UWupJUsq1T/Rm7RuVB6mRKVB9mJC6QlRVDbwfqi3FqHoTOQ1aKkRWYuszHBmxYfz7klFsnvA3Dr36IzutCSz9dhcvbaxg8awBnB9biD4kWmtz0sHfh31FFspqGjAbdAxN80yFdb+lKNrsUtFO0pRinyd5dypYEoHtphn9eH9DLpVFufDMpWCv0RINs6b4emhCCB8osVhJ8kb1bidDdBrkQ4JagsVqJ8IcYN96Bp3FwRv28/tHPsNs0JEaFXLcS0ZkJqHe9i1b99UR+tlODpbWcPt7v7I0NYpThn9OaoidqA2HiY8wEx9uIj7CRFy4qc2muOud/eBGZMRgMnQq5TiwRPeAop2kB2qwZLFYeOihh/jmm28oLCzE4WieDLh//36PDE54R1SIkVtn9efuD6x8ZJ/EBXwNH90IN/wI5mOnl4UQwa3MYiXRNbMUkeLx++ujtRYhWssTa+AFS0B2SS2VhDMgPhxdO+rbAShhsZw5DE4dlMSraw7wxDe72ZFfyY78SucZB4+5JjLEQIIzgIoLNxEfYSYhwkR8uImvd2g5X0G/BOeS0I+qgn3YS/XkBeIy3LXXXsvq1au54oor3FW8RWC5eGwPXl1zgL8UXMppUVuJKT+gVZSd84ivhyaE6GalFispKFRH9iaiaZNYT8kYxxdrt7HD0YtJFis94gJvy3u2sxdbVieSjM31ZVxb/E8umz6IN3RnkV9RR0l1PSUWKyXVVkos9ZRUW7E5VKrqbFTV2dzPa0mwV+52O+NBtvdfzHv/+YmegTiz9Nlnn7Fs2TImT57s6fGIbmLQ6/jzWYP57fNV3GS5hleNf4e1/4VBc7X+cUKIE0ZpjZXNjnH8/oJbvFMVetgFPLEymW15lfwmEAtTvnkZY4/Uksa5ZCX26fj1uz6DzW8QZorg2ug3IC4Lzn0GQmPcp6iqSmWtjWJn4FRSXU+xxUppk2CquLqepKgQTu7X+TIygSbdWcU7v6IWh0Nt96yep3UqWIqNjSUuLsi3LZ4AJvdN4LRByXy9A1bEnsWp1Z/CxwvghjWyHCfECaS0Wgtg4sK915TVde+yQCtMaW+A3Z8xTHVg4/xOzSwx8rew4RU4/AsU7dBKB5gjm52iKArRYUaiw4z0SfTQ2INASlQIOgUa7CpF1fUktyNfzBs6lSH2t7/9jXvuuYeamhpPj0d0s7vnDMKoV7ip+DfUhadrhdfWPO3rYQkhukldgx2LVauO7M1gKT5URzKlgVfFu+IwqA7qMVJEdOeCJZ0OzvoXKM7k7fh+oPN8W5mgYynB8N+p/Gy+EQUHh32Yt9TumaVRo0Y1y03au3cvycnJZGZmYjQam527YcMGz41QeFVWQjhXTszk+e+z+ZN6PQ9PLkN38kJfD0sI0U1c/dpeNz1A1EsPwDlPQdoozz7EauFfu2eihKg8XrXCs/f2NmeNpcOOBFR0nQuWAFKGwsT58OOTkDbSc+MLZiHRcGQriThIpIK88lqfNQ9ud7B07rnnenEYwpdumtGP9zYc5t3SPgyPGMLvDGZfD0kI0U1KnEtwg3QHUY5Uar0oPc0UToM+DJPdgr28wPP396ayxga6kSEG4rsy+zbjXsgYD70k37dd9AaITIPKw6QrxT5tedLuYOkvf/mLN8chfCg61Mitswbw5w+38thXuzlnRDrRZgX2rYD+s3w9PCGEF5VarBixEYdzO7snW500URuShMmSjVKd75X7e41zZumgmkRWQnjXdn/rDTD4bA8N7AQRnQGVh3n9wnRCR2X5bBhdrmq1Z88evvnmG/bu3euJ8XRaTk4O11xzDVlZWYSGhtKnTx/+8pe/YLW2vT4+b948FEVp9powYUI3jdp/XDquB/2TIyivaeCpr7bBCzPhjQthxye+HpoQwovKaqwkUKF9ojN6rBfl0RrCtNYeRkugziwldn4JTnReTA8AwmrzfFqmqEPB0kMPPcSKFdp6c1lZGaeddhoDBgxg5syZDBgwgDPPPJPy8nJvjPO4du7cicPh4LnnnmPbtm3861//4tlnn+WPf/zjca8944wzyM/Pd7+WL1/eDSP2L65SAgBLf86jIn6E9sbbV8B3j7XcOVsIEfBKqq0kK87q3RGer97t4ojUil2a6wKsma6jAZti4JBzZkl0M2dDXSoO+3QYHQqWnnnmGRIStPoOt99+O6Wlpaxfv56amho2bNhAeXk5ixcv9spAj+eMM85g6dKlzJo1i969e3P22WezePFi3n///eNeazabSUlJcb9O1LIIU/olMmNgEjaHyuLKi2D0lYAK39wH/7sS6qt9PUQhhIeV1VhJUpq0OvESfZRWxTvCWuy1Z3jFRa/w26SP+NoxWoIlX4jWZpYoP+TTYXQoWDpy5AjR0Vrzvq+//prHH3+cUaNGERISwogRI3jqqaf8alamoqKiXYHPqlWrSEpKon///lx33XUUFgbYTz4edPecQRh0Cl/tKmP1wD/DWY9rU/PbP4LnT4OSfb4eohDCg0os1sYmul7KVwIwxaYDEGMrwuEIrJnqfSV12DBIsOQLcVla02FnsO0rHQqWevXqxdatWwGtgJbB0Dw/XK/XY7G0XqK9O+3bt48nn3yS66+/vs3zzjzzTF5//XVWrFjBo48+ytq1azn11FOpr69v9Zr6+noqKyubvYJF78QIrpyUCcD9n27HNupKuGq51i+qaAe8e5UsyQkRREqrrdRjpDy8N8T19tpzQjJG8KF9Ej86hlBZ1+C153haVV0DxdXa94NMCZa6X59TYcFaOOsxnw6jQ8HSddddx//93/+xd+9eFixYwOLFi9m3T5tpyM7OZtGiRcya5dndU/fee+8xCdhHv9atW9fsmry8PM444wwuvPBCrr322jbvf/HFFzNnzhyGDh3K3Llz+eyzz9i9ezfLli1r9ZoHH3yQ6Oho96tHjx4e+Vr9xc2n9iM2zMiewmoWvLGRbfoB8PtV0Hs6nLPEazkNQojuV1pj5X/2aXx/+jKY9TevPcfYZwp/1i3kNfvMwClMuX8V+hdmcLvhLRIizESFeKGsgggIHWp3snjxYg4ePMjgwYPp06cPOTk59O/fH4PBgM1mY/To0bz55pseHeCCBQu45JJL2jwnMzPT/XFeXh7Tp09n4sSJ/Oc//+nw81JTU+nVqxd79uxp9Zy77rqLW2+91f15ZWVlUAVM0WFG/jh7EP/37q98vq2Az7cVMLlvPNdN+Q9TkxNxh0p7v4Ee448p2y+ECByuwCUuzHvVu11iw01U1dvchTD9XtEuwoo201sx0VtmlXxPVX32w3qHe8M98cQT3HDDDXz66afs378fh8NBamoqkydP5rTTTvP41r6EhAR3Uvnx5ObmMn36dMaMGcPSpUvR6TpeGaGkpIRDhw6Rmtr62r3ZbMZsDu7CjReO7cGAlEj++102y7fk88PeEn7YW0L/5AiuPbk35yYcwvTGxRDfBy55Q/tViM4qywGbFRL7+3okJxxXr7a4CO8HS4lhOqylJZRVWoAA2EjTpGxAZkKYjwdzAnv3Gtj3DZz3X+g30ydD6FCw9OWXXzJ9+nQGDRrEoEGDvDWmTsnLy2PatGn07NmTRx55hKKiIvd7KSkp7o8HDhzIgw8+yG9+8xuqq6u59957Of/880lNTSUnJ4c//vGPJCQk8Jvf/MYXX4ZfGZ4Rw5OXjuKOMwaw9Icc3vrlILuPVHP7e7+yPPwATxuiCS/aCf+ZDuf/F/qf7ushi0BktcB/T4WaEhh3LZz+AEgV+W7hcKiU1Vj5wnQ7vd+Lgktf92re0gtl84gJKeXLI+/CsACYjS9vWmNJmov7TM8JkDQIYn1XlLJDwdL1119PaWkpp59+Oueccw6zZ88mJibGS0PrmC+//JK9e/eyd+9eMjIymr2nNklI3rVrFxUVWgE2vV7Pli1beOWVVygvLyc1NZXp06fz9ttvExkpS0suGbFh/Pmswdw8ox9v/XKQpT/ksKqyF9O4j+fM/2Z0/W7UNy5GmX43TLlNaxopRHvt+UoLlABK9oLe+zMcQlNe24Ci2umn5KIrOgwm7wYEFmM8MfZSbJV5Xn2OxzRpdTJJluF8Z/x1vh5BxxK89+/fz7fffsuwYcN4/PHHSUlJYcaMGTzxxBPk5OR4aYjtM2/ePFRVbfHVlKqqzJs3D4DQ0FC++OILCgsLsVqtHDhwgJdeeimo8o88KTrUyB+m9uHb26fzr4tHkJjai4vr/8SrttNQUGHl/ZS9dDHUV/l6qCKQuKrE950JZz/ZmJNQXy21vbys1KJV79YpKih6CGtfykNn1ZoTtQ8qA6DliaqiNplZ6p0owdKJrMNTAMOHD+dPf/oTv/zyC/v37+fCCy/k888/Z9CgQYwYMYJ77rnnmN1pIriYDDp+MyqDZTefzEvXTubr3ndwe8N11KsGYg9+yX+eepDPt+ZjD7BaKsIHbPWw+wvt46l3QEzPxve+/BM8MwlyvvfN2E4ApU1rLEUke31WuN7Z8kQfCC1PastQ6rWyMLkk0jNOcpZOZF36l5GWlsb111/P8uXLKS4u5s9//jM5OTmcccYZPPDAA54ao/BTiqIwuW8CL189nmtu+gvP9X6K1+yzeKBoEte/toHzn/mRuga7r4cp/Nn+VWCt0jqLp49pPF5Xoe22LD8AL82B5f+n5TYJjyq11De2OvFi9W4XNdzZ8qQ2AAr/1pZRF9mLPDWOuOgYQox6X49I+JDHfowIDw/nggsu4JVXXqGwsJDrrvP9GqPoPgNSIrn5ykuZdfurLJjejzCTnk2Hyvl+d9HxLxYnLtcS3KC5zWc1QqLhhh+cLXeAX/7jnGX6ofvHGMRKLQ1NZpZS2jzXE5RoV8uTAAiW4vvw8dRlTK5/QpbgRMdLB7hYLBZWr17NwYMHsVoba2YoisJNN91EYmKiRwYoAktSZAiLTx9AVPFG+u1cgrJ6GAx52tfDEv7qjAe1Cr2JA459LyQKzn4CBp8DH9+slRd4aTacdD3MuAdM2jew1buLuOG19fzf6QO4arLvdssEouYzS94PlowxWrAUZSvx+rM8IbvYgopO2pyIzgVLGzduZPbs2dTU1GCxWIiLi6O4uJiwsDCSkpK46aabPD1OEWAmpjgYtmczpYXZqA2PohhDfD0k4Y/MkTD0vLbP6TsD5v+o5TBteAW2/A+mLAZTOHaHyt8+3U6N1c6Dn+1kav9EeifKFu/2KrU0oKihFIVmkejFkgEu5uT+fGCfzGEyCISKWjnF2tJvZrwESye6Ti3DLVq0iLlz51JaWkpoaCg//fQTBw4cYMyYMTzyyCOeHqMIQP1OPp8CNY44Ksld8z9fD0cEupBobafc5e/BOU9DhDZz/cnmPA4WajMjVpuDuz/YeswOWNG6Uks9L9jn8MHE92DyzV5/XmT6QBY13MijdefQYHd4/Xld8v7vuTn7BibqtpEly3AnvE4FS5s2beK2225Dr9ej1+upr6+nR48ePPzww/zxj3/09BhFAAoxm/k5Zg4AyvqlPh6N8DsOB7xyLqz+Z8dKTfQ9DQacCYDN7mDjFy/xpel2/jikjBCjjjX7S3hvQ653xhyESlzVu8O7pwhodKjRXRmivMa/m+mquRsYZN+FgiqtTkTngiWj0ehua5KcnMzBgwcBiI6Odn8shH3UFdhVhfSK9VC029fDEf7k0M+wfyX8+CToO/eN+v0Nh7mw5h0ydUe4bt8Cfoj6E08Zn6Do0/uo2vA/KNrl4UEHH1ePtvjw7ikEqtcpJIbqSKWE8oqybnlmpzgcUK59L8tXkkmPCfXxgISvdSpYGjVqlLuW0vTp07nnnnt4/fXXWbhwIcOGDfPoAEXgmjByON84RgNQ99PzPh6N8Cs7PtZ+HXAGGDr+jdpqc/DEir1cZr2bXalno6ASb9nLWfqfuEF9h8iPr4V3rmx+0drnYet7cGSbVt9JUF5Vy1rzDUz4Yi7Udk/w8iL3sibkJhx7vumW53VK9REUez02VYc+tgcGvXQlONF1KsH7gQceoKpKmzr/29/+xpVXXskNN9xA3759WbpUllyEJi0mlKej5jLLsh7dr2/CGfeBUX5CO+GpapOSAWd36hb/W3+Iw2W1JEbG0fOql6C2AAq3c3j3Bn786Qf6KbmkRQ3FXTnI4YAv/wwNNdrnik7rgZY4UNuJl3UK9J7WxS8s8Ci1xSTqK1DLq8Ac1S3PrDbGQz3Yyv245Ymzcne+Gk9mYvf8vgj/1uFgSVVVoqOjCQsLw2azkZiYyPLly70xNhEEYoadzpc/fEJx8nQuQ/H+A+sqtP/08zZARS4M7tw34xOOqkLxbi2R2ttbyPM2QsUhMIZrO906qK7BzlMr9gIwf1ofQk16MKVDdDoZ/WaypWErt/90gKwj4XzWYNeKCdpqYdgF2tJc4U6or9D60JXshZ2fwnePwi2bITbTw1+s/6qx2oiylYIe1LBEFF33FF20mJOgHqjy45YnZTmAq4Gu5CuJDgZLOTk5nHPOOWzduhWAHj168P777zN69GivDE4EvlMHpXD+qtuIOmLgIp2p84W92qO+Cp5w/l2sKdb6XA2cA930TSAg1VVqW/HXvwQFv2qFCW/e4K5h5BWuJbh+Mzs10/j22kPkV9SRGh3CpeN7HvP+/50xgC+2FZBdbGHJyr3cOmuA9vWc/aR2gqpC9REo3KEFT6X7YdICiMo45l7BrKTa6q6xpER5v8aSizUsGSpBV+3HLU+aNNDNSpBSFKKDOUt33HEHdXV1vPrqq/zvf/8jNTWV66+/3ltjE0FgZI9YYsOMVNbZWH/AyzkRa1/QgiRTuDa7VFMMB3/y7jMDkapC7nr4+CZ4dCAsu1ULlACqC2DXZ9599nZnsDRobocvr2uw8/RKbVbpxul9W2xBERVi5L6zhwDwzOp97C08aredomizZ32mw4TrYfbDWk86L/dF8zdlNY194ZRuqN7tYg/XFkfNtUe67ZkdZjCTpySTo6aQmSA94UQHZ5a+++473nzzTaZOnQrA+PHj6dWrF7W1tYSGSi6KOJZepzBtQBJfb9xD+eolkBcJJy/0/IOsFm1nFVA14Tbs+78lZve72hJL5mTPPy+Q2a3w6nlQV659ntAfxszTGqlGpUPPCd57dkMtpI3Slkv7n97hy1/76QCFVfWkx4Ry0dgerZ53xtAUZgxM4pudhfzx/a289fsJ6HTdsAwcQEosVpLpvurdLkpkKgBh9f7bCqlh4s1MWd4fu0PlSplZEnRwZqmgoICBAwe6P8/IyCA0NJQjR/z4JwThc9MHJjFUl83pBx6BbztYV6e91i2FmmLU2Ewu/aknt29zLs/s+ESbzQgANruDv326nXfWHfLcTV2zSF/f2/j7YDBrwdGwi2DecrjxF5h4o5bT02si7kI43mAKgwtegMW7terdHWCpt/HMqn0A3DyjLyZD6/99KYrCX88dSphJzy85pW3/nlbkwoq/a79HJ5DS6saZpe4Mlgwx6QBENfhvsHSotAa7QyXUqCc5qntqUAn/1qFgSVEUdEdNVet0OqmYK9o0tV8ivzCEfY5UsFbDlnc9+4CGWvjh3wBkD7qerQU1rLYPp0EXoiUS52/27PO85MvtR3jh+2xuf/dXPth4uGs3q6vQtso/NwX+eyp8/y/I+b7x/Zn3wfn/1WbdWgqO6iq8G2R2Io/s5TU5lFis9IoP47zRx88vSo8J5daZWlONB5bvoKiqlXIB1mr49mH45fmACaw9oazGSjFR5JsyuzWxPSQ+nQ/sk1luPhMc9m57bkdkO9ucZCWEu2sKihNbh4IlVVXp378/cXFx7ld1dTWjRo1qdkyIpqLDjIzpFccb9lO1A+te9Ow3pfUvg6UQonvybNk4AOoxsc7gTPbe+annnuVFH29q3Ep9+7u/8tP+DjYbVVU4vA4+utGZi3QbFGzRij4OvxjCE9p3n6/vg0cHwYEfO/b846ku1GocdeLPvqqugf98ux+AW2b0w9jOujfzJmUyJC2Kyjob9y/b3vJJsVmg6MFa5d87tDysxGLlX7YLeW7oGzDysm57blR0HIsabuRfXO6fmy9Ks5n4wUTeMN4vO+GEW4dylqSGkuisUwcm8Wz2KdxhfAdTwa/a1v70MV2/sarCxtcAqJtwM58sL3a/9Y5lJBONP0LOD11/jpdV1jWwYlchAGN6xbL+QBl/eHU978+fRJ/2Nobd+Sm8fXnj5wkDYOxVWqAU1oEfYmrLoMECPz7h2XyvTa9rS10jfwvnLunQpUt/yKG8poE+ieGcMzK93dcZ9DoePG8Y5z79Ax9tyuP80Rmc0j/xqJNMEJellREo3g1RaR0aW6Aqs3Rv9W6XeGdrFVf1cL9TlkOYtYQkxSzBknDrULB05ZVXHv8kIVowY2ASD30WyWeOkzhH9702u+SJYElR4JovYONrfGifTm3DLnonhmPS6/i6YDTfT3+Zk6ef1fXneNmX245gtTnomxTB69eexGX//YkNB8u5aulaPpg/ifiIduRNDJijFVaMSNFyknpO6Fz+0aSbtFICuz/XahIlDTzuJe3iKkTZwT/3ipoG/vudNqu08LT+6DuYqD08I4YrJ2Wy9Icc/vThVr5YeIpWm6mphAFasFS0+4QpTunuCxfRvcFSbLgRAzZirMXUF+7FnNS3W59/XOWusgFSY0k06tJeWavVyuHDhzl48GCzlxBH65sUQUZsKK80OIsQbnkPass9c3NTOJz0B97cqG00uHhsD6YOSKSKMN4vyQS9V6s7ecTHm7UluLNHpBFi1PPf342lZ1wYB0truPaVddQ1tJDbUZkHn9yi7QQEbev7FR/Cec91LVE7vo9WnwpgzZOdu8fRKg5rieYoMLBjwevz3++nqs7GgORI5gxL7dTjb5s1gNToEA6W1vDkij3HnpDQT/u1+MTpYVhVks8G8+85e81FWoXzbhJhNvCw6Xl+DLkZ85IxzmbK1d32/ONqUmMpU4Il4dSpYGn37t1MmTKF0NBQevXqRVZWFllZWWRmZpKVleXpMYogoCgKpw5MYr3an7yQflrl5rqKrt20/JA7/2VXQRWbD5Vj0CmcNzqDqc6llm/3FOFwqH6duFtSXc8Pe7Xlw7NHaEtA8RFmll41juhQIxsPlnPrO5u0rwO0r2XTG7BkgjYDtOL+xpt5Khl18i3ar7++A1UeKB7omlXqOREik9s+t4lSi5UXv88GYNHMfp3e/h9hNrhrL/3n2/3sLKhsfkKClghO8YnRfFdVVaxlucQp1YTWF3drjSlFUXjH9Bu2OXppB1beD0+Mgl/+CzbfL83ZSnMAbWaptwRLwqlT/0KuuuoqdDodn376KevXr2fDhg1s2LCBjRs3smHDBk+PUQSJUwcmAQoX2e9Hvfg1iO3V+ZvZG2DpbHj2ZCje694afurAJBIjzYztFUe4SU9JdR2l7y2Cx4dBpX8m7y7fko/doTI8I7rZT7J9EiN47ooxGPUKy7cU8I8vdmpfw5uXwIc3aMFm2igY/TvPD6rHeOhxklaT6efnun6/ThaifO7bfVisdoakRXH6kK5tb581JIVZg5OxOVT++P6WxuATtP5w4G5zEewKq+qJsmkbCPTdWL3bpTyiL2dZ/87Oyf/SduJZCmH5Ynh6HPz6v26d6TpaQ7EWnJeY0ojt5nwu4b86FSxt2rSJ5557jjPPPJORI0cyYsSIZi8hWjKhdzyhRj2Hq+xsz688/gVt2fwWVByE6kKs4Sl8sDEXgIvHaYUKTQYdk/omoKKj4dB6rYSAn+6Ka7oEd7QJveN5+ILhgErhdy9jfWKclkukM8KMe+CaryFpkHcGNulm7dcNr2jBaWdVF8LBNdrHHQiWiqrqeeVHbUnk1pn9PbKF+75zhhBhNrDhYDlv/NIkZSBlGNy0AW7a2OVnBIL9RRaSXK1OIju3tNkVsWEmVHTsSjwdblwLsx+B8CQtWHWWAfEVXYWzJldMF36YE0GnU8HS4MGDKS4uPv6JQjQRYtQzuW88ACt3FkJpdudqLtlt8N0j2seTb+brvVWUWqwkRZrdy28A0wZoH3/l0MoJ+GOwlFtey9qcMhQFzhre8i6s34zK4LUBP/Iv0zOYbFVUxQ2FP3wLU27zbj7WgNlw6p/gD6tBb+z8fXYtB1RtFiym9arbR3t29T5qG+yM6BHjnJXsutToUBbP0pbc/vH5Tgor67Q3DGYtVysA8ts8IafEQhLl2icdWBb1lDjnjM2Pe0tw6Iww/jq4ZZP2923WXxuXBa01WjmM7mK3URjam4OOREISJaVENGp3sFRZWel+/eMf/+D2229n1apVlJSUNHuvsrKLMwYiqJ06UPuPeefWDfDESPhwPlg6WE9oy/+0n0DD4mHs1by9VvtJ8IIxGRia1N9xBU5LS7RcFXK+17bF+5FPnbNK4zPjSIkOafW8yecvoFIfxz8bLmJKyR/Z4eiGpq86HZzyfxDdxWeNuAx++x5Mv7vdlxyprOO1nzw7q+RyxcRMRmREU1Vn475PW6m9FORyii2N1bu7sS+cy3Rn8Pv2ukNc9dJarYyBKVz7+9bn1MYTf34Gnp8Bb/1Wa3rsbXoD/05/hFOs/yY1uft/X4T/anewFBMTQ2xsLLGxscycOZOffvqJGTNmkJSU5D7uOkeI1kwfqAUwy/LDsSUPB3s9bH6j/Tdw2BtnlSbdRF6Njm/3aG0Tju4VlhEbRt+kCLLVFCqj+oHDBru/8MjX4SnuJbiRR80qVR2Bn//j/lSJSiPktl9Z3+tqyuvh6pfWcsQ1K9JdGmo7d53BBP1Og34z233J0yv3Um9zMLZXLKf0a2cxzXbS6xQeOG8Yep3Csl/ztVlOgD1fwXvXaonGQS67abDUja1OXC4Yk8FjF40gxKhj9e4iznryezYfKj/2REsJKDptVnjJBPjwRm1npRe5q3cnSnK3aNTuYGnlypWsWLHC/Tr686bHhGhNanQog1KjUFWFX1PO0w6uW9r+hM5tH2j1cEJjYdy1vLv+MKoKJ2XFtbjN1zW79It5knbAtSvLD+wrqmZbXiUGncLsoc68EVXVElyXnASf/R/s+sx9vikskucuH0ufxHDyK+q4+qW1WOpt3h9oaTa8fiG8eHq37CrMLa/lrV+02cJbZ3l2VsllSFo0V0/OBOBPH26lxmqD0v3arOX+VR5/nr/JLraQp8ZjierTra1OmjpvdAYfzJ9MZnwYueW1XPjsGl7/+UDz9llnPAA3rNHKTagO2PQaPDEavrgbako9PyhVbdbqRAiXdgdLsbGxTJkyhalTpx73BbBt2zZstm74j1wEnBnOKfjXLOPBFAml+yDn2/ZdvGu59uvEG3EYI9y74FyJ3Udz5S29XDZUO7D3Gy0Pwg+42ptM6Zeg7bqx2+Ddq+D9a7XlwpThEN3864oOM7J03njiw01sy6vkpjc3YrN7eedQSLS2hJm/ueOBxLLF8OWfoLz99deeWrEHq93BxN7xTOrj2VmlphbN7E96TCi55bU8/vWeE6bWksOhcqC0hr/afkfJld93aMbP0walRvHxTScza3AyVruDuz/Yym3/20yttUldsaSBcMnr2maGXidrs9FrntKCd7tnv8fUL7uLz23XMk//OZnxEiyJRu0OlkaNGkVJSftzSyZOnCgFKkWLXPkKX+2txj7sQu3guhfbd/H5L8Clb8P437NmfwmHy2qJNBs4c2jLO3rGZcYRatTzXXUaltSTtMrWnV1O8iBVVfnk6CW4HR9rM2c6o5bfc90KSBl6zLU948N4/sqxmA06Vuws5K+fbvduM+uwOBjlbKPy4xPtv66+SttJ9+OT7S46eLCkhv+t05ZZbnMmYntLmMnA387V8tle+D6bQrNz91Pp/q7t/vNzeRW1WG0OjHqF9NhQXw+HqBAjz10xhjvPHIhOgfc35PKbJT+Q45zhcesxDuZ9Cr99V9upecGLHu8tV1u0nySlnPAQI+HmEyPZX7RPu/82qKrKn//8Z8LCwtp1vtXq++Jiwj+N7BFDXLiJUouVbannM5wXYecyLU/neDtzFAUGnAHA22u1bd5nj0w7tn2FU4hRz8Q+8azYWcgrA57hhml9PPq1dNa2vEr2F1swG3TMHOzMGdn8pvbr5Jth6u1tXj+qZyyPXzyS+W9s4JU1B+gZF8a1U3p7b8AT5sPa52HfCijY2mIQd4w9X2qzAHF92l3e4IkVe7A5VE7pn8jYTO835T51YDJD0qLYllfJutJQZhvDtb54pdmQ6N1gzVe0ZSaVnnHhHW4d4y2KonD91D6MyIjhpjc3sLOgirlPfc+jF45gVtP6WoqizYR5azbMWWfLEd3TO/cXAavdM0unnHIKu3btYuPGje16TZw4kdBQ3//UIvyPXqcwzZlLtKwwHjLGgzEcjmxp/aLiPdpMhVNFTQOfb9MqS7e2BOfiyltavbuwiyP3HFdi92mDkokwG7RAce832psjLm3XPc4clspdZ2p92/6+fAefb/VApe3WxGXBoLO1j39sZwsUVyHKwWe3q7L4/qJq3t+gzSrdOrP7ApXhGTEAbMmrPCGW4nKKLZyp+4VPLJfBBzf4ejjNTOwTz6c3TWFMr1iq6mz8/tX1/OPznd5fagZQVUIt2t8/U4IXf/AQAandM0urVq3y4jDEiWb6wCTe35jLNzsLuevKZyEyFUytzFqqqpbLU3EYLnoVsqbw4aZcrDYHA1MiGZYe3eazXHlL63LKqLLUEHnkF227tKcaxHaQw9G4BDfXVYiyZC+EJ0BMz8Zv2O1w3ZTeHCip4fWfD7Lw7Y28FT2RkT1ivDBqtBmv7R/C1ndhxp/bLinQUKvtLoN2F6L89zd7cKhaTpvXvoYWDEuP5k1ga26F1vYkf1NQB0vZxTX0UAoJc1i0Cu1+JiU6hLd+P4EHl+/kxR+yeWbVPjYfKueJS0eR0LSh9Nb3td2tp/0FolquUdYhtWWY7drSX1SqBEuiue5rCCREE6f0T0SvU9hbWM1B2giUQKtYXbBFyyNJ1nJMXLWVLh7X47i7pXrFh5MZH4bNoVL6wf/BK+fAWt9tD193oIz8ijoizQZ3IEfmZFi0HS56pUP3UhSF+84ewrQBidQ1OLj25bUcLvNSAnv6GC3B1mE7fo7ZvhXaclZ0D0gbfdxb7z5S5Z5tW9SNs0qAO9jekluBmtAPFL3f1ePypJwSCz0UrdyGr3bCHY9Rr+OeuYN58tJRhJn0/LivhDlPfMf6A012wK15Gn59C/Z+7ZmHlmt1vYrUaHomJx7nZHGikWBJ+ER0qJGxvbSaXCt2HtEOqioU7mh+oqrC6oe1j8ddC2FxbM2tYHt+JSa9jnNHprfredMGaEnlK23Odjw7l/ms/9THm7XWLKcPTSHE2CTXSm/o1E/IBr2Opy4bzaDUKIqrrdzw2gbqGuzHv7Azpt0JZ/1LKx7Ylqa94NqxBPf417tRVThjSApDjzNT6Gn9UyIw6hXKaxrIHXAV3F0As/7WrWPoTtnFFnoqziXprvRn7AZzR6Tx8YLJ9EkM50hlPRc/9xNLf8jWNjT0m6WdtOdLjzxLLdOCpUNqopQNEMeQYEn4jKuFxYpdRWC1wJKJ8Myk5kXn9n4DeRvAGAYTFwCNs0qzhiS3u9GlK2/ppfxeqKZIqMqH3PUe/Grap8HuYPkWLbfI3QuueK9WbLMLIswGnr9yLLFhRrbkVvCXj7Z1dagty5oCY68G43HyESOTITyxXUtwBRV1fObMt1o4s/1LkJ5iNugZkBIJwJYim1ZEM0jZ7A4OldaQ4eczS031TYrkowUnM2d4KjaHyn2fbOfmtzZRm+ms9L1vFdi6vpxYYTOxxj6YTY5+9Ixr30YmceKQYEn4zIxBWrD0074SLKpZy9lRHdp2c3DOKj2kfTz2aohIpK7BzoebmjfNbY8JveMxGXTkVNio7un8T3Zn9xeo/GFvMaUWKwkRJib1ideWFl88Hf41REti74L0mFCevHQ0OkVrI/HWL14u3eFwtB7kzfwr3LYLekw47m0+25qPqsKYXrEMTIny8CDbp+lSXDA7XFaL3WFvXIYLkGaxEWYDT106invOGoxBp/DJ5jwu/bQONTwRrFVw6KcuP2NX5Elc2vAnXor6AyaDfGsUzQXV34jMzEwURWn2uvPOO9u8RlVV7r33XtLS0ggNDWXatGls2+aln8pFM30SI+gRF4rV7uCHvcUw9irtjQ2vaMXm9q+Cw2vBEKLVVQE+31pAVZ2N9JhQJnegYGGoSc9JWdpW9F9CXNW8P+2WitRNufJyZg9L1frY7fkKaoq1oCO26407T+6XwG2zBgBwz0fbWm4h4Qlb39eqjP/6duvn6PSNDVHbsOzXfADmDGu5VlZ3GNo0WPrmr/D8aXBgjc/G4y3ZJRaSKcOk2EBngKj2LWP7A0VRuPrkLN76/QQizAY2Ha6kKPkU7U0PLMVJ5W7RlqAKlgD++te/kp+f73796U9/avP8hx9+mMcee4ynnnqKtWvXkpKSwsyZM6mqqmrzOtF1iqJwqiuXaFchDJwLYQnaEtnuz53LZAqMucpdf8m1BHfh2Ax0HawR48pberN0AOjNWuXwop2e+4KOo67BzpfbtPws9xKcqy/e8Is81vH+hql9mOmsiDz/9Q2UWryw46n8gLZj7McnmwecDjsc/Lnd+WD5FbWsO6AlU8/2YbDkmlnamluBemSbFqQf2eqz8XhLdpEFk2Jja9h4yJzisb9z3WlsZhxzR2h/V76wDtMO7u56sHSgsByQYEm0LOiCpcjISFJSUtyviIiIVs9VVZXHH3+cu+++m/POO4+hQ4fy8ssvU1NTwxtvdKC5q+i0UwdpQdCKnYWoemNjpeh1L8Ipi+HGX2DKrQAcKLGwZn8JigIXjm3/EpyLK2/p2wN12LO0tjwe20nTDit3FlJdr82Kje4Zq/W22vW59mY7ayu1h06n8OhFI8hKCCe3vJab39yI3eHhGbQxV4EpAgq3N9aHAji4Bl6cpeWetWPWzpW/NS4zlpToEM+OsQMGpERi1CuU1TRQHeksXBqE5QNySiwcVJP5dNiT8LsPfT2cTjtvtFa24umDPVF1Bi3PrL4LP+A6HCxaP4OfzfMZEuUf7ZCEfwm6YOkf//gH8fHxjBw5kr///e9tVhLPzs6moKCAWbNmuY+ZzWamTp3Kjz/+2Op19fX1VFZWNnuJzjkpS2tHcqSynm15lVo7EoB93zRWUY7QZoRcbTBO7ptAekzHC572SQwnI1Zb9lufdT38frU7abw7uJbgzhqRqs2KbX0PHA1aD7j2VMTugKgQI89ePoZQo57v9xbz2Fe7PHp/QmNg9JXaxz/+u/G4axdc2qh27YJb9mvjsqQvmQ16+idrSd45iivxPviCJddSU+8Anz0Z2yuWnnFhFFhD+GzWarj+ezBHdv6G1QWYVCvxVJKc0kb9MHHCCqpg6ZZbbuGtt95i5cqVLFiwgMcff5z58+e3en5BgfZTbXJy8xYbycnJ7vda8uCDDxIdHe1+9ejR8VkOoQkx6pncV8s9WrmzUKsUnXWKVpunoLGit92h8u56LVjqSGJ3U4qiuGeXPi1OhrSR7fqG7glVdQ18s1Pbru1egtvknL0ceZlXnjkgJZJ/XDAcgKdX7uPLbR6u8D3hBq0mUfa3kLdJW3rb4UyaH3z2cS/PK69lw8FyFIVWe/t1J9dS3OY65/8HRcEXLOWUWDDRQGaAB0uKonDeaC3f6s1tluOcfXz20hwA8tV4spK6t3SFCAx+Hyzde++9xyRtH/1at24dAIsWLWLq1KkMHz6ca6+9lmeffZYXXnjhuA2Ajy5qqKpqm4UO77rrLioqKtyvQ4cOdf0LPYG5dsWt2OWs/XLK/8GRbc0CmW93F1FQWUdsmJGZg4/TP64NrrylVbuKvNt89ihfbjuC1eagT2I4g1OjtHIBeRu0JFtXM2EvOHtEGldP1hLHb3tnM/uL2tfQtl1iesDQ87WPf3xC+3qq8rTlud7Tj3v58i1aYve4XnE+XYJzGeIMlr4vj9cOVOV1bWnHz9Tb7OSW1fKa6QHGvj2qW5egveG8UdoM0Pd7iymoqNPKj3SyAXJ5rrYT9TBJpHVi1loEP7/P7luwYAGXXHJJm+dkZma2eHzCBG3b8t69e4mPjz/m/ZQUrUFjQUEBqamNP9kWFhYeM9vUlNlsxmw2t/q+6JjpzgBm06FySqrric86Be7IaVbLx5XYfe6odMyGzncan9gnHqNe4WBpDYf3baPHlqe0b4iXvN6lr+F4XEtwZ49I1wLx+D5w3QrI36yVTPCiu2YPZEtuOWtzyrj+tfV8eONkwkwe+qc/+WbY8g5s+xBwBrf9ZoHx+MHPMmewNGe472eVoHFm6Zd8O2pEMkr1Ea2cQ/rxK5AHgkOlNThU6KUUoqsrh5BYXw+pS3rGhzE+M45fckope/M6Uoq+0P4dd6LJblXBPuKBCnOq3zQXFv7F72eWEhISGDhwYJuvkJCW/2PeuFHrSt80EGoqKyuLlJQUvvrqK/cxq9XK6tWrmTRpkue/GNGilOgQBqdGoarajA+gtT9xziwVV9fz9Q5tF1lnl+BcIswGxjm72f+UUw6b34Rdy8FS3KX7tqWkup7v92r3P3ukcwlOUbT2IWOv9tpzXYx6HU9fNprESDO7j1Rzx3tbPDerljJMmwm84gPI1WZ427MEd7isho3uJbiU457fHQamRGLQKZRarNTH9tNqENUHTz5idnENZqwkK85WLgFQkPJ4XEtx+0rqwV7f6RICtpJsAOoiJKVCtMzvg6X2WrNmDf/617/YtGkT2dnZvPPOO/zhD3/g7LPPpmfPnu7zBg4cyAcffABoy28LFy7kgQce4IMPPmDr1q3MmzePsLAwLrvMO3kkomXHLMU18cGGXGwOlREZ0R4pWujKW1p2yASpI7RCmLuWd/m+rVm+tQC7Q2VYerTPtiUnRYWw5Lej3QX9lv6Q47mbn/onCIuHshytJlbf4/9k/5lzF9z4zDiSony/BAda/lw/Z5L3qvH/gYW/Qu9pvh2UB+UUWxord5siICzOtwPygNnDUzEbdHxk0XpGsufLTtVOM1RqM9e6uMAo0im6X9AES2azmbfffptp06YxePBg7rnnHq677jrefPPNZuft2rWLiorGKr233347CxcuZP78+YwdO5bc3Fy+/PJLIiO7sLNCdNh0Z+uTb3cV0WBvrNGjqipvr9P+I7uoi7NKLq68pTX7SmjoP0c7uONTj9y7JZ9sci3BOWeVPlkIH97Y5YrdHTUuM4675wwC4IHlO/glu/Q4V3RA0mC4+guY/QiYWy/X4fKpcwnuLD9ZgnMZlq4F41vzPJjb5Sf2Fx/VQLebNjd4U1SIkVlDUvjBMRS7YtAC9pK9Hb7PVqUfa+yDCUkd5PlBiqDg9zlL7TV69Gh++un4Je+PXn5QFIV7772Xe++910sjE+0xIiOGuHATpRYr63LKmNhHyzHbcLCcvYXVhBh1zHUFG13UPzmClKgQCirr2BR+MuMA9q/Ucpe6sv24BXnltfySU4qiaCUDqKvQlv5sdTDO+0twR5s3KZNNh8r5aFMeN76xgWU3neyZmR2dDnpO0F7Hcai0hs2HytEpWjNhfzIsPZp31h0OyrYnOcUW+roa6AZIm5P2OG90Op9szmOtOpgJ/KrNLiV0rMfgP+yXcqihlnf6jPfSKEWgC5qZJRHY9DqFaQO05bEVO4+4j7/jTOyePSyVqBCjR56lKI3PWl4QDXF9wG71WPfypj511hEalxlHanSolghtq4OEAVp5hG6mKAoPnjeMAcmRFFXVM//1Dc1m8rqDaxfcSVnxJEX6xxKci6vtSc7hPNQXz4BHB3Z6h5W/ySk5amYpSEzpm0BipJmvGrQyGR39d+zaJQiQmSANdEXLJFgSfuNU51LcCmc9Iku9zR1sXNyJit1tceUtrd5TDIPO0g56YSnOtQvOPSu22bksPPJSny2DhJkMPHvFGCLNBtYdKOOB5Tu69fmuYGm2ny3BAQxKjUKvUzhYo0fN36y13inL8fWwuqzWaie/oo79aioNWadqNcaChEGv49yRaax0jNQO5PwA9e1fRj1cWIJRtRJhNpAYIbucRcskWBJ+Y0q/RAw6hX1FFg6UWFj2az4Wq52shHDGZ3k2GXVyvwT0OoX9RRaOpM2ExEGQOtyjz9hfVM3W3Er0OoXZQ1OgdL/WDkTRwfCLPfqsjspKCOexi0cCsPSHHD7alNstzz1UWsPmwxXoFDhjiH8twYEzyTspAhUdVeHOxsZBUMk7p0Qr3PiZ6XSMV36g9SIMIuePyWC/msoHjinUTrtH27TRTnXr32JXyDyeNC9ps76eOLFJsCT8RnSokbGZWu2XFTsL3YndF47N8Ph/YlEhRsb01J71ZWUPuPEnOHmRR5/hmlU6uW8C8RFm2PyW9kbvaRDlmfyrrpg5OJkF0/sCcOd7W9hZ4P1t8q7aShN6x5MY6Z8/xbvqLeUanLOZRR5uFeMDOc42J4Feubs1A1OiGJwazSLrDbxrPBtC2r9r1lq0HwB9WIyXRieCgQRLwq+4luJe/ekA6w+UodcpXDDaO72apjrzllbvLvL4vVVVbVKIMk1rBeJaghvhP2UpFs3sz5R+CdQ22Ln+1fVU1nk3P2fZr/5ViLIlwzK0YGlHg3Pmq5t3LXpDdokFAzYGBXYdyja5ai69t6Fjs6S6ioMAqDE9j3OmOJFJsCT8yqkDtcrp+4u0n4SnD0j0Wh0eV97Sj/tKqLfZwVoDO5eDw97le2/Lq2R/kQWzQcesIclaAvnI32pFHAfO6fL9PUWvU/j3JaNIjwklp6SG//vfZq+1gTlQYmFLrv8uwbm4krx/qXJW/Q+CZbjsIgsDlYM8tHs2PH2Sr4fjFeeMTEevU8g7lE3h6ue1Ze92CKvRgqvQxN7eHJ4IcBIsCb/SJzGcnnGNO1Iu8nBid1ND0qJIjDRTY7WzLrsUnhoLb10KB49fguJ4PnHOKp06MInIEKPW/mPanVp3dJN/7biJCzfx7OVjMOl1fLHtSGMVdQ9zLcFN6uNclvRTg51J3htqnS2Pind3qtChP2m2Ey4kOBvFJkaamdo/kQeNz5O08jZnC57ji2vQ/l7GpPX14uhEoJNgSfgVRVHcS3EJEWZ3sUpvPavZrrjMKdobO7u2K87hUN3B0tkeqg3lbcMyorlqciYA9y/b7pVyAoGwBAeNSd4H1GRqw9K03nDWrne296Xs4hp6BmGNpaOdPzrDvStObUcJgeqqCuLRamolZw705tBEgJNgSfidyyf0JCshnMWz+mPUe/evqCtYWrWrsHkJgS7MJKw/WEZeRR0RZoMW7GV/B9s/Blu9J4bsNTee2pe4cBP7iiy8+ctBj947u9jCtjxtZ+DpfrwE5zI0PRorRp4Z+SH87qN2VSX3V1V1DRRX19PDFSzFBm+wNGNQEuuMY7RPDv0CtWVtnp+foyXvVxFGdGyit4cnApgES8Lv9E2KZOXiaVwy3vsJl1P6JaBTYPeRavITJoEhFCoOQsGvnb7nx872JrOGJBNi1MO3/4R3roAfn/TUsL0iKsTIopn9AfjXV7upqPVcsvdy9xJcPHHhJo/d11tcO+KCoZJ3TnENAH2MzmbRQVSQ8mghRj2jho9kjyMdRbXDvpVtnn+o0sb/bKfwc8iUbhqhCFQSLIkTWkyYiZE9YgBYlW2BvjO0N7Z/3Kn7Ndgd7sDg7BFpUHEYsr/V3hx2YVeH63WXjutB36QIymoaeHplx3tstca1BOdvveBaM9QdLFVqCe8BXMU721ljqZfOGSwF8TIcwAVj0t1LcQ27vmjz3K11ifyf7Xq+6HN3N4xMBDIJlsQJz9VYd/WuIhh0tnbw+3/Buhc7fK8f9hZTYrESF25ict8EZ20lFXqdHBDLHwa9zt1sd+kP2Rwo6Xquzv6iarbna0twswb7/xIcaEneOgWG1vyM45EB8Lr/B7qtySm2oMNBksPZRigA/h52xeiesWyP0HoU2nd9pZXtaEWw158SniPBkjjhufKWfthbTMPg3zhngFStf1sHHC6r4YlvtJo8s4elYNQpzdubBIjpA5I4pX8iDXaVhz7b2eX7uWbaJvdNIDYAluAAQk16+iVFUqmGobccCejyATnFFsxY2ZF6LvQ9DaLSfT0kr1IUhb5jTqNKDcVkLW3zz67syCFMNNBbgiVxHBIsiRPesPRo4sJNVNXb2HCoCs77L/x+NWRObjyptrzV6xvsDp5dvY+Zj33LhoPlmPQ6LhvfCw6vg5K9YAyDwed4/wvxoLtnD0KnwGdbC/h5f0mX7vWpawluWGAswbkMTY9mn+rczViZC/VVvh1QJ+0vtlBLCIcm3g+Xvwc6va+H5HXnjMnkWutixtY/Q56p5Zk0VVW5o/RudprnMaRufTePUAQaCZbECU+nUzilXwIAq3YXaQ1um/aJK9oN/x6uJWgftUvul+xS5jzxHQ99tpPaBjvjs+L49OaTGZwWBZvf0E4aNBfMkd315XjEgJRILnUm2N+/bAcOR+d2B+4trGZnQRUGnaIV5wwgw9KjqCCCCl2MdiBAK3m7+sJlxp84syc94sJQMydTqkbxYSt9D8ssVtLUQnSKSnKGFKQUbZNgSQiOyls62q9vQV0FfPknePNSqCmlpLqexf/bzEXPrWH3kWriwk08cuEI3v79BPonOwMjV7f6EYGzBNfUopn9iTAb2JJbwQcbO9do17UEd3K/BGLCAmMJzsXV9mSv6ly2CsBgqbzGSnlNA/FUkBnZ9cr0gcTVJum99YdbrEp/MC+PKKUWAHNCVreOTQQeCZaEQCshoCiwPb+Swsq65m+e+meY8yjoTbD7MyxPTuaWR5/n3fWHAbh0fA++uXUqF4w5quHvFR/A/J8h65Ru/Eo8JyHCzI3ORrv//GIXNVZbh+/hLkQZYEtwAINTo9EpsNPdIy7w8paynQnMfw97k7BHM2HN074dUDc6c1gKF5m+54GKOzi4+uVj3i8+pP15luniwBja3cMTAUaCJSGA+Agzw53bxY9prKsoMO5a9p/7Efn6VMJr81jq+DN3xXzDe9dP5MHzhreeuJw0MKBzRK6anElGbCgFlXX899vsDl2750gVu45UYdQHzi64pkJNevomRTTmLRXv8u2AOsEVLGXpnWUDogKjorwnRIYYOS2xkpN0O6nY9Mkx71uOaKUxqkJOnN8T0XkSLAnh5K7mfVSwZKm38fdl25n5ZjkzLX/jc3UCRsXOH+peYEx5C3Vc6irbTAgPJCFGPXeeqbWBeHb1Pgoq6o5zRSNXL7gp/RKJDjN6ZXzeNjQ9mm2OTA5FjYaUEb4eToe5tsanqs6yAUFeY+loiaPnAtCrfA1Wq7XZe46SHACsUd7rPymChwRLQjhNdeYtfb+nGJvdgaqqfL61gNMeW81/v8vG7lCZMrQ3IxZ9ALMfgd7TWi40ueEVeKQ/rHqoe78AL5kzLJUxvWKpbbDzyJftn11x5SsF4hKcy7D0aH5WB3Fv3MMw9f98PZwOyy6pwYyVKJtzR2MQV+9uyfCTZlBBBNFY2Ljmq2bvmaoOAWCIy/TByESgkWBJCKeRPWKIDjVSUdvAsi35XPPyOq5/bT35FXX0iAtl6bxxPHP5GFJjwmD8dXDFh6A3aBfbrPDrO9puuc1vgr0ewhN8+vV4iqIo/MlZqPK9DYfZ2o4WILuPVLH7SDVGvcJpgwNrF1xTgd72JKfYQobinCk1R0ForG8H1M30BiO5cRMBKNnY2CDb4VBZVdeH9+xTCOk9yVfDEwFEgiUhnPQ6hSnOEgK3vLWJFTsLMeoVFkzvy5cLp2pNcZtqmsz99V/g/evg5blwZKuWDD7kvG4cvXeN6hnLOSPTUFX426fbW9xd1JQrsfuUfolEhwbmEhzA4DStkndhVT2FJSXaEmuAUFWV7GJL8wa6Tf/OniBiR2oNsjPLfqDUoi3FHamq43/WSdxhn0/8qLN8OTwRICRYEqIJVwkBgAm94/jsllNYfPoAQk3HSdKOzQKdEXK+0z4fcCaExXlxpN3v9jMGYjbo+Dm7lC+3H2n1PFVV3flKcwKkF1xrwkwG+iRGcK/hJZKe7A3rXvD1kNqtuNpKdb2NXq5g6QTLV3JJHXMWDhQGKwf45ueNAGQXablcPePCMOrl26A4PvlbIkQT545M47aZ/Xny0lG8ed0E+iZFtO/Ck34P13ypfUNS9DDuOu8O1AfSY0K5bopWvO/B5Tuw2lruubX7SDV7C6sx6XUBvQTnMiw9mhI1SvskgGotuYpRlob1gTFXQb+ZPh6Rj4QnUBA7jq/sY1j5634ADhaWkKnk0yc+sGp/Cd8x+HoAQvgTg17HTTP6de7i9NFw4y9QfSRom5XeMK0Pb687RE5JDa+syeHaKcdWPl72ax4Ap/RPJCokcJfgXIamR7Nus6t8QODUWnKVDShPmQBzb/HxaHzLdPUn3PDgCmwFKnsLq6g/sIFV5tsoLUgHtvt6eCIAyMySEJ5kDAnaQAkg3Gxg8az+ADzxzR7KLM23Y6uqyqfOJbizAnwJzmVYRnRjFe+i3ce0vPFXrmDpRGpz0pqEyBCmDdBKg7y3IZeGEq1mmDVcaiyJ9pFgSQjRIReM6cGg1Cgq62z8+5vmy1I7C6rYX2TBZNAxY1BSK3cILINTozhAMnZVgfoKqC709ZDaRauxpDIqJC9gmwB70nmjM8hQClmzYRO6ioMAKCdYKQXReRIsCSE6RK9rLCXw6k8H2FtY7X7PtQtuWv9EIoNgCQ602bQeiXEcUp3BX4AsxWUXW4ihmvN+uhAezICG9hcUDUaz8pbwvXkhs2s+JrJW63UYmiQNdEX7SLAkhOiwyX0TOG1QEnaHyoPLdwDaEtzyINkFd7Rh6dHsDaC2Jw6HSk6JhZ6unXARKdoS8QnMkD4KgOm6TfTQabWnIlL6+nJIIoBIsCSE6JS7Zg/CoFP4Zmch3+8pZkd+FfuLLZgNOmYMCvxdcE0NTY9mlWMk30WeCfGd3ADQjY5U1VHX4KCX3lmQUpaboM90VEVPP10uE3RagK+T6t2inSRYEkJ0Sp/ECC6foCWz379sOx9v1nbBTRuQSIQ5uDbaDkuP5jX7TG63Xge9p/p6OMflSu4eFlqmHQjiTQftFhoLPcY3P3aC1p4SHSfBkhCi0xae1o/oUCM7C6p4/juths2c4cG3w2hIWhSKAvkVdRRX1/t6OMeVU1wDQH9zqXZAZpYAUPqf7v54b/o5EBEcmxCE90mwJITotJgwEzc761LZHKq2BHd0W5ggEG420DshHBMN7N+2Fmz+HTBlF2tJ9z1O8Ordx+g3CwCHIYTev3v2hGz/IjpHgiUhRJdcMaEXWQlaLZ9TByYRHmRLcC7D0qP5znwL4z+bA4X+Xcgw2zmzlGgr0A7IzJImaTBEpaOz1aE7+KOvRyMCSHD+ryaE6DYmg45HLxrBY1/u5qZT/T/5ubOGpkeTsz2FZKVca3uSNsrXQ2qVq9VJ0cDfEqUrgITg/XPpEEWBGfeAKRx6nuTr0YgAEjQzS6tWrUJRlBZfa9eubfW6efPmHXP+hAkTunHkQgS+0T1jee3akxicFuXroXjNsPRo9jqclbz9uNaS3aFysESbWTJNuQXm/ltyc5oacQkMmgvmSF+PRASQoJlZmjRpEvn5+c2O/fnPf+brr79m7NixbV57xhlnsHTpUvfnJpM0VxRCNDckPZov0JLX6/N3YPbxeFqTV16L1e7ApNeRFhPq6+EIERSCJlgymUykpKS4P29oaODjjz9mwYIFKMdJ4jObzc2uFUKIo0WYDVgie0Mt2Ap3+W2w5CobMCbWgr5oh1Y2wCT94YToiqBZhjvaxx9/THFxMfPmzTvuuatWrSIpKYn+/ftz3XXXUVjYdu+n+vp6Kisrm72EEMEvNE1r8xJSmQ12m49H0zJXvtJlhpXwzET48s8+HpEQgS9og6UXXniB008/nR49erR53plnnsnrr7/OihUrePTRR1m7di2nnnoq9fWtbw1+8MEHiY6Odr+O9wwhRHDI6NWPWtWEXrVB+QFfD6dFrpmlLL3zhz4pSClEl/l9sHTvvfe2mrjteq1bt67ZNYcPH+aLL77gmmuuOe79L774YubMmcPQoUOZO3cun332Gbt372bZsmWtXnPXXXdRUVHhfh06dKjLX6cQwv8NzYjleftsnjVc7rdLW65gKdl+RDsgNZaE6DK/z1lasGABl1xySZvnZGZmNvt86dKlxMfHc/bZZ3f4eampqfTq1Ys9e/a0eo7ZbMZs9teMBSGEtwxJi+IS20VQDRfp4ojz9YBakOMMlqLrcrUDUmNJiC7z+2ApISGBhISEdp+vqipLly7ld7/7HUajscPPKykp4dChQ6SmBlfXdCFE10WGGOmdEM7+YgtbciuY2j/R10NqpsHu4FBZLSHUY6or1g7KMpwQXeb3y3AdtWLFCrKzs1tdghs4cCAffPABANXV1SxevJg1a9aQk5PDqlWrmDt3LgkJCfzmN7/pzmELIQLEsLRweit5lG5b4euhHONwWS12h0o/Y4l2wBytNZAVQnRJ0AVLL7zwApMmTWLQoEEtvr9r1y4qKioA0Ov1bNmyhXPOOYf+/ftz5ZVX0r9/f9asWUNkpBQsE0Ic6+SYElaYFzNry62gqr4eTjOunnCjorT/42RWSQjP8PtluI5644032nxfbfKfW2hoKF988YW3hySECCIZfYfh+Fkh3FENliK/qo7t6gmnxPeFCfdASLSPRyREcAi6YEkIIbxpSM8kDqmJ9FIKqTq0jchB/hMsuZK7w9IGwpRzfTsYIYJI0C3DCSGEN0WFGMkz9gSgYP+vPh5Nc66ClFkJ/lnWQIhAJcGSEEJ0UE1Ub+3XvB0+Hklz+4u0YGl4wxYo3AH2Bh+PSIjgIMGSEEJ0kCFpAADG0tbrsXW3ugY7eRW1gMqAFdfAkglQluPrYQkRFCRYEkKIDorrNVT7tc5/Wp4cKq1BVaGHuRaloQZQIFpaMQnhCRIsCSFEB/UcNJZ/NZzP3+ovpcxi9fVwANjvTO4eH+0sGxCZCsYQH45IiOAhwZIQQnRQdGwCH8ZcwTLHBLbmVfh6OEDjTrih4eXaAWlzIoTHSLAkhBCdMDRdq2G0JddPgiXnTri+rurdUpBSCI+RYEkIITphfKKNabqN1Oz9wddDASDbObOUwRHtgMwsCeExEiwJIUQnnFK7kpdM/2RM/pu+HgrQGCwlNBRoB2JkZkkIT5EK3kII0QlJvYfDBkhrOER5jZWYMJPPxlJjtXGksh4AZdJ8KDsVMsb5bDxCBBsJloQQohPC07Vm3ZlKAWsPlXLygBSfjSXH2RMuJsxIxLBZwFk+G4sQwUiW4YQQojOie2JVTJgVGwf2+baStyu5OzNe2pwI4Q0SLAkhRGfodFSGZQJQcWirT4fiylcaHW2B3V9AyT6fjkeIYCPBkhBCdJLibHtSX7ATu0P12ThcwdJkZTO8cRF8drvPxiJEMJJgSQghOimmxxAA0hsO8evhcp+Nw1WQsodSpB2QsgFCeJQES0II0Un6fqfxWtJt/MN2Cat2FflsHK6cpSRbvnZAygYI4VESLAkhRGf1GIdx3DxKiGb1bt8ES5V1DRRXa/3pIutytYMysySER0mwJIQQXTC1fxIAmw+X+6SprmsJLiHCjL78gHZQWp0I4VESLAkhRBekmOq4I3Ylf9c/z7d7un92yZXcPShOgZpi7aAswwnhURIsCSFEVzhs/KH2BS4zrODXrVu6/fGugpQjI50NfUNiIDSm28chRDCTCt5CCNEV4QlUJY8j+sjPhO7/HIfjdHQ6pdsen11cDUBMSi8Y8V9oqOm2ZwtxopCZJSGE6KLwEecCMMW2hu35ld367OwSLThKS0mD4RfBmHnd+nwhTgQSLAkhRBcZBmu92MYqu/h56+5ufbYrwTszQVqdCOEtEiwJIURXxfSkJGoQekXFuu3TbntsmcVKRW0DAL3LfoDdX0JNabc9X4gThQRLQgjhAYbBcwEYUL7aHcB4237nrFJqdAjmVX+FNy6EvI3d8mwhTiQSLAkhhAdEjz4PKwbqVQM/dlMJAfcSXFwYlOVoB6UgpRAeJ8GSEEJ4QuJAHh35GTc0LGL1nuJueaSrzcmQ2AbnLjgFojO65dlCnEgkWBJCCE9QFCYNzgJg9e4iVFX1+iNdy3DDQp15SlHpYDB7/blCnGgkWBJCCA85KSsOs0GHruIQe/JKvP481zJcb6PzWdLmRAivkGBJCCE8JMSo563Ix/kh5Bb2/bzMq89SVdUdLKU5CrSD0uZECK+QYEkIITwoJL6n9uu+5V59TlF1PRarHZ0CMdY87aAkdwvhFRIsCSGEB8WM/g0Aw6t/xFJb77Xn7MyvAiAtJhT9xBvhvP/CwDlee54QJzIJloQQwoNShp9GJRHEK5Xs+OUrrz3nrbUHAZjSLwGSB2utTlKGeu15QpzIJFgSQggPUgwm9seeDED91o+98ozc8lq+2HYEgCsnZXrlGUKIRhIsCSGEhymDtF5xWcUrUR0Oj9//tZ8OYHeoTOwdz8BIK/zyX9i30uPPEUJoAiZY+vvf/86kSZMICwsjJiamxXMOHjzI3LlzCQ8PJyEhgZtvvhmr1drmfevr67nppptISEggPDycs88+m8OHD3vhKxBCnCj6TjqHWtVEmlpI7s5fPHrvugY7b/6iLcHNm5wJBVtg+WL47HaPPkcI0ShggiWr1cqFF17IDTfc0OL7drudOXPmYLFY+P7773nrrbd47733uO2229q878KFC/nggw946623+P7776muruass87Cbrd748sQQpwAwiOieC9mHjdab2ZlUaRH7/3hxlzKaxpIjwnltEHJ/9/e/cdFVeZ7AP8cBmb4PaD8EvktAgqoXHRtRMUWxEQt11JrUxHUciPDrrZqtmm7q9beda3dfbVeKoHF0rruZXdT80cWpKmEiGuoqWgoi3iRRBhE0WGe+wcxOgGTKHOOwuf9es3r1TzznDOfp146357znOcAV861fMA74YisxlbpAHfqtddeAwBkZ2e3+/muXbtw/PhxVFRUwNfXFwCwdu1azJ49G6tWrYKrq2ubY+rq6vDee+8hNzcXiYmJAICNGzfC398fn376KcaNG2edwRBRt9cYOx/btn+DhjNXMTO+a84phED2/nIAQMqIQKhspFvPhOMeS0RW88DMLP2YAwcOICoqylQoAcC4cePQ1NSE4uLido8pLi7GzZs3kZSUZGrz9fVFVFQU9u/f3+F3NTU1ob6+3uxFRHS7+DAvAMDBs9/h+s2umak+ePYyvrmoh4OdCtOHtuznhFrOLBFZW7cpli5evAhvb2+zNnd3d6jValy8eLHDY9RqNdzd3c3avb29OzwGANasWQOtVmt6+fv73/sAiKhbCfN2xlDXK5gn/oZvP8vqknNm7/8WADDlP/pC62jX0mi6DMeZJSJrUbRYWrlyJSRJsvg6dOjQHZ9PkqQ2bUKIdtst+bFjli1bhrq6OtOroqKiU+cnou5PkiTM8DiNxXb/A+ej914sVVxuxO7jLdsFzL59u4DWy3CcWSKyGkXXLD3//PN48sknLfYJCgq6o3P5+PigsLDQrK22thY3b95sM+N0+zE3btxAbW2t2exSdXU1RowY0eF3aTQaaDR8sjcRWeY6ZDJwYR38r5YC+ouAi89dn2vjwXMwCmBkqAf6e3+/aLxJDzR+/xBdrlkishpFZ5Y8PDwQERFh8WVvb39H59LpdCgtLUVVVZWpbdeuXdBoNIiNjW33mNjYWNjZ2WH37lu77FZVVaG0tNRisUREdCdioyNxxNgPAHD5cN5dn6fxhuHWdgG3zyrZ2gNpO4HH3wPs297EQkRd44FZs3T+/HkcOXIE58+fR3NzM44cOYIjR46goaEBAJCUlISBAwdi5syZKCkpwZ49e7B48WLMmzfPdCdcZWUlIiIi8NVXLfueaLVazJkzB4sWLcKePXtQUlKCGTNmIDo62nR3HBHR3dI62OGY62gAwPWjd7+bd15JJeqvGxDQyxEPR3jd+kBlBwQ8BEQ/ca9RiciCB2brgFdffRU5OTmm9zExMQCAzz//HGPGjIFKpcK2bdvw3HPPIS4uDg4ODvj5z3+O3//+96Zjbt68iZMnT6KxsdHUtm7dOtja2mLatGm4du0aEhISkJ2dDZVKJd/giKjbEgMmAUVZ8PquELh2BXBw69zxQiD7y3IALY82Udl0bg0mEd07SQghlA7xoKuvr4dWq0VdXV27+zkRUc9VWlkH9X/rEGZTCcNj62Eb81Snjv+yrAZPv1sIR7UKB19OgKu93a0Pv9kG6KuA4HjAo38XJyfq/u709/uBuQxHRPQgGtjHFXtVD0EvHFBR2flHKWV9P6v0RKyfeaEEAMU5wLZFQPneLkhKRB1hsUREZEU2NhLOhKUhtmk9NttM7NSx579rxJ5vWrYLmKULatuBjzohkgWLJSIiKxs+IBg3YIeCU5c6dVzOgXIIAYwO80Sol7P5h0Lc2r2b2wYQWRWLJSIiKxvd3xOSBHxzsR7Vlefu6JirTQZ8VNSy4W3q7dsFtGqoBgzXAEiAlk8RILImFktERFbm7qTG2D5N+Ey9CNrsUUCz4UeP+d/D/4a+yYBgDyfEh3m27XDi+60ItH6ArbqLExPR7VgsERHJYGBEBNykBmhu1gHnvrTY12gUyN5fDgBI0QXC5ofbBRzOBbYvbvnnyJ9ZIS0R3Y7FEhGRDOIj+mB381AAgPHExxb77iurwZlLV+GsscXjsX5tO4Q90rKoe+R/AomvWSEtEd2OxRIRkQwG+blhn91DAADDsa0tC7Q70Dqr9ESsH1xatwu4ef1WB2dP4Nm9QOIKwIZ/jRNZG/+UERHJQGUjwTb0YTQIe6gbq4ALh9vt923NVXz2TTWAlh27AQDfnQHWx7VcfmvFZ8ERyYbFEhGRTOIi/JBvHNzy5sTWdvvkfD+r9HC4J4I9nIDzhcB7Y4HvyoC9awFDk0xpiagViyUiIpmMDvPAruZhAADD8bbrlvTXb2JLccsu36lxwUDp34CcSUDjd0CfIUDaDsBWI2dkIsID9CBdIqIHnZeLPaq8RuGDmuMI7D8NcUIA0q073f5W/G80NBnQz8MRo/4vF9jz/eLt8AnA4+8AaieFkhP1bJxZIiKS0bCIILxsmIuP6iLMCiWjUSDnwDkAAuvdciG1FkoPPQdMz2WhRKQgFktERDIaE+4FAPji1CU0G2/dEVdw+hK+rbkKF40dAoP7A5INMP6/gEfWADYqpeISEXgZjohIVjEBbnDR2CLw2gnU5H0K78QMQNsX2V+WAwCmDfOH+qdJwIDxgO8QRbMSUQsWS0REMrJT2SAu1ANpp9+H99cnAb9+qHCKxsxvX0aRtAApuqCWy3MslIjuGyyWiIhkNibcEzu/GYqf2JwEDr4N77qL8Fddxzr3TxDQ+3Gl4xHRD3DNEhGRzEaHeWKnsWULAdSWQ228joLmQdA+slzZYETULhZLREQy83VzgKNXCEqMoQCADww/xRq3lRg+IEjZYETULl6GIyJSwJhwLzzzxYsIkS6iUERg1chQSLdtJUBE9w/OLBERKSA+zBOX4I5CMQCu9nb4WUxfpSMRUQdYLBERKWBokDsc1S37Jz35kwA4qjnRT3S/YrFERKQAja0K80aFYGAfV8wZGax0HCKyQBJCiB/vRpbU19dDq9Wirq4Orq6uSschIiKiO3Cnv9+cWSIiIiKygMUSERERkQUsloiIiIgsYLFEREREZAGLJSIiIiILWCwRERERWcBiiYiIiMgCFktEREREFrBYIiIiIrKAxRIRERGRBSyWiIiIiCxgsURERERkAYslIiIiIgtYLBERERFZYKt0gO5ACAEAqK+vVzgJERER3anW3+3W3/GOsFjqAnq9HgDg7++vcBIiIiLqLL1eD61W2+Hnkvixcop+lNFoxIULF+Di4gJJkpSOY1JfXw9/f39UVFTA1dVV6Tiy4bh71riBnjt2jpvj7gmsOW4hBPR6PXx9fWFj0/HKJM4sdQEbGxv4+fkpHaNDrq6uPeoPViuOu+fpqWPnuHsWjrtrWZpRasUF3kREREQWsFgiIiIisoDFUjem0WiwYsUKaDQapaPIiuPuWeMGeu7YOW6Ouye4H8bNBd5EREREFnBmiYiIiMgCFktEREREFrBYIiIiIrKAxRIRERGRBSyWuqE1a9Zg2LBhcHFxgZeXFyZPnoyTJ08qHcvq/vKXv2DQoEGmjct0Oh0++eQTpWPJbs2aNZAkCQsXLlQ6ilWtXLkSkiSZvXx8fJSOJYvKykrMmDEDvXv3hqOjI4YMGYLi4mKlY1ldUFBQm//mkiQhPT1d6WhWZTAY8MorryA4OBgODg4ICQnBr3/9axiNRqWjWZ1er8fChQsRGBgIBwcHjBgxAkVFRbLn4A7e3VBBQQHS09MxbNgwGAwGLF++HElJSTh+/DicnJyUjmc1fn5+eP311xEaGgoAyMnJwWOPPYaSkhJERkYqnE4eRUVFyMzMxKBBg5SOIovIyEh8+umnpvcqlUrBNPKora1FXFwcHn74YXzyySfw8vLCmTNn4ObmpnQ0qysqKkJzc7PpfWlpKcaOHYupU6cqmMr63njjDaxfvx45OTmIjIzEoUOHkJqaCq1Wi4yMDKXjWdXcuXNRWlqK3Nxc+Pr6YuPGjUhMTMTx48fRt29f+YII6vaqq6sFAFFQUKB0FNm5u7uLd999V+kYstDr9aJ///5i9+7dIj4+XmRkZCgdyapWrFghBg8erHQM2S1ZskSMHDlS6Rj3hYyMDNGvXz9hNBqVjmJVEyZMEGlpaWZtU6ZMETNmzFAokTwaGxuFSqUSW7duNWsfPHiwWL58uaxZeBmuB6irqwMA9OrVS+Ek8mlubsbmzZtx9epV6HQ6pePIIj09HRMmTEBiYqLSUWRz+vRp+Pr6Ijg4GE8++STOnj2rdCSr++c//4mhQ4di6tSp8PLyQkxMDN555x2lY8nuxo0b2LhxI9LS0u6rB5hbw8iRI7Fnzx6cOnUKAPCvf/0L+/btQ3JyssLJrMtgMKC5uRn29vZm7Q4ODti3b5+8YWQtzUh2RqNRTJo0qcf8n+jRo0eFk5OTUKlUQqvVim3btikdSRabNm0SUVFR4tq1a0II0SNmlrZv3y62bNkijh49appN8/b2FjU1NUpHsyqNRiM0Go1YtmyZOHz4sFi/fr2wt7cXOTk5SkeT1YcffihUKpWorKxUOorVGY1GsXTpUiFJkrC1tRWSJInVq1crHUsWOp1OxMfHi8rKSmEwGERubq6QJEmEhYXJmoPFUjf33HPPicDAQFFRUaF0FFk0NTWJ06dPi6KiIrF06VLh4eEhjh07pnQsqzp//rzw8vISR44cMbX1hGLphxoaGoS3t7dYu3at0lGsys7OTuh0OrO2BQsWiIceekihRMpISkoSEydOVDqGLDZt2iT8/PzEpk2bxNGjR8Vf//pX0atXL5Gdna10NKsrKysTo0ePFgCESqUSw4YNE08//bQYMGCArDlYLHVjzz//vPDz8xNnz55VOopiEhISxDPPPKN0DKvKy8sz/UXS+gIgJEkSKpVKGAwGpSPKJjExUcyfP1/pGFYVEBAg5syZY9b29ttvC19fX4USya+8vFzY2NiIv//970pHkYWfn5/485//bNb2m9/8RoSHhyuUSH4NDQ3iwoULQgghpk2bJpKTk2X9ft4N1w0JIbBgwQLk5eUhPz8fwcHBSkdSjBACTU1NSsewqoSEBHz99ddmbampqYiIiMCSJUt6xB1iANDU1IQTJ05g1KhRSkexqri4uDZbgZw6dQqBgYEKJZJfVlYWvLy8MGHCBKWjyKKxsRE2NuZLjFUqVY/YOqCVk5MTnJycUFtbi507d+J3v/udrN/PYqkbSk9PxwcffIB//OMfcHFxwcWLFwEAWq0WDg4OCqeznpdffhnjx4+Hv78/9Ho9Nm/ejPz8fOzYsUPpaFbl4uKCqKgoszYnJyf07t27TXt3snjxYkyaNAkBAQGorq7Gb3/7W9TX1yMlJUXpaFb14osvYsSIEVi9ejWmTZuGr776CpmZmcjMzFQ6miyMRiOysrKQkpICW9ue8RM2adIkrFq1CgEBAYiMjERJSQn+8Ic/IC0tTeloVrdz504IIRAeHo6ysjK89NJLCA8PR2pqqrxBZJ3HIlkAaPeVlZWldDSrSktLE4GBgUKtVgtPT0+RkJAgdu3apXQsRfSENUvTp08Xffr0EXZ2dsLX11dMmTKl269Pa/Xxxx+LqKgoodFoREREhMjMzFQ6kmx27twpAIiTJ08qHUU29fX1IiMjQwQEBAh7e3sREhIili9fLpqampSOZnUffvihCAkJEWq1Wvj4+Ij09HRx5coV2XNIQgghb3lGRERE9ODgPktEREREFrBYIiIiIrKAxRIRERGRBSyWiIiIiCxgsURERERkAYslIiIiIgtYLBERERFZwGKJiO5b+fn5kCQJV65ckf27JUmCJElwc3Oz2G/lypUYMmSILJlav68125tvvinb9xL1ZCyWiOi+MGbMGCxcuNCsbcSIEaiqqoJWq1UkU1ZWFk6dOqXId3dk8eLFqKqqgp+fn9JRiHqMnvFgHSJ6IKnVavj4+Cj2/W5ubvDy8lLs+9vj7OwMZ2fnHvOAZKL7AWeWiEhxs2fPRkFBAd566y3TJaby8vI2l+Gys7Ph5uaGrVu3Ijw8HI6OjnjiiSdw9epV5OTkICgoCO7u7liwYAGam5tN579x4wZ++ctfom/fvnBycsLw4cORn59/V1lff/11eHt7w8XFBXPmzMH169fNPi8qKsLYsWPh4eEBrVaL+Ph4HD582PR5WloaJk6caHaMwWCAj48PNmzYAADYsmULoqOj4eDggN69eyMxMRFXr169q7xEdO9YLBGR4t566y3odDrMmzcPVVVVqKqqgr+/f7t9Gxsb8cc//hGbN2/Gjh07kJ+fjylTpmD79u3Yvn07cnNzkZmZiS1btpiOSU1NxZdffonNmzfj6NGjmDp1Kh555BGcPn26Uzk/+ugjrFixAqtWrcKhQ4fQp08fvP3222Z99Ho9UlJSsHfvXhw8eBD9+/dHcnIy9Ho9AGDu3LnYsWMHqqqqTMds374dDQ0NmDZtGqqqqvDUU08hLS0NJ06cMI2Pj/EkUpDsj+4lImpHfHy8yMjIMGv7/PPPBQBRW1srhBAiKytLABBlZWWmPs8++6xwdHQUer3e1DZu3Djx7LPPCiGEKCsrE5IkicrKSrNzJyQkiGXLlnWYB4DIy8sza9PpdGL+/PlmbcOHDxeDBw/u8DwGg0G4uLiIjz/+2NQ2cOBA8cYbb5jeT548WcyePVsIIURxcbEAIMrLyzs8pxBCBAYGinXr1lnsQ0RdgzNLRPRAcXR0RL9+/Uzvvb29ERQUBGdnZ7O26upqAMDhw4chhEBYWJhpvY+zszMKCgpw5syZTn33iRMnoNPpzNp++L66uhrz589HWFgYtFottFotGhoacP78eVOfuXPnIisry9R/27ZtSEtLAwAMHjwYCQkJiI6OxtSpU/HOO++gtra2UzmJqGtxgTcRPVDs7OzM3kuS1G6b0WgEABiNRqhUKhQXF7dZFH17gdVVZs+ejUuXLuHNN99EYGAgNBoNdDodbty4Yeoza9YsLF26FAcOHMCBAwcQFBSEUaNGAQBUKhV2796N/fv3Y9euXfjTn/6E5cuXo7CwEMHBwV2el4h+HGeWiOi+oFarzRZld5WYmBg0NzejuroaoaGhZq/O3mk3YMAAHDx40Kzth+/37t2LF154AcnJyYiMjIRGo0FNTY1Zn969e2Py5MnIyspCVlYWUlNTzT6XJAlxcXF47bXXUFJSArVajby8vE5lJaKuw5klIrovBAUFobCwEOXl5XB2dkavXr265LxhYWF4+umnMWvWLKxduxYxMTGoqanBZ599hujoaCQnJ9/xuTIyMpCSkoKhQ4di5MiReP/993Hs2DGEhISY+oSGhiI3NxdDhw5FfX09XnrpJTg4OLQ519y5czFx4kQ0NzcjJSXF1F5YWIg9e/YgKSkJXl5eKCwsxKVLlzBgwIB7+xdBRHeNM0tEdF9YvHgxVCoVBg4cCE9PT7M1PvcqKysLs2bNwqJFixAeHo5HH30UhYWFHd5x15Hp06fj1VdfxZIlSxAbG4tz587hF7/4hVmfDRs2oLa2FjExMZg5cyZeeOGFdvdqSkxMRJ8+fTBu3Dj4+vqa2l1dXfHFF18gOTkZYWFheOWVV7B27VqMHz/+7gZPRPdMEoL3oxIR/ZAkScjLy8PkyZOtcv7Gxkb4+vpiw4YNmDJlSqePDwoKwsKFC9vsek5EXY8zS0REHXjqqae6/LEiRqMRFy5cwK9+9StotVo8+uijnTp+9erVcHZ27tKZNyKyjDNLRETtKCsrA9Byd1pX3oVWXl6O4OBg+Pn5ITs7GwkJCZ06/vLly7h8+TIAwNPTU7Hn5hH1JCyWiIiIiCzgZTgiIiIiC1gsEREREVnAYomIiIjIAhZLRERERBawWCIiIiKygMUSERERkQUsloiIiIgsYLFEREREZAGLJSIiIiIL/h8K9wdHW2jFrAAAAABJRU5ErkJggg==", + "text/plain": [ + "<Figure size 640x480 with 1 Axes>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjUAAAHFCAYAAAAKbwgcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAADeQ0lEQVR4nOydd5gcdf3HXzPb97Zcv0tyJb2RQkhCb6GDCFgQURERkKZIERRRiqjYxY6IP0BUFKRIR3pChxQC6cnlci3Xy/Y68/tjZu8uybXdnd29vZvX89zD3e7sfL/k9nY+8ynvtyDLsoyOjo6Ojo6OTp4j5noDOjo6Ojo6OjpaoAc1Ojo6Ojo6OhMCPajR0dHR0dHRmRDoQY2Ojo6Ojo7OhEAPanR0dHR0dHQmBHpQo6Ojo6OjozMh0IMaHR0dHR0dnQmBHtTo6Ojo6OjoTAj0oEZHR0dHR0dnQqAHNTo6OuOG2267DUEQ+n/u7u7m85//POXl5QiCwDnnnAOAIAjcdtttmqy5/7neeustbrvtNnp7ezU5v46OTvYw5noDOjo6OsNxxx138Pjjj/N///d/zJo1i+LiYgDefvttqqqqMrLmW2+9xe23385XvvIVCgsLM7KGjo5OZtCDGh0dnXHLxx9/zKxZs/jiF7+4z+OHH354jnako6MzntHLTzo6OjnhmWee4eCDD8ZisTBjxgx+8Ytf9D9XX1+PIAi89NJLbNmyBUEQEASB1157DUit/OTxeLj00kspKSnB4XBw2mmnsX379n2Oue2227jhhhsAmDFjxgHr6ujojG/0TI2Ojk7Wefnllzn77LM54ogj+Ne//kU8HudnP/sZbW1tAEyZMoW3336bK6+8kr6+Pv7xj38AsHDhwpTWk2WZc845h7feeotbbrmFlStX8uabb3L66afvc9wll1xCd3c3v/vd73jssceYMmVKWuvq6OhkFz2o0dHRyTo333wzFRUVvPjii1itVgBOPfVUpk+fDoDFYuHwww/H5XIRiUTSLje98MILvPrqq/zmN7/h6quvBuDkk0/GbDZz88039x9XVVVFTU0NAMuWLevfj46OTn6gl590dHSyit/v5/333+fTn/50f0AD4HQ6+eQnP5mRNV999VWAA3pzvvCFL2RkPR0dndygBzU6OjpZpaenB0mSqKysPOC5oR7Tgq6uLoxGIyUlJVlZT0dHJzfoQY2Ojk5WKSoqQhAEWltbD3huqMe0oKSkhFgsRldXV1bW09HRyQ16UKOjo5NVCgoKOPTQQ3nssccIhUL9j3u9Xp566qmMrLlq1SqA/objBP/85z8PONZisQAQDAYzshcdHZ3MoTcK6+joZJ077riD0047jZNPPpnrr7+eeDzOT3/6UwoKCuju7tZ8vVNOOYVjjz2WG2+8Eb/fz4oVK3jzzTd58MEHDzh28eLFAPzmN7/hwgsvxGQyMW/ePJxOp+b70tHR0RY9U6Ojo5N1Tj75ZJ544gk8Hg/nnXce1113HZ/5zGf46le/mpH1RFHkySef5Itf/CI/+9nP+se7n3322QOOPf7447npppt46qmnOProo1m5ciVr167NyL50dHS0RZBlWc71JnR0dHR0dHR00kXP1Ojo6Ojo6OhMCPSeGh0dnbwmFouN+Lwoioiifv+mozMZ0P/SdXR08hqTyTTiV6b6dHR0dMYfeqZGR0cnr3n//fdHfL60tDRLO9HR0ck1eqOwjo6Ojo6OzoRALz/p6Ojo6OjoTAgmVflJkiRaWlpwOp0IgpDr7ejo6Ojo6OiMAVmW8Xq9TJ06dcTG/7wJau68804ee+wxtm7dis1m48gjj+SnP/0p8+bNG/M5WlpaqK6uzuAudXR0dHR0dDJFY2MjVVVVwz6fN0HN66+/zlVXXcXKlSuJxWLcfPPNnHLKKWzevJmCgoIxnSMhc97Y2IjL5crkdnV0dHR0dHQ0wuPxUF1dPapdSd42Cnd0dFBeXs7rr7/OscceO6bXeDwe3G43fX19elCjo6Ojo6OTJ4z1+p03mZr96evrA6C4uHjYY8LhMOFwuP9nj8eT8X3p6Ojo6Ojo5Ia8nH6SZZnrrruOo48+mkWLFg173J133onb7e7/0vtpdHR0dHR0Ji55WX666qqreOaZZ3jjjTdGbBgaKlNTXV2tl590dHR0dHTyiAlbfvrGN77Bk08+yerVq0cMaAAsFgsWiyVLO9PR0dHR0dHJJXkT1MiyzDe+8Q0ef/xxXnvtNWbMmJHrLeno6Ojo6OiMI/ImqLnqqqv45z//yX//+1+cTietra0AuN1ubDZbjneno6Ojo6Ojk2vypqdmOAXg++67j6985StjOoc+0q2jo6Ojo5N/TLiemjyJvXR0dHR0dHRyRF6OdOvo6Ojo6Ojo7I8e1Ojo6Ojo6OhMCPSgRkdHR0dHR2dCoAc1Ojo6Ojo6OhMCPajRyVuCkXiut6Cjo6OjM47QgxqdvOStXZ0suu0F/vDqzlxvRUdHR0dnnKAHNTp5yfu7e4hLMk9v3Jvrrejo6OjojBP0oEYnL2ntC7JYqGN3ayfeUDTX29HR0dHRGQfoQY1OXlLd+iJPWb7Hr4x/ZENjb663o6Ojo6MzDtCDGp285NDeZwA4w/AeH+zuzvFudHR0dHTGA3pQo5OXXC3fQFA2A9C+a32Od6Ojo6OjMx7QgxqdvCMWl9jrl3hXWgBAUeubxCXdG0xHR0dnsqMHNTp5R4cvjCzDG/ISAA6TNrC11ZPjXeno6Ojo5Bo9qNHJO9o8Yf5mupMLTC8DcKi4lQ11rTnelY6Ojo5OrtGDGp28o73Hw7GGj6iVW4gJZnpwUL9rS663paOjo6OTY/SgRifv8HU2AhAVTKz91GqODP+O51pdOd6Vjo6Ojk6u0YManbwj1NUMgNdUxkHz5iAKAk09Qdo8oRzvTEdHR0cnl+hBjU7eEe9rASBkLcdhMTK/0oWIxNq69hzvTEdHR0cnl+hBjU7+4VOaguMFFQB8x/xvPrBcTvDDx3O5Kx0dHR2dHKMHNTp5hyWgZGRE9xQApjoNFAs+3C1rcrktHR0dHZ0cowc1OnlHJBIiLJswF04DwL3oVAAOCq0lGI7lcms6Ojo6OjlED2p08opQNM73Ql9kXvh+zEd9HYDShccTxsQUoZttm9fleIc6OuOHSEziJ89t5Z26rlxvRUcnK+hBjU5e0eENA2AxGnA5bAAIZju7bYsB8H78Qs72pqMz3nhjZwd3v76Lnz2/Nddb0dHJCnpQo5NXtKpj2xUuK4Ig9D/unXYMAM6WN3KyLx2d8UibR7kJ6PZHcrwTHZ3soAc1OnlFZ3c3j5tv4efxn0E82v+4+6BTAJgT3IAUDedqezo644pEMOMN6b1mOpMDPajRySt8HU0sE3eyJLoBDKb+x2csPpw18lL+L3Yau9v0/gEdHYAunx7U6EwujLnegI5OMkR6mgDwm0uxDXrcZDTy+6k/5d3d3ZS1xJhVlZv96eiMJ7r8StYyEpcIReNYTYYc70hHJ7PomRqdvCLetxeAsLX8gOdWTC8CYO2enqzuSUdnvDK4l0bP1uhMBvSgRievEP2KmrDkqDzgueW1RTgIYNn1PIT6sr01HZ1xR6L8BOANRUc4UkdnYqCXn3TyCktQVRN2TT3guUNqinjEfDsLQo14N8/Gechnsr09HZ1xhZ6p0Zls6JkanbzCEekAwFJ8YFBTaDez1XowAH26Xo3OJEeWZT2o0Zl06EGNTt7gC8eISzIh2YSjtHrIY/qmHAVAQbPuA6UzufGFY9jiHv5t/gHnG17Wy086kwI9qNHJG9o8Ib4evZqV/B3rkk8NeYxrwQlEZANF4RborsvyDnV0xg/d/ghXGJ/kMHErd5r+ikcPanQmAXpQo5M3tKlqwuUuK4hDj6YePGsa6+U5AER3vJy1venojDe6/BE2S7X9P+vlJ53JgB7U6OQN7arke4XLOuwxM0oL+MBwMAD+zS9mY1s6OuOSLl+ETfJ0APpkOx49qNGZBORVULN69Wo++clPMnXqVARB4Iknnsj1lnSySLB1K0+Yv881vl8Pe4wgCPROUXygbM1vQlz/INeZnHT7w3jkAgAcBPEGdfsQnYlPXgU1fr+fpUuX8vvf/z7XW9HJAbHuPRws7mJ6ZMeIx5XOPZSbo1/lh1P/NGyZSkdnotPljzBXbATAIMhEAt4c70hHJ/PklU7N6aefzumnn57rbejkCo8ivBe1H6gmPJjl00u5M34SpS0WfgAIIx6tozMx6fZFuN74SP/P8cAkU9peez/YimHhWbneiU4WyaugJlnC4TDh8EDK1ePx5HA3OuliUNWE5SHUhAezaJobs0Gk0xemoTtAbUlBNranozOu6PZHKEVR1v5Ymk5fZBKF970N8NQ3le9v6QExr4oSOmkwoX/Td955J263u/+runpobROd/MASUtSEDe4pIx5nNRlYPNXBFw0vYfzPhRDSg1mdyUeXP0KpoLz3r4x+k6aoK8c7yiKDb3yC3bnbh07WmdBBzU033URfX1//V2NjY663pJMisizjjHQCYC0a3YL7kOklXGJ4hml7X4T6NzK9PR2dcUfA14ddUDLVnbJ7convGc1gUwxu8bXndi86WWVCBzUWiwWXy7XPl05+0huIUobSE+AoHz3jtry2mDXSEuWHulczuTUdnfGJT7EUkQQjNsLEgpOsUbhA7b3z60HNZGJCBzU6E4c2b4gIRkKYMbmnjXr88toi3pAWARDfqYvw6UwuZFlGDChBjSjHWGu9glOjLyHLco53liWa1kLnNuV7NbjTmRzkVaOwz+dj586d/T/v3r2bDRs2UFxcTE1NTQ53ppNp2jxhLozcwvwKB89PO2TU48ucFpoKVxDzixi7dymNg4X6e0RnchCIxHFL+047FUh+wjEJq2kSyBx0bh/4Xs/UTCryKlPzwQcfsGzZMpYtWwbAddddx7Jly7jllltyvDOdTJOwSKhw20AY2xTH/OlVbJBnKz/s0ktQOpOHbn+EzXItt8QvRnYrPWhOITB5/J8ivoHv9Z6aSUVeBTXHH388siwf8HX//ffnems6GaY9EdS4LGN+zeASlN5XozOZ6PJHaJLLecn+CYQVXwXARWDy+D+FB/UPzT4pd/vQyTp5FdToTF7szW/yhPl7fK7r7jG/ZkVtMWvii4nJIlIkmMHd5Q8vbGrlc39+m719+r/HRKbbr0w9FTvMYHUD4BL8kyeoSWRqDrscZhyT273oZBU9qNHJC4x9ezhYrKMy1jTm18wpd7DLMp9l4XvYfPw9Gdxd/vDrF7fz3u5uHl/fnOut6GSQLl+EQ4TtHGnYCpIEJDI1k6T8lMjUmB253YdO1tGDGp28wBhoU75xjiy8NxhRFFhaU4oXO2v3TDKJ+CFo94TY2qp82G9rnWTjvZOMbn+Eb5v+xXfbvwV7NwCTLFMTVjM1nmZoeCe3e9HJKnpQo5MX2FQ1YWPh1KRet7xWEeD6YE8PRPya7yufWLOjs/97PaiZ2Ay2SKBqBW8XnMjL0iGTJ1MTUd/fHz4ED3wSJssou44e1OiMf+KSjCvWBYC9eHSNmsGsqC3CSYDLtl8KP5s1qQObNTsG9DrqOvxE41IOd6OTSTp9EcoENaipPZp/V3+fu2KfxROcJJmaT/0Z7+UfKN/HIxDqzel2dLKHHtTojHu6/GHKUfxbCkpHt0gYzNLqQgKinUKpB2JBqH8zE1sc90iSzBs7BzI1kbhEfefkDfAmOh6fF5cQUH5wlOG0mgAmTaYmJFg5/i/1+FDNbHUBvkmDHtTojHva+sJUCkpPjMGdXPmpwGJkwRQXq+OLlQcm6Wj3llYPnb4IdrOBRdMUu5BtbXoJaqIieZVyrSSYwFqI2wxFePAGwzneWXZo84To8kdok1RrHF2Ab9KgBzU64562vgAe2U4YS1KNwglW1BbzhqQGNZNUhC/RT3PEzBIWTVVGfPW+mglMQPl9x2wlAFz7/nGst16O4GvL5a6yhv312/m+8UGMxJUHdAG+SYMe1OiMe9p8EU6M/JKrpj8DBWVJv/6Q2iLekg5CQoCOLeBpycAuxzertyvp92PmlDKv0gnoQc1ExhRUghq5oAwEgahR+Z1Lwd4c7ip7FG19iIuNzxFEFev06+WnyYIe1OiMe9o8Ssq8wm0ds0XCYFbUFtGLk4+kmcoDda9puLvxTyAS44N6pXx3zNwy5lUoF7jtevlpQhKKxvkoMpXvRi8mfvhVAMTMyu+cYF8Od5YlZBkxqvSL7ZErlMf0TM2kQQ9qdMY9AxYJ1pReP7XQxhS3lTUJy4RJVoJ6d3c3kbjEtEIbM0sL+jM1e7oDBCKTZBpmEtHlj9BMGY9wErZDPg+AZFFKjkJkEgQ1sRCirJSd/hs/kg9mXgGzTsjxpnSyhR7U6Ix7ZrY8xX/N3+P49gdTPsfy2iJeiS9jR+mJMPdUDXc3/lmzXSlFHDu3FEEQKHFYKHWYkWXY2e4b5dU6+Ua3LwJAcYEZIZHZtCgNs4aIJ1fbyh6DfJ+ekw7lxdILYfpROdyQTjbRgxqdcY/LX89SsY5iqSvlc6yoLWKdPJcfFXwHFn9Ww92Nf1bvSPTTDPQjzVVLUFv1vpoJR6c/zCHCdlaZt4Jf+ZsRbEqmxhSZBL9vNajxyVZkRNrUTK/O5EAPanTGPfawclE2J6kmPJjltcUArNvTgyRNHnXRlt4gO9t9iAIcOauk//FECWq7HtRMOLp9Ea43PsJPfDfDrpcBMNgLATDFvMgTXV1XNbP0Y8VEDFP3Nt0qYRKhBzU645pITKIwppRP7EkK7w1mwRQnNpMBTyjKnu0fwpantNriuOYNdZR7SVUhhXZz/+OJZmFdq2bi0e2PUJpQE1anBcWaw3g8fhTb4tMIRSe4krTq++STbVQI3fy8/TL429m6VcIkwZjrDejojESHL0y50AtAQUl1yucxGkQOri6kffdGZvzri2C0wrf3gCm15uN8IVF6OnbuvqPwc/Wx7glL1+CgxlEOgGXlhVz/eBmSrKgK28yGHO4ww1St5I65/+GFj5rolJWyG7GQUpayunK7tyzQ6QvT448wR71xmWzomRqdcU2bJ0SFqiYsuJIX3hvMiulF7JKn0mcsVT7kGt7WYovjlvgga4Rj55Tu81yip6bdq3wA6kwcen1+ilAbwAuUoEYQBBwW5R7WM9Gduo1mmuPFNMnlhLDgk9Ubl0miVXPBX9/jjN+uoaknkOut5AQ9qNEZ13R091EkqB/Qzsq0znVIbREg8DYJdeFX0tvcOOfj5j56A1GcFiNLqwv3ec5hMVJVZAP0EtREI+rpQBRkJESwF/c/XmgRcBCYFP5P/kFSBf3ZmkmgVROXZLa3eYnGZd6t6871dnKCHtTojGt6uzvYLVXgE11gLUzrXIfUFCEI8GxgofLABPeBSrhyHzGrBJPhwD/1+ZW6CN9ERFLNG6OWIhDVMtP2/7E6fC5/N/8Y70TP1Ox8mXM7/8hp4nsAdKIGNdn0f3rpdnj6uqz38XT5w8TVQYh1DT1ZXXu8oAc1OuOa+oiTVZFf84uDn09JTXgwbpuJueVO3kyI8LV+NKHde1erTcLHzB3aWiJRgtL7aiYWYkB5T8ftg0qOFuV37SIw8YOaxvc4K/gER4sfIQg5yNRE/PDGr+CDv0J3XXbWVGn3DBiWrm/ozera4wU9qNEZ17SlqSa8P4fUFtGFm26LOknVuV2T8443fOEY6/Yod2rHzRk6qNE9oCYmH4YquCl6Md7lVw08aFUu7C5hEpSfEjo12KkqstElJ5y6s3QD49k78H0gdW2tVGj3DmjybG314A9P8AB2CPSgRmdck7jzqHBZNDnfitoiAFqlHKSks8jbu7qISTK1JXZqSuxDHtMf1LRNAu2SSUI4FmdnuJCH4idiOeT8gSfUqR8XfrzBCR7URAbE92aUOnhROoQ1VZfBzFXZWd9dpUxXAnias7OmSpsnzAxhL0eIm5Bk2Ng0CWwx9kMPanTGNSd0/I0nzTezpO2/mpxvuRrU/Dj4aSKffxhqj9bkvOONNTsGXLmHY2apA6Mo4A3F2Nunq65OBLrVSTajKOCymgaeUDM1ZiFOMDCxrTHk8ID43qyyAl6TlvFf9xeh9ojsbMBkhXlnKN8PztpkgTZPiFct1/OQ+UcsFOpZ3zj5+mr0oEZnXFMermeJuJtC0a/J+WpL7JQ6zLwRW8BG60pwDF2ayXfWJPpphik9AZiNIjPLCgB9Amqi0OWLsEzYwcm2bYjBQaUPs0OZhgIigd7cbC5LxEOJ8pONmWUOQJEuyCouVf08B5maBEeIm1m3pzer648H9KBGZ9wSiMQojitjifbS1IX3BiMIAofUKNmatXsm5l1MY3eA3Z1+DKKwjzXCUCSahXW7hIlBtz/CNcZH+VP8Ntj+wsATgkDEqPyuY4GJ+b5PIIUU084AdmqK7ZiIYevJolXC5idh0xPK90ZtyuZjpd0T4u7YmQDMEPayobFn0pWW9aBGZ9zS7gn3C+/Ziqdpdt4V04uYRgemj/8FW57W7LzjhUSW5pCaQpyDSxBDME+fgJpQdA+hJpygqfIEHo8fRV9kAqsJA7KaqZFMBZQ7LUwTOviz9+vw989kZwMb/w2eJjjjF3DiLdlZU6XdG2ajNBOApWIdnb4ITT3BrO4h1+hBjc64pc0T6rdIEJypm1nuz/LaYhaLu/lqx8+Q3/qtZucdL6zefqAr93AMbhbWyX+6hvB9SrB55Y+5NnoVu+PD91lNBHacfD8nhX/GTstBlDstAyPdER9EsqCy61X7aJzpKaCngrmvrv8zc4HYgIXIpNOr0YManXFLZ3c3TkG9y3BWaHbeRdNceETlgy7mmVjTT7G4xJu7Ev00Q1y82rfCKz/s/3BPBDU72n3E4hPc6HAS0O0LUoJSftk/U+O0KjYJE12nps9Ywk65CoPNSZHdTEi0E5LVjGU2ph0TzcFp2rokSywusTz0NreZ/gaAkTgLhIZJp1ejBzU64xZ/ZxMAIdHeLx6mBRajAbNbsVwQAhNLfO/Dpj68oRhum4klVYX7PinLcM9xsPrnsOaXAFQX2bGZDERiEnu6J6dXzEQi2NeJUVCDU/u+Qa3LasRIjHBwYv+eE0FbgcWIKAqUOa0DqsKZFtuU4uBrU75//HL4zcFZE/js8keYwr66OEvFXXqmRkdnvNDn6aVOqqTHqk2T8GAMTuUu1hj1QXTi1JwTo9xHzy7FIO6nwNz4nmLkCTD7JABEUWBuhTIhojcL5z8xr5KJCJtcYDTv89ysd7/PTuuXOTv0RA52liXiUWau+zHXGP9DoVkJ7spd1oESVKYzNb52kOMgGCDQDT27szYB1eYJUSmofk/Tj6H32B+wRlrM5hYPoWg8K3sYD+hBjc64ZWN8OidEfsUzR/xL83PbXcWEZSUdP5HcewdGuYcoPb3/F+W/B39pH82OxATUVj2oyXsE9b0ctR74+zdalfF9c2wCiy2Gvcyte4BrjI9htypBXbnTQke2rBK8Lcp/nZVQqN6MeVoyu6ZKmyfMlERQc9jluFddjdcxg5gk83Hz5BHh04ManXGL1hYJgyl1Wugiy/LpGaYvGGVDYy8whN+Tr31gzPTQS/Z5ap5ubDlh2Bwu5zvRS2hbcuUBz5kKFCkDhxwgFJ2g/VMRRXgvLJuwW5TPjXKnJXtWCYkAxjkFXOrEpjc7QU27N8QUQS0/uaep8hWFwOQytzTmegM6OsPRnsmgxqF80E0VuieMqeXbuzqJSzKzygqYVmjb98l1D4AUhWkroGQObP6vkh5fcZHuATWB2BZw8H78BC5ZeuwBz5kLCgFwCX68oSg28wQc7VbVhH1YcaiN0eVOK/+TVlBUMYdTZxyX2fVnroKvvQayBBseUh7LUqamo9dPGWpGxjUNunZxnukNdgp21jdUZmUP4wE9qNEZl8iyzGXeP3CQeSeVnbfAjE9rev4yh4WfxM7nkCon11et1PTcuWL1cCrC8Rh8cJ/y/aGXKu7kD38ZbEWw7IL+oKa+y08oGsdqmoAXu0lANC7hUZtkiwsOFH0TrIWA4tTtCUUpz8DNQs5RMzU+2YbDogY1LguvSIeArZxTazL8t25xwNRlyvd1ryv/zVJQE+xuRhRk4oIRg70Unr2BE7Y+wfvi53msYSayLCMIwugnynP08pPOuMQTijGLBpaIu3Gbta//lzrNvCkt5tX4EigYWXU3H5BluV+f5ti5+/VTyHE4+lqoPQoWngNVK5WAJtgDTe9T5rBQZDchybCzfWL7Ak1kevwRDhZ2crT4MYXxIcoNg5y6PRN1rDusjLP7sfWPsJc7lQBvsIN1VkiUn7IU1DQETFwVuZp1B30XRBGmLQdgqaGONk940vi75V1Q88c//pEZM2ZgtVpZvnw5a9asyfWWdDJAuydEBcoHs6VIOzXhBKUO5YOu0xvR/Ny5oL4rQFNPEJNB4LAZ+wVpRouSobnoWcVsz2Dsn35ixwsIgtDfLKyXoPKXLn+Erxsf5+/mHyPueP7AAxJBDf6Jq1UzqPxUoGZqKlxWzERx9m2Hhnczu/57f4E3fwM9e8A9TemtsRdndk2VPT4Dz0iH41t0gfKAGtQsN9YBTBq9mrwKav79739zzTXXcPPNN7N+/XqOOeYYTj/9dBoaGnK9NR2NaesL9Vsk4NS+HlzqsFAttHFc4H/IW5/V/PzZJjHKvaK2uP/DfETmnqb8V/UHmq83C+c9Xb7h1YQBcFayzrKSN6VFeEPR7G4uW6jlJ79sHSg/OS1UC+08FLsO+R+fzez67/4ZXrwFevfA9KPh+q1w7v2ZXVMlYdpZ7lJLj1OWgiBSJnVSRs+kaRbOq6DmV7/6FRdffDGXXHIJCxYs4K677qK6upo//elPud6ajsZ0d7VhFdQPXof2QU2Jw8xyYQc/Nd5N7O38f/+s3q720+xfenr7D7D2gQPl4WedAIII7Zuht4G5lfpYd77T5Q9TKgytJgxAySz+OPVOboldNHEzNQvO4ir377k99uX+RuESh4VuVXxPCHsgmqEyjCwPlJpc2meXRyIal5gZ+JBTxPcHBPgsDiibDyg+UOv1oGZ8EYlEWLt2Laeccso+j59yyim89dZbQ74mHA7j8Xj2+dLJDwJdipqw3+BWSiYaYzEaCJqVEVfJm99WCdG4xNuqNcKxg5uEw1549U546mpo3M+h2F4M1Ycr329/Qc/UTAC6feGB6ZehMjXQb3A6YTM1Vheb49XUy1P6MzUGUcBYUExEVhvgMzXWHfZA1K98n2Xfp05fmK8Ynuce868pbPjfwBNTDwFgibiLj1s8hGMTX4Qvb4Kazs5O4vE4FRX7egBVVFTQ2to65GvuvPNO3G53/1d1tfbKtDqZIdKjqHD6LaObMqZK3K6cO9+tEtY39OKPxCkpMLNwimvgiY3/hogXSmbDjOMPfOFc9QahfTNz1J6avX0h+oIT9II3wfF5erAkspvDBjWKVYI3ODF6yYYikYVyDCrDlrusdJFhVeGE55PVDWa78v1/r4LfLIW61zKzpkqbJ8xUVaNGdFcNPDFNCWpWGncTiUlsbpn4N/Z5E9Qk2H8kbaQxtZtuuom+vr7+r8bGxmxsUUcD+vxh6qRKgo6ajK0hOpQPflOoR/FsyVMSU09HzylFTFgjyDK8d6/y/cpLlGmI/Vl2AXxzI5z5a1xWE1PdSkYsU9kaWZbp8IYnrpptjol4FM+hiGgfuKjuxw0fn8NO65cx9+3O5tayx+YnuTDyEIcI2/cNapwWOhMCfJnSpepXE5466LE26KmH3sxee/axSHANWn/uaXD+v3m4+nvA5GgWzpugprS0FIPBcEBWpr29/YDsTQKLxYLL5drnSyc/eEVaygmRX7Hl2D9mbA2LS3nfCEiKEF2ekmgS3kefZs+b0LEFTHZYev7QLywohaLa/h8zLcL31zd2s/JHL/Hcx0NnVnXSQ1Id50OWESQKDMqFPh7ozcKOso+05Sm+If6H5eL2/pFuUAT4Mu7/NJQ7dyLAyPBYd0efj3J61TUH9fO4p8G805g1YwYwOZSF8yaoMZvNLF++nBdffHGfx1988UWOPPLIHO1KJ1O0exKd/JkTCCt22uiWFTPHfLVK6PFH2Kj6uuzj9/Se6vO05HNgKxz9RJLU3yyciaBGlmX+8a4ypfj2rq5Rjp6AdO2CeGbLejuipXw7eil1C68Y9piYSbmxk4MT0wsoHlTeuz5s+0wBVrgsA0FNpvyfhsrU9Ac1mTW1DHQpwnsxwThk6fGQGqV/cDJkavJKUfi6667jggsuYMWKFRxxxBHcc889NDQ0cPnll+d6azoaIklyv1BWZQaDGsUqwU2x4FPv3hZmbK1M8eauTmQZ5lU4B+wkPHth69PK9ysvHfkEfc3wzHXQtZP5Rz0BwLYMlJ92tPto6uzjaHELe7uLND//uGbbc/DQ52HRZ+Gzf83YMjtDDuriqzh74WHDHhO3uMALQniCBjUhLyYgLNoxGQbu2ctcVp6XVmIsms2nMmWVsPJSmHOKkh1NkAhqvHszs6ZKtEcpb/nN5bj3LzW3bWJF3aOcb+jjod4TaPeEJqaatEpeBTXnnXceXV1d/OAHP2Dv3r0sWrSIZ599ltra2tFfrJM39AQi3C3+jHJDD+V990Dh8B/S6VDqtPCD2AUsq3ZzXeWSjKyRaRL9NPtkacJemHk8RINQuWjkE9iLFTn3WJDFJmXibHubV3NJ9Rc+buW3pt9xuuF9ftveA0yi7Oobv1b++/F/MhrUdPuV5t+SISwS+rEo2QpDZGI2jMqqorBkKtjn8XKnhZel5XQZC/lUdYasEmyFB2ZFs1R+ok85f6RgiKmr1o8wv/VLvmRdwEP+E1jX0MtpiyauF1TelJ8SXHnlldTX1xMOh1m7di3HHnugcZvO2AnH4kjS+GrcbPWEWCDuYbFYj9GQubi71GFhjbSE1+NLsqb6qSWyLLNG9Xs6drArd9lc+NKjcMHjo5/EZFMCIKC2cw0GUaA3EO0X8tKKtz7ezumG9wE4Nfjs5GoWrjhI+e/hBzpna0UsLlEb3MJR4keUMHzfhGBVyk/G6MQMahKKwrLZsc/D/VYJnixbBTizU356KzqHqyJXs3fRZQc+qY51z5HqMBBnfePE7qvJu6BGRztC0Tin3bWGT/7+jXF1kWnvCw40vWVATThBqcMMQKcvP8dbd3X42NsXwmwUOXTGEEGZcYQ79sGoo92mXS8yvURJnWvZV9PYHeDdvRLPx5U75E7JSW9gEo2NR4PKf4cSxNOInkCUK4xP8Q/znRTteWHY40R7IQDm6MT0+BJVnZgDghrVKqHYtx254Z2hXpo+L9+hWCQEewcec01VNGuKZyrGshliq9/BM9LhmBacfuCTJbPB4sIsh5krNE34vho9qJnEvFPXxe5OP5taPONKm6S3swWjICEhgGPoyTYtKHVYmC7s5Rj/C8jb/zf6C8YZCRXhw2YUDzhrf3Cf0ieTDHNOVf7b9D7LS5XRdi2Dmv9tbkNC5K3y8wCoEjpo6glqdv5xj1/5PWEvHfm4NOj2D1gkGJzDB09i5SJeiR/M9ljZuLqR0QpRDdYEi3Ofx8scFqYLrTxt+g7yQ8NMA6ZDPAprfqlYJAxuCLcVKlYJl77SP3mmNZGYRJdaeqwYqldGFGHqwQAsFXexsamXaFzKyF7GA3pQM4lZvb2Tc8Q3OFV8j06ftuWGdAh2KRdln7EoYx8EAGVOC4eLW/iJ4W5iCU2XPGJglFu9WLZtgqevgd8u2/ducTTc06BiMSBzoukjQNtm4Rc2KSPcBy1Q+numCl0090we5eJQnzJtE3vmBqV/KQN0+cOU9qsJDx/UGFdcyFejN/Lv2PEEo/mrzTQcLx3xIJ8O30bYvm9vidkoErMqo+5isFv7STRvKyCDaAL7CCP1GaDDF+YT4jucbvyAIsE/9EGqueUK025CUWlCG9fqQc0kpn7rOu4y/5E/m++is3f8vMmjatNb0JK5dD2A1WTAb1QmceKe/LJKCMfivFOnaOv099MkxrjnnTa2Me7BzFWyNUsCSmpeKwG+Tl+YLzT9gG8aHuWYBdOIYcQkxOlpnTwmtDHVhsMYD8LeDRlZY3CmZqQyl91swKAKNE5E/6dm8wzWyXOx2A4UH7S4yojJ6iUvkT3TisR0k3PK0EKXGaTNE+L7pgf5k/FXCD11Qx+k9tWsNCmiixNZr0YPaiYpLb1Bqnvf6//Z25XZkcOkUEWsYvbMlZ4SxG1KliPfrBLW1vcQjMYpc1qYV+GEUB9sfFh5crQx7qGYdzrUHo1x1jGAEtTENWggf//dNzjH8BZXmx5naoHAmuqvcXP0q+zxajdZNd55aP7veCuuygX01GdkjT5PHw5BbYIdxiIBFEV2h8WIiDQh/Z984QMtEhKUumx0owqwai3A129kOcT00epfKFYJb/1e2zVVOnq9QwvvDUbN1JTLXZiITei+Gj2omaSs3t7BseJGAD6SptMaGWNTaRboDsnskqYQL5qR+cXUC4Ax2KlYC+QJq9Wpp2PmlCqj1xseUsz0yhbA9KOTP2HVCrjoGYqPuxKLUSQUlWjsDoz+ulGwrldGmHeXHAeF1TQddDn/iJ/ETq8p7XPnC3VSBY9Lyu8k3jXMnXSaBHsUi4SoYIb9+kn2oeEd3pYv4Hnzt/FMtEyNr4NldX/mi4aX+h26B7OPqrDWVgmJTM1gi4IE0YBqlbBH2zVVPJ0tiIJMHMPwpUfXVLjqfd47932iGCe0Y7ce1ExS3trWzBHiZgBujF7G3uD4kSz6Z+QYToz8Es9xP8j4WkbVKsEQD0FkmHr0OCTRT3PsnDIlGHs/4fN0MaShL2MQBeZUKJMjW9Osu3t7OzjM+xIA1qMUlduqQhsAzb2Tp1G40xehQVLeZ/GuzHguxTxK31LQVDzy799kw04IlxDAM46GAzShr5HjWu7lKuMTOIfI1JS7Bvk/aZ6pUZvznUMENQnH7gxp1US6lVKux1w2fOlLEKBsLgfXKFOS9V0BusZRH6WW6EHNJCQWlwjtegO7EKbXUMIWuWbcNArH4lL/Xspdmc8eudxuArK6TqY8YTSmwxtmk+q2e/ScUsUBuGsHmJ2w9PPpndzXwWdta4H0+2r2vPQX7EKYOrGWaQefDECNPcJKYStlPevS22e+0FPPKW33slLcCoDR25yR0d7dsRJujF7KxtmjqKtblUyFi8DE66mJKJNPfnlfi4QE5U4LHWTIKmEo36cEiZJQhoIaqVcJqILW0eUv3DYTs8uVm5YNjb0Z2U+u0YOaSciHTX0URdsIYiHiquFU8X0Kuj7O9bYA5a5WlpWMQelIyqgaoVglJO7eNG4ezBBv7lT2edBUF6UOi5LaNhXAweePXHoYjYgffr2QrzTdSo3Qlt4ElBSnYtuDAGyr/QKCegdZ1bmGRyw/4ErpITwTsKfjANq3cq7/IU4zvE9YNiLKsYwIsdWHHDwcX0X3vPNGPtCivNftQhhfYIJly8IDvk9D9dSUO608Fz+Mfzi+AtOP0XbtM34Ol61WrDD2J8OqwqJPOW/MMURANZjeRvjPxfwxrmTAJ2qz8PipOehkjdXbO/h3fBWh+Z/lBvmv/LnnLp7uORP4Yq63RpsnxHPmbyMajIi9C6A4s301pQ4L349dxNKaEq4tnZvRtbRi9f6u3CsugkWfhliaIoLmAqg+DOrXcIK4njdaZ6V8qsjWFyiLttArFzD12Av7H7eUzgQUrZrmniCuKRO8tyagBKAdshsbYaaLHRi8rfu4o2vBgEWCeeQD1aAGIOKbYBc1VU3YJ1v3cehOUO6y8JK0nO2SnS9WLdd2bXvx8KrkiaDG16aMkhu0fc/bAkrpUXBXjXyguQA+/g9zATe+CdssrGdqJiGJi+KR86cilytTGfbI+HBObuv1Mk9oYp68G/ZTBc0EpQ4Lr0kHs1panPwYdA7YxxphsN+T1Q2O4adexow62n2CuJ7dnX7CsdS0TNb5ivhX7HgeNZzB4tpBafHCGgCm0EVz1wSV6h9EYpy7GxfnRm7lsppnoEZ7L7MK32aOFj+inO6RDzQYCYnKuHPU36v5PnJKRMnU+Bm6/FThVITp2r2h7AoP2ksV/RpkJbDRmAeiJ3Bl5GriB31mlH0Ugzp8sUSs48PGXk0mHMcbelAzyegLRNnSOHCnbytUUpauWPe4UBj1Du7kz4KIVZkzYZUwPnqKRmNHu48ObxibycDyKjs0faDt1JaqLny4YQsWKciu9tSapx9rsPOd2NfYs/QaRHFQ46qjgqhgwiDI9LbWa7Dh8U24T7mIdcouunGxp0f795kkyZwffZy/m++ksun5UY+PGJUSZTw4MTM1fqxDl59cFixEmBHbTWDXW9qtG/LAc99WLBKG+lsURZi6DKatGLDM0IhwLM6HwXKelQ6ncOYYsk/qaPdKUz3+SFwzParxhB7UTDLe3NXJr42/53X7t5na+RbOMqWJrZi+cTHimVAT9ppKsyJiVeqwMEto5ljfC7Dz5Yyvly5b9irZjUXTXFi2Pw33ngj/+oJ2C5TOgaIZmIlxtPhRSh96sbjES1uUDMWpB+3XvCiKeMxKIB1qz8x483giqoo69qj6KA3dAc0NZHuDUUoE5X1hKxqlrwJoLVrBK/GD6YsYNN1HzlEbhb2ybcjyk9VkYLG1necsN2F59MIDnk+ZvkZ4924lqBlu8uySF+HSl5W/Lw1p9yhBstko4raNoaylBjVH2eoBJmQJSg9qJhlvbNvLUeLH1EqNYCvE4lY+BMuEvnGRrYipasIhqwallDFQ6rBwjPgRPxLvJvbBA1lZMx3qOpTMycxSB7x3j/KgqhaqCYKwTwkq6WbhkIeuf13B1MBWCu2mIY02Qw4lkJZ6J76qsKTqoQiOMuaIzfxc+A3hR0eZUEqSLt+ARYJxBN+nBB8c8hO+Gr2R7dRouo9cIy+/iM9Fb+OB+Kk4LENf4AVVl8oQ6gJJI5uIxOTTUOPcGaa9z8eXDS/wWfsGhLH8/0xTPivmxXcA8oTUq9GDmkmELMv0bnsDlxAkYimCKcv6+zCcQpCunt7cbhAQfErTW6wg82rCAAUWI15DobKmd/yPdNd1KkHNodYGaHpfqdUv1/CuE/qDmuMNH7Jtb5J9Lxv+ScWOf/Fr0584cV45JsOBHzGyW2mSNXsb097qeEcMKL1qgr2UqU4jZxnexrhzeBftVOgao0VCgkQWY6IpCoftlbwXn8tueQoFlqGzUGZXBZIsIMgSBDTqI0xMsw01zp1h+tqb+YHpAX4Q+TkIY7icVy4BwYAj2kUl3RNyAkoPaiYRuzp8HBR8HwBx9klKecfiIoLSV+LtyszIYTKYA0oPgjCUMmeGiKpWCbLWKqMZoK5DSbEf3vW48sDCs8d0IUuK2qOoO+rnnBn+MdvafGN/nSQhq9mjB+KncOqioXUz4gs/xfeiF/F4eIUWux3XvLDo53w6fBsdRQdjKJ4OgCnco9haaESP10dhwshwBDPLBImgZqKJ7yUsEgAKzEMP9pa67fSgDiBopVUz2PdpOD5+DO5aAo9dps2aKoFORaW4zzjGcr3ZDpWLiZUvokTwsqvDT19gYr0P9KBmEvH69k6OU60RjHMVMTQEgYfKr+GKyDdpjdhyuDuFtoiZXdIUTCUzs7doIiUdHN86NbIss7vTjxsfUxqeVh48NAWfp9EwWig+6it04qa5Nzj2O/pdryB078Ij23hOPH7AaHM/ihadyN/jJ/NuYCqBSO77uDJJg1TKOnkudlcJFWWlA4q2PdpJ5gd6lOxmHBFsRaMeP2/zb9lkuYjP+8Z/uTUZ5I2PcJHhORZYOvdtTh9EhWuQVYJWYpv9vk8j3IgJgmKToLH3V0wV3vNbkshsX/oKxivfJFByEADrGydWtkYPaiYRH27ZxiKxXvlh1gn9j++cejbPSYexNzSKxkWGCUXj3BU8gxMjv8R8zNeztq7BqXwgmCO9io7EOKXVEyIQiXOe8XXEeAgqFiu6Mhmg0G6mQlV03j7WbM17fwbgP/HjOHReNVbT0CUAl9WES80WNPdMMAG4/UjoxxQXWKguttMoq5kUDS9u4V7l4uw3Fo3pbt1iFCkQwlhiE2vyxf7h/3Gr6UEWm5qGPabcadHe/2ksmZqEqrBX42y4WvoKFyRR+hKVv8tl1YXAxGsW1oOaSUIoGsfe+BoAwbKl+2ialDqUi1euG4U7vEl28muEzVVKXFbv7MaxqnCiSfg0i5Jt49BL0/J5GhFZ5pv2//EP049oaBiDX1HXLtjxPyQEpfS0/9TTYCSJU5y7+ZS4huZO7cow4w5fO0c33M0XDC9T4jBTW1xAQwaCmqZYITdEv8ZbNWNrQDYVKNkcS9w/LmQcNEMd6ZZNBcMeUua00InWmZoRzCwT9Ps/7QVJ0mZdwOJX1pZTaFJeXlUAyKyfYHYJelAzSXi/vptt0UqeFE/Eesi+UurTxVZOE9/D0fVhjnan0OYJAVDhsijO01mi1Gmlm4RVwvjtq0n00/yx6hfw+X/C4nMzt5ggsCryOkcZNiHsfHH049/7CwCvxZfSLExh1fwRejsEgR/5buXX5j/R2zqBx7p76vlE7z+4wvAkJQVmaortGQlqGiIFPBI/nuaZY3s/mB1KUOPETyCi0QTQOEBUR7pHsgopd1p5Jn4YfzFfALVHarPwl/8Ll60ZOWvqrAQEkKL9KtNaYA8pPYjGwmljf5Esw/1ncv7LRzJT2Mv6hh7NZQZyiR7UTBJWb+9gvTyHNQtuRTjiqn2eW9T5HHeb72J597M52p1CR08f71uu4IHItyASyNq6pU4L345eym+m/AyKpmdt3WTZpWZqZpS7YP4nlKa/DNJTpZQop7StHv3golp85nIeiJ/KkbNLR860CQJ9FuXONdgxgYMaNevXhYviQUFNVDYQDWvnCD9miwQVc0EhAC5hYplaGqJKUCOMFNS4LPxPWslvwp/s12xJm4ISmLIErK7hjzGYwKH2vWjoAeWOKTdhtpLqsb9IECAeQZQirDDV4w3FqOtMYiBgnKMHNZOE1dtVaf0hmjdNbqVUkGurBF9HE2VCH1XxJjBlr2m51GHhFekQ1kiLR/5gyjG71XHumWWZt48AMC84HYCDQmuRY6OUJg+/gi+77mW1tJhTDxq9aTFUoPrUdGvXMDvuULN+XbKLEocFt93Eq6bjmR++n11H/VyzZYr6NnOMuJFKYRSLBBVBtQNRnLrHbw9Zshhiyt+HaB3+76PcqZTafeFY9pvUEyPfGgU1oWicm8MXcmXkagpmJ5l1UgO6VQ5FK2rdnl5N9jQe0IOaSUBrX4jC9vc4WNzJ0TMPnI6wqyqkznhurRJCPUqDn89cmrlekSEYLz1Fo1HX6eM24/2ctO02aNuc8fWmLTyCDtmNgyB9W0fO1uztC7KuyQeCyMkLRw9q5ELlztLkG76pM9+J+QYFNWoWZUqJmzgGGrq0y0Se6X+MB80/oXbvc2N7gVXpKXEJ/nGhIq4JsTAGWfl/MYxwY+KwGCk0xVko1NO37c30123fCs/eCGvHMElWuUSxSjBoM5DR7gmzSZ7BK4YjcZYlkamBfsHOJcIuYGJNQOlBzSRg9Y4OvmN6iCfMt1C087EDnneWKvXYUrkXbzh3H3LxPqXpLWzVWHdlFEodZuYITRzrex7qXs/q2mMlFI3T1BPkDMN7lO16VHMPmaGwWUx8YFK0ZAIfPzP0Qc1rYdMTvPiRMoVxSE0R5apx4EiY1ZF9RzBL2kjNa+Huo7NqhZHwfeoRXP3luJoSpWTY0K1NUCNJMs64ckFK+LiNir2UzYYFrJdmT5xMTXhgkstiH778JAgChxa08azlu5Q8q4EcQtvHytTfxn+PfuxZv1WsEuaclP66QJs30YNoTb4HUVUWrgzuwERsQk1A6UHNJGDtlp0sVSNyZq064HlL4SCrBLVZNxeIqppw3DHC5EwGKHVaOFFcxw+Eu4mv/2dW1x4re7oCuGQf5UKv8kDZvOysW3IMAAUNwwQDq38Bj1yI+52fAXDaSFNPg3BWKkFNebyVUDQLzaoPnQ+tH8HfP535tVSiHiVTEzAV9+um1BTbucn4D059+4vQ8E7aa3hCUUpUiwR78Ri1Sgqrub3811wVvWbi9NRYXPzf3D9xYeTb2K0jB9WiKuFgDHWlP4k0lnHuDOFp3cWFhhc42bwp+RcXzwRrIQYpwjyhgW1t3gkT4OpBzQQnLskIda8iCjKBovlDjx2qirQ2IUJ3b+7SkJagcmcrZllu3Gkx0isWAhDxtGV17bFS1+FjrqCWatw1YMlOX010+vF4ZBst4lSI7Nfc2lMP25SSx++6DwWGMLAchoIKJaipEjpp6c2CVo0v+79XWVWsjVkG/K9qiu3ME5qoDmyGzu1przHYIsHsGvvNgNOqZI48E+RChtHMZtNBvC4tpWAIh+7BmAuVoEaUYxDqTW/d/nHuJD6ztCrxN6/ndtMDnB9M4UZMEPqzNcc5GpFl2Ng0MeQV9KBmgvNRcx8rY+sAsM4/ZeiDzAUEBaUx19fZnK2tHUBBRGlmthQlMZ6oAYIgELOOb6uEuk4/c0U1qMlSlgZg5rRKlof/zHdst4B5P/2P9+8FZFrLjmSnNIX5lc7+8spoCKWz+a31cm6IXkZzNoKaHPDekh/wqfDt7HINjPrWajzW3e0NUoxaeknCLsNlS/g/TZBMDeBT/18cQzh0D6bE5aBXVt/L6VolJMT0XGP4zNr7oWKVcPfR6a2pIvcpn9VBW4o3gbNPhgVn4ShXbjAmirmlHtRMcFZva+NY1RpBTFgjDMG/yr7JFZFvsjeWnQzA/vjCMfbGXeyUpmKvyKJFgopsV4IaMTA+g5pdHT7mJDI15fOztu68SgdRjOxo8+6rZREJwLoHAXhYPAOA04bxehoSi5P1FZ/hdWkpTVlQFZZOuAUAeSymfxrRJJWwXp6D0T1QFqoeFNRI3fVpr+HtbsMgyEgIoL6Hx8L19ZexyXIRts6P0t7DuKBrF0d2PsKJ4lqco2Rqyp0aWiV4kig/mR2KVUL3bk2yNQafElDFHSkGNUdcCec9iHWhYmC7boL01ehBzQSncfO7lAl9RA12qD582ON2TT0zp1YJbZ4QP4p9iXOEu7AtzV7fQwLBqVxoTKEu7dLDGlLX4R8oP5UtyNq600sKMBtEApE4rY07B/SDPnoYQr1IhdP5U7MShI619JSgqkjJ6mTDKuER8TQeiJ2sqO5m6ffb7Vem6Qbrx0wttNGMEuTEOtPX6An2Kn1oftEFhpEv5oOxyBEKhDBScGKUHNi7gS/3/YlLjc+OWn4qH6wqnG6mZiy+TwkSx0T9mhiaWoPK7150p5fZXlajTMSub+iZEArTelAzgfGEopS2vwVAtPYYMA4fsCTGmjtyNNacUBMuV/2Gso3FpQQ1Bi3q7BojyzJ1HT4sQhQZIauZGqNBZFa5g7tNv2bqfStg54tKUPCu4vO0rfo8gjGlV2R+5fBTJ0OxyLyXs8U3YO/6TGx9H95tjnJr7CL+bvpsduQCwj5W7Po9XzU8R7F94O/OIApEnMr4rdCbvkZPS8zNDdGv8ULl15J6XcysjD3LEyWoUS0SfLIVx2hBjWuQ/1M6CuKSlFyjsMk2YDiqgVaNM6wEZKbiJMe5ByPLLLR2U2n00hOIUq+h1ECu0IOaCcxbOzu5J3YGV9vuxH7CjSMeO11o43TxXRwdubFKaPcowVTFGMaBM0Gh24lHVgX/xpn/U5c/gicU47PR2wnf2AiVS7O6/vxKJ02yWtrY/gIEe5T+GpOdB0JKf8CpB1UkPVZ6aNd/+Y35j8zuGIMNQzrsXkNJ4wtU0E27N0tBu7eVVe0Pcp3xEUqc+wbqYsl0AEzhbgh50lqmOWLnkfjx7Kz+bFKvi5uVAFQI96a1/rhBtUjwY8M5Sk9NhcvKU/EjuEv4ItQMn70eFUGA67fB5W+MffpJQ2PLkrgSkBWU1aR+kscvw/yHZVxe+D4wMfpq9KBmArN6RydxDBQvOA6qVox47EFd/+NP5t+wsuepLO1uX0Kt2/jAcjl39IwcfGWKUoeF66NX8Ntpv8jJeOZIJIwsp7ptWO3OpMoMWjC3wsnLkjIpwY7/gbUQLnmJyOXv8swOpXSUVD+Niql0OgDODGvVyO/8iZt9P+Y8w2s4+rZp5848Eqq/z2DhvQQVZWW0y4X0Wqal7QOUsEgodSRZNlYF+MRwekHVuEHN1PjHkqlxWnhBWsldwU8QLl+S+pqCoFgkVC4e+99kv7Fleu/5QChMGUoAUlQ5PfUTlSlZ30NNimntRNCr0YOaCYosy6zernx4Hzt39AZCc6FyUSrIkVVCpKeZUsFDodybk/VLHRZelFbwhrQoa+PSY2W36ssys2x49+FMMq/SwQfSPPzYlHR9i1IuervLhjcUo8xpYVn1gUrVo+FQG8JLY61EYto5F+9PrG0rAJcan+GB0DXImx7P2Fr9qGWNbtX3aTA1xXYOC/+e70//h6IXkgaunk0cK37INDHJv1s1qDFFvaMcmB/IasbLi23Unhq3zYTZqFz6OrKVuUuQ6KtJM6hp94Q5N3Ir10jXUlCcvEN3P+pY9/TwNgDW6ZkanfHK7k4/53r/xo9M93GEY3SNDpv6h+HKkVWC1Kf8kUdsYxQQ05jxbJVQ1+HneuPD/LD7Btj836yvP6/SRRQjqyX1rnbjvwB4/mOlUfHkhRX94nLJ4J4yG4BpQietfRkSfYxFMPTVA/C2tBCAiKpcnVHUEman6vs0mJpiOzIiDV3pm1oe1/sYfzP/lHltY7RIUDHYJlZQEwsp/x9+efTykyAITCuAg4R6fDvfSn3RXa8oFgmbnxz7a8oXQtVKKDjQgy8Z2nxR1stz+NB1PEI6mdupywCwB5ooxsPWVm/2PbE0Jm+Cmh/96EcceeSR2O12CgsLc72dcc/qbe2ca3idLxpexBYavcPfWaIENcX04Y9kQeF1Pwx+5QIpZVlNOEGZ08x8oYFjvc9CvQaeMBqyq8PPcmE7tf4P+9Ps2WSq24rTYuSVuNrL8949xFs+5MXNSrA8VhXh/REKlV6AUsFDS0eGSkLddYhyHK9s4yNpBgDh7sxbM8S8aqZmiPJTTbGScdPCKqEgqphYmt3J/Q6EkpmslebQEE8+wzYeiQWVTE1QsGExjn5ZW2lv4RnLd6l99RupL7rnbcUioe61sb/m8Mvhkpdg5cWprwu0qRmmcmeagxVWN5TMAeA4RxNxSeajPBfhy5ugJhKJcO6553LFFVfkeit5wa7NHzBV6CYmWqD2qFGPtxUpQU0pubFKsKiBl8GdRio1DUodFk43vMdt/Jn4xodzsofhqOv0MUfMvkZNAkEQmFvp5KX4IYTNRVCxiPWhqXT6wjitRg6fWZLaiW2F+AWl1Ne7N/3x5iFRVXt3yVNoQ7mAxz2Zz9QklKm7B/k+JagpsXOYsIV7Y98l+vBXU15DlmVcUi8A1uIkA8tlF/CZyO38IXzGhBjj7Tj4Ki6K3MBbxkPH1LBuVK0SzKHO1Ef8+8e5s9+DJzS8zYWGF1ip9sKkherYfaKrEch/vZq8CWpuv/12rr32WhYvXpzrrYx7wrE4zibFmDE47UhllHA01HSoRYjR051dATpZlnGoasLW4uyqCSdw20x0C0pKPtKXpnaFhkTjEt6uVsoEtaGzNHtqwoOZW+GkBxd3L/0PXPw/nt+svEdOnF/e35+QCr0W5YIQas9UUKP0CuySp9FBIQCCP/OWCQnfp5Cp6IDSnMNixG0zsFzcgdS0LuU1vOFYv++Tszi5C6tLtUmQZHKSmdWabsccXpWW0WutGtPx1iLl38sgRSDVZunEBJMzhRuxNAPJsqYXud30AEeHV6d1HqC/r6bfsTvP+2ryJqjRGTtr63s4UlaaOR0HnTq2F5ms+NS7Zm+WrRL6glHKUNLojrKxfShpjSAIRCxKxkFKV5BLQxq7A8yUlSyNXJg9z6f9mVehrPtRJ8gmOy9sVsqFyQru7c+6OVfzlciNrJPmpL3HoZA7lEzNTmkazlLlvWUOZj5o37rkBj4Vvp0PCo4f8nmpcDoAJm8TSKkFFV3ecH9QY0my/GQ1iRjVYGsiGBkmLBJG66dJUOx24U1IOKQ6DZeK71MkAHcthh+WDwhZpoA5oPz9yakEVPsz41g46puElylZw3UNvXmdvZvQQU04HMbj8ezzNRl4a+seVorKHaowe3hrhP35d+nXuTxyDS1xd6a2NiRtnjCNcjl1TMNUVJvVtQcjqTLzQjqCXBpT1+HvLz0JWVQS3p95lYpY27Y2D1v2emnsDmIxihw3L72Gx/jME3lNOpjtXtPoB6dA67JruDJyNa+ykpoaZdLIFumGeGabIVvlYtbLc5CGuegUlFYTkQ2IcjTlSZi+nnbMghoQJdl4KrRv5k3zVbxovmFC+D+5tj/CZw2vU2kaW6CgWCUo7+mUrRJSydSYbODvgnhkQLgvBexhJdtoKNLgJrB8AZz8A6oPOweTQaDTF86KdUmmyGlQc9tttyEIwohfH3zwQcrnv/POO3G73f1f1dVpKC/mEd4tr2ERYvjtVVAya8yv2zX1TJ6XDqUlnF1V31ZPiOuiV3Jl4d1QtTyraw9GUA0BjaHcjLUPRV3nIHfuHPTTJJinqgU3dgd5fL2yn2PnlmE3p6eZU1Wk3C1nytRyc7iUZ6XDoWwuzpJK7o+dwrNlF4OU2Qt5l0/RjykeRj+mptRJk6wGIikaW/q6lIuiTygAU5KilQYLFXRTIXRPiEzN3I0/5xemP1NlGFvppMyVplVCJDBgdZBMpkYQBo11p54RL4oqN1720jSE9/bDajKwcKryb7K+sVez82ab7Kp47cfXv/51Pv/5z494zPTp01M+/0033cR1113X/7PH45nwgU27N0RnTy97TOVUzD05KUn4XI01D1gk5EZNOIHRVQEtYI75IBpK/kKRAeo6/EzHgtdcjrN8Yc72UVxgpsxpocMb5h/vNgDpl54AqmwhzhbfoMATJS6twpDCaPhI7GhXpsXmVDgpc9m5LvYVjrKU8IlM/m4liQVb7uJiQwxsQzcCVxfbaZTLmUmrEtTMOCbpZdrjLr4VvYzFlTYuTPbFqk6NSwjiCYw/GYNkMUSV8XjROjarjnKnhYZ0rBISWRZTAVhcyb3WNRW6dgyUr5JFilMsdYMArgqNMtuhPmhey6cLG/mwsZR1e3o4a2luhjbSJadBTWlpKaWlY3eWTRaLxYLFkhsvoVyxZnsnz0iH01ByCk99YmVSr50ptHKG+A6ujk4gew3Z7WpQU5HueGKaOFwlhGUjFiGmfNAV5j4Aruvw86/YF6g8/WecsyS3HzLzKpx0eMMEInEMosBJC8rTPmeZ3MNvzH+kVy6gzXMHUwvH0NQ+Vto2MW3T3zhUKGNu+VzKVQuOhCVHxgj1ckTz/Rxhgt8XXDnkIbXFdrarbt2pZmr2Rm38J34cVKZQgrAOXIiDvj5gfKloJ0U8hklSPkOMtrEFGOVOK7+LH8WH8my+NXVl8hfC4plwQ52iCJ2sl1iamRp/z14KhDgxWaSkQqNMzeYn4cmvc0bJSm7lWra15q9+Ud701DQ0NLBhwwYaGhqIx+Ns2LCBDRs24PNlX7djPLN6h6oiPK8s6UzDgt5X+aP5txzanYSYlAY4mtfwgeVyLmm9Pavr7k+p08LV0W/wu6pfgj3FMWWNqetU7kBnlhVkx4hxBOZWDNwFHz6zmEJ7ktL8Q2BQe6gKBT972zSeSqp7jU+2381XjC8wp8JBucuCCz9uz3boy2AzfEApX3pkO27X0I3dNSV2dstTaJTLiBtSC+YTFgn76+CMCaOFiKC8LuLrTmn9cUNk4BpgGmNQU1Jg5kUO4+7YJ+l0plDWTVgklKUwjZimqnDvXmWMu5MiCmwa3QiqY93FfZsQkejy52/2Lm+CmltuuYVly5Zx66234vP5WLZsGcuWLUur52aiIUkym7fvwEiMY+ck38CZEPCyR7L8IedpoVTw4BCyr48zmDLVE+YtaRGY7TndCygu650+5d9kRmluLBIGM9iFW4vSEwAWBx5RKQP07t2lzTlV5A6lWX6nPFUpPzksfMf4T/7Dt4it/Zuma+2DP+H75KR0mICjwmnl78InOCb8G5oXfz2lZaxdmzhO/JAaQ2o9YCGDEnBF/b0pvX7coAY1EdmA1Ta2v1tRFChTy+3t3ix/7iSCmhQbhZuM0/lU+HZ+bv+mdnsqmwemAgyxALOElv6AOR/Jm6Dm/vvvR5blA76OP/74XG9t3LCpxcN3o79nveUylgeTl/+2q1YJ7nh2gxqjqiYs50hNOMF4s0qo6/DzJcNLfGC9EuebP8n1dpg7KKg5ZaF2v6s+s1L6CGqsVRNp3QJAPVXUFtsptJvoFooBCPVkUFVY7dHown2A71MCURSoVpukU1UWXtn+KA+Yf8rSrmdTen3YoPw+Y4HelF4/bkiYWY7BoXswVU6Zg4TdhOveSX7NdQ/CszdA/RvJv7ZktmKVUJqajEFrSGS9PIeWosNSev2QiAaYejAAB4s76fZHkKT8HOvOm6BGZ3Te3NrI4eIWnEIQY+nYp54SOEsTVgm9+MPZG/O0hpSLgKkwtz0jpQ4LBwn1HON9BhrezeleAOo6lMmnUnpByv2EyuJpbj69bBrfOGE2lW7tGm1DBYrgotzToNk5AQRVTThcOBujQUQQBIIWpYcvlkn/J9V5u1t2UjKCe3ZNsZJVSDWosaoZVaMrNb+0Tuc81kpz8Ebz/DKgZmp8sm1Uh+7BrDA38ozlZha8fd3oB+/PjhfgvXugbXPyr515vGKVcNJtyb+WgcGKCpfGPYiqD9QSoQ5Jht5g7j9zUiGnjcI62tK5+TVsQgS/pZyC8uQ1TWyqymYJHpq9QQosY5skSIe4JOOKdYII1uLcCO8lKHWY+aThLS6Xnya+ScRQo+GdUArUdfg5OmGPkEONmgQGUeBX5x2s+XmlwhroApO3UbuT+rswR3qRZAFz5UDfQ8ReDh7A26rdWvsR83ZgRDGzXFkw/IWntqSAe003cvhLDVD7X6hMrjnfEVOCmmSF9xK8seSn/OjZLZxjyM8pl35KZvHTotvZ0ubjM0kENUZXJewFSziF8l0qwnsaUbb7Sb5iqKPSfKa2J1b7ag4x1kEMuv3hYTON45k8D9F1EnhDUaZ1KKlQadZJKTWVCgVlSAgYBYnersx96A+myx+mHEVbwlGa26CmyG6mm4RVQual9EejrtPHnHGgUZNpTCXTAXAENSwJqfYIzXIpM6YM6i9TS5ymYOZUoxPvnV7BfYDv02Cqi+1KL1m0K+kJKFmWcau+T/ZkfZ9UEqWavBffsxWxRlzOa9IyHEmUn6yF6ntBCiVvFJvoh0lH0VeSlK8kWbL3P9xm+htzpPrU1x4KNaiZSwNmonT68rOvRg9qJghv7+riGOFDAJyLTkvtJAYTXkHJzng7M+9kDMp4bYWgBDUGd27HSkVRIGRRei7i3txbJXS1tVAieJERcub5lA2sC0/nosgN3BY6X7s6/uAm4fKBCSSTmtWwhjtTuqCMhcZFV3JO+Ae8YD75AN+nwdQU22lIcazbH45RqlokuEpTu7A6Vf+nvA9qGGSTkESmpqioiICsZtKSURWW4gOZPleKQc3/na5YJTS9n/RLnVFlrxatM9uFNXD2H7ip+C5iGPK2WVgPaiYIGz/eyGyxhTgGmHFcyuf5V+k3uCxyLc1SsYa7G562viDbpSoaDNXp3fVoRNym3tWn6gejEZIkY+5RLswxV824mMbKFGXVc3hdXsbOeLlmTdrS4vP4jPQTfhH7HHMGjaIn3OgNchyCmWmIb5fdbJBnE3KMrCFSWzIQ1Mjd9Umt0dPTg01QLjq2wtRuBubXP8hblq/zmZ57U3r9uKFtE8cFX2KpsDOpTE25yzZglZDM37uvHeQ4CAZwpKjVJEtKn1yyWjVSnOK4Ui4rKJ+e2trDIQiw7Et4ChcgIdKVp0HNmN8BGzduTPrkCxcuxGjU23aygbDrZQA8pQdTZCtM+Tz1U07nhcYGFmTJKqHVG+bm6Hc4aXY59+agPn0ABWXgA2OoM6fbaO4NMl1qBAMYKnLfT5NJTAaRKW4bzb1BGnuCmihLN/thbaQGk0GgtmQgICxxO/hT7JOUl5bxGTEzn02JO9zR+hGqiwaCmlhXHcm4X3m6lExqEAu2FE1ObUKUqUJ3f29O3rL9eW6Xfs+/DcdTYL50zC+rUK0SauhILlOT8HxyVChTQ6mQ4li37GvHSJy4LFBckZlyfYk6Bdo1TqZAk2XMf9UHH3wwgiCM2b1TFEW2b9/OzJkzU95cvnDfm7t5b3c33zhhDgunJimZrQF7uvw8452NaDiXK444Ia1zlanTGtkaa25T1V1zbZGQwOisgDYwh3uUNHOqH1ppUtfpp0d28qFhEUtrDs3JHrLJOdb1yIatdDeXQ21ySthDsVO1R5hZ6sBkGEhIlzstfDd2PosNbj6TRvA/ElUb/8DFhj76bOeNeJzNbMBrnQZxiHfXJxXUdMYLuD5yOTOLDFyV4j6NBUUAWOL5LWAaD3kxAH6sSY10lzutbFStEiRv+9jLFv2lpzRuwlIU4PN3NuAA2iii3J1aMDsivY2c7HkUweCh2587c+F0SOpW5d1336WsbHRRN1mWWbRoUcqbyjde2drOmh2dHDu3LCdBzertHdTJU3mn+mKuXX5EWueabmjnE+I7uNrbyYZVwoBFwvgIamyFyp2ziATBHijInI3HSNR1+HhaOoJI7Tncc8yKnOwhm3wu9B9qTZt5vnklkGZQE/FTsfo7XGSw01G+rytSuSvDgmuSxLK6P7HcJPEL22dHPVwumg6d6uRXEkF0W9TKo9KxHFdSlnJQY3EoQY1d8iFJ8oj9P+OZWNCDAfBhpSCJnppSh5knpKP5QJrLFaUHUzTWF847A27cvY+ScdK4FBmDZMtP3rZ6HECHUMJUcwZuuHobOKH+19QapvAr/5e0P38WGPM74LjjjmP27NkUFhaO6fhjjz0Wm01DH5dxzPxKJ2t2dObML+P17Uqp5Ni5yasI78+C3tf5tPm3vN69Crgo7fONxrzmx1hruZeuxk8Cf8r4eqNR7LJzReSbLJpVy1XmDNwJjZHd/fYIudtDNgk6qiC0GSnJ3pIh6dzOwpZHucro4h8V+6quljutOAlQ4m8g3jULQ8mM9NcbTLBHCYgByxj0YwpKa6hvr8BYWE1V2AtjzB4lXMBTskhQsTqVvjkXAfyRWH/jcL4RC3iwAGHBvk9WbjSMBpH3bMfwrC/C2dbZYw9qBAHsxcpXqiSyPEmaWga7FNmDXmP6n/VDUqCct1Toy9vy05jfAa+++uqYAxqAZ599lilTxkGPRBaYX6lkZ7bs9WR97UhMwrnrac4Q32FVbfqaAgmrhIIsWSWYA62UCF4KjJmZREmWUoeF56TDeFtelFOX7j3tvdgJKZ5PkwDJrZiHmn1N6Z+sQxHd2yVPZU7FvkFhicPMFcYnedb0HSJv/D79tfZHFd7rk+0Uukb/3VWXOjk+8mt+V/XrMQc0AMaOjzle3MAMU2oWCQBmNVPjwp/XE1BSWLmZjJmS/1spS5icerN8Ae/P1CRXftpcdjrnhH/A88UZyqKomWm3EMDj82dmjQyjyfRTwmCyp6dHi9PlHfOnKNMVW1u9Y+450op1DT18jUf5o/m3zPelr4KbsEpwZckqwRZOqAlPy8p6ozFerBKc7R+w2fpVTv/g4pzuI1uY1IxJgQZaNf2eT9I05u4X1JgMIn6TYlYa7c2AqrBqkdApu4f1fRpMqqrCC1se5X7zzziiLzWLBADBWgiASwjkdVAjh5SgRkohqKkqkFgk1CHtSeKz89U7FYuE9i1Jr9ePuxqqDoUkBT6bQlY2yLMJlxyU+tojYS1EFpSyluzP7bBEqqQU1FxzzTX89a9/BZSA5rjjjuOQQw6hurqa1157Tcv95QVz9z7Jg+Y7OTH8cn/ja7ZYt2kzC8QGJATEWek1CcNgq4Q+gpF42ucbiUhMwh1T7jTtJeMnqFks1HGM52loWpuTPQQiMYoCihOvpaAwJ3vINs5KZaCgNLo37RuD0F5Fun63MI3akgMvdBGbOkadCVVh9ULQjXNMaqyJyayG7kBSujkJFVwx1ZFiAFsR9UIV2+UqvMH8HN8FkNXeFimFcvEhpnqetnyP5etuGvuLNj2mWCT405B9cE2BS16EzyQ3Tp+wSMjYYIUoItmVoF8MduWl/1NKQc1//vMfli5dCsBTTz3F7t272bp1K9dccw0333yzphvMB0y9uzlG/IgV4ja2tGa3BGWoewWAHvciKChJ+3wFxYmgxktnX2anIjp8YSoFJSNkL8mtmnCCMqeFzxhWc7P0Z6Stz+RkD7s7/cxVlYTNUxbmZA/ZpnjabACm0kF3mlkySc3U+J2zhuyxkBxKr4shkAHV6ISZpewe0fcpQXWxnbPEN3k0+FXij31tzMvYIkpWPFXfJwAcZXy9+G4+F7kVbzizNzCZZPPC6/hm5EqabcmrbptVwU9rMuX2RMkoB7pah9Tfy0WG56i2Zc5ZXFRLUMV48tL/KaWgprOzk8pKpffi2Wef5dxzz2Xu3LlcfPHFfPTRR5puMC+oUCa9FooNbN2bvWZhWZaZ1qMoUsZmpp+lARDsJcQQEQWZ3q4Mmv6h3HWUq2rC4njQqEHRFulSrRLCObJKqOvwM3cceT5lA7NqlVAghGltTVKQbDDxKDavYowpDmMtYVDfa5ZQB2hcLo75BplZjuD7lKDMYQGDhUqhh2jH2F3KnWp52FqYRlADOC1Kc7AnlH8XrwR7nIfwX+loYgXJ20UkLCaskh+iYwgUQp6BqSctPrMkCWJjzJJJEqd3PcCtpgeptGauB1FQm4VL8NDtz79m4ZSCmoqKCjZv3kw8Huf555/npJNOAiAQCGAw5EbXI6eoRnTzhEa27c1eX9HevhBzJeWDsGjukdqcVDTgEZWLui/DVgkdvV7KBDWz5RwfQY1BFAiZlamGmCc7/lf7U9c+yPOpbOLaI+yD0cLt7h9ycvhnNATSaHjv2YMox/DJVsqmDT3ZZFFVhU1SGMLaZla7F17A2eEf8H/SJ0b0fUogCAIxt6I8LPbWj3mdItX3qaA4vb+bieD/5Asre0/GoTtBUVEpYVl93VgE+BJieRY3mNNs4n/yasUqYd0DYzvePyC85y7PYGb75B9wpe3nvCIty0v/p5SCmosuuojPfe5zLFq0CEEQOPnkkwFFx2b+/IlrvDcsxTOJG6zYhAi+lm1ZW3ZrQzuzBCXwME9bqtl5Hy65issi19JEhsYGVbp7elkTX0STeSbY0y+daUXUpqRf5RxZJXS0NVIs+FTPp7k52UMu6Ko8mh1yFU19aWQNSmdzfskjfDpyO3MqhtaMKi5045FVlWGN+2o6JRcfyrPptdeOWfclMVZuDneNyVgxEPDhFIIAuMrS60X7Zvv3ecvydextuekfSxtZpqrhSU4R38dtTj7rVuay0almZsdklZAoPWmRpTFaVKuEsd08yn1KBrOdIioKMyj1MPVg2l2L8FCQl/5PKQU1t912G3/961/52te+xptvvonFoqRZDQYD3/nOdzTdYF4gGoiXKb0P9p6tRGLZGU9ur1uPQZDxGorAmZpT71DUV57KC9JKWkKZHWluCJq5IPpd7l30dxDHkQ2ZXQnmDMHcdP/L7VsBCBRUT2jPp/2ZVqToWjX1JDcJNBhZltnYIbFdrj5g8ilBmdPCn2Nn8g/HRaBOAGlFl5quH0vpKUF5WTndsrrX3j2jHt/boVwEI7IRhyu9mwG31MtUoRs5kPpoeE6JBjhtx63cY/41LnPyn7vlTgudqqqw7BtDubnfnVuDoCZJVeFAp6JR0yoXU+bMrI1Noh8sH/2fkr6SRKNRVq1axeLFi7n22mupqhpIg1144YWcffbZmm4wXzBNXQLAPOrZ1ZEd2fHXPFUcFfoNrx38K0UQSiOyNdY80MmfHZ+psWJwKhMl5lD2P+hlWWZrr4F/xY4nPPfMrK+fSw4yNHKl4Qmqmp5O+RwtfSH8kThGUWB66dDlgXKnlT/Ez+Ee+WxwpteTsj9FH97DxYZnmGEd+2fAPm7d3btHPb4rZuW6yOX8xnQRQpo3AzGzIkchB/vSOk/OUDNbkixgsTlHOfhAygYFNcGeMfQQ9lskaDCtmWg0HqOqsL+jHoBOsRSrKYNtHl27OCvwOJ8RV+elAF/SfxEmk4mPP/4YQcOL6ERAqFyET3AgImdNWXhTq4dmyihZeKym550uKlYJhR3vaXre/WnvG18WCQnMbuVCZ5JCYyoHaEm7N8zaSDXfjX+Ngk/8MKtr55rZ0e3caHqYZT0vpH6SZ67nNuP9HFHsHVZdtly9y233hDXXlZq17S983/QPqq1jzzbVFNtpTAQ1PfWjHt8ZtfKYdCyvudK/gYyb1dJLKE+DGrVp148VhzX5XiyrycALxuP5UfQLtLvHYAtz9LWKRcJJtyW91gEkaWoZ6Vb67LzmNMb4x0L7Fj6x9/d8yfjS5Ck/ffnLX+7XqdFRWX4RP13yPD+NnZ+Vse6+YJTGbqWuvnCKtn5TC7xv8Afzbzm863FNz7s/p3f8lbWWy1je8H8ZXSdZ3IVFXBW5mj/W/hoM6as0J0Ndh6LiWV1sx2KcXE33zspZAJREW1MLNiSJ8rrH+Irxf8wuGT77V+a04CDA9Fgd/pY0BNQOWD+ONdoLgMk59gtPTYmdjdJM3pMXIo/Ba6xrjC7gY0G2KJ8dhkj21dA1QVUT9ifp+zSYDa5V/CV+Jk2mMZgvJywSHBr0Gw4uP43h/S6pGZ2QTbtWgyHpn37qy8vyU0rvgkgkwr333suLL77IihUrKCjYN837q1/9SpPN5RUGI/NVM8tsjHVvbe7hd6bf0mqZQaFxFaDdxdeiWiXYo5lVFS6ItFMieJHHmedMqcPCM9LheOUyrjRmO6jxMk9ooKYk82ai442SKqUpeiodeAIR3En0pQDgacYUDxKVDRROHb7BusBi5Mvm17hR/Du+186BL45x+mQ0gj0IKBcnq3vsF72qIhv3Smfyl/CZfDDrJEYNa9o+4nhxPTNNh6S+VxVBtWYw5ntQIyfn0D2YcqeV7W2+zJmcDkciqIkGINQLtpHdp16uvZb/1h3O8vIMyzwkdGoEb16Wn1J6F3z88ccccojyB7V9+/Z9npvMZan5lUpNd1sWPKCa6jbxGcM7hOMbwPgHTc9tUwX43LHMjaf3BaIUx7vAAI7S8SG8l6BUbZLrzLYfDNC2t4kXLN8h1miCWLMyITFJsJZUE0fEIkSp37sH9+wkJ786lcnDermS2VNGvkBEbOUQhriWY/uq8F637KDIOfYGb4vRwBSXlZa+EA3dgf6etuGo3fMY95sf5k3/BcAZ6ewYg025ETPHcmPGmzZq+cmLDYcltZujqgKJxUIdNEbgkFE+i564Ekx2OO5GSEfNGcBkg1kngsU5Jq2aPaECNsizObKkJr11R0MNahxCCL8v/94XKQU1r776qtb7mBAcVH8/q81/5IHAqfT4j6VIg/TwcAQb1gPQ5ZjDVFHbMoVLDTKK6SUUjWekKW13l58KVXjPWjw+LBISlDosLBN2cGhfC7Q4YerBWVs7tncTAAHbFFyTKKABwGCiSyyhXOqgt2UXJBnUyB3bEICdQxhZ7k+8oALCIPo1FFhMWCTIrjH5Pg2muthOS1+IpvYeDqkuHLHx36RO5ckalEAEdxU7pGm0xbUtYWcNtefNL9twpJipWSLs5CeW79GxpRbO/tTwB8ajsOGfgKwENVpwwWNjPjQxWFGRKYuEBBYXkmhGlCJIvvzzfxpHc7T5j1WOUiN2sFCsZ2uGm4XNHcrFL1amvbGZo0QZVywU/HT0ZCbrVN/p77dIyIXc+EiUOS2cZ3iVm6Q/I23/X1bXtvQqmc9Y8eTRpxlMr0V5LwTbx66umyDQrPTH1DGN6UN4Pg1GcCklVktQQy2ihEUCrqT7XWqKbKwxf5Oznl426oivRZX0T8v3SSW2+DxOjvycn8fPS/tcOaH6UL4rfIN74mfisKR282UpVMvto1kl+NoAGUQT2EfvfdKUQDentvyBLxteoCLT06KCgKz+/xlD+ef/lFJQ4/f7+f73v8+RRx7J7NmzmTlz5j5fk5ZK1S5BaGBrBpuFIzGJKUHl4ueYnn5dfX8EWxFRNYnX15mGZP0ItLTuxS2oEyLu8ZWpKS4w9wtyRTzZs0oIx+KUBVUjy6mTw/Npf0IFyntB6hldr2V/om1KUNPnmInZOPJHm7lQCdzNcR9EUtfF2QdV66VLdo3J92kwtaUFxBMfx6NMQBWovW5md/oNo4k+FF84lncXLwC5sIaHw0fyurQ05fKTQy23F0jekctAnoRGTaW2ulqSNPp7sKeecwKPcqXxScqyMC0qqlnAIvryzv8ppXzdJZdcwuuvv84FF1zAlClTJnUfzT6oHlCzhGb+3tINDC3Tni4727wsEOoBKJq5XPsFBIFesZAyqRN/915gkeZLBPcq/Q8+cxkOS/L6EpnEZBAJmIpAhmhfG9kaOG/oCjBbtUewT9P+3zwf2DXvMr7VfBzzzAeRrJuZ7FeCCmEMKsxudwkB2YJdCIOvFYrTvxmLLPg0n308SAgz/06yybla1aqZTpsS1Ew/athjXXGlbGsrSl9jx6U26csy+CMxnOOsaX80wjGJmBqMpVp+KiqtICaLGAVJybYNd5PlTagJa5hZfvuP8OItcPD5cNbvhj1M9jQjoAjvZTxTAwhn/oov3vsuH0rldPnCmkzaZYuU3gXPPfcczzzzDEcdNfwf3qSksIaoyYk56sXXshnIQMAB7Nq9k4WCBwkRsUL78hPAwyVX8mGzl1Op5LAMnL+5L8xr8aXMqawlg4LfKROzlkAQJN8Y/GA0Yle7j8PVoEbI9ITDOMVVtYDtsh9zConOO2c+wIsfbObCqtEtQ8pdVtrlQqYLbeBt0ySo6ZEL2CjPwiAKY/J9GkxtSQGbxqJVE49SiFLadpSkn+G0eBt4wfJtJBm8oRPyLqgJ7lnLSeJatstV2FPs/St32ejCRQW9iv/TcEFNvzu3hj51FseYrBKCnQ3YgRa5hAUZVhMGoGoFex0+fCE/Xf4IczK/omaklEMrKiqiuLhY673kP4LQ3+Ni69qcsXRuR+M2QrKJTmut0kGfARoqTuZ/0kpawtrnKWRZ5sW+aXwl+m18Z/xR8/NrgWRXLjBiIHv+T60t9RQKfiTESeX5NJgBq4Rg0q/d0e6jBxezpxSOemyZ08ID8VP4q+XLmt15d6nmf0V205h9nxIMVhWOj6AqHFKd4+OyQGFJ+pkawWhhntDIHKEZTzAPNUnW3ce95l/yWfO7Sf+bJyh3DVYVHmEazpOBTE2/Vs3IAnzBLsUioddYljX9qkQJNd8E+FIKau644w5uueUWAgGNatETCEuVYpcwS6qnoTsz/z4veGZwUPj/eO/ozAkgljrVseYM6BR0+yP9rsC1JePT20h0KjVlUyizWj2DqeuO8NPo59kw9XwwjS+V5WwxrQCuMDzJtyJ34wuO/b0nyzI725RJmDnlo5czy10W7oufzu+jn4Si2pT3OxjT+vu4xPAMC2zJSyEU2U20G5UMQLRj17DH9cQsXBu5gh9KF+Kya3DHblUu5kZBwu/LP60aKaTsOWZM3THbbjbSIxQC4O0aIWOiNoJrmqlJ2C2MYpUQ61Ge91syrCacoH0Ln4v+l0+I7+SdVs2Yy0/Lli3bp3dm586dVFRUMH36dEymfVOW69at026HeYY4bQXbDa/RGi1ma6tnWP+ZVJFlmc17PcQxMHNm5pKC08UOzhTfpqi9Fa17anZ3+ikgiNtdlFkPkzQwuZS7YGu0VxnlNGQ+Lf9xj5F18bNYeNgytG//zg+cBQVcZ3oEE3F2NdfjmD1vTK/zvvRzfis9zUOGk5hRevqox5erzZY9gSiRmDRqY/FYqNxyP98z1XGHeUnSrxUEgZirBrwgjmBq2RU187h0DOUFFm7VopfRZCeOiAGJkLcbqE7/nFlECimluJgpvSL2K9aTec23iDPtCxg2bDjnT3Dqj0FLCY1EgBTqVZqFhzGwFb1KUBMpyNKkaPNazu26m1LDUj70X5CdNTVizEHNOeeck8FtTCCWnsdfts/nkbVNOPZ6OW2RhlE9SlreG4phNojMLs9cN8p87zuca/4d73QdDVys6bl3d3hZa7mccNQOnne0TedqREFhGVdFrmbR3FlcQXYa4Xd3KhYJM8u0DYTzCtFAp1jGFKmV3pYdMMagJla3hlWGD1lnP3pMAUqhzUShIcRUqZWe3eupmJN+/5sprDYqp6gfYyyZybt98ykumcscKT7kxVNLiwQABIGA6MApeQj7Mie2mTFU8T3JnN7fzKbik3i3r5vFxloOHu6ghEWClljdYCqAqF/xgCqZNeRh5kDCSDNLn5UJqwTBk3flpzEHNbfeemsm9zGhmK96MWVirHvrnhaeM3+bFutszMJJZEpqyDxW7YYU6G7ZhVWIYpT9UJCldGqSlDrtPCMdTkAu4wpDalMVydDjjzA3uJEOwc2M4slZekrQa57ClFArwY7RHasTmHp2KN+Uji17KYoCn7Gt5/ux3+F59RiYk7ozOADxGNaoYgqZjO/TYMrLyzlv6y1cNGU6tw6TDYju/ZhV4nrcVu0GBIJqUBPx92p2zmwhqkEN5vRu8MpVQbuObKuIC4ISqHTtUEpQwwQ1f579R95c+yEnZECXbEhUnZoSwdPfK5YvpH1F3LFjBy+//DI7d+7UYj8TgvmVTsxEadir/eRM9661LBAbOUTelNGSSEGxkmFyS9oHNZE25QLktVVDFgKGVBjoKcrOH3Rdh5c/m3/FK5ZvYe/ZlpU1xyv9WjXdDWN7QcSPM6Q0WtqS0PeJqc3ggk8DLSJVo0aSBWxJ+D4NprpYKT00dA3fi1e+61HuM/+cs8LPprTGUISNSg9SPJB/mRoxqgQ1QpqyEFX2OIuFOox71w59QLAXHvoCPPMtRVdGS2afCAvPGTEw2xV08KE8m+Kike0/NEO1SijBQ5cvy55YaZJUUPOTn/yEV155BYCenh5OOukk5s2bx8knn8y8efM4/fTT6e3tzcQ+84pDtv2KTZavssrzBP5wTNNzx1s2AuB1Z3bk11WqXFhKZMUqQUuMPUojZLRo6LuS8UCpw8JyYRtH9z0JrR9nfL3mpj2TfvIpgeRWGndN3jEGNZ1KkNwlO6muSqInxKlkI01BDW4+AoqcfA8OipypTSTWqEHN3q4+5SI6BIlpvLhNO0XbPptileDPL401AIwxpWQrWNKzeVgkb+Mpy/c4decPhz7A0wzbnoGPH9VWeA/g9J/C5x6AacN30rV5lAxSeaYtEhKoQY1ViBL092VnTY1I6rfzpz/9idJS5X/2xhtvpLu7m7Vr1xIIBFi3bh29vb1861vfyshG8wmbuxyTEGeBsIftbdraJbh6NwNgmDa6Fkc6OEuV2q1DCNHdq90dnCzLuAL1AJjKx+/Fu9Rh4QLji3w79mfkXa9kfD1/kxI4dVumTdrJpwTGEiWoKQiOrN2RQO5QMls75Wmjej7ts45byUZao71jMhQckX4zSxclKfa71JbYudLwBE97Pov8ytAXV3NIyQihge9Tgv8t/AknR37ORusKzc6ZLV6efj3fi15EPM2JJJuqMF0wnIlvYuQ6F/1/zev4XPefOVN8O/O+TwnMBUhGNTjPM/+npIKatrY23G5lBPCll17irrvuYtmyZVitVpYuXcrvf/97nn1Wu7Rogvr6ei6++GJmzJiBzWZj1qxZ3HrrrUQi47TW12+XsIdtGnpA9fgjTI8pnjgZURIehGBxEUL5cO5rH9vFZSy0e8NUS8r5nNPGr8BcicPcr10R6cu8AJ/QoUj8+12zM77WeMdZqWTwSqJjc9D2NyuBfp08jRlJTBs6CsuJyGrvSrolKNXMsovUg5qphTZ6cCEKMpHOofuJrGqPm9GlXS+aS1XiTcgs5BMfOE/k7/GTMdkL0zqPs0S9iZM8EB/i3yGhJqzlOPdgJAlCQ2dEpMb3+UL8v3zC8A7l2RDeUxnwf+rMKwuNpIKa2tpaPv5YuaMUBAGjcd9+CIPBgN/v1253Klu3bkWSJP785z+zadMmfv3rX3P33Xfz3e9+V/O1NKFiMQDThVZ2tWgn3ra1qZO5giLCZK85WLPzDokg0Ccq9Vtft3ZBze5OPzNF5a7HOI4zNRajAZ9R+f8P943t4poOTo/SkzZZlYQHUzx7BaeEf8opoTvHVPrs9gXxyDa67dOTEiYrd1vpoFD5Id2gZs7JfJ47uSP6paR9nxKYDCKBAqV8Jg0jwOeMKUGNRQPfp/5zqkGNJ888fmAgEEvVIiFBUVklcVlARO7vj9qH/kxNBoKanS/DD8vgb2cP+XS4W/nMb5WLKctmUPPpezgrfAebpZq88n9KKqi59NJLueGGG9i5cydf//rX+da3vsWuXUp/xO7du7n22ms55ZRTNN/kaaedxn333ccpp5zCzJkzOeuss/jWt77FY4+N3bY9qzgrCJlLMAgy/saPNDvt3l0fYhbiBMQCKNRGMGwkHi65nEsi19Mkamc4Wd/h4+X4Mj62HgIl41t8O2ItASCeYauEWFyiIqxokxRUTU7Pp8G4XW5azDPwY6O5d3Rl4RenXsGS8L1smpac03S500qHXKj84E0vcI0YnbwTqmWTPIPiJH2fBiMUTwfA7G08sCFVknBJyt28rUi7Msj8tqd53vxtzuq4R7NzZoWwj5ndr7NS2EqBJb2gpsxdQDdKs/GQNzH9mZoMlJ/sJSDFhrVKCHcr1il95nJMhsxMuw6FcfqR7LHOJ4g1rwT4kvoX+ta3vsVJJ53EwoUL+ctf/sL69euZO3cuFouF2bNn4/P5+N3vhjfl0pK+vr5xbdUQK1OmMKzdm5FlbVJ3zW3t7JCm0eVcqIwCZpiG8hN5SVpOs4ZWCbu7A9wau4hHFvwOCko0O28mSDRjCv7MWiU0dQeYo2bgiqYnL9w20RAEgWmFY7dL2NHmBQRmVxYmtU6Z08I/4yfwe8MFUDY2PZzh6AkopXBRUDRwUqWgrIaYLGKQIorR5mCC3RhQAh1niXaZGgdB5ouNlES1y8hmhd49XNX6ff5kvgtnmkGNy2qkW83a9XUMoe6byUxNQlXY164Ife5PnxLUhGza/c7HSqKU2pVHWjVJvxN++9vfcsUVV/D0009TV1eHJElMmTKFo446ipNOOikrjt27du3id7/7Hb/85S9HPC4cDhMOD0SYHk/2ZMCt1UuheQ3To3W0ecJUutMPDJ7uncEvIz/nr6csy4ruZ6ma6tRyrHl3h1Ke1FppOROIjnLoAVNwiHS0htR1ePhP9BKOdHbwpbLxW5LLJueY38VlfJv4Di/M/fyIxyaa8WdXJDfWW+608HB8FcagwJXFs9PSt4ite4hLDe+xznpYyh5EAFUlbprlUmqFdsXYclBjakSwcGPkStyCn2tc2glvGu1KmdUS0751IKOElXFuv2zFkWZQIwgCHkMRSA34ulsOVBVOlKRc2mWt+7GXgGhSjC29rVC476e70a8EVJIjy03KLRu4UHiK1aKbbn/+aJwn9U743//+x6pVq1iwYAELFqRf+7/tttu4/fbbRzzm/fffZ8WKga78lpYWTjvtNM4991wuueSSEV975513jnr+TGGceSyvfLCRDyJzqW71pB3UhKJxdnYof8QLq7KjVTBD7OAs8S2K21sAbUSfejuaKCCWVENnrjCpzZiWSDfIcsayY3VdIZ6VDoeaSr5kzF7NfDyzQvqIlcaXebNlOjB8UCNvfYZftl/P/4yHMLfimKTWKHUo/9YxSaYnEKHEkfq/vWPT37nZ9AF3WNK73UgYW9bSDt27ofbI/ue6oyaekI7GIArcmkY2aH8sjkIAbJJPs3NmhYgSzPqxpd1TA/CG4zRe6FrEsdZ5HODZfslLEOwBUwa86kRRyQD1NiglqMFBjSxjCyr9XmJhlfZrj0T9Gi703ovbcCRdvi9nd+00SOrm5PLLL6esrIzzzjuPf/7zn2lr0nz9619ny5YtI34tWjTQY9DS0sKqVas44ogjuOee0eu/N910E319ff1fjY2Nae03KeaeyuOzfsCT0lFs3Zv+BNSOVi+SFKfIbqIyS2N98/zv8Vvz7zmi41FNzidJMl/s+wubrBezpPEfmpwzk1gKp3JV5Gr+Ov2XSlCTIeoS9gilmbO9yDdkt/LBbvI2jXicr/EjZrCXCqE36UDZbBSZapc4SKjHU/deynsFMASV6SfJlt6odU2xndXSEp4Wjj/gjr3Lr2Sdi+zmtLJB+2N1KmVgh+zPqykXwsrnqo/0MzUAOypO5d74J9jFEMFDwiIhU3ILwxlb+jsxyFEkWcCqYR/VmEhYJeCZuOWnuro6Nm7cyJNPPsldd93FV7/6VY466ijOPvtszjrrLKZPn57U4qWlpf26N6PR3NzMqlWrWL58Offddx/iGASQLBYLFkvu7nznVzp56kPYpoFdQv2uTXxsuZh603wETtZgd6NjUa0SCqLalF/2ekLUotTt3ZUzNDlnJil2O3hGOpww5VymteDWIByNr7FK7GO+qyZja+QbxpIZUAcFwZHdiwPNm3ECXbbkJp8SnGTdxg+kO/C+ehAseSvF3Q64uQuO9ETxakrs/CV+JgRh1dQjGRymhVo2sUpcD1Ztx/5tLqU30Sn48UViuKyZN2/VBLX85JNtlGsQ1CRMTtuzbZUAA6Pi+zcL20v4Vs3DbNmxg/ML01NNTpqEqrDgzSurhKQ/qZcsWcL3vvc93nvvPerq6jj33HN5/vnnWbBgAUuXLuWWW27hgw8+0HSTLS0tHH/88VRXV/OLX/yCjo4OWltbaW3N/KhtOswvtzND2EtHS33a5/LtWU+BEKbYEMpKkzBAQbFy9+CWtBHfq+/wMVNQfmeGPOgdSZQnOjL8B/2Jnge5z/xzFoUnr7v9/jgrlQLAaFo1YreiJhwtSm2STnYqbuzGQBoTbvEolphy42J2pZepcdtMuNXSUmPPvnYJzu2PcZ/555wna6sFZnEo5WwXAbx5NLorhRPlJ6sm5aepthhLhF1YW9fv+8TejYpFwms/SXuNYak9Eg76FBTvd7MniuwIFLBJnpE94b0E/f5PfXllapnW7efUqVO5/PLLefbZZ+ns7OT73/8+9fX1nHbaafz4xz/Wao/873//Y+fOnbzyyitUVVUxZcqU/q/xzOFbfsirlus5vOdJIrH0/EJM7Yo+UKQ0S4ZmgEtVFS6Re4loYJXQ0tKISwggIRz4xzsOKXWYOUzYwtE9/4X2rRlZwxuMMENSyqKlMzOrEp1PFFcp2YgyuYtIeBjvGVnG5VP0XCxTUuvxM6jTLJZwF0gpvsfVJtK4LGBLM6gBRVnYRIyOPfu953zKFF7Eqp1FAgBWNx0U0SBX4AvkT7NwNKAEkj7Zpkn5aUF0E09avs85zT/b94muHYpFQt3raa8xLIdeCufeD/M/ccBTCYuECleWqw5q+akYb175P2mWUy8oKOCzn/0sf/vb32hvb+fSSy/V6tR85StfQZblIb/GM/ZpSgAyjz3UdabehCdJMqU+RQreVrNMk72NhYTKplWI0t2Tfgkq0KKo5vaZK8GUmj9ONil1WLjI+Dw3xP6MXL8mI2s0NuzGJQSIIeKYqgvvJSguqyIkmzAIMh3Nu4Y+yNOMRQoSlQ2U1MxPaR1bUSWSLCAi9asCJ03CIgEnxc7076bnuGW2Wi7kmOdOhshAkGFQfZ8SSq+aYXFybsF9nBz5OZ5o8iW8XOGtXsX3o1/hWflILMb0L2UJE1/n/lYJmRznHgVp43+4JPhXDhc3Zz9To5afTEKcsC9/zE5TDm/9fj+vv/46DQ0N+9gVCILAN77xDcrKtPMmyVeESkVzZIHQwNq9XuZXpma6tqc7wDzqASielVl7hMGIVgd+bBQQpLejicryNKXZVePBgGsGWfKaTYsyp4VOWfmdRfrayMR9Uk+9YlDaZpjKNH3yqR9BFGkzVFArNdHTUse0mQdmKOWObQjAHrmCOVNS06wqdRXQhYsy+hRdGLUclRQJiwTZnbJFwmDKy8rw7rRTiB969kCFonllCSs3FoKGvk8JnGofTT6pCvcWLuTB+CkU2k2aSIkkMtMuuU8RPkz00Xmz5PskxSHQvY+vV2TLs1xieIaONDzFUsZoIW52YYh4Mq7VpSUpBTXr16/njDPOIBAI4Pf7KS4uprOzE7vdTnl5Od/4xje03md+onpAVYsdPNLUAstS0zjYubuekwXV82VqdsXZesVCCqQg/q4WID2tAqtHKRUI41xJOIHVZMBrSFgltGckqIns3QRAT8EsMqCAkdf8pvJO/lcX5hbLwQyls9wbiNAkTWenXMXpKUoElDsttMuFlAl94G2DVG7Gq1Zyme2XtPX6uUmDC0+tOtZdKOxWtGrUoMYeVT4DTBpaJCRw5qH/U79FggalJ4DicmXqyYhExNc10B+VmEjKhJpwAs9euGsRIMD32vsDqnivsrbPUoExi2rC/ds6536+/OBmduAmLskYNJy6yxQp/Stde+21fPKTn6S7uxubzcY777zDnj17WL58Ob/4xS+03mP+YivCb1U+gIKNG1M+TU+d0njdaa4CS3Y74B8pVqwSGg3p2TLE4hKvBmfxz9gJmOccr83mskDYomQAYt40vYGGwdy9HYBIcX4EetnEWjYDH3aa9muYTbDJtpJPRn7M79w3YDWlVjZJBDXAgQq+Y8Xi4O1gNRvk2Sn7Pg0moVUDKEENgCz3+z5ZC7UPaq703MVz5m9jb0l9AizrtKzjMGEL00za9AEVOe30yIqsQk/HICmBJMtP0bjExfe/z/n3vEM4NsY+rYJSJVMjRSEwUAYV1YAqVpB9NWEAx7xVfCTPJCSb6Q3kR7NwSkHNhg0buP766zEYDBgMBsLhMNXV1fzsZz8bvyaTOSKq2iVYujanfI6d3XFeii+js+IorbY1ZpoqVilWCZH0emCae4M8H1vObXyN4kM+pdHuMk9MtUpINGlqTZFf6RcxVS7MyPnzmX6rhGH8n/qVhMtT1/cpc1p4NH4sv5C+CNNSK+1GYhIeNWuQju9TgpoSO41qUCP1qMaWoT5MKGskej+0pFJqZYHYiJxhnzMtqVn7U/5tuYPD0cZfTxAEesVCADwdg0ark/R9umd1HS9vbeftui4efn+M2mgGEzjU0mciMyTLmINKoC07syy8p2IyiP3TePkyAZVSUGMyDdQwKyoqaGhoAMDtdvd/r6Ngq1Yae6eFd9GT4pviie4aLonegP+kn2q5tTGRGGvuTNPQbLcqMDe9xK6pcFjGUScAjEHtgxpJkvlO5KtcE7kS1/zjND9/vjPf2MqPjH/lhD13Dfn8zjbF3HFukvYIgyl3WXlaOoLfRz6BvzA1/6fAhkf5muEpFop70vJ9SjDFbaMJ5QIX6ahTHjSYuYmruT16AUVud9pr7E/UpPSOycE+7U66/QX49wWw/u/anXMQgqoorGX22mdUMrOBHjU7I8sQUv9NxpCp2dnu4zcv7+j/+Q+v7hqT07xyfjVoSmjVBLowSEqPk7koR8Xpxve4wvwMR4kf5Y0AX0pBzbJly/q1aFatWsUtt9zCP/7xD6655hoWL16s6QbzHcv8U7nfeC5PSkeytTV5ZeEOb5h2bxhBUMT8ss10g2KVUNKWXlq6eW8rC4V65hblz3QFgNGlXFzM4W7Nz93qCbExWsXTHMPU6gOE2Sc9U21Rvmh8mcP8Q4zSBrq5/aMTec78beaWpWFvYDFiNyvvyVRF18SPHua7poc4xlqnScBuEAVCDkVNWOpSMjVRg5WHQodzX/x0ijPQMBo3K0GNEOrV7qSN78KWJ6FJW92yBIaoWnayaKfE/U7RmdwR/RL1JlXgUBDg23vg2/XgGjlbIkkyNz22kUhM4pg5pUxxW2n1hPj3WLM1+wc1qpFlh+ymtDBHauPbX+Dy8P2cLK7NGwG+lIKaH//4x/0aMXfccQclJSVcccUVtLe3j8m+YFJRcxhv1lzO29JBKSkLb23qpJweZhTbKdCoIS4Z5gfWqlYJj6R1HqHxHZ61fJfvtV+r0c6yg6GomisjV/O36doLb9Wp5p41JXZMOWgCHO+UVCsCjWV0Ewvv21cjd2zFRAyXEGB2ZWqTTwmqHXCQsJvAjhTH9tXJkKhVO9f5WPEcHo0fzc4pZwIDLuCCAIV27YMa2aIENWJEQ9PfDkWGgrX3QevH2p1XxagacBqs2t3s7Zl6Bn+Nn8EuaVBWRhDAVjQwDTUM/3h3D+/X91BgNvCTzyzhylVKYPTH13aOLVuzf1Cj/rdFLulXO8466lh3qeCh258DpeUUSPqTVJZl3G43FRUVxGIxysrKePbZZ/F4PKxbt46lS3UBsf1JZFhSytTseJ/3rFfxYPQ6rbc1JsyFyh+3I02rBKFLScmG3eNfdG8wRW43z0qH84GsvYZMYNvLfMXwPMc6M9OEnO+Ulk7BL6vlz/20aryNytTYLnkqM8vSM0ddbm3mGcvNzFh9TUqvF1UXd8mmnX6Ms7yG66NX8kLxFwDwNW3iRHEtS2xdGZlAEWyFABgzEdTAwFi0hhhjSqCrZVCTqlVCc2+QnzyniCV++/T5TCu08bkVVUx1W2nzhPnnu2Noy9g/qJl7Kl8uepBvRq/KvvBegjz0f0oqqKmvr+fggw9m/vz5LF68mNmzZ7NunS7tPhpLC8McL67H15T83Uqk+UMA4gUp6GdoQEGx8oeWrlVCgVdJo+eDPcJgtOopGoqS3U9xm+lvnMQ7mp97IiAaRNpF5X3f27JfUNOsCDm2W6anPPmUoF9VONSZknGpWfV9Ep3a6cfUFiuBWkO30iRt2vw4fzX/kksMz2i2xmBEq9KnY46mb74LQCwC3XUDP3s1trSRJCySEtQY7dr1GE21RjlY2ElBh2qVsOUp+Ofn4f2/DvsaWZa5+fGP8EfirKgt4kuHKZOiFqOBq05QsjV/en0MvTVTlsJBn4bqQ5WfRQNbfXbq5SnZF95LoGZqigXPxCw/ffvb3yYUCvHggw/yyCOPMGXKFC6//PJM7W3CsHLPPdxv/jlLu55P2gW3oFu5I5Urs6tPkyAhSFUs9xId63jifkRiEhVRpa7snJaa8muuKHOaOULcxNE9T0DnTk3P7fIqF2qxQlcSHo4eixJwBNrq9nlcVm0rgu5Zaa+RyEYa5CgEkwzeY2HMcUUt3ORMU5xyENXFdozEiLTvAG8rca8ylRSyaFfiGozBUUabXEifpNHFs7sO5EGfF1oHNdGBMW6zPTVR06GYE9rIE5ZbOL/jN8oDezfC9uegbfgb0v9uaOG1bR2YDSI/+cySffqqzl1ezbRCGx3eMH9/Z8/Ii886Ac69D1ZeDEBckvtvpspzlanp93/y5M30U1JNGmvWrOGhhx7iuOOUSY1DDz2U2tpagsEgNtv4l73PFc7aZbDpQebI9TR0B5g+RqGwQCRGVXgXiFA4Mz3hu1Rxlypd92YhTltXOxUVyY+TNvYEmCko6WfXtPy6gJc6LFxmeJrjox9C41Io1cghWZaZEqkHwFUzlLScDkDQPg1CIPXse0Gwe5Ugx1iRfpBcUuikR3ZQJPiUi689iR4dVU04JovYXdoFHDXFdn5gvJ8v9LwCH3wHwa8ENXENS1yDCS34NIe9UsEUq5UztDhh57Z9f9a6/CQa+WfxVTS1dVJjS6/8OBiHag3jjKvB7Sjj3F2+MLc/pdx4Xn3i7APkBcxGka+fMJubHvuIu1+v44uH1WIzjy2zGHzxR9xk2MTD0gmUaCAVkBKD/J+6fUPrRY03ksrUtLa2Mn/+wIdIVVUVNpuNtja9J2AkxCnKRNgCcQ9bk2gW3tbSy3xBHZefsSIjexsN0WylD+UP1TNYkCoJGltaFcVWQCjNL5G5UoeFTpT0dsSj3fs81N2IgwAxWWTKDD2oGQ7JXQOwr35KJEBhRLnzd1en/29X5khDgE8VSuvGpYnvU4KakgEBvkjnLkwhZR2pIDP2M5orCge6wDDoQqx1psZk47+WT/LH+Nk4NBijT+BWM9NFch/xuDSq8N7tT22mJxBlfqWTy44bOmv42eVVVBXZ6PSNIVsjxZV/q3gU06ZHuNT4LDPtgdwp+dqVQF0UZGLe9P3/skFSQY0gCIj7dYCLojjujSVzTvlCJAQqhF7qk9Dxadz5ETYhQkiwQnHuRn77RMUqwNed2t1Wb5NqZGkoBqt2qeJsUGAx0icoQU2oR7ugpn3XBgAahCkUu7M/qp8v9Mw/n8Whe7nL8c3+x+Swlxc5nPekedTW1KS9RrnLOhDUJKscXTqXG4t/y5WRqzX15nFYjPRYlAtstLOu3/dJTMWbagwkvJ984RjxJEvkQ7Liq3DzXppW/Vb5OQONwr6wtjYJAEXlA5np7s62gX07DwxqXt7SxpMftiAK8LPPLhl2gtFkEPmG2ltz9+u7CERGCBx/OR9+OQ86t2P0K2tLzhwaqBiMNHziH5wZ/iENAe2Cx0ySVFAjyzJz586luLi4/8vn87Fs2bJ9HtPZD4sDr03ROAg1fjjmlwUblCbszoK5o44TZpL/lHyNiyPX02CcntLrt/ts3Bk9nw3Tztd2Y1kipFolRDXM1PgalRp9q3m6JmZ8E5WKsjK82GnqGVAV7sDNZaFv8PnorcwqS1+/o9xpoT1hsZpspsZk4/1ILR/I8zU3HIy5lYZTQ18DBarvk9mVoaAm3sPD5tt5yvzd/mAhXRp6wlz2go8mQxUUpWezcgD+LmYFPmSW0KxpUGMw2/BiB6Cns2VgEmk/M0tvKMr3nlD+hi85ZiZLqgpHPO+nD6mipthOlz/Cg2+PkK1xqH1ZrR9jiCv9NAZ3ho00R8E6/yQ+lmfSHpS1CXgzTFLvhvvuuy9T+5jwRMsOgoZGLF2bxvya9zzF+GKnc9jMZeRGJFuhqexYXm5sZkUktdr1h14Hb8Y/yewluWl2TpeotRSiIGvoVCu3K9krr0ujHp0JyrQipVevpTeIJMmIosCONqUxt6bYnvbkEyhWCU/HD2erVM23a49N2uW3S23m1ML3aTCm0pnQA9bQwPvOVqS9RQKA1WLlUFHpg2nyeXHb0r85Xd/YwyZpOieEfsG2z56GpqF74zv8NnQz60yzsVs/r+WZ6ROLcEoBAu11kBAj3C+o+enzW9nbF6K2xM61J40+0WkyKL01N/5nI39eXceXDq8dWnfMNVVpSm56H1CE90pynMktUnWRZFkxkS1x5Ki/Z4wk9fd74YUXZmofEx579VJoeJ7K4E4CkRh288j/9HFJ5pmuSh6NXcDLx+RWQr8szbHm+k6lwWxGik7KOaegDLxgCGgX1DzovpxtDcv59MyDNTvnRKTSZeVm0z+ZQyNdjTMoq11AQ2MjAhJz0rBHGEyx3cwaDuHV+DK+6lqYlFF3dOsLnB99nHeFBRQXnKzJfhKUlVXQt92OWwjwT/Nn2em3cZK7SNM1+rG4kBAQkQl4eqAsjaCmtwEe+gIzpRrgi0TiEt1+jS+GYSWw9ck2yjUWJfWbiiHcjNy2GUx2QADLQNn83bou/v6O0kZw56cXj7nx99PLpvGHV3eypyvA397ewxXHD9GDkyhzqUHNXrk4d+PcKqaGN/mm7VneCM2i23/suA9q0qppRCIRmpqaaGho2OdL50DsS87hVsM3+H3sbLard5ojsbvTRygqYTcbmF6S22BguqGLs8Q3KWlNXnE1FI0zw/Mec4Qmphdpr4SaDRJ9DOaQdo1yW3pgvTyH0urU/IYmC0aDyPHGjzne8CG9jYop7AnvfIVNlos53qrNiL0oCv16RO2e5AL32MdPcJPpIY42fKyJ79NgBrt1vxebzf/FT6fYmaELiigSQMmKhbxpWoK0b4W2jyjqHchKt3pC6Z1zP+KqH5Mfq6blJ4D1ZedwR/RLbLQfCd9tgeu3KqrCKJ9n33lMMdA8/9Bqjpw19mk0o0HkGycogxL3rN41dJnPpfbP7N2g/EcuyZ3wXoJNj3Ot/HeONWykMw+0alIKarZv384xxxyDzWajtraWGTNmMGPGDKZPn86MGfmlGJs1KhZSN/WT7JKnsXXv6BNQ2/Y0c6iwhUPKxdx1vqvMDa7nt+Y/cGTHw0m/dk+nj3tMv+JFy42URDWegMgSQvF0roh8k3/W/lCT88myTF2HEtjO1KAnZKLTa1buXoPtdRCPURJuwi6EKZumXfP8VKfIQcJuojtfS+p1MY8ylRU2F2lu1FpTbOfR+LH8n+FzbAopmZNMjvYGROXmKexLT2iTDkVDaFtcKdn82vQHZv/tENj2fHrnHUQkoHyG+rFpbh/TUvNJ/ho/g+3xSiWYGTTc8JuXd7C700+508J3Tk9enuKcg6cyo7SAnkCUB96qP/CA/cpce+Xi3FkkJFAn7krJD62alN4NF110EUajkaeffpopU6bojY5jZH6lkzU7Osdkl+Df8QYPW+6gzTcDOCXzmxsBaxpWCXsb65gnhIlhwKh1s2CWcBcW85x0GFCpyfl6d77LdbG/8r5hPrUlp2lyzolMoKAKwhDv3oPcsxsjMQKyham12skDzLP2caflZmJv2OD4s/vvzEdDDih/E1r6PiWoLSng/vhpzAy0MEPYS1wQKbJnbgIlaHCA1EHE35veiVSNmo8iyt+Lg6Ci1pzQfNGASMCDDQgJNs1908pcQ1slfNzcxz2rFX2kH56zCHcKmTmjOgl13cMf8pc1dXz5iNr+yTNgYHS8dB6n9txAdyjC/bnO1AxSFe7MA/+nlIKaDRs2sHbt2n00a3RG5zBbM1HD80h7lgIHjXis2LoRgEDxyMdlA3tp6lYJCTn7LvNUKgz5MRK4P1pbJXi2vc5FxheYYfBo0ug60ZHc1dANRm8jnsZNuIE6eQqzK7STBzAVTYFmMMaDEPaOWXrAoOrUSDbtg5pypwWzUeQM+V2+ZXqExzgBo+FSzddJEDY4IQqxQLqZmu0A7JSUUkq7rPYBaahVEw8qN4YRg/al+WnWCAcLO/ly893wzwJY9iVic8/g249uJC7JfGLxFE45KPUbnLOWTuX3r+ykrtPPA2/V8/UTBgXnxbPgoE8jFc9m+0t2ZOw576lJBDUlgoetE7X8tHDhQjo7O7Xey4Tn4O5nuc30N+Z2vTKito8syxR6lLsdS1XuDUJdpcrsVZHsIRaNJvXauPoB53Xkb1my1GHhaPEjju5+HLp3p32+WKsS6PUWpC/xPxkwFU8HwBFspnePMka711SjaUBY6C7CK6uq6L6xj+6bwgnfJ+0sEhKIokBtoZllotI7FDBnVi4jaC6hXS4kFEnNDgVQRmTUTM1OWQlq2vqDGu20auIhpfwUM2of1Ez3recJyy0cE16tWCR4mvnLmt1savHgtpm47az0bjSNBpGrT1QCmb+s2Y0nNOgztXgGnHsf7SuuR5bBKAoUZ8CVPSkGmVrmQ/lpzEGNx+Pp//rpT3/KjTfeyGuvvUZXV9c+z3k8Grq8TjDc05cBMDO+m7YRGhLbvWHmSEqas3TOyqzsbSQKS6cgyQJGQaKnK7m7LXOv8v8hF+fvBbzUYebrxif4ZuQeaF6b3slkGVfnBgCiJXqT8FhwVCrvneJoK9E2pV/D59T2/VTuHKQqPNaMQjSEOa54EJk1NLMczCFuHycaFHPFaIZ8nxL8d86POTT8R9a5VqV+El87hPqQENktV1JSYKYN7TM1LdNO5efRz7Hdpr1MhLNk376WVor59UvKzdn3z1xImQbN2p9cOpVZZQX0BaPc/2b9vk/KMpYnv8bNxr8z3SFp3quVNImgJk/8n8Yc1BQWFlJUVERRUREnn3wy77zzDieeeCLl5eX9jyeO0Rka01TlD3CB2MCWvX3DHretvplaUWlANE/LfabGYDTRKyjjs30dzUm9tiioCE1ZKvL3Al7qtNApK6rCUW/7KEePQtMHlIV2E5JNSDPTuHhMIoqrFC0fWZJw9KgTNRq7vZc5LXRQqPww1kyNWnqKyAbsrsxkUQrKpw98P8bR4VTRxCoh0AWlc2kxVhHGzLFzFaNM5cTaZWoaio/mD/FzaHIs1uycCRJWCQl+856fSEzimDmlfOYQbdR9DaLQn625d00dfcFB2Rp/B0W7/sulxmdxu8bBIIFqalko+Onx+kc5OPeMuafm1VdfzeQ+Jgdl84kjUiT4aNqzC+YPrQ7auUvJBvQYyylKxlwvg/SJxRRLHvxdYw9q/OEYVfFmEKGoZmEGd5dZnBYjPapVQrCnlXQ6g2Lv/xUj8LR0BLNrcimpmD9UlpWzJHwvHtnO9y3PUBUvpqBG22C/3GmhMdlMTUE5d0y7m827GzkjQxMqVSUDvT3RgswI7yXQJKipWIh81Xuc9YMXgDjHzS3jng3aZ2oyYZGQwOze93P5lWYDdrOBH39qsaZDMWcuUXprdrT7uO/N3VyTEPH74xH9x5SMh6DGVsSmE/6PG5/bS+z/27vz+Kbr+w/gr2/uOz3SNC29uNpy30gBdYxLQJHpPDZEBGQyUEGHCuJv4q2bOqcbOnUc83Yqbk4UvEBRQUAuueQqV1t652ia+/P745uEll5pm+SbpO/n49GH9ptv8n2nDc07n+P9rmvf8gMhhPyKSE5ORv/+/Zv0fmrJgQMHUFBQAIkk/C+6uCVVoFbVHan246g/swfA6GZP85TwrRTMSX0QK+Ne76fcikMlNbha1huhvp0UV9Xhec9M9Jefxx3Z4f9EFS0cx8EhSwE8gNvciVYJ9bXAT+sBAF+pp+LanKSwxJfoZBIRVNoUWCwOPGKZBmAa/tcjvE1AjToFdvmTGmYtC636rUSGvZ5c7PTpMCvMLRICclJUmOVahuGiI/B0C29xv4sVmr/Gu7JVqCgdDODlDj9OhdWJ6novRBwwtrcBD7MUHPdlIM/QC2KfLywtXxQV+9GXK0ayNAIf+mSN1+lUQo8HJhcgO0UV1suIRRwWT+iN29/cjX9uPYk5Y7rzO6qYL3iO4IuEAUAkgjh/Ig5s+Aap9k6st4qSkF9dQ4YMQVVV6Ft6i4qKqBBfM1xp/CIzWWXL7RL+a+uDB9xzYO/322iF1aZzaZfiC98wlLhDX5hXXGnHRt9IfJk2C4iREaeOcvm37PpsnagqbC1DsTgHh33Z6DNiPJVCaIcsf7sEgN9tHY6eTw0ZNDJ84RuKx9y/hTVvcsj3q/KvMUiJVFKTqsI3voH4i+c6pGgi+wanZzaMFB2ByXGiU49z5Dy/MykvVQ2DRg6XPAXjXc+g+Mq3w9bDbvy+u7FBfj96sMi/xwzMScXNRXkReeyp/TNQkK6F1eHBP7f6NyHIL7y2BS+85xd4fVfbXTHf/ynkYRTGGP7v//4PKlVo2arLFfsLioSgyh4EnPovjPajcHl8kEka/yO3OT3YWpOMrZiIu0ZMECjKpgKL4yqtoW9rLq7i51+7C1wRORyYMg2wAVwnWiUUi7IxwboSOq4OG4dnhzG6xDdFshOPyF7B976+WKu9LeTS9KGSS8Q4pBiM7+398Gv9YIS0obt4K6bb3sE2ricMmsvCGk9AdvKFv7eRSpwCJGp+XFjubbvieYteGI4CtxzZ3DwUmPgx3XSdHLYKD86bHWFLRqUe/m+LRBm+bf0t+dO1AyNWAFXkH61Z+MaPWLP1JOaN6Q79r/4B+9pfY6XrtxgeCyM1AFJKv8Ft4o+w1dc/5vs/hZzUXHbZZThy5EjID1xUVASlUtn2iV2Mbvj1uGmrDLtdmXi/0oZCU+N/lIFqwyadIqZeOHniSswQbUVa2WkAoa2P8ZzagQmio+ivTYpobNHAaY1ABSDtRKuE93adBQAM7p2HDD3922iPHKkZfUSn0Ud0GmlyA4Bfhv0aRq0ctXY3yq0OFJja7ivlPbIRd+FN/FM8BSnqO8MeDwAoZWJ+Z5bVGdFqwgAg0yTx1/R1MKmprwWqjsIIoJZpke/vzZWhV+J4RR1KzWFqlcAYZF6+n5xEGZlmj9sGPY5NOw+hz+hpuC5MPcZackU/EwpNWhwus+LVrSfwh0mj8Wv9WzhYZsO0GElqJPvewnLp+3jYPSv8fbzCLOSkZvPmzREMo+vgknLgNA1HXXENDpdamyQ1xceP4DrxZigNw4UJsAW9HT/ht7JV2F8xBMDvQ7rPwLJ/Y7HsCxy2eQCMiWh8keZN7Y0Fh5dgeH4f3NqR+x/7Cp/utAIQ4/rhtEC4vaSp3YFi/zcRKg+QoZFAXn4CoqNmoHfbU78uSzmUAGqgDXvfp4YWjeuFzUfKMTwvsivsFBp+iljt6+AOl0p+23OVKBVWqFDoTwzTdQqskLyOKZ/eDvhWACM68i+oAY8DYvBrO2QRGqkZ9atFKJzsQlIUasSIRByWTOiNBa//iDXfFmPe2O44b+VnOoyR6vXVXqpAAT4zKm0u9G5+j0tMCG99aRKSQCJzqKxpTR92YjP+LH0Zt9r+Ee2wWiVP8pc8d4fe7C7VcQYAoMqI/8rT2iQDPvWNxG50YCtxfS3w1o34yDUP/ZVVmNg3hv8ixCi16UKfJ3VWZHbSdVP78JH8AYz54feAu77N8z1WfiqyXpYS0Vois0fnYc2ckRGvPq30b0vXoq5j6yYq+JH8I15+l1a+KTBSo4AMbqjc1YAlDNu6nRdGkuQafecfrwXRSGgCJvU1oU+GDjanBy9uPh5cqxUTC4WBuCrAR0mNAH4h2Y8HJeugPLGpyW3yKr4TsdcY3t0dnaX2F6RKCrFVgqXehRzGb/825Anf6qGzgq0S2rGmKGjfuxB7HTjF0jFs0BDIJdQaob1Su10oJZ+eF5mddFp9KpzMP+ISSq2aOj6p8SjiexF8gFrPL4ZXc07Y6tpO6prwVxL+2ZsJuUSEPP9aunS9okFV4TBs63bxC5HrmBwahcDVdsMkMFoDILhgWCrmItrrq12CrRKsqI7x/k+U1Aign2M35kg2Irvq20bH3V4fMur5IVxt3lAhQmuRLo0vOpUMCzyutl/UZ86eQRJXBx84qEzhLZQmBINGjl+I9mBM9QdA7ZnQ78gYvDtWAwDe9P4S143IiVCEiS0zLQW3sJW4mT2EHlnhaSx6sTSdokFV4baTGlE9v77K5x+aj3dyVRIcTIpylgSrtbb9DxDo+cS6oXe6Jri41qRToBxhbJXgH6mpgxIaeYy86YfBpL7p6Jepg8c/SmbUKmJnh6S68fRTLKMiMgLQdx8C/ATkek6i1n5h3vZ4uQWF4CvwpvSMrTU1yakmeJgIEs6H2qpSGDLyWj2/+jQ/4lQpSoNRGv+LYtO0MiyRvIfBzhNA2S+ApBB3L53dAXHlIdQzGQ4apqB/t8gNlycyhVSMZb+fBwBh3/kUYNQpcB7JyEYFYGt7REHmXzQu1oS/75MgxBKMlb6FSpsLG9CBXUoNej7lN1hcmxHukRq1Aa9IfoPKemCKInHewjiOw5IJ+Zj/r50AYmc7NwCafiKtU2YPBgAUcqdxuEG7hFPHDkLL1cMFKUTG2GorIJFcqKprCaFVQn0p/weuVpkYIxMGzYVWCR5LO1ol7FwDAPifdxSmjYz/tUVCKjTpmiysD6c0jTz0kRqXHVIfv5tHqkuQpAaAVsGPfFgd7awc6/MBxn6okGbimK9bcJEwwK8LCSQ1LBwjNbpM/M17Df7hvSoiFYWFNKGPEQP8H3yMEapS3SH+0cgUzooqmn4iTaT2hpuTQsM5cO7EoeBhazHfuK5S1RMQx96wqlnM/2Gqqypp81xxNd9Z2JEUv40sG9IrpRdaJdSG+Gmzvga+n94HAPwbEzBjcHj6xpDIMOoaJDVtjdSIZXi+92rMci2DOgFKFgToOtoqQSQCfvMmblS8iEroG43UpKplqBHxfzu4+mrA07k3RcZYRNskCInjOKyc3he5qSpMH5zZ9h2iRZ+F70e/ghtdD6CqI+sKoyhukprp06cjJycHCoUCGRkZmDVrFkpK2n5zjUliCapV/Js93y7Bf7j8JwCAIzU2+yS9n3wr5rjuwSlF26NI72IC7nDdDlv+tVGILPI4jkOdhF8Q6gw1qTm9HfB6cMiXDUPhGCRHuHga6ZyGnbo95jZGFMQS/OTNxTe+gUiNpU/UnXSr8194R/YwFGe+bvd9HW4viqv4+jENR9REIg4yjQGHfNmwZIxutHupI5y1ZejNTiENtdAk0PRTwLDcFGy5ZxymDohsr692kSrAevwSB1h3VNtju/9T3CQ148aNw7vvvosjR47g/fffx/Hjx/HrX/9a6LA6zGXgdwRJK/m1J4wxPGcdj5td98E3bK6QobWo1DAaX/mGtNkqgTGG76u1+Mg3Gsn5Ra2eG08CrRK8IbZKcPaciCu4VbjXfRstEI4DGrkEP4gG4VH3TFT2vKbN8wNrC1ITKFnN9Z7CJaLDEFnasRgeANwOHC+3wutj0CulTdaDZCQpMcX1FLaOXg2oUzsVo2fPO/hUvgwrpK9DFeFt7uSCFA3/Oq+K8TU1cZPm3nXXXcH/z83NxbJlyzBjxgy43W5IpbE3VdMWZfYg4NT7UNjOwudjKLU4cMqhxDnRYGT3b77RpdCC25rbWP1eY3fD4h++zkuAFgkBXpUBsANcXWhrar44VI6f67VI1xlwWe+0CEdHOovjOJRr++HV6u6YrB+GVvdYnduFiTVvQSnKRIp6VLRCjDi3lB9hYfXmNs68yPrb0PvoV5gumoWy9Cub7NpJ1/OjWeGoKuy287E5ReqI1gcijZlKv8QC8Sf4vH4YvD4WsdYRnRU3SU1D1dXVeOONNzB69OhWExqn0wmn88L8n8XStNidUJKLbkbR5nSUerQYVG3H0XJ+SLaXUROzdUzypFWYIdoKY0kxgD4tnnfm9EnMFX+CSlV3KGXTohZfpHFqI1AJSOpDaJVgr8a/d/Kfdq8dmhWzfwBIY0atHKer7Si3tLFuoHgrbnP9CwbxWBg0t0cnuCjwyv3TRo52JjUVRyBzm2GBqtkWEyZ/EbnzFgfAGN+VtIM89XydGrc4cT4wxQPd/nVYJv0SFa6kmO7/FDfTTwBw3333Qa1WIzU1FadPn8Z//vOfVs9/4oknoNfrg1/Z2bHTRFCsToYhnS+Xf7jMgoqff8A9krfxK91hgSNrWS/nITwnW4UxFW+3ep7t5E78UfoalrLXohRZdDhS++E21xJ8kHN/6yfW18D3bF/MO3kXtLDj18OoLUK8SNdKMZA7DvnxTwFvy4tlA1OQ1UyHlAj3ZIom5k9qOGc7PgB6PUAVvzHgGOvWbFKToVfgNvFHuH3XFOCLhzsVo8/hT2qkoTVXJuEh0vi3dXPmmJ6CEjSpWblyJTiOa/Vr586dwfPvuece7N69G5s2bYJYLMbNN98Mxlou5718+XKYzebg15kz7ZwnjrDAtsfDZVbIT2/BIsl/MdH5mcBRtUzhb5WgbqNVgqucL8JlVudGPKZo0iSnYaNvJPaxXq2fuO9diDz1SIUZhbmZ6BGmzsQk8tI0crwvW4kJe5cArUwzusz8bdXQRbTvU9QpkgAAElc7kpqaYsDnRj3kOMdSm01qAuX+dd4awNK5DR7MySc1Pgn9u4qqhtu6Y7gAn6DTT7fffjtuvPHGVs/Jy8sL/r/BYIDBYEB+fj769OmD7OxsbNu2DUVFzS9GlcvlkMtj91PUNLYFU6Xv4dSRK6Az8yM04oyBAkfVslBbJUhrjgMAPEltvPnHmTRtYE1RK1MTjIHtXAMOwJve8bRAOM6k6VWohB4ZqOar3+qa31Yb6PvklCUn1LoOkb9BpNRtDf1O/qJ7x30ZYBA12s4dkKFX4AsWpqrCLn6q3iujpCaq/FWFDVxsF+ATNKkJJCkdERihabhmJt70FJ9Htngv/lOZiu7e44AIMPQaIXRYLUpK46dRdKiD11UPsaz5SsG6umIAgDQ9/tsjNGTQyDFetAtDqqyAJRfQNbPl8swP4Cr4CsKbxJdhWSxtyyRtSvNv687gqlsvwOfv++RWJEaLhACJv1WC29eOO1XwH8iOsUxk6BXQNzNyle6v1gwAzFqGzqSBnD+pASU10eWvKpwCC87GcAG+uFgo/MMPP+CHH37A2LFjkZycjBMnTuCPf/wjevbs2eIoTTxI6j4E2A/08x5GD47/9KLOHSJwVC1LTkmDk0kg5zwwV5YgJbNpYT3GGEzuswAH6LMTq4KuQSPHPZJ3Ueg4A5Rf0XxSs2stAL6C8GWDekGdYMXBEl3DWjWtFeAT+xeLM1XntifHGnvPK1G42Yjeeg1Cngj393w66stqduoJ4JOawM+VWUs7ldQcSpuK9RUZsGoSo7Bn3Ai0SuAs2BvD009xsVBYqVTigw8+wPjx41FQUIC5c+eif//+2LJlS0xPL7VF609geolKIOIYzOIUQJsucFQtk0jEqOaSAACWirPNnlNZXQUjx09PGbtHppuyUAwaGSoZPzzvtTaz3qK+BuzABwD8U0/DY2dhOglNmlaOihBaJcic/LoykTZxWiQAgE7J1yJpV0XhjEE4qh2J/ax7i0mNTCKCR8X/bRM5LYDL3uEYd6ReiSc9v0WdvnfbJ5PwCTa1pOmnThswYAC+/PJLocMIv+TuqOeUULJ6AECNrgCx3u7QLE5GhrcS9urm58XPnzyANADV0CNFkxLd4CIsWSVDtf83ZK89jyZ/vvf9G5zHgUO+bNQkD8SIvOSox0g6x6hVoBxJAACftbT5T32M4Y3+r+KznQfQu7nRujimDbZJaEfV2KKFWLFvCH6oqMaMZtbTBGh0yairlkPNOflRsJQeHYrR5kjMFgkxL60Am4auwrPfW9CDpp9Is0QiVKp7Idu2HwDgS4/9kY0Pkubg59IaXK/sh+aaORz2dMP9zkcwtpsY90Y9usgSiTjYpCmAD3DWljZNaobchL9/W4p9lQzXjchpUoCMxL5UtQyV/rUfrtpSNNsAgeNwGLnY6hNhuDax1nVoRQ68In0aOtjhcf8SEmnb1ZIZYzhSxi8sbmmkBuCrCu+oLEShUQGTz9vhGDXmo8jizNDKaaQmquRaOHLH4fB3u6Gn6SfSEpe/z9PH3pFQjr5N4GjaVmYYjc2+ITjnar7w1bEaD/axnrBlXx7lyKLDKeNHnwK7Xxo6aWH4c/lwfMZG4NqhVJsmHolEHI4p+uMR90yU5t/c4nmBLa2xWoCso7RqNSaKf8QlosOos7S+yxEA4DCjvLwc5no3xCIOPVspX5CuU+AW9314s+AFwNDBhMTrwT0nbsFW+WIki+o79hikwwz+liCxPP1ESY3ANLlDYGFKVEtMMGXH/sK3trY1F1fWAUis9ggNeZT+3S62pmtq3tvF10G6LD8NJn3iNDnsamz63vindxpO6Ec2f0L5IVxe/homiHYlVN8nAJDJFbAz/t94naX1elQAgD1vIv3FfPxJ8g/kpaqgaKUXU6CqcJmlE60SXBeaYcrVulZOJJGQe34Tfi/+L2S25tdUxgKafhJY+uW34qOU6eibrIqL6Yo8STV+JfoGxtKTaK5Vwohz62AUA/majs2XxzpOnQbUAOL6ygsH62vA/nU1JOVDIcYvcd0wWiAcz4xaBQALyq0trBs4uxMzbWuRKR4EpXpRVGOLhjpOBRWcqLeG0A7Ev537PJIbdeZujqlh/6eOtkrwF95zMgnUSqooHG3G/S/jPuluHHV2i9n+TzRSIzSxFFcN7oZhufGxqLSn6wj+InsRl5a/2eQ2n9eHG+vfxsPSdchTx+5Css6oSxuI21x34aPsey4c3PsOuNK9uML9BbRKOSb0TawdMV2NUSvHAO4ENCc3Aq66pifY+YS2GrqEG6kBgDqOH2V1WkOYfvJv5z7my2y26F5DJr0C14i+xgtnrwM++F3HgvOP1NRBAY2CPpNHm1h7oVZNrT02p6AoqSHtokhuuVVCeclJqDknPEyE9NzEqlEToEzOwEbfCOxn/qlCxoK1ad70/hIzhmTFbENSEpo0rRyrZX/CVYeWAlXHm9we6PtUyXQJt6YGABxifl2Mq6627ZP91YRb6vnUUIZeATckSGLmjlcVdvqTGqak3U8CEAVq1cAas/2fKKkh7aJJ7Qag+VYJlacOAABKRSZIZYm5psSguWhN0ZntgL+C8IfesbhuOC0QjndGrRwVgZL+tqa1agJ9n2oSre+Tn0PCJydee23rJ9ZVAnZ+iuoEywj2smsJX4CP/7n6Otr/ycVPP9mgoKRGCMFaNeaY7f9ESQ1pF72/VYIaDvgctka32Uv4+fUqReKuKTFo5Jgs2oGiyvf4P+o71wAAPvIWISfThH6ZsV5piLQlTXuh+i2sTasKBwovOqQpCdX3KcAt0cLBpHA529hdVMGP0pzxpYFJVchOaX2Ni1YhhUXqr8DczM81FD4H32jTBiVNPwmhQVXhqhitVUNJDWmXlOTk4O4Ic+W5xjdWHQUA1Gu7RzusqDFo5FgueRML618Gzu4ADqwH4K8gPIxGaRKBUddGqwT/mhqPMrGKSwa8n/tHFDrXYVfar1o/MTj1xK+nCWXRqEjHT1+L3HWAox2dwP3qNbn4h2caPvaOopEaIQSnn2K3qjAlNaRdpBIxqjl+NMJS2XgIWWkp5v+nozUo4oBBK0Olv6ow+/Z5wOvEIV8ODop64+rB3QSOjoRDmkYerCrMmmmVEOj75FMlVjPLAI2S/9DSZquEtELsNV2Lz33D2lwkHJCUlAwL8zfC7cBojSWpEE94ZuINTIFcQm9fUae60CqBpp9IwjCL+U+o9urGSU2q4zQAQJ1ZEPWYoiVFJUOVv/+TU9MNB5LG4V/eiZjY14TkBNwJ0xWlNWhq6TY3Xfvx6aAXMNO1HA59ryhHFh1aBb9OyNJWUpM7Gi9pFuEN74Q219MEmHTK4LqajiwWDrRIUMslcVECI+F0G4r3+r6AJe5FMTv9RON3pN3WJ92CP5dW4Qb1gGClGq+PYYbrEWT5zuH5XqMEjS+SJGIRrJJkgAG1iizMtFyPWq8ba2mBcMJQSMWwSflPpF5z09GE41wuvvW5cbMuKcqRRUdv+268In0R3rN9AKxq9dxQ2iM0ZNLLscuXD06fiZ6S9u8cc9SWIROVUMnS2n1fEgaqFNi6XYqjPx5Eb5p+IonivGGUv1XChZLoJbX1KPeq8ZOoEBnGxByWDwi0Sig+dRK1djdMOgUu7U1/ZBNJuaYQj7hvwsk+v29yW2Ara0qCjswloxYTxT8it25/yye5HXCe2onyKn4qriDE6SeTXon7PL/DU2lPATnt//CTuvMv+E5xJ+awD9t9XxIegTIGNP1EEoZBw/8xr2zwoj7pb4+Qk6qKySqT4SST89vVkyp/BABcO6xbwj/nrsanz8E/vVNxRF/U+IaaUxhxZg2mirYlZOE9AJCq+OkhudfW8knlByBfMx5fyu5GskoabJ/Sls62SmD+OjVeaWI1Eo0nBeWfYKH4P/A2s94sFlBSQ9otT1KNa0Vfw1SyKXjMd+BD/FHyL0xRHxEwsuio0fFrhgo5fg0RtUVIPEb/m3S55aJ1A+cP4Jqaf+J3ko8TsvAeAMg0fFKjbC2p8VcSPu7LRIFJG/L6lmBSY3YAPl+7Y2P+NglMlpi95eJB3v7nca/0Hejsp4UOpVmU1JB26+k5jmdkL+HS828Ej+nPfoW5kk8xQvSzgJFFx/n0X2CxayFGO57HyLwU5BnoD2yiMeoU6McVI+n0Z4C9QfVs/3buKqZL2OknuYafXlWzZlpEBDTYzh3q1BPAt0q4TLQXn7hugW/NlHbHJnLzMTEZjdQIhfMX4JM6q+H1MYGjaYqSGtJugVYJGs+FP/Ya20kAgCgtX5CYosmgVeA/vrEogYEqCCeoNI0cz0n/jhuO3weU7btwQx3fIqGKJWbfJwBQ6vikRsPsLY+mBHo+sW4oaKORZUOpahmcIiVSOSt8lvbvfhK5+dEjTkEduoUi1vK97VJhQU0M9n+ipIa0W6BVgt5Xy/c+AmB0nuFv65aYPZ8aCqwpUsvEmDogQ+BoSCQ0KsDXYO2A19agmWWCTj+pdfz0k4hj8NSbmz/JP1JzlHVDgSn0URORiINX5S/AZysL/v0IlcQ/UiOShT46RMJLpPHXqoE5JgvwUVJD2k2flgkAUMAFX70Zbmsl9ODnuk3d+woZWlRclp+GHgY17hzfG2qqapqQ0rQXCvA1rCrsNvMJTlWC9n0CAK2Gb5PgZBLUWWubnuBxgVXzI7PHfN1CLrwXIEniPwiIvE7A0czjt3Zfrx0AIFZRUiMYf1XhFM4akzug6C8yabfUpGRYmRJarh7WqhLU1ZYjE0ApS0V6SqrQ4UVcuk6BL5f+QugwSAQZtQrsb2akxuPv0O2UJidk3ycAkElEGOj7JyxuCb6RpaNJN7Pq4+CYFxamhFSfESzWF6pUvQ415zVI5mx8VWFlcsj33a6bjKrzZwFNeruuScLIn9QYOHNMFuCjkRrSbjKJCNVcEgDAUnkO5jMHAQBl0qyE/UNPuha+qjD/Zutt2FG6LtD3KbGTd7mCX/xurnc3vVGZjJ0Fd+MfnqtQkNH+tS0mvQLnO1hV+F3tbNzvmQ+RLrPd1yVhEmiVEKP9nyipIR1iEfN/lOzVJXBUnOCPqfMEjIiQ8NEpJKgW8Qtm3bUX3ni3D30Kv3Xdj3JdP6FCiwqtvwN2s/2ftCasV1yDv3tnhFxJuCGTrvUu6K2xOvl4qEO3gLpfhtU9/oIHPHNjcvqJkhrSIev1szHbdR9OaofiA91sDHO8iP09fyd0WISEBcdx8Kj8VaIbrKk5xWXjO19/yLWJXUF6lu+/eEX6NGTFXzR7+8/n/e0R2rmeBuBHavawntgnG9KuqSd43VDZS6BDHXXoFpI2HbWmMTjBMmNy+oleGaRDzhtGYktJKS53aVBcXY4q6GHMyBU6LELCxqbrhYdLZuHKviMx1H8sMNyeqknM7dwBfXzHMEr8I/ZUn2hyG/t5E3xlxZAgvWMjNXoF7vBcj/ckKnxdMC70O9aexlrzXFjkShxVHGz3dUn4BHb+0fQTSRhp/hd1hc0ZbJHQPY2K0JHEIdelY7V3CvbrLuMP2Mox4OSruEb0dcIW3gtwS/m1Mqy+tvENPi/wzk14H/cgV1SFnmntL4LXsFUCa8+WbqcFAFAHJe06FNigio+wUPwf2C01QofSBL0ySIfkyWpxrehr5J/YipW2bTgoyUFe6gShwyIkbIw6f6sEq79PUfUJTC57GYUSI75WN210mUg8Mv8CYOdFdWpqT4HzOuFkUkhS8yCTtP9zceDn6vL4UGOrR4pWFdod/X2f6piCpp8E1u/A0xgsrcVc26VCh9IEvTJIh/TwnMAtspeAcgBiIIdVBIvSEZIIjFo5CrnTSDt7ErDogzufErnwXgCT80mNyD86EuSvJHyCZaB3RlKHHlsuEWOUqgSrvCuh+UcSsPRASPdz11sgBWCDAmnyxKwRFC98qlTAVQtxfaXQoTRBSQ3pEEWSqdH3FfJs5IfY1I6QeJCmleMh6VpccuYwcDoDcPBv8JUJ3PcpSMlXpxG7LkpqGvR8KuzAepoAhTYFKWYbfHYn34pB1PaIj7POn9QwJdRycYevTTqPU6cBtcch8/d/EsdQKQ9aU0M6JNAqIaBO012gSAiJDKNWgYqGBfj8zSyrE7jvU4BIwSc1Ure18Q2Bnk8dqCTckCyJrzMj8rmB+uo2zua57LUAgHqRChIxvXUJSeLv/5QSg/2f6JVBOiTQKiHAl9JToEgIiQy+AF8S/42tDF5/NeGqLjD9JFHxW60l3vpGx1nFhZ5Phe1oZHmxtCQNKpj//iEW4HPb+QTLJQpxDQ6JGJEmUFU49grwUVJDOiRVr0Utu7DbSWEqEDAaQsKvYVNLn7UMbnM5AKAG2oTt+xRgzx6LAsda/EH/7IWDjMHnT2rOSrKRlazs8OPzBfgCVYVDK8BXq+2NtzzjcEA2sMPXJWGivtDUstIWW7VqKKkhHaKQimHnLvxRS85N7AqrpOtJVctR4W9q6aktDfZ9ckhTEr4diEalhBMyWB0N2iQwht1Dn8BT7hshNeZ36meQ3oFWCSWGMVjumY+vNZM7fF0SJg2aWsbaSA0tFCYdJuO8gL/MRE5mt9ZPJiTOiEUcHAoj4OVHag6PXYVnT34JX2q+0KFFnM7fpLJRmwSRCF+LR+JFbzJuMKV06vEz9AqcbedITbBFAm3nFl7+FXhuD7D+pAjzKKkhieKF5OUoLquCVZ6ODxJ84STpmpjaCFgAcV05zokz8Z2vP0ZpO/eGHg+0MuAZ6YtIctUDzlGAnC+yd6SM3w2V34mdTwA//bSR5eE7DMRofVZI93Fbq6CFHVqZoVPXJmGQlI2KtFE4deI0KmOs/xMlNaTDKlNHYEtJKQYbkoQOhZCI8Olz8HDVLEwYMhBVVn7tQKo6sRcJA4BWqcBVou8g47xw11VDKtcAxz5H2tkdSENOp7ZzA3yrhNe9E/G6dyIO9p2MUJb+jvzxXuxXfIc3ncsAXNKp65POC+wArI6x/k9xt6bG6XRi8ODB4DgOe/bsETqcLi1QbK+7gdojkMSk0ydhtXcK9ikvQe+f/4EbxV8iRZXYi4QBQKuUwgL+37Xdwm+59n79FzzqfBKXifZ1qOdTo8dXSKGW8bVmysyOkO4jcvPtWAKjRkRAXjdG1f4Pi8QfotZmFzqaRuIuqbn33nuRmZnZ9okk4sYVGpGiluGK/qa2TyYkDhm1fJ8iZ/VZXHrmJdwveROp2sQfqZGKRbD5x08c/qQmsPOpQpELQxi2tKfr+Z/t+RpLG2fyJB6+TYJI3rmEioQBJ0bRwUdxj/RduCwVQkfTSFwlNZ988gk2bdqEp59+WuhQCIBfFBix64EJmNyPkhqSmIw6OfK5M+hbuh4AUMW0CV94L8Au4kdqHLZqoL4G0nr+zUuaHp7yDb01Tvwo/x0ueWsA3yizDVIPPyIgUenDcn3SCSIR3Ar/Qu+62GqVEDdras6fP4/58+fjww8/hEoVWvElp9MJp/PCfJ/FEtonAhI6jlojkASWppHjD5J/Y6J5JwC+71NKF1hTAwD1Ig3gBVx15mAl4VKWguyM8HyI0SQZoC+pg4gx/o1Rm97q+TIvP/0kUdD0UyxgKgPgqIKovkroUBqJi5EaxhhuueUWLFiwAMOHDw/5fk888QT0en3wKzs7O4JREkISjVEnv1BPBUAV0yG1izRudYj5aR6PvSbY8+mor1unFwkHmJLUwTpAodSqkfv46sZSGqmJCZy/Vo3cWQWvjwkczQWCJjUrV64Ex3Gtfu3cuRMvvPACLBYLli9f3q7HX758Ocxmc/DrzJkzEXomhJBEZNQqLrRKgD+p6SLTTy4pn7x47WbAv57mOMvs9CLhAJOuYQG+NmrVeJyQgi8EKFdTUhMLJFo+qUmNsf5Pgk4/3X777bjxxhtbPScvLw+PPvootm3bBrm88bDv8OHDMXPmTKxbt67Z+8rl8ib3IYSQUKVp5SgPjCaA7/uU8B26/T4y3YEFB27AspzBKDi+FFIAx1g3XNeJRpYNpTdqldDGSI3Pi0+lE+FxWJCsoaQmFog0/qaW/v5P4Vg8Hg6CJjUGgwEGQ9uFlJ5//nk8+uijwe9LSkowefJkvPPOO7jkEqpXQAiJDIVUDJs0Nfh9DXRIUnWNpEam0sKJWlgdHhwYuAwvH+6LSl3fsFX0zdArsS/YBb2NkRqZCo+IF+Kcux4fKhVhuT7ppGD/Jwsqbc5OdW0Pp7hYKJyTk9Poe42GXyjWs2dPZGWFVo2SEEI6wqtKB/ylOLbJRkOc4H2fArQK/u3B6nBjrz0NG3yjMCHDGLbHT9dfWK/ks5S2uRbCRm0SYkv/a/HwXg02lSqxLIZaJcTFQmFCCBEKp+V3+/gYB4+665Qv6Ok+imekL2LUqZdwuMwKAGFbTwMABrUcx5CNr70DYNX2bPVc5nECTgs4+ILJFhFYak+UplyCs8yIqhhqlRCXr468vDwwFjurrQkhiUuRZMRDZ2fhPEuGQZP41YQDUlGLieJvgPJvcNYuwVAuGwWmIWF7fJGIw17tZdhQOwIf9BqNoa2c6zr6FfbK5uEnXx7U8ilhi4F0TmB9WVUMjdTEZVJDCCHRYtCq8KqXfyOdpuk6LUEkqqTg/8+2/RNS8TgUpN8a1muY9Aqcq61vs1WCo84MOYA6KKCSisMaA+kgVx1+YdsArfgEqutuFzqaIJp+IoSQVhh1F3Z1dJWdTwAg1yQ3+v4kl4UeaeFN6kw6ftFvRbUZ8PlaPM9l5wunOjgVRF1kTVPM87ox8fjjWCZ9G2aLTehogmikhhBCWhHo/wSgyxTeAwC5JqXR93ZdT0jF4f0cnK6VY4f890j7ygwMPgDom9/44fYnNU5xaNXkSRQo9PBxUoiYGx5b7PR/opEaQghphbFBA8uuUngPAJS6xkmNJL0w7NfISFLCFfhs3cq2bk89n9S4KamJHRwHt8L/GqmjpIYQQuJCmrbh9FNsFBiLBs1FRe6MWa3vUOqIdH1oBfi8Dn73lVtCfZ9iCVPxtWpE9thpaklJDSGEtKKrTj9plRd2etUzGQpM4a/km6EPrVUCc/JrNnzSrrNQOx6INHyrBIWrOmb6P1FSQwghrdApJVBI+T+VsVIKPho0Cgle9fC7vj7xjQxrjZoAvv9TEgCAtZLUnFcV4GPvSFSowj9aRDou0P8pJYb6P9FCYUIIaQXHcVgxrS+KK+vQM8y7f2KZVCzC37nfYL1zLMRSOX6VrAz7NRp2QXfVnENLKeNu49X4k7sQv06lCvKxJND/KZWzosoWG/2fKKkhhJA2zBqVK3QIgpAq1Dhg7Y4hpiRwXPi3UsslYthlaQAD3LUlLSY1ddQiITYNm40/7MvAd9V6DKxzAhC+/xNNPxFCCGlWoCVBYQSmngIsmjxs8Q5EhX5Ai+c47HUAGLVIiDVpBTijH45SpKI6RqoKU1JDCCGkWVoFv1g4kh2YzalDMNu9DN/n3NbiObcdmo0T8pvQs/6niMVBOiZQ5iBW+j9R2ksIIaRZ0wZkoMLqxIQ+6RG7Rrqe311WZmm5VYLcWwcRxyBV0pbumFJfgyscG2ASn0dVXW+howFASQ0hhJAWzL+sB+Zf1iOi1wi0SqisqQW8HkDc9G1J7rMDAGRqXURjIe1UX4urzz6NSRIZHqtreaQtmmj6iRBCiGBMegU+li3H4wcnAud2NT3B54OC8aM4clX4a+WQTlDzW7qVnAtWi1ngYHiU1BBCCBGMSadAfWDfU3NVhV0XmiXKNUnRCYqERqaGV8yPtHmssdEqgZIaQgghguGrCifx3zRXgM/pb5HAxFArqfdTTOE4ePz9n7gY6f9ESQ0hhBDBNOz/5Dafa3qCf6SmDopGrRtIbPCp+CkocX1s9H+ihcKEEEIEo5VLUCNKBQA4qs/h4rTFK5Jho3ckHJDhMiq+F3PEGgNQAchdNfB4fZCIhR0roVcIIYQQwXAcB6fKCDgAr7npmpo6dRYWupcAAA5TUhNzJDp/qwRYUGN3N+pqL0g8gl6dEEJIl+dTmwAHILI1XVMTaJEgFXOQS2jFRKwRFS3C/H352Os1YkadS/Ckhl4hhBBCBMWSc7HFOxDF+hFNbrPZnQAYNHJJRPpPkU4yDcBJ7TCUIxlVdU6ho6GkhhBCiLBkhh6Y7V6G9413NrlNvncdjstvwhPc3wSIjIQiJYZaJdD0EyGEEEFl+FsllJqbtkrw1lsg5hhEzVQaJjHAVo6rPRvRU2xBdV0/oaOhkRpCCCHCSve3SqgxmwFP4ykMr4OvU+ORqKMeFwmB5RxmVvwFiyUfoCoGOnVTUkMIIURQJr0Cq6V/wr+rrgEO/6/RbcxffM8roWaWMUllAACkwIIqa8tNSaOFkhpCCCGCMukVsIKvFnzxtm7m5IvveWWU1MQkNZ/UyDgv6q01AgdDSQ0hhBCBGdRyVICvKlxffbbRbSIXP1LDUVITm6RKuP1Tgx6b8K0SKKkhhBAiKJGIg13Ol9t31ZQ0uk3sruP/R05JTazyKPmK0KCkhhBCCAHcqnQAALuoU/cpRT6+8faHS9NNiLBIKPzraiQO4fs/UVJDCCFEcJzOBACQ1J1vdPyD5Fsxy30/zMaRQoRFQiDS8K0SFP7+T0Kijf/N8Hq9cLvdQodBwkQqlUIsFgsdBiGkFVJ9N+AsoHA0nsIItEnQKujtKlZJxt2HGw+NwFFfJu4SuP8TvUoaYIyhrKwMtbW1QodCwiwpKQkmk4nKrBMSo1SGbtjsHQSFvhtGed2AmO/XbXXwHzA18ov7d5NYIc4aip+VVaiuc6Fa4P5PlNQ0EEhojEYjVCoVvQEmAMYY7HY7ysvLAQAZGRkCR0QIaU5aSgpucd+HkaoUvOtPaMAYXi+bjnq5FAd8nwOgf7+xKkUtQ3Wdy9//SStYHJTU+Hm93mBCk5qaKnQ4JIyUSiUAoLy8HEajkaaiCIlBJn9V4fOWBgXcPA7I4IaMc0Oppt1PMct8FjfgMxwUeVBlGyJoKHGzUDgvLw8cxzX6WrZsWdgeP7CGRqVShe0xSewI/F5prRQhscnUoFVCoOAeAv8FoNIkCRAVCUnlz5hveQG3Sf6HaoFbJcTVSM3DDz+M+fPnB7/XaMKfudOUU2Ki3yshsc2ok+NxySv4reQr2L97EKpxdwP+wns2poBaQWtqYpaarzGUylkE7/8UV0mNVquFyWQSOgxCCCFhppCK4ZLqAMZXFVYBcNstkAKogwJaWigcu/xJTQosqLbWCxpK3Ew/AcBTTz2F1NRUDB48GI899hhcLuE7gsaKVatWoXv37lAoFBg2bBi++eabVs/fsmULhg0bBoVCgR49euCll15qdPvatWubTPdxHAeHo30Ny9q6TnNOnz6Nq666Cmq1GgaDAXfeeWej33VxcXGzsX366aftio0QElucCr7eiaeWL8DnsNUCAGxMCbWc1sLFLBW/DlXMMTisVYKGEjcjNYsXL8bQoUORnJyMH374AcuXL8fJkyfx6quvtngfp9MJp/NCG3uLxRKNUKPunXfewZIlS7Bq1SqMGTMG//jHPzBlyhQcPHgQOTk5Tc4/efIkpk6divnz5+P111/Ht99+i4ULFyItLQ3XXntt8DydTocjR440uq9CoQg5rlCv05DX68W0adOQlpaGrVu3oqqqCrNnzwZjDC+88EKjcz///HP069cv+H1KSkrIsRFCYo9XYwLqAc5WBgBw1FmgBVDPKSERx9Vn8K5FLIVLqofMbYbXWi5sLExADz74IAPQ6teOHTuave97773HALDKysp2P77ZbG5ybn19PTt48CCrr68P2/OLlpEjR7IFCxY0OlZYWMiWLVvW7Pn33nsvKywsbHTstttuY6NGjQp+v2bNGqbX61u8Znl5OUtPT2ePPfZY8Ni2bduYVCplGzduDPk6F9uwYQMTiUTs3LlzwWNvvfUWk8vlwd/byZMnGQC2e/fuFh/nYvH8+yWkq3jxtdcZe1DHap7owxhj7MSuz9g3DxSxd1deJ3BkpC32ZwYx9qCOLXnyhYg8vtlsbvH9uyFBU9/bb78dhw4davWrf//+zd531KhRAIBjx461+PjLly+H2WwOfp05cybk2BhjsLs8gnwxxkKO0+VyYdeuXZg0aVKj45MmTcJ3333X7H2+//77JudPnjwZO3fubLQ7yGazITc3F1lZWbjyyiuxe/fu4G1paWlYvXo1Vq5ciZ07d8Jms+Gmm27CwoULg48d6nUujq1///7IzMxsdB+n04ldu3Y1Onf69OkwGo0YM2YM3nvvvZZ+RISQOKFI5vs7qZ0VAGOoSB6Km9wrsEq9UODISFuYil9XI3F04ekng8EAg8HQofsG3mBbK6Yml8shl3essmG924u+f9zYoft21sGHJ0MlC+1XU1lZCa/Xi/T09EbH09PTUVZW1ux9ysrKmj3f4/GgsrISGRkZKCwsxNq1azFgwABYLBb89a9/xZgxY7B371707t0bAIJTSzNnzsSIESOgUCjw5JNPtus6ocSWnJwMmUwWfD4ajQbPPvssxowZA5FIhP/+97+44YYbsG7dOtx0000h/dwIIbFHk5oFAJAyF+CoDbZI0MjjZqVEl+Ua90fMWbsdR1gWPF6fYNOFcfFK+f7777Ft2zaMGzcOer0eO3bswF133YXp06c3u2akK7p4yzJjrNVtzM2d3/D4qFGjgqNhADBmzBgMHToUL7zwAp5//vng8aeffhr9+/fHu+++i507dzZZc9PWdUKJ7eLnYzAYcNdddwVvGz58OGpqavCnP/2JkhpC4pgxRY+PvSMhUugxxeeFlZKauKHtPRY/wAIGoEbA/k9x8UqRy+V455138NBDD8HpdCI3Nxfz58/HvffeG7FrKqViHHx4csQev61rh8pgMEAsFjcZlSkvL28y4hFgMpmaPV8ikbRYTVkkEmHEiBE4evRoo+MnTpxASUkJfD4fTp06hYEDB3bqOiaTCdu3b290rKamBm63u8XnA/BJWGuLxgkhsc+kV+Bm9xLoJVJMURvQa88S7JW/gy/rbwQwqs37E+GIRRySVTLB+z/FRVIzdOhQbNu2LarX5Dgu5CkgIclkMgwbNgyfffYZfvWrXwWPf/bZZ7j66qubvU9RURE++uijRsc2bdqE4cOHQyptvhYEYwx79uzBgAEDgsdcLhdmzpyJG264AYWFhZg3bx72798fTD46cp2ioiI89thjKC0tDU5Pbdq0CXK5HMOGDWvx57B7927q60RInDPp+ZFec70b9S4vOKcZes4O2s0dB6qOY7b0c/wskqHKdgmE6v9Ee+QSwN13341XX30Vq1evxqFDh3DXXXfh9OnTWLBgAQB+wfTNN98cPH/BggU4deoU7r77bhw6dAirV6/GP//5TyxdujR4zkMPPYSNGzfixIkT2LNnD+bNm4c9e/YEHxMAVqxYAbPZjOeffx733nsv+vTpg3nz5rXrOuvXr0dhYWHw+0mTJqFv376YNWsWdu/ejS+++AJLly7F/PnzodPpAADr1q3Dm2++iUOHDuHIkSN4+umn8fzzz+OOO+4I/w+XEBI1WrkEKpkYSjhQXnEenL+iMJML1yCRhKh0DxY7XsIizVeQSwVMLSKy9ypGtbYlLN63/P79739nubm5TCaTsaFDh7ItW7YEb5s9eza7/PLLG52/efNmNmTIECaTyVheXh578cUXG92+ZMkSlpOTw2QyGUtLS2OTJk1i3333XfD2r776ikkkEvbNN98Ej506dYrp9Xq2atWqkK+zZs0advHL8NSpU2zatGlMqVSylJQUdvvttzOHwxG8fe3ataxPnz5MpVIxrVbLhg0bxl577bVWfz7x/vslpKtY89htjD2oYyVvLmI/P3MFYw/q2MdrnxI6LNKWE1sYe1DH2AvDI/LwoW7p5hhrx/7hOGexWKDX62E2m4Of+gMcDgdOnjwZrMpLEgv9fgmJD2v+cj/mmP+OcxkT4DSXo4d9Hz7t+ySuuP73QodGWlN+CFg1ClAmA/cVh/3hW3v/boimnwghhMQODd/fT1x3HlKvnf9/RctvYiRG+Ps/ob4G8HoEC4OSGkIIITFDksQv+FfUl0PmreOPKSmpiXnKZAD+chx24QrwUVJDCCEkZqj8Bfg07iqcEHfHHl8PiDUdK9JKokgkDja2hL1SsDBif88yIYSQLkObxrdKkMCDZ2W/xw6zGG+k9RY4KhKSwqmA2wFIhFu3SEkNIYSQmGFK1qGS6WDgLFA5KwCYqKJwvJj+gtARUFJDCCEkdph0CnzsvQRyzoNyB79CQk1JDQkRvVIIIYTEjFSNHI/45sLoq8DH8vtRLdNCo9gjdFgkTlBSQwghJGaIRRyMWjk0lnokczb4wEFBIzUkRLT7iRBCSEwx6RVI42oBAHVQQCWj5k8kNJT+EkIIiSnX4nPMlD0LAKiHChzHCRwRiRc0UpMAvv76a1x11VXIzMwEx3H48MMP23X/AwcO4Nprr0VeXh44jsNzzz0XkTgJISQUIm168P/rRSoBIyHxhpKaBFBXV4dBgwbhb3/7W4fub7fb0aNHDzz55JMwmUxhjo4QQtpHntwt+P8uMSU1JHSU1CSAKVOm4NFHH8U111zT5LbDhw9DpVLhzTffDB774IMPoFAosH//fgDAiBEj8Oc//xk33ngj5HJ51OImhJDmqP1VhQHALVIKGAmJN7Smpi2uupZv48SAVBHiuSJAqmz7XJm6ffG1obCwEE8//TQWLlyIMWPGQCqVYv78+XjyyScxYMCAsF6LEELCIdnYYKRGqhUwEhJvKKlpy+OZLd/WexIw898Xvv9zL8Btb/7c3LHAnI8vfP/cgOabfq00dyzOVixcuBAbNmzArFmzIJPJMGzYMCxevDjs1yGEkHAwJWlwniUhnavF98lXY5zQAZG4QUlNF7F69Wrk5+dDJBLhp59+ot0EhJCYZdTJcYSlIJ2rhUlUK3Q4JI5QUtOW+0tavo27qHbCPcdaOfei5UtL9nc8pg7Yu3cv6urqIBKJUFZWhszMVkagCCFEQAqpGN+KR+CAOxceZZrQ4ZA4QklNW9qzxiVS53ZSdXU1brnlFqxYsQJlZWWYOXMmfvzxRyiVtACPEBKbPkqahUOlFtyR2kvoUEgcoaQmAdhsNhw7dmGU6OTJk9izZw9SUlKQk5ODBQsWIDs7Gw888ABcLheGDh2KpUuX4u9//zsAwOVy4eDBg8H/P3fuHPbs2QONRoNevegPCiEk+jL0ChwqtVAzS9Iu9GpJADt37sS4cReW0t19990AgNmzZ+OXv/wlNmzYgN27d0MikUAikeCNN97A6NGjMW3aNEydOhUlJSUYMmRI8P5PP/00nn76aVx++eXYvHlztJ8OIYRg+qBMHCu34bLeNP1EQscxxpjQQUSLxWKBXq+H2WyGTqdrdJvD4cDJkyfRvXt3KBSKFh6BxCv6/RJCSPxq7f27ISq+RwghhJCEQEkNIYQQQhICJTWEEEIISQiU1BBCCCEkIVBSQwghhJCEQEnNRbrQZrAuhX6vhBCS+Cip8ZNKpQAAu72FhpQkrgV+r4HfMyGEkMRDxff8xGIxkpKSUF5eDgBQqVTU9DEBMMZgt9tRXl6OpKQkiMXitu9ECCEkLlFS04DJZAKAYGJDEkdSUlLw90sIISQxUVLTAMdxyMjIgNFohNvtFjocEiZSqZRGaAghpAugpKYZYrGY3gQJIYSQOEMLhQkhhBCSECipIYQQQkhCoKSGEEIIIQmhS62pCRRgs1gsAkdCCCGEkFAF3rfbKqTapZIaq9UKAMjOzhY4EkIIIYS0l9VqhV6vb/F2jnWh+vE+nw8lJSXQarUxVVjPYrEgOzsbZ86cgU6nEzqcqKHnTc+7q+iqz52eNz3vcGGMwWq1IjMzEyJRyytnutRIjUgkQlZWltBhtEin03WpfwAB9Ly7lq76vIGu+9zpeXctkXrerY3QBNBCYUIIIYQkBEpqCCGEEJIQKKmJAXK5HA8++CDkcrnQoUQVPW963l1FV33u9LzpeUdbl1ooTAghhJDERSM1hBBCCEkIlNQQQgghJCFQUkMIIYSQhEBJDSGEEEISAiU1AnniiScwYsQIaLVaGI1GzJgxA0eOHBE6rKh48cUXMXDgwGCBpqKiInzyySdChxV1TzzxBDiOw5IlS4QOJaJWrlwJjuMafZlMJqHDiopz587hpptuQmpqKlQqFQYPHoxdu3YJHVbE5eXlNfmdcxyHRYsWCR1aRHk8HjzwwAPo3r07lEolevTogYcffhg+n0/o0CLOarViyZIlyM3NhVKpxOjRo7Fjx46ox9GlKgrHki1btmDRokUYMWIEPB4PVqxYgUmTJuHgwYNQq9VChxdRWVlZePLJJ9GrVy8AwLp163D11Vdj9+7d6Nevn8DRRceOHTvw8ssvY+DAgUKHEhX9+vXD559/HvxeLBYLGE101NTUYMyYMRg3bhw++eQTGI1GHD9+HElJSUKHFnE7duyA1+sNfv/TTz9h4sSJuO666wSMKvKeeuopvPTSS1i3bh369euHnTt3Ys6cOdDr9Vi8eLHQ4UXUrbfeip9++gmvvfYaMjMz8frrr2PChAk4ePAgunXrFr1AGIkJ5eXlDADbsmWL0KEIIjk5mb366qtChxEVVquV9e7dm3322Wfs8ssvZ4sXLxY6pIh68MEH2aBBg4QOI+ruu+8+NnbsWKHDiAmLFy9mPXv2ZD6fT+hQImratGls7ty5jY5dc8017KabbhIoouiw2+1MLBaz//3vf42ODxo0iK1YsSKqsdD0U4wwm80AgJSUFIEjiS6v14u3334bdXV1KCoqEjqcqFi0aBGmTZuGCRMmCB1K1Bw9ehSZmZno3r07brzxRpw4cULokCLuv//9L4YPH47rrrsORqMRQ4YMwSuvvCJ0WFHncrnw+uuvY+7cuTHVSDgSxo4diy+++AI///wzAGDv3r3YunUrpk6dKnBkkeXxeOD1eqFQKBodVyqV2Lp1a3SDiWoKRZrl8/nYVVdd1aU+1e3bt4+p1WomFouZXq9nH3/8sdAhRcVbb73F+vfvz+rr6xljrEuM1GzYsIG99957bN++fcHRqfT0dFZZWSl0aBEll8uZXC5ny5cvZz/++CN76aWXmEKhYOvWrRM6tKh65513mFgsZufOnRM6lIjz+Xxs2bJljOM4JpFIGMdx7PHHHxc6rKgoKipil19+OTt37hzzeDzstddeYxzHsfz8/KjGQUlNDFi4cCHLzc1lZ86cETqUqHE6nezo0aNsx44dbNmyZcxgMLADBw4IHVZEnT59mhmNRrZnz57gsa6Q1FzMZrOx9PR09swzzwgdSkRJpVJWVFTU6Ngdd9zBRo0aJVBEwpg0aRK78sorhQ4jKt566y2WlZXF3nrrLbZv3z72r3/9i6WkpLC1a9cKHVrEHTt2jF122WUMABOLxWzEiBFs5syZrE+fPlGNg5Iagd1+++0sKyuLnThxQuhQBDV+/Hj2u9/9TugwImr9+vXBf/CBLwCM4zgmFouZx+MROsSomTBhAluwYIHQYURUTk4OmzdvXqNjq1atYpmZmQJFFH3FxcVMJBKxDz/8UOhQoiIrK4v97W9/a3TskUceYQUFBQJFFH02m42VlJQwxhi7/vrr2dSpU6N6fdr9JBDGGO644w6sX78emzdvRvfu3YUOSVCMMTidTqHDiKjx48dj//79jY7NmTMHhYWFuO+++7rEjiAAcDqdOHToEC699FKhQ4moMWPGNCnT8PPPPyM3N1egiKJvzZo1MBqNmDZtmtChRIXdbodI1Hipqlgs7hJbugPUajXUajVqamqwceNG/OlPf4rq9SmpEciiRYvw5ptv4j//+Q+0Wi3KysoAAHq9HkqlUuDoIuv+++/HlClTkJ2dDavVirfffhubN2/Gp59+KnRoEaXVatG/f/9Gx9RqNVJTU5scTyRLly7FVVddhZycHJSXl+PRRx+FxWLB7NmzhQ4tou666y6MHj0ajz/+OK6//nr88MMPePnll/Hyyy8LHVpU+Hw+rFmzBrNnz4ZE0jXeaq666io89thjyMnJQb9+/bB79248++yzmDt3rtChRdzGjRvBGENBQQGOHTuGe+65BwUFBZgzZ050A4nquBAJAtDs15o1a4QOLeLmzp3LcnNzmUwmY2lpaWz8+PFs06ZNQocliK6wpuaGG25gGRkZTCqVsszMTHbNNdck/PqpgI8++oj179+fyeVyVlhYyF5++WWhQ4qajRs3MgDsyJEjQocSNRaLhS1evJjl5OQwhULBevTowVasWMGcTqfQoUXcO++8w3r06MFkMhkzmUxs0aJFrLa2NupxcIwxFt00ihBCCCEk/KhODSGEEEISAiU1hBBCCEkIlNQQQgghJCFQUkMIIYSQhEBJDSGEEEISAiU1hBBCCEkIlNQQQgghJCFQUkMI6bTNmzeD4zjU1tZG/docx4HjOCQlJbV63sqVKzF48OCoxBS4XiC25557LmrXJaQro6SGENIuv/jFL7BkyZJGx0aPHo3S0lLo9XpBYlqzZg1+/vlnQa7dkqVLl6K0tBRZWVlCh0JIl9E1GnIQQiJKJpPBZDIJdv2kpCQYjUbBrt8cjUYDjUbTZRqVEhILaKSGEBKyW265BVu2bMFf//rX4NRKcXFxk+mntWvXIikpCf/73/9QUFAAlUqFX//616irq8O6deuQl5eH5ORk3HHHHfB6vcHHd7lcuPfee9GtWzeo1Wpccskl2Lx5c4diffLJJ5Geng6tVot58+bB4XA0un3Hjh2YOHEiDAYD9Ho9Lr/8cvz444/B2+fOnYsrr7yy0X08Hg9MJhNWr14NAHjvvfcwYMAAKJVKpKamYsKECairq+tQvISQzqOkhhASsr/+9a8oKirC/PnzUVpaitLSUmRnZzd7rt1ux/PPP4+3334bn376KTZv3oxrrrkGGzZswIYNG/Daa6/h5ZdfxnvvvRe8z5w5c/Dtt9/i7bffxr59+3DdddfhiiuuwNGjR9sV57vvvosHH3wQjz32GHbu3ImMjAysWrWq0TlWqxWzZ8/GN998g23btqF3796YOnUqrFYrAODWW2/Fp59+itLS0uB9NmzYAJvNhuuvvx6lpaX4zW9+g7lz5+LQoUPB50ft9AgRUNRbaBJC4lpzncW/+uorBoDV1NQwxhhbs2YNA8COHTsWPOe2225jKpWKWa3W4LHJkyez2267jTHG2LFjxxjHcezcuXONHnv8+PFs+fLlLcYDgK1fv77RsaKiIrZgwYJGxy655BI2aNCgFh/H4/EwrVbLPvroo+Cxvn37sqeeeir4/YwZM9gtt9zCGGNs165dDAArLi5u8TEZYyw3N5f95S9/afUcQkh40EgNISQiVCoVevbsGfw+PT0deXl50Gg0jY6Vl5cDAH788UcwxpCfnx9cj6LRaLBlyxYcP368Xdc+dOgQioqKGh27+Pvy8nIsWLAA+fn50Ov10Ov1sNlsOH36dPCcW2+9FWvWrAme//HHH2Pu3LkAgEGDBmH8+PEYMGAArrvuOrzyyiuoqalpV5yEkPCihcKEkIiQSqWNvuc4rtljPp8PAODz+SAWi7Fr164mi2sbJkLhcsstt6CiogLPPfcccnNzIZfLUVRUBJfLFTzn5ptvxrJly/D999/j+++/R15eHi699FIAgFgsxmeffYbvvvsOmzZtwgsvvIAVK1Zg+/bt6N69e9jjJYS0jUZqCCHtIpPJGi3uDZchQ4bA6/WivLwcvXr1avTV3p1Vffr0wbZt2xodu/j7b775BnfeeSemTp2Kfv36QS6Xo7KystE5qampmDFjBtasWYM1a9Zgzpw5jW7nOA5jxozBQw89hN27d0Mmk2H9+vXtipUQEj40UkMIaZe8vDxs374dxcXF0Gg0SElJCcvj5ufnY+bMmbj55pvxzDPPYMiQIaisrMSXX36JAQMGYOrUqSE/1uLFizF79mwMHz4cY8eOxRtvvIEDBw6gR48ewXN69eqF1157DcOHD4fFYsE999wDpVLZ5LFuvfVWXHnllfB6vZg9e3bw+Pbt2/HFF19g0qRJMBqN2L59OyoqKtCnT5/O/SAIIR1GIzWEkHZZunQpxGIx+vbti7S0tEZrUDprzZo1uPnmm/GHP/wBBQUFmD59OrZv397iDquW3HDDDfjjH/+I++67D8OGDcOpU6fw+9//vtE5q1evRk1NDYYMGYJZs2bhzjvvbLbWzYQJE5CRkYHJkycjMzMzeFyn0+Hrr7/G1KlTkZ+fjwceeADPPPMMpkyZ0rEnTwjpNI4x2n9ICIlfHMdh/fr1mDFjRkQe3263IzMzE6tXr8Y111zT7vvn5eVhyZIlTaowE0LCj0ZqCCFx7ze/+U3Y2xH4fD6UlJTg//7v/6DX6zF9+vR23f/xxx+HRqMJ60gWIaR1NFJDCIlrx44dA8DvRgrnrqPi4mJ0794dWVlZWLt2LcaPH9+u+1dXV6O6uhoAkJaWJlhfLEK6EkpqCCGEEJIQaPqJEEIIIQmBkhpCCCGEJARKagghhBCSECipIYQQQkhCoKSGEEIIIQmBkhpCCCGEJARKagghhBCSECipIYQQQkhCoKSGEEIIIQnh/wHovA/LgLyJUgAAAABJRU5ErkJggg==", + "text/plain": [ + "<Figure size 640x480 with 1 Axes>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkMAAAHFCAYAAADxOP3DAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAACX10lEQVR4nOzdd3hb5fXA8e/V9Jb3ilcGSZy9EydhhyTsPX5A2KEUaAsUKC0t0AW0BUqBsil77xUCYYSVvfeO7cTx3lPz/v64kkdiOx6SJdnn8zx+YktX0jEJ1vH7nvccRVVVFSGEEEKIAUrn7wCEEEIIIfxJkiEhhBBCDGiSDAkhhBBiQJNkSAghhBADmiRDQgghhBjQJBkSQgghxIAmyZAQQgghBjRJhoQQQggxoEkyJIQQQogBTZIhIUS/9dJLL6EoSocfS5cuBSArK6vN7REREUyfPp1XXnnFv9+AEKJPGPwdgBBC+NqLL77IyJEjj7h91KhRzZ/PmjWLhx56CICDBw/y0EMPceWVV1JfX88vf/nLPotVCNH3JBkSQvR7Y8aMYcqUKZ1eEx0dzYwZM5q/njNnDpmZmTzyyCOSDAnRz8k2mRBCtCM6OpoRI0aQl5fn71CEED4mK0NCiH7P6XTicDja3KYoCnq9vsPH2O128vLySEhI8HV4Qgg/k5UhIUS/N2PGDIxGY5sPs9nc5hpVVXE4HDgcDnJzc1m4cCElJSVcdtllfopaCNFXZGVICNHvvfLKK2RnZ7e5TVGUNl8vWrQIo9HY/HVoaCi/+tWv+Nvf/tYnMQoh/EeSISFEv5ednX3UAurZs2fz73//G0VRCAsLY+jQoZhMpj6KUAjhT5IMCSEEYLFYjpowCSH6J6kZEkIIIcSAJitDQoh+b8uWLUecJgMYOnSonBYTQkgyJITo/66++up2b3/uuee47rrr+jgaIUSgUVRVVf0dhBBCCCGEv0jNkBBCCCEGNEmGhBBCCDGgSTIkhBBCiAFNkiEhhBBCDGiSDAkhhBBiQJNkSAghhBADmvQZOgqXy8WhQ4eIjIw8YrCjEEIIIQKTqqrU1taSmpqKTtf52o8kQ0dx6NAh0tPT/R2GEEIIIXrgwIEDpKWldXqNJENHERkZCWj/MaOiovwcjRBCCCG6oqamhvT09Ob38c5IMnQUnq2xqKgoSYaEEEKIINOVEhcpoBZCCCHEgCbJkBBCCCEGNEmGhBBCCDGgSc2QEEKIAcHpdGK32/0dhvASo9GIXq/3ynNJMiSEEKJfU1WVoqIiqqqq/B2K8LLo6GiSk5N73QdQkiEhhBD9micRSkxMJCwsTBro9gOqqtLQ0EBJSQkAKSkpvXo+SYaEEEL0W06nszkRiouL83c4wotCQ0MBKCkpITExsVdbZlJALYQQot/y1AiFhYX5ORLhC56/197WgkkyJIQQot+TrbH+yVt/r0GXDD355JMMHjyYkJAQJk+ezI8//tjp9d9//z2TJ08mJCSEIUOG8PTTT/dRpEIIIYQIBkGVDL399tvccsst3H333axfv55jjz2WU089lfz8/Hav379/P6eddhrHHnss69ev5w9/+AO//vWvef/99/s4ciGEEEIEqqBKhh555BGuvfZarrvuOrKzs3n00UdJT0/nqaeeavf6p59+moyMDB599FGys7O57rrruOaaa3jooYf6OHIhhBCi+7y9G/LSSy+hKMoRH01NTd2Kqye7Lvn5+Zx55pmEh4cTHx/Pr3/9a2w2W/P9ubm57ca2ePHibsXWE0GTDNlsNtauXcvcuXPb3D537lyWLVvW7mOWL19+xPXz5s1jzZo1fm+81WR3snJfOaqq+jUOIYQQgclXuyFRUVEUFha2+QgJCelyXD3ZdXE6nZx++unU19fz008/8dZbb/H+++/z29/+9ohrv/766zaxnXTSSV2OraeCJhkqKyvD6XSSlJTU5vakpCSKiorafUxRUVG71zscDsrKytp9jNVqpaamps2HL3yy4RAXP7uCU//zI2+uyqfB5vDJ6wghhAhOvtoNURSF5OTkNh8epaWlJCcnc//99zfftnLlSkwmE1999VW3Xqe1r776im3btvHaa68xceJE5syZw8MPP8xzzz13xPtsXFxcm9hMJlO3/9t1V9AkQx6HV46rqtppNXl717d3u8cDDzyAxWJp/khPT+9lxO0rr7cRYtSxo6iW33+wmRn3f8PfP99GfnmDT15PCCGEu1mfzeGXj+7sBPhyN6Suro7MzEzS0tI444wzWL9+ffN9CQkJ/O9//+O+++5jzZo11NXVcfnll3PjjTc2P3dPdl2WL1/OmDFjSE1NbfMYq9XK2rVr21x71llnkZiYyKxZs3jvvfc6+k/kVUHTdDE+Ph69Xn/EKlBJSckRqz8eycnJ7V5vMBg6bL71+9//nttuu63565qaGp8kRL88YSiXTsvgnTUHeGVFLgcqGnnux/08/9N+ThqRyJUzs5g9LB6dTo6DCiGEtzTanYy650u/vPa2v8wjzNS1t11f7IakpKQwcuRIXnrpJcaOHUtNTQ3/+c9/mDVrFhs3buSYY44B4LTTTmPhwoVcdtllTJ06lZCQEB588MFuvU5XYouJicFkMjV/PxERETzyyCPMmjULnU7HJ598wsUXX8zLL7/M5Zdf3qX/bj0VNMmQyWRi8uTJLFmyhHPPPbf59iVLlnD22We3+5icnBw+/fTTNrd99dVXTJkyBaPR2O5jzGYzZrPZe4F3whJmZOFxQ7hm9mCW7izh5eV5/LCrlG92lPDNjhKGxIdzRU4m509OIzKk/XiFEEL0X97eDZkxYwYzZsxovn/WrFlMmjSJxx9/nMcee6z59oceeogxY8bwzjvvsGbNmiNqirq769LRfa2/n/j4eG699dbm+6ZMmUJlZSX//Oc/JRlq7bbbbmPBggVMmTKFnJwcnn32WfLz87nhhhsAbVWnoKCAV155BYAbbriBJ554gttuu42FCxeyfPlyXnjhBd58801/fhtH0OsUTs5O4uTsJPaW1vHq8jzeW3uQfWX13PfpNv715U7On5zGFTmZDEuM9He4QggRtEKNerb9ZZ7fXrur+mo3RKfTMXXqVHbv3t3m9n379nHo0CFcLhd5eXmMGzeuV6+TnJzMypUr29xWWVmJ3W7v8PsBLXl7/vnnO7zfW4IqGbr44ospLy/nL3/5C4WFhYwZM4ZFixaRmZkJQGFhYZsq+8GDB7No0SJuvfVW/vvf/5Kamspjjz3G+eef769v4aiGJkRw31mjuX3eCD5cd5CXl+exp6SOV5bn8cryPGYPi+eKnExOzk5CL1toQgjRLYqidHmryp/6ajdEVVU2bNjA2LFjm2+z2WxcdtllXHzxxYwcOZJrr72WzZs3NyctPXmdnJwc/v73v1NYWNi8jfbVV19hNpuZPHlyh/8d1q9f3+shrF2iik5VV1ergFpdXe2X13e5XOpPu0vV615erQ6+6zM183fax8wHvlHXvPoH1bX3O7/EJYQQwaCxsVHdtm2b2tjY6O9Quu2tt95SjUaj+sILL6jbtm1Tb7nlFjU8PFzNzc1VVVVV77rrLnXBggXN1+/bt08NCwtTb731VnXbtm3qCy+8oBqNRvW9995rvua+++5TFy9erO7du1ddv369evXVV6sGg0FduXJl8zW33367mpWVpVZXV6tOp1M97rjj1NNPP71br/PBBx+oI0aMaP7a4XCoY8aMUU8++WR13bp16tdff62mpaWpN998c/M1L730kvr666+r27ZtU3fs2KH+61//Uo1Go/rII490+N+os7/f7rx/SzJ0FP5OhlrLL69X71+0TR3/5y/VX/3+D6p6b5Rquy9ede351t+hCSFEQArmZEhVVfW///2vmpmZqZpMJnXSpEnq999/33zflVdeqR5//PFtrl+6dKk6ceJE1WQyqVlZWepTTz3V5v5bbrlFzcjIUE0mk5qQkKDOnTtXXbZsWfP93333nWowGNQff/yx+ba8vDzVYrGoTz75ZJdf58UXX1QPX2/Jy8tTTz/9dDU0NFSNjY1Vb775ZrWpqan5/pdeeknNzs5Ww8LC1MjISHXy5Mnqq6++2ul/H28lQ4qqSte/ztTU1GCxWKiuriYqKsrf4QBaw8bXft7F4G9+ycn69dgVM4bL3kQZdrK/QxNCiIDS1NTE/v37m7s4i/6ls7/f7rx/B12fIQEhRj3XnZBN0fxnWeKchFG14nz9Etj9tb9DE0IIIYKOJENB7LJZwzkw52m+dE7BoNpwvnEJ7PrK32EJIYQQQUWSoSB3zfEj2Hv8E3zhnIpeteN86zKoPujvsIQQQoigIclQP3DjnGx2zPoPnzmnc6/1Mt7c6fJ3SEIIIUTQCPxmC6JLbpk3ivsd/+a1n3JRPtyM2aDjvAkpoOt6ky8hhBBiIJKVoX5CURT+cPoorsjJRFXhb+/+RNVjx8G2j/0dmhBCCBHQJBnqRxRF4b4zR3PxlHSu1H9JdNUWXO9eDVs/9HdoQgghRMCSZKif0ekU7j9vLLmjb+J952x0qhP1vWthy/v+Dk0IIYQISJIM9UN6ncK/LprEtyPu5V3HcSiqE/X962Dze/4OTQghhAg4kgz1Uwa9jn9fMoWvhv2Rtx0noKgu1A8Wwsa3/R2aEEIIEVAkGerHTAYdj182hc+z7uJNx4koqgvbkr+AvdHfoQkhhDiKH374gTPPPJPU1FQUReGjjz7q1uO3bt3K+eefT1ZWFoqi8Oijj/okzv5AkqF+LsSo55krpvFJ+h084Tibc+ruZGupzd9hCSGEOIr6+nrGjx/PE0880aPHNzQ0MGTIEB588EGSk5O9HF3/IsnQABBq0vP8VdP5btANbGuKZ8ELq9hVXAtOh79DE0II0YFTTz2Vv/3tb5x33nlH3Ldjxw7CwsJ44403mm/74IMPCAkJYfPmzQBMnTqVf/3rX1xyySWYzeY+izsYSTI0QISbDbx49VTGpVmoqLfy1rMPYH90AtQc8ndoQgjR92z1HX/Ym7pxbWPXrvWykSNH8tBDD3HjjTeSl5fHoUOHWLhwIQ8++CBjx471+uv1d9KBegCJCjHyyjXT+L9nlnFm5ZcYaw+gfnEnysWv+Ts0IYToW/endnzfMXPhsndbvv7XMLA3tH9t5my4+vOWrx8dCw3lR153X3XP4uzEjTfeyKJFi1iwYAEmk4nJkyfzm9/8xuuvMxDIytAAEx1m4uVrZ/AXrseu6lG2fwo7Pj/6A4UQQgSc//3vf2zatIl169bx0ksvoSiKv0MKSrIyNAAlRoVw3LEn8tz3p3Oj4RPURbejDD4OzJH+Dk0IIfrGHzopEVAOm+l4x55Orj1sTeGWzT2PqQc2btxIfX09Op2OoqIiUlM7WfESHZJkaIBaeNwQ5i6/mNMdK8isOQTf/g1O/Ye/wxJCiL5hCvf/tb1UUVHBVVddxd13301RURGXXXYZ69atIzQ0tM9i6C9km2yAijAbuP7k0dztuBYAdeUzcHCtn6MSQgjhUVdXx4YNG9iwYQMA+/fvZ8OGDeTn5wNwww03kJ6ezh//+EceeeQRVFXl9ttvb368zWZrfrzNZqOgoIANGzawZ08nK10DlKwMDWCXTs/khZ+n8UHtbM7V/wx5P0HaZH+HJYQQAlizZg0nnnhi89e33XYbAFdeeSUnnXQSixYtYv369RgMBgwGA6+//jozZ87k9NNP57TTTuPQoUNMnDix+fEPPfQQDz30EMcffzxLly7t628noCmqqqr+DiKQ1dTUYLFYqK6uJioqyt/heN1H6wv4y9s/MMpcyuN33kBMuMnfIQkhhNc0NTWxf/9+Bg8eTEhIiL/DEV7W2d9vd96/ZZtsgDtrfCpJKWn8ZB3Kf7+TpVMhhBADjyRDA5xOp/C7+SMAeGV5HkX7tsA3fwVZMBRCCDFASM2Q4PjhCcwYEsvmfQVYXpsHrjpIGAnjLvR3aEIIIYTPycqQQFEUfjd/JPWE8qTtVO3GxXdBQ4V/AxNCCCH6gCRDAoCJGTGcOiaZpx1nUmDMhIYyWPInf4clhBBeIWeF+idv/b1KMiSa3T5vBC6dkV/XXaXdsP41yP3JrzEJIURvGI1GABoaOpgtJoKa5+/V8/fcU1IzJJoNTYjgoilpvLlK5cvQ05jXuAg+vQVu+AmMciRVCBF89Ho90dHRlJSUABAWFibzu/oBVVVpaGigpKSE6Oho9Hr90R/UCUmGRBu/OXk4H64v4I7KczkhejXm8t2w5n+Qc6O/QxNCiB5JTk4GaE6IRP8RHR3d/PfbG5IMiTaSLSFcPWswTy3dy4PKtfzpBD26qdf5OywhhOgxRVFISUkhMTERu93u73CElxiNxl6vCHlIMiSOcMPxQ3ljZT4vVo4jO2IcFxmkK7UQIvjp9XqvvXmK/kUKqMURLKFGbjpxKACPLtlFk90JTjsUbvJzZEIIIYT3STIk2nVFThYplhAOVTfx/tLV8Mzx8PIZUFvs79CEEEIIr5JkSLQrxKjn1jnDAXh4WSUOnQGaqrVmjEIIIUQ/IsmQ6NB5kwZxTGIEFY0uXk+4DRQdbP0Adi/xd2hCCCGE10gyJDpk0Ou4Y542xPWBDWbqJ12v3fHZbWCr92NkQgghhPdIMiQ6dcqoJCZnxtBkd/Ev63lgSYfqfPjufn+HJoQQQniFJEOiU54hrgCvriuncPbftTtWPAnF2/wYmRBCCOEdkgyJo5o2OJaTRybidKn8dVcajDwDsmaD6vJ3aEIIIUSvSTIkuuSO+SNQFFi0uYiN0x+GKz+F5DH+DksIIYToNUmGRJeMTI7i3ImDAHhwSS6qqvo5IiGEEMI7JBkSXXbbKcMx6XUs31fOD7vLoK4UltwL5Xv9HZoQQgjRY5IMiS5LiwljQU4mAP/4YgfqZ7fAz4/CT4/4NS4hhBCiNyQZEt1y04nDiDQb2FZYw1fRl2g3bnwLKvP8G5gQQgjRQ5IMiW6JDTfxmznHAHD7chPWjOPA5dBWiIQQQoggJMmQ6LarZw1mfHo0tVYHj9rO1W5c/xpUF/g3MCGEEH3P1gAOq7+j6BVJhkS36XUK/zx/HEa9wlO5SZTHTwGnDX7+j79DE0II0ZcaKuDxSfD8yeBy+juaHpNkSPTIiORIbjxhGAB3V5ym3bjuZagt9mNUQggh+pLN4YLaQijaDHk/+zucHpNkSPTYjScOZXhSBIsbRrA7bCJMvBwUxd9hCSGE6CM/F7p4w3EiADWr3vBzND0nyZDoMbNBz4Pnj0NRFOZW/Jalw34HEYn+DksIIUQf+XJLEZ+4ZgFg3vUp2Jv8HFHPSDIkemVSRgxXzxyMio67P9xCndXh75CEEEL0AdePj1K/9QtWu0ZwSI3F7KyD3V/5O6wekWRI9Nrt84aTFhNKQVUjr3/4Mbx7tVZUJ4QQon+qKUT59i887rqfseYSPnXOBKBh7Vt+DqxnJBkSvRZmMvDgeeMAldnb/gxbP4CVT/s7LCGEEL6y/lUU1ckq1wiGjZnK/hTtII1p/xJoqvZzcN0nyZDwitnHxHPh5HSecJwDgLriqaD8H0IIIcRROB2oa18C4HXHycwfnczoiTN5w3EST4T/CvQm/8bXA5IMCa/54+mjWBM6m12uQSjWGlj5rL9DEkII4W27v0SpKaBcjWSpYSazj4ln3pgU7nZex6Olkyls8HeA3SfJkPAaS5iRv5wzliccWldqx7InwFrr56iEEEJ41eoXAHjXeQKzRw4ixKgnMSqEyRkxACzeUuTP6HpEkiHhVaeOTcE+8mz2ulIwWKtwrnzO3yEJIYTwlop9sPcbAF53nsT80cnNd80fk0wSFRhWPA6b3vVXhD0iyZDwuj+fM47/6c4DwPbjY2Cr93NEQgghvKK+HGtcNt87x1GsS+HEkS295eaPSeYU/VoW1L6A/afH/Bhk90kyJLwuMSqECacuZKVrJI9YzyKvIjibcAkhhDhM+lSeyX6Fm+y/5thj4okwG5rvSosJIzfpFOyqHmPJJijd5cdAu0eSIeETF0zL4rGM//CcbR53fbIbVVX9HZIQQggvWLy1mDrCmDcm+Yj7Zo0byY+usdoXm4Nnq0ySIeETiqLwwLnjCDXqWb6vnLdXH/B3SEIIIXpj28ccKCxhW2ENep3CnOykIy45dUwyHzm18RzOje9AkPwiLMmQ8JmMuDBuP2UoZ+l+Jv3zyykql75DQggRlIq3wjtXkPDCZEJpYvrgWGLDj+wnlBUfTl7CCTSoZvTVuXBwTd/H2gOSDAmfumpGGveGvMUsZSNL3nxEtsuEECIYrfkfAOv1Y2kkhPntbJF5nDR2MF+5JmtfBMlWmSRDwqf0plAcM34FwAklr/PFRtkuE0KIoGKtg41vA/BE7XEAzB3VcTJ02lhtq6xJNWJzBMfwbkmGhM8lnfAL6o2xpOtKWf3JU1TW2/wdkhBCiK7a/A7YaqkJy2SZazQTM6JJtoR0ePkxSZEUxOYwxfoUi9J/24eB9pwkQ8L3TGGYj/sNAFc63uf+zzb7OSAhhBBdoqqwWtsi+9Q4DxVdm0aLHZk3No06wvhiS6GvI/QKSYZEnzBMuw6HOYYsXTH2je/x/a5Sf4ckhBDiaA6ugeLNqHozD5dOBWBeF5IhT03R97tKaTy0FWyBPbBMkiHRN8wRGGbdDMCvDB9y/6ebpZhaCCEC3cHVoOjIS5lHhSuckcmRZMWHH/Vho1OjyIgN41EeJvTZmbBzUR8E23NBkwxVVlayYMECLBYLFouFBQsWUFVV1eH1drud3/3ud4wdO5bw8HBSU1O54oorOHToUN8FLdqadj32IXO4X72anaUNrMuv8ndEQgghOpNzI/xmI09zEUCnp8haUxSFU8cks1sdpN2w+T1fRegVQZMMXXrppWzYsIHFixezePFiNmzYwIIFCzq8vqGhgXXr1vGnP/2JdevW8cEHH7Br1y7OOuusPoxatBEShfGK94kZNx9QeHt1vr8jEkIIcRR1oal8kKuN3ehqMuS59mPnTADUPUugocIn8XmD4eiX+N/27dtZvHgxK1asYPr06QA899xz5OTksHPnTkaMGHHEYywWC0uWLGlz2+OPP860adPIz88nIyOjT2IXR7pkajrvrT3Ioo0H+dMZo4gMMfo7JCGEEK25XFBTANHpLN1Zgs3hIisujBFJkV1+ivFp0dRHDWNrYyajyYOtH8LUa30YdM8FxcrQ8uXLsVgszYkQwIwZM7BYLCxbtqzLz1NdXY2iKERHR3d4jdVqpaamps2H8K7Jg0K5L+pTPlVuZfG6vf4ORwghxOFyf4BHx8L717F4SxEA88YkoyhKl59Cp1OYN7plPEcgN2AMimSoqKiIxMTEI25PTEykqKioS8/R1NTEXXfdxaWXXkpUVFSH1z3wwAPNdUkWi4X09PQexy3apyh6ztX/xGBdMY6f/uPvcIQQQhxu9QuAisNk4bsdJQBdOlJ/uNPGpvCpMwcXCuQvh6rALI/wazJ03333oShKpx9r1mhzTdrLRlVV7VKWarfbueSSS3C5XDz55JOdXvv73/+e6urq5o8DB6RjstcZTChz7gPg7Pr32b1nt3/jEUII0aKmEHZ8DsCa+HOotzlJsYQwPi262081OTMGR0QqK53Z2g1bP/RioN7j15qhm2++mUsuuaTTa7Kysti0aRPFxcVH3FdaWkpS0pFTc1uz2+1cdNFF7N+/n2+//bbTVSEAs9mM2Ww+evCiV6Imnc++JQ8zpGkbNV/8GX71mr9DEkIIAbD+VVCdkJHD+wejgBrmjU5Gp+v6FpmHXqcwb3QSj68+h92DL+OK6Qu9H68X+DUZio+PJz4+/qjX5eTkUF1dzapVq5g2bRoAK1eupLq6mpkzZ3b4OE8itHv3br777jvi4uK8FrvoJUWh+tj7YMlFTCj/DOuhLZhTx/g7KiGEGNicDlj7kvbppKtZ8om2ENGVRosdOXVMCpevHMOOAhOXKsaAPLkVFDVD2dnZzJ8/n4ULF7JixQpWrFjBwoULOeOMM9qcJBs5ciQffqgtwTkcDi644ALWrFnD66+/jtPppKioiKKiImw2mY0VCMblzOU7XQ56VCo//r2/wxFCCLH7S+0UWVgcq0JnU9VgJzbcxNSsmB4/5fQhsUSHGamot7Fqf2Aerw+KZAjg9ddfZ+zYscydO5e5c+cybtw4Xn311TbX7Ny5k+rqagAOHjzIJ598wsGDB5kwYQIpKSnNH905gSZ8R69TyJt4O3ZVT1zxcqjY5++QhBBiYNvwhvbnxMv5YkclAKdkJ2HQ9zxdMOp1zB2VRCQNWJf8FV46Qzu6H0ACcbWqXbGxsbz2Wud1Ja3HO2RlZcm4hyBwyrGzuGvFQla5RvCqK4ksfwckhBAD2blPw+Z3cQ0+kS+f0VqfdKfRYkdOHZPCx2v2MaX4HaBBO1mWNavXz+stQbMyJPqnQdGhlA09nwNqEu+skZN7QgjhV+ZImHING+qjKa6xEmE2MHNY7+ttZw6Lw2QOY5FDq/sNtJ5DkgwJv7tkqtbL6d21B3EcXAf2Rj9HJIQQA4zLBa12U750N1o8aWQiZoO+109vNug5OTuRj13uQ0/bPgJH4NTvSjIk/O7k7CTiwk1c2/gihudPhBWd94ISQgjhZVveg6dmweb3UFWVxVu1ZMgbW2Qep45NYYVrFGXEQGMl7Pnaa8/dW5IMCb8zGXScPzmNHS73vLgf/w31Zf4NSogBrKbJTm2T3d9hiL60+gUo2QoV+9hRVEteeQNmg47jhyd47SWOH55AiMnIh44c7YYA2iqTZEgEhIumpPOxayabXVlgq4WlD/o7JCEGJIfTxdxHfmDev3/A4QysEz/CR4q3woEVoDPApCuaZ5EdNzyBcLP3zlmFGPWcOCKxeZI9O78Aa63Xnr83JBkSAWFYYgRTsuK433GZdsPaF6Fsj3+DEmIAKqm1UlTTxKHqJiobZHWo33LaYc838Okt8MrZ2m0jT4fIZL70bJH1otFiR+aPSWaLOpituhGoYy8AW73XX6MnJBkSAePiqRksd41mmW4KuBzw9b3+DkmIAaesztr8eWVD4BS4Ci9b8SS8dp72i2d9KYQnwvF3sb+snh1FtRh0CidnHzkgvbdOHJmIyaDn9IZ72D71foj0fsLVE5IMiYBx2thkIs0G7mm8CFXRwY7PIE8aZArRl0prW5KhinpJhvqM0w5lu72/bWRrgG0fw3vXwrZPWm4fcTqExcPkq+DyD+C2bZA0qnlVKGdoHNFhJu/GAkSYDe46JIXFWwq9/vw9FTRNF0X/F2YycNaEVF5f6WBZ1OnMcqyAhsBs3S5Ef9U6GaqUZKjvfPJr2Oju/hwWD79cBpHuQeSFG7XtpJgsiEgG3VHWMZpqYNeXsP1j2P01ONztSpxWGHWW9nn8MLh9F+jaHpv31Av1ZhbZ0Zw6Jpkl24r5YnMht42q0+LLmu2z1+sKSYZEQLlkagavr8znlrKz+er2x4iJifV3SEIMKK23ySpkm6xvuFyw4/OWr5uqILzVEPOfH9OOvgMYQrSkKCYLYgZrf06+Cowh2urS2wtg7zfgbPV3F50B2WfB6PPavu5hiVBhdSMbDlShKDB3VJL3vr/DnJydhFGvMKHic3j+WUidBNd/57PX6wpJhkRAGTMoilEpUWwrhI+2VXP1LEmGRC+5nEf80Bcdk5UhPyjdDtZqMIbDrVugrrjtv9nweC3pqToAjiYo3aF9gHYCbOp12ud6I9SXaIlQ3DHaKlD2WZAyHhTlqGF8tVWbUD85I4bEqBAvf5MtLKFGZg6N57tdE3EZ9egOrYPyvRA31GeveTSSDImAoigKl0xL556Pt/LWqgNclZOJsvUD7TeeCf/n7/BEMKkphI9ugKLNcPn7kDrR3xEFhdLWK0P1cpqsT+Qv1/5MnwphsdpHa6f+Q/tw2qH6IFTuh8pcqNivbZ/pW72Vz3sAQqIgYWSXEqDWvnDX8Hiz0WJHTh2TzPe7SllrmMDUQSFgrfH5a3ZGkiERcM4eP4i/f76dncW15P70JoO/vRFComHEfAiN8Xd4Ihjs/Q7evw4a3M07P74Zrl+q/eYsOlVW27IaJKfJ+kieOxnKyOn8Or0RYgdrHx3JmN6jEMrrrKzar9Vo+rJeyGPu6GTu/mgL/1f3G7496xQy4sJ8/pqdkdNkIuBYwoycNjYFgOdKR0HiKG0P/ceH/RuYCHwup9aw89VztUQoaSyExUHxFvj5P/6OLii0XRmSZKhPpE+DISfA4OP8FsLX24txqTA6NYr0WN8nJrHhJqYPjsWBoXlFyp8kGRIByTO89eONxTSd4O43tPIZbWlYiM7kLQNUraj0uiUw/0EYciKMvcDfkQWFNjVDsjLUN6b/Aq74GDJn+i0EzykyXzRa7Mip7u24L9yv7U+SDImANG1wLIPjw6m3OfmkbhQMPl4rCvzmr/4OTQQiz7RtnR7Ofx7OfwHO/A8YQ2HshbDgQ60AVXSq0eakzupo/lpWhgaGmiY7P+8pB+DUsX2XDM0bnYyiwIYDVRyqauyz122PJEMiICmKwsXu1aG31hyAuX8DFO14acFa/wYnAofLpW2ffnFny20RiW1XgRSlbSFpXWnfxRdkWh+rBzlN1ieKNvvl36TD6eJQVSPr8it57od92JwuhiaEMywxss9iSIwKYUqmVge62M+rQ1JALQLWeZMG8dCXO1mXX8Uu3TiGj78ENr4JX/0Jrvq82yclRD9TXw4f/gL2LNG+HnNB58Wj9kZYfBds+UBraBed3jdxBpES9xaZJdRIdaOdepuTJruTEKO0JvCZD66Hkm1w2ftwzByvPGWd1UFRdRPFNU0UVTdR1OpPz22lddbmBVWPviicPtz8MSlsOFBFcW1Tn792a5IMiYCVGBnCydmJfLm1mLdXH+BPJ/1RO0p6/O8kERro8lfCe1dDTYHWhO60h7Qi1M7ozVCyXTvC+/ltcOk78u/oMJ56ocHx4WwpqMbhUqlqsJNskWTIJxortUQItF5APWRzuLjrg01sOlhNcXUTta22Ojtj0CkkRYWQFGUmKz6ca2Z3ckrNRy6aksYFk9OwhPr3pKckQyKgXTI1gy+3FvPBuoPcOf9kzNd+6e+QhD+pKix/Ar6+TxvmGzsULnoFkscc/bE6HZz1ODw9G3Z/BZvfg3EX+jzkYOLZJkuINBMTbqK01kpFvY1ki+8a8A1oB1Zpf8YNg4iEHj/Nj7tL+WBdQZvbIswGki0hJEeFkBQVQrLFTLIllOQo920WM/HhZnQ6//5CEBkSGO0uJBkSAe244QkkR4VQVNPEkm3FnDEu1d8hCX/6+CbY8Lr2+ZjztSJpczdqHBJGwHF3wnd/g8W/g6EnQXicb2INQp6VoYRIM7FhWjIkJ8p8yDOIOmNGr57GU/x82thkbjtlBMmWECLM8vbeHVJALQKaXqdw0ZQ0AN5efUBbGTi4FpY9DtY6P0cn+tzIM7TtrtMf1k6MdScR8pj1G0gcDQ3lWg2RaObpMZQQYSYmXPuNXU6U+VD+Cu3PjN4dqV+2V2suetrYFIYlRkgi1AOSDImAd+GUdBQFftxdxoHKRnjnCvjqj3Bwtb9DE75WWwSlu1q+Hnka/GajNoupp/U+BhOc/TgoOtj8Duz6yjux9gNl7pWh+EgzseEmQHoN+Yy9CQ6t0z7vxcpQWZ2VHUW1AOQMkVXOnpJkSAS89NgwZg/TJji/u+ZAS2MyzxKzCH6qCpV5sO0TrZfU6xfCQ8Ph4RHwv7nagEqPqJTev96gyTDjRq07tVPe7D3arAyFacmQrAz5yKF12r+9iCSIHdLjp1m+V9siG5kcSVyE2VvRDTiyliaCwsVT0/lxdxnvrDnILafMRLf5nZbhhiK4uJzahOqYTDC4f3h/+QdY8eSR1yo6CE+EQ+u9fxT+xLth9q3aRHABHFYz5FkZkmTIN+JHwDlPg72hV6cal7mToZlD5d9xb0gyJILCKaOSiAkzUlTTxCp1BDNA2yZzWFveUEVgqiuF3V9C4SYo3Kg1mbPXw3XfQNoU7ZqEkaAzQmK2dsTY85E0GkzhvonLFKZ9CABUVW05TdZ6ZahBJtf7RHgcTPi/Xj+Np15o1jDZIusNSYZEUDAb9Jw3KY0XftrP/7YbmREWrw3iPLS+1ycxhI+9eo42KLU1Q6jWIwh3MjTuIhj/f1o9T19TVdj2Max+Hi57D4wD8xh5ndVBk90FQHykSVaGgsDBygbyyhvQ6xSmDY71dzhBTWqGRNDwjOf4ZmcpTYPcnYbzfvZjROKoqg9qiZCigxk3wXnPwU2r4A8FMOrsluuMof5JhABs9do4j9wf4Yd/+SeGAODZIoswGwgzGYgJl5ohn6nYD8v/q62U9oJni2xcmiVg+vUEK0mGRNAYnhTJhPRonC6VzfrR2o35K/0blOic5+hwygSYf7+2ApQwQhuoGijMEVoHa4CfH4WiLZ1e3l+V1WlJT3yElgTFhslpMp/Z87VWJ7fk3l49zfLmeiHZIust2SYTQeWEEQlsOFDFp/apTL36C0id5O+QRGfGnK/V/TTV9OjhBysbuPH1dZj0OrJToshOiWJUahQjkiIJNXkxoRp1FmSfCds/hU9uhmu/Bv3A+vHYungaaNNnSFVVFBld4j3N/YVyevwUqqry8x53vZAUT/fawPq/XQS9aVnavvhXB/T8OSNHfkAHOkXRiqJ76LFvdrPpYDUAa/Iqm2/XKZAVH84oT4Lk/jMpytzzfxOnPQT7f9Dq0FY+BTN/1eO4g1Gpe1CmJxny1AxZHS4a7U7CTPJ24RWq2nISthf1jntL6ymptWIy6Jjknvwuek7+dYugMjEjBoNOoaimiYOVjaTHymmg/qqwupEP12vzlu46dSSV9Ta2FdawvbCGsjob+0rr2Vdaz2ebCpsfExtuIjslkuzkllWkoQkRmAxdqAiITIa5f4NPfgXf/h1Gnt6r/i/BpmWbTEuGQo16zAYdVoeLinqbJEPeUn1AOzygM7ScpuwBzymyKZkxhBgDaNs5SMm/bhFUQk16xqVZWJdfxfZNq0lv+Ew7Wj/3b/4OTRxu2yfaKa0x52udo7vpuR/2Y3eqzBgSyw3HD21zX0ltE9sO1bC9sJbt7gRpb2kdFfU2ft5T3jyrCSDSbOAXxw/h2tlDjr61NnEBbH5XWyHasQhm3tztuINV8zaZOxlSFIXYcBOF1U1U1ttJk8UH72iuoxvfq7YRy/ZIvZA3STIkgs7UwbGsy69iT/5B5u57VusifMpfe9W4TPjArsWw5T2wpHU7Gaqst/HmqnwAfnnCsCPuT4wMIXFECCeMSGy+rcnuZFexlhy1TpRqrQ4e+moXr63I5/Z5Izhv4qCOJ3Urijb8tWI/DDu5WzEHu9K6tjVDADFhWjJUIUXU3tM8nLXn9UJOl8ryfe5kaJjUC3mDJEMi6EwfHMsz3+/jw+JEbjSEaAM3y3Zpp5RE4Mj9Ufsz69huP/SlZbk02p2MTo3iuGO69sM+xKhnXFo049Kim29zuVQ+3XSIfy7eSUFVI7e/u5H//bSfu0/PZlZHbyKxQwbU9phHWXvJkLuIWnoNeVHBGu3PXiRD2wtrqG60E2E2MG6QxUuBDWxytF4EncmZsSgK7C63YUtxnyaTfkOBpTIPqvJB0Xe7SLTe6uClZbkA/PKEob0qktfpFM6eMIhvfns8vz91JJEhBrYV1nDZ8yu5+sVV7Cqu7fwJqg/Ciqd7/PrBxLNNFh/RdmUIpNeQV127BK5aBIO7/0uCh+cU2fTBsRj08jbuDfJfUQQdS6iR7OQoAHLDJ2g3ytDWwJL7k/bnoElaH59ueHNVPtWNdgbHh3PqGC8MZUVbNfrF8UP5/o4TuWpmFgadwnc7S5n/6A/8/oPNlLhPUrVRsR/+Ox1+esQrMQSyNqM4Wq0MyeR6HzCGQtYsCOn5ik7zPDLZIvMaSYZEUPK0nl/mcG+N5S3TjqyKwOBJhrq5RWZ1OHn+x/0A/OK4Ieg7qu3podhwE/edNZoltx3P/NHJuFQt+TrhX0t57JvdNNgcLRebo8BWB3XFYG8nWepHqhvt2J3a/z9xES2dwGVlKPDYHC5W7a8ApHjamyQZEkHJkwx9WJqqHVGtKdC2ZYT/qWqreqHZ3XroR+sLKKppIinKzLmTBvkgOM3g+HCeXjCZd2/IYXx6NA02J48s2cWJDy3lnTUHcLpUCIsFo7t1Q02Bz2IJBJ4tMkuoEbOh5cSdrAx52cc3waI7tW3kHtp4sIpGu5O4cBMjkiK9GNzAJsmQCEpT3c0XN5XYcSRPAEsG1Bzyb1BCY63RTvjpzd2qF3K6VJ75fh8A180e0uZN2VemZsXy0Y0zefz/JpIeG0pxjZU739vE6Y/9yI97ysCizcOj+oDPY/Gnw7tP01gJjVUyn8yb7I2w8W1Y9Qyozh4/jadeaMbQuI5PRYpuk9NkIiglRJoZEh/OvrJ6fprxHCeMG3infwJWiAV+8b02ALUbfVS+3FrEvrJ6LKFG/m96hg8DbEtRFM4cn8rc0Um8siyPx7/dzY6iWha8sIpPoiMZB1ohdT/WfKw+wgwOGzw8EnQGYs9fC0Blvd2f4fUPh9aDyw4RSRAzuMdP46kXkhEc3iUrQyJoebbKlh+0+jkS0a5uJEKqqvLU0r0AXJmTSYS5739PMxv0LDxuCN/fcSLXzBqMUa+wpU4r1KdqYKwMxUeate1mRxPY6khUtNoU6TPkBa37C/XwhGSDzcH6fG0sjdQLeZckQyJoeZKhle5iQlwucMpvsH6lqmBr6PbDftpTxuaCakKNeq6a1fPfmr0hJtzEPWeO4o2FMyhQ3b99D6SVoVb1UVGWaEDrM6TKAYXe8cJw1tW5ldidKoOiQ8mMk1FE3iTJkAhanrqhLQXV2D//HfwzC3Z85t+gBrqKffBgBrx8ZrdO9z35nbYqdMm09OaiXX8bnhjJz64x/NN+EbZR5/s7HJ8qq9VWfhIizS31UUNPIjo2CQCHS6XW6ujo4eJoXE44sFL7vBfDWT3zyHKGxsmQai+TZEgErbSYUFItIThcKqU19dBULf2G/C33J60uwuno8lbA+vxKlu8rx6BTuO7YwKn9igo1sF0/nCed51Ac3/M3sGDgWRmKjzC1bAla0gkx6glzz3OTLtS9ULJNO1hgioSkMT1+Gs88slnDZIvM2yQZEkFLUZTmrbK1jNJuzFvux4hET47Ue2qFzpk4iEHRob6IqkcURSExSjtd1W5Txn6kzWkyz8pQXQmUbJdeQ95QV6KdTEyfCvqe1cNVN9jZcqgagJlSPO11kgyJoDZtsPYb0udVWdoNxVu0Y8Gi76lqS7PFLo4a2F1cy1fbilEUuOH4wFkV8kiMDGGYchB151dgPcrojiDWpvt0qHs8/a4v4KdHpdeQNww7GW7dAhe/1uOnWL6vHFWFoQnhJEWFeDE4AZIMiSA3bbD2g/u7AgU1dhigQv5K/wY1UJXvhdpC0JsgbWqXHvK0u6/Q3FFJDEsMvAZyiZFmXjb9gynLfgGlO/0djk84XSrlrQuo5/0dzn1Gu7O2sFWvITmc0GvdOGF5uOXueiFZFfINSYZEUBuaEEFsuAmrw0V5nAxt9SvPFlnaNG3+0lEUVDXy8Qbt5NIvTxjmy8h6LDHS3HKirJ92OK+ot+FStRKv5uL1SPdMuNpCYsNkcn2vOO3aSdde+nmv1Av5Upc3Lzdt2tTtJx81ahQGg/R1FL6jKArTsmJZvLWIjfrRnAxSRO0v3awXeu6HfThcKjOHxjEhPdp3cfVCYlQIh1T3m08/PV7vqReKCze1TEBvToaKiMl0rwzJNlnPbPkAvrgTJl0Bc//ao6coqWliT0kdigIzhkgy5AtdzlQmTJiAoihd7jWh0+nYtWsXQ4YEXh2A6F+mDtaSoS9qh3By5mwYfJy/QxqYhs0Bh1WrjziK8jorb63WVlpuDNBVIdBqaFp6DfXPxotlzSfJzHBgNbx1KSRma3daa0gya0fqZWWoh/KXQ1MVqD1fHfJ0nR6dGkV0WGC0nuhvurVss3LlShISEo56naqqjBnT8+ODQnTHdPeJsi8PmvnHvZ95fdK56KIJl2ofXfDSslya7C7GpVkCetk/MdLMxn7eeLHNSbKqPKgvAecwMEWArY4UfRUgp8l6LN99wrUXzRY9/YVkBIfvdDkZOv744xk2bBjR0dFduv64444jNDRwjsmK/is7JYoIs4Faq4PthTWMGWTxd0iiE3VWBy8vywXgl8cPDejmcYmRIa1qhvrnylCb7tOe1a/odKgvhfLdJCmVgFFOk/VEQwWU7tA+72GzRVVV+dndXyhHRnD4TJeToe+++65bT7xo0aJuByNET+h1ClOyYli6s5TVuRWMiXFqJ38ye/6bmOimfd9rb6Axg4/abPGNlXnUNDkYkhDOvNHJfRRgzyRGtWyTqdX5BG7a1nNlbeaStTRcJCMHHFaMYUOAA7Iy1BOertPxwyG8Z6s6ByoaKahqxKBr6asmvM8rp8mcTicbNmygslL6uwj/8Izm2LdrM/xzMLx6jjZ9W/ieqsL718FjE1t++HfA6nDy/I/7Abjh+KHoAnxLMzbMRJGSwD/tF1F1wv3dGjESLDpcGZpyNcy4gYhEbVZcZYMcre+25uGsPe9g/rN7i2xiRjRhJjmQ5Cs9SoZuueUWXnjhBUBLhI4//ngmTZpEeno6S5cu9WZ8QnSJp25o0YEQ1LA4ber2ofV+jmqAKNul1ZkYQiB1YqeXfrCugJJaKymWEM6ZMKiPAuw5nU4hItLCk85zyB90Ro+njQeytjVDnpWhtOb7Y8K1o/VVDTacrv6XDPqUF4azeoqnpb+Qb/UoGXrvvfcYP348AJ9++in79+9nx44d3HLLLdx9991eDVCIrhibZsFs0FHeYKc+aZp2o/Qb6hv7f9D+TJ8GBnOHlzldKs98r43euO7YIZgMwdHmLDHSM5LD6udIfKP5NFm4qWVlyJKhzfo7sIrYio0AuFSoaZTVoW4ZNgcyZ/U4GVJVtVWzRakX8qUe/TQqKysjOVnb61+0aBEXXnghw4cP59prr2Xz5s1eDVCIrjAb9M29anaFjNVulH5DfcMzgiOr85YGizYXklveQHSYkf+blt4HgXlHQmQIgyhFv3cJlGz3dzhe51kZSgxTtZW9mCxtZWjfUnjhFAxf/4nIEG17RnoNddMJv4OrF0Hs4B49fFdxHWV1NkKMOiZmxHg5ONFaj5KhpKQktm3bhtPpZPHixcyZMweAhoYG9Hq9VwMUoqs8W2XfNR6j3XBgJbicfoxoAGg9j6yTZouqqjYPZL1qZlZQ1T4kRpm5zrCIk9beBJve9nc4XmV3upprgeJjouGqz+A3G8EU1tJ4saawZT6ZFFH3qZ/3aKtCU7Nig2YlNVj16L/u1VdfzUUXXcSYMWNQFIVTTjkF0PoQjRw50qsBCtFVnqGtHxXGgCkSrDXa4FbhO6U7oKEMDKEwaHKHl32/q5RthTWEmfRcNTOr7+LzgrYjOfrX8fryOi25MegUokONbe9sNZIjxn2fnCjrhoNrej00elnzCA6pF/K1Hv16dt999zF27Fjy8/O58MILMZu1PXW9Xs9dd93l1QCF6KpJmdEYdAoHqm00jphKaN632lZZynh/h9Z/eVaFMqaDoePOuE+6V4UunZYRdB10EyND2NVPR3I0j+KIMHHEwb6IJO1Pl53M0EY2IJPru8zlhFfP1X4hu3FFS0fvbnA4Xazc5ymelnohX+t2MmS325k7dy7PPPMM559/fpv7rrzySq8FJkR3hZkMjB5kYeOBKtYnX8DM8efC0JP8HVb/NvYCbQXBFNbhJWvzKli1vwKjXuHaY3tWO+FPif14JEdpXRPgPkm25E+w6R2YdQvk3Kglt+EJUF9KhrEaCJXJ9V1Vsk1LhEyREHdMj55ic0E1tVYHUSEGRqdKI1lf6/Y2mdFoZMuWLQHdNVYMXJ66oU8bx2qDEVsdERY+EBoD2Wd0mnQ+/f0+AM6bmEaKJfi60idGmTnkSYZqC7Up5P1EWa220pMQYYbKPKgrbts+IFI7KDPIPZJDVoa6KM89giN9Kuh7Vh/n2SKbMSRORgz1gR7VDF1xxRXNfYaECCTT3M0XV+6v8HMkArQC3R92lQJw1aws/wbTQ4mRIZQRhVU1asM2aw75OySvKW09pLW6Vfdpj8hUAJIU7f8nqRnqouZ5ZDN7/BTN88ikXqhP9ChltdlsPP/88yxZsoQpU6YQHh7e5v5HHnnEK8EJ0V1TsrTjp/tK66nI30bsoR8gYbhsl/nCtk+0AvWRZ0DKuHYv2V1ch9XhIjLEwIikyD4O0DviI0yg6ChQ4xiiFGlJQ0ymv8PyijYNF3Pd9VDRrZKhiZfDsJNprBsONMhpsq5Q1VbJUM86TzfZnazJ1YqvpV6ob/QoGdqyZQuTJk0CYNeuXW3uk+0z4U/RYSZGJkeyo6iWimWvErvjSRh7kSRDvrDpbdjxmdZosYNkaHNBFQBjB1kCfvRGRwx6HXHhZh5tOJ875w0nLX64v0PyGs/KUHKYqg1mhbYrQ6POAkC/tQhYK32GuqIqT9tO1Rk6PWHZmXX5lVgdLhIizQxLjPBygKI9PUqGuju0VYi+NG1wLDuKalnmGMEwkOaLAI1V4HL0eFjkEVyuLjVb3HSwGtCSoWCWGGnmk7pZnJs0lbSIRH+H4zWelaE0nXtb2RSh1YEdRvoMdYNnBEfKhE4PFnRm+d6WU2SywNA3pIuT6Hc8Q1s/Kh+k/XZWcxCq8v0clR811cBTs7RBqiU7vPOcJVuhqQqM4ZA6ocPLthS4k6G0IE+GojwjOZr8HIl3eSbWp+BZFUprW0Bta4D8laSWa2/wUjPUBVnHwpmPaSfyesjTbHGWzCPrMz1aGaqvr+fBBx/km2++oaSkBJfL1eb+ffv2eSU4IXpimvtE2foiG47B4zEcWqutDkVn+DkyPynarCWEAO9eCQu/BVN45485mv0/an9m5oDe2O4lNoeL7YW1AIwbFN271/OzxEgzFuoIzf0GopJhxKn+DskrPNtkURHh2pt4TFbbC8r3wP/mkhKWAPyHmiYHdqcLo15+j+6QZRBM7nmbmTqrg43uFdUcqRfqMz1Khq677jq+//57FixYQEpKSp8s41VWVvLrX/+aTz75BICzzjqLxx9/nOjo6C49/he/+AXPPvss//73v7nlllt8F6jwu6SoELLiwsgtb+BQ1AQyDq3VhraOv8TfoflH1iy44Wd4epbWMXrRHXDOk717zi6M4NhVXIvN6cISaiQ9NviO1LeWGBnCKF0eZ239OxQd0y+SoSa7k9omBwARI06ACacceVGUdppM11CKUXFgVw1UNdi1gmvhE6v2l+N0qWTEhpEe27NtNtF9PUqGvvjiCz7//HNmzZrl7Xg6dOmll3Lw4EEWL14MwPXXX8+CBQv49NNPj/rYjz76iJUrV5KamurrMEWAmDY4ltzyBla5sskAqRtKHgNXfgavnAUbXtcmaU+8rGfP5XJCXtfrhcalWYK+7iExqnXjxYPaiaEg/5489UImg46okA7eCkJjQWcEl51hIXVsb4ymssEmyVBHCtbBwdUw5ARIGNGjp1i2xzOCQ1aF+lKP1jpjYmKIjY31diwd2r59O4sXL+b5558nJyeHnJwcnnvuOT777DN27tzZ6WMLCgq4+eabef311zEa21/OF/2Pp27ok8oMQIHKXGgYYL2Hdi/RPjwGHwsn/EH7/PPfQvG2nj2vpx+NKbLTUSetT5IFu8RIM0Wq+2eeoxEayv0bkBeUubfIEiLMKB0NNNbpmmeUDQmtA6RuqFNbP4Qv7oTl/+3xU/zsLp7OkXqhPtWjZOivf/0r99xzDw0NDd6Op13Lly/HYrEwffr05ttmzJiBxWJh2bKOf+N3uVwsWLCAO+64g9GjR3fptaxWKzU1NW0+RPCZ7h7auvyQE+sVi+CufAjruwTe72z18Olv4PULYNO7Lbcf+1utzYDTCgdX9ey5Y7Lgzv1www+ddtdtvTIU7BIiQ7BhpAz3Sat+UJDvWRmKjzTD45PgoeFQ1M5gY3cX6iyj9vcpJ8o60dxfKKdHD6+ot7G9UHvPyRkiK0N9qcvbZBMnTmyz1L1nzx6SkpLIyso6YsVl3bp13osQKCoqIjHxyOOsiYmJFBUVdfi4f/zjHxgMBn796193+bUeeOAB/vznP/coThE40mNDSY4KoaimibXqcGb2tmA42Pz4MNQUaEXj2We03K7TwXnPQelOrZaop3R6iB3S4d1Ndie7irXi6TH9YGUoyX2a7KArjnhdpbY6NmiSn6PqHU/xdFK4AfIOgups91g9UdrKUJqhCkB6DXXE1gCHNmifZ/YsGfIcqR+RFClbkX2sy8nQOeec4/UXv++++46aeKxevRpov5mjqqod1iKsXbuW//znP6xbt65b9Qq///3vue2225q/rqmpIT09vZNHiECkKApTB8fy6cZDrN5fycyBtORcvheWPa59Pv9BMB5WvBwe37bfUHfqX7p47c6iWuxOldhwE4Oig7t4Gmh+YzqoxjOBPf1ier1nLtmQkBotEdIZmleB2nBvkyUrVYCsDB1BVWHPN7DsP+Cya/+9onvWodwzgmOm1Av1uS4nQ/fee6/XX/zmm2/mkks6P+GTlZXFpk2bKC4uPuK+0tJSkpKS2n3cjz/+SElJCRkZLcepnU4nv/3tb3n00UfJzc1t93FmsxmzWTLy/mBaczJUAotf1JawF3wIodH+Ds23Ft8FThsMmwMjTuv82rLd8OENcNZjkNSFreTCDfDOFdrznvqPDi/bVNDSbDHYi6cBzAY90WFGDtrcSWRV8E+v90ysH2xw1z9FDdJW/A6XfRbEDiUvPx4OIpPrD/fl3bDCXSOk6LSt6B7+m1/W3GxxAP3yFiB6Nk63ld27d5Ofn09mZibDhg3r1mPj4+OJjz/6X3pOTg7V1dWsWrWKadOmAbBy5Uqqq6uZObP9QXgLFixgzpw5bW6bN28eCxYs4Oqrr+5WnCI4eSbYr82vRW1cjFKxFw6shOHz/ByZD+1cDLu/0k4Azf/H0X8of/tXKFgD71wJ138H5qPMD8v9SauXqczt9LLNB6uA/lEv5JEYaebzkhmccNwJjJzQcUuBYOGpGRqkuJOhjvpwZc2CrFnYrHuBHTK5vrYYUFtW0cacB+tegUlXwPTrj+zV1EWHqhrZX1aPToHpQwZQfWOA6FYB9YMPPsi3334LaH1/5syZw4gRIzjllFMYMWIEp556KlVVVV4PMjs7m/nz57Nw4UJWrFjBihUrWLhwIWeccQYjRrQcXxw5ciQffvghAHFxcYwZM6bNh9FoJDk5uc1jRP81LCGCmDAjjXYn5fFTtBvzfvZvUL7ksMHi32mf59wE8V345eT0f2uTyct3w2e3akv+nfE0W8w6ttPL+ssYjtYSI0PYrA5ha9ypkJjt73B6raxOS2oSXSXaDZbOywFiwrSRHAP2NFnRFvjoRnh0DHz/z5bb06bAb3fA/Pt7nAhBy6rQ2LRookLk5HNf69bK0FNPPcVpp2nL7nfeeScVFRWsXbuW7Oxsdu7cyQ033MDtt9/O888/7/VAX3/9dX79618zd+5cQGu6+MQTT7S5ZufOnVRXV3v9tUVw0ukUpmTFsmRbMZt1ozgRIG+5v8PyHb0R5j0Ayx6D4+7o2mPC4+DCF+HF02Dzu1oTxclXtX+t09FyWqaTZouNNie7S7Rj2OPSorsef4BLjPSM5LD6ORLv8KwMxdjdJQjRHSRDTjsUrGNE5U4gbmCtDLlcsGcJLH8C9v/QcnvF3rb1c+aIwx6mUmt1UNNop6rBTnWj9lHVaNM+b32b+/ODldrp7FnSddovupUMFRcXY7Fov+l9/fXXvPzyy0ycOBGA8ePH88QTT3DmmWd6P0ogNjaW1157rdNr1KP8VttRnZDov6YP1pKhxbVDtGTo0Drt1EcPBygGNEWBkadpH92RMQNOvge+vhcW3alN2k4ee+R1RRvBWgMhlvbvd9tWWIPTpRIfYW4+hdUfJESZAZWog9/C6qUw4dIji9ODiCcZ0icOB9uxHdeMOZrgf3MZB4TzAhX1wfs9d8vGt+GHf2mrpgCKHkadra26pk054vL88gZuf3cju0pqqWm04zrKImt7dArMH9NOEbvwuW4lQ5mZmWzZsoXMzEwURcFgaPtwvV5PfX29VwMUojc8c8q+KDDxYNQglJoCd4fY4/0cmZdZa49e79OZmb/WunTv/tJdP7QUQqLaXuMZwZE5q/1CWzfPcNb+0Hm6tcTIEADO23cP7GnQtgoThvs5qp6ptzpotGuNFs3H/hrMt3V8sTlSa7BpqyVJqaS4PqLja/uTsp1aImSO0maNTftFh6tnjTYn17+6hh1FtW1uDzHqiA41YQk1ah9hxubPow/72hJqZFBMaPO/M9G3upUMLVy4kDvuuIMRI0Zw8803c/vtt/Pqq68ydOhQ9u/fz6233tq8jSVEIBiVEkW4SU9Nk5OaYVOx1BRoWz39KRna+y28ezXMuQ+m9PBwgE4H5z4NTx+rHbu3NxyZDA3geiHwbJMplOoSyXDlQnV+0CZDnlWhMJOecHMX3gaiUqBMS4b22VJpsjsJMXacEPcLUxdCeKI2tqaTXzRUVeWuDzaxo6iW+AgTL1w5lZToECyhRsyGfv7fqB/pVjJ0++23k5+fz6hRoxg6dCi5ubkMHz4cg8GAw+Fg0qRJvPnmm76KVYhuM+h1TMqM4cfdZWwzjiEncqXWT6W/cNjgi99BU5U2hLU3wmLhqs/Aktb+JPrkMVojx07qhaBlDEd/OkkGLTVDBWocGeQG9fH65oaLEQZwWMFwlO3MyBQo20WKrhJcUNVgJ9nSz97oXS74/FatCHr6DVoCOOOGoz7sxZ9z+XjDIfQ6hf9eOonx6dE+D1V4X7ffFR577DF++ctf8tlnn7Fv3z5cLhcpKSnMmjWLOXPm9KtlcdE/TB8cy4+7y3jDfgI5t90e9AM221j5NJTtgrB4OOH3vX++2MFtv7bWtRSHzrlP++hEvdXBHnfxdH9bGUqK0rYvch2x5CgEdeNFz8rQ1JAC+FuiVgN2w08dP8DdeHGwqQYc2omyZEs/286pKYC1L2m/LOX8qksPWbGvnL8v2g7A3adlM11GaAStbiVDX331FSeeeCLZ2dlkZwf/0VIxMHiGtq7Iq0YF+k0qVFMI37sbH57yZ+82k3TY4Js/w84v2q8f6sC2whpcKiRHhZAY1b/eLBPdxeB5jjgw0jKwNgh5hrQOMbqHFxuO8nfVPJLDPZ+sP54oq9ir/RmT1enMPY/C6kZufmMdTpfKORNSuXpWlk/DE77VrT5DN9xwAwkJCVx88cW88cYbPukpJIS3jU+PxqTXUVprJbe8AVxOrX1+R5O6g8WSe8BWB4OmwPhLvfvc9nrY9on2BvHJr6B4q7adchTN9UL9bIsMIMxkIMJs4JDqbhTbD1aGMvTuhouWtM4f4F4ZStFVAv2011C5OxmKHXrUS60OJ798bR1ldTayU6J44LxxsisS5LqVDO3bt48ffviBsWPH8uijj5KcnMzJJ5/MY489JsfWRcAKMeqZ4N7HX7WvDJ47EV47Tys8DlZ5y2DzO4ACp/1LK4D2ptAYrf+QzgDbPoKnZsKDGVCxr9OHeTpP97ctMo/ESDMHPclQMNcMuZOhFLRZWEdruMjg4+C0h1gWdz7QX1eG3P+2446eDN33yTY2HKjCEmrkmcsnE2rqZ/VTA1C3f4KOGzeOP/7xj6xatYp9+/Zx4YUXsnjxYrKzsxk/fjz33HMPa9as8UWsQvSY54j9ytxK7Wg4wJr/+TGiXjq4GlC0I7++mp6eNgVO+UvL18YwiM7q9CGbC/rvyhBoA1v3qINYO/lBOO9Zf4fTY55tsninp+FiB6M4PBKzYdpCyuKnAv10ZciTDMUO6fSyt1bl8+aqfBQF/nPJBDLi+mHPsgGoV79OpqamcsMNN7Bo0SLKysr405/+RG5uLvPnz+f+++/3VoxC9NpUdzK0OrcCJruPn+9aHLxbHbN+A7/4Hk66x7evM+NGGHmG9vmQ4ztdgaptsrOvTOsz1m9XhqJCqCGc9dHzIDPH3+H0mGdlyGJzJ0NHWxlyi3WP5OiXk+ubt8k6ToY2HKjino+3AvDbU4ZzwojEvohM9AGvnTEODw/nggsu4IILLsDlclFeXu6tpxai1yZnxqBT4EBFI4eM6aRmHQu5P2oDFk/8g7/D65mU8b5/DUWBc5+BDW8ctbP11kM1qCoMig4lPqL/dJ5urb+M5GjuM9RwSLuho1EcreWvZFLdesJIoKKhn02ud7lahg93sE1WVmfll6+txeZ0MXdUEjee0L3B5CKw9TgZqq+v5/vvvyc/Px+breW3BEVR+NWvfkVCQoJXAhTCGyLMBsYMsrDpYDWrcys4e8rVWjK09mVtjld7fXUC0cpnYcgJfdvszxyhTeM+is39tNlia55kKLR4HaxeBmlTIWWcn6PqHlVVKauzocOFdcgpGBoLu7Yy9PblnFRfQpZyP5X1Rym4DjY6Hfxuv7ZV1s5/C4fTxc1vrKOwuokhCeE8fNF4dDopmO5PepQMrV+/ntNOO42Ghgbq6+uJjY2lrKyMsLAwEhMT+dWvutajQYi+NDUrlk0Hq1m1v4KzzzxT681TV6Rtl2X7ZqaeVxWshS/u1Iqaf7Ph6CeA+timfl4vBC3H66eUvA+ffwMn3xt0yVBNowOb0wXo0J/3NHS1k3RUCtSXuEdy9MNtMlN4hzP3HvxiByv2VRBu0vPsgslEylT5fqdHNUO33norZ555JhUVFYSGhrJixQry8vKYPHkyDz30kLdjFMIrPEXUy/eWo+qNMGmBdseeb/wYVRe5XLDoDkCFMecHXCIELSfJ+lvn6dY8c6PynO7mekHYa6i0rgmAqBBD90ZquI/XJymV/fM0WQc+3lDA8z/tB+Dhi8YzLLEXMwBFwOpRMrRhwwZ++9vfotfr0ev1WK1W0tPT+ec//8kf/hCk9Rei35sxJA6zQce+snrWH6iCadfDtUvgjH/7O7SjW/s/bWXIFKk1WAww1Y12rYcTMCa1/yZDSe6Vod22GO2GIDxeX1qrJTIZEc4u9Y5q5k6GkpUKKuptqGoPxrIHqtXPw6e/aZm/57a9sIbfvb8JgBtPGMr8MSn+iE70gR4lQ0ajsbnBVFJSEvn5+QBYLJbmz4UINJZQI6eP036YvbEyH6JSIX1a4I/nKNwEi92/ZJz4B4hM9m887djq3iJLjw0lJtzk52h8J8G9MrTPkwwF4WlEz1yy69QP4W9J8HUXk2t3MpRIJVaHq3nqfb+w6yttFEfZruabqhvs/OLVtTTZXRx7TDy/nTvCf/EJn+tRMjRx4sTmXkInnngi99xzD6+//jq33HILY8e2v+cqRCC4bHomAJ9uPER16xMx1lptBEWgaaqBd68EpxWOmacNkAxAnnqhcYOi/RuIj0WFGDAbdBQ0d6E+AEG2QuI5SZamKwNUrcFmV7hHcqTqqoB+1mvosIaLLpfKb95eT35FA2kxoTx2yUT0UjDdr/UoGbr//vtJSdH+x/jrX/9KXFwcv/zlLykpKeHZZ4O3EZno/yZlRDMyORKrw8UH692/1S99EB7Ohu2f+De49qx+ruWEy7lPe7/TtJds7sdjOFpTFIXEKDOHVHfNkK0Omqr8GlN3eRouJrpKtRu6cqweWkZy6KsAqKzvJ8frnY6WY/XuHkOPfrObpTtLMRt0PH355H692ik03T5NpqoqFouFsLAwHA4HCQkJLFq0yBexCeF1iqJw6fQM7vl4K2+szOeqmVkoKGCr1TpSj73A3yG2NesWbYbakBMhLNbf0XRoU0EVAOP68bF6j8TIEA5UmLGaYzFbK7S6oa6urgQAz8pQrL17DRdJGgOnPcSrP9RDI1T0lyLq6gPgsoPeDFFpLNlWzGPf7AbgwfPHMmYA/JsW3VwZys3NZcKECYwcOZKxY8cybNgw1q1b56vYhPCJcyYOItSoZ3dJHWvyKrVTZYoe8n6Gkh3+Dq8tnR6OvxPSp/bqaRptTuqsDi8F1VZlvY0DFY0AjB4AbxyeXkM/Zt8HVy3q0iyrQFJaa8WIg3Cbe2Woq8lQVApMW8j+6BlAP+pC7ZlWHzuYfeUN3Pb2BgCumpnFuRMD79Sm8I1uJUO/+93vaGpq4tVXX+Xdd98lJSWFG24IzBoGIToSFWLkrPGpALy+Ik8rpB5xqnbn2hf9GJlbY6VW1Gpv9MrTHapqZM4j33PCv75rWyflJZ55ZIPjw7GE9v/+K55kaF3IdMiapfWnCSJldVaSlXIUVG01JLx7DXJj3CM5+k3NULlnJtlQ7v5wC7VWB9OyYrn79Gz/xiX6VLeSoR9//JFnn32WSy+9lPPOO493332XtWvX0tjonR/aQvSVS6drgykXbSnSfsOdco12x4Y3wdbgv8BUFT66CX56BN6/rtdPV91g56oXV1FQ1UhZnY2PNhR4Ici2PMnQQNlOSIzSTpQF60iO0lorgxT3uCRLWvfq0A6t51jbjyTSj3oN1RYCoMYOYaO7V9ZfzxmDUR+Y9XnCN7r1t11UVMTIkSObv05LSyM0NJTi4mKvByaEL41LszA6NQqbw8X76w5qNTkxWWCthq0f+C+w5f+FnZ+D3qSNCemFJruTha+uYVdxXfNJmLdXe78vjqd4eiDUC4E2uR7AVZmn1Zltfs/PEXWdy6VSXm+jRg2jcdRFLSuiXfXFXVycew+Tdbv6z8rQnHvhrgOUTbyRBpsTnaKtcoqBpVvJkKIo6A77LUKn0/Wv5ltiQPAUUoPWc0hVlJZp9mv8tFWWvxK+vlf7fP4DkDqhx0/lcqnc9s4GVu2vINJs4LVrp2PS69hWWMMW90qOt2weAGM4WvNsk0VXbYfPboUVT/o5oq6rbLDhdKlsJwvD+c/AvL937wncPa6SlYr+szIEEBJFboO24pcaHYrJIKtCA023/sZVVWX48OHExsY2f9TV1TFx4sQ2twkRDM6eMIhwk559ZfUs31cOEy+HY2+HC/7X98HUl8N7V4PLoY3bmHJtj59KVVX++vk2Fm0uwqTX8cwVk8kZGsfc0UkAvLXae41Ry+qsFFQ1oigwOjXKa88byJLc22Q7mqK1G4Ko8aKn4WJMmKln20BRWq1dklLVf1aG3PLcHdSz4mRVaCDq1tH6F18MgOJSIbwkwmzg7ImDeGNlPm+szGfmpZPg5D/1fSAuF3x4PdQUQNwwOPM/veqK/fyP+3nx51wAHrpoPDOHag0CL5mawWebCvl4wyHuPm0UoaZuzKXqgGdVaEh8+IAZXulZGdrWYIEQoK4Y7E1gDPFvYF3gOVY/IqxeG8VhMHfvCdwrQ0lKRf/oM1SZB5/+GpLGkKdcAUBGXJifgxL+0K1k6Morr/RVHEL4xaXTMnhjZT5fbi2irM5KfEQ33xy8oXK/NnfMEAIXvQLmng+C/HhDAX9ftB2AP56e3XxqDmDm0DjSYkI5WNnIF1sKOW9S748NN9cLpUX3+rmCRUyYCYNOocoVgcsQis7R6E5kA/+Ivafh4r8bfw9/uwquWQwZM7r+BJHulSEq+0efobJdsG8p1JWQF6P1GMuSZGhA6tXGqM1m4+DBg+Tn57f5ECJYjBlkYXyaBbtT5b217u2O3J/hjYu14ti+EDcUfvEjXPgSJI3u8dMs21PG7e9uBOCaWYO57tghbe7X6RQumqL1lPFWIfWmgwPrJBlo/x21ImoFW8Qg7cYgmV5fWmtFwUWcsxRQuz/nrnllqJLK/jCstdzTY2gIeeX1AGTEyjbZQNSjZGjXrl0ce+yxhIaGkpmZyeDBgxk8eDBZWVkMHjzY2zEK4VOeeWVvrsrH5VKhaDPsWgyrnu+7uVPR6d0/2dPK9sIafvHqWuxOldPHpfDHDnqkXDA5DUWBlfsr2F9W3+PX8/AUY48bIMXTHp6tsjqzO5kIkrqh0lor8dRgVO2AAlGDuvcE7pqhZKUCh8tFrY8aefYZT8PFuKHkemqG4mVlaCDqUTJ09dVXo9Pp+Oyzz1i7di3r1q1j3bp1rF+/XjpSi6BzxvgUIs0G8sob+HlvGYy/GAyhULIVDq72zYu6nPDOFbDzi14/VUFVI1e9uIpaq4Ppg2N5+MLx6DoYKpkaHcrxw7Ume++s6d1qRklNE0U1TegUGJUyMIqnPTzT6yuN7mSoKjhWhsrqbAxSyrQvIlNA3806r6hUOO0h7lJ/hYIa/F2o3StDDRGZVDdqNVAZsZIMDUQ9SoY2bNjAM888w6mnnsqECRMYP358mw8hgkmYycC5k7TfkN9Yma/NmRpzvnanr7bKvv8HbPtYa6xYX97jp6lqsHHl/1ZRXGNleFIEz14xhRBj54XRF7u3yt5bexCH09Xj1/YUTw9LjCDc3O0xh0EtMUpbGVoWfz5c/QVM7X2DzL6gNVx0J0NdHdDamjEUpi1kXdgsVHTBf6LMvTJ0SK/9/58YaSbMNLD+LQtNj5KhUaNGUVZW5u1YhPAbT8+hJduKKaltaulIveUDaKjw7ovt+Qa+/6f2+RmPQnhcj56mye7k+lfWsqekjuSoEF66elqXxmGcnJ1EXLiJ0lor3+0s7dFrQ0u90NhB0T1+jmDl2Sbb4UqDzJkQ0b2RFv6iJUPdnEnWjlj3FPeg7jXksEGVVuO616Wt8Mmx+oGry8lQTU1N88c//vEP7rzzTpYuXUp5eXmb+2pqanwZrxA+MTI5ismZMThcKu+uOQiDJkHyOHBaYcMb3nuhmkPwwUJA1Zo8jruwR0/j9DRVzK0gMsTAS9dMJTU6tEuPNRl0nOdeCetNIfXmAVovBNrkeoCSmuAayVFW18uVIYDircznZ4YpB6kI5uP19SUQGgvGMHbVaVtjcqx+4OpyMhQdHU1MTAwxMTGccsoprFixgpNPPpnExMTm2z3XCBGMLp3W0pHaqdKyOrTmf94ppHY64L1roKEcksfC/Ad79DSqqvLXz1qaKj67YAojk7tXs3PxVO2N8LudJZTUNPUohuaVoQGYDCW5t8nKa2q1fx/f/EXrFxXA7E4XFQ021rqG0zTqIkib1rMnWvY4N5Xfzym6dcFdM2RJgzv3wu27yavU5mvKsfqBq8ubo999950v4xDC704fl8JfPttGQVUjP+wu5cSxF8Kmt2HcRVpn6O4Wmx5u6QOQvxxMkXDhyz1u0vfsD/t4aVkuAA9fNJ6cod3fZhuWGMnkzBjW5lXy3rqD3HjCsG49vqimibI6K3qdMuCKp6FlZai4xg6f/xZUF0y7vvtH1ftQRb0NVYXPldk8esGp0EGR/VFFpgBa48XiYN4m8zBHtByrl22yAavLyVBMTAxjxow5YjZZR7Zu3cqIESMwGKQYTQSHEKOe8yYN4sWfc3ljZT4njpiiNaXzkqaIQYQA9ac+SljsEHryVvTxhgIe+GIHoDVVPLNVU8XuunhKOmvzKnln9QF+efxQlG50vfY0WzwmMeKoBdv9kaeAurjegZqQilJzUDteH8DJkKf7dFy4qcPThl3SnAxVsiOYV4ZaaRnFIStDA1WXM5WJEydSVFREQkLXCgVzcnLYsGEDQ4YMOfrFQgSIy6Zn8OLPuXy7o4TC6kZSLF2rwzlCZS6seApSxsOES1mTW8EvFiVwkuN63n07FNP7i0mIMJMYZSYpMoTEKDOJkWYSI0NIaPV56zeun1s1Vbx29pFNFbvr9HEp/PnTreSWN7ByfwUzhnR9hWkg1wuBllAoCrhUsEcOwlRzUCvGTZvi79A6VFpnxYiDcWF1PRvF4RGlJUPJSmVwnyb76CaoLaRp9h2UuBPFTGm4OGB1ORlSVZU//elPhIV1LXO22YL4fxIxYA1LjGTa4FhW7a/g7dUHuGXOcLDWwqZ3tHEZEy/r/AkOroFlj8H2T7Wtk7hhrI2ey5X/W0O9TcenxpPA6cLmcFFQ1UhBVWOnT6fXKcRHmEiMDGFfaV1zU8W7T2u/qWJ3hJsNnDk+lbdWH+Cd1Qe6lQy11AtF9zqOYGTQ64gLN1NWZ6UhJAUTBHzjxdJaK0OVQzxffRc88getXqYn3CM5EpXK4D5NlvsDVOVTNPqXAESHGbGEDYz5euJIXU6GjjvuOHbu3NnlJ87JySE0tIe/VQvhR5dNz2hOhm4+cRiG7Z/B57eBJQPGXwK6w7aFXE7YuQiWPQEHVrTcPvQkdg29iitfXEO9zcmsYXE8f8VUFEV7YyqptVJa20RJrZWSGisltU0U17TcXl5vw+lSKa6xUuw+tTRjSCyPXNRxU8XuumhqOm+tPsDnmwu596zRXTqar6pqy8rQABrDcbjESC0ZqjYlEw0BP5Kj7bH6bnaebs29FZhIFZV13S++DwgOa3Pyus+VDOSTKc0WB7QuJ0NLly71YRhCBI75Y5KJCTNSWN3E0p2lzBl9Diy+C6rztR5Bw+e2fcBnt8K6l7XPdUat4DrnJtZZU7nihVXUWR3MHKolQp5J8emxYaQf5Yev3emivM5GSW0TJTVW6qwOThmVhNngvRqdienRDE+KYFdxHZ9sPMSCGZlHfUxBVSMV9TaMeoWRKT0fKhvsEqPMbCuEUn0CmRDwXajL6qykKu4Gn73oMUREEioKRsWpnYwMRpW52sqtKYLdddov7ZlSPD2g9WpQqxD9kdmg50J3l+Y3VuVrXXcnuLfH1vwPaouhvlXT0bEXQkg0HPtbuHULnPMk662pXOlOhHKGxPHClS2JUFcZ9TqSLSGMS4tmzqgkzpk4yOudnhWl9fDWrg1Z9hRPj0iO9GpiFmw8jRcPqfHaDUGwTdbSYyij50+kN1A7798stN3GoUY9TlcQDmut2Kf9GTtEjtULQJIhIdr1f+6eQ9/tLOFgZQNMuVq7Y9dieHQM/PTvlouzZsNt2+HkeyAymQ0HqrjihZZZYS9cNaXbiVBfOm9SGka9wpaCGrYeqj7q9ZsKPJ2nB+4WGbQcr9+sDIerFsH/venniDpXWmslzZMM9WZlCAiddiVLXFNoUM3UNAZh48X2ptXLytCAJsmQEO0YHB/OzKFxqKq7S3P8MZB1LKCC0walO1saMSoKmLTfKjceqGLBCyuptTqYNjiWF6+eGvCzjmLDTcwdpdWBvNOFjtRbCgbuGI7WPMfr8xpMkDWr5x2d+0ib7tOWtF49l1GvIzJE+3ddEYxF1K2m1cuxegGSDAnRocuma/Uzb68+gN3pgrMe17bCrv0aLn9PS4Ja2XSwistfWEltk4NpWbG8eFXgJ0Ieno7UH64voMnu7PC61p2nB+qxeo/mkRy1wTGSo9dDWlsr38sF5pVMUnYFZxdqnQFCorFHD+aQ+0SnjOIY2CQZEqIDp4xKIj7CREmtlW+2l0DsYG0rLH3qEdduKajm8ue1RGhqVgwvXj01qCa5zx4Wz6DoUGqaHHy5tajD6w5UNFLdaMek1zE8aeAWT0PLylBprRW2fQxf/xkKN/k5qvY12Z3UNNl5w3kSttEXQ0xW755wy/vca32Yi/RLg7PX0Gn/grvyyE8/G5cKYSY9CRE97Lsk+gVJhoTogMmga1tI3YEtBdVc9vxKapocTM6M4cWrpwVVIgSg0ylcOEXbOnlrVcdbZZsKqgDITonEZBjYPz48BdSltVbUjW/BT4/AwVV+jqp95fU2QOFJ9SKMFzwDob2cIek+Xp8U5L2G8iu01gAZsWHd6sAu+p+B/dNMiKP4v6laIfUPu0rJd9cWtLb1UDWXv7CS6kY7kzKieenqqUQEWSLkceGUdBQFlu8rby4qPdzmATyc9XAJ7mTI5nRhDXePRQnQE2WeURzxESbvvOm7Gy9qXaiDsIDaLdf97zxLiqcHPEmGhOhERlwYxw3XRtC8edjR822Harjs+ZVUNdiZmBHNy9dMIzIkeDvYDooOZfYw7Zj4O2vaXx1qrhca4MXToLVgiHZ3LK4xayMqArXXUGmtlQSqGBtWAQ4vrOR4Gi8G48rQzsXw2CRY/Pvm4ulMqRca8CQZEuIoLnUfs393zQFsDhcA2wtruOz5FVQ12JmQHvyJkMcl7pWw99YexOF0tbnP5VLZ4j56P2aAH6v38GyVlevdMxsDtAt1WZ2Vyw1f80zldfDFHb1/wihtZShOqaW6tq73z9eXynZpp8nqiptXQKXhopBkSIijODk70T16wcaSbcXsKNJWhCob7IxPj+aVa6cR1Q8SIYA5oxKJCTNSXGPlh92lbe7Lq2igtsmB2aDjmKQIP0UYWDwnygrxJEOBu002yEs9hgAIjcGpMwGg1nRccB+QPMfqY4eSVyHH6oVGkiEhjsKo1zUfPX/iuz1c+txKKuptjEuz8Mo1/ScRAm3r57xJ7RdSbzpYBcCo1CiMevnRAS0rQ/kudxfq2kJwBl4NTWmtlUF4ofu0h6JgDU0EQF9f2Pvn60vuhouumMEccCdDcqxeyE80IbrgkmkZ6BRte6yi3sbYQRZevWZ6lwabBhtP4vftjhJKalsGcW4+KMNZD5fgabzYGAp6szbvquaQn6M6ktZw0TOk1TvNIQum/ZHrbL9liy3ZK8/XZ9yjOEpNadidKia9jhSLDBUf6CQZEqILBkWHcuII7TfhMYOieO3a6VjC+l8iBDA8KZKJGdE4XCofrCtovr15DEdatJ8iCzzNjRfr7HD1F3DL5l53d/aF8poGUpQK7QsvdcpWss/ka9dk8hqCqD+PrQFqtH/TuaqWxKXFhqLXybH6gU6SISG66G/njuFPZ4zi9etm9NtEyONid3+ld1YfQFVVnC6VrQXSefpwSe6VoZLaJkibrG1B6QJvDp2rtgij4kRV9BCZ4pXnjA3XaoZqmhxah/ZgULlf+zPEwp46LX45Vi9AkiEhuizFEsq1swf3y62xw50xPpUwk559ZfWsyatkf1kd9TYnoUY9QxOkeNojWEZyhNRrqyHOiBSvJWsWWzFn6pdxgm49VQ2BVyfVLkcTpEyAlAnkV7jHcMRKvZCQZEgI0Y4Is4EzxmkrCG+tOsBm96rQ6NQo2VJoxVNAXVJjRS1Yr43kWPuyn6Nqq97qIN8exWOOc3BOvMJrz6s/uJLHjU/wC/3nwdNraNBk+MX3cOUnrRouSjIkJBkSQnTAU0i9aHMhP+8pB6Tz9OE888ka7U6aCjZrIzm2fujnqNoqq7OSrybxlPJ/mE6803tP7N5uS1IqgnI+WUvDRdkmE5IMCSE6MCkjhmGJETTanXywTuufI/VCbYWZDM3jVyqNWoF9oPUaKqvTtvASIs3enb/l7kKdrFRSWRfY24TNVNX9h0p+hXSfFi0kGRJCtEtRlOZCapf2HsJYGcNxBM9WWZHSKhlyv+kGgtJaK9lKHmNCy73bA8m9MhSmWKmtqfDe8/rSYxPgiWlU5G+jweZEp0BajCRDQpIhIUQnzp00CKNeW00IN+kZEi9bCofzDGwtcMYACjgaob7Mv0G1Ulpr5T/GJ3iy/FrY/4P3ntgURoNOK6a3VxYc5eIAYKuHylwo20lek9ZXKDU6FJNB3gaFJENCiE7ER5iZk50EaPPIdFI8fYTEKO1EWVG9ChHaf6tAmlHWZhSHN7pPt1Jv1saQuGqCoAu1u9kioTHsrdVOhMqxeuEhyZAQolM3nzSMYxIjuHxGpr9DCUjNJ8pqm1oaGgZQMlRfVUq44q7p8XJDSGuIlvzp64JgPll5y0yyfBnDIQ4jyZAQolOjUy0sue14zhyf6u9QAlJLMmRtSTYCqIharcoHoNEUC0bvjp3YM+J6rrX9lpXKOK8+r094BrTGDSW3XAa0irYM/g5ACCGCWZJ7m6ykxgoX3gen/MVrXZ69wVin1fPYwgfh7QlczszZfOMKYZwtysvP7AOebbLYoeRv0XoMZcTKNpnQSDIkhBC90GabLCbLv8G0I7RBGxzr8tKA1tZi3CM5gqLPULk7GWq9MhQvK0NCI8mQEEL0QmJUq22yAKOqKhZbEehAH+Pd4mmAeKWWs3Q/E1YPcJLXn9+rEkeCrZbaiMFUN2o1TjKKQ3hIMiSEEL2Q4J5PVtvkoKmmnJDV/4WGCjjzUf8GhjZEdYljArU6EzeMnOP154+1F/KY6b8UqrE02f9KiDHwhtQ2O+PfAOw7UAUUkRhpJswkb4FCIwXUQgjRC1EhBszuXjWldTb48WFY+6LW18bPyuqsLHON4TnDpZhGnOL15w+P0wrGE6iiqq7J68/vCy0zyaReSLSQZEgIIXpBUZTmrbJiqwlMkdodAXCirNS9dZcQYfbJ8ysRSTjRYVBc1JYf8slreIW9CVwuAPLL5Vi9OJIkQ0II0UuJ7q2y4lpbQPUaKq+qJUe3ldGh5b4ZEaI3UKVEA9BQ7v/kr0PLH4f7U+Dr++RYvWiXbJgKIUQvtTlRZkmHkm1Q5f9kyFq2jzdNf6exPAw4zyevUWWII85egS2QR3KU7wNHExjDya9wH6uXbTLRStCsDFVWVrJgwQIsFgsWi4UFCxZQVVV11Mdt376ds846C4vFQmRkJDNmzCA/P9/3AQshBoxAbbzoqNB+1tWYksGbE+tbqTNpIzmcNQG8TdbccHGIrAyJdgVNMnTppZeyYcMGFi9ezOLFi9mwYQMLFizo9DF79+5l9uzZjBw5kqVLl7Jx40b+9Kc/ERIS0kdRCyEGgsTWjRcDaJtM546hMcx33cObQhIBUGoDeCSHexRHY1RWcx1VpjRcFK0ExTbZ9u3bWbx4MStWrGD69OkAPPfcc+Tk5LBz505GjBjR7uPuvvtuTjvtNP75z3823zZkyJA+iVkIMXAcsU0GAbEyZK7Xtq4ckd6dSdbaztTzeKZwGOOicpjus1fphaZqaNAG1earKUAR0WFGLGFG/8YlAkpQrAwtX74ci8XSnAgBzJgxA4vFwrJly9p9jMvl4vPPP2f48OHMmzePxMREpk+fzkcffdTpa1mtVmpqatp8CCFEZzwrQ6W1VjhmLvxmE1zxsZ+jgvAm92pNtPe7T3vYk8bxrWsS+xxxPnuNXvEMaA1PZH+t9paXKc0WxWGCIhkqKioiMTHxiNsTExMpKmp/abakpIS6ujoefPBB5s+fz1dffcW5557Leeedx/fff9/haz3wwAPNdUkWi4X0dN/9EBFC9A9taoZCoiAmE/T+X3mIsWs/H02xmT57jdhw7fusbAjQkRwVLWM48tw9hjKleFocxq/J0H333YeiKJ1+rFmzBtB6eRxOVdV2bwdtZQjg7LPP5tZbb2XChAncddddnHHGGTz99NMdxvT73/+e6urq5o8DB/y/7y+ECGyeZKii3obN4fJzNBqXSyXRVQpAeNJgn71OnMnJWbqfmVX+ns9eo1fC4yH7TBh8vBRPiw75tWbo5ptv5pJLLun0mqysLDZt2kRxcfER95WWlpKUlNTu4+Lj4zEYDIwaNarN7dnZ2fz0008dvp7ZbMZs9k2DMiFE/xQTZsKgU3C4VMrqrKRuewEKN8Ks30DyGL/EVNVo51HHeaQrJfxy0EifvU6cWeUx03+hAbD/FYwBdkBlyAnaB5D//ApAjtWLI/k1GYqPjyc+Pv6o1+Xk5FBdXc2qVauYNm0aACtXrqS6upqZM2e2+xiTycTUqVPZuXNnm9t37dpFZqbvloyFEAOPTqeQEGmmsLqJklorqTu/gLyftPohPyVDpbVW3nWeQEyYkV9HHv3nbE9FxSTQpBoJUexQWwixvluF6q3cMlkZEu0Lipqh7Oxs5s+fz8KFC1mxYgUrVqxg4cKFnHHGGW1Oko0cOZIPP/yw+es77riDt99+m+eee449e/bwxBNP8Omnn3LjjTf649sQQvRjnq2y4pqmVsfr/dfTrKzOPYoj0rcr3bERZorVGACslQHYa6imEFQVq8NJYXUjIKM4xJGCIhkCeP311xk7dixz585l7ty5jBs3jldffbXNNTt37qS6urr563PPPZenn36af/7zn4wdO5bnn3+e999/n9mzZ/d1+EKIfs4zvT5QGi/WF+0mR7eVY0Jrffo6YSY9JUqs9pplAdbQtrESHhkJ9w+ioLQCl6rF66tZbSJ4BUWfIYDY2Fhee+21Tq9R25m9c80113DNNdf4KiwhhABoHtZaWtMEce6VIT+O5IjZ9ylvmv7LisZTgTN89jqKolCljwNXAK4MlbtPkpkjyavW3h8yYsM6PHgjBq6gWRkSQohAlhRgK0OGWu21reGDfP5aNUZtJIejOsCSoeYxHEPJdR+rz5LiadEOSYaEEMILPCtDJbVWiM7Qbqw+4Jtp8V0Q2qAlJmqU75OhxuaRHIU+f61u8TRcjB1CnvtYfabUC4l2BM02mRBCBLI2Izk8CYi9QRsHERrd5/FEWbXERBeT4fPX2hNzHNeURnF6xmx8N/ijB1qtDOXtloaLomOSDAkhhBckRrYa1moKg1s2Q2SKfzpRqyqxjhIAQuKzfP5yrpjBfOvSMQbfDYTtEU/36dihzStDcqxetEe2yYQQwgs822RldVacLlXbKvPXSI76MkKw4VIVIpOyfP5yMWEmACoCbSSHe5vMGTOEA5VaMiTH6kV7JBkSQggviAs3oSjgUqG83urXWByV2hH3EqKJt0T6/PViw4ycrfuJyQdfBWudz1+vS5wOmLQARpxOoS4Zu1PFpNeRYgn1d2QiAMk2mRBCeIFBryMu3ExZnZWSGiuJjfvhp0fBYIKzHu/TWCqNCTxsvw49Kn8JN/n89WIizPzZ+DLRZfVQfTUkZvv8NY9Kb4C5fwMgb08ZAGmxoeh1cqxeHElWhoQQwkvaFFE7bbDpLdj6EbicfRpHicvCW86T+CrstD55848NM1Gkao0XCbQTZSDH6sVRSTIkhBBe0ny8vsYKSWPAFAnWGije2qdxlNZq23TxfdRpOSbcSIkarX1REyDJUPVBqC0GVSXfXTydESv1QqJ9kgwJIYSXtKwMWUGnh3RtsDT5y/s0joitbzBJ2UVSRN9UQsSGt6wMqTUB0nhxyb3w8HBY/kSrlSFJhkT7JBkSQggvSYrydKFu0m7IzNH+7MtkqLGSyZvu4wPzfWSFNPTJS8aEmShGG9ZqD5Qu1J4eQzFZrRouyjaZaJ8kQ0II4SXNK0M17tNkGe5kKG9533WizluOgspeVwrm2L7p+xNi1FOhiwPAUVnQJ6/ZKVVtnkumSvdp0QWSDAkhhJe0mVwPMGgy6IxQVwSV+/smiNyfAFjhGsWQ+L5bCWkwa/PJ1NqiPnvNDjWUg7UagFJDKo12JzoF0mIkGRLtk2RICCG8pHlyvScZMoZC2lRIGgv15X0Sgyv3RwCWu0YxOTO2T14T4GDEGK623cGWqQ/02Wt2yDOTLCqNvFptRS41OhSTQd7yRPukz5AQQnhJ66P1qqqiKApc+anW86YvNFaiFG0GYId5LEMT+m5lSBeRyHeFEznDkMn0PnvVDjTPJBtCbpkcqxdHJ2myEEJ4SYI7GbI7VSob7NqNfZUIAeQtQ0FljyuVrKyhWjLWR2LdzR0rA2EkR/O0+qHkV8gYDnF0kgwJIYSXmA16osO0eWTNJ8o8HFbtw5fylgGwwpXN1KwY377WYWLCTMzVrWbY7hegKr9PX/sIWbNgxk0wbA65MqBVdIFskwkhhBclRpqparBTUmNlZLL7xo9ugs3vwvnPwaizffba6sn3cvXKFA46jfwjq+/qhUBbGTrH8DET8vdB0SxtUK2/DD1J+wDyvtEKyjNiZZtMdExWhoQQwosSDz9RBmAwg9MK+St8+tr7K20sbRhMvj6DMYOifPpah4sJN1GiulejagOk1xA0H6vPipeVIdExSYaEEMKL2swn88icqf3p3sbylTV5lQBMSIvGbND79LUO13Y+mR+P19vq4cAqqC+nqsFGdaNWuyWjOERnZJtMCCG8KNHThbqm1cqQp/li0Saw1oI50vsv/NOjZKxdy1hlGpOzhnr/+Y8iJtzINs/KkD/nkxVughfngyWDvAu0NgOJkWbCTPJ2JzomK0NCCOFFnpWh0tbbZJZBWg2N6tJWLXxh83vMqPyEdKWkz4unQasZ8ozk8Os2Wetj9TKtXnSRJENCCOFFzZPrDz9NluHeKvPFnLKGCijW+gutdGUzOaNvi6dB2yYrdq8M+bULdetj9eVyrF50jSRDQgjhRe0WUANkzND+9EURdd7PAOxyDSIuaRAW9/H+vhQdFiCT65tXhobKsXrRZZIMCSGEF3m2yYprtC7UzbKOhRGnQfZZ3n/RVvPIpvTxkXoPk0FHpSmVq2x3cOist/0SA9A8oFVruKhtk2XINpk4CqkoE0IIL/JskzXZXdRaHUSFuFdp4ofB/73pmxdtToaymZPZ9/VCHmHhESytmEhx+HDS/BGAqkKFOxmKG0pueR4gK0Pi6GRlSAghvCjMZCDCrP2e2eZEma80VEDxFkCrF5rqp5Uh0HoNAVTU2/0TQG0R2OtB0VEfNqi5iD1TGi6Ko5BkSAghvKzdXkOgrVxU5sH+H7z3YtUHaIrMZKcrDX1kImkxod577m6KDTMyW7eZxE1Pw6ENfR+AMQRO/Rccdyf51Q4AosOMfqmhEsFFtsmEEMLLEiLN7Curb3u8HqBwAzx7AoREw537QeeF30dTxvPCpA/475cbOXFEbJ8OZz1cTLiJE/RLGb9jOWTEQeqEvg0gNAamXw9A3hat11GmNFsUXSArQ0II4WVJ7TVeBEgaA8YwaKqC0h1ee701uRU0EMIUP/QXaq1NF+ry3X6NxTOGI1OKp0UXSDIkhBBe1uE2md4IaVO1z/O9MJrDacflsLPWPYZjSqb/6oVAWxla5hqlfbHhjZZi5r7w5d3w1R+hsQpAjtWLbpFkSAghvKyl8WI7BdTNc8q80Hxx5yLUf2Rxm+N5wkx6slN8MOajG2LDTSx1TWBryGRw2uDLP/bNC5fthpVPw7LHta1IkGP1olskGRJCCC9rbrzY3mkybzZfzP0Jvb0OgIkZ0Rj0/v2RHhNmAhSeDlsIOgPs/Bz2fOP7F15yD7gccMw8GHICALllsjIkuk6SISGE8LLmxouHb5OBtk2mM0DNQajK790LtW626OctMtBWhgC22FJg2i+0GxffBU4fHrXf/yPsXASKHub+FQCrw8mh6kZARnGIrpFkSAghvMyzTVba3sqQKRxSxmuf92arrL4MSrYBsNI10q/9hTxiw7Uj7BX1Njj+Tq1gfNYtWqLiCy4XfHW39vmUqyFhBAAHKxtRVQgz6UmIMPvmtUW/IkfrhRDCyxLc22S1VgeNNiehpsOSgWN/q62WDD6u5y/iXhXa7kqnWoliQkZ0z5/LS7RtMqhutOMwRWG44Sfw5VH/ze9A4UYwR8EJv2++Oc89rT4jNsyvrQZE8JBkSAghvCwqxIDZoMPqcFFS23Tk8e6Rp/f+RVptkY1KjWrueu1PllAjiqL1lqxqtBPfelXGaddO03mLqsKPD2ufH3sbhMc335XXfJJMiqdF18g2mRBCeJmiKJ2fKPOGVvPIAqFeCMCg12EJ1RKeynpbyx2b34P/TICCtd57MUWBKz+Fmb+C6b9sc1dLjyGpFxJdI8mQEEL4QKcnykBLDL7/J+Sv7P6TqyqMPZ8NhnGsco30e7PF1mLDPPPJWiVDu7/SCsa/+J1W5+Mtkckw92/aGI5WPNtk0nBRdJUkQ0II4QND4rU34p/2lLV/wbpX4Lu/w/ZPuv/kikLd9Fs5r/4uKokKmJUhaBnWWtnQKhma82cwhsPB1VqdT2+V7+307jxpuCi6SZIhIYTwgfMmpQHwyYYC6q2OIy/IcDdfzO/ZibL1+ZW4VEiLCSXZEnL0B/SRmLB2JtdHpcDxd2ifL7kHrLU9f4HibfDEFHjzUnDYjrjb6VI5UKklQ3KsXnSVJENCCOEDM4bEkhUXRr3NyeebCo+8IDNH+7NwI9jqu/fku5ewdbc26iIQjtS35jle32ZlCGDGjRA7BOqK4YeHev4CX/0RVBfo9GAwHXH3oapG7E4Vk15HiiW0568jBhRJhoQQwgcUReHiqRkAvLm6neaKlnSIGqR1Tj64putPXFcKr1/A9avmE0U9kzMDp14IWrbJSg8vHDeYYd4D2ufL/3vUra527f4a9n4DOiOc8ud2L/FskaXFhqLXybF60TWSDAkhhI+cP3kQBp3C+vwqdhYdtjWkKJDhXh3qzlZZnnaKbJeaTg3hAbcyNDJZm4/2w+5SVFVte+fweTBsDrjsWtfo7nA6tFUhgOm/0FaZ2pHnnkkmx+pFd0gyJIQQPpIYGcLJ2YkAvNXe6pBnqyyvGxPs9/8IwDJnNlEhBo5JjOhtmF41JzsJk0HHvtJ6thXWtL1TUeDUf8JVn2tH4rtj/atQuh1CY+C42zu8zLMylBEr9UKi6yQZEkIIH7rEvVX24foCmuzOtnd6iqhLtnf9yHmr/kKTM2PQBdhWUGSIkZNGaAngJxsPHXlB3FDImt29J7XWaifvAI7/nZYQdcBzrF5OkonukGRICCF86LjhCaRaQqhqsPPl1qK2dyaMhOuXwm3bQdeFH8d1JVC2ExcKK13ZTAmwLTKPsyakAvDZxsIjt8paqz4IOxcf/Qkrc8EQom2NTbm200tbGi7KNpnoOkmGhBDCh/Q6hQunpAPw9uoDbe/U6SB1Iui7OErDvSq0myyqiWBKgBVPe5w0MpFwk56CqkbW5Ve2f1HxVnhiKrx/LdQWtX+NR/JYuHkNXPpOuyfIPFRVle7TokckGRJCCB+7cEoaigLL9pY3b+P0iDsZ+skxEqNeYXx6tHcC9LIQo565o5MB+HRjO20FABKyITEbbHXwdfsnw9owhkD8MZ1eUlprpdHuRKdAWowkQ6LrJBkSQggfS4sJ47hjEgB46/DVoYYK+OgmeO5kbcxGZ469jTUT7+cD52zGDLIQYtT7KOLeO3N8CgCfbSrE4WynHkqng1P/pX2+8Y322wsUboS1L4HLeeR97ch1rwqlRodiMsjbm+g6+dcihBB94JKp2lbZe2sPYm+dHJgiYMt7ULAGynZ1/iSWNN53HsdWdXDAHak/3OxhCUSHGSmrs7Jyf0X7F6VNhgmXa58vuqNtEbmqwuI/wKe/gW//2qXX3FmstS+QLTLRXZIMCSFEHzg5O4n4CBOltVa+3VHScofBBIOmaJ93od/Q2jwtsQjUeiEPk0HHqWO0rbJPNrRzqszj5HvAFAmH1mkrRB47F2k9lQwhMPW6o76eqqq84151O9a9CidEV0kyJIQQfcBk0HH+ZG1e2RGF1M39hjpJhlY/T+PSR6kv3g8QcJ2n23PmeO1U2RdbCrE5OmgdEJkEJ/xO+/zr+6CpWps59tWftNtybgJL2lFfa8OBKjYXVGMy6LjIXbAuRFdJMiSEEH3kYveb9NKdJRRWN7bc0dyJupPmiyueJnTpvWTr8hmSEE5chNmHkXrH9MFxJEaaqWly8MOu0o4vnPYLSBoDExeAzgBr/gcVeyE8AWbf2qXXemV5HgBnjkslNrzjE2dCtEeSISGE6CNDEiKYPjgWlwrvrD7Yckf6NFB0UJUP1QVHPrC2CMp3o6KwyjUi4LfIPPQ6hdPHaYXUn27qZKvMYILrv4c594LTBt8/qN1+4h/AHHnU1ymrszYPw70iJ7PXcYuBR5IhIYToQ5dM01aH3llzAKfLfXrMHAnJ47TP26sbch+p328YSg0RAdtssT2erbIl24pptHVyKszTa+mnR8FapzWknHhFl17j7dUHsDldjE+zBGy7ARHYJBkSQog+dOqYFKJCDBRUNfLTnrKWOzJnQvyI9o/X52rzyJbaRgAE/Emy1iamR5MWE0qDzck3O4qP/oBRZ0HKeJj7ty41o3S6VN5Yqc19W5CT1ctoxUAlyZAQQvShEKOe8yZ5CqlbDW+d+3e4eRWMu/DIB7lXhn52jCQu3BRUc7cURWleHer0VJmHtQ5m/FKbbt8F32wvpqCqkZgwI2e4t+SE6C5JhoQQoo9d7O45tGRbMWV1Vu3GjmaT1RRC+R5UFFa7RjIlKwZFCazhrEdzljsZWrqzlJome+cXDzkexl6gTbjvgldXaIXTF01ND+gmlCKwSTIkhBB9LDslivHp0didKu+vPdj2Tqcdmmpavi7dDnoz+aZh1BDOlMzg2SLzGJkcybDECGxOF19uOcocsm7YV1rHj7vLUBS4fLoUTouek2RICCH8wNOR+u3VB1omu//8GDyYAT8+3HLh0JNQ78rjJvtvAJiSFRwnyVpTFKV5dejTTR3MKusBz6rQySMTSY8Nnq1DEXgkGRJCCD84c3wqYSY9+8rqWeUZVxEWB/aGI06U7a10sqUxFrNBx+hUix+i7T1P3dDPe8oo92wN9kK91cF7a7RVNSmcFr0lyZAQQvhBhNnAmeO0BKG5I7WnE3XBOrC3NGVck6slSxPSo4N2AOng+HDGDrLgdKks8sJW2UcbCqi1OsiKC+PYYfFeiFAMZMH5f5UQQvQDnp5Dn28upLrBDjGDISIZXHYoWAub34OnZhG67hkguI7Ut8czyf7TjV04VdYJVVV51d1x+vIZmeh0wVVQLgKPJENCCOEnE9KjGZkcidXh4uONBdoJqowZ2p15y2H/91C8hcZybTtochDWC7V2hnslbHVuRdtxJN20OreSHUW1hBh1XDhZ5pCJ3pNkSAgh/ERRlOZj9m+uchdSZ87U7sxf3txf6Mv6Y1AUmJQR3MlQanQoU7NiUFWax2f0xCvLcwE4Z8IgLGFGL0UnBjJJhoQQwo/OnTgIk0HH9sIaNh2sbhnauvcbqNiHio41rhGMSIrEEhr8b/yeU2Wf9HCrrKSmicXumqMFModMeIkkQ0II4UfRYSZOHZMMwFurD0DSaMg+ExKyASgMG0EtYUF5pL49p45NQa9T2HSwmtyy+m4//s1VB3C4VCZnxgTtyToReCQZEkIIP7tkagYAn2wooN6uwsWvQfpUAFaoo4DgL572iI8wM3NoHND9Qmq708Ubq7TCaZlOL7wpaJKhyspKFixYgMViwWKxsGDBAqqqqjp9TF1dHTfffDNpaWmEhoaSnZ3NU0891TcBCyFEF80YEktWXBj1NmdLLc1+bTjr5zVDAZic2T9WhqCl59Cnm7qXDH21tZjiGivxEWZOHSNzyIT3BE0ydOmll7JhwwYWL17M4sWL2bBhAwsWLOj0MbfeeiuLFy/mtddeY/v27dx666386le/4uOPP+6jqIUQ4ui0QmptdejN1fngsEHGDJoi0lnpHE6KJYRB0aF+jtJ75o1OxqTXsau4jh1FNUd/gJuncPr/pqUHbb8lEZiC4l/T9u3bWbx4Mc8//zw5OTnk5OTw3HPP8dlnn7Fz584OH7d8+XKuvPJKTjjhBLKysrj++usZP348a9as6cPohRDi6M6fPAiDTmF9fhU7y6xw7tM8N/FD6ghjcmbwDWftjCXUyPEjEoCub5XtLKpl5f4K9DqFS6dn+DI8MQAFRTK0fPlyLBYL06dPb75txowZWCwWli1b1uHjZs+ezSeffEJBQQGqqvLdd9+xa9cu5s2b1+FjrFYrNTU1bT6EEMLXEiNDODk7EYC3VucDsDqvEug/9UKtNc8q21jYMputE6+uyAXglOwkUiz9Z5VMBIagSIaKiopITEw84vbExESKijpu6/7YY48xatQo0tLSMJlMzJ8/nyeffJLZs2d3+JgHHniguS7JYrGQni4NvYQQfeOSadqKx4frC2i0OVnvTob6U72Qx8nZiYQa9eRXNLDxYHWn19Y22flwXQEghdPCN/yaDN13330oitLph2dLq70lYlVVO106fuyxx1ixYgWffPIJa9eu5eGHH+bGG2/k66+/7vAxv//976murm7+OHDgQO+/USGE6ILjjkkg1RJCVYOd/3yzm1qrgwizgZHJkf4OzevCTAbmjEoC4JMNnW+VfbCugHqbk2GJEeS4T6IJ4U0Gf774zTffzCWXXNLpNVlZWWzatIni4uIj7istLSUpKandxzU2NvKHP/yBDz/8kNNPPx2AcePGsWHDBh566CHmzJnT7uPMZjNms7mb34kQQvSeXqdw4ZR0/vPNbp7/cR8AEzOiMeiDYhG/284an8qnGw/x2aZD3H16Nvp2ZoypqsqrK7Tj9AtmZPar2ikROPyaDMXHxxMff/Rpwzk5OVRXV7Nq1SqmTZsGwMqVK6murmbmzJntPsZut2O329Hp2v4Q0ev1uFyu3gcvhBA+cNHUdB77djcOl1ZHMyWz/9ULeRw3PJ6oEAMltVZW7a9od9Vn+d5y9pTUEW7Sc96kQX6IUgwEQfHrRnZ2NvPnz2fhwoWsWLGCFStWsHDhQs444wxGjBjRfN3IkSP58MMPAYiKiuL444/njjvuYOnSpezfv5+XXnqJV155hXPPPddf34oQQnRqUHQoxx2T0Pz11H7Sebo9ZoOe+e7u2x31HHrZfZz+vElpRIYE/zgSEZiCIhkCeP311xk7dixz585l7ty5jBs3jldffbXNNTt37qS6uqUQ76233mLq1KlcdtlljBo1igcffJC///3v3HDDDX0dvhBCdNn/TdMObuh1ChMyov0bjI95GjB+sbkQu7Ptqv2hqkaWbNNKJGQOmfAlv26TdUdsbCyvvfZap9ccfjwzOTmZF1980ZdhCSGE183JTuKKnEwy48IJMwXNj+keyRkSR3yEibI6Gz/tKePEES0nh99YmY9L1Tp0D0/qf0XkInAEzcqQEEIMFAa9jr+cPYZrZw/2dyg+Z9DrOG2sNlrj01anyqwOZ3O/pStysvwRmhhAJBkSQgjhV54GjF9tK6bJ7gRg8ZYiyupsJEWZOWVU+6eGhfAWSYaEEEL41aSMGFItIdRZHXy3owSAV5Zrx+kvnZaJsZ+2FhCBQ/6FCSGE8CudTmkzyX7roWrW5lVi0CnNxeRC+FL/rswTQggRFM4cn8ozP+zjm+0l6NyNFeePSSYxKsTPkYmBQFaGhBBC+N3o1CiGxIdjdbj4bFMhAFfOzPJvUGLAkGRICCGE3ymKwhnurTKAkcmRTOmHA2pFYJJkSAghREA4a3xK8+dX5GTJHDLRZ6RmSAghREAYlhjJBZPTyK9o4JyJqUd/gBBeIsmQEEKIgPHQheP9HYIYgGSbTAghhBADmiRDQgghhBjQJBkSQgghxIAmyZAQQgghBjRJhoQQQggxoEkyJIQQQogBTZIhIYQQQgxokgwJIYQQYkCTZEgIIYQQA5okQ0IIIYQY0CQZEkIIIcSAJsmQEEIIIQY0SYaEEEIIMaBJMiSEEEKIAc3g7wACnaqqANTU1Pg5EiGEEEJ0led92/M+3hlJho6itrYWgPT0dD9HIoQQQojuqq2txWKxdHqNonYlZRrAXC4Xhw4dIjIyEkVR/B1Os5qaGtLT0zlw4ABRUVH+DqfPDNTvGwbu9y7ft3zfA4F8397/vlVVpba2ltTUVHS6zquCZGXoKHQ6HWlpaf4Oo0NRUVED6n8cj4H6fcPA/d7l+x5Y5PseWHz1fR9tRchDCqiFEEIIMaBJMiSEEEKIAU2SoSBlNpu59957MZvN/g6lTw3U7xsG7vcu37d83wOBfN/+/b6lgFoIIYQQA5qsDAkhhBBiQJNkSAghhBADmiRDQgghhBjQJBkSQgghxIAmyVCQeeCBB5g6dSqRkZEkJiZyzjnnsHPnTn+H5XNPPfUU48aNa27MlZOTwxdffOHvsPrcAw88gKIo3HLLLf4Oxafuu+8+FEVp85GcnOzvsPpEQUEBl19+OXFxcYSFhTFhwgTWrl3r77B8Lisr64i/c0VRuOmmm/wdmk85HA7++Mc/MnjwYEJDQxkyZAh/+ctfcLlc/g7N52pra7nlllvIzMwkNDSUmTNnsnr1ar/EIh2og8z333/PTTfdxNSpU3E4HNx9993MnTuXbdu2ER4e7u/wfCYtLY0HH3yQYcOGAfDyyy9z9tlns379ekaPHu3n6PrG6tWrefbZZxk3bpy/Q+kTo0eP5uuvv27+Wq/X+zGavlFZWcmsWbM48cQT+eKLL0hMTGTv3r1ER0f7OzSfW716NU6ns/nrLVu2cMopp3DhhRf6MSrf+8c//sHT/9/e3QZFVbZxAP8fV96XFkHeVuRNBREYYqKxVYxmljQXcBgmMMfiZaWkCNcmDIzKmpKpZiitxnGwYSEssGGGSmVAx4K0lFQsypiAHLLBbZAR461gYK/nwzPuPJvaE8WeWzvXb2Y/nGvvc5//8gEu7nPOnr17UVNTg+joaJw5cwZ5eXnQaDQwmUyi4zlUfn4+vvvuO9TW1kKr1WL//v1ITk7G999/jwULFsgbhthtbWBggABQW1ub6CiymzdvHr377ruiY8hiZGSElixZQkePHqWkpCQymUyiIznUjh07KC4uTnQM2ZWUlFBiYqLoGLcEk8lEixYtIqvVKjqKQ6WkpJDRaLSrZWRk0MMPPywokTzGx8dJpVLRoUOH7OpxcXFUVlYmex4+TXab+/XXXwEA3t7egpPIZ3p6GvX19RgbG4NOpxMdRxaFhYVISUlBcnKy6Ciy6enpgVarRVhYGB566CFcuHBBdCSH++STT5CQkIDMzEz4+fkhPj4e+/btEx1LdpOTk9i/fz+MRuMt9YBsR0hMTMSxY8fQ3d0NAPjmm29w4sQJGAwGwckca2pqCtPT03B1dbWru7m54cSJE/IHkr39YrPGarVSWlqaYv6T7OzsJA8PD1KpVKTRaOjw4cOiI8mirq6OYmJi6LfffiMiUsTKUFNTEzU0NFBnZ6dtNczf358GBwdFR3MoFxcXcnFxoe3bt1NHRwft3buXXF1dqaamRnQ0WR04cIBUKhX19/eLjuJwVquVSktLSZIkmjt3LkmSROXl5aJjyUKn01FSUhL19/fT1NQU1dbWkiRJFBERIXsWboZuY0888QSFhITQzz//LDqKLCYmJqinp4dOnz5NpaWlNH/+fDp//rzoWA518eJF8vPzo6+//tpWU0Iz9Eejo6Pk7+9PFRUVoqM4lJOTE+l0OrtaUVER3XPPPYISibF69WpKTU0VHUMWdXV1FBQURHV1ddTZ2UnvvfceeXt7U3V1tehoDtfb20v33nsvASCVSkV33303bdy4kaKiomTPws3QberJJ5+koKAgunDhgugowuj1enrsscdEx3CoxsZG2y+Kay8AJEkSqVQqmpqaEh1RNsnJyVRQUCA6hkMFBwfTpk2b7Gp79uwhrVYrKJH8+vr6aM6cOfTRRx+JjiKLoKAgeuedd+xqL7/8MkVGRgpKJL/R0VG6dOkSERFlZWWRwWCQPQPfTXabISIUFRWhsbERra2tCAsLEx1JGCLCxMSE6BgOpdfr8e2339rV8vLysHTpUpSUlCjiDisAmJiYQFdXF1atWiU6ikOtXLnyuq/K6O7uRkhIiKBE8jObzfDz80NKSoroKLIYHx/HnDn2l++qVCpF3Fp/jYeHBzw8PDA0NISWlha8/vrrsmfgZug2U1hYiA8++AAff/wxPD098csvvwAANBoN3NzcBKdznGeffRZr167FwoULMTIygvr6erS2tqK5uVl0NIfy9PRETEyMXc3DwwM+Pj7X1f9NiouLkZaWhuDgYAwMDOCVV17B8PAwcnJyREdzqKeeegorVqxAeXk5srKy8NVXX6GyshKVlZWio8nCarXCbDYjJycHc+cq489TWloadu7cieDgYERHR+PcuXN44403YDQaRUdzuJaWFhARIiMj0dvbi23btiEyMhJ5eXnyh5F9LYr9IwBu+DKbzaKjOZTRaKSQkBBydnYmX19f0uv1dOTIEdGxhFDCNUPr16+nwMBAcnJyIq1WSxkZGf/668OuOXjwIMXExJCLiwstXbqUKisrRUeSTUtLCwGgH374QXQU2QwPD5PJZKLg4GBydXWl8PBwKisro4mJCdHRHO7AgQMUHh5Ozs7OFBAQQIWFhXT16lUhWSQiIvlbMMYYY4yxWwN/zxBjjDHGFI2bIcYYY4wpGjdDjDHGGFM0boYYY4wxpmjcDDHGGGNM0bgZYowxxpiicTPEGGOMMUXjZogxJkRrayskScLVq1dlP7YkSZAkCV5eXn867sUXX8Sdd94pS6Zrx7uWbdeuXbIdlzGl42aIMeZw9913H7Zu3WpXW7FiBSwWCzQajZBMZrMZ3d3dQo59M8XFxbBYLAgKChIdhTFFUcbDXxhjtxxnZ2cEBAQIO76Xlxf8/PyEHf9G1Go11Gq1Yh7Ay9itgleGGGMOlZubi7a2Nuzevdt2Cqivr++602TV1dXw8vLCoUOHEBkZCXd3dzz44IMYGxtDTU0NQkNDMW/ePBQVFWF6eto2/+TkJJ555hksWLAAHh4eWL58OVpbW/9W1ldffRX+/v7w9PTEpk2b8Pvvv9u9f/r0adx///2YP38+NBoNkpKS0NHRYXvfaDQiNTXVbp+pqSkEBASgqqoKANDQ0IDY2Fi4ubnBx8cHycnJGBsb+1t5GWOzg5shxphD7d69GzqdDo8++igsFgssFgsWLlx4w7Hj4+N46623UF9fj+bmZrS2tiIjIwNNTU1oampCbW0tKisr0dDQYNsnLy8PX3zxBerr69HZ2YnMzEw88MAD6OnpmVHODz/8EDt27MDOnTtx5swZBAYGYs+ePXZjRkZGkJOTg+PHj+PUqVNYsmQJDAYDRkZGAAD5+flobm6GxWKx7dPU1ITR0VFkZWXBYrFgw4YNMBqN6Orqsn0+fkQkY4IJeTwsY0xRkpKSyGQy2dU+++wzAkBDQ0NERGQ2mwkA9fb22sZs3ryZ3N3daWRkxFZbs2YNbd68mYiIent7SZIk6u/vt5tbr9fT9u3bb5oHADU2NtrVdDodFRQU2NWWL19OcXFxN51namqKPD096eDBg7basmXL6LXXXrNtp6enU25uLhERnT17lgBQX1/fTeckIgoJCaE333zzT8cwxmYPrwwxxm4Z7u7uWLRokW3b398foaGhUKvVdrWBgQEAQEdHB4gIERERtutt1Go12tra8OOPP87o2F1dXdDpdHa1P24PDAygoKAAERER0Gg00Gg0GB0dxcWLF21j8vPzYTabbeMPHz4Mo9EIAIiLi4Ner0dsbCwyMzOxb98+DA0NzSgnY2z28QXUjLFbhpOTk922JEk3rFmtVgCA1WqFSqXC2bNnr7vo+H8bqNmSm5uLy5cvY9euXQgJCYGLiwt0Oh0mJydtY7Kzs1FaWoqTJ0/i5MmTCA0NxapVqwAAKpUKR48exZdffokjR47g7bffRllZGdrb2xEWFjbreRljfw2vDDHGHM7Z2dnuoufZEh8fj+npaQwMDGDx4sV2r5neqRYVFYVTp07Z1f64ffz4cWzZsgUGgwHR0dFwcXHB4OCg3RgfHx+kp6fDbDbDbDYjLy/P7n1JkrBy5Uq89NJLOHfuHJydndHY2DijrIyx2cUrQ4wxhwsNDUV7ezv6+vqgVqvh7e09K/NGRERg48aNyM7ORkVFBeLj4zE4OIhPP/0UsbGxMBgMf3kuk8mEnJwcJCQkIDExEe+//z7Onz+P8PBw25jFixejtrYWCQkJGB4exrZt2+Dm5nbdXPn5+UhNTcX09DRycnJs9fb2dhw7dgyrV6+Gn58f2tvbcfnyZURFRf2zHwRj7B/hlSHGmMMVFxdDpVJh2bJl8PX1tbvG5p8ym83Izs7G008/jcjISKxbtw7t7e03vWPtZtavX48XXngBJSUluOuuu/DTTz/h8ccftxtTVVWFoaEhxMfH45FHHsGWLVtu+F1FycnJCAwMxJo1a6DVam31O+64A59//jkMBgMiIiLw3HPPoaKiAmvXrv17H54xNiskIr6nkzGmLJIkobGxEenp6Q6Zf3x8HFqtFlVVVcjIyJjx/qGhodi6det139rNGHMMXhlijCnShg0bZv2xF1arFZcuXcLzzz8PjUaDdevWzWj/8vJyqNXqWV05Y4z9f7wyxBhTnN7eXgD/vbtrNu/i6uvrQ1hYGIKCglBdXQ29Xj+j/a9cuYIrV64AAHx9fYU9t40xpeFmiDHGGGOKxqfJGGOMMaZo3AwxxhhjTNG4GWKMMcaYonEzxBhjjDFF42aIMcYYY4rGzRBjjDHGFI2bIcYYY4wpGjdDjDHGGFM0boYYY4wxpmj/ARLJWqcIVIGyAAAAAElFTkSuQmCC", + "text/plain": [ + "<Figure size 640x480 with 1 Axes>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAksAAAHFCAYAAADi7703AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAACqHUlEQVR4nOzdd3ib1fXA8e+rYUme8t6Js/dOIAMIexNm2bNAoZS2wI/SUjroAgqUUqDMsvemUMIIkISVQIazybYTz3hvW/P9/fFKsp14SLZkyfb5PI8e29I7buLEOr733HMUVVVVhBBCCCFEl3ThHoAQQgghRCSTYEkIIYQQogcSLAkhhBBC9ECCJSGEEEKIHkiwJIQQQgjRAwmWhBBCCCF6IMGSEEIIIUQPJFgSQgghhOiBBEtCCCGEED2QYEkIMSw999xzKIrC2rVrURQlqI/CwsJw//GEEEFkCPcAhBAinFwuF6tWrer03A033EB9fT0vv/yy7zmbzQaAyWTq8TiAzMzMEI5YCDHQJFgSQgxrer2euXPndnouPj4eu93O/PnzezzX3+OEEIObLMMJIYQQQvRAgiUhhBBCiB5IsCSEEEII0QMJloQQQggheiDBkhBCCCFEDyRYEkIIIYTogQRLQgghhBA9kGBJCCGEEKIHEiwJIYQQQvRAUVVVDfcghBBCCCEilcwsCSGEEEL0QIIlIYQQQogeSLAkhBBCCNEDCZaEEEIIIXogwZIQQgghRA8kWBJCCCGE6IEh3AMYCtxuN6WlpcTFxaEoSriHI4QQQgg/qKpKY2MjWVlZ6HTdzx9JsBQEpaWl5ObmhnsYQgghhOiDoqIicnJyun1dgqUgiIuLA7S/7Pj4+DCPRgghhBD+aGhoIDc31/c+3h0JloLAu/QWHx8vwZIQQggxyPSWQiMJ3kIIIYQQPZBgSQghhBCiBxIsCSGEEEL0QHKWBpDL5cLhcIR7GCJIjEYjer0+3MMQQggRYhIsDQBVVSkvL6euri7cQxFBZrVaycjIkPpaQggxhEmwNAC8gVJaWhrR0dHyxjoEqKpKS0sLFRUVAGRmZoZ5REIIIUJFgqUQc7lcvkApOTk53MMRQWSxWACoqKggLS1NluSEEGKIkgTvEPPmKEVHR4d5JCIUvN9XyUUTQoihS4KlASJLb0OTfF+FEGLok2BJCCGEEKIHEiwJIYQQQvRAgiXRo0cffZRRo0ZhNpuZM2cOX331VY/Hr1y5kjlz5mA2mxk9ejSPP/54p9efe+45FEU55NHW1hbQuHq7T1f279/PGWecQUxMDCkpKfziF7/Abrf7Xi8sLOxybB9//HFAYxNCCDG0yG440a3XX3+dm266iUcffZRFixbxxBNPcMopp7Bt2zZGjBhxyPEFBQWceuqpXHvttbz00kt888033HDDDaSmpnLuuef6jouPj2fHjh2dzjWbzX6Py9/7dORyuTjttNNITU3l66+/prq6miuuuAJVVXn44Yc7HfvZZ58xZcoU39dJSUl+j00IIcShVFWlzeHGEjVIdw2rot/q6+tVQK2vrz/ktdbWVnXbtm1qa2trGEbWP4cddph6/fXXd3pu4sSJ6m9+85suj7/tttvUiRMndnruuuuuU+fPn+/7+tlnn1UTEhK6vWdFRYWanp6u/u1vf/M9t3r1atVoNKqffPKJ3/c52NKlS1WdTqeWlJT4nnv11VdVk8nk+74VFBSogJqfn9/tdQ42mL+/QggxUP7+0Q/q6Ns/VDfsrw33UDrp6f27I1mGG2CqqtJid4bloaqq3+O02+2sW7eOE088sdPzJ554It9++22X56xateqQ40866STWrl3baWt9U1MTI0eOJCcnh9NPP538/Hzfa6mpqTzzzDPceeedrF27lqamJi699FJuuOEG37X9vc/BY5s6dSpZWVmdzrHZbKxbt67TsUuWLCEtLY1Fixbx1ltvdfdXJIQQwk/f7K7C5VZZtu1AuIfSJ7IMN8BaHS4m/+GTsNx7259PIjrKv295VVUVLpeL9PT0Ts+np6dTXl7e5Tnl5eVdHu90OqmqqiIzM5OJEyfy3HPPMW3aNBoaGvjXv/7FokWL2LhxI+PGjQPwLbFdcsklzJs3D7PZzD333BPQffwZW2JiIlFRUb4/T2xsLA888ACLFi1Cp9Px/vvvc8EFF/D8889z6aWX+vX3JoQQ4lCl9Vpean5RbZhH0jcSLIkeHVxHSFXVHmsLdXV8x+fnz5/P/Pnzfa8vWrSI2bNn8/DDD/PQQw/5nr///vuZOnUqb7zxBmvXrj0kp6m3+/gztoP/PCkpKdx8882+1+bOnUttbS333nuvBEtCCNFHNqeLykYbABuL6nG5VfS6wVWjToKlAWYx6tn255PCdm9/paSkoNfrD5lFqqioOGSGxisjI6PL4w0GQ7etXnQ6HfPmzWPXrl2dnt+7dy+lpaW43W727dvH9OnT+3WfjIwMvvvuu07P1dbW4nA4uv3zgBbc/ec//+n2dSGEED07UG/zfd5kc7K7ookJGXFhHFHgJGdpgCmKQnSUISyPQKpNR0VFMWfOHJYtW9bp+WXLlrFw4cIuz1mwYMEhx3/66afMnTsXo9HY5TmqqrJhw4ZOS2d2u51LLrmECy64gL/+9a9cffXVHDjQvs7dl/ssWLCALVu2UFZW1ukck8nEnDlzujwHID8/X5rkCiFEP5TWt3b6On//IFyKC3Wm+XAwVHfDvfbaa6rRaFSffvppddu2bepNN92kxsTEqIWFhaqqqupvfvMb9bLLLvMdv3fvXjU6Olq9+eab1W3btqlPP/20ajQa1bfeest3zJ133ql+/PHH6p49e9T8/Hz1qquuUg0Gg/rdd9/5jrn11lvVvLw8tb6+XnW5XOpRRx2lnnbaaQHd55133lEnTJjg+9rpdKpTp05VjzvuOHX9+vXqZ599pubk5Kg33nij75jnnntOffnll9Vt27ap27dvV++77z7VaDSqDzzwQLd/R4P5+yuEEAPh7XVF6lG/+Y/6+9/+XB3z6/fU297cGO4h+fi7G06CpSAYqsGSqqrqv//9b3XkyJFqVFSUOnv2bHXlypW+16644gp18eLFnY5fsWKFOmvWLDUqKkrNy8tTH3vssU6v33TTTeqIESPUqKgoNTU1VT3xxBPVb7/91vf68uXLVYPBoH711Ve+5/bt26cmJCSojz76qN/3efbZZ9WDfxfYt2+fetppp6kWi0VNSkpSb7zxRrWtrc33+nPPPadOmjRJjY6OVuPi4tQ5c+aoL774Yo9/P4P9+yuEEKH2yBe71OI/jFLVP8ar9//2x+oJD6wI95B8/A2WFFUNYD+56FJDQwMJCQnU19cTHx/f6bW2tjYKCgp8VbDF0CLfXyGE6Nkd727mbxuPAGCvO4PjHA+w8Y8nEm/uOm1iIPX0/t2R5CwJIYQQImTK6tuoV6MBSNE1oaqwqag+zKMKjARLQgghhAiZ0rpWTrL9HYAYWjBjG3RJ3hIsCSGEECJkSutaKScJZ3Q6etxMUQrZUFQX7mEFRIIlIYQQQoREs82Jra0FPW7Ino09Op0kpZH8orqAWnCFmwRLQgghhAiJsvpWfqz/mB3mKzDEZ6De8gMrlcOoabazv6Yl3MPzmwRLQgghhAiJkro2cpRKDLghJhWTQc+UbG3XWf7+uvAOLgASLAkhhBAiJMrqWslRKrUvrCMAmJVjRcE9qJK8JVgSQgghREiU1rd1DpY+vJVfbzmdo3UbyR9ESd4SLAkhhBAiJEprW8hWqrQvrCPA3oTJXsNM3R62lTbQ5nCFd4B+kmBJCCGEECHRXFuGWXGgokB8NmRrjcvnGQtwulW2lAyO4pQSLIluffnll5xxxhlkZWWhKArvvfdeQOdv3bqVc889l7y8PBRF4cEHHwzJOIUQQkQmpW4/APboDDBEQfZsAKYruwF10CR5S7AkutXc3MyMGTN45JFH+nR+S0sLo0eP5p577iEjIyPIoxNCCBHJVFWluAnedS3CPuZE7cn0qaCPItbdyAilgvyiwZHkPaSCpTvvvBNFUTo9enuTXrlyJXPmzMFsNjN69Ggef/zxARpt5DvllFP461//yjnnnHPIa9u3byc6OppXXnnF99w777yD2Wxm8+bNAMybN4/77ruPCy+8EJPJNGDjFkIIEX61LQ42OXK42fEzos78p/akwQQZ0wGYqewZNDNLhnAPINimTJnCZ5995vtar9d3e2xBQQGnnnoq1157LS+99BLffPMNN9xwA6mpqZx77rmhHai9ufvXFD0YzX4eqwOjpfdjo2ICG18vJk6cyP33388NN9zAokWLMBqNXHvttdxzzz1MmzYtqPcSQgwO3orMiqKEeSQiEpTWtQKQEmvCZOjwXpw9B0rWMlO3h/frF1Je30ZGgrmbq0SGIRcsGQwGv5d8Hn/8cUaMGOHLpZk0aRJr167l/vvvD32wdFdW96+NOxEuebP96/vGgqObSqcjj4CrPmz/+sFp0FJ96HF3Bj+J7oYbbmDp0qVcdtllREVFMWfOHH75y18G/T5CiMHhx8+toarJzjs3LMSoH1ILF6IPyurbSKKBnISD3u9GLoADW2ipyINa2FBUy8kJmWEZo7+G3L/mXbt2kZWVxahRo7jwwgvZu3dvt8euWrWKE088sdNzJ510EmvXrsXhcHR7ns1mo6GhodNjuHrmmWfYtGkT69ev57nnnpPfKIUYpppsTpbvqGRzST17KpvCPRwRAcrqW3k96i+8XX0W7Pu2/YUpZ8NVSykdfwkwOCp5D6mZpcMPP5wXXniB8ePHc+DAAf7617+ycOFCtm7dSnJy8iHHl5eXk56e3um59PR0nE4nVVVVZGZ2Henefffd/OlPf+rfYH9b2v1rykFLh7/a3cOxB8W7N23u+5j6YOPGjTQ3N6PT6SgvLycrq4cZMyHEkFXmWXIBKKxqYWJGfBhHI7rTZHNSXDsw35+S2hZylEqtiW7coSs+s3KtvPLdfgmWBtopp5zi+3zatGksWLCAMWPG8Pzzz3PLLbd0ec7BMyH+rLnffvvtna7X0NBAbm5uYIMNJIcoVMf2U01NDVdeeSV33HEH5eXlXHLJJaxfvx6LxdL7yUKIIaW0vs33eWF1D3mWIqz+740NfLL1AO/9bBEzc60hvVdjdTkWxY6KghKfc8jrc9L1pFHLphIdDpc7opduI3dkQRATE8O0adPYtWtXl69nZGRQXl7e6bmKigoMBkOXM1FeJpOJ+Pj4To+hqKmpiQ0bNrBhwwZAS4jfsGED+/drdTOuv/56cnNz+d3vfscDDzyAqqrceuutvvPtdrvvfLvdTklJCRs2bGD37h5myoQQg1LnmSUJliLVes8szsYBaDWi1u4DoM2cptVY6mjVvxn99CRuN79Jm8PNjvLGkI+nP4bUzNLBbDYbP/zwA0ceeWSXry9YsIAPPvig03Offvopc+fOxWg0DsQQI9ratWs55phjfF97Z9OuuOIKjj32WJYuXUp+fj4GgwGDwcDLL7/MwoULOe200zj11FMpLS1l1qxZvvPvv/9+7r//fhYvXsyKFSsG+o8jhAghmVmKfI1tDi5tfYnTor5j486fwMKbQ3o/Q2MxAK74LlZekkYDMM9YCG2Qv7+WqdkJIR1PfwypYOnWW2/ljDPOYMSIEVRUVPDXv/6VhoYGrrjiCkBbPispKeGFF14AtJmRRx55hFtuuYVrr72WVatW8fTTT/Pqq6+G848RMY4++mjfsmRXLr/88k5fz5kzB5vN5vs6Ly+vx/OFEENH6UE5SyLyFFQ1k0wDY3Wl/FCzI6T3crlVYltLwAD6pJGHHpClVfLOduwjhlby99dx2YKQDqlfhtQyXHFxMRdddBETJkzgnHPOISoqitWrVzNypPaNKisr8y0hAYwaNYqlS5eyYsUKZs6cyV/+8hceeuih0JcNEEKIIaasvj1YKm9oo9U+OBqkDicFlU3sVbVNOHHN+0J6r8pGG1lUAmBKGXXoAXHpkJCLgso0XQH5A7As2B9Dambptdde6/H155577pDnFi9ezPr160M0IiGEGB7K6to6fb2vpll2xEUSRxuLPzmRww3arF+Gowiny40hREnVpfWt5LvHkq6zc2Lu3K4Pyp4N9UXMUPbwRNVkapvtJMZEdX1smA2pmSUhhBADT1VVSj0zS0meNztJ8o4wez7H2lZChqL1YstTyimtDd1yaWldK++4j+LJ1NthwildH5Q9B4BFlkIANkTw7JIES0IIIfqlrsVBm8MNwOGjkgAokLylyLLlHQCedZ6EXdVjVhyUFoVuZ7J3pjHL2kMpGU+wNB1tHJG8FCfB0gCRROehSb6vQuCbVUqOiWJ8ehwgM0sRxd6CuuMjAN53LaRMrxVcbiz+IWS3PFBbTzaVZCX0kO2TORNmXsL28deh4CZ/f23IxtNfQypnKRJ5SxC0tLRIscYhqKVF++1ZSk2I4cw7i5BpNTMqRSuMK+UDIsiuT1EczRSrKWxSxlGfMJkt1QYO1Idu9k9fsY1vzL+kaVMmnLq964NMsXDWo8SW1KOu/5oNRXW43So6XeS1zZJgKcT0ej1Wq5WKigoAoqOjpX/aEKCqKi0tLVRUVGC1WtHr9b2fJMQQ5d0Jl5lgIU+CpcizVVuC+59rPiOSYtg8/37ueHcLxzrTuDREt1QaigBwxPTe2H5iRhxmo47GNid7q5oYmxYXolH1nQRLAyAjQ/vH4g2YxNBhtVp9318hhitvQcqsBDN5ydEAHGiw0WJ3Eh0lbzNhZWuCnZ8CWrA0KiWGUcmegDaES6Xm5hIAFGsXNZY6cjkxVGzjqpTtPFY2nvX76yRYGq4URSEzM5O0tDQcDke4hyOCxGg0yoySELS3Osm0WrBGR2GNNlLX4mBfdQuTMqV8QFi57LDgBvZs+IotbaO4JiWGkZ7Zv+LappCUD7A5XSTay8AAptS8ng+u2AZPHMkv9TE8zhPk76/j/LkB9lodABIsDSC9Xi9vrkKIIcc7s5SZYAYgLzmGDS11FFY1S7AUbtFJcNwf+Ov+76GyktGpsWSaHHxquo0cKimr3kFuWmJQb1le30aOUgWAOSWv54PTJoPBgtnZzGiljPz9kdnyRHbDCSGE6BdvzpJ3m7g3ybtA8pYixl7PktuolBh05jiylFqiFRsHCrcF/V6ldW3kKFr1bsU6oueD9QbImgnADGUPOw800mRzBn1M/SXBkhBCiD5zu1XKD5pZGunJW9ontZbCa98q2PER9rZWimq078WY1BhQFCpNOQA0lXazU60fyupayPbMLNFbzhJ0KE65D7cKm4rrgj6m/pJgSQghRJ9VNdlwuFR0CqTHa8GSzCxFiK//Ca9eSOMX9+NWISZKT2qcCYCmmDwAXJW7gn7bA3VNPO86kfUJx0NCTu8nZGtNdecYCgDI318X9DH1lwRLQggh+sybr5QWZ8boSRTOG4DdVqIXrbWw5wsAfkg8FoDRqbG+0jXupLEAmOr3Bv3WRQ1O7nNeyIopd4HR3PsJnpmlXPtuonBIsCSEEGJoad8J1/6m6A2WKhq18gEiDH74H7gdkDaFLXatvIl3xg/AnDEeAGvLvqDf2vtvosdWJx1ZR0J0MnrVySRlHxuK6iKuO4IES0IIIfqsvcZS+xtjQrSRxGitqn2h5C2Fh6cQJVPPZm9lEwCjU9uDJeuIyQBkuUpwuYMbmNhrS8iiisz4KP9OUBQ45V7sF71NgS6XqiYbxbWtQR1Tf0mwJIQQos98M0sJnZdbpJJ3GDVXwd6V2udTzqGgw044r9QRk9mujmC1exKl1fVBvf1pDa/xrfkXTNvxsP8nTTuPqAnHMyozDYi8proSLAkhhOizMu9OuIOWXLxLcQWStzTwfngfVBdkzoDkMeyt1L4HY1JjfYfozLHcmPAINzhuorAueMWSm2xO0lwHAIhOHxXw+bNGaDWfIq2prgRLQggh+qzUW2Pp4JklT7C0T2aWBl7Jeu3jlHOob3FQ3WwHOs8sQYdE/OrgLZWW1bX6X5CyI1WFbf/lksaniacp4pK8pYK3EEKIPiur62ZmKUWrtSQ5S2Fw5iOw4GcQncLeKi1fKT3eRIyp81t+XnI0Cm5KDlQCftRD8kNpXSuzA6mx5KUosOyPjKstYLouje9L47E5XZgMkdH1QmaWhBBC9InT5aaisb2Jbke+ZTiZWQqPtEkQm+pbghudEnvIIUfbvmCr6WqO33Fn0G5bVXmAOMWTnO1PjaWOPCUEFpoKsLvcbC1tCNq4+kuCJSGEEH1yoNGGWwWjXiEl1tTpNW+Cd2WjjeYIbF8xZDltnb70JXenxhxyaGJyOtGKjaS2/UG7fWuFVrepwZAMRj9LB3h5gyWLVs4gkpbiJFgSQgjRJ96dcOnxZnQ6pdNrCRYjSTHa1nHZETdAGkrh3tHw1tXg0gJU7zLc6JRDg6UkX/mAUlwuV1CG4KzVAp0WS2bgJ3uCpfGOnYAaUUneEiwJIYToE1+NpW6KD+YlS97SgNr6HtiboL5Ya1AL7ctwXcwspY0Yj13VY1YcVBTvDsoQtttS+LdzCQdGnhH4yZnTQWcg2lFNFtUysySEEGLwK63reiecV/tuK5lZGhC+QpTnAFqTY+/ffVc5S3qDkTK9NgNUve+HoAzhu5Ys7nNeSMusawM/2WiB9CkAzNTvoaSu1ZcTF24SLAkhhOiT9lYn3cwspUiPuAFTtx+K1wAKTD4TgLKGNtocbox6hZzErr9HNeZcAFrKtvd7CKqqtgfQVj96wnXFsxR3ZGwZABsiZHZJgiUhhBB90t7qpJuZJaniPXC2vqt9zDsC4rRecN42JyOSojHou367b40brX1S3f9luNoWB+Ndu8miiow4Y98usuiX8IsNbBx3IxA5lbwlWBJCCNEnZfXeVie95CwFseih6MYWzxLclLN9T7XnKx26BOdlz5zNJ665bHX3v85SaW0LL0f9jW/Nv8BUX9C3iyTmQdIoZo2MrEreEiwJIYTok/aClD3PLFU22miS8gGhU70HyjaAovctwUF72YCudsJ56aecyXWOW3jZflS/h1FReYB4X42l3H5dy9v2ZFNxPU6Xu79D6zcJloQQQgSszeHytdHI6mZmKd5sJNlbPkDylkLHnADH/RHmXQ0xKb6n93iW4braCeflTcLfX92Cy632axjNBzw1lvSJEBXd9wtteYdxK27gXNMaWuwudh5o6te4gkGCJSGEEAEr9+QrmY06rNHd56eM9CzF7ZOluNCJSYEjb4FT7+v0tK8gZRc74byyrBaMekhw1XCgurpfw7BXFwLQYOpDjaWOyjai/PA+p8XuACC/KPxLcRIsCSGECFh7A10LiqJ0e5wkeYdHm8NFiWdnWk8zS3qdwhvmu1hjvoH6zZ/0655KXREAttgA25wczLMjbipa0nkk1FuSYEkIIUTAestX8hrl7REny3ChseUd2PQG2Bo7Pb2vugVVhTizwbcU2p1Ws7Z7rq18R7+GEtVcDIBq7V++kjdYSmnZgxlbRCR5S7AkhBAiYL3thPMaKbWWQkdVYcU98M618MMHnV7a68tXiu1x5g/AljAKAF1N/8oHxLdptZGikvP6dR3isyA2A53qYopSyJ7KZupbHP27Zj9JsCSEECJgvdVY8hrlq+ItOUtBV7ENqnaAPgomntbppb2e4HRMDzvhvPQpYwGIaSzs81BcbpXXbAt51LmE6NEL+nwdABTFN7t0bJzW5HdDcV3/rtlPEiwJIYQIWJmvUnOHmaWdn8DmtzodNzJFS/CuarLR2Bbe2YEhx1tbaezx2o64Drw1lkb5ESzFZE8CIMVe1OehVDS2sdR1GA+4LyJxzNw+X8cnezYAC8xaY95wL8VJsCSEECJgZfXenCVPsOS0wSvnw9tXQ2V77kvH8gGyIy6IVLW9F9yUcw55eW9V+zJcb9JGTAbAqjbgbq7p03BKPTls6fFm9Lqel/38kj0H9FEkW7QwJdxJ3hIsCSGECFjJwU10a/a2v7jv207Hyo64ECjbqP2dG8ww4eRDXm4vG9D7zFJmWjLlahIA1fu39Wk4VRWlzFO2MzUuSDWR8o6A24upP+NpADYU1aGq/asD1R8SLAkhhAhIk81JY5tWkds3s1S1q/2Awq86He8tfChJ3kHknVUadyKY4jq9VNNsp86TEO1PsGTQ6/gs6liecp5KUaupT8NR9q/mTdOf+W3j3/p0/iH0RjCYmJgRj8mgo77VEdYdlRIsCSGECIg3XynObCDWZNCeTB4LI4/QPi/4Ulsm8hjlyVsqqJJluKCp17bpM/XQJbgCzxJcVoIZS5Ter8t9nnUdf3NeynZHep+G467VcotaorP6dH53ogw6pmXFA+FdipNgSQghREDad8J1SO5OnwyXvQvGGIhNh+Yq30sjPTNL+2QZLnjOewZu2gLjD12C2+NHA92D9Xep1NCoBW+uuH7WWOqo4Ct4/AjucdzFzFwrZqN/gV8oDKlg6e6772bevHnExcWRlpbGWWedxY4dPRfZWrFiBYqiHPLYvn37AI1aCCEGF+/M0iEFKQ1RcOsO+Ok3EJvqe3qU5CyFhjUXjIfWufI10O2hcvfB8pKiSaIBd0l+n4YS01oKgD5pZJ/O71JUNJRvZmzbVt67YSGnTe9nG5V+GFLB0sqVK/nZz37G6tWrWbZsGU6nkxNPPJHm5t7/g+7YsYOysjLfY9y4cQMwYiGEGHy8M0u+gpSqCnuWQ91+iDp0NsPbH66qyS7lA/rL5YCGsh4P8Rak9CdfyWuiuZr15uu5teSX4HYHPKwkuzYmS9qogM/tVvo0rYZUay3UFgTvun1gCOvdg+zjjz/u9PWzzz5LWloa69at46ijjurx3LS0NKxWawhHJ4QQQ0PZwTvhmqvgxbMABe4o02Y7HK2gN4FOR5zZSEpsFFVNdvZVtzA1O6Hba4te7FgKb14Fc66A0//Z5SF7+7AMlzFiHHZVj1mx464vRpc4wu9zbU4XGWoFKJCYNdbv83pliIKM6VCyFkrWQ9Lo4F07QENqZulg9fX1ACQlJfV67KxZs8jMzOS4445j+fLlPR5rs9loaGjo9BBCiOHikBpL1Z6dcN5loVcvgntGwIHNvnPypEdccKx9BlQXWLp+X3O5VV89q9EBzCxlJ8WxHy25u7YosPIBByoqSFC0e8ZnBHFmCXyVvClZF9zrBmjIBkuqqnLLLbdwxBFHMHXq1G6Py8zM5Mknn+Ttt9/mnXfeYcKECRx33HF8+eWX3Z5z9913k5CQ4Hvk5gYxoS0SqCoc2NanqVghxNBXWn/QzJK3bECyJ33B7QKXXdsV55EnPeL6r3oP7F0BKNrMUhdKaluxu9xEGXSdq6v3wqDXUW7Q3svqi38IaFhlDQ5+67ia540XohxUxqDfJFgKrRtvvJFNmzbx6quv9njchAkTuPbaa5k9ezYLFizg0Ucf5bTTTuP+++/v9pzbb7+d+vp636OoqO8l4iPS6sfgsQXw/RPhHokQIsKoqkqZp1qz7824aqf2McUTLI06UvvYMVjy5C0VSJJ33617Vvs47gSwdr1M5q3cnZccHXAl7YYYLTnbUbGrlyM7K27W8YrrOD5Nvyqg8/ziDZbKNmr5WmEyJIOln//857z//vssX76cnJycgM+fP38+u3Z1/4/FZDIRHx/f6TGkfHK79vHj34R3HEKIiFPf6qDV4QIgwzuzVO3pVu8Lljw5ovu+9b3BeWeWpOVJHznaIP9l7fO5P+72MF++Uor/+Uq+W1jHAGCs3RPQeWWemcbMBP9nsvyWNBoyZ8DE08HWGPzr+2lIJXirqsrPf/5z3n33XVasWMGoUX1bO83PzyczM3xbFMPKaaNVsWBRtX/8uJygH1L/TIQQ/eDtAZYcE9Ve9+bgZbj0aWC2QlsdlG6A3HlSxbu/fngfWmsgPker2t0NX5uTAMoGeBnTxsF+iGveF9iJZRuYq+xndExawPfslU4H13WfFjNQhtTM0s9+9jNeeuklXnnlFeLi4igvL6e8vJzW1lbfMbfffjuXX3657+sHH3yQ9957j127drF161Zuv/123n77bW688cZw/BHCrsGpY7rtP+1PVGwN32CEEBGn9OAaS0471BZqn3tnlnQ6rbcXQMFKoH1mqbrZToOUDwjcBs+s0pwrQNd9cUZfA90Akru94kdM5VnnSbxmPCug8xYUP8tbpj9zeNPnAd9zsBhSwdJjjz1GfX09Rx99NJmZmb7H66+/7jumrKyM/fv3+7622+3ceuutTJ8+nSOPPJKvv/6aDz/8kHPOObSE/HDw5c5KHG6Fla7pADTs+ibMIxJCRJJDllxUNyx5GI78P4jrMCM/arH20dMnLtZkICVW6zu2T9qeBO5Hz8Mp98Ksy3o8rKAPZQO8crJy+JPzCv7dtBi32/+mtfE2rcZSVGqQd8JFkCG1vuJPR+Lnnnuu09e33XYbt912W4hGNMi4HHy9WVurXucez2L9Jhr3riG+5xJVQohhpL3ViWdmyWiGWZcceuDoo7VWHGOP9z01KiWaqiYbBdXNTMuRWksBsVjh8Ot6PKTF7vR9f/oys5STaMGgU2hzuKlotLXnpPUizX0AgPj08NVBCrUhFSyJ/nHt/ZK/7PoRC4yH82rCNZxYPY/j049CQkkhhFd7q5NeknlTx8PFr3d6Ki85hjWFtZK3FAi3W1vW9IM3Xykx2khiTFTAtzLodYy3qkTV7qZ8VyIZcxf2ek5jfQ0JaPdNzgliQcoIM6SW4UT/VKx/HyMu3Hozpx0xl51qLhtLpOCmEKJde6sTz6xDwZewdyW01vV6bn+btQ5LG16GJ4+BHz7o9VBfcncfZpW8rjF+zHumPxCf/7hfx1eXaDsh64glNj6xz/eNdBIsCY2qYtq7DIC6nGOYPcIKwKai+oDWroUQQ5s3Z8lXY+mLv8ILS2BPN8m9dUWw8xMA2RHXF2ufgdL1WkHKXvSlzcnBXIna7FBU/V6/jm8s18ZVqU/v8z0HAwmWhKZ6N0m2EuyqnuzZpzAhPY4jjdv5s/tf1Hx6b7hHJ4SIAG63SvnBM0sHlw3oqLYQHpwKr10C9hbyUrTClIVSa8k/pflaoKQzwqxLez08GDNLUenjAbC2+Fc+wFZVCEC9aWiX25FgSQBQlf8+AN+rk1k4ZRQGvY55Sa2crf8GZceHYR6dECISVDXbcLhUFAXS483QXK3V/gFIHnPoCdaRWl0gtwOKVjPSM7NU02ynvlXKB/Rqradi9+QzISal18P3VmplA8b0ocaSV2LuRABi3Q3QUtPr8VuiZnGH48dsSz+jz/ccDCRYEgDYti4FoDDpCGJNWt6/bsThACTUbdWqxwohhjVvm5O0OBNGva69gW5CLkR18QatKJ1an8SaDKTGecoHSN5Sz9oaYPNb2uc9VOz2UlWVvVX9X4bLzUijTNWa9KpVvbc92WzP5GXX8TSOOL7XYwczCZYEtNWTXpcPQMzUU31PjxwzmUo1AYPqhLINYRqcECJSHJKv5FuC62EXlLf1SYFWb2mUZ3apQPKWerb5DXA0Q8oEGNn7rrSqJjuNbU4UBUYkRff5tjmJFgpUbUmtoWR7r8e3193yr8zAYCXBkqC21cWfHJfzqvMYDps7z/f8zBGJrHNr69eOwlXhGp4QIkJ4W51keQtSemeWUrrIV/LK88wsleZDWwMjPQ11pUdcD1QV1jyjfT73x9oMXS+8S3A5iZb2NjR9YNTrqIzKBaCptPdgaWLVp8xVtpMd1/d7DgYSLAmWF7TwousEXkj9P7I71E7JSbTwg0Fbv27eI8GSEMPdIbMIPSV3e1lzIXEUqC7Yv6q9fIDMLPXsmN9qRT1nXODX4e3J3X1fgvPalnQcdzouZ0vC0T0ep9oa+YPtH7xl+jNZMb0HdIOZBEuCz37Qqq+eMKlzE0RFUWhNnwOAqWyt9tuOEGLY8tVY8v5SddSv4Ix/wZhjej7RtxT3pW+nVoHkLHVPUWDS6VpRT4t/tYt8+Ur92Ann1Za9kOdcJ5PvGNnjcfVlWnmBOjWGtLTUft83kkkF72HOXr6NzJ2vkMV0jpu06JDX40fPo63MSI2SSHZrLUQnhWGUQohI4G2i62t1kj1be/RmzhUw5ljIO5KR9drbjswsBVd7jaX+B0veXYu9JeHXle3BCpQraUw0DO1lOAmWhrmyr1/m98p/WGBZwLTsyw95ferINGZ88RTZcYl8IYGSEMOadzdcr61ODpY9R3sAeQYnALUtDupbHCREG4M6xkEv/2WoL4LZl0N8lt+n7a3ScpZGB2EZblRKDFOUQvLK1kPLqG5/SW6tKACgNiqj3/eMdLIMN8wZ93wKQE3Oseh0h645z8ixYiOKvVXN1LdIXRQhhiuny01FY4cmuge2wbrnoWxjQNeJMRlI85QPkLYnB1FV+PoBWHE37PjI79OcLjf7PQnzo4IysxTNg8Z/8+vm+1FLN3R7nKumEIBmS3a/7xnpJFgaxtT6ErJad+JWFTJmd11QLDEmyrd7ZdP+yoEcnhAighxotOFWwahXSIk1wa5P4YNfwNcP+neB6j2w8l747sn2ticSLHVW+BVU74aoWJh+vt+nFdW24nSrmI06MuP7v4U/JzGaAlWbLeppR5y+oRgAR3xOv+8Z6SRYGsbK12mNGTcxhsOmju/2uLlZZt6KupP5b8wCW+NADU8IEUHKPPlK6fFmbRbaVzag+58dnRzYCsv/Bmufbm97UiXlAzpZ6ykXMO1HYIrz+zRv2YBRKbFdrhAEKsqgo8qklQ9o7iFYim4tAUBn7TkRfCiQYGkYa/VU7S5IPLLHuhxTRmaQTi1GdxuUrBuo4QkhIoh3J5yvxlKV1m2+xxpLHeUdAShQuZ1JcVrgJTNLHTRVwA/aL7DMvSqgUwuCuBPOqyVuFABq9e5uj3nWciW/c1yFPsePJP9BToKl4crRRlb1agAsU07p8dAZuVbWq9oPRHX/dyEfmhAi8nhnljKtnmWeaj+qd3cUnQQZUwGY5doMSBXvTvJfBLcTsudC5oyATt0TxJ1wXkqK9n21NOzt9phPWybwkusEkjJlZkkMUTV716NXnZSricw+/Kgej52SFc8GVZtqtxVIcUohhqMy78yS1aI1WG2p1l7wN1gCGLUYgJEN6wHpD+fjdsO657TP/egDd7CCKu8yXPCCJXPmJADibeVd9gZ1uVUONNqADrONQ5gES8PUp/U5zLY9wX2JfyQtvud/6GajnprkmQDoS9dq/7GFEMNKpxpL3srd8dlgCmCruqc4ZcIB7Zcub/mAYc/eBKOPhrgsmHJ2wKe311jqf9kAr8zMbBrUaHSoUHPo7FL1/m2czldM0+/zNUceyiRYGqY+++EAjUQzavoRfh0fP3ImLaoJo6MRqnaEeHRCiEjjnVnKTLAEvgTnNWIBKHp0tQVMj2sApJI3AOZ4WPIw3LQZogJrgttkc1LhmeEJ5szSyJRY/uC4kp+6b0NNOLQ0QNv2z/lX1KPcanoPfRCSyiOdBEvDUKvNyde7qwA4blK6X+dMG5HCBvcY7YsiyVsSYrjx9YWzmmHCqXD5+3D0bwK7iDkesmZBVBzz4moAWYrrRB94negCz6xSSmwUCZbgFfjMTYzmffUIPrLPpNJx6MyRvVorSNlozgzaPSOZBEvDUNHSe3lV+R2Xx61lYoZ/21Nn5Vr5wj2Lz9R5uGKHx38OIYSmzeGiqskOePJTopNg9GIYuTDwi13wIvy6kKasIwFJ8mbHR1Cyvs+n7w1BvhJo5QOyE7UUja5KPCj1RQDYY4Z+QUqQdifDkmH3J8zS7aYs3Y2i+Dd9Ojo1ltcMZ/Ifm5OPExYwMcRjFEJEjnLPEpzZqMPa3/YknhYeeZ439+HaI+6+T7azfFsZ7ztvxtBcBhe9DhNODvg6vnylILQ5OdgUq4vpdatR8nfDqF92es3cpBWkVIdBjSWQmaVhx91cy4jmTQCkzF7i93l6ncK07AQANhbVhWJoQogIVVrvTe62oLhd8NmftB5mrr4nZ+clR6PgpqB6+BWmdLlVnvumkOzKLzE0l6FGp8CYY/p0rb1VwS8b4DUttpF/Rz3ElG3/OOS1uLYyAKJSJFgSQ1DR2v9hwM0eNZsZ02cGdO6MXCugsm/PD1BfEorhCSEiUHsDXTPU7dP6l334f6D0sdP8t49w3LKTuVC/fFjmLO2uaKLZ7uIS/ecArE8+DQx921EWirIBXjFZEwCIdtZr5SK87C3Eu+sAiE0fE/T7RiIJloaZ5i0fArA36QhMhsB+0M3MTeAPhhe5bfv5sOapUAxPCBGBfMndCZb2sgHJY0HXx7cQWyNRDYUs0G2jrsVBXYs9SCMdHPL315KjVHCUXpvlv3XPLDYX1wd8HVVVfQnewSwb4JWbnkKpmqR9Ub2n/QVPvlKDGk1qalrQ7xuJJFgaTtwusqu+AcA0qeeq3V2ZkWvlB3UEAK59siNOiOGivdWJuUNPuADLBnTkqbe0SP8DoA67JO8NRXVcpP8CHSpbo+dR4E7jptfzabW7ArpORaONZrsLvU5hRFJgJQf8MTI5hgK3tqFHrdrpe77Nks6V9tu4w/Fjsq1DvyAlSLA0rFRs/4YEtYF6NZpp808M+PzMBAv7oqdoX5Su71e+ghBi8GhvdWIB75tmsp894bqSMxcMZpKpY6xSwr5hlreUv6+WM/XfAjDyhBtIizOxp7KZez76IaDr7PE00M1NtBBlCP7beW6ShUIyAGgpbw+WytuMrHDPZJn+iP4n/A8SEiwNI98XNfOh6zC+j15MYnzf1rcTcyZTq8aid7VB+eYgj1AIEYnaC1KaOzTQHd/3CxpMMGI+AAt1W4fVzFKTzUl1ZQkxtKHqjMROOZn7fqT1gnt+1T5W7Kjw+1rev7dQ5CsBmAx6qsxaAretvL0YcaeEfz93VA92EiwNI68XJ/Ezx03snf+3Pl9j+ogk1rs9v1EWfR+kkQkhIpm31Um21RKcZTiAPK3O0gLdNgqHUZL3pqI6qtQEzjA/j/Kz7yAqmsXjU7lyYR4Av3prEzXN/uVwhaLNycHs8aMB0NXs9j2n/PA/ztR9zeS4ppDdN9JIsDRMNLY5WL1Xa3x5/GT/qnZ3ZWautUOwJHlLQgx1zTYnDW1OADJNNmiu1F4ItNXJwTxNdefrfmBf1fB50833lF6ZMTIJktt3kv3mlImMTYulstHGb9/ZjKqqvV5rr2cZLhRlA7zsmbP4if1m3hrT/kv2qB1P8a+oR5lnKAjZfSONBEvDxIY1XzPCXcyo5GjG9OO3kGk5CaxXtWDJtV+CJSGGOu9OuDizgdj4JK1/2eXvg8m/6v/dyppFW8o0PnQdTkVVdRBGOjjk76sFVGblWjs9bzbqefCCmRh0Ch9vLeetdcW9XivUy3AA6elZfOqeR35Lqu+5mNZSAHRJeSG7b6SRYGmYSPru73xu+hW/SV7Zr+vEm400JE3nKeepbJv+G3C7gzRCIUQkKq3z7oSzaKUCrCO0Vif9pTeg/mQlv3NeTWmbkVo/l54GM1VVaSzazLemn7Ok5NBCj1OzE7j5BC0X7E8fbKOopvvEd7vTTVGtFsj25xfg3uQla4GYrx6Wo5U4p1ZzKTotL2T3jTQSLA0DLlsLo5vWAZA5/fh+X2/iiEz+5ryUZczve50VIcSg0KmBbpBZovRkxGvXHQ55S8W1rUxqyydLqSHZXtrlMdcvHsO8vESabE5ufn0DLnfXy3H7a1pwuVViovSkxfWtoKU/8lKimaXs4riqV1D3rIA6b40lCykpfU/pGGzknW4Y2LPmYyzYKSeZyTMX9Pt6M3Ol7YkQw4V3ZikzwQLfPgJf/BUqd/Zylv/GJEcxW9nJvsrAizIONhuK6lik2wqAvpvZOb1O4YHzZxJrMrB2Xy2Pr9zT5XHefKVRqTEh3ZGWkxjNSfq13Ky8QtuWD6BuPwAlaqqv0e5wIMHSMNC46X8A7LEuxBBg1e6uzMi1YsJOVNFXqGuf6/f1hBCRy7sTLivBDPkvwZf3+d4w+01VeaTqat4x3UnLvvXBuWYE27CvisN127QvPIU5u5KbFM2dS7Sadv9ctrPL6t7t+UqhW4IDLZeq1qwVI7Yf2EFb1V4AitVULYAeJiRYGupUlezKrwAw9qFqd1cmZsSTpW/gKfXPsPT/wD68CsoJMZy011iKghrPLEd/ywZ4KQq1CZMBiCv7NjjXjGCNBeuIV1qxG+Mhc0aPx547O5tTpmbgdKtdVvf2lQ0IYXK3lyNxFACG2r20VGg74Cr0qcSYDCG/d6SQYGmIK96ZT4ZaQZtqZOLC04NyzSiDjoTMMRxQrShuJ5TmB+W6QojI4y1AOEpfBS47GMyQkBu067flHAFATt3aoF0zEtmdblKrtB3EjtyFoOt5ll9RFO46e1q31b29M0uhLBvgZUj1NNRtLWVX9tlcaf8V38QG55fvwUKCpSGudM17AGy3zCQ+LiFo1505IpG1bk8FX6m3JMSQpKoqZZ6cpWxXifZk0phe3+gDYRl/NAATHVtRHW1Bu26k+aGsgcPZAkD0+GP8OicxJqrb6t57PbWpRod4GQ4gNT2bBjUaBZWqukZWuGfRljIl5PeNJEMyWHr00UcZNWoUZrOZOXPm8NVXX/V4/MqVK5kzZw5ms5nRo0fz+OOPD9BIQ+/hpmO4yv4rSqdcF9TrasUpvcGSVPIWYiiqb3XQ6tCWf5Lb9mlPBmsJziNjzEwq1Xgs2GncO3R/8crfX8smdTT7jaNRAii90FV17/pWB1VNWqmFUQMwszQyJYa9qtYjzlmpVXDPTAj+7shINuSCpddff52bbrqJO+64g/z8fI488khOOeUU9u/vOiGxoKCAU089lSOPPJL8/Hx++9vf8otf/IK33357gEcefHUtdr7d38py9yymLTotqNeekWtlnSdYUou/Bz+qzQohBhfvTrjkmCiMtZ58pf400O2CxWRgg34aAE3bvwjqtSPJhqI67ndewLuHvwFpkwI69+Dq3t6dcGlxJmIHIG9oVEoMe9UsAE7adSdLdN+QnRAV8vtGkiEXLD3wwANcffXVXHPNNUyaNIkHH3yQ3NxcHnvssS6Pf/zxxxkxYgQPPvggkyZN4pprruHHP/4x999//wCPvBv9CEJW7KjE5VaZkB5HblJ0EAcFecnR7DeNxaYaUVqqoWZvUK8vhAi/TjWWvP/H+9NAtxuFcXMBMO7/JujXjhTeNiczR1gDPvfg6t4PLNNKNwxEvhJou/P+7TqTn9p/idndyl3Gp8m0Bvc9JdINqWDJbrezbt06TjzxxE7Pn3jiiXz7bdc7LVatWnXI8SeddBJr167F4XB0eY7NZqOhoaHTI2S++Rc8OB1euwRW3APbP4TafX4FUeav7uLXhlc5b3TwK+MqisKU3BQ2qlqTRclbEmLoKa3vUGPp0nfgF/kw/qSg36cm8wjudZzPsqwbgn7tSFDTbCe+Zgsm7MzMsfbpGh2re3+1qwoIfdkAL7NRT1v8WJrRlt6K1dRhFywNqX1/VVVVuFwu0tM7VxVNT0+nvLy8y3PKy8u7PN7pdFJVVUVmZuYh59x999386U9/Ct7Ae1K+Ger2aY/t/2t/3pQAGVPh3P9AvDY9iqqCpziZ3e5gfvV7nGxoYkfm5SEZ2sxcK/fsvogjJ+Vw87SzQ3IP0b3v9lYzISMOa/Twmg4XA6esY40lvQGSRofkPtbMMdy94SyW2LO4OCR3CK9NBSW8E/VHVEVHlHMzcOj7ij+uXzyGFTsqWFNYC8CYAZpZAhiZHE1OoxakFaspjB9GNZZgiM0seR1czVRV1R4rnHZ1fFfPe91+++3U19f7HkVFRf0ccQ9OvU9rWnnSXTDjYkifBjoj2Oph/2qwJLUf++H/wb/nw9vXUPXOrViVJuqJZdxs/3ZeBGpGjpX16niWVqVpP0jFgPm+oIYLnlzNT15YF+6hiCHMV2PJGto3xjxPraCh2vKkeutKjIqLJmMSxGX0+Todq3sDjEvvZzPjAOQlR3On4TkAGokmPSF0LVYi0ZB6h0tJSUGv1x8yi1RRUXHI7JFXRkZGl8cbDAaSk5O7PMdkMmEyDdA/lOgkrWllx90TTjtU7YTaQjB22JFQtgEqf4DKH/DMNbE3YT6zDMaQDG2Gp2v27somGtscxJlDcx9xqC0lWkXf7wtr2FRcx/Q+Tu0L0RNv9e4Zrd/BW3fBuBNgxoVBv8+olBhAJa9qBepbz6Cc9g+wJAb9PuFiKtZysWrSFpDUz9YkuUnRvHD1YawpqOHIsSnBGJ5f8lJiiFK0nZEJBiemIHSDGEyG1MxSVFQUc+bMYdmyZZ2eX7ZsGQsXLuzynAULFhxy/KeffsrcuXMxGiP0zd8QpS3BTTqoyOQFL8HFb8Kxv6co62S2RU3DdtiNIRtGapyJbKuFk5TvaXnzem2mSwyIEs+bGMALq/aFcSRiKPPOLI1s2Qxb3gpZbuKIpGhA4afu11C2vA0/fBCS+4SD262S16jNAJvGHR2Ua84ekch1i8eg04WuJ9zBRibHsMetLR+uiz16wO4bKYbUzBLALbfcwmWXXcbcuXNZsGABTz75JPv37+f6668HtCW0kpISXnjhBQCuv/56HnnkEW655RauvfZaVq1axdNPP82rr74azj9G38RnaY/xJ5LbfduhoJqZa+XY7WtJ3/M15IyBEfMH5sbDXElte7D0/sZSfnvqJJJiJHdJBI/brfp2w1lbPAF5kMsGeJmNeiZnxvN+xSIm6V6DzW/C7NDkWg60wuJiJqt7QYHMGSeEezh9Niolhgvsf2CqrgBz6om9nzDEDKmZJYALLriABx98kD//+c/MnDmTL7/8kqVLlzJy5EgAysrKOtVcGjVqFEuXLmXFihXMnDmTv/zlLzz00EOce+654fojDCozchM6FKeUHXEDxTuzFKXXYXe6eX1NCPPmxLBU1WzD4VJRFLDUe8sGhCZYAlgyM4sP3Au0Lwq+goaykN1rIJVt+hydolKiz8GQmBPu4fTZiKRoqkhghXsmmYnDK7kbhmCwBHDDDTdQWFiIzWZj3bp1HHVU+zTLc889x4oVKzodv3jxYtavX4/NZqOgoMA3CyV6NyPHynq35wdo8Vpwu3o+QQSFN1i6bIH2S8BLq/fhckthUBE83jYnGbEGFG+NpeTgVu/u6IwZWRSrqaxxjwdU2PpOyO41kJRCrYNEefJhYR5J/5iNem1XJJAd4oT/SDQkgyUxcKZmJ7CLXJpUM9iboGJbuIc05LXYndQ0a7Wzrl88hsRoIyV1rXz+w4Ewj0wMJd4luOlxjeCygd4E1hEhu1+21cLckYn817VIe2LzmyG710B63n4sf3Fcgn3SeeEeSr9NzooHYEzawNR3iiQSLIl+iTEZGJueQL7b8xunLMWFnHeHUpzZQGqciQvmaW9gkugtgsnb6mS6uVJ7Ijm4DXS7smRmFktdh+NCB6X5ULU7pPcLtRa7k2WVVp52nUbe7GPDPZx++9vZ03j80jksHpca7qEMOAmWRL/NzNXqLQFQtCa8gxkGijzJ3d6p8EsOH4FOga93V7G7ojGcQxNDiHdmaURUAyj6kC7BeZ06LZN6XQJfuqZhS5kCLVUhv2cobS6ux61CRrxZq4I+yKXHmzl5asaA7sKLFBIsiX7Tmup68pZaqsM7mGHAuxMux5NkmZsUzXGTtDpiL8rskggSb6uTirHnwx3lcMa/Qn7PlFgTi8am8FPHTTwx6flBv7u25fvnOVf3JUdk9X6siGwSLIl+m5FjZbV7MovUZ3BfPDTyDCKZN7m7Y5LlFQvyAHhrXTGNbV33NBQiEJ1anRiitAK5A2DJjCzaMPHfDSW+bgqD1ZTdT/GPqMc5Nr443EMR/eR3naVNmzYFfPHJkydjMAy5Uk7iIOPTY9EZTZTY3OytambsMEz+G0jemaXsDtt3F41NZnRqDHsrm3k3v4TLPcGTEH01UK1ODnbSlHR++66OPZXNbN9XyqSoCsiaNaBjCIq6/aQ5S3GqOlKnHB3u0Yh+8juSmTlzJoqi+B3p63Q6du7cyejRoWm8KCKHQa9jWnYCawpr2VhUx9jUGF9DXxF87TNL7V2/FUXhigV5/PH9rTz/bSGXzR/ZYz9EIXridLk50NBGDK1M+fBsSJ8ASx4ZkB6QcWYjx05Io2Tbt4x9/iqITYKbt4Y8uTzY6rZ9hhXYpI5hyqjscA9H9FNA//K/++47UlN7z4JXVZWpU6f2eVBi8JmRY6VlXz6zv7gPtlrh8vfCPaQhq6uZJYBzZmdz78fb2VPZzLd7qlk0gH2jxNBS0WjDrcJ4QxnG8vXQWDygzbLPnJnFL7aOoFU1Ymwsg33fwKgBaksQJM3bl2MFdkbPZnaUrLAMdn5/BxcvXszYsWOxWq1+HX/UUUdhsQz+7H/hn5kjrHz2jYlRzfmwzwROGxiGV1fqgWB3ujnQqC2P5BwULMWZjZw7J4cXVu3j+W8LJVgSfebdCTfTUgUOQlq5uyvHTEzDZDLzP+c8LjYs12ouDaZgSVWJL1sFQFNW131JxeDid4L38uXL/Q6UAJYuXUpmZmZfxiQGoRk5VgrVDGrUOK2AXVngOW6id+X1bagqmI06kmOiYNMbsPYZaCgF4HJPRe/PfjhAcW1LOIcqBjFvjaWpUZ5CpwNQNqAjs1HPiVPS+cDtCTS2/Vf7BWywqN5NnKMSm2okccIR4R6NCIKg7IZzuVxs2LCB2traYFxODEI5iRaSY0yskz5xIeUNgLKsFi0n6Zt/wf9uhgcmwRNHMXbrI1wyoga3qvLyd/t7uZoQXfMWPh2t8/RnSxk/4GNYMiOL79yTqCAJ2uph92cDPoa+chavB2CtezwzRqWHeTQiGPoULN100008/fTTgBYoLV68mNmzZ5Obm3tI3zUxPCiKwoxcK6vdE7Untr0X1vEMVcUdywa43TD1HMiZByhQthFW3sPfKm5ktelG0lbfRZtDevWJwHl3wmW7PFveB3gZDmDR2BQSY8z81+mptTSI2p9sTz2Z2W2P83f91YxOkd3BQ0GfgqW33nqLGTNmAPDBBx9QUFDA9u3buemmm7jjjjuCOkAxeMzIsfK+axEu9FC8Bsq3DOwA3O6BvV8YeJO7p8Q0QFsdHHELXPMZ3LoTzvw3TDwd1RhDhlJLgqua/23yzAyoKmx4FRrLwzd4MWiU1rWi4CapzRMsDfAyHIBRr+PUaZn81+VZitv5CThaB3wcfZFfVEcN8STkTh2W1a6Hoj4FS1VVVWRkZABabtKPfvQjxo8fz9VXX83mzZuDOkAxeMzITaASK18ZPL8Jrnt24G6+ZzncnQNvXA7NQ7eKuLdswKVl98C9o9p/245Ng1mXwoUvo9y2lw+mPcwzzpN5/ttCrdzHgS3w3vXwjwnw5DGw8l5oqQnjn0REsrL6NhJpwm5JAYMZrCPDMo4lM7PYoo7iz+o1tF2/GoyDY9PQhv11AMzKtYZ1HCJ4+hQspaens23bNlwuFx9//DHHH388AC0tLej1g6sWhgiemZ4fDE+0HI0j7xgYd+LA3Xz5XeBo1hJBH50Puz8fuHsPIO/MktXhSbxNyDn0IKOZhSddwE79WDaX1LOhqA5sjZA1W3u9dD0s/xu8dvHADFoMOmX1rdQQT8El38Jviga0bEBHc0YkkpVg4RnbsSwvjQrLGAL23ZNcuuNnnK5bxcwR1nCPRgRJn4Klq666ivPPP5+pU6eiKAonnHACoNVhmjhxYlAHKAYPa3QUecnRrHJPYdXCp2D8SQNz4+J1UPw96IyQMgGaK8DZNjD3HmAlda3ocBPd6lleS8jt8rjkWBNnTNcaUr2wah+MXAg/WQ7/t0Pr8aUzwP5VULF9oIYuBgmb00VVkx2ArASL1uokTHQ6hTNmaP+O399YGrZxBMKx4xNmuTaTodQwMzcx3MMRQdKnYOnOO+/k6aef5ic/+QnffPMNJpNWT0ev1/Ob3/wmqAMUg8sMz+zS+v0DuDPyu8e0j9POg+tWwrlPw8TT2l+3NQ3cWELI7VYpq28ljVp0qlPrBB/XfXmOKxZqSycfbiqjstGz7TouA+ZcCeM8gezGV0I86kGueC3sWqble9kawz2aAVHuSe42G3VYo41hHo22FAdg3/EpzhfOgTVPh3lEPXA5UPZr9ZUK4+aQFDNIZsNErwIOlhwOB8cccwzTpk3j5ptvJienfRngiiuu4MwzzwzqAMXgsmiMVgjxjTVF2GuKYcXfoTyEeWxtDbD9Q+3zw6/Xchqmndf+ekMZPDQLVt4HLmfoxjEAKhptOFwqI/SenKz47B6XR6bnWJmZa8XucvP6moPKCMy8SPu4X0o8dMvWCM+dBi+fp+V71ewN94gGhLfG0mOmh1GeORn2rw7reCZnxjMmNYY8dzGGvZ/DptfDOp4eleZjcDZTq8YSN3JmuEcjgijgYMloNLJlyxbpOyW6tGRmFqlxJkrr2yh76zZYcRd8/1TobmiOh5+vh9P/CVkzD3190+vastzyv8KzpwzqN7ySOq3G0pToeu0J64hez/HOLr20ej9OV4fdguNOgiuXwlUfBX2cQ8YP/+u8nDtMdhJ6q3dPV3dA0WpQglKOr88URWHJjGw+cC3AjaLVcKstDOuYulWwEoBV7snMGJEU5sGIYOrT/4LLL7/cV2dJiI7MRj3XHDEKgH/Werb8bn5LmwEKlfhMmPvjrl9b9Es4+0kwxWt5TY8dAeue17bSDzLFnuTu8WbPEqe163yljk6dlklyTBTlDW0s23ag/QVDFOQtAl143wgj2sF1fRoGR85Mf5XVtxFNG8muKu2JMJQNONiSmVlUkMhq92TtiS1vh3dA3VD3asHSt+4pzBoh+UpDSZ9+Utrtdh577DHmzJnDddddxy233NLpIYa3S+aPJN5s4L3aPJriRmu71EJRUM7uRzsPRYEZF8BPv4GRR2hj+eAX2k6wpsrgjymEvMFSfeJUOOwnMOa4Xs8xGfRcdJg2A/X8qsKuD3LaB1criYHQVAF7l2ufj1qsfWwsC994BlBpXSujFM+fNToFosM/QzIqJYbpOQm85+rwC1ikcbSiFn0PwFplKpMy48M8IBFMfQqWtmzZwuzZs4mPj2fnzp3k5+f7Hhs2bAjyEMVgE2sycMXCPEDhVZfnDX3ts8GdzVFVePoEeOEsqN7T+/HWEXDF+3DCn7VdczuWwrcPBW88A8BbY6kl5yg49T6Y/iO/zrtk/gj0OoXVe2vYUX5QkvLXD8I/xkd2Hkg4bH0XVDdkz4GRi7TnhtHM0hhvsBSGyt3dWTIji49d83BggIptcGBruIfUWUsNFSnz2ePOJDpzIlEGmbUdSvpUPGP58uXBHocYYq5cmMdTX+3lkZp5XB39PLoDm6FkHeTMDc4NCr7UCi0aY/z/zVen15blxhwLK+6Bo28PzlgGiLfGUnZiYIX5MhMsnDQlnaWby3lhVSF/O3tah1dVaK3VdnvNvjyIox3kNr2hfZx2PkRFa58Pk5yl0rpWTtZ5AsMIWILzOn16Fn9bGssXrpmcpF+rzVanTwn3sNolZPNo1l28sK+QH0u+0pAjoa8IieRYExfOG0E9sXxtOlJ7cm0QK3p/97j2ceZFYAkwNyBjGlz4cvuboNsN/70RqnYFb3whoM0sqYx3F2jVtwOYqbt8QR4A76wvob7V0f7C9Au0BN7930JNQXAHPFjVF0PJWu3vZcrZ7eUZhtEy3BjFEyxF0MxSRoKZw/KSeNd1BKUJs7X/xxFmQ1EdoDBLilEOOX0Klpqbm/n973/PwoULGTt2LKNHj+70EALgJ0eNxqBT+FfdEbgMlvbgpL9q9sIOzy6uw6/v//VWPQL5L2pVwCOUqqqU1LaSRCOzPloC944Gl93v8w8flcSE9DhaHS7eXlfc/kJ8Fow+Wvt842vBHfRglZADN66FJY9AXDpkTIczHoKTIvffR7C02l00tDmpU2Nxx2dDyvhwD6mTJTOz+Nh9GNfo/gxTzw33cNo5Wmmr2se2Um0jy0xpczLk9GkZ7pprrmHlypVcdtllZGZmShkB0aUsq4WzZ2Xz5jo3N+W8zsOnLg7Ohb97ElBh7AnB+c3X2zKkOnJnlmpbHLQ6XIxTPEnpcRlgMPl9vqIoXL5wJHe8u4UXV+/jyoV57Q0+Z1wMe76Aja/C4l/LDjnQ/l15/23FpcOcK8I7ngFS0aiVSrhLuZZLbz5J2yARQU6dmskf/7uVbWUN7K5oYmxabL+vua20gdK6Vo6blNb397KCrzC/8iOe1U/l5ug/kRPgUrmIfH0Klj766CM+/PBDFi1aFOzxiCHm+qPH8Nb6Yj7Y3sSN5Y1MyIjr3wXbGiD/Je3z+T/t/wAB0jzbkev293xcGHnzlSZH14OLbtuc9OSsmdnc89F2Cqqa+Wp3FYvHp2ovTDwNouKgbp/WAiVP/l8PV95K76lxpoj8JTgxJoqjxqfyxfYKlq3dyti0rTDrMtD3rdL4e/kl3PrmRpxulV8cN45bTujjTJqnvlKRmsrMXGtE/t2J/unTr5CJiYkkJUkCm+jdmNRYTp6SAcDjK/dAaT5U7uz7BTe+BvZGrQfcmGN9T1c22rjz/a088sUuVu6spKbZ/yUqX72itnporev72EKouFYrkzDBUqc94UeNpYPFmAz8aI523gvfFra/EBUNU87SPh/u7U8+/wu8cbnW5qSj/d9pSfB1ReEZ1wCpaLQBKmlx/s9aDrQlM7JQcHPemgvhfzfD3hUBX0NVVZ5YuYebXt+A063l/j30+S6e/NKPnbVd8RWjnCL5SkNUn2aW/vKXv/CHP/yB559/nujoIOWhiCHrhqPH8tGWckZsfhh+eAumXwjnPNG3i82+XHtzN8X7lgicLjc/e2U93xfUdDo022phek4CU7MTmJ6TwLTsBKzRXfRqiorR6sm0VEF9EVisfRtbCHnLBow2eFqd+FG9uyuXLRjJM98U8MWOCvZXtzAi2fP/d86V2q7CGRcHYbSDlNsFG17WErmnX9D5tc/u1JLgz3umT4HqYFHZaOMK/afcUvUBfP5jOO734R7SIU6YnI7JaOBDx1yuNHyq7Yobd4Lf57vdKn/5cBvPflMIwI8XjSIpxsj9n+7krqXbiY4ycOn8kf4PqKXG19JplXsKF0m+0pDkd7A0a9asTlOLu3fvJj09nby8PIzGzlOg69evD94IxaA3LSeBI8elsGL3dG42vKXVsDn57r4VuzOaYdalnZ56+IvdfF9QQ6zJwDET09hSUk9BVTMlda2U1LXy0Zb2Ld+5SRamZ1uZ5gmepmYlkBBt1IKPliptKS4Cd9l4C1Jm4clZ6sMyHGjF/RaPT2XlzkpeXF3IHad5liBz5gavrMNgVfi1FiiZrVo+XEdx2uwoDUN7R1xFYxujlVISXDXgdvR+QhjEmAwcPymd9zcv1IKlH/6nFaj1YwOJzeniljc28uEm7ft4x6mTuPYobVNSs93FYyv28Pv/biHGpOfsWTk9Xapd4VcA7HDnUK0kMF2CpSHJ72DprLPOCuEwxFB3w9FjuWhXJdvUPCa7CrVk4gU/C+wiqnpIwumqPdU8/IWWmP23s6dy5sxsAOpbHWwtrWdzcT2bS7THvuoWimpaKapp5cPN7W96I5Oj+acuntkQsXlL3pmlFKenZUkfZ5YALj58BCt3VvLptgPtwZJorzI/+UytHUxH8VnaxyFePqCy0cZ8X0HKyNoJ19GSGVn8ZNM4Skkjy1EBOz+Gqef0eE5Dm4OfvLCW1XtrMOoV7j9nEmdaC+GjJ6GtjtvyjkSZm8ujaxu59c1NWIx6Tp6a2ftgCr4EtBYn49PiiDX1acFGRDi/v6t//OMfQzkOMcTNH53ErBGJvFRyHHcZn9ZqLs2/wf/dNuVbtFySBT+DeVcDUN1k45ev5eNW4fy5Ob5ACSDBYmThmBQWjknxPVff4mBLaT2biuvZUlLPppI6impa2Vfdwp3KcRw76nRumnpWMP/YQeNN8K6YcDGJ+jJIndDnax0+SpvR21fdQl2LvfPS5K7PtLylE/4CCdndXGEIcrTBtve1z6d1URl9mNRaqmi0MVrn+TMmR06NpYMtnpBKvNnIO84F3Gj4r9b+pIdgqby+jSuf/Z7t5Y3Emgw8c04Ohy09CmztPSuVja9yG3CxdTwPNS7m56/CU5frOXpCWs+D6RAsSb7S0NXvPcK7du3i888/Z/fu3cEYjxiiFEXhhqPH8l/XQppVs7ZNv/Br/y/w3WNQs8c35e12q/zfmxupaLQxNi2WO5f0Xsk3IdrIorEp/PToMfz7ktl8ddux5P/+BH576kQ2qWNY1jYRYlP7+kcMKe/MEvOu1Vqd9GNmyRodxaiUGAA2Fdd3fvGr+7UmpcOt/cnuZWCrh7is9vYmHnanG3WYLMPVNjSRrXjy4pLHhHcwPTAZ9Jw8NYP/ujzfq12fapXoD6aq7Nu+jrcf/hUnVj5PapyJ16+bz2HTJ2tpADFp2rL+EbdA5gwActp2cmSGC4dL5boX17F2ewGsf7Hr772qwjG/ZVn0qXznnij1lYawgIKle+65hy+++AKA2tpajj/+eCZMmMAJJ5zAhAkTOOWUU6irqwvFOMUQcNzENLLTU/mvtxnmOj8rejdXwSbPEsnhWrmAp78uYMWOSkwGHY9cPIvoqL5NfXu3IkOHgCTCNNmcvqrbgbY66c70nAQANhbVdX5hxkXax42vBbeXX6TzLsFNO7dTnan91S0cde9y/vplnfZE49DuD+dqrADArTNCdHKYR9OzJTOy2aXmsIORqKjtOxiddm2H3Ee/oe2B6Yx87Vh+5nyBnxiX8s5P5jIlK0Gb0b7yQ/i/HXDmv+H4P8J1X8L/7YSzHuekC27g2Ilp2JxuXn31OXj/RnhgIjx2hJbsX/g1uBygKLgmncUvm66ggVhmjQiwm4AYNAIKlh577DFSUrRljdtuu42amhrWrVtHS0sL69evp66ujltvvTUkAxWDn06n8NOjx/Cyp7muu3it9oOtN2ufBZcNsmZD7mFsLKrj7x9vB+APZ0xmYkb/untnWS2YsXGCbRn2z+/p17VCwbsEN8bcRGzN1qCUN5iRYwVgY/FB15pyFhjMULUDSofRRo28I7WZhQ5LcHanmxtfXU95QxufFnt+VDaUDdkg0uVW0bVoGwjU6JSIK0h5sAVjkkmJNXGz7Tq+PvNrbUfcF3+D+8bAC2fCd49hbtyPTTWwPmoOyvF/JNfaoSRCQs6hBVjj0mHmRUSljePRS2azYHQyjQ6FLYxBRYEDm+Hrf8Jzp2lV9F+/lMLt+bTYXcRE6YNSJFNEpoCCpQMHDpCQoP1G+tlnn/Hggw8ya9YszGYzM2bM4JFHHmHp0qUhGagYGs6YnkW9dTIX23/LS3PfOTSR9mBOO6x5Svt8/g002Jzc+Op6nG6V06ZlcvFhfV+O8oo3G4k367nP+CRRX90dcbWWSuq0Gks/sqyFJ46C93/e72vO8CwXbCiqR+345m9OgImna59veLXf9wkaRyu8dK72W30oHHatNrPgWYoB+PvH233LlAfUJCqPuR8ufGXIBkvVzTZcqo7v3BPRDYKdkXqdwunTM9mm5vH2D22eJ41ga6A1Kok3XYu5zn4zN498l0m3LiPmiOvB6P/MrNmo56kr5lKZcwKnt/2FE/RPU3H8w1pz5ehkLd/phw/YUukEtP9Tel1kB5ii7wIKlkaOHMmWLVsALQfFYOi89KHX62lubg7e6MSQY9DruO6o0XzrnsoTX+/H4XL3fMK296DpAMRmoE5ewu3vbKaoppWcRAt3nTMtaJVyk6yJVKmeGaoI2xHnLRswOspTR6of+UpeU7LiMegUqppslNW3dX5xpmcpbstb4LT1+15BsXcF7P5M+61+81shv92ybQd4+mutsXBMlB47Rn7IPAvGHT9k28FUNtrYqubxs6i/oVz4UriH45clM7Vdip9uO0Cr3YU64yJemfY0kxse4leO60iccw4PXXEElih9n64fazLw3JWHMTkznt3NZs76KpviY/8Ft+6Ga7+AU+7jm0pttkrylYa2gP7XX3vttfzqV79i9+7d3Hjjjdx6663s2aNVPC0oKODmm2/mxBNPDMlAxdDxo7m5pMSaKKlr5YP1+7WcpK6oKqx+VPv8sGt4bf0BPtxUhkGn8PBFs0iw9K3FQVeyrRaKVc/OuQgLlrzLcDmK5++pjzWWOjIb9b7WM4fkLY0+Rtv91VqrJc5GguI17Z9/eAvUF3d/bCAaD8CGV7Q2Oh4lda3c+uZGAK4+YhSHj9Zyd7xB61BV4Wl1EsnVuw82K9dKbpKFFruLT7aW8+vPavjtGgsqOm46fhx3nzMNg75/wW1CtJEXrj6MMakxlNa3cel/vqOiyQ7Zc+Dwn7DB8/9H8pWGtoD+Fd16660cf/zxTJ48maeeeor8/HzGjx+PyWRi7NixNDU18fDDD4dqrGKIMBv1XH3EKI7W5XPk0mNR/3dz9wef+DeYfBa7c3/Ene9vBeBXJ00I+g+m7EQLxapnJ1yEBUvFnsTzVJeWfBuMmSVoX4rbePCOOJ0epp8PqZOACFlW8CbvGsygM0DtvuBcd8vb8N5P4VVtNs3hcvOLV/Opb3UwPSeBX5880dcU1V6crwVWnmrNQ03HvnCDhaIoLJmhzS7d9vYm3lhbjE6Bu8+Zxk3Hjw/azHNKrImXrjmcnEQLhdUtXPr0d9Q022lsc7CrogmQmaWhLuCQ+6GHHmLjxo38+Mc/5sorr+Saa67h9ttv5+OPP+b7778nIyMjFOPsVWFhIVdffTWjRo3CYrEwZswY/vjHP2K395xAfOWVV6IoSqfH/PnzB2jUw9el80fQGJVGqlqNun2p9hv+wRQF8hbRetYz/PTdfdicbhaPT+XaI0cHfTzazFJkBkvemaV4u6cSeZDabczobkccwDF3wA2rYNLpQblXv7hdUOJJNj/vGbhhdfCa/W5+Q/vo6Y33z2U7WbevljiTgUcumk2UQecLlibsf00LrHZ8FJx7R5jKRhv3Gp7godILIf/lcA/Hb0tmaPXA7E43ZqOOJy+by0VByGU8WGaChVeumU96vImdB5q44pnv+WZ3FaoKOYmWQRVkisAFtN/6008/5ZhjjmHSpElMmjQpVGPqk+3bt+N2u3niiScYO3YsW7Zs4dprr6W5uZn777+/x3NPPvlknn22fRt7VFQvScei3+LMRuYvOIp134xjjm4Xav6LKEd1vZPyTx9sZVdFE2lxJv5x/gx0IUiizE60sDpSg6W6Viy0YbJ5cpaCsAwH7TNLm0vqcbvVzn+vhgj6we92wkl/1QKm8SdrM19eXVR191vVbq2xs6KHyWexcmclj67Q0gruOXe6r29eTqL2cb/DygKAhqFZPqCy0cY0pYYEZzUogycva0JGHEeNT2V7WQOPXTqHOSNDtxw2Ijmal685nPOfWM3mknpuen0DILNKw0FAwdL1119PTU0NJ510EmeeeSannnoqVqs1REMLzMknn8zJJ5/s+3r06NHs2LGDxx57rNdgyWQyhW1GbDi7atEo7v36BOawC9t3z2I+4ub2N8KV90FrDcsSzuG1NRUoCjx4wUxSYkPzJp4VoTlLbQ4XlY02xngLBZrig9bod1xaHNFReppsTvZWNTE2Le7Qg+zNsHclTDw1KPfsE4NJa/Q758rOz299D9Y+A5e82bfgbosnUXzMsVS447jlda3g6aXzR3Da9PY2F96Zpb1tnr+fxnKGoorGNlIUT+5WTGQWZ+3O81fNw60yILvRxqbF8cKPD+Oip1bT2KbthJN8paEvoF8f9u7dy5dffsm0adN48MEHycjI4LjjjuOhhx6isLAwREPsu/r6epKSem/WumLFCtLS0hg/fjzXXnstFRUVPR5vs9loaGjo9BCBS4k1ETf7POrUGMzNxbBHK3iKvRlWPQyrH+W/H2sJxj8/ZiwLx6b0cLX+ybFayHeP41L7b3GcHzk7gbw71eyGeNTj/wyLfhG0a+t1ClOztKW4DUX1hx7gaIN/ToHXLoID24J236Boq4f/3QwFK2H5XYGfr6qwSVuCc089j1++toHqZjuTMuP53UH98rwzS7t8wdLQnVlKVjz/DmJC938tFBRFGdBt+1OzE3juqsOI9uyy87YQEkNXwHOt06dP53e/+x3ff/89e/fu5Uc/+hEff/wxkyZNYsaMGfzhD39g7dq1oRhrQPbs2cPDDz/M9ddf3+Nxp5xyCi+//DJffPEF//jHP1izZg3HHnssNlv3W6bvvvtuEhISfI/c3OAsiwxHVx09iXfdRwJQ/9WT2pMbX4O2esp0mSy1TeewvCR+cVxo+1SlxJpo1cfztXsq5UovvaAGkDdfyZSYiXLEL+GoXwX1+jNye8hbMprbW39sfCWo9w3IpjehdAO4nO3PmRPgjH9pn3/zL9j3bWDXLM3X2ucYLDx2YCKr9lYTHaXn3xfPwmzsvM08MdpIdJSeA6rnDXGItjypbGgliUbti0E2sxQOc0Ym8v6Ni/jP5XOZmp0Q7uGIEOvXwnRWVhbXX389S5cupaqqit///vcUFhZy8sknc9ddffhtrwt33nnnIQnYBz8ODs5KS0s5+eST+dGPfsQ111zT4/UvuOACTjvtNKZOncoZZ5zBRx99xM6dO/nwww+7Pef222+nvr7e9ygqKgrKn3U4ykmMpmL8xQDE7v9MS/T+7nEAnrCdQHy0iQcvnNnv7b+90ekUMq1mAEojqO1Jca1WkDLbGpw2Jwfz5i1tOriSt+8AT82lTW90DlYGSlsDvHMtPLkYWms6vzZ5Ccy8BFDh3es6bf/vVfFaQKEy5zjuX1ECwF1nT2N06qEVmBVFISfRQrnqWWpprtRaXQwxtqYajIpL+0KCJb+MTYvj+Mnp4R6GGAB9a6jVhZiYGM477zzOO+883G431dXVQbnujTfeyIUXXtjjMXl5eb7PS0tLOeaYY1iwYAFPPvlkwPfLzMxk5MiR7Nq1q9tjTCYTJlMEJcAOcueedCz3PHQRX7um8MT278mu2kmjauEt11H887wZZIUoUDhYttXCmNqviV/9JZgugOzZA3Lfnnj71R1u2gdlJkgeC1ExQbu+t+3JtrIGbE4XJsNBxfvGnQiWJK0w6N7lWkuJgVS6HlC1cgmxXcz4nXyP1ly5bj98/Bs461H/rnv4T6gZcQLXPf01qgrnz83hrFnZ3R6emxjNrgNxuBQDetWp5S0FaVdiJGiyOYl21IIJVHMCSm+V9YUYZvocLDU3N7Ny5Ur279/faXu+oij8/Oc/JzU1OL+ZpKSk+PrR9aakpIRjjjmGOXPm8Oyzz6LrQ6Xd6upqioqKyMzM7P1gERRj0+IomHANW7YeoPrzf5INvOE6mh8tmswJA/hbW7bVwmL910zauRpGjYyMYMmzDHfOgYfgiU3wo+dgytlBu35OooWkmChqmu38UNZ46K4eQ5TWL+37J7QaQwMdLHmLUebM6/p1czyc/QQ8eypseFnbLTd5Sa+XdbtVbvqokvVNSYxLi+XOJVN6PD4nUSt0+OGYP7Jkvqdj/RBS2WhDQeV7dTKH5XQfNAoxXPUpWMrPz+fUU0+lpaWF5uZmkpKSqKqqIjo6mrS0NH7+8/73rgpUaWkpRx99NCNGjOD++++nsrLS91rHnW4TJ07k7rvv5uyzz6apqYk777yTc889l8zMTAoLC/ntb39LSkoKZ58dvDck0bsbjh7L7m3rmd62Breq8G3KuTx6ysQBHUNWBNZa8hakTPDVWApu/RhFUZiRk8DyHZVsKq7regv0zIu0YGn7h1rfvCDtxvOLtxhld8ESwMiFcMRNWiuUsg29B0v2Fp74towvd1ZiNur49yWziY7q+UehN8l7mf5Iloyd5f/4B4mKhjZ2qzn8Ou5ull96dLiHI0TE6VMiyM0338wZZ5xBTU0NFouF1atXs2/fPubMmdPrNv1Q+fTTT9m9ezdffPEFOTk5ZGZm+h4d7dixg/p6bceHXq9n8+bNnHnmmYwfP54rrriC8ePHs2rVKuLiuthGLUJmRq6VGSOS+cg1jy+Yy+8uPfXQJaEQ06p4R1b5gJLaVow4Mbd5gv+E4Bfbm+5ZitvQVZI3QOZMrZq3ywaFXwf9/t1S1fZgKbuXxq5H/xau+ACO+0PPxzlacd4/kSlfXEkiDfxpyRTGp/f+f91bPsCbQzbUVDZ5qneHqDSHEINdn2aWNmzYwBNPPIFer0ev12Oz2Rg9ejT33nsvV1xxBeecc06wx9mrK6+8kiuvvLLX4zp2WLdYLHzyySchHJUIxLWnHcFXb6xhwrFXMColeHk5/sqxWljqm1kKUjuNfnC63JQ3tJGtVKOggsESki3d3tmkLnfEgVb08Yx/QVw6JOYF/f7dqi2ElirQR0Hm9J6PNUTBqKN6vWTzlqXE2OsZrZSyeMZ4zp/rX96Rd2ZJX7ML8gu1fCU/7jdYVDR4gqV4CZaE6EqfZpaMRqOv5056ejr792u/hSckJPg+FyJQk0ak85Nb72Hx7PBUh8+yWijyBEtq3X5tZiOMDjTacLlV8vSeBrrW3L5Xq+7BdE/bk71VzTS0dbPLa8ThAxsoQfusUsb0wIpO1hXBy+drFbo7UFWVHcueAeDLqKP46zkz/O4d5p1ZmtO6Gv57A+RHTi2uYKhssvFnw7Pcs/c8+P6pcA9HiIjTp5mlWbNmsXbtWsaPH88xxxzDH/7wB6qqqnjxxReZNm1asMcoxIDItJop8SzDKbYGaKsDS/gq83qTuydH14OdoLU5OVhyrImcRAvFta1sKa7vvfin067N5ITahJPh8v9qveEC8fFvYNcn2hb/qz8FvRGAl1ds4kfNq0GBeUuuJ9bk/48/a7SRmCg95U7Pv4ch1vKkosHGTKWWOGd1SAJyIQa7Ps0s3XXXXb5coL/85S8kJyfz05/+lIqKij5t1xciEpgMeuLj4qlUPQXmwpy3VFKn5ceMi6rVngjhVnVvvaUN3dVbAqgvhlcugEcPB7c7ZGPxMcXB6KNh7HGBnXfKvVrRytL18KWWQ7mxqI6tn7+ESXFSGzuWcdMOD+iSWq2laA7g2QXXOLQKU1Y22UgepK1OhBgIAQdLqqqSkJBAeno6TqeT1NRUli5dSkNDA+vXr2fGjBmhGKcQAyLLauEa+/+x8qRPIa3n7eShVlyjzSwVpx4JJ/wFJp0RsnvN9CR5b+qq7YlXdLJWKbtmL+z7JmRj6beEbDjtAe3zL++jcfcqfv5qPqcr2pith1/Sp8t2KkzZUBb2ZdpgqmhoIxlvqxMJloQ4WEDBUmFhITNnzmTixIlMmzaNsWPHsn79+lCNTYgBl51oYaM6ll3OVNAHrWZrn3gLUqrZc7SecGOPD9m9vHlLG3uaWTJaYMpZ2ucbXw3ZWAA4sBU+uQN2ftq386edB1PPBdVF46tXo6vdwwK91t9OmXZeny6Zk2jhgDdYcjSDbej0hKxqsnVoohs57X6EiBQBBUu//vWvaWtr48UXX+TNN98kMzOz195rQgwmOZ5q4SUR0PLEO4ZQtTrpaGp2AjpFa9x7oKGt+wOne6rpb/9faFt+7F0Bqx6Bdc/2+RLqqf+gzpBKlquE/4t6j4qj7oHDr+9zraqcxGhaMdOi8+zUHCI94pwuN03NTcQpnn/zg6yJrhADIaBg6auvvuLJJ5/k4osv5pxzzuHNN99k3bp1tLaG/41FiGDITrQwRilh9p7HYJWfrTNCpKS2FR1upjV+BWWbQponFGMy+OoNdVtCAGDEfG05rq0e9q8O2XjaK3f3Ul+pBw99W8XPWrTekMday8k44jI45e99vp53R1yVkqw9MUTylqqb7SSp2qySqo/S8r2EEJ0EFCyVl5czcWJ7VeWcnBwsFgsHDhwI+sCECIesBAs5ShVn1L2otc8IE1VVKalrJZ1aJq78KTx1DBDaHBnvUtym4h7ylnR6rV8cwM6PQzcYfyp39+C9/BL++dlOvnFP48vZDxJz49f97qmXm6TVWrqfy+HStyFzaORnVjTY0Csu1ilTUHIPl91wQnQhoGBJUZRD+q3pdLpOhR6FGMwOqeIdpn/bVU12bE43uTpv5e4cLVAJIe+OuB7zlkDrvwawY2lo/n4ay6G+CBQdZAXeWuT7ghpue2sTANcdNZqjllwFRnO/h+WdWXq/eTJtI48ZMv3hKpvaKFLT+WPS3+HK/4V7OEJEpIAyWFVVZfz48Z0KuTU1NTFr1qxOQVRNTU3wRijEANKCJc9uoDDWWvLmK0221IOLkNVY6miGZ0fcxqI6VFXtvmDj2ONgzLHaDJPbFfxEeO+sUuokrXxAAAqqmvnJi2uxu9ycMjWDX58cvP6CCRYjsSYDTTYnJXWtjEmNDdq1w8lbvTstrv8BpRBDVUA/5Z59tu/JlkIMBvFmI1GmaCrVBFKVem12KRzBkqcg5XhzLTQT9Aa6XZmQEYfJoKOhzUlhdUv3LWdMcXDZu6EbSB/zlWqb7Vz17PfUtTiYkWvlgfNnotMFb0lJq7Vkob68EMfaF2FEZvvuwEGsslH6wgnRm4CCpSuuuCJU4xAiYmQnWiiuSW0PlsKQm+Jt2JpnqNaeGICZJaNex5SseNbvr2NjUV1Y+vMBULVL+xhAvpLN6eK6F9dRWN1CttXCfy6fiyUq+MuWOYkWcisKmPjdA1A0e0gESxWNNn5jeIXLdnwL3/4fLLwx3EMSIuL0qYK3l91up7i4mP3793d6CDGYZVsPylsKA+8yXCaenKUBmFmCDpW8e9oR59V4ANY9Dy1BXna/8GX45SaYdLpfh6uqyq/f2sT3hTXEmQw8e9U8UuNCM0uSkxhNueqt4l0eknsMtMpGG+lKLTGOGkK9iUCIwapPyQY7d+7k6quv5ttvv+30vDfPweUKsJeTEBEky9ohb6l2X1jG4F2GS3Z6dpqGsNVJR968pU29JXkDvHQOHNgCBjPMuCB4g1AUSBzp9+EPfraL9zaUYtApPHbpHF8JhFDISbSw1FuYsumAlrMV4sT7UKtobCMZaXUiRE/6FCxdddVVGAwG/ve//5GZmel3524hBoPsRAvPOk+ievwF/O7EE8MyBu/M0v5ZtzHVUq0lOw8A78zSltIGHC43Rn0Pk8/jT9KCpZ0fBTdYCsC7+cX863Nt2e6vZ03liHGhLaiYk2ihigRc6NCrLmiqgPjMkN4z1Co7Ve+WgpRCdKVPwdKGDRtYt25dp5pLQgwV2VYLB0hiY0siGMKT9OqdWTJPPxPSQjdTcrC85GjizQYa2pzsKG9kanYPBQrHnwJf/QN2fw5OOxii+j+AT38HNQWw4GcwcmGPh363t9pXIuD6xWO48LDQL1XmJEbjRkcVVtKpgcbSQR0sqapKRYONFL30hROiJ33KWZo8eTJVVVXBHosQESHL016ktK6Hth8hVN/qoNHm7DSWgaIoiv/1lrLnaG+utgbY/23Px/pr5ydaKxVbY4+H7a1s4icvrsPhUjl1Wga3nTQhOPfvhbfWUpnbsxQ3yPOWGm1O7E4nSUhfOCF64new1NDQ4Hv8/e9/57bbbmPFihVUV1d3eq2hYeg0lxTDk/aGqHJ+80u437kOWusG9P7eWaWZ0VVE7/0EqvcM6P071lvqkU6nLcUB7AhCNe/WWqjaqX2e3X3ZgJpmOz9+bg31rQ5mhqBEQE+8tZZ8DXUbSgfkvqFS0WAjgWYMiqeVTnRyeAckRITyexnOarV2yk1SVZXjjjuu0zGS4C2GgtRYE0a9jot1n6HbVA/zfwqWmQN2f2++0hLzBnjtGZh2Ppz71IDd3zezVNRD2xOv8adA/kta3tLJd/evVUbJeu1j0miI6fpNu83h4icvrKWwuoWcRAv/uWIuZuPAJVh7ay09fuAMMo67gRmTjhiwe4dCZaMNEw7y9VOZlWkJzlKqEEOQ38HS8uXLQzkOISKGTqeQmWChqKlDraWsmQN2/xJPjaXR3hpLA7QTzmuGp0fcropGmm1OYkw9/JgYcwzoTdrfUd0+SMzr+429lbu7mVVSVZXb3trE2n21xJkNPHvlPFLCUEgxJ9HCZ+Xj2Gyeyoy49AG/fzBVNLZxgCT+nn4/r12zINzDESJi+R0sJSYmMnXq1EN6w3Vn69atTJgwAYMhyK0QhBgA2VYLxY2pzGb3gNdaKvYsw2Up3r5wAxsspcWbyUwwU1bfxpaSeg4f3cPSTFQMXPw6ZEzvdjbIb77K3V0Xo/znsp28v1ErEfD4pXMYF8ISAT3JSdQa6nq/T4OZr3q3tDoRokd+5yzNmjWL6upqvy+8YMECKVApBq1OPeIGOFjyLsOlOCu0JwZ4Zgk65C35U29pzDH9D5RUFUo8M0tdtDnZW9nEQ1/sBuCus6exaGz4trjnJFpIoImcwrdhzX/CNo5g8AZLaSEq4inEUOH3tI+qqvz+978nOjrar+PtdnufByVEuHUqTFk3sIUptWBJJd5Wpj1h9b9AY7BMz03g463lbCz2I28pGFprIXkcVO2A9KmHvLx+fx0Ah+Ulcf68gQ8eO8pJjCZFqefSA/fCZwkw75qwjqc/Khtt3Gx4i2s3roC4G2Dxr8I9JCEikt/B0lFHHcWOHTv8vvCCBQuwWAZ227MQwZJjtbAhTC1PSmpbiacZg7NZeyIhZ0DvDzDT3x1xXhtfh3XPwpyr+lagMjoJrlkGLifoD/2xtLVUC9p6rPs0QHISLe274Wz1YG/WliMHoYpGG3OpJdpRA6o73MMRImL5HSytWLEihMMQIrJ0XoYr0paJBqBSfavdRXWznSmKp45ZTCoYB/6Xjqk5CSiKlpdT3WQjubdE6po9sH+VNt7+VPPuIlAC2FqqlSSZkhXf92sHSW5iNE1E06SaiVXatFpLyWPCPaw+qWyU6t1C+KNfjXSFGKqyrRb2qemc5Pon6q92D0igBO35SrVRGajnPQsn/HlA7nuweLOR0SnabMkmf5bixp+sfdzzBThtgd/Q0X2ytKqq/OAJliZHQLAUbzEQN0RqLVU0tpGsSF84IXojwZIQXchIMONCzw5HOrX2gftv4g2W4qypKFPPgZkXD9i9D+att7TBn6W4zJkQmwH2Jij8OrAb2VvgnpHw2CJoOzQwK6pppdHmJMqgY2xabGDXDgFFUcjuuBTXWBbeAfWR3emmtsVBCp6/81ip3i1EdyRYEqILZqOeVM8OoZIB3CLuvVd2Yvjz/Wb62/YEDqrm/VFgNyrbAC4btFSD6dCZI2++0oT0uJ4b+w6gnMRoyknSvhikM0tVTdoMoMwsCdG7yPjJI0QEyrZaOEn3PUnLfgFb3hmQexZ7ClIeo+TD9g+hOXw9GKd7krw3FdejqmrvJ0w4Rfu482Mtx8tfvvpKc7tc7txW5lmCywz/EpxXpyTvQdofrrLRhhmblncFEiwJ0QMJloToRrbVwnTdXrL3vaclLw8A7zLcyZVPw2sXt1e1DoNJmXEY9Qo1zXb/CjCOWgwGM9QXwYGt/t+ol8rdvuTu7MgKlt5yHcXD2ffBgp+Fezh9UtFow4KNTcbpkDENTOEp8inEYCDBkhDdCEdhSu8yXIKvxlL4agqZDHrfbI5feUtR0TDhVJhwWmDb0L3BUjeVu7dF0E44r5zEaPao2XxmnxLW71F/VDbaqCWeh3IegOu/HrBNDEIMRhIsCdGNbGsYgqW6VqJpI8rhSbod4FYnB5seaL2l856Bi16BzOn+HV9fAo2loOi77L9X3WSjvKENRYGJGZEULGk5Zd4+foNRRaO2/JYq1buF6JUES0J0I+vgYCmQPJw+cLjcHGhoI9tbY8lsBXN4AwTvjji/ygdA4LMT3hYn6VO6LOzoXYIblRzTc0PfAZabGE0UDo5p/RTH8nvBPfgKOkpfOCH8J8GSEN3ItlooVT09z+xNWkuOECqvb8OtQp7B04MxApZ3ZuRoFbM3l9TjdAUQENTshYofej8uNh2mnQ8TT+/yZW9y96QIWoIDSIg2EmM28nfDUxhX/k3byTfIVDTauE7/ATesORE+D089LyEGCwmWhOhGdqIFG1EcUK3aEyHuEedNop4SXac9kTAipPfzx+jUWGJNBlodLnZVNPl30ndPwEOz4PO/9H7siPlw7lNw9K+7fDmSKncfLCMxnio87VcaB1/5gMpGG2lKHWZ7Lbhd4R6OEBFNgiUhuhFvNhBrMrQvxYV4i7h3J9wYo2cGKwJmlvQ6hWmefmyb/Km3BFoABLB3OTja+nV/b42lKVnh7wl3MK18gFX7omHwFaasbLSRrHiWV6VsgBA9kmBJiG4oikK21cJ19lv48oKt7XWEQsRbY2l75plaovT080N6P39Nz9UClQ1FfuYtZUyH+GxwtEDBl90f11SpLdV1k+/TYndSUKU1E46kGkteOYkWylVPYcpBNrOkqqoWLCEFKYXwhwRLQvQgO9FCFQkUN4Q+gddbNsCUMQGmngvZc0J+T3/MDHRHnKK0V/Pe2UM1723vwaPz4fVLu3z5h7JGVBXS4kwRuWMrJzF60BamrG91YHe5SfHNLEkTXSF6IsGSED3Ismo7hUrqQr9F3LsMl20Nf6uTjrw74nYcaKTN4Wduy3hvNe9Put9F6K3cnTGty5e3+ZbgIm9WCQ6aWRpkLU98O+F0npkl6QsnRI+GVLCUl5eHoiidHr/5zW96PEdVVe68806ysrKwWCwcffTRbN0aQPVhMaRlW6PJVQ5w1LY/wns3hPReJXWtROFgdvkbsH1pxGxHz0wwkxJrwuVWfTlEvRp1FBijoaEEyjd1fUxvxSi9bU4iOFg6wOBsplvRaEPBTSKN2hOyDCdEj4ZUsATw5z//mbKyMt/jd7/7XY/H33vvvTzwwAM88sgjrFmzhoyMDE444QQaGxsHaMQikmUnWjDg5vD6j2HreyGrteR2q5TVaTWWRq35E7x9dcRUVFYUhZmB5i0ZzTD6GO3zHR8f+npLDdTs0T7Pnt3lJdp3wkVecjdoy3BfuqZzqf12Wk+4J9zDCUhlow0Ldn4wTYe0yRCdHO4hCRHRhlywFBcXR0ZGhu8RGxvb7bGqqvLggw9yxx13cM455zB16lSef/55WlpaeOWVVwZw1CJSdaq15GjW3uRDoLLJht3lJlfnKUhpHRExwRLADF9T3Tr/T1rwMzj/RVjQxYycd1YpeSxEJx3yssPlZnu59gtLpC7DJViMtJjT+No9jWIywj2cgFQ0ttGCmadGPQg3rAK9MdxDEiKiDblg6e9//zvJycnMnDmTv/3tb9jt9m6PLSgooLy8nBNPPNH3nMlkYvHixXz77bfdnmez2WhoaOj0EENTtnVgai15ayxNtkRGm5ODTffkLfmd5A2QtwgmL+m6Qas3X6mbJbi9lc3YnW5iTQZyE6MDG+wAyvGMza9GwxHEm7OUFoGJ80JEoiEVLP3yl7/ktddeY/ny5dx44408+OCD3HBD93km5eXaDpb09PROz6enp/te68rdd99NQkKC75GbG1lvbCJ40uJMGPVKyHvEeZO7x5kip8ZSR95K3oXVLdS1dP8LiN+8bU5y5nb5sjc3anJmPDpd5MywHSwn0cLZuq9IXPtPrRTCINHe6kSCJSH8EfHB0p133nlI0vbBj7VrtR+8N998M4sXL2b69Olcc801PP744zz99NNUV/fcikA5aLlDVdVDnuvo9ttvp76+3vcoKirq/x9URCSdTiEzIfQNdb1lA0bqOyzDRRBrdBR5ydosit994kBrlLv8Lvjkjs7PL7oJFv8aRh3d5WnefKVITe72ykm08EvDO8zc/ShU7wr3cPxW0Wjjcv0nXPH1cfDxb8M9HCEiXuR0puzGjTfeyIUXXtjjMXl5eV0+P3++Vkl49+7dJCcfmsCYkaHlGZSXl5OZmel7vqKi4pDZpo5MJhMmk/xGNlxkWc0UN3jq0IRsGU4rTZCuemYnImwZDmB6jpXC6hY2FtVx1Hg/d0+11sLKv4PBDMfcAVGeJbXRi7VHN7YNkmApNzGaAySSx4FBVT6gstHGAqUek70W3I5wD0eIiBfxwVJKSgopKX0rmJafnw/QKRDqaNSoUWRkZLBs2TJmzZoFgN1uZ+XKlfz973/v24DFkJNtjaZ4nyc4aAtNfpp3GS7JcUB7wjoyJPfpjxm5Vt7fWMrGQJK806dogV99ERSs9KsKuqqqHdqcRHawpLU8GXyFKSsabaQgrU6E8FfEL8P5a9WqVfzzn/9kw4YNFBQU8MYbb3DdddexZMkSRoxoX9KYOHEi7777LqAtv910003cddddvPvuu2zZsoUrr7yS6OhoLr744nD9UUSEyU608I7rSH4/9XOt6WsIeJfhdh71iNbqJHVCSO7THx3LB6j+llBQFBh/svb5Dk817x/+p9WRaq3t8pTi2lYa2pwY9Qrj0rpIDo8gOYnRHVqeDI5aSzani/pWBymKt9WJVO8WojcRP7PkL5PJxOuvv86f/vQnbDYbI0eO5Nprr+W2227rdNyOHTuor2/PubjttttobW3lhhtuoLa2lsMPP5xPP/2UuLjI/iEtBk621YyNKPaHqOWJqqq+maX4cfMhtftyF+E0OTMBvU6hqslGWX0bWf5WGp9wMqx5Sqvm7XbDinvgwGatrMDkJYcc7i1GOS4tjihDZP8+l91hZslZVzIofqB6k7vbgyWZWRKiN4Ph/7ZfZs+ezerVq3s97uDfiBVF4c477+TOO+8M0cjEYJdt1fJsvAFNsNW1OGixuzz3iqxWJx1ZovRMSI9jW1kDG4vq/A+W8o6EqFhoKof930KFp0J+N2UD2otRRvYSHGi1luqN2syMo3ZwBUtp+gZQgRhpdSJEbyL71zYhIkB2ohYUXFT3FOpzp0P5lqBe3xuEHRlThHn9f6Do+6BeP5i8feI2BrIjzmCCMcdqny+/G1Q3xGdDfNe5hIMludsnLkv7OEiW4So8wVKSKk10hfCXBEtC9CIzQWumO50dKIVfBX2LuLeg4cmmzfDRbbD++aBeP5i89ZY2FHWdb9StCaeA2dqhGGXX9ZWgYwPdyGxzcjB78kQusd/OJ7MeCfdQ/FLZaMOAkwLLZEibIstwQvhBgiUhemE26kmJNYWs1pJ3ZinP4GmlEoE74bzmjdKSmdftq6WxLYAt51PPhV/tgXEnaF93swRX22yntL4NgEmZgyNvMCU5lW/c09hm777cSCSpaLThxMDL4x+CG74F8yCZwRMijCRYEsIP2YmhK0zprbGURYX2RATWWPIakxrL6JQYHC6VlTsDqFhtMIFO32ubE29y98jkaOLMg6NfWY5nmdb7fYx0Ur1biMBJsCSEH7Kt5tDNLHmW4ZKdnmApwlqdHOz4ydoMyrJtBwI7sbEc9FGgN0HmjC4PGSz1lTrKSbRwgm4ti0qehgPbwj2cXlU2ajN3aXHmMI9EiMFDgiUh/JBttVCseqt4B38ZTsFNbJsnQTiCZ5YATvAES8u3V+BwBVBOwRwP5gRtKc7Y9U46X5uTzMEULEVzsf5zLml5ub3nXQSrbLTxI/0Kzvv8SPjfzeEejhCDggRLQvhBC5Y6zCz5W5TRDyV1raRSj87tAEWv7RSLYLNHJJIcE0VDm5M1BTX+nxgVAz/+BH70XLeHbPOVDRgcyd2gLdF6C1Paa0vCPJreVTTaSKWOKHsduILQFFmIYUCCJSH8kJ0YTZmajAsdmOKhLYCt8z1otjmpa3GQo3jyf+KzQB/Z1Xr0OoVjJ2q1eT4NdCnOFAv6rnORWu0u9lQ2AYNrGS7BYqTeoPWebKmO7KbabrdKVZNNClIKESAJloTwQ5bVjB0jR+heglt3gMUalOt6d8IVm0bD1Z/BmYNj+/kJHfKW/G590ovt5Q24VUiJjRp0yceOaK0pt7MusmeW6lodOFwqyRIsCREQCZaE8EOOp4p3WYs2AxIsvuTuxCTInQejjw7atUPpyHGpmAw6Supa+aGsMSjX9O6Em5yVgKIoQbnmgPEU2FQivJmudydchl6CJSECIcGSEH6ItxiINWnLY8Fse1LsuVYktznpiiVKz5HjtIT3gHfFdWMwtTk5mCkpBwBza3D+LkKlwrsTTucJcCVYEsIvEiwJ4QdFUciymjlJ9z0pb5+rte0IAu/M0hLXMvjuiaDvtAsl31LcD8GZTRmMO+G84lK1HYwxzlpwRm7StHdmKQlvqxMJloTwR2RnkgoRQbKtFqxVzVgPrIa44FSX9hYyPLL6DfhoL6SMB+uIoFw71I6dmI6ibGZLSQNl9a1kJvR9dszpcrO9bPDOLKWkZXGx/bckpI3gMV3k/ljV+sKplFnGkxDbArHSRFcIf8jMkhB+0qp4B7fWkrakpxLnrbE0SAIl0CpAzx6RCMBn/VyKK6hqxuZ0Ex2lJy85JhjDG1A5STF8657K6oZk0EXuj1VtZknh3SkPwU+/kWBJCD9F7v9qISJMVghqLZXUtpJIIwaXJw8qwmssHcy7FBdwCYGDeJfgJmXGo9MNsuRutEAaoLbFQZPNGebRdK9CWp0I0ScSLAnhp2yrhTI1GTcKOFuhuapf17M5XVQ02shWPNeJTQfj4GpB4Q2WVu+tpiGQxroH2TaIl+AA4s1GTjBv5xf6d6jd8lm4h9Mtb6sTCZaECIwES0L4KSfRgh0jVWjVmvu7FFdWp71xjTJ4qmAPoiU4r06NdXcE0Fj3IN6ecIMxudvrNNMGbjG+hXvXsnAPpVsVjTZO163i1KUL4d3rwz0cIQYNCZaE8FOWZ3v/frc3b2lfv67nLUEwKbpOeyLCe8J1xzu79NkPfVuKU1W1Q9mAwdPm5GCuGK0wpauuNMwj6V5lo41UpQ6jvQ6ctnAPR4hBQ4IlIfyUFmfGoFPYr6biik7r95vN956+auNNtdoT1sEdLAXcWNejrL6NuhYHBp3CuPTYYA9vwOgSsrSPzZFZmLLN4aKxzUmKImUDhAhU5O5xFSLC6HUKmVYz/1dzPbnnL2JeXlKfr+Vyq7y1rhgAx6JbIetnEN3364XTLE9j3epmO98X1LBobEpA53tnlcamxWI26kMxxAFhSsqBArC0VYR7KF3y1liSgpRCBE5mloQIQFaCBRUdpf2s4v317ipK6lpJsBg5ZvYkrdVJ8pggjXJg6XUKx03StqD3pZr3Nm8xykGa3O2VkKblnCU4KoOyUzLYvNW7M41as2JiAgtqhRjOJFgSIgDeLeLFtf0Lll5foyWHnz0re1DPpnidMFnL1+lLY11vcvdgzlcCSMnKA8CMDdrqwzuYLvhmlrzLcFJjSQi/SbAkRAByrBYSaeDkdT+BRw7r0wxCVZPNNwNz0YxE+OQO+O7JiJyN8NcRY1MwG/vWWHcwtznpKCs1iXpVa7jcXFMc5tEcqsLX6kSa6AoRKAmWhAhAltVCE9GMasqHqh3QHPh2+XfXl+BwqczItTLBVAOrHoEVd4Ey+Ioxelmi9BwxVnvzDWQprr7F4dsVONiX4eLMRm7U3cFxtvsoJjPcwzmEd2apMnospE/T6noJIfwiwZIQAchOtODAQJXSt1pLqqrymmcJ7sJ5uVBfpL0wSMsGdHRiHxrrbi3TloRyEi0kWIwhGddAqk2awR41m+KGyKviXdGgBUufzXgQfvo1JI4M74CEGEQkWBIiANn9rLW0bl8teyqbiY7Sc8aMLKjzBEuDsCDlwY6dlIaiwJaSBr8T4LeVDu7K3QfLsWrLcP3NaQuFyiZpdSJEX0mwJEQAvIUp97n71lD3tTVacHT69ExiTQao95w/BIKllFgTc7yNdf0sULltCBSj7GheVCG/1L9Nwu53wz2UQ3h3w6XFS7AkRKAkWBIiAGajnpTYqM4Ndf3U0Obgw01lAFwwzxMc1Q2dZThoL1Dpb97SUEnu9pqs7uZm49vklUdey5PKRhvH69Zx1Lvz4I0rwj0cIQYVCZaECFC21dKnYOmDjaW0OlyMTYtl9ghr5/OHwMwSwPEBNNZtc7jYXanV/JmSPTSCJUuyFvRG2yKrMKXLrVLVZCdFqcdgqwdnW7iHJMSgIsGSEAHKTtSCpZaoFDD7v3z0umcJ7sJ5uSjenW/eBO9B2urkYGNSYxmd6l9j3Z0HGnG5VZJiosiINw/QCEPLmq59H62uqjCPpLPaFjsut0qK4i0bIAUphQiEBEtCBCgrwcIq9xQemP4BnPeMX+dsLa1nU3E9Rr3C2bOy21+47iu4ehmkjA/RaAeev0txHZfglEFcNqEjb2HKZLWOxpbISfL27oTL9lXvlhpLQgRCgiUhAuSt4l0SQMuTNzyzSidOziA5tkOCbXwm5B4GRktQxxhO3hICy3f03Fi3vXL30FiCA4hNysKJDr2icqA0sOT/UPLuhMs0ePvCSfVuIQIhwZIQAfKWD/A3WGpzuHg3vwSAC+Z1WG4rWQdOW9DHF24zcxNJiY2isc3Jd3truj1uqPSE60Snp1an1eCqKQusrEQoVTR4dsJJE10h+kSCJSEC5C0fcEH1Y/CvmbDtvz0e/8nWchranGRbLRwxNgXcbvjqH/CfE2DZHwdgxANLr1M4bqI2u9RdCQGXW/W1RRlKM0sATUYtH6ipqijMI2nnnVlKxNsXToIlIQIhwZIQAcrxLMOZnXVQWwA1e3s8/rXvtTfN8+fmomupgpfPg8//DKoLWmu04GmIOb5D3lJXjXULqpppdbgwG3WMSokd6OGF1LKxd3Cs7X6+088O91B8vDlLdbFjIGMaxEVeOxYhIpkh3AMQYrBJsBiJidJT7Pb8dl7b/XJLYVUzq/ZWoyhwScZ+ePx0aCoHgwVOvQ9mXTqoe8J1p2Nj3W1lDYcUndxWpi3BTcyIR68bWn9+U/Z09q7byr76yAmCvTNLq2bdz6QjRoV5NEIMPjKzJESAFEUhy89aS2+sLUKHm3+kfULK2+dpgVLKBLj2C5h92ZAMlEBrrHvkuO4b6w7F5G4v78xjcV1LmEfSrrJBWp0I0R8SLAnRB95aS0C3wZLT5ebNdcWkU8sZzW+D6oaZl8BPlkP65AEcbXj0VEJgqLU56WiUUs5Nhrc4uuaNcA/FxzuzlCbBkhB9IstwQvRBttXCl6qnsF99EajqIbNEy3dUUtloIyU2E856DJzNMPOiMIw2PI6bmIZO0eoplda1+hLjVVUdmjvhPDKVKm4yvMMuVzaNbQ7izMZwD4mKhjYW6rYw9/WfwsgFcPHr4R6SEIPKkJlZWrFiBYqidPlYs2ZNt+ddeeWVhxw/f/78ARy5GIyyrBbK1WTc6LTWEU0d2lu4XbD8LrasfBuAc2fnYJy6ZFgFSgDJsSbmjDy0se6BBhvVzXb0OoWJGXHhGl7IWJK08hDpSk1AtbhCpdnmpNnuIoV69LZ6cETO8qAQg8WQCZYWLlxIWVlZp8c111xDXl4ec+fO7fHck08+udN5S5cuHaBRi8EqJ9GCAwMFxjGQPRfsnsrIDWXwwpmw8u9cVn438TRz/ryh0cqkL46fdOhS3LYyLV9pTGoMZqM+LOMKqXhtp1m80krpgfC3Pals1JbgsgxSY0mIvhoyy3BRUVFkZGT4vnY4HLz//vvceOONvbZSMJlMnc4VojfewpRXGO7l62uP1Z7c/Tm88xNoqcKuj+bPrZcxMS+XMalDa2t8IE6YnM7dH233NdaNNxvZWtLe5mRIMsXRqkRjUVuoPbAPGB3W4XjzlXJMzeBAgiUh+mDIzCwd7P3336eqqoorr7yy12NXrFhBWloa48eP59prr6WioueO4TabjYaGhk4PMbx4W56U17fhcjq0ukkvnQstVajpU7nSeB/vuxcN61klgNGpsYzxNNZd4Wmsu3UIJ3d7NZu0fLaWCChM6a2xlKn3zixJE10hAjVkg6Wnn36ak046idzcnt+sTjnlFF5++WW++OIL/vGPf7BmzRqOPfZYbLbu21DcfffdJCQk+B693UMMPWlxZgw6BadbpfWTP2kVuVFh7tWsPvYNvq1LJM5k4NRpMmN5wmTt7+Azz1Kct8bSUEzu9nJEa39mR11Jn85fv7+W8x77lp+9sr7Lop6BqGz0tjrx/FInfeGECFjEB0t33nlnt4nb3sfatWs7nVNcXMwnn3zC1Vdf3ev1L7jgAk477TSmTp3KGWecwUcffcTOnTv58MMPuz3n9ttvp76+3vcoKgr/b49iYOl1ChkJZg5TfsCw/X3tyfOehdMf4NX12szkkplZREcNmZXuPjuhQ2PdmmY7+2u0BOOhWGPJx1MhW2ksD+i0FruTp197k3Mf+4aW/flkb32SjWu/7tdQKhoPanUiy3BCBCzif5LfeOONXHjhhT0ek5eX1+nrZ599luTkZJYsWRLw/TIzMxk5ciS7du3q9hiTyYTJJPVKhrtsq4V1tePYMuFG5h5xMlhHUNdi5+Ot2hvkhfNGhHmEkWFWrpWU2Ciqmuw8900BoP3dWaOjwjyy0Gk74jaO2XkULaRzlZ/nfLu7is/eeITf2R7ErD+W9Kg2jnd/w9JVUcycd2Sfx+JN8G6KGw3xRojP6vO1hBiuIj5YSklJISXF/zV2VVV59tlnufzyyzEaA69vUl1dTVFREZmZ0jtJ9CzbauE7DHwfeyxzrVpg9F5+CXanm8mZ8UzNHsIzJwHQeRrrvr62iGe/KQRg0lBN7vZIGzGRAnUftOFLbO9OQ5uDuz78gYZ1b/KQ8RF0isoxE1IgYzp88w2JVWuoarKREtu3X9C8M0ub5v6dicM8h06Ivor4ZbhAffHFFxQUFHS7BDdx4kTeffddAJqamrj11ltZtWoVhYWFrFixgjPOOIOUlBTOPvvsgRy2GIS8Sd4ltVotHVVVeW2NtiR74WG5ve7CHE68S3GNNicwxJfggBiTgaQYbebM+++jK59tO8AJD6ykZt07/Mv4bwyKG8e0i8i65HGyZp4AwCxlF++s6blZc0+8M0up8TIbLkRfRfzMUqCefvppFi5cyKRJk7p8fceOHdTXa2v3er2ezZs388L/t3fvUU1d+R7AvyeBBAgQ5A0CAXyLjzpqFdBaL6gtovU6VWu1PtBOtVZhlnbUsVOdzqht7zhtpzNOF+0SH61ix7nM1LfWFqtVERXr2Doq9iJWcfCBEB7ySPb9IySaClGB5Jj0+1krK2TnPL6nXcrPffbZe/163Lp1C2FhYRg6dCg2b94MHx/XmyyP2pZ5+oArjRMPnvqhHP++qofaTYFnereXM9ojZ1CnQHi6K1FTbwDg+sUSqq7jVdX/ory2Aj+U9bunJ+1GZS1+u/U7fPbNFfyX4gT+onof7jAAvSbAfcxfAIUCCOyM2yp/eNTdxDd5X8I4pCsULVh02NyzFNTCnikicsFiaePGjTa/v/vJEk9PT+zevdvekchFmZfvMM/SbO5VSukZBq2X/EtcPEo83JUY3CkQexqfiHPlJ+EAAA21mFizEfVKJT6++QYAU8+aEAJbT5Vg2Wff4mZVHYYovkGm+j24iQYgbizwzGpA0ThRpyTBLSYROLsVOn0BDl24gUGdHu6xf4NR4GZVLX4mnUP39bOA8MeAqVvb9lqJfgJc7jYckaPcfRuuqrYBn500PSY+geNCmmS+Faf1dLf0yrks7xAISHCXDCi7VgLANCfXi+uPY96mAtysqkPXUB+88ZQObjAC3UYBYzMBpfW/X91iTQO7ByrOYOPRiw8d40ZlLYwCCFKUQ1FbAdRxqROilnC5niUiRzH/wq+qM2BjXjGq6gyIDvDCgBh/mZM9mkb2CsOXZ0sxMDbA9cdzKd1QowqAV911VF8vRvbRYizfcQb62w1wV0p4ZWgnzH6yA1RuCkAXC7TvCyib6I3UJQIA4hRF2PttCUr1txHs4/HAMcy34HQe1YABnDaAqIVYLBG1kIe7EgEaFW5U1eGD/RcAABP6R7l+IdBCXio3rJ7UV+4YDtOgCQXqrqOoqBAfXTDNVt470g/vD25AlM4TcGvs2NfFN3+Q4O7A9J2Yva0W9Zeq8bdjP2DO0I4PnME8uDvCvaqxWOLs3UQtwdtwRK1gvhV3o6oOSoWEn/flwG4yUWhN8xkF4xY83BV4bWQ3/O9oNaK2TQKyUoDyB5jdW6EAdAkYN8BUIGXnF8NofPAZvS2L6Lo3LnXizdm7iVqCxRJRK9w99iapa/BD3SIh1+YVaBq7NjCwFrvSn8DMDuVQfjwWqNMDflGAZ7sHPlZqr3D4eLjh0s0aHCi8/sD7lTYudRIomZc64W04opZgsUTUCuF3FUsc2E13UzQueTI6Fohu+B5YPwaoLQei4oGJ2YDK68EOdLsCnnsXYofmDShgxMa8Bx/obe5Z8udSJ0StwjFLRK1g7lkK8VVjSGf+IqK7/GwKEPffwO1yYP0zwO1bQER/YNLfALX3gx9HpQFObUZkbQW6SRfx+Rkl/lNxGyG+9+/FNA/wrvGJBTQGQMuCnqgl2LNE1AqpvcLweLQ/Xk+Ng5uSf5zoLj4hgDACmyYA1TeA8D7A5L8D6oec8FahBKIGAgDGBVyEwSjwaf6DLd5t7lm6MPD3wEtfAVEDHu7cRASAxRJRqwT7euDTWfEY2YtrCVITPHwBrwAgtCfwQg7goW3ZcRqnEBjuXQjANAGq4QEGeltm7/bh7N1ErcHbcERE9uITCkzdBkiKhxrQfY/oQQCAsPIC+HkocflWDb46dw1Duzb/dJsQwtKzFMxiiahV2LNERGRP3kGAJqB1xwjrDbhrINWUYVb3OgDAJ3nFNneprG1ATb0BXaViRGV2BT4a1roMRD9hLJaIiB51Sncg8nEAwM8DigAAX/z7Pygpr2l2F3OvUqSqElJtBVBXZfeYRK6KxRIRkTOITgT8ohDk44nHY/xhFMBmGwO9zeOVoj0aiyTO3k3UYiyWiIicQeIvgYx/AY+/iEkDogCYiqUGg7HJzS1LnajMxRKntiBqKRZLRETOQHnneZyneoSinZc7SspvI/fstSY3N/cshbk1LnXCYomoxVgsERE5E6MB6no9nu0bAQD4pJkZvc09S0GKxqVOvFksEbUUiyUiImdx6lPg7Rhg+3xMfNx0Ky733DX8UFZ9z6bmdeHaCS51QtRaLJaIiJyFd4hp+ZSLhxAbqEFChwCIZgZ6m3uW6rXRpqkHuNQJUYuxWCIichYR/QGFO6C/ApT9H56/a6B3/Y8GepuLpSvxy0xLnXQY6ui0RC6DxRIRkbNQeQHt+5p+Lvoaw7uHItBbhVJ9LfadKbXalLN3E7UdFktERM4k2rROHC5+DZWbAs/2Nd1e23j0zoze9QYjblSZZvrmunBErcdiiYjImTQuqouirwEAEx83FUsHzl/DpZumgd43Kk2FUgfFVQS83xH46yDH5yRyISyWiIicSeTjgKQEyouBW8XQBWgwuFMghAA2NfYumZ+Ei/WqaVzqRC9nYiKnx2KJiMiZqH2AvtOAIQsBpQoA8HzjNAKfHvsB9QajZbxStEfjlAKcNoCoVdzuvwkRET1SUv9o9TG5ewiCfNS4pq/F3u/+g/KaegBAhLoKqASLJaJWYs8SEZGTc1cqML6faUbvjXnFlp6lcGXj7N0slohahcUSEZEzqr4JnNlmegfwXP8oSBJwsPA68otMbYEKrgtH1BZYLBEROaMNY4DNk4ALXwAAIv298EQnU1F04Px1AHctdeIdLEdCIpfBYomIyBnp7sy3ZGae0dvM6KcDwh4D/HQODEbkejjAm4jIGekSgSOrgYuHLE1JXYMR4qvGfypMY5bKEpYAunZyJSRyGexZIiJyRlHxpvdr/waqTLfd3JQKTOh3Z8FcLnVC1DZYLBEROSNNABDc3fTzXbfiJjweBTeFBI1KyaVOiNoIiyUiImf1o6VPAKC9nyc2vzQQmyZGw+N/dMD7/QAhZApI5BpYLBEROavoewd5A0BfnT96+dWZljmprQAkSYZwRK6DA7yJiJxV9BPA6Pfv9DDdreqa6Z1zLBG1GoslIiJnpQkAfjal6e8aB31DE+i4PEQuirfhiIhcUVWp6Z09S0StxmKJiMiZVd8EjnwA7PmNdbvlNhxn7yZqLRZLRETOrL4G2LUQOPxn4HbFnXbehiNqM05TLC1fvhwJCQnw8vKCn59fk9sUFxdj1KhR0Gg0CAwMxLx581BXV2fzuLW1tZg7dy4CAwOh0WgwevRo/PDDD3a4AiIiO9C2B9pFA8IIXMq7qz0SCO8D+MfIFo3IVThNsVRXV4dx48Zh9uzZTX5vMBgwcuRIVFVV4eDBg8jOzsbf//53zJ8/3+ZxMzIykJOTg+zsbBw8eBCVlZVITU2FwWCwx2UQEbU93SDTe9HBO21DFwO/yAXi/luWSESuRBLCuWYrW7t2LTIyMnDr1i2r9p07dyI1NRWXLl1CeHg4ACA7OxvTpk1DaWkpfH197zlWeXk5goKCsGHDBkyYMAEAcOXKFURGRmLHjh0YMWLEA2WqqKiAVqtFeXl5k+chIrKrkxuBf8wGIvoDMz+XOw2R03jQ399O07N0P4cPH0aPHj0shRIAjBgxArW1tTh+/HiT+xw/fhz19fUYPny4pS08PBw9evTAoUOHmtwHMN26q6iosHoREclGl2B6v1IA1FXJm4XIBblMsXT16lWEhIRYtbVr1w4qlQpXr15tdh+VSoV27axX5Q4JCWl2HwBYuXIltFqt5RUZGdnstkREduenA3wjAGMDcOkocLscWNEeeK830GB73CYR3Z+sxdKyZcsgSZLN17Fjxx74eFITU/oLIZpst+V++yxevBjl5eWW16VLlx7q+EREbUqSTEufKNyAm9+bnoSrqwSqbgBuKrnTETk9WWfwfuWVV/Dcc8/Z3CY6OvqBjhUaGoq8vDyrtrKyMtTX19/T43T3PnV1dSgrK7PqXSotLUVCQkKz51Kr1VCruZo3ET1Chr0BpL4LqLyAi4dNbZw2gKhNyFosBQYGIjCwbf4wx8fHY/ny5SgpKUFYWBgAYM+ePVCr1ejbt2+T+/Tt2xfu7u7Yu3cvxo8fDwAoKSnB6dOn8fbbb7dJLiIih/AJvfMz14UjalNOM2apuLgYJ0+eRHFxMQwGA06ePImTJ0+isrISADB8+HB0794dL7zwAgoKCrBv3z4sWLAAL774omWE++XLl9G1a1ccPXoUAKDVajFjxgzMnz8f+/btQ0FBASZPnoyePXsiOTlZtmslImoVLnVC1KacZiHd119/HevWrbN87tOnDwDgyy+/xJNPPgmlUont27fj5ZdfRmJiIjw9PfH888/jD3/4g2Wf+vp6nD17FtXV1Za2d955B25ubhg/fjxqamqQlJSEtWvXQqlUOu7iiIjawjebgSN/AUrPmD57s1giagtON8/So4jzLBHRIyH/I2D7XRPxPvEq8F+vyZeH6BH3k5tniYjoJ0+XeOfnkJ6Af6x8WYhciNPchiMiovsI6gp4BQDVN4CRq4CoAXInInIJ7FkiInIVknRnNu+LX8ubhciFsFgiInIl5ltxLJaI2gyLJSIiVxI10PRe+Dlwm+tWErUFjlkiInIlob2BjsMASQGofeROQ+QSWCwREbkShQKYvEXuFEQuhbfhiIiIiGxgsURERERkA4slIiIiIhtYLBERERHZwGKJiIiIyAYWS0REREQ2sFgiIiIisoHFEhEREZENLJaIiIiIbGCxRERERGQDiyUiIiIiG1gsEREREdnAYomIiIjIBhZLRERERDa4yR3AFQghAAAVFRUyJyEiIqIHZf69bf493hwWS21Ar9cDACIjI2VOQkRERA9Lr9dDq9U2+70k7ldO0X0ZjUZcuXIFPj4+kCRJ7jhtoqKiApGRkbh06RJ8fX3ljmN3vF7Xxut1bbxe12bP6xVCQK/XIzw8HApF8yOT2LPUBhQKBSIiIuSOYRe+vr4/iT+MZrxe18brdW28Xtdmr+u11aNkxgHeRERERDawWCIiIiKygcUSNUmtVmPp0qVQq9VyR3EIXq9r4/W6Nl6va3sUrpcDvImIiIhsYM8SERERkQ0sloiIiIhsYLFEREREZAOLJSIiIiIbWCyRxcqVK9G/f3/4+PggODgYY8aMwdmzZ+WOZTd//etf0atXL8tEZ/Hx8di5c6fcsRxm5cqVkCQJGRkZckexi2XLlkGSJKtXaGio3LHs7vLly5g8eTICAgLg5eWFxx57DMePH5c7ll1ER0ff8/9YkiTMmTNH7mh20dDQgNdeew0xMTHw9PREbGws3njjDRiNRrmj2Y1er0dGRgZ0Oh08PT2RkJCA/Px8h+fgDN5ksX//fsyZMwf9+/dHQ0MDlixZguHDh+O7776DRqORO16bi4iIwJtvvomOHTsCANatW4dnnnkGBQUFiIuLkzmdfeXn5yMzMxO9evWSO4pdxcXF4fPPP7d8ViqVMqaxv7KyMiQmJmLo0KHYuXMngoODceHCBfj5+ckdzS7y8/NhMBgsn0+fPo1hw4Zh3LhxMqayn7feegsffPAB1q1bh7i4OBw7dgzTp0+HVqtFenq63PHsYubMmTh9+jQ2bNiA8PBwfPzxx0hOTsZ3332H9u3bOy6IIGpGaWmpACD2798vdxSHadeunfjoo4/kjmFXer1edOrUSezdu1cMGTJEpKenyx3JLpYuXSp69+4tdwyHWrhwoRg0aJDcMWSTnp4uOnToIIxGo9xR7GLkyJEiLS3Nqm3s2LFi8uTJMiWyr+rqaqFUKsW2bdus2nv37i2WLFni0Cy8DUfNKi8vBwD4+/vLnMT+DAYDsrOzUVVVhfj4eLnj2NWcOXMwcuRIJCcnyx3F7s6fP4/w8HDExMTgueeew/fffy93JLv67LPP0K9fP4wbNw7BwcHo06cPPvzwQ7ljOURdXR0+/vhjpKWlucyC5j82aNAg7Nu3D+fOnQMAfPPNNzh48CBSUlJkTmYfDQ0NMBgM8PDwsGr39PTEwYMHHRvGoaUZOQ2j0ShGjRrl8v9KPXXqlNBoNEKpVAqtViu2b98udyS72rRpk+jRo4eoqakRQgiX7lnasWOH2LJlizh16pSlFy0kJERcv35d7mh2o1arhVqtFosXLxYnTpwQH3zwgfDw8BDr1q2TO5rdbd68WSiVSnH58mW5o9iN0WgUixYtEpIkCTc3NyFJklixYoXcsewqPj5eDBkyRFy+fFk0NDSIDRs2CEmSROfOnR2ag8USNenll18WOp1OXLp0Se4odlVbWyvOnz8v8vPzxaJFi0RgYKD49ttv5Y5lF8XFxSI4OFicPHnS0ubKxdKPVVZWipCQELFq1Sq5o9iNu7u7iI+Pt2qbO3euGDhwoEyJHGf48OEiNTVV7hh2tWnTJhERESE2bdokTp06JdavXy/8/f3F2rVr5Y5mN4WFheKJJ54QAIRSqRT9+/cXkyZNEt26dXNoDhZLdI9XXnlFREREiO+//17uKA6XlJQkfvGLX8gdwy5ycnIsf+GYXwCEJElCqVSKhoYGuSPaXXJyspg1a5bcMewmKipKzJgxw6pt9erVIjw8XKZEjlFUVCQUCoX4xz/+IXcUu4qIiBB//vOfrdp+97vfiS5dusiUyHEqKyvFlStXhBBCjB8/XqSkpDj0/HwajiyEEJg7dy5ycnKQm5uLmJgYuSM5nBACtbW1csewi6SkJPzrX/+yaps+fTq6du2KhQsXuvyTYrW1tThz5gwGDx4sdxS7SUxMvGe6j3PnzkGn08mUyDGysrIQHByMkSNHyh3Frqqrq6FQWA81ViqVLj11gJlGo4FGo0FZWRl2796Nt99+26HnZ7FEFnPmzMHGjRvxz3/+Ez4+Prh69SoAQKvVwtPTU+Z0be/Xv/41nn76aURGRkKv1yM7Oxu5ubnYtWuX3NHswsfHBz169LBq02g0CAgIuKfdFSxYsACjRo1CVFQUSktL8fvf/x4VFRWYOnWq3NHs5pe//CUSEhKwYsUKjB8/HkePHkVmZiYyMzPljmY3RqMRWVlZmDp1KtzcXPtX2qhRo7B8+XJERUUhLi4OBQUF+OMf/4i0tDS5o9nN7t27IYRAly5dUFhYiFdffRVdunTB9OnTHRvEof1Y9EgD0OQrKytL7mh2kZaWJnQ6nVCpVCIoKEgkJSWJPXv2yB3LoVx5zNKECRNEWFiYcHd3F+Hh4WLs2LEuOx7tblu3bhU9evQQarVadO3aVWRmZsodya52794tAIizZ8/KHcXuKioqRHp6uoiKihIeHh4iNjZWLFmyRNTW1sodzW42b94sYmNjhUqlEqGhoWLOnDni1q1bDs8hCSGEY8szIiIiIufBeZaIiIiIbGCxRERERGQDiyUiIiIiG1gsEREREdnAYomIiIjIBhZLRERERDawWCIiIiKygcUSET2ycnNzIUkSbt265fBzS5IESZLg5+dnc7tly5bhsccec0gm8/nM2d59912HnZfop4zFEhE9Ep588klkZGRYtSUkJKCkpARarVaWTFlZWTh37pws527OggULUFJSgoiICLmjEP1kuPZCOkTk1FQqFUJDQ2U7v5+fH4KDg2U7f1O8vb3h7e3t8gsfEz1K2LNERLKbNm0a9u/fj/fee89yi6moqOie23Br166Fn58ftm3bhi5dusDLywvPPvssqqqqsG7dOkRHR6Ndu3aYO3cuDAaD5fh1dXX41a9+hfbt20Oj0WDAgAHIzc1tUdY333wTISEh8PHxwYwZM3D79m2r7/Pz8zFs2DAEBgZCq9ViyJAhOHHihOX7tLQ0pKamWu3T0NCA0NBQrFmzBgCwZcsW9OzZE56enggICEBycjKqqqpalJeIWo/FEhHJ7r333kN8fDxefPFFlJSUoKSkBJGRkU1uW11djT/96U/Izs7Grl27kJubi7Fjx2LHjh3YsWMHNmzYgMzMTGzZssWyz/Tp0/H1118jOzsbp06dwrhx4/DUU0/h/PnzD5Xz008/xdKlS7F8+XIcO3YMYWFhWL16tdU2er0eU6dOxYEDB3DkyBF06tQJKSkp0Ov1AICZM2di165dKCkpseyzY8cOVFZWYvz48SgpKcHEiRORlpaGM2fOWK6Py3gSycjhS/cSETVhyJAhIj093artyy+/FABEWVmZEEKIrKwsAUAUFhZatnnppZeEl5eX0Ov1lrYRI0aIl156SQghRGFhoZAkSVy+fNnq2ElJSWLx4sXN5gEgcnJyrNri4+PFrFmzrNoGDBggevfu3exxGhoahI+Pj9i6daulrXv37uKtt96yfB4zZoyYNm2aEEKI48ePCwCiqKio2WMKIYROpxPvvPOOzW2IqG2wZ4mInIqXlxc6dOhg+RwSEoLo6Gh4e3tbtZWWlgIATpw4ASEEOnfubBnv4+3tjf379+PChQsPde4zZ84gPj7equ3Hn0tLSzFr1ix07twZWq0WWq0WlZWVKC4utmwzc+ZMZGVlWbbfvn070tLSAAC9e/dGUlISevbsiXHjxuHDDz9EWVnZQ+UkorbFAd5E5FTc3d2tPkuS1GSb0WgEABiNRiiVShw/fvyeQdF3F1htZdq0abh27Rreffdd6HQ6qNVqxMfHo66uzrLNlClTsGjRIhw+fBiHDx9GdHQ0Bg8eDABQKpXYu3cvDh06hD179uD999/HkiVLkJeXh5iYmDbPS0T3x54lInokqFQqq0HZbaVPnz4wGAwoLS1Fx44drV4P+6Rdt27dcOTIEau2H38+cOAA5s2bh5SUFMTFxUGtVuP69etW2wQEBGDMmDHIyspCVlYWpk+fbvW9JElITEzEb3/7WxQUFEClUiEnJ+ehshJR22HPEhE9EqKjo5GXl4eioiJ4e3vD39+/TY7buXNnTJo0CVOmTMGqVavQp08fXL9+HV988QV69uyJlJSUBz5Weno6pk6din79+mHQoEH45JNP8O233yI2NtayTceOHbFhwwb069cPFRUVePXVV+Hp6XnPsWbOnInU1FQYDAZMnTrV0p6Xl4d9+/Zh+PDhCA4ORl5eHq5du4Zu3bq17j8EEbUYe5aI6JGwYMECKJVKdO/eHUFBQVZjfForKysLU6ZMwfz589GlSxeMHj0aeXl5zT5x15wJEybg9ddfx8KFC9G3b19cvHgRs2fPttpmzZo1KCsrQ58+ffDCCy9g3rx5Tc7VlJycjLCwMIwYMQLh4eGWdl9fX3z11VdISUlB586d8dprr2HVqlV4+umnW3bxRNRqkhB8HpWI6MckSUJOTg7GjBljl+NXV1cjPDwca9aswdixYx96/+joaGRkZNwz6zkRtT32LBERNWPixIltvqyI0WjElStX8Jvf/AZarRajR49+qP1XrFgBb2/vNu15IyLb2LNERNSEwsJCAKan09ryKbSioiLExMQgIiICa9euRVJS0kPtf/PmTdy8eRMAEBQUJNu6eUQ/JSyWiIiIiGzgbTgiIiIiG1gsEREREdnAYomIiIjIBhZLRERERDawWCIiIiKygcUSERERkQ0sloiIiIhsYLFEREREZAOLJSIiIiIb/h/969BZbmSV4wAAAABJRU5ErkJggg==", + "text/plain": [ + "<Figure size 640x480 with 1 Axes>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkMAAAHFCAYAAADxOP3DAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC0BklEQVR4nOzdd3zU9f3A8df3VvbeQEjYew8ZoqKI4t574aS0WrVqtbbuaqvWn7Wttk7qRq1Wq4jiYCPKCLJ3EghZl51LcvP7++N7dySQcbmR+X4+HnlA7r53309QyDvvz/vzfiuqqqoIIYQQQvRSus5egBBCCCFEZ5JgSAghhBC9mgRDQgghhOjVJBgSQgghRK8mwZAQQgghejUJhoQQQgjRq0kwJIQQQoheTYIhIYQQQvRqEgwJIYQQoleTYEgI0eUsWrQIRVFa/Fi+fHm73q+mpob77ruPuXPnkpKSgqIoPPLIIyFZuxCi+zF09gKEEKIlb7zxBsOHDz/u8ZEjR7brfcrKynj55ZcZN24cF1xwAa+++mqwliiE6AEkGBJCdFmjR49m8uTJAb9PVlYWFRUVKIqC2WxudzBUX19PREREwOsQQnRNsk0mhOi2qqurueWWW0hKSiI6OpozzzyTPXv2HLcN5tle80V2djbnnHMOH3/8MRMmTCA8PJxHH30UgKKiIm677Tb69euHyWRiwIABPProozgcjibv8dJLLzFu3Diio6OJiYlh+PDh/O53vwva1y2ECC7JDAkhuiyn03lcoKEoCnq9HlVVueCCC1i7di0PPfQQU6ZMYc2aNcybNy/g+27atImdO3fy+9//ngEDBhAVFUVRURFTp05Fp9Px0EMPMWjQINatW8cTTzxBbm4ub7zxBgDvv/8+Cxcu5Pbbb+fZZ59Fp9Oxb98+duzYEfC6hBChIcGQEKLLmjZt2nGP6fV6HA4HX331Fd9//z1//etfueOOOwA4/fTTMZlMPPjggwHdt6SkhB07djB06FDvYwsWLKCiooLt27fTv39/AE477TQiIiK45557uPfeexk5ciRr1qwhPj6eF154wfva0047LaD1CCFCS7bJhBBd1ptvvslPP/3U5GP9+vUAfP/99wBcffXVTV5z1VVXBXzfsWPHNgmEAD7//HNmz55Nnz59cDgc3g9PJmrFihUATJ06lcrKSq688ko+/fRTzGZzwOsRQoSWZIaEEF3WiBEjWiygLisrw2AwkJSU1OTx9PT0gO+bkZFx3GPFxcX873//w2g0NvsaT9Bz7bXX4nA4eOWVV7j44otxuVxMmTKFJ554gtNPPz3gtQkhgk+CISFEt5SUlITD4aCsrKxJQFRUVBTwezdXbJ2cnMzYsWP54x//2Oxr+vTp4/39/PnzmT9/PhaLhZUrV/Lwww9zzjnnsGfPHrKysgJenxAiuCQYEkJ0S7Nnz+bpp5/mnXfe8dYMAbz77rshud8555zDkiVLGDRoEAkJCT69Jioqinnz5mGz2bjgggvYvn27BENCdEESDAkhuqxt27Ydd5oMYNCgQcydO5eTTjqJ++67D4vFwuTJk1mzZg1vvfVWs+/15ZdfYrFYqKmpAWDHjh189NFHAJx11llERka2upbHHnuMZcuWMWPGDO644w6GDRtGQ0MDubm5LFmyhH/+85/069ePW265hYiICGbOnElGRgZFRUU89dRTxMXFMWXKlAD/RIQQoSDBkBCiy5o/f36zj7/yyivcfPPNfPbZZ9x99908/fTT2Gw2Zs6cyZIlS5rtWv2LX/yCvLw87+cffvghH374IQAHDx4kOzu71bVkZGSwYcMGHn/8cZ555hkOHz5MTEwMAwYM4Mwzz/Rmi2bNmsWiRYv44IMPqKioIDk5mRNPPJE333yTlJQUP/8khBChpKiqqnb2IoQQIpgUReHhhx+W+WNCCJ/I0XohhBBC9GoSDAkhhBCiV5OaISFEjyO7/0KI9pDMkBBCCCF6NQmGhBBCCNGrSTAkhBBCiF5Naoba4HK5OHLkCDExMc226BdCCCFE16OqKjU1NfTp0wedrvXcjwRDbThy5AiZmZmdvQwhhBBC+OHQoUP069ev1WskGGpDTEwMoP1hxsbGdvJqhBBCCOGL6upqMjMzvd/HWyPBUBs8W2OxsbESDAkhhBDdjC8lLlJALYQQQoheTYIhIYQQQvRqEgwJIYQQoleTmiEhhBC9gtPpxG63d/YyRJAYjUb0en1Q3qtbBUMrV67kmWeeYePGjRQWFvLJJ59wwQUXtHj9xx9/zEsvvUROTg5Wq5VRo0bxyCOPcMYZZ3TcooUQQnQqVVUpKiqisrKys5cigiw+Pp709PSA+wB2q2DIYrEwbtw45s+fz8UXX9zm9StXruT000/nySefJD4+njfeeINzzz2X9evXM2HChA5YsRBCiM7mCYRSU1OJjIyUBro9gKqq1NXVUVJSAkBGRkZA76eo3XS8s6IobWaGmjNq1Cguv/xyHnroIZ+ur66uJi4ujqqqKjlaL4QQ3YzT6WTPnj2kpqaSlJTU2csRQVZWVkZJSQlDhw49bsusPd+/u1VmKFAul4uamhoSExNbvMZqtWK1Wr2fV1dXd8TShBBChICnRigyMrKTVyJCwfPf1W63B1Q/1KtOk/3lL3/BYrFw2WWXtXjNU089RVxcnPdDRnEIIUT3J1tjPVOw/rv2mmDovffe45FHHmHx4sWkpqa2eN0DDzxAVVWV9+PQoUMduEohhBBCdLResU22ePFibrrpJj788EPmzJnT6rVhYWGEhYV10MqEEEII0dl6fGbovffe44YbbuDdd9/l7LPP7uzlCCGEED578cUXGTBgAOHh4UyaNIlVq1a1ev2KFSuYNGkS4eHhDBw4kH/+859Nnl+0aBGKohz30dDQ0K51tXWf5uTn53PuuecSFRVFcnIyd9xxBzabzft8bm5us2tbunRpu9bmj26VGaqtrWXfvn3ezw8ePEhOTg6JiYn079+fBx54gIKCAt58801AC4Suu+46/vrXvzJt2jSKiooAiIiIIC4urlO+BiGE6OnqbU4iTMFphtebLV68mDvvvJMXX3yRmTNn8q9//Yt58+axY8cO+vfvf9z1Bw8e5KyzzuKWW27h7bffZs2aNSxcuJCUlJQm7WhiY2PZvXt3k9eGh4f7vC5f79OY0+nk7LPPJiUlhdWrV1NWVsb111+Pqqr87W9/a3LtN998w6hRo7yft3boKWjUbuT7779XgeM+rr/+elVVVfX6669XTz75ZO/1J598cqvX+6KqqkoF1KqqquB+MUII0QMt3VaoDrj/c/WtdbmdvRRVVVW1vr5e3bFjh1pfX9/ZS2m3qVOnqgsWLGjy2PDhw9X777+/2evvu+8+dfjw4U0eu+2229Rp06Z5P3/jjTfUuLi4Fu9ZUlKipqWlqX/84x+9j/3www+q0WhUv/rqK5/vc6wlS5aoOp1OLSgo8D723nvvqWFhYd7vrwcPHlQBdfPmzS2+z7Fa++/bnu/f3SozdMopp6C20hZp0aJFTT5fvnx5aBckhBCiiQ255bhU+Gp7EddMy+rs5RxHVVXq7c5OuXeEUe/z6SebzcbGjRu5//77mzw+d+5c1q5d2+xr1q1bx9y5c5s8dsYZZ/Daa69ht9sxGo2AtsuSlZWF0+lk/PjxPP74495GxCkpKbz++utccMEFzJ07l+HDh3PNNdewcOFC73v7ep9j1zZ69Gj69OnT5DVWq5WNGzcye/Zs7+PnnXceDQ0NDBkyhLvuuotLLrnEpz+zQHSrYEgIIUTXVm7R+vpsK6hCVdUud6S93u5k5ENfdcq9dzx2BpEm377tms1mnE4naWlpTR5PS0vzlnwcq6ioqNnrHQ4HZrOZjIwMhg8fzqJFixgzZgzV1dX89a9/ZebMmWzZsoUhQ4YAeLfArr76aqZMmUJ4eDh/+tOf2nUfX9aWkJCAyWTyfj3R0dE899xzzJw5E51Ox2effcbll1/Ov//9b6655hqf/tz8JcGQEEKIoKmos7l/tVNQWU+/BGl2GIhjg8m2Aszmrm/8+LRp05g2bZr3+ZkzZzJx4kT+9re/8cILL3gff/bZZxk9ejQffPABGzZsOK6mqK37+LK2Y7+e5ORk7rrrLu9zkydPpqKigqefflqCISGEEN1HueXo6aBtBVVdLhiKMOrZ8VjnDOuOMPpeVJ6cnIxerz8uC1RSUnJchsUjPT292esNBkOLo0h0Oh1Tpkxh7969TR4/cOAAR44cweVykZeXx9ixYwO6T3p6OuvXr2/yWEVFBXa7vcWvB7Tg7dVXX23x+WDp8UfrhRBCdBxPZghga0FVJ66keYqiEGkydMpHe7YMTSYTkyZNYtmyZU0eX7ZsGTNmzGj2NdOnTz/u+q+//prJkyc3W8cDWmYmJyenydaWzWbj6quv5vLLL+eJJ57gpptuori4OKD7TJ8+nW3btlFYWNjkNWFhYUyaNKnZ1wBs3rw54CGsPvG5ZLuXktNkQgjhu9EPL1Wzfvu5mvXbz9VrXv2hs5fTrU+Tvf/++6rRaFRfe+01dceOHeqdd96pRkVFqbm52km9+++/X7322mu91x84cECNjIxU77rrLnXHjh3qa6+9phqNRvWjjz7yXvPII4+oS5cuVffv369u3rxZnT9/vmowGNT169d7r7nnnnvU7OxstaqqSnU6nepJJ52knn322e26z8cff6wOGzbM+7nD4VBHjx6tnnbaaeqmTZvUb775Ru3Xr5/6q1/9ynvNokWL1HfeeUfdsWOHumvXLvWZZ55RjUaj+txzz7X4ZxSs02QSDLVBgiEhhPCNzeH0BkJZv/1cHf/oV6rL5erUNXXnYEhVVfUf//iHmpWVpZpMJnXixInqihUrvM8d205GVVV1+fLl6oQJE1STyaRmZ2erL730UpPn77zzTrV///6qyWRSU1JS1Llz56pr1671Pv/999+rBoNBXbVqlfexvLw8NS4uTn3xxRd9vs8bb7yhHptvycvLU88++2w1IiJCTUxMVH/1q1+pDQ0N3ucXLVqkjhgxQo2MjFRjYmLUSZMmqW+99Varfz7BCoYUVW3lrLqgurqauLg4qqqqiI2N7ezlCCFEl1VS08DUP36LTgGdouBwqaz+7exOrRtqaGjg4MGD3i7Oomdp7b9ve75/S82QEEKIoKhwH6tPiDQxNC0G0IqohejqJBgSQggRFOUWGwlUs9DwX05MtQJds4haiGNJMCSEECIoKups/MH4NjdZ3+a2wt8DsLWgupNXJUTbJBgSQggRFOUWG7FYALAPOhM42olaiK5MgiEhhBBBUWGxoaL10klKz8SgUyi32CiorO/klQnROgmGhBBCBEV5nY1UpRIAY3wfKaIW3YYEQ0IIIYKiwmIjxR0M8fndXBqzDZAiatH1STAkhBAiKCosVlJwBz41R5ii3w1IEbXo+iQYEkKIHqbO5mDFnlJsDleH3tdRW4ZRcXo/7287AEgRtej6JBgSQoge5rmv93D96z+y+Kf8Dr1vWZ2T5+yXUJs2BYCYyp3eIuojVQ0duhYh2kOCISGE6GG+210CwAGzpUPvm1dn4gXnRVRc+D4oOhRLCSekOADYeljqhtpr5cqVnHvuufTp0wdFUfjvf//brtdv376diy++mOzsbBRF4fnnnw/JOnsCCYaEEKIHKa5u4ECpFgSV1do67L71Nif1dm2LLD4+DhIHAXBqfDEAWwsqO2wtPYXFYmHcuHH8/e9/9+v1dXV1DBw4kD/96U+kp6cHeXU9iwRDQgjRg6zbX+b9fZnF2mH3raiz0QczI/QFRFMP6WMAGB92GJAian/MmzePJ554gosuuui453bt2kVkZCTvvvuu97GPP/6Y8PBwtm7dCsCUKVN45plnuOKKKwgLC+uwdXdHhs5egBBCiOBpEgx1YGao3GJjvmEptxiWwMp8SB8Nu5fQN0LbJvMUUSuK0mFrapWtlS1ERQ/GcB+v1YExou1rTVHtW18bhg8fzrPPPsvChQuZOXMmRqORW265hT/96U+MGTMmqPfqDSQYEkKIHmTtAbP39+YODIYq6hr1GIpOg8k3wYxfE+9SMPz0lbeIum98RKvv02Ge7NPyc0PmwtUfHv38mcFgr2v+2qwTYf4XRz9/fgzUlR1/3SPBr5lauHAhS5Ys4dprr8VkMjFp0iR+/etfB/0+vYEEQ0II0UMcKq/jUPnR0RflFisul4pOF/psTLnFRiqV2ifR6WCKBCBcD0PSYthZWM3Ww1VdJxjqIV5//XWGDh2KTqdj27ZtXSfz1s1IMCSEED3EugNaRmJM3zi2FlThUqGy3k5ilCnk966w2BipuLMf0alNnhvTN5adhdVsK6jizNFdpJD3d0dafk7RN/383n2tXHtM6e2dW/1fkx+2bNmCxWJBp9NRVFREnz6tZLxEiyQYEkKIHuIHd73QrCHJHKqoo7LOTlmttUOCofI6e9NtMoDVz8PPizk/9Qo+YHDXGsvRnhqeUF0boPLycm644QYefPBBioqKuPrqq9m0aRMREZJ9ay85TSaEED2AqqqsdQdDMwYlk+QOgDqqbqimpoZ4xV08HOMOhiylULKDoa79gDajTDpR+662tpacnBxycnIAOHjwIDk5OeTna800FyxYQGZmJr///e957rnnUFWVe+65x/t6m83mfb3NZqOgoICcnBz27Wsl09VLSWZICCF6gNyyOoqqGzDpdUzKSiApOoz9pZYOO17vqNH6CTkVI/rweO3B9LEAJNXsxqA7s+sVUXdxGzZsYPbs2d7P7777bgCuv/56Tj31VJYsWcLmzZsxGAwYDAbeeecdZsyYwdlnn81ZZ53FkSNHmDBhgvf1zz77LM8++ywnn3wyy5cv7+gvp0uTYEgIIXqAtfu1U2Tj+8cTYdKTHK1lhjrqeH1JvY6/2C/h3FGJDPUU8aaPBkBXvJ2hqVHsKKqVIup2OOWUU1rNpF133XVNPp80aRJW69HgNzs7WzJxPpJtMiGE6AHWebfIkgBIitKa7JXVdkxmKK8hkr85L6Jo8n1HH0weCnoT2Go4KVU7mr6tK9UNCeEmwZAQQnRzqqryg/sk2fSB7mDInRkyWzomM1RRp92nSbG23ggpwwGYFqmd3upSRdRCuEkwJIQQ3dzeklrMtTbCjTrG948HICm64zJDqqoSZSlgiHKYROMxwZe7bmgYecDRTtRCdCUSDAkhRDe3dp9WLzQ5K5Ewg9YjJzmq42qGLDYnNyv/ZVnYfaRsfaXpk33GQ8pwkpOT0esUyiw2CqsaQr4mIdpDgiEhhOjmPM0Wp7vrhTj0I7NWXMFQ5RBlHbBNVmGxkeJuuGiMO6ap4tRb4JfrMZ54B0NSowH4+XDHb5VJNqpnCtZ/VwmGhBCiG3O5VH44UA40CoZKd2NyWrhYvxJzB2yTlVtspCgV2ifRLXeYHtsvDujYImqj0QhAXV0Ls8VEt+b57+r57+wvOVovhBDd2I7Caqrq7USHGRjbVws2qK/AVLGXNCWFmgYHVofTu30WCuV1NoZ6R3GkNX+Ry8m49HA+oGOLqPV6PfHx8ZSUlAAQGRkp87t6AFVVqauro6SkhPj4ePT6wP7/lmBICCG6Mc+R+inZCRj0OlBViOsLQB9FyxiVW2xkxIWut09FrZUU75DW1OMv+Pr38NNrnDzxXmCYt4i6o4KS9HQtW+UJiETPER8f7/3vG4huFQytXLmSZ555ho0bN1JYWMgnn3zCBRdc0OprVqxYwd1338327dvp06cP9913HwsWLOiYBQshei2bw4W51kqfEDcY9NQLzRiUDE4H/GsW6LR/2vvqtGCorDa0wZClyoxJcWqfNBcMGSLAXkd6wz70uuHeIupQ/9l4KIpCRkYGqamp2O32DrmnCD2j0RhwRsijWwVDFouFcePGMX/+fC6++OI2rz948CBnnXUWt9xyC2+//TZr1qxh4cKFpKSk+PR6IYTw1zNf7eLV1Qd59brJnDaiha2jADmcLn482Khe6MD3ULLD+3wq5Si4Ql43ZK8qBKBeH0OEIez4C9ydqA0l2xiSegW7imrYWlDVYcGQh16vD9o3T9GzdKtgaN68ecybN8/n6//5z3/Sv39/nn/+eQBGjBjBhg0bePbZZyUYEkKE1Nr9ZagqvLrqYMiCoa0FVdRaHcRFGBmREQv/eUd7YvJNsOF1jDhIoibkx+uLbBE8a7+UmVlJTG/ugvQx2q8luxg3LIpdRTVsK6jijFGBb28IEQw9+jTZunXrmDt3bpPHzjjjDDZs2CCpUiFEyKiqSl6Zdspl3YEycs2WkNzHM6X+hAGJ6K2VsGuJ9sTE67yFzOlKWciHtebbYvm780L2jVjY/AXx2WCKBqeVGQnaqbPOOF4vREt6dDBUVFREWlrTn8jS0tJwOByYzeZmX2O1Wqmurm7yIYQQ7WGutVFrdXg/X7zhUEju88OBRvPItn8CTiukjoSMcZA1nQMxU1BRQp4ZKnf3MkqMNDV/gU4HadpW2TiD9mchnahFV9KjgyHguNMKnr98LZ1ieOqpp4iLi/N+ZGZmhnyNQoieJa+saSboo42HsTtdQb2H1eHkp1xPvVAy5LynPTHuSlAUuHQRX036F9vVAZhDHAxF1OQyVDlEkqmVDJS7bqifdb90ohZdTo8OhtLT0ykqKmryWElJCQaDgaSkpGZf88ADD1BVVeX9OHQoND/RCSF6roPubbGpAxJJjjZRWmPlu13BPda95VAVDXYXSVEmhuoL4fCPoOhh7GXeazzDWkO9TXZ53Tt8HfZbBuZ+0PJFWTNh2FkYMkZ7O1GHot9QrdWByyUZJ9E+PToYmj59OsuWLWvy2Ndff83kyZNb7FYZFhZGbGxskw8hhGiPXHdmaEhqNBdP6gfA4p+C+4PV2v3aVv+0QUkoYdEw804YfxXEHC1KTo42ocMV0m0yl0sl3qllqMIS+rR84eiL4Mr3YNwVjOkbmk7UK/aUMu7Rr/nzV7uC+r6i5+tWwVBtbS05OTnk5OQA2tH5nJwc8vPzAS2rc91113mvX7BgAXl5edx9993s3LmT119/nddee4177rmnM5YvhOglct3F0wOSo7h8srbVvnx3CYVV9UG7h6fZ4oxBSRDbB05/FM7/+9EL9n7DSf+dxnumJ0I6ub66wU6yu+FiZGJfn14zxj2WI5iZIVVVefar3ThdKovW5HrrmITwRbcKhjZs2MCECROYMGECAHfffTcTJkzgoYceAqCwsNAbGAEMGDCAJUuWsHz5csaPH8/jjz/OCy+8IMfqhRAh5Tk9lpUUxcCUaE4YkIhLhQ83HA7K+zfYnWzOrwRg+sDmt/wJi8bQUE4GZZgttpAVK5dbbKQq2lqOG9J6LFWF6iOMT9SKy4NZRL16n9kbXFkdLt75IS8o7yt6h27VZ+iUU05p9S/OokWLjnvs5JNPZtOmTSFclRBCHKWqqjcYGpAcCcAVUzNZf7CcxT8d4lezB6PTBTaGYmNeBTani/TYcAYcfA8qs2HgbNA3+ic9VtuySlMqsDsc1FodxIQHNsyyOZU1NQxU3AXjLc0l8/jsdtj8FiNmP4ReNwJzbfA6Ub/4/X4ABqZEcaDUwps/5HHbyYMwGbrVz/yik8j/JUIIEUTmWhsWmxNFgcxELRiaNzqD2HADBZX1rN7XfFuP9vDUC52SHY7y9R/gnUugMKfpRTEZgEKYEtrGi5Yy7ZCKHQNEJLR+ceJAAIyl24NaRL0pv4J1B8ow6BTeuGEKabFhlNZY+fznIwG/t+gdJBgSQogg8hRP94mL8E6KDzfquXCCVk8TjEJqT73QxeEbwFEPSUOg76SmF+mNHdJ40VqhBRzV+gTtSH9r0sdqvxZtDWoRtScrdMGEvmQlRXHd9GwAXlt9UHoZCZ9IMCSEEEF0dIssqsnjl0/pD8DXO4oCKmiutTrY4u7ePMbs7jg9/srmAxHv9PqykPUaKlJjecZ+GWuTfKjFdPcaomwf4zO0Y/+BZoZ2F9Xwzc5iFAUWnDwIgKtP6E+4Ucf2I9Wsd89uE6I1EgwJIUQQeTJD2e56IY+RfWIZ1y8Ou1Pl400Ffr//T7nlOF0qU+OrCD/yA6DA2Cuav9hdN5SulIdsm+yQM5l/OC9gS//r2744Og0ik0F1MSlC214LtIj6nyu0rNCZo9IZ7N56i480cfFEraXBa6sP+v3eoveQYEgIIYIo16wdqz/JtQHeuhDM+7zPebJD7/2U73cA4NkiuyVmvfbAwFO8GaDj9JnI3ujJmNW4kB2v9xxhT4hqYRRHY4riHdo6yHkQvU7BXGujqNq/TtSHyuv4bIu2TbfwlMFNnps/cwAA3+wsDtlsONFzSDAkhBBB5MkMzdr3NOz/Dv4xFZzaYOjzxvch0qTnQKmFDXkVfr3/uv1lKLiYYflGe2D8VS1fPOtu/jvmHyxxTaMsRH13wir3MVQ5RGqYo+2LwbtV1qSI2s+hrS+vPIDTpTJrSLK3d5HH4NRoThmWgqrCorW5fr2/6D0kGBJCiCA5eqxeJaLOfZJJdcLOzwCIDjNwztgMAN77Mb+Fd2lZVZ2dbUeqSKEKU0Q0mGJg+DmtviYpKgwAc4gyQ+eWvszXYb9lZOmXvr1g8ByY/isYNo/Rff1vvlhaY+UD9wDcX5yi1QrhcsGuL6BOqxO66UQtO/TBhkNU1dvbfQ/Re0gwJIQQQVJaa8Vic5LubkIIwPn/gFEXeT+9Yqq2VbZka2G7v0GvP1iGqkJ0Sj+Mv/oBfvkDmCJbfU1StAkT9pDVDMU6tG07U0KGby8YeAqc8UcYPMd7osyfYOj1NQexOlyMz4w/2nhyw2vw/lXwyW0AnDg4mWFpMdTZnCz+qf3Bp+g9JBgSQoggyXOP4Zge4x7KmjwUJlzT5KTXhMx4hqZF02B38VlO+wqp1zYewaEoENev9RfUFHHWlyeyNewmymuDNwqksTiXtt0X3tpcshZ4trbaW0Rd3WDn7XVah+mFpwxC8fz5rv2b9uver6FsP4qicOOJ2QD8e20eDqer3WsUvYMEQ0IIESSeafWTIwq1B1KGH33SUgZb3kdRFK5wF1K/386eQ+v2l9FPKeHE/q1ng7wikzBYKwhTHLhqA2/2eCyHw0mSWglATJJvc8kAqK+E3NWMCjP7VUT91ro8aqwOhqRGM2dEo67Xt288+vsNrwNw/vi+JEWZKKis56vtxb6vUfQqEgwJIUSQ5LmLp80ZJ8G8Z44WN9eVw4vT4JMFkLuaCyf0xaTX+uD4WjxsrrWyu7iGPxle4YwvZ2m1MW3RG3FFpQIQ3lCE0xXcBoRVlWbCFK1wOia5HZmhrx+ERWcTtuPDdhdR19ucvO4+Lr9w9qCmo030RrjqA+33m98GWx3hRj1XT8sC4LXVB3xfo+hVJBgSQogg8Ryrj+o7Ck64FYbN056ITHT/XoX//oIEfQNnjtaGmr7vYy3LDwfK6IOZGfodKHYLpI326XU697H7dMqpqAtu3VBtqTZ4tooo9KZ2zBdL047XU7TVW0TtayfqDzYcosxio19CBOeOdQdgDiu4nNrvB8+B+CxoqIRt/wHg2mlZmPQ6NuVXsjnfv1N8omeTYEgIIYLEs02WnRR1/JNn/FH7Jl2ZD1/9jiumZALwac4R6mxtH0tft7+MC/Wr0aFC9ixIyPJpTYo7GMpQyoJeRF1Xrp2Yq9C1MZPsWOmeYGhbu4qo7U4XL6/Usju3nTQQg979LeynV+H5sbDpLdDpYfKN2uOb3wYgJSaM88ZrgZM0YRTNkWBICCGCQFVV8sosJFKtjcko/LnpBWExcMFLgAKb32KaYwP9EyOptTr44ufCNt9/3T4zF+tXap+Mu9L3hcV6gqHyoDdeLNGn8rT9Mr6Lav14/3HSRmm/VuUzLln77daC6jaLqD/LOUJBZT3J0SYunawFk6gqbFwE1YfB6Q72Jl4HZzwJV73vfe2N7iaMX24roqAyNMXkovuSYEgIIYLAc6x+on4vad/dCf9dePxF2TNh+i8B0P3vdq4fr9XLtFVIXVTVQHx5DgN1RajGSBh5nu8Liz2aGTIHufFigZLBi84LWJdyafteGBEPcVoR+QglH52i1US1VkTtcqm85B69ceOJAwg3akNwyVsL5j1gjIIx7nVEJmp/zhFHM1Yj+8QyfWASTpfKm9KEURxDgiEhhAgCT73Q5Aj3iaXU4c1feOoftFNmlhKutLyDXqewMa+CvcU1Lb73ugNmLtavAkAZcZ6WZfJV6gh2Rk5mpysr6JkhTw1SYqQPoziO5d4qCyvbzpBU7etprYh62c5i9pXUEhNm4JppjbYIN76h/TrmYgiPbf7F7noiTxPGd3/Mx2L1sWO26BUkGBJCiCDwjOEYa3L3Dkod0fyFxnC48J8w4Roi5z3KqcO1016LW8kOrd9XzNn6H7RPWhu/0Zwhp/P+sL/yL+e5Qa8Z0pXuZLiST2q4H4GFZ4J90bYm/Yaao6oqLy7XskLXTs8iNtyoPWEpgx2far+fNP/4F+5dBq+cCmtfAODU4akMSI6ipsHBRxsPt3/NoseSYEgIIYLAMwx0gMt9Oix1ZMsX95mgdaYOj/MWUv9n02GsDmezl68+UMU5tifZN/63WvF0OyVFayM5yizBzQydlvt/LA27nwl1q9v/4uFnw9l/gWkL2iyiXre/jC2HKgkz6LjRnd0BYMu7Wp1QxjjoO/H4F9YWQ8FGreeQy4lOpzB/ZjYAb6w5iCvIrQZE9yXBkBBCBEFeWR16nKRaPcFQC5mhY5w8JJmLo7dRUWdj2Y7jmwIeKq/jcEU9RUoq6fPuA137/9lOijYRho3ymuAWDkfatY7Y+pj09r84YxxMuRnSxzSaUdZ8EbUnK3TFlEyS3YGdt3Aams8KAYy+GMLjtRN8e5cBcPHEfsSGG8gtq+O7XSXtX7fokSQYEkKIIDhotpCtFKFX7Voxr7tAuFWqiuHj+fzF8SRX67/l/R+P3ypb5x7BMbZfHNFhBr/Wdt6ai9kdfgMxlTv9en1LPHPJwuJ9nEvWgpEZsd4i6uLqptmrLYcqWb3PjEGncMtJA5u+8MKXYdINMOaS5t/YGKGNQwHt+D0QFWbgyhO0/zZyzF54SDAkhBABUlWV3DILQxV3HUrqcN8yOIoCmdMAeNDwDof2b+NQeV2TS4wb/smrxme4PDnP7/Xp3A0RTXVFfr/HcRxWYlWt6DuiPaM4GivdDZveJKI052gR9TFbZS8u3wfAeeP70C+h0RgSRYF+k+Dcv7ZeUD7lJu3Xfd9Audaj6Prp2eh1CusOlLH9SPuHxIqeR4IhIYQIUGmtlTqbkx/UUdiu/ABO+Z3vLz5hAWTPIlKx8qzxn3zwY673KdXlYmzJp8zRb2ZSTJn/C4zVBrpGNQRxNpelFACbqicuIdW/9/jpVfjsdtj+ydGtssOV3qf3ldR454n94uRB/t0jcaDWlRrVO6+sT3wEZ43Rslmvr871731FjyLBkBBCBMg7hiM+BdOwM2DIHN9frNPBBS9iN0QxRbcH008veqerF+xcxyD1EA2qkX4nXu33+gwJWjCU6Cylwd58kXZ7WSu07tOlxJPgqeNpL89IkaKtjOmrHYtvnBl6abmWyZk7Mo0haY2yPz++Ap/dAcU7fLvPlFu0Xze/DXatbupGdyH1/7YcoaTG9yGxomeSYEgIIQLkPUmW3MwYDl/E94cznwLgVsd7/LReO51Vu/4tADZGzCA8JtHv9ZkStRNrGUoZZUFqvOgZxWFW44kN96+WqfmxHFoRdUFlPZ/maG0KFs4efPQ1qgo/vASb/g2Hf/LtPkNOhzGXwbkvgE47lj+hfwIT+8djc7p4e53/W5CiZ5BgSAghApRbZiEMGzfa3oVtHx8dGtoOxknXsSf+RMIUB32W3w32Bvod1ibTlwxqoUDYR0qsNpcrmCM5ysKzeNp+OZ8b5qAoStsvaE7qCFB0UGdmZExdkyLqV1YewOFSmTk4ifGZ8Udfc3AllO8HU4x2WswXOj1c/IrWuVt/NHC76UStIPvt9flBy5iJ7kmCISGECFBumYWBSiGzixfB53dp3+DbS1EwXvACG11DuMdyDRVbviDaVU2RmkDfifMCW2Cctk2WTnnQGi8WmzJ50Xk+K2LO9v9NjBGQPBSAiPKd3iLqFXtKeP8nrUXBwlMGN32Np+P02EshLNr/ewNnjEqjb3wE5RYb/91cENB7ie5NgiEhhAhQrrmOoYr7WHzqSO2kkx8GZA/iqfS/8pNzCIeXvwbA/9QTGZ+VFNgC4/uzLXwiq1xjMAcpM1Tu3m5L8GcUR2PeuqGfvUXUT325iwa7i3H94pgxqNHXXlsKOz/Xft9Sb6HWWMyw4mlY9jAABr2OG2ZkA/D6moNtDooVPZcEQ0IIEQDPsfphukbH6gNwxQna3K13KkaQ4xrEvj7nYTIE+E91bB9eH/h//N5xU9BqhpSiLYxQ8siICHB7qUndkFZEXVlnB+AXpwxuugWX8w647NB3EmSMbf+9KnLh+z9qNUcW7XTe5VMziTLp2VNcy6q95kC+EtGNSTAkhBABKK3RjtUPa5wZCsBZY9KJCTPwvvNULrA9TtbwZsZM+MHTudlcE5zM0KRtf+TLsAeY7MoJ7I1GXQDX/hfOesY7owxgcGo0c0emHb3O5Wq743Rb+k7SOl87rZDzNgCx4UYunawVmL++Rpow9lYSDAkhRAByy7Rj9SMMbQxo9VGkycD5E/p4P58+MMAtMrekKG0kR3VNdVDeL9yqZVGU6LQ2rmxDQjYMmg1RyYzMiEPnTgQtOHkQOl2jrJDTCmMvg5ThMPoi/+6lKEeP2f/0mrfQff7MbBQFlu8uZV9Jjf9fi+i2JBgSQogA5JotRNJAH9U95yolsGAI4Iop2riIxCiT98h5oM7c+wi7w29gdPGngb+ZqhJt14IhQ1xgozgaizDp+e2Zw7n6hP6cP75P0yeNETD7d7DwBzD52cIAGs0ry9O6UgNZSVHMGaEFda+vyfX/vUW3JcGQEEIE4GCZhSGeMRzRaRAVeCZndN843rppKm/eOBWDPjj/TOsjEwCIqA9CF+qGKoyqVtcTkRCEYOjgKq2oee833HbyIP544RiMLX3d/h7j9zBFHjevDOCmEwcA8PGmw1TWBaeuSnQfEgwJIUQA8sosbFUH8uGMT+HSfwftfWcNSfGergoGvbsLdYw9CJPaa7X3qFYjiYuNDfz99i2DNc/Dni+bf377f2HXF+B0BH4vgMk3ar/uXQblWp3QCQMSGZAcRYPdRc6hyuDcR3QbfrYNFUIIAXDQXIcLHYmZIyArwPqZEApP0oqEEx2lqKrqf6NEgFpt4GuJGk9ioEfrAdI8J8q2Hv+cywXfPKydBLvwZRh3eeD3SxoEw8/Rtsvcfw6KojAoJYqDZgsFlfWB30N0KxIMCSGEn1RVJa9MG8WR7e8ojg4SlaLVIaVTRnW9g7hIo9/vpdYUowClajyZUf6/j5fneH3xdi340TXatDjwvRYIhcXBiHMDv5fH5W8ft+XWLyESgMMVEgz1NrJNJoQQfvIcq/+j8TWytr8E9ZWdvaQWmRK0zFC6Uo65NrBv9g1JI/iz/Qo+cp5EYlQQMkNJg0EfBrZaqDjmeLun4/S4K7R6n2BpJjPWLyECkGCoN5JgSAgh/HTQbCGOWq7Wf4th+RP+jeHoKDEZuFAwKU6qzIUBvVVZ5EBecp7H57pTiDDqA1+b3gBp7v5MxduOPl5TBLuWaL+fdEPg92nOkRxY/megcTBUF5p7iS6rC//Nbd6LL77IgAEDCA8PZ9KkSaxatarV69955x3GjRtHZGQkGRkZzJ8/n7Kysg5arRCiJ8srq2Oo5yRZXH8ID0IxcajojawLm8VixylU1jYE9FYVFu0kWWKUKbDao8a8Yzka1Q1tfhtUJ2SecDRYCqb6CnjtdFj+JBRslG2yXqxbBUOLFy/mzjvv5MEHH2Tz5s3MmjWLefPmkZ+f3+z1q1ev5rrrruOmm25i+/btfPjhh/z000/cfPPNHbxyIURPdLDMwjCdp/N04P2FQu3Nfg/zW8etFLjiA3of+6ENjFRySY9wBWdhAOnu8RrmPdqvLhdscp/O87fjdFsiEmDUhdrvf3zVmxkqrbHKFPteplsFQ8899xw33XQTN998MyNGjOD5558nMzOTl156qdnrf/jhB7Kzs7njjjsYMGAAJ554IrfddhsbNmzo4JULIXqiXLPlaGaoGwRDSe6RHGUBDmsdtPa3LAn7HScY9gZjWZrRF8OvtxxtT1BbDBGJ2omvURcE7z7H8nSk3vYf4tQaosO0c0Vyoqx36TbBkM1mY+PGjcydO7fJ43PnzmXt2rXNvmbGjBkcPnyYJUuWoKoqxcXFfPTRR5x99tkt3sdqtVJdXd3kQwghmpNbVtcoMxSCbZwgS44yEY6VusrSgN7H1KB1n3YFOoqjsagkbTSHZ9stNgNuW6F1nDZGBO8+x+o3WctKOa0oOW9LEXUv1W2CIbPZjNPpJC2t6V++tLQ0ioqKmn3NjBkzeOedd7j88ssxmUykp6cTHx/P3/72txbv89RTTxEXF+f9yMzMDOrXIYToGbRj9bXdKjM0s/w/7Aqfz5y8v/j/Jg4bEfYKAPQxHdBXKTZ44z6apSgw9ei8ssx4LXsmRdS9S7cJhjyOLdZrrXnYjh07uOOOO3jooYfYuHEjS5cu5eDBgyxYsKDF93/ggQeoqqryfhw6dCio6xdC9AylNVbCbJVEU4+q6CB5aGcvqU2G2FQAoq0BjOSwaFklu6onLDY5GMs6avt/4YPr4MvfQkNVcN+7NaMvgfA4qMzjFP3PgGSGeptu03QxOTkZvV5/XBaopKTkuGyRx1NPPcXMmTO59957ARg7dixRUVHMmjWLJ554goyM43/iCAsLIywsLPhfgBCiRzlotlBBLGdEvs93Nw0AY3hnL6lNYe5eQ/H2ALbJarVAqpQ4EqOD/DWX7IQd7kGym96E6z6FzKnBvUdzTJEw/hrY/jEZEdrIj44OhvLKLPx4sJyLJvZDrwvSCT3hs26TGTKZTEyaNIlly5Y1eXzZsmXMmDGj2dfU1dWh0zX9EvV6rSeGqqqhWagQossorbGyMa88JO+d6+483Tc5DpKHhOQewRaVkgVAimrWTmv5wz2XrFSNJyEYozga83SiBtCbjp4w6win3A93bsU67AKg47fJfv/fbdz70c+s3BtYPZfwT7cJhgDuvvtuXn31VV5//XV27tzJXXfdRX5+vnfb64EHHuC6667zXn/uuefy8ccf89JLL3HgwAHWrFnDHXfcwdSpU+nTp09nfRlCiA5y70dbuPildazdbw76e+eWad8sB3TxMRyNxaVm4lIVjDix1/g5sNU9l6xUjQtO9+nGGgdDYy7t2GxbeCzojZ3Wa2hPcQ0ABbI91ym6zTYZwOWXX05ZWRmPPfYYhYWFjB49miVLlpCVpf20U1hY2KTn0A033EBNTQ1///vf+c1vfkN8fDynnnoqf/7znzvrSxBCdBBVVdmUpxX6Lt1WxIxBwa1vyTVb+LPhZSYUxYH5IUgeHNT3D4X46EhKiCedCmqKc0mMS2//m/SdxN9017DblsDCYGeG4vtDdLoWcHkmy3ewfvHhhGGjtAYa7E7Cg9Fhuw31NifF1Vq7gwqLLeT3E8frVsEQwMKFC1m4cGGzzy1atOi4x26//XZuv/32EK9KCNHVmGttVDdo9R/f7Srh0fMCnNR+jFyzhbP1PxBd2ADqg0F731DS6RTMSjLpVGAx55M4dFq730NNG83zDWfjdKn8PtiZIUWB+UvAWh2ajtNtWft34r97gofCTuJB6/UcqaxnYEp0yG+bX350S668ToKhztCttsmEEMJX+0trvb8/XFHP/lJL0N5bVVXs5XlEKw2oOhMkDgzae4faxvATeN9xCmVKgl+vr25w4HRpNZfxAUy+b1HSIOgzIfjv64uwaBRHPYON2simjtoq89SfgWSGOosEQ0KIHunAMcHP8t1+1sg0o6TGSqYjDwA1eQjoQxAUhMjXyddyv+NWcsP9y7zU7VvLSCWXJJOjQ7aQOlRCNgCZivb/SkcFQ/lljTND9g65p2hKgiEhRI/kyQzFuMcrfB/EYCjXbGGYovUg03XGdk4AkqK01iFmP0dyJH71S5aE/Y4p4QXBXFbX4A6GUhxFKLg67ESZZIY6nwRDQogeyRMMXTFV663z48Fyaq2OoLx3bpmFoTp35+mU4UF5z46SFK2N5LCV+9FQVlUx1GtBpTMqNcgr6wJi+4Gix6jaSKWy4zJDjWuGJBjqFBIMCSFCaldRNd/uDKDjsZ8OlFq4RL+ChUd+x9hEB3anypp9wTlif9Bc580MdYeZZI2Ncu1hV/h8Lt92W/tfbK1G73RnlHpiMKQ3QLwWPPdXSjonMyQF1J1CgiEhRMioqsrN/97ATf/ewO6img67b4PdyaGKOjKVUuKLf+A3sd8DwasbyjPXYsCJitItZpI1ZorXOu/H2v1ovFijBbXVagTRMbHBXlrX4N4q04Kh0GeGbA5Xk95CdTYnDXZnyO8rmpJgSAgRMkeqGrzfULYWdNysqbyyOlQVzIZUFEc9k+tWAirf7yoNSvf5g2V1nGF7mpWX5EB8VsDv15Eik/q5Gy/aoa6dmTLPKA41PvgNF7uK7BOxDTmbUuIoqbGGPDApqKzHpUK4Uecdw1EpRdQdToIhIUTI5ORXen+/t7jjMkOeeqG9SXPAEE5U9X4mG3Mpqm5gV4AZKm1avbZ9kpmWDLru9c9oYmwUpcRpn1S3swjaO5esBwdDJ92L8ap32GiYCMCRytBmh/LcW2TZSVHe8SZSN9TxutffYiFEt5JzqML7+z0dGQyV1DJO2cfFxrXezM2C+A0ALN8d2Oynkhor9XYnep3iHd3QnSRHhVGoJmmfVPkZDKlxwZ9L1oUoitJhYzk8gXX/xEgS3H2bpG6o40kwJIQImZxDld7f7ymubfnCIDtgtjBP/xOXFj0HDu2b2YnW5RhwBHzE/qDZwpOGV/g4/HFMeSuCsdwOlRRtolBNBMBW0c4TZVkzeSv6Rv7nnE5iVPfprdRuqsqI2Aag44Kh7OQoEqIkM9RZJBgSQoSE3elqUidUUFkftKPtbdlfWssQxX30fdovITKZcFsFs3Rb2ZhXQVW9/zUZeWUWpuj2MM61A9TuV+gaadJTomhz2hrK2hkM9RnPG8r5fO2a0nMzQ9YaeLIPzx+6lAgaQn6iLL9c2ybrnxhJovvPVDJDHU+CISFESOwuqqHB7iImzEBytPaPfEfUDamqyv6SWobp3N/o08doE9CBayPX43SprN7r/xH7/JJKBiiF2ifd7Fg9aFtAe8LG8L7jFMxxo9v9ek9TwB5bMxQW4+0o3k8xhzwzlOvJDCVJZqgzSTAkhAgJzxbZuMx4hqXHALC3A7bKSmqsqDYL/RR3wJM6AiZdD2f/hZwxvwMC60bdULgLg+LCaoiBmIxgLLnDbYs7mfsdt3Ig+bR2vc55cA19GvYShs37jbtH8h6vLw5pZsjlUr0NF7OSIr1bj9KFuuNJMCSECAlPMDQ+M54hqVow1BFF1PtLGm2RRadBZKIWEE25mWmjhgBaEbXL5d8Re2P5LgDq44dpU9a7oaRobSRHmaV9IzmUD6/jC9PvGKAUER/Rg2uGOqjXUFF1AzaHC6NeISMu/OhpMjla3+EkGBJChETjYGhomjsYKgl9Zmh/aW2LozImZycSZdJjrrWy/Uh1u99bVVUSavcDoEvrXs0WG0uK0kZy2Ev2+t540WlH5+5L1BCWjEHfg799NAqGQtlryFM83S8hEoNe5916lMxQx+vB/zcLITpLdYPd2+tnfP94hqZFAx1TM7S/1MJQT2aocXdoVcWUs4hPIx8jgzK/tspKaqwMVPMBiMpsf71NV5ESqWd72I1c89NFvjdetGgtCRyqDl1UUghX1wW4g6FsvfY1h6rXkKfHUFaSdoxfaoY6jwRDQoig+/lQFaoK/RIiSI4OY4g7M1RY1UB1Q2i3APaX1vJ3xwV8e8LrMGn+0ScUBbb+h8EN27lAv8avYOig2UKFGkOpkog+bVQQV92xEmMjMbe38aK7x5CZOOKjwkK0si7CHQwNcAdDBaEKhjz1QolaMCSnyTqPBENCiKDbcrgS0LbIAOIijKTFat9AQ11EfaDUQhXRxI6YDanHTJQfdzkAF+pXkXOoot0/geeaLdznuI3fZC6G7BODteQOp/UaamfjxVoteCxV43ruSTKPpCEw/By2xcwCQtdryJMZ6p8UBRw9oVdusQVlbIzwnQRDQoig2+wew+EJhgBv3VAot8rqbU7vT/GDUqKPv2Dk+WAIZ6iugFEcZOWe9nWj9hyDHpAU2W2LpwGSosK8jRepPuLbi2qKAChRE3pujyGP+Ey44h1+HPhLgJCdKPM2XDxmm8zqcFEvw1o7lARDQoigUlXVWzw9oX+89/GjJ8pClxk6YK5lsHKYR8PfIzHvy+MvCI+DYfMAuEi/ut1bZXmlWtF1dnJUwGvtTE0yQ9WHfXtRb8oMufVLiABCkxlqPOPOUzMUZdJjchemV8iJsg4lwZAQIqgKKusx11ox6BRG9YnzPu4toi4JXWboQKmFybo9XM//YOOi5i8aewUA5+rXsnp3Ec52HLGfU/AP1octZGb5J0FYbedJjj6aGVKrfMwMDTqV/6UuYKlras/uMeShqgyMqCeB6pAEQ+UWG7VWB4qCdw6aoigkSK+hTiHBkBAiqDxZoREZsYQb9d7HPUXUoew1tL+0ttFJsha6Qw8+DTUymRSlmjHWjd76praoqkpawwHSlEoSY5vZgutGEiJNFLmDIUelj5mhfpP4OOJilrvGewt9e7QvfsOcL2ZynX5ZSLbJPFuuGbHhTf6eyOT6ziHBkBAiqHKaqRcCGOLODBVXWwOaDdYa7Vi9ewzHMT2GvPRGlHFXsC1qGtVqFMt3+bZVVlxtZTDae8dnjw3GcjuNyaCjwDSQ9x2nUJk9z+fXeZoB9orMUFxfAPrrSiiutmJ1BLeGxzOTLCup6Zart9eQnCjrUBIMCSGCqnGzxcZiw41kxIUDoSuiPlBay1Cd+3RUaitNEec+wa5TX2OTOpTvd/tWRH3oyBHSlQoADGndbybZsSpjBnG/41b2D7zGtxccWEFKzU5M2Hv2xHoPT68hnafXUENQ3z7X3LReyHtb6TXUKSQYEkIETeNJ9eMbFU97HN0qC34RtculUlZaTKpSqT2QMqzlixWFk4emALC1oIqSmra/0VXl/QyAWZ8K4bGBLrfTJbt7BZXV+vBNV1Xh3ct5teE3pCnlPf80GTQKhrTMYbC3yo7OJGuaGUqIlJqhziDBkBAiaHYX1WB1uIgJNzAg6fgTV0NTta2yUNQNFVY3kOnIA0CNy9Smj7ciJSaM0zKsXKRbyQofskOOou0AlEcNCnyxXUBStIkIGrCX7IaGNkaTWGvAoRURm3vLabKEAQAkqeWEYw16EXXuMd2nPRK988kkGOpIEgwJIYJmc6MtMp3u+D483l5DIThRdqC0lsHuLTKltS0yj9oSXqm4iWeN/yJn2/Y2Lw8v3w2ANWFoQOvsKpKiTbxn+iMXrD4fDq5s/WJ39+kaNQKrEk5seC/YJotIgDAtA9hPKQ1+Zqis9W2yCoscre9IEgwJIYKmpeJpD08RdSi2yfaX1PKe81Tu7f8+nPFU2y+ITsWSPhmdopKS+yl2Z+sDS3faU1nvGo7Sb1KQVty52tV40R0MlajxJESamg10exxFgYQsIPjT62sa7JS5t8FaKqCWmqGOJcGQECJocg5pBcZNgqHaUijVsiqemqHSGiuVQd4GOGC2AApJGQMgebBPr4marBUPn+Vawabc8havc7lU/lp7GpfbHiJqwiXBWG6nS44+ery+zflkjeaS9YqTZB6jLuLg4OspVJOCGgx5mi0mR5uIDjM0eS5B5pN1CgmGhBBBUVVvZ3+pVgfhDYacdnj9DHhpJpTtJzrMQN94ratvsLND+0u19xuU4nt3aN2o87ErJobqCtixeXWL15XUWGmwu9DrFG9X4u4uKTqMI94u1G0EQzVaMFSqxveOHkMes+6m5pTH2KlmBXWbzFM83T8x8rjnJDPUOSQYEkIExdbD2imyzMQIkqLdU823fQzl+8FlhwPLgcZbZcGtGyorPsLLxr8w89DL2uknX0TEU5IxG4C4vf9p8bK8wmIiaSAzIQKjvmf8s5kU1Tgz5Ps2Wa8onm7EE7wHs9fQ0eLp4wP3hEZ9hmRYa8fpGX+rhRCd7ugWWYL2gMsFq//v6AWH1gOhGdhaa3WQYNnHXP1G0vI+a9cQ1bgTrgVgVsMKjpQ3vybjlnfYEX4jDyuvBGW9XUGTzFBVG12oh53FqgG/ZplrUu/aJlNVEqlmnFH78wlWr6GWiqfh6Gkyu1Ol1uoIyv1E2yQYEkIExXHNFp02bShqmHs+Wf4PAAxJDX4R9cFSC0PcYzj0vpwkayR69JlUKbFE0kDOxh+avUZn3qn9Gp0S2EK7kMY1Q2pNoRa8tqT/CXybcDnrXKN6R8NFj/IDKM8O5n39HwCVgiDVDbV0rB4gwqQn3Oge1ionyjqMBENCiIA1nlTvDYaM4TDnYfh1DqBATSHUlYfkeP3+0lqGeWeStS8YQm/kq/F/Y7L1JT4pTGj2ktjqvQCoKe187y4sNtxImS6R9x2nUDvl19pWZis8Bb29ouGiR1wmoBCBlWSqg1Y3dDQz1Hx9m/Qa6ngSDAnRCzz4yVYWvLWxzePj/jpcUY+51oZRrzCqzzHdmSMT4dbv4f5DEJnIYHdmyFxrC1qR6IHSWobo/AyGgJGTZ1NPOGv3mY+vC1FV0q25AERkjglwpV2HTqcQGxXJ/Y5byRtzOxjCWr5437fEVmzDiKN31QwZTBDXD4D+SnFQTpQ12J0UVmvbbVnNFFBD07oh0TEkGBKihztUXsc76/NZur3Ip07L/jhuUv33T8H+748WMveZoGWKgKgwg/dEVrCKqPeXNJpW39KA1laM6hNLSkwYFpuDzXvymzznqsgnknpsqp60rO4/k6wxT6F7WWtBqdMBb1/M48W/Ig5L76oZAu9YjkylJCiZocMVdagqxIQZWgwsvcNa5URZh+l2wdCLL77IgAEDCA8PZ9KkSaxatarV661WKw8++CBZWVmEhYUxaNAgXn/99Q5arRCdb+XeowHQJ5vbOELtpyZbZMU7YMWf4K0LoTKv2euDXURdUXKIeMWCqugguf0dohVF4bp+JSw13U/alzc1ea4yX5tJdlDtQ9/kuKCst6tIjjYRjhVr0S6oauH/jTozoOJERzkxvetoPQS98aJnQGv/pEiUFgr9PVuRcry+43SrYGjx4sXceeedPPjgg2zevJlZs2Yxb9488vPzW3zNZZddxrfffstrr73G7t27ee+99xg+vP0/OQrRXa3cczQYWrazmKr64BdlNgmG1vxVe3Dked6fqnFY4Yt74OVTwFYX1E7UTpeKozyfetWEIy7bm4Fqr9HDhjBcd4ismk1NAoOa/K0AHDZm95hj9R5JUSZ+a3ifud+dAz++3PxFNUUAlKlxuND1rm0y8P4/HKxgKM/dYyi7hXohaJQZkm2yDtOt/mY/99xz3HTTTdx8882MGDGC559/nszMTF566aVmr1+6dCkrVqxgyZIlzJkzh+zsbKZOncqMGTM6eOVCdA6708XafWXM13/JQ+Hv43A4+HJrYdDvsc09qX5yXC1s/VB7YuadRy/Sm2DX53BkMxRsZGiqZ3p94JmhI5X1/OgYxHjHInQ3feX3+0waP571ruHoUKlY/4738YP6bBY7TuFg/AkBr7Wr8anxYq02tb1E1bJivW+bTBvY2l9XQnFNQ8C9hvLcJ8n6N3OSzHtLb2ZITpN1lG4TDNlsNjZu3MjcuXObPD537lzWrl3b7Gs+++wzJk+ezNNPP03fvn0ZOnQo99xzD/X1LUf3VquV6urqJh9CdFdbDlWit1bwsPEtbuQzbtB/xcdB3irbVahNqo8NN5C5+zVQnTDwFOg78ehFigKZ7mDi0A+NTpQFnhnydJ7OSo5GH5Pq9/vEhhvJSThD++Tn9731Tut0E/it41YOZ10U8Fq7mqRoHxov1nq6T8dh0uuIMuk7aHVdRPpY1BMW8F9mo6pQGGCvIc8ojuzWgiF3+wKpGeo4hrYv0fz888/tfvORI0diMPh8i1aZzWacTidpaWlNHk9LS6OoqKjZ1xw4cIDVq1cTHh7OJ598gtlsZuHChZSXl7dYN/TUU0/x6KOPBmXNQnS2lXtKOUG3y/v5vYbFnJE7kUPl48hs4SRLe3maLZ7YB5RNb2kPnnjX8Rf2nwY7/gv56xk87W4URauJMNdaSY5u5SRTGzwjQAalRPv9Hh7GMRdhXfUiCbX7oehnyBhHrll7/9a+eXVXyVE+NF6s1f59LVETSIgytljn0mOlDEWZ92c27FwBJbUcrqgnO9n3kS/H8maGElt+jwQ5Wt/hfI5Uxo8fj6IoPrcH1+l07Nmzh4EDB/q9uOYc+xdRVdUW/3K6XC4UReGdd94hLk5L8T733HNccskl/OMf/yAi4vgZQw888AB333239/Pq6moyMzOD+BUI0XFW7DVzvm6n+zOFMMXBNN0OPttyhF/O9m2YaVs2u+uFrtN9BY567eTYgJOPv9CTGTr8IxEGhcyESPLL69hTXBNYMFRSwyemhwivyAbLyxCV5Pd7zRw9iGUrJnKOfj2Oze9hSMhGKd6OiTiyAvgG2FU1yQx5Gi/qjtkwcG+TlRLXu3oMHaNfQgR7S2oDOlHmcLq8dUfZyS0H13KarOO1K22zfv16UlLa7sCqqiqjR4/2e1HNSU5ORq/XH5cFKikpOS5b5JGRkUHfvn29gRDAiBEjUFWVw4cPM2TIkONeExYWRliY//8wC9FVVFhs/Hy4kqeM7mBozsN8Vz+MD75VGbTpMAtPGRSUn/I9xdPR/cdAwzAtK9Tc+6aPAWMkNFRB6S6GpkWTX17H3uJaZgxK9vv+VcW5TNDtw1WeC2Exfr8PwNC0aF4Lm805jvU4f/4QXf8T+GftHeSYBhKf1PIg1+4qKTqMYhJwoaBz2qCuDI7tsj3qQrZZ4li+KaL3FU971JVzQlge27AGVERdWNWAw6ViMuhIi2m50F8m13c8n2uGTj75ZAYPHkxWVlabH9nZ2Zx00knNZl78ZTKZmDRpEsuWLWvy+LJly1osiJ45cyZHjhyhtvZoXcKePXvQ6XT069cvaGsToitas9+MqqpsC58IGeNh/NWcMOt0wgw69pda2Ooueg5EVb2dA+5tqowZV8HCH2D4uc1frDdC30na7w/9wJC04BRR6827AbDFZWtN8gKgKAphI85gseMUPuzzWyyHtZNk+9V+PWZafWNJUSYcGDCr8doD1c1slWXN4Kc+V7NBHd77iqc9PrudBXtu5kz9TwFlhnK9W2SR6HQt/yBy9DSZHZdLhrV2BJ+Doe+//574+Hif33jJkiVkZGT4s6YW3X333bz66qu8/vrr7Ny5k7vuuov8/HwWLFgAaFtc1113nff6q666iqSkJObPn8+OHTtYuXIl9957LzfeeGNQAzUhuiLtSL3CnrH3wW0rIDqVmHAjc0elM1g5TM1nD/g+3b0FPx+uBLR/3JOiw7QtlmO3WRrrPw3i+oOqMtR9vH5vAMfrqxvspDYcBECfPsrv92nspBF9+a3jVl4uGoK1UMuqlUQMxNDDjtWDtk0G8KZjDtYTfwuRzW8xerZrel2PIY8gHa/3pXgaID5SK6B2ulRqGmRYa0cISnWz0+lk69atZGVlkZDQ/GyfYLj88sspKyvjscceo7CwkNGjR7NkyRKysrSmWIWFhU16DkVHR7Ns2TJuv/12Jk+eTFJSEpdddhlPPPFEyNYoRFegqior95gBmDW06bbHpaPjGL/rEWJL6nBsmoFh0rV+3ycnv5IzdD9xWrQK9mlgbOOHjJPvh1N/D8AQd2Zqd3FNq7V/rTlQamGYcggAY3pwukPPGJSESa8jv7wO1aUFQ3Xx7W/k2B1EmgxEmvT83XYhl044haz4Y+qiVBX2fk24uRo9Yb03MxS0YKjt4mmAcKOeKJMei81JeZ2NuMheNBy3k/j1o86dd97Ja6+9BmiB0Mknn8zEiRPJzMxk+fLlwVzfcRYuXEhubi5Wq5WNGzdy0kkneZ9btGjRcfcfPnw4y5Yto66ujkOHDvGXv/xFskKix9tXUktRdQPTDHs5oW/TGrgZI7N5XXcxAOrSB6Da/75DW/LLudewmMtKnocNPnR21x/9+WtwajQ6RdtqK62x+nX//SWNZpL5MYajOVFhBk4YmMgwJZ8Ud9ZJSe1ZYzga82SHzLXN1KfYauHdy1i452bCsJPYW78pNwqGAuk15M0MtVI87b1lVMd2oXaEaG5hd+FXMPTRRx8xbtw4AP73v/9x8OBBdu3a5e0OLYToXCv2lBJLLe8aHiH8LwOhrtz7nEGvo2r8reS4BmG018Dnd/m1XaaqKnGHvmGw7ggOUwxMaEeGyeUiXG2gv/t4v7+dqPeXVDNEcfdNCmLAcvLQFObrl3o/T0zPCtp7dzVJUWGEYaOucCeU7Gz6ZI3WY6heiaCOcMkMKSWoqup3ryFPMNTfh7YWHXmi7PXVBxn9yFdsyC1v++Ieyq9gyGw2k56eDmi1QZdeeilDhw7lpptuYuvWrUFdoBCi/VbuNTNFtxsdqjZbKTKxyfMXTurPvfbbsKl62PMlbP2o3fc4XF7HtY7/aJ9MvgXCY1t/gcePr8DT2fD9kwEXURcXF3FITcWuj4TE4LXxmD08lb84LuWAK53XHPPIDkIPo64qOdrEXN0GZi2dB5/f3fRJd8PFMkUrf+i1p8niMgGFKKWBRGr82ipTVZW8ck/PqrbbNHRkr6Hvd5fQYHex/qAEQ+2SlpbGjh07cDqdLF26lDlz5gBQV1eHXt/LupMK0cU02J2sP1DGNE9/oewTj7tmTN84XMnDeMHh7qr85b3efjK+yt+8jPG6/VgxYZjxC99fGBarHa/P/+FoEXWJf8HQz+V6zrT9mbWXbmqyBReogclRRCT25VTbczzuuNanb17dVVJUGIXeLtTHdCdv1H0a6L19hozhENsH0LJDBZXtP1FWUmOlwe5Cr1Po68PJRE/gWdkBwVBxtZbpMtf6t13dE/gVDM2fP5/LLruM0aNHoygKp59+OqD1IZIhqEJ0rp9yy7E6XJxo1I6ck3V8MKQoChdN7Mc/neeSaxgE9RXwQ/Mz/lqS9vOLAGxJPgei2zEGo7+7+WLhFoYnazUo/myTOZwu77bDwNTgTpNXFIXZw7TCc4NO6ZHH6j2Sok0UerpQexoveriDoUKnlvXrtZkhgBm380WfOyhSE/zKDHn+X+0bH+HTwN+OnE9WVOUJhnpvXyO/gqFHHnmE1157jVtvvZU1a9Z4mxTq9Xruv//+oC5QCNE+K/eUEkMdw1St+Jfsmc1ed/74PjgwsLDuJqpnPgiz21HvV7iFwdXrcag6Ksbf1r4FxmdBdDq47IxhP6Btk/na3d7jcEU9NqeLMIOOvvHBD1ZOG6E1cx2cGt0jj9V7NG68iNMGdeajT7qDoWJXPNCLM0MA037BoWE3UESSX8GQp8dQlo9jXRI7aD5Zvc1Jtfv4flkvzgy1O69st9uZO3cu//rXv7j44oubPHf99dcHbWFCCP+s2mtmsm43OlyQOMib3j9Wv4RIpg5I5MeD8LZxGAvbsc1kw8hK1yRq1HDGDx/TvgUqipYd2vEpfWt+RqeMoKbBQXG1lfS4lrvyHmt/aS0fmB4l3uhEV5QBfca3bx1tmDUkmecuG8ew9MC6Wnd1ydFa48UqXQIJrnJtq8yT6fOM4lDjiTDqiehtQ1qP4ckQ+tN4Md+dGfI1GPKeJgvxNllR9dFicNkmawej0ci2bdt637A+IbqB4uoGdhXVMF23Q3ughayQx0UT+gLwyaYCLTNjb4Bt/2nzPrucfbjZ9hueMNzu3wDTzGkAGAvWe+tx2ltEfbCkmrHKAYY69wU8hqM5nq3EUX2CuwXX1SRFaZn9YsW9VdZ4ev24KyiY+ntWu0b37i0yAHs9Qxz7mK7bHlhmqI0eQx6eBpehzgwVNwqGymSbrH2uu+46b58hIUTXoXWdhpzk8+DMP8PYK1q9ft6YDEwGHXtLatlxqBRemQ0f3Qi7v2z1dZ55ZKMzk/z7wchTN3RoPUNTPcfr2xcMVRTsJVyx49CFeY8+i/bz9BkqcLqLqKsaFVEPOIk9A6/nZ3WQBENF2xj22bk8Y/wXRdUN2Bzt68uTX941M0ONg6HyOluv7Tfk1/ELm83Gq6++yrJly5g8eTJRUU0j3eeeey4oixNCtM/KvVq9x8ARE2DasDavj4swcvqINL7YWsjHP5sZNfg0KNmh9R7qPx0i4pu+oLYEVj1HbtlsAMZnxh/3nj5JHwuDToU+ExlhC2Mp7R/L4XL3xKmNGUi8rndv3wTCEwx9Yp/K7Dmnous3ucnznqZ/vbbHkEeC1muqD2UYVAeFVfVkteOUYa7ZUzPk22sSOigz5CmeBq3dWEWdnZSY3jes3K/M0LZt25g4cSKxsbHs2bOHzZs3ez9ycnKCvEQhhC9cLpXVe7XM0EnHjOBozYXurbJPc47gOOkBrc6ophC+bqag+oeXYP1LXHDwESCAYEhvhGs/gdP+wIA+2lr3tPN4fXTVXu03Qeo83Vt5tmM+d06nfMpd0Hei9oTLCbu/RF+0GR2u3tt92iMqBYyR6BSVvkppu7bKKuts3iJlXxouAiS4C6gr6+04QzistXHNEPTeuiG/MkPff/99sNchhAjQtiNVVNTZuSTsRyaWlULS3BaLpxs7eVgKCZFGzLVWVudZOOX8f8Ab82Dz2zDqIhh8mnZhQxX89CoAf6s/E4Bx/gZDjQxzN17cV1zr84yyCouNfo480ENkv9EBr6E3M+h1JEQaqaizU1ZrIznanRWwmOG9KzgPHXfzpmSGFEXbji3Z4Z5R5nsRtedYfVpsmM9F6J7MkKpqI2tCtU1ZfEww1FvrhnrueVEhehlPvdDC8KUYPv81HFzp0+uMeh3njtOCpk82F0DWdJh6q/bk/34NVnfGZsMbYK3GEjuIb1wTyUqKDPwf6LpyBlb/iEGnUGN1UFjl25iDA+ZahiraTDJTRnCm1fdmSdFhGHBQV7AD8tZpD9YWab8Y4nGh670T6xvzc2Bre4unQft7GROu5StCOZ+sqEoyQ+BnMGSxWPjDH/7AjBkzGDx4MAMHDmzyIYToeCv3mominmybe/soq/WTZI15tsq+2l5ErdUBcx7W+gFVHYLvntBOmf2gNVlck34tKjr/t8g8rDXwzCCM717E+ETtH3tfi6j3l1rYp/ahyNAHUkcEtg5BUpSJVCqZ8L+58O9ztcaL7mP1lTqtsLrXZ4bAGwxltjMYau+xeg/vfLIQFlEXV2vBj6dtQG8NhvzaJrv55ptZsWIF1157LRkZGXLMXohOVtNgZ1NeBTN1e9CpTi2Qic/0+fXjM+MZkBzFQbOFr7YVcfGkfnDeC7D6eZi2ELa8pzXgi+3Hh9YTgIrAg6GwGEgZASXbOT0mlw3mIewtruWUYW13s95fWsu/7Hdw/eQsHpWTZAFLjg5jI/GoKCguu9Z40TOXjHigl3ef9miUGfqmHdtkuX4GQwmRJvLK6kKWGXK5VEpqtMzQqD6xHK6o77VdqP0Khr788ku++OILZs70/SdPIUTorNtfhsOlckbMXrDT7Dyy1iiKwoUT+vLcsj18srlAC4YGngIDTgbVBWv+CoA6/Zds/EZL+QccDIF2xL5kO5OUPcAQnzNDB0q1NQzswQNUO1KSu/FirTGZGHspVB2GGm2brMjVy+eSNZY9i4IT/sC/V6ntywyVt+8kmUeoJ9eX19mwO1WG6g5zS8NS1nFir+1C7dc2WUJCAomJiW1fKIToEKvcR+q988jaGQwBXDBe2ypbs998tI5AUcDRACPOhfj+HB5wGeUWGya9jpF9fJxS3xp388VBDdsA2FPi2/H6wyVlgMogCYaCwtN4sdKQrD1QfcS7TSZzyRpJG0nYrNv5wTWyXb2GAskMQeh6DXn+nn9m+j2TC97k94Z3eu02mV/B0OOPP85DDz1EXV37W5IL0W2pKljKtF+7mJV7S4mkgX71u7QH2lEv5NE/KZLJWQmoKnya06jxnikK5j4Ot29mU5H2D+WIPrGEGYLQ28fdfDG+cgdh2Njnw4wyu9PFr6qeY0vYLYwqWxr4GoS311CJrnEwpGWGDtm1036eo969XVKUiXCjDlWFwqq2s0N1NgelNdrfm/YUUMPR+WSVdaEZ1uo5SRaOFmxN1e2iLMR9jboqn7fJJkyY0KQ2aN++faSlpZGdnY3R2PQvyaZNm4K3QiG6iOL/PUrapv+jpO/ppFz+N5TYjM5eEgB5ZRbyyuo4QZ+Horogrr+3QVx7XTixLxvyKvhkcwG3nTyo6ZN6g7fz9IRgbJGBd2irUlvERMNB1tmGUVBZT7+Eln+Czi+vY4hyiDilDjWx7foi0bZkdzBU6HJn/KsPw6T51KVN5oel2rcJ2SbTKCU7uTJqE19UZnG4ou3Gi55j9fGRRuLa2avJ24U6RAGKp8fQ3rBRDLFup4xYzDUdnBnKWweWEsgY7/e/W8HgczB0wQUXhHAZQnR9/9ifxGNAasEyav9vMqUzHmLAnFu1raRO5Ok6rfafjnLtAe0EmJ/OGdOHRz/bwa6iGnYWVjMio+lWmCcYCkq9EDQZ2jon6iDrqoaxt7i21WDoQFE5pyha1kKRk2RBkeTuLZTvTNAeqD4Cg2ZTGDuFnV+uICbcgFEvnVgA+OI3PNywllLd7RyuOKnNy/O8W2TtywpB6OeTFbu3yTamXcKQ/O3YMWC22Hzu9xUUP74M2z+GuX+EGb/qmHs2w+dg6OGHHw7lOoTo0nYVVfNm8UA26P/E04aXGc0Botfcx/aNi4m4+O8MHDKy09bm6S908tAUiEzUPvwUF2nk1OGpLN1exCebC5oEQzaHi+1HqoEgBkMAk26AwaeTuzUJqlT2FNcwe3jLGZ+y/F0YFScNukjC4/oFbx29WJI7A7HSOpSFs38HfSYAR78JS71QIwnZkL+W/koJBT4UUed5ewy1f6BxqOeTeY7VG+L7Qj6kUoHN4aLG6iA2vIO2Rd2F+nRypj3gUH/v3r18++237Nu3LxjrEaJLWvyTlm3pP3wqSXeuZEn6L2hQjYxq2Eja26ew+OUnKahs/yTrQNmdLtbtLwPgpCG+j+BozYUTPeM5CpqMAdhZWI3N4SIh0tjuQtBWDToVJl5Lct8hAOxpY0aZvXA7ABVRgzo9K9dTeDJDP1izaZh5Dww8GXYtwXFoA6DKFllj7ew1lOce0Jrtx9+ZUJ8mK6puIIkqBjpzAUhWtB92OrILtbVCa56a74jvsHs2p13B0J/+9Ce+++47ACoqKpgzZw7Dhg3j9NNPZ9iwYcybN4/KyspQrFOITmPL/4nMjX+mn1LC5VMzyUiI4awFf6L46m/ZEz6WKMXKutwaZj+7nD9+sSPkgxUb25RXQa3VwemRexj99RXwwz8Dfs/Zw1KJjzRSXG1l7X6z93HPFtm4zPiQpNCHpmknw/a2MaMsrFw7MWdPHBr0NfRWseEGjHrtv2mZxaYdrX//SiYtvw5QJDPUWDu7UHsyQ/392CbzniYL1TZZdQOTdbuZuP1JSMjmvKi3gQ5svKiq6N2F+p8d6NyDKe0Khl566SWSk7XTBvfddx/l5eVs3LiRuro6Nm3aRGVlJffcc09IFipEZylZ9ldu5FPuj/i0SfYla+g4ht63gv1zXqGw/7nYHC5eWXWQ659+m5e+3UmdzRHytXmO1F8Svw8lfy0c2Rzwe5oMOs4eo6WsP9l09FRZ0OuFGivdw+TiD5iu287e4lpcLQymVFWVxLoDAIT1kTEcwaIoivd4fe3hHfDzYgAsJu3fe8kMNdIkGGr7RLWnZiiQzFB1gwO707dj/O1RVN1AhlKufZIxjsTocICO6zXUUIlO1f6djEzq3C3vdgVDxcXFxMVpDbi++eYbnn/+eSZMmEB4eDjjxo3j73//O0uWLAnJQoXoFBYzaYe049tVo69HrzsmI6LTMejEy3j/tum8MX8Kk1MVXuVRTlpxObc+/TrvrM8LyT9iHivdU+onqdrWkT/9hZpzkXurbOn2Im9QtyWUwdDP75Oy+iEuMaym3u5sccux3GLjB/tglrvGET9kWvDX0Yt5jtdnf34FrPgzADV6rf4sUY7VH+UOhvooZszVta32GrI5XBxx/7/c349gKC7C6N0JDvbx+ga7k8o6O+meYCi2r3dIb2lHbZNFJHBNxv84oeHvJMXFdMw9W9CuYCgrK4tt27TmaIqiYDA0rb/W6/VYLJbgrU6ITla55nWM2MlxDeSkU85o8TpFUZg9LJUPLkog3qQySpfHIvtvqfzf7zn7uW/44ufCNvvntFe5xcbWgirCsZJUpf29JDs4XeEn9k8gKymSOpuTr7cXU1Vn54A5iJ2nj+VuvniCQZur1lIn6v2lFl51ns3vox4hbKB0wA8mT91QbXia97FynXa6TOaSNRKdimqIQK+opFN23KDTxg5X1OFSIdKkJ8X959seep1CXIQWiAZ7Ppmnx1BfXYX2wJ6l3F72BCfrtnRoF+qiWgfFJJIWG95h92xOu4KhW265hXvvvZd9+/bxq1/9invuuYf9+/cDcPDgQe666y7mzp0bkoUK0eFcTpSNbwCwPukiMn04DaLLno7p1xtwjjgfg+Lil4bPeKnmDl5/7z3O/8cafsotD9ryVu8zo6pwQVKBNk8qti8kDAjKeyuK4u1I/fHmAnIOVwJaqj8+FFsmmVMA6Oc6QhJVLRZRHyjVHpfO08GX7A54qoxHt4LNqrYTIBPrG1EUlLOf5aHwByhXY1rdKvMUT/dPjPS7zi4xRHVDniAu01CpPVBVwJiq7xmp5HVoF+oS94m21Jj2B4vB1K5g6J577mHOnDmMHDmSV155hc2bNzN06FDCwsIYPHgwtbW1/O1vfwvVWoXoUM49y4izHqFSjaLvrKt9f2F0KvrL34TL38YVlcYgXSEfmh7jwqIXuPqVtU2KkgPhOVJ/TpxWQ0PWzKCervJMsl+9t5RlO7Qix5BkhQAiErShrcAk3R72tpAZKjxyiHhqGJjS/mJU0TrPNpnZ04UaKHTFA5IZOs6Ea8hLPZVaIlstos4ze2aS+X/6MiFEJ8qK3c0VvdtkfScBkKaUd9hpMuuGd/ij63nO0v1AanfKDAG88MILbNmyhRtvvJEbbriBm2++mQceeIClS5fy448/kp6eHop1CtHhKle+CMCnyqnMGeNHZ9QR56L71XoYfw06RWVYvAubU+G2tzb6PJC0JaqqsspdLzTGvlV7MEj1Qh7ZyVFM7B+PS4X3ftRaC4QsGALvaI5Juj3saeFE2ZCDb5MTfhuXlgV+ak405dkmK1KTvI8VuEdxyGmy4/VLiADwKTOU7cdJMo9QzSfTGi6qJLncP5z1nQhAmlLRYZkh68F1nK9fyyjjEaLD/JobHzTtuvvXX3/N7NmzGTFiBCNGSOdX0YO5XORYkpmsRlI16lrCjX7O4YpIgAv+AWMuYWLyaCa/u5cNeRXMf+MnPlk4w++fhvYU11JcbSXcqBCd3Adq4oIeDIGWHdqUX+ntNzS+f0LQ7+GVOQ02LmKybg//V6KdKNMdU7AeX6v1MwtPyQ7dOnopT+PFQ86jTTvX2gYCcprsOLUlnORYR4mukMMVfVu8zHOSzJ/iaQ9P8XqwM0NF1Q3ocfHlgN9x3gDVWxierlR0WGbIWaWdVm0I7/yxOu3KDC1YsICUlBQuv/xy3n33XekpJHosc52dBeZLmGJ9idNnTQ/8DQfNJjwuhVeum8yA5CiKK2u48d8/YbH6d/zes0V2woBkbUvuvoOQODDwdR7jnLF9vP1nTHodIzJCeOLDnRkaoeTjtNs4dMxP3FaHk36OPAASssaGbh29lOck0UGbViekxmexpUHL9Etm6BgFGzlj+7382vBx69tk7h5DAWWGvPPJgnuarKi6ASd6SgdeCLN+o80JBFKVCko7KDOk1BQCYI9Ma+PK0GtXMHTgwAFWrlzJmDFjeP7550lPT+e0007jhRdeIDc3N0RLFKLjfbKpALtTZUS/5OPmcwUiwXaEL1Je5LmIN9hWUM2v3t2Ew4+j954j9ScNdRe76vQh6cacEGXilGHaT20jgzWpvsWbDYAbvuCqhHewYziuiDq/qIz+lAAQL8FQ0HlqhrY2pMLsB6mZfi8AOgXviSbh5kOvIadL5VC5+1i9H6M4PLzzyUKyTQbpnux0jBb4plJJbYONBrszqPdrjqle+/usxPYJ+b3a0u6aobFjx/L73/+eH3/8kQMHDnDppZeydOlSRowYwbhx43jooYfYsGFDKNYqRIdQc9ew/YelgMrlU/oH980tZiIPfsV56vdMNh7k+92l/OHT7e06dt9gd7L+oFb0eGq/0Hdtve2kgcSGG7h0coiboikKZJ9IVrpWwHtsXVXpwZ/RKSpVSixKdOen1XsaT83Qgbow1JPupSj7AgDiI03H99fq7dxZlFiljrpqc7O9hoqqG7A5XRj1Cn3iI/y+lbeAOsjBUFF1A4OUAoZUr4OKXIhOQ0X775xAbci6Xns57UTYtH/HjPEtbzV2lIBmk/Xp04cFCxawZMkSzGYzf/jDH8jNzeXMM8/kySefDNYahehQli8e5Pm6B7jR9C3njgvy8MB+k2HsFQC8mvIhiqLy3o/5vLRiv89vsf5gOTaHi6xYHdlvTYP/GwO1pcFdZyOTsxP5+ZEzuPoEP4rI/TA0TduKO/ZEWd1hrZdSacRAmUkWAp6aIbtTpbrB4f1mmBApWaHjmCJRo7WtnX6UNNtryHOSLDMhMqBgMhST61VVpaTaynn6tQz9Zj6s+SvojSj37uMk02LKiQ19EXVNEQoqNlVPTGI32yZrTVRUFJdccglvvvkmJSUl3HLLLcF6ayE6zpEcoks3Y1P1qMPPJSYUk5vnPAzGKOLLc/j3pFwAnl66m09zClp/nZunXujKviUoTis4rRCV3Maruon6Ss458gJvGZ9kT1HTYEhn3qVdEj+kM1bW44Ub9d4TPWW1VplY3walja0yz0myQIcah2JyfUWdHZvTRQae7tPubaqoZBJjPCM5QpwZspTiQkcJCaTG+Z85Cxa/z7JZLBZWrFhBfn4+NtvRPzRFUbj99ttJSQnOBG0hOpJ9/asYgaWuqZw1Y3xobhLbB2bdDd89zkl5/+AX09/mpXVF3Pvhz6TFhjNtYFKrL/cEQ6eG79EeyD6x52RKjJFkHlhMlr6BP5r34HTN8v5Uvco+nHzHXMZkze7kRfZcSdEmaq0Oyiw27zdfOUnWgoRsOLS+xYGtuWWeHkOB9cQ6Ork+eAXUxzVcjD26TXV0JEeIM0N9J3JG9EeYzSW8GNO5PYbAz2Bo8+bNnHXWWdTV1WGxWEhMTMRsNhMZGUlqaiq33357sNcpROjVV6Js/RCAb6PP5fmsEB4jn/4r2PRvqMznvugvyR09jy+3FXHrmxv4eOEMBqc2f2qrsKqevSW16BQYYMnRHszqQWMpDCaUvhMhfy1j1V3klVkYmBKNqqp8VDWCGscQvh5/UmevssdKijKRV1YnmSFftJEZyi8LTmbIs01Wa3VgdTiDcojBM4qjj64CXECMuxxg28fcVbGIVP0wymqHB3yfthTVOKghltTYzu0+DX5uk911112ce+65lJeXExERwQ8//EBeXh6TJk3i2WefDfYam3jxxRcZMGAA4eHhTJo0iVWrVvn0ujVr1mAwGBg/fnxI1ye6sS3vYXA1sMuVycgTzvC7fb5PjOEw948AKDs/5f8uGcXE/vFUNzi4/vWfKKlpft7Rqj1ag7SJfaMwHnEfVMieFbp1dgKlvzanbLKyx3uirLTWSo3VgU4J/JuLaJmniNpca/Me5Zbu0y0YeQFLRz3Ny86zOdzMYOHcIAVDMeEGb3Y0WMNai9zBUIrqbrjoyQyZ9zK+ZgUTlL0hrxmqszmocbcW6ey5ZOBnMJSTk8NvfvMb9Ho9er0eq9VKZmYmTz/9NL/73e+CvUavxYsXc+edd/Lggw+yefNmZs2axbx588jPz2/1dVVVVVx33XWcdtppIVub6OZUFdu6lwF413U6F03KDP09R5wL578It60kPDycV6+fQnZSJAWV9dy4qPkeRCvcR+ovTS8GRwNEpUJyD6uhcQdDjcdy5OXlMV7Zx9AEJbTH+3u5ZPfx+rJaG+UW7ZuhzCVrQdpIbEPPJVfNOG6bTFVV8t3bZP0TA9sm0+kUbxF7sE54FVU1EEU9kao7oxXrzgy5j9enKZUhH9Zq/e5pXjD+jZNNuzq9+zT4GQwZjUbvT81paWneYCQuLq7NwCQQzz33HDfddBM333wzI0aM4PnnnyczM5OXXnqp1dfddtttXHXVVUyfHoTmeaJnqj5CbYOVWjWcyiEXktIRQwMVBSZcDUateDAxysSi+VNJjDKxraCa29/b3KQHkdOlsmaf9pPcicad2oPZwZ1H1iX004a2DtIVcuTIYQDsu5by37CHeM71dGeurMdLitL+vy+zWCmvk8xQWzwjOQqOCYbMtTYsNieKApmJgRcHJwT5RFlxdcPRmWRhsRDm3pZ3F1KnK+WYQ1xArc9dwXn6dQyNCGw0UbD4FQxNmDDB20to9uzZPPTQQ7zzzjvceeedjBkzJqgL9LDZbGzcuJG5c+c2eXzu3LmsXbu2xde98cYb7N+/n4cffjgk6xI9gzUqnTm25zjf9jgXnhD6vfLjuJyw9SOyE8N59frJhBl0fLerhEf+d7QH0daCKirr7MSEG0gbOwem3gYjz+/4tYZaZCK1sYMBCCv6CQClVAv+amN7WBasi0lqlBk6WjMkR+tbMrB8FTfrv8BeVYS90Q8u+eVaVqhPXERQMpnBnk9WXN2AWY3jh3FPwumPHn3C03ixA+aT6Wq14c/2qK4xz9Sv3NSTTz5JTY0WzT3++ONcf/31/OIXv2Dw4MG88cYbQV2gh9lsxul0kpbWtB9BWloaRUVFzb5m79693H///axatQqDwbcv1Wq1YrUe/Z+gurra/0WLbmPZjmLK652YYgcd7ercUVQV/n0e5K0GWy0TJ93AX68Yzy/e2cTbP+TTLyGSBScP8p4imzkoGcOASTAg+LPIuozMEyjcVk5tVSUOp4uoqr3a46mdEKj2IkdrhqyN+gxJZqglcasf5/fGPey09aeoqoFMd6fpvCDVC3kkBHk+WVG1lSqiqR85G4Y1amDqLqROUaqpqGl5AG3AVJWw+mIAdHGd33AR/MgMqapKXFwcaWlpOBwOUlJSWLJkCdXV1WzatIlx48aFYp1exxa1qqrabKGr0+nkqquu4tFHH2Xo0KE+v/9TTz1FXFyc9yMzswNqR0TnKt7Of37Umh5eOrlfx3fbVRQYfrb2+28fh4YqzhydwR/OHgnAn77cxWdbjnin1Hd4sNYJIs//C6e6XuQjx0xyy+pIsx4EIDozNJlnoUl2b4mVWWzejsdymqxljXsNNZ6lF6ziaY/EIM8n85wmSz+2cDkyCVWnBV7GumJcrhB1uLdWY3RqW4um+M4fxQHtDIZyc3MZP348w4cPZ8yYMQwePJhNmzaFam1NJCcno9frj8sClZSUHJctAqipqWHDhg386le/wmAwYDAYeOyxx9iyZQsGg4Hvvvuu2fs88MADVFVVeT8OHToUkq9HdBFOO843L+TZQ1cyXMnn0o4onG7O1FsgeSjUmWGFVhdz44kDuHHmAADu+WALm/IrATgtch/krgF78yfOegKdKcLbXmBX7mHS1DIA0geN78RV9XyezNCRynrqbNpsKqkZakWT4/VH64byg9RjyHubIM4nszqclFtsTFZ20c+8CmoafU9VFIhJx6bqiac66CNAvKq1Aa3VaiSJCfGhuUc7tSsY+u1vf0tDQwNvvfUWH374IRkZGSxYsCBUa2vCZDIxadIkli1b1uTxZcuWMWPGjOOuj42NZevWreTk5Hg/FixYwLBhw8jJyeGEE05o9j5hYWHExsY2+RA92K4v0FuKcaEjdeBo+nfWsW29Ec5wj7BZ/y8w7wPgwbNHcMaoNGxOF06XysDkKNI2/xUWnQWb3+qctXaQIWnRgMqeLVpNYDGJJCT1/KxYZ/LUDHkCIYNOIaYLnPTpstzBUOYxwZA3MxTAgNbGjmaGAg9OSqq1MpCFxs+J+c9VsHtJk+eVBas5Qfcu29SBlIVqPpl7Wn2RmkBqF2i4CO2sGVq1ahXvvfceJ598MgBTp04lKyuL+vp6IiJC30777rvv5tprr2Xy5MlMnz6dl19+mfz8fG9A9sADD1BQUMCbb76JTqdj9OjRTV6fmppKeHj4cY+L3kv96VUU4D3nbC6eMrBzFzPkdBgyF/Z+DV8/CFctRq9TeP7yCVz16g9szq/ktKEJ8PN67frsHlwzBFzW8B9+F7YIy+FIUOCIKZu0nnZyrotJiDShKFoZG2hZoZD22+ruGmWGvmu0TZbvHcXR9TJDnh5D/fSVoNKk+zQAEfEkxURQUV+LucbqnRUYVPUVONFRpCaS2hEnd33QrmCoqKiI4cOPFjD269ePiIgIiouLyc7ODvbajnP55ZdTVlbGY489RmFhIaNHj2bJkiVkZWkDJAsLC0N6tF/0MKW7UXJX4VQVPjecwWejusCphjOehP3fwZ6lsO8bGDyHCJOef984la+2FXFWfD5sqofIJEjp2cXESbERJCvVVLmieMxxLQP6DWJCZy+qh9PrFBIjTd6MgPQYakMz22TVDXZvBidYmebEIE6u94ziSFPKtGAo5vhh1ElRJvYB5lBlhkZfxMSPInDZa/mkCzRchHZukymKgk7X9CU6nc579LcjLFy4kNzcXKxWKxs3buSkk4625l+0aBHLly9v8bWPPPIIOTk5oV+k6B5+eg2Ab1yTmDFxHOHGLtDML3mIdmQ+c5rWUNEtNtzIpZMziTqyTnsgqwf2FzpG7BCts3a8UsvrzjOpHXxeJ6+od/BslcHRU0yiBfHaD+LxioXqcu2Ag2cMR3J0WNCaCSYEcT5ZcXUDJuzEuaq0B47NDO3/nt/WPMXt+o8x14TmeH29zUlVg4saIrvEKA5oZ2ZIVVWGDh3aJG1aW1vLhAkTmgRJ5eXlwVuhEKFgrcWV8y464C3n6Tw4pQudGpzzMOhNzQc7eWu0X3vYCI7mpAydSoNqJEmpYaBSyKCUyZ29pF5Ba7yojUGRk2RtCIum8rw3uPrDIxywqtidrkYDWoNXf+jJ0AWjZqi4uoFUpUL7RB8GkYlNL6gtZmLtCup0o1hnCU0w5Bk3FGHUd5matHatIlQ9hITocAeWo7PVcMCVTk3GDEZkdKFCeUMLPyk57ZDvqRfqQcNZW6AzhnHEkMlA5wGu0X/DwJQrO3tJvUKTzJBsk7UpbsKF7Pt4KTaHi6KqhqD3GIKjGbp6u5N6m5MIk/9Z7KJqK+m4ExaxGcf/0OXeNktXKjDXhGabLOKr3/CCMZf/RF/ZZWrS2hUMXX/99aFahxAdSh1+NjdH/Z26ikIum5rV2ctpXkM1rHxGC4Lm/QmO5IDdAhGJkDKis1fXMcKioQ5uNCzFLgNaO0Ry9NFgXDJDbVMUhb7xERwwWzhUUUeeJzMU4EyyxqLDDBj1CnanSkWdjQiT/weWiqsayPCM4jh2iwy8wVCqUkFZiDJDsfnfcp6+hLWRXecHnIDyUzabjZKSElwuV5PH+/fvH9CihAi1TfmVfFuWSLgxmX+N6xpNv45TtBXWvgCKDiZcA30mwC3fQ/UR0Pk1Safb2TLiN2RtuIElprmcq+8dX3NnS4qSzFC7lOziJsMX/KAzcbhibEgyQ4qikBBpoqRG6wzeJ97/YKiouoHDrqEcmPUcA/seXzztGckRq9RTU1Pl931a5HRgatBmLOrimrl/J/HrX5c9e/Ywa9YsIiIiyMrKYsCAAQwYMIDs7GwGDBgQ7DUKEVzWWj74SWumefaYPsSGd9Ei0eyZMPICUF2w9H7Q6aHvRBhxTmevrMOMmHIqJzv/wfaxv+vspfQaSZIZap+CDVxd+TKX6ldwuKI+JMEQBOdEmaqqFFU3cIRkDOOvhOFnHX9ReCxOg5bV0rn7AQWVpQQdLhyqjoj4rhMM+ZUZmj9/PgaDgc8//5yMjIwus+cnRJtqS1FfGMdJ1nH8l1u5vCsVTjfn9Mdg95eQuwp2fQ4jzu3sFXWo4emxfPPwFV3jpF8v0fQ0mQRDbWrUeHFxaa23j0+wegx5bxOEIuqqejs2h7aT09opLld0OvrK/RjrilsceeU3d4BVSjwpcV1n69uvYCgnJ4eNGzc26TkkRLew+S0Um4W+ajF9kxOYkp3Q2StqXUIWzLxDqx1afA1c9AqMvayzV9WhJBDqWMmNgqEkCYba5g6G+ilmftpXAkBMuIGEyOBmnL2ZoQCCIU+gdmHEZsIPGiFzKkTEH3edLjYDW0UuEc5a6mxOooJ54ss9iqNYTSCtixyrBz+3yUaOHInZbA72WoQILZcTNmgnIt9ynM5lUzK7R1bzxLuO/n718522DNE7aEfrNZIZ8kFMBi6dCaPixFSvzfnKSooM+r8tnhNl5XX+9xryNFx8gDfg3UuhbH+z1+mvXsx419t85ZqCuTbIRdQ1R4OhrjKKA9oRDFVXV3s//vznP3PfffexfPlyysrKmjxXXV0dyvUK4b+DK6Eqn0o1iqVM56KJzZyk6IpMUXD1R9pPoHMf6+zViB4uJSYMo17BqFckM+QLnR5XnLbdnqlomaFgb5FBo5EcAWSGiqsb0OEiSW10tL45YdEkRmuBirk2yMfrrdU40FHUxTJDPue+4uPjm0S6qqpy2mmnNbnGs7fodDqDt0IhgmXbfwD4wjmNmcP7damfSto05HT49ZbOXoXoBaLCDPztyomAbFH6Sp84ACr2018pYR2jgjagtTFvzVAABdRFVVaSqUKPCxQ9RKe1eG1ydBiHK+qDnhlqmHYnI78Yigk767vQv8E+B0Pff/99KNchRGg5bKg7P0MB/ueazq1Tu3jhtBCd6MzRXWBOXzeiJGbDfuivFAOQHYLMULBqhtI9PYai07QTqs0p/JnfW55il8FEWe0Yv+/XnJJqKy50YIwgNrxrdJ+GdgRDCQkJjB49+rjZZC3Zvn07w4YNw2DoOl+s6MX2f4fSUEWxGk9e1FhOGpLS2SsSQvQUJ/yCP+SP5795WqYjWANaG/PUbwVymqy4unHDxVb6q9nrmFy3ilRdCv8NcmbIM4ojNSa8S9Vs+lwzNGHCBMrKynx+4+nTp8sEedF19JnA69G38JLjPK6cNhCDNPATQgRL8mAcaeOpQQuCQpIZigy8z1Bx48xQS/VC4G28mKZUUuYOXoKl/5Jr+bvxBYZE1wf1fQPlc9pGVVX+8Ic/EBnpW8Rrs4VmpokQ/vi5KozHzLMx6hXWyBaZECLI+iVoXaHDDDpSY4JfGOw5TVZRZ/e790/TYKiVAyTukRxhip366iCeHLdZSC1ZzTl6+D7698F73yDwORg66aST2L17t89vPH36dCIi/G8ZLkQw/XttHgBnj8noXoXTQoiuT1U5qexDIg2b+SRhPjpd8Ld/PDVDNofLr94/NocLc62N/yizuOa8M4nJGNbyxYYwrKZ4wmyVuKqD2IW6Rms9UKuGE5uQGLz3DQKf/zSXL18ewmUIETp13/wZw9ZyopnM9TOyO3s5QoieRlEYtf8VxhjK6Dfh1pDcIsKoJ8ygw+pwUW6xtTsY8tTq5Ov6Ez3lzOOn1R/DEZlGmK0SvaXI7zUfp/oI0PV6DIGfTReF6DYaqjGt/Qt/1v+TOel1TOjfxTtOCyG6JV1iNgCnZ4SmFkZRlIDmkxW7u0+nxob5tsXm3ioLbyhp971aVNM1u0+DBEOih3Pu/AKDy8p+VwazTjy1s5cjhOip3GM5qMgN3S0CmE9WVGUFVK42fA97vgZH6+9hiO+DVTWgs9Vid7r8We7x3JmhIhIlMyRERypb/x4A3+hP5JzxrRwlFUKIQHiCofKDIbtFIJmhouoG4rDwi5oXtFEcausBjvGcvzDS/iZvOOcFdJy/CXfNkGSGhOhIdeUkFq0GwDj2EsIM0k1XCBEinmBo52fwzSPgClI2pfEtvL2G2j+frKTxSbLIJDC2npnRhUWS6J5TV1oTnF5DDlsdDlVHkSqZISE6TOH6DzHgZIcri3mnntzZyxFC9GT9p4MxEiylsO8baNygeP/3YAn8iHpipPt4vT/bZL42XGzEM5uuLEiZocJZf2Ko9U3+o5xObETXasjctVYjRBBZNi4GYE/K6VwQJ20ehBAhlDwE7toO+74FfaNvrdZaePcycNqh7yQYegYMmQvpY5sGTD7wZob82SaramCAJxiK8SEYqirgceufqTJaMNe83e77NaekpgEXOhJiI7pU92mQYEj0UFW19ZTWWBmAQvZJ13b2coQQvUFkIoy9tOlj1UcgZRgUbYWCDdrH93/UZoMNOR3GXwNZ0316+0DmkxVXNzC9PZkhnZ4p9atx6hRer61r9/2aX4O23ZbWxbbIQLbJRA/14eZCrrT+jqvi3mLc2HGdvRwhRG+VMhQWrIa7d8K5f4Xh54AxCmqLYfPbUJjj81vF+3maTFVVbUgrPnSf9ohKwYUevaJSXxGEXkOWMiZ9ewV/Nf6d1BhT4O8XZJIZEj2O06Xy5jqt4/QFJ47rculYIUQvFNsHJt2gfTiskLcW9n4NQ8/Unnc6oGwfhEVDXL9m38Lf+WTV9Q4a7C4yjD7MJfPQ6akzJRFtK8FRdaRd92t+EYdJq8xhui6ezbFdr2xBMkOix1m9dS915YXERRi5YLwPPwEJIURHMoTBoNlw5lOQOEB77Iu74cUTYOO/W3yZZz5Ze0+TFbu7T/9LfyVc9Apkn+jT62wRqQAoNUHIDFV7Gi7Gk9rFjtWDBEOiBzry/SusD1vIv9L+S4RJjtMLIbqB1BHaryU7WrzEUzNUWWdDVVWf37qoSguGyuJGw9jLjrYBaIMzWssgmeqKfb5Xi2rcDRfVRKkZEiLU9pfWMqp8GXpFZejwMZ29HCGE8E3qSO3X4u0tXuLpQO1wqdRYHT6/dZF7FEdaXPuCEJ17Oy0iGCM5GjVclMyQECH2xferGas7iBMdiVMubfsFQgjRFaSN0n6tOKgdx29GuFFPpDvb3Z4TZcVVDSRRxfmOpdrRfx8ZE/pgVY047Q3tykQ1q7pRZihWMkNChEyt1QHbPwagKmMmRCV38oqEEMJHUcnacXuA0l0tXubPfLKi6gaG6g5z8ZG/wNL7fX5d2Ml3Mcy6iD/ar6Kqvv1drxtzeSbWk0BqjGSGhAiZjzcd5gx1DQDxU67o5NUIIUQ7+bBV5s98suLqBjIo0z7xsfs0QFhYODHhWtG2uTawLtQ2uwO7qqdMl0RchDGg9woFCYZEj6CqKitWrWCY7jBOxYhuxDmdvSQhhGgfz1ZZa3VDfswnK6puIF2p0D7xpft0IynRWhbHXBvYfLLtp/2bodZ/sy9qUpdsdyJ9hkSPsGZfGeOrvwMDqIPnQER8Zy9JCCHaZ+iZEBYLA05q8RJ/5pMVV1uPDmltR2YIewNP2f+MyVRCUdV/gCTfX3uM0poGVHSkxEX5/R6hJMGQ6BEWrc3lJ8dZ9B84nPNnzOzs5QghRPsNmKV9tKK988nsThfmWisZBj+CIUMYE2wbMOls/KfsMJDt+2uP4RnF0RXrhUCCIdEDHCqv49tdxahEM/rc2yElurOXJIQQIeHtQu1jZqi0xoqq4l9mSFGoNSaTaDuCvbKgvUs9qmATp637NS5DBnmxD/v/PiEkNUOi23v7hzxUFWYNSWaQBEJCiO6s6jDsWgLlB5p9+mjNkG/BkKfHUB+du2aoPcEQUB+udaF2uTtI+6X8AP1qfmakLo+ULpoZkmBIdGv1NieLf8zjX8bn+EPyCrBZOntJQgjhv69+B+9fCTs/b/bp9p4mK3Z3n/6/+AfgolchcWC7lmOPTAdAXxvASI5GDRe7Yo8h6IbB0IsvvsiAAQMIDw9n0qRJrFq1qsVrP/74Y04//XRSUlKIjY1l+vTpfPXVVx24WhFqn+YUMNi6nTP0Gxiy42+gyPgNIUQ3ljZa+7WFE2Xt7TPkyQyVJU+BsZdCWEz71hOj9T4KC6QLdY2WVSpSE7tszVC3CoYWL17MnXfeyYMPPsjmzZuZNWsW8+bNIz8/v9nrV65cyemnn86SJUvYuHEjs2fP5txzz2Xz5s0dvHIRCqqq8u91eZyrXweAMvwcMHbNnzqEEMInnl5DJc0HQ0czQ74drfeO4vAzI6OP07bVoqylfr0e8HaflsxQkDz33HPcdNNN3HzzzYwYMYLnn3+ezMxMXnrppWavf/7557nvvvuYMmUKQ4YM4cknn2TIkCH873//6+CVi1D4KbeCPYUVnK3/UXtg9MWduyAhhAhUmjsYKt0DzuPnjyW4j9ZX1tlwutoekVFSbWWYks/s2s/h0I/tXk5YYj+sqhG7w/8O1K5Gozi6amao25wms9lsbNy4kfvvb9pKfO7cuaxdu9an93C5XNTU1JCYmNjiNVarFav1aHOp6upq/xYsQu7fa3OZpttBslIFEYkw8OTOXpIQQgQmPhuMUWC3QPl+SBnW9Gn3NplLhep6u7eguiVFVQ2cqNvKyXveAdNuyJzaruWEj7+EYZ/FAwo7bU4iTO0vRXBVF6IDynRJxEd2ve7T0I0yQ2azGafTSVpaWpPH09LSKCryrbDrL3/5CxaLhcsuu6zFa5566ini4uK8H5mZmQGtW4RGUVUDS7cXca5O2yJj5Pmg75p/yYQQwmc6HaSO0H7fTN2QyaAjJkzLY/jSa6i4uoEMf47Vu8VEhGEyaAGQv12oHaoeu6rHEZnWJbtPQzcKhjyO/YNUVdWnP9z33nuPRx55hMWLF5OamtridQ888ABVVVXej0OHDgW8ZhF876zPQ+eyc45xg/aAbJEJIXqKtNZnlHmyQZVtBEOqqgY0igO077nJ7vv5Gwwtn/slQ63/xhXXdZML3WabLDk5Gb1ef1wWqKSk5Lhs0bEWL17MTTfdxIcffsicOXNavTYsLIywsK65pyk0VoeT937MJ54aatNPILp+H2TN6OxlCSFEcIy/BgacDP0mN/t0QpSJ/PK6NueT1Vgd1NmcpJv8zwwBPM4/SDTlUVf4IvQ/od2vL3GP4kiNjfDr/h2h22SGTCYTkyZNYtmyZU0eX7ZsGTNmtPyN8L333uOGG27g3Xff5eyzzw71MkUHWLK1EHOtDUNcBsk3fwS3bwSdHKkXQvQQ/U+AMZdAQnazT/s6n8zTYyjDz4aLHsNd+5ig24etLM+v15e4R3GkxXbdREO3yQwB3H333Vx77bVMnjyZ6dOn8/LLL5Ofn8+CBQsAbYuroKCAN998E9ACoeuuu46//vWvTJs2zZtVioiIIC4urtO+DhGYRWu1v5DXTMvCoNfRjWJ6IYQImK/zyYqrrSi4SCOwzJDFlAL2PBz+dKHe/gmX5DyLUz+a6Nh7/bp/R+hWwdDll19OWVkZjz32GIWFhYwePZolS5aQlZUFQGFhYZOeQ//6179wOBz88pe/5Je//KX38euvv55FixZ19PJFEOQcqmTLoUpG6Au5asjgzl6OEEKERt46KNgIw+ZB0qAmT/k6n6youoEkajDgBEUH0a2XlLTEGpEGFlDcR+TbpXQP2fXb6K+kYOiix+qhmwVDAAsXLmThwoXNPndsgLN8+fLQL0h0GJdL5flv9gDw58RPSXj1N3Dmn2DaLzp5ZUIIEWQrn4H934Ip6rhgyNf5ZMXVDdQQwYvZL7BwarzfJ26dUWlgBkOdH12oa7QAqoQExnfRhosg+wuiG/nT0l0s311Kgr6B0XXrtQezZnbuooQQIhQ8J8pKdhz3lK/zyYqqGrBioi5jmtZ+xE+Ke3stwp+RHNWeURwJXbpmSIIh0S28uz6fl1dqU5xfnVaCzmmFpCGQPqaTVyaEECGQOkr7tZnj9b7OJ/OO4ogLLCNjStCCoRh7+0dyuJrMJZPMkBB+W7W3lD98ug2Au+YMZVL199oToy+GLtrASwghAtK415DadOyGr/PJiqu17tOTSj5usWeRL8LdIzmszvb/e6u664zKlETvKJGuqNvVDIneZU9xDQvf3oTTpXLRhL7cMSMJnv1We3L0RZ27OCGECJXkYaDooaFSm/re6CRYYpQWVLSZGapq4Hr9KkZuWg2JQNoov5YSPXAqw6yLUBSFvU6X+xSvDxw29HVmAJzR6V22+zRIZkh0YaU1Vua/8RM1VgdTsxN56uIxKDv+Cy4HpI05bmaPEEL0GMZwSHKfmD0mq+PZJquqt+Nwupp9ucPpwlxrJR1Pj6G+fi8lISoMRVFQVd9GgHg1VFIf2QeLGkZYbIrf9+8IEgyJLqnB7uSWNzdQUFlPdlIk/7p2EmEGPVS6WydIVkgI0dO1MJYjLsLorRCorG9+q8xca8OlQobO3WMoJsPvZRj0Ou9x/rLadgRD0al8NOtLRllfJ6ULd58G2SYTfii32DhUXsfYfnEhSXu6XCq/+WALOYcqiYsw8voNU45OZp79IFhrYPKNQb+vEEJ0KSfeDdNvh9ThTR426HXERRiprLNTYbGRHH38KS2teFoNaEhrY/fr32GIaQv2fY9Cxnk+v66kxgoopHXhY/UgmSHRTlsOVTL3/1Zw/j/WsPCdTX4P7mvNX5bt5outhRj1Cq9dOpCBOU+Dw/3TiN4IZ/8FIuKDfl8hhOhSMsZCv0lar6FjtHWirKiqgVjqiMD9b3SAwdAg3RHG6w7gNO9v1+uK3SfaUrtww0WQzJBoh6+3F3HH+5tpsGt71F9uK2L9wXIeP380Z4/1PwXb2AcbDvGP77W/bP86VWHyVxdA1SFwOeGMPwblHkII0d0lRBo5SMsnyoqrG0j3ZIUiEsAY2DZVXVgqNIDanpEcq5/nlr2LcelnkRo7NqD7h5pkhoRPFq05yG1vb8Rkr+Gp9OV8eNs0RmTEUm6x8ct3N/HLdzZRFmCWaO1+M7/7eCug8srInzl17XVaIJQ4EMZdGZwvRAghupOcd+Hzu6H8QJOH22q8WFTdcHSLLCawrBCAIzIVAF1tke8vKt7OEOsOEqmWzJDo3lwulT8u2clrqw8yWDnM+7EvkFx5GI5k8ukvf8Xfv9/HyuVfsXprLXMPlPHEBaOZN6b9WaL9pbX84u1NGFwNvJPyLiccWKY9MfwcuOBFCJfBukKIXmjDG3D4R8iaof1g6NbWNllxdQObXEP4ZPwrXDguPeBluGIyoBDC6ot9f1GjhotdvWZIgiHRonqbk7sW57B0exFn6H7kbxEvY7LVQVwmDJiFyaDj7lMH8Kst/8Jea2aR9XQefOcslowbzqPnjfL+5NKWcouNGxf9RHzDIf4d9QLZNblaf405D8OMO6SxohCi90obqQVDx4zl8GaGWgmGaohE7T8OBvQLeBmGOO2H3Eir712o1epCFKBYTezymSHZJhPNMtdaufKVH/h6+xHuM37Iv0zPY3LWQfYsuHU59JmgXVhTiCkqjijq+aXhM1aH/Zox25/hyuf+y9JtbadTrQ4nt721gbyyOvrGmeivN0NUKlz/Gcz8tQRCQojeLW209uuxvYY8w1pb2iar0gqX04OUkTHFa32KYh1lvr1AVVHdQ1rLdAneTFZXJZkhcZwDpbXc8MZPVJaXsij8RU5is/bEtF/C6Y+BvtH/NvH94bZVsOdLWPE0kYU53Gr4guscX/Pe+6fyh2G3cPdFJx89Gt+Iqqrc9+EWfsqtICbcwGM3XoDOkgXJQyEm8LSuEEJ0e6meXkPHZIYi28oMWblIt5Ihh3Ih+TyIzwxoGVEp/WlQjdQqESS4nKDTt/4CazU6ex0AzqgMdLqu/YOtBEOiiZ9yy7nlzQ1U1tmZF2dmln0r6MLhvL/B2Muaf5FOB8PPhmFnwb5vcC3/E+EFG5hv+IqLd0zj9DyFJy8czdxRTQOcV75cxxU7fkOZ/kJ+cc2NDE6NAU4K/RcphBDdhafxYlU+NFR56yePZoaOP01Wa3VQa3Vwi2kJKSvyIXNYwMFQfFI6w62LMOn17FZ0tBna1Gg7A1VqJHFxXb/mU4Ih4fW/LUf4zYdbsDlcjMuM5/Hr56DsT4TUEZAxru03UBQYcjq6wXPgwHJKNn9BVf4kzCW13PrWRh4dtJsLzzqL2L7DWbXsUy5cfzsp+ipGx9QSM+Du0H+BQgjR3UQkaKfBao5AyU7oPw04Op+sucyQZ4ssmKfJkmPCAQWb00WN1UFseBtDV2211Ib34XCdscvXC/1/e3ce31SV/g/8c5M2aZuk6b7RFWhL2REUC0LHAVFZlGEEV0AqjIyIMA4OIPrV0VGcRYdRBxlwKAw64vxwmHFBFBcQZREoCEin7BRKV7okbWnaJOf3R5pApCyF3NzEfN6vV16Qm5N7n6toH84953kAJkMEx+OqJZuO4o/rD2BW0L9R03UU5k26DaEaNdDnno6fUJKALjcjrsvN+LDVhkWfHcJ7XxVi/KmXoF32PEqibkTumW0IkuyoDO2CuPx/uT96IyKic+J7OJKhM0dcyVDkJR6TVZiaoUULIqQGx4FrLLgIAKEaNXQaNRpbbKg2Wy6fDHXqj6XX/QevfnEID4QzGSIfZ7XZ8cz73+OD7QewPPiv+In6O4imPZCk0QAu80z4CoQEqzHv9m4YnWLB3rU9caNtF1JrtgASsE1/C254dAUQor/m6xAR/WiNehnQGoCwKNch524ys8WKFqsdmqBz+6HcCi4G6zxWmmSm9iPciK+BPb8EbvnFZcdXmNpacRh8e1s9wGQooDVarHj0n4U4fXAXPtC+gjSpEggKhfSTJx0dkz2oZ88+aM7egOVr/wvdvpWoiOiHaY8+BZWWfwSJiC4pMu2CQ+EhwVBJgF0AdU0tiDtv15hbwcXwRI/tyk0JqkPf1qM4Un3wisZXmttacXBmiHxVhakZ+St2IK38U/xb8zfoJItjZ9jdbzv64cggJFiN/AnjUDNqNMJDghCkZmUHIqKroVJJiAzT4ExjC2p+kAxV1DcjAZ5p0Ho+S2gccBauxdGX9MFsPHFqK2yqOxEXfr3HYpALfxoFoCqzBT9//SuMrvwbFmtedSRCGXnALzbJlgidL0qnYSJERNQRnz0L/GMsYDrtOuTaUfaDdUPl5z8mC+/ksRCsOseO4ODGK0iGyr5Dd9v/oIGVC6jJN/13TynKTM0YGHYcsMNR5XnYM1zETETkq4rXA1VFQPl+12zPuVpD7tvry00W7LTl4eZbxmBgtwsfsV0tqa3+W0jz5atQC7Oz+nSkz7fiAJgMBaS9p+phgxqFN7yC61LLgO53Kh0SERFdSnx3RzJU+T2QNQIAEBHm2NH1wyrUFfXNOAMjtF0GAwkRHgshuK0Ktb71MsmQzQo0OHqYVUtRrqTNl/FZRQDaV1oPAMjsnMFEiIjIH7RTidq5o6zuvMdkNrtAVYMFgOdacTiFRjsKN4bZG4GWxosPbKyCJOywChVU+lifrz4NMBkKOPVnWzGg9iPcIBWhV7zvT10SERHa7VHWXn+yMw0W2OwCM4L+i9j/rXJUrfYQY0QkzggDSqUE4GzdxQe29SSrRARiwsM8dn058TFZgCk6UYaXgpZBLQlAuh+AQemQiIjocpxtOaoPArZWQB3cbn+yclMzgmDFr4P+BdXH7wLd7/BYnaEYQwj6W5bAEBKMfcZLLMw2lQEAKkWk2y43X8aZoQBTXrwdakmgTh3tqD9BRES+z5gCaMMBeytQfQhA+/3JyuubEYt6qCAAVRCgi/VYCDF6DQAJ5mYrmlttFx8obKjXJqFExPnFTjKAyVDAsZ3cBQCojeilcCRERHTFJMnRJzIkAmhwbG1vrz9ZhakZidIZxxtDkqORtocYQ4MR1Lb+54fb+d10vxMLs97FY60z/WInGcDHZAEnonYfAECV0l/hSIiIqEMeeA/Q6F0VpZ39yWp+8JgsXqp1vPHw7L8kSZgY+g3Gtq6D6quxwB3PXHRspdmxiJszQ+Rz6ppa0LXVUUY9JitX4WiIiKhDtAa31hrO3WS15y2gLq+3nNeKw3PVp50StRb0UR2FVF18yXEVJkcrDn+ZGWIyFECKjh5HmqoSAKDLGKBwNEREdC2ca4aaWmyuNTyVZnmqTztZwuIBAKqGsosP+sedWFj7OLKlEsRyZoh8TVXxNgBAZXAyEBqpcDRERNQhtlbgnfuARb2Bs3UwaINca3ics0Pl9eclQwbPb5IRekcVak1T5cXHlO5Cb3EQVqg5M0S+59OGTPzM8lvs7D5P6VCIiKij1MFA2R6g7gRQWQRJki7oT1ZuasYLrffj1Nj3ZCmqqzY6Hr2FWSoBIS4cYGmAZDEDAKqkaETrfL/6NMBkKKDsLjuL3SITkb1HKh0KERFdjfgejl8r9gNw70/W1GKFudmKCkTB2C0PiEjx+OW1kY5kKFi0AGdrLxzQ1tG+QYQgTB/hF9WnASZDAaO6wYLSurMAgJ6dwhWOhoiIroqzLUeloy1HpO5cf7LyeseiZZ1GDUNIsCyXjzQYUCP0jjfmdrrXt1WfrhCRiAv3j/VCAJOhgFF86CCeD1qOhyO+le0/EiIikplrZsiRDLl2lDW2oNzUjHA0Yn7I/wN2Lpfl8jEGLU6IBJSqEoHWsxcOaKs+XS6iEGfwj/VCgB8mQ4sXL0ZGRgZCQkLQv39/bN68+ZLjN23ahP79+yMkJASdO3fGkiVLvBSpb6k7uAUTgz7DRPGh0qEQEdHVciZDlUWAEG61hipMzUiRqvBAyxpg40uyXD5ap8HPWp7DnarXgeR26tWZ25IhcGZINu+++y5mz56NBQsWYPfu3RgyZAhuv/12lJSUtDv+2LFjGDlyJIYMGYLdu3fjySefxGOPPYb33nvPy5ErTzq9GwDQENNb4UiIiOiqRWc62mxY6oH6U261hipMFiS4qk/L027JuVW+ptECu72dBdRqDWqCE3FKxCKeM0PyeOWVV/DQQw9h6tSpyMnJwaJFi5CSkoI33nij3fFLlixBamoqFi1ahJycHEydOhX5+fn405/+5OXIlRdrcnQ61qaxvhARkd8K0gBJ/YBO/YHmekQ4F1A3taK8vvm8gouerzEEnHssZxfuxR5dch/BE51W4c/W8ZwZkkNLSwt27dqFESNGuB0fMWIEtmzZ0u53tm7desH4W2+9FTt37kRra2u737FYLDCZTG4vf1dZ34Rsu6OxX0K3QQpHQ0RE1+ShDcC0L4CEnm79ySpkbMXhFKxWYVTofryvWYCgD2e2O6bC7Kw+zWTI46qrq2Gz2RAfH+92PD4+HuXl7axoB1BeXt7ueKvViurq6na/s3DhQhiNRtcrJcXzWxOdTM2tl2525yFH/vcdwqWzaIYGoZ16yn49IiKS0XktOc5fM1Ruapa1FYfrmiFAb9UxqNt2tP1QpcnZl4yPyWQjSe41C4QQFxy73Pj2jjvNnz8f9fX1rtfJkyevMeL2vbLhIPo9twErvjkmy/nPV3d4OwCgLDTLUbSLiIj8n63Vfc1QfTMScF7HerkuG+aoQq1uqnD/wG6HWNQbf7PMRQTMfEwmh5iYGKjV6gtmgSorKy+Y/XFKSEhod3xQUBCio6Pb/Y5Wq0V4eLjbSw7JkaGw2QU2HWp/hsqTWisdj8jOxvaR/VpERCSzs7XAXwcCC1MQ2ZZvnGlsQaXZggTXYzL5kiHnubXN1YDNeu54UzWkuhPoIx1BkxSKaB2TIY/TaDTo378/NmzY4HZ8w4YNGDSo/XUwubm5F4z/9NNPMWDAAAQHKztDMjQzFgCw91SdrI/KhBB4rvFnuK55CWyDHpPtOkRE5CUhEY56PtaziG4+AQBosdphtQs82DoX1snrgKS+sl1ea4yDTUhQwQ40Vp37wOQouHgG4Yg06KD2k+rTgB8lQwDw+OOP480338Ty5ctRVFSEX/3qVygpKcH06dMBOB5xTZo0yTV++vTpOHHiBB5//HEUFRVh+fLl+Pvf/445c+YodQsuCcYQZMcbIATw9WH5ZofKTc2obrCgXmVEZpdM2a5DREReIklAvKMSdWhNETRB536UW/TJCMoYDIQYZbt8lCEMVYhwvDGf173eWWNIRPrVeiHAz5Khu+++G4sWLcJzzz2Hvn374quvvsK6deuQlpYGACgrK3OrOZSRkYF169Zh48aN6Nu3L55//nm8+uqr+PnPf67ULbgZmhUDAPjqYNVlRl69vafqAQCZcXqEBKtluw4REXlRW1sOqfKAqz8ZACR4oUt8jF6LchHpeNNuMhTlVzvJACBI6QA66pFHHsEjjzzS7mcrVqy44FheXh4KCwtljurq5GXFYdnmY9h8qOqyC8GvlnX3avwjeA3KdKMBDPX4+YmISAFtM0OoOIBI3S0oNzUjSzqJ6dYPgP0VQE/5/tIfrdfghEhArLoZnc7vXN/WiqNSRCKWM0N0pQakRyIkWIUKkwXFFWZZrqEr24qh6n3orpVv9omIiLwsvq1MSuUBV62hPqojGFX/DrDnn7JeOkavxazWRzEh+K9AzuhzH7Q1aS0XkX43M8RkSEEhwWrc2Nmxq21TseeTFSEEkhoddSD0GTd4/PxERKSQuBzHr6ZSJGkddX0S0FZjSKZWHE4xesdjuTONFle5GgBASASqghJwSsRyzRB1jHNX2VeHPJ8Mna46gy7CUScpqedgj5+fiIgUEmIEuvwU6HkX4kNsAHDetnp5WnE4xegdsz7NrXY0ttjOfXDrC3go4u9Yax/CmSHqmKFZjmRox7FaNLVYLzO6Y05+vw1qSeCMFAVtZLJHz01ERAqbuBa46+9QRzj+/57gherTABCmUaNf8Am8r1kA9ao73T6rMDlacXBmiDqkS6wOnSJC0WKzY/vRGo+eu+n4twCAckMPj56XiIh8h7MKtTdacQCODg76sFD0Vh1DcNX3ruM2u0B1g6NuHmeGqEMkSXLNDm3y8Bb70MrvAADWhH4ePS8REfkIuw2JkqMFR7yXkiEAsOkd65KCLLVAazNQexx4pTveUj8PlQRE65kMUQflyVBvSAiBirOASYQhvAsXTxMR/ejUHANe7ISffn4HtGhBtNS2K9kLyVCYIQrNoq2TQ0M5YDoNdcNpJEpnEKPX+lX1aYDJkE8Y1DUGapWEo9WNOFnT5JFzltQ0YXbzL3C97U106nebR85JREQ+xJgM2K0IsjYgQVWPR2JWAPmfONp1yCxaH4IKV+HFclcrjgpE+lWDVicmQz4gPCQY/VIiAHhuV5mz8nS3BCM0GnaqJyL60VEHA7HZAIA14yLwh2ljgNQbHe06ZBZj0KAcUY43ptOOhAhAhYhEvJ8tngaYDPmMvLZ1Q556VPb9Sccz5F7J8vWnISIihcU7NsjENh2CXuu9phLROi0qRYTjjbncrRUHZ4boqjkXUX9z+AxabfZrPt/w/XOwSTMbI4L3XvO5iIjIR7X1KMM3rwKf/RY48qVXLhtj0OK4SMBpdScgSHPuMZkfNmkFmAz5jJ6djIgMC0aDxYrdJXXXdC67zY60s/9DmqoSqUnyViIlIiIFtc0MwWICvn4FOLrRK5eN0WnwsnUCJoYtBq6fypkh8gy1SsJNmZ55VFZSchixUh2sQoXkHO4kIyL60Yr/QR05matPO8UYHAmPs64QDIkoV8WjTERxzRBdm6GZbVvsr3ERdWXRFgDAyeB0BIXorzkuIiLyUYZEoNeEc++9sK0eAKLbCj3Wn21Fi9UOjC/A2KA3UCiyODNE18a5iHpfaT3ONFiu+jytJTsBADXGnh6Ji4iIfJQkAT9fBhjakqBw7yyNiAzTIEFVhw80T0L1Wl/YbXZUtf3cig/nzBBdg7jwEHRLMEAI4OvD1Vd9HkPNPsdvOl3nociIiMhn2axAQ4Xj9156TKZSSQgOM6KX6jiC6k+gprYGNruAJJ2bNfInTIZ8TN41tuaw2WzIsBQDAGKycz0WFxER+aiGCkC0dY/XxXrtsjp9OEwiDAAQ83oXvBK8GDF6LYLU/pda+F/EP3LOLfabD1VDCNHh7x8rq8L7tkHYIzKRnMWZISKiH73q4nO/V6m9dtlYg/ZcFWoAkTAjzuB/64UAwHsVmuiKDEiPRGiwGlVmC4rKzOieFN6h739XYcUC60O4ITkK/wr2v6lKIiLqoM43A2NeBeJyvHrZaJ0G5SISmSgF4NhW74/rhQDODPkcbZAauV2iAVzdo7J9pY42HKw8TUQUICQJ6D8ZSPFuKZUYvRaVODczVIFIv50ZYjLkg1xb7K8iGao5vhcatKJXJyZDREQkn2i9+2MyR8FFzgyRhzjXDe08UYNGi/WKv2dtseCPZ2ZivzYf/YwNcoVHRESEGL0GJ0S8672jFQdnhshDMmJ0SI4MRatNYNvRM1f8vZP/2wmt1IqzCEFKWqaMERIRUaCL0Wvxru1m1EoRANo61nNmiDxFkqSr6mJ/5uA2AMCJkGyo/HBrIxER+Y8YvRYS7DiKTjiFBMdjMj+dGeJuMh81NCsWb28v6dgi6tOFAABzVC+ZoiIiInKI1msgoMLdlqcAAFYIzgyRZw3qEo0glYTjZ5pQcqbpir4TU78fAKBJHSBnaERERIjWO8q3WO0C1rbq0zF6/yzpwmTIRxlCgnFdqmOV/qYraNza0mRGivUEACCx+2BZYyMiItIGqWEIOfeAKVrnn9WnASZDPm1o1pVvsT9VtA1qSaACkeiU2lnu0IiIiBCrP7dGyF/XCwFMhnxaXlYcAGDrkTNosdovOXZfQzhebL0XXxh/DkmSvBEeEREFuOjzHovFhzMZIhn0SApHtE6DBosVhSW1lxy77UwYltrGoCRnmpeiIyKiQBfjNjPkn4unASZDPk2lknDTFVaj3ldaBwDozcrTRETkJZwZIq8YmtlWb+gSi6ibzbXIrFiPVKkCPZkMERGRl5w/MxTrp9vqAdYZ8nlD2hZR7y81obrB4vYHz+n0/q/w56DXcSIoEcmRU7wdIhERBajo834mxXMBNcklzhCC7onhAIDNF5kdMh3ZDgAoDcvh4mkiIvKa2PMek/lrk1aAyZBfGOpqzVHd7ueaij0AgOa4Pt4KiYiIyH1miGuGSE7OekObD1XBbhfuHwqBhIYDAABdxg3eDo2IiAKYc+mGo/o0kyHZ1dbWYuLEiTAajTAajZg4cSLq6uouOr61tRVz585Fr169oNPpkJSUhEmTJuH06dPeC9pDBqRFIUyjRnVDCw6Umdw+a645iShRC6tQIbXHQIUiJCKiQJQWFYbbeyYgf3AGgv20+jTgR8nQfffdhz179mD9+vVYv3499uzZg4kTJ150fFNTEwoLC/H000+jsLAQ//73v3Hw4EHccccdXozaMzRBKuR2jgZw4a6y099/AwA4IqUiITrK67EREVHgUqkkvPFAfzw9urvSoVwTv9hNVlRUhPXr12Pbtm0YONAx+7Fs2TLk5uaiuLgY2dnZF3zHaDRiw4YNbsdee+013HDDDSgpKUFqaqpXYveUvOxYfP6/SmwqrsIjP+nqOt547FsAQLk+B9lcPE1ERNRhfjEztHXrVhiNRlciBAA33ngjjEYjtmzZcsXnqa+vhyRJiIiIkCFKeTnrDe06UYsGi9V1/L2g0Xi4ZTZKO9+tVGhERER+zS+SofLycsTFxV1wPC4uDuXl5Vd0jubmZsybNw/33XcfwsPDLzrOYrHAZDK5vXxBeowOqVFhsNoFth454zq+pTIIn9hvQHzOIAWjIyIi8l+KJkPPPvssJEm65Gvnzp0A0G79HCHEFdXVaW1txT333AO73Y7FixdfcuzChQtdi7SNRiNSUlKu7uZk8MMu9o0WKw5XNgAAerHyNBER0VVRdM3Qo48+invuueeSY9LT07F3715UVFRc8FlVVRXi4+Mv+f3W1lZMmDABx44dwxdffHHJWSEAmD9/Ph5//HHXe5PJ5DMJ0dDMWLy1rQSb2pKhk4WfYobq3zgQOsCvi10REREpSdFkKCYmBjExMZcdl5ubi/r6enz77be44QZHLZ3t27ejvr4egwZd/PGQMxE6dOgQvvzyS0RHR1/2WlqtFlqtb9ZKGNQ1BkEqCSU1TThe3Qjbgffx6+A12BBmB/BLpcMjIiLyS36xZignJwe33XYbpk2bhm3btmHbtm2YNm0aRo8e7baTrFu3bli7di0AwGq14q677sLOnTvx9ttvw2azoby8HOXl5WhpaVHqVq6JXhuE/mmRABxb7HVV3wEAbInXKRkWERGRX/OLZAgA3n77bfTq1QsjRozAiBEj0Lt3b6xatcptTHFxMerr6wEAp06dwvvvv49Tp06hb9++SExMdL06sgPN1zhbc3xTXIak5kMAgIhMFlskIiK6Wn5RZwgAoqKi8NZbb11yjBDnWlWkp6e7vf+xyMuKxR8/KUb1kd3QqFtRL8LQNbu30mERERH5Lb+ZGSKH7onhiNZpkG0/DAAoVmcixsDF00RERFeLyZCfUakkDM2KRR/pCADgTHhPhSMiIiLyb0yG/NDQrBhkq0oAAKITF08TERFdC79ZM0TnDMmMxcCW3yJLOoWne/xU6XCIiIj8GpMhPxSj1+K+GzvjYEUsrstMUzocIiIiv8ZkyE89P5ZrhYiIiDyBa4aIiIgooDEZIiIiooDGZIiIiIgCGpMhIiIiCmhMhoiIiCigMRkiIiKigMZkiIiIiAIakyEiIiIKaEyGiIiIKKAxGSIiIqKAxmSIiIiIAhqTISIiIgpoTIaIiIgooDEZIiIiooAWpHQAvk4IAQAwmUwKR0JERERXyvlz2/lz/FKYDF2G2WwGAKSkpCgcCREREXWU2WyG0Wi85BhJXEnKFMDsdjtOnz4Ng8EASZKUDsfFZDIhJSUFJ0+eRHh4uNLheE2g3jcQuPfO++Z9BwLet+fvWwgBs9mMpKQkqFSXXhXEmaHLUKlUSE5OVjqMiwoPDw+o/3CcAvW+gcC9d953YOF9Bxa57vtyM0JOXEBNREREAY3JEBEREQU0JkN+SqvV4plnnoFWq1U6FK8K1PsGAvfeed+870DA+1b2vrmAmoiIiAIaZ4aIiIgooDEZIiIiooDGZIiIiIgCGpMhIiIiCmhMhvzMwoULcf3118NgMCAuLg5jx45FcXGx0mHJ7o033kDv3r1dhblyc3Px8ccfKx2W1y1cuBCSJGH27NlKhyKrZ599FpIkub0SEhKUDssrSktL8cADDyA6OhphYWHo27cvdu3apXRYsktPT7/g37kkSZgxY4bSocnKarXiqaeeQkZGBkJDQ9G5c2c899xzsNvtSocmO7PZjNmzZyMtLQ2hoaEYNGgQduzYoUgsrEDtZzZt2oQZM2bg+uuvh9VqxYIFCzBixAgcOHAAOp1O6fBkk5ycjJdeegldu3YFAKxcuRJ33nkndu/ejR49eigcnXfs2LEDS5cuRe/evZUOxSt69OiBzz77zPVerVYrGI131NbWYvDgwbj55pvx8ccfIy4uDkeOHEFERITSoclux44dsNlsrvf79+/HLbfcgvHjxysYlfx+//vfY8mSJVi5ciV69OiBnTt3YsqUKTAajZg1a5bS4clq6tSp2L9/P1atWoWkpCS89dZbGD58OA4cOIBOnTp5NxhBfq2yslIAEJs2bVI6FK+LjIwUb775ptJheIXZbBaZmZliw4YNIi8vT8yaNUvpkGT1zDPPiD59+igdhtfNnTtX3HTTTUqH4RNmzZolunTpIux2u9KhyGrUqFEiPz/f7di4cePEAw88oFBE3tHU1CTUarX48MMP3Y736dNHLFiwwOvx8DGZn6uvrwcAREVFKRyJ99hsNqxevRqNjY3Izc1VOhyvmDFjBkaNGoXhw4crHYrXHDp0CElJScjIyMA999yDo0ePKh2S7N5//30MGDAA48ePR1xcHPr164dly5YpHZbXtbS04K233kJ+fr5PNciWw0033YTPP/8cBw8eBAB89913+PrrrzFy5EiFI5OX1WqFzWZDSEiI2/HQ0FB8/fXX3g/I6+kXeYzdbhdjxowJmL9J7t27V+h0OqFWq4XRaBQfffSR0iF5xTvvvCN69uwpzp49K4QQATEztG7dOrFmzRqxd+9e12xYfHy8qK6uVjo0WWm1WqHVasX8+fNFYWGhWLJkiQgJCRErV65UOjSvevfdd4VarRalpaVKhyI7u90u5s2bJyRJEkFBQUKSJPHiiy8qHZZX5Obmiry8PFFaWiqsVqtYtWqVkCRJZGVleT0WJkN+7JFHHhFpaWni5MmTSofiFRaLRRw6dEjs2LFDzJs3T8TExIjvv/9e6bBkVVJSIuLi4sSePXtcxwIhGfqhhoYGER8fL15++WWlQ5FVcHCwyM3NdTs2c+ZMceONNyoUkTJGjBghRo8erXQYXvHOO++I5ORk8c4774i9e/eKf/zjHyIqKkqsWLFC6dBkd/jwYTF06FABQKjVanH99deL+++/X+Tk5Hg9FiZDfurRRx8VycnJ4ujRo0qHophhw4aJX/ziF0qHIau1a9e6/kfhfAEQkiQJtVotrFar0iF6zfDhw8X06dOVDkNWqamp4qGHHnI7tnjxYpGUlKRQRN53/PhxoVKpxH/+8x+lQ/GK5ORk8frrr7sde/7550V2drZCEXlfQ0ODOH36tBBCiAkTJoiRI0d6PQbuJvMzQgjMnDkTa9euxcaNG5GRkaF0SIoRQsBisSgdhqyGDRuGffv2uR2bMmUKunXrhrlz5wbEDisAsFgsKCoqwpAhQ5QORVaDBw++oFTGwYMHkZaWplBE3ldQUIC4uDiMGjVK6VC8oqmpCSqV+/JdtVodEFvrnXQ6HXQ6HWpra/HJJ5/gD3/4g9djYDLkZ2bMmIF//vOf+O9//wuDwYDy8nIAgNFoRGhoqMLRyefJJ5/E7bffjpSUFJjNZqxevRobN27E+vXrlQ5NVgaDAT179nQ7ptPpEB0dfcHxH5M5c+ZgzJgxSE1NRWVlJX73u9/BZDJh8uTJSocmq1/96lcYNGgQXnzxRUyYMAHffvstli5diqVLlyodmlfY7XYUFBRg8uTJCAoKjB9PY8aMwQsvvIDU1FT06NEDu3fvxiuvvIL8/HylQ5PdJ598AiEEsrOzcfjwYTzxxBPIzs7GlClTvB+M1+ei6JoAaPdVUFCgdGiyys/PF2lpaUKj0YjY2FgxbNgw8emnnyodliICYc3Q3XffLRITE0VwcLBISkoS48aN+9GvD3P64IMPRM+ePYVWqxXdunUTS5cuVTokr/nkk08EAFFcXKx0KF5jMpnErFmzRGpqqggJCRGdO3cWCxYsEBaLRenQZPfuu++Kzp07C41GIxISEsSMGTNEXV2dIrFIQgjh/RSMiIiIyDewzhAREREFNCZDREREFNCYDBEREVFAYzJEREREAY3JEBEREQU0JkNEREQU0JgMERERUUBjMkREiti4cSMkSUJdXZ3Xry1JEiRJQkRExCXHPfvss+jbt69XYnJezxnbokWLvHZdokDHZIiIZPeTn/wEs2fPdjs2aNAglJWVwWg0KhJTQUEBDh48qMi1L2bOnDkoKytDcnKy0qEQBZTAaP5CRD5Ho9EgISFBsetHREQgLi5Oseu3R6/XQ6/XB0wDXiJfwZkhIpLVgw8+iE2bNuEvf/mL6xHQ8ePHL3hMtmLFCkRERODDDz9EdnY2wsLCcNddd6GxsRErV65Eeno6IiMjMXPmTNhsNtf5W1pa8Jvf/AadOnWCTqfDwIEDsXHjxquK9aWXXkJ8fDwMBgMeeughNDc3u32+Y8cO3HLLLYiJiYHRaEReXh4KCwtdn+fn52P06NFu37FarUhISMDy5csBAGvWrEGvXr0QGhqK6OhoDB8+HI2NjVcVLxF5BpMhIpLVX/7yF+Tm5mLatGkoKytDWVkZUlJS2h3b1NSEV199FatXr8b69euxceNGjBs3DuvWrcO6deuwatUqLF26FGvWrHF9Z8qUKfjmm2+wevVq7N27F+PHj8dtt92GQ4cOdSjOf/3rX3jmmWfwwgsvYOfOnUhMTMTixYvdxpjNZkyePBmbN2/Gtm3bkJmZiZEjR8JsNgMApk6divXr16OsrMz1nXXr1qGhoQETJkxAWVkZ7r33XuTn56OoqMh1f2wRSaQwRdrDElFAycvLE7NmzXI79uWXXwoAora2VgghREFBgQAgDh8+7Brz8MMPi7CwMGE2m13Hbr31VvHwww8LIYQ4fPiwkCRJlJaWup172LBhYv78+ReNB4BYu3at27Hc3Fwxffp0t2MDBw4Uffr0ueh5rFarMBgM4oMPPnAd6969u/j973/vej927Fjx4IMPCiGE2LVrlwAgjh8/ftFzCiFEWlqa+POf/3zJMUTkOZwZIiKfERYWhi5durjex8fHIz09HXq93u1YZWUlAKCwsBBCCGRlZbnW2+j1emzatAlHjhzp0LWLioqQm5vrduyH7ysrKzF9+nRkZWXBaDTCaDSioaEBJSUlrjFTp05FQUGBa/xHH32E/Px8AECfPn0wbNgw9OrVC+PHj8eyZctQW1vboTiJyPO4gJqIfEZwcLDbe0mS2j1mt9sBAHa7HWq1Grt27bpg0fH5CZSnPPjgg6iqqsKiRYuQlpYGrVaL3NxctLS0uMZMmjQJ8+bNw9atW7F161akp6djyJAhAAC1Wo0NGzZgy5Yt+PTTT/Haa69hwYIF2L59OzIyMjweLxFdGc4MEZHsNBqN26JnT+nXrx9sNhsqKyvRtWtXt1dHd6rl5ORg27Ztbsd++H7z5s147LHHMHLkSPTo0QNarRbV1dVuY6KjozF27FgUFBSgoKAAU6ZMcftckiQMHjwYv/3tb7F7925oNBqsXbu2Q7ESkWdxZoiIZJeeno7t27fj+PHj0Ov1iIqK8sh5s7KycP/992PSpEl4+eWX0a9fP1RXV+OLL75Ar169MHLkyCs+16xZszB58mQMGDAAN910E95++218//336Ny5s2tM165dsWrVKgwYMAAmkwlPPPEEQkNDLzjX1KlTMXr0aNhsNkyePNl1fPv27fj8888xYsQIxMXFYfv27aiqqkJOTs61/YMgomvCmSEikt2cOXOgVqvRvXt3xMbGuq2xuVYFBQWYNGkSfv3rXyM7Oxt33HEHtm/fftEdaxdz99134//+7/8wd+5c9O/fHydOnMAvf/lLtzHLly9HbW0t+vXrh4kTJ+Kxxx5rt1bR8OHDkZiYiFtvvRVJSUmu4+Hh4fjqq68wcuRIZGVl4amnnsLLL7+M22+//epunog8QhKCezqJKLBIkoS1a9di7Nixspy/qakJSUlJWL58OcaNG9fh76enp2P27NkXVO0mInlwZoiIAtK9997r8bYXdrsdp0+fxtNPPw2j0Yg77rijQ99/8cUXodfrPTpzRkSXx5khIgo4hw8fBuDY3eXJXVzHjx9HRkYGkpOTsWLFCgwbNqxD36+pqUFNTQ0AIDY2VrG+bUSBhskQERERBTQ+JiMiIqKAxmSIiIiIAhqTISIiIgpoTIaIiIgooDEZIiIiooDGZIiIiIgCGpMhIiIiCmhMhoiIiCigMRkiIiKigPb/AQQjkyEuNe7hAAAAAElFTkSuQmCC", + "text/plain": [ + "<Figure size 640x480 with 1 Axes>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHFCAYAAADyj/PrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAACY/ElEQVR4nOzdd3xT9frA8U+Stunem7asssssiIADZImI4sCNC/dE5TquXvV6r9ftz71RUdy4ERFQhkwFWlZZpUALpXvvNjm/P06S7jZtk6ZtnvfrlVfbk5NzvmG0T7/f5/s8GkVRFIQQQgghnIDW0QMQQgghhOgsEvgIIYQQwmlI4COEEEIIpyGBjxBCCCGchgQ+QgghhHAaEvgIIYQQwmlI4COEEEIIpyGBjxBCCCGchgQ+QgghhHAaEvgIIbocjUZj1WPdunWW17z22mtoNBri4uKsuq5OpyMgIICRI0dy6623snXr1nrnXnTRRXh4eFBQUNDs9a6++mpcXV3JzMzs6FsWQnQSjbSsEEJ0NQ2DkP/85z+sXbuWP/74o97xoUOH4uvrC8CoUaPYtWuX5fXjx49vdF2NRsOll17KAw88gKIoFBUVsXfvXj755BN2797NPffcw6uvvgrA8uXLmTNnDm+++SZ33HFHo2sVFhYSERHBzJkz+f77723yvoUQ9ufi6AEIIURDp59+er2vQ0JC0Gq1jY6bbd++nV27djF79mx++eUXFi9e3GTgAxAWFlbvOjNnzmThwoXccsstvPbaawwePJjbb7+dWbNmERkZyYcffthk4PPFF19QXl7OggULOvBOhRCdTZa6hBDd3uLFiwF49tlnmThxIl9++SVlZWVWv16n0/HGG28QHBzMCy+8YDl23XXXsWPHDvbs2dPoNR999BERERHMmjXLNm9CCNEpJPARQnRr5eXlfPHFF4wbN464uDhuvPFGiouL+eabb9p0HQ8PD6ZNm8bRo0c5ceIEADfeeCMajYYPP/yw3rlJSUn89ddfXHfddeh0Opu9FyGE/UngI4To1pYtW0ZhYaFlyenyyy/H29vbMgvUFr179wYgPT0dgNjYWM466yyWLl1KdXW15TxzIHTjjTd2dPhCiE4mgY8QoltbvHgxHh4eXHHFFQB4e3szb948/vzzTw4fPtymazW112PBggXk5OTw008/AVBTU8PSpUs588wzGTBgQMffgBCiU0ngI4TotpKTk9mwYQOzZ89GURQKCgooKCjg0ksvBWi0RNWa48ePAxAZGWk5dumll+Ln58dHH30EwIoVK8jMzJSkZiG6KQl8hBDd1ocffoiiKCxbtoyAgADLY/bs2QAsWbIEg8Fg1bXKy8tZs2YN/fv3JyoqynLcw8ODK6+8kpUrV3Lq1Ck+/PBDfHx8mDdvnl3ekxDCviTwEUJ0SwaDgSVLltC/f3/Wrl3b6PHAAw9w6tQpfv31V6uuddddd5Gbm8tDDz3U6PkFCxZgMBh44YUXWLFiBVdccQWenp72eFtCCDuTOj5CiG7p119/JT09neeee47Jkyc3ej4uLo433niDxYsXc/7551uOZ2ZmsnXrVhRFobi42FLAcNeuXdx3333cfPPNja41duxYRowYwSuvvIKiKLLMJUQ3JoGPEKJbWrx4MW5ubtxwww1NPh8cHMxFF13EsmXLyMzMJCwsDFB3gS1btgytVou3tze9e/dmwoQJvPPOO80WSAR11ufee+9l6NChzRZHFEJ0fdKyQgghhBBOQ3J8hBBCCOE0JPARQgghhNOQwEcIIYQQTkMCHyGEEEI4DQl8hBBCCOE0JPARQgghhNOQOj4NGI1G0tPT8fHxQaPROHo4QgghhLCCuShpZGQkWm3z8zoS+DSQnp5OdHS0o4chhBBCiHZIS0ur12+vIQl8GvDx8QHUPzhfX18Hj0YIIYQQ1igqKiI6Otryc7w5Evg0YF7e8vX1lcBHCCGE6GZaS1OR5GYhhBBCOA0JfIQQQgjhNCTwEUIIIYTTkBwfIYQQPY7BYKC6utrRwxA25Orqik6n6/B1JPARQgjRYyiKQkZGBgUFBY4eirADf39/wsPDO1RnTwIfIYQQPYY56AkNDcXT01MK0fYQiqJQVlZGVlYWABEREe2+lgQ+QgghegSDwWAJeoKCghw9HGFjHh4eAGRlZREaGtruZS9JbhZCCNEjmHN6PD09HTwSYS/mv9uO5G9J4COEEKJHkeWtnssWf7cS+AghhBDCaUjgI4QQQginIYGPEEII0UW89dZb9O3bF3d3d+Lj4/nzzz9bPH/9+vXEx8fj7u5Ov379eOedd+o9//HHH6PRaBo9Kioq2jSu1u7TlNTUVObMmYOXlxfBwcHcc889VFVVWZ4/duxYk2NbuXJlm8bWVrKrSwghnFx5lQEPt44XhhMd89VXX7Fw4ULeeustJk2axLvvvsusWbNISkoiJiam0flHjx7lvPPO4+abb2bp0qVs2rSJO+64g5CQEC655BLLeb6+vhw8eLDea93d3a0el7X3qctgMDB79mxCQkLYuHEjubm5XHfddSiKwuuvv17v3DVr1jBs2DDL14GBgVaPrV0UUU9hYaECKIWFhY4eihBC2N3WIzlK/0d+Ud5am+zooXRYeXm5kpSUpJSXlzt6KO1y2mmnKbfddlu9Y4MHD1YefvjhJs9/8MEHlcGDB9c7duuttyqnn3665euPPvpI8fPza/aeWVlZSlhYmPL0009bjm3dulVxdXVVfvvtN6vv09CKFSsUrVarnDx50nLsiy++UPR6veXn69GjRxVASUhIaPY6DbX0d2ztz29Z6hJCCCe2/Xg+NUaFv4/lOXoodqEoCmVVNQ55KIpi9TirqqrYsWMHM2bMqHd8xowZbN68ucnXbNmypdH5M2fOZPv27fW2e5eUlNC7d2+ioqI4//zzSUhIsDwXEhLChx9+yJNPPsn27dspKSnhmmuu4Y477rBc29r7NBxbXFwckZGR9V5TWVnJjh076p17wQUXEBoayqRJk1i2bFlzf0Q2I0tdQgjhxPJL1ZyLgrKqVs7snsqrDQx9/DeH3DvpqZl4uln3YzYnJweDwUBYWFi942FhYWRkZDT5moyMjCbPr6mpIScnh4iICAYPHszHH3/M8OHDKSoq4tVXX2XSpEns2rWLAQMGAFiWsa6++mrGjRuHu7s7zz77bJvuY83YAgICcHNzs7wfb29vXn75ZSZNmoRWq+Wnn37i8ssvZ8mSJVxzzTVW/bm1hwQ+QgjhxPJMAU9BuTT07Aoa1qlRFKXF2jVNnV/3+Omnn87pp59ueX7SpEmMGTOG119/nddee81y/MUXXyQuLo6vv/6a7du3N8oBau0+1oyt4fsJDg7mvvvuszw3duxY8vPzef755yXwEUIIYR/mGZ/Csp4Z+Hi46kh6aqbD7m2t4OBgdDpdo9mdrKysRjMnZuHh4U2e7+Li0mzLDq1Wy7hx4zh8+HC94ykpKaSnp2M0Gjl+/DgjRozo0H3Cw8PZtm1bvWP5+flUV1c3+35ADdQ++OCDZp+3BcnxEUIIJ5ZnCngKy6vblJPSXWg0GjzdXBzyaEuVYTc3N+Lj41m9enW946tXr2bixIlNvmbChAmNzl+1ahVjx47F1dW1ydcoikJiYmK95amqqiquvvpqLr/8cv773/+yYMECMjMzO3SfCRMmsHfvXk6dOlXvNXq9nvj4+CZfA5CQkNChBqRWsTqV2knIri4hhDM587k/lN4PLVd6P7RcKa6odvRwOqS77+r68ssvFVdXV2Xx4sVKUlKSsnDhQsXLy0s5duyYoiiK8vDDDyvz58+3nJ+SkqJ4enoq9913n5KUlKQsXrxYcXV1VZYtW2Y558knn1RWrlypHDlyRElISFBuuOEGxcXFRdm2bZvlnEWLFil9+vRRCgsLFYPBoJx11lnK7Nmz23Sf7777Thk0aJDl65qaGiUuLk6ZOnWqsnPnTmXNmjVKVFSUctddd1nO+fjjj5XPPvtMSUpKUg4cOKC88MILiqurq/Lyyy83+2dki11dEvg0IIGPEMKZxD2+0hL4pOWVOno4HdLdAx9FUZQ333xT6d27t+Lm5qaMGTNGWb9+veW56667Tjn77LPrnb9u3Tpl9OjRipubm9KnTx/l7bffrvf8woULlZiYGMXNzU0JCQlRZsyYoWzevNny/Nq1axUXFxflzz//tBw7fvy44ufnp7z11ltW3+ejjz5SGs6lHD9+XJk9e7bi4eGhBAYGKnfddZdSUVFhef7jjz9WhgwZonh6eio+Pj5KfHy88umnn7b452OLwEejKD1wbrMDioqK8PPzo7CwEF9fX0cPRwgh7KaqxsjAx361fL387jOI6+XnwBF1TEVFBUePHrVUPhY9T0t/x9b+/JYcHyGEcFINt7AXys4u4QQk8BFCCCeV1yDwKeihO7uEqEsCHyGEcFJ5pTLjI5yPBD5CCOGk8kvrBzoF5T2zerMQdUngI4QQTqrhUldPLWIoRF0S+AghhJPKL5UcH+F8JPARQggnZc7x8XVXuxfJUpdwBhL4CCGEkzIHPn1DvAGZ8RHOQQIfIYRwUvmmHJ9+wV6A7OoSzkECHyGEcFKWGR8JfIQTkcBHCCGcVH6DwEeWuhxnw4YNzJkzh8jISDQaDT/88EObXr9v3z4uueQS+vTpg0aj4ZVXXrHLOHsCCXyEEMJJmbezmwOf8moDFdUGRw7JaZWWljJy5EjeeOONdr2+rKyMfv368eyzzxIeHm7j0fUsEvgIIYQTKq8yUFFtBCAmyBOtRj1eJMtdDjFr1iz++9//cvHFFzd67sCBA3h6evL5559bjn333Xe4u7uzZ88eAMaNG8cLL7zAFVdcgV6v77Rxd0cujh6AEEKIzmee7XHTafHRu+Dr4UpBWTWF5dWE+vbAzuZVpc0/p9GBq7uV52rB1aP1c9282ja+FgwePJgXX3yRO+64g0mTJuHq6srNN9/Ms88+y/Dhw212H2chgY8QQjghc35PgJcrGo0Gf1PgU9BTZ3z+F9n8cwNmwNXf1H79QixUlzV9bu8z4IZfar9+ZTiU5TY+78nC9o2zGXfccQcrVqxg/vz5uLm5ER8fz7333mvTezgLCXyEEMIJmXd0BXi6AeDn6Qa5ZZLg3IV9+OGHDBw4EK1Wy969e9FoNI4eUrckgY8QQjghcw2fQC818PH3cAWgoKyHVm/+Z3rzz2l09b/+R3IL5zZIjV24p/1jaqNdu3ZRWlqKVqslIyODyMgWZrFEsyTwEUIIJ2SZ8TEHPp5q4NNja/m0JefGXud2QF5eHtdffz2PPvooGRkZXH311ezcuRMPD4/WXyzqkcBHCCGckDnHJ9C81GWZ8emhgU8XV1JSQnJy7UzT0aNHSUxMJDAwkJiYGG677Taio6N57LHHqKqqYsyYMSxatIg333wTgKqqKpKSkiyfnzx5ksTERLy9vYmNjXXIe+qqJPARQggnZN7VFdBgqavHzvh0cdu3b2fKlCmWr++//34ArrvuOs455xxWrFhBQkICLi4uuLi48NlnnzFx4kRmz57NeeedR3p6OqNHj7a8/sUXX+TFF1/k7LPPZt26dZ39dro0CXyEEMIJ5ZeqAU6gaYnLzzTz02N3dXVxkydPRlGUZp+/9tpr630dHx9PZWWl5es+ffq0+HpRSwoYCiGEE2qU49PTk5uFMJHARwghnFCjXV09PblZCBMJfIQQwgk1rONjDnwkuVn0dBL4CCGEk1EUxTLjE+TdcFeXLHWJnk0CHyGEcDIllTVUG9REWEvlZg/1Y3FlDQZj906SlSTfnssWf7cS+AghhJMx7+jydNPh7qpWLTbP+CgKFFd0z+UuV1f1PZSVNdNnS3R75r9b8991e8h2diGEcDK5peo2aPNsD4CbixYvNx2lVQYKyqrxr/Ncd6HT6fD39ycrKwsAT09P6WfVQyiKQllZGVlZWfj7+6PT6Vp/UTMk8BFCCCfTcEeXmb+nG6VV5d26lk94eDiAJfgRPYu/v7/l77i9JPARQggnk2da6gpoEPj4ebhysqC8Wyc4azQaIiIiCA0Npbq6+wZwojFXV9cOzfSYSeAjhBBOprZPV/08Cb8e1LZCp9PZ5Iek6HkkuVkIIZxMwz5dZlLEUDgDCXyEEMLJNOzMbiZFDIUzkMBHCCGcTMM+XWbmWj4S+IieTAIfIYRwMs3v6jLN+JR33+RmIVrTIwOft956i759++Lu7k58fDx//vmno4ckhBBdRsM+XWbmDu2FMuMjerAeF/h89dVXLFy4kEcffZSEhATOPPNMZs2aRWpqqqOHJoQQXUK+KbBpOOPTk3Z1CdGcHhf4vPzyyyxYsICbbrqJIUOG8MorrxAdHc3bb7/t6KEJIYTDGYyKpU5PgFeD7eyWpS4JfETP1aMCn6qqKnbs2MGMGTPqHZ8xYwabN29u8jWVlZUUFRXVewghRE9VVF6NuQdp46UuSW4WPV+PCnxycnIwGAyEhYXVOx4WFkZGRkaTr3nmmWfw8/OzPKKjoztjqEII4RDmGj4+7i646ur/CKit41MlHc5Fj9WjAh+zhk3pFEVptlHdI488QmFhoeWRlpbWGUMUQgiHsNTw8WrchNQc+FQbFMqqDJ06LiE6S49qWREcHIxOp2s0u5OVldVoFshMr9ej1+s7Y3hCCOFwze3oAvBw1eGm01JlMFJQXo2Xvkf9iBAC6GEzPm5ubsTHx7N69ep6x1evXs3EiRMdNCohhOg6mqvhA+psua9saRc9XI8L5++//37mz5/P2LFjmTBhAu+99x6pqancdtttjh6aEEI4nKUzexMzPqAud+WUVEoRQ9Fj9bjA5/LLLyc3N5ennnqKU6dOERcXx4oVK+jdu7ejhyaEEA5nnvEJ8m4m8JEZH9GKjMIKwnz1zebOdnU9aqnL7I477uDYsWNUVlayY8cOzjrrLEcPSQghuoSWcnygbtsKCXxEYz/tSuf0Z37nlTWHHT2UduuRgY8QQoim5Vl2dbk2+bw0KhUt+SkxHYB3Nxwhp6TSwaNpHwl8hBDCibQ24yNtK0RzagxGtqXkAlBRbeT9P1McPKL2kcBHCCGcSEu7uqB+EUMh6tpzspDiyhq0ptSeT7cctwTS3YkEPkII4UQsMz51A5/yAjBVarbk+MhSl2hg8xF1tmfqkDDievlSVmVg8cbuN+sjgY8QQjiJaoOR4ooaAALNS11H1sJzvWHdM0DtUpcEPqKhzUdyADgjNph7zhkAwJLNxy1Nb7sLCXyEEMJJmJe5tBoshQpZfp/6cf1zAPibAiLZ1SXqqqg2sP1YPgAT+wcxfWgYQyJ8Kams4cONRx08uraRwEcIIZxEvql4ob+nGzpzogb1m5HW1vHpXr/FC/vamZpPZY2RUB89saHeaDQa7p0aC8BHm451q2R4CXyEEMJJ1O7oqrOVfeRV9c6RXV2iKZuT1fyeif2DLIULZwwNZ1CYD8WVNXy86ZgDR9c2EvgIIYSTaHJH15j56keNDoxGS3JzaZWBqhpjZw9RdFGbTPk9E/sHW45ptRruNs36LN6YQnFF9wiWJfARQggn0WQNH68Q0OnBJxwqi/Bxd8XciUBmfQRAcUU1u08UAjAxNqjec7PiIogN9aaoooYlm485YHRtJ4GPEEI4ifzSJmZ8MnbD3dth4V7w8Een1eDrLrV8RK2/juZhMCr0DvIkKsCz3nM6rYa7z1FnfT7YeJSSyhpHDLFNJPARQggnkVfWoIZPZQm8fw68MhyqyyznSS0fUdemOvk9TTl/RCT9gr0oKKvm0y3HO3No7SKBjxBCOAnLjI95qaskU/3o6gV6b8t5/lLLR9SxuYn8nrp0Wg13mWZ93v8zhbKqrj3rI4GPEEI4iTxTIGOZ8SnJUj9Wl8LiGZD4OVBb40dyfEROSSUHMoqB5md8AC4YGUnvIE/ySqtYurVrz/pI4NNJNh/J4dU1h1EUpfWThRDCDvIbdmY3z/gApG2DnEOAFDEUtbaY2lQMDvchyFvf7HkuOi13TlFnfd7bkEJ5laFTxtceEvh0grzSKu74bCdL12zjvs+2dOl/EEKInqvRri7zjI9ZaTYgRQxFrdaWueq6aHQvogM9yCmp4vO/Uu09tHaTwKcTBHq58di0GD7RP8eCQ7dz+1s/k1FY4ehhCSGcTKM6PuYZH53pN/kSU+BjTm6WGR+nZ25MOim2+WUuM1edljsnq7M+76w/QkV11/wlXwKfTnJpv2pi3UsYrj3Gc/n38vBrH5GYVuDoYQkhnERFtYEy02xzQMPAJzxO/ViqzgBJo1IBcCK/jOO5Zei0Gk7rG2jVay4eE0Uvfw+yiyv5sovO+kjg01nCh+N621qqggYTping3Zp/8cl7L/Bj4klHj0wI4QTMsz2uOg0+ehf14KBZMGkhDL1Q/doy4yM5PqK2TcWIKD98TLWdMBpg3XPw9iQozWn0GjcXLbdP7g/A21101kcCn84U0Ae3W9ZQEzsTvaaal3VvkLrsn7y4cj9GoyQ9CyHsp25+j7nXEoNnw/R/w9C56telWaAo0q9LALX5PZPM+T2ZSbDsRlj3P8jcC/t/avJ188ZGEe7rTmZRJd/sONFZw7WaBD6dTe+Dy1VfYJy4EIC7XX7Ac+P/uG3pDkq7QcVLIUT3lNdU1WYz71DQuYFXKFSVWnJ8JLnZeSmKwiZTfo+lTcXBXyDph9qT9n7X5Gv1LrraWZ+1yV2u55sEPo6g1aGd8W+Y+w6lHpF8qcxgVVIml7y9mRP5Za2/Xggh2qjRji6jEU7sgII0Nbn5sSy4fx/ovWsLGMqMj9NKziohu7gSvYuWMTEB6sFDv6kfz7hf/XhsIxRnNPn6y8dFE+qjJ72wgm93dq1ZHwl8HGnUlXg9kMj/3XI+wd5uHMgoZsHrP7P9WJ6jRyaE6GEa9ekqz4cPzoFX4sBYg6UzKeDnWbvUJcvwzsm8m2tsnwDcXXVq/teJ7eqTp90MUeMABZJ+bPL17q46bjtbnfV5c20y1YauM+sjgY+jueiJ7x3Aj3edwc1Be/jJcCdff/AC32xPs8nlawxGEtMKWL47nd0nCrpFAzkhhO3VVm1uULzQIxBc6i9/mXN8FAWKK+R7hjPalNygfs/hVYACESPBNxLiLlGP7/222WtceVoMwd56TuSX8/3OrrORx8XRAxCqXv4ePNT3CC57q3ne5S3e+SGNZzIf5sFZw9BpNa1fwKSqxsiekwVsTclj29E8dhzLo7RBwcQwXz39Q7zpF+JFv2Bv+od60y/Yi17+HmjbcC8hRPfRbJ8u7zD148ZX4MAvcNrN6EdchoerjvJqA4Xl1ZYZIOEcDEaFrSkNGpMe+lX9OHCW+nHoXFj5iFrxuyAN/KMbXcfDTcetZ/Xj6RX7eWNtMheP6YWLzvHzLRL4dCEuF7+LEhCD5s8Xuc3lZ9ZsPcHdmf/muasm1m4lbKCyxsCutEK2peSy9WguO48XUN5g+6Cfhyv9QrxIyysnp6SSzCL1YZ7KNNO7aOkb7GUJiizBUYg33nr5pyJEd9aoM7u5arN3qPqxIBVO/AX9JgNqEcPyQgMF5VXE4NnJoxWOtC+9kKKKGnz0Lgzv5Qc1lXBkrfrkwJnqR98IGHguuPuBofkk+KtPj+Ht9UdIzSvjx8R0LomP6oR30DL5adaVaLVopv4LQodg+P52ppFA1LE7ueONf/H0DXOICfKkotrAztR8tqXkse1oLgmpBVQ2yJgP8HTltL6BzArJ4XTtAcIMmWgwwrwFFHr3JSW7hCPZpaRkl5CSXcqR7BKO55ZRWWPkQEaxpSFdXbPiwvm/y0epa71CiG6nUY5PwxkfrxD1o6lthZ+HK6cKK6SIoRPaZKrfM75fkDpDk58BIYOg6BREjKo98cov6uWGNcXTzYWbz+zHcysP8MbaZC4cFenwWR8JfLqi4ZeiC+hL9edXMLgsjVeKH+CyNzQEhUWTmFaAm6GEKE0OUZpsrtRkM8Ajj2GehURrsyma9Ra9B49Rl6w2/h+sebL2un+9j9+Yaxk9+RFGx9SPumsMRk7kl5OSUxsMmYOjnJIqft2bQVXNTt6+Jh43F8dPVQoh2qZxny5z4GOa8fGuH/hI2wrnVdufy7TMFdAbbv4DqkpBW+f7fytBj9m1E3rz3oYjHM0pZfnuU8wd3cvWQ24TCXy6qqh4XG9bT/VnV7CxsC9HCrw4ciyPm3S/8Jj7Z/XPVYBS9dMgXRaY83QiRsKQC8A/BnKT4dBK2PER7P4aJt4FZy6yJDW66LT0CfaiT7AX5wyuf/nNyTnc8PHf/H4gi3u/TOD1K0c7PGIXQrRN4z5d5qUu84xPaL3j/h7qeVLLx7lU1hj427SzeFJsg8akbl6NX6AokLEHKgqg71lNXtNL78JNZ/bjhd8O8vofh5kzMrJNuau2JoFPV+YbieuClcxUXHg68RQ6jYZzagpg1WfqTgz/mDqP3urHqLG1r+9/jvowO7YJVv8LTu5QM/TPftiqYUyMDebd+fHc8skOft2bwaJvdvHSZaMc+g9XCGE9RVHILzXv6jIFPkPmqLtzoserX5tnfkz9uiwzPrLU5VQSUguoqDYS7O3GwDBvKC9QZ3bc/Zp+wd5v4dsFEDoM7tjc7HWvndCbd9cf4Uh2KSv2nGLOyEj7vAErSODT1bl54g5cPb63+nX1xRB/Aeh92n6tPpPgpt/Vugs+EbVTlpXFauLakDnNTl1OHhTKG1eN5o7PdvJDYjp6Fx3PXDxcdoEJ0Q2UVhmoMtVRsezqGnqB+jAz5/iU1Ob4gLStcDabTdvYJ/QPVlub7PgI/vgvTLoXpj7e+AWxU0HrCln7IOsAhA5ufA7g4+7KgjP68X9rDvH6H4eZPTzCYT8/ZL2iu3H1aF/QY6bRwLC5EDO+9tjm1+Hr+bB4OhxvPmKfMSycV64YhVYDX21P48mf96EoUtxMiK7OnNjs7qrFw62ZDQpeIWoFZ89AqK6wbGGXHB/nYt7tO8mc33NwpVrg0reZGRqPADX4AdjXdAsLs+sn9cFH78KhzBJ+P5BlqyG3mQQ+Qg2mXD3hxN/w0Sz4/Ao1cm/C+SMieeHSkWg08MmW4zzz6wEJfoTo4vIa1vAx1EDa35B/XM3RAPUXqscy4b694OpuyfGRpS7nUVpZQ2JaAWDK7ynNVUscAAyY2fwL6xYzbOHngZ+HKw+fN5hXrxjFOYNDbTTqtpPAR8AZ98E9CRB/A2h0aqGqtyfAT3er2xcbuCQ+iqfnDgfgvQ0p/N/qQ509YiFEGzSu4ZMJi6fB62Nqf1BpNPWWui2NSssludlZ/HU0jxqjQnSgB9GBnpC8GhQjhA1vskChxaBZ4OKubqLJ2NPiPa4e35sLR/VyaI6oBD5C5RMOc16BO7bC4PPVf+w7P4Hfn2ry9KvGx/DEnKEAvPZHMm+uTe7EwQoh2qLZGj5eofW3J9dhaVQqMz5Ow7KNvZ9pN9ehlerHgS3M9oA6Wzhghvp5Cy0sugoJfER9IQPhis/gxt+gz5kw+aFmT71hUl8enqUmsr3w20EWbzzaWaMUQrRB4xo+Dao2m214ET6YBnu/lRwfJ2QuXDgxNghqqiD5d/WJQbNaf3HcxerHo+vtNDrbkcBHNC3mdLh+OQT0qT224UU4taveabed3Z+F0wYA8J/lSSzderwTBymEsEbjGj4NqjabFRxXc/1yj9Tb1SV5fD1fXmkVSaeKAFNj0tQtUFmkJr1Hjmn9AgNmwjXfwoLVdh5px0ngI6yT8Bn88R/4aDYc3VDvqXunDuC2s/sD8NgPe23WWV4IYRt55ho+rc341Cli6G86t6rGSEV1/bY4oufZYtrNNTDMmxAfPYQOgfNehDPub3Y5tB43T4idBrqu39BWAh9hnSHnQ+8zoKoYll4C+36wPKXRaHjo3EFcP7EPAA99u5ufdqU7ZpxCiEYsOT7ercz4WPp1ZeHlpsPFlIBaIAnOPV5tmwpTfo93KJx2M0y4o+0XMxpb3N3laBL4COu4+6nTmEPmqJ14v7ke/l5seVqj0fDEnKFceVoMRgXu+yqRlXszHDdeIYSFeVdXYKM+XQ0CH+/aIoYajUaqN9tTdbn66CIs9Xsatqloq/XPwyvDW6wJ52gS+AjrubrDvCUQfz2gwC/3w7pnLZG9RqPh6blxXDymFwajwt1f7GStA4tUCSFUluRmL9MyRNzFahmLqPj6J3rVb1vhJzu77KOiSA0OPpgOBsf/2aYXlHM0pxStBk7rGwj7f1Z/sW2inEmr8o9B0YlWixk6kgQ+om20Ojj/FTjbtNtr3bOQvrP2aa2G5y8ZwewREVQbFG5duoNNphLoQgjHaLSdfdhFMO1J6NUg8DHn/JSYO7SbGpXKzi7bSk+A0mzI3FMvbcBRzLM9w6P81WB36zvqL7b7f2r7xYaZdnft+0EtlNkFSa8u0XYaDUz5p5oPoBgbffN00Wl55fJRVNUYWZ2UyU1LtnPxmF6cMziUif2Dmy+ZL4SwOaNRqd3VZV7qao5XiFqIzsMPDNV1dnZJjo9NBQ8A315QdBI2vQrDL222T2JnMPfnmtQ/CMrz1R1d0Hr9nqb0O1ttol2WA8c21G+U3UXIjI9ov9NuhvG31n5dnKFO4QKuOi1vXDWayYNCKK828Nm2VBYs2c6op1Zx/Ud/8cmWY6TllTlo4EI4j6KKaoymPFN/Tze1Pkva3+qSRMMEVI8AeDQDFu4BnasUMbQX30i4bSO4eqmzPkf+cNhQFEVhU93E5sNrQDFAyJD65UyspXOFoReqn+/tmstdEvgI2yjPh08vgiXnW7bK6l10LL5uHB9dP475p/eml78HlTVG1h3M5vEf93Hm82uZ8X/reebX/WxLyaXGIFtmhbA1c36Pj94FNxctFKap7Sremth4lqFB2wopYmhHnoEQf536+aZXHDaMlJxSMosqcXPRMrZPQG215kHntv+i5mKG+39SA+0uRpa6hG0UnVIDnrIcWDwD5n8PgX3RaTVMGRzKlMGhPKUoHMos4Y8DWaw9kMWO1HwOZZZwKLOEd9en4OvuwlkDQzhncCiTB4XW5iMIIdotv1GfrmZq+DRBGpXagaJA4mfqjMr4W2Hbu2pttJM7oZcVhQJtzLzMFR8TgLvWqPbnAhjYgcCn9yR1x2BJJqSsbd+SmR1J4CNsI2woLFgFn86F/KPw4Uy4ehlEjLCcotFoGBTuw6BwH26f3J/CsmrWH85m7YEs1h3MIr+smuW7T7F89yk0Ghgd7c85g0O5YGQvYoI8HffehOjGLMULW6vabLbuOTi8Cibdg7/nSEByfGyq8AT8eCdoXeGf6TDxbnXpK2SQQ4ZjaVPRPwjStkFFoZqjEzWu/RfV6mDsjVCaA/69bTRS25HAR9hOUH+1XPnSSyBzL3w8G674HPqe2eTpfp6uXDAykgtGRmIwKiSm5fPHgSz+OJDN/lNF7EwtYGdqAR9tOsbmR85B7yJJ0UK0lWVHl2nZqtUZn/xjcHI75B7B32csILu6bCprv/oxeAC4uMH0fztsKEajwpYUc3+uYMhaD1oXteGotoPfbyc/bIMR2ocEPsK2fMLhhhXwxZVwfJMaBF3xOQyY1uLLdFoN8b0Die8dyD9mDuZUYTlrD2Tz0qqD5JZWsfZANufGhXfSmxCi58hrtNTVyoyPuYhhaTa+oZLcbHNZ+9SPoUMcOw4g6VQRheXVeOtdGBnlB71vgrhLoarE0UOzK0luFrbn7gfXfAeDz1e3x7bjP3iEnwdXjY/hkvgoAH5MPGnrUQrhFGpnfKwMfOr265JdXbZnnvGp+33RaITEL+C9yZYaSp3BXGNtfN9AXHSmcMDDH/yibHMDoxGObYKdn9jmejYigY+wD1d3uOwTNe/Hr1ft8TYWtLpwVCQAvx/IoqhCvvkK0Va1VZutTG72rq3eLAUM7SArSf0YOqz2mEYDf7+vFjb8691OG4q5cOGE/kH2qSCdsRs+Pg9WPAiVXWcWSQIfYT9aXf2gZ9dX8MFUKLC+e/vQCF8GhHpTVWNk5R7p/SVEW1mKF5oDn5GXqx23I0c3/QKv2n5d5hmfksoaqqXcRMcZaiD7kPp53RkfjQYm3at+/tf7nRIkVNUY+etoHmDqz7X0EvhgGpzYYbubRIyEgL5QU167Tb4LkMBHdI7qCvj9KTiVqE7nHttk1cs0Gg1zR6vB0w+y3CVEm1lmfMxLXXGXwLQn6u24rKdOh3ZfU+ADMutjE/lHwVAJrp6NdzsNPh8C+0NFQacsDSWmFVBebSDIy41BfgY1J/PE3+AZYLubaDTqvzfoUsUMJfARncPVXU16Dh+u1vr55AL1N5uGlWObcMFIdblrS0ouGYUV9h6pED1Kvik/x+q6WN6h4OIBeh90KPi4q3tgJPCxAd9ImP8DzHkVtA1+/Gp16tZ2gC1v2r156WZTtebT+wehTfkDjDUQPAgC+9n2RubAJ3m1ulW+C5DAR3SegN5w4yp114CxBlYsgp/uhprKFl8WHejJ2N4BKAr8vCu9kwYrRM+QZ2lQ6qrOvKb9pW5Zb45XCDx6Cu7dBVot/p6S4Gwzbl7QfwqMuKzp50deqSaXF52w+wzJZlP9nkn9g+GgDao1NydsKIQMBkMVHPjF9tdvBwl8ROdy84RLPoDp/wGNFhI+hY/Pb7Ws+YWy3CVEm9UYjJaZmgBPN8hLgcXT4b0pzb+oQdsKc/VmKWLYCVzd4fTb1M83vWrVjHh7lFXVkJCWD8Ckfn62qdbcki623CWBj+h8Gg1Mugeu/kbd+t73LLWQVwtmD4/ARathX3oRyVnFnTRQIbo3c48tjQa103prW9mbIDM+NrTpVdj9NVS28D1s7I1qADLjP3Ybxt/H8qk2KPTy9yCmdK/aa9EjAKJOs88Nh5l6d+Ud6RK9uyTwEY4TOw1u3wxT/ll7rKrpju2BXm6cPVBNuvwhQZa7hLCGuYaPn4erWqfF2j5da/8H758D+5erARMS+HRYdQWseRK+uxmqSps/zyMArvoKYqc2biJrI+b+XBP7B6E5/Jt6MHY66OxU0zg4Fm7dAHfvbPWX3M4ggY9wLL+o2tLo1RVqm4tfHmjytwLzctePu06i2GkKWIiepDa/x8rihZYXHoWTOyAvxTLjI8nNHZRzEBSj2gerDTNutnYiv4w/DqgB8KTYYIiZAEMvVB/2FDHSboFcW0nLCtF1pKyF9J3qIzNJLYBoLp8PTB8ShpebjrS8cnam5hPfO9CBg23d4cxi+gZ71VZEFaKT5TVbtbmVGZ86RQzNMz4S+HSQpWLzUOsCgNJc2PoWlGbBBa+3+7aVNQb+OprHuoPZrDuYxZFsdbZJozEVLvSdBYNmtfv6bWaoVje3uHp03j0b6DbfkZ9++mkmTpyIp6cn/v7+TZ6TmprKnDlz8PLyIjg4mHvuuYeqKsevJworDZoFV34Jbj6QuhneO1utZGri4aZj5jC1X1dXX+76PuEE0/9vA8//dtDRQxFOrHGfLvNSVyszDl7B6sfSHEtyc0GZfC/tEEvFZitb+JRmwZ8vws5PIfdIm26VllfGp1uOseDjvxn179XMX/wXizce5Uh2KTqthnF9Anj+khGE+bq38U100KbX4MUB6ntyoG4z41NVVcW8efOYMGECixcvbvS8wWBg9uzZhISEsHHjRnJzc7nuuutQFIXXX29/tCw62aBZcPMf8OWVkJsMH54Lc9+y7Aq4cHQvvks4yS97TvH4nKG4dtHZlG+2nwDgq7/TeGDGQOksLxyizX26zOr06/KLNuX4yIxPxzTVo6sloUPUJOdDK2Hza2rtn2ZUVNeZ1TmURUp2/RyiUB89Zw8MYfKgUM4YEGyZxWPvd2ptteAB7XlHbad1UROp934L42/pnHs2odsEPv/+978B+Pjjj5t8ftWqVSQlJZGWlkZkpFrw7qWXXuL666/n6aefxtfXt7OGKjoqZKAa/Hx7Mxz+Db6/HfpNAc9AJvUPItjbjZySKv48nM05gx23Vt6c/NIqtplKwReWV0tneeEweaWmrezmGZ/R8yFqbPNVm83q9uuS5GbbyDTP+Ay1/jWT7lUDn8QvYPI/waf2+11aXhlrD2ax7mA2W47kUl5tsDyn02qIjwng7EEhTB4UwtAIXzQNl9cqiuC7W8BYDfck2L5wYVOGzYU//qu2MjLU2C+ZuhXdJvBpzZYtW4iLi7MEPQAzZ86ksrKSHTt2MGVK03UrKisrqaysLaBXVFRk97EKK7j7qcte754FZbnqVK+n2kH4/BGRfLz5GD8kpHfJwOf3A1kYjLXJ198nnJDARzhEbZ8u02/4I+ZZ98K6/bqkUWnHVRSqRQkBQgdb/7qYCeoW8xN/wbZ31FYjwJd/pfLwd3vqnRrqo2fyIHVWZ1JsnVmd5hz5Qw16gmI7J+gBtXL1gylqvSIH6jGBT0ZGBmFh9X8IBgQE4ObmRkZG880tn3nmGctskuhitFp1W6dPeO3OL2Du6F58vPkYq5MyKa2swUvftf4Z/7ZP/fd27rBwVu7LYO2BbArKqiw/QIToLI36dFnLO1TtJ6X3xt9DWlZ0mN4X7t0NOYfV7erWMjcv/epq+HsxnHk/6H34yVTBPq6XL+cNj2DywFCGRPg0ntVpySHTNnZ7FS1sjoODHnBwcvOTTz6JRqNp8bF9+3arr9fUX7qiKC3+Y3jkkUcoLCy0PNLSrO8cLjqBX696QQ/AyCg/+gR5Ul5tYFVS1+rYXlZVw4ZD2QDcM3UAg8N9qDIY+WXPKQePTDijep3Zq0ohdVvL7SrMfCLUthV378DPsza52WiUMhLtotGoLXsGTGv7awedB0EDoLIQdnxMtcFIYloBAC/NG8Udk2MZGtnEUlZLjAY1jQA6P/DpAhwa+Nx1113s37+/xUdcXJxV1woPD280s5Ofn091dXWjmaC69Ho9vr6+9R6iCzLUQLa6Q0qj0XDhKFMLiy62u2vDoRwqa4xEBXgwJMKHi8eo4/x+p7TaEJ3PMuPj5ab+//lwBnx0XusvrPND1LxkYlSgpKrGLuMULdBq4axFEH8DDDqP/aeKKKsy4OvuwoBQ7/Zd8+QONYVA7wcxp9t2vN2AQ9cIgoODCQ4Otsm1JkyYwNNPP82pU6eIiIgA1IRnvV5PfHy8Te4hHCT7kFrYUDHCAwdA58rc0b149ffDbEzOIaekkmBvvaNHCcAq0zLXzGHhaDQaLhjZi2d+PcD24/mk5pYRE+Tp4BEKZ1JvV1eulVWbG3B31eHuqqWi2khhWTW+7q3kjojG1j0LaGDUleAf0/bXj7xCfQB/bzwKwNg+gWi17SwIePBX9eOAaaBzvr/PrrkXuAmpqakkJiaSmpqKwWAgMTGRxMRESkpKAJgxYwZDhw5l/vz5JCQk8Pvvv7No0SJuvvlmmcXp7syJd2U5lnXpvsFejIzyw2BUWN5FOrZXG4ys2a9uFzbXGwr3c1e7HyMNVkXnqqg2UFql7vQJ8HJre5+u359Sm5keXFmnlo/k+bSZosBf78G6/0FZXocvt+O4eo343m3IFWooZa360QmXuaAbBT6PP/44o0eP5oknnqCkpITRo0czevRoSw6QTqfjl19+wd3dnUmTJnHZZZcxd+5cXnzxRQePXHSYzgVGXq5+nvi55bBluSuxawQ+21LyKKqoIcjLrd43pYtMrTa+T5BWG6LzmIMUnVaDr7uL9X26zPJS1Crq+UdrG5VKh/a2K81Wl5XQQMigDl1KSU/gouTHmKJNYFwfKyvXGw1wbBNsfqP22PUr4MqvYMCMDo2nu+o2gc/HH3+MoiiNHpMnT7acExMTw/LlyykrKyM3N5fXX38dvb5rLIGIDhp1jfrx8G9QoiYPnz8yAq0GEtMKOJbTQtO/TmLezTV9aBi6OlPQM+PCcXfVcjSnlF0nCh01POFk6u7o0mg0bZ/xqVvEUNpWtJ+5YnNgvw63aSja/jXTlc3c4fIzI6L8mj/RUANHN8Dy++GlwfDxebDqMSgybbJw84RB54KHf4fG0111m8BHOLnQwdArXu3xsvsr9ZCPu9pkD/jRwbM+RqNi2WFmXuYy89a7WI59v/NEp49NOKdGNXzMgY+XlTM+5lo+pdnSob0j2lqxuQV/Bs2jStExTnsA94wdjU84tQt+XggvDYIlc2D7YrX1hbsfjLoKDJWNX+OEJPAR3ceoq9SPiZ+p6+bAXNNy14+Jjl1G2nWigMyiSrz1LkyMDWr0vHm56+fdp6g2GDt7eMIJNarh09alLu/awEc6tHdA5j71Y1sqNjdjU6YL3xvONH3xqtrws6rObHdmEuz4SM2H9AhQK3Vf/S0sSlZb/wT06fAYegIJfET3EXcJ6PTq1LFp+ti8jJSSU8qek45bRvptn/rb9ORBIU325TojNphgbz15pVWWOj9C2FO9Gj4AY2+EMxdBmHUlQuoudfnXqeUj2siGMz5/H8vnPcNs9YsDv6gNP/+u07ty0CyIvx7mfw+LDsOFb6g7t1ykeGpdEviI7sMjAOa8Arf+CWHDAHUZadoQNWfBUTV9FEWpt429KS46LReMVNupfJcgu7uE/dWr4QPqBoGp/4LgWOsuYOnXJUtd7aYokK9uP+/ojE9eaRXJWSUcUXpRFTsLUNSGn0fX157k4a82M+1/jlNuU7eWBD6iexl1VaMGi+blrp93p9frkdVZkrNKSMkpxU2nZfKgkGbPMxczXJ2USVGF/AAR9tWoM3tbeYWAqxe4eclSV3tpNPDAIbjzb7UnVgfsOJ4PQP8QL9zmvg5Tn4DrfoarvrbFSJ2KBD6i+zLl9Jw1MAR/T1eyiyvZciS304dh3s01KTYInxaKuw2L9CU21JuqGiMr93StVhui58krq9OZvbIYUrda167CzD8GHk2HO7fVzvhI4NN2OhcIGdjhTuTbTfV7xvUJVPOvzrwf+p7VqKWPaJ0EPqL7yT0C398G31wPgJuLltnD1WrdjigSaM7vaW6Zy0yj0ViSnL9LkN1dwr4sMz5erpCxFz6cCZ/Mtf4CddpWmAsYFspSl8NsP6bO+Iy1tn6PaJYEPqJ72vUF7P8JitS8nrmmgGLl3gwqqg2dNoyTBeXsOVmIVgPThrZeH8U8zq0peZwsKLf38IQTy7MEPvq21/BpQAoYttMf/4XvboW0vzt0mYpqA3tMNcDG9elAxWYBSOAjuqOg/hAzQe3dZarpEx8TQC9/D0oqa/h9f1anDcWc1Dy2d6BV/cJ6+Xswvq/6G9uP0sJC2FFe3Ryftm5lN1v1L3hvMmGZfwKS3NxmB3+F3V+aKje3356ThVQZjAR764kJlH5/HSWBj+iezDV9EtSaPlqthgtHqbumOnO5y5zfM2OY9b9J1+3YLi0shD0oikJemXlXl2v7Z3zyUiA9AZ8K9f9UZY2xU2dUuzVDNeQcUj/v4Fb2v4+Z83sC1CrcokMk8BHd07CLwNUTcg/DCXUa2byMtO5gVqfUG8krreKvo+o3pNbye+qaNTwCNxcth7NK2JdeZK/hCSdWVmWgqkYtlBnYngalZqYZIn1FjqUNi+zsslJeChiqwM27fR3Z65D8HtuyOs189+7dbb740KFDcXHpWCa7EE3S+8DQC9Vcn8TPIPo0Bob5MCTCl/2nilixJ4Orxnfsm01r1uzPxKjA0Ahfotsw/ezr7sr0IWH8sucU3yecJK5XCz13hGgH8zKX3kWLh6uu/UtdpiKGGlMtn7zSKgrKqgnzdbflcHsmS8XmIfUSxdvKaFTYbprxGduRjuzCwuqoZNSoUWg0Gqun5rVaLYcOHaJfv37tHpwQLRp1lRr47P0OZj4Dbp7MHRXJ/lNF/JB40u6Bzyord3M15aLRvfhlzyl+TEznkVmDcdHJ5KuwnbpVm9vVoNSsbtsKS+AjCc5WsVHF5uTsEooqavBw1TE00tcGAxNtmo7Ztm0bISHNF2gzUxSFuDgry6IL0V69z4B+k6HPGWrzUuCCUZE8u/IAfx1Vd0318u9YN+TmlFXV8OdhtfVEk/k9u7+BmNPBP7rJ1589KIRALzdySirZdCSXswe2/v9KCGs16tM1/jbIO6I2+22Luh3aPaWWT5uYu7J3sGKzOb9ndIw/rvILkk1YHficffbZxMbG4u/vb9X5Z511Fh4e9vmhIwQAWi1c+2O9QxF+6q6prSl5/JSYzu2T+9vl1usPZlNZYyQm0JPB4T71nyw6Bd/fon6+cC9k7IF938EFb1h65rjqtMwZEcGSLcf5fucJCXyETTXq0zXqyvZdyNK2Igt/X1P1ZtnZZZ3qctBoOzzjI/k9tmd1+Lh27Vqrgx6AFStWEBER0Z4xCdEhdTu228tvlt5cYY13Wez6XN1qHz0e3Dzhu5vVbfdfXFGvk7I5Gfu3fZmUVtbYbazC+eSV1qna3BFeIeDmA24+tY1KpZaPdeZ/B/9Mh96TOnQZc8Vmye+xHZvMmxkMBhITE8nPz7fF5YRom+oKNc9nzzIAZsVF4KbTciCjmAMZtt81VVVj5PcDarJoo/weoxF2fqp+Pnq+2lh13kfqDrQjv8OSC6BM/UY2KtqfvsFelFcbLIGUELZQ26fLFcoL4PiWtrWrMAvqD/88AbdvtLStkF1dbeDq0aFmoRmFFaTllaPVqEtdwjbaFfgsXLiQxYsXA2rQc/bZZzNmzBiio6NZt26dLccnROv2/wTLboA//gNGI36erpZmofbo2L41JZfiihqCvfWMiWnwW9jxTWo3ZjcfGDZXPRY7Da79Cdz94eR2+GgWFJ6s18Lie+nYLmyotoaPG6QnwEfnwudXdOia0qG985lne4ZE+LbYB1C0TbsCn2XLljFy5EgAfv75Z44ePcqBAwdYuHAhjz76qE0HKESrBp+vBhr5xyB1M1C7jPRT4kmMNu7Ybp6dmT40DK22wTLXzk/Uj3EXg5tX7fHocXDjSvCJhOwDat+knGTLstym5BwyiypsOk7hvGr7dHWganMD/pLcbL11z8IH0y2z0O1lzu8ZJ/k9NtWuwCcnJ4fwcHWKf8WKFcybN4+BAweyYMEC9uzZY9MBCtEqN0+Iu0j9PPFzAM4ZHIqP3oX0wgrLrghbMBoVVieZt7E32M1VXqDOPgGMua7xi0OHwILfICgWCtNg58fEBHkytncARgV+SrT97JRwTvV2dXWwTxcr/wnvns2AErVQqCQ3W+HE33DiL6gs7tBlzDM+8ZLfY1PtCnzCwsJISkrCYDCwcuVKpk2bBkBZWRk6nc6mAxTCKqOuVj/u+wEqS3B31TFruBqcP/HTPkpslDyckFZAVnElPnoXJvYPrv9kxm7Q6NTtq73GNH0B/xi4YSWc+QBM+zcAF40xd2yX5S5hG/V2dVkCn3bO+OQdgVOJBFerM52S3GwFSw2f9m9lL6msIclU2X2sNCa1qXYFPjfccAOXXXYZcXFxaDQapk+fDqh1fgYPbmOdCCFsIXq8OpNSXQpJ6hb3hdMGEuyt50BGMQu/TMBggyUvc1PSKYNDcXNp8N+n71mw6CBc+mHLlVq9Q2Dq46BVf0mYPTSYiS4H2X+qyC7J2ML5WHZ11WtQ2s4ZHy81X87XqC67SI5PK8rzocj0S0wHtrInpOZjVCAqwIMIPykNY0vtCnyefPJJFi9ezC233MKmTZvQ69Wu1DqdjocfftimAxTCKhpNbePSxM8AiPT34P1r43Fz0bJmfxbPrTzQoVsoilJnG3sz1Zr1Pm37Zmc04r/mAZa6/IfLdWslyVl0mKIoTc/4+LS9wjhgmSnyqlaXXWRXVyuyTN9n/KLBvf2Vli31e2SZy+baHPhUV1czZcoUhg8fzn333UdUVJTlueuuu44LL7zQpgMUwmojrlALhhlr1C3uwOiYAF6apybiv7chha/+Tm335Q9llnAstww3F61l15hFUTq0q9O6Ajo3tBh5zvV9fLe/gcFgbPcYhSiqqLHMbvp7unY8udlUvdm9Ug18iitqqJF/o82zVGzuYOFCc/0eSWy2uTYHPq6uruzdu7dx0TYhHM2vl1opecEqcK1tojhnZCQLpw0A4NHv97LlSG67Lm+e7TkzNhgvfZ2i59Xl8Nbp8M4ZUNjGGRutDua8Ss3E+wC407CUjGWL1HpAQrSDeUeXl5sOd1cdTLwLznoQgga074Kmfl1uFTmWQ0UVUnCzWTbo0VVtMJKQWgDIji57aNdS17XXXmup4yNEl+LXq8nD904dwAUjI6kxKty2dAdHc0qbPK8lzS5z7V8OFYVQUQQ+7ahWrtHgMuNJfom8C4Be+xfDj3eCQZYURNvVq+EDMPoaOOfRZv9vtKpOh3YfU8AvjUpboPcGvxgIa3+/yv2niiirMuDr7sKAUG8bDk5AG5uUmlVVVfHBBx+wevVqxo4di5eXV73nX375ZZsMToh2K8tT20OYmoRqNBqev3QEqXllJKYVsODjv/n+jkmWxoutScsrY196EVoNTB3SYMlg5xL14+ir1f5h7RQ24wHuf6+G513fw2XX51BRAJd/1qFrCudTr4aPLXiHmtpWeOHn6UpxZY3U8mnJtCfVR7uWvlXm/J743gGNa4WJDmvXd9S9e/cyZswYfH19OXToEAkJCZZHYmKijYcoRBvtWAIvDYLfn6p32N1Vx3vXxtPL34OUnFJu/2wH1VbmKqwy1e4Z1yeQIG997RN5KXDsT0BTu6W+neJ7B/C3/0xurb6PcvcwGHmlBD2izfLqBj5leXB8c/vaVZiFDFLbVty63lLEUBKcrdCBdBDJ77Gvds34rF271tbjEMJ2wuPAUKUWE6x4Edz9LE+F+rjzwXVjufTtzWw+ksvjP+7jfxfFtZqz1uwyV4K6g4z+51hml9pLo9Fw0ahevPZHPHeFTmfx0Akdup5wTpbAx9MN0v6CLy6HiFFw6/oOX9vfQ51FkiKGzTAaLGUq2ktRFP6Wis12Jb9Oip4ncgyEDIYaU/PSBoZE+PLalaPRaOCLv1JZvPFoi5fLLalku6n684y61ZoNNZat84yZb5Ohm1ttrEvOJ7u4Uj1YnKHmDwlhhXo5Ph2t2txAbb8uyfFp0rZ34Pn+sPaZdl8iLa+c7OJK3HRaRkT5tf4C0WbtCnxKS0v517/+xcSJE4mNjaVfv371HkI4lKbOspOphUVDU4eE8eh56q6Lp1fs5/f9mc1e7vf9WRgViOvlS1SAZ+0TKWuh+BR4BMKg82wy9H4h3oyM9sdgVPh5Vzokr4G3JsCvD9nk+qLns0efLn59CN49i9FGtSWR5Pg0IzMJynI6tMxlbrET18tX3ZUnbK5dS1033XQT69evZ/78+URERMjWdtH1jLgc1jyp9svJPgQhAxudsuCMvhzJLuGLv9K454sElt0+kSERjQuOmZe5ZgxtsMzVbwpc9TWU5oCLvtHr2uvi0b3YlVbAD4knuXGOl5rkvOtzGDgDhl1ks/uInqle1eYcG8345CbDqV1E9ssCgqV6c3NsUMPHnN8jy1z2067A59dff+WXX35h0qRJth6PELbhEwYDZsChX2Hd/+DSjxr9FqbRaHjqwjiO55ax+UguNy3Zzg93TiLEpzaIKams4c9ktX5Jo/wenQsMnGnzoZ8/IoL/LE9i94lCUjzPpt8Z98OfL8LPCyHqtPZvSxZOobZqsyscs1HgY9rSHkQhIMnNTTIaIdtUtbkDPbrM+T2S2Gw/7VrqCggIIDBQ/lJEF3fWItC6wPEt6pJUE1x1Wt6+Op5+wV6cLCjnlk+3U1FtsDy//mA2VTVG+gR5MjCsc+ppBHnrmRirNkBdlZQJkx9W85YqCuCH26S4oWhRfr3O7DZa6jIVMQxQCgAJfJpUcByqy0Cnh4C+7bpEfmkVyVklgHRkt6d2BT7/+c9/ePzxxykrK7P1eISwnaixasPQ2/4E38hmT/PzdGXx9ePw83AlIbWAB5ftRjHV4Ki7m8uypKso8PH56lJaWZ5dhj5jaFjt/XWucMkH4OoJRzfAljfsck/RM+Q12Zm9ozM+auDjXWNuVOq8yc3FFdUs353Owi8TuOTtzSRnFatPmCs2hwxUZ4PbYcdx9c+3f4iX7eowiUas/tsZPXp0vVye5ORkwsLC6NOnD66u9YvA7dy503YjFKIjhlrXO65vsBdvXzOGaxf/xU+70ukf4s3tk/uz9oD6G/OMustcqVvV2j0nd8KZD9hj1EwfGsZjP+wlIbWArKIKQoP6w7nPws/3qPWJ+k+B8OF2ubfovmoMRstsTICXm/rvszANAju46cSrfqNSZ0tuPllQzu/7M1mdlMnWlFyqDbXFCR/4ehff3TEJXdY+9UDosHbf52/J7+kUVgc+c+fOteMwhOgEe5bBoZVw8ftN7rqY2D+Y/86N4+Hv9vB/aw5xqrCc4soaQn30jI72rz0x4VP147CL1G7sdhDm686oaH8S0wpYvT+Tq8f3hjHXwuFV4BnU8R9kokcqLK+2FAz293C1WZkF81KXvkrtc9fT6/goisK+9CJWJWWyJimTpFP1y0n0C/Fi6uBQvvw7jV0nClmy+Rg3+kZB37Mgely777td8ns6hdWBzxNPPGHPcQhhX4Un4Ic7wFAJ4SNg0j1NnnbFaTEcyS7h/T+P8uXfaYA6+2IpG19RBPu+Vz+31Q+VZswYFkZiWgGr9pkCH40G5n2sLn0J0QRzYrOfhysuOhuWafMKBb0fWlOgX1BejaIoPWpHb2WNgS1HclmzP5M1SVlkFFVYntNq1Jyb6UPDmDokjP4har5fn2AvHv1+Ly+uOsiM+y4katSV7b5/RbWBPSfU5PGxkt9jV+1biKzj8OHDpKam0rt3b2JjY20xJiFszy8Kzn0Gfrlfzc2JGge9m66M/PCsIRzNKWXNfnWZq95urr3fqgmMwQMherxdhzxzWDjPrzzI5iM5FFdU4+PuWj/oMRrVhMrA9iVSip7HvJU90MtNLbOQfVDdBRjQp2MXDo+DR1IxVhvgXysxGBVKKmvUf5PdWEFZFX8cyGLN/kzWH8ymtKp2Y4Onm46zBoQwbWgYUwaF1G9VY3LluBh+TEjnr2N5/OuHvXx4/bh2B4N7ThZSZTAS7K2nd5Bn6y8Q7damXwmeffZZ/vjjDwDy8/OZNm0agwYNYvr06QwaNIhZs2ZRUFBgj3EK0XFjb4S4S0ExwLIb1B8MTdBpNbx6xWhO7xfIuD4BnN4vqPZJ8zLX6PkdKlJmjf4h3vQP8aLaoLDuYHb9J0tzYenFsHg6lGQ3fQHhdPIsO7pc4dhG+Pg8+O5Wm13f3VWH3kX9sdHdd3ZlFFZwxnNruf/rXazYk0FplYFQHz1XjY/ho+vHsfNf03lnfjyXxkc1GfQAaLUa/nfxcHx11Ww/eJyfdze9e9Qa5sKF4/oE9KiZtK6oTYHP22+/TXCwus32wQcfJC8vjx07dlBWVsbOnTspKChg0aJFdhmoEB2m0cCcV9XZmuJT8O1Nam+dJnjpXfjylgl8c9tE3Ezf6MlMgpM71C3yI9s/pd0W5qRqc5NUCzdPtZVFaTb8dFeHOkGLniO/zA5VmxuobVvRvQOfrSm5lFTWEOTlxj3nxPLTXZPY+shU/nfRcKYMDrW6anJsqDfPxZ1gj/tN+PxwXbt3vO2Q/J5O06bAJzMzEz8/tXfImjVreOWVVxg9ejTu7u6MHDmSN954gxUrVthloELYhN4b5i0BFw+15cSGF61/rZsnjLsJRlxhSfa0N/O29rUHsqisqROkuXqoW9x1bmrC9vYPO2U8omvLq1fDx7Z9ulh+P7xzJme4HQK6/4zP3pNqPs35IyK4f8YgRkT51+bytdGMYHW25lS1N0//sr/NrzcaFbabtrJLfo/9tSnw6d27N3v37gXUqrcuLvVThHQ6HaWlpbYbnRD2EDYUzn9Z/bym3PrXBfSB2S/B3DftMqymjIzyJ9RHT0llDVtTGtQMCo+DaU+qn//2qNqaQzi1+n26bBz45CZDxm76upi2tHfzGZ996epOrWG9Ot4IVJejVmw+pETzzY4TbE5uehm9OcnZJRSWV+PhqmNoZOO2OcK22hT43HzzzfzjH/8gOTmZu+66i0WLFnHkyBEAjh49yn333ceMGTPsMlAhbGrUVXDrn7WBQxel1WqYbpr1WWUqpljP+Nuh32Q1gPvuJqhx3sJyomFndhsvdZmuE6ZTA4aC8u77b03drq7O+AyzRaBh6tEVMzgegEe+31OvAnxrzPk9o2P8cbXlbjzRpDb9CS9atIhp06YxdOhQ3n//fRISEhg4cCB6vZ7Y2FhKSkp4/fXX7TVWIWwrYkTt5zVVYKhp/tzNr6utLxyQS2PO81mdlInR2OD+Wi3MfQc8AuDULlj3TKePT3Qdlhkfeyx1mYoYhmrUwKc7L3WdyC+nqKIGN52WAaEdrMVVVQr5xwC4bPYMwn3dOZ5bxqu/H7b6Epb8Hlnm6hRt3s7+2muvcfvtt7N8+XJSUlIwGo1EREQwadIkpk2bJtnoovspSINvroc+Z8D0fzfxfCqs+hegwL27IaB3pw5vQr8gfPQuZBVXsutEAaNjGnxz9I2AOa+pFZ2HXtCpYxNdS15ZnarNtp7x8VI3tgRSAHTvIobm/J6B4d61mxfaK/sAoIBXKN6BETx1oYZbPt3BextSmDMi0qqlK3PFZkls7hxtCnxWrVrFlClTGDJkCEOGDLHXmIToXOk74eR29REzAQadW//5hM8ABfqe3elBD4Cbi5bJg0P5eVc6v+3LbBz4gBrwDDwXXKS/jzOrzfFxVZvbFqV3vIaPmSmA8jMWAN07x8ec3xMX2fH8HkuPrlD1Z+KMYeHMigvn170ZPPLdbrWdRQtJ05lFFaTllaPVqEtdwv7aFOredttthISEcPnll/P5559LzR7RMwy9EMbfpn7+/a2Qf7z2OaMBEj9TPx9zbeePzcS8u2tVUhN5PmZ1g578Y7LF3QnlWQIfPcRfB1MeAU8bzSKYlrp8zI1Ku3GOz15b5vcE9of462HQeZZD/75gGD7uLuw6UcjHm4+1+HJzm4ohEb7dviBkd9GmwCclJYUNGzYwfPhwXnnlFcLDw5k6dSqvvfYax44ds9MQhegE0/8DveKhokBd9jInCaesVZs8uvvD4PMdNrzJg0Jw1WlIyS4lOauk5ZO3vAmvj4U933TO4ESXUFljoKRSzVML9LTDzJ+32rZCcfMCesaMjy12dNF7glof7PTbLIdCfd15ZJY6A/TSqoOcyC9r9uXmxGbJ7+k8bV7cHDFiBI899hh//fUXKSkpzJs3j5UrVzJkyBBGjhzJ448/zvbt2+0xViHsx8VN7YPl7q8ufa16TD2+01SpecTl4OruqNHh4+7KxP5qjkWLsz4AlSVgrIa1/5NZHydiDkR0Wg0+Nblq5WZT0q1NRI6CR1JJOvcroPsmN2cVVZBdXIlWA0OC3ez2f+SKcdGc1ieQsioDj/2wF6WZ+2yX/J5O16GsrsjISG677TZWrFhBTk4O//rXvzh27Bjnnnsu//vf/2w1RiE6h38MXPSu+vlf78LfH8CBX9Sv7dyQ1Bozhpm3tWe2fOLEu8DNB/KPqj/8hFOo265Ce3Q9fDwbfmq6GW9H+Huos0ndNfAxz/aMC6rC49Uh8MY4OLSqfRerKoP0RKhuXA/M3M7CTadl3cHsJttZlFTWkGQaz9g+MuPTWWxWMMDLy4tLL72UTz75hKysLG6++WZbXVqIzjPoXJi0EMKGg94XfCMhcjSED3f0yJg+NAyNBhLTCsis0zm6ETcvGH6J+vnOTzpncMLh8u1ZtbkOf8/u3bLCvKNrlu9RqCyE3MPw+TxYeona1LUt0hPgvbPhrdObfDo21Ju7zlGbdz/1875G7SwSUwswKhAV4EGEn0fb34xol3Z3Zy8tLWX9+vWkpqZSVVX7l6nRaLj77rsJCemckv5C2Nw5/1J3xLh6qE1NS7McPSIAQn3cGR3tz87UAlYnZXLN6S3sMBtzLez4GJJ+hPOeV+v8iB6tfvFCc+Bj2z5d/HQPkSd2MkZzCTurB1JRbbC6p1VXYZ7xGaE3zcD4x0DRKUheAynrYPbLamK4NUyFCwkZ3Owpt53dn+W70zmUWcLTv+znhXkjLc9Jfo9jtCvwSUhI4LzzzqOsrIzS0lICAwPJycnB09OT0NBQ7r77bluPU4jOo3NRH6AWCPQJd+x46pgxLJydqQWsai3wiRwDYXGQuRd2fwPjb+m8QQqHqF+80FzDx8YzPrnJ6LL20Es7mZ0GKCqv7naBj3lHl0ef0yCgQq18HjFKzes79BtEj7f+Yg22sjfFzUXLMxeP4NJ3NvPNjhNcNLoXE2PVfD3J73GMdi113XfffcyZM4e8vDw8PDzYunUrx48fJz4+nhdfbEPTRyFEm5i3tW85kkNRRQtLDRpN7fb7xKWdMDLhaHmldYsX2mmpy0udyY92U3cWFnSzPJ/CsmpO5Kv5OJGnzYULXoe4SyCoP1z5Bdz5F4TWmb3Z9Coc3dD8Bc0zPqHDWrxvfO8A5pt+UTG3s6gxGElILQBgnAQ+napdgU9iYiIPPPAAOp0OnU5HZWUl0dHRPP/88/zzn/+09RiFECb9QryJDfWm2qCw7mB2yycPnwfnPAZXftk5gxMOlV9Wp3ihras2m5muF+lSDHS/PB9zf67oQA/8PJqomRMcW/t55j5Y8yQsmQNfXQN5R+ufqyh1Ap/WC/r+Y+ageu0s9p8qpqzKgK+7CwNCvdv5jkR7tCvwcXV1tbSmCAsLIzU1FQA/Pz/L50II+5jRUtPSujwD4ax/qAnaosfL64zkZq/6jUq7284uc37PaWFaOLUbqlvYJOATAWMXgEYH+3+GN8fDmn9DpRr0UXwKKgrV54MHtHpvH3dX/jM3DoD3NqTwyZZjgDobpG2hsrOwvXYFPqNHj7bU6pkyZQqPP/44n332GQsXLmT4cMfvfhGiJzM3LV13MJvKGus7QIuerXbGxw2m/gsmPwJ+Uba9ibe61BVialTacJdSV2fO75mu3wfvngmftNDbzjMQZr8It21U29UYKmHjy2px0MQv1BkhgKBYcNFbdf/pQ8M4b3g4BqPCNztOAJLf4wjtCnz+97//ERERAcB//vMfgoKCuP3228nKyuK9996z6QCFEPWN6OVHmK+eksoaNh/Jbf0FyWvg04vUb9b2lpcCLw6Eb2+W4omdzDLj4+UGY29Udya626AlQ12mGZ8ApQDovjM+g3Un1QPBA1t/UdhQuPZHuOJzte9ZSQasfAg8g2D6U3Ba20q3PDlHbWdhJvk9na/NgY+iKPj5+REWFkZNTQ0hISGsWLGCoqIidu7cyciRI1u/SBsdO3aMBQsW0LdvXzw8POjfvz9PPPFEvW30AKmpqcyZMwcvLy+Cg4O55557Gp0jRHen1WqYPtTKYoYAp3bBkT9g5xI7j8ykJBP2fA1/vd859xNAg11d9uIdBu5+GFy6X9uKsqoajmSrSdnhVcfUg1bk5gDqZoHBs9Xk52n/Vh+9xsCke9sc+IT6uvPP89T7uum0jIiyQdsM0SZtCnyOHTvGqFGjGDx4MMOHDyc2NpadO3faa2wWBw4cwGg08u6777Jv3z7+7//+j3feeadeIrXBYGD27NmUlpayceNGvvzyS7799lseeOABu49PiM42Y6i63LU6KROjsZWZlZFXqXkIqVsg+5B9BxbYD859Tv181WOQsde+9xMW5jo+IUouHP3Ttu0qzKLi4eFUfhj5DtC9GpXuP1WMokCojx73/MPqwRbq7zTJRQ9nLISxN3RoLJePjeaRWYN56bKR3a4cQE/QpsDnoYceoqKigk8//ZRvvvmGiIgIbrvtttZf2EHnnnsuH330ETNmzKBfv35ccMEFLFq0iO+++85yzqpVq0hKSmLp0qWMHj2aadOm8dJLL/H+++9TVFRk9zEK0ZlO7xeEj96FnJJKEtIKWj7ZNwIGzlQ/T+iESs7jb4UBM9WciG8XqGX9hV2VVxmoqDYCEHhqAyw5H359yG738zftiCosr7HbPWzNvKNrZIQ75B5RD1o742NjWq2GW8/uz5yRsvHAEdoU+Pz555+89957XHXVVVx88cV888037Nixg/Lyxn1K7K2wsJDAwNq10S1bthAXF0dkZO0/pJkzZ1JZWcmOHTuavU5lZSVFRUX1HkJ0dW4uWqYMVvMtWm1aCnVq+nxR23neltIT4Ke7oSBNXRaY+5a6LJJ9AFY9avv7iXrMsz1uOi36ClOZA1tvZa+jtm1F95nx2XdS/d5+RkAhKAa1JY1PhINHJRyhTYFPRkYGgwfXTg1GRUXh4eFBZqYVeQY2dOTIEV5//fV6s00ZGRmEhdXfuhkQEICbmxsZGc3/YHjmmWfw8/OzPKKjo+02biFsqW7T0uY6P1vETgfvcCjLgUO/2n4wa/+n9gVba2pO7BUMF6nLIWz/UN0OLOzG0qfLyxWNvao2m/14J9M3XMJITXK3Sm427+ga6W76eRAyWA3ShdNpU+Cj0WjQauu/RKvVtv5NtxlPPvkkGo2mxYd527xZeno65557LvPmzeOmm25qNL6GFEVp8rjZI488QmFhoeWRlpbWrvciRGc7e2AIbjotR3NKLUmbzdK5wOir1c9t3bg0dRscXqXmEZ39j9rj/c+BifeAX7Sl4q+wjyZr+HjZacYn5zA+BQeI0OR1m+TmqhojhzLV+jthA8bC1CdgzHwHj0o4Spt6dSmKwsCBA+sFEiUlJYwePbpeQJSXl2fV9e666y6uuOKKFs/p06eP5fP09HSmTJnChAkTGm2bDw8PZ9u2bfWO5efnU11d3WgmqC69Xo9eb10NBiG6Eh93VybFBrH2YDa/7cskNtSn5ReMvgaObVRL9NvS2v+arn+1mtxc1zn/gjMfAA9/295T1FOvho+9qjabmYLYYE1ht1nqOpRZTLVBwc/DlfD+IyDW9ruPRffRpsDno48+sunNg4ODCQ4OturckydPMmXKFOLj4/noo48azTxNmDCBp59+mlOnTllqDK1atQq9Xk98fLxNxy1EVzFjWDhrD2azKimTO6fEtnxyYD9YsMq2A0hZr/Yy0rnBWQ82ft7FTX2YlRdIEGQH9Wr4ZNuparOZKaAK0RRSVFGDwaig6+KVh5NM9XuGRfq2uAIgnEObAp/rrrvOXuNoUXp6OpMnTyYmJoYXX3yR7OzaHkXh4eq23hkzZjB06FDmz5/PCy+8QF5eHosWLeLmm2/G19fGRbyE6CKmDglFo4FdaQVkFFYQ7ufeeTdXFFj7tPp5/PXg30J+nKKodYR+ewzmfwfRp3XKEJ2FOfAJ8nKDo/ae8VGvG4yaM1NcUY2/PWsH2YA5v2dEuDsk/ajm9wQPlBwfJ9WmwKehqqoqsrKyMBqN9Y7HxMR0aFANrVq1iuTkZJKTk4mKql+C3ZxfpNPp+OWXX7jjjjuYNGkSHh4eXHXVVdItXvRooT7ujIkJYMfxfFbvz7R0gG5RWR7s/goiR0PM6e2/efIaSNsGLu7qclZrjm2EqmJ1i/ttG8G9ceG2Tck5rE7K5I4p/Qn16cQgrpuzzPh4uMDMp9XlLnvtWPJSZ+nDdMVQoxYx7OqBj7li83jfPPj6WtD7wcPHHTwq4SjtCnwOHTrEggUL2Lx5c73j5kRig8G2/YOuv/56rr/++lbPi4mJYfny5Ta9txBd3YyhYew4ns+qfRnWBT7rn4dtb8PQCzsW+PSKVwMerSv4hLd8rkYDs1+GtL+g4Dgsvw8uWVzvN+6VezO46/Od1BgVNiXn8NWtE9SclbYoPAF6nyaDqp7MkuPj7d7h4nqtMs0khWpN/bq6+M4ug1GxLHUNcUlXD4bKji5n1q5eXTfccANarZbly5ezY8cOdu7cyc6dO0lISOiUSs5CiFrmpqVbjuRat7149DXqxwMroCS75XNb4hkIUx+HKY9Yd767rynY0cHebyHxc8tTdYMeF62Gw1klzF+8rW3bpdc9C68Mh49nt/GNdH/1cnzszTsM3P2p0nkCXb+Wz9GcUsqrDXi46gitOKoebGvFZtGjtCvwSUxM5N1332XWrFmMGjWKkSNH1nsIITpP32AvBoR6U2NUWHcwq/UXhMepszXGatj9ZdtvqCjtb0AaPQ6mmFrNrPgH5CSzcu8pS9Bz4ahIVtx7JkFebuxLL+KGj/6itNLK6sDu/qAYIWMPVLayvb+HyS9VA8RwJUdNNs+34zJOzOnw8HFeDnsG6PqNSs0Vm4dE+KDNPqAedFDFZtE1tCvwGTp0KDk5ObYeixCineoWM7TKaFMNk52ftD2I2fstfDQLjm9u/dymnHEf9DkTqkspXDqf+z//yxL0vDRvJAPDfFh603j8PFzZmVrATUu2U1HdxPJ5QSoc21T79fhbaz/PTW7f2Lopc+Xm6Ky1sGQOrP6X3e9ZW725qwc+6jJXXC8/tZI4QMggB45IOJrVgU/dlg7PPfccDz74IOvWrSM3N1daPgjhYOampesOZjUdJDQUdwm4ekLOITVB2VqGGrU6c+oWOL6p9fObotXBxe9RqQ9iSe5gKo0a5o6K5OXLRuGiU78lDYnw5ZMbT8Nb78KWlFxuX7qDqhpj7Rg2vw5vjodlN6hb5EHN2YiZqH6ec7h9Y+uGqg1Gy1KXj8FUQ81eW9nr8PNQl9W6+ozP3pPqjM/wMHfIS1EPhsiMjzOzOrnZ39+/Xv0DRVGYOnVqvXPsldwshGjZ8F5+hPu6k1FUwZYjuZY+Xs1y94VhF0PiUnXWx9ok591fQt4R8AyC8e1vULziuIZHip+n0OjBRaN78eK8kY1qwYyM9ufD68dx7YfbWHswm3u/TOD1s4y4rLhPXc4CiBgJlcW1tYGCB0DqZjWgcxLHc8swGBU83XR4VeWqB+3YpwuA72/jvuS/2a25gYKyvva9VwcoimKZ8RnlmaMuhbr7tZ6ML3o0qwOftWvX2nMcQogO0Go1TB8axqdbj7MqKaP1wAfUxqW7vwSjQV3uam2XS00VrHtO/fyM+9TdU+3wy+5T3PNlAgajBxeP7sUL80aiM1ZBZRl4BNQ797S+gbx/7Vju/XgD4w88izZ5NaCo+Twz/gOjroG6xUyDB6ofnSjwSc5S85n6h3jbv0+XWfZBQsuS1bYV5V03uflEfjmF5dW46jT07jcI5i2ByiLZ0eXkrA58AgICiIuLa1QxuTn79u1j0KBBuLh0qFSQEMJKM4apgc/qpEz+O9eKarrRp8EDBy11WVqV8AkUpqrNTscuaNcYl+9O594vEzEYFS4e04sXLh2JLu+IumTlHQpXfVM/kAHOjHJhs+/DuJerP9QT/Gcy6qY30DQ1q2EOfEo7sFutmzH3aYsN9YYCO1dtNjP92QdrCsnuwjk+5tmegWE+uHkHwLC5jh2Q6BKszvEZPXo0ubm5Vl94woQJpKamtmtQQoi2G983CB93F3JKqkhMy2/9BRqN9UFPdTlsMBUDPWsRuHm2eXxNBj1aDRiq1Bma5DVqfaGGPAJwH3AOJV4xzK96hIsyruM/a3Oabo7c90x48CjcsKLN4+uujlhmfLzs36fLzNyvi8IuXcfHvKNrWKRU7xe1rJ6OURSFf/3rX3h6WvcNr6qq605/CtETublomTo4lB8S01m1L5P43oHWvzj3iNpvq7m2E7u/guJTaqf1Mde2eWw/70pn4Vdq0HPJmCiev3RE7YxU2FCY8V9YsQhWP6HmGx3fDEPn1o5n1nN4u7hzwa5s/ly2mw83HcXTTceimQ1257h6qA8nkmye8QnxhNJOWuqqM+PTlZOb6+3o2v6hWs2671ng5uXgkQlHsjrwOeusszh48KDVF54wYQIeHs71DUgIR5sxLJwfEtP5bV8GD88abF1DxnXPwrpn4LRb4LwXmj5n9Hy1NYWrB7jo2zSmukHPpfFRPHfJiMbLcONugiNr4eAv8ME0NQn1+Ba40lTk0JS8PG9sNBXVBv714z7eWJuMh5uu9easPZiiKJYZn9hgD5j9kjrrY5qRsRtLh/aiLr2d3TzjExeqh6UPqP+u7j8ggY+TszrwWbdunR2HIYSwhbMGhuDmouVYbhnJWSUMCLMiAdncMHT3VzD9qaZnTLQ6GHlFm8fz0650Fn6ZgFGBefFRPNtU0APqstsFr8M7O9WZJY8AGHxek0nX8yf0oazKwDO/HuCF3w7i4arjxjPq7CxK/EKtNTTsIhh9dZvH3J1kFFVQWmVAp9UQE+IPEdd3zo0tgU8hheVVlh29XUl2cSWZRZVoNDBEnyU7uoRFuwoYCiG6Jm+9C2fEqnk7v+3LsO5FfSeDXwxUFML+n+s/V1UK1RXtGsuPiSfrBT1NzvTU5RUE1/4E0/8Dd21XW2s088P01rP7c+/UAQA8tTyJL/+qk0+YdwSSV8OJv9o17u7kSFYpAL2DPHFz6cRv595hKB4BlCruVBsUyqq6XgkT82xPv2AvPPJNdZ1ChsiOLiGBjxA9zYyhan7HtztPYjRaUZVZq4UxdSo517XpVXhtNCT92KYx/Jh4kvu+SqwX9Ghb22UGEDIQJt1jVdL1wmkDuOWsfgA88v0efkg4qT5h2dLe84sYJmcVA+pWdvKPQ8p6+7arMDMlkd9ufAjomo1Kzfk9wyL9IGu/ejBUenQJCXyE6HHOHxmJj7sLR3NKWb3fyhYWo64CjRaO/akmOgOU5sKWt6A4vU33rxv0XDa2DUFPG2k0Gh6ZNZj5p/dGUeCBb3axcm+GWsQQnKKWT3LdrexJP8InF8Af/+2Ue2s0GvwsbSu63mYWS35PL986rSok8BES+AjR43jrXbjm9N4AvLchxboX+UVB7DT184RP1Y+bX4WqYggfDoPnWHWZ3ScKLEHP5WOjefZi+wQ9ZhqNhn9fMIxL46MwGBXu/mInf+b5q0+WZkNZnt3u3RWYl7piQ7yhxFzDx85b2evw91ADn664s2vvySZmfCTwEUjgI0SPdMPEPrjptOw4ns+O41b+8DdvUz/4KxRnwrb31K+nPNaoqGBzXl1zGKMCM4eF8czFw+0a9JhptRqeu2QEs0dEUG1Q+MdPKSi+vdQne3izUvOMT/9Q7zo1fOzfpwuAZQv4oOweBmtSKexiO7sKy6tJzSsDYFioG+QfVZ+QruwCCXyE6JFCfd2ZOzoSgHfXWznrM/BcuGQx3LIONr4MNeXQaywMnGnVy/eeLOT3A1loNfDQuYM7Jegx02k1vDRvJC5aDRlFFVT691ef6MHLXYXl1WQXVwLm4oWdVLXZLOcgvWuOEa7J63I5Pkmm/J5e/h74e3vBLevVf9ud9WcjujQJfIToocyJv6v3Z5Jimhlokc4Vhl8KZblqsTeAcx6zehfMa7+rycQXjIykX4h3u8bcEe6uOgaFq9v3M12jQe+n7krrocytKsJ89fi4u3Ze1WYzr9oihl2tlk+9/B6tDiJGqP+2ZUeXQAIfIXqs2FAfpg4ORVHg/T+PWv/Cg7+qbSR6nwH9Jlv1kv2niliVlIlGA3ed47iCgiOi/ABYFnQbPHwcxt/qsLHYm7k5aWyoKcjs7Bkfc/VmCrtco9J6O7qEaEACHyF6MPOsz7c7T5BTUmndi067GW76Hc59xurfkN/4Q82lmT08gtjQ9nVtt4W4XuoPusRT5T3+t3tLc9IQb6ipgnJTLldnFeirW8SwK8/4/PW+ujuxQHpHCpUEPkL0YKf1DWRktD9VNUY+2XzM+hdGjVWXB6xwKLOYFXtPAY6d7QEY0csfgD0nC5tuYtqDWJqThnoDCsx5VU1Ed/fvnAF00X5d5VUGy2zYsEg/2Po2/PYI5FmZ6yZ6PAl8hOjBNBoNt5pmfT7Zepyyqhqb3+ONP5JRFDh3WDiDwx3bBXtguDduOi0FZdWUfXkjvDYGsntmgvOR7Dpb2V30EH89nP0Pq3fgdZhXnaWuLjTjcyCjCKMCwd56Qj2U2h1dspVdmEjgI0QPN3NYOL2DPCkoq+ab7Sdseu3krBJ+3q0WOLx7quObhepdahOcq7MOqe0rcqxvrtxdVNYYOJ6rBj79Qzs/kRwA71Cq9QGU4d6ldnXtteT3+KLJOWzq0eUvO7qEhQQ+QvRwOq2Gm0xNPD/YmEKNwWiza7+1Vp3tmTYkrMskkg43JTif0EapB3rglvZjOWUYFfDRuxDqo1erbaes69w8lv5TSLomkVuqH6CwC1VuTqpXsdkU9IZKjy5RSwIfIZzApfHRBHq5kZZXzkprm5e24lhOKT8kqv2x7ukCsz1mI0wJzknVpt/we2DPriN1ChdqNBrY+x18ciGsf75Tx+FvblnRlWZ86lZszpaKzaIxCXyEcAIebjrm12ljYYvE3zfXJmNUYMqgEEZE+Xf4erZi3tm1tShIPdADZ3zMybv9Qxy0ld3E38MNgLIqA1U1tptJbK9qg5GDGWrj1rhIP8iSHl2iMQl8hHAS107ojd5Fy+4ThWxN6VgPq7S8Mr4zdUO/e+oAWwzPZgaG+eDmomVPpWlbd85h6GE7vI5kO7iGj4nv8ptY6fYQsZoTXWJn1+HMEqoMRnzcXYgO9KhtTipd2UUdEvgI4SSCvPXMG6vmvby34UiHrvXWumQMRoUzBwQzJibAFsOzGTcXLUMifDmuhKGghcqi2sCgh6id8fFSD3R21WYTTfZBBmvTCNfkd4kO7eb6PcMifdUlwFvWqTWpeo117MBElyKBjxBO5KYz+qHRwNqD2RzKLG7XNU4WlLNsh7o77N4uNttjNqKXH1W4kukZCxGjoLzA0UOyGaNR6TIzPnibihhSyOr9jg8uG1VsdvdVa1LpHbTzTXRJEvgI4UT6BHtx7jB1Cei9De0r6PbOuiNUGxQm9g9ibJ9AWw7PZoab8nzu838dbl3fo5Y60gvLqag24qrTEBPoqS7jWQKfzp3xqduv6511Rxy+3FWvYrMQzZDARwgnY25j8WPiSTIKK9r02ozCCr76Ow2Ae7robA/Ubmnfe7IQo7Fn5feYl7n6BHnhotNCcQZUl4FGB37RnTsYU6A10KuMoooa3m9nMG0LRqNi6co+LNIPdn4KvyyCY5scNibRNUngI4STGR0TwGl9Aqk2KHy0uQ3NS4F31h+hymDktL6BnN4vyE4j7LgBod7oXbQUV9ZwLLe0RyU3Wyo2m5e53Lxg7jsw7QlwcevcwZj6dU2KUL/8cNNRsout7AlnY8dySymtMuDuqqVfsBccXAF/vw+Zex0yHtF1SeAjhBMyz/p8vjWV4grrlieyiir44i+1QF5Xze0xc9FpGRrpSz9NOsGfnA1v9Jzk1kZb2d19YdSVMOnezh+MacYn0rWYkVF+lFUZeHNtcuePg9qKzYPDfdWZsCyp4SOaJoGPEE7onMGh9A/xoriyhi//SrPqNe9tSKGyxsiYGH8m9u+6sz1mI3r5kaf44FucDLnJUFXm6CHZhLk5aayjWlXU5R0OnkFo3Lz4x0w1wPh8Wyon8jv/z7pefk91OeQfU58IHdLpYxFdmwQ+QjghrVZjmfX5cNNRqltpY5FTUsnSbccBNbdH0w3K/w+P8qcAH4q0ph0+uY6ZibA1S9Vm84zPwZVqu4qKos4fzIBp8GAKXPYJk2KDmNAviCqDkdd+7/xq2fvqVmzOOQQo4BFoWY4TwkwCHyGc1NzRvQjx0XOqsIKfd6W3eO77f6ZQUW1kZJQfZw/sHj9IzDu7DhtMCSg9oIJzfmkVuaVqvZz+oaYaPr8+qLaryNjjwJGBRqNh0cxBACzbccISoHUGRVFqZ3waVmzuBkG66FwS+AjhpPQuOq6f2AdouY1FXmkVn27pXrM9oBb383DVcdhQp4JzN2cOJnr5e+Dp5gLVFbWNSYMdn3cV3zuAaUNCMSrw8urOCzTTCyvIL6vGRathYLi3VGwWLZLARwgnds343ni66TiQUcyGwzlNnrN4YwplVQaGRfpyzuBOrhPTAS46LcMifTmiRKoHesCMjzmxuZ+5YnNeCqCA3s9xSzpfXg1vnm6ZZXlghjrr88vuU+w9WdgpQ9hnus+AMB/0LjooUtupECL5PaIxCXyEcGJ+nq5cMS4GaLqNRUFZFUs2d7/ZHrO4Xn51Ap/uP+OT3DCxOdf0noJjHbekU5andkFP/AyAIRG+XDBS/TN/adXBThnCXkv9HlPhwovfg3+kwIjLOuX+onuRwEcIJ3fjGX3QaTVsSs5t9Bv6h5uOUVJZw+BwH6YP6eR2CDYwIsqPw0ovjrn0hfDhjh5OhzVKbDYHc0EOXOYyb6P/+wMoyQbg/ukD0Wk1rD2Yzd/HOtYQ1xpJlvyeOhWbvYLAw9/u9xbdjwQ+Qji5qABPzh+hJgDXbWNRVFHNR5vUAof3TB2AVtu9ZntADXzSlDBmVT6L4cK3HD2cDktu2KPLvFMtONZBIwIGzoTI0Wr16M2vAWprlMvGqlWkX1h5sNn8MVvZa97RZUpoF6IlEvgIISxb23/Zc8pSg2XJpmMUV9QwINTb0t+ru+kb7I2nm47yagMpnbjLyB4qqg2cyC8H6gQ+5rwlR874aDQw+RH18zqzPvdMjcXNRctfx/KazR+zhZySSjKKKtBo1GU29i+HTy9WxyJEEyTwEUIwLNKPM2KDMRgVFm88SkllDR9sVGd77u6msz0AOq1G3d4M7E7Lh6pSB4+o/VKyS1EU8PNwJcjL1Jpi1vNwwesQPd6xgxswAyLHmGZ9XgUgws+Da0/vDcALvx2w26yPuSN73yAvvPUucHI7HPkdMpPscj/R/UngI4QAamd9vvo7jdf/OExheTX9QryYPTzCwSPrmOFRflyvW8kFv4yFVY85ejjtVneZy5JkHjUWxlwLvg7+O6o765PwmVo5Gbh9cn+83HTsPVnEyr0Zdrm1uX6PZZnLXMNHKjaLZkjgI4QA4MwBwQyJ8KWsysC769Vcn7vPiUXXTWd7zIb38qNQ8cJVqezWO7uOWHp0eTl4JM0YMB1m/Bfu2AquHgAEeetZcKYaUL+46iAGo+1nfWorNpsSm7PNPboG2fxeomeQwEcIAaiVd285q6/l695BnswZEenAEdnG8KjaLe1KN67l0yixOe1v2P4RZHSR7uMaDUy8G3zq7/676cy++Hu6ciS7lO8TTtr8tvUqNleVQb5afkFq+IjmSOAjhLA4f0QkkX7uANw5JVbtct3N9Q3yItNN3WGkKcmE8gLHDqidGjUnTfoBli+EhKUOG1OLCtUgx9fdldvP7g/A/60+RGWNwWa3KKqo5liumow/LNK3tkeXZxB4d4/WKqLzdf/vakIIm3HVafnohtN4cd5I5sVHOXo4NqHVaugTGU6GEqAe6IbNSg1GhZQcNTG7UQ0fR25lb0pFkbqr6vV4KM4E4NoJfQj10XOyoJwv/0qz2a32mxKbe/l7EODlVtuqQmZ7RAsk8BFC1DMo3IdL46O6XZXmloyI8uOIsfu2rjiRX0ZVjRE3Fy1RAZ7qwdwuULywKXofqCyCmnJLXR8PNx13T1XH+fofyZRV1djkVuaKzUPN+T2VxWr7DsnvES2QwEcI0eMNj/Lv1j27zBWb+wV7qcnmNVW1uSxdoDlpPRoNTH5Y/fzvxZZZn8vHRhMd6EFOSSUfbz7W4dtUVBvYeFitGWQuWcBpN8PDx2Hm/zp8fdFzSeAjhOjxRvTyY7txIKuM46gJ6n6zAeYeXf3N+T35R0ExgJs3+HTBcgP9p0LUaeqszya1ro+bi5b7pw8E4J11Rygsr27Xpcuqanh/QwpnPr+WtQfVwOe0voG1J2g04OresfGLHk0CHyFEj9c7yJO1bmdzS9V9HAqb7ejhtJmlOWlIw4rNDmxO2pK6sz7ba2d9LhjZi4Fh3hRVqMFLWxRXVPPm2mTOeG4tT6/YT3ZxJb38PXj+khFM6B9k63cgejAJfIQQPZ5Go2G4qcDdnpMFjh1MOxzJNiU2hzZMbO5iy1x19T/HNOtTAZteAdRK2g/MUGfcPtx0lOziylYvU1hWzStrDnHGc2t54beD5JVW0TvIk+cvGcHaRZO5bJy6Y49Tu+C10fDjnfZ6R6KHcHH0AIQQojMMj/Jj85Ecjh1NhpFB4NZFCwE2oChK4xmf+OshahzovR03sNZoNDDlEfj0Iji8Gqb/B3QuzBgaxsgoP3adKOStdck8MWdYky/PK63igz9T+GTLcUoq1WTo/iFe3HVOLHNGRDYutZCZBHkp4NvL3u9MdHMS+AghnMLwXn587fYUpyUdhBGfw+DuseSVW1pFYXk1Gg30M1dt9gyEvmc6dmDW6DcF5i2BQeeBTv1xo9Fo+MfMwVyzeBufbU3lpjP70cvfw/KSrOIK3t+QwtKtqZRXqzV/Bof7cNc5scyKi2i+krhUbBZWksBHCOEURvTyZ6ei5oLUZB3EpZsEPubZnqgAD9xddQ4eTRtpNDBsbqPDk2KDmNAviC0puby25jDPXTqCU4XlvLs+hS/+SqWyxghAXC9f7j5nANOHhLXeKNfcoytksI3fhOhpJPARQjiF6EAPftap+SDFJ5IIcPB4rNVomas8Hzb+HwQPglFXdc3k5qYYauBUIkSNRaPRsGjmIC55ezPf7Eij2mhk+a5TVBnUgGd0jD/3nDOAyYNCrK8nlS3NSYV1JPARQjgFjUaDIXAA5IEh66Cjh2M1cw0fS8XmrAPqFnG/aBh9tQNH1gYl2bB4OhSlw72J4BtJfO8Apg0JZc3+LL7bqba3GN83kHumDmBi/6C2FdCsKoUC6dElrCOBjxDCaXhFDYE88CpOAUXpFrMlyQ17dFkqNnexVhUt8QoGn3C1/tDGV+C85wF4eNYQDmWW0DvIk7umxDK+Xzu3pWebAlnPYPCSre2iZbKdXQjhNKL6xWFUNHgYSqA0x9HDsUpKd9zK3lDduj47PlZnflCDuQ0PTuHTBePbH/QA1FRCxCjoFd/hoYqer9sEPhdccAExMTG4u7sTERHB/PnzSU9Pr3dOamoqc+bMwcvLi+DgYO655x6qqqocNGIhRFczNCaUNEXt2l2VecDBo2ldaWUNJwvKgTo5PuYmq12tR1dr+p4NMRPBUKnmKNlS7wlw63q4+mvbXlf0SN0m8JkyZQpff/01Bw8e5Ntvv+XIkSNceumllucNBgOzZ8+mtLSUjRs38uWXX/Ltt9/ywAMPOHDUQoiuJCrAgxW6ybxbM5uj5R6tv8DBzLM9QV5uavdx6Lpd2VvTzKyPEJ2t2+T43HfffZbPe/fuzcMPP8zcuXOprq7G1dWVVatWkZSURFpaGpGRajPCl156ieuvv56nn34aX19fRw1dCNFFaDQatkTfzIZD2XiVhNDVK740Smw2VKt5MgDBAx00qg7oe5Y665O6Gf58GWa/aJvrGmosdYKEaE23mfGpKy8vj88++4yJEyfi6uoKwJYtW4iLi7MEPQAzZ86ksrKSHTt2NHutyspKioqK6j2EED3X8F7qL0F7ThQ6eCSta9yc9DgYa8DVE3wiW3hlF2Wu5gxqlWWjsePXrCyB/0XCm6eru7uEaEW3CnweeughvLy8CAoKIjU1lR9//NHyXEZGBmFhYfXODwgIwM3NjYyMjGav+cwzz+Dn52d5REdH2238QgjHGx7pRxCFVB3f5uihtKp2xsdUsTmwH9y3D679EbTd6tt3rT5nwi3rYP53tnkPOQfVvKGynG7ThkQ4lkP/5zz55JNoNJoWH9u3b7ec/49//IOEhARWrVqFTqfj2muvRVEUy/NN1X1QFKXFehCPPPIIhYWFlkdaWppt36QQoksZFVTDDvfbeanoH1SUlTh6OC1qtJVdqwW/KIg+zYGj6iCNBiJH2+565q3sUrFZWMmhi6J33XUXV1xxRYvn9OnTx/J5cHAwwcHBDBw4kCFDhhAdHc3WrVuZMGEC4eHhbNtW/ze4/Px8qqurG80E1aXX69Hr9R16H0KI7iMsvBcFeOOvKeHood0MGTXR0UNqUo3ByLFcdenGEvj0NKW5kLa1Y33Tskw9uqRis7CSQwMfcyDTHuaZnsrKSgAmTJjA008/zalTp4iIiABg1apV6PV64uOltoMQQqXRasnWx+BfmUT20T1dNvBJzSuj2qDg4aoj0s+0A+2P/4JihDHXQkAfh46vwwrS4M3xYKyGexLUmaz2yJYeXaJtusUi8V9//cUbb7xBYmIix48fZ+3atVx11VX079+fCRMmADBjxgyGDh3K/PnzSUhI4Pfff2fRokXcfPPNsqNLCFFPpV9/AMrTu24tH/MyV78Qr9oGnds/gj9fgvICxw3MVvyjodcYMFTB55fDljfV5O22kuakoo26ReDj4eHBd999x9SpUxk0aBA33ngjcXFxrF+/3rJMpdPp+OWXX3B3d2fSpElcdtllzJ07lxdftNF2SSFEj+EWpm5kdytIdvBImnfEXLG5bnPSMlO16e7UrqIlU58AFw/I3Au//RNeHQHvnAHrn7dux1dlCRSmqp/LUpewUrcofDB8+HD++OOPVs+LiYlh+fLlnTAiIUR3FtJ3OOyBkMpUyqsMeLjpHD2kRholNueYgjSfSND3kJyf6HFw93bYvxwOLIfjmyBjD2i0cPaDtedlH1QrVTfcBVZVCsMuhpIs8Azs3LGLbqtbBD5CCGFL/jHDAOinOUVSegHxfbpeY8vk7Gaak3a3is2t8YuC029TH6W5cOjX+tvSK4rUWSB3fxh8HgyeoxZCdHEDnzCY95HDhi66Jwl8hBBORxPQl9U+F7Muz59BabldLvBRFIWUrAZVm82tKrpbj6628AqC0dfUP5Z9UF0OK81SW13s+Bj0vjBgBgw5H2Kn95wZMNEpukWOjxBC2JTOhb0jHuEzwzQST5U5ejSNZBVXUlxZg1YDfYI91YM5h9SP3akruy1Ej4N/JMM138HYG8E7DCqLYO8yNSG6PN/RIxTdjAQ+QginNCLKD4C9J7te64ojptmemEBP9C6m/KMC046nnjzj0xwXN4idCuf/H9x/ABashkn3QlkeLDlf/SiElWSpSwjhlEaE6BijOYQmG0orJ+Gl7zrfDhvl9wDcsh4KUsE71EGj6iK0WrVydfRpMP0pR49GdEMy4yOEcEohJ1bxnf5J7td9Q9KprtWcuFFzUgCtDgL7Sj8qITpIAh8hhHMKHghAf216l+vUXtucVJJ2hbA1CXyEEM7JVAQwXJPPodR0Bw+mvkY1fPYsg2U3wr7vHTgqIXoGCXyEEM7Jw59K9xAAik4kOXgwtYorqsksUnsQWmZ8jm2Evd9Cxl4HjkyInkECHyGE09KEqMtd7oVHKKmscfBoVOZWFSE+evw8XNWD5ho+puU5IUT7SeAjhHBa5p5d/TTp7Osi29oty1x183t6atVmIRxAAh8hhPMyJzhr0tnTRQIfS2JzqGn3VkURlGSqnztjDR8hbKzrFK4QQojO1m8yG/ov4v0kb6K6yM6uRjM+5tke7zBw93XQqIToOWTGRwjhvEKHoIy/jZ3KwC5Twbl2xseJenQJ0Ykk8BFCOLXhvdTWFSk5pRRVVDt0LFU1Ro7nqr3DLFvZy3JB6+J8PbqEsBNZ6hJCOLXA0iPc4LONDSVR7D1ZyMT+wQ4by/HcUgxGBS83HeG+7urBCXfCabdAdddrpipEdyQzPkII57bhBZ6ofpWp2p0OX+6qu8yl0Whqn9C5grufg0YlRM8igY8QwrlZdnadYreDE5yb3MouhLApCXyEEM7NlDvTT+v4Le3m4oWWxOaCNHhvCvx4lwNHJUTPIjk+QgjnVqeWz/HcMgrLqvHzdHXIUCxd2c0zPtkHIX2n5PcIYUMy4yOEcG6B/dUPmhICKGJvumNmfYxGxZLjY9nRZanYLDu6hLAVCXyEEM7NzRP8YgB11mf9oWyHDCOjqIKyKgMuWg29gzzVg1LDRwibk8BHCCFMMyr9taf4bOtx8kurOn0I5mWu3kGeuOpM35plxkcIm5PARwghzliIctXXHA8+m9IqAx9uOtrpQ7BsZa+7oysnWf0oMz5C2IwEPkII0fcsNANncv30sQB8vOkYhWWdW8XZspXdnN9TWQLF6ern0pVdCJuRwEcIIUxmDA1nUJgPxZU1fLS5c2d9GgU+pVkQ0Be8w8EjoFPHIkRPJoGPEEIYDbD3W7QbnmfhZDXR+cONRzu1d5elho95qSuwH9ybCPft67QxCOEMJPARQgiNFn6+D9b9j5kRpQwI9aaoooYlm451yu0Ly6rJKakE6hQvNNNJuTUhbEkCHyGE0GgsO6e0uYe56xw1p+aDjUcpqayx++2Ts4sBCPd1x1svgY4Q9iSBjxBCAIQMVj+mbeP8EZH0C/aisLyaT7Ycs/utj2Spy1yxdWd7llwAi2dAxh67318IZyKBjxBCAAyZo37c/TU6Y3XtrM+fRym146yPwajw9fY0AAaF+6gHjUY48TekbQMXD7vdWwhnJIGPEEIAxE4D7zAoy4FDK7lgZCR9gjzJK61i6dbjdrvt+3+msP14Pt56F66f2Ec9WJyu9ufSukBAb7vdWwhnJIGPEEKAmkQ88kr184SluOi03DlFnfV5b0MK5VUGm9/yQEYRL686BMDj5w8lOtDcqkI9RkBf0DmmYaoQPZUEPkIIYTZ6vvqxNAtqqpg7uhfRgR7kllbx2TbbzvpU1Ri5/6tdVBmMTB0cyryxUbVPmis2S6sKIWxOAh8hhDALjoW7tsMt68DFDVedljsnq7M+725IoaLadrM+r/9xmKRTRQR4uvLMJcPRaDS1T5p7dAVJxWYhbE0CHyGEqKvBLMvFY6Lo5e9BdnElX/6VapNbJKTm8+ZadVbn6YuGE+rjXv+EHGlOKoS9SOAjhBBNqSiColO4uWi5Y0p/AN5ef6TDsz7lVQYe+HoXRgUuHBXJecMjGp/kEw5+MRA8sEP3EkI0JoGPEEI0lPAZvDQIfn8KgEvjo4jwcyezqJJvTFvP2+u5lQdIySklzFfPUxfENX3SRe/AfXsg5vQO3UsI0ZgEPkII0VDwQHU7edIPUFGE3kXH7ZPVWZ+31h2hsqZ9sz6bk3P4ePMxAJ67ZAR+nrJjS4jOJoGPEEI0FDUWggepwc++7wC4bGw0Yb56ThVW8O2Ok22+ZFFFNYu+2QXA1eNjmDwotOkTjcZ2D1sI0ToJfIQQoiGNBkZfo36+81MA3F113Ha2Ouvz5tpkqg1tC1Ce+jmJ9MIKYgI9+ed5Q5o/ccML8MIA+POldg1dCNEyCXyEEKIpI69QKyef3A5Z+wG48rQYgr31nCwo5/ud1s/6rNqXwbIdJ9Bo4KXLRuLVUiPS3MNqHSE0zZ8jhGg3CXyEEKIp3qEw8Fz184SlgHnWpx8Ab1g565NbUsk/v1cbjd5yZj/G9Qls+QWWreyyo0sIe5DARwghmmOu5LznGzCqCc1XjY8hyMuN1LwyfkxMb/HliqLw6Pd7ySmpYmCYN/dNbyWYURTIlarNQtiTBD5CCNGc2Gkw/Sm4eS1odQB4urlwy1nqrM+ba5OpaWHW54fEk6zcl4GLVsPLl43C3VXX8v2KT0FVCWh0ap8uIYTNSeAjhBDN0bnApHvBr1e9w9ec3psAT1eO5pSyfPepJl96qrCcx3/cB8C9UwcQ18uv9fuZl7kCeoOLW4eGLoRomgQ+QghhLUUBwEvvwk1nqrM+r/9xGINRaXCawoPLdlNcUcPIaH9LDaBW5Up+jxD2JoGPEEK05ugGWHoJbHrFcujaCb3x83DlSHYpv+ypP+uzdOtx/jycg95Fy0vzRuKis/JbrWcQ9DkTosbZcPBCiLok8BFCiNYUpEHyGtj5iWXWx8fdlQVnqHk4r/9+GKNp1udYTin/W3EAgIdnDSY21Nv6+wy7CK5fDmctsu34hRAWEvgIIURrhl4Ibt6QlwLHN1sOXz+pDz7uLhzOKmHlvgwMRoX7v06kvNrAhH5BXDehj+PGLIRokgQ+QgjRGr23OhsDlpo+AL7urtw4SZ31ee33w7yz/gg7Uwvw1rvwwrwRaLVtKEJoNEBliS1HLYRoggQ+QghhjTHXqh9NjUvNbpzUF2+9Cwcyinnht4MAPD5nKFEBnm27fvYBeKYXvDXBRgMWQjRFAh8hhLBG1Ljaru2mxqUAfp6uXD+xj+XraUNCmRcf1fbrm7eyu3p0cKBCiJZI4COEENbQaGorOddZ7gJYcEZfgr3dCPXR87+Lh6PRtKPPlnkre5BUbBbCnlrolCeEEKKekVfAwRUw8kp1d5cpwAnwcmPN/Wej0Wjw83Bt37VzpFWFEJ1BAh8hhLCWdyjcuLLJp/w9O1hp2VK8UAIfIexJlrqEEMLRFKV2xkeWuoSwKwl8hBCircryYNu7akVnWyjNhspCQAOB/WxzTSFEk2SpSwgh2mrTq2r7ioHnQt+zOn49Y426Xb6yGFzdO349IUSzut2MT2VlJaNGjUKj0ZCYmFjvudTUVObMmYOXlxfBwcHcc889VFVVOWagQoiea/Q16sfDq6Co6e7sbeIbCRe8DvM+7vi1hBAt6naBz4MPPkhkZGSj4waDgdmzZ1NaWsrGjRv58ssv+fbbb3nggQccMEohRI8WPACiTwfFCLu+aP91yvJg8+uW/l9CCPvrVoHPr7/+yqpVq3jxxRcbPbdq1SqSkpJYunQpo0ePZtq0abz00ku8//77FBUVNXE1IYToAPOsT8LStgcuigIJn8EbY2HVY7DnG9uPTwjRpG4T+GRmZnLzzTfz6aef4unZuBT8li1biIuLqzcbNHPmTCorK9mxY0ez162srKSoqKjeQwghWjXsInD1grwjkLrF+tdl7YePzoMf74CyXAgZAv4x9hunEKKebhH4KIrC9ddfz2233cbYsWObPCcjI4OwsLB6xwICAnBzcyMjI6PZaz/zzDP4+flZHtHR0TYduxCih9J7Q1zjxqXNqiqF1Y/DO2dA6mZw9YRp/4bb/oSY0+07ViGEhUMDnyeffBKNRtPiY/v27bz++usUFRXxyCOPtHi9psrEK4rSYvn4Rx55hMLCQssjLS2tw+9LCOEkRl8LWhcwVLe+3PX1depuMGMNDJoNd26DMxaCrp2VnoUQ7eLQ7ex33XUXV1xxRYvn9OnTh//+979s3boVvV5f77mxY8dy9dVXs2TJEsLDw9m2bVu95/Pz86murm40E1SXXq9vdF0hhLBK9Glw/wHwDmn93DPug5yDMOt5GDTL/mMTQjRJoyhdfztBampqvdyb9PR0Zs6cybJlyxg/fjxRUVH8+uuvnH/++Zw4cYKIiAgAvvrqK6677jqysrLw9fW16l5FRUX4+flRWFho9WuEEKKemirY+ibo3GDCnbXHDdUywyOEnVj787tbFDCMiamf+Oft7Q1A//79iYqKAmDGjBkMHTqU+fPn88ILL5CXl8eiRYu4+eabJYARQthfXgq4uEPeUfjlfsg+AC4eMHQu+PVSz5GgRwiH6xaBjzV0Oh2//PILd9xxB5MmTcLDw4Orrrqqya3vQghhU7//B/58EQL6QP4x9ZhnMMz4r1qcUAjRZXTLwKdPnz40tUIXExPD8uXLHTAiIYRT6xWvfsw/Bmgg/nqY+jh4BjpwUEKIpnTLwEcIIbqUAdNhwAx1y/r0pyCq6bIbQgjHk8BHCCE6SucKV0v1ZSG6g25RwFAIIYQQwhYk8BFCCCGE05DARwghhBBOQwIfIYQQQjgNCXyEEEII4TQk8BFCCCGE05DARwghhBBOQwIfIYQQQjgNCXyEEEII4TQk8BFCCCGE05DARwghhBBOQwIfIYQQQjgNCXyEEEII4TQk8BFCCCGE03Bx9AC6GkVRACgqKnLwSIQQQghhLfPPbfPP8eZI4NNAcXExANHR0Q4eiRBCCCHaqri4GD8/v2af1yithUZOxmg0kp6ejo+PDxqNxtHDsSgqKiI6Opq0tDR8fX0dPZxOI+9b3rezcNb3Lu9b3retKIpCcXExkZGRaLXNZ/LIjE8DWq2WqKgoRw+jWb6+vk71n8RM3rdzcdb3Dc773uV9Oxd7ve+WZnrMJLlZCCGEEE5DAh8hhBBCOA0JfLoJvV7PE088gV6vd/RQOpW8b3nfzsJZ37u8b3nfnU2Sm4UQQgjhNGTGRwghhBBOQwIfIYQQQjgNCXyEEEII4TQk8BFCCCGE05DApwt75plnGDduHD4+PoSGhjJ37lwOHjzo6GF1irfffpsRI0ZYilxNmDCBX3/91dHD6lTPPPMMGo2GhQsXOnoodvfkk0+i0WjqPcLDwx09rE5x8uRJrrnmGoKCgvD09GTUqFHs2LHD0cOyqz59+jT6+9ZoNNx5552OHppd1dTU8Nhjj9G3b188PDzo168fTz31FEaj0dFD6xTFxcUsXLiQ3r174+HhwcSJE/n77787fRxSubkLW79+PXfeeSfjxo2jpqaGRx99lBkzZpCUlISXl5ejh2dXUVFRPPvss8TGxgKwZMkSLrzwQhISEhg2bJiDR2d/f//9N++99x4jRoxw9FA6zbBhw1izZo3la51O58DRdI78/HwmTZrElClT+PXXXwkNDeXIkSP4+/s7emh29ffff2MwGCxf7927l+nTpzNv3jwHjsr+nnvuOd555x2WLFnCsGHD2L59OzfccAN+fn7ce++9jh6e3d10003s3buXTz/9lMjISJYuXcq0adNISkqiV69enTcQRXQbWVlZCqCsX7/e0UNxiICAAOWDDz5w9DDsrri4WBkwYICyevVq5eyzz1buvfdeRw/J7p544gll5MiRjh5Gp3vooYeUM844w9HDcLh7771X6d+/v2I0Gh09FLuaPXu2cuONN9Y7dvHFFyvXXHONg0bUecrKyhSdTqcsX7683vGRI0cqjz76aKeORZa6upHCwkIAAgMDHTySzmUwGPjyyy8pLS1lwoQJjh6O3d15553Mnj2badOmOXoonerw4cNERkbSt29frrjiClJSUhw9JLv76aefGDt2LPPmzSM0NJTRo0fz/vvvO3pYnaqqqoqlS5dy4403dqnG0PZwxhln8Pvvv3Po0CEAdu3axcaNGznvvPMcPDL7q6mpwWAw4O7uXu+4h4cHGzdu7NzBdGqYJdrNaDQqc+bMcarfDnfv3q14eXkpOp1O8fPzU3755RdHD8nuvvjiCyUuLk4pLy9XFEVxmhmfFStWKMuWLVN2795tmekKCwtTcnJyHD00u9Lr9Yper1ceeeQRZefOnco777yjuLu7K0uWLHH00DrNV199peh0OuXkyZP/3979xjZVtmEAvw5lnds6Oxn7a1m7iS0DFlzEYEHEpBOkDrIsMkKI61amTHGAccgU/0ZZ1GQKavgwk3W6KNOQVIMuG0YtEoWKgMGQRaimYqBmEEa2sTiy9X4/vKGxAr7vtDtHOdcv6Ydz9znPc20ftjtPz+nROsqEi0aj0tTUJIqiyOTJk0VRFGlubtY6lmqcTqcsWrRITp06JaOjo9LR0SGKoojdblc1Bxuff4mHH35YrFar/PLLL1pHUc3IyIicOHFCDh48KE1NTTJ16lQ5duyY1rEmzMmTJyU7O1u+++67WE0vjc8fDQ0NSU5OjrS0tGgdZUIlJSWJ0+mMqzU0NMjtt9+uUSL1LV68WMrLy7WOoYqdO3eKxWKRnTt3ytGjR+Wdd96RKVOmSHt7u9bRVBEKheTOO+8UAGIwGOS2226T1atXS3Fxsao52Pj8CzzyyCNisVjkp59+0jqKplwulzz44INax5gwfr8/9gfh0guAKIoiBoNBRkdHtY6oqrKyMqmvr9c6xoQqKCiQNWvWxNV27Ngh+fn5GiVSVzgclkmTJsmHH36odRRVWCwWefPNN+NqL7zwgjgcDo0SaWNoaEhOnz4tIiJVVVXidrtVXZ93df2DiQgaGhrg9/sRCARQWFiodSRNiQhGRka0jjFhXC4Xvv/++7habW0tZsyYgc2bN+viLqdLRkZG0Nvbi4ULF2odZUItWLDgsq+oOH78OKxWq0aJ1OXz+ZCdnY17771X6yiqGB4exqRJ8ZfWGgwG3dzOfklaWhrS0tLQ39+Pnp4evPLKK6quz8bnH2zdunV477338NFHHyE9PR2//vorAMBsNiMlJUXjdBPrySefxNKlSzFt2jQMDg6is7MTgUAA3d3dWkebMOnp6Zg9e3ZcLS0tDZmZmZfVrzWNjY1YtmwZCgoK0NfXhxdffBEDAwPweDxaR5tQjz76KObPn4/m5mZUVVXhm2++QWtrK1pbW7WONuGi0Sh8Ph88Hg8mT9bHv6Jly5Zh69atKCgowKxZs3DkyBG8+uqr8Hq9WkdTRU9PD0QEDocDoVAImzZtgsPhQG1trbpBVN1fonEBcMWXz+fTOtqE83q9YrVaxWg0SlZWlrhcLtmzZ4/WsVSnl2t8Vq5cKXl5eZKUlCT5+flSWVl5TV/P9Xu7d++W2bNnS3JyssyYMUNaW1u1jqSKnp4eASA//PCD1lFUMzAwIBs2bJCCggK57rrrpKioSLZs2SIjIyNaR1PF+++/L0VFRWI0GiU3N1fWrVsn58+fVz2HIiKibqtFREREpA1+jw8RERHpBhsfIiIi0g02PkRERKQbbHyIiIhIN9j4EBERkW6w8SEiIiLdYONDREREusHGh4hUEQgEoCgKzp8/r/raiqJAURRkZGT86bjnnnsOt9xyiyqZLq13Kdu2bdtUW5dIz9j4EFHC3XXXXdi4cWNcbf78+YhEIjCbzZpk8vl8OH78uCZrX01jYyMikQgsFovWUYh0Qx8PSCEizRmNRuTm5mq2fkZGBrKzszVb/0pMJhNMJpOuHkBLpDXu+BBRQtXU1GDv3r3Yvn177GOccDh82Udd7e3tyMjIwMcffwyHw4HU1FTcd999uHDhAt5++23YbDbccMMNaGhowNjYWGz+ixcv4vHHH8eNN96ItLQ0zJs3D4FA4C9lfemll5CTk4P09HSsWbMGv/32W9z7Bw8exN13342pU6fCbDZj0aJFOHz4cOx9r9eL8vLyuHNGR0eRm5uLtrY2AMCuXbtQUlKClJQUZGZmoqysDBcuXPhLeYno72PjQ0QJtX37djidTjzwwAOIRCKIRCKYNm3aFccODw/j9ddfR2dnJ7q7uxEIBFBZWYmuri50dXWho6MDra2t2LVrV+yc2tpafPXVV+js7MTRo0exYsUK3HPPPThx4sS4cn7wwQd49tlnsXXrVnz77bfIy8vDjh074sYMDg7C4/Fg3759OHDgAG6++Wa43W4MDg4CAOrq6tDd3Y1IJBI7p6urC0NDQ6iqqkIkEsGqVavg9XrR29sb+/n4iEQiDan+WFQiuuZd6anyX3zxhQCQ/v5+ERHx+XwCQEKhUGzM2rVrJTU1VQYHB2O1JUuWyNq1a0VEJBQKiaIocurUqbi5XS6XPPHEE1fNA0D8fn9czel0Sn19fVxt3rx5MmfOnKvOMzo6Kunp6bJ79+5YbebMmfLyyy/HjisqKqSmpkZERA4dOiQAJBwOX3VOERGr1Sqvvfban44hosTgjg8RaSY1NRU33XRT7DgnJwc2mw0mkymu1tfXBwA4fPgwRAR2uz12fYzJZMLevXvx448/jmvt3t5eOJ3OuNofj/v6+lBfXw+73Q6z2Qyz2YyhoSGcPHkyNqaurg4+ny82/pNPPoHX6wUAzJkzBy6XCyUlJVixYgXeeust9Pf3jysnESUWL24mIs0kJSXFHSuKcsVaNBoFAESjURgMBhw6dOiyC4J/3ywlSk1NDc6cOYNt27bBarUiOTkZTqcTFy9ejI2prq5GU1MT9u/fj/3798Nms2HhwoUAAIPBgE8//RRff/019uzZgzfeeANbtmxBMBhEYWFhwvMS0f/GHR8iSjij0Rh3QXKilJaWYmxsDH19fZg+fXrca7x3jBUXF+PAgQNxtT8e79u3D+vXr4fb7casWbOQnJyMs2fPxo3JzMxERUUFfD4ffD4famtr495XFAULFizA888/jyNHjsBoNMLv948rKxElDnd8iCjhbDYbgsEgwuEwTCYTpkyZkpB57XY7Vq9ejerqarS0tKC0tBRnz57F559/jpKSErjd7v97rg0bNsDj8WDu3Lm444478O677+LYsWMoKiqKjZk+fTo6Ojowd+5cDAwMYNOmTUhJSblsrrq6OpSXl2NsbAwejydWDwaD+Oyzz7B48WJkZ2cjGAzizJkzKC4u/nu/CCL6y7jjQ0QJ19jYCIPBgJkzZyIrKyvumpi/y+fzobq6Go899hgcDgeWL1+OYDB41TvHrmblypV45plnsHnzZtx66634+eef8dBDD8WNaWtrQ39/P0pLS3H//fdj/fr1V/wuoLKyMuTl5WHJkiXIz8+P1a+//np8+eWXcLvdsNvteOqpp9DS0oKlS5f+tR+eiP42RYT3VRLRtU1RFPj9flRUVEzI/MPDw8jPz0dbWxsqKyvHfb7NZsPGjRsv+7ZrIko87vgQkS6sWrUq4Y+GiEajOH36NJ5++mmYzWYsX758XOc3NzfDZDIldEeMiP4cd3yI6JoXCoUA/Pcuq0TeTRUOh1FYWAiLxYL29na4XK5xnX/u3DmcO3cOAJCVlaXZc8yI9ISNDxEREekGP+oiIiIi3WDjQ0RERLrBxoeIiIh0g40PERER6QYbHyIiItINNj5ERESkG2x8iIiISDfY+BAREZFusPEhIiIi3fgPKQ9OrGyCMUsAAAAASUVORK5CYII=", + "text/plain": [ + "<Figure size 640x480 with 1 Axes>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAHFCAYAAAAHcXhbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAACU9klEQVR4nOzdd3hUddbA8e+dmWTSG+kQOqGFXqSogBRFdFUUGzYsq6Ku2Ht30bXwstZdK66IvSsiKIIo0hN67wSSkN4z7b5/3JlJAgFSJnNnkvN5njxJ7ty594SSOfMr5yiqqqoIIYQQQvgpg94BCCGEEEI0hSQzQgghhPBrkswIIYQQwq9JMiOEEEIIvybJjBBCCCH8miQzQgghhPBrkswIIYQQwq9JMiOEEEIIvybJjBBCCCH8miQzQghdXHTRRQQHB1NYWHjCc6ZOnUpAQADZ2dkoioKiKFx33XV1nvv000+7z9m3bx9Llixxf3+qDyGEf1OknYEQQg8//PAD559/Pq+//jrTp08/7vGioiKSkpI4++yz+frrr1EUhfDwcOx2O1lZWYSHh7vPVVWVLl26kJeXR3FxMXv37iUmJoYtW7bUuuZFF11Ely5deOmll2odHzZsWPP8kEIIr5CRGSGELiZOnEhycjLvvfdenY9//PHHVFRUcMMNN7iPXXDBBaiqyieffFLr3MWLF7N3714uu+wy97GIiAiGDRtW68NsNhMVFXXccSGEf5NkRgihC6PRyLXXXsvatWvZuHHjcY+///77JCUlMXHiRPexyMhILrroouMSoPfee4+RI0eSmpra7HELIXyPJDNCCN1cf/31KIpyXHKyZcsWVq1axbXXXovRaKz12A033MCKFSvYunUrAIWFhXz11Ve1RnCEEK2LJDNCCN107dqVM888k7lz52K1Wt3HXcnN9ddff9xzxowZQ6dOndznzJs3D5PJxJQpU7wTtBDC50gyI4TQ1Q033EBubi7fffcdADabjblz53LGGWfQrVu348537Wj68MMPsdlsvPvuu1x66aWEhYV5O3QhhI+QZEYIoatLLrmEyMhI3n//fQDmz59Pdnb2SaeNpk2bxtGjR5k5cybr1q2TKSYhWjlJZoQQugoODuaKK65gwYIFHDlyhPfee4/w8PCTThulpKQwbtw4nnrqKbp3786IESO8GLEQwtdIMiOE0N0NN9yA3W7nxRdfZP78+Vx++eWEhISc9Dn33HMP559/Po899piXohRC+CqT3gEIIcTgwYPp27cvs2fPRlXVek0bTZgwgQkTJnghOiGEr5ORGSGET7jhhhtQVZVevXpx2mmn6R2OEMKPSDsDIYQQQvg1GZkRQgghhF+TZEYIIYQQfk2SGSGEEEL4NUlmhBBCCOHXJJkRQgghhF+TZEYIIYQQfq3FF81zOBwcPnyY8PBwFEXROxwhhBBC1IOqqpSUlJCcnIzBcPKxlxafzBw+fJiUlBS9wxBCCCFEIxw8eJB27dqd9JwWn8yEh4cD2h9GRESEztEIIYQQoj6Ki4tJSUlxv46fTItPZlxTSxEREZLMCCGEEH6mPktEZAGwEEIIIfyaJDNCCCGE8GuSzAghhBDCr/nMmpnnnnuOhx9+mDvvvJPZs2cD2rasp556irfeeouCggJOO+00Xn/9dXr37q1vsEIIIbzObrdjtVr1DkN4SEBAAEaj0SPX8olkZvXq1bz11lv07du31vEXXniBWbNmMWfOHFJTU3n22WcZP34827dvr9fqZiGEEP5PVVWysrIoLCzUOxThYVFRUSQmJja5DpzuyUxpaSlTp07l7bff5tlnn3UfV1WV2bNn88gjjzB58mQAPvjgAxISEpg3bx4333yzXiELIYTwIlciEx8fT0hIiBRAbQFUVaW8vJycnBwAkpKSmnQ93ZOZ2267jUmTJjFu3LhayczevXvJyspiwoQJ7mNms5lRo0axfPnyEyYzVVVVVFVVub8vLi5uvuCFEEI0K7vd7k5k2rRpo3c4woOCg4MByMnJIT4+vklTTromM5988gnr1q1j9erVxz2WlZUFQEJCQq3jCQkJ7N+//4TXfO6553jqqac8G6gQQghduNbIhISE6ByJaA6uv1er1dqkZEa33UwHDx7kzjvvZO7cuQQFBZ3wvGOHE1VVPekQ40MPPURRUZH74+DBgx6LWQghhD5kaqll8tTfq24jM2vXriUnJ4dBgwa5j9ntdn7//Xdee+01tm/fDmgjNDXn0nJyco4branJbDZjNpubL3AhhBBC+BTdRmbGjh3Lxo0bycjIcH8MHjyYqVOnkpGRQefOnUlMTGTRokXu51gsFpYuXcqIESP0ClsIIYQQPka3ZCY8PJy0tLRaH6GhobRp04a0tDQURWHGjBnMnDmTr7/+mk2bNnHdddcREhLClVdeqVfYQgghRL298cYbdOrUiaCgIAYNGsSyZctOev7SpUsZNGgQQUFBdO7cmf/85z+1Hp8zZw6Kohz3UVlZ2aC4TnWfuhw4cIDzzz+f0NBQYmNj+cc//oHFYnE/vm/fvjpjW7BgQYNiawzddzOdzP33309FRQXTp093F81buHCh1JgRQgjh8z799FNmzJjBG2+8wciRI/nvf//LxIkT2bJlC+3btz/u/L1793Luuedy0003MXfuXP7880+mT59OXFwcF198sfu8iIgI91IMl5OtPW3sfWqy2+1MmjSJuLg4/vjjD/Ly8rj22mtRVZVXX3211rm//PJLreK2MTEx9Y6t0dQWrqioSAXUoqIivUMRQgjRQBUVFeqWLVvUiooKvUNpsKFDh6q33HJLrWM9evRQH3zwwTrPv//++9UePXrUOnbzzTerw4YNc3///vvvq5GRkSe8Z05OjpqQkKD+85//dB9bsWKFGhAQoP7888/1vs+x5s+frxoMBjUzM9N97OOPP1bNZrP79XXv3r0qoKanp5/wOsc62d9vQ16/pTeTEELUxWY59TnC61RVpdxi0+VDVdV6x2mxWFi7dm2tWmkAEyZMYPny5XU+56+//jru/LPPPps1a9bUauNQWlpKhw4daNeuHeeddx7p6enux+Li4njvvfd48sknWbNmDaWlpVx11VVMnz7dfe363ufY2NLS0khOTq71nKqqKtauXVvr3L/97W/Ex8czcuRIvvjiixP9EXmUT08zCSGELsrz4eUekNQXht4MOxbA5LfBIO//9FZhtdPr8Z91ufeWp88mJLB+L5u5ubnY7fY6a6W56qgdKysrq87zbTYbubm5JCUl0aNHD+bMmUOfPn0oLi7m3//+NyNHjmT9+vV069YNwD2FNHXqVIYMGUJQUBDPP/98g+5Tn9iio6MJDAx0/zxhYWHMmjWLkSNHYjAY+O6777jsssv44IMPuOqqq+r159ZYkswIIcSxMteBvQpytsF3t4OtElKGwmnSRkU0TENrpdV1fs3jw4YNY9iwYe7HR44cycCBA3n11Vd55ZVX3Mdfeukl0tLS+Oyzz1izZs1xa2pOdZ/6xHbszxMbG8tdd93lfmzw4MEUFBTwwgsvSDIjhBBed0irSl7ZdSJBHYbAT/fBoseh0yiI76FzcK1bcICRLU+frdu96ys2Nhaj0XjcKMzJaqUlJibWeb7JZDphKweDwcCQIUPYuXNnreN79uzh8OHDOBwO9u/fX6uRc2Puk5iYyMqVK2sdKygowGq1nrT227Bhw3jnnXdO+LinyJipEEIc69AqAJ5dH8qSyAugy1htdOarm2Qtjc4URSEk0KTLR0Oq1QYGBjJo0KBatdIAFi1adMJaacOHDz/u/IULFzJ48GACAgLqfI6qqmRkZNSaGrJYLEydOpXLLruMZ599lhtuuIHs7Owm3Wf48OFs2rSJI0eO1HqO2WyuVfz2WOnp6U1uIlkv9V5y7KdkN5MQokHsdlWdmaKqT0So5z74mnrFW3+patFhVX2+o6o+EaGqi57QO8JWxZ93M33yySdqQECA+u6776pbtmxRZ8yYoYaGhqr79u1TVVVVH3zwQfXqq692n79nzx41JCREveuuu9QtW7ao7777rhoQEKB+8cUX7nOefPJJdcGCBeru3bvV9PR0ddq0aarJZFJXrlzpPufee+9VO3bsqBYVFal2u10988wz1UmTJjXoPl999ZXavXt39/c2m01NS0tTx44dq65bt0795Zdf1Hbt2qm33367+5w5c+aoH330kbplyxZ127Zt6osvvqgGBASos2bNOuGfkad2M0kyI4QQNeVsU9UnItTyx2PVzg98q3Z44Ad1d06Jqm7+VktmnohU1X1/6h1lq+HPyYyqqurrr7+udujQQQ0MDFQHDhyoLl261P3Ytddeq44aNarW+UuWLFEHDBigBgYGqh07dlTffPPNWo/PmDFDbd++vRoYGKjGxcWpEyZMUJcvX+5+/LffflNNJpO6bNky97H9+/erkZGR6htvvFHv+7z//vvqseMd+/fvVydNmqQGBwerMTEx6u23365WVla6H58zZ47as2dPNSQkRA0PD1cHDRqkfvjhhyf98/FUMqOoagP2mvmh4uJiIiMjKSoqIiIiQu9whBC+Ln0ufHsbKx09uMzyOAA3ndGJRyb1gm+mQ8ZHMPphGP2AzoG2DpWVlezdu9ddRVe0LCf7+23I67esmRFCiJoiktkeM4bf7P1pFx0MwBdrD1FptcM5z8NVX0oiI4SPkWRGCCFq6nIWj5sf4D/2v3Hr6C4kRwZRUG5lwaYsCIqAruP0jlAIcQxJZoQQogab3cGGQ0UADOkYw+VDtR4681YeqH1i0SH49GooPnLsJYQQXibJjBBCuJRks2fHRiqsNsLNJrrGhXHZkBSMBoVV+/LZkV1Sfe4302Hrd/DtdHA49ItZCCHJjBBCuKV/SOqnZ/Iv09v0bx+FwaCQEBHEuJ7xwDGjM+e+CKYg2L0YVr+tU8BCCJBkRgghqh1aA8B2NYUB7aPdh688rQMAX607RIXFrh2M6w7jn9G+XvS41vpACKELSWaEEAJAVd1tDNIdXRnQPsr90BldY0mJCaa40sYPGw5XP2foTdqCYKkOLISuJJkRQgiAgr1QnkuVamKz2pEBKVHuhwwGhStcC4FX1ZhqUhS44HUIjoGsDbDkOS8HLYQASWaEEELjnGLaonakXVwUUSGBtR6eMigFk0Eh/UAhWw4XVz8Qngjn/1v7escCsFV5K2IhhJMkM0IIAe4ppnWObgyssV7GJS7czNlpiQDMW7W/9oO9/gaT34GbFoPJ3OyhCiFqk2RGCCHghOtlaprqnGr6Jv0wZVW22g/2nQIBwc0ZofAzv//+O+effz7JyckoisI333zToOdv3ryZiy++mI4dO6IoCrNnz26WOFsCSWaEEAKwn3E/76nns9rRvc6RGYDhXdrQOTaU0iob360/XOc5OOywbBZs+a4ZoxX+oKysjH79+vHaa6816vnl5eV07tyZ559/nsTERA9H17JIMiOEEMCOqNN5uuoKSgPjSE0Ir/McRamxEPjYisAu6z6AX5+C7/8h1YFbuYkTJ/Lss88yefLk4x7btm0bISEhzJs3z33sq6++IigoiI0bNwIwZMgQXnzxRS6//HLMZpm+PBlJZoQQAkg/UAhAv5QojAblhOddPKgdgSYDGzOL2HCo8PgT+l8FSf2gogB+mNEssQrAUnbiD2tlA86tqN+5HtajRw9eeuklpk+fzv79+zl8+DA33XQTzz//PH369PH4/Vo6k94BCCGE7jZ/TcmWPEKIPuF6GZeY0EDOTUvkm4zDzFt5gL7tjjnfFAgX/gfeHA47ftZeCANDmy30Vmtm8okf6zYBpn5e/f2LXcFaXve5HU6HaT9Wfz+7D5TnHX/ek0WNi/Mkpk+fzvz587n66qsJDAxk0KBB3HnnnR6/T2sgIzNCCLHgYW7efw9pyt4TrpepaeowrSLwtxmHKa60Hn9CQi8ISwBUyN7s4WBFS/Lee++xYcMG1q1bx5w5c1CUE48KihOTkRkhROtWlAklh7GpBjaqnehfo1jeiQzuEE23+DB25pTybXomVw/vePxJiX1h1yI4sh5Shno87Fbv4RMswAZQjLW/v2/XSc495j39jI2Nj6kR1q9fT1lZGQaDgaysLJKTTzLiJE5IRmaEEK2bc0v2NrU9CW1iaBN26oWWiqJw5WnaQuCPVh5AVdXjT0rqq33O2uCxUEUNgaEn/ggIasC5wfU7txnk5+dz3XXX8cgjjzBt2jSmTp1KRUXFqZ8ojiPJjBCidatRX6Y+U0wukwe0IyjAwLasEtY5Fw/XktgXIlMgKNJDgQp/U1paSkZGBhkZGQDs3buXjIwMDhzQdsLdcsstpKSk8OijjzJr1ixUVeXee+91P99isbifb7FYyMzMJCMjg127TjLS1ErJNJMQonWrVfk3qt5PiwwJ4Ly+yXyx9hDzVh5gUIdjEqFeF0DvCz0Xp/A7a9asYcyYMe7v7777bgCuvfZazjrrLObPn096ejomkwmTycRHH33EiBEjmDRpEueeey6HDx9mwIAB7ue/9NJLvPTSS4waNYolS5Z4+8fxaZLMCCFaL5sF9XAGCpCuduWGBozMAEw9rT1frD3EDxsO8/h5vYgMCah+UBZytnqjR4+uewrS6Zprrqn1/aBBg6iqqu7t1bFjx5M+X1STaSYhROuVvRHFXkWBGka2qS09Eusulnci/VOi6JkUQZXNwZfrDtV9kqpK80khmpkkM0KI1iuxHz+f8QV3W2+lb7soTMaG/UpUFIWp7oXA+49/F73qbXixC/zypIcCFkLURZIZIUTrZTTxW2ECvzkGMKCBU0wuF/RPJiTQyO6jZazam1/7wYAQrQDbEdnRJERzkmRGCNGqrTtQANCgxb81hQcFcEF/rTbIvFXH9Gtyb8/eqE03CSGahSQzQojWqfQoli9uZnDut4Da6JEZgCuHahWBf9qYRX6ZpfqBuB5gDISqIijY17R4WzlZCNsyeervVZIZIUTrdGg1gZs+4Vrjz6TEhBAX3viuxH3aRdK3XSQWu4Mv1h6sfsAYAPE9ta+leF6jBARoO8TKy0/QW0n4Ndffq+vvubFka7YQonWqUSxvQErjR2Vcpp7Wng2HNjJv5QFuPL0zBlfn7cS+WkuDIxu02jOiQYxGI1FRUeTk5AAQEhIi/YtaAFVVKS8vJycnh6ioKIxG46mfdBKSzAghWidXMqM2rFjeiZzfL5lnf9jKvrxy/tqTx8iusdoDSf0g/UMZmWmCxMREAHdCI1qOqKgo999vU0gyI4RofRx21Mx1WrE8R1eubMJ6GZeQQBMXDWzL//7az7yVB6qTmbaDoOMZ0myyCRRFISkpifj4eKzWOrqUC78UEBDQ5BEZF0lmhBCtT85WFGsZJWowB40p9EyK8MhlrzytPf/7az8/b84ip6SS+PAgaDsQrvvBI9dv7YxGo8de/ETLIguAhRCtj3OKab2jM2ntogk0eeZXYY/ECAZ1iMbmUPl8zQkqAgshPE6SGSFE61N0EAcK6Wq3Jm3JrsuVQ7WKwB+vOoDDUWPbaUUhFEmCI0RzkGRGCNH6jH2cSyI/5j3bOR5Z/FvTpL5JRAYHcKiggt93HtUOrn4H/tUBfn7Eo/cSQmgkmRFCtDqlVTYychwUEOHxkZmgACMXD2wHwEcrnRWBYzprn7M2evReQgiNJDNCiFZnw8FCHCq0jQomISLI49e/fGgKAEu3H8Vic0BiP+2B/N1QVeLx+wnR2kkyI4RoXf6YTcfvL+F8w3L6e3iKyaVbfBiRwQFY7A52ZJdAaBuIaKs9mLWpWe4pRGsmyYwQonXZt4zkonSilFIGeniKyUVRFNLaatu9N2UWaQcTXU0npXieEJ4myYwQovVwOFAPrQGcbQyaaWQGIK1tJAAbXcmMq4P2EUlmhPA0SWaEEK1H3i6UykIq1ED2GDrSO9kzxfLq0seZzBw/MrO+2e4pRGslFYCFEK2Hs1jeBrUz3dvGYDY1XzXZtGQtmdmaVYLV7iCg7UAYeK3W3kAI4VGSzAghWo8anbKba72MS4c2IYQHmSiptLEzu5Reycnwt1ea9Z5CtFYyzSSEaD28tF4GnIuAk4+ZahJCNAtJZoQQrYPDgS2yPXlqBOmObs0+MgPQp90xi4CtlXA4HQ6uavZ7C9GaSDIjhGgdDAbWDnuVQVVvYohIIjkquNlv6VpgvOmwM5nZ8i28NRoWPtbs9xaiNZFkRgjRaqw7UAgozT7F5OLa0bT1SDE2u6N6e3b2JnA4vBKDEK2BJDNCiNahPJ/0/fkAXpliAujYJpQws4lKq4NdR0uhTTcwBYGlFPL3eCUGIVoDSWaEEC2fqqK+PpRn915KJ+WI10ZmDAaFXq6ppsxiMJogobf2oNSbEcJjJJkRQrR8hftRyo4SpRaRY4h1V+f1hhMWz5NKwMfL3gyfT4O9v+sdifAzUmdGCNHyHdTqy2xRO9I1KZaggOYrlnesPidqayA9mmor2A9vjtC+rsiHTmfqG4/wKzIyI4Ro+WoUyxvgpfUyLq5RoC2Hi7E7VEjspz1wZAOoqldj8WnRHSAhTfs6c52+sQi/I8mMEKLlcyYz6xzdvLZexqVTbCghgUYqrHb2HC2FhF4w7im4+B2vxuGTKgqhPL/6+6u/1j5XFUNViS4hCf8kyYwQomWzVqA6p3TSVe8Uy6vJaFDc9WY2ZhZBQDCcPgO6jAFF8WosPuXodnhnLHwxDew27VhYPITGaV/n7dIvNuF3JJkRQrRsRzagOGwcVSOpDGlLu+jmL5Z3rLRj1820dtvmw9tjtYQldxeUHK5+LDZV+5y7U5/YhF+SZEYI0bIFR7Mx5Uq+sJ/JwA7RKDqMhrh6NG3OLNYOlOXBpi9h/Sdej0VXDgcsfQE+uQIsJdBhJPx9CUS1rz4ntpv2+eh2XUIU/kl2MwkhWra4VN4w38hPtiwe8PIUk4urR9Pmw0U4HCqGnM3wxfXai3i/y3WJyeuqSuDrW2DbD9r3Q26Cc54DY0Dt8067FfpfBXGp3o9R+C1JZoQQLZqqqqw7UADAQC8v/nXpEhdGcICRMoudPblldE3soz1QeAAqCiBYnyTLq768CXb8BMZAmPQyDLym7vPie3g3LtEiyDSTEKLlqiggb/NiiouLMBoU+raL0iUMY61KwEVa8hLpnFrJ2qRLTF439jGI6QLX/XjiREaIRpJkRgjRcu39ndgvJvNZ4NP0TAonONB7xfKOlVYzmYGWXzxPVSFrY/X3Cb3htlWQMvTUz02fCz89AEWHmi8+0aJIMiOEaLmc9WXWO7p4fUv2sY7b0dSS2xpYyuHLG+GtMXBgZfVxYz1XNqz8j/ZRMxkS4iQkmRFCtFyH1gCQrkOxvGNVLwIuxuFQW+7ITOEBeG8CbPoCUBtXL8a9PXuHR0MTLZckM0KIlsluRT2cDkC62lX3kZmucWGYTQZKq2zszy+vHpk5uh2sFbrG5jG2KphznjaiEhIL13wHA6Y2/DquZOaoJDOifnRNZt5880369u1LREQEERERDB8+nJ9++sn9uKqqPPnkkyQnJxMcHMzo0aPZvHmzjhELIfxG9iYUWyWFaihFwe1pHxOiazgmo4GeSTUqAUckw+Xz4B/rwBSka2wek/4hFO6HsEStfkzHkfV+an6ZhZ82HmH2LzvIMXfQDsrIjKgnXbdmt2vXjueff56uXbsC8MEHH3DBBReQnp5O7969eeGFF5g1axZz5swhNTWVZ599lvHjx7N9+3bCw8P1DF0I4euca1E2OToyoHOMLsXyjtWnbSQZBwvZlFnE3/olQ49JeofkObYqWDZL+/qMeyAq5aSnF5RZWLk3jxV78lmxJ49tWdW9mIq6GHgCtGRGVVt32wdRL7omM+eff36t7//5z3/y5ptvsmLFCnr16sXs2bN55JFHmDx5MqAlOwkJCcybN4+bb75Zj5CFEP4iW9vyvEXt6PVO2SfSx7UI+FALbGuw9XsozoTwpDq3XheWW1i5N5+/ducdl7y4tI0KJrOwgiW5ETyBApWFUJYLYXFe+AGEP/OZonl2u53PP/+csrIyhg8fzt69e8nKymLChAnuc8xmM6NGjWL58uUnTGaqqqqoqqpyf19cXNzssQshfNDAa3l5ncofVe24T+fFvy692zq3Zx8uQlVVlJIsyJgLljIY96S+wTVV2sUQEAJ2CwQEUVRurTXysjWrGFWt/ZTUhDCGdW7DsM5tGNopBpNBof/Ti9hb5MCR0B5D0X7I2ynJjDgl3ZOZjRs3Mnz4cCorKwkLC+Prr7+mV69eLF++HICEhIRa5yckJLB///4TXu+5557jqaeeataYhRC+LzukK6+WjsGgQD+diuUdKzUhnECTgZJKGwfyy+mglsLiZ8EUDGc9Bgb96uA0maJAj3P5cu0h3ntlGVuOHJ+8dI0PY7gzeTmtcwyxYebjLpMQYSa7uIptZ71Fr65dIaSNl34A4c90T2a6d+9ORkYGhYWFfPnll1x77bUsXbrU/fix89yqqp507vuhhx7i7rvvdn9fXFxMSsrJ526FEC3P2v1aC4PuiRGEmnX/VQdAgNFAz8Rw1h8qYmNmER3SukBAKFjLtC7R/ljK32bRRmPMYWzKLOLeL9a7k5gucaEM69yG4V3acFqnNsSFH5+8HCs1IZzs4io2VCXTKzS2mYMXLYXu/8MDAwPdC4AHDx7M6tWr+fe//80DDzwAQFZWFklJSe7zc3JyjhutqclsNmM2n/o/jBCiBcvahHXNj3RRohnSsYPe0dTSu20k6w8VsSmzmPP6JkNiGhxcqdWb8cdkJmMu/PoM6lmP8Wx6T1QVxvdK4J8XpREf3vBdWt0Twlm2M5ft2cevqRHiRHyuzoyqqlRVVdGpUycSExNZtGiR+zGLxcLSpUsZMWKEjhEKIXzeth+4YP9MbjF+z6AOvrH418W1CHjTcZWA1+sUURPYLNoOpop8tmXmsmJPPmaTgSfO79WoRAYgNVHbqXok8yAsfBS+uc2TEYsWSteRmYcffpiJEyeSkpJCSUkJn3zyCUuWLGHBggUoisKMGTOYOXMm3bp1o1u3bsycOZOQkBCuvPJKPcMWQvg42+H1mICtagdu7Bijdzi19KnR1kBVVRR/rgSc8REUHUQNS+DOHX0BOzee0Yl20Y2v6dM9QUtmdh4tg6xXtYPnvgiB+tYJEr5N12QmOzubq6++miNHjhAZGUnfvn1ZsGAB48ePB+D++++noqKC6dOnU1BQwGmnncbChQulxowQ4qRshzdiAo6GdCM5KljvcGpJTQgnwKhQVGHlUEEFKTV7NPlTTRWbBZa9DMCKpGvYsdFOXLiZW0d3bdJluyWEAbC7LAhHdAyGinytJYIr6ROiDromM+++++5JH1cUhSeffJInn3zSOwEJIfxfZRFBpQcBCO3QX99Y6hBoMtA9MZxNmcVsyiwipWdPMJjAWg6lORB+4jWBPmX9PCg6iCM0njt29gPg3gmphDVxsXVIoIn2MSEcyC+nNKwTERX5WvE8SWbESfjcmhkhhGiSbK3lSabaht5dfGvxr0vNqSZMZpi+Eh4+7D+JjM0Cv2ujMj9HXU5upYFeSRFcMsgzO0dTnVNNWQHttQO5Oz1yXdFySTIjhGhR7M42Blsd7RnUwbfWy7ik1UxmAGK7gjFAx4ga6MByKDqILSSee/YOAuDR83piNHhmiqyHcxHwLtW5kzV3u0euK1ouSWaEEC1K0V6tU/YeQye6J/rm+rq05OodTeqxleX8QefRMH0F/w67k3JHAON7JTCii+dqwrh2NKVXOEeqZGRGnILudWaEEMKTFib+nfkbO5DcIdVjIwWe1j0xHJNBoaDcyuGiStoai+CXp6A0G67+Su/w6mVpYRtePdCJAKPCw+f29Oi1XTua/iiIBgXtz8WfFkcLr5ORGSFEi/LHEYXfHf1o27Wf3qGcUFCA0b0uZOOhIq2n0fp5sPtXKM/XObqTsFshfw82u4Nnf9gCwDXDO9IpNtSjt+kUG4rJoLC9KoasGzPg3p2SyIiTkmRGCNFiqKrK6n1aMjDYx+rLHKtW8bygCIjupD3gy8Xz1n8Mrw5m+4cz2JlTSnRIAP84q5vHbxNoMtA5LhQHBraWhkoiI05JkhkhRItxdNNiri7/H6cbN9M/JUrvcE4qrUYHbaB667GvFs+zW+H3l0C1s2C/ts7nrvGpRIY0z8Jl18iVtDUQ9SHJjBCixShcP5/bTd8yNTyd4EDf7kCd1vaYRcA1i+f5ovWfQOF+Sk3RvF0xhq7xYVw5tH2z3c61bkbd/Rt8MhWWPN9s9xL+T5IZIUTLkb0RADW+t86BnFrPpAiMBoXcUgtZxZWQ5Fzj44sjM3Yr/P4iAK9WnUslZh6Z1BOTsfleQlw7mkryjsC2H2DPkma7l/B/kswIIVqMNqU7AIjpMkjnSE4tKMBIt3itdP/GQ0XVIzO5O8FSpmNkddjwKRTup9gYxf+sYzkzNY4x3eOb9ZauWjN/FrXRDuTuaNb7Cf8myYwQokUoPppJG7UAh6rQJW2o3uHUi3uq6XCxVv03PAnadIGSLJ0jq6HmqEzluVgMwTw6ybNbseuSEh1CUICBHTZnrZnyPCjLa/b7Cv8kyYwQokXYs2kFAJmGJOLatNE5mvqptaMJ4M71cMdaLaHxFTlbUcvzKVQimWsfxxVDU9yLc5uTwaCQmhBOBUFUhCRrB/OkeJ6omyQzQogWoXDvOgDyw1N1jqT+jmtrYDLrGM0JJPXlm9ELuL7yLkxBYdw1znt/vq6kKSfQ1aNJpppE3SSZEUK0COpRrX+PkthH50jqr1dSBAYFjpZUkVNcWf2AD7U4KKuyMXPxEdapqdxxVlfahHkv4XLtaNqDc2TmqPRoEnWTZEYI4fcsNge3lkzjzKr/I2LENL3DqbfgQCNdXYuAM4ugogDeOwde7KqtVdGT3QZ7lvCfJbs4WlJFhzYhXDuio1dDcO1oyqiIB1Mw2C1evb/wH5LMCCH83qbDRVTaoDQkhQ4dOusdToPUmmoyR0L2ZijP1X8UYuNn8L8LGPDndAAemtgDs8m7tXtcIzP/LRlJ5f0H4dwXvXp/4T8kmRFC+L01zhYGgzpEo/hZ6fuaHbQxGMA1TaZnvRm7zb2DaaU9ldM6xXB270Svh5EQYSYiyESlw8ie3Aqv31/4D0lmhBB+z7r5e14LeIXLg1bqHUqD9WnnSmaKtQO+UAl44+eQv4c8NZy5jvE8dl4vXZJERVHo7pxq2iFtDcRJSDIjhPBrqqoSnbOS84wrSGOX3uE0WK+kCBQFsoorOVpSpX+PJrsN1Tkq87ZtEhMHdnVPhenBlczErXkJ3hgBW3/QLRbhuySZEUL4tT25ZXS27wX8o/LvsULNJrrEaYuAN2XWqASctREcDu8HtPVblPzd5KthfGGcyH1nd/d+DDW4ezQVZULOZsjZoms8wjdJMiOE8Gtr9ubRU9kPQEByX52jaZy0ZGcH7cwiiOsORjNUFUPhPq/HYju4FoBv7SO5ZlRvEiKCvB5DTa5aMxsrne0T9F4YLXySJDNCCL+2a+d2IpVy7IpRSwT8UK0dTcYA6Dwauk0AW5XXYzlwUEsMy8wJ3HSG/jvDXMnMuvI47YAUzhN1MOkdgBBCNEX5wXQAKiK7EeaLFXTr4bi2BlM/0y2WTxPv5Yc947l4eHeCA727Fbsu0aGBxIeb2VXaVjuQt0ubfjPIe3FRTf41CCH81tGSKmJKtHfqgW39c4oJoJdzmulwUSV5pd4fjakpv8pAJnGYI+J0jaOm7onhHFTjsCsmsJZDcabeIQkfI8mMEMJvrd1fQLhSgRWTXycz4UEBdI4NBZwdtF0cdq/HUlShVR6OCA7w+r1PJDUhHBsm8s3ttAMy1SSOIcmMEMJvrdmXz0zbVJ7pswgGX693OE2SVnOqaecv8Fx7eH+id4Nw2LnyyPM8aPqYmACbd+99Eq4dTbuUDhDXExy+E5vwDZLMCCH81ur9BQAM6BwPgaE6R9M0rnUzGw8VaT9LVRGUZns3iIoCRlcs4hbT94SHBnv33ifhqjVzh+UOuG0FpJ6tc0TC10gyI4TwSxUWO5udC2YHd4jROZqm693WuT37cBGEObchlx71bhClOQDkq2FEhIZ4994n0S1Bq8OTW2bRfU2R8E2SzAgh/FLGwUImK4v5OfgR2m2fo3c4TeaaZjpUUEGBEqUdtJaBpcx7QZRpyUyuGkmkD62ZCQk00T5GS652ZJeCquockfA1kswIIfzSmn359Fd2013di1Lm5RGMZhARFEDHNtoL9qZcO5icxeqcoyXeYCvWprV8LZkBbRFwADa6fXsePNcOKgr0Dkn4EElmhBB+ac3+AnoaDmjfJKbpG4yH9HatmzlcDKHOqSYvJmpVhVkA5BJJRJBvlSHrnhiGFRMBFUfBUgq5/teHSzQfSWaEEH7H7lDJ2J9Hd+WgdiChj74BeYhrEfDmzGIIc9Z58eIiYEuxNgpUbIjCZPStlwdXJeD9irN4nmzPFjX4VuothBD1sCO7hDaWQ4SYq1BNwShtuugdkkf0qdnWoO9pEBQF5giv3d9eoiVOZQG+t6DataNpc1UCfRUkmRG1SDIjhPA7a/bl01PRppiUhF5g0L/sviekJWvJzIH8corOfJrIEO+uW9k84Ake2ngGKQltuNmrdz61zrFhmAwKW22JEIAkM6IW3xpHFEKIeli9r4CeBq0hIgktY70MQGRIACkxWn2XzYeLvH7/QouBw8RiCI31+r1PJdBkoFNsKLtUmWYSx5NkRgjhd9buL6BcDaIivAMk+W8bg7rUmmoCsHuv2q2rlYGv7WRy6Z4Yzm5HsvZN/l6wWfQNSPgMSWaEEH4ls7CCzMIK/qteiOP2dTD4Br1D8ihXvRn7joVaS4M553rnxqrK4IxHedA0j7hAq3fu2UDdE8LJJppDQV21KsBVJXqHJHyEJDNCCL+yZl8+AL2SIgg1m0BRdI7Is1zrZrbm2Z0tDbxUZ6aykF7Z33OL6QfCQoO8c88GSk0MBxRuCZ0NV3wMoW30Dkn4CElmhBB+Ze3+AgKwMbhDlN6hNAvXNNOmImdC4a06M87WCcVqMGGhYd65ZwO5Gk7uzC7F7pAqwKKaJDNCCL+yel8B1xh/5uGN58Cvz+gdjsdFhwbSNiqYXFVLarCUgqW8+W9co5VBhI+umUmJCSEowECVzcH+3FKZZhJukswIIfxGcaWVbVnF9DIcIMBaAsZAvUNqFn3aRlJCMDaDWTtQ5oWpJucIUC6+18rAxWhQ6BYfznDDZlLe7gUfnK93SMJHSDIjhPAb6QcKUVXoa3JW/m0hbQyOpW3PVig1RWsHvNE923kPX+zLVFNqQjg5ahQB1mLI3SlNJwUgyYwQwo+s2ZdPADY6qYe0Ay2oxkxNUSHaiFOx0ZXMeKGlgY92zD5W98QwDqgJ2DFoU3AlR/QOSfgASWaEEH5j9b58uiqZmLCBORKi2usdUrOIclb+3R7YC7qOgyAvtDQo9ZdkJgIrJg4bkrQDUjxPIMmMEMJPWO0OMg4W0lNxVv5NTGtx27JdooK1kZm3gm+Eq76ETmc2+z2tZ/+L4ZWvMtc+zreTGeeOpm22RO1A7k4doxG+QpIZIYRf2Hy4mEqrg/6BzimmxJbRKbsu0c6RmcJy7xWvK7IaOEIb8okgIsh32/YlRJiJCDJVVwI+ul3fgIRP8N1/sUIIUYOrWJ69TXeIroT2w3SOqPm4GkwWuJIZuw2Mzfvr2tXKIMxswmT03fe5iqJobQ0OyjSTqOa7/2KFEKKGNfsKAKjsM1Wbeul9kc4RNZ9o5wLgvhWrUJ9LgTmTmveGqkrkwrt4yPQRSUG+2cqgptSEcDY7OrI7ajh0OkPvcIQPkGRGCOHzVFVlzX5tZGZwx2ido2l+rmSmxGFGqSpu/jozllJid37GzaYfCQ/2/do93RPD2aJ2ZGbUM3DmfXqHI3yAJDNCCJ+3P6+c3FILCcZS+kT5/shBUwUFGAg0GcjFWQW4uevMOHcylatmzCFe2DnVRKnORcDbs6UCsNBIMiOE8Hmrnetl7oz6g6DZqfDDXTpH1LwURSE6JKBGS4MSsFY03w1d1X/VCJ/eyeTiSmYOFVRQWpADZXk6RyT0JsmMEMLnudbLDDBnageiOugYjXdEBQdSQjAOg3Papzm7Z/tBK4OaYkIDiQs386jpQ8L+3Q1WvKF3SEJnkswIIXyea71Me+se7UAL3pbtohXOU6g0t9EONGcyU7NgXojvJzMAPRLDyVRjtW9yZXt2ayfJjBDCp+WVVrH7aBnBVBJSsk872AqSGdci4PJAZzLTnIuA/WyaCbSppt2qs9aMFM5r9SSZEaKFs9odfJOeSX6ZRe9QGmXtfm2KaVxMLgoqhCVAWLzOUTU/V0uDg2F9oet4MDfjwlzXyAyRRPhJMtM9IZxdjrbaN3m7tVo8otWqdxWmDRs2NPjivXr1wmSSunxC6Om/S3fz0sIddE8I56vpIwg1+9f/SVcyc1Z0DpTTYptLHsvVbPL7xDsYcH6v5r3ZOc9x64HRrDxQxpN+ksykJoZzhBgqMBPsqIKCfRDbVe+whE7q/Vutf//+KIqCWs926waDgR07dtC5c+dGByeEaJpKq505y/cB2jbWez9fzxtTB6L4UU8j106mvqaD2oHE1pLMuFoaeGFEzWRmryWKfIx+M83ULT4MFQO7HUmkGfZplYAlmWm1GvQWbeXKlcTFxZ3yPFVVSUtrHb9whPBl360/TG6phZjQQEoqrfy0KYvXFu/ijrHd9A6tXiqtdjZmFgEQ3mcSJERB5zH6BuUl0e6WBs5kpplbGhQ72xn4SzITajaREhPM7pJk0tjnbGtwrt5hCZ3U+3/GqFGj6Nq1K1FRUfU6/8wzzyQ4OLixcQkhmkhVVd5dtheAm8/sTGRwAA9+tZGXF+2gR1IE43sl6BzhqW04VITVrhIbZiZu0LmgXKB3SF7jmmbqXLgcZk7WRqSuX9A8N/vuDm6qzOf/+JvfJDOgrZtZXNif1I7t6ZncX+9whI7qvQD4t99+q3ciAzB//nySkpIaE5MQwgP+2JXL9uwSQgKNXD60PZcPbc81w7X6LHd9msGuHN+vnuqaYhrSMdqvpsY8IcqZVORaArSiec21NdtaAev+xzTlB0Dxq2QmNSGcbx2n82HM7dB5tN7hCB15ZDeT3W4nIyODgoICT1xOCOEB7zhHZS4dnOJ+gXrsvF6c1imG0iobN/1vrbtTsi+y2h0s2pINwJj4MjiwEqpKdY7Ke6JDtZGZ/ZUh2oGyZmpp4LxulWqimBAigvxngXj3RK0S8I4s30/MRfNqVDIzY8YM3n33XUBLZEaNGsXAgQNJSUlhyZIlnoxPCNEIO7JLWLrjKIoC14/s5D4eYDTwxtSBtI0KZm9uGf/4OB27o36L+r3J4VC59/P1ZBwsxGwyMMH6K7w3ARY8qHdoXuMamdlbGaodqCoGa6Xnb+Ts+5RHBOHmAExG/6nY4UpmDmVnox5a06qSXVFbo/7VfvHFF/Tr1w+A77//nr1797Jt2zZmzJjBI4884tEAhRAN994f2qjM2b0Sad8mpNZjbcLM/PfqQQQFGFi64ygv/LxNjxBPSFVVHv9uE99mHMZkUHjzqoFEFTkrvLaCYnkurkq8RWoIqtHZ0qA5CueVVVf/9ZcaMy6dY8MwGRQ+cTyA8s5YOJKhd0hCJ41KZnJzc0lMTAS0tTFTpkwhNTWVG264gY0bN3o0QCFEw+SVVvFVutbD6MYzOtV5TlrbSF68RHtD8t+le/g2I9Nr8Z3KSwu3M3fFARQFZl3Wn7N6JED2Ju3BVlJjBsBsMhISaAQU7MHOsv3NsW6mZisDP0tmAk0GOsWG1qgEvEPfgIRuGpXMJCQksGXLFux2OwsWLGDcuHEAlJeXYzQaPRqgEKJh5q44gMXmoF9KFIM6RJ/wvPP7JXPLqC4APPDlBjY5t0Dr6a3fd/P6b7sBePbCNP7WLxkqCqDIWWMmobeO0Xmfq6VBVZCzJEZzJDNl/pvMgFY8z53MHJVkprVqVDIzbdo0Lr30UtLS0lAUhfHjxwNaHZoePXp4NEAhRP1VWu18uGIfADee3umUO4DuO7s7o7vHUWl18Pf/rSG3tMoLUdbtk1UHmDlfm/K6/5zuTD3N2Rk7yzkqE9UegqP0CU4nrsJ5+W0GQrcJENQMLQ3KcgH/6Zh9rO61ejRJMtNaNSqZefLJJ3n33Xf5+9//zp9//onZbAbAaDTy4IOtZ4GeEL7muwytSF7bqGAmpiWe8nyjQeHflw+gc2woh4sqmf7ROqx2hxcire3HDUd46GttivrmUZ2ZPrpGJVf3FFPrWS/j4kpm1vS4F6Z+Dh1P9/xNxj/De0Pn847tXL9MZlITwtntcJYBkYaTrVaDkxmr1cqYMWPo06cPd911F+3atXM/du2113LBBa2nqJUQvkRVVd75Yw8A143oWO9dKZHBAbx1zSDCzCZW7c3n6e+3NGeYx1myPYcZn6ajqnDF0PY8eM4xo7tZznV4raSNQU2uwnmF5c24hd4UyGFHNPlEuBcd+5PuieHsUp0NJ4sOgKWscReqZ6se4ZsanMwEBASwadOmVlfASghft2xnLjuySwkNNHLZ0JQGPbdrfDizL+uPosCHK/bz8aoDngmqshgWPgZ/vgJHtx/3grFmXz63zF2L1a5yXt8knr0w7fjfLUNvgnOeh+4TPROTH3Ftzy5wJTP25klqivyslUFN7WNCqAyIJE/VtmmTt6thFyjJhqUvwqsD3VNujaGqKpVWe6OfL5qmUdNM11xzjbvOjBDCN7zj3I596ZAUIoIa/qI0rlcC94xPBeDxbzexxll9t0mMgeCww6LH4PWh8O++8OO9sHMRWw5kM23OaiqtDkZ3j2PWpf0xGup4k5Q8AIbdqn1uZVwLgOOPLIGZbeGDv3n+Jt/fyfhDrxBFid9tzQZtqrRbfDj/tZ3H1n4PQWj8qZ+kqrD/L/jievi/3vDbs5C/B9Z/3KgYVFXlzk8y6PvkQrYeKW7UNUTTNKrUo8Vi4Z133mHRokUMHjyY0NDQWo/PmjXLI8EJIepne1YJv+84ikGBaSPq3o5dH7eN6cqWI8XM35jFLXPX8f0dI0mKbEKPtYAgGD4d8nbCnqVQeABWvw2r36Yzgcy292ZO+0d5c+ogAk3+U6zNW9wLgK0BYCn1fJ0ZuxXWzmEC8ADj/HJkBrR1M29lnk9YRCo9I07SRsdSDhs+gdXvVq/FAmg3VBsB7NW4ZRLv/7mP79YfBuCb9Ex6JjXDQm1xUo367bFp0yYGDhxIREQEO3bsID093f2RkZFR7+s899xzDBkyhPDwcOLj47nwwgvZvn17rXNUVeXJJ58kOTmZ4OBgRo8ezebNmxsTthAtlrtIXu/ji+Q1hKIovHhJP3okhpNbWsXNH65t3NB5eb7W5Rkgsp22ePWBvXDFJ5T1uYZs2hCEhd4Bh3l92pkEBzpLOmz4DPb9Wf3cw+mQ8THk7W70z+TPXGtmDlnDtAOlHm5p4GxlYMdAIWF+m8x0T9T+fLZnn6KtgaUMfnpAS2RMwTDgarj5d7hxEfS9FLZ+D9/9Aw6uqve9Nxwq5Lmftrq/X7ytmXpoiZNq1MjMb7/95pGbL126lNtuu40hQ4Zgs9l45JFHmDBhAlu2bHGP9rzwwgvMmjWLOXPmkJqayrPPPsv48ePZvn074eHhHolDCH92tKSKrzNOXiSvIULNJt6+ZjB/e+0PNhwq4uGvNvLypf3qv07OYYdPrgTVAZPfhmjnFuvAUPLansWUH4LZU3k2Y6NzmTUpkYhgZ3Vbu02bgqoqgqBI6HIWVBTCnt9gyE0w6aUm/2z+Jto5MnPQ4kxmqoq0lgYBQZ65gbNuTT6RqBj8NplJTQgnABv2zAzYcRRSz9b+Pe34CQ6uhAnPaieGxcHw2yE0FvpfCcHH1GHa9iNs/gpiOkPK0FPet7jSyu3z0rHaVUalxvHHrlx25pRyIK+8SW8qRMPpOq67YMECrrvuOnr37k2/fv14//33OXDgAGvXrgW0UZnZs2fzyCOPMHnyZNLS0vjggw8oLy9n3rx5eoYuhM+Yu2I/FpuD/ilRDGx/4iJ5DZESE8LrVw7EaFD4Kj2TN5furv8IzR+z4MBfkL1FS2iciiutXPv+KvYcLSM5Mpinb76MyLRzqp9XVay9CAXHQGURbP5aS2SgVe5kgupppkMVgdr6I/DsVJNzZCZP1aZFovw0memeGE6iksd/yu5C/fRqbUHvv/vCp1fB8lchu8Zo/rgnYPhtxycyAAm9tM85p97Rp6oqD321kQP55bSNCuaVywcw2FmkcvG2bE/8WKIBGjUyU1ZWxvPPP8+vv/5KTk4ODkftuhR79uxpVDBFRVoF0piYGAD27t1LVlYWEyZMcJ9jNpsZNWoUy5cv5+abbz7uGlVVVVRVVRf+Ki6WxVii5aq02pm7Yj+gjcp4cpfhiK6xPDqpJ099v4UXFmzn5YU76BwbSs+kCOdHOD2TIogPN1ff99BaWPK89vW5L0JMJ3ecN36whk2ZxbQJDWTujafRNuqYtTghMXDx29rITuZa2PEz7PxZG4lIbX07maDm1mwbRMZD8SFtqimqvWdu4ByZyXFoyYy/jswkRgRRbE6iSg3AbK/SFvQChLSBgddon+sj3llhOvvUSxk+XnWQHzccwWRQePXKAUSGBDC2Zzwr9+azePtRrhvZ9FFSUX+NSmZuvPFGli5dytVXX01SUpJHfoGqqsrdd9/N6aefTlqa9i4sKysL0Non1JSQkMD+/fvrvM5zzz3HU0891eR4hPAH36RnklemFck7p/cJiuTl7Yb592q/1Htf1KDrXzeiI/llFuau2E9BuZWdOaXszCl1L3YEiAkNpGdSOH3jTEzfMY1whw17r4sw9rscAKvdwfSP1rFqbz7hZhMfXD+UznFhJ76pwagN8acMhbGPNSjelsa1m6mkyoYjNA5D8aFmGZk5SiSAX+5mAm2tV7eESP483JuzjBnQbog2Ndn7QjCZ638h18jM0e3a4mhj3X8e27KKeep7LeG5/5zu7hHRs3rEM3P+NlbszqOsykaouVEvsaIRGvUn/dNPP/Hjjz8ycuRIjwVy++23s2HDBv7444/jHjs2WVJV9YQJ1EMPPcTdd9/t/r64uJiUlIbV3BDCH6iqyrvOhb/TRp6kSN4vT8DuxRCe1OBkRlEU7pnQnbvHp5JdXMXWrGK2Hilm65ESth4pZs/RUvLLLPy5K4/z9r1NuOkAmWobzs84l/jDy+iRGE5+uZXfdxwlKMDAe9OGkNY2sqk/eqsREVT9K7oqeSjBYfFg9uBOGWcyk6tGEm421b013k+kJoYzff+d3Dm4DbdeMKpxF4lsD4Fh2s6xvF0Q3/O4U8otNm77aB1VNq2kwI2nd3Y/1iUujPYxIRzIL+fPXblMONEbDOFxjUpmoqOj3VNBnnDHHXfw3Xff8fvvv9eqKOzqzJ2VlUVSUvV2u5ycnONGa1zMZrO7vYIQLdnvO7XFhmFmE5cOOUHCfnS7tkMDYMQdjb6XoigkRgaRGBnEmO7VdTwqrXZ2ZJdQkv41I9f+hgOFx5TbyXeEkp9VwrYsbXeJyaDw5lWDGNLRc783WgOT0UBEkIniShuZpz1O1/iTjGg1xrgn2djhat6as46IMP8clXHpkRhOJWbWFjZh4a3BoCUwh1ZrU011JDOPf7uZ3UfLSIgw8/KUfhhqJICKonBWj3jmLN/H4m05ksx4UaMWAD/zzDM8/vjjlJeXN+nmqqpy++2389VXX7F48WI6dao9x9ipUycSExNZtGiR+5jFYmHp0qWMGDGiSfcWwt+9s0xbm3bZyYrk/TFb+9zjvOpfzJYybXGtBwQFGOnbLoqRpw2HxD4YRt7Ju0/cxZ8PnsW71w7m3gmpXDSgLW9dM6hWEiTqr3rdjMXzFzcGkKvEkOenTSZrSk3Qdreecnv2qcQ7p5pcndpr+GrdIb5YewiDAv++fABtwo5/43xWD+3f+eJtOajSIsFr6j0yM2DAgFpTO7t27SIhIYGOHTsSEFD7P8G6devqdc3bbruNefPm8e233xIeHu5eIxMZGUlwcDCKojBjxgxmzpxJt27d6NatGzNnziQkJIQrr7yyvqEL0eJszyph2c5cDIq2rqVOhQdg42fa16c7p17tVvj4Cti7FAr2w+kzPBNQfA+48VdAQVEU2kYF0zYqmLE96x5BFfUXHRLAgfwa/ZlOspajMYr9uJVBTa5k5mB+RdPWq5z1qLaV+5gO5buPlvLoN1qhvTvHpjKsc92Lik/rHENIoJGckio2Hy6WaVUvqfff9oUXXujxm7/55psAjB49utbx999/n+uuuw6A+++/n4qKCqZPn05BQQGnnXYaCxculBozolV719lQ8py0RFJiTjCsvvxVcNig0yhoN0g7ZjBB++FaMvPLE2C3wKj7Gx9IWa5WswMattBS1Fukc2QmaO9C+PoBSO4P0+Z75uI/3EW3oxZiOJ3IYP+eEokJDSQ+3ExOSRV3fpLOPy/qQ0JEI+rxhB0/glhptXPbR+sot9gZ3rkNt5/VtY4naswmI6d3jWXhlmwWb8uRZMZL6p3MPPHEEx6/eX2G4BRF4cknn+TJJ5/0+P2F8EdHS6r4Jl3bTXRDjcWHtZTmwLr/aV+fcU/1cUWBMQ+BKRB+fRp++yfYqrR3ow3dlZi1Ed6doK3FGfWAtgtJeJyrcF6hzQzWMvd26iZz2GHtHHqpDowM9/uRGYD7zu7Ow19v5JetOazau5THzuvFJYPaNXnH7bM/bmFbVgltQgP59+Un6CFWw1k94lm4JZtft+Xwj7HdmnRvUT9NLpq3c+dOfv31V3btamCnUiFEo3y4Yj8Wu4MB7aMY1OEERfKComDSy9BnCnQ68/jHz7gHJvxT+3rZS7Dw0eM6Wp+UtQK+vAms5XBkPSjSV6m5uLZnZzuco9Ge2ppdng+qAxWFfCKIDPH/ZGbK4BS+v+N0+raLpLjSxn1fbODa91eTWVjRsAst+RfMOQ8Op/PjhiPMXaF1kZ91WX/i6zHaM8a5bmbDoUKOllSd4mzhCQ36DfT888+zePFiAAoKChg3bhzdu3dn/PjxdO/enYkTJ1JYWNgccQohOKZI3olGZUAbeRlwFVz8zolHXEbcDuc6WwT89Zo2UlNfi56Ao1shNA7+9lrDR3VEvblGTA7bnGs4Kou00bSmciZFZcYI7BhbxMgMQI/ECL66dQQPnNODQJOB33ccZcKspcxdsR+Ho54J+8GVsG8ZeTtX8eCXGwC4dXQXRqXG1evpCRFBpLWNQFVhyXbp1eQNDUpm3nzzTWJjtfnx+++/n/z8fNauXUt5eTnr1q2jsLCQe++9t1kCFULA1+mZ5DuL5J3d2wOLa4feBOf/WyvtXt+OwTsXwar/al9f+KbW70Y0G9c0U1ZVEBicCYcnppqc1yg2RAH+WzCvLiajgVtHd2H+P85gYPsoyix2Hv1mE1PfWcn+vLJTX8BZPO+vv36npMrGoA7R3D0+tUExnNVD+//5myQzXtGgZCY7O5vISG0x0y+//MLs2bMZMGAAQUFB9OvXj9dee4358z20ME0IT8vfC78+o72z9UMORz2K5FnK4e2xsPpdbddLfQy6Dv6Rri0sPZXSo/DNdO3roX+HbuPrdw/RaK6t2QUV1urFqZ6YanIWzMtXogD/381Ul67xYXx+ywgeP68XQQEG/tqTxzmzl/HeH3uxn2yUxtnWILZ8N5HBAbxyxQACTlSU8gRcW7R/35GLxeY4xdmiqRr0t9OhQwc2bdK2pimKgslUe/2w0WikrKweWa8QevjwQm19yIo39Y6kUZbuPMouZ5G8y05UJG/d/yBzDfz5b6ABUz81m+4dXAXf3n58MqSq8N0d2gtpXA8Y34BpKdFormaTBeVWbVoPtKSyqZwjM7mq9gbVX5tMnorRoHD96Z34ecaZDOscQ4XVztM/bOHS//7FrpzSOp+zslzb2dVdOciLF/c5vo9YPfRtG0lsWCClVTbW7Mtv0s8gTq1BycxNN93Efffdx65du7j99tu599572b17N6A1hbzrrrtqNYUUwmdkbYKCfdrXA67WNZTGeneZNipz+ZAUwusqkmezwPJXtK9PnwHGRtTZqCqFjy+H9A/hi2naNWtKnQBBkTD5bQho+C940XCuBcBF5RboMBJSzzmuBkqjOEdmXAuLW+LITE0d2oQy78ZhPHthGqGBRtbuL+DcV5bx5pLd2OzVIydHiiq4Y1EZNtVAtFLKhEb29DQYFEY7C0X+uk2mmppbg5KZe++9l3HjxtGrVy/efvtt0tPTSU1NxWw207VrV0pLS3n11VebK1YhGs+1xqPXhRDZVtdQGmPrkWL+2OUskjeyY90nbfgUijMhLBH6NbKopDkMLngDjIFaG4TPrta6VoO2yHfw9TBjEyT1bdz1RYPVGpk5ZyZc+Sl08EAF9LMehXu286pVWyvV0pMZ0BKMq4Z1YOHdozgzNQ6LzcG/FmzjojeWsy2rGJvdwT8+TienQuGIKVl7Us6pO2ifyFjnVNNvksw0uwa/dXvllVe49dZb+eGHH9izZw8Oh4OkpCRGjhzJuHHjPNJBWwiPKs+HDZ9rX592i/bZw1VUm9t7zrUyE/sk0S66jiJ5Djv8OVv7esTtENCIYmEu3c+BKz6GT6bCjgXw0SVw8bsQ7lxw7IlRAVFvrjUzFVY7lVY7QQEequdjDMAaEs8hi9bvqTUkMy5to4L5YNoQvlh7iGd+2MLGzCLOf/UPBnWIZvW+AsLMJmI6DYAjVU1aY3d6t1gCjAp7csvYm1tGp9hQD/4UoqYGJTMLFy5kzJgx9OzZk549j2/AJYRPWvc/sFVAYh+I7aa9SGeugzvXa1uYfdyGQ4V8nZ4JwA2nd6r7pK3faV1+g6Jg0LSm37TrOLjyM23Kad8yeDkVrv8Z2g9r+rVFg4SbTRgUcKhQVGHVkhmbxSP/dosqqtdFtaTdTPWhKApTBqdwZmocj3y9iV+2ZrNij7a2ZebkPoT2eqdpbwqA8KAAhnaK4c9deSzelnPi/7+iyRo0zXTLLbcQFxfHZZddxrx586SmjPB9dhusfkf7eujN2kLXg6ug5DDs+U3f2OqhwmJnxqcZ2Bwqk/omMbB9HUXyVBWWzdK+Pu0WbarIEzqPgqu+gkBnsbbSbM9cVzSIwaC4R2esW36EfybBhxc1/cI/3otp0cPEUUi42XTKqrYtVUJEEG9fM4hXrhhA57hQbh/Tlb/1S25yIuPiarC6eJv8/2lODUpm9uzZw++//06fPn2YPXs2iYmJjB07lldeeYV9+/Y1U4hCNEFplpbABMdAn0u0kvtpk7XHNn6hb2z18PxPW9lztIyECDP/vDCt7pMUBc59EXqeD6fd7NkAOgyH21bAjYvrX4dGeJxr3Uyxw6xVXW7q1mxVhbVziFr/DibsrW5U5liKovC3fsksvmc0957d3aPXdjVbXbU3n5LKepZLEA3W4Brkffv25dFHH2XVqlXs2bOHKVOmsGDBAnr27Em/fv14/PHHWbNmTXPEKkTDRbaDm3+HW5ZV777pM0X7vO1HsPhuKYGlO47ywV9atd+XpvRzvzuvU/thcNlcCInxfCCR7aobVQpduLZN5+FsWtjUonkVBeCwOq8Z0arWyzTI59fBrN5wdHujL9EpNpROsaFY7Sp/7Mz1XGyiliY1VElOTuaWW25h/vz55Obm8thjj7Fv3z7OOeccZs6c6akYhWgaRdFekF3aDoLojlrTvu0/6RbWyRSUWbjv8/UAXDeiI2d0O0GV3Yb0UxJ+y7U9+6jDmcxUFjatpYFzW7YlIAILAZLMnEjhQSg+BNmN39EE1QX0Fsuupmbjse5woaGhXHLJJfzvf/8jJyeHm266yVOXFqJx9v4OlcXHH1cUSLtE+3rTl96NqR5UVeWRbzaSU1JFl7hQHjinx4lP/vxaWPCw5zopC5/kagKZbQ2ubmlQ1oTCec5/LxWB2kieJDMn4GxrQM6WJl3Glcz8tj2n/v2hRIM0oqqWpqysjKVLl3LgwAEslurCWoqicMcddxAXJ/1ahI4qCmDeZVo351v+gJhjdhH0maJVA965SNu63RzTM430TUYm8zdmYTIo/N9l/QkOPMFW3CPrYcu32s849EYg3qtxCu9xjcwUVtq0KsAlh7WEpOaIY0M419yUGrUF5ZLMnICzrQHZTUtmhnSMIcxsIrfUwobMIvqnRDU9NlFLo5KZ9PR0zj33XMrLyykrKyMmJobc3FxCQkKIj4/njjvu8HScQjRM+lxtoWRCmjaldKz4HtDnUq0fkaHROb3HHSoo5/FvtCHtO8d2o2+7qBOf7NrB1HsyxJykg7bwe65mk4VlVq2xZ8nhJo7MaM8tMkYB1SM/4hjukZmmTTMFmgyc0S2WnzZlsXhbjiQzzaBR00x33XUX559/Pvn5+QQHB7NixQr279/PoEGDeOmllzwdoxAN47DDqre1r4f+XZtWQmvUeKigvPq8i9+G4bf5TBE4h0Plns/WU1JlY2D7KG4d3eXEJ+fu1EZlAE6/yzsBCt1EuppNllugw+mQOhHMTfh360yEClpwk0mPcI3MFOzTWn00QfW6Gdmi3RwalcxkZGRwzz33YDQaMRqNVFVVkZKSwgsvvMDDDz/s6RiFaJgdP0Phfm1LtmvnEvDP+Vs5/V+/8eOGIzoGd2Lv/rGXlXvzCQk0MuvS/nV3xXb5czagai9qiSfYsi1aDPfITIWrpcEn2rb5xhr9ENyzg6/CtLYXksycQGgbCHNWvj66rUmXcvVp2pRZTHZxZVMjE8doVDITEBDgbluQkJDAgQMHAIiMjHR/LYRuXH2YBl4DgVrp//15ZXywfB8AX607VH1uRaE2JbX1e+/GeIxtWcW8+LO2/fOx83rR8WRlzwsPwvpPtK/PuMcL0Qm9RQU718yUW05xZj0ZTRCewEFr62gy2SQpp2kfx3aRb6C4cDP9nNNL0qvJ8xq1WGDAgAGsWbOG1NRUxowZw+OPP05ubi4ffvghffr08XSMQtRfzjbYs0RbFDvkRvfh2b/sxObcRfDn7tzqHjcbP4f590LyAK3onA6qbHZmfJKBxe5gbI94Lh+ScvIn/PU6OGzQ8QxIGeKdIIWuXEXzCsudL6iqCnYLmMxNum6xs52BJDMncdmHHrvUWd3jWX+wkMXbcrh8aCPbcYs6NWpkZubMmSQlJQHwzDPP0KZNG2699VZycnJ46623PBqgEA1y4C8tkel+LkRpvyy2Z5XwTYbW2yjcbKLS6uCv3Xna+b0vAsUIh9Mhb7cuIc9auINtWSW0CQ3k+Yv7nrpZ68h/wLDb4Mz7vBOg0F3NZEbd+oPW0mDuxY2/4Pz74KcHCSjX1m9IMuMdY3tqU01/7MqlymbXOZqWpcEjM6qqEhkZSUhICDabjbi4OObPn98csQnRcIOnQdexWiM+p1mLtqOqMDEtkejQQOatPMDibTmM6REPobHQZQzs+kVrbzD6Aa+Gu2JPHm8t2wPAc5P7EBdej3faEcnaugnRari2ZlvsDioNIQTbKhpfW0hVnc1XK6l0vAqESDJTH9YKMAW5NxQ0Ru/kCOLDzeSUVLFyTz5npkoJE09p0MjMvn376N+/Pz169KBPnz507dqVdevWNVdsQjROVHuI7QrA+oOF/Lw5G0WBu8enMrZGJU7VVT3XtUh44+derahbXGnlns/Wo6pw2eAUJvROPPkTpNpvqxUSaCTQuSC82ORsNtrY/kxVJWDTFqAesmhrsySZOQmHHV4bCjOTm1ycUlEUqQbcTBqUzDzwwANUVlby4Ycf8vnnn5OUlMQtt9zSXLEJUX8OB+TvPe7wSwu1RbUXDWhLt4RwRnSJxWwykFlYwY5s51bLHpO0d1x5O7VCdF7y5HebySysICUmmMfO73XqJ/zxf/DRFMiUNxCtjaIo7low+URpBysKao1A1ptzW7YaEEIFWmfo1t5o8qQMRlDtoDqaXG8G0EaEgV+3ZVe/oRJN1qBkZtmyZbz11ltceeWVTJ48mc8//5y1a9dSUVHRXPEJUT+7FsErA+Cr6q7RK/bksWxnLiaDwoyxqQAEBxoZ0aUNoP0yAcAcDqnnaF9v/Nwr4c7feISv1mViUOD/Lu1PmPkUM76Wcm3h786FkLvDKzEK3+Lanp3vCK0u9NiYwnnO59iCtSmOcLMJo6HxUyetQrzzzUYTKwEDnN41lkCjgYP5Few+2rTaNaJag5KZrKwsevSo7hPTrl07goODyc6WIkBCZyv/C6jaGhi0tV0vObc6Xz40hfZtQtynuvuk1Bzm7TMFULzS4yinuJKHv94IwK2juzC4Yz1aKaTPhfJcbQotrQkLP4Xfcm3PLqhwtjSAxk01Of+NVwVpSb2MytRDgrN4XhN7NAGEmk2c1ln7Py9TTZ7ToGRGURQMhtpPMRgMMlQm9JW7E3b/Ciju7dhLth9lzf4CzCYDd5zVrdbprmHetfsLKChzDtN3Gw93b9WqAjcjVVW574sNFJZb6Z0cwZ3OEaOTPEFbmLzEueB35J1glBef1si1o6mg3FqdzJQ2ZmTG1WRSS2ZkvUw9uEdmmj7NBLjX7v26VZIZT2lQMqOqKqmpqcTExLg/SktLGTBgQK1jQnjVKmc5gO4TIaYTDofqXitz7YiOJEQE1Tq9XXQI3RPCcajw+07ni4HJDBFJzR7q3BX7WbrjKIEmA7Mv60+g6ST/BfN2w4cXwpc3aOsjEvtA/6nNHqPwTa4dTUXlFq3GUPdzG9eKoywXgFKTNJmsN9fIzNFt2oLgJjqrh1ZVeM3+AooqmlaMT2gatDX7/fffb644hGicymLImKd9PfTvAPy0KYvNh4sJM5u4ZVTd/Y3O6hnP9uwSft2awwX929Z+sCRba4VgCvRoqLuPlvLP+VsBePCcHnRLCD/5E7bP1woAGs1w5r3aqEwTi6QJ/1VrZOa8JmzNP+NeGHw9q9cchG1ZkszUR3RHMAWDrQLy90Bst1M+5WTatwmha3wYu3JK+X3HUc7vl+yZOFuxBiUz1157bXPFIUTjZMwDSynEdofOo7HZHby8SBuVueH0TsSE1p2QnNUjnjeX7GbpjqPY7I7qPkhf/V1bBHz5x9D9HI+FabU7uPvTDCqtDk7vGst1IzrWfWJlcfW77dNugYL9MOxWaHOSppOiVYgKcbU0aOI7eaMJwuLJthcBWe4kSZyEwQi9LnDWmPHMYumzesSzK6eU37blSDLjAY1qZ+BisVjIycnB4XDUOt6+vZRpFl6y8TPt82lad+yv0w+x52gZUSEB3HhGpxM+bUBKFFEhARSWW1l3oJChnZzTo8Ex2hbMjZ97NJn5YPk+1h8qIiLIxItT+mI4dvdISRb8/DAc2QC3/qmNwBgDYJJ0oRea6irAznVeqgq2KggIOsmzTqxIWhk0zOT/evRyZ/WI563f9/Db9hzsDlV2lDVRo9oZ7NixgzPOOIPg4GA6dOhAp06d6NSpEx07dqRTpxO/gAjhcdd+D+fNhr6XU2WzM/uXnQDcOqoL4UEn/iVtMhoY5ay+ufi4XU1oUzyWMo+EqKoqc1fsB+D+c3qQFBlc/aDDDivfgteGwKYvIX837FvmkfuKliXaPc1kga0/wD8T4aNLGn6hnx6Enx6AYq3Fh+xm0segDtGEB5koKLeScbBQ73D8XqNGZqZNm4bJZOKHH34gKSnp1L1khGgugaFaCwPg07/2kVlYQXy4mWuGdzzlU8/qEc+3GYdZvC2bByc6Sw60HQjRnaBgL2z/Cfo04sXiGCv25LMvr5zQQCMXDaixPidzHfxwFxzJ0L5PHgjn/R8k92/yPUXL455mqrCCOUyr4tuYOjPpc8FSQmW7YUCgjMw0hN2qTf06K4w3RYDzDdUPG46weFs2gzpEa6Nt1goIDDn1BUQtjUpmMjIyWLt2ba2aM0J41TF9Uiosdl5dvAuAO87qSnCg8ZSXGJUah0GBHdmlHMwvJyUmRLten0vg9xe1qSYPJDOfrj4AwN/6JxNqNmlVW39+GFa/A6hgjoRxj8OgadrcvBB1qNU5O9SZFDe0LpK1AiwlABy0hgNVkszUV0UBvJSqJTQPZ2pvpJrorB7xzmTmKPed3QPWvAsr3oTLPoJ4eX1tiEZNM/Xq1Yvc3FxPxyJE/f3yJLwxHHb+AsAHf+3jaEkV7aKDuWxI/dZsRYUEMriDtlbmt+11TDXt+gXK85sUZmG5hfmbsgC43BWXMUCbTkKFPpfC7au1+jiSyIiTiHYvALbgCHHWmanI115c68uV/BjNZFdqSYwkM/UUHA1BkYCqbdH2gNHd41EU2HqkmMO5hbD8NcjbBe+MhS3feeQerUW9k5ni4mL3x7/+9S/uv/9+lixZQl5eXq3HiouLmzNeIbRGeekfwdGtoGgNG99cshuAGeNST1675Rhj6mr6Ftddq+nisMGWb5sU6jfpmVhsDs6Mr6BvG+dCeUWBSS/DNd9qRfrCE5p0D9E6uJIOhwolxghQnMlvQ6aaXOeGxVNUaat1XVEPHmxrABATGsj5ScV8GDCTPX98Cjcs0moIWUrhs6vhl6c8UtemNaj3b/2oqCiio6OJjo5m/PjxrFixgrFjxxIfH+8+7jpHiGaV8bE2VN6mG3Q+i3eW7aWowkrX+LDaa1LqYWxPLZlZvjuPcout+oEz7oG/vQq9L2x0mKqq8snqg4w0bOStintQfn2q+sGYztB5dKOvLVqfoAAjwQFaAlNUYa9RBbgBU02uc0PjZDdTY3iwrYHLdaF/cYZxE6Hbv4awOLj6Gxh2m/bgH7O05rJNHCFuDeq9Zua3335rzjiEqB+Ho7ri79C/k1du5d1lewC4e3xqg7c3dosPo21UMJmFFSzflce4Xs5Rkt4XNTnU9QcLOfPoPB4I+ASjVdW2XdttWp0PIRohKiSAiiI7BeUW2ofFQWlWA0dmtGTGERpLuUV7xy/JTAN4uK0BDjt98hYA8F7pcF602gkKMME5MyF5AHx3h9aq5Z2xcOtyCAg+xQVbr3r/Vo2OjiYtLe243kwnsnnzZrp3747JJL+4hQft+Q3ydkJgOPS/gv/8spsyi520thGc0zuxwZdTFIWxPeP531/7+XVbTnUy01RVpRi+vJ6HAxZr3/efqk0tSSIjmiAqJJAjRZXa9uyOZ0BkezA3oKWBs5eTxRzrPiRbsxsgwZnMeGpkZs9vBJRnU0QYP1v7MXl3nnvqm75TtEXAn0yFgddIInMK9Z5mGjBgAHl5efW+8PDhwzlw4ECjghLihFyjMgOmklUZwAd/afVb7pnQ/fhCdPU0pkYX7VpNUyuLYcV/4JvbGnbBvN043hlH36LFWFQje4Y+DRe8Lr+MRJO5as0UVVjhnOfginnQ/rT6X+CMu+HenWQNuR+AcLNJirU1RFxPQNFGwxrT5PNYGR8DsKXNBCwE8Ou27NqPJ/aBW/6AkTOqj5VkayO8opZ6v01UVZXHHnuMkJD67X+3WCyNDkqIOhXshx0/a18PuYlXF+/EYnMwpGM0o50F8BpjeOc2BAcYySquZMuRYnonR2oP2K2w8BFtIfDpM+rXj8Vug7mTMRTsI0eN4ungB3h14q3uLeRCNIW7P1NZI3+/GowQFk9+fgEgozINFhgCQ2/S1is19f90ZRFs+wEA44ArIdPCJ6sOEh8exK2juxDgarFSs5loVanWfDakDVzyvrbGRgANSGbOPPNMtm/fXu8LDx8+nOBgeScqPCgiGaZ+DkfWc0BJ5tPVSwC47+weTSrcGBRgZGTXNvyyNYfftuVUJzOhbaDzGNi1CDZ+AWMeOvXFjCY492W2fPY415VMZ9qY4VJUUnhMrcJ50OiWBrL4twnOfdEz19nyrVb4MLY7g4aP5fyD6/l+/WFmLdrBL1uzeXlKv+Ob0eZshcID2jTXW6Pgsg+h7SDPxOPn6p3MLFmypBnDEKIejAHQbTx0G8/sTzOwOVTOTI2r7qvUBGf1SOCXrTn8ui2H28+qMQLTZ4qWzGz6AkY/WPe7scoiyN0F7bRfKtvDT+PckocxGQxcPKhhu6uEOJmo4BqF87Z+D1/coE0zXft9/S6w4GFQ7VgjL9auJ00m9ROWCO1HQOrZGI0GXrm8P+N6xvP4t5vZcKiISa/+wT3jU7nxjM7VU4EpQ+Cmxdo6mryd8N5EbS3ewKv1/Vl8QKOK5gmhpx3ZJXydofWVuW9Cd49cc0wPbbg242AheaVV1Q/0OBdMwVohK1fbgZpytsHbZ8HcyZC/F4BPVh8AtIXF8eGNawIoRF1chfMKyi0QGAb2qoZtzc74CFb+h4oyrQqwjMw0gsMBBftgbxN7qKVOgOt/gpF3AtpmhAv6t2XhXWcypnscFpuD537axqX//Yu9uTX6xMV1h5t+he7nan//392utUWxte6lHZLMCP/wx2xY9Djk7+HlhdtRVTindyJ92kV65PJJkcH0SopAVWHJ9hoL+8zh1d2zN35R+0lbvtO2TObt0l5YqkqotNr5Ol1LtC6vZyViIeqrVkuDMOeul/omMzYLVBYCkGPX1mFIMtMI+bvh3/20+i+eKGh3zGhvQkQQ7103hBcu7kuY2cTa/QVM/PfvfLB8Hw6Hc4NCUKTW8mDMI4ACa97TWqS0YpLMCN/nsGv9Sv78N3s3r+bnzdkoCtwzIdWjtznLVQ14+zEvDq72Bpu+1GJx2LXKnJ9drVXq7HgG3LwUkvqycEs2heVWkiKDOLMJi5KFqEtUjZYGhDnLCNS3pYGrHo1iJNuqrWeUZKYRYjprfeFsFdoITUM5HLDmfSg7cUsgRVG4dEgKC2acwciubai0Onjiu81MfWclB/PLtZMMBhh1P1z5GcSmaoU+WzFJZoTv27dMKw4WFMnT25MBuKh/2+MXxzXRWc5qwL9vP4rV7qh+oOs4CI3XuloX7NPekf0xS3ts+O1axc5QrW6Hq6nklMEpsuVVeJxra3ZhhRWCY2q0NKhHr7yy6uq/hZXaiILsZmoEgxHinE0gG1M87+AK+GEGvDb4lElou+gQPrz+NJ65oDfBAUb+2pPHObN/55NVB6rLSKROgOkrICKp4bG0IJLMCN+34XMACjqex2+7ijEZFGaM8+yoDEC/dlHEhAZSUmVjzb6C6gdMZrhrs1bTI32uVpHTFAwXvwtn/9NdCG9/Xhl/7spDUWDKoHYej0+IWluzDQZ3Ek1p9kme5eSqixImrQyarCltDTLmaZ97TNI2NZyCwaBw9fCO/HTnGQzpGE2Zxc6DX21k2pzVZBVVOk+q0aTWUlb3hVo4SWaEb7NWwlate+xC05mAVuSufZv61TtqCKNBYXR3bWpo8bHFq0za8D6jH4S0i+HGX6DPJbVO+WzNQQBO7xpLSozn4xPCNc1UXGnDZndoI4ZQv5YG7pGZeElmmqqxbQ0s5bD5G+3rflc26KkdY0P55O/DeXRSTwJNBpZsP8qE/1vK1+mHtFGa4sPw8RXw5ohWWVRPkhnh23YsgKpiiGjHnINau4KzG9G2oL7OqquLdk0mM1zyHiSm1Tpsszv4fM0hAK4YKgt/RfOIqpF8FFfaoNMZ0OM8bUHoqbgWCofFUyzJTNM0tq3Bth+1JrlRHaD98Abf1mhQuPGMzsz/x+n0axdJcaWNuz5dz80fruWoLQQOrNCmwp3F+FoTSWaEb9vwGQBFXS9ka3YZRoPCWFfvkmZwRrc4TAaF3UfL2J9X/+Ha37YfJaekipjQQMb19FB/JyGOYTIaCDdr05oF5RatpcHlH0HK0FM/eeSdcO8uGP+0jMw0Vbxzmil/D1gr6v+89c4ppn6Xa9OEjdQ1Ppwvbx3BfWd3J8CosHBLNme/vpr83s56M3+93uhr+ytJZoTvUlWI7gjBMSxyTjEN7RhDdGhgs90yMjiAwR2jgZOMztTBtfD34oFtCTTJfyvRfKJCa2zPbgiDUSt/HybTTE0WFg+jH4LJb9f/OcWHYc8S7et+lzc5BJPRwG1juvLtbafTPSGc/DILrxWPBmMgHFoFB1c1+R7+RH7rCt+lKHDOTLh3B58e0HYund27+Uc9xvbQ7lHfZCarqNJ97mVSW0Y0s6jgGtuzQUv6rZX1fr7V7qDcou1mkmSmkRRFWz/X55L6N5A9tEbbfdZ+uLa920N6JUfwz4u0ae9Ptlmw9naWkmhlozOSzAifd7TcwZr92u6iCc24XsbF1UV75Z58SqtOvZDui7UHcagwpGM0XePDmjs80crVKpy35Tt4NgHmTTn1Exc+CvPvp+TILvch2ZrtRb3+BvfugPNme/zSgzpE07FNCOUWO0uinf8Wtn6nNedtJSSZEb6pJBv2LweHg1+3ZqOq0KdtJMlRzd+8tEtcKO1jQrDYHfyx8+T1OxwOlU+du5hkVEZ4Q1TNlgZmV0uDeuxmWv8JrPovZSXaG4Nws0lqITVFVQnsXly9O6k+QmIgvofHQ1EUhUuc5SDe2xkMXc4C1QFr3vX4vXyVJDPCN62fB+9PhC9v4OfNWYB3pphA+8Xg2tX02ymmmv7ak8fB/ArCzSYm9WndRauEd0TXHJlxbc0+VZ0Zhx3K8wAoUKIAiJQmk01zdDt8eBH8dP+pz60oOPU5TXTRwHYoivY7Kbv/HXDuSzDqgWa/r6+QZEb4JmehvMr2Z/LnLu2XsDemmFxqtjZw90Opw8ertIW/FwxIJjjQeMLzhPAUd0uDiga0NCjP096po5CvauvPZL1ME7mqAJdmQ1neic+zVcErA+HdCVB8pNnCaRsVzMguWhHFj7PbwdCbIDC02e7naySZEb4naxPkbAZjIEuMw7HYHXSKDaWbF9ejnNY5hpBAI0dLqth8uLjOc/LLLCzcrL0jlqaSwltctWYKyq3atIXi/DV+spYGrhozIW0oqtKSc0lmmsgcpu22BO331Yns+FlLNgsPVDcHbSauqaYv1x2qfhOmqlo/qBZOkhnhezZqtWXoNoEfd2o1HCb0TkBRvDe/bzYZOb2r9i7n12OrATt9nZ6Jxe4grW0EaW09071biFOJdm7NLiq3atutQ5wtDcpOMiVaVl0wT7Zle5Cr3kz2SYrnrf9Y+9z30tptB5rB2b0TCTObOJhfwap9+Vpz3DeGw5ZvmvW+vkCSGeFbHA7Y+CUA1t6XuNesTOjlvSkml7E9T7xuRlVVPnFOMcnCX+FNrq3ZBa6t2a53+ydbBOx6LDROS4KQZMYj3JWATzAyU5YLOxdqXzewfUFjBAcaOa+vtnbvi7WHIHcnHN0Kf72mjdC0YJLMCN9yYDkUHwJzJH8ZB1NaZSMu3MyAlCivhzKmu/Yisf5QETkltet4rDtQyM6cUoICDFzQP9nrsYnWq9bWbIBOZzpbGkSc+Ell1clMoYzMeM6pejRt/BwcNkge0Cy7mOoyZbA21TR/4xHK+l4LRjNkrm3xRfQkmRG+ZcfP2udef2PB9kIAxvdKwKDDFtL4iCD6OKePlmyv/a7XVfF3Up9kIoLkRUF4T3TIMUXz6tPSYNh0uG83nD3TPc0kNWY8wN09e1vd61JcU0xeGJVxGdg+mk6xoZRb7Py01w79LtMe+Os1r8WgB0lmhG8Z9xRMW4Bj2G0s2qKtVWnOxpKn4iqgt3hr9VRTSaWV79druxIuH5qiS1yi9XKNzJRZ7Fhs9VzYaTBAaCyEJ8iaGU+K6QJ/ew2u+/74x7K3wJH1YAjQKgV7Sc2aM1+sPaglsqA1n8zf67U4vE2SGeFbDAboMJz0ykSOllQRbjYxvHMb3cJxNbVctvOo+4Xj+/VHqLDa6RIXyuAO0brFJlqniKAAXGvhCytqtjSoX8NDSWY8yGiCgVdD20HHN46M6QQXvwujH9B2nXnRRQPaoiiwYk8+B00doOs4bWv+yv96NQ5vkmRG+I4aw7QLnYXyxvSI17VxY5+2kcSGmSmz2Fm1Nx+onmK6fEh7r+6wEgLAYFDciUhhuVWrQPtsPMy77MRPWvQ4zL8P8nZTLMmMdwQEayMyZ97n9VsnRwW7d2N+ue4QDL9NeyD9Q6go9Ho83iDJjPANlUUwOw1+uBvVWlGj6q9+U0ygvXCM6R4HaI0ntxwuZv2hIgKMChcNbKtrbKL1cq2bKSizaAt/7ZbqWjJ12fAZrHoLqoplZMbTig7B6ndg7Qd6R1JL9VTTIRwdR8Pg6+HS/0FQyywjIcmM8A1bvoPiTNj/JzvzrOzLKyfQZGCUM5HQk7sa8LZs96jM+F4JxIaZ9QxLtGLuHU0VNVoanKjOjMNRYzeT1JnxuKPb4Md7ai+wXfQE/P7SyRPMZjahVyLhZhOHCipYua8Azvs/6DoWWuhosiQzwje4CuX1mcLPzqq6p3eNJcxs0jEozendYgkwKuzLK+eT1VpTSan4K/QU5Z5mslTXmSnPB3sdXd4rC7XtwYA1KIZyix2QZMZjXIXz8naDtVIbZV75H1j8jPYGTSfBgUbO61ej5kwLJ8mM0F/xYdi7TPu6zxQWuncxeaex5KmEBwUwtJO2gK/K5qBtjfloIfRQvT3bCiFtnC0NVCivo6WBa3QgKJIia/WvfNma7SHhiRAcDaodcrfD5q/BVglxPSGpv66huaaaftp0hLIqm5bw/vKU1iCzhRXRk2RG6G/Tl4AK7YeTqcSzMbMIgwJje/pGMgNwVo/qWC4dnKJL3RshXFwdrwuObWlQ17SGa/qpxhRTeJAJo/wb9gxFqd3WIMNZW6b/FbpP6dSsOTN/4xFtR9OKN2D3Yjjwl66xeZquyczvv//O+eefT3JyMoqi8M0339R6XFVVnnzySZKTkwkODmb06NFs3nyShl7CP22onmJa5Fz4O7hDjE+tSXFt0TYo1RU2hdCLa2SmqOKYlgZ1rZsplb5Mzc7V1mDbD3BwhTZS1udSfWPi2Jozh7RaQ/0u1x7863UdI/M8XZOZsrIy+vXrx2uv1V2Z8IUXXmDWrFm89tprrF69msTERMaPH09JSYmXIxXNJmcbZG0Agwl6X+ReLzPBR6aYXDrGhvLKFQP4z1WDSI4K1jsc0cq5FgAXlLlaGoyCnueDuY6dKq5u2qFxksw0l/gayQxA5zEQkaRfPDVMHqjVnFm5N58DeeU1iuj9qK3zaSF0XV05ceJEJk6cWOdjqqoye/ZsHnnkESZPngzABx98QEJCAvPmzePmm2/2ZqiiuZjDYeQMqCqmQA3TOr2i/5bsuvytn/RgEr4hKuSYZpPnzDzxyUP/Dn2mgMNG8W5JZpqFq62BS3/vtS84laRIbY3fsp25fLnuEHeN7w5dx8OuRdpC5XNf1DtEj/DZNTN79+4lKyuLCRMmuI+ZzWZGjRrF8uXLT/i8qqoqiouLa30IHxbZFsY/Bef9H79uy8HuUOmZFEFKTIjekQnhs6KdIzOukZaTMhggtI20MmhOiX3gik8h9RwIS4Qek/SOqBbXVNOX6w7hcKg1iujNhYoCHSPzHJ9NZrKytLUTCQm1pxsSEhLcj9XlueeeIzIy0v2RkiK9c/yFq1DehF6+NcUkhK+JCj5mZAa03SmW8pM+z9VpW5IZDwsIhu7nwJWfwl2bte99yNm9q2vOrNibB51Ha4uWreWwdo7e4XmEzyYzLseWi1dV9aQl5B966CGKiorcHwcPHmzuEEVjpX8EOxaC3UqFxc6ynVphL1+cYhLCl7iL5jmTEzZ/A8/EwSdXHH/yL0/Cj/dC7i4ZmfEGo/61sY4VFGDkPOc0+RdrD2m7rM64G4bcBD3/pnN0nuGzyUxiovaCduwoTE5OznGjNTWZzWYiIiJqfQgfZLPAwkdg3hTYt4ylO45SaXXQLjqYnknhekcnhE9zJTNVNgcVFru29sxhrXtr9sYvYPXbUFHgTmakxkzr4645szGL0iqb1jdq0kvQpovOkXmGzyYznTp1IjExkUWLFrmPWSwWli5dyogRI3SMTHjE7l+1udqwBOg0ioVbqnsxSfNGIU4uzGzC5KwTU1Bu0f4fwfHJjKrW2Jotu5las4Hto+gcG0qF1VlzpoXRNZkpLS0lIyODjIwMQFv0m5GRwYEDB1AUhRkzZjBz5ky+/vprNm3axHXXXUdISAhXXuk7K8VFI7lqy6RdjFVV+HWr9gtXppiEODVFUdw7mgrLrTVaGuTVbmlQVQz2Ku1r6cvUqimKwsU1a864HFoLn18H+/7UJzAP0XVyb82aNYwZM8b9/d133w3Atddey5w5c7j//vupqKhg+vTpFBQUcNppp7Fw4ULCw2Uawq9VlcD2n7Sv+0xh9d58iiqstAkNZFCHaH1jE8JPRIUEkFtapfVnSnS2NFAdWkIT7hypcdWYCQyDwBCKJZlp1SYPbMtLC7ezam8++/PK6NAmFNI/1FowWMqgwwjdqxY3lq4jM6NHj0ZV1eM+5syZA2iZ5JNPPsmRI0eorKxk6dKlpKWl6Rmy8IStP4CtAtp0heQB7l1M43omSIl1IeopumbnbINR69EEtasAu6aYQrXu8zIy07q5as4AfLnO2QRz2HQtEd65EBY95rc9m3x2zYxowVwdsvtehgruxpK+VvVXCF8Weez27FDnVFNpdvVJZdWtDKA6mXEtIBatj7vmzFpnzZm4VDj3Je3B5a/Cosf9MqGRZEZ4l80CpdoWbPpcwsbMIo4UVRISaGSkdKIWot6ij92e3Xm0ts02KKr6pDLn/7XQOKx2B+UWOyAjM63Z2b0TCQ8ykVnorDkDMOSGGgnNK/DLE36X0PjehnjRspkC4ZZlWk+QmM78vHobAKO7xxEUYNQ5OCH8R3SoawHwSVoaDLoeek8Gu7VWteDwIElmWqugACPn90tm3soDfLH2ECO6ON9EDr1J+zz/Xvjz3xDVHobcqF+gDSQjM6L5Wcpg9btakTzQFpjFdgVgobOxpOxiEqJhXKMrBeUnaWlgMEBITK1WBuFBJlmb1sodV3PGZehN2ghNu6E+0fW7IWRkRjSfokOw6m2tXHZlIUS0hb6XglH7JbznaCk7c0oJMCqM6RGva6hC+JvomluzXVQVrBUQeHxvM1n8K1wGpETROS6UPUfLmL/hCJcOqdH2Z+hNMGiaT1YyPhkZmRGed3A1fD4NZveFP2driUx0RxhxBzjs7tNcC3+HdW5DhAx7C9Eg1S0NnNNMm7+GZ2Lhkxp1uH59Gn64G45ul2RGuCmK4h6dqVVzxqVmIvPnv7WWGD6+hsa/Ui/h+36bCUv/Vf19xzNg2K1aN1lD7TUxri3ZMsUkRMNF1dyaDWCOAIetdhXgTV9BwV7oM4Wi8jBAkhmhmTygHS/9vJ1V+/LZl1tGx9jQ4086sl7b3QSAAmMf99k6NDIyI5qmPB9KavTP6j4RjIHQfyrcvAyu+wF6TDoukckuriT9QCEA46VLthANVj3N5ByZcVUBrllnxrWbKUyq/4raEiODOL2bVn/oq3V1jM4AJPWDc5xvTv+YBYuf8dkRGklmROMc3Q7fz4BZvWDJc9XHkwfAPdvhwjcgqe8Jn77IOcU0oH0UCRFBzRysEC1Pzc7ZqqpW15kpz9Omcy3lYCnVjoVKXyZxPHfNmXWZWs2Zugy7Bc55Xvt62cuw+FmfTGhkmknUn8MOOxfBqre0RpEu2VvA4dB2ToC2e+IUZIpJiKZxjczYHCqlVTbCQ9oASnVLA2u5dqIpCMzhFFVo774lmREuE3olVNec2ZPHiBPV+hp2q/Z5wYOw7CVtqmnMIz415SQjM6J+1rwP/+4PH1/mTGQU6HEeXPcj3LCwOpGph6IKK3/t1oo1TZApJiEaJSjAiNmk/b8rLLdqizZdLQ1Kc6qLU4bGg6K4R2YiJJkRTq6aM3CChcA1DbsVznaOwv/+Ihxc2czRNYyMzIi6uYYRXZl3SRYUHYDgaBhwFQy+HmI6N+rSS7bnYHOodIsPo3NcmIcCFqL1iQ4JJKu4ksJyKykxaOtmynO1lga2Su2kMOnLJE5syqB2zFt5gB82HOGW0V1ITThJI+fh0wFVG/1rP8xrMdaHJDOiNks5bPpCqw8z+kFt8S7AoOu0ipBpkyEguEm3cBXKk15MQjRNVEgAWcWV1f2ZOo+B2G5aS4Psjdqx0Np9mSSZETX1T4liTPc4ftt+lHs+W89X00cQYDzJSPvw22p/b62EAP3XPUoyIzR5u7UqvRlzobJIO7Z2TnUyE5EEA6Y2+TaVVjtLtmu7LWS9jBBN41oEXFBXS4O2A7VeTXYtiSmWJpOiDoqi8PzFfZnwf7+zMbOI13/bxYxxqfV7cmURfHgRdJugvfnVkayZac1UFbbN1/4xvjoQVryu/eOM7gjjn4GL/uvxW/65K5cyi52kyCD6tI30+PWFaE1ci4Br9l1yUxR3K4Oa58jIjDhWQkQQz1yYBsBri3ex8VBR/Z64fQFkroWNn0NVSTNGeGoyMtOaKQr8/gIcTgcUSD1bayzWZWyDFvTWh6qqLN+dx8sLdwDawl/Fh1bCC+GP3CMzZTWSGYcDbBUQWLsImiQz4mTO75vEz5uy+HHjEe7+LIPv7zj91M1/+10G9iptZMZ8krU2XiDJTGs34h9wJENb0Bvd0eOXdzhUFm3N5o3fdrHeme0HBRi4fGh7j99LiNYmylU4r8I5zbTpK/jqJq3ydrvBWlHLITdije1BuUVrJSLJjKiLoig8c2EaK/fmszOnlFmLdvDwuT1P/cSB1zR/cPUgyUxrs/ItrVfSyDvBZNYW9KZN9vhtrHYH368/zJtLdrMzRyvcZTYZuGJoe246szNto5q2iFgIAVHB1YXzAAhytjQoOwqbv4G8ndD7wlrTUOHSB02cQExoIM9P7sON/1vD28v2ML5XAkM6nrpumC+QZKY1KcqEX5/SqoJGd9Q6WHtYpdXO52sO8t/f93CooAKAcLOJa0Z0YNrITsSGmT1+TyFaK9eaGfcCYFcV4NIcbfjfecyVzIQHmTAaZHpXnNi4XglMGdSOz9ce4p7P1vPTnWcQavb9VMH3IxSe8/PDWiLTbiikXeLRS5dUWpm74gDv/rGX3FLtl2hsWCDXn96Jq4Z1kK7YQjSDmi0NgLr7M4XFU5Qr62VE/T1+fi+W787jQH45M+dv5Z8X9dE7pFOSZKa12PULbPkGFAOcN8tjC3zzSqt4/899fPDXPkoqbQC0jQrm5lGduXRwyqkXkAkhGi3q2GaTIbGAAjiLXhpMEBRFUXkuIMmMqJ/woABevKQvV76zko9WHmBC70RGpcbpHdZJSTLTGlgrYf592ten3QKJTc+yDxdW8Nbve/hk9QEqrQ4AusSFMn10V/7WP/nkRZeEEB4R7RqZca2JMZq07djlWrsQQuPAYJCdTKLBRnSN5boRHZmzfB8PfLGBn2ecSaQP1yiSZKY1WP4K5O+BsEQY/VCDn66qKtnFVezMKWFndikZBwv5adMRrHbt3V/fdpFMH92VCb0SMMh8vBBe43pxKaqwYneo2nqY0PjayQyyLVs0zgPn9GDpjqPszS3jqe83M+uy/nqHdEKSzLR0VaXw12va12f/U9vtcAKqqnKkqJId2SXsyillZ3aplsDklLqnkGoa3rkN08d04fSusVIzRggdRAVr00yqqlX4jQ4NhC5j4OhW7YQwaWUgGi840MhLU/ox5T/L+So9kwm9EzknzTcrt0sy09KZw+DvSyBjHqRdDGhJy6GCCi1hySlhR3YpO3NK2ZVdQpmzFsWxjAaFDm1CSI0Pp2t8GGf1jGdg+2gv/iBCiGMFmgyEmU2UVtkodCUz5zwHZ8/USjDYtLU0ksyIxhrUIZqbR3XhzSW7eeTrjQzuGO2Tu1IlmWkNYjrDWY8CWv2X6R+tY9GW7DpPNRkUOsWG0i0hjK7x4XSLDyM1IZyOsSGYTbKYVwhfExkcQGmVjYJyC51wVv1VFK3DvZMrmYmQZEY0woxx3fhtWw7bskp4+KuN/PfqQT43Gi/JTEtlKYOcrVoVUCdVVXnwy40s2pKN0aDQNS6Mrglh7oSlW3wYHdqEEmiSxbtC+Ivo0AAyCysoKj+mpYG1XBuZpTqZkSaTojHMJiOzLu3PBa//wcIt2Xydnsnkge30DqsWSWZaqqUvwJ+zYdQDMOZhAP7vl518ue4QRoPCO9cMZkyPeH1jFEI0mWvdjLtw3qYv4Yvrta9v+RMS02SaSTRZr+QI7hzbjZcW7uCJ7zYzrHMbkn2okru8BW+JcrZVL/pNHgjAZ6sP8sqvOwF45oI0SWSEaCGOK5xnrtGN3lk8r1iSGeEBt4zqQr+UKEoqbTzw5QZUVdU7JDdJZloaVYX592r9WbpPgu7nsHTHUR76eiMAt43pwpWnSZNHIVqK6mTGOTITVqO4WajsZhKeYzIaeHlKP8wmA8t25jJ35QG9Q3KTZKal2fg57FsGpmCY+DybDxcxfe5a7A6Viwa05d4J3fWOUAjhQdX9mZwjMyFtqh8MjQUkmRGe0zU+jAfO6QHAzB+3sj+vTOeINJLMtCQVhfDzI9rXo+4jkzimvb+aMoud4Z3b8K+L+/rcCnQhRNO4Wxq4qgCHJ0NCH0jsC6HxWO0Oyp0lFySZEZ5w3YiODOscQ4XVzj2frcfu0H+6SZKZluS3f2pz5LGpFA24hWnvryKnpIrUhDD+c/Ug2aUkRAsUFXzMNJPBADcvhb8vrdXKALSeO0I0lcGg8OIl/QgNNLJmfwHvLNujd0iSzLQoyQMgpA2Ws1/g5nkb2JFdSkKEmTnThso7MiFaqOjQYxYAAxiM7mayrmQmPMiktTsQwgNSYkJ47LxeALy8cAc7skt0jUeSmZak/5Wod27g/rVRrNiTT2igkfeuG+JT2+eEEJ4VeezW7GO4khx5QyM87bIhKZzVIx6L3cELC7bpGoskMy1Bje1xL/52iG8yDmM0KLx51SB6J0ee5IlCCH8XfezW7GPItmzRXBRF4fnJfZh6WntentJf11gkmfF3Zbnw5kjY/DUfrdjHG0t2A/Dc5D6cmRp3iicLIfydazdTaZUNq91x3OOyk0k0p/iIIP55UR93B3e9SDLj7xY9ATmbKVn0PE9+uwGAO8d249LBKToHJoTwhojgAFybFOsanZFkRrQGksz4swMrIGMuAH/Pm4pVNXLJoHbMGNdN58CEEN5iNChEOHcpFVUcv25G+jKJ1kCSGX9lt8EPdwPwtTKOv6xdOKNbLM9N7iO1ZIRoZVyJSsFJRmakY7ZoySSZ8Ver/gs5mylSwnmqYgo9kyJ4Y+pAAozyVypEa+MqnFdQduKRGZlmEi2ZvPL5o+LDqL/NBOCflssJjozj/euGSEEsIVop946mClkzI1onk94BiIZzbP0Rg6WUtY5uLDCN5bNpQ0iMDNI7LCGETo6rAlyDJDOiNZBkxg+9XXkWKy33ckhJ4j/ThtAjMULvkIQQOnL3Z6pjzYzUmRGtgSQzfmbL4WJeWrgdq2MgMy/qw4iusXqHJITQWX0WAEsyI1oySWb8haUc2/z7mblnDFZ7EON7JXDFUKklI4SoLpx3sq3ZksyIlkwWAPuLRY9jyviQxwsfIy7UJFuwhRBu7pGZstojM1a7g3KLHZBkRrRsksz4g+0LYPXbADxju5rnLu5PbJhZ56CEEL7CvTX7mAXARTV2N8luR9GSSTLj60pzcHx7GwDv2ibSbvAkxvVK0DkoIYQvcW3NLjpma7ZrQXB4kAmjQUZyRcsla2Z8marCN9MxlOey1ZHCx+HT+HZSL72jEkL4mKjgk4/MyBSTaOlkZMaXrXobdi2iSg3gLtvt/OvyIYSaJf8UQtQWFaolK5VWB5VWu/u4bMsWrYUkM77KYce6TmsiOdN2JeNGjWFQhxidgxJC+KJwc/U0Us1aM9JkUrQW8jbfR6mKgVsD/kmi9UvS4yfz9VjphC2EqJuiKEQFB5BXZqGg3OKuCC7TTKK1kGTGR81deYBfdhUTaDqbHy8fQKBJBtGEECcWFaIlM3WNzEgyI1o6SWZ8ze7F5O9cyXN/9gXgwXN60C0hXOeghBC+TtueXVarP5MrmYmQZEa0cJLM+JKyPNSvbyWmNIsrHFexrevVXDeio95RCSH8QF2ds2VkRrQWksz4ClWF7+5AKc1ilyOZ7wPO5tsp/TBIbQghRD1E1rE9W5IZ0VrIQgxfse4D2P4jFtXIndbbeeTCQSRFBusdlRDCT7hHZmTNjGiFJJnxBbk7URc8BMCLtsvo3HcEF/Rvq3NQQgh/Eh2qjczUXDMjdWZEayHTTHqzWeDLG1Gs5fxp780PIZP56YLeekclhPAzroSlQEZmRCskIzN6O7wOR/ZmCtVQ7rbeyguX9nc3jRNCiPqKdv7eKJJkRrRCMjKjs4I2A7nN8DymyhwmjhjIGd3i9A5JCOGHXFV+XQuALTYH5RattYEkM6Klk2RGR6qq8sg3G1lemkSXuK68NbGH3iEJIfxU1DFbs2t20A4PkmRGtGySzOihJBsWP8OS8EnM3+jAZFCYfdkAggKMekcmhPBTrunpwnILqqq6k5nwoOq+TUK0VJLMeJPDDmveg1+fgaoiTlM/ow2zmTZuCH3aReodnRDCj7m2ZlvtKmUWuzSZFK2KJDPecmgt/HgXHFkPwA5jN+4pv5YO7Ttwy6guOgcnhPB3wQFGAk0GLDYHheUW2ZYtWhVJZppbRQH8+jSseR9QqTCGMbNyCh9VjiUsKJDvLu2PySibyoQQTePqnJ1TUkVhuVV2MolWRZKZ5nY4XZtaAn5QzuTJsivIJZLz+yXzyLk9SYwM0jlAIURLER0SKMmMaJUkmWkOlcUQFAHARvMgtgdP4fPCHqxUe9ItPoxXLujNiC6xOgcphGhpImtsz5ZkRrQmksx4UlUpLP0XpH9I0XVLeWF5MfNWHUBVLyI00Mgj41K5bmRHAmRaSQjRDKr7M1UnMxGSzIhWQJIZT1BV2Po9LHgQijMBePs/L/NRxdkAXNA/mYfP7UlChEwpCSGaT7R7e7ZMM4nWxS+GCN544w06depEUFAQgwYNYtmyZXqHVC1/D3w0BT67GoozyTIkMM1yH69VnE33hHA++fsw/n35AElkhBDNrnqaSZIZ0br4/MjMp59+yowZM3jjjTcYOXIk//3vf5k4cSJbtmyhffv2+ga37GVY8i+wV2FTAnjTOonXbRdgMofy2PhUrhneQaaUhBBe4x6ZqZA1M6J18flX2lmzZnHDDTdw44030rNnT2bPnk1KSgpvvvmm3qHhKC8AexUr6MOEyud42XYpEwd0ZvE9o7jh9E6SyAghvCoq2LVmxip1ZkSr4tMjMxaLhbVr1/Lggw/WOj5hwgSWL19e53Oqqqqoqqpyf19cXNwssaUfKGDm9lHEWgz85BhKj8QIPrsgjaGdYprlfkIIcSqulgaym0m0Nj6dzOTm5mK320lISKh1PCEhgaysrDqf89xzz/HUU081e2zfZhxm9WEL4eaRPDEhlauHdZDid0IIXbl2MxXJmhnRyvh0MuOiKLWbpKmqetwxl4ceeoi7777b/X1xcTEpKSkej+nuCamoqsrtZ3UjLtzs8esLIURDuUZmjpZUUW6xA5LMiNbBp5OZ2NhYjEbjcaMwOTk5x43WuJjNZszm5k8uIoICeOqCtGa/jxBC1JdrZKakygaAokB4kCQzouXz6XmRwMBABg0axKJFi2odX7RoESNGjNApKiGE8E2Rx3TIDjebMBrqHsUWoiXx6ZEZgLvvvpurr76awYMHM3z4cN566y0OHDjALbfcondoQgjhU8wmIyGBxuopphAZlRGtg88nM5dddhl5eXk8/fTTHDlyhLS0NObPn0+HDh30Dk0IIXxOdEgg5ZYKQNbLiNbD55MZgOnTpzN9+nS9wxBCCJ8XGRxAZqEkM6J18ek1M0IIIRomOrQ6gZFkRrQWkswIIUQLEhUc6P5akhnRWkgyI4QQLUhUjUW/EZLMiFZCkhkhhGhBaiYzMjIjWgtJZoQQogVxdc4GSWZE6yHJjBBCtCBRksyIVkiSGSGEaEGigmWaSbQ+kswIIUQLIluzRWskyYwQQrQgkTW2Ztfcpi1ESybJjBBCtCDRsptJtEJ+0c5ACCFE/cSEBjK2RzyKAhHB8itetA7yL10IIVoQRVF497oheochhFfJNJMQQggh/JokM0IIIYTwa5LMCCGEEMKvSTIjhBBCCL8myYwQQggh/JokM0IIIYTwa5LMCCGEEMKvSTIjhBBCCL8myYwQQggh/JokM0IIIYTwa5LMCCGEEMKvSTIjhBBCCL8myYwQQggh/JokM0IIIYTwaya9A2huqqoCUFxcrHMkQgghhKgv1+u263X8ZFp8MlNSUgJASkqKzpEIIYQQoqFKSkqIjIw86TmKWp+Ux485HA4OHz5MeHg4iqLoHY5bcXExKSkpHDx4kIiICL3D8ZrW+nND6/3Z5eeWn7s1kJ/b8z+3qqqUlJSQnJyMwXDyVTEtfmTGYDDQrl07vcM4oYiIiFb1D9+ltf7c0Hp/dvm5Wxf5uVuX5vq5TzUi4yILgIUQQgjh1ySZEUIIIYRfk2RGJ2azmSeeeAKz2ax3KF7VWn9uaL0/u/zc8nO3BvJz6/tzt/gFwEIIIYRo2WRkRgghhBB+TZIZIYQQQvg1SWaEEEII4dckmRFCCCGEX5Nkxsuee+45hgwZQnh4OPHx8Vx44YVs375d77Ca3Ztvvknfvn3dhZWGDx/OTz/9pHdYXvfcc8+hKAozZszQO5Rm9eSTT6IoSq2PxMREvcPyiszMTK666iratGlDSEgI/fv3Z+3atXqH1ew6dux43N+5oijcdttteofWrGw2G48++iidOnUiODiYzp078/TTT+NwOPQOrdmVlJQwY8YMOnToQHBwMCNGjGD16tW6xNLiKwD7mqVLl3LbbbcxZMgQbDYbjzzyCBMmTGDLli2EhobqHV6zadeuHc8//zxdu3YF4IMPPuCCCy4gPT2d3r176xydd6xevZq33nqLvn376h2KV/Tu3ZtffvnF/b3RaNQxGu8oKChg5MiRjBkzhp9++on4+Hh2795NVFSU3qE1u9WrV2O3293fb9q0ifHjxzNlyhQdo2p+//rXv/jPf/7DBx98QO/evVmzZg3Tpk0jMjKSO++8U+/wmtWNN97Ipk2b+PDDD0lOTmbu3LmMGzeOLVu20LZtW+8Gowpd5eTkqIC6dOlSvUPxuujoaPWdd97ROwyvKCkpUbt166YuWrRIHTVqlHrnnXfqHVKzeuKJJ9R+/frpHYbXPfDAA+rpp5+udxg+4c4771S7dOmiOhwOvUNpVpMmTVKvv/76WscmT56sXnXVVTpF5B3l5eWq0WhUf/jhh1rH+/Xrpz7yyCNej0emmXRWVFQEQExMjM6ReI/dbueTTz6hrKyM4cOH6x2OV9x2221MmjSJcePG6R2K1+zcuZPk5GQ6derE5Zdfzp49e/QOqdl99913DB48mClTphAfH8+AAQN4++239Q7L6ywWC3PnzuX666/3qQa/zeH000/n119/ZceOHQCsX7+eP/74g3PPPVfnyJqXzWbDbrcTFBRU63hwcDB//PGH9wPyevok3BwOh3r++ee3mndyGzZsUENDQ1Wj0ahGRkaqP/74o94hecXHH3+spqWlqRUVFaqqqq1iZGb+/PnqF198oW7YsME9GpWQkKDm5ubqHVqzMpvNqtlsVh966CF13bp16n/+8x81KChI/eCDD/QOzas+/fRT1Wg0qpmZmXqH0uwcDof64IMPqoqiqCaTSVUURZ05c6beYXnF8OHD1VGjRqmZmZmqzWZTP/zwQ1VRFDU1NdXrsUgyo6Pp06erHTp0UA8ePKh3KF5RVVWl7ty5U129erX64IMPqrGxsermzZv1DqtZHThwQI2Pj1czMjLcx1pDMnOs0tJSNSEhQX355Zf1DqVZBQQEqMOHD6917I477lCHDRumU0T6mDBhgnreeefpHYZXfPzxx2q7du3Ujz/+WN2wYYP6v//9T42JiVHnzJmjd2jNbteuXeqZZ56pAqrRaFSHDBmiTp06Ve3Zs6fXY5FkRie333672q5dO3XPnj16h6KbsWPHqn//+9/1DqNZff311+7/6K4PQFUURTUajarNZtM7RK8ZN26cesstt+gdRrNq3769esMNN9Q69sYbb6jJyck6ReR9+/btUw0Gg/rNN9/oHYpXtGvXTn3ttddqHXvmmWfU7t276xSR95WWlqqHDx9WVVVVL730UvXcc8/1egyym8nLVFXljjvu4Ouvv/7/9u41JKqtDwP4M2dOY+p4xjKveRnN1CwpKQi7UDCWaSoimUjk6GRURDfS7H6BigosLeiDgduQwkKQsESNakrKpotBEZIZWFATGk2oSYq63g8vDe+crI41zn7n+PxgPuw1a6/9jF/8s/Zae8NoNCI0NFTuSLIRQqCvr0/uGKNKp9Ph2bNnNm25ubmIiopCYWHhmNjhAwB9fX1oaWnBwoUL5Y4yqubPn//NoxZaW1sREhIiUyLHkyQJPj4+WL58udxRHKK3txd//GG7/FSpVI6Jrdlfubu7w93dHRaLBfX19Thx4oTDM7CYcbCNGzfi4sWLuHLlCjw8PPD+/XsAgEajgaurq8zpRs/u3buRmJiIoKAgdHd3o7KyEkajEXV1dXJHG1UeHh6YMWOGTZu7uzu8vLy+af83yc/PR0pKCoKDg9HR0YHDhw+jq6sLer1e7mijatu2bZg3bx6OHj2KlStX4sGDBygtLUVpaanc0RxiaGgIkiRBr9fjzz/Hxr+XlJQUHDlyBMHBwZg+fTqePHmCkydPwmAwyB1t1NXX10MIgcjISLS1taGgoACRkZHIzc11fBiHzwWNcQCG/UiSJHe0UWUwGERISIhQqVTC29tb6HQ60dDQIHcsWYyFNTOZmZnC399fjBs3TgQEBIj09PR//fqor2pqasSMGTOEi4uLiIqKEqWlpXJHcpj6+noBQLx48ULuKA7T1dUltmzZIoKDg8X48eNFWFiY2LNnj+jr65M72qi7dOmSCAsLEyqVSvj5+YmNGzeKT58+yZJFIYQQji+hiIiIiOyDz5khIiIip8ZihoiIiJwaixkiIiJyaixmiIiIyKmxmCEiIiKnxmKGiIiInBqLGSIiInJqLGaI6JcYjUYoFAp8+vTJ4ddWKBRQKBTw9PT8Yb+DBw9i1qxZDsn09XpfsxUXFzvsukRjHYsZIvqpxYsXY+vWrTZt8+bNg9lshkajkSWTJElobW2V5drfk5+fD7PZjMDAQLmjEI0pY+PlGURkdyqVCn5+frJd39PTEz4+PrJdfzhqtRpqtXrMvECU6P8FZ2aI6IdycnJw+/ZtlJSUWG+htLe3f3Obqby8HJ6enrh69SoiIyPh5uaGFStW4PPnzzh//jy0Wi0mTJiATZs2YXBw0Dp+f38/duzYgcmTJ8Pd3R1z586F0Wj8pazHjh2Dr68vPDw8sGbNGnz58sXm+4cPH2LJkiWYNGkSNBoNFi1ahObmZuv3BoMBycnJNucMDAzAz88PZWVlAICqqirExMTA1dUVXl5eiI+Px+fPn38pLxHZB4sZIvqhkpISxMXFYe3atTCbzTCbzQgKChq2b29vL06fPo3KykrU1dXBaDQiPT0dtbW1qK2tRUVFBUpLS1FVVWU9Jzc3F3fv3kVlZSWePn2KjIwMLFu2DC9fvhxRzsuXL+PAgQM4cuQIHj16BH9/f5w9e9amT3d3N/R6PRobG3H//n1MnToVSUlJ6O7uBgDk5eWhrq4OZrPZek5tbS16enqwcuVKmM1mZGVlwWAwoKWlxfr7+Io7IpnJ8npLInIqw73p+9atWwKAsFgsQgghJEkSAERbW5u1z7p164Sbm5vo7u62tiUkJIh169YJIYRoa2sTCoVCvH371mZsnU4ndu3a9d08AER1dbVNW1xcnFi/fr1N29y5c8XMmTO/O87AwIDw8PAQNTU11rbo6Ghx/Phx63FaWprIyckRQgjx+PFjAUC0t7d/d0whhAgJCRGnTp36YR8ish/OzBCR3bi5uWHKlCnWY19fX2i1WqjVapu2jo4OAEBzczOEEIiIiLCuN1Gr1bh9+zZevXo1omu3tLQgLi7Opu3vxx0dHVi/fj0iIiKg0Wig0WjQ09ODN2/eWPvk5eVBkiRr/2vXrsFgMAAAZs6cCZ1Oh5iYGGRkZODcuXOwWCwjyklE9scFwERkN+PGjbM5VigUw7YNDQ0BAIaGhqBUKvH48eNvFs3+bwFkLzk5Oejs7ERxcTFCQkLg4uKCuLg49Pf3W/tkZ2dj586daGpqQlNTE7RaLRYuXAgAUCqVuH79Ou7du4eGhgacOXMGe/bsgclkQmhoqN3zEtE/w5kZIvoplUpls2jXXmJjYzE4OIiOjg6Eh4fbfEa6U2ratGm4f/++TdvfjxsbG7F582YkJSVh+vTpcHFxwYcPH2z6eHl5IS0tDZIkQZIk5Obm2nyvUCgwf/58HDp0CE+ePIFKpUJ1dfWIshKRfXFmhoh+SqvVwmQyob29HWq1GhMnTrTLuBEREVi1ahWys7NRVFSE2NhYfPjwATdv3kRMTAySkpL+8VhbtmyBXq/HnDlzsGDBAly4cAHPnz9HWFiYtU94eDgqKiowZ84cdHV1oaCgAK6urt+MlZeXh+TkZAwODkKv11vbTSYTbty4gaVLl8LHxwcmkwmdnZ2YNm3a7/0hiOi3cGaGiH4qPz8fSqUS0dHR8Pb2tllj8rskSUJ2dja2b9+OyMhIpKamwmQyfXfH1PdkZmZi//79KCwsxOzZs/H69Wts2LDBpk9ZWRksFgtiY2OxevVqbN68edhn1cTHx8Pf3x8JCQkICAiwtv/111+4c+cOkpKSEBERgb1796KoqAiJiYm/9uOJyC4UQnBPIRE5F4VCgerqaqSlpY3K+L29vQgICEBZWRnS09NHfL5Wq8XWrVu/eWoyEY0OzswQkVPKysqy+2sDhoaG8O7dO+zbtw8ajQapqakjOv/o0aNQq9V2nbkiop/jzAwROZ22tjYA/91dZM9dRO3t7QgNDUVgYCDKy8uh0+lGdP7Hjx/x8eNHAIC3t7ds760iGmtYzBAREZFT420mIiIicmosZoiIiMipsZghIiIip8ZihoiIiJwaixkiIiJyaixmiIiIyKmxmCEiIiKnxmKGiIiInBqLGSIiInJq/wGJiTYPYHdcOAAAAABJRU5ErkJggg==", + "text/plain": [ + "<Figure size 640x480 with 1 Axes>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjUAAAHFCAYAAAAKbwgcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAACrVklEQVR4nOzdd3hb1fnA8e+VLMt778Sxs5ezE3aAQAKEPQqUsgu0UFaYLVAoLfwYLW0pFCgzrELZewbCCJAA2Xs6jp147ylr3d8fR1e2E8fxkCzJfj/P48eOLF2dLOvVOe/QdF3XEUIIIYQIcaZAL0AIIYQQwhckqBFCCCHEgCBBjRBCCCEGBAlqhBBCCDEgSFAjhBBCiAFBghohhBBCDAgS1AghhBBiQJCgRgghhBADggQ1QgghhBgQJKgRQvjM888/j6Zp3o+IiAgyMjKYM2cO999/P+Xl5R3uf/fdd6NpGpWVlZ1e78wzz0TTNK655ppOv//11193eD5N00hMTOTggw/mhRde8PnvTwgR3CSoEUL43MKFC1m6dCmLFi3iscceY+rUqTz44IOMHz+eL774olvXKC8v58MPPwTgv//9Lzabbb/3ve+++1i6dClLly7lpZdeIicnh0suuYRHH33UJ78fIURokKBGCOFzeXl5HHLIIcyePZuzzjqLf/7zn6xdu5bo6GjOPPNMysrKDniNF198EYfDwUknnURtbS1vv/32fu87evRoDjnkEA455BBOPvlk/ve//5Gbm8urr77a5XPouk5LS0uPf39CiOAkQY0Qol8MGzaMv//97zQ0NPDkk08e8P7PPfcc6enpvPDCC0RGRvLcc891+7lMJhMxMTFYLJYOtxtHWf/5z38YP348VqvVe0y1bds2fvWrX5GWlobVamX8+PE89thjHR7vdru59957GTt2LJGRkSQkJDB58mT+9a9/dXttQgj/CQv0AoQQg8eJJ56I2Wzm22+/7fJ+P/zwA5s2beKWW24hOTmZs846i//+97/s3LmT4cOH73N/t9uN0+kEoKqqioULF7J+/Xqeeuqpfe777rvvsmTJEu666y4yMjJIS0tj48aNHHbYYd7AKyMjg88++4zrrruOyspK/vSnPwHw17/+lbvvvps//vGPHHnkkTgcDjZv3kxtbW3f/3CEEH0mQY0Qot9ER0eTkpJCcXFxl/d79tlnAfj1r38NwGWXXcbLL7/MwoUL+ctf/rLP/c8999wOvzaZTNxxxx1cccUV+9y3sbGRdevWkZiY6L3thBNOIDY2lu+++464uDgA5s2bR2trKw888ADXXXcdiYmJfP/990yaNIm7777b+9jjjz++e795IYTfyfGTEKJf6bre5fcbGxt5/fXXOeywwxg3bhwARx11FCNHjuT555/H7Xbv85gHH3yQn3/+mZ9//plFixZx66238sADD3DLLbfsc99jjjmmQ0Bjs9n48ssvOeOMM4iKisLpdHo/TjzxRGw2G8uWLQPgoIMOYs2aNfzud7/js88+o76+vi9/FEIIH5OgRgjRb5qamqiqqiIrK2u/93nttddobGzknHPOoba2ltraWurq6jjnnHMoKipi0aJF+zxmxIgRzJw5k5kzZzJ37lzuv/9+Lr/8cv7+97+zefPmDvfNzMzs8OuqqiqcTiePPvooFoulw8eJJ54I4C05v+2223jooYdYtmwZ8+fPJzk5mWOPPZbly5f39Y9GCOEDcvwkhOg3H330ES6Xi6OPPnq/9zGOnhYsWMCCBQs6/X53jnwmT56MruusXbvWu+MDKlm4vcTERMxmMxdeeCFXX311p9cy8njCwsK48cYbufHGG6mtreWLL77g9ttv5/jjj6eoqIioqKgDrksI4T8S1Agh+kVhYSE333wz8fHx/Pa3v+30Pps2bWLp0qWcddZZnTbcu/fee3nvvfeoqqoiOTm5y+dbvXo1AGlpaV3eLyoqijlz5rBq1SomT55MeHh4t34/CQkJ/OIXv2DPnj0sWLCAgoICJkyY0K3HCiH8Q4IaIYTPrV+/3puXUl5ezpIlS1i4cCFms5l33nmH1NTUTh9n7NLceuutHHTQQft8v6GhgS+//JKXX36Z66+/3nv7tm3bvHkvdXV1fPHFFzz77LPMnDmT2bNnH3C9//rXvzjiiCOYPXs2V111Fbm5uTQ0NLB9+3Y++OADFi9eDMApp5xCXl4eM2fOJDU1lV27dvHwww+Tk5PD6NGje/znJITwLQlqhBA+d+mllwIQHh5OQkIC48eP5/e//z2XX375fgMah8PBSy+9xNSpUzsNaECVhA8dOpRnn322Q1Bz++23e7+Ojo4mJyeHO++8kxtvvBGz2XzA9U6YMIGVK1dyzz338Mc//pHy8nISEhIYPXq0N68GYM6cObz11ls888wz1NfXk5GRwbx587jzzjv36YkjhOh/mn6gUgQhhBBCiBAg1U9CCCGEGBAkqBFCCCHEgCBBjRBCCCEGBAlqhBBCCDEgSFAjhBBCiAFBghohhBBCDAiDqk+N2+2muLiY2NjYfVqlCyGEECI46bpOQ0MDWVlZmEz7348ZVEFNcXEx2dnZgV6GEEIIIXqhqKiIoUOH7vf7gyqoiY2NBdQfSlxcXIBXI4QQQojuqK+vJzs72/s6vj+DKqgxjpzi4uIkqBFCCCFCzIFSRyRRWAghhBADggQ1QgghhBgQJKgRQgghxIAgQY0QQgghBgQJaoQQQggxIEhQI4QQQogBQYIaIYQQQgwIEtQIIYQQYkCQoEYIIYQQA4IENUIIIYQYECSoEUIIIcSAIEGNEEIIIQYECWqCgM3hwuXWA70MIYQQIqRJUBNgtc12DntgMZcs/CnQSxFCCCFCWligFzDY/bx1Ny86bmZdwSh0/c0DjlUXQgghROckqAmwwvzNzDMVkEcBtc12EqKtgV6SEEIIEZJC6vhpz549XHDBBSQnJxMVFcXUqVNZsWJFoJfVJ99VxXq/rqwqD+BKhBBCiNAWMjs1NTU1HH744cyZM4dPPvmEtLQ0duzYQUJCQqCX1mu6rrNiTzM1egyJWiMN5YUwLDvQyxJCCCFCUsgENQ8++CDZ2dksXLjQe1tubm7gFuQDBVXNHG3/ljhLEwDNVUUBXpEQQggRukLm+On9999n5syZnH322aSlpTFt2jSefvrpLh/T2tpKfX19h49gsnXbVh4J/zdmTZVzO2v2BHhFQgghROgKmaAmPz+fJ554gtGjR/PZZ59x5ZVXct111/Hiiy/u9zH3338/8fHx3o/s7OA62qnZ3rGMW68vDdBKhBBCiNAXMkGN2+1m+vTp3HfffUybNo3f/va3XHHFFTzxxBP7fcxtt91GXV2d96OoKLiOd8ylqzr8OqxZghohhBCit0ImpyYzM5MJEyZ0uG38+PG89dZb+32M1WrFag3OEmmny01a4ybQYE36mTxeNIzo8DyOCPTChBBCiBAVMkHN4YcfzpYtWzrctnXrVnJycgK0or7ZVtZAHjsA0Keez2e7WhnZEh3gVQkhhBChK2SOn2644QaWLVvGfffdx/bt23nllVd46qmnuPrqqwO9tF7Zvm0TyVoDTszEDJsCQEVDa4BXJYQQQoSukAlqZs2axTvvvMOrr75KXl4e99xzDw8//DDnn39+oJfWK/X5PwNQGTWS1PgYTjQt4yzHB9hstgCvTAghhAhNIXP8BHDyySdz8sknB3oZPvF+/Si+sN/C1YcOZ0ZUOP+yPIZFc1Fcdj1ZOaMDvTwhhBAi5ITMTs1AYnO4WFGm85V7GhkHnYFmMlOlJQJQX14Y4NUJIYQQoUmCmgDYVFKP062THB3OkIRIAGrDUgBoqdodyKUJIYQQIUuCmgDYvn0LN4a9zvnJW9A0DYAmayoAjlrpKiyEEEL0hgQ1AdCy43uuC3uX85pf9d7WGpmuvmgoCdCqhBBCiNAmQU0ARJSvBcCVOcV7mzsmA4CwJukqLIQQQvSGBDX9rMHmIKd1MwDxIw/23m6OzwIg0lYekHUJIYQQoU6Cmn62rqiaiVoBALEjDvLe7sw+gt/ab+Bx6+UBWpkQQggR2iSo6WeF29YSo9lo1SIgZYz39viMHD5zz+KnlswArk4IIYQIXRLU9DPbruUAVMeNA5PZe3tqrBq8Wdlox+3WA7I2IYQQIpSFVEfhgcBauREAPXN6h9tTYqwcZ17OUCqoqcgjOX1YIJYnhBBChCwJavpRVWMrtzedw9Pakbx39JwO37OYTfzB8joj2M2uwhMlqBFCCCF6SI6f+tHa3XXomCBlNLEZo/b5vnQVFkIIIXpPgpp+tGZ3LQBThiZ0+v2mcKOrsAQ1QgghRE/J8VM/CtvyIY9YPifGciYwdZ/vt0amQTPoDdKATwghhOgp2anpJ7quk1G5lFPNS5mob+/0Pu4YVc5taZSgRgghhOgpCWr6SXGdjTGubQAkjj640/uYjK7CrWX9ti4hhBBioJCgpp+sLyhnnFYIQHj2jE7vE540FIBYe2W/rUsIIYQYKCSnpp+UbFtJuOai2RxHVEJOp/eJzBzHb+w3oMUP4cl+Xp8QQggR6iSo6Sfu3aqTcF1iHlGa1ul9kpOS+dw9i+gmc6ffF0IIIcT+yfFTP3C7dRJqNwAQtp+jJ4C0uAgAmuwumlqd/bI2IYQQYqCQnZp+sLOqiXB3C06TiaRRnScJA0SHm5lj2cgIdwG1BRlEj91/ACSEEEIEFYcNLBEBXYLs1PSDtbtrucZxHRemv4157HH7vZ+mafw6fBF3Wl7Gkf99P65QCCGE6KNHZ8BfR0LZhoAtQXZq+sGaojoAxmWnQZi1y/s2hadCCzhq9/TH0oQQQoi+c7ZC/R5Ah+i0gC1Ddmr6wdoDjEdorzUqXX3RUOy/BQkhhBC+VLML0CE8BqJTArYMCWr8zOFyc27pQ7wb/kcOdi4/4P2NrsJhTdKATwghRIio2ak+Jw6H/VT49gc5fvKzrWUNTGcLo017cMcdOIHK21XYVu7vpQkhhBC+Ue0JapJyA7oMCWr8bGNBMWdp6ijJNGTaAe9vTRwCQKy9wq/rEkIIIXxmxNFw4kMQPzSgy5Cgxs9qtv+ESdOpD08nLubAyVNRKdkAROuNYG+G8Ch/L1EIIYTom7Rx6iPAJKjxM61kNQDNqZOJ68b9k5OSudx+E/bIVF40h/t1bUIIIcRAIkGNH7XYXWQ0bgIzROXM6tZjUuMi+MI9A60ZnJjkL0gIIURwc7th3RuQNByGzABT4Eb9SPWTH20sqSNPywcgdkT3gprkaCsmDXQdqprs/lyeEEII0XcNxfDOb2DhfPXiFUCyEeBHa3dVkabnEGuGlKyp3XqM2aRxdNQuhts20LzFDLNO8O8ihRBCiL4wKp/is8Ec2LBCdmr8aE1xI1c7FvDfQz+CqKRuP+5Ey8/caXmZsG0f+3F1QgghhA8YPWqShgd2HUhQ41drd6vxCJOz43v0OHuk6iqs15f4fE1CCCGET1W3a7wXYBLU+Eldi4PayhJA79Z4hPZcRlfh5lLfL0wIIYTwpSDaqZGcGj9Zv6eO961/JFazEd/wKURP6vZjTfFZUASRLdJVWAghRJCTnZq+u//++9E0jQULFgR6KZ3amp/PUK2SWJogIadHj7Umqo6MsY5KVSonhBBCBCvZqembn3/+maeeeorJkycHein71ZT/MwB1UTkkRnSn7V6bmBQ1KiEMJ7RUB3TiqRBCCLFfug5nPat2a2SnpucaGxs5//zzefrpp0lMTAz0cvbLWrEWAGf61B4/NjUhhgrdEwjVF/twVUIIIYQPaRqMngcH/yYoxvqEXFBz9dVXc9JJJzF37txAL2W/KhpaybVvBSBu5EE9fnxqTATXOa7lLOf/oSeP8vXyhBBCiAEppI6f/ve//7Fy5Up+/vnnbt2/tbWV1tZW76/r6+v9tbQO1hbVMMWkOglbh83o8eNTY60sdU8EN9S7LPSsIFwIIYToJ4XLoLYIhkyH5JGBXk3o7NQUFRVx/fXX8/LLLxMREdGtx9x///3Ex8d7P7Kzs/28SmVH/nbStFrcmCCj53k/keFmYq0q3qxoaD3AvYUQQogAWfUSvH05rHsz0CsBQiioWbFiBeXl5cyYMYOwsDDCwsL45ptveOSRRwgLC8Plcu3zmNtuu426ujrvR1FRUb+sdWNJPf9xnsKOIaf1+oxxVnQZl5k/wrXuLR+vTgghhPCR6gL1OQgqnyCEjp+OPfZY1q1b1+G2Sy+9lHHjxvH73/8es3nfqaBWqxWr1dpfSwRA13W+LbXwrvM8Djnh8F5f5yDLDq60/JeyrYVw7MU+XKEQQgjhI9Uq1SIYKp8ghIKa2NhY8vLyOtwWHR1NcnLyPrcH0u6aFqqb7FjMGuMzY3t9HT0mE+ogrEm6CgshhAhCjhY1oRuCZqcmZI6fQsXaoloON61jZpqGNWzf3aPuMsVnARBpk67CQgghglDNLvU5PBaikgO7Fo+Q2anpzNdffx3oJexjV/4m/ht+P85aCziLISy8V9cJT1IN+KKcdeBshbD+PUYTQgghuuTtJJyr+tUEAdmp8bHWwhUA1MeN7nVAAxCfmEarblG/aJBp3UIIIYJMEM18MoT0Tk2wcbt1YqvXgwbakOl9ulZqXARlegLDtAqoL4HEXN8sUgghhPCFiWdA0giITAj0SrwkqPGh/MpGxrm3gxniRszq07XSYiMoJYlhVLQlYgkhhBDBIi5TfQQRCWp8aE1hDfNMajvO3NedmlgrNzsuBODN4ccgGTVCCCFE1ySo8aHdOzYQpzXj0MKxpI3v07USoyxsNo3E4dKpdEQwxEdrFEIIIfrM7YLv/qlSIyacBmZLoFcESKKwTzl3rwSgIWF8n/+CNU0jNUbtz8ioBCGEEEGlvhgW3wPvXAla8IQSwbOSEGd3unm/ehh/cFyOa9ZvfXLN8VF1XG7+COvKZ3xyPSGEEMInjHLuhGFg6n1PNl+ToMZHtpQ2sMuVxCfhx5Ny6K98cs0xEbX80fJfhm553ifXE0IIIXzCKOcOkk7CBglqfGTN7loAJg+NR/NREyItrl1XYV33yTWFEEKIPqsJvh41IEGNz+zK38IF5kXMTfTdrKYIT1fhMHcrtNT47LpCCCFEn8hOzcBm3f0991oWckrxIz67ZlJ8HDV6jPpFgwy2FEIIESRkp2bgarY7SW3YCIB12AyfXTct1kqpnqh+IQ34hBBCBANdh+oC9XW7nZrXfi7kue92UlTdHJh1IX1qfGJDcT2TtXwAoocf5LPrpsVFUKYnMZ4iNSpBCCGECAaXfa52a5JGeG96/oddbCqpZ1hSFNlJUQFZluzU+MDaXRVM0Dwj2LOm+ey6qe12avR62akRQggRBDQN0sbB2PkQpvqpOV1udpQ3AjA2IzZgS5Ogxgcq89dg1Ry0mmN8er6YEhPOU66TObn1XuomXeqz6wohhBC+VFDVjN3lJirczJCEyICtQ46ffCClfgMAzSmTsJp8Fydaw8xUR+aQ3+ygzBFJgs+uLIQQQvTSlk+hfAMMPxqGqjzSrWUNAIxOj8Vk8k1bk96QnRofuGxELQCxI32XT2NIi1Vbe+UNNp9fWwghhOixTe/Dl3+BHYu9N20pVUHN2PSYQK0KkJ0a35j3F8g7i7CYDJ9fOifawVHmD0n9+RsY/VefX18IIYTokU561GwrV0HNmPTA5dOABDW+EREPw4/0y6Uzos3cYXkFfasGrv8LmkmoQgghBqlOetR4d2oCmCQMcvwU9KIS0rDrZjR0aCwL9HKEEEIMZo4WaPC0GPHs1NgcLgqqVG+asQHeqZGgJsilxkVSjqcBn/SqEUIIEUg1BeqzNR4i1WtTfkUTLrdOQpSFVE8eaKBIUBPkUmOtlHm7CktQI4QQIoC8+TS5ql8NbZVPY9JjfTbQubckqAlyqR1GJUhQI4QQIoC8+TS53pu2eIOawFY+gSQKB7202Ai2GEGNdBUWQggRSDN/DSPmgNa2J7LVW84d2HwakKAm6KmdmiQAnHXF8hcmhBAicCyRkD6hw01byoKjnBskqAl6cRFhfKzN5rvWPJ485HSGBnpBQgghhEdjq5PdNS1AcAQ1klMT5DRNg7hMNujDKXMFZuqpEEIIgdsFHyyA7/4JDtXlfptnlyYt1kpidHgAF6dIUBMCUmM8oxLqWwO8EiGEEINW3W5YsRC+us/bCNaofAp00z2DBDUhID0mnCvMH5Kz/F5obQz0coQQQgxGRuVTQg6YzABsKVWvScFw9AQS1ISElLhIrg17hwm7Xob6PYFejhBCiMHIaLzXbuaTd6dGghrRXWmxVso8FVDSq0YIIURAVHcy88mofJLjJ9FdHRrwyagEIYQQgVDTcTp3TZOdigaV6zk6LfCN90CCmpCQFmelDGOnRhrwCSGECIC9dmqMo6fspEiircHRIUaCmhCQFhshOzVCCCECR9ehZpf6OqljUBMs+TQgzfdCQvuhlnpDCYEdFyaEEGLQ0TS4cYMKbJJGAMHVSdggQU0ISI4OpwwV1Dhri7EEeD1CCCEGIWssZOR5f7k1yMq5QY6fQkKY2cTWiKmc1HofO+Y9E+jlCCGEGOR0XQ/KnZqQCWruv/9+Zs2aRWxsLGlpaZx++uls2bIl0MvqN5FxyWzQcylxBs8/HiGEEIPE2tfhg+th2yIAyhtaqWtxYDZpjEiNDvDi2oRMUPPNN99w9dVXs2zZMhYtWoTT6eS4446jqakp0EvrF6mxalSCUT4nhBBC9Jsdi2HF81CyGoAtpWqXJjc5igiLOXDr2kvI5NR8+umnHX69cOFC0tLSWLFiBUceeWSAVtV/0mKtnGf+kjGrPoThN0PyyEAvSQghxGCxn3LuYJn5ZAiZoGZvdXV1ACQlJe33Pq2trbS2tu1s1NfX+31d/pIWa+U481dM3ZMPFSdLUCOEEKL/7NV4z9ipCaZ8Ggih46f2dF3nxhtv5IgjjiAvL2+/97v//vuJj4/3fmRnZ/fjKn0rNdZKubdXjTTgE0II0U/sTdBYpr7ee6dGgpq+u+aaa1i7di2vvvpql/e77bbbqKur834UFRX10wp9TzXgk/lPQggh+pkxyDIiHqKScLt1tpZ5yrnl+Klvrr32Wt5//32+/fZbhg4d2uV9rVYrVqu1n1bmX6mxVjYYOzUNpYFdjBBCiMFjr3ya3TUttDhchIeZyEmKCuDC9hUyQY2u61x77bW88847fP311wwfPvzADxpA2k/q1uuLpauwEEKI/mGkPOzVSXhUagxh5uA68AmZoObqq6/mlVde4b333iM2NpbSUrVbER8fT2RkZIBX53+psVZvV2F3fTHBU0AnhBBiQDv4NzDll+BoAYK38glCKKfmiSeeoK6ujqOPPprMzEzvx2uvvRbopfWLaGsY9WEp6hcy1FIIIUR/ioiD2HSgLagJtsonCKGdGl3XA72EgLPF5nBS9X385ey5zAj0YoQQQgxKRjn32IyYAK9kXyGzUyMgITaGDXouxTIqQQghRH9wOeHls+DDG8HehMPlJr9CdfIfnRZ8r0US1ISQ1DgZlSCEEKIf1RXB9i9g1csQFsmuqibsLjfR4WaGJARfPqsENSEkNcbKyaalTF53H+xaGujlCCGEGOiMTsKJOWAysaVU9acZnR6LyRR8dbgS1ISQtDgrx5pXMrPsddj9U6CXI4QQYqDbq0fNliDtJGyQoCaEpMa09aqRBnxCCCH8bq+ZT1uNmU9BWM4NEtSElLS4CEpl/pMQQoj+sr/p3LJTI/pKdRU2RiVIrxohhBB+Zsx9ShqOzeGioEpVPo0JwnJukKAmpKS2C2p02akRQgjhb6316nPicLaXN+LWITHKQmpMcM5VDJnmewKSosIp15LVLxpKQddBC77scyGEEH1QtQMShoHZEuiVwIJ1YKuD8Bi2rlYnBGPSY9GC9LVHdmpCiMmkoUenAqC5HdBcFeAVCSGE8KlVL8Oj02HJ3wO9kjYR8WAyt1U+BWmSMEhQE3KS4mI5ofUBvjl1KUQlB3o5QgghfOm9q9Xnr+8P7Do64a18CtIkYZCgJuSkxlrZrA+j2BkjR09CCDGQVO0I9Ao6+vkZNSJh7RsAbC1Tjfdkp0b4TFqsSs4qr5dRCUIIMaCse6Pt60OvAbcrcGsBKPpZjUioK6TB5mBPbQsAY4Jw5pNBEoVDTFqsldmmtcza/DZknAR5ZwZ6SUIIIfpK12Hta+rrM56CKecGdj3QbkTCcLaVq12a9Dgr8VFBkMC8H7JTE2JSY61M1bZzWOWbkP9VoJcjhBDCFzQNfvkKzL4Jxp0U6NUo1W3dhEMhnwYkqAk5qbERlGF0FZYGfEIIMWCkjYdj7wJrDDRXQ21R4NbS2ghN5errxOFBP/PJIEFNiFEN+Iz5TxLUCCHEgPPzs/DX4fDpHwK3BqOTcGQiRCZ4xyME68wngwQ1ISYt1uqd/6RLUCOEEKFv+5fwxqWQ/7X6tWd4JJVbA7ak9vk0AFtKPZVPslMjfCk11kqpZ6dGa64Cp1RBCSFESFv9X9jwNmz5VP06ZYz6XJ0PLkdg1tTaqJruJQ2nqrGVykb1WjM6PThnPhmk+inERFjM6BHxtOoWrJpDHUEl5gZ6WUIIIXrDVg+bP1JfTz5HfY7NAksUOJqhZhekjOr/dU09T3047WzdpY6ehiVFERUe3GGD7NSEoLS4SO8RlCQLCyFECNv8IThtkDwasqbhcLl5fcUenIkj1fcDeQQFEBbelk8T5EdPIEFNSEqNsXKR4w98fMJ3MOyQQC9HCCFEb619XX2efA5oGk9+s4Nb31rLBnu6uj3QQQ20m/kU3EdPIEFNSEqLs7JLz2CPPVpGJQghRKiqL4Gd36ivJ50NwIdr1e77RkeGur1yW/+vy+WAxw6Gl38BtvqQ6VEDEtSEpNQYz6iEBluAVyKEEKLX1r8FuhuyD4ak4eRXNLLZE0AsbhkNB/0Gxhzf/+uqK4KKzbDzW/Tw6JCYzm0I7owf0am0OCuTtR3M3v4mLJ0Fh/4u0EsSQgjRUzFpkDbRmyD8yfpS77cWNY+m/piriYsIwEgCo5NwYi6lDXYabE7CTBojUuT4SfhBaqyVHK2MI2vehk0fBHo5QgghemPyOfC7H2DGpQB8sr5j4ceuyuZArKqtR03ScO9k7uEp0YSHBX/IEPwrFPtIi43w9qqRrsJCCBHiTGaKqptZv6cekwYjU6MB2F1aCrtXQENZ/66nuq3xXijl04AENSEpLdZKqTH/qaFETXcVQggRGtxuWP+2anDnYezSHDw8mWnD1M/3Cd8vgGeOga2f9O/6jBEJSW0zn0IlqOl2Ts3atWt7fPEJEyYQFiZpO76WGmul3OhT47RBSw1EJQV2UUIIIbqnaBm8eSnEZMCNG8Fk9ubTnDgpg7oW1UW4QBtCDvR/BVT7nZqfQ6ecG3oQ1EydOhVN09C7uStgMpnYunUrI0aM6PXiROfiIy3o5giq9RiStEa1WyNBjRBiL+UNNs75z1JOnTqEG+eNCfRyhGHta+rzqLlgMlNS18Kqwlo0DY6fmMFPBdUAbHJkcBT0f1ATmQDWONwJuWwt2wEMwJ0agB9//JHU1NQD3k/XdfLy8nq9KNE1TdPUtO7mxLagJn1ioJclhAgy326tpKCqmWeX5HP1nJFYw8yBXpJwtsKGd9TXnqqnTz27NDNzEkmLiyA3WeXUrGpKVvfr7wZ8l34Muk5RVRM2xzbCw0zkeNYU7Lod1Bx11FGMGjWKhISEbt3/yCOPJDIysrfrEgeQGmulrCmJ8RTJqAQhRKd2VTUB0GR38dPOamaPPvCbUuFn2z4HW52a75R7BNBWyn1CXiYAOclRAKxsToMIoHYXOGxgiei/dWoaWzyVT6PTYjCbQqPRa7cThb/66qtuBzQAH3/8MZmZmb1Zk+iG1Fgrf3BczuvHfAPTLgj0coQQQWhXVVtJ8JebygO4EuFlHD1N+gWYzJQ32PjZc9x0Qp7qIhwbYSElJpwK4nGFx6kGfdX5/b5UY+bT2BA5egIfVT+5XC5Wr15NTU2NLy4nukFVQCWz2xYpoxKEEJ3aVd0uqNlc1u2cSOEnLTWw9TP19eRzAfh8Qxm6DlOyExiS0Ha6oY57NOqjc9UN/XUEteQf8O+D4McnvTs1Y0Kgk7ChV0HNggULePbZZwEV0Bx11FFMnz6d7Oxsvv76a1+uT+xHaqwalVDR2BrglQghglWh5/gJoKi6he3ljV3cW/jdrh/AZVddhDNU3qlRyn2iZ5fGYOTVrEg9E46/HzIm9c8aKzZD5RawN3l71Az4nZo333yTKVOmAPDBBx+wc+dONm/ezIIFC7jjjjt8ukDRubTYCIZpZczd+RB8Jn/mQoiO6loc1DSr0uCDclV15BdyBBVY406CBevglH8BUN1kZ1m+Onqan9cxXSPXk1fzqeUYNQoneWT/rNFTzu2Iz2VHxSDZqamsrCQjQ0WVH3/8MWeffTZjxozhsssuY926dT5d4N4ef/xxhg8fTkREBDNmzGDJkiV+fb5glRZrJZYWjm14r210vRBCeBR68mlSYqycMkW9YC7e3M+dacW+EoZB9iwAFm0sxeXWmZAZxzBPEGPITVE7Nbva7bb1C8+IhGJTBk63Tow1jKz4fkxQ7qNeBTXp6els3LgRl8vFp59+yty5cwFobm7GbPZfyeBrr73m3Q1atWoVs2fPZv78+RQWFvrtOYNVaqyVMqMBX1OFGhUvhBAeu6rVi2FuchRzxqUBsGJXDTVN9kAua/Dq5Gd0+4Z7ezOOn3ZVNEDJGlj3pv+7x7c2qNcTYKNNlZOPSY9BC6G8zV4FNZdeeinnnHMOeXl5aJrGvHnzANXHZty4cT5dYHv/+Mc/uOyyy7j88ssZP348Dz/8MNnZ2TzxxBN+e85glRZnpYpY7LoZ0KFR3oEJIdoYlU/DkqMYmhjFuIxY3Dp8vVWOoPqdrsNTc+C/Z3urmOpaHHy/vRJoK+VuLydF7dzUNNnQn5oDb13m/1l/RifhyCQ2qlMxxobQ0RP0Mqi5++67efbZZ/nNb37D999/j9WqklbNZjN/+MMffLpAg91uZ8WKFRx33HEdbj/uuOP44YcfOn1Ma2sr9fX1HT4GiuRoKzomyo0ZUNKrRgjRjnFskZOk3vEfO17t1khpdwCUroOydZD/DUSq/KYvN5XhcOmMSY9hVNq+IwjiIiwkR4fjIAx7XI660d8VUEbZeNJwbzn36LQBHtQ4HA7mzJnDpEmTuOGGGxg6dKj3exdffDGnnXaaTxdoqKysxOVykZ6e3uH29PR0SktLO33M/fffT3x8vPcjOzvbL2sLhPAwE0nR4ZTrCeqGhuKArkcIEVyMnRqjkdsx49TPzm+2VuBwuQO2rkHJ6E0z9gQ1goB9G+51xvi7q4nKVTf4e1yCKUxVWWVMZqunnHvA79RYLBbWr18fsDO2vZ9X1/X9ruW2226jrq7O+1FUVNQfS+w3qTFWSnXPzKd6CWqEEG0KqzsGNVOzE0iKDqfB5vQ2exP9wO1S+TDg7U3T2Orkm60qd6WzfBqDkSxcbPZsHvg7qBl/Mlz5HbbjH6LAs9MXKjOfDL06frrooou8fWr6S0pKCmazeZ9dmfLy8n12bwxWq5W4uLgOHwNJWpyVQt3ze6/fE9jFCCGChs3hoqTOBuCd2WM2acwZq46gFssRVP8pWAKNpRCZCKNU/ulXm8uxO90MT4nusgeMkSy83e3ZzemnBnzbK5rQdUiKDiclJrxfntNXejTQ0mC323nmmWdYtGgRM2fOJDq646Crf/zjHz5ZXHvh4eHMmDGDRYsWccYZZ3hvX7Rokd+OvIJdaqyVZ5wnYj1yAZceNzPQyxHCv7Z+rj6POa7r+wmKPLs0sdYwEqMs3tuPHZ/GWyt3s3hzOX88eUKglje4GC03Jp4BYSpAMBruzc/L6PLUw9ipWWtL5xzw706NvUkdP4VZ2eJpuhdqlU/Qy6Bm/fr1TJ8+HYCtWztGjv78A7jxxhu58MILmTlzJoceeihPPfUUhYWFXHnllX57zmCWGmulkngKW2VwqBjgyjbCK+eoH7q3bFPvesV+ta98av8zefboFCxmjfzKJvIrGhmRum+CqvAhezNsfF997Tl6arG7+GqzOnrau+He3owGfMvqjTSD3dDaCFY//L2tfgU+ux1mXsZW/WIgtDoJG3oV1Hz11Ve+Xke3nHvuuVRVVfGXv/yFkpIS8vLy+Pjjj8nJyQnIegItLVY1RKpokFEJYoD75kFAB7cDStbCiKMCvaKgZuRDGMcXhtgICwcPT+a77ZUs3lwuQU1/mHc37PwWsg8G4Jut5bQ4XAxNjCRvSNcpEcbR4fbGcFpPvg9r6kgV2PtD0U9qhENEPFsKPDs1IZYkDD4aaNmffve731FQUEBraysrVqzgyCOPDPSSAsaY/zSr5FV4+RdqrogQA03ZBtj4btuvS9YEbCmhwkgS3rtLLcAx46S0u9+ER8Gsy+GcF72Dh42qpwMdPQHER1pIilZHVjtGXKiqpyx+6u67+yf1OXtWSM58MvQqqGlqauLOO+/ksMMOY9SoUYwYMaLDh+gfaZ6gJqd5PWxfBHtWBHhFQvjBt39Tny1RkDoOLHLceiDecu6kfYMao1/NzwXV1LVIJ/L+1Op0eYPJ+ZO6PnoyGNVrBf4cl9BYATUFANSnTKXYk2Q+OgSDml7tY11++eV88803XHjhhWRmZoZcItFAYezUbHAO4WgNKN8U2AUJ4Q9z/wzWWDj4KkiX5NbuaCvnjt7neznJ0YxKi2F7eSPfbq3glClZ/b28wWHTh6rqaeKZEKVyYr7bVkljq5OMuAimDk3o1mWGJ0ezqrCWspIiMP2odnwm+Lg4ZvfP6nPqOLbVqb2OzPgI4iMtXTwoOPUqqPnkk0/46KOPOPzww329HtEDxk7NOscQCAfKNwZ2QUL4Q2IOnPpooFcRMpwut7f6KaeT4yeAY8elsb28kcWby/cf1NQWquGLone+/5c60nHa1ZRt4ON1RsO9DEym7m0GGIGpvmcl/PB7SM/zQ1DjOXoaOostpZ7J3CG4SwO9PH5KTEwkKSnJ12sRPRRjDSPSYmar7mnMVL4Z3NIpVAwQLmfnt7td4LD171pCSEmdDadbJzzMREZc5/kXx45X/a2+2lKOc+/uwvXF8Mal8OjMtrb5g1nRTyo5vbGi+z9fq/NVoKCZIO8sABwuN19sUjP65uftv+He3nI9M6BWNaeqG6q2+/7nfJFnpyb7IO94hFDrJGzo1U7NPffcw1133cULL7xAVFTn7wSE/2maRmqslYLqDNymcEzOFqgtgCTJaxIDwJuXABrMvRuSR6rbPrsDlj8H8/4CB10RwMUFLyOfJjsxcr+7AdOHJRAfaaG22cGqolpm5SapIPKnJ+Gr+8DeqF6Qdy5RuUwrXoCp5w3OnZs3L4O6QvW1KQxi0iE2A2IyIH0iHHNH230rt0NEHKzxjEUYcTTEqgBy6Y4q6locpMSEMzO3+5sCRgXb8toYMIeD0wZ1RWoH01cmng5RiTDsMLYsV0M2Q3WnpttBzbRp0zrkzmzfvp309HRyc3OxWDqeu61cudJ3KxRdSou1UljdTEPcKOJrN6p+HqES1JSshdpdMPxIiIgP9GpEMClZC5s+ADSY0+5FwxIJjmYoWR2olQW9XdWdl3O3F2Y2cfTYVN5bXcyXm8qZZdoKH90EZevVHYYeBCf9HTInw0tnwI7F6sV07p/647cQXGJSwdkCTRXgdqru7UYH96aKjkHNS6ergMPg6U0DbQ33jp+YgbmbR0/Q9vdY0uDEPXQEpsrNqgmfL4Oag67wvknYWqYmdY9JD81y/24HNaeffroflyF6y0gWrogcQXzLbmipCfCKuuBshe8fUe/44ofC6xeqjPtLP4WcQwO9OhFMvnlQfc47E9LGAbB2dy1xlpHkggp6RKfaN97ryrHj03lvdTETVv4ZfvxY3RiZqHbBpl4AJk92woxLVVCz8kU4+g8QZvXn8gPP7YbHD1FvDk97DK5YrG53OaCxHBpKVQJwQwlEJLQ9Ttc9X2iADrGZMO4kQOU5fb7BOHrqXtWTIT7KQmKUhZpmB42xI4ir3KzGJYye27ffZycqG1uparKjaXQ6OTwUdDuo+dOfBmGEHgKMJLKXk6/n7t+87O2FEHR2/QAfXK/+MxavhF++AvHZKqip2x3o1YlgUrIGNn8IaHDU7wHYVdXEWU/8QI7ZwRcmVKWfs3Xgv8D2wi5P6W9n5dztHTU6FbNJY1tzFFiA6RfBsXdDdHLHO449EWKzoKEYNrwLU87t5GoDSM1OqNyidpHb7yCbLRA/RH10RtPghvXqGK+pXAU84erv4KeCaqqa7CRGWTh4RM/zUXOSo6lprqXcOow48O0MqMJlEJMGicO9+TTDkqKICvdTkz8/63PzvW3btvHll1+yfft2X6xH9NDELNWRclWZIzgDmpYaeP86WDhf/UeMToVJv1Dfi89Wn43zaiEAvvbs0kz6BaSOBeBfX27D4dLZbk/CGR6vOgtLC4NOeXvU7O/4qXg1FK8mPsrCzJxEnnKdzIcHvaQqzPYOaADMYTDzUvX1z8/4Z9HBxDjaTJ+ofu89ZQ6DuCxvQAPwqafh3rwJ6VjMPX/ZNcYl7MJTqVblw9fbt38Dj0yD/K/ZWFwPhGbTPUOP/nQfeOABFi9WW3E1NTXMnTuXsWPHMm/ePMaOHcv8+fOpra31xzrFfhhBzeaS+n2rGAJJ12H92/Dvg2DlC+q26RfDNT+ragBNU0dQIDs1ok3xatjykUpSPfJWALaXN/DuKmMKvUZZtAp0KJUjqL3put6uR81eOzUttfDxLfD0HHjvanA5mTs+nVbCea0kvesLT78YTBZV0TPQOzobR5sZk31yObdb9wY13W24tzdjsOWP5MG5L8PJD/tkbTSWqx0pNBgynbW76wCYkp3gm+sHQI+CmieeeIKUlBQAbr31Vqqrq1mxYgXNzc2sXLmS2tpabr75Zr8sVHQuNzma6HAzrU43Ta//Fh6ZrpKFA23Vy/DmpWobNnk0XPIxnPpIx0GECcZOjQQ1IcHlhC/vgZ+ebpc/4GPLnlCf834BqWMA+OcX23DrYDGrncjN2nB1n4H+4toLFY2tNNtdmDQYmugJanRdVeP8exb89BTobkgbD44mjvF0F16WX0Vj635K6EFV8Ew4VX3909N+/l0EmPHvKnOKTy63srCG8oZWYiPCOHxkSq+uYSQLr6mLgvGnQMoon6ytfdM9IuJZu7sWgElDQrdwo0dBTVlZGfHx6jf7xRdf8PDDDzNt2jQiIiKYMmUK//73v/n444/9slDROZNJY3ym2q1xVmyD6h3B0YQv7yxIGQNH3wZXfQ+5nTRqNHZqaov2/Z7Yrxa7C91fQUVXlj0OSx6Cj2+GJX/3z3Oc/A847l44Su3SbCiu46O1JWga3HK82qFZ3DJK5XlkTvXPGkJYoefoKTM+kvAwEzha4MXT4J3ftL3BuOh9OOsZiIhnREo0uclROFw6322r6Prisy6HsEhV4j1Q6brPgxqj4d688enq76QXjJ0a42jRZ4ra5j3VNTso8Fx/8tBBEtTk5OSwfr0q+dM0jbCwjueNZrOZpiY/zqcQnTKOoArMnhK/QAQ1JWtU7ozbpX4dHgVX/dB1tYQ3p6bIf+/8g03Zho6/3rUUvntYJWAWr1ZHBF34YUclM+9dxG9fCsCcL92tjiAAFt+jepf4Wng0HHYtpIwG4J+LVELkKZOzOGu6CoJfqZ1IwxkvwvQLff/8Ic540TMatrHuTdj5jQpGjr1L/Z9sN+Fc0zRvI74vDjTgctihcNNmOPGvfll7UKjfAy3VoJkhre8jOXRd51NPKfcJPWi4tzcjp6a03kbrju9hyT9Ugm9fGTs1Qw9i3R519DQsKYqEqPC+XztAehTUXHHFFdxyyy1s376da665hptvvpkdO3YAsHPnTm644QaOO+44vyxU7N/ELBVVr7V7ksj6M4HS3qQaoj01R+XOrFjY9j3zAeaGxGfDvHvgtH8P7KDG5VAvLs/MhScOg93L27637TP44k/wxsXw1FHwYA48kANPHgWvXwzVO7133VhQzO9e/JEmu4vPN5axp7alf38fRyyg4LyvaZx1rfr1hwtgs492Zpur9+mSuqqwhi82lWPSYMHc0STHWBmSEImuwwZPQqPoyKh8GpbkSRLe9YP6fNi1MPsmCNv3xepYz9TurzaX43Z38f9Q0yAywZfLDT62OtWjZ8gMn0zDXrO7juI6G9HhZo4ck9rr6yREhXvnMDWveBW+/DNs/axvi3M5YI+np1z2QazxHD2F8i4N9LCj8M0330xhYSETJkxg5MiRFBQUMGbMGMLCwnA6nUyfPp1XX33VX2sV+zHBs1PzbV0al8K+uwH+UrUDXjy9rXpp4pkw7pTuP94SAYdf55elBYXmahXk/fSMKocF1RG0ZA0Mnal+nTEZJp2jSttrCtQRga1WVWCUrFZHMUBBZRPLXriDFbxDiTWZhc7j+WjtOH5z5Mh+++0UVTdz3AtFxIQfyfd5lUSuf1XlTV34bt/7DL17lTqGPPUR75/NPzy7NGdNH8qIVNUzI29IHHtqW1i/u5ZDUlrVY+NkIKNh195Jwqc+qiqXYtL2+5iZuUnEWsOoarKzZnct04Yl7ve+XsWr1K5dRp4vlh080ifC5Yt89ibLaLg3Z1waERZzn66VmxLNmqJaSi3DSIS+l3WXrVdNBSPiIXk063avAgZZUAPwyCOPcNVVV/Hhhx+Sn5+P2+0mMzOTww8/nLlz58rE7gAYkx6Lxayx2pYBEahs9tZGsPq5edIPj6qAJj5bdR8dc7x/ny9I6LrOV1vKmZgVT3pns3VaamHRnbD2ddWFFSA6DWZdBjN/3fEFJu9M9WGwN6lBgjUFapcmLovyBhsXPfcTC5zlmM06Q6nkTst/eeCnbDjyNn/+VtW8m7d+DXP/zLubY7E73VQ73VzfeClPjqlBK1za91YCe1bA1k9VxZMnkXxZfhVLtlViMWtcd+xo710nDYnnsw1l5K7+Gyx+FQ69Bo7/v749/wDiLec2etSYwyD7oC4fEx5m4sixqXy0toQvN5UfOKj5/hH173vsiXDeAH0T64PXMXX05Kl66mHDvc7kJkexpqiWHWQxHlRX4b5IGgHnvKSO20wmb5Lw5G5ODw9WPQpqPv/8c+bMmcP48eMZP368v9Ykeig8zMTotFg2lujYIlKJsFVAxRYYOsOvz2vbuZQI4IdRN3Lo6OPo1Y+B6nxVrZWYAxmTfLxC//hueyW/fn45iVEWnr5o5r5zXMJjYMdXKqDJnAKH/A4mntG9RnHh0aoyJU39/6q3Obj4uZ8prG7m4cSbOPKix4le/hiRK57k6oZ/UbTtJLJH+6b0tFOf/gF2fov+4QLebfiz9+bPN1fy3hn3cvpxePNfes3oSzP5XEgeia7r/ONz9S703FnZZLdrIjfJ8wN3ZVMKc0EqoPbibbzXxYiEzhw7Lk0FNZvLudmTkL1fY+eroGbrpwNvkrejBSyRuN2qND4zIQJrWO92WDaW1LOrqpkIixpJ0VdGBdT61nROBvWz0+U48DH//kTEeyvaKhpaKa6zoWmQF8KVT9DDnJorr7yS1NRUzj33XF555RXpSRNEjGThPZHj1Aup08/5FrZ6wqu3AHD99+Gc9/QydlQ09vw6Pz0Nr50Pa1/z8QL9Z0up6rpZ0+zgiqe/Yt1bD8DCE9UPGFDvjk/8mxr/8JtvYMove9X51uZwccULy9lUUk9KjJWXLj+YlMwcIk+8j83WScRqLUS++2v1g9gftn4O698EzcSOg+5lR6X6AX3V0erI685P8imxDG27f+l6aKrq2XPsXqHyijQzHHkLAEu2VfJTQTXWMBPXHtMxYDJKTb+u97zzLV07sPOxeqDe5qCmWf0bHJYcBe9f6+nifeBGbUePTcOkwaaSeooPlKuVMloNatTdarjoQNFYDvdlwWOH8MrS7Rz90NdM/fMiLnv+Z15aWkBRdc8qj4xdmqPGpBJt7Xt3XiP5e01dlKpAczugZlefrwuwbk8tACNTY4jxwVoDqUdBTX5+Pt9++y2TJk3i4YcfJiMjg2OPPZZHHnmEgoICPy1RdIcRXd8X/yf47beQe4R/n9DRzGeWuXzrmkQFiSzLr2b+w0t4+IuttDpd3b9OCDbgK6mzMUwr4x7ry3wbdjWT1t0Pu75H3/Bu253Gzld5Jr3cxna5da7/3yp+3FlNjDWM5y+d1fbu2xzGttn/okKPI6VpG3x+Z99/U3trbYSPblRfH3wVr+xW/TXmTcjgpnljmJKdQIPNye/fWqfKy3f9oLpGv3K2OkLrrq/vV5/b7dI89LkKli88JGef472k6HCGJESyTR+K2xSuEjtrffODPdQZ5dwpMeHEmJyw9g1Y8Ty47Ad8bFJ0ONM9x05fbj5AFRTALM+E9JUvgsPW2yUHl5K1KlBzO1mSryqBWhwuvtxczp3vbWD2X7/imL9/zV8+2Mi3WyuwObr+OffxOpVPc2IvG+7tzfj/X1Btg2RPn5re5tU0Vakd0vyvAVhTpH6/oZ5PA70YkzB58mT++Mc/8tNPP5Gfn8/ZZ5/Np59+yvjx45kyZQp33XUXy5cvP/CFhE8ZOzX9VRVSb0nmd42XcpHjNt753WEcNSYVu8vNw19sY/6/lrB0RzffsRtl3SHUq8ZUto4vwm/mQu1jYrUWtrmHcIfj19y+MRu7s+9dnXVd54/vruOzDWWEm008fdHMfbaEj5wxmZtd17LWPZz8URf1+Tn3sfheVWqfMAznUbfx/hqV6Hz61CzCzCb+fvZkwsNMfLu1gv/9XARRyWAyq/yY1y9q27Xqyu7lsH2RZ5dGNe1ctLGMtbvriAo3c+XRnSdBTxoSj4MwqqI935fhlkC7QZZJUarzr7MFYtK9R5kHYjTiW7yp7MB3HnMCxA2F5irY+G5vlxxcjPEImVPYVq52ne8+ZQK3njCWg4YnYTZp5Fc08dz3O7nouZ+Y9pdF/Pr5n3lxaYE3oDRsK2tgR0UT4WYTx4zbf5J2Tww3pnXX2XAle3YwexvUFC2Dr++DT1VOnlHOPTnEj56gj7OfsrKyuPLKK/n444+prKzkzjvvpKCggBNOOIH77rvPV2sU3TA+Mw5NU30MKhtbVfdXP1pbVIeuQ3ZSJNOGJfL8pbP496+mkRprJb+iifOeXsYtb6yhpukA7xJDcKcmsWYt4ZqLppgcuOBtfjrxY/6nz+PV1VVc9NyP1DYf+J1xV/6xaCuv/lSESYNHzpvKoSP3nccTH2khfMwxnGa/h7cKfNxTYvdy+PE/6uuT/8n3RerfVGKUxVuWOiotlluOU7kX9364kSJzNvzqDdUPZfsXqg2/+wAB3vq31Ocpv4Tkkbjdurfi6dLDc0mJ6fzIbpLn3eQ20wh1g+TVAFDgyafJTY72vgNnxNHd3i08dpzqV/P9jiqa7Qf4+WEOg5mXqK8HSodhz9gNZ/okb4B4fF4Gvzt6FK//9lBW3TWPJ86fzrkzs0mPs9LicLF4czl3vbeBI//2Fcc89DV//mADX28p593VaqzH7NEpxEb0MudlLwlRFuIi1NFQ4cSr4crv4eDf9u5iRtO9oTPRdb0tSTiExyMY+jzQ0hAdHc0vfvELXnzxRcrLy7niiit8dWnRDdHWMIYnRxOGk4hnjoL7MqGp0j9P5nZTtOEHwnAyLVttWWuaxsmTs/jixqO44JBhaBq8sWI3x/7jG95asXv/HXCNJMPGUjV1OQRYm9VZuS37KBh1LOcfkstzl8wixhrGsvxqznz8B2/CZk89//1OHl2sciDuPX0SJ3RRNXHKlCx0THywpkT9+e5cAjYf7NStfBHQ1ZHQqLm855m7dMqUrA7D+H59xHBm5iTSZHdx65trcQ+ZCee8qHZe1r4GX9zV9fMcfx/86nVv9+CP1pWwubSB2IgwfjN7/6Xqxq7VTzZPQCxBDdB2/DQsOUolqoMKarppTHoMQxMjsTvdfL+9Gzutxjyo+mL//azpT55/RyVRY3G5dWKsYWS0O/6Mi7Awf1ImD/5iMstuO5ZPrp/N708Yx8HDkwgzaeRXNrHw+wIuWfgzj32l+rf1peHe3jRNY7ins/BWfYgqp7dE9u5i3qDmIIrrbFQ22gkzaUzwdKcPZb0Oapqamvj444/5z3/+wyOPPOL9ePTRRzGZTKSm9j3bW/TMhKw4nIThstWrc3R/NeGr2sZ5qy/kR+vVTMvu+J8gPtLCvadP4s0rD2NcRizVTXZuemMNv3r6R/I7SySOSlbv7kF18wxyrU4Xu1sjWefOJSJznPf2o8ak8uZVhzIkIZL8yibOePwHlhdU9+ja763ew90fqG7QN80bw68O7rqqZO74NCItZgqrmyn+7GF44RSVGNrXxNmTH4ZT/gXH30ez3cmnG1QQd/q0IR3uZjZpPHT2FCItZpbmV/HSsl0w5jg47TF1hx8eVeW/+6Npqg1AYi5Ol5t/fqF2aa6YPYL4qP2/uzWShT+qH0nrrCthxsW9/70OILuqVSA9Ktah+shAj4IaTdO8jfgWb+7GEVRMGlz2GSxYB9G9m2kUNFpqVRsFYDO5AIxMi9lvixJNU+Nprjp6JK95dnH+c8F0fjkr2xsIxUWEMW/CAQaF9pA3r6ayD537Xe3+fWQfxDrPLs2Y9Ng+99IJBr0KalatWsWoUaM477zzuOaaa7j33ntZsGABt99+O//85z99vUbRTUZn4V3ecQn+CWr0oh8B2K4PYXrOvkcjADNyEvng2iP4/QnjiLCYWJpfxQkPL+FfX2zrmEgcYtO6y+paWeiazy/cDxA1+3cdvjcuI453fncYk4fGU91k51fP/OjNRTmQb7dWcPMb6p3ixYfmcM0xBx5YFxUexlzPD83Pa7NUTsuGt+HnZ3r4u9qLyQQzLoHoFBZtLKPZ7iInOYppnWxN56ZE84f5Krh74JPN6oft1PNg3l/UHfK/ahudYajZtc+O0ruri8mvaCIxysKlh+d2ubz2ycIrx92qBvwJ707NhNY1gA4pY3vcmNAYmfDlpvLuzRcbMkMdRYW60nXqc/wwNtao38/otO73+YqNsHBCXiYPnDWZpbcdw6IbjuTTBUf6fNyAMS6hoLIJlj6mRtM09+zNE6XrOjTdW+OdzB36+TTQy6Dmhhtu4JRTTqG6uprIyEiWLVvGrl27mDFjBg899JCv1yi6yUgWbhuX4J/Owo3bVev1NYzxDtPsjMWsyn8/X3AUR3oSif/5xVZO/NcSfsxvt719zB/h7BcgNfh7HxmjCbISIjt9F5cWF8H/fnMIx01Ix+50c92rq/j34m1dvkCsLqrlypdX4HDpnDIliz+dMrHbTSxPmayOp57MT8E919NH5tPbVMJuT7jd8OOTquqpnXc8R0+nTR2y3zVdeEgOh45IpsXh4uY31uBy63DYdXDmM3DeayrYau/DBfDwJG+bd7vTzb++VLs0Vx09sls5CMZujVGKOtjZHC5K6lUVUmqUSVXHjJzT4+scPCKJqHAz5Q2trN/Tg6NMl1P1TQlV1liY/EsYfwrbPTvKo3oQ1LSnaRqj02PJSujl0VAXvIMtq5tV3tvKF6Bic88u4p33NAtMJtZ5gppJQxJ8uNLA6VVQs3r1am666SbMZjNms5nW1lays7P561//yu233+7rNYpuMoKan5o857j+2qkpVOexVYnTujV1dlhyFC9cOotHz5tGSoyVHRVNnPvUMm5905NIPPF09RET/EeWJbXNgE5m/P7nwkSFh/HEBTO4YvZwAB76fCu3vLm208qo7eWNXLrwJ5rtLmaPTuHvZ0/BZOp+GfhRY1OJjQijtN7G8ozzYNzJqn/F65f07B3cqpfgk1vVfCrPzkplYytLtqlcidOn7v8dv8mk8ddfTCY63MzyXTUs/H6n2oGbfHbbrCFdV7kXhT/CjsVgb1RT3IE3VhRRVN1CaqyVCw/J7dZyvcnChSVQ8F3HeVqD0O6aZnQdYqxhxMw4F65d4R2x0RPWMDOzR6ujpC+7cwQFKhfl4Unw0pkHTg4PVllT4cwn4YT72Fam+lD1ZKemv3Q4fvL8/+lxBZRx9DT0oI5JwgOgnBt6GdRYLBbvu7b09HQKC9Xsn/j4eO/Xov8lx1jJiItgi+45zinf5PvGZC21xDWqJDhrbtft19vTNI1TpmTx5U1Hcb4nV+T15bs564kfetbXJsCqKsvZaP01D1dc0WXZstmkccdJE7j39DzMJo03V+zm4ud+oq657TEldS1c/NxP1DQ7mDI0nicumNGtILE9a5iZ4yeqIPb9tcUqnyUxV42vePeq7r3INJS29bqZfqF3Z+XDNcW43DpTshO8s5f2JzspijtOUlON//rZFraXt9vxcbtVZ+InDlOfAaacB0nDsTlcPPqlSoy+Zs4oIsO7d6Zv7NQML3wLnj8Jvhvcx97ty7m9O2q97DRrHEEt7k6/GlC7QvYmqNmpAtYQ5nLr5HvyVXq7U+NPRqJwcZ0NZ6Inmb6n4xJOewyu/A6mnU9BVTP1NifhYSbGZsT6eLWB0augZtq0ad5eNHPmzOGuu+7iv//9LwsWLGDSpNBodT9QTcyKI1/Pwq2FQWu975Nv96i/9wJ3OmNH9nyYYnykhf87YxJvXXUoUeFm8iubKNq9GzZ9CBvf9+1a/aClqpAorZUYd323XjQuOCSHZy+eSYw1jKX5VZzxxPcUVjVT22zn4ud+Yk9tCyNSor3VU71xyhS1i/LxulKc4XGqAslsVW3st31+4At8fAu01kHWNDj4Su/N76xW+UBndLFL0955B2WrY0anm5veWIPT5QmonDa15d1SA8UrwRTm7Uvz3x8LKa23kRUfwS8Pyu7279kIar5t9KxtkPeqKfAENXkJ9u71COrCnLEqWXjt7jrK6rvRWC88Gqb+Sn39cwiWdztb1RtAl5Oi6mbsTjfWMBNDE6MO/Nh+lhhlIdZT1l0Vmatu7GlQYzKrkTTxQ727NBMy4zpUNoayXv0u7rvvPjIz1Vn+PffcQ3JyMldddRXl5eU89dRTPl2g6JmJWXE4CGNjzCFq3lA3uon2hKNgGQAr9dFMz0no9XVm5CSpJmFAY9FaNSrhi7t9sEL/ctaqZObWqO6Xah49No03rjyUrPgI8iuaOP3x77nw2Z/YWtZIepyVFy87iOT99GTpjsNGJpMUHU51k50fdlSpMRkn/V1NaD7QkNFNH8Km91UZ9qmPendp8isaWVNUi9mkcfKU7gU1mqbx4FmTiI0IY01RLU9+68mxCI9SPWyMhmFTfwWJuTS1Onnia7VLc92xo3s0YycxOpyhiZFsdHuS4usKe54wOYAUeloIXFL3ODyYq4ap9lJqrJUpnqTwr7q7WzPrcvV562feKqKQUbIWHj8EHp3u3WEckRqDuQfHwP1F0zTvDKhCzVON2Idp3WuNJOEBcvQEvQhqdF0nPj6e9PR0nE4nqampfPzxx9TX17Ny5UqmTJnij3WKbprgqYC6NewPcPbzahKrD21KOIq/Os5hifUoMuP7lgiX4clL2eP2VFDV7Q76OT7merV74Y7tWVXJ+Mw43r36cCYNUZVR6/bUERcRxou/PrjP7wgtZhPzPf0wPjCqraZfCNMv6rrxmq0OPlY7Jhx+XYeBou96dmlmj07ZbxO8zmTGR/KnUyYC8PAXW9lc6kk2jU6GSz6CEx5U/WmAF5YWUNloJyc5irNmDN3fJfdr0pB46ommPsLz2NLBu1uzq7oZDTcjGleofKU+Dpmc6ynt7tbIBICUUTBiDqDD8oV9eu5+Z3QSTh3r7SQcjPk0BiNZeIvT08Oqdlf3R1UsfRzeuQoKvgdoSxIO8cnc7fUoqCkoKGDq1KmMGzeOSZMmMWrUKFauXOmvtYleyBuikoW3lTf4JVfl+8YsHnedji332D5fy+jnkN+aAGjgaoWmij5f158iWlTPlrCEnr8Ip8VF8NpvD+GUKVlkxkfw3CWzfHaOfapnN+XTDaX7/r03V8NX9+9bWv3V/dBQogLfo37vvVnXdd7zdEQ9Y6/eNN1x1vQhzB2fhsOlc9Pra3AYx1Cx6XDIlWCNpd7m4Mlv1E7Ogrmje7X1bTTh2xFmdBYevEFNYVUzE7RCIuw1akr8kBl9up4xMuG7bZUHnHHkdVCIzoMymjdmTvHu1ARjPo3BKOve2BAB1ng1r6q78882fQBrXoGanbjcOuuLB/lOze9//3tsNhsvvfQSb7zxBpmZmVx55ZUHfqDoN0MSIomPtOBw6WwrrVcVJz60qrAGgGnDEvp8LWOnprjRBbGe45y64J0BVW9zkORS1UCRKb17JxwVHsaj503jhz8cw8zcJJ+tbVZuEulxVhpsTr7d2q67q9ulJoh/8wB882DHBx2xAMafqhrttetMuqqoll1VzUSFm3vVPEzTNO47cxIJURY2FNfz78X7Tol+dslO6locjE6L4dQpPQ+coK1aY3mrJxdnkHYWdrl1imqaOcLk6bWSe0Svk4QNEzLjyIyPoMXhYmn79gtdGXOCmuXWUh1aCcPGDl/GZLaXB2/lk8E4ftpV3QyXL4LbdkPq2AM/sH3TvaEHsb28kWa7i6hw8wELAUJJj4KaJUuW8NRTT/GrX/2KM888kzfeeIMVK1bQ0nKAUfWi32iaxsSsONKpZuzC8fCvqfu+Q+8lvfBHknd9RCo13om+fWHs1JTWtYTEYMuSWhuZmvoBH57U/aTWznS3D013mUxqTAXQseGfyQyzPdO2v/krbP+y7XuxGXDuSzD8yA7XetfTm+b4iRlEhfcueTktNoK/nJYHwGNfbWe9Z2AeQE2TnWe/2wnAjfPG9Dp3Ic9z1Pp9kycoGqRBTXFtCw6XzmzzenXDiJ73p9mbpmneQYyLN3XzCMpkVrlcv/kaxp3Y5zX0C6cdylQXbz1zcmjs1KQYDfiaVTBj7eZur7fpXgIkj/ImCecNiQ/K/KHe6lFQU1payrhxba3hhw4dSmRkJGVl3exnIPrFxKw4yklQDd9crVC90yfXbV76LPe7/sEllkX7TI3ujXTPTk1pfWtIdBUurm1hh57FNvNISBwe6OXsw6iC+mJjWceBhJPPgRmXAjq8fYX3PL0zDpfbm5ez91iEHq9nciYnTsrA6da58fXV3mOxJ7/Np7HVycSsOG85em8kRoeTnRTJKvco8mf9Gc74T5/WG6oKq5uxYmeWaYu6oQejEbpyrOcI6stNZd3rLgwqMT1rmk+ev19UbFJ9nSISKCGNJruLMJPm7QcTjIy1Fde1dP9oEPZpumckCQ+Eydzt9Sio0TQNk6njQ0wmU/f/wYt+MTErHh0Tu0yeIxIfdRZ2FxlN96b4ZEaI0cCurN4GCZ6djyA+fiqua+FPzkt5IPtJGHZwoJezjylD48lOiqTF4eLLvd9dn/AAZEyG5ip4/kR4/aJOB4h+u7WCmmYHKTFWDu9kOnhPaJrGPaflkRwdztayRh7+YhvlDTae/0EF2TcdN6ZHjQY7M2lIPHXEsCjmFBg6s0/XClUFVU3MMG3Fih1iM7t3FNENh41MIcJiorjOxsaSXgxKDYUBtUYeVuZktlWoCrKc5Kge94vqT8nR4cRaw9B1KC3YBB/eCB/ecOAHGkMss1V/sbWe3dOBMJm7vR79zem6zpgxY0hKSvJ+NDY2Mm3atA63icAyOguvcxjjEnzQWbi5mthG9WIUnuObF3Tj+Km6yU7ruDNUtdas4J3uXtxuREIw0jSNUzxHUB/sPXPKEgHnvKB6xIDadjfvO5fGqHo6dUoWYT7oW5EcY+X/zlBVVU9+s4ObXl+DzeFm2rAEbz+UvjB2DNe2O94abAqrminU0/ky67eqz5CPjjYjLGaOHqP+jhZ+X9D9Bzpa4L1r4O9jg7/MPmsaHH07TDnPe/Q0Oi24m9BpmkaO5wiquLIOlj8La984cOXobmMy9yzsTjebilWgOpCShAF6dGC+cGFgSvUKCgq45557WLx4MaWlpWRlZXHBBRdwxx13EB7u24FhA8GI1BgiLCY2OIdwpgUo39j3i3q2Lne4Mxk/Mrfv10M14ouwmLA53JRFjWVYdnBvW5fWqBEJwRrUgDqCevzrHXy9pYJ6m4O49nOUkkbARe/Dmlfh2Lv2efFrsDn43DORuzdVT/tzQl4Gp0/N4t3Vxd6xCzcfN9YneUWTPfNqyop2wIp1EBYBU87t83VDya6qZnbrqRROvAoO9+2x6JVHj+TTDaW8s2oP1x4zqnvHMmERqky6pQZW/xcOu9ana/KpjDz1AWx/W+3aBHM+jSE3OZr1e+rZbE/mMM0M9gbVGTwus/MH2JvAEqX6UQ2ZwdayBuwuN/GRFm+/sIGiR0HNxRdf7K91dGnz5s243W6efPJJRo0axfr167niiitoamqSAZqdMJs0xmXEsXWP50jHBzs1zl0/EgasdI/m4Oy+JwmDeseRERdBQVUzJXUtDEsO7v9cKWVL2Gj9P+q2HAFHvx3o5XRqXEYso9Ni2FbeyOcbyvjF3v1fcg9XH534bEMZrU43I1Kjva0BfOXPp+bxw44qyhtaOWREEof18WjLYKwzuW4DfPBP1WtnsAU11aqbcI4f/v9MzU5gzthUvtpSwb8Xb+dvZ3ejD5mmqR3XD66Dn5+FQ65Wk9+DnHenJj00ghqAHdUONRaleodqwre/oCY8Gq7+EVobwBrLmt2qBHzy0HifFy0EWp/+pdntdnbv3k1hYWGHD1874YQTWLhwIccddxwjRozg1FNP5eabb+btt4PzhSUYTMyKY7PbE9RU7ehz34jm/KUAbLGMJzvJdzsV6e0roDZ9CMv+o7avg5C5qYQorZVIc/DmkBkztqCTI6gDMKqezuhiIndvxUdZeOKC6cwdn8a9p+f57PoJUSpZeL07V91Qvik0cjl8RNd1YqvWcIrpB4ZH+ac3zPVz1eDEt1ftYZenc/EBTTobIuI986C+PPD9A6GhDDZ/BHV70HXd23gvFHZqjAB2V1VzzwZbeiql1hYZk7kH1tET9DKo2bp1K7NnzyYyMpKcnByGDx/O8OHDyc3NZfjw/qkKqaurk/ydLkzMiqeCBJZGHa36kbj68IPe7SKyXPU3cGTN8OkLnjdZuKFVDWD89PdBWdbtdutEtagqv7DEvpVz+9vJk9W7te+2V1LV2L2/97J6G9/vUEdDp0313dFTezNyknjm4lmM8nHOwuQhCewhBVtYPLidfptOH4wqG+2c7v6SR8P/Tfb6x/3yHFOzEzh6bCout95pz6FOhUfB1AvU19/9U+VwBZud38D/fgVvXkpVk53aZgeaBiNDoGeLMdiyoKoJUjzjR7qaAbXXYFtvkvAA6iRs6FVQc+mll2Iymfjwww9ZsWIFK1euZOXKlaxatapfOgzv2LGDRx999ICN/1pbW6mvr+/wMVioZGGNq1uvQT/mTvWuqbc0E38Z9hzX2q8hfeRUXy0RaCvrLqmztSvrDr6gprKxlXTdaLwX3EHNiNQY8obE4XLrfLK+tFuP+WBNMboOM3MSg/4YcG8qWVijINwzYHUQ9asprG7yNt0LG3WM357n+mPVC+fbq/ZQ6BmeeUAHXa6S0Xd9r4IHezcf11/adRLeVqZ2abITo3xS2elv3rLu2hYcxrTuqv0ENS4H/G0kPDcfmqtpsbvYWqaaDE7Jlp0aAFavXs2TTz7J/PnzmTp1KlOmTOnw0V133303mqZ1+WFMAzcUFxdzwgkncPbZZ3P55Zd3ef3777+f+Ph470d2dnC/GPnS2IxYzCaN6iY7pd2ZtNsVTWNxSQQfuA9jao5vciEMmXHtyrrjg7esu7jORoamKjnM8T0fkdDf9lsFtR/veI6eTvNhgnB/MbbQV9o9LQwG0QyoisItDDNV4MQMOZ3nSvnCtGGJHDXGs1vzVTenQieNgPNehbBIqN+jprUHk/bjESpC5+gJICUmnBhrGG4dysI9Q133V2lWuk51eS7fCBEJbCypx+XWSYmxeitQB5JeBTUTJkygsrLywHc8gGuuuYZNmzZ1+ZGXl+e9f3FxMXPmzOHQQw/t1jTw2267jbq6Ou9HUVHwvVj6S4TFzKjUGEBn6/btfXr3WlZvY09tCybN99uVGZ3u1ARfA77i2hYyPUEN8cH/wn+S5wjqp4JqSuu6fjHZWtbAhuJ6wkwaJ0/aT6JhEDOCmqXNnn8/g2inxlzwDQBF0Xlg9e8L8vVz1W7NWyt7sFszai5c/D5c+A5EBVG6gK639ajJmMz2suAfj9CepmnevJotplHw+wL47Ted33mfpnu1gCrlHmhJwtCD6qf2RzcPPvggt956K/fddx+TJk3CYuk4ZyQurnuVEykpKaSkpHTrvnv27GHOnDnMmDGDhQsX7tMEsDNWqxWrtfsThgeaiUPiiClfzlEfnK92QW5Y36vr2N+5lqvMJn5OPpUYa+/a5u+PkShcVteuAV8Q5tQU1zRzlGdEAnHBH9QMTYxiRk4iK3bV8NG6Ei47Yv+5bkaC8NFj00iMDr0WCfFRqix1Q02uuqFsgxoNYgr+Y4S+Si3/AYCK1MPwdzbjdM9uzTdbK3jsq+08+IvJ3Xugp9mb19rX1XyquJ5NuvepmgJorVPHY6nj2F6h0iZGhkhQA2pa94bienbWOiCyi4rUvZvueSdzD7yjJ+jBTk1CQgKJiYkkJiYyb948li1bxrHHHktaWpr3duM+vlZcXMzRRx9NdnY2Dz30EBUVFZSWllJa2r18gcFqYlY823TPC3BdEdh6kVPUWEH2ztf5veV/fuk8mRmvKqnKG1pxxwXvTk1ZTQPfu/MoiRqruraGgFO7UQXlduu852m458veNP1t0pB4duoZfDD5MViwflAENLhdjGxcAYAz98gD3Nk32nZrdnd/t6a99W+rUR3PHa+qMgPF2M1LmwBh4d6cmlDZqYG2ad27DvT30K7pHtBupybBTysLrG6/7f7qq6/8uY4uff7552zfvp3t27czdGjHfAYZ0bB/E7PiqCeGcpJJowoqNu/7rulAPFuX29xDGD+8d5Opu5ISE45JA6dbpzY8gySAOt+3BeironoXTztu4u7DJ3BJeGgk0s6flMGfP9jA6qJaCquaO00AXr6rhj21LcRYw7yzfkLRpKHxfLSuhE9bJnBKtG/zvoJW+SZi9Ubq9UjiR/XP2I7pwxI5ckwq3/Z0t8YwdKbKtanOh4Xz1bFU+kT/LLYrRt5V5mTqWhyUN6gqwVDaqTGShQuqmmDdm6rR4ejj4ZB2BTQNZVBbCGgwZAYNNgf5laosf6Du1HQ7qElMTCQvL69bxz4AGzZsYOzYsYSF9f244pJLLuGSSy7p83UGmwmecQmbXENIM1epbfkeBjWuwh8xAyvco5npg8ncewszm0iLjaC03kZxeA5JZz8PCTk+f56+KqlTvXMyg7ib8N7SYiM4dGQy32+v4oO1xVw9Z9Q+9zEShOfnZYRE1cf+GHk16wbRuISGhLHMsz3KCFMJT6X23wvU9ceO5tutFby1cjfXHDOK7J50pE0YBpd+Ci+fCWXrYeGJcMFb/T+3a8YlapcmPtvbdC8jLqJjB+4g16Gsu74YdixWE7jbBzXGLk3aBIiIY/2OKnQdhiREkhIzMFMzun38NG3aNKqqqrp94UMPPdQvjfhE98VFqFyDLXrvOwu35C8DYFPYOEak+GdyrVHWvaclHCaeAUOm++V5+qK0phHQGRJCQQ10XQXV6nTx0drQP3oCyMtSL+rumgJsn9wJn98Z4BX5366qZkpJZkvkdJ/nunVlRk4is0en4HTrPPZVN/vWtBebDpd8qI5DbLXwwqmw81ufr7NLCcNg0i9g2MHsCKGme+0ZicJ7alpwJHnesOzdq8YaB2NOgNHzgLajp8kDdJcGerBTo+s6d955J1FR3YvK7fYgbLY0CE3MimNLrRHU9HAGlMuJtWI1APbMmX2eqLw/GXFW1uAp6w5CrU4Xv2r9H1dYP4Z1V8OQPwV6Sd12Ql4Gf3x3PZtLG9hW1sDo9LbGd19trqDe5iQjLoKDR4T2kU18lIWc5CiiqluI+PERsMbDvL/4bLhjMCr0jEcIRF+hBXNHs2RbJW+u2M3Vc3q4WwMqsfXCd1X/mp3fwMu/gN8theSRfllvV7aVq8qnUAtqUmOsRIebabK7KA7LJgdUrxq3u20sxYij1IfHQE8Shh4ENUceeSRbtmzp9oUPPfRQIiND613tQDQxK45PN3jykMo3qlLG7v6gL1uPxWWjTo8ifcQkv63RSBYurbPBrqUqiS/nUMjsfs8jfyqts5FJNVFaK3pkaOTTGBKiwjlyTCqLN5fzwdoSbpzXFtS8t9rTm2ZqFmY/Baz9KW9IPJ9VDcGlWTC31qkKl6T+6XDe73YuYeJX93G2OQ9n8vn9/vQzcpKYPTqFJdsqefzr7dx/Zg9za0CVoP/qdXjrMtUVt78CmuLVULAEhh0GQ2d4j59CLahRZd3RbCypJ9+RRI45XPUCqiuCxM6P8NfuqQUGbpIw9CCo+frrr/24DOEvE7Pi+bc+hDfDT+MX844D3a0mtXZHTQGtWFjlHs00Hzfda69t/pMNViyEta/B3LuDJqgprrWR6Snn1kKg8d7eTpmSyeLN5Xy4ppgb5o5G0zTqWhx8uakc8N9YhP42aUg8H60tYXf4cHJat6rgeKAGNds+J6f6B2ZpFvYEaMry9ceq3Zo3lu/md0f3YrcGwBIBZ7/QsVrN5QSzH4/Ttn4GX98Hk38JQ5/0znwKpconQ25KlApqqu3MSRoJFZvUEVRijmrG52j29v+qbrJTVK1yA/MG4MwnQ/CPThV9MjErDhtWbm04l5aJ5/Wo1LUqZz55tme5xfEbpvoxsjfmP5V26CocPGXdHRrvBbK3Ri/Nm5CBNcxEfmUTG4pVWf8n60qwu9yMTY9lfKZvZzEFymTPD+o1Ts+71IHcWTj/awC+c+f5ZTp3d8zMTfLm1jz+dS9yawzmsLbdY0cLvHQ6LPmHT9bYqXadhJvtTnbXqBf69kezocKY1r2rwwwoz2DLta/DPyfCW1cAbUn0w1OiiY8MnYTonpKgZoBLi4sgJcaKW4dNpT3rU7O6qBYHYcSlDiU+yn//CTrs1Bg7IUHUgK+4ptm7U0MI7tS0L9c2EoaNqqfTp/l+InegTPQENT/ZBnhn4aZKb8D2QwCDGmibCfXG8t3srvHBbKdNH6qjoS//DIv+pI7Lfc0b1Ewmv0KVNydFh5MUgo0njaBmZ2WTmtYdmdg2vNiofPJM8V5bVAsM7CRhkKBmUJiYFUc0LVSs/6pHVQarCmsB1ZvCnzLa7dToQTgqobqmkmjN84MiRBrv7c2ogvpwbQm7a5r5cafaeTptaujtPO1PfKRKFl7v9hw5lazxz4tioO1U7fA3uYdRSby3X0kgzMxN4ohRRiWUD5rpTT4bjrtXff39w/DRjao7tK80VUG952dLxqSQTRI25KYYOzXNcPRtalzCETeobxZ5xiNkq6Z7a4wk4QF89AQS1AwKE7PiONq0huN/uhS++HP3HrT5Y875+RyuNr/LNH8HNZ6dmma7i8YIz4tsEA21bK1Sa2m1xEOINN7b25xxaUSHm9lT28Ld76squIOHJ5EVYiXqBzJpSDyb9WzcmMBph5aaQC/J93aoRqhL3JOIDjeTHOAdBqPL8BvLi3yzW3PYtXDKvwANlj8HPz7Z92saSj27NEkjICI+ZJOEDUZX4d01zdj1di/nDaWqialmgiEzAFhnJAn7oTN8MJGgZhDIGxLPFt2zA1KxWZX8HYB711KGOQsYolUybViCX9cXGW72nvGWap5ZYK31YAuORmrljXY+d82gLqt/WtH7Q4TFzHETMwD4YlMZEPq9aTozaUg8Nqz8MecV+MOu4Bqi6Au67s2n+d6dx7Dk6IAfH87KTeLwUcme3BofjT6YcQnM/6v6eslD0Nrgm+u2y6cBQnI8QnupsVaiws24dToGlEXtmu5ZYymrt1FW34pJU29yBzIJagaBiVlxFOgZ2HUz2Bu7tQti27kUgA2msYzphwQ6I1m4pNkEkZ4XoiDJq1nWkMZvHDdRf9J/Ar2UPjllStvRWbjZxPwQnMh9IEb/jW/LrQOzR429EZJHYjfH8JN7LDkBqnza2/XHqrwNn+3WAMz8NSSNhOYqWOaj/3vtJnMDbK8I7Z0ao6wbPEdQ714N/5ratrvlnfek3iCOToslKrz/GjUGggQ1g0B2YhSR1gh2GMMtD9SEz2nHWq7e0dgyZvRLD5MOycJnPQOXfxmQRlx7q7c5aGx1ApCVEBHg1fTNEaNSSfAkfB87Pm1AVkAYpaq7a1qoaRqADUCtsXDRezww+WNaiCAnJTiCmoOGq90ah8uHuzXmMJhzO+Qc0aGBXJ+c/jhcvhgmnY3d6fYOgxydFnqVTwbjCGpnZZM6cqrZCbu+U9/0TuauBQZ20z2DBDWDgMmkMT4rru0I6kBBTek6zG47NXoMGSPy/L9A9irrHnWsmgVjCXy+R3FtC1bsJESGhfw7nPAwExcdkkOYSeOSw3IDvRy/iIuwkJscRSZVOP93oZotNADtrFaJ6zlJgUsS3lv73Zo9tS2+uWjeWWqkQk8H8e6PJRKGzoCEbAqqmnC5dWKsYaTHhe4cpLZk4SZI9pR1p4yBg6+CnMOAtiThKRLUiIFiYlYcW93dnAHlKQVc6R7NtGH9k5Ng7NSU1AXXqITi2haetvydZfqFsPH9QC+nz26YN4b1fz4+5McidGXS0ASaiCC16FPY9b1qQjYQuF3QqBom7vKMSAhkOffeDhqexGEjPbs1vZkJ1RlN89sxopFPMyotJuB5SX1h7NQUVDV7y7dJGQPzH4DEXHRdZ5135lNCYBbZjySoGSQmZrVLFj5AUGMvUEMsV7pHM9XPScIGo6y7rN4GVTvUGfqa1/rlubtSXGsjS6siglaICP13OZqmhfQ07u6YNCSOeqKpCPPkDA2UfjXFq+Gh0ejPzacoCIMaaOtb87ovd2tABaaf39n96s3ObHgHPrwBtn8JEPKVTwYjp6agQwO+tsGWu2taqGl2YDFrjBsgjTa7IkHNIDExK47V7lHco1+O+8S/d3nfMi2Vne509sRO6rfx9N5eNXU2KF0Hn/4efn6mX567Kx0a78UNvGqhgcjIq1nnzlU3DJTOwvmLAbBZ4nG4dCxmzTs3LVgcPCKZQ0f4eLcGoGQ1/PAILH0M6vb07hpbP1cl4rtV/xajR02oVj4ZhnuOn3Z3mNa9xVsxZiQJj8uIwxo2sN/QgAQ1g8aotBgawhJ5tvUYimK6Hk75dvJvmWP/J+TO7qfVtfWqKa23QYIxKiHw1U81NVVtjfdCcETCYGQENctbPf+OBspOTb5qulecfCigCgCCcRCp0bfm9eVFFPtqt2bEHJUw7GqFb//au2vsVc49UHZq0mKtRFrMuNw6u13t0gW2fwEMriRhkKBm0LCYTYz1lGYb83/2Z2Whaljm76Z77RmJwtVNdmxRnuChoVQ1UAsge7UKrOwh3HhvsImLsDA8JZoNutFZeADs1NiboFAdC2+MmA7AsCA7ejIcMiKZQ0YkeSqhfJhbc+yd6utVL0N1fs8e72hRPboAMibjcuvkV6oRCaFc+QRGWbcnr6a6BU58SPX5GXcK0LZTMxiShEGCmkFlYlYc2VoZ2uqXYdsXnd7HXV/G2kJ13OLvpnvtxUdasIapf47lrjgwWwEdGor7bQ2dalBb3c6YgdfTZSDLGxLPBuP4qWo7tDYGdD19tmspuB0QP4z1NpXknRvA8QgHYlRCvfazD3drhh0Co+aB2wlfP9Czx5ZvBN0FUSkQl0VRdTN2p5sIi4khicF1hNcb3sGWlU1w0BWqI7M5DLdbZ71nkOVgSBIGCWoGlYlZccw1rWT+jnthxcJO72N/5Ty+1S/lGMs6xmf2X+dJTdPa8moaWoNisKXbrWNtKgXAFC/5NKFk8pB4KolXycKZU6CpPNBL6pt8NRqBEUdRWK2ChGFB0nivM4eObNutecyXuTXH/FF9Xvs6lB2gNUV77Y+eNI1tnqOnESkxQXmE11NGv6KCqo6ND/Mrm2hodRJhMYV87lB3SVAziEzIimeL3kVZt7MVS/laYrUWotJHYTH37z+PDnk1QTDYsrKxlWJ3Ap+5ZmIZcXjA1iF6zsirOcP8b/jtN2rWTyjzjEZg5Bxvw7hgq3za24K5arfmlZ8K+W5bpW8umjUVxp8K6D3LrdlPPs3o9IHxQj+8fQVUO8a8p4lZ8YT188/zQBkcv0sBwPjMWLZ5ghq9Oh/se7UzL1mD2e2gUo8ja/iEfl9fWwVUS1AkC++pbeFr9zTujrod85E3BWwdoucmDlG7jLvrWqkO9c7Cug6HXw9TfoWee6RqskbwBzWHjEjmvIOy0XVY8Npqyht81INqzh0w41I47v+6/5gGNe+MTDUewTudO3VgBDXesu7KjkHNmqLBMZm7PQlqBpGo8DDiU4dQqcehoauyv/Y8Q9BWuUf3a5KwoS2oaYVDr1WjEmZd3u/rMBTXqh/CA22S9WAQF2FhhKfUdd2eOnA5AryiPtA0mHwOnPEEVcTRZHehaTA0MbiDGoA/nTKRsemxVDa2csNrq3G59b5fNG0cnPIw9ORI+Ff/g1t3wujjgAG4U9O+rNvVNrB4nSefZkq2BDVigFKdhTtvwucs/BGAFe7RTM8JQFDjPX5qUT+4hs4M6JTlkroWYmkmM4RbqA9meUPiiaOJCe+fBA8MA2droJfUZ8bRU2ZcREg0UYywmHns/GlEWsx8v73Kt71rDI5uJiJHJUF4NLquD5hybkNarJUIiwmnW/cmZjtdbjYUGzs1CQFcXf+SoGaQmZgV1y6vpl2ina7j3qWCmsKoid6xBf0po/1QyyCwp6aZZdar+eeO+VC9M9DLET00aUg89UQR2VwCjuYDzzwLVuveVOXczlYKq9XxQrCWc3dmVFos956uZsj984ut/Jhf5ZsL1xTAK7+El89SR3TdVFxno9nuIszUNuE61JlMmncO2E7PEdTWskZsDjex1jDvruVgIEHNIDMxK56tnY1LqNtNeEsZDt1M+LCZAVlbh67C9mZY9oRqjd6DH1i+VFOtGu9Z3K0QkxaQNYjeU83GNDYRwv1qHDZ4+wp47nhoqaWgUu3UBHM5d2fOmjGUs6YPxa3Ddf9bRVWjD3bNTBbYsVjN99rx5f7vt/j/4MXTYMsnQNvRU25KdL8XQ/hTrqcCytjNM5KE84bEYxoAFV7dNXD+RkW3TMyKY7FrGhfa/0DDCQ+3fcMcznsJF/Nf17Hk5WYEZG1GUFPe0IobE3z6B9UaPUADCZ2ecnKHJR7CQ+tFRKh/6wAr7MPUDaHYWbg6H3Q3WOMhJo1Cz8ynUNqpMfzltImMTI2mrL6Vm95Yg7uv+TXxQ9py7hbfu/83PwVLVPWYTR3FbCsbGOMR9mYEusZOjTGZe/IgabpnkKBmkEmICicsYQhL3JPZUN/2g1GPSeOexlO423lJQJKEAVJjrJg0cLp1KluBGE9wVVcYkPVo9SUAOGNlPEIoivUkC29w56gbQjGoqdyqPqeMBk1rq3xKCr0gO9oaxmPnT8caZuLrLRU8vaSHXYE7c8QNYImG4lWw+cN9v+92t+3Qecq5d1QMrHwaQ67niMn4N7Ju9+BqumeQoGYQmuB5B9t+XMLumhYqG+1YzJr3HW5/CzObSI1VSbmldYHtVWNzuIhqVWWg5gRpvBeqJg2NZ70xLqFsA7icgV1QTxnTllNUz5dQ6VGzP+My4rj71IkA/PWzLazYVdO3C8akwiFXqa8X3wtuV8fvV+8ARxOERUKymkm1rWxgBjXGv4ldVc20Ol1sLlU/32WnRgx4E7PiOFjbxLDVD8G2ReCwUbzsDVKoY0JWfECrKjokCxu9agLQVbi0zkaWZzq3JWFovz+/8I1JQ+Ip0NOxaZHgbIGqbYFeUs8YOzWpY2hsdVLl6bkTisdPhl/OyubUKVm43DrXvbqK2uY+9hE67FqIiFeznda92fF7xu5cRh6Yw9B13dtNeKAFNcbxU2F1M+v31ONw6SRGWRg6AMZA9IQENYPQxKx45phXM6/yZdj6KRSv4uCfruNj621MC3BU700WDnBX4eK6FjJQuTxavAQ1oSpvSDw6Jr7RZsHEMwO9nJ4zekmljPEeKyRFhxMXYQngovpG0zT+74w8cpOj2FPbws1vrEXvSzFAZAIcdp36euWLHb+3VyfhykY7dS0ONA1GDpDGe4aMuAisYaqs+9P16uh88tAENG3wJAmDBDWD0sSsODa71S6Iu3QD7FZN91a6RzMtAP1p2uuwUxMfuK7CxbU21unDWR5xGGRM6vfnF74xMSsOTYPfNl9J5fz/QNr4QC+p+9zuDsdPhZ6jp2Ce+dRdsREW/v2r6YSbTXyxqYyF3xf07YIHXwnz/wYXvNXxdu9OjeokbFQ+ZSdGhUSfn54wmdqmdX+wxghqBtfRE0hQMyhlxkdQYs0FwF22EZenP81K9yimByhJ2JARr7ZK1U5N4IKaktoWXnbN47WRD8DYE/r9+YVvxEZYvN1Wje6qoUOH8/4HJz4EibneYYWhmk+zt7wh8fzxZBVk3v/JJtburu39xawxcPBvwLJXf63IBIhIaDfzaWBWPhmMI6jSetXra7AlCYMENYOSpmlEZU3ApWuE2eswb/0IgB0ReQE/f82Ib5conHOoGpVw3mv9vo7iOtWVU0YkhL7Jnrk364tqVSVMY4hM7DaZYcRRcNAVYLZ4G+8NlIZxABceksMJEzNwuHSueWUV9TYfjLNwu6DCk4t0zovw+4J9BlmOGiDjEfaWu1eTPdmpEYPGmKEpFOht/Wjsupnw7OkBP39Nbz+pOzJRjUqITe/3dZTWNJFAA0Pi+7+zsvAtY2L3Qat+D0/OhrX9HyT7grfyaQAcPxk0TePBX0xmaGIkhdXN/OGtPubX1BTA44fC8yeCvcl4EvUBbUnCAyyfxtB+Fy89zhqQzvCBJkHNIDUxK57NxrgEYKOey6TcwHfNzTSOn+psffvh1kfm6u2sjvgtp301N2BrEL5hTCj+3uYp7d76WQBX0wObP4bVr0Kt6tMU6uXc+xMfqfJrwkwaH68r5eUf+9CXKm4IuOzQVAFLH9vn222DLGN7/xxBbHi7XbzBNO+pPQlqBik12LItqFnpHh3wfBpoSxRutrtoaHXC2jfgszugdF2/rUHXdUwNe9QvAjhQU/jGxCHxaBq806zmD7HrB2jpY3+U/vDjE/DulVDwHa1Ol/dIdCAdPxmmZifwh/njALjnw43eQYw9ZrbA0bepr7/6P3ggB7Z+DkBdi4PyBjWeYWTqwPszBMhpd/w0ZRAePYEENYPW8ORo3jHP4zz7Hdxkv5L33EcExflrZLiZ+EhVrlpWZ4O1/4Ol/1YdQ/tJvc1JoqsSgDDpURPyYjwD/Yr0dJriRoHugu1dzAoKFu0qn3bXtKDrEBVuJiUmPLDr8pPLjhjOsePSsDvdXPvKKhpbe9kocdIvIFUFSNhqVQ8b2nZpMuMjiA3hkviuZMZFEB6mXtYnZycEdjEBEnJBTWtrK1OnTkXTNFavXh3o5YQsk0kjNTOHpe6JvOU+Ekf6VKLCwwK9LKBtt6akfVl3PzbgK65tIdPTeE+6CQ8MxhHUprjD1A1bPw3garrBVg8NqiyX5FEdyrkDnffmL5qm8dDZU8iMjyC/sok/vrOud0fQJjMc9fu2X6erDsZG5dNAa7rXnsmkccXs4Rw5JpWDhw/OXeaQC2puvfVWsrJkFo8vtB+HMG1YQuAWspf0ADfgK6lrIdPTeI84CWoGAiNZ+Gv3dHXDtkXBPTLB6Hwckw6RCRQYM58GWD7N3hKjw3n0vGmYTRrvri7mjeW9/H8/8Qw45o9w6qOq3JuBOx5hb7ccP44Xf33QgOvD010hFdR88sknfP755zz00EOBXsqA0D6oCYZ8GkNmh1EJngnL/dirZk+tzbtTI0HNwDAuQ/1b/6RumKqqs9VC0Y+BXVRX9jPzKXcA5tPsbWZuEjcdp37fd72/3rvD0iOaBkfeAtMv8t60fYAOshQdhUxQU1ZWxhVXXMFLL71EVFT33q20trZSX1/f4UO0mZjVlkMT/Ds1/RfUlNS2kKkZOzWyKzgQjMtU1S751TZa590HF70HQ2cFeFVdaD+dGzXPB0J75lNPXHnkSGaPTsHmcHPnuxt8Uglp7NSMThuYlU9CCYmgRtd1LrnkEq688kpmzpzZ7cfdf//9xMfHez+ys7MP/KBBZGxGLFOyEzh0RLK362owyPQENWUdRiXsUW3j+0FxbQtfuKezM2UOJA3vl+cU/pUSYyUlxoquw6bUE2HE0RAWxAm33qDG2KnxHD8lBc//U38ymTTuO2MS1jATS/Or+HhdaZ+u12x3sqdWVY/JTs3AFtCg5u6770bTtC4/li9fzqOPPkp9fT233XZbj65/2223UVdX5/0oKur/dvvBzGI28d7Vh/Pqbw4JquTDDonCsZmgmcDtgMayfnn+4lobDzrPY93sxyExt1+eU/jfuAz1Dn1LaQjs2J7woJpjNPZEXG6domqjnHtw7NQAZCdFcdXRIwH4v4820mzvfQ7UjnIVFCZHh5MUHcTBrOizgJa7XHPNNfzyl7/s8j65ubnce++9LFu2DKvV2uF7M2fO5Pzzz+eFF17o9LFWq3Wfx4jgZ3TBLKu3gTkMrlisgpvo/mkO6B2RIN2EB5RxGbF8t72STSUNqkXA2tchcypMOTfQS9tX/BD1AZTWtmB3ubGYNe8u5mBx5VEjeWP5bvbUtvDE1zu46bixvbrO9gqVlzNSdmkGvIAGNSkpKaSkpBzwfo888gj33nuv99fFxcUcf/zxvPbaaxx88MH+XKIIAOMHd1WTnVanC2vWtH57bpdbp6GuhkTsEtQMMOMyVbLw5tJ62LUSlj0Ow48KzqCmHePoaWhiFGHmkMgY8JkIi5k7Tx7PlS+v5Mlv8zl7Rnav8ora8mkkqBnoQuJ/yLBhw8jLy/N+jBmjzplHjhzJ0KHSHG2gSYiyeBtIlde39utzVza2cry2lFURV5Lxya/79bmFf7UdPzWgjz5e3bjre9UTJpjsWQlf3QfbvwDaKp+GDaCZTz1x/MQMjhiVgt3p5p6PNvbqGt7xCBLUDHghEdSIwUXT2rbZS+psUPijGpWw8kW/P/ee2hayPOXcpgAM0hT+MyotBpMGNc0OysOHQvJocDthR5B1F975LXzzoJr7RPty7sEZ1Giaxt2nTiDMpLFoYxnfbK3o8TW807ml8mnAC8mgJjc3F13XmTp1aqCXIvykw7TusvVqVMLmj/3+vCW1NjKk8d6AFGExM8IznXlTST2M8ezWBNuAy7161BRWq+OnYYOgR83+jEqL5eLDcgH48/sbsDu7XwnZ6nSxy1MSPzpddmoGupAMasTAZ1RAlfVzA77iDj1qJKgZaMa2O4Ji7Hx147bPwe0K4Kr2slePmoJKz3TuQXr8ZLh+7mhSYqzkVzax8Pud3X5cQWUzLrdOrDWMtFgpHBnoJKgRQanD8VM/NuArrmtp101YGu8NNOM9Qc3m0gbIPlgNO2yugt3LA7wyD13v0KPG6XJ7O+EO9sqduAgLvz9BVT898uU2yutt3Xqc9+gpPSaoWlcI/5CgRgSlDmXdRlBjq/N7UmdxbQsZslMzYI3NMCqgGsBsgVHz1N9zU8/zNPyiqVKNcECD5JHsrGzC7nQTFW4e9Ds1AGdNH8rU7ASa7C4e+GRztx6zzRhkmTq4g8LBQoIaEZTadmpawBoLEQnqG34ebFlTXU2cpvrUyE7NwGNUQG0vb8DhcsPJ/4QbNsD4kwO8Mg9jlyZhGFgi2VSqXpDHZsRiMskug8mk8edTJ6Jp8PaqPazYVX3Ax3grnySfZlCQoEYEJWP+U5lR0p1gjEvw7xFUZX0jC53HUzvydO90XzFwDE2MJMYahsOlk1/RBBFxavhhsNhrPMKmErUzOT4zbn+PGHSmZCdwzgz18+Cu9zbgcnc9F6qt8kn+Pw8GEtSIoOSd/1Rvw+3W282A8l9QY3O4yG+y8mfnxehnPu235xGBo2maN1l4c/txCW4XNJYHaFXtTLsQrl0Jx6lmoxLUdO6WE8YSGxHGhuJ6Xvt5/z8TnC43+ZWqekwGWQ4OEtSIoJQaY8WkgdOtU9nUCvMfhJu2wAz/NcQrrVOJh5EWMwlRFr89jwisce2ThQG2fg5/GwXv/DaAq/Iwh0HySEgbB7QFNRMy5QW5vZQYKzfOU7tZf/tsM7XN9k7vV1TTgt3pJsJiYkhCZH8uUQSIBDUiKIWZTaTEqPLLsrpWlWMQmwEm//2TLa5tIYU6xsbZCaIDCeFj3nEJnoCBxFxoqYaC76C1IXAL20t1k917/GokOIs2FxySw5j0GGqaHfxj0dZO77OtzDPzKTVGcpIGCQlqRNDqkCzcD4rrbNwU9jrvNl0I3z7UL88p+l/7cQmA6geTOBxcdtjxVeAW5miBt66Ab/4GLoc36BqWFEWMNaBj+oKSxWzi7lMnAvDysl1sLN63MtIoh5d8msFDghoRtDqUdTdWqFEJHyzw2/MVtxuRQFym355HBJaRU1NcZ6Ou2aEShY1GfIHsLly1A9a9rrpnm8LY6M2nkaOn/TlsZAonTcrErcPd729A1zsmDW+XQZaDjgQ1ImgZOzWl9TbQ3eqH/coXwOX0y/N17FEj5dwDVVyExZtf4U0WNkYmbPsM3N1vwe9T7SufNI1NJWonSZKEu3b7SeOJsJj4qaCaD9aWdPhe206NBIaDhQQ1Imilt+8qHJ0K5nAV3DQU++X5iuts7boJy/T3gcx7BOXJuWDYYWCNU034ilcGZlF7zXySyqfuGZIQye+OHgXAfR9toqlVvelxu3Up5x6EJKgRQSuj/fGTydTW4ddPDfhqa6qk8d4gMc5zpGPshhAWDiOPUV9v+SQwi2o388nhcntfkMdLkvAB/ebIEWQnRVJab+Oxr7YDUFJvo9nuwmLWyBmkE84HIwlqRNDKaL9TA20N+Gp936tG13Wo2wOAyxovjfcGuHHecQntkkunng+zb4KJpwdmUe2On/IrmrC73MRYwxiaKKXIBxJhMXPnSRMAeGbJTgoqm7yVT7nJ0VjM8lI3WMjftAhaxk5NaZ1NBR1+bMBX3+Ik3qnm/2iySzPgGcdPW0sbVHNHgDHHwbF3Qcak/l+Q2912/JQ61nv0NE7GI3TbvAnpHDkmFbvLzT0fbpTxCIOUBDUiaBk7Nc12Fw2tTr8GNcV1LZTrCbyqzceUd6bPry+Cy/CUaMLNJprsLnbX9E/LgC41lqqScpMFEnIkn6YXNE3jrpMnEGbS+HJzOa/8WAjIIMvBRoIaEbSiwsOIi1D9Ocrq2k3rrvd9onBxbQtb9GG8nHg1HHWrz68vgkuY2eRNHt3U/gjK0QKbP4Zl/+nfBcVlwR2lcPWPYG5fzi1BTU+MSovh10cMB/CORxiVLpVPg4kENSKoZbQv655wmhqVcN5rPn+e4lr1bj1LWqkPGkaysLcJH0BNAfzvPFh0F9ib+ndBYeFqRAJtCczjpEdNj117zChSY63eX8tOzeAiQY0IahnxKsgoqbOpicp+GpVQXGcjWytjVLQN9K6n/oqBYXxnycKp49RIDlcr5H8TkHVVNLRS2diKprXl/ojui42w8IcT1Owss0ljRGp0gFck+pP03hZBLSPOmP9k8+vzFNe28Izl74xdtxumvtNW3isGrLF7D7YE1V14zHz46UnY+gmMO7F/FvPRzeBohsOuZXNdCqCqdqLC5Ud0b5wxbQjFtS2kxVmJsJgDvRzRj2SnRgQ1705NvSeo+eav8PpFUNH5ALveKqm1kentJjzEp9cWwck42imobKLF7mr7htFdeOvn/dddeNP7sPq/4GhulyQsuzS9ZTJpXHvsaM6dNSzQSxH9TIIaEdS8DfiMnZotn8DG99p6evhITU01cVqz+oWUdA8KqTFWkqPDceuwrbzdbk3uERAeoyqSSlb7fyEttdBYpr5OHt02HkGa7gnRYxLUiKCWEa+On0qNnRqjAsqHXYVdbh2TZ/SC2xoHVnmHPBhomtb5EVSYFUbOUV/3x4DLKtUBl9hMiIhr61EjlU9C9JgENSKoZcSp46dSY6fGD71qKhpaSUXNfNLk6GlQ8XYWLmno+I0xnqnd5Rv9v4h24xHsznbjEeT4SYgekyw0EdSMku6qJjutThfWBN8HNXtqW7yDLLV4CWoGEyOvpkMFFMD4k2HYId4Sa79qNx5he3kjTrdOXESYd5K4EKL7ZKdGBLXEKAvhYeqfaXl9q1+On0rqWsjESBKWfJrBZFy74ye9fSl/RHz/BDTQYTp3+6MnTZPxCEL0lAQ1IqhpmtY2A6re1nb85MOhlsW1LazSR/F1wlkwYo7PriuC3+i0WEwaVDfZqWhs7fxOblfnt/uKvRHQIGW0N6iZIPk0QvSKBDUi6LUfbOkNamy14LT75PrFtTaWuCezdOwtIHOfBpXIcDO5Kao52z55NbZ6eO0C+PtYNT7BXy56D24vhpwjvCMbpOmeEL0jQY0Iet5RCXU2iEqCGzfDHWWqrbwPGCMSJIdhcDICiA7jEkBVwe1ZBU0VsPNb/y4iPArdbGkr55adGiF6RYIaEfQ6zH/SNIjL9OmohJI6GxO0AnKsLTIiYRAyKqA27Z0srGntGvF96vd1VDS0Ut1kx6S1dTsWQvSMBDUi6HU4fvKDmppqPrbezlHvH+LJbxCDibdXzd7HTwBjPaXdWz/zT8D709Pw3HxY+aJ3MvfwlGhp7S9EL0lQI4Jeh50agA3vwusXw8oX+3xtm8OFtaUUAD08VhrvDUJG597t5Y04XXuNRcidDZYoqN8Dpet8/+R7VkLhD9BQJkdPQviABDUi6KXvvVNTtQ02vguFy/p87ZK6djOfjHJxMagMTYwkOtyM3eVmZ2VTx29aItoq4vxxBNWu8Z7RK0eCGiF6T4IaEfQyPTs1ZfU23G7dp12Fi9s33pMeNYOSyaQxxnMEtWnvZGHwX16Nrnfao0Y6CQvRexLUiKCXGmtF08Dp1qlqsvu0V01xbbvGe9JNeNAykoW37J0sDCqoyT4Yxp3s27yaxnJorQPNhC0uhx0VapdIdmqE6D0ZkyCCnsVsIjXGSnlDK6V1NlKNY6L6PeB296kSqrjWRoZnpwaZ+zRoGbsjnSYLx2bAZZ/7/kmNo6eEHLZXO3G5dRKiLN7EeCFEz4XUTs1HH33EwQcfTGRkJCkpKZx5pjRKGyw6JAvHZYFmApdd9RDpg5K6lracGglqBq2x6Z1M6/a3djOfjMqn8RkyHkGIvgiZnZq33nqLK664gvvuu49jjjkGXddZt84P1QgiKKlk4TpK61rAbIHYTLVTU1cEsem9vu6e2hY+dB3KkFGTGJM5xXcLFiHFOH7aU9tCvc1BXIRl3zu1NsKGdyB9IgyZ3vcn1d0qkE4Z7d0hGif5NEL0SUgENU6nk+uvv56//e1vXHbZZd7bx44dG8BVif6UuXdZd/xQtUvTVNmn65bU2VjiPpIzDz+YMZkpfV2mCFHxURay4iMorrOxpbSBWblJ+97piz/Bz8/ApHPgrKf7/qQHXaE+3G42PfMTIPk0QvRVSBw/rVy5kj179mAymZg2bRqZmZnMnz+fDRs2dPm41tZW6uvrO3yI0NRW1u0ZOnj+G2pUwtgTen1NXde9IxKMoEkMXmMzDnAENeVX6vOm96GlxmfPq2uat5uxDLIUom9CIqjJz88H4O677+aPf/wjH374IYmJiRx11FFUV1fv93H3338/8fHx3o/s7Oz+WrLwsbadGs9gwYj4Po9KqGtxoNkbmagVkBXe3NclihA3zhNQbC7Zz5ufIdMhbSI4bbDuTZ89b2m9jdpmB2aTxqi0GJ9dV4jBKKBBzd13342maV1+LF++HLdbdfm84447OOuss5gxYwYLFy5E0zTeeOON/V7/tttuo66uzvtRVNT3EmARGPsdlVBbBE1Vvbpmca2NqabtfGS9nYiXT+nrEkWIG3egnRpNg+kXqq/72s26ZC38fRy8dqG3P83IVBmPIERfBTSn5pprruGXv/xll/fJzc2loUH9kJkwYYL3dqvVyogRIygsLNzvY61WK1ar1TeLFQGVHt9JULPhHXjvGhhzAvzi2R5fs7i2hSwp5xYebb1qGtB1vfMqpMnnwqK7oHQtFK+GrKm9e7LKrdBQAo3l3vEIxvMLIXovoEFNSkoKKSkHTs6cMWMGVquVLVu2cMQRRwDgcDgoKCggJyfH38sUQcDYqWmyu2iwOYiNsEDCMHA0w/o3YdIv2oYPdlNJXQsZRuM96SY86I1IjcZi1mhsdbK7poXspKh97xSVpJrwbXgbVr3Uh6DG6CQ8ul0nYQlqhOirkMipiYuL48orr+RPf/oTn3/+OVu2bOGqq64C4Oyzzw7w6kR/iLaGERuhYvAyowJqyAw49Br19Yc3QEttj665p9YmPWqEl8VsYlRaN/rVTL8I0KC5d8eeQIceNTIeQQjfCYmgBuBvf/sbv/zlL7nwwguZNWsWu3btYvHixSQmJgZ6aaKfGMnCJe2PoObcDkkj1Vb+ojt7dD3VeM/zwiQjEgRteTWdjkswDD8KFqyFs5/v/RN5dmrsiaO8QzSl8kmIvguZoMZisfDQQw9RVlZGfX09ixYtYuLEiYFeluhH+0zrBrBEwqmPqq9Xvgj5X3f7esW1LWRocvwk2ozrarClwWRSR5+95XarSfPADj0Ltw7J0eGkxkr+nxB9FTJBjRCZnSULA+QeDrMuV1+/fx3Ym7p1vWI5fhJ78faq2V9Z997qi9Vgyp6oK1Jl4eZw1jWq3ZlxmbEyHkEIH5CgRoQMb1l3vW3fb869GxJzYeLpai7UAbjcOqX1LTzmPI2maVeoDsVi0DOSdXdWNmFzuLq+89cPwD8nwrInevYkjmbIOQKyD2Zjmeq7NF4qn4TwiZAYkyAEtJV1l3UW1Fhj4XfL1HFUN5Q32HC54TnTKfzhlPlgknfJAtJirSRGWahpdrC9vJG8IfFd3Hm8mt+0+hWYcweYu/njNG08XPoRABufXApI5VNPud1u7HZ7oJchfMhisWA2971PkwQ1ImR0mijcXvuAxu1SH2Hhnd61uFZdIyMuArMENMJD0zTGZsSyLL+aTSX1XQc1Y+ZDVAo0lsL2RT1uKaDrupRz94Ldbmfnzp3epqxi4EhISCAjI6NPR7ES1IiQYSQKd7pT0175JtWUb8TRcGznFVHFtS1kUsXh0UBzteo/IgSqCd6y/Gq2dJUsDCpgnvJLWPpvWPlS94Mapx3CwtlT20KDzUmYjEfoNl3XKSkpwWw2k52djamPo1JEcNB1nebmZsrLVX5aZmZmr68lQY0IGZnxaiemstFOq9OFNWw/W5WV22DPciheBRNOg8zJ+9ylpK6Fs8zfcnPVG7DoRzjtMX8uXYQQo19Ml71qDNMuVEHN1k+hoRRiMw78mIfzwGxl12HPADAqLYbwMHlx7g6n00lzczNZWVlERXXSHFGErMhI9fO9vLyctLS0Xh9Fyf8kETISoyzeH/7l9a37v+OEU1Uwo7vgvavB5djnLsW1tnYjEiRJWLQZ60na7VZQkzYOhh6k/q2tefXA92+pgcYyqCtkXZ3aeZSjp+5zuVTydnh458fKIrQZgarDse/P7O6SoEaEDE3TSI9TvTw6rYBq78SHIDJRzej54ZF9vr1HetSI/RiTHoOmQWVjKxUNXQTPhukXqc/r3zrwfSu3q89xQ1hb4QSkk3BvSPn7wOSLv1cJakRIyYxTW5T79KrZW0wanPCA+vrrB6Fia4dv76mRbsKic1HhYeQmRwMcOK8GYOIZcPI/4ZKPDnxf73iE0d5BlrJTI4TvSFAjQkqXZd17m3wujJoHrlZ4/1rVyRX4dH0JG0vqpfGe2K+x6UZeTTea8FljYOavIaKLSimDJ6hxJI6ioEo1iZTp3IPH448/zvDhw4mIiGDGjBksWbKky/t/8803zJgxg4iICEaMGMF//vOfDt9//vnn0TRtnw+brRs/H3vwPJ0pLCzklFNOITo6mpSUFK677roOZfYFBQWdru3TTz/t0dp6SoIaEVIOWNbdnqapd9DhMSqwaa6iqLqZW95cSyQ2EjRP52EJasRexvUkWXhvXZUae2Y+lVqGoeuQEmOV8QiDxGuvvcaCBQu44447WLVqFbNnz2b+/PkUFhZ2ev+dO3dy4oknMnv2bFatWsXtt9/Oddddx1tvdTzmjIuLo6SkpMNHREREt9fV3edpz+VycdJJJ9HU1MR3333H//73P9566y1uuummfe77xRdfdFjbMccc0+219YYENSKkpHfVVbgzCdlw6Sdw2RfYI5K55tVVNNicHJul8hkIj4UIeacsOhrnTRbu5rgEgA3vwpNHwoqF+7+PZ6dmq0uVrEo+zeDxj3/8g8suu4zLL7+c8ePH8/DDD5Odnc0TT3Tekfo///kPw4YN4+GHH2b8+PFcfvnl/PrXv+ahhx7qcD9N08jIyOjwYaioqCAjI4P77rvPe9uPP/5IeHg4n3/+eY+ep73PP/+cjRs38vLLLzNt2jTmzp3L3//+d55++mnq6zv+n0lOTu6wNn8neUtQI0JKRmdDLQ8kczKYw/jbZ5tZU1RLfKSF2888BI67F45Y4J+FipBmDLbcVtaI09XNJm/1e6BkjRqs2hldh1w1HmFFcyogk7n7Std1mu3OgHzout7tddrtdlasWMFxxx3X4fbjjjuOH374odPHLF26dJ/7H3/88SxfvrxDdVBjYyM5OTkMHTqUk08+mVWrVnm/l5qaynPPPcfdd9/N8uXLaWxs5IILLuB3v/ud99rdfZ6915aXl0dWVlaHx7S2trJixYoO9z311FNJS0vj8MMP580339zfH5HPSJ8aEVIy9jfU8gC+3FTGi0u2cEvY2xw18zCyhh4HQ6/1xxLFADAsKYpIi5kWh4uCqubuNceb/EtY9CcoWQ0la/ftj6RpcMrDAPz0xA9AsyQJ91GLw8WEuz4LyHNv/MvxRIV37yW0srISl8tFenp6h9vT09MpLS3t9DGlpaWd3t/pdFJZWUlmZibjxo3j+eefZ9KkSdTX1/Ovf/2Lww8/nDVr1jB69GgATjzxRK644grOP/98Zs2aRUREBA888ECPnqc7a0tMTCQ8PNz7+4mJieEf//gHhx9+OCaTiffff59zzz2XF154gQsuuKBbf269IUGNCClGUFPeYMPt1jF1Y8RBSV0LN72xhjPNS7g67H1Y+w3MPh3iet+1UgxsJpPGmIxY1hTVsrm0vntBTXQyjDsJNr4Lq16CzL91eje3W/fm6oyT46dBZe+SZV3Xuyxj7uz+7W8/5JBDOOSQQ7zfP/zww5k+fTqPPvoojzzS1srioYceIi8vj9dff53ly5fvk3NzoOfpztr2/v2kpKRwww03eL83c+ZMampq+Otf/ypBjRCGtFgrmgYOl05Vk/2ASZZOl5vrXl1FbbODjVmn4Y5Yhal4JTx3PJzzAiSNlJwa0anxnqBmS2kDJ+/blLpz0y9SQc3a1+H/27v3uKir/H/gr88MMFwdFAQkEFABURERXBu1NcN0BW8/S61MUdQyzVDD1HBXa721qWtuV3JBMy/t+ltsS7xl4q0kL+AVLyhgixiiKCABwpzvH8TUJCggMx9n5vV8POZRc+ZzeX1Cmrfnc875PP1XwPo3Xx5lNwEbB+QVV6O0ogo2SgXat+bjER6GnbUSZ98eKNu5G8rV1RVKpfKeXpmCgoJ7ejxqeXh41Lm9lZUVXFxc6txHoVCgR48euHjxol775cuXcfXqVWi1WuTm5qJr11//QDflPB4eHkhLS9NrKyoqwt27d+u9HqCmCFuzZk29nzcHjqkhk2KtVMDVsaaQaci07lXfXMSRnCI4qqywekw4FMM+ABTWwK1cIOFJ4EyygROTqaodV1O7nkyDtOsHqL2B8lvAua/1P9sZDyz2QOn+mkdydHBzhLWS/wt+GJIkwd7GSpZXYxaKs7GxQVhYGHbv3q3Xvnv3bvTq1avOfTQazT3b79q1C+Hh4bC2tq5zHyEEMjIy9G4ZVVZWYsyYMRg9ejQWLVqEiRMn4qeffnqo82g0Gpw+fRr5+fl6+6hUKoSFhdW5DwCkp6c/1HOdGoK/UWRyagcLP2ha94GL1/FBas0KrsueCYaPiwPg3gl44jfTDrmaMNUjsCkzoBQKoNuYmn8/vk7/s8ILgNDiUnlN7wzH01iWWbNmYc2aNUhMTERmZiZmzpyJK1euYMqUKQCAefPmYdy4cbrtp0yZgtzcXMyaNQuZmZlITEzEP//5T8TFxem2eeutt7Bz505cvnwZGRkZmDhxIjIyMnTHBID4+Hjcvn0bq1evxhtvvIGgoCBMnDixUedJTk5Gx44dde8HDBiATp06YezYsUhPT8eePXsQFxeHyZMno0WLmj/X69atw8aNG5GZmYnz589j+fLlWL16NaZPN+xYRt5+IpPjobbFqbzb953WXVBcjplfZEAIYEzPthjc9TfFyxOvA1m7gYJzQJsQIyQmU1TbU/O/op9RUn4XTrZ1/631HqFjamZBdf/1CwpC6KZzH71TM/OJ07kty+jRo3Hjxg28/fbbyM/PR5cuXZCSkgIfHx8AQH5+vt6aNX5+fkhJScHMmTPxwQcfwNPTE6tXr8Yzzzyj2+bWrVt46aWXcO3aNajVaoSGhmL//v34wx/+AABITU3FqlWrsHfvXl2xsX79enTt2hUfffQRXnnllQad5/bt2zh//rzuvVKpxLZt2zB16lT07t0bdnZ2eOGFF+6ZBr5o0SLk5uZCqVQiICAAiYmJBh1PAwCSaMy8NBNXXFwMtVqN27dv637AZHr+vPU01h/Oxav9OiBuYOA9n1drBcb+Mw3fXbqBjh5O2DqtN2x/f/+7qrJmQT4Vv1iofo8v2YNrxeX4/69oEObTqukHKrkGrAgEJAUibL/ApaK72DCpJ3p3cG2+sBagvLwc2dnZulV5ybzc7+fb0O9v3n4ik+PxgFWFP9ibhe8u3YC9jRLvv9D93oIGAKxsWNDQAwU2ZVxNXX7ppdE6++JSUc3aH7z9RNT8WNSQyakdU1PXQOHDl29g1Tc1XyCLhndp2FRconrUTrlu0IMtf68oB/h2MZC9X1fUFDv6AgDcW6jQysGwK6sSWSKOqSGT82tPzc967TdKKxC7OR1aATwb5oUR3b3kiEdmJKgpg4VrpSUAhz8ACs4C6po/i3lK75rjspeGyCDYU0Mmx0P3pO4KXZtWK/D6v0/gp+IKdHBzxNvDOssVj8xI7e2nc9dKGrUsPgCg+9iaf17YAbT0A7o+h2MIAsCihshQWNSQyam9/VRaUYWS8prxCQkHLiP1/HWorBT44IXuDV6+nOh+2rd2hJVCQkl5Fa428tEccAsCvHoA2qqaQekjPkFyWc2iZ7Uzq4ioebGoIZPjoLKCk21N0fJTcTmO5d7Euztrphu+NbSz7m/XRA/LxkqhG5d1Lr8Jt6BCf+mtOb4e2mqtbmwOH2RJZBgsasgk1fbWnLtWgtc2ZaBaKzA0xBOje3jLnIzMzW9vQTValxE1/7xxEQWn9qCssho2Vgr4uTo0Y0IiqsWihkxS7bia+VtPI+/Wz/B1scfi/9elUUuXEzVER91g4SYUNSonwLVmLSWPrc8CAALdnWDFxyMQGQR/s8gk1fbU3Cq7CxulAu+/0L3hK74SNULt+Jcm3X4CgOc3AZ7dsS1gEQCuJExkSCxqyCTV9tQAwPzBQejymFrGNGTOatequVx4Bz/eLGv8AVzaAy/txdYqTc3xPDiehshQWNSQSQpt6wwAiOraBmMf95E3DJk1jxa28G5lh2qtQMTKfVi6PRO3f77b6ONk/tLTw+nclmn//v0YMmQIPD09IUkStm7d2qj9z5w5g2eeeQa+vr6QJAmrVq0ySE5Tx6KGTFK/QDcceKMf/vFcKMfRkEFJkoTE6B7QtHNBZZUWn+y7jCff3YukQ9morNI26BjF5Xfxv6KaxSI588ky3blzByEhIXj//febtH9ZWRnatWuHZcuWwcPDo5nTmQ8WNWSSJEmCdyt7KBQsaMjw/N2dsHFyTySOD4e/myOKyu7ira/OYsDf92H7qfwHLsx37pdnR3mqbaG259gvSzRo0CAsWrQII0aMuOezc+fOwd7eHhs3btS1/ec//4GtrS1OnToFAOjRowfeffddPPfcc1CpVEbLbWq4QhkRUQNIkoSnOrrjj/6t8a+j/8PK3ReQc6MMr2w4jjCflngzMghhPi3r3Je3ngys8k79n0lKwNq2gdsqAGu7B29r07xT8jt27Ijly5dj6tSp6N27N6ytrTF58mQsW7YMwcHBzXouc8eihoioEayUCrzQsy2GdvNEwv7L+HT/ZRzLLcIzH32HyGAPvDGwI3x/tw5N7bOjOnLmk2Es8az/M/8BwJh///r+3Q7A3XoGfPv0ASZs+/X9qmCg7Ma92y283bSc9zF16lSkpKRg7NixsLGxQVhYGGJjY5v9POaORQ0RURM4qqww6+kAjOnZFit3XcC/j/2IlFPXsPvsT3jxcR+89pQ/Wv7yJO6zv9x+Yk8N3U9iYiICAgKgUChw+vRpjhdsApMpai5cuIDZs2fj0KFDqKysRHBwMBYtWoR+/frJHY2ILJh7C1u882xXTOjji6Up57DvwnUkHcrBlmP/w6v9OmCcxhfnr/H2k0G9ebX+zySl/vvZWffZ9nfDTGecanqmJjhx4gTu3LkDhUKBa9euwdPzPj1QVCeTKWqioqIQEBCAb7/9FnZ2dli1ahUGDx6MS5cucSQ4Ecmuo0cLrIv5Aw5cvI4lKeeQmV+MpdvP4dMD2Si/q4WttQK+Lnw8gkE0ZoyLobZ9SDdv3sT48eMRHx+Pa9euYcyYMTh+/Djs7OwevDPpmMTsp8LCQmRlZWHu3Lno2rUr/P39sWzZMpSVleHMmTNyxyMi0nnCvzW+nt4Hy0eGwKOFLQpLKwAAgR4toORsPYtVWlqKjIwMZGRkAACys7ORkZGBK1euAACmTJkCb29vzJ8/HytXroQQAnFxcbr9KysrdftXVlYiLy8PGRkZyMq6T8+TBTKJnhoXFxcEBQXhs88+Q/fu3aFSqfDJJ5/A3d0dYWFhcscjItKjVEh4NswLUcFtkHgoGxsO52JkmJfcsUhGR48e1RsuMWvWLABAdHQ0nnrqKaSkpCA9PR1WVlawsrLChg0b0KtXL0RFRSEyMhJXr15FaGiobv/ly5dj+fLl6Nu3L1JTU419OY8sSTxogYVHRF5eHoYNG4bjx49DoVDA3d0d27ZtQ7du3erdp6KiAhUVFbr3xcXF8Pb2xu3bt9GiBe9tExGZkvLycmRnZ8PPzw+2trYP3oFMyv1+vsXFxVCr1Q/8/pb19tPChQshSdJ9X0ePHoUQAlOnToWbmxsOHDiAH374AcOGDcPgwYORn59f7/GXLl0KtVqte3l7exvx6oiIiMiYZO2pKSwsRGFh4X238fX1xaFDhzBgwAAUFRXpVWj+/v6YOHEi5s6dW+e+7KkhIjIf7Kkxb83RUyPrmBpXV1e4uro+cLuyspqFkhQK/Y4lhUIBrbb+Z6+oVCouJ01ERGQhTGL2k0ajQcuWLREdHY0TJ07o1qzJzs5GVFSU3PGIiIjoEWASRY2rqyt27NiB0tJSPPXUUwgPD8fBgwfx5ZdfIiQkRO54RERE9AgwiSndABAeHo6dO3fKHYOIiGRmIpN2qZGa4+dqEj01RERESmXNIw8qKytlTkKGUDt+1trausnHMJmeGiIismxWVlawt7fH9evXYW1tfc/kETJNQgiUlZWhoKAAzs7OuuK1KVjUEBGRSZAkCW3atEF2djZyc3PljkPNzNnZ+aGf5ciihoiITIaNjQ38/f15C8rMWFtbP1QPTS0WNUREZFIUCgUX36M68YYkERERmQUWNURERGQWWNQQERGRWbCoMTW1C/sUFxfLnISIiIgaqvZ7+0EL9FlUUVNSUgIA8Pb2ljkJERERNVZJSQnUanW9n0vCgtab1mq1uHr1KpycnCBJktxxdIqLi+Ht7Y0ff/zxvo9UNze8bl63pbDUa+d187qbixACJSUl8PT0vO+iixbVU6NQKODl5SV3jHq1aNHCon4BavG6LYulXjdgudfO67Yshrru+/XQ1OJAYSIiIjILLGqIiIjILLCoeQSoVCosWLAAKpVK7ihGxevmdVsKS712Xjev29gsaqAwERERmS/21BAREZFZYFFDREREZoFFDREREZkFFjVERERkFljUyGTp0qXo0aMHnJyc4ObmhuHDh+P8+fNyxzKKjz76CF27dtUt0KTRaLB9+3a5Yxnd0qVLIUkSZsyYIXcUg1q4cCEkSdJ7eXh4yB3LKPLy8vDiiy/CxcUF9vb26NatG44dOyZ3LIPz9fW952cuSRKmTZsmdzSDqqqqwvz58+Hn5wc7Ozu0a9cOb7/9NrRardzRDK6kpAQzZsyAj48P7Ozs0KtXLxw5csToOSxqReFHyb59+zBt2jT06NEDVVVViI+Px4ABA3D27Fk4ODjIHc+gvLy8sGzZMnTo0AEAsG7dOgwbNgzp6eno3LmzzOmM48iRI0hISEDXrl3ljmIUnTt3xjfffKN7r1QqZUxjHEVFRejduzf69euH7du3w83NDZcuXYKzs7Pc0QzuyJEjqK6u1r0/ffo0nn76aYwcOVLGVIb3zjvv4OOPP8a6devQuXNnHD16FBMmTIBarUZsbKzc8Qxq0qRJOH36NNavXw9PT098/vnn6N+/P86ePYvHHnvMeEEEPRIKCgoEALFv3z65o8iiZcuWYs2aNXLHMIqSkhLh7+8vdu/eLfr27StiY2PljmRQCxYsECEhIXLHMLo5c+aIPn36yB3jkRAbGyvat28vtFqt3FEMKioqSsTExOi1jRgxQrz44osyJTKOsrIyoVQqxddff63XHhISIuLj442ahbefHhG3b98GALRq1UrmJMZVXV2NzZs3486dO9BoNHLHMYpp06YhKioK/fv3lzuK0Vy8eBGenp7w8/PDc889h8uXL8sdyeD++9//Ijw8HCNHjoSbmxtCQ0Px6aefyh3L6CorK/H5558jJibmkXqQsCH06dMHe/bswYULFwAAJ06cwMGDBxEZGSlzMsOqqqpCdXU1bG1t9drt7Oxw8OBB44YxaglFddJqtWLIkCEW9be6kydPCgcHB6FUKoVarRbbtm2TO5JRbNq0SXTp0kX8/PPPQghhET01KSkpYsuWLeLkyZO63il3d3dRWFgodzSDUqlUQqVSiXnz5onjx4+Ljz/+WNja2op169bJHc2ovvjiC6FUKkVeXp7cUQxOq9WKuXPnCkmShJWVlZAkSSxZskTuWEah0WhE3759RV5enqiqqhLr168XkiSJgIAAo+ZgUfMImDp1qvDx8RE//vij3FGMpqKiQly8eFEcOXJEzJ07V7i6uoozZ87IHcugrly5Itzc3ERGRoauzRKKmt8rLS0V7u7uYsWKFXJHMShra2uh0Wj02qZPny4ef/xxmRLJY8CAAWLw4MFyxzCKTZs2CS8vL7Fp0yZx8uRJ8dlnn4lWrVqJtWvXyh3N4LKyssQf//hHAUAolUrRo0cPMWbMGBEUFGTUHCxqZPbqq68KLy8vcfnyZbmjyCoiIkK89NJLcscwqOTkZN0vfO0LgJAkSSiVSlFVVSV3RKPp37+/mDJlitwxDKpt27Zi4sSJem0ffvih8PT0lCmR8eXk5AiFQiG2bt0qdxSj8PLyEu+//75e21//+lcRGBgoUyLjKy0tFVevXhVCCDFq1CgRGRlp1PNz9pNMhBCYPn06kpOTkZqaCj8/P7kjyUoIgYqKCrljGFRERAROnTql1zZhwgR07NgRc+bMsYgZQQBQUVGBzMxMPPHEE3JHMajevXvfs0zDhQsX4OPjI1Mi40tKSoKbmxuioqLkjmIUZWVlUCj0h6oqlUqLmNJdy8HBAQ4ODigqKsLOnTvxt7/9zajnZ1Ejk2nTpmHjxo348ssv4eTkhGvXrgEA1Go17OzsZE5nWG+++SYGDRoEb29vlJSUYPPmzUhNTcWOHTvkjmZQTk5O6NKli16bg4MDXFxc7mk3J3FxcRgyZAjatm2LgoICLFq0CMXFxYiOjpY7mkHNnDkTvXr1wpIlSzBq1Cj88MMPSEhIQEJCgtzRjEKr1SIpKQnR0dGwsrKMr5ohQ4Zg8eLFaNu2LTp37oz09HSsXLkSMTExckczuJ07d0IIgcDAQGRlZWH27NkIDAzEhAkTjBvEqP1CpAOgzldSUpLc0QwuJiZG+Pj4CBsbG9G6dWsREREhdu3aJXcsWVjCmJrRo0eLNm3aCGtra+Hp6SlGjBhh9uOnan311VeiS5cuQqVSiY4dO4qEhAS5IxnNzp07BQBx/vx5uaMYTXFxsYiNjRVt27YVtra2ol27diI+Pl5UVFTIHc3gvvjiC9GuXTthY2MjPDw8xLRp08StW7eMnkMSQgjjllFEREREzY/r1BAREZFZYFFDREREZoFFDREREZkFFjVERERkFljUEBERkVlgUUNERERmgUUNERERmQUWNUT00FJTUyFJEm7dumX0c0uSBEmS4OzsfN/tFi5ciG7duhklU+35arOtWrXKaOclsmQsaoioUZ588knMmDFDr61Xr17Iz8+HWq2WJVNSUhIuXLggy7nrExcXh/z8fHh5eckdhchiWMYDOYjIoGxsbODh4SHb+Z2dneHm5ibb+evi6OgIR0dHi3lQKdGjgD01RNRg48ePx759+/Dee+/pbq3k5OTcc/tp7dq1cHZ2xtdff43AwEDY29vj2WefxZ07d7Bu3Tr4+vqiZcuWmD59Oqqrq3XHr6ysxBtvvIHHHnsMDg4O6NmzJ1JTU5uUddmyZXB3d4eTkxMmTpyI8vJyvc+PHDmCp59+Gq6urlCr1ejbty+OHz+u+zwmJgaDBw/W26eqqgoeHh5ITEwEAGzZsgXBwcGws7ODi4sL+vfvjzt37jQpLxE9PBY1RNRg7733HjQaDSZPnoz8/Hzk5+fD29u7zm3LysqwevVqbN68GTt27EBqaipGjBiBlJQUpKSkYP369UhISMCWLVt0+0yYMAGHDh3C5s2bcfLkSYwcORJ/+tOfcPHixUbl/Ne//oUFCxZg8eLFOHr0KNq0aYMPP/xQb5uSkhJER0fjwIEDOHz4MPz9/REZGYmSkhIAwKRJk7Bjxw7k5+fr9klJSUFpaSlGjRqF/Px8PP/884iJiUFmZqbu+vg4PSIZGf0RmkRk0up6svjevXsFAFFUVCSEECIpKUkAEFlZWbptXn75ZWFvby9KSkp0bQMHDhQvv/yyEEKIrKwsIUmSyMvL0zt2RESEmDdvXr15AIjk5GS9No1GI6ZMmaLX1rNnTxESElLvcaqqqoSTk5P46quvdG2dOnUS77zzju798OHDxfjx44UQQhw7dkwAEDk5OfUeUwghfHx8xN///vf7bkNEzYM9NURkEPb29mjfvr3uvbu7O3x9feHo6KjXVlBQAAA4fvw4hBAICAjQjUdxdHTEvn37cOnSpUadOzMzExqNRq/t9+8LCgowZcoUBAQEQK1WQ61Wo7S0FFeuXNFtM2nSJCQlJem237ZtG2JiYgAAISEhiIiIQHBwMEaOHIlPP/0URUVFjcpJRM2LA4WJyCCsra313kuSVGebVqsFAGi1WiiVShw7duyewbW/LYSay/jx43H9+nWsWrUKPj4+UKlU0Gg0qKys1G0zbtw4zJ07F99//z2+//57+Pr64oknngAAKJVK7N69G9999x127dqFf/zjH4iPj0daWhr8/PyaPS8RPRh7aoioUWxsbPQG9zaX0NBQVFdXo6CgAB06dNB7NXZmVVBQEA4fPqzX9vv3Bw4cwGuvvYbIyEh07twZKpUKhYWFetu4uLhg+PDhSEpKQlJSEiZMmKD3uSRJ6N27N9566y2kp6fDxsYGycnJjcpKRM2HPTVE1Ci+vr5IS0tDTk4OHB0d0apVq2Y5bkBAAMaMGYNx48ZhxYoVCA0NRWFhIb799lsEBwcjMjKywceKjY1FdHQ0wsPD0adPH2zYsAFnzpxBu3btdNt06NAB69evR3h4OIqLizF79mzY2dndc6xJkyZh8ODBqK6uRnR0tK49LS0Ne/bswYABA+Dm5oa0tDRcv34dQUFBD/cfgoiajD01RNQocXFxUCqV6NSpE1q3bq03BuVhJSUlYdy4cXj99dcRGBiIoUOHIi0trd4ZVvUZPXo0/vKXv2DOnDkICwtDbm4uXnnlFb1tEhMTUVRUhNDQUIwdOxavvfZanWvd9O/fH23atMHAgQPh6empa2/RogX279+PyMhIBAQEYP78+VixYgUGDRrUtIsnoocmCcH5h0RkuiRJQnJyMoYPH26Q45eVlcHT0xOJiYkYMWJEo/f39fXFjBkz7lmFmYiaH3tqiMjkPf/8883+OAKtVourV6/iz3/+M9RqNYYOHdqo/ZcsWQJHR8dm7ckiovtjTw0RmbSsrCwANbORmnPWUU5ODvz8/ODl5YW1a9ciIiKiUfvfvHkTN2/eBAC0bt1atudiEVkSFjVERERkFnj7iYiIiMwCixoiIiIyCyxqiIiIyCywqCEiIiKzwKKGiIiIzAKLGiIiIjILLGqIiIjILLCoISIiIrPAooaIiIjMwv8BNCHbaoUrxtQAAAAASUVORK5CYII=", + "text/plain": [ + "<Figure size 640x480 with 1 Axes>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "for key,key_orig in zip(keys,keys_orig):\n", + " plt.plot(df_track['time'],df_track[key],label='0.05x0.05')\n", + " plt.plot(df_track_orig['time'],df_track_orig[key_orig],ls='--',label='1x1')\n", + " plt.title(key)\n", + " plt.xlabel('time [days]')\n", + " plt.ylabel('[hPa/6hrs]')\n", + " plt.legend()\n", + " plt.savefig('/home/b/b380782/CyclEx_figs/'+key+'.png')\n", + " plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Storing data" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# remove mslp\n", + "df_store = df_track.drop('mslp',axis=1)" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# set labels\n", + "for key,key_orig in zip(keys,keys_orig):\n", + " df_store = df_store.rename(columns={key:key_orig})" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "<div>\n", + "<style scoped>\n", + " .dataframe tbody tr th:only-of-type {\n", + " vertical-align: middle;\n", + " }\n", + "\n", + " .dataframe tbody tr th {\n", + " vertical-align: top;\n", + " }\n", + "\n", + " .dataframe thead th {\n", + " text-align: right;\n", + " }\n", + "</style>\n", + "<table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: right;\">\n", + " <th></th>\n", + " <th>Unnamed: 0</th>\n", + " <th>time</th>\n", + " <th>pmin</th>\n", + " <th>lon</th>\n", + " <th>lat</th>\n", + " <th>dp</th>\n", + " <th>dfi</th>\n", + " <th>ep</th>\n", + " <th>itt</th>\n", + " <th>eq1res</th>\n", + " <th>tadv</th>\n", + " <th>vmt</th>\n", + " <th>diabres</th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <th>0</th>\n", + " <td>0</td>\n", + " <td>0.00</td>\n", + " <td>1000.992554</td>\n", + " <td>63.45</td>\n", + " <td>21.85</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1</th>\n", + " <td>1</td>\n", + " <td>0.25</td>\n", + " <td>997.893372</td>\n", + " <td>24.90</td>\n", + " <td>21.70</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2</th>\n", + " <td>2</td>\n", + " <td>0.50</td>\n", + " <td>998.454346</td>\n", + " <td>21.00</td>\n", + " <td>42.75</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>3</th>\n", + " <td>3</td>\n", + " <td>0.75</td>\n", + " <td>997.009277</td>\n", + " <td>32.05</td>\n", + " <td>28.00</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>4</th>\n", + " <td>4</td>\n", + " <td>1.00</td>\n", + " <td>999.555908</td>\n", + " <td>27.65</td>\n", + " <td>42.70</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>5</th>\n", + " <td>5</td>\n", + " <td>1.25</td>\n", + " <td>997.663269</td>\n", + " <td>27.25</td>\n", + " <td>43.50</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>6</th>\n", + " <td>6</td>\n", + " <td>1.50</td>\n", + " <td>998.044556</td>\n", + " <td>31.80</td>\n", + " <td>44.90</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>7</th>\n", + " <td>7</td>\n", + " <td>1.75</td>\n", + " <td>997.646118</td>\n", + " <td>40.00</td>\n", + " <td>42.25</td>\n", + " <td>-1.439854</td>\n", + " <td>-1.298455</td>\n", + " <td>-0.001039</td>\n", + " <td>-0.132859</td>\n", + " <td>-0.007501</td>\n", + " <td>-3.161065</td>\n", + " <td>-0.070707</td>\n", + " <td>3.098913</td>\n", + " </tr>\n", + " <tr>\n", + " <th>8</th>\n", + " <td>8</td>\n", + " <td>2.00</td>\n", + " <td>996.952942</td>\n", + " <td>45.55</td>\n", + " <td>44.45</td>\n", + " <td>-1.111958</td>\n", + " <td>-3.201873</td>\n", + " <td>-0.017426</td>\n", + " <td>2.351068</td>\n", + " <td>-0.243726</td>\n", + " <td>-4.989049</td>\n", + " <td>1.071043</td>\n", + " <td>6.269072</td>\n", + " </tr>\n", + " <tr>\n", + " <th>9</th>\n", + " <td>9</td>\n", + " <td>2.25</td>\n", + " <td>995.527344</td>\n", + " <td>50.15</td>\n", + " <td>43.70</td>\n", + " <td>-2.578686</td>\n", + " <td>-1.398549</td>\n", + " <td>-0.057437</td>\n", + " <td>-1.202944</td>\n", + " <td>0.080246</td>\n", + " <td>-4.445321</td>\n", + " <td>3.817695</td>\n", + " <td>-0.575318</td>\n", + " </tr>\n", + " <tr>\n", + " <th>10</th>\n", + " <td>10</td>\n", + " <td>2.50</td>\n", + " <td>992.900330</td>\n", + " <td>52.20</td>\n", + " <td>44.45</td>\n", + " <td>-2.956397</td>\n", + " <td>-0.172485</td>\n", + " <td>-0.129516</td>\n", + " <td>-2.791819</td>\n", + " <td>0.137424</td>\n", + " <td>-4.784492</td>\n", + " <td>5.993924</td>\n", + " <td>-4.001249</td>\n", + " </tr>\n", + " <tr>\n", + " <th>11</th>\n", + " <td>11</td>\n", + " <td>2.75</td>\n", + " <td>988.245789</td>\n", + " <td>57.35</td>\n", + " <td>44.85</td>\n", + " <td>-5.800087</td>\n", + " <td>-3.933174</td>\n", + " <td>-0.189275</td>\n", + " <td>-1.771041</td>\n", + " <td>0.093405</td>\n", + " <td>-7.069056</td>\n", + " <td>6.309308</td>\n", + " <td>-1.011294</td>\n", + " </tr>\n", + " <tr>\n", + " <th>12</th>\n", + " <td>12</td>\n", + " <td>3.00</td>\n", + " <td>985.206177</td>\n", + " <td>59.70</td>\n", + " <td>45.40</td>\n", + " <td>-3.635371</td>\n", + " <td>-1.594907</td>\n", + " <td>-0.288197</td>\n", + " <td>-1.922625</td>\n", + " <td>0.170357</td>\n", + " <td>-7.716262</td>\n", + " <td>7.215748</td>\n", + " <td>-1.422113</td>\n", + " </tr>\n", + " <tr>\n", + " <th>13</th>\n", + " <td>13</td>\n", + " <td>3.25</td>\n", + " <td>980.555298</td>\n", + " <td>14.55</td>\n", + " <td>45.65</td>\n", + " <td>-6.590565</td>\n", + " <td>1.728497</td>\n", + " <td>-0.448578</td>\n", + " <td>-8.195584</td>\n", + " <td>0.3251</td>\n", + " <td>-13.919763</td>\n", + " <td>13.281652</td>\n", + " <td>-7.557469</td>\n", + " </tr>\n", + " <tr>\n", + " <th>14</th>\n", + " <td>14</td>\n", + " <td>3.50</td>\n", + " <td>974.838745</td>\n", + " <td>16.80</td>\n", + " <td>46.55</td>\n", + " <td>-6.076429</td>\n", + " <td>0.243146</td>\n", + " <td>-0.544442</td>\n", + " <td>-6.269291</td>\n", + " <td>0.494159</td>\n", + " <td>-16.537777</td>\n", + " <td>16.941552</td>\n", + " <td>-6.673063</td>\n", + " </tr>\n", + " <tr>\n", + " <th>15</th>\n", + " <td>15</td>\n", + " <td>3.75</td>\n", + " <td>969.989685</td>\n", + " <td>18.90</td>\n", + " <td>46.50</td>\n", + " <td>-3.669097</td>\n", + " <td>-3.539189</td>\n", + " <td>-0.505526</td>\n", + " <td>-0.083318</td>\n", + " <td>0.458938</td>\n", + " <td>-9.565486</td>\n", + " <td>10.467845</td>\n", + " <td>-0.985677</td>\n", + " </tr>\n", + " <tr>\n", + " <th>16</th>\n", + " <td>16</td>\n", + " <td>4.00</td>\n", + " <td>967.316772</td>\n", + " <td>23.65</td>\n", + " <td>47.70</td>\n", + " <td>-4.638983</td>\n", + " <td>-2.647679</td>\n", + " <td>-0.50931</td>\n", + " <td>-1.865762</td>\n", + " <td>0.383768</td>\n", + " <td>-15.656307</td>\n", + " <td>15.339648</td>\n", + " <td>-1.549105</td>\n", + " </tr>\n", + " <tr>\n", + " <th>17</th>\n", + " <td>17</td>\n", + " <td>4.25</td>\n", + " <td>966.005371</td>\n", + " <td>29.80</td>\n", + " <td>48.15</td>\n", + " <td>-5.70832</td>\n", + " <td>-0.41179</td>\n", + " <td>-0.465855</td>\n", + " <td>-5.45233</td>\n", + " <td>0.621658</td>\n", + " <td>-22.70552</td>\n", + " <td>18.081868</td>\n", + " <td>-0.828678</td>\n", + " </tr>\n", + " <tr>\n", + " <th>18</th>\n", + " <td>18</td>\n", + " <td>4.50</td>\n", + " <td>962.631165</td>\n", + " <td>36.00</td>\n", + " <td>48.70</td>\n", + " <td>-7.191995</td>\n", + " <td>0.826998</td>\n", + " <td>-0.565388</td>\n", + " <td>-7.894081</td>\n", + " <td>0.440473</td>\n", + " <td>-27.529888</td>\n", + " <td>22.372354</td>\n", + " <td>-2.736542</td>\n", + " </tr>\n", + " <tr>\n", + " <th>19</th>\n", + " <td>19</td>\n", + " <td>4.75</td>\n", + " <td>960.460876</td>\n", + " <td>38.80</td>\n", + " <td>49.25</td>\n", + " <td>-4.696962</td>\n", + " <td>-1.132389</td>\n", + " <td>-0.374526</td>\n", + " <td>-3.936702</td>\n", + " <td>0.746655</td>\n", + " <td>-23.046897</td>\n", + " <td>20.01478</td>\n", + " <td>-0.904582</td>\n", + " </tr>\n", + " <tr>\n", + " <th>20</th>\n", + " <td>20</td>\n", + " <td>5.00</td>\n", + " <td>959.456299</td>\n", + " <td>42.30</td>\n", + " <td>49.90</td>\n", + " <td>-3.059304</td>\n", + " <td>-0.061974</td>\n", + " <td>-0.292501</td>\n", + " <td>-3.060555</td>\n", + " <td>0.355725</td>\n", + " <td>-20.849607</td>\n", + " <td>19.665959</td>\n", + " <td>-1.876904</td>\n", + " </tr>\n", + " <tr>\n", + " <th>21</th>\n", + " <td>21</td>\n", + " <td>5.25</td>\n", + " <td>958.772339</td>\n", + " <td>47.30</td>\n", + " <td>50.25</td>\n", + " <td>-4.394081</td>\n", + " <td>-2.826512</td>\n", + " <td>-0.299641</td>\n", + " <td>-2.047927</td>\n", + " <td>0.779998</td>\n", + " <td>-23.15416</td>\n", + " <td>21.710461</td>\n", + " <td>-0.604224</td>\n", + " </tr>\n", + " <tr>\n", + " <th>22</th>\n", + " <td>22</td>\n", + " <td>5.50</td>\n", + " <td>953.865234</td>\n", + " <td>54.35</td>\n", + " <td>50.60</td>\n", + " <td>-8.597279</td>\n", + " <td>-0.780871</td>\n", + " <td>-0.321078</td>\n", + " <td>-8.047802</td>\n", + " <td>0.552474</td>\n", + " <td>-34.074131</td>\n", + " <td>29.905378</td>\n", + " <td>-3.879072</td>\n", + " </tr>\n", + " <tr>\n", + " <th>23</th>\n", + " <td>23</td>\n", + " <td>5.75</td>\n", + " <td>949.932861</td>\n", + " <td>60.85</td>\n", + " <td>50.05</td>\n", + " <td>-11.560167</td>\n", + " <td>-4.298826</td>\n", + " <td>-0.715242</td>\n", + " <td>-7.557877</td>\n", + " <td>1.011777</td>\n", + " <td>-38.546389</td>\n", + " <td>38.551975</td>\n", + " <td>-7.563468</td>\n", + " </tr>\n", + " <tr>\n", + " <th>24</th>\n", + " <td>24</td>\n", + " <td>6.00</td>\n", + " <td>942.506226</td>\n", + " <td>13.05</td>\n", + " <td>51.05</td>\n", + " <td>-9.615369</td>\n", + " <td>-0.220053</td>\n", + " <td>-0.813619</td>\n", + " <td>-9.426051</td>\n", + " <td>0.844352</td>\n", + " <td>-35.325706</td>\n", + " <td>33.826089</td>\n", + " <td>-7.926447</td>\n", + " </tr>\n", + " <tr>\n", + " <th>25</th>\n", + " <td>25</td>\n", + " <td>6.25</td>\n", + " <td>938.006470</td>\n", + " <td>14.15</td>\n", + " <td>51.65</td>\n", + " <td>-3.863569</td>\n", + " <td>-2.749285</td>\n", + " <td>-0.647558</td>\n", + " <td>-1.5678</td>\n", + " <td>1.101073</td>\n", + " <td>-21.423789</td>\n", + " <td>24.18929</td>\n", + " <td>-4.333295</td>\n", + " </tr>\n", + " <tr>\n", + " <th>26</th>\n", + " <td>26</td>\n", + " <td>6.50</td>\n", + " <td>941.526733</td>\n", + " <td>14.55</td>\n", + " <td>50.20</td>\n", + " <td>6.527158</td>\n", + " <td>1.368573</td>\n", + " <td>-0.22956</td>\n", + " <td>5.051227</td>\n", + " <td>0.336916</td>\n", + " <td>6.720546</td>\n", + " <td>-2.10338</td>\n", + " <td>0.434058</td>\n", + " </tr>\n", + " <tr>\n", + " <th>27</th>\n", + " <td>27</td>\n", + " <td>6.75</td>\n", + " <td>943.383057</td>\n", + " <td>23.35</td>\n", + " <td>53.05</td>\n", + " <td>-4.134673</td>\n", + " <td>-4.391496</td>\n", + " <td>-0.724569</td>\n", + " <td>-0.1947</td>\n", + " <td>1.176093</td>\n", + " <td>-24.947764</td>\n", + " <td>26.521653</td>\n", + " <td>-1.768596</td>\n", + " </tr>\n", + " <tr>\n", + " <th>28</th>\n", + " <td>28</td>\n", + " <td>7.00</td>\n", + " <td>944.365479</td>\n", + " <td>28.90</td>\n", + " <td>53.40</td>\n", + " <td>-4.783029</td>\n", + " <td>-2.44151</td>\n", + " <td>-0.836429</td>\n", + " <td>-2.352258</td>\n", + " <td>0.847168</td>\n", + " <td>-29.157607</td>\n", + " <td>29.891204</td>\n", + " <td>-3.085858</td>\n", + " </tr>\n", + " <tr>\n", + " <th>29</th>\n", + " <td>29</td>\n", + " <td>7.25</td>\n", + " <td>944.550171</td>\n", + " <td>34.20</td>\n", + " <td>52.85</td>\n", + " <td>-7.052899</td>\n", + " <td>-5.614992</td>\n", + " <td>-0.744046</td>\n", + " <td>-1.679874</td>\n", + " <td>0.986014</td>\n", + " <td>-28.081633</td>\n", + " <td>30.370903</td>\n", + " <td>-3.969156</td>\n", + " </tr>\n", + " <tr>\n", + " <th>30</th>\n", + " <td>30</td>\n", + " <td>7.50</td>\n", + " <td>944.470642</td>\n", + " <td>35.00</td>\n", + " <td>53.40</td>\n", + " <td>-1.37561</td>\n", + " <td>0.724622</td>\n", + " <td>-0.465745</td>\n", + " <td>-2.471496</td>\n", + " <td>0.83701</td>\n", + " <td>-16.677505</td>\n", + " <td>19.290656</td>\n", + " <td>-5.084645</td>\n", + " </tr>\n", + " <tr>\n", + " <th>31</th>\n", + " <td>31</td>\n", + " <td>7.75</td>\n", + " <td>944.843750</td>\n", + " <td>39.45</td>\n", + " <td>53.30</td>\n", + " <td>-1.844292</td>\n", + " <td>-2.734636</td>\n", + " <td>-0.416865</td>\n", + " <td>0.996857</td>\n", + " <td>0.310353</td>\n", + " <td>-16.004153</td>\n", + " <td>18.036377</td>\n", + " <td>-1.03537</td>\n", + " </tr>\n", + " <tr>\n", + " <th>32</th>\n", + " <td>32</td>\n", + " <td>8.00</td>\n", + " <td>947.720947</td>\n", + " <td>46.60</td>\n", + " <td>52.05</td>\n", + " <td>-1.915869</td>\n", + " <td>-2.208984</td>\n", + " <td>-0.414247</td>\n", + " <td>-0.077302</td>\n", + " <td>0.784663</td>\n", + " <td>-19.46762</td>\n", + " <td>20.612842</td>\n", + " <td>-1.222526</td>\n", + " </tr>\n", + " <tr>\n", + " <th>33</th>\n", + " <td>33</td>\n", + " <td>8.25</td>\n", + " <td>951.256653</td>\n", + " <td>46.00</td>\n", + " <td>53.45</td>\n", + " <td>1.707187</td>\n", + " <td>-2.883271</td>\n", + " <td>-0.26549</td>\n", + " <td>4.914998</td>\n", + " <td>-0.059051</td>\n", + " <td>-10.017431</td>\n", + " <td>14.13973</td>\n", + " <td>0.7927</td>\n", + " </tr>\n", + " <tr>\n", + " <th>34</th>\n", + " <td>34</td>\n", + " <td>8.50</td>\n", + " <td>954.463806</td>\n", + " <td>55.20</td>\n", + " <td>50.85</td>\n", + " <td>0.423549</td>\n", + " <td>0.486786</td>\n", + " <td>-0.261374</td>\n", + " <td>-0.369265</td>\n", + " <td>0.567402</td>\n", + " <td>-9.389152</td>\n", + " <td>12.846891</td>\n", + " <td>-3.827003</td>\n", + " </tr>\n", + " <tr>\n", + " <th>35</th>\n", + " <td>35</td>\n", + " <td>8.75</td>\n", + " <td>960.283997</td>\n", + " <td>54.00</td>\n", + " <td>51.25</td>\n", + " <td>4.830325</td>\n", + " <td>-1.055995</td>\n", + " <td>-0.140769</td>\n", + " <td>6.207072</td>\n", + " <td>-0.179984</td>\n", + " <td>-0.924984</td>\n", + " <td>7.761099</td>\n", + " <td>-0.629045</td>\n", + " </tr>\n", + " <tr>\n", + " <th>36</th>\n", + " <td>36</td>\n", + " <td>9.00</td>\n", + " <td>962.847351</td>\n", + " <td>23.70</td>\n", + " <td>46.70</td>\n", + " <td>-2.145798</td>\n", + " <td>-5.129966</td>\n", + " <td>-0.259678</td>\n", + " <td>2.764014</td>\n", + " <td>0.479833</td>\n", + " <td>-5.396989</td>\n", + " <td>4.961616</td>\n", + " <td>3.199387</td>\n", + " </tr>\n", + " </tbody>\n", + "</table>\n", + "</div>" + ], + "text/plain": [ + " Unnamed: 0 time pmin lon lat dp dfi \n", + "0 0 0.00 1000.992554 63.45 21.85 NaN NaN \\\n", + "1 1 0.25 997.893372 24.90 21.70 NaN NaN \n", + "2 2 0.50 998.454346 21.00 42.75 NaN NaN \n", + "3 3 0.75 997.009277 32.05 28.00 NaN NaN \n", + "4 4 1.00 999.555908 27.65 42.70 NaN NaN \n", + "5 5 1.25 997.663269 27.25 43.50 NaN NaN \n", + "6 6 1.50 998.044556 31.80 44.90 NaN NaN \n", + "7 7 1.75 997.646118 40.00 42.25 -1.439854 -1.298455 \n", + "8 8 2.00 996.952942 45.55 44.45 -1.111958 -3.201873 \n", + "9 9 2.25 995.527344 50.15 43.70 -2.578686 -1.398549 \n", + "10 10 2.50 992.900330 52.20 44.45 -2.956397 -0.172485 \n", + "11 11 2.75 988.245789 57.35 44.85 -5.800087 -3.933174 \n", + "12 12 3.00 985.206177 59.70 45.40 -3.635371 -1.594907 \n", + "13 13 3.25 980.555298 14.55 45.65 -6.590565 1.728497 \n", + "14 14 3.50 974.838745 16.80 46.55 -6.076429 0.243146 \n", + "15 15 3.75 969.989685 18.90 46.50 -3.669097 -3.539189 \n", + "16 16 4.00 967.316772 23.65 47.70 -4.638983 -2.647679 \n", + "17 17 4.25 966.005371 29.80 48.15 -5.70832 -0.41179 \n", + "18 18 4.50 962.631165 36.00 48.70 -7.191995 0.826998 \n", + "19 19 4.75 960.460876 38.80 49.25 -4.696962 -1.132389 \n", + "20 20 5.00 959.456299 42.30 49.90 -3.059304 -0.061974 \n", + "21 21 5.25 958.772339 47.30 50.25 -4.394081 -2.826512 \n", + "22 22 5.50 953.865234 54.35 50.60 -8.597279 -0.780871 \n", + "23 23 5.75 949.932861 60.85 50.05 -11.560167 -4.298826 \n", + "24 24 6.00 942.506226 13.05 51.05 -9.615369 -0.220053 \n", + "25 25 6.25 938.006470 14.15 51.65 -3.863569 -2.749285 \n", + "26 26 6.50 941.526733 14.55 50.20 6.527158 1.368573 \n", + "27 27 6.75 943.383057 23.35 53.05 -4.134673 -4.391496 \n", + "28 28 7.00 944.365479 28.90 53.40 -4.783029 -2.44151 \n", + "29 29 7.25 944.550171 34.20 52.85 -7.052899 -5.614992 \n", + "30 30 7.50 944.470642 35.00 53.40 -1.37561 0.724622 \n", + "31 31 7.75 944.843750 39.45 53.30 -1.844292 -2.734636 \n", + "32 32 8.00 947.720947 46.60 52.05 -1.915869 -2.208984 \n", + "33 33 8.25 951.256653 46.00 53.45 1.707187 -2.883271 \n", + "34 34 8.50 954.463806 55.20 50.85 0.423549 0.486786 \n", + "35 35 8.75 960.283997 54.00 51.25 4.830325 -1.055995 \n", + "36 36 9.00 962.847351 23.70 46.70 -2.145798 -5.129966 \n", + "\n", + " ep itt eq1res tadv vmt diabres \n", + "0 NaN NaN NaN NaN NaN NaN \n", + "1 NaN NaN NaN NaN NaN NaN \n", + "2 NaN NaN NaN NaN NaN NaN \n", + "3 NaN NaN NaN NaN NaN NaN \n", + "4 NaN NaN NaN NaN NaN NaN \n", + "5 NaN NaN NaN NaN NaN NaN \n", + "6 NaN NaN NaN NaN NaN NaN \n", + "7 -0.001039 -0.132859 -0.007501 -3.161065 -0.070707 3.098913 \n", + "8 -0.017426 2.351068 -0.243726 -4.989049 1.071043 6.269072 \n", + "9 -0.057437 -1.202944 0.080246 -4.445321 3.817695 -0.575318 \n", + "10 -0.129516 -2.791819 0.137424 -4.784492 5.993924 -4.001249 \n", + "11 -0.189275 -1.771041 0.093405 -7.069056 6.309308 -1.011294 \n", + "12 -0.288197 -1.922625 0.170357 -7.716262 7.215748 -1.422113 \n", + "13 -0.448578 -8.195584 0.3251 -13.919763 13.281652 -7.557469 \n", + "14 -0.544442 -6.269291 0.494159 -16.537777 16.941552 -6.673063 \n", + "15 -0.505526 -0.083318 0.458938 -9.565486 10.467845 -0.985677 \n", + "16 -0.50931 -1.865762 0.383768 -15.656307 15.339648 -1.549105 \n", + "17 -0.465855 -5.45233 0.621658 -22.70552 18.081868 -0.828678 \n", + "18 -0.565388 -7.894081 0.440473 -27.529888 22.372354 -2.736542 \n", + "19 -0.374526 -3.936702 0.746655 -23.046897 20.01478 -0.904582 \n", + "20 -0.292501 -3.060555 0.355725 -20.849607 19.665959 -1.876904 \n", + "21 -0.299641 -2.047927 0.779998 -23.15416 21.710461 -0.604224 \n", + "22 -0.321078 -8.047802 0.552474 -34.074131 29.905378 -3.879072 \n", + "23 -0.715242 -7.557877 1.011777 -38.546389 38.551975 -7.563468 \n", + "24 -0.813619 -9.426051 0.844352 -35.325706 33.826089 -7.926447 \n", + "25 -0.647558 -1.5678 1.101073 -21.423789 24.18929 -4.333295 \n", + "26 -0.22956 5.051227 0.336916 6.720546 -2.10338 0.434058 \n", + "27 -0.724569 -0.1947 1.176093 -24.947764 26.521653 -1.768596 \n", + "28 -0.836429 -2.352258 0.847168 -29.157607 29.891204 -3.085858 \n", + "29 -0.744046 -1.679874 0.986014 -28.081633 30.370903 -3.969156 \n", + "30 -0.465745 -2.471496 0.83701 -16.677505 19.290656 -5.084645 \n", + "31 -0.416865 0.996857 0.310353 -16.004153 18.036377 -1.03537 \n", + "32 -0.414247 -0.077302 0.784663 -19.46762 20.612842 -1.222526 \n", + "33 -0.26549 4.914998 -0.059051 -10.017431 14.13973 0.7927 \n", + "34 -0.261374 -0.369265 0.567402 -9.389152 12.846891 -3.827003 \n", + "35 -0.140769 6.207072 -0.179984 -0.924984 7.761099 -0.629045 \n", + "36 -0.259678 2.764014 0.479833 -5.396989 4.961616 3.199387 " + ] + }, + "execution_count": 48, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df_store" + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "#####################################################\n", + "# Write out track data\n", + "#####################################################\n", + "# File to save cyclone-associated PTE output \n", + "dataout='/work/bb1152/Module_A/A6_CyclEx/pp_data/'\n", + "\n", + "df_track.to_csv(dataout+\"/cyclone_PTE_timeseries/PTE_for_\"+exp+\"_\"+data_dt+\"_\"+data_res+\"_upper\"+str(int(p2level))+\"hPa_box\"+str(int(boxsize))+\".csv\", header=True)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### " + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "1 Python 3 (based on the module python3/2023.01)", + "language": "python", + "name": "python3_2023_01" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.10" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/Scripts_for_analysis/Check_impact_of_remapping/Cyclone_centered_plots_channel_80km_and_2km_0005_check_remap1vs025.ipynb b/Scripts_for_analysis/Check_impact_of_remapping/Cyclone_centered_plots_channel_80km_and_2km_0005_check_remap1vs025.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..6ab6b9c3efae1163e0470cb11fc7eb4f18cfbc63 --- /dev/null +++ b/Scripts_for_analysis/Check_impact_of_remapping/Cyclone_centered_plots_channel_80km_and_2km_0005_check_remap1vs025.ipynb @@ -0,0 +1,475 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "tags": [] + }, + "source": [ + "# Check location of minimum surface pressure in simulations with different resolution and remapping" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Original script written by Georgios Papavasileiou \n", + "\n", + "Modified by Ting-Chen Chen (ting-chen.chen@kit.edu) \n", + "\n", + "Added the re-centering of the domain" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import pandas as pd\n", + "import scipy as sp\n", + "import scipy.ndimage\n", + "from netCDF4 import Dataset\n", + "import matplotlib.pyplot as plt\n", + "import matplotlib.ticker as mticker\n", + "import matplotlib.patches as patches\n", + "import psutil\n", + "import datetime\n", + "import time as tm\n", + "import seaborn as sns\n", + "import cartopy.crs as ccrs\n", + "from cartopy.mpl.gridliner import LONGITUDE_FORMATTER, LATITUDE_FORMATTER\n", + "import warnings\n", + "warnings.filterwarnings(\"ignore\")" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "import xarray as xr" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Load data for maps and track data" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": {}, + "outputs": [], + "source": [ + "def load_data_and_path(exp, # in vars\n", + " dt,\n", + " data_res,\n", + " p2level,\n", + " path_data,\n", + " path_track,\n", + " dat, # inout vars\n", + " dur,\n", + " lat,\n", + " lon,\n", + " pmin):\n", + "\n", + " exp_str = exp+'_'+data_res\n", + " \n", + " if dt == 1:\n", + " data_dt = '1hrly'\n", + " elif dt == 6:\n", + " data_dt = '6hrly'\n", + " \n", + " data_file = \"PTE_map_for_\"+exp+\"_\"+data_dt+\"_\"+data_res+\"_upper\"+str(int(p2level))+\"hPa.nc\"\n", + " \n", + " # load data\n", + " ds = xr.open_dataset(path_data+data_file)\n", + " dat[exp_str] = ds\n", + " \n", + " # load track\n", + " df_track = pd.read_csv(path_track+'Track_for_'+exp+'_'+str(dt)+'hrly_'+data_res+'.csv')\n", + " dur[exp_str] = df_track['time']\n", + " lon[exp_str] = df_track['lon']\n", + " lat[exp_str] = df_track['lat']\n", + " pmin[exp_str] = df_track['pmin']\n", + " \n", + " return dat, dur, lat, lon, pmin" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": {}, + "outputs": [], + "source": [ + "exp = {\n", + " 1: 'channel_80km_0005',\n", + " 2: 'channel_2km_0005',\n", + " 3: 'channel_2km_0005'\n", + "}" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "metadata": {}, + "outputs": [], + "source": [ + "data_res = {\n", + " 1: '1x1latlon',\n", + " 2: '1x1latlon',\n", + " 3: '025x025latlon'\n", + "}" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": {}, + "outputs": [], + "source": [ + "TC_work = '/work/bb1152/Module_A/A6_CyclEx/b382037_TingChen/Task3/PTE/'\n", + "# this is indicated here specifically for the 0.25 latlon remap\n", + "CB_scratch = '/scratch/b/b380782/check_remapping_on_PTE/'+exp[3]+'/PTE_out/'" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": {}, + "outputs": [], + "source": [ + "path_data = {\n", + " 1: TC_work+'/maps/',\n", + " 2: TC_work+'/maps/',\n", + " 3: CB_scratch+'/maps/'\n", + "}" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "metadata": {}, + "outputs": [], + "source": [ + "path_track = {\n", + " 1: TC_work+'cyclone_tracks/',\n", + " 2: TC_work+'cyclone_tracks/',\n", + " 3: CB_scratch+'cyclone_tracks/'\n", + "}" + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "metadata": {}, + "outputs": [], + "source": [ + "dt = 6\n", + "p2level=50" + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "metadata": {}, + "outputs": [], + "source": [ + "# initialize dicts for data and track paths\n", + "dat = {}\n", + "dur = {}\n", + "lon = {}\n", + "lat = {}\n", + "pmin = {}\n", + "\n", + "# dict to handle data\n", + "datname = {}\n", + "\n", + "for i in range(1,4):\n", + "\n", + " datname[i] = exp[i]+'_'+data_res[i]\n", + "\n", + " dat, dur, lat, lon, pmin = load_data_and_path(exp[i],\n", + " dt,\n", + " data_res[i],\n", + " p2level,\n", + " path_data[i],\n", + " path_track[i],\n", + " dat,\n", + " dur,\n", + " lat,\n", + " lon,\n", + " pmin)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Prep for plotting" + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "3.0" + ] + }, + "execution_count": 53, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# set timestep for day 4\n", + "itimestep = 12\n", + "\n", + "day = dur[datname[1]][itimestep]\n", + "day" + ] + }, + { + "cell_type": "code", + "execution_count": 54, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# get location of pmin at spec timestep\n", + "lon_min = {}\n", + "lat_min = {}\n", + "\n", + "for i in range(1,4):\n", + " lon_min[datname[i]] = lon[datname[i]][itimestep]\n", + " lat_min[datname[i]] = lat[datname[i]][itimestep]\n", + "\n", + "# set boxsize for plotting\n", + "boxsize = 30" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Roll the data to left or right if necessary" + ] + }, + { + "cell_type": "code", + "execution_count": 55, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "rolled_eward = {}\n", + "rolled_wward = {}\n", + "\n", + "# roll data in case pmin is close to periodic boundary\n", + "for i in range(1,4):\n", + " to_roll_min = dat[datname[i]]['lon'].min().values - (lon_min[datname[i]]-boxsize/2)\n", + " to_roll_max = dat[datname[i]]['lon'].max().values - (lon_min[datname[i]]+boxsize/2)\n", + " if to_roll_min>0:\n", + " # determine positions to roll assuming regular grid spacing\n", + " dlon = dat[datname[i]]['lon'][1]-dat[datname[i]]['lon'][0]\n", + " to_roll = int(boxsize/(2*dlon))\n", + "\n", + " dat[datname[i]] = dat[datname[i]].roll(lon=to_roll)\n", + " \n", + " rolled_eward[datname[i]] = boxsize/2\n", + " rolled_wward[datname[i]] = 0.\n", + " elif to_roll_max<0:\n", + " dlon = dat[datname[i]]['lon'][1]-dat[datname[i]]['lon'][0]\n", + " to_roll = int(boxsize/(2*dlon))\n", + " \n", + " dat[datname[i]] = dat[datname[i]].roll(lon=-to_roll)\n", + " \n", + " rolled_wward[datname[i]] = -boxsize/2\n", + " rolled_eward[datname[i]] = 0.\n", + " else:\n", + " rolled_eward[datname[i]] = 0.\n", + " rolled_wward[datname[i]] = 0." + ] + }, + { + "cell_type": "code", + "execution_count": 56, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'channel_80km_0005_1x1latlon': 18.5,\n", + " 'channel_2km_0005_1x1latlon': 13.5,\n", + " 'channel_2km_0005_025x025latlon': 18.5}" + ] + }, + "execution_count": 56, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lon_min" + ] + }, + { + "cell_type": "code", + "execution_count": 57, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'channel_80km_0005_1x1latlon': 15.0,\n", + " 'channel_2km_0005_1x1latlon': 15.0,\n", + " 'channel_2km_0005_025x025latlon': 15.0}" + ] + }, + "execution_count": 57, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "rolled_eward" + ] + }, + { + "cell_type": "code", + "execution_count": 58, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'channel_80km_0005_1x1latlon': 0.0,\n", + " 'channel_2km_0005_1x1latlon': 0.0,\n", + " 'channel_2km_0005_025x025latlon': 0.0}" + ] + }, + "execution_count": 58, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "rolled_wward" + ] + }, + { + "cell_type": "code", + "execution_count": 59, + "metadata": {}, + "outputs": [], + "source": [ + "for i in range(1,4):\n", + " lon_min[datname[i]] += rolled_eward[datname[i]]\n", + " lon_min[datname[i]] += rolled_wward[datname[i]]" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "tags": [] + }, + "source": [ + "# Plotting" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "!! Attention: pcolormesh may be used in a way here, that prevents plotting the last column of the data. Double-check if planning to use this figs somewhere." + ] + }, + { + "cell_type": "code", + "execution_count": 60, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'Day 4.0')" + ] + }, + "execution_count": 60, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAIYCAYAAAB0VreVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAABkK0lEQVR4nO29f5QdV3Xn+911f/QvSdYPZFlINg5gfkycSGQ0DnlOCGBCiPGAnQmEvNhxAhORCeY5j8kitpN5MSGzwmLsALMSPGMDeQqGSTwkXjCehOBn4pfHvDwYORhjYmY8YYTBFpIsW9aPVnffH/v9cU/13afvOX1PSX27+7S+Hy2tW33qVNWpW3W/tWufffYRVQUhhJD8KFa6AYQQQs4MCjghhGQKBZwQQjKFAk4IIZlCASeEkEyhgBNCSKZQwAkhJFMo4CQrROSAiJwWkRMickxE/l8R+RURGem9LCLXi4iKyD9fpM6YiHxCRI6LyPdE5D2jbBMh9ZVuACFnwD9V1f9LRM4D8OMAPgLghwH80igOJiKbANwM4BtDqt4K4BIALwBwAYC/FpG/V9XPj6JdhNACJ9miqs+p6ucA/CyA60XkUgAQkTeKyFedJfwdEbm13EZE/rOIvNvuR0QeEZGrFznU7wH4twCeHtKkXwDwflV9VlUfA3AXgF+sel6EpEIBJ9mjql8B8F0AP+aKTqEnphsBvBHAvzACvQ/AteW2IrILwA4AfxHat4hcBmAPgH+3WBuclf58AF8zxV8D8P2VToaQClDAyVrhKQCbAUBVH1TVr6tqV1UfAfAf0HO1AMBnAVwiIpe4v68D8KeqOrdwhyJSA/BRAO9W1e6Q469zn8+ZsucArD+jsyEkAQo4WSvsAPAMAIjID4vIX4vIERF5DsCvAHgeAKjqLIB7AFzrOj5/DsAnI/v8VQCPqOrfJhz/pPvcYMo2ADhR+UwISYQCTrJHRP4JegL+JVf0aQCfA3Chqp6HnvtDzCb7APw8gCsATC8i0FcAuMZFlHwPwP8C4HYR+YOFFVX1WQAHAewyxbswvOOTkDOGUSgkW0RkA4BXoReFcreqft2tWg/gGVWdcT7s/xXAF8rtVPVvRaQL4HbErW+g1wE5bv7+cwCfAfDxSP0/BvBbIrIfwDYAv4wRRcYQAtACJ3nyn0TkBIDvAPhNAL8PXyh/FcDvuDr/B3ouk4X8MYAfAHB37CCqekxVv1f+BzAH4LiqPgcAIvLzImIt7N8G8A8Avg3g/wbwbxhCSEaJcEIHci4iIr8AYK+q/uhKt4WQM4UWODnnEJFJ9Kz0O1e6LYScDRRwck4hIj8J4AiAQ+h1dhKSLXShEEJIptACJ4SQTKGAE0JIpixrHPjzNtf04gsby3lIQgjJnocemX1aVbcuLE8ScBHZCOBjAC4FoADeDuC/AfhTABcDOADgrW40WpSLL2zgK391UZV2E0LIOU9t++PfDpWnulA+AuDzqvoy9IYHPwbgJgAPqOolAB5wfxNCCFkmhgq4Ga78cQBQ1TlVPQbgzejllID7vHo0TSSEEBIixQJ/IXpxs3/kkuR/TESmAGxT1YMA4D7PD20sIntFZL+I7D9ytLNkDSeEkHOdFAGvA/ghAHeo6ivQS5af7C5R1TtVdY+q7tm6pXaGzSSEELKQFAH/LoDvquqX3d+fQU/QD4nIdgBwn4dH00RCCCEhhgq4y8L2HRF5qSu6AsDfo5dv+XpXdj16M50QQghZJlLjwN8N4FMi0gTwLfRSdxYA7hGRdwB4AsBbRtNEQgghIZIEXFUfRm9i14VcsaStIYQQkgyH0hNCSKZQwAkhJFMo4IQQkikUcEIIyRQKOCGEZAoFnBBCMoUCTgghmUIBJ4SQTKGAE0JIplDACSEkUyjghBCSKRRwQgjJFAo4IYRkCgWcEEIyJUnAReSAiHxdRB4Wkf2u7FYRedKVPSwiV462qYQQQiypEzoAwGtU9ekFZR9S1duWskGEEELSoAuFEEIyJVXAFcAXROQhEdlrym8QkUdE5BMisim0oYjsFZH9IrL/yNHOWTeYEEJIj1QBv1xVfwjATwF4l4i8CsAdAF4EYDeAgwBuD22oqneq6h5V3bN1S20JmkwIIQRIFHBVfcp9HgZwL4DLVPWQqnZUtQvgLgCXja6ZhBBCFjJUwEVkSkTWl8sAXg/gURHZbqpdA+DR0TSREEJIiJQolG0A7hWRsv6nVfXzIvJJEdmNnn/8AIB3jqqRhBBCBhkq4Kr6LQC7AuXXjaRFhBBCkmAYISGEZAoFnBBCMoUCTgghmUIBJ4SQTKGAE0JIplDACSEkUyjghBCSKRRwQgjJlCr5wMkS0NJ2ct0uNLFeN3mfM5qeEXJSGsl1C0hy3Zqk2Q0F7QtCFoW/EEIIyRQKOCGEZAoFnBBCMoUCTgghmXJOdWKe1tnkukc6c8l1n+mmd/ad6jaT6x7rTibVm+6OJe+zkAodnhXOqynpnaPra6eT6jWQvs/zayeT626rpe/3ebW0awCw05UsP0kCLiIHAJwA0AHQVtU9IrIZwJ8CuBi9fOBvVdVnR9NMQgghC6liMrxGVXer6h73900AHlDVSwA84P4mhBCyTJzNO9+bAexzy/sAXH3WrSGEEJJMqoArgC+IyEMisteVbVPVgwDgPs8fRQMJIYSESe3EvFxVnxKR8wHcLyLfTD2AE/y9AHDRjtH0mT7ZOZFU7/HWhuR9fq99QXLdI+31yXWfnN2UXPdkJ61z8nQnvbPxeGsiuW69QodnV9NHYqayqTmdXHeilt7pvKVxKrnuyyeeTK57ceNoUr2X1tO/13XFeHJdcu6RZIGr6lPu8zCAewFcBuBQOTO9+zwc2fZOVd2jqnu2bqktTasJIYQMF3ARmRKR9eUygNcDeBTA5wBc76pdD+Czo2okIYSQQVJ8GtsA3CsiZf1Pq+rnReS/ArhHRN4B4AkAbxldMwkhhCxkqICr6rcA7AqUHwVwxSgaBQBHu+l+ylTf9t/P7Eje5z/MpPfJPjG9ObnukdNTyXWfO53m/5yZS/eBd9rpgUft2Qp9FlV84JKWZbEK9bH0LI9Tk+kDup439eLkui89L+hFHODSqXS/+j8eP5Bc95+Mpd8HZG3AoWOEEJIpFHBCCMkUCjghhGQKBZwQQjJl1WYjbGl6R9eJbtrglO/OpXc2Hji1Jbnud4+fl1z36WfSB/3odNrlKU6nP4frJ9PrVugXRC29XxBF+pibdCQ9I2Ormd6RfGBT+sCrf3jetqR6+7ddlLzPR7buTK574Lzk8XX4ycnvJdfdUKQP/iLLCy1wQgjJFAo4IYRkCgWcEEIyhQJOCCGZsmo7MddJetMaUqG3LZG5TnrirZMz6R1o3dMVzutYWhsaJ9JHQTbSZx5D87n0juTmifS6jdNp2fiaz6b3dko7fZo0LSqMRl2XPrrxuRemTZd37MKtyfv8qxekd3offeG65LpzW7+aXPet69JGmDYq/GbJ0kALnBBCMoUCTgghmUIBJ4SQTFm1TqsqM5G8qP5MUr0DY2kzpgDAwfH0wTlHJ9MHhpw+kX5e3UaaD7xKIsD66fS6jdPpfu2xY+n9EGMHjyfVk2fS6gFA92jaPQAAOtf3re969ffjXR95O37j9e/HRS/fMb/87KFjAIDx7ekzMzWOpfm2x46n3y/PttPvl4dqFybXHa+1kuteUP8vSfWumEjvhyBLQ7IFLiI1EfmqiNzn/r5VRJ4UkYfd/ytH10xClp5dr/5+/O5/ugkXvuz5uPnu/21++ed/65+tdNMISaKKC+VGAI8tKPuQqu52//9iCdtFyMh510fejnqzjnqjjpe/8iUYnxpHvVHHj7/lR1a6aYQkkSTgIrITwBsBfGy0zSFk+bjpJ9+Pr//NY5g5NYvxqV4o6Mz0LP7tu3ibkzxItcA/DOC9ABYG8N4gIo+IyCdEJD3rDyGrgAtftgMvf+Ul8+INAEWtwO7XXLqCrSIknaGdmCJyFYDDqvqQiLzarLoDwPsBqPu8HcDbA9vvBbAXAC7aMZo+00saaQMYjlWYnqql6QN5CkkbmAIA3Qo9jkdqaYM4ZmtpA0gAAJLuNes00utqkT7gpVtP6yAer6ffL8Vkesa8YrbXiXnDR/ei3uy1e/b0HKQo0Bxr4FU/eznu+MBfusoVeogTqc1U6BxO75vF7NH0AWXfOC+9c/a/TL0kqd4Pj6UPDqoSpEDipPxCLwfwJhE5AOBPALxWRO5W1UOq2lHVLoC7AFwW2lhV71TVPaq6Z+uWdFEkZNTc8vN34C8//bc4dvQkbvvfP4Uv/On/h2NHT+L3fvX/XOmmEZJEyqTGNwO4GQCcBf7rqnqtiGxX1YOu2jUAHh1VIwkZBc8eOYGP/qvP4KP/6jMAgC/9xdfwh7/1mRVuFSHpnI1P44Mishs9F8oBAO9cigYRQghJo5KAq+qDAB50y9eNoD0j5R+PpbtwGvLfk+turE0n111XS0/Q9N8n0gaGPLU+fdDRiXXpg0jmNqd/X6ePp/vLGyfS/OXN79uYvM/6dPp3UJ9N90EX6eNd0EnsipjdmP5dzW1IP34VpmfS+02+fTptJqv/USGn3O4K3TYkDofSE0JIplDACSEkUyjghBCSKRRwQgjJlFWbjXAUFBWeV7ub6QMNNhf/M71uLX1KnAvHdyTV+x9T5yfv839uSOuQAoDDJ9NneDl5Kv37mptO68ScPllhMNVs+oCb2mz6fVBU6JjTxN120sfboDORPkgMG9M7yDdOpaelnEjMXDg1gpmxyOLQAieEkEyhgBNCSKZQwAkhJFMo4IQQkinnVCfmqLionpY1EADWF+np5S6op00ptrOZvs9tY89PrntwXfroxoPT6UMGj55OGw16/HR6b99shZGFc3MVkqp1lj4bIerpHZNjU+kdk5vXpY8IftmmQ8l1f3j9t5LqXVSv0DtLlgRa4IQQkikUcEIIyRQKOCGEZAp94MvMpmIyue6ljdQBFN9N3udUMZtc90Djecl1NzfSZ9Q7NJ7mLz88kT6Q6MRcuv91rp1+27e76TZOLXFmprFG+oCX85ozyXVffl66X/sHJr+TXPeViTNZjUn69SJLAy1wQgjJlGQBF5GaiHxVRO5zf28WkftF5HH3yUmNCSFkGaligd8I4DHz900AHlDVSwA84P4mhBCyTCQJuIjsBPBGAB8zxW8GsM8t7wNw9ZK2jBBCyKKk9uZ8GMB7AdgRK9vKSY1V9aCIBFPiicheAHsB4KId7DOtwpikZe37vgpfa0uPJtctkD7gZFzS5x6bTJxWbmMjfWDK8XaFbIjd9C+sWSUdYSJVptV7/vizyXVfPJbeifmDzYPDKzkuabBzcrUy1AIXkasAHFbVh87kAKp6p6ruUdU9W7dUGAFHCCFkUVJMkcsBvElErgQwDmCDiNwN4JCIbHfW93YAh0fZUEIIIT5DLXBVvVlVd6rqxQDeBuCLqnotgM8BuN5Vux7AZ0fWSkIIIQOcTRz4BwD8hIg8DuAn3N+EEEKWiUq9iqr6IIAH3fJRAFcsfZNIVVI7OwHg+fX0DrQOjiXXTR2FCADra2mjC5+pp2UtBICWjqaDvIP0bISTRWLnbC29c3ZrLS0jJQB8f/O55LoX1NgxuRbgSExCCMkUCjghhGQKBZwQQjKFI2vOMTZIeta+5yf6qgFgXNIHnBwr0nzAO+rp+5yp4APvVLBbqgxQSq27pUj/XnfW0/s3JpgN8JyDFjghhGQKBZwQQjKFAk4IIZlCASeEkExhJ+Y5RkPSL/n5FQZ7TEp6x9zWWtq0bqe6p5P3WUsfbzMyNhfNpHrsbCRLBS1wQgjJFAo4IYRkCgWcEEIyhQJOCCGZwk5MsiSsK9KnNEvtwttC84KQRUmZUm1cRL4iIl8TkW+IyPtc+a0i8qSIPOz+Xzn65hJCCClJscBnAbxWVU+KSAPAl0TkL926D6nqbaNrHiGEkBhDBVxVFcBJ92fD/ddRNooQQshwkryMIlITkYfRm7j4flX9slt1g4g8IiKfEJFNkW33ish+Edl/5GhnaVpNCCEkTcBVtaOquwHsBHCZiFwK4A4ALwKwG8BBALdHtr1TVfeo6p6tW2pL0mhCCCEVwwhV9Rh6c2K+QVUPOWHvArgLwGVL3zxCCCExUqJQtorIRrc8AeB1AL4pIttNtWsAPDqSFhJCCAmSEoWyHcA+EamhJ/j3qOp9IvJJEdmNXofmAQDvHFkrCSGEDJAShfIIgFcEyq8bSYsIIYQkwbFuhBCSKRRwQgjJFAo4IYRkCgWcEEIyhQJOCCGZQgEnhJBMoYATQkimUMAJISRTKOCEEJIpFHBCCMkUCjghhGQKBZwQQjKFAk4IIZlCASeEkExJmdBhXES+IiJfE5FviMj7XPlmEblfRB53n8E5MQkhhIyGFAt8FsBrVXUXevNfvkFEXgngJgAPqOolAB5wfxNCCFkmhgq49jjp/my4/wrgzQD2ufJ9AK4eRQMJIYSESZlSDW46tYcAvBjAH6rql0Vkm6oeBABVPSgi50e23Qtgr/vzZG374/9tCdq9kOcBeHoE+11peF55wfPKi5zO6wWhQlHV5D24yY3vBfBuAF9S1Y1m3bOquiJ+cBHZr6p7VuLYo4TnlRc8r7xYC+dVKQpFVY8BeBDAGwAcKmemd5+Hl7pxhBBC4qREoWx1ljdEZALA6wB8E8DnAFzvql0P4LMjaiMhhJAAKT7w7QD2OT94AeAeVb1PRP4WwD0i8g4ATwB4ywjbOYw7V/DYo4TnlRc8r7zI/rwq+cAJIYSsHjgSkxBCMoUCTgghmZKVgIvIhSLy1yLymBvWf6Mrz3pY/yLndauIPCkiD7v/V650W6uwVtMwLHJeWV+vEhGpichXReQ+93fW16skcF7ZX6+sfOAuXHG7qv6diKxHb3DR1QB+EcAzqvoBEbkJwCZV/Y2Va2k1FjmvtwI4qaq3rWT7zhQREQBTqnpSRBoAvgTgRgA/jbyvV+y83oCMr1eJiLwHwB4AG1T1KhH5IDK+XiWB87oVmV+vrCxwVT2oqn/nlk8AeAzADmQ+rH+R88qatZqGYZHzyh4R2QngjQA+Zoqzvl5A9LyyJysBt4jIxQBeAeDLALxh/QCCw/pzYMF5AcANIvKIiHwix1dX99r6MHoDve5X1TVxvSLnBWR+vQB8GMB7AXRNWfbXC+HzAjK/XlkKuIisA/BnAH5NVY+vdHuWisB53QHgRehlgTwI4PaVa92ZoaodVd0NYCeAy0Tk0hVu0pIQOa+sr5eIXAXgsKo+tNJtWUoWOa+srxeQoYA7n+OfAfiUqv65K85+WH/ovFT1kBOKLoC7AFy2km08G9ZqGgZ7Xmvgel0O4E0icgDAnwB4rYjcjfyvV/C81sD1ykvAXefRxwE8pqq/b1ZlPaw/dl7lj8ZxDYBHl7ttZ8NaTcMQO6/cr5eq3qyqO1X1YgBvA/BFVb0WmV+v2Hnlfr2AxHSyq4jLAVwH4OvO/wgAtwD4AFbPsP4zIXZePyciu9HrIDsA4J0r0bizIIc0DGdC7Lw+mfn1ipH77yvGB3O/XlmFERJCCOmTlQuFEEJIHwo4IYRkCgWcEEIyhQJOCCGZQgEnhJBMoYATQkimUMAJISRTKOCEEJIpFHBCCMkUCjghhGQKBZwQQjKFAk4IIZmyrNkIn7e5phdf2FjOQxJCSPY89Mjs06q6dWH5sgr4xRc28JW/umg5D0kIIdlT2/74t0PldKEQQkimUMAJISRTKOCEEJIpFHBCCMmUJAEXkY0i8hkR+aaIPCYiPyIim0XkfhF53H1uGnVjCSGE9Em1wD8C4POq+jIAuwA8BuAmAA+o6iUAHnB/E0IIWSaGCriIbADwKgAfBwBVnVPVYwDeDGCfq7YPwNWjaSIhhJAQKRb4CwEcAfBHIvJVEfmYiEwB2KaqBwHAfZ4/wnYSQghZQIqA1wH8EIA7VPUVAE6hgrtERPaKyH4R2X/kaOcMm0kIIWQhKQL+XQDfVdUvu78/g56gHxKR7QDgPg+HNlbVO1V1j6ru2bqlthRtJoQQggQBV9XvAfiOiLzUFV0B4O8BfA7A9a7segCfHUkLCSGEBEnNhfJuAJ8SkSaAbwH4JfTE/x4ReQeAJwC8ZTRNJIQQEiJJwFX1YQB7AquuWNLWEEIISYYjMQkhJFMo4IQQkikUcEIIyRQKOCGEZAoFnBBCMoUCTgghmUIBJ4SQTKGAE0JIpizrrPRk5emiu9JNQEG7gZAlgb8kQgjJFAo4IYRkCgWcEEIyhQJOCCGZwk7MZaZKJ+KstpLqtTR9nx1oct1uhbpVKCBJ9RoV7IuGpE8WUqUuO1zJaibp7hSRAyLydRF5WET2u7JbReRJV/awiFw52qYSQgixVLHAX6OqTy8o+5Cq3raUDSKEEJIG3w8JISRTUgVcAXxBRB4Skb2m/AYReUREPiEim0bQPkIIIRFSXSiXq+pTInI+gPtF5JsA7gDwfvTE/f0Abgfw9oUbOsHfCwAX7VibfaandTa57rS2k+vOJHZOtir0NbY0rQMRAOZG9IJWS+wcbUj6dzUuaR2+ANBI7ETt7Te9w3NCGmnHl7X5OyDLT9IvVFWfcp+HAdwL4DJVPaSqHVXtArgLwGWRbe9U1T2qumfrlvQfAyGEkMUZKuAiMiUi68tlAK8H8KiIbDfVrgHw6GiaSAghJETKu9w2APeKSFn/06r6eRH5pIjsRs+FcgDAO0fVSEIIIYMMFXBV/RaAXYHy60bSolXC8e7p5LonKvi1p7vp/tdTmuZTPdVtJu+zhXQ3VktX1uXVkE56XaTXbVbY72SR7lufkrR7Zn2R3rewTtKv7ViiD56sHRhGSAghmUIBJ4SQTKGAE0JIplDACSEkU86pEQVVBtxU6Zg81k3v7DvWGa/QhrS6JzoTyfs81R1LrlulE3MUHZ6FpI9QqlXI8lilc3S8Qifm+iKtE3NDMZO8z42J+wSAzbX0/Z5XocNzXZF+z5LlhRY4IYRkCgWcEEIyhQJOCCGZQgEnhJBMOac6MWc0vfPqRDf92fZMZzK57uHO+uS6zyXu91iF45+s0Ik63UkfBTjbTb+VshrhWaR3jq5L7EQ8r5beMXlebTq57tb68eS6F1SpWzuRVG9HLf3eJksDLXBCCMkUCjghhGQKBZwQQjLlnPKBzybOcAMAJyoMeKni1z7UOm/J6x5tTSXv87lW+qCfk63072Cmk34rzbbT6rY13b7oVOizqDRAqIIPfKKeNuhnXWMueZ8bGun+8i3NdH/5juazyXVfOHY4qd4z9aPJ+3xxI/16TUj6fXiuQQucEEIyJckUEpEDAE4A6ABoq+oeEdkM4E8BXIzehA5vVdX0xzohhJCzoooF/hpV3a2qe9zfNwF4QFUvAfCA+5sQQsgycTYulDcD2OeW9wG4+qxbQwghJJnUnicF8AURUQD/XlXvBLBNVQ8CgKoeFJHzQxuKyF4AewHgoh0r22c6o+mdV8e76QNejrQ3JNd9YnZLct2DM2mdmIdn1iXv87mZCpkLZysM5JlLv7btubSBPN12+oAfbadPVYf02wBSxcSpp3V41sfSM102GumDjtZPpGfb3DaVNjgHAL41tTWp3ksnDybv89j4d5Pr/qPmqeS6W4r0Dv21QOqv7nJVfcqJ9P0i8s3UAzixvxMA9uwar/DTIYQQshhJ9oWqPuU+DwO4F8BlAA6JyHYAcJ9psUaEEEKWhKECLiJTIrK+XAbwegCPAvgcgOtdtesBfHZUjSSEEDJIigtlG4B7RaSs/2lV/byI/FcA94jIOwA8AeAto2smIYSQhQwVcFX9FoBdgfKjAK4YRaNWA9OaPvrruQpTmh2aTe/w/M7JjUn1jp5K77g5dSr9vDqn0qfdKk6n9/bVptPqNtNnCEOFpH2oMBCzEqkJGbvN9GvQrjAI8ci69FGjh8+r0PG+eWNSvQPnbU7f54b0zvzvTR1IrvtjE08m172glt75v1rhSExCCMkUCjghhGQKBZwQQjLlnMpGOCnpgz0akj7Yolsha95MJ92vfGoubSDN9HS6o7R7PH1wTuN4+nk1jqd/t83EMSTN59Kd1ZOHKwyOOZleFxUGf7Un035OWiET39z6CvfWxvS6s5vS75lTG9Puma9vTfcpP3l+elbOIxX2O1dhtqefmHwiqd75q9hXTgucEEIyhQJOCCGZQgEnhJBMoYCTc5pdr3gB7vqjf45Nm6e8ZUJy4JzqxKzSGXFB7Xhy3W2N55LrbmpuSq470Uybqq2opQ/g6FQYxSIVMvzVKwykaR5Pa8Pk0+mZ+CYfSR/A0X7yKQDArld/P373X/8z1Jt13HLDa/HyV16CerOOa1/3UvzBuz8OACgm0gdpNdYn3l8T6ZkuJzakP0zWrU/f79yG9M70uY1pHYMnn5/eQf7sC9J/B1+ukOmySkBBU9Lur5+aPJS8z3VF+jVYCmiBk3OWd33k7ag366g36nj5K1+C8alx1Bt1/PhbfmSlm0ZIEhRwcs5y00++H1//m8cwc2oW41O9sLqZ6Vn823d9bIVbRkgaFHByznLhy3bg5a+8ZF68AaCoFdj9mktXsFWEpEMBJ+cspQsF6Fnec7MtNMcaeNXPvHKFW0ZIGudUJ2YVXlzhmznRTO/kODY5mVz3VGIquplWeofUkcTpzACgc6rClGZFeoenJlbtph8eWJ/e2VfffgEA4Dev+3f4uV97A37sqlfgD2+5B7sufwl+9I278Xvv2jdfB+0KozYTR/rqiZPJu9TDT6cf//Tp5KrjFTpnJ7dvS6o38X3pGQbHnk3v8Dw2nT5q88vdpbdJx4uHkuv+08kKvflLQLJMiUgNwH4AT6rqVSJyK4BfBnDEVblFVf9i6ZtIyGh49sgJfPQ3/yM++pv/EQDwpf/8MP7wlntWuFWEpFPFAr8RwGMAbCLhD6nqbUvbJEIIISkkvW+IyE4AbwTA7nlCCFklpFrgHwbwXgALR5bcICK/gJ5r5V+q6rMLNxSRvQD2AsBFO/JxuVcJyL+0me73mtO0DGgA0ErMrNauMHihk+qABnC0k173dCfdp6n1tP12G+n3i9bSZ4NpnEz3qdZPtpLr1k7NJdWTo+kDv/RUul8bUsH/20kfJKXH0to79mR6X8y6Wvo16DbT763n6umD9fbXLkyqt308/Xrtav6X5LoX1dMG6i1GyqTGVwE4rKoLPfl3AHgRgN0ADgK4PbS9qt6pqntUdc/WLVV6pQghhCxGiolzOYA3iciVAMYBbBCRu1X12rKCiNwF4L4RtZEQQkiAoRa4qt6sqjtV9WIAbwPwRVW9VkS2m2rXAHh0RG0khBAS4Gyc0h8Ukd0AFMABAO9cigYRQghJo5KAq+qDAB50y9eNoD1ZsqlIH5zzA830DpEuDpxBaxanqJCN8B+K9CyHhxvpHTKnJtIGKLXWVZl6LL1/pX46vW7zZHrHXPNEWsd3c2v6/VI/kT44pmild0ymDjoCgG497Tp0JtK/q85E+jUoWun3bG0m/bxarbQ2PD2X3jH6XHd5AzU4lJ4QQjKFAk4IIZlCASeEkEzJZ2TNGqHKrEA/NJbmLx+X/5G8z/XFTHLd8xrpg0j+Yfx5yXWfmkobxHHyvPTBVK0N6YM9atPpdkv9dIVZiRKTfzUqJAlrTKefVxVfsaR3bwCJX0F7LP276jTT686mj9HC3Kb0foAtU2m/hY0VfgdzWN6xLrTACSEkUyjghBCSKRRwQgjJFAo4IYRkCjsxVzFbirRZZi4bS8+Yt7F4PLnu1vqJ5LoXNI8n1/2Hia1J9Z5YtzF5n09OpNdtnU6/7dsV6tZOpHVgzU2nd+DV5tLrFhXqSoUxP6loBTXppPdPY25jhYE8m9MyQgLA+VNpMyNdOHY0eZ8bi/TjA+kd1DFogRNCSKZQwAkhJFMo4IQQkikUcEIIyRR2Yq4BxiQ9C9wPNNPrnld8N7nu+lr6aLXJ2mxSval6Wj0AmKynd+Qem51IrvvMyfTMgTMTaZ1S7dn00Xoym25jSYUp8CokpQS6ifst0nfanUgfCtrclD56eMfmY8l1X7bhUFK95zcGZoqMsrVYpSMxRaQmIl8Vkfvc35tF5H4Redx9bhpdMwkhhCykigvlRgCPmb9vAvCAql4C4AH3NyGEkGUiScBFZCeANwL4mCl+M4B9bnkfgKuXtGWEEEIWJdUH/mEA7wVgp13ZpqoHAUBVD4rI+aENRWQvgL0AcNEOutxzYmc9bSARAMzqM+k7ThzEMVlhUESjwsiUw8302YPGK/jWj4+nndj0XPoAjtRZYwCg00l/odZUvzbSJ+8paul+7U3r0vtMnr8ufZDYi9cfSa67e+qJpHova6b5ygFgQ4XZuZaCoVdcRK4CcFhVHzqTA6jqnaq6R1X3bN2yvA5+QghZy6SYxJcDeJOIXIme7bRBRO4GcEhEtjvrezuAw6NsKCGEEJ+hFriq3qyqO1X1YgBvA/BFVb0WwOcAXO+qXQ/gsyNrJSGEkAHOZiDPBwD8hIg8DuAn3N+EEEKWiUq9iqr6IIAH3fJRAFcsfZPIaqGo8HzfWU8fIDSHY0n1Zrrp+3xuLH1wzkQtvWNyqp7ekZrahpPt9E7MmXb6T1Q1vWOyrenXtlGkdRBvaKYPvNo6npYJEAB2jqcPpHnJ+PeS676seTCp3osr3NvLDYfSE0JIplDACSEkUyjghBCSKRRwQgjJFA6NJEvChIwl191YpE3VdkH9ueR9zmh6x+CxCpkTz6tPJ9d9rpk2Cu90J71TrKXpg9/a3dEMlEvNCrmpwne1uZ7eiXlhM32U78X19OnPvq+e1ulbJdvnckMLnBBCMoUCTgghmUIBJ4SQTKEPnCw7m4s0f3Wrgq+6o+m+z421U8l1T3TSBwidqqf1A0x30/31VSgqTLNTQ3rmwMkizQe+sZbuA99YpNe9oIJvfVuRLmnrisS0mKsYWuCEEJIpFHBCCMkUCjghhGQKBZwQQjKFnZhk2Ukd9LOt0riUCh2T3fSseTNF+n5ndOkHfHSQnmGwUyHDYLPCFHTri5mkelPSTt7neRVMx00VOhsbcm5JWsqUauMi8hUR+ZqIfENE3ufKbxWRJ0XkYff/ytE3lxBCSEnK42oWwGtV9aSINAB8SUT+0q37kKreNrrmEUIIiTFUwFVVAZSJCxruf3rAKSGEkJGQ5IkSkZqIPIzexMX3q+qX3aobROQREfmEiGwaVSMJIYQMkuTxV9UOgN0ishHAvSJyKYA7ALwfPWv8/QBuB/D2hduKyF4AewHgoh3nVgcDOTuqZDis0uF5XuIUYQDQ0vQOzxbSOvtaFd5fWxWmSSvSq2KqQt0xSetxXCfsbFxuKoURquox9ObEfIOqHlLVjqp2AdwF4LLINneq6h5V3bN1y2jSXRJCyLlIShTKVmd5Q0QmALwOwDdFZLupdg2AR0fSQkIIIUFS3mO2A9gnIjX0BP8eVb1PRD4pIrvRc6EcAPDOkbWSEELIAClRKI8AeEWg/LqRtIiQM6CKv3yigv+3Ci1NG8jSRroPvgp1pLso6YNeG3AoPSGEZAoFnBBCMoUCTgghmUIBJ4SQTGFPBiFLRGrHYIM/O7JE0AInhJBMoYATQkimUMAJISRTKOCEEJIpFHBCCMkUCjghhGQKBZwQQjKFAk4IIZkivSkvl+lgIkcAfHsEu34egKdHsN+VhueVFzyvvMjpvF6gqlsXFi6rgI8KEdmvqntWuh1LDc8rL3heebEWzosuFEIIyRQKOCGEZMpaEfA7V7oBI4LnlRc8r7zI/rzWhA+cEELORdaKBU4IIeccFHBCCMmUrARcRD4hIodF5FFTdquIPCkiD7v/V65kG88EEblQRP5aRB4TkW+IyI2ufLOI3C8ij7vPTSvd1ioscl5ZXzMRGReRr4jI19x5vc+V5369YueV9fUqEZGaiHxVRO5zf2d9vYDMfOAi8ioAJwH8sape6spuBXBSVW9bybadDSKyHcB2Vf07EVkP4CEAVwP4RQDPqOoHROQmAJtU9TdWrqXVWOS83oqMr5mICIApVT0pIg0AXwJwI4CfRt7XK3Zeb0DG16tERN4DYA+ADap6lYh8EBlfLyAzC1xV/wbAMyvdjqVGVQ+q6t+55RMAHgOwA8CbAexz1fahJ37ZsMh5ZY32OOn+bLj/ivyvV+y8skdEdgJ4I4CPmeKsrxeQmYAvwg0i8ohzsWT3GmQRkYsBvALAlwFsU9WDQE8MAZy/gk07KxacF5D5NXOv4w8DOAzgflVdE9crcl5A5tcLwIcBvBdA15Rlf73WgoDfAeBFAHYDOAjg9hVtzVkgIusA/BmAX1PV4yvdnqUicF7ZXzNV7ajqbgA7AVwmIpeucJOWhMh5ZX29ROQqAIdV9aGVbstSk72Aq+ohd9N1AdwF4LKVbtOZ4HyOfwbgU6r65674kPMjl/7kwyvVvjMldF5r5ZoBgKoeA/Agen7i7K9XiT2vNXC9LgfwJhE5AOBPALxWRO7GGrhe2Qt4eQEc1wB4NFZ3teI6jz4O4DFV/X2z6nMArnfL1wP47HK37WyInVfu10xEtorIRrc8AeB1AL6J/K9X8Lxyv16qerOq7lTViwG8DcAXVfVaZH69gPyiUP4DgFejlwbyEIDfdn/vRq+z5QCAd5Z+rVwQkR8F8P8A+Dr6Prpb0PMX3wPgIgBPAHiLqmbTibvIef0cMr5mIvKD6HV61dAzgu5R1d8RkS3I+3rFzuuTyPh6WUTk1QB+3UWhZH29gMwEnBBCSJ/sXSiEEHKuQgEnhJBMoYATQkimUMAJISRTKOCEEJIpFHBCCMkUCjghhGQKBZwQQjKFAk4IIZmSJOAislFEPiMi33Szq/zIWpjNghBCcibVAv8IgM+r6ssA7EIvMf9NAB5Q1UsAPOD+JoQQskwMzYUiIhsAfA3AC9VUFpH/BuDVqnrQZSt7UFVfOtLWEkIImaeeUOeFAI4A+CMR2YXevIY3YsFsFiIydDaL522u6cUXNs6mvYQQcs7x0COzT6vq1oXlKQJeB/BDAN6tql8WkY+ggrtERPYC2AsAF+2o4yt/dVHqpoQQQgDUtj/+7VB5ig/8uwC+a+bG+wx6gp40m4Wq3qmqe1R1z9YtteotJ4QQEmSogKvq9wB8R0RK//YVAP4ea2A2C0IIyZkUFwoAvBvAp0SkCeBbAH4JbsYOEXkH3GwWo2kiIYSQEEkCrqoPA9gTWHXFkraGEEJIMhyJSQghmUIBJ4SQTKGAE0JIplDACSEkUyjghBCSKRRwQgjJFAo4IYRkCgWcEEIyhQJOCCGZQgEnhJBMoYATQkimUMAJISRTKOCEEJIpFHBCCMkUCjghhGRKkoCLyAER+bqIPCwi+13ZrSLypCt7WESuHG1TCSGEWFJn5AGA16jq0wvKPqSqty1lgwghhKRBFwohhGRKqoArgC+IyEMisteU3yAij4jIJ0RkU2hDEdkrIvtFZP+Ro52zbjAhhJAeqQJ+uar+EICfAvAuEXkVgDsAvAjAbgAHAdwe2lBV71TVPaq6Z+uW2hI0mRBCCJA+qfFT7vOwiNwL4DJV/ZtyvYjcBeC+0TRx5eiiO7ROR4fXSaUm6R6tgt4vQs55hgq4iEwBKFT1hFt+PYDfEZHtqnrQVbsGwKMjbOeSERPlUoi70DPeR3i/g/uriQTrtnVxF5Mv2oN1C4T3ax8MFH5C1g4pFvg2APdKT3TqAD6tqp8XkU+KyG70/OMHALxzVI2sghXXkHVsBTokxFZwU8S8k1BnIa0Km9Q8UQ4/OELCbR8S9sFgBTy8HcWekFwYKuCq+i0AuwLl142kRYQQQpKoEge+KghbzV2zftDCTrGqS0s6yeoOuEX8Np49pe3biqwPuWGsRW2t/JgVX9antU5InqxaAY+5QrrzQmvXLy7QHYTXh4TYim+Ke6QzpEoVMa8igbVA22oRH3hsv/PCbXZlhboWaL2/Xkz5oNhT4AkZLatKwK0ot4wlGBJrT4iHCHSKKJdCHBPcTkQcuxX82bF9hAgJtIcV3cBuY9t7Muq+n1qkWb5AD1s/KOyFmjIJi31DasFyQshwVkzA++6NsPvDF/BBsY5Z0iGxtlayv74vKiEhtuvjAr64KFcR7Sp4Ah1oeyFhAQ9a7hGX0LAHQ2G2sw+BeQHHYFmvvL/cMNe5FHkKPCFpLKuAKwaFu23C4awQtxAW9pBVPRcV8J4gWHEeJspWkP26YfFYKQEfRkyULSGR99wmnh9dB7axYm6PVwp/mtgbn7yr0jCul5q2++ut8Dthp8CTcxne8YQQkinLbIHrvGuktMRbxoXS8Vwo1gLHQJ1WxKoOWdv++sUt7Oh6jVjggWdgzOqO7WPU1CTi2Xff1VB/O4DCXQW7L8/Ctpa5u3bx9WErvrTcfbcKTF1jgbs3N+tnb0RcL+UyLXSy1lh2H/hC4Y6Jdstzm9jty7oxIbahdIUr6/9whwm0FeQ0AS8fEuH1oe1Coj9SvCiTxeNiYmJfujqKiGsmJOwN6bs/fBeLFfDuQJ2Y2DcCD4lGxB3TMK65hrsG1jVTR1/gGS1DcmUFLHAn4IEY7ZYn5v3tfFEetKpbakV3UKzntP9jHSbQ3Yjf2wqxt4+ADzzuLw9Z6ysnGKEwQUsREHNPcK0PPfCQaIr1X1sfeFhoy/Ko2JsHfCNQ1wp8w9RtuvKGJ/B2eXFhp6iT1cqyd2IuFO6YaMcs7FKs58wPzVrVIbH2t++vDwl0TJz9B8PgA8PWjVnYw1wo3RXq8LQUQ9wpMQu9CAi7ZxFba9wKrWell1a1EXUN120FrPWmHYTklff2OyaDog4MF3Yr6g1ZVZG35Bxn2QV8oXDHRHvOiGDIwrZlLa2b9YNi3UGkbkCgY+u7UWtcBsosMfdNaH2IkNU+SkJWNxAZ1BMNVRz0l9sHwzAx94V/0EIH+pZ7zCfvHWPepdPf17i3bNtpRV4G9jVmomKsn31MGiBkueG7ISGEZMry+8AXWN4pVrd1e5QukpZ5rY25RUpr2lrSvrU+eIyQdb2wPGRVx10sEixPXn+GFviZumNiLpSQ6yRurQ/uw9a1lrBnYSPgQolax52B/TalE6nbHjyu8b2PF32rumk7P6VsT/98xqWfnWbc1C2jq8aMi4XuFjJqllfAdVC4rWjPGHGNuUhCAt6JiH25XawT0xN+LQbLKoiy3c4yzN3SjfjZQ+u98govT6GO1qqUro5YFMvQQUGGRhEW8HLZlsWEPyT2w1wzzUjdVrcvylbYm4H2zJj2WNfLlNufHYBmBZ5+dDIKltkClwHhriLaQF+4o+u9/dW8z17dwfVAWIg9f3q3v13IMo8JcTfgR/d86xq2wIeNEu1G3hRGxbDOzZA1Hhu16Yly0V+uO6H0fOAVxN6Ksi0vGS9awfXjMhcsLy33cW+//WUr5i1nmVvf+qz38OlvN+mEnaJOzpaku0ZEDgA4gd40MG1V3SMimwH8KYCL0ZvQ4a2q+uxi+1H0hbul/mdvud+cGU+gB0V3RpsDZQuXy+1i67sByz1klQ9uN9hRmiLEZZ2Y+HYC+4hb4IvvN4VhaQBinZThuosLuH0A1ItBN4XdR6gMAMaKQYEuPEvb7NfUnS/rWtE2rpCify/5wt5yZW1TtzWwHgBaLuRwypTFrHW4tjVibygUc5JIlTvlNar6tPn7JgAPqOoHROQm9/dvLLYDRV+wZ+bFdbhoz2i/h7+sP9O1ZWGBLrfz1ndjFrgsuq92N2yZl9u1PeEPi3k7IMrdiDulFOhuxFq39AV8uNiHtotRScCHWOh1a2l7VvegWNvj1iVsjdcDAm6t/LGajUEf3K8V6sna7PyytbbHnFjbePZJtdZ6v3xDcRoA0PJ84P31Vtg7zgJvwLhxzHcyaVwvZXQLY9FJiLN51L8ZwKvd8j4AD2KogIuxdJ0QJ4i2L9b1gfWzQ8Q8JvZtT9gHXShWtLueO2VQ+Nsa9pe3AwLd7i6+3mLL7HYWDW0XSR8QqlsFuy8riBIQ+5gFXjNi1ax1gnVKxut9kQuJvS2z51y0wmJeMmEs6ZOdsfnlyaIv0JO13vKYqXuiM2Hq9oV/pujdYxtqM/22G9eMFfZTOuiamTXhiafMdhvdd7Wu6LeRYk5KUu8EBfAFEXlIRPa6sm3lpMbu8/zQhiKyV0T2i8j+Y88sPmkvIYSQdFIt8MtV9SkROR/A/SLyzdQDqOqdAO4EgJf94LiWHY79z+FW92yg3Her9C1izxp3lrLdvtUN+7VLa9v65K0F3h5SHrOUrVVYltv11iK2lv389rZz1NtuoKp3LI24XhKyzAYZZrkXxeI7tla3jRCx5aXFbq35Uy3jQjHWetO5U6wF743INd9laaXbuqdrrYH1ADBb79+P092eb9z63q0PfCbYYd4vmzIWut+BWlrg1l/eX7buli4Go1smjTU/IX3LnJx7JAm4qj7lPg+LyL0ALgNwSES2q+pBEdkO4PDQ/cBEkaDsjEwXbVvfCrW3XcDHbcus+HrlWgys90U7sqyDotyJuEjKcvVEORxrXoqRFdyud4xBsbbCZ+taafWEOKS5VqdtqpNAe+y0nGIFPLDfWs0IdUTsrZiH6lofeM2V12vWL97fvh3o0LWulGatf880zX7tdqVLx25nXS8Ttb6rY9btz7pgThTj88tWzMs6tqxjEmrZ5T5ts9740801Zwz6ucfQqywiUwAKVT3hll8P4HcAfA7A9QA+4D4/O2xfqjLgl7YWyzDRBvrCPd1pBreb7QyGJVqhnouIeWmxxfzTcx3TSRmo04kIeCdgQXcD4gsA7c7i/nC1Ym/qIlTXU+3wPob6wz2dDdXVRVfbB0rbCLGnTwE/uifw9iFh67pP+2CwDwDxrPze8qwRtbrZzgr0jLl/Qpb7uLHcx2v9e3CdE/NpI+rWcj9pxHxT/RSABfeGmf6oVZg3MddM23E+48WlG8vdPIjWlQ8fDvFf06Q8prcBuFd65lYdwKdV9fMi8l8B3CMi7wDwBIC3DNuRQkxo32CIX8ydYq3tUrhjon26O1juCbEV886gtR0Tauve8MsDAt4JW8ohC9wKatdsNy/AMfG1HZqBuhbtWKu7vyyh7aqI+rCqRoi7EVH2ngHlKdVsoRX+gJVv9lWY7Qpr8dcC0S21sNukNtcdqGMFfqzev7/GrfC78qa1uut9C3udiXQp37SmzQPAWu7rXUQLALRqvbZNm+iXSdPJOWO2a3lW+qyra6JtTLgkO0LXBkMFXFW/BWBXoPwogCuqHKwXRuj7wGNhe144YMC1Mky0AWCm0yu3/lBrYdvylhPuVqAM8K0lz1Iu/dqdsAUeEmiT6XS4KNv1Roi9sOuyTsTqLroSLJfQdpYz9JfPi+oQvzgQfl6oFfCarRvYn9m+bbaTuhX+rvvsl82Zr9qKfS2w3Kgb37v1w5sImWkn4JP1vkXs3Xf1Qddd6WMHfAG3wj7dHXPr+w8AG+nSghF7I/Itt7+Wcfl0zWwnjGpZG/DKEUJIpiz7UPr5qcvcZ2xoezS2uzvo1w5Z3b3lQRfKTNscz1pI8xa48W93ioH1gO/DnvdrdyKukE7AXdINu1DEujrKchN5KRq2wOe386zryLK14odFdYYM3pibRgbrqJ3WPuzF8fdRfm22bi3sepnfh31pMRa23U6dT9kri1jrbRsV48pbjf4XNWct8Mbg/WPvxem2uRcb/eXJes86njD+9CnjYrGW+bSzlNcbq9vrKyrMcq1vjZcuyBntb9cx1riltMZpiefH8k+ptiDnyLAQwF55fWDZllnRngt0TFq/dki0bR1ftMNuESvQnbZzi3QirhCvvPcp7f76oCvElEs74LNeWN4JrLfC7x2jvzjf5xVxvVjC/nJbIVAe62eNLJd1bF6w2EMgtF81E2jaIJRSrI2t4It53S6ba+vKO8bf0rai3TbZCF15vdY/yJhxvXjC7twt1od+otb3na9v9EW3jHppmePa8EVPwD1h74m5zRMEnJpf6sKODO2d56ZiEiQvln9ChwVPeS9vSCRlqx/a50Q5Eu7nCXjArz1nLPB2wNputcOdlZ122KqeF3Mr1J2wVV0ue+Jr/dOepdz7LAJC3dvOLLcDZbG6ncFliVjuIYs+Vjck0J64FoPrF1JeJiu00fmYi8H9+sJvlusu1YAn4OYaNqyAm/aUwm5FvW1GfrZMebN3cOtPnzXLMw0zErPes7AnGiYk0fjOreW+odkTczs+YaLW91/P1sMC3qoNTmZiU/P6Sdt61n/N+NM3FP0Rp2T1smqDRWOTD5di3E2I0S4fCNbSDom2XY6Jdjci4KXVrNaqbkU6Dd12RSsiygH3Rkx87dvwfN2AOANAEdtHO1RmXAuB7TwXSmRUUCmOMavbG69kyxuD23nnZGPi3Z0bFfDaYF3zgrdgvXn4WgFv+O0CAJ0zyw1z/7gBR9Yd0zIunVazf8BavVd3zoj6aeNisekDSoNkum5CFk10izVuZuqDbsdYPvmWiXQpo3NqmDU1KOY5sKwCLhg+kW4qwxIx2TqxhFCh2O1uxJIOibYtF0+UI77qdsACDwiq3U5sWUTAi4CAF7HtjECXdWzd2qwG64qLYPAs4o6NFjHfSbnoibZZ71m/pk69bG/4IWKZF3vPB26aNmaOUYp9P0gD1svltaGvkyicWHvrrZi3rOUeaI8Rc2sMdJyAe5EpTRPe2jAC7t4IZ5tzZr11E/a3W28aGspQ6fUl1Yf99CnmOcBeC0IIyZRld6HMpwx1vgWb79mbPithMoAQwRGMmrIs3ufCZfteH/Rxx2KtrbXtrPRAami3r8HyqAXeHlwOuVUAoNYatLoBoJjTgfW10yY7oCmXjrtu7cgXaMbVz/unje/Ys7oj1niwAzXSMVnuI2bN2/MvDU/vuObO75jvRM13WMn1Mt8es9741rvmDa10vXQaEX/6mLGa24Md8bZDdC6QGdMSm4zbEpr822fQGqclvjpYZheKmmmqAvMURpbtBAA19ypvy2Bu6FAOay9nxzDPSyxXSGy0YpmHJDRAZsF2ZZ1KHYwRv3bInWIFt/DWG4E2LpL6tJs9ftY8RGdMHu3Z/rK03A67kQdoYcTaCbeaV3017oKaGVAiAT+61kzfQ9PsVwYF04pot9lfLmx5IyCuZrnwOi4HHwghfzqw0F0yuN62xwp4Kex2vRf9YgeKlWIfCWn1oqMC+eS9+WDNMbyJRIa8iPtuz3KSi76oM6HWyrGsAl5A53MkzxWD2dtsDgg/vNDmp3DTURnl8yYIMMMcyzodG9trbnhf2Et1DVuVfujbYPycRqoOi+QIRZ7YZU+oI8vlfj1f9lzY6rbl9eneCk+0T/V/mGKWMed8sG2zM9PxBiPQUpabMm1a5VvcirdiVsxaMTP7c8Jmo3TUiqQVq3kBt+vDlrtn5ZeibAXciq4XwuhvM7DctMuDD5/OuLHWbd+L8+W37IheL59Nf7+hvDteuoimtdYXt8zt3KdWwDuYBuAL+Hnmhl5nUgmQ0bO8FrjofBL7OZeEp2XMHxsGZZPoj5lY13Lwg52MIZY1sEw/atdbN43NZFf+KOxQam+Yu5eMyap1ICnHEGs8OsgmIPZFrGPS6/Ac7GC0desz1sI2bzNOwD3RPn6y39yT/bhhnTM9gGVd2xFmIirmBXy8b5mJ9petQIux8vv7tULdXy6s9e9cDp6bxjxwi8agFW/Xe52RsQ7WUpStaJtnmhX28hbz99tf37EC7r4eM4+Ed590vDBVJ/Z2vbnXrHMj5P7zJrmwE2x4y+5NTMKibSeDDk260THD/BvSP2km0ho9K2CB9wR4zl3olrngU0XYn9cyo9RKy7xtBN5a7nZwxPwMOOb1vlMLWx5l4iL7IygSxHy4T8ZULXcXHSVpKpflSaMrB4/lRZDYZZNfu5jrfVcyZxy/Rqi1FR65169gzT/ToPJ7aw2KMwBIzSqbaXwp/GZf3otPq1+3FGOxVrl1sZh4finF3oi6tdzRDV/P0n0RGyBk3TvzMezm4e752c1DoD0urg399SYVCsSMp5lPhmbbZRLE2ECguYAP3GZlLBAW8BDe3KCBXOaWphku3DSW+TqzD1rmo4FRKIQQkinLboFPuqd5+RoY60yJjcrsOgvanxk+/BzqBo4RizIZFjPeNaaOzYpXWuMS852H8okM8XsD4cGKMT97391i22U3tJ2Gdn/OijUuC4zZLHWmbmfQzBeb2Nu6lco3Hu97sNb6kCQs1lVil83+ys5Pe57ed2ab5t40rLvF+07s91YbPA/PsjdWvOe+KcT7BPxokq5Zrp92fu1JY5VP2HPDwLLYMQumU9p+lTZ1cdkvHY2qMoTu/YbpN2oMcaHUvMiw6fmlOesGdbnYOdHE0pL8bYpIDcB+AE+q6lUiciuAXwZwxFW5RVX/YrF9FFBMuZuh61wp3uwj9vXUzk7jTdDrhryb1/Bu5EUiNFuO13kVmfh3vsx2HNnXaDuop9y19Yd6gmDKy0662LByuxx6w7V6GBiB6A088tZH/L1jblQrbJ5oQ7Pvw5Sy89K6Sry22e/ELduJCWpFuG4tcO3sens8q1ZOXK34+qJs3D8uZ4nY/doHg93OuNvm22YF3O7DE3An9mPGZ98y96hZLpzrRYwT3Y8aMm48dxrdfncEOuNG+KeMO2XGiPxUb3kmMkmINwo5MC2gzYFetwLuxNpL96z9+6fjXc9+f8q49FICnF9bB7J0VHkc3gjgMQAbTNmHVPW21B0UIph0P4COu2M76Dv/7DRgNv+xtcDL7IWTNpeDtdaNQJUdnSmjNkN4Yu9Z4+aH64TA+jth/K+egJcjAu2Q8EjukXnjxW5vLbNATLR4Gfb6660lGAqNLOyPznYwtqx550Swba3jxf2oVpw94RvmuLOWti0PWeMmoZS/bHy1pS8/EP3yg5e/BL/yu2/FLT/zIVz4ku341d97G275mY/g2cPH/beK8rA28qbZNOW9L1y9YZvmcGZf4q6XDd+0nZjWP1+fdf04ZmRpx/Rcmu4htNbZB40TZW8CE7OPCdMfEMjbHvORl7+pVuNE/7jmJo91fjbklPvsW+hMnnX2JAm4iOwE8EYA/xrAe870YAX6E7KWk7V2TadIx/TkePlPzA2yPvCjilFFuEOvkaGwLABQk1607B/0jtWwnZ/GApovTmhXacTagSWRquURvL646LkHQsZs557X0WciS9oBAe8MEfCKSHf+vX++zAq/5+opxXrW9P4ZC11PzwyUqxX1Tge7fvwf4X2f/FXUmzW89w9+ES//4UtQb9bws++6An/w7k/Md7YWJpoGpsNXAiGVYtpQmO/KxruXHcztKfvzCz9k58XV8xWFI11MNlk03O/Ey6hpvVjm9ignkOh4M0L1K9jBQqfcQ2vaZAA9v9kXc4sddNefyLnfyAb614idnGdGqgX+YQDvBbB+QfkNIvIL6LlW/qWqPrvYTgoU/Wmdymtru+K7xho3N2mnGBQd6zaJCfUwAffcNMERnDHf+WCdYet7bQ4RbuP8aEZruNqgkOBmYR+MRuPZnZVmftmFCYPzBga1ytd+G91iTcxAayLJrvxXEFPurFBvv7ZCaBSo3ZeNprFi7sq13V+vnQ7+xW3Xod6sod6o4+U/fAnGp3pC/eNveSX+4N2fQJn/tztjwiwbNrjbCHRn8OHjfdWB1666rWselp3xYmDZ9m/Y+6BmDRr7dZe78N587Jtqv3hOer/J9pzN2mlcJG1rxQ8mk7NYH7mNXikncB43BptdnjTXmXnJ00mZ1PgqAIdV9SERebVZdQeA96N327wfwO0A3h7Yfi+AvQBw0Y76/MUphdxO8zRnL2gk+XzJsNFjAM6oi9a+OsYSX9lY3xJ/QIUtN8I+P5mFWW8NL/NjnP+t2dO0dc3XM59HO7KveMpVJ5jdsDgUNuTQWWc2DNH6cCXUKeiNuDTn4QmXWVFefusK8p5gZrkVeDjY9TYuvVwwLh1RxS1X/xu89+O/gpdf9uJ58Z6dnsUfvOdu1KbM631EBD3/fXns2APFvkk4F0phR696w/zNcmswxt/iZ2gc9J2beSD8B7kNGHD77hrfuv31Gff7vEB7U8sZI2zSTFIxaXw95ZRxU2Y+z42FdcP09zcmFPBUUr6pywG8SUQOAPgTAK8VkbtV9ZCqdlS1C+AuAJeFNlbVO1V1j6ru2bqlFqpCyIpw4Uuej5f/kxdjfNIMOKoV2PXjL1vBVhGSTsqkxjcDuBkAnAX+66p6rYhsV9WDrto1AB6tcuDSEp8wo7U6tjOla0YMBjpZbATJ0BS15ixjnTOdgAulHbG6JbCPWIiWDZjT+c9w7JtNcTpf7kVA9FcXAWMqllrVy/thOsj66VvN+oata/zhzrAS05nmD+cftKpjaWE9a91OPuzaZqMwYvO+zdfwRsWaa2Q7PF2fxUKXzq/+/i+g7ob4z56egxSC5lgDP3b1Zfjov/pz39oOHCO4bK1yO2DJ+u/L/Vq/eMvew3awjJsW0HQ6egnS7CFOL57iwTYH3huaezP07hnbd9OvO+vcKadaZkJmMxmFN/OQGWpa+tmPd/u+7lPa79CcVhtyyBGcqZxNUOYHRWQ3erp0AMA7z2QnNi7UBhjVzLt8TU1HJ/w4ciAcm9ordxn0IqJtO0dDPr0qnaD2GFbgrRaVvzs/jty8RrcGBcHru4pNGVYKsc2qFxl2b/Nz9POI2wgIBJedmxSFl4nRdswNlnsC3wm7TWy0TFFm9LOuJOv2MN9VUQqmjZqx/mkbfhjylwO45Zc+jp+74Qr82E/twh/+9p9j1ytfjB/9qR/E7/3ap4F1UwgSE/D5OPBwWKyfrXHxF18NRb8EYsOBBQ/O0EhM2yFq86FbjSzreKNTjfvQjmod7+3EuhStj/ykyRmwwU576A7ohx/a+XAHUzWQ4YjGOppGwJ5d4/qVv7ooqW7LKNBJc3FPOMv8hLkRps3daJ/wJ9zyqW7fEniuMxlcPtHp1T3eNhZC21gQ7f6NOeNNotxbPm2mwTrdMsuzZpaUVq9ux6QO7dqQQzspRNlpaIXRW55fnBdPr6xCFsNYwqzhybWsgJu6ZdKuyPr4rD9O+L00tmYfczbVrZsBxw67j0TISCyD4jACaRI0UNZrUPk5PHRyXsCNUHupaW0eF/eAshNUdMwQ/rYdDDQ++IC3+VbaJgOs+UmgtU5dmen/mTRvwOP9i7dufc+pvnGyH01ip4Pb0Oj7vV8w9cz88o5mL77h+Y1+nMPz6/3lFzX61vgFjBUfoLb98YdUdc/C8lU7LMpa5pNeXJX7HOJiARaOEOthsx8OT6PZ32/DKFvdiPmwnBLe/lw758y7bNuIVdfr1HI/qnbk1dlm4QvkDteEuTTLZ6BnoQ/JeGj3ZbPmhYQ/mknRmxPUGxraW+/lLzfLtpOuXYq97VQNC//QePUYIa2OCLg3grMs88JQrLg6a70+WAb47rpS2G2ZFfNIMEj/sObUbcy4P1LVHaNpv7NI5JKjZcJY7G/Dhhweb/WNoS3u7Sg2R2fH/NZK442jNoeTxTcU8ol1jWjXTApZb14/V2zDEGOiXZt3t4QzshWREYilgHspbe2y2d+MKy9MBsY58wtrm5GLnVLATUQG7MAiK+zuB+i5WCKTG9ip30qBsb8TT6ADQ/5jotwNCXg3LPC+hW3EvAxeaQwKNQAUxl/ed//YB5y1ugMRMJ4bIl3UvVj02DygAbeHP6mzdUYPusdik1yUHgkvqij2EmDOPxQp5U8NZ1aU90F38FoA8Eb4lhNMaDPcCHvv299Sy7lTvGndPBdKfx9t13PUyEOeVhTG6xBCSKZk94gL91CbEZzmqb++GOwYiUWvlCPFrEvEmyGosMvWwh6cYMJ2qtrymtuuZrafMSlrW8YfPuf85W0bDWDzWoRiviOTMHsTLgeG9vt+6IjrxS1bX7bG/OVd/xNYYM0b67BmA4411J7+sjfIaN4Ct5EcsaiXsizB6h4M5EgiaBVHIojmB2lZqzoyVVs38AsN5dcB4KevbfifvfaEWm7HEehAGQAU5i2wHBlq72GbwnncXNAxe7MEsIEI3nL5llPh+z9XyU7AS6KhRl5Xe3ewzBCawq3mzcVp3SlhYS8F3N6sw/zl9jXT1p2tmZmHnLDPtvplXgIi82MrQ77UrPfE3L6eW99mIAol3uHpXvuNeESzKgYE3FsfmbVm/muxE1N4kxsM7s/zvZvXej93ugtrjEyXN2SaVQ8vKqgbLu9XMOsD/vBYqGdosJXdvhu59UNTv8XcJt5sQa7zUs0cntI0BokxMspJUOx9O17v3/sTEQFvDBFz+2ztRqLKyCDZCrjFinlhwwudcNeMqWh95A1T3kAp4INWOQCMd82Nabrwy5mDTppcDiELvbfcK2+aYOsZa9mb4d/lbEJ2xNtpI+Ytc4y2izHuGL+4l5nQzhJjc7qUnYm2QzQ0YTPCoYpR4Q8IuNcPHZmoudsJlA2ZxKIY0gZvOSLaw/qhvTS+sbpleVS0Tfl8moSwBe5PjBw4VqAjeuFy6TvvBmYCAvwp3LReCrgxWEy+n2azf8HK+7ERGYlpl62Al8Pmi2FjNkgl1oSAW2zP9XluSG7D5FixlkDDDB4oLWzbIdqAFX7rIhns6BxmoffKe3VPm1fOpnnHtctzbqr0aSP29rXVRrK0nPlmXTDexLiR+RTLjlDbIartiBVfhioWYSsXIUH0RHQwagYYHqoYnYXI7cOLmom2Rxbd11A0sjyMoQJuyqxFHLDm7bl51rOdzzNgbcdE20acdMdd5/qYuW+bRqCNmI81el+831kZvvdtLpQyu6gtq0XHb9B3ksqaE3BLOdrTZjqreZMa9m+mwgl7wwq49V+bZXsTlpZ5zEIP3dAz5ldlY81P10z8uBNza4HPGOGfMfNRlgI+17ZlfRWwwu6JvHPDWM+Lje6xLpl5N0w9bK2HRM6LajDvyBqLbR8m4Fasa4Nl3ZhbJORbryDKVer6G5rNAmIe8osDviVd1vXc9xKuG5p3s2vcInZZjYukdJcUxgK388VaF0npOrF+75jVPRYQ8CmTJrqcXhEAGhXCcUkfRqEQQkimrGkLPMSEmCnDTHx46U5p2phy43qx7otT5r29tEj8iBbz+mmcxqVlPm0ck3a7MR20aqx1M246OecCo0HnTL6NWWONz3g+dzNgwlnjNqG/N+mziSsuOz99q9v2rBnLvNwsFhXjpQcwy+WApJhf2/p7Q372iIU9zAcetapLyz1igfvT0wW2j0V9BHLX+CM1A9vE3DERf3npIvGsbrMM20npXCTW1z1ulkPWeNP03cQ6Lq2FXb592myENuPouOkPsDPbk8U55wTcYjs/y5tm2oh2EfGXW9fKjBNdO/vIKbU3pvG/uzqeW8UIvBX2CSe6p2v9MpsoyLpbSt/5jPGh2/BFm5vFC2F0A4q86JaOHUw06Ef3kv5b0Q4MAvFcMDbPhg2fsy6UMr1tJBLGF+Ahfu0qAm4JCXREtIeFHFaZCGqYC8Wr64m2cZHYX7ML/dN62G1S1I2h4pYlks/H3kulcFvDIub3tsvl78MTdbNfm0KWAp7OOS3glpC/3BNtK8rGSj/l8rQ0TYfnuKl7HMb/7n4U9iY+JdZfbv2HPTG2vvVp6Yt53bwFDItFt9jOp/JHakeAtkzIWCfgR6+Z9aFJoYH+EPuuHRnozX0azsY4b5nafOA27DEkwAl+7X4agMi+7HYVolOqMCySRSNWtRXg+bJAIjMA6Nq6pT/bCHxhOiNrppOyXneGRd28ORqr24846S1bq9u3wG1WwUFDpvDCdO2yiR6jZzcZCvgihCx0YIGV7lJ/+tEt4R76phPdGRMp43eImuRZzhq3Am+HJttEUuWDIZaXxZbbXBVluR0s1DLrbb6L8gcdm2bO6xx1Yt2JvPZbTYbNIeI2UM8tEnHTlOevg5Z/r9wcutzOprGNuVCC25n1ZxogERJtmybBirI9xvzMOjbu36y3+6gNCrhEQgMbNrLEuUsmGqbTsdG/xzc0+x2P6xq9ZFZT9cHJGhYu23u7MW+BW8vdNJeTOJwRFPBErFUQimqxMeU27rxhMimWVvopE+9ltwuFJxaelbJ47FsRGXhk/ZKnA24WK+p22Y4ILHOjW4G3US/WNVOKecs89MQbeNSv2w1FukRE2xPwebeIXd9ftOVahnBoeH3cx13BBB/mLxkWa27E17O6AwLubWfzqXuTWve+jMaY8WUbC9v6uEvhtqK9zi4bsV5Xm3Of/bLz6v1MguuLfpZCL8rE3ftN21dEq/usoYCfJWWnaN0k4W9ElmuBUMUTJj7MZlUMZVLsRsy/0rqxCfStX3LWPDDqdpSoW54zztO2Eei2eVcvBdwKvG1j3Vr2Tq2sH7VrrPW2caF064Ni7k0fGfG5z4t5ioCHfNn2YWA2s38EJ+nw5jCzfo/AQ2KIpnsDpeyumtaP4z4iGTetL9sm+6o7gW5a0TYWdhnPDQBTTqytaE/WjAVe78/LttGlfd1c70+0ZkMDm5EO/PHy3vdixvv3DCdxODOSH3siUhORr4rIfe7vzSJyv4g87j43ja6ZhBBCFlLFAr8RwGMANri/bwLwgKp+QERucn//xhK3LxvsCNCa9ed5hnR7oLBjZxE2dcvkPh1vFhobqmh8486K9/OX99vjTbwQcLO0jIulbXrQbNRLaTUXnYilZFNduCr2jaJjrNWWGUVqo1o6zg1jrXWbTlcDI0pjkTBBd4lnxMZi/CLLwbqLW/kew8IMrfvDew1wlcx36eUmMZ2RtoO59GvbzkhrgdtJGErL27pKrI97Q73vFlnvZkkeC/i3gQWjL00EVun7tn7vGkdcnjVJAi4iOwG8EcC/BvAeV/xmAK92y/sAPIhzWMAt1p83WfQjR7pOaFtG7WzcedcmGunvrE83XF6Ksn1lLUyHqD/Mvy/ApW/c5mi2PnLrf591bpbQ1HML67adX3/ORrdY14t5oLRsrnYn3F2TAMV2lHa9WHMX6aJhAbdumDL/S9SlPcxtEqlrCc7zENlv6VqyeWnERgcZsS792lacbdx+07hCxsyIydJ10jQjJu3clZOegPdEeZ1xm1gBX2dcKKERldbvPSlmpKXNkeLuUev3HuOEDWdN6jf4YQDvBbDelG0rJzVW1YMicv4St21NYMW8vGHt7CM2nV5h87O636tNs2lFu2kH/TgL6FTXWtpWtE3EgbGQZgPzFEbPw1n/fiSMEXs7MYUTJltm3wK8FLtG2EuxttZ6J/LAKOt41roOWui98t7xPAvdEBPtKn2YIQGPbV/mnhFjHVvRtmJddjzWTVlKuN+YE27r17apXqfq/fIJd09YS9v6wNcXfQEvLXAr2nb9xlq/fIPYfbj9GtGm3/vsGSrgInIVgMOq+pCblb4SIrIXwF4AuGjHuf3ELW/YbjSapP8D7AZmY7eW9BwGOw0Lm6bWhmt1+8t2FpT+wfqLNgzMG11aziYUCF8EgLqZsWjO/UhjMxPZztGGiWdvz1vKEqxrrfF5sTdvMOqFOFoxd5Z9yOWBBKs7AQlEiVhR9x4o9cHrb6N4QmI9TKgBPz9JaWHbATd+7LaJMnERJedZAS/CYYKlcFvR3mCXvZGW/e+kFG77RkrOnhRFvRzAm0TkSgDjADaIyN0ADonIdmd9bwdwOLSxqt4J4E6gN6nxErU7a6zl0TFKMu5NIe4E04YZmro2/LDplpte2aCFDvgTPJdRLV6mxUgCr/lnizHW7QPFm8QiEN1iBdwLVbRzQTohDUW/LFwuLfNOxAK35eq+l1gUzzAB7yYIfCnAscFNVqDLOlb0ve/PCrgT65hQez7uwOCaiSIs2tbCLgV6Xa0vxDEXycZaLwplyrOuw6K93ljb64oxd54MF1xKhn6bqnqzqu5U1YsBvA3AF1X1WgCfA3C9q3Y9gM+OrJWEEEIGOBufxgcA3CMi7wDwBIC3LE2T1j6xTk6YEZ6lsegPN+5bWx0vH4tbDkSxAMCcRlwrLg63Y6Jm7KTPdvj7/GAg+/ZvrHFrudedT93mjLGdlc1orHnNHcK0vRO21svtuhGL13eXyMB+Q+tjxCxwa+WX/n5rVYfWA0CzXk5uYMcAmO/PLDdD6VsTUrmWFrh1f9j1kzVrYc+4uibyxFjj1gIvLW+biGq9ae+kie2e8CZaoeU9CioJuKo+iF60CVT1KIArlr5J5xYxMS9dJLMmYqUwAt4yP/6yk65lJ4+w7hQj2l1zvLJ+TMBDvzlvxiJzDDvqsuwUbZkolFk7WMgKuxHwrhMrK5jNYlDgAV/4++vD7pT5soiAe3VC20UeDLaDtfxe7MOg1hj0dQN9gbYZ/awrxE8e1bt2YxHR9juorUDPuTKbk9tEmRSDAr6+NijUA9u50ZWTNj++uX8mvfQT53af13LAb3gV4UesuEiOiN+2a33jpbWutoPRDlk2ljsGLXAr1HZGIhudUgqFLZs1+UtnYKwt145Cwx2eHRt3bnOvzFvVxUAZ4At/KcaeuBZhAY/5vkN1h5XHxDyUh8aLwrEWuBNub1SsvV5W2EsBj1ja8RlwBgXcs6SNgJfLNm57yuY0MccorW0bDsjIkpWDAr7K8QYFRbqASzeLN7WVHSykVsD7+ytzVfiTN5sBQN40cjpQ1zPWZVD4W8bqtsIfejAAfdeLFcYxK+bWGg+EPnY8cR200FM6Iy3twAPF4oVUhgQ80LEL9F1LfpnNMW/TrLZcWTgU1E9NPJjKNWZ1e/HabruYaIesbSvaNsc+WV4o4BnhTdjslfewiYK82Ydjg4ECWEu5sGkBh2xnhWRewG0+lm44gZcn5q7cPmSsUNc9gR4c9BSz3IcRE+jQG4EVbWsJlwIenefRs7CdgEtEwD0xbw+U+VORRXJxl66OyBRmngXuyj3RLmx0lHWR9CSDlvbqgD0LhBCSKbTAVznWL26zt1kXSX9gkDd+vL9cwRpvITIq023n+dnVumlMh57bseeasXlREHZ1dOb92taSDg/H728T9nuPmfLOGUaZTCzSRiDuly7x4+sHR8Y2Ir5su1zuI5Rbe+GytarLaKMpLx+JtdDt1Ge9ffgDb2pm/WDWQEaVrA4o4BlhXSgN+wOaL47MUhAR825g/LfvD7c+8Hpgff/2sZEsDefe8CJejBB3IgJdinHMpdExkz+E/OyWUMelPa4XTRIRo1D+9Y73QB0U0prnF+8G65ZuFj+kM+ZOabv9WpdGeNKEUP5t69dueL7s/vKU+yrGjFDbaBK6S1YvFPCMsGFZXU+gXVl0DrCwmHdl0L86Y4ba1wL5VKzgzhlfdjdg8dph+yEfOeD7w0vRjeU/sduVYtXxIk8W72y028es/NB29nuwFrg/acZgh7AXeWITjQUE3I6WtcJflntij7A/vOn5yctrGxZtO4lwaW2PMZokOyjgmRL6gXVtgo/IrL2e8KPsNAyL0pwN23OibHOwWFH2rGonCNbdMudFnpi3AM89UeY3Cbs07AMhKPZmM9u2YQ+GmBsmtC9bNyTKtajVPTiYqua5VdqRus6yh7XAY1Eo1nJXVxbujByDdYvU3TaUg9zgFVsDBGfxtlEaQ6Zgt7JmR3taP3sLgxkGvZhxWMu9jBW24hJ2WYTcKdYd0/UGywy+YcTEPlQ3tp19e5ix0TIB69fWtWGWQUvZCrhn/ZbWeiRPu81HM2+tD4Yh9vZl4/2txd87v7GIL7vuPYgpA7nCnghCCMkUPnrXAGVEQCMWbGGs8U7AKrb5yc38QEHL3J9k2UaeDLpLYlawddmEXBIdr/PTdJQGOh5j5zxsAujY4EwbNx3ahxcnH7CaQ+4PwH8b6Vvrgx2bCynfeLzJgD23iOnYth3J7vuxfm37psYokrUBBXwN4YccDq/fQpmy1hR6A3lMvpVyZq/AlGy945nXevfAsP7yaEIo61opB86Y85jzcqQvHjkSE+0iNoS13C6SdiAaUjl/vEEx933g4Yie8YBf29LwHhI9mubcvWgkI9ohFwndI2sbXt01SoqYl7nGu94QfGuNWx+3DqyPRWeUW1nhjOUj8axxGcwwaH3KsU7IM8GP+rAWre1gLd9Qwg+OWuBh5vUReA+4wXLvDScyV2TDCXfD873b9bXgMi3scwMK+DnAMDG3MwTZ2JaaF53Sq9PxElT163Y8MS/3ZdPf2sE74XbOC6UEyha2eQlm0RlGKcbe9HSRN5B+Z6MVbZjtbHsD8ffWFRIQ67HIpNkU6nMbCvg5RijjYUttlEV4lpgiIK7WwdDwrFR1+8JAWW85TDdgmcYoXToxgY+5J/ptGP4AKB80hXfOMbeH+4y4N+zDMJRhsua5SAZH31KoSYiUOTHHAfwNgDFX/zOq+tsiciuAXwZwxFW9RVX/YlQNJaMjyU9aYTK80iVjXTDWz24t0yFdjUPpeFbw4iIZfaCYtllfc0jj7X5rgZGsNr46JsrlPrxMk94xKNYkjRQLfBbAa1X1pIg0AHxJRP7SrfuQqt42uuYRQgiJMVTAVVUBnHR/Ntx/Tk58DjDmTYmV7nPuznd4mmRXXoemBstLC7oTub1qATdNrUK7Zry86H3Wm5mDhu0vZoGXVrO/nr5qMlqSfOAiUgPwEIAXA/hDVf2yiPwUgBtE5BcA7AfwL1X12cC2ewHsBYCLdtDlnitnEo7W9QTcZk8MC3RZPyULx7A6IcG0PumWGUUai+poOcH3Y6ntcH67Dwo0WX5ENd2YFpGNAO4F8G70fN9Po2eNvx/AdlV9+2Lb79k1rl/5q4vOuLHk3KM7xEve0fB6a/2WdUJli21XQnEmK01t++MPqeqeheVVJzU+JiIPAniD9X2LyF0A7jvrVhKygGHiWUQ6ArsBi3+2a2Zoj1jVhOTEUNNCRLY6yxsiMgHgdQC+KSLbTbVrADw6khYScgYU5t+YNDAmDUwWzfn/DanP/yckV1Lu3u0A9jk/eAHgHlW9T0Q+KSK70XOhHADwzpG1khBCyAApUSiPAHhFoPy6kbSIkBFBXzZZa/COJoSQTKGAE0JIplDACSEkUyjghBCSKRRwQgjJFAo4IYRkCgWcEEIyhQJOCCGZQgEnhJBMoYATQkimUMAJISRTKOCEEJIpFHBCCMkUCjghhGQKBZwQQjIlZUaecRH5ioh8TUS+ISLvc+WbReR+EXncfW4afXMJIYSUpFjgswBeq6q7AOwG8AYReSWAmwA8oKqXAHjA/U0IIWSZGCrg2uOk+7Ph/iuANwPY58r3Abh6FA0khBASJskHLiI1EXkYwGEA96vqlwFsU9WDAOA+z49su1dE9ovI/iNHO0vUbEIIIaKq6ZV7s9PfC+DdAL6kqhvNumdVdVE/uIgcAfDtM2qpz/MAPL0E+1mNrOVzA9b2+fHc8mW1n98LVHXrwsKUWennUdVjIvIggDcAOCQi21X1oIhsR886H7b9QAPOBBHZr6p7lmJfq421fG7A2j4/nlu+5Hp+KVEoW53lDRGZAPA6AN8E8DkA17tq1wP47IjaSAghJECKBb4dwD4RqaEn+Peo6n0i8rcA7hGRdwB4AsBbRthOQgghCxgq4Kr6CIBXBMqPArhiFI1K4M4VOu5ysJbPDVjb58dzy5csz69SJyYhhJDVA4fSE0JIpqxqAReRC0Xkr0XkMTeM/0ZXviaG8S9yfreKyJMi8rD7f+VKt7UqazkFwyLnlv11K3FjP74qIve5v7O/bpbA+WV57Va1C8WFJ25X1b8TkfUAHkJvxOcvAnhGVT8gIjcB2KSqv7FyLT0zFjm/twI4qaq3rWT7zgYREQBTqnpSRBoAvgTgRgA/jcyv3SLn9gZkft1KROQ9APYA2KCqV4nIB5H5dbMEzu9WZHjtVrUFrqoHVfXv3PIJAI8B2IE1Mox/kfPLnrWcgmGRc1sTiMhOAG8E8DFTnP11K4mcX5asagG3iMjF6EXDJA/jz4kF5wcAN4jIIyLyiVxfV88mBcNqJ3JuwBq4bgA+DOC9ALqmbE1cN8eHMXh+QIbXLgsBF5F1AP4MwK+p6vGVbs9SEzi/OwC8CL3sjwcB3L5yrTtzVLWjqrsB7ARwmYhcusJNWjIi55b9dRORqwAcVtWHVroto2CR88vy2q16AXc+xj8D8ClV/XNXfMj5j0s/8tBh/KuV0Pmp6iEnEF0AdwG4bCXbeLao6jEAD8KkYADyv3aAf25r5LpdDuBNInIAwJ8AeK2I3I21c92C55frtVvVAu46iz4O4DFV/X2zak0M44+dX/lDcVwD4NHlbtvZspZTMMTObS1cN1W9WVV3qurFAN4G4Iuqei3WwHUD4ueX67WrlMxqBbgcwHUAvu78jQBwC4APYG0M44+d38+JyG70OsYOAHjnSjTuLFnLKRhi5/bJNXDdYqyV31yMD+Z47VZ1GCEhhJA4q9qFQgghJA4FnBBCMoUCTgghmUIBJ4SQTKGAE0JIplDACSEkUyjghBCSKRRwQgjJlP8fLphokhHVNNcAAAAASUVORK5CYII=\n", + "text/plain": [ + "<Figure size 432x648 with 3 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "vmin=0\n", + "vmax=2000\n", + "\n", + "fig, ax = plt.subplots(3, 1, figsize=(6,9))\n", + "\n", + "for i in range(1,4):\n", + " ax[i-1].pcolormesh(dat[datname[i]]['lon'].sel(lon=slice(lon_min[datname[i]]-boxsize/2,lon_min[datname[i]]+boxsize/2)),\n", + " dat[datname[i]]['lat'].sel(lat=slice(lat_min[datname[i]]-boxsize/2,lat_min[datname[i]]+boxsize/2)),\n", + " dat[datname[i]]['mslp'].sel(time=day,\n", + " lat=slice(lat_min[datname[i]]-boxsize/2,lat_min[datname[i]]+boxsize/2),\n", + " lon=slice(lon_min[datname[i]]-boxsize/2,lon_min[datname[i]]+boxsize/2))\n", + " -dat[datname[i]]['mslp'].sel(time=day).min(),\n", + " vmin=vmin,\n", + " vmax=vmax)\n", + " ax[i-1].plot(lon_min[datname[i]],lat_min[datname[i]],marker='X',color='white')\n", + " \n", + "ax[0].set_title('Day '+str(day+1))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### " + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (based on the module python3/2022.01)", + "language": "python", + "name": "python3_2022_01" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.9" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/Scripts_for_analysis/Check_impact_of_remapping/Plotting_PTE_timeseries_comparison_allexps-80km.ipynb b/Scripts_for_analysis/Check_impact_of_remapping/Plotting_PTE_timeseries_comparison_allexps-80km.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..5d83cf7ab909a010b2e165449716665a56a8e022 --- /dev/null +++ b/Scripts_for_analysis/Check_impact_of_remapping/Plotting_PTE_timeseries_comparison_allexps-80km.ipynb @@ -0,0 +1,1277 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "tags": [] + }, + "source": [ + "# Plotting separate PTE terms for all simulations " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Ting-Chen Chen (ting-chen.chen@kit.edu) " + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "dt = 6\n", + "data_res = '1x1latlon'\n", + "if dt == 1:\n", + " data_dt = '1hrly'\n", + "elif dt == 6:\n", + " data_dt = '6hrly'\n", + " \n", + "p2level = 50\n", + "boxsize = 6" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "#####################################################\n", + "# cyclone specific data\n", + "#####################################################\n", + "# channel_Xkm_0001: control simulations\n", + "# channel_Xkm_0002: +4K, qv consistent with T\n", + "# channel_Xkm_0003: +4k, qv from control\n", + "# channel_Xkm_0004: +temperature anomaly from MPI-ESM1-2-LR far future\n", + "# channel_Xkm_0005: +tropical temperature anomaly from MPI-ESM1-2-LR far future\n", + "# channel_Xkm_0006: +polar temperature anomaly from MPI-ESM1-2-LR far future\n", + "\n", + "# Note that the 2-km experiments contain outputs every 6 hrs\n", + "# Note that the 80-km experiments contain outputs every 1 hrs\n", + "\n", + "\n", + "expname = {\n", + " 1: 'CTL_RH0', \n", + " 2: '4K_RH0',\n", + " 3: '4K_RH-',\n", + " 4: 'Tanom_RH0',\n", + " 5: 'Tanom_TR_RH0',\n", + " 6: 'Tanom_PO_RH0'\n", + " }\n", + "\n", + "exp80 = { \n", + " 1:'channel_80km_0001',\n", + " 2:'channel_80km_0002',\n", + " 3:'channel_80km_0003',\n", + " 4:'channel_80km_0004',\n", + " 5:'channel_80km_0005',\n", + " 6:'channel_80km_0006',\n", + " }\n", + "\n", + "exp2 = { \n", + " 1:'channel_2km_0001',\n", + " 2:'channel_2km_0002',\n", + " 3:'channel_2km_0003',\n", + " 4:'channel_2km_0004',\n", + " 5:'channel_2km_0005',\n", + " 6:'channel_2km_0006',\n", + " }\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import pandas as pd\n", + "import scipy as sp\n", + "import scipy.ndimage\n", + "from netCDF4 import Dataset\n", + "import matplotlib.pyplot as plt\n", + "import matplotlib.ticker as mticker\n", + "import matplotlib.patches as patches\n", + "import psutil\n", + "import datetime\n", + "import time as tm\n", + "import seaborn as sns\n", + "import cartopy.crs as ccrs\n", + "from cartopy.mpl.gridliner import LONGITUDE_FORMATTER, LATITUDE_FORMATTER\n", + "import warnings\n", + "warnings.filterwarnings(\"ignore\")" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "0 1.00\n", + "1 1.25\n", + "2 1.50\n", + "3 1.75\n", + "4 2.00\n", + "5 2.25\n", + "6 2.50\n", + "7 2.75\n", + "8 3.00\n", + "9 3.25\n", + "10 3.50\n", + "11 3.75\n", + "12 4.00\n", + "13 4.25\n", + "14 4.50\n", + "15 4.75\n", + "16 5.00\n", + "17 5.25\n", + "18 5.50\n", + "19 5.75\n", + "20 6.00\n", + "21 6.25\n", + "22 6.50\n", + "23 6.75\n", + "24 7.00\n", + "25 7.25\n", + "26 7.50\n", + "27 7.75\n", + "28 8.00\n", + "29 8.25\n", + "30 8.50\n", + "31 8.75\n", + "32 9.00\n", + "33 9.25\n", + "34 9.50\n", + "35 9.75\n", + "36 10.00\n", + "Name: time, dtype: float64" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#####################################################\n", + "# Read in PTE track data from file\n", + "#####################################################\n", + "#Cyclone Track\n", + "path_track = '/work/bb1152/Module_A/A6_CyclEx/b382037_TingChen/Task3/PTE/cyclone_PTE_timeseries/'\n", + "dur = {}\n", + "dp = {}\n", + "dfi = {}\n", + "ep = {}\n", + "itt = {}\n", + "eq1res = {}\n", + "tadv = {}\n", + "vmt = {}\n", + "diab = {}\n", + "eq2res = {}\n", + "diabptend = {}\n", + "for i in range(1,7):\n", + " #print(exp80[i])\n", + " ifile ='PTE_for_'+exp80[i]+'_'+data_dt+'_'+data_res+'_upper'+str(int(p2level))+'hPa_box'+str(int(boxsize))+'.csv'\n", + " df_track = pd.read_csv(path_track+ifile)\n", + " #ntrack = len(df_track['lat']) \n", + " dur[exp80[i]] = df_track['time']+1\n", + " #lon = df_track['lon']\n", + " #lat = df_track['lat'] \n", + " dp[exp80[i]] = df_track['dp'] \n", + " dfi[exp80[i]] = df_track['dfi'] \n", + " ep[exp80[i]] = df_track['ep'] \n", + " itt[exp80[i]] = df_track['itt'] \n", + " eq1res[exp80[i]] = df_track['eq1res'] \n", + " tadv[exp80[i]] = df_track['tadv']\n", + " vmt[exp80[i]] = df_track['vmt']\n", + " diab[exp80[i]] = df_track['diab']\n", + " eq2res[exp80[i]] = df_track['eq2res'] \n", + " diabptend[exp80[i]] = df_track['diabptend'] \n", + "\n", + "dur[exp80[6]]\n", + " " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# PLOT the time evolution of the cyclone-associated PTE " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnwAAAEpCAYAAAAJRv+PAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAADqFUlEQVR4nOydd5gU5f3AP+/268dVDo7eO0gVRA8VFaMIikbFmhijMbEkmthjitGoiVGjP2MXRUUUsYMoTXo96tE54OB6L1tn398fs7e7s7tXOcrhfJ5nn7t555133t2dfec73yqklOjo6Ojo6Ojo6Jy5GE71BHR0dHR0dHR0dE4susCno6Ojo6Ojo3OGowt8Ojo6Ojo6OjpnOLrAp6Ojo6Ojo6NzhqMLfDo6Ojo6Ojo6Zzi6wKejo6Ojo6Ojc4ajC3w6Ojo67RAhREchRI0QoloI0eEEnUP6Xk+cgLFNQohcIYQihBja1uPr6Oho0QU+HZ2fMEKIpUE39dDXLa0Y70UhxCYhhLt+nOOcX27QfDxCiEohxE4hxOttJSQIIZ5o5DOof+W2xbnamMeBGOBNKWV5faMQ4mohxAohRIkQwiGEOCKEeF8I0Sv4YCHEhb5+dUKIKiHEQiHEyJM1eSmlB/gP6n3o6ZN1Xh2dnyqmUz0BHR2d0wIXsDmkrbgV49wEKL5jM453UkFUAzlAF2CA73WzEOI2KeWs4xw7D1jr+98KDPf9f9S3DyC/tYMLISxSSlerZxd5zATgZt/me0HtFwBzAAEUAruAIcBMYAzQ19fvYuBrwIj6Pq3ARcA5QohxUsptbTnfRvgQ+BcwRQjRV0q55ySdV0fnJ4eu4dPR0QHIl1KOC3l9Xb9TCDFdCLHHpzFaLoS4tAFN4FApZTLwQUMnEkJ0b4UWcZOUcqyUshMwHjgCmIE3hBB9fOPeEjTuFUKIlb757hVCTG9oYCnlG/XvGQju90bQZzFdCHGtEGKNEKLW91oshJgQ9L6ygs7/KyHEEiGEA/hNyNyuFEJsEELYhRCLhBAZQojrhRAHhBAVQojZQoi4Jj6PGUA06ve2Mah9IqqwBzBCSjkceMO33VkIUb/mP4sq7K0BugM9gVzfmE82dFIhxFifCVkKIWYJIYxCiHfqtaBCiBt8f6uFEK8IIWxCiH8IIcqEEMeEEI+HfPaFwDrf5g1NvGcdHZ3jQBf4dHR0GkUIMQSYC/RB1QSmAR9H6iulPHyi5yOlXA3c49s0A7+M0G0OkIw6397AXN/7aBVCiD+gaqPGomr7SoFJwBIhxNkRDvkvMBg4AHhD9r2Paoq1AhcCPwBvAW4gAbgeeLCJKWX5/q4PaV8R9P9mIUQ2cBtQAtwupfQKITqjav0AvpBSeqSU1cAiX9uFQghj6AmFEMOBBUAs8A5wi5RSCeqSAbwKeHx97gQ2AncBNb79fxFCTA4Zul7gm9T4W9bR0TkedIFPR0cHoFsEv7VE3777UbVBNcBAKWV/VN+r1uIGdvtela0cY3nQ/5EEued88xwI1KLO//7WnEgIEQ38xbf5lJSyN6pW7DtUgfOvEQ5bBXSRUg4EXg7Z96SUcgABLegA4JdSyn4EBLYLmphWf9/f3OBGKeX3wDWo7zkdGIa6zh8E6s2lXYIOKQr6v9D3NwpICTnfANT3mwi8DvxCShkqyFqAi1HNxkd8bX18cxgIOBp4b4d8f/uho6NzwtAFPh0dHVA1YWtDXh7fvnqBapWUst6nbU5rTySlPCql7O97fdbKYYLXrkiBIXN858oDVvraBrfyXINQNXIAD/kCURRUnzeAcRGO+Z+U0uGbgxKy70vf39wIbQd8f9ObmFOi7291cKNPi/lfVO3hBUA8MBsYDSwQQsQTMPmG0lA7qEJkqm+ev5ZSRvrMy6WUK32CYL2md7uUMldKWUNAuAx9b1Uh70lHR+cEoAdt6OjogM+HrwX9GxMOTgbnBf2/o4m+xzvX4ON3Ea6VjCT8FDQyXr2AUy9QI6Wsb6sfq6k5188h1NfvQVST+04p5WIAIcRs1KCNJOAsYG9Q/7QI/9tRTcDB1KCaaS9A9aFcSThVQf97IrQ19N7ifX8rIoypo6PTRugaPh0dnaaoj9gcL4To5Pt/RmsHE0J0FkLs8r0aDKZo5PjxBEzKbuDNCN2u9vXtBNT72G1vxXTrj6vz/b8YGB8U5HEL8OdWjns81Jtnu4e0J/j+dhVC1GvSRgXtr5VSHiXwWUwVaj68OKDet+77CFrJl1B9DaOBr4QQw473DQTRzfdXj9DV0TmB6AKfjo4OQIYvAjX4dZtv33OoJsxYYJcQIgf4faRBhJrXbx9BgRRCiH2+11hfkxnVX6sfAQGlKc4SQqwVQhxD1S51RhX2ftVAKo/f++aZ45u3FzX9R4uRUtYR8OH7DXBUCLFZCFHkG//61ox7nCzz/R0d0v6p728ssFsIsZ2Aj+F2YJPv/z+ifibjUE3LB1CFRzvwWITzuVAjmLNRTa8L66Oj24Axvr9L2mg8HR2dCOgCn46ODqgO92NDXpkAvpxsV6OaAi1AGfDzBsbpDvRC64/Vy/eKOo75xaFqqmJRgz3eBkZLKd9toP81qLkArcB+4OdSyq2tPbmU8hlUs+gaVBNkX1QT5LsE0p6cTD5GDYLIEEL4NXhSyrdR57kSVSDuhfr+XwQuqNfcSSm/BS5FDS5JBmzA98B5UsotkU7oi+SdghoAkg4sEkJkHs+b8Gkh6wW+949nLB0dncYRkX1vdXR0dBpGCNEd9cYPcKuU8p1TNxsVX06/t32bPaSUuaduNiceIcSrwK+BF6WU9zTV/3RECHEf8G9ggZRyyqmej47OmYyu4dPR0dFpn/wFNf3KL8QJqqV7IhFCmFDzKXppOu+gjo7OcaJH6ero6Oi0Q6SU+agm7naJr5Zu91M9Dx2dnwq6SVdHR0dHR0dH5wxHN+nq6Ojo6Ojo6Jzh6AKfjo6Ojo6Ojs4Zji7w6ejo6Ojo6Oic4egCn46Ojo6Ojo7OGY4u8Ono6Ojo6OjonOHoAp+Ojo6Ojo6OzhmOLvDp6Ojo6Ojo6Jzh6AKfjo6Ojo6Ojs4Zji7w6ejo6Ojo6Oic4egCn46Ojo6Ojo7OGY4u8Ono6Ojo6OjonOHoAp+Ojo6Ojo6OzhmOLvDp6Ojo6Ojo6JzhmE71BE43EhMTZe/evU/1NFpEbW0tMTExp3oaLaY9zluf88mjPc5748aNJVLK1JYep687J4f2OGdon/PW53zyaO66owt8IaSnp7Nhw4ZTPY0WsXTpUrKysk71NFpMe5y3PueTR3uctxDiUGuO09edk0N7nDO0z3nrcz55NHfd0U26Ojo6Ojo6OjpnOLrAp6Ojo6Ojo6NzhqMLfDo6Ojo6Ojo6ZzjtzodPCLEUGAd4fE1HpZT9Guh7H/AnIAr4FLhTSuls6Tndbjd5eXk4HI7WTfoEk5CQQE5OzqmeRotpj/M+1XO22WxkZmZiNptP2Rx0Tg76utP2tMc5Q/ucd3uZ809pTW13Ap+P30op32isgxDiYuBB4HzgGPAZ8BdfW4vIy8sjLi6O7t27I4RozXxPKNXV1cTFxZ3qabSY9jjvUzlnKSWlpaXk5eXRo0ePUzIHnZOHvu60Pe1xztA+590e5vxTW1PPZJPuzcCbUsodUspy4G/ALa0ZyOFwkJycfFouujo/HYQQJCcnn7YaH522RV93dHROLD+1NbW9CnxPCSFKhBArhRBZDfQZBGwJ2t4CpAshkltzQn3R1Tkd0K/Dnxb6962jc2L5Kf3G2qNJ90/ATsAFXAt8KYQYLqXcH9IvFqgM2q7/Pw4oDe4ohLgduB0gNTWVpUuXagZKSEigurq6rebf5iiKclrPryHa47xPhzk7HI6wa7QxampqWtT/dKG9zru56OvOyac9zhna57zb05zr19Qzfc1pdwKflHJt0Oa7QojrgEuBl0K61gDxQdv1/4ddgVLK14DXAPr16ydDEy/m5OSc1r4I7cFXIhLtcd6nw5xtNhsjRoxodv/2mky0vc67uejrzsmnPc4Z2ue829Oc69fUM33Naa8m3WAkEEknuwMYFrQ9DCiUUpZG6HvaU1BQwLXXXkuvXr0YOHAgkyZNIjo6muHDh9O1a1d69OjB8OHDufDCC8nNzWXw4MHNGveWW27xHzts2DB++OEH/76srCxN9v/QcZ966il69+5Nv379WLhwYdu92dMERVEYMWIEl112GaB+VvPnzwegrKyMESNG8Pbbb0c8Njc3l6ioKIYPH87AgQO56aabcLvdgCrI1I9Zzy233MInn3xy4t6Mjk4r0Ned05/S0lKGDx/O8OHD6dixI507d/Zvu1yuUzKnJ598kgkTJjB8+HCMRqN/Pi+++CJPPPGEf44DBw7kww8/bHQs/VppO9qVhk8IkQiMBZahpmX5OXAucG+E7rOAd4QQs4F84FHgneM5/0MPPXQ8hzfJU089FbFdSsn06dO5+eab+eijjwDIzs6murqaiRMnMnPmTKZPn86MGTMA9aJvCc8++ywzZsxgyZIl3H777ezdu7fJY3bu3MlHH33Ejh07OHbsGBdeeCF79uzBaDS26NyNMW3RE202ViTmT258/BdeeIEBAwZQVVWlaa+srOTiiy/m9ttv59Zbb23w+F69epGdnY2iKEyePJmPP/6YmTNntsXUdX5C6OtOgJOx7rSW3MHTTtjYUkridnwecV9ycjLZ2dkAPPHEE8TGxnL//fefsLk0h0ceeYS7776buLg4YmNj/fMDdY733Xcf999/P3v37mXkyJHMmDGj0bQoZ9q1cqpobxo+M/B3oBgoAX4HTJNS7hZCdBVC1AghugJIKRcAzwBLgEO+159PzbSPjyVLlmA2m7njjjv8bcOHD2fixIltep6zzz6bo0ePNqvv559/zrXXXovVaqVHjx707t2bdevWtel8TiV5eXl8/fXX3HbbbZr22tpapkyZwvXXX8+dd97ZrLGMRiNjxoxp9mero3M6oK877ZfXX3+d0aNHM2zYMK666irq6uoAVVt29913M378eHr27Om3KkgpeeCBBxg8eDBDhgxhzpw5gGqNOO+887jmmmvo27cvDz74ILNnz2bMmDEMGTKE/ftDXedbRp8+fYiOjqa8vLxZ/fVr5fhoVxo+KWUxMLqBfYdRAzWC2/4N/PskTO2Esn37dkaOHHnCz7NgwQKmTZumaZs5cyZRUVEAuFwuDAb1GeHo0aOMGzfO3y8zM/OMEmjuvfdennnmmTCn44ceeohf/epX3Hfffc0ey+FwsHbtWl544QV/248//sjw4cP924cPHw4z8+ronEr0daf9cuWVV/KrX/0KgEcffZQ333yT3/3udwDk5+ezYsUKdu3axdSpU5kxYwbz5s0jOzubLVu2UFJSwujRozn33HMB2LJlCzk5OSQlJdGzZ09uu+021q1bxwsvvMBLL73Ef/7zn1bPc9OmTfTp04e0tLRm9devleOjvWn4dE4ADzzwAD179uSGG27g4Ycf1uybPXs22dnZZGdn88033/jbpZRh45wp4e1fffUVaWlpEW925513Hp9//jlFRUVNjrN//36GDx9OcnIyXbt2ZejQof59EydO9H+u2dnZTJ06tU3fg47O6Y6+7pw4tm/fzsSJExkyZAizZ89mx44d/n3Tpk3DYDAwcOBACgsLAVixYgXXXXcdRqOR9PR0zjvvPNavXw/A6NGjycjIwGq10qtXLy666CIAhgwZ0mIzfj3PP/88/fr1Y+zYsTzxxBNN9tevlbahXWn4TjUN+bqcaAYNGnRCHfqfffZZrrzySl588UVuvvlmNm7c2OQxmZmZHDlyxL+dl5dHp06d2nReTfnYnShWrlzJF198wTfffIPD4aCqqoobbrgBk8nEVVddRWlpKZdeeilLlixpNAqt3ocvPz+frKwsvvjiiyYFu7Vr1/LrX/8agL/+9a+6IKijrztBnIx1p7V03z7/hI3d0vQm9QFmw4YN45133tGkGrFarf7/64WiSMJRpP4Gg8G/bTAY8Hg8DR3WKPU+fPPmzeOmm25i//792Gy2BvufadfKqULX8LUDzj//fJxOJ6+//rq/bf369SxbtqzNzmEwGLjnnnvwer3NimaaOnUqH330EU6nk4MHD7J3717GjBnTZvM5lTz11FPk5eWRm5vLRx99xPnnn8/777/v33/vvfdywQUXMH369GZFwWVkZPD0008368Y9duxYXeunc1qgrzvtl+rqajIyMnC73cyePbvJ/ueeey5z5sxBURSKi4tZvnz5Sflcr7zySkaNGsW7777bZF/9Wjl+dIGvHSCE4LPPPmPRokX06tWLQYMG8cQTTzT6tLJ7924yMzP9r7lz5zbrPI8++ijPPPNMk30HDRrENddcw8CBA7nkkkt4+eWXf1LRT//85z/p0qULN954I16vt8n+06ZNo66ujh9//PEkzE5H5/jR1532y9/+9jfGjh3L5MmT6d+/f5P9p0+fztChQxk2bBjnn38+zzzzDB07djwJM4XHH3+cf//7381aR/Vr5fgQjalyf4r069dP7t69W9OWk5PDgAEDTtGMmqY9JbgMpj3O+3SYc0uvx/aaTLQ9zlsIsVFKOaqlx+nrzsmhPc4Z2ue829Oc639r7XHNgeavO7qGT0dHR0dHR0fnDEcP2viJcNddd7Fy5UpN2z333NNo4mCdptm2bRs33nijps1qtbJ27doGjtDR+emgrztnPk8++WSY6f7qq6/m7rvvbtE4+rVy4tEFvp8IL7/88qmewhnJkCFDNFnkdXR0AujrzpnPI488wiOPPBLW3tLIYv1aOfHoJl0dHR0dHR0dnTMcXeDT0dHR0dHR0TnD0QU+HR0dHR0dHZ0zHF3g09HR0dHR0dE5w9EFvnaEoiiMGDGCyy67DFDL59SXPiorK2PEiBG8/fbbEY/Nzc0lKiqK4cOHM3DgQG666Sbcbjeg5jurH7Oe4LEPHjzI2LFj6dOnDz//+c+bVV1CR0enfVNaWsrw4cMZPnw4HTt2pHPnzv7tU7kGPPHEE/65DBw4kA8//NC/L3jdqic2Ntb//+zZs+nTpw99+vRpVnWH9sDp+j394x//8M9l8ODBfPHFF/59r732Gv3796d///6MGTOGFStWNDpWVlYW/fr1Y9iwYYwePVoTKNe9e3dKSkr828H3Mykld999N71792bo0KFs2rSpbd9kO0OP0m0J+05wHb7exxrd/cILLzBgwACqqqo07ZWVlUyfPp3bb7+90RD2+tquiqIwefJkPv74Y2bOnNnktP70pz9x3333ce2113LHHXfw5ptvcueddzbvPeno6Bwfr57gdeeOyOtOcnKy/8b6xBNPEBsby/333+/f73Q6T+y8GqG+FuvevXsZOXIkM2bMwGw2N3pMWVkZ//znP9m4cSNCCEaOHMnUqVPp0KFDm8zp6oeOtsk4kfB6vXz6z8hJjJv6nk4l9d9TTk4OEydOpKioiG+++Yb//e9/rFixgpSUFDZt2sS0adNYt25do9U9Zs+ezahRo3j77bd54IEHWLRoUZPn//bbb9m7dy979+5l7dq13HnnnT/plFm6hq+dkJeXx9dff81tt92maa+pqeGqq67i+uuvb7YQZjQaGTNmDEePNr1ASSlZvHgxM2bMAODmm29m/vz5LZ6/jo5O++f1119n9OjRDBs2jBtuuIG6ujpA1azdfffdjB8/np49e/q1bFJKHnjgAQYPHsyQIUOYM2cOoGphzjvvPK655hr69u3Lgw8+yOzZsxkzZgxDhgxh//79zZpPnz59iI6Opry8vMm+CxcuZNKkSSQlJdGhQwcmT57MggULWvlJnN4Ef09XXXXVKf+eBgwYgMlkoqSkhH/+8588++yzpKSkAHDWWWdx8803Nzsty9lnn92sexfA559/zk033YQQgnHjxlFRUUF+fn6zjj0TaVcCnxDCKoR4UwhxSAhRLYTYLISY0kDfW4QQihCiJuiVdXJn3Hbce++9PPPMMxgM2q/s97//PWeffTb33Xdfs8dyOBysXbuWSy65xN/2448/+s0Aw4cP96vfS0tLSUxMxGRSlcGZmZnN/rHp6OicWVx55ZWsX7+eLVu20LdvX958803/vvz8fFasWMFXX33Fgw8+CMC8efPIzs5my5YtfP/99zzwwAP+G+6WLVt44YUX2LZtG++99x579uxh3bp13Hbbbbz00kvNms+mTZvo06cPaWlp/rYHHnhAs5bVc/ToUTp37uzfPpPXsuDvacCAAaf8e1q7di0Gg4HU1FR27NjByJEjNftHjRrFjh07mjXWggULmDZtmqZt0qRJ/u87WCly9OhRunTp4t8+k7/z5tDeTLom4AhwHnAYuBT4WAgxREqZG6H/ainlOSdxfieEr776irS0NEaOHMnSpUs1+84//3y+/vprHn74Yc2iF4n9+/czfPhw9u7dy4wZMxg6dKh/38SJE/nqq6/827fccgugPvmFIoRo/ZvR0dFpt2zfvp1HH32UiooKqqurNQ+N06ZNw2AwMHDgQAoLCwFYsWIF1113HUajkfT0dM477zzWr19PfHw8o0ePJiMjA1DdTS666CJATWa+ZMmSRufx/PPP8/rrr3PgwIEwLd2zzz7rt0hAwIfvp7SWBX9PNTU1XHzxxf59J/t7ev/994mLi2POnDkNft5Syia/i5kzZ1JbW4uiKGG+eEuWLPFrDJcuXcpzzz3nHzeUM/U7bw7tSuCTUtYCTwQ1fSWEOAiMBHJP+ASa8LE7UaxcuZIvvviCb775BofDQVVVFTfccAMmk4lrr72WUaNGcemll7JkyZJGi1XX+/Dl5+eTlZXFF198wdSpUxs9d0pKChUVFXg8HkwmE3l5eXTqdIJ9inR0dAI04GN3KrjllluYP38+w4YN49VXX2XNmjX+fVar1f9//Y020g03Un+DweDfNhgMeDyeRudR7xs2b948brrpJvbv34/NZmv0mMzMTI3fV15eHllZWY0e0xLmPtW56U6tpKVVK4K/p3feeUejKDgV31MwAwcOZOPGjZx//vn+tk2bNjFw4MBGx5o9ezbDhg3jwQcf5K677mLevHmN9gf1Oz9y5Ih/+6d+/2pXJt1QhBDpQF+gIV3wCCFEiRBijxDiMSFEuxJw63nqqafIy8sjNzeXjz76iPPPP5/333/fv/+uu+7iggsuYPr06c2KysrIyODpp5/mqaeearKvEIJJkyb5fT3effddrrjiita/GR0dnXZLdXU1GRkZuN1uPv744yb7n3vuucyZMwdFUSguLmb58uWMGTOmzeZz5ZVXMmrUqGZF3F588cUsXryY8vJyysvL+e677zSarzOJ4O9p9uzZTfY/0d9TMH/84x/505/+RGlpKQDZ2dm88847/OY3v2nyWLPZzN///nfWrFlDTk5Ok/2nTp3KrFmzkFKyZs0aEhIS/NrKnyLtUgACEEKYgdnAu1LKXRG6LAcGA4eAQcAcwAOESTlCiNuB2wFSU1PDzKYJCQktfsI6UdTV1eHxeKiursbtdmO321EUhUcffZQ777yT6667jrfeeivM16+mpgav1+t/HxdccAGPP/44CxcuRFEU/5j11I9dXV3NY489xq233srDDz/MsGHDuOaaa9rk81AU5bT5XJvL6TBnh8MRdo02Rk1NTYv6ny6013k3l/a07jidTsxmM4888ghjxoyhS5cuDBgwgNraWs1aFDzf6upqLrzwQpYtW8aQIUMQQvCXv/yFmJgYzToG6u+qfqzQfQ3NpX7/H/7wB375y19y7bXXRpxH/VzMZjP333+/33/sj3/8o2ac05nmrjuRvqeBAwdSU1Nz0r8nKSVOpzNs/6RJk9i/fz/jxo1DCEFsbCyvvfYasbGxDY4VfF6A3/72tzz11FO8/PLLSCmpqanxax6D5zVx4kTmz59Pz549iY6O5pVXXol4jvo19YxfcxpT5Z6uCCEMwAdAPHCFlNLdjGOuBR6QUo5srF+/fv3k7t27NW05OTkMGDDgOGZ8Yqmurm7UlHu60h7nfTrMuaXX49KlS9vUdHWyaI/zFkJslFKOaulx+rpzcmiPc4b2Oe/2NOf631p7XHOg+etOu9PwCdXj8k0gHbi0OcKeDwn8dL01dXR0dHR0dH6ytDuBD/g/YABwoZTS3lAnX7qWTVLKQiFEf+AxYO5JmuMpY9u2bdx4442aNqvV+pNONqmjo9P+ePLJJ5k7V7tkX3311TzyyCOnaEY6kWjoe7r77rtbPNb06dM5ePCgpu2f//znGetrebJpVwKfEKIb8GvACRQEhVf/GvgR2AkMlFIeBi4A3hFCxAKFwPvAP1p77uaEjZ8ODBkyRFN2RufMoj26YOi0nvay7pwIHnnkEV24awc09D21xjfys88+a4sptYif0prargQ+KeUhGjfLxgb1vR9ok/oyNpuN0tJSkpOTf7KLr86pR0pJaWlpk+kndM4M9HVHR+fE8lNbU9uVwHeqyMzMJC8vj+Li4lM9lYg4HI52ecG2x3mf6jnbbDYyMzNP2fl1Th76utP2tMc5Q/ucd3uZ809pTdUFvmZgNpvp0aPHqZ5GgyxdupQRI0ac6mm0mPY47/Y4Z532ib7utD3tcc7QPufdHud8ptOuEy/r6Ojo6Ojo6Og0jS7w6ejo6Ojo6Oic4egCn46Ojo6Ojo7OGY4u8Ono6Ojo6OjonOHoAp+Ojo6Ojo7OyUdK2Pxf+Oo6yPnwVM/mjEeP0tXR0dHR0dE5+ez7HNb66iHkLYP4btB5/Kmd0xmMruHT0dHR0dHROfnkfqvd3tV2Wj5vdS1lT79BycMv4Np7qM3GbTFVR+CH38I3N0L+ulM3D3QNn46Ojk7b8BMq0aSj0yYUb9NuH/oOFBcYLcc1rJSSonuexrFOHd+xOYfOX/wXYT7JIk/VEfh8GtTmq9uFG+H61WBNOLnz8KFr+HR0dE4s3hoovA+OTIGqOad6NieGumVwaPSpnoXOGUZ+iYePFlWxKy/6zKv56qyCqlxtm6sa8n487qHrFqzwC3sAniMFOLfvPe5xW0RtIXx1TUDYA3BWwP4vT+48gtAFPh0dnRNL+UtQPQecW6DoPrCvP9UzalukCwp/C55jp3omOmcQtXYvj79WzKeLq/lmUwqfL6851VNqW0q2R24/8NVxDeu1Oyl77p2wdufGncc1bouwl6rCXlUEU/KeT07ePELQBT4dHZ0TS8032u3yF9pubOmB2u/Ul1TabtyWULsIlNJTc26dM5Y12+1UVHv923N/qKa8+hRd4yeCkm2R23MXguJu9bBVb81DKQz/PTo257R6zBbhrIKvroXyBjSKBesiC4KtxL5ma7P76gKfjo7OicNTBO792ra6xeBs4Om+pRT9AfJvUV/FD7fNmC2l6uNTc16dM5oNOQ7Ntsst+XRx9SmazQmgIYHPWQH5q1s1pOdYEZVvfRZ52E05SK834r42w10L38yE0h3adhEiau35tE1OZ1+zlaK7/t7s/rrAp6Ojc+Kwr4ncXv7fNhh7NVTPDWxXzQal6vjHbQmeYlWA1dFpQ1xuydZ9zrD279fVUlDqOQUzOgE0JPABHPi6VUOWPfcO0umKuM9bXYt73+FWjdssPA5YcIsamBFM5nlw9hPatj2fHHeQl1JZTfHvn2nw/Uai3Ql8QogkIcRnQohaIcQhIcT1jfS9TwhRIISoFEK8JYSwnsy56uj85HE0IPDVfAmuA60fV0oo+UdIo7fh850oaj4DziAzm85pwfYDTlzucIFA8cKH353kh5oTgbsWKvY1vP/gt+Bt2e/KsW4bdd+t0rQZ4mK0fU6UH5/ihu9ug6Mrte0ZY/GM/Bcls8so/LQjjqM+EaQqF4o2Hdcpaz5eiLeqZX6d7U7gA14GXEA6MBP4PyHEoNBOQoiLgQeBC4DuQE/gLydvmjo6Og1q+JBQ/nLEPWXOan44tpnCxrR1dYvAuTFC+4qWz/F4OFOjjnVOKZt2ORrct2qrnQNHm6/VOS0p3anVcMV3BUt8YNteovq6NRPp8VD29BuaNsug3iT88kpNm3PTCRD4vB744TdwOETTnzoMpsyi7Mm3qfl6FfbceIo+SUOp84ldx2HWlW4PVR98w7GodD7ucUWzj2tXAp8QIga4CnhMSlkjpVwBfAHcGKH7zcCbUsodUspy4G/ALSdtsjo6P3WUMnDtanh/9SfgCaQskFLy9ZF13LHyBV7a8TnvOlaztSyCFlAqUPp05DHtKyO3nwicO8CVg5SgKF4cjnZ+E9Y5LZBShvnvWUxa37PZC9u5li80/17aCOg2WdvWArNu9SeLcO3RBkIkP/wrbKMHa9ocG3e2bXob6YWlvw+fa/IA+NmHeCo91C3boLaZovA6DVSt9wm2++a3Ojil9uvl1JTV8eqAm1mdOrLZx7UrgQ/oCyhSyj1BbVuAMA2fr21LSL90IURyYyc4cuQI77zzDgBut5usrCzef/99AOrq6sjKymLOHPWpvrKykqysLObNmwdASUkJWVlZfPmlmmenoKCArKwsFixY4B87KyuL77//HoADBw6QlZXFsmXLANi9ezdZWVmsWqWqpbdv305WVhbr16tpLLKzs8nKyiI7OxuA9evXk5WVxcGDBwFYtWoVWVlZ7N69G4Bly5aRlZXFgQPqTfP7778nKyuLI0eOALBgwQKysrIoKCgA4MsvvyQrK4uSkhIA5s2bR1ZWFpWVlQDMmTOHrKws6urqAHj//ffJysrC7VYv2nfeeYesrCz/Z/n6669z4YUX+rdfeeUVpkyZ4t/+5JNPmDp1qn/7ueee46qrrvJvP/3001x77bX+7b/97W/ccMMN/u3HH3+cW2+91b/90EMPcfvtt/u377//fu666y7/9r333su9997r377rrru4//77/du33347Dz30kH/71ltv5fHHH/dv33DDDcyaNcu/fe211/L00wHB46qrruK5557zb0+dOpUXXghEpE6ZMoVXXnnFv33hhRfy+uuv+7ezsrLa3bW3fbsafNHgtXdY9Tf6fqWTrBvtHCnOAGDBcgdZMwso2KV+XrM/nUOP0QP579pPcCkejq3IYe2Ds3l/20Ig5Nqrns/7czeRNbMUt8/s9c6ndWTNLAVXDiilTV57L7zwQquuPY/Hw9GjR7ntttu4cvpl1NbWUV1dzQNPlzHz/tabdvV15+StO6397us50evONdfewvIvA+vKhq9+h/vgs/7tNZ//ho9n/Ytt+1ShsF2uOz+oFTZ2F3jI+ncpq/JioNdlbD/qJuvfpazPdcGBr8nevKnJdee8cyay8Zn/Uz+b2hKuPbiC4gmDsQ7rx/L8XK49tIpjbjsAi/fnkDV+QoPX3vLly5t/7UnJOw9fTtYd//N/lq+vqOPC/9bBzz4CWyIv/PERbsn1mZmNVt6uLOCaL/NR7AZwVvDcY79p1rXncDjIzc3l1ltvZdKkSex48mV+jBvAmuw32byy+YbL9lZpIxaoDGmrBOKa0bf+/zhAE7MthLgduB3AbDaza9culi5disfjoaKigpycHJYuXYrD4aCiooIdO3awdOlSampqqKioYPv27SQlJVFZWUlFRQXbtm0jLi6OsrIyKioq2Lp1KzabjaKiIioqKtiyZQsmk4ljx45RUVHB5s2bkVJy+PBhKioq2LRpEy6Xi4MHD1JRUcHGjRupra1l3759VFRUsGHDBioqKti1axcVFRXU1dWxdOlStm/fTkVFBWvXriU/P5/s7GwqKipYs2YNhw8fZsuWLVRUVLB69Wr279/P1q1bqaioYNWqVSQlJbFt2zYqKipYuXIlCQkJ/vF+/PFHYmNj2bFjBxUVFSxfvhybzUZOTg4VFRUsW7YMk8nkn8/SpUsB9UZSXl7u396zZw9lZWX+bZfLRWlpqX97//79FBcX+7cPHDhAUVGRf/vgwYMUFhb6t3NzczX9Dx8+TGVlpX/7yJEjOJ1O/3ZeXh6Af/vo0aNYrVb/9rFjx6itrfVvFxQUoCiKf7uwsJD09HT/dlFREQcOHPBvFxcXs3//fv92aWkpe/fu9W+XlZWxZ88e/3Z5eTm7d+/2b9d/p2197Q0cOJDVq1efkGtv/fr1lJSURLz2HHVFOF1unE4vLrcbhyuaPUXjSYv/ELfbg9frpa54Nv/7fiBvb1lEtbMWt8uJcBnxeNxIILtwLwuWLPJfez8uX8zZnR7D7Vbwer04nS68XoHb4/Fv71n3P3bvLmv02tu7d2+zrr158+b5fyNHjx7lwQcfxOv1smP7Nrom5+PxBJbQkqoEoILmoq87J3/dqampafZ3f6rWnYNHyvF443E61aANq8lFrKWWhNgq8kqteBUFj0fhpQ9yuW5iQbtcd6rzjuLs6sLlVvBKL3uKFTwHBNGKwCu9uNwenBVH2LFiXpPrTu2BwzgtApclFo/bjRfYP7wbtUuXsnXHdhSLCbfLhUsacXs8VBc2fO3Vv98mr72lS+lV/AHuw8vwSi9Ol6rdt8soKi2pLF2nRumWrduK1+vF5dvvFUakF8rXRRN3dhlVB1ZQXJyqufYKCwuZO3cuFRUVrFixgmPHjvHII48gpSQnJweluAyr28Ca8efAzg+avd4AiPaUvVsIMQJYKaWMDmr7A5Alpbw8pO8W4Ekp5ce+7WSgBEiRUjaYNKtfv36y/km1vbB06VLNE257oT3OW59zCzg8GVw7kFJitzv4asM0EjtfxeQ+jyK8RVQrZl4tHsbK2r5giA073OVyYrFYuXfwdLIyhqmNFW9DySNBvUwQcxHUBuX6i78Z0p46rql7PB7eeustvxYrlD6dDjJjQsCM43BbePGLX/DkP57bKKUc1dLz6evOyaE9zPnhV4rYeyRg6rt9WiJm+3o69RzPI/9XrOn7++uTOHtI1MmeYrNo8LP2OOHN3tq8mbfsBFsiLLoD9n8RaB/6axj/5wbP4dp7iGMzfg9KYKzEu28g8fYZFBUVMXfuXDKXbmPA1iNYzGYAYmdMJuWJuyKO1+zrY9MLsO6f2rbodLjiM0jorr7NwlLyLrxN66vodYOjDIPVS+YdeRiiTHDzVn+ptaqqKl599VXKy8sbPPWkxbuocnfm/eG/AkAxGvjqjaHNWnfam0l3D2ASQvQJahsG7IjQd4dvX3C/wsaEPR0dnTZCqQSX6iBttzvweDzsOpTAkqUrWbZ1AOuqU7n78PmsrOkMsg4ILIoxJptmqLVFPj9Abx2U/0d7noQbIP46bZv9+AM31q5d26CwBzCkuzaJ6778gXTv0e+4z6vz06ayRtEIewAj+6u/h75dLYwZqP1tfPhdFYrSOqWNY+MOKt/4FPeBvNZNtrWU5WiFvbguqrAH0PNn2r4Hv24wfYmUkrKn39QIe6bMdBJunoqiKLz33nvk5eWRG2PA4XBgt9uRUuLceJwJmCsOwPpntW22JLj8Y7+wB1D33crwuRvMIIx4nQaqN8epAmBQqbUFCxY0KuwlltfRsaCKtV0m+loE0tr8usPtSuCTUtYC84C/CiFihBATgCuA9yJ0nwX8UggxUAjRAXgUeOekTVZH56eMYx0gURQFj8dDcWUSdlcUikHyWlEGf88/m3JPfZYkCd46zAYjv+h7MY+fdYNmqM2l+3ApHqh4A5QgDYeIgg73QNRYwBhod+8HT2Grp+5yuViyZEmD+9NSLAzoehSr1UJUVBSxsbGcffHz3Hbbba0+p44OhEfn9uhkJikhcG1fd3E8QgT255d4WLyhrsXnsa/ZSsEtj1L+n/c49vM/4DlW1Oo5t5jQ/HspQwL/dz0fjEHZ06rzoDhyJQn74nU41mr3dbj/VoTVwoYNG/x+eaXJamoWt8dDbW0tzv2HUcpCPcNawM5ZarBGPZZ4uGwOdOij6Va7QBtAZuqc5vtH1chWrk/A6xL+UmtFRUV+X8VIpKSkcE6ph5qETuxLGYAQBgwWM1Fx4daRhmhvPnwAvwHeAopQffHulFLuEEJ0BXYCA6WUh6WUC4QQzwBLgCjgU6Bh3bCOjk7bYV+DlOBwqH5Ih4s7Ux3r5UBPD04rWDxmLCbVr0Ug6Gkt4t6R99A1PhOv9JJkjaPApR7rUNxsLdnKqNpXtOdIvA1M6er/1uHaNC32lRCnTcnQXFatWkVtba1/22KxcP7559O5c2cyMjKIcX8MJUFP1eYeYGt+pJyOTkNs3K0V+EYN0Gr0MtPMTBoZrRHy5v5QxbkjorBamq+/qV64mnXJw8mN68KI0m0kfL6YxDuvbfrAtiA0Qjc1SOAzx6hC38FvA20Hv4a0YZpDpNNF2bNvadpsY4cSfcFYXC4XP/zwg7/dbTFR3iGaDuV1eKWktraWrR99zvA7b0QES8/NweOA3SGpmCb8FVK0caOe/GKcW7QuGmkvPkTBTQ/jrVHAXYPXbqB6SxwJlnVQdZjvv1+hiSBOSkrinHPOISMjg4yMDIyVtRx9/3Y+6zIZUOdtiLbRq7O52dNvVxo+ACllmZRympQyRkrZVUr5ga/9sJQyVkp5OKjvv6WU6VLKeCnlrVLK8NTlOjo6bY99NYriQVEUvBI+d/Ynp78bp1Vd0FweExKBQXqZHruNpzstoqtUF2mDMDAmVWseXZv3CXiDUlEY4iHxN4Ht6Ana87cyH5/dbvdHr9YzYcIEzjvvPHr37k1MTAxUhyz4cT+Hlt44dHRC8CiSLXu0t6h6c24w11wYjzlIVVNe7eWbVbVh/RqipMLDvwoH8WGvK1mdNprX+t/M4TXHkQS9pTSm4YNws+7+r8JMo5XvfoEnL0iLbzSS9NBtCCFYuXIl1dXaEnRFaYG4Tgns/XwhH3/8sT8wptns+xyclRx2dOWN/Dv4rPImPN2nhnWrXajV7lmH9cPSrwdx1/8MhFE17QJV6+KRHqjc8Bbbtmk/lylTpnD22WfTvXt3rFYr1R9+g0MxsDb1LACE0YCwmLlkfPM1fO1O4NPR0TnN8dYgndv82r2Fdf3ZHpOA0WTCaq2/gQliXQqPJ3/H9JgtOOtqsOf/G6SaxmVsWv/gAVlXVogig4SqDr8DY0JgO+oc7RxamY9vxYoVOBwBLYvNZmPixImBDs7d4Aw2IwmIm9GqcwVTbTexcmsdpZV61Y6fKjsOOHG4AoJNYpyBHp3CtTfJCUamhNzk5y+rpqau6Tqx63bYuf+FIvZ6A9nJPMLI+gIb3pqWm4ZbjOJWky4HEyrwdb3QLxABalWKskA+T09hKZWvf6I5JO7nl2Dp3ZW6urqwB7bx48fTYYJWA59WVE12djYvv/wyhYUtcP/IeQ+H18rfD/+NheU/44OiW3hnQXiS7LoQc27MJeoDafyNlyOirH6zrlJrpHprHI5tswn2Y+7UqRODBgW0ht46B9VzFrAhdTgOo7qGimgb8bFGJgxtftCOLvDp6Oi0Lfb1eNwOvL5C5WtruyMR2KxWLBYL0dExdK2Ipv/WKLobVQdlKSXuugNkr/gLXq+XIR16YKn3OPHWUKlY2OtIVLeN6ZDwC+05baOAoJuE5wi4W1Y3s7a2lhUrtJrBiRMnEhUVtKAG1+4FiJoA5k4tOk8k6pwG/vNhOXc8XcCdTxfw/IdlfLu6hgNHXa12ytdpX2wM8d87q58NgyGy5nj6eXFE2wL76hySz5ZVR+wLam3eNz6v4Nn3y6h1SPBqhcMiazKO9duPY/bNpGKvGqhQT3Q6RKdq+1jjoct52ragxMblz89C2gOflSExjsS7VHP00qVLNVo7m83GhRdeyKS7fkGUzUb9J9ahvBajR6G4uJiXX36ZTZuaUeasZDsUbmJ77TDKPUlqmymKRWtrKSwL1Dd2HynAuX2v5tDoyeMBMCYlEPfzS8AY0NxWronHVldAJ2NA8Lzooos05uaa+T+gVNWwIn0sAMIgMNisXDgmBrOp+dYFXeDT0dFpU7x1KzWL7hFXEiaTGYNRdT5/9Kzr+e/PH6JLlxFsPThAc2ycZxZvvvk69to6ehpTAAWkmjR1ba2atJmk+8AQ8lRrsPmEviDs2rqaTbFs2TJ/viyA6Ohoxo8fH+ggPWp1EM2Ef96iczSHkkqFVVvtvPVFJX/6bzG3/DWfv7xRwkeLqsje46DW3rQmR6d9IaVkY07j/nvBxEYbmHaeNv3st6tqImqI84rcPPRKEQvXBJl9vdqHiOKoFOyrsls+8ZYS5r83NHK/HiFm3QNfAeDcspvar7QavMTfXo8xIc6f2zGYrKwsoqKiMKZ0ILpXV2JiYjAaDAgJKSVqHVq3283cuXOZN28eitKIhn3HuwDk1Pk0b0YrGEyqy0qQsB1az9d61gBMHVP82/E3XYGwWvzBKZ5qI87diQy2qj5/Xbt2pW/fvv7+UlGoeu9L9sb3pCBKDfwQNisGg+CisdpawU2hC3w6OjptSkX+Ary+G0qN10KVtGK1qoubyWBkZEpfYmJiuPnmm7Gk34MMMtWmJpRhdCzmpZdeomNdFHgDxcHX1HZCmrqHp2Gp5zj8+Kqqqli9erWm7bzzzsNrQo0QBqhbDkpQNKOIgdgpnGgcLsn2/U4+XVzNk2+X8ssn83n2vVI25Njx6Nq/M4K8Ig9F5UHpRYwwpLe1kSPg0vExdIgL3MLdHvj4+4Cfq5SSH9bX8qeXijhcENBAISVCah8aCm2pOE6GwFcSEnEbas6tp/vFYAh2VNyDLN5F6T9e13Sz9O1G3NUXAWpFl2CBLT4+XvPAZh05EIPBQHRMDGazmbQirUZ0/fr1/Pjjj/7oXg3OKtirVhfZbfc9pJoCD52LNwbcMWoXaNedmEu07iamtCRir5qsHi8BCfZNqQww7cGAEqbdq1u8Ds+RAlZ0HAeo7sIiysbYwVEkB0VwNwdd4AtBoi+gOjqtxVFXjtEdMA0d88RjMNowGNSlpnN0MiaDukgZDAbOPvc6iJuqWeDGD9hIdXUVnl0rMcqAViLfHcORqLtANBCVFhUi8Nkj5MFqgCVLluDxqDdFl1lS2t3EB4bNXL/kaWYufYq/bHqPLw98yjFX0BN17GVgiG5gxJYRY1Po29WCsRnrt6LAup0O/jmrjDueLmDWN5UcLmxdTU6d04NQc+6QXlZsTUTdWi0Grr4gXtO2ZGMdeUVuau1e/vNhOa/Oq8Dl0R6XFie5e8drmGVgR50pivKjFSc+PUtjEbrB2BKh03hNU+XzL+LasU/TlvTgbQijkcLCwjCz7OTJkzGbA2uF7ayBgBrfGmWzMcKagMmkTVRSVVUV2a9v76fgsePymtln76MGXgSlj1EU+GJ5Ne5Dx3DlBAXACEH0hWeHvb2EX16JsEZTL3Z7qywY99k4p6uLXr16aef07ueUWRLZ0UH1axZWC8JoYMrZLdPugS7whVHoreah9W/y8YFl7Ks6ilfq5hMdneaybcO7CBF4yt5bm4HFEngS7hKTGnZMQrdHVFOLT9rplFRIt7Q8LhqyjgHmgiChzcS62i4Nn9x2FoggM5hSCO6mow/LyspYu2EdpR0Udvdxkz3MxdEuCgV21b/Q7VXYXLqXN496+c3hC7nz0IW8XjyEjZ4snK0sfh5KrE3hyTtTee+JTvz9jhRumBLP6IE2EmIaX6Ira7x8+WMNf/hPEQ/+t4gFq2ua5byvc3oRas49K0J0biTOHxVNRkpAaJES/jevggdeKmLVNntY/3OGRfH3Sxx0q8kj1a7VZBVFpWBfvSXsmDbDq0BpSI2EhjR8AD0v8//rOGKlYq5WWIy+aDy2MerxCxcu1KQ0SU1NZcSIEZr+1pEDtccfKebOX91OcnKypt3hcDBr1ix//Vyk9Jtz9zv6oEiTqp0Licz/fl0t+V+t1bTZRg3ClJYU9tZMHVNwThyORwae8OybUjkntUDTz7llN87sXazsOAavzwNRRNvo1tFE/+7NT7jsP2+LjzjDEXjJqcglp+IIH+xfQoIlmuHJvTkruTfDk3uRYGm5VK3T/smvK2PuweUUOvMZ5hxJB2uk8s0/bWpqaig/+jUEZVTJN/RHeAMLY2YEgQ/rAAyxFxEtFuFyOXE6XUwZuZTEmApG2qPY5sxQlzpjLGtLdjOj57mRJyDMYBsL9iAfH/sKsPSK3B84UJXPf5d/yPYhDhSTesMQwoDZHLKYysANOd8dw9eVffh652Ysu7YxJKkHZ6X0YWRy7wbP0xQ2VyHkLsLcJYt+3az066ZqD6SUFJYp7DrkYneuk237nRSWRfYz2n/Uzf6jlbzzdSVjB0aRNTKaoX2sGBtw/Nc5Paiu87L7sEvTNrIR/71gjEbBdRfF8+8Pyvxtuw65wvpZzILbpiaQNTIa+3L1ISjNUcKx6I7+PkW2FByrtxB31eTWvI2mqTwAniAh1JYEMRkN9+9+Cfz4IEodlHyVAopHrdAhjBhTEkl+WC0tlpubS06OtnrGxRdf7H+ArMfUpSPGlA4oJb5AMbuT5Ao7v/3tb5k3b54mLUpZWRkfffQRN998M8bC9VC+B4DddQMAAebwyFiXB75eU0ewk0f0xRPC+gF4vV6WpZo4GzNmVE2rUmHFsDIbLq/0l1qrfPdz3MLEmlTVP1lYzAiTiSnjY1ueQxBd4IuAF5QSELFgiKbSVcey/K0sy9+KAHrHd2JESm/OSu5D7/hOfvOUzpmLU3Hx+MZ3KXZU4vI4+d+ub3hwWNs767d3Fi9eTM+kQGSsEIKqqJ5QHTAdZcakRDoUku5G1C3CarUihIEOVCIlnGXN4x1Go3iNGE0W9lYepdRRRbItPvI40RNCBL5VkHCzpkuVq5blBdv4/thmDlTmU+ut0ayE9f6GoJp/JIA3JPWCT5Po8nrYWLKXjSV70XoXtQyTUgMLbgZbB+g9DfpcCWlnIYSgY7KJjskmss6KRkrJ3iNulmyoZeVWO3ZnuMlaUWDVNjurttnpEGfgyklxXDwuplU3CJ0Tz+bdDo3nQdeOJlITm39rHjfYRq9MM/vzImubu2eYufe6DnROVc2bXl+ViTS7ti5vUVQq9tUrkYqCaI5vQUuJlH+vsWsyOgXZcSyl/7cPT7Xv8/A4wRxNypP3YEzpgJSSBQsWaA7r0qULAwcODBtOCIFt5EBNjjzHpp0kDO3Lddddh81m00Tp7927l4ULF3KpJVD6bJd9oGrKFern07Wjye8fKT0Ky0z9OM8YRbRiB4OBmMnh5lyAHTt2cMBeRVr3VAbnHsGARAhB5aoYovd+gRh8I+4jBdR9v4aNKcOp8/kLGqJtxNgE5wxrXf1kXeCLhJQgq9XoQEM8CPVpXwJ7q46xt+oYHx9YjslgxBB8wcrgf7ULscVgZlRKH27uexFJunaoXbEwbyPFjkApng0le1CkF6PQPSLqKS0tZeOGVUycGjBJWK0WjlabgYDA1yU2goYP1EoVUePBvgqLxYyiKLhcLjoY7fQyl7KtNhOTdGK12lhXvJspXUZHHifUj69upVoGSRjweBXe2rOQ745uxONVtWShiVcNBgNms5mecR25oNMIzu04hMq6HDbuvZdNdenssCfjwRAeJXycSClxulyYvKUYtr+N2P42xHeHvldBn6v8NTqFEPTtaqFvVwu3Xp7I2h12lmyoY9v+yAlky6u9vPlFJbtyXdx5VWKLqjHonBzCo3Nbdm0JIZh5cTx/fTO8TPyU8THccEkCFnPgPqX4Bb5wk673cA2unINYB7deW90gzfXfC6LmQH/q9hwLNCgO4m+/nqgJqrl2165dHDp0SHPMlClTGny4sY4YoBH4nBt3wi3TEEJwxRVXsHPnTk2VnY0rFnJhp/lYTAKvFOyuG6jR7v16egf+OauUqlov0unCabCyvOM4Ljm6BNuYIRiTE8Pm4PV6WbRoEQA7B3aiX24+VqEK665iC/b5HxI9+Eaq3vsS6fUGgjVMRoTFxAVjYlr9O9Z//SF0MVXwi7g1jLQexkYdUinD6y7H6/WE9fV4FVyKJ/DyBl5ur6J51XocLCvYxt2rX2ZFwUnId6TTJjgVN58d0ibR9HgVyhxVDRzx02TRokWkJxzDaFD9xwwGgcfak2JnwIRjEIJO0ckNDaEmU/ZhswUCPbo6a/F6DbhcLtxuN+uKdzU0AliHgCHogcpbBi413cEbu7/lmyPr/MKe16vg8QS0IkaPICtpMM+Pu4N/j7uDn3UdS5wlmkzlO67osJ+/dF7Fez2/4eGulVycOYaUhrSMrUBKcDqc1NbUUlNTg93uwFW6F+/65+DD8fDZ5bD9HbAHTHcWs2Di8Ggevy2FV/6Uzs8nx5GeFFkzs3KrnUdfLaGoLHwd0zl1eBRJ9l6twBepukZTDOltY+ygwHGxUYI/3pjELy5P1Ah7ECTwOUIEPpv6MOZYnd3i8zeLpipshODad5iyWdrfuiW1lg63ZgGq4BSq3evXrx89evRocMxQPz7H5hy/75/RaGTUqFHExwd+18OsOTjsNSiKwlFXJjUyEYyqAijaJuiVaebyiWoSbOlUTek/ZpyN3Wj1J1sOJTs7m+JiVbtalRDFka5JGgG14utClLwcaj77gYNxXTkarZq9DdE2hBBc3MJULMHoAl8IBinJit7PPYk/8krqJzzS4TumxmykC/tw2MtxOOy43W6Ng2hLqHE7eG7bJzy37ROq3eFOtTqnF98d3Ui5syasPT/oxnvG4NoPZS9B3Y8tOuzYsWNs2bKFrmlH/W0Wi5VjhnGafh2jkjAbGjEqRJ0LVjUvlxBgNpsRQlC9JxCo4XA4yC7eR607PLu9eqAJbNrzYl/BweoCvju6UdPsdDpBQkKFgd77TEzJ78JD59xEj7iAXxNSgapA7r0og8KYzCu4c8DlvH7Ofbx49m+4uc9kusWmN/y+mkGd14ZD+vz2vBK3243D7qCmuoaa2loch1bhXvpH5KxhsPCXUHlQc3xqookZ58fz0v3p/PX2FLJGRofd6HPz3fzp5WK27Wvgs9M58SguWP4gzL0Qtr7OrlwXdY7AvSQ+xkCvzObXRg3m7p8ncctlCVx3UTz/ujed0QMjawqV0goAf9CG8NVpK7V1wCMMJyYfn/S2SODzOpyU/PFfSLfir7phMHtJnVqMyPsOgE2bNlFUpI0qvvjiixudhqVvNwwxgc/FW1GN+0Cef9tms3HjjTdiNBoReBlh3Q4S6ux2cmoH+lKxqL+rvl0tGH258KKNHqRHfZCsM0axOmNsxOhcRVE0dX4BHDMu1VQWcRVaKLn3r0i7gxXpPu2ewYCwWhjZ30ZaUusNs7rAF0JRZZI/GaxJSPpbirkmbgtPpX7NaxkfcL15DUnFVdgraqitrfWncmgpKwq2c8/qV9hUsrfpzjqnBJfi4bPcyCW68uvOMIHPfQzyfgZlT8Gxn0P1F80+dOHChQB0TVVNL/Vm0SNebT3cBv336hECOtwTtCkQcdNwlqdhc9QLL5LqulpW5m2LPAaE5eOTtSt5a89CvEEPaTHCQsdcGL7FQr+9ZpLKjVxy0cV+raIf+ypQ8oPmGAWxP/PPr2tsGtO7T+C+wVc2/t6aoEKJ5cWKX/BpzaXsdvdECVqavYoXl8uFvc5OdVUFtTs+xT1nMuQtDxtHCMGAHlbumtGB5+5OIzNNe3OoqfPyt7dK+fLH6lY/tOocB2v+DjtnqeXFVv2Zjet2a3af1d/W6iAbi1nwswmxXDkpjqT4hn3w6n34bF4XCa4qNQkw4MVAqTUZZ/YuvHVt/FBQdRhcQXnvLPEQ363B7uX/ehfXHp+p1qRqLpMml5FtOovHPu3E8x+U8M1C7YPpiBEjyMhoJAgEEEYj1uH9NW3OTdpSb5mZmVx55ZX0NB8mwaDOWXol26v7IYNy7/XvVq/pM3C+OVczxrIe5+OJDtfEbdiwgbKywL3DYDAw4YariR7fR9PPvvkIleY4tiSrSZ5FlBWE4NLxxxc0qvvwhWCzxXDEdR+7Vy9h0qAFpMSX+/clGh1MS9vE1JRs1uwZzvLto/AoHiZlTSQrKyvsZiF8TwISL98cWc/s/Yv95iSAMmc1f908m0syR3FL34uwGVseZq1z4lh0dCNlzsjliupTdpwxVL0L3iAzdcmfIWZyk75q+/fvZ8+ePRiEQmayKhhZbVaEgCPuNCDgGN6g/14wMZdAh7uh8n0qXOmk93+Jq648wMFVH1CQof52pPTy4dpvOL/LiLA8WkBYXd11pfvYVtYNCNxI++fHUpcf+G4zMzPp3197IwCgak7I/C4FQ3ix8u5x6fRLyGz6/TVAVFQUvfsN5ODBKPbU9MQqHAyw7GOwZTddTEECpwTFo2CvLETOvwZL1lMw+NaIY2akmPjHnam8/Ek5a3cEbuBSwqxvqjhwzM0d03W/vpNGxQHY8Y6macOOaiDg5jCyX8vNuS2l3qQLqlm3xpyJMBqQipfCqBTSy4txbNxB9MSRjYzSQkK1e6kNB2zULVlH9YffBBqMVmIGFlDQM4NnDz2KlALXhgpivT3pGqVq+IxGI5MnNy+62HrWQOwrN/u3nZtyiLtaqxk866yzSNtYBEHL/Ja6kTiE019qsX/3QCT92evn823qTJwGta3WGs8P6+u4dEJgrXC73SxevFhzntGjR5OUlITzvt9St+I3gR1SYVXaSLwYfImWrXRONTG4V+PJuJtC/6WHYLFYuO6667j1zlex9fmRQs8vEAbtj9Bg8DK+/ybunPwhPZOPsnzxUuZ9/AlCkViNZv/LYjRhMZqwGi1M7z6Bf429XWsu8rEgbwP3rXmVXRVHTtbb1GkCl+Lh09yGKzUcqwt3kA6moqKCQ4cO+evJntaEmC0BNYddReNxp8ERchlJRZiMCkajEZPRBMZ0jji0UYORcvCFIQQkPwg9t5NT+RgYExgxYgTnd9fefPKMVcz7/LPIWipLfzB0AMAtDbxT3FMti+ajtzWd2p3HNIdcfPHF4Y7eSjXUfqNti284OvuizNbfIK1WK7fccguPP/44t99+OxMmXUpp2hRm18zglcqbWGYfS6k3MXCABEddLc4f7kcuf1AtSh+BKJuBP8xM4trJ4YFiK7JVv77ict2v76Sw5m8Q5At+zNmJgqoo1dwJGI0wrM/x3dCLioo4duxYo9pbpTQg8KXbi8EgEBbVpFgcpWrh27zqRjPNuZ7CUkoefVHTZuramcRrO/NG4V3+qjxel50qJVDDety4cXTo0KFZU7GF+vGFaPgAqM6js7ILo0nVlFYoyRR7MnC73bhcLowG6O0zvbt352LJPciEgnWAT461mpm/vBq3J/A9rFu3jqqqwEO10Whk0qRJAFhHjCBqSGD+HmFkdZoamCZsVoTBwCVnH3+kvS7wNYDBYKBT5270GfMCcYM2Eps2lejoaCwWC0aj+rElxFTz83O/oE+ng2zfvp1XX32VioqKBsfsFpvOs2N+xdU9Jmqje1FNhA9veItZe7/HHSFARKdp7HY78+fP5/XXXw/Ly9RSvj+2qUHtHkBBIybdnJwcnnvuOV599VVef/3101/os6/Wmi3rqXgZlIbf5/bt28nLU/1fuqaq/nv12j2ixpFXq3UKj5iDr5ncePFVxAQlVfYaJUv2bGDNmjXhnYVBjfgFvqroSb47BqTqUG0QgrS9Hr/2HaBHjx5h2e0BqP1Kk38PUyf/uJGYkD6ohe8qHKPRSI8ePZg8eTK/+c1veOyxx5g68y68w3/HPPM9LLGP18T/O50u7Bv/h/LVdeCoiDimEIKrzo/nwZuTibaF+/X98b+6X9/xUFJSwgcffMCsWbM4duxY5E5HV0LuQk3ThpqxgASP+tkP6mElytb6W/KyZct4/vnneemll/jyyy8j9pFS4i0P0vDZS1T/MJ/AV+gL3GjzBMyhEboRBD6pKJQ8+DzeyoDPtDAZSf3n7/nedCf77b197wGMeHB5Y1GkGavV6hecmoN1SB+/3yKA52gRnoKQcmo730cgiYqKwmAQrLePR0EV/hwOBx07ePya8fpSaln5KzF73WAxIwwGyqu8LN2oJm92uVwsWbJEc4px48aRkJDg3064fYb//+y0kVSbVe2giLYRZRWcd9bxV/VpFwKfEMIqhHhTCHFICFEthNgshGiwiKUQ4hYhhCKEqAl6ZbV6AuauGDq/jynzbWwx3YiJiSE6OhohBEaDlyvP/pZ+nfeRn5/Pyy+/zOHDhxscymQwMrP3BTw16hdkRGszcHulZF7uCu5f+zq51YUNjKDTED/88ANr167lwIEDfPTRR1RXNyywNYbbG67dm5QxTLOdby+LWIWlurqauXPn+ms65ubmsmtXI1GlpwPVH0du91ZD2X8i7lIUhe+++86/3TX1GCaTCZMvf5fLOpbCELN3kz58jWAxmbmg1yhEUCqcig5evvrqKw4ciFBNI2oC5R4rH5fVFyFXBb7R0T0p36e9KYfWrvRTFfK5xF2tCpMNcCJcMqKiohg4cCBXXHEFf/jD/XT+2ZN8Vnc5LgJO3h63B/u+RXjmXgwV+xsca2R/G0/flUbn1HC/vr+/VcpXK2p0v75W8Omnn7Jt2zZycnL46KOPwh/wpBdW/yXsuE01vtRCvmTErYnOrefw4cOaiNXVq1dTXh7uduKtrvUHFwCkyyoQwi8A1Wv43PsO4ylqIz9lKZul4at8Yx6O9doMFom/m0ldj158uDOw/kokRqEgkNiVRM4991xiYprv2yasFiyDtGlnNH58iht2fQCoD4hR0dGsdWgFyuriLVRUVCCl9Kd5ifPUMq5oAwZrYB2Yv6waRZGsWrVKk+7FYrGQlZWlGdN2yQ3YeqjfzYrOkwCJwehBuCuZ1G0/Ud6KZr/HhmgXAh+qr+ER4DwgAXgM+FgI0b2RY1ZLKWODXkuPawZCQOyl0G05JPwKk8lITEw0BoMBg8HLtLMXMqDLXmpqanjttdfC6vqF0i+xC8+Pu4NLu4wJ23eoppD7173GqsIIqmadBtmxI1C2x+VysW/fvkZ6N8wPxzZTGpR2xWIwcVOfC4kxBRZkl+IJi96VUjJ//nzsdm30dXAG99MObw3UfN3w/sp3wX0orHnDhg3+IuMG4SUzJV+TsPiYHKgJkkizJRy3QDQhYzDR0dHU++KVJ3pRvAqzZ88Ov7lFn8MHZQOwS7OaH9PrwooRS7b2Jta3b1+6d+8efjJnDji0ZZKIu/q45t8WjBo1ikm3PsVc9w1UegNmWq/ixV6Yg3vORRGDOerJSDHx1G9SGTNQK1x4Jbz7dSUPvlzME68X85c3SvjbmyX8/a0S/vF2Cf94p4Sn3y3ln7NKeea9Up59r5TVuxMoq4pc9eOnQl1dHbm5uf7t4uJi/+/Cz55PoEQryNR4Y8mp82mEvW7wuptdTi0Ut9vN3Llzw9q3bw9P/+UNMucCdIz2VeUwGBBmE4VRqX4NcpuZdWvzwRH0uzNHQ4I2dYpzy24qXvlI02YbN4z4W6fx7leV2N0mMJg1DyQm4UFaOnLOOVqf3eZQX1e3HsemIIvQwW8hKEeh0RZPbWKWpr9FOcqsWbOo3bILz5FA7tELStZgivLl7ZWSglI38384wrJlyzTHT5gwgdjYEF9go4UON4/lcGI3DsV3V333LBIUF5dU3wuzhsHXM2HXHHC2Li1YuxD4pJS1UsonpJS5UkqvlPIr4CDQhl6lzcQQC6l/gdTnMBhUoc9kMmEQkivGfsegrrtQFIW5c+fy7bffNmrOsxkt3N7/Uv581g1hyZg9XoX/bJ/HvqoGTAQ6Gurq6sLM6fXmxpbg8Sp8elCr3bsoUy2lFqqRDU3NsmXLFnbuDBfSc3JycLvbrri92+vRBP8cFzXfqAnG6zF2BFPn4LNB6T81h9jtdk1qgfTEYmKi8Ls6YEwhz6UN9shsTsBGEwxN6km02ep3mnZbJLUxkrq6OmbNmsWiRYv47LPPeP/993l61ld8V9EV6fUipfrqnJtHSdDiDER29JYuKPydts06Eiw9j/s9tAXdunXjurv+yje2u8jzBHyCpVdiryrCNf9q2P52g8fX+/X9PIJf34GjbnYccLF9v5Ot+5xs2etk8x4nm3c72bjLwYYcB+t3Oli308Hq3Qn88cUicnIjJ33+KXD06NGwtiNHgnyx3XWw9ilth15T2WK7Ga8M3H4zowromNy6GMpFixaFC5lEftBUyio028kJRiy+0wqLGbvRRo1J1Za1mVk3VLuXPAiCKlR5q2spfuBfaokYH4YO8aT84x62HXCxcqu6PnkNFo07g1W46ZzWBYul5Q+Sofn4NBq+nbM0++w9r6OkJlrzQBtjLCI/P5+1z72K0+nE4XBQZ7dTGe8hRu6gurqK6upqampqmPXlMez2wG/EZrMxceLEyPOadj+bJp+DwSoxRHkRBsmI2I1kWPJVX+sjS2DpffDuEFhwK+z7HOrCv/uGaBcCXyhCiHSgL7CjkW4jhBAlQog9QojHhBBtG5GccD2kPY8QBqKiorBYLAghuXzs9wzprj4tLF++nFmzZuFwNO4fMyK5Ny+e/RvO66hVc7u8Hp7a8hHljfiS6ahEEu40C28z+eHYZk1VDbPByJXd1SfIjiECX7AfX3V1NV98ETmVidPpbLW2MdL8blr2LLcuf44NJXuOf8DqEM1A/NWQ9CdtW818cGz1b3733Xcac3n3jgWaxRDbOI6E+O81K2CjCSxGE2el9MFkMmGxqOcrT1QfqAoKCli8eDHr1q1j+47trDHl4VYCN5UMUzXn2bTfwaBBg8jMjBBZW/osuEIE9w53Hvf825LExERuufN+srs8wjZXUHSxBEddHY4f7kcuf6jBYA6DQTDD59cXZW29I3hlrZe/vFHC9+tqm+58BhJJ4NOsRVv+D+qC3HOMFhj7CBs8Wo+kkebv1Bx9LeTw4cP8+GPkvJlHjhwJewhWQjR85g7xdPKVXBM+ya8oypeAeU02si38j0P892TyYDzF5Tiyd1Hz5VKK//AsnmPafHopT96Nt0MHXp/vm7+UOD1gEYF7qUBiLzwChY1b0yJhHdFfEyXs2nsYpaqGKEceHFul6bsv/ga8EqwWCyaTCauhCrPBAVISvWkPTpcLl9uNx+NhZ4qNBO8GgmvlObwJVHi6+rcnTpzof2gNxqNIfjyQyhrjFRhiYhC+DASXdPgq/A143apP6Pd3wqyhzX7f7S4tixDCDMwG3pVSNuQctRwYDBwCBgFzUOs7PRWpsxDiduB2gNTUVJYuXdrM2aSRYr2DPvEvIoTAZDLhdrv52ajvkYqTjfsGsHXrVg4ePMiYMWOa9DMYQTLQi0VBN5t8VzEPLH6Fa22jMTXgP1RTU9OCOZ8+tOW89+7dG1Ym68CBAyxevDg8t1oDKNLL2/YVuGRgnEGmrmxdrSbstbvKkVLicqn7V+7YgGlvFVJK1q9f32jAzrfffkth4fH5ZTqlh1fqluJGfRJ+dt2H/Drq3LAAoFAa+pythmLOStY6Emfv7IpdSWJYhwyiTQFTbmXO3eys/DMVFZX8+OOPGtNKv65lGg3mwdIOrCvfiksJfI7Vh4pZeix8Di2dd4zHg8vlVM0dwkBZgkLaAa22syIZquLArBgw+2S+62I3kOiRLHOqvkBGo5GEhISw8ePMOQxO/A/BdRJLnBPYmxcNtGz+TdH6dSdARmY3ttX8gvxjnzA5LmCCdjqduNe9TO2eVezt8QCKMTyVTD3TR5n4amMKxZUt05RIKf2/uRc/KmT52mrOG1SO8TRWI7T1Wrlhw4awdWfLli0kJCRgdpdx1q5/Y5ABQe5o6qXkbtjPyv2dkVRTf50NNf3Ati/NlCZGrr0aad6KorBs2bKw8wfz6aefagKSoldtJtEVmE95XTW4inA61YAAI3DMnEgXlwvyi1k5+xM8XdKa81Fo8Si4co+yessbZO76FmthPEqlGaXSjL12HVKZ2eChNeePJNdbw+q3sjl0LMH/Xj0eL2PjPuHHuhv8fQ/Vdab24yvY1fNRqmP6NTRkRFJT4jEfDaSNWvfOHJLjF+EM+nyqYgbw1foanE51ITEajcSbSnE6naSU1hJTE/jsFYPgYEoUuEuJN+ylQgnk1jvmGEyUsofo6CgURdF8lzV2I1sPxbLtUCy1zvqHVBMYYkmKqSO2S1cqKg8T5Wy5xSqU00LgE0IsRfXPi8RKKeU5vn4G4D1UD+zfNjSelDLYi3ubEOKvwAM0IPBJKV8DXgPo16+fDHWmbJwsqB4Ohb8BFBTFQl2dncvHrcBqNbBx31BcLhcbN25k5syZkaMBtaMRv3sBXx4ORB+WYGdXejV3DZga0bl86dKlYQ6g7YG2nHdeXp5Wy+Sjb9++kbU4EVh0dCOOnV4sqOOYDEbumzDTX0LLeyyR1ZsP+LVLtrQEsoZlkZ2dTXl5ueb8AwYM0EQKV1VVcc4550TOG9dM1hXvRmSbsPh+tk4kPUYNiJjqJ5gGP+eyF6As6CZvHcHYQb6FuPZfkH+9f1eadQ8pfby8/PYRjQklOSmRvl3KETLQ1r/3LSibFmOpCXweF48+j36JgYoZzSHSvEe57Sxetg9FejGbLdSJOmS8EZvTl65BSAp6uhFCokgT4GKoNZ+zogrw2kwMHtib2PgUxowZE+67562Bww+CJ6jSgbEjnfvPorMxgbbm+NadAJMmTWLr1gl89tnTXBa1AAuq8C29ktjKbMbl/wPzjK/B1nDaimk/kxwu8FBd50VKtRK49Kq+fVKqYomUEinVtj2HXcxdVKq55nOOWTHYOvH765OIj2k48e+ppK3XynXr1oWtOy6XiwkTJmBe8UcwS8D324hKpueV/8Z5zIo0lCDMHnDXEWusYVD8AYyWnZD1ULPn/c033+B2uzXn79+/vyZIzOVyaY6r2FlARdDvN3X4EEYP7Epuqaqx91pdlMV29P/Gh3jMJLTw86r7cSMlDz+Po6QMi8WCYndQJwPXntlmxW9HDsHSvwd9XnycgirB/74vxGoF6fVS43KRYt1DgbAhkRgQCCGo88biJIGRBc/BpbMhI9wnviFKV+ym+qNv/dv9XRJrzSqswZ/PuX/As7wLVmtAsLvmopFsXr6ePtsLNFrCY5kdMMRGYwU6m3KorO2rJo8XAsWQTo/Bl3H9FUNJSUlBSklOrosFq2tZu92O1/d8GXoLu+bSNPpO+K9vwrtg/+eqGbcqt9nvM5jTQuCTUmY11Ueoks6bQDpwqZSyJU5RkuCsq21N3OVqSaeCOzAaISYmBru9jotGLMcgvKzfOxy73c7bb7/NL3/5y0Zr/QHc3Gcyh2uL2FIakFu/P7qZHrEd+VnXsSfsbbRnIplWQBUEmyPwebwKcw9qTSOTO5+lqZcayYcvkim3S5cuXH/99Tz99NP+yKx6s27E5L7NZHNpuFk4u3R/kwJfRKQMj86NC6QFIPo8NYGxPeDPWHXwT+TnX0CwJ8iMqYMRMsjlwJCIx9SbY3XavH7Hk5IlmFhzFIM6dGNr2UGEEERHR5M6rgsDHSnExMSwxViAwbmLaN9Ca5QuftVxN3FWVcP1i+uHQnQDTt7FfwZPSIR9+n/gBAh7bc3QoUNJSnqGee+lM0XM8VcI8CpeHAXbkV/diGX6PH8d0FCEEHTLaH5Jr7GDoqgr383yXZm43AFt6I4DLh58uZg/3ZjcovHaI3V1dREjYRVFoWTXUjL2hPy+Rt0P1ng27PKZVU1R4K5jROwGjMLnn1VbADFN/54jmXJHjx5NVlaWRuA7fPgwlZWV/vQfwUmXAYxJCXRKCRIDLGaKogLR9I5V2STcOr3J+dSjlFVS8qfn8Vb5Atqk159nUEVAA+UVDQmxpD7zBzCbeOPzUuqDiR1OJ0bsdLJuVgUogxOMKeBR19ZcZw+SzBvhm+thynvQKbKWNBTbyIEagc/x4zKiL6gjWEBXuk1hz2FtztVRQ5IZP/g3FH75G4xmM8IgEMJAj5uuZNBF44mJiSE2NpZX5tWxZnvABF3gHExsfBKL1tayYE0NhwsaT782fkgUF40Lsgom91dfo/+o+kXu+1wVAGua7+d/Givfw/g/YABwuZTBXubhCCGm+Pz8EEL0R43q/fyEzi52CmS8AZgxGATR0TGYzCYuHL6Ccf1UHwNFUfjwww+bTBdiMhi5f8jVYQLGW3sWsrUsQgqKnziRAjbqaW7gxrKCrRTZA2OYDEau6q4VDDpGhfvwfTb/M01UrtFoZMaMGZhMJgYN0uZlO95o3c0lkQW+VuHcBO7geqxmiJsW2BQCkh/1b3q9EqNnN4O6BvwGhwwZQvf0kPx9UWMpdFRqgkqSrHHEmNuugsDYtAFB0xRUJQumTZvGqHPHsZEjmExmjEYTBoORKakWulqDfm/2yKXyqP0Oqj/UtiX8AqLPbbN5n2gyMzO59q6/sCju3rBgDvehFXgX3xNy8z0++nWq4+93pJCSqNXmFZcrPPJqMWu2n9m1wht6yASJecNTGj8uOvSBAar2fGOOTwgwmMFgZmTsOt9hXjWitwkiReUmJCRw6aWXkpSUFPaAGxytGybwJSfQOaj8njCbKbIFHs4cm3LwOpoflFP+r3cDwh5oEk0DfmHPEBOFpX8Poi8cR/yt00h+/A46ffYi5p6ZrNpmZ+s+9Zwejwe3202mbQMmoZpa+/dMQFjjwJen7oijuzq2uw6+mQl5DSfMD8Y6YoBm27XrENITpBfqfx2HigUOl7bWcUaykdi8EmIcbmw2G1aLFWt8LP1vuJLu3buTmppKVFQUV50frxl/7xE3tz1ZwGvzKxoU9qKsginjY/jP79O47/okTMYIeiohIHUonP0YzFwH1za/9nm7EPiEEN2AXwPDgYKg3Hozffu7+rbrPSMvALYKIWqBb4B5wD9O+ERjJkPGuyDU5LNRtig1KeTQVUwYsB5QnfvnzJnTZDLeOHMUDw27lihTQMerSC/PbJ3baNLfnyKNCXXNCdzweBU+CdHuXdhpBCk2rWYn0RLjN6cCVDvq2LJX69w/efJk0tJUn5chQ7RBODt37vTn52sp+XVlEcu57aw4hLMVzt5UhQRrxEwGY4jJzzYUYqcBarJRKeG8wWswGjxYrVYuu+wyNWlzMFFnc6S2WNN0PPn3IjEmpa9me3fFEcqdNby/bzH2oM8i1mzj2h4hGvFIAp+nBIr+oG0z94bkR9pqyk3jlU33aQbx8fHcePt97Oj5BIc9gUoEiqLg2vkxrH+2Tc5TT49OFp6+K5UB3bWaQ6dL8q/ZZXz8fRXeNnpvpxsNCXy9zbnEVGRrG8/+MxhMFJR6OFocuNkbLVaGx24M9Nv1kVZQjECkqNyrrroKm019qBo8eLBmX/CDpjdE4DN0SCAjSMMnTAbKopPxCFWIl04XzuCUJY3gWLeNms+1pcOsPWKIHVpDh3PLSb28mIzHhtJlxXt0WfMBnT55nrT/PEjSH24h7ppLMKUlUWv38s5X6hyllDgcDuKMBXQwqYqOtLQ0xo/01eC1xIIllkPO7oETehzw7Y2Npiaqx9QxBVPnNDVYxlmJdLtxFfjut0LAgBvZfUi7tvbrZlFNyQu060j0eaMxRGsfartnmMNyKzpdkb/bzDQTt12RwP8e7MgvLk+kc2oztePCAImNu4kF0yKBT4hGso6eQKSUh6SUQkppC8mtN9u3/7Bv+7Bv+34pZbqUMkZK2VNK+XgLTcCtJyYLMt4DYUMIsFotWCwWzh28lomDVKfq/fv3a9JaNETX2DR+P/hKjS26xm3nH1s+pM7z002FEErDT9pqqaGmoqSXF2wjP0iIjqTdA1WblGhQnZvrFyOnNfAD7tKliybcvkePHr68cSoOh6PV0bqbIphzAdxehZ3lDSf6jojXqUbeBtNQjrnkB3F7BB6PepOKj65hVJ+tXHTRRcTHxYI9pNKF7WzywgS+tjHn1pMalUjP+ECRdAnMObCUxcc2a/pd13MScfEhrsGObNVXz3+whOIHQAk225gg/aUm6wi3JabiCpTy1uXWCsVsNnPVNdeRnX63phyby+nCve5fkPNhwwe3goRYI4/flsLkseFBaXN/qObfH5Rhd57m1WZaQaR1x4DCBdErtQ92medCFzVx79oQrWf/nrHEmINuTZUHoHAjDdGQKbdPn0CAQOiD5qFDh/wlvUKjdI3JCdgsBpIT6rW0AqwWim2B+r6OZqRnkW4PpX/7n6bN3SmFjnfFk3JJKQnjqogZUId19DiMiXENlgj7aFEVFdXqteJyuZBeD11sa/yuctOmTaNbRpCjmzmWw9Ys7SCKE769CQ5rA9I01ByDDf/GFrMNnOWgqPcI11Hfb77L+RDfhV25WoGvfzcLzu37qPlGK1BGXxLZTeTKSeGpj+oRAsYOsvHn21L4971pXDwu9rgqrTSHZo8uhDACtUKI4yv291Mg+hzoNBuEerO3Wq0YjUbOGbie/pl7AVi8eDF79jSdVmN0aj9m9r5A03a4ppj/bJ8XsdLDT5EGyxn5aEwDqPruaX+852cMJzUqMWL/Dr7v1OGwAxKHTRX46k25wRHBRqOxzcy62Q0IfADZZS0069YtAm+QcGFIgpjzI3Z1k8H63dqcVecO2cK40QPAtQe8QVpHQzxYB3Kk5sRq+ADGpmp9IRfkbdDk6MqMSeHizFFgygBzcP48D9jXBTarP4Zabckrku4Dm7ayyolGOJzkTb6N0n+8HpaiojUYDAauvO5WvuV66mRAcHXY7ShL74cjyxo5uuWYjILbpyXyqysSwqJ01+5w8OirxRSWnVklIyMJfCOs20kyVOD1etXE48KgaveEoKJaYd5SrTvPyEHx0C0kF+SuyAJ5Y6bcYJKSkujcubOmrT4pfWgePmOSasUIrr4izCaKbYHfrH11dsT5BFP59nzcB7XrbOXMixAVzauhC7A/z8XCNapfntfrxel0km7djs2orlUjR46kR48eYb6heY6OeMb8WTuY4oIFt8ChIMWK4oYD38A3N8Ds0bDhOazpWv88v8A39HZfYEWQYkVKOq34jvzr/4g36OHMEB1F1DkjIr6nvl0tjOinFZniog1Mz4rl5T+mc/8NyQzuZT3uGrnNpdkCn5RSAfYAyU311QGizoZOH4KIVc27UVEIIbhg2EpMRvWJbs6cOVRWVjYxEFzV/RzO6ahV068r3s1HB5aeiJm3O0IFunqTakP7g/mxYLtGu2cUBq7q0XDm9kRDNG5fziXAr+ELNuUGE/q0vWPHjhabdT1ehW1lBxvcn13aQr/OUHNu3HQQkU0IS5cu5ftNg3C6Aya7hFiJofLlCNq9MSCMHAlJBNoWOfhCCRX4Qvll30sw1Sd3jZqg3Wn35dlyH4biR7X7rGdBh5CkyycJ6XBR/cHX5E25k+IHn8e1N7zCSUuIjo7msuvv4tPay/H46oBKCfa6GuR3t0Hp8dWbjsRF42J5/LYU4qK1t5bDBR7+/FoJNfYz4yE1NGBDCEGnlBgmRq33t3kVBfpfB8mqr9j731ZS5wg8llgtggnDoqH/tdrB93+h+qOF0JQpN5jQdWfr1q1It0dTpxYhMCSqGqjQwI3C6MBv1rXrIEpJuDtJPe4jBVT+TxugEnvlhXh7JEB10NprMEFS5N+t4pW8Nr/CZ81WrSdWQzUdLarAGB0dzZQpau7CuGgDHeIC15eiQH7nX8D4v2oH9bph4S8gZzas+Tu8PxK+uw0OL/abza2ZWkuZsyAWee6/IXMixeUK5T5to3S5EaVlJH44G0LcsWKvuQiDrWE92O+uSeLC0dGMHWzjt1d34NUHO3L9xQmkJp78mNmW6g9nA18JIW4WQlwghDi//nUiJtfuiRoNnT+kPpAjKiqK+OgaxvVTTU91dXV8+OGHTQoAQgh+N3CqxowF8PGB5awsbCz39JlPaMCGwWBg9OjRmj4N+fEp0huu3es0nPSohtNXxHpMGhOxwybDTLnB9OzZM8ysu39/yzRyOysO4whKoBtnjtLk3jtUU0hZc5Nze4qhTutn05A5t6ioiGXLlmF3RbF611kAWCxmjEYjVLwBNZ9pD4gah1d6w0y6XdqgykYo3WLTSG9ACzsypQ8jUoJqZYYJfCvUrPWF94AMShgsoiD9RTXi/lSiKNR+tYxj0++h8K4ncWza2fQxDdC1a1eGXXQrX9Rc5NeAehUvzupS1deptu1rdg/sYeXpu1Lp1lH7OZZWKny35sxI0Byq3UtPT+f8xO1EBSUGdmGB0Q8AsOOAk2Wbtebcay6IIyneCF2yIDo9sMNdCwe05Q7LysqaNOUGE+rHl5ubS9URrSXE2CEe4at93Sk4cMNgoLST1i/MvjayZUJKSdk/XkM6A6ZPQ2IcHX5/MzH2kIfUDn3BFFkw+m5tLQeOqmuc2+3B4/GQaVuLQaj3xilTpmjy2HbpqH1APVzohqG3wTlPagf2umHZA5D9iqZcWj3mJDeGKKlGTNuScHsTcQk1tcuuQy7wSrzVtSgV1XSryMUUYlWLvTyLDvfcGPE91RMXbeDXV3bg/pnJnHdWNBbzydHmRaKlAt+dQAfgCeAN1DQpb/r+14mEbSQk/gIAk8mI1WplXP9NxEWpT1qHDh3SFKFvCKvRwsPDriXBovWTeXHHfAqVtvH9aY+Eau/S09PD8qs1pOFbUbCdY3UBlb5RGCL67tUjpaRk/1GCk/I6bYSZcoMxGo0MHKg1ibbUrBtqzh2d2pfe8VqTzZbmRuvWzAeCHjAs/cAabmaRUvL555/7H0bW7x1GnSsuKOeXCxzrtQdFjaPYUYlLCZjuYs1RJJibX9i8uQghImr5jMLAL/peHDKv8dpt5zYoeya8Vm7K46eufJoxct46+7L1FNz0MPk3PkTd0vWtqnwwYcIEjH0uZ7E9IPi6XG7c5YdVoc/d9kJYWpKJv98ZXrN34ZoaFKX9B3GECnx90s30tmvN5NtN50F0Gh5FBipG+OiSbuLSCb5k2AYT9L1Ke4Ldc/z/ut1usrOzNbsjmXKDSU5OJiNDqyDYvV7rG2hICgSlBZt0AUpStDkzG6qrW7doNfYftZUukv5wC8bEOGLsIZaHBsy5ZVUKHy5U72H1vtEdzLkkmFQBtVu3bpx11lmaY7qFCHyH8n0PxINvhYlPRzxPGCmDEec+hW3SpWCJV6OmAedG9QFr24+HUMor8frKonWvCfhKmzqmkPZ/j5Hy1L0I82mR3a5ZtEjgk1L2aOB1ehSZPF3pcB8YVUu4xWIhyiqZNDRQvmX58uURa7CGkmJL4MFhPw+YqgCn4uYzZzYVrppGjjxzCV14O3fuTEZGhqqFAiSS0rpKso/tYU1RDl8dXsM7e77jua1zeWuP1nfrvIyhYeXTgtmyZQs1edoIaWOHKFJTG9dgHa9Zd3OIMDciuQ/Dk7U/uezmpuupCs29d7Umeah/vOxsDhwIjOlRzLhi72nY10REg3VIWIRul5jUE+afMjYtXOC7tMsYOof6DJpSwBLcV0L5S9o+0ZMg/qa2n2QzcXdOJeVvv8PcI3LOSOfmHIp++yTHrrqPmi+XtkjwE0IwY8YM9kWfz0Zn4Fq0O+woRVvV8kyh6TPaAJvFwJ0zOmg0GmVVXtbtbDyIqj0Quu6M9CzEZAgIslXeWBaX9kFKyZc/1mgicwFun5aoTbnRL8Sse2wVVKkm/UWLFlFTo13fGzLlBhMWvJG9XbNt1Ah8WgGq0Jio8Ym1r8rWVNcB8NbUUfaUVtdjGzWImGmqwS82VOBLjVwCbNbXldid6thOpxOBi85W9WHSYDAwbdq0sAfqrulaIUuT5mTQTXDecxHXNSxxMOhmuGohzPgOBt2MdZR2XvblGyj+0/PsWHMUqQR+Zz2r1e8j7topdJr/ItETR0Z8P6czrQ4JEUIYgl9tOakzDmO8vz6pEGCzRTG42146JQUKuc+dO5eysqbTrQxI7Mqv+2uf7KqknaeyP6LW3f4X0pYSHLAhkRQle/hvzhccGCrYMsTFhpEuNo9w8eiWWTy9ZQ5v7F7A/EOrWFG4g0pXQLNhFAau7tFwzrX6BMsmNxh8sprBYERajFRF8LcJplevXprF2W63a4Spxih3VnOwOnCdCGB4Uk+GJ2lNLltK9zcdxOPMAVewC4AB4q4K62a32/n6a61JqXfv3nQZ+Hsw9w3rD4BtNAjzSQnYqKdfQhdNYuw4cxQ/79lAwZ5Qs24whkRI+3fkG8TJQkDs9Avo9PmLpL3wENYhkU117r2HKHnoPxTf/xzS3XwhLSoqiuuvn8kSZxb73N3VRql+1/LQ97DysSbTgbSG2CgD543QRjt/s6r9P5wGC3yZpmMkV65RhRLfJbTUPo7KGif7D5XzyQ9aC8ykkdH07x5i2uzQG9JDBIjdHzcrKrchQgW+8twjGqEtWOBLijdgtQSufwdmauICD79KcRnuA1rXmIqXP0QpDtyzhMlI0qO/9j/gNUfDt36nnZVbVVO3oii4XC46WbOxGNS2c845h44dwxNRd41k0g1mwPUw6UVVcweQMRYmvQA3ZsPEpyA1MBfbWVoLjH1VNsUL1pIfFTCzCyR9Elx0fPdJkh/9NYbYaNojLU3LcpYQYrUvv53b9/L4/uo0Rvx1YFEvrHp/votGLEf4nqMcDgcffvihPxigMSZ3HsmlXbQlZHZX5vHwhreb78t1hhBsrs3r4eJbx0aWHF1FZUwNSowbo0nBaFDwep0gPajmTC+gvbmdlzEkLNF1MF9++SV2ux0BWJ0CEP4C2E3lRTyeaN3QxMq94zsRZ4mmb0KmJkdjhauWQzVNRHdWhwRrRJ8LpvSwbgsXLvRXCKmf/xVXXIEwmCGlgdx0UWp2+7zaEx+wUY/JYOS+wVfSPS6dHnEdeXT49cSaG0ilEtWwqZ7Uf0b8HE4FwmAg+oKxdPzgGTq+9TeiJkSO/qv7bhUlDz6PbMZ6UU/nzp259LKpzK+5iEJFFcS9ilf1Sd3xLmz9XxMjtI5Lxmvr+O7KdXHwWCtyR54mBAdsZBgLmB67EKPRiED9reQraex0qXVdX59fhivoK4qNEtwwJT7CqIQFb8jdHzN37hxNW1Om3GBSUlI0wpLV7sIddL0Em3TVoJMgrZkQVAzX+kIHm3WdOQeomq19KIy/+QosvX2pcF3V2FyBB1U1kbtWsDpc4ObFOb5gEJ8pN8pYRqpZrRSSmJjIBRdoM1TUk5lm1jyfFZcr2B0hD7x9r4IbN8Mv98EVn0G/qyHC+mAZ0BMRpRXAD8Z1DWwI6JIo6fnpM9hGDqI901LN3LvAEmAU0NP36uH7q9MYwggpgSgik8lI94xKBnXb7W/Ly8vjm2++adZwv+h7MUOStCXaDtUU8tD6NzVRp2cydXV1OOoKGNp9Jz0mrKc6sxaDrAZZg9lgx2Z2YrM4iLI4MItq8JaCUgJKMShFoBSCUkw3SxU39YocdAFQWVmpEdBsToHVavGbGY414/NurVk31Jw7PFkNRjAZjAzu0F2zr9GqG9ID1Z9q2+KuCet2+PBh1q7V+rZNmjSJlBSfpi76QrCNCx/fL/CFm3RPJIM6dOc/4+7k+XF3NF6rN2ocEasrxl6llkY8zRBCYBszhPT//ZmMuf8m5pJzIMSsVbtwJSUP/adFQt/YsWMZMHQUH1dfTpVXFcTcLjcutxvW/C0sWKAt6JpuZnAv7Q3121XtN3ijXrs3yLKbG+PnEW+y+68so9HID3XnIBFUuDPZeUh7zd0wJaHhOsO9poIpYAnwVBwitkKbA685ptxggtcdm8ODxx3QzQRr+CAkUhco66MN/LD78vFJRaHsr/+niVY1dU4j4Y6fBzqXhAQTJvYGc0ArVlmj8PSsUn8VC5fbjVfx0NW2BiHUtqlTp2rqdgdjMQtNwmiAI0URfgfmKM15IyHMJqxD+2nacuPU5M7CZMSYGM/gid0ajcRtL7RU4OsGPCKlzPElQ/a/TsTkzjiix0PMz/ybFouFS0ZvwmwKPO2uXr2arVu3NjmUyWDkwaE/Z0DITa7QXsGD69/kQFV+A0eeAXiKoXIWyuEZ3DP1TfoO28oCo0/4jXBPjxJuMk0VjIgqZHJ8Ltcn5XB32ib+2mkl/9f1O/7T6SMSKxo2aYX6V6aY4rBYAj/+AnvTAl/v3r01C3VdXR0HDzacagXAK71hOfbOCoo+HZ6sNes2mo+vbrkq6NYjYiFGG9ygKAqffaaNvE1JSeG884LMpEJASkgqExEFtmFIKcN9+E5AhG6rMCaEB6cYMyD1ycj9TyOsA3qS+tz9dP7iv5i6aM1btd+uoOTRl5DN9AkVQjB9+nRsyd34uOYynFK9oTocDvUB5IffQvHxlQCMxKXjtYE7P2bXUVXbuqozp5qjeUfIilrF1JhFGPH6/YUBqjtfxhFPJxRpIs85VvNQ16eLmUkjGxE+LHHQI3B/8Hg8DLMG1p7hw4c3y5QbzNChAf80q9ONR1H8Zl1jslbgCy6xBlCS0k2z7Vi/HelyU/PJIpzb9mr2JT18O4ZgLVlJw/n3PIrkudllFJern019zr1M2zpijKqFYODAgQwYoC19FkqDgRutIFSTfjChO4aYKDWS2Wyif/fIgmd7o6UC32fARSdiIj8ZUh6jvjizEJAU7+L8Edp8WPPmzQvLtxSJGLONJ866kZ5G7U210lXLIxvfaTR3W7vDkw8Vb0LelZA7HIofxKKso9Jr48WKiSjS4PfBsgqF+ztu4OmUr/lf2lxeS5/LUylf82jHVdyVtoVrkvZwfvwRhkaXkGGpVQ+r+RwqX4946pwc7fczoLNW0AqO9G2I1ph1D1QXUOUK+AfGmGz0CYrOHREi8O0sP4RTaWDRqw4J1oi9PKySxOrVqykoKNC0XXHFFZhMIVFotrMg8TeB7aT7QFgod9VoKsBEGS0kWxswX50KYoOLwAtIf0H1r20nmLt3ouNbf1PLQQVR+9UySh9/udmBHDabjZkzZ1IuOjKvZgpeDAF/Po8DVj7a5v58Z/W3kdohIBh5FPhhfeO+r6clrhq67vwzZ9sCkanG+iC64XdhzHoOgALnUFzeGLxeBaTEIODX0ztgMDThJ9pP1ZJJVIGvr+UAVqH+pkIjVZtDsFnX5vClPfFphI1JiZq+nUIidQuUaIypATcXaXdSt3gt5f95T9Mv+sJxRJ83SnviBgQ+KdWI5eAKFk6nk2TTblLMqrXLYrFw+eVNa927hAVutF7gi7v+UqLOOQtpNGCeMJKj3YdgiIny31P6d/uJCHxCiPeEELOEELMAG/CZEOK7+ragfTrNwdwVOvzavymE4JxB20iKCzgyO51OZs+ejdvd9AVsNVqYbh3OpAxtZQC7x8lfN7/PmqK2T656UnFsgrypkDsSSh4Dxxrq/e8cHsmLFROp8KqCi/rTNPK7Hkmck3kx3pr+5OVnkluUybGydOo8ncDYEQxxRFQFlvwN6lZpmhwOR1iAxYgeWl+U5tY2Ds2NtWPHjkZrKoemYxmS1EMToZ0RlURaUL1ft1dhZ0W4st0oaqFmgbYxXmvOraqqYtGiRZq24cOH07t3byKS/Ah0+QG6LIEOvwWIGLBxsjLIN4vEX6jBU7GXQ8YstSJOO8OUkaoKfRnah7yazxdT+sQrzRb6OnbsyLRp08j1dOHb2ixA9eezOxzIgvVwaFHjA7QQo0Fw8Titlm/B6naWoqXqEMy/nDS71sxqMNvg/Jdg3CN0SE4BawZFLnWNkBIUr5dLJ8SGVYiISOfxENcFRVGQXokJhYGWPZjNZnr2bJ3nVP26Y3Oogl69WdcQquELidQ9VuwhavxwTVvJYy/hrQ6Y4w3RUSQ9eFv4SRsQ+L5eWcviDQFB3+PxYPUeIdO2zu+Td8EFF5CYmNjk+wrT8B2HwGewWUl/9XHy/3sftY/8yV9LGNSAlpTEBszw7YzmaPj2Aft9r53AP4GVQW31L53m0uF3YAw8pZuMCjf9TFsPtaCgICxSsiGMwsDvBl3BFd3O1rS7vQrPbP2YRUcbrs14WqNUwbGbwLEh4u53ykewz52CVxpweSx4RQeu7HkF5/R9GlKf5JjyJz5d9TM+XDaNd3+4msX7/gw9NkHP3dDrCHRdppYDC5wQCn+tahN97N27V2OWiYmJYUAn7cKb3wyTLkCfPn00Zt3a2tpGzbqbSrQCX6hGTwjBsFCzbgQ/vmTrKiDISd7UVY2qDWLRokW4XIE+NputcedwIcA6AKwB35eTkXD5uBBmSLoHOv4PYiI7g7cHTJ3TSX/rbxjTtUWPauZ9T9nfXm220Ddy5EhGjhzJVtdA9rlV853H7VEfNNc9Bd62NbleMCoGS5BSpl2laDm6CuZdird0F15vQEitkdHIqZ9q8ujlu8cjg26t0RY311zQcE1VDcIA/a7RBO8Nte4iNTVVYzpuCfV+fFanKhDVm3VDffgykrXjF5UrGMdoFQnSrq1Mkfjb6zB1DInEd9uhXGvyJWUwm3Y7mPVNUGUpKTF6y+kZvRSDUK/Zjh07MmFCIxH1QYRF6ha4w1LHtBijkZyD2vfYv/vJK312omlS4JNS/qU5r5Mx2TMGQywkP6xpSotez6RxWmfctWvXsnv3bpqDQRi4te/F3NxHW5fRKyUv7/ySTw7+ePw/hpNN5bvgjSxMfVtzNt9WDaDWGUWdMwqXx8yIlAHM7BO4kWdmanOaaSpuCANY+kB6SD42pRTybwOpCj+h/nsdO3Yk2RaPxRC4c9W4HVS7tVn0I2E0GsP8Uhoy69Z5HOyu1CaMHpEcrm0L8+OLUGYtzbZU2xB3tfr+fRQWFrJxo/ah4KKLLiIurpk3KR+h/nuZJzhg46eMuUtHOr79d43JDaB67neUPflas3/rU6dOpWPHjiy1n+2PW3c4HHhLcmDPJ20659hoA+eO0PqwfdseUrTsfA++vhYc5XiD8rIVKKl8bb0Lc+dAxoRlm+2U2bXfyVldc4mytcB7qq9W4OtkLKRvSuvX7rS0NNLT0vwmXVA1a6ECn9USrskq79twVKqlX3firo/wUFi2E4JTRMV3J68yiv98WKbxFDAIN12MCzCJwIPmtGnTmi3YpnUwalLJ1Dok5VXHX7pv1yFtBPmZ4r8HzfThE0LECyEsQdsXCCH+5XtlnajJndHEzQDrcP+mEHDBsOUkh/hVfPrpp9TVNd/XZXr3Cfxu0BWa0lsA7+/7gbf2LGw6V9vpgtcOla9p2ywDIfkxdiXO59WCQbg9ZqRUL+FYr5X7h12NMUiQCRX4CgoKws3kMZOhwx+0bc7NUPwYiqKwa9cuza6OHTtiEAY6RmvLr+U3w48PIkfrRjLrbis7iBL0XWXGpJAWoZTY0KSejZdZc+USZw55aAjJvbdw4UKNgJCSksKYMdq0P80hUtJlnROHuWuGKvSlaK/F6jkLKHvqjWYJfRaLheuvv55KYyd2+FKJIFFNu+ufBY+z8QFayJSQFC05uS5yj8PZ/oSiuGHFI7D8T/7E1IpP65nj6s17VVfSITPg3lFT5+W9byo1Aku86ShGe8vKX5a6ozng7BRoEDDQeHyBNEP69MMYZD53SS8iJjxFSagfX6EnBku/7uEDCkHy43ciQv17ISzopzphNE+/W+pPrqweLukRtRybMaDxGzx4MN26aQNFGsNgEHQJCTQ5HrMuqCb4MIHvDPHfg+YHbSwBegMIIX4DqAVi1dccIUQEI75OowiDJk0LgNGTwy1X2TTq4+rqaj7//PMWDX1BpxE8OOxajRYK4MvDa3hh+2d42thUc0Ko+kDVttUjYqHzp5RF38A/dy7HHRScYFDgMsNA4kJyLMXFxWl8QRRFIT8/QvRy0n0QHWLiq3qPkgMvaermRkVF0aGDenPtGKV9im+uH1+fPn2CypNBTU0Nubm5Yf3C07H0CusDarLhXvGdNG1bgrV81SFaGtsYsHT3b+bm5oYFpVxyySWtMh+FmnR1Dd+Jpz6Qw5iSqGmv/uBryp95q1lCX2pqKpdeeinL7WNRfLcExaPgKs+FHe+06Xy7djQzqKf2BnqytHz2lZuJ/XoV7gORSy1qcFTANzNh+9uaZkVRWG4fy/zai/FgpnPnQBDVBwsrqaoNRO0aUOhiW0dhYYHGXaIpcnJy2OoMVIYxGo10rF6pCqCtZGDnrprtGqMapBNKaIm1o8VubCF+fABxV1+EdVi/sHZA47/nkUb+tfM6Csu095zxfUsQ9sDDtMFg4OKLQ0oiNoNIZt3jobzGRE1d4EE7yirCztGeaa7A10dKWW/buhu4QEp5t5TybiALePBETC4YIcRSIYRDCFHjezVq6xRC3CeEKBBCVAoh3hJCnH5JdKJGhUQOQop4g/OztBFPW7dubVaqlmDGpPbjz2fdQHRIseplBdv4x5YPcSqnceJT6YbyV7RtCTfjFjH8c8scyp01KEGmlR4HTQzpFDldQZcu2rQ1EevqCgOk/xfM3TXNcY6nyOgQKC7fv39/f+690CTNx5rpx2cymZo060op2VQa6r/XQPAEhFXd8Kdnkd7wZMtBufeklGF5H7t27RpW+7c5VLlqqQyKKDYbjBE1kjptj7lnJulv/DXMRFf13peU//vdZgl9Y8aMIb33KDYFlV5zOp141v0LnG1bq/vSEC3fj9l1VNedWMtDzRdLKPz1X4j/fAX5M/+Ep6iR36uzCj6/Ao6u0Labo/naPZ2VjtHUB33VC3x7DrtYtE69/oUQGAwG0q3bsBqqkVJqKgI1RU5ODrtdvfwpc8wmE2ZPJRxZ0vw3HEKSwYwxKI+j3WaKWM4zVOBTAze0KUuMSQkk3ntjwyfzCXxSwlsFv2ZHsTaqfOJwC1WHv9S0jRkzJpDrswWEBm6EVdxoIcfKtffLPl0tGJuKrG5HNFfgqxZC1NvHEoBgYWs/cLLS1P9WShnrezXweAFCiItRhdALgO6oiaFPTz/D5EdABPnuKaWcP3xbWDmZ+fPnU1XVsoV3UIfuPDnqVhIt2ui4TSX7eGLTe6dvKbaquaAEaeKEFZnwK17b9Y3fr60+kCIj30hyuVHzpB1Mo358wRgToOOb/u9CSvAqdq4c/y3RVvVJOFhQCxX4mqvhg6bNuvl1ZRTZK/zbZoORwR0aNnWEav+2lO5Xb/KOdeAJ9lu0QuxlmvOGfh5TpkxplYPykZAKG51jUjTmdZ0Ti6V3V9Lf+AuGRK3fZdXb86n47wdNHi+E4KqrrmKDdwIufDdRCY6qQryb/9umcx05wKbxFXN74If1Jy4Rs7emjvLn3glsV9dS+/niyJ2lF5bcEx50ENsZ+8Vz2FQeVG5LCDIyMlAUNdVIMIkxbtItgdq1ER80I1Cfn9ODmZ0u9SHWnxZp77xmjREJpaxSk17JaTVH9B8OTb58rNiDbewQbOPU4A1hMZP8999hjI8NO1Y9kRvKVPFgUeVUFpVPAUNAKOvf3UKfhM3Y7YGHQ4vFwvnnn9+q9xWu4Tu+mtBHS7V+9GeSOReaL/C9DbwjhOgBPA+8LITI9AmBLwArGj365HMz8KaUcoeUshz4G3DLqZ1SA5g7QeJdmiZD1VtcN2Ocxqxmt9uZN29eiwMvesR15OnRvwwTUHIqjvDoxneocJ1mTtPSAxUhN5j4mSwsPMSio2ruKyklUnpJqDSQmWfEYDBErLcIzdTw1WMdAGn/AtRkoF6vJD66hivGLcRsEpqkpxlR2gjJllQ3CTXrVldXc+hQIJ3K5hDt3sDEbliNDS88/RIyiQra7y+zVh1yg4i5xJ93TlEUFi5cqNk9YMAAunfv3uz3EYwesHHqsfTtTsc3/4ohQXszrvzfXFx7cps8Pj4+nkumXc8ae0Cj41W8ONa9BLWFjRzZMowGwSVhKVpqT1iKlsrXP0Epq9S01S1eG7nz5pchV/u7oOMYuPJb8uzanI3p6emYzWYWrqkN80O8bKzdH3kKjTxohrB7927/Gr/d1R+D0eC3KpC/ptX5EZWySszmgHBkjzKzf//+MLNu57SQ1CwlHhCC9Nf+TMYHz9B5wf+IPjck514wlQfB62ZLzXDeK7lDrTDle/BL7WDk11PNrFqprQ08ceLEFgeI1dO1Y2i1DTee47iOjpZpNXwDQmset3OaK/A9DqwBtqJqzn4JHPK9BgC/OCGzC+cpIUSJEGJlE8Eig4DgZElbgHQhRHID/U8tHX4DpmA/LDdp4hUmT9ZG3O7evZsNGyKnKGmMjtFJ/GPUL+gep1XEHqwu4OH1b1McpE065dR8Ce7coAYzOWI6b+wO5JFTFAWrQ9BrvwmBIC0tTbOYBdO5c2eNxqqkpCSi74qfuOmQ8CtNlFz3tDymTdylSakSFrTRTJMugNlspn///pq24KftUP+9ESkNm3PBV2YtqbumbXPpPrCv1HaMm+H/d/369Zrk3kIILrnkkuZMPyInu6SaTmQs/XqQ/vpfMMRpBarab5v3TD5s2DBqe82kVgb8YT3OGiqXtK2B5ILR2hQtpZUK609AihbPsSKq3vsyrN25bS+ewpBAq7wVsP6f2rbUYXDZHIhO8ZdUq6dz587UObx8/L3W8jJ+aBQTR2rX2uZq+IL9aY950jCYg77HuiI1F2ArUEorMRgMfrOu02pCURR27NAGlHSIM2ALiny1OyXl1V6EwYB1aF9MaQ3XGwegbBfHnJ3499EH8WIEnx+5zSL4043JrFu9WLO2xsbGMnFiw2UtmyI+xkhiXECMURTIL2mdlq+iWqGiNnBRGgT07nLm+O8BRAixCUdK6QUeFUI8BwwBMgE7sFVKGZ4H4sTwJ9Q8gC7gWuBLIcRwKWWkHICxQPAjXf3/cUBYOKUQ4nbgdlAdmJcuXdqG024eydZp9I3/T6DB+TVxxuHExMRQVhYQJubOnUtRURExMYGFoKampllzvkT25lNPNUe95f62XNcxfrvkBX5uG0WSIaaRo9ue8Hl7Gdbhr0QHlZrbU3suf9nzJXUyKFrQ7aXbTolS50JB1fg19v4tFovGHP7ll1+SlpbWYH/BRNI9c8noEMiN2L/jErat/gc1NUNZunQpXinxuNx4UZ/iS1xOFixZhE00b4GQUuJ0Bt7TmjVriIuLQ0Gyrm4nHgJOzu79pSw92PD7A4hye3C5AuN9v2s5l3bZ7T+Xw+lh3QYXXrkUj8fDDz/8oDl/t27d2LlzZ0S/nuaw0bEDlxIYr+JAPksPNz7npmjudd1eOZHrTtTl4+jwzrf+7WOffceWYZmNHBGgQ1omK/ePYXKUbz4SyJnNSnE27piAxvx4v5/uKUlsOxTQRv5/e+cd31Z57vHvqy15r9jOcKbj7EECCZBFQsIeLaPQQoEOOqC37e1u6e7tbm9L56WFUkoH0NLSskdiIED23gkhw0m899B+7x9HlnSOJFuyHdty3u/no09yjs45eixbr57zjN/zyL+P4W4YuEgiQO7v/4OrPZIuDkoZbqDY9ptH6FyhRTNt3nrmHv4clkDE6fSbM9mV9QE8698CYMuWLbrPTFtbG794ZAeNLbnhfTZLkPK8oxw+7MXn84VLNc6cOcMLL7ygi+wbCQQC7NixQ+cQNdkmYPYeQgYlHq+XI2sfpi5vRcrvQ/a2nWR6vdrNr5S0WwQej4dXXnmF9nZ9lsdhLqHFE8kYPP3iJsoKk+vWLqt+mj+cuoeOQAZI8EsIej1cPreOXVu28sYbb+iyVBUVFbz11lsp/zw6e8UoPJ7IzfizL2+nYkzqU1wOn3EiZWH4d1yS62XDm4d7OSu9SMrhE0I8CjwLPC+lfL2341NFCFEJLE/w9BtSyiVSyugY/B+FELcCVwK/iHNOOxAdf+/+f1ucY5FSPgA8AFBRUSFXrFiRvPEDhVwOpzaDe3N413ljHmLi3Y/ws1/9S9flVVVVxYc//OFwqL+yspJkbV4RWM4Pdj6miyJ5kDxl3svX59/OpOzSgfl5kiDG7vbnoboGsOENmni+dRL/6JyN3+rDRmShvKC9iLZAFd27Fi9ezOLFixO+TkNDgy4yWlhY2OP71dbWxs9/spoPrP4bmU5t4XA4HMzOeIhO/9dYtFSrg3vyzb1URdWuTVkwkymGjtlE+Hw+Dhw4EP69SimZOHEirdlBTFst2EIfzXx7FjcuvbrXurqpHQ289mbk3qtOtIPVgd0UxOPxYs+ez7KZVwDwyiuvAIS/fCwWC3fddRfZ2X0fM/bIa1uxeSK/oysWr6QsM7FTnQyp/F2nI2dz3QnMX8DJxyq1kAdgq29l6qQKrGXJfb4PjC2l+d9XkGcK3SvLIGPP/JnxH4pE2vv7+5lY4eOz99eGt+va7UysmJLcRIok8Ow6xJkdb4Mt4rx4vV5soe3xp1soXrECAl7497vB7IHu0gghsF/5Ry4cF/la2rRpk85hu3jpKr73Fwt2e8SBuWlVFldfqkXk9+3bp2vWGD9+fExkP5pDhw5hNpvDpTxZWVmUnnc9pm0/w+P1YrfZmJnfActXpPxe1D27lQ6bDYvFQntHB/5MJ3a7nba2NhYtWoTTGYno7qxppHlHJAtSPHY2KxYnqNkzcPzxpzngnoMApACL1cFtVxdx3fJJPPLII+H3HrR1+Pbbb++zoHT4NTtaqF4fcVqzi6axYkXqa9mxp5sRojH8O77ovHxWrEj8+0pHkk3pPgNcAewLpVO/IoSY39tJySKlXCGlFAkeieYfSeLOxwJgLxAtET4XqJFSJieWNhQIESPTQqCBvM6Pc82Vemfm2LFjrF/ft7JJh9nGV+a9l4uL9Z2YLd5O7tv6MHub+pYy6DdSQtPP8UvB8y0T+OjxS3moYQEtBt28GycuxXJcX+CdqGGjG2MdX2/1NAcOHKDD4+Ifb15JIGjCbDZpMzBlJ9NyfqRNAKF/jRuJ0rrx5FiSaaIodenHrHkDHva7oyoYHFrdTVtbG6+99pru3KVLl/bL2ev0u3Xaf2ZhYrRreFZPnCuYc7JwnKfvBu+q3Jzg6FimzZjN6TG36fblNb7Bia2x6dG+Mr40VqLl2QGSaJFS0vhjvaSKcSKEe/MebUzYm1+Hmm2651j4OYhy9jo7O2lqimRGhBDsOp5Ne1fE2XM5BFddHHGMUqofJnZm97Rp0zCVLtIfVL2px2skItCgOe4mk1YT6LFrN5SBQCDmdWOlWZJPkb58RL8WTy8TXLssM67805o1a/rt7AGMN9Tx9VWa5WCM/t7Iqt+DJB0+KeVfpZS3A6XAf6PFVn4nhKgSQvxeCPFuIUTfqi6TQAiRK4S4TAjhEEJYhBDvA5YBLyQ45RHgg0KIGUKIPOA+4OGzZd+A4ZgLeZ/U7/MfZ0Hpz5heoV88XnzxRWpq+pb+sJjM/PfsG7l0jN5n7/R7+Ob2P7G1fvDD2IHOV1lX18C9x1fx27q5NAacIPQp5oWFU7mudJFu4e2pYaObeAtvT80v3QvT6cYSXtq+DIslEnFwmM9A1dXg3hajxZdK4wbEduvu2bOHbYb3/rwe5FiiiRmzJr3s6IyKsIUcvrVr1+qixS6Xi2XLlqVktxFjh26pK18381cxNLhW6sWzO9em5izMv/FrNJj0EcGOtV/puQY2RYxCzAMl0dL58gY82/QORsG37sVfHPnMSp+frsd/CXv/qD95/Go47790u4yyKgVFo3nmTf37cOVFmWQ4Ewu/93SjKaWMKaeYPn06FJ+nm4pD02FwN5Eq0U0rVosFtyOyphm7deN16iaDt6ON1+oW6PZdtkRzso3yT+PGjYuZLd5XBkKLz+0N8s5p/XkVI2jCRjcp6SZIjY1Syq9JKRcCC9Hm6t4KvC2E+MjZMBJN4Pk7QB1QD3wCuF5KeRBACFEW0uYrC9n5PPBDNMHo7uaSr58l2waW/M9ro6+iEN7d3LLiZVzOyB92IBDg8ccf1815TQWzMHHP9Gu5fvxFuv3egJ/v7vgr66v3JDhzYJFS8mbNPj616XF+XruAan/IyRN2EKGCX7OVmyct4wtzb+bMKf3C21PDRqJj2tvbaWlpiXus1+vl8OGI07X96Ex8Tv1kCnxHoOpaSgJvABHHMZXGDYCpU6fq7KrvauFoS0SOxhRnVm5PRORZJOBju8Hhq6+vZ9Mm/Zf+ypUrdc0ofUEJLg9PnCv0Dp97+34CzXGrWuLicLpwLP+2bt8Y+Q4b//GjAbEPYOG0WImWtf2UaJE+P03/+4hun3PZApwXzaNrXtQNVNBP55OP6U/OHg8r79c7WcRG51rFnBiB3quW6J3XVG40z5w5o6sztlqtTJkyBWxZkK+P1FKdeuNesLE5/H+L1apz+A4fPqxz4scU6dfTZCN8b206RmcgcpOeYenkgtnZAyr/FI+xo6xEX6q2KUCXO7WbhiMnfURJu1KcbyYva+TdtPZLKEtKWS2l/IOU8ia06F/fhYJ6fp06KeX5UsosKWWulHKxlPKlqOdPhLT5TkTt+6mUslhKmS2lvEtKmVzV6VAjBIz6Mbj0ukQ2/wY++u6DiCgH4/Tp06xdm0BPKqmXEtxRvprbpuhfKyCD/GT333mxamuCM/uPlJKj/jo+s+kBfrjzUU56DAuhyMBqMnPd+Av5vyWf4r2TV2I1WeJ2yvWG2Ryr05fobvvIkSO6oumcnFwyxv8c7MYKhiCjff/RpoFI7c4w2fFq3dhsNl1atyU7iN8fucuckj0mZnpIT8zJn6TVOEjN/uPebJr8drzBPLCM5YUXXtDp/eXn5/dY+5gsVYYI37iM1AVUFQOPdVwJ1vIo/cZAgK7XUnMWSs9/Dx2583T7Rp98mH17B+aG0GweeImWtr89i/9ElI6n2UzeZ+4AwD2vW1pJgqeZrret3R8XMNthze/BrhewBnTrTkBaOFijX0+uvDiTTKf+67SoqEhX89fZ2alrwIvGGN0rLy+P3AyWGsYcVieQlEmADAQINEWVXJhMuEojN4OBQEA3s73UEOGrbw7g8fbuQL28RR8hu6BwFyYRjCv/NHHixJR+hp6wWQWlBUZ5ltQ6dXcd0XeITxthcizdpOzwCSGuDc3Q/aMQ4pHuh5QyIKWs6/0Kil4RVih5QDdrF6DQ/jq3rNZrtK1bt06X4kz5pYTgxonLuHvalbqCSAn8ev9/+OexNxKd2mcOtVTx5S0P8XfPNo62ngGpv6M3CyuXj7uQ3178Se6aehk5UcLRxtSKMW2SiGTraYx1JtOnT0eYHTD6b5B1q+65EmsHEIBgIwTbUnb4AF1aoyUniN8fidjOTyG6B9qYtSk5Y4DIwruzs4g2XwUnTp5kzx79l/RA1dCcbFeSLMMV1yWGtO661GvACq/+X0zmyFdFibmO3U99T9ex2h+MEi31LQE27++bREugpY3m3zyu25d1w2psk7XRYr6JpdrsYU8LyABBrwn3iVCEe9kPoHBm3OtGO3z13gq8gUgUzGkXXHVRRkz0zmQyxdxoJlp34qZzuykx1PGdSe13GGxph6gbPVNWBrPmzdUdE53VsFkFo/L068KZhp4zSSdrfByo1t+cnje6Kq78U19GqPWGUY/veArzmf0Bybqt+q7emRNHXjoXUnT4hBBfB/4vdN5NaBInlwHNA27ZuY7JBaP/BNbInZAQMGvsGyybE1kcpJRs374dn69vhardXDnuAj49690x0xH+ePglnjw2cLrauxvf4ctb/sD+5lCETfpAajVlJiSXZJ3gV+dfy0enX02BI7aRoC8RPkiuniYYDMY4fOExY+YsKP4J+1u+AmatrqnI2ok5JMuC7KS56wSd7aktxuXl5QghkEhacyTBYABNBanncWqJmJc/Kfx+AuzoGkWbr5znnntOd9yYMWNiagj7ikrpDl9cK87XbXet3470pDZW0Tp6IWLytboWucWmV9mza3vKQvDxyHSZWDLPpdv3/Ft9a95o+b8nCLZGzjVlOMm955bIASYTrhlmiJIQ6jzsghm3Q8XNxCO6YSMgLdR4Z0bEkIFLx7bRfO3dVK24k44X9TfIyaw7zc3NMTO+dQ1dJfrfIXU7wZ+8s20UnTbn5zB16lTdvsOHD+t+l6PjzNTtiVc2d0AwElWb4dqDIzsrrAjQzYIFCyguHvjBXP2p49u4t4vmtohD7LAJFs9KPrOSTqQa4fsAsFpK+WnAG/r3GrTxZYqBxlwAo/8K5kj43WQSXDr/LWaWRULw7e3tPP/88/GukBLLSufwxbnvwWbSf9j/dPjlmGaCvtDgbuXHu/+OPxh1txiK7l2UcZqfl63lk+MtlOStinu+sVMumYaNbowL76lTp3TpTdDuvjs6ItFGu93OpEmTdMc0e+dD2TrIuhWLkIyyRt8ZBqg5fifUf1fndPWE0+lk7NixdGRI/BZtwfX7A2RYHElLvEQzr2ByOMUMWoTvnepCjh07pjvu8ssv131p9RVPwEdNV1T3IjAmQ3XoDhdss6ZgLopqVOhy07UpdqRWb2Rc8i1s9siXYJ6phdEt69i+ffuA2Gmcr7v3qDelKA2A78QZ2v6qbw7I+dANmAtyI9ttu3BmVuqO6TxWgLwwsbB0dFah3ltBULjC9WcOK1zw558SqGkg0NBC/Zd+jv9UpJkumcyC8SZz/PjxZGZGvR+ZpXisUTdRQZ/m9CVJoKFZt20qyGH8+PE6iZS2tjZqayMSOfFm6ibC65O8uq1T5/Bdmvc8+2qkTuPPYrHEDBMYKGIcvhRm6r60UZ9hWjbfhdMxMsdCpvpT5Uopu/NCXiGEVUq5icQaeor+Yi2D0Y+CiCwAVouFd1/8OhOLI8LAb775Zp+7dqM5v6iCr513G05LpIZBAj/d84+UZEeM+IMBfrT7CVq8kQ+XIMAC5wl+Oq6Sz5duZpytXetSTlDMa4zuJdOw0U1eXp5OrNrr9eoWOIhNq0ydOjV+ytOcDcU/gdI/U2rTO42nfS5tNNyJNeDekZRt5eXltGRHruP3+5lbMKlPna4VGRacIuJsNgUcrD2gX9CmTp2qFYQPAKc7G4iO8Yxy5vY4Bk4xuAiTCdclhihfH9K65EzENvdOzFGp3eWZ23jxmX8OSGp3fKmVGYY02qPPt6QUQWz630eQvojTYSktIuv2ayIHtJ1i6on/xVnWicka+rwJEwFvDt59ieWoutedoDRT452pWxNWZp3GURdZd6XHS+NPIl2/Rofv1KlTMY128cpIjLRlGPTgUpBnCTbpJ4GY83Mwm80xdXTRad1UOnU37u2ivdOvzSEGMs3tnJ+7nV3vNOuOW7JkSb/kn3pifJwIXzJ/OydrfOw9qr85X7NocAcQDCapOnxvCyG6ixz2AB8TQtwO9L2ITNE79llQ+hAQVTfitHDTkhcoyYs4Lf1p4IhmVt4EvjT3PZiiHK92n5vv73oMTyC1dFA3Dx9+kQPN+nTG1Zm1fHX0BibZQykH+2xwXZLwGsa742TTuaDVjvSWXkmYzk1ExiWUFt4IIhL5qPaFFgvfIai6Bpp+3att5eXltOREFqdAwM/cvEk9nJEYi2c7s5yRmhkpzZw26+uh+jNCzcjJdr3TPC6jf2LLioHHaUjrdq7bjAymLn1iWvgZHJl54dRuhqmLefJ1NmzYMBBmxki07Djk4YUNyXXsurfto/Ml/cSG3E/ehskRunENeOGlD2MJtCEs4Jwc6kq15YAw0flK4kaI7nWnzluBXzrCDp/DBhe9+peY4ztffJOujbsAbT5x9JxYv9+vuzF3u90cPaofVhXP4Wvth8PXrcHXjTk/F0A3GxwMDl8Knbovb9Knc5fnvEJzMBNfVD3yQMg/9cSoPDM2a9T3VZc2Eq43XjT8fY0p8AyY8PdwJFWH7z6gO1/zReC/gB+hafMpziauJVB8f3hTCEFmhombl/yHvEztA71r164BifKB1vF5+5RLdfuOtdXwq33/Sblu57Xq3Tx9Qr+gzs8r4f0F+roy8v4rYXQP+t6w0U1PAswNDQ26iJ8QgoqKil6vWZpRCqZsMOUCJs54o+8OA9DwHfDGm/4XIb+kiI6syHsqpWRsMLZTMCncW5jnCv0cEnx+QVvU2N/58+dTWjpw01SMGnzjMlX93nDDuWgOwhmR3gnUNeLd2/PfZFwyijHP/5guFXiRYyvBt76N19P/ObgXzHAwbbw+yvfIsy2cqu05PSeDQZp+pBdZts2cQsaVUTNat/4ManeEN11TOsGaGZ6s0VMzy6lTpwhKM7VeLdbR7fCtLGrCfuyduOc0/eBBpN/f643moUOHdBG/goICiopiP0NtLqPDtzkcUeuNQJQkC4C5QFtbjA7f0aNHw7XgY0YZInz1/rjr/qk6H/ve8eocvktynuNIgz47sXLlSt00j4HGZBKUFacmwNzlCfLqdn2zxrwJycsWpSNJO3xCiGmAAzgDIKXcJKWcIqUskVKeFTkWhYGs66AwUmtisVjIcnm4beVzZNi1P9yBivIBXD/+Ii4yTOR4rXo3z5xMXhbgRHstv9r3b92+UY4c/nv0USwiKrVhLYeMK3q8Vl8bNroxLrzREUNjdG/SpElJLVAl3dM2hB3MBZyRcZzErjd7vMbeluOYLZEF0tElqD92uoczesC9hXmu7iYKSSBgoj0bgkJiNptZs2ZN/NMCXrbVH+bfx99if/OJuMfE42RMw4aSZBluCLsN5xKDyHpf0roAcz+GLatYd1+2wLSRhsduBn//nD6TSfCJm/Nw2iMX9/nh54814e9BpqXz+fV4dutrjPM/fxeiu0a19Tjs1EfanSsuRLgiN1W+d6rwHY2tr+uuG673TcUnnSE7TdhtgiUbHo85vhvvoeO0PfEi0PONZrysQjx9uk7HOLBFpUM9LZoIcxIEDU0bpjztOkVFReTkRN4Dv9/P8eNaajs306T7PXi8ksbWWAfzlc0hhynk8E1z7aOII9T4I3W8eXl5LFq0KObcgcZYx9dbDej6HV10RcmB5WSYmFKa+gzedCIph08IcSewG/gtsEcIcVPPZyjOGrkfhtyPA1owzG63k5/Vyo0XP4NJBNm1a1dMbVpfEUJw74zrYmQ2/nDoRfY2Hev1/E6/m+/vfAxPIPLBs5jMfH7mKrI6DYKneZ+IETvVXasfDRvdGBfe6urq8NSJHmURemC0M7pBwcSZ4FgtUhmN2zC2ycD2hrcxmyN3pzktJl16JWmCbvDsZrS1nSJLJ1JKAkET0gRtWZKLLrqI3NxcQKupPNhSxRNHX+O+LX/gtsof8K3tf+ahQy/wpc0P8cyJ5Jx61aGbHrgMIsx9dvjs2ZhW/wazXZ9+zaytJPjUDdBZn+DE5BiVb+ED1+bq9r1z2sfjL7fGPV56vDT97FHdPteqxTgWRMmrvPlNLaUbPmAUpqt+ieN8/aSHeO/J6dOntdo9j3asyWRCCMGqsk6sO3bpjnUs0N8cN//yLwRa2hI2bgQCAQ4cOKB7LuG6I0yx3bpJpnVjUrqhJhYhRMK0rhAiTuOG3oHy+SWVW/UO36rc5/H7/dQFIo1Ca9aswWLRX+tskErjhpSSFzboO8FXnu/CPDJ7NcIk++N9AbhRSjkKuAX40tkzSdErBV+GrBsBLcpnMglGF9QwZ4J2tziQUT6Xxc4X574HV1QTR0AG+dGuJ2hwx1+EQftA3b/3KU4btOnurriSKYEnidaKw1IGWdf3aEd/Gja6cblc5OdHdSxKyenTp+ns7IzpYu1pyLnODmeurtax0dOG22YQM3Yn7mSUUrKj4YhuQcxpMXHs2LHUpXY8uwA/QsAcRy1BaUKGCq5acyTlF8zmmZOb+N7Ov3HHqz/iC5t+z5/fXsuepuP6zmng9wef63Xaij8YiBknN9alInzDEefyhRDVbOA7fBzfyeq+XWzccsT1/6QjGJFSkUGJ79RG+NfV0HSkh5N7Z/l8JxfO1kfX/1nZzv53YptDWh99Gv/pqFIMi5m8/35/5ICq1+CYQcFg8X1gz8G5Uh916lwbe5Nz6tQpXXTPbNZqxZZt/5fuOOeS8yj80Wd1qfNgSzvNv/xrTCaipqYGt9vNsWPHcLsjUVGXy0VZWVmMDWFKDALMSerxxZNl6abnOj69k1ZlqOPbtK9LG4MnJQT9uMwdLHRWgoS6gLYO5OfnM2fOnKTs7C+xKd3EdYeHT/o4HvW8ELD6gpHbrNFNsg7faCnlU6H//wvo4a9ScdYRJhj1E3AuQwjC0aFlszZgs3gHNMoHMCajkE/OfJduX7O3gx/uehxfMP6H6l/H32RDrT5dsbJ0Gqudr0GrfuwRefeEx6gloj8NG9HEu9s+ePCgrj6luLiYgoLkpEUsJjOjHLm6fdXBMnSiZb7DEIhfG3K6s4Fad0socmBCBCG7TRAIBHjnnfj1QQlxR6YozLKdIRCMfLzrxsDntj/I7w48y8baA3T0kn6TwM/2/pPdjYltON3ZQCCqjijfnkWGtX9j2hRnB3NuFo75+uhRV2Ufo3yAs2wxL2d9ShfJ8Xq9yNYT8M+r4VTPZQw9IYTg7utzycvSfz3d/3gTnVEjswINzbT87u+6Y7JuuQLr+JCcUcAHb3xV93ybayqUvxuIFaX27DyIv1Z/A3P8xClqPJFoodlsZnVFAPOrer297DuvxzIqn9y7b9S/3uMvYK6qjanLO336dEw6t6KiomchdGOEr2Zz4mOjMDp8piiHz9itf+bMmbCUinHEmrFT9+VNoeieDACS5TlrMQU76ZBOOkMO8pw5cwZE/ikZjBG+qlpfwoktRp3HBdMcFOWd/SjkUJPsbyL87SW1b8YRHvhMA4QViv8XhNY1ZjKZyHB0sXjaNqSUrFu3bkBfbtGoadw0Ud9ldbCligcPxur/7Wk6xqNHogQ3pZ9J9lY+YvsyoulHIKOcDXMxZL+n19c3NmwMlMN38uTJ1LtzDYTr+EJUezxgixY2leCJr5v1ek0kimaxWMhqM2GS2sftyJEUIyXuyBfANMspglEOnyWJaGiJM08nvO0PBvj+zsc41ha/ESh2pJpK5w5nnAZ5ls61fXf4AIqnLOAx960c82u1sTIotRIJbys8cyscTFzj1huZLhP33pyn21ffHOCh/0Scl+bfPk6wPVJzZcrOJOdjUWvJ3of1dW5C8M7oD4RLRyzFBdhn6SNcRid4yyErPhmJZDpsZpYdfF6LaoWwTZ+EY5EmYp79/muxjIsqNQkEaPz+g4yNM9ox5XVn1DwwRX2OW09AR+9RWmMNX7QuocvlillLu9ednqRZztT72fN2KOLanc7N6U7nRm6WB0rcPRlyMs3kZEatXwE40xAbkGhpD/Dm7i7dvpEsxRJNso5bhhDiRPcDyInaPhnapxhsLKWQ+zGA8MzGRVO3k+VsY+fOndTVDeyku1smr+A8w/SH56u28PKpSMqy0dPGj3c9oUV+pAcCjWRQzeeL/o3dFCeqlHcviN5124wp3VQ7dLsxOnzHjx/n0KFDun3J1u91U2pw+M50NsbO3o1Tx+cPBnjpVGS/xWImrynykUypjk/KcIQvEAiSgZvMqPrjeDU0WVYnS4pncs+Ma/i/JZ/kt0s+yT0zrtUd0+F3863tj1LX1RxzvrFhQ3XoDm+MES33tv0EWvrelWi32znvwhU81nYNO73aZ8br9Wq6jEEfrPsUbP6xzjlKhTlTHFx1sf6L+NVtnby5q5Ngl4f2f76sey73ozdjzglJoHTWw5Yf6y9YcQsdLv36FZvWjTh8La0dHG3SyyNdNs+C+ekXdftyPvCucKOFsNvI/+xduufdG3cxuVYv/7Ft2zbdXF2z2RyTXo3B4oAiQ3q0l7Su9Hh1TjFmM6Zs/XuaKK072tipG+Xwvbw56ucJ+il3HqTU8jZIqA05fBkZGQOqCJAMRj2+43E6dSu3dhIthVicb2Zu+cicnWskWYdvJXB71CN6+7bQv4qhIO/j+IK5oVo+ExZzgBWz30JKOaC1fABmYeLTs2+gxKm/8/6/A09zpPWUJq688y80e+ogUA/BZsDHp4u3UmI1dD8JF6c6r4ecO3t93YFo2OimtLRUl2JoaWnRCcdmZWWlHD0sdcZx+By9O3zbGo7o6iAzbE4KGyMpnerqalpbE9dJ6vAdh4BWL+n3+/D5LeSf1tKr3YXmNpOFuQWTuKN8NT9d9BH+uPxzfHbOTawes4Di0O905eh53D5FP+mk0dPGN7c/SptPf1cc26GrHL7hjLWsFOuUqGqcQICu17b265pLly7FYnPybMdKKrsujET5utn6U1j7CX3TRAq897Icxhkcjwf+2cyZyt1Id+Sa5lH5ZN16ZeSgTd8Db5Qza8uCC2JLz12rDE7wxl1hB+lfa2t00T2rBVaeWo/0RjWhjRmFa/WFums4V16AY7F+Vm3ek69hCkTS0caSm8mTJ4dv2nuk1NDt2ktaN2AUXc7LjnQvh4jn8EkpKS2w6Lqx61sCuL1B/AHJq9GzZ4M+Vudp0T2AWr9Wvzd69Oi4HcdnE2Na96Shji8QlLxomKyxelEGJtPg2jlUJOXwSSlflVK+CrwFVADvAT5oeCiGAlMGJzpuDXfsAswaf4jSvBp27typG1w9EGRZnXxh7nuwRXWV+oIBvr/jT/x225fY37gTgm2Adgt1c95BFmZEpQQt46Dg6zBhGyc6bgPR+zSJgWjY6MZqtfboLE6bNi3lmpOYCF9XIzjO0x/k2R4T6Xi+Sr9YLyudw4TR+ghk0mndqPo9n8/PqcYSCuotVBy0cr53NN9a8H4eXfFFvnne+3nXhIuZlF2KKUFX9LsnLOHKcfovwqqOer674y+6jmtjh+44Jcky7DHO1u1zt26IjIwMFi9eDAjeci/gXx2X0eUN6KavcPhJePo94E5dn99mFfzXLfnR/SZ0uCW/fsFHMKpO1rVqMcIaWpNqd8LBv+kvtPCzEKehyDppHNaySBRK+vx0rd+Gzy95YZO+kWlmSQOmv+slprJvvxZhiJ4LIcj/0gd1TTKmumZmHkyskZp0VsFYx9dLhM84Vs2cHzvpIt6YtZqaGqwWwag8/fp8pt7P5n1uWjoizqvL1MaFWa+FHb7ulO7o0amPhuwvxsYNY4Rv5yEPtU2R36vFDCsXnhvpXEi9Fu+PwKeANuBtw0MxRNS6V4BtejjKB7Bq3nqkDA54lA9gYlYJ90yPSv1JD/Wdx3m5vg2ilvp5zlrekx+a+eu4EEoehPFvQt5HtPFkSdJf/T0jxrRuNKnW7wGUxET4GsBWoZvAQaAO/JGfo6arie31emfusrELe+ya65GodG4wGORUvebU5rVbuCRvFnPyJ+mc9J4QQvDBistjNBj3N5/kp3v+QUAGCcggp1QNX9oRk9Zdv10XseoLS5cuDd+A7feW82jLdXQGDc07ZzbCU9fro25JMqHUyq1rotYLKdnfkcX6kkg3fPjnkkF44z79zVVeOcy8M+61hRC4Vum76jvXbuSVzR20RgWxTAS4yr2bYGuk2N+UnUnmu+LP/bZNLiP7Fr2u6Oz91Tg740c6k3b4ihfqtxv2grc9/rHEa9jIjTnGbDbHzAwPp3XjzNR9eVNUhEwGWZr5EuZgB0iQCOoD+eTn55+1MWo9ESPNYnD4jNG9i+c4yXKdOy0Jqf6klwMXSSm/IKX8ZvTjbBinSBYzFH5DF+UbV3iGijFH2bFjx4BH+QCWl87h6rJQeiEYu+AUWTr5TMlOzNk3w7iXYOw/IPOKpCJ6Rgba4UtU/2e1Wpk8eXLK1yt25kX35FLvbsUTlGA31NtEpXVfPLVVFwWZkj2aKdmj4zp8wWTGYIUaNvx+bYGratAcvsmTJ+vu3pPFLEx8aua7mZk3Xrd/Y+0BfnfgWWq7mvFFSblk21xk286dO+V0xTa7HHNR5AYl2NmFe9Pufl0zMzOTCy+MpDVP+Ut5uPkGgjmG8YBNh+HNr/fpNa5ZksnMSdrfsfQHkEHJf8rWcMY5ClOGM6Kpd/hJqDGkqS/+NpgTZwQsKxZxPHMsrxcv4i+T383XzizgwX83E4hKwRZaDzL2Vb1sS9YtV2DKSCzOnnPPLZhyI2PVrEGYv/1kzHFjxozRCSD3iLMAcqPqEGUQahPrfAYTaPAZSXSjaezU3X7Qza4jUfI4QT+X5j2PLxTdawrm4MfC7NmzBz2dCzCu2KpLQ9c2BegKdXbXNvrZekBfR75msV5PcqSTqsN3AhiS6kYhRLvhERBC/CLBsXeGno8+fsXgWjzIuJaCa5UuynfJnDcR+Ae8Y7ebO8vXMCM7F9DXSViE4PMVM8iavEHrJLbP1D3f0NDAtm3baGlJbjj6YEX4ysvL+5QqtpktFDn0C3ZNV1P8tC5as0Z0owvA5WMXhm2LruXp6OjofVxeoA28moCrLzQ8/lTI4etPl5zNbOFLc2+hzNCM8XzVFn6z/z+6fSq6lx4IkwnXCn2UqL/duqCP8gFUtVnYNPo+GK2vb+PA3+DYSylf32QS3HtTHi6HQHq0KJlfWHh0yk1YL16opXO97bDhf/QnTrgcxi5DSklVVRXHT5xk14F61m7p4IF/NfOFX9by4Sez+Pnsj/LkhKvZXDifalsBQY8vfKNlIsCCujcw1TeHLytsVrLfeyU9Yc7OJO8T74tsm82MP95AYZ0+yplqk1iMHl914jq+GA2+gviOpVGe5Z133sHn88V06r66XV/HO6WghfH2dyL1e6F07mBp7xmxWQUlBXqbT9Zqtr20SR/dmzjaSvm4kTs3Nx69OnxCiJXdD+AR4CkhxK3R+0PPnVWklJndD6AY6AKe6OGUt6LPkVJWnm0bh5zCryKEGbtduxPOy2xhwZTdbN++nYaGhl5OTh2LycznxtWTb46+a7Lx4Rl3UD7uC2CJ1MwEg0H27dvHQw89xI9//GOeeOIJXn31Ve6//37Wr18f1n4yEq9ho7+dX0VFRXGjXikvvFHESLN0NSVs3NhQu58Wb2TxcVnsLCnRIhTx0ivGLuIYPNvRxqhp6dz61jw8PgdCCGbOnNnzub2QaXXytfm3U+DQp2d2GfT51Ei19MEZZ+pGqvOxjWRmZoZq+SKsfWMbvtUPaynVaF77LHTp9e6SoTDXwoevy9WloE+7SnhmnJZW9W3+BbXNkkOdFWxovYjnmq/jT5338bVf7ueOL73JvT84wV83zuVzv6jjJ4+c4tn1Tbxd5SUQ1Lprowm6I1GsQtsBFh3RC1FkXLsCc6G+eS0emTeuxlYxAYjM4F245bgu5ZxyGUlMHV/iqTgxc3Tz4zt8icasGWfqGrl0zHbN2Qv9OHWhdO5gd+dGU1YSO1PX55es3aJvHLxsccaQRCGHkmSKeh6Ms++7hm0JTIpz3NniRqAWeH0QX3P4Y5sKObdjaX4Yk8lLMBhkycxN7D4+jXXr1nHjjTf2fo1UkD7y3P/iq6P9/LR6IfV+JzeMn8OasZEvlPb2drZs2cLGjRtpbm6OuUR1dTXPPPMMzz33HNOmTWPhwoVMnTo1vDgOZMNGNyaTibFjx3L06FHd/mSna8Sj1JWvc4LOdDZArjHCtwukjxdP6VNOK0rn4jBHvnDKy8t1Gl2HDx9m+fLliV88VL/Xnc7tju5NmTIFl8uV8LRkKXRk8/X5t/GlzQ8lFGxWEb70wbl4DsLpQHZpv8tAXSPevW9jnzWllzN7ZunSpbz11lvhaE9bWxubt+/mokvu18SYZagEoLMO1n8JLv0tpPiFu6iwjfk129lWEIogCXihpoA3vnGc9sbLgMisaL+w01XlDflW2g2ZlBIhwB8I4O8KIIQHi8WC1WIoNfH6cDjbybFUMa/5VfIa2sERqksUgpw7rk/KXmE2k//FD1F9131atzyQ19TJpKP1HJ1cRG5ubuqKA8ZO3dptmsh0nLS1MaVrShDh6x6ztmVLpPnr8OHDXLR0YkIznHbBRa6X8EXJtdT5C4csndtNWbGVjXsi69Txah8b9nTRGt1o4hBcPLf3WekjjV4dPill4t/40HEH8Ijs+bZ0vhCiHmgE/gR8T0oZdyyEEOJu4G7Q7nQqKysH2NyzS3t7e9hmi1jEeQWPYjKZCAQC2C0eLpz6Fi+8ZcLpdJKRMXB1Vnm2zUzLqWY08OOS5wlIF5urb+LV6ldpamri2LFjnDp1KmENmpRSJ4myfft2tm/fjt1uZ+zYsYwbN46amhrdMVLKAfn9+Hw+3XXz8/N1i10iot/raNp89Xi9kettPLCDnHc8LCjIwGbqjlB6Wfva79nSro8W5J0OUFkduWZ7e7vOtgMHDvDyyy8nnEc5PecZcm1ePB4vUkreqS7C4/FgNpuprKxMaHOqXB6s4HHvFgLE/j7rD5+i8mj/XyOagbJ7uDKU607epBKc2yOR4z0P/pW265amdI14v5+SkhLefjvSw/f000/TtWoVE3KuZmxtVEJm/z843DGO+twlKb1mxitbufbgG7y9oIwWew7SZMbj9RHoasckJSCRgJSCzqAJGedvNfprQ8qQjIxoZ07tQcpaT1LWcZpRzcd4cckY6vMzmL7nJMFgMCw34547hWPHD8Px5HUy82ZPxLn1IEIIZDDInO0nODIqA9fo0bz66qu9nq97r6VkYdCJ1R9y5rxedr3wxxiNQYD8/YdwRMnk7DlxDE+CvzO3261bdzZt2oTD4YTgWDy+2GRgRUkbgdNvEogaAVnVlUWu2z2g606qtNQ58XgiN6Db9rSweZfA44mUyswY08aGN2MzJyN9zUm7WSJCiDJgOT1LwbwGzAKOAzOBx9AKzb4X72Ap5QPAAwAVFRVyxYoVA2jx2aeyshKdzU2nkPXfIRjUUnwXVOxnx7H5dHV1cdVVVw3cC5/5M3REIlOBzPeQ4c5nw4YN4chcomhcYWEhp0+fTthQUFVVRVVVFRaLRVfTtmjRIl2BeF+ZNGkSv/nNb8Lbl112Geeff34PZ2jEvNchnLXFvLnzeHjbmp/JigWXwJml0BGZRlKd14rNG/l5pueWcdP51+iuJaVk3759ulR2WVkZU6dOJQYZhHeqCPgseDwehBDUtozD4XBw00034XK5EtrcF6bUVPDDXY9jvNO65uLVMWnf/jKQdg9HhnLdaW8OUr/3/vB26fF6FqT4+vF+PwsWLOCHP/xhOMonpcTlcjH5pvvhn0ehPtIgMqvpz7D6w5BRnPRrVv9pLW5zkPcdfZLfTL8Lk9OOxSzB76Pb2QPwYAMhMMaZhAAzblzmejLMDbjM9bhMDVhNbi5uOsy4k9pnTgCTajowOxyMqW3H7nKFsw5lX/5YzJi63vBPncGpa+6F9g7cbjdOb4CFh+tZ/IXP9qga0E3Me+1bCUefCW+ePxaYs8J4Gqd/9W+8UWvseZcswz4nzjqCVj6zZ09k8o/b7WbhwgWU7+/i8MnYTu4PXOXE/lwHXaF32Y8Zx6ipXHfddQghhuzzO63Bz4u7InXPDZ12AgGIljm8+z3jYhpSYOSvOcOiH1kIUSmEkAke6w2Hvx9YL6VMOORTSnlUSvmOlDIopdwNfAstDXxukPNBhHVsuJbPZAqycs4bbNu2beBq+QLN0KEpzksJHo+Hh55o4x//+EdMGrYbi8XCggULuOeee/jMZz7D6tWrufzyyyksTFz/1f3F0U1/Gza6KSsr44YbbmDy5MmsXr2ahQsX9n5SDxhr+M501yhFNW54giZeqdWPQrps7IKYawkhYoqoE8qzeA9BsC2cznV77TS25Q5YOtfIhcUz+NA0fbF6nj2TfHtWgjMUwxHn8oUQpTfpPXQcX1UvzUFJkJWVxaJF+pRjZWUlfilg5f0QVbqApwUq/zvpSRzBtg48W/cCUN76DlcffwGvDBJ0a81fgiC55gaKLSfIMFdTaD1MqX0nU7K3cd0FdXz344Xce3U9D95Xygcu9zO18Cg5llNYQxOAqsZGavIkMLaqiWkHzgCR+jv73IqUnT0Ay+hR5Hzw3disVuw2GxazmXknWyk1pd5BD8TW8VXHb7yJ0eFLkNIFbcyaUcHgyJEjjI7jGE0aY2WS/VC4Oxc0/b1Zs+cOeV3cqDwzNmvEhoBeTpFZk+1xnb1zgWER4ZNSrkjh8PcD30/1JSDmZm/kYrJDwX1Yqj8aruWbOuYdxhWepLKykhtuuKH/r9H+FKA5GR6Ph+pGJ0dP58Y9ND8/n0WLFrFw4UKdE+JwOFi+fDnLli3j5MmTbNmyhV27dunSCrofawAaNqJZuHBhvx29bozTR+rdLfiCfqxRI9bebB9Nu98HoXKhTKuTi0bFb6ooLy9n8+ZI911Chy9UvxfdnSsRZ3WG5VXjLsAb8PHnt9diQnBH+eohX+QVqWHOy8Zx3nTcW/aG93Wt24T19mt6OCs5li9fzsaNG8M3a62trWzevFmLzJ//Bdjw7cjBJ9fB/j/DjNt6vW7X+m1If+Tbe07LBhy5G5llO0quuZEsUxMmIXmo9WZyAkWMHTuWxYsXM2fOnHCmobJuLyUlJVxxxRWsWbOGQ4cOsXXrVg4cOMCpMblIIRAhBzS71U12qxtzlGOcfde7+vy+ZN/1LtqffBmqIzJZna9tJfvWnrt94xLTqbtJc5yjPodSSoKGSRumvJ7lX8rLy6mqqgpvHz58mDGjYlPFl56fga9ml+6GvC5QMKizcxNhMgnGFVt4uyq+vuRl58jc3HgMC4cvWYQQFwFj6Lk7FyHEFcA2KWWNEGIa8NXezhlxZF6DcPwOm28Dbrd2B7tq7hs8snYcl1xyCfn5+b1coBda/w5oa4zP52XPsfkYfeqpU6dy4YUXMnXq1B6nVwghKCsro6ysjKuvvpq9e/eydetWXS0QaGnY/jZsnC3sZhsFjuzwqLSglNR2NTPGORftfZG80DoRbQJJEDCxavS8hGLIU6ZM0ep9Ql8+NTU1tLa2xoqZureGu3NB098TQvRJQDoV3jXhYtaMWYAQ4LI4ej9BMexwrjhf5/B1Vm4mewAcvu4o3xtvvBHeV1lZyfnnn49lzt1w/EV9Z+lb34CxSyF7fOzFouhcF7kBCgaDnCywsSbzZWxEvth3+GYzZs4abrzwwl5TpWazmenTpzN9+nQ6OjrYsWMHrZuryDmuH3vWXTtrLSvFdUnvZR+JMDntZN64huZf/iW8z3e0qoczeqBgJlic4A/JpHTWQtsJ3Xso2zuRvohDJpwOTK6eP6tTpkzRyXgdOXKElTP0DS12m2DJXCdNT72FIyo422EvG5LpGvEoK7bGdfjyskwsnHHurlfDIqWbAncAT0opdUJGQoiykNZe96DIVcAuIUQH8CzwJLGdxSMbIaDoG1it1vCcwJK8OqaP299/XT7v2+DROk39fj9Swp7jFYBWs7d06VI++9nPctddd6U8qsxmszF//nw+9KEP8fnPf55LL72UsrIyKioquO666/pn91km7kxdUybYKjjmyeaAO/R8qHfosjGJo4tOpzNueiUG92bdXfap+lImT548oM05iciwOpSzl8a4VupTr+4tewm0xpdHSpVly5bpmoxaW1u1piiTGS75GVijyg18nbDuUxAMxFynG+nz0/V6pLvd73UzY+qusLMnTAJLRh4LPvoYN998c1J1cdFkZGRw8cUXM/ejt5GRkYHNasVsMmG1WsN1xtl3Xocwm3u5Us9YJ+vt6rPDZ7ZCsaEcxDBmLRAjuty7uHO8MWujMltwOSI386svyMDpMOGv0Qt250xaPGwi/caJG91cekEGFvPwsHEoSCuHT0r5ESnl7XH2nwhp7Z0IbX9WSlkspcyQUk6SUn5NStm/+UHpiGMBIutabLZIteqK2W+xa+dGGhtT18EK0/b38H99fh/Ha8fQ0qlFnhYsWMCVV15JQUFB368fIi8vj1WrVvGxj32MO++8s8dav+FA3Jm6APb5vNgaFb2QPubkT2R0Rs/vUa9j1gKN4DuKL9QlF5SC002jhkz0VJFeWMtK9Q5IIEDXa1sTn5AC2dnZXHCBPu24bt067eYkezxcaJi4cWYj7P5dwuu5t+0j2NahNSl5W7FZmygZHakVttvtuJZ/k4yC1Bw9I66VizCbTDgcDjIyMnA6ND1Lc34OGdde0q9rA1gn6W/i+uzwQa91fMlq8OmOiaMDeurkEb50RwEXzXFyw8os3nd5Nu7Odpxu/dSQ8fMvS972s8z4ktjMiUloqehzmbRy+BR9oODLWG2ucJQvy9nB+eVbeeutt/p2PRkMO3xSgt/nZ/fxiH7d3Llz+21yuhLj8HVqDl+XdS7rWqO/iHxcNrb32sFex6wZ0rl1LQX4A/azns5VjBxcK/ROQ1dl4qkNqbJ8+fJwswNoUb7du0NRoem3wTiDA7Xp+9AYX2S8a91G8HdCVz34urCNb0N0f3sJMBfPgxkxsYCUsZQUYpsRO14x69YrMDn6P2TKWlaKiNL8C9Q1ao5sX4hXxxeFMcLXW/1eN/HWnWkT7Hz61nxuWZ2NxSx4e/srmIlEZD2mTEomzkrB+LNLvAjf+TMd5Of0L0Kb7iiHb6RjLUPkflgX5btw2jYO7n2NgLF9KRm63gK/dmft9/vxB8wcrNLuCLOzsykrK+vp7BFNiSGlWx1y+Na35tElIwtQrqmDRYUVvV4v3pi16uqoLt8ufTq3ahDTuYqRgTGt2/X6Vt0ki/6QnZ0dI3UU1roUAlb8BGxRNakBL6z7L01EOAp58nU6n3wEvG1o0isS64RIM0KNcz7mq/8KpoEpSTe+J8JhI+uWPjRWxEFYLVjK9I1nfY7yFZ9HxOtFm1Xsjkg5BZMcq2bE6PB1j1mLpmZfpW7bnzNl2KRzAXIyzeRl6d2bc7lZoxvl8J0L5P0XVvuocAOX1ezn4ooX2bdvX+rXik7n+nwcPDUZr19zSubOnZtSvd5II1FK9/maU0Q3tFyafRRL8HSv14uXXtGldd1bdQtxVUPJsOiSU6QPttnlmAtzw9vBji7cm/ckPiFFjOPWjh49GpGGyiiBpQZp1LpdsD2kD9hWBS/eje+Pt+Gvj5JnMklsYztoCObyt7Zr6VhyP7gGrtwj48qlCFvkBi3rlisw5w2cxuSApXVtWVBgiOZXR8Tj+5LSBU0jNd6YtW7cbjfe6l26czLGDYzawUByxUWZ4f/Pr7Aza3L/I7Tpzrn77XwuYc5GFHwOiyWyiE0fd4TThx9O7TrBTmh/GtBa/v1+P7uPRdK553rtmFGapbarmYPNJ3m7tZruhniBZHX2cXBvT+qaCev4pI9A5xZdivd0w+h+z85VnFsIkwnncn0UruO5gZtYWVxcHNNAsXVrVJ3glOth0tX6k7b+DNbfB48tg6NP03UkagSWBPOYTtYGLuT3Lbdykkn9moEdD2tZKUU/+wLO5eeT86EbyPtk/1PFuutPGqDGDYhTxxfpfg406iVZko3wdY9Ziyb6RvPAgQMUmurC2yaTIGu8Ib08DLh+eSZf/1Ahn789n8+8N39YRSCHCuXwnSvk3IZw6B2y2SV/pqXpZIIT4tD+HEit3sTn89Pe5eJYrXa3WlBQMGCiyOmK02Inzx65qwzIIH868rK2ITRn+zxXLcXWTnBvS+qaxukax44d00Y8efbh90Vqf9rdLgpK5qp0riJlXKv0KcyOZ1+PEeztD8a07tatWyM3KkLA0u+DK2oWswzAnocgNLe580ikozcgrLw+ag6b3PMJosmqRJc9DBSuZQsp/tVXyPvU7QjrwKqXGTt1vUdTWIONlBjm6kZ16hpTuqb83KQv25PDt3v3borMkaY/i9WKKBhYp3sgEEIwa7Kd82c4sduUqwPK4Tt3EBYcZb9GiMjilenooPntzyZ/jbaIlKHP72PPiQqk1P6E5s4deoX14YBRmmVPUygVEnL4Ls8JDYhJ0uHLz88nLy8SOQwEAhw7dgzcW3Tp3FP1JcyZc+42zCj6jvOieVjGjApvS6+Ptsee7+GM1Jg9e7ZO6qO1tZVDh6KaM5z5sOzHcc8NdJjwnLaDyQqOfDqDNo6OjoxiS8cmsbPaqVu3E/yacH2MLEuSKV0gZtLPmTNnaGtrw+12c/TgHnJNkWtbrVbI670mWTH0KIfvXMI+g0Z5i25XgeU5gh1vJDghCn81dGmpnmBQEvAHVDo3DsYRa2GElUJLF+e5QqKunt2QhFJQojFrXU2v6dK5pxpLVTpX0SeExUL2bfq0atvfnkN6vANyfYfDEVNbGm7e6GbCaqh4T8y5XVWjtMYORz5+KWjMddKZYQ9ft6Ii/RwN64QxuokY/qoagu7404V6JbMUsqIihkGf5vQRp4YvyZQuJB6zduDAAfKoDVckm0wCU95ksDpjL6IYdiiH7xxj1LTv0dSeG94OBiWek/8FQXfPJ7b9A0Kjyf1+P9VNRdS3ajpyJSUlFBcnPwB9JDM6kcOHmUtzGjGLbml6LS2bDPHSK762Dbp90n6+Sucq+kzmuy7FlBmVOm1sof3Z1wbs+sYRhvv376e93SDyfPG3tAkSAMIMsz9Mp+96baIEmgTUqTG54cNnzpypE3dOF0xOO5bR0Slsif94701cCUmgxxcwpnSTlGXpJt66s3v3bkYZ07n5wy+dq4iPcvjOMZyuXA42fVi3T/qOQuNPE58kJbRGpXN9Pl10Lx3TKmcLozRLN2ZhYnXxKP3OJNO63WPWuulsfRsROBPeDgRNjJk0fERPFemHKdNF5o2rdfta//jv8Gi//jJ+/HidcHowGGTbNsPfvy0L3vUfuO6fcPtW5MKv0LUxMvrN5/NRNTZS3pDOWYWYtO7b/anjM+rxbUb6/QSbdQOpMOdlpXRZo8N36NAhDh48SJElMgvYarHAMKzfU8RHOXznIJNmvpdtb0dEMv0+P8GmX4MngRyDZxf4tJqbYFDi80n2nYw0E6TzwjvQGKVZujm/aCoFWfP1Oz3Jdeoax6yNKTij+yKubhrFjJnzUrZVoYgm+71XQZSsku/ICdxv7hiQawshYqJ8W7ZsiXUoLQ4oXQSuUXRt3IXs0lKdfr+fTqeVpjwtCpmRkcHkybECyelCbONGf+r4YgWYY6J7uVmIFKOhZWVlutrLjo4OAoFAuGHDZBKYzGbIn5boEophhnL4zkEmTZrEjpNX0NYVSQH6fR6o/Ux4zquONn107+3qMjo9Wppl3Lhx5OcnSmOeeySK8F02diHYDQ5fkhE+0N9tjy2o1j3XGZxBZmam8RSFIiUso0eRseYi3b7WR/49YNc/77zzdDqddXV1nDhxIuHx0VM/fD4fp8bkhWvfZs+erZvikW4MqDRL/lS9gLWnheBxvU5eKg0b4XPi6ICCZJRZi/BZrFatlk+ldNMG5fCdg5hMJmbPvZgXtq0I79OkPnZD8wP6g6UP2v4V3vT5VTq3JzKsDnJsLt2+Emcec/MngWMuuo+c7ygE9HfiiYh2+MYU6h2+jMIVfTVXodCRffs1uu2uN7bjPXw8wdGpkZWVxbRp+mjQ5s3xR7nJYJDOddpzEi3CVzU2N/x8umcVBrRTV5hi6vgCR/Tvq7kgt0+XNqZ1M0QnLqHVe1stFi0imz0+3qmKYYhy+M5RFixYwJEzk9h/UusADQaDBAJBaPwReI9FDuxYC0EthB8IBunssnLkzERAS9OoyQ6xlLoKdNuXjV2ISZjAlAE2Q1dhkgLM3WPWLCY/xbl1+uemXNcvexWKbuxzK7DP0ztlrX/6z4Bd36jJt3v3btzu2IYx776jBOq0dcfv9+GzmKgp1qJY2dnZjB+f3k6G0eHzHz+N9MfJriSLIa0bOKYvzxkoh6/IrE1JCadz86aCKX0jrecayuE7R8nNzaW8vJyXti/D7dVkDnw+L0gP1H1Oa9QAXTrX7/Ox72Q5gaD2AZ80aRLZ2QM3cmiksKI0En0ocGSzavS8yJMOYx1fcmnd7vRKSX4tZlNEjsXtLyIjx5h2USj6Tvb7r9Vtdzz96oAJMZeXl5OVFWke8Hq97N69O+a4rlcjESq/z091SQ5Bc0TzM91HOJqzMzEXRhpQpM+P/2RN3y9Yqnf4gqcO67ZNfRwNZxyzNsqiOXwqnZuepPenRtEvFi5cSIfHxcs7lwBanYyUQNcb0PY3CDRDx0uA5v/5fGqUWjKsHrOAz825ifdOvoRvL7iDbFuUXIr9PP3BSUb4QPuyNNbvSeP1FIp+4lq16KwJMZvNZhYsWKDbFy+t27lOkxbpHuEYLccyUtadAU3rFs3TxKlDBBpatIklIVLR4IvGOGatO8Jn7W4AUQ0bacWwcfiEEPcKIbYIITxCiIfjPL9KCHFACNEphFgnhEgY0xdC5Ash/imE6BBCHBdCvPesGp+mzJgxg4yMDHYfm8Y7NeOQUkufAFD/zVA9n7YdDAapb8nmdKOmt2cymZg1a1aCK5/bmIWJi4tncvOk5Yw2pHdjInzubZFoai9MnTqVMYVndPtySlb1x1SFIgZhNp9VIWZjt+7JkyepqYlEt/xn6vAe0CbS+P1+JIQdvpE0wjHW4euHNIvFrovyBTrNEIiIOfelaaObaIdvlLkhks4FJcmSZgwbhw84DXwHeMj4hBCiEHgS+CqQD2wBHuvhWr8CvEAx8D7gN0IINYbAgNlsZv78+YDgua0r8AUseL0hhy/YCk0/Cx/r8/nYfbwCQhrr5eXluFyumGsqesE2FURUxC/YBL7kiuLzc21MGd0Q3rZarThylw60hQpFfCHmZwZGiLmgoCCm+zN68kZ3dA+0dae+MBOPQ4tejaQRjgMa4QMYvyb830CnOTxiDVKbo2tk2rRp5OfnIwhSaG7EZreHJ22olG56MWwcPinlk1LKfwENcZ5+N7BXSvmElNINfAOYK4SIiScLITKAG4CvSinbpZTrgX8Dt58149OY7rvtlo4cXt29mEAgoBvZBaF0rt/HnuORhgPVndtHhDnUrRtFknp8ov4r5GQFcTgcOJ0OHK4CsKmUimLgiSvE/MjACTEbo3zbtm0jENBSkF2vas6flBJ/IDCiunOjMUqzePsjvgwwPvL7CnaaIOilezpSX1O6ADabjbvvvpt3rVpAlsumzc4FcBaAq6jnkxXDinSZSzMT2Nm9IaXsEEK8Hdp/wHDsVCAgpYyazs1OYHmiiwsh7gbuBigqKqKysnKAzB4c2tvb+2Wzy+WiqamJN/ZWMH3sAcrMTbqRRcFgkLdPl1DXZAc8mM1m6uvr+/0+9dfuoWAgbC7LyGWMK5IeO3Pwnxxrz+vhDCiyVzIl+y/hbSnheNPFHHt1fa+vl47vM6Sv3cky3Ncd88R8Rvl9iKDmNHj3HWHDrx/GM1Pr0u/P76f7xtLn0zIKHo+Hxx57jDF5BZS8thkRCOL3+0FK3inKwOPxkJ2dzf79+9m/f3+ff6bh9Ddlam6nxBtZB9z7jnBo7Vqd+HU3ydo9T4zC6anC125CSknA3UHQZGPzoQMEWvrRFALkd7xNMBjUJLyAFlsB+3qwaTi918mSjjanQro4fJlAnWFfCxBvVkxm6LlkjgVASvkA8ABARUWFXLFiRZ8NHQoqKyvpj80ZGRk8+eSTADy37VI+uOYJXC5beL632+1m38kZ2O1aN+/s2bNZvXp1osslTX/tHgoGxOb2Lqh+Nrw5IbuRCQt7uKb3KJx8FGRE9R5bBROm/4YJpt6Hlqfj+wzpa3eypMO6U/fWYTqej9xUTNp1guJ77gL6//tpb29nw4bITGiPx8NCcyZ1ZguYtfq99iwH7sJs7EKwYsWKfv89DKe/KSklJ3/wV4JtHeF9S6bPxlIaGzVL2m7nzbD9l8guC0IILCIANhsXX7kGU1Y/Z21v2QpnImvQqIpljLo4sU3D6b1OlnS0ORUGxeETQlSSOML2hpRySS+XaAeMfeXZQFs/j1WgOXBPP/00Xq+XupZC3tw3n0sX7sVqsSAldLnhYFVkjNFISqsMCQ5DZ61nN0gvCFvssdIL1R8F2RnZJ+xQ/FtIwtlTKPpD9u3X6By+biFmW3lyOnjeg+/QdP+f8ew4gMnlxFyYi7kgF1NhLvOsZhoO1dDltOJ2WDnTvpvmHVoXejCUzj01pjA8XWOkrTtCCKyTxuLZeTC8z3e0Kq7DlzQTLiO48VdIf+huPeBBWMyIzAGot24wRFZV/V7aMSgOn5RyRT8vsRe4o3sjVKc3ObTfyCHAIoQol1J2ixHNTXCsAnA4HMyePZutW7cC8Mb+hcwtr2d0QQOBQICNB+fg9WvOiN1up6KioqfLKXrDUgzmUgh0d9z6wLM3toMXoP5/wGuYcVz4LbCr34Hi7NMtxOzZEamcaf3Tfyj81r09nid9flp+93daHngC6ddq84It7fjP6BM1izo6CETVDLfb7dhtNvyhVG/VWK3UYaSOcLROHGNw+E7ivDjOOpAsRfMIBAujdkhM2ZaBaXRp2KffVpIsacewadoQQliEEA7ADJiFEA4hRLdD+k9glhDihtAxXwN2SSmN9XtIKTvQOnq/JYTIEEJcDFwH/GlwfpL0JFoBPxC08LtnL6Mr61tsPP4BXt+7KPzcjBkzIkW7ir5jjPLF0+PreAlafqffl3EVZN929uxSKAzEFWKub0p4vGf/Uc685zM0//pvYWcvEVabfi3xherDfD4fPquZuiJtRvRIbRKzTh7gxg2TmWDWIt0us72rf9cE8HVCW5SagBCQr246041h4/AB9wFdwBeB20L/vw9ASlmH1nn7P0ATsAi4pftEIcSXhRDPRV3r44ATqAX+CnxMSqkifD1QVlZGUVEkleD2WtmwbzIvb3AQlJE/k5G68A468fT4ovFXQ82n9PssY2HUj8MpLoViMHCtWoRlbHF4W3p9tD3+Qsxx0uuj6Rd/5swtn8N7KDmpIavFSvRfc1BKvD4fgWCQk+PykKEGhpE6wtHYqdtvaRYgkDFPt202NySt9ZmQpkP6a2SNB6uS5Uo3hk3ThpTyG2hyK4mefxmIG0OWUn7XsN0IXD9w1o18hBAsXLiQ556L+M1r167VOuVCuFwupkyZMhTmjTxi6viiHD4ZgJp7NY2+MGYo+Q2Y+y6voFD0BWE2k/2+q2j8QUQite1vz8FXI0pXnj1HqP/qL/AdjnX0zIW55H/5bmzTJhKobwo9mgk0NBOob6Z2y3a6Ttfi7PLicPvxuN005mewY57mDI3kEY4DrsUHBEzj0fRSQ5Is1lZoPAgF/UjBNhqSaSqdm5YMG4dPMfScd955vPDCC2EdPr9hmPfs2bMxdyusK/qHfQ5a9UIo5eU7BoEmMOdB0y+g60398fmfA8cCFIqhIPNdl9L8q78RbNeahwKNLbg27kMuX07zr/9Gyx/+BYHY9G3GVcvJ/9KHMOdqIgnWstKYY5qPHOHBBx/UNqTEHAgSsETWmZGcVbCMLkLYbeEpJsHmNgKNLf2ajBFs6QKzLTxpw+QKwvEX++fwGRs21ISNtGQ4pXQVQ0xmZibTpiVeFEbywjvomFxgM9TAuLdD12Zo/Il+v3MJ5N0zeLYpFAbiCTFnPreB0zf9Ny2//0eMs2cuzGPUL75M0Q8+HXb2EjFp0iTy8kI6lELonL2RPsJRmM1YJ+pHxfn6WccXaGwBsz28bXYFNIevPzQaO3RVhC8dUQ6fQkd080Y02dnZjB+fnBSDIkmMad3OdVDzccJRPwBzART/QpvQoVAMIdnvvQqiIvyWuua4zknmtZcw+qn7cV1yQcxz8TCZTDGTN7o5F0Y4DnRaN9AQx+Gr2QadtX2/qDGlWzCj79dSDBnK4VPomDp1atx6mTlz5mCKowCv6AdGh6/lQfCf0u8b9XNNxkWhGGIso0eRsfrChM+bi/IZ9av7KPzuJzHn9BzVM7JgwYK40iHnQlZhwB2+xhYQJjBpHdCmjJDszfFX+nbBznroqo9sm+2QPaFfNiqGBvUNrtBhMplYsCC2VmykiZ4OC+y96G3lfgQyVg6OLQpFEmTffk3c/ZnvWsWYf/8C1/L4kbreyMnJoby8XLfPYrEwffrIrxWLdfj6l9INNjZr/wlF+cyuUMbgeGxndVIceVK/nTcVTCrjkI4oh08Rg9HhKygoYOzYsQmOVvQZ2xQQmfGfs8+Bgi8Prj0KRS/Y51bgWhnReTMXF1D8269R+O1P9Ht01wUX6FPA06dPx+Fw9Oua6UCMFl+/I3yt2n+MDl/Va+BLUZPP1wnbf6nfN+6SftmnGDqUw6eIoaCggCuvvBKLxUJGRgY33HDDwCi1K/QIMzjipKxEhjY6TSiBa8Xwo/D7n6bgm/fQfPtljHnqFziXnNf7SUkwY8aMcGq3oKCAq666akCuO9yxlo3W1UYGahrC3dCpIoNBAk0hh89kAWGOOHx+N5xan/jkeOx9WJ/Otbpgzof7ZJti6FGyLIq4LF26lMWLF2MymZQUy9nEPh+63tDvG/UDsE0YEnMUit4wuRxk3bCazgIrpoGY0RpCCMGNN97INddcg81mO2duMoXVgnVcCb5jkfpd39Eq7HOmpnytYEu7rmPalOlCRH/LH3sBJqyOPTEe3nbY8Sv9vlkfAmdBynYphgcqwqdIiNVqVc7e2SbDsPhm3QxZ7x4aWxSKYYDdbj9nnL1uBqpxI9BdvxfCHDU9CYATL4EMkhR7HgJ3lPi7LRPmfrRPdimGB8rhUyiGEuf5UPhNrWYv5wNQ9IOhtkihUAwyA+XwBRtadNumkrGao9ZNZx3U7uj9Qp5W2Pkb/b7Zd4Mjt092KYYHyuFTKIaa3A/DuOeh6Dtgsvd+vEKhGFHENG70UXw50Kh3+MwFebFNFsdf6v1Cu38Hnqhr2bJhzt19skkxfFAOn0KhUCgUQ0hMhO+dvqZ0jQ5fDoxfoz+ot6kbnhbY9YB+39yPgn1kzjM+l1AOn0KhUCgUQ4h1ot7h81fVhOfrpoLR4TPl50DZKv2knob90Hoi8UV2/ha8bZFtey7M/mDKtiiGH8rhUygUCoViCDG5HFhKoxosgkF8x0+nfJ2gMcKXn6PV3ZUaxtwlSut2NcLu3+v3zbsHbKlNTlEMT5TDp1AoFArFEGOs4+tL40agIY7DBzDeoAZwLMHUjZ2/Bl9HZNtZALPuTNkOxfBk2Dh8Qoh7hRBbhBAeIcTDhucWCyFeEkI0CiHqhBBPCCFKe7hWpRDCLYRoDz0OnvUfQKFQKBSKPjIQnboxNXzdDt+Ey/QHntmgdeJG01kHe/6g3zfvHrD2b4KKYvgwbBw+4DTwHeChOM/lAQ8AE4DxQBvwhzjHRXOvlDIz9KgYSEMVCoVCoRhIBsLhCzY067ZNBSGHL2ci5E6JOtAPJyv1J+/4NfijRq+5RsGMO1K2QTF8GTYOn5TySSnlv4CGOM89J6V8QkrZKqXsBH4JXDzYNioUCoVCcTaIdfhSl2YJj1ULYc7PjWxMMHTrRqd1O2q0MWrRzP8EWJ0p26AYvqTraLVlwN5ejvmeEOL7wEHgK1LKykQHCiHuBu4GKCoqorIy4aHDkvb29rSzGdLTbmXz4JGudieLWncGn+Fss2jvotQb6cz1HDhK5StrwWxKzm6fn9ENkckYUghe374FTFpcJ6ujkFlR1w8c+A+bze9CCgsTTz1ISVekM9dryWdb3ThkP96r4fxeJyIdbU4FIaUcaht0CCG+A4yVUt6Z4Pk5QCVwnZTy9QTHLAL2AV7gFrSI4Dwp5du9vX5FRYU8eDC9Sv4qKytZsWLFUJuRMulot7J58EhHu4UQW6WUC1M9T607g8Nwt/nk8jt0jRdjnv0N1rLSpOz2V9dTdemHwtvmwlzGVT4cOSAYgEfmgrsxsu+aJyBnEvxlMQR9kf1Lvwcz+5fOHe7vdTzS0WZIft0ZlJRuqIlCJnisT+E6U4DngE8mcvYApJQbpZRtUkqPlPKPwBvAlf3/SRQKhUKhODtYJxo6dVOYuJGwYaMbkxnGX6rfd+xF2PZzvbOXOQam3Zr06yrSh0Fx+KSUK6SUIsFjSTLXEEKMB14Gvi2l/FOqJgDn1jRuhUKhUKQV/WncMGrwmfJyYg8yTt14+yk48Ff9vgWfBrMt6ddVpA/DpmlDCGERQjgAM2AWQjiEEJbQc2OAtcCvpJS/7eU6uUKIy7rPF0K8D63mL4HwkEKhUCgUQ09/HL4YDb6COA7fuOVgska2O2v10b3sMph6U9KvqUgvho3DB9wHdAFfBG4L/f++0HMfAiYBX4/S1mvvPlEI8WUhxHOhTSuavEsdUA98ArheSpleBTIKhUKhOKeIFV9OJaXbrNuOSemCpqk3dmnii5z3aTBbEz+vSGuGTZeulPIbwDcSPPdN4Js9nPvdqP/XAecPsHkKhUKhUJxV4kX4km2sDDbqJVlM0ZIs0YxfAyfWxu7PmQhTb0jqtRTpyXCK8CkUCoVCcc5iHpWPKSOifRfs6CJQEyNNG5eYpo14KV2IHbPWzcLPgGnYxIAUZwHl8CkUCoVCMQwQQvS5ji+plC5AZikUztbvyyuHydcla6YiTVEOn0KhUCgUw4TYOr4kHb76Zt12QocPYlO3Cz+nybYoRjQqfqtQKBQKxTDBOimOwzd2Wo/n+Kpq8J84o9tn6snhm/UBaDsJZzZB+bth8tV9tleRPiiHT6FQKBSKYULcmbrLEjt8gaZWaj/yTYIdXeF9pkwXllH5iV/EZIGLv91vWxXphUrpKhQKhUIxTEilhi/Y5aH23v/Bd/y0bn/2Hdci7Eo8WaFHOXwKhUKhUAwTLGNGIWwRLbxAYwuivSvmOBkIUP/5n+DZqZeYzbhiCTkfufms26lIP5TDp1AoFArFMEGYzVgnjNbts57RS7NIKWn87u/oXLdJt99xwWwK/+eTCJP6alfEov4qFAqFQqEYRhgbNyxn6nXbrb//B22PPa/bZ5s6nlE//6IuOqhQRKMcPoVCoVAohhHGOj5LVISv/al1NP38Ud3z5uICRv36q5iyMgbFPkV6ohw+hUKhUCiGEYkcvq43ttPw9V/qnjNlZVD8f1/HUlI4aPYp0hPl8CkUCoVCMYwwii9bqxvx7Hubuk//EOkPhPcLq4VR938J25SywTZRkYYoh0+hUCgUimGEdfxoiGq8MDe2UvvxbxPs1HfrFn7vUzjOnzXY5inSFOXwKRQKhUIxjBA2K9axxbp9xtFp+V/4ABmXLxlEqxTpjnL4FAqFQqEYZhjr+KLJvuM6sm+/dhCtUYwEho3DJ4S4VwixRQjhEUI8bHhughBCCiHaox5f7eFa+UKIfwohOoQQx4UQ7z3rP4BCoVAoFAOEsY6vm4zLl5D3mTsG2RrFSGA4zdI9DXwHuAxwJjgmV0rpT+JavwK8QDEwD3hGCLFTSrl3IAxVKBQKheJsYtTiA3CcP4vC7yphZUXfGDZ/NVLKJ6WU/wIaeju2J4QQGcANwFellO1SyvXAv4Hb+2+lQqFQKBRnH/uCGbrGDWv5eEbd/yUlrKzoM0JKOdQ26BBCfAcYK6W8M2rfBOAdtCigBF4CPielrI9z/nzgTSmlM2rfZ4HlUsprErzm3cDdAEVFRQsef/zxAft5BoP29nYyMzOH2oyUSUe7lc2DRzrafckll2yVUi5M5li17gw+6Waz6/WdZLyyFXd+Fh3vv4JgbvrYnm7vNaSnzZDCuiOlHFYPtLTuw4Z9mcBCtBR0MfB34IUE5y8Fqg37PgxUJvP6U6dOlenGunXrhtqEPpGOdiubB490tBvYIvuw7ql1Z3BIR5ulTE+7lc2DR7LrzqCkdIUQlaGmi3iP9b2dL7XU7BYppV9KWQPcC6wRQmTHObwdMO7PBtr6/5MoFAqFQqFQpB+D0rQhpVwx0JcM/SviPHcIsAghyqWUh0P75gKqYUOhUCgUCsU5ybBp2hBCWIQQDsAMmIUQDiGEJfTcIiFEhRDCJIQoAO5HS9G2GK8jpewAngS+JYTIEEJcDFwH/GnwfhqFQqFQKBSK4cOwcfiA+4Au4IvAbaH/3xd6bhLwPFpadg/gAW7tPlEI8WUhxHNR1/o4mrRLLfBX4GNSSbIoFAqFQqE4Rxk2OnxSym8A30jw3F/RHLdE537XsN0IXD9w1ikUCoVCoVCkL8MpwqdQKBQKhUKhOAsoh0+hUCgUCoVihDPshJeHGiFEG3BwqO1IkUIgRoQ6DUhHu5XNg0c62l0hpcxK9SS17gwa6WgzpKfdyubBI6l1Z9jU8A0jDsoklfKHC0KILelmM6Sn3crmwSMd7RZCbOnjqWrdGQTS0WZIT7uVzYNHsuuOSukqFAqFQqFQjHCUw6dQKBQKhUIxwlEOXywPDLUBfSAdbYb0tFvZPHiko919tflc+lmHknS0GdLTbmXz4JGU3appQ6FQKBQKhWKEoyJ8CoVCoVAoFCMc5fApFAqFQqFQjHCUwxdCCPGoEOKMEKJVCHFICPGhobYpWYQQ5UIItxDi0aG2JRmEEJUhe9tDj7TQHxNC3CKE2C+E6BBCvC2EWDrUNiUi6r3tfgSEEL8YaruSQQgxQQjxrBCiSQhRLYT4pRBiWEtICSGmCyHWCiFahBBHhBDvSvI8te4MAum65oBadwaLc2HdUQ5fhO8BE6SU2cC1wHeEEAuG2KZk+RWweaiNSJF7pZSZoUfFUBvTG0KI1cAPgLuALGAZcHRIjeqBqPc2EygGuoAnhtisZPk1UAuUAvOA5cDHh9Kgngh9KTwFPA3kA3cDjwohpiZxulp3Bo+0WnNArTuDzIhfd5TDF0JKuVdK6eneDD0mD6FJSSGEuAVoBl4ZYlNGOt8EviWl3CClDEopT0kpTw21UUlyI9pC9vpQG5IkE4HHpZRuKWU18Dwwc4ht6olpwGjgf6WUASnlWuAN4PbeTlTrjqIX1LozeIz4dUc5fFEIIX4thOgEDgBngGeH2KQeEUJkA98CPjPUtvSB7wkh6oUQbwghVgy1MT0hhDADC4GiUNi8KhTudw61bUlyB/CITJ+W/J8DtwghXEKIMcAVaIvvcEUk2DcrqZPVujNYpM2aA2rdGQJG/LqjHL4opJQfRwubLwWeBDw9nzHkfBt4UEp5cqgNSZEvAJOAMWj6Qf8RQgznqEYxYEW7Y12KFu6fD9w3hDYlhRCiDC018cehtiUFXkW7s24FqoAtwL+G0qBeOIAWyficEMIqhFiD9p67kjlZrTuDQrqtOaDWncFmxK87yuEzEAqNrgfGAh8bansSIYSYB1wK/O8Qm5IyUsqNUso2KaVHSvlHtDD0lUNtVw90hf79hZTyjJSyHvgpw9vmbt4PrJdSvjPUhiSDEMIEvIDm+GSgDTPPQ6tjGpZIKX3A9cBVQDVa5OtxtC+NZK+h1p2zSBquOaDWnUHjXFl3hnUHyhBjYXjX0qwAJgAnhBAAmYBZCDFDSnneENrVFyTxw9PDAillkxCiCs3OdOP9wPeH2ogUyAfGAb8M1bZ5hBB/AL4DfH5ILesBKeUutLtrAIQQb9K36IZadwaHYb3mgFp3BplzYt1RET5ACDEq1PqeKYQwCyEuA24F1g61bT3wANoXw7zQ47fAM8BlQ2dS7wghcoUQlwkhHEIIixDifWidZy8MtW298AfgE6G/lTzgU2jdUcMWIcRFaCmsdOmSIxTFeAf4WOjvIxetFmjnkBrWC0KIOaG/aZcQ4rNonX4P93KOWncGgTRec0CtO4PCubLuKIdPQ6KlUaqAJuDHwKeklE8NqVU9IKXslFJWdz+AdsAtpawbatt6wYp211QH1AOfAK6XUg53Xaxvo0lQHAL2A9uB/xlSi3rnDuBJKWXbUBuSIu8GLkf7GzkC+IFPD6lFvXM7WsNFLbAKWB3VfZsIte4MDum65oBadwaTEb/uqFm6CoVCoVAoFCMcFeFTKBQKhUKhGOEoh0+hUCgUCoVihKMcPoVCoVAoFIoRjnL4FAqFQqFQKEY4yuFTKBQKhUKhGOEoh0+hUCgUCoVihKMcPoVCoVAoFIoRjnL4FOc8QohjQoguIUSbEKJZCPGmEOKjofmKCoVCMeCodUcx2Kg/LIVC4xopZRYwHm0G5BeAB4fWJIVCMcJR645i0FAOn0IRhZSyRUr5b+A9wB1CiFlCiKuEENuFEK1CiJNCiG90Hy+EeEYI8Ynoawghdgkhrh9cyxUKRbqi1h3FYKAcPoUiDlLKTWgzTpcCHcD7gVzgKrQB29eHDv0jcFv3eUKIuWiDw58dRHMVCsUIQK07irOJcvgUisScBvKllJVSyt1SyqCUchfwV2B56JingHIhRHlo+3bgMSmldwjsVSgU6Y9adxRnBeXwKRSJGQM0CiEWCSHWCSHqhBAtwEeBQgAppQd4HLgtVGx9K/CnIbNYoVCkO2rdUZwVlMOnUMRBCHE+2sK7HvgL8G9gnJQyB/gtIKIO/yPwPmAV0CmlfGuQzVUoFCMAte4ozibK4VMoohBCZAshrgb+BjwqpdwNZAGNUkq3EOIC4L3R54QW2iDwE9RdtkKhSBG17igGAyGlHGobFIohRQhxDCgG/GgL6D7gUeC3UsqAEOJGtEU1H3gVOAbkSimji6bvA74NTJZSHh3UH0ChUKQdat1RDDbK4VMoBgAhxPuBu6WUS4baFoVCcW6g1h1FKqiUrkLRT4QQLuDjwANDbYtCoTg3UOuOIlWUw6dQ9AMhxGVAHVCDVmStUCgUZxW17ij6gkrpKhQKhUKhUIxwVIRPoVAoFAqFYoSjHD6FQqFQKBSKEY5y+BQKhUKhUChGOMrhUygUCoVCoRjhKIdPoVAoFAqFYoSjHD6FQqFQKBSKEc7/A37WKRenXlyrAAAAAElFTkSuQmCC\n", + "text/plain": [ + "<Figure size 720x288 with 2 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Separating the two equations #\n", + "\n", + "# Eq.1 ------\n", + "col = sns.color_palette()\n", + "col_pte = ['#436bad', 'orange','crimson', 'gray']\n", + "col_pte2 = [col[0], 'gray', col[4], 'gold', col[2], col[3]]\n", + "colors={1:'dimgray',2:'gold',3:'mediumseagreen',4:'darkorange',5:'crimson',6:'royalblue'}\n", + "\n", + "term = 'Dp'\n", + "res = '80km'\n", + "fig, ax = plt.subplots(1, 2, figsize=(10,4), sharex=True, sharey=True)\n", + "for i in range(1,4): # loop over simulations\n", + " ax[0].plot(dur[exp80[i]], dp[exp80[i]], color=colors[i],\n", + " linewidth=4, label=expname[i], alpha=0.9)\n", + "\n", + "#plt.legend(ncols=3, loc='upper center')\n", + "for i in [1,4,5,6]: # loop over simulations\n", + " ax[1].plot(dur[exp80[i]], dp[exp80[i]], color=colors[i],\n", + " linewidth=4, label=expname[i], alpha=0.9) \n", + "#plt.legend(ncols=3, loc='upper center')\n", + "#ax = df_track[['dfi', 'ep','itt', 'eq1res']].plot(kind='bar', stacked=True, title='', color=col_pte, figsize=(6, 3))\n", + "#df_track.plot(x ='Unnamed: 0', y='dp', kind = 'line', ax=ax, color='k', linewidth='3')\n", + "\n", + "ax[0].set_xlabel('Day', fontsize=12)\n", + "ax[0].set_ylabel('hPa/'+str(dt)+'hr', fontsize=12)\n", + "ax[0].set_xlim((3, 9))\n", + "ax[1].set_xlabel('Day', fontsize=12)\n", + "#ax[1].set_ylabel('hPa/'+str(dt)+'hr', fontsize=12)\n", + "ax[1].set_xlim((3, 9))\n", + "#ax.set_xticks(np.arange(9, 32, 2))\n", + "#ax.set_xticklabels(dur[exp80[i]].to_numpy())\n", + "#print(dur[exp80[i]])\n", + "#ax.set_xlim(np.min(df_track['Unnamed: 0'])-0.5, np.max(df_track['Unnamed: 0']+0.5))\n", + " #ax.set_xticklabels(df_track['time'])\n", + "ax[0].yaxis.grid()\n", + "ax[1].yaxis.grid()\n", + "ax[0].xaxis.grid()\n", + "ax[1].xaxis.grid()\n", + "ax[0].axhline(y=0,linestyle=':', color='k')\n", + "ax[1].axhline(y=0,linestyle=':', color='k')\n", + "ax[0].legend(ncol=2, loc='upper left')\n", + "ax[1].legend(ncol=2, loc='upper left')\n", + "#plt.legend(bbox_to_anchor=(1.0, 1), loc='upper center')\n", + "\n", + "#plt.savefig('TimeseriesPTE_'+exp+'_'+str(dt)+'hrly_Eq1_upper'+str(int(p2level))+'hPa_box'+str(int(boxsize))+'_CyCen.png',\n", + "# bbox_inches='tight',dpi=200)\n", + "ax[0].tick_params(axis='both', which='major', labelsize=12)\n", + "ax[1].tick_params(axis='both', which='major', labelsize=12)\n", + "plt.subplots_adjust(wspace = 0.05)\n", + "fig.suptitle('Eq1: '+term+' Term ('+res+')',fontsize=14, weight='bold')\n", + "plt.savefig('CyclonePTEtimeseries_Allsim'+res+'_'+term+'.png',\n", + " bbox_inches='tight',dpi=100)\n", + "plt.show()\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 185, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmkAAAEpCAYAAADIwbUjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAADEYklEQVR4nOyddZxc1fm4nzO+btlNNht3d0eyBCtQQrDi1iKltEgL39JCKS1t0R9FCqVIkUIhuDvEXYi7bDbrOmvj957fH3d2ZCXZ3aym5/l8Jpt7rsw7c++c+95XhZQShUKhUCgUCkX3wtTVAigUCoVCoVAoGqOUNIVCoVAoFIpuiFLSFAqFQqFQKLohSklTKBQKhUKh6IYoJU2hUCgUCoWiG6KUNIVCoVAoFIpuiFLSFApFlyGEmCqEWCGEqBNCSCHEh0KI7OD/pRAiu6tlbE+EEBOFEJoQIkcIYemA4w+K+O6u7YDjpwghaoQQtUKIPu19fIVCEY1S0hSKHoQQYnHETbjh69o2HO8pIcRGIYS//jjHKF9OhDwBIUSVEGKHEOIFIcSEJnZ5CZgDCGAdsBuoBtYEX9XNvM8rR/ge6l+Lj+WzdBAPYsy7T0gpA/WDQoibhRAbhBCVQgi3EOKgEOI5IUR65M5CiEuD58sthKgQQrwrhBjWWcJLKSsxzlkccF9nva9C8b9Kuz/JKRSKTsEH/NBgrLQNx7ka0IL7Zh6rUBHUADuB/sDo4OsaIcT1UsrXIrYbG/z7jJTyrojxWUc5/n4MJQ4gMXh8gAOEv4cdbZQdIYRNSulr6/7NHHMEcBbG9/3fiPGfAs8GFw8D+Rjfy03AYODM4HY/A14MbncQSAMuBE4SQkyUUha1p7xH4HXgNozz+TspZVUnva9C8T+HsqQpFD2TQinlrAavz+pXCiHOF0LsEUJ4hBBLhRBnN2NxmyClTCNCaWhIG11oG6WUM6WUfTEsZYcBK/CiEGJ4vUuT8IPincHj398Sd6eU8oH6zw38ImJV5PgtQohbhBCbg5anKiHEx0KIMRGf7dqI97pYCLFeCOEDzg7KUr/uDCHETiGESwjxthAiQQhxhxCiQAhRKoR4ugXuy6uCf9dKKUsixk8O/q0BhkkpxwFfB8cGBuW0AQ8Fx96TUg7BUExrgAzg9829qRDivAhL6V+DY/UW2cVCiN8IIYqClrn7hRCxQojng27NQ0KI6xt89+uBQiAWQ0lUKBQdhFLSFIrjDCHEeOAdYDiGxS0DeLupbaWUuR0tj5RyFYblBQxF7WeEXZr15AeX89rxrZ8C/gFMwLA8uYFzgZVCiCFNbP86hjXxENDQ7fsuhks2BrgYWA38NXjMXsAvgeuOIk928O+6BuPLgn8TgH1CiG3AGRiK7S+D66YH3wfgPQApZUFQDgha2xoihDgDWIihDD8gpbynwSazMNyWXiAF+GNQvgVAHTAA+JcQYlSD/eo/wylNflKFQtEuKCVNoeiZDGwiBis5uO5OwAzUAmOklKOAJ47hvfwYsWK7gba6tpZG/H+8lHJj0NpVz4tBC9iLDXdsC0KIQcAtwcWbpJRjMKxS24Ek4HdN7PYu0F9KORz4tMG6m4Pf44rg8hjgdAxF+FBw7NSjiFWv6OREDkopX8JQYgMY7uF6F/CeiG37R+wSaYUrDv4d0MT7nQx8CNiB+6SUTcWQmYCJGJ+n3r2bDowATojYJrvBfvWfeWQTx1QoFO2EUtIUip6Jj3Bwff2rPhB9fPDvSillvWVqYVvfSEqZL6UcFXx90MbDRM41x5Sc0EKmY1i+wLAEScBDWAFqKubtaSmlDiCl1Bqs+yT4Nyf4t1JKuSK4fb3C0vsoMiUH/9ZEDgohTgX+hmG5moQRa7YIQ+n7TAhhivgsDWluHAzLXgzwDynlA81ss01KmSOlrCMcy7dcSunEiO+rp+Fnq0/oSD7C+ysUimNEJQ4oFD2TwgaWqKNxpJt5ZzA34v/bO+H9Ij/vZgwFLZKCJvZpNvBeSlmvlNQrwpFZp/VK59G+4yoMBSyhwfifMbIlP5dSbgYQQryD4UocgWEli3RLZzTx/8NNvF8tEA9cIoR4Wkq5p4ltIj9H1GeTUkohQh+p4WdLDP51NnFMhULRTihLmkJx/LE1+HeOEKJv8P8XtfVgQogsIcSu4Ov8Nuw/h7C71Y9RwqGjWUdYeXozMsECww36WCfI0JB6JWlQg/Gk4N+xQojY4P+nRqyvw/g85cHlCwGC57ZeUf+yife7F+NaSAe+EUL0b2KbtjIw+LcpxU+hULQTSklTKHommUKI1Q1e9Vl4j2GUeYgHdgkhdgK/buogwey+fRjB/PVj+4KvmcEhK0bs0UjCCsXRmCKEWCOEKMCI48rCUNBuaMai065IKQ8CzwUXHwpmKW4WQlQA6zEC8zubJcG/0xuMvxf8OxDIEULsJnw+vpBSlgbLgdRncF4ohDiAUeIkASgjnPkZSRVGyY9cDGvcNw3rrh0D9Z9hUTsdT6FQNIFS0hSKnokNmNng1Q9ASrkVIwNxb3C7CuCSZo4zCBhKdGzR0OAr5hjkSwCmYSiKu4GXgelSyleP4Zit5ZfArRjuzgyMmmOFwD8JK0adSX19uBlCiMgYrz9hyLoRQyHuB+wCHiDivEkpnweuBDYBfTEshR8AJwQzPRshpcwHfoRxDYwEvhRCJDa1bUsRQkzHyIJ10zXfo0LxP4OQsjNieBUKRVcSzHY8GFy8Tkr5StdJ87+LEOJLjHIZv5ZS/r2r5WkLQognMZTf56SUN3e1PArF8YyypCkUCkXncTegA7e1oPhtt0MIkQL8FCNO7k9dLI5CcdzT4yYJhUKh6KlIKTdh1LDrkQR7dzbMTlUoFB2EcncqFAqFQqFQdEOUu1OhUCgUCoWiG6KUNIVCoVAoFIpuiFLSFAqFQqFQKLohSklTKBQKhUKh6IYoJU2hUCgUCoWiG6KUNIVCoVAoFIpuiFLSFAqFQqFQKLohSklTKBQKhUKh6IYoJU2hUCgUCoWiG6KUNIVCoVAoFIpuSLdU0oQQlwohdgoh6oQQ+4UQJ3W1TAqFQqFQKBSdSbdrsC6EOB14GLgEWAtkdq1ECoVCoVAoFJ1Pt2uwLoRYCbwkpXypq2VRKBQKhUKh6Cq6lSVNCGEGpgEfCyH2AQ7gQ+AuKaW7wbY3AjcCOByOqQMGDOhkaY8NXdcxmbqlt/mI9ES5lcydR0+Ue8+ePWVSyvSWbKvmnc6nJ8oMPVNuJXPn0eJ5R0rZbV5AX0AC6zHcnL2AFcBfj7TfiBEjZE9j0aJFXS1Cm+iJciuZO4+eKDewXrZhvlLzTufQE2WWsmfKrWTuPFo673Q39bPeWva0lLJQSlkGPA6c3YUyKRQKhUKhUHQ63UpJk1JWAnkY1jSFQqFQKBSK/1m6lZIW5GXgV0KIDCFECnA78GnXiqRQKBQKhULRuXSrxIEgD2DEou0BPMDbwF9bexC/309eXh4ej6edxWsfkpKS2LlzZ1eL0Wp6otxdLbPD4aBfv35YrdYuk0HROah5p/3piTJDz5S7p8j8vzSndjslTUrpB34RfLWZvLw8EhISGDRoEEKI9hGuHampqSEhIaGrxWg1PVHurpRZSkl5eTl5eXkMHjy4S2RQdB5q3ml/eqLM0DPl7gky/6/Nqd3R3dkueDwe0tLSuuVEqfjfQQhBWlpat7WsKNoXNe8oFB3L/9qcetwqaYCaKBXdAnUd/m+hzrdC0bH8L/3GjmslTaFQKBQKhaKnopQ0hUKhUCgUim6IUtI6kKKiIi699FKGDh3KmDFjOOWUU4iNjWXSpEkMGDCAwYMHM2nSJE477TRycnIYN25ci4577bXXhvadOHEi3333XWhddnY269evDy03PO6DDz7IsGHDGDlyJF999VX7fdhugqZpTJ48mR//+MeA8V19+OGHAFRUVDB58mRefvnlJvfNyckhJiaGSZMmMWbMGK6++mr8fj8AixcvDh2znmuvvZZ333234z6MQtEG1LzT/SkvL2fSpElMmjSJPn36kJWVFVr2+XxdItNf//pXTjjhBCZNmoTZbA7J89RTT3H//feHZBwzZgxvvvnmEY+lrpX2o9tld7Y3v/vd7zr0+A8++GCT41JKzj//fK655hreeustADZt2kRNTQ0nnXQSV1xxBeeffz4XXXQRYFyoreHRRx/loosuYtGiRdx4443s3bv3qPvs2LGDt956i+3bt1NQUMBpp53Gnj17MJvNrXrvI7Hgm/vb7VhN8eHpRz7+k08+yejRo6muro4ar6qq4swzz+TGG2/kuuuua3b/oUOHsmnTJjRN4/TTT+ftt9/miiuuaA/RFf9DqHknTGfMO20lZ9yCDju2lJKE7R81uS4tLY1NmzYBcP/99xMfH8+dd97ZYbK0hHvuuYdbb72VhIQE4uPjQ/KBIeMdd9zBnXfeyd69e5k6dSoXXXTREUtgHG/XSlehLGkdxKJFi7Barfz85z8PjU2aNImTTjqpXd9n9uzZ5Ofnt2jbjz76iEsvvRS73c7gwYMZNmwYa9eubVd5upK8vDw+++wzrr/++qjxuro6zjrrLC6//HJuvvnmFh3LbDYzY8aMFn+3CkV3QM07PZcXXniB6dOnM3HiRC688EJcLhdgWKVuvfVW5syZw5AhQ0LWeykld911F+PGjWP8+PEsXLgQMKz+c+fO5Sc/+QkjRozg7rvv5o033mDGjBmMHz+e/fv3H5Ocw4cPJzY2lsrKyhZtr66VY+O4t6R1Fdu2bWPq1Kkd/j5ffvklCxYsiBq74ooriImJAcDn82EyGbp4fn4+s2bNCm3Xr1+/40oJuf3223nkkUeoqamJGv/d737HDTfcwB133NHiY3k8HtasWcOTTz4ZGlu2bBmTJk0KLefm5jZygSoUXYmad3ouF1xwATfccAMA9957Ly+99BK/+tWvACgsLGT58uXs2rWL+fPnc9FFF/H++++zadMmNm/eTFlZGdOnT+fkk08GYPPmzezcuZPU1FSGDBnC9ddfz9q1a3nyySd5+umneeKJJ9os58aNGxk+fDgZGRkt2l5dK8eGsqT1UO666y6GDBnClVdeye9///uodW+88QabNm1i06ZNfP7556FxKRu3RD1eUpk//fRTMjIymrxBzZ07l48++oiSkpKjHmf//v1MmjSJtLQ0BgwYwIQJE0LrTjrppND3umnTJubPn9+un0Gh6O6oeafj2LZtGyeddBLjx4/njTfeYPv27aF1CxYswGQyMWbMGIqLiwFYvnw5l112GWazmd69ezN37lzWrVsHwPTp08nMzMRutzN06FDOOOMMAMaPH99qF3c9f//73xk5ciQzZ87k/vvvP+r26lppH457S1pzsRsdzdixYzs0qPzRRx/lggsu4KmnnuKaa65hw4YNR92nX79+HD58OLScl5dH375921Wuo8WMdRQrVqzg448/5vPPP8fj8VBdXc2VV16JxWLhwgsvpLy8nLPPPptFixYdsaJ2fUxaYWEh2dnZfPzxx0dVxtasWcNNN90EwJ///GelvCnUvBNBZ8w7bWXQtg877NgNLfpHoz7JaeLEibzyyissXrw4tM5ut4f+X6/INKXQNLW9yWQKLZtMJgKBQKvkqqc+Ju3999/n6quvZv/+/Tgcjma3P96ula5CWdI6iHnz5uH1ennhhRdCY+vWrWPJkiXt9h4mk4nbbrsNXddblAUzf/583nrrLbxeLwcPHmTv3r3MmDGj3eTpSh588EHy8vLIycnhrbfeYt68ebz++uuh9bfffjunnnoq559/fouypzIzM3nooYdadLOdOXOmsq4pugVq3um51NTUkJmZid/v54033jjq9ieffDILFy5E0zRKS0tZunRpp3yvF1xwAdOmTePVV1896rbqWjl2lJLWQQgh+OCDD/jmm28YOnQoY8eO5f777z/iU8Hu3bvp169f6PXOO++06H3uvfdeHnnkkaNuO3bsWH7yk58wZswYfvSjH/HMM8/8T2XNPPzww/Tv35+rrroKXdePuv2CBQtwuVwsW7asE6RTKI4dNe/0XB544AFmzpzJ6aefzqhRo466/fnnn8+ECROYOHEi8+bN45FHHqFPnz6dICncd999PP744y2aR9W1cmyII5lMewojR46Uu3fvjhrbuXMno0eP7iKJjk5PaGTbFD1R7u4gc2uvx8WLF5Odnd1xAnUQPVFuIcQGKeW01u6n5p3OoSfKDD1T7p4kc/1vrSfOOdDyeUdZ0hQKhUKhUCi6Icd94kBP5pZbbmHFihVRY7fddtsRi7Eqjs7WrVu56qqrosbsdjtr1qzpIokUiu6DmneOf/761782cmtffPHF3Hrrra06jrpWOh6lpHVjnnnmma4W4bhk/PjxUdW0FQpFGDXvHP/cc8893HPPPY3GW5uRqq6Vjke5OxUKhUKhUCi6IUpJUygUCoVCoeiGKCVNoVAoFAqFohuilDSFQqFQKBSKbohS0joYTdOYPHlyqBH3tddeG2rbUlFRweTJk3n55Zeb3DcnJ4eYmBgmTZrEmDFjuPrqq/H7/YBRj6phc+/IYx88eJCZM2cyfPhwLrnkkhZV2VcoFD2b8vJyJk2axKRJk+jTpw9ZWVmh5a6cA+6///6QLGPGjOHNN98MrYuct+qJj48P/f+NN95g+PDhDB8+vEVV7nsC3fU8/e1vfwvJMm7cOD7++OPQuueff55Ro0YxatQoZsyYwfLly494rOzsbEaOHMnEiROZPn16VLLWoEGDKCsrCy1H3s+klNx6660MGzaMCRMmsHHjxvb9kD2M4z+7c18H9/0aVnDE1U8++SSjR4+muro6aryqqorzzz+fG2+88YjpyvW9JDVN4/TTT+ftt9/miiuuOKpYv/3tb7njjju49NJL+fnPf85LL73EzTff3LLPpFAojo3nOnje+XnT805aWlroZnj//fcTHx/PnXfeGVrv9Xo7Vq4jUN/7ce/evUydOpWLLroIq9V6xH0qKip4+OGH2bBhA0IIpk6dyvz580lJSWkXmS7+XX67HKcpdF3nvYebLgx7tPPUldSfp507d3LSSSdRUlLC559/zr/+9S+WL19Or1692LhxIwsWLGDt2rVH7HLwxhtvMG3aNF5++WXuuusuvvnmm6O+/xdffMHevXvZu3cva9as4eabb/6fLo+kLGkdSF5eHp999hnXX3991HhtbS0XXnghl19+eYsVJ7PZzIwZM8jPP/qkIqXk+++/56KLLgLgmmuu4cMPP2y1/AqFoufzwgsvMH36dCZOnMiVV16Jy+UCDAvWrbfeypw5cxgyZEjImiWl5K677mLcuHGMHz+ehQsXAoa1Y+7cufzkJz9hxIgR3H333bzxxhvMmDGD8ePHs3///hbJM3z4cGJjY6msrDzqtl999RWnnHIKqamppKSkcPrpp/Pll1+28Zvo3kSepwsvvLDLz9Po0aOxWCyUlZXx8MMP8+ijj9KrVy8ApkyZwjXXXNPiEhyzZ89u0b0L4KOPPuLqq69GCMGsWbNwOp0UFha2aN/jEaWkdSC33347jzzyCCZT9Nf861//mtmzZ3PHHXe0+Fgej4c1a9bwox/9KDS2bNmykIl80qRJIdN0eXk5ycnJWCyGobRfv34t/oEoFIrjiwsuuIB169axefNmRowYwUsvvRRaV1hYyPLly/n000+5++67AXj//ffZtGkTmzdv5ttvv+Wuu+4K3SQ3b97Mk08+ydatW/nPf/7Dnj17WLt2Lddffz1PP/10i+TZuHEjw4cPJyMjIzR21113Rc1l9eTn55OVlRVaPp7nssjzNHr06C4/T2vWrMFkMpGens727duZOnVq1Ppp06axffv2Fh3ryy+/ZMGCBVFjp5xySuh8Rxoy8vPz6d+/f2j5eD7nLeH4d3d2EZ9++ikZGRlMnTqVxYsXR62bN28en332Gb///e+jJqqm2L9/P5MmTWLv3r1cdNFFTJgwIbTupJNO4tNPPw0tX3vttYDxhNUQIUTbP4xCoeixbNu2jXvvvRen00lNTU3Ug96CBQswmUyMGTOG4uJiAJYvX85ll12G2Wymd+/ezJ07l3Xr1pGYmMj06dPJzMwEjFCMM844AzAKRC9atOiIcvz973/nhRde4MCBA42sYY8++mjI8g/hmLT/pbks8jzV1tZy5plnhtZ19nl6/fXXSUhIYOHChc1+31LKo56LK664grq6OjRNaxRbtmjRopBlbvHixTz22GOh4zbkeD3nLeH4V9KOEjPWUaxYsYKPP/6Yzz//HI/HQ3V1NVdeeSUWi4VLL72UadOmcfbZZ7No0aIjNrStj0krLCwkOzubjz/+mPnz5x/xvXv16oXT6SQQCGCxWMjLy6Nv3w6OkVEoFGGaiRnrCq699lo+/PBDJk6cyHPPPcfq1atD6+x2e+j/9TfHpm6STW1vMplCyyaTiUAgcEQ56mOd3n//fa6++mr279+Pw+E44j79+vWLimPKy8tr12ba7zyYdfSN2khrq/dHnqdXXnkl6uG+K85TJGPGjGHDhg3MmzcvNLZx40bGjBlzxGO98cYbTJw4kbvvvptbbrmF999//4jbg3HODx8+HFr+X79/dVt3pxBiuBDCI4R4vatlaQsPPvggeXl55OTk8NZbbzFv3jxefz38UW655RZOPfVUzj///BZl82RmZvLQQw/x4IMPHnVbIQSnnHJKKHbh1Vdf5bzzzmv7h1EoFD2WmpoaMjMz8fv9vP3220fd/uSTT2bhwoVomkZpaSlLly5lxowZ7SbPBRdcwLRp01qUqXnmmWfy/fffU1lZSWVlJV9//XWUhel4IvI8vfHGG0fdvqPPUyT/93//x29/+1vKy8sB2LRpE6+88gq/+MUvjrqv1WrlL3/5C6tXr2bnzp1H3X7+/Pm89tprSClZvXo1SUlJIavg/yLdVkkDngHWdbUQHcnDDz9M//79ueqqq9B1/ajbL1iwAJfLxbJly1p07Mcff5xhw4ZRXl7Oz372s/YQWaFQ9DAeeOABZs6cyemnn87w4cOPuv3555/PhAkTmDhxIvPmzeORRx45YgZfW7jvvvt4/PHHjzrvpaam8n//939Mnz6d6dOnc99995GamtqusnQXIs/TqFGjjrp9Z5yneubPn89Pf/pT5syZw6hRo7jhhht4/fXXW6w8xcTE8Jvf/Cbk0jwSZ599NkOGDGHYsGHccMMNPPvss8cqfo9GHMlk2lUIIS4FLgB2AMOklFceafuRI0fK3bt3R43t3LmT0aNHd5yQx0hNTc0R3ZzdlZ4od3eQubXX4+LFi9vVrdNZ9ES5hRAbpJTTWrufmnc6h54oM/RMuXuSzPW/tZ4450DL551uZ0kTQiQCfwZ+09WyKBQKhUKhUHQV3TFx4AHgJSnl4SNldAghbgRuBEhPT2+UQZmUlNTqwM3ORNO0kHzbt2/nxhtvjFpvs9mOmoXTFUTK3VPoDjJ7PJ5G1+iRqK2tbdX23YWeKndLOZ7mnY7g0UcfbVSTccGCBdx1111tPmZ3+P22he4sd3Pn6de//nWrZb788ss5dOhQ1Nif/vQnTjvttGMV84jUz6nH/ZzTndydQohJwBvAZCmlTwhxP8fg7hw1alS3Td3tSWblSHqi3F0ts5SSXbt2KXdnN6W93Z1q3mlfeqLM0DPl7ikyR86pPXHOgZbPO93NkpYNDAJyg5NcPGAWQoyRUk5pzYEcDgfl5eWkpaV12wlTcfwjpaS8vPyopQYUxwdq3lEoOpb/tTm1uylpzwNvRSzfiaG0tbrpZL9+/cjLy6O0tLSdRGtfPB5Pj7zIeqLcXS2zw+GgX79+Xfb+is5DzTvtT0+UGXqm3D1F5v+lObVbKWlSShfgql8WQtQCHillq2c8q9XK4MGD21O8dmXx4sVMnjy5q8VoNT1R7p4os6Jnouad9qcnygw9U+6eKPPxTrdS0hoipby/q2VQKBQKhUKh6Aq6XQkOhUKhUCgUCoVS0hQKhUKhUCi6JUpJUygUCoVCoeiGKCVNoVAoFAqFohuilDSFQqFQKBSKbohS0hQKhUKhUCi6IUpJUygUCoVCoeiGKCVNoVAoFAqFohuilDSFQqFQKBSKbohS0hQKhUKhUCi6IUpJUygUCoVCoeiGKCVNoVAoFAqFohuilDSFQqFQKBSKbohS0hQKhUKhUCi6IUpJUygUCoVCoeiGKCVNoVAoFAqFohuilDSFQqFQKBSKbohS0hQKhUKhUCi6IUpJUygUCoVCoeiGKCVNoVAoFAqFohuilDSFQqFQKBSKbohS0hQKhUKhUCi6IUpJUygUCoVCoeiGKCVNoVAoFAqFohuilDSFQqFQKBSKbohS0hQKhUKhUCi6Id1KSRNC2IUQLwkhDgkhaoQQPwghzupquRQKhUKhUCg6m26lpAEW4DAwF0gC/gC8LYQY1JVCKRQKhUKhUHQ2lq4WIBIpZR1wf8TQp0KIg8BUIKcrZFIoFAqFQqHoCrqbJS0KIURvYASwvatlUSgUCoVCoehMhJSyq2VoEiGEFfgC2C+lvKmJ9TcCNwKkp6dPffvttztZwmOjtraW+Pj4rhaj1fREuZXMnUdPlPuUU07ZIKWc1pJt1bzT+fREmaFnyq1k7jxaOu90SyVNCGEC/gskAudJKf1H2n7kyJFy9+7dnSJbe7F48WKys7O7WoxW0xPlVjJ3Hj1RbiFEi5W0SNS80zn0RJmhZ8qtZO48WjrvdKuYNAAhhABeAnoDZx9NQVMoFAqFQqE4Hul2ShrwT2A0cJqU0t3VwigUCoVCoVB0Bd0qcUAIMRC4CZgEFAkhaoOvK7pWMoVCoVAoFIrOpVtZ0qSUhwDR1XL0WLRKqP0UzCkQdyYIa1dLpFAoFAqFoo10KyVNcQxIHQqvB88qYznlN5D2m66VSaFQKBQKRZvpVu5OxTHg3RpW0ACqX+86WRQKhUKhUBwzSkk7XnCviF7WikGr6RpZFAqFQqFQHDNKSTteaKikAfgPdL4cCoVCoVAo2gWlpB0PSD+41zQe9+/vfFkUCoVCoVC0C0pJOx7wbAbpajzuU0qaQqFQKBQ9FaWkHQ+4lzc9rixpCoVCoVD0WFQJjuMB90oAKgN2vqoaRILZx5lJOViUJU2hUCgUih6LUtJ6OroX3GvRpOD+gjkc8iUCkO+P58aMfUb9NKEMpgqFQqFQ9DTU3bun49kA+MjxJoYUNIDlNVkg3UYpDoVCoVAoFD2OVilpQiiTTLcjWHpjrzclarhat1Ot2VTygEKhUCgUPZQWK11CCDNQJ4Swd6A8itZSr6R5koMD4danh33x4NvX+TIpFAqFQqE4ZlqspEkpNWAPkNZx4ihahe4Cz0YA9tVb0oQjtDrPl6AK2ioUCoVC0UNpbeLAG8CnQogngTxA1q+QUn7fnoIpWoB7LRDAo5s57EsAzCBsRiwa9UqacncqFAqFQtETaa2SdnPw7/0NxiUw5JilUbSOoKtzvzcJHWEoaBGnNM+fAD5lSVMoFAqFoifSKiVNSjm4owRRtIFQPFq9q9MGwhxafdiXAIHDIH1BBU6hUCgUCkVPoc3ZmkIIU+SrPYVStACtGrxbgIh4NKxomg7SOB1lgRjcugDfwS4SUqFQHO/4fD4OHDhATU1NV4uiUBx3tLYExxQhxCohRB3gD74Cwb+KzsSzBtCB+sxOC26PD5erjoAmQRrhgvkqeUChUHQQXq+XD+68n32X/YYvf/ILDu1R2eQKRXvSWgvYq8AiYBpGDNoQYDAqHq3zcRmuzmrNRnEgDl1aCAQMXVnXTcigknbYF6+SBxQKRYfww4v/ZfRHa+hTVM3IHQXsffylrhZJoTiuaG3iwEDgHlmvASi6jmBT9X3B+mj+QHiVLoO10qTksC9RFbRVKBTtjrfCifmZd6PGrFuUJU2haE9aa0n7ADijIwRRtAKtEnw7ANjjTQEp8QUdzuaAQJfh05rnV5Y0haK7I3Ud13drKLruXvJOu56qf3/Q1SIdlT13PoS9zoNAYsWPGY2Y8mpcLldXi6ZQHDcc1ZImhPgP4XpoduADIcRyoChyOynl1e0vnqJJ3CtD/93vSQ4qZYb1LLXCRFnvCCXNlwC+jZ0toUKhaAFS03B9tQLn8+/i35cbGq98/FUcsyZgHzO0C6VrntpvVyG+X49AJ1a4Q31OhEdSsHc/wyaO71L5FIrjhZa4Oxvar3d0hCCKVhBU0qSEPZ5k/IGwUtar3ERphjFlSqDYH4dfq8KqVYI5pamjKRSKTkb6A9R9uoSqF97Fn1vY5DbupRu6pZKmVVZT8Pu/g9SIEZ6IRnRgFQFKNm5TSppC0U4cVUmTUv6pMwRRtAKXEY9WFojBqdnRdKM2mtAhvlZg8wl0uwkTOpowUeCLY6D/AJindqXUCsX/PNLro+aD76j+9wcECkqOuK13Y/d8Hi7/y7/wl1bgEF5MRIcnm9Go2bGniyRTKI4/WpQ4IIRIBDxSSl9w+VTg7ODqT6SUiztGPEUjAiXg3wvAHncSSBlS0uLqTAgEDrfAF2fCZNZBSvJ8CQz07QOHUtIUiq5Ad3moeecrql/5CK20oumNhAiVzgHw/LALGQggLK3N7+o46r5cTvVni7FJF+ZgCSARE0C6DRkFYDm4qwslVCiOL1qaOLAIGAYghPgF8CZgDb4WCiGu7xjxFI2IiEfbWZcYUtAAMoinV69exLhFOMMTOOxXtdIUPROP5uOp7R9w++p/8tnhtV0tTquR/gDO598l78wbqXz05SYVNGExE3/+qWS99xDm2AD4qkD3Id0efDu7TyHqQGkl5X/5F9JbjSWooJnT3STMKaPWGm+0pgMSSorweDxdKapCcdzQ0ke04VLKetv7rcCpUsqtAEKIfwKfAC92gHyKhgRLb+i6ZJ83GU0P69knDJuMw+5mR0Ex5ZEZnr54VYZD0SNZeGAJ3xdsBuCFXZ+TYI3h5D49J96p7O6/U/fViibXCZuV+AtOI+m687BUL4KVF+JIM1FXFgcBL8T0wrNhO/bxwztZ6sZIKan407MEivOxyPpUcknMvEJe8t/HqpNOJNnr5BcbHiOxppyioiIGDRrUpTIfb0gp+WG3l/35PuaMjyErw9rVIik6gZZa0mqEEP2C/08Cdkes2w/0bi+BhBCpQogPhBB1QohDQojL2+vYxwVBS5rH6+OgPy0cjyZMnDZhDn379jUsaUHlTYJRK02V4egyvJqfLw6v49v8HwjoWleL02PQpM7iws1RY//a+Rllnqoukqh16HVu6r5e2WhcxNhJvPY8sr78F2k3zsSy5mew5DfgqcDezxvcSoLmwbt+e+cK3Qx1Hy/G9e0SRCBcXiN2egkr4+ez1nQWAE57Mp8MvwhblST/UG5zh1K0gbwSP/e/UMaDr5bz9rc1/PqJElZuUaVO/hdoqSXtZeAVIcQNwN+BZ4QQ9QkF9wDL21GmZwAfhuI3CfhMCLFZStk9ZquuxJ8P/hx0KTnkduCRlpCSluSIIyu+F96sLBweEVXQtsAXj+Y9iFlqUQ3YFR1PQNf448bX2OU8DMDuqsPcMmZ+F0vVM9hReYhKb23UWF3Aw5PbP+RPU67C1M1bBgeKSqNizITdRuI155F41bmYHQFY+yDs+m/UNo7+EW5CzYtn406kriNMXfdZA0VlVDzwBHhrQsWYLH1c+Ce4+FL/LcJiR4gapIQdvcbjNsVQt3UVzD25y2Q+XvD6dN77voaPl9eiRTzf6RKefKsSk0kwa1xM1wmo6HBa+su/D1gNbAHuBn4GHAq+RgM/bQ9hhBBxwIXAH6SUtVLK5cDHwFVH2u/w4cO88sorAPj9frKzs3n99dcBcLlcZGdns3DhQgCqqqrIzs7m/fffB6CsrIzs7Gw++eQTAIqKisjOzubLL78MHTs7O5tvv/0WgAMHDpCdnc2SJUsA2L17N9nZ2axcaTwxb9u2jezsbNatWwfApk2byM7OZtOmTQCsW7eO7OxsDh40Yk1WrlxJdnY2u3cbxsklS5aQnZ3NgQNGDNm3335LdnY2hw8fBvcKvlzqIfvyMjYUJaHpZsrW7Wfjfe8wxJqBEIK1a9fy9qv/RVb5kVKQv3Q/i/7vE3KqzRDI5/XXXyc7Oxu/33BZvPLKK2RnZ4e+yxdeeIHTTjsttPzss89y1llnhZbfffdd5s8PKxmPPfYYF154YWj5oYce4tJLLw0tP/DAA1x55ZWh5fvuu4/rrrsutPy73/2OG2+8MbR85513csstt4SWb7/9dm6//fbQ8i233MKdd94ZWr7xxhv53e9+F1q+7rrruO+++0LLV155Ja+99lpo+dJLL+Whhx4KLV944YU89thjoeX58+fz5JNPhpbPOussnn322dDyaaedxgsvvBBazs7OPuK1N2H2VL778AtjfZ2H+y+7jXfeNaq0d9W1t23bNqCV1x7w5Zdfkp2dTVGRUSLxk08+ITs7m7KyMgDef/99br/9dqqqDEvXwoULyc7ODhU3be2197cnHmHV798ILe//YDVr7nuTrRUH+TR3Tbtfe63laPPOaRedz6dV+QBUa34uy1/Dor52zPnvU/bCTLJveIpPNrsBKKrSyH68nO+KazDZdQoCXi7N28TSggP49+V22byTm5tL+f/9iUV5e7i0cDulmg8sOov75ZL9UjL5pR4QgvxD37Psi+vx+F1syZjKik8/OKZz33DeefLJJ//n5p2773uSO54o4YMltSx6/VIObAr/Fha/cREHNr/NE29WsHJTdY+453XUvLN06VKys7Pbbd7p7GvvaLTIkial1IF7hRCPAeOBfoAb2CKlbM+I9BGAJqWMzOHeDMxtuKEQ4kbgRgCr1cquXbtYvHgxgUAAp9PJzp07Wbx4MR6PB6fTyfbt21m8eDG1tbU4nU62bdtGamoqVVVVOJ1Otm7dSkJCAhUVFTidTrZs2YLD4aCkpASn08nmzZuxWCwUFBTgdDr54YcfkFKSm5uL0+lk48aN+Hw+Dh48iNPpZMOGDdTV1bFv3z6cTifr16/H6XSya9cunE4nLpeLxYsXs23bNpxOJ2vWrKGwsJBNmzbhdDpZvXo1ubm5bN68GafTyapVqxBDF+L3+5FS55A/mYDFSIAXCMyVXhYvXszevXsRQmCrk1GdBw65HdSse4+dO8twOp0sWbIEi8USkmfx4sWA8QOsrKwMLe/Zs4eKiorQss/no7y8PLS8f/9+SktLQ8sHDhygpKQktHzw4EGKi4tDyzk5OVHb5+bmUlVVFVo+fPgwXq83tJyXlwcQWs7Pz8dut4eWCwoKqKurCy0XFRWhaVpoubi4mN69e4eWS0pKOHDgQGi5tLSU/fv3h5bLy8vZu3dvaLmiooI9e/aElisrK9m9e3douf6cNnXtHawrpthVyYBAAJ/Pi9/nRdc11mzfQHqvXke89saMGcOqVas65Npbt24dZWVlrbr29u/fz5YtW3A6naxcuZLU1FS2bt2K0+lkxYoVJCUlsW3bNjRNY9myZcTHx7N9+3acTidLly7F4XCwc+fOFl97mtTZWXYIXer4fIYLUAsE0HVj+YVtn5K8r7Bdrr3W0Jp5p66yikAgAZ/Ph1/zE5A+ar79Ld6CKry1OrrU8QcCeH0+vH4dnyket4jB2teF3GMBKQn4PGx+4332juzTJfPOjsceY+Sy9UR2AnTMLGGldyy1AS9enxfMXjCFE5U29JlJasGHVLrj2nTuIXreqa2tZe/evf8z806N28yugzXk+6oYNNFQNHRdJxAI4PUavwUpJYGAH5fby8Ov1lBYUt0u97yeOO/Uf972mHcaXntAh117LUW0pA2nEOJ14HPgSyllM/njx44Q4iTgHSlln4ixG4ArpJTZze03cuRIWa+VN4fP52PVqlXU1tYyatQohgwZghDiiPt0JIsXL47S5o+KlHBoOt66HLxeL38sP5PtdVlouoX4+HjunXw509NHAsaTw6e1m6nOcmE1BxBCcE2vHZw//BpI/lnnyt0N6AqZvZqPO1b/iwJXeaN1d4y7gLmZE464f0/8nqH95N5Uvp/7N/4ntBxrsSMQ1AXC7sCB8b15bOYNWE3HVqJCCLFBSjmttfsdbd6p/PtrOF98D5/Xg0V3kzKrhNSTqxtvmDwUTvwr9DsZlv6Wqpc/onJJsPC0JZa4+WeR/tidjfdrA605P4G92yiYfxO6VzeUNAmWvnUsO20I+xIuZmtFNvWdTvTaWvQ6d2jfP5TcRsZzb9CvX7+mD95BMncnWiu3pkm+WFXHwm+q8fga35dTEkxcd24yXp/OM+86o9aZzXDnFalMG31srs+e+F33RJmh5fNOS92dnwFnATuEECuEEPcIISYfk4RNUwskNhhLBGqO9cDffPMNX375JcuXL+fFF1/kueeeY/fu3fSYXvH+Q0h/AT6fj4AUHPKnoulmbDYbQgiGJfYNbdq3b19iPA2TBxJU8kAn8ureb5tU0AByaos7WZq2kVtbwsriHbgD3qNv3M6sKI4OQZ2VMZqbR/84auxQbTH/3b+oM8VqFYHCUnzuGqyBKky6j4C9DpfbjaYb5SuwxsGse+Hi7w0FDaB/doO4NB+eDTs6fZ6Sbidlt/wC3RuUVQJWne2ze7PVPwaXbRZE9BoQ1uhMwy1iNsUHt3aewD2cPbk+fvuPEl79rKqRgiYEnHNCHE/8ujezxjk4eaTgFxcmR22jafDYGxVs3KVKnxxvtEhJk1K+KaW8CsgEfo3Rw/MFIUSeEOJFIcQFQoiEdpBnD2ARQkTmnE8EjjlpYMuWLVHLubm5vPLKK/zjH/9g27Zt6PUTZz11X0PJ3VD71bG+dfvgXhF0dUpyAyn4dAsgsNls9HIkkmIPf/1ZWVnBWmnB0ytlsAxHww5fio5gU/l+Pj9CTa+DNUXNrusurC3dzR2rn+ORLW/z6zX/wqv5O+29A7rGqpKdUWMn9h7LiX3GNSq/8WHOCrZV5nSabK3Bk1uAVXeTmziIwwkDIT5AwB+grraOnYFRHD7xvzDpF2COUHD6noAtU0dYgjdqGUArKSNwuBOvGc1HzR+vwLPPOOf1CmLpdAtLbNOISRrC/kJH1C4zRliJVNrWxZ+I71B75pMdn/j8kuc/qOSef5ZyqCjQaP2wflYe/mU61/44GbunjsKLf03urMsZ8/IT/Hx+9C1X0+DR18v5YbdS1I4nWuUnkMavdU3wdZ8Qog+Ghe0y4DkhxB+klP9qqzBSyjohxPvAn4MFcicB5wFz2npMAI/HQ3V1E24GjNiCN954g4yMDLKzs5kwfjy+8od5Zu8aNtT1ZkrcM9wxrhJL8qVN7t9ZSNeyUGzOfn8aAd2M1WoNWtGyoratL8MhIwra5vkSkL5NdJ2D93+DWr+bp7Z/GDUWb42h1h92BeV0cyXNFfDw7I6P0aTx4FLoqmBF8Xbm9Z3UKe+/ueJA1PcVb41hQuoQAG4adQ7bnYco9xi/Zwk8ue0DHpn6M0rzijhw4ABFRUX06dOH008/HbO567KZ/bl5fDrsAhYNOB2APlzJzKovqRJeiirT4ZX3GTJkE6eccgpDhw41wi/siYi+U7Fn5eA5FFSENC+eDduxDsjscJllIEDdU7+l8sNyQkqXBE+W5MMBJwKCQPxJUBWeSYb3t3L9JUmsWVtO/aNuQUw/KnLyO1zens5LHzv5fn3jUhqxDsEVZyZy6ow4zMF4v+qX3se3y0j8cC9Zx7TJ33Djgh/x/IfO0H4BDR75Tzl3X53GxBGORsft7hSVB1i2yYXHKzlzVhwZqV3YbUPXIOAGW3yzm7hcLvbv38+BAweorKxk1KhRzJo1q13FOKZvQEpZhFGe42UhhBlIbQeZfgH8GygByoGbj7X8Rn0WyJEoKSnhnbcX4s77Dd8mJLDRnQUCVtRmMXr/v/jx+Olg66Jmx1LiqVyErhtPtAf9aei6mZhYGwDDI1ydAAkJCaQ6EhABn2HzBFy6hQpvBWm6C0yxnSr+0TCCwX04HF07qUgpcWs+Yi32Nh/jhd1fUOENe+dNQvC7iZdw/8b/4A/WSHP66qj01pJib/7H35W8fWApTl9d1Ni60t2dpqStKN4WtTw7YzQWU7D1mdXBbWMXcN+GV9E0jUBA45CrgJvf+AuDD4QVst27d2M2mzn99NM7ReaGSH8Ad0UtS0eeGhorklm86fwlZuEnzbqPdNsuDhw4wIEDB+jfvz+nnHIKo0aNQvTPxtH/uQglzYd3/Q4Szj+tmXdrB3k1DddXK3D+43X8u7ZRr6BJKdFsgg+mzkAKM/a4PuwsjLbgnDc3gdQUOyN8ueyyDQiN7ysehKZpXaooN4eUkm37XWgaTBwR2yXxyRXVWpMK2kmTYrj67CSSE6K/N9fS9VHLVf/+gFO/+hFSJvHCR+FA9IAGD/+nnLuvSWPCsJ6hqO097OOTZbWs3uYOVaTZsMvDY7dlYDF3gWmhaB18fpWhpE3/P5hsZP663W4OHjzIgQMH2L9/fyjjtJ7du3eTkJDA2LFj202UVitpQoj5GNmWvYiwb0sprwZKj1WgYGLCgmM9TiSlpdFi9evXj6SkJLZvD+t+JqHx4xnfsTkxjg11fQAdgQAEy6oz+HHRz6Hfp2Bq+w28rUjfHjRf+GLY50vHZLYjgnWihidlNdonq28WDncleqwJkzCeb/N8CaT5D4K9/S6gY6WwsJCXX36ZmpoaZs2axfz587tkwiyoK+ePG1+jwlvD9PSR/Hz0OSQf4QmqKVYUb2dJYbRbfcHAExibMoj+8RkcqC4MjefUFpFiH9YusrcneXWlfJK7utH4pvL9+PXAMQfpHw2/HmBNSXQw/om9x6FpGrm5uSGlJj7gobB32AVbmgZJlZBaGb6xrVy5krlz52Kz2TpU5qYIFJdTGJOBVl/LTYA0WTFjRtOgxDeaEt8okiz5ZNh2kJt7mNdee40+ffpw1rS+9O/XoF7a+m1Nv9ExInUd1zercD77Fv79h8FXAxFN06UULJ88gpq4OADMvU5FPxTev28vC9NHG4rA7MQKdnnCStpW/2yK8w7Sd2D3u87/36t7+Xa9kRAxbojgodtGYrV07ryzZps7ajkl0cSvLk5hfBOKVaCozDg/EejVtVS/9jFn3HIZmoR/fxxW1PwBePhVQ1Fr6njdAV2XbNzt4aOltezK8TVan18aYOdBb+fLr2vw/a/AV21k0a78C0sOJ7Er10lBQcFR40OXLl3arkpaqyokCiH+CPwruN/FGJauMwFnu0nUATRU0oYMGcKVV17J7bffzqRJk7CYNS6Y8wUlvTS+qBsd2k5KiZQ6uz0plNXth/IHOlt0AIoOvheKmXPrFvL8ydhsYWVxaELfRvv07ds3qqitpHu2h/rggw+oqTEsT6tXr2br1q4JNn5xzxeUeqrQpM7qkp3ctuqfbCjb2+L9K7w1PLfz06ixgfG9uWxoNgCD4qObcuTUdL/kASklL+7+MuTmDI4C4NZ8nRL7tal8f1QGZ4LFwY5v13L//ffz/PPP8+2333LgwAGyDgtiXNE31YODNHzWiAblHg+bN0d3LOgstIIS8uPCv0shJCazlbi4WGJjY7FYzICgKtCPva4z2FU3nzLfcAoKS3nl0w140jSEqf6zSAKH8wkUHd0j0FKklNR9u5rCi+6g9DePGgqA1CCiowBCcnhSHLsHG25WW0wyuwpSoo4z/+R4TEF33LShVqx6WHGukOlsXbux3WRuLzbtrg0paADbDkgeebUATe/c5Izlm6OVtHPmxDerkHhWNX0dV7/6MVplNWfNjuen5yZFrfMF4KFXy9m2v/MTf46Ezy/5dm0dd/y9hIdfq2hCQZPUzztrt3dBfF3u92jOHFwuFzW1tbjraina8B75+fktSuDJzc0lP7/9XP2tLWP9U+B0KeUdgC/491xgULtJ1AE0VNLS09MB6N27N5dcfA73/mwPem8/r9bMCG0jpSAQrOYvgVV1faHq30ZCQScipcRZ8FloOSeQisSGKViBvF9cL+KsjX/YoeSB+t6esvtleObl5YUKFtbzxRdfhIoOdha1fjeby6PL/VX56njghzd4YdfnRw2al1Ly7I5PqImIo7KYzNwx7oKQ5WlwQp+ofbpjXNra0t1sKjeuD133o/tLkP4iNH8lAOtL9xxp93ZheVHYYqTrGpZDdWzZtJlAIDqo2iQFQw9YEBH6pG4VFI2xIiMsQStXruySDO5AQSn5CRHlJ0wwPEsjKd6MxWIhNjaOuLg4LBbj+nDryeR6ZrO19iLyPFPZXDcAS+8G1rQNOzhmpMS1eB2FP/kNpbc/hG9PhFnMH+zuICB+fC3my4r4evQUI70QcPQ+HV/ETyElwcTJk8OhE4lD+jCmPMLipws27GocDN+V+AOSp94sanRNrNzi4vkPnJ12rZRWBtiTG62czB7ffPkMdzNKmu5yU/3vDwA4a04815zTWFF78NVyDhY0tlR1NjUunXe/r+YXDxfxrw+cFJQ1vjYCgQC1tXXU1tbi9/tZs8Pd6b/fqlVP4qqrIxDQQkblAZaCZrfPzMwkNTU60mvVqlXtJk9rlbRkKWX9r9AnhLBKKdfSRLHZ7kRJSUnUckZGhvEfzQn5l1Lm3sETlSeiYwJhZEW6fDF4fA4jQ1JKVtYEn4qLb4dAIZ1FzsEDpMaG3T/7/WmYLeEf87DExlY0CJfhkKGCtpI8XwL42rP28LGxenVjt1p9UcLOZG3p7gbWozCfHV7LXWufP6Ll69uCjawvi1ZgLh96CoMSwtazRpa0blaGw6cF+Pceo+K4pmno/koSTYZVxYQHXfOwrmxPh06YXs3P2lLjWg8EAtTVuYg9ws2lrz2V2ebBOBwxxMfHEx8fT22KoKR3+FwWFRWRk5PTYTI3hzf3MAUJ/cMDQnLJjzL552/78MuLUxjc14rZbCY2Npa4uDisVkNZ06SdYt84Xii/H19mxHet+fBuaHtorpQS9/KN9HrwP5T88q/4djaYB/QAaB7ix9aSdX0+CacWstQ8GR3jQdVii2VPcfQ1fM4J8VEuQuuQfkwt3RTxpoLt5QMJaN2nzNH7i6opLG/cPzcQCPD16ipe/7K6U5SClVuirWjD+1ubDZKXuo5ndfMW4eo3PyNQYpQv/fGJ8Vx9dnQVK59f8saXTSfOdQYFa/bx9B3fcMOdO/nvuwVUFFShVdUYL2f4NbBkBz/a/E9i6mqxePx4XS4qnAH253XOQ7uUknXfLEQcXoKUoEuBVzcMIAOsYctY7969mT17NldeeSV/+MMfuPXWWznnnHOijrVp0yZqa6Nb2rWV1gaY7BdCjA0G8m8DbhZCVAKV7SJNB6BpGuXl0fWq0tPTIVACBZdR497HXwrnUqdbQYDAgsmaxMh8C7t6VePx2Ym1u9npSaUiYCfV4oSiWyDrnU7pg7lp7ZucOiJsrj7g74PJHHZ1Dk9qulhkcnIyyboDXYafxg/74ruNJc3lcoXahjRk8eLFTJ06laSkpCbXtzcNyz00JLe2lDvXPs/Vw07jxwNmYhImKisr2bVrF/aMRP59KLpMy+jk/pw3MDohuaElLa+urFNivFrKh4dWUOx2EggE8PtqiLUG+E3KYv5acTp+aULTPJS4neTWlTCwgcLZXvxQvg+35sPn8+H1erD6BAk1YSUgISGBoUOHMnToUIYMGUJqaiqa1Llvw6tsrzQsQsJkomiwicQqnRiP8YCycuVKBg8e3CEyN0f1rh0Uxf0kPCAEwwYnYbUI5k6J5eTJMew65OPzFbWs2e7BbI7FZtOoqzMSNsoDffmu9484VS4xYjR1P561bXfdOp/4D1UvvY/N54OGMXpCEDdBkjwhH2tqAAkcqkliu29EaJPErNOoPRjeJdYhOH1mXNRhLIOzGFl9kFi/C5c1FqmDR7OzcUcNM8Y3LH/Z+eSX+nn3O2eDcktGzxYAj8fLR0tqiI8xcX52e1SUap4VDZS0Eyc2n8zl33MIrcKIN9N0nYDNjD0xASqCGc4eH1UvvEvaPUaroXNPSkDX4fUIxWzbfi+1bp34mM7rAevzSz74KJ/3P6/BJ4w4b4h+GDZLjcnlWzkhdzGpFTkAHLKNZUfGBEy6xB8TYO12N8P6d2xcqaZpfPDBB6TsfIoqSwpf1fyExbXn4pd2Toz/isvTX+CqC85gwOjpxMc3jlUeNWoUKSkpVFZWho63bt06TjnllGOWrbVn7F4gLfj/u4FbgUcxaqd1SyorK9EiOtMmJCQQYymD/AUEvLt4qHAGhf76ycYC5hSuGfEjrp54FnG1JnRpwuu3IaVkZU0wBd6zGiqe6HDZ8/PzwR1da+ig1j9quTlLmhCCIen9kFr4FFdpdmo8h6IaOncV69atizovkfj9/lAfuY7GFfCyqTy6ftzPR/+YPjHRsTcBXePfe77igR/eYOXmdTz++ON89PFH/Hn5y9R4w3E8DrOVW8eej7lB8+94awy9HOEblSZ1Dtcec55Nu1DmqeLdnGX4/X7cbhc2i49TY/cy1FrOWFvQLSuNp9l1HejyXFq4FY/HjddrPFikVpqCyTswY8YMfvvb33LJJZcwbdq0kHvBLEzcNvb8qIxcs93C/iEBdGFc5/VtYjqTw4VutIiHuERzFYlx4WUhBKMH2fnNFWk8c1dv5p8cT0KcBWuwKKxE8I3pPGptYUXIvz8ndLNuDYHicqpe+ajJdXFnnkDf528gPfsHrKmG+8nv9/N9zXRk8PZgNlvZXz4gar8zZsYR64i+xs2J8cT0SmFiSUQWoi74ftkhuhopJS986MTtCVtmbcLFpLj3sQjjIVjXdfx+H//9qpqv19Q1d6hjpqAswMGCaOvQrCO5OlduAsDr81FXV8eBWBPL+sZEKZu1735NoCDsMTpvbgJ908MPgJpOpxW6lVKydrubOx4vYuG3NfhE4wdRh+bllMIV3LPpcS7a8d+QggYwutSISxZSonl9rNnRsXLX1dXx4osvsn7dZna5svm/wjf5ouZS3DIOTVhZWvdj7s1/Ad2tNamgAZhMpkalN1avXt3sPa41tFhJE0KMAhxAIYCUcq2UcpiUso+U8v1jlqSDaOjqHNpfQt4CpC+HZ0smsd3TK7jGCuZU5vWdwvkDT2Dq1Kn0dRtPN37NSkA3s7ImwhpS+Xdwt5/fuSm++eYbBqaHzay1xFIuw5O2xWRmcHyfpnYFoH9WP+xuE5KI5AGPAK39ApDbgq7rjVydWVnRGaqbNm0iNze3w2XZWLY3VBoDoHdMMmdmTeXxWT9nXt+JjbZfU7iTP+16i9J4H0V9dGoSdDyecNzEdSPOJDO26Uo0Da1pB2u7R1zaK3u+ptbtwuNxYzUHSDK7uTDesNpMshvXn9mkEQgEWFd65PZrbaWsqoJFBzdExSOmVpgQQnDuueeyYMGCZks5ZMQkc8PIs0PLZrMFT4KJwj7GeZVSNula70jyXNGWmMzY5p0N6SkWrjoriWf/rw+9UsLxpW4Zx+JRp4UfqjQfno1Htvo2Re27XxuVTiOIPXUWfd9/gvTH7sRW8mJoXAK5nl7s9Q8KjaUMmEd5hLfMYoazT2j6ZmUdnMXk4g3hAQkb9wtcnqbDCTqLJT+42brPg99vKKJW4edXaQ/wh96P8dO0BzALQ3nzen1IXeeFD52s2Ny4PEZ70PC4Y4fYSE1s3ivjWvEDHo8n1LezMDOJnQOTqbSGrczSH8D53NtR+80cEx2rvHZ7tPWuI8gv8fOXl8t59PUKivLrkP7ouLMkXzXzc7/ivh8eY37ul8RUl+D1RYc0jCzbjikYfqIHAuQV+8gv6RiXZ3FxMf/vyZdYtiuDHXUX8H3t+fik8cAnhAiVryjzZ/CnD7N45VMnPn/TRo7p06eHHrIAqqur2bHj2ONIW6SkCSGuBbYCzwHbhBAXH/M7dxKRSQO9k0s4a8K/QCvkA+cwvq8JPh0KO5hTGJsyiF+MPhchBBaLhXPHnhza1+uzs92TQYWv3uyqG25PrWM8vTk5Oezds5MBEUraYXoDYbPvwPgMbObm3WWZmZlGe6gGRW272uVZ3+C2HovFwrXXXkufPtFKzCeffNK4E0Q7s6ok+kc0O2MMQghiLXZuHXs+d46/iDiLMdl5vR68Xg8Bq2TvcD+H+xkTkJQSj8fDlF7DOCNrarPv1R0zPLeUH+C73I0h65XN6uPi+E3EmfyYTCYm241G0wKJFvCypyoPp699Yi3qKS4u5m9v/ANfRGag1SfoFYjh2muvZc6cOUcty5KdOYE5vceElm02K4WZOv5g5f5169Z1WkKK1HUKRPS57tf36FNtXIyJi05NDk30AWlmee95OG1Bt7/mxbu+dXFp0h+g5p3oZKfU3/6UjCfvxjZiEBxeDIVhBdbv8/FN9XTqXYAmk5ncmuFR+2dPiSUloWmlwjI4iwE1eaR6jBgpqQsCAb1TFITmqK7TePWzqtD5NwuNKTErmZ2wiNjYGM6I/5o70u/GIoyOLvXK0NNvV7a79UlKyYoGWZ0nTGje1el2VlOxbB2+iGu3MDMJaTKxcWR6lIJT+9Ei/IfCAe4zxkZb537Y421WwThWXB6d1z6v4jdPlrBlrxcZCCBdEQWpA3VcYd3MUz+1c8m92fR7/Ha2nD+Lb+YMZsncESzONl55g3oRq3kZXGl4N0y6JBAIsLYDrGmr1u/hrkfXsTL/VEp9ozAHswQEQQXNFN3qDN3HZyvquOvpEvbnNY6VjYmJYdKkSVFjK1euPGY5W2pJ+y1wkZQyA7gU+N0xv3MnUa+kpSeVcUX2hzisLlbVZvJaebCOiXCAKYnM2DTunnBJqGgmwBkz55LgDbsf3D47K6rTwwfXioxEgnZ2H0op+eqrr+idUoLNGpxYzGYOaAMgwnQ8vEGngYZkZWXhcAtkKMNTkutL6PIyHA0zXyZNmkR8fHyj4Mu8vLxm49baA6/mb1RmY3bG6KjlE/uM49Fp15NYa8LX4Ikvsn2D9ASYx/AjKhODGmZ4dnHygNfv46EV/wl1srBZfAy2lnNyzAFiYhw4HA5SzW4GWo0HEan7kNCq0iRHY9euXfzzn/8k1xYd2JzljuMXN/+CESNGNLNnNEIIbh71Y+Ktxo3JarWimyG/r2FBcrlcnVaOQytzkhcfmTQAQ0a2rFvAGTPjyEg1Hgo0zPjNVr4beFawKoGOZ3Xz7caawvXdarSy8IOkbrcSX18UV+qw9sHQOgnscfclNxCeV/oOm0dBA8P7/JObj9eyDsrCbLYyuTgopy4Qup9lmzrGKtUS/vNFNTV1Gj6fD4EkQdRwVfLfsdtsmITAZrczM2Y5d6XfhU148fn9aJqGpsP/e6OcnQfbr4RFblGA/NKwdclsgpnjmi67UV1dzXsPPIrmNeYdgcQfJxiQeoh4UcfBwb0ot4vwg6ym4XzmrdD+Q7KspCSGb/E+v2Tz3vZVdnRdsniji9seL+aTZbVoOiAlenUdUoIJnZOKVnFPzkuc/5dzSDxlGmLGWN7cv4VVgSoKspIpyEqmsG8yVcP6MuaqC7DZbIwuCbs8/X5/uyr5hWV+7n1qG3962U+xeygSE2Y0TEIPKWiplkquOzuOc9I+JpTiqQdA6hSUBvj9s6W8/W11o6SY2bNnRy3n5ORQWHhsiYYtVdL6Sinrgxo+BAYcYdtuRb27c96ElditPg76U/l7cdDaIWLAlEScJYZ7J11Ogi36icZqtTI7PXzT1nQznxaNQ49UylzfQNXL7Srz3r17ycnJYUTfcKSu3W5nn39I1HZNFbGNJC0tjYSALdzDk2CtNH/XZXiWlJSwb190DFj9hT1s2DDGjBkTte7LL78MPdm2N5vK9+OJKK+RapUMl58bSSVB6urq+Oj1d+i71kW/wxZE6NSLUBkUgEGHzCz69OumM3rcqyHvPAbX/QVkeII+WNO4FEBn4ff7eeD9ZykOGDFOQkhsFj9XJ6wnIc6B1WrFbMtECBGypplEvcvz2OPSpJQsX76c1157DZffgzM5bDE1my3cevbV4SzsFpJgi+Ung+ut3wKbzUpphobHbnzHnVWOw7N/N4Vx4d+mEDB2YsuUTZtVcMkZYWuabhKsyjqJCnsyAL7dB9FrWh4vVfPWF1HL7tnjMMUH57n9n0JZuGSGz+fj25rpoWWr1UqBO/qhZdY4B5m9mrfeWwdlYbLYmFK0xhiQxj9b97qorDn2+JzWsm2/l8UbXAQCAaSUxAgP5yW9Sh9bQSij1mYzShpNiVnJr9LuxyE8eD0eQLZ7CYuVW6OVjQnD7FGxivUUFxfzz3/+k8QdO7DiJ0Z4iBMu+g4+zIKEb/lF8qtkx61kx/h03O7wMeu+WIZvrxEDaDIJZo6Jtqa1p0Vqf56Pe58r5Zl3KnHWhH+/ep0bGdAYVn2Q32x5lgsOfU7/e3+KuVcKNTU1PP/88xw8eDDqWElJSdx0001kTp+ExWIJxaWZdImmaezJ9VJRdWzXj7NG46mF5dz010Os220OxVyC4f4WQLqtjOv7/JN/nP4eZ58xlGvHreGPA++hlzV4T9CM60CX8M53Ndzzz1IOF4fvIZmZmQwZEn2fPlZrWkuVtMjOArIV+3UpUkpKS0sxCZ0B6flUaDE8VHICPmkGEQumRMzCxG8n/oSsuF5NHuOSaWdGWUf2aSnkVDVoD1X2J/C2T0XweiuaSWhMHGy44iwWM2azmb2e6CfY5pIG6jGZTAxMyIhydx7u4kbrDWODBgwYQN++4c9x9tlnR8Ue1dTUsGTJkg6RJcrVKV3Msq/GVP4nyD0FvLsoLy83rDy5uQgEfYvMjN5hJdZvIS4ulpiYGECQWm4ircKMy+Xi448/jn4T10rIvxQ86+itLcUeUfe51u+mPKKFVGfhdrt57pUXWSvCNersFh8nxhxkYorLqN1l7o1IfwCLxcLkYFyayaTh9/vZHOw+0FY0TeP999/ns88+Q0pJZbJO/XOE1WpjUGomEzLa1oLtrP7TyYhJDh1LCsgLuqULCws5dKjjg9gPbtiGzxwOS4jVa+nft+WZyqdOjyOzlxEXExBmdLOZbwadYyg8AS+eTbtadBzf3kN4GrhH6+ZOMv6j+WHdw6FxKSVbXYMo1sKK8dCx89hzODrcYMHcI2c9Wof0w2QykV5XQt/aPKRuzD2639vIzdfR+ANGsgAYCqhdeOlnPcCPEhaG+h6TNhYB2B3G9z0r7juuS/1/2GQtgaCF2e2V/OXf5U3W9WoNhqsz2qI4p2FWp7eawlUvs/ffF3GpfJpJJftxCB8WNISAhGEBHA4HZnRmOX7g3AmfEkj2hazhSInzH2+GDjdjbLSVbv1OD9oxlkSRUvLqZ1Xc/Uwpew9HhxBIv59EZzHX7F3IL3b+m77uYuLPzSbu9NmUl5fz3HPPNWqllJGRwc0330xGRkbo+kkO1NKv6lDooTgQ8LN2R9uvH49P5/7ni/lyRTleX7TMAklfWwE/7/sPnh52A2emfo5t4tXGyszZjIvbyv8b8ivmJX8DerSyfiDfz/89XcIny2pCbRvnzInO7N+0aRMuV9styS1VtuKEELn1LyApYvlwcKzbUVtbi8fjIS2xgoCAx53ZVAYcgAlMxmRz06hzQs2bm2JQciZZjrTwgIB/bJiOTmTgrB+Kfg76sWcEbdu2jYKCAkb220+cw7go7XY7JXo61Vr4CdZhttIvLr25w4QYkTEw7O4EygKxeLwHj7BHx+HxeNi4MboC+ajpE/jrpje5cfkT/GLF0/x5z9vkz45l50g/u0f42TPMz4uHv+WRDW/x3M5PeWn3l/x3//fsdh5u5l1aRkDXoi1CuovZccF4Dr0S36ELefPVvzUq3zIkvg8vnHYnCwadQGZcGpNiBzI4J3xetm7dypYtwdZQnq1QeC1g/LDNQjLQWkpkGnpnF7Wtf5JdoR1AC8ZrmYROvMXDtRl7sNQryGl3Q+wJWK1WBlkqSDa5MZt0NM2PW/MeU/eBDz74gPXrwxmAFanG92G3Gy7WE/qMa3NrMKvJwpVD5xmfy2TCYrFQkapTG2e8R3vEiByNfQeiMzAz9YJWfR6LWXDZj1KxWi1o0gwmnXWZcyiN6QWaH28LS3E0tKI5po0jkBWcM/a8DVXhecDjC/B9hBXN4XBQ6I62ao8bamdovyOXQrD0TUdYLUhhYUrR2lDxeKn5WN7JLs8Pl9RQUBZA0zSE7sUqAlyT+jgWEcBqs8HA0+GiryD771gc8cEuEDAv/iMuSnoBk8+JDBaorq7TeeDFMsqcbVfUDuT7Ka4IW4MsZoyWWuU7YP3j8OF5+F4YQdzyW5lg3kSSpxatPKhkCcMNFzPIi8VqwRK0AsaYvGTN2ovZ50T3G9+v67vVeLcZD+KjB9uJc4SvvVqXzs4mWjC1hq9W1/Hp8sYeA4tJcnreIu7e/CSTKrYhAHPvNFJ/fwMFBQX885//pKKiImqf/v37c9NNN4XKLZkS4jBnpGK1WoPWNBl0eQaOqfvAd+tq2XOotlG2ZYylll9MWsbTw3/OaSlfYxEapI5Cpk2l9oPvqFpuIVBrJtbs4ua+T/HbEc+SFB+tNgU0eO3zau5/oYziigCjRo2KKh8VCARYt25dm2VvqZI2D7gq4hW5fGXwb7ejPh6tT0op79dN4JA/JRgVaLgSzhs4mzP6NR/oXc/pQ2YQGYCUYzOzreTq6I38B6D0nmOSV9M0vvnmGwCmDDUscxaLxbCiibOiZBia2LdRmYem6N+3H1ZPeDsJ5NVVhkoqdCY//PBDlOtS9nLwat1K1pXupsTtpMBVzqHaYiqsXmqToCpJx5miU54S4Lv8H/gybz2f5K7m7QNL+d36f4eq47eFrRUHI9oPBUg0uRgdY0wgfn8AT20uC2b8l8TYsKVryJAh/PznP6dPWgY/Hfkj/nXi7Txy+i0MyIyuVffxxx9T59wKhZeDjJ7MBtmro777nE7M8CwqKuK5555jf3UBpenhycph83FJ2h7S7cHJ2zYWEi4Gcypmx1DMJhHK8hRCJxDQ2uzyLCoqYsOGcPZfwCypTpbExMSGemye0PvY+t6d2GccQxKNGDCr1Tjm4X4aEsn27dupru7Ywp6HK6P7+/axtz65aO7kWLIyHEaBbTNowsTXA88BKfG0QNHUa13UfRJtgU647CzjPwEPrHssvK2UbKgbTqWeHBobN2UeG3ZHzxELTj56L1thsWAZkAlmK1OK1xozlm7Ueduf7z9ma1RLKSgL8P4i47cb8LlxCC9z4z5lhH0rZosZc9JAmPcUCBOMugRx/udY0keHptgfJ7zOmQkLwVcF3iqQkrIqjQf+XY67jZmqDWujTR7pIG7PC/DOacj1j+HNXYHHVRcKgfLnBb/voIJm7+PFnJKEiE3H4XCEFH/roBpsGS6Erxo85aD5cD79BmAo/FNHR1vT1hxDfJeuy7CCJjXQ/aD5mNa/nD/WPseZm97E7q00esD6quh1bg11H83H858TmceHOERY0Ro5ciTXX389sbHR1kTb0P5YrNZQXFq9y3Pbfje17tZ/95omeefr0igFzWGqZlz6Dzx7V2/m2/5hKGf1jLsO5zNvUfaHp6l8bS0l72Ugg6unyfd4/Od2ZjURR7gzx8fvny2lvEo2ik1btWpVm8txtEhJk1IukVIuAVYBI4FLgJ81eHU76pW0zJQSVrkHhdqbgIXp6SO4evjpLTrOyVkTopo0VyfqvLtYIxB7SfSGNW9DzYdtlveHH36gtLSUXokVDEg3rDp2uzHh79MmRG17tKSBeozkAROy3uUpJXm+GPAfmyWqtUgpoxIGKpN0doz04fQ1tj4KIUKfu55AwI+mhSd4XUpe2ft1m2OMVka6OnUvM+OLsAiJz+cPxXgkxtZy+dwPiXfUMXHiRK677rqgizOM2WzmwgsvjHLRmvRiPPsXgBZthQMYZGugpHVChmd1dTXvvfceTz31FOUV5eQM1EI3I5tF0t9RzfyUiDjFXn80bl6AcEzFag27PM3CcHmuL93dpu9+2bJl9O9VwE9Pf4sbznyDoTN2ExtnDVkxMmNTGZrQsiD75jAJE9cMM37bFosFk8lETaJOVZJE13XWrFlzTMc/GvmB6Fi6zPTWf09ms+CKs9KwWCxowdjHjX1mUhSbgW9nDrrnyHGatR8vQo/IrjOnpxI7b6axsO1lcIWvO49PZ2lt+GE1Li6OIk90LNqgTCsThkf/JpvDOigLYbaR5HUytHIPSIGQGugay37oeGtafU20gAZS1zBrdSSYnFyU9LwhnyMOzngR7BEu6LRR2C79lrIUo3mOEHBJ0j85MfZzCLgN5UcPUFAa4J3vWx+ioOuNXZ0njDXB+keRGF4Gb4Nz6s+LByEQZjtY43H8+HK4ZitcthrTzN9jjU8NyRozszhosfSDtxL3d9/j+fZDoHGW57odnjbPm1v3eSku94OnAlylmD3F/D7jV/wq53wcn3xnKGf+Ogi4iB9XgtS/RhaspZcoZZxtNxfFf4ZAZ/LkyVx11VVR99V6rEP7YxKCPr4K0uuKMQXdiB6vnw07W29NW73NTXFF+N4h0DllxHb+fNd59HWtA3fEPG1LRA6aH2GFFvhKY/EWhq/9xOq1/PryVG69JIVYR7SFvLpO582vq5k+fXqo5RtAVVUVu3a1LEyhIa2NLXsVuB2oAfY3eHU76pMG4pKrcOoxITuU1WznjnEXtsgSBTAgPoPByZnU39mkgAJ7Hav2ngXW6PR0yv4MeusD3QOBAN999x0Ak4NWNKvVitlsAscs9tZFH/No8Wj1ZGRkEOsxRyUPdEXngf3794eU5uJ0jb3D/QibGWNmcYFeY7iLpQekD6tFYDZFnx9Pg0ksp6a4TZmGmtRZWxrxg5EeZsUV4PF48XiiJ4GU+Cp+Pn8JP7nw9KgfXSSZmZnMm2e42Bw2D5ee/BFWURKqyRTJYHtVlJLWkbXSPB4PX3/9NY8++ijr169HSkl5mk5dvPE0ajFbsNv8XN9rG5b64I/Y0yD2xPBBHFOwWKyMtRdhFTpmk04gEKDE4+RQbUkT79o8VVVVbNm8iXNnfkPv5DJ6JVZSnCgRVIFWCnoVJyQLhH7scXoT04YwKc2Iawtb0wJIJGvWrGnUC7S9kFqAPEu0ZXXQiLYpnSdMjGFgpp2AMCME6ELw1eD56F4Pvi3NWzKllI1cnQkXn4GwWjBrdfDD06FxXZesqhlFjQxbyWbMPo1lm6N/awvmxrfYZWsdnIXZbEHHxJTiNUg9aBzSfSzb5Orw5I2lP7iDTcUluqcKEzqXJT9DvLkGYRJY5j4E6eObEDyOPpct5Gv/WQQwvvNrUv4fU2OXGZl9nnIIePhseS2HClvnidid66OiOmwFslkFU63fIv0u3G43/og4qTI9hQ3eSbjKRyDiMsCRAtY4Yk4703h4ssbAlF9hv2YDOYmnoWHC2q8OS2bYCofuw/nnPyG/volJvYuxRUxd5VUaB/Lb5kn5ao2hgNUH0M9OXMEE8ybKv0iL2s6U5MM69bDR/zKC/pZCrhzr5KKLLmq27qF1qJEZXZ9AIILXSyAQYF0r49KklLz1ZXFUKac02wGuuvw84uLiYHuDpL+Rl+DZcijqAQeTDc+hCMtZwSqEEJw0KZa/396biQ0eXpZvdlNZa2XixOg6m20NtWitkvYjYI6U8rdSyj9Fvtr07h2MkTSgURcXbSIdFJ8ZVaG8JZyYOS5K669I0VmybC2+tKeIrF2GVgTV/221rOvWrcPpdGI1+xk/0FAg6q1JWuLV7K+ObvB6tMzOesxmM5mOlGglzRvf6WU4Vq1ahUSS2y/AoUEBLFYrAh20CtBrWJC0hX/0/4i/Z33Iw30/4s99PuYvA77mzrTvuTF+NZfZtnCWvpvBohqkm/q4rrcPLm31pL/TmUuVr/6pViPO5GaUOR+fzygxsb9wYGhbh8NBWkIppqIrQGveTTZ37lwG9EvjkpM+oVei4d7yeDxGMGlsuDXIQHs1EFHzyFWBV2vf5seaprFq1SoeffRRFi1aFFJINJPkcD9j0rRarMQ4YHpsPlPi6pUtM/T6Q/TBHFMxm804TDpjbUWYTRpg1C5aX9a6wrYrV64kPbGQpKAL2YWdLZ76emISpIcTeQYOjjeSLZwvg7/5xsZH45rhpyMgmCkpcMdKynrp1NXVheMG25myvEO4TOGC03bNy9AZ49p0LLNJcNU56YYlxWxc45syplIQ0xvPiuYLaXvWbsV/IC/iQGbiLzoDgL6lH4PXGVpV5xcsd00JLSclJXGoZkRU7duMFDOzxjVfEb8h1kFZmEwmNMxMLNmIOVgsWmo+iiu0RsHm7UmNS+fVz4IxgX4XJt3LGPsGZsV+C0BV7zMwjbmy2f1j4+LImncHr1T/hHI9GbPQ+FnyX4zsPinBW4Wu+XnhI2coULwlrGyQNDFttAPHgTfxuD0Egg9z23wj+UfVNfzH+zMGnPgQFreJesOAiHFgnzQq6hgiNo3BV7zGq96fscM/gtiZxu+4fj705DnwfP8N9g9OYWJWdJxkW7I8y6s01u/0hBQ0gDNSPqfi21S0OnPovaXUiTvlMMLa+PuxO+yMqfscU+kPzb5PvZJmDbo865U0TdPYsNPVqlpv2w/4ONCgu8MJY32kpaVBySYojo6RZty1uJdviB4z23DnRFz/heHfXmqSmd9fm0b/jOgH+He/r2mUQHDgwIFGSRMtobVKWi7QOu2mCzFch5XkapEtfkwMTRrU6mPNyRgbVNKMH011ok6Vp5Z1m2sh+brojSufbpU1zefz8f333wMwZsBe7FYfNpsVk0mAOY18MT2qVESiLZYMR3KLjz8kpS+6Hpnh2bkFbZ1OJ9t37WD/0ABFmcaEbbcFQC/HhJ8be23h2l7b6WerZbC9mpGOSibEljEjsYzs1EOc1WsrP+m7husHLeJnie+CVhXsmhBgT1UeWytblwixqjgyq9PLtNgidL9xvvLKMnl3xdkcKB5MTGwMNluwoKF3CxReDXrT7hqzSePaHy2jb2rYjSSlJKd0JGS+AqZkAGJNAfpYakOlOHQpW22RakhA1yh1O9nlPMybaz7n9pf+wrPr32d7RjV7hvvZNsbHDxN9bJjiQ3MIYmJicMTYsVLDz9K3hg+UeAXYGliG7aMRJjtWq5XJ9jyEkEa9Jn/rSnF4PB7WrFnDkD7hHKNNgcFoEVNQlrWWgbagEuteCmX3wKFpcPhMqHgcAq2b4AYn9OHkzAkIIUIlLfKyNHQhG9Xqay92btwTtmYAmbV59Bo2sPkdjsLMsQ4GZzmIeMbiy8HzqVr0fbP71CyMbqkWe+pMLBmp4Cqlb9mnoXFN11laNQaPDFsJxk45k2/WRisU554Uj9nc8sQH62DjAVIKCzEBN2Mqgwpx8ObekTXT/vN5FTUuHTQf0leDGT9XpzyOEFCq9yJl/nMRYS9NM2PGDETaaF6u+gnbfCOwm7xcnvxUcK0Ev4vdh3ws2diyz6FpklUNSm+cOKwaLX9lVIHl5e7pmBL6cdNNN5GeFx0q4Zg+FlE/F0WQkJBA9rlX83HdGfwn/ly8/QyzZb2i5lyWjAx4mWGKbgrUlrpj366tQ+rSiEMD+tsP0T8nh7rdyejCil8345MWiic4WJI4lU/rTuW92rN5q/ZcAtZEYuNisdtsRizbd780XKNNYB1iKGlCCAa4Ckh2O0Pr6tz+VtV6W/h1SZQ1L8mSx7lnzjAWtr8SvXH/UyBpMO6lDZQ0kxVvgR3dG7xuyreDN/zAbjIJLjo1Out5+WY30pLOoEGDosbbMu8cVUkTQsyrfwGvAR8JIS6LHA+u61b4fD6cTieZqSUc9Ne36REgrAxNbL37YWB8Bn3j0kI3bWkCZ7LOkiVL8MddbxTFraeV1rSVK1eG6mtNGWrcNG22oC6ccBl7a6Jv4sMTs1qVLTaq9+AoS1pRIJ6At/NqpS1atYydI/xUpOoIIYm1ezFJF3ah8bvMNZyd3LySZbdHB2gOsFQyxVEASNCN7+ztA0tbLIsu9eiG6rqH6Y7DoUltd95QrLZYeo17H2vC3OidPWuh8KcgG1i+pAbFvyJGrouKpTtUksW/P5/Otu27wRGO+RnUwJrW1rg0KSX/3v0lly36Gz9d8v+4dfFTvJj/LTt6VVGQpVGaruFM1nHFSQJ2cMQ4iIuLx2Kxgl7HguTd9LEGbzQiHlLvbPwmwgr2iVislkYtona3ovvA2rVr8Xq9DA4qaUIIVrsHAFbqp6ET4/Oavn96t0LFY5A7F2o+bmKD5rl86ClYTOaQFdxvkxT11snLy+uQtmN7d0ZXfs30FWBuxk3eEkwmwTXnpqNHHGNb+kQOHDY3arkDRp9O13fRMXeJlwYTBjY+iSni4bHGb2WNO+yS6dUrneW7+0bV5u6dambetOhG6kfDOiTo7g2WIZl8OJjJKzWQOqu2uI+5DERT7DjoZdEGl1GkNxjsPz/pNXpbC/BKG7sH3UVcUtOlliIxm82ce+65+LHxSd3pfOM6iYn25UyOC36vAQ9Inf98UU2t6+iB7NsPeqmqC28X6xBM0t6LKo6dF+iDOXUYN998M3369MG9KjqDN2Z24xZ19UycOJExY8ZQrKXzyZiZuKUDLTjfewvtuPfHME1/G1O4yCN5JYFWJXEENMl36+qMh8vgBXJq7FeUf5tObcBGbcCKW9opTkrh41GzWOedxFbfaCqTZ3LipfeScv7L4cxxgOpDsLzpRDtzcgLmXslAY2ua3+9nTQuzPA8X+/lhd7SxZNLAcvr372/Eoe37MHqHsdcSyC+OtkKD4WIWFjyHg/ciKaEw+jc2a1wM/Xs3tqY1TCD44YcfouratYSWWNJeinj9EugN/K3B+IvN7t1FlJUZk2WflBJyAkElTQBYGJrQsniuSIQQzOk9Jqg8GXeSihSdmpoa1m/KhaRroneofKpF1jS32x2qA5aZUkyflNJgcUVhvE/Sleytyo/ap6VJA/UM6TcQmy9899MlFNS13Y3UGg5XF/PvqqXUJuhYzAFi7W7MJo0Ui4e/Zi1jelxQQYk7C5Kuh7hzwD4FzH0AEyZT4ySCc2K2Gj8U6QV0tlXmsNPZshvu3qp8KkK1yXQcws0YcziJYnf+EGbOnEm//sMMC5i9QfaveykU3RSOK5MSSn8HtZ8A4cKYRZXpvLvibDTdwocffojXFHZ5DbJFx6W1tfPAhvK9fJizkuq6GlyuOjRda2Irgc1mJy4uPhSbBRq9zBVcmBIRz5fyS7A0cwNzTMVsMtPL6mGQtRKTSQeMSuAtiQnUNI0VK1Zgt3rJSjOsYW5zAlvd6WBOAnM6mFI5oW82WJsvh4NeA8U/h5L/A71lE3XvmBTO6T8Dk8mEOdhCrTBTI2DuGGtabml0IHQf07H3yZ06ysGQLBGlwH494Gxyv21cP7D2vW+i+nRah/bHPn0cVB+GHf8JjWuazneV4/FHhGokDTibAwXRN+6fzU/GZm35AyEEyyikJWEyW9AwMaZ0KzGyzvit6H6q6nS27GvfAtX+gOT5D5xBl6QTKTUyLYc4K8GowP9p3alMOHF+i483bNgwRo8eDQg2eCfg1BO5NOkJrMIPSAi4qXHp/Peroze8b1gfbsYYB6Y9/42yom3xjea0004jKSkJ6fPjWRddd9Mxe1KzxxdCsGDBAmJiYqhIiyenXxou6aDeG+tclkycXsaYvtFyrGuFNW39Dg+VNbpRXw+wCQ8jl23E5zKFirvrJsGq2UOQJhMJCQmcf/753HbbbYwZMwYx6AwY18DjtOdd2Pthk+9Xb02zBuPS6pMHdF1nzdbaFin573xTFvUdx5lLWfCjoLK7680oty2JA2DAPFzLGrg/62kYlxbRSg2Mh6mLT02MGlu+2U1S+kgSE8Pjfr+/1eU4jqqkSSkHt+B1hJm1a6hPGohPdlKpxYRM3BaTjQHxratkXs+cYF/HemtaVZKOZpIsWbIELeHGBta04hZZ05YuXRoKVp8ydBtCgN0enDhjTwHrAPZWRytpw5Jap2RmZmZic0Vr+XluH2gdW0h1t/Mwv175HG5bAIfNg8PqRSDpZ6vl4X5LGeaoAlMS9P4nZL4E6X+GzBeg/6cweCMMzYGB6zEN+JSvt1zAt5tOpNoVz3BbGWPsQcVGGt/dOwdbZk1b3SBhYHJMEZagwlRUmU6tJzkcS2CKg75vGCUpIqn7KtgOTIOKh6H69dAqIcAWN5J3VizAFzCUy7q6OpatDWexNkoeaGOttEW5P1BXV9dsELzVaiM+Ph673R6yvMZZHIyNqeKezFU4TMGbuaUvJN/Y/Bs5piAEWCyGy9NsMqwCgYC/RQ3XN2/eTHV1NYMy8kJP8xt8A9CwAMbT9cCELAb0/yMMXA4DlkLaPeCYRlTvrXqqX4e8s8HXMnfrRYNPJs7iCFnTNIukoK/G1q1bqalp399AbijGziAz4djjDYUQXHvh0FBcGsCutLGsfm9R1HZN9elMuORHCCSs+lPITQVQ4Y/lB2/4wSEtYxBLt0ffZGaPj2HyyKZbFh0N6+B+mE0mI6hdDzBZDyrEHeTyXPhNtdFuyV9nvIeEq1OMmmhrPJNx98mmX79+Rz9QBOeccw5msxmJ4AfvOHqZCjkvJfhbD7hASr5Z62Lv4ebPcUCTrN7WoFdn330EKnNCbvEAZgocUxk3zjgf3k27kO6wEmtOTw3FaTVHQkIC8+cbSujW8f0AgSZNSCnxldpw7Y5lRkb076U1pTi+WhOcv4Kt4aa5lmI+YDbq+AXZMqEfrt7JnH766dx5553MmDEjOjlg1h8gdWT0gZf91niAaED95xVCMLQmB4cWlrWq1n/UWm8V1RpLNkZXDhiens+oUSONJJDtr0bvMOYaMJlxN6ekma24DzUdl1bPzLGORta0DxbXMWvWrKix1atXt6ondY/oHNAW6pMGamOjNe6BCZlR/Tlbw5CETHrHJIdi0+pdnlVVVWzcktdqa1pNTQ0rVqwAwG71MGbAHmy28A2VpGvwaYFGMUuttaRZrVbSTPFRLs9D3o5tD7WqeAd/2PAqtb5KYh1uLEGFYKyjlIf6LSPD6obYeTBgMSSc1/RBhAWsfbEmzGLElN+wbu8kNuwzsrLmx24JPpkbP96NZfvYV31k66CUMjoeTfcy1RauQL87fwgTJkyIKkSIORGy3mqcxVv7AeSda5zjSMyZ2AZ9wKwTovuQLl9fi99vfAeGuzNAffLDodriVic/BHSNlYXbiQyAinELkpwmRurpXDxkLr+adAG/nXgJD03/Gf868TYWzruHN2adxl/7vMtge0QSROrvwHSEm3HQVWu1Wplkzw8mD0AgoPFD2b4jdh+QUrJs2TKAkKvTZrOyqi4LRNhCOieyNpptGKTcAv0+hkGbIO1eDLdoBL5dcPgsqF541N65CdYYLhp8EhaLBRHM6C7O0HCZA+1ajqOqspYqPazomKVGn/4pR9ij5UwY7mCYLdoNs8o1kby88Jjru9VopeFioabYGOLPnQtL7oSDn4fGA5rGN5UT0AjPg7Uxp+P2hr9Hh01w7Tkt75LQEMugvpjNZvTgTXxazQqjrm1QSVu7w4PH17Z6Yw3ZfcjLx8tqQfOC33C/nxj3OSMdW8gN9GWxe3Yjt1NLSEtL44QTTgBgs3c0GiZOi/0vfWwFoGuh6vMvfOhEayaJYNMeDy5PeF1CrInRta/hi8jm3OUbyowTTw0pNI1cnXMmtSi8pd7t6UyJ5dDAVEOBCr51zQ8JzHB8G7X93sN+KqqPXruroCwQzJYFND9ShxlBa1B9TGlZegJJ157HXXfdxbx585osrYHFAac+G3KDA0Zc2ne3GIpTBCGXOeCwmBlUHX64NlyeR1YwP1pSGdVZwG6q4cIzhxut/A59C7URhg+zHUZdhvT68KxpplC0yYa/zEqgNvibKd0KDUI9mrKmrdjiJmvQlChltbKykt27W550dVwraelJFaGkAeMSNzE0cVCbj2m4PMcihCkUiFyRYkw0ixYtarU1bfHixSFz7PhBu7Fa9PDFbekLsfM4WFtEIMKNleFIIsnWuhgRgH5x6Y0zPDsoeeDzw2t5ZMtCvP5SbBa38SQPzInJ4Y9Zq4m3WCH9Ecj8D1h6H+VoBuPHj2fgwIFsPTQKXQpGW0sYZi0NxkgY3+G7B5cd8Rg5tcUUuesLi+pY8DDeEuHqzBvKSSed1HhHcxpkLQRLgwBw76boZVNKUKHLIjs7m8zMcOyj12+noCwWXUoyLC5iTf5Q8oAr4KXE42zJ1xBihzOXWr8bizlAjM1Dqq2Gv2as46WTNZ49NYmfDwlwTpqXOclmRiXE09uRjN1kMVqYRWKfAAnnH/nNLH3AnInJZGKIrZJkkxuTMFyetV432ypymt11z549wYwmydA+hkLsMiWwzd0LRHiyPql3MxmQlnRI+QX0/wysg6LXSTeU3AHFvwrFJzbH2f1nkOZIDP2+pAnysgKsXdu6huVH4uCeg0Z9niB9agtIGt4+TgYhBJefEG0ZOBQznLc+DHduqHkrOmEg7ty5mDb8EXa9FTVe5Ethmy9s0YjrNZnth6JvqpeekUhqUtseZsGwpAFIk2FZGFq2j2RzuWHNkxKvT7K+HfpIenw6T79diQz4jDg0INlczqXJz1AnY/io9kxi4hIYP76Jkhst4JRTTiE+Ph63jGGHbzhW/FyV+ndjZbDC/8ECP1+vqWty/4YFbGeNNiH3vh/1ULZLTmTatGnhz9RASXMcIR4tknq3p8PhYNu4rJACJaXEk+8gueB7hmZFP+y0pKTF16sjitdKjUF1++jrLEACOibMsQ7GvfQ3zjv/fOLjj1LwOG00zLoveqx4PWx8MmrIFmE5tFgsjCsOZ2Prus7KzTXNPti6PTqfL3dGPbsNSDzAlCmTjIVt/47eYfgF4EjGs3470hO20Jl7p2GfEOy5Wx+XllMfl6ZBUWO3ZVPWtM9Xa43KcdQbZ1rCca2k9UkpISeUNECbkwYimZNhtEoxXJICZ7Lh8qysrGTTtoIWW9NcLlfEU7xkytCt2O22cNxJ4pUgzI2sQy0tvdGQ4Wn9ozI88/wJHVKGY0Xxdp7f+QFSKwvGjBmcF7eNX6auxR43AwZ8B0lXHjXLKhIhBD/+8Y+p88Sxv3AgQhjHNFKZjIlmdclOco+QKbmyQVbneHshMSZDUSqvSSY5Y3pUH9EoLH0g6+1grFxTAsYGXaOGxc1sNnPxxRdHNWE/XJKO1+NFCIwsxqiitq1zeS7K2QDSj8PqxWzSmBmXw/iBe0lhIZT/BUp+BQWXwOFT4OBY2D8IcqaAt0HmUtp9ocK1R8Qx1XDlNrCm+f1+1pU173ast6KlJThJjK3FYrGwytUPHRFS0gYn9KFvXFqzxwDAPg76fw3xFzReV/u+kQHq3d54Xf3uZiuXDz0lVI4DoDxNpyhw9JiilrJvf0lkxy+yag6TMmJwux1/4o/nMrIqIulFwsbt8RQUFAT7dEbHMSUM2WrE3kTgIoH/lp0Sai6tSxO5nplEupUHZVr50azWPwhGYh1kzFPCbEVHIJ0WZsUadSDr3a6LNhx7zbQ3vqimuKQOPJVGwgDws7SHcZhcfFj7I2plHDNmzGi2xuHRcDgcnHnmmQBs9BiK3ijLOmYlLDUsd8EH6Le+rm7UQN4fEI0U0Tkpqwh4wwpdlZ5A5tQLcTiMm7/mrMG7Pbq3csys6ELmR6Le7VmdFENFcnx9f3ukLnFvczFjSLSb+WilOHx+yeINwX00PxKYnWOEluiYEMJE/z/8goyJY5o/SEPGXQcDTo0e2/D3KKUn0r0rhGBy0S5MhK1tpZW+Zmu9fb2mhpq68LYW4eW8UzKNa6ByL+QvbywPNMrqjD15arSCbLY2iEtr7PJszpo2eGS0y3P//pbfe49LJU3XdUpLS8lMKeFgIEJJw8LQFhaBbY5hiX1JdySFrGnSBM4kY3JYvHgxeuJNLbKm7dmzJ9QmYkB6Pr0SqyICuy2QeDkA+xokDQxrpauznnFZw6IsaQX+BLR2VtJ2VebwxJZXQHcGn7okZiG5Pmk158dto9Z+G2S9B9a2lSTo168fU6ZMYfNBwzU2wVbAQEtFMC7NmOyPZE1b3SCrc1qkq7M5K1ok1v6Q9Q6YGwbYWyHzZXBMihqNLHILkF/eB7/fj65LIy6N8FPbwVZkeEopWVm4HYs5PBFNjy0IJps0h9+4FiOJPQNi5zS9eUMcRi0tq9XKFHt+MHkANC3AmuKdTd5s8/PzQ5PRkKAVTVgdfFc9MKigGfKe2NI2UKZ46P00ZPw9+jcG4D8Ih882aqs1c+PPzpzIoIQ+ISs4Ag73b1urlqbYf9gdZUnLrMnHMeDY5ptIREIm58loa1mNnsF/P/yhUdkNxyCJreaDqDEZ25vXnPOj2j/JpHlU1kYrMDcsSG5VyY2mqC/DUR+XpjntzIr9JpQ8ALBln5f3FrU9JnDrPg9fLi8N1n0zzvlpyZ8xxraWJe7Z5AaMLPiZM2ce02eZMmUKmZmZFGi9KdKM3qeXJD6Nw+Q2YtMAl0fyn8+jFf6DJTF4fOFrMSXBRL/8p9C1sCa/1T+GOSeEi0d71myJun5tIwdh7tU6l/mkSZMYPXo0eVkpUSVuXPtjmJEaXR9w+34vdUdotbRis4u6enet7idOr2HCIcPSp2HCEuMgfsGpze7fJEJA9t8hNqL3tNQNt2ewtIUpNQlTcrisRbzUSJVhr4ffH2jS5RnQJO9+WxY1H/WJ2cuJJzRTdqPPdOhlWPHdy6KVtJgTpxIzK1JJM+qlhQ5d0HTi0cyxDgb0if5NLdseZ2SVtoHjUkmrrKxE0zTik51UaMG+YEJgMdkZ2MakgXrqszyBkOukMtgguqysjOf//SF7S+bg9wfQNN04oQ2saaWlpRw+HL7gpgzdFgzuDg7EnwUWQ86GSQNttaSN6D8ES4Tb3y9NFNfmtOlYTVFYc4C/bfh/+LWw28ksJLcnL2GUt5r3191I+oj7QLTdhQJw5plnkls2jFpPLELA/LhtSKmHEgiWF2+j0FXRaL+8ulIO15UGlyQm6WGyPRzPU+qezogRI44ugG0o9F1ouECNAejzLMQ2reBlZ2cbhROB/ArDtRsI+Bu3h2pF54H91YVU+GuwmIOFaYXGlLjGLaiOTBOFa49EMC7NZDIxLqYEhykse1FdRZO13pYuDSdzDOmTizRZeLx0Fgd8SVHxaK3q1SkEJF4C/b8E26gGK/1GbbWi641aeg0wCxNXDT81usVbUvvERQHklMVG6Yd96wqwZKY3v0MbGDPewZjysMXMrOus2pFIwRsf4/V6CQQCSG818UMbWBVje7N7xF845Az//rx6AjnV0bGWp8+MY8SAIzdRbwmWrAyjw4HZCC6Xbgv9tIMMsu2Jyqpb+E0N369v2lV4JOpcGs+8tjuqXlVvWxEXJz3HEvdMVnsmAzB27NjoGNM2YDKZOOeccwARsqYlilIuSn3NaBkVPOnLNrnZfiA8z+8piO5JOWe4B2tZdGC6NuT8KPncqzZFrXfMmdRqeevdnoUDUtHr4w4luA/EkFW7hL69wgqEpsOGXc1b0yLduFLzMbNmEVa9vsajGcfsiZhi25BcEtsLsp+IHqvJg2V3g5RGgl4Dl+dAbziTXNd1lv/Q+De+YrOLMmf4RmdC46w5CUY7P18N7H47eodxPwXAf6gAf25haFhYLThmjsc+cSQiJjhXmWxodWb8FcGHvNLNIZd3JCaT4OJ50da0lVvcDB97FCNAMxyXSlqo00AoacDQfgbE98FqanvNonrqXZ4mk2FNcwazPAEOHTrEwq/SqKn1UVdXR01NDXXVB9m07C7Wr19PYWEhX38d7jkZ56hj9ICc8NM9QKLRr77O7yG/LpzCLzCSF9qCw+EgIRD9Y8qtLQ+5CI6F6ppV/HntX6muzzIMFlO8LmEtdQf68sq3FzNi3Pwo119bSUxM5KSTT2FrjnGDnmo/TJbZGUog0KXkvZzG1rRVxZFWNC+jrUXEm4ybRbUrntGTftLy2nP20TBgOfR5wUh8iD+n2U3NZjPTp08HoKw6FV/Ais/nZ5C9CuPp31C0WlPQ9rsD65C6FowLg/G2QuLsZkh/FNJ+D0k/g/j54JhpxHGJJlxXafcaCmdLsY8HLAgB8TbBBEdBKNbQ72+c5VlRUcHWrUbNP4spQFavAp6rPpF1rqC7OOjqnNJrGH1iU2k1thHQ7zOjAG9D6r6A3GyoeBoC0SUwpqYNZ0LakFA5jvaizqVR4k4OLZukJMNcjbC27/s4Tj6Nsw6Ga8UJHTz+FL7JnIfL70f3ODHZqtAzS3C5XHi8XtwikYoTn+ezFeHgaymh2n4mMiJ5ICnOxOVnRt9c2oowm7EMyAx1HgDQq2z8LO1vxOKMshb9633nERWFRkidV178knJnZLC55ObMJ/imZhorPdOpn/MbZta1laFDhzJ69Gi2+4bjkca1OzfmHQbYD4AWlv3Fj5wENInbo3OgOLpLwwT5LlpEYdVDgSymnhKOB5VS4lnZsD7apDbJm5iYSJ8TZ+B2hO8ruk/gWb2OGWOj7wNrm4lLO5DvY19eRKkh3c/MvWHrkW6ykPbjU5rct0UMOAXGXx89tu9D2Pse0NjlOctcFppzwKiDFlnrrckWUPb9nHZK8BrY866R/VtPbAYMPhugUVanfcoYTPGxCJsVx9TgQ6QwgTCH49L0ABQ3CB8JMqMJa9rW/L4kJCQ0uf2ROC6VtJKSEtKTysOdBgQYnQbaXvk7kuFJWaTajS/bZrOjm6EqMXxh1HljQ1mIYNSJyrAs5MMPFvLUU0+xbVv4SXjioJ3EOKxhK5p1KMQYGUX7qgsii5fTPz691e2sIkm3pCEjYk/yvLbGLrDWICW+ipf424YnKfRHPn1LzrbvIn/dOJZum4XJbI8KjD1WTjrpJA6UGuZrk4D5cduR0gfBmIVFBZspjahSDbCqNKyk6ZqL6Y5wXbWDpaOYNGly64QwJxnKmW3QUTedPHkyQgikNFFQ0Rtd1+lnrsKEDBXGLXRV4Aq0rHbU8oKtmM3hyX5GbAGmmGmQdIVR7yz9AejzHPT7AAauhKF7YcheGLASsj6CgWsh5abWfV6TA+zGZGWxGHFpkS7P1UU7ojZfsWJF6EGkX3oBr7hmsKquPmPLBFjoH5fObWOPkrRwRJliIONRo4SLaBCwrBVDxYOQMxWKbgH3utAT+jXDT286++wYOHSoFCIy/NJdxdh6t0H5PAq2E3/MAN9hJpRuMgYkWAM6SwedxitTf0lVTAr2MZVgkgQCGhUeC8/kZvPoC++HakcCOLVBVHqjrXxXn5NEfEz73RKsg4NFt4XZeBxx2smyHOKuvn/AYgrfXHUJj/+34oilLEJoftb/91EW74uODZ2f/jGeQdls8oatshkZGQwZ0nTihlZWScXDL1F652OU//V5nM8tpOadr3B9twbPpl34cwvRa6Nj5s4++2x0k52tPqP5vEkGuDbtiShrSl5JgM+W17Jup4eAFp5r05NNDCp4JkqGkpTsqBjYQG4hgYLww5qwWbFPiW503xqmTp9Gbt+Ia1CC64cKZgyLjuX6Ybe3yVZLX62OUGh0P2PNG0gtMCyXOgKL1U5s9vQ2ywfAzHuMZIJIlv8eqnJCtdLqGYYk3hL2OAQCAdZsC3/3W/Z5OVQUrbjPnSBJTk42lMxtL0e/z5irwGwosY1cnSeH62M6ImMCzY37eDZFU9a0VVs9DBtzYpPbH4luoaQJIexCiJeEEIeEEDVCiB+EEGe19XilpaVGp4FgPJqAdkkaqMckTCGXp8lkwuGIoSYj2o23ZvcUAlp4LD7GxaQh0S4IIXRmjNoTHdSadDUIgTvg5d97voravq3xaPUMTOyDrrdTD0+9Dr3oFzyx/SN2uZNBSqNvmy6ZSDGlyydwqMT4kU2ePNkwN7cTNpuNmSddxuEy43zOdBwiw1SDDMaHaFLng0PhZrZO3cWB6npTtkTgY2qEqzOm14VtDixuCYmJiQwfbriVCsoNl6dJ85BprYtyeR4p6aGegrpyCn3OUEkTgWRGfIlRzuRImOIMhTJmOlhbVy8qRDAuzWw2MSWmMJQ8ALDLeZhKr+HqdrlcoYKNEsmBATor3IPDsenCTmZsKn+aenWbMpUbkXCekVRgbyrA2m+US8k/Dw6fBlX/YXhCMnP7TmgXy249B/flR8Wj9a05jL1f+8w3kQh7DPbhSZx18OOQ20lI49ErN2kQ/2/GvawfMgMpoU7G8N/q8ynXo2OaNGmlQpyMKaIU0dghNk6a1H6/UQgnD5jNZjTMaE5DMR5h38ZtJ0THRvn8kgdfKT9yFXxfLdUf3chzG4wHPhl8ZVoPY45z8d6GaLfp7Nmzm7SOB0orKbz691T/5xPqvlxOzZuf4/zHm5T/6Z+U3PYgRVfeTf7ZN5M763Jyp11C3uk3UHjpXeh/fYl5qf3Y6AlnIg80beKUxM+iatC9/V0NX6yMzjae1icHiz8ckuDDSv+5P4/axr1yU9SyfcoYTI62P5QPHz6c0uEDouLS6vY5GGLaSEpCeMznl2zZF23JrHPrLI8owis1P3Mqvgkta5iwTx6FOfXYXMlY7HDqP40yGCGBauH7X2IdHP37SXS6SLWFw390XWfZRmdo+c0vS0Jx3gDJlsP8+MxgPGLJRnBGJGSYLDDa6OGqu72NigfHnhRW0qK6PZhseHIdyPq3aSJ5oJ6mrGk51SMaFWc/Gt1CSQMswGFgLpAE/AF4WwgxqC0HMzI7S6MzO7G2qdNAc8zOCGezWK1W5MAEbr3jNi677DJOPvlk+vQbz5ZDU6L2mTNqA+aIJ8ihfQ6RluQOW9GEHRIuRpc6T27/gEMNKtHPSG9QCLCVjEgfgB5xI8nzt76Hp9/v59Deb3FuncO/9+1kRU1msKmuBCnp4/PgWz6MOk/YstGWGkVHY9KkSRx2Gk8lZiE5N247UrqpDyD+Jn8DlcHOAnu0sPIT8LsZaSshyWxMSm5fDGOmNMjI7QCmTjV+9PnlhgXA7/c36jzQkqK2X+9dg5R6yJI2ylZCqkM/upLWHkS0turtCNDfHI4J8fv9bCw3YkZWr16N3+9HIskdoLHDnkxk9mCGI5E/T7k6ZI1uF2yDjLpqyb+IineLwrcTSn8LBydzZdoPxMc6jBZZ7cCB3NqoyIG+tXnEDW6jMnwU7NPG0sdVyM+2PkuCv4awugI+u42XXXfyZPlfeMV5WSMFDaDINwUtwvJoNsMN5yW3qtVcS6gvw1Efl6ZXGudF0zVm2T7nZ/Ojb/A1Lp2//rsMZ4MsSYDaskPUvnUW/1o3Hqc/CT005+ikWtextdQaZfWy2+1MntzYOq5V1VBy0/0EIuKPjoT0+ggUluLdthfXN6sY+p9vMXuSyQkEz62Ei5L+Rbxwhvbx+WXYTRhkVPXzUT1dD5knMHx0dFmGhqU3YtoQjxaJyWQi6+xsNHP4Nq9VW9DWL2LG2GiFvGGrpaU/RDcyTzKVMnJfOItbCgspZ889JvlCpI6AOfdHjxVvxFr7edSQdrCAaaOiLeB7D/up9ZjJKfSztUEXi2nDqsNlkA5GJ9Yw8AyIMx6YPWu3IiNqqlmyMrAMDhtErMMHhpVRsxXdZ8JXZAvJSaBpV31TmZ7rdmqcfs6VoYf2ltAtlDQpZZ2U8n4pZY6UUpdSfgocBKYebd+mKC0tJTG5kjIt/JRuNlkZGN+ymlwtYVRyf1Ls4YnOrfnIE1VMmDCBs846i+uvv565571FXEIaMTEx2O02khN8zBoTVorOmFUSHRsTvwDMySw8sITVJRGV8YETeo9hZnrDQOnWMaH/SGRkhmcgEc1z9Krtuq6zatUqnnjiCfJ2/oP4yotZVGPmk5qw0igR2FwWEtf3AT38mYYNGxZVL6y9MJlMjJ5+Fz6/cZM9MeYAaeZaAkHXg1/X+OiQ8ZSzJxDR9Fx3M90ednVW6ycQG9eOykIzjB49GofDQUEweUBKyQBLJYaL1pgMW5I8sCxvM2aTForNmB5bgLBkhFyRHYo9/NBhtVqYGZcTWta0ACvyt6FpWqjdUl6WRknvAGaTDOloqWYPf5pyHekxye0vn7BBr3th0A+Q9sfGddXqkbVkel7lkqQVxNha32i6KQ4Ui+gaaTX5xA7qGCXNMdcoCTGycid3rX2AseVbQ+tMVonJZGaznM8Oy20MGnMmQ4cODZV48Mhe1JgmRlkRzzs5gayM9lFWI7EOMh6KTREZnmCEf1C4hv/f3pvHyVHX+f/PT1VXX9Nz35lMZpLJQRJy35CQACGEI4gKcigg7i4IisAuHiv6+7mL6K6r7rp4LevFwqqLroqKKyIYlJtAuHKQkPuazEzmPvqsz/eP6qt6jszZx+TzfDz6kXR1Vc17eqo//a738XpvXp3HezfY09RNbRG+9KNT9PlNgsEgv//973nlqV/Q8r21vLi/mBe7z4v7OhJBmXMHAdG/rnbVqlX9IhZmdy9Nt91HcM+hfvsPm3CEC/QiXvUnylncEUuXbbD63qqiCHP77J223iU325xiGQ7jf/kt2z5jddIAlqxexanqJIdMQtfT/evStu3yx0ctSSntqU5greMx5PHEMZruwnv+yjHbF2fejVC/ybZJP/g9NF/iZ8o+P2vqq/HqibR9KBTi3RMeHv1Ds23yik9v4r2XRJ10KeHA/9l/3ozL4//tl+pct8z2txGahntV9O8tdBB6YvqAGbIctUFYOa9/NO3lvSV85CMfGfSYVCYuxzMGhBCVwGxgUOEjIcQtwC0A5eXlbN26FYBAIEBnRwvdHpmscEB+2M3zf3l2gDONnimBPE6GEyHsR1/7Az0u+x1aXd75TPH+BhDous76hW9hlH4YGTpJRd7DBJNatN9qnMerb/0Pj6WIpFZo+Sw6VRKf8TlapJRoEeJ/9V7TYNeBF2nZtXXQYyKRCK+//jqNJw6zadmLrJy9g9cDNTzUmagxi5gakV4ntdt1IoEgEaxGhYqKCmpqauJ/m4nA27OQOVXb0JFc5t3BDzsKCASsAvdf7v0z3qMBjkXaEKbANE2cWohlrsPxu+5TfSs5NoH2JVNcXMzBgx20duVT7OtkimgGKQkFe5E4ePXgTraetBzG7u7ufu9bt+nnYKAZp5GINCxzH+do62rePTT8IfOjR7Ki1IVDsyKUK7yH+Unrsri0y4vHdlB2sptTp07ROBUaq8GI1c5JSb4W4O7iQ7zz6gHe4cAE2zoH+CKFxptUeZ6gxLUNWygDuDLvLU4EXDw2grMOtO6EI3CkPd92+uquY+xoPkFgIq6toKBOFxA28QU7+cib3+KFKev49ZyrCesOQpoPGZF09MDj26exdEYx557bQDDo5+cvTiXSLYkErKhDYV6Ycv1dtm4dm17ZQIheP9XBIFJKIlIj3OHENCWSCIG2I7z25KNUOyuZWVHKjiOJG+rdBwLc87WTVER+had7L9cX/56I9PBfbXfH9zGlhqATj/k2gUDCOfL5fFRVVeF0Ou2fn1CY0gd+jmu3fcavf149gfnT0bp60Tt70bp60Lp60Tp70Tt7EOH+UT1t5wEOLZ1NZ+QZ8nXLmVmtP8rjxg0c7Ek45lJKAoEAUwJPobnD8cujzSziuFnDyST7jH3HKG9tjz+P+Dw8f/wANI7BoYzSVD+V6qOJmtze7adoOfhnhDkDfyg6iD0AP/7lixS7u3nkf19k/9FEQEMjwrnt/wfS+htJoG9KOc/tfwf2D185/3Q4HO9jsfksRrg9uiVIwNuHbE1EuTrefocCzU1P2OqYl1Lyyh6D9p5OWyR1qm8PR46YHD16FI//CIuTxgFK4eCVwwaRY1tBSioe34ojadj9ngJHv8+tt9BJUXQfHZ2e/U48y63nR559hKOVg9dTnlXhYe+hRP3n1lcD1Pp2Dbp/v/dl2HumCSGEAfw38JCUcvdg+0kpHwQeBJgzZ47csGEDAAcPHmT3G//D4eQwv9BZVruIDfM3jKutJa117Hg1MQPsuKOHteets4+dCs+HQ8/EJSJc9HDx6hb2730Zlyvp7tW1gNLay3l62w+iQ9wtCp1e/mXlLeMWefjBY0/QmeS9dhtBNqzeMOC+fX19PPzww8jAXv5685NWnV+wmG91rI03IIQiDsJBFxd01bHovNlMnTqVadOmjbntfbi0n/wC4tgWADZ49/NYzwJORXw4ndadzp9cBxB91pBxv7+LBmcLZY4+QCCFj9UX3ANi/KMIAzFjxgy+853vcKKtmpL8Lmp1SyrEcACai249zHnrz0MTGlu3biV2Tcf4nzefhHbi0hvTHG3U5ZuIqhuZmm/fd8I4fh70WrUps2UP+SJEJ9b1GibCrs4jdE1zcHJaGAE4DQlC4NOC3FfzAvXVt0JJmmwF4ALgLggds2Z+dv43RBJ34ndUv8XfjuBsA6077x7uA3bGI2kl/lPkyQgLNl+Ic3b9eP0iNhrnfBP/TiuNL4BzTzzL8kU7+cH0b7K/yZ4S2nHMRWe4iiWz3ZzqPmWLMN39oSksnTMM6ZlRcuQrPyXS0k4oFCJi6shOF1pREIfhYE2dBnM2sG51F1956CTb9wmQYWQkzPHGMHVeJ7eW/hKJ5N9bPk+Pad3ARKROQBosKn2dOdPnU1tbG394vd5+NshQmOa7/5ne/Y2Q1DDiXn42M7/7+UHrvqSUyJ4+gnsO0njjZ+PbXSfauOaqj/P6L1/gPE90YoU0+WjVv/GFYw/EG1cDgQBOp5MNjh8jktL9wforuXDjRtvPat/5U9qTbMvbeA5zLxifEoaX/GHMZz9vNSoB4SYX66p0diwr4c/bE5HksGsuPt/r7O2cg8uV2H5WwR7ytkfi3xpS6NR+4DIWpqxP40LxfnjlK4mn1QG6mxLRtAVFFaxeEOFXryXez9ZuN6ZpxqNfbq2Dm65ewdIli60dXvsGHEz6TNSez7oLrY784L4jHO/qi18Xwmmw6m8+hOaxXxPh2fM4+tOno08ihBs9GLjQnJKZ3mZmDvFenGdKdjc1cTipqeFI9/AbQtKS7hRCbBVCyEEezybtpwEPY8XAPj6an9XU1ER1cTMHYvVoQoxr00Ay84qmUehMLAo9YT9vtKbMw3SUQ+GH7dvaHqDC/bRtU4fner78xk8JRJJy45rOpxZeM66poUqnXSeuMRiMdxgm09rayne+8y3KHL/kIxf9lOqSJloiXr7Wfj4B6QAhMPFhOEu5b+3f8Jm/upNLLrmEBQsWpM1BAyiqWE9QWFISThHh0rxdyEivpZ0Gcc000zQRMsAKd0KfTvNdlDYHDaC2tpby8nKORZsHirU+8rQgYP3N/ZFQ0tiq/vzp0HYEMi69scJ73JpF6T1vwm2P406kPJ1OB/NEc/x5xIzwbrWfI9MSi5EuIni1EF+Y8oI1s9S7IX22JmPUQOmnof5VqxvUbRUUO8TYI0gH9p2wGmeiAZ2ariNougPHlLFpMg6Fa6W93kpzCWZ9+n7u/0Q9713ffzTPkZNha75lEqvOdrN0lAPUh4tRn6hLM5OaByKRCLz0JfivJTgemsPd5iYatG3IYDcy3IdGhJd6L+TnHbfwbM8lvOFfgwBM4QR3ER+6rJQv/8Od3HzzzWzcuJE5c+YM7KCZJi2fe4DerfYRPq6zZ1Hxzc8OWZgvhEDzeXEtmYtekahvloEg9SGNjurLMJO+Qqf1PcXF8+x6heWeNuY7EqO7EIKpF95NKqlNA6OV3hiIhevPJVCRVG8ooeXnP2fFPHtd2ss7/PT4NV5KkeRYFPklwSNJ15Rm4L1gbALBg9KwxfbUcB+ypZFD+45w3uo5uLVEPWxyswBAfdEBFi1MGgOWmuqcvjn+39RUp3vlgn4OGoBjSgXGtKgPoTuRpsB/JPrZadxm0/5LZaDatOffGn6ZRVqcNCnlBimlGOSxFkBYbvD3gUrg/VLK0JAnHYTm5maqShLjoKxL0xjzpIGBcGg6q8rtHvF/7f1j/wLwotv6TSEwki6ysCjgKwdCNPnt4nx/M+cS5hePj2xIjPqiWnvzQNAHQXvq6ejRo/z4oS9x8dkPsnHxszj0CL2mwdfaz6dDehGagdBL0Y18bpl3OasqR98mPmaEoKDmlvhd1IWevRQ4egn47UWkwWAAhx6J16Ppuk5+9TVpNlWwbNkyjkebB4SwomHDaR7oCfaxP9Rkk95Yk3/Scpr0ogm120ZS84Cmaawttg/9DiSt+05Dw6WF+Xz1i8x0t1uzTQfswEwjwrC6Qaf+Eiq/Oy6nPHCwFWmbNHAEke9F8/V3GsYL75XXWQOrAYQD39VXoNUtxqELrt9cyD/eUkZZ0eDC0W6n4ObLiybMvhjG9KS6NKkTiTYPmJEI9J60HoBH83NP1eco1+3X0++6ruPh9r9DEwLhzMORV8LZM31cu7nqtI0OUkpav/ggPY/by0SMhloqvvv/DfvvI4TAvdw+WzawbScXbLmOPaGExIdpmpwf+iJTKxIJqjX6Q7bjOgsW4y236xOaXT0E3tpr2zYaEdvB8Hg8BOfbv//6nt3B4tkukmX8Wjoi/OntEpJ9nvIiOPvIHyGccBUcVSU4547PTNp+FDVAaaIpz1kWsMZvRQntO8Ls2bMpdR8f6GgM0cd7N9YmBpp3H4fmpE5iIaD+4vjTVH00z7rBy+DjI6KEDkJLSHFEAtD0+pC/1sp5buqqRpe4zIrGgSjfAeYCW6SUo67mbW5uprCojeZIUveSZlA/jk0DycSkOGIc6j7JPS89yA/3PEFfTPfKUQ6FNw96ju+1X8GOdvvidGntSi6eOn7aYjHmVc+wNQ8cDeVjBhOtybt27eTlJz/Gded+n9oyq76uy3TyjY71HAsXIaUBegkIg/fUreGy2nEsHh0lztLrcLqsegm3FuZS305M0x+/w5ISIuEAdUYrlQ4rmmA488A7BiHGUbJ48WKaOsqJRKVQavVWa4RWVNT24CDjof6w+wUimHHpjTK9hwZPT3q6OpNxLSK5U/Pckn1ogwSjvE7JvdUvMtcTnQDhPW/MEyfGFd8WcI694eLAiXC/ejRjysSsNzFcC+dQ/Nk7ccxeSN57r6Do7+3RmbnTXXz1ExWDympcc1EBpWMYoD5cHDYZDo1wrHkgSXBUAoFgEGeokb8t+xT5Wnv8NYEgjBtcheDMx2lofPzqYvQhR6BZtP/rw3Q9au/qc9RWUfmf/4CeNHJoOLhX2K+TwLa3qa6upnf61bbtpS1PcO/Vvdx9XTGXL3iTTcZ/2V4vWPk3/c7tf+Vtkj0jY8ZUHJWnmWU7QvIvt0eoOBCE3k4WzbJHUlOnJMwuP4HvUFJDhADfpvPGvRPYRsMV8f8apSFb92Ro3xEcDgfL5gycAanO28ea1UnabaldnRXLLBFbrEaSwGt2fUfPOrsiQzLu5BFRmvO0czyT0TTB1RtHJxSdFU6aEKIOuBVYDDQKIbqjjwHkxIfmVMtxulPWpam+Klz6xKS1zi6uZ2qefZZjRJo8dugF7njhWwkl9tRoWpT/66jn96fsNSQLSqbzkdkX99t3PJhTXmef4RkupKfNutN49aVfEzp0FRsXPY0RnSG1PTCFz566nF2hatCLCEsfoLGmYi43zbpoQmwcMXoxRlFiosEm7zvk6QECAevDHYmEcegRlkdTnZomMAo3gTZxkY7BKCwsZEbDHE60WQvFNKM9OgTZiqYN1uH5p4PWHV8skrbSewxNI/1Omp4PzkRXr8+lMSXQ/57K0A3+vvYwC71Jiv+ZSnUOhhBQcteYThGJSA6e8tgGq1d3HsM9bfzLK1Ip/PCVTP39f1D+1U8OmKLJ82h84poS7rq2GK878aXaUGNwyZpx0KcbBvEZnrqORNDeajkfkUgkLhziDwQ50evm3VAdh8xyVvl+RkjqhB1FiLxKQo4CcHgAwQ2XFFBVevqIRMf3/peOH/zCtk0vL6HyP/8BR1LqcrikRtL8r7+DDIVZdvnHaZUJh0pIk5NP3cc5C70UNf8ar0jSGnPmU7DgA/3O3S/VOY5RtBh1W65FFCTKEEQEDjz8I1bNHzzdbTigrONXhA8mpTqFjvfiCV5zklKeen4EzRGIpzzN7l4iTa1sOGcmhrCPZNJEmMvWFtq7eg+mpjoT8qv+l95ChhLviTGtOpHSHAD3qgXE9bJ0J8FmJ+Hu6I3OIKK2yayYO7poWlY4aVLKQ9HUp1tK6Ut6/PdIzhMKhTDMdzkUKUpsFDoNBdPG2eIEDk3nvmU3saaif8qvxd/J/a//hH9646e0hJ39omlv95XyvZblIBJ/uApPEZ9ccJW9+WAcqfQUoydFMzpMNy3tO3j9z59hGjdTX2E5Mr2mwfc6VvH19vPpkEXWrMqokzmncCp3nf0+NJEVlw8AWtH1uKP1JXlaiEvydxKJRAiFQoTDERx6OJ7qdDqdiCFGOU00ySlPK90pE07aAJG0QCjInmCjTXpjte+kNejddXa//SecpLo0TROsKEiZXyfh1mnnstz5vH17tjlpAHmj1swG4FhLmFBYxtOd+cFO8sM9GDUTG0kbCecu8vK1Oyt473ofK2d18LmPlI15gPpwiQnaCiEQQtDbls+vezbyZM86WpZ/lV847+aLjR/hPzpu4GfdW3iqdx1HKeODF+t4vJ7ElyKwoMHFplWndy47f/I72v7tYds2rSifyu99AWPq6P4ujvop6GVF8eeyz09w5z7yCwrwN9jLJoobf8eOt16n3v+SbbuceaUl3pqCP8VJc49jPVoMh9OFOMt+U+p/8mmWzfUwWFBy2RyNindeRPoT30+az4172byBDxgvCqfHh54LAUZp0DZ6K7TvCHNmz6LMY095ljv3ccH6pDFg/jY4/qL93ElOWu9fttleSp4yMBB6gQ/X/JnRJ1ZgxX846uSe3AaRoSu0RhtNy55v2XGgpaWF6pImDoaSQsViYurRkil25fPpRddw7+LrKHf3L5p/sWk3dzz/TX7bvYYI1h+1KezlKydWEBGJD45bN/jsousoGA8V9kFwaDqluj3UeKr3BWb4voXLsIofdwYruPfUpTzjn4XQC0Evhuj8vUqtgM8uvm7CIpOjxrMOh7sOh8Oy81LfTjxaEL+/D02Y1BmtTHV0WB96wwN5mYsCzps3j+YuaxpDjaMDXUikab33zf4OukP2yNRTu14ipJlxhf98LcC8vA4rXZsJR9ltX8zeU9OEy2+t9ELC8rZyrpyZEFgFwDkXHNnjuMQZ4/t34HCXla5OahoQmgNHddnQB6aZsiIH128uZO3cDnze9F0zsUHrALqm4QqE2ds1k22BRXz78b1s29uaGAKOJUJ78803c82WhXz0/cXEdFhLC3Vuv6oI7TRpzu7fbKX1/gdt27Q8D5X/8f/jbBj9zfpAdWn+bZZCVMPmTxHREs6XT/Sw6xefZ1aSHqOu6xSuSJlTCYSPnew/2Hv5xGge+s63l8949pwi3NfG3OkDj0ir8R1kytHEAHsE5K1uGPd5tAPSL+Vpr0tzOBxcsNjEIaztLq2LTSsEBQVJTtDBP5AYDQCUnAWF9YBVr9j35/76aKcjPiIqVpcWm+MZ6oWWNwc/MMqKuW7OWTCyyR6TykmzJg002Ts7MZg5yqHkI2VF+RweOOdjXFl3DnrK4t8XCfK9vc/yqcbr2NFXyr80n0unmWdTR7/r7PdRnz/xX2RTPPaus+Nhqz4jKHUe6VzKl1s30mIWIxxlIKwLShcaH5hxHh9yrxqfUT7jjdAg/1pcLutDU6AF+BvPy3h6BVNkF7cWvhB10JwI77nW7M0MYRgGRVUXWv8XJtV6ZzSSFhO1tUfT/rjf6kyLSW8s9ZzA0GT6U50xXPa6jZqCg6w7XsGsPQbztgtuveAaRO9W+zEZqP9LBwf2N0UF/y3nYUr3UTRNn9DOzlxC6DqOOusmOVbMnd9lRUX8frtSe0FBAbfeeiszZ1rRig1LvXz1zgouW9bCP3+8nLKigZ0DGYkQ3HOQjh/8kpbPPWD/+S4nFd/6XCICMgZcKREk/zZrlJDhKyU03V7zdaHnz2hJncOyeBaiov8EhL6UKQOuRWeh5Y3veK4YJZe8F+FK5OUNv8mOX/4fq+b3/3nTpxg0HXwZb3I9GuDZtGFCbOtHUsrTKA2BGYynPEP7rWzPpRefy5KSXzPD+WuWVz7N5ZekTEA4mFKPlhRFC+09RKSpNf5ceFzDco4HqkuLy7OlRu0GQNMEn7i2mK9+Yvjrw6Ry0pqamigqaqUpqWlA04y0OD4x3LqTD8/exFdX3cLswv6K4/v6DO49cTn7g9XRCJW1uF/bsIHVA6RMJ4KGErsu0vFIAftCJXzu1CU80TsXqeUjHKXEomdT88r4pxV/xfUNF/RzPrOKgmvQdR2n04rynV++iwuOdvL3+U9TZ1jSFk6nE3yXZtJKAOYv3Eh3nxVFtSYPSKQZS3nahwjvDp6wSW+syW8ENPCO01iWkeKcBVqi8FqTHfztre/hji03svmcC5gxfTr0c9I2pNXEdHHwaC8g40HDKV1H0DQNR3X5kMedScTq0rSok1bY0b+Gsaqqittvv73fdJKpFQZzanop9CWibWZfAP/Lb9H+Hz/j5Ef/kSNrb+T4++6i7esP2QrwheGg/N8+PW6RKfeKlA7P13Yhoyr35evvQXckbNSTihQ1TeBd8mFb6jZG6igod/KcyHFG1CzHPT3hGGtIOn/3JMvn9q9LO2e+RN/zJqIrKdVpCDwXb+m374RQUAfl1nthlEXTiNGUZ3Cf5aSVlZXxqXvuYv2qOu6+82PWIPUYoV44stV+ziQnLbWr071yIcI1cETRtt+SsxL76U7CXQ7CbdH36DTNAzF0TVBXPfxMVNaJ2Y6FUy3H8E4TEI2MCqA2rwqXfvo3f7yZnl/Fl1d8hCeObuORd5+iNylci3BhSoj5yGsq5vKB6enTuppVPg3ziBb/0n+ubzpP9JxFWDrQHMVoWuIC2jJtNR+aeWH2pTcHwpgKnnU4zWes2ZESzpv/ElNKmwGBYRhWc0HexDRljITaadN4+516fJ6d1Bpt4K/HjPjRNScHuk6yACvSt3XnywQckXgUzSkiLMk7Ba4l6ZXeSEZo4FoMfX+Jb3LJt5k//yqam5shuBsiSdFA4QFP5ruAJ4IDzQ4kwXhNWlXXMctJm6KctBjxQevRxp6CTnsEbdasWVx//fXx0VWpaJ099PzxRQLbdxHYvovgzn3IASYB2A/SKPunu22DsseK0VCLVlyA2WalAM2ePoK7D+I6eyaibD5a9UoiR/p/URsuD9qcq/ttl6HwAPpoE+ekYXjwLiunb3di5FPlvqP0dBxlQYOPt/ZZ31FF+Rqe8E7OOpZU8yXAfVYeWv7Ej9CL07AFmt+wImlgdXk6vITePYKUEiGs9GZ1dTX5qXYd2WqT7iB/KpQmnPX+o6AG7+pMRricuJfOtSKg0e/JvoMejJIuaHwZzLA1vH0cyeKwyMgx+97mUCQxaUCi01BYmzF7dKFxae1KvnnOx1lbOfDdXJ2vkk/MvzKtRfi1vgoiMpFm7TTdBCIeNKMcEb3wKtyF3LfsJv5qzubccNBiFFyPpon41IbZNQkNOKfTCe7lWVEbJYTAWWgNnq9zWFG+WF1acofnk/ssRfOY9MYidyNu3YS8DKU6Y6TUpRFIujPt/ZP9Nc+51lzNSUbEFPQGRHy+uTvsp7C3Dd3tQistyrR5WUM8kqZpaEJQ0JmIpC1fvpybbrppQAct0tJG08fvp+qeb9F81z/R+dBjBN7cc1oHTRgOyv7hY+RdfO64/h5CiH5F87GUJ4Bn+W0YhpFyDDimXxSXfbAd+/JbmF0Jh0krLsA5v6HffuNJ3oY1tm99X0eAt554mtuuKmLtYg8zKvv4zI2l7N71JpVHumzHeteObXb0iJlhRe0cBWGEQ1pzMqWJ2dmNeap96GNTBWzrL4lHMs2uHvzb7cOMvMN00iCpsUNz2PXSgt1wauegx42WSeOkmaaJi3fiIrYAQhjMSFM92lCUuPK5Z+HVfH7JB6lImh5Q6PTy2cXX4hmg42cimeItxTDyCYTcBMJOgpECnO6iuPbNxpol/Nua21hQMj2tdo0Lvs2gFeF0Om1DpB0OB7quQV7mU50xaqKL0DRHOwBCRDDNCIe7m4hIk3A4zC7/MSAhvbE6PxqhylQ9Wgx3yqLmT7ozPUPq0UIRgTTD8Xq0mu4jCKFhVJdPrI5UjhGLpAG43C4KugMYhsHmzZt53/velxAeTcL0B2i640v9JgUMhlbow7N+BcV338iUxx7A994Lx83+ZPo1D7ySNF56xmU4C6tsWU2ny4U+7/oBz9XzB3v3s/fCVYgB3ovxRG9Yg6s2EcnUMen44wsUek3uvKaEK1c1k+9sp+vdQ7hbEylboQm8mzYOdMqJo6AWKpYgNBLRtJSU54BEQnDoSfu25CkDz79u16VrqMUxgm5sW0paM/AfdieGIgxDimOkTJp0Z3t7OxWFJ/h9aFZiYxo6O0fCsrJZPLDmdv54/HW27XqD21ZebXPa0oVLN5jiK+eEplvyD9FVpdjl42Nzr2B5+cTN8ptwhBPyr0J0fA+v10soFCQcjuDxRItjfWOTXBhPfKXn0H3coBA/hZqfDtNNMBRE03TaRC/P73iVHlckLr2hCclKX1NUemPB6X/ARJLqpAV2gtmHhh/67NIDk7UeLRKWVjFzvLPzMEJzoKumARuxSBqA4TCo0Rzc++nP4MobWKdQSsmpL3y7nwp/Mo5p1biXzMW15CxcS+ZiTK9BaBMfc+gnavvaTmQkYjlXuhN9/g14X/0GoVAI0zRxFlRBXf9OchkO0/uUvdA876JzJtR2AKpWkDezj8BhN0jQMKk+1MSOHTtYssRqbHjzzTeZdrQFLXZhC3DX+NFnr514+1Jp2AJN2zFKQwRPOhMpz31H8KwaZHrJiRcgmNSV6i6BqkS5Rb9U52mkN1JxzqlHK8rHbO8C3YkZCBBsdOKaErR+9qJbR3S+0zFpImmxSQMnI7HctEDTDKbnV2XUrlRcupPLaley3jkrIw5ajJXlUUHSqIO2tnI+/7769tx20GIUXAdYBbsulwuHw2H9ms75YEycZt6I0TyYDiuFUBttbDCjdRRNZhdP7LUW8Zj0xjxXMwWOkOX0ZLqBQy8Boz5pQwQCb1Lo3EFsFikAjrqU/SYPsaxbrB6tuuuoqkcbAC0/D70sUYZCOIzW3D7o/p0//BU9v00Z5VQ3hYIbtlD+9U8x9U8/ZOrvvkPZ/Z8g/6pNOBtq0+KgARiz6tAKEo1pZlcPob0JqQ3m34TuLsTtcqHrOuLsm2GAchH/tp3Wl3wUrcCHe2Uabry8FXgXJ4nvAlVNHbzxvLXWSCl54403aDh+kuRYsGeBF7wZkJWZcTkAzrLobMxoyjO0/+jgx6ROGajfBFHdUWma9D2bMgrq3OGnOgGEpuGJdXlqVhlH36FoEODES7ZZo+PBpHHSWpqP0pPcSSygJq8SdwaaBnKBD0xfz5V157C6Yi6fXvgB7ll4NfnO9CvwTwiuuVZheypZ0NWZSl7peQgBddGUpyYihMNhGsMd7OyzUp2xpoFVvmitWqZTnTFcKXeg/lcpcr5u3+bdMGBX22QgFNGiQsTW8yldx9B05aQNRHLKEyB08NiA+/U+s422f7WPUgpVlVD903+h5NN/Rd6mc3CUFw94bDoQmoZ7qb0L3/9Koi4N3xS47Mdw1nUcqvoQLL1zwPP0pqY6L1iZHv0xwDh7ZaJjEtBlBP+z22lvb6ezs5POY42UnkwIVAsh8K7LgGg2WAX/lcsS6U6AiJ/QYOlOaQ5cjxYluPsAkZb2+HPN6xmVOG9cL01zACKhlxbogNbdgx43GiaNkxbofI1D4eQPr0ZDQeaaBrKdPMPNh2dv4jOLrmFN5QQrSGeCaDTNRhbVo8XQvStwOAxqo80DumZNSXjX30inN2yT3ljtayKj0hup9KtLe21gJ22SYsaGqkuBYYYp7WmyNNKqVbozFWNGipM2QCQkuO8ILZ/6GgnhKSsK1/qx96PlZ482o2vFwKK2cSqXwYavcbziygE7/WQkQu9T9tolbzpSnTGiKc9YqEwXJlOPtrF9+3aOHz9OzbG2hISIAGd5EGNBGu1LpeEKm1NJ2B/XSutH0+vQm9RZbnhhakI5IVXA1r1m0aicY5temu4kcMyFGYy+oUf/POLzDcWkcdK04NsJEVsAsqNpQJEhfO8BLUl92jkXnFmYynUvwzCMqFYaaJpJOByiSXaDSDQMTHe2U+Hsi0pvZC6SYCO1w7P3Gdz6iaQNDvCOb4dddiGtIJoJ1d1HEdKSmVCRtP6cLpIW6eii6Y4vYfYkaahpGuVf+ySRyiy53qOk6q75X92BNIef4gq8tovIqY74c83nnVjpjVSqVuKZmXifdSJUn+jgtZdf4fjx40w92mbTefPM6oPK5QOdKT3MuNzq8NSjzrsZItLSSqSts/++qVG02gtso7jGWo8Ww5haiaM2WkqlO5GmIHAs+nP2Pz6qcw7GpHHSPPpeDobTOw5KkcXoBVD5HXCeRVdoNlQ+kJ1pN6MO3VlGjbMbXZjxyJkZXfRj0hvxVGdeFnVKuubaJmYge+yvu1eA5mOyI6WgpusIJhpCCHQlZNsPx/QUJ+1AwkmT4TDNf/svhA+fsO1T8smbJ2TY+FhxnjUdzZcoDTHbuwZPvw1Az5P2KJpnwwqEM40yR0UNuOo96F5rjRGAOxRC330Qf0cXNSfa4jOChRB450oomZM++1LxVSNqVmCUJEfTAv2jaVL2d9KSBGwjbZ0E3txje9mzdmT1aLZjYylP3Up19h2M1ludfBW6jw9y1MiZFE6alBJfXiON4SQVdM3JjCxrGlCkmbzzYdrTvN3+JXBlaUpXCIR7GR6ng6kO6+5a0xJ3sXHpDV+WSG8kIwxwDREBmMSpTiCuj4aMzezUQdNwVJae7sgzjqEiaW3/8iP8L9nnHvret5H8D12eFttGitB1XEPVpQ2BNE16U5y0vE1pTiUKDTFlBd6GRMpTI0LNsXamNHXhjMlTCHDkh3EuOHvcBVpHTMMVp69La38XOvYnnmsGTEtIsfQ9/7otle6cXTemz2o85Sk0S4rjUJLW3/7fjvq8qUwKJ800w3R7RPI4Z2ryKtKuP6ZQjAr3UlvKU486aTHpjUqjh3pXJ+il4Bqk7TxTpKY8k8mmqN9EEZs00H0UTdfRy4vTVgCeSzimlNuiRWZbJ5H2Lrr+90k6/9v+heZaMpfSz92a1VpzqXppgVeHJ2IaeHMPkebEzEjN68GdiWhh1Uq8s3oRUS9NFxGmHm2n7lgHurCcNIHAM6sPUZXBVGeMGZdhlIUTz80QoZ0pjnFqFK3mXHAlSl76TxkY2zQK98oFieyMw02wyUmkN+pS7fvNmM6dzKRw0oT025oGJLpqGlDkDu5laJqg3mlF0mKSG7F/V+U1WmuBZ0PmpTdSSW0eiKGXgTNLo5fjiQRNmlR2n4jKb6imgYFIHrQeo/sXf6T1i/9h2+aoKqPiXz+V3vTfKBho8oCUcpC9E6R2dXrWL0NzZyCYUL0Sd53fUvIXlqhtXk+A6UfabPpo3lm9ViNEpsmrwphlF1cPvm2X0ujf1ZkQsJWRCH3Pbbe9PNp6tBh6cQHOs6I2RVOe8WjayVeha+AO5pGSZSv+6NBEgANJ9WgSh6pHU+QOrkWAoMHTDYAWrU1zxFOdsXq0LEp1xhgskuZZn30O5UQgBZU9jeiRiNU0oOrRBsWot6/JbV9/CBlKREeEx0XFN++1a6plKc55DQhPIr0VOdVB+MDQX8pSyv7SG+ns6kymbCGa24G7zlLw15BomOimaTUNCNBcJu6p/uxw0gBjhV0UOLQvqUO4+zg0Jw2rFwLqEzOae598IT5zFayuYdeisdfZeWIjoqIpz7heGoxbynNSrKK6CNjGQSEczChQnZ2KHEEvAOdsGryJwnuHHkETJgV6kLM8bVi3tVkivZGMowr0AT5rZ0KqE0uWqabbahpQQrZDY0yfOuTrZV/8RCIykeUIw4F7iX2WZfIcz4EIvrWXcGNL4hxu55gK18eEwwUVi/HO7I2nlXVMdBFrJhDWa6UN4M4Op9lYfbXtvi/SEcI8ust6kipgW7EU8qxRTzIcpv2BH9te9p6/EuEYe1mCbUSUw43/oDtR9rZ/fFKek8JJ07QQJ8KJ3LMQqmlAkWO4llLgCFHqsO5snYZVJLsyrxFdyKj0RslQZ8gcA0XTPOf13zYZkYKarsMJJ01F0gYlNZKWTNFt14z7QPSJxpU6xzNVLy2F1IYBz7plaN7+g+XTRtUKPA1RKQ5hCWnHomiILJDeSEEU1eCo8ti2hZ571PrPwRQnLamrs/vXWwkdSuq21HUKb7l6XGxyLTkrkZrX3YQ7HYTbo87fydega4jJCMNkUjhpEUG/pgGvI4MXv0IxUqKOzlmedhDCSnkKwZr82JSBLI5MpdaluRaAIwMjZDKBhCmxzk5AV5G0QRkskubduJrC265JszVjJ3WOp/+VHYPWpUkp6XnSnupMe1dnKlWrcORHcFYFEUJgCIlDmAgEQpd46vsgG5oGkjBmzbA9D776DI5wV//B5lEnTQaCdHz7p7aXfO85f8gbhpGguV24lkQ7faMpz+ZflRPusNaD8Uh5TgonLZg0J96UGjOLsmg+o0IxHKKOztUl75CvhxBCsNrXyDJvVHojG+vRYvguAZLGr+UPMO1hsmIKqrqPo0dnR6p05+AYKVppYMkglN1/Z9pmb44nrrNnIdyJ6z7S3Er4SOOA+wZ3HyB8NKGEL5zGmLsLx0zUAfM2WCOgNBFNdwpw1/vRnBIqsqMeLYZz4Srb89DBk0xp+Q3ISGJjyRwotNLmXY8+YU8xGw6Kbr92XG3ybliReOJwE2x2cuLhavzHXOPS5Zl7n4wBCEg9/n/VNKDISZyzQPiY7urk+/VP8O/V/8dnql+2ujq1kqH1yDKNUQfVPwLfFRzqvhEKb8y0RWmjtLcZZyiAFnPS1EioQdF8Xluxtl5SSMU370XL8wxxVPYiDAeuRal1aQOnPPt1dZ67xCaImxHcxVA8C+/M3qSNViTQO6sXnPlQkl1TWoy5c+NDzQFCLQZTmn5l3yk6q9Ps7qXjP39ueyn/2ktwVI1vlD//ms24FsyynkS7PCO9Oid/Ukn303ugc/hCxwMxKZy0oEwuAHTQoMZBKXINoYN7MQAuzaTSSFLv927I/k7JvA1Q9V2O912R/baOI7FJA5qmoRXlZ7bGKAco+/Jd5G1ei3fTOVT96P6clyxxL7dLcQQGELWVUtL7xHO2bd5MpzpjVK7AqAjhKErqstWkFV2rWJJ1n2VjxlRIKmUKnTIQpIzkiqY6Ox/5LZHWxPgt4XFT+NfvH3ebhNOg8vv34b1oTTzlCSBNQcvvymi7/59HNDYslez6C4ySYFIkDaFmdipylMHkLLI51XmGs+r4s6ppYAQY06op/+o9VHz9U9YXbo6TKmo7UCQttPcQoaSRV8Jw2FNkmaR6JUJA6cWn0D0RhCEpubAVPc+EqiyxMQmjvgacichruMuBGUhyY/KnQtnZRDq66PzRr2zHFtx0BXpp0YTYpXndlH/tkxTeerXNiQTo+N83ab77K5i9/vi2SGf38M89blZmCeWuYvIMdTeryEEGFIYVk3+8Uo5SJY8yp3UnJkI5aWcoroWzbcK74RPNhI+dtO2T2tXpXrMILT8vLfadlqqVAHjq/Ey9/ShVH91P/pKoA5El+mjJCKeBMa3GlvIMtyYJH9dvBiHo/N4vMLsTaVytwEfhTe+ZWNs0jeI7PkjZ/R9LDIMHMEP0/vE5Gm/8+3h9XM/jfx72eSeVk2ZKjVlFdZk2Q6EYHQM5aa7F2Su9cYbjjASsKJqwBqurpoEzD+Fy4lpor9vyv2KPpvWk1KPlZUrAdiAK6sBrXbdCx5pAEKMiQxpup8FoqLVFq8KtSU1L9ZsJN7XS+ZPHbccU/vX70+YY+97/Hqo+Xo7uTWpmCAcI7j7AiWs/SeCNd+h57E/DPt/kctJMjbNKVGenIkfRS8Got2/LpoHqCjsRQSSa6gRyvr5KMTpcy1OkOJJEbYP7DtsGgQuHjueClWmz7bQIAZUDpDVL5tjmXmYTRkNtvEAfkpw0dzFUr6TjwZ8h/cH463p5CfnXXZpWG10XvJfqG0/gLI/aEbFSnZGWNho/fC+Bt/cO+1xZ56QJIWYJIfxCiEdGeqzEwcxC1dmpyGFsTpkGvvQuLorhY5oaIWnEnTRdpTvPSPrVpSUNW++X6ly5AL0wPy12DZvqAZzGLJPeSMZoqLWcS91yzsKnok5a3SZCx1ro/vkfbPsX3no1mifN81FnXIaj0KTqg41W96wZisuEJI9CGw5Z56QB3wJeGdWRqmlAkeuU/B3kbcYfqYKy+8A1N9MWKQYhFDbiTQOgNNLOVFyL5iCMhMJA+EhjvPao36zObOnqTGagSFqWidgm42yotf7jsCRMwq0uq6ty3g10fPunyHAizeiYWkn++y8a6DQTS14lVK1Cc0rKr2ymcFUHhAOjOlVWOWlCiGuBduCp0RxfpOfjM3JTc0ehAEAvhuofsL31m1B0c6atUQyBZlr1O5oe00hTTtqZiOZx4Zw/07bNv20H+sk2gnsOJe2o4b1gFVlH2dn9OhKzsWkghqN+SjSS5gJXIcGuPMz1DxLsKqP7t8/Y9i362HU2BzqtNGwBLP+xeH07Ze83R2VL1jhpQogC4B+BvxvN8abUqPeqKJpCoUgPIlpjrWk6wu1EK87OGh7FxOMeoC7N89o7/fbRSwrTadbw0A2Yd1Piec1aKJo5+P4ZRnO7cNRGZ3PrbiJ6HiFzDu3//t+QNJbLmDmNvEvXZchKYPqlljMZxTdtJ5UP3D7iayBDLuaA3Ad8X0p5RCT9YoMhhLgFuAWgcGYZwZCBu8tk69atE2vlONHd3Z0ztiaTi3Yrm9NHrto9XJLXnXmGD6QkFArRV5rPM888c5qjM08u/n1ywWaXEaY0mChWb/rj8xiGTjB5W20xu7P09xDmGkorNcK9p+j2bCSc5ddyideBO/remlKy4xs/xPen12z7NK5fwN6//CUT5sWZ72igoCdRo3j4+GM0fvIaPC/vgh2PDescaXHShBBbgfWDvPwc8HFgI7BkuOeUUj4IPAhQMLNShk2DLasuZEn5rDFamx62bt3Khg0bMm3GiMlFu5XN6SNX7R4uyevOfGeB1HUdl9NJ0dxZzM+B3zsX/z65YLO5fCWHH/wtRKx6KGd7D8FgEKczWtQuBEs/9mEcFdksp7MpJ95rgLbXDtOx2+qaDQaDlDz3NjgTUhyuBbOYdddfM5yAz4RSdjM8e2/86WxtN7O3fAO2XApfvGdYp0hLulNKuUFKKQZ5rAU2APXAYSFEI3AP8H4hxGtDnDbpB4Cmacwsyn0Fa4VCkTtoujXtRDUNnNloPi+ueTMGfd29dG6WO2i5hRFrHhiEojtvyLyDBjDjMlvKk5a3oOPgiE6RLTVpDwINwOLo47vA48DFwz1BhaeIfNU0oFAo0ojTsNTO9SrlpJ3ppEpxJOPNJgHbScBQTpp71UI8qxem0Zoh8FZA9Rr7tv2/HdEpssJJk1L2SikbYw+gG/BLKZuHc7zQNK6as2FCbVQoFIpkhCbQVSRNESVV1DYZ78bVabRk8mNMrxn0teJPfDCNlgyDGZfbn+/79YgOzwonLRUp5ReklB8a7v7FwssVdWtOv6NCoVBMAMpJU7iXzgWt/1eqa9EcHFVlGbBo8qLleQac8OE9fyWuRXMyYNEQzLjU0uGI0fL2iFKeWemkjRSXcKCLSfGrKBSKHESNhFJo+Xk459T32+69SAUQJgKjIaUGXQiK7rg+M8YMhbcCpqRcA/t+M+zDlWejUCgUY0HX0cuLM22FIgtwr+hfl5annLQJwTm73vY879Lz+m3LGsaQ8lROmkKhUIwBR2UpwpFNkpOKTJHqpDnnz8RRU5khayY3+ddsRsvPA6xIdvHdN2TYoiGYnpLyPLVj2IcqJ02hUCjGgKNa1RspLDzrlsZHREmg+M5hl1YrRohjSgVT//AgLXd/gOqffS276/685TBldB2+6vZPoVAoxoCuZnYqogiHg+qHv4z/5bfYduIwc85ZnGmTJjVafh7BufXohfmZNuX0zLgcjj074sNUJE2hUCjGgGoaUCQjnAaetUuJlBdl2hRFNpGa8hwmyklTKBSKMaDkNxQKxWnxlo0q5amcNIVCoRgDDpXuVCgUw6Fhy4gPUU6aQqFQjAHlpCkUimEx/TJwjqx+TjlpCoVCMQZU44BCoRgWnhLY9J9Qc+6wD1HdnQqFQjFK9JJCNI8r02YoFIpcYep51gMxrN1VJE2hUChGiYqiKRSKiUQ5aQqFQjFKVGenQqGYSJSTplAoFKPEs3Zppk1QKBSTGOWkKRQKxSiIFBfgu/KCTJuhUCgmMcpJUygUilFgFngRup5pMxQKxSRGOWkKhUKhUCgUWYhy0hQKhUKhUCiyEOWkKRQKhUKhUGQhyklTKBQKhUKhyEKUk6ZQKBQKhUKRhSgnTaFQKBQKhSILUU6aQqFQKBQKRRainDSFQqFQKBSKLEQ5aQqFQqFQKBRZiHLSFAqFQqFQKLKQrHLShBDXCiF2CSF6hBD7hBDrMm2TQqFQKBQKRSZwZNqAGEKIi4B/Bq4BXgaqM2uRQqFQKBQKRebIGicN+AfgH6WUL0afH8ukMQqFQqFQKBSZJCvSnUIIHVgOlAsh3hVCHBVCfFMI4cm0bQqFQqFQKBSZIFsiaZWAAVwFrANCwGPA54B7BzpACHELcEv0aUAI8XYa7BxPyoCWTBsxCnLRbmVz+shFu+cMd0e17mSEXLQZctNuZXP6GNa6I6SUE20IQoitwPpBXn4O2AK0Ah+WUj4UPeb9wOeklEuGcf5tUsrl42RuWshFmyE37VY2p49ctHu0Np9Jv2smyUWbITftVjanj+HanZZImpRyw+n2EUIcBSbeY1QoFAqFQqHIAbKiJi3KD4E7hBAVQohi4C7gt5k1SaFQKBQKhSIzZEtNGsB9WLnlPYAfeBS4f5jHPjhRRk0guWgz5Kbdyub0kYt2j9bmM+l3zSS5aDPkpt3K5vQxLLvTUpOmUCgUCoVCoRgZ2ZTuVCgUCoVCoVBEUU6aQqFQKBQKRRaS006aEOIRIcQJIUSnEGKPEOKvM23TcBFCzBJC+IUQj2TaluEghNgatbc7+ngn0zYNh1yaB5v03sYeESHEA5m2azgIIeqFEL8TQrQJIRqjYtTZVPPaDyHEXCHE00KIjqiI9nuHeZxad9JArq45oNaddHEmrDs57aQBXwbqpZQFwBXAF4UQyzJs03D5FvBKpo0YIR+XUvqij2ELgGaKpHmwNwP5wHnA/owaNQRJ760PS+C5D/hZhs0aLt8GmrBm7i7G0kW8PZMGDUV0IX8Mq4O8BEug9hEhxOxhHK7WnfSRU2sOqHUnzUz6dSennTQp5Q4pZSD2NPpoyKBJw0IIcS3QDjyVYVMmO/F5sFJKU0p5TEqZKzNhr8JafP6SaUOGyXTgUSmlX0rZCPwemJ9hm4biLGAK8K9SyoiU8mksYe0bTnegWncUp0GtO+lj0q87Oe2kAQghvi2E6AV2AyeA32XYpCERQhQA/wj8XaZtGQVfFkK0CCGeE0JsyLQxQzEJ5sHeBPyXzJ32628A1wohvEKIGuASrAUzWxGDbDt7WAerdSdd5MyaA2rdyQCTft3JeSdNSnk7Vkh5HfALIDD0ERnnPuD7UsojmTZkhHwamAHUYOm7/EYIkc3Rg9R5sIuBJVjzYLMaIcQ0rLD9Q5m2ZQQ8g3UH2wkcBbYBv8qkQadhN1bE4JNCCEMIsQnrPfcO52C17qSFXFtzQK076WbSrzs576QBRMOGzwJTgdsybc9gCCEWAxuBf82wKSNGSvmSlLJLShmIzld9Drg003YNQV/03weklCeklC3A18lum2PcCDwrpTyQaUOGgxBCA57AclbysESpi7HqcrISKWUIuBK4DGjEijA9irXQD/ccat2ZQHJwzQG17qSNM2XdyeouiFHgILtrQzYA9cBhIQSAD9CFEPOklEszaNdokAwcus0KpJRtOTwP9kbgnzJtxAgoAWqBb0ZrtQJCiB8CXwQ+lVHLhkBK+SbWXSwAQojnGV0UQa076SGr1xxQ606aOSPWnZyNpAlrxue1QgifEEIXQlwMXAc8nWnbhuBBrMV8cfTxXeBx4OLMmXR6hBBFQoiLhRBuIYRDCPFBrI6lJzJt22nIuXmwQohzsNI7udJdRTRacAC4LXp9FGHVtryRUcNOgxBiYfSa9goh7sHqEPvRaY5R604ayOE1B9S6kxbOlHUnZ500rDuV27DChG3AV4G7pJSPZdSqIZBS9kopG2MPoBvwSymbM23baTCw7k6agRbgDuBKKWW26xbdhyU3sAfYBWxn+PNgM8VNwC+klF2ZNmSEvA/YjHWNvAuEgbszatHpuQGr6L8JuBC4KKlrczDUupMecnXNAbXupJNJv+6o2Z0KhUKhUCgUWUguR9IUCoVCoVAoJi3KSVMoFAqFQqHIQpSTplAoFAqFQpGFKCdNoVAoFAqFIgtRTppCoVAoFApFFqKcNIVCoVAoFIosRDlpCoVCoVAoFFmIctIUOYkQ4qAQok8I0SWEaBdCPC+E+Gh0nptCoVCMO2rdUaQbdWEpcpktUsp8oA5r5tynge9n1iSFQjHJUeuOIm0oJ02R80gpO6SUvwauAW4SQpwthLhMCLFdCNEphDgihPhCbH8hxONCiDuSzyGEeFMIcWV6LVcoFLmKWncU6UA5aYpJg5TyZayZiuuAHuBGoAi4DGsI75XRXR8CPhQ7TgixCGu48O/SaK5CoZgEqHVHMZEoJ00x2TgOlEgpt0op35JSmlLKN4GfAOuj+zwGzBJCzIo+vwH4HyllMAP2KhSK3EetO4oJQTlpislGDdAqhFglhPiTEKJZCNEBfBQoA5BSBoBHgQ9FC36vAx7OmMUKhSLXUeuOYkJQTppi0iCEWIG1WD4L/Bj4NVArpSwEvguIpN0fAj4IXAj0SilfSLO5CoViEqDWHcVEopw0Rc4jhCgQQlwO/BR4REr5FpAPtEop/UKIlcD1ycdEF0cT+BrqblahUIwQte4o0oGQUmbaBoVixAghDgKVQBhr0dsJPAJ8V0oZEUJchbUQlgDPAAeBIillcuHu54D7gAYp5f60/gIKhSLnUOuOIt0oJ01xxiKEuBG4RUq5NtO2KBSKMwO17ihGgkp3Ks5IhBBe4HbgwUzbolAozgzUuqMYKcpJU5xxCCEuBpqBk1iFvgqFQjGhqHVHMRpUulOhUCgUCoUiC1GRNIVCoVAoFIosRDlpCoVCoVAoFFmIctIUCoVCoVAoshDlpCkUCoVCoVBkIcpJUygUCoVCochClJOmUCgUCoVCkYX8P3SkdH+bBDcvAAAAAElFTkSuQmCC\n", + "text/plain": [ + "<Figure size 720x288 with 2 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Separating the two equations #\n", + "\n", + "# Eq.1 ------\n", + "col = sns.color_palette()\n", + "col_pte = ['#436bad', 'orange','crimson', 'gray']\n", + "col_pte2 = [col[0], 'gray', col[4], 'gold', col[2], col[3]]\n", + "colors={1:'dimgray',2:'gold',3:'mediumseagreen',4:'darkorange',5:'crimson',6:'royalblue'}\n", + "\n", + "term = 'Dfi'\n", + "res = '80km'\n", + "fig, ax = plt.subplots(1, 2, figsize=(10,4), sharex=True, sharey=True)\n", + "for i in range(1,4): # loop over simulations\n", + " ax[0].plot(dur[exp80[i]], dfi[exp80[i]], color=colors[i],\n", + " linewidth=4, label=expname[i], alpha=0.9)\n", + "\n", + "#plt.legend(ncols=3, loc='upper center')\n", + "for i in [1,4,5,6]: # loop over simulations\n", + " ax[1].plot(dur[exp80[i]], dfi[exp80[i]], color=colors[i],\n", + " linewidth=4, label=expname[i], alpha=0.9) \n", + "#plt.legend(ncols=3, loc='upper center')\n", + "#ax = df_track[['dfi', 'ep','itt', 'eq1res']].plot(kind='bar', stacked=True, title='', color=col_pte, figsize=(6, 3))\n", + "#df_track.plot(x ='Unnamed: 0', y='dp', kind = 'line', ax=ax, color='k', linewidth='3')\n", + "\n", + "ax[0].set_xlabel('Day', fontsize=12)\n", + "ax[0].set_ylabel('hPa/'+str(dt)+'hr', fontsize=12)\n", + "ax[0].set_xlim((3, 9))\n", + "ax[0].set_ylim((-6, 6))\n", + "ax[1].set_xlabel('Day', fontsize=12)\n", + "#ax[1].set_ylabel('hPa/'+str(dt)+'hr', fontsize=12)\n", + "ax[1].set_xlim((3, 9))\n", + "ax[1].set_ylim((-6, 6))\n", + "#ax.set_xticks(np.arange(9, 32, 2))\n", + "#ax.set_xticklabels(dur[exp80[i]].to_numpy())\n", + "#print(dur[exp80[i]])\n", + "#ax.set_xlim(np.min(df_track['Unnamed: 0'])-0.5, np.max(df_track['Unnamed: 0']+0.5))\n", + " #ax.set_xticklabels(df_track['time'])\n", + "ax[0].yaxis.grid()\n", + "ax[1].yaxis.grid()\n", + "ax[0].xaxis.grid()\n", + "ax[1].xaxis.grid()\n", + "ax[0].axhline(y=0,linestyle=':', color='k')\n", + "ax[1].axhline(y=0,linestyle=':', color='k')\n", + "ax[0].legend(ncol=2, loc='upper left')\n", + "ax[1].legend(ncol=2, loc='upper left')\n", + "#plt.legend(bbox_to_anchor=(1.0, 1), loc='upper center')\n", + "\n", + "#plt.savefig('TimeseriesPTE_'+exp+'_'+str(dt)+'hrly_Eq1_upper'+str(int(p2level))+'hPa_box'+str(int(boxsize))+'_CyCen.png',\n", + "# bbox_inches='tight',dpi=200)\n", + "ax[0].tick_params(axis='both', which='major', labelsize=12)\n", + "ax[1].tick_params(axis='both', which='major', labelsize=12)\n", + "plt.subplots_adjust(wspace = 0.05)\n", + "fig.suptitle('Eq1: '+term+' Term ('+res+')',fontsize=14, weight='bold')\n", + "plt.savefig('CyclonePTEtimeseries_Allsim'+res+'_'+term+'.png',\n", + " bbox_inches='tight',dpi=100)\n", + "plt.show()\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 189, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnwAAAEpCAYAAAAJRv+PAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAC/lElEQVR4nOydd3hUxdeA39mS3XRIgFBC7z1IExAJTaxIU+mCCnY+7L0XbD87NiwgIEVEAQuKQOgdAoQSaoBQQtqmb5/vj0022fRAAkmcl2efMHPnzj137925554554yQUqJQKBQKhUKhqL5orrYACoVCoVAoFIqKRSl8CoVCoVAoFNUcpfApFAqFQqFQVHOUwqdQKBQKhUJRzVEKn0KhUCgUCkU1Ryl8CoVCoVAoFNUcpfApFApFFUMI4S2EiBVCOIQQrSroGDFCCCmEmF1B/W/K7v/WiuhfoVB4ohQ+heI/jhAiIvvBW9hn0iX096kQYrcQwpbTz2XKF1OMfOHZbSYVss0khNgjhHhUCKErou/C9ivwuRz5K4hHgQbACinlkZxKIcRAIcQqIUScEMIihDgvhPhVCNE1785CiK5CiJVCiFQhRGa28jX4Cp/D+9l/3xFCiCt8bIXiP0ehg6BCofhPYgX25KuLv4R+JgKO7H3rXa5QeUgDDuarSy2k3aHsts2BMOBToCUwrZC28cC2POWe2X8TgOOXISsAQggvKaX1cvvJ16cWeCS7ODdPfRvgT8ALSAYOAO2BYcAAIUSIlNIshOgErAd8cJ1nKtAb+EsIcbOU8p/ylLcY/siWsz0wCFh1hY6rUPwnURY+hUKRw3kp5bX5Pn/kbBRCDBdCHBFCmIUQ64UQNxdhCewkpQwGfirqQEKIJpdgRdxdiHy7C2n3kJSyJ9AIOJ1dN7GwDqWUf+TtL88mj3ohxA1CiDXZFrEsIcQ2IcRtRZzP00KI34QQmcB7QojwPNvuEUKszdNHWyHEYCFElBAiTQjxpxCibgnfQzjQELADf+WpvxaXsgdwi5TyGuDV7LI/UDP7/2/iUvZigGZAE1xKrxb4oKiDCiFaCCHOZZ/Hquxp5VfznNsNQohD2RbDxUIIfyHEY9n7xAshPstraZVS2oC/s4sTSjhnhUJxmSiFT6FQlIgQoiPwMy5LmRWoAywurK2U8nRh9VeJy54qFEKMAlYC/YEUIBboASzL3pafN7LbHsellOXlC6A+rrG3B/A78BsuZcsXuAn4XwkihWf/PSilzMxTvxWwZf//DyHEblwKXxrwtJTyfLbCNSi7zT9SyjQppR1Ynl3XUQhRwCorhGgErMZlsf0buE1KmZWv2RJc37c3cEe2PG8BWUAtXFbJyfn22Z79t38J56xQKC4TpfApFIocGhfiv1Yje9uTuJSSdKCdlLIN8PFlHMsGRGd/Ukq5T7/8PnpFtPtCCLENl3WvYXbdj5ch63u4FJmfgEZSypbAt9l1MwppfwJoLKXsCDyTb9tcKWVrcv3XmgFvSynbAvOz6waWIE+b7L8xeSullIeBwbimqWsCXXBZ/M4CUdnNauFSyAAu5tk9Ls//G+U7Xl1cyl4jXFPGt0spzYXI9WD2fbEpu9wuW56WwKnsuvznllMfKoTwKaRPhUJRTigfPoVCkUNhPnw5FqqO2X83Syljs/+/CHjhUg4kpTxLruJSWvL78KUV0a5t9t9UIBL4AZdlrcwIIWoDTbOLY4Gx+eILWgghgvPtNkdKaQKQUjrytV+R/TemkLoT2X/rlCBWjey/HucvhGgAfAfUxjVF+ivwEi6lc7kQojVQmKIGxVtCh2T/3QUML8YnMe+59QGSpZSbsmU7BTQGQvLtk9cHswaQiUKhqBCUwqdQKHI4n8+PrSSudGTlbilleCna9ZdSRpTTMfOe40k8rWI56POVLxTTX46CYy+kLicauKTvNcci6p+v/iFcgSqZUsp5AEKIObgUPj3QD5iHa4rVG0/FMu//z+TrNx3wwxUAcxvwS2FCSSnzn1teZa6ocwvI839TYf0qFIryQU3pKhSK0rA/+29vIUT97P8X5r9WKoQQDYQQh7M/wy9fvIpBSnmRXGtcFNA3T4DHncAMKWVxCl5FkJOGpUm++sDsvz5CiPbZ/++WZ3tGtr/e6uzyDdmBFTpgaHbdfinluXz9/oJrSlwL/CSEuOFyTyAPjbP/ns3nj6hQKMoZpfApFIoc6gkhtub73Je97QNcqVb8gMNCiEPA44V1Ilx5/Y4B9+apO5b9yUl7ogdaZ38CC+mmMK4pRL5bLuE8y8qz2X9vA84LV26/c7gUwceuwPHzsy77b7t8fm+/kmtJ2y6E2IdrOhtcVseciNgXcVn5muCaRo7BlY7GCTxdxDHvxRW44gUsFUL0uuyzcNEj++/acupPoVAUgVL4FApFDl64Hvx5P6EAUsr9uCIvj2a3SwLuKqKfJrimFmvkqWue/fEupH1p8S9EvtqX0V+pkFIuwhU9uwbXubfF5Qv3M8WkMalAVgPncLnk3JxTKaVcnV3+F5d/XytcEcVzgD45U65Syr24pndXAUYgGNgC3CylXFnYAbMtg6OAnbiiif/Ijty+ZIQQenL9A+cW11ahUFw+QsrKmEReoVBUdoQQTXD5tQFMllLOvnrS/LcQQjyLK0J4uZTy9qstz6WQPZW/FFcgTgepHkYKRYWiLHwKhUJR9fgEV7qVW7Ojb6siT2b/fVYpewpFxaOidBUKhaKKkZ30OPRqy3E5SCn7XG0ZFIr/EmpKV6FQKBQKhaKao6Z0FQqFQqFQKKo5SuFTKBQKhUKhqOYohU+hUCgUCoWimqMUPoVCoVAoFIpqjlL4FAqFQqFQKKo5SuFTKBQKhUKhqOYohU+hUCgUCoWimqMUPoVCoVAoFIpqjlL4FAqFQqFQKKo5SuFTKBQKhUKhqOZUOoVPCPGIEGKnEMIihJhdQtvHhBAXhBApQojvhRCGPNuChBC/CiEyhBCnhBBjK1x4hUKhUCgUikpIpVP4gHPAm8D3xTUSQgwBngUGAk2AZsBreZrMBKxACDAO+FII0b4C5FUoFAqFQqGo1Agp5dWWoVCEEG8CoVLKSUVs/wmIkVI+n10eCMyXUtYVQvgCyUAHKeWR7O1zgbNSymevyAkoFAqFQqFQVBJ0V1uAy6A9sCxPeS8QIoQIBhoBjhxlL8/2foV1JISYCkwFMBqNXRs1alQxElcQTqcTjaYyGmuLpyrKrWS+clRFuY8cOZIgpaxdmrZq3LnyVEWZoWrKrWS+cpR23KnKCp8fkJKnnPN//0K25Wz3L6wjKeU3wDcArVu3ltHR0eUraQUTERFBeHj41RajzFRFuZXMV46qKLcQ4lRp26px58pTFWWGqim3kvnKUdpxp+qpsrmkAwF5yjn/TytkW872tCsgl0KhUCgUCkWloiorfAeAznnKnYE4KWUicATQCSFa5tt+4ArKp1AoFAqFQlEpqHQKnxBCJ4QwAlpAK4QwCiEKm3r+EbhXCNFOCFETeBGYDSClzACWAq8LIXyFEH2A24G5V+QkFAqFQqFQKCoRldGH70XglTzl8cBrQojvgYNAOynlaSnlSiHEe8BawBv4Jd9+D+FK7XIRSAQelFJekoXPZrMRGxuL2Wy+lN0rnMDAQA4dOnS1xSgzVVHuqy2z0WgkNDQUvV5/1WRQXBnUuFP+VEWZoWrKXVVk/i+NqZVO4ZNSvgq8WsRmv3xtPwQ+LKKfJGBYecgUGxuLv78/TZo0QQhRHl2WK2lpafj7FxqPUqmpinJfTZmllCQmJhIbG0vTpk2vigyKK4cad8qfqigzVE25q4LM/7UxtdJN6VZGzGYzwcHBlXLQVfx3EEIQHBxcaS0+ivJFjTsKRcXyXxtTlcJXStSgq6gMqPvwv4W63gpFxfJf+o0phU+hUCgUCoWimqMUPoVCoVAoFIpqjlL4qggXLlxg9OjRNG/enHbt2tG/f398fHwICwujUaNGNG3alLCwMAYNGkRMTAwdOnQoVb+TJk1y79u5c2dWr17t3hYeHs7OnTvd5fz9zpgxgxYtWtC6dWv+/vvv8jvZSoLD4aBLly7ceuutgOu7+u233wBISkqiS5cu/PDDD4XuGxMTg7e3N2FhYbRr146JEydis9kAVzb3nD5zmDRpEkuWLKm4k1EoLgE17lR+EhMTCQsLIywsjLp169KgQQN32Wq1XhWZ3nrrLfr06UNYWBhardYtz6effsqrr77qlrFdu3YsWLCg2L7UvVJ+VLoo3crMc889V6H9z5gxo9B6KSXDhw/n7rvvZuHChQBERkaSlpZG3759GTduHMOHD2fUqFGA66YvC++//z6jRo1i7dq1TJ06laNHj5a4z8GDB1m4cCEHDhzg3LlzDBo0iCNHjqDVast07OIYturVcuurMH4bXHz/n3zyCW3btiU1NdWjPiUlhSFDhjB16lQmT55c5P7NmzcnMjISh8PB4MGDWbx4MePGjSsP0RX/IdS4k8uVGHculZgOwyqsbykl/geWFbotODiYyMhIAF599VX8/Px48sknK0yW0vDCCy8wbdo0/P398fPzc8sHLhkfe+wxnnzySY4ePUrXrl0ZNWpUsWlRqtu9crVQFr4qwNq1a9Hr9TzwwAPuurCwMPr27Vuux+nVqxdnz54tVdtly5YxevRoDAYDTZs2pUWLFmzfvr1c5bmaxMbG8scff3Dfffd51GdkZHDTTTcxduxYHnzwwVL1pdVq6dGjR6m/W4WiMqDGnarLrFmz6N69O507d2bkyJFkZmYCLmvZtGnT6N27N82aNXPPKkgpeeqpp+jQoQMdO3Zk0aJFgGs2ol+/ftx55520atWKZ599lvnz59OjRw86duzI8ePHL0vOli1b4uPjQ3Jycqnaq3vl8lAWvipAVFQUXbt2rfDjrFy5kmHDhnnUjRs3Dm9vbwCsVisajesd4ezZs1x77bXudqGhodVKoZk+fTrvvfceaWmeyy8/99xzTJkyhccee6zUfZnNZrZt28Ynn3zirtuwYQNhYWHu8unTpwtM8yoUVxM17lRdRowYwZQpUwB48cUX+e6773j00UcBOH/+PBs3buTw4cMMHTqUUaNGsXTpUiIjI9m7dy8JCQl0796d66+/HoC9e/dy6NAhgoKCaNasGffddx/bt2/nk08+4bPPPuPjjz++ZDl3795Ny5YtqVOnTqnaq3vl8lAWPgVPPfUUzZo1Y/z48Tz//PMe2+bPn09kZCSRkZH8+eef7nopZYF+qkt4+++//06dOnUKfdj169ePZcuWcfHixRL7OX78OGFhYQQHB9OoUSM6derk3ta3b1/39xoZGcnQoUPL9RwUisqOGncqjqioKPr27UvHjh2ZP38+Bw7kLjI1bNgwNBoN7dq1Iy4uDoCNGzcyZswYtFotISEh9OvXjx07dgDQvXt36tWrh8FgoHnz5txwww0AdOzYsczT+Dl89NFHtG7dmp49e/Lqq6+W2F7dK+WDsvCVgaJ8XSqa9u3bV6hD//vvv8+IESP49NNPufvuu9m1a1eJ+4SGhnLmzBl3OTY2lvr165erXCX52FUUmzZtYvny5fz555+YzWZSU1MZP348Op2OkSNHkpiYyM0338zatWuLzSSf48N3/vx5wsPDWb58eYmK3bZt27j//vsBeP3115UiqFDjTh6uxLhzqTSJ+q3C+s4/01ASOQFmnTt3Zvbs2URERLi3GQwG9/9zlKLClKPC2ms0GndZo9Fgt9vLJFcOOT58S5cuZeLEiRw/fhyj0Vhk++p2r1wtlIWvCjBgwAAsFguzZs1y1+3YsYN169aV2zE0Gg3/93//h9PpLFU009ChQ1m4cCEWi4WTJ09y9OhRevToUW7yXE1mzJhBbGwsMTExLFy4kAEDBjBv3jz39unTpzNw4ECGDx9eqii4evXq8c4775Tqwd2zZ09l9VNUCtS4U3VJS0ujXr162Gw25s+fX2L766+/nkWLFuFwOIiPj2f9+vVX5HsdMWIE3bp1Y86cOSW2VffK5aMUviqAEIJff/2VVatW0bx5c9q3b8+rr75a7NtKdHQ0oaGh7s/PP/9cquO8+OKLvPfeeyW2bd++PXfeeSft2rXjxhtvZObMmf+p6Kd3332Xhg0bMmHCBJxOZ4nthw0bRmZmJhs2bLgC0ikUl48ad6oub7zxBj179mTw4MG0adOmxPbDhw+nU6dOdO7cmQEDBvDee+9Rt27dKyApvPzyy3z44YelGkfVvXJ5iOJMuf9FWrduLaOjoz3qDh06RNu2ba+SRCVTFRapLoyqKHdlkLms92NERATh4eEVJ1AFURXlFkLsklJ2K+t+aty5MlRFmaFqyl2VZM75rVXFMQdKP+4oC59CoVAoFApFNUcFbfxHePjhh9m0aZNH3f/93/8VmzhYUTL79+9nwoQJHnUGg4Ft27ZdJYkUisqDGneqP2+99VaBqfs77riDadOmlakfda9UPErh+48wc+bMqy1CtaRjx44eWeQVCkUuatyp/rzwwgu88MILBerLGlms7pWKR03pKhQKhUKhUFRzKp3CJ4QIEkL8KoTIEEKcEkKMLaLdV0KI9DwfixAiLc/2CCGEOc/26ML6USgUCoVCoajuVMYp3ZmAFQgBwoA/hBB7pZQH8jaSUj4AuBd5FELMBvLHdT8ipfy2QqVVKBQKhUKhqORUKgufEMIXGAm8JKVMl1JuBJYDE0q5X8nZGxUKhUKhUCj+Y1QqhQ9oBTiklEfy1O0F2pew30ggHlifr36GECJBCLFJCBFeblJeJRwOB126dOHWW28FXMvn5Cx9lJSURJcuXfjhhx8K3TcmJgZvb2/CwsJo164dEydOxGazAa58Zzl95pC375MnT9KzZ09atmzJXXfdVarVJRQKRdUmMTGRsLAwwsLCqFu3Lg0aNHCXr+YY8Oqrr7pladeuHQsWLHBvyztu5eDn5+f+//z582nZsiUtW7Ys1eoOVYHKep3efvtttywdOnRg+fLl7m3ffPMNbdq0oU2bNvTo0YONGzcW21d4eDitW7emc+fOdO/e3SNQrkmTJiQkJLjLeZ9nUkqmTZtGixYt6NSpE7t37y7fk6xiVLYpXT8gJV9dClBS9sa7gR+lZxbpZ4CDuKaHRwMrhBBhUsrj+XcWQkwFpgLUrl3bY91BgMDAQNLS0vA936oMp1J2MuodKXb7559/TosWLUhLSyMtLQ2bzUZWVhZJSUkMHz6ciRMnMmrUqEKjo9LT02natCkbNmzA4XBw++23M2fOHO666y4yMzOx2+0e++X0nZaWxhNPPMEDDzzAqFGjmD59OjNnzuS+++677PN1OBxljuS62lQGmc1mc4F7tDjS09PL1L6yUFXlLi2lHnfmVfC4M77wccfLy8u9Mszbb7+Nn5+fO9WGxWK5ar8Fi8XCQw89xLRp0zh27Bj9+vVjyJAh6PV6j3ErL2lpaSQlJfHOO++wbt06hBD069eP/v37U7NmzXKRa9KbpnLppyhmv1h4fUnXyWKxVKhcRSGldF+n6OhohgwZwokTJ/j777/58ssvWblyJcHBwURGRjJmzBjWrl1LSEhIoX05HA6++eYbrrnmGubNm8fjjz/OsmXL3MdJT093r/Gb93n2999/c+jQIXbv3s2OHTuYOnUqa9euLdB/zpha3cecyqbwpQMB+eoCgCJHFSFEQ6AfMCVvvZQybyK0OUKIMcDNwGf5+5BSfgN8A66M9/kzbR86dMiVMTxOlPpELoXispLHxsby77//8sILL/Dhhx/i7++PXq/H4XBw5513MmHCBB577LEi9/fz80Oj0biP0atXL5KSkvD398fHxwedTudxfL1ej7e3N35+fqxfv57Fixej0+m47777ePXVV4s9VmmpSpnYc6gMMhuNRrp06VLq9lU1e3xVlbu0lHrcEVdv3MnBYDBgMBhYuHAh33zzDVarlSZNmrBgwQJ8fHyYNGkSAQEB7Ny5kwsXLvDee+8xatQopJQ8/fTT/PXXX+5lse666y4iIiJ45ZVXCAkJITIykhEjRtCxY0c++eQTsrKy+O2332jevHmxsvj7+9OlSxd8fHyw2+0EBQW5x6385+Tv78/vv//OgAEDaNy4MQA33HADmzZtYsyYMZf/JQIaTWq59FMYTqfzkq9TixYtmDt37hW/TkII93Xq1q0ber0ei8XCZ599xv/+9z+aNGkCQN++fZk0aRJz5szhjTfeKLQvrVaLr68v/v7+9O/fn88++8z9fQgh8PPzc5fzPs9WrVrFPffcQ0BAAAMHDiQtLY309HTq1avn0X/OmFrdx5zKNqV7BNAJIVrmqesMHCiiPcBEYLOU8kQJfUugYkfOCmT69Om89957aDSel+zxxx+nV69eZVLAzGYz27Zt48Ybb3TXbdiwwT0NEBYW5ja/JyYmUqNGDXQ617tBaGgoZ8+eLYczUigUVY0RI0awY8cO9u7dS6tWrfjuu+/c286fP8/GjRv5/fffefbZZwFYunQpkZGR7N27l3///ZennnqK8+fPA7B3714++eQT9u/fz9y5czly5Ajbt2/nvvvu47PPCryXF8ru3btp2bIlderUcdc99dRTHmNZDmfPnqVBgwbucnUey/Jep7Zt217167Rt2zY0Gg21a9fmwIEDdO3a1WN7t27dOHCguMd8LitXrmTYsGEedf3793df77yzT2fPnqVhw4bucnW+5qWhUln4pJQZQoilwOtCiPtwReneDvQuZreJwLt5K4QQNYCewDrADtwFXA9ML3ehrwC///47derUoWvXrgXMzQMGDOCPP/7g+eef9xj0CuP48eOEhYVx9OhRRo0aRadOndzb+vbty++//+4uT5o0CXCZy/MjKtjioFAoKidRUVG8+OKLmEwm0tLSPF4ahw0bhkajoV27dsTFxQGwceNGxowZg1arJSQkhH79+rFjxw4CAgLo3r2729LSvHlzbrjhBsCVzLywabe8fPTRR8yaNYsTJ06wcuVKj23vv/8+o0aNcpdzfPj+S2NZ3uuUnp7OkCFD3Nuu9HWaN28e/v7+LFq0qMjvW0pZ4rUYN24cGRkZOByOAr54a9eupVatWoBrZuCDDz5w95uf6nrNS0OlUviyeQj4HrgIJAIPSikPCCEa4fLJayelPA0ghOgFhAI/5+tDD7wJtAEcwGFgmJTy8nLxtTh3WbtfKps2bWL58uX8+eefmM1mUlNTGT9+PDqdjtGjR9OtWzduvvlm1q5dW6zZv3nz5kRGRnL+/HnCw8NZvnw5Q4cOLfbYtWrVwmQyYbfb0el0xMbGUr9+/fI+RYVCURQPXJ1xpzAmTZrEb7/9RufOnfnqq6/YunWre1uODxXkPmgLe+AW1l6j0bjLGo0Gu91erByPPfYYTz75JEuXLmXixIkcP34co9FY7D6hoaGsWrXKXY6NjS3X6bufZzQoudElUlZfybzXafbs2R6GgqtxnfLSrl07du3axYABA9x1u3fvpl27dsX2NX/+fDp37syzzz7Lww8/zNKlS4ttD65rfubMGXf5v/78qmxTukgpk6SUw6SUvlLKRlLKn7LrT0sp/XKUvey6Ldnt0vL1ES+l7C6l9JdS1pBSXiulXJX/WFWFGTNmEBsbS0xMDAsXLmTAgAHMmzfPvf3hhx9m4MCBDB8+vFRRWfXq1eOdd95hxowZJbYVQtC/f3935NucOXO4/fbbL/1kFApFlSUtLY169ephs9lYvHhxie2vv/56Fi1ahMPhID4+nvXr19OjR49yk2fEiBF069atVBG3Q4YMYc2aNSQnJ5OcnMw///zjYfmqTuS9TvPnzy+xfUVfp7w8/fTTPPPMMyQmJgIQGRnJ7Nmzeeihh0rcV6/X8+abb7J161YOHTpUYvuhQ4fy448/IqVk69atBAYGFvDf+y9R6RQ+xaXx7rvv0rBhQyZMmIDTmT//dEGGDRtGZmamO7qrpL4//PBDWrRoQWJiIvfee295iKxQKKoYb7zxBj179mTw4MG0bNmyxPbDhw+nU6dOdO7cmQEDBvDee+9Rt27dcpXp5Zdf5sMPPyxx3AsKCuLpp5+me/fudO/enZdffpmgoKBylaWykPc6tWnTpsT2V+I65TB06FDuueceevfuTZs2bZgyZQrz5s0rtSLm7e3NE0884Z62LY6bb76ZZs2a0aJFC6ZMmcIXX3xxueJXaURxptz/Iq1bt5bR0Z4zv4cOHaJt27ZXSaKSqQyRo5dCVZS7Mshc1vuxqkaeVUW5hRC7pJTdyrqfGneuDFVRZqiaclclmXN+a1VxzIHSjzvKwqdQKBQKhUJRzamMQRuKy2D//v1MmOC5Ep3BYGDbtm1F7KFQKBSVj7feeouff/aMx7vjjjt44YUXrpJEisIo6jrlJH8uC8OHD+fkyZMede+++2619bW80iiFr5SUJmy8MtCxY0ePZWcU1QvlgvHfoqqMOxXBCy+8oJS7KkBR1+lSVmH59ddfy0OkMvFfGlPVlG4pMBqNJCYm/qduDEXlQ0pJYmJiieknFNUDNe4oFBXLf21MVRa+UhAaGkpsbCzx8fFXW5RCMZvNVfKGrYpyX22ZjUYjoaGhV+34iiuHGnfKn6ooM1RNuauKzP+lMVUpfKVAr9fTtGnTqy1GkURERJRpbdXKQlWUuyrKrKiaqHGn/KmKMkPVlLsqylzdUVO6CoVCoVAoFNUcpfApFAqFQqFQVHOUwqdQKBQKhUJRzVEKn0KhUCgUCkU1Ryl8CoVCoVAoFNUcpfApFAqFQqFQVHOUwqdQKBQKhUJRzVEKn0KhUCgUCkU1Ryl8CoVCoVAoFNWcSqfwCSGChBC/CiEyhBCnhBBji2g3SQjhEEKk5/mEl7UfhUKhUCgUiupOZVxabSZgBUKAMOAPIcReKeWBQtpukVJeVw79KBQKhUKhUFRbKpWFTwjhC4wEXpJSpkspNwLLgQlXox+FQqFQKBSK6kClUviAVoBDSnkkT91eoH0R7bsIIRKEEEeEEC8JIXIslmXtR6FQKBQKhaLaUtmmdP2AlHx1KYB/IW3XAx2AU7gUuUWAHZhRxn4QQkwFpgLUrl2biIiIS5P+KpGenl7lZIaqKbeS+cpRVeUuLWrcufJURZmhasqtZK6ESCkrzQfoAmTmq3sCWFGKfUcDuy63n1atWsmqxtq1a6+2CJdEVZRbyXzlqIpyAzvlJYx9aty5MlRFmaWsmnIrma8cpR13KtuU7hFAJ4RomaeuM1CaQAsJiHLoR6FQKBQKhaJaUakUPillBrAUeF0I4SuE6APcDszN31YIcZMQIiT7/22Al4BlZe1HoVAoFAqForpTqRS+bB4CvIGLwALgQSnlASFEo+xce42y2w0E9gkhMoA/cSl4b5fUz5U6CYVCoVAoFIrKQmUL2kBKmQQMK6T+NK5gjJzyk8CTZe1HoVAoFAqF4r9GZbTwKRQKhUKhUCjKEaXwKRQKhUKhUFRzlMKnUCgUCoVCUc1RCp9CoVAoFApFNUcpfAqFQqFQKBTVHKXwKRQKhUKhUFRzlMKnUCgUCoVCUc1RCp9CoVAoFApFNUcpfAqFQqFQKBTVHKXwKRQKhUKhUFRzlMKnUCgUCoVCUc1RCp9CoVAoFApFNUcpfAqFQqFQKBTVHKXwKRQKhUKhUFRzlMKnUCgUCoVCUc1RCp9CoVAoFApFNUcpfAqFQqFQKBTVHKXwKRQKhUKhUFRzKp3CJ4QIEkL8KoTIEEKcEkKMLaLd3UKIXUKIVCFErBDiPSGELs/2CCGEWQiRnv2JvnJnoVAoFAqFQlF5qHQKHzATsAIhwDjgSyFE+0La+QDTgVpAT2Ag8GS+No9IKf2yP60rTmSFQqFQKBSKyouu5CZXDiGELzAS6CClTAc2CiGWAxOAZ/O2lVJ+mad4VggxH+h/xYRVKBQKhUKhqCIIKeXVlsGNEKILsFlK6Z2n7kmgn5TythL2/Q04LKV8NrscAbQHBBANvCCljChi36nAVIDatWt3Xbx48WWfy5UkPT0dPz+/qy1GmamKciuZrxxVUe7+/fvvklJ2K01bNe5ceaqizFA15VYyXzlKPe5IKSvNB+gLXMhXNwWIKGG/yUAsUCtPXU/AHzAAdwNpQPOSZGjVqpWsaqxdu/Zqi3BJVEW5lcxXjqooN7BTXsLYp8adK0NVlFnKqim3kvnKUdpxp7L58KUDAfnqAnApa4UihBgGvAPcJKVMyKmXUm6TUqZJKS1SyjnAJuDm8hdZoVAoFAqFonJT2RS+I4BOCNEyT11n4EBhjYUQNwKzgNuklPtL6Fvimt5VKBQKhUKh+E9RqRQ+KWUGsBR4XQjhK4ToA9wOzM3fVggxAJgPjJRSbs+3rYYQYogQwiiE0AkhxgHXA39X/FkoFAqFQqFQVC4qlcKXzUOAN3ARWAA8KKU8IIRolJ1Pr1F2u5eAQODPPLn2/srepgfeBOKBBOBRYJiUUuXiUygUCoVC8Z+jUqVlAZBSJgHDCqk/DfjlKReZgkVKGQ90rwj5FAqFQqFQKKoaZbLwCSEqo0VQoVAoFAqFQlEMpVbghBBaIEMIYahAeRQKhUKhUCgU5UypFT4ppQNXFG1wxYmjUCgUCoVCoShvyurDNx/4XQjxCa5Ex+5lOqSUa8pTMIVCoVAoFApF+VBWhe/B7L+v5quXQLPLlkahUCgUCoVCUe6USeGTUjatKEEUCoVCoVAoFBXDJadlyR+xK6V0Xr44CoVCoVAoFIrypqxpWa4RQmwRQmQAtuyPPfuvQqFQKBQKhaISUlYL3xxgBXAPkFn+4igUCoVCoVAoypuyKnyNgReklLLElgqFQqFQKBSKSkFZV874FbihIgRRKBQKhUKhUFQMJVr4hBBzyc23ZwB+FUJsBC7kbSelnFj+4ikUCoVCoVAoLpfSTOkey1c+WBGCKBQKhUKhUCgqhhIVPinla1dCEIVCoVAoFApFxVCqoA0hRABgllJas8sDgZuzN6+QUkZUjHgKhUKhUCgUisultEEba4EWAEKIh4AFgD77s0gIcV/FiKdQKBQKhUKhuFxKm5alpZQyx3dvGjBQSrkfQAjxJa7cfN9WgHwKhUKhUCgUisuktBa+NCFEaPb/A4HoPNuOAyHlJZAQIkgI8asQIkMIcUoIMbaYto8JIS4IIVKEEN8LIQyX0o9CoVAoFApFdaa0Fr4fgNlCiCnAR8BMIUROMMcLwMZylGkmYMWlRIYBfwgh9kopD+RtJIQYAjwLDADO4coR+Fp2Xan7yU+qzOKLgytKJaikYP7pvHV501NrhKC2MZAGvrUI9a1FfZ9g9JpLXspYoVBUI0wZOpauTaNZAz3NGugJ8NVebZEUCkU1o7QWvpeBrcA+XArVvcCp7E9bXEutXTZCCF9gJPCSlDJdSrkRWA5MKKT53cB3UsoDUspk4A1g0iX040H8mQt8+8N3/HN2FytPbeflMY/y3Zwf+OfsLv48vpWXxzzKD/PnuMpHNvPKmGnMWTSfVWd38/vBjbw65v+Yt2Qh/57dwx9RG3ht7P/x07KfWXV2N99t+Y3bb7iFMTOf4q41bzFu8cs07daO5+b/j3/P7uGvHRH07Xc9mzdvBiAqKorw8HB27NgBQGRkJOHh4URGRgKwY8cOwsPDOXnyJACbN28mPDyc6GiXAXbdunWEh4dz4sQJAP7991/Cw8M5c+YMACtXriQ8PJwLF1wpFVesWEF4eDgJCQkALF26lPDwcFJSUgBYtGgR4eHhZGa6VtWbN28e4eHh2GyupZRnz55NeHi4+7ucNWsWgwYNcpe/+OILbrrpJnd5yZIlDB061F3+4IMPGDlypLv8zjvvMHr0aHf5jTfeYPz48e7yyy+/zOTJk93l5557jqlTp7rLTz75JA8//LC7PH36dKZPn+4uP/zwwzz55JPu8tSpU3nuuefc5cmTJ/Pyyy+7y+PHj+fHH390l0ePHs0777zjLo8cOZIPPvjAXR46dCiffPKJu3zTTTfxxRdfuMuDBg1i1qxZ7nJ4eDizZ88GwGazER4ezrx58wDIzMwkPDycRYsWAZCSkkJ4eDhLly4FICEhgfDwcFascL2sXLhwgfDwcFauXAnAmTNnCA8P599//wXgxIkThIeHs27dOgCio6MJDw8v870XFRUFVMy9N3369Aq79z755JMKvffKSuLFU8z44Fve+iGRya+doX6z3ox58EuWrk1j694k+l5f+a59VR13Kvraq3Gn6o4769evr9L3XkmUysQkpXQCLwohPgA6AqFAFrBPSnmi1EcrmVaAQ0p5JE/dXqBfIW3bA8vytQsRQgQDjcrQD0KIqcBUAK23Hqc9A6s1C6ddIp1O7A4bVqsFh9XmKtvtWK0WbFZLdtnmUbbllG2e2602q7tstphJSjORaklnzZnd7I1MID02kYNJMbyw+Vs6pm4jJBZMJhO7du0iIyODY8eOYTKZ2LlzJyaTicOHD2MymcjMzCQiIoKoqChMJhPbtm3j/PnzREZGYjKZ2Lp1K6dPn2bv3r2YTCa2bNnC8ePH2bdvHyaTic2bNxMUFMT+/fsxmUxs2rSJwMBAd38bNmzAz8+PAwcOYDKZWL9+PUajkUOHDmEymVi3bh06nc4tT0REBOD6MScnJ7vLR44cISkpyV22Wq0kJia6y8ePHyc+Pt5dPnHiBBcvXnSXT548SVxcnLscExPj0f706dOkpKS4y2fOnMFisbjLsbGxAO7y2bNnMRgM7vK5c+fIyMhwly9cuIDD4XCX4+LiCAkJcZcvXrzIiRMn3OX4+HiOHz/uLicmJnL06FF3OSkpiSNHjrjLycnJREdHu8s51zQiIgK73Y7JZOLQoUNERERgNpsxmUwcOHCAiIgI0tPTMZlMREVFERQUREpKCiaTif379+Pv709SUhImk4l9+/bRrl07tmzZgslkYu/eveh0Os6dO4fJZGLPnj1IKTl9+jQmk4ndu3djtVo5efJkqe69HTt2kJCQUCH3nsPhqLB77+jRoxVy75UFj3FH74PdZsViseB02LDanETHZDF7RTx2WxaHTpr5bNF5dpyJIkCfSFx8Knv3Hijx2huNRi5evFgh174qjjvp6ekVdu3VuFP1x52c862u444ozbK4Qoh5wJ/ASillUql7LyNCiL7Az1LKunnqpgDjpJTh+doeBx6WUq7MLutxTeE2BRqWtp/81GhZW/b7ZAQIAXgjdH7A1ZteaR0YyqimfelWqxVCiELbREREeLxlVBWqotxK5itHVZRbCLFLStmtrPvVrNNODrjrR5waAxovPzQ6rxL30QhoXE9Pq0Ze7k9IkLbIcaK8qYrXpyrKDFVTbiXzlaO0405pncj+wJV378NsRetP4E8p5Z7LkLEw0oGAfHUBQFop2ub8P62M/XhQS5vB5IDtuRVCi1mE4R8yAq2hToH2wv03d5DNO97m1Fucds5nJhKbkUBsRjwJ5tSSRAEgOiWWtyIX0MQ/hFFN+tIrpB1aUdYlkBUKRWUmWBfH9b5/EGNtxVlzM2zCCHpftHpjkQqcU8LJczZOnrPx99YMAAJ8NbRsmKsANg/V421Q44VCoSj9lO4CYIFwjTw9gFuAWUKIusBKXArgKilliQpVCRwBdEKIllLKo9l1nYHCAi0OZG9bnKddnJQyUQhhLkM/HvhrLAzwyb+aXDRO0xISLAMIav4qQSGdynpeBciyWziXmcjZjATOZCRwNjOBsxkJnM1MxO50FGgfkxbHB/uX0OBEMCOaXEe/up3QaZRjt0JRHfDXmJgc5PLDskk9Z6zNibG1JsrandO6PpjsIchSuFynZjjZddjMrsNmwGUFbNXYi25tjFzTxkhoHd0VswAqFIrKRZnCRKVr/ndb9uflbIXvJmAM8JUQ4iUp5deXKoyUMkMIsRR4PTuZcxhwO9C7kOY/4oocng+cB14EZl9CPx6kZgZgyvChhq+nBU4jHNQxrsJxZjX79vfCWP9pWrQJR6O5tLdnb52B5gH1aR5Q36PeIZ1Em86wNGYTOxOOFNjvbEYinx1YxqLjEQxr0odB9a+5pOMrFIrKg0PmvrzphY1mhsM0MxxmQLabcqyjAfv9J2NrfCfJmYFEn7YSl1TwxTA/TgmHY6wcjrEyb2UqIUFarmljpGsbI+2bGdBplfKnUPxXuKy8IFLKC7hStvwghNACQeUg00PA98BFIBF4UEp5QAjRCDgItJNSnpZSrhRCvIdrFRBv4BfglZL6KengOkMdzHWWEnl0Jk0ClxVQ/LQaJ02CNuHMHM6OPzqTrr+XJi2vo0mTJmi1l29x0woN7Wo2pl3NxpxMu8CSk+vZHHewQAKYi+YUvjn8Jz+fXE9bWzC9HL0xaEv2+1EoFJUPR6o/8cGPYkhdSIDtbIHtodqzhGa+SfKBzzhk6E/7sLGENutEiiWIo2esHD1j49gZK2Zr8T7ZcUkO/tqcwV+bM/A2CDq1NNC1tcv6F+inZgwUiupMmRU+IcRQXNGutch1YUNKORGIv1yBsoNChhVSfxrwy1f3IfBhWfopDa1at6dV6y9ITnqVE1EfUUs7jwBvk0cbjcZJ2wZ7cDinsXd3O35d0ocGjbrStm1bWrdujbe396Uc2oOm/nV5qtOdxGbEszRmI+vO78chnR5tki3pRFgTObNtFi92GUuId83LPq5CobiyCJsd7af78b3nRSzhOiy7PiEgPYr8b3o1NSn0tv1Gxu6/2bW5I0e9etOkzTXcdV1bmjRtRlySIPq0lSPZn/MJ9iKPmWWRbIsysy3KNf3bsqGenh286d/VR+UBVCiqIWVS+IQQrwAPAAuBO4CvgbHAovIX7epTM6gONa+fgc36ErGHPsXb/A0+ek+dVqtxck3zKDo3PcjuY1v5/beuLLb60qRJE9q0aUPbtm2pXbv2ZckR6lubae2Hc1ezcH6N2cTqc3uw5fPzO5MRzzPbv+XFLmNpEdDgso6nUCiuAg4HKbOWoF/biNpvzkUGXMQU8Ta+FzcgnZ4ver4ii+u9t9ObXeyLasvynWGkaWrRsmVL2rRpw8QhbQgICOFikp1d0WZ2Hzaz/7gFRzGzwEfP2Dh6xsaCf1Lp1dGbIT19ad3YS/n8KRTVhLJa+O4BBkspo4QQk6WUjwkhFuDyn6u26L18aNr5WZBPkhgzC5I/Rs85jzZajZPurfYS1vwAu451ZMvhLE6ePMlff/1FcHAwbdu2pWvXrtStW7eIo5RMiHdNHmh7K3c268eyU5v5O3YnZofNvd1kzeCFnbN5vMNIetZpc8nHUSgUVw/bsdOcH/cMgZOHEfLQr8j0k6Ssm4E+ZgVOm8WjrQ4H1xii6GKI4qitKduOXsOvhw4CggYNGtC2bVv6dO/OTb1qkWVxsv+YxR3UkZLuLPT4DgdsjMxiY2QWjerqGNzDl+u7+OBjVNG+CkVVpqwKXw0pZVT2/61CCL2UcrsQotCExtUOoSO46YPQZArWpAXY495HOGKx2+3k5DPUa+1c23oP1zSPYvuRMLYfCSMxMZGNGzeyadMmBg0aRHj4pQd7AAQZ/JncagijmvTlq8O/s/ZMbnYci8PGO3sXck/rG7mt0bWXfcoKheIKkN//1+Eg5dtfyFy7nVpvTqPm8B8g/TzmnZ/Dwbk4LWnY7Xb3lK8AWulP0kp/krOOELZldeHIWSdnz55lw4YNjBgxgk6dOtGjvTc92nvjdEpOnLW5lb+T52wFRAI4fcHOd8tTmL8ylb5h3txwrR9N6ukr9rtQKBQVQlkVvuNCiPbZwQ9RwINCiGQgufxFq8QIHV7BE/AKGg2pi5BJH+GwuBQ/u92O0+nES2fjunY76NZyL9uju7DjaGesdi9WrVrF8ePHufPOOwkMDLwsMfy9fHii4ygyLpiIzGNxlMB30Su5kJnEPa1vVHn7FIpKjq1+LfyGDSD9tzWe9cfPuK19NR4egzH8Lej9LBz6Cee+b3CmnMGWPe5Ip0v7a6CNY4TfSkzOALabw9hracuCBQs4evQot912G15eXmg0ghYNvWjR0Iu7BgeQlOJgQ2Qmq7ZnFBr9a7ZKVm3PZNX2TFo21HPDtX7YHWqqV6GoSpRVE3gRCM7+/7PANOB94PHyFKrKIPQQOB7ReDO6ujMw+jbEz88XPz9fjEYDOp0Wo97K9R228dAtP9K1xT5AcuLECT799FMOHTp02SJohIZwr1Y82PbWAordH2e2887ehZgd1ss+jkKhqEA0glpvTqPOFy+irZ0v2YHTScp3Szl3x+NY9h0BL3/ofD+asVvRDfka79Bu+Pn54evni8FgcGcLqKFJ5Qaf9dwTuIgATRo7d+7k888/5/z58wUOHxSo5fZ+/nz6RAgvTg6mezsjRbnuHT1jY+bPycxa1YB/t2e4ZzcUCkXlptQKnxCiDWDElfMOKeV2KWULKWVdKeXSihKwSqAxQI17oPEWCH4Jja4WXl5e+Pj44O/vh7e3ER+DhRu6rGdAp82AJDMzkx9//JEVK1a4pmYukyGh3XghbAze+VKz7Ig/wgs7fyDJcrk5sRUKRUXjc303Giz/DL9hAwpssx0/w/nxz5L84Y9Iqw20emg5HEb+jbh1MdomgzEYvPD19cHP3w+D0QACgjUmxvsvpYbGRHx8PDNnzmTLli2FKmoajaBzKyNPTwjmy2fqMmqAPzX9C39MZFk1fP2riXfmJJKcVnJOQIVCcXUplcInhJgE7Ae+AqKEEHdUpFBVFo031HwQmmyFoGdBE4AQAr1ej6+vL1qtlp6t9xDecQs5zjebN2/miy++ICEh4bIPf02tlrzd/R6CDP4e9cdTz/PM9m85lR532cdQKBQVi8bf12Xt+/IltHUKsfZ9v5S4B17HmelKp4IQEHod3DwX7lwLbUaj0Xph8PLC19cXjVZDoCaNCQFLCdYk43A4WL58OXPnziUzM7NIOYIDtdw1OIAvnqnLE+OC6NjcUGi73dEWHv/4Ilv2Z5XXV6CoAOwOyfFYK39tTuejBUk8+M4Fxrx4lplLknE6lZX2v0BpLXzPAKOklHWA0cBzFSdSNUDjB0HToPF2qPk4CF80GoGPjw8Gg4FebXbTr8NWcpS+8+fP89lnn7Fr167Lnh5p6l+X93tMoam/ZzRwvDmF53Z8z97EE5fVv0KhuDL49O1Kg2Wf4Td8YIFt5u37ufjQm7lKXw5BrSH8Qxi/A5rehFajwdfXF72XHj+RyfiApdTWul4uDx06xCeffMLJkyeLlUOnFVzbwZuX76vFJ0+EcFtfPwxenvO96ZlOPvwpiU8XJZGRVXj0r+LKkprhYOehLH5amcIr38Rz96vneHZmPN+vSGHzviwSUhzYHRCxK5NN+5Sy/l+gtApffSnlsuz//wY0qhhxqhnaAAh+EkJ/BU0gQoDB4IWPrw992u+mb/vt7qZWq5UlS5awePFizGZzMZ2WTLAxgLe6TaZrrZYe9Zl2C6/vmce/Z/cUsadCoahMaPx9qfXGo4R89TLakGCPbeadUVx88HWcGYU8rH3qwOCvoeVIBOBtNOLtbcRXk8V4/1+pp3VZ+1NTU5k1axb//vsvTmfJilr9Wjom3hzIB9PqUD/IUmD7hsgsHv84jn3HLm8MU5SdtEwna3dmMHNJMtP+F8e9b17g3R+T+HVdOgdPWrEW4zkUsatoS6+i+lBahS/vihqyDPspAAwdoP4i0AQAoNNq8fP1JbzTHq5rt82jaWRkJJ999hmxsbGXdUgfnYHnOo/mxtBuHvUO6eTzg8uYf2y1crZWKKoI3tddQ/1fPsarbTOPevOug8Q9+DrO9EIe2BodDPgE2o4DcLuW+OpsjA34jVCdK7JfSsnq1auZNWsWJpOpVPLUDdZxZ+84xt0YUCCjTFKqkze+S+S75SYsVmXtq0gyzU7W7c7k7dkJTHnrPF/8YiJiV2axK6wUxv7jFpJSK78f5u7DZmbMTuC75SbM6t4qM6VNy+IrhDidpxyYpyxw6YHK6lccxk5QfyGcGw3OVIQQeHt7M7jrfoTQseFAV3fTpKQkvvrqK+644w46d+58yYfUabTc3+YW6voEMefIPx6rNP18cgNxWSYebX87es1lLamsUFRrHA4HZrOZrKysYj/F+cOVB9oa/oR8+xpxU17FevC4u96y+xBxD7xOyFcvo/Hz8dxJaOD690DnDfu/RaPR4OPri9ZiYTTLWZJ2CzH2hgDExMTw6aefcs899xAaGlqiPBoNDOvnT1grI58tTuL0BU8lY+WWDPYdtfDInTVp2VCt811eWKxOdh42s3lvFrujzdjLoKfV8NfQupEXrRp5EbErkzMXXddMStgQmcnt1/uX0MPVQUrJrxHpLPgnZ217C04nTBlW42qKVaE4HA4yMzPJysrCbDYX+f+MjIxS91naJ33BkDFF2TGGQf2f4NwYcKYhBHh56RnSfR/ePn78s6O1u6nD4eDnn3/Gz8+P5s2bX/IhhRAMa9ybOsYafBy1FKszd1Bef2E/iZZUnu08Gn/95a/9W925kJlEurPgNFZepJRERUWxdu1akpKSaNmyJd27d6dFixaXlWxbcWVxOBxERESwbds20tIqT4S7NjCP0nfgmLveEnmYuPtfcyl9/r6eOwkBvV8DnQ/s+RQBGA0GdFo7d4k/WJJ2I8dtTQDIyspizpw5PPjggwQF5QsYKYIm9fS883AdFq1KZdn6dI9t5xLsvPhlPCP6+zNygD86rcrddyk4HLDjYBab9max87AZi9VzdkZKic1mw2q1IqVEr9NhMHjRLNToUvAae9G6kRe1a2rdS+VpNII5f6S4+1i/p3IqfA6H5LvlJlZt93yhWr8nk7tvCcRLX33uqaysLP766y/2799/2a5dhVEqhU9KuQ5ACOEFTALCAL98zdaVp2DVFuM1LqXv7GiQLs1cq9UQ3nErQcG1Wbgyd5B1OBzMmzePBx98kDp16lzWYXuHtCPY4M/bexeQYs394RxIPsWzO77lpbBx1PUp3QD/XyPNmslnB5exPT4aq9WK97k6DKzfpUC7Y8eO8ffff3tMx0dFRREVFUWNGjXo1q0b3bp1u+yE24qKJSsri4ULF3LkyJGrLUqhaAP8qPvta8RNfRXL/qPuesveaJfS9/UrhSt9PZ8FvTdsfxcAnU5HgJ+W0dp/+MU0gMO2FgCkp6cze/ZsHnzwQby9S/ciqNcJxt8USNe2Rj5fnMzF5Fyzk1PCkjVpRB238OI9wRi81ItPaTl70cZv69OJ2BEKmqSCDaTEZrdhsVhxOp0YNSnU9IrBT3sBH5FIqKxNuzrdCWsdhre35+O+dydvfvwzhRzPntMX7Jw6b6NxJVpJxWx18vGCZHYdLqj8mK2SvUfNdG9XPYwViYmJzJkzh/j4+Ao7Rll/eXOA6UAacDzfR1FajF1dSp/InX4RAjo3WMEDoz2bms1mZs+eXS5WhtY1GvJO9/uo7+Pp/H02I5FndnxLtOnMZR+juhFtOsNj275ie3x0do3khyN/Y3fmPtDOnTvH999/z3fffVek76XJZOLff//l3XffZfbs2Rw8eBBHcSvZK64KOe4UlVXZy0Hj70vIN69i6NTKo96y7whxU17FmVbENM81/+ey9uX0IwS+PgbuDF5Le6/D7vr4+HjmzZtX5nu0bRMDH0yrw6DuPgW2HT5l5YtfTMp3uJTsjjbz9OfxROzKxGLL/6iW2O020jMycFriqaPbS1vf5bT1XUY9w178dXFohZ3z58+zfPly3n77bX7++WdiYmLc339QgJZOLTxT7ayPrDzBG6Y0B69+k1CospfD5mqSCigmJoYvvviiQpU9KPvSajcCTaWUpgqQ5b+Fd3eoPx/OjQOZ+yNr7DuHu28fw5xluT4vycnJzJkzh6lTp+LldXm+MPV8gni3x33MiFzAQVOuW2aKNZOXds3hsQ4j6BXS7rKOUR2QUrLs9BbmHv0Xh/R0Dk63mYlMOk5TEcw///zDvn37ytRvdHQ00dHR+Pv707VrV7p160ZwcHDJOysqlNOnT/Pjjz8W6hNjNBrx9vYu8fPOO+9cMXlzlL64+1/DsjfaXW+JOsqF+14hZNaraAPyT8QAnaaAzggbngUps6d4vRhRYx36FDuRlg4AnDhxgl9++YU77rjDPQ1YGryNGu4fUZNu7bz58pdkUtJzfz+b92XRrL6e2/tVvqnDykTE7ky+XJJMYenxHA4HwpGCn/MIDb1P4qNJLHJVlBzsdju7d+9m9+7d1K5dm+7du3PNNddwfRcf9h7NdVPZsCeTsUMC0Gqu7jTpuQQ7b32f4GEpBvAxCjLNuV/KrkNmbHaJXld1p3X37NnDL7/8UuDlKsfP32g04uPj4/H/nPEo5/+lHXfKqvCdBgrPvqkoO949of5cODceZO6bSuvgBYwaNIwl/+ZO/Z09e5aFCxcyfvz4y/YF89d781rXiXx2YBnrL+x311uddt7bt5hJrW5gaKNeZRrkqxNptiw+PfArO+ILt/JIKZm7eQV+25KKTGXRvn17unTpwoEDB9i/f3+hq6mkpaURERFBREQEzZs357rrrqNNmzblei6K0hEZGcmSJUsKDLqhoaFMmDCBgICAqyRZ8Wj8fAj5+hXiHnwDy57cpRqtB44Rd+/LhHz7GtrAQpSrdhNcgRxrp4N0ulK3eBu5VW7AmuLFQavLcrhnzx5q1qzJ4MGDyyxb1zZGPpxeh1e/SXAHBwDMW5lKo7p6urQ2lrnP6o6UkuXr05m3MrXANl+Dkxr6GBymnfjqLxZQ8rRaLT169KBJkybs3r2b6OjoAn2Ay3r7559/8vfff9OqdQe0mt44nK5Q6+Q0JwdOWOjU4updm+hTFt75MYn0TM+xtUk9Pc/eHcwzn190v0RkWVzTut3aVr1pXafTyerVq1mzZk2BbR07duSOO+5Ary95ej3/91QcJSp8Qoi8ARs/AsuEEJ8AHss2SCkLSq0oGe9eUO9HOD8BpMt0LQRc0+g3Uq4dxqqtuUrfoUOH+P3337ntttsuWxnTa3Q81mEEId41+fnkene9BH448g9xWSbuaTUEnUZbdCfVkGjTGT7Yv4R4c0qBbVJK7HY7FouVQ/Z0ukg9GjyvQ7NmzRgyZAiNGrmC1tu3b89tt91GZGQk27dv58KFC4Ue9/jx4xw/fpwxY8bQqVOn8j8xRaHkpCRZvXp1gW1lGXSvJho/H0K+fIm4h97AsjuP0nfoRLbS9zraGoUofa1GgdYAqx8Gpz1b6fPmVuc6ziXXweSsAcCaNWuoWbMm3bp1K9hHCQT4anl6YjDPfn6RjDyWmY8XJjHj4TrUr/UfyxBgSYFtMyBuFzToA50fBN8QAJxOyY9/pvDHJk8Ls5ROmgfuxWjeCRZnoU/tsLAwBg0a5J4p6NSpEyaTiZ07d7Jz505SUgqOZw6Hg0MH96I1+2PVd3Svwbx+d+ZVU/i2RmXx6aIkbPnejzu1NPDk2CC8jRp6tvfmn20ZefapegqfzWbj559/Zv/+/QW2DRgwgEGDBpX4jJdS8sPvKfy1ufRRuqUxFX2X5/MIEAK8na/+21IfsQiEEEFCiF+FEBlCiFNCiLHFtL1bCLFLCJEqhIgVQrwnhNDl2R4hhDALIdKzP4W/6lQWfPq4lD6RazwVAsI7rKFRqKdlYcuWLWzatKlcDiuEYFyLATzSbiha4Xkr/HlmO+/uW0SWvfio1OqClJJlpzbz/M4fCih7fnojY2v2wpqSid3uACQOnSQlIPcBVrduXSZNmsR9993nVvZy8Pb2plevXkybNo2HHnqI7t27Fzk1/9dff5XL2sqKkrHZbCxatKhQZa9///6MHj260it7ObiUvpcxdmvvUW89fJK4Ka/gzCrid9z8NrjhO9C4zlMjBIE+OkYG/ouGXGvnr7/+yrFjxwrvowTqBut4bGyQh0Uq0yx578dEMs3/oVxqGRdg2XA4+CMkHoB938BP18KW17GnJ/DZ4uR8yp7EbrNQx/kXImUDUPC7atWqFdOmTeOuu+4q4BZSo0YNBg0axNNPP82kSZNo165dobNDNXTHsVhy74+tB8xXJcfdH5vS+d/8gspeeFcfnrs7GG+jS/ZeHT2Vux0Hs7A7qo5faFpaGrNmzSqg7Gm1Wu68804GDx5cKoPO6h2ZZVL2oBQKn5SyaSk+zUrqpxTMBKy4FMpxwJdCiPZFtPXBFTxSC+gJDASezNfmESmlX/anNZUdn+ug3hwgVxHQyFQm355SYDrpjz/+ICoqqtwOPajBNbzUZRw+Os/Z+h3xR3hh12ySLZUnLUVFkGbL4u29C/nhyD8F/PVaBYbyUPBAIpeuo0ai535JQQ5q1qzJXXfdxaOPPkrr1q2L/aEKIWjYsCEjRozg+eefZ8SIETRs2NCjjclkYuvWreV2blWNtLQ01q1bx9y5c4mOjsZmsxW/g3RC+p+QvhJk6QMM0tPT+fbbb9m7d69HvVar5Y477uCGG26ocml0NL7e1PniJYzdO3jUWw+dIPnDOUXv2GQw9Hk9tx+Nhia+qQzwzb0PnU4n8+bN4/z585ckW+eWRibc5DmOnY238+mi/8g6rqbj8NtQSDrsWe+wkLV7DjNm/M7GHRdd93MOTjMNxAoCtQWXvgsNDeW+++5j8uTJ1KtXr9hDazQaWrduzYQJE3j22We58cYbPVLu+GsvIByp7hdNi1Wy/cCVWynF6ZTM+SOF2b8XtELeMdCfh0bW8Ejn07aJFwG+ub/NTLNk37HLM0zEx8ezcuVKtm/fzo4dOyossOj8+fPMnDmTM2c8AyR9fX2ZMmUKXboUzP5QGGfibPywwlTm41eKEU0I4QuMBF6SUqZLKTcCy4EJhbWXUn4ppdwgpbRKKc8C84E+V07iCsLnetdSbHkwmhdw78QBGAyeytiiRYs4ffo05UVYcHPe7nYPtYyeg/KJ1PO8vOtH0qyVJ3qrPIlOieWJrV+xI76gEfj2xr2YUiucvxYvR0pJUFLuz0UIgS3Uh0en/x9hYWFlVg4MBgPdu3fnoYce4tprr/XYtnbtWrKyCo8+c0gnOxOOsCfxGDZn9bAEOp1ODh8+zNy5c3nnnXdYuXIlBw8eJDo6mm+//bbohMbSBufvhgv3wYV74OLTpTpeXFwcX3zxRYHfj4+PD/feey/XXHPN5Z7SVUPjY6TOzBcx9ujoUZ+24E8yN+wqesd2E6HpTe6iTqvl+sDDNNfHuOssFgtz5swhNbWgf1lpuPU6P/qGeVpndh02s/jf6v1CycVI+O12SCsYwZ9iD+S102+zL60j2DIgKwGs6XhpMqkvl+Kv83QBqVWrFuPGjeOhhx66pPys/v7+9OvXjyeeeILGjRsDIIQkSH8y28rnUnQ2XKFo3QuJdj6Yn8TvGz3zN2oEPDCiBncOCijwEq3VCnq085xy3noJ0bpWq5Xdu3fz9ddf8+GHH7Ju3TouXLjA0qVLC/XnvVwOHz7M119/XWB6vU6dOjz00EPu61Gi3DbJxwuTil0qryhEZQiRF0J0ATZLKb3z1D0J9JNS3laK/X8DDkspn80uRwDtca0CEg28IKWMKGb/qcBUgNq1a3ddvHjxJZ/L5SKw0iV4GgZNgrsuydKDDccmsW3bNo83D4PBwHXXXYeUEj+/QqLxLoF0p5kllj1cdHoO6vU0gdxl7IaXKD+fm/T09HKTu6w4pJOd9lNssB7DmW+qxICemw0dqJNhYPPmzW4rkwQOdJfgo0Or1SEEDDd0oaXu8nIkWiwWVq9e7TGV26pVqwIBHJnSyq/mSM46kwEwCi/aa+vRSR9KbU3R3+PV/J6LIzMzk9OnT3PmzJlCFVwpJUII/Pz8uPbaa/Hx8Uz10dTvO+p6/+VRty/5PTLsRU84XLx4kV27dhWwHPr5+dGzZ098fX2L2LN4NFgJ8f6HNtf+b5eUslTObhU57ogsC7XfmIMuweSucwT4Ev/KZJz+BVOmAGgd6XQ+8iQGW+7Yk+Ew8PHZW0l35n4vgYGB9O7dG4vFUub7yu4QLNoUQpzJ06Xh1m7xtKpf8Sk2rvRvITAtkjan3keTL2F7qm870tIc/O/Ms8TZ6ntsq6M7y8NBz3HEUodtmR2wSj1arZYOHTrQsGHDcrM8JyUlsXHjRgDMzpocs47Ey8sLjUaDEDB1cCy+xkuf2i3uu05M07P9aADRZ30LRCJ76SS3dIunaZ2irYyn4o38siV33DV6Obn/hli0pfhqUlJSOHXqFGfPni0wDuSMOeBSxLp27Voubh0nTpzgwIEDBSyHtWvXplu3bmU6xpr9NYk86emTu+Kj5qUadyqLx6wfkN+emwKUGLsvhJgMdAPuy1P9DHAQ1xTxaGCFECJMSllovkAp5TfANwCtW7eW4eHhZZW/fEl7B+IechfrGSK587ZGNG3alKVLl3o0PXz4MB07dqQ8ZR5o78/7+35md2Kuz04iZjYGnOWlLuPKbSm2iIiIcpU7B4fD4XZALowDyTF8c/gvTqXHofPy/KG1DGzAkx1Hoc1w8NVXX6HRaDysq620gcT65A5EqSEawjte/jlotVoPX7Jz584xduxY93T+hcwkXt8zn3h7Jl7ZgfJOYD8X2O+4QGu/UAY36EqfkHZ455uar6jv+VKw2+0cPHiQnTt3cvRobtLg/BZscCnCBoMBm81GZGQkkyZNon797IdjynyIX01eFwiA7i22Q917Cj3u6tWriYyMLHBNmzdvzrhx40qdZLgA0g5n7wLzlrLtVsHjjqV+E85PeA5yIsnNNtqs2kvtT54t2vWgfQgsG+GeHvdCcn/LKGbGXIfMnhAym82cPXuWRo0aXdJ9FdbVzrOfx5OSkatMrI9uyJD+tSs86W9F/RaklDidTs9x5+hvsPZD0Ek87tM2o0lv+RYzZidjEukIkeGeym1qOMK04KcJ0Jho6HWaXn5RbLd2x9FmPMPvKNKt/ZJJT0/n0KFDGMjEx2HC4gjGaDQihED6XUP4dZeuHBf2XZ88Z+WXtWlsi3KNofp8rsw1/DU8PymYpvWLt17aHZKIwxfcEaoSqNXwWjq3LDzYJCsri71797Jjxw7OnXOtIZ1/HIDcMQdciuHhw4eZNGkS/v6XlkYoMzOT339dTP3YH2lRI4tt5i4kOWsCcO2113LrrbcW+6zKz46DWRw6l0Resft08mZFKfe/IlO62UEUsojPRiAdyJ/3IABXgufi+h0GvAPcJKV0v5ZKKbdJKdOklBYp5RxgE3BzuZ5UReJ3OxjyTSslvEr3bl0L/IASEhLYvn17yb5OZcBbZ+DZzqPpULOJR/2+pJP8b/8vHkmHKxNxcXH873//45VXXmHJkiUFpgKTLGl8tP8XXtg5m1PpcQX2v63Rtczodg9Gq4Zvv/22QD62IUOGcG2wpzvojvhoLA7rZct+3XXXeViXbDabO1z/aMpZntnxHecyE4vaneiUWD4/uIx71v+PmQeXczTlbKVKcBsfH88ff/zBjBkzWLBggYeylxenkCS3MnKwG5xsAw6N6xzS0tL4+uuvXftlbYP45ws/UPrvYI3xqDp37hwzZ84kIiKiwHfSo0cPJk+efOnKHkDyzDIre1cCQ+fW1Lj/Do+6zDXbSP+1YJCKm7rdoXuuW4kA6suT3N7I0+coOjqaqKioS7rHatXQ8cT4IPI+5yxWyXtzE0krQ4qJysLhw4d58803efPNN1m1apXLUr/vW1j9EOR3u+jyKFEN3+aVWcmY0iXofcG7Nnj508EviidqTSdAY3I399GYuanmTgYmvAGmE+Uu+5AhQ9zKf5D+BE6n0/0sWbe7/KZ1o09ZeHt2Ak9/Fu9W9vLTqK6Otx+sTdP6Jeea1RUyrbulkGndmJgYFi9ezNtvv82yZcvcyl5hNGnSpMAswrlz5/jyyy8vKSHywYMH+fij/9Eu8n3a/5VE41+sjLuwkhBdIrfddhtDhw4tk7KXlOLgiyXJHnV1amqZOrxGqfu4IgqflDJcSimK+FwHHAF0QoiWeXbrDBwoqk8hxI3ALOA2KWXB2OZ8IgBFe9NXNoSAWq961ln2QdpSbrjhBjp37uyxKSkpiSVLlpTrA95Lq+P5sNE0D/B0CN568RBfHvq9UikT4PLHmDdvHgkJCTgcDnbt2sWHH37Ivn37sDnsLD+1hYc3f846d95BBzhN4IjDl4s819TJvQ0DsGSm8d133xXws+jbty/9+vWjvqYGQYbctz2zw8auhEuLXsyL0Whk4MCBHnXbt29n9fEdvLhrNilWT+Uzf1R1DlkOK6vO7uap7bOYvvUr/ji9jSxZfi8DZSUrK4vly5fz0UcfsXHjxiL98fR6PZ26hsHNTbkQKhEBXqTV1hAbmvtyYbVaWbr4U7JOjgOKOicnmL4EXJbef//9l5kzZxaaDueWW25h2LBhZRp0C2DeC0n/u/T9K5jAqXdg6NjSoy5pxrfYThcTfBH2iCtlSDYC6KFZT1hdz+88JiaGDRs2XJJcbZsYuOe2Gh51F5MdfPhTEo4qFHGZlJTEggULyMzMxGw2s2bNarZ+ejv2DS8UbNz7dQ7Ufpw3f0gky5LnHIWgS1sfdF5H2WHuiFnmKjzeRqNrXVxbfLYCWb4v2yEhIW6f1Zr6E4DEYrEgpSTmvI3TcZc+dkgJ+4+ZeXVWPC9+lcCe6MIDK+rX1vHIHTV575E61K5Z+tmjazt4vqRtP2B23zvJycn8+OOPfP311+zZs6fIzAe+vr5cf/31PPbYY9x///1cd911NGjQwKNNcnIyX375Zal95rOysli8eDFz584lLD0C/7+M2M/74DQZsKyuy4TzO+jdoWGZUqs5nJJPFyeRnpV732g18H+jg/Axll6NqxRBG1LKDGAp8LoQwlcI0Qe4HZhbWPvs3IDzgZFSyu35ttUQQgwRQhiFEDohxDjgeuDvij2Lcsa7G/jlc19MnIGQZkaNGkWTJk08Nu3bt6/c0rXk4KMz8nKX8YT61vKoX31uD7OP/lOplL6///6bhIQEj7qMjAy+/n0+45a/znfRf+WmmJGZ4EgEaSHc/wyfN/yLnnyLPDsSa3Rr+jSfS8fGh/AxuJSTrl27ctNNNyGEQCMEvfOtRLI5rsj3kjLRo0cPj+i5uFp23j+wBIvDc9C9vm5H5oY/zRMdR9EpqGmR/Z1Kj2NW9F98kRnBT8fX4JRXznoipSQyMpKPPvqILVu2FHmvhIaGMmzYMB56cho7G5qIzspRRAReXnoyGhpwCte+eq2Nkb1WYDPHYbFY3WuA4jfcs9PURVw8F8UXX3zB6tWrCyTH9vf3Z/LkyVx33XWXl8/SmQVxjwCVN3hG6HXUeucxhHfuHJDMMpPw7EfIotL/aLQw4HMw5t6LQjoZVWMNdQI9p8BWrlx5yelabujpy+AenhaVqOMW5v5VMFqzMuJ0OlmyZAlWq8vCr8HJzb5r6GRfT2ZGJmazxRUCodHBwJkkNZnMRz8lkT8WoH8XDfLCj6RbHGwyd+eLlLvZaO6O3remp29X/D44vKDcz2PQoEHodDq8NFn46y4gpXSf0/pLtPLtPmxm4cYQXv8ukQMnCp8BaVJPz+Njg/hoeh36XeODVlu232LHFgZ8jLn7pGU6iTqexbp16/joo4+I2bWX3puO0y8imqBEzxfmVq1aMW7cOJ577jluuukm91r1RqORKVOm0KqV55KFWVlZzJo1iwMHih/ro6Oj+fjjj9mzZw+h2nN03BSHMz37GgoQGkHaGiOmp8ZCViFrIxfBbxFpBb7H0TcE0KpR2VbeqhQKXzYPAd7ARWAB8KCU8gCAEKJRdj69nARnLwGBwJ95cu3leG/rgTeBeCABeBQYJqWs3Ln4CiP4eVynk43jPJi+RqfTMWHCBGrV8lTE/vrrL2JiYspVhEAvX169ZgK1jYEe9ctObeGXmI3leqxL5fjx42zevNmjzqqXHG9m43AbG4kynfT0DOw2MziSwJlGY68U3m6wgekhu6mpsyAlZGZmoRWZtG14jFt7rGba0O95+PaVjAg/hbBEkaNh9A3xTHuxI+EI5nKY1tVqtQwZMgSJJLaBnZgmdmx2m0e02Igm1zG9w3B8dEb61u3A613v5ss+0xjVtK+H5TEvDpwsPrGezw8uL5B2piKIj4/nu+++Y9GiRYWuAW00Gt15CR9++GEadmjBK/vmcTy1oNVJGHS0GNwVgeTWHv9SJzs3jsViwWIx46zxOIR8DLpQwHWJLJZ09q57tNDpmy5duvDYY48VGNAvicQ3wVb5lxHXN65P0DP3etRZ9h0h5ZslRe/kGwL9P/Go0mZd4IE2RzEa8yiPUrJw4cJCE/uWhnuG1qBNY8+H1h+bMogox+nEimLLli2cPOlKmaLDznC/v+jslSfxtdWKKd1KbKcZ2JsN48Ofkjz8FgFGhnuRdnIu6em5vxOLNGDo8wLe9+6FRgM82rN9BphN5XoeNWrUoHfv3gAE6Y+7ZZdSsiEys0xpc6SUzP7dxIw5iZxPLnxRrpYNXStmvPdobXp19EZzicu46bSC7u1yrXx2u53PZ29k5cqVaNIyGfTvIRqfSqT+uRQGrj5EiNbAwIEDeeaZZ5g8eTIdOnQo1LpvMBiYOHEiXbt29ai32+3Mnz+/0LRZZrOZpUuXMnv2bFJTUzEIC7cc2Yb9dLYPpMDj5dK0yk7y9LuQ+WZuCiP6lKVAJHvH5gaG9i27f2WlUfiklElSymFSSl8pZSMp5U95tp3Ozqd3OrvcX0qpy5Nnz09KeVP2tngpZXcppb+UsoaU8lop5aqrdV6Xhb4x1JjiWZf8Odjj8PHxYdKkSRiNuX4MTqeTn376qdCH7OVQyxjIa9dMJNDL82183rHVrIzdUa7HKitms5lffvnFXXYKSWJDLfs72kgMzh1cvXRWtCRjJIN7g/fyv4YRtPN2vWFJ6XqDyx+Gr9NqaRAch8b0P4gdAjHX0CrgA1paZlJLlwnODJBZWOzp7Dz7B1iPgj3elS7kEmnTri0XOxo5Vz9XFovFgkYIpra5mYktB6HJN51bzyeI8S0G8s1103k+bAzda7dCU4jlas25SD7cv6TCfDCtViv//PMPn3zyCcePF1SEgoKCuPPOO3n++ecZOnQo9erVI9p0hmd2fEtclqnIfi/WtPHIODttQj373H+iIfP/qu1K1FrjARwOJ5mZmVgsFsKa7cOgz51C8vPzY8KECdx5552X56+XQ8YaSPnBs05beddD9hs5GJ/w7h51pq9/9liDtwCNB0Kn+z2qvC+sZWofT9+pjIwM5s+ff0lpLHRawRPjgggK8Lynv16azPHYy3+JqigSEhJYuXIlAAZhZrT/MlobYjzaZEkjc023MXNZFC98uJXDMZ5TmkOvM3Dh0HxMJk+/rN69ezNgwAAw1oTr33MtgZeDORl2vl/u5xMeHo7RaKSG7jQaYUdK19RuUqqTgydLfx1+jUgvsFJIDh2aG3jlvlq89WBturYxlsvSnb06euN0OsnKyiIzM5PzqbXAIem74Rh+6a7vW6vVEqA3MMakZ+DAgdSoUaPEfrVaLSNHjnRdhzxIKVm2bBl///23e9bi2LFjfPLJJ+zYkfMslNxmWofcEehW9IQQ7uTmOaSsSif5kdFIe9Hfb0aWk48Xeq6p7O+j4ZE7a16SolxpFD5FEdScBpqauWWZCYnvARAcHMwdd3g6ZaelpbFw4cJyzyFU3zeYV7pMKJCc+etDf7DhQvklgS4rf/31F8nJrgEzy+jkQHsb55uBMcAXrUaLRjjxMWThpbPS1/sE7wcvp592Pw6rBSn8cAa/weYTE9lzrDmZltyBVavV4OPj7blepSOOYMNWNGk/0sd7D8h0cKaC08SmU7PhdD+I6QzHG8PxlnB6IKT9WupzybCZeXPvT8QHeU61OW12xgX14eaGPYrdX6fR0qN2a14IG8us6x5jfIsBBZT0TXEHeWfvogLTxJfL4cOH+fjjj1m7dm2Be0+r1TJgwACmT59Oly5d3NNU2y4e5qVdc0izeTpbtwjwTFOxO34/3rpf8PHxcV+PiynBrNgxiIMHDzNr1iw27A0lIdnpPrZBb6VLM9f0S8eOHZk+fTrt2nlOxV8yjiS4+Lhnnb4JNFhaaPPKgBCC4NcfQVurRm6lw0H8cx/jzCgmHUrP56G251J/9U5+xW19WnjUnTlzhj///POSZKvhr+XpCcHo87hv2R0wa5mpUiZldjqdLF68GLvdTmNdLPcFLKSh5jw+Rl98fFwWq1SnHz+mjuS8oy7JtsZExtQgPT3dHRDRoZmO1JjFxMV5Bo916dKFW265JVcZ8qsP10zzFODAHEg8WK7n5O3tTXh4OFphp4bO5atmtVpxOp2s21M6a+vanRks+KdgjsZrWht468HavHJfLTo0N5TbGu1Op5PMhD2YM03u79UmvWkU5aR2fBpCuHwgfX180Ol0ZEXsIPPf0ie1F0IwePBghg8fXkDmiIgIvvtxOYt+/p3vvvsOk8nk3tbVEUVwhACyFT0BmhqB1P70dTQ+ns/P1H8TSHpoHLKQ57WUkq9/NZFg8tz2yB01CQq4NL9jpfBVdrQBEJRvEZG0hWBx/eDbtWtHixaeg++JEyf4559/yl2UZgH1eCFsLF550rJI4OOopexMOFLuxyuJI0eOsH27y4UzJcDJwXZ27AF6tFodGo3Ax9uJr9FMY30SLwX9w9TArQRqXRFiB07WY87ayfy6pga/Rwh+3zGYT5ffw5zVo4g8HY4xsHuxA1Mfv7Me5V2ZIWQ68zyxZAZYD0Hc9AJRo4WRYE7l+Z0/sC/pJFqtK88fgM4maHtYT+yGAwV80Yoj2BjAqKbX8073+wgQnhatnQlHeDPyJzLLYdk8k8nE3LlzmTNnjlvxzkvz5s2ZPn06gwcP9vBH+uvMDt7dtwhrvijGAfXDeKf7vTT2y86xJe04HClsSA9Fp9Pi4+OLxe7Dko23YLO7pgLPnDnDnyvXsuOoZ7Lhnm32MXbMSMaOHXvJ+fWc0kmaNZPYjHgOJp9iW9whVh1+nl8SAvkhoT2fxHXhjXPX8tS5ETyw/dIUniuFNiiQ4Nce8aiznz5P0vvfF7OTHgZ95YomzcFhpVf6j9SvU8Oj6ebNmwusXFJamod68cCImh51x2NtrI+s+Nx8ZWXDhg2cOxPDAO9NjPb7Df1eA8lz2hL7aWNS1tbBULMLB1u/S5KzJmZHAKfMrulSKSVZWVkIh4nazpXExnpGPrdp04aRI0cWzLPX6QHMXiG5ZemEjS9AOftQ9+7dm4CAAIL0udHAFouFbVFZWEpYam33YTNfLTV51Bn0Tt56sDbPTapVvK+ZwwaJh8sUkBIbG8sXX3zBn38sJ0CbG0yhszsw2Rvjpdfj5+tXIL9d0tuzcKaVbTmyHj16MHHiRHdfNqeRo5mD+Hl7K76PaMbxzAGk2EKRUlCLRHpuPgNZ+tznh0ZH7Y9ew/fmcEJ+/BiNj6dMaf/Gkvjg5AJK35qdmQUij2/p48s1bTwt7LYzha/PXhhK4asKBI4HfV6lTkLCq+4ffJs2bQpkXV+/fn2JDqaXQvuajXm6050eUaIO6eS9fYs5mHyq3I9XFFlZWe6p3Iu1HUS3suHUCZd/kbSAIxFfkcKU2vv5sPF62nq7lJFMize/bR3Cz5tuIfp4Kjt37nT3KRFkOtvQuf88tE3+hSZ7oM7/wPcmEJ6WspYGE3V0uW++VqllZ0YIBbFBRvGKQExaHM/s+NYjVYzRYMBgFrQ7pMcvQ8OFCxcu6WFazyeIscbu1PMJ8qjfn3SS13bPJd12aQ9Uh8PBunXr+PDDDzl4sKC1wd/fnzFjxnDvvfd6+JpKKfnx6L98ffgPnPkeWHc168ej7W5Hp9ESXq8zIMGZDEhWp7rcd7VaL7ybzsfo7xl5CrDraCds9mxFWaejThB0bFx6112708GJ1PP8E7uLmQeX8/jWr7hzzVtMWPcej2yeyfM7f2DG3tnMPCOYm9iOZaYWrE1rxK6sZhxNT+dCVkGFt7Lh068b/nfd6FGXvmQVmWu2Fb1TYBO4/l2PKmE6yqh6ewtMjy1durSA1aq0XN/Fh54dPB9mP61MIctSeVK1XLhwgcjVC5gUsJju9v2kr2hM5ta6SIsWaRek7Q3i/Kz6XJtek0l338cZ+w04Ze4DXuCkLis5E+O5xFrTpk0ZO3Zs4RHjOgMx9Sd71p3fBseWleu56fV6Bg8ejL/2PHrhGhdsNhvpmXZ2Hio6CfKR01b+91OSx7SjTgtDu8eXHFSQfh7m94CfB8AvN4C1eHekrKwsli1bxsyZMzl71vXSXUPneu5oHU70NieHQ8LwMnojhEBXvw5Cl/udOuKTSP5kXvEyFUKbNm2YMmUKdl1DDmfcSpo9ZxZCkGIP5XjWAA5kDCfwQihJCfXy5AQRBE69E+9+PQEwXBNG3bkfovH1VL3S/z1KwoMPugOpYi/a+H6Fp19sk3p6xt3o8qWXUmI9fJLkD3/k/MjHSn0eSuGrCgg91HrJsy5rI2S68mlpNBpGjx5dIDnkzz//XCBytTzoVrsV/9dhuEeeG6vDzluRCziZVvq3jcthxYoVpKSmcLqhK7gBAd7eRvcU6/V+p5jZ6F9uqXESL63Ax8eHLN0tzFl7D4fOtKSwLD2+vr7ce++9BAZmB6joQiBgDNT7DpodhAZLOZr6f1DrLUTwk/SpVQ+EEYQXoGdTZhvQBFHgZ5W5psjzuJCZxIu7fiDR7DkV0iaoMXeIMIyWXDndOb7KSIDGm7e7Tc61mmUTnRLLi7tmY7KmF7Fn4aSnpzNr1ixWrlxZIP+jEII+ffrw+OOP06lTJw8rqd3p4OMDv7I0X7CPVmh4qO1tjGne392+X9226DXp5CwYf8oawElLANR+G7/ag7j//vtp1sxzRQ2zzcj+053x9jbi7Z3tDG6aWegauw7p5FR6HKvP7eGbw3/y1PZZjFn7No9v+5ovDq1g1dndnEi7kM/f0QHO/A8kHWguzXp4taj55GT0TTxTTyS8MhN7fDEKa8sR0Pouj6p6Keu4N7yWh5JitVqZP38+ZvOlrcU6/sZAj/x8yWlOlq0r2/1ZUTjsNg4snM5EvwXUOG3FtLg5tli/3Htc7wvGIJzpWSS++x1L3o4CgjAYcpWeUON2fLWeY3L9+vU9LEiFkezftWAAx5bXXMuxlSNdunQhJKQ2NfW56/daLJYip3XPJdiZMScRq83z5e3/7gqiYa1SzCDsfB8ys18QEg/Bvm+KbHr+/Hk+++yzAkETAbqz6KUNg82JEIJUrwBO+TVE4+9LyFcvEzDZM4o/bdHK4n1XC0FKyf7TNYmx34ZDFAyW0Gg0eOHNH2Ior/d6mx/a3090zbZ4dW1NjSce8mjr1aUbdee8hzZfNxn/7ifhwelYsmx8vCDJ4zv10gumj6mJPBWL6YuFnLvtEc6NeoyU75fizCz9S7tS+KoKPoPA+zrPuoTX3QECfn5+jBs3zmM6wGKxMH/+fHeIfXlyfd2OTGnjmcs6w27m+Z0/sLGCffoOHjzIzr27OdrCzoW62SsCeHmhJRUhs5gUHMVjIbuoocs+b10oov5PhHRayIOPPE/btm0L9Gk0GrnnnnsKRD67EV7gfS0Jlr5QYzIEPU6fZtNAE+jysdQGsdvcisxGO6GxZ8QwWdvBUfDN1e508GHUUtJtng/H7rVb80bXiQy94WaPh2lycjLbthVjiSmGmgZ/3uw6qYB/XExaHC/unE2CuaDvTWGcO3eOzz//nFOnClpzGzZsyCOPPMKtt97qEUwEkGk388ae+aw7v8+j3qDV81zn0dwQmiciTkqCUmfQxei59uga61CXtRuXz9HkyZM9Fhtv3bo1XQd+jV6fx/fSFgPpLgurUzpZfmoLz+34nrFrZ/B/W77kswPL+PPMdo6mnMVW7JSSBEcKOWuNuhCgDaQqpfgE0HgbXKla8lg+nMmpJL78WfGplq57E2p4ziTUOvAeIwd7BoPEx8ezdOnSS0rbVDdYx235VndYviGN+OSrnPom/TwJswfRLeNPstaFkPZXI6RZl+2jpXUFWOhz5d4Y0pOd+mY4UtLRmW34Gr1pVDOOWnpP15datWoxefLkAr+XAggBvV/3dPzPjINdH5fjSeZmCsg7rWu329l1KIOUdM/fR1Kqgze/T3CvdpHDvUMDubZjKQKjrOlwfLln3cG5rinefBw4cICvvvqqULeRrk2a0jPJ83uNrN2R2h8+jb5ZKIH334GuUZ58slKS8OoXSFvp7qksiytw4offUwANvj4+HuOyl5cXvl5aZKarP6fQsK92GF93mc7bXd5g+cbMAt+d1zV9qPPd65hrGLnoXYeTAc2IqtWZ1QcNvP9/f3PqfO53IB0OxvodRtz/JOdufxTTFwuxxXi6FJWWyrK0mqIkcpIxnxmM+6FjO+ZaYoomADRu3Jibb76Z33//3b3bhQsX+O2337jjjjvKzVk2h5sb9iDdlsVPx9e667LsFj7Yv4R9SSe5t/WNGLTlu1RSRkYGC5Yv4VAbG5m+ru9Bo9Fg0GViEGYeD9lJT78cK6OAwPsg+Gm3FSYgIIAJEyawf/9+li9fTkZGBkajkbvvvjt32a5S0ty/HnW9a7qn8mxOB9vjo13TkfrmeVJ22CFrA/h5KsiLTkRwJMVTqbkxtBtT2tyMVmgwBAfTo0cPtmzJXcVhzZo1dO3ateQHRCH4e/nweteJvLnnJw6acv1eYjMSeH7n97x+zUTq5pv6zcv+/fv5+eefC1j1jEYjN910E926dSt0nc80SwIvbX2TmKyc/Vz3YaDOwQsNztPKsg3OuqykCD1IK2Stp59vHSItOQO1F+tTa3G304FO4xpsdTodd955p8vZXKslODg7StY6EtIW5Qpgmgl+t7I0ZhPzjhWzykQR+OgMBGpS8XfGEaC15n4CbyQgYAABXj74672ZeXB5yZ1VEgwdWhD40BhMn+ZOb2Vt2E3awr8IGFPEokR6X5c/39KbwZl9La1phCV9y/EuY9m1J1eZ379/P40bN6ZPnz6F91UMI8L9ididiSnNpUjY7DDvr1QeG1v0vVmhHFuObc3j6I+bSPmnOY6cdCMC0BvBKwBjz84Ye3Qk9bulnNDUYnnjm9y7S4uN+qZYXuhwmmNdwlm1eSN2u53g4GDuvffe0q/tW6MZdL4f9nyeW7fvG2gzxrWtnGjbti1tmq4n5qAJs7MGAFlZFjbuzeSWPq5ZpIwsJ2//kEB8sqciM6K/Pzf2KuX5HF8BtnyWw8yLcOJ3aOmyykkpWbt2LatWFUy0ERQUxO033oz/W7MxntWzu1XuKkgH216Poacr9ZLGaCD45QeJu+9l93bb0VOkzv6NwCmjihXx7EUbH8xPIvZirnIoNBp8fX3oHybp3dmPzbvTWbfmAg6Z91kn0AT6E5cmmLcylQWrUmnfzIDdLknLcJKa4SQtsx2O/rNwpqTjkS3LDiIlFeFlQFoshF2IpN2fiykPs41S+KoShnbgf5craCOHpA/Qilz/mt69e3Pq1Cn2789dfGTPnj00btyYnj17lrtIdzS9ngy7mWWnPJeW+ufsLqJTzvBkxzto6Fe73I73w4qF7GiSgs0r13rgY7ASpE3j+XpbaWHM9nvQt4SQj8B4TYE+hBB06tSJtm3bEhsbS506dS7JqV8IQe+Q9h5TlJviDrgUPp+BkJInjUjGag+FLyo5hiUnPVcp6F67Nfe3ucVDMR8wYAC7du1yW2kzMzPZsGEDgwcPLrO84Eqm/co143ln7yL2JObKdzHLxPM7f+C1ayYWuF5Op5M1a9Z4rPWbQ/PmzRk9enSxD61v975DTJbn9E49fQYv19tCPW0GFDH7183nHL4mGxlOI2gDSbFmsifxGN1rey5vl5M01U3NhzwVPss+UlJX88vJ7ZREkMGfFgH1PT4BzmMQexseCZZ9BkG9x8kbxj21zS3M5NESj1FZCLx3OFkbdmHZk5s7LvmD2Xj37IS+WWjhO9VqD71egU0vuqtE3C6Gde7F2fN1PVY0+fPPP2nQoEGBJPEl4W3UMPaGAL74xeSu27w/ixtPWmjbtPDcbhWCJRU2Po/zyFKStxjI2NQcHK7rLQFhCEQY/agxbTwBk25HaDQ4bxzI3A9isWfm3hdGh5lJR37Cui+JJn8F8H9TR5LaqwOhjRri5VW2xLlc839wZAlkZH/PThtsfhlumgvl9EIvhOCmm25k+9GNnLO4LO8Oh4M/N8RzSx9/bHbJ+/MSOXXB00LWv6sPoweXYc3Zwz8VXh/1PbQcjtVqZcmSJR7Pshx69OjBLTffTMoLn5ERdZQ2Gj1eThtWjR6NtwGT1pdjsTa3D6H3tZ3wG9qf9OW5xgnTV4vxGdIHfV7rXx627M/iiyXJmK2elmpvg+CRO4Lo0d4bnA4avT+W/ust7Kzbk80NrueCTz00vkZEnmvrcMC+owWnuIWXN5pAiTMlw0PpkxYb0monyGLijpPLC51DEHodxt5d8L2xDwwtnT+nmtKtagQ/4xlA4Ewi1Cc3HYQQgpEjR1K7tudDe8WKFZw54xkVVh4IIZjU8gamtLnZbXnJ4VT6RZ7c/g2rz+0pl1U5Fm1byTLtAQ9lz9dopakhgfcarstV9gydIHRFocpeXvR6PU2bNr3kCE6A60Lae5T3JB4nw2YGX89l0shc4w6ySbNl8VHUUo/JwSCDP4+2G1rACuvn50ffvn096jZs2FDqXIsWi8WdRDUHg9aL58PGcG2dNh5tkyxpvLDrB07kSYBssVj46aefClX2evXqxeTJk4tV9k6aDrM+ydPPqKUhmXdC11PPq3j/Iy/hpI/fRdDUIGeoWnMusth9XDu2BN8hHlU/H11IVr7k2IFePnSt1ZK7mvXjhbAxfH/9E3x//RM8HzaGO5v145paLQnQaQqupqENdgXz5LtWxa16UhkRWi21ZkxH45s7/SYtVhLf+qb432uHydDY84VDt28mkwa39FiM/nLygva7xoem9T1nB374PeXKpWm5sAN+HoAj8jcuLA4mY32IW9mzo8FpCELfrBl1575D4D3DERoNDqfks1VOUv2C0dYMQGTnmRlzfCm1za6cn87kVNLf/QHj058iD50s8vBFoveFa1/2rDu9Bk79e1mnm58mTZrQs52OvC4MJ87aOHXezOeLkwus+tC1jZH7h9dwj19ZWVnF+xsnHYG4XYVvi9tF6omNfP311wWUPY1Gw+23387w4cPJ/HYpGStdL9teThvtTNEILz0aP9fzcWuUp29bzacmo6mRq5BKi5XE178qcK/bHZIf/0zhw5+SCih7jerqePeROi5lD8j45iVS15rwdmTR92wET29/nSctC7m+Ty1Ku2Kj8PJBE+CNZ3pVid5hZUL0XLwdec5Do8G7V2eCX3+E0IgfCJn5An63hZfuQCgLX9VDFwI1H4ak3OSb9Xz+ANtp0LsiGQ0GA+PHj2fmzJluy5DD4WD+/Pk8+uijl6XgFIYQglsa9qBtYEPe3/8z5zNzl4yxOGx8dmAZ+5JOcn+bWwrk8SsNUkqWHF3HrLOrkHl+RN4GCz38zvF43V34aLIHF0NHqL/Ilc7mCtDUvy71fILc52x3OtgWf5gB9Xq6FHOZPWXhiAPrIaRXW2YeXO4RpCGA6R2GE+BV+HW57rrr2Lp1KxkZLgXJZrOxevVqhg0b5jqm3U5iYiKJiYnEx8eTmJhIQkICCQkJpKWlYbFYOHDgAGFhYYSFhVGzZk30Gh1PdryDzw4u8/CrS7Vm8tKuOczofg/+Nj0//vhjgXVotVotQ4cOpUeP4vMCAsyPnu+h2DbySuWNBpswakpOwSDRMaDpRP6JyvUJ3ZFwhDRbFv76EnyEaj4CGa7VFONsPqxM0ILG5poyBu5uOZhhjXuX7OaQ+EbB1TTq/A905We1vproQ0MIen4qCS/krqph3raPrHU7CyRqdiMEhH+I9eRmDGQr7VISuPMFRg+byZxFK9xNc/KC3nPPPWVas1ijEUy+NZCXv8kNcDh5zsa63Zn071bBQTJJR+D3u8g6AvF/1MeR4XoSS8AqvZB6b2rfcSNBz03xUJYX/5tG1HGXFUfodWhr+nNTvSSuOZ1QYPE965FTXJj0AvWXf46+Yd2yydfidjj4I5zPE7yw+WUIvR4uYXwtiuG39eff/QdJs7vkczqdvPjFWcx2lzuJlBKn00mDYBtd6h/hl1/i3eNOVlYWFouF48ePExYWRseOHfHxyWOoKGaJOLvDweGfn+acqZ9Hvbe3N+PGjaN58+Zk/Lke05eLPLZf4xVHVICf+0Vsy/4sJtwU4P6Na2sGEPTUPZ73+ta9ZKyIwG9ofwDSzVpe+zaBwzEFJ1D7hnkzdXgNjF6u+8G2+x8SP1lDXh9efbA31372LH2CajA5w8HaXZms2pZBXFLh4523QeDvoyHAtyZ+ptNodx/FJzUTP2saHRL2UicrDhAY29bBZ/hQfIcNR1urZqF9lQal8FVFajwAKXPB4XoQC+yQ+BbU/drdpE6dOowcOZIFC3J/WCkpKSxatIhJkyYV6mt1uTQLqMf/et7P14d+Z90Fzzezdef3cTTlLE91uoOm/qUf4DJsZuYfW80vR9ch86gO3l5mhtY8xr21D6DNXmsVr/bZyl5gEb2VP0IIrgtpz895pmc3xR1gQP0wV5BNZp58iBmr+Tchi60XD3n0MaxJHzoFFe2DYzQaGThwIMuX5/qIbd++naSkJBISEjCZTCVaUC9evMg///zDP//8Q5MmTdyD8P+1H4ZRq+fv2Ny37Qy7mfd3LqTOxhQyMzx9bHx8fBg/fjxNm5ZszTqQdJydyZ7rRU5o3A5jwzddfnrYXX+lLfevu87Jnj1ZXNtuJPVOnPNQqDdc2F9iEmqMXcHYC8xbWJjUGjsaV25EUYPaxkBuadizZGUvYw2kzPasCxgHvjeUeO5VCd+h4aQvX4t5W67in/ze93j36eK2UhXAO5hjjabR5ew7ufngMuNoc+Ebru97J+s35P4ecvKC3nTTTYX3VQRtmxro3dGbzXlykf30TyrXdvDGuwwLxudHSolMz8R+MQlHfDKO+Oy/Cck44hJw7PsTR1IQtmS9+3flQINFGrAaDDR+/ymCbve04O88lMXStZ6WzLZNDNx9X0fE1M9Jnf0bKd8tReZxbZA2O5lrthF49+1lOwEhXAE0S27APQ+Yegr2feWa8i0nQkJC6NrqABF5si7FJ9vQaBw4nU6klBg1qRiT/iJiTeERuTExMcTExLBixQpatWpFly5daNOyOfojP3s2bD4Uji/HarNhNptpKQ7gI3qQKb3dskyYMIHg4GAse6NJePEzj901NQMInzGahT84sGZr1wkmB8djbbRomDu1Wti9nvT+D3j37coRk4H56+til57KnlYLk28N5Iaevu4xw5mSQPyjr+HMk0VBaAW1P38LbVANAAJ8tdx+vT+3XefHsVgb8SY7/j4a/H00BPpq8fPR4KXPMwbJgTiWLSbxy+2YLxjR17Lhe20GPm0y0fnHgH07bFmZa2HXlF19UwpfVUTjDcHPwcU8P+70FZA1Cbx7uas6derE6dOn2bRpk7vu6NGjrFmzhkGDBlWIaD46A9M7jKBTcDO+PvwHVkfuu+25zESe3j6LSa2GcHOop/VASkmCOYWT6XGcSDvPybQLnEy7wMUsVxb1vNMDPl5m7qu1i9tr5Zmi9moLDRaDtkaFnFdx9Anp4KHwRSYed1mhfAd6KHyxyev49pRnNGzzgHqMa54v3UIh9OjRg40bN5KUlLMcnOTo0aOXJG/eQbh169b06dwZr1AdK2JdEcA2m42DaafI9NZSJyPXKlO3bl0mTpxIzZolv2FKKZkbvYCctCoAbY0mujV+B3SlU8gtzgiEEPSv19kjMGjt+b0lK3wANR8mJuYAEWkNs4WyAHbGNO+Pl7aYoc+ZBaZvIdnzoYK+iStwqpohhCDomXs4N+pxyE7ubTt9nrSFfxIwYWiR+6X4dYSwhz2DCGL+YUjv64lt1owTJ3IjPdevX0+jRo1o3759IT0VzbgbA9h+MAt7toHElObk14g0xt5Ytpc6Z0YWyf+bQ52V6zlt+QJpKcIF3pYBNguQrexJsKLDKr2Ir+VP6MfPEdT3Wo9dLiTa+WyxZ/RoTX8Nj40NQqsVoDVQ44G78Bs2kMQ3viJrXW7uT2vUpf2GCW4H7e+GqDzL++3+FFrd4Vqdo5yYNKoL6984h1NmWzmldK9moxeZNPdZhU5TcvoVh8PBoUOHOHToEB18TjHC/xx6nR6tTovwCsDR9z1Sj0SgzXJFn2px0tlwgC3mbrRt25Y777wTo9GI/dxFLk57G2nNDRwTeh11Pn0OY7O6dGmdyLYDuU7BW6KyPBQ+IQTBLz/AueH/5+4jI9XCl29sY72xHWazljxeCQQFaHhiXLBHPkHr4ZMkPzsN63nP6OSajwzD0LMX+dFoBK0aeZWck1Bo0N42kzq1XnNFKzsLmRI/u9H18asP7e6GtmPBu/RLOiofvqqK/0iXr1pe4p8vsI7rTTfdROPGjT3qVq9eXSFJmXMQQjCwfhc+6DGVRvkCAGxOB7MO/8m7+xYTZT/HD0f+5uVdc5iw7j2mbPyYtyMXsPB4BNsuHuZilgkpnR45vQK9Mnim9lqGBudX9n4G7aWbui+Hxn51CPXNTefikE62XTwMPrmKnE1q+PCUFxZH7uBo1Op5osOoAr6PhZGTLqGsuNdxLASHw8HBgwdZsGABZxZvo06GAbPZjNmcBUjONHRg07ksHO3bt+eBBx4olbIHrtU8Dqdc9Kib0KgRopTKXl761+vs4bR8NOUsZ9LjS97Rpz/zTdci8+zdyCuTfvU6Fd5eOiB1IZzqA0kzXEvnudFCyGdVLudeafFq1QS/EZ5WK9MXi3CYSvC/6/YU1OniUaXZ9jpjh3QpNC9oWZMy1wnSMfR6z35WbEwnLqn0aVqkxcrFaTNIW7wSXYKpaGXPaQNb9jWXro8NLRZpYH+HBqQ8N5FWhSh7b36fQKY518KuEfDY2CBq+nv+rnV1axF430iPOsuBgmtOl5puT7nSweRgz4Itr196f4VQL6QmbRoWTJOiFTZa+PyLQVO4H25x0/ftNPuwWW1kZmaSnp7OcU0n5vy0hIiEJh7trjFEMSD8esaPH4/RaERabVx89G0ciZ4JiYNfexhjF1eqrWs7eLp6bIvKKjD7oW9cn8AHXDkl99Vsy7udprE6pS5Oi+d5dmxu4L1H69CqkZdrlZTNkcRNeYVzwx4ga59nLkXfXg3xn/ZUkedcarRecN1bMG4HdHsCfOoU3i79HGyfAfO6wtrppe5eKXxVFaGBWm961lmjwfSdR5VWq2XMmDEF/PYWLlxYIUEceWnkV4f3e0xhcIOCwRNbLx7iT8t+lp3awr6kk4Wu+OBw2MnMzCTHcTjEK5XXa/9Jr5rJuf7yXq2zLXtXKWUD2cmG8wVvbIqLAn0Dl3zA/MS2nLAGZk9lupjS5mbq+5b+7axDhw4FVlTJITAwkObNm9OzZ09uueUW7r77bp544gneeOMNbrjhBoYOHUrDhg2L7NtituC3JwWHOVc+h05yJtTBwIEDGTt2rIdDfnE4pJN5R34DcgfQ7j4XaBc6pVT756e2dw065guIWHs+ssT9DppOsyPD031gfI0NaB35lEUpIeNfODPItUauo5Dk4UGPuaaJqzE1Hxnr4ZPmTMvANLNoXyvAtfTawJnglSdwx2HFd+tTjLtrZIG8oD/88EOZgziG9fOjpn9uP3YHzP0rpZg9cpE2O/FPvO8xhVdES1dULoCUuP4JLtYIZNXgtsT268hNt97iscfpOBsvfx1fwD9rws2BtG1S+G/Fq00z8nrz20+fx5FS9qAWAIw1oMdznnXHl0PsxkKbXyp33tjU4zoKnDTzXoOPLoXg4GDXLEGfPtx+++3ce++9PPPMM7z++usMHDiQQYMGeeQ29RfpNNPnpoSSTsnvx/w5evQoey1tsaPNOQghvg4Gt3S6j50yawnW6BgP2QKnjHL734EreCRPeknikhzEnC+osFqH38b33abyQ6uxpHi5/L3zLrk2PNyPF+4JJsAoSf9jPefveJy4qa+StWlXgdVAdLX0BM/8unzTnvmGuBS+cTtcqZDqFjGj4bBC9OJSd6umdKsy3t1caVosc3Prkv4H/sNAl/ugCwwMZMyYMXz33Xfutx273c6cOXN46KGHCAqqOGXJoPXi4XZD6RTUjC8OrSCrFOu3SqcTs8WC3W4DCd5mQc/A40wK2USIr0SryTaN61tC/cWuqMmrTJ+Q9iw6sc5d3pd0kjRrJv4+A4k0JfGbKXtpPGkBYeS6kPYMqBdWpmNoNBomTpzI3r17yczMJDg4mODgYGrVqlVsln6DwUCvXr3o1asXiYmJREZGEhkZWWAVFoNVUP+cjtiGOdYTQUYjL0K7tS6Tz+f68/s5lZ6rNAkk4xr4gVeLYvYqnv71OrMvKTeqMeL8Psa1GOixxF9epJTMPfYvCAOgBRy0MSbR3ecsmGZBrey0IuY9kPAmmLcU2g+aQAh6CgInF769GqGtVZPAqXeQ/NGP7rq0xX/jP/pGvJo3KnrHwCbQ9x1YnWed3qRoGp+bzc033+qRFzQlJYU5c+YwderUUqck8TZoGHtjIDN/zp023RZl5sAJC+2bFf0SIp1OEl78jMyIHQW2CaMX2tpBaGvXRFc7CK15HyLtMA4vM3hb0PjYWcEADmtcL1hTRo3yyH159IyVt39IID3L03rUu5M3t/Qp2gqs8Tbg1TwU65HcxOXWqGN49+lS5D7F0mYMHJoH8XkU2s0vwch/XMp4OXBtpwDCu2WxeV8WBr2Tu8Id9Os2npo1axZryfP19SU8PJwBAwZw9uxZ9uzZg+HAV4g8vtgXHcFccLhmgSzSSJSlNV28D+Hj7e3qO+oHaHYL1mOnSfn2F4/+fQZdS41Hx3rUeRs1hLUyeiwFt2VfFk3ru+41h0Py15YMFq5KxVyrHSTnKm/S4STIksz0B9rTqYEkff7vpM5dgf1czkyFBKtn8nWvOg5qf/MhmhoVNLuk1UOLoa5PwgHX93FsKdgvbSUbZeGr6gS/gEPmiX6SGZDwWoFmzZs35/bbPZ2DMzIymD17NllZFb9Aed//b++8w6Oq0gb+e6em9wqEIl1QUEGUIiCiWBAbFlREXRu6rqi76reurrq6a1l737Uua++KZW1RisuqoCAiiIAQIBBISM9MMnO+P+4kM3cyk15mwvk9zzzknnvOnTfD5Nz3vjVnJPeOu4T9kkLXPALDxZlRG0PCZhd9flaMWGPn0BVWbk76hN/1+pQ0Ry12e72yN8hw40ZItmTfhCyT+9qjvHy1ay2l9gk8sDPAwqncZMYkcenwE9r0ROhwOBg7diyTJ09m5MiR5ObmNqnsBZOens60adO4+uqrmT9/PuPHjzdZf3N2WoipFkSM4qI2m53H1r4X1GIsPLXeOl785T+g/BvSEQkF9M9pn8J0WNZwYgJuYMWuclYVbww7/5vd61m7dysgYDH+Ps5NX2NYhkufh5pVUHgpFBwfRtlzQMp86PdfSLmgw2qcRTpJ55yArU9AT2iPh5J7nm1+4eBTjPixQNY8x/jc0kbZ3Nu2beOll17C6215j9wjRscysI/5e/7se6V4wpRpUUpRfPuTVC76wjRem5tOn0+fou/XL9Png8fJff6vxF16ELGDF2EduR3HkGIceZWsSdyvQdmbMGGCqY3f6g013PrPxsrexNGx/Pb01Gb/rh0jzX2gXT9saPqXbwqL1XABBlK8DtY81/ZrBiEi/GFuNv/4Yx5P3zyAU2cMISMjo8VZ1yJCnz59mHnC8UzP201cXKyxZwl85xpBYJbrttRjiI+P9197+zLUrjXsufkRU2cMa0YK6bdegYR4ED08qMvHstWGW/eXAjfXP1LEc4tKcbkVYjdq9gFYlYdp27/kms//Qt83FlIw/SKK73wqQNnDsOz54uqcvV1knbKL3Kevxn5g47i9TiFjBEy5B85ZAYffBElNPISFQSt80Y4tgy2V5qccKt6GqsZm/XHjxnHEEUeYxoqKili4cGFDIG5nkhuXxp1jL+T0/Y6gf2I2A6wZnDpgItcecBpXpk9n1P8sZC4upe9mC1m7rcRXCbPGfsrQ3hux2+3ExflaZtn38yl7YeIbuonxQW7dJTt/4OGN2yjx+DcgCx6uGjKKhObKinQyIkJeXh4zZ87khhtuYN68eYwePZqs9EyOsg8jPj4eiy+28NeKnby/tfmixQAfFXzDrip/nJYNL2dlV0HclHbJG2tzMj57f9PY59u/DznXo7zmjhoSy5j4EkbE+jKGVQUUzICKUJ0xBBJPh35LDStgF2Z8RwLidJB69XmmserFK6hesqL5xRNvh6T+5ut9cQ0nHjmGIUOGmMbXrl3LokWLWixXfZmWQDbvqCX/29A9Xvc+sJDylz80jdn6ZLNnwRnYstMRETweD0s//5C9b55HbUASQKk3kU+qJmK1Wpk6dSrHHecvmP71j9Xc8eyeRvXZZhwWz29np2KzNv9g4BxptnS3OXGjnuxDYOjp5rFv7w3ZoqytiAhZaTYSYtuhMmxbhpRvxWazERsbQ2JyOkNOuJ5hw4aRnp7OEUccwWmX/AlL7/GmZeWP3N2o923aDRdhTQpd//OQYTGmGng7iz3c/1IJNzxa1Mi9a4mPZYC7kKtXP8YJWz/GWeeibOF7eMuC+jd7aqCumrghVeSevYPcswuJO/Y4ZLi5v3SXEJMCoy6FM5fCsc/DsDnNLqlHK3w9gMLq6Ub9uUBCJHAAHHPMMRxwgHnuxo0bef311zukOHJz2C025gw8kvsPu4zZMYdwVPwIfnxnGR+/+h5lpeYM1sOHfcsBA34hLi6O2NgY48nZPgB6v27UI4wwgoswryrexNe7Nxh9eH3MTl3HCHtz8URdi9VqZejQoZxxxhlcc801LDj9Iqb0GmWa8+Ivn5tqB4aiqs7Fqxu/8NceBI5O3kxO5rkQxvXaGqYEucD/W7SWqhCuDcOl7H8yF4RzBoxp/g3ipkLex5B9vxF/uY8SN/1wYsaYv8vFdz2NaqqQLhhxfEc9Zi4X4SrF+sVVnHXG6eTkmOMply1bZqog0BxD+zmZcKD5QenFj8qoqjFbCkufeqOR+8+amUb2P27Bm2IoCevWreP+++/Hu/QmEvF/rxXwXuVRDBw2mgULFnD00Uc3hDN8saKKexYWN2QM13PK1EQuODEZi6VlVuAOtfDVM+7/zHGUrr1G8ehIIqj2nux3HAeOmcR5553Htddey7HHHmtY/kb4vQF1ZVb2vryOQDdq3JSxxB1tVgoDiY+1MGqQ2dW/bFU1wbe3uBjhopNTueWcOHpVh08mEpuQOGIXvX+zjayTinD2dkPyAJj01+61/Fus0O8ow+rX0iWdKE6rEJE0EXlTRCpF5FcRCau2isg8EfGISEXAa0pbrtUzsELmX81DtRuMWKUgLBYLs2fPpm9fszl45cqVfPbZZ50ppImqqipWrVrFQw89xKZNjSvOjxhQyIyx3xMXF4+tPgrX3j9ilT2APvGZ9EsIIZsYm89QZzGz09Yb9d0inHmDpxNv88csVXvcPLP+oybXvLPlK0rdxdRvzjFSx+z0HZB0epPrWsrI1H5kxfitPG5PHct2/miaY7iUzZ/vEbkH0j/3IpAwsVXOA4xY0F7/NtoX7uOICKm/P990M6vdWED5K03//wOQNQoOvd48tv0rYtb+g3nz5pGUZC6I/t577/Hjj+b/w6Y459gkHAH6ZGmll9cD6t+VvfSBKQYRwJKSSPY//4w9L4eKigqee+45nn32WVJKv2aUw1wT80freKadeyNz587192YGPlhWwcOvlhDsQT732CTOOjqpVeEZjsH9EIffPe0pKqZuV3ETK1pAXBYMCOqBXJDfvmt2JK5S2BRk0Q1nmRowA+JzUQr2fJyO142RgYxhkUu78ZJmP+9gt24w4w+I5b4F2Rx9WAIJR48ndnLjIuOW5ASSLz6VPguqST+qEHua74HHYofpT5gV7CghYhQ+4BHADWQDZwOPiUhTRZu+UkolBLzy23Gt6CfmYEgK+gMqvhdqtzeaarfbmTt3bqNkjU8++YQVK1rgumkHbrebJUuWcPfdd7N58+ZGVkWLxcL0KYOYc+QyHA6b/55jSYFeL5mSUSKRYCsfAOIkVmq5OudbbKLAtQI87dzgO5lUZyJzBpnrAy7ZuYbv9oQuI1HqruTtX5eB12/dOzHlF1LTTu2wUiYWsTA512x5DG619mHBN+yq8Wdw2ixW5gycarhmUy4wX9CWB9mPQJ8PIG5ih8jYU3COGETCrKmmsb2PvoQn2NUVilGXGl0fAvnm7yRX/8y8efMaJWu8+OKLLa4YkJHSuEzLoqUVbCmspeK9Lyi+/UnTOUt8LNmP34w7O43333+f/Px8fvrpJ2KlmuPi/Q8GIqBSBnLoFW+Y3M9KKV79tIyn3zVnBYvApaekNJKlJYjdhmOYOeu83W5dgDzz/xdbPg89rzv4+Q0jo7SepL7QO4yVzmKDEedR9VMc1b/4FLdaY19JWTAXW05G6HUBjNk/FmsI7SYz1coN89JZMCeNtCTDkCAipN98WUP/aFvvLNJuuIg+H/+T1DEbsVYHeWQOvxkyRjYrQyQSEQqfiMQDpwJ/UkpVKKWWAO8A53bntaKO9P8zsgrrUVWw+88hp8bHx3P++eeb290Ab7zxBr/80o7aUGGorq7m888/56677mLRokWm2nr1DB48mKuu/A1HDnseC4Gp7xbIebKhdVwkMyEn1HOFhct6FZNtr1eGFFR9EWJeZDGjz5hGSTZP/LSI2hAFQV/ftJjq2grqe84mWtzMStnY4dmtU4NczT/u3dLQhaOqzsWrm740nT+m9yFkx/oy6NKuhZTLIXYyZNwG/RZD4skd4m7uiaRceQ4S67fyeveWU/p4C0pAiAWOfNBcEFZ54JPLyE3wMmfOHJOFpr5iQH1R8eaYNTmB1CT//5nHA1ffVcCCl4R/73cKy7LGsiM2C+V0EnfnVfxn01ruvPNOFi9e7EsUUcyIzydeDKuR3WEnPjGZ5JOew+r0P5wopXhuUSmvfGIuw2G1woKz0pg2tu0PMo4R5ji+DnHr9jnC7GLcswaqdoWf35UEt1IbekaTf3eeXrMo/tT8/XEOTSfx9JbVIk2ItTDpIP+9zSIw64gE7rsqi4OHxjSab8tKo9dbD1J413x6f/gESWcfj6VoCax6wjyx/wyj00WUIl0Rt9WsECIHAcuUUrEBY9cCk5VSM0PMn4dhxasGioF/AX9VStW19lq+8xcDFwNkZmYe8sorLa9rEwlUVFQ0NLDPjvkP+yWan3J/3HsjpbWjQ67ds2cPX331lSljzm63M3HixEaFU9uCy+Vi06ZNbNq0idpac0yhUgoRIT4+nhEjRpCdncmw5HtIc5pjTzZXzGVHdfiK/11J4Gcdjmerv2KX1x8XNMLWi8vSVtE77s2Gsd01k/i5vOPaIDVFS2QWPOTFv0yGczEVdQPZWH4RdSqZ7Z5SFtYsJzCGZqJ9EOMd/nqAZd5qnqxegkXKsIjxf3xuyveMd6awruy6Dpd7YfVytnv3NhyPtw9komMQS90bWBrQ99aOlYvjJhEvHddftDmmTp36rVKqBQGD0bHvJCxaRtLb/gQwZbGw65YL8GSnNfu9Sin7luGbzaEmLnsmP+53M+sKXXz/vTnpJjExkQkTJrSoXMvagjg+WGFYeqTOg6UyRKUBp8Jq3UmsFBJn2Ums7EKo48DYXzgl5TMsFgs2mw2LxcLW7NMpyDZCD7xe8HiFz1ansWarWamzWRUnji2if1bbymLUE/vVD6Q+837Dcc3+/Sm+KnzoQ0v+hgEO+Pl6Eqr9yuOGvCsoSp3SHlHbTL3M8dWbOPDnwKLEwrfDHsPtCG+pS3n2fRIXL8fi9fUmtoLzojjWjbupxe/vrhW+25xITa2F4X0qyUxqPomlXmZHbTGj1l+NzeO3aLvsGawafA91tshz5bZ034mUOnwJQHAlzVIgnMbxJTAS+BUYAbyMYVr4axuuhVLqSeBJgKFDh6opU6a0TvpuJj8/nwaZ1SQo+A5c3zWcP6jPa9B3vil5IJBBgwbx0ksvmcbWrl3LZZdd1malr6ysjMWLF7N8+XJqa2uxWCyNCvd6PB6OP/54JkyYgM1mg+L7oPh7IEDOhFMYuv/fGRohZTFMn3UY4otyueO7F1HAgMQcbhkzj7jaVbDNH8PSO3Y9vQ+eZOxknUyzMis3FM6HSuMGlMQKemU8YMS12TIoW2vlwwJ/O6jvLDu44NCTyYkzQgIeXPMWtu0W8NQBQrq1mpnpW3H0+Tu5ceGDq9sqt6sggcfW+mu7bYmtYNTYMTyxdBmOAOXujP0mc/zAqY3WRwrRsO94Dzuc7Ss3Ulfor9k4dPFash7+Ywv+FqbA0jJY7Y8ldlLKYTvv5LATX+WDrCy+/NJvkXW73fz6669ccMEFzZb8mKwUOyp38+PPVXirqkzdVFAKl8OKRyzgzaOcPPAYBYPjpAgshazeNZc6nNQqG3XWJGpL+lO7RqirU6Y4vcAtKy5GuOG8dIb1D138vDW48way/d+fNBzHFJVxwOTJYWPTWrLvABB/Knx7X8PhiMRdEGZdzcq1uFasJfaIQ3AM7hdyTntokHnJxxCoxOdNZfzRp4VdV/3fVez8Zj04E8BXCD7l8L2kJG8hd3QepLT8829t1+v8/HymHDEJ3jsdrG6j8wWAWHHOWsjEnBY9y0UsXeLLEJF8EVFhXkuACiApaFkSUN74aqCU2qiU2qSU8iqlVgO3AvXfoFZdq8chVsi8g8DaRtRuhJInwi4ZNWpUo7ZdJSUlPP/887jdYdoQhaG4uJg333yTu+66iyVLljSy6oFRCHjy5MlMmzaNyZMnG8pe5X+g+O6giQdA1j1RVwNtbOZQHhn/W2466Gz+NvYC4mwxRoylJeBr6S0BV+iyIl2Ktwq2z21Q9hpw/wTbToO6Is4ZNI1kh9894vbW8Y91H6CUYkvFLvJ3fG+K3Tsr/SccMUNNfZ07konZI7EHtKPbVb2Xv33/EtUBMUJJjjhm9eui+lg9GEuMk9RrzGVaqvK/pvq/Lcw0P+xGGBjkWKnaCe+cwjFj+ra5YoCI8LtDyzhqw4f0Ld+CVXmMDhnKi9tuxRMqgEusKEsKBbWD2eoewA53L3bXZrNX+lBZA+5a1Sgpo57keAt/viiDYWE6aLQW+4De5q4mpRXUbQ3R4aW1BMfxFXwBIWpo1nyzhsJzb6DkvucpnPt/1G7Z0f73DkVdDaw3Z0wz7Kyw073VLvbc+phxYLGDxY49vZbkw3w2nMDewZ3Fivthe1BtzrF/gChX9qCLLHxKqSlNnffF3dlEZLBSqj56dRTQ0oavCr+Gs76d14p+YkZD0jlQFtCBo+Q+I17J3ifkksmTJ1NcXMzXX/vdqQUFBbzwwguMHDkSi8WCiDT8G/izxWJBKcXq1av57rvvwm7WsbGxTJgwgfHjxxMbG0t+fr5xwr0BCq8wT7akQc7TYGkcbxEN9IpPN7dNE5tRiy6w9lvlZ4Yi2F14ymDHOVDzTejzteth22kk9H6V8wYfzYNr3mo49e3un/lf0U98tuN7vMoLynCp9bGXMyVxK6T8vdMU9Xh7DOOyhrOk8IeGsXWlBaY5p/WfZCjamnYTN2MizoXvmWqhldz1FFw+q4lVPupbr1mdsP41/3j1bizvzWb2jH9RWlrKli3+dlsrV67E4XCQl5cXes9RCtuipVgXfsC0Og9HuN1UK2FbUl+WjTyYXxIHUenJwqMM64zFYsHhcGCXOnAHKT+OBHMZmRCkJ1u56TcZ9MrouNulWCw49h9Izdf+77B7zQbsfcMXpm8RWaPBkQRuX0hJTQnsXm2MB1D+0gcNP3vLKyl77m3S/3Rp+947FJs+8MsCEJMG/cPH4ZU++hJ1gcqnPY6MGVv8jpD1rxhZ4J2UIZtU8QOsu8882HsSHHR5p7xfVxMRLl2lVKWIvAHcKiK/AUYDs4CQ/iARORZYoZTaKSLDgD8Br7blWj2W9Ouh4j3DkgRG54PdN0PuUyGniwizZs1i7969/PyzP2Ns3bp1rFu3LuSalpKYmMjEiRMZN25c436snjLYcX7jRvU5T/a8WmhxR5oVvqpPIf3a7pGlrgi2nwXu4JIYdgJ74FL7M2w7lam9XuWTlL78uNd/Y374x3cor632KXuGkn92+lps1hRIOKlTxT8yd5RJ4QskMyaZY/Mal1nQtA0RIe0PF7DjbH88pnv9r8QtWw3TjmxipQ+LDabeD9YYow1YPa692D+Yw7wZ/+Th1ypMSRvLly9n+fLljS4VW+Xm8K82kr3TXBPSDlT0qUH6bmEQW1AK4lP3I3fAeKpUFus3VrCzsBzTo6jVAXZz0lrD9WxgtwlD+zq4+OQUMlI6/lbpHDnYpPC5fthA/LGT2ndRi81I3tjoD3lg6+cmhU8pRc235r/7yve+IPXq80xWxw4hOFljyGlhW765fvyF0ufNxdATzz4JZ9/HoMrX/9pdAetf7ZzEieo9DN7yAFgC6jrGZsC0h3pMYldEKHw+5gNPA7uAPcBlSqk1ACLSF/gR2F8ptQWYBjwrIgnATmAhcEdLrrXPYE01OgXsusY/VvmBYVWKD71JW61W5syZwxNPPEFhYfvdCykpKUyePJlDDjkkTPsvL+z8LQQE2gOQ8WdoR+xXxBIX5G5xfW8oXl3dHq52G2w/HWqD6h86RkLus1B0naGMNsz/Bdl+KpcMfpKrvynAo4wNsbzWFyjvc+cOdpZwWPwOSL6y0y2zo9IHkuZMpNjVOFLjrIFTsTdjtdG0DueoocQfP9nUqizxrcV4F1yEJSG00mRCLHDEnWBzwuqAh053ObGfnc9Fxz/IQ69/S1VV6M4ZAHlbihm3fBP22sYuyp+G5bD6AOMBsXfv3kydOpXhw4cbRZM9tfDWOZQkbqGgMo1YhwW73Ybt+GewJedgtwl2m2CzGkqe1UKb2h62FkdHd9yoJ29qkMKXD4csaDis27YLT5E5I9pbWU3lB4tJPK21UW/hcboKYVtQx6cw7lxVV8eemx8xUq59WLPTSb1qLqytMDqH1PPDMzBiXsd6EDy18PnvcNSV+OMNRWDaw0aNwx5CxKitSqlipdRJSql4pVRfpdQLAee2+GrtbfEdX6uUyvbN3U8pdZNS/rYSTV1rnyLxDHAGuQx33wi+zKdQxMTEMG/evHZl6GZkZHDaaadx7bXXcthhh4Xt9ZoX9wpUfRwk8+mQfEHI+VGPLROcB5rHqvK7Vgb3L7BtVmNlL+ZQ6P0a2HsZVuC46ebztZvoV3oRM/sElZ1RLsDYpM9N/xERGyTP6zTx67GKhcm5BzYa75eQFXJc035SF5yLxPiD763lVZQ8+O+Wd+gRgfG3wugg91htFSlLL+eiGYNDJmvY3XWM++9GJi7Z0EjZq7VbWTphICsP7kv/AQM4//zzufzyyxkxYkRDhwyW3w5F35NqK2FI7FoGxf5Mv2kX0HtAX7LTbKQlWUmMsxDrtGCzSpcoe9C4xZrrx42ojmhxmTfFfLzzW6Pwcf37rAhd6Dq4FV17ySoJqgOYfTCkDQ05t+xf7+Jea+6Nnf6nS42Hif3PNbvd926AbYs7TtA9a+HN42FLUEH80Vc0ricZ5ejH4J6MWIwOHAUzaCirUbsZ9j4KaQvCLktOTubyyy9n2bJlVFZW4vV6UUo1/Bv8c/1xTEwMI0eObIj5a5KK9+kT/xqmjFznaMi8M+qSNFpF3DRwBQS8V30KSbPDz+9IXGtg+5ng2RMk01TI+SdYfO4ccUDuP2DHxVD1H/+82s2c4biXLx0zKXb7ylL42qiNjt3FgXG7IWFWlxXHnpo7ijc3m1tznTNoGtYe4n6JNGw5GSSffzJ7H3u5Yaz8hUVYYp2kXHVuyxQlEaMNmC0WvgloCeVxkbPyOq466Q6+2pGEy+XC6/USu7mQvq98iaOkHGz+25UCyvpnsWHmODL75DDjkEMYMGBA4/fb/DGsMpepov+MVvUf7SysvbKwpCbhLTHc06q6htqNBe3PmE3INRSrYl8ojvJCwWIYeAIANWEUPvfajbh+2NBIEW0TXo+h8AV+JcJY92q37GDvI2bXb/yMicRN8YVlxGcbXUR+CXD3rn6q/cqYpxZWPggrHoDg2qLZh8CYbgq36US0wtfTiTkAks+D0mf9YyUPGjFWjhAbpI/k5GSOPfbYzpHJtQ52BtWgs2YYliVL19VM6xbijzQSaOqpygdVZyR1dCbVX8OOc8Frjn0iYSZkPwwSZIWtV/oKLzVCAXzEejfxm7QvuKtwDKCMki7AOem+m0jKbzrxlzDTNyGLsZlD+LpoPQAHpw9iTMaQZlZp2kPS+SdT/vrHeAJagZU+9Qaqxk3qdRcgzT3ogaH0jbkabDHw37/4x721ZKy4gZlHPozqdxJ7n3iF0oX5RmG8WH9smdhtpPzuHIbPPZHDmnq/iu3wuXmfcdkzcE69LyIeKkUE58hBVC/2dzdy/7ChY0qk5E31K3xguHV9Cp9rxdqQSwDKX/kQ58grwp5vMQVf4Kgt9rtHbbEwsHEtVeWuZc8tj6Fq/Bn2lqQE0q6/0DzxgAvNCt+WT6B0k9HTti3s/gE+vwr2hFB+43OMntBhYg2jGf0ovC+Qdh1YA6uWu6DwQvBWdr0srp9gxzxQge9tg5x/gK2dGWrRgHM0WFL9x94yqOncdnbJ9u8My16wspd4FmQ/2ljZq0fskPM4xB9vGj485nsmxW8Ar5Foc1zyRgbFlILzIIg5pBN+g/AsGHkKvxk6g98MncEfRp3eZe64fRVLXAxZ913XKG6v7N/vsefPj7bOJTl6Pky83TzmraP2tSspPO18o6tHQEF4APvAPHJfupvkeSc1rVx66+CT+eDa6x8TKz/3XQDO5LDLuhrnyMGmY1eHxfFNMR9v/RyUwlNSRu3GgpBLACo/WIy3vAPuC8HJGgNPBIc/TMhbUUXpM29ScMwl1Cw3l/hJ+/35WDNSzeuzx5jbmSkFrxwJn1wOBUsMK2ZL8NTC13fDG8eFVPZ2J0+A0z6GxNDVLKIdbeHbF7AmQ/qNsCvAjev+CXZeZWTDdsVNUnmh9CnYfTtGm+MAMm+D2HGdL0MkIFZfeRZ/1w2qPoPYQzvn/SoWMTzlb6CCbo4pl0D6Tc3/34sdch6FnVdAxbvGkMDvMr9kcnwWVvFyYKyvKG8XWvfqibPFcELfw7r8ffdlnKOGkv3UrWw6+w9Q57/RVrzxCarGTcbtVyL2Ft5aRp5vZO9+eS3Koyj/PpGS/FRU7QawJ5qyaBPnHE/q1XOxxLTAC/DNvVD4P/PYoddTXho6hqy76JQWawA54wwLap0v9KJyB5Ssx/XdXvP7D+mHp7QCz04jzENVu6h4N5+kOeaHvFZRvQc2/8c85nPnevbspezfiyh/8f2QimXMuAOJPylEUqEIjLwA8q/2j3lcsOFN45XYx2jXNvSM8Mpa0SrIX2DE7AUTmwGT/sbPW+LoHdgSsIehLXz7ComnQ0KQSb1yEZQ80PnvXbcTts8xysIEK3uJZ0HS3M6XIZKIn2Y+rvw09Lz2UpkPhZcgBMWnpP2hZcpePWKH7EeM+DwfNlGMid/JQXFFWEWBNRsSTug42TURjXPEIHZfeybWjBTTeOX7X1J07T0od/NtrBoYfhbV6Tew47leFH+chqr1fS9ry8FdhjUjhezHbyL9/y5qmbJXsBhWBu1reVNg9GUtl6mLCI6Xq12/uXWfXThsTugVVOlgaz41K83KTszYA0g81ZygVfHaf1qeiBOK9a+BN+B3SBlIbW0ee257nIKjL6b0yVdDKnvWzDTS/zw/vJV+0Mnhu2yUF8A3f4cXxsG7Z8DPb/mVXY8blv8N3jg+tLI3+BQ44wvY77jW/Z5RiFb49hVEIOtecOxvHi++Gyo/Dr2mI6hYBFumQvWXjU4V1RwBWX+NiHiaLiVuCqZoZvcaQynuSJQHdv8JCHJ1ZPwF0q5q/WcuNsh+CBJODn0++bzwrmFNj6SuTxY5z96BNdtsEan69L/suvKveKvDVwOop/bX7ez67R3s/PMnuMsalyeK67+HXpdUEDu2he20qorgsysMl1/DRbJg6oMRWUvNmpGKLcffU1bV1uFet7ljLh7cdWPr57iC6u85Dx5OwqnTISA72r3+V9yr1rftPb0e+PF5/7V22in6aBDbTric8pc/RLkad26SGAdJZ59A7sv3YM9rIuHL5oSTF8HY30NS39BzlDIyeD+dD8+Phi+vh9eONpIzVFC4QVwWzHjGKL0Skxrycj2NyPsL0HQeljjIfcYcQ4aCwsuNbhcdibcCdi6AwosgoNG9IUcSZD/GhvIrw/b37dFY04x4t0CqPg89t61UvB1U39ACWfdDSjtK3ogNsh+ExOA+mA5IPrft19VELfb+vch9/g5sfbJN49VLVrBr/m14K0LX1fOWV1J8zzNsP+lKqj73uV6tTnCmAoLYFOnH7CHz5CKspcvgzZlQurlpYZQXPvutv0gvGA82Rz4McRnh13UzwfX4Oi6Oz6zwebcsx73GvM87DxqOLTuduCPMsbdtLtHyy9tQuomarU72vNGL7c/1ovJ/exrFYgJYkhNImX8mfT7+J2k3/AZbVlrz13cmGTUFz1oGM1+Fwaca35tQuMsM5bMkhPI6ZDacnt9k14+eiFb49jXseZDzBBBQ70pVGIkUnrJwq1pH9TewZTqUv9z4XOx4yPsUElvQlqknE1z8uiPdusoDxfeaxxJnQ9Lp7b+2WCHrPkg6jwYrZcbN5qQgzT6FrXc2Oc/dgX2AOXaq5usf2HnJLSb3naqro/zlDyk47jLKnn0bVRsUbmB1ED9rOr0XQOKoCr8heu8Go1bajqC4vEBWPgIFQZ6Eg6+CPhPb/st1AcGJG8FKWZtJHgCJef7rFoCqL6cE2PrmNihZiWfMMC2t/GgpntJWtp/3euCbeyldnkThizm4fo0zsnODLKu2nAzSrruQPh//k5T5Z2JNTQpzwSYQC/SeYHTBmPu9UdQ766Dm18Vlw7HPw5EPQExK6983ytEK375I3ETjJh1I7UbYeXljs3drULWw5x7YdhLU/Rp00m4kjvR6uee1TGsLcUFxfFVfGJ9fR1DxtvH/6UNhgdTfNbGglYjVcMX3XQr9V0BKJ7Q50kQVtux0cp79C44h5pIiru/XUXjBn/CUlFG97Du2z76GPbc93lB7LhDnqKHk/vtOMu+7Bdu8RUZmZiA1JfDubFj/emMBCr+Gr+8yj+WOM3WYiFQcjTJ1O0jhEzFZ+WoKYoxEBx8xBw33/zx+NLbe/o4SyuWm8p1Weh1+eZua1dso+aLegyRgj284bR+YR8btv6P3B4+TdO5MLHEd1I3HmWQUZz5lEcz+DA68BEIlXgw9w4jV63dUx7xvFKIVvn2V5AuNRI5Aqj41YvragnsTFJwMJffSKG7MPhjyFkHqfPxdsPdxnAcYtQfrURVGrbz2EsK6V1QzGRz923/tYBz9u6zIsibysaankP3MXxpbrNZuZNvx89l58Z+p/Tn4QdCw+GTefQ05C/+Gc5QvizY23XDZDQqKGfXWGm7br+/xx+nV7IVPLjM/rMakwrRHzR0aIhTnCHN8Yu3GAryV1R1z8b5+hc9V4DQSGOrf9xB/PLdYLI3aqpW/0orkDa8Hz5f3UrTIH4fptThArDhHDyPr4T/S680HSJg1teUZ3G0hfRiMvxnOWQHHPGWUg+k3HY5/AabeZyiH+zBa4dtXETG6WjhHm8dLHoTyd1t+HfcvUPR/sHUauELUk0s+H/I+AufIxuf2ZcTSuLdu1Weh57aG8rdM1j2wsq3q1PZfV6NpAdbkRLL/eQsxh5iTw7xlFY3mSqyTlCvm0OvdR4g/dlLj7Eyb0wioH3NNo7V8e68RmF9XA/lXGUWWA5n6gNFxIgqwJMZj79fLP+D1Nmoz1mZ6jQeLDeUB1zanUeTdpxgHWvgA4k+ahtj8D+S1mwpwfdOyFvRqw1vsebUcT7l/vccaS+b915O78G/ETRnbsqLcHYXVDgOOhemPw7HPNa5LuI+iFb59GYvT6G5hDcqO23UVuMJXY0cpqFoM2+fClklGFw9VY55jzYTchZB5O1g6yHTf02jk1m2nwqfqzF08ABJPo8ajrXCarsOSEEfWYzcRe/iosHMSZh1J7/ceJeXS07HENlFqRcRQ+KY9ApagLPANb8NLExvXfDvwkqhz2zV263ZQ4oYjEXLG4i5y4K313e49bqxpydj69zJNtWWmEjfNXNOy/NWPmn8Pr4eKJ++nan1AMW5bLBXHHEb8UbpGZiShFb59HVsu5DwFBGymqhp2nA+eEvNcrwvKXjSsedvPgKpPQl8z/hjo+1njxASNmbjJmP4E3T9B7faw05ul/O1G1r0Ojd3TaFqIJS6GrIf/SOzksaZx50HDyX3xbjJuvxJbdisSfQafDCe+BjFBmZzBlr2s0Uav3igjuB6fu6Pi+AD6TDGse/V4XDgPGh6y3l3CbHPWatXHX+EpLm3y8rVfPE/xO+b4Y8fIYZTNmtR2mTWdglb4NBA7BjLvMI/VbYHCSwyrUd0u2HM3/DoGdl1jKCahsGZD1t8h52mdtdkSrMmNW5FVvNW2a4W07s3unNg9jaYFiNNB1v3XkX7TpSScOp3M+64j5/k7cB4wuPnFocgZawTmp4ZZ70iM2h6ojqDPxNVRmboAfacaCRv1eNw4R4fuOR1z6Ejsff2ucFVbR8Vb4T0PyuWi6KanUXV+5VHi4sm890aw6XjtSEMrfBqD5LMbd7yoXgIFM2HzWEOZ8OwJvdY5yujE0P9/kHTWvldIuT0Eu3X33GmUtWktIWL3SNPWPU33InYbiafPIOOWy4mffnj7ex0n9YOT3oU+RzQ+N/ke43wU4hg6wFT8uG5rIZ69rSyLEgaVNhzX9vjAEWL6hU7GEIuFhNlByRuv/QcVoo4ewN5bbsK9zVxaJ+36C7EHuYs1kYFW+DR+Mm+DmKCerq7vgVDlQiwQfwL0fhv6vA+JJ+tOC20h8TSQwBjHWii8sHWu3XDWPXt03vw0miZxJsGx/zL68NYrkAdfBQNndqtY7cES68QxKM801lH1+OoKduGp9rt0xaZwOMN4aYCEk6aZMmnrtuygZvnqRvOql62k9OVlprG4Q3NIOPvMDpBa0xlohU/jR+yQ8w+wNpHdZkmElEuh31eQ+yTEjtUWvfZg72UUMg7EUwSF54O3haUZyt+C2k0BAzZt3dP0bKx2mHg7nPVfmPMVHPqH7pao3TRK3FjdMYkbrm9/NHWjcPZyITu+CDvfmppE3HRzH97yV8ydNzwlZey+9jbjYbN+XaKH9Htub78VV9NpRIzCJyJpIvKmiFSKyK8iMqeJuY+LSEXAyyUi5QHn80WkJuD8uq75LXoAtkzIfRokKHPO3t/ow9r/W8i4yejYoekYEmdB6pXmMddq2HW1uSdoKLR1T7Mvk5QXtW7cYBonbnSMwlezci1Y/C0sY/JqYPcP5hZ0QSSeYU7eqP78f9TtKgZAKcWePz2IZ6d5feb8A7H2CerVrokoIkbhAx4B3EA2cDbwmIiMCDVRKXWpUiqh/gW8CLwaNO2KgDlDO1XynkbMKOj9ulEnLv4EyH0W+i42+rBaErpbup5J2h8gbrp5rOJtKHm46XXlb4aw7l0ZdrpGo4lMGln41vwSZmbrcK1Ya9T99JW1cfb2ddsoCG/lcx68P/b9/K3yVJ2HijeN9o8Vr3xE1adLTNa95MPLiDnzxg6RV9N5RITCJyLxwKnAn5RSFUqpJcA7QLMd2QPWPte5Uu5jxBwMvf5tuG3jj9YdMjobsUD2w+AIejYp/htUfhx6jbbuaTQ9BsegvojTb4nzFBVTtzNMolwL8ezZS+3mbcaB1QFiuHQB2Jofdp2IkHi6ub9uxesf416/meI7nwK3vz+yM9dFyryjILl/u2TVdD4RofABQwCPUmp9wNj3QEgLXxCnAkVAUNds/ioiu0VkqYhM6RApNZrOxJoIOc+AJSVgUEHhfHCFiEoofxNqNwcM6Ng9jSZaEbsNx7ABprH21uOrWRmQnGF14sh2Y3H4wkS25oMKnX0LEH/iFJMCWrd9F4UX3oSqLm+w7lnsXjJmliCHRn7PYg1ESqPBBCC4umMpkNiCtecBzytz07/rgB8xXMRnAu+KyGilVEgbuYhcDFwMkJmZSX5+fuuk72YqKiqiTmaITrm7QuZk+2UMT7kNaehJ7KZm3SmsLvkbdcr4kxA8jE67hRirvzfmrppJ/LJ0I2BuyxSNnzNEr9wtRe87XU+ky5yUYCfB7f+bXvvOR5Rbq9ssd9KbnwVcTxGb68ZVf+wuZNUHT1MZNyjs+pQD+hO37Af/wM4ibHXliO92mzh1Fzt7H8KGlZuBzaa1kf5ZhyIaZW4NXaLwiUg+MDnM6aXAb4HgrsZJQJOFiEQkz3fdiwLHlVLLAw6fE5GzgOOAh0JdRyn1JPAkwNChQ9WUKVOaetuIIz8/n2iTGaJT7q6ReQrsTYDdf2wYcVLCxPR/Qa8XQGxQ9grsKgbqn8Bt5A25mzx7326SueOJVrlbit53up5Il7miTLF7qV/B6lPlIXvKlDbLvePxRbgcfitdwtgROB1+N/HYnEo4OPx1Xam57PjmOv+ApwbqvCBC/PBKUkbXknri3fRJHtBobaR/1qGIRplbQ5e4dJVSU5RSEuY1EVgP2EQkMGp1FNBc5+a5wDKlVHOdphWgc8U10UPyPEg62zxWvQR23+KL3bvffC7pdAih7Gk0mujBGSJxQzWXqR8Gb1UNrrXmW2PM5KAew1s+b/IajgOH4Bja3z/gi92zJdWRPn0PMuRUCKHsaSKTiIjhU0pVAm8At4pIvIhMAGYB/2pm6Vzg2cABEUkRkWNEJEZEbCJyNnAE0IIu0BpNhCBitLsLLoRd+hTsuLBx7J7umavRRD22/r2wJMQ1HHvLKqjbWtima7lWrQePp+HY3jcX68hjzZN2fguusrDXEBF/f11PjfGwKZBxwm4ssQKHXNUm2TTdQ0QofD7mA7HALowyK5cppdYAiEhfXz29BhOGiBwO9KFxORY78BeMRI7dGO7ik5RSuhafJroQO+T8E2xBbYqqgrJ2k87QdRE1mh6AWCw49h9oGmtrPT7Xih9Nx86Dh0Nib3MvYuWBbUuavE7CzCnY8nIarHupk0qI6eOCwdq6F21EjMKnlCpWSp2klIpXSvVVSr0QcG6Lr57eloCxr3xzy4OuU6SUGquUSlRKpSilDlNKhalrodFEOLYMyH0OJDbchMZFmzUaTdTiHGFOonC1MVO3ZsVa03HMIb6iF3lTzRO3NuHWVQqLQ5F706GkTdtF9mk7ST6szCgjpa17UUekZOlqNJpwOEdA1v2w85LG57R1T6PpUTgOCFb4foZD92vVNVRdHa7vzU4t58HDjR/ypsCqJ/0nfv0Yvr4HXCVQvQdqis0vjxsrkHRwwMUGn6Kte1GIVvg0mmggcSa4fwoqtKxj9zSankZw4oZ77UZTLF5LcP+0GVVd03BszUjB1tfXIz33MKO3rsdXgLlqF3x7b8svLhY4+KpWyaOJDCLGpavRaJoh7RpIPMN/nP5HsPcJP1+j0UQd1txMrGnJDceq2oVtR+s6brhWBsXvHTQcEV+hClsM9BrfdgGHzIaU1lkcNZGBtvBpNNGCWCD7Pki+ACwx4Bjc/BqNRhNViAiOkYOo/vLbhjH7r63L1K351qzwxdS7c+sZcV7TsXuBWB0Qk2a8cg+DcX9sfo0mItEKn0YTbcQc0N0SaDSaTsQ5crBJ4XNsarnCp5TCtdKcsOE8eH/zpP5Hw1GPQ0E+WAIUutg0/8/1L1usUSZKE/VohU+j0Wg0mgjCEZSpa9+8o8Vr637dgWePv1OpxMaYiyfXM+hE46XZZ9AxfBqNRqPRRBDOkUEK37YilLu2RWtrguP3Rg1FbNq2o9EKn0aj0Wg0EYU1PQVbbmbDsXi8uH/a1KK1ruD4vUOGh5mp2dfQCp9Go9FoNBGGY2SIenwtILjgsvOg/cPM1OxraIVPo9FoNJoII7ge396HXqD8zU9QSoVdU1dUQt0Wf7yf2Kw4DxzSaTJqogut8Gk0Go1GE2E4Rw81HXvLK9nzp4fZedGfqd0aOms3ODvXMXw/LHExnSajJrrQCp9Go9FoNBGG86DhxE46uNF4zX+/Z/spv6PsX++ggjpwuFYEJWwEl2PR7NNohU+j0Wg0mghDLBayHv4jadddgHKYs2xVtYviO5+m8NwbcG/Y0jDeOH5PJ2xo/GiFT6PRaDSaCESsVpLOPZFdN19AzLgDG513rVrPjtlXs/exl/CUljfK5G3UYUOzT6MVPo1Go9FoIhhPZgrZ/7yF9NuuwJIYbzqnauvY+8hLbJ91JXi9DeP2/r1NPXk1Gq3waTQajUYT4YgIiScfRa+3HyLuyHGNznt2l5iOndq6pwlCK3wajUaj0UQJtqw0Mh+4nsx7f481PbwFL0YnbGiCiBiFT0SuEJFvRMQlIs+2YP4CESkUkVIReVpEnAHn0kTkTRGpFJFfRWROpwqv0Wg0Gk0XISLEHz2BXm8/TMKsI0PO0RY+TTARo/AB24G/AE83N1FEjgGuB6YB/YH9gFsCpjwCuIFs4GzgMREZ0cHyajQajUbTbVhTEsm4/Uqyn7jZ1IotdsJB2PJyulEyTSQSMR2VlVJvAIjIGKBPM9PPA55SSq3xrbkN+DdwvYjEA6cCI5VSFcASEXkHOBdDSdRoNBqNpscQO+Eger35AFWfLsdbWUXCzCmISHeLpYkwIkbhayUjgLcDjr8HskUkHegLeJRS64POT+5C+TQajUaj6TIsCXEkzJra3WJoIphoVfgSgNKA4/qfE0Ocqz+fGO5iInIxcLHv0CUiP3SQnF1FBrC7u4VoA9Eot5a564hGuYc2P8VA7zvdQjTKDNEpt5a562jRvtMlCp+I5BPewrZUKTWxlZesAJICjut/Lg9xrv58ebiLKaWeBJ70yfqNUmpMK+XpVqJRZohOubXMXUc0yi0i37R0rt53up5olBmiU24tc9fR0n2nS5I2lFJTlFIS5tVaZQ9gDTAq4HgUsFMptQdYD9hEZHDQ+TVt/w00Go1Go9FoopeIydIVEZuIxABWwCoiMSISzgL5PHChiOwvIqnAjcCzAEqpSuAN4FYRiReRCcAs4F+d/ktoNBqNRqPRRCARo/BhKG3VGJm05/h+vhFARPqKSIWI9AVQSn0I3AV8Dvzqe90ccK35QCywC3gRuKw+o7cFPNn+X6XLiUaZITrl1jJ3HdEod1tl3pd+1+4kGmWG6JRby9x1tEhuUUp1tiAajUaj0Wg0mm4kkix8Go1Go9FoNJpOQCt8Go1Go9FoND0crfD5EJGFIrJDRMpEZL2I/Ka7ZWopIjJYRGpEZGF3y9ISRCTfJ2+F77Wuu2VqCSJypois9fVo/kVEJnW3TOEI+GzrXx4Reai75WoJItJfRN4XkRJfv+yHm0jgighEZLiIfObr7b1BRE5u4Tq973QB0brngN53uop9Yd/RCp+fvwL9lVJJwInAX0TkkG6WqaU8Anzd3UK0kiuUUgm+V4uL1XYXIjIduBM4H6OI9xHAxm4VqgkCPtsEjJ7S1cCr3SxWS3kUI+EqFxiNUcNzfncK1BS+m8LbwHtAGkYx5YUiMqQFy/W+03VE1Z4Det/pYnr8vqMVPh9KqTVKKVf9oe81sBtFahEiciawF/i0m0Xp6dwC3KqU+q9SyquU2qaU2tbdQrWQ0zA2ssXdLUgLGQC8opSqUUoVAh9itFOMVIYBvYD7lFIepdRnwFKM/t1NovcdTTPofafr6PH7jlb4AhCRR0WkCvgJ2AG8380iNYmIJAG3Atd0tyxt4K8isltElorIlO4WpilExAqMATJ9ZvMCn7k/trtlayHnAc+r6EnJfwA4U0TiRKQ3cCzG5huphOpSL8DIFi3W+05XETV7Duh9pxvo8fuOVvgCUErNxzCbT8Io3uxqekW3cxvwlFJqa3cL0kquA/YDemPUD3pXRCLZqpEN2DGeWCdhmPsPwlcnMpLx1a6cDDzX3bK0gi8wnqzLgALgG+Ct7hSoGX7CsGT8XkTsInI0xmce15LFet/pEqJtzwG973Q1PX7f0QpfED7T6BKgD3BZd8sTDhEZDRwF3NfNorQapdRypVS5UsqllHoOwwx9XHfL1QTVvn8fUkrtUErtBu4lsmWuZy6wRCm1qbsFaQkiYgE+wlB84jGamadixDFFJEqpWuAk4HigEMPy9QrGTaOl19D7TicShXsO6H2ny9hX9p2IzkDpZmxEdizNFKA/sEVEABIwWtLtr5Q6uBvlaguK0ObpiEApVSIiBRhyRhtzgb91txCtIA3IAx72xba5ROQZ4C/AH7pVsiZQSq3CeLoGQESW0Tbrht53uoaI3nNA7ztdzD6x72gLHyAiWb7U9wQRsYrIMcBZwGfdLVsTPIlxYxjtez0OLAKO6T6RmkdEUkTkGPH1ShaRszEyzz7qbtma4Rngt77vSipwFUZ2VMQiIuMxXFjRkiWHz4qxCbjM9/1IwYgF+r5bBWsGETnQ952OE5FrMTL9nm1mjd53uoAo3nNA7ztdwr6y72iFz0BhuFEKgBLgHuAqpdTb3SpVEyilqpRShfUvoAKoUUoVdbdszWDHeGoqAnYDvwVOUkpFel2s2zBKUKwH1gIrgdu7VaLmOQ94QylV3t2CtJJTgBkY35ENQB2woFslap5zMRIudgHTgOkB2bfh0PtO1xCtew7ofacr6fH7ju6lq9FoNBqNRtPD0RY+jUaj0Wg0mh6OVvg0Go1Go9Foejha4dNoNBqNRqPp4WiFT6PRaDQajaaHoxU+jUaj0Wg0mh6OVvg0Go1Go9Foejha4dNoNBqNRqPp4WiFT7PPIyKbRaRaRMpFZK+ILBORS339FTUajabD0fuOpqvRXyyNxmCmUioR6IfRA/I64KnuFUmj0fRw9L6j6TK0wqfRBKCUKlVKvQOcAZwnIiNF5HgRWSkiZSKyVUT+XD9fRBaJyG8DryEiq0TkpK6VXKPRRCt639F0BVrh02hCoJT6H0aP00lAJTAXSAGOx2iwfZJv6nPAOfXrRGQURuPw97tQXI1G0wPQ+46mM9EKn0YTnu1AmlIqXym1WinlVUqtAl4EJvvmvA0MFpHBvuNzgZeVUu5ukFej0UQ/et/RdApa4dNowtMbKBaRcSLyuYgUiUgpcCmQAaCUcgGvAOf4gq3PAv7VbRJrNJpoR+87mk5BK3waTQhEZCzGxrsEeAF4B8hTSiUDjwMSMP054GxgGlCllPqqi8XVaDQ9AL3vaDoTrfBpNAGISJKInAC8BCxUSq0GEoFipVSNiBwKzAlc49tovcDf0U/ZGo2mleh9R9MViFKqu2XQaLoVEdkMZAN1GBvoj8BC4HGllEdETsPYVNOAL4DNQIpSKjBo+kbgNmCgUmpjl/4CGo0m6tD7jqar0QqfRtMBiMhc4GKl1MTulkWj0ewb6H1H0xq0S1ejaSciEgfMB57sblk0Gs2+gd53NK1FK3waTTsQkWOAImAnRpC1RqPRdCp639G0Be3S1Wg0Go1Go+nhaAufRqPRaDQaTQ9HK3wajUaj0Wg0PRyt8Gk0Go1Go9H0cLTCp9FoNBqNRtPD0QqfRqPRaDQaTQ9HK3wajUaj0Wg0PZz/B+Ndw7/U+jErAAAAAElFTkSuQmCC\n", + "text/plain": [ + "<Figure size 720x288 with 2 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Separating the two equations #\n", + "\n", + "# Eq.1 ------\n", + "col = sns.color_palette()\n", + "col_pte = ['#436bad', 'orange','crimson', 'gray']\n", + "col_pte2 = [col[0], 'gray', col[4], 'gold', col[2], col[3]]\n", + "colors={1:'dimgray',2:'gold',3:'mediumseagreen',4:'darkorange',5:'crimson',6:'royalblue'}\n", + "\n", + "term = 'EP'\n", + "res = '80km'\n", + "fig, ax = plt.subplots(1, 2, figsize=(10,4), sharex=True, sharey=True)\n", + "for i in range(1,4): # loop over simulations\n", + " ax[0].plot(dur[exp80[i]], ep[exp80[i]], color=colors[i],\n", + " linewidth=4, label=expname[i], alpha=0.9)\n", + "\n", + "#plt.legend(ncols=3, loc='upper center')\n", + "for i in [1,4,5,6]: # loop over simulations\n", + " ax[1].plot(dur[exp80[i]], ep[exp80[i]], color=colors[i],\n", + " linewidth=4, label=expname[i], alpha=0.9) \n", + "#plt.legend(ncols=3, loc='upper center')\n", + "#ax = df_track[['dfi', 'ep','itt', 'eq1res']].plot(kind='bar', stacked=True, title='', color=col_pte, figsize=(6, 3))\n", + "#df_track.plot(x ='Unnamed: 0', y='dp', kind = 'line', ax=ax, color='k', linewidth='3')\n", + "\n", + "ax[0].set_xlabel('Day', fontsize=12)\n", + "ax[0].set_ylabel('hPa/'+str(dt)+'hr', fontsize=12)\n", + "ax[0].set_xlim((3, 9))\n", + "ax[0].set_ylim((-1, 1))\n", + "ax[1].set_xlabel('Day', fontsize=12)\n", + "#ax[1].set_ylabel('hPa/'+str(dt)+'hr', fontsize=12)\n", + "ax[1].set_xlim((3, 9))\n", + "ax[1].set_ylim((-1, 1))\n", + "#ax.set_xticks(np.arange(9, 32, 2))\n", + "#ax.set_xticklabels(dur[exp80[i]].to_numpy())\n", + "#print(dur[exp80[i]])\n", + "#ax.set_xlim(np.min(df_track['Unnamed: 0'])-0.5, np.max(df_track['Unnamed: 0']+0.5))\n", + " #ax.set_xticklabels(df_track['time'])\n", + "ax[0].yaxis.grid()\n", + "ax[1].yaxis.grid()\n", + "ax[0].xaxis.grid()\n", + "ax[1].xaxis.grid()\n", + "ax[0].axhline(y=0,linestyle=':', color='k')\n", + "ax[1].axhline(y=0,linestyle=':', color='k')\n", + "ax[0].legend(ncol=2, loc='upper left')\n", + "ax[1].legend(ncol=2, loc='upper left')\n", + "#plt.legend(bbox_to_anchor=(1.0, 1), loc='upper center')\n", + "\n", + "#plt.savefig('TimeseriesPTE_'+exp+'_'+str(dt)+'hrly_Eq1_upper'+str(int(p2level))+'hPa_box'+str(int(boxsize))+'_CyCen.png',\n", + "# bbox_inches='tight',dpi=200)\n", + "ax[0].tick_params(axis='both', which='major', labelsize=12)\n", + "ax[1].tick_params(axis='both', which='major', labelsize=12)\n", + "plt.subplots_adjust(wspace = 0.05)\n", + "fig.suptitle('Eq1: '+term+' Term ('+res+')',fontsize=14, weight='bold')\n", + "plt.savefig('CyclonePTEtimeseries_Allsim'+res+'_'+term+'.png',\n", + " bbox_inches='tight',dpi=100)\n", + "plt.show()\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 190, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnwAAAEpCAYAAAAJRv+PAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAADzNklEQVR4nOydd3Qc1fmwn7t91ast27IsufeCOwZbmF5iMBB6SwKkkBBIcEICISQkoYSPhPALIRA6BgzGYMBgqoWxwb13uUiyZFlWl1bbZ+/3x6x2d1arZku2ZeY5Z480d+/cubsze+edtwopJTo6Ojo6Ojo6OqcuhhM9AR0dHR0dHR0dne5FF/h0dHR0dHR0dE5xdIFPR0dHR0dHR+cURxf4dHR0dHR0dHROcXSBT0dHR0dHR0fnFEcX+HR0dHR0dHR0TnF0gU9HR0enhyKEsAshSoUQihBiaDcdo0gIIYUQL3XT+CuD41/SHePr6Oio6AKfjs53ECFEQfAmG+t1y1GM9y8hxAYhhK95nGOcX7OQURC13dbrwY72i3G8Wzqw38mYtPQXQD/gAynlnuZGIcTZQojPhBAVQgiPEKJcCPGuEGJi5M5CiIlCiKVCiAYhhDMofJ17nD/D34N/HxFCiON8bB2d7wymEz0BHR2dE4oX2BjVVnkU49wEKMF9+xzrpGKwETgc/D8bVcgB2AR4gv+XdqJfNJXA6ojtqcG/VcC+o5+2ihDCIqX0Hus4UWMagZ8HN1+NaB8OfARYgFpgOzAKuAyYLYToLaV0CyHGAsuBONTP2QCcDnwshLhISvlpV863DZYE5zkKOAf47DgdV0fnu4WUUn/pL/31HXsBBYAEitrpNxfYA7hRhYOLgvtJ4JaIfjnBv483vx9jrNxY+7Zy3KJgv4IY7z0YMU5uG2N0qF8r+zbv91JU+3nAl6jCkQtVSPxeK5/xN8B7gBP4J5Af8d4PgWURY4wAzgW2AY2oAltWO3M8OziWD4iLaL8l4jjTg22/C24HgD7BtveDbQeARFQFwKpg25YY5+Kl4PZg4FCw7TPAHvVdnwfsDH7ut4Jj3x3cpxJ4CjBFfZY3gvu+cqJ/G/pLf52qL92kq6OjExMhxBjgbWAIqiawF+oNvAVSypLjOLUTghDiSmApcBZQj6opnAIsDr4XzUPBvvsAf9R7TwN9Ud1qpgAfogqHRiAeuBD4f+1MKT/4d4eU0hnRvgpVCARYIoTYgCqQNQK/kVKWCyFMqNo0gE+llI1SSj+qEAgwRgjRQlMrhMgBvkDV4n6CKuy6orotBASqIPj94Hz+iircZqBqJX8Qtc+a4N+z2vnMOjo6R4ku8OnofLcZEMNXLSX43j2oAogDGCmlHI6qqTpafMDu4Kv+GMY5UTyGKsi8jqrRHAL8L9j2cIz++4EBUsoxwG+j3ntVSjmMsP/aQOBvUsoRwPxg29ntzGd48G9RZKOUcheqtrASSAUmoJp3y1A1iKAKXvbg/0cidq+I+D8n6nhZqMJeDqoG8lIppTvGvH4avFZWBrdHBuczBCgOtkV/tub2bCFEXIwxdXR0jhFd4NPR+W7jRTUpRr6atVFjgn+/kVI2+70tONoDSSnLpJTDg693j3acE4EQIhPIC25eBwSCQRy3BtsGCyHSo3Z7WUpZByClVKLe+yD4tyhG2/7g317tTCsl+Lcxaq79gOeBTOBGIAF4FFVAfF8IkYcqpMairaCJ81HNueuBuVJKTyv9oj9brZRypZQyQFiw6x21T0PE/yltzEFHR+co0YM2dHS+25RLKad1ov93NYoy8nMfQKsVa8YctX04Rp9mmgUcf4y25mjg9r7rZi1pYlT7z4BBgFNK+RqAEOJlVC2jGZgFvIZqYrWjFSwj/z8YNa4DVXgcD3wPeCfWpKSU0Z8tUphr7bMlRfxfF2tcHR2dY0PX8Ono6LTG1uDf04UQfYP/x/JV6xBCiH5CiF3B19xjn97xQ0p5hLDGahtwppRyWlBYvgp4WErZloDXHTSnYcmNak8O/o0TQowK/j8p4v2moL/eF8Ht84QQiUG/vjnBtq1SykNR474DvIJq5n9dCHHesX6ACAYE/5ZF+SPq6Oh0EbrAp6Pz3aaPEGJV1KvZTPk4aqqVBGCXEGIn8KtYgwTz+u0FfhTRtjf4ak5xYgaGBV/JMYY52bk3+Pd7QLkQYqMQ4hCqIHj3CZjPV8G/I6P83t4lrElbI4TYArwY3D6MGmwBcD+qli8X1YxchJqOJoAaYRyLH6EGrliARUKI6cf8KVSmBP8u66LxdHR0otAFPh2d7zYW1Jt85CsbQEq5FTXKsjDYrwa4upVxclHNiCkRbYOCL3uM/j0OKeUC1OjZL1G/jxGo6WreRhWOjzdfoKY6MaGmywFASvlFcPtzVP++oagRxS8DM5pNrlLKzajm3c8AG5AOfAtcJKVcGuuAQc3glcA61GjiJcFo7qNGCGFG9Q+EiHyCOjo6XYuQ8mRMHq+jo3MyIoTIRfVhA/iBlPKlEzcbHSHEvagRwu9LKS890fM5GoLm/UXADmC01G9KOjrdgq7h09HR0em5PImabuUSIcSwEz2Zo+Se4N97dWFPR6f70KN0dXR0dHoowaTH2Sd6HseClHLGiZ6Djs53Ad2kq6Ojo6Ojo6NziqObdHV0dHR0dHR0TnF0gU9HR0dHR0dH5xRHF/h0dHR0dHR0dE5xdIFPR0dHR0dHR+cURxf4dHR0dHR0dHROcXSBT0dHR0dHR0fnFEcX+HR0dHR0dHR0TnF0gU9HR0dHR0dH5xRHF/h0dHR0dHR0dE5xdIFPR0dHR0dHR+cURxf4dHR0dHR0dHROcXSBT0dHR0dHR0fnFEcX+HR0dHR0dHR0TnFMJ3oCJxspKSly8ODBJ3oanaKpqYn4+PgTPY1O0xPnrc/5+NET571+/foqKWVmZ/fT153jQ0+cM/TMeetzPn50dN3RBb4oevfuzbp16070NDpFQUEB+fn5J3oanaYnzluf8/GjJ85bCFF8NPvp687xoSfOGXrmvPU5Hz86uu7oJl0dHR0dHR0dnVMcXeDT0dHR0dHR0TnF0QU+HR0dHR0dHZ1THN2HrwP4fD5KS0txu90neioxSU5OZufOnSd6Gp2mJ877RM/ZZrORnZ2N2Ww+YXPQOT7o607X0xPnDD1z3j1lzt+lNVUX+DpAaWkpiYmJ5ObmIoQ40dNpQWNjI4mJiSd6Gp2mJ877RM5ZSkl1dTWlpaXk5eWdkDnoHD/0dafr6Ylzhp45754w5+/amqqbdDuA2+0mPT39pFx0db47CCFIT08/aTU+Ol2Lvu7o6HQv37U1VRf4Ooi+6OqcDOjX4XcL/Xzr6HQv36XfmC7w6ejo6Ojo6Oic4ugCn46Ojo6Ojo7OKY4u8PUQDh8+zDXXXMOgQYMYOXIkZ511FnFxcYwfP56cnBzy8vIYP34855xzDkVFRYwePbpD495yyy2hfceNG8cXX3wRei8/P1+T/T963IcffpjBgwczbNgwPvnkk677sCcJiqIwYcIELrnkEkD9rt577z0AampqmDBhAi+++GLMfYuKirDb7YwfP56RI0dy00034fP5ADWbe/OYzdxyyy0sXLiw+z6Mjs5RoK87Jz/V1dWMHz+e8ePHk5WVRb9+/ULbXq/3hMzpr3/9KzNmzGD8+PEYjcbQfP71r3/x4IMPhuY4cuRI3njjjTbH0q+VrkOP0u0Ev/vd77p1/Icffjhmu5SSuXPncvPNN/Pmm28CsGnTJhobGznzzDO5/vrrmTt3LldeeSWgXvSd4e9//ztXXnkly5Yt4/bbb6ewsLDdfXbs2MGbb77J9u3bOXToEOeccw579uzBaDR26thtcdlnD3bZWLF479y2x3/yyScZMWIEDQ0Nmvb6+nrOP/98br/9dn7wgx+0uv+gQYPYtGkTiqJw7rnn8tZbb3H99dd3xdR1vkPo606Y47HuHC1Foy/rtrGllCRuXxzzvfT0dDZt2gTAgw8+SEJCAvfcc0+3zaUj3Hfffdx5550kJiaSkJAQmh+oc7z77ru55557KCwsZOLEiVx55ZVtpkU51a6VE0WP0/AJIQqEEG4hhCP42t1G37uFEIeFEPVCiBeEENbjOdeuYtmyZZjNZn7yk5+E2saPH8+ZZ57ZpceZPn06ZWVlHeq7ePFirrnmGqxWK3l5eQwePJg1a9Z06XxOJKWlpSxZsoRbb71V097U1MSFF17Iddddx09/+tMOjWU0GpkyZUqHv1sdnZMBfd3puTz33HNMnjyZcePGccUVV+B0OgFVW3bnnXdy+umnM3DgwJBVQUrJvHnzGD16NGPGjGHBggWAao2YNWsWV111FUOHDuXee+9l/vz5TJkyhTFjxrBv375jmueQIUOIi4ujtra2Q/31a+XY6Kkavp9LKf/XVgchxPnAvcBs4BDwLvCnYFuPYtu2bUycOLHbj7N06VIuu+wyTdv111+P3W4HwOv1YjCozwhlZWVMmzYt1C87O/uUEmjuuusuHnvsMRobGzXtv/vd77jtttu4++67OzyW2+1m9erVPPnkk6G2r7/+mvHjx4e2S0pKWph5dXROJPq603O5/PLLue222wC4//77ef755/nFL34BQHl5OStWrGDXrl3MmTOHK6+8kkWLFrFp0yY2b95MVVUVkydPZubMmQBs3ryZnTt3kpaWxsCBA7n11ltZs2YNTz75JE899RT//Oc/j3qeGzZsYMiQIfTq1atD/fVr5djocRq+TnAz8LyUcruUshZ4CLjlxE7p5GTevHkMHDiQG264gd///vea9+bPn8+mTZvYtGkTH330UahdStlinFMlvP3DDz+kV69eMW92s2bNYvHixRw5cqTdcfbt28f48eNJT08nJyeHsWPHht4788wzQ9/rpk2bmDNnTpd+Bh2dkx193ek+tm3bxplnnsmYMWOYP38+27dvD7132WWXYTAYGDlyJBUVFQCsWLGCa6+9FqPRSO/evZk1axZr164FYPLkyfTp0wer1cqgQYM477zzABgzZkynzfjN/OMf/2DYsGFMnTqVBx98sN3++rXSNfRUDd/DQohHgN3AfVLKghh9RgGRTg+bgd5CiHQpZXVkRyHE7cDtAJmZmRQUaIdLTk6msbGxxYXW1URrk5rJy8tjwYIFrb4vpcTlcoXedzgcBAKBVvtH4vP5+POf/8ycOXP4z3/+w4033sjy5csBNWihqakp5riZmZns3bs39F5RUVHoe+ooiqK02f/Vab/u8FhHQ2vHXrZsGYsXL2bJkiW43W4aGxu5+uqrMZlMzJ07l2nTpnHBBRfw4YcftppJ3uFwkJeXx9dff83hw4e56KKLWLBgARdddBFOpxO/3685vs/nw+Vy8eWXX3LXXXcBqh/MRRdd1GJst9vd4hptC4fD0an+Jws9dd4dRV93jv+6096acyykf/tqt4wLHZ+3x+PBbDZz88038/rrr4cEvq+//prGxkZ8Pp/mHEkpaWxsxOPxhNY6CK9HJpMJo9Go6d+8drndbs0+bc05so/H4+FnP/sZd955J++//z433ngjmzdvxmazxRzneFwrzWvqqb7mIKXsUS9gKpAIWFG1eI3AoBj99gEXRGybAQnktjX+0KFDZTQ7duxo0XY8CQQCcsqUKfLZZ58Nta1Zs0YWFBRIKaW87rrr5Ntvvx1678CBA3LUqFEdGvvmm28O7RsIBOT48ePl0qVLpZRSzpo1S65duzbmuNu2bZNjx46Vbrdb7t+/X+bl5Um/39+pz9XQ0NCp/ieCZcuWyYsvvlhKqX5Xr7zyipRSyt/85jfy7LPPlh6PJ+Z+0edg0aJFctq0aS3GbCbyPLRHZ6/HZcuWdar/yUJPnDewTh7FuqavO8dn3ekJa04sOjrvP/7xj/Lvf/+7TE9PlxUVFdLr9cpzzjlH3nzzzVLKlutMfHy8lFLKd955R5533nnS7/fLI0eOyJycHFleXt5irYo8N7HWsVhzbj5G9BybmTNnjnzmmWdaHed4XCvNv7WeuOZI2fF1p8eZdKWUq6WUjVJKj5TyZWAl0FINAg4gKWK7+f/uebzrRoQQvPvuu3z22WcMGjSIUaNG8eCDD9K3b99W99m9ezfZ2dmh19tvv92h49x///089thj7fYdNWoUV111FSNHjuSCCy7g3//+93cq+unRRx+lf//+3HjjjQQCgXb7X3bZZTidTr7++uvjMDsdnWNHX3d6Lg899BBTp07l3HPPZfjw4e32nzt3LmPHjmXcuHHMnj2bxx57jKysrOMwU3jggQd44oknOrSO6tfKsSFkDDt3T0II8THwsZTyX1HtrwMHpJT3BbdnA69LKdu8iocNGyZ379YG/u7cuZMRI0Z07cS7kJ5QpDoWPXHeJ8OcO3s9FhQUkJ+f330T6iZ64ryFEOullJM6u5++7hwfeuKcoWfOuyfNufm31hPXHOj4utOjNHxCiBQhxPlCCJsQwiSEuB6YCcTKqPgK8CMhxEghRCpwP/DScZyujo6Ojo6Ojs5JQU8L2jADfwGGAwqwC7hMSrlbCJED7ABGSilLpJRLhRCPAcsAO/AO8McTNO8Tzh133MHKlSs1bb/85S/bTBys0z5bt27lxhtv1LRZrVZWr159gmako3PyoK87pz5//etfW5juv//973PnnXd2ahz9Wuk8Sm0DTR933E2oRwl8UspKYHIr75UACVFtTwBPHIepnfT8+9//PtFTOCUZM2aMJou8jo5OGH3dOfW57777uO+++1q0dzYaWr9WOof0+am49QG8u4s6vE+PMunq6Ojo6Ojo6HzXcX2zqVPCHugCn46Ojo6Ojo5Oj8L56Ted3kcX+HR0dHR0dHR0egjS58f5Zef9xHWBT0dHR0dHR0enh+BatZlAY1On99MFvh6EoihMmDCBSy65BIBbbrmFhQsXAlBTU8OECRN48cUXY+5bVFSE3W5n/PjxjBw5kptuugmfzweo+c6ax2wmcuwDBw4wdepUhgwZwtVXX43X6+2uj6ijo3OSUF1dzfjx4xk/fjxZWVn069cvtH0i14AHH3wwNJeRI0fyxhtvhN6LXLeaSUgIx/LNnz+fIUOGMGTIEF5++eXjNufu5GQ9T3/7299Ccxk9ejTvv/9+6L1nn32W4cOHM3z4cKZMmcKKFSvaHCs/P59hw4Yxbtw4Jk+erAmUy83NpaqqKrQdeT+TUnLnnXcyePBgxo4dy4YNG7r2Q54gnJ+sbL9TDHpUlO4JZ2/rGea7hMGH2nz7ySefZMSIETQ0NGja6+vrmTt3LrfffnubIeyDBg1i06ZNKIrCueeey1tvvcX111/f7rR++9vfcvfdd3PNNdfwk5/8hOeff56f/vSnHftMOjo6x8Yz3bzu/CT2upOenh66sT744IMkJCRwzz33hN73eDzdO682uPvuu7nnnnsoLCxk4sSJXHnllZjN5jb3qamp4dFHH2X9+vUIIZg4cSJz5swhNTW1S+b0/d+Vdck4sQgEArzzaOwkxu2dpxNJ83nauXMnZ555JkeOHOGjjz7iv//9LytWrCAjI4MNGzZw2WWXsWbNmjare8yfP59Jkybx4osvMm/ePD777LN2j//xxx9TWFhIYWEhq1ev5qc//WmPT5mlmnPXHNW+uoavh1BaWsqSJUu49dZbNe0Oh4MrrriC6667rsNCmNFoZMqUKZSVtb9ASSn58ssvufLKKwG4+eabee+99zo9fx0dnZ7Pc889x+TJkxk3bhw33HADTqcTUDVrd955J6effjoDBw4MadmklMybN4/Ro0czZswYFixYAKhamFmzZnHVVVcxdOhQ7r33XubPn8+UKVMYM2YM+/bt69B8hgwZQlxcHLW1te32/eSTTzjrrLNIS0sjNTWVc889l6VLlx7lN3FyE3merrjiihN+nkaMGIHJZKKqqopHH32Uv//972RkZABw2mmncfPNN3c4Lcv06dM7dO8CWLx4MTfddBNCCKZNm0ZdXR3l5eUd2vdkxb1mK4EGR2jbkJzQRm8tusDXQ7jrrrt47LHHMBi0p+xXv/oV06dP5+677+7wWG63m9WrV3PBBReE2r7++uuQGWD8+PEh9Xt1dTUpKSmYTKoyODs7u8M/Nh0dnVOLyy+/nLVr17J582aGDh3K888/H3qvvLycFStW8OGHH3LvvfcCsGjRIjZt2sTmzZv5/PPPmTdvXuiGu3nzZp588km2bt3Kq6++yp49e1izZg233norTz31VIfms2HDBoYMGUKvXr1CbfPmzdOsZc2UlZXRr1+/0PapvJZFnqcRI0ac8PO0evVqDAYDmZmZbN++nYkTJ2renzRpEtu3b+/QWEuXLuWyyy7TtJ111lmh8x2pFCkrK6N///6h7VPhnDdFRefGnT2tw/vqJt0ewIcffkivXr2YOHEiBQUFmvdmz57NkiVL+P3vf69Z9GKxb98+xo8fT2FhIVdeeSVjx44NvXfmmWfy4YcfhrZvueUWQH3yi0YIcfQfRkdHp8eybds27r//furq6mhsbNQ8NF522WUYDAZGjhxJRUUFACtWrODaa6/FaDTSu3dvZs2axdq1a0lKSmLy5Mn06dMHUN1NzjvvPEBNZr5s2bI25/GPf/yD5557jv3797fQ0v39738PWSQg7MP3XVrLIs+Tw+Hg/PPPD713vM/Ta6+9RmJiIgsWLGj1+5ZStnsurr/+epqamlAUpYUv3rJly0Iaw4KCAh5//PHQuNH05HMufX6cX6zStMWfPwMe6tj+usDXGdrxsesuVq5cyfvvv89HH32E2+2moaGBG264AZPJxDXXXMOkSZO46KKLWLZsWZvFqpt9+MrLy8nPz+f9999nzpw5bR47IyODuro6/H4/JpOJ0tJS+vbtZp8iHR2dMK342J0IbrnlFt577z3GjRvHM888w6pV4ZuP1WoN/d98o411w43V32AwhLYNBgN+v7/NeTT7hi1atIibbrqJffv2YbPZ2twnOztb4/dVWlpKfn5+m/t0hrcf7td+p6Oks1UrIs/TSy+9pFEUnIjzFMnIkSNZv349s2fPDrVt2LCBkSNHtjnW/PnzGTduHPfeey933HEHixYtarM/qOf84MGDoe2efv9yr91GoC58LRiSErBNGdPh/XWTbg/g4YcfprS0lKKiIt58801mz57Na6+9Fnr/jjvu4Oyzz2bu3Lkdisrq06cPjzzyCA8//HC7fYUQnHXWWSFfj5dffplLL7306D+Mjo5Oj6WxsZE+ffrg8/l466232u0/c+ZMFixYgKIoVFZWsnz5cqZMmdJl87n88suZNGlShyJuzz//fL788ktqa2upra3l008/1Wi+TiUiz9P8+fPb7d/d5ymS3/zmN/z2t7+luroagE2bNvHSSy/xs5/9rN19zWYzf/nLX1i1ahU7d+5st/+cOXN45ZVXkFKyatUqkpOTQ9rKnojzsyhz7uwpCHPH9Xa6wHeK8Oijj9K/f39uvPFGAoFAu/0vu+wynE4nX3/dfuHlRx99lCeeeILBgwdTXV3Nj370o66Yso6OTg/joYceYurUqZx77rkMGTKk3f5z585l7NixjBs3jtmzZ/PYY4+1GYl5NDzwwAM88cQT7a57aWlp/OY3v2Hy5MlMnjyZBx54gLS0tC6dy8lC5HkaPnx4u/2Px3lqZs6cOfzwhz/k9NNPZ/jw4dx222289tprHRbE7HY7v/71r0Nm27a46KKLGDhwIIMHD+a2227j6aefPtbpnzCk30/T51pzbtz5Mzo1hmhLlftdZMiwobJw9x5N286dOxkxYsQJmlH7NDY2tmnKPVnpifM+Gebc2euxoKCgS01Xx4ueOG8hxHop5aTO7jds2DC5e/duTZu+7nQ9PXHO0DPn3ZPm3PxbO5nXHNeqLVTc+kBo25AYT//lLyPMpg6vO7qGL4rKQCNrK3e331FHR0dHR0dH5zgQXTs3bvbUTplzQQ/aaIEEXin8nMmZw070VI6KrVu3cuONN2rarFZrj082qaOj893ir3/9K2+//bam7fvf/z733XffCZqRTixaO0933nlnp8eaO3cuBw4c0LQ9+uijp6yvZUeRioLzi281bXHnnd7pcXSBLwYHmyo54qqjlz0l1NaRsPGTgTFjxmjKzuicWuguGN8tesq60x3cd999unDXA2jtPHU2shjg3Xff7YopdYqesKa6121Hqa4PbRsS4rBPH9fpcXSTbitsqN4b+t9ms1FdXd0jLgydUxcpJdXV1e2mn9A5AUgJrlXt9+sE+rqjo9O99JQ11flZlHbvrCkIS9ulBGOha/iiEAQAycbqvVyQrfpAZmdnU1paSmVl5YmdXCu43e6T/oKNRU+c94mes81mIzs7+4QdX6cVqv8Cdf856t19Skstnr7udD09bc5en8TlCSClQnKChZ6k7O0p3/XJvqZKRcH5eZTA18no3GZ6lMAnhLACTwPnAGnAXuD3UsqPY/S9BXgecEU0XyKlLGj7KAEIONhScwB/QMFkMGI2m8nLy+uaD9ENFBQUMGHChBM9jU7TE+fdE+es080o9VD33DENUeMws22fh9GDwklu9XWn6+lJc65pUPjl/6vA7ZV4PB6uuyCDa85LOtHT6jA96bs+mfFs3IVSVRfaNsTbNeZch6v9NGyhfbtyYscBE3AQmAUkA38A3hJC5LbS/1spZULEq6BDR5EuXH4PO+tKumDKOjo6pzRNnwNtVxxoFwnvfdV5nyedU5dNe9y4vWFz/vJNzhM4G50TRdMnKzXb9vwpCKsFgDc/beBHD5V3eKweJfBJKZuklA9KKYuklAEp5YfAAWBie/t27kABkD42Rvjx6ejo6MSkaWn7fdpBSsm2fW7c3o4/reuc2uw9qK2aVFmrcLj6GB8sdHoUMhDAGZVsOT4YnXu42s87yxoJdMLFt0eZdKMRQvQGhgLbW+kyQQhRBdQArwIPSylb/GKEELcDtwMkD85ASonid/LF3rXklHXeMfJ443A4NLUSewo9cd76nLuf3f4KtvhLSfPbUJYFMIqT97nUgJfJGR9hEO2XNIxGs+5kjqCh0cn8RWsZlOVqZ8+Tg552XUHPmvPqLVl4PKomR0rVrPvWh5sYO8BxgmfWMXrSd93MyTZnS2EpGWWHQ9sBq5k1SgMUFLC5KAGPp3OVYnqswCeEMAPzgZellLtidFkOjAaKgVHAAlS7S4sCslLKZ4FnAVKGZEoAkyFAvdHL2OkTSbOe3NnCT+bs4G3RE+etz7l7OdB4mKdWL0cxBjigVDF54GnMGTD9RE+rdZo+g3IJWDq9a+S6k9prpDRJL37LUPLzU7t4kt1DT7qumukpc/Z4A/zn03KsQZdOj8eD1WpFMQ8kP79nlIPr8HddvRPKV0POWZA0oNvn1RYn2/VR8+3/aLCE15b4C89k+HnnArB+fjVWq7tT4528j85tIIQwoGrsvMDPY/WRUu6XUh4Imn63An8GrmxvbKsIKgCll+ZoXR0dnePDJ6XrUGTYrLmiojXl/UmC49jNuc0YpZd1u1x6GhYd9pf5YprqtuzzEOiMDe9k58gmeOd8WPF7WHg+OA6d6BmdNMhAgKbo6hrnqubcQECyfX/nrQo9TuATahbS54HewBVSSl8Hd5VAu0HtdtE8nFT9+Kp0gU9H53jgC/hZUbFN07av4RAuv+cEzagdpALOT7tsOIMIUFXjofiw7qf1XWfPwdg3c4czQPHhjt7yegCb/g2B4PXubYDtr5zY+ZxEeLbsQamsCW0Luw37macBcLDCT6MzoMYb+DoezNPjBD7gP8AI4HtSyladXYQQFwZ9/BBCDEeN6F3c3uBxBvXHJCUgvWyq2Yc/oHTFvHV0dNpgfVUhDp/WRKHIAHvqy07QjNrBvR6U6vC24dhdPwJ+D+t39gwfPp3uY19p60Ldlr0n6QNQZ/G5oORLbVvJ5ydmLichzqjo3LhZkzDYVBv/1n0eVdhz16iCcgfpUQKfEGIA8GNgPHBYCOEIvq4XQuQE/88Jdj8b2CKEaAI+AhYBf2vvGBbhJ8GgmnORXhw+N3sbdDWzjk53U1C+OWb79rqi4zuRjhIVnRuwn33sYype1u/qnF+OzqlHYUnr5rpt+04Rge/gMvBHPdxU7wBHx9OMnKrENOeeF/Zl3r7PrQp6gc5ZA3qUwCelLJZSCimlLSq/3nwpZUnw/5Jg33uklL2llPFSyoFSygc6Yv4VwGhL8IKTPkCyobqwOz+Wjs53nkavk3VVsX9n22uLj/NsOoCUGoHP5/Oz4MO6YxhPfRnwU3jQS0OTblX4rlLbqFBV3/r533HAi185Bfz49n8Yu73ki+M7j5MQ79ZClIqw9UDYrdjPVCt/KYpk+55q8LuRQKATPr89SuA7HvgVI2OtzRo9Vcun+/Hp6HQvKyq2R7hOSJB+BAqgsKe+BK+/8w7K3Yp3N/iKANWBusnpZVdJn6Mezqz4kD4DBgL4fT427TlFtDg6nSY6/97gbDMJtrAA6PVJ9rShAewRKN7Wzbe6WbeFds9+5kQMdtWce6DwIC5Hk/qMKCUJho6bdHtsWpbuwus3Mzao4ZOAkF72Nhyi3ttEsiX+xE5OR+cURTXn+iHgAukGApgNEhSBT4HCnacxKt4HhqSWL2MSWMdAwqVgsB+fCUdo9zweDwcOZ+P1dz41SzM2vwsCakyZ9HtYv8vNzAlxxzxNnZ5HtDl3cH8L0utm35Hw9bBlr4eRedboXXsOB78Cbyv5BEu/Br8HTD348x0DUkqcUQJfc7JlAn62f7oA5OxgoAEMs27q8Ni6wBeFx2cm2egm11xLkS8VpBcJbKrex6w+Y0/09HR0Ti0CTsqrFrK7ZgsQ9rgYYatmpyucb2yHK4NR9j0QaARaCeJwroSsp7p3vs0EBT6/X8Hn87GnbOAxDWf3u5ABoaYRCHjZtMeNokiMxnYTC+icYhRGBWwM6W/BU+9m35Fw29a9Hq459zhPrCs58FHr7/ldUP4t9M8/pkP4yyup/vN/CNQ7SL7tSuLOmnJM42ko+gy2PQ+mOOh7OvQ7A9KGgTj236t3ayH+8srQtrBZsJ8ZLCa24V9sPZzS7AECgCKaOjy2btKNwudXnyrGWIJmXekDAmzQ8/Hp6HQNUoJ7Exz5LRwYT8GBF4kU9kbaqjkr8aBml+2u9PbHdSwCpa5LpxoT3yHwbFE/hlv1oykszz2mIS2Kh3hvEwRASD9NrkDPN9vpdJpAQLKvVHveh+ZYyMnQBvLsPejF6e6hZfgUHxRF5a9MGaTdLj42s64MBDjy87/i+noDni17OPKLv9Hw6gfHNGZwYFj7OCy9GUqXq5/jmwfg7dnw6nj4/Gew8w1oONjuUK3R9FmUOfeM0zDE26FiPf51/2Knc1QoV6cijdRIY4fH1jV8UQiDmSP16Yy1H+KDplFqo/SyqXovARnAcBKXedLROalR6qDxHWh4Hbw7AVX2+6qxv6bbzPhicqklIA0YhAAku9xp+KXAJNpyUJbgWg0J53fbRwCg6RMAfD4fgUCAsuosmtzH7u4xvHo7GxMnYiBAQPGxbpebET3ZbKfTacoq/bg84Ws8wS7onWYkwa7QN9PEoUo1KjMgYccBD5NGHCcXhq7k0DfgqQ9v21Jh8m/hs9vDbSVfgHzoqDVmTR99jXd3kaat5tHnUapqSbnrRkTUuFJKdu7cyZYtW+jbty9Dhw5tOajPCct+CfuXxD6osxL2vqe+QK0a0u8MZN8ZuEtS8B1qBKMBYTYhTCYwGRFmExiNwTYjmEw4P4ky554/QzV/f/Fz9joH4VGC5fYQBIRCoq3j/r66wBeFyWSiqCKbiUO2EGfw4ZQWhPRS73Wyv7GcwUn9TvQUdXR6FoEmqPoTNLyFWhwnzC53Gof9YWHJiJHDG7JZcfAM3KMl5iQ7ZrMZN3Ag40uGJNhVs65SD4EGaHgDnJ+FB3SvOg4C38cEgrVNAQqD5tyxY4/N5WNE9VY25ExCGCUBn4eNu9zceGHyMU9Xp+fQImCjvyUknIwdZA0JfKCadXukwBctMOWer5ZVM5ghENT0NxRD3T5IHdzp4aXPT93/vR7zvfrnF6HU1JP+x5+qQheqsLd06VKWL1+Ox+Ph5Zdf5sc//jE5OTnhHRvLYOktUN2Jyj8Nxcj6Ymr+9TGNGxPBYAJzPBhtHR5CWIPm3JX3QUMxWxqvDplyPdJKoqmEs8+ezUMP/blD4+nqqihMJhPFR7IxCskoy2FVBSHVH+EGPVpXR6fz1D4FDa8RLewBFDT2Bwwg4vDLZAyldnYXDUVRLCTUg9cbfnrd3lAN5hywjoK40yHhAki6Sjug69vu/SxKPbi+xevxhMwqu8sGYjabueiii45hYMHw6u2I5nQbAS8Hj/iprNWrbnyXKIwS+Ib0DwcCjRms1fZu7Yn5+AJKS3Nu3sWqINQ3qmb2UUbrNi78FH9pRavvO979gsq7HiXgVr+/zz//nOXLl4enGAiwcmVE0uPD62DRhS2FPXs6TJ4HA85R5x+D+lXJqrAHas48Tz146lTTcAewz5iAoeIL2L0ACWxxjAbAJ034pZG+KQ7OOOOMDo0FusDXAqPRSEVDHgEpGBvy4/MDiu7Hp6PTWaSExvdivGHAazuXFa5JYMzAH7DjcnlJrwovSfEN6uKrKGpKipj5+OzTtNuebaB0PE1Bp2n6HEXx4fWqmoiqhlRqHSmcddZZJCcfvTZOCkGc30lu4z4ADNKHlFJPwvwdo/CgNmBjcITAN2qgVWPhPFjhp7axh+VrPLwGXFXhbUsiZJ+p/p9zjrbvUeTjCzjd1P/3LU2bfeZEDKlJmjZnwVoqbn+QZR9+xJdfRlX7AHbs2IHb7YZdC+D9K7RzBkgfAZd/DBPvhgtfgVt2wGXvqwJg3+lgMOPYGk/d1yktJ6l41PH87ZdES7hkEiz/jTpnj6DQPZIABjxSvS6+f/F4jEbdh++Y6NNvKOU1vRibElFhQ3rZU1+Kw+ciwdwD1eg6OicC317wl0Q0mCHt15B0Feuqa2gKvIXf78flcmHyCZIbwne0hKCbj8/nw2g0srOuuKUfrTEdzEPA15y0OQDudRA/u1s+jmz6WL0RBNlTNpC0tLROPWXHRoCAEYe3U5QxECEkAcXHht1uLpiecIxj6/QEPN4AJYdbRug2E283MKifmb0RUbzb9nk4c3wPSt8Tbc4dcC4Yg59xwDlqAEQz5avB0wBWrbDWFo3zP0SpqgttC5uF9AfvQDa5qPjxn/AfCoc6N67ajGnTVuxnDcMVp02ppPi9VH/4S/pVxQj0yL0Azn5Kq9UzmiFrkvqaeDeu5aupfuohMLvVnIMBHwZrgPgRTciAgABIxQHWTGSvKUhjPPj8SL+C9PsRZjPxF8wgzvMseOqRUrKtcQh+zLgDVkCQFKcwffKIDn83oAt8McnLy6OorD8z0teRbaqnVElBSC8BaWdzzX5m9B51oqeoc5w55Kzmg5JVlHlLGeeZRKpVvwl3iKYos0zcGZB2JwAF5ctCwh5I0mqMGGRY4LM5wegX+IUPsOHwuSlxVJKb2Fs7pn16hMCHatbtDoEv4MZb92lI4wiqwHfJ9y7BbDYf+/CYGFm5lY/lHBCSgM/Ntn0WPN4AVotujDnV2X/IRyAiJql3mpHEOO15HzPYqhH4tuw9+QQ+KSWejTuxbtuPnHGGGpgAqhkzWuAbeEn4/+RcSB4I9fvV7YBfjYQddAkdQalvpP6FdzVtSTd8D1MvNb1T1qsPU/GTP+MrLMbr9eL2eEj2wHmf7uDL2cNoTFIVOVbh4dL4T0kpKYW4qO/2tLtg8j3QRvCmZ+d+Ku/5J1KawJwAZhBG6HWTD1t8dPRuFRj2wsS7YPzPVcGxmU1PwyrVtOzxetnpGo9XWggEDbPTxqbRWfRVJAYDBw6kuCIbQK26ofvxfafxBxQe3byAjw+uZZ2viBf2LG1/Jx2VFgKfarZp8Dax5vDOkLAHkFGtLkeXXnopNpsNASQ6BFJK/H7Vl217XSyzbpTvj2tVV36CEL6GL/G660Lbja54EjNnMHz48K45gNFCVtMhUhXVfCQCXnx+2LZfT8/yXSA64XKkdq+ZMYOi/Pj2hn1JTxbqn3uHwzf9nvR/LaRy3uPh+R3ZCM4I3zpzXMtcewOO3qzb8Py7BBrDOekMifEk/XBuaNvUO52sl/+KMzcLtyfs/xjn9HL+Z7u4atxUUo313JS0kEHmYhS/QqBZAjda4Zz/wJTftCns+csqOPLThwg4I2oEC0HGY/Ow/eoDOPNhsEQpCwI+WPt3eOd8qNigtlVuhTWPAqAEAni9Xta7TscrVYHQarEweXRKh7+b0HfS6T2+A/Tr14/D9dlqmbWQH59a5mlj9d6T7gem073sqS+l2BE2Bayp3K1fAx1BaQD3Gm1b/NkAvLf9KxqdTTQLezaXIL5JcOmllzJt2jTGjRsHQGKjukT5fKpWY2eH/Pg2Q6B9/5jOUrbnec1531s+iEsumdMixcPRIkxWBDCqaaO6Lf0gJRt0P77vBHtjJFyOZtgAK+YIu1x1vcLh6pPHj0/6/TS8GNayOT9fhfOzYCBVtHYv52wwRUWsxvLj60CAg/9IDQ3ztbV5k390OcYkrXC1YfdOXh+RTFm/lFCbAFKMZtIee5Hb3J+RYagNvefz+yCuN1z6Lgy+tM05KPWNVPzkIZSqWk172m9+oKZWEQYYdTNc9ZVqyo6mZhe89z1Y+Uf44o5QxLLH7aHWn8xej2pZFEJgsVoZPbDzKZt0gS8GRqOR7P6DKK3uw1BLJVYRjJSTXmo8jZqbv86pT3Swjkfx4fT3wAi5442zAIi4GZmHgDmHkpISFm0vIJwrHtKrDXzvku8xbZoqvJ122mkAJDaqwpTf70dKyfa64pbCtqk3mHMjGvzgXt+lH6W66gg25WtNmzX9UjIzM7vsGAaTFQmMqNoGgECiKF7W73LrDxjfAWKVVIvGYhYMHxCt5Tt5Hgi8O/ZrtGwAtf98Fen1tRT48i5uOUCfqVoNmKsKKre0e9z6Z95CesLfnzEzjcTrtabgDRs2sGjRIhSTga/PHML+gRkIwB4Xh1EEkHVHcH3UB/eOlJCMeciXibz8Y+g1vs3jB9wejvz8b/gOlGrak26aQ9KNc7SdE/rABS/BOc+okb6RSAlbn4M69Z7j8/vx+/28UX8DAdTgDJvNRt9MM2nJHQ/WaEYX+FohLy+P4opszCLASEuFemuS6k1+ox6t+51ifVVhi7ZqTzdGgp4qOKPMMfHnUlpayr/nP09jnDbdyJVjz2bGjBmh7f79+xMfH0+cU2BQACR+v49aj4NyZ03LY9mitHxdbNZd9dW/ibOGzTQ+xcb4aT/t0mMASGFiUOk+zEK9eUmfh+p6hZLDenqWU5naRoWq+vDDkdEIeX1j+4WOHaIV+LacROlZ3KtbCmf+knIaX3geGiP814xWyInhZ2s0Q7+Z2rZ2zLq+knIciz7TtCX/+PsY7OHvafPmzSxcuDC0LQ2CdacPxnrjJZiMRvAF6/oGBE0F/ah7fQj71o/g1UMXUFqr1bxGIxWFqnv/gWfjTk17/AVnkHrPLbF3EgIGz4Grl8PQ78ceF/C43Wz2jmCHRy2tZjQaMZtNjB50dAnZdYGvFXJzcyk6EtuPL5YAoHNqUu1u4EDj4RbtNZ7GEzCbHoQMgFOb7qDKNY7nn3+eQ4lac+sgexZz8i/QtAkhyM7OxiAFCQ6tWXd7XVHL47Xw4+u6fHx79uzB4tV+loDtLGz2xC47RnO+DWm0YGqUjDBtDB4o6Du8++TR4uh0PdEJl/P6mDGbYrsKRPvxbd/nQQmcHBpg1+qtMdvrnltMwB3xefrnt/Rlaybaj6+dMmt1//c60h8Wlk05fUi8Imwy3bp1KwsWLNBoyQ0GA9ddfz1D/3I3aXdcoEbSNiPAVR+PcVUCl7y3jbIHnsJXUh7z2FJKah59Aefn2gdM26RRZPz1ToShHRHLlgqzn4SL34BEbcUhr9dLtT+Jz5rOpFHpo3a32QDBqIEttb8dQRf4WiEnJ4fKhj54fBbGWoInWwZA+tlZV6Kb9L4jtKbN1TV87eDZBEp1aNMfiOe/L6/H5XZRlR72ybFYrFw19pwYA0B2tvrA1WzWVRSFQCDQSj6+KIHPvQECx/4bVRSFDz54n6H9DoTajEYj6QOu1/SrcNXy/O6jD+aRQccsg0m9mY/yqs7bBt2P7ztBdMLlwdmt39Bz+5qJt4WFJ4dLUnSobS3U8UB6vC20XM0E6hqpXx2Rp3JgDHNuM9Gav8rN4IztRuXddYCmj7SuFil3XBuKDN65cydvvvmmRtgTQnDNNdcwcuRIAJKGbCbzkkqEIdjHYMaLBRCY/AHil22g7OKfUXHHX3Gt2hIaq6ZBofqFxTS+rjVVmwfnkPmv3yGsnRDK+s+Cq76EMbeBEASkxOGWLHaci0sm4FTSsFgsoZx7R+O/B7rA1ypms5m+/XI4WNmXXiYHWaZmjY4XRQbYWnOgzf11Tg1a0+bWuHUNX5tEROcGAgG27E3F0eTBkSDxWtUF02KxkGCPZ3qvkTGHiI+PZ8CAAaHADVC1fDtiCXzmbDBFlj30gmfjMX+MlStXIrx7SG1OCghYbQkYEs4Oba+r2sOvVv2XD0qO3owcKfBJYGT95uZ3CChedpd4cTg7lp1fp+cRnXB5SE7rwoLRIFqY9LadBGZdz+bdGj+6EAE/SIWGdUn4G4xqCbUB57U+UFwvyIwqU1iyLGbX2n+9ptm2DB1A/IVqTsy9e/cyf/58AoHw70YIwVVXXcWYMWPUhoZi2PcB8SOd9PlBOXGjGhBxSUTqVqWU+H0+XF+tpeLWBzh0+V08/dhGbn+gmJ+vyKYoIayZM2am0fs/f2gRLNIhzPEw409w1Vestl7B8/VXUa5k4fD3RggDVqt6znOyTCQndN5/D3SBr03y8vI4cEQ9mWMth4J+fEETS7Vu1j3V8QcUNtXsj/lejVcX+NokKPBJCS6Xm50lqjBWlaEuvhaLBavVxtTMYcSbW68tOWHCBBKaBCK4Zvt8Po646zniqmvZuYvNuo2NjXz55ZcM7Re+BsxmM6bEs8CQgCIDvLFvGX/Z+DpN/mPTwElLOPQyIMykVDWSbVYfKgM+D1LCpj26lu9UJBCQ7CttPyVLJNFl1rbsPfECnyvKf8912jCMmWlqZQlAKoK6FSnQ74z2kym3iNZtadZ1r9+Oa7k2OCvllzciDAaampp48803NTkzAa644grGjx8fbtj831AUsCXdh+V7Vvove5W6i6fjtoV9KJvdSQCKyjx8ttuE0tiEx2DlrYGXIgFDvJ3ez/wBU59jC+QqqjfxfmEitYEUABqVLKxWaygbwKij1O5BDxT4hBBpQoh3hRBNQohiIcR1bfS9WwhxWAhRL4R4QQjRqW8qLy+P4iPqjUrrxyfZWKWnZznV2VlXgqsV0321Wzfptoq/ArxqpKnX68WvKOw/PICAkNSkBjCbVWEPYFafsW2NxNixYzEbTMQ3qUuVlGqptR3HIR/fJ598gsfjCQl8QqA+ZcdfQKPPxV83vs6C/V8d0zFCRObaMJpRaqyMtQXnH/TjW6/78Z2SHKry4/KE7yUJdkFWetsanDGDtQ9Ju4o8eH0n9n7kjvLfc48bRMrPrwUlfN06tiXgNZze/mA5Z2u3S78CJSx0SSmp/adWu2c9bQT2mRORUvLee+/R1KSNFr788suZOHFiuMFZBbve0PQ51OtSjBlp5Pz2NhZfOo5vpw+kNjUulCUAYFuqtrpFub03pck5ZD75OyzD8tr/bG0QCAR4//33NW1eYw6WiMTu0T6cnaHHCXzAv1GrsPcGrgf+I4RoUfpCCHE+cC9wNpALDAT+1JkD5eTkUNWQgdNjZ4TlCGYRCPnxHXHXU+asan8QnR5LW7WT9aCNNmhSo+oUJYDH4+FQdW+cHju1KQGEzRh0PIZkSxwT0ge3OZTdbmfEiBEkNYaNLD6fL7YfX3SkrnsdyKPzbSorK2P9+vUk2hvJSq0EVGHPYDCwLzCOX6/+b5fW1paW8IIuTDb81TbG2lQNZbMf36bd7pPGOV+n64iVjqW93I590o2kR6Tl8PphT8mJS9AdcDjxbtNavTzDB5CQn4c5zaVpr31bm7okJr3GgT0jvO11qKXWgriWr2/hL5h6140IIdiyZQvbtm3TvHf22WczefJk7TG2PR/SPgKQ0JeqFNUcnJOTQ0pmBkV5GSy9YBSfnTMC5/ghYDCwM2Voi+lumXsr9mltP7x2hA0bNlBeHg4Q8QVs+EQmkUWUR+R9RwQ+IUQ8cAXwBymlQ0q5AngfuDFG95uB56WU26WUtcBDwC3tHePgwYO89NJLgOqc/fbbC3nmLTsWoTAoUMaK375PWYGquv56/yby8/NZtGgRAFVVVeTn5/PBB2r9vcOHD5Ofn8/SpUtDY+fn5/P556p6ev/+/eTn5/PVV6qWYPfu3Zw5ayaPL3qOFYe3sXnrFvLz81m7di0Amzapx9u0aRMAa9euJT8/nwMHVNPPN998Q35+Prt37wbgq6++Ij8/n/37VQ3F559/Tn5+PgcPquHxS5cuJT8/n8OH1SjUDz74gPz8fKqqVEF20aJF5OfnU1+v+i8tWLCA/Px8nE41yvK1114jPz8/pO5+6aWXyM/PD32Xzz33HOecE1bNP/3001x44YWh7YULFzJnTjhH0eOPP84VV1wR2n7kkUe45pprQtsPPfQQN9xwQ2j7gQce4Ac/+EFo+3e/+x233357aPuee+7hjjvuCG3fdddd3HXXXaHtO+64g3vuuSe0ffvtt/O73/0utP3oXQ+w8+Ww78j6Rxax9w211E2Np5FrrrmGRx55JPT+FVdcweOPPx7anjNnDk8++WRo+8ILL+Tpp58ObZ9zzjk899xzoe38/PzQtefz+cjPz+e119SnWKfTSX5+PgsWLACgvr6+y6+9/Px8vvnmGwC2bdvWoWuveWHVXHvOzylY7SH/+ioOlAbYV55LUVER773wJrJBvSlVrN3LqnmvUXVEFaZiXXt33XUX9fX1nHbaaVSs3M2GB95G8fjw+Xy8++bbLa+9834ARrXs2nMLnJxzUyl41N9q9LX35JNPtnnt3XXXXSxevDgUrPH3//n44e+a+Nw1i3s3vMtXz7zLhscXh/rve2k5RU/H9jPqCCWHynjHozqmB4wmri3dxbp124g3NOL3uSiYfyU7NyymsMR70pz7nrrutHfuj/e688Dv72BrwcOh7c/evIsHHgjXlL3hhht45ZVXQtvXXHMNjz76aMis++2i29i9+hm2Bv34TsS6s+ipZ5B+hUqfm2sOrGBFnJ9AaiKlq1/n2vLtrHCp57JEUbh0wXN8+n//A9q49tath5zZbDroI/+JajYd9EHJF6Frb9VD/wRgvbOGaw6soGzsAGynjeSjjz7isssuo66uDoCioiIWLlzI4MHqg2Xo2ivZB9te5IMtbvKfqKbKEYCxP+arr9VruaGhgQkTJrBz507mv/46h1JtfH3mYD6+cTbzVzyIRE2TVFy4mBWf3Mqapgy8PnlM156iKPzhD39g8eLwurJ5+z42fHx3aLts0xP84mc/Cm1HX3vt0dNq6Q4FFCnlnoi2zcCsGH1HAYuj+vUWQqRLKasjOwohbgduB9VHZ9euXRQUFITKOVXUpiBlNaOD0bqBgBev18Pne1ZTV1fHtm3bSEtLo76+nrq6OrZu3UpiYiI1NTXU1dWxZcsWbDYbR44coa6ujs2bN2MymTh06BB1dXVs3LgRKSW7i/eyp/Yg7+xfzpfW/aQeVKitq2P9+vU0NTWxd+9e6urqWLduHXV1dezatYu6ujqcTicFBQVs27aNuro6Vq9eTXl5OZs2baKuro5Vq1ZRUlLC5s2bqaur49tvv2Xfvn1s2bKFuro6vvnmG9LS0ti6dSt1dXWsXLmS5OTk0Hhff/01CQkJbN++nbq6OpYvX47NZmPnzp3U1dXx1VdfYTKZQvMpKCgA1B9zbW1taHvPnj3U1NSEtr1eL9XV1aHtffv2UVlZGdrev38/R44cCW0fOHCAioqK0HZRUZGmf0lJCfX19aHtgwcP4vF4QtulpeqTZfN2WVkZVqs1tH3o0CGampooKCigIeCiwduETTHg9XoQCAKBABKJ1+uhwuvFeaSC/fv3h/avrKxk3759oe3q6moKCwtD2zU1NezZsye0XVtby+7du0Pbzee0+dqrq6tj586dFBQU4Ha7qaurY/v27RQUFOBwODp87Y0cOZJvv/22zWuvpKSEurpadm9ZiPQdYc/+Wuo6cO2tXbuWqqqq0LWyZvVKck77BLc7WPJJSnYU98WlNOE3q5nrvV4Pfr8PoyfQ5rWnKApff/01cXFxWIMV2NQhJUcctVBX0+LaO1SbQ7r1ID6/n0BAsmfLKxxyNra49goLC1u99mpraykvL0dRFAZnFSKlJCAM7HKl8M+DvQlIJ4riJxBQ8Ho99DWkYJKZ1PnqYixDrRO97rjiLHhdXnwygEQgHYJRtrV84zkdKRV8Ph8LP97J+P6lXbruqOe+jg0bNuD1ejlw4EC75762to76xp637jgcjjbP/YlYdyqrnShGO55guS+/p46ioqLQ+xUVFfTu3Tu0feTIEfbv38+E7EI8ngyUQADF76dgdRl9LBs6tu7s3Mn6X/4Z6+4SGotKj3ndKV2xhrFeL16/DykldWnxpDgc1G1/B6x+TClupCMJP0aklBx6/m0KRgykpKy01WvPltULr89HQAbw+nzUbX2H9bI3DSWHcCoKXmsiPp96vOLxeXiXLWPx4sX4/X48Hg8ejwe/34/NZmPNmjUUFRWFrr29nzxGqqtKXSdkgCbFzI7KbNzuA6FrTwgRGt/j8bBnzx4O18cjDQJ/vB0jRqTNjBSC2no3LyxYy9527nltXXtFRUU0NjaiKAoejweDwYBbiUdRGkLXhkU0cvjw4RbXXofXnJ7khyaEOBN4W0qZFdF2G3C9lDI/qu8+4A4p5dLgthnVFJwnpSxq7RjDhg2TzU+qoIZ1v//OU/z0olcp9yfym6rvqbl1jL0wG0y8lv9brMajy4kTiVvxcv+6l9jbcEjTflr6YH477mqsxthJOEFdSCKfcHsKJ/O8l5au45md4VI9I1JyKHNWUeWoxWJRn6yfP/NXpNvacT4+CejQ9+zZBeU3g/8giATo9zbYxnX+YM6vUA5eRVOTqo1xuOJ46sMfYD6tL1tSwgmTs+MzeGr6HW2ariLn/f777/O/uuU0JagO1iaTiQem3syM3lHeHPUvQ2VYS0vcbOir9fVpjxdeeIHCwkKsZjd3Xfo8dSTwVP0s9nlTwJgBhE1pF/efwg+Gno/JoLYJIdZLKSd16oCo6863t8wLlYfyuxtJmHCATSPH81zN75HChDE+k5wsE//vl707O3yXIKVkxwEvS791sHaHG6/XzZ3XZJE/Mf6EzOdoONnWHI83wE0PlhNpqX/+/iyS4rU+fLHmXdOg8OOHwzlChYAX/9CHeHv7hjvHu19Q9YenQtu9//fnYzJJHrrybry7wpkrMp+YxxbKmL7/LgA8hy2Uv9IH7JmhWrQZD/2ChLlnxxpOxdMAL49Wo3yDyCuXU3bj4/gPhj93/EUzyXzsV6xbt4533nlHM8QFF1zArFlR+iDFB69PhaaI/KoTfwWT72nxPT/zzDMUF4fdRzyp13GwNi3mdEcPsvLHWzNivtcePp+Pxx9/nIaGsG/49OnT+bxwKuVV4c//u1vSOW1YyyC3jq47PcqkCziA6DtsEhDLoSq6b/P/nXK+ys3Npa4piXpnIlnGRjKMTUE1gw9fQGFbLF+iTuIPKDy+ZWELYQ9UP7K/bnodt6IXUD+ebIhKxzIxYzBpVm2i3VMmF59rNZRdpgp7ANKhCk1H8TCoNH6CyxV20t57OJfExCQcUXnF8vuM61QN2gkTJpDoCPf3+/1sOhLDh65F4MaaYB3sjlFUVERhoXruB/cpYru3N/dXXagKexhpFvasRjO/Gn05tw2/KCTsHSvmoQNC/wuTFaXGxhjbGgQyVFe35LCfqrrjW3XD7Q3w2eom7vnXER58ropV29woAfArgmffq6Om4eSp5drTOHDIpxH2eqcZWwh7rZGWZKR/r7CRTkrYcaBj0brREbWOhZ92aL9YKHWNGmEPwDZlLOn14aApa5aX+EnxIWEPoPZf8wm42pivNQmypmiaGl96XiPsCZORlJ9fS11dHR9+qK2lm5OTw5lnntly3MJFWmHPZIPRP4w5hQkTJoT+D0gDe0oNRJaEjGTbPg9Hao7ut7l27VqNsGcymRg3caZG2DMaYMSAY1Mu9TSBbw9gEkIMiWgbB2yP0Xd78L3IfhXR5tz2sNvtZGX1obgiGyFgnDUolDWnZznGqhtSSv63+2PWVe1ptc+WmgP8ecNrerLn44Qv4GdLVDqWiRlDWwh8p0TghuMTOHQNBKKEV88mcLad4b4FUtJQ/p4m79W+Q7nMuORs9ju01UpmZY3p1NDZ2dn0N6Rq2tYdipHk1TwEDBFP4NIBnljLQ2w++yxcoqmyn5e/183GIYOLrFCfrPvEpfHo5FuZ2U6EcWexDAkLfEaTBU9VHInGegZa1M8ZCDqYb9h9fNaBw9V+Xl5Sz48fPsyz79XFLO/m88PCL0+B38EJIjrhcnvpWKIZfZTpWZTKWs22s2ANAYezld5t416jFR4tw/MwpiSSVq+Nkk/98SWIiOAkpbKGhle0EaktCEbrSgXq1yZR96J2zITLz8XUP4uFCxeGzJ6gCkzf//73MURXupAB2Py0tm34tWCPrbUbO3ZsKNlxk9ILn2JAUdT1LTnBwOBsreWtYEPnv0Ov1xsy0TYzbdo0io9or4VB2RbstmMT2XqUwCelbAIWAX8WQsQLIWYAlwKvxuj+CvAjIcRIIUQqcD/w0tEcNy8vL1xmLSof37qqPXiOQfu2qGgFS0vXaY+XmMWABK3ZZkddCX/a8CpNPj01Q3ezo7YEd0QKgDRrIrkJvUmPyh1V3dMFvvr5cPhHoRrRLah+NJSjqiOUFX2NMRCul6kEDKT0/R5l8dr0CKNTc8m0p3RqqkIIZg2dpHm4LnNV4/C5ojuCPbqubsfy8e3bty8UaFCT6WWZqT9EpmAVVqZkDuPxKbeTm9j1ZlXz4BxNNJ7SaEf6BOPs6vxl8IGvO6tuBAKSjbvdPPxSFb94vIIPVzhwutvW9H65tonD1Xqt36Nhb3TC5U4KfGOjBL6tHRX4qrQCn3R7cX65upXebROdjsU2bSw0HSbRqVVimKZ8n6TrL9G0NbywCKW6rvXBB5yD64CNQy/2pXZZKgGXm+ZFQNgsJP/kKlavXs2+ffs0u1144YVkZMQwrxZ/BrURShphhLE/afXwzVkCAOr9qgzg86n3+wnDbMyepHVnWLbOSaCTkfSrV6+msTF8LzGbzcyaNSsUhNPM0dbPjaRHCXxBfgbYgSPAG8BPpZTbhRA5QgiHECIHIOi79xiwDCgOvv54NAdU8/GpJ3uEpQITAcAHBKhw1TFvzXOUOGKXfmmL5eVbeHWvtjB0pi2ZP0y4nocm3sTAxCzNe7vrS3lgw8s0Rt/kdLqU9VHa1gnpgxFCtBD4anqqSVdKqPkHVM4D2hDovDug6aMODen1etm+9p+atvK6XC646Ap21JZo2vOPUjM2/bQp2F0RAlFA4dviGLU7owU+d/v5+KSUIe2eIy5AyUCvKnsFBTADBm4YfD73jru6zUTRx4Ihzoapf8Rv3mBBqbExPpiepbne59Z9XZ9zrd6h8NFKB798ooK/vVTdqhZRCJg6ykav1LDZUQnAm5/20N/C8UZK2PYifH4HFH/BnuiSap0U+EbmWTFEPJOUVfo7ZGKPFviAFiXKOop7lVbDZ5syBg58rO3Uazwk9iP59isxJIerUASaXNT9Z0HMcX0HD3PkgbepWNgXX02EJi34O0j58VXUGyUff6w91sCBA5k2LWoNAPW73/h/2rbBl0JS/5Z9I2g264YFPjUn38ThNk4fayciZzpV9Qrb9ndcA+/xeELR8s1Mnz6dhISEFtVTRh9l/dxIepzAJ6WskVJeJqWMl1LmSClfD7aXSCkTpJQlEX2fkFL2llImSSl/IGVrqoy2ycvLw+GOp6ohFbvBzwRraciPD6DEUcm8Nc+x7NCmDo+5peYA/9qxWNMWb7LxhwnXk2ZNJMkSz58n3syQ5H6aPvsayvnD+peo92q1JjpdR3R+tYkZqgdBC5NuTyyvJhWoug9q/h71hgEyH4eEOdrm6sc75AO3dOlS+iTt0LSl978am81GsaNC0z4qNfcoJg4pKSnkmLSml+WF61t2bOHHt7pdTWVhYSHFxcX4TJK9Q/yYzP6Qbs8iFB4YksSVA2diEN27ZEaadQ0mK/4aK9nmfaQaK4N+fAG8Ptmpm0osfH7J1r1uXvu4nnn/OsKtfz3Mix/Wc7g69rlOjDMwd1YC//5Nb+65IZ1rztM+/Kzc4uLAId3PuF12vAor7oO971L34Z1UVYdNgEYj5PZpPTgvFnE2A4OizIrtafmk14e3wcXGtNF82i+fw3a1MoTr281ta9ti4D9cha847HsuTEZsp42E/Vp/Ogaqmj1DYjwpP7lK81bj25/iO1AW2g443dQ+NZ9Dl/4C57I1YNRqtgwWP2m/u42EH85l4cKFeL3h685isXDFFVe0NOUCHF4DFVHrxfg7WvaLYtiwYQhLLzwB9ZqXUiIDfsYNthJvNzBtjF3T/8u1HTfrfvvtt5oE0RaLhZkzZ1JR46eqLvxbNBlh2IDvpobvuJOQkEBmZmZIy3dj4jr6mRtDZl0Aj+Ljye3v8dT2xe2aeIsdFTy6eQH+QMQJNRi5d9zV5CT0Ch/XbOdPp93IiBTtE0hRYwX3r3uJ2p5uUjwJOeysobQpnFDbKAyMSxsIxBD4etr3H/DA4Z9A/UvadmGFPi9A8nWQ9ms0y4JvDzja9rPZt28fG9YV0D8jnDDUbDbTO+866rwOjUbaYjTRu5Pm3EimZGujcnfUFWt8BtWDDAdDhEASqAPvblpDSsnnn39OQEj2DvITsPswGGRIu/fzXpsZn9O62acrsQzLDf1vMJpxVKUgBIy1qeY2GVxb3vikgdc/qadgfRO7iz00NCltVv6RUlJ6xMeSlQ7+9lIVt/y5nD8/X83i5Q6KyltPTj2wn5k7rkzhmXuzuO6CZDJTVHXGjLF2MpK0+72ha/naJsp/bK9ziBqJGnwYye1jxmLueCBTM2Ojqm5EmwIjqa5XeOODSv484R5eGXI1H2efzf8bcwd1liRQFJo+WdmpY7vXaDXsltFDMBicmiTJAORdFPo38ZqLtJpsRaH2n68ipaRp6QoOzfk59f99G+kNXl8RAl/CGAf9flJN0nUX8e2331JUVKQ5zMUXX0xaWmx/PDb9W7udMxvSR8TuG4HRaCQ+U5u0OdlaFfKnOysqSn31dhcOV/uuMG63m+XLl2vaZsyYQXx8fAvt3rABlqO6NqLpaXn4Thh5eXkUlfZn4uCtpBpd/KXX57zUdD5fObRCwBeHNlLYUMq8MVfRP6FlTb0aTyMPbZzfovbmnaMuY0xay7IscSYbD0y4gb9ueoNttUWh9oNNldy37iUemnhz13xAHQDWR2n3RqTkhEx40SlYoqN0pZRUV1dTVFREcXExHo+H6dOnk5d3bOV2ugSlAcp/AO4ofzZDEvR5FezBBc0yBBIvh8aF4T41j0PC90C0XC7cbjcLFy4kr/dBDAZ1kTMYBNaEEWDJpbha61uTE9/rmLRk5489g1c//5pmP546i5fd+wsZMXhYuJMwgm0qOMMBGLhWgTX24r57924OHjzIwf4KjUkB4ky+kHZvTvI+ZvY9HcwDYu7b1ZgH54T+F0Lgrk8Hihhn/5avmi4h4PdgNNkoKve1ENTibII+GSb1la7+NQjVkX9zoYfq+o5F0xqNMH2MnQunJzCkvzlmNLXBIDhjRB0fbwqb5zbu9rCzyMOI3GPXRJySHCyAhrB7Q6FrmKo99zaCNZkh2Udnshs90MxbnysoivpavraBq/P9ZGaq95/IdDprtrtRvH4Uc/i8+YWRTWmjyT/8DU1LlpN03cUdPnZM/72ipVqNevpISM4NbQqzidRf3kDlPeEk9c4vVlF+zTy822NE3hstWPv6STu7Emsf9YGnuvBrli7VRhYPHTq0ZTWNZqp3QXFUEFoHtHvNNARygLAmzujaRVPTCOLj4xmZZ6F3mpGKGvX35VdgxSYnF0xPaGU0lZUrV+JyhR+GbTZbKKo4WoN/LPVzI9EFvg6Sl5fHexv7IqVACIlFergr43PGZL/Bs3u+xhuRK6jEUck9a57lJ8Mv4ay+4UBhp9/DQxvnUxVVh/WmIecws42oRbvJyh8mXMffNr/J5upw9OghZzX3rXuRCwMtS73oHB0bq2KbcyG2hu/gwYMUFxdTVFREUVFRi/qNu3btYt68eSQmavc9npgNNVB2ueqTF4mxD/R9HazDtO2pv4LGd4GggOA7AI3vQNLVLcb+6KOPqKurY8aQolCbzWbHkHgeQAvf1kgN9tHQJymDNEM8NQGH2iDg080rtAIfqH58GoHvW0j5AdE0++5VpStUZCmYDP6Qdm+0vYqbMnZC6rPHNOfOYBmaq9k21tmQEkZaN2AVbjxK60u20y3ZV+pjX+nRlZMb1M/MpJE2zp4cT2pi+6lB8nq5GDbAwu7isEVj/tIGHvpxRqdS7nxn2P6SZrPQFbxm/S4wWhmSk9pynxh4vV4OHjwYerAsKi7F1XQ5gWDKoHofPPPCIn79yx+xcrOHpasc2gjraI04cCRYxsyzeTe+g4cx989q0ScaKSXuqPQu9ilj4MDD2o4DWwqQcefPwPrK+3i2hP2lYwl7xowUUu+6iXjzS4iDqtlXAjs+/heKEl6bbTYbl19+eevXXXRkbu+J0CeGn18MnO4AxRVGDAZDyJqQYCxhy5YtTJ8+HYNBkD8xjgWfhS0+y9a3LfC5XC5WrFihaTvjjDOw2+1IKdkepeE7lvq5kegm3Q6Sl5eHx2fjcK361KQo6s3wnJR6HptyG9nx2ogg1cT7bsjE6w8oPLblLQ40atNTXJA9ibkDZrR7fKvRwn3jrmNShla4O+yq5Q33WsqdNa3sqdNRPIqPLbXadCynZYRrvVoUAyhq1nWn00lFbRVPPfNvlixZwvbt21sIe6Am1Ny1a1e3z71VvPsZk3JfS2HPPASyP2gp7AFYciFR62dDzRMt6tLu3r2btWvXIpAMylLzUVosFkwmI8Sp5YWKowS+Acco8AGMzRio2d5UuTdUZitErMCNGCbPHTt2UFhXyoFc9YZoMavavQyTi3lZazElzVW/j+OEqX9vhC2s6TF4DEinCavBzfUp/8KCs1OR022RmmQgf2Icd12byvP3Z/HIz3tx5eykDgl7oFq8r79Aq/XeXew9bmljehQNJVASDtALSMFeV0R2MW8Dg3vFDsZzOByUl5ezZMkS/v3vf/OnP/2J//3vf3z++ecUFhbi87pIMGn9ZDeVDee2vx6KmU5HxhT4wtaojgZv+EvK8R8Ou78IqwXruGFQsUHbMcKcG+orBKm/bt06JUxGkn5wGf0+fJqEy2Yj8s4Nvef1eslwbtL0nzNnDsnJybEHayyFwne1bePv0ETEt8WWQg9KQHVTAbAaGrAZGtm4cWOoT/5pcZp99pe11MBHsmLFCtzusJXPZrNx+umnA3Co0k9tY/gcWcyi08E8raELfB0kOTmZtLQ0iivDQRSKooDra3ITe/P3KbcxK0b04ReHNvKbNf/jH9veYVOUeWty5lBuHXZhh5+GLUYT9467mmm9hmvaG6SLP2149ZjSw+jA9toivEp4ccywJZETrwoo69at45FHHiHgUMvqKYofkPg64GMdnTLguOHdC6VzsBorte3WiZC9GMx9W9837W4g4sP5D0LDm6FNl8sVymqflVZBvM2FwWDAarWCIRHsasLUkqiAjWPV8AGcnqtN2lxr97FjR5RAax0DIsK3RqkCn/Y8BAIBPvryEwoH+5EGMBkUDAaJWUjuzVpDstEPqXcd83w7gzAaMQ8Km3WNJjNVVep3dmbCx/yj7+Xcf/4OfnpFCpfNSmDqKBs5WSZNpGBrWEwwfqiVmy9O5v/d1Yv/3pvFHVemMmNsXIeT/UYzItfKhGFa7cMbn9R3OjXFKc+OVzUPHIfMk3AFwtdnvKGRPtvva7Hbxx9/zN/+9jfWrl3LihUrKC0tbemzCiQayzXbDqUXjU2xU+X0NTk5vyxc91kYBEdsYYVF05Kv2vQHbSZau2edMAIhPOCNsGAZzJA6hFjYJo4i7qwpLdrtp4+n76InSfv1LRgSgoJUMB+fEgjg8Xjoa6zALlQBeeTIkYwfP771iW75rzbwLGUw5J7X7udrZv1uVTBrFviSTWqpvIMHD1JZqa6tGSkmxg7R/g6WrYsdWOl0Olm5UusrOXPmTOx2Nfgj2pw7IteCydg1GnPdpNsJmv34pg1TJXtF8WNyqmpZu8nKXaPmMiY1j2d3LdGYeIsdR1poOgYn9eXXY67sdJZ+k8HIPWO+zz+3LWJFRTih7GFXLe8Vf8vVA2OVFdbpCOujkmiflj4EIQQej4cPPvgAr9eL2QO+CB9pr0Vi84R/jBaLhV69eoXqZ4Jam1NKefzNXDVPQiBK8xt3LmQ9AwZ77H2aMWdD0nXQ8HLEeP9UNX8GK++//34od9TgPqp2z2a3qQ/N9lkgzARkgJImrbAZnV/yaBiTnofZbA5F5zniA6zbuJ5x4yLyrAuT6pfoLAi3ub4FS1hju3nrFr5JPITXqt7cLGYvAvhJr00MttVBwuVg0WoTjweWoQNC5i0hBI76bHqhRkLGGZroW7+IcWedr9knEJDUNCiUV/kprw7+rfLj9gYY1M/CuKFWhg+wdonjdzTXnpfExt3h81x82M83W1ycMT6ujb2+Q/g9sOt1TdPeXj8Hczz4VNeEwfbdiP3vw96LYLAaKX/o0KEWTv2tkZlQS7nPoBEGm61QoCqzpoy0ccH0BLJeXUxD6TK+6DsTvzAi7DYcUuI02olTXPj2l+LbXYRleNu+x9H+e/apY8ARVS0qoa+mukY0affdjndPEf6yI5j6Z5E27wfYz5rScq1M6ItMG07J/jKWNVxLuqmCGbZ17DWM47I5l7S+trprYaf2u2f8z9qcUySBgGRjMO+lwWDAaDSGBD6AjRs3ct55qvA4e1IcWwrDwtryTS5uuDAZs0k7t+XLl2uSRMfFxYW0e0CLgI2uMueCLvB1itzcXDZv6oMSMGA0BPD7Faz+YvVGYp+OEIJz+k1gcFJfHt/6tibaM5Le9hTuG38dtqOswWsyGLlr9OUgBCsObwu1Lypawbn9Tmvha6bTMVpLx1JWVhYSLsxRSlRjko3RA4aSm5vLgAED6NOnDwB/+tOfQmbGxsZGKisr6dXr2LVbncIbZUpOvBp6/T1m8EVM0n4JDW+glqAGlHJomM/Wg5PZtGlTqNvgPkWqKTeYkZ549Wm8wlWHJyKBdYLZTqqlbUfmjtDLnkKvuFRKvar2UBpg46E9NDY2an0lbdOiBL5VkHwjoGr3ntn4Hg1J6g3SGNTuXZRygLOTDgJC/fwnAMtQbYCI0a31pzKUt0wkbTAIMlJMZKSYGDO4xdvdSl5fCzPG2lm5JWySfPOzBqaNsXeZZqJHs/8DVfBoxppMoX88mD2geCDgY4g9GEW+4nfQdzrEZYaSgMciLS2NvLw8BgwYQG5uLmlp6fzwoTIOVzpCfRTFT2Kc4Jwp8Zw7NT4UYV1RWYsBSaa7mnJ7L4TJiLSYOWLPINehJk5vWrK8TYFPBgK4oiJ0bVPHgqNU2zFBm1YsGlNWBv2WPI2/vApTdu82H4rXOcbwf+X34wimR7ki+X/8MOttzO98Br0nQZ+pkDUVek0AU1BI2vaC6iPZTHwWDLm8zTlFsr/MR31TWIhOiDMRT1h5s3HjRs455xwMBgOTR9iJt9XRFExU7nAGWLfTzfSItC0Oh4Nvv9X+fmfNmqVaRlAFzG37tTeZrgrYAN2k2yny8vLwK2ZKgmZdRVFULX3l/SDDGr22TLwJZjsPTLiBVOux3fhMBiM/HX4JSZbwU7RH8fFaVCJnnY5xyFmt8YM0GYyMDUZNHzwYrh5h9oLBYMRmsxMfn8Csi8/h+uuvZ8aMGWRnZ2M0GjEajeTm5mrGP+5mXSnBF1XnOf13HRf2AExZkKz1s1Gq/8mH778d2k6wNdE3vTq0YAEQNxtoGbCRm9Cry7Sc4zMHY4jQjjckKBqfGiBGPr5vQ2a1+auXsDcpbHqymL2MtFXzw4zgA1TCHDVi+QRgHpKr2bY2WglEVPywOYvB2flE793JNeclYYy4m1TUKHy5Vs8VCrQI1mDYNRSWBdP+WJMAwRBbMHjBXQvL56l1k0u0CcuHDx/Oddddx+9//3vmzZvHlVdeyeTJk8nMzMRoNPCD76WpAUdAnLGaHNsK7rvez3Xnh9PpAASCufZ6uYJaWYPAYLWEAjcAHB8tj+nr14yvsJhAbfj3Y0iIwzJyYAwNX9sCH4AwmTD3z2pzbSgqLuFfW84PCXsAa1xnYzaZwOtQI6DXPArvXw4vDIX3LoPVD6sCXyRjb4dOKFrWR1W1mTQyAYs5fKHX1dVx4IBaR9hiFpwZpdWONusuX75ckzcwISFBkyT6YIUfhzP8vcfZBHl9O5ebsS10ga8TpKWlkZSUxIrtYb8DRVHAuxPqtdXdmk28Px95KRaDKdT2+3HX0C8qwONoiTfbuGZgvqZt2aFN7Gs4FHsHnVaJNueOShmAPfiUGGmeNXtVXw6z2YzBYKDW6yAWgwYN0my39bTeLQRq1TqyzQg7GFumCWqX1J+r+6LKSp6mgwzvuyb09uC+B7Hb7WH/Z+t4MKnHiU64nNMF5txmRqXmYjaHb2KNiWrG/VdeeYUDBw6oPki28WqOwWaUw+AvYX/9IV4rD5vKjAaFTLOT3/RZh0lIQBx3371IojV85op6DvvC2mElEMBbVHCcZ9U2WekmZk/W5iNb+GUjHm/XBJj0WCq3tAhi8A69iZLDQc23wQyWBAbZI6r7FH0KexZq1h2A/Px8xowZ02rEf/7EeK6ctI0xCW8zPH4J6eb9lBS3fND0V6oPtr1cQQuUwYCwWqhI7BPqo1RU41m/o8W+zbRIxzJpFMJkAkeZtmNCG37CHcTr9fLE82s54svDL8O/+SP+/gRkDCEx4FOTLG98SqtZtSTBiBs6dewNu7UC3+SR8YwcOVLT9uKLL7Jo0SKOHDnC7MlagW9TRDqkhoaGFtq9/Px8LBZVAG1oUvjPIm0FlJF5VoxdqCXXBb5OIIQgLy+P0uo+bCtWo2VDfhI1j4K/qkX/c/pN4L9n/JJ5Y7/PU9PvYGRq1+bzOq/fRNJFWFsogRf3fNohp1udMBui/fcionM1Gj4PoWLaANVRKXaaGThQ6/u1f//+mM7W3Ua0ds88oMNRaRpMmZCspjPx+Xz4/X6mD1+PxaQ+pc6c6MEYqdqJPyf0b1enZIlkVOqAkBM1gCMhgESyc+dOnn32WZ5++mm2bN2JtE7U7NfYuIIHVr2En7B/k93s4bdZa0g1BX1nEi6JHb18nDCmJWPMCKfoEH6FGmeEnVaCY/cnJ2BmbXPl7ERN8EhtY4CPv/2Oa/m2v6zdzp7FfkdflIiloHevRJL7ae3wgRX34a8LrzsGg4G+fdsXnkYPH4DZEDZhRlsWZCBAoKYegF5uVcMnDAYQgppcbTBg00et+w+6ogW+qUFrVguBr30NX3u8vvBLCqvV36NbWnEG7EhzAj5DIlWGTmjhR90CnXApqWlQ2F+mjbSdMMwWKrXWjKIorF27ln/84x989enr9Er20ZwnVEr4aoNaeeOrr77C7w9bAhMTE5kyRVUeVdb5+cMzVS1SKk0Y2rU5LTsl8AnRzXWFegDNSXSXbZmB128ORmsCgQaofjjmPqnWRGb0HkVGVOLersBkMHKWRZuqZVttEWsqW68scCojpWyZoqMd3IpXk9Qawv57DQ0N1NfXh9otfqERcFqrttG3b1+NmdPpdFJRURGzb7fg05qDMOXE7tcRUn+GIu2hNAJxVjeTBm8hd0BfspK1gnJzOhbonpQszfSNSyfFmojZrD4dB4zQFB9+yCktLeWNN97gy1UuDjsNbHWm8XlDDn/bsY7DEaZ7o0Hh9vS1DI8Ln+MTqd1rxjJEe76MUbk2zWVfnHRm3bQkIxecrr2hvlfQSFMHqg70dJqTHmvw1MPeqHQgo39AYYv6uVY460lNRQnFVcfFCV/QLDgkJiZqHnBaI9qyUFxcrBEyAvUOpE/d7uWqVM2owQfByhStQNn0yTehvpFIvx/Pum2aNtu07hH4du7cw+JVCaEcgwAmixWjNRFsKZTlfwxXL4dZf4chV0BiduyBzHEw5kedOvbGKO3e4GwzKYlGhg4dSv/+sevv7t69G3flVzQ1OfH5fEgp+XJdE3V1daxera0+ctZZZ2E2myk94uP+/1RyqEr7XQ/KNrfQmh8rHRbghBBGoEkI0bUiZw+jWeBzuOP5evsU/H4FX/OPovENcG9sY+/uYaApkwnp2h/6S4Wfakq3fReoqqri8ccf509/+hOffvpp+zsE2VpzAF/Ed9XbnkK/ONXsHm1WUQNiwpqy6GobzRiNxhYVNo6rWddXpN0+hkoRAZHC2sJxmrZpwzdy7ZwMhIzQ4Bh7gXW0eviAn0POas0+zSluugIhBKNSB2Cz2dREzwYjVRkBjmQqlGT7KRzsY+soL48bBvPj0ou5v3QGT1WMZ0ejBxmRx26WbT8XpkXcpOIvarUix/HEHFFiDSBRycIfcdPDXYPrwx9AIHbqjRPF3FmJxNnCv48mt2Tx8h5WgrCT7Nq1i4cffpi//OUvWj/S3QsgsqJSQj/IOZu9B7UPpENyLJAyCKb+PtQWUBTyTAcZb1UzMaSmdiwpc3p6OklJYcWC3+/XWCiUqrDJsJerCgzhc1XptxFICeeyCzQ4cK2IyqkHeLfvI9AU1iIa05PDFWJiRekeJS6Xi3+8sgOnkh5qU1M/hdMkHKpSIHUwjLgezn4Krl8DN6yDs/8NI29Sq3z0nggXvgpxnXNp2RDlv3facFtoDrfddhsXX3xxzNx/aeb9BBQfLpcLh8NBSbmT1975VvNAkJyczOTJk9lT4uUPz1RS06B9KBo9yMoff5TR5UFPHRb4pJQKsAdIb6/vqUxmZibx8arUva5wLFUNqbhcLpxOl5p7qvK+LkuM2hluGXoehgiTXbmzho8Ormljj1OPJUuWUFNTg6IoLFu2jPLy8vZ3IkY6lowhIQfiaIGvV7x24a31OAi0cr6jn7aPa+BGC5Nu7lEPtWLFCpauGoDbF3Z2Tk4UJLkf0naMmx1Kd1DWVI0S8b1k2JJCJeq6ilGpuYDqUxkfH48j10rpIDjcR6E2NYArTuKNFJKkBKkgglqTXj43v+j7rbbQetrdXTrHo8UyWCugJ9V5WOU+LbQtAxJf8XJ2v3ZrpzXa3UlCnIFLZ2p9zJasbKK28dR8+JRS8t5779HU1ITb7Wbx4sXq+ZCBlubckTeCwUhhqVbDN6Q5qe6YH6kRukQk9o9bQbKhnpSUlA7NRwjRwp0kct1RKsMCny3gJcUQTgESkALn2Wdr9m1a0tKs61qlzb9nmzJGXS9loEsFvudf+5ySBq1mOznJpgnuOFQZ44EnoS8MmQszH4Hvfw5zPwh9rx3F55ds3qtNjzJxeHj9MpvNnHHGGcybN49rr72W7OywZtEkvKSYVQuLlGqi/m+2auc5e/Zstu3386f/VeFwad2vpo228ftb0kO1eruSzo44H/hQCHGzEOJsIcTs5leXz+wkRQgRSvIYkEY+2zgTUJ+kmpoceBvXIiMS1B4vBiT05tx+p2na3jrwlaZw/amMoigtBKq9e2PUZYxCStkyHUt62C8kOlIuIzmNeFP4h6/IAPVeZ8yxowW+AwcOHD8/Pn+USdd8dCbdw4cP8+mnn+Lx2VizW/VdMZmMqnkpUKftrPHf6/qEy9GMSolKX2I0YY+LIz4+IWjqVW8MSsAY1U/B4hHcnfYVCbYIM1n8+WAd1eXzPBrMUYEbFJdT1vv7FPsjTGQS+hx+h/f++dMOXettUvQJLP0hbHjymB9YL5oRT3JC+Nbi9UkWfXlqavmOHDmicfnweDzqmlH6NdQfCHc0mGH4ddQ7FCprw8Kv0Qi5fYLXoDBA/hNIUxxK0MnPjJ9L4r8gJbnj7kBtBYxFCnwAWWbt/aHutKmabWfBGgIO7frmjpWOBcBZqQZMNB/LEAeWo0sRtm79Fj7d0gsZYU1JTTRw+1xtwGNZZfc87Ow44MHjDQtiqYmGmNGyRqORsWPH8rOf/Yzbb7+dESNU60C6Wft7rPXnogQDTlJTU3GbRvLIK9V4fVph79yp8dx1bVqL3H1dRWcFvp8CqcCDwP+A54Ov/3XttE5uLrzwQmbOnIkQgqIj/dlVqv7ApFSLydfunUdN5YF2Rul6rh10ViiyFMDhc7Ngf8Fxn8eJoLS0tIWmozlcvs39mqo44qoLbZsNRsak5QJqrrayMq1PSmpqKum26Jq6sc26vXv3Ji4uHLXldrs5dOg4RVDHCtroJIqi8NZbb4W0DWsLx+H22bHZ7DHiP8wQNzO0VdwU7b/XdRG6zeQkZMbMOWkwGLDZbCQkJGCxWDEFBLnmGqbaSpgTv51Llb1cVFnB2D7lGCJMWqT+qsvneLRYBvWHCM2jv+wI115+FXv634VDaiMBZwXe5Z0X/x8LFy7UFGPvEFLCuv8HS3+gFr1f8yhsfuaY5m6zGLhitva8fLa2icPVJ878LKWk8Z3PSH7tE9zrt7e/QweJ5aZRVFTUMhXLwEsgLqOF/15ullmbDDtpAI6xv9YE3eWYDzHEq6272hbRGr6SkpLQ2qgEU7I00zdeu2ZWJvXB1Cds+pRuL84vw75nAbcHz8admn1sU4J14KO0ex7L0WWjaGho4P/eLMETkYLFYDBwz039GZajTakSU8PXBUSnY5kwzNZm2pjmgM6bbrqJX//615x9en8shrCgHJAman25ACRmX8RTb9cT7fJ55exEbrs0GaOhe4Q96KTAJ6XMa+V1/NPRn0CMRiMXXnghP//5z+nbty9fbJ6BX4lwKhUNbPnqRpYvX97SkbcbSbEk8P28MzVtHx9cS1krCaBPJVpbeNvTqK2v1ppzx6TmYQ3maaqurm5R7zA+Pp5Ua7TAF1t7YTAY2jSvdBvSC/7IxVeAKbaTcVt88cUXGrO412/BF3+bVkhqxj4NDGGH/RYRul3ov9eMQRj45ai59IlLI9FsZ0hyP2ZmjeHqgbP45ai5PDblVhacdz9vz5rL3/sVcGfaN3w/cTMXpW/l/NHrsVgicweeC7YxXT7Ho0VYLZgHaM1h5kNVXHHjT/DMfAoZkYPQJrxckfAxm9ev5oknnmDr1q0di9KXAfjmQVXgi2Tr83CM/r/nTomnV2p4jooCb30e+8HoeFD3j1ep/uO/iV++mYrbHsR38HD7O3WAWOtOxb4NUPyZtnG0Gum+q6gVc24E+8zTOOAP/16NRiO5h+dDXcd8gNPS0jQ+f4qiUFysPgAqldrKO31Ttb/lsiqF+Iu095DI2rqeTbuR3rCQaOrbC1P/YGLwqIANj7nzAp+Ukqdf+pJyp1ZLed7UeCaNjKN3uinS7ZDaxgAud9daTaSULfz3Is257ZGRkcHlcy/jyvMHYLVaQ4JitW8ITttMvtiS0mKfH34vmavPTer2akxHbSQWQhgiX105qZ5C3759+dnPfsaMWVezare2JuCEvC2s++ZVnn766eOn1QEu6T+NXvaU0LYiA7xU2PEAhp5KLG2ey+VqNzK2o+lYALKzsxFCkG7VmleqWxH4IHZ6lm7HV0pzdB+AN5AKhs7FWpWUlFBQUKBpGzt2LP1G3gfGGAt5hDkXWkbo5iZ2vYYPYFz6QP4z405ezf8tf59yG78acwXXDjqLs/qOY1hKf5Is8ZgTp2GxqMJ6XFwcfTPdDM6u0wquaSePdq8ZS1Tghne3eo3nTb+KuLP+hsUSNjH1MlZzfnwBDkcjr7/+Oq+++qrG1NiCgB8Kfg1bn2v5XlM5HPrmmOZuMgquPlf7O/l6k6tFJOLxoOmTldS/sCi0Lb0+jRBztEgpY647GUc+1gQGNQcO+BXJ8o1a8+iQnJYCX2lZGUuaZuOW6ntGoxGD9MGmf3d4bq09aEYGbQD06x2tMfMRf/FMTZvr280hzWB0/VzblNFhISVa4LN0Pu/n8hXrWLFH+3DaO83IT69SH35MRkHvdG3y+K6+pg5V+qmo0ZrdxwzufKzq+dNTsFqtJCQkYLfbUcz9KXON0Qh1RgP88upULjy94+lijoXOpmU5TQjxrRCiCfAFX/7g3+8kRqORmTNnMvWCl3D5w1oMISTnn/YVhw6V8X//9398/PHHmgzb3YXFaOKmwdqb79rKPWypOc6Jf48jiqKoZpQYtNYO4PR72FGn9XWbmBF2Eo4W+JpD8dNbaPha11xE+9MUFRV1v9Y3ypzrVrJa6Rgbr9fLW2+9pdESJSYmcumll4IhDlJ/0XKniHQsTr9HYyY3CBGKej4hGBLAOhYhVP9Di8WsFfbizgbbuNb3P0GEIh+DeAvD16r5tJ9iG/V94uLjMATTBI217GKcVU2Wu3PnTv7xj3+watWqllpuxQuf/USNIm2Ntt7rIDPG2enfW3tzXrfj+PoUe/eWUHX/Uy3a3d8cezaFI0eO0NSkzTNoRGGMeZv2Nz7qFhCCdTvd1DaGz4XVImJqjg4ePEhjIJEvnGeoYzbn/axY3+G5tRYwplTWadr79dPW1C6r9GMeMgDzkAgXEEWh6ZOVQAz/vWkRv5sok663kxq+6upq/vtuDb4IlwWTycDvf5SDzRIWVfpmaK+psi4260abc0cNtGK3dl6nlZVuYmSeBSEEZrMZi8WiEfYsZsG9N6cf15rTnf0ULwPLgEnAwOArL/i32xBCWIUQzwshioUQjUKIjUKIC9vof4sQQhFCOCJe+d05x/SMvvQa+R9sNlvIv6l/Rjkj+xcipWT58uU89NBDPPPMM3z00Uds27aNhobuMXHM6D2K4Snap6QX9nyiiZo8lSgrK2s1UrEtP76tNfs1qWv6xKXRJy4ttB0dodsciZUWreFzt67hy8zM1GTG93q9LcbtcloIfJ3Trn388cdUV2tTqlxxxRVhf8Skm8AUke/KOhEs4RQ0B6O0e33i0rAYT3DZ7ugya5GcJJG50URr+Hx7isIbQsCs/4cpfSjx8fFYrRYQcH7cV/Q2qt+/x+Nh8eLFPPTQQ7zwwgt8/vnnFO7YjP/D6+HAR9qDmaNuOvuXQBsPMh3BaBCcO0WbR2zbfk8rvbueQGMTlXc+jHS5W7zn2by7RTBCZ4mlrR9m2Uu8cIUFPktiqHbrJ6u0wuHM8Xbi7dpbsKIoIYvQbp8qtIUEvvoDHU7DEy3wlZaW4na7W2j4MnJSsFrCQojTLalzBEiI0vI1LVlOwOHEs00bjBDy34MYJt2OJ/QIBAL883/LqfaEH3KEgMvzkxieqxWK+2V2r4YvurrGpE6Yc6M5a1LsPHoJdsEfb81g/NCuzVzQHp0V+AYA90kpd0opiyNf3TG5CEzAQWAWkAz8AXhLCJHbxj7fSikTIl4F3TxHRPy5WFIuID4+AZNJvSjPHrciVJXA7/dTXFzM119/zfz583n44Yd55JFHeP3111mxYgUlJSWaJJlHPQ8h+MHQ8zVtRY0VLDu06ZjHPhlpy0waKrMVg3VR5tzmZMugnivVf02SaHcwMKuIvNTPyLAuJ82qvTnWtmHSbXbmjaTb/fj82p+jR+m4/9yePXtYtWqVpm3q1KkMGxZRecJghb5vqvVmEy6D3loNSsuEy91jzu0U9qmx2+PywXZa7PdOMBotC+DdU6y9li0JcN7/ECY7VquV+Ph4LEbBFQkfYxPhm5bb7aawsJAVXy7Bv/gKnLuX4mhqwuV24/X58Fl7EZj7sTZpreKB/R8c82cYPUhrCtt5wItf6f4qQDIQoPLef+IriZ2aSfqVFtqqzhLrYXKiVR1TaV7Hh10F5jhKj/jYtk8r7J43raUZ7/Dhw6F7gEdacYmEsFYo4IOGjt1qk5KSyMgIa9iklBQXF7cQ+My90lpqzI74ib/wDE2bZ/NuHIuXERlpYB6YjalX+AG5pUm34xq+jz79hvUHtXqjAVkmbp7T0jrRN1rg60INn8cnWvhZThh29ELZtNE27FatX15akoGHfpLJ0Bjm/O6ms4/d7wLnAce1ro+Usgk1MriZD4UQB4CJQNHxnEubCAEZf8bgXE5cnMDn8yOEixkj17Jsy4yYu9TX17N161a2blUXCqPRSN++fRk6dCgzZ84M1dnrLMOSs5mZNYblh8OL2vx9X3J671HEmXpQ7mxfCdQ9C0qNmtjX1Ev1IQv9n8mB/a2npHA4HFRXV2sWv4AMUOtxtEzHkpYN7vXg2YmzajXXnPkpvZKrsVk8CCGwN33FkCQvB50OICz0teXDB+rT9pYtYd+X/fv3M3v20WUyOuys4f2SVZgNRi7uP1XjrxniKE26LpeLhQsXatrS0tK48MIYynTLQMiKHc1Z0tT9ARudxjYVNU1LlLBxEkXmRmPqm4kh3h5KchtobEKpqMaUFXEjTRsGsx6HL+7AaDAQFx+H2evjUvklbzVcGEprES+cXJO4mF5GVXMbUAIElACHA/G8cfgMvP+az4WZA5igHMBsMat77VqgJrQ9BrJ7mUhJNFAXNGW6vZJ9pV6GDejeNaj+v2/h+mqtps2QEAc14Zu5a+VG4ma38iDQDlLKFg+avYxVZJvUYBBFUZCAGHkzAJ+u1mr3hg2whNOxRBDtRuKy90cQYRGo3aMmae4AgwYNoqoqHLC3f+cuRkRoNYXJiCE5gX6Zfg4cCltIDlX6GD2tN9YJIzQRuXVPzdeMH0rH0kyTqpn0SyMFdeewQRlDzeomMlKMoVcs02jZoUO8vNSHIsP3OovZwH23DoiZeDha4OvK1CxFR+yasnf9Mk1kpR+9dcJmMXDl7ERe/VjVlvfNNHH/D9PJTDkxFo92jyqEeJXwKmkF3hVCrAA0YU5Sypu6fnqtzqk3MBRoK75+ghCiCqgBXgUellLGfBQQQtwO3A6qCS7aWb2z5MSfR784taSOxWJm+vBtbDkwikNV9nb2VNm7dy979+5l48aNTJo0qd3IHYfDEXPOgwNxLPP6UYJ1Qyu8Hh7/8hVmWjpRf7AbaW3ezRiEi/Gpv8JqrGxznLnjPDiH2XC47DjccXiVBFzeAPXCRo20s2jDL3CYk6hUjFQrRqoCRiLTHwkULMLH4Iqz8RxRf+0mxU//DPVykVKNuPV4vEgpiW9YgNd7Lc153g7WlLf5OZqamvB4wk/3u3fv5osvvtDU5O0IASl52f0tlQFVwPygcCXfs44lz6R9kh6Xuok4U/jGVutI1MyvORmo0+nE5XKFXjU1NRpHfyEEgwYNalHwuz3WubfjVcKft+FABQUHC1rt3xrtXR+dZWxqX+JNYa1MvXcMO1Y7gK47RmfoyLqTkRqPpTZ8Tta+vRjPmOgbfip5ibPJql4aahkeV8q5ll0sPTKMOKWG69OWkGZs0Ii75b4MXqu9EGfAAq4GPm1KYnimC5/fp1ooDn7Dxk9ex22NnTy3o+cn1ZpORVXYtPXu0h1MG9ZGQMkxYt2yj7T/e4fIVdM7IAvHRdNIefrdkC91xdLlbD1zeOxB2qGxsZGamnDEq8lk4rS4LciIGqqHyKNwcyk+fxkfr+iHxxcWdrITyigoaHn72rhxo2atqJUZ9PHuRwYkHq+XkrUfUVbcsfuI0+nUjLVjxSoGRfiRK3GJfLV8Oa76ZDyecMWIlev2YXHXEjeoFymrN4cHrNFqvgrjYGvw/IuAl2l1qobv+SN38mXDxXiOJLNinzZozmLyE2fxYDO6sBiaMMlGahoU6r3DaBYzhBDMGF7L/l3l7N8V43N5DHg8YW30gVI3y5btPKpS4dHsKUvSfGdp1koKCna2sUf7JEq4dJIVp8fIoCwn2zcd4ySPgY6ImdHqkx3dMZGOIoQwoyaAfllKGeNyAGA5MBooBkYBC1CDS2IWu5VSPgs8CzBs2DCZn59/bJMMTIHiDaCo5gSrFX59cx31cX+j5OBBSkpKKCkp4dChQ2068NfU1JCSktKiWHM0BQUFtDbnxr0W3j4QjkjbZqjgp1O/T2YszdBxpq15A1D9/6C2Hmhdy+lXFAwCEuxuFAssNQ1mq68fVWY7geYlXxGIQLN2xw/CT/SD44S4ChJt4Z+DyxXQCNpmsxmr1YLH46WX3Y/dHEARqpYvAEw/cwZWY+xal1JKtm7dqhGmcnNzW/jZtMeO2mLq132FBWvouO/LbVybcxZX5p2JQRjUO83+Rgg+LStKgP0lCvHJVdTV1VFbW0t9fX2r111k/d9Zs2ZxwQUXdGqOAC9+tQaLNzzOJdPPoW985wv0tHt9dJaaG6HmkeCGoNfAx+hln9x143eSjqw71ct30lga1tKMtKeQHOs7UWbA+3OhIlwK6yzbOmadfxnK2n8gHT4UxYKiKASUAAf9fXi76RIUs5XmM+WkFwf9/cgRh7DZbBgNBqallMDU62LOv6PnR4lv4sCiutC225BNfn7ba9rR4ispp/x3zxGIsIwYUpMY+MqjGJITKXz2/ZA/qaXeyYyBwzDn9On0cVatWqX5rYwa0p/T6l9G+sJrRl32ZeTn5/P5miYw1NHcPSnewI+umRwzue7GjRs14/YdNQvrnk14vF6sFgtD0iVDOvibcDgcIcsRAJWNmM3m0LpmyevPiPx8LGlO1heFTb2W+CTy88ehjDuN0vdWIP0x1gohmPzDazEmB/2T64tgjwVFGvnGcTZgQFECGAyqf56UAQIBiccDjU0mIDH4ymoeLsTIPDO/uX1q7PRPqOvp26vLNRUqRo07g15px6Y1UwKSZz7Zp/n+r7hwBKMG9iCLWDu0+w1JKf/U3ZMQQhSg+ufFYqWU8oxgPwOqts4L/Ly18aSUkbr2rUKIPwPzaEXg63IMcZDxR6j4SahJuL4iJXk1KWMvYOxYVRXu8/koLy8PCYAlJSUtUim8//77DBw4MGbNvo4wN/cMPj+0kVqPAwBvwM9re7/g7jFXHOWHO074K6Du6Xa7KcHFqMiXyj/qZlETiA8a7iJ0GVLS3uPfeclF2nEjBCKf34QlPhtQTZVGIUk2NFATEU1W62kkKyLgI5JmTdmGDeGb8f79+zst8H17pOWTpgRe37eMwoYy7hp1OfHCAcH6tj6fn4ZGH5u3l2K1di4XY1ZWFueee26n9gGo8zo0lUcsBhO94zpWB7TbSfmxWh3EsxWSroMTKOx1lBaRunta8eEymuHcZ2HheeAOap5kAMOK36uO2maz+gKUfrOwDb2PmWVHQutOc8LmLZ4R5JgO4XK5iI+PR+x5GybPA0PntNGRRPvx7Sr24vVJbcLhLiDgdHPkl48QaIwwnxoMZD5+TyiZsHdINtb9YeOUa+XGoxL4os25k5OLsToU3EHrYqOMZ2NNJiOlbBGscfbkuJjCntvt5sgRrTtESu5ktaBpM7Vav+O2SEhIICsri8OH1c9rd/lQFCXkX27MUH+X/TK1D6rNUa/G1CRsp4/HtbxldLBlxMCwsAch/72Dnv64FRuKlPgD/k7nlYuzGfj9j3JbFfZAXU/7ZJgojKhJfKjKf8wC375SH06PISSYx9kEwwYcfz+77qRDQRtCiCQhhCVi+2whxP8LvvKPdRJSynwppWjl1SzsCdSqHr2BK6SUnTHcS6BrV5f2SPge2KP89qoegEA4LYHZbCYnJ4czzjiD6667jnvvvZdf/OIXoR8kqIvAO++807FEqjGIM1m5fpDWX+yrw1vZ21DWyh4nCdWPgYxI4WBIg/T7IPl2NVDAfgaYh+LyWFjjzuGhmvOoUeKCJznGqY76/uINPgZa6zgjoYx7s9YwOb4CMIB5EH7bBRRsncQ7Ky/iPx/dwBPv/QTR/32IqMuabqyDiEuwPT++Y03AHJABvjnSunJ9beUe7lnzLEX1YV9Br9dLbVMynb30ExMTufbaazttcoaWCZezEzIxnixpOg1WyHgA+r0NiXNP9Gw6RItI3b1tOO0n9IVznm774WbQHIwXvcKgYaOZPXs2t9xyC3/4wx+45pprANjlHYQPEwEloJq2msqhrONVHmLRO83UIgnzruKujdaVUlL9wP/hK9R+P6m/ugl7hK+ZZ5Q2gMr9zaajOpY2YEMywFGAMWLd3ugexYHig+wu9lBUHl4nhKBF5HIz0VV9MjMzsWaN1naqK+xU6bvIdcfm9mmCAo2ZKQD0iQraqKxV8HjVY8RfHFsPY4/23wsKfLtdI5BIAkHRwmJwkGA8jNXQiKDteRuNRn56ZS8yU9sX3Pr10gqpXRG4EZ1sefwQW0wfwp5MR0XiZcCNwA4hxM9QAyiaC8YuEELcJ6Xs7vJq/wFGAOdIGSkJtCSYsmWDlLJCCDEcNar37W6eX/QkIOMvcPAcCPrQ4S+Fwz+GPs+DiG3+69u3L+effz5LliwJtRUWFrJ27VqmTJkSc5/2OKvveD4oWU1xRH3TZYc2MzipXxt7nUA8O6Exqh5x2j2Qcoumyef3cfeSByjJ8iCQCCGJs1sRBvB6PFj9PpIUH8mKj1H9shiZlUGW1Ugfm4EEg0SIgLp4mrPBMgIsQ8Fg40BhISt3vBA6Tu/evbHG5UDcWeBR01mkm9wUel2h89hatY1mYqVJ8Hq9HQ7KKWw4RLU7nCbDYjRhM1poiNCmlTtr+O3Gz7kjvR9nJpQRCCjUOWLX4LTZbKSkpJCamkpycjKpqamh7b59+x6VsAcxEi53Qw3d7xLRkbq+/aVInx9hbmXpzp4Jk+bB2sdavjfiejjzkRbaOiEE48aNY/fu3WzcuJFd3sGMsezC6/ViMpkw7V4A/VszwHSM0YOsfLkufK1u2+th7OCuS0nR8Mr7NC3VCqbxF55B0s2XatrcI/Pgg7BPqnvN1ra/zxhUVVXhcDgwopBoaGSQrQKr6yAYDAgBijSw2TMKp3Ty3rIqIh+4Jg63tSrQxEwDZc8EazJ4g37Mfjc0lkFSxyrnDBo0iG++UZNoN2v4mjFlqhYJi1nQO82oSTZcXq2Q28dAXP5khN2KdGkFdNvUqKo0QYGv0KnmMW0OFsow7yHLuk1tk2Cxp2OJz8JgSUeaUvDLBNxKHAajhdlTUjl7cscSEEenZumKXHzR+fdOO4Z0LCcrHb3Kh0gpm9ULdwJnSym3Aggh/gN8QDfW0xVCDAB+DHiAwxFq4h9LKecLIXJQfQtHSilLgLOBl4QQCUAF8Brwt+6aX6tYh0HyD6E+Ipu983OouEtNZdGK5uP0009nx44dmqfIJUuWMHjwYNLSYpsN28IoDFw1cCZ/3xKWebfVdncmnWOg+iE00ZTmQZCsjRZ0+T38bc18SrLUhUhdYAwIo52L+0+hTzGs/Cbsu5hpmsTMMzpmxo5VYQOApKuhVhX40kwukG5UPxRBdTs5y1JSUkhLSws5ejcnix46dGib+zWzKsqcOyljKD8Ych6PbnmLvQ3hhKcexccTFZPY7UrhCutq6ppUVwCbzcbVV18dEu5stu5ZzCIfKgD6nwwRuj0YY1ICxt7pKBVqdK30K/gOlGIZmtv6TqfdqSbpLfki3Db+ZzD1vja1f9/73vfYt28fW5zDGWPZBcHa4PEHPkJ4GsAa++GhI4yJEvi27us6DZ9r9RZqn3hF02YeMoD0P/28hUnR3y8DY0YKSlUdAIEmF57Nu7FNGtVyYHedmgbFUaZ5mUu3c2eKmm8P1GTeIhi1bzSa2OHMxSHj8QVsrNnhxRiRFeH8abG1e9BKonchIGUINEYErtUVdljgy8vLQwiBlBK7y4sSCCClRAgRMumCGj0aKfCVVfrI7WPGEG8n7qwpmsokwmTEetpI7YGCSZd3O9UgmGb/6Zxekhuu+CEpKSmkpKRgNsdWdHSW6FQyx5qLr6Ze0WhiAcYPPXV895rpqK2lUQjRHBaTDOyOeG8fqpm12wjm+hNSSltUbr35wfdLgtslwe17pJS9pZTxUsqBUsoHOmkC7jrS56nao0gc70LlfS3MjM0YDAauuOIKjfbH6/WycOHCdmvDtsa4tIEaw16xo4IGb1Or/U8Yzq/AWaBty/iDRiN6xFXHvWtfYH2UP4vZaOZnI77HbcMvYvggrSDVVgLmaKKftJsrbBB/Hv6A+gSaZnQDEqR642orF18z0Vq+jpZZk1LyTYU2om96r5Fk2lP426Qfcm6/yDxy6sK3pH4QD9eeQ5kr6KfTrx/Dhw+nT58+3SbsAZQ4tBHVA3QN3zHTosRaa358zQgDnPMfGHkTZE2G/H+0K+wB2O12Lr/8cg76+1EfUP2zAkoAT1Mj7Hv/WD4Co6L8+PaV+WhyHXsieP/hKirveVyTH86QGE+vJ+/FEBfjOjcYsE8fr2lyRZt1vQ748k54eQwsuhA+vRW++SNseRb2L8FSvzMk7AEaU67RZGS9R9V+VfsG4/WF59U7zcjYNkp0tVbZh9Soh8LaPXQUu91O375qlLUt6GDoD35XkQJfCz++I2EBKtqsax0/vOV36yjDoSRQ7lXFBIlAIJkwMp0hQ4aQmZnZZcKeOt+uTc0SnWx5SH8zyQlH77d6stJRge9FVI1ZHvAP4N9CiOygEPgkcGxOHqcyhgTo+waYc7XtDS9DTQyzS5D09HQuuugiTduBAwc6nSKjmQSznbxEbT627Seblk8qUPVnbZttulrYPsiO2mLmrXmWYkdFKGADwOQT3JJyBudlTwQgJycHgyF8eVdXV3eosomUsvWFV5ip9KgZ6NNNwQUi6F0QaW5tjdbKHbXH/sZyKiJKlZkNxlCSaIvRxB0j5/DzkXMwG4zqd4iqH93jzeSdpAE4ElWBr7sJyECLKhsnRdLlHo5lcJRZtz2BD9SkzDMfgcsWw/Cr2xX2mhk2bBiTJk9hizecrsTr9dK08cVOzTma1EQj2b3CN2kpYWfRsWn5pMerBmnURvz2hCDj0bvbDMSwnT5es+1aGVFmreEgLL4U9iwM/ZY0x4QWEe6R7g9Kr8kc9PdFSkGVbyh+v0KzteK8qfGtBiM0NDRo1iej0UifPsHPkBqVRqsTgRsQXnfsLlUoak4KbcxICfVpy0RqP/M07LPUACdhMZNyZ4zcjI4yCl1Daf6sAWnAaqhlYG73rDu9001EfpW1DQFc7qN/gNhxQHstnormXOi4wPcAsArYAtwL/Ag15Ukxql/dD7tldqcKpl5qZQJj1M2v9kmojZ28Fv5/e+cdJsdV5e33VnWc6clRGo00yjnalgMOcjbBxmCT47JgMrvAh2FZk/OygV2yiQYWY2BNsI1tDEbO2JajLMnK0kgzmhx7pnPd74/qVNVhukeT577P049U1XWrb/d03zp1wu/A9u3bWbnS+mO/55576O7Or0uXiw1VLZbtF/qPjes8p8twJMCT3fs5GetnJJJ2ZzX8WwjbKlFrP528WN3X9hSffvpnySrQxJ2qd1Swfq+THatTVZculyvDyMnXVzfB4OAgfr8/ue1wOGhoSP3duoIXA1DjiN/hyzAQG7NoAzILN9ra2pLVkfmwV+durVmRIZ59WdM2vnLWO6hzxMNmcefxqObg8EZoq8xsLzXRdAcHCcRSWl2lDg/Vtr7DiuJx2j18B49N6uu97GUvo9VjFSSWp54k1Hl6ilz2at3dh07P4Ov/n/8lvMeqGlb5vtdRcuGZecd5bQZfeO9hYv1D0PEk/O5l0Jtbd80wDKQR19pD4MeHvuAsWH4NnP1J3Ff/AqfTxVC0ibDhQ0qJYUicDrgkR5styIwqWPJoT8PDB6l1J2HwJT18dekevtzdK4SmUf+tT7Lw9m+waOdP8NjDuVKCv40DgTXJRByJoER0TdqNpkMX1FdbPXCnE9Y9eMKqMbhu6dwL50KBBp+U0pBS3gQ0A68E3gRch5nbt0NKmb1/jSKFc7Fp9GmV1v29n4ehW7MOEUJw3XXXWUJw0WiU3/zmN+MK7W6otlaoTUce3+Ghdj7w6Df50rO38svgE7xp51d5x4P/wWee+jE/3Hsb9w4uYW+gmuGYE3yvBs9mokaMH+6/m2/vvSPZ+9a8y5ZU9Wus2+ekylFKfb01fGhvaVZIWNfu3WtqarLcwY9Gl4JrPVWONAPKCBYU0i0rK7PMUUo5phEqpeSRLOHcbKzw1fIfzX9lk7cbkgKwAingj0PPsHeS/972Ct0lvvqiZRkUmbhWFijNMkF4PB6uuO6dHI+mLtaGITl015dO67wbbQbf6fTVlYaB/zd/tuwr2XEWFe9+7Zhj9ZpKXGvTbr6kJPh/34E/Xg8Baw9pfAth8aVmeHz7v3B4yT/zi+FX8+3Bt/Jv/e/h7povIl59J1z+Pdj6AfTSGhYvXkx3JNWKMBqN8pLNJfhKcl9uc+YNQ3YPXxGqDUuWLEFHJEO6RjyPz57Dl057dwTDSL2GEALXqhb08ixFFeEhiIxyYDT1niUCn7N3XDnnhZJLTqZY/KMGHb1pKQECljVNXPh5JlGoLMsvhBBvBDQp5UNSylullL+36d0pxsK9Ghb+EoTtTq/rY+C/M+uQiooKrr76asu+EydO8NBDD2U9Ph/rKhdn5PENTmEe39HhDj6T5qFL0Bca5rmevdw50MB3u7fwybYLeMvRl/EP+5v49FO38MldP+HO1sctY2KxGAvbdFYccqAbgmXLlmUYF+Mx+LJWytkpfz01eprBJwP0hoYKks6xe/nGyuM77u/i1Giaor+ms71udfaDoyco10Pc1PgIV5fuwZCpz0PTNL67786kwTwZ2As2Fqv8vQnBuXSRpYo01tlLbMifZ8Tps3z5ckIt1grXqu6/cGD/+LsOrFvmtkSWWzuiDPrH932MdfVhjKa845qvhNqv/DNCKyxoZcnji/gJ/PF/zV616Sx7BbzuQXjZz83w+LYP8vRwCyeiCxkyyjHQM37PAFX1KxmKprqTxGIxrspTrAF58vcAfAsxRJqxHB6CUevNVT48Hg8tVdZuPBG3E+FKGTXlpRqlntQfJxyF3sEC/zb+NgwpOBgw16WEJEtjZWBSb/gyvJLj9PDZvXvNDQ48rhkiJTXBFPqu7gJeiinL8ogQ4l+FEJMjlT7X8WyBBT/F2j3CgI73w8jOrEO2bt3K2rXWwo/77ruPU6eKc6xOZx7f0eEOPvXULfgj2UKLBkirEYgooT8c4vm+oxwYtBphLt3BOYONLGp3IOImbLaFd8kSa+5TZ2cno6OjGcelk3fhTVD2Kkp0gVckFpgYkVgQf2Ts8GyxeXz26tzN1csodebIL4n30BVGjNeWPccbNNMzmMhlPDHSze+PPzrmHMeLXZJF5e9NDMLpwLnUGhorKI/vNNn0yk8Q01OGhk+M8uTv/rOgNIRs+LwayxZaPSfj9fJFW61rn7OlCa0sv1GVjuclWwAJoQGIjBA46rU6zc74sOm1c6bE1bP1z8227rQNLyZdiqVE72H5otzyS4Zh5C4UAxAaAY8tNFpsHl+t9eZr1GM1loQQWXrUFmhADbfRHl7EaMz8/KUU6CJMY/XkFj3Y53tqnB6+QyetBt+K5rkltpxOoSHdW6WUbwEWAB/B7Kn7AyHESSHED4UQrxZCqGSdQil5CSy4mXQhX4hAxz9CYFfG4UIIXvWqV1FSklp8YrEYv/nNb/K2ZsvGxoyw7rGixo+HY8OdfPqpWzIMogpRgkPTwfBjbWovQMu+eNd6yvnyGf+AcaDPsr+lpSXjWK/Xm0p8TswlTwjVMIwM8dOsBp9eDaVXWMO6MjCuPL5Tp07lNUIf7SosnAtApBVIJZUvHg1R26Ojpd1l//rIAxaP4URiD+kqD9/E4VzZYtkOHzg26a/pKq1CX3mtRbd7efQp7rjjjnGf016t+8I48/giJ63eZEdzcTcXnhXliFgfxHs+x0Z0Ij1O0F1w6XfM7iI22aze3l6Gh1O/cYfDkREBCEckTx+yvsdKXmBgYCDnXHp6eiz9Wz0eDzU11laEo25bpGGgOIOvucQqqTOoZaYEjVvM2N8W9+6lchtL9R6qqiqLmmOx2A2+k+Os1LV7+FbOd4MvgTR5PC5zciZwJvAI8AbgsBDi3ZMxyTlJ6RVQ/w3rPhmAU2+GUGZydFlZGa98pTXEcurUKf72t78V9bL2wo09k2zwtfq7+MzTtzBsM/ZeueRcbvCez6/Ou45vNv+JGxuf4PXVL3K+r40lpTU4tMwcijWVzXx9+w14hqVlgSwpKbEUVqRjD+vmC6F2dXUlG6snzltVlaMtWPnrUoUbADJIX3DsYpqSkpIMIzTXnE6OdFtkTnShcXaucC4kPXwJg69/pJzFrTqeNEmbsBHl+y/eNe7OLbmIGjFOjljbtylJlonDtcpWqXtwajzz5We+0yIPtdp1mL3P/p29e8dXwLHJXrgxTj2+6IkOy7ZjUWOOI7PQsQtx5zV4mqw3aIG2erjmd7Dy2qzD7CkhS5YsyRAof/T5UUaCMrlfF2GqnMfyppNk8+7ZQ6EBj83gK9LDV+vwWNJ5BnWSmqAJFo3Xw+dvY39awYaBoFTvprKysqg5Fotdi6+jJ2rJOywEKaWlRRvMbYPvtJrPSSk7MCVbfiKE0IHJy9Cci5RfB8YQ9Pxrap8xBO2vh6Y/mFIuRh9EOyB6ik1LOohe2srI4EHKvCOUef2UeX+A2+ODwc9BxdvGfMl1lUvivWZNjvu7GAyPUOEqPBxSKK3+Lj711C0ZOXtXLz6Ht6+8ggfaH8DR/xWaXUM0u4Y4j1PgXAqLP01UanQG+jkx0k37aC+VLh8XNm7EoensPvK05XxLly61SLDYn0sozUN+D18hC2+Skh1UO2+GpM0n6Rt8COo2ZD8+jWXLllnC8YcPH2bDhsxxj3Vaw7kbqlsoc5VkHJckcgwpwYjn6Q34K3DEBBfpK3iI1uRhz/Ye5uHOPVxgb9t0GrSN9hBLa/lU7S7D5/RO2PnnO06bwTfZhRtJFmzHXbuSaMc+jJiBjsE610Fuv/12zjqr+F7Eq1tc6HpKNq+zL0Z3f7SgdlrpZBh8iwsz+Or6d8IffwJGBO/SMgJH4t9RzUEwfCEVDbkzlQoJ5yb65jocOrFYjBrnQTQR4+jRo2zdmv3ceQs24gRO08NH3xC6ricrdANeJ0eOHLEUVWSGdAv0mPnbODh6aXJTolHlHaSkZHJTOhJ5hyNB82qWyDss5rvU2RfDP5pat1wOSVP9aZlFM5qiMxOFENfEe+jeIoT4WeIhpYxJKcenFzKfqfwHqP6YdV+sx2zJdrgFjm6EE5fDqbdC941sWXI/W5a9yLLGVuoq+vC4QgijF9l1E0TG7o9b6vSwtNzqYZqMPL6TI918+qlbMopCXrH4bN6x6kqEEFQ4n4fRv1oH1pgiyw5Np6m0lnPq1/LqlvO5ZOEWM/xL5p223YuXjj3U297eTjCYXaKkkIU3iXBQU2qtnusZfiL38WkUKsBs752bN5wLEG3FkEYyF2lgpByPx8PWkpaMUP6P9t9dUM5hoSjB5cnFZWuxFnr+AIHHn89x9AQiNMTq1+L1eJOh3U3ufYyMjLB79+6iT+dxaRkelBfG4eWL2Aw+51gePinh719ixYlvJYszvEvj33/dA55qgs8dxQhmn0u+/L3I8XY63/9FHn/Xf3PwqHlOXTeNhjqXKaFSrIfPzmhGDl9x0iyx7j50R8obGfQ4M/KHxxvSDQz0cCKUqiQ3pGBFs2vSK/RPK+8wjj2c21AZQs+hlTgXKMrgE0J8Bvh+fNxrgF7gSmBgwmc2n6j6Z6i4wbpPBoDMOyxNiIxOCVJKQqFRs21bAWycZD2+9pFePv3UzxiwGXsva97OP666ylwIZIwW3y3WgZ6zofTKvOc2DCPDS5ftTjuBz+ejrq4uuS2l5Pjx7AZuQQUbaVSXWbXK+gIdybBqPlpaWiyLYVdXlyU3CMy+uEeHUxc1TQjOrltDTqSEyHGMWOputd9fQVNTE5qm8Z41L08azAAD4RF+fqiw70shtNoqdFXBxsSiN9TgXJZ2AyIlPZ/4hqkfN9mseg26ruF2meHYhXonNVof7e3tPPfcc0Wfzi7PMp6wboaHr3kMg2/3D+DZb1vHVEVxLKg1e9UikKEwoaeyh6r7+voswsiJ/D0ZCtP53i8QeGAXf+usxBgcBsNA13XKHe24NfN33dPTk/EbB4hEIhnFd9luNEOuRkhPcxnthtBg/vecRqx3AIeeMo4SHr701I76Kp30CHX/sFFQN5RDXW4MmTIlvPoASxdPze9/3HmHcewGX2NlOMeRc4NiPXzvAC6XUn4YCMf/vRpomeiJzSuEgNrPQNnrCjrc6XRktKkJh8OEB+4taHymAHPhbcfGon20l5ue+il9tgKGqxadybtWvzRl6Az/HyUOm3GUJrKci46ODouHzuv15szfS2A3CLPdbYfDYTo6rBeRMQ2+0hVA6u/QH/XA0G9yD4jj9XozBEnt3gN7de66ysVUufM0Fo/1gAwk8/fCESeBsCf5Ok2ltVzfcoFlyL0nn2L/wImMU42HY6pgY1IRQlD9yRssv49Ydx+9n/rmhOdjZlDeDE0vweV2oevmJWOj+0UA7r777qI1QTP0+A6HinoPsSE/RposjXA50evzZBONdsGuf7fu012Iy76N5/KrLLsz2qzFsf8+lyxZgsPhYPCnfyDaeopR3cPTtZuQhsQYDSKEYO1Ca05rtnXn1KlTlsK7yspKysoy6x+l0KHSdmNbRB5frLsfXdeTeXxBj5OhoSF6e1O6gw5d0FhdpNSJEeNgXy3pRXcerTd/dGQCOd2euodsBt+Cqonr8TwTKdbgq5RSvhD/f1gI4ZRSPgFclG+QogCEgPqvQ5lNOFT4wLkCvOdD2Wug6kNQ+2W0pp/y5+dfbTnU8D8Ixthf2HWVSyyVm63+bgbCp6/rdWq0j5t2ZRp7lzdt44Y1L0sZe0YAer9qHey7FjxjK/3YF958+XsJ7GHdbAtve3u75aJTXV1tqYrORo27DLRUnlpv1AvDvwY59gXQboTawysZvXMbsjR3T8dWsDEwUg4Ii2F53dLzWVhirf77zr47JkSbL7OlmjL4JhrvOZuo+Efrb35055MM/+ruyX/x1a9DAB6vGdrd6H4RgcHg4GBGZftYrFzswuVMrT/9w0ZRnpkM715TQ379vce/YvbHTeAqh2tuh5Wvwnuedc2xtFlLI9u6E+3oYfCHvwXgibptRIRpfMhAkJoSg+0brIZbtnWnkHBuktPouBHrHQBSbeACXjOsnhHWLTZEOtrF/sAqS4cNr943Ja0cYRzzTSMSlRxpt0bRGquUhy+dw0KIxJXnBeC9Qoi3AP0TO615inBAwzdgyd9h8YOw7AAsPwBLHoSmX0PDf0PNJ6Dy7birr6FmydsYDqSKLYzYCAQfz33+OKVOz4Tr8XWMdPKpXd+nL9gPMhp/RLisoZn3Lm1GCz0Lwacg8CT0fg1i6Yu2E2r+paDXKSRx2o49x6+trc1SjQsFCi7bqPGUQ5ogam/MA9GTEBhb6y6fHl9XYICDQ+2W58+tt+owZhA5binY6B+pAKw9dJ2ag/esfYVl2HF/F39sHV9/5gSBaIiOQGoJ0IRgUWldnhGK8VL5/jfg3mS98Pd//SeTL9Oy9GXgLEXXNBwOBz4xynKXaejt37+/qFM5dMHaFmseXzFh3aIKNjqfgf23Wfed9TFo2AaA99zNkGYsRg61Eu2weuaklBnG2rJly+j/958iAyEMBI82bE87Hs7rf4bly6zrTraCsaLyhivH11NXSkms26zIdThMAyngNSMTYxl87V35CzfkcBsH0ztsSEF1yeCkdthIZ9yFJsCxUxHSVc1qKnR8nskTpp8JFGvw3QQkXASfAD4EfB1Tm08xUTgXg2sFaHlCeMCaNWs50pFKlo1Go8SG7yvoJTLlWcZv8PUMPMCnHvsXekZbwehNPi4pfZb3eT+F1vZyOPkKOHk1tL0SBm+2nqDyXeDMHz4FM38v28I7FhUVFZYFKBaLZSy0xebvAVS6fAg0EGZO5WDMTVQKGPrVmGNbWloskg59fX1JrS57OHdNZfPYPWmjx60FG/4KPB5PxsK7qXoplyzcbNn3qyM76QyM/57txIi1YKPRW41bn5utiaYb4XRQ+7WPoJWmPMsyHKH7xv/MWXAwIThLYLnZ8SdhNGwpMQ29F198sejTnU6btWwevqxIAx65ybIr4F5ktkmLo5WV4t5oNaSCj1nzEvv6+hgcTOXLORwO6joGGbnnYQAOViyn25PynDtkjK3330bTqNV46OjoyNDcnAoPnxwJIAPm56vrOoYmiDjNtceex7fQlhM3lses81QXQ7GK5LZDhFne7JuyloqNNQ7Sayz6hwwCwcJSDOzh3BXNc3/NKtjgE0KsATzAKQAp5RNSyhVSykYp5e2TNUFFbhobG+kYslZuhvoLC+/YDb7dfePP4/vhvlvpjloX8B1lJ3h//bOMWfCkVZph6gKw5+95PJ4x8/cSjNVmraiFN45D0005G5G6+PZHPTByF8TyJ9O7XK6Mu/mE99JenXveWNW5AJFWS8HGwEg5TU1NWRfet6+8wiKZEo5F+f6+8WvzKcHlqcXZ3Ej1p99r2Rc51Er/138yuS+82swxThh8a9zHcYsgbW1tloKGQthgM/j2HA4VrKFmF1125irYOPBb6LKGaI8ufAfYbka8L8kf1s3Q32taxFD8s5bA3xa8BOHQEfEq2M29L1AWHWH0m7+i0bY+pXv5AoEAPT0pb6IQgoULF5ITe0/dAqVZYj0Dyf/ruk6oxJ3MBR0ZGaGzM/V5FhsiPXg8aNHMr3OeoHlRnvcwwTh0Qb2to0eheXwH7ILLebqhzBUK7aX7dmA38D3gBSHEayZzUorCEELgrbnCUiElIkeSHRfyYc/jOzEyvjy+rsAAjw9af3AX+U7wwfpn0EUBC3j1x0AvH/s4xpe/lyBfHp/f77eIkGqaln/hTaPaUw7CReKn1BfzgAyB/49jjs0mz9IbHOJFWyHFmOFcgMgxS/J3v788Zx5NuauUf1h1hWXf072HeMSWN1go9pZqLapCd9LxvfxCfNdcbNk3fNs9jPzl75P3oo3bobwFTQh0XUcXMda7TKOj2LBuy0InJWm9W/0ByfGOwsJxBVXohv3w+Jet+5a+lMGyTRmHZhh8jz2LTPst2dedjW3DSR3Evy68kP0VK9DKStF8Zs7vSzrNtJrgrhfYMGq94Uo3+OxRhYaGBtxuqyFsoWKZtfvH8EmIjN0LPRHOTSBqKizb6e8vQ8y4L0oslnsdP9CukW7xVTnapqxgI0FTna1St0CD72CrzeBbrAy+BB8HrpdS1gOvBwpLuFJMOitWbeNEd+oCG41GkSN/zTPCpNTpYVnZ6evx3XfyMSQpz9IS1xAfbA6gu9eCawO4N4J7M7i3gvsM8JwJnu3gvYCj/n+AircX/FrjCecmsHv4WltbkwaS3bvX2NiYUQWdi5pEqDXu5euJxj1nQ7flGJHCPv9Dhw5lhHNXli+kzls59kQixy0G38BIRd7E6UsWbGF9lVXb7UcH7mEka6/j/Ng9fM0+lb83FVR/8l04Flt/w72f+VZGDtqEIQSsNovKEl6+Te59gGTfvn15Bmaia4INy6zGzfMFtlkryOB7+htmdW7yBV1w7meyns+1frmlD68x6Ce81zSC7Pp77mCE2rtNvc19FSv5U/NlaB4XwulAuJwsdw3S4k8Zcs33PYNIq2JOX8OKzht2uKFssXXfQP5e3JAq2EjgWWj1wKfn8ZV6NSrLUmZBLAZd/bnz2g50lVmaYvr0rikr2Ehgz+MrpADIP2rQ2Zd6X5qAZU0qpJtgoZTyD/H//x5YnOfYSUEIsVMIERRC+OOPvLeUQogPCyE6hBCDQogfCyHy3DrNXpYvX87hU6kLt5SSQO/4wrrF6vFFjRj3tT1l2ffS6mEcS/4Ki/8Ci/8MzfdC893QfBc03wGL/giLfg9Nt9ERePmYMiwJDMMYV8FGgurqasrLU57EaDSavMMeTzg3ed6EwRev1u2PxjUSQ09BOH/IZfHixZY8vsHBQXaefNZyzHljVecCGEFktDNZsCGlYHCkLO/CK4TgvWtfYdHm6w/5+cXhsW8W7BzP0OBTId2pQPOVUPe1jyRDiWAaKz2f+IbFQzWhrHoNCIHDaV5kF+hdLHG0cejQISKR4nqZbliRGdYdCxmJZhi0jibb923wKDz/A+u+ze+F8uyXLeFw4DnXmteaCOv29/db8ve27G5DD4bpcVfz85WvNYWpS03Pns8r+PC7mi0Vw86uflYcSuW4trW1JdNSxpM3nBHWLaBww+7hq1iSmUqSLq2TGdbN/ncNRyTHhqw5wqXuwJQVbCTIKDQpwOCz6+81NzjwuIruQzHrKPQdJq/K0kz0ma5P5gNSSl/8kbOpqBDiSsyikksxNQKXAZ+bmilOLU6nk96AdbESgYcLkmfJMPj6jhX12o93v2gJA3tFhAtrCgvPFktnZ2dG/l5jY+H9M4UQOfP4iqqUs1HtTrxfHXDSmzD4YEwvn9PptISaIw7JvgFrOP6cQsK50ROWgo2hgA+Xu3TMhXdRaR2vbnmJZd89J54sSptvMDxiEdh2ajqNXtVhcapwb1xJ5YfebNkX3PUCgz/4v8l5wbImWHwpmqYl80PP8+4iEonk7VOdDbuHb++xMNE84UOAaFsXpOWa6vXVaB7bvfyjn0120wCgtBG2fjDveb3nbbFsBx97FrCGO6t7R1h1tJeQ5uLHq99IQPcgSj0IXUMI+PAbq2natgTfq1JtxoQQbN3bgTNsGiFSSlpbW5FSju9GcxyFG7HuAct2+ZJFFvH+YDBo0SBdaAuRtnVlN6COtIUt4d46/RTVC7LnDU8m9jB0IZW6doNvLvfPTadQw61UCNGaeAAVadsn4vtmEm8DfiSl3COl7Ae+ALx9eqc0eTh9G23yLKMQHDuXZ23l4tPK47vn5C6QKU/CRWUnKfEsyTNi/JxO/l76mHSOHTs2/oU3To07zcDVvPSlG3zDvzXlafKQ7qXsrzKIRFOL1dKyRhaUFGA8RY5hpIdz/bkLNuxc33Kh5TUk8J19dxaszWfP31tUWmfxGiomn/K3vxLPOdabvoHv3kboueLy6gpm64cQkPz9tThOskDvKLpad1G9wxI+DIVlRuWkncgJa1cKpy2kTevf4LhNqeCcT5lVxnmwG3yh5/Zj+EdTIVgpOXPXMTRN57Zl13LK24DQNTSv+Xt/01XlbFph/r/y/W9AeFPrgDdisH5Pat5Hjx5lcHAQvz+11jocDurrC/CMj8fD12OtwHfUV2dER9JD8oUWbhw46rcY30vd+6helNMPM2nYQ7qneqJjFgDZv2fzIX8PCjf4LgHekvZI335z/N+p4CtCiB4hxCNCiB15jlsPpNfWPwc0CCFqchw/q6mvb+BwR8rQisVihPvvGXNctjy+Qr18J0e645W9KcPgqopj4Mzd1/Z0yGbwFYt9zPHjx+nt7bVIJbhcLksrtrGoTu9+ITz0xtLkU2JdMLoz7/hVq1J37H3VBtFoLFktW1B1LkCklViWCt1CcOkO3rPGrs3XyW1HHihovBJcnn6EplH75X9Cq0q7+YjF6P7Yf2AMj53UXzSNZ8LC89DTbrhe4t3Fiy++WFSltxCZeXxj6fFl5O8tSisQikXg0U/b5noWrLgWgP7hGMe6PARCmbIdjoX1OFtSvxkZjRF8fHdy3Wk51ktN7wgPL76YZ2o2AqCVlYAQnLfRyzUXpNYBR301Fe+4Nrmt6zqr93dQ6jff29GjRzOiCk1NTZb0jpyMx8NnM/j02ipWr7YaZul9kQs1+A4eHSK9YKPJeZhFzZNzw5+P8lKN0rQCoHAUegdz37BKKTl40uoFXDFPPHyOsQ8BKeUDAEIIF6anbAtgF4kr7Aoxfj4O7AXCmIUjdwghtkgps2Wt+oD0RoOJ/5dh9v+1IIS4AbgBoK6ujp07d07gtCefWCzGid4VbG5JVVn2t9/OvoP5+9IC+MIQjqQW2T899yDRF8dO+v5r6EXC0RAOEUYTklWuHhqMLh598hTDxr24XGM3z/b7/QV91lJK9uzZYxFL7u3tLfrvlLgYhUKh5L+33XZbchugrKyMBx98sOA5dxnDhMOp8aeMakKh1Dz79v8X+4dy/8yklGaLptAIgz5AmiEWXdfQjg2xs3Xs99jie4AaPZJ8f90DpQSCfcl5FvI5rzBq2BtNiT3/7/77CBzrYYUjvwH3UGgP4Wjq/YdODbKzZ+w5F0Kh34/ZykSvO+7XXETNt1Kh3PCxk+x+96fof9fVBefKFkqFuJC14n5k/IK/wnmU+3r2cscdd1hyZcdCD5cSCqXuw3c+Pkid3pXz+PKHH8eXtg7sH+xl529/i9vtZrn/LyzvTi8eETzvvhb/zgd46nAZD79YRSxWx91PH+HC9f2sWzRi+VjKF1XhO5Aqqnjh5/9HZ3UUZyTGlqePc7hqJX9aciUgkQ4HYSmpdfvZUH+IBx6wGrpiWTX1Xif64AhSSrSYwYanj/Pg2UuS+Y7p604sFsv790/8FvRYgO1p7192H+Dx++9DarkLDuoOHsWZNuaZ44fxN1YRDoeTa0Zrayt33HEHZWVlDI3qhEIp4/fgsQB/+9uejK/QsweqLAUbNfpxTpw4kVQ8mMrfr1troC+Uunm4675dtNRnL0AbGHHQ259SYXA5DA7teYQj++b+mlOQwZfGLcBm4A6gc4xjC0YIsZPc7dkekVKeL6VMbyFxixDiDcDLgG9mGeMH0ledxP8zu1cDUsqbgZsBVq9eLXfs2FH45GcAO3fupGTZa5HyTjTNvHstc3exY8tScOa/4/L1LOTZZ1IX+qFSgx3n7cg7JhQL84MH/45Lc5t6cxIu9uwnEonw8BPt9Pt3IoTA5/Ph8/koKyujrKzM8v/y8nIOHTpEIZ/1qVOn+POf/5yULPB4PFxzzTVFh3TBbKH2wgsvJLe7u7stUghbt27NO6edO3danh+OBPjlzlThyohWEzd2ze0F7hdYsHkT6LlDs6FQiN/uuR+hJe6kJSuqF3Hdua/IOSYd2f5j/J0yaWD7QzW8/NqrqKmpyTrnbGwJn8k/PfZdBtPy8e7XD/PSsy6hqbQ257i7nziEazD1+V229XzOqF2Z8/hiKGTes5kJX3d27KBvRDL0v3cmd7meP8LyAcOSVzYhyIvo/eEv8Rr7iUbN7+2O8t0Ey/+hqL/Zur4oD+xLXUp6R92ce94a3DkS6Lt++wijLtMbEwqH2d1ziuNPhSkVo5xT8QtCWhghBJoQHPO+hMPDVfz9uRqOdifEgKPE8LBz70J6Qm5uuLaSBfEcsFHNR9fDqbWh4nA77gXNbNnbSlBU8JtNb0cKM19Pr/DhK3Xw5Q8sprEmexjTP6rT8ynz8hSJRFh2coCD6xfSV+Ojt7fXsu5ccMEFbNqUKRmTwPJbaF8CI6kQ8UWbm6FmTc6xJz79E2KulAfr7Ksux9FQQ1tbGwcPpkLCXq+XHTt2YBiS2x5rJ552iAS2nXUBFb6UB7J3MMboHYcB01PmIEKVe5CzX5ZqoTmVv989Pf30PZWK1DQs2sCO87I3LnjwmVHc7pTXc8NyN5dcsgKY+2tOsVfMq4DzpJQfl1J+Lv1xOpOQUu6QUoocj/NzDSOtmMTGHkzDNMFmoFNKmeHdmyusXL2NEz2p8GwsFsUY/suY49bZ8vhOjvTQH8qfx/dw5x5GokHMP4FBqQix3dOarA4F03M1PDzMqVOnOHDgAE899RQPPPAAd955J7feeivf//73ue+++/jrX/9qKcbIhl2OpaWlZVzGXmJsOul32VBc/h6Az+HBpaXum4KGxqi+Iu2ICIw+nPccmzZtoq8qFWaKRmOcZQ/d5CE6ejg9lYbRSG3RlXKVLh83bnoNeprO12g0xFee+xWj0exhNiklrbYuGyqkO71UfeStuFa3WPb1fvnmic/nE4KTDdcl5VkA1roO0bY3/3fdTn21g/qqlCERi8H+1tx5fOmiy+FQCL/PNJp2lDyGW4RBgjQkI1EHPzt+Hr98aCH7TjgIBoMEAgFCoTAjIyOEw2F2HwrykW908tv7h4jGJJ4zNyCcqfcjT/WwsG2ApQf7uHXzOwjE8wBFiQeh6/zzG6pprMntMym9ZgeuVeYNtx7/nLY93QpSZqw7RWnX2deGPALMMhIl1pcW7BICvdrU4bMbmM8//7zpjdRERuGGvfL1QGsYaaT2tbgOoJc3TnnBRoLMwo3cudP2go0Vi+a+HEuCYq+arcCUy5sIISqFEFcKITxCCIcQ4k3AhcC9OYb8DPhHIcQ6IUQVZku4n07RdKeFpqYmTvalPCtSgr/7zjwjTEocHpZn6PEdyzvmnhNPxl8kBhIu8h7GKQwGR8swZOEJ+5FIhL/85S987Wtf4/77789p+E1E/l6hY4s1+IQQGW3Pep2XWA8KPpn3HOW1Vfir0hdKSc1ggc53KTHCxyy7SsrXjmvhXV/VkiHIfHKkh2/u+X3W3Kzu4CCBNGOw1OGxFrEophzhdlH7bx9FeFIeHRkI0fneLxA+eHr9su30l52BqE3lmQokS/r+mNE+bCzsXTd259Djk1ISPWnm8BmGgQT8PjeNeicbXfvSjoMf9X+Q5/zXEjIyWxIahkEwGGRkZITRQJhf/XmIj/1PFwe6BO5tqfcTjUY575FD3Ln6tXT4zBCg0DW0Ei9vvLKcLas8GedOR+g6VR97BwCOeH5eXbefRScHLMeVlpZSVVWV91wWiijcsGvw6VXlSaN23bp1lhvn7u7uZNeNzB61VgPq4IkwMq2wa7l7D67qycnfLoSx5ptORsHGPMnfgwIMPiHEJYkHpiH1ByHEG9L3x5+bTJzAF4FuoAf4IHCtlHJ/fI6L49p8iwGklPcA/wb8DTgef2RX3ZwjaJqGVmYN2zjCjxUmz2L7oebT4zs01M7BoUQIOApILvaaC06/vwIhhKXkvxCCwSD33XcfX//619m5c6fl7ne8/XNz0djYmHN+iVBzsdgNvn5hC/GMYfA92XMAPc2z4AkKOvcdK+zFY11II2UoByMu6hrHH1J9efPZXNS40bLvsa59/O74IxnHZrZUq5u2O3xFCtfyZqr/9QbLPmPIT+cNn8toS3ZaCA3n9o+g6anLyAbXfo48/1BRp8noq5ujcCPW3Y8MmhdrwzCIOHVCbp0rSh80UygEhAwP3+z9LDuHX4fEevNZovfS4rqLMkd78hwJw+9o2yg3fa+bXy9+BQHdgyElhpQ8ueACnm/clnjDaKVeztno5dqL8vc5T+A9dzPeC7ZZCjK2PtNqEWNetGhRcb+bIgo30tuqAei1lcn/l5SUsGLFCsvzzz//PDB24caB1jCkGXzLXPsoW5A7rDzZZGrxZZdmiUQlR0/Nz4INKCyH70dZ9tl61iAxte4mBSllN3BWnudbsRWRSCn/E/jPyZrTTGRhyyUMD32VMq+Zh2XEAhB4DEp35B23vmoJvzuWuqDnM/juPbkrtSFjbPZ20eAwQ8B9w5UsXLiQD3zgA0SjUfx+P8PDw5aH3+9naGiIo0ePZoQ1RkdHuffee3nooYe48MILOffcc+nr67N4DNxud8Ftz7KhaRotLS1ZJSSKXnjjVHusRmKvtFXIhvaAMQJaKdl4tGsvTqcjWfxR1adx6NQhAoEAXq8365gkkVZLh43BkXKamsbf2kgIwfvWXU3rSDdHh1MVkb849FeWlS1gS02qHZxdcFn10J05lL3qMqJtXQx+79fJfbHuPjpv+CyNt3wZR10RHqV8LHsFkZJF6MOmMpeGgXjuu3DO2AVjCdbbDL7DbRFGAgalXqs/IuHdA9NY8/vcrHcfoEnvxOl00idW8O8n/4VWuYmSEgdSyvjDYFVDN2tqD/Hivk6qHX+hP7qUk8GziEoPhmEQCATRtDD3B2t4avOHuPrwHTic/fx55TXxVxQIl4PmxaW87/qqotaJqo++ncAjz6IJgSElPn+IlQe7OLDa1BEtNqpQTE/dbBW66WzatIkDB1IG4+7du7n88stpqs9tQEVjkiNtYURah6UVrj1ULv5kwW9hommscaAJSKix9A0ZBEIGXrf1O3S0PUK6JnlNhU51+fyRkRrT4JNSTp+fVlEUK1eu4sk/LWVzi5l4bBgGoz13UjKGwbeucjG60IhJ8wds5vENU2XzXI1EgjzYsTttT4zLfaki6X5/RVJLyuFwUFlZSWVlZdbXDAQC/OxnP6OjoyMjlDs6Oso999zDQw89lCEvcjr5e+nnyGbwFb3wxqmxfU59UUx5mkjCMxmD4DNQkpmOOhoN8WzvITRNR9M0DMOgut/8d8+ePZx55pl5X9sIH0l22ADzb7B88+m1NnLrLj6x+XV89PHv44+3WjOk5N93/5b/OPsGGrzmRSPTw6d66M4kKt//BoxBP8O3/im5L9p6iq53m0ZfejuxcaPpxDa+F/3RVLfNhUMPEBvuQC8rTBi9qkynud7Bia6EODHsPRrirHXWm51oq9XgG/V5uKTEvFF9fORiftT9EYKiAs3jSYau3C7Bu19VyQVblgPncPfddxMKhdi1axfljjbagmfSG1mRPGfACIPTxy9WvwHdiGLEDTshwFddwo1vqckwIsbCtWIxZdddRuBnf8CIF7hs3N3O0aW1RFyO4nvPVtoNvsOmty2L/mWGwVdnze1dt24duq4nbxp7enro6Oigqc5aqJXu4Tt+KkIobCQNvkq9l2pHN2VNBcpITQIOXVBXpVvapZ3qibKsyeq9O3zSHs6dP/l7MH0dMxSTgMfjYURut+yLDP15zHElDg/Lysfuq7vz1HOEYqk7vRpHmK3ulGhxv7+iYA07r9fL6tWrufHGG7n00kuzNg0fGRmx3H3C6YVzE+TK4xuvwZeRwxcaNvsFp5MjrPtUz0EicYPN4XDiDglK4g3XE+GVfAQG91sKNvyh6glpbdTgreKjG663VEX5IwG++txthGLmonlMafDNaIQQVP/LOyl92QWW/eEDx+l83xcxAoX1rh2L6rPfhT9NFEGXUQYf+reizmH38mUL60bbUh7lmGFQXdWDmwi/6P8Q3+r8JEHDC67Ub7GpzsFX31/HBVtSoster5drr72Wj370o5y7fTNLS//OypJ7cWtDqXNrApDE0gwo4XHxT29pSFb0FkvF+96AVpqahyscZf0eM7Rc9LrjrQZvmqRsLAzD2bvj2NuqpYd0wfw8Vq60GpDPPfccC2qsxmNXf4xwxFxoDpwIE0sTiF/u2oN0liCmOX93UX3+QhMw557OfArngjL45hyVja/AMFJ/VofRCrak/myM1VdXSml21kjj8ooTljyOdA9foXi9Xi677DI+/vGPc/HFF2c1/NI5nYKNBE1NTbhcmT/08Tb9thcq9IWGwWPLQMhh8D3amdJOdDqdVPVpiLiZdejQoTET4EeHrE3rNdfSCcuj21q7gjetsOaFHh3u4LvxThxto1a9xiWlyuCbaQhNo/ZL/4T3wjMs+0PP7KP7I19DRsbuOzoWmtPNydprLPvch26D4EDB59hk66ubTYA50tpBRDho9zbwfM0G9tRv50ud3+av/leZvxhnCcQr5s/f4uUr76/LMAISVFVV8epXv5qPfvSjXHxOM+t8d9Dofh6BQUy3XhalELzmykrOWFNcbnI6jroqSt5qlVlavb+Thc4SSkrydwHJit3Ll6NwIzOHLzOUv3GjNWd39+7duJyC2sqU0ScldPSa35UDx8PIWOp7s8y1j6inYcK1HoulkMKNg7YK8FXK4FPMZlauscuzxAgP5ipmTjGWwbd34Dgn0iQ4dCG4wvd8sum2BAZGCvfw2fF6vVxxxRXceOON7NixI6tBdrr5ewl0XWfxYmsj9bq6urHz5XJg9/D1BYfAazf4nrK0oQNTz/Dp3kPJbU3TWC5SoZSE4HQ+jJC1oMVTPrGtja5rOT+jn+/OU8/zw/13W9qvVbvLKHON48KlmHSE00Hdf9yIe5v17xh46Gl6PvkNZCyWY2TheLe+gxGZ+v3IiB9eyJb+nZ11S90We+FEZ5Qn9wa49+9+fnLHAF/8cQ+f7D+fj2//NF/f9AFu2/g27nK/geORuOEjNHCWouvwrldW8KHXVhUUeq2urua6667jY//vw1x9ns5a352UOLuRaZNp8nTyulecfrrCwve9iVBpyrDVDMnagbH7vmalwMKNWLc9pJtp8CXCugn6+vpob2/PWbhx8EQYI02SZYV7D1r5+KIjE4ldmsXu4RseNSwhX03AsiYV0lXMYmpqaujyr7fsG+m6Y8xxa+N5fAlOjvSYnqo4d9u8e2fVLKBKDyblOoZGy5A4k2K/46WkpIQrr7ySG2+8kYsuushi+J1zzjmFtR8qALunsOg8mjSyhnSdy0GrTO00hiFsXZSf7jlkDZF7yrlgldUTM1ZY1yHbLNsVNRtzHDk+hBB8aP21LLKJL9u9vapgY2ajed00fPumDI2+kbsfpu/LPyiqJVo2VqzZwJOhrcltI2YQffb7UGBv7lKvxrKF1ovvv/28jx/+YZA/PTrCcwdD9EovEjPcKgCEOWcBoHuoq3bypffUccU5vqK93DU1NVx//fXcdOM7ee0F3TSV/Z1KcZJ6117e8Y8NaNrpe6/0Eg8DF1q17xp6Cu9dbqHAwo2xijbATAVKb/EI5rqTafBFGPTH6OyLJiM7OjGWOA/gqZ20ms2CyajU7cmUkklncaMzp8D3XGV+vdt5gqPCqqXmjD4JRn5x4xKHm+XlVu9ZIo+vP+Tn713W0OFL68uJpUkL9PsrqKmpmTCDrLS0lKuuuoqPfexjvOY1r+HNb34zV1xxxdgDC+TMM8+0yLOcd9554z5XtS2kOxD2mx2GM8K6T1g2H7N9pufWr2WzTQz18OHDlibr6RjREVz6QHJbSkH9wq1Zjz0dShxu/mXz6/E6cofbVf7ezEcrK6X+e5/Bsdiarzt82z0MfOuXp3Vur9dL/4KrCcrUDZox2gd7f1bwOex6fBYMiTTSjVJpuXqduSLGv32wnuWLTi9EV1NTw2tf+xq+8KnreO8NtXzyE+dy5rbcHTCKZfmrXpr8vxCC8tbu8RnbhXr47CHdHNXZdhHm3bt3Zw2Rmt49mSzYaHYexqOHZoTBZ59ve3cEI+07k6m/N7+8e6AMvjlJ87LLGBpNqdRII4AxmqmjZmdDlbUN2wv9Zrjw/vZnLOG7BSXVbPT2Y8TSDL7h4vP3CsHn87Ft2zbWr19/2tW56ZSXl/OBD3yAq6++mg9+8IOn5eFz6Q7KnKlwliGl2aLMHtYNpPL4IkaUJ3usi/S59Wupr6+nsTFV3ZgvrDvYs9tSsDEcLKe6ZnIqZZtKa/nn9a/K+bzy8M0OHHVVNNz82YxqzcHv/4ahn//xtM69fO0WdoVSDY4i0Sg8/33I0anFzrY8OXIJkV+BpDLYx5rhF7jM9zveXPnffHbxR/n4DSvxeSdufaipqeHss8/O6Mxzuiy99CX4aqrxuN2UlpYiB4aJHm0be6CdbOLLNsNRSplZtFFTmfV0a9assXRN6e/vxymtY9u7oxxoDROLxRDxLrrL3XvQdB3hG//6OVGUl2qUeFKe2HAUeodS162MDhvzLH8PlME3J1nS0sLx7tQdl5SS4Y4/jDkuWx5fTBrc2/aUZf9Vi85Eix5P5u8B9I9MjsE3mdTU1HDeeedNSF6g3cvXGxzK6+F7tvewpUtFpauUNZVmXmG2JOps9HY9a9kOG5Pb2ujs+jW8ZumFWZ9THr7Zg3NRAw0/+CxahVU8uO9rP8b/h7+N+7xr1qzhyeBmInG1r1gshhzpghdvLWj82hYXV51r5uF53YLlTU4u2OLldZeX8f6NfXzs+W/xtSc+zycf/Qzv7/wqb6r6Hy4t+z0Lm+sgj/d5JiEcDkrP2oDL5Uq2tAw+lT9PNyslDeBK+/tFRiz9dQGM4RFLUY7wetB82fNsPR4Pq1db8397O6wRiLY0g0+Le/iWufaZUR3f6UlBTQRCiCwCzAmpH5nh4VMGn2JOoOs6EadVisHw/3XMcWtseXxtI738rf05ugIDyX1OTeeSBVsgctRi8PUNV467YGMukKHFFxoC92bMJjFxoichamqJ2cO559SvTX729vDKkSNHGB4exk5gcK91h7NlfJMvgtcv38G2Gqs6vwCaS+fv33424lqxmIbvfArhtXrVej79rXH33a2trcVXs4ing/EbFgnRWAye+w7Exi5OEELwj9dUcusXFnLLZxbw1Q/U86HXVXP9JeVsix1jYaATp4yiyQhaeerirS+/alzznS7cZ1hzrINP7c1xZB6EyBLWtebxZXj3xhDbtq87h158xuIxC4UlLx4LY8RiiHj+5HLXHnRNB9/p3zRPBLl6AHf0xvAHUh5QrzvTOJwPKINvjlLVdDWxNHkWJyfHlGfJlsf3kwPWCt/zGzaY1ZiRYxmCv7PNwzeRVHuyFG5oHnDb8n8CTxA1YjzRbRV+Prc+JVpaW1vLggWpPCspJS+88ELGa0YDhy3bbt/4W6oVii40PrLxOhaUpEKCZ9atwq3Pv7vl2Y5782rq//sTyd6qAMRiDP709+M+5+rVq3kiuIVY/NISjUZh+CQcvL3gcwghMjzV0ROmBp80omgY6HGDz0DgW3ftuOc7HXjOtAoUh8Zj8MGY0iyx7gHLtl2Dz87q1astYd2hoUGqfdbCh1hMEjPMkG6ZNki9ox1d12aOwZejUtcezl2+yIU+AYU4sw1l8M1RVqzawsme1I8w0XVjLOxh3ZGotdjjqkVnggwjI22WhNiBIkSX5yJZtfggizzLk+zuP5rsYAFQ5vSy3pY/OVZY1zAMtNhJy76yaqvnYLLwOb189ax/5FUtL+G6pefzoVl2wVWk8J63hZovfsiyL/jEbmSa974Y1qxZg1+W8mzI/C5Go1Ez2+uZb1o0O4slesIMV8r4eqRXmBfwbr0F3VZBPtNxb1iJcKU8UdFT3UTbu/KMyEFGHp81J9heoeuw5W1mzMvtZs0aaz9cLdZt2TakRMQ7Mi137UXTQPgaYYbc8NlbwiWlZGz6eysXzb+CDVAG35yltLSU/vAWy76RAgy+jTaDL52lZY2sqlgEkVaLDtNwoBRfeW1W7bz5QoYWXyiu3J9FgPmxTms4d3vdGhy2tkj28MrRo0cZGkp1A+jr66PMm1rQhYCyqomVZMlHhauUt628nLesuEzp781ySq96iaXNmjHoJ7z/2LjOtXTpUtxuN38PbsVAQxoSIxaDwSNw5K5xzzFyMt5lI2bmvSZCur1lZ+QaMmMRLifuTdZ8ueCuceTxZbRYyx/S1XIUbKRjX3dGB45ZikHSCzaWuffGCzamP38vgd3D1xbvAXzQ3lJt8fy8VimDbw7jrnqpZdtjPDWmPMuaymZLHl86Vy460wy1ZMnfm8/hXMiixReMe/g81l64seAeHu+2hnDObbAK4oJZUGLv/JEe1j15spUq32ByW9N0hKtlPFNXzHOEruM5a4NlX/Dxsdv6ZUPXdVatWsWQUc4LYTPHLBrvH8sz/5NRSVoIMhol2t4NUiIM8wKul5n/hhbsGNc8pxv3Gdbf/Ljy+Mby8PUOWLYdY+TwgRnWdTrTvF/hTjMPM3FOS/7e3njBxswI5wI01jhIj9T2DRn4Rw2OnbLmkM7Hgg1QBt+cZsmKy23yLEEiww/mHeN1uFlRnvkD9jrcXNQY9yBlyd+bz+FcyBPSddRZiin2BSsZDKUMtRKHm83V2TWs7GHddBHmns696FrK6JaiDPSK8U5fMc/xnG317IzX4AOSYcHHAmcgicuzAPTuhRPFVwFHT/VALAaG6d0TJVGEy6A7Vk35oonTyJtKPLbCjdB4PHxlzaCnVScH+yHQm9yMdY0tumzH5XJZwroebTBlsANGLIaGRCBZ6noxXrAxczx8ToegrsoaLXn0+VHSm8nUVuhUlU2MXuxsQxl8c5iGxkZO9ltDB4PtYydPr88S1t2xYFNKeDdyjFi6Bp9/flfoQmbRRnqXEjzbk/991L8QZCq8cFbdapxa9moxu8F3/PhxBgdNY9Hfb71ASMf0tzZSzF4851i/a8Fde8fdZzfRtaHPqOLF8AqMmIGR8Ow9f3PR54ue6Ij/xzT4EgUbByNLZ+264968GtJE6iPH24na2qCNiaZD5XLrvjQvn93DN1aVboLNm1Naii7NTzQaNj2zUhIzDAQGTc5jeLXReMHGzDH4ILPjxs6nrf3I52s4F5TBN6cRQmB4dlj3BXaOOS5bHt+VTWmhyfARqwbfPK/QBSh3lljy8EaiQYKxuGEXz+MzJPzdvxBIhRfOq88M5yaorq7OEITevXs3hmEQGTlk2e8smfwKXcXcxbms2VLFKQNBQnsO5R6QB5/PR3OzeQPyeNDs/JL0Ep18EHpfzDU0K0mDLxYyG2wkDL7w7DX4tFIv7nVWz37o6fGEdXNLs2TIshTg4QPTYE/kY2vCwMkQ0VgMQ0qklGhIlrn2IgQIbeZU6CZoqrcWZBw8YQ3nLp+nBRugDL45T23zNRZ5FpdoR4aO5B2zrmoxVe5UKHhz9TJaylIdHGTkmDWHTxl8aEKjymUTsg1aK3UPhqroi3lAmguQR3eyxaZpZydbWLevr49Sdyp0I8TUSLIo5i5CCDzbbV6+vz837vOtXWveyJyKNXAy2mgJC7L7B0WdK3qyE2JhiBcL6BVh/LKEEd9K3O7ZIbicDfeZE6DHl6enbkZbtTFkWRI4nc7k3w9SYd1YLNXtZLkrXrABM87DZy/csLNqnubvgTL45jxLl2+krTf1g5RSMnjqd3nHuHUXN256LdtqVnBR40Y+vPHVqSdlBCN83HJ8yGiktLSU+U5G4UaiUte5ArQKM5wLgAQZ5Yzalbj1/Heb9qq5EydOsGfPnsyCjSkQXVbMbTznbLZsBx/P3uGlENLzwJ4IbknJswAc/D8Y7Sn4XJETp5LePTBDugfDS6mvb8w/cIaTkcc3no4bdg9fnxnSlaEwxlBaD25dR6uy5hnnI33d8WiDRCKRpMGnCcly995U3/SZZvDlEVTWBCxrUh6+GY8Qwm97xIQQ38xx7Nvjz6cfv2NqZzwzcDqd+I3tln3BvrvHHLe2cjGf3vZmPrzxOiotLXxOYsRSd+v+QAnVNdPfR3EmUOPJUbghNKT7LB7zp4c+whax5VxUVlYmw2MJdu7cSWVpyuDTdR2cS+xDFYqisHv4Qs++iBEorA+uncbGRioqzCKiA5FlDMbKUl6+WBj23lLwuaKtHRALIuMWn1YRntX5ewnc29aa7vk44QPHiaUbaYWQQ5olI3+vugKhF16osHJlynvq0QaRUhKJRBBIvMLPAsdxs2BDc4K3prg5TzL5OmgsbnTids0as2fCmTXvXErpSzyABiAA/CbPkMfSx0gpd07JRGcgJXWvsG6LZ8eUZ8lJ5IgtnKsKNhJkavGlCjcOG5vpiqb06lxEOKO2sDCs3csXDAapLE1p8imDTzEROBc14GhKpWbISJTQs8Xl2yUQQiS9fBKNJ4ObrWHdPbckizDyIaUk2toKMrXmGGUGxyKLZn0aiV7uw7VycWqHlISe3pd7QDYqloJIM+RGOiA0RKzbXqFbWdRpnU4n69aZN6RevS8+PbM6d5X7eTQhUwUbOWS8povyUs3SEi6dlc3z17sHs8jgs3E90AU8NN0TmQ20rLTKsyBDjPb9ZXwns+XvDaj8vSR2aZZkSBd4zG9Vud9S0pWqeh4Dex6f0xGm1BNIbmu6ExwzK3FaMTuZDHkWgOfCawlEtVRYN9ADh34/5jmM/iGM4dTvCKfBMWcTMRxzYt2x99Utus2a7jSNvnQGDmVU/BZaoZtOYt0p0fupcZoFPB7NzysrbkkVbJTNrHAumDcbubx8K+dx/h7MXoPvbcDPpMyr4rlVCNEjhDgghPiUEGL+dUqOU15RQeewVVh1oP0P4zuZXXRZGXxJcnn4pJQ82jdoee7ckoMQ7SzovBUVFSxZkvLgpXv3hADNtRjm79dbMYFMpMG3fPnyZG/WsHTzdGCNZe1g981jCjFHT3Qku2sgzfy9AxGzunUuRBY8Z1jTOoLjyuPL7Klrb6tWaIVuOitXrsTj8QCwxPsoG32/5jXVX2Opa3+qYKN0Zt5oLqzL7smbr4LLCWbdVUIIsRi4CPjHPIc9CGwAjgPrgduAKPCVHOe8AbgBzEVk586dEzjjycfv948559Hh1ayofyy5HR58cFzvc03F45TIaHKd7uovxXHoEO3t7UWfq5B5zzTyzbk11kc4nApTHWg7ys6+nXQZwxwPdOIQOpqIomOw2XmC3U/+iN7QeQW9rsvlIhQyz13q6iVxryOERne/h73Hss9prDnPZGbrvAtlJq47WtRPYzilExl6ei8H/nQPssSTcWwhfx+fz0dnp3lj82h0LeeW7sXhiPsZTj3H3ru+xaAvd0vA8kcepSqWktXQysPs8y9AOiW7du0q4p0VPuepRAtm+bzv/TPSbTVM8s27ud/BorRztD/zZ/qeWEpZ2r7jQ328MI73XV5entT+hBDl7m4zl1JKQuEwJ7uCnMhx3un8rEcHygmFKi373E6DQ3sf4XCeqPlM+35MNDPC4BNC7MQ04rLxiJTy/LTttwIPSymP5jqflDJdd2S3EOLzwMfIYfBJKW8GbgZYvXq13LFjR+GTnwHs3LmTsebcerQC0Z9KlK72dbBk41aEo7juDLEjn2BkQCRzjYOxBbz0pS81W64VSSHznmnkm3P7SC+3P5ryiAiPix0X7OBXh3fiOuIGIwwyxuaSHqq9gurGINRlP5edbdu2cfCgmZBdVxlIft5Op5Oy+u3Ub819ntn4OcPsnXehzNR1p+3H9xI5fCK5fVZJDSU7zso4rpC/j9Pp5M47zR7eAdy0uzexUk+JA2/Vn4QdH8w5fuD+PzAghFnYjsTvcxNzVdCyZMm4vhsz8TvVdvNdRFpPJbe3VzTiPcfqac0774N98Nc7kptLK6OUVVThT+ttvnL7GZSP430vWLCAn/70p8ntalcAgcDlcuN0Oli++UKWr81+3un8rD21AZ48YtUh3LDczcUX55fBmonfj4lkRoR0pZQ7pJQix+N82+FvBQov8Yq/BFC8RTKHWNi8kd7htDwyaTDUfX9xJ5FRjHCrZZezZMW4jL25iL3bRn/YjyENHuuK5+UIM8xwni/uDQ0+WfC5y8vLaWlpAbBIsqiCDcVEM5F6fMuWWcWFd/atwhLEPf4X6M8t8Bw9aP52EhW6HaXmGjaX0kjsenxFy7PYK3X7DxDrHrDs0uusOcSFsmLFimRYF6BcM9NUdD1uOswwSZYE2XL45nvBBswQg69QhBDnAU3kr85FCPFSIURD/P9rgE8B40xamxs4HA4Gw9aFZbjr3uJOEjmJNFLhlZGgl8pqJcmSwKO7KHWkFseoEePFgRMc93eZO4QLHcn20njngNALYIxmOVN2EtW61gpdDZyLcw1RKIrGa9fje2L8enwNDQ14vd7k9pHRakLltu4yu3+YfXBokEibVa/viNfMGZtLBp9djy9YbF/dyhUWeReGW4l191oOGU/RBpg3lOvXp+ZXrvlTBRswY3P4Gmsc2P0Q871gA2aZwYdZrHG7lHI4facQYnFcay9x5bsUeF4IMQL8Cbgd+PLUTnXmoZVY88W00BPFnSByDMNIdaFWLdUysRdu3HXi8bQtjfWlAcr1RG5NDILPFHzuDRs2IISgMu7hE0IghAYO5eFTTBzus9Zn6sPZdN0KRdM0li5NryIVHPFdaj3owK8hmKWPbOtfifanJEcMBKdKa4G5UbCRwHOmtXAj9PwBZDiS4+gsOL3gS7vxlpJYR4flkPEUbSRI3GgKJGWaHz1RsAEzrq1aAqdDsLgh5eXTNVg1j3voJphVBp+U8t1Syrdk2d8a19prjW//Pyllg5SyVEq5TEr5aSllEb+guUnlwist26WOI8hYEUKfkaPEYkqDLx92g+/vXVYds3OrbQtvEWHdsrIyrrjisqSHz+12m9dlFdJVTCB6uQ/XWmsoNvjkC+M+nz2s+1R/I5QuSO2IBmHvLzLGGQfuITYSN/gkRHAwUmpetOfSuqMvrMfRWJvclqFw8X2M0zpuSAOMvgHraxSpw5fOypUr2bhxI6ViFIcwcCXa2bkrwNZOcibxhisr8LjMfPPrLy2jwle48PRcZVYZfIrTY2HzVvpHKpPbghhDXX8r/AQ2SRbl4cukxpbHF0sTjBXAOfVbrAOKMPgAdrxkDRXlJfh8PlwuJ2iVoBfeMkmhKATvBMqz2A2+I8dOYKz/B+tBL/wY0qpxiYWJvmCVWR0pdSM1DafTSWVl5bjnM9MQQuDeZvPyFRvWTZNmMYIaMpKq0NXKStE84+85LITgjW98I+9/+6vwlZXhSLZUm5nevQRnrPHwg39t5Mc3LeD6S9QaCcrgm1c4HA4GQ9aFZaiIPL5o8DDp0ocDI1XU1MystjrTTbU798KytnIxVRU2GZbgU5YuAmMSPY6mCTQtHlRR3j3FJOCxVYkGTqOvrj2PLxgM0ll9GThS+xjthCOpSlPaHyXaHTdapBnO7Ss1vUm1tbVo2ty6dNnDusFiBZjTPHwxvw5pqTd6TeXpTC1JpT5irXz0zfz8bY9Lw1cyt74rp4P6JOYZouQc63aw8Dy+aOCgZVs6lqQaaCuAzJBuOuc2rAPnCtDSpHCMIQjvL/wFItYqaWXwKSYD99a1CGcqByraeopoe9e4zpWZxweHT/bA6tdZD3zu+ykh5mP3Eh0wX18iiaHj95kFUXMxqpDRceOZfchYLMfRWUjz8MVGdDBSbezGW7CRgb/Nuj1DK3QVuVEG3zyjcsFLLdtlzoPIWCDH0WnIGCJ6wrLLVbIqx8Hzl5p8Bl/9WrPvpMemaVZMWDdy3LrtUBW6iolHK/Hg3mT9fQdPw8uXEdY9cgQ2vtNaXdqzG049bhp9x+4l0p+S0YhKneEyMyw5Fw0+57JFaFWp6IAxEiC8/1jhJ0iTZon5dZBpBt9p5O9ZyDD4ZnZIV5GJMvjmGQuaz2RoNLWwCKIMdT8w9sBoO9JI5YWMhrxU1Srvkp1cId2VFU3UeuKePbvBFyjG4Dtm3Xa2FD5WoSgCe5u1wATm8R09ehSjvAUWX2Y98PmbTcNvpCPp4TOzjVMevrlUsJFACJHRZq0oPT53ebIQJjYaj7rE1+vxavBl4Ld1U1IevlmHMvjmGQ6Hg4GwVQdrsOOesQdmFGyUz8k77dOlxpPd4DuvPm0x956Oh88e0lUePsXk4DnbJsD8+G7yty/PTbY8vo6ODth0g/XA4/eaRh8kDb6o1JEI/L656+GDbHp8RebxNZk9CmL+uMEXixt8pyHJYkGFdGc9yuCbj3iseXwEH89+XDqRozYNPiXJko1yZwlals4j59anGdnuLUCa6nu0FaKdY5/cCEDkiHWfyuFTTBLuTasRnpR2Way7j+jRtjwjcpMtj+/IkSOw8DyoSbsZkhIO3o40IDqYMPjMy5Tf50YIQW1tLXMRe8eN4FN7ijOwF10IkJKySRp8lRMxPRXSnQMog28eUtl4lWW7zLnfEq7NRix4GMNILT5KkiU7Dk2n0qZNtbSskcaStLCK5gG3rWH8WF6+aA+0XQ/GQPqrgWNBrhEKxWkhnA48NrmQiQzrHjlyxMzhs3v5ML1U0jBvnKI4CLscRFwOampq5myhmGvVEjRfSXLbGBgmcuREnhE2Fl0ApHn4jAhIOTEh3WgIAmldT4QGJQ2nf17FlKIMvnlIY/PZjARLk9u6iDDY9WDeMWG/tZI0aCzE5VLK5dmwF25YvHsJ7GHdfHl84cNw8hUQsnXl8J4HIrNnpEIxUXgmsM1a1jw+w4AV10KJNVqQKNgwhAOJmNMFGwmEruPeusayL1RMWLekHmrWpjx8AEZ4Yjx8I6dsr9UAuupNO9tQBt88xOF00h8qLo8vFjps2dbdyyd8XnOFTTWpC5tLc3BB48bMgwqt1A08ASevNsO+6bjWQsN/n+ZMFYr8eLbb8vie2I00itCNTCNnHp/ugvVvtxybyN8zMP8dKTUNvrmeRpKRx1esHt+iHVaDLxaaGA/f8Enrtsrfm5Uog2++4jnbuh34e+5jZQzdsIYWPPYG6Iokr1ryEq5adCYbq5fykY3XsaAky4JrN/hCL5g5eukM/xHaXmsL4wLeC6Hp9+BQIRXF5OJauxStLBUNMAb9xcmFpJEzjw9g3VtNwy9OqmDD/He4bO5q8KWTkce364Wi8viMmnMwwqnLuiCMVl6aZ0SBjNgrdFX+3mxEGXzzlPIGa1/dMueLSCNHu+FoB1KmcvwCYTdVNS2TOLvZjc/p5T1rX8EXzngb52QL5wI46mySKlEIxkO2UkL/d6HzPYAtt7LsdbDw56Dn1vtTKCYKoet4ztpg2TeRbdYOH45HDrw1sPL65P7ooAOEg2jc1pnrFboJ3OtXINxphTJdfUTbChe8jjlXQlo/DN0bQgwfzz2gUOwFG2Uzv8uGIhNl8M1TGpvPJxBOhVccWojB7kezHxw5ihFLl2SpnPML75SQLawrY9BzE/R+IfP46o9B/X+CULkziqnDrsc3kQbfsWPHUnJPW94LDtOTF+l3gtObfC6RwzdXK3QTCKcD9+bVln3F9NWN9Y+CllofdF8MThSgszoWw0qSZS6gDL55isPppD9oTRAeOHV31mON8BGbBl/FnM+lmRIyBJgfglPvgMGf2A50QP03oPrD1s4ECsUUkKHHt2svMhLNcXR+suXxnToVLwioXA4v+19Y/Tqi4QUYmid5nN/noby8HI/HYz/lnMOTRZ6lUGI9/aC7k9t6aQxOToDBp0K6cwJl8M1jpNuaxydHH8t6XHBon2XbH6rD5/NlPVZRBBkG36Mwep91n1YGC38J5a+dunkpFGk4lzdbKj1lIEjohYO5B+Qhbx4fwMJziZ3xBYyQg1j8JtPQBAGvc95EFdw2KZxiCjdi3QOWXEi9NAbtj0IsR7pOoSjR5TmBMvjmMeUNV1i3nXuRRmbD7vDoAcu2oavuDhOCayVo2TtzAKAvMIszSs6fsikpFHaEEJnVuhOtx5dGtLUDICn07ve5QYj5Y/BtXo1wpCpto62n0Ab8BY2NdfeB5jB18oiHdMPD0P3s+CckpTL45gjK4JvHNDRfRCiScv879SCD3Vm6boSPWjadJSszj1EUj9AyvXwJXOug+S5wq2poxfSTocf3+MTp8Vny+IDoybjBF88bThRszJc0Es3rxrV+hWWf62BhAsyxnv74SUwvn14av4E/mV9nNS/hIYiMprYdHnBXjv98imlDGXzzGIfTRX9wlWVff7stj08aOLDe3XkrrFV7itMgm8FXsgMW/R4cjVM9G4UiK3YPX+jZFxGh8YUJ8+bxAdETCQ9fwuCbH5Is6dg7nLgPnsxxpJVYz4D5H91m8J1O4caQrcrX16RyiWcpM8bgE0J8QAixSwgREkL8NMvzlwohXhRCjAoh/iaEyNlEVAhRLYT4nRBiRAhxXAjxxkmd/CzGsOXxGaO2St1YJ0KGkpvBiIvqGmsOjuI0KLseRJpOVvkbYcEtoKkcScXMwbmoAUdTyuCSkSjOI2P31Y0N+Rn637vo++oPCb1wCBg7jy9iM/jmQ5cNO3Y9PlfBBl/cwxcv3EgafF3PQGhofJM5/EfrdnnL+M6jmHZmjMEHtANfBH5sf0IIUQvcDnwKqAZ2AbflOde3MQXMGoA3Ad8VQqzPc/y8paz+cuu2Y49FSV+GjyRzaQD6hyupb1CCvxOGcyE03Q5V/wQL/hfqvq5kVxQzErs8i/vF3PpukRMd9H75B5y89J30feUHDP3iTk696eP47zJDi/ny+KInOjAMg4TcsN/nwev1Ulo6AQLCswTPtrUWL5qzrZvY4PCY45IGn9BAOMwcPjDlntpzyG7lIxqCF2+17lv2iuLPo5gRzBiDT0p5u5Ty90BvlqdfDeyRUv5GShkEPgtsFkKssR8ohCgFrgM+JaX0SykfBv4IvGXSJj+LaWi+hHA0VdXlcY4w0L0ruR0cfpF0offBQBUVFRVTOcW5j2cj1HwcSi9WoRLFjCXD4NtnbfcnpST47It0/fNXaXv5+xj+5V3IQDB1QCxGzyf+i+Hf/SVvHl/0ZKclp8/vc1NfX4+YR78NrawU1+oWy77Q0/uyHxxHxmLE+tK8eLor5eGD8cmzHL0Lgv2pbXcFrHhl8edRzAhmjME3BuuB5xIbUsoR4HB8v51VQExKmV5a+lyOY+c9DqeHgaA1Qbi//U/J/48OWiUBIrIJTZstXxuFQjFR2DtuOI93YAyPIKNRRu59hI43fZyON3+C0b/8HXL125WS3k99i5L7n8qaxyfDEaIdPRkG33wp2EjH3ld38Me/I9qZzR9iEusdtHzuWlUFIq2t7rjy+PbcYt1e/bqkOLZi9uGY7gkUiA/otu0bBLL1l/LFnyvkWACEEDcAN4BZCbZz585xT3Q68Pv9pzVnp38ZdaUpcc/h7j+zc+cOABaKXTT4Ui6+Pn/lhH0+pzvv6UDNeeqYrfMulNm47tTVlOE8ZRodUkqe/8DncB04gaPXvuSmiJWXoPkDCCO1jnR+7jusO3MpjzamVALuueceVpVW0RAKEYlEQEpGvE4C0QgDAwMT8vnMpu+UxxWjOmy2VjSkZPjx5xi88p0MvOkKgmdlVu87j3dQF061YozWVBOMGAgZF8nuOcDTf76NkKuwlJySwHE2tz5i2ffM8EqCBX5+s+mzTjAb51wMU2LwCSF2AhflePoRKeVYQmN+wC5YVg5kS2oo5lgApJQ3AzcDrF69Wu7YsWOM6cwsdu7cyenMuf3IEGLgzuR2Q8UxNm2/EKFpdD89gEjrzdjYfA5nXTD+10rndOc9Hag5Tx2zdd6FMhvXnd4rDjB8qxkBCIfDVD4VD6S4XBnHulYtofxt11L6sgsIPPgU3f/v65YOHZt2HSW0qpYXNiwEIXA4HJyxcDFdLhfRaBSEYKTci9vt5vzzz2f16tUZr1Ess+k7ZWw/h7a7HifW1Uc4HMblckFU0njLvZR2jVB907vRK1J+jNEHd9GV9ncoX7kcz5KgJXfv3EURWLejsAk89C/Wv2vT+Zxz5ZsKnv9s+qwTzMY5F8OUxOaklDuklCLHoxBV2T1AUggqnqe3PL7fzgHAIYRIF4vbnONYBVDffDnRWMr2L3ENM9DzHEiJW5yyHOurUpIsCsV8xZ7Hlw3vBdto+OHnWfB/38D3yosRTgcll55N/Tc/iXCnDAiHw8HG3W1sfu4kSMmxY8eSFbqxdNFl5o8GXzpaiYcF//s1PGdmrrkjdz9M+7X/ROCRZ5L7kpIscfTaSlh0oXVgoXl8YT8c+K1137q3FjZWMWOZMclYQgiHEMID6IAuhPAIIRJWyO+ADUKI6+LHfBp4Xkr5ov088fy+24HPCyFKhRAvAV4J/Hxq3snsw+H0MhBcbtnX1/YniHUhSCVdhyNOqmuV6LJCMV/xbN8AWXJ4hcuJ77rLWfiH/6Hhu5/Ge86mjCIL7/nbqP/2TQivmQOmaRpCCNbtPcW2p1sJBgL07z2ElDJZKOb3uXE4HFRWVk72W5uROBbU0fDjzzN4/Q6E0xqQi3X30fnuz9H7pZsxAiFi3f3WsXXVsMgWWGt7GLJ0U8rg0O8gMpLaLqmHlivH+zYUM4QZY/ABNwEB4BPAm+P/vwlAStmNWXn7JaAfOBt4fWKgEOKTQoh0xeD3AV6gC7gVeK+UUnn48hBzWQWAY/6HCY3sR6aV6PaPVFA7D++0FQqFiV7uo+z6lJSTXl1B5ftez6L7fkDt596Pa3n+toveczbRcPNn0ErNgg2HblYVrN7fyVlPHmN4/xFLwcZwmYe6urp5XSgmNI2RK7az4Nf/kVG5CzB86584df2HCT5h7X6i1VZC7QZrV4zQIHSP0RZPysxijTVvBF3JRc12ZkzRhpTys5hyK7me/wuQIcMSf+7Ltu0+4NqJm93cx1d3OQz8IrWtv8Bw327SM3NGI43oup45WKFQzBuqb3o33ou389yzz3L2u96M5nGPPSgNz9a1NPzw83S++3Po4TCRqJnXt+JQN7qjn5gjdVkaKXXTpG4yAXCtXMKCX/07A9++lcEf/85SkRs53k7keLvleEddFWi6GdZNF08++QA0bM39Ql1PQ2+aOoPQYN2bJ+ptKKaR+XvbpLBQ33wlhkx9HXyeAUZ77rUcE9Oap3paCoVihiE0jZILziC0cXnRxl4C98aVNP7kCzhqKi37Y9EoRiwVchwu88yrDhtjIZwOqv75LTTe8iUczflbL+q1VeZ/MvL4xuiru+dn1u0ll4FvYZEzVcxElMGnAEB3ljIQtIqhlmsPW7Y1tzXPT6FQKMaLa/VSmn7+VUIlKaNRglmhC0ScOmGXrgy+LHi2rmXhb/8L3/WX5zwmp8HXucssyshGsB8O/8G6TxVrzBmUwadIEnVa8/g0YW2O7inPGlFXKBSKceFesZhj772a0ZJU8ogRzxv2+9wghDL4cqCVeqn97Pup/9a/mhW5aQiHjl5fbW6ULYKKtJt5Iwrtj2U/6f7bIJbS8qN8MTTvmNB5K6YPZfApkpTWXpr3+fLqzXmfVygUimJpOnMz912+NinBkmCwwosQgtra2mma2eygZMdZLLz9vym57JzkPt91l6P5SlIHNduqdbPJs0gjM5y79i1mDp9iTjBjijYU009988sY7tfQRGZbpEjUQU298vApFIqJZenSpYyWuvnLZWvZsfMAlQOjRJw6+1c3UFNTowrFCkCvrqD+G58gfOAYMhjGtdEmn7XoInjhJ6ntbHl8bY/A0LHUtuY0W6kp5gzK4FMk0Z1lDIVaqPQcyXhuOFhDjUf1UFQoFBNLQ0MDJSUljAL3XLWeqv4RRkrdhDxO1qoK3aJwrWrJ/sTCc0HoIOMFMQOHwN9uLcawS7EsezmUKO/qXEL5ahUWoo4zsu4PSVWlpVAoJh5N01i6dCkAUhP01fgIeUzNN5W/N0G4yqDBtrane/lGOuCYVZWB9W+b/HkpphRl8CkslNRkz+OT+pIpnolCoZgvLFu2LOt+ZfBNIPnarO37Zcr7B1C9Ghq3T828FFOGMvgUFuqaX4ZEZOx3lKyahtkoFIr5QMLDZ2c+9tCdNDIKNx4yCzWMKOz7hfW5dW8FkXkdUMxulMGnsKC7qhgOZQosl1Ssm4bZKBSK+UAij8+OMvgmkLrN4CpPbQf7oGcPHP+LGdJN4PDCyuumfn6KSUcZfIoMIo4zM/ZV1G6Z+okoFIp5QXoeX4Ly8nI8qlBs4tAc0HS+dd/JBzKLNVa+GtzlKOYeyuBTZFBSfYllO2Y4KSlrmZ7JKBSKeYE9j0959yYBex7f/tsyNflUZ405izL4FBnUNl+NQUoENSDXIjSlhaVQKCaPjRs3Wjx627Ztm8bZzFHseXwDh63b9VuhbuPUzUcxpSgdPkUGuqsavfE/kN1fwBAV1K785nRPSaFQzHHKysp4xzvewbPPPktTUxNbtmyZ7inNPcqXmI+h49mfV969OY0y+BRZKVv4NliodJgUCsXU0dzcTHNzZtGYYgJZdCHs/Xnmflc5LL9m6uejmDJUSFehUCgUivnCoouy71/9OnB6p3YuiilFGXwKhUKhUMwXms4HkeXSv16Fc+c6yuBTKBQKhWK+4C43izPSaXoJVC6fnvkopowZY/AJIT4ghNglhAgJIX5qe+4cIcR9Qog+IUS3EOI3QogFec61UwgRFEL444/9k/4GFAqFQqGYDSx7hXV74zunZx6KKWXGGHxAO/BF4MdZnqsCbgZagCXAMPCTMc73ASmlL/5YPZETVSgUCoVi1rLhHWZFbtUq2P4v0HLldM9IMQXMmCpdKeXtAEKIM4FFtufuTt8WQnwLsKlFKhQKhUKhGBPdCRd+dbpnoZhiZpKHrxguBPaMccxXhBA9QohHhBA7Jn9KCoVCoVAoFDMTIaWc7jlYEEJ8EVgkpXx7juc3ATuBV0opH8pxzNnAXiAMvB74FrBFSnk4x/E3ADcA1NXVnfHrX//6NN/F1OL3+/H5fNM9jaKZjfNWc546ZuO8L7744qeklJnNqLOg1p2pZzbOGWbnvNWcp46C1x0p5aQ/MA00mePxsO3YLwI/zXGeFUAb8JYiX/8e4IOFHLtq1So52/jb3/423VMYF7Nx3mrOU8dsnDewS45jjVTrztQwG+cs5eyct5rz1FHoujMlOXxSyh2new4hxBLgL8AXpJRZZMLzTwEQpzsHhUKhUCgUitnIjMnhE0I4hBAeQAd0IYRHCOGIP9cE3A98W0r5vTHOUymEuDIxXgjxJsycv3sn+z0oFAqFQqFQzERmjMEH3AQEgE8Ab47//6b4c+8ElgGfSdPW8ycGCiE+KYRIVPI6McPC3UAP8EHgWiml0uJTKBQKhUIxL5lJsiyfBT6b47nPAZ/LM/bLaf/vBs6a4OkpFAqFQqFQzFpmXJXudCOEGAZmmzewFtObOduYjfNWc546ZuO8V0spy4odpNadKWM2zhlm57zVnKeOgtadGePhm0HslwXKKswUhBC7ZtucYXbOW8156piN8xZC7BrnULXuTAGzcc4wO+et5jx1FLruzKQcPoVCoVAoFArFJKAMPoVCoVAoFIo5jjL4Mrl5uicwDmbjnGF2zlvNeeqYjfMe75zn03udTmbjnGF2zlvNeeooaN6qaEOhUCgUCoVijqM8fAqFQqFQKBRzHGXwKRQKhUKhUMxxlMEXRwjxCyHEKSHEkBDigBDindM9p0IRQqwUQgSFEL+Y7rkUghBiZ3y+ia4ps0J/TAjxeiHEPiHEiBDisBDigumeUy7SO9LEHzEhxDene16FIIRoEUL8SQjRL4ToEEJ8K9FmcaYihFgrhLhfCDEohDgkhHhVgePUujMFzNY1B9S6M1XMh3VHGXwpvgK0SCnLgWuALwohzpjmORXKt4Enp3sSRfIBKaUv/lg93ZMZCyHE5cDXgH8AyjD7Mx+Z1knlIe2z9QENmK0KfzPN0yqU7wBdwAJgC3AR8L7pnFA+4heFPwB3AtXADcAvhBCrChiu1p2pY1atOaDWnSlmzq87yuCLI6XcI6UMJTbjj+XTOKWCEEK8HhgA/jrNU5nrfA74vJTy71JKQ0rZJqVsm+5JFcj1mAvZQ9M9kQJZCvxaShmUUnYA9wDrp3lO+VgDLAT+S0oZk1LeDzwCvGWsgWrdUYyBWnemjjm/7iiDLw0hxHeEEKPAi8Ap4E/TPKW8CCHKgc8DH53uuYyDrwgheoQQjwghdkz3ZPIhhNCBM4G6uNv8ZNzd753uuRXI24CfydlTkv/fwOuFECVCiCbgpZiL70xF5Ni3oaDBat2ZKmbNmgNq3ZkG5vy6owy+NKSU78N0m18A3A6E8o+Ydr4A/EhKeWK6J1IkHweWAU2Y+kF3CCFmslejAXBi3rFegOnu3wrcNI1zKgghxGLM0MQt0z2XIngA8856CDgJ7AJ+P50TGoMXMT0ZHxNCOIUQV2B+5iWFDFbrzpQw29YcUOvOVDPn1x1l8NmIu0YfBhYB753u+eRCCLEFuAz4r2meStFIKR+XUg5LKUNSylsw3dAvm+555SEQ//ebUspTUsoe4D+Z2XNO8FbgYSnl0emeSCEIITTgXkzDpxSzmXkVZh7TjERKGQGuBV4OdGB6vn6NedEo9Bxq3ZlEZuGaA2rdmTLmy7ozoytQphkHMzuXZgfQArQKIQB8gC6EWCel3DaN8xoPkuzu6RmBlLJfCHESc56zjbcCX53uSRRBNdAMfCue2xYSQvwE+CJw47TOLA9Syucx764BEEI8yvi8G2rdmRpm9JoDat2ZYubFuqM8fIAQoj5e+u4TQuhCiCuBNwD3T/fc8nAz5oVhS/zxPeAu4Mrpm9LYCCEqhRBXCiE8QgiHEOJNmJVn90733MbgJ8AH49+VKuCfMaujZixCiPMwQ1izpUqOuBfjKPDe+PejEjMX6LlpndgYCCE2xb/TJUKI/4dZ6ffTMcaodWcKmMVrDqh1Z0qYL+uOMvhMJGYY5STQD/w78M9Syj9M66zyIKUclVJ2JB6AHwhKKbune25j4MS8a+oGeoAPAtdKKWe6LtYXMCUoDgD7gGeAL03rjMbmbcDtUsrh6Z5IkbwauArzO3IIiAIfntYZjc1bMAsuuoBLgcvTqm9zodadqWG2rjmg1p2pZM6vO6qXrkKhUCgUCsUcR3n4FAqFQqFQKOY4yuBTKBQKhUKhmOMog0+hUCgUCoVijqMMPoVCoVAoFIo5jjL4FAqFQqFQKOY4yuBTKBQKhUKhmOMog0+hUCgUCoVijqMMPsW8RwhxTAgREEIMCyEGhBCPCiHeE++vqFAoFBOOWncUU436YikUJldLKcuAJZg9ID8O/Gh6p6RQKOY4at1RTBnK4FMo0pBSDkop/wi8DnibEGKDEOLlQohnhBBDQogTQojPJo4XQtwlhPhg+jmEEM8LIa6d2pkrFIrZilp3FFOBMvgUiixIKZ/A7HF6ATACvBWoBF6O2WD72vihtwBvTowTQmzGbBz+pymcrkKhmAOodUcxmSiDT6HITTtQLaXcKaXcLaU0pJTPA7cCF8WP+QOwUgixMr79FuA2KWV4GuarUChmP2rdUUwKyuBTKHLTBPQJIc4WQvxNCNEthBgE3gPUAkgpQ8CvgTfHk63fAPx82masUChmO2rdUUwKyuBTKLIghDgLc+F9GPgl8EegWUpZAXwPEGmH3wK8CbgUGJVSPjbF01UoFHMAte4oJhNl8CkUaQghyoUQrwB+BfxCSrkbKAP6pJRBIcR24I3pY+ILrQH8B+ouW6FQFIladxRTgZBSTvccFIppRQhxDGgAopgL6F7gF8D3pJQxIcT1mItqNfAAcAyolFKmJ03fBHwBWC6lPDKlb0ChUMw61LqjmGqUwadQTABCiLcCN0gpz5/uuSgUivmBWncUxaBCugrFaSKEKAHeB9w83XNRKBTzA7XuKIpFGXwKxWkghLgS6AY6MZOsFQqFYlJR645iPKiQrkKhUCgUCsUcR3n4FAqFQqFQKOY4yuBTKBQKhUKhmOMog0+hUCgUCoVijqMMPoVCoVAoFIo5jjL4FAqFQqFQKOY4yuBTKBQKhUKhmOP8fwP9nF3nI1jhAAAAAElFTkSuQmCC\n", + "text/plain": [ + "<Figure size 720x288 with 2 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Separating the two equations #\n", + "\n", + "# Eq.1 ------\n", + "col = sns.color_palette()\n", + "col_pte = ['#436bad', 'orange','crimson', 'gray']\n", + "col_pte2 = [col[0], 'gray', col[4], 'gold', col[2], col[3]]\n", + "colors={1:'dimgray',2:'gold',3:'mediumseagreen',4:'darkorange',5:'crimson',6:'royalblue'}\n", + "\n", + "term = 'ITT'\n", + "res = '80km'\n", + "fig, ax = plt.subplots(1, 2, figsize=(10,4), sharex=True, sharey=True)\n", + "for i in range(1,4): # loop over simulations\n", + " ax[0].plot(dur[exp80[i]], itt[exp80[i]], color=colors[i],\n", + " linewidth=4, label=expname[i], alpha=0.9)\n", + "\n", + "#plt.legend(ncols=3, loc='upper center')\n", + "for i in [1,4,5,6]: # loop over simulations\n", + " ax[1].plot(dur[exp80[i]], itt[exp80[i]], color=colors[i],\n", + " linewidth=4, label=expname[i], alpha=0.9) \n", + "#plt.legend(ncols=3, loc='upper center')\n", + "#ax = df_track[['dfi', 'ep','itt', 'eq1res']].plot(kind='bar', stacked=True, title='', color=col_pte, figsize=(6, 3))\n", + "#df_track.plot(x ='Unnamed: 0', y='dp', kind = 'line', ax=ax, color='k', linewidth='3')\n", + "\n", + "ax[0].set_xlabel('Day', fontsize=12)\n", + "ax[0].set_ylabel('hPa/'+str(dt)+'hr', fontsize=12)\n", + "ax[0].set_xlim((3, 9))\n", + "ax[1].set_xlabel('Day', fontsize=12)\n", + "#ax[1].set_ylabel('hPa/'+str(dt)+'hr', fontsize=12)\n", + "ax[1].set_xlim((3, 9))\n", + "\n", + "#ax.set_xticks(np.arange(9, 32, 2))\n", + "#ax.set_xticklabels(dur[exp80[i]].to_numpy())\n", + "#print(dur[exp80[i]])\n", + "#ax.set_xlim(np.min(df_track['Unnamed: 0'])-0.5, np.max(df_track['Unnamed: 0']+0.5))\n", + " #ax.set_xticklabels(df_track['time'])\n", + "ax[0].yaxis.grid()\n", + "ax[1].yaxis.grid()\n", + "ax[0].xaxis.grid()\n", + "ax[1].xaxis.grid()\n", + "ax[0].axhline(y=0,linestyle=':', color='k')\n", + "ax[1].axhline(y=0,linestyle=':', color='k')\n", + "ax[0].legend(ncol=2, loc='upper left')\n", + "ax[1].legend(ncol=2, loc='upper left')\n", + "#plt.legend(bbox_to_anchor=(1.0, 1), loc='upper center')\n", + "\n", + "#plt.savefig('TimeseriesPTE_'+exp+'_'+str(dt)+'hrly_Eq1_upper'+str(int(p2level))+'hPa_box'+str(int(boxsize))+'_CyCen.png',\n", + "# bbox_inches='tight',dpi=200)\n", + "ax[0].tick_params(axis='both', which='major', labelsize=12)\n", + "ax[1].tick_params(axis='both', which='major', labelsize=12)\n", + "plt.subplots_adjust(wspace = 0.05)\n", + "fig.suptitle('Eq1: '+term+' Term ('+res+')',fontsize=14, weight='bold')\n", + "plt.savefig('CyclonePTEtimeseries_Allsim'+res+'_'+term+'.png',\n", + " bbox_inches='tight',dpi=100)\n", + "plt.show()\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 213, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnUAAAEpCAYAAAD1U9RFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAADEw0lEQVR4nOydd3gU1RbAf3c3vZJOCb2EThAQBEFAESsCgqII2LvYn115+uwVexcVREBFUBClN6V3CJ0AgZDey9b7/pgl2cluesf7+779krlz587Znd07Z849RUgpUSgUCoVCoVA0bgz1LYBCoVAoFAqFovoopU6hUCgUCoXiHEApdQqFQqFQKBTnAEqpUygUCoVCoTgHUEqdQqFQKBQKxTmAUuoUCoVCoVAozgGUUqdQKBQNGCGErxAiQQhhE0J0qqVzxAshpBBiRi2Nv94x/lW1Mb5CodBQSp1CcY4ihFjluJG6e91chfHeF0JsE0JYzo5TC2LXGkKIm8v4PGQDfk8PAC2A36SUB882CiEuFkIsFUIkCSFMQohEIcR8IUQf54OFEH2EEEuEENlCiHyHgjWijt/Dm46/rwkhRB2fW6H41+BR3wIoFIpaxwxsL9GWUoVxJgM2x7HNqiuUO4QQXlJKc22MjSb3Rqft/o6/qcCR6g5eG7ILIYzA/Y7N753aOwOLAS8gA9gLdANGA8OFEFFSykIhRE9gDeCH9j6zgYHAH0KIK6SUf9WkvGWwyCFnN+ASYGkdnVeh+FehLHUKxblPopRyQInXorM7hRBjhBAHhRCFQog1QogrSrHo9ZRShgE/lHYiIUSbiloDnfq9KYSYIYTIAuY49gUKId4RQhwTQpgdVqhPhRBNnI7v5LBMnbVUnRZCLBNCjHR3PinlIufPwGmXrl0IcakQYoXDslUghNgohLi6lPf4HyHEr0KIfOANIcRQp323CiFWOo3RRQgxQgixRwiRI4RYLIRoWtZnBAwFWgJW4A+n9gFoCh3AlVLK84Bpju1AIMTx///QFLp4oB3QBk2xNQJvlXZSIUQHx+cpHdZAXyHENKf3dqkQIs5h+ZvruF4PO45JEUJ8IIQoMhpIKS3An47NSeW8Z4VCUUWUUqdQ/IsRQvQA5gEd0Sx6kcBcd32llCdqSYypwHjgBGASQngBq4CHgeZAHJqichewXAjh6ThuNpplyhPYA9iBi4F+VRVECDEOWAIMA7KABOB8YIFjX0lecvQ9gqZ4OfOxQ36DY4zfgV/RFCp/4HLg7XJEGur4u09Kme/UvgGwOP5fJITYhqbU5QD/kVImOpSqSxx9/pJS5kgprcBCR1sPIYSLxVUI0QpYjmaN/RO4WkpZUKLbT4AAfNGu3QbgZaAACEezLt5S4phNjr/DynnPCoWiiiilTqE492ntxnesiWPfY2hKRi7QVUrZGXivGueyAAccr6wKHpMNxEgpewATgQnAeWhK0nlSyl5oy3Y2R/t1juPOBg1cI6XsI6WMRrNqzauG/G+gKSs/AK2klB2BLx1tr7rpfxRo7ZD9iRL7vpdSxlDsT9YOeEVK2QWY5Wi7uBx5Ojv+xjs3Sin3AyPQlpRDgN5olrtTaAouaMqVr+P/ZKfDk5z+b1XifE3RFLpWaMu710gpC93IdY/ju7Lesd3VIU9H4LijreR7O9seLYTwczOmQqGoJkqpUyjOfcxoS27Or7NWpR6Ov39LKRMc/8+p6omklKeklJ0dr/kVPOzns+eWUtoo9nXzAPY4ghfi0ZRP0JYeAX5z/F0uhDgghPgVGIem2FQaIUQE0NaxeSNgd5z7dkdbByFEWInDvpVSZjrJ7sxZ+eLdtB11/I0sR6wmjr85JWRtAXwFRKAtZwYAr6MpgQuFEG3RFFF3lBWoMBLoAGwFxkgpTaX0K/neMqSU66WUdoqVt6gSx2Q7/d+kDBkUCkUVUYESCsW5T2IJH7LyqOvoxDOlnN8CbHPT/6ylaTLaUuJQNEveSOAatOW9a6ogh/P7PobeunUWzxLbJWV35qwSY3XTdjbKtrzP+qy1M7BE+71AeyBfSjkTQAjxLZq10BO4CJiJthzqi155dP7/ZIlxc9EUxFjgauBnd0JJKUu+N2eFrbT3FuT0f6a7cRUKRfVQljqF4t/NbsffgUKI5o7/3fmOVQghRAshxH7Ha0wVhznre+UBPOQU2HAh8F80ZQVgMDBfSnm3lHIw8IqjfXhVTiqlTKbY8rQHGOx07uuAV6WUZSlxtcHZFCZtSrQHO/76CSG6Of7v67Q/z+E/t9yxfakjmMEDGOVo2y2lPF1i3J+B79Csoj8IIS6t7htworXj76kS/oEKhaKGUEqdQnHu00wIsaHE6+yS4ltovmoBwH4hRBzwiLtBhJb37jBwm1PbYcfr7JKpJxDjeAW7GaYizAZ2oFl6/hZC7HXIlYXm59XG0e97IMOx9LodeM7RvquK5wV40vH3aiBRCLFdCHEaTdl7uBrjVpXVjr9dS/ihzafYIrZJCLEL+MaxfYbiSNNn0ax1bdCWfOPRlrftwH9KOedtaMEiXsAvQogLqv0uNM53/F1ZQ+MpFIoSKKVOoTj38UK7kTu/ogGklLvRohcPOfqlA9eXMk4btCW/Jk5t7R0vXzf9q4TDj2so8A6aEtIRzXdsL1qKjrOBAF+jWRrD0JZfU9ACECZU49xz0KJSV6B9Hl2AQrTgi1JTgNQiy4HTaFbLK842SimXO7aXofnbdUKL1P0WGHR2eVRKuRNtKXYp4IP2Wf0DXCGlXOLuhA4L3zhgC1qU7iJHlHSVcUQsn001831ZfRUKRdURUjbEBOoKhaK+EEK0QfMpA7hFSjmj/qRRCCGeRIu8XSilrIqvYL3jWIr/BdgHdJfqxqNQ1ArKUqdQKBQNm+loEb1XCSFi6luYKvKY4++TSqFTKGoPFf2qUCgUDRhH4t/o+pajOkgpB9W3DArFvwG1/KpQKBQKhUJxDqCWXxUKhUKhUCjOAZRSp1AoFAqFQnEOoJQ6hUKhUCgUinMApdQpFAqFQqFQnAMopU6hUCgUCoXiHEApdQqFQqFQKBTnAEqpUygUCoVCoTgHUEqdQqFQKBQKxTmAUuoUCoVCoVAozgGUUqdQKBQKhUJxDtDglDohxP1CiC1CCJMQYkYZ/aYIIbYKIbKFEAlCiDeEEKqWrUKhUCgUin8lDU6pA04D/wO+LqefH/AQEA70By4GHqtVyRQKhUKhUCgaKA3OsiWl/AVACNEXiC6j3ydOm6eEELOAYbUsnkKhUCgUCkWDpMEpddVgCLDX3Q4hxJ3AnQA+Pj59WrVqVZdy1Qh2ux2DoSEaVktHyVx3NEa5G6PMBw8eTJVSRlSkb2Ofdxrj9YHGKbeSue5ojHJXZt5BStkgX2hLsDMq2PcWIAEIL69vp06dZGNk5cqV9S1CpVEy1x2NUe7GKDOwRVZhPmuM805jvD5SNk65lcx1R2OUuzLzTqO31AkhRgOvAZdIKVPrWRyFQqFQKBSKeqFRK3VCiMuAL4ArpZS761sehUKhUCgUivqiwSl1jrQkHoARMAohfACrlNJaot9wYBYwRkq5qe4lVSgUCoVCoWg4NDilDngWeMFp+ybgv0KIr4F9QFcp5QngOSAYWCyEONt3rZTy8sqe0GKxkJCQQGFhYfUkr0WCg4OJi4urbzEqhZK58vj4+BAdHY2np2e9yaCoGxr6vFPfv4Wq0hjlVjLXHv+2ObXBKXVSymnAtFJ2Bzj1q7H0JQkJCQQGBtKmTRucFMQGRU5ODoGBgfUtRqVQMlcOKSVpaWkkJCTQtm3bepFBUXc09HmnMf5+oXHKrWSuHf6Nc2rjiuutJQoLCwkLC2uQE6vi34MQgrCwsAZruVHULGreUShql3/jnKqUOgdqYlU0BNT38N+Fut4KRe3yb/uNKaVOoVAoFAqF4hxAKXUKhUKhUCgU5wBKqWtAnDlzhgkTJtC+fXu6du3KsGHD8PPzIzY2llatWtG2bVtiY2O55JJLiI+Pp3v37hUa9+abby46tlevXixfvrxo39ChQ9myZUvRdslxX331VTp06EBMTAx//vlnzb3ZBoLNZqN3795cddVVANx999389NNPAKSnp9O7d2+++eYbt8fGx8fj6+tLbGwsXbt2ZfLkyVgsFgBWrVpVNOZZbr755qKxFYqGQmnzzqBBgwgNDVXzTj2TlpZGbGwssbGxNG3alBYtWhRtm83mepHp5ZdfZtCgQcTGxmI0Govkef/995k2bVqRjF27dmX27NlljqW+JzVLg4t+rU+eeuqpWh3/1VdfLXWflJIxY8YwZcoUfvzxRwB27NhBTk4OgwcPZuLEiYwZM4Zx48YB2pe7Mrz55puMGzeOlStXcuedd3Lo0KFyj9m3bx8//vgje/fu5fTp01xyySUcPHgQo9FYqXOXxuil02pknNL4dUT540+fPp0uXbqQnZ2ta8/KymLkyJHceeed3HLLLaUe3759e3bs2IHNZmPEiBHMnTuXiRMnVld0xb+IhjrvxMbG8sADD3DVVVedU/NOVYnvPrrWxpZSErh3gdt9YWFh7NixA4Bp06YREBDAY489VmuyVIRnnnmGqVOnEhgYSEBAQJF8oMn48MMP89hjj3Ho0CH69OnDuHHjykwpci59T+obZalrIKxcuRJPT0/uvvvuorbY2FgGDx5co+e54IILOHXqVIX6LliwgAkTJuDt7U3btm3p0KEDmzadO3meExISWLRoEbfffruuPTc3l8svv5wbb7yRe+65p0JjGY1Gzj///Ap/tgpFQ0DNO42TL774gn79+tGrVy+uvfZa8vPzAc3qNXXqVAYOHEi7du2KVgaklDz++ON0796dHj16MGfOHEBbUbjooou47rrr6NSpE08++SSzZs3i/PPPp0ePHhw5cqRacnbs2BE/Pz8yMjIq1F99T6qPstQ1EPbs2UOfPn1q/TxLlixh9OjRuraJEyfi6+sLgNlsxmDQdP1Tp04xYMCAon7R0dHnlNLy0EMP8cYbb5CTk6Nrf+SRR7j99tt5+OGHKzxWYWEhGzduZPr06UVta9euJTY2tmj7xIkTLkuyCkV9ouadxsnYsWO54447AHj22Wf56quveOCBBwBITExk3bp17N+/n1GjRjFu3Dh++eUXduzYwc6dO0lNTaVfv34MGTIEgJ07dxIXF0doaCjt2rXj9ttvZ9OmTUyfPp0PPviA9957r8pybtu2jY4dOxIZGVmh/up7Un2Upe5fwuOPP067du246aabePrpp3X7Zs2axY4dO9ixYweLFy8uapdSuoxzroSH//7770RGRrq9oQ0fPpwFCxaQnJxc7jhHjhwhNjaWsLAwWrVqRc+ePYv2DR48uOhz3bFjB6NGjarR96BQNHTUvFM77Nmzh8GDB9OjRw9mzZrF3r17i/aNHj0ag8FA165dSUpKAmDdunXccMMNGI1GoqKiuOiii9i8eTMA/fr1o1mzZnh7e9O+fXsuvfRSAHr06FHp5fazvPvuu8TExNC/f3+mTZtWbn/1Pak5lKXOibJ8T2qbbt261aoT/ZtvvsnYsWN5//33mTJlClu3bi33mOjoaE6ePFm0nZCQQPPmzWtMpor4vNUW69evZ+HChSxevJjCwkKys7O56aabAJgwYQIXXnghV1xxBStXriwza/pZn7rExESGDh3KwoULy1XeNm7cyF133QXAiy++qJS9fzlq3tFT2/NOVWmz59daG7vkakF53Hzzzfz666/06tWLGTNmsGrVqqJ93t7eRf+fVXzcKUDu+hsMhqJtg8GA1Wot7bAyOetT98svvzB58mSOHDmCj49Pqf3Ppe9JfaMsdQ2E4cOHYzKZ+OKLL4raNm/ezOrVq2vsHAaDgQcffBC73V6hSKFRo0bx448/YjKZOHbsGIcOHeL888+vMXnqk1dffZWEhATi4+P58ccfGT58ODNnziza/9BDD3HxxRczZsyYCkWYNWvWjNdee61CN+j+/fsr652iQaDmncZJTk4OzZo1w2KxMGvWrHL7DxkyhDlz5mCz2UhJSWHNmjV18pmOHTuWvn378u2335bbV31Pagal1DUQhBDMnz+fpUuX0r59e7p168a0adPKfPI4cOAA0dHRRa958+ZV6DzPPvssb7zxRrl9u3XrxnXXXUfXrl257LLL+Oijj/5VkUWvv/46LVu2ZNKkSdjt9nL7jx49mvz8fNauXVsH0ikU1UfNO42Tl156if79+zNixAg6d+5cbv8xY8bQs2dPevXqxfDhw3njjTdo2rRpHUgKzz//PO+8806F5lD1Pak+oiyz7LlITEyMPHDggK4tLi6OLl261JNEFaMxFE8uiZK5alTl+7hq1SqGDh1aOwLVEo1RZiHEVill38oe1xjnnYbwW6gKjVFuJXPt4vxbO9fnHWWpUygUCoVCoTgHUIES5xD33Xcf69ev17U9+OCDZSbPVZTP7t27mTRpkq7N29ubjRs31pNECkXDQc075zYvv/yyyxL7+PHjmTp1aqXGUd+TukEpdecQH330UX2LcE7So0cPXcZ0hUJRjJp3zm2eeeYZnnnmGZf2ykbsqu9J3aCWXxUKhUKhUCjOAZRSp1AoFAqFQnEOoJQ6hUKhUCgUinOABqfUCSHuF0JsEUKYhBAzyun7sBDijBAiSwjxtRDCu6z+CoVCoVAoFOcqDU6pA04D/wO+LquTEGIk8CRwMdAGaAf8t7aFq21sNhu9e/cuKvx+8803F5XxSU9Pp3fv3nzzzTduj42Pj8fX15fY2Fi6du3K5MmTsVgsgJabp2Qxeeexjx07Rv/+/enYsSPXX399haooKBSKxktaWhqxsbHExsbStGlTWrRoUbRdn7//adOmFcnStWtXZs+eXbTPec46S0BAQNH/3377LbGxsXTs2LFCVQwaAw31Or3yyitFsnTv3p2FCxcW7fv888/p3LkznTt35vzzz2fdunVljjV06FBiYmLo1asX/fr10wWmtWnThtTU1KJt53uZlJKpU6fSoUMHevbsybZt22r2TTZCGlz0q5TyFwAhRF8guoyuU4CvpJR7Hf1fAmahKXpV43At143rcLrcLtOnT6dLly5kZ2fr2rOyshgzZgx33nlnmSHgZ2uR2mw2RowYwdy5c5k4cWK5533iiSd4+OGHmTBhAnfffTdfffUV99xzT/nvSaFQVI9Pa3neudv9vBMWFlZ085w2bRoBAQE89thjRftNJlPtylUGZ2uHHjp0iD59+jBu3Dg8PT3LPCY9PZ3//ve/rFy5kqCgIPr06cOoUaMICQmpEZnGP3WqRsZxh91u5+fX3SfyLe861Sdnr1NcXByDBw8mOTmZxYsX89lnn7Fu3TrCw8PZtm0bo0ePZtOmTWVWsZg1axZ9+/blm2++4fHHH2fp0qXlnv+PP/7g0KFDHDp0iI0bN3LPPff861NNNTilrhJ0AxY4be8EooQQYVLKNOeOQog7gTsBIiIidMWPAYKDg8nJycHfXrvVNfLKCQE/deoUCxcu5LHHHuPDDz8kJycHi8VCamoqY8eOZezYsdx0002lhpLn5uZit9uL9sfGxnL06FFycnLIz8/HarXqjrVYLBQUFJCdnc3y5cv57LPPyMnJYdy4cbz66qtFBe6ris1mq3TYe33TEGQuLCx0+Y6WR25ubqWPqW8ao8yVocLzTi1X9Slv3gFNgfP09OSDDz7gm2++wWKx0LZtW7744gv8/Py4++67CQwMZPv27SQnJ/Piiy8yevRopJQ899xzLF26FCEEjz/+ONdeey1r167llVdeITIykl27djFq1Ci6du3KJ598QmFhIT/88APt2rUrU5acnByaNm2Kr68vJ0+eJCIiomjOKvkbzcnJ4ddff2Xo0KEEBwdjNBoZOnQo8+fPZ/z48TXyOVakzFV1qMi84+46tWvXjs8//7zOr5OUEpPJRE5ODtHR0RiNRuLj43nllVf473//i7e3Nzk5OXTs2JEJEybwzjvv8Nxzz7kdy2azkZeXR05ODj179uT1118v+jyklOTm5uLtrXlXOd/LfvrpJ8aPH09ubi7dunUjPT2dQ4cOuSiPznPquT7vNGalLgDIcto++38goFPqpJSfA5+DVq6nZImQuLg4rdxJkqg1YYFyS6o8++yzvP322+Tk5ODh4UFgYCCenp48/fTTTJ48maeeeqrM4wMCAjAYDAQGBlJYWMj27duZPn06gYGB+Pn58c8//zB48OCi/idOnCgqWB8SElL0RBsTE0NSUlK1S8A0pjIyZ2kIMvv4+NC7d+9KHdMYS980RpkrQ4XnHVG/8w5oybS9vb258cYbeeCBBwB4/PHHmTt3Lg888ACenp6kpaXxzz//sH//fkaNGsWkSZP4+eef2bdvH7t37yY1NZV+/foxcuRI/Pz82LNnD3FxcYSGhtKuXTtuv/12tm7dyvTp0/nmm2947733ypQlMDCQbdu20alTpyLFwtPTk+eff563337b5T2mp6fTrl07jEYjgYGBtG3blvT09Br7PRsM2eV3qiJ2u73K1+nZZ5+tl+skhCi6Ths3bsRoNNK2bVv279/P4MGDde9n0KBBfPvtt6W+R6PRiL+/P4GBgaxdu5axY8cW9RVCcPXVVxfVdc3NzaVz584EBgaSnJxMp06divq2atWKrKwsOnbsqBvfeU491+edxqzU5QJBTttn/29cpiEHv//+O5GRkfTp08flKWL48OEsWrSIp59+msjIyDLHOXLkCLGxsRw6dIhx48bRs2fPon2DBw/m999/L9q++eabAe1JqCSilm80CoWi4bFnzx6effZZMjMzycnJ4bLLLivaN3r0aAwGA127diUpKQmAdevWccMNN2A0GomKiuKiiy5i8+bNBAUF0a9fP5o1awZobiGXXnopoCXzXrlyZZlyvPvuu3zxxRccPXqUJUuW6Pa9+eabjBs3rmj7rE/dv2kec75Oubm5jBw5smhfXV+nmTNnEhgYyJw5c0r9vKWU5V6LiRMnkpeXh81mc/GNW7lyJeHh4YCmlL311ltF45bkXL3mFaUxK3V7gV7AXMd2LyCp5NJrpaiAz1ttsX79ehYuXMjixYspLCwkOzubm266CQ8PDyZMmEDfvn254oorWLlyZZlPdGd96hITExk6dCgLFy5k1KhRZZ47PDyczMxMrFYrHh4eJCQk0Lx5Lfv5KBQKjVJ83uqDm2++mV9//ZVevXrx6aefsmHDhqJ9Z5e/oPhm6u6m6q6/wWAo2jYYDFit1jLlOOur9csvvzB58mSOHDmCj49PmcdER0frHogTEhJq1CIz79UWNTZWSSrr8uF8nWbMmKF73/VxnZzp2rUrW7duZfjw4UVt27Zto2vXrmWONWvWLHr16sWTTz7Jfffdxy+//FJmf9Cu+cmTJ4u21b2rAUa/CiE8hBA+gBEwCiF8hBDulM/vgNuEEF2FECHAs8CMOhS1Rnn11VdJSEggPj6eH3/8keHDhzNz5syi/ffddx8XX3xx0XJpeTRr1ozXXnuNV199tdy+QgiGDRtWFFX27bffcs0111T9zSgUikZJTk4OzZo1w2KxMHfu3HL7DxkyhDlz5mCz2UhJSWHNmjWcf/75NSbP2LFj6du3b4UiWUeOHMlff/1FRkYGGRkZ/PXXXzoL1rmE83WaNWtWuf1r+zo585///IcnnniCtDTNvrJjxw5mzJjBvffeW+6xnp6e/O9//2PDhg3ExcWV23/UqFF89913SCnZsGEDwcHBRVbHfysNTqlDU84K0KJYb3L8/6wQopUQIlcI0QpASrkEeANYCRx3vF6oH5Hrhtdff52WLVsyadKkCjntjh49mvz8fNauXVuhsd955x06dOhAWloat912W02IrFAoGhEvvfQS/fv3Z8SIES5+Se4YM2YMPXv2pFevXgwfPpw33nijzAjHqvD888/zzjvvlDvnhYaG8txzzzF06FD69evH888/T2hoaI3K0lBwvk6dO3cut39dXKezjBo1iltvvZWBAwfSuXNn7rjjDmbOnFlhZcvX15dHH320aIm1LK644gratWtHhw4duOOOO/j444+rK36jR5Rllj0XiYmJkQcOHNC1xcXF0aVLl3qSqGI0BAf+yqJkrhpV+T42RuffxiizEGKrlLJvZY9rjPNOQ/gtVIXGKLeSuXZx/q2d6/NOQ7TUKRQKhUKhUCgqSWMOlPjXsnv3biZNmqRr8/b2/tcnXVQoFI2Hl19+mXnz5unaxo8fzzPPPFNPEincUdp1mjp1aqXHGjNmDMeOHdO1vf766+es72N9oJQ6BxUJuW4o9OjRQ1dGRXHu8G9zh/i305jmnZrmmWeeUQpcI6C061SVJO3z58+vCZEqxb9tTlXLr2iJCdPS0v51F1/RsJBSkpaWVm7qBsW5gZp3FIra5d84pypLHVqum4SEBFJSUupblFIpLCxsdF9MJXPl8fHxITq6rJLHinOFhj7v1Pdvoao0RrmVzLXHv21OVUodWm6ctm3b1rcYZbJq1apKl46qb5TMCkXpNPR5p7H+Fhqj3EpmRU2hll8VCoVCoVAozgGUUqdQKBQKhUJxDqCUOoVCoVAoFIpzAKXUKRQKhUKhUJwDKKVOoVAoFAqF4hxAKXUKhUKhUCgU5wBKqVMoFAqFQqE4B1BKnUKhUCgUCsU5gFLqFAqFQqFQKM4BlFKnUCgUCoVCcQ6glDqFQqFQKBSKcwCl1CkUCoVCoVCcAyilTqFQKBQKheIcoMEpdUKIUCHEfCFEnhDiuBDixlL6CSHE/4QQp4QQWUKIVUKIbnUtr0KhUCgUCkVDoMEpdcBHgBmIAiYCn5SirI0HbgUGA6HAP8D3dSWkQqFQKBQKRUOiQSl1Qgh/4FrgOSllrpRyHbAQmOSme1tgnZTyqJTSBswEutadtAqFQqFQKBQNByGlrG8ZihBC9Ab+llL6OrU9Blwkpby6RN/WwHxgAnAMeBnoJKUc7WbcO4E7ASIiIvrMnTu31t5DbZGbm0tAQEB9i1EplMx1R2OUuzHKPGzYsK1Syr4V6dvY553GeH2gccqtZK47GqPclZl3kFI2mBfaUuqZEm13AKvc9PUCpgMSsKIpdm3LO0enTp1kY2TlypX1LUKlUTLXHY1R7sYoM7BFVmFua4zzTmO8PlI2TrmVzHVHY5S7MvNOg1p+BXKBoBJtQUCOm74vAP2AloAP8F9ghRDCr1YlVCgUCoVCoWiANDSl7iDgIYTo6NTWC9jrpm8vYI6UMkFKaZVSzgBCUH51CoVCoVAo/oU0KKVOSpkH/AK8KITwF0IMAq7BfVTrZmC8ECJKCGEQQkwCPIHDdSexQqFQKBT/MmwWfEynQdrrWxJFCRqUUufgXsAXSAZmA/dIKfcKIVoJIXKFEK0c/V4HdgI7gEzgYeBaKWVmnUusUCgUCsW/gbwkmHMRvQ9MhXmXgCW/viVSOOFR3wKUREqZDox2034CCHDaLgTuc7wUCoVCoVDUNhtfgex47f/0/bB/NvS4rV5FUhTTEC11CoVCoVAoGhrZx+HQL/q2pC31I4vCLUqpUygUCoVCUT7bPwRp07el7KofWRRuUUqdQqFQKBSKssk5BQfcJNDOOgam7LqXR+EWpdQpFAqFQqEom50fg93ifl/q7rqVRVEqSqlTKBQKhUJROnlJEDer9P1qCbbBoJQ6hUKhUCgaAfbcfEx7DiMt1ro98c5PwGYufX+qUuoaCkqpUygUCoWigWM5fppTV99P4oTHOH3NA9iy3FXPrAXyU2Hfd/q2jmP128pS12BQSp1CoVAoFA0YKSVp//0EW0o6AJYTiWTPWFA3J9/9OVgLi7f9omDQS4AoblPBEg0GpdQpFAqFQtGAyV/6N4Wb9MEIOfP+xF5oqpHxzUdOcPr6x0i4/G7ylqwr3lGYCXu+0XeOvRd8QijwbqFvT91TI7IoqodS6hQKhUKhaKDYC0xkvDnDtT0zh/w/1rkeUEmk3U7Ko29h3nsY68kzpD71HtbTydrO3V+CJa+4s284dLkJgFzfdvqBUnZWWxZF9VFKnUKhUCgUDZTsb+ZjTUxxv2/W70gpqzV+wcrNWA6fKNqWFitZX/6sLafu/lLfudfd4OkLQJ5fe/0+FSzRIFBKnUKhUCgUDRDr6WSyvvql1P3m/ccwbdtX5fGllGR9+ZNLe+785VhXfwxmJz857ybQdXJxHxdLnVLqGgJKqVMoFAqFogGS/tYMpKk4lYgxLBjfC3rp+mTPWlTl8Qs37ca0+5BLu7RYXJW9nneCV0DRZp5PGxBOKkRDD5aw5MGR3wjMi4NqWjcbMkqpUygaM7YsyJ6Lv8ex+pZEoVDUIAUbdpH/19+6tiYPTSL4jnG6tvzlG0tdni2P7NKsgJYCcrd5YM02attegdD9Vl0Xu9EXmnTQH9dQgyUS1sGPg2HpXXQ/8pxr8Mc5hFLqFIrGiikOTlwIyQ/RI+QJyFta3xIpFIoaQFqtpL+m92fz6taBgGuG492vO16dWhfvsNnI+fGPSp/DtPcwBX/v0LUZggIACdY8pF2QtTFY29H9NvAOch0koqd+u6H51VkLYf0L8Pt1kHemuH3LW2CtmcjhhoZS6hSKxojlOJy+AWxpAAjskPI0yDKyvisUikZBzpw/dcELAGFP34EwGBBCEDjxKn3/n/6qdHqT7K/n67Z9+nQl5NEpYC0AaQcgd2cA1oJA6HmH+0HCSyh1DcmvLnUP/HwZ7P7CdZ8pE45VXhFuDCilTqFobFiT4NT1YEsu0X4Ksr6vH5kUCkWNYEvPIvPDH3RtAdcMx7tXTNG2/xVDMAQX+7fZs3LJW7y2wuewxJ8mr8TSbtBtYwm4chAe/rlFbdIuyDo0AHxC3A9U0lLXENKa2G2w/UP45UrIOFh6v/0/lL6vEaOUOoWiMWHL1Cx01hPu92e8B/Y89/sUCkWDJ/PDH7DnFP+GDX6+NHnwJl0fg683gddeqmvLmflbhdObZH0zXxcs4NWpNb6D+yCO/ETw+alOPQW5f+dgTUpzP1B4NxANqLJE9glYOBY2vgJ2i36fX5R++9Q6yIqvM9HqCqXUKRSNBXsenL4JzPtL72NLg0w3yw0KhaLBY4o7Ss68v3RtwXdfh0dkqEvfwBsuB0PxLdx88DimLXvLPYc1KY28hSv157j9WoTdCjs+JKB7Lh5BVm2Hhy/Sai89rYqnf8MIlpAS9s+BeRfDmc2u+2OugwlrIKqPvn3/7LqRrw5pcEqdECJUCDFfCJEnhDguhLixjL7thBC/CyFyhBCpQog36lJWhaLOkGZIvBVM2/TtfpdCk/v0bZmfgC2j7mRTKBTVRkpJ+itf6Cxonq2bEzTparf9PZpF4Hdxf11b9qzfyz1P9vcLkRZr8Tgtm+J36UA49DPkJCCMEDwgyyGAPwC5P/2FNTnd/YAR+hQrdR4sUZAGf90Oqx7WV78Abdn40i9g2HtaBG8XvcWTA3PAbuVcosEpdcBHgBmIAiYCnwghupXsJITwApYCK4CmQDQwsw7lVCjqBmmFM/dCQQmfGd+B0PQzCHkAq/QvbrfnQMZHdSujQqGoFnmL12LaHqdrC3nyNoSnR6nHBJUImMhfsam4xJcbbFk55Mz5U9cWfPNoLd3ctveL2gJ65OIR2aQoD500W8j+uhRrXX0FS0gJ8X/BvOHugx5aDYfxK6DdlcVt7a/CZvAt3s5PhhMral/WOqRBKXVCCH/gWuA5KWWulHIdsBCY5Kb7zcBpKeU7Uso8KWWhlLIBhd4oFDWAlJD8OOQt1rd794Sm34DBG4xBnMobo9+f9RVYz6BQKBo+otBMxlszdG2+F/XDb3Af9wc48O7TFa+YNsUNdjs5s0uP6syZvRhZUFi0bQxvQsDo4XBoPmTHF8vj6UHQ3XqrVs68Uqx1LsESdXAbPrMFFl4LS26G/BI5+jx8YPCrcPn34F/Cj87Tn9Qmg/RtcbNqVdS6pvRHgPqhE2CTUjqHrOwELnLTdwAQL4T4A+gH7AEekFLuLtlRCHEncCdAREQEq1atqmm5a53c3NxGJ7eSubpIWvt/R3O/33StBbYW7Dl1D9YjW4va8vMG08xvEV6Gs8uuZpJ2PMzR3LvqUN7K0bA+65qnsc87DeH6eCSm4RmfiKlza+whgRU6piHIXVm8f11NwanihzBpNHBySFfiKvA+fM9rR8ju4ltm0ve/sqt7c6S3p66fMJmJ+mwOBnNx2qPsAV1I/esTOse/jsEpHVJyyIUcaRpFlJ83xswcrdFsZtcL75J9/cVA8edssBXQ32wBHMvGKfvZtHwxNqNfJT+F8vEriKfVmdmE5Gx1uz/XtwOHWk6lMKU5rF7tto/BZyBR6cuKGw4tZqvHL5g9Xf0WGyMNTakLALJKtGUB7n7N0cAwYBSwHHgQWCCE6CylPlmXlPJz4HOAmJgYOXTo0BoWu/ZZtWoVjU1uJXM1SX8f0v8EvIrbPFrg3WIBF3o213VdtWoVga2eg5Qni9paea+nVc9XwatN3chbSRrUZ10LNPZ5p76vj2nnARKnvg92O8bwEJrNeg2PFlHlHlffclcWy4lEjq5+Cy+v4t958K1jibl+TBlHFWMfcAEJf2zGflb5skrOy5EEjhyq65c983fSLXZwnMcQ6E+HSV0xrL8fPKFonhFGWo56g5bBbchONZP+8udFY4RtOkDPFx/BIyJE/zmndoWM4nJjg7uEQPMLKvMxlE1WPGx+A04s0FYvnD6rszLT5yG8e08lzOjpdoizrFop8ZaxkFZcM3dg2Ek4b2zNyVuPVGr5VQhR28u1uUDJtNVBQI6bvgXAOinlHw4l7i0gDOhSuyIqFHVA1reQ/pq+zRgOzedACYWuiKAbwLONU4MV0lXskKJxkvn5T2DXkuDaUjNIe+XLco5onGS88TXCZi/aNkaEEnznuDKO0GPw8SZwnD69SfasRbr0JtJiJXvGr7o+gZe0xrDuXtfUHwOeheA2Wp9rR2B0iryVJrPLOIAbv7oayleXlwRrnoA5Q+Dwr+5rtrYcCtf+AX0fhXIUOkBLwdJlor5t/+yihMsNCku+lp6lElRYSRNCGIE8IYR3ZeWqBAcBDyFER6e2XoC7OO1dFNl7FYpziJz5WnUIZwyB0Hw2eLUr/TjhCaGP69tyfwXTPrfdFYqGij0nj8K/t+vaClZvJn/lpnqSqHYoWLeN/FX6FBwhj0zGEFC5pcvACZeD0Vi0bTl0nMJNxZ5IeYvWYD1TnH9OGMwEhXwP0qYfaOCL0KvYZUN4eRJ8+7W6Ljlz/sCWWiK6vqb96gozYMP/4IcBsO979xGqUX1g1M9w5Q8Q3r1y43ccC0YnVSb7BJxaXz2ZaxqbBZZM0RIpV4IKK3VSShua0hVWSdEqjJQyD/gFeFEI4S+EGARcA7hLkz8TGCCEuMShcD4EpAJxbvoqFI2D/HWQ9CC65xXhA82+B2+XIHBXAq4BrxLG6rTX3PctC2mGzG8g6RHI/7v8/gpFDZK/arMu7cZZ0l/9Ent+oZsjGicZ7+ud9L17xeB/lTsX8rLxaBqO/yUDdG05sxYBIO12spwjV635BHQ8gdHPSaETAi56G3re7jJ24LUjMEY4WesKzWR9u0DfqaaUOptFi8L9YQDs+BhsbkqfhXWBy76F0QurvsTrHQzt9JHDDS5g4p9pVVI0K7ucOgv4XQgxRQhxsRBi+NlXpc9cOvcCvkAyMBu4R0q5VwjRSgiRK4RoBSClPADcBHwKZKApf6NK+tMpFI0GWzokPQA438w8oOkX4Ht+xcYQBgh7Ut+WvwwK3CTkLA3LKUgYA6nPQM6PkHgTmI9U/HiFoprkny1hZbdoS1COJULr6WSyPp9Xj5LVHOZDxzHvc/pdCUHo03cgnCs0VILAiVfqtvNXbcaSkETBys1YjiZojZY8sOQQfL6T67owwvCPoMsNbscV3l4E36b3N8uZvRhDtlNOuPDuJSpLHAWzO6+pcvjnv7DpNffHBrWBiz+CcUuhzQj9+apClxIpcI/9AQWl5OKra/bNhD3fVOnQyip19wAhwDTgS+Arx6vGnB2klOlSytFSSn8pZSsp5Q+O9hNSygAp5Qmnvr9IKTtIKYOklEOllOWn01YoGiJnU5fYkpwaBUS9D/4XV24sv0vAp6++Le0V9/4oJclfDScvBZPT0pcs1Hz8FIo6wJ6bT8H67Vph+cJ0sORofwszwGYm+9sFmI+crG8xq03ewlW6bd8BPfHu1sF95wrg3bsLXl2c3DPsdnJ+XEzWlz9p25ZcsOTi3yUPj2CHlc7gCSO/hI6jyxw7YNwIjOHF9V9loZmApU4PijVRWaIw0721zC8KBr8G16+GjmOKcudVm2YDNEXxLHYLHPqpZsauDqc3wLqny+9XCpX6dKSUbUt5leHoo1AoyiXnR8grkV8q5AEIHF35sYSAsBKTQuFGyF/pvj9oTsJpb8PpG8HuphpFzi8gLa7tCkUNk796C7IwH8xaDVGPICvGABvYzWDKQOYkk/7sK0h7A3RsryDSZiN3kT7lhv/VQ6s1phCCoBv11rqcWYsw7T6kWb4c1RaC+zusdB4+cMX30GZkuWMbfLxdrHX+K7dhS3ey+FU3CfHBefrlVq9ALWjjhr+h2+SKBUFUBncBE3E/VOzht7bISdCqYzj7EHr4lt7fDVVWeYUQBudXVcdRKP71mI9BynP6Nu9eEPpo1cf0HQB+Jbwi0l51H+FlS9eWWDPeptTYI3s65C2tujwKRQXJ/2MFmDKLtv075xF6sdOymN1C4cYd5E27HE6uqt+bcBUp3LwXm1MiX+nlgd/FA8o4omL4XzEYQ0hxAglpsWrKsTUfAN/2BXhFWMArAK6cDdFDKjx2wPhLddY6YbaSPcPJt646fnVSagERzsTeB7H3gmfllJpKETMeDE6Z3TIOQpL7HHi1jiVfS6ZcWGIJePj7bruXRmVTmpwnhPhHCJEHWBwvq+OvQqGoLNICSfeDzC9uE74Q9ZEWzVodSvrWmfdCbonakIXb4eRIyF9V4mADeMXom7LnVE8ehaIc7Dm5FCxfpXv48IvJx69TPr5tCnR9M+ZnYP95Ivx6tVbqqREpd3m/rdJtF/TuhMG/+sqL8PYicLyT5c2UpS1jOwgekAXeTeCqudCsv+sAZWDw8Sb4Vn3uvOzZizEfjNc2XJS6SqQ1SdwImYedTuYBnSdUSr4q4RcJrUfo2+ojYEJKWPmQLnceoKVpaXel20NKo7IWtm+BlUBfoJ3j1dbxV9HYkBYwx4P5qOYIbz4E5oNg2g+mOC0VhmkPFO6Gwp3ay5rcqCbPBk/6e3r/NYDw/5aduqSieHeHgFElzve6dt2lhMwZkDAarKf0fYxh0PxHiHxX356/Qrv+dcz21MPMPbqaE7l1f25F3VLw9XNIU/ESnEeQFa+RtyDG/kbolBiEoXjuseUZyVzXBJK2weKbYP5VcHx5g5+f7AUm8pf+o2sruKCSKTnKIPD6y7T0JqYssBVHCvtEF+LTMUhLAxIZW6WxA8aPxBjepGhbFhSSeMN/yJm7BBnWrerBEiWtdG0u0xSuuqBziYCJIwurFuRRHba9B0dLPHC3vQL6PFzpoSpbUaI18IyUDfxXoyif/DVakXh7FaJ9DEHg2RG8nF6eHcCzpRZJpagYBZshY7q+zX8kBE10378qhD4BuYsAh2O05RhkzdAU9Fw3Bbp9+kLTz8GjqSNzewyYDzh22iDnZwi5p+bkK4f1SXt5c5cW7bjg+D+8N+BuInyb1Nn5FXVI/FLy/lgBFOdo8+sbiuj/NBg98Zwyh+DEt8j86vci36vs7UH498jDO8oMydvhj0l092gL/efXnVJQSfJXbMSeX2w9M0aEYoppVWPje0SF4T+oA3lL1ujag4Z6wKg50KTqD4wGX823Lv31r4vapMlM2oufUrhxN2Hd22EwOUX0pu4pP+1IQbqrQtPVXbn3WqLlUPBvBnmJ2ra1AA4vgK43lXlYjXHsD9j8pr4trAsMn16loJDKHjEfuLTcXoqGTc5vcHpS1RQ6AHs2mLZqzv1pL0HiZDgxEI52gBMXw5m7Ie1tAj3216zc5xK2HG3ZFScfN2MkRL5V/VB9Z7zaQlCJZYzUF9wrdMF3QIufNYUONDkCr9f3yZ5TZ5YQu7Qz+0hxcEeetZA/ErbUybkVdUz2cexLHqDgqNMSpDDgf8c0nYN80EMP4NGhM/iEasljJaT/FYq0Q7I5kl9Tr2VfciS2P+4Eu831PA2AvIX6gCX/q4aAsWbd0gP75eu2vZoZ8H3052opdEVjT7yKgLGXuLTn/bme05/5YTrtVMKrIn51B+boq1oEtYEWg6otZ4UxGKFziXQudbUEmxYHKx7Qt/mEwsgZWkRxFSjXUieE+J5i72lvYL4QYh1wxrmflHJylSRQ1C1ZMyHlCWqlGIc0gTlOewHdQ8yQdNChqKhYGh2pz4K1RFqGyHe1pc+aJvQRyJ4HlJLCUfhD5DsQeLXrvsCxkPYyxZa+g2DaCT6xNS9nCXakHSEhL1XXtipxJxM7DMeovk/nDtZC+PN2CuKsSGvxA41Hy1Z4na8PHjD4eBP69B0k3/OS5htmt2JKzmXp7li+9b4ds90bCSzMjOeOgB+IGVmHFp8KYE1Op+Afva9ZwNVD4XR8zZ3EZsFHrCC4vyR7cxAGXzvh/7sfEVwz1kBhMBD+4v0c8YWmv6xDFhQv8VozJWd+aEqTwZkE9ctGlKfUSTvEzdS3db2p7u8XMdfDtneLH1hTdkLqXgivQML3qlKQrgVGWJwUcIMHXPoFBLWs8rAVWX49XGJb1RxqjEgJmR9p+cpK4tkGMAICMDgsRWd/VAatXRg0XyxLPMgC1zFKI+dHMPhB+Es1a4FqzOQshJwSCVSDbwX/YbVzPo9m0ORWyPzUdZ9XDDT9Erzau4ppKSDDBM19h+NR4BT5mj2nTpS6305scGlLN+WwK+0ovcOrns9L0cBY9zSk7SX/YHhxm1cgflde6jYRr9/gPvhdMoD8ZRuwGr1Y0G4i6y0DMHhJhCNm73hhG55dJBiafIibxrQjOKBhuIXk/bG2qJ4tgFen1nh1alOzSt3JVVCYQchFEHxBFsI/GDHkupob30HBBd1pfsNYUh57E/P+Y1qjwRNpF2SsDqHwuA/hN+6izE/+1N+Qdax42+CpKVh1TVBLaDEEEpzSzOz/AS58uXbOZ7PA0jshp8SD/aD/Vb1KhoNylTop5X+rdQZF/SMlpP0PMj8pscMIke9B0LXujiplLDtYT2tBFZZDYD7sCLA4VPpybtbXYGgCYY9V8Q2cQ1hOQ8p/9G1eMRD2bO2eN+R+zUorc4vbAsZC5Bua0l2Cw9mneGn7D2SZ8+ge2IWnQ1fiZ3DkTsqdD+HTwFB7ZaBP5CazPc19FYvliTuUUneuEDcb9v+I3SLIP+L4Hhp9wMMP/0sHlnpY6JO3c2bjYb5pNZb4gJYgQVq9EB42p8hZyaqt+Ww+eoYbRwZz8fn+GA31+2BZMuq1urnp3HLo56J/DV4SOl5d8zneHHi2aU6zH94g4+1vyZ71uy49SEG8L6enmwjvvAHfC0tJ1xJXIkCi3RXgW2uVSMumy0S9UnfwZxjwnJbPr6b5+wU4XaL8YrcpWj6+alIhG6cQIkgI4eW0fbEQ4m3Ha2i1pVDUHtIKyY+6KnTCG5p9XTmFDjSLnWe0ZlVqcqemFETPh3Z7oO0eaPErRLwBxij9cRnvQOYX1XorjR5ph+QHNZ/EIjy19CWGWpg4nDGGQtPPtOtijIKI1yHqA7cKncVu5Z3dv5Bl1pKV7skp4KeMXsUd7NmQt6RWxV10cmOp+zYmx5FnOXfqf/5rSdkF654CoOCor7b0KozgHYQxKgyvHh1LPXR/XiDvDnxMU+gc2AstGIwl/JDsVvKys/liQRbPfJzC4ZP1V0XSfOh4sUULwGDA/8rK13ktE1M2xP+pb+tYyTm+kggvT0Kfup3I95/CEBQIolixs+UZSbrzJTLen4W0lqjlm5+iBQk407UevbjajNT82c5izoaji2r+PPtmwt4Z+rbmF8DAF2tk+IouXK8EOgAIIe5Fq8nq6XjNEUK4VgFW1D92E5y5S1sCdcYQCM1ng/8I98dVFWOoVqM0+CZoPhurLDHBpr7w7851lvkpFJQo0Bz2FHh3rZvz+w+DttuhzVYInlTqcvjP8es4nZ/m1CJYmNWJRLPT9cz+0eW4miLHnM/KRL3fkYeheBHHYrexNqmSJYgUDYvCTPjrDrBpSlb+AT9AaH5yCPwvHYgwuN6epJQsWJ3DS1+lkusZgPAo/l6EmjJ4JGEO93ScTbS307KWJR9sJo6csvDUxyl8Pj+D3Py6r0bhUhasfw88IkPdd64qx/7QV2UIbAlN+5bevwbxG96f5r+8h3enIP0Ou4Wsz+dx5pbnsKVlFrcfmKOvnNCkg1a6q74wekJMiWXq/T/U7DkK0jUrnTOBLWHE5zVmTa2oUtdRSnnWl24qcLGUcqqUciowFHiy1CMV9YM9FxInuZaeMoZpEY6+lf/x2CtTlse7M3GZT4MoYQlKfhRya9fK0yAx7YG01/Vtvhdq1s66pgwn5NP5afx8bK1LuxVfZqQ5OQ0XrAFrYm1Ix1+ntmK2FU/24T5BjGmtj4ZbeXpHrZxbUXlsqRlkz1rkEgBQKtKuRfw5/ImKll69g4qW7/ycll7Pzjv5hXbenpXOzCXZ2CUgBIYAbX7pknWIR3d/QtS+rTRJDOXNnm9wU+QMvA0Oi64pu2hZdummfKa+ncSKLXnY7XUTyV0bZcHc4rT0CkDHsXUadODRNJymr1xN8ECn8mE2zc/RtD2OlEfeQNpsZQRI1LPfdcmcdaf/gcyjNTf+oZ90yaDx9IPLZtToknNF89TlCCGipZQJQDBwwGnfESDK/WGKesGWDqdvAtMOfbtHC2g+p9KJbW02Gz/99BM7d+4kPDycnj17EhsbS3h4eJnH5VpjoNk3mixFRUfsmvWw+Szwu7BScjRa7IVw5j50hVcMTSDq/QYVFSyl5LO4RVjcpYIQHmzMa8nO/GP08ksBpBZRGzq1RmWw2m0sOrlJ13Zly/4MjOrKvGPFebcOZCWQkJdCtH9EjZ5fUTlMew+TdMc07Nmar2bok7cTdNNVZR+0bTqcWF60WXDMFyn9NV86wBgZinevGPLz8/nuu+84ceIEwREx7M8cSHahDwYnC57w8mRU8HEu2vg9BkdEv/9vG+GG/3JN/s1cGLyKGUl3sCF7kJZQ1jsYgJx8O5/8nMnyzfncPz6EZuGVTdlaOUqWBRO+3jVSFkxH3hk4XWIloONY931rEREVS8iFmfi0LCT193Bs+cUPaIVb95H99XyCLwuH7BPFBxm9oFPNB3NUmpAO0PR8OOM0B+3/QatBW12kdE2Vct5DWk66GqSid5RvgBlCiLbAu8BHQohoIUQ0MB1YV6NSKaqONRESxrgqdJ4dIHphlSoVbNy4kR07diClJCUlheXLl/P222/z4Ycfsm7dOrKzs0s/2G8wNP0E/VfNAok3Q+G2SsvSKEl7WQsqcSbyzeJ8cA2EtWd2szNd/1Qa7OW05Grw5cuUHlil42k658caz1n3T3Ic6abibO7eRk8uaXEeUb4hdA9po+u74nQlyhApahzT3sMk3f5CkUIHkPH2DMwHjrk/wGqCXV/Clrd0zfknWmvF2x34j9CWXhcvXszx48dJN7dm1ZHzOJ1qJTc3l/z8fCwWM77e8NSUMCY/PQiPwOIVAYPJQtonG5A97ibMM41Ho1/j2VbP09RwVEuf4sTBE2ae/zyF9KzazWlXMkDC7+IBNVIWTMeh+frfY0RPCCndL7HWCO8OQuDbupDmt5zGu0Uezim0Mj+ajWnJl/pj2o8CnyZ1KmapdClhrTswt8jaWC2StkCG033A4OG63FsDVFSpex7YAOxCW2q9DTjueHUBbq1xyRSVx3wMEka5KhDevSD6Vy21RWWHNJtZuXKl232nTp1i0aJFvPrqq3z55Zds3ryZggI36U4CrtBy1Tkj8x3WxAOu/c8lzIcg6xt9W+D1EFC5en61Ta6lgK8O6h2se4a25ZlYp6ScwoeTlkD+zGqjbVvioXBzjcpRMo3JsGa9CHQU9B7ePFa3b1XiTmyy7n2jFE4KXU6erl1arKQ+9R7S5BSQYM6B7R/BD+fD38/rFA+7MZSC43q/Mr+RA0lJSWHr1m0kFPblWMEQ7LLYkma1WsF8mkjT98Rt/Zn9SacJvE+fYLtgzVZyDnYrsoL0CtjOO+3uZULol3ga9ApcZo6dN75Pw2Sune+Su7JgAXWy9Fq7ARKl4hUAwVqKJKOfnYhRKRgCiv3FpMVC6mcHsFucllrrsoJEebS7SveQQUGqVjqsusSV8M9rPaJWqp5USKmTUtqllM8CLYFrgInAtWi+dkOllLXjXKOoONKiVXYoWcfT90JoMU8LYqgCGzZsIDc3t9x+R44c4ZdffuHll1/m+++/Z9euXdhsTpNn0AQIK+Egas+E0xPAcoJzlrQ30FWN8GgFES/VmzilMfPw8qJoV9ACE+7qfCWdgqOdlCkDCG9mp3cmx+aYpKsSMFG4G05dT9cm08C0t6j5QOZJDmYl6Lpe1aq46PgFkV3wcXImPpuzTlG3lKbQncV88DgZH/4A+amw8TWY2Q82vqxFOzojDBQGPYy9oNgKYowIxTu2M8uWLSPF3Ilks2sQUZjnYWL8/sCTLPbs2cPMmTP54NBW0qKCsdpsRTahjOk/YGr+hJb7DPA0WLk25Fvei32Z82L06XiOnLLw8c+Z1EYFTHdlwXwG9KzZk6TF6YvBCwN0uKZmz1EZIorfn0eAjfDbnfxxrQVY0j3IWBmibYfGQFTdBHNUCE8/6DRO37brs+qtSpiy4cgCfVuXGiwH6URFU5rMFELcCBiklGullLOllL9KKdWM2lDIWQCWEnm9/C+HZt+DIaBKQxYWFrJ6td65t3PnzrRrV/oSrs1mY9++fcyePZtly5Zx5IiTTCF3QchDJQ5IglPXgzWpSjI2aAp3Ql6JkPjwZ6t8PWqLA5kn+bNE+a1xbQbTwl/zmbypw8X4Gh0ZjYQvuXYvZqd31rZzfwO7viRRmRTuglPXQsFagj33wOmJYNdueCWtdOeFd9D5zPl6eDMwSp/hfXnijoqfW1FtTPuOaD50JRQ6j5ZOrgTSRvbn31P46iDY/r6WGqIkBk+46C3ytmbpmv0uGUBScjI7d+4myVxc5N7T0xMPo6CVzz+08vkbg9Bb2wrMJhZ3CyPLYsJsMmG325EWKykvz8feQ58fMzLtN/5z3m8uit3fuwr4ZWXNF3J3yU131RCEsYaTIR8qUfYvekj91r6N0Cutfm1SCbjWkW3BESiQsyOQ/CO+0KX0SPx6o8cdeplS92hBE1Xl8K/6pf+A5hBdw+lsHFR0+XURcDmwTwixXgjxjBCid61IpKg8UkLmx/o2/yu0vGTVSBD7999/k59ffMP29vZm/Pjx3HHHHTz55JNcccUVtGjRotTjTSYT33//PZmZmcWNoY9D8C36jtbjcPpGsGVyTpH2qn7buyf4N6xlV6vdxif7f9cVjWvmF8rYNsVBLKHegYxvN0TbEF6AgSVZbYk3BYHMg9wK5nIyH9aus3MCZFsyZM8htTCLf5LjdN2vbuXqSF5yCdYlZ520aJbAwl2VUzYV5WLad8TFhw4g+NaxNJ/7Nh7hAZoCV5AKlnxSfwvCbipxs/b0g153w8RNyLZjKVitX773HzmIZcuWkWltjdmu+XMaDAaCAn157/F2/O8/VzJ8+DBCQkJc5Mv392bDgLZIKYvcQKwnEkmbb0Y202fpN258kQcvyyQ6Uh8g8ePSHDburUTFnHKwpmRQ8PcOXVuNL71Ku6tSV19Lr2cJL2GJTN1F6H9uxSPKF2SxQp62JAJbeA2n1qoJgttA65H6tl2fVX28kgESnW/Qas7WAhVdfp0tpZwENAMeQasB+4UQIkEI8aUQYqwQIrDsURS1Rv5yMO93ajBA+HO6JJCVpaCggLVr9aktBg0ahJ+f5pAcHBzM4MGDuf/++3nkkUe4+OKLCQ11XeI1mUzMmzevOB2KEFrJsIAx+o7mOM1qc64odvnrtbQfzoQ91eCeSBed3Eh8jt5Kenfnq/Ay6r87V7caQDO/ULSScT7YEXyd2l1bkcipQO5BS4JmkXVXdSTzMxaf2Kjzj4v2Dyc21LV0WdcmrYjybVI8rHPOOrtJUxoTRkLCZXC0A8Sfr32vUqZB1g9QsPnc+Y7VIWUpdE1uGYRh/QOEXfC3Ll2DNduD9OWOOcEnBPo+BhO3wAXPg38UBX/vwJ7ntCwZ3oTUyCD27NlLktOyq7e3Nxf19qNjSy+ioqK49NJLefzxx7nnnnu44IIL8PcvDuZJaBnK/vbh2Ox2Ck1avra8xWvJy5+g95OymfBbfz9PTAwiwFf/m/xgbgbHE2vAMR7IL60sWE1yegPkOXlAefhC28tq9hyVxREsUUTWUQyeNiLGSa0apQObyY/U/31XK8ve1abXXfrt40urlt4kZTek7i7eFgJiJpTev5pUKp+C1NgopXxeStkX6AusB24Ajggh7ip7hPIRQoQKIeYLIfKEEMcdy77lHbNCCCGFqIYW05jJKGGlC7gKPFtXa8h169ZRWFhsAfHx8eHCC92nIImIiOCSSy7hscce495776VPnz66/UePHmX9eqdQe2GAqPfA7xL9QKbtcGps41+KldLVSuc7EHyH1I88pZBSkMnsI/ogmCFNe9ArzHV53dPgwc0dL9U2DFrgwq6CCDblNYWCv8FyvPQTWVPg9PVgc+96W2hO4K8EvQJ8dasBbut+GoSBYc1idW1FOeuyv3NN7mxNgPyVkPU5pDwGp66BY13hWC84NR5Sntb8Au2qQkVplKnQ3XwBYv6VEL8E39aFBPXVL7Xm7g0iz3gnTNwMfR/RRTjm/am/Vn6XXMCyFcvJs0WSb9OW/o1GI56eHlx1od5lQQhBq1atGDVqFE899RS33HIL7dtrDwGbejYns4kvZrMZq8OvN+2dn7C0LlGmMGUXTY9/xKMTwzA63QlNZslr36WRlVv9iNjc31bptuskN12by8DT333fusIrAIKd5hEp4fhfeBvW0WRQZnG7hy8FqzeTO/dPlyHqnabnQ0QvfdvuKlRFKpnAOHooBJa+wlVdqpUkS0p5Rkr5jZRyPJoV75fyjqkAHwFmtNx3E4FPhBDdSusshJhIxfPtnXsUboXCEoXPm9xXrSHz8vJYt06fpWbIkCH4+pYdgi+EoGXLlowdO5YOHfS1Of/880+SkpyUNeEJTT8HnxJLbOb9WgSvOb46b6F+yfsLTCXStTRAK92XB5dQ6BSq7+/hwy2dRpba//yIGHqFtkP7uWnO59+kdsdsN2g569xhy9asZ5YSaS4MxVbdVTktyTUX+1YFePoytFnpjuTDmusn2gNZCZzKOQkZH5R6jKtcKZoCmDUDkh/RrHmyZqwz5xJlKnT3jUb8davOZy5kSAaeYRat3JdXEPhGkPbdUayZJt3x0myhYJV+6TWnV3sOHDigC47w9vbmvBgfWkSWnm3faDTSqVMnbrrpJpo0aYLdaGD9oA7YjAYKCwqQUiILTKR8tAfZ8nL9wdum0z1gD7deHaxrTs208dbMdKy2qluQzIdPYI5zsuzURlkwqwmO/q5v61TPS69nKakQ/fMSSDvB/bPwbm7SUno4gljS3/way7FTbgapR4SAniXsVAfmQGFGxcew5LsujddSgMRZKq3UCSFGOWq+fiuE+O7sS0ppk1KmlD9CmWP7o0XVPielzJVSrgMWAm7jnYUQwcALwH/c7f9XkPGRftt3MPj0qNaQa9aswWwuTkng5+fHwIGlF9cuicFgYNy4cXh6Fk/ENpuNOXPm6CNiDT7Q7FtXxc56UrOoOEVGNhqkDdJf07f5XQo+fdz3ryc2pRxgY/J+XdukjhcT4l16EIcQgttiLsMoDEXWujNWfxZmtoecuU6F1B3YC7SIbHOJ6xgwClr8pHWR8HtmO8AKUvvOjYzug/fZwAw3uM1ZF/8t2FKdWoxUanor/AdSnq94/38BnsfPlK7QPTQRsfIhyNQHZ4mmPQh/+T5EUFNtGRCwZ2STNu0j3RJbwd87sOcW+zwaw4JZlngUkz2QTKtWz9VoNOLhYeTqwRXz7PHx8eG6665DCEF2sC9b+rbGLmXRMqz54HHSt/TUBxBIG/x5K5e2P8bIAXrr1v7jZr74teoRsXVSFuz4Ui1lTNFJwrQgiYZAiWAJ8rWHemGE8KtSMQQUlxOThWZSnngHaSlRH7YGkWYLBeu24XmiEitB7a4Ef6dUYNZC2Pd9xY8/8luJ6xOupTKpRSpl4RJCvADcDfwIjAc+A24EaqqgZyfAJqU86NS2Eyjt8eYV4BPgTFmDCiHuBO4Ebalw1apV1Ze0jsnNzXWR29d4itjQ33BO7LgvaRBZh/T9KkNhYSErVqzQKV/t27fnn38qH/nTsWNH9u0rDrOPj4/n888/p0sXfQZtA3fTKTifEC/nCMxT2A5dTlzWk+RY6qg2Ku4/58oQ4b2aDkFO/hMIdiYOJ/9g1cesCJWR2yytfFWwHrMstp40NzTB61Auqw6XP0YXWwTbrPl4GiQCmJfekQt9lpD490dkWbQHCoGVzsGv08Rru+7YTHMs+xPGITlDe79enC44Q4I5AJDYrTnYZRBNTlhZlVC2HFEWT7aZz8ovWZ6YxLXNLRiF9ltIyL+WhLxr8TUm4uuRgK/xFH4eJ/E1nsLX4zQCNzePlC84ctRIcuElrvuqQGOedzyPnyHk7dkUFuqtlzkjzye+d0ta/PQQrc7oc3elNBnC4bAHQAgCRvQh6Ndin1zz0r85/tJ08ofEAtDk60X4OT04pkaHsG//fhItAx2ZI6QWIOGTS8qJw6w6SYWJjo7m5MmTxLUIJCI6mHYnM0FKjEYjabP+5PSUS+kU+HXxAeZT2OdcRu/ox9geOJKTqT5Fu/5Yb6Ig6yjntatkVKzdTtSPizA6vcekdhHElfIdqOq8ExP/EaFO50gM7E38mrqpBVCezEG5Vro5yeaMPUCQdO0wgr9fUdRm3hHHtsdeIWdMLSilVhth0+fhfeAEYVKyY8VWMideCp7lq0DNvQfTOqO4pJllw/tszeyCNJRfq7X74fcJdPoMTgf34/ja9WUcUX0qu2x5KzBCSrlHCHGLlPJhIcRsoAZqaAAQAGSVaMsCXB7VhBB9gUHAg0B0WYNKKT8HPgeIiYmRQ4cOrQlZ65RVq1bhInfSI5Dj9MXy7kHvrg9Ua5nvt99+w8PDAw8P7asRGBjI5MmT8fIq3XJSFv7+/uzatato++TJk1x++eW0adNG31EOh+THNItPEVb6+L6pLdP6102ElNvPuaJICxx/EqxOn1XAtZzfbXKNyFYWlZF7xsG/MB2XeKFFRhuFgWf6T6FtYMUqXPSx9Oee9e+TazKBLMSEJ3NyevFg+4PQ9AHN+pF0H+TuBZw+C59+RDWfTZRBC7bZum4/S+xLi76vBmHloqZtuDq2fCfv/lYT69fEa8vH9lwy7T4csDent18KGIJo3/kN2huD3R8srVpuRPNBSJ0G1uI8iV29v6dr9Bi3ltXKWmwa47wjpSRv0RrSP/2NwkKL7ncffOtYOj48CZGwGg7+As5zQnh3okf/QLSHphDJCy/kzOksTDuKrcFRv22g+c3X49EsgpNPfYHd6fgTrcIwSiuZ5hiEEHgYjfj6+jL56hAuOq9zpd6DzWbDYDBw5swZtg1oT2TmXgLzTPj4+CCEwGfRaYxP3obHaWeLi6RP0jt0urw5Ty27iKT04ofaDYebMvzCbsR28nE9WSkUbNhFUr6p6DMSvt70m3pbqVUkqjTvFGbCwX2669BmxCO0iYyt3DhVpFyZzX3hm5fd53frciN9hzxKSrpNl5g5bMV2uk2+Fp8+pXpcVYmsb+aTcewMeHlhNptpsuUgkQV2Iqc/iUfTsstdYjoPZv6uLaUC3uRzUYtMiBlf9nHpB2H/Md31aXvFs7QNblvNd1M2lV1+bSKldISaYRZCeEopN1G6Ja2y5AJBJdqCAN1jkhDCAHwMPCilrD17bUPGegZy9A6yssm9xB8/TmJi1XJBZ2VlsXHjRl3bsGHDqqzQAVxzzTUEBhbr5FJK5s6by6msZDYkx/H94WW8sO07/rN5BkvME5FBd+gHkCZIvBWyf6qyDHVG1kydggAeEPZYqd3rg2M5Z1zywV3Vqn+FFTqAQE9fbmw/DETxDWplTisOpK7TfOhSnoHcEhnYvbo6ciYWl3M6Zo5me77eYfhqnZWzdIpz1tm16iTAiuxW2s4md0FpCh1oUeFe7SDgMmj2te59aCXsbncbrPN38j6XtnMJS/xpkm5/gdQn33XJQxd861iaPDwJkXMClt2ju1FL7xDiY54jPbt4OVV4eBD+yoMI32JFSBYUkvrUexSs364b3+rvwy57HqnmTkWVI7y8vQkJNDCoV+VLaRmNRq677jqMRiMWLw/WD2qPHVGU5sSenUvKPIHsfqf+QGkjcOPDPNH7V3y9ix+MpYR3Z6dzKqXiPpd5v6/SbddKWbCjv4HdSabgdq5+bPVJyWAJZ7pOQghB2Av3YoxwWpKWktSnppea2LoqWE8nk/mxa5J0897DJF73KIWb97g5ygnvIC0FiTMVSUa8f7Z+u/kFEKyl3LGcSMSWllm+8FWgskrdEaeghT3APUKISUAlPAfL5CDgIYRwLljXCyjpXBWEFnk7RwhxBjjrcZsghBhcQ7I0bDK/wLlAvPRozcz5GXz22We8//77/PTTT1o5nUqwcuVK3bJrcHAw/fr1q5aYfn5+XD72ajKD7ZxqbuVgRwsrWiZx25p3eG3nHH4+to6daUc5mJXAp/sX8VJCRzICHi8xig2Sp0Lml27P0SCw50PGe/q24JuqHYVck9ilnU/jftelDgn3CWJCu6GVHuvSFn1oHdgC5ynkq5RO2E9dr0WhOuPZBprPBqP+eW2r5TgYiv2YYrzT6WT/FSwVc5ge3jzWkYtOm1w35jUjT4ZD8O0VfyPeXSHyXX2bLQnO3FEUOGGyWdiQHMdXB5ZUfNxGhDRbyPz4R06PmUrhxl0u+4sUOmsh/HkbmIoXU+wIfsoczmc/LOatt95i9erVRRZNz1bNCH1CX0HStPMAqc/pA1qONQ3EJoykmDWL3NmVgssHBuBhrNqqQ7NmzRgxQrPup4cFsCM2GqvNhtniuKbb95O5vSMM+p/LykbLwy/yUOcfcXZryS+w89oXZ8jOKD+Hnb3ARP5flSgLlhWPX8GxylcsOFgi6rXTtQ0uGMslXx1oiqfD387YJJDwl6fqdltPJ5P+SvlRpna7ZMbvmUx9O4kZv2e6LfMmpSTt5S+QBSY3I4AtPYszt79A9ve/lW2J73G7/rNN2wenylhGtZnh4Fx9W5eJSClJf+lTTl1xDwmX3E7mp3NqPJ1LZZW6Z4Ewx/9PAlOBN9Fy11UbKWUeWgTti0IIfyHEILSyZCU9E7OA5kCs43WFo70PsJFzHVs2ZBV/JFLChgOx7IsrrqO6detWvvjiiwqV+AJIT09nyxZ9VYHhw4cXLcNWBrPNyuKTm1hQuJM7177Lf0/+zLFuglMtbGQ2sWPxklgsZrdK57a0wzx0wMJmj2fQJTQCSH0e0t6s8SLyNULmV1pE5VmED4Q8WH/yOCGl5EDmST7ct4ADJcpw3RFzBb4elU9Q7WEwclvM5Tor10FTKKtT0/QdjU2h+RzwiNA155jz2WNNBOGNFtQAVzc5AlgdDyzl0zXAnyhjcXCEWRpZZ58IxkqmzAwcBU3u1TWZ87ex8dDTvLP7Z25e/Sav7ZxDuqnmqw3UNwUbdnF6zINkfvyji5O69DAS8sgUTaEDWPO4rhSVlJI1hQPZlhxQtL1kyRLmzZuHxaE8BVw7At+L9A+G9oziaFmr1creUE8yrG2wSM2K6+3tjZenYET/6qXlGDx4cJGbx/7OTUlsFoypsLAoZ2bW5z9RkNcXLv0SjNpvwJZvoPCkNx1XfcrYtJnYMrOxpWViTckg4UgmL9/xJ4eH3UnixCdI+c87ZLw/i5xfllGwYReWhCSk1UrBykqUBdv6Hvw4iF6HHodFN0JBmvt+Jck+AWc26ds6jq3Mx1M3lAyWAJc6r74DYwmaPErXlvvbKvKWlO0buHxzPovW55GYamXR+jz++2Uq2XklKo2s2OSS4NrSNEy3jc1G+utfkfb0dOyF7pU/glpDmxKR07s/L124Y0v0UbLewdD2Sgr/3kGOI32LtFjJ/HA2qY+/jb0UpbMqVPiOLYToDPgAhwAcy64dyjyoatwLfA0kA2nAPVLKvUKIVsA+oKuU8gROwRFCiLM2/qR/xXJs1rdFWfmlhOx8LxavcY1aPHHiBB9++CFTpkyhWbNmLvudKRkcERoa6pJvriJkm/N4but3HM9Nwmwz4VWoTZY+Pt7YbNbiJMRAYWEB/v4BLvnIssz5vHwon8siH+cW3+l4G5y+8Bnvgi0dIv6nhVE1BGxZkFkiCjn4dvCIqh950G6wR3MSWZe0l/Vn9pBcWNJVFfpFxNA/snL+Ss70DG3HgMjObEjaWtT2fVo3bBho5ZVNKx8jPi1+BM+WLsf+eWorNmwY8QCDP+GGJAYEONwGsmdC6MNlL6EChsyPGBZ4nB8zzr4HAyuymlB6UpYyCHsKS8FedqTvZ11OCzblNaVA5oJhU4nl2XMDW1om6W9+Q97vq93u9xnQi5MjYom53pEkfPdXutQMEjhg6cCfSa4Jordv305qaiqTJk0iMDCQ8P/ey6kxD+qUubPkCklSRBDJhVowlIeHB0ajkeF9/AjwrVbGLQwGA+PHj2f69OmYzWb+uaAdVyzeg6GwEH8/P22p78l38R3aF0vcZVj27tAVIRnAAo51CWVz0+JqFAeD2/Ou53hu2f8D4TsPuJ7UaER46ucl/ysHuy8Ltv0j2PxG8XbCavhpBIz4HJqWUwv18Hz9dlQfTfFoaJRcDvYKcFuTNuTBmyjcsBPzweJ8l2nTPsazY2u82rvOHwDLNuuXaA+dtPDcp6k8c0sYkaEe2HPzSXtFr3h5x3Ym/pYRtDiQ4rIkm/vbKsyHT2h+ds3dlFjrdRccW1y8fXwZZByGEDdqUMkKEh2vRRo8yXjPNXI2b8k6LCcSifzgaTyiwlz2V5aK1n69GdgNfArsEUKU4yFYdaSU6VLK0VJKfyllKynlD472E1LKAIdCV/KYeCml+FcodHYTZBUvQ5rNZtbs6IjV7l4/z8rK4pNPPmHv3tLTg6SmprJtmz6v2vDhwzFWsj5hjqWAF7Z9z/FcdyHjAh+f4pujsIN/jqB1lh/3dx1FlyauP9wlyZk8mnQ7R00llKPsbyHp3oZTGSDjI7A73bAMQRBSvVyBVeVEbjI/HFnBvX9/wKMbP2d+/Hq3Cp230ZM7Yy53M0LluDlmLB6iOFgn3ebDh8m9+U/CUG44Nop7Ni/h9Z1z+PHoKjYmx3EmPx2LXbPkFiF8uDIkBQ9H5CoyX3twKQvrGciawbAgp7BIgz8HshI5lZda+nElh7Hb2JJykOl7FzLlcHdeThzE6tyWFEjHe7Jnn1P566TdTs5Pf3Hq6vvdKnTGsGDCX3+EqC+mYYtylOI6vQH+nlY8BpBsDmZ24vm4WNMdnDx5kg8//JDTp09jDA8h7IV7XfpYrFaONQskRzajwKb5VXl7aw+BV17o+pBaFUJDQ7n66qsBMPl48vfAdthsNkyOiERbaga5Py3FtDcRuwzXPSgKYPz+72mTdQTnpdjTfk15t8c97A92czO32ZCF+ojPgFHDXPvt+QY2vuzanncGFo6FXV+UviIhpevSa32XBSuNpn0h1OnBMfZ+t4mRhbcX4a89jHCKRrXn5pP8wCvYMl0t5CeSLBw95fq7PJ1q5dlPU4hP1FwKbEnFlk/hYSTs+bvBaKTJvROI/OBpDAF+uuPNcUc5fd2jFGxwdUMgqi9ElqiO6i4ZcfZxOKWvxkSXieT/9bc+b6HzefcdIfH6xzC5e1CoJBV9FHoCGCeljAQmAE9V+8yKqpEzt2iZz2y2kJNnZ+uR4sLXgYGBtGund061WCzMnDmTFStWuF2/X7Zsma49PDyc2NjYSomVZylk2rbvOJbjml3GKAy0C2rGFa3P5yr/WLrv8aTvVi+6xnnivy2TJol2XupzMze2H6blQHMiodDCfxKvYn5mD+zOouf+BscHasueNXrTrWQWeWuSTskGtOTP5ViZapLE/HT+MR/lwX8+Zuo/HzP36BoS892U43IQ5OXH071uIMKp3FZVaeoXyjUt2rjuMDRB4qnJlhzHj0dW8erOOdy9/n1uXPmqbinT2+jFJa0u1R+f9ZX2AFMa6dMBM1Ge+XT3TQUMRRa1FYk7ypX7dH4aXx9Yws1r3uR/O35gZeJO8q0WMDTBRVGxZxLq5cOVLc8vd9yGjPnQcc5MeYa0aR+75J4DCLxuJM1/+4iAK4cUW8/zzsDSO4vqdUog1yz4NmkoZqfI5ujoaMLD9VGE2dnZfPrpp+zevRv/SwYQMHq4Xh6TiROtQouSDXt6ala687v60DSs5vLJ9+nTpyiNUlLTYPZ2a47ZZNLnzARNofMJLUqIC+Aprdyy+2Oa5SbgPDXlG335vPNkljcfTFnOIG7Lgu2fA+ueKf0guxX+fgGW3qXPcXaW1N2Qebh42+AB7Ue59qtFsnJtxCf7kJvv6semw+ABV8+DgdM0C2TvB0rt6tWpDSGP6euCW08kkvLw6y6uAWu2lV7XOSPHznMfnGbrAr0hI2jSKN218Bt2Ps1mv4lnW33yDHtmDkl3TiPr2wX6+6XbZMRzoaDEXLu/RFBG1HnIoI5kvF/CelfCaGJLzeDMLc+SW4r1vKJUVKlrLqVc4Pj/V6BVtc6qqBrSBpmfAGCxWCksLGT7kW6YLNrqs4+PD7feeiu33norAwa4FkNfunQpP/74Y5G/C0BSUhI7d+7U9bvkkksqZaXLtxby3+0zOZKtj7ptZQzjjfNvZ/awp3mn/13c0+Vqpl4ykU5hrRBON87ff/+d7Mwsrmt3Ea/0u9VRY7QYqzTybXo/piUOJ9XqlFbAngmpz8GJYZC3tOq+dtZUyPgQjg9kQMQNWo3SnF8rVjoqYzpIp37GCGhyW9XkqCRWu4339/7KPevfZ63lEMdzk0vt62X0YFBkVyZHDuap5tfQo0Ty3uowLuYuWvucvZ5CU4xE6RHTFrv+ZjqsWS8CQ28B4fQEb0uBnFIini0nIbu49M7wwBOOgAtNhpWnd+qCQYqGlHY2Ju9n2rbvuXf9Byw8sYFcS4lrLDw0SysQYizkiuCjvNxiNV+2Xc8dMTWTv64+yFuyjsTxj2DaHueyz6tTa5rNep2w5+/BGFRsIRN2C/x1OxQUWz5NJhPzUgeTYW9S1BYREcEtt9zCvffeS8eOzjFu2gPlDz/8wPLlywl54jY8WkQWtef4eHA8Iposq3ZT9fbSrHRXDa4ZK13R+xCCsWPHFtWI3d2jBckRAboyiEV9vb3x6tEL/74hNBmUScTVKXSeeIC3Bt3PhU1X4RHiizEsGGOTQERgAItjRvHD8IeQvbpjDA/Rj+VhJPTpEhG2hxfC6kf1bR4+pIQMdRX86O/w8+WQVuKalbTStRwGvjWc1LgMDhw38eDbSfyyIZKH30vixJmyH6rNxkD2ew3htO955QZyBN54BQFj9b+zws17SH/l8yIFy2aXrNmhV+qaRzg9BEhJXnoen8dMYnuoZvDwaB5J8D3Xu5zPs20Lms1+A7/h/fU77HYy3vyG1Cfe0fu7tbsCApwi9m0m2OcUGGa3uip1nW8kd/4yrCec7o9GI81mv+HibyrNFlKffJeM975H2stRmEuhoo9DRVdCSikdKUUUdU3uYrDEY7XaKCgowGY3sOlgLKD5okyZMoWmTbXUFNdccw1NmzZl4cKFOj+2Xbt2kZaWxqRJkwgODmbZsmW6U0RFRdGjR8UrUuRbTby4fRYHSzjgdw9pw0U5LekUrH8KMhqNXH/99UyfPr0oUMJkMjFv3jzuuOMOYoKjebv/XXx1YAnLTzslrhUe7DK15aGTgdwbsYmBAU4/EMtRSJwCvhdC+DQtorE8pITCLVqZqNzfORtJLLBDwVrtZQiCgDEQdD1493KdkCzHtTQmzoQ8pEvbUVtIKfk4biErTu8stY+HwUjvsA4MbtqdfuGdWLr4T/75ZxmbgXbt2jFx4kT8/Kovq6+nP28NfoftSes4mm8lPi+L47lJnMlPL9OKcZarWvXXImODJ0Hmp8U7Mj+BoAmuvpPp7+Ic+X1BEyOfZwYXlTxLN+WwK/0ovcO05bFMcy7LTm3nz4QtpLhZinYm2MufgVH9GOS9hS7Wz4uSGWNOh+SSUdmNA1tqBqnPfYi06pVp4etNk3smEDTpat2y11nanv4acovdMsxmMyuyenHIUpxnKzg4mFtvvbXoezRlyhQWL17M33//rRtr2bJlJCUlMfqT58h55zvid+9hc0w4SRYtmYKnpycGo5H20Z50bl31FEqlERAQwNixY/n++++RBsHKYTF0iTtDh9AIOg+7EM92LfFsF41H8wjN/81ug/XPwl7NDcALCw83f5X2aQeZlX4X0isI4aVZ9HbQkdS2XfjP9DBaBNiwnkrGnpaJZ4dWGEOdLPbxS2HF/frKKwZPGPk1h49AdOvbYeVDurJrZB2F+VfCkDeg0zhNaTjyq/7N1eHS66kUC699m0Zeofa7yMyx89p3abx6bwTBAa6GAJvNxowZMzh2TCsT2K9fP6655ppSjQZCCMKeuxvriUQKtxRb2nLm/YVn+1YE3XQVe4+ayMgu/gy9PAWv3hvBnKXZLP47D3uhCWmxYRVGvu94HTnHAxj39MUY/NznGTQE+BHx3hNkffEzmR/+oDMO5C1eizUxlaZfv6T9Rgwe0OM2+OfF4gH2fgOx94LRC06sKKqcAYCnP/YWl5F5rz61VeC1l+DdtT2R7z9J5vRZZH2tLyWW9eXPWI6cJPzVh1yWiMujokqdvxDC2Zct2GlboOl6ynpXq0jI/AibzUZ+vvaUsvdEJ3ILtUCDiRMnuiT07d+/P+Hh4cyaNasoRxPAqVOn+OijjxgxYgR79uhz9IwYMQKDoWI6e6HNzMs7fmB/pj7de5cmrXgm9gY2rnNfhSI8PJwrrriChQuLc5nFx8ezdu1aLrroIvw8vHmg2zWcF96BT+J+c7KmGMklkjeShjM8/xC3h23Dz+hkli9YBydHQOAECHsCPNw4u9pzIecXzWfL7Gq10PfN1vz3sr8Fr86aghF4LRgdzqxpb4FzZQKPVloakzpgztHVbhU6ozDQM7QtFzbtzoCILvh7ahNZYmKirirI0aNH+eijj5gyZQqRkW4+p0riafTh/OaX4LxAWWgzcyI3meO5ScTnJGl/c5N01rExbQYR7e+IjG1yhyNtjeMztRzV6ugGOPn+mY9Cjr7OrG/4Qwws8GLF6R1FbctP78DX6M0fJzexPnkfVnvpy+qBnr4MiurGwKhudAtprbkAyMsg8SDkryzuWOK8jYXMz39CFuitUr4X9SXs6TvwaFFKME/cbKLSlxYlTrVYLOzNacq6guIr7Ofnx6233kqTJk2K2oxGI1dffTVRUVEsWLBA90C5e/du0tLS6Db2ApYG5mKxe5OeqwVanPWlu3qwa+BUTdG1a1f69u3Lli1bsHkY2dOjBXuAWwZ1o1OnTvrOBiNc+AoERBf5vgkB14T/TBufI7x3+ilyDU3B0xcQJCRbefKjZB64LoS+XVpCSef+hHWw9A5NKTuLMMKIT6HlUDiyCtpeBqFLNOuoU5Qx1kJYMRXObIZWF0O+U5S9VwC0KeG6UEtk5th45Zs0cgv0j2opGTbenJnOC7eH4+mhv3bbt28vUugANm/eTGpqKhMnTiyynJZEeHoQ8e4TJN7wONaEYgUp/Y2v8WzTnNWn2+j6D+jug5+PgZuvCiZYmJj5a/G9TiJY0Gk0oqAZE+0Sg8H9d0sYDDS5azxeXdqS+oQ+T6NpexwZ078n9OzScOcbYcvbYHH0yU+BQ/Oh8/WuARLtryFn3ipsKcVLtMLbi+C7NauhMBoJeWQynh1akvbCR7pl5vyVmzgz+SkiP3jarcylISqSI0UIUW5yYSll9RaC64iYmBh54ED1nRHrmu3rP6Bn+Mvk5+cXmaE/X3IjaTmhjB8/nvPOO6/UY9PS0vjuu+9ITi59eQ6gefPm3H///RWaVE02My/vmM2udH2h9pjgaF44bxJ+Ht5lZhyXUvLNN99w6NAhXfuAAQO4/PLLixIepxZm8/7e+S7nATsRHrk8ELaCnn5u3pfwg5AHtES0Bh8wHdDyp2XPK4ocdvu+TGa8vcuyFHiA/wg2FPZmTcJSojzzuCgwgTbe2RD5PgSNK+PYmmH56e18sHeBrs3XYmBKz8u5ILIrwV6uk+WsWbNcFHjQbqY33HADMTExtSavM1JK0kw5nMxL5uCOfVw3/Gr99y3pIX1VEe/zIPq3Yivpmfsg1ynyz7M9tFrJnswEnt0yo1KyxARHc1l0PwZFdcPL6Ob51pYFCZeDJb6oSXRM3CqlLCc00c256mnesSQkcfrq+3Q3iyb330jwXeNL/50n74RfR2EqzMPbywur1cqpXC++yR6PSWoPCV5eXtx+++20bOk+MhHg2LFjzJw5s+ghtCSJpp4kmmLx9PTE19eX8GAjHz4ehbGKuenOUta8U1hYyPvvv09GRnG6CaPRyMiRIxk0aJD7B9pD8zULmlOi3yRzFG8mPMtxSyfwCtIsOA6uuySQa4cFFisQZzbD7xPA6pTjTggY/kFRGhKdzNZCzeeuZPJa0M7jrBjGXA/D3nXtV8MUmOxM+yJVF5xgMpmKlHGAi3r7ct/4kKLvld1u55133iEtzTVNS2hoKJMnTyYqqvQMAebDJzgz8QnsecWfmyUomGkXvYSZYkvfc7eF0bOD9r1MefwtVm/O4cd2Y7AJI0IIDKHBCKOBIb19uefaENatXV1mJQzL8dMkT30VyxG9sSLy42fxG+L46a9/QRckYQ/tSvIF3xG+6AI8nFYRbJf8xKlJH+mUxOBbxxLyiGuVIdPOAyQ/+Cq21ExduyEkiNbrvq/wvFMhk4yUcrVDafsHiAGuB24r8VLUIlHeP+sUuoOn25KWE8qVV15ZpkIHEBYWxj333FPujXvEiBEVUujMNiuv7PzRRdHqGNSc53vfhF8F8p4JIRg3bhw+PnqT+IYNG/jggw84eVL7QYX7BDHtvElM6TgCD4Ozyd5AijWI589cxRcZV1BoL2HOl/mQ/jqcuBASxsDJYZD1TekKnWcbCHuB3RmvOCoSuA8tt0sr3x4/zmsH9vJ3XnPmZ3bkoZPDeDThChZlRpNjKT85aXXYnnaYj/f9pmsL9PTlOp8+XBbdz61Cl5SU5FahA21i/vbbb1m3bl2NJ8F0hxCCcJ8geod1IMoY5Pp9a3J3CQG3QaEjUta0H3J/1e8PfQyEB12btCKqAoEfXkYPLmnRm7f738nr59/OsOa93Ct0oAW7NP1ae0BopGR9NFun0Hk0jyT41jGl/84LMx0WJe3GZLXZyM638HPu5UUKndFo5KabbipToQNo27Yt9913n9sbt10aipINn1UMrhjkX22Frjx8fHwYP16fvMFms7F48WK++uorMjMzXQ/qOAauXQJRxfNslFcSL7d5jAsD/tJyy1lyi5bt5i7L4c2Z6eQV2CFlNyy+Sa/QgbacWlpeOQ8fGPo2DH23KH9eEc4KHdTJ0qvNJnn3h3SXaFNvT73P1+rtBSxcUzy/nnX1cUd6ejqffPIJ+/fvd7sfwKtDK8LffBScFO0dXm0pSMsp8jcLCTLQrZ32GRWs307eH+vom7qTOw7MxNtuRvj7Ioza8Wu2F/Dat2mYrWV/xzxbN6fpd6+4lA9LfeZ9rMkOi1uP20AYtByx2QO5f+OjPPBOGncc+Jbvkm7llKkFhHUh+7fDOoXOEOhP0O3ur7t3rxia/fgWXl30gY7uUgGVRWV9474FHkIr23WkxEtRSxRkbibAsFV30/0nrg8XXXQRF154YYXG8PHxYfLkyQwZ4r5YcsuWLStkrbHYrby260d2pulDs9sFNuWF8yYVLfdVhKCgIMaPd7UYpKam8sknn7B8+XKtjqMwMKbNIN7odzvR/iXq9AkPFmVG8/CZO9hvcZPo0noaCkvLR20A/8ug+Y/Qah2E3EWutROEvwBttkHTr8BvBGeT45rsBt4804/5mR1dRjpijuCLA0u4Zc1bvLVrHttSD7l11q8Ox3LO8MauebpxvQwePBt7IyEG90sZoFUKcaZk2TcpJYsWLeKXX35xjQisa7w7g1+JgISMj7W/6W/jnFoCr84QoKWrMAgDw5rFljpsM79Qbu00kq8HP8r9Xa+hfVDzissTNb3i8jcgzAfjXSLpmtx3Q5EvmAvSDiunQk6CY9NOQX4+v+cNJ8VW/Lu77rrrXAIiSiM0NJS7776bzp31+RAzLO2wSh+8vLwwGAz4eguG961esuGK0rZt26JqE84cPXqU6dOns337dtcHnLAucM0CGPQSeDqSJBtMTG3+NlOivsBgyYbCNK2SALAlrpCH3zrBGx9sZFbCWFZlDudQQSfybX4w8L/QZWL5gna+Hsb8DkFt3O/3b6qVnqpFpJR8/msm2w/qI9F7dfTmluGnaRaufyCauSSbzfsKsNvt5c47Zx8o16xZU+oDpd+QvoQ8OqVoe0t4LNJm16K3pWRIrB9Gg8BeaCLtf58V9YvJOsyDBX/SJFyfY3LnIRPz/o7i2Gl92pmSGIMDNYXSyffPnpFN6pPvIm02CGrFyYibePHE/3g74SlSLJFgM5NrC+S3tDE8dORTnj/0MqsWHcPq5BMcfNtYXTBSSTyahtP021fwG1H161rZuPHLgLZSyswqn1FRKcxmM0e2PELLEFmk/JxMbUaztlcycmTl0qwaDAYuv/xyoqKiXG7gl156ablWOqvdxhu75rIt9bCuvXVAFP89bzIBnpVP0tq1a1fuvvtu5syZQ3p6sd+BlJJly5Zx4MABrrvuOsLDw2kX1Iy3+9/FrMPL+e3EBp0TfqLJztOnBnBN5DBu8PseL0pP6YExEoImai/PUm7uwlPz5Qq4HKxJZKbP5dW47RwocGeF9HRURtA+o3VJe1mXtJdQ70CGNe/Fxc1609y/ekklUwuzeGn7LAqsxZOrAB7qPpaYJi1JLOW5KjU1lV279DmXxo0bR1ZWFosXL9ZNplu2bCnydwkIqNkIxEoRcg/kOwXw5C+F7J8hb5G+X+h/cM4zcUmL81hw4p+iz8ggBH3CO3FFdD96hbXDUNX4roArteogGY1LucuYPkvn9O3ZoRX+V7l/qAO0ZLjHtc/dbpeYLRY2F/YkzlzsbzZq1Ch69iylOkIp+Pj4MGnSJP766y9HGTFIcqQxOXujH97XD/9qJhuuDMOHDyc0NJQFCxboomALCwuZO3cucXFxjB49Wh9IZDBqFpo2I2HtU3BiOULAVWELaONzjHcSniCn0KopfR6+ZKRmsFn2ZjNOuc28AgjJCqLFplSiIzxoHulBdIQHBaZS3nt4N81KuOphOPaHfl/HsZpMtchPK3JYsUW/fN6mmSeP3hjKxg12npwSxlMfJZNfWPw9mz4ng8nDM3TuPkII7r33XtatW+dSueiPP/4gOTmZ0aNHu61gFDR5FJbDJ0hYtJlDjlqy0mzFnpvPkN6aP3DW5z9hPemUTksIzntmPC83j+R/X6eSlF58r0vK9OI/H6TQs6M3o4cE0L29t9t7n0/vLjS5dwKZHxT7yRVu2k3ip7/yV+uLWbLpLmylpo4S7D0dwu7WYwloMZLzU7YxyHqYVhOvKqV/MQY/HyLefpysT+e6rVlb7vGV7H8CqHxNIUWVsNls/DpvOi1D9A7xiQVjGDOmjCWUcjjvvPO48847ad68OT4+PowYMYIOHcouDmK123hr909sTjmoa28VEMGLfSYT6FX1JapWrVoxdepUt3VmT548yfvvv8/GjRuRUuJt9OTWmMv4X9+bXZbb7BLmJxXwaPIdHPa8HShhkfAdCFGfQpvNEPZ46QpdCRJMBp44aOOAuRUYQh350AQhxkJ6+aUjStQ0PUu6KYefj63j3r8/4KnNX7Hs1HZMtsrn1MuzFPLS9lkuZapu6TSSgVFlR/quWrVKp7hFRkbSrVs3LrzwQqZMmaLziQEtYOXjjz/mzBnXfIN1hs8A8C6R5DO5RMk1757gr3+oCfcJYlrvm7ikRW8mtBvKJ4Om8kzsDfQO71B1he4sof+BqI+rN0YdUrhtn0t5pJAHb3Jf2QC0OpabXwfALiX5BfmcNEWwIn9QUZfhw4dzwQVVsyAYDAYuu+wyrr/+eqRvJ0wyBF9fXwwGA0LAlYPq/iEiNjaWhx56iPbtXati7N69m/fee8/F5xeAwGi4/Du4+GPw1R7Wuvvv4vV2D9HO5zBY8rUl2ZKWek9/8PQnI8fOniMmlmzI4+uFWbz4VRqf/RXNTytKWWbzDtJKmV3wfHEkuG+4Vo+0Flm5JY+5y/RzTngTI0/dHIavj/Z7ah7uwWMTQ3GOPzCZ7XzyqxWLvfghv1evXkRFRTF27Fiuuuoql3vX1q1b+fLLL92WtRRCEPb8PezqPRLplAqrReoxmixfivnISbK/0VfYCJxwOd49OtI0zIOX74mgXQtX6/SuQyZe/CqNpz5K4e9d+djsrtbC4NvH4tNfe4ixI9gU3psnNzXn91WZ2ISXLqehM9Lgjd2RhDrXw58VzQbzctf7eGlWDut35WO1le3qIgwGmtw7gYgSy88VodxACSGEc8bI3sB4YDqgKxsgpVxRqTPXE40lUEJKybx584jgPfp02I2UmqUu19yciPN24elVfd1aSomUstxoV5u08+7un1mXpE/mGO0fzkt9bibE2/2EXJbDcmnExcXx888/k5eX57IvJiaGa6+9lsBArbZngdXEt4eWsiRhi0tfozAwvlV3xjXZh4fRCwJHg1cnl37lybwnI55Xd/xInlUfPdjKP4znuvYmIrAnKWY7KxN3sjJxZ5lJf0FLmXF1qwFcHt2vQkvVVruNF7fPdPFfvKpVf253qgjh7rNOT0/nrbfe0il1119/vS6xdFJSEt99953OSgqaBWXChAlFSVtrgzK/H7mL4MwdpR/cbCb4Dy99fy0hhGjwgRJSSs5MflqXk867VwxNZ77m/kEwL0krT1WQigTy8/LItXrxScoYTJ6a0tK/f3+uueaaGolMfemrFHYdNnE2U9bAHr48fGPN5Vmr7Lxjt9v5559/+OOPP9y6HwwcOJDLLrsMT083N/DCDPjnv1oSWsBs9+K7pFtZljkSm3SyOnn6gVcgpVXgOBt08OKd4XRpW8bcnnsazmyB5gPAr/pR66Wx42Ahr32bhs1JL/X3EfzvngiiI7XPwflz/mtDLl8s0NIFWSwWCgoK8Dem0NHvTwzCzsMPP6yLsj9w4ACzZ8/GZNIv6zZp0oTJkye7lLWUUvLwm6c5cTgT6RBqzPFFDEnehGfr5liOFafUMkaE0mLhBxgCi5fzC0x23p2dzvYDJpcAj7NEhRoZNSSQoef54eVZfJ2syelsnPgaP4UOJT5A8yMVRgOGkCCE3QymTLr772RS5DecNLViaeblxGWfh91U/F0SRoOW3sbx+wnyN3DJ+f6MHRqAt1fZ99+sbxfQ5ObRFZ53KqLUlQw7dIeUUrYrv1v901iUuj/++IPd2xZy+6Wz8TDakFJiNBrxjP4Y7/AK+GPUEFJKPty3UJ8zDs1H6eW+txDqXXrx9KoodQC5ubn88ssvxMW5phzx8/Nj7NixdOvWrahte9phPty3kLRC1yfddoFNebD7GFoHVKwOq7PMK0/v5KO4hS7pMHqFtuM/Pa9zUcqklOzLPM7y0zv4O2lvUd40d/h5eHNZdF+ubjWAkFI+Qykl7+/9lZWJekvtgMjOPN7zOl31DXef9S+//MLmzcXWmvDwcB5++GEXJT4/P59Zs2Zx9KhrCZvLL7+cwYMH10qaiTK/H9IGJwbrIk+L8OkLLRaUm8i0NmgMSl3+6i0k3/c/XVvTGS/j07eba2e7FX4bD4kbkUBBfj4Wq405uVezP7cp3t7e9OjRgwkTJlQ41VFZHE+08Nj7+mj1l++JoFOrmstNV9V5JykpiTlz5pCYmOiyLyIiguuvv54WLVq4ORJIWANr/gPZWqavApsvp8zRJJhacjroChICLuVUqo2kNKtOUTrLWUWjRYQHbz0YiUctB4yUxbHTZp7/LJVCc7Fu4GGE528Pp0ubYmWo5Of89W+Z/PF3Lnl5+UXKcYjnMa7ul8nEiTe6nCc5OZlvv/22Qg+URxLMPPlRCtJqw56RjcFu5YVtbxJodX34j3jrMfwvc/U1l1KydX8hX/0cT2qe+9UVgOAAA1cMDGDkAH9sdsnsP7NZtj4Ta6beimjw9iSyVTBT/F+kv8eCounIlNeWbT9245/IvmyJ6E2B0QdjkD/Cx1WRHNrHj/vGhbi0l5TbYDBUeN4p16dOStm2vD6KmmXdunUc2jOXycN/x8Oo/TiEEPgGtscYdl2dySGlZMahv1wUuqa+IbzU5+YyFbrqEBAQwKRJk9i6dSu//fYbZnOxU2t+fj4zZ84kNjaWIUOG0KxZM3qHdeD9Affy1cE/XHK3Hc05wyMbPqNLk1b0DmtP77AOtAmMKnM5TkrJnKOr+fHoKpd9l7Tozd2dryoRiashhKBbSBu6hbThjpjL+Tt5H8tPbWdfpku5YvKtJn6JX89vJzYwvHkso1sPcqmk8ePRVS4KXUxwNA93H+tSTq0kmZmZLvV8hw4d6vbGfDbf2IIFC3RKIGgPF/v27aNLly507NiRpk2b1sjNvVyEEZrcAylPuO4LfaJeFLrGgLTbyZyuLxruO6SPe4UOYNNrRQpdYUEhVquNdYX9OGZpDZho37491113XY1c85RMK18uyNS1xbT2qlGFrjpERUVx3333sWzZMofvX7FSk5KSwscff8yFF17IBRdcoMvNB0D0EBi/Era+DTs/xddYQAffQ3To3hkuvq4o5YnVJklKs5KQYuVUspWTyRbW7XDKIZpiZcHqHK4dXrrSUZukZFh5ZUaaTqEDmHp9qE6hc8eUK4LZfySdnYeKH4IzLG0x+bu/T0RGRnLfffe5PFCazWa+++47unTpQqdOnejYsSOrt2vzrfAwYgjyp/PxrW4VOt8Lz8Nv5CCXdtDm575dfMm9MIlmbdvx6+pctsS5VhXJyrUz+69s5q/KwWBA8xf08sLg54M9X+vvIa1cfHQl1w7oQETvvrC+OMVU5sZ2NCtIZuzxxVx1cil7eg5nS8drOXTS9SF/7fZ8brg0iNCg0n0jK/tAXXMF9hQ1wo4dOziw7UMmDv0TT0diXSEEnp6eGMMe0Bz464h5x9aw4Lg+gXC4TxAv9plCuE/tTjpCCPr27Uvbtm2ZO3cuJ07oFaMdO3awY8cOWrZsyYABA+jRowdTu41hQGRXPt63kExz8Q/eJu3syYhnT0Y83x9eThMvf3qFtee8sA70CmtHE68AXV931jGAmzpczLVtLqzQj8zXw5uLm/fm4ua9ScxPZ0nCZv5K2EqBTR91ZbHb+DNhK0tPbWNgZFfGtrmQdkHNWHZqO3OO6iMXm/mF8nTsDXgby78Jrl69WreUFBoaWmY9X6PRyJgxY4iKimLRokW6G9rx48c5fvw4S5Yswd/fnw4dOtChQwc6duxIcHAt1rgNHA/pbyKtqY6nVaFVDfFzP2krIG/RGswHj+vaQh4sJSF2/J+wQ/MTNJlMWCwWjllbsr5A820NDg7mpptucuu8XhnsdsmfG/P4YUm2i7Jw1YX1GJDjhrM562JiYpg7d64un53dbmfNmjWsXbuWzp07079/fzp27Fis8Hr6woBntTQj8X9qUavtr9YFM3gYBS0iPWkR6QkOPdvLI4M/1hcvQ/60IoeBPf1cIktrm9x8Oy9/k0Zmjt6UePNVwVzQo/wgOIMBoj2Wc8DQg0K7Ni94eHjwx0ZBl/YFbsc4+0C5cOFCNm3apNsXFxdHXFwcdmkgruB6pPDD6OGBh5cnQy8MgxKGb+HtRegzd1Zofo5p7c0Tk71JSLawYE0ua3fkU3LlvcCkfQ5nxzP4+yItFrol7+Ga438Qbsog/901mGa+infXSRD/FwX5fSnYV5wc2stu4fJ7BjB2UCTHEy0s25THqm35Rb8Dmx2Wbcrjuktq7n6qlLoGxKFDhzi0ZRrjBq1AiOLJz8/Pl8TcwUQHTynj6Jpl0clN/HBEH5Ie7OXHi+dNIbIGCsFXlLCwMO666y5Wr17NsmXLdBnqQQukOHnyJIsWLaJPnz7079+f9y+4l8/3L3bxATxLpjmP1Ym7WJ2oRYW2C2pG77D29Ahpy9zCrSQl6p8APQ1GpnYbw+Cm3av0Hpr5hXJLp5GMbzuEP05u5reTG8g26yPK7FIWRc12D2lDXAnrXpCXH8/1nug2D11JsrOzXSxuQ4cOLbeerxCCQYMGERERwezZs93WxszLy2Pnzp1F9YIjIyPp2LEjHTt2pG3bti5pC6qFwYdcjymQ9V/sdokweJBquY42zWWtLAc3dqTFqpU5csL/iiF4xbhZbMk+Diu04BOT2YzZZCZH+rMw91IkBkJDQ+nRo4dLHsnKkpBs4ZOfMzl4wjWFRJtmnvTrWr3xa4s2bdowdepUFi1a5BKtKaUsUjhCQ0M5//zz6dOnT3HEeFgX7VVBJl0ezOotaZzVKaw2+PzXTJ6/LazOvudmi+T179M4laLPg3fVhQEVDmI5cuQIiaeO0t4vhQN5V2CV3kW+ax/OTScyJIL20a7zg9FoZPTo0URFRfH777+7pDfJsTbHZPUELGCxYBRm4lrsJ/S8DgRvPlA0rzW5+zo8Wzat1PuOjvTkvnEhTBgRxOL1ufy1MY9Cs8RqtVJQUICUEg8PD7y9vYmO8mbyVU2IfOxX7CZt/pYWK6mPv0OzuW8jBr9G5sQngGKlzqdfd3wGxgLQupknt13ThOaRHny9sLhc4dJNeYwdFlhjS+6qhmsDIeHkSY5uuZeR5y0vodD5YQx/hMM59+nSN9QmqxJ38sX+xbo2fw8fpp03udqpOaqCwWBg2LBh3HvvvaWWtMrPz2ft2rW89dZb/DRzDld4dOORbmNd89q54Wh2Ij8fW8e0bd9z0q737wj09OXFPlOqrNA5E+Dpy/h2Q/jiwoe4o/MVRPq4t3LtyYh3yUX3TK8baO5Xsc9+7dq1OitdcHBwuQmqnenUqRP33HMP0dHR5fZNTk5m/fr1zJgxgxdffJGffvpJV5KuOpjNZr74SbB0+0DiTnZg7pqRfP7dVj755BMOHz5c/gD/MnLm/Yn1lFMaCQ8jTe6/wbWj1QR/3QHmbCwWC6ZCE3YMzM+9jHzpi7+/P7feemu1FDqrTTJveTaPvZ/sVqHr3MaLJ6eEYSylbFNDwMfHh2uvvZZJkyaVWtIqPT2dJUuW8NprrzFnzhzi4+MrncQ7wM/ARd30886eIybW7qiZ31F5SCn55OcM9sfrr9PAHr5MurziFqSzeem8DTm09V2Fl6exSOEyW+H179JIz3KfB1MIwcCBA7nlllsICdH7mKVb9e76IR7xnD59gp+aGdncJpgETzvJw2Lxv/maCstakrBgI5OuCObTJ5tyzYVGrKaMoutotxXQxLqGvhHLiO5gIGzavbpjLScSSX/lCwpWbMK0S58dIuShSS6K+UW9/fDxKm7LzLGzcW/NXWtlqWsApKWeIWH7BC6I0ecT8/H1w6PZmxA8GVhVJ7JsTN7vUoLKy+jBs71vpG1g5Z6CapoWLVowdepU9u3bx8aNGzlyxH1utkOHDnHo0CGCgoIYc/75tO7VkUOmJLanHWZ3Rrwu11tZNPML5bneEyusTFUUb6MXV7Y8n5Et+rA+aS+/xK/jeK77Em4CeNiRi64i5ObmsnGjPtnyRRddVK6VriRn/V3S0tKKPs8jR464RKs5Y7PZ2Lp1KxkZGdx6662VPmdJFi5cSHJyCsnJ+vQmJ0+e5KuvvqJdu3ZceumltG7dulrnORew5xWQ9dlcXVvA+JF4tmrm2nn9c5C6B6vVRoHDGrsifyCnrM3w8vLi5ptvJiys6t/5QyfNfPpLBifOWF32+XoLbrosiEvO9y+1DmdDo2vXrrRv354dO3awYcMGt+l+bDZbkUtI06ZN6d+/P7GxsRVWjDu3yCel0JvdR4p/XzN+z6J3jA+BfrX7ML9wTS7rduqVis5tvLhvfEiFr1F8fLzOLy7QI4lJF/swz8mDJCPHziszUnnxrgj8fNy/p44dO/LYY49x5swZDh06xN79x9ixW19WPtRTm/elwcDO2JZoawYmzvzxB6NGjaqQvKXh4yXJiv+Zrn6nybS2wia9aeJxAk9DAXFxEBe3h169ejHoysHYFq0tOi534UryV+lXR/yG98e7l2tCfz8fAxed58efG4pXhJb8ncegnjVTuUYpdfVMTtYZknZcQddofT4kL+9AvFp+AwGVSzBcHXalH+Ot3fqKBR4GI0/2vJ4uTVqVcWTdYTQa6dGjBz169CA1NZUNGzawdetWt0uF2dnZLFu2DOPKlYwdO5anz7sBq93GgayTbE87wva0wxzJdo10A+jSpCVP9ZpAUAWWO6uKh8HIRc16MqRpD7akHuTn+HXsz9TXG7w15jL+3959h0dZposf/z6TSa+kELoUBaRXAaUEjYoKiGKjKhYsuB71uMU9u3tWd3+7Ho9nXc+Kop51VVBWRRRwERQwCITeCb0ngSSkTELa1Of3R8IkL5MOmUm5P9eVS99n3ndyk5l55n6fOqqWtegq27hxI3Z7xYDc8PBwhg2r92RNt5iYGGJiYhg5ciROp5PU1FSOHz/O0aNHSUtLq7JV4uTJk3z77bfcfXfD75x37tzJzp07azzn5MmTLFiwgJ49e3LbbbdVPzOxFShYuAJnTkWXjgoOJHLu/Z4nHvkSDi3C6XRSXFIMGo7Yu7PdOtC9/VddWmirUmpz8c/vC1iZXERVjVVDewfxxJQoYiIbd8HcxhAYGMiIESO44YYbSE1NZfPmzezfv7/KJVAyMjJYtmwZa9asYebMmXTt2rXW51cK5t4TxQtvZuIof8qLxS4WfZfP01Nrnh15JfYcLeXT1cZVAzrEmfnlrBjDsh61WbfOuKJZjx49eGBCF0pd+azYUDFr9EyGgzcW5fLrOTHVdjeaTCY6dOhAhw4dsAUNI/RUHk6nE4fDQYAqINTvQpXXbd68mfbt21e53mldrVy5krS0NEwKov1PV3nO3r17SdEupkYGE2EpxnRpr9uCSrNjTSai/q36VSpuGxlqSOoOn7Fx5ryda9pf+Zh5Sep8qLQojZz9t9Ep2vhFrszRBPVYCkFDvRbL0fw0/rxnMfZKy3eYlOKFfvcyJLZuWwJ5W2xsLBMnTuT2229n7969bN26lbS0NI/znE4nS5YsISIigmuvvdY9Q3XmtbeQbytib84JduecYE/uCS7Y7EzoNIxHe06ofk/Qq0wpxfC4XgyP68XBvDOsTN1GZqmFCZ2GcUuHwbU/Qbni4mI2bzZObBk7dmzV62s1gJ+fH127dqVr164kJiZSUlLCiRMnOHbsGIcPH6agoOLLYcuWLe4Wi/rKzMxk2TJja3FsbCxxcXFVLnNz9OhRjh49Sr9+/UhMTKxxk/CWyJlX4LH4asSsyZjjLksGcg7Bhl/idLkoLikBDXmuSP5VdAtQthdzXbf/uty+46W8t9RCVp5nkhMRauLRyZHc2D+42Y+FVErRpUsXunTpwsSJE9mxYwfbtm3zWJYDysaffvLJJ8ybN69OLZ/tYszcd3M4//yhYsHfdTuKGTckhD41rV3XQBk5Dt5cnGtIwEOCFC8/HENYPVoHU1NTPRZpvuWWWwCYMSGCcxcc7DxccdO9/4SVd7/K49n729T6fli/uxilFGazGbPZzP23xHH78F9x7Ngxjh8/zpEjRww39MuWLSMuLq5OifTlUlJSSE5ONpR1794dq9VKenq6odzhZ2LVgLZMWH2QIJMfgYHGXSnCJicQ0KP6hpAu8f707R5AysmKLu9Vmwt58t4rT+AlqfMRR8lx8lMmEB1iWMMZO+1o03MlBHkvkTpTmMmruz/1mJn59PUTuSm+mqUQmhB/f3+GDRvGsGHDSEtLY+vWrezZsweHo6L7R2vNp59+yrx584iNrRhnFxkQytj2AxjbvmzV8B9//JHx14/3+r/hkj5trqFPm4Z1J27atMmw/EtoaCg33HDD1QrNQ3BwMP369aNfv34UFhYyf/58w4boy5cvp23btnTrVvdVkWw2G5999pmhtdFsNjN9+nTat2/P2bNn+eGHH6ocU3fgwAEOHDjAoEGDSExMvKIuxOYk//++wlVU0X1migwjcs4U40m2Qvj+CVz2EkqKi9EujQM/lhbegVUHctddd9U4O7o6BUVOFn5XQNLO4iofHzc4mIcnRjV6F6IvhIaGMm7cOMaMGcPx48fZsmULhw8fNrRel5SU8Mknn/D000/XqSv27nHhbNxbQlpWRd313tcW3niuLf7mq5cQl5S6+K9PcgzbeykFL0yLpl1M/dKCy1vpunbt6v7M+5kUz09rwysfZHM8reIz/dPuEmIi/Jg+ofrZ8xk5Do6cMX4njR0cQmSk2V3fnzt3jnfffddd1zudThYtWsSzzz7ruexMDXJzc1myZImhLCoqihkzZhAcHMzBgwf54YcfyMys+L7Ojwphx9Au3LDtNHa7nYCAgLK9jAP8iZpXxVjWy0wYGUbKyYqbgZ/2lDDzjsgr3i6vyX3SlFLRSqmvlVJFSqkzSinPVQvLzntYKbVTKVWglEpTSr2ulGoWSaqreCeFh8cTbDYmdBdt1xDV9ydMXkzoMopzeWXXIgrtxjEVj/S8jVs7eq+l8Grp1KkTU6dO5de//jUTJkwwPFZaWsrHH39c40D+5tqSYLfbPe4yx4wZc3Vno9YgLCyM2bNnG36fy+Vi0aJFhmUhalM2js44vnDy5MnuFea7dOnCY489xhNPPFHtWLo9e/bw5ptvsnbt2iq7x1oSx/kLXFxsnNQU+fhUw2r6aA1JL6ItJyguLsZVvh3SqqIEspyxjB07ltGjPRdrrYnWmqSdRfzbX7KqTOhio/z4jzkxPPtAdItM6CozmUz07NmT2bNn84tf/MLjRiorK4vPP//cY+Z+Vcx+irn3RBnKzl1w8M36i1Vf0AAul+ZvX+YZEkeAGbdHMKhn/SbHnDt3jsOHDxvKLrXSXRIUYOJXD8cQH23sdv96fSGrt3huC3bJT7uN76ve1wR4JJwdOnTg/vuNwwwutZBWvsGtidPp9JjtbzKZmDZtGiEhIWXrj/bty3PPPceDDz5ouFk80SOOs12i0ZTNIi8sLKQoYTB+7WqfoDe8TxDRERWfDZtd82M1N0f10RQ/bfMBGxAPzADeVUpV1VwUAjwPxAIjgFuAl7wUY4PpovWUHJ+ISVsM5RkFvYgb9BN+gVUMbG4kudaL/H7XQo89Re/vNoYp19zotTgaQ3BwMOPGjfNI7LKzs/nnP/9Zpwq2OTl16pShUgoODm5Q1+eVaN++vUcFW1xcXOcKdteuXR7j6AYNGlTlmMDu3bvz5JNP8sgjj1Q5ls7pdLJmzRrmz59f5Q4BLYXlnX+ibRUtIH7xMYRPu9N40u7/RZ/8luKSElzl2xnss13Pftv1DB482OMzUpv0LDuv/F8285dYKCz2/BzdeWMof3m+bb0ThJYgKiqKKVOm0L9/f0P54cOHWb16dZ2e4/qugdwy3DhofumPFzmX7TnxpCGWrLvI9oPGMcg3DQhm8tj6rxl4eStd586dq9xLNzLMj988GktEqDHl+PvyfLYf9LzJ1lqzfpcxwRk3pOqJBAMGDGD8eGPvyvnz51myZEmdZiJ/9913HsN2JkyYQJcuxu5Tk8nEoEGDeOGFF5g6dWrZGp1Kse2GrqR1aoPLpEjvEMln5nwWLlxoGI5SFT8/xa0jjGO2V28pdN90NVSTSuqUUqHAVOC3WutCrfVGYDkw6/Jztdbvaq03aK1tWut04FOgaa9KWryR0lMP4XQY706OZw6i47A1BARdvf0Pa3PRXsIruxaSUWJsRbmz8w1M7+H9PTUby9ixYz26lY4ePcp3333nm4AagdVq9djia/To0Ve8xlhD9OvXz+NOPSMjgy+//LLGCjYrK4tvvvnGUBYbG8uUKVOqbT1VStGrVy/mzZvHzJkzq1zu5vz587z99tusWbOmxbXa2U6kUrjMuJZk1LxpmCpvR3T6B/S2/6KkpARn+Qj8LGcMq4vG0bNnT6ZOnVrn1mmbXfP5DwX8+/9mGcYCXdK5bdnm6XMmRREc2KS+WrxKqbLxiZffbPz000/s3r27mquMZk6IJLJSAuRwwgffWOq9XMrlth8s4cu1xpv4ru39eXpqVL17KQoKCkhJMa4FevPNN1f7PO1izPzqYeMEDK3hr4tzPZa9OXzGZhifafajxgWQExMTPfap3r9/P0lJSTX+G1JSUti0aZOhrHfv3jW2XPv5+TFs2DBeeuklJk+eTFBMGzaMuZbPHxzG+oReOM1+HDp0iDfffJNdu3bV+JolDg+l8iIBGTnO8n2RG67WvV+9SSk1GEjWWgdXKnsJGKe1nlTLtd8Ah7XWv6risbnAXIC4uLihX3zxxeWnNLoI/4NcF/p7XE7j3cfmI8NxRb1ESEjNsywLCwsrFre8QqXazhelO8lw5RvK+5g7cGdAP/dsnit1NWO+Ek6nk+TkZI9uwEGDBnncjV3tmF0uF+fPnyctLQ2bzYbZbMbf39/9c/nxpbKAgACPwbfVOX78OCkpKe5z/f39SUxMvGoTJOpLa82OHTs8Wsh69epFr14VU/wv/a0dDgcbNmzg4sWKLxs/Pz/GjBlDRETd18lyuVycO3eOlJSUKpdeiYiIYPDgwVe0C8b48ePrvrF2Y9Y7LhfR73xD0L6KsYWO+Giyfj+HS98SwaVp9D/+Mi5rgTuhLXEF8n7OPaiIaxg1alSNu0VU/iycvRDImn0xWIo8zzf7aUb2zGdojwL8mkAu11TqnZKSEjZs2ODRrXfTTTd5rMVWVcyH00JYucvYjTdhcA59Ontuj3U5u91OamoqGRkZuFwuzGYzVt2GHRljcGozCkApAv0dTBxwhKgwF/7+/gQGBtZ5yMaWLVsMQyWioqLqtE/0iYxglm+PM0zQCA5w8dDoDNqElbVG/rA3mv1nKv4evToUc9ew7Fr/zRs3bjTUI0ophg8fTrt2FctxXfpbFxUV8dNPPxnG717q4anPsBWHw8GpU6c4cuRIlT1A8fHxDBw4sNqb7JU7YzicXvH93z2+hCkjjDN861XvNLGkbgzwpda6XaWyJ4AZWuuEGq6bA/wBGKS1rvGV9+bG2m4l27GduY/SYuMMqaQD4xl+63vu8UI1aegm1Zcrddp4ZddCDl22dMbwuJ78csCDVe5p2lBXK+aroaCggPnz5xuaxP38/DzGZl2tmEtKSti+fTvJycnk5+fXfkEVAgMDadu2LfHx8bRr1474+Hji4+MJCwtzV5w2m43XX3+d3Nxc9+rtN998M7feeusV/xuuhNVqZcGCBR5res2cOZO+fctGU1z6Wy9ZssSj2/Xee+9t8NIERUVFLF++nH379nk8dmkh6/HjxzdoHT2lVJ0r18quZr3jSM8k+7dvU7ptv6E87i+/IPS28mET1nxYeifWC0ewlpYluC4U/7w4maKowTz11FPVLqh7SVJSEoOHjeGTlfn8tLvqcagDrwvk8buj6j24vjE1pXrn7NmzvP/++4ZW4vDwcObNm2e4uagqZq01f/wwx9ByExZi4q0X2xIRWvV712KxsHnzZrZt22ZIJh06gCNFd2F1VezDqtBcG/I94ZeN7Q4NDXXXNZV/goMrWsouXLjAa6+9Zkh+Kn+2a/PD1iLe/8ZiKGvbxo//93TZGnZP/Om8YRLHL2dHM+z62rcqy8nJYf78+YZx0wEBATzzzDPuWfFJSUmMGTOGBQsWGLpdTSYTTz75pMeNfl1lZWWxZMkSUlNTPR4LCgpi4sSJDBkyxCPpPXLGym8WGNOW+T+Pp210xWeqPvVO0/kklikELr81jwCqHSWqlJoCvAYk1pbQ+UTpTuxnH/RI6H7cP4Z+o9+sU0J3tViddv60Z7FHQtc/uhs/7//AVU3ompqIiAhmzZrFe++9Z5gptXDhwnrPlKpJbm4umzZtYseOHXUeqFsdq9Xq3gatspCQENq2bUu7du2wWq0UFVXcuQcEBHDTTb4fhRAYGMisWbOYP38+xcUVrdNffPEFTz31lPt9X59xdHUVGhrKtGnT6N+/P998843h7+NyuVi7di0pKSncf//9dOjQocG/x9u01hR+uZq8Nz7GVWxMsgL7XUfIraPKDlxOWPM0tuyj7oQOYG3xaHKD+/DUnDm1JnQul+bA2VA+Wp9JUannjX9kmIk5EyO5cUDzX6akMXXp0oWpU6dSuZX24sWLLFy4kCeffLLG1nSlFE9MieLFv2ZiLx9OV1jsYuF3Bcy7z9jSl5aWxoYNG9i/f79Hd5/WitMlYwwJHUCnoG0eCR2U3RSdPHnSY0hHRESEO8E7f/684fe0a9fOo/uzJreOCCUn38lXP1Z8tWflOXnt4xxuHxlqSOgiQk11Hp8ZExPD9OnT+fDDD93x2Ww299IyISFl4/LqOo6uPtq2bctTTz3Fpk2b+P777w2rL5SWlrJkyRL279/PPffcY0joe3YJoGt7f06fr2gxXL21iFl3NKxHoQk0lhscBcxKqcrTPwcCVW7iqZSaAHwATNJa76/qHJ8q3Yvj7IOUFhtzzR/3jaL7kP+qckBpY3G4nLy+7wv25Z4ylPeK7MSvBz7ktTXZfKlTp05XPFOqKlprzpw5w6effsobb7xBcnLyFSd0NSkuLub06dNs2bLFY4zOyJEj3RWXr0VHRzN9+vSKDc8pq2AXLlxIUVERFy9erPc4uvro168fL774IgMHDvR4LCMjg7fffpsffvihWYy1c5y/QOYTvyfn1QUeCZ0pPJSYV56p+Jtt+zP2U2sMLTX7bL3Zz3DmzJlDdHTNY3fPnLfznx9k8/2emCoTultHhPLWi/HcNDBEEro6GDx4MGPHjjWUpaen12kgf9nadcZ2jqSdxRw4YcXlcpGSksJ7773H/Pnz2bdvX5XPd846mAKHcXxfjP9xYv3r13JcUFDAsWPH2Lhxo8duPuPHjzd8zuviwVvDSRhqrKtOpNtZsNRiKBs9MLhe+6Jee+21TJpkHK2Vm5vLZ599htPpJCMjo97j6OrKZDIxZswY/u3f/q3KBPHIkSP89a9/ZceOHe7XSinFhFHGm6x1O4qx2RvWi9qkvsm11kVKqaXAq0qpx4FBwN2Ax1RMpdTNlE2OuEdrvc2rgdaF9QDOtPspKc4yfNB+OjCCtr1e8Zgd1ZgcLif/s38JO7ONC0R2j2jP7wbPJNh89Re2bKoGDBhARkaGe59CKBtM/+WXXzJtWu1rC1XmdDpJSUlh48aNVTa5X2I2mxkyZAj9+/fH4XBQWlpKaWkpJSUlVf5/aWkpBQUFNW7JVd3vGTNmTL2uaWw9evRg0qRJhsWE8/Ly+Oyzz0hPT69yPbpL3chXQ0hICA899JC71a6wsGKSktaadevWcfDgQe699146d67bVmzepLWmcOka8l7/0LAW3SXBowYS8+qzmNvHlRUc+xrHzr+VdT+VVzvpznh+KE1k9pzZNfYMFJW4+HxNAas3F1HVBLwu7cw8eU8benbxzjI5Lcntt99OZmYmlbvg9+3bR7t27Txmbl5u8tgwNu4pJrV8CRKtNa++n4afMxPlyCHQFE6AqSuBpkICTQX4YUOpsvd+dJdEDh/oQIhZo7VGa2gXVcrEwWZs1mGGuqekpIT8/Px63+TExcXRr1/998ZWSvHkPVHkFTjZe6yirrv8vVfdrNeajBw5knPnzrFjxw532YkTJ1iyZAm7d+82JKCRkZHcf//9V/UGJTY2lieffJLk5GRWr17t0Wr31VdfsX//fqZMmUKbNm0YPTCYhSvz3TdRhcUuNu0tZvyw+u9o1KSSunLPAB8CWUAO8LTWOkUp1QU4CPTRWp8FfgtEAisrvRgbtNZ3+CBmI+shXGn3U1KYia70Dt14cDgB7X7BqFGjvBaKU7v4W8o3bM4yrsR/TVhbXhk8i1D/1rfsQGJiIpmZmRw8eNBdduDAAdatW1fjwHGXy0VOTg5paWmkpqZy8ODBGsfLhYWFMWrUKEaMGFFrd9fltNbk5+eTkZFBZmYmmZmZZGVlkZmZaaggKrvxxhubxADxy40cOZLz58+zbVvFvdfJkyexWq2GBK7yenRXW9++fenWrRsrVqxgz549hscyMjJ49913GTVqFLfeeqtPZg1XxZGRTc5/zqdkk+eMSVNIMG1+/ghh991W8WV0YR/Odc9TUlyR0BXqEJZevJP7pk2vtmfA5dL8tLuYRd8VkF/kOdA7wAwPJEZw1+iwerWYiAomk4mHHnqId9991zC54Pvvv691BxSFi3vGOHhjsc29XVZZQ0Gb8h+jALOTDnGBRF8TRfJRG5WrtDbhJv78bBeiI6ruKnU6neTm5rrrnEs/2dnZ1S4DlZiYWO9WukvMfop/nx7N797PNnQ/XtK5rZluHeo/4UspxZQpU7hw4QJnzpxxl+/Zswe73e6ud0wmE9OnT2+U3g2TycTo0aPp3bs3S5YsMcQBZasw/PWvfyUxMZEbb7yRm4eHGrZUW72lqGUkdVrrXGBKFeVngbBKxw1a9r/RJ4ZYj6DT7qOk8LzhQ5B8aCglwc9wrxcHsGutWXDoW9ZnGHumO4TE8PshswgPaBrddN5mMpl44IEHPAbyr1271tCCmp+f707g0tLSSE9Pr3KP2cu1a9eOm266iUGDBtWYJNZEKUVUVBRRUVH07t3bXe5yucjLy3NXthkZGRQWFmK327ntttsa9Lu8YfLkyWRlZXH69OkqH7/ScXR1ERISwoMPPuhutas8S05rTXJyMgcOHGDy5Ml1HvDdGLTWFH2zjtzXP8R10XOmY9AN/Yn9w7OYO1ZKBoov4Fw5m+KLee46zomJry7eyc2TplXbM3DqnI3/W5bvsaTEJYN7BfL45CjDoG3RMEFBQcyePdtjIP/nn3/O0KFlC727XC5yc3PddU5qairnz5/H4XAQ5hxJtr1ntc9vNvsREBCI2c+P3CLFtoPG19TPD16aGUN0RPVjp/38/IiLi/NofXM6nVy4cIGsrCz3jWZaWhrjx49nwIABDf2TABAcZOLlR2L4j3cvkG0xthKOG9LwLn4/Pz9mzJjB/Pnzq735vtJxdHURGxvL3Llz2bx5M6tWrTLclNtsNlauXMmePXsYPX4KKyqNiDuRbudYqo3rOtevZbxJzX71hg4dOuiDBw9etYHxBrbj6LSplBSeNbxwW48M5pztUWbOnNWgGXdQ/xldWmv+fnQV357daihvGxzFn4bNITao4cs61FVTmoVWldzcXI+B/A6Hg/79+5OWlmb40q+LXr16MXr0aHr06OH1sUZN/W8NeGwldqmlLjY2lmefffaqdrvWpri4mG+//bbadcP69OnD5MmTPZY/aejs106dOumTJ0/WulSCIyuXnFfeoWT9Do/HVHAgbV58mPAHJ6Aqt4w47TiX3UvJqZ/ciwsDfFt0C7E3PVNlsl9Y4uKf3xfw/dYiqvoKiGvjx9AuZ3j0wRua3bi5pv5ZOHHiBB9++KHhpt9kMtG9e3fS0tKqvXF0ajNnSkZjcXQGKl4Tf39/AgICav1ueXpqFDc3oOWnOlf775yeZec3Cy5QWFL2hjT7wfyftyM68som8F2+ldileqd3797Mnj3bq+/vnJwclixZUuXNrVKK/JAHySyMccc0dnAwP3sgul71TlObKNHonE4nCxYsIDv7Kk+UtZ1Cp9+PtTjVkNBtPzaAY3kPMm3a9AYndPWltWbh8bUeCV10YDivDpntlYSuOYiOjmbmzJmG18XpdHLo0KE6J3Rms5nhw4fzwgsv8Mgjj3Dttdc2uy9Bb7m0lVjlGX+NMY6uLkJCQnjggQd45JFHPNYMAzh48CBvvvkmycnJV2X3Ebvdzt///vcat6grWr2Jc1OeqzKhCxrWlw5L3yJi2p3GhA5wbniZ0tMbDAnddutAAgfM8ljaxuXSrN1exHNvZLJ6i2dCZ/aD+28J568vxNOjXYm8lxvBpXGmlZWUlHD8+PEaewL8lIPuIUkMCv+UobGrmHpjDk9NjeW+xFhu6BtKp7Zm/KtpUL3zxtCrmtA1ho5t/fntY7Fc19mf9rFmnn2gzRUndFD1VmKNMY6uLmJiYnjiiSeYMmWKxzAPrTU6fwNFRYXuscab9pWQX1i/MY6tsk09Pz+fBQsW8Nhjj12dMTy205A+FVtxKrZKW/bsPN6fven38tRTc7y2ByfAl6d+YunpjYayyIBQ/jD0YdqFeG/XiuagW7du3H333SxdurRO5wcFBdGpUyc6d+5Mp06d6Nq1a5OZbdoctG/fnocffpjly5eTl5fHzJkzvbqsz+V69erF888/z9q1a9mwYYNheIbVamXFihXs3r2be+6554qXP7m0Ztmjjz5KeHjF8hKuwmJyX/s/Cr9Z53GNCgqgzfOzCZ/umcwBuA58hHX33927RQCcdnQivfOjzLhsFvGJNBv/t8xi2Fi9smHXB/HwXZFNas25lmrkyJFkZGSwdevW2k+mbG27y+udqpZDcbk0losuMnIdZOY4yClw0inOnxH9msY40dp07xjAn57x3BnmSg0YMACbzcaaNWuw2+3MmTPHZ/W2yWRixIgR9OnTh2+//dawnmaEXzr+FFBSorHb7QQFBbFuR/32g221n96ioiLef/99Hn74Ybp27drwJ7IehnPTsJWkGWYr7jnZhy0n7uLppx/z6ptn2ZlkPjth3DoozD+YV4bMpmNo7ZsMt0bDhw8nIyOD5ORkQ7nZbKZ9+/buirRz587ExMRI68UV6tGjBy+88AJJSUn07Fn9GCFvCQgI4I477mDQoEF8/fXXHjOZ09LSePvtt6/KkgcZGRm89957PP7440RFRWHdd5QLv3oTx1nP/WkDB19P7B9/hv81VSeTOn0zpWt/jsNe0TNgcUWwPfIxZk2vaIF2uTRfrLloWBOssvhoPx6dFMWQ3s3ji7+lmDRpEtnZ2R7LgwQFBdGxY0dDElfXXVBMJkV0pB/RkX706dZ6VjWoi2HDhjFs2DCSkpJqnZziDeHh4UybNo0hQ4awbNky8vLyUApi/Y+Qbh2Gw+GgqKiIpWvruQpCI8XbLJSWlvLhhx8yc+bMhn25lGyF8w9jt+YY14Q63ZsfUybw1FOPN87YvWqsStvOP45+bygLMQfy+yEz6Rru+zdxUzZx4kQ6depEcnIyw4YNo3PnzsTHx3uty1z4Xvv27XnqqafYunUrq1evNtykaa3ZsGHDVfk9OTk5LJj/DjOD2+P85Fu0w9i9ovzNRD03g4jZk1FVvf8cpbh2v0Pp5jdwWCvqHTtm1vrPZNqcZ9w9A8WlLv738zx2Hvbs1gsww73jw5k0JtywH6fwDj8/Px555BG2bNnCvn37GDVqFJ07dyY6OrrBs0lF83N5b0FMwHHOWwfjwg+tNVm5VbesV6fVJXWXj92x2+188skn7llxdVa4Gue5uVhLCwxj6A6c6cXq3bfy6KOPePVuIDnzIO8d+pehLNDPn98OnsG1ER2ruUpcopRi8ODB5OfnM2LECF+HI3zEZDIxatQo+vbty4oVKzhw4MBVed7KXWUhRVaG/3CIvOxCQkJC8Kv0Be7fvRNxr/87Ab27eT6J1nBqJdb1v8Gee9Iwhg5gretu7pn7srtn4Hy2g//6JIf0C55L4IzoW9bVGtem1X0FNClms5nRo0fjcDgYPHiwr8MRPnKpt2DgwIF8/fXXpB87SY79utovrEKr+0QHBweTmJjImjVr3GVOp5PFixdjtVrrtKyCK28h9nMvYrUa7353Hu/Pmr1jmT59Bt26VVEpN5KUvDO8eeArKo959jf58R+DpnF9VONO1xaiJYqIiGDGjBkcOnSIZcuWNXj/3ktCQ0Pp378/+d8mccO20/jbnWiguKioLLHz8yP8wQm0eWkOpuAqus1yDuHc8B/YTidht3neuW9x3MjYR19z9wzsOVrKm4tzDdstQdn2Xs/e36bO2y4JIbynQ4cOPP3003RctZMFK1WDlmBrdUkdwC233EJQUBDffvutu0xrzVdffUVJSUn1q/JrTfax3xBU/LbHjLifDowg+fBw7r13qlfXuDpbmMWf9izG7qrowvFTJn4x4AEGRHf3WhxCtETXX3893bt354cffvAYc1kvLs2tKdnkbDuLzV7xWdVAntNGxK+fJGbWvZ7Xleaht7+Ofe+HWEtLDIuZAxTrIDY5xjF0+n/Trl07tNYs31DIp6sKPGa2du/oz89nRhMb1SqrfSGaBZPJxJQ7h5N8/BwpJ4qqXWy+Oq32033TTTcRHBzssf/eypUrKS0tJTEx0TAgvvBiPmd3zaFT+A9UTue0Vny3M4FcxwR+9rN7vDqTL7s0n1d2L6LIYWwxfKbPJIbH9fJaHEK0ZIGBgUycOJExY8bw5z//uUHP4X8+h6Jl6wgKCkIphbV8b+CMdhFsGdkd6+GdPLjv2oqFXF0OOLgQx+Y/Y72YZZjdCuBCsdPan9xuc7h98gNERERgs2veXZrHxj2ey6aMHhTM0/e2kbFzQjQTk8ZGceq8xlXPbdtabVIHMGTIEAIDA1m8eLFhv7t169ZRUlLCxIkTAdi+bRPmnOe5rv1Rw/UOpx/f7ZpMzyE/44GhQ706uLXQXsIruxaRU1pgKJ/R42Zu6SBjM4S42uo6A7FKle62AwMDwezH5t5xHOkVD0qBy8XixYspLS3lhg42XJt+iy1jHzabDS5rcTvl6Mx2/4mMffBxbimf4JWT7+T1hTmcTDd2zSoFMyZEMHlMmMzaFqIZGdkvmI+/zSffc1OZGrXqpA7K9oR85JFHWLhwYVkFWm7z5s0UFhZSWHCOUV3/j2vapxuuK7UHsD/7JabMfK7e+3peKZvTwZ/2LCa16IKh/I7Ow7mvW9Pa0F0IAVkh8SS1u5EhOfuI6dKGDq+/SG5uBkeWLwfK9vfs6p+K+YfHKA1Nx+5weHS15rki+bF0LJ1HP8rD48a5J18cPm3ljU9zyS80DgkJCVI8/1A0g3vJ+Dkhmht/s2LWnZG8/WVeva5r9UkdwLXXXstjjz3GP/7xD8PSJCePbeHBMSuIjzLuPlHqiMQe9zG3jLjF26Hi1C7+cuArDlrOGspHtr2ex3vdIXfjQjRBdpM/y665g3/1vpvBg9swzhrG8GFdCVMXOfv96wwIOEikqWwdOdtl27Da8GdTyTDyOt3HpClTiYmJcT+2dnsRHyyzcHkPTYc4M7+cHUOHWKnihWiuxg0JoUs7M0teq/s18okv16VLF+bOncs//vEPLl68SJswCw+NXU5UqLF7U5u7EdNnBX5B13g9Rq01fz+yii1Zhwzl10d14YV+9+KnZG0jIZokBX6RYRAYwO5jNnYfPk8IFm4M2cFNYQ4idNULA++39WKH6TZuvnca1/fpS0aOk/W7ijmZbuNYqo1jqZ4zYYf2DuK5B9sQEiT1gRDNXbcO9duNSpK6Stq3b8+TTz7J4kV/ZerwrwgNqhhwbDab8Q+/Af8ui8HPN1ttfXV6IytTtxnKuoTF8R+DphHo57lljBCiadAmE8rfBLaL4CgB7aIYWGO9nTV5txPvf54Rwau4MeR74sznSXO0Y3nhZAK73014bB++SNacWpKB1VbzEgf3jg/nwcRwTCZpsReiNZKk7jIxMTE8cU8WjjwbTmfZ9OLAoED8I26Hdu+ByTf7xe23p7P2+DFDWXRgOL8bPJMw/2CfxCSEqJto/1w6u3aSaq+6hT/T3p5l9kf5Kv8JAlUeJaZ4zAGh+J3wgxO1bxMU4K945r4obhog+xAL0ZpJUnc56wECbd8SGBqC1rpsjFr4/dD2DVC+aQ3bmX2MVbYU/AMqmmFDzUH855CZxAZdwYw8IYRXtDFl8j/dn+W0tTtJllvYWDCOAkf5Z9fkD+ZglDkIfxROYgisx9jYru39eea+qHp30wghWh5J6irTGrJf5dIaAkopCOgFbf8Cyjd7gB7LT+f1fV+gK61r4G/y49eDHuKaMNnPVYjmQinoFnSSbu1OMqvTF+yJeIb1BRPYfiqEyjt+1ZTOhYWY6NHRn+4d/enRKYDuHf2JjfSTCVJCCECSOqPiH6Fko7Es5jc+SegK7SUsP7uZFWe2YHVWDIZWwIv9ptK3TVevxySEuELxQ+H6GZh7TGKYfyjDgMISF8l7i0naVWyY+BAapNyJW4+OZf+NayMJnBCiepLUXaKdkPNHY1nwaAi52athFNlLWZG6hRVntnjsFAHwRO87GRXfx6sxCSGujN0cCfevg5jeHo+FBZu4bWQYt40MIzPXQVaug7g2ZuKjJYETQtRPk0vqlFLRwN+B24Bs4GWt9WfVnPsC8EsgGPgKeFprXfuo4qpc/AJsh41lMb8t6zPxgmKHlZWpW/nmTDKFds9kDuC+bmO4s/MNXolHCHH1WP1jq0zoLhcfbSY+uslVy0KIZqIp1h7zARsQDwwC/qWU2qu1Tql8klLqduBXwM3AOeBr4JXysvpxFUPO68aysKkQ1L9OlztcTs4WZuFC0yEkhhBzYJ1/dYnDyndp2/n69CYu2j33bASICAhhEN2Z0cO7rYZCCCGEaD6a1OqUSqlQYCrwW611odZ6I7AcmFXF6Q8Df9dap2it84A/AI/U9jtSU1P56KOPALDb7SQkJLDo/SfAmUlxiSZhRg6f/8sOMb8kPz+fhIQEli5dCkB2djYJCQmsWLGCnNICvtj9Pd2H9SHxvx/nxa3vMW/Ff9NlaC8m/OVJfrPjH7y6+gP6jRzCe8sWcq44h5RDB0lISCA5ORmr08Zb3y+i27A+vPXtx1y0l5B/IoONL31E/okMAKwnsjn222U8F5nIEP8ubN68mYSEBI4cOQLA+vXrSUhI4OTJkwCsWbOGhIQEUlNTAVi1ahUJCQlkZJQ934oVK0hISCA7u2yHjKVLl5KQkEB+fj4An3/+OQkJCRQXFwOwaNEiEhISsNvLxvl89NFHJCQkuP+WH3zwAYmJie7jd955hzvuuMN9vGTJEiZPnuw+fuONN5g6dar7+LXXXuOhhx5yH//hD39g5syZ7uPf/e53zJkzx3388ssvM3fuXPfxSy+9xLx589zHzz//PM8//7z7eN68ebz00kvu47lz5/Lyyy+7j+fMmcPvfvc79/HMmTP55JNP3McPPfQQr71WsZT31KlTeeONN9zHkydP5q233nIf33HHHbzzzjvu48TERD744AP3cUJCgud7b9EiAIqLi0lISODzzz8HqPG9B5CRkUFCQgKrVq0CICsri4SEBNasWQPAyZMnSUhIYP369QAcOXLE/d4DOHDgAAkJCWzfvh2APXv2kJCQwJ49ewDYvn07CQkJHDhwAIDk5OSr/t57/vnnG+2999ZbbzXqe6++qqx3rtJrn5qa2iiv/alTp4DGee2l3mkZ9U5jvfek3inTkHqnqbXU9QScWuujlcr2AuOqOLcvsOyy8+KVUjFa65zKJyql5gJzAfz9/Tl8+DBJSUk4HA7yLdlY8/ZhtZqwWjUul4uson4kbTpOYWEhFouFAwcOENkmisN5Zzmdd543d37Bu6ZkrHmF5FsLKbIWE2KzYrPb0C4XuSUF7Mo8SnGGhfNF2Xx4aBXLzAcpTsvjUO4Z/rJlMVi+J/NUGnanHbvdjs1mxV5+PXYXN+jOhOk4PizdyP7de4mLi+P06dNYLBa2bt3K+fPn2bNnDxaLhS1btnD27Fn27t2LxWJh8+bNnDhxgn379mGxWEhOTiY6Opr9+/djsVjYtGkTkZGRHDhwAIvFwoYNGwgLCyMlJQWLxcJPP/1EUFAQhw4dwmKxsH79esxmM4cPH8ZisZCUlASUfWDz8vLcx0ePHiU3N9d9bLPZyMnJcR+fOHGCCxcuuI9PnjxJVlaW+/jUqVNkZma6j0+fPm04/+zZs+Tn57uPU1NTsVqt7uO0tDQA93F6ejqBgYHu43PnzlFUVOQ+zsjIwOl0uo8zMzOJj493H2dlZXHy5En38YULFzhx4oT7OCcnh2PHjrmPc3NzOXr0qPs4Ly+PI0eOuI8tFovhvWexWDh06BBJSUmUlpZisVhISUkhKSnJ8N6Ljo4mPz8fi8XC/v37CQ8PJzc3F4vFwr59+wgKCqKoqAiLxcLevXsxm82cO3cOi8XC7t270Vpz9uxZLBYLu3btwmazcerUKSwWCzt37qSoqIjjx49jsVjYsWOHO06LxcL27dvJzs52v1eu5nvP6XQ22nvv2LFjjfLeq4+a6p2r+dpnZWU1ymtfXFxMUlJSo7z2Uu80/3qnT58+bN68WeqdplbvaF3zCuXepJQaA3yptW5XqewJYIbWOuGyc08A87TWq8qP/Snrtu2mtT5d3e/o1auXvpT1A5D1KyiouEvC1Aau2Qx+EWSXFrAr+xi7co6xN/cUJY6GDderqxBzIJO7jGJSl5GE+hs34U5KSjLcMTQHErP3NMe4m2PMSqmdWuth9b3Oo95pBprj6wPNM26J2XuaY9z1qXeaWktdIRBxWVkEUNXGiJefe+n/q95EsSq241DwqbEs+gWsBPM/exaz7ULdK+HIgBBCzcFkluTh1K7aL6gk2C+AiV1GMPmaGwmX3SGEEEII0QBNLak7CpiVUtdprS/tiTUQSKni3JTyx76odF7m5V2vNcr+I+CsOPbvCpEP89mxdbUmdCaluC6iI0Nir2No7LV0D2+PSZlwuJxklVhIL84mvTiH9KJszpX/12IrMjxHoJ8/d3W+gSnX3EhEQGidwxZCCCGEuFyTSuq01kVKqaXAq0qpxymb/Xo3cGMVp38CfKSU+hQ4D/wG+KjOv6xkCxR/byyLfpkj+RksP7O5yksiA0IZEnMtQ2KvY1BMjypb1cwmPzqExtAhNIbhlz1WZC8tS/CKs/E3menb5hqiAsLqHLIQQgghRHWaVFJX7hngQyALyKFs7bkUpVQX4CDQR2t9Vmu9Sin1OvAjFevU/WedfoN2lW8HVkngUGzBE/jbtveoPMowOjCcOzoNZ0jstXQLb4dJNXzCcKh/ENdFduS6yI4Nfg4hhBBCiKo0uaROa50LTKmi/CwQdlnZX4C/1PuXFK4A6x5jWezv+Oep9aQVZRuKn+s7hUExPer9K4QQQgghvKlJrVPnHRpy/mQsCr2D4/YOLDuTbCi+teMQSeiEEEII0Sw0uZa6xuZvygdHYaUSM442v+Jvu5cbZq1GB4bzyHW3eT9AIYQQQogGaHUtdQEmi7EgchZL0tM5U5hpKH6mzySPteKEEEIIIZqqVpfUqcpLmKgwTvnP4stTPxnOGd9+IMNie3o5MiGEEEKIhmt1SV1ljsh5/O1wkqHbtU1gGI/2muDDqIQQQggh6q/1JnV+7fimoB8nL2YYip/qfZfs6iCEEEKIZqfVJnVng5/jn6eMs11Hx/dlRNvrfRSREEIIIUTDtcqkzul/PX87Y8PhqhhfFxEQwhO97/RhVEIIIYQQDdfqkjqnDma5dRbHCs4Zyuf2upNI2X9VCCGEEM1Uq0vqCp3tWJyaZigb2bY3N8X39VFEQgghhBBXrtUldfmuEmwuh/s4zD+IJ3vfhVLKh1EJIYQQQlyZVpfU2SqvUwc81vMO2gSG+ygaIYQQQoiro9UldZUNjb2OhPYDfB2GEEIIIcQVa7VJXYg5kKevnyTdrkIIIYRoEVptUjen523EBkX4OgwhhBBCiKuiVSZ1A2O6k9hhiK/DEEIIIYS4alpdUheozMy7frJ0uwohhBCiRWl1SV0bFULb4ChfhyGEEEIIcVW1uqROCCGEEKIlajJJnVIqWin1tVKqSCl1Rik1vYZzH1ZK7VRKFSil0pRSryulzN6MVwghhBCiKWkySR0wH7AB8cAM4F2lVHV7d4UAzwOxwAjgFuAlL8QohBBCCNEkNYnWLaVUKDAV6Ke1LgQ2KqWWA7OAX11+vtb63UqH6UqpT4HxXglWCCGEEKIJUlprX8eAUmowkKy1Dq5U9hIwTms9qQ7XfwMc1lp7JIDlj88F5gLExcUN/eKLL65K3N5UWFhIWFiYr8OoF4nZe5pj3M0x5vHjx+/UWg+ry7nNvd5pjq8PNM+4JWbvaY5x16feQWvt8x9gDJBxWdkTQFIdrp0DpAGxdfldPXv21M3Rjz/+6OsQ6k1i9p7mGHdzjBnYoRtQxzXHeqc5vj5aN8+4JWbvaY5x16fe8cqYOqVUklJKV/OzESgELt/eIQK4WMvzTgFeA+7QWmc3SvBCCCGEEM2AV8bUaa0Tanq8fEydWSl1ndb6WHnxQCClhmsmAB8Ad2mt91+tWIUQQgghmqMmMftVa10ELAVeVUqFKqVuAu4GFlZ1vlLqZuBTYKrWepv3IhVCCCGEaJqaRFJX7hkgGMgCFgNPa61TAJRSXZRShUqpLuXn/haIBFaWlxcqpb7zSdRCCCGEEE1Ak1jSBEBrnQtMqeaxs0BYpWNZvkQIIYQQopKm1FInhBBCCCEaSJI6IYQQQogWQJI6IYQQQogWQJI6IYQQQogWQJI6IYQQQogWQJI6IYQQQogWQJI6IYQQQogWQJI6IYQQQogWQGmtfR2DVymlLgJHfB1HA8QC2b4Oop4kZu9pjnE3x5h7aa3D63tRM613muPrA80zbonZe5pj3HWud5rMjhJedERrPczXQdSXUmpHc4tbYvae5hh3c425gZc2u3qnOb4+0Dzjlpi9pznGXZ96R7pfhRBCCCFaAEnqhBBCCCFagNaY1L3v6wAaqDnGLTF7T3OMuzXF3Jr+rb7WHOOWmL2nOcZd55hb3UQJIYQQQoiWqDW21AkhhBBCtDiS1AkhhBBCtACtJqlTSi1SSp1XShUopY4qpR73dUx1pZS6TilVqpRa5OtY6kIplVQeb2H5T7NYn0sp9ZBS6pBSqkgpdUIpNcbXMdWk0t/30o9TKfU3X8dVG6VUV6XUSqVUnlIqQyn1tlKqSS+vpJS6Xim1TimVr5Q6rpS6p47XSb3jJVLveIfUO97TkHqn1SR1wJ+BrlrrCGAy8Eel1FAfx1RX84Htvg6inp7VWoeV//TydTC1UUrdCvwXMAcIB8YCJ30aVC0q/X3DgHigBPjSx2HVxTtAFtAeGASMA57xZUA1Ka/4lwHfAtHAXGCRUqpnHS6Xese7pN5pZFLveEdD651Wk9RprVO01tZLh+U/PXwYUp0opR4CLMBaH4fS0r0CvKq13qK1dmmt07XW6b4Oqh7uo6zC2uDrQOqgG/CF1rpUa50BrAL6+jimmvQGOgBvaq2dWut1wCZgVm0XSr0jaiH1jve0inqn1SR1AEqpd5RSxcBh4Dyw0sch1UgpFQG8Cvy7r2NpgD8rpbKVUpuUUgm+DqYmSik/YBgQV97EnVbeNB/s69jq4WHgE908prO/BTyklApRSnUE7qCsgm2qVDVl/ep0sdQ73iT1jndJvdN4GlTvtKqkTmv9DGVN3GOApYC15it87g/A37XWqb4OpJ5+CXQHOlK2vs4KpVRTbp2IB/wpu+scQ1nT/GDgNz6Mqc6UUl0o60r42Nex1NF6yu6QC4A0YAfwjS8DqsVhylojfq6U8ldK3UbZ3zukLhdLveM1Uu94kdQ7ja5B9U6rSuoAypsxNwKdgKd9HU91lFKDgETgTR+HUm9a661a64taa6vW+mPKmozv9HVcNSgp/+/ftNbntdbZwF9o2jFXNhvYqLU+5etAaqOUMgGrKUtuQinbXLsNZeOKmiSttR2YAtwFZFDWgvUFZV8MdX0OqXcamdQ7Xif1TiNqaL3TpGd+NDIzTXtsSwLQFTirlAIIA/yUUn201kN8GFdDaKpuSm4StNZ5Sqk0yuJsjmYDr/k6iDqKBjoDb5ePNbMqpf4B/BH4hU8jq4HWeh9ld8kAKKWSaVgLhdQ73iP1TuOSeqeRNaTeaRUtdUqptuXTxsOUUn5KqduBacA6X8dWg/cpq/wHlf8sAP4F3O67kGqnlIpSSt2ulApSSpmVUjMom9G12tex1eIfwM/K3yttgOcpm3XUpCmlbqSsu6k5zD6jvDXiFPB0+fsjirJxOXt9GlgtlFIDyt/TIUqplyibQfdRLddIveMlUu94l9Q73tGQeqdVJHWU3Qk9TVmzZR7wBvC81nqZT6Oqgda6WGudcekHKARKtdYXfB1bLfwpu/u5AGQDPwOmaK2b+ppRf6Bs+YajwCFgN/D/fBpR3TwMLNVaX/R1IPVwLzCBsvfIccABvODTiGo3i7JJDlnALcCtlWa1VkfqHe+Rese7pN7xjnrXO7L3qxBCCCFEC9BaWuqEEEIIIVo0SeqEEEIIIVoASeqEEEIIIVoASeqEEEIIIVoASeqEEEIIIVoASeqEEEIIIVoASeqEEEIIIVoASepEi6eUOq2UKlFKXVRKWZRSyUqpp8r3AxRCiKtO6h3hC/LmEq3FJK11OHANZfsV/hL4u29DEkK0cFLvCK+SpE60KlrrfK31cuBB4GGlVD+l1F1Kqd1KqQKlVKpS6veXzldK/Usp9bPKz6GU2qeUmuLdyIUQzZXUO8JbJKkTrZLWehtle3KOAYqA2UAUcBdlmz5PKT/1Y2DmpeuUUgMp28h6pRfDFUK0AFLviMYmSZ1ozc4B0VrrJK31fq21S2u9D1gMjCs/ZxlwnVLquvLjWcDnWmubD+IVQjR/Uu+IRiNJnWjNOgK5SqkRSqkflVIXlFL5wFNALIDW2gp8AcwsH+A8DVjos4iFEM2d1Dui0UhSJ1olpdRwyirXjcBnwHKgs9Y6ElgAqEqnfwzMAG4BirXWm70crhCiBZB6RzQ2SepEq6KUilBKTQT+CSzSWu8HwoFcrXWpUuoGYHrla8orUxfwP8jdshCinqTeEd6itNa+jkGIRqWUOg3EAw7KKsmDwCJggdbaqZS6j7KKMxpYD5wGorTWlQcq/wb4A9BDa33Sq/8AIUSzI/WO8AVJ6oSoA6XUbGCu1nq0r2MRQrQOUu+I+pLuVyFqoZQKAZ4B3vd1LEKI1kHqHdEQktQJUQOl1O3ABSCTsoHNQgjRqKTeEQ0l3a9CCCGEEC2AtNQJIYQQQrQAktQJIYQQQrQAktQJIYQQQrQAktQJIYQQQrQAktQJIYQQQrQAktQJIYQQQrQA/x9Dhm8a8ZMT8AAAAABJRU5ErkJggg==\n", + "text/plain": [ + "<Figure size 720x288 with 2 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Separating the two equations #\n", + "\n", + "# Eq.1 ------\n", + "col = sns.color_palette()\n", + "col_pte = ['#436bad', 'orange','crimson', 'gray']\n", + "col_pte2 = [col[0], 'gray', col[4], 'gold', col[2], col[3]]\n", + "colors={1:'dimgray',2:'gold',3:'mediumseagreen',4:'darkorange',5:'crimson',6:'royalblue'}\n", + "\n", + "term = 'res'\n", + "res = '80km'\n", + "fig, ax = plt.subplots(1, 2, figsize=(10,4), sharex=True, sharey=True)\n", + "for i in range(1,4): # loop over simulations\n", + " ax[0].plot(dur[exp80[i]], eq1res[exp80[i]], color=colors[i],\n", + " linewidth=4, label=expname[i], alpha=0.9)\n", + "\n", + "#plt.legend(ncols=3, loc='upper center')\n", + "for i in [1,4,5,6]: # loop over simulations\n", + " ax[1].plot(dur[exp80[i]], eq1res[exp80[i]], color=colors[i],\n", + " linewidth=4, label=expname[i], alpha=0.9) \n", + "#plt.legend(ncols=3, loc='upper center')\n", + "#ax = df_track[['dfi', 'ep','itt', 'eq1res']].plot(kind='bar', stacked=True, title='', color=col_pte, figsize=(6, 3))\n", + "#df_track.plot(x ='Unnamed: 0', y='dp', kind = 'line', ax=ax, color='k', linewidth='3')\n", + "\n", + "ax[0].set_xlabel('Day', fontsize=12)\n", + "ax[0].set_ylabel('hPa/'+str(dt)+'hr', fontsize=12)\n", + "ax[0].set_xlim((3, 9))\n", + "ax[0].set_ylim((-0.3, 1.2))\n", + "ax[1].set_xlabel('Day', fontsize=12)\n", + "#ax[1].set_ylabel('hPa/'+str(dt)+'hr', fontsize=12)\n", + "ax[1].set_xlim((3, 9))\n", + "ax[1].set_ylim((-0.3, 1.2))\n", + "#ax.set_xticks(np.arange(9, 32, 2))\n", + "#ax.set_xticklabels(dur[exp80[i]].to_numpy())\n", + "#print(dur[exp80[i]])\n", + "#ax.set_xlim(np.min(df_track['Unnamed: 0'])-0.5, np.max(df_track['Unnamed: 0']+0.5))\n", + " #ax.set_xticklabels(df_track['time'])\n", + "ax[0].yaxis.grid()\n", + "ax[1].yaxis.grid()\n", + "ax[0].xaxis.grid()\n", + "ax[1].xaxis.grid()\n", + "ax[0].axhline(y=0,linestyle=':', color='k')\n", + "ax[1].axhline(y=0,linestyle=':', color='k')\n", + "ax[0].legend(ncol=2, loc='upper left')\n", + "ax[1].legend(ncol=2, loc='upper left')\n", + "#plt.legend(bbox_to_anchor=(1.0, 1), loc='upper center')\n", + "\n", + "#plt.savefig('TimeseriesPTE_'+exp+'_'+str(dt)+'hrly_Eq1_upper'+str(int(p2level))+'hPa_box'+str(int(boxsize))+'_CyCen.png',\n", + "# bbox_inches='tight',dpi=200)\n", + "ax[0].tick_params(axis='both', which='major', labelsize=12)\n", + "ax[1].tick_params(axis='both', which='major', labelsize=12)\n", + "plt.subplots_adjust(wspace = 0.05)\n", + "fig.suptitle('Eq1: '+term+' Term ('+res+')',fontsize=14, weight='bold')\n", + "plt.savefig('CyclonePTEtimeseries_Allsim_eq1'+res+'_eq1'+term+'.png',\n", + " bbox_inches='tight',dpi=100)\n", + "plt.show()\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 210, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnEAAAEpCAYAAAD8uHQ/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAADXQ0lEQVR4nOydd3hUVd6A3zMtk94gEHrvJUjvEQW7gmAv2Nfu2lZdy+quftZ17WVdCyp2QRQQFCX03muoIaRAepnezvfHnUzmZiaNHrjv88yT3HPvPffMzJ1zf+dXhZQSDQ0NDQ0NDQ2NpoXuZA9AQ0NDQ0NDQ0Oj8WhCnIaGhoaGhoZGE0QT4jQ0NDQ0NDQ0miCaEKehoaGhoaGh0QTRhDgNDQ0NDQ0NjSaIJsRpaGhoaGhoaDRBNCFOQ0NDowkhFNYKIaQQ4tzjdI0Mf/8Zx6n/6f7+7z0e/WtonCloQpyGRhMg6KEa7nVTI/vqLYT4VAixQwhRLoSoFEJsFkI8KIQwHMHYahtXyBiFEGYhRGlQ+6th+ns2aL9PCGETQhwUQswTQlwvhBD+44QQYp//uOVh+ukX1M/DYfanN3DsHRr7mRxnrgAGApuklAuqGoUQA4UQPwkh8oQQTiFEgRDiNyHEOcEnCyG6CCF+EEKUCCEcQoj1QohrTvB7qPrenxFCRJ/ga2tonDY0esLW0NA4qbiADTXaChvZx2DgJsAO7AXaA32B14HOQGO1I6uC/u8MNAvTXjXGSUBCUPsNQognpJSeWvreBEQCnYA2wHnAVUKIy6WUbiHENOBZYLgQoouUck/QuVP9fz3Al2H6rqgxxgGACagEtge1O2sZW50IIUxSSteRnFsPf/X//SLoWknAH0A8YAW2Ad2A8cDZQojOUspsIUQqsAxIQXn/eSjv+yshRJSU8uPjMN4QpJQbhRDbgN7AtcBHJ+K6GhqnHVJK7aW9tNcp/gIyAAlk1XPcJGAX4AAWAxf6z5PATf5jxgFXAgb/dhKw339MeVBfHWqe24BxflZ1Ti37f/PvXwv4/P9fUuOYZ4Ou2yFojN8GtT8bNMaqfv4Z1IceyPe3z2rg2LP8x2fUaB8MzAZKUAS6LcDNNY6pGter/s+gHJhZ4zN8BJgB2ICtwCgUAWo1iuC1FOhezxg7B/XXLag9Paj9Gn/bNUFtw/xtb/m3K4BW/rYf/G2FgKnG/Zbh326GIhhKFMG6GcpCoKr/y/3fqR34HUhFEc72AWXAdCC2xnt50X/u4pP9+9Je2qupvjRzqobGaYIQoi/wPdAVRWOXAnxX8zgp5Z9Syu+kX/slpSxBESrgCLVODRxfW6DKtPcysMj//831nesf483AIX/TX4QQQkqZBSz0twVMrcAEoKX//0+PYswjUISriwA3sAfoA3wSzkQL3I9i7swm9LN8HkhDETp7Az+iCLXxgBEYCXxSz5DS/X/LgN1B7VtQBEeAj4QQ61C0W07gP1LKlf59F/j/rpBS5vn/n+H/2wzFTKtCCJGAIpj1QtECny2lLKpx2JdANBABnIuiFfwE5TOLRxHoHq9xzmr/36FCiMja3rCGhkbtaEKchkbTon0Yn60E/75HUDRQFqCXlLIH8EZ9HQoheqNo5wDeD9rlBjL9r/Ka5x0BU1HmnDLgZ6rNgRcLIZrVdlIVUkobirYHFAGt6pzP/H87AqP9/9/o/1sIzDmKMT+PYmJdDLSRUvYGnvLv+4cQwlzj+AoUbVpf4Loa+xahaNL+6t9OAX6SUnZHEWoBRtQj0PTw/82WUgYKX0spi1E0e/tQhKmz/H8LUZvf2/r/FgS1HQ76v12N68UAv6IIn2uBc/wCdU1ekFL2BL7yb/cEbvW/t6X+tnNqnHPA/9eE8t1paGg0Ek2I09BoWrhQ/LiCX1X+ZH39f5dLKXP8/39bV2dCiNEowkUUihbvn1X7pJS5Usoe/tfMYzD2Kh+1b6WUThQznh1FC1VT4KmN4DmrSoj5EUV4AsXHLha4zL89XUrpPvIhM9T/dwzgEkJIFMEOIBZFoxbMj1WfvZTSW2PfHL/glRXU9ov/776gtpQ6xpPg/1sZ3OgPDvgUxXfw7yjC170ofoSfCyFG1dGnqGPfQGAYkAOcK6UsreW4qveRFaat6r21qHFORdD/CXWMQUNDoxY0IU5Do2mRL6UcVuNlqeP4Wh/QQogbgQVAMvAecHUYweOY4BcWu/g3bxRClKGYHCP8bfWaVP2CSpW57zBQDAENXZXZ+ArgBpRgCDgKU2oN8ggVnlehmEaDOUTtVAktnjBtMqitLqGqSiMaW6P9WmCQ////SSmtqE2zValIDvr/BguKwf8fRI3V/7cNdX9HIe9NSlnzvdV8X3FB/5fV0beGhkYtaEKchsbpwxb/3xFCiFb+/6fUPMifmuMFYBpKhPqDUsp7pJS+Gse1FkLs9L8mHeXYggWASBQ/qXiq56D+QogBtZ0shEhGMZtWaXM+DDYnUi2sxQMv+f9fL6XcfJTjXuP/m4diShwmpRwGXAK8IaWsGSl8vNnl/9s+yP8PlPddxRD/30FBbVXC2Dz/3+FB98jl/r/FVJurq1gL/Mv//+uNTWdTD+39f92oNXgaGhoNRBPiNDSaFqlCiJU1Xrf5970GeFFMaTuFEDuAh8L0cRWKyQ0UDcrVwf0FHWcEuvtf8Rwhfg3aFf7Nt6WUouqFItBVaRLDaXpmCiF2okSaVgmks6k2aQIgpVyO4rsH1VqqY6GFewpFyBgE5AshNgghslE0bi/VeebxoSoYJB4lgKWK2SimdlA+s80oQROgRMP+4P//JaAI5TPaIYTYB0z273tChkmJIqV8BvgYRZP2v2Mg0FdRJWyu8mtTNTQ0GokmxGloNC1MKH5awa82AFLKLSjC0m7/cSUoAltNgp3xE8L0d6y5AkWwhOpISACklA5grn/zWiGEqca5/VHSdBSgREjeCFxai5/bZ0H/u6h2sj9ipJRLUYIlZqOYCnv5d80Bnj7a/o9gPJlUR3VeGtS+ExgLzEL5rLqjaNZmACOklPv9x+WiRMHOQDFztgI2AtdLKevK1fYXlM9AD3xdM4HwEVI1/i/qPEpDQ6NWhNoioaGhcTrhrzaw3795s5Tys5M3Go1jgRDiauBrlIoNaSd5OEeE33S+HiV6tlM9fp0aGhq1oGniNDQ0NJoW3wLrUPwIx5/swRwhj/j//ksT4DQ0jhyt7JaGhoZGE8If0DGo3gNPYaSU19HwtDIaGhq1oJlTNTQ0NDQ0NDSaIJo5VUNDQ0NDQ0OjCaIJcRoaGhoaGhoaTRBNiNPQ0NDQ0NDQaIJoQpyGhoaGhoaGRhNEE+I0NDQ0NDQ0NJogmhCnoaGhoaGhodEE0YQ4DQ0NDQ0NDY0miCbEaWhoaGhoaGg0QTQhTkNDQ0NDQ0OjCaIJcRoaGhoaGhoaTRBNiNPQ0NDQ0NDQaIJoQpyGhoaGhoaGRhNEE+I0NDQ0NDQ0NJoghpM9gONNQkKC7NKly8keRqOxWq1ER0ef7GE0iqY4Zmia49bGfOJYt25dkZSyeWPO0eadE4c25hNHUxx3UxxzY+ac016Ia9GiBWvXrj3Zw2g0GRkZpKenn+xhNIqmOGZomuPWxnziEEIcaOw52rxz4tDGfOJoiuNuimNuzJyjmVM1NDQ0NDQ0NJogmhCnoaGhoaGhodEE0YQ4DQ0NDQ0NDY0myGnvExcOt9tNTk4ODofjZA+lVuLj49mxY8fJHkajaIpjhpM7brPZTJs2bTAajSfl+honDm3eOT5oYz5xNJVxn0nz6hkpxOXk5BAbG0uHDh0QQpzs4YSlsrKS2NjYkz2MRtEUxwwnb9xSSoqLi8nJyaFjx44n/PoaJxZt3jk+aGM+cTSFcZ9p8+oZaU51OBwkJyefshOpxpmBEILk5ORTWjOjcezQ5h0NjePPmTavnpFCHKBNpBqnBNp9eGahfd8aGsefM+l3dsYKcRoaGhoaGhoaTRlNiNPQ0NDQ0NDQaIJoQtxJ5NChQ1x99dV07tyZXr16cfbZZxMVFUVaWhrt2rWjY8eOpKWlce6555KVlUWfPn0a1O9NN90UOLd///788ccfgX3p6emqTPI1+33xxRfp0qUL3bt3Z/78+cfuzZ4ieL1eBgwYwMUXXwwon9VPP/0EQElJCQMGDODTTz8Ne25WVhaRkZGkpaXRq1cvbrzxRtxuN6BkBa/qs4qbbrqJH3744fi9GQ2NI0Cbd05tiouLSUtLIy0tjZYtW9K6devAtsvlOiljeuGFF0hLS2PkyJHo9frAeN566y2effbZwBh79erF119/XWdf2n1ybDkjo1OreOKJJ45r/y+++GKt+6SUTJo0ialTp/LNN98AsHHjRiorKxk9ejTXXXcdkyZNYsqUKYByMzeGV199lSlTprBw4ULuuOMOdu/eXe8527dv55tvvmHbtm3k5eVx7rnnsmvXLvR6faOuXRcTf3/2mPUVjp/G193/m2++Sc+ePamoqFC1l5eXc95553HHHXdw880313p+586d2bhxI16vl/Hjx/Pdd99x3XXXHYuha5whaPOOmhMx7xwpWX0mHpd+pZQUC0GHrT+F7EtOTmbjxo0APPvss8TExPDII48cl3E0lCeffJInn3ySyspKUlNTA+MDZYwPPvggjzzyCLt372bgwIFMmTKlzvQep9t9cjLRNHEniYULF2I0GrnzzjsDbWlpaYwePfqYXmf48OHk5uY26NhZs2Zx9dVXExERQceOHenSpQurV68+puM5meTk5DBnzhxuu+02VbvVauWCCy7g2muv5a677mpQX3q9niFDhjT4s9XQOBXQ5p2myUcffcTgwYPp378/kydPxmazAYpW6/7772fEiBF06tQpoPmXUvLoo4/Sp08f+vbty7fffgsoFoOxY8dy5ZVX0q1bNx5//HGmT5/OkCFD6Nu3L3v37j2qcXbt2pWoqChKS0sbdLx2nxw9Z7Qm7mSydetWBg4ceNyvM2/ePCZOnKhqu+6664iMjATA5XKh0ymyfG5uLsOGDQsc16ZNm9NKSPnrX//KK6+8QmVlpar9iSee4Pbbb+fBBx9scF8Oh4NVq1bx5ptvBtqWLFlCWlpaYDs7OzvExKqhcTLR5p2myeWXX87tt98OwFNPPcXHH3/MfffdB0B+fj5Lly5l586dXHrppUyZMoUZM2awceNGNm3aRFFREYMHD2bMmDEAbNq0iR07dpCUlESnTp247bbbWL16NW+++SZvv/02b7zxxhGPc/369XTt2pWUlJQGHa/dJ0ePpok7TXn00Ufp1KkT119/PX//+99V+6ZPn87GjRvZuHEjc+fODbRLKUP6OV1CtWfPnk1KSkrYB9jYsWOZNWsWBQUF9fazd+9e0tLSSE5Opl27dvTr1y+wb/To0YHPdePGjVx66aXH9D1oaJzqaPPO8WHr1q2MHj2avn37Mn36dLZt2xbYN3HiRHQ6Hb169eLw4cMALF26lGuuuQa9Xk+LFi0YO3Ysa9asAWDw4MGkpqYSERFB586dmTBhAgB9+/ZttPm8iv/85z90796doUOH8uyzz9Z7vHafHDvOaE1cXb4jx5vevXsfV6f3V199lcsvv5y33nqLqVOnsm7dunrPadOmDQcPHgxs5+Tk0KpVq2M6rvp81o4Xy5Yt4+eff2bu3Lk4HA4qKiq4/vrrMRgMTJ48meLiYi688EIWLlxYZ0byKp+4/Px80tPT+fnnn+sV1latWsVf/vIXAP75z39qwt0ZjjbvqDkR886REs5n7VjQ2MoHVQFY/fv357PPPiMjIyOwLyIiIvB/laATTuAJd7xOpwts63Q6PB5Pg8cUTJVP3IwZM7jxxhvZu3cvZrO51uNPt/vkZKJp4k4S48aNw+l08tFHHwXa1qxZw6JFi47ZNXQ6HQ888AA+n69BkTyXXnop33zzDU6nk/3797N7926GDBlyzMZzMnnxxRfJyckhKyuLb775hnHjxvHll18G9v/1r3/lnHPOYdKkSQ2KAEtNTeWll15q0AN56NChmnZO45RAm3eaJlUBBW63m+nTp9d7/JgxY/j222/xer0UFhayePHiE/KZXn755QwaNIhp06bVe6x2nxwbNCHuJCGEYObMmfz+++907tyZ3r178+yzz9a5ssjMzKRNmzaB1/fff9+g6zz11FO88sor9R7bu3dvrrzySnr16sX555/Pu+++e0ZF/rz88su0bduWG264AZ/PV+/xEydOxGazsWTJkhMwOg2No0ebd5om//rXvxg6dCjjx4+nR48e9R4/adIk+vXrR//+/Rk3bhyvvPIKLVu2PAEjhWeeeYbXX3+9QXOodp8cPaIutevpQPfu3WVmZqaqbceOHfTs2fMkjahhNIVCwzVpimOGkz/uI7kfMzIySE9PPz4DOk40xTEDCCHWSSkHNeYcbd45cWhjPnE0pXFX/d6a4rzTmDlH08RpaGhoaGhoaDRBzujAhqbOPffcw7Jly1RtDzzwQJ3JajXqZ8uWLdxwww2qtoiICFatWnWSRqShceqgzTunNy+88EKIyfyKK67gySefbFQ/2n1yYtCEuCbMu+++e7KHcFrSt29fVUZyDQ2NarR55/SmqjrD0aLdJycGzZyqoaGhoaGhodEE0YQ4DQ0NDQ0NDY0miCbEaWhoaGhoaGg0QTQhTkNDQ0NDQ0OjCaIJcScZr9fLgAEDAoXSb7rppkBZnJKSEgYMGMCnn34a9tysrCwiIyNJS0ujV69e3HjjjbjdbkDJyVWz+Hpw3/v372fo0KF07dqVq666qkFVCjQ0NJouxcXFpKWlkZaWRsuWLWndunVg+2T+/p999tnAWHr16sXXX38d2Bc8Z1URExMT+H/atGmkpaXRtWvXBlUJaAqcyt9T9+7dSUtLo0+fPvz888+Bff/973/p0aMHPXr0YMiQISxdurTOvtLT0+nevTv9+/dn8ODBqkCyDh06UFRUFNgOfpZJKbn//vvp0qUL/fr1Y/369cf2TTZBmlx0qhAiCfgYmAAUAU9IKb86os72HOe6a13y6j3kzTffpGfPnlRUVKjay8vLmTRpEnfccUedIdlVtTy9Xi/jx4/nu+++47rrrqv3uo899hgPPvggV199NXfeeScff/wxd911V/3vSUND4+j44DjPO3eGn3eSk5MDD8tnn32WmJgYHnnkkeM7lgZSVXtz9+7dDBw4kClTpmA0Gus8p6SkhOeee46FCxcSFxfHwIEDufTSS0lMTDxm47riidxj1lcwPp8Pna6C719sHbLvVP6e7rnnHp588kl27NjB6NGjKSgoYO7cuXz44YcsXbqUZs2asX79eiZOnMjq1avrrBIxffp0Bg0axKeffsqjjz7K77//Xu/1f/31V3bv3s3u3btZtWoVd9111xmf+qkpauLeBVxAC+A64H0hRO+TO6QjIycnhzlz5nDbbbep2i0WC5MnT+baa69tsGCl1+sZMmQIubn1TzpSSv7880+mTJkCwNSpU/npp58aPX4NDY2mzUcffcTgwYPp378/kydPxmazAYoG7P7772fEiBF06tQpoA2TUvLoo4/Sp08f+vbty7fffgso2pKxY8dy5ZVX0q1bNx5//HGmT5/OkCFD6Nu3L3v37m3QeLp27UpUVBSlpaX1Hjt//nzGjx9PUlISiYmJjB8/nnnz5h3hJ3Fqc6p9Tz179sRgMFBUVMTLL7/Mq6++SrNmzQA466yzmDp1aoNTjAwfPrxBzy2AWbNmceONNyKEYNiwYZSVlZGfn9+gc09XmpQQJ4SIBiYDT0spLVLKpcDPwA21nXPw4EE+++wzANxuN+np6VgsFgCkBI/HE6jxVr0tj8m2w+EgMzMzcD273U5mZiZWqxWA++67j7vvvjugIrdarZSXl/PQQw8xfPhwbr/9djIzM3E4HIBS8iQzMxOn0xnYdrlcuFwuHA4Hy5Yto0ePHgGT6uLFi+nZsyf9+/cnLS2NWbNmkZuby+HDh0lISKCiooLMzExSU1PJzc2luLiYzMzMwOdRVFREcOmgwsJC1XZBQQG7du0KbJeWlrJ79+7A9qFDh9izZ09gOz8/XzVJ5OXlsW/fvsB2bm4u+/fvD2xXFawP/i4PHDgQ2M7OziY7OzuwfeDAAQ4ePBjYzsrKIicnJ7C9f/9+1WSxb98+8vKqtRZ79+5VTQh79uzh0KFDge3du3dz+PDhwPauXbsoKCgIbGdmZlJYWKjarjIL+Hw+MjMzKS4uBhQzemZmJiUlJYCieU1PT2fGjBmA8tmnp6fzyy+/BD7L9PT0wEOqoKCA9PR0FixYEHgv6enpgULmmZmZpKens3z5cgC2bt1Keno6a9asAWDjxo2kp6cHVvxr1qwhPT2drVu3ArB8+XLS09MD3/eiRYtIT08PfF8LFiwgPT098HnPmzeP9PT0wOf1yy+/kJ6eHnj/M2bM4K9//Svl5eUAfPvtt6SnpwceRl9++SXp6emBe/ezzz5Tlcr56KOPOPfccwPb7733HhdccEFg+8033+TSSy8NbL/22mtMnjw5sP3SSy9x9dVXB7b/9a9/cf311we2n3nmGZXG+4knnuCOO+7gSKlz3qHGvEONeaRqWzZwW6q365t3bDYbRUVFuFwuLr/8cjIyMvjuu+/o0qULn3/+ORaLhfLycnJycli6dCnffvstDz/8ME6nkxkzZrB27Vq+++475s6dy6OPPkpmZibZ2dls2rSJN998kyVLlvDpp5+yY8cOVq9ezbXXXss///lPPB4PoGjQMjMz8Xq9gfEUFBTg8/lYv349HTp0UAlxDz/8MD179gyYFKWU7Nq1i9zcXNq2bRuYd9q0aUNubu4xn3e8Xi9er6fGtjdo26Pa9njq3w6uK1rfvFNUVMSoUaNYs2YNmzZtIiUlhTfeeCOwf9euXcycOZPZs2fz+OOPk5mZyWeffcbGjRvZsGEDH3zwAQ8//DD5+fl4vV42bNjAs88+y5YtW/jiiy9Yvnw58+fP57bbbuPNN98kMzOTsrIyQLl3MzMzA7/bqnnrzz//RKfTERcXx5YtW+jWrRtQfe/17t2bbdu2hb33gp8xVquVzz//nIsuughQFBhVv5e0tDT69evH1KlTA8cfOHAAKWXgmdmyZUuWLVsWmDfKysrIzMwMbJ8J805TM6d2A7xSyl1BbZuAscEHCSHuAO4AMBqN7Ny5k4yMDDweD2VlZXg8HiorK4mWEimVSTBYEJNSUvUbq3tb1rltsVjweDzYbDaklDidTjweD1arlTlz5pCQkECPHj3YvXt3oF1KyciRI5kzZw633347UH1j22w2PB4PFoslILhlZ2czcOBA9u3bx0UXXUTnzp2xWCzYbDaGDh3KG2+8QevWrdHr9dx66634fD4sFgs+nw+73Y7H48Hj8SClxOFwBPoXQgS2KysrAeUH6vV6a932+Xyq7ar3W9u2y+UK2Xa73art4P5cLhdSysB21Q8veFsIodr2+Xy1Hu/xeFTX8Hg8OJ1O1f7gba/XG7LtcDhq3fZ4PIFtKaVq2+fz4fF4sNvtOBwOlixZQllZGVu3biUpKYny8nLKysrYsmULsbGxlJSUUFZWxubNmzGbzVitVsrKyti0aRMGg4G8vDzKysrYsGEDUkqys7MpKytj/fr1uFwu9u/fT1lZGevWrcNqtbJnzx7KyspYu3YtZWVl7Ny5k7KyMtasWUNRURFbt26lrKyMVatWkZ+fz8aNGykrK2PlypWBB3ZZWRkrVqxg7969bN68mbKyMpYvX05SUhJbtmyhrKyMZcuWER8fz9atW/F6vSxZsoSYmBi2bdtGWVkZixcvxmw2s2PHDsrKyli0aBEGgyEwnoyMDEARSktLSwPbu3btoqSkJLC9e/duiouLA9t79+6lsLAwsL1v3z4KCgoC2/v37+fw4cOB7aysLNXx2dnZlJeXB7YbQqPmHfzzTpBgJpH4pyH/fol/WqmxLevcrmve8fl8OBwOfD4fLpeL1atX89xzz1FSUoLT6WTcuHGB88477zysVivt2rWjqKgIi8XCn3/+yaWXXoqUkujoaEaMGMHKlSvx+XykpaURExODxWKhbdu2jBo1isrKSjp37syCBQuwWCzo9frAvGOxWNDpdHg8HqZPn87MmTPJysriiy++CHxWbrebJ554gjFjxtC2bVtAeXBX/dacTmdg3nE6nej1+mM67/h8Pqrqi1cv9mtuK19SsGCmPANq3646v755p+r9bdmyhVtvvZXy8vLAgq/q8xk3bhwul4u2bdty+PBhPB4Py5YtY9KkSdjtdhISEhg6dCiLFy8mOjqa3r17Ex8fj8vlon379gwbNgy73U7nzp357bffAvOSXq8PPB/sdjtOp5PPPvuMr776ivj4eD799NPAM8tutwfGWzXPeb1erFZryL1XJdRec801WK1W3G43CxcupLKyErvdDsCPP/5Iq1atsNlszJ07l6+//jrwWXm9XiwWC0ajEZ/PF3imGQyGwL1ltVpxOBxNdt5pFFLKJvMCRgOHarTdDmTUdk63bt1kTbZv3x7SdqJ5/PHHZevWrWX79u1lixYtZGRkpLzuuuvk1KlT5ffffy9ffPFFOXDgQFlRUVFrH/v375e9e/eWUkqZl5cnu3XrJmfNmiWllHLhwoXyoosuUh1f1bfP55PJycnS7XZLKaVcvny5nDBhwlG/p7rGeipzssd9JPfjwoULj/1AjjNNccxSSgmslY2cq07VeaeKf/zjH/LVV1+VHTp0kBs3bpRSSvnpp5/Ka6+9VkpZPVdUER0dLaWU8oEHHpAff/xxoP3666+Xs2bNCplvxo4dK9esWSOlDD8XhRuLlFL++OOPslWrVtJut4cdR/BYvvrqK3nHHXcEfr933HGH/Oqrr47g0zjxNHTOqe17mjp1qpTyxH9Pzz//fEj7yJEj5R9//KFqe/rpp+VTTz1Va19V13W5XPKhhx6SkyZNCuxr3769LCwsDGwHj6vmd9ytWzeZl5cX9hpVv7emOO80Zs5pUuZUwALE1WiLAypPwliOihdffDGgtv/mm28YN24cX375ZWD/PffcwznnnMOkSZMaFJGUmprKSy+9xIsvvljvsUIIzj777ID/xLRp07jsssuO/M1oaGg0SSorK0lNTcXtdjN9+vR6jx8zZgzffvstXq+XwsJCFi9ezJAhQ47ZeC6//HIGDRrUoEjT8847j99++43S0lJKS0v57bffOO+8847ZWE4lTrXvKZi//e1vPPbYYwFXkY0bN/LZZ59x991313uu0Wjk+eefZ+XKlezYsaPe4y+99FI+//xzpJSsXLmS+Ph4UlNTj/o9NGWamhC3CzAIIboGtfUHtp2k8RxXXn75Zdq2bcsNN9wQoooPx8SJE7HZbCxZsqRBfb/++ut06dKF4uJibr311mMxZA0NjSbEv/71L4YOHcr48ePp0aNHvcdPmjSJfv360b9/f8aNG8crr7xSZwTikfDMM8/w+uuv1zvnJSUl8fTTT5Oens7gwYN55plnSEpKOqZjOVU4Fb+nKi699FJuueUWRowYQY8ePbj99tv58ssvGyxcRUZG8vDDD/Paa6/Ve+yFF15Ip06d6NKlC7fffjvvvffe0Q6/ySOk377fVBBCfIPiInIbkAbMBUZIKcMKct27d5fBzvgAO3bsoGfPnsd5pEdHZWUlsbGxJ3sYjaIpjhlO/riP5H7MyMhQOeA2BZrimAGEEOuklIMac44275w4tDGfOJrSuKt+b01x3mnMnNPUNHEAdwORQAHwNXBXbQKchoaGhoaGhsbpSlOLTkVKWQJMPNnjOJFs2bKFG25QZ1GJiIg445McamicqjjdOjxeiUEvTvZQThleeOEFvv/+e1XbFVdcwZNPPnmSRqQRjmP5PU2aNEmVvgUUV57T1XfxZNDkhLhjhZQSIZrGBNu3b19VWRKN04em5s6g0TDKrAZu+Vc+vTtFkNYtgv5dzUDTmneONU8++aQmsDUBjuX3NHPmzGPST2M5k+bVM1KIM5vNFBcXk5ycfMZOqBonHyklxcXFmM3mkz0UjeOA3SlZu8PB2h0OoJwbzhFERBWQ0rwZUWYdOp0292hoHGvOtHn1tBfiSqSVNYWZDGzWFZ1QXADbtGlDTk6OKrv+qYbD4WhyN2FTHDOc3HGbzWbatGlzUq6tcWL5cWkULlcJzRMKEUJi1AtMRoHJINDrBafCerIp/oa1MZ84msq4z6R59bQX4tzSxQsbPqFtTFsmdhjJ2Jb9MBqNdOzY8WQPrU4yMjIYMGDAyR5Go2iKY4amO26NUxddmJAxm1PPt0tqprlUMJsEHVKNdGxtpGOqkU6tTbROMZxwn7qm+FvQxnziaKrjPp057YU4kOCr4GBFJm9vzWX6nj+5pN0wJrQeSLTx1F9RaGhoND1am3N55RYfm/IS2LTbyY4sJ0HlM0NwuCQ7D7jYeaA6sbdBD+1bGunYyv9qbaJ9SyMm4ymgstPQ0DglOAOEOL8zMW7wlVFiszFtVynf7V/M+W0GcXHboSSbw6+ONTQ0NI4Eg7uclr8OolW/W5l4/aM4dKls2+di4y4Hm3Y7yS/y1NuHxwt7c93szXUH2nQC2rU0clYPMwN7mOnSxqj51mlonMGc9kJctM6FkD4kykQncILPhd1lY2bWEn7JXsmYln2Z2H4E7WJSTvJoNTQ0ThfcDhuseRvXpmkw4F4GDv8rA3skAFBQ4mHjbiebdjnYvt+Jxd6waDqfhKx8N1n5bmYsrCQ+WscAv0DXv2sEkRFNMfWnhobGkXLaC3GxHjevNvuZ+baeLLJ3xiX1ICVC2EA68Pii+DNvA3/mbWRQs26c33YQPeLbEmOMPNlD19DQaOpIkM4KWPl/FK//EM+Av5Iy6h5SkoxMGGpgwtBopJQUlXnZn+dmX56brDw3+3JdlFbWX2qv3OojY52NjHU29Hro0ymCgT3NDOphpnniaT+9a2ic8Zz2v/JSSyxzFl7EOf2XMan5ZhbYuvG7rTuVvgiQXoSwgLSDLoa1RbtYW7QLgJaRiXSJa0XnuFZ0jkulc2wrzYdOQ0OjQXjDFMMxuooxrnqavHXv4hzwMO1H34beYEAIQfNEA80TDQzpXb14LKtUBDtFuHORlefmcEntjnVeL2za7WTTbief/FxO2xYGBvUwM7h3JF3aGLV0ShoapyGnvRAXHR2NMeYsvlrUnC6pWYzrv4yLmu9gib0Tc609KfDGgPSALEcIK+jiQJg4ZC/lkL2UpYerK3qlRiXROa6VItzFptI5LpUogybYaWhoqKk0tGKlOIs032LMwqXaF+s5ROyaR9m37m1sfR+iR/r1REREhPSREKtnQHc9A7pXzzEVVi8bdzlZt8PBhl0O7M7azbAHD3s4eNjCzEUWkuP1DOltZlifSLq3N6HX/OhOGoWlHvYfNjPE4SPKrJm/NY6O016IMxqN3H333WRlZbF48WL+N78daZ22Mbr3atKb7WGdsw1zrL3Y505GSjfIEhBmhD6OmqVl820l5NtKWHpoKwB6oWN0yz5c2WksraKST8K709DQOBUxRZg59+Ef2b5hOZalL9PduRg9avNoC182bPor2ze8g7XnXaSNu4aYeoqLx0XrGTMgijEDovB4JTv2O1m3U0koXJeWrrjcy6/Lrfy63Ep8tI7BvRSBrnfnCK002Alk2z4nz39ShNWWwoacQp6/sxlx0fqTPSyNJsxpL8QBCCHo2LEjHTt2pKCggCVLlvDRb70Y0nU1Q7ptZHDEQTLdKSy1d2SfO5lcTzxenxN08ej0tWvavNJHRv5mFh/awtiW/biy01hSo5JO4DvT0NA4VdHpdPQZOAp51kgO7liJZeE/aG1dQU2RqbNuD2Q+TNHO58lukU6bMXcQ13Ek9WX/NegFfbuY6dvFzNSLJHmFHtbucLBup4OdB1zUVnmo3OpjwRobC9bYiDILBvc0M7RPZKA0mMbxweOVfDizDI9f1s4v8vDFrxXcMyXx5A5Mo0lzRghxwaSkpDB58mQmTJjAihUr+PTPeQzvtoje7XbRw1QAgEvqOeBOJMuTxKbKvhyK6E2Rz4avllnRJyUL8zcpwlxqP67oOEYT5jQ0zmAMh0vwFJZiaJ6IEIJ2vYZDr98o3r0U6x9PklC5HmpMJ0milKSCmfDjTErMLYjoMZHoPldAi0Ggq1tbI4SgdYqR1ilGLhsbi8XmY32mg9Xb7WzIdOJyh5+7bA7Jog12Fm2wE2EStE9KYtBQHzGRmpnvWPP7KmtIapmMdTbGDoiiT+dQc7qGRkM444S4KmJjY5kwYQLp6emsW7eOGau/YXT3n2geX4JJeOlqKqKrqYjxUbsotSxgxcHrSOh9Me5EI/sq89ledoDD9jJVn17p48+8jSzK38zY1H5c2XEMLTVhTkPjjEM4XORddh+Jf72emMnjEXpFCEvuOorkrouw7l6A7c+/Y67YGVqsW4LBfhjvhg+xbf0YQ2wqpm6XQMcLodUI0BvrvX5MlC5gdnW6fGzc7WTlVjvrdtTuR+d0SbYciOFvbxfw0DVJdGlrOurPQUPBYvfx3YKKsPs++qmM1x5IwWjQzNoajeeMX26ZTCaGDx/ODbe/jjXpR7bmjqm5QCYxppwLer6HbseTHJi1jLN9nXln+L083HcKbaKbhfRZJczds/wd3t42i8P20hPzZjQ0NE4ZfBUWiv/5AYeuexzn1j2qfdFdz6X5HaswX/o5zpRhyFo0bR63B0fJQWxrP8Tz85XIaX0h4yGozG3wOCJMOob2juSBq5L45OlUnrgpmXGDooiNCj/9F5Z6eerDQn5dbgkVMDWOiB//rKw1F2BekYefFlWe4BFpnC6c8UJcFXq9nn79BzH84tmURn2Kza1O/CuAYd03cGG/N1k4703eeP0/RGTbeH3IX3io7+Rahbk/8jZw97K3eXf7z5owp6FxBuLcupv8ax6l+F8f4K2wVO8QAmP3iTS/6Xdi7t5HYd+nOKDriYdQgc7j8WKz2rCVHsK99Uvk9+Ng14/U6vhWCwa94KzuZu6anMhHf2/JP25rxvnDokmMVT8KvF745JdyXv+qBKu9/nx1GrVzqNjDryssqrYYszoIZcbCSvIaUMVDQ6MmmhBXAyEEHXpMoeXgLfhib8RgUE+ozeJKmTruB3q1/JVZP/3A22++RUqZkTeH381DfS6ndXRolKpX+vg9dz13L3ubN7bOINtScKLejoaGxsmgZlCClFR+O4+8i+/BMvMPpE8tGOmjkuh8wWP0fmgluePnk2G6lu2urrhQm069Xi92mx1b2WG8C+6BBXeBo+yIhqjXC/p0juDWyxJ4928tOX94dMgxK7c6eOydAvbnucL0oNEQvvy1XFU3Nzlez7VjDhEXXf349XgVs6qm+dRoLJoQVxu6KBK6vktUl18wx3TCYKh2H9TpfIzuvYap5/yAdO5i2rRpfDHtc3oZW/HW8Hv4a59JYQMbqqJZ71/xHi9t+obd5Q03iWhoaDQdPK2bETV+eEi7t6Scoqff5tDUJ3HtygrZr9Pp6DtgKJc88AGJV3zNzLh/8Z3lYja5emKX1dGjXo8Xq9WKfdt3eL8ZCzlLjmq8RoPg1ksTuHhQEZERagH0cImXv79XyG8rNfNqY9m2z8mqbQ5V23XnxxFj9jL1onhV+9a9ThZvsJ/I4WmcBmhCXH1EjcbUeQlRLW5SEgcbq1fGLRMLuemc7+mSup/MzEzeeOMNfps3n2GJ3Xl7+D080Du8MAewsmAnj67+iH+s+5zNJfu1yVFD4zRC6vWk/OcxWnz4DwztUkP2OzfsIO+Khyl5+WN8FlvIfiEE3bt35/Y77+HcW15kb5u7eavsFn63ja42t0pwu9zYCvfhmjEJ39KnwOMI6asxdGtl45X7UuiQqtYAerzw0axy3vimFLtDM682BJ9PMm1OuaqtSxsjI/spVTlGp0XSt0ZU6rQ55VTatM9Xo+FoQlxD0MdBi/+gb/M5kTFtiYmJCQhzJqObKaPmMKz7OrxeD4sXL+b1119n4/oNjG3Z1y/MTQzrMwewqWQfz6ybxuNrPmZ1YSY+qf2ANTROFyJHDqD1zDdJuPcaRESNaE+vl4ovfiH3knuxzl1c60KuQ4cO3HTTTdx7/1+paH8Fn5ZfxWFv9XwiJTgcTmyr3sb+5Vgo2npUY26ZbOCFu5ozfmioeXX5ZjuPvVvIgXz3UV3jTGDxRjv789Sf09SL4tH5q2UIIbhjUgLBHjuVNh9f/qoW/DQ06kIT4hpD9ARotxBd7CVERpqJjo5Gr9cjgLP7reCSIb+j13morKzkxx9/5P333ycvJ5ezW6Xx1vC7eazflXSOC12VA2SW5/B/G7/mwZUfsDh/M15NmNPQOC0QESYS7ryKVj+9ReTYwSH7vYUlFP7tdQ7d8ATOLbtr7Sc1NZWbb76Zi254kF+Md7LcMVAVSe/z+nAXbMfyRTrWpS+Dr/YKDvVhMgrumJjAA1clYjapzav5RR6eeK+AP9ZYNQtCLThcPr6arxbGRvSNpEcHteatZbKByePUVTr+XGtj+37ncR+jxumBJsQ1Fn0StPwQmj2PXm8kKiqKyMhIhBD0ab+L68+eSYzZCkBOTg7vv/8+33//PZZKC8Nb9OK1IXfwj7Oup09i+7DdH7AU8PrWGXxiX8beirwT+c40NDSOI8a2LWnx7pOkvP13DK1SQvY7N+4k/5pHKXriDTyHi2vtp0ePHjzw4CNEjn2Ob+1XUe5TCwE+txPviuc5/PEYXMV7j2rMo9KieOne5rRrqU4p6vbABzPKeP2rEsotRy4snq78ssRCaUX1Qlyvh2vPjwt77GVjYmndXP35/ndmGR6vJiBr1I8mxB0JQkDCLdBqOkIfh9FoICYmhogIE62SDnPTud/RMvFw4PD169fz73//myVLliClZEByF54fdDMvDb6Vwc27hb1EqbTxzLrPySzPOVHvSkND4wQQdfYQWs16m/jbpyCMofnWLb9kkHvx3ZS9/w0+e3iNjF6vZ+zYsVz94Ous7fgSm1091AdIiCzdjOXToWT/8cZRjbd1cyP/d1dzxg2KCtm3cquDh94oYMUWzSG/ipIKLz8tUqcUuWhkDC2SwufWNxoUs2owuYUeZmm54zQagCbEHQ1RY6DNXDB2RgiIiIggJiaaxFgnN5w9g55tdwUOdblczJ07l2nTpmGxKD/wHglteTLtWv4z7E5GteyDrkZaAqvHwbPrv2BHWfYJfVsaGhrHF11kBIkPXE+rmW8RlR5qYpV2J2XvfkPuxXdjmb0oJCVJFXFxcUy66kba3fgji803qCJYAQw+JwnrnmbXJ1fgcR65oBVh0nHX5ETuvSIRk1E9T1VYfbz+VQn/+aqECqumlfv6twpVmbPYKB2Xp8fWcQb06hjB2QPVQvIPf1ZyqFjLHadRN6eMECeEuFcIsVYI4RRCfBZm/zlCiJ1CCJsQYqEQIrw98kRj6gRt5kDU2YCSIiAqKpK42AguH7GAMX1WIoI8V3bt2sXbb79NVlZWoK1jbEse6TuFd0bcy9jUfqru7R4nz63/gq2lWWhoaJxeGDu0IuWdJ2nx0XMYu4ZOad7DxRQ9/h8OXf84zk2ZtfbTrl07Lrz3HQ6NmU42nUL2tyyax4H3hlGSW3sfDWHsWVG8dE9zOrUOLf21fIudh/5TwMqtZ65Wbn+ei4x16mjjq8bHEt2AWrQ3XBivqqLh8SpmVc3v8Myisd/3KSPEAXnA88AnNXcIIZoBM4CngSRgLfDtCR1dXejjIPVzSLgz0GQw6ImOjuacAVu4YvR8jIbqZJkVFRX897//JSMjA1/QCrtVVDJ/7T2JKzuNUXXv8Lr554Yv2Vyy7/i/Fw0NjRNO5PD+tPr+3yQ/cye6xFDfKefmXeRf9xiFf3sdz6GisH3odDr6D59Al/tWktX2drw1Kj80d+/DOT2d3cuObups28LIC3c156rxsehrFJcot/r49/QS3vi65IxLlSFlaEqR1s0NnDs4NMo3HLFRupDccVv2Olm6qWFCsd3hY1e2i+zDWuRwU8Vq9/H4u4WNOueUEeKklDOklD8B4Tx6Lwe2SSm/l1I6gGeB/kKIHmGOPTkIPTR7BlL+A/4s60IotVn7dznEHRfOIT66+gcupWT+/PlMmzYNq9Va3Y0QXNt5HKOMXVTdu7went/wFeuLao9e09DQaLoIg4HYK8+nzdz3ibt5Ylh/OevcxeRefDe2jDW19mOOjKTfNa/jvOB7rLoE1b5oLDRbdgfrpj+Cx3PkpjqDXjBlXBwv3xOaUw5g2WY7D/7nMKu3nTlaubU7HGzbp65sceNF8ej1DS9sP2ZAJH1q5o6bXY4lSCCWUlJU5mHtDjs//FnBa9OLuffVQ9z4XD5Pvl/Iw28U8NU8LU1JU+TnJRb25TZOCBenmqpWCPE80EZKeVNQ25uASUp5V1DbVuAfUsofw/RxB3AHQPPmzQd+9913x33cwcQaMuke/wpGnfqHZHMY+H1dX1Zn9sInq5ewZrOZQYMGkZRUnRjYYrGwzVTIIvcuVR86dEyM6E8XQ2h028nGYrEQExNzsofRaJriuLUxnzjOPvvsdVLKQfUdd6znHX1BKXE/ZBC5MXTh5jObKPjnbfgS6v48pb2Y1G3/JNUXGqW61ZtGed9HiIpJCLQdyXfk9cHq3fGs2h1PONe9nm2snN2nFLPp+GjmToX7yuuDaQtbUWatFrzbN3dw+bCCkApsUPeYSy0GPs9IxeurPrFTCzuJMW4Ky00UVJhwuOrWv+h1krvOy8FkPLbP94Z+1kZ3GUJ6cJnC50c9kZwK90dD+WxhKiWVRn75T+cGzTnQdIS4j4FCKeXjQW3LgI+klJ/V1V/37t1lZubR+YEcEe48yL8JXOrEm26Ph7zCKH5bP4J9h6p9YIQQnHfeeYwePRqdTkdGRgbp6en8fGAFn+yar+rDoNPzSN8pDEvpeSLeSYOpGnNToymOWxvziUMI0eAJtYpjOe/YV22m9JVPcGVmqdqjLxhF81cfqfd86XWT/cPdJGZ/AzWm+3zZCt+5H9JzYDpwdN9RVr6bd78vJStMIuCEWCUw4qzu5jBnHh2nwn01Z5mFz2ZXL9qFgNfuT6Fdy1AtJdQ/5u//qOC7BUcXnfqP25qFaPWOlgZ91ju/hcWPgs8Dg/8GA/96TMfQWE6F+6Mh5Bd5uP/fSlaLH15q0+A554SYU4UQGUIIWctraQO6sAA1HUXigFM3BtvYCtr8BDGXqJsNBtq2cHJt+lyuGPULiTFlgKIinzdvHp9//rnKvHpp++Hc3uNCVR8en5dXN3/P0kNHl5ldQ0OjbvLz80/2EIgc2o/U7/5N/F+uULVbf12KffnGes8XeiPtr/oI5+g38OrUVSNSRR7xC65i8fevH5V5FaBDqpEX72nOFefEoq/xZCmr9PHStGIWrLaGP7kJY7H5+H5Bhart3MFRtQpwDWHi2FhaNQufkqSh7Mp21X/QsUZKWP2iIsABrPsPOCvqPkcDgLU7jsz14IQIcVLKdCmlqOU1qgFdbAP6V20IIaKBzv72UxddFLT4AJo9B6JanavTCaKioujVPp/bz/uKcf2WEmFU8kFlZmby1ltvUVJSEjj+orZDuKvnxaquvdLH61t/JCN/04l5LxoaZxDFxcX89NNPvP322yd7KAAIvZ6Eu67C1FMdeVr8/IdIZ8Me1s2H3UrkNQtwRrRQtccIG333P0fGezdjtVhqObthGPSCK8+N48V7QhMESwkfzixjZkblaRVx+e3vFVgd1e8nMkL5DI4Go0Fw+8SEWvdHmARd2xqZMDSa2ycm8MJdzUOCInYfPAlCnPUQ2Aqqt31uKNx44sfRBFm7w4HX68VmC62lXBdHJ+ofQ4QQBpTx6AG9EMIMeKSUHmAm8KoQYjIwB3gG2Cyl3HnSBtxQhICE2yFmIhS/BJXfABIhwGyOQG/QM6zHJvp2yCRjyzA2Z/WkoqKCZcuW0aNHD3r16gXAeW0GYdDpeWfbrIBFxCclb26diVf6OKfVgJP1DjU0Thuys7NZsmQJW7eeelpuYTCQ/PSd5F/3mCIRAZ7sfMo/nkHC3Vc3qA9z6wFE3LGGom+vJKJwZcC8qsfHEMdPbNqwk8MDB9AitfVRjbVjKxMv35vCD39WMnNhJb4gme2r+RVUWH3ccEFcoI5oU+XPtVbmrVRrFyelx5IQq6/ljIbTp3MED1+bxO9rrOh1iqazQ6qRjq1MtEjSh3x2NfP37T7oQkqJCOeUd7wo3h7adng9tBkT2q4BgM/nY/3Gnazdpsfjabzf6CkjxAFPAf8I2r4eeA54VkpZ6Bfg3gG+BFYBDZu1ThUMzaHFvyH+Jih6GhyrAcW8qo+ORqezc+GghQzssoXfN4xhT24yM2bMoFOnTpjNih/JOa0GoBc63tr2Ez7/JC6Bt7fNotBRzsT2IzDrTbUMQEPj5LG/8hCZnkMM97qIOMXuUZ/PR2ZmJosXL1blbzwViejXjdirzqfym18DbeUf/UD0hWMwdmjVoD5EZCLNb5xH2YK/o9/8PjJIwuoXsYNd3/+FlPt+OeqHv0EvuHp8HJ1bG3n9qxI8QXmAZy+1UGnzcdflCY2K3jyV2LLHwX9nlqnamiXouWjksXOiH9Y3kmF9Ixt0bNsUAyajCCQaLrf4KCz1klJLpYjjQkkYvUrBhhN3/SaE2+1m48aNLFmyhMy8WDyehhglQzmVUow8G8bU+mzQ/gVSyh5Syki/eTbr5I32KDD3hdYzFTOrQZl0q8yrJpOJFglFXH/2DCaP/AOno4yFCxeqTk9P7c9DfSajF+qv7pu9Gfxl6Zv8kr0Sl1fL8q1x6rD00FYeXvUhs5ybeGTVR3iOojD7scTj8bBmzRreeOMNPv/881NegKsi8YHr0TdLCGxLt4fif33QOBOlTk/ChJcxXfQZGNWVAro7FrF3UUi6ziNmcK9InrqlGZERamFt0Xobr00vUVU3aCocPOzmtekleIMUJ0YDPHhNUohG7ESh1wu6tFH74Z1wk2rJjtC2gvUBzbEG2O12Fi5cyCuvvMKMGTMoLCyk3NPmiPs7ZYS4MwohIPZSaLcEEh8GYQ6YVyMiFC1Fnw57uXjwHyxbtoyiInVyz1Et+/BI3ykhgly5y8rHmfO4c9mbzMtZe8o8LDXOXCpdNj7YOSegOT5oLWRD8Z6TOia73U5GRoZqEg1Hy5YtufLKK0/w6OpHFxtN4qO3qNocqzZj+3VJo/uK6Hk5sTcuwm1KVrXHrnkaV/mxC+ro3SmC5+5oRny0es5au8PB858UYbU3ncTAZZVeXpxWjM2hFkzuuzKJbu1Orpa5a1v19U94cEM4Ic5eDJUHT+w4TkFKS0uZPXs2L730Er/99lug/KZP6ij3VLsvGAyNM8VrQtzJRBcJyQ8rwlzMZQCYTBEBM0bPtntIic9lzpw5IacOb9GLJ/pfTbQhNGS/xFnJBztmc8/yt/kzb6MmzGmcNL7Y8wcWtzrqKrM856SMxefz8fvvv/PSSy8xf/58KivDB7d37tyZm2++mfvvu48BvePDHnOyib5wNOah6hJ9Ja98gq+y8dGfIrkH+vM+RAaZTyNlJUU/Tj2mGpSOrUz8687mNE9UP6R2ZLl49qMiyipP/XnK6fLx8ufFFJaqx3r9+XEMb6DZ83hSU4g8oZo4rxtKa1mgnW4m1a2fwhcDYdYkJZijDpxOJ99//z2vvvoqy5Ytw+VSfycWb0t80ojRaCQ6OppWzRtnjteEuFMBY2to+T60/glh6hDwgQM4u+8Kdu7cwa5du0JOG9S8Gx+MeoDJHUcRoQ8NZz9sL+OtbT/xwMr3WHpoKz7ZdFa7Gk2fPRW5/J67LqR9V31CXMU3kDsFip4HeexKCP3222/8+eefIZMoKHka+/fvz3333cdtt91Gt64dEflXQvaR+akcb4QQJD99p6qqg7eojNI3vzyi/hJ6nkd+S3UKk5jiFdjWvHdU46xJajMDz9/ZnLYt1H5aWflunvqgkMMlp64riM8nefu7UvbkqO/JcwdHcemYUyOZbJcamrh9eW7cnhNkyizbq0SjhuPw+hMzhhNB/ipY+iRY85X/F9Weq1FKyfTp01m/fn1YdweTyURsy+HExMQQGRmJXq+nj6VxlgpNiDuViBwCzV/BYDCg0ylfTfuUXDq0OMjs2bPxekNXqrHGSG7oci4fjnqAS9sNw6gLVcXmWot5bcsPPLjyQ1YV7Dytwvs1Tk180sd/d/5aM7csAHsq8mpfUFhmQ8FDYF8OZe9B+WfHZDzFxcUsXRqaktJkMjFixAgeffRRrr76alq18gcHVM5QxnAKY+zQivjbp6jaKr+dh3Nz6IKvIXSY/CZ53pbVDRJ8y5+F4mObBCApTs8/72hO17bqhefhEi9Pf1BI9qFTs/bn9PkVrNrmULX16xrBrZclnNgI0DpIitPTLKH6GeD1wv68E/R5hgtqqKLgNBHipA+WP6tuy/6zVg3kjh072L07tOJKbGwsEyZM4LHHHqPU1TrwvJduD12WhVre6kIT4k41okYhosZgMFSvVM/uu4KiwgJWrlxZ62kJphhu6X4+H4x8gAvaDsYQRpg7YDnMi5u+4al1n1HhOv2SbjYWn/RR7KjAq2kojzl/5m2qVeNm8zjJsYYp4u4tg8In1W2VPx2T8cybN0+1CDKbzUyYMIHHH3+cSy65hMTExBrXnXFMrnu8ib/1cgztUqsbpFSCHI4gca85KobtLe/BRbVw5XM5sM+5BTyOOs5sPDFROp65rRlp3dQVBUorfTz9YSGZB5zH9HpHy2+rrPy8WJ1Dr20LAw9dk4ThFIuu7Xay/OJKwqQXqaJoi2JuPUqklHjyC/HZT9L9secnKAyTm3XrxyFNXq+XX3/9VdWWlJTE5Zdfzt/+9jfOPvtsDpcZKKmofv4YbBa6lYWWyKsLTYg7FUl+Ap1Oh9GoTKYtEwvp3mYPCxYsUFVzCHuqOY6/9LiId0fcG0hJUpNtpQd4et3nlJ/BglyhvYy/rf4fty55nc/sKyhzHV2SU41qLG47n+/5vc5jdlfkhjYWPQfeGkEGzo3gLT2q8WRlZYXkfbv00ks5++yziYwM48fkOQz2ZUd1zROFiDCR/NRfVG2uHfuo/PrXWs6om8T2/VkdcbmqzVu4Dbnin0c8xtowm3Q8dmMyI/upvwObQ/LP/xUxf6XllLAabNzl4ONZZaq2hFgdT9yUTHTkqfcI7VrTL+6ECXF1aOK8rvA55Pw05HuWXi9Fj/6bnPG3kzPuFpxbT3CAlMcBq/4v/L7M78CprpW+atUqVVCiEIIbbriBwYMHB5Q0a7ZXL46k10u3w9sxysYtwE69O1ADzP0pdg4nIiIiUDx5bN+VuJxWfv+97odjFS0iE7mv92W8PfwexrTsS8214gHLYZ5ZN+2MFF7ybSX8fe2n7KnIA6BYWpifE+q7pVEP0gVhJpyv9i6kwlWdddykNzCuVZrqmBAtnW0JVH4b7iLKviPE5/OFBAa1bt2a/v3713IGYPkFaDra2cgRaURfOFrVVvbOV3gOFze6L51OR6/LnmKrq1ugzef14d74ERxYcNRjrYlBL7j/qkTOHxatand54H+zynn+02KKy09ewMOBfDevf1WiSlZsMgoevzGZ5gmnUprVamoGN+w6UcENxTUiU+M6qLfDmFQrrF6e+18R1z6dx/s/ltYpzFnnLsE6T3GJ8FVaKf3P50c74sax+SOw5IXf57HDzq8Dm3a7nT/++EN1yKBBg2jZsqWqTSXE2Z30qUubWQuaEHeKkm29Gp3OgMmkmBuSYsrp12Enq1evblQ9x1bRyTzUdzJvDL+LXgntVPsOWArOOEHugOUwf1/7CYUO9appd3kYzZBG7ZRPh33dYX9vqPw50Ly/8hDzctaoDp3SYTQjW/RWte0K/rx9dih4tPZr2TKOeJibN28mJ0ctMF500UUBH5SwVM484uudLBIfvQVdbLUg5LPaKX3lyHK9dejQgdyO91Dmqy4d5XQ68f35AFgPH/VYa6LTCW65NJ4rz40N2bd5t5OH3jjM4g22E66VK6nw8n+fFWF3qq/716sT6dzm1EpYHUyHVCP6IG+aojIvpcc78tdZAZag37TQQ3d1oEzNCFUpJe/9UMbWvU48XvhzrY11O8Ob7aXHQ/n76kWec902fJbGlag6YmxFsLG6BJ/0gbM4FU9l0Ae99VPwZ4JYuHChqnyWyWRi/Pjxqi6Lyjxk5ftNzFIi7Q56ljben1UT4k5RHN7WEHc1JpMpUF5ldO9V6IWb2bNnN3pCax/Tgn+cdT39k9S1F7MthTy9dhqlztNfkNtTkcuTaz8L+173W+oOE9cIwmeFomdAOsFXCYfvAWsGUkr+G5QTDiA1KomL2wwl1qbDF6TOyLYU4PT6NQQlr4Inu/br2TKOKNWF2+1m/vz5qrZevXrRsWPH2k9yZYGz6aVDMDRPJOG+a1Vt1vnLsC05Mg3z+IsuZ47jAnx+Hb70SVwVh2DhX5Un2DFGCMEV58Rxz5QEzCa13cDmUKJC/z29hHLLidHKOVw+XppWrPJXAph6UTyDe538VCJ1YTIKOqaqg0b2HG9tXE1TakJnSB2mbqsRobpskz1EaNu6N7yvm3X2YtzZauWF9HixL99Y65CcTicHDx7EYjkGZvm1r4Ff2SF9cPjHNuR/1YrcD9tg2+O/HyoPwoHfKCkpYflydVDU2LFjiY1VL1LW7qh+7z6Hkw4V2cR6Gu/ipAlxpzJJDyF0EUREKClHYiJtDOq6mX379rF9e+PVrhF6E39Pu4a05M6q9oPWQp5e9xklzvB5s04HqvwAa+Ysq6LYUUFlLfs0auBYCzL4s/LCodtZdHAO20uz8Xg8uFwu7HY7idtsvPDcv/j0/f9BhSuwOvVKH3sq8sGxEcr+q+4/7noQQQ9K7yFwNX6Funz5csrKygLber2eCy64oO6TLD/VaDi1nNbrIvaq8zH17qJqK3nhv/gcjXcCT0hIoOuoq1liHxJoc7lceLMXKmal40T6wGj+/UAKvTqGarpWbXPw0BsFrN52fH+nVruP16eXhER1nj8smotGRtdy1qlFTb+44x7cUDPJb1IPaN4Pgn2yy/cF/MbKLV4++UVtDQFC0reAErFZ9uF3YS9rX7IOKSWlpaVs376dP/74g+nTp/Pqq6/y7LPP8t577/Hnn3+GBBiEo9ziZeMuB5aaiadLdsGO6tQ99n2ROHITQOiRukiK5yfjc/vniS3/CwmiiouLY9So0FRF1UKcVEyppWESJTcATYg7lTGkQvytGAyGQBbn4T3WEWF0MmfOHNzuxkf7ROiN/L3/NZyVrJ7sc6xFp60gt6FoD89t+AK7R/0wqxn0kVWpaeMahH0FoOTNcrvdOBxOiipL+d+2H7FaK7DbbTidDmKKvMj95fh8yqQYXQlerydw3+4qPwAFD6PyPzO0hmb/gMgR6ms20qRqsVhCStYNGzaMZs2a1X6SlKGm1IS7GnXdk4nQ60l+5k4IMhV7cg5T/t8fjqi/MWPGsD1iHNkef9oVqWg3WPV/ULS17pOPgpQkA/+4rRlTL4rHWMPtrMLq49UvS3jnu5LjUuVhV7aLR98uYMMu9VwxoHsEN10cHz6VSMku+HUq/HpjqF/YSaJmhOpxT/pb830n9wJjNCR1V7f7Taqf/FJOpS30+9uf68LrVWvNLLMz8Bysnpt9Pp9/3nGQ89Pv/PO553jllVf44osvWLBgAVu3bqWkpETVx5IlS8jLq8WfDcgtcHP3K4d54dNi/vZ2gdoPc+W/VNpn6+6WYPCXqjNE4bXqqVyvaNk8B5dyePufqr7PO+88TCb192Fz+Ni6T7nHpMuD9HjpXerXZuq1ig2nF4n3IvRxAW2c2eRkWPf1lJaWhs171RBMegOP97+agc26qtpzrcU8tfbUEuQ8Pi/7Kw+Rbys5IpX4isPbeWHT1yH1ZCd3HMWoln1UbVmWY+/vczoibctxOJxYLBbsdgcul4sfyntTKU1EmhyARPigXbb6CRzlv62qku3uLlwArhqTf/NXQBcNUWPV7Y0U4v744w9F4PBjNpsZN25c3Se5doA7OKeTARLvbtR1TzYRvbsQd82FqraKT2fiPlD7A6w2TCYTF1x4Mb9Yx+OQykPI4/bgcdlhwd3gPn7+SDqd4OJRMbx6Xwqd24QmMl+0wc5Dbxxm0+5jk/rE65P88GcFT39QGFKNoUOqkQevTkIfLpVIZS78MhkO/K4Efvx2W8Av6mRSUxO3J8cdIhwdU0I0cT2VvylnqdsPr2fNdjvLN4fXpro8kFNQPVdLt4fyDxQtnJQSm92OxWrF7nDgcrvRVViJzC8J21dN6npezsioDNTwLSz1Mm2OX0uYswSyqwMUfA6BbX9C9Yk6A+hMlK+Mx+vQ4XQ4GWyuTkHSunVr0tLSQq63abeTKmWdz+6guaOYFIcSyRo9fniD3k9gCI06WuPEo0+AhLvR63WYTMpkNrjbJmLMVjIyMqioqDiibhVB7ioGNeumas+zFfPk2k8pdhxZv8eCw/ZS5uWs4YWNX3N9xks8uPID7lr2FveteJdv9maQYw1f67ImC/M28dqWH0LKjl3f5Rxu6HIuHWJaqNqzKjUhrj68bgu20hWqqgc5nnjmW5UVt074iDQ5aX1Yh9mpfuhVCXE+nxevx8mu8hr1FGMmQ/TZ/oPT1fscK8HXsAd2QUEBq1atUrWdc845REVF1XKGn5q54aLGgj6pQdc8lUi471r0zavHLd0eSl/77Ij66tu3L4lt+/CrtVoAdjidyLI9oUlPjwOtU4y8cGdzrhofi77G06qkwsfznxTzx+ZEKqxHLjgVlXn45/+K+Pb3SlUUKkD7lgaemJpMpDnMo9Jth/k3K7VBqyjfD3knP0l0SqJeVafW6ZIcLDhO1TCkDPWJS+rhH4haiLPmbuejn8rq7G5PTvXcYpn1J57cgoAA5/J5KU5Wm7Rb5dXdXxWbNm2ivDzUhOv2SJV/GsCKLXa27LbBimfV4z/cD+mrsagwRuFz6ihdHoPX66W3aRdRQhFSL7zwwrBBVGu2K/ul14t0uulTujPguBF73UUNej9VaEJcUyDhNtA3xxSh1FU16j2M6LkWl8vFvHnzjrhbo87AY/2vZHBztSCXbyvhqXWfUeQIveGPBy6vhw3Fe/g4cx73Ln+Hvyx9kw92zGFNYSaOoASROdYivtmXwb3L3+WBFe/zw/7F5NvCr8Lm5azhzW0zQxL53t7jQqZ0VNIxdIitIcRpwQ114vV6WTDnZbxBiV9LLXG8ezg94AAPkGKs5PH+W7n44gu57bbbePrpp+nbty+RVhBVX4evgiKPmRKPP9mrLgmaP1d9MWNnxbRahXSCQy2Y1cavv/6q0tomJSUxfHg9q1vpC/WHi53UoOudauhiokj6282qNtvC1dhXbW50X0IILr74Yna6u7DJpWhXfF4fbpdL8RPa17js8keCXi+YMi6OF+8JLdcFsCkrljtePMRb35aQecDZKI39qm12HnmzgO37Q82NF4yI5v/uTiEpPox5S0pY9FB4s3JmuFQ5JxYhxInzi7PkgivIemOKgdg2yv8pA1SHfr6ptypSVidgaG91/e+9fiFOutyUf/i9IsDZbHi9XvZ2bs7ezs1Vx7fOLcNkMtGuXTuGDRvGxIkTueuuu/jHP/5BcnJy4Difz8eKFStChr9ljxObI/Se+fjbfXiK1L641qzOIcehjwChp3J9HD6LAT0+BkRspWfPnnTq1CnkcK9Xst4f0CH9SYurTKmmXp2JSOsReo060IS4poAuChIfRCcEERHKQ29Ap20kRJexYcMGsrPriOyrB6POwGP9rmJIc7XvQr6thKfWfkahvazBfUkp8UofHp8Xj8+L2+fB5fXg9LpweF3YPE5sHgdWt4M8azFzDq7mXxumc/2il3hu/Zf8kr0yfCb/MBywHObLPX9y17K3eGTVf5mZtSww1plZy/hgh/rhohOC+3pfxkVtqx21O8Soc/ZkWwpCtHbBeDwePEeQCf90wO128/nnn+OpVCfB/aM8jX2iDQgjQgiE0HF7i+30bLmZkd0X07lzZ6Kiohg1ahQ6CVE2HUa9B53wgJTsdvgrJTT/l1rrJUSoNq4BJtU9e/awc6daK3D++eejr8/PxLEGPEEmR2GG6PPqvd6pStT5o4jor/5Nl776KTJM6b76aNOmDYMGDeJ362hKfAmAP+WIlEq0ah1JXI8lHVuZePnelLB1Sr1eWLLRzlMfFPHoWwX8vsqK3Vm7z5zT5eO/M0t57csSrDUe4HHROh6fmswtlyRgMtYS2LLxPdgzK/y+/XOVlBvHCJfLFbbkYn10PVF+cTX94RJ7EEhwmthV8Y0DNlv782fRGJW5+bKxMYwbrNas7T6oLNwrZyzAnVegCHA+Hz6dYFvvVuS1SkCv0xFhMhEVGUl7p+Cp+x/krrvu4rLLLmPo0KG0a9cOs9kcElCwatUqlZsFwIqtYUy7UpJb6GFuyaWBJk/iRTi2qNMV6eKUe9EjTODRYVurCJhnmbdy4fnqlCJV7DzgUu45nxLQEO2x0aFSeYbHXXdxo0u4nZrZCjVCib8Oyj7EKA/4TVk+xvZZxaxV5zF79mzuvPPOunNf1YFBp+dv/a7ktS3fs7Kg+gF4yF7Kg6s+IM4YjU/68IZ9efFJidfnxely8uaCRcfoDVchMUsjDulWlm1h2FORx56KPKbt/p12Mc3JtqjNrXqh46G+k0NylSVGxJBgiqbApfyo3T4v+bYS2saoV3oAGRkZ/Pbbb0RGRnLNNdfQpUuXkGNOVxwOB1988QX79u1j0NhqQceFkcVR/YnwmQATeEtIi8xnWLQ/FUDZu2BsA/FTadeuHUlJSSQ5Cykx+lfaQKYjiaEpvSFmYuiFo9KhYnr1ti0D+Eet4wyX2Ld9+/b06dOnljOCqFneK/o8xTeviSKEIOlvt5B/3WOBNtfO/Vh+XkjspHMb3d+ECRPYsmULsywTuDHuB/TSh9PpJFIImHsDXD4XolvU39FRYjQIbrggnsE9zbzzfSmHS0KFmwOHPPz3pzK++LWcsQOimDAsmrYtqk1gWflu3vi6hNzC0AVZvy4R3HNFIpFGF1u3biU1NVWlzVEu8AesriVzPyiZ/ffNhp7X1n5MA/B6vfz4449s2LCBpKQkbrnlltCx1EHN2rTHTRNX05Sa3LP6f50emvfHnrOeD/LuV9p8btAZaNXcwJRxcThcamH74GE3TquTkg++xWq1BlIW7emSgj3KRIcOHYjPduPZXa28cK7YhPHiGn60wFlnncVPP/0U2HY4HKxfvz6gmfd4JWvCRTu7rSC9fF94LaPiFpFktmApGArMDhwS0a8bMZeNo+if7+NwC6IEOHcmEplWTFKKC3P5SkgJ1eZXmW59TkVr3KssEz0+9MnxRF8QGsVaH5omrqkgjJD8N4RQnLQBerXbTUpCIQcPHmTTpjD13BqBQafnkb5XMDylp6rd4naQZyvmkL2UQkc5Jc5Kyl1WLG47do8Tl9eDx+cNW+j8SNELHX0S23N9l3NIP9yKDgstdF3iZLyhO/2TOqGrY6VSU4Az6Qw8kXZ1iABXRfsQk2qoX9zatWuZP39+QK0/a9asU6Ic0InAbrfzySefsG/fPvQ6L62TFZOzTqdjjnMAZb4qDZcOgyGZ21vmoPp6Cp8E628AdO7cibGpWxFVd4uU7HIkQ/OXINx3Gjka1RTlygRP7Ymu169fz6FDapP4RRddVP/KVrrB8rO6rYmaUoOJ6N89tJLDm9OPKEFqbGws48aN45A3hT9syoPG7Xbj9fnAmg/zph7XQIea9OgQwWsPpHD9BXHER4fXjtudknkrrTz0RgH/+G8hyzbbmLvMwhPvFoQIcHo9XH9BHE/enEyUyc17773H9OnTee2119i/f3/1gWV74Y+71XkLI+Kh62T1xY+BSXXu3Lls2KBEc5aUlPDbb7816vwuNRIS5xV6QtNnHAtqC2qoImUAXxfcSKE7Rdn2KZq2e6YkYjIK4qL1pCRWa8q9Pljz39+wZOUEBDifTrC9Vypdu3bl5ptvJnrsYNUl7IvD50M0mUy0b99e1bZ06dJAxPy2vU6VJjYmUhBl8oE/X5vDZ+bLgpuRfW7D+ttGVT/RF48l5vJzscSa8QFuDOAT2FanYIqIgC3/CxmPlFLxh5MSaVOEuSpTaswV5yFMoUE89dEoIU6IMIU4NU4cMZeBqScGgz5Qey29z0pA8QOqr65qfRh0eh7uO4WRLXod9VAbS7I5jvGtz+Kxflfy+di/8fygmxnga8XhbVkIBAavoGTpHv4x4Ho+GfMwf+lxEX0S29eZxStSb+LpAdeFBG8E07GGSXV/jTQjOTk5qpUcQFFREcXFjS9p1NSwWCx89NFHHDyoBCC0SjqMQe9Fp9NRakjhl4ruQPXke2n7UbRu/6E6xxs+OHQnODbQu90+xrRUT/jbba3xGlIJiz4OItQ+NdjCa3pdLlfIQ65fv360bdu2/jdqWwy+oPqsuniIOrv+85oAiQ/eiIiofph7i0op/+TIKlKMHDmS5ORk1jn7sc7ZF6Si2ZAAhZvhz/uOSyLg2jCbdFw2JpZbxuXx5M3JDOppDrsWANi+38UbX5fy6exyPDWUdy2T9bxwZ3MuGxOLTidYvXq1quZloHySs0JJJRLs/yV0MP5DGPSwutNDa6A864jf2/r160MSxu7atatRZtVIs452LdXGtr3Hw6RaU4hLVgtxmXIEv5ZcXN3gdXPhiGhVebBggdPr8bDll02qpOG7u6bQYWB/brzxRkwmE5FjBqquYV+2vlZXgY4dO6rcKUpKSgJ5VmuaUof0juTq9vNVQvqSinFsrrgM9/5qU6ow6Im+YDRFZaUs66y4hLilIoC59sbjPhyhpFOpkeA4t9DD4RIv0u1Ben0YpJfuZXsQBj2xV54fdvz10WChTAihB6xCiIgjupLG0SN0kPx3AMxm5WvonHqAds1zqays5Pvvvw+sMI4Ug07Pg30mh9S6bPAQUfzP9EKHQafHqNNj0hmI0Bsx641E6k1EGSKIMUbSN6kjU7uO583hd/G/UQ9yT69LGd6iF9FGRdO4evVqVd82m40DBw6QYIrhgraDeX7QzXw85mFu7X4+3ePbqI6NNph5duCN9E2qIzs/ocENB4I0cRaLhS+++CLsxJmZmdmYj6XJUV5ezn//+19Vibd2zXPR63VERUcxraQPHqqngqSIWK7oOAbMadDyA1RTi3RA/o10ivuENpFuYnTKg8Tr01PuEOwvqyP9RQP94hYvXkxlZfXDVa/Xc/75DZwUa+aGi7lY0XyfBhhSmxM39TJVW8W0WXjyGxbhHYxer+eii5TIuQW20ex1t8fr8Vb7GO3/tfYC4ccRISCtm5nHbkzm3b+14PKzY1WRmXWRPjCKV+5LCZTRklKyZo26bNz+/fuxWy3wxz1Kwtpghj8DbcZAfAdoOUS9LzN8gtr6yM3NZebMUEHb4XA02v+5pl/cMa+j6nUr2slgkqod811uyXtLuxCcNDvFkMs156qrXnTyp5Hxer24Kiwciqhe2Hn1AnHFeK677rqA8iKiX7eAPxqAr9yCc8tuwmE2m0PSfCxduhSvV7J6mzoqdXj7Aia4/kk7c1Z1ozGGj+d58AbNaZGjzkKfGMevv/7KgbYJlCZG4UOHFz1CCMoWJSgH1tDGVdVK9dmVv10r9mH2uYiaMAJDypFFwjfYJ05K6RVC7AKSgcYnHdI4NkSNA/MwdI6VRESYcDpdpPddzud/TiEzM5OlS5cyZsyYo7qEQafn/t4Tubbz2Vg9DvRCh17o0QmBQejRCR0GoUMndOh1Ov9+HYsXLSY9Pf2YvE2r1cq2bdtC2nfs2KEqm5QUEcsl7YZxSbthFNjLWF24E4vHwbmtBtDMHF/vdWoGN1Rp4rxeL1999VWtKVwyMzMZOXJkY95Sk6GkpISPP/44JGFmzw5lREVFUeGLYK2tJeiqHxA3dzuPSINfqIseD83/Dwofrz7ZW4xR58JkMtHZWMQmZyucbhMg+X3zcrqMvTL8YKLTofTf1du2xSC9Sm1GPxUVFSxevFh12siRI0lMTKz/zfrsYK0R4R3OP68JE3/r5VhmLMBbpGgbpdNF6X++oPkrDzW6rx49etCjRw927tzJT5bzuCHuR1KcxRj0/oTkG9+D+I7Q87pj/TYaRPMEA9dMiOOKc2JZtdXO/JVWdmSFCi6REYK/TEpgZH912pmsrCyVFg4UX8vS358g8pC6oDndroC+t1dvd78KDgUtPHd9B4MfUVctqIeqhWNtAVSZmZl1l42rQbd2Jv5YU23m3n2s/eLK9oAvaKwxrRTzsp8f/qwgr0Sn/F6lshi+M/UtzBUtIbJay96ljQmPx4PdZiPC4yU3rrrOtzX9LC6/darK51sYDESOTMP6a3XuN/vidZhriewcOXIk69ZVm1wPHDjAwpUHqbRVzyPRZkGf3GfR4+G2lh/wTNZLSh44QyQ55U6WtxjM6MNKhHz0pens3buXHTt2gBBsTGvL2QszEaZo8FRiPxCJ/YCZSN1ssD4D0cpzZs12eyCtCFSbUuOuC9JUNpLGmkenA7OFEFOFEOcIIcZVvY54BBqNQ4iANs5kikCv19M6+TBdW2UBMH/+/ID562hpZo6nfUwL2kQ3JzUqiRaRiSSb40iMiCHWFEW00YxZb8KoM6A7xpb29evXh9WAbdu2rVZ/tJTIBC5uN4yrO6U3SIADaBPdDF3Qz6DEWUmly8bcuXPVvjA12LdvnypX2ulCYWEhH374YYgA161bRzq1KkEIwV5HgtIoFCGuXUxzRtX0OYy/ERLuDelfCOhqLsPlMeGTyue+OmtL7RrkiDTFvFmFrwyc6lQZP/02h5IIJ5UxPipjfLiTTbQ6qws7yrLDvvZV5FdHIVt/Bxnky6VvAZE1aj42cXTRkSQ8oBaqrHMX49zUeG2yEILJkycTGxuLCxPfWS7GIqOwO+zV5q/FjytJUk8iBr1gZP8o/vmX5vz7gRTOHxZNZISiDerV0cSr96eECHAQqv0H6GXaRcL+L9WNKQNgzCtqX87OF4MhKF2GJQ9yG54zzuv18vXXX4fNZVZFYy0AIZq4bNex9eetGZkc5A+3P8/FrEX+OtV6RdM2LuE3+kZvClRuqMJrO4DdZkPv8SKkpCg6BYfBjDEmimGv/j1s0F7k6Bom1TrqBKemKv50wcxZpH5ODm5biCFfcdfoGbWNUfEZYIxFutxIn+TXtudSaYhGFxuNefRA5s6dGzj3UMs4Kju2QG+KAqHoxkoXJSK9Htg2DYCySi+7D7oDvnCgCHERfbuGRJI3hsY+ee8CEoFngf8BH/tfoR58GsePyEEQNQEhIDIyEiEgve9y9DovPp+Pr7/+Grv9FK4D6nOAc2utyVvDmTSqKCkpobCw8aag2jDo9CTXiEKct25xiD9Kp06dVJodr9fL3r01zAhNnPz8fD788MMQ7WPPnj254Yr+CJTva68zAWXqUFax3ePbhg8eSH4cYkIDBHrExeHyVJsrC/W2kLQgAYQeompoloNMqtM2z2WaWMOOnu7qVy83/9g8nSfWfBL29dCqD7llyb/5YMdsth2apU7wGjtRpeU7XYi59GxMPdQanJJXPjmiB3pMTAxXXqloTit9sXxfeRFunw6H3a74x0kv/Ha7Uo7qFKBdSyO3XpbAJ0+n8uETLXnujua0SAo1QtlsNrZs2aJqa6Ev4KLoP/B6PNXBW1Et4LxPwFDDs8gUCx1rJGptRIDDr7/+yr59anPtgAFqn9BDhw7VKeTVpHVzQ0B4BbA6JPnFx7CiRLiaqShRn+/9UFb929IZSTSUcGOLj5Xtgmpfse3bt/PdN59jFmUYPNWLucKkjrS4dQqG5ISwl44cdZZKiHbt2IenoPbqDcHpRqQU7M6LrF48Sskw14eq42/ovw1zlBnpVBbrdr2ZOe3GE3XeCDbt2K4u4yUEbf5+p/K/UVkcuA6ZsO2Kgu1fgMfJ+kyHklbEofTX1ppHgquC2KPQwkEjhTgpZcdaXqEZ7TSOL8mPAwKdTmA2R9IsrpRx/ZUcXqWlpcycOfPUjKB058LBcXBwAmQNUIqfS3UN2KysrDoFtSqn1GNFii428L/X62XemgzV/vj4eK655hq6d1evlnbtOjUeUseCyspK/ve//4UEx/Tr10/xRXGvDbTtcSaofMY6x7UK36nQQYv/1KiDqqNHh6cxGqrPt0dKFi6tIzVNLX5xRbYyvtqXoapRr9PpMBpDi6fXpMJlY17Oap7ca+KOAxOYVtSLfc54ZPTEes9tigi9nsRH1QmAnZsysc1fVssZddOlS5dAGbND3hbMskzA7fFWa6ddFTDvRrA1LO/jicDgKiHJtl4JOPCGatE3bNig0v5HCRtTYuZiwIuUisM9OiOc97/a06l0v0q9vX+OOhCiFjZs2MCyZervomPHjkyePDkkOKcx845OJ0KiVI9pqpFa0ov8vNhCVn7QvK4zckfqu0Tr/Vpvv8N/dnY2X375JV6vl9YV2Qj/M0sIweGUbsTfXHuUuD4pnoi+au2afen6Wo6Grl270qKF8r1ZvCm4ZWTgfo3UWennq04fghAkpT/M5JERASEOYFXzgexPGx6SZL9v3760nzCGqHOH+bWxyqRUtiQBaS2BPTNZs92Bz1GdjLp36U70zRKJPu/o3HKO2AYmhNAFv45qFBqNJ6IHxCqrYaPRgMlkZFCXzXRrrWiHtmzZEtY0cFKRbiVS0Z2lbPvKoehZyB4LljmBiKCaWriaxYOPtRDX3C/ESSmx2+1YzNUTucFg4PrrrycmJoZu3dRRrpmZmaemoHwELF68GJtNnSJi0KBBXHXVVUpkl7060/leZ0LAlArQpTYhDpTjUj+DhLsodQ2C1C+JjR1Gm9igXHwCthdmkZOTE76PyBr5nxzr8bnL+M/sz/D41L5DVTWGG4RUHPKLPJHMLOvKQwfP4d71i/lmXwZ5ttMv+jhyaD+izlY735e+/rnqIdUYxo0bR4cOHQDY5e7MQvsInE4nnipBqCJbKUvlcdbeyYlA+mDzf+HLQfDTZfD1CPhfR/h8AMy8BBbcjVz5ApWr3qWT8QDJuhIihJMpcfOJ01kC3Xg8HsWE2mJg7ddqPULxCwuc5Ki3qkVeXh4zZqhLvsXHx3Pttdei1+uPevHYrUblhmPqFxfGnJpT4Oa7P9Ta/JH9oxkUF2TurMgCR2kgdZPB7aVvliIQKlp9waF+Q9EnxtV5+cjR6rJe9sVrazlS6bdKG1fmUdKOuN2KeXlQ9FKMuqC5pNuV0Kw3Yys3kGKrVigIvY5/L/VSUVF9XwQHUSXef72SG8+oBG64S4xYtsbg2vgpm3c7kPZq61Of0h3EXnkewnh06Xobm2LkLCHECiGEFXD7Xx7/3yNGCBEhhPhYCHFACFEphNgghLigxjHnCCF2CiFsQoiFQoj2tfV3xtDsOTAoDqAREWZ0Oh0XDf6D+CjlBzR79mxVdOFJp/glcIbxW3BnwaHbIXcijrLlISaNSy65RLV98OBBVSTi0VKlibPb7UjpwxZZrdKfNGkSbdooka+dO3dWhaqXlpYeU9PuycJut4cI/MOGDWPSpEmKL4r0gF3ZX+YxUeSJDAhxBp2e9jEpdV9AFwPNnmZn+eNKoALQu3kn9PrqycsaI1mypBY/KmMrMFavuKX0sjLj32xyqX1aEoiid3IHuse3Ub16JLQNvLrHtyG6ym+ppjlfmMm1FfPN3gzuXvY2D6/6kFkHTn4dzGNJ4iM3qR4anrwCKj7/uY4zakev13P11VcHatKucgxgo6MXdnuQf9zhdbDwgROaekRFxQH4eYpS59UbJExKCbbDyvj2/IR33VuM8PzCVTG/cEf8VzyU+BGdo9WC/FpXGrJ7LQE4VQidEvAQTB0mVavVGhLIoNfrAwtHIESI2717d6NSjRy38lvOcrAGpWTSGViT35ZnPiwieHixUTpuviwZktTvo3DbbwHzcbddh2lXuj8gwAkhyI5RZxwIR+SYQaptx4pNSHftVXXS0tKIjo6hzK08N6UEj9PGcFOwFk4fSBnjnJ3B5VnV+9w6Qak9hmJ3dbL3UaNGkZSkRJYaO7UhZuI4MFT7W5YtS2DT/kiclTakV/kdJLjKae0uIuaKo68K01gN2jRgITAI6OR/dfT/PRoMwEFgLBAPPA18J4ToACCEaAbM8LcnAWuBk1+g7mSjj/OnczAq/nFRkZiNLi4bNh+d8OLxePj6669PDQd86+9Q9n7dxzjWoMu7lIsHzSY+WvH7SExM5KyzzqJVK7W2p1YfqiOguS4Gp9OB16v8+O2REolkxIgRnHVW9UrPZDKF1MI7HUyqq1evVt0jMTEx6sLNzm0glZVntT+cIgi0j0nBqGv8SrJbfBuVhtUS7WPLli2UlZWFPyHIpOpyOcktX4o9qloLqhN63hp3Py8PuS3k9dLgWwOvl4fcxmdjH+Hvfc9jVMx+TCLoaaOrUcOxIp9PdzUuweqpjrF9K2KvuVDVVv7Rj3gKS2s5o27i4+OZMmWKf0sw3zaW/a7W1fnjAPb+DGv/XUsPxwkpFV+k78+B/JX1Hu52q/UQBoMBo9EYMNVnedrwa+lgtR9UbdQU9PJXhc0ZVxXIUPOenzhxYmDhCNCqVSuio6v9dp1OJwcOHKh/HH5qVm7IPuQOqZJwRASV23L4Ivig+ElemV5OpU3d9y2XxBMfo4cUtdbs4Dpl8WB0eei1PZ82tsMY/MK+iDJTbFGCAerC1LMT+mYJgW2f1Y5jXe2WGoPBQIce6bhltZBl8pbQLzoo0KLjBRDbBk9+IY41W+lWsY/+JVtBStz+KTHPeRYeaaJ79+6MH68ur5Vw99WICLNSUxXwWvQs3zcaX5Cfep/SHUSfNxJD8wZE0NdDY4W49sCTUsodUsoDwa+jGYSU0iqlfFZKmSWl9EkpZwP7gSq99eXANinl91JKB0pgRX8hROMqxZ6OmNOg2ZMA6HU6IiPNtE4+zNi+ysRVWFjIzz8f2Ur7mOHOhcP3q9v0qRB3A8HJYqUEl8tNz7Z7+Mv50xnXbxlDB/dEp9PRq5c6AfGxNKmW5hYiLdWTuNRBcpfWXHjhhSHH1lwVH0th8mTg9XpDfHGGDx+uPMCqCDKlhvjDxdZhSq2DbnGtMRgMAUHREiORUoYElATwC3Eulxun00VufLXgKISOIa160jqhHo2gH6POwBDzFh5puZZpHX/loRZrGRzrRC/q96U7HYi/80p08UE5tmx2yt756oj769mzZyDdjg89MywXcMgZi9sVJBit+48iVJ0I9wNLPsy5FhY/FlpFwhSjBCYEOcRLKUOEOKPRiEB56Jf54phpOR8fuobNO/EdoaW6ogC7vg85bP78+SHBUcOGDWPQILV2SafThXXlqIn0eLDM/IPK7+erTORx0XpaJFXPsz4J+3KPynim4A9q2G3vxqP73uaPwtCSUaP6RzKyvz8nXItqIc7n86Er2ggoWjij20uUUU+q7RBCJ9BFKgLQnpy6FRBCp1MCHIKwL609ShXApqv+LHX4GBi5GJ03yBe4720AWGdX++mev2sWOtxI/33jkRFYI8YGTN7BGFo2I/a6iwIBDj4E6x2DkW4f+Jc2fUp3HlVaEdX1Gnn8TGACMP+YXL0WhBAtgG5AVaKw3kCgrpSU0iqE2OtvD3mKCiHuAO4AaN68ORkZGcdzuMcFi8XSiHF3pUd8XxJNys2r0+kY2m09e3JT2JPXjuXLl+NwOFSru+NBuDELPPROeIZYY7XZUaJjW+kdVHq6E6nvS/uYL0g0rcPn8wXMBDrhZUi39eiN97Bz1WKslmGqwsVbt25lwYIFgeSPR0p5eTkbNmwgoqfE5V8UCQGmVvFhzXsWi0U1jp07dx71OLZ78sn0HKKtPomBhnYNKoDcuPujdrKzs1V5sfR6PR6PR9V3j/iZJJqUyXS3LQ6PV4fP7+fkzi0no6Bh4wges0f68Ljc6HQ6vF4fLqPE4nOyaNEijEajWogEdLg4K9GN12PHKwXrvK0Q+PBJHUajgdaVkY36PPomfkyMwYUOGGraT0vXaM7SDyPTc5gdnkMc9JVCI4vJNaV5J/qcAcR/U533rPjrOezs0hxLYtQRjTsqKorIyEjKyspwAl+6J3A7s0j0ORBVGt0FD1K5/H0OtryG8pi+x+aNEHRfSUnzssV0zP0YvS+0BFhZbBp729yNy5iE8LmJcBcT4S6kPGcbFZXbSdBXkqC3kGS0YvJ58LlcWHTNmF4yinKPAJwsW7Ys5N4MR4qvL51d1Ysj59pPWG8ZGMgZt2fPnhCBMDk5mdjY2LCfv9vtVs07q1atIjJSnTA34bO5RC3fCoDj2zmU3Ht5YF+0Phmns1qbN+ePbRR0CZ8Dsy6Cf8PtD/7OqkNXMKPkOnzo8eoEXv8YdToY3q2MvikVLPLLQpEOF2l+jb/b7aal7hC+Sis9tucjAK/PR+vybA4kdcDjF6p/W7QTy+G6o3HNiREkBVkS8n/+g82DqiOxg8csJSxa1xq9XofH48WoczMoMgOHw4lPSqyRHdm80wo7F9L8i1kYXS48Hg9Rngo6Olax2Zzuf3+CnMr2zJy7hhYJoQKx6NGCFsYITA4d2bHtqDD6ffukJMLroFV0ISuKDkJGbmM+/rDU++QRQnxB9WwWAcwUQiwFVPWJpJQ3HvVolOsZUfLRTZNSVgloMUBN56NyIJYwSCn/C/wXoHv37vJYJaA9kWRkZDQuca43DbLPBW8+JpMJq9XK5SMX8fFv12BxRLN7927OP/98mjVr1rD+7Kuh4mswpED8bWAILQrfoDEX/QvKsoAgLUfyUwzs/Zegg64H21IOb7+HSF11iL3BYCAqykOPqOl0b7GUaFcyazPbUmZNAJTcP717h6+J2hCsVivvvPMOUkpinHoswgsIoqKiSOycSnrX9JBzpJTs2LFDlUetdevW9OzZM+TYhrClZD+/r8tA6uEA5QzuMYCxqf3qPa/R90cYpJS88cYbRERUp0oYPnw4EyZMCDrIB/vvBJ/y/e1zJ2EwVOdCunjouNqjU+sZ82+r97Gr/CBerwUpJa4kAzFlOiIjI1XpAEB56O3bk0KHlGy2uFpR4TNj0PswRsQSGxHFrWOmEKFvYJUF137IPkj1PSno1v1RuhlSqXLELXZU8MmueSw73HCNb1Oad+TIUeRt2K8qJdQlYys7rz/7iO+r/v378/bbb+N0OrHTnB8sF3OjYRZx0cbAwiTCk0WznBeh9UgY8njdQQINJCMjg/QhfWDJY3D4V/9TLWi+MUbDiGdp0eNaWtRYIEkpeeuttzjkTgx4dp9zzjmcOy4dnBVEe01U/t//EaFXHoFOp5N+/foFfKBqxXkWfPGVEtgARFBOercIaD2SvLw85syZo/rdxcXFce+99xIbG/aRhs1mU+XIdDqdDBgwgPh4JYei9PnIfvg9pN9FwbQzm979BqBPUvbbIyzs+7laGBLm9qSnJ9f9HsJQ9Rs+VOzhrT+t7C5TktgKwGAyY9BHkNrMwANXJdK5TQ0vK58X8p7H56zE6XQSpXMxNDsfk8eH2WzGaDTSiRLWxkYrUiBARFvS02uU3quBb+Bgsj//jSpHPFOJhW6de2Bs21I1ZlD8AV2/FRIZ6cNqqSRaZ6WfeTVSSvR6PUlj/kZ697Nxbt1DfkklLsDj9SJ1OqJSsjB7LbiJIyoqGp1Ox4bcrpzbKhqrw4fNIbHZfVgcPmx2H+UXtKLiwGHKjTFBo5X0Kt5Cp57L6bt/JTTrC837V7/i2oevI10HDTGn7gH2+l/bgZeBZUFtVa9aEUJkCCFkLa+lQcfpgC8AFxCcKdQC1AxTiQOOnXd7U0efCC3fB/SB/HFREQ4uGzYfIXy4XC6++uqrWjOBV+HzWLAeeAh31kU4Cj/HdfjfyOzxYK/frySEcH5wUedCwp0hh9rFQN77+VJ+WX0ulXZlxWgMKgYsPAcY2XMFd134JTed8x2Du25k764jdzqvyqdX5Y8SZVN+OGazGb1eT1bl4bDnCSEaZNpoKD9nr1Dpe/7I21DrsUeEOwdsy8AXGiGYmZlJQUFBYDs4eiuAayf4lBV7qSeCEm+1AKcENdSSaqEBdItvDYhAShBrjPJJLFu2TOW4nZubyxdffMG+Q4omealdeThEmBTN4cgWvRsuwAFYapQ0ihwONeq3JpvjuKvnJSSY1DkETxeE0UDiIzep2hyrNhOx+chzHyYnJ3P55dXanzxvS36qHIfN6Q7VaeYuUyJD594ARVvxer3k5eWxatUq5s6dy8aNGxsc+Z1UvhK+S1fKftWk1XC44g+lgkSYh2NOTg6HDlXrI4QQijlTZ4DIJKJjYkIKqO/YsaNmN6FExEGHC9Rtmd9hs9kCKTWqqApkqE2AA0XTWTPVSPC84yspD4kydu2oXhB3O0ZJf6WEhWutPPpWAbvLa9Q8FgbGD43mlfuaB8qYqdDpoXmaYmaXID2CLpmF6IQIaDd7nt+7WoAD9uS46x2nLjYa8wD1Irq2xL+r/LVSdTodEXpJf/MKInTK3FjpNkEXpUSd9ZcM3B43Dr9mMa9VPO5IPZ3jNxEVGRVwA9mb4+bDmWV8+WsFMxZWMm+llaUb7azPdLKXZA7FtMJmUM8hfS0biepmA5cF8lbApg9gwV1K1PSnPeGXGoEx9VCvECelfK4hr3r6SJdSilpeowCEslT7GGgBTJZSlTxsG9C/akMIEQ10ptrcqgEQOQSSHgFAr9dhNptp1zyPkT2VlB35+fmqLNNSSsrLy9m2bRvz5s1j1jdPkruyJ97ij7DbHbhcLhwOJ9aK/XgPXg6l7zQ8yqw2P7gWb4YtQ7Np0yZcbg9bD/Tgg1+vZ9WesRiM6qoLVSbL1KQCzk1bSnqHh5E5k6H8S/CWNfBDUli3bp3KHyXKrggTVZNJliW8EAehfnFHmmqkwF7G2kJ1YMT2smxsxyolg/VPODAU8q6AvKtAqif5mubiPn36hGoY6kgt0iGmBQbdkSfG7RbXGqhKISOwRCufYVlZWaDkWnFxMZ9++ikul4t9h9ph9RlZ72yDEAIhPIAkPbV/LVcIg5RhaqVODHtojDGSW7tfEHbf6UDkmIGYh6k/u/jvF9YZ3Vcf/fr1Y/Dgan+wna6ufFg0ieKYar8liWI6c7vdOHbNxTptFBteHsTX7z7HTz/9xJIlS/j222/54osvwictd9ugaCvsmQW/30n3A6+Bo0aSV30EjHgOLvkegko41aRmVHa3bt1ISEhQtdXUsjdIiAPoUSNn3L7Z/DFvFqWl6iCSiRMnhgho4Qg371ThORyaEse5dU/g//apRoIzWZRW+igub1zS30qbj9lrm/Hej2U4HB6Vf2Oc0cJjU5tzx8QEzKbaxQpvcj9cbmUecu6KJ8LpCQQ46aIj6X7T2USYqoXtSpuPwtL6xxk5pv7qDVLKoIL3EqNwMyiqulzfioquFJVWIN0eSn5agCMoHUhWh2SMRiMP3nEeg3s3cGEnBCI6UrV4MPlcDGm3ovZ84q4KZYHTCBrkyCOEiAMcUipPASHEOUCV1/cvUsqMRl01PO8DPYFzpZQ1f7kzgVeFEJOBOcAzwOYgc6tGFYn3gn052JdgNBrxeDyM6r2Gg4WtOVDYhhUrVgSEt5ycHCorKzHoPIztu5Lh3TYSTpHr8/mwWSsxe/+J0b4KWrylaP5qoyofnC/Yl0EPLT+s9bzgydTjNSKS/opo3w9KXoOKbwAPer2iZQzMHVLitSzF4FgBhU8qzu+xEyF6Auhq/6F5vV4WLlyoauvRoiO5kQV4/EJqibOScpeV+DCamE6dOmEwGAJazbKyMgoKCgKJJBvK77nrQjQUHp+XTcV7Gd6iV9hzGoyUUPRPAp4QjtVQ8S3E3wAoGoia2eHD1tytGdRAtcarzvxwDaBrvKJZE/6VuDXajUQiECxZsoQOHTrw8ccfBxIQF5Yns6iiG170/olR0jLCSK+E2h/SITi3gjtY22SEmItqPTyknNhphBCCpL/dTN6Uh8Cfud5QUErld/OJu672z6Q+Lr74Yg4cOBDQ8hZ6m/HWrlQm9J9Aau6XpDh3hMQ3dDPsoWv8Hra5urHEPoQyXzwHd65l5jsruWB4VxJFCZTuUWp1WurxI0oZAGe/CYld6jzM4XCwebO6hNuQIUNCjuvVqxe//lqt5du/fz92uz3EJy2EViMhOhWsSponn9uGdcv3QLUwFi6QoTa6d+/O77//Htjes2cPXq8XvV6PN0ylAtf26vvcoBd0am0i80D1Qm5XtotmCQ3z5d2yx8Hb35VyqCiKiAjAV61jOStmDXelLSWh19jaO6gac2UcqT6JlODY1Aw9PvT+hXPMlAkY42Po1Mquqne7J8dFSpgKG8FEjhlI6evTAtuO1Vvx2Z2BAAlQgjkCAqHXhQkHA6JXgwQvOtY7+uBaupQBHhP2Q4WBudlt1JPXLpkbrr+edu3acdPFHrbuc+J01b9w15kjkDYH0iuId5VzWfbPtLyzIzisSoqWY0BDvbEXAjcA24UQd6NEh37j3/etEOJJKeURl97y53z7C+AEDgU5dv9FSjldSlnoF+DeAb4EVgFXH+n1TmuEHlq8DQfPRXiLiIw047NauXTob3z8+9XYnFGsXFltGm2VdIiLhywgObYspCuLI4oYs+IgLKWST8zrnUuEcwci9UMw1+LPEi4fXPITSrmwMOTk5Kjy2QVMGoYESHlFqU5hmYOonInenoHHUz2BeDwepfA2brD9rrxEpFJfNuHWsNfbtGmTajWs0+m45qqr2bXzG/ZXVptWDlgO0y8pNHtOVaqR4PQimZmZjRLiPD4vv+eGzy6+tmj30QtxzvXgrpH+pPQdiLsahDGkYHynTp1CA1+kVJnR9zoSVJq4znE1zCmNpGVkInGmKCpcNsWP0+3CHimJsgtycnJ47733apQYEizzpKlWtukJjgYFggSoaUqNSq9zQdKovpsgpm4diJ18LpXfV6dSKf/oe2ImnYMuqhGJk4P7NJm49tpreeeddwILHbfbzZy1+cA5tDP0YGzkCtoYVG7VCKCPaRe9THvwoMeEYnZjBbj8PlN1fhs6o5LfK+1uxRxaD5s3b1al1omNjQ3RdgE0a9aM5s2bB3JC+nw+MjMzSUtLq/sCOr2SM27DWwC4nC76GLexyaFcIzExkYsvbniEYmpqKjExMVgsSrofl8tFVlYWnTt3xnMotDJGsBAHStLfYCFu90E3I+p3v2XTbgcvTitW5X5DejDpXExt8T/GJ/yKSL2p3n58Ph9/bC3hesCdHYO3NAK9kMpvTK8n7nrls+jS1qQS4vbm1D9OY+e2GFKb48lXviPpdOFYs4WooDxyK7cG6YbcNgbErCXO7MVuhx2uLlhlNOvWrcO8dA/By9PsdklcftWVATealskG/nFbM+atsOB0SaLMOqIjdUSZBdFmHVGROqLNwt+mw3jIh/3lD4ioKCXp6anozx3mtwgchMJN/tdm5eVqfLBJQ4W4rlLKKg/f+4FzpJRbAIQQ7wO/cBT1U/0pSur8fUopFwBaSpGGYEiBFu9C3tUB/zifz8YlQxbw3ZJLkAj0Oi+je69iWPcNCKFeUQgBe4vGsCnnIlwVS7h06O9EmhQTn8vlwuvdQ6RnIrrmzyhBD8EPukb4wVVRr0lDn6RokOJvIKvkDzI3vUrvdrtomViIx+NGygi1u4u0Q9HTEDkUIvqo+vb5fCFauLZt25KQkEDH2BYqIW5/5aGwQhwoq+JgIW7Xrl3hNVm1sLJgB2Uua9h964p24ZM+dEdTCKU8TMoIz0Go/IkSzzls3bpVtWv06NGhx7t2ga96hb/XmRTwhwPo4jeHHilCCLrGtWZd0W50Oh0GvQFLtCTKP9fWrBHZeWAvZrMNJaZJIT2q9jI7IUgfVP6kbou9POyhZxIJ91yDZfYipF35jXuLyqj8ei7xtx75Z9OiRQsuu+wyfvzxx5B92Z7WfFE5mU7GbMZGrqSlXnnwCp1Ar9cr6Se8Qd40Ehx2B16vF7PZHP5BkdwTxr0NyQ1f/NScdwYNGhSSLqKKXr16sagqzBIlxVG9QhwoOeM2vIVPSlxuF+0MeSToyjmMmbFjx9Z6vXDodDq6d+/OunXVC+TMzEw6d+6MN4w51ZNfiLe0IlD1oGsYv7j62H3QxatfllAzt3CnmDzuT/wbrSP8WtGk+h/NO3fu5GCRk4r4GORGJcBOCMDnJvrC0RhSleC5zm3U/q31pRlR+hFEjhlI5bfV5bDsi9cFhDgpJSu2+CcWnwe8TobFLcNgNCKcTtY6FLcCYXPQMksdQ9nquktDath2bWuia9t6gluqSG0H3/xfzQErZv64dtDZn8xe+pQqJ4WbgIkN65uG54mrFEJULdPjgWBP7r0ofmwapxJRoyFR8UnT6/VERETQqWU2Q7uvp2ViATef+y3De6xHCCUqx2QyERlpJjKuCzHd5pI2fg433nQXvQbdy2cLriW3uPor9nq9WC3leA49pVRa8CqrB5OusFF+cKBEWW3atEnVFs6kUUWnbiNZt3cQny64ig9+vZ5FWwbjFrWY04pfC2naunWrKqWGEIIuXRSzS4eYlqpjDzTCLy4rKwuHw1HL0aHMy6m9PEyZy8q+yqOotOGzgGVW+H2lb7Fs2WKVD19KSkpYDUSwKbXEE0GJL4aqtZZRp6dtdP0Ry/XRNb5aEDRFmALBDTXp3r075v6pKk1gL3MxLdkIngZWzbCvBG+Q9kdEQvT42o8/Q9A3SwzJWVX+8Qx8leEXGQ1l4MCB9O8f3l/RbI5E1/4c9g94j9IhrxLVJo3YmBiiIiOJjo7GZAoNVHG73FitVrwSiOsA7c6Bfn9hV7sH4fJ5jRLg8vLyyM1Vm2XrMmvWzFO5a9eueoPEAEjoBC0GKho//63dJ2InZrOZgQMbH5lbW1BVOHMqqLVxNctv7ct14fHWbhLMKXDzf58WhZgNJ42N4YXu/6oW4CBQM7UuqrT/hw61wpMbXa228bmJm3pZ4LjOrWuO043XV7/pMnJ0qF9c1TyXle/mcIlfEnXb0AsPA2PWIABXQh/yvcrzre3BUnRB19K3TGbIzSfI6Cd0EN8hEFzRUBqqifsU+EwIcTvwH+BdIURVMMOTwNJaz9Q4eSQ9rDyIHasxmUwIITh3wDqEbj0GvUCvV8KkA1qsuOsg+RnQK1FSQghGjhxJ27Zt+fqrFAZ2mM+QbhsBZWVjs9mI8P6EybkN0fI9usX9p1F+cNBwk0YVZrOZTp06sXv3bkotCSzdPoTothNIH95cSYlS/mn1wbbfwLEZzIouPpwWbsCAAYFs6B1i1WuR/bVEqIISiZeUlBRINeL1etm3b1/IZB+Og5ZCtpZmqdrax7RQCY1rC3cfuabL8gvI0DxZAD7XHiryvia4yMro0aPDmw0dQaZUZwLBaRs6xLY8qqCGKrrHVZtw9XoD7iQfZKkn7Hbt2nH1NVdz3+r3qa4W4WFcXLZygG0xxE2u+0KOdXD4HnVb9Pmgiwp//BlG3C2TFC1GsfJb9FVYqPjiFxLuPvIHmBCCK664gqSkJPLz80lKSqJt27a0adOG5ORk9T3nu12p7LDmVURFFmazGUyxHKwwUuiJp9ibSIk3kWJfItbKFCaOuoq+fZVcc8UZGdCY6GRCtXBdu3atM21ImzZtVKZMp9PJvn37QoSqcDg7TsS1JyOw3c+0k8Otrz2i3JJdu3ZFCBEQTgoKCigrKwsb2ABKcEPkSEWLlByvJzFOR2mF4v/o8UJWnpsubUMjSQvLPPzr4yIsdvVvMb13Kdee2xo+3q0+IbH2ORuUfJRVVSa8m+MAe+D7N3c2EtG72n+xRZKemCgdFn/lB4dLklfooW2Lur9j85C+CJMR6U8y7cktwL1PSaGzcqt/gS194LWTFrOeKL0yR8aMeBDTwa24XC467q9e4JuMRlpcd1l1nsNTlIaO7hlgJbAZeBy4FTjgf/UEbjkuo9M4OoQBWrwHugQlga3JSHR0BFGRJkwmI3q9X4DTt4TUryDl1YAAF0y7du24596/csB6Ez8uvwCHu/pH73Q6sVfsxHfwQmKNNXyw6vCDq6IxJo0qakaLbd++QzGbNnseItTZuympLvezc+dOVToBQJUTq0ONdBkHrYV4fLVHRvXooTYhNLR6w/xctRauZ0I7Lmk3TNW2rugoynnVNKWKakHF7XIztNsqhF8tEBsbG2IqAOr3h4s9On+4KoI1cQDOaB1enVpLOHXqVHZZ8yl0+BcIIgKT8DIi2l8CyZZR90XKv4Scy8FbQyjXTKkB9HExxE29VNVWMW0W3rKjy+Kk1+uZMGECU6dO5ZJLLiEtLY1mzZqFLhp0eug6Ca5ZBtevhRs2YL4ri7ibl7Ey6jqWOwaz092FQm8yNqeXr776itmzZzeqhmgVLpeLjRs3qtqCI2rDodPpQn7vDY1SXXYoGY+sntMSDBb6NjsyLWdkZCTt2qktD5n/3955x8lVlov/+06f2Zpt2d20Td30HjokBCKggJEiREFAvSggiIJ6f9eG/V7FXi6iXmkWEEFUEFQgoYQWEghJSO8km2R3s313Zmfm/f1xpp0zM7szm22zPN/PZz7kvOe85zwzzL7zvE/dto1Qipg4SB0Xl8iOA8muyua2EN/8TQONLeZKBB9Yls/Cya3QtAN0YnPUsUZJlR6IWuF87X7y9mhT8FThInO2rlKKKRaX6q4MXKo2nwfPSeYi0oY1jrgrNdgJWnNKQSQDNK8Sd+1KTjrpJHztfiqOGt93p8OBx+Mh/+Kze33uUJOREhdphfUlYBzwfuDDwKUYsXLLtNbDqMu6YMJZbbgz01FwBYxfHWtMno78/Hyuu+46xk2/nt/+64PUHY+70oLBIB3t7YTDCX/0vhU9xsGBUfLk4MGDprFMMrWs1q4DBw7Q2tpqxBmU3Ga+uONf0GXUnHrmmWdMp+bMmUN5efx9FLryKHHHldhgOMQ7HakXR0h2bWzfvr3XUiP+UIBnD5ndxxeMXcyiMnMm3Y6WQxz3t/V4r5QEticnlVT+ElCRtmYBKooamFK9F4DTTz89tdLcvQdC8RpyuwJl/RoPFyXf6aXaFy866nA6mHTqHDweD7W1tXz0ox/F5/Ox+nDCZ6ZcnJJ3GJ894s7qXJO69I0OwNHPwbHPE6vkGiXvQvAt75f3MFIovOoiwvnxjMtweyctv3lkcIVQCvKrIc9ojTV69Ghuuukm5s5Njmx/8cUXufvuu1OXIemBjRs3mrof5OfnZ2RBT9X6r7e/987OTp5/5U22B+KWb5fLRWVL351XSaVGtm4lmIE7FVLExVmUuM6uMN+5p4FD9WZX8blLfKx6T0RRa7AoryU9u1Lr6+tjJYOmbT+CDttQ0bCMkm68lXuh0yy/tc7croOZtQlLcqk+9zoNrU4O10dKokRcqYsLXjEumHUd2J2sWLGCUzodKAwLnNfrxT1nKs6aE8vAHwwyUuKUUg8opT4E2LTWz2ut/6C1/ovWenevk4WhJ28FFF1vHrNXQNW9MPqHYO95FxXFZrNx7rnnsvLyW3n45atZvyueNBAOawKBAH5/gLC9Ckb/KG0cXBSrFW7KlCm9V0LHaLo9ZoxZiYjtin3LwG2JNWn8Pjt27EiKgTn77ORdltUal67oL8RLjURpbm7myJH01wM8X7eZ9mA8dq7I5ePU0TMZ5S5IyvZc37DDOr13Wv5gPvaeDnnnQP5FdHfHC2eePuM1XC5n+vjDhHg4gJ2BShK3zyeamZrINIs1rmL2BL761a9y7bXXUlRURFcowEuJnROUk7MLE5TrUD0ELJ0VgnVw8FJo+V3yA4tvMgpjj/DM02yx5ftoPf9k01jLHx5PqyAMFm63myuvvJKLL744acOxf/9+1qxZw4YNG8ybyB6wrjsLFy7MKMFgypQpppZbLS0tSWuKlZdfftkoZeI3FB2lFC6nk7LmtdDdN2ucVYnbv3U7ujN1PG40uSFKkiUuIbmhO6j57gON7LL0VT1ltoePryyOW08bLR6HXpIaXnjBUFidgSBTdh7DZrOD3Vg3Cxe3GD8TR81Fzq2WuB0ZWOIAvGeaPTH+9VvYsT/ynkN+0CHm5r1Jvr3dqCU448OGbE4nM490UFBQYLjygbyLlmX0zKEmU3fq48AFGCVGXlRKfVEp1XMvDGF4UfZFQ5FzTobCayLWt74FddfW1nLjTZ9hy7Greezl99AdjCsynZ3d3Pvkqby2fmePro5ULo2eEhqsJLtUIz/iSkHp7aZzuv1pNr56j2ls5syZVFUlKyLWuLieiv46nU4mT55sGuute8OTB18zHZ9TvQBnpBzC4jKzZe/1+iyVON0NLZZG24WrAAgX3WyKPawqOcr5Z+Wlr3VlSWo4HoyXm3DZHP2S1BAlWi8uyvZms3X2pSNv0xmKy17iLmRumWX3n+hS7XwVDpyXbJFUXhh9l/G3kLba5rub9mULsJfHN1K6K0Dzrx4eQokMlFKceuqpfOITn4i1mooSCAR46KGH+OlPf9pr4e26ujoOHDhgGst03XE6nUydOtU01pNLNRAIxBSYvcGxtOq8WGyyLeyH3Y9n9FwrVVVVpu4OjqY2gj2ttQnWuEnVTmwJe5cjjSGa20KEwpofP9jIpl3mQuOzJ7u55YoS7ImTGiwbph4SStra2mLZtJN21+PsDhnFfW1O7N4QebMiiqxFibNa4vYe7u4xCSOKc3wVzpr4plAHQ+zcE/l9ChoxcKcURqygUy8Bbwnh1naa7344Fj8HoBx28i5IkbE/DMnUnfoHrfXVQBXwWYweqr9SSh1USv1aKXWJUip9zxBh6FFOKL8DJjwPFd8Be/EJ3a64uJhPfOITFI+7lt/++wq2HZzEwfoKHl77XrbvL+CRRx7hxz/+sanfXyJvvfWWKZszLy8vI5dGFOu1O3fujCsp3rPAE3fLhkIhppSYszVTWeHACNhPZG9rXcrrolh3xYllR6zsbHmHnS2HYscKeM+YuNVwUZn5B+KNhl09xuQl0f6UqSQItkLIM2pyb92j2HrQ3D5o0aQ0Lh2tLUV+Rxnfnwj9ldQQpdZiidvebLZuPHv4DdPx0qq52K3u/47VhtxN98A7l0HIkrHqrIGxf4cCc9yXYMHlpOj6y0xDbQ//k+Cho2kmDC7jxo3jlltuSZlQUFdXxz333MOvf/3rJEUtymuvmTdRkydPprQ08x6iaTePKXjllVfo6IjU2cTG1tAsc9bttocyfm4i1tZ/vo5Aj5my/s1xJc7tsjGhymLlOhDg139p4pVNZmve5LFOPn9VCU6HxWKdhSXu5ZdfJhgMosKa6Vvr4i22bE4KFrZic0Z+G46aSwWNKrBTUhhXT0Ih2Hc4Q5dqQveGI55yGto9RnHiUACbCrMk33Cldo9aScO37ubA8o/R9FOzxd5z+sJYaZbhTlZpF9rgFa31V7TWi4HFGH1UVwG7lFKf6PkOwkjCbrdz0UUX8Z4Lb+SJDZfwm6dWsutwTez8sWPHeOCBB/jf//1f9uzZY5prdWksWrQoq5pJlZWVplpyoVCIHTsiliuloORzsXN+v59JlfupLjEUsmnTpiUXto2Q5E7twRIXvZfp+h5KjVjLiiwonUKlL271mFJYbeoQ0RH0s6Vpf4/PN2F1pRZcAjbDgvbcc8+xdktcsXU6nbhCr6fuiRvcD6F4mOsuf6lJiTvRTg1WavIrcSYohY3+Vhq6DBdQfVczbzWavztnV80Dn6U6fOdrcPTTUP9fgOUHzbccxv4D3L2XQRCg4LL34KiuiB3r7iBNd/VN4RgIfD4f11xzDStWrIj1sExk9+7d/OIXv+B3v/udqZxQd3c369eblYVsrP9gKHGJSRl1dXWxDPVEuru7k9raueZcZU7oOLQWWlIrm72RuHn0dnYTSlDilMO8jgY27zQdW12qv/lrM/9+zZzNXl3m4L+uLcXrMX++jmALdCSsiTYnFKWupRkIBHjpJWMzOO5AI76OQKzFlvL6KFiQkDRzdAPWNh5TLNa4TOrFgTku7s3SWahg0GjVBszybcTxTjdH/jGLd676Aa1/eCKlK7rgknMzetZw4IRyZ7XWdVrr32qtL8ew0g1yFKwwHJg7dy6f+9znmDx5ckpF7MCBA9x9993cc889HD58mCNHjrB/v1k56S07zIpSKmWgcQzvGeA5iWAwFHPrnjXb2IEtX54+oL3aV2pSKI7722gKpE8wKC0tpaysLHYcDodNPVmjtHd38VzdW6ax88eZ37NN2ZKscRlnqXYfSs7SLPwQEE/vP3x8NHuOGD0ao4spjSmSXiyK3c7uSQxUPByAw2ZnkiXbNepSXX14o6k12eTCKsbnV4BzgmFdi9ENrSncfqM+bcR+2ouSzwkpUU4HxTeY+362PfYs3fsOpZkx+NhsNpYvX85nP/vZpPjYKJs2beIHP/gBjzzyCC0tLWzatMm0wfL5fFlZ/8HwGEyYYLZop3Kprlu3zki2iuByuVi4/IMw2hKve+AZ+sKUKVNiCmFeu59QOByLCXQvMreK6y25ob7JbO0vLbLz5Y+VUpiXvJb7uvaZB0ZNTVve5fXXXzcskVoz4+3DKIjFFOavXIG9OD9+sb8Zms2bNatLdWeGyQ2eRTOx+YwwkTdLZoHW6EAX4aBi+obNHHlwNJ3bHUlKI4Byuyj6+KV4l2en3A8lWStxSqmLlVLfV0rdq5S6L/rSWoe01hlW3RRGGj6fj1mzZnH77benLWK5bds2fvKTn3DfffeZxidNmmRShDLF6trYunVrPA5PKSi53RQHNnH0AU6eZ09ahBNx2OyMy68wje1r7dmVZHWppio18uzhNwiE4rvlMk9hksIGyS7VdZkqca1/hER1xzU71q0iscXWi1uWYHfYsdsjf/qda6DLHI+SqMRpDbv8ZgVockH/Z2xNs8bFtbyD1jrJlbq8an78wNdD+r/Kg8pfQ+kXJP6tD+RdtNQUW0QoRNPP/5B+whBRWlrKokWLuOmmm2JFuxPRWvPaa6/xve99jyeffNJ0btGiRX2q1WZdd6xKXCgUMnV3ADj55JONepQ155lvVmd272aK1+uNrWPezkhdtMja5z1zISqh231vyQ2J5PtsfPmjpWl7qvq6LJ6BNJmp4XA4Fg9YcbSVksaOWDwgQOFH3g/llkLQFpfq1HHZlxkBUC4nnlPmcsxTwiFfpdFju8MGXYoZezYZ64HdbZpjLy+h+JarGPvvXzPq1qtzqt1eVkqcUuqrwC8j8y4HGoDzgKZ+l0zISYqLi7nsssv49Kc/nVRXKYrV/ZCtFS7KxIkTY5lEAB0dHSYL38GGCew+bFbIzl1gUVhSYHWp7mnrOS6ut1IjWuskV+p7xizCniJ7d37JZNP4O+0NHO7oJTtQh43m9olEEhoaGhpi6f0AB+qr0S7LLtNqjUuIh2sIeWhKSFxx2R2Mzcte4e4NqxK3o/kgO1re4Z32eBFTh83OmZUJbdR8y1LfzDkJxj0O+e/tdznfLSiHg+JPrTKNtf/jBQLb9w6NQL0wduxYPvaxj/Gxj30spWUuGAzS0mLuS5lp43krVuvd7t27TWVO1q9fb2oZZ7fb423tKi1rXR+VOIhvHn0dhnITjYtzjqvCOcVcSy7RGldZaiffm6ykuF2KL15bypiK9EV186xKXJpODZs3b46t89O31hmlOyLWf+/SJTgnjoHRlpqeluSGSZbODQePBun0Z5aB7D1rEW+WRNcKYy2e3LSDgu5WcMbrZrpmTaHsvz/D2H/eTfH1l+VMHFwi2VriPgqs0Fp/BghE/nsRUNPfggm5TWVlJddccw2f+MQnkopTJhK14PUFu93eYwHOZ1ev5vnNJ5muz7NtMLIXeyC5zEjPStzEiROTSg8kFhXe3LSPg+3x2By7snHuGMsCFiHP6WHmKLOlsFeXaueLRl/UKModK2Rrjcupqqoib9wXzfM7/gn+yOfWfciIiYuwq6vMFA83Mb9/kxqiWMuM7Gw5xNOHzIv6orKpFCbEDOI9DZSlSbtvBYx9Aly9V9IXesb3ntNwTUv4LmpN08+GnzUukSlTpnDjjTeyatWqHssV1dTUUFFRkfZ8T5SVlZnqS2qt4+2vQiFWr15tun7JkiXxbNLy+UYcWZTWA9De8/qSjqgS5+00lLhoXJy9ogTXTHPWfGJyg1KKqRZrnN0On7+6JGX3hkQyscRprWPrTkFLJ2PeacLpdMasW0XXrTQurLCsgUfMlrg8r42qsvgGUmvYcygzl6rtlIW8Ur6IRO/E3GPrAQVOH773nEbl/d+h6o/fI//CpSbLZa6RrRJXrLWOds4OKKWcWutXgaU9TRLevdTU1PDJT36Sq6++OuWiuWDBApMClC1W10Y0G7auro4tW7aw/9hY9h01FAS322WUBmtM7qlqktmaodpLckOqUiOJWapPHjDvtk+umG4qKmwl2aXaS6kRay20vPeBvciU3h/lzDPPRPnOArelQtDxiDXOWh8uNANzPNzAFL+s8BRT5IrvkLtC3fz7HbMSd3aVxf1iy4OyrxtKq8qDktuh6rcZ1z0UekbZbBTf/GHTWMczr+B/qw/1CwcRm83G3Llz+exnP8vFF19Mfn5+0jXZJjRYSRePu3HjRpOnwW63s3Rpws+jww3llsLFh3veVKajsrKSwsLCmCVOA8FQEPvoUtwWJS6wxZzccMY8c7u5T19Rwtwplg2RFR1OVuJSWOL27t0byw6e8bahoEatcK5ZU3Avinx2FfPNExu2QNBc4mSypV7czhQdJlLxx/UOGgoqYnFvNjTzm1+n8MJJjH3qbip+8Hk8C2bklNs0HdkqcbuUUlGzySbgBqXU1cDxHuYI73KiSQi33HILl156KYWFxo9seXl5j0kGmTBt2jRTMkVjYyNHjx419Uh9fvNJ2O027JECk3S+kDorM8JEiyXuYHt9r6U+0jWmPu5v4+Vj5hi588f27MZZbFHiNh3fS6dlcYsROg5t/zCPRVypa9asMZUeKCoqMirfKwUlt5rntP0NArugy6zE7eo2K239nZkaRSnF1EKzSzWU0IWhwOlNqqMHQNFVMHETTNwIJZ/ttcC0kB3eZUtwzzF/H63lGIYrdrudU089ldtvv50VK1bgdhtxULW1tcybN6+X2T1jVeK2b99Od3d3Um/mhQsXmrLoAai0KJBH+uZSVUpRWzMJVyC+NgXDYeylRUmWuMBmc3LDGfO83HRZMeedksfXP1HGqXPS1ItMpGW/Ud8uirsIfOa1MhwO8/TTTxunu7qZuKceh8MRyyIuuvb9ccXJV2607IpN7oa9T5nuZ81QzaRzw5s7unjypXZs+W5sjjDKrlnq+jczP76Fkq9/zZR5PRLI1ob4JSBaVOc/gd8D+cCN/SmUMDKx2+0sXryYhQsX0tTURHFxccoSAdng8XiYNGlSvLwIhgtx48aNseMD9WMIuk5FqfgYjXfCmNRFTAtcPkrcBTT6jeyyYDjEwfb6pELAiViTG/bu3UtnZydP1603KYDVvlLmjJrY43sa4yuj0juKus7jsedvbNzDyRUpYgxbH8HUUspZA95T2bx5cyywOIqpxZbvXHDNTOh0oOH4T6Er/oOiNezqNC+i/Z2ZmsjUojFpEznOrJyT3o1ry0s9LpwwSimKb/4wR66/IzbWufYNutZtxrO4b2EQfUV3Bwm3dRBubSfc3omO/NdxuB6tdVqritvtZvny5SxdupTW1tZkpaoPjB07lvz8fNrajMx1v9/PX//6V44di+f2KaXMVrgo/RkXVzaaxO1lm8uOsttx1dagnA50t7GJiyY3RGO+bDbFskV5LEudg5Yaa3240plJXU+efvrpWHb+tO1HsIU1bo+xhjiqyvGtONV8j4qF0JpQ3PuZTxl9Wad+AEju3LDrnZ4tcW2dYX7+8HHQYVSwHeUJU+ao4z8m34WtZhkUT+5xfi6SsRKnlJoOeIAdABE3anI6kCD0gs1my6i9VqbMnDnTpMRZXYiVlZUUjL8DDic0PO9cCx1rwXdayntOLKiMKXEAe9vqelTiSkpKKC8vjy3iWmu279jOU81mWc4fu7hXE75SikVlU3n8QNzNsq5+e7ISpzW0WJrdF1zJ0WP1PPSQua5XQUGBOYFEKaP8xpGE0o6tf4aEn4SGYB7NCSXX3HYnY3z9n9QQxRoXl8jy6hOznAh9x3PqPDyLZ9O1blNsrOmnv2P0Pd/qd3dU59o3aHv034QaWwi3dUQUtQ7CbZ1of+of8IpAgOaWEMWfvCLl+Sh2u71fFDgw1rDp06ezbl08YSnx3wDz589PXUjYqsTVbzZacDmz34yM9Rawn3jkV6tT0dDQQGlpKc4p4wm8He+MGdiyC+/pJ9BoydqpwVLkd8uWLbH+1PZgmKk7juKw22Mbx8KrL0JZs4FnXg27/ho/Dgfh6ZugswHmfpyJ1S5sCsKRN3ikMURrR5gCX+rN/6//0sTxpgD4j0M4BGhuGP1dvPZOmPPxPr/14UymvVOvBd4C7gI2KaUuH0ihBCEbrHFxVs4++2xseaeA19JGpfHOlLWCACZk0UM1itUa9/TO1zjWFc9Sc9kcnF09v9f7QOoWXEmdL/xvQiCxvIGNLtfF3H///abSKjabjQ996EOmTF7AyN50Ju5MzS7jXeEFJMbDTeznTg1WplncqVHG5pUNSFkTITOUUhTf8iHTWNfrW+ha+0a/PqfzxQ0c+eTXaf/HC3S9spHA5p107z9MqKE5rQIXpfmuhwjVD25UT2815pYtW5b6hLeULleCRVuH4EjvWfOpsB9vNYWTtOe5Y/G4PSU39ImkTg3xdffYsWOmjePEPfV4AqFYWz9bvo/8VAV0x5wOp309eXztV+CVb+NywPjKzOLiXtzYwYvrm6CrIaLAwftLH6HWu9mozzduZIbuZ+rL+gJwmda6ArgS+H8DJ5IgZEdRUVHagp9lZWXMnh1JNU/o4gBA18tGZmcKJlqSG3orMwLJStwr7ZY4lMrZFDgziD0BZo2qwZ1QRLPR35qcYGHp0KB9y3nokedMVeoBLrzwQmpqapIfouww6pa0MuwMmmOhBioeLkqe08OYvGTLxfLq+SMiADmX8SycifcMczbh8Z/8rsc+pdnQffAIxz73fciwib0VHQzR9tizvV/Yj0yZMiVtUtacOXN6zH5tybNY1ev6ltwQOtJgqnXX6XXG4nF7S27ImkZLUeNIUkNXVxf3338/fn8kXk5rpm+rw+f1xv5u8y9/D7Z8czJFjLkfh3N+Yc7aBdjwM1hzG5PHmDeOqTo3NDYF+dUf9xgWuMh3crxnL1eUP0CrrxbO++2IjZfN9F1Va62jzSf/AqSvGSEIQ0A6a9zZZ58dj7vzLgavZTfWeCemIrkRrGVG9mVgiaupqYllYfldmnqfn3BCPFxvCQ2JuOwO5pWY29msOxaPF7PRBa2Pms6/uWdmUuHRhQsXcsopp6R/UMFKcKT+c94VGGU6nlwwcPFwUazWOJtSLK2cm+ZqYTApvtlsjQts3knnM31TPhIJd/o59unvEG5J3xkFALsdW2E+jjEVuKZNwDnJ/F1p/fO/0H1UAvuC0+lk6tTkgt2QvjdzlNYkJa5vcXFBixLX4XOxa9cuuru7k5Mbtuy2Ts/iQV1JHRUYVYvWmocfftgUCzj24HHK/TpmIVQOO4UfvrDn+09dCRfcZ6rhBsDWPzKl8R6Tx8Sa3KC7O/nFL/5Ne1u8G4ddBbml+vs4Z17O5kl3wACGgQw1mSpxsW2wNrZeI1OlFXKWVK6NUaNGJWehld5uPu56lSKnuR0WQJWvBJctvjg2Bdo57u/5R8bhcMRKjRwtD4GKF+CcVFjF1ML0MV+psLpUE4P+Sz0vgY7L0xUs5E+Pm4sCV1dXs3Llyp6tWMoJoz6VNKy1jZ3t5sVyoMqLJGIt+ju3ZBKlHikZMhxwz5qC7xzzhqDhG3fRveedPt9Ta03DHb8gsG2vabzoY5dQ9fvvMuavP2PsM//H+Ff/yIQ3Hmb82gcY+9TdVD/yYyrv/ba5M8H+w3S9uonBJNXmccaMGVRV9bzhSbLEHX095gLMhtCRBmw2G7bI33iHz0UwGGTPnj24pk0w9VENHjpq6tyQFce3G0XFoxSOB1c+a9asiRUTL2lo4/QXdrL8lX3xtn6A77wzcFRmoESNWwoXPQwec7z05PZHIhY24/m73gnELcDtdTx11/d4s67cNGdVxQNMOOfjsPROtNXCN8LIVBnLU0rtj76AooTjA5ExQRgyKisrGTXKbDlatmxZci9Xz6Kkdk01+fdC093Q9Ftovh9a/oij7VHGeTToLtB+0H721v8LQk09yjFt2jTCSnOs3Fhwokrc+WN6T2iwYq0Xt735IM2BdgAqPPGei+FwmLVvVRPW8ffq8/m46qqrMqvBV/hBsJvdx/X2ebR0x8sJeOxOxgxApwYrS6vmxGroOWx2Vk3u2aIhDC7FN3/IlJEYqj9O3Ue/TPfevvVVbX3g77Q/bm5R5VtxKsW3Xo177jSck8biqCjB5vMk/f3YRxUmZTu2PfzPPsnRV2bMSK41lknZpC5XtVlZCbQlx5xlQPCI0dEkao3r9BrK07Zt21BuF86p5sLh1j6qGdNgcaWWTGf79u3886mnqDrUxPKn3+a8p7Yw8WATHrc59rbw2vdn/pyK+bDyMVPpkXHu/TjD7dDVCDpEU2uYxpYwHFnPod9dw/27VphuMSN/Gxde/UGY89Gk7NmRSKZK3HLg6oRX4vFVkf8KwpChlDK5MMaNG8fCham7IlBitsb5HPug/g6o/yIc+wIc/SwcvYUaXoJwM4SbINzE3kM/hD3zoO3vaeWora3l+KgwQaexUwyFQnjtLs6qmpP1eyr1FJpi8zSwvn4nBHZR6DQWVa2ho6OT13fErXZKKVatWpWk1KZFuWDUTaahnWFzBt3EgqqUbcL6G5/Dw09PvYnb51zGT0+9idqi1MkOwtDgmjKewo9cbBoLHWuk7rov0b0vO0Wu67VNNN55j2nMOXkcZd+4OeMNT8Fl7zEddzz9MqHG5jRX9z95eXmcfPLJsePFixczdmwG31mloNISXtGHuLjQUcP6HlXiOnyGErd161a01v2X3GCJh2t3jueFb/yI8594i2WrtzP6SCtKGT1dE//P5b33LNwzzGEhvVI8GVb+LRZz51Ahajy7jczVzkYIB9n58tOEHrucn+66lkA4bvXzOoN86hOnYh9/Zrq7jzgyKjGitV4DoJRyAdcC8zHqwyWyBkEYQhYvXkxlZSVNTU1MnTo1fXNrzwLwnQMdT/d4v4nuFohXGWGvvxDohvpvQn7qGI8WZ4CDljWrlnI89p7b2aRjcdlU9iS0/Xq9fjtnu4zAZa2hs6uTfUdH09gaV9jOO++8lM3Ae6ToGuh63Sj6657Prs4lQDxOZyDrw1nJc3o4I7FHqjCsGHXbNYTbOmj7879iY6FjjdRd+yUq7/kmzgm9u92DdfUcu/17EIq7EG35Pip+/P/SB8CnwL1kNsGKUbiaDAu17g7S9tdnKbp2ZeZv6AS56KKLYu3/svq7qzwJ9iZYDuteg9nXZTxddwdjGbl2ux0FdPgMy3tjYyMHDx6keOZk0/+nPic3RCxx4YCieWMBB37+EotbzPGHXo83Fn/smjaBwus+QN77zurb8/JGw8WPwpPXwOFXmOrdxo7OWiOTt6uBna88y371fnZ2JoSc2N1cd/kEKiaM3Pi3VGS7tb4XuBXjp22X5SUIQ4pSinHjxjFnzpzkchpWSv8LVM+ZohNc5h393kCR8Y/gfqPHqIXDHY3csf5+tDvBhavBvaOXgO0esMbFbWjYSbDFKFIcCAQIdgd5c3c8HnDOnDmcdVYfFk7lgMpfwORdMO5v7Gwzx9cNdGaqkDsom43Sr96QVDIiZpHbf7jH+TrQzbHPfpdQg/nvq+w7t+Ksye57ppSi40xz4kvbw//qt6zZTLDZbNTW1lJbW5scvtET1s4NWSY3hOrjmZhKKXRRHjqhePrrr7/eb8kNoUNbOf5cMUd/PZHGp0dBS9B03uN243A48Jw0h9F3fYWqP/+I/IuWoU6kmLu7EN73B6g5j8nehFZvWvNSyxn8uf7K+Jgzj8XzK1l2coq6fCOcbDs2nA9M1Fo39bcgSqkHgHOAPKAO+K7W+tcJ588Bfo6RGfsKcK3Wel9/yyG8S3DPgLF/h/YnObTrLSZWjAWCoLtBB0EHmOgJwmE3oEEHORjIJ6gVDqWhax04426lhq4Wvrr+Po7723A6nQQCRjxZ9SE7LYeOUldXR2VlZWpZemBK0RgKXT5aAh0AtHe3sK09xCTCdHd3E+h2svWgsfsfPXo0l1566YmV41AutNbsajErqVKnTUhE2WyU3nEjaE3bo3GLduhoI3XXfpHKe76Fc3xq623Dt+/Gv9HcmaP4hivwnd23fqYdp85GPflarDtB99538L++ZdA7SmRN+VywuyAUKZnR9g60HYL8zP7Woq7UKJ6x5s/7jTfe4IJzzkU57OigYfGMJjdEOzdkQrj+IId/6SLY5ENrjdagE5ymDqeT4ovOpui6D+Ce3c/1/x0eeM+vmBL8NiTkzxwJRNdSBe5Ciory+OSlo96VpYiyVZP3A+6BEAT4DlCjtS4ELga+qZRaBKCUKgMeAb4MlADrgAcHSA7h3YJ7BpR8hn3tH4Hyr0P5t6HiezD6h1D5c/LH/pIy33iwjQLlIYSNA4FI4/qE9lQtgXa+uv4+jnY2AcbO3G53UHHEzphDxs7cWs09U+zKxoLShIVRd/Ja22i6u43M0c0HptEdcuLxeLj66qtj/SFPhKNdTbR2d8aOvXYX1SnqtwnvbpTNRunXbiJ/pTmQP3Q0vUWu9eF/0vbwv0xj3qWLKbqh524LPREuzMO3/GTTWOufBjfBoU/YXVBuyZ7PwhoXrDPXgyycOI68vHjXB7/fz5adO3BOMZcQyja5oe33DxJschhBuRrC2NAowjbFO/NrGP+Pu6j4/uf6X4GLYnNQecGX8Pksa5uyG8khDi+fvLSYovyBK0Q+nOlViVNKLY++gPuAx5RSqxLHI+dOCK31Zq11NB0u8nUhagu+BNistf6T1roLuAOYF2kFJggDRk1+ZMenjJi2vf6IS7XLUMrau7v42oYHONhuXlBPKprChP12VGTHumHDBkKh7EsIQKJLNQxhP6+1lcXcRVFX6hVXXJG6xU8f2NVi/vGdWFA5KEkNQu6hbDZKv/6pZEXuSEOSIud/cxuN37rbdJ1jfBXl//2ZE3O7AfmXmjMUO/61llBza5qrhxFJfVQzT24IRTJTozgry5KSudatW4drllm5yia5QYdCtDy02vh3pJ5m0GVj0+xqnrjiZJb85n/In1qT8f36is1uY9KUSnAXGUWBHV7wloDdyfLFPhbPyKyI+kgkE3fqb1KMfdtyrIEsU1CSUUr9AiNxwgtsAJ6InJoFvBl7mNbtSqldkfGkvGyl1PXA9QDl5eWsXr36REUbdNra2nJO7lyUGXqWOxxoJ9DtBzQum2ZXRx6nuQNo/+u8+OzjPNi1mYNhc7ufqfYKzlITeTq8i0C34Srx+/08+OCDVFdn75bs0t10BwIoAthVmIPdRdSH8qDNyd66Impra6irq6OurveuEpmwJrA98p4NHI2Bfvn/mqvfj0x5V687Z8+m+MBBfC8l1Gk7cJidl99K/e2r0C4n5d+6F3t7R+y0djk4+OHl7Hy97w3gozK/4gtTUejFUR+JswsEWH/nL2k/J/MC24NJ9HMe1eJmekKLvPYt/2RjcEUPM+MUvvI6+Qlz97QeJxQaE++cALz99ttM91QwOuG6fU+/wBvTMgv+92zYTsWh46ho81K7Zt17i1hvK+ek+XPYtGnw6vLZAsX4Q4Vgi+RUBoIU+bqYXLiT1avTx0CO9HWnVyVOaz1xMASJPOtGpdTNwKnAMiD6bcwHjlkubwYK0tznbuBugNraWp22h90wZvXq1el77w1TclFm6FluR10Z69+KBGOEHBwIleB2uwhqxYv5Ozga7MCVEGEwr2QSX1rwIZw2B53tHbz88suxc4FAoM+fz/PrDrKpfiNEEsLe8I+h8Ege8+cv4Kqrrop3pegHnl2/H1dD/D2dM/s0lladeNeEXP1+ZMq7fd3Ry5bS8OWf0fbXhPZX7X4m3v049ooS/B0BSCgCW37n7dSef8YJShyXuenaRpp+8kBsvPqt/VR//bZhGScV+5w758K9P4yNu/Vhlp22GFzW4g/JHPv7OtoTPs/pp5/C4ovO5sCBAxw4cCA2HqqpNhffPd7BvAz/Hx/+9RN06bgHwTW1iX2+k7jg7AtYsSIzZbO/8JZ3svGAOQ7wvz4+hhk109LMMBjp686g+EiUUquVUjrN64XEa7XWIa31C8BY4IbIcBtgjcQsxFQAQhD6n5qChPZbysneQCEhrfjRkUWsbzRXqq8tGst/zrsCZ6TTw+LFZivA9u3baW7uWw2rxaVT0eH4DvvNwBgau2Zz+eWX96sClyqpQTJThUxQdjul3/gU+RctM40HDx/D/+Y201jhdSvJ6wcFLpH8lcshITu0e+f+pOcOO7wlUJwY8xqGo+szmhq0uFPto41wiiVLzC7aV47shz50bvBv2on/9U0ktiX0z+pizLRFnHPOORnJ2J/Mm+pmVEF8rbt0eQEzagYqRD93GBQlTmu9TGut0rzS/SU7iMfEbQZiEaBKqbzIuc0DK7nwbqfKV4rLHjFYKxfNITd31i3mhbYxQNxFMSF/NF9e8GG8jviiMmbMGFP7Ha0169dntkBbmaj9KOI74s3+SqYvuQ6vt39jQY52NdHWHe9B6HW4qfKV9DBDEOIou53Sb96cpMgl4jl5LqM+fVW/P9tRUYJvqXnj1JYLCQ5JcXGZuZdDR81KnCOixM2ZM8fUqaWpo53uKnO8bCbJDS33/ZVQd2dMh3OObWNfYTkXX3xxv24cM8XjsvHtG8u5ckUBn1k1iivOTemIe9cxLKKVlVIVSqkrlVL5Sim7Uuo8YBUQ7S30KDBbKXWpUsoDfAXYqLXOvk+JIGSBXdmYkFcROTIWxpfaI5YpbWSIVvlKuGPhVeQ7kxUqqzVu3bp1hPvQpLtrx8OU2dtjx/6wE39F//cU3ZlUWqQSmyQ1CFkQVeTyLlyadM5RVU75nbej0hXiPkHyLzd3cGh/6gXCre1prh4mWOvFHe49uUGHw0klRuwVxmbL4/Ewd645/KEu39x+r7fkhmBdPe3/fDFe/gTwzGugtWAuJSVDt6krK3Zw6fJCTpvrG5Zu8qFguKzOGsN1ehA4DtwJ3Kq1fgxAa30MuBT4VuT8ycCVqW8lCP3LhKhLVTnA1FRGU+py8bWFH2GUO/WucP78+aYCoI2Njezduzer59fX1+PoXst8d9x9q3Hx2x3/5N4d/2Ldse20J1jPToSk+nDiShX6gLLbKfvWLeS9L67IKbeL8h99IasaZdniPW0+jqp4M3TdFaDtb6sH7Hn9QpVFiTu63mgx1QPhxuZYXTwAW0Eetrz4JtK6edyp/KYCyL11bmj9/RMEO7tQkXg4W7Ef54Q2vJNPuBCF0M8MzHYoSyJKWvK2zXzNvwEpKSIMOhPzE4r0KidoY3daZPfztdpKKrzFaef6fD5mzpzJW2+9FRtbt24dkyZlnsy9+tl/s3T8QTrCXfy7IxLEq1wc7mjk0b0v8igvYlOKmoJKZhdPYNaoGmaOmkBBCstgbyRZ4kSJE/qIstsp+/YteE+ZS2D3AfIvPhuXpSH7QDwz/5JzaPr5H2NjbQ//k4JV7x2+lpvCGvCWQmfEPdrdbrS5Kk/fbzlotcKNNrtLJ0yYQFlZGfX1Rumj+mIv3d3dsQSHnjo3hDu6aH34KYKBjljKlndeAwHvGJzSy3jYMVwscYIwbDElN0Rcqj5bN1+tfomx6q3UkxKwBhq/9dZbdHZ2prnaTENDA0f2P4XbGWCm6wgFNj8oOxpzYcuw1uxuOcxf97/Md978I1ev/h8+/dL/cvfWJ1h7ZAv+BLdIOoykBnONuCnSqUE4AZTdTv4HzqHktmsHXIGLkv+BcyEhZiuwfR+Bt3b0MCM1wcPHTNauAUMpGJ1dXJy1RpzDosQppUzWuKZiH4FQ/L0EDx0l1JQ6L7DtsWcINDajtHG98oRwT2vCN3Vws1GFzBAlThB6YWJBFd5oA3vlwqVCfKnqZSa5m2NFf3ti8uTJFBUVxY6DwSAbN27M6NmrV6+mpsLoLudSIW4e9SITfM5eZhnsazvCEwde5bsbH+I/XvgRD+1eQ1t3euWxrvM47cG4W9bncFPpG5XRswRhuOCoLMN75iLTWOuf/5Xm6mS69x/m8FX/ycEV/8HBcz9GYNeB3iedKFkW/bV2a4jGwyWyYMGCmPUxbLfRmO82FRwPbE52qepwmJb7/4bf78ceSaTyzGrE6bOTN0WUuOGIKHGC0As+h5vrp7+PIpePKl85X656hZneiDujexeEGnucb7PZWLTI/KOSSRuu48ePs379eiZWxn9EFhQ08ZMFp3Gjdym3z7mM88cuZlxeeQ93MWgJdPD7Xc/yH8//kHu2/5NGf/Iu3BoPN6mgSpIahJykwJrg8MTzhNs60lydcN1TL3L4g7fhf8PImQs1NNPwtV+Y4skGBGtcXN2rseb2qUiyxFUmF+8tLCyktrY2dtxY4ou164PUyQ2dz71O1+4DhMMhbITBrvHMbjTa+VWfkum7EQaRYRETJwjDnbOr53F2daTKzf5/QCCh9nTX65DX8y510aJFPPPMM7HjgwcPUldXR2VlZdo5a9aswWnvpLrkCAA2mzJKB/iWkm/byhmVszmjcjYAzYF2thzfx+amfWw6vpd9rUdI9RPQGQrwl31r+fuBVzi7ah4fqDmdap/hitnVanGlSjyckKN4z1iAvbyE0DFjg6U7u2h/4jkKPnh+yuu1P0Djd/+P1gefTDrnX/82XWvfwHv6goETuGwu2N0QitSCbK+DtnegIHUMWlJmqsWdGmXx4sVs3WoopI0leXTvrsft8aBIndzQct9f8QcC2AmhAPeUZlzFYC+tBV8FsKWPb1AYKGSbLQjZ4rW4Pjp7r+tUUlLC5MmTTWM9WeOam5tZt24dE8rfwaYMdczlcqNc08CRrPgVufI4dfRMPl57AT865QbuX/YFvjh/FReOPxmfI7kgZjAc4l/vrOdTa3/GnRv/xO6Ww5KZKowYlMNB/qXnmsZaH07tUu3ee4jDH/p8SgUuyvGf/G5grXF2J1TMN4/1EBeXVOg3hTsVYPr06eTl5QHQUJqHBoIRa5w1uSGwdQ9ta40ez3ZllEHyzG2IWOFOy+LNCIOJKHGCkC0eixLXlVlxTmva/4YNG0wxKok899xzhEIhakYbrtS4Fe6sjJ6V7/SypLyWj9dewK/O+AwfmXouxa68pOvCWvPCkc189pVfsun4XtM5scQJuUzBJecaSQMRAlt24bcUuW17/DkOf/A2Atv2msaV0+ykCmzeSeezmTen7xNZFP0NWWLiUrlTAex2OwsXLgSM5AatVMylak1uaL7vMQKRHqt2Qjiq2/FUB7HbbKLEDWNEiROEbPFYmmr734gV/u2JWbNm4fF4YscdHR28/fbbSde1trby6qvGD8akyv1AxAqnAF+PlXhSkuf0cEnNGfzyjFv55Iz3MTpNSZRwgqUhz+Gh0itJDULu4qiuSHKBtkWsceEuP/Vf/Tn1X/gB4Q5zso9jfBWVv/sffOeaY8CafvZ7dB8KdWeMtehvmuQGrXWvJUYSiW4ew3YbzUVegqFQrOB4NLkheLSRlr+tJhgKodDYCeOd14A72nO16tQ+vCFhMBAlThCyxTEG7AkuTe0H/6ZepzmdTubPn28aS+VSff755wkGgxTlNTMqvxmlIlY4nODt+2Lqtjs5f+wSfn7azXx2zqVMyB+d9trJhVXDt66WIGRI/qXmWNX2x9fg37STw6s+T1uKjNW888+g+qHv4545meKbVpktedv30fHUiwMn7GjL5rDxbfAn9zjVbR3ozngWuXK7sBXmp71tRUUF48aNM25Z4gOIWeOi7bdaH/wH/nYj8cNOCFtRAO+UDqNQeUkt+FJb+oShR5Q4QcgWpZLj4vroUt2+fTvNzc2x47a2Nl5++WUAJkZcqW53xArnWQw2X9/ljuCw2Tmrcg4/OuWTfGnBh5hRPD7pmrklE0/4OYIw1PiWLcFeVhw7Drd3cnjV5+jesc90nXI5Kf3yJyn73m3Y8o2/MdfUCeRdcKbpuqaf/QEdHKDacZ5iGDUtfqy10b3BQlJ5kdGlvW64orUqG0uMkIqoEuffvJNwl5/G+/9GMBLaYVdhvHMbcHsisbTiSh3WiBInCH3B6lLt7L1kCEB1dbUpI1Vrzfr18YX6+eefjy2wE0cfSLDC0SdXak8opVhcNo3vLPko3158HUvKaylwejmpvJb3jju5X58lCEOBcjrIf7+lVZQlQcE5oZqqP3yXgivOT1KGim+8EhLa5nXvO0T739YMmLyZxMVZM1OthX5TMWfOHJxOZ0yJC2tNMBgksGU37X9bjb8+fk+7qxvvrBYc0fctrtRhjShxgtAXUiU3ZJC9ppRK6uCwbt06tNZ0dHTErHBKhampOIjL5Yp7dDJMaugLM0dN4IvzV3H/si/wX/NXpcxoFYRcxOpSTSTvfUupevBOXLWpLc/OmmryL15mGmu668GB6+SQgRKXnJnauxLn8XiYO3cux0cZyQ1gWOOCh45y7Oe/j1nhFJq8WfV4C1zxydWixA1nRIkThL7gngUqnqRA6AgED2Y0df78+UasSYTGxkb27t3LCy+8EMsOqxx1FK87EOt1iK0Y3Ol7KQqCkBrn+Co8p8wzjSm3i9Kvf4qy/7415j5NR/ENV5iyVYPvHM2qA0RWWJMbjq6HkDlpKikzNQNLHBi1KqPJDWB0jtFa03WgLnaNTYXJm98Ut8KVTDf6ugrDFlHiBKEvKCe455vHMmjBBeDz+Zg5c6Zp7Pnnn2ft2rWx40mjD1iscGeCMvdLFQQhM0o+fx22PEN5cU6dQNUfv0fBJedmlLzjqK4g/zJzB4jmX/6JcJe//wUtnAC+hA4s3R3QYC6wGzxqscRVZqZk1dTUUFpaGktu0ECX308wIcYvMCmIrzRhnZF4uGGPKHGC0Ff6mNwAyQkOb7/9Nn5//EdhSvWhuBUOwNu/8XCC8G7CNa2Gsc/+lupHfkT1Iz/CNXVCVvOL/uMylDv+9xg61kjbQ0/1t5hG0tTonl2q1pZbmbhTjVsrFi9eHIuLA0xtuABKljRhd4gSl0uIEicIfSUpuSFzJW7KlCkUFRWlPOdyBKipasBkJBjAeDhBeDdg83lwTavpU+kcR0UJBasuMI01//rPhNs708w4AaxxcUd6VuIydacCLFy4kOOlqcuRNJb7qB53DNOnI/Fwwx5R4gShr1iVuMDbEG7LaKrNZmPRokUpz00Zcwy3K+FP0zkJnKl7KAqCMDgUffQSlDceBxtqbKb194/3/4OscXGHXzUlTSUlNmShxBUWFlJ+8vxYckMi4VOLcSRa4UpngEcKfg93RIkThL5iHwXOKQkDYejakPH0dErcGQtDZmtBP5cWEQQhe+wlRRRefZFprPn/HiXc2t6/DyqbDY6EpKmOI9Bq1IwMd/oJNydsFO127KWpLfrpWHTKybHkhijteW5mL8+3WOFOz1JwYSgQJU4QTgSrNS6LuLiSkhImT55sGnO73YwvNxciFSVOEIYHRdetxFYQjykLt7bTfO9j/fsQuxMqzO3ConFxIUtSg6N8FMqeXcLT9OnTaao2W9jqTppGeXCH+UKJh8sJRIkThBPBa3F9ZJihGuXkk81Fdc8+sxZ7aHfCiB08EpciCMMBW0EehdeuNI213vc3QseT22OdEGmSG5KSGrJwpcbm2O34PnIRnV6jiPjRigKm33gJKjELVimoOiXNHYThhChxgnAiJFniXgcdynj67NmzWb58OaWlpSxZsoQzF1kKBnsWgb2gHwQVBKE/KPzw+7CNKowdhzs6afm/R/v3IVWWzWEkueFE4uESWXrZSvZ99RpeuHYZju9+mhnlFpdwyUyjDZgw7HH0fokgCGlxTjIK8YabjONwKwS2g3tGRtOVUqxYsYIVKyJV5es+ab5AslIFYVhhy/dR9LFLOH7nPbGxlj88TsHVF+GoKOmfh4xebFjDogkNjVvB33JCmamJOJ1OPrhqVXzghS+ZLxgj8XC5gljiBOFEULYULbiyc6nG0GHoeN48JvFwgjDsKLjyAuzlcYVNdwVo/tXD/fcAdyGMqo0faw1H1vWbJS6Jwy+ZjyUeLmcQJU4QTpQTSG4w4d8E4ePxY1shuOelv14QhCHB5nFTdP1lprG2h/9J8NDR/nuItV7c4Zf7zRJnorMRGt6OHysFVSenv14YVgw7JU4pNVUp1aWUesAyfo5SaqtSqkMp9axSKruS24IwUHitSlwfLXGdz1nuezooiXgQhOFIwaUrcFRXxI51d5CmX/6p/x5grRe3+T6Ch+tMQ/1iibNa4Upngzu7siXC0DHslDjg54DJlKGUKgMeAb4MlADrgAcHXzRBSIF7Pqbw0u69EDyW/X061piPxZUqCMMW5XJSdMMHTWPtf1+D9gf65wHjzwFXQneFQAuhvVtNl/SLJe7QWvOxuFJzimGlxCmlrgSagKctpy4BNmut/6S17gLuAOYppaYProSCkAKbF9yzzWPZWuPCndD5qnnMK0kNgjCcyb9omTk2zh/Av2VX/9zcUwwLPxO/dwhCDS0Qjjesz7Rvao+IEpfTDBslTilVCHwduC3F6VnAm9EDrXU7sCsyLghDz4kmN3S+DCQ0o3ZMAFfNiUolCMIAohwOPEvMP0P+DVvTXN0H5nwciiYBEGqPFPUNGDXp7KVFKOcJhlt01EPjtvixskk8XI4xnAJuvgH8Rmt9IEWD4nzA6p9qBlIW0FJKXQ9cD1BeXs7q1av7V9JBoK2tLefkzkWZoX/kLnW7mVYYd6O0HnySTZvOzHh+Tf69VHnj84801bB7b3qZcvGzzkWZs0HWnaFhqGXO8yqKAvG/3X1PPEvjpJ57jmYjc3H+pcw49i0Cxz1orSEUINTVSptzFLtOdN1qWsu0BNnbvJN566X1/SL3cCEXZc6GQVHilFKrgXQBPi8CnwLOBRakuaYNKLSMFQKtqS7WWt8N3A1QW1urly1blp3Aw4DVq1eTa3LnoszQT3IHp8Pen8UO3e6DLJt7Ktjcmc3f/3UIuGKH4ydczfj89DLl4medizJng6w7Q8NQyxyonMChP8eTkjxHmpizdCkpjBExspN5GfzjDYK7X4zd06G7KJ9Ww+wTfd/P/xPq4uuOe/aFLDs1/T2H+rPuC7koczYMijtVa71Ma63SvM4AlgE1wH6lVB1wO3CpUiq6JdgMxGotKKXygMmRcUEYehyV4BibMNAN/rcymxs8AoFEF4wNvGf0p3SCIAwQzqnjseXFG8qHj7cQ3Huofx9y2tcItcWVLXQYh96d/vpMOfSi+Vji4XKO4RITdzeGUjY/8roLeBw4L3L+UWC2UupSpZQH+AqwUWvdj8EHgnCC9LVeXIeltIh7AdithmdBEIYjym7HPXeaaazrjbfTXN1HimoI5pt7mdo710Hz3r7fs+MYHE9oeq/sye2+hGHPsFDitNYdWuu66AvDfdqltT4WOX8MuBT4FnAcOBm4csgEFoRUJCU3ZKrEWUuLSFaqIOQS7gXmNnv+9f2sxAEh21Qj8SCCIy8Aa7/a9xsestSHK58LLunTnGsMp8SGGFrrO1KM/RuQkiLC8MWbIkNVa6MCejp0GDql1ZYg5DLu+eafpn7NUI0QPNZiKFn+ZgDshSHY9y/Y/wyMX579DZNKi5zaD1IKg82wsMQJwojANR2UL34cqofufamvDTVC8wNw6AoIJSReq3zwpMvvEQRhOOKeOw1s8Z/T7r3vEDre0q/PCB1tALsHbE4AHAWRenEvfgVC3T3MTEOSEidN73MRUeIEob9QDvAsNI8lulRDTdDyB3hnFeyZB8c+D52WwGLvaaCcAy6qIAj9hy3fh2uauROk/81taa7OHh0OEzraaBy4jHhZe37IOG7eDW/9Orsbth+Bpp3xY2VP7tUq5ASixAlCf2KNi+tYAy0PwaGrYM9cOHobdK4BQqnnF16WelwQhGHNQMbFhRub0d0Ry5vNga0gH5tLxy94/QeGYpYJoW7Y9H/msYp55hZfQs4gSpwg9CfWDNW2R+DordDxDBBMNcPANQsqfgh57xtI6QRBGCA8C8xxcf2ZoRqMWuEi2CdMiVnkAOhuh1e/0/NNdBh2PAIPngUbfmo+J6VFcpZhmdggCDmLZxGgAN3bleCaAfkXQf7F4Jo00JIJgjCAWC1xgU070YFulOvEwyNCRxpMx47K0bDk8/Dil+KD2x6CmR+B0ZaQDq1h/9OGkteQRrGc8J4TllEYGsQSJwj9ib0QXLXpzzunwKjbYPxqGP80lNwqCpwgjAAcVeXYR8cb0utAN4G3+6EgLxCsqzcd20eXwqyPQIllrXnxS4bFLcrhV+GxlfCPj6RW4BweOOXLULk4+ZyQE4gSJwj9TeHV5mPnRBh1K4x7GsavgdLbwDUt5VRBEHIXj8Ua17V+S7/cN2Rxpzoqy8DmgNO+Yb7w6Buw7U/QsMVQ3B5bCXUp6lXaHDDrWlj1Esy/oV9kFIYGcacKQn9TdC04x0P3fvCeBK6ZPdeKEwRhROBeMIP2J1+IHfs3bIXrTvy+VneqvaLE+MfYM2DShbD77/GTL/w/CPkNN6oVpWDKB2Dx7VBUc+KCCUOOKHGC0N8oBXnnDLUUgiAMMm5LcoP/ja1orWON6/tK0KrEJbhtOfUrRtHfkD9ycVfqm0w4F076TyideUKyCMMLcacKgiAIQj/gmjYB5fXEjkONzQT3Hz7h+yYnNpTFDwrGwoJPpZ9ceRK8/y9wwX2iwI1ARIkTBEEQhH5AORxG94YETrRenNY62RJXUWq+aN6NhjKXSOkMuOB+eP+j0th+BCNKnCAIgiD0E1aXatebJ9ZHVbd1oDvjLlLldmErshTmdXrhggdgzJlGzbdzfg6X/QsmnCPxuCMciYkTBEEQhH7Cs2AGzQnH/g0npsSliodLGWNXMg0uevCEniXkHmKJEwRBEIR+wj13msn61b3rAKHm1j7fLykezupKFd7ViBInCIIgCP2ErSAP19TxpjH/G9v6fL8eM1OFdz2ixAmCIAhCP2JtweXf0PfkhtARc7cGhyhxQgKixAmCIAhCP5KkxL3R97g4scQJPSFKnCAIgiD0Ix5r0d+3dqC7g326V1K3BlHihAREiRMEQRCEfsReXYG9vCR2rP0BAlt29eleSYkNosQJCYgSJwiCIAj9iFIquV5cH12q4k4VekKUOEEQBEHoZ5Jcqn1Q4sJdfsLNbfEBux17adGJiiaMIESJEwRBEIR+xj3fmqG6Fa11VvcIHW00HTvKR6Hs9hOWTRg5iBInCIIgCP2Ma/pElNcdOw7VHyd48EhW9wjVmcuLiCtVsCJKnCAIgiD0M8rpwD17qmks23pxEg8n9MawUeKUUquVUl1KqbbIa5vl/DlKqa1KqQ6l1LNKqQlDJasgCIIg9MaJ1otLcqeKEidYGDZKXIRPaa3zI6/a6KBSqgx4BPgyUAKsA6TTryAIgjBsScpQ3ZCdEhe0ulMrStJcKbxbGW5KXDouATZrrf+kte4C7gDmKaWm9zxNEARBEIYGz/zpoFTsuHvnfsKt7RnPT6oRV1nWb7IJI4PhpsR9RylVr5R6USm1LGF8FvBm9EBr3Q7siowLgiAIwrDDVpCHc8r4+IDWWdWLk5g4oTccQy1AAl8AtgAB4Ergb0qp+VrrXUA+cMxyfTNQkOpGSqnrgesBysvLWb169UDJPGC0tbXlnNy5KDPkptwi8/BD1p2hYbjLXFTqI29zIHb89p8fp+3chRnJPHr3PuyB+NzXdm0n1HJ0IMTMiOH+WaciF2XOhkFR4pRSq4GlaU6/qLU+Q2v9SsLYvUqpVcB7gZ8CbUChZV4h0Jrqhlrru4G7AWpra/WyZcv6LvwQsXr1anJN7lyUGXJTbpF5+CHrztAw3GVua9HUvxzPSh3THKA1P79XmXV3kH1dPwaXKzZ2xvvfh3I5B0rUXhnun3UqclHmbBgUd6rWepnWWqV5nZFuGhANJtgMzIueUErlAZMj44IgCIIwLHHPt3Ru2LQDgqFe54Xqj0NCcWB7adGQKnDC8GRYxMQppYqVUucppTxKKYdS6sPAWcBTkUseBWYrpS5VSnmArwAbtdZ9a0YnCIIgCIOAY1wl9rLi2LHu9OM82LNLVGtN22PPmMbsFRIPJyQzLJQ4wAl8EyPurR64GViptd4GoLU+BlwKfAs4DpyMETcnCIIgCMMWpVSSNc61652014db2zn2mf+h6Wd/MI07qsoHRD4htxkWiQ0RJW1JL9f8G5CSIoIgCEJO4V4wg45/vxw7du1MrcQFtu7h6Ge/S3D/4aRz+R84Z8DkE3KXYaHECYIgCMJIxWO1xO08iNYaFakhp7Wm7dGnafzmL9GBbtO1toI8yr51C76zTxo0eYXcQZQ4QRAEQRhAXDMno9wutN8oF2Jvbid06CiOMaMJd/pp/OYvk2LgAFwzJlH+g8/jHFc52CILOYIocYIgCIIwgCinA/ecqXStixdU6NqwFXcgyLHbvktg+76kOQUfPI+SL3wM5XYlnROEKKLECYIgCMIA454/3aTEtT7wdxp3HyTc0Wm6TnndlH7lBvIvWjbIEgq5iChxgiAIgjDAuBfMMB37N+1IusY5cSzlP/w8rsRWXYLQA6LECYIgCMIA455f2+P5vPeeSelXb8SW5x0kiYSRgChxgiAIgjDA2IsKcE4aS/fug6Zx5XQw6gsfo+CK82PZqoKQKaLECYIgCMIg4D1joUmJc4ypoPz7n8c9e8oQSiXkMsOlY4MgCIIgjGiKPnE57oUz0C4H+Rcto+pPPxAFTjghxBInCIIgCIOAvaiAqvu+w7ann6H2nOVDLY4wAhBLnCAIgiAMJnb56RX6B6W1HmoZBhSlVCuwbajl6ANlQP1QC5EluSgz5KbcIvPgUau1Lshmgqw7g4rIPHjkoty5KHPGa867wZ26TWu9eKiFyBal1LpckzsXZYbclFtkHjyUUuv6ME3WnUFCZB48clHuXJU502vFpisIgiAIgpCDiBInCIIgCIKQg7wblLi7h1qAPpKLcueizJCbcovMg0df5H43vdehRmQePHJR7hEt84hPbBAEQRAEQRiJvBsscYIgCIIgCCMOUeIEQRAEQRBykBGrxCmlHlBKHVZKtSiltiulPj7UMmWDUmqqUqpLKfXAUMvSG0qp1RFZ2yKvnKmPpZS6Uin1tlKqXSm1Syl15lDLlI6Ezzf6CimlfjrUcvWGUqpGKfWEUuq4UqpOKfUzpdSwL2+klJqhlHpGKdWslNqplPpABnNydt3JpTUHcnfdyaU1B2TdGUz6suaMWCUO+A5Qo7UuBC4GvqmUWjTEMmXDz4HXhlqILPiU1jo/8qodamEyQSm1Avgf4DqgADgL2D2kQvVAwuebD4wGOoE/DbFYmfAL4ChQBcwHlgI3DqVAvRFZ7B8D/g6UANcDDyilpvUyNZfXnVxbcyDH1p1cW3NA1p3Boq9rzohV4rTWm7XW/uhh5DV5CEXKGKXUlUAT8PQQizLS+Rrwda31y1rrsNb6Ha31O0MtVIZchrFAPT/UgmTAROAhrXWX1roOeBKYNcQy9cZ0oBr4odY6pLV+BngRuLqnSbm67siaM2jk8poDsu4MJH1ac0asEgeglPqFUqoD2AocBp4YYpF6RSlVCHwduG2oZcmS7yil6pVSLyqllg21ML2hlLIDi4HyiNn6YMTc7h1q2TLkGuA+nRvp5T8GrlRK+ZRSY4ALMBbU4YxKMza714k5tu7k8JoDObTujIA1B2TdGUj6tOaMaCVOa30jhsn6TOARwN/zjGHBN4DfaK0PDLUgWfAFYBIwBqO+zd+UUsPd+jAacGLsLM/EMLcvAL40hDJlhFJqPIZr4N6hliVD1mDsgFuAg8A64C9DKVAGbMWwOHxOKeVUSr0H4zP39TYxB9edXFxzIPfWnZxdc0DWnUGgT2vOiFbiACJmyReAscANQy1PTyil5gPnAj8cYlGyQmv9ita6VWvt11rfi2ECfu9Qy9ULnZH//lRrfVhrXQ/8gOEvN8BHgBe01nuGWpDeUErZgKcwlJk8jGbUozDigoYtWutuYCXwPqAOw0r1EMaPQSbzc2LdydU1B3Jy3cnlNQdk3RlQ+rrmDOtMjX7GwfCPTVkG1AD7lVIA+YBdKTVTa71wCOXKFk1q0/CwQWt9XCl1EEPWXOMjwH8PtRAZUgKMA34WiRXzK6V+C3wT+PyQStYLWuuNGDthAJRSa8neCjHc151ljIw1B4b5upPjaw7IujPg9GXNGZGWOKVURSSNO18pZVdKnQesAp4Zatl64W6MBX9+5HUX8Dhw3tCJ1DNKqWKl1HlKKY9SyqGU+jBGxtVTQy1bBvwWuDnyfRkF3IqRGTRsUUqdhuE+yoXsMCLWhj3ADZHvRzFGXM2bQypYBiil5ka+1z6l1O0YWW739HB9Lq47ObfmQE6vOzm35oCsO4NFtmsOjFAlDmOncwOGGfI4cCdwq9b6sSGVqhe01h1a67roC2gDurTWx4Zath5wYuxujgH1wM3ASq11LtRs+gZGSYXtwNvABuBbQypR71wDPKK1bh1qQbLgEuB8jO/ITiAIfGZIJcqMqzESE44C5wArEjJPU5Fz606OrjmQu+tOLq45IOvOYJHtmiO9UwVBEARBEHKRkWqJEwRBEARBGNGIEicIgiAIgpCDiBInCIIgCIKQg4gSJwiCIAiCkIOIEicIgiAIgpCDiBInCIIgCIKQg4gSJwiCIAiCkIOIEieMSJRSe5VSnUqpVqVUk1JqrVLqk5GeeoIgCP2OrDvCYCNfLGEkc5HWugCYgNHz7wvAb4ZWJEEQRjiy7giDhihxwohHa92stf4rcAVwjVJqtlLqfUqpDUqpFqXUAaXUHdHrlVKPK6VuTryHUmqjUmrl4EouCEKuIuuOMBiIEie8a9Bav4rR1/JMoB34CFAMvA+jUfLKyKX3AldF5yml5mE0f35iEMUVBGEEIOuOMJCIEie82zgElGitV2ut39Jah7XWG4E/AEsj1zwGTFVKTY0cXw08qLUODIG8giDkPrLuCAOCKHHCu40xQKNS6mSl1LNKqWNKqWbgk0AZgNbaDzwEXBUJSF4F3D9kEguCkOvIuiMMCKLECe8alFJLMBbTF4DfA38Fxmmti4C7AJVw+b3Ah4FzgA6t9UuDLK4gCCMAWXeEgUSUOGHEo5QqVEpdCPwReEBr/RZQADRqrbuUUicBH0qcE1k8w8D3kd2wIAhZIuuOMBgorfVQyyAI/Y5Sai8wGghiLIpbgAeAu7TWIaXUZRgLZQmwBtgLFGutEwOLvwR8A5istd49qG9AEIScQ9YdYbARJU4Q0qCU+ghwvdb6jKGWRRCEdwey7gjZIO5UQUiBUsoH3AjcPdSyCILw7kDWHSFbRIkTBAtKqfOAY8ARjEBkQRCEAUXWHaEviDtVEARBEAQhBxFLnCAIgiAIQg4iSpwgCIIgCEIOIkqcIAiCIAhCDiJKnCAIgiAIQg4iSpwgCIIgCEIOIkqcIAiCIAhCDvL/ATpthrk/q81TAAAAAElFTkSuQmCC\n", + "text/plain": [ + "<Figure size 720x288 with 2 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Separating the two equations #\n", + "\n", + "# Eq.2 ------\n", + "col = sns.color_palette()\n", + "col_pte = ['#436bad', 'orange','crimson', 'gray']\n", + "col_pte2 = [col[0], 'gray', col[4], 'gold', col[2], col[3]]\n", + "colors={1:'dimgray',2:'gold',3:'mediumseagreen',4:'darkorange',5:'crimson',6:'royalblue'}\n", + "\n", + "term = 'TADV'\n", + "res = '80km'\n", + "fig, ax = plt.subplots(1, 2, figsize=(10,4), sharex=True, sharey=True)\n", + "for i in range(1,4): # loop over simulations\n", + " ax[0].plot(dur[exp80[i]], tadv[exp80[i]], color=colors[i],\n", + " linewidth=4, label=expname[i], alpha=0.9)\n", + "\n", + "#plt.legend(ncols=3, loc='upper center')\n", + "for i in [1,4,5,6]: # loop over simulations\n", + " ax[1].plot(dur[exp80[i]], tadv[exp80[i]], color=colors[i],\n", + " linewidth=4, label=expname[i], alpha=0.9) \n", + "#plt.legend(ncols=3, loc='upper center')\n", + "#ax = df_track[['dfi', 'ep','itt', 'eq1res']].plot(kind='bar', stacked=True, title='', color=col_pte, figsize=(6, 3))\n", + "#df_track.plot(x ='Unnamed: 0', y='dp', kind = 'line', ax=ax, color='k', linewidth='3')\n", + "\n", + "ax[0].set_xlabel('Day', fontsize=12)\n", + "ax[0].set_ylabel('hPa/'+str(dt)+'hr', fontsize=12)\n", + "ax[0].set_xlim((3, 9))\n", + "ax[0].set_ylim(-55, 9)\n", + "#ax[0].set_ylim((-0.3, 1.2))\n", + "ax[1].set_xlabel('Day', fontsize=12)\n", + "#ax[1].set_ylabel('hPa/'+str(dt)+'hr', fontsize=12)\n", + "ax[1].set_xlim((3, 9))\n", + "ax[1].set_ylim(-55, 9)\n", + "\n", + "#ax.set_xticks(np.arange(9, 32, 2))\n", + "#ax.set_xticklabels(dur[exp80[i]].to_numpy())\n", + "#print(dur[exp80[i]])\n", + "#ax.set_xlim(np.min(df_track['Unnamed: 0'])-0.5, np.max(df_track['Unnamed: 0']+0.5))\n", + " #ax.set_xticklabels(df_track['time'])\n", + "ax[0].yaxis.grid()\n", + "ax[1].yaxis.grid()\n", + "ax[0].xaxis.grid()\n", + "ax[1].xaxis.grid()\n", + "ax[0].axhline(y=0,linestyle=':', color='k')\n", + "ax[1].axhline(y=0,linestyle=':', color='k')\n", + "ax[0].legend(ncol=2, loc='upper left')\n", + "ax[1].legend(ncol=2, loc='upper left')\n", + "#plt.legend(bbox_to_anchor=(1.0, 1), loc='upper center')\n", + "\n", + "#plt.savefig('TimeseriesPTE_'+exp+'_'+str(dt)+'hrly_Eq1_upper'+str(int(p2level))+'hPa_box'+str(int(boxsize))+'_CyCen.png',\n", + "# bbox_inches='tight',dpi=200)\n", + "ax[0].tick_params(axis='both', which='major', labelsize=12)\n", + "ax[1].tick_params(axis='both', which='major', labelsize=12)\n", + "plt.subplots_adjust(wspace = 0.05)\n", + "fig.suptitle('Eq2: '+term+' Term ('+res+')',fontsize=14, weight='bold')\n", + "plt.savefig('CyclonePTEtimeseries_Allsim'+res+'_'+term+'.png',\n", + " bbox_inches='tight',dpi=100)\n", + "plt.show()\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 199, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmcAAAEpCAYAAADWCIWQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAADGqUlEQVR4nOydd3hUVdrAf2daJr1SQu+hE6SDCAiIFWk2sGBvu5Zd/XR1V113XdfVta5lLatib4iABUVBijTp0kECBEJIrzOZdr4/7mRm7sykkoQEz+955knuueec+0478973vEVIKVEoFAqFQqFQNA8Mp1oAhUKhUCgUCoUfpZwpFAqFQqFQNCOUcqZQKBQKhULRjFDKmUKhUCgUCkUzQilnCoVCoVAoFM0IpZwpFAqFQqFQNCOUcqZQKBSnCCHEVCGEFEKsaqT5x3vnl0KI8Y0wf5oQwi2EOCKEiGzo+RWK3ypKOVMomhFCiOUBP6bBj7l1nKufEOJNIcQuIUSREKJECLFNCHG3EMJUx7mEEOJXrxw/hTk/MEDOP3rbAmV/Naj/mODnFqRIVPfoUsfXrfLxVl2ec2MjhBDAP7yHTwW0G4UQDwohfhFCFAshyoQQe4UQTwohooLm+L0QYqcQokIIccL7frdpqucgpdwDLAI6AL9vqusqFKc7dVqgFQpFk+EANge15dRxjmHAXMAGHAA6AwOAp4HuwO9qO5GUUgoh3gYeAUYJIXpIKfcHdLnG+9cFvBtmijlCiPullPne4zvC9CkG1gUcDwYsQAmwM6C9IszYnYDV+38roJv3/13eeUF7DeqMV4kySild9RlfDZOBfkAB8GVA+8PAX7z/7wck0BO4B4gDbvbK9Tfgz95++9AUpLlo788ZUsryBpa3Kt4FLgZ+J4R4SkrpaaLrKhSnL1JK9VAP9WgmD2A52o9xRg39pgN7ATuwAjjfO04Cc719zgYuBUze4yTgoLdPUcBcXYLHVnHNLoDH2+/RgHYjkOVt/yKgvXJOh/fv/3nb2wPOgPaw1wUyvOeW1/E1nBsw7/iAdgua0rMHTcHLA94HOgT0eSRg7HloSp8LSAfeqnxvgCu9f0uAl9AUw38A+cAx4KFayPmOd773q/gM7A5o2+1t+8Z73Cbg9XvK2zYw4P35g7dtfPBrAdzuPfYANwe91vOAJ9AUxizgFiAF+BQo8752FwXJG+19jSRw9qn+DqmHepwOD7WtqVC0MIQQA4BP0KwpDqA18HFwPynlD1LKj6XX4iM1q9Uv3tPhrE/VIqXMAJZ5D6/0WpQAzgHaev9/M8zQBYAbuE0IYQRuRbPaf1pXGU6Sz4BHgR5oSoYArgBWCyESw/RfgKZ0HQtqTwVeQVNIYtCez0Y0pafUe/6vQojJNcgz3vt3Q1D7Su/fNCHEPiHEXiANzQp4v/fcJMAc8LyQUm5Ds7QBTAl3QSHEtcALaIrZjVLK/wZ1uRS4Dk3pb4umeK4ARqJ91noB7wkhkioHSCnLgB3ewwnVPmOFQlErlHKmUDRPOofxmUrwnrsHzVpVCvSVUvYGnq1pQiFEPzRrGsDLAaecaMrKHqCohmne8v7tCoz1/n+1928O+u25Sg6jKTqdgUuAm9CUw1fD9G0UhBBnARd6D8+TUg5E2/rMBToBt4UZ9oyUspuUshOwPaDdgqb89AKOeNt6AoOAvmiKDcDEauSJRtuGBM1qFcjDaNYr0BTJnmhWqR34FcWOAf1PBPyf7f3bKcxlLwNe9851nZTyjTB9ir3Xq3xvBZoi1x2Y5W2LBYYHjTvk/ZsWZk6FQlFHlHKmUDRPHGj+V4GPSp+nAd6/P0kpM73/f1TdZEKIscCPQBSa1e3RynNSyqNSyt7ex+c1yPUZfh+uq4QQsWj+RgDvSSmdVYx7zvv3v2g+YR+gKUZNxYiA/5cIISTa1l2Kt21kmDHPVv4jpXQHtBdIKVdLzbfqsLftFyllhpSyFL+yVJ1jfkLA/yVB52YDf0Tbgu6OpsTtRFOO3vf2EYSnqnbQtigNaNvLb1fRZ5WUshC9wvitlLIC+DWgLfi5VX4mEqq5vkKhqCUqIEChaJ5kSSnDKQxVUeWPshDiauA1NIvPS8DvZT2dtqWU5UKIj4Eb0Kxgm4HKFArhtjQrx60UQmxGc/IHeL4+1z8JAl+f9WjWo0AOBx0jpTxexVzFAf+7wrRVzl2dohRooYwNOvcE2tr8tZTyVwAhxJdowQPjvZG2gfK2xh/s0Nr79wihlKJtw94shHhHSnkiTJ9iACmly79r7Xtuga9Z8HOL8/4tDDOnQqGoI8pyplC0PCq32EYLIdp5/58V3Mmb/uIx4G20H/u7pZS3BytmQoj2Qojd3sf0Wly/UgmLB/7p/X+T1+epOioVslVSyuBI1MZmfcD/T0spR3qV31HA/6FZ9JoMr4Uty3vYJeh0vPfvYCGESQhhwK/U2r0+hN/jVwxngpbOBG0bFOCbMJe9DTiKtm25RAgRH6ZPfens/bu3AedUKH6zKOVMoWiepAoh1gY9bvCeewrNwT4G2C2E2AX8IcwclwEPeP8vBi4PnC+gnxnNVygNv2JQJVLKn9D808Bv9anSahbAPLQtzbDO6o2JlHI58LX38ENv3rDtaBasH4Ezmlom73VBS3kSyGfev6PQthd/RUu7AdprWGnVe9Lb9kchxB5gLZpFax/hlc0jaBGohWjRp4tFAySO9frP9fMeLquur0KhqB1KOVMomicWND+pwEcHACnldrQtxX3efvloilgw1oD/E8LMdzK8FfC/A78vVJVIKT1SylzZdPm3gpmO5my/G83S0wFN8fk3WvqKpmae9++5QghzQPvNwINoAQBxaClQtqP5od0Z0O9B4C6059MVLdXFPGCcN4IyBO9nZxpaQMaZwGdB164P56MFqGRyal5HheK0Q0gZ7HqhUChaGt6s+Qe9h9dKKd86ddIoaoN3u/IXoA8woxbBGM0SIcQXwFTgfinlEzX1VygUNaMsZwqFQnEK8Pr+VeYtu+dUylJfhBBpwEVovmxNHeShUJy2qGhNhUKhOEVIKRdSfVRns0ZqtTXVTb5C0cCobU2FQqFQKBSKZoS641EoFAqFQqFoRijlTKFQKBQKhaIZoZQzhUKhUCgUimaEUs4UCoVCoVAomhFKOVMoFAqFQqFoRijlTKFQKBQKhaIZoZQzhUKhUCgUimaEUs4UCoVCoVAomhFKOVMoFAqFQqFoRijlTKFQKBQKhaIZoZQzhUKhUCgUimaEUs4UCoVCoVAomhFKOVMoFAqFQqFoRphOtQD1JSEhQfbo0eNUi1FnysrKiI6OPtVi1ImWKDO0TLmVzE3Hxo0bc6WUreoyRq07TYeSueloiXK3RJnrsua0WOWsTZs2/Pzzz6dajDqzfPlyxo8ff6rFqBMtUWZomXIrmZsOIcShuo5R607ToWRuOlqi3C1R5rqsOWpbU6FQKBQKhaIZoZQzhUKhUCgUimaEUs4UCoVCoVAomhEt1ucsHE6nk8zMTOx2+6kWpUri4+PZtWvXqRajTrREmeHUym21WunQoQNms/mUXF/RdKh1p3FQMjcdLUXu39K6elopZ5mZmcTGxtKlSxeEEKdanLCUlJQQGxt7qsWoEy1RZjh1ckspycvLIzMzk65duzb59RVNi1p3Ggclc9PREuT+ra2rp9W2pt1uJzk5udkukIrfBkIIkpOTm7UlRdFwqHVHoWh8fmvr6mmlnAFqgVQ0C9Tn8LeFer8Visbnt/Q9O+2UM4VCoVAoFIqWjFLOFAqFQqFQKJoRSjlrBI4fP87ll19O9+7d6du3LxMmTCAqKor09HQ6depE165dSU9PZ9KkSWRkZNC/f/9azTt37lzf2EGDBvH999/7zo0fP16XuTx43scff5wePXqQlpbGkiVLGu7JNhPcbjeDBw/mwgsvBLTXasGCBQDk5+czePBg3nzzzbBjMzIyiIyMJD09nb59+3L11VfjdDoBLQt15ZyVzJ07l08//bTxnoxCUQ/UutO8ycvLIz09nfT0dNq2bUv79u19xw6H45TI9Nhjj5Gens6YMWMwGo0+eZ5//nkeeeQRn4x9+/blgw8+qHYu9TlpWE6raM1K/vSnPzXq/I8//niV56SUTJ8+nWuuuYYPP/wQgC1btlBSUsLYsWOZM2cO06dPZ9asWYD2Ia0LTz75JLNmzWLZsmXcdNNN7Nu3r8YxO3fu5MMPP2THjh0cO3aMSZMmsXfvXoxGY52uXR3TvnukweYKx4LJ1c//3HPP0adPH4qLi3XtRUVFTJkyhZtuuolrr722yvHdu3dny5YtuN1uJk+ezMcff8ycOXMaQnTFbwS17uhpinWnvmT0n9Yo80opyROCLr8sCDmXnJzMli1bAHjkkUeIiYnhnnvuaRQ5asuDDz7Igw8+SElJCampqT75QJPx7rvv5p577mHfvn0MGTKEWbNmVZvG4nT7nJxKmtRyJoS4XAixSwhRJoQ4IIQY622fKITYLYQoF0IsE0J0bkq5GpJly5ZhNpu55ZZbfG3p6emMHTu2Qa8zatQojh49Wqu+X3zxBZdffjkRERF07dqVHj16sH79+gaV51SSmZnJl19+yQ033KBrLysr47zzzmP27NnceuuttZrLaDQyfPjwWr+2CkVzQK07LZPXXnuNYcOGMWjQIGbOnEl5eTmgWaHuuOMORo8eTbdu3XyWeikl9957L/3792fAgAF89NFHgGbhHzduHJdeeim9evXi/vvv57333mP48OEMGDCAAwcOnJScPXv2JCoqioKCglr1V5+Tk6fJLGdCiMnAE8BlwHog1dueAswHbgAWAX8DPgJGNpVsDckvv/zCkCFDGv0633zzDdOmTdO1zZkzh8jISAAcDgcGg6Z7Hz16lJEj/S9nhw4dTivl46677uJf//oXJSUluvY//elP3Hjjjdx99921nstut7Nu3Tqee+45X9vKlStJT0/3HR8+fDhkq1OhOJWodadlMmPGDG688UYA/vznP/PGG2/w+9//HoCsrCxWrVrF7t27mTp1KrNmzWL+/Pls2bKFrVu3kpuby7BhwzjrrLMA2Lp1K7t27SIpKYlu3bpxww03sH79ep577jleeOEFnn322XrLuWnTJnr27Enr1q1r1V99Tk6eprSc/RV4VEq5VkrpkVIelVIeBWYAO6SUn0gp7cAjwCAhRO8mlK3FcO+999KtWzeuvPJKHnjgAd259957jy1btrBlyxa++uorX7uUMmSe0yUkefHixbRu3TrsD9O4ceP44osvOHHiRI3zHDhwgPT0dJKTk+nUqRMDBw70nRs7dqzvdd2yZQtTp05t0OegUDR31LrTOPzyyy+MHTuWAQMG8N5777Fjxw7fuWnTpmEwGOjbty/Z2dkArFq1iiuuuAKj0UibNm0YN24cGzZsAGDYsGGkpqYSERFB9+7dOeeccwAYMGBAnbexK3nmmWdIS0tjxIgRPPLIIzX2V5+ThqNJLGdCCCMwFFgohNgPWIEFwL1AP2BrZV8pZZkQ4oC3fXd9rledb0Zj069fv0Z1Fn/yySeZMWMGzz//PNdccw0bN26scUyHDh04cuSI7zgzM5N27do1qFw1+YQ1FqtXr2bhwoV89dVX2O12iouLufLKKzGZTMycOZO8vDzOP/98li1bVm0G7Eqfs6ysLMaPH8/ChQtrVMLWrVvHzTffDMCjjz6qlLbfOGrd0dMU6059CecT1hDUNdN+ZeDSoEGDeOutt1i+fLnvXEREhO//SgUmnCITrr/BYPAdGwwGXC5XrWUKpNLnbP78+Vx99dUcOHAAq9VaZf/T7XNyKmmqbc02gBmYBYwFnMAXwJ+BGCAnqH8REPIJF0LcBNwE0KpVK90HGbT6YMFbW03NsGHDKC8v54UXXmDu3LkAbNy4EZvNxplnnomUEpvN5pOztLQUj8dTK7mdTic2m42ysjKuu+463nzzTT7//HMmTZqE2+2mrKws7LwTJ07k+uuv58YbbyQrK4u9e/fSp0+fWr9Wbrf7lL+uVfHAAw/47tBWrlzJ888/z8svv8wtt9yCx+Ph+uuv59ChQ0ydOpVPP/0Ui8USMkfgaxUTE8PDDz/M3//+dyZMmEB5eTkul0v3/Cvfh759+7Jy5Upfe/BrZLfbQz6jNVFaWlrnMaealihzXVDrjlp3akttZa6oqMBsNlNcXExsbCz5+fnMmzeP1NRUSkpKfK954FwlJSUMGzaM//3vf8yYMYOCggJ+/PFHHn74Yfbu3atbpwLfl3BrWDi5K68RLGNJSQmTJ08mPT2d//73v1x33XVh52iqz0nlunq6rztNpZzZvH9fkFJmAQghnkZTzlYAcUH944CQd0ZK+SrwKkBaWpocP3687vyuXbuaRX2whQsXctddd/Hss89itVrp0qULzz77LLGxsQghiIyM9MkZExPDvn376NOnj2/8M888wyWXXBIyr9ls1o196KGH+M9//sP06dMxGo1ER0fr5jUYDMTGxjJ8+HAuv/xyRowYgclk4qWXXiIhIaHWz6cl1F0DiIqKwmQyERsbi9ls9j3/Z555hmuvvZbbbruNDz74wOfrUEngawVwxRVX8MQTT7BlyxbdnJUEvw9VYbVaGTx4cJ2ew/Llywn+XDd3WqLMdUGtO2rdqS21lTkiIoKIiAj+/ve/M3HiRDp37syAAQN848OtMbGxscyePZstW7Zw5plnIoTgySefpEePHmRmZurWqcD3JdwaFk7uymsEy1jZ9uijjzJ79mx+//vfh6yh0HSfk8p19XRfd0R1ZtIGvZAQR4AHpZTzvMcz0ZSzl4FrpJRjvO3RaJa0M6SUVW5rpqWlyT179ujadu3apVtsmiOn84LT3DjVctfn89gSF5yWKDOAEGKjlHJoXcaodafpUDI3HS1J7srvW0tcd+qy5jRlQMCbwO+FEK2FEInAXcBi4HOgvxBiphDCCjwEbKtOMVMoFAqFQqE4XWnKJLR/A1KAvYAd+Bh4TEpp91rR/gO8C6wDLm9CuZodt99+O6tXr9a13XnnndUmUVXUzPbt27nqqqt0bREREaxbt+4USaRQNB/UunN689hjj/HJJ5/o2i655BIefPDBOs2jPidNQ5MpZ1JKJ3Cb9xF8bimgUmd4efHFF0+1CKclAwYM0GXAVigUftS6c3pTWQ3gZFGfk6ZB1dZUKBQKhUKhaEYo5UyhUCgUCoWiGaGUM4VCoVAoFIpmhFLOFAqFQqFQKJoRSjlrJNxuN4MHD/YVyJ47d66vvEp+fj6DBw/mzTffDDs2IyODyMhI0tPT6du3L1dffTVOpxPQckoFF90OnPvgwYOMGDGCnj17ctlll+FwOBrrKSoUimZAXl4e6enppKen07ZtW9q3b+87PpXf/0ceecQnS9++ffnggw985wLXrEpiYmJ8/7/99tukp6fTs2dP3n777SaTuTFpzu9TWloa6enp9O/fn4ULF/rOvfrqq/Tu3ZvevXszfPhwVq1aVe1c48ePJy0tjUGDBjFs2DBdAFaXLl3Izc31HQf+lkkpueOOO+jRowcDBw5k06ZNDfskWyBNmUqj6djfyHW5ehyrsctzzz1Hnz59KC4u1rUXFRUxffp0brrppmpDjytrPbrdbiZPnszHH3/MnDlzarzufffdx913383ll1/OLbfcwhtvvMGtt95a83NSKBQnxyuNvO7cEn7dSU5O9v0IPvLII8TExHDPPfc0riy1pLI24759+xgyZAizZs3CbDZXOyY/P5+//vWvLFu2jLi4OIYMGcLUqVNJTExsMLku+dPRBpsrEI/Hg8FQzCePtw8515zfp9tvv50HH3yQXbt2MXbsWE6cOMFXX33Ff//7X1atWkVKSgqbNm1i2rRprF+/nrZt21Y513vvvcfQoUN58803uffee/nuu+9qvP7XX3/Nvn372LdvH+vWrePWW2/9zac4UpazRiAzM5Mvv/ySG264QddeWlrKzJkzmT17dq0VJqPRyPDhwzl6tObFRErJDz/8wKxZswC45pprWLBgQZ3lVygULZvXXnuNYcOGMWjQIGbOnEl5eTmgWazuuOMORo8eTbdu3XzWKykl9957L/3792fAgAF89NFHgGbdGDduHJdeeim9evXi/vvv57333mP48OEMGDCAAwcO1Eqenj17EhUVRUFBQY19lyxZwuTJk0lKSiIxMZHJkyfzzTff1POVaN40t/epT58+mEwmcnNzeeKJJ3jyySdJSUkB4IwzzuCaa66pdSqNUaNG1ep3C+CLL77g6quvRgjByJEjKSwsJCsrq1ZjT1eUctYI3HXXXfzrX/8KqT/2hz/8gVGjRnH33XfXei673c66des499xzfW0rV670mcPT09N9Zui8vDwSEhIwmTSDaIcOHWr95VAoFKcPM2bMYMOGDWzdupU+ffowb94837msrCxWrVrF4sWLuf/++wGYP38+W7ZsYevWrSxdupR7773X9+O4detWnnvuObZv384777zD3r17Wb9+PTfccAMvvPBCreTZtGkTPXv2pHXr1r62e++9V7eOVXL06FE6duzoOz6d17Hg9+mNN97wnTsV79O6deswGAy0atWKHTt2MGTIEN35oUOHsmPHjlrN9c033zBt2jRd24QJE3zvd6Dx4rf0nteW03Nb8xSyePFiWrduzZAhQ1i+fLnu3Nlnn82XX37JAw88oFukwnHgwAHS09PZt28fs2bNYuDAgb5zY8eOZfHixb7juXPnAtpdVTBCiPo/GYVC0SL55Zdf+POf/0xhYSGlpaWcffbZvnPTpk3DYDDQt29fsrOzAVi1ahVXXHEFRqORNm3aMG7cODZs2EBcXBzDhg0jNTUV0NwtzjnnHEBL6rxs2bJq5XjmmWd47bXX+PXXX0OsX08++aTPyg9+n7Pf0joW/D5NmTLFd64p36cXX3yRTz75hNjYWD766KMqX28pZY3vxZw5cygrK8Ptdof4ji1btsxniVu+fDlPPfWUb95gTtf3vLacnspZLXzCGovVq1ezcOFCvvrqK+x2O8XFxVx55ZWYTCYuv/xyhg4dyvnnn8+yZcuqLTRb6XOWlZXF+PHjWbhwIVOnTq322ikpKRQWFuJyuTCZTGRmZtKuXSP7wSgUCo0qfMJOBXPnzmXBggUMGjSIt956S+f3ExER4fu/8kcx3I9juP4Gg8F3bDAYcLlc1cpR6XM2f/58rr76ag4cOIDVaq12TIcOHXQ3tpmZmQ1e4DqcT1hDUNcC4sHvU+Dzbsr3qdLnLJC+ffuyceNGnWK/adMm+vbtW+1c7733HoMGDeL+++/n9ttvZ/78+dX2B+09P3LkiO9Y/Xapbc0G5/HHHyczM5OMjAw+/PBDzj77bN59913f+dtvv52JEycyffr0WkXopKam8s9//pPHH3+8xr5CCCZMmODzT3j77be5+OKL6/9kFApFi6SkpITU1FScTifvvfdejf3POussPvroI9xuNzk5OaxYsYLhw4c3mDwzZsxg6NChtYq8nDJlCt9++y0FBQUUFBTw7bff6ixKpxPN7X0K5P/+7/+47777yMvLA2DLli289dZb3HZbSAXGEMxmM3//+99Zu3Ytu3btqrH/1KlTmTdvHlJK1q5dS3x8vM8K+FtFKWengCeeeIKOHTty1VVX4fF4auw/bdo0ysvLWblyZa3mfvrpp+nRowd5eXlcf/31DSGyQqFoQfztb39jxIgRTJ48md69ay5bPH36dAYOHMigQYM4++yz+de//lVtRF59eOihh3j66adrXPOSkpL4y1/+wvjx4xk2bBgPPfQQSUlJDSpLc6E5vk+VTJ06leuuu47Ro0fTu3dvbrzxRt59991aK02RkZH88Y9/9G1dVsf5559Pt27d6NGjBzfeeCMvvfTSyYrf4hHVmUmbM2lpaXLPnj26tl27dtGnT59TJFHtqKvZuznQEmWGUy93fT6Py5cvb/AtnMamJcoMIITYKKUcWpcxat1pOpTMTUdLkrvy+9YS1526rDnKcqZQKBQKhULRjDg9AwJaCNu3b+eqq67StUVERPzmk+8pFIqWw2OPPcYnn3yia7vkkktCHMwVp5aGfJ+mT5/OwYMHdW1PPPHEaesbeCo47ZSz2oT6NhcGDBigK2+hOH1oqe4CivrRktadhubBBx9UilgLoCHfp88//7xB5qkrv6V19bTa1rRareTl5f2m3kBF80NKSV5eXo0pAxSnB2rdUSgan9/aunpaWc46dOhAZmYmOTk5p1qUKrHb7S3uw9USZYZTK7fVaqVDhw6n5NqKpkWtO42DkrnpaCly/5bW1dNKOTObzXTt2vVUi1Ety5cvZ/DgwadajDrREmWGliu3omWh1p3GQcncdLRUuU9nTqttTYVCoVAoFIqWjlLOFAqFQqFQKJoRSjlTKBQKhUKhaEYo5UyhUCgUCoWiGdFkypkQYrkQwi6EKPU+9gScmyiE2C2EKBdCLBNCdG4quRQKhUKhUCiaE00drfk7KeXrgQ1CiBRgPnADsAj4G/ARMLKJZVMoFAqF4qTx2Cpw5+Tjzi3AneN95BYEHOfjKSnH0r8HyQ/fhjGhZdS1VDQdzSGVxgxgh5TyEwAhxCNArhCit5Ry9ymVTKFQKBSKGpBOF4UvvE+rBd9y2PEqntLyWo1zZeVg6tCGpD/ObVwBFS0O0VRZrYUQy4F+gAD2AA9KKZcLIZ4DLFLKWwP6/gI8LKX8LGiOm4CbAFq1ajXk448/bhLZG5LS0lJiYmJOtRh1oiXKDC1TbiVz0zFhwoSNUsqhNfVT686poSXJHLNkHXGf/YhHSgx1LOPl6NaO3PuvbCTJakdLeq0raYky13bNgaa1nN0H7AQcwOXAIiFEOhADBKfWLgJC7LxSyleBVwHS0tLk+PHjG1HcxmH58uW0NLlboszQMuVWMjc/1LpzamhJMh97cSEOiwWHw4HFYqnT2Eibk/6n+Hm2pNe6kpYoc11oMuVMSrku4PBtIcQVwPlAKRAX1D0OKGkq2RQKhUKhqA/ugmIcuw/q2oTZhDE5AWOrRO1v6ySMKYm+45w//Avpcmvj84rwlJZjiIk6FeIrmimn0udMom1x7gCuqWwUQkQD3b3tCoVCoVA0W+zrt0OAe5Cld1dSP/43wlB1MgRju9a4Dmf5jl2Z2Vh6N+8SYIqmpUlSaQghEoQQU4QQViGESQgxBzgLWAJ8DvQXQswUQliBh4BtKhhAoVAoFM0d+7ptumPrqEHVKmYA5k6pumNngKKmUEDTWc7MwN+B3oAb2A1Mk1LuARBCzAT+A7wLrEPzSVMoFAqFolljW6tXziJHDqpxjKljW92x68jxBpVJ0fJpEuVMSpkDDKvm/FI0xU2hUCgUihaB62i2bntSGg1EDO5T4zhzJ71y5jyiLGcKPap8k0KhUCgU9cC2brvu2NG9PYYoa43jTB3125quw8pyptCjlDOFQqFQKOqBfe1W3XFF79pVHlTbmoqaUMqZQqFQKBR1RHo82IP8zSr61E45M3doAwHJal3Hc5EOZ4PKp2jZKOVMoVAoFIo64tx/GHd+ke/YEB2Js0vbakb4EREWTG2S/Q1S4srMbmgRFS0YpZwpFAqFQlFHgq1mEUP7g9FY6/HBW5tOtbWpCEApZwqFQqFQ1BFbkL9Z5MiBdRof4nemcp0pAlDKmUKhUCgUdUA6Xdg36IvYWEfVnN8skJBEtMpypghAKWcKhUKhUNSBiu17kTa779iYkoi5e8c6zREasaksZwo/SjlTKBQKhaIOBPubWUcMRAREX9YGUyeV60xRNUo5UygUCoWiDpysvxmAOdhyduwE0u0+KbkUpw9KOVMoFAqFopZ4ymw4tu3VtdXV3wzAEBOFMSnedyydLtzHc09aPsXpgVLOFAqFQqGoJfaNO5Auv4XL3LkdprYp9ZorJJ2G2tpUeFHKmUKhUCgUtcQeVE/TWo8tzUpUUICiKpRyplAoFApFLbGv2aI7to6s+5ZmJSqdhqIqlHKmUCgUCkUtcOcV4th7yN8gBNbh/es9X2gi2jDKWf5e+HIOLLoUDn5T72spWhamUy2AQqFQKBQtAft6/ZampW93jPGx9Z4v2HIWsq0pPfDdTVDgDUA4ugq6ngdnPgbRtavjqWiZKMuZQqFQKBS1wLYmKIXGiPr7m0G4+prZSCn9DUdX+xWzSg5+DR+dBb+8pSlvitMSpZwpFAqFQlEDUsrQ5LP1SKERiCExDkN0pP8aNjvu3EJ/h13vhR/oKIVVD8CCiyFv90nJoGieKOVMoVAoFIoacB05juvYCd+xsJiJGNz7pOYUQoRWCqjc2rTla1ay6sjeCJ+dA+ufAFfFScmiaF4o5UyhaCykBE+p2npQKE4D7Ov0VrOIwX0wWCNOet4qgwL2fQoep/9EXBcY83cwR+sn8Lhg03PwydnaNqjitEApZwpFQ+I6AcWfQfYdkHEG/NoLjkwBd8GplkyhUJwEwVua9SnZFI7gMk7OI1najV3wlmafOTDgOrjsR+hyTuhERQdh0SWw7G6wq/WmpaOiNRWKk8FjA9s6sK2A8h/BsSu0j2MHFLwEKQ82vXwKheKkkR4PtnWhxc4bgtBtzePadmXBPn+jwQRpl2j/x7SDKW9qW56rHoTybP2Eez6Cw0th/DPQeVKDyKhoeprcciaE6CmEsAsh3g1omyiE2C2EKBdCLBNCdG5quRSKWiE9YN8OBS/C0Uvh1z6QNRsKXwmvmFVSVoPviEKhaLY49mTgKSzxHRtio7H0694gc5s6tNEduw4fD7WadZ4MUa39x0JAt/M1K1q/a0InteXBtzdqOdIULZJTsa35IrCh8kAIkQLMB/4CJAE/Ax+dArkUiupx7IfD4yFzCuQ9BrZVgKN2Y52/guNAY0qnUCgaCftafQoN67D+CKOxQeY2d26nO3YePgoHFuo79Z4dfnBEHIx9HKZ9AYm99OfcFbBzXoPIqGh6mlQ5E0JcDhQC3wc0zwB2SCk/kVLagUeAQUKIkwuDUSgamrzHwLm/hk4GiBgMiXdCRLr+VNm3jSWZQqFoREJSaDSQvxmAsXUSwmL2HXvy83CXBkReRqdCx/HVT9J2GMz6DtJv07cf+ALczvBjFM2aJvM5E0LEAY8CE4HrA071A3y3JVLKMiHEAW/77qA5bgJuAmjVqhXLly9vZKkbntLS0hYnd0uUGRpWboGL4SnfYhChlrIKdysKHYMocg6iyDEAl4wBoG1kPl1j1vv6FR96nx1b+zSZzE1FS5S5Lqh159TQbGR2ukhdtRHhdPmatgk7rjCy1VfmVjFWzMfLADC5yig/IbG01daazIThHFmxslbzCM9whrlexegp1xocWez68gUK486odlyzea3rQEuUuS40ZUDA34A3pJRHhBCB7TFATlDfIiCkJoaU8lXgVYC0tDQ5fvz4xpG0EVm+fDktTe6WKDM0sNy2n+GoBCzasSEBku+DyHFEmDsTp/9Mazh7wKF3fIetIg4yfsBAMCY1jcxNREuUuS6odefU0Fxktm/4hePCABbtu29sncSYy2cgwnzn6ytz9oDV2PI3aGkxXG4MZZFEWCQIQfcLHqR7bIfaT2a4FHa/7ztMjzoA4/9Q7ZDm8lrXhZYoc11okm1NIUQ6MAl4JszpUiAuqC0OKAnTV6E4NdiC8gdFjYf4a8DSRXPODYe5A1j6BjR4oOz78H0VCkWzxBbkbxY5clBYxexkMHfyptNw2QBwFnq3OTuMh7ooZkCFeyTFm2JxFnptLxnfgLOsgSRVNBVN5XM2HugCHBZCHAfuAWYKITYBOwBfDQwhRDTQ3duuUDQPbD/pjyPH1G5cdFA+IuV3plC0KBrT36wSLRGt9ClnrgKvYtWnikCAKrCt20bWne+S/30Kx99ti6vEqM158JsGlljR2DSVcvYqmsKV7n28AnwJTAE+B/oLIWYKIazAQ8A2KaUqGKZoHkgH2Dfo2yJH125ssHJWvlybT6FQNHs8peVU/KIPArKOPLl6muEwd0r1ll/Sip67Ck0QmQKdwySbrYaSdxdr/5gicZcbKV7v3ZTa91kDSqtoCppEOZNSlkspj1c+0LYy7VLKHCllDjATeAwoAEYAlzeFXApFrbBvBmn3HxvbgrlL7cZGDARjQB4jWQblP1XdX6FQNBvsP+8At9t3bO7WAVPrqn1G64upY1twlfuOnQVmSLsUjOZqRumRHg/2jTu1A6MVgNLtMXgqBGSugPIT1YxWNDdOSfkmKeUjUsorA46XSil7SykjpZTjpZQZp0IuhSIswf5mkWOq9jMLRhggerK+rVxtbSoULQH7mqD8Zg1UFSAYU2QRSH/KC3eZEU+XWXWaw7n3EJ7iUu3AYAKDCY/DQOn2GC159v6F1U+gaFao2poKRU3Y1uiPo2rpb1ZJsHJW9q1WO0+hUDRrgks2RY5q+C1NAHHgE0xx/lQdGCy4SiLrNId9w3Z9g1EbX7wxDulBbW22MOqknAkhlDKn+G3hqQBbsL/ZqLrNETkWhNV/7DoGjp0nL5tCoWg0XCfyce4/7G8wGLAO69/wF3I7YM/HmBMCksWaIrUyTnXAvv4XfYNJW3NcRSZsByIhZysUqiolLYVaK1tCCCNQJoSIaER5FIrmhX0juhJNpvZg6lS3OQxWiBqnbytbctKiKRSKxsO+Xm+JiujfA0NsdMNfKGMJ2PMxJVZazgSYInAeyar1FDp/s0qEAQxabrbinysDA+Y3gMCKpqDWypmU0g3sBZIbTxyFopkRLoVGfXIcRU/RH6uUGgpFsyaknmYjRGkCviLnpgSvcmaKBESdLGfOfQH+ZoCI8CbL9lrP7EesVGRbNOVMuVS0COpaIeA9YLEQ4jkgk8q4X0BK+UNDCqZQNAtClLNaptAIJmoiIPB9ZSq2gSsLTKknI51CoWgEnIezKP9+na7NOmJAw1+o+LAWSQmYE73bmibNV8xVB8tZ8JZm5Oh0POV27Ou2gqMEkJRsjCWizSE4sQnaDGkQ8RWNR12Vs1u9fx8JapdAt5OWRqFoTnjs3m3NAOqrnJlaQcQZUBEwX9l3EH91/eVTKBQNjruwhBO3PIqnxJ9V3xAViTW9d8NfbPeHvn9N8S4wmLVIS8B5pPaWM/sGvXJmHdYfU6dU7Ou2gTEC3HbKdkaTcFYhpr2fKeWsBVAnB38pZdcqHkoxU5x+2H8GAp10O2klmepLSLWA7+o/l0KhaHCkw0nOXf/EeVhvtYq/5VL/VmFD4XHBngDlLMHls5oBuI7lIAOKrVeF9Hi0fGwBRAzrT+RZQzB1SvVtbUqPoHRLDBz4AtzOcFMpmhH1jr4UQhgCHw0plELRLAjJb1ZPq1klIdUCVoJH1bxTKJoDUkryHn4xRNGJvnAccddOa/gLHl4GZX7rmCE6EmPbtv7zHg+uYzUnjg32NzPERmPp1RlhMBA350LNcobmJ1uyORZZWgBHljfQk1A0FnVNpXGGEGKNEKIMzaTgBFzozAsKxWlCuOSzJ4OlF5g6BzQ4oHzFyc2pUCgahKJXPqJ00XJdm3VoP1Ie/V2DFzoHYPd7+uPuF2Pu3F7X5KrF1mawv5l1SF+E0QhAzMUTMMRE+axnbpuRsl3RKudZC6CuFq+3gWXAUDQfs25AV5S/meJ0w1MO9i36tqiTtJwJET4hbSPikR4+z1jNvete5fU9X+P01LxNolD81ihdtJzCFz/UtZk7t6PVc/cjLLUvoVRryrLh0Pf6tj6zvQXQ/QRvr4YjxN9suD9wwRATRczMybrt0uKf45AHl3gDBRTNlboqZ52BB6WUu6SUhwIfjSGcQnHKsG9AMwp7MXdpmMjKcH5n0h2+70ni8rj5z86FvL3vO/YVH2Px4XUsyfy5Ua6lULRU7D/vIO+h/+jaDAmxtH75LxjjYxvnons+0n/vk3pD6zMwddSvMTVZzrT8ZqH+ZoHEzT4fTBEgNGuaI8eC/aCAg1+fxBNQNDZ1Vc4+B86psZdC0dIpb+AtTd88I8AQ5z/25GuF1RsYl8fNM798xg/Htuja1+XsafBrKRQtFeehY5y483Gd470wm2j9/J8wd2qkNDfSA7s/0Lf1ng1CYO4UbDmrXjlz7j+MpyjU3ywQU/s2RE0c4dvaBCjZGAt71dZmc6bGVBpCiHfw5zOLAD4XQqwCdJ8aKaXKCaA4fQiXfLYhEGaIOhtKF/jbypZA5NCGmR9wuF08uf1jNuTsDTm3p/AITo8Ls6GuWXQUitMLd2EJ2bf+TafcAKQ8dgfWM/o23oWz1kNxwGaT0QK9tCLnoZaz6rc1q/M3CyTuqosoX7ISnFoAUvn+KJw71mE+Oxui29TnWSgamdpYzvYDB7yPncATwOqAtsqHQnF64CmFCn128DrX06yOkK3NhvM7s7kq+PuW98IqZgAOj4v9xcca7HoKRUtEOpycuOMfuIJ8uhJ+N5vo889q3IsfCvq+dz0PrAkAmIIsZ67MbKTHU+VU1fmbBRIxuA+W/mm+HGoAxT/HwP4FtZdb0aTUePsspfxrUwiiUDQbbOuBAH8Qc3cwNeDdZdQEtK+edyvFuQ8cGWDpclLTljnt/G3Le+wuPFJtvx0FGfRJqGN9UIXiNEFKSe6fX6Bi0y5de8zFZxN/8yWNL8ChoPyGXc/3/WuMi8EQH+Oz5kmHE/eJfExtU0Km0fKb6ZWziKH9wl5SCEHcVReRu227LxCgdHsMids+xTDo5pN5NopGolY+Z0KIOCGEJeB4ohDi397H+MYSTqE4JTTWlmYlxniIHKlvKz8561mxo4y/bHo7RDHrGN2Ky7uP17XtKFDxO4rfLkUvfUjZV/oUNtZh/Ul+5LbGSZmhu/hBKAzYaDKYoMM4XRdz8NZmFRGbYf3N0rpUeenoc8/E2Np/kymdgpLlRyA/vJVdcWqprePJMuAqYKcQ4ja08k2VcccfCSEelFK+3gjyKRRNTwMlnz1x4gT79++nc+fOtG+vz19E9DlgW+U/LvsWEm6q13XyK0p4ZNM8Dpfm6Nq7xaXyyOArKXHa+PDAcl/77sIjuDxuTIZQ3xSFoiXiKbfjKS1HltnwlJbjKbNp/5eVa+3ldjxlNtw5+ZQu0JeBNndpT6tn70OYm8APM9hqljoSIuJ0TaZOban4ZZ/v2HnkeNjtymB/s4gzNH+zjIwMjh49Sv/+/YmPj/edF2YTsbMvovCpF8HjALTAgLjdnwInmSZI0eDU9tPYU0q50/v/HcBEKeV2ACHEy8AiQClnipaPuxgqtuvb6uFvlpOTw8svv4zdbkcIwWWXXcagQYP8HaInQ+5D/mPbOnAX1v06tkIe2jSPrPJ8XXvvhI78JX0O0WYrseYoEizRFDo0Z2Cb28GvJVn0ij+JUlQKRTPAlZXDibuewLFjf73GGxLjaP3SnxsvZUYwwcpZ59DkB8G5zqqynIX6m/Vn9+7dzJs3Dykl3333HTfddBPt2rXz9Ym9dApFL76FLNOUM1exifIvF8KkIEu+4pRT21QaJUKIypU8HgiMxz8AqHAPxemBfR0Q4IBr7qUVLa8j33//PXa7HdB8XD777DOys7MD5u0MlrSAEW4o19/R10RWeT4P/PxmiGI2MKkrDw++kmizFjovhKBfoj68Xm1tKlo60uki5+5/1VsxExYzrV94oPFSZgRTUQxZ6/RtnSeFdAve1gxXAD2sv9mQvnz11VdIqSVXqKio4L333sNms/n6GJPiiZ46icpyTgAlKyuILVcpdpobtVXO3gTeEkJ0BZ4BXhRCdPAqbM8Bq6odrVC0FIL9zaLq7m9WUFDAtm3bdG1Op5P33nuPiooKf+NJRG0eLj3BAz//jxx7ka59aEov/pw+h0hThK69b2IX3fHOQqWcKVo2hS+8r9v+qwvCZCTlH3diTe/dwFJVw5HlWrHzShJ7QnyXkG4hEZthlLNw/mYHcZCTo3dtyM/P55NPPvEpbABx18zw1tvUsGdaSdmxtG7PRdHo1HZb8yHgUWAbWh3NBOA677mVwBUNLplCcSoIST5bd1+M1atX6xbDSnJycpg/fz6XX3655ngcfQ4UvBBw7WUIZtU4/8GS4zy08W1KnDZd+5g2fbm7/8ywvmT9EvSWs50Fh3FLD0ZR1zzUCoWGlBLcboSp6XPm2X7aQtH/5uvaDLHRGBLjMERHYoiOQkRHav/HRGGIjtQdRwzug7lLuypmbySCU2h0nhy2m6lD6LamlFIXrGDfEFQV4Iy+fL06vI1k165drFixgnHjtMADS68uWIf2wr7OfwNp+fEA/NEJxkYoVaWoF7X6VkkpPcCfhRBPAQOADoAN2Cal/LUR5VMomg53ETj0i15d/c1sNhsbNmyo8vy2bdvo0qULo0aNgojBYEwBd6520lNCnHknELrVUcnRslwe2TQvRDE7u90gbusztUon/04xrYgxR1LqHVfmsnO49ARdY9uG7a9QVId9007yHn0FV8ZRYmadQ9IDNyIMTaPou/OLyH3gOV2bsXUS7eY/hzGhiXzH6orHBYeD3BaqUM6MrRIRkRFIm2Zl95TZ8BQUY0zyO/fbN+j9Ym092pORUfXW5JIlS+jUqRNdu3YFIO6ma7Gv/6NWrQCo2GPFueZTzGc2sJ1FSq2msKLO1Eo5E0K8C3wFfCOlXNm4IikUpwjbWvzFMABLHzAm1WmKtWvX4nA4fMexsbFER0dz/Lh/a+LLL7+kffv2dOrUCaImQYm/4HJSRNWK3Qmv83+Ro1zXfl7HYdyYdh6GaqxgBmGgb0In1geUb/qlIEMpZ4o6IT0eit9cQMHz74FbywVY8uHXGJPjSbj18sa/vpTk/vl53LkF/kYhaPXEH5qvYgaQvREqCv3HEfHQZkjYrkIIzB3b4tjrdz1wHTnuU840fzP9TeRmV7HuuEOHDuTm5ur8Xj/44AN+97vfERcXR+S44ZhT43Ee015H6Yaj172KdfQOoi8YS9Q5o08uSMJlhx9+Dxnfgsep1fUUBjAYvf8HHxvAYIY2Z8CQP0Jij/pf+zShtrc6XwLnoaXSWC2EeFAIMbguFxJCvCuEyBJCFAsh9gohbgg4N1EIsVsIUS6EWCaE6FzdXApFo3CSKTScTic//aT3WRs9ejRz5swhIsLv4+F2u3n//fcpKyuD6Cm6/omWn7W7zSAKKkp4eNM88uz6RfjCTiO4Ke38qhUz6YacP8OvfelvWE6g8qmCAhR1wV1YwonfPUbBM/N8ilklhS99hG11w9eIDabk3cXYVmzUtcXfNAtrULHvZkdwlGanibps/cEEl3FyBkRsOvcfxlNY4juWkRFsyNVX/Zg8eTKXXXaZrq2kpIQPP/wQt9uNMBiInX2u/qJuJ/affyHvry+TOf5aTvz+H5R9swqPvYI6s+01+PVLTTEDbR3yODWlzVkGjmJNWbXlQfkJKDsOJUdg/xfwyUTY+Ay4nXW/7mlErZQzKeUHUsqrgFTgD2g1Nl8TQmQKIV4XQswQQtSkZj8OdJFSxgFTgb8LIYYIIVKA+cBfgCTgZ+Cjej4fhaL+hChndQsG2LJlC6Wlfiddi8XCiBEjSElJYdYsvS9ZUVERH330ER7rGBB+xS3CmAOO3bq+JU4bj2x6JyQqc3L7M7i+17nVJ84smgdF/wNPIf0MK8BT5ju1s/BQWN84hSIY+5bdHJt5V4hi5ENKcu57GldWTvjzDYBj90EKnn5b1xYxKI2EWy+rYkQzohYpNAKpLigg2N8sLzUBafCvAW3btqVnz5707t2bCRMm6PoePHiQb7/VfN9irrwac1JAgIJ0+24MpdNF+bL15NzzFJlnzSX3geewrd6MdLmoFZnLa9cvHB4nbHgSPjtHszj+RqmTk4DUWCelfEhKORQYilZn8wrggBCiyjoQUsodUspKFVx6H92BGcAOKeUnUko7WoLbQUKIJgyjUfzmcReAI7CciwjN4l8NHo+HFSv0WceHDRtGZGQkAP379+fMM8/Und+3bx8/LF8LkWP1kwVEbZa7Knh087scKj2h63Jmm37c0ufC6hUzdxHkP+U77BJRTJTw+6oVO8o5UtZ4P6aKlo+UkqK3FpA990Hc2Xm6c4bYaAjwM/MUlpDzxyeRzlr+gNcBT7mdnHue0s1tiI2m1b/+cEoCEupEUQYUBESVGkzQcXy1Q8xBuc4CLWeB/mZSSnab9Bams846y7cuTJo0ie7du+vOr1ixgp07d2KISyD1zliSzs7H0tb70+wJtVZ5ym2ULlxG9s1/JXPSDeQ/8QbuvMKqhfe4IWdb1edrS/4eWDAVVv8FHKU19z/NEA115yyEMAJJUsoqV3shxEvAXCAS2AycBTwGWKSUtwb0+wV4WEr5WdD4m4CbAFq1ajXk448/bhDZm5LS0lJiYmJOtRh1oiXKDHWTO8mylrR4vyJT5urCtoKnqhmh5/jx46xfv953LIRg4sSJREVF+do8Hg8//fQT+fn5un6XTHEwuP0HgLbY2j0d2Jr/b5xS8Kl9E4c9eotZN2Mrpkek1xhp2Tn6bdpFLdK1/fPEGNaV96Eyz9FkSx8Gm0+uzmZL/XxMmDBho/cms1p+q+uOKLOT+OZXWLeF5hFzdGtHwY1TiVy3g7gFejfksvGDKZod3tm9LgTKHD/vG6JX6X/w82+8CPuwPid9nYYk3OucmvslXY696Tsuiu7Pzu6PVDuPZVcGKc/4P2eObu3Ivf9K8Hho+8f/YCjTfMlcLhefj+tGXqK2zkRGRjJx4kQMAUpzRUUFP/74o8//DMBsNnPWWWcxMP8tWhcsQ3ok7iILx46ehXOnCdOJAJ++MDg6tSH3T1eBMXQNirQfIX3v3b5jlzGGn/u+DtKDwIOQHvD+Dfw/rmwnXY69hdldHDKnw5zMr+1voiDO76fXEted2q45UPtUGj6EEFOBcUAKAZnspJRXA9XehkspbxNC/B4YBYwHKoCYMOOKgJBtUinlq8CrAGlpaXL8+PF1Ff+Us3z5clqa3C1RZqij3DnfQZGvfCwRrS9k/KBajgVeeeUVnV9Zeno6559/fki/IUOG8MILL2j+Zl5+2mJieBcLBgNUVDhIiMphTPs9PHEkkeM5ZVjwz9s/sTN/GXwlETWFvDsyvNFhFl3zgJgCNjvxbaW620QyfmDtn2c4Wurno7b8Ftedim17yfnHU7iOnQCL/jMUN/diEu+8CmE2IadfyIkyD7Yf/YEslp920GvaFKLPP6tBZC5bspqc9bt1csTMmESve2+tZvSpIezrvOglneyth15B6xrWFlfPbDJfXOA7jix30n/8eBx7Mzjm9IDFggTKpJuy1glEeLc1zz33XMaOHRsyX1paGq+99hoejz/B9oEDB5gy/jxMP62mwuEguo2g58gY5H9fx7HjAGVfraDs61W4c/JD5rMcL6Cr00L0xDNDzrH7I8gIWEs7jmHchKoj0HXYfw9r/gp79DdAEZQw6Ni/IWoajH4UolJO+3WnTtuaQoiHgf96x10C5AFTgMLaziGldEspV6Gl47gVKAXigrrFASXBYxWKRuMkks8ePnyYQ4f0zvVnnRX+hyk+Pt6f58xLToGBHYd7+uIA3FLw7K6lbMjZpRvbM64dD6RfUbNiBpD3GFpKQj39IvNA+h18dzSh31mp08aK49s5WpbbJNdT1B0pJcXvLOT4NQ9oilkAhthoWr/wAEn3XOurQykMBlIevxNT+9a6vrkPv4jjwOGTlsd17AR5j7ykazN3aU/S/TdUMaKZ4SiBrLX6ti7V+5sBGNum6Gp9uvOL8JSW6/zNnE4Hx1vF+PzNrFYrw4YNCztfly5dOO+883RtWVlZLN8RZCHL2YoQgoj+PUj6v+vosPQ12rz+KDHTzsYQE6XrWvjKx8gAZS9wDh2t02t4trB+h41HXsvh5S+haNi/4cIPIS6MRX//AvjoLE15O839ZeuamOY6YLKU8m7A4f17EdClHtc2ofmc7QB8RQeFENEB7QpF4+PKBUdgjiADWEfUeniwr1mPHj1ITa26JEyPHj2YPFm/7bNgVTql5UakhFdyBrKqtK1W59NL55jWPDT4SqJM1poFsq2Dsi/DnuoeUUgE/u2NgopSsmyhd8YNTZnTzh1rXuLp7Z9x59qX2V14pNGvqagbnpIycu56gvwn/hfiNxYxoCftPn2aqAnDQ8YZ42Jo9cx9CIv/pkHaKsi56194SstD+tcat5uc/3saT4nfyizMJlKe/COGqFp8D5oDR5brqwIkdIf4rjUOE0YjpnZ6hdd55LiuZJOjwsGJ1v4NpuHDh2O1Vv26jBkzhv799VGty7dlU+EKUHJKj0G5fyNLGI1EjhxIyt/vIPWDJ3U+hs79hylfGqR4AuRs0R+3Sq9SJoC8IjdPf5DPjl8d/PBzOX9+JYfsqNFwyQ8w6FYtzUYgFYWw7C76HnwUyrLDznk6UFflLEFKWfnpcAghzFLK9WjbnFUihGgthLhcCBEjhDAKIaagBRH8AHwO9BdCzBRCWNGqEWyTUu6ubk6FosGwrdEfR/QHY7AxNzy5ubns2KG/j6jKahbIuHHjSEvz19Ysr4hi0dozeKegP98Vd/G2OkDaSY1K4uEzriLWEhV2Lh3SA7mP6NsiBoGIBsAkJL2tOSD9Pxg7CjJqnvckWX58G/kVmjHc5XHz3oG61RFVNC5SSnLu/Tfl34f+2MZdeSFt5z2OqX3VJZQj+nYn6YEbdW3Og5nkPfJSvS2zsV+uoWKL/mcg8Q9XE9GnW73mOyUcCiqLVEXi2XCERGweOubLb+Z0ufBI6VPOjEYjY8ZUb+0XQjBz5kySk5N9bW6MHC6N0lvAqnDmN3dtT/S5+m3Molc+0o91OyE3yK7SehDVsWWvXZeZ5Xiemz+/kkNGrhlG/QVmfAXJ/ULGxZduh69mn7YpN+qqnB0QQlS+Sr8AtwohrgKq9x7UIjNvBTK9fZ8C7pJSfuENIJiJFhhQAIwAGj+boULhJbtwNaXugK3COqTQWLVKXzIlNTWVHj1qTqBoMBi49NJLSUxM9LV9U9GLL4r66sz1SYZcHhk0laSIWiaELPkcKoK2FVIe1eVs6xeZq9/abIJ8ZzuDFMDt+QdDUoMoTh0VG3diW7VJ12aIjabVM/eRdP8Nui22qoiZOZmYi8/WtZV9s4qS97+qszz2n3cQ86X+pinyrCHEXnlRnec6ZXjccPh7fVtdlLOgXGflyzbgKdCs6Y6KCpxmIwWJ2k1Xeno6cXE131BarVbmzJmDKSDC9ZizFQ6nE0/luhO8LRlA/M2X6DL+O/YewrYsIHF23k59xGd0KkTpLYDB7MpwhLQVlnh46L857Pi1AloN1BS0kX/W1QTVrrcL9n0WMv50oK7K2Z+BSrX7fuAO4Em03GdVIqXMkVKOk1ImSCnjpJQDpJSvBZxfKqXsLaWMlFKOl1Jm1FEuhaJevL3vO27eUcrVB8/j1ZwB2D3GWiefLS0tZeNGfR6esWPHVp/eIoCoqChmz56N0Wgku5Wbox3c2B0WpNQsGXGGCh5tt4I2Zc/VPBmAxwZ5/9C3xVwEkcMgaryvSVPO/AtiYytnUkp2Fob6H3139Lebw6i5UfTmAt2xuWdnUj/+N9GTa1++TAhB0p9vxtJLn0O84Kk3qdhadWmhYFwn8sm572lEwE2KMSWRlL/9vtbfrWbBiU1gD7gBscRBm1oF6gGh6TTKl2rKqtvtxu3xkBPgbxYuCKAqUlNTmT59uu84y90aKSVlpaVUOBx4Tmypcqyle0eip+hvXgtf+chvHQ3e0qyFv9nujPBJbm0Vkr//L5e1v9i0mp/pt8Gly6BtkF/dpmdPS+tZrZUzb94xK5AFIKVcL6XsIaVsK6WcX/1ohaL5ccJWyOcZKwE3HgRfFXXj7iMT2F3Rvlbj16xZgysgKWN8fDwDBw6skwwdOnRgwvmTOdxJm8cjDThcZqKEg3sTvqc1Bcjij6A8fFFjHYX/BXdWQIMZkh/Q/o3yex70jCjEjJ3KagE59iKybTUZv+tPli2fgorQPEU/HNuCy+MOM0LRlDh/zdRFWwIkP3hTiHJQGwyREbR69n6d87h0ujjxh3/hzi8KO0ZWOLCt3UbBM/M4dukfyZx4fUhOtZR/3IkxOaHO8pxSQqoCnF2nwuKmTnrLmazQbqgqvOXhTrTWLGVpaWm0aVP1lnM4zjjjDF/wQJZLGyslVNgryN31AwcOHKhybPwtl+qOHbt+xfbjz9pBsGJXg79ZYYmb7Pyq1wCXG/79Xj7frvWuH/FdYOJLWqmnSooPw95Pq71OS6RWypkQYi6wHXgF+EUIcUljCqVQNAWb8/brLEgAWc4E/rTxQ97e9x0Od9XJNB0OB2vW6LddzjzzTIzG8IXHqyO3LZgi/KHnLoeZ680b6WzKx263U15ejuPoXeCxVz2JKxsK/qNvS7gRzF4rhrkrmDoAYDF4SLPm6577zka0nlU1d6GjjA05tbeoKBqH4ncW6o4t/XoQMaRvveczd0ol+e936Nrc2Xnk/N/TSLcb6fHg2HOQojc/J/umRzg85kqyb3iIojfm49h5ICQKL/7a6USOTq+3PKeMkKoAdcv9Fk459ng8vhvC7Daaq0NtfFzDcdFFF9GtWzdy3Ym4pH/dsrqL+PCN53j//fcpLCwMGWfp0Ymoc/S7C4UvfahZz+oYqbn7kH797d7ezJXnhm7PvvZFER8vLdauEdseegcVaD8NrWe1tZzdB8ySUrZG8wf7U+OJpFA0DeGUM4QZCXyesZo/rvsv+4uPhh27ceNGbDZ/tn2r1crQobXfsqjE5XGzJPNnrFYrkZFRCCFon2li92Z/6Vq32429ZA87Vt1EeXkV0W95/wIZcM6QBIkBP5BC6KxnfSPzdM/9l8ZUzgqrnvu7o5uqPKdofNx5hZR+sUzXFn/ttJPePoyeNJK4a6fp2uxrt3L8mgfJnHAtx2beTcG/38b20xakPdTnqJKIQWkk3DHnpGQ5JRQf1jLcVyKMmuWsDpg6tNH5d4F2Uwj4/M06dOhA1641R3+Gw2w2c91113HBRdPIdrfSnUs1ZbN9+3aefvppli9frtshAEgItp7tPIBt2U9QsFd/kVbVBwMEb2n27mLh4nGx3DYzAUPQR/CT70t4bUEhbo+EM+5AigA/yJIjsPeTaq/V0qitctZOSvmF9/8FwMmlFFcoTjEuj5ttebt0jvEACL8F60hZDvetf4P3D/yg235zu92sXKnPij5ixIhqw9ir4qfsHb4oRpPJRHREJJf0m8Dxwg5sOqAPe28f9QVvvXo/69ev1yWTpGInlHyonzjpntCI0wC/s/5BfmfVKVAnS3U+bZvz9nPCVtho11ZUT8lH3yAdfouDqV1roibVvmxZdSTeeSXWofoou4otu3Hnhd/eDMSS1oXii8bQ9n9/q1UwQrMjOEozdThExNdpCmExY2qb4juWUuJ0au9Vpb9ZXXxcw2E0Ghk9ejQR7YdiDkiFkmrSctw5nU6WLFnCs88+y549fmXT0qsLURP1n5Oi/7ylj9yM7wYR1Qcp7AmynPXurDn8Txgazf9dnYwl6K3/bn05z7yfjyMileykifqTm547raxntVXOAisByDqMUyiaH/Zt7D1wHeWOE4C2mMQbK3i43TpSrMm6rm7p4eNfV3Dv+tfIKNFy6uzYsYOCAr+PVuUCVx8WH1mvOx5gas8Fk8/j7rvvJqtiLqU2v++OweBhQr+vWPD5fF566SUOHz6sbQHlPkKl/xgA5p4Qf2XoxSLPpPKrm2YtwIjD9/yzyvPJs4eWTTlZcu3FZAcoXyaDkc4xfv8YCXx/bHODX1dRMx5bBcUf6CMp4666sMFqVQqTiZR//RFjSkKNfY1tkomZdjat/vUHOv74Fu0+e5bSi8YgIiw1jm2WHPpWf9yplhnygzAFbG06HA7ft/xE6ziSkpJC8pbVF3tsGpFWK1HRURiMBlKN+gTEeXl5vPXWW7zzzju+8nPBBecrdh7CnhFwg1rDlmaFw8PBY3plKq2L//0e0tvKwze2ItqqVz7X7bDz2Ju5HEiYqfc9KzkCe1teabWqqK2SFS2EOFz5AOIDjo942xSK5k3Fbsi6ATLPZXO+PgnqoMgcBqf05blRv+PsdukhQw+WHOee9a/y6a8rWL7iR9252oaxB7OnKJO9RZm6tiHeOpfJyclcceXNuJMfxRBg32+fnM3g7ts5evQoL7/8MhtXPgG2oGCBlIdAhPmBNcZDhLZdGmFw0yOiMKRaQEMTbJHrEdeO8zrqo62WHtuMW4bJNK5oVMoWLvOlZgAtdUbM9PopEVVhap1EqyfvQZj0vpiGmCiiJgwn6YEbab/oRTosfZ2Uv99B9PlntTzH/2AcpXAsKHdiLaoChKMy15mU0relCZq/2ZlnnqmroXkylEZpxdFNRiPR0dH0SrITGRm6E7Bz506eeeYZtm3bhqV3V6LGB3yX3U4KVyf4XQZrCAbYd8SJO+Br3ybJSGKs/nPSq5OFv93SiqQ4/fPcedDBuxv6kd8lqFLEaWQ9q+07ezZwVcAj8PhK71/FqaL4I8i6EYre05KQKvQ4MuD47XBkIpRploIt5frcO4MTU6D1v4k2W7mj3zQeTL+CxAh9UV2Xx83be79ladwh7BF+S1V9HXIXH9Yn/DwjpQdJhmhdW8e0m4hqNV1Xt3PCgDXEWEsxCDdJ8kWcgf4gkWdBVDW+LQF+Z/2C/M4aIxltcDBA34ROnNW2v64EVZ69mM25ocW18djAEz7MXnFySI+H4re/0LXFXjIlpERPQ2Ad1p+28x4nbs6FJNx+OW3f/ScdV82j9QsPEDf7Asxd27esFBk1kfmjPtdXXBdti68emL25zpxOp89q5jIZqGifwpAhQ6oeWEdsEe3BrL33AogSNu69ZTYjRoRWSnG5XHz88cfk5eURH2g98zipOBaB/ZBXqavBcrbnUJC/WefwVtKObcw8dmsrOrTW33DmFpt5cvdcPAGuKJRknjbWs1opZ1LKH6WUPwJrgDTgMuD6oIfiVFC6GE7crZXrybkXjt8InpMomXIaYTHkwIl74PBYKP2cyq2/YreF/RUJ3l5mMCSS3uN5MPm324a1SuP5kbcxtq1+28BR4aAsxsOu3k6cJknv3r1p3br6JIvhyK8o4afsnbq2CzuGKRklBIY2/yTCmkhMTAwmkwmL2ck5Z6xgcPcdJMcWUmG3e+9WDZDycIgTsY4Qv7PGTUYbbDnrm9iZKJOVM9voX9dvg3OeFb0PB/vCrz0gczoUvAgVe077enpNhW35BpyH/WlXhMlI7JwLGu16EQN7kfSnG0i49XKs6b0bbOu0WRLsb9blnOq/k9VQua0ZaDU70TqWEaNHY7E04JavMELKAF1TZOlepk2bxu9+9zs6duyoO+d2u/nqq6+I6NeDyHFDte+l1PxyC1cnIDGGzeofSHCkZu8uEVX0hJQEE3+7uRW9Oumf8/4sA9tb3aPvvPHZ08J6Vleb6NvAXWhFyQ8EPRRNjfRA3pP6trKvIfNicB47NTI1B1wnIOfPnJH8eyh+H9Dn0dla3gqJGQwJYEyia1wnEsNk4I+1RPHHAbP4v4GXEmeJ0sLYvek1nBZJZgd3va1mXx/ZoNvKax+dTHpy9/CdTamQ/AAGgyAqKpKoqEjS2v/K2QNXA+DxeLc84q6AiD7VX9iaDgbtufa25mPAA1JbyDLLcil0hOYjqy8ljnIOlwbU6QP6xGvbtue0P0PXd2PuPl9gBO4SyP2zV3F0g32dVsj9yAQ4NAJyHoCypdWnFlFUS9FbC3TH0eefhalNcvjOitoj3XC4/iWbgjF3SsUZmL0fyG2bwKhRtU8OXGuCIyu9aTHat2/PLbfcwrnnnqs7vXPnTvbu3UvCLZfpLIUVRyOwF/QEc2SVl3J7JHsP65WztCosZ5XERBl46Ppk+nXT91tSeLHe96z0KOz5qNq5WgJ1Vc7OBUZLKe+TUv418NEYwilqoOwbcO4LbXfsgMzzwP4bTFNQvgoOj4Oi/yEIk6fM0pvNzAFjMgjtTm1wVUqRl9Ft+vL8qNtoa9MvNvltoCKx7hYAh9vFt0d/1rVd0HEEhuACv4HEXw0RmkJjMpkwm82YjH6ls7RcUmK+peaLC5M3MACijC66RRQG5TtrOPfR4KoAXWLbEm3Wtjx6xXegc4zf4uiWHn6oDAwo/w5kFYqXKxOK3oKsqzXL2rGroehtcIZPeaIIpWLrHio27dK1xV0z9RRJc3oRU74fbAEJdC1x0Da0WHxtMbZvrbOaAaRMGElMTEwVI06CYOUsIKGswWBg7NixIRa0xYsXY+rbjcgBCbr2otXVy5eZ7aLc7lc4YyIF7VvVvJZGWAxcNlnv3/vzfgO5XW7SdzwNfM/qqpwdBqq2PSqaDimhoJqyPu4cyJwBJQuaTKRTTuFbcOwK8IQJ1Td3hTYvITt8x5YSvSUtPbkWtTDtHlI2lmK1+bcnLBEWXt3zVZ2d2Vdmb6fI4d96jjZZmZBafT4ghBFaPwloC1iENUK3U/LTzjP46tufw48Npon8zoK3NPsl+sv6CCGYHGQ9++7oJjzSAyX6pKhVIu1QvhRy/gSHhsHhido2v6JaiufpX9/IUYOwpNUvV5ZCT1JJ0PZ8x/F1qgoQzMHsLPLi/D+5tkgzQy+bVu/5qiXEcrZN50ZgMBi46CJ9bdOcnBzWrFlDwgS9u4F9fwX2Db9UeandQf5maZ0jdIFP1dG7s4VObf2KnJSw1DkXjAEWtdKjsOfD0MEtiBqVMyHE2ZUPYB7whRDiisB27zlFU1K+HCq269u8FhE/Dsi+Tdv6PJ0DBaRT2+rKfYDgLUxM7aH109DpR4idxqGyXP/2GWA1mumbUHPavrVr1yJdHjof0hYFIQyYTGZ+Lc5iSWYtlSK0qKvFh9fp2ia1H0ykqRb3PBF9IPFWAAxCEBGhWaGKy2NYvzedLVu2kJGRUfM8wcoZDir98RoyGW1wMECfoNd5XOogzAZ/dFa2rZDtuTuhXJ8UlcS7IGqiz9JZJY5dcPxWqNhVfb/fMM7MbMq+00cSxs2d1rgXlRJ2zIMF02D1Q+Asa9zrnUISi4PWgpPY0gRYtWoV64d3pSAxisKESLJmTySlTd19XGtFfBewBLh3OIqhWP8d7tixY0iy7aVLl2KK3ElkF39SbgxmCl+p2jF/d0awv1nt/eeEEEwZoQ+c+n6rAVdaUFzipufAXXWC4+ZObSxnbwQ8fge0Af4R1P56YwmoqIJgq1n0edDuQ0j4XZi+z8Dxm0/PQAF3ERybo2116RAcKbsMOq+GuMt9qSU25+mjAgckdcVkMFIdDoeDdes0hSq+xEBSnkHnjPve/h9q7au1s/AQB0uO+44NQnB+xzpseyTeDeYugJbh22AwsGz7KFwe7fktWrRIn6A2HObOvjn6WvMQSJ/17HBpNiVOWzWDa0e5q4JfA54nQN8EfUHsWHMko1vrywR9d/hLIGA7wtwFku6Fdu9A152QOg/irtGU7rC4ofDVk5b/dKXknUUQ8Pmw9OqMtTFLI7kdsOxOWHk/HF8P21+HL2eDo6TmsS2Nkkyi7AFb+cJQ56oAgZw4cYI9e/aQlxLDN+f15+vzB5B+dSNWThQGaBVUGzi4HBMwZcoUXfS42ZGHo/AI8aMrdywEGEzY123DvmlnyHgIDQaoyd8smDE9BZYAt47CEg/rrLcGWc+Owe6Waz2rUTmTUnatxaN+ccKK+mFbC3Z98lIS79S+XCkPQOvngCBTetmXcHQ6uPQ/mC0axwHIPD80z5eIgrb/I7P8El3GfwhVzmqzpbl582Zd2aSeJ6KJs/rv3MpcdubtWxpuaAiLgqxmw1ql0SYysVZjATBYoe1rYGqPEOCMuppdh3v5Th87doyff66FJc8btRljdNLJUuJTziSwq/Dk/c72FB0JCXgITk0CMCloa3Nt3jGK3AHvWcxF/kg3QyRET4LWj0Pn9dDxe62we0RQSoGS+VpQiEKHu6iEkvn6z2nc1Rc3XhoLWz4sujS0KPXxDZqCVtHwSY9PKcG1NNsMBWsdvttBrFqlX9c6dOhA586dq+jdQFQRFBBITEwMkyb58+G1M53A6XBiTi3H2skOBv+WY9HLoY75eUVucgv9ipXRCN3b1145K1uymtwp1zL8lx9wFxTjsdmRHg/fbjFDn6Dk2y3YeqYy/bdECp7XH0eNB2vAHU/cJdD+U83pPZCK7XDkPLCHfuGaO/n5+Rw+fFgrfAtQ/iNkXgDOg/qOpvbQYRHETAmZw+52hDip1xQM4PF4QhbJsWeM5IoeE3RtPxzbUqNSc8JWyPqc3bq2C8Klz6iJiH7Q+SfonkFirxfoP0B/t7tkyRJd3c+wRPq3NkNTamTUXaYgggMLgq1mvmsndiE1Ksl75MHlcbCsOMDpOKYKR3UhvNu8v4MOC8AUOL9TCxJQ6Cj9eAnS5g+0MLZKIvqC+kUb10jBPvj8As1aFo7sjbD4UrAXNs71G4js7GyysrJq7gjhU2jUk9LSUjZv1lfOONlSTbWiFsoZwKhRo2jVSqvHmWrSKqfY7RXEjynURU7a1mylYuse3dhgf7Pu7S1YzLV7Xp5yO3mPvoy0OxiZtRbpdOEpKceTV8gvW/PZmz0JSYCiV5YFuz+o1dzNDaWctTTsWzV/s0ACC1xXEjkMOnwFlt76dnc2HJ1We6frZsC2bdt4+umnefnll3njjddx5b4Kx64ET9Cdt3UYdPi6ynQSvxRk6Gpkto1MJDUyKWzfSvbu3Utubq7v2GAwMHr0aC7oOIJOMfpiwa/s+lI3fzBfZ27QhcR3jmnDgMQu1V6/SoTZZxU8//zzMQXkjSovL2fp0hoseZGjAW07t19kLpqvniZ7Q+Q7C8lvVoVyJoTgnPZey5dXQfyuuIvmh2zuCpa+YcfpJzFCwo36tqK3VaqNQJwuit8PKtU054LGqVuZuQI+vyjEXwkR5D6Qsw0WzdIsbM2Qb7/9lmeffZbnn3+eBQsW+G8Mw+Esg6NBFvyT8Ddbt26drth4fHw8/fpVnzesQQgbFBDqJmE0Gn3BAZV1ON1uN8a2pVgH6X1LC4OsZ7sP1t/frPSLH/AUaS4kbcuz6V6SAWhujR67g0Vv7iPzjd7kL0vEccKrJG56vnlYz4oy6tRdKWctjWCrmXU4RFZRqNjcEToshKigRUJWQPYtcOR8LcLRXXMh4lNFQUEBn332GW63G4Nw0zP+DRzH7kPKICUo9lJo/wmYUsJPBCFZ6NOTu9d4JxpsNRswYADx8fGYDEZu6q1P2nmoNJtvMjeEncfudvBtpj6S66JOIxrkTjghIYEJE/SWvDVr1pCdnV31IGMsWDWlqK/VG/rv3dr8tSSLclf9FRunxxVSlqpvYifcbjdZWVkhqQHGpw7CKAw+5eyoM4ad9iT9lmZNxF0GhoAQe0++tr2pACBy/S7cOX4lSERaibk01Lp80uyYB1/O0ZzJA2k/Bmavgbb60l3k7dQUtPIcmhP79u1j2TJ/YMq6dev49ttvqx6QuTKoKkBnSKjZZSIcTqeTNWv0QRujR4/GaKzeN7ZBiO0IEQkBwpRB4a9hu/bs2ZO+ffqQavSvMxUVFURdN13Xz7Zqk856FpJ8tpb+ZtLtpvidRbq2Mcf1biI/pwym3B5D8YZ4jr3VjmNvp1K0opT8b5+p2Re3Hki3G+moJmVHWTZsexXmnw8f1K3+slLOWhIVe7Qks4Ek3ln9GEMMpP4PEm4LM98WLcLx4EA4fguU/QAyTG6wU4SUkvnz5+NwOLBa7Fx+1kIGd9+By+XC7suKLyD5L9D6mRD/smA25+lzJQ+uwd/s2LFjHDigH3Pmmf6I2P6JXRiXqt9SfP/AMl00aCXLs7ZRFqDwxJojGdt2QEi/+jJ27FgSE/3+LVJKFi1aVP3dvtfvLMHkoIO5xKcceaRkd+GRqsfVwL6iozgDLIgp1jjisPLKK6/w/PPP889//pPdu/3bu4kRMQxP6abbWv2uuEvVW5rhMERD3Bx9W+GrVVYUKHP+dqxqUkpivtPfNMTOmIQxrgFzZXncsPphzfE/+Map92w4/32I7QAXvA/tgn6k8nfDwpnaD1kzwG6389lnn4W0L1++nLVr14YOkB7Y+oq+rfPkelcF2Lp1K2Vl/ojWiIgIhg0bVs2IBkSIMNazLVV2v2jcAKwGv7Jld5tZ7TFgHaK3eFdaz2x2D4eOBxU7r6VyVv7DelwBVS2k0cCZM/sSh/+7bDdGsLHVYDBpOSkd2RbylyZScPvnLJl2Hcdru0VdC2zrtnFk/LUcHj2H4ncDUvhUFMGu9zV/y3fPgJ8e0eWMqy1KOWtJFLygP44YqCvHUyXCCCl/htZPIzHjcrlwudwBv1tOKF0IWVdCxjDIfQwcYWodNhVSgusEeza/SorxYy4a/i03nvM+nVv7E406nU5sFQZIfUtLL1HDQphtK+BYuT85pFEYGJDUpdoxwVazrl270qFDB13b3J6TiQpIg1HuquDtfXrHYCklXwYFApzTYYiuvuTJYjabueACvSXvwIED7Nixo+pB1eQ7O5mUGiH5zRI68+OPP5KZqVnTbDYb8+bN0/3QnZOkV5Z+Ku1EqehStwvHX0flVi0Azr2ab2IQdreDv215r25zt2DsP23BfMy/NY/BQOxVF1U9oK44SmHJtbD9NX27EDDqIRj3JOUVTnbu3ElWbjHy3HnQfqy+b+F+WDgDShvux7O+fPPNNxQVhd9NWLhwITt3BkUg7pgX6lvX9bx6XVtKGbLuDB06lMjIqrPtNzi19DsDSHBkEBEQuZ7lbs3qNWuRV+irCVRaz/Yecejul9q1MhEXXTuLYHFQVQvbiL60unM2517WC2NiLIbICIQQrG4zHGmOBoR2cyrB4IGuW3/l2z/8lf37T/63zVNmI/e+p/EUFCPtDvKfeB3H92/BN9fC2wPhx3u0be6TKDenlLOWgvMQlC7QtyXeUeu7M5vNxg8/t+aNby5gZ0YyZeXllJaWYrPZcTpd/s+QOxsKX4TDZ8GRi6DoHYyiEfMSSQdU7IDijyH3r3D0MsgYiOfXQbQX9zBh4E/077yXmEh9GpCislheWXQ+P++qXTRUsNWsd0JHokzWKvsXFxezbds2XVug1aySxIhYZnfXbyn+mLWNXwKc6rfm/8qRMv+2jVEYOK9D/bOGV0Xfvn3p0UNvDfzyyy9xOqswu0cMBEM8UOl3Jn2lnE4mKCA4GKBLRCtWr16ta5NS8sUXX/D111/j8XgYZFxJa5P/PXYQxY/ZVSexDIu5PcQE1Ycs8qfVOFaWx6cHV3LPuldPyjLY0ih6c4HuOPqc0Zg7tAnfua6UHIUvLg51hjdFwpT/kd/xUhYuWsTjjz/OO++8w/PPP8+Tz/6Hr+TllCQNR/fTVXQQFk6H4lP33uzfv9+XNiccUko++OADDh/2fsZLjsK6x/SdOk2E1CpcTWpx/UB3BCEEo0fXbTvspGkdXCmgmgCyE1uwREQgvAlks1ytcbvdfHNsPxFnBFnPXvwgNL9ZLa1m9i27QwILSidr1sTJw6MxWMwYYqMxpiSQ3bY7WWPOwWO0EvgBMwsnvTcd5J3X3mDTppOrnlP8ziLcuYXgcYCjCMpOUPjkM5CxRL+9HUgdLalKOWspFLwIBOyZm3tC9LlVdq+ksLCQxYsX889//pPvvvuOA0fj+eDHabz05dX8+MswcgoisdlslJSUUF5uw+EIqONWsRFy7mNo8g1Q8N9aiVntNlog5as05e9ADzgyGU7cBYX/BdtKpCsPu90WctMRGRWJEHAkN5W3vr+UnOJk5s+fz549e8JeIpAtQSk0aorSXLNmDW63f3smKSmJ3r17h+17bodhdInV/9i9utsfHPDlEf1iP6p1H1Ks+hIkDYEQgosuugiDwf+1LiwsZMWKFVUMMEKUFq2nJaPFt7W4v/gYFfVwonVLD7uK9D+ueb8c1jk3B7JixQo+/fh/CNtyJsYFWNyElW8zN9b+81RJgr+Mi5RwuGAjH+75mDvXvMxtP73Au/u/J7Mst5oJTi8cew5iX6v/cY27uoFKNWVvhs/Ph7ygpL/RbckZ8zofri3gqaeeYs2aNbr3v6CggJVr1vPE5l5sK2qDzW7H6XJpv6PFhzULWnAwQTVIKev+OQlDRUUF8+fr/RSTk5O54oordL6hLpeLt99+m9ycHFh5ny6prtsQCWc9Ue8tzWCrWf/+/UlKqj5oqcFpla4/zvsFPFW4u+RsQQBWb0LsLJeWIHfvvn0UXaiv/2n7aQs7tuq/e7VVzoqDbjAix56Bq70WkJWSYGJIb++NthAIawTrJ1zB6uvOImLkCTBpv5sGJHEV5fTceZRPPvmE77//vl6fG3d+EcVvfq697/YCcNkBSfneKCqOh3k+KQM0C/Kc2icrh8paMIrmjes4FAfli0n8vZbXrAqOHz/OihUr2Lp1a1hHyOLyOFbvHM7qncPomJLFwK476dNhP2aTHexaNI7ZbMZkMmEQTmTuX3E6beR7LqeoqIji4mKKiopC/q+oqKBnz55ceumlREdHh5EMKPsWsq4nJJu/F6fTiculP2e1WjGbIimLuZSP5sfi9K4VUkref/99brzxxpAtR9/L53GzLV+fcqM6f7PApLOVnHnmmTqlJxCTwcjNvS/gTxv+52s7XJrD4iPrGNGqNz/n7NX1v7BT/e6qa0Pr1q0ZNWqUzlK1fPlyzjjjDJ1Pmo+o8VC6iGSTnVRzGVlObavVLT3sKcpkYFLdUhhmlBzH5vL7jkUZLBz4uZqtVcBVuJjysiLOjj3ER/m98WACYeJQaTb7io/SKz78+xoOGTGYg55RrCko4KfS9hx1xoBYqw8W+A1R/NYXumPrkL5EDOxVRe86kLkKvr4K3P73WgLl0T34omI62+dV4zzvxY2Rjwsnc3HMt/Q2HwDhrRvrzMD4+cVY296HlJKysjLdGhO87hQXF+N2uxk6dCgXXXRRvR3nlyxZQkFBga5t1qxZdOnSBZvNxoIFC3zt5eXlrHrzbqbGfo8hQBE7lHolfWLa1ev62dnZ7N2rXyvCWesbnei2ENXKH6ThsmupUZKDouA9LsjVqtSYzCaMTiNZbv9N6qKMXcw5oy8ObyJaNwb2HSiHBL8bSJ+uNVdGcR46RvkP+vU47pppYPcHuJw7Mpqfd/ldI1ZuLqGrEKT2a0d/Rxa2TZoiZ8HJgF2Z7O/RmqVLl1JQUMD06dN9n5kVm8tZtLIUh1NiMQvfI8L7sFgEnp+3IpPOxBxTjNntIMV2gn552zF7nBSuTKDNJScgvhv0nA49pkFC9YaAqmgS5UwIEQG8BEwCkoD9wANSyq+95ycCLwKdgHXAXCllw9WRaekUvIwua7qpE8ROC+kmpSQjI4Mff/yxWmtSRIS2N2+32wHBkdx2HMltx7ebz6J3+wMM6LKbzq2P6ixHFRUVUPIXftz4PVt+7V+tuHv37uXVV1/l+uuvJy4u6EexfCVk3UhVipnHI6mosONyG8kpSuZEUTJuU2/OmnQzWPuTYIznkku38/777/vGOBwO3n77bW699dawd5l7izIpD1AY4i1RdI1tW6X8mzZt0uUJs1qtDBkypMr+oJUmOrtdOj8c2+Jr++jAcvYXHdVt3fSIa0daHZSN+jBx4kS2bNnicyp2uVx8/fXXzJ49O7RzpD/PVV9rLlnOaLSfWcEvBRl1Vs6C03BEFXp0WwspKSlccsklzJs3zydf7477cbvdRFbkc0bUcX62+RXn745uqlY580gPufZijpbnsi3/IGuyd3K8vKe+vqq0ATEEbhQ0craoZoErK4eyr1fq2uKuufjkJ87fC9/e4FPMJNpnbK+zBx8dGo6T8AmAo6Ojqaio0FnRPBj5onQKnujv6GvZh8vpwuV0gf0AnY/fxfOrf+S4s3auC+vWraOoqIjZs2djNtfNn/PgwYNhIyS7dOkCwIgRIygqKvJFcEaLckbJb7CVO4mKitYMZakjyY6bTPhEPjUTbDXr2LEjnTrVXFouELdH8snSEvYcdjC8n5VzhkdjNNbx014ZFBC4VZ2zLVQ5K9jntRpp3ydLfDtKcv3ln/ILCsgY04d2XuXsWHRb7A6J0elEmM3ERxtok1SzIl08b6HOd8vSpxvWEQPgR78/6YAeEbRJMpKd70ZKSbmtgjxzD1bbCumb/gGGnUnIChNISbTLzoBfjvLz0C5s3LiRwsJC5syZw4qtbl7/ovrMBdLtxpOfjEw9k8CFrW/eL9zwy8vYMpOx9/gr1olT6209raSpLGcm4AgwDq14+vnAx0KIAUApMB+4AVgE/A34CGg880JLwp0Hxe/o2xJv95UjAi1R6q5du/jxxx85cqRqf43Y2FjGjBnD8OHDsVgsHDx4kB07drBz506Ki4txuixsP9SH7Yf6EB9dxIDOuxmRtgWz0eEz6587ZDkVTgu7jlR/933ixAleffVVbrjhBhISErRG23rImotO0QQwdQBLH6SlL8tWZ7Fph52C0nikNGAymbjrrrswRPsT6g4YMIALL7yQxYv9ETKlpaW8+eab3HLLLSEWu5CqAEndMVRhdQyXdHbEiBG6ck1VcXXPSaw7sdsXlWlzO1iVrbcaXdCxYdJnVEdkZCRTpkzRbdFs376dAwcO0L170F2cuT2Ye4BzP/0i8/i+pLPmBygi2J6fAXW86QsMBnC73biPlBPopD9lyhQ6derEbbfdxltvvUVx4RG6ttE+sx6Ph7HmPawv7+NTo1Yd/4Xrek3B4XFxrDyPY+V5HC3T/mZ5j53BueVEBJoiFmAx9pRjNMbRL7Ezo1r3ZWTr3izgr3V7ci2MgqffRgZYoM2dUokcf5JRf+U5msXMUYxEs3I7KipYXT6YH22jkGHU3latWnHWWWcxePBg3G43e/fuZefOnezatQu73Y4HA4vKJuPBQH+L96ZSQpQo4+qYD1huG8UGe3rYuYPZvXs3b7/9NldffXWtvrOg3dx9+qm+ikFSUhJTpuhTjUyePJni4mI2btzI5KgVRIoK3G6w2cqJjE1EjP83bK6fTaGqpLN1ZfHKUj5bpkWL/3KggpWby/ndpUm0S6njT32IcrYVel+m7xMUgWhuN5QRKSN1gT5Ljh3ghvQ03Fv2cDBWy3XoKbNhTDDTu4ulxrXQnV9E6YIfdG1xc6eFjDMYBFNGRjPvq2KcTicej4dcZy/aWHbwrXsc00ZvpnB5MgKBUXroe+Aou9PaUhpr5cCBAzz01Jf8Wjqiyt2RSmSZDSk9VCpmwgAI2JkykCMp6XQqO0rBvLW0nTj1pG8Am0Q5k1KWAY8ENC0WQhwEhgDJwA4p5ScAQohHgFwhRG8p5e7guX5zFL4OMiCSzdhGy+nkpTLyrbqC18nJyb7FMfCOskePHvTo0YOpU6dy9OhRdu7cyY4dOzhx4gRFZfGs2jmCwzkduPTMLzB79+0FMHX4UhwuCweyulQrel5eHv/973+54YYbSI4+CllXea0YAbT+N8RdAcCWzZtZuvZjwB+ZNGXKFJKTgyodAGPGjKG4uFjnT5Wbm8vbb7/NDTfcoFuYg4MBqivZtGfPHvLyAqI6jcZaO+QmWGKY0+NsXt39VRXnozmzbRMkkgSGDBnCunXrOHrUH+G6aNEifv/734du+0SNg6L9er8zEcGuwsPsKjwcUrC8KqSUugoMFRV2Ykv8i13Hjh19iTSTkpK49dZbWf31HRgNAWWeKspwFjkwxhkxmUzY3A6uWfEkDnddUrwIrYSXLMWEh4FROYyOK2V4n4+JC8zhdBpjX7+dsq/1NxlxN8xE1PDjUy0uuxaVWXIEt8eDrbwcj0eyzDaatfYzQrp37tyZcePGkZaW5vvRMxqN9O/fn/79++N2u3U3iIuLJ+LBwECL34fNiIeJkavpaT7I4rJJFHlq3p4+cOAA//vf/5g7dy5Wa9VBP5V899135OfrE+HOmDEjRLkTQjB9+nRi81bTp8h/w+dyudlsmsTguC5A/ZSztWvX6nYqEhMT6du3FgmYA/B4JEvW6YO39h1xcu9z2Vx5XjxTRkZjMNRSZUipucZmSIqNVoOY3HcyW7du9e08OBwONvdty8AtezgYq60j0uFCOp2kda75vSz56Gtkhd/31dQ2hehzwq/HE4ZE8/6SIkoqNIuuwxNDsas9CSOHEz8yntJNm3EVmxBCYJUOhm87wA9j+pHv7ErG8b4IUUZUVFSV2+LS5cJjr9BZ8QwWD5ituEvdbE4eQKeyo1Rs2oV99WYizwz9TtQF0RCOlHW+qBBt0D7F6cCtgEVKeWvA+V+Ah6WUnwWNuwm4CaBVq1ZDPv646qr3zZXS0lJiYmqXX8goyhiSfCtG4Y9iyyi9miyb36F38+bNVVrLEhMT6dGjB23atKnxjiBYxuPHj5OVlUVBQQE92x3i8vHfYRAehBAIIfBIM0t3Xkuxsx+RkZFYrVYiIiLYtm1bSPLTDq3LuPG8r7GY9BGXGaXXkmXTouvsdjvLli3TRRYmJSUxevToKmWXUrJp0yadAgLQtm1bhg4dSnl5OYZoC/8pX06gCfr2qPFEi/C+DqtXr9YpZx06dOCMM2r/JfNIyTv2tWQHVy8Axpi7M8ZSfW61unw+aiI/Pz/ECpiQkEB6erpuuznRspHe8Y8D8ODxs9nnSMHp0aI4Uw3xzLGO0PnV+JHEmvaCMwObYQzZbnjDpvm6ud0e3HYnA9aB8L70o0ePJiVFnyQ4Le4xYg3rfT9MK7afwfuFQ8nuqPkfmUx19x8yYqCbMYHzEuczLCqDGIP2mdpfchs5dn8h6gkTJmyUUg6tab4Wt+643bT6+zzMR/0RwrZ2yRT85Vow1lM5kx56HX6G5KI1IMHhqMAjJRvLe7O4eCyBG8Vt27alR48edXJkl1JSWFjI8axj9Cv8kEEmvxVJAAiBS0SwxnA+RyJHERkVhdVqJTIyEoPBwIYNGygp0ecXTEhIYOTIkToly1pxnLiynZRZO1EW1YP8/HxWr16tcwzv0qULAwcGKSdejO4y0nffCeXZvsCpLGcKr+dNo2daH9q3b1/n76/b7Wbp0qWa64iXfv36hVq5a+BIbgSf/FR1FG6nFDvnpOcRFxXqUhK87pidBQzd5a+6IYWJdf3fRQbs2Azcdy/RNr8v764uf6IwbggZGRkhke5T1x/lf11+T0mEtu5Ik5HLzi0iNbGaoCOnizb3vYyx1H9DXzRrPGXnDA8rM8CHPwh+zfVXbokzZnLDBR5ijXZ6L/gTxV/F+865pYGXzp7ODuv5PqusEIIIi4nzhxaQGO3E5Tbg8gicbkHUglUYDh/DaTDjMFrITW7N+g5jcJriMJTZiS8r4E/rH8eAxNGpDbkPXh2ytVnbNQdOQUCAEMIMvAe8LaXcLYSIAYLTQxcBscFjpZSvAq8CpKWlyfHjxzeytA3P8uXLqbXc+c9Dvgsqa4UZEknr83fSDFGA5tu1ZMkSIiL0ikavXr0YN24cXbt2PekttLKyMr7//nuiulyKpfAPiAAlZ+aohdD+KrD6Q6/POeccPvroI7Zv1xxFE6ILuXzsAvDYMJmiMFb+OCT9H2lJd5GGtjC/++67GAwG33MxmUzcfPPNvvptVTF27FjefPNNfv3Vn8W6oKCAkpIS4uLiMPZJwbLdvzh3jW3LBSPDZ0bPzMwMeT0vv/xy2rWrm4Nv+6Ke3L/+dZ2vmclg5LYzLw9b/DuQOn0+aoHL5dJtl9hsNtavX8+ECRMYP368dpfoGQ6/Pg84ubb1Th48OhaLxQQYycOOqXcyZwUm25USbKsh/19g/5mKCgcR0ctZYngcyx7ttSsrKyWuzIDVollq09LSmDVrll44dxEc3IOUmi+Sw+FgX1Zv2totnOjkwO12YTQaiIio3voRZ4miXVQy7aKSGZzcgyEpPbXcczmlUPQald+ffrGroeNf6+wL0tLWneL3viQ/pwgClJKcq85l/MSzqxlVA+seB9tGsFiocGi5qjJcnfi+4mwiIowYjUbS09MZO3YsbdqcbJqO2ynb9j6eH+8jxuTSrWEXsBS6GOGsJyHKr+hPmDCBN954Q1cH02azsWvXLq6fexUxOatg17u6Ekvunpfy4sFWOuUtISGBm2++OWRN9bH8j2AsxxMTQ3lZGS6P4GvbZMwRkWRkZGC1Wrnwwgvr9Gw3bNASBFdeMyIigjlz5tTK6hfIi58WEBFRXuX57JIIPl2fwLUXxjN+SJTudQ277hz/u1ab0su4/m2glTdxtqsC9mbrPmPpk+dCZDIej4cXXniB48eP+86tTutGsYytVIGwOCq4qF0cMSOq9l8u+fRb8hxu3zUMMVH0eOB3GGKiwspcUlLCou/+hxD+mqYOc3fSh3WmbbIJ2clNxcZ/4DihzbcnpT+HjJNAGHy3FgJJe9NShvQayrBhY3zz2NZtI3vTl+DyK4pxw4rZHnEBBo8FaTBR7PJwNLkn3UsysBwvoKszokorX21o0lQaQggD8A7gAH7nbS4Fgu2bcUBomvXfEp5yLcN5IAk3glcxCxf23bp1a+644w6uvfZaunXr1iC+TdHR0cTFxRGRchmi1T/1J2UpHJsNDn+EkdFo5LLLLmPw4MHERpYwe/wXxESWa06a5WWahSThNl1lg+3bt4ckdpw0aVKNihloStyVV15J27Z6B/+1a9eyb9++kJJN1UVpBufi6tatW50VM4C0+A5Maq+3tp3Zpl+NilljcN555/l9/rxU3qn/5z//0ayOhiiI1O5G+0XmMzL6mC5b/zv7v6fC7bVo2tbC0Zlw7FKwB4SGuw6xM0srMFzp8xFb4v/8BfvvAFD2DeBCCLBaI8DSg9ySZKwOQbtjmsXM4XBgt9uxGE10iW3DmDZ9uaTrWO7sN40nhl3PO+PvY964/+Ofw67njn7TGNu2vz8pcML16JY4xy5NqTyNcecVUvif93VtMVMn4Ozevv6T7v4INmsJsN0eDxUVFeS4k/i89Fw8GElLS+Pee+9l1qxZDaCYaUQPnM323s8hOk0IPZmxBD6ZoP2t7B8dzY033kjHjh19bYmGQvoWfYb99X54vrs5pPal85d3mO58kY4mv+V95syZVStmmat8RbQNQhAZFcXP7hGccPuVxG3btrFr167w48MgpWTlSn3QxvDhw+usmNkdHtZu17uMnDMimsgI/W+ArULy0meFPDEvn4KSqusAA9Uno83boU+vEdsRIjX3E4PBwIwZM3QuNIcTu+ExGHxpTzqXHqH05Q+rvLT0eEIijWMuOcenmIXjhx9+wOI5TpRR2/kQQmCxRPDdem2rV/SaQeJlWoDT3sTevNX/JjxugdX3OynpHLmSBNNh5s+f71OapZQU/uNpnWJm7WAnceYVDO2vWeKE2YQhwsLmZH/Vl8L/vI901/AaV0OTKWdC0xTeANoAM6WUlftXO4BBAf2i0dyQq4+/P90pfk+rD1iJIdabAV3j22+/1WWxFkIwa9YsUlNTG0+m+Ksg+UF9m6dASxzr9PsaGY1GZk0bx00Xfk98lF/HlhJ+2tGLjJI5PutFaWkpX3yh/xJ26NChTs6wkZGRzJ07NyQydNfu3fywbwOeAIfxqvKbFRUVhZji6+OQW8nVPSf7IkKTImK5ssfEes91MsTGxnLbbbfRv3/oHerx48d58cUXWbJkCe4If8j+Nck7MeHfbsixF7HowMdw9FI4OgPsYUrYADtL7OAp823PVPqbnXHGGeE/l6X6OnlxqXO45pq5WCwW2h81MmC7hd67zfTbAH/rcCnPjryVewdeypweE5nQLp20hI7EmqvJnG7uBNFBmdqDb3hOMwqeexdPid/vyBAdScLdV9d/wsxVsOJeQHMMsNvtlHki+aT0QipkBFFRUcyaNYv4+Pjq56kHDnMSnP8ejH3cV47Hhy1Py8a+7G5waGtMZGQk110zh/Edipgd+zm3xL/LCOtmLO5SysvK8Hj8tmy3243D4SDeUMKc2M85O3I1I4amhyRx9uEshxX36JqMyWn0uuIlTCb/BpSUknnz5vHxxx9TWFhY43Pcu3cvOTn+jaP6Jp1dv8OO3eF/fomxBq67KJ5/39Wa/t1Dlc2Nu+384ZlsVm+r2tIWkow2UDkL9kFrna477NixI7fffrsvvVGpqzVOc6WLgqRd7n5K1mzGtla/5lZiW7ERZ4ZfaRYmI3FzqrZI5uXlsX69VqWhlVlzVa/MSvDDz+U4nBKEwHrDcxzp3ZXXB9yGy7tFa6yowBoRQWfrTySZM3xzLl68mPz8fMoXf0vFL/t010ucGo8Y/n+MGeT/XIroSLYm98ftVaucv2ZStriKHJO1oCktZy8DfYCLpNR5hX8O9BdCzBRCWIGHgG2/6WAA6fCmzwggfi4YNeXj8OHD/PTTT7rTY8aM0d011niJ+voaJt4OCb/Tt7mzNQXN5fU1cxdiOD6b5Ngi3ZbB9ow0vt4whv+9+aavhMbChQspL/cvEEajkVmzZtXJRw4gPj6e6667TnfHaY+CUmmnrKwMu82GRZiqdG7/6aefdPngUlJS6NWr/vmgYs2RPDn8Rl4YdTuvnnkXKdaG//GqtSyxscyZM4fZs2eHRLJKKVm+fDnvfZ6Jy3uXl2op4/y4/fgqBngK+OzgcgpKwhd1BzjhjCTHFYX0lCBwITwQXSYwGo1Mnjw5dIC7EMqDFq6YC0lLS+Pmm28mLjaOSLsgrsSAxSlY8PnnOp+cWhOQlBaA8qXgOBC+bwunYtteSj//XtcWf+tlmFrVLhVFCAX7tZQZXguJ0+GkwgWfllzgc8y/8MILG8xHMixCQL9r4JKl0CZMOps9H8EnE2H/Qvjpr1g/Gc05xgV0tx7XdfN4JGXlZbg9HqQlHpvd7nNDFcDIqC1c5HwZcquwCWz4l5YgN1Cu8U/TqUsPLr/88pBdis2bN/Pvf/+bb775RpeWJ5hgn9ABAwaEWLprw4+b9ErW2PQojEZBqwQTf7kumeumxmMJcmIqtUme/aCAZz7Ix+4Is95WZzk7sbn6vkCbNm245ZZbOO+88yj3tMFjEHi863qnol+x2e1sve+fOh/fSoJLNUWdeyamtikh/SpZsmSJb/1ONGdgMbl8lrvScg9rvFbFfQUp/Lfvn3Ea/FY96ZbckLKWO68bpVO0HQ4HCz79jILH/63VT62UpZeNiGteAKOF9F5WoqzezVqTkfKYBPbF+9MPFb78IdJZl2AmP02inAkhOgM3owUAHBdClHofc6SUOcBM4DGgABgBXN4UcjVbij8Bd8DiIqwQrzlnulyusGHfYX8Aw7Ak82eu+fFJ7lr7SkiKiVqT/CeIC7obdx2CY5eDMxOOzQHHLoTQ7l4sFgu7M7vz1c8TkQicTidvvfUWixYt8vmmVTJx4sR6b420adOGq666yvcFKwn4TXK6nHiOFPHdkm9DFsuKigrfXVcl1SWdrS0mg5GOMa0wGeqXFLOhGTBgAHfffTfp6ekh53b/aiQ3X2K3VyAlXJq4nRhyNeutdGCTJj7MD6qQEDUeUt/C5Ylhhy1ZM41KSaTFTpxNYpCaFSDsj413S9OHuSdY0gBo164dV155pa57YWEh33zzTd2ftHUoRAQ938LX6z5PM0d6POT/4zVdJJm5W4dqrQ3VYsuDr68EhxbY4pFa/sFFpZM55tYswmlpaWE/S41CfFe4+HMYfh8YgrSMkkxYegts+y/YCxBAZFQUJrO/n11a2GAbwOtFV/BZ9IOsKx+gmyLSasVYuBfmnw+bXtAKuVeSvTG0bmj/633KYr9+/Zg6NbTqgsvl4scff+Spp57ip59+0kVjAmRlZYXUeaxP0tm8Ijfb9utvXMad4d/+MxgE542K4ck729CzY2j+t5+22Xh9aXv+/r9cPvuhmB2/VmiWpuCIzfzdmq8ZhBbyDq4q4MVoNHLGsDMxRLbHaDTiNBsRQMeiDACiMrL58E+PsmbNGp9yVbFtL/agxNXxc6dV+fwzMzN1vyMG4ebMgWadwrxkbSm/HnXw2Ju5VJjjMJj9a/v0/Z8w+JPn6ZsaH+IvmPrDApxZAcFdAhJvm+HzvTObBCP66a1nWwIUVVdmNiWf6Wst15YmUc6klIeklEJKaZVSxgQ83vOeXyql7C2ljJRSjpdSZjSFXM0S6dZqWwYSNwdM2l3DsmXLdGZwgOnTp9cqp8/OgkO8vGsxRY4yDpVm8+imd3n/wA+4A+4KaoUQ0OofEDNd3+7YA4fGQMVmXVdr0rmUxz6JR/o/bm63O8T6165dO8466yxdW0FFKQsPreH+DW/wu5/+w+LDa/FUI2+3bt247bbb6N69O8UJ+nNxhYIVK1bw1FNPsXr1at9iuWnTJm9CXo2oqCgGDx5cm1eixREdHc1ll13GVVddRWysP+ZGIjiY3RGHw0FZWSlWaefyRP3WxXfFnTlUEQuRZ0L7L6Dd+xB9DvtLfs9Oe7IvAEIIyajEfVitEVUHNwRtaRKjT9rYqVMnxowZo+uydu3aalPGhEUISLhZ31bykWa5O40o/eKHkK2XpD/diDCbqhhRDa4KbcvQaymSgN1m54fyUex2att+FouFadNC8001KgYTnHEnzPgKEqu3agu0bc7i6DQWlU3ihcLr+K78LDKKrWzcsoOl5WN5v+Riij0xmC1mv8XE44T1j8MX06EoA9wOLQggcKchtqOmJAYwcuRIrr32Wt13qpLy8nIWLVrE008/zfbt2327FsE+rp07d67T7kclKzbrrWZd25np1DZUCWuXYuJvt7RizrlxBGeLcLgEW/dV8OF3JTzyWi5X//UYD7zp4p3CO9lQMpwSV6xmQc3bqW0jFwVYn4WAVuGjWwH2HnJgMBiIjorCEhVJgjMHq8u/3vbZmMHCL77gtddeIy8vT0s6G4B15CAsvbuGnVtKGXLTlpqaypUX6ZNn7zvi5JHXcim3awm2RVwsQsCFvy7grMwfcBUJih//PcOGDqVbN21svLuE3ttO6JJox4yIxHzBn3Rz67Y2jUa2dxyCS/hf4KL/fqKl4KgjqrZmc6Psa3BmBDSYIUHLMpKVlcXy5ct13YcOHVq1n0QALo+bl3ct1rVJ4ONfV/DIpncoqKhj/IUwQJtnISrYYheUYNY6Etq+zvgJk7nggqCi1AFUbmcajUYq3A5WHN/Oo5vf5YaVT/O/vUvYXXiEzLJcXt/zDf/Y8iEljqp9JVJTU5kz9ypcrSwYAqxW8UXax728vJzFixfz9NNPs23btnonnW3J9O3bl7vvvltX+eDgce2HweORlJeXc5ZlJ6mmUt95DxbeKr8F2n8Mkf5kpgWOIfxS0U/3AzY6eQ9XnFdMVFQYB153oVYpIpCYUAvPOeecE5KO4bPPPqu6kHtVxJwPxgCfN2mHnAer7t/C8JSUUfiMPlF11KSRRI4K3WqqEemB5XdBtj/Yw+V0srG8py6X2bnnnluv7bcGIaU/zFwCA28OH3kbkQADbkRcupx2t64nYsAcXGESExxydeRDz42Y+14ROkf2z/DpJFhyHRToSyox7kkwh5amq4ySnzFjRlglLT8/n/fff5+XX36ZnTt3smXLFt35+vi4SilDtjTHn1G107zRIJg2LpYnbm9N57ZVK+5ut6bQLDxxIf868heu2/s+dx94if9+Ucran/aiqwiY0AMsVW9t787wKiZCYLFYGDS8HaYA7TAlt5Q22cVkZGTw2t/+Sd7CH3RuN/HXTqty7n379nHggN5N4bzzzqN9awsDe+p97WwV/jmFycJFUVuZeNgfVFL05THY/ikzZszAZDJy4a9roFyTU0qJMEHCw/8Eo17x7d8tgvhovypVERnL7lb+agrunHxKPgif+7I6lHLWnJASCl7St8XOAHM7PB4P8+fP1/lFxcbGcv7559dq6vkZqzhSFpyxRGN7/kHuXvtKSP3JGhFmaPtfiKzCgTUiHVLfBoN2Z3HmmWcybdq0sF3HjRtHToSN53csYO6Kf/P09s/YlLs/rFXv59y93LXuFXYXVl0NYUfBITAKoqOjsVojiXKasFboF/L8/Hw++OADXQJKo9HIqFGjgqc7LYmMjGTWrFlce+21xMfHczA7yB/P5eTSqJ/xeAxIEQ/GJDYXFrEpV2+hKZMVHCw14vZoC5kBSU9LHj2TPgX7ptALh2xp9oKItJBuFouFGTNm6Npyc3NZunRpSN9qEWZv5GYApZ/XbY5mTOF/PsCdHxAcFGEh6d5r6zfZhqdgvz9AxyMl+8rb8E3ZeCpzmXXu3JkRI0achMQNgCkCRj8MF34CSb1BGCF1JEx8Ea7aDGP+Ckm9fJGDI0eGLzhzwfQrMJ3zIpzzGliDfPOc5XBYn52etMugg966H4jBYGDYsGHcc889TJo0KexN3pEjR3jnnXd025xJSUn06VP3wk8HMp0czfF/l4wGvSWnKjqnmvnn71pz6aRY4qKrUQMCfLMyKzqydHcy/14cy6OH/47d41V+qtjSrGT3IX0usyFju5B8zplYrVZfCouB246ClPTYcRRHRQWlpaVUOCowdu+IdXT4+aWUfP3117q27t2707NnTwCmjKiitjMw9awYrnroQgyR/vfHYzdQ9O8nSY6COb0hZlvA6yKBiT0wpQ0PmctoFIwaEGg9M/DLcL0houiN+XhKqwm+CINSzpoTtjVQsUXflqhZzVavXk1mZqbu1MUXX0xkZM1fxKNluXx8UO98HXy/Wego45FN8/j41x+r3TYMwWCF1LdC/XosfbRtL6P+DnLEiBFccsklvu0Qm9VDQe9IPozYxkMb5/HDsS26wtlVkWcv5sGf3+TzjNVh5Q30pzObzZzX/0wmT55co0UsPT097F3v6UyvXr2466676DfobDYd8Ed1ZuW3Zt+GwRhOWCktc1JRYUdKyVv7vsUV4JOzt+QYTqcTuzMCiaCzuYCESCMCFxy/RctnFkipftuCmIuqlK179+4MH65fEFeuXBnyXaiRuDkgav6utDQc+w5R/KH+Byr+hhmY2tfDb3PPJ7DpWV1TriuRj4vOweMtwWU0Gpk5c+ZJ+2M2GO1HwyXfw40H4eL5WrFpk95iYjAYmDp1aohlKj093a8QdbsALl0GnSdVfa2o1jD6kVqJZbFYmDhxIvfccw/Dhw+vcft3zJgx9XpNg61mg9OsxMfUzsfVZBRcMjGO1x9sy9wJx7h5egLjBkfq610G+/d5nOBxsqNsII8ffkRT0IIiNQNxuSX7M/XKWe/OFhJuuxyL2Ux0TAwmo5GU3FI6Hc6n26+aAUECFRUOfojzsHr16rDW8qNHj+pyqYFm0a1kSG8rSXGhr+l5o6O58tw4TK2SibvhMgJ/DYvXmnDNv41Wi75EOv2vgytC8GFKV1894GBGBynE200dccb4swd4Cksofmdh8LBqaSbfMAUAhUFWs6jJYOlF3v+3d+bhUZVn477f2SeZ7CtLIOxr2ARBEBgFWWQRxboggn5urUuLlfbTX61tta36Vat+ba3Vz7W44AIqlSIVDaiAsgbCEiAhLELIOtkz6/v7Y8IkJ5NdSTLw3tc1V3jfOefkyXDy5DnPWlTE+vXrNW8NHz48MAqnOaSU/P3AGs0f0yhTGM9dcjdpsdo4vk9K3sr+gkd3vUmpq/GbsFF0Nuj+Zt0Qbcsl0P1t0EcHHerxebH0iSP5qlFkjzVwYDSc7uahqJmwam9bIjf3nxY0MNwrfbx++D/8fvdblDWQt+HIprGJg7j88stZvnw548c3Pd+yYZ7ThYLFYmHBggWkjP4nn2Tcxcv/uZ7XNvyIo3m96XXCPzDY5XJRUVHB4aKT/PtYXQHF3iJ/A2ApBTUuM0PMBXU9jjwnIf/+upCntyQ4pBnRtHEG/jBF/TYpUko++OCDoATrZtFHQeT5VWckpfQXAdT7HAw9Eom89epmzmoCRzZ8qc2jqtHZeCXPjlPWGTvTpk1rVf/BDkWIYCMi6BDB7Nmzueaaa+jduzcTJkwI8soSlgizXq8NWzYSGpz8OJjbVnUdERHB1VdfzbJlyxg8eHCjx1gsFk16QWtxeyRfZWiNs6nNhDSbQghBbISH6ReHc+91sfz1F8n848Fklt0Yw6xLwkm15CDOjvnwefx5eMD+quE8ceI31EQ3HT7P+c5N/WLF2Egd8dF6zCMGYp1yETohCAsLw2qxMGnrUQyeugftaquRrO42PvnkE55++mm2bdsW+J33eDwcPKht6DBixIhA6w7we7SunKgNt04bF8atc6MC+j/yrv9Cn1g3HlB6BUWvZlGx3Rw4RgK7h/bC4XGzZk2DXNlaBvUyaQxBl1dwdMFNmmMa9m1riQ6fEKBoAucBqGrgQo+5Byklq1evxuOpu8MtFkuj1UGNseHUbjJLtPPebhs4i162RH475mZW5qTzXs4mTTf73UXZ3L/1BZanXcvQmN6tk18f4zfI8AL6QC6IlJLTVcXsKs5md1E2mSW5dZ6xSD1WGvdmxJhtTElOw95tJKm2JIQQXNV7Im9mf87qXG0i7c7CIyyrJ++Z6hJOVdWbjyl0DI9JBfzKcsGCBUycOJF169ZpGkYOGTLk3PaJCwH69e9Pn77/w549ewIzB8OrdMQX6SmM9wISl8vJ89tXEXayhl7JPTmjrzOMvT49fcKHIUS9PJ3KdVD6ij+0WLkO/z1Si2kQmJpP7rZYLFx99dW8/vrrgb28vDy++OILpk9vxtPRkKg7oPQ1NBm+IUzVp19Tsy1Tsxf7y9vQWZpootoUXjdsuNc/O7MWqTPydvFMSn11f9ySk5ODCnZCCSEE48aNY9y4Zoa/CwFDboIel8LnP4W82vYxgxdBn9lNn9cCiYmJLF26lJycHNauXasZOTdp0qSmG982w86sGiqq6+5lm1Vw0eC2Na9titgoPZNGhDFpRBjUPEtV8RkOVQ/m7fybyampy3HeVzmCJ9b24KFbfJhNwb6eA7naKMjg3nVGT/RPbqB60w7AH90wGo24XC6cLn/F+KGBSchab2JpaSmrVq1i06ZNgQH0VVVVgc9Np9MxY8YMGjJvso2ySh/7cpxcMsLKvEttmgdzXZiF6Pt/QtGvnvB7BYHqnHp/kwRUWs3sHpAKQEZGBiNHjgwKQet0gktHhvHxl3U5ujsTRjE4OgKfw+948FU23VKlMZRx1lVomGtmvggs49i+fXtQwuOcOXNaFXorcVbw2uFPNXuj4/oxOdlfBqwXOhb1u5wh0b14JnMVZfWS7Iud5fx6x+ss7j+NqNb2RBMCMFDuqiKjOIeM4hx2F2VTUFPa4qkAZr2RCQmDsXcbSVpsn6AWFAadnqUDrmBYdG+e3beaCnfdzX5W3kX9LiPMoFVQQ6JT6rrG15KYmMiSJUs4evQoO3fuxGq1ctlljXQjvwDR6XSMGjWKtLQ0tm/fzoYNG+h5soyiWC9nC25dei+vZqyl26d6qkfXBQb0ej0Thv8B8nPAWa/as/BRf1uL8taHNOszePBgRo8erRlFlZ6ezvDhw4OmQzSJKdXvja5a3+KhXR1fVQ3Ff3pVs2edNBrr5cE5MS2y45mgpqLbw67j0NG6Pw9CCBYuXNjkUOjzjsje/tYdp7/xF0l0/2HyUM9Wk2dmZnLgwAGSkpLabfCm79B6zSaNDMNoOAfVswkjCSv9kFG2nfS3ZvHosT9wtKa2mbfOwL6jHp54o5gHl8QGGWhZDfLNBvepSysxpw3AOnUc1Rvr+ieaTCaMRiNOITk2tCegTVkpLCzk7bffDhLx4osvJi4uLmhfpxPcfGXz3k7bwhmUvfoe7kPBrVWF3szByePw1ZtJu3r1alJTU4NSiiaOsGqMs91HPSxZei2u57S/p61FGWddAfdJqPhQuxdzD2Xl5axdq63y6NevX6td4K8cWkeFu+5p2KQ38OMhc4NCeqPj+vPM+B/z1N73OeCoa7R4NmzYwxtB8VEDHp8Xt/T4v/q8eHxePNKDu3btlV6KneXklJ1utW9CACNi+2LvNoIJiUOwGlp+ghybMJBnJ/jlrV8U4JU+/nlkA8YGRt2oZkY29enThz59Gi/TvtDR6/WMHz+eMWPGsGXLFkr2r+NYYt39lJfsxeTS3kupkclEmqMh+QU4MQN8Z8PVbsi7EzyntN+klcYZ+BueHjp0KJD34fV6+eCDD/jxj3/ceqMh5h6o+g+h7j0rfel9vGfqvMPCaCD2wdvb3trizA7Y9b+arfKEKazarv08J0+erAkZXRAI3Q9mlNVHp9MxYsSIJoert4bSCi+7smo0e+0JabaKhJFw5EMAbPpKHun9ML879gdya/oGCgYys51BBpqUMtg4663N+Y2++3qNcQb+B4HExfNYdu8NpKens3Xr1mZTGM7m97UXYTAQvfwuCu55GNz102MExqGDmfjwMnb9/flABWl57d/lhQsXaq7Tt4eRpFg9Z4r9snq9cGC4nYEJH+EtKKatqJyzroDjJTShHmM/ZNgVfPTRR5r+W0ajkWuuuaZVCnhn4WG+zNOGPG7sexlJ1sa7hcdZInnsoqVckxqcc3XUW8iKIxt4JyedD45+xUfHtrD2xLes/24Hn5/K4Mu8TLbmH2BbwSGyW2GYRZvCmZqcxs+GLeDlKQ/wu4uWcFn3Ua0yzM4Sb4ni9xfdwtWNyOv2aX+RxzRjnClaxmg0MmXKFJ5e/N/EmiM46yeTOjjeqy7cbjAYGJNcW3Vp7A2JT2sv5DmBNqQ5GEwDWi1HWFgYV111lWbv5MmTQa1QmsU6DhKf8+dFhiju46eDOqhHLp6HsU8b52e6K2HDfZru59KawBu5w6ifJB0bG9u28LHinPN1RjXeek6l7gkG+vcM7m32g9Ag4d+mr+A3vX9FquWopq1EZraTJ98o9jewBU4XeSmrrBPSahb0StLKaB7WnzB7gzCzTkfkzfOw2WzMnTuX5cuXM3bs2Cb/7k2ZMuV7T6kImzYe80WjQX/WeBRgjiLm57fTI6VnkHdz+/btQQ2EhRBcOkprIG/e7ybqzmvbJZMyzjobr8M/R7M+MXeTuW9/0DDwxvo+NUaN18ULBz/R7PWJSGZer8bLyc9i0OlZMuAKfjXqRmzGHyZ3AcCkMzAqrh9LB1zBsxN+wqtTlnN/2kIu6z6q9o99+zgb5nx49KImZyxGmcJJjfhhhjFf6MTYovjx6AXYbLbaqldBXV9hgdls0eYo2ub6x441RSO9zVoiLS0taE7oZ599RmFhYesvEnkt9Pygzd+7q1D85MuakTD6hFii7vpR2y/09W+gLFeztc22iJOF2nBZwyHW7eHoKRf//Hcpb68vY8O2SjIO13C60IPbE9oezM5iY4PGs1NHh527hsDxw4P6ydn0FTzS61ekJms9rHuznTzxehEut6zrb1bLgBQTen2wjFH33Aj1KlXDZ0/WVBtHR0ezcOFC7r//ftLStJMdIiIi2jVVoSFCCGKW3wrmGLDEgjUOy8WjsU4dCzReCLNq1aqgkXKTRjSo2sx24ps1DUOPxDbLpMKanU3payDr/aLpE6nSz+bjj7VTAlJSUlo9EPed7HTyqx2BtU4I7hk6r9VjhMYlDOLPtWHOQ6VtbFlQS2pEEqPj+jMqth+Do1Mw68/RUx0wNn4gz0z4CU/vfY8DDXqfjYrrh06oZ5AfCnu3kfzr+DccLc/DZDLhcrlwuz1YLBZ0Oh1DoxsUkMT9Bqq3gauRmYVtCGnWZ/78+Rw5ciTgVfZ4PHzwwQfccccdXafFwzmiauN2qjdu1+zFPLAUna2NIa3c9XDwLc1Wee9r+fBLbX7ouHHj6NevX7tkPUvWMSe/fakQTxORqZgIfwVfQoyBhGg9iTF64mMMfFdsJuNwDS63pMYlcbklTpfE6a591f7b5fJ7Z1KSjAzoZaJvDyOWRpLTzxeOn3GT8522tcQ5C2mCv+Fu9ICgZrwRFg+P3NKD371cwrG8uoeFvdlOnnyjiIgw7f/BoN6NtzEyD+lLwhPLKHtjDYZeycQ9fGejxyUkJLBo0SJOnTrFli1byM3NZfHixe0qpmgMy5ihxD54O6Uvr8LQM4n4J38eMHiNRiPXXnstf/973czrkpIS1q9fz7x5dXosJclIr2QDx2s/Dylh60E3l967iMKHnm2TPMo460x8NVD6snYv+g7W/vszKirqEgv1ej3XXHNNq/7wZJed4uPjWzR7c1LG0z+ybSGPRGs0fxx7K98UHGR9xlf0S+2LUWfAIPQYdHqMOj0GncH/NbBnwKQz0NuWRIz5HA5DboR4SySPXXQLb+d8wQdH/WEugWBOSjsSpBVNohc6bh04g0d2vIEQOsxmC0I4MRgMJFmjibdEak/QmSH5RX/+mayXz2Ea0qaQZn0iIiKYN28e7733XmAvNzeXb7755rxuICxdboqf1OoL85ghhM9pY0J5VQFsfEB77eh+/PNwb6Ss80BGREQwe3b7KxQBisu8PPVmcZOGGUBJuY+Sch+HT2gNDqcziQ+3BQ/Fbhp/gZBOQEqSgQEpJgb2MtE/xUSPBAM6XQeOmjqHNOxtltbPTFzUOS7USBgZPCkhPo0Im4lHbo/nd/9XGDBIgKBZnwBDUpvuMRl+5RTCr2zdfdy9e3cWLlxIenp6u+cwN0Xk4rlELm7co9+rVy8mTpyoGTu4efNm0tLSSE1NDexNGhHG8by6eZxf76lm5p1Tqfz3l7Cv9e00lHHWmZS/C956ykfYyC6YyI4d72oOs9vtrapI8/i8PH9gDb561ZUJligW9WtfFaJBp2dS0jDcpgLsA+ztukZHYtDpubn/dCYlDmNn0RGcOUUMjLrAkpg7gBGxfRmXMJBtBVplPayptiumPpD4Jzhzd91e5KLvJcPo0aPJyMjg0KE6GdatW8fgwYOJiWk8rzLUKXvjYzzHT9dt6HTE/b872xbOkhI2LvcPNg9cx8COqFs5kaGd/LBgwYJWNbluCrdH8tSKIhzlbZzd+z3xSTiW5+FYnofPtvkNGatZ0K+niQEpRgakmBje14zVEnreNa9X8mWDkKb9onPoNTtLwkg49J52rzYXLTJcz28aMdDqoxPQPyX0R+LNnDmTAwcOUFJSEtj74IMP+OlPfxoI/U8cYeXt9XXG2cFcF0WlXuJ+ew/8/ZFWf6/QuzvPF6QXHC9otjy2m/jgQ+0E+8TExKaHRzdg7YlvyS47rdm7a/CcNiXanw/0jezGtX0m06ORJriKH4ZbBsxA3yBcHBTSrE/EAkj6G4RNg5gHms9FawVCCK6++mpNSMPlcvHqq6/yxRdfcOrUKc18vlDHc6YIxz+0fxwjfjSjyYHQTXLgTTim1TEVg+/io83a0W1paWkMHTq0XbKe5eWPHUHesLFDLFw60sqg3iZiGunefq6odkoys52sTq/gf/5ZzI+fzAsaGB4K7M12UlLP2LWYBBcP++Hyg5sksZFGs/XGNp010Ho1Ma8ztbsRqzn0zY2mRsq98sorbNmyhaKiIpLjgoszNu+pxpDYcr54fZTnrLNoZMD5Fzv7UlKiLQJYuHAhBkPL/0351Q7eytY2sb00aRhjE5pv8KlQtIce4fHM7TWej475Q+hhBnPL91rE1f7XD0R0dDSzZs3io4/qQgUFBQWsX7+e9evXExERwcCBAxk4cCADBgz4Xl6gzqbkz28gq+sqt3WRNqLvu6mZMxqh9Chs/o1mSyaO4e0DsXg8dS10rFZrq5tcN8X6byrZsE1r/IwaaGb54lj09cKLHq+k0OGloMRDocNLfomXAoeXQoeH03lldO8Widko/C+T/6up9mv9vWqn5PBJF4ePuwKtDJqjqkbyl3dL2Jvt5Lb5USGTo9awt9mENGvHyB471D+/VNb7bBtUcUaG63nkNr8H7cQZrQetqXyzUKR///6MGzeObdvqWoDk5uaSm5sLQHx8PBHWCXg8PdHr9Qgh2LynmvlT2lb8poyzzqCRAedlXMHnm7SG2cSJE+nVq8Ew6kYvJ3nx4FpqvHVPqeEGC7cNmtXMWQrF92PJgCuINtnYkrWL20ZfRbSpY/MMwd98cs+ePRw9ejTovfLycnbs2MGOHTsQQtC7d28GDhzIoEGDQmoSRM2uA1R+slGzF33fIvTRrVf2Qnrh8/vAU69LuTGc3XG3kbPtW82xc+fO/V6tCbKOOXlljUOzlxSr52c3aA0z8M93TI4zkBwX/KcoPX0fdnvbh4GXV/k4fMLFkROuwNf6nfQ132NHFYePu/j5olh6JZ+7oqUfgspqH9/u13aZnzq6A0KaAEYr9JsPR1b718kX+xv1NiDKVhvifKmQE/l1BtqogR3g3etAZs+eTVZWFmVlZUHvFRYW4vJtoKrqWkBgMBg4cNTA/iMFbfoeyjjrDKo3awacSwmrvkikfmPM6OjoRsdRNMbXZ/axvVCb/7N0wBXEfI82FQpFS+iFjqtTJxGT62ZQdEqnyKDT6bj++ut58803OXHiRJPHSSkDT7dnvWqhgPR6/fMz62EalErEdTPbdJ0e+R9AyU7NXtXoB/noY+1kgAEDBjB69Oj2CUtdAUD9nqFmk+CXN8dhs3aMdyoiTMeYQRbGDPIbBFJK8oq8HD7h4tBxF59vr9TMe/yuwMODf8vn1rnRTL/4HLak+J5szazWyB0frWdonw70SF36B4gdBO4qGLY0qL3GWaJsen5zRzwvrHJw6LiLS0daGT3w/EqtsVqt3HTTTaxcuZLi4uAGsyZdNTZ9PhXeJDweDx6Ph/95fmubvocyzjqDBgPO88qHk3VU+2TXMJ+mKQqqHfxf1r81e0OiezG9R/sVrEIRSkRFRXH33XdTXFzMoUOHyMrKIicnB5fL1eQ55eXlTb7XlahY9RmuAzmavdiH7kC0ZYzSmZ30PPM+mOrUvUydyft7DZo+TSaTiQULFrTbOGmqAOCea2M61SslhKBbvIFu8QamjA7jiovD+fPbxZwqqLN03B548UMHmdlO7rw6mvAOMiTbQvrO4N5mHVqBaomGMT9t1aFRNj3/vSR4nNL5RK9evVi+fDl5eXkBvXPs2DF8Pv/9H2M8SoW3rpq0xJ3apusr46yDCdMfg6ovAmuv18eHG7VtLsaMGcPAgS3niu0vOcaTe96l1FXXosCg03P3kHmqt5figiM2NpYJEyYwYcIEPB4Pubm5ZGVlkZWVRUFB20IKXQFvaTklz63Q7IXPvhTL2GGtv4i7Cj6/D1F/RqE1nv3xt3Jgo/ahrrVNrpuisQKAq6fauCSta+X69e5m5Ml7E3j549KgHK7Ne6vJ/s7F/TfG0q/nufVKebwSIQgK9TZGXpGHg7nah41z2ttM0SqEEHTr1o1u3boxdepUampqOHLkCFlZWew7kMvJ0xJZO22jxhfdpmsr46yD6R5Wl7wsJRzPT+R4fl2bjPDwcObMmdPiddaf3MGLWWvxNBhVtDD1UlJsCU2cpVBcGBgMBvr370///v2ZM2cOJSUlgafb7OzsZr1qXQXHX9/G56jz8AmrmZgHbmnbRbY86i8EqEfNJX9k9bubNHspKSnfq0dcYwUAoweauX5GZBNndC4Wk457ro1heF8zL33kwOmqi1ycKfbyqxcKWDwrijmTwn/wMKfHK3npQwefb6/CahYMSTUxvJ+Z4f3M9E42NuoNa1hZOrCXiW7x6s93V8NisTB8+HCGDx/ONVLy67+fZM8RN16PB08z80EbQ/3vdiTuk8RbvuLsx+52u/hitzbhdf78+YSFNf1E5PF5eeXQp6w98W3QexMSh/CjPm1sSKlQXADExMQwfvx4xo8fj8fjYc+ePTzxxBOdLVaTuA7lUr5ynWYv6vZrMSTHt/4ima/C/je0e0NvZk1GdWB4PPibXC9cuLDd0xUO5jZeAPDTRgoAuhpTx4TRP8XIM28Va7rce73w+ielZGY7uedHMUHd7tuLlJJX15Ty+Xa/sVXtlOzMcrIzyx9etoXpGN63zljrHm/wt6ZrENK0K69Zl0cIwfTxsWSdcIDZ3ObWPso460gcLwbCCz6f5HRhGEdO1fUpGjJkSNDssPqUuSr509732VscXJl2fd+pXN93qgpnKhQtYDAYGDNmTGeL0SRSSoof/z/w1YUiDT2TiLrlqmbOakDWu/DVr7R7UX04HL+Inf9+R7Ntt9vb3Wm9uMzL0291bgHA96VHgpE/3p3IP9eWsm5rpea9HQdrWP7cGR64KY6Bvb5/mHPdlkrWf1PZ5PsVVT62ZtawNdPfNiUmUkff7ibyS+o+YIPe3+hU0fUZN9SKQe/A46XNHtjQ+O05H/CWBAacSwk1NdVsOTg6EI82m81cddVVTf4H5pafYfm3LwUZZma9kV+M+BE39rtMGWYKxXlA1frN1GzL1OzF/vK/EOZWGgfZ/4L0n2u2fMKEa/IzrP7Xp5r9pKQkLrusfRNEmioAuLeTCwDag8kouO2qaB64KZYwi1YHF5f5eOzlQg7kBo8kagu7smp49V+lLR9Yj5IyHzsO1mj2Lh5q7ZIFC4pgwq26QNVwW+mw/2EhxL1CiO1CCKcQ4rUG700TQhwUQlQJIb4QQjTTajxEKX0dpL9HjdvtxlFuJvPYoMDbs2fPJioqqtFTt5zZz4Pb/k8zzBwg0RLFE+NuY1JSGxKEFQpFl8VX7aTkT69q9qwTR2G9rJUzYo9tgA33gKxnMOmMZKX+kvW78zVjZwCuueYa9G2p/KxHowUAdhsTulgBQFuYMNzKn+5LZECK1riscUn+8GoR+4+2z0A7fsbNM28XUz+yZTEJ/ntJLLfMjWLsEAtWc+s8K6oQILSYOLJ9vw8dGdY8BfwemAkEpBVCxAOrgNuBNcBjwEpgQgfKdu7wVfsbzpb8BfCHLFwuF9sOX4LX51eKffr0Ydy4ccGnSh/v5mzinZz0oPeGx/TmFyOuI8oUfk7FVygUHUfpyx/gyasbPi4MemIfvL11IZFTW2D97eCrZzAJHUz/O0cznHz77deawydNmtSqJtcN8Xglr39S2ngBwBVdswCgLSTGGnj0rgTe+rSMNV9WBPadtQbaQ0vjGN6v9X27Siu8PPl6EdXOOstMCFh2YywXDfZ7VeZMsuH1So6ecpOZ42TvEScHc524GoyqTIjRM3LA+dUz7Hxn7GALZpPQFJ20hg4zzqSUqwCEEGOB+tOorwH2SSnfq33/t0ChEGKwlPJgR8n3gyMlVH4Chb8Dz3eBbY/Hg9NlYFeO39tlMBi45pprgpJxqz1Ontv3IVvzDwRdelbPsdw+aDYGXfueeBUKRdfDffIMZa+s1uxFLJ6LsW/PJs6ox5ld8O8l4G3g2bE/g7f3THa//qhmOyYmptVNrutTUOLhz28Vc+Sk1mMWKgUArcWgFyy5MgqbVacZYu1ySx5/rZAHl8aR1r/lcJXbI/nTimJNzhjAkiujAobZWfR6Qf8UE/1TTCyYGoHbIzl8wkVmtpMDuS6MerhxZiR6/fnxGV8omE06xg2x8FVGdcsH16MrFAQMAwJtqqWUlUKI7Nr90DTOnAeh8NdQrX1Sdbs9eL1eNmZOwun2P/1Mnz6d+HhtBVZeVTGPZ6zkWMUZzb5e6Lhj8Gxm9Qz2sikUitCm5E+vIl11Ro8+PproH1/f8olFB2DtInA3SDS/9I8w6Ed88dlnlJeXa5paL1iwAJOpbQnuO7Nq+MvK4qBRSJYQKwBoC9dcFoFOB2+uq2egeeDx14t4cGkcI5ox0KSUvLCqhKxj2rYt08eFMWdSyxEPo0EwtI+ZoX2UpyzUWTA1gi2ZbTPORFvLO78vQojfAz2llLfUrl8GCqSUD9Y75mvgJSnlaw3OvRO4EyAhIeGid999t6PEbhV6UUGv8JUkWT/VNn0EQFJcpmf9jrFk5AwG/J3NJ0+erPGaHfHk84kzEyfaJ1OrMLHAPJIUffubRLaXioqK7zVrr7MIRbmVzB3HZZddtkNKObal4zpC75j35xL3rPa6JUtnUz2p6eptAIvzFMOzf43Ro000P5a8mFOJCygrK2PTpk14vd5AaDQlJaVNI5p8PtiSFcU3h4NzYiPDPMwbW0hS9A/fN64r3Vfbj0SwaX+MZs+gl8wfV0BqYl3Cfn2Zvz0cyVcHojXn9Iqv4eoJ+ei7mB3blT7r1hJqMpdW6lkwd0qrdA50Dc9ZBdAwUSESCJqvIqV8EXgRYNCgQdJut59z4VqF9ELZO1D0OPiKafixSqln74mLWZXem7IKf2WmEII77riD7t27A/7+ZW9lf86/cveDSYeJuqel1Igk/t/IG0m0RnfgD1VHeno6XeazbgOhKLeSuetxrvWOdHs49ef3cdfzZJnTBjDgoXsQzfUeKz8JHy0HXTXU94KNWcbAi39JosPBihUrMBqN+Hw+zGYzNpuNu+66q9leivUpKffy3DvF7DvuouE0uYsGW7j3uhhs1panmbSHrnRf2e0w+KsKXv9EawR/uieFX94cx+jairyzMm/NrGbbp8Waz6xbvIE/3p2KzTq0AyVvHV3ps24toShzW+gKxtk+YOnZhRAiHOhXu9/1qd4Ohb8C596gt6SEkprhvPP5ME7knXV/+3NCpkyZEjDMSpzlPL33fTJLjgVdY1LSUO4btgCLvgMH3CoUig6j/J21uHNOavZiH7qjecOs8gysuQ4qTmn3027HNfJnbPrsMzZu3IjHo80onzdvXqsNs/1HnTzzdnFQqwwhYNHMSOZPtnXsbMdOZu6lNoSA1+q1w/B44cl/FvHLxXGMqc0hyz7p4i8rtcOwwy2Ch5aen6Ffxbmhw4wzIYSh9vvpAb0QwgJ4gNXAn4QQC4FPgEeAPV2+GMBXAwUPQfnKRt92ehP5dOdEtuyJBLQKLC4ujmnTpgGQWZLL03vfp8RZoTlGL3QsHXAF83pN+MHHhygUiq6B+/hpHH95W7NnW3A55hHNeKNqSuCTG6AsV7MtB9/AXttC1j7zDKWlwf20WmpyfRafT7Lmywre+rQMX4Osl+gIHctuiGVY3wszD2rOJBs6Aa+sqft8vV74nxVFLL8plopqPU++UaSpstTrYPniODVuSdEmOvJueRj4Tb31YuB3Usrf1hpmfwVWAN8AN3SgXG3HWwKnl0LN9qC3fNLE7uNTWP15Eh5f8MdrtVpZvHgxBoOB1blfs+LIBrxS+2Qaa47gFyN+xJDotpe5KxSK0EB6PBQ+9Cy+qrpEYZ0tjJhlNzd9krMMPlkExVma7cpu03jz4ACOHnun0dNiYmJYuHBhiw96FdU+/vpuSVDjU4BhfU387IZYYiIu7Crx2RP9HrSXP9YaaE+9WYxJJFHt0erzOxZEt6n1hkIBHdtK47fAb5t47zNgcEfJ8r1wn4RTi8B9RLMtJXxXdhFvr+9HcVlw0zmDwcCUKVMQQhARF83jGe/wbUFW0HEjYvvw87SFRJtCJ9FRoVC0ndIX38eZodUBMfcvQR8f0/gJlWf8VZlFde11fFJyQjeYF7d2w8fxoFPCw8OZOXMm5eXlhIc3XyGY852Lp94spqAkeEDz1XYb109XbRzOMusSf0j3pQ8dgT2vFxxOgybPbO6lNqaNU70oFW1H+VnbgnMfnFoM3roWF1JClbsbq78az76jjXf4T0tLY/bs2cTExLByw8c88M0/yKsuCTruR32mcEM/O3o1hkmhOK9xZmTh+Md7mj3r1HHYrpvZ+AnFh2DtTVDh75koAZfLxZGqJN4uHYsPrTdLp9MxceJELr/8cqxWK+np6c3K8/WeKp5/rySo6anNKrjvuthAPpWijhnjw9EJ+MdqR6PvXzTYwuLZod+UV9E5KOOstVR9Baf/C2RdbpjX6+NYfg/e+M/UQN+y+iQnJzNv3jz69u0LwGff7WRFzTfofdrRIDajhWXDr2Fs/LmpelIoFF0HX0UVBQ89S/1p4fq4KOIfvafxsOPpb/0NZl3+Xlsej4cap5PjzkRWls/C20CNDxo0iDlz5pCQkNCyLD7Jys/KWfVFUHE8/Xsa+fmiWBJi1J+Jpph+cThCwAurHJr9XskGfnZ9zHnTlFfR8ajfutZQvhrOLIPa3mM+n8TpdLInJ5U1304LjGE6S1hYGDNmzGDcuHHodDo8Pi//OPgJ//luJ94Gz7j9I7vzixE/IsnaRChDoVCcVxQ/+TKe46c1e3GP3oc+Ljr44Jy1sOFu8Lrw+nw4a5x4PB4Ou1P5sGImHuoe9OLj45kzZw6DB7cuQ6S6xsf/vlvC9gPB+WWzJoSzdG4UBhXGbJFp42o9aLUhzvhoPQ8uicNqUREQRftRxllzSAmOF6DoscDS7XbhdDr5NmskGzIuRdarxNTpdFxyySVMmzYNq9Wfd1bhrubJPe+yt/ho0OVn9RzLbYNmYdSp/waF4kKg8j9bqFi9QbMXcf0swqY20pcy81X4+mGkz4fT5cLlcoGEXc5hrK+aig//H3+z2cz06dO55JJLWj3E/EyxhyffKOLEGW0cU6+HuxZEc9lYlSfVFi4bG86QPmY++c8OblwwjjBlmCm+J8oqaArp88/FLH0JqA0l1Djx+XxsyJjEt4e0HbYHDhzInDlzSExMDOydrirmsV1vcqqqSHOsWW/kJ0PmYu828tz/HAqFokvgyS+m6Ld/0+wZ+/QkZvmt2gOlhG8fR+76K263G6fTiaztabGpejxf14zlbHuecePGMWPGjDZ1Ss/MdvL0W8VUVGmrCqPCdfzi5lgG9VaVhe0hOc5Av+RqZZgpfhCUcdYYPifk/wwqPtaEErw+Hf/6dgb7T9TlhsXFxQVCCfXzRfaVHOPxjHeocGvnaUWLMB6/+HZ625I67MdRKBSdi/T5KPrVc/hK63JWhdFA/JP3o7PWM4a8btj4AJ4DK6mpqcHn9RtQPgRrKy9nr2sIAKmpqcybNy/QyLq1rN9awStrSvE2mC6X2s3IL5fEkhCt/iQoFF0B9ZvYEG8ZnL4VWb0Zp7M2lAC43Ebe33wlx/JTAH8o4fLLL2fSpElBoYQvTmXwtwMf4/FpS9KHRKcwuSJFGWYKxQVG+ZufUL0lQ7MXfe8izEP71W24KnB9shRP7ud43HXhRjcGVlXMIsedSlRUFFdeeSVpaWltak7t9cH/feTg062VQe9dkmbl7mujsZiUx0eh6Coo46w+rhzk6dtxV+71hxJqh8JXVIex8sv55JfGAzB27FhmzJhBRESE5nSf9PF2djrvHd0UdOmp3UZw79D5fL3pq3P/cygUii6D61AuJc+8odmzjB1G5C1X1R3jOEn5yqswlh3y98mopUpaebd8LgWiB9OmTWXKlCmYTG0b5VZe5WPV1kTyy4MNs+umR3Dt5RFqColC0cVQxhmArwpZ/Cyewr/iclbirefzLyqP5p1N8ymriqR3797MnTuXnj17Bl3C6XXzl30f8tWZ4JGgN/a7jOv6TFEKUKG4wJBOF4UPPoN0uQN7uohw4h9fhtDr8Xq97Pv6Y+K/+Sk26dCcW+KL4p3yeaQMm8ySK68kOjq6Td/b55NkHXPx1/dKOFFo0TRHNZsE910Xw/hhwQ2zFQpF53NhG2dS4iv/FzUnH8TnOonPp03EOFmUzHtfzsVkTeT662czcuTIRg2sEmcFT2S8Q1apdnixUafnp8OuZnLy8HP6YygUiq5Jyf++ievQMc1e3K/vQsZHs2XLFnI3vcw0VmMRLs0xp72JbAy7jeuuv5E+ffq0+vuVV/nYfaiGXVk1ZBx2UlbpCzrmbKuH3t2MjVxBoVB0BS5Y48xbc5iyI/dh9GwJMsoAsk72Ze2OK5k4+XKmTp3aZCjheEU+v9/1Jvk12kHDUaYw/t/IGxkUnXJO5FcoFF2b6i0ZlL3+kWbPMutSdtjgy/95kjTPJq60bqHh494x2RfXZX/h9osvRadrPg/M55PkfOdmV61BdviEu9njh6SaeOCmWKJsF/Z8TIWiq3PBGWceVxmn9z9IpO9t9HhoaJZVVIfxWcal6KOu5r6fXUlsbGyj1/FJH9sKsnhu34dUeZya91LCE3h49CLVWFahuEDxOsop/H/PBdZSSqptFt6ylFHz74+ZE76BIVbtfF4EFMZNo/91b2C1NT32p6LWO7azGe9YY0wfF8ZtV0WrxrIKRQhwwRhnbpeLIxn/S7TnWaLMpUHv+3w6th0eSTFLmb5gdqMl6lJKjlXkszFvD1/m7aWwpizomJFxffll2nWEG9UsOoXifENfVknpK6uRNU5kjQvpdOEL/Lv2a40LT14B3oJipJS4XC5cbjf/mdATvSxkSeRaEvX1eh8KMBrNyAm/ou/4ZdBI6kRZpZdt+2vYvLeazCNOfDLokEYJswhG9DcTrT/Jf13dR+W9KhQhwnlrnDmdTsrLyyktLaXg1DdEVD9BSvxRaMSbfyy/J8er72Ts5YtISgpuc3GmuoQv8/ayKW8vxysKmvyes3qO5fZBszHoVMhAoTgf0ZWUU/Ln15t8X0qJlBKfz4fH68XtciGB/UO7Ed69lAW2dVhFraddgMlkwmhLQD/zJeg5WXOt0gov3+6rYcveavbltN4g651sYPQgC2MGWRjQy4RBL0hP36sMM4UihAhZ48zr9bJv3z7KysooLS2lrKws8CovKyXScoreiSdJTTzJoOTj6MODXf8VNeEcq7iFgWOXkxYfr3mv1FXJV2f28WXeXg46TjQriwBuHTiTeb0mKAWoUJznuD0epM8XMMLqf23MfiqODcM8roAbbFsQSMRZo8xkQhc/FGa+ApG9Ab9B9k2tQba/lQbZWe/Y6EEWRg20EBupHg4VilAnZI2z8vJyVqxYUbuSxEY4SE08yYj+J+md+B1WU/Aw37P4pI686rkkD32SS2L9bTG80sfJygIOl37H5vz9ZBTl4JXN53KY9AbGJwxmbsp4lfivUFwASJ+kurq65QNrqQo3YrniNNNsWQghMJnNmIxG/0Ncv3lgf4biKjPbt1awJbOGfTlOZCsMsp6JBsYOsTB6kIWBtd4xhUJx/hCyxplB7yUt9QCpiSdITTyJzVrVqvMq5SjCU5/FZunF7rJTHMnaS3bZKXLK83B6m690AtALHaPi+jElOY2LEwZhNag5dArFhUKN2cDBwcl49Tq8eh0eg67Jf1tM1czo/jndzIWYTGZMJhMCkAiODvgj23wL2PGPCnK+K2nV905JMnBJmpVL0qz0TFRtMBSK85mQNc5khIecAU5OiVh2uiOxeNxYhAerzo1ZeLAIN1adlzC9B5OQnPSmcMJ8FbmeGLL3rKe6QYVlSwyJTmFychqTkoYRZQo/Rz+VQqHoylSEGdk1pleT7xuNRmIiwxgW9h2XuNcTpqvGaLTh9hnZVTGC7VWT2SEXUHwsHKho8jpn6ZVsYMJwKxPTrPRQBplCccEQssZZlc/INqc/T6NRh77QgTD5X5hAGICy2lfr6GVLYEryCCYnD1dtMRQKBS5iyNMvxGbVERmuJyrCSEyUmYQISPAeIrrsGyKK1mPz5uPTRfJ1pZ1t5ePZUzkKJzYwR4OuebXbK7nOQ9YjQRlkCsWFSMgaZ0AjyfemOoNMGGjCbGuSKFMY/SN7MCCyBxMSh5AaoQaUKxSKOiRGKrzdqKiAvDIvnHSCtwq8biARmFf7aoDeDOYo/0NjIwxIMTJ2iJUJaVa6x4e0WlYoFD8AIawFBGCsZ4wZaYsxZjNa6R/ZXfOKM0eqakuFQtE87grwOMHXco4qAEYbmMKpr59MRn+F5bih/pYX0RGqwlKhUNQRssZZtIhg+ag7qfG6qPI4qfG6qPa6/F/rrz0uarzuWq9Yd/rVGmKJlmhliCkUijYh8IKr5VwxhN7vLTNYQO8f/RYToWPsEAtjh1gZ3s+Myaj0j0KhaJyQNc7MwsClaqC4QqHoQBINp3m41yNUeG2UeyMp90ZQ6bVR4Y2gwtCdMmMfKnVJVHis1Dgl3ROMjBtq4aLBFvr2MKoHQoVC0Sq6jHEmhIgFXgZmAIXAQ1LKtzpXKoVCoajDpi9npG2XfyEEJF4EfWZB6iyI7tu5wikUivOGLmOcAX8DXEASMAr4RAiRIaXc16lSKRQKRS0SPfSe7jfGel8BYQmdLZJCoTgPabx0qIMRQoQDC4FfSykrpJRfAR8DNzd1zokTJ3jttdcAcLvd2O32wMSAqqoq7HY7K1euBKC0tBS73c6qVasAKCwsxG63s2bNGgDy8vKw2+2sW7cucG273c5nn30GQE5ODna7nY0bNwKQlZWF3W5n8+bNAGRmZmK329m2bRsAu3fvxm63s3v3bgC2bduG3W4nMzMTgM2bN2O328nKygJg48aN2O12cnJyAPjss8+w2+2cOOEfG7Vu3Trsdjt5eXkArFmzBrvdTmFhIQCrVq3CbrdTWuof6L5y5UrsdjtVVf7GvCtWrMBut+N2+xOYX3vtNex2e+CzfOmll5g+fXpg/fzzzzN79uzA+v3332f+/PmB9VNPPcXChQsD6yeeeIIbbrghsH7sscdYvHhxYP3II49w6623BtYPPfQQd955Z2C9fPly7rnnnsB62bJlLFu2LLC+5557WL58eWB955138tBDDwXWt956K4888khgvXjxYh577LHA+oYbbuCJJ54IrBcuXMhTTz0VWM+fP5/nnnsusJ49ezbPP/98YD19+nReeumlwNput5+zey8/Pz/k7r1ly5ads3vvueeeO6f3Xls5WKjntTOXw5BFuI3RSu8ovRNYL168mDfeeCOwVnpH6Z2ztEfvdBXP2UDAK6U8VG8vA5ha/yAhxJ3AneBv9njw4EHS09PxeDw4HA4OHDhAeno6NTU1OBwO9u3bR3p6OhUVFTgcDjIzM4mNjaW0tBSHw8HevXuJiIiguLgYh8PBnj17sFgs5Ofn43A4yMjIwGAwcOrUKRwOB7t27UJKyfHjx3E4HOzcuROXy8XRo0dxOBzs2LGDyspKjhw5gsPhYPv27TgcDg4ePIjD4WDbtm0kJCSQm5uLw+Hgm2++4fTp0+zevRuHw8HWrVs5fvw4GRkZOBwOtmzZQnZ2Nnv27MHhcLB582ZiY2PZu3cvDoeDr7/+mqioKDIzM3E4HHz55ZfYbDb27duHw+Fg06ZNWCwWDhw4gMPhYOPGjRgMhoA86enpgP8Xr6SkJLA+dOgQxcXFgbXL5aKoqCiwzs7OpqCgILDOyckhPz8/sD569ChnzpwJrHNzczXHHz9+nNLS0sD6xIkTOJ3OwPrkyZMAgfV3332H2WwOrE+dOkVlZWVgnZeXh9frDazPnDmDyWRi9OjRpKenk5+fT05OTuD9goICsrOzA+uioiIOHz4cWBcXF3Po0KHAuqSkhKysrMD67P/pubj3Kisrz9m9V1hYGLhXfsh7z+v1nrN77/Dhw+f03msNSu8ovQOt0ztJSUmBtdI7Su80vPfahJSy01/AZCCvwd4dQHpT5wwcOFCGIl988UVni9BmQlFmKUNTbiVzxwFsl23UVUrvdBxK5o4jFOUORZnbonO6RFgT/xyTyAZ7kUB5J8iiUCgUCoVC0Wl0FePsEGAQQgyotzcSUMUACoVCoVAoLii6hHEmpawEVgGPCiHChRCTgKuAf3auZAqFQqFQKBQdS5cwzmq5G7AC+cDbwE+kaqOhUCgUCoXiAqOrVGsipSwGFnS2HAqFQqFQKBSdifAXEIQeQohyIKuz5WgH8fgnIIQSoSgzhKbcSuaOY5CUMqItJyi906EomTuOUJQ7FGVutc7pMp6zdpAlpRzb2UK0FSHE9lCTOxRlhtCUW8nccQghtrfjNKV3Ogglc8cRinKHqsytPbYr5ZwpFAqFQqFQXPAo40yhUCgUCoWiCxHKxtmLnS1AOwlFuUNRZghNuZXMHUd75L6QftbORsnccYSi3Oe1zCFbEKBQKBQKhUJxPhLKnjOFQqFQKBSK8w5lnCkUCoVCoVB0IULOOBNCrBBCnBZClAkhDgkhbu9smdqCEGKAEKJGCLGis2VpCSFEeq2sFbWvkOnvJIS4QQhxQAhRKYTIFkJM7myZmqLe53v25RVC/KWz5WoJIUSqEGKtEKJECJEnhPirEKLLt+cRQgwRQnwuhCgVQhwRQlzdinNCVu+Eks6B0NU7oaRzQOmdjqQ9OifkjDPgcSBVShkJzAd+L4S4qJNlagt/A7Z1thBt4F4ppa32NaizhWkNQogrgCeBW4EIYAqQ06lCNUO9z9cGJAHVwHudLFZreB7/uLVuwChgKv4xbF2WWiX+EfAvIBa4E1ghhBjYwqmhrHdCTedAiOmdUNM5oPROR9FenRNyxpmUcp+U0nl2Wfvq14kitRohxA2AA9jQyaKc7/wOeFRKuVVK6ZNSfiel/K6zhWol1+JXPF92tiCtoA/wrpSyRkqZB6wDhnWyTC0xGOgOPCOl9EopPwe+Bm5u7qRQ1TtK53QYoaxzQOmdc0m7dE7IGWcAQojnhRBVwEHgNLC2k0VqESFEJPAo8EBny9JGHhdCFAohvhZC2DtbmJYQQuiBsUBCrfv4ZK3b29rZsrWSpcAbMjTKqJ8DbhBChAkhegCz8SvKroxoYm94iyeGmN4JYZ0DIaR3zgOdA0rvnEvapXNC0jiTUt6N33U8GVgFOJs/o0vwGPCylPJEZwvSBv4b6Av0wN+fZY0Qoqt7C5IAI/4nwcn43d6jgYc7UaZWIYTohd9F/3pny9JKNuJ/Yi0DTgLbgQ87U6BWcBC/h+AXQgijEGIG/s88rKUTQ1DvhKLOgdDTOyGrc0DpnQ6gXTonJI0zgFr34FdAT+AnnS1PcwghRgHTgWc6WZQ2IaX8RkpZLqV0Silfx++KvbKz5WqB6tqvf5FSnpZSFgJ/puvLDbAE+EpKebSzBWkJIYQO+BS/kRKOfwhxDP68my6LlNINLADmAHn4vUrv4lfyrTk/JPROqOocCEm9E8o6B5TeOae0V+d06QqHVmKg6+d+2IFU4LgQAsAG6IUQQ6WUYzpRrrYiadxF22WQUpYIIU7ilzXUWAI80dlCtJJYIAX4a20ullMI8Srwe+CXnSpZC0gp9+B/cgVACLGZtnsNurresXN+6Bzo4nonxHUOKL1zzmmPzgkpz5kQIrG2XNkmhNALIWYCNwKfd7ZsLfAifkU+qvb1AvAJMLPzRGoeIUS0EGKmEMIihDAIIW7CX4H0aWfL1gpeBe6rvV9igGX4K2W6LEKIifjDOKFQLUWtd+Ao8JPa+yMaf95KRqcK1gqEECNq7+swIcRy/FVfrzVzfCjqnZDTORDSeifkdA4ovdNRtFXnQIgZZ/ifTH6C3x1YAjwFLJNSftSpUrWAlLJKSpl39gVUADVSyoLOlq0ZjPifRgqAQuA+YIGUMhR6Dj2Gv3XAIeAAsAv4Q6dK1DJLgVVSyvLOFqQNXAPMwn+PHAE8wP2dKlHruBl/Qn8+MA24ol4lZmOEnN4JUZ0Doat3QlHngNI7HUVbdY6aralQKBQKhULRlQg1z5lCoVAoFArFeY0yzhQKhUKhUCi6EMo4UygUCoVCoehCKONMoVAoFAqFoguhjDOFQqFQKBSKLoQyzhQKhUKhUCi6EMo4UygUCoVCoehCKONMEVIIIXKFENVCiHIhhEMIsVkI8ePamWsKhULxg6P0jqKjUTeWIhSZJ6WMAHrjnwn338DLnSuSQqE4z1F6R9FhKONMEbJIKUullB8D1wNLhRDDhRBzhBC7hBBlQogTQojfnj1eCPGJEOK++tcQQuwRQizoWMkVCkWoovSOoiNQxpki5JFSfot/7uFkoBJYAkQDc/APyF1Qe+jrwOKz5wkhRuIf+ru2A8VVKBTnAUrvKM4lyjhTnC+cAmKllOlSyr1SSp+Ucg/wNjC19piPgAFCiAG165uBlVJKVyfIq1AoQh+ldxTnBGWcKc4XegDFQojxQogvhBAFQohS4MdAPICU0gm8CyyuTeS9Efhnp0msUChCHaV3FOcEZZwpQh4hxDj8SvIr4C3gYyBFShkFvACIeoe/DtwETAOqpJRbOlhchUJxHqD0juJcoowzRcgihIgUQswF3gFWSCn3AhFAsZSyRghxMbCo/jm1StEHPI16elUoFG1E6R1FRyCklJ0tg0LRaoQQuUAS4MGv7PYDK4AXpJReIcS1+BVgLLARyAWipZT1E3IfBh4D+kkpczr0B1AoFCGH0juKjkYZZ4oLDiHEEuBOKeWlnS2LQqG4MFB6R9EWVFhTcUEhhAgD7gZe7GxZFArFhYHSO4q2oowzxQWDEGImUACcwZ/Aq1AoFOcUpXcU7UGFNRUKhUKhUCi6EMpzplAoFAqFQtGFUMaZQqFQKBQKRRdCGWcKhUKhUCgUXQhlnCkUCoVCoVB0IZRxplAoFAqFQtGFUMaZQqFQKBQKRRfi/wMPNt3Fkt0KnAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "<Figure size 720x288 with 2 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Separating the two equations #\n", + "\n", + "# Eq.2 ------\n", + "col = sns.color_palette()\n", + "col_pte = ['#436bad', 'orange','crimson', 'gray']\n", + "col_pte2 = [col[0], 'gray', col[4], 'gold', col[2], col[3]]\n", + "colors={1:'dimgray',2:'gold',3:'mediumseagreen',4:'darkorange',5:'crimson',6:'royalblue'}\n", + "\n", + "term = 'VMT'\n", + "res = '80km'\n", + "fig, ax = plt.subplots(1, 2, figsize=(10,4), sharex=True, sharey=True)\n", + "for i in range(1,4): # loop over simulations\n", + " ax[0].plot(dur[exp80[i]], vmt[exp80[i]], color=colors[i],\n", + " linewidth=4, label=expname[i], alpha=0.9)\n", + "\n", + "#plt.legend(ncols=3, loc='upper center')\n", + "for i in [1,4,5,6]: # loop over simulations\n", + " ax[1].plot(dur[exp80[i]], vmt[exp80[i]], color=colors[i],\n", + " linewidth=4, label=expname[i], alpha=0.9) \n", + "#plt.legend(ncols=3, loc='upper center')\n", + "#ax = df_track[['dfi', 'ep','itt', 'eq1res']].plot(kind='bar', stacked=True, title='', color=col_pte, figsize=(6, 3))\n", + "#df_track.plot(x ='Unnamed: 0', y='dp', kind = 'line', ax=ax, color='k', linewidth='3')\n", + "\n", + "ax[0].set_xlabel('Day', fontsize=12)\n", + "ax[0].set_ylabel('hPa/'+str(dt)+'hr', fontsize=12)\n", + "ax[0].set_xlim((3, 9))\n", + "ax[0].set_ylim(-2, 65)\n", + "ax[1].set_xlabel('Day', fontsize=12)\n", + "#ax[1].set_ylabel('hPa/'+str(dt)+'hr', fontsize=12)\n", + "ax[1].set_xlim((3, 9))\n", + "ax[1].set_ylim(-2, 65)\n", + "\n", + "#ax.set_xticks(np.arange(9, 32, 2))\n", + "#ax.set_xticklabels(dur[exp80[i]].to_numpy())\n", + "#print(dur[exp80[i]])\n", + "#ax.set_xlim(np.min(df_track['Unnamed: 0'])-0.5, np.max(df_track['Unnamed: 0']+0.5))\n", + " #ax.set_xticklabels(df_track['time'])\n", + "ax[0].yaxis.grid()\n", + "ax[1].yaxis.grid()\n", + "ax[0].xaxis.grid()\n", + "ax[1].xaxis.grid()\n", + "ax[0].axhline(y=0,linestyle=':', color='k')\n", + "ax[1].axhline(y=0,linestyle=':', color='k')\n", + "ax[0].legend(ncol=2, loc='upper left')\n", + "ax[1].legend(ncol=2, loc='upper left')\n", + "#plt.legend(bbox_to_anchor=(1.0, 1), loc='upper center')\n", + "\n", + "#plt.savefig('TimeseriesPTE_'+exp+'_'+str(dt)+'hrly_Eq1_upper'+str(int(p2level))+'hPa_box'+str(int(boxsize))+'_CyCen.png',\n", + "# bbox_inches='tight',dpi=200)\n", + "ax[0].tick_params(axis='both', which='major', labelsize=12)\n", + "ax[1].tick_params(axis='both', which='major', labelsize=12)\n", + "plt.subplots_adjust(wspace = 0.05)\n", + "fig.suptitle('Eq2: '+term+' Term ('+res+')',fontsize=14, weight='bold')\n", + "plt.savefig('CyclonePTEtimeseries_Allsim'+res+'_'+term+'.png',\n", + " bbox_inches='tight',dpi=100)\n", + "plt.show()\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 202, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnwAAAEpCAYAAAAJRv+PAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAADvKUlEQVR4nOydd5hU1d2A3zN9e2PpvXeWjg0WFEFUBCRqIlhiiSUxMTGJfibGmGKNNTGxVxSlSAdFZel1kQ4L7C5lYWF7nz7n++POzsydma3sAov3fZ55du+55957ZubOub/zq0JKiYaGhoaGhoaGxqWL7kIPQENDQ0NDQ0NDo3nRBD4NDQ0NDQ0NjUscTeDT0NDQ0NDQ0LjE0QQ+DQ0NDQ0NDY1LHE3g09DQ0NDQ0NC4xNEEPg0NDQ0NDQ2NSxxN4NPQ0NC4BBFCPCKEkEKIT5vp/Hd5zy+FEF2b4fwTvefeLoQQTX1+DY0fG5rAp6FxiSKESAt4IAe/7mrguQYIIT4QQhwUQpQKIcqFEHuEEI8KIQyNHN+xgPG4vOc9IIR4RwgxOKhvam1jF0J8HbB/e5j9qSL0M6gUQuwTQvy5NoEiaJw1vZ5uzGfQXAghooA/eTdfCmwXQrwghDjsff9lQoi9QognhRD6gH5GIcRfhBBZQgiHECJHCPGqECLmfL0HKeVqYDcwAvjJ+bquhsalSqMmag0NjRaFA/ghqC2/gecYCdwFWIFMoAswCHgZ6AH88hzGVw4cBDoB/byvO4UQ90opP67rYCFER+CagKYRQoiBUsp9NRyShfL+uwEDgGeAKuBfNfT/ATjj/b8j0MH7/y7A7v0/p65x1jB2A+CWTZ8B/3YgGdgnpdwV0P5fYLb3/wNANDAQ+DvgAZ717nsfmOVtOwJ0B34NpAghJkgpPU083pr4FBjivfaX5+maGhqXJJqGT0Pj0idXSjkm6LW8eqcQYrpX42MTQqwTQkwJo007AdwKxEopBwFdgWPefbMDztW1EVrEnVLK0VLK9sDlwEnACLwrhOhVj+PvQJnLilCEOYC7a+n/NynlGBQhpszbllpTZynl9OrPDXg3YFdg+xdCiJeFENlejViuEOJ/Qoj46s5CiA+9n8sxrzk0G0UYjwvQxqYJIX4nhDgjhCgSQjwthIgUQrzt1aoeF0LcW4/PpPo7WRrUPtb79xsp5QCgF4rADYoQjxBiGIqwB/BrKWVf4Gbv9jhgWk0X9WoPpfdeusHbVn0/vCCEeE8IUeHVHE4XQnQTQnzr1TbuEkKMCTpl9fgvF0L0qMf71tDQqAFN4NPQ+BEjhBgEzEN58DuA1oTRpEgpv5dSfimldHm3i4BqDZo9uH9jkVJuRtHmgCL03VOPw+7y/p0LVGsEZ9XD1NwNMHv/P9yAYaoQQpiANOBRoD2KtjIG+AXwnRDCGHRIe+A9lM87L2jfGOAplM80AfgLsB1FyKoEOgNvCSH61jKeCGC0dzPYvL3e+/daIcR+FO1dDLAVv3bvuoD+C7x/lwM27/+Tarju08DvvWOfLqVcFtTlEe+xDpTP/jPgOxTBGxRN3tyg7+0wUOL9PzXcdTU0NOqHJvBpaFz6dAnjcxbv3fcYoAcqgP5ebc6rdZ1QCDEAmODd/G/ALieQ4X2VNnK86wL+H1THOK5EEVZBEfY+8f7fGri+hsM+EEJIYC+KwLcbRbBqLLcBwwAXMExKOQTFVOz2tt8S1N8IPCSl7AO0Q/056VAEn/4oghEoptnewBUBfVJrGU937zXAr4Wt5j78n1F/FAHSCewBCrztnQL65wF4TbjV+zuHuebvUD5DKzBVSrkyTJ+jKOb/6s/DgiJw9kARBkHRMvasPsBr6j7p3ewT5pwaGhr1RBP4NDQufRwoGpzAl8u7r1qg2iSlrPZD+6K2kwkhrgLWApEo2sFnqvdJKU9JKft6X181cryB81Jdvm3VptsMKeVWKWUWsMnbdlcNx2ShfAbHvNtD8Gu3GkO1Ns0A7PMKk8dQBGlQtHaBWIF3QBFogvz39kkpj0kpK/H7WW6QUpbgN1cDtKllPPEB/5cH7fsNirl3K9AW6ItiCr8PeM3bp6YAltoiZat9OGdLKb+poc83Uko7aiF0uff91/beqs3u8bVcX0NDow60oA0NjUufXK+fWX2pLWL1DhRhxQS8CfyqGRz4xwX8v7+WsUTij97sLoQo8f4f4f17vRAiWUoZHKDyNynlh95zzEXxTXxQCPG4V9BqKNWflxPYGWb/2aDtvFo+s7KA/12BbVJKGRBMXJvwFagx9EXVej+vv3k3F0gpzwJnhRBrUbRu1YEvJwKObw3kCiF0QJK37SShVKAEgPxOCLFSSllVy3tzhWkLFHqD31us929JmHNqaGjUE03Dp6Hx42av9+/lQoj23v9nBncSCv8APkJZKD4qpXw4WHARQnQQQhzyvqY3dDBCiMvxm5SdKL5uNTETv0BjBOK8L1NA26wwxwWiC/jb2Plwm/evAfhNQCDHlcBfUSJNzyfZ+IWqrgHtkfgX+SPB539YreWtFnZXBRxTHaxxPYoJNnh/NbNRhLfLgK+85z1nhCLhVpuQG+1nqaGhoQl8Gho/BtoJIbYEvaojPV9C8TWLBg4JIQ4Cvw1zjluB//P+XwbcFni+gH5GFF+rPijCV30YJoTYKoQ4DWxESXviBO6TUtb2kK825+6VUorAF0owQGCfQP7sHXcWfg3h91LKYPNnffkcJUWLADYJIfZ7P8dSYAVqoavZ8Wopd3g3Rwa0F+D3j/yJECITxbzaz9v2kbdfOsp7AnjN+16qgzc2AIvCXHYXMAPFfeBaYI5XK3iu9MZ/H61pgvNpaPxo0QQ+DY1LHxOKn1ngqyOAlHIvitBzxNuvCEW4C8YS8H98mPOdCzEoyXWjUYI9PgBGSik/qukAoVR2qDb9LgzTpVpAGSSEGB60rzvKmDuhmCffJfx7rhdev7RUlJyEx1CCSJJRzNF/xx/NfD6pjlaeGtQ+DXgeRVvWFsX8vQMlGvrFgH53ovhmnkAJqigA3gCur8kcLaX8znucRNG+vtUE76N6/JullJlNcD4NjR8tounzfWpoaLRkvMJUtnfz7mp/N42Wg1AqYmQBrVAih4MTb7cIhBC7UIJqbpNS1hpMpKGhUTuahk9DQ0PjEsNrnq4O0HjsQo6lsQghJqIIe+loVTY0NM4ZTcOnoaGhQtPwaWhoaFx6aAKfhoaGhoaGhsYljmbS1dDQ0NDQ0NC4xNEEPg0NDQ0NDQ2NSxxN4NPQ0NDQ0NDQuMTRBD4NDQ0NDQ0NjUscTeDT0NDQ0NDQ0LjE0QQ+DQ0NDQ0NDY1LHE3g09DQ0NDQ0NC4xNEEPg0NDQ0NDQ2NSxxN4NPQ0NDQ0NDQuMTRBD4NDQ0NDQ0NjUscTeDT0NDQ0NDQ0LjE0QQ+DQ0NDQ0NDY1LHE3g09DQ0NDQ0NC4xDFc6AFcbMTHx8uePXte6GE0iMrKSqKioi70MBpMSxy3NubzR0scd3p6eoGUMrmhx2nzzvmhJY4ZWua4tTGfP+o772gCXxBt2rRhx44dF3oYDSItLY3U1NQLPYwG0xLHrY35/NESxy2EON6Y47R55/zQEscMLXPc2pjPH/Wdd1qUSVcIURH0cgsh3qih713e/YH9U8/viDU0NDQ0NDQ0LjwtSsMnpYyu/l8IEQWcBebVcshmKeWVzT4wDQ0NDQ0NDY2LmBal4QtiJpAHrL/QA9HQ0NDQ0NDQuJgRUsoLPYZGIYT4HlgnpXy6hv13Af8BrEAR8AnwrJTSFabv/cD9AMnJycO//PLL4P1ERUWh1+ub8i00GVJKhBAXehgNpiWO+0KP2e12U1lZSUN+txUVFURHR9fd8SKjJY57/Pjx6VLKEfXpq80755+WOGZomeNuKWMOnFNb4pwD9Z93WqTAJ4ToDGQDPaWU2TX06Q5I4DgwAPgC+ERK+Wxt5+7Tp4/MyMhQtWVnZxMTE0NSUtJFeQOXl5cTExNzoYfRYFriuC/kmKWUFBYWUl5eTrdu3ep9XEt1RG6J4xZC1FvgC0Sbd84PLXHM0DLH3RLGHDyntsQ5B+o/77RUk+4dwIaahD0AKWWWlDJbSumRUu4FnkExAzcYm8120U66Gj8ehBAkJSVhs9ku9FA0zgPavKOh0bz82ObUlizwfdTAYyTQ6JlTm3Q1Lga0+/DHhfZ9a2g0Lz+m31iLE/iEEJcDHag9OhchxHVCiDbe//sCfwYWN/8INTQ0NDQ0NDQuLlqcwAfcCSyUUpYHNgohOntz7XX2Nl0N7BFCVAIrgIXAP8/vUDU0NDQ0NDQ0LjwtTuCTUv5CSjk7TPsJKWW0lPKEd/sxKWUbKWWUlLK7lPIpKaXz/I+4aThz5gy33XYbPXr0oH///owfP57IyEhSUlLo3Lkz3bp1IyUlhWuuuYZjx44xcODAep33rrvu8h07ZMgQvvvuO9++1NRUVfb/4PM+++yz9OzZkz59+vD111833Zu9SHC73QwdOpQbbrgBUD6rRYsWAVBUVMTQoUP54IMPwh577NgxIiIiSElJoX///txxxx04ncrtl5aW5jtnNXfddRfz589vvjejodEItHnn4qewsJCUlBRSUlJo27YtHTp08G07HI4LMqZ//OMfXHHFFaSkpKDX633jef3113n66ad9Y+zfvz+ff/55refS7pWmo0UlXr7QPPHEE816/mefDR9ALKVk+vTp3HnnncydOxeAXbt2UV5ezlVXXcXtt9/O9OnTmTlTiUk5duxYg6774osvMnPmTNasWcP999/PkSNH6jzmwIEDzJ07l/3793P69GmuueYaDh8+3KQpJKatfrrJzhWORRNrP/9rr71Gv379KCsrU7WXlpYyadIk7r//fu6+++4aj+/Rowe7du3C7XYzceJEvvzyS26//famGLrGjwht3vFzPuadxnJs4LRmO7eUkpj94T2SkpKS2LVrFwBPP/000dHRPPbYY802lvrw5JNP8sgjjxATE0N0dLRvfKCM8dFHH+Wxxx7jyJEjDB8+nJkzZ2I0Gms836V2r1woWpyG78fImjVrMBqNPPDAA762lJQUrrrqqia9zmWXXcapU6fq1Xfx4sXcdtttmM1munXrRs+ePdm2bVuTjudCkpOTw/Lly7n33ntV7ZWVlVx33XX87Gc/48EHH6zXufR6PaNGjar3Z6uhcTGgzTstl3feeYeRI0cyZMgQbr75ZqqqqgBFW/bII49w+eWX0717d59VQUrJ73//ewYOHMigQYP44osvAMUaMW7cOG655RZ69+7N448/zpw5cxg1ahSDBg0iMzPznMbZq1cvIiMjKS4urld/7V45NzQNXwtg3759DB8+vNmvs2rVKqZNm6Zqu/3224mIiADA4XCg0ylrhFOnTjFmzBhfv44dO15SAs1vfvMbXnjhBcrLVa6iPPHEE9x33308+uij9T6XzWZj69atvPbaa7629evXk5KS4ts+ceJEiJlXQ+NCos07LZcZM2Zw3333AfCnP/2J9957j1/96lcA5ObmsmHDBg4dOsTUqVOZOXMmCxcuZNeuXezevZuCggJGjhzJ2LFjAdi9ezcHDx4kMTGR7t27c++997Jt2zZee+013njjDV599dVGj3Pnzp306tWL1q1b16u/dq+cG5qGT4Pf//73dO/enVmzZvF///d/qn1z5sxh165d7Nq1ixUrVvjawyXsvlTC25ctW0br1q3DPuzGjRvH4sWLycvLq/M8mZmZpKSkkJSUROfOnRk8eLBv31VXXeX7XHft2sXUqVOb9D1oaFzsaPNO87Fv3z6uuuoqBg0axJw5c9i/f79v37Rp09DpdPTv35+zZ88CsGHDBn7605+i1+tp06YN48aNY/v27QCMHDmSdu3aYTab6dGjB9deey0AgwYNarAZv5pXXnmFPn36MHr0aJ5++uk6+2v3StOgafgaQE2+Ls3NgAEDmtWh/8UXX2TGjBm8/vrr3HnnnaSnp9d5TMeOHTl58qRvOycnh/bt2zfpuOrysWsuNm7cyJIlS1ixYgU2m42ysjJmzZqFwWDg5ptvprCwkClTprBmzZpaM8lX+/Dl5uaSmprKkiVL6hTstm7dyi9+8QsAnnnmGU0Q1NDmnQDOx7zTWLruW9Rs5w62NNRFdYDZkCFD+PDDD0lLS/PtM5vNvv+rhaLaKm4F9tfpdL5tnU6HyxVSqbReVPvwLVy4kDvuuIPMzEwsFkuN/S+1e+VCoWn4WgATJkzAbrfzzjvv+Nq2b9/O2rVrm+waOp2OX//613g8nnpFM02dOpW5c+dit9vJzs7myJEjjBo1qsnGcyF59tlnycnJ4dixY8ydO5cJEybw6aef+vb/5je/4eqrr2b69On1ioJr164dzz33XL0e3KNHj9a0fhoXBdq803IpLy+nXbt2OJ1O5syZU2f/sWPH8sUXX+B2u8nPz2fdunXn5XOdMWMGI0aM4KOP6q6joN0r544m8LUAhBB89dVXrF69mh49ejBgwACefvrpWlcrGRkZdOzY0feaN6/WPNW+6/zpT3/ihRdeqLPvgAEDuOWWW+jfvz+TJ0/mP//5z48q+un555+nU6dOzJ49G4/HU2f/adOmUVVVxfr168/D6DQ0zh1t3mm5/O1vf2P06NFMnDiRvn371tl/+vTpDB48mCFDhjBhwgReeOEF2rZtex5GCk899RQvv/xyveZR7V45N0RtqtwfI+GKmB88eJB+/fpdoBHVTUsoUh2Oljjui2HMDb0fW2pB8JY47voWMQ9Gm3fODy1xzNAyx92Sxlz9W2uJcw7Uf97RNHwaGhoaGhoaGpc4WtDGj4SHH36YjRs3qtp+/etf15o4WKNu9u7dy+zZ6sIvZrOZrVu3XqARaWhcPGjzzqXPP/7xjxDT/U9+8hMeeeSRBp1Hu1eaH03g+5Hwn//850IP4ZJk0KBBqizyGhoafrR559LnySef5Mknnwxpb2hksXavND+aSVdDQ0NDQ0ND4xJHE/g0NDQ0NDQ0NC5xNIFPQ0NDQ0NDQ+MSRxP4NDQ0NDQ0NDQucVqcwCeESBNC2IQQFd5XRi19HxVCnBFClAoh3hdCmGvq2xJwu90MHTqUG264AVDK51SXPioqKmLo0KF88MEHYY89duwYERERpKSk0L9/f+644w6cTieg5DurPmc1gefOzs5m9OjR9OrVi1tvvbVe1SU0NDRaNoWFhaSkpJCSkkLbtm3p0KGDb/tCzgFPP/20byz9+/fn888/9+0LnLeqiY6O9v0/Z84cevXqRa9evepV3aElcLF+T//85z99Yxk4cCBLlizx7Xv77bfp27cvffv2ZdSoUWzYsKHWc6WmptKnTx+GDBnCyJEjVYFyXbt2paCgwLcd+DyTUvLII4/Qs2dPBg8ezM6dO5v2TbYwWmqU7i+llO/W1kEIMQl4HJgAnAa+Av7qbWscR5u5Dl/P07Xufu211+jXrx9lZWWq9tLSUqZPn879999fawh7dW1Xt9vNxIkT+fLLL7n99tvrHNYf//hHHn30UW677TYeeOAB3nvvPR588MH6vScNDY1z43/NPO88EH7eSUpK8j1Yn376aaKjo3nsscd8++12e/OOqxaqa7EeOXKE4cOHM3PmTIxGY63HFBUV8fzzz5Oeno4QguHDhzN16lQSEhKaZEw/eeJUk5wnHB6PhwXPh09iXNf3dCGp/p4OHjzIVVddRV5eHitWrOCtt95iw4YNtGrVip07dzJt2jS2bdtWa3WPOXPmMGLECD744AN+//vfs3r16jqvv3LlSo4cOcKRI0fYunUrDz744I86ZVaL0/A1gDuB96SU+6WUxcDfgLsu7JAaT05ODsuXL+fee+9VtVdUVHDzzTfzs5/9rN5CmF6vZ9SoUZw6VfcEJaXk+++/Z+bMmQDceeedLFq0qMHj19DQaPm88847jBw5kiFDhjBr1iyqqqoARbP2yCOPcPnll9O9e3eflk1Kye9//3sGDhzIoEGD+OKLLwBFCzNu3DhuueUWevfuzeOPP86cOXMYNWoUgwYNIjMzs17j6dWrF5GRkRQXF9fZ9+uvv2b8+PEkJiaSkJDAxIkTWbVqVSM/iYubwO/p5ptvvuDfU79+/TAYDBQUFPD888/z4osv0qpVKwCGDRvGnXfeWe+0LJdddlm9nl0Aixcv5o477kAIwZgxYygpKSE3N7dex16KtFQN37NCiOeADOBJKWVamD4DgMUB27uBNkKIJCllYWBHIcT9wP0AycnJpKWpTxcXF0d5eTlRnuYtQ1dZS96iX/7yl/zlL3+hoqICl8tFeXk5TqeTRx99lNmzZ3PvvffWmveooqICj8dDeXk5NpuNTZs28fzzz1NeXu6r8Tp48GBf/5MnT3L11Vdz/PhxYmNjsVqtAMTHx3Py5MkG51gKh9vtbpLznE8uhjHbbLaQe7Q2KioqGtT/YqGljru+1Hveaebyl7XNO9XY7XaMRiMTJ07ktttuA+Cvf/0r//nPf3jggQdwOp2cPHmSlStXcvjwYW699VYmTZrE4sWLSU9PZ8OGDRQWFpKamsqwYcOoqqpi9+7dbN++nYSEBAYPHswdd9zBd999x5tvvsm//vUvnn/++VrHUl5ezq5du+jevTsRERG+OfGxxx7jmWeeUR1TXl5OVlYW7du39/1+k5OTycrKarLfc31qwZ4L9RlnuO/pmWeeuSDfk5QSu91OeXk527dvRwiBxWJh37599O7dW/V+BgwYwGeffVbje3S73VRWVlJeXs6iRYuYMmWKr6+UknHjxvnq5FZUVPjOf/z4cZKSknx927Vrx+HDh1VmfvDPqZf6nNMSBb4/AgcAB3AbsFQIkSKlDF5qRAOlAdvV/8cAKoFPSvk28DYoNS2Da+kdPHhQqQl4VjTVewhLTXUHly1bRvv27Rk7dixpaWkYDAZiYmIwGo1cffXVrFy5kj/96U+0bt26xnNHR0eTnZ3NVVddxZEjR5g5cyaXXXYZAJGRkVx11VUsW7bM1/+uu+4iIiKCqKgodDqdb2zR0dHo9fomqZHYkmotVnMxjNlisTB06NB692+p9SFb6rjrS73nHXFh5p1AzGYzZrOZ48ePM3v2bEpKSigvL2fy5Mm+uWjmzJnExcUxcuRI8vPziYmJIT09nVmzZhEfH098fDypqakcPHiQ2NhYRo4cSa9evQDo2bMnN954IzExMYwcOZLNmzfXOC6z2cybb77Jxx9/TFZWFqtWrfL1NRqNvPTSSz6LBChzVkxMDCaTCZvN5utrNpuxWCxN9nvW6crq7tRIPB5Po7+niooKJk2adN6/JyEEb775JvPmzSMmJoYvv/yS2NhYhBDExMSojrNYLBiNxhrPpdfruf/++6msrMTtdrNz505fXyEEa9eu9WkM09LSeOmll4iJiUGv1xMZGenrq9frffdDINVz6qU+57Q4gU9KGWiA/0gI8VNgCvBGUNcKIDZgu/r/WpdJemEDKcNPsnX42DUXGzduZMmSJaxYsQKbzUZZWRmzZs3CYDBw2223MWLECKZMmcKaNWtqnRSqffhyc3NJTU1lyZIlTJ06tdZrt2rVipKSElwuFwaDgZycHNq3b2afIg0NDT81+NhdCO666y4WLVrEkCFD+N///seWLVt8+8xmf0yc9GolZS3aycD+Op3Ot63T6XC5XLWOo9o3bOHChdxxxx1kZmZisVhqPaZjx44qv6+cnJwmfbjPe7ZDk50rmIZqIQO/pw8//FCltboQ31Mg/fv3Jz09nQkTJvjadu7cSf/+/Ws915w5cxgyZAiPP/44Dz/8MAsXLqy1Pyjf+cmTJ33bP/bn16XgwyeBcEvg/cCQgO0hwNlgc24wEfpTUBo+0vVC8eyzz5KTk8OxY8eYO3cuEyZM4NNPP/Xtf/jhh7n66quZPn16vaKy2rVrx3PPPcezzz5bZ18hBOPHj/f5enz00UfcdNNNjX8zGhoaLZby8nLatWuH0+nkyy+/rLP/2LFj+eKLL3C73eTn57Nu3TpGjRrVZOOZMWMGI0aMqFfE7aRJk/j+++8pLi6muLiYb775hkmTJjXZWC4mAr+nOXPm1Nm/ub+nQP7whz/wxz/+kcJC5VG8a9cuPvzwQx566KE6jzUajfz9739ny5YtHDx4sM7+U6dO5eOPP0ZKyZYtW4iLi6Ndu3bn/B5aKi1K4BNCxAshJgkhLEIIgxDidmAs8HWY7h8D9wgh+gshEoA/AR/W60LFb4BsXn+Mpub555+nU6dOzJ49u16+JNOmTfP57tXn3C+//DI9e/aksLCQe+65pymGrKGh0cL429/+xujRo5k4caLPzFcb06dPZ/DgwQwZMoQJEybwwgsv1BqJ2RieeuopXn755TrnvcTERP7whz8wcuRIRo4cyVNPPUViYmKTjuViIfB76tu3b539z8f3VM3UqVP5+c9/zuWXX07fvn257777+PTTT+stiEVERPC73/2Ol156qc6+U6ZMoXv37vTs2ZP77ruPN99881yH36IRtalyLzaEEMnACqAv4AYOAX+WUq4WQnRG8e3rL6U84e3/WxSfvwhgAfCAlLLWXALDBxhk+uLW0HE5WBQ/qYMHD9KvX7/melvnzMXgV9YYWuK4L4YxN/R+bKl+KS1x3EKIdCnliIYe16VbP3k8W62x0Oadpqcljhla5rhb0pirf2stcc6B+s87LcqHT0qZD4ysYd8JlECNwLaXgZcbcg27VCJ9qFzlE/g0NDQ0mpPSKgPLN1Zw/RXRdXfW0NDQaAQtSuA7H+Q4Y1lS0oOpxlWQ9MSFHk6D2bt3L7Nnz1a1mc3mH3WySQ2NlsDcb8q4bFAEibH6Cz2Ui4J//OMfzJs3T9X2k5/8hCeffPICjUgjHDV9T4888kiDzzV9+nSys7NVbc8///wl62t5vtEEvjB8WDCArqZNDHZkgqkHoEQxiWZOj9AUDBo0SFV2RuPSoiW5YGjUH4EHm93DZ6tK+eUtfr+yljLvNAdPPvmkJty1AGr6nhqT3/Crr75qiiE1iB/TnNqigjbOFx4Jr5wdTnHJCkDJ0VNYWPijujE0Lj6klBQWFtaZfkKjBSIlOMtZ+4OVwyeUSHtt3tHQaF5+bHOqpuELgwSK3RZeydjDX5I9dOzYkZycHPLz8y/00MJis9la5A3bEsd9ocdssVjo2LHjBbu+RvMhnVUIYxTvLynhnw8la/NOM9ASxwwtc9wtZcw/pjlVE/jC4V1R76k0MO/ocm7rdSPdunW7wIOqmbS0tAZVXrhYaInjbolj1mgZSCnBUUnmKT1pO6uYMCJKm3eamJY4ZmiZ426JY77U0Uy6QZhxA4qWD+CL7A3sKcq6cAPS0NC45InSef2dXFUg3Xy2qoxKa8vKBaqhoXFxowl8QUQ5XcTo7IqWT0qktPHy3gUU25umwLaGhoZGMAn6PIzCoWj5nJWUVnqY/70252hoaDQdmsAXhMNh4qG4jQi8Wj7poMRRwSv7FuK+yKpv2N1O5mevY7X9ICcq8i70cDQ0NBqJQbiYEvMZoPjyIT2s3FTBqTznBR6ZhobGpYIm8AXhdOvp4LRyU/Q+n5YPaWdPUTbzstZd6OH5cLhd/O2HOXx69Ht+cJ3g6Z2fYHXVWkREQ0PjIsWNjuti5pKkz/NG7Fbi9sD7y0q1KF0NDY0mQRP4gtDpdBw+1Z1pUXvpZzqrNHqrsX2RlXZR+PO5PG5e3DuPfcXHfG1F9nLSC45cuEFpaGg0mkpPBGadnVvi/4vEr+Xbc8TOjoO2Cz08DQ2NSwBN4AvCbDZz+FR39ELyYNwmYoXVK/BJJPCvvQsouoD+fB7p4T8HlrA9PyNk35a8g2GO0NDQuNhx6mOplBGMjEijr3kXSA84KwH4aHkpDqem5dPQ0Dg3NIEvCJPJRGFVFyptESTorTwYt1GZfKWSDLXUUcnLexdcEH8+KSXvH/6aNbm7w+5PLzyK0+M6z6PS0NA4V0xmC1tswxACfhb/BgKPT8t3tsjNsg0VF3qIGhoaLRxN4AtCCMHo0ZdzJFfJfzXAfJbpUXt9Zl2AfcXH+CIr7byP7YvstSw7UXNNXKvLzu6LwOSsoaHRMPR6PeWdplElI+hkymJ89GKvlq8KgIVp5RSVui/wKDU0NFoymsAXhssvv5zM3J6+7alRe+lvylX1mZe1jl2FmedtTMtPbGVuZpqqLcEczYhWvVVtW/MOnbcxaWhoNB1XjJvIVpuSqHZa7AdE6sqRzkqQHuwOySerSi/wCDU0NFoyLUrgE0KYhRDvCSGOCyHKhRA/CCGuq6HvXUIItxCiIuCVWp/rxMTEkNRpGk6XUohELyQPxX5PvNH/cUnglX3nx58vLXc372SsVLVFGSz8Zehsru80StW+Lf/QRZc+RkNDo266d+/OmaRJWKWFaH05M+LeU2n5NuyycuiYFomvoaHROFqUwIdSCu4kMA6IA/4MfCmE6FpD/81SyuiAV1p9L3TFlRPIPOM/bayo4udxJeiE8LWVOqp4Zd/CZk2bsD0/gzf2L1a1mfVG/jz0drrGtGFQYjfMGFVjOlRystnGo6Gh0TwIIbgi9Vq22VIAGBe1lA7GLKRL0fIBvL+0FLdHC+DQ0NBoOC1K4JNSVkopn5ZSHpNSeqSUy4BsYHhTXyspKQmbIVXV1tO+jFu6j1O17S3KZlt+85hR9xZl88KeL1UaO4NOz+ODb6VvfCffdndDK9VxzTUeDQ2N5qV///5kR6dikyb0wsPt8a+DRyol14Ds007S0qsu8Cg1NDRaIi1K4AtGCNEG6A3sr6HLUCFEgRDisBDiz0IIQ0PO33Pw/Xg8/o8o2pTLlULH4ER1QfPPMtfgaWIz6tGy0/xz91ycHr+jtgAeHTiDoa16qvr20rdWbW/JO6gla21i9hcf5/Ht7zHXtkOraqLR5AinEl2v0+m4bOy1bPdq+fpadjMy8nvFrOudY+ZodXY1NDQagWipgoEQwgisBDKllL8Is787iqvdcWAA8AXwiZTy2TB97wfuB0hOTh7+5Zdf+va1dj1ChwR/5OvWzImUtrqHD6ybvKdXuME8mP6Gdk3y3go9FXxm247VmwqmmkmmAQwxdgzpX1RRygdiG278D4G7Ii6ntS6mScbTXFRUVBAdHX2hh1EnNunkrar12HEipaSjPpHbI0bVfeBFQkv5nINpieMeP358upRyRH36Bs47/Y0xw9957Q0c/brgdrvZ8P0KHoz5ALPOQaGrNU+e+RSbLh63zgLA0O7ljB9Y3HxvpB60xO+nJY4ZWua4tTGfP+o77zRI43WxIITQAZ8ADuCX4fpIKQPzk+wVQjwD/B4IEfiklG8DbwP06dNHpqam+vadPfwzRMU/fNudEvaSMnAUOWftrD2z13+BiHzuv+wWDDr9ObwzyLeW8PiO93G7BSbMvvY7e01ketcrwh6TlpbGmPgBbM8/7GvzdIkhtUdq2P4XC2lpaQR+1hcri49vQh7WYcKMw2En31DFyCvGEGW0XOih1YuW8jkH01LHXV8C552BljjZbcMB2j14JwAGg4Eda3/gSst2WhnyuT72MxaX34PBFAtCcPC0mTum9aNHR9N5HXOF1cOhY3aO5jg5mXuUh2alEBXRcgxFLfWeaonj1sZ88dFyfqlehBACeA9oA9wspaxvdXGJYhVtEK27zUav939M7ZPOsnXjEm7rMR698LfnVhWRlrunoadX4XC7+NuuORTaylTtM7peUaOwV83o5H6q7c1a1Y0mweVxszxM7sPM8tMXYDQalzL23RnYDyrr1NGjR7NHjsLhDciaHP05rfS5Pl8+KeF/C0twu5vXQlNU5mbjnireW1zC7147y93P5PL8x0Us+L6c9Qfjee2Loma9voaGRtPR4gQ+4L9AP+BGKaW1pk5CiOu8Pn4IIfqiRPQurql/jecxdsBtHOTfBmxFS4l06pnQPkXV94ustHOqdPF51hpOVOSr2iZ2GMbsntfUeezI5N6qCOLjFWc5U6VNxufK9vwM8myh+c+OlmkCn4afrKwsXn311XM+T/nnKwCwWCykjE5lh20wACadg9sTXlHKrXndcI7lOpu0AoeUkjOFLtbsqOQ/84v55Ytn+MWzZ3j182JWbankxJnQue2HDDv5JVp1n+bkTKELl5ZzWyMMO3bs4Pnnn693/xYl8AkhugC/AFKAMwH59W4XQnT2/t/Z2/1qYI8QohJYASwE/tmY60a3mYlO5xemerbNZMOGDdzSbazKhJtvK+WbUzsb9d4ySnNYfHyTqu2y1v14oN8NCFG3YjLOFEX/+M6qti1atO45s/TElrDtmsDXfKxbt46XXnqJ9PR0HA5H3QdcYHJzc/noo484e/bsOZ+rcsU63KVKbs8rrriCdOdwnF7Pm8HmLYyJWgMu/zr3y2/LOFN4bgKXlJJvt1Xyi+fO8KuXzvLmghLS0qs4W1Q/KWPHQds5XV8jPFJKXvq0kF+9dJb/fd2Rb7ZUaMF4zYTb7WbRokV89913rFy5skV8znv37mXBggWUlJTU+5gWJfBJKY9LKYWU0hKUX2+OlPKE9/8T3r6PSSnbSCmjpJTdpZRPNcD8q0IXfR0mk9+frmubk+zauZ5ozEzuqPaTnJ+9Dru7YQ8ph9vFG/sX4Qm4yVpZYvnVgJtUZuO6GN1abdbVqm6cG0fLTnOg5ET4faWnzvNofhxkZGSwcuVKCgsLOXXqFMuWLbvQQ6qVyspKPvnkkyYTTKXNQcVX3wFKAvh+Q68g3ea3MNwW/zpRnjyfls/hgre/KjmnB9TyjZW89VUJxWX1i/yNi1LPSemawNcs/HDYztb9ymfrcOl4Z3Epr3xerEVoNwPr1q1j69atVFZWsm7dOrZt23ahh1Qrp0+fZt68eQ0+rkUJfBcMU28MET19mja9zkOnpKNs3ryZm7teiUnvj30ptlew4uT2Bp1+blYaOZUFqraH+00l0tCwoIBRyX1U24dKTlBs14quN5ZlNWj3APJspZQ6Ks/jaC59pJR89913qrb09HSKii5O1wS3282cOXMoLm7aaNnyL79GepSH+rhx49hmH4YLxZIQQyGzkt5Uafn2ZtpZ+0ON3i21suOglY+W11yyTa+DXp2MTB0bzR/vSOSDP7fjr/er837uy7JTZdOEkKZmy97Q73TzXit//HcemTkXv+a7pWC321m/fr2qbc2aNbhcF6erQkVFBR9//DFOp5MKV2syqybU+1hN4KsPQqCLmYLJ5I+I690+i02bNhGts3BDp9Gq7guObaDKVb9V7+HSHBYd36hqu6bD0JBce/WhTUQC3WPa+rYlig+aRsMpspez4aw6vWOgYA9wpEzT8jUlmZmZnDyprhLj8XhIS0u7MAOqg6VLl5Kdnd00Jwtw23CdyMW68QdASQDffcAodgZo+cZYljMwIp3AtFAfLS+ltKJhjl7Hc528NlctrOr1MLCHmZ9cHcNT9yTx4V/a8c+HWjP7ujhG9IsgOlJH+2QDbRL9rixuN+w+opV8a0rcbsn2GjSnZ4vcPPm/fJZv1Ey8TcHWrVuxWtXCdWlpKenp6RdoRDXjdrv59NNPKS0txSWNZFrHU+oKTdVWE5rAV1+iJmMyGX3zco92x7FWlZGens70rlcSafCbfCucVpYcr1k7VI1iyl2sMuUmWWK5u9ekRg8z2Ky7JV+L1m0Mq3K24wpIet0uMpFxbQer+mh+fE3LmjVrwrbv3LmzybVo58qWLVvYulUdvd2tW7caeteNJ1Ktza8O3gAYO3YsW2xDcXuna4/bzT2Jz2EUfg+ViipPrZq6YErK3Tz3USE2h3/uEQL+MDuJv9zbiluuiWVQTwsWU+gjQgjByP4Rqrb0g43TMGqE50C2nYqqmrWmbjd8uKyUFz4pqrWfRu04nc4Q7V41a9aswe2+eKJlpJQsWrSI48ePA1DhaodbmlWKqLrQBL76YhmGMCRjNCofrtnooEvrU6xfv54ovZmpnS9TdV9yYjPljtpLIH2RncbJSnVU7sP9bjyn/G5jWvdVbe8pyq63tlFDwe52sipnh6ptUtth6PNtuN0eqjUrmZrA12QcO3aMrCwlJYlHSEpjPTi9JaLdbvdFpeXLzMxk6dKlqraEhARuv/32Rp/TExOp2rau34nz5BkAOnbsSNvugznq7Orbn8hxZvZWB4it32Vl1+G6f+sOp+SFTwopKFU/zO6+IY5hfeo39wzvq+6XnmFv9hQxPyaqffc8Hg8Oh53OCQVMGh0Z0m/HQRuPvZ5HxnFNw9oYduzYQUVFeLen0tJSduzYEXbfhWDz5s2q8ZS722Ew6DGbzbUcpUYT+OqL0EPUtWqzbocsioqKOHLkCFO7jCHG6F/1VrnsfBVkqg3kSOkpvjqm3n91+6EMa9XrnIbZOao17SITfdsuj5v0gqPndM4fG+vP7KUsQFiPMpg5vWY/B9emK34TFZW43S6OlJ7STCpNRLV2zyMk+wc4yejj4sBIqIxUtBfp6enho9Ec2VDyPpR+Ap7mf+gVFhYyZ84cPB6/VsVkMjF79myioqIafV5pNmLq3yOgQVL+5Srf5rhx48hw+Pe7XC6m6F6hcxu1m8Hbi0qwOWrW+Egp+c/8Yo6cVMevTRoTxeTL6j/+vl1NWIz+61RUeTh8QvMrawo8Hsm2/VaklFRVVWKz2bEXbMJ15gt+PkUQaVFnbSgsdfPUWwUsWluOx6PNR/Ul3EIyWFuWlpZ2UWj5jh49GhLAZqUTERGR9criUY0m8DWEqMnodAKjUVE99G6fhUCSnp5OpMHCjK5XqrovO7mVYnt5yGmcHhdvHFBH5SaaY/h578abcqsRQjAmJFpXM+vWFyllSCqWIaZOnMw8RoRVoPOAlB6qqqo4U1rAiaLcCzTSS4ecnBwOH1aqxBQmebBGSCIjI0AnyG2nTLaqydmVC8X/g5OT4cQVUPAnyP8j5P26Wcdps9n4+OOPQ/x9brnlFtolVULu/ed0/tifTlFtVyz4Fo9VEWJ79uxJecJon1kXCaLkEA9cozbj5he7+fLb0DmnmnnflbNpj3r8g3uZufuGuAY9OAx6Qbc26vPsOKRZEpqCwyccFJd7cDgceDwSnXASpTvF8ePH2fj1m9yYkkGPDmpB3yOVGsv//LCwwb6cP1Z27txJWZm/yIHBYGDMmDHo9X7/1JKSkgvuy1dQUMCcOXNUygVhiEcakxv0mwVN4GsYEVeBiPQJfNERVbRNPMuBAwewWq1M6TSSBLO/Dp/D7WLBsQ0hp/kya21IguWH+p+bKTeQMclqs256wZFzSgj9Y2JvcTbHK/J82zohYG8hAAJBRID23+ly8q9P/0d6erqm6TsHAn33SuI96PV69HoDBoOe8mjlc40wWXEVvo8j+0Y4NgIKnwF7UGWbiqXgaZ7IaY/Hw5dffkleXp6qfeLEiQzo3x/O/goqzy2FTOR1V6KL888fnrIKKlcp/kVCCAaNuILjTr+DttPppKdtGVMuV2vmlm2oIOtUqLZt4+4q5n2nFgbbJxv47U8T0esbXISI7sEC3wFN4GsKtuxTtHvVqX7iDKfQCf/CJ33LNyTZ5nDFgNDvePcRO79/PU/TttZBOO3eqFGjiI+PZ+TIkar2C6nls1qtfPzxx9hs6t/WgFHTVYJpfdEEvoagM0PkBPR6vS8Rc+/22bjdbnbt2oVZb2Jmt7GqQ1bl7CDfWuLbPlp2ioVBptwJ7VMY0ap3kw2zV1wHleBpdTvYXZRVyxEa1QRr9/qZ21N8/IxvOzLI3aNIb2X+/Pm89957FBSoU+to1E1ubi4HDhwAqn33pC/npV6vg0gXk6/4mkdu/IBrh67BU7mRwOhUNRIczZN7cvXq1Rw8qNaUDxo0iPHjx4PrBNh3n/M1dBYzMTMmqtrKP1vhW0ykpKSQ4fK7fHjcHuwHF3LbtbG0ivNP/lLCfxeoy64dPuHg3/PUgS/RkTqeuDOp0bVwu7a2ElB1ktMFLk4XaAvLc0FKydb9NhwOh+97jzccD+lXVJjP2f1vc3m3/UQGuXAVl3v45wcF5Bdr30VN7N69W5XuSa/XM3as8uxOTU1VCVPFxcXs3Nm4ggrngsfj4YsvviA/X60cmjx5MsW25EadUxP4Gkr0ZITAF7zRu4MiSFWrfa/tMIxkS5yvu8vj5svsdYDXlLt/MW7p931JNMdwT+/JTTpEndCF5OTTkjDXzemqQrbnH1a1xWSqV1atiUYXUF2l0quByszM5NVXX73oIrsudgJX2RXREow6DHrAU4JRV4rFaMedaEWnU34zDoezdj8l+4EmH+OuXbtCtAHt27dn5syZiknFurnJrhV962RVihbHwSwce5R7Mjo6GrpeiwwoCS4LDxBhO8G90+JV5zmW62TZRmV1kl/s4oWPC1XlufR6+MOsRNomqU2DDcFslPTvppY2dhzQonXPhaxTTvKLXT7tng43sYZTtG3blpiYmJD+edlr6Czm0jbeSuBCqNImeeXzIlxaIE0I4VI9DRs2jLg45bkdFxcXouW7EPP6119/TUaGOq1aSkoKV111FfsyG+evrAl8DSXyasDgM+u2ii0mKaaYU6dOcebMGYw6A7d2H6c65PvTu8itKuLLrHUqcyHAQ+cYlVsTY5LVfnzb8g+pBE2NUJadUKfZ6GBKoCRDnWtvaIc+REVFeSOjBJWREumdaN1uN9988w2vv/46J06Er9Ch4Sc/P589e/xm2ZI4DxazHjxFIO0IJCDIdKlXsw6HHcwp0OppiLtHfdImFvhycnJYsGCBqi06OprZs2f7HbybUOAzdmxDxNjhqrayz/wpWgaNTOWEq71v2+V04j66lOF9LVw+SJ0q5cvVZRzLdfLcx4WUVqp/+w9Mj6dft/pH99XEiH7quUsrs3ZubN1nxel0+rR7sYZTRJgFKSkpPProo4wePTrkGJetgKji92kfeVQVTHTkpJPPvi4L6f9jZ9++fSqtmRCCcePUz+xx48aFaPl++OGH8zbGnTt3sm7dOlVbx44dmTFjBmeLPBQGRNgbG7Bm0wS+hqKPg4jL0OmE74bo21GJgq1W+6a2G6KKlHVLD6/v/4qFQf58E9oPYURy05lyAxmU2I2ogEodpY4qDpWcrOWIHzeVThvfn1b/oFufFogAbUqPHj3omtCeSIMZk8msRGWa9diDnpt5eXn897//ZdGiRSEO/hp+1q5dq9quam1AL6pQmWwFZHsFvoKyBNbtH8W/l/6M0tjPIf5+iFS7UOBQJ8s+F8rKyvjkk09UGff1ej2zZ88mPj5eaZASrJvCn6CRBAdvVH2zEXdhCQB9+vThmPAv5qSEin3zAbj7xjiiAiI4HS544j95nDijNu1NHxdN6vDGRxQHMjxI4Ms47qBcywvXKKSUbN5nDSjTJ7kq6mseS/6YoSf/ToSsYNq0afziF7+gdevWqmOFkERUfo3BkYHdbvcJjEvXV7BDy5HoQ0oZku8zJSWFpKQkVVt8fDwjRqjLpn7//ffnRct34sQJFi5cqGqLiYlh1qxZGI1G9h5VL6r6dtHSsjQv0TcAYDIpWr6+nfwCn9vtxqDT89Me41WHHCw5GWLK/XkTm3IDMej0DA9K8aJF69bM6tM7sbn9qSpidBaq9vrz7EWarUwbm0GnqEX09FYz0el0REZGknLtZURGhubI2rp1K2+//XaT1Vm9lCgqKlL5xdhNEle0Ewgud60jy92NuVvu452vf8bGA6MoLIvxm2RM/dXd7YegCTTZ1RntA6P4AKZNm0bnzp39Da6T4GraiiuWy1MwdG7n25ZOF+ULvgUUgTOi/wxVf0Phbqg8Q3yMnjuuj1PtcwU9n0YPsHDbtbFNNtY2iQY6t/WrGDwSfsjQtHyN4WSei5NnrHg8HnR4iNFVMDPuM6L0dmIrD8CmpwHo2rUrjzzyCBMnTlRpoYSAzub1SGcRNpvfxPvvL4vJL9H8+QAOHTrEmTNnVG2pqalh+4bz5WtuLV95eTmffvqpSrCsXmRWm5z3ZamfJ4N6agJf8xJ1HaDDYFAqb7SOKyQhuoTKykqfzf3KNgPoEt26xlM81O9Goo0RNe5vCkYHJWHekn9IiyYNg8vjZkWwObfYjE4q2pJoSyW/mLKQJDGHzlFz6CnUgR3uJDO/+93vGD5cbYoDOHPmDN9++23zDb4WrC47bx9awVzbDrZcZML+unXrVPeirqveq93z45FG0CdjI5p2KddBgLZ1+/btlJaWgqE96AIEGFmhCGHnyIYNG0LKvF155ZUhq/6mNOdWI3Q6Ym5VLwYrvlyF9GoaB46eyGl3G98+t8tN1X7F7Dx+eCQDuofPvN+tvZFf3pLgCzhrKoKTMGtm3caxZU8VdrsDo3ASqbMy0LKDOLNDyRQAcGwVOBVtnV6vZ8KECfzmN7+he/fuvnMYhINuEWtxOR04ncr9UmmTvPKZ5s8npeT7779XtQ0aNChEW1pNOC1fc/vyLV26lPJydST9zTffTKdOnQAlR+PeIP+9gT00ga95MbSCiMsRAgwGRcvXz2vWrQ7e0AkdPwvS8lUzvl3zmXIDGZbUE2NAgEGetYRjFWeb/botjW35GeTZ/PnM9AjcexRfS4PeycwrlpMQY/OX1dOng/Q/1I6UnSYyMpKZM2dyzz33kJiYqDr/hg0bOHXq/Nbd9UgPL+6dx4qT2zjhLuSlvfM5XVl4XsdQE+Ey2Ed0LSDQlCsAl/RrTY0d430rXFA0cGvXrlXUGiFavnPz4ysqKgoR0nv16sXkyWE08k1szq0mevrVCItfcHOdKaAqTfnM2rZty5nIYar+FXu/BBR/pF9MT1ACXwJIiNHx+B1JYUulnSsj+qkXrrsO2370wkVj+H7rWcyyCrNQNDjDI9dhDkwE7LJCjtoNolWrVtx7773cfPPNREQo30OUvoD25h+w2Wy+RdWRk04+/5H580mPh8rVmylf+C3S7uDo0aPk5OSo+owfH/4ZXU2wlq+oqKjZtHyHDx9m7969qraxY8cydOhQ3/aJsy5VKb1Ii6B7e2O9r6EJfI0l+noAjEFm3UOHDvlKtYxK7kvP2PaqwxLNMdzTp/lMuYFEGMykJPVQtWnRuqEsPaHW0nSqisbgBIFk6qjVdGhVgMHgN1v1MheDp4JqASWrPNdXd7dnz5786le/UgknUkoWLlx4XqO8vsxax86ACisuj5vvcs+f03FtrF+/XvVZ9O9RTIZDLSBckdSGwOnpaMXpkMl527ZtisnV3HQCn5SSpUuXqvz2LBYLt9xyS/i8V14N3+6qZB44dk2jrxuMPjaaqOvVjuSB9XVjB9+m2hdRvBtZpQj07VoZuH2y//4zmwSP35lEYlzD83bVh54djcRF+78rq12yP0sr9dUQcvdsIP9sOXpvvj0dHkbFbEWnC3pEZ68IOVYIwYgRI3jwwQd992hr035i9SdV+duW/Mj8+Upen0P+o89T+NS/OX3L71i3fKVqf79+/WjXrl0NRyvEx8eHWG6aQ8vndDpZvHixqq19+/Zce+21qrZg/73+3cwNyqHZ4gQ+IUSiEOIrIUSlEOK4EOJntfR9VAhxRghRKoR4Xwhx7mFp1URNAXTodXp0Oh1t4guIjyrB4/Gwa9eu6utzV+9r0QvlY9YJcV5MuYGMDorW3XyRmfYuNEdKT3EwIJhFSg86b6LlcYM206djFmazKTBTBskGK3H6KvAoJki720lOpT8Hn8ViYdq0aarrnD59mk2bmkcbFMyO/MPMzUoLaV+XuxfPBY7UrqioYOtWv/ncoHPRI+UADukXRpKMkond1T/rw6U5jBgxIryWzzxAfRFH4wW+AwcOcOiQelE0ZcoUJSVKMM6T4MohxxHNs7mjOONqmkCIaoKDN2xb9+DIVO7VvqMnk+9p5dsnPW7yd3zq277hymh+PyuRW66J4eVft6Z7h/oXWG8oOp0INetqSZjrh9sJm59h86LPCdRw9zHvJinOAEMeUPc/9o1yTBiSk5OZMGECoCi+u0RsAFepavHyY/Hnc+UVUfaRX4CyHT5Gt0++Q+/yz391afeqCaflq37GNxVpaWmqvICg+AsHLzKDzbmDGmDOhRYo8AH/ARxAG+B24L9CiAHBnYQQk4DHgauBrkB34K9NNgpDMkSM8ebk85p1O2UCqEqxDEzoyjPD7+Dmblfy9LA7zospN5CRyb39PiDA8YqznKkqquWIHxfLghItt3ZEYq6UDOp6kMv67kSnEz6zPSh/hYCe5hKQlYCy0sssP606T9++fRk8eLCqbfXq1SE/6qYmt6qIV/YtDLsv31bKgZILmy5mw4YNqgfQ+JS9HHCqhYVhrYfTM7YzgT57JyvysUtniIP1tm3bqHB2Ul+kkRo+u93OkiVLVG2dO3cO65sJgHUTdo+OF8+MxCYbn8+uJkx9u2FOUfvhls9VtBSRkZGUJl6uHs4BdfqYUQMi+MnVsbRObPqxBROSnuWQTfMXrouSTPjqBtj9P7aUXaba1S8uA8Ot38Po/wNLgIuIowxO17xwHDdunM8nrdqfz26z+r6LH4s/X/mXq5BO/zxjt9tpVVDB5ZsyER5Jr169fH5xdZGQkMCwYWoXiqaM2M3LywvJWDBmzJiQ8bnckoPZ6oCNgQ0I2IAWJvAJIaKAm4E/SykrpJQbgCXA7DDd7wTek1Lul1IWA38D7qrrGidPnuTDDz8EFDVramoqn36qrJyrqqpITU3liy++AKDUNYHU2wtZukb54lvHZDBnzhzWr1/P6dOnOXPmDKmpqZzceojZPa8hodJAamqqzz8oKyuL1NRU35edkZFBamqqTxO0b98+UlNT2b59O6AkgE1NTfWtLrZv305qairZ2dkAbNq0idTUVF/gyNq1a7np2utpV6FMxnk7s9jw2Ics261cb9WqVaSmpvqilpYuXUpqaqqvYsTChQtJTU1VnOOBL774gtTUVKqqFM3Wp59+SmpqKk6nsuL88MMPVQ/kd955h2uu8Zu53nzzTa677jrf9vz585k6dapv+6WXXuLmm2/2bT/33HPcdpvfdPW3v/2NWbNm+bafeuop7r77bt/2E088wf33++uZPvbYYzz88MO+7d/85jf85je/8W3f88B9/PeZl33bu15Zys6Xl9A5OYcpw9fw0NM2nn3LpWj39MnM+vNg/v5f5bvuZS5mx7PfcPhzJcT/SOkpbr75Zl566SXf+T755BPVSnDOnDn8+te/9k2+11xzDe+8845vf2pqav3vvdJSUlNTfeH7BQUFjB03jvv/8ySVLhu2ogo2PPYhZ7crZl1rXikbHvuQtxZ+DDTdvbdv3z4g/L2XmppKVpaSmPzbb79l7NixrFq1ynf9L7/4iO6t00mvasOZLcfY8IfF2MtgRJsr+XrpCtKf+BxnpaIpyknbx7jUVPr3709cXBz79u1jzpw52O121m4+y4cLrKTe7vVRdB3nnbfeqPXee+2110LuvQkTJviicjdv3szixYuZNm0aOp0u/L13/195v2AQxx2xHPhgK7teDy2jWF9qmndifjoFq8fFbdkbWFZ6isolayg+lUtqaipbS7sBUFgpuf6tKjZtTcdenu+bd6o/65MnTzb7vPO7B6/DWqosePNPbGb+f6azYauSMPrbb79V5kFvEMyFnnfCfffnc955+KGHeOznN8D8a6FgL7M/srJ4jd9ndNu3f2P9aQfEdgKdgVlz3Pzza39A0213PcBzzz3n2w6cd/R6PStWrPB9d9GGfPYsu5XD297z9X/vhZu5/9E3fNvnOu+kpqaydOlSQAlSu/yKcdzx6Bd8vr4Nc5dlNMu9V+u8M3Yc+z9SUhVtqMjj1qz15NiVkovHjxxl8dvvM2CAoiMKvvfWrVsX9t4bNWoUOp3ON+/k5+eze/fuc773XnzxRSZPnuwTHjdv3szy5ct9ptzAey8zx0H6ty+wfflvAYiL1vHmK3/mnlvU7h210fxLv6alN+CWUgaWQ9gNjAvTdwCwOKhfGyFEkpRS5b0uhLgfuB8Ubd2hQ4dIS0vD5XJRUlLCwYMHSUtLw2azUVJSwv79+0lLS8NeFYvH48HtciGEoHVcAXpdLE6nkwULFtChQwdKSkrYs2cPFouFvLw8SkpK2L17NwaDgdOnT1NSUsIPP/yAlJITJ05QUlLCzp07cTgcZGdn+4o3V1ZWcvToUUpKStixYwclJSUcOnSIkpISqqqqSEtLY9++fZSUlLB161Zyc3PZtWsXJSUlxJbpyDbacbmcSI+H745sp6c9gT179lBSUsKmTZtITExk7969lJSUsHHjRt9DtaSkhPXr1xMdHc3+/fspKSlh3bp1WCwWDh48SElJCWvXrsVgMPjGU50yIyMjg+LiYt/24cOHKSoq8m07HA4KCwt925mZmeTn5/u2s7KyyMvL821nZ2dz9uxZ3/axY8dU/U+cOEFpaalv++TJk9jtdt92tcNu9fbe00dxGVxKIl9AOD1EOSqYcdkKhNeXRgJWm2R/ycOcLZhHbER/7PYMOuu9JlzpxOmoZNsxJZlnZmam7/ylpaV069YNu105v8fj4fTp03z22Wd06NCB4uJiMjIyfP2rv9P63HsVFRWUlJSwb98+EhMTKSkpIbv4NK3Lk2njiMfptCM9HpI9kTilxOF0ID0edp45zLdrviMv92yT3Hvbt2+noKCgxntvy5YtnDhxgt27d3PmzBkqKyvR6XQ4nQ4SY0rIdyaS64wC8gGBx2WmZP8p9u3bh1HqcTjsSKPA5XJRWq7cq23btsXlciGlVL7ftVvoEhOFx1OB3a6sgI9nbq313jty5Ijq3tu/fz95eXm+78rlchEZGUlGRgYZGRlh770zFUV8XTpWuUukxONp2Pq5PvNOx/HtiLUYkFLicrmwFZdy9I0PKCkpIa/SQLElDkmxkqJautk0928UJ6We93mnrLSEbpFlFNvtOLyJg5d+l4Hblsvu3bspKSlh8+bNZGZmXtB5p6KiIuS7P5/zjpAuKjNWYpJnsKcoLgBn7K1BgJQCqzRj0LmoqvS/n2JnJBjB7k3v5Co9SVbmUd/+4HmnqqqKNm3a+O5lgyxD78nHZrMhhMDj8ZB+sIL35m6lR1vrOc07paWllJSUsHfvXmJiYigsLCL7tBXP8SqSMfHe4lwOH69i/eZ9TXrv1TbvlJ08jR2BwxiJy+VSklFL6XtFWp0Uf7KUNKs15N6rfr/B996+fftITk5WzTtfffUVdru9Qc+84Htv586dlJeXq+adqKgon9tL4L23JSMOl9uNx+3GbreT2KqSsws3UHW0/lYb0ZLU7kKIq4B5Usq2AW33AbdLKVOD+mYCD0spV3m3jSim4G5SymM1XaNPnz4yuJxJreTMANsWnE4XVquVNXsuY0vGcCIiIvi///s/lbN/c5GWlhZi6gokz1rC/Rte9W0L4P2xj6nq7V4I6hp3c2J3O7l3/cuUe9McSCnplFnFYwM+JzFaWd2ZzWbMZhO0eQtibvSO+TtSuz9HcdVR7j5WHXxjwGBM5vPx/4dRp/6+pZS88847Pm0IQFRUFL/97W/D5u5rLMtPbuOdQ2qH7ivbDOA3A2dw66pncBv95tE/DL6Fy9v0Dz5Fs2Kz2Xj++ed9TuRDuh1g+hUbWW3ty7sFg5ROujgGJ/XjmeF3AvDK6k9YS6bvHKOS+/B/KT/F5XLx4osvqnLkPTBtF12SdvsvmPwsxN1Zr7F5PB7+97//qdKwxMXF8dvf/tZfTSOI3LJ9/Hbzq1hlQIScvjWLr30mXUo5IuxBtVDbvFP8xhxK35rn2zb27Ez7r15DCMHhT+6kba7fhH/KPIR+v268prEhBP9+v91WyVtflfi2e3Y08uzDNaemuhBcyDkHgK3PwQ+v+zbdHg9/yvonB2zDsEsTEsEtV1u4Z0Y3/zFuB1X/7UmkIcD37qZF0G5UjZexWq288sorvhQfLmki03EzelOir3RfdITghUdakxzfdM+ooycdPPGmUsXCbrd7KxIppfymjY1hxvgYTAFzUVMjpSR35qM4Mo4Bym97fysLrfPKiLAqGuHIyAgMegOtnnuU6BvUuqLa7o+ioiL+9a9/qaqZ3HLLLaoo2oZgtVr517/+RWVlpa+tV69e3H333UrJxiCefief/QE5+O4d46TPk78BoNv+xfWad1qUSReoAIKzhsYC5fXoW/1/uL6NJ1oRBAwGA0II+nZUHlBWqzWk2PqFonVEPN1jfDIyEqXU2o+Zb0//4BP2AHQuD3d3W+4T9oQQysM+8XGfsKegh+S/k2Cw08pQfbwLl7uS42FS3gghmDFjhsr5trKykhUrQqPtGsvBkhO8n7FK1dYxqhUP95+KQaenn76tat/aM3s432zdutUn7EWaq7g6ZRMmk5H0Km8+OWECYVElC2+vUycRPlyag5QSg8EQMinvO+JR19htgB/f9u3bQ3Lu3XTTTTUKe06Pixf3LlAJewZhRC+aJwo25ieTlCdm9fWPnsC+XTFpJY++S9W3tX0/hWfVqSfOF8OCAjeO5jgpKtPqSvuoPAN73lI15VbFsdc2Aps0I1GqN10/rqP6OL2J4li1D1m4aN1AIiIiuOmmm3zbBuGgg/5bXC6/wFBhbXp/vjXpVWHb3W5YsKac3756lj1Hmy+gx759n0/YA0UruntIR9JS++A06tHrdBj0ioBb+Oc3sG6p/1yYmJgY1pcvUABsCKtWrVIJe3q9nptuuimssGd3eDh0XO2/12XH9yH96qKlCXyHAYMQIrCExBAgXD2l/d59gf3OBptzz5noKYDwBm8YaJeYR1yUIjQEBm9caEa31qJ1q7G7nSzIXh/QIhnuPkSv1v6HvslkQsTeAgm/Cj1BxGiInkpPc7G/zVPOkeLM0L4oubKqo+eqSU9P5+jRo2H7N4Riezkv7pmnquISYTDzxJDbiDAoq+v+BnVqoPSCIypht7lxOBysX+//vK8espHYKA92aWBflTfS1Js8OVDga6WLxqz3C1UljkryvfkSR44cSWysfz2XW5ToLSnlbainwFdRUeHzdaumf//+9OvXr4Yj4KMjq8mqKFG13d25Fd1i2oY/4BwxtG1F5Hh1Mfcyb/BGQq9U7IYEX7sRF8c3fNQs46iLxFg9PTqqc4JdTFU3pJTgvIARqttfArc/ytJlSuSlM7/CGbBw6NrOSNuk0LxqhXFBNXSzV0Ad1rkBAwbQv79fkx9tyKeVbltIvd3Pv2ma/HwOp2TD7vACXzVni9z87b1CXvuiiNKKpl8MlH26zPe/x+Mhu000ldFmShIiWX9VL8xRfquKdLrI//WzODKyw50qLKmpqapUOQUFBWzYsKHBAUonTpxg27Ztqrbx48eHlHir5tBxB4ExIsmxgohVXzfomtDCBD4pZSWwEHhGCBElhLgCuAn4JEz3j4F7hBD9hRAJwJ+AD5t8UIY2YFEmY1+0rlfLd/jw4ZDSTBeKy1urTXh7i7Ipd9T+47xU+TpnB0V2v6JX5yrnjrZpqj6G6Cug9QsQZrUFQNJT9LRUBjRIjuQvr/GagdFz1Xz11Vc+x/PG4PK4eXHPPNV7Afj1gGl0iPKn7Gini1XVdnZ53Gw823Q1Z+ti8+bNvpVsl9YnGdQ1A6PJxF5rK5zoQEQDetpExNMh0j9uvdDRI0adJ+twqaK9Ctby5ZW0wul0UlVVpWj6HAfrVWJtxYoVqlxlJpOJG2+8scb+W/IOsuzEVpD+721M1GmmdJ5A3/j6Rf01hpjb1ClarGu24S6rACFwdFTn/5OZyxutdThXgqN1t18k6Vlc+cXkznyUdg+/TP4fXlZFcJ4Xio9AxlxV007dBHKc/oWFTqdjwujwD/ySmKGgD4jILM+Bgn11Xnbq1Kk+sypAkm43CeZcAlPALFlXweET517+cdt+K1U2/3kjTB5+fWsCCTGhYsaGXVZ+/a+zfLe9Ek/xMTg8H6ryaj1/hdVDZo6D7Qes5OSFzpvOk2eoWuMXoux2O4f6+ivSiJTetH3hd6pjPJVWzj7wN1y5+fV6j0lJSSEm3JUrV/Lll1+q5pHacLvdfPXVV6q2Vq1aMW5cuFAEhX1B6Vj6uE4jrQ3PddmiBD4vDwERQB7wOfCglHK/EKKzEKJCCNEZwOu79wKwBjjuff2lWUbkNevqvDn5+nqrbkgpm732Xn3pFJ1Mp6hk37ZbethW0ABfxUsEm9vBgmMBPk7SxqTIdOL1/h+rW9cJfccPFTNjTRjb0yv5alVTZtkpcBwJ212v1zNjhroGalFRUUgh74bw0ZHVIWlWZnS9kjFB2lwhBOPaqVPErM09P2bd06dPs3r1agD0OhfXDU/DaDShE4L0yjaAAXTKqnt4q94h5ozecWrz1pEyf8WSwLx85dYorA4zbrebysoKnI4ycNbuzJyZmRny+7z66quJj48P2/+stZg39i9GScXjjcw3VPGr1vsQESPoE9d8Ap9l9CCMQfV1rd8pjt2tRt0ZmMGGTjKDrKMX5rcdXHVjz1EbdseFzf0IUPzCezgyjiGAyhXrKHlzbp3HNClbn1UtQFzRnfkqI4EKl18rbDabuWxg+BytHp0FOgXljavDrAuKL+qkSZN820JAgn0FESa1wLRk3bl7On2/Q61A6NexkitTInnl0TZMHhOao7LSJvnf/Hz+8sJGTq58EffcCeSdzmPvURvfba9kzqpSXvmsiD/+O4+7/nqau5/J5fH/5PPCJ0X89tU8Nu1RX6/8c7/W0+l0khdjIj85xrd//PjxRE8ZS8Lv1L697vwizv7ir7hL6/cZjB8/PiQ/3q5du/j3v//N6dOnazjKz6ZNm0Lq+d500021+vur8u9JSdfd62vsWxstTuCTUhZJKadJKaOklJ2llJ95209IKaOllCcC+r4spWwjpYyVUt4tpWye9O/eqhvCm5OvXWIesZGKZi89Pf2iyUcV7Ki/6ey5laBqiaw8uZ1Sh1czJ52YPYVcH+XXdtmcZoxdPgd9Qg1n8NOz3YME/oROOqKxnX2qRlNLly5dGDNmjKpt7dq15ObmNvh9rD+zj6VBOQQHJ3arsZzfuLZqge9gyQnOWovD9m0qHA4Hc+fO9aUcuLxfOokxpZhMJqSEnVVtvKZcRVoZ1qpnyDl6xXVQbVdr+ED5rc2aNYuYmBhAkFeiaAelVHxot6x/v0YNqsvlYtGiRaq2tm3bcsUVV4Tv73Hzr70LqHTZQCraED0eHmu7naioIaCz0DdIOG1KhBBEXnelqq3y640AmDtficfs1+BahIOTmz9vtrHURpe2BloFVPRwukKTxZ5vXKfOUvmNuppO6bsLsO04T1ruMzuUOrgB7NBfS6GjE9I7f+h0Orq2t9ChdS1lsrqrtbxk1WxRCGT06NF07tzZt23Q2Wktv1c9l7YdsHGmsPFaz/xiV8j3PKCzUnEqKkLHPTfF848Hk+ncNkiocVZyqLIvj2X9m9t3v8fDLxfzzHuF/G9hCYvWVrBpr5WsU04qbeo5VUpYvK7Ct+2pqKJioZL6xePxYLPZyOjTxmehadu2LQMHDgQg9q5pxM66QT2MrBzyH3m2Xib/pKQkbrnllhABrbCwkDfffJONGzfW+MwvKSkJKduYkpJCz56hc181lVYPWaf885h0uuiW6XcXE8F1FGuhxQl8FyWGtiFm3ergjfz8/BCH8No4e/Ysy5cvJy0t7ZzMfeG4LMisu7soi0rnxWFyOR9Uuews9Gn33OApYWJkBrG66rQpOjJKHyM6YUjNJwkgyhxPu0i/mdaDIKtkL1R9W+Mx1157rVdA8R7j8fDVV181yAR3vOIs/z6wWNXWyhLL7wbNxKAL/+NvF5lInyCBZF3u3rB9m4qVK1eSn6+YSpJiirisbzoWSwQ6nSDHGU2eOwmE8nsx6QwMSugaco5grVlmmb+MHUDHjh155JFH6N27N3mlanNYUe4G/vvf//pybAWybt26kPbp06eHL58GfHr0O7+w6RX47kg6QG9LCUQoSXNbWeLCHttURE1WC3y2Lbtxl5SDTo/soi7BZMxZjdVafz/NzMxMFi9ezI4dO87JHCyEuOjMumWfLoPgJLlSUvDEq3jKK8Mf1FRICVv+rmpyJQ1m+QEPJa4uvjaTycSYQXVE7XeZCIFZAEqOKqbiOtDpdCGBYwbHUSINJaphrtxUEebo+pG2U61t69HBSHKs+vnVu7OJ53/ZmlnXxSqRulKCW/kteaQOtzTUWEUkHNmnnVRalXu1YvEaPBXKGGw2GzazgeNdlPlAr9dz6623+nzvhBAk/OHnRF6rTlxuSz9AwnvLkfW4/wcPHswvf/lL2rRpo2p3u90sW7aMTz75xJc3MpClS5ficPjN5xaLhSlTpoT0C+RAtl2lQ2hryyfW6f+uIq+5LMxR4dEEvqYiWlkxKJUZDPTr6HfIr0/whtPp5Ouvv+b1119nw4YNfP3113zwwQdNKvR1iW5N+0j/Q9HlcbMt/8dj1l1xcqs3WEGCu5QIYee6SP8qf+XO8QwYcX/NJwhDz/gBVFfgADhqT4CCv/iEgmCCo+dAydsVWG6sNiqdNp7b/QX2gInRoNPzx8G3EmeqvbRXiFn3zJ5m0z4fPHiQLVuqNZCSycPTsJj1GI3KAyvd2hN0/rRAAxO6YtaHmtBbWWJJNPsFZIfHxbGgaOjo6GjuvPNO2nedqGpvE59Pbm4ub7zxBjt37vS1FxYW8v336gi3kSNHqrQggezIP8yi4wHVDaSTkZFnmBrvDdLxCnzhouuaEmPPzhi7+4V26XJT9Z3yGcel/BSh81+/pyGTPbvrdiepqKhg7ty5vPvuu2zZsoUFCxawZMmSc7ovggW+9EM2dQT1ecRdVkH5/NVh97ly8yn821th9zUZx7+FM2rn/B36SdidgjKXYqIXQmA0Ghk9wBLuDH7McdA+SANdD7MuQJs2bRg7dqxvWwiwWLeoqt58v6PKJ0A1BI9HkhYUnZs6PLzwatALbhobw6uPtmZY5/JQP1uPo0YLiUGvvKqREg4eU/KNls1RgjXsDjsut5sjvVrj0SvizZQpU2jbVh1QJXQ6kp/9DZbhaiVIxM4Mip9/v173f5s2bXj44YcZOXJkyL6DBw/y+uuvc+zYMVXbgQNqq9rkyZNVCoBw7Dnq15xKt4fux3ep9sf89DrqiybwNRXRfhWx0WikfdJZYiMVn4A9e/bUKrhlZmby2muvkZaWplpdZ2dn89lnnzVZCRchRKhZN+/HYdatdNr8D21PBUgHkyIPEaNTBLPNh4ZhSLidxMTEWs4SSq+4Dr4IU4AjtnhwHoOSd2o8Jjh6DuDrr7/2ZXevjTcPLiE3qDTe/X2mhJg+w3FlmwG+us4AOZUFZJY33JxcF2VlZcyfP9+3PaBzBl3b5GKx+J3Hd7quInD6CYzODaZ3LWbdanQ6Hf2G3ExUVCQ6r+DTOk4JyHc4HMybN4958+Zht9tZvHix6jcVFRWlyoYfSIGtjNf2BzpYu0nSV/BIm51ea5ERLDWUXmtihBAhWr7KlYrGWtfxKnQBGsZIYSVne/gSe6D4F6enp/Pyyy+ze/du1b6tW7f6/C4bQ//uZiLMfuGztMJD5qmmtVbUl4p53yCtNWsYK1eso2LZ2ua5uMcNW/+hanK0G8uqPaWUujoiUaQXs9lM2yQDXdvVYs6tJsSsW//0TuPHj6dVK39QVIIxG+ks9Qk3Nofku+0N13geyHaQV+z/PRn0cGVK7drK5AQDjw+aw+86PkuCwT+fxepL6NXWypVDIrh5fAwP3RzPX+9vxVuPt2XOM+25eqR6UXsw24F1XTquE7m43W7sdgceneBIL8Xy0qdPHy67LLwGTJhNJL/+hGoRBVA2ZxmFf/lPvQJ7jEYjM2bM4Kc//akqOAaUxPtvv/0233//PTabLaRsY6dOncIKi8HsDzCVS5uN3qX+bBDGXl0wD6t/TtUGCXxCCE1ArAlDOzArE391Tr4+HZQvxmazsX9/qL9IVVUV8+fP591336WwMHy2mEOHDrFgwYImi7oLjtbdVXiUKtdFbNb12KF8MVR+X2cagtpYemILFU4beKzgqSRCOJgcoQi7WWc6s3bvZbVGSdVEz9j2IAwgFGfro3av71/Rq+AKzctXTXD0XLg6rsEcKjnJxiC/y2s6DOXajvUTOGJNUSF+ck0dvOHxeJg/f77KnDGsxwEiIiJ8GrAq89UcqFBPpsNqFfiCAjdKT4XvaOqNXm8iKioKg8FAXFQ5ZqN/sty5cyf/+te/OHJEbQa7/vrriYgIdZZ3edy8vHe+KoWNXjr5XdsdxOi9AoxlGOjCO9o3B5GT1Boe27a9uItKQW9E310ttCaUbCYvLzTysbCwkPfee4/58+djtVoxCxvXRq7lV/Hv85PopZiFnTVr1rBhQ+MSOBsNgiG91A+/HQfP/xwjnS5Vmg6A8hsux9Snq6qt6O9v4TpV82+10RyeD8VKUSiPx4PVZue/6fHY7XZKXYo22afdGxhRPw1x10nqzAEFe6Gsfi5DRqOR6dOn+7Z1wkO8br/KxLhyUyXuBublW5OuFhJHDYggOqIOUUFKxPGvGRO7iTd7/ZzXe97Px31u4b3es/jn2FX8+rZEbrs2lvEjoujfzUxinB6dTtCvm9oKsD/bTtknS5FS+lwYjndJxBahzAMzZ86s9XPVx8XQ5q2/oE9WL/QrFn7L2QeeqbfJf/DgwfzqV7+iY0f1XCWlZPXq1bz88suUlJT42oUQTJ8+XZXiJRzF5W5O5rmqTwZWGz3Kjvn2x952XYMsC/UW4IQQeqBSCNGwar0/JrwJequDN/p18j9YAs26Ukr27NnDyy+/XC9z7w8//MDy5cubxPzWLaYtbSP8AQlOj5sdBXX7gVwQnMfh5CQ4+yDkzoKzD6jSYdSXcqeVRcc24rBX4XErK9rJkQeJ1Dkpq4pm8dZrGTBwUEjalPrQPbYdOiG85klBrjOKCrcRZCUU/rPG44Kj5wAOHDgQdmFQzWeZajNkt5i23N/n+gaNNzh4Y/2ZvSqfuHNl06ZNKoEqwmSle4cilf/QHt3PVddsH5mkShsTTK/YIA1fWQ2JhXVmMPZACEFERAQWi4V2iSWqLtWVB6rp3r07KSkpIaeSUvJZ5vchUdA/beugf0SAhjWi/v4zTYGpRydMvf2+X3g8VK1WAhIs/WagD7B59TFlkr5ju2/b7Xazdu1aXn31VTIzlcVoH+NR7o/7jOHmvUSLKnoajzMpUtF4LV++nB07djRqnMHRujsOnr+8j9VUrliPO9//XYkIMxVXD6fV879FmP2Cg6eiivwnXkU2kSUFAJcNtr+A2+PBarVRUVnJzorunHEm4JF6Sl2KYGAymRBCMHpAPRcNka2hTZBW6NjKeg+re/fujBjhL8iQbMzA6ajyKRQKSt1s2V//76rS6mHLXnX/CSPqUUGo8ABUKAs3g3DTzpRLhN57ntzNNR42oJta/Mg6bqV4RwY2ux2P9/mY0Ucx3/7kJz8hOrrualKGdsm0+d+f0cWq+9q27iF31uM1LgYqy8pwVZX4zNJJSUk88MADXHXVVeqOUmLOOk2HnGJ0bqXvlVdeSbt27aiLwHQs0u6gU1kOEW5l8aSLiiDq+rE1HRqWegt8Uko3SuLj8ImCNCDK//A1Go10SDpLTITygKmuCVhSUsJHH33E559/rsqyXc3o0aN59NFHSUhQR4lu2rQpxO+oMQghuKwlROtaN8PJKeAMKJtcsRRy71G0fvWkpKSE51a+R35pIXpRjkASpXMwKTIDt0fHws2TiYhqx/XXN0xwqsaiN9EpqjWg8/mkZdrjlZ3l88C2s8ZjR48eTadO6qCElStXhjXh7ys+xp4idYLQn/eehEnfsLJII5P7+BIyg5LMeG/QeRtLbm5uSBLjywZXYTYFmKpM/UgPSn9QmzkXFC2qLmAVe6qykIqaEkeblXtbCDCZjNw6fRDJyclhu+r1eqZNmxayQi62V/Ds7rksPLZR1T4kqTszYoIeRhFqx+/zQeS1ai1fdbQuHcdhCCiXGCMqOb1buZ9ycnL497//zapVq3C5XESLSmZEr2BG9CqidVWYLWYioyJBwADTYdrolWCbhQsX1roIqYlhfS0qRdSJMy7yis5f7jspJWUfLVK1RU+/BhkVgaln55DUHPadByl9d2HgCaD0mCK4NYKSjS9TVZBFZUUlTqcTt9SxzqokTy5ztccjDej1ekwmE4mxOnp2rIc5t5ruQXNVA8y6ANdddx1RUYpp1KCzk2jIxB6QQ27Z+op6Kxc277XiCPhak+L0DOxRD51QUNSyijPbagzeiI/R0z7ZP+e5q+wcjejgc5nKT46mODGKyy67jD59+tTrPQCY+nSj3afP4WqlDrxyZp4k9/Y/Yt/jfw55HFbee2MBd/3pCPc/+QMHX5kMHw6Az69Ev2QaU8Rc/jDiFNfFbWFCxVZmfr+VKav3Mn5dBuPXZBAXFc3VV18dPISwBAp8HqudXmVZvu2oqePRRTesPGdDTbRzgGVCiDuFEFcLISZUvxp4nksTYwcwK6VX9Hoder3OF60LMH/+fF555RXC1cxMTk7mF7/4BdOmTaN169bcc889Ic6c3377LZs2bQo5tqEEm3V3FhzB6rqwqRNUlH4Gp24FT5i0IVXfQu4d4Kk9aXRhYSELFizg2VdeZJs9C7PRjk4oq6vrow4QqXOydv94+g+9nV/+8pc15l6rDz1ivSs1EQEYFD++avL/VKMpujp6LlDgKCwsZPv27ap+Uko+z1Tn6xuU2I1Bid2oCymlSoA0641cFpSnL60JSq05nU5VChZQItDGjnCoHvwy8lrSgzTKdQl8EQazV6j2U6NZ1zxAtRkfcZpf/vKXKq1GNePGjQsRBjee3c8jm/8TEsyUYI7mN30uQ+c+HtB6/vz3AokKSs9i27EfV34xGCMw9Jikzsnn3MMnn3zCm2++6c39JRli3s99cXPoY8xCb9ATHRWF2WTCoNcTGaEIfakRimArpeTzzz9vcFWYmEgdfbqozW/ph86fWde2aReOwwHflU5H7Gx/Qu2Yn04h4ip1mazS/85VHuwn18K8CfD55fBxChz6ot7uJCdOnOCzD/6LY8u/cAX4gO2wDabMo8znVn1vLBYLkZGRCCEYNSDC53daL7oF+Zue3V5n0uJAIiMjueEGv895a9MBnC6X77d7NMdZ70TM3+9QKy1Sh0ei1wmklLW7IR2rpUqEs0oxVdfAgO6KQCk9Hjw2O4ej/IvmjD5tadOmTY0+ubVh7N6RgidmYx6iFhTdBSWc+fmfqPx2C1TkMuf1d1l1pCsA5e5Y/pXzOGUVbijNgrPpcPxbYrLW0G9DAT2XVZGYZ8Ui7EQKK13y85hR4g7x96uJ6lQ30uVCOl30CvDfi7ltck2H1UhDqyY/6P37dFC7BLo3+OqXItE3gF3R6hiNJvp2PMr2IykAPjNKIHq9ntTUVFJTU1V5fZKSkrj77rt5++23VRm8ly5dSkRERKMLNoOiMUm2xPnKVDk8LnYWHuWKNgPqOLLpKC8vp6ysjBMnTuBwOHA6nTgcVlrxX5KNXyElvlVm9V9FcBBg+5byvIlklP8JoY/FYFBWy0ajEZ1Ox4EDB9i9ezdSSnI6utCbXBj1yuQbo7NzbeQRyrmGybd8hiWM71ZD6RXbge9P71LGpovx+/EB2HeBfS9YBoc9tm3btowYMUIl5H377bekpKRgsShRe3uKstlffFx1XE359gLJy8vjo48+Ijc3l/Lycm688Ublfms32DtehS15B7G67CrNX0NZsWJFiL/YjOk3YHbdpmo7xiiK7H4nebPeyICELtRF77gOqlrFGWU5DA2Ttw9TUEk0+wFMJhM333wzPXr0YMmSJVitVnr06KGq1FHuqOKtjBVsOBNavcCsN/LYoJkkuIPMm5ah59V/rxpjl/aY+nXHcdC72vd4qFq9idifXY++x40YD32F06FoPPqYsliTcQgQxOtKmBK1hi6GUwghMFssGI1GRT4UOpAeDAY9ERERdOcEXQwnOe7qhNvt5pNPPuHee+8N0UjXxoh+Fg4d8wsOOw7auO7yuk1sTUHZh4tU21ETL8PQsQ1Ve3eSm5uLw+HAcdf1kL4fSiuQgLBbOX33fbS5bT86o0epRWGzIVY9yJlNc8hsfy/CFI3BYFDNOQaDAY/Hw44dO8jMzGR8xEYsFv/7tkkTm2wjaNWqFWPHjeffy9pisvsFyDE1JFuukZiOkDwY8r0LNSkVAar/7HqfYvDgwWzcuJGcnBws+jJiDTlU2roQFRUJCJZtqKBPl9rng5w8J0dOqjVxqcMiOXz4MJ9//jnl5eWYzebQ3Jblp9RVQoSAdpfB6QBlxunN0CaofrCXAd1MrN5aibTakR5JdnwPACqjTOR2acVDt97qS4/WUDwxkbR57xkKn3zdrzkHpM1B/q//zuqr+rLE9FPVMaWuON458xC/7fAc0iko2x5L6dY4pEspuSqRvsImBuFBfPU11nG9ibhRPTcGc6bQRb43GEZa7Riki27liouJZdQgTD3CZxWojQYJfFLKulUKP3aib4DCZwAwGA10bHWGaEsFFbbQia5Lly7MmDGjRt+xdu3acdddd/Huu++qwufnzZuHxWKptd5nbVRH6y4+7jdPbT574LwIfNUPj4yMDOx2O5s3K2MwG+3cNPobYtodxxZg0Sx1m3n32NV0jMvjxsQ9RHqjas3sIdnxS+aum4rNGT6dgdMgKWznUDnuT48/TFLSYHSd5zTZw7pXXECtWmHiiKMTEJCKwXGwRoEP4JprrmHXrl0+s0RlZSXr169n4sSJPl+yQIYm9aBffO0/dpfLxZw5cygqUnyYtm7ditls5rrrrmNgQleSLLEU2pTk4Ha3k235GSFpW+qLOgWLwrBhwxjUswJOB2gA9K1JL1PnuRuc2B2jru5pqE9cR1af8pvH66vhU0qsuUHoSUlJYeDAgZSWlpKQkOBzmN6en8GbB5dSbA/NQ9YnriO/HjCd9lFJcPYN9c7z7L8XSNSkK/wCH1D19UZif3Y9dLkaoznCJ/Al6Eppoy+gm/EkV0VsxYAbo9GA2WLxm8lbD4Vx/4KNf4LTmzAaDEiLhQmuTXxYdgsSgcPh4MMPP+T+++8PyT1WEyP7R/DpSn9pyf3ZdiqtHqLqcug/RxwZ2Vg3qyOP9TOv4bXXXuPEiROqus4d+iQwbl0+JuHAgAsKoeT7JKLHqysmJBasgbwf+KpiMnnuVtREjKhghEWtMd9vGs/02+5m4MCB7D7ioMruD9CLi9LRt2stFX1qotsUv8AHilm3AQKfTqdj8uTJvPvuuwC0MR3gSFVHnE4XRqORrfttnC1y0Sax5t/mmqBULAO6m4gwVPK/zz7Dbrfj8XhYtmwZUVFRaj/Z49+oT9RmBHS/QS3w5W6GoQ+HvW6/bmaQEneVkmLrdGxn7HoTR3q1YfL1U+rlG1cbOouZVi/+DkPHNpS+5zXzu6wcjO7EJ47bQYLOXK29FIBkS9kVfFc8kT7rD+KuUM9xQgiV1h3poeCJV2iXWIbh8vtqLN+5P8v73PJ4kDYH3cpPYJRexUUjtHtwDmlZhBC6wFdjz3PJYewI5hQAdELJyRdo1gUlDH/atGncf//9dQYKdOnShdmzZ6uc3qWUfPbZZ2RnN973Ktisu6PgMHb3uddTrIsffvghxKQdH1XCHRPm06OdWotV7Izg1yduZYO+I3MrhvKHszdx0OH/vNol5nH7+K+IMoc37+Z1tGM0Kz8aIQSJRgc3JBWia/+er5xXU9Aluo0q4XGhy0yxK2B17DxW6/GxsbEhjr7r16+nrKyMnYVHyQhKQ/LTemj30tLSQjRu69atY8+ePeiEjrFtB6n2NTZat7y8XJWCBSAxMVGpR1sZNLFHTSS9UG0arMucW024ihth/Yz0rUEXEAAibarP32AwkJSUhE6no8pl4439i/nHrs9DhD2DTs8dva7hnyN/rgh7ALYL779XTUi07s6DuM4WgikGfZerVSbCWbELGR+xCaPOQ2RkBBEREYqwZ4iAy/8K05ZAUl8Y8yffMSajkS5RZfQ1+b+vqqoq3n//fYqL61ehpX0rA+1aBfhbuWH3keY365Z9qE5Kbhnen/V5Jzh7Vu18r8NNux4niB+YiwmX75lsP5iAPSs0N1qiroS7Yr9kqHkvgbVoA7kqUhGqQbHemBI6kvrwxwwePBidTsfGPWrf05H9LegbYs6tpltQepbTG8Fed1qnQHr06OHzc4vWnyFCV4zdbkdKWWciZpdbsjYo2XLqsEgWLVqE3a52D1qwYIG6mlB2kP9e10nQPui3dGYbeML7fCbG6knwlILXZOwRguzEHjDpMi6/vGl+k0KnI+HRO0j6ywPgKueUMYaPBtyHB4HHKXDbdEqQWGQy0piE2x7BBxUPUSS6gzkeTLFgjAFjFKYuiSROjVQJfe4qHYV/ehP5/aM1+olW59/z2B1IKelZpjzv9cmJRI4f3aj31dC0LMOEEJuFEJWA0/tyef9qVBOQk89sNtGvs1/gGzBgAL/97W8ZPXp0nSHZ1fTu3ZtbbrlF1eZyufjoo484daoGTUcd9IrroEpoa3M7+aEw1OTc1ASbtTsnn+Kua+bRKlb9ECmpiuaPR2+h1BcULjhlT+DvBdfyWflQnFL57FrHFXL7+IXERKgnJ6fRQ1lHG3odCKEDIbg54Qjmti+BqUeTviejzkDX6ACth9BztDpwA8BZt2B+1VVX+RypQfGJ+/a7b0N890Ym9w5JUxJMbm5ujTV658+fT25ubki07q6izLAartrweDzMmzdPlYJFCMGtt96KxWwOEfgqzONDcugNT6q5pFAgHaOSiQhIzFzutHImXGk4IXyBGz7soUFJe4qy+PXm//Ld6dDkxN1i2vLSqPuZ0fVKf95C5+kgwf3C+O/5rt6pLaYBAZ+dlFR9o2hIRPcpmAJ8hEzCiclsIjo62u820nEs3LIGBt8H1YuV1inQw+/nZjaZmNpmPzr8KveysjLee++9kGjnmghOwrz7SPP6CrvOFFC5Ul1nNPauaWRlZQW0SHoYj3Fv3OdMjFxP7OWn0MWrx1WypgvL8iaS71ZHj+vxMDlyLdOivsYs1Me00hUx2HQIvUFPZGQkkVGRWK78M8KkLC6tNg+bgyJaxwxqpJUhoSckBCyWPC443vDciZMnT0YIxfTY2nQAj8fjszTUloh512EbpRX+fRFmQaQ8wqFDh0L6ulwuf+UJe1loFG7Xycp7iQiIB3VUqM2+AdhsNtocVfs57+mZwvTZP2va5OfWQmLM72KcWsq7Kb/Erg9YxLt03JC/DVFWgbukXEmCbohkXs+bkXozGCLQt21H0t9/T7tvlxD78tfEz1TPS9bjEZR9ugoW3RSSWkdK6c2/J5FW5T6rzr8X85NrEcaGeuMpNFQz9xGwBhiB4rPXHeiG5r+nJkDg0+v19O5cynUTh3Hvvfcya9YsYmNjazk4PIMHD2batGmqNrvdzgcffEBFRcNL4uiE7oLU1j1xwp/mYliPQ8wav5ToCJfPL8ZoNGL19Oadst9RGheD2WzBYlFeZrMFt4hnReVg/lI8hVO0xmQy0jaxkl9cv4rRw9rRr18/UlJSaH+tS7m7ver0RL2VazuN96XOaWp6xgaYddFzNDBwox4Cn8ViCYncWn14K4dLgrR73WvX7rnd7lrzNjqdTj755BNa62PoEiCkeqRkw9nwE2xNbN68OSSn3TXXXKNUrHAcBFfAYkRY2FXVFndAZv3O0ckkR8TX61p6oau1rq4KU5DA5/Df1za3g7cPreCp9I99PqyB17i1+zheHHUfXWOCzJbWoIeUJaVJtcSNIWpyDdG6Xa7FaLIQERmB2WwmKioKi9msKBjMcTD+Vbj+c4gN4xYw6nEQfm11nK6UGf3UmpzCwsJ6VwFK6a32A/vhsK1Za4uXz1mOdPkFVGOX9jBqgE/b3dpQxG0xS/hp3Epam8oxGA0YI/UkTDmD0EukTofLEI2UCaRkdaDgyg8o63ADZosZs9mMyWzCZDYxJPo4v2q/nNT+CQwaNIi+ffsys/MRoqIiiIqMxGDQI+J7Qh//Qn3zPisOp/+9J8bq6hfRWhPBWr561tYNpG3btgwfrixcEozZGIXVp+Wz2mVIUEY1a3ao74kRfQ18vXJpjdcpLi7m888/x33sW7XmLr4nxHf3+/EFcjp8epZv//0uvU+pn1XlA66ss2JFgyjYDwuvw5qzk1f5I+VxsfjsmELHtBOrGLd7CZOPqD/z/fF92d52BHE/n0GH5f8l5ieTEHo96AzE/fNtLMP6EajqK1kfj31PBiyYBDnrfO0nz7oorfQgHS6ky43ZY6dj5SmEQU/0THUZxYbQUIGvC/CklPKglPJ44KvRI7gUMXYGs78eq0GvY+ywCnr0ODfN0ujRo0Nyt1VWVrJ582ZVUsf6Elxbd3vBYRzu5kudUF5eTlFRETrh4Zoh67lxzDqioyOIiookMjJCMTcl30pG+7fZa6xQJliTCaNReZlMJkwmMzpjEjnu1vw57xqWVQ3CaIkgKa6SaSM+4o7brmTCtXFsqqhQqdB/0saJqfVTzfbeVMKIMHAkMHDDeaxeUX6jRo0iKUlZ5UokJzu4sNv96v4xrfvSPbZ2/5SNGzeGaH2Dk4EWFxczd+5cxrYdqGpviFk3NzeXlSvV+b+6du3qD4QINudGXMXOIvU0MbxV73pfD8KbdcNSg4av0FbGb7e8xYqT20IO6RjViudH3cNPe4wPX484xJx74fz3qokKMuvadx3CdaYAIhIR7S/DaDBgNpvQV1sSekyFW9cpQkhNmpC4btB/lm9TAMM8axk6QG16z83NZevWraqkveHo28Ws1E31Ulzm4eTZ5pljPBVVlM9TR3/G3nUTJ3Ny0OHmmsh1PNBqAT3Mp4iKiiQqMpLIiAgiIyKI7RlDwh1j0EW2xmiJxmQyEXn4JP2yK+h4++eYr3sHc3QCFrNZeVksJBnKmWT9Dz8bZOXOa/vRRR7CEFiLefQTqtq33++oQrpceErLcReWMNqV2ThzbjXBAt/JNHA2vFLGNddcg8FgQCc8tDJlIKX0fa8rNoYmYi6tcIdGXJdtUWn69TpdiC/d0aNHObXxXfVxXQOeZ+2DflNh8vHt3r0bFq+la3GAa4jBwFlbDDZH0xQnIHMpLJqKu+w0r+b8gWO27gidRBcJwmjkqrNbGXtGGVtq7ka6VfiVGDqziWVj7sT185+FpEwRej2t/v0CutYdfYsq6RHkL0vGU1YKy38GO98AKf3Rud4qMT3KjmGQHiKvHoOhdcOqQQXSUIHvK6Dx4uWPiQAtH6DkkGsCxo0bp6qJCGC1Wvn0008bXI2jb3wnEgLydllddnYXNZ9ZV9HuSaZdtoqRvXej0+nUz53E35Md+RT/PqQWJJIssfxh8C0k+0pHCdDF4xIRfFrUnydzriTXEQXuXDg1nfmH3sIVcGsnGxxM7PsCiMZFbtUHtYZPx1F7ol/G85SDO3wllUD0er1PoC9O8GCNlLi86RIEcFsd2r2CgoKQklgDBw5k2LBhjB6t9vk4cuQInkNFKl/io2WnyanMr3OcR48e5b333gtJwRJYoDxY4PNEXkt6gdp/b1g9zbnV9I5VC66Hy+obuLEfKSX/PrCY01Xq70EA07pczsujH6BnUIJnFdagdEgX0H+vGkP71iEpJCpXeatjjPqjX9iIbAOTP4SJ/4PI8DkJVQx/FIz+h5WwFTKzdyG9e6sF9KKiIpYtWxZ8tAqTUTCwuzoo4YfDzePHV75gNZ6KAKEjMY6oG1M5fvw4Iyx7GGneg0Cq/KERAvrdDrdtJPZPL2MZqV4EFb/yMWWfLMXTcQrc/DUkBS0mPE7Y+GdY8TN1e5vhiqnSy8lDBRzcW4S7qAyP3Yl0exi86H3su8+hlnmrgUrEbjVuO5wI78pRG3FxcVx5pZLqp5UxAx1uHA4l6KKg1M3WoETM63dZcQc8auIjHZzO8gtnrfLL+VlaNjfM3cqEw8VEVirCiw43EflbcQaWLOsWEHwQrOHL3aqUp0MxcW7dupVlH35Kp5NFxNlLSbQWAgJ9dCRuD/VOJVMj0kOnM5/D6l+Ay8qHZ+9jZ4U3ybXehIhMYuSoZH7WzT+H6JD8NHMBJgPoE2LQxUVjdev47/ySsPWjDW1b0eqfv1PM114TsavEQOE3SUiPB7Y9C1/fw77DFUi3B483+KpXqeKSEHNr44I1/OOtAyHEJ0KIj4UQHwMW4CshxDfVbQH7NAIJFvhsW2sttVVfhBBMnjw5JK/YqVOnyMmpQeNRA3qhC9HyNadZ9/jx4/Run02fDsrN63MsFxZo+w5l0ffz7O65Ki2jUafn8cG3cnmb/rw65kEmtE/x7hGgiwNhIcOeyKMnU1lV2pWztkq+LVUHwtzS/RoMprprzZ4LHSJbYdb7BcoydwT5rgD/nDoCN6oZOHAgHTp1JKeDX5iy22xc3mZAqJkxAI/Hw8KFC1XR3BaLhalTpwJw4403KqbWAHau20InvXq1uDa35vxXHo+HNWvW8P7774ckDZ8+fbo/l6HrrJKOJoAsz2BKHf5jIgzmOiONgwmuqZtdfgZnOMduUy9UCQhcp9l+9ocQH9W2EQn8Y8Td3NX72toTWLtyg74/A1hC8/pdCIK1fFXVZt02w2FWOkxdAD/bAl0bsE6PbA2DH1A16fa+xe3TJ4bcQzt27KhTy5fSR+3Ht+tw0/vxSaeL8k/Ui+qYn16HzmLmxIkTdDX450afwNfhCpi5Gsa9CJHJigbm2d+gi4lSnbfo+fc4Nfl+ShfuxjNpPgy4K3QAzqDAsdFPghB4rHZK/vcFS/6wAI/N/zl1Lz9GK3sRtm01/97qRIhQLV92w5IwVzN27FgiIyMx6uwkGrOQEt/3umyD32VISrWZV0qJwZquWrhfuTuXyNIq9OVV9DyUy03L9jJ6SxZ9qo5jFg6sNituj0dZfLQOSC+W2BssAZYRRzkU7vfVwl60aBE9D55GeOWorsVHEQY9OrMy7x7IOgeBz+2Er++hY94CAJYXTmVVkfcZbowEcwJd25v5zaxWtHn198Q/dBu6uGiMvbrQ76nZ3HVHV0RAKpi9mXa+2Rpe2xo5YTQxP71eCe4wKgqXyoNRVO5T7jt39mr27zuGrKrwWoYkvYozMHaMxdzJCnm7lEolRYeV5OAVp8NeJxz10fAdBTK9rwPA88DGgLbqV7MhhDALId4TQhwXQpQLIX4QQtSYWVEIcZcQwi2EqAh4pTbnGEMwdgFzYCSkhIrG/RiDqa7D17272nXy+PGGW9aDk/Buy89o0lJbgZw4cYJubf3qbyF0oG8LHRbjipzMS3vnkxfkV/VAvxt8prwoo4VHBkzj8SG3EmtS8kUpQl8ENmngf/lDeOzkONwBt3VbSxzju6oDXpoDg05P95gAE4bQB5l16xdRLYSg7ZV9sUX4V4dut5thrtpNudu2bQuJ2r7xxht9fi16vZ7bb789xM/FvicXT8D3vTZ3p7LSDKKqqoqPP/6Yb775JsQHa8SIEQweHBAEUvmt+mDzUHaUqDVrKYndw5tOayHBHBOg5VVq3WaV5YZ2FCYw+bWHDo+O9w+rf3v94jvzypgH6F+PHIAXo/9eNZHXqjWN9r1HcOZ4F5aRyYqZrDH5FYc8oHaid1Zh2vsmd911l8oHWUrJyZO113Id2lst8B08ZsdqbyLzm5fKbzYp5mwvwmwi5rYpuN1uTp48SaK+xLfPoNdD6itww5chGjtD21Yk/eVBgnEXllL88kfkTPkVJQeG4rn8DTDV4DPWZSKy7SgqlqZx6oaHKPr3XLbHq6PiR+crKYacx+v/sA5LsMB34ltoRLaFiIgIJkxQ6ickm5RFv8PhwOPxcOSkPxFz1imnyiTvsNuIcvuVBFFVDlpV+n07hRBEmS30yCpg9OJTlK/ugKvQjLWqCmf7VAhM8CF0IVq+isOr+eD5f2Gbs4LrVuyj38Ezvn29Kk+gi7RQ7bvjS2PSGPa+40sGvb18NB+evVc5rzkWTLEkxul54q4kIsw6hF5P/EO30WnDJ3T46jWip45n0mXRIf6Yn6ws40xhDZHGj92llEg0RoE5AdBRuDoJZ5GBTGtPrE6jEqwhPUQ7ymlXfJCYzlsRi6fBwikw7xr4MlVJDv5p/RefdQp8Usq/1udV7ys2DgNwEhgHxAF/Br4UQnSt5ZjNUsrogFdaM48xlOigAIHKhjvV1oROp6N/f/VkVdfEG47+CV2IM/kfXpUuG7uLsmo5onG4XC5ycnJoG+83Gep0Omj9HFgG8cnRb0NKh03pNIqr24cmmB7Tuh+vjXmIkcleE5MuFoTyHso9AeYjYeKWXrc0WLBoLL1UZl1DgwM3QBFivi8/oE7CXajjh++3hC25Bkr5uOCSZr179w5Jzh0bG8usWbNUJq3YAom90oaULnAXkVeZyaFD14LTby6tLssVrkLM1VdfrSrIDoRNx7IzyJzbUP893/sK9uOryawbELixqKQnZ2z+fHB6oeMXfa+vf6LpEHPuhfffq8bQthXmYepFW3W07jlhiobhv1W3HfyUCMeZEF/kuuadtkkG2iT67zm3+xwfzkFIKUMSLUdPm4A+IZazZ8/idliJ1ynfv0AgdDolGrkGP8aoyVeS+Pi9CEtofjxPSTklb8wh5xcLKSn+Ne6ooNyVQmCz3MaZn/2RgidexX22kIz4npQa/cKh2eNgSKFSrs55IsyCpSG0HaFoZKtxVEDO+pr718KYMWNITEwkQl9KrEH5XVWXXKvW8n0fEKzhcrmweLIx6vwm39Skjn6fUS96vR6LxYIBN44j8ZTO7Unpio6s3+gIdUPy+vG5KvQUb4/k1G/nc9m735Ky6yTxJcq1BRBhsdBfV4TO4v8NH8lxqIJi6o3bAXveASDb1otXT/1e8bGzJIAhEotJ8MRdrUiMDZNfz4tOJ3jo5ngizP42h1Pyn3nFuMOYdoXZRKsXH1PuMb0JIhKRHhP5S5LZVzEY6RI+l6BexYcwGN1ED2h4cGYw9fLhE0LECiFMAdtXCyH+5X2lnvMo6kBKWSmlfFpKeUxK6ZFSLgOygQuXF6E+RAWZda1bwFW3j1R9Cc563xgNn17oGBOk5WsOs+7p06eRHiet45VVuJIKQIB5COty96iSQAP0j+/Mz3tPCncqQCl19X9DfsrD/W9U0nXoYkBEBfTQ0z66K2PbDanxHE1NT1XgRsNTswCsP7OX01WFmM1erYiEDqcNFBYWsm1baLCBlDIk95XJZApbIxagc+fOSo48LwY3dHMWgasApLIyX1tigII/+fxm/ve//4XkXouMjOTuu+/mmmuuUacX8ljBuk7Vt9Q4jiNBARbDwlXJqAfBKWnqCtwocFqYX9wbpH+lPbnjiFrN4yEEa/guAv+9QKImqUutBaclaTT9ZkFsgAbU44Jtz4eYdQMj72siWMu3uwnNurate1VJqBGC2DsUV4bjx4+ToC9BePPm6XQCEd1B5aMYjthZN9Dx67eJ+/kMdJGhqVM85ZWUfPANp96IpzjjWtw2E84SA3kbr+HMr97Cvs8fvb4tWakYIXQCXaSFIYX7MHsUjZnrXAU+oVP5CgKNNusG+hC39mr5qkuubdln5VSekw27FaFLSonNZiPJ6F/ItWrVit429ZwjvHW0jXqBTvgFH3tWLMnvZ7B72kPYfjgIgLusgvKdBs7MbcPJNztQ8l0rjGcVk6ZvjDodUVFRGI1Gus6aQOuAxNBudyP9+I58BVVnyXcm81LuMzikBSxJoDehE/DbnyXStV3d/t/JCQbuvF5di/fQcQfLN4QX1Ew9OpH4xH3KhlfAdBTFkX5sJB6nf07tWZJB1IBKdOZzj26vbzKXNcBs4IAQ4iGU0mpzvfu+EEI8KaV8t6aDmxohRBugN1BbVe+hQogCoAj4BHhWShlWvyqEuB+4H5SatmlpaU021sEJ7YkyHPNtH0t/gVzr9TUf0ACqcyZJKbHb7eTn57Ny5UoiGlguLMLtwOHwT8BrjqXTPy/Gn4OsCcjMzCTGcga9zoWUinbP5opl0dqtzLFtwxWQ6ytGWLiiogMb1tX94DICt5LCctc+TnnsCGIQuPFgZKC1bb3O0RAqKipqvD+KPVW+z1Hg4aiMw2pzoBNQWZnOnkPhj6vGLT28Z92IQ3qdnHV64k67EWUO7MCSJUuoqKhQlQ3Kyclhzx51dG3v3r2VaLZaxty2bVvyz2QwdcxaqpJdvFKSipTK6nl9eXtmFy5h3tI/sudQ6E8mISGB4cOHc/r0aU6fVpukEkzb6Rvnz9Fm97Ti060HsAfcX611sezZnF7rZ1HTuMvdxap7Nf3kQdIK1X0A4owO+sc7eK9gKA6PDo904HLZiRAmOuUaSTsTekw4TLoihif5NZsSPdu2V+FpAoNBU807uihJG4fDF4Dj2H2I9V9+hbt1Qq3H1YekyOvpXfCqv+HgfKxt+/hSd9jtdg4ePMiaNWtqz4FmjcBu9weMrN1RSY+4Xec8PoDE1+dhCfAjtKb04lj2Ycg+zM6dO4l15yvlrVDcSPIcMRyo72c9rDOi9x1Ef5dO1Pfp6KxBgqrDgW15GXnGgeCRCLd6QV9piGRvQl+k2YDbbAIhGJa7ze/3eDqPtSu/RkbUrm2ubd6JK29H/4D379q/kB1yClI03LIhpSQiIgJb8THMogibJ4GqqipMJhNP/juL4gpl7nG5XAhPJRZ3JnaPByEE3bp1o2DBPAzesXik5PQ9U9BVWmm1aDEBikBc6JES9LsOkz3zN3g6tcFwtghcboxOi09AF4BOevCgQ6fXYzAZqezZnqorBnOsRyKxu/M5afcv9JesPkDByQYkoJaSIYefQ2fT8c+cpyhxJeLWm3A7XYCLqwcXUZp7hLR6yuU6Ce3jk8k+638Gf7AkD2fpHpJiwqQxSjSQMLg7ETuU/IVOEc1h2Q/p9v+WehYfxXFDa/KNSQjpQkgXOulESDdCujA7CkLPWwP1Ffh6SSmr1T6PAFdLKfcCCCH+CywFzovAJ4QwAnOAj6SUoVkeFdYBA4HjwADgC5QE0c+G6yylfBt4G6BPnz4ysMbmOVN0JxT5L9snagN9ujynynV1Lhw6dIijR4/6ijF37NiRQYMG1XGUGpfHzXfrjlLuVH6RHiBxcGeGNjCKsjZOnTpF5zalvoeCyWTkhLU335mz0HkMmLy3olGn5+8jfh6SgqMubpSTWXx8E3Mz03B4XIxp3Y9fDP5JkwqtoFSwqOn+kFIyP20PlS4bYMTqNlGkS6SDqQJzRBmpg8fVnA4DWH0qnaoDbkwo36XFZKZ7kQu9WW3Krb5+RUUF69atUxXi7tKlC3feeadK6xZuzFcNc1Oc8SImfSkuKYjWOajwmABBpcfEjorW9G/7DRnZalfZyy67jOuvv14d6RhI3jIo85vCzHE34xARmHL9Y5zYbRSpPVPDHKwm3Ljtbidfrdnry+dXhZuhl48kzhSlPtjVn70H3mOztbPi6incmPQmftFvKtd2bIBhoPwrOBtg2jMPZ+yAhhdmD0dTzjtnFm3BtsOfR3FQiZv4Wxp/Ph9yLCzcoCrjlWreQFrMAMrLK3z33uDBg30phcIx2u5h9b5cqr0SrC4z/9/eecfHcZf5//2dma3qXbZsWa5yt1NcEjuJ0wukkZBKCDV0Dg44OgehHVd+wHFALrQEuAChhpAQCAlOI4F020nce5Vk9bb1+/tjtszM7kq70qqs9H2/XvuyZ3Zm9tFq9d1nnvJ5Fq/YSH3VyARk4wR3HeDoziPgTv6OGj/1HryrFwNmbWu9txcRc4c1Xad20RnUbtyU2wu9/lKiPX10/98DdP/k90S70kRt9NjDwovnXQ/eKlyxv5f6Kp1lNVHCA0l7189ZgGfp0JJdQ607RDbA3d+FoJm29hDgnEU+aBhZJLqxsZHvf//71GuvcWBwA1JKNE2jL1SMx2PWFAcCAWrd+/F6TQfwjDPO4LLT13O4+8eJ30UgEmbd229C83qQc35F/9/b6Hq6lMBxN5GonlgLw+EwRS2dRBEMhEJoaIlpJQCGFiW6dBENN19B0UUbMGqSNzKytI/dv+5MbAe0WWzalMOc+YN/hR0nuLfnJg4Hm0CA4SnF0HQuP6uYN1+Wu8TwqtMi/PPXT9A3mIzIPXtgIV9+Tw26nrr+dy09nafe9W12hirYVTqPsJb8bJQHu5i9ZgkzPvHlzC94/Dn4pzVZ2Zbtt2GPECKeSykDrMU8e4Ac8iOpCCE2CyFkhseTluM0zGhdEHh/putJKfdKKffF0r9bgduBa0dj44gpvQ4zDhUjfAD6Hsp4eK7MmWMvOs8mveLE0HTW1S627ctnWldKyYEDB5hRkRz1JTWD77QvomWg03astUkjF3Sh8Yamjdx1zsf4zoYP8PGV1+Xd2RsOIYRFnkUDBLvidXzRbohmHkkVjka4d689FXrhrNO4cN05tn3xkWtgRvwGBpK3zbquc8011ww9wSUagNbPorfcQmVZBCEEhpCs9+4HiI1Vkjw70EDzrD1Ul5rNFm63mxtuuIErrrgis7Mno9DnUPsvuigl7bq6auR6lB7dxRxHOjZdWjesVfH9k3bHbl5xOec35PBlAJO6fs+K3yHC3P+nJzMcmSNCg3Wfse869jRr6u0diMOtOz6PxpKmVBHm0dJ9t32MmmdVc8LZ6+npoaOjg0o99ncnTMF5ykd2I6uVFFH+7uuY9ac7qfjnW9GryjIe6162gPq7v8xzC84xhXdjnHtaEa6mmbZjR53W1V12PTsYcVoXkiPXKlz7MIT5O0qOXJOJNafKZaaty8vLufjiixn8u73jODhvpllj130Q0bGdokX9zHjzcWqubaGlNvneSaCvv5/+/n6klESk+X7p1YP4zzzBjE/XsPTBOym7+fU2Zw9g2Tz7Z2rnwRzr+F7+LsGomz91mM0vUeEGTWfdMi9vuiT3AQlgjn57x5Xltn17joT47WNm5qOzJ8LftvTzg/s6+cg3T/COb3TzwwU38tiMMznqr7edt6hrD6U3DHODWZ/Hpo0YPwLuEkLMBb4OfFsIMSvmBH4TGNXqIqXcJKUUGR4bAYQZGvoBpnN5jZQyl3FuEvv44vHDqIOSN9j3ddyRt8uPpJ4mHc7Zun9v3Z63bt3Ozk56enqotzh8P+tYwY6gvSg6U5NGLvgNDzP9VfkdsZMDC8ocEzey7NR9+MgLtskPhqbzxrlnpx+59pe/8Morr7B1q32BvfDCC6mpGUJnLfAaHL4Uun4AmPVM8fR/U6CPvoCfSGxk3e5QDQLYsOQ5ampqeN/73seqVcPUQwZeBmtKSxTTY6ziWH97YpcuNIdmYe4scujl7exKbdz405HnORCwfyG/a05N7jcBk1B/Lx1FF6wHi6Mf3LGf0L6RjV1MYdZGmGW/8ThDPJJIu0F2645z6sZLO0bn8IVb2ul7wH6TVPqWq1Jsqop16OqaZn4LjNDhi6MV+yl729U0PHQnlR9/G3pNUtpIr62k+iv/xIyf/TvHZixk/zFrxyqcc6ofV6O94z60f5SdugDz0sizjGKiySWXXIKuSWrcZhItXj4U79z16yfxxd7Xq6++Go/Hw+Bz9gqrYHPsu2l/solLCCjeuBrvtz7NI+cv5kSd6VTFO/97SrzsXFlN+Y27qL5pPzVnDVJmvGreTKahttKguizpUIcjsOtQlnV8ba/AkSd5omsT3WFzrYhoHnwewXuvrbDNo86VDat8rFtur1v91SM9/NP/O8E7v3Kcr/+sg4ee6ePgcbNkRriMtLWip4X34z9//YjtcJLt6vc54BlgC/AJ4O2Y6dIDwBLgbXmzKDPfjb3W5VLKgaEOFEJcGqvzQwixGLOr976hzhlTyt9l3w48D4PD1zBlg9PhO3LkSMZuzqFYWTmPIiP5Ae0O9vNqZ34GqBw4cABNRKmLNWw8E5jH77oWIC35j+GaNAqFhaX2xo1d1k7dYHqHLxgJ88t99i+uixpOo9pblnbk2nPPPcdvf/tb276ZM2cmxFNTiULn9+DQJRC0V0EYhosOcStPPXEOMioIhUwn/Fi4hL6oi5XzDvC+2y6ltrY23YXtOLtz/ZvY1W2vaWosrsWj2x39XElp3Oi2R/i6gn3cs/tREMl04bklB2n25NjFHj7hcNJ18GWXOhlv9OqKFNHgvnxF+QDWf9q2WRo+ygpvsjEhG4UAZ+PGtr0j7KqM0XPPA0iLiK/ROAP/eWsT22YTm6RSMyN8elxrcZQOXxzN56H0liuY9dAd1Hz949T850dpeOC7FF9xLkLT+Ovzdm2+VQs9VJXpGA6Hb9QRPjAdcsv6Td9x6G/JfPwwxEeuVbt2IGLp1UAgkGgOizdrnHbaaSxatMhs4nBoCgbiDt8B+/QTmi5m7bp1NL7uPB49fzEPXbKMZ9c08dAly/jD61fwzPKFuBuK8Pn9aEJAoAvaM1VvwTKHsPer+7JsCHr5DqSE+9uvMrd1N1IYXLi2CL93dNkhIQTvvLKc0qLkdSJRONqaecqM5vci3OZntH6ghWv338+ayxaOeG5u2tfI5qBYavQzwGzgSuBm4BrM2r5NUso8fGIzI4SYA7wLWA0ct2jr3Rx7vjG2Hfd+zge2CCH6gAeB3wBfGUsbh8SzGPyOKQl5ivKVlZXZmjQikUhKIX02mGldu2p/vtK6Bw4coKSsg8cDc/nCyYv4ducZmB898+NX6SnhYyvHTz5lLEmZqRso51OHN/KVY2v5710v86Odf+KXex/nwUP/4Inj23ixbTe/3PcY7YFko4NbM7h27lmJbevINTDvhq3Cx5qmce2116ZPtYZPsLTsS9D2r4AjKG7Mhobf0rj6W5y+eh2+AUE4qhONRfkOiZn4fB48ff+b3Q+fIsdyUUr0beFQ0yyypNnh8O3uOkrUEgH46e5HzDrKmMPnEyFuqXo1MWIta5zduZ7VoBWlPXQyUHSpo1v3oafyd/Hq5bAwmanQdZ3zSp5Dx/wCO3bs2LACzLPrDCpKLVHIkGT7gZF160op6f3dI7Z9pbdcbkufHjhwgCIxgFcEEzZHNQ8U2dNmo0V43BRdeAZFl2xEizVfhCOSJ16yxyU2nWZ2Brvm2CPco9biA9PZK3PUm/XmJsTv5IILLsDnjlDpMjug41E4QYQK1z5KSkp43evMBsTw4ROEjyVv7oTbRXDeTBjshKPP2C/cdDFCCK688kpmz55NR2URuxfW0lFZhL+oiLe89e0ULTjPnpLLMFcXYKkjrZuV5E/vUdhzHy/2ncaRQEztwihCE3DJmfn5Gy8r1nnX1eVZHds0w8VlG4r56Juq+been/HxLd/ivNoOyt569fAn50BWrqMQ4qeYjtNDUsr8tj1mQWxWb8b4qpTyIFBs2f4o8NFxMC17yt8N/ZaxN30PQnA/uJtGfemKigpOnkwK2x48eDBFsiUbzqhdyqNHk92dz7S8xjsXXzbiWriojLKt4wD39b3I8WYPT3ebd99CkPgydmk6n1h1vW3EWyFT5Sml3F1EZ7APhEFEarw6GHPW+nuhPfPCFefS2Wuo9CR1u+JyCffcc0/a488555yUuZUABLbDkWspcx8HHFG1kjdC9ZdAL0EAV155JZt/v4fXOEEo4sHrGmRvpIa1oh16fg2VHzbFxDMROgTB1yw7NCg6n1177LVEzujcSJjhr6TI8MaaY0ztyKP9J5lVVMPu7qP85cgLsSPN2tnrKndSaQQgMFRTfxoKpH4vjv/89Zz84v8S74wI7T5IcPdB3Atym2iSkTX/Ys4ZjYbQhKDc6OVUzzaeDawmGo1y5MgR5s6dm/F0IQSnLPLatNxe2hlg5QJvxnMyEWntINLWmby2z0PxVclIeDgc5siRIzToybpZ3dDp0WfiG4dyj+deHaS3P3kTUuQVrFli3pgbY+HwgTlm7aTlpqbnsDlxZYTER671PPIi7aH5yPgNumsfhghyxRVvTAQbrA1DYNZS4jLg4CMgLRmnymYoawLAMAze9KY38ZOf/ITDhw+zYMECrrnmGnNiz8AZtlQwR5+GFW9Pa+fSual1fKGwxGUM8Xve+gOIhvnDyZhDpRlguFlY3UlNef4iamuX+TjvdL/tM68JmNvgYtlcD0vmulnc5KHYl/yOlWd+mWh7F1plWd5Lk7L9Jn8AuBRTluUpIcSnhRCjK7aabvg2gtuqdyeh63t5uXRFhb2QdSR6fGAW01vFaDuDfWzvzL0msGWgk5/v3cx7nvpvPvf8XRzwdpv96jbML+N3L3l9XpyAyYIQguWV8S89R8QtvSqQDY/u4uqmDSn7ly9fntaJr6mpSSjkp9Dx3xBtt+/TSqHuDqj7JuhJp9LlcnHV+gspKSnB6ysDYbBrMP65ikDHt4Y23Nms4V2D1MpTGioWlo2ufg/MwntnY8+OrsNEZZTvbX8wWVkmdBpcfVxeHhsEFDkOkcyNMykUmMOnV5TiW28XAk6MWssHpY2w7NbEpqZprPe9QFwnLbs6PseYtRHW8YX22j9XrnmzE9E1MHU/I5FIomFDaAJNCAa8o//8ZcOjz9ubWs5a7cftMr+8jRnVtjRdtLOHSPfoRXUpdqyjPaOL8IE5cq2qJEST70mK9FYqXXtp8D7L8uXLWb48WULgbNjwro09t9+Rzp1jL9spLS3lfe97H7fffjtvf/vbk+MZZzpqZY89nbGOr65Sp9ISOQ6FYffhIaLNgW547SccGGxia1+sLtllTm46bV535vNGyLuuLucD11Vw8yWlfPqtVdz1uRn82/tqueWyMk5f4rM5e2B+h+hV5WNSh55tSvdnUspbgBnAPwMe4HtCiMNCiO8LId4ghMgwZ0YBmGGtcvt8Srp/DpHOUV/a6fCNZOIGgEszWOuYgJBtWjcQCfH48a386ws/5l1PfoOf79nMiYHORD2hpln+WIVgRXk1b/SeNuomjcnIzfPPY3ZRTRrpneFrK1/fuI5yd2q0UwjBZZddlrL/2muvtU3lsBGw6/PhPQNmPwolV6Q93HSihPnQitg5WJGs++7+JYSG+AJJk849PtCRkPoB8OluZhUN0VSSA86JG7u6jvDYsa3ssDmYgnfM6MKwCL5mndYNH4eQdeLM5K3fs+Ls1u176KmUUXij4tQPgWFGdTQhKBb9lGtms1E2Dt/KBR6stfCHWsK0dQ5/I+QktMe+xrnnpxehr9I6geT83AHP2M7UBmjvjqTMCz739KTQs9B1jNn2tHI4H40bJQ6Hb5QpXUiOXKtw7ae56I80+Z6k2KcnZnQDaev3vGtXIKIhOPRX+wWd3cQxrNqigDnyzm3pkh3sMGfHpkEIkVtad/s9EOzlD+1Xxi6gge5jcZOb+opRzOPNgKYJzj7Fz1XnlLB6kRffKOsDR0NOsUtprhx/jz0+J4Sox4z83QjcIYT4rJQyy4KfaUjJVXDyKxCJzbqUA9D1E6j8wKguW1ZWhq7rCeeqs7OT7u5u28zLbDmzbimPHU/+8T7d8hpvb77ElDMAQtEwR/pOcqivlUN9LRzsbeVwXyvH+tsT2mhWrA5fld7PpqL9XFx1jLoFm9n81O6U46cCM/yV/PcZ76VtsJPefZvoCUt6oy76Im56K26nJwK9oUF6wwP0hsxHKBphVdU8bpx3bsbrNjU1cfbZZ/P442aDxyWXXJLStJMgGoDQfvu+mXeDljl1PquoBp/uZiASBOGlJ+LjeKiIGe4+IAQd34baNFKWkZ7Uereii9jVbq/fW1DWkDepnEWl9i+3rR37+HurvbB7bU0zp1S1Q8+zyZ3BV8GfGkG1IWWs5tGCZ9WQ791kwX/+etpvvyPRzBDad5jQrgO4FzXl5wV8lWaa8MiT5ogyIjQYJ+gMlnPo0CGklENGJop8Ggsb3ew4kPxifXlXgPPX5JZGC+21O3yuefbPQ7JD14zwGePo8D3+Yr+tQbax3mDuTLtD42qcYYtShg4ew7NyZOMGE4xBhA/MkWu7du1ix44duN1urrvuOttM7vCh40RakpkE4XXjWbGIsof+BCFLpNNfB7VZTj7SdJixDg5YMgfHnoaqxWkPXzbXw5OWmslX9wYhXeIjEoIt36M9VMkTXZvMfS4/CMHlG4vpz98grEnJqJLVUsrjmJItPxJC6EDlMKdMb4QLyt8BJy0iil0/gIp3mQPfR4iu68ycOdMW2Tt48KAt5J4tq6sW4NVdDEbMAv/2QA/ffe0P9IT6OdjbyvGBdqI5RAxkOMrM7hDvmfEIS93H8fu8uD01YDQAU9PhA/Ous8ZXQU1xlb0zdmYVeE8d8XUvvfRSTj31VHRdp7q6OvOBoT2YEtoxjIZhHRY9lio1ZxrHonyBipjDB3TfA5X/BIaj6L1/M7aGENc8cM9nZ9cfbYctHKUcixVnhO9I30nbtkvTza7vgEN1P5sIX8+90Hu/fV9xanR1MqKXFuM9YxUDjydVAPoeeip/Dh9A7alw5EnzJlDATOMErwSbk7p3lUN/Daxe5LE5fC/uHOT8NbkVyof2OFK6lghfXPcToDIuyZJw+MY2pSul5K+Wei0wtfecTrCRby0+SBPhy48sj67r3HLLLZw4cYKioiLKyuxyR87onmfVYoTbRWX3s7b9NF1kRtOyZcZ6u8N39GlY/ta0hzr1+HYcDBKOSAyn0PHe+6HvGH/ueBMRaZiZN8NPXaXOaUu8PDHFHb6cb7eFEFfEZujeLYT4cfwhpYxIKaf425UHSt8EwjLHMdJiqvmPEmekZ6RpXY/u4nRHWvfhIy/wTMt2jvafzNrZW1A6k9sWX8bpW/1cPHCE5Z7jaCK28HpWDjlxYkrhchSxZ5BmyYW6urqhnT2A4A77trs5/XEObLVxwsuOoLVRIwQd30k9KU06F8w0q5V81mqWuouY4c/sWFw1ZwP1/krwLLM/MVzjRnA/tNolSHAvh/J3jszQCSBltu5DT+Y3rVsXu2GJ/T3PNE4knhqJPMuWXQHCkdzsS4nwWRy+uO6nToRyrdu8d4k5fIOeNM1NeWTnwSBH25Ipal2Hs1an6quNiRafM8LXe3hUWnxW4kEFp7MHqQ6fd+0KkFEqup+zH5ghnZuRtHV86X+e+iqdihJ7B/geZx2flPDSdwlEPQmhZQwfCI3XbSxGH4XuXqGQk8MnhPhX4H9j570ROAlcDHTm3bKpil4GpTfZ93X+76j/MJ0O30gbNwDOqFs6/EFpqPWWcUXjer6x/j3857rbWOOdS7hvMCG4LIRZ6I1n5TBXmkI4HT5nmnWsGKHD11xmrYUS7Ao7HKbun0DYou8lw9Bvl8eg6CLC0Qh7e+xRi3xIsmRzvWpvKdfMjTk9HsdnObgjc/OMDMGJ94G0RGiEF+q/Y0bnCwT/eWttTQHhg8cIbstjNL02WXer6zp1eit6rD41mzq+uTNdlPiTXz0DAZm9WC4Q6egm0p6M3Aq3C6MhqRMZX/sq9E4EEl3XTYmH4gaiWu4dwbnwqCO6d/piL2XFqXJJRuMYRPh8VXYtvmBvYtzaWCGlZPBZ+02Ud90KaHkZd9jSIOUqgoZMOqEZqF4G1nrmgZPQsSvtoUKIlG7dV/Y6PlNHnoKTr/BY13n0RmIpacOP3yvYdKqf6UCuEb63ARdKKT8MBGP/Xg405duwKU35O7C99cHt0P/YqC6ZLwFmgNOqF6bOJrVQ6y3j1OoFXDnnDD6w7Eq+tvYd3HPuJ7jzrA/ztuZLaIqNvoovvPUVZuBX13UzsOedTg5fk33b1ggwhqQ4fNnVBzmdqH2DGkFh+XKSAfMGJc7gcxDtTG5rZeA9nf29JwhZJrVUekqo8o5sVFEmnGndOG9ZeBHeuLizXgW6VTQ6BME96S/Y/v8g8KJ9X/UXwJ2/mdLjgVZShG+DvRmq5978jXPEX5NIH+q6jk6UOt38G8/G4dM0wSrn1I2dQxTZO0iJ7jXNTNHfA6hKCC7Hnisf+Ui/bBgMRnl6a3rtPSfO8WqhA0dHH4UVAoodfxN5quPLRHj/USKtlvo9nwfPsgWp3bmzz4VcBdc1A+rX2fcd/Vv6Y0mjx+cUYH75u0Sl4A8nrzK3dS9optCyzzNxjRTjSa4/ZbmUMi64ExRCuKSU/wDOGeokhQNXIxS/zr6vc3RCzGVlZfZC2nCYY8dGdtfo1d18evWNrK1pZk3NIq5u2sAHl13Ff6x9J/ec+0nuPOvDfO6UN/HWRRdz/sxTaC6bhd9IvXM+cOAAAkl9edLhA8CzYkR2FSQFFuGr8BRT602mbcLRKPs8jkE6XXdBJFYzlzJd4wIQRoocSybnbDQsTJMiXl7RxIY6R1QyJcqXpo5v4BlTxsZK0cVmCUYBUnzNhbbtvgefINLVk+HoEVBrpnXjf9PxtO6xY8cIhYafeulM676Uw1xdZ4euy9GhmzJSLeHwja3j/sy2QQYCSaetvERL+Tnj6LWVCE/SAYr29BHtzMPvJ11adwxJSeeessSMLqeZrjEiZjqkkI49k/44YNlcu0O540AwWSpwcjsc+isv9K7hWDDmbLv86Bpceubkb8bKF7k6fHuEEPHVdBvwHiHELUAO4lYKIHXc2sDj5qzTESKEyNtcXTDrrT61+kY+vfombl14IefNXM3Csgb8hmf4ky2vX17chdtlfgHoumFGgIw8CcEWAikO3+hr+IYlOgghR0rfvTDr0521djvCK+xRMjkAnXea/0+p3zMdjd3dY1e/F2deST1ePZlq1YXGO5ovTe0SdTscPmcdX6QbTnwALLNh0eug9r8KttbUd/ZpGDOTvzMZCNL720eGOCNHYmldTQg0TSQcvkgkwpEjwzcLrFpoX0f2HgnR1ZtdRiJVgy/52QoGg4kb3bgG33hF+DY7tPfOPsWP7mwaiCE0bWxGrDkbN8Y4wjf4rF1w2bt2BXTth3bLDafQodE+HjJrZjgcvqN/y1j+NLPGoKw46dIEgpK9R2I3H1vMrERCikVzge7mzJU+qspSU+5TlVwdvs8A8RlPnwA+CPwHpjafIhe8p4J3rX1f5+gUbfLp8I2WgYEBWlpamFGRrPfSdc2M7hXol+iIMOpBWL7cop150V4cktBurM5LIFKT00iw1Fm1x6H8PfaDOn9kzoO2pahd4N9knuNo2FiQ5/o9MHUjb15wfkLq5S2LLkqUE9hwNm5YJ4JICa3/AmGHk1L3TdALV3RA6Dol19mjKj33/gkZTS9emzPxxg3Mhghr40Y2605Zsc68Bntd5Mu7skvrDhXhi0vDgBnh0zTNnMcKYxrhO34ynFIzdl6GdG6cMWncGEeHT0qZMmHDu2Z5ajp35nrwlo/sRWpWmPV/cQbaoDN9SYYQgmWOOr5X9wWg7wTs+g37BufxSl+snCh2zddvnD7RPcjB4RNCLAa8wDEAKeU/pJQLpJT1UsrfjJWBUxqnEHPPb82B7dky+DwcfTOrKj4CvQ9MKocv/trx+j1N08zIy3Rq2ABThiCljm+Mo3xBu0BpfyS3MXupDt8RKLvFrIeLI3vhuOPz61sPeil9oUEO97UldgucM4bzx+WN6/nfjR/iR2d/hMsb16c/yDbhBrs0S8+voPf39ufL3w3+s/Nr6ARQ/IYLUpo3Bp56cYgzcqB6BTI2ScbQdSq0LnzCrF/LViHAOXXjxSzTusEhHL7kmiep1DrQDUv0Zgwdvs0v2Js1Fs520VA7dKNPisN3cIw6dceI0N5DtvF2mt+He+l8OOCI+s8ZYToXYnV8DsHzIer4ljjSuq/uDcC2H0A0lKzd03TQPSyb52Zew8jl0AqRrBw+IcRbgK3AHcA2IcQbx9KoaUPRhY6UXwg6fzD8eZEeaP0UHL4C+v+C3zgAJz5IQ53L7IKN0dHRQU9PHut2ciDp8JkRvmT93jRz+CCNw7d/bF/PUb83EM7N4ZtbUo+hJb8oWwY66QhFU29QnFGxInNh391t/+JqLK7NqRQgV6q9pVRYZg+n4J5PfJQfYAqfR07GJFg+5Th2GVR9YizMHHf0yjKKLrF3Rvb8/I8Zjs4Rw0u/z7zBdNbxZXujudrRuPHyzgDR6NCNC9HefpvIL7qOy9LxGm/YKBL9eEUwue64/FDk0I/ME9Go5LHn7Q7feacPH1FP0eI7MH4pXRkK0/Ffd3Ps5o/T/X8PjOilnOPUPKctQWgSjjvlWC4a0fUTpJNnyYBTj2/7/kEi235Ke6iSp7pjN3FGEQgx7aJ7kH2E7+PAtVLKWuAG4JNjZ9I0QuhQfpt9X/ePIdqX/niA3j/BwXPMwnlrzZEcwBV6ipkz7YvISPX4Rou58ErqKpwNG9PR4XNq8Y1xp27A7vD15+jweXQXTcX21Oiu7iNQdito5ZlPjNXvORs2xiKdmxPCldq0MrgFTrwfpOVvLSHBMnXu+ktuuNS2PfD484QO55BFGIJen1kXqul6QoAZoLu7m87OzmHPXzTbjd+bLO/o6Y+y7+jQDR8p6dzGGYkoZjQazdywUTZ/zEpJtu0N0NaVrD90G3DmylTtPScpEb4D+YjwOf7WMkT4en/3CF0/+i2Bl3fQ/tXv0ffnzFGzTAw+55BjWbMC2l+DqOV3WDTDnME8GpyNG0cz6/HNqjUoLbJI/vT1s6+7hoc6Xk9E6mbGxfBRX6VzavPYSvRMRrJ1+GZKKe+L/f93wDSquh9jSq4DzTILN9oN3b9IPS58Ao69E46/1RwCn47+J5g9O/1MyfEkGo1y6NAhyou68LrMuhbD0EErMTuUpxvj3akbGl1KF9KkdbsOm5M6nDcocdxLwGW+zs6Uho0JdvggtVO39VMQeMG+r/rzOTW3FALulYvMNFscKen9RX4kWnr8ZopUEBPm1XOr49N1wYoF9ojMcGndlIaN+cnPaVtbGwMDZlq5Uu9I6n7CmDVsBEOS327ute1bt9yHP4t5qcacVC2+UUuzFNXbZ3gPnATLPOvE7qdftm13/vf/IcPZzzSW0Whqw8aa5dDykv3A2tVZXzMj1SsT85sB6G+BrvRlMaYeX+yGTUoI9fNC7xr+nBBa9ieie9o0EFp2kq3Dl3hnYvN0x120RgixWQgxKITojT12DHP8h4UQx4UQXUKIHwohxi6nNBo0H5S9xb6v806QsTtGGYWun5pRvb5hQu8DT9DYaP9yn4gI34kTJwgGg8yoNKN7QgiEiDdsTA+9Ixvj2akbHXB06AoGwrl3yDqdtETUruxtoKXR04tN15BSsitFkiX/Hbo543T4wo4bIf9FUHrL+NkzTgghKL3RPhau5zcPEx3MXvcuE73+pLZjcuKG6bBkm9ZNlWcZ2q7UDt109XvmDN2E4DKMicPX2hnmM3e0sm2P3eZzh2nWiKPXVCB8yZ8/2jdA9GTn6IzSjNTUdZoRa+H99n2h/Ufouz97LdjQ7oNEO5KizlqxH/eSudDiqBG1iHSPGN2VWsc3RFp36TyP+b0Z6gMZ4Xdt19IXKQIEuHwU+wTnTBOhZSfZfvsWCSEOxh9AmWX7UGzfePB+KWVx7JFRWEwIcTFmF/H5mKLQ84AvjI+JI6DsLYAljRQ+CH1/hOBuOHKN2UUYdSqm61D+XhCWO59IC00z7SmRw4cPj1iAeaQkBZeT9XtCMD3TuTC+Dl/Q3qGL0UiU3O91nE7aru6jRGQU9FIoe3vqCbF0bttgF53BZJrUrRvMLqrJ+fXzjlOaxYpeC3WFK8EyHP5LN6KVJeuVol299P/xyVFfd8AzE9ym86/rOl4RoEIzJ2Bk6/A55Vl2HgzSO5C5kzg4xEg1azajSutMpnMByvMbud22J8DHv9WakoKeU2+k1JFlQgiBq9HunIXGZKau3UmW0Wja1+n8zs+RweE1FIGU6Rqe05YiDANa7ZFDalZndb1hcdbxHUmTgo6EYP/DLD36ZehvhZAZeQ3JWP2u4QWhc+G6IrzuaRh4IHuH7zzgFsvDuv2m2L+TiVuBH0gpX5FSdgBfBN4ysSYNgVEDJdfY97V+Dg6eD4N/Tz3esxpm/wmqPwM+e31DmWsLxcXJxT0UCnHiRH5qdrIl4fBNZ8FlK8YMbA59tAMiXRkPHxUjnLDhZIavkmJX8mZiIBzgSLzztvydICwFz8Ys8zNJajp3fslMWwPIhOGM8Fmp+6a9A3mKoXk9FL/hAtu+7nw0bwgNalYByb/xBsMsNzl69CjhLFKE1eUGs2uTncRSwtbdmaN8zgifO22HbjzCl7xuviJ8UkoeeKqXL/6gjZ5+u2M6s8bgo2+qyilV6GqyR9Lz0rjh7NR1NG5EWtqRg6mj7MLHWun51Z9T9qcjRXB5zXII9UOHvZyEmjzd5KcIMMfq+KSE1i3w1Gfhp6fCQ7cyu+XHFOtpRsq5itB1uOSM6desEScrh09K+ZiU8jHgaaAZuB54u+MxHnxVCNEmhHhKCLFpiOOWAdZbjZeBOiHE5F3VKxxCzJHjgONuS/jNUU+z7k9+gfnOsh8y8ERe5+qOBHPhlbaRasD0jfAJDVxz7PvGKso3wgkbToQQmdO6ejnU32l2H7vmmQ5TLFW/q2sS1u+Bqamnp9HoK7sN/FN/UFDJdZfYIpjBV3YT2LJziDOyJKbHpwmBcAgwHz2aXRPC6mZnWjd9HV90IEDY2nAiRKLTNa77CaAToUzrMXU/45TNy8qWoQiGJN/+ZQd3/aELZzPx6Uu8fPW9NdRXGelPzoBTfDkvjRvDdOoOpffXdecvifYPXUcpo9FU/b21K6Btq5lKjTHongGePI1TrFltnxPcdxz+/mW491z49SWw9QdmvSKgCclSv90+XMWgGWxc5aeydBLcgE4QuX064W5gFXA/ML5hI7NT+FUgiNkpfL8QYrWUMp0KYzFgDaHE/18CnHQeLIS4DbgNoKamhs2bN+fR7OxZXLacCvcLaZ/rDJ7C3p7bCByqAZ5I7PfrXlZWSAIB844tMvgogcB6AoHkXfLTTz9t2x5LBgcHOXbsGOVF3Xhcg0hpLv7BsJt//O0AkEzJ9Pb2Tth7PVJGavPiMh8V7uRd9a4X/0BboDN/hiVe53Hb6+zeFRqxzXpwkGAo+bn5y7anMXZZ75y/Yv6zLwCY1//bwEsEo8lzBg92sPlo7q8N+f98LCmrptyd/Pz1h+ew5fAGJPl7jVwY73WncmED3m3JDvHX/vN7dL7tdUOcMTS9vb283K2zOGh+3gSCeu1YYq15+OGHmT9/+Mia7PMSCCSngjzxfD+LK19OybC7Dp6gxrKOhavLefwZs5arpaUl8bo1RjuakARjI94CrmpeeOrvCZtH8j539+vc/1wNJzpTO7jPaO5i7ewu/pF56ldGfL0dVASTf68Hn3mBlzenNlnlYnftyW7mW67ZtuPv7BpInut/7CXKg6kRPgCOtvDCF75B76UZNC0B41ALtZb5uVGfh6ePHWDmK39gjuW6HUVzeDGPn+mlWiNlQYsj949vZDx2keclnunZQFRzExUepNQgEKDOvZ/NmzOnrQvxOykXcnX4LgHmSik782mEEGIzmefxPiWl3CiltOY27xZC3AhcBnwrzTm9gPXWIv7/tKJ0Uso7gTsBmpub5aZNm7I3Pp/0G3D0Ovs+vQqqv0hd8ZXUpasxklF6t91OsTfeiRXh0nNnsmdPMr0RiUQYr5/plVdewePx0FjXhRACXdfweNzgXcOm5efZjt28efO42ZUvRmxz22PQuSWxubzZD5UjuM5w7P8EhJNfSstOeQOtz5wckc1lbbN49sVkdGCgWGPTGZmvE45G+O7mp3BHkjVM12y4hFpfec6vDWPw+ejphhMxLUGtBM+sn3HOCFPe+WC8151+rZiW934pse3Ztp8Vq05FrxhZFGbz5s2sWvsW+PH/S+yrj7bj9+hEMPD5fFn9/oIhyZ+3HiMYMsNmIQnzl2ygsd4uXNz7wOO0uZOf7bJTlrI0dv2HH34Yj8f83M1w9WG4XHhix3pmrU7YMZLP1Ct7A/zknna6B6J4LOV5Po/gg9dXcPqSkUcPB8vqOP6z5Mi74mCUVWnsy8nuQwIe+FFis6FU0mA5t/3ZfXRb3ketrJhoV7LTuPbxrZz6mQ+glaTXEuz+ye9pt5zvP+t0Fp9/Hjx8L5xM7h8sW5Lfv9+Sq+DZYaLS7lKYfwWrKm9Au6cGLdm2w/L5Ht545dC/q0L8TsqFXCsXD8IIKsCHQUq5SUopMjw2ZjoNS/ewg1cwI5FxVgEnpJQp0b1JhW8DFF+V3C65HhofNz/omQrKhUZXaLltV13JDts80fb2dnp7e51njgnOCRuJOprpWr8XZzzEl6P9ZsNPAgHukU8XWOhIxx7qa2EgnDlSfKivlUAkefdc7i6ixls24tfPO8WXw4wfQ+UnYdZDI65vLFR8G0/FmJ1sEpDBEL2/+cvoLuqvhhIzIqXrOjpR6nSz1jPbxg23S7B8nj1ylk6exanB556XoWFDdzZsjOxvQErJH//Wy+3fb6O7z1GvV23w1ffVcPqS4fX2hiJFi+/Q8dFLswzTtOFM6Za//yabcxft6aPrrt9lvLxTcNm7Lra2Oxo2en15nmzSsCH9fqHDnAvhwv+FN78M5/w7jctOocghjXP5NBRadjKswyeEOC/+AH4M3CeEuNG6P/bcmCGEKBdCXCyE8AohDCHEzcDZwJ8ynPJj4O1CiKVCiArMGcB3jaWNeUEIqPsfmPUnmPMc1H0d9IphT+sKrrJtG8GnmTHDvpCMlzxLfOGdUakmbNhwOe4sg2NQwxfc5XjNOabszwgpdvloKEqWvUalTJmiYcVZv7ewrMF24zHhCAFFF0DlB8A9d/jjpxhC01Ln6/7iIeRou/hj0ht6TIA53rjR1dVFV1d2zUnOOr6X08izpIguzzMdm0gkYlvfqvQODJvDl3vDRjAk+favOvnh/enr9b7y3hoaaoYenZYNWmUZWnFSIkQOBOyTREaCU3y577jZwRoj7KgT9KxYROlbrrLt6/7x/UTSSMTISITB51+17fOuWQGDHdBtqRXXDPp9ef4bqzsdGs9PbteshA1fhFtehEvvhvmXQ2yij6YJLj8r6eCtXOhJmewyHckmpZtu1tdXHNsSU/pkrHABXwIWAxFgO3CVlHIHgBCiEbO+b6mU8qCU8iEhxL8DfwV8wK+Bfx1D+/KH0MCbWzSsM+g4fvB55s65wVY0ffDgQZYsccwUzTORSITDhw8Dkjpnh653ujt8TfbtsWjacDZsuEYfwVpUOosjfcnA+M6uw6yoTL+Q7+x26O+VTgL9PYWN4jdcQOf//AwZq/kNH21h4IkX8G9aM8yZQ1B3Kuz5vSnArMX0+GL+2sGDB1mxYvj1zNTjSzqHr+4PMBiM2uQzUjX4zM9XXPczTo27B2EZMZmLJMtgMMpfn+/ngSd7OdGe6gi/8fwSrj2vJG+ivUIIjMYZBF9NlqKHDxzFqBtFf6HhBV81DMS66mUU+k9AySxkOEz4sF243zVnBq65DfT83x+ItJu/AzkwSNf3f03lx+39mMEd+4n2JGWXtLJiXIvmwGGHhl9FM1EtzxNrhIBLf2yKO3sroKxpyMOv3lTCgtluBgYlq5s901Jo2cmwET4p5dwsHmPp7CGlbJVSrpFSlkgpy6WU66WUD1uePxjT5jto2ff/pJR1UspSKeVbpZTj07UwAQSjNQ6ttzDNczpsx2SbXhkNR44cIRKJUOrvxe8ZRAhh/pEJf2qEa7phzMQ2zzXaDpE00gGjIeiob/GMrEPXijOt65RdsZIuwqeYXOhlJRRd6piv+7MHR3fR2lOT108IMJtkm1morzKoq0xG5SIReGVv0omToXCKdlxcg8++tklq3d32Wp8sInydPRF+/udu3vNvx/nh77tSnD2fR/Avt1Ry3QWleXccXHMcad2x0OKLdeqGj7Yiw8mfTa8uRyspQivyUfbOa+2n/PyPhI+12valyLGcvtx0rltfsr9ePiZspEMIqDtlWGcPzCjfqoVe1q/wTVvdPSfqXZgq+M62bTZU2Oe1Hj58mGg0s6BpPkjW7znTucvs436mI0JPI82yP7+vkSdJFivNaUaspasx6g8HONjbYtu3cKJn6CrSUuKYvDHw1IujkwOpXm5OeMD8my/XuvELs4kslxtN59SNF3ck6/hCB46aXmAMva4qkQq11u8ViX68mqUL0+VPnTxh4UhLiDt+08F7vnacX/+1h96B1M/2zGqDr763hjVLR1evl4mUEWtjocUXq+Nz/p6tsjAl112MUV+d2JahMJ133Gs73im47F0bi96mjFTLw4QNRd5RDt9UwW/X4/PxPEVFyULcYDA45gLMTsFlw1D1ezbGeuKGM8KXB4dvTnEdbi1Z+dER6KVtMLUua0/3Uet8DxqKqihyTb/h5IWAZ9kCPCvt6f6e0czXNbxQZeqC6rG/+ZmxOr5cJv2sctRYPfvqQOLmIrTX2bCRdGjsgsuOho2y+SkNb1JKXtsX4N/uPsmHvt7CI8/2E05joq7DBWv8Zr1e7ejr9TKR0rgxhlp8TmfSZXE2hcdN2Xuutz3f+7tHE/bIcJjA8w6Hb82ymPixY8LGWEX4FKNCOXxTBd8GrE3LIvgaC+faOyTHUoBZSmkZqaYmbKRlLB2+aB+ErV+KGrhG3yVnaDrzS+1fSOnSus5mDlW/N7kpueFS23bvbx8hOjCKqpfa0Qswr1zgxe2yqAt0R9l7xIzWpTRsxNK5PT09tLcnmxyqDWeHbjKdG4lIdhz186nvtPK5O9t4fnt6gWG/V3D1OcV851/qedcbKijyje3XpMsR4ctLSjfDtA2nM+mc9FF8xbl2BzQSofPbPwMg+No+or39iae0ilJcCxrNppB+S3Tf8ELF9OqALxSUwzdV0MvAY+/WXTrXXsc3lp26nZ2d9PT0YE7YMP/4NU1F+GyMZeNG2g7d/HSlOefqJiZuWNjh2LdA1e9Naoou3oBm0d+L9vTR9+DjI7+gJYXnrOPLRZ5ltWO27j9eNZ2ylIaNtPV7MKcs7KjfM2962rsifOy/W3jguWp2H04vvFtTofPW15dxxyfquemSsnGbyJCS0j10HDna8psM0izh/fabNeekD+EyKP/ATbZ9fQ8+QXDHPgafdUzXWBOr32t50f5aVckUv2JyoRy+qYQjrTu72u5QjGXjRvzaxd4+irwD6LpuZlKEd1RacFMKpxRIXh2+/NfvxcnG4dvliPo1K4dvUiM8bkquts/X7fnZgyPXgKuzN27M0E8gYkn+XNadtcvsdXLPvmLWAmaSZHFee6Z/wLYdd/jufaSbQy3pZ/vOb3DxoRsr+NZH6rhsQzE+z/h+LerlJWilSQkRGQgSOTFKydgMKd2Uxpcmu7MJ4L94A+5F9nrjjv++h8FnnQ0by8z/pDRsqPq9yYpy+KYSjrm6pcYWW/lKW1sb/f39jAVJ/T1HOte9DIS62wPSpHT35+/aY1C/F8fZuLGn+xjhaLLoqT3Qw8nBZMexS9NpKs5cKK+YHJRcf7F9vu72fQRe3jHEGUNQNteccoD5t+8VQSq1TiC3zMJpi71Ym2APtYQ5eiKQIhbsmm/OC3eWqVRoDg278vmEwpKntzocwdhrff6d1Xz1fTVsWOlH1ydOtiOlU3e0jRspTRtHkIMBwkftXbdWIe44QtMo/+CbbPsGHnuWwWe22PYlBJdTGjZWj8RixTigHL6phHcNiGRKRIseY9FcuxbSWEX5MnboTnf9PStOaZZIG0TSTvvLnTGM8FV5Sqn0lCRfKhpmf28yZbfLEfGbVzIDQ5vmXdkFgNFQh+/s0237eu4ZoUSL0FIEmOONGx0dHbFyj+Ep9mssnWdP6z7zdCsymEzD6lVl6OUlhMPhmO5nbD9hfKE2+wXL5vHijkH6B5ORyxK/xtc/XMsnbq1i2TzPpBAHT+3UHWXjhqcU3Mm/WSIBQru3mw0W8decUYPmTV/24TvndDyr7GuIDCUjpHpVGa55s02Nv1a7I6gcvsmLcvimEpoHvGttu1bMH3s9vmAwmCjMrncKLqv6vSTCAFejfV++onxj6PAJIVL1+CxO3g6lv1ewlN5kl2jpf/hvRNo6Mhw9DLG0rinArI2ojg9g7TJ7d/c/ttqzEq65Zv3e0aNHbR3AjWURNGFJSRc3gMvHUy/bo3sbVvqYNYZdtyNhPLT4wjvsNXhOJ9OKEILyD96c8XnvmhWmo9y1D4IWPVF3KZQ2jchcxdijHL6pht+uxzen1r7QjoXDd/hwUputvqIFTdOS4qTK4bMzFp260V4IW50uHdy5j5MaCmda1yqyvNtRv7dI6e8VDN4zVtkK92UoTMuH/53wSMZ72Ro3jBE7fGuW2B2+3W0a3a5kjZtrfvr6vUW1jqhy+QIGBqM8+5rd4du4emz09EZDSqfu/jxIszhGrIV277FtO51MJ751K/GuX5X2Oe+a2Px2Zzq3ZlXmue+KCUc5fFMNRx1fuecVhEh2fI2FAHO8jqbY20exr98ii+BWDRtOxqJT11m/52oCkd+xRk4R5XhXbkRG2eWQZFlYpiRZCgWhaZQ6JFoCL77Gses+wqBDc21YHJ26tfpJDMw0YC4OX3W5wbyGZAROhiO8UrE4sR3v0HXW7zWWBm3blM/nH68OYslEUuoPs6gxzyO/8oDR6EjpjoE0S2i/o/ElTcOGk4oMUb6E4LJq2CgolMM31fAsA608sanTR1N9sn4mEAjkXYA5vvDWpejvLQMxuVInE85YNG6kNGzkXwNrQelMNMud+9H+k/SEBjjS18ZAOKnfVuLyUe+ryPvrK8aO4msvSjhRcSJtHRx/2+fo/snvs+/c9VVBqdndqes6GlHqDXNNyEWAGWDt0mSUT0YibK1IzgF3zZtt0/2MU+N21AmWz+fJl+3p4OaZ/ZOiZs+JM9oWPnwcmcP7lRZnSveQo2GjcXiHz7NyEf7z1tn26dUVGHFnUTVsFBTK4ZtqCB18yVmZQsDKhfaZrfnU4wuHw+zbZ0apZqSMVFPp3BRSHL696Y/LhTGs34vjMzzMLqq17dvVdThFjmVhWcOk/EJVZEbze6m/68v4znCk7yIR2r/2Q9o+9l9E+1K7XNMSi/AILS7AbDZuhMNhjh3LPmq1Ji7PIiWEo+wqm8+AbjYYuObN4vjx47ZGEJfLRXHouO0aXe5mtuyyi0kvntWXtQ3jiVZShF6ZFMqXoTDhY21DnJEFzgjfMbtDnE2ED6D8AzchjGS63H/RmebfeCQEbfa6QOXwTW6UwzcVcejxza23d1Hms45v//79BINmKqW+ogUhBJoW+1ipCRuppKR094/+muPg8AEsSmncOJKiyacmbBQmekUptXd8jrLb3pjyXN9DT3Lspn9JET9OS62lcUPXmaknswm53GjOrjWoq9SR0ShSSsJCZ3vZQtMxqqlg5057VHv+vHmILnuN2tNH5xC1BCdn1xnUlKYXXZ4MOEWQR92pW5L8e40GBJGuZMpbGDrGzNp0Z6XgXjiHmm98Au+6lZS88SIq4sLMHTsgYnGo/XVDzi1WTDzK4ZuKOOr4Kn27MPTkQpdPh2/HjqSzUV/RimEYyZpdJcmSimsWYNEljLSaTRejIeB0+MZmrFFzmT3tt7P7sK15A1SHbiEjdJ2KD95M7bc+hVbstz0X2nOIYzd8jL4//23oi9SNfuIGmF2i65b7wJLW3Fq5FNe8WQghUhy+pXNrIGiJYLn8PPmavZxk4yr7zzTZSGncGK3DZ4nwhTpcYNHONGbWIlzZ66P6N62h/ge3U/Wv70Uric1oT0nnpm/wUEwelMM3FXHNASP55WzoUWZVJ9Mpra2tDAxkmaIZhrjDV+Tpp8TXh2HEFxHXmEWaChphgMvuOI0qyhfphog1VZb/Dt04zgjfjs7DHOhtsR+jOnQLHv+5a5nxi/9MmbYQ7R+g9Z//nY7/uhsZTj+1whyrZTpauq5TpvVQJMw6ulxvNNcu9SLDyQaz18oXIeY1Mjg4yP79+23HNjs6dFs9p7PjoD2at2HV5OvOtZIS4Rtt44a/JvG7CHcYgIw9wJibh7/TFIdPNWxMdgrG4RNC9DoeESHEtzIc+5bY89bjN42vxROIELa0rhCCFfM7bYfkI8rX3t5Oa6tZCFwXq98z4rUeniWqYSMTzjq+4Cg6dUPOGbpz896hG6ehqBqfkRRq7QsPEpHJL+QZ/kpK3JM7iqLIDtecmdT/9GsUve6clOe6fvRbTrzz82hdaerhDA9UmyO3kgLMZpSvvb2d3t7so9kLZ7spjSabLgZ1D7trmtmzZ49NaaC6uppSaW9IeKrPPjZu4WwXdZWTe+JP6rSNUUb4hJaQZgl1xNbiWJTP1Ti0JEtWtDpm6NasHv01FWNKwTh8Usri+AOoAwaAXw5xytPWc6SUm8fF0MmCz67HN3+GPfUWb7QYDda0yoyK1tj8XKW/Nyz51OIbw5FqTnShsbA0c6G3U7pFUdhofi/V//YhKj/1TlvRPsDgs9uo+dJdBF7dk3pivHGDuABzspli797sm5Q0TbC83378y2IW27dvt+1rbm6GTrsdT7Sstm2fdcrkvxFxCiGPerwaJDp1zQgfICNpXytnQgPQ7lh7alRKd7JTMA6fg2uBFuCJiTZk0uLfYNusKDqKz51M427dunXkg9JjWOv36mL1ewmUw5eZfDp8KfV7Y5tGXzSExp6q35t6CCEovel11N31ZfSaSttzelcfLe/9EpH2LvtJscYNAN2wCzBv2+bo6hwCKSXLDj1v2/fiySJ27LA7GqbDtzuxfXCwkYPdSWkgIeCM5ZM7nQvgcsy1DR9psY0zGxExhy/UHovwxRw+V9Mo/1ZPbktcCzCna3jLR3dNxZhTqA7frcCP5dAeyylCiDYhxE4hxGeFEJM7np9v9CpwL0tsugydufXJFEF7e3tOMglOwuGw7W59RkWLw+FTHboZyacWX0qH7tg0bMRxTtywour3pi7e1YuZ+cv/wnv6ctv+SFsHbZ/9lv3msS7p8BmGwQy9BRGrHdu+fXuiq384Im2dLDj2Cp6o2QkqBLT3S453JksWXC4Xc+fOtUX4nuo+ByyznFcs8FBeMvlnO2vFfvRqi4ZlJEL4aEvmE7Kh2Onwmanw4aZsDItq2ChICs4JEkI0AucAbx/isMeB5cABYBnwCyAMfDXDNW8DbgOoqalh8+bNebR47Ont7U1r85yi2cz0J+ssFs1u4cVdyS/s++67jyVLlqSclw2tra0JHSy/Z5BSfy/hsIdwGCQGf3+mBUmqTdnYPZnJh81e/QSnVCa/9EIDW3lu98iueVrV87i15LVeeqmTgYj9Wvl8n/tkgGAwkLJfQ+PQizs5JtKk+EZIIX4+cqEg151bzqXMiFL0+EtEpSQYDBJ8+G8c/PzX6Ts35uhJyZqIGyNi1ut5tCAlkRO0hisIBAL86le/YubM4VOK7tcOUB0YoPnkdrbUrCSqaYQCg7TJBgzDLFEpLy/nqccfZX3bbkAiJTzeeTYBIoDp3FS6jrJ5sxlZnOyfqSq/C4/FIX7u938ksGL+iO2uae9iXleYyKAAJNFwkLAe4cnXtsKOkcd7Fh78A9UWO/d3+DnmsG+yv9fpKESbc2FSOHxCiM2YTlw6npJSbrRsvxl4UkqZMQ8mpbQWfmwVQtwOfIwMDp+U8k7gToDm5ma5adOm7I2fBGzevJm0NvcBxx5KbC6b24HHkyy67+3t5ZxzzhmRUO4DDzyQuFZj3QlcLhceT+zO272cc5ZdOHK7JzF5sVmGYM/HADMl4qGfTWevAa0ot+tEumFfLxCPeBis23hjSrNMvt/n+558jZaBTtu+BaUzuWDd+Xl7DSjMz0cuFOq6I88+h+Nv+TQ9z27F7TY/e7X3P82Mm9+Ae1GTeVD/Bjj0V/P4qGSOr4PuYDJlmc3P2n30AdrdblZ37WBLzSp0l4uQhF45F7f7ZYSAs88+mzMWVcBO8zO/s7+ZtkgDHr85qcPQ4a1vPA2/13RuJvtnqu2RrfQeTEb1lpXXUrpp08jtPuIm8OLdiTVeF+Btnsem884bnaH3fArcyUhr88braZ6x1nbIZH+v01GINufCpEjpSik3SSlFhsdGx+FvBu7O9SUwa4inF761QPLLv8jdQmVJsktuNGldu/6eSufmhHDlR5olZYbuvHHpjE5XxzdUbZ9iaiFcBtVf+2ei3uQXvgyGaP3YfxEdiEV/rWldl0GDpXEj27RuXOh5cecuDBkBXScciRCIlhKImlMpnPV7T3RvAi25Fp22xJtw9goBZ21daLTSLCWzkh26ADIy+nRuoAu69ye3hQbVyzMerpg8FM5fAiCEOBNoYOjuXIQQlwoh6mL/Xwx8Frhv7C2cZGh+8K1JbAohWL/KXgS8ZcuWnC9rlWMBmFHZlpRjASW4nA35aNxw1u95xkf3MF2t3lDdu4qph2tWHV03X2TbF9pziI7/+JG5YdFk03WdRu/J5HGhUEqnbTpCe8zJHL7IIAu69xKx3LJ3hhupqamhsrISYhM2IlLn6e6Ntvq9yS627CTv0zaKZhDqsMg0ySiu2XWju2bry/btymZwFdb7PF0pKIcPs1njN1JK21BAIURjTGuvMbbrfGCLEKIPeBD4DfCV8TV1kuCYurFkjl2vaiTdulY5FoFk/swWe1pYdegOTz5GrDkdPtfYNmzESde4oSJ804+BdUspvuJc276eex+i7y/P2Bw+AdS7OzFICiFv3bp12OuH9iVHua1of42IZZ3qDM9m0aLY5z3WsLGtbwVd4XJT3BzweQSnNntz/bEmlBQtvtFG+HQX4e4S2y6jfpTvSYvS3ytUCsrhk1K+S0p5S5r9B2Naewdj2x+VUtZJKYuklPOklJ+TUk7eIYpjid+eEa/0vYahJ3/t7e3tHD2a212kU46lyGsp4tdKVEo3G1zz7NvB7PXJkudMTIRvbskM/BYB5gpPMTP8lUOcoZiqVH7qnSlRqZP/+j+EOyOmVEcMl6Exw0jebA6X1o109hBp60xsL+/dRdgyGqw/Uk19Q+zzHkvpPtkdKwOPRfjWLffhdhVWJY8x2xHhO9o6ammWUJddksZVNTo5rtQO3dWju55i3Cgoh08xAjyrTCcshiY7OH2VvTkgl7SuU45lbt1Be/2eb2PiDlsxBHmJ8DlFl8cnwufWDd7efAle3YXf8PCO5kvRhFpKpiNasZ+ar/2zTZg52tVL2ye/gaxendin6zrzS5J6feFweMi0bmjvIdt2SY0Pn5ZsZhACTvTVgZTQuYdg1MXfu8+MPWmuPxsn+Si1dGg+D3pdVXJHNEr40PHMJwyDlJJQu/1v01U2OOLrAakOn4rwFQxqlZ7qCAN8Z9p2nbrYPt5o27ZtWad19+/fb7szXzTrGJpm+Rj5N43Y1GmFM8KXaw1fpAsiJyw7XKl1gWPI+TNP4e5zPsZdZ3+MDXXLhj9BMWXxrFhI+Qdutu0bfHYbXU8nHS4BLKmyOxpDpXXjDRtxust8lBvJcZC6bvD89iD0t0Cwhxd6T2cg6jc9QU2jrFhj+TyP87IFgcs5cWMUad1IawcylIxyau4omt424uvRdwL6LeuO7obKxSO/nmJcUQ7fdMAxZm1m+R5zzmWM9vZ2jhw54jwrLda7crcRpLHmBDZVF+XwZYdrFmBpdImcAMvc0GFJEVwenw5dKx7djVtX0VwFlL71Krzr7LW7nb/cSeBIsmGgTthLR7Zv304gkKrpCMmGjTjHjChlrqTDZxgGr+4L0HvczDY82b3JfEIYgODMlT50vbDSuXHyOVM3vP8IiOQ6Y1SGEb3ZrfVpaX3Jvl29HHQ1M71QUA7fdMBvb9zQg8+yZPF8275siqjB3rAxp/YILmuNjGteqtyIIj3CBYaj0SF0IPvzUxy+8anfUyjSITSN6q9+CK3c2iCg0/pALdGAuUa4g23MKEt+5YTDYVs9sBWrwyelZH90EK/Wg1cz08KGYRCJwguvdNIX8fN8T0wDLla/V2jduVZSO3VHHuELHThqc/hcFSHoPTzEGcNwQjVsFDLK4ZsOuOaDbpnTKAdZs8J+95tNt65TjmVe/SG7HIs/k3a2Ii1upzRLDo0b4zxSTaEYDqO2kuovfdC2L9zt5eTDZk2aADY2RW3PZ7rRtKZ0I5EInSVmerbcOIimaYkykn/sMni25wzCMhZpFgZ1lToLZxdu1CklpTuKCF/o4DFTJy9+7coQ9IzC4XNG+FTDRkGhHL7pgBDgt6d159btt6V1Ozo6hk3rWqN7AIsbj9vlWFQ6NzdGM1M3pWFDRfgUE49/0xpKbrwsuUN30/dqEb3bzEaxJdF/2I5Pl9aN9vYTPp6sMwtFI/SUmFIiZS57k9iLx6p5tNMy1Ucz2LDKP6LpQZMFw5HSDY+ihi+874hNl9CoCEPfMbB0PGeNlKkafCrCV1Aoh2+64HDGXIN/pLnZHhUaLq1rTb+UF3VRUdxledaV0hyiGIaUTt0cGjeUw6eYpFR85FZcC+eYG4bZuNH+cCWhDgNv92ssKk/WqqZL64b22W88u/wuojEpKb92ksqypAMTDAte67c0DWl6QXbnWnHNqsdaGB0+3gYjlGYxGz5EIsrnqghBNGxvvMiW7gPmlI047hIon5f5eMWkQzl804WiC0BYutbCh1i70m07ZKi0bjgcZs+ePYntefVOOZa1uc+Cne44I3zBLB2+SCdEWiw7XKnOo0IxQWheDzX/8RGEx23Wj+luoiGN1vtrkEHBphp7rapTFspavxeNRmkvSqZn3W4XG1eXmhtSpkSqGus9zK4r3HQugPC4MWbUJHdIidHSkfN1ZCSSlHSJ1fG5KmJytCNJ66YILq+0pYsVkx/125ouaMXgtw+3n1f3Skpa9/Dh9AvBvn37CIWS2tWLZh93yLGo+r2cGel4tZT6vQVK+1AxqXAvaKTiY281NwyzgSJ43M2Je+to6HoBnxhIHLtjxw5bWtfq8IXDYbrKkhG7+fPns255rCFDOqJeQuesU4vz/JNMDM7GDaOlM+drhI+1JUWbhYbui6B5Yzf0I2ncUPp7BY9y+KYTxVfYNs207kLbvm3btqU91Zp20USEefVHlRzLaHE1YvsTjByH6EDGwxOohg1FAVBy/SX4z10LuicRYQoc9dD2ixrO9CQblJwizEFLw0Y4HKa7NOnwNTc3s3SuB79XpNahaQYbVhZ2OjeOU5rFaGnP+Rq2ObxCx6i0OMgjifCpho2CRzl804miC0BYFsTwUdatsqc/tmzZkjata23YaKg6gddtWTz0anAvzbu5U5600iz7hz9PSbIoCgAhBNVf+SfcyxYkonwAwRY3C39/An9/UojZmtaNz9CVUhKJRGwRvkWLFmHogtMWe1MifItr2qmpmBqRbleTvVNXP5F7Sje03+LwaXoynQuQqxZfNAxtjhpvFeErOJTDN53Q/FB0oW3XvNpttlq8zs7OlLTusHIsvrNVLcdIGcmINdWwoSgQtJIi6n9wO941qzCFWUxku8br//IyRb2m07dz504GBweJDgYSdWeRSAQJdJeaHbo1NTVUVpozm9cu9aVE+DYsykG4fJJjNNodvpHU8IUcET5XpcXhyzXC17ETwpZJKb5qKJ6Z+XjFpER9S083ii+3bRoDqWldZ7euU45l6dxWJceSL9yOLrfu/4PQMIuxivApCgit2E/t976Eb4WlEUFASV+ACx9+jdKugURaN3zgqNmMgZnO7SvyEIndXC5alCxdWLXIg4ukA6KJKGesLB2fH2gccGrxGSfykNKtsEREc63hc9bv1Z4CBSx9M11RDt90w38+CEs3beQE61YOLcJsrd/zuQeoK3MM81YNGyPHGeHrfxQObIDWT0M4jXRCpB0i1lmYbnDNGUsLFYpRo/k81H7n8/gXJqNwuohQNBDggr+8RnlHH1u3bk3TsOFNbDc3J29sfIHD3FhzV2L7jdX3UNYwdSRCjIZasDTU6V19RPsHhzgjFdsMXuFI6fYcTjjWWZHSsLEqJ1sUkwPl8E03NC8UXWTbNbcmc1o3FArZ5Fia6hzpXPcyMCx37orc8J9L6p9hCLp+BAfWQ9vtEDmZfCpth66OQjHZEQ2nUPOO2RQt6TO3EbhECE8gzAV/2U7bk8/Rv8PsVI9Go0SlTNTvuVwu5s6NdbVLCU98gssrfsX/LHgH31pwG9c2PQ7+ugn5ucYC4TJMp89C+FD2AswyGCJ8xCLdJARGraVeOzwAgzmkiVXDxpRg0jh8Qoj3CyGeE0IEhBB3pXn+fCHEdiFEvxDir0KIjGENIUSlEOK3Qog+IcQBIcRNY2p8oeHo1jUGH2JxhrTu/v37bXIsixtPKDmWfOJeCDN+kirRAiAD0HkH7F8HJ78GkS4IqHSuonARq99G9evaKFnVAwJcIoxA4gpFOOcvr9L+wGOAGd0DEh268+fPT96U7v4dHNoMQJ37BPXuY3D6R6dcitHlkGbJZcRa6NBxiCbH2Bn11WgVjgaxbNO64UE4+Zp9n2rYKEgmjcMHHAW+BPzQ+YQQohr4DfBZoBJ4DvjFENf6NhAE6oCbge8KIZYNcfz0ouhc0CxDziOtrFtln3EZ79a1q+BLFjUcUXIs+aboXGh8DGq/ntq1CyD7oeObcGAddP/Y/pySZFEUEvNejyiqpvKidkpP70YABqZzZ4SjRGNTNuIOXzzCl0jnDnbA3z5nv+bMM2DxDeNi/nji1OILH8g+wuccx2bMmQkljrUl28aNI0+CtDTIlMwGX2XWtigmD5PG4ZNS/kZK+TvgZJqn3wC8IqX8pZRyEPg8sEoIsdh5oBCiCLgG+KyUsldK+STwe+CWMTO+0BBuKLrEtqup2p7W7erq4tChQ7aGjZrSdoq8fZbr+MwJG4rRIwwovR7mPAU1XwU9TXoq2g3B7fZ9KsKnKCR0Nyy5GSGg4twOys7sxC1CQLJRIy7HAskO3UTDxtO3w4DlK0Jzwdn/PuWie5DauGGTWRmG0H677IprzkwoHmGEb8v37Nszz8jaDsXkolBEi5YBianNUso+IcSe2H7HNyCLgIiU0tpa+jKQMfcohLgNuA3M1v/Nmzfnyezxobe3N2ebK9yNLC4LJrbDA7+mrOxdHD2arPv4xS9+wbFjyTvFOTX7iEYjBAJmNLAjuJztj/1tXO2eaMbH5jlofI06359p8P8Gl9ad8cgXX+xgMDK0PYX4PkPh2p0t03HdAXAH53NqMIwgStG6NkJykMGn5hCROhLo6+tDSkm/z0WvjFDs8rFlyxbKereydO9PbNc6VHc1h186BBxK+1r5snki8HS2UBU01+iolLTd/yivnLkIWeQd5kwoe/IfFAWT6/veQA/txwdotOw7tu1J9rcPnSHwD+xn1b5HbPu2DiyjN4v3sJDe6ziFaHMuFIrDVwy0OvZ1ASUZju3K8lgApJR3AncCNDc3y02bNo3Y0Ilg8+bN5Gyz3AD7vg9R863yEODqi+v4/j3Jt669vR2PJzl/d9WiLtt2fcP11Jfn+LqjtXuCGV+bL4LoF8wGjo5vJ35XCYSX9RuvG7ZpoxDfZyhcu7NlWq47ceRDsO9BAMrW9XBM9KE9WQaYzg1C0FPmx+PxsHbtWjZtXA/3fgrclvnfFYtYcO03WKBnPzu3kD5T0XVncPjnfyXa0U0wGMQdhVUHOil/7/Dp6+N3/4VBy3u17MJN+BuOwCO/TOxrqjRoGu69ePSf7O95/VpOv+ydWdlfSO91nEK0ORfGJaUrhNgshJAZHk9mcYlewCmyVAr0jPLY6YtwQdGltl1zql62pXWtGFqYhirHXbSq3xt7tCKoeD/M+TtUfASEZVZo6Y2qQ1dRmCx/a+K/LsOgadVOXjzDnsI8NLsCiNXvvfBN6N5vv8Y5/wk5OHuFhubzUHbrlbZ93T+5n2hPX4YzkjjTv66mhtQavuFSun0nzAYZK6vePexrKyYv4+LwSSk3SSlFhsfGLC7xCpAQ/onV6c2P7XeyEzCEENa201UZjp3epHTr/oklixekPXR2zRHchkW3yZgFrqmjezXp0Uuh6iPQ9Heo/SbUfReqvzDRVikUI2PmmVBhphM1XcfQoGbpEf580VJ2Lazl2TVN7FpYa8qxlAXgpW/bz192K9SfPgGGjy8lN1yKVpa8yYv29NH9f38Y8pxo3wCRVotQs66bEi+5Nm1s+yFELdp9pU0w58KMhysmP5OmaUMIYQghvIAO6EIIrxAiHm76LbBcCHFN7JjPAVuklM76PaSUfZgdvbcLIYqEEBuAK4GfOI+d9vg3gFaR3I52sW5lMO2hS+akkWOZgoXSkx69AkrfCCVXmo0eCkUhIgQse4v5X8BwuTjFs42Oah/PrWli98JaEIL58+ZiPPVJc5ZrHH8drP3khJg93mjFfkrf7Ijy/fh+or2Zx8jFR9PFMRpqES4D/LVmk0ucQCeEMkQLQ/3wqkMRYOU7QVMZhUJm0jh8wGeAAeATwJti//8MgJSyFbPz9stAB7AOSBQyCCE+JYT4o+Va7wV8QAvwM+A9UkoV4XMiXFB8mW1XU9WWtGnd5sYTSo5FoVDkj0XXgtuMXrkMF0VigMXuPbZDNlbshRPP28/b+GXwTJ0xasNRetNlRH3J2ulody/d//dAxuOden2upliqXGip828zRfl2/AIClpphTxk0X5+T3YrJx6Rx+KSUn0+T7v285fm/SCkXSyl9sRTxfstzX5FSXmrZbpdSXiWlLJJSNkop7xnfn6aAKLbfPeqDD7N0iT2tW+LrpcLfYj0KfGeNg3EKhWLK4i6GRW8EQNM1NE1wmmdL4ukS0UtTy8/s5zRdDHPttcdTHa2kiN4L7Onr7h/flzHKl1K/Z9XzK26wH5zO4YtGUqVYlt4KLn/WNismJ5PG4VNMEL71oFcnt6PdrFthn9k4b4ZjnJr3FLOmTKFQKEbDMrN5I57WnWUcp043BRmuqPo7esTi1LiLYeNXpmUpSd/5p6GVJGegR7t66fn5H9MeG3ZE+Ayrnl82jRsHHrY3yGguW5ONonBRDt90RxhQ9DrbrjlVL1FamnToTlvcg7Ausj41Tk2hUOSBigXQYPbtuVwuEHCadwuLXHtY6NprP3btJ6F4RpqLTH2k30vpm15v29d1931E+wZSjk1J6VodPqf4croI38t32LcXXg1FU2dO8XRGOXwKKLF36+oDf+HNt1zHypUrWb9+DfNn2FXbKdo0frYpFIqpzfK3AaBrGj6fj9VF+7mm7gXcVv23utNg6ZsnyMDJQcktl6MV+RLb0Y5uen7xUMpxGWv4YPgI34kX4fg/7PtWvmtE9iomH8rhU4B3rX2Ul+yjoXwnN954I1dePBcNy6QHrQw8q8fdRIVCMUWZc0GitsxlGJT4DEr1fhI5Bc0wx6dN8w5RvbSYkpvtUb7uu35HtD9ZghPp6iHamZScFW4Xer2lZCclwue4md/yv/btWWdD1ZJR2a2YPCiHT2GK9xbb07r03mf+27/Zvt9/thL7VSgU+UMzho7erXqvcjpilL75CjR/MsoXae+i55d/SmyHHQ0bRuMMhFVOa6gIX89h2Ovo/lXRvSmFcvgUJo5uXfoehugA9D9m36/q9xQKRb5ZcpNdIy5OaROc9qHxtmbSopeXUHKTXUqr+0e/JToQAIap34NUWZb+ExCJiStv/T7ISPK5ymaYvSkfZismCcrhU5h4TwO9PrktB6D3dzDo0MBS+nsKhSLf+KpgwZWp+8/5DzC842/PJKb01isRvuR7EmnrpPdXZpQvdPCY7VibJAuA7jaFq+NICX1HIdAN2x3qZSvfNS07oqcyyuFTmAgtZdQabV8GLHd8roXgctwhKhQKRT5Y8U5zHYrTfD00bJg4eyYpekUppTfYtQi7fvBbooOB1JTuXIfuHqQfsbb9Hgj2Jvf5qmHB1fkyWTFJUA6fIomjW5dou31bRfcUCsVYUbMCzvsWzFhvdu6e9W8TbdGkpfQtVyIs0zcibR30/vovaVK6aWRsnOLL3QfMdK6V5W8Fw4NiaqGGcSqSeE4BYxaEM4zb8av6PYVCMYYsvNp8KIZEryqn5PpL6L7rvsS+ru//GunQ5TMa02RknBG+rd+HXoujqHvMyRqKKYeK8CmSCJGa1k3gBt8Z42qOQqFQKNJT9parEJ6kVmGktZ1of9Lh04p86NXlqSc6pVnat9u3m68DX2UeLVVMFpTDp7CTyeHzrQPNl/45hUKhUIwrenUFJdddnPF5o3GGfUJSHGeEz8nK20ZpmWKyohw+hR3PCjDmpO5X6VyFQqGYVJS+9WqEO42cDY4JG1acET4rcy6E8vl5sEwxGVEOn8KOEKnNGwD+c8ffFoVCoVBkxKitpPjai9I+52pK06ELQ0f4lNDylEY5fIpUnCLMeh24F0+MLQqFQqHISNnb34BwpfZfGk4NvjjuYvCUpe6vXgEzVZ32VGbSOHxCiPcLIZ4TQgSEEHc5nlsvhHhYCNEuhGgVQvxSCJHh0wxCiM1CiEEhRG/ssWPMf4CphHsJlFyb3K76hBLgVCgUikmIUVeVNsqXMmXDSrq07qp3q3V+ijNpHD7gKPAl4IdpnqsA7gSagDlAD/CjYa73fillcezRnE9DpzxCQO03YNaDMOdpKL1+oi1SKBQKRQacUT5h6LjSiS7HcaZ1i2bAvNePkXWKycKkcfiklL+RUv4OOJnmuT9KKX8ppeyWUvYD/wMoCfaxRGjgXQ2uNA0cCoVCoZg0GPXVlH/olsR2yfWXopUUZT6haql9e8XbQU/f/KGYOggp5UTbYEMI8SVglpTyLUMc8yHgBinl+gzPbwaWAQLYAXxaSrl5iOvdBtwGUFNTc9q99947Qusnht7eXoqLiyfajJwpRLuVzeNHIdp97rnnPi+lPD2bY9W6M/4Uos2Qvd3G0TZEMESoKWPFEwCuUAfL9n4BX+AwXcUreK3pk0jNPeQ5uVKI73Uh2gw5rDtSykn1wEzr3jXE8yuBduCsIY5ZB5QAHuBWzBTw/Gxef9GiRbLQ+Otf/zrRJoyIQrRb2Tx+FKLdwHNyBOueWnfGh0K0WcoxsjsSlrKvNf/XjVGI73Uh2ixl9uvOuKR0Y00UMsPjyRyuswD4I/BPUsonMh0npfy7lLJHShmQUt4NPAVcNvqfRKFQKBSKKYCmg796oq1QjCPjMktXSrlptNcQQswB/gJ8UUr5k1xNwEzvKhQKhUKhUEw7Jk3ThhDCEEJ4AR3QhRBeIYQRe64BeBT4tpTyjmGuUy6EuDh+vhDiZuBs4E9j/TMoFAqFQqFQTEYmjcMHfAYYAD4BvCn2/8/EnnsHMA/4V4u2Xm/8RCHEp4QQf4xtujDrAFuBNuADwFVSSqXFp1AoFAqFYloyLindbJBSfh74fIbnvgB8YYhzv2L5fyuwJs/mKRQKhUKhUBQskynCp1AoFAqFQqEYA5TDp1AoFAqFQjHFUQ6fQqFQKBQKxRRHOXwKhUKhUCgUUxzl8CkUCoVCoVBMcZTDp1AoFAqFQjHFUQ6fQqFQKBQKxRRHOXwKhUKhUCgUUxwhpZxoGyYVQogeoNCmclRjThUpNArRbmXz+FGIdjdLKUtyPUmtO+NGIdoMhWm3snn8yGrdmTSTNiYRO6SUp0+0EbkghHiu0GyGwrRb2Tx+FKLdQojnRniqWnfGgUK0GQrTbmXz+JHtuqNSugqFQqFQKBRTHOXwKRQKhUKhUExxlMOXyp0TbcAIKESboTDtVjaPH4Vo90htnk4/60RSiDZDYdqtbB4/srJbNW0oFAqFQqFQTHFUhE+hUCgUCoViiqMcPoVCoVAoFIopjnL4YgghfiqEOCaE6BZC7BRCvGOibcoWIcRCIcSgEOKnE21LNgghNsfs7Y09CkJ/TAhxgxDiNSFEnxBijxDirIm2KROW9zb+iAghvjXRdmWDEKJJCPGgEKJDCHFcCPE/QohJLSElhFgihHhUCNElhNgthLg6y/PUujMOFOqaA2rdGS+mw7qjHL4kXwWapJSlwBXAl4QQp02wTdnybeDZiTYiR94vpSyOPZon2pjhEEJcCHwNeCtQApwN7J1Qo4bA8t4WA3XAAPDLCTYrW74DtAAzgNXAOcB7J9KgoYh9KdwH/AGoBG4DfiqEWJTF6WrdGT8Kas0Bte6MM1N+3VEOXwwp5StSykB8M/aYP4EmZYUQ4gagE3hkgk2Z6nwBuF1K+YyUMiqlPCKlPDLRRmXJtZgL2RMTbUiWzAXulVIOSimPAw8ByybYpqFYDMwEvi6ljEgpHwWeAm4Z7kS17iiGQa0748eUX3eUw2dBCPEdIUQ/sB04Bjw4wSYNiRCiFLgd+MhE2zICviqEaBNCPCWE2DTRxgyFEEIHTgdqYmHzw7Fwv2+ibcuSW4Efy8Jpyf8mcIMQwi+EaAAuxVx8Jysiw77lWZ2s1p3xomDWHFDrzgQw5dcd5fBZkFK+FzNsfhbwGyAw9BkTzheBH0gpD020ITnycWAe0ICpH3S/EGIyRzXqABfmHetZmOH+U4DPTKBNWSGEaMRMTdw90bbkwGOYd9bdwGHgOeB3E2nQMGzHjGR8TAjhEkJchPme+7M5Wa0740KhrTmg1p3xZsqvO8rhcxALjT4JzALeM9H2ZEIIsRq4APj6BJuSM1LKv0spe6SUASnl3Zhh6Msm2q4hGIj9+y0p5TEpZRvw/5jcNsd5M/CklHLfRBuSDUIIDfgTpuNThDnMvAKzjmlSIqUMAVcBrwOOY0a+7sX80sj2GmrdGUMKcM0Bte6MG9Nl3ZnUHSgTjMHkrqXZBDQBB4UQAMWALoRYKqU8dQLtGgmS9OHpSYGUskMIcRjTzkLjzcC/TbQROVAJzAb+J1bbFhBC/Aj4EvAvE2rZEEgpt2DeXQMghPgbI4tuqHVnfJjUaw6odWecmRbrjorwAUKI2ljre7EQQhdCXAzcCDw60bYNwZ2YXwyrY487gAeAiyfOpOERQpQLIS4WQniFEIYQ4mbMzrM/TbRtw/Aj4AOxz0oF8CHM7qhJixDiTMwUVqF0yRGLYuwD3hP7fJRj1gK9PKGGDYMQYmXsM+0XQnwUs9PvrmHOUevOOFDAaw6odWdcmC7rjnL4TCRmGuUw0AH8J/AhKeV9E2rVEEgp+6WUx+MPoBcYlFK2TrRtw+DCvGtqBdqADwBXSSknuy7WFzElKHYCrwEvAl+eUIuG51bgN1LKnok2JEfeAFyC+RnZDYSBD0+oRcNzC2bDRQtwPnChpfs2E2rdGR8Kdc0Bte6MJ1N+3VGzdBUKhUKhUCimOCrCp1AoFAqFQjHFUQ6fQqFQKBQKxRRHOXwKhUKhUCgUUxzl8CkUCoVCoVBMcZTDp1AoFAqFQjHFUQ6fQqFQKBQKxRRHOXwKhUKhUCgUUxzl8CmmPUKI/UKIASFEjxCiUwjxNyHEu2PzFRUKhSLvqHVHMd6oD5ZCYXK5lLIEmIM5A/LjwA8m1iSFQjHFUeuOYtxQDp9CYUFK2SWl/D1wPXCrEGK5EOJ1QogXhRDdQohDQojPx48XQjwghPiA9RpCiC1CiKvG13KFQlGoqHVHMR4oh0+hSIOU8h+YM07PAvqANwPlwOswB2xfFTv0buBN8fOEEKswB4c/OI7mKhSKKYBadxRjiXL4FIrMHAUqpZSbpZRbpZRRKeUW4GfAObFj7gMWCiEWxrZvAX4hpQxOgL0KhaLwUeuOYkxQDp9CkZkGoF0IsU4I8VchRKsQogt4N1ANIKUMAPcCb4oVW98I/GTCLFYoFIWOWncUY4Jy+BSKNAgh1mAuvE8C9wC/B2ZLKcuAOwBhOfxu4GbgfKBfSvn0OJurUCimAGrdUYwlyuFTKCwIIUqFEK8Hfg78VEq5FSgB2qWUg0KItcBN1nNiC20U+C/UXbZCocgRte4oxgMhpZxoGxSKCUUIsR+oA8KYC+irwE+BO6SUESHEtZiLaiXwGLAfKJdSWoumPwN8EZgvpdw7rj+AQqEoONS6oxhvlMOnUOQBIcSbgduklBsn2haFQjE9UOuOIhdUSlehGCVCCD/wXuDOibZFoVBMD9S6o8gV5fApFKNACHEx0AqcwCyyVigUijFFrTuKkaBSugqFQqFQKBRTHBXhUygUCoVCoZjiKIdPoVAoFAqFYoqjHD6FQqFQKBSKKY5y+BQKhUKhUCimOMrhUygUCoVCoZjiKIdPoVAoFAqFYorz/wFSscUgLzw9OAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "<Figure size 720x288 with 2 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Separating the two equations #\n", + "\n", + "# Eq.2 ------\n", + "col = sns.color_palette()\n", + "col_pte = ['#436bad', 'orange','crimson', 'gray']\n", + "col_pte2 = [col[0], 'gray', col[4], 'gold', col[2], col[3]]\n", + "colors={1:'dimgray',2:'gold',3:'mediumseagreen',4:'darkorange',5:'crimson',6:'royalblue'}\n", + "\n", + "term = 'DIAB'\n", + "res = '80km'\n", + "fig, ax = plt.subplots(1, 2, figsize=(10,4), sharex=True, sharey=True)\n", + "for i in range(1,4): # loop over simulations\n", + " ax[0].plot(dur[exp80[i]], diab[exp80[i]], color=colors[i],\n", + " linewidth=4, label=expname[i], alpha=0.9)\n", + "\n", + "#plt.legend(ncols=3, loc='upper center')\n", + "for i in [1,4,5,6]: # loop over simulations\n", + " ax[1].plot(dur[exp80[i]], diab[exp80[i]], color=colors[i],\n", + " linewidth=4, label=expname[i], alpha=0.9) \n", + "#plt.legend(ncols=3, loc='upper center')\n", + "#ax = df_track[['dfi', 'ep','itt', 'eq1res']].plot(kind='bar', stacked=True, title='', color=col_pte, figsize=(6, 3))\n", + "#df_track.plot(x ='Unnamed: 0', y='dp', kind = 'line', ax=ax, color='k', linewidth='3')\n", + "\n", + "ax[0].set_xlabel('Day', fontsize=12)\n", + "ax[0].set_ylabel('hPa/'+str(dt)+'hr', fontsize=12)\n", + "ax[0].set_xlim((3, 9))\n", + "ax[0].set_ylim(-14, 8)\n", + "ax[1].set_xlabel('Day', fontsize=12)\n", + "#ax[1].set_ylabel('hPa/'+str(dt)+'hr', fontsize=12)\n", + "ax[1].set_xlim((3, 9))\n", + "ax[1].set_ylim(-14, 8)\n", + "\n", + "#ax.set_xticks(np.arange(9, 32, 2))\n", + "#ax.set_xticklabels(dur[exp80[i]].to_numpy())\n", + "#print(dur[exp80[i]])\n", + "#ax.set_xlim(np.min(df_track['Unnamed: 0'])-0.5, np.max(df_track['Unnamed: 0']+0.5))\n", + " #ax.set_xticklabels(df_track['time'])\n", + "ax[0].yaxis.grid()\n", + "ax[1].yaxis.grid()\n", + "ax[0].xaxis.grid()\n", + "ax[1].xaxis.grid()\n", + "ax[0].axhline(y=0,linestyle=':', color='k')\n", + "ax[1].axhline(y=0,linestyle=':', color='k')\n", + "ax[0].legend(ncol=2, loc='upper left')\n", + "ax[1].legend(ncol=2, loc='upper left')\n", + "#plt.legend(bbox_to_anchor=(1.0, 1), loc='upper center')\n", + "\n", + "#plt.savefig('TimeseriesPTE_'+exp+'_'+str(dt)+'hrly_Eq1_upper'+str(int(p2level))+'hPa_box'+str(int(boxsize))+'_CyCen.png',\n", + "# bbox_inches='tight',dpi=200)\n", + "ax[0].tick_params(axis='both', which='major', labelsize=12)\n", + "ax[1].tick_params(axis='both', which='major', labelsize=12)\n", + "plt.subplots_adjust(wspace = 0.05)\n", + "fig.suptitle('Eq2: '+term+' Term ('+res+')',fontsize=14, weight='bold')\n", + "plt.savefig('CyclonePTEtimeseries_Allsim'+res+'_'+term+'.png',\n", + " bbox_inches='tight',dpi=100)\n", + "plt.show()\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 212, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmkAAAEpCAYAAADIwbUjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAADlyElEQVR4nOydd5wU5f3438/W65Xj6L0e7ZAmKHpi14gNjb3EkhgTExM1JjF+/aVZkpigqRojRlFBI4qAKCKggBSBQ3q9A65yvW7f5/fH7O3uzO7d7d3tNZz367Wvu3l2ymd3Zp/5zKcKKSU6Ojo6Ojo6Ojo9C0N3C6Cjo6Ojo6OjoxOKrqTp6Ojo6Ojo6PRAdCVNR0dHR0dHR6cHoitpOjo6Ojo6Ojo9EF1J09HR0dHR0dHpgehKmo6Ojo6Ojo5OD0RX0nR0dHS6ECFErBCiQAjhEUKM6aRj5AshpBBiUSftf5Nv/9/qjP3r6Ogo6Eqajk4vQQix3ndjDPe6q437miCEeFUIcUAIUSOEqBNCfC2EeFgIYeqkjxBVhBB3tfB9+F/dLWcYfggMBD6UUh5uGhRCXCiEWCOEKBVCOIQQxUKIZUKIacEbCyGmCSFWCyFqhRCNPoXp4i7+DH/w/X1GCCG6+Ng6Ot8YesVkrKOjo8IJ7NKMlbVxHzOAuwAbcAwYCkwCngdGAj/omIgKQgiLlNIZjX2FoQzYGrQ8y/e3HOUzdYjOkF0IYSTw3b4eND4OWAVYgCpgHzABuAaYJ4TIlFLahRCTgc+BOJTPWQvMAT4SQlwhpfwkmvK2wEqfnBOAi4A1XXRcHZ1vFLolTUen91EspTxb81rZ9KYQ4lohxGEhhF0I8bkQ4oowFreTwLeBJCnlJGAYkO977/agfQ2L1FoXtN4fhBCLhBA1wBLfe4lCiOeFEHlCCKfPSvRPIURK0PZjfJajJktSkRDiUyHEpeGOJ6VcGfwdBL2lGhdCXCKE+MxnebIJIbYKIa5q5jM+JoR4XwjRCDwnhMgJeu87Qoh1QfsYL4S4WAix12eJXCWE6NfyqSMHGAy4gY+Cxs9GUdAArpRSngU85VtOBFJ9//8WRUHLB0agnLetgBH4Y3MHFUKM8n2f0metixVCPBX02S7xWVUbhRBLfefrYd82ZUKIF4MtrFJKF/Cxb/H28EfV0dHpKLqSpqNzBiGEmAS8A4xGsbj1BZZq15NSfialXCqldPuWK4G9vrcdHRTjIeAGFEXQIYSwAOuBh4EBwAEUxeO7wFohhNm33VsoliOzTxYvcCGK1a9dCCEWAKuBC4AaoACYCXzge0/Lb3zrHkNRpIL5u09+g28fK4D3URSkeOBy4E+tiJTj+7tfStkYNL4FcPn+XymE2ImipNUBj0kpi31K0kW+dT6RUtb5zt9y39gkIUR/7QGFEEOAtUB/FMXqKimlTbPau4AAYlHO3RbgdyiW1j4o1r+7Ndts8/29oJXPrKOj0050JU1Hp/cxNEzsVYrvvUdQlIZ6IEtKOQ74S2s7FEJMAOb5Fv8R9JYLOOR71UQoXy0w1mehuxW4CTgLRek5S0o5BcVN5vGN3+jbrimI/mop5TQp5SAUq9M7ER43HM+hKB9vAkOklKOBf/vGng6z/nFgqE/2n2nee11KOZZAPNYI4PdSyvHAYt/Yha3IM873Nz94UEp5ELgYxYWbCkxFsawVElCe+6AoUQCngzYvDfp/iOZ4/VAUtCEo7tSrpZT2MHI94LtWNvmWs3zyjAZO+Ma0n61pfJAQIi7MPnV0dDqIrqTp6PQ+nCguruBXk9Vnku/vZillge//JS3tTAgxF9iA4kZ7B/h103tSykIp5Tjfa1mE8v2v6dhSSg+BWDETsNcXzJ+PokyC4uoD+ND3d60Q4pAQ4n1gAYqi0maEEBnAcN/iLYDXd+x7fWOjhBDpms1ek1JWB8keTJN8+WHGjvv+9m1FrBTf3zqNrAOBV4AMFPdhAvAsilK3XAgxHEWxDEdLgfuXAqOAHcC1UsrmrKTaz1YlpdwkpfQSUMYyNdvUBv2f0oIMOjo67URPHNDR6X0Ua2KwWqPZm7gQ4g7gZRSrzd+BH/puzB2hpJnju4CdYdZvsgTdgeK6y0GxtF0KXI3iTru6HXIEf+481NanJsyaZa3swTQpJe4wY01ZpK1lOjZZIxM1499HSdholFK+ASCEeA3FmmcGzgfeQHE/xqJWBoP/P6XZbz2KwpcNXAX8L5xQUkrtZwtWwJr7bElB/1eH26+Ojk7H0C1pOjpnFnt8f+cIIQb4/g+JvRIKvwNeQ3lYe1hK+aBWQRNCDBRCHPS9rm2nTE2xSybgx0GB/ucC/w9F+QCYCyyTUn5PSjkX+L1vfB7tQEp5moBlaC8wN+jYNwJPSylbUso6g6aSG8M048m+v3E+1zPA9KD3G3zxZ2t9y5f4gvtNwHzf2B4pZZFmv/8D/otitXxTCHFJRz9AEEN9fws18XU6OjpRQlfSdHR6H/2FEFs0ryYX3h9RYr0SgINCiAPAT8Ls49vAL3z/1wI3Be8vaD0zMNb3SqZ9vAXkolhiNgsh9vnkqkGJkxrmW+91oMrn6twF/Mo3/nU7jwvwuO/vVUCxEGKXEKIIRXl7uAP7bS8bfH+zNHFcywhYrLYJIb4GXvUtlxDIpHwCxZo2DMXFmo/iTvYCjzVzzHtQkicswHtCiNkd/hQKM31/10Vpfzo6Ohp0JU1Hp/dhQbkxB78GAUgp96Bk5x3xrVeJopBpiQn6PyXM/qKGLw4qB6UGWz5KMHoGSi2w3xIIjP8PiiUwHcXdWYYSkH9TB469BCXr8jOU72M8YEeJvWu2ZEUnshYoQrEqXtE0KKVc61v+FCVebQxKJuprwDlN7kgp5W4U1+calHOYDnwJXCGlXB3ugD4L3ALgK5Qs1JW+LOB248vIbSqN8npL6+ro6LQfIWVPLMito6MTLYQQw1BisgDullIu6j5pdIQQj6Nkli6XUrYn1q7b8bm+3wP2AxOlfiPR0ekUdEuajo6OTteyECVj9VtCiLHdLUw7ecT393FdQdPR6Tz07E4dHR2dLsRXSHZQd8vREaSU53S3DDo63wR0d6eOjo6Ojo6OTg9Ed3fq6Ojo6Ojo6PRAdCVNR0dHR0dHR6cHoitpOjo6Ojo6Ojo9EF1J09HR0dHR0dHpgehKmo6Ojo6Ojo5OD0RX0nR0dHR0dHR0eiC6kqajo6Ojo6Oj0wPRlTQdHR0dHR0dnR6IrqTp6Ojo6Ojo6PRAdCVNR0dHR0dHR6cHoitpOjo6Ojo6Ojo9EF1J09HR0dHR0dHpgehKmo6Ojo6Ojo5OD8TU3QJEg5SUFDlq1KjuFqNNNDQ0EB8f391itJneKLcuc9fRG+XesWNHuZQyo63b6fNO19AbZYbeKbcuc9cR6bxzRihpmZmZfPXVV90tRptYv349OTk53S1Gm+mNcusydx29UW4hxIn2bKfPO11Db5QZeqfcusxdR6Tzju7u1NHR0dHR0dHpgehKmo6Ojo6Ojo5OD0RX0nR0dHR0dHR0eiBnRExaOFwuFwUFBdjt9u4WJSzJyckcOHCgu8VoM71R7u6WOSYmhkGDBmE2m7tNBp2uQZ93ok9vlBl6p9y9ReZv0px6xippBQUFJCYmMmzYMIQQ3S1OCHV1dSQmJna3GG2mN8rdnTJLKamoqKCgoIDhw4d3iww6XYc+70Sf3igz9E65e4PM37Q59Yx1d9rtdtLT03vkRKnzzUEIQXp6eo+1rOhEF33e0dHpXL5pc+oZq6QB+kSp0yPQr8NvFvr51tHpXL5Jv7EzWknT0dHR0dHR0emt6Eqajo6Ojo6Ojk4PRFfSOpGSkhJuuukmRo4cSVZWFhdccAFxcXFkZ2czZMgQhg8fTnZ2NhdddBH5+flMnDgxov3edddd/m2nTJnC2rVr/e/l5OSoqqBr9/v0008zatQoxo4dy8cffxy9D9tD8Hg8TJ06lW9961uA8l29//77AFRWVjJ16lReffXVsNvm5+cTGxtLdnY2WVlZ3HHHHbhcLkCpat20zybuuusu3n333c77MDo67UCfd3o+FRUVZGdnk52dTb9+/Rg4cKB/2el0dotMv/vd7zjnnHPIzs7GaDT65XnhhRd46qmn/DJmZWXx1ltvtbgv/VqJHmdsdmcTP//5zzt1/08//XTYcSkl1157LXfeeSdvv/02ALm5udTV1TF37lxuvfVWrr32WhYsWAAoF2pb+MMf/sCCBQtYt24d999/P0eOHGl1m/379/P222+zb98+ioqKuOiiizh8+DBGo7FNx26Ja9Y8FbV9heP9i1ve/8KFCxk/fjy1tbWq8ZqaGi699FLuv/9+7r777ma3HzlyJLm5uXg8Hi6++GKWLl3KrbfeGg3Rdb5B6PNOgK6Yd9pL/sRrOm3fUkoS930Q9r309HRyc3MBeOqpp0hISOCRRx7pNFki4Ze//CUPPfQQiYmJJCQk+OUDRcaHH36YRx55hCNHjjBt2jQWLFjQYgmMM+1a6S50S1onsW7dOsxmM9/73vf8Y9nZ2cydOzeqx5k9ezaFhYURrfvBBx9w0003YbVaGT58OKNGjWLbtm1Rlac7KSgoYOXKldx7772q8YaGBi6//HJuueUWHnjggYj2ZTQamTlzZsTfrY5OT0Cfd3ovL7/8MjNmzGDKlClcf/31NDY2AopV6qGHHmLOnDmMGDHCb72XUvLoo48yceJEJk2axJIlSwDF6n/++edz4403MmbMGB5//HEWL17MzJkzmTRpEseOHeuQnKNHjyYuLo6qqqqI1tevlY5xxlvSuou9e/cybdq0Tj/O6tWrueaaa1Rjt956K7GxsQA4nU4MBkUXLyws5Oyzz/avN2jQoDNKCfnxj3/Mc889R11dnWr85z//Offddx8PP/xwxPuy2+1s3bqVhQsX+se++OILsrOz/csnT54McYHq6HQn+rzTe7nuuuu47777AHjiiSd45ZVX+OEPfwhAcXExGzdu5ODBg8yfP58FCxbw3nvvkZuby+7duykvL2fGjBmcd955AOzevZsDBw6QlpbGiBEjuPfee9m2bRsLFy7kxRdf5C9/+Uu75dy5cyejR4+mb9++Ea2vXysdQ7ek9VIeffRRRowYwW233cYvfvEL1XuLFy8mNzeX3NxcVq1a5R+XUobs50xJZV6xYgV9+/YNe4M6//zz+eCDDzh9+nSr+zl27BjZ2dmkp6czZMgQJk+e7H9v7ty5/u81NzeX+fPnR/Uz6Oj0dPR5p/PYu3cvc+fOZdKkSSxevJh9+/b537vmmmswGAxkZWVRWloKwMaNG7n55psxGo1kZmZy/vnns337dgBmzJhB//79sVqtjBw5kksuuQSASZMmtdnF3cSf//xnxo4dy6xZs3jqqadaXV+/VqLDGW9Jay52o7OZMGFCpwaV/+EPf+C6667jhRde4M4772THjh2tbjNo0CBOnTrlXy4oKGDAgAFRlau1mLHOYtOmTSxfvpxVq1Zht9upra3ltttuw2Qycf3111NRUcEVV1zBunXrWqyo3RSTVlxcTE5ODsuXL29VGdu6dSvf/e53Afj1r3+tK286+rwTRFfMO+1l2N73O23fWot+azQlOU2ZMoVFixaxfv16/3tWq9X/f5MiE06hCbe+wWDwLxsMBtxud5vkaqIpJu29997jjjvu4NixY8TExDS7/pl2rXQXPdKSJoS4SQhxQAjRIIQ4JoSIbkBFFzBv3jwcDgcvv/yyf2z79u1s2LAhascwGAz86Ec/wuv1RpQFM3/+fN5++20cDgd5eXkcOXKEmTNnRk2e7uTpp5+moKCA/Px83n77bebNm8cbb7zhf//HP/4xF154Iddee21E2VP9+/fnmWeeiehmO2vWLN26ptMj0Oed3ktdXR39+/fH5XKxePHiVtc/77zzWLJkCR6Ph7KyMj7//PMu+V6vu+46pk+fzmuvvdbquvq10nF6nJImhLgYeBa4G0gEzgOOd6tQ7UAIwbJly1izZg0jR45kwoQJPPXUUy0+FRw6dIhBgwb5X++8805Ex3niiSd47rnnWl13woQJ3HjjjWRlZXHZZZfxt7/97RuVNfPss88yePBgbr/9drxeb6vrX3PNNTQ2NvLFF190gXQ6Oh1Hn3d6L7/5zW+YNWsWF198MePGjWt1/WuvvZbJkyczZcoU5s2bx3PPPUe/fv26QFJ48sknef755yOaR/VrpWOIlkym3YEQYjPwipTylUi3GTt2rDx06JBq7MCBA4wfPz7a4kWN3tDINhy9Ue6eIHNbr8f169eTk5PTeQJ1Er1RbiHEDinl9LZup887XUNvlBl6p9y9Seam31pvnHMg8nmnR8WkCSGMwHRguRDiKBADvA88KqW0ada9H7gfICMjQ+W/B0hOTm5zTEBX4vF4erR8zdEb5e4JMtvt9pBrtCXq6+vbtH5PobfKHSn6vNP19EaZoXfK3ZtkbppTz/g5pydZ0oQQA4BCYAdwFeACPgDWSyl/2dx2Z+oT7YMPPsimTZtUYz/60Y9aLMba2fSmJ60mtDLv2bOH22+/XbWO1Wpl69atnSaDbknrueiWNDU9bd7pjXMO9Gy5f/e734W4tW+44QZ/MdtI6c5rRbekdQ9N1rIXpZTFAEKI54EngGaVtDOVv/3tb90twhnJpEmTVNW0dXR0AujzzpnPL3/5S375y9BbalutaPq10vn0qMQBKWUVUAD0HPOejo6Ojo6Ojk430KOUNB+vAj8UQvQVQqQCPwZWdK9IOjo6Ojo6OjpdS09zdwL8BugDHAbswFLgd90qkY6Ojo6Ojo5OF9PjlDQppQv4vu+lo6Ojo6Ojo/ONpCe6O88oPB4PU6dO9Tfivuuuu/xtWyorK5k6dSqvvvpq2G3z8/OJjY0lOzubrKws7rjjDlwuF6Bk0WmbewfvOy8vj1mzZjF69Gi+/e1vR1RlX0dHp3dTUVFBdnY22dnZ9OvXj4EDB/qXu3MOeOqpp/yyZGVl8dZbb/nfC563mkhISPD/v3jxYkaPHs3o0aMjqnLfG+ip5+n3v/+9X5aJEyeyfPly/3svvfQS48aNY9y4ccycOZONGze2uK+cnBzGjh3LlClTmDFjhipZa9iwYZSXl/uXg+9nUkoeeughRo0axeTJk9m5c2d0P2Qvo8dZ0qLO0U7u+zWqqMW3Fy5cyPjx46mtrVWN19TUcO2113L//fe3mK7c1EvS4/Fw8cUXs3TpUm699dZWxfrZz37Gww8/zE033cT3vvc9XnnlFR544IHIPpOOjk7H+GcnzzvfCz/vpKen+2+GTz31FAkJCTzyyCP+9x0OR+fK1QJNvR+PHDnCtGnTWLBgAWazucVtKisrefbZZ9mxYwdCCKZNm8b8+fNJTU2Nikw3/LwwKvsJh9fr5X/Phi9n0dp56k6aztOBAweYO3cup0+fZtWqVfzrX/9i48aN9OnTh507d3LNNdewbdu2FrscLF68mOnTp/Pqq6/y6KOPsmbNmlaP/9FHH3HkyBGOHDnC1q1beeCBBzq1PFJPR7ekdSIFBQWsXLmSe++9VzVeX1/P9ddfzy233BKx4mQ0Gpk5cyaFha1PKlJKPvvsMxYsWADAnXfeyfvvv99m+XV0dHo/L7/8MjNmzGDKlCncdtttNDY2AooF66GHHmLOnDmMGDHCb82SUvLoo48yceJEJk2axJIlSwDF2nH++edz4403MmbMGB5//HEWL17MzJkzmTRpEseOHYtIntGjRxMXF0dVVVWr63788cdccMEFpKWlkZqaysUXX8zq1avb+U30bILP0/XXX9/t52n8+PGYTCbKy8t59tln+cMf/kCfPn0AOOuss7jzzjsjLsExe/bsiO5dAB988AF33HEHQgjOPvtsqqurKS4ujmjbMxFdSetEfvzjH/Pcc89hMKi/5p/85CfMnj2bhx9+OOJ92e12tm7dymWXXeYf++KLL/wm8uzsbL9puqKigpSUFEwmxVA6aNCgiH8gOjo6ZxbXXXcd27dvZ/fu3YwZM4ZXXgl03CsuLmbjxo2sWLGCxx9/HID33nuP3Nxcdu/ezaeffsqjjz7qv0nu3r2bhQsXsmfPHl5//XUOHz7Mtm3buPfee3nxxRcjkmfnzp2MHj2avn37+sceffRR1VzWRGFhIQMHDvQvn8lzWfB5Gj9+fLefp61bt2IwGMjIyGDfvn1MmzZN9f706dPZt29fRPtavXo111xzjWrsggsu8J/vYENGYWEhgwcP9i+fyec8Es58d2c3sWLFCvr27cu0adNCWlbMmzePlStX8otf/EI1UYXj2LFjZGdnc+TIERYsWMDkyZP9782dO5cVKwLVSe666y5AecLSIoRo/4fR0dHptezdu5cnnniC6upq6urqVA9611xzDQaDgaysLEpLSwHYuHEjN998M0ajkczMTM4//3y2b99OUlISM2bMoH///oASinHJJZcASoHodevWtSjHn//8Z15++WWOHz8eYg37wx/+4Lf8QyAm7Zs0lwWfp/r6ei699FL/e119nt544w0SExNZsmRJs9+3lLLVc3HrrbfS0NCAx+MJiS1bt26d3zK3fv16/vjHP/r3q+VMPeeRcOYraa3EjHUWmzZtYvny5axatQq73U5tbS233XYbJpOJm266ienTp3PFFVewbt26FttwNMWkFRcXk5OTw/Lly5k/f36Lx+7Tpw/V1dW43W5MJhMFBQUMGNDJMTI6OjoBmokZ6w7uuusu3n//faZMmcI///lPtmzZ4n/ParX6/2+6ObbUKjB4fYPB4F82GAy43e4W5WiKdXrvvfe44447OHbsGDExMS1uM2jQIFUcU0FBQVRbAL3z9MDWV2onba3eH3yeFi1apHq4747zFExWVhY7duxg3rx5/rGdO3eSlZXV4r4WL17MlClTePzxx3nwwQd57733WlwflHN+6tQp//I3/f6luzs7iaeffpqCggLy8/N5++23mTdvHm+88Yb//QcffJALL7yQa6+9NqJsnv79+/PMM8/w9NNPt7quEIILLrjAH7vw2muvcfXVV7f/w+jo6PRa6urq6N+/Py6Xi6VLl7a6/nnnnceSJUvweDyUlZXx+eefM3PmzKjJc9111zF9+vSIMjUvvfRSPvvsM6qqqqiqquKTTz5RWZjOJILP0+LFi1tdv7PPUzCPPfYYP/vZz6ioqAAgNzeXRYsW8f3vt14py2w289vf/pYtW7Zw4MCBVtefP38+//3vf5FSsmXLFpKTk/1WwW8iupLWjTz77LMMHjyY22+/Ha/X2+r611xzDY2NjXzxxRcR7fv5559n1KhRVFRUcM8990RDZB0dnV7Gb37zG2bNmsXFF1/M6NGjW13/2muvZfLkyUyZMoV58+bx3HPPtZjB1x6efPJJnn/++VbnvbS0NB577DFmzJjBjBkzePLJJ0lLS4uqLD2F4PM0bty4VtfvivPUxPz58/nOd77DnDlzGDduHPfddx9vvPFGxMpTbGwsP/3pT/0uzZa44oorGDFiBKNGjeK+++7j73//e0fF79WIlkymvYWxY8fKQ4cOqcYOHDjA+PHju0mi1qmrq2vRzdlT6Y1y9wSZ23o9rl+/Pqpuna6iN8othNghpZze1u30eadr6I0yQ++UuzfJ3PRb641zDkQ+7+iWNB0dHR0dHR2dHsiZnzjQC9izZw+33367asxqtX6jC/jp6Oj0Pn73u9/xzjvvqMZuuOEGfvnLX3aTRDrhaO48PfTQQ23e17XXXkteXp5q7Nlnnz1jYwe7mjNaSYskRbgnMGnSJFXLDJ0zizMhpEAncnrLvNMZ/PKXv9QVsl5Ac+eprRmpAMuWLYuGSG3imzSnnrHuzpiYGCoqKr5RJ1On5yGlpKKiotVSAzpnBvq8o6PTuXzT5tQz1pI2aNAgCgoKKCsr625RwmK323vlRdYb5e5umWNiYhg0aFC3HV+n69DnnejTG2WG3il3b5H5mzSnnrFKmtlsZvjw4d0tRrOsX7+eqVOndrcYbaY3yt0bZdbpnejzTvTpjTJD75S7N8p8pnPGujt1dHR0dHR0dHozupKmo6Ojo6Ojo9MD0ZU0HR0dHR0dHZ0eiK6k6ejo6Ojo6Oj0QHQlTUdHR0dHR0enB6IraTo6Ojo6Ojo6PRBdSdPR0dHR0dHR6YHoSpqOjo6Ojo6OTg9EV9J0dHR0dHR0dHogupKmo6Ojo6Ojc8bTG3vq6kqajo6Ojo6OzhmLt8FG5bOvcGruHRQteBhXflF3ixQxupKmo6Ojo6MTRdylFeD2dLcYOoD9q30ULXiY2tc/xFtdh/NgHpXPvdLdYkXMGdtgXUdHR0dHp6spe/zPNKzYQD+TwLl0JJYxw7pbpG8kXpuD6oWvU/vGipD37F/uxmt3YIixdoNkbUO3pOno6Ojo6EQBx/5jNKzYAICh0UHFk3/rlXFQvR37zv0UXf/jsAoagHS5ceQe6mKp2kePVdKEEKOFEHYhxBvdLYuOjo6Ojk5ruI6cVC079h7BsXN/N0nzzcNrd1D5h1cpufOXuE8Wt7iufdueLpKqY/RYJQ34G7C9u4XQ0dHR0dGJBHdxWchY7avvd70g30Acuw9RfP3D1L72AWisl6aBfUm8+QrVmK6kdQAhxE1ANbC2m0XR0dHR0dGJCE9pechY4/rtuPIKu0GabwguN1V/eo3i23+O60Ro1mbiTZcz4L2FJN97vWrcufcI3vrGrpKy3fQ4JU0IkQT8Gvhpd8uio6Ojo6MTKe6SUCUNoPb15V0syTcDx54jZPzmNWpeXQZer+o9U/8MMv/9a9Kf+C6G+FhMmemYhw7wvy/dHuy7DnS1yG2mJ2Z3/gZ4RUp5SgjR7EpCiPuB+wEyMjJYv35910gXJerr63udzNA75dZl7jp6q9yRos87XU9vkjnjwFHMTicAXilx+v4vf3sV+7KH4E2K707xWqU3fdfmk6X0eeYNjC43To2u0DB3CrULcjhqr4Sgz5PcP4X4I/n+5YNLP6TWU9dFErePHqWkCSGygYuAqa2tK6V8CXgJYOzYsTInJ6dTZYs269evp7fJDL1Tbl3mrqO3yh0p+rzT9fQmmU/aX8JrsQDgdDqx+P4HmFxQR8r3r+wu0SKiN33XlX9aRK3BiFN4/N+zqV8f0v/fg8SeE16FaLCbKNsSSOToV1rHWT388/Y0d2cOMAw4KYQoAR4BrhdC7OxOoXR0dHR0dFrCW9fQYoxT7Vur8NocXSjRmY1bE+cXf9m5DFi2sFkFDSBmxkTVsvNgHp7a+k6RL1r0NCXtJWAkkO17/RNYCVzafSLp6Ojo6Oi0jDYezZOSgCEx4N70VtXSsHxdV4t1xuI6VaJaTrpjvur7DocxPQXz6KGBAa8Xx1f7OkO8qNGjlDQpZaOUsqTpBdQDdillaF6zjo6Ojo5OD0GrpLn7pZG44BLVWO1rHyA1Ae46bUd6vbgLSlVjpqH9I9o2duYk1bJ9a88uxdGjlDQtUsqnpJS3dbccOjo6Ojo6LeHR1EjzpCaReNu3ECajf8x1shjber38Z0fxlFUhHU7/siExHmNyYkTbxszSKGnbdSVNR0dHR0fnjMZdUqFa9qQlYcpMJ/6K81TjNYve70Kpzky03QRMg/tFvK11+gQIygZ1Hj6Bp7ImarJFG11J09HR0dHR6SAhlrQ0xbKTdOd81bhj5wEcu3tH38ieiqtAHY9mHhKZqxPAmJSAZfwI1Zh9+96oyNUZ6Eqajo6Ojo5OBwlJHEhLAsAydjixs6eo3qt57YMuk+tMxH2i/ZY0COPy7MFxabqSpqOjo6Oj00FClLTUQIxU0l3XqN5r/HRLSHaiTuRokwbaYkkDiAlJHvi6wzJ1FrqSpqOjo6Oj0wGk14unBSUtZk42ljHq0g+1r3/YVeKdcbg6EJMGEDN1vDqh40QR7tKKFrZoHunxUPncfyic/wOq/vQa0u1ueYPGcsj9e8T715U0HR0dHR2dDuCtrEG6AjdnQ2I8MtbqXxZCkHTnNapt6pd9iqemZ7ck6olIKXFrrJBtVdIMCXFYJoxSjdm3tc/lWbdkNbX/XY7reAE1ry6jauEbza/saoAProEtv41c1nZJpaNGuqBxEzh6dlE8HR0dHZ3o4y5WW9FM/fuErBN/xVyMGWn+ZWlzULfk406X7UzDW1OPt67BvyzNJowZqW3eT8ysyarl9ihp0uOh9r/LVWO1r75Pw6dbwm+w/Q9Qc7xNx9CVtI4ivVB8HxTdAKcugaq/drdEOjo6OjpdiDYezdg/I2QdYTaRdNu3VGN1b65AOl2dKtuZhrb8hjsjBWFouyoTEpfWDiXNtuGrkPg4gIonXghxyVL2Nez5d5uPoStpHaX+A2j8xLcgoeL30PBpt4qk08lICZV/gRPnQ+nD4Kntbol0dHS6EU+JuvyGKTPUkgaQeOOlGOJiA9uVV1O/ckOnynamoU248PRJadd+rNljEWaTf9ldeBpXGIWrJWrfWBF23FvfSNnDz+K1+3q1et2w4RHFqNNGdCWtI0gXVP4hdLz0h+A61fXy6HQN9u1Q+Ry4jkDdEii6FbwNrW+no6NzRqItZBvO3QlKrFrC9RepxmoXfYCUstNkO9Nwn9JY0jJT2rUfQ4wV65RxqrG2dB9wHs5v0frmPJRP5e9eUhb2/BvK21eLTVfSOkLtEnDlh457a6DkPvA6ulwknS7Avk297NgBxXeC19Y98ujofAORUlJT7+HwSScbcxv532e1/OfDaj7f1djlSo9bU8jW2C+8kgYoLk9jUGbhsVPYNu7sNNnONNwn1ZY0dzstaQAxsyaqlu1bIlfStFa0mGlZxF96jmqsftla6hYvUWLRghl1dcTHMbW+ik5YvHaofL759x1fQ/mvoO9zXSeTTtcQzkpq2wwl90D/RSAsXS6Sjs6ZiNcrqW4wkXvYTmmlm9OVHkoq3Mr/VR5sjnDKWAMNNi+Xz0noMjm15TdM/fpAQ3nYdU0DM4m/ZDYNH230j9Uu+oC4udM6VcYzhRB3Z9+2Jw00ETNrMvztbf+yfdsepJSIoLZR4fBU1dKw8nPVWOJtVxE7ewrOg3m4ThT5xyt/+w+sN7ux9PUNWJJgzq+Bf0Yko25Jay81i8ATfLFYIFbdo43aN6D2na6USqcrcJ0MP964Hkq+q7jBdXR02oWUkrwiJ4tWVHP/0yX8Z+0AfvdqBf/+oIblX9Szbb+dEyXuZhQ0hXc/q8Pp6jprmja7M1ziQDDachz2rV/j2H8s2mKdkWjLb7gzUtq9L+ukMYigUimeskrc+UUtbKFQ984nqgbvpgF9iZs3E0NCHBl/fgwR43tQ99iRDgen3++L1+5T/GY/CXEtXx/B6Epae/DUQdWL6rGU70C/l8A8TD1e9jNwHOgy0XS6AHcL8YYNHysxidLTdfLo6JwBVNZ6+ODzOh554TSPvVjGyk0N1NS3PdAaoLbBy6bdjVGWMDzS5cZTXhUYEAJTZnqL21gnjiJmhtrVVrtIbxXVGt4Gm/q7Nhr97bfagzCbiJk6XjVma6X7gHS5qXtrlWos8ebLET4XtmXMMNKffEBJMHMqdfDc1SbKP+qD7DcLxt3UJhl1Ja09VL8E3uAfZQKk/gCMSdDv3yACmjnSDiX3tjsDsL6+nq+//prq6uqOyawTHaQ31N2pVczrl8Ppn7Qrk0dHpydQUVHBnj17aGzsXEXH4fTyRW4jv/1POd97poQ3PqrlZEkrFduDsJgFgzNNTB8fw9ih6jCDFZvquyQ2zXO6Qrkh+zD2SVVlDTZH0p3quKTGNZvxNuhxrS3hLlRnX5oG9oWgzgHtQVuKw9FKs/XGNZvxlFX6l0WslYTrL1atkzD/AhLPtqjuAY1H4qgtugJE29QuPSatrXgqofpf6rGU74LRV6TQmgUZz8DphwPvu/KUm3a/l6EVX3cwtbW1/PnPf8Zut2O1Wvn+979P3759W99Qp/PwnAaC3JmGJBi4DAqvVSeR1L0DIka5FtpwznXCIN1KUoYxsfV1dTpMXl4eL72kZKWlp6fz4IMPEhsb28pWkeP1SvbnOdmwq5Ete2zYnS0rUhaTl3FDLWSmGclMN5GZZlL+TzORnGDwxw+drnTzgz+W+vWlkyVu9h5zMGlUTNRkD0dIIdt+LVvRmog9bxqmgX1xF54GFAuN81AeMWdlRV3GMwWXJmnAPCizw/vUKmm2bXuQXm+ztde0CQMJV8/DmKSJfyz6krSpm3Ds74+z1PfwYE6g6l+rsZ59TpvOsW5JaytVfwNZH1g2pELK/ep1kr4NSbeqxxpWhSp3rfDll19it9sBcDgcrFu3rj0S60QTrRXNNARMmTBgKZgGqt+rfR3Kn1I9Zeu0EddJOJkDeWOh5AFFYdPpVNavX+//v6Kigq+++ipq+z50wsFDfyrl//27nPU7GptV0AwCpo618uObUvnepYX85nsZ/ODGNG64MInzpsYxdqiVlESjKsC7b5qJmRPUCtnKTZ1fGiekkG0LmZ3BCIMB65SxqjHn/rZVo/+moS1k29Z2UOGwZI3AEB94CPFW1eI6Gj7u2LH7EI6vD6vGkm5VFyjG7YDPH0OYIOPqMgxWLwgTmOPB46Hsp39Uu2xbQVfS2oK7BGr+ox5L/WH4J/w+vwWrWkOn4ndg2xrx4Y4ePapa3rt3Lzabbg7vVrRJA+Yhvr+DYMA7YNQ82dW8DJXPdo1sZyLV/wSX78ZV/wHULu1eec5w3G43x4+rFYWvvvoqKm5DKSV/faeK0srm4zWH9Tdz55XJ/PPn/fjFXX04Z0ocJmPkx77yHLVFY8dBO8XlnavYh2R2tpI0EIxl/AjVslNPHmgRd4GmZ+eQ/h3epzCZsE7XlOLYGr4UR+1itRUt9tyzMA/XPJzvehGqlfNoTnHT58pysAbi5jxllZQ91kJlCA26ktYWKv8MMqj2mbEfJN8Vfl2DVXFvGoKDGj1Q8j1wn271UI2NjRQUFKjG3G43X3/dclCjTiejTRowDw78bxkGA5eCUePuqHoBKhd2umhnJPZc9XL1X3VrWidy4sQJ3G7193v69OmQuag9lFZ6KKkIVdBSEg3Mn5vAHx/qyx8e6su3zk0gNbF9cUbjhloYMdCsGlu1qb6ZtaODtkaaKUJLGoAla6RqWc/wbBnXCbUlzRwFSxpA7CxNi6gwyQPu0goaP9msGtO2+aLysKKkBRF31fUk3/dt9f7b0IJKV9IixZkPtW+px9J+AoYW4h3MQyBTkwXqKYWSBxC0nP137Fj4H+uOHTsiEFan09Ba0kxD1MuW0TBgCRiS1eOVz0LVP/Ssz7YgJbg0vwNXvpKYodMpHDlyJOx4NOadQyecquX+fUz88u50/vmzftx+RTJD+5ub2TJyhBAh1rR1OxtpsHVeEo+220Ck7k4Aq0ZJcx0vwGvTi6A3R2dY0iBMH88d+5Ee9Vxdt2Q10h0YMw8bSMyc7MAK0gufPwreoJjluL5w9hOk/PCWkGzeSNGVtEip/CMQ9IRpHqbEnrVG/MWKSzQY+5cMjn8r/Po+mpssT506RWlp2/qL6USREEvaoNB1rFkw4C0waNzgFb+BY0MhLxtOXqy0kyp9GCqehupXoG452LaAMw8D+kSNpwy8daHjlS/ombOdhDbEoondu3fjcnWs/t+hk2olbfakWLLHxGA0RjexZs7kWFITA7c2h1Py6fbOi03zFKs9I22xpBkS49WKhteL63B+lCQ7s5Aud2iSRhQSBwDMY4ZiSA4o9966BpwH8gLHdjipe+dj1TaJt16pTi448CaUbFfveM6vwZqEMJno89xPMfZpe+FdXUmLBMcBqF+mHkt7FESET35pj0LsuaqhgXHvQ/3H4den+ckSdGtatxIucSAcMdnQ/w0Q2qw4r5Ih6twHjeuU3p9VLyrdKUq/B4XXwclzmNHnLqj4hnercDbzG3AdVurR6USVxsZGCgsLw75nt9vZt29fh/Z/6IT6wWPskM7pzGEyCi6brbamrd7cgMfTOQk8IZa0NsSkQag1zbGv+bn/m4y78DR4Aw9nxow0DDHWFraIHGEwhFi6gl2S9as+x1sVKKNlSIwnYf4FgZUbSmHLb9U7HXoRjLzKv2jKSCXjj4+oWoJFgq6kRULFs0DQD9wyHhIi772FMEHm30ODyksfgIZPQg9XUUFVVfPZH7t27cLj0d1mXY50g1tzEwuOSdMSOwP6v6aumxchBuGCqr+Ao2M3xl6N1tUZTNVf9KzZKNPSgyF07OGwweYNqX82ZmjntU+7aGYcwaXKyms8bN0X/aQrb4MNb20g5k2YTRjTk1vYIhRtXFrUkgdKd8GmJyH3H2CrbH39Ho5L01jdPDQ6rs4mQlyePiVNSknd6x+q3ktYcLEqI5TNT4IzqBaqOQ7O/X1I+aWY6RNIuvnyNsnVJiVNiDZWYTsTsO+ARo0ilf6zNhekw9RH6UgQXJpO2qH4O1DzumpVratz8ODBWK2BG319fT2HD6vTgHW6AHcJBMcSGtPBENfyNnHnwoA3wXpWaJxaJNi+bPs2ZwrOFm5Wjj1KGy6dqKFV0kaPHh3yfnuLah89pXZ1DuprIiG2824nSfFGzp+q/m12RjmOkPIbmenN1tdqjqgraY5a+OLnsOxK2PNv2PIbWDwdNv4SalvoltLD0TZWj5ars4kYbfLAjv1Ilxv7tj04D58IvGEwkHTzFYHlws1wTK3EMeNnkBgmFAZIfuDbGBLjI5Yr4qtJCGEEGoRoh1mgN1OhKZ9gnQZxF4dftzViZ0Cf/6cZ9Cqtoyqe9VsGtJNlVlYWkydPVo1Fs3aRToS0ljTQHLGzYfAKGHEARubD0O0waKXSjD3jOUh7BJLugPjLwDxcva2j5erXZzRaS5oqUxrdmhZFpJQh8865557LwIHq8gLttaZp49HGdJKrM5grNAkEh086OaJRFjtKaGP1trk6ASzj1b9557ECvPZ2xKRKCcdXwpLzYd9r6vfcdtj7Krw1Bz59ECr2t33/3YxbY0kzDRkQ1f2bRwzG2CfFvyxtdhz7jlKnKV4bN28mpgFBReXzVqp3lDEFJn6n2eMYkxNJeSCCeHYfEStpUkoPcBiIrJzymUDjRrBtVI+lP96xCvIpdys3ZjT7qFoIpx/G63GEZHaOGjWK6dOnq8YOHjxIfX3nppbraGip/EakCAuYB0LMVIi/BJJvU7KE+z4D/f8DGZqHAkfkqdpnHFolLf1J9bJ9O9i3dJ08ZzCVlZWqEAuj0ciwYcOYNm2aar2dO3fi9bY9aeNgvlo5GteJrs4mBmeamTxabVNYuTG6c2ZoIdu23x6NyYlqq5DHg+tQftt2Ul8EH98Nn9wHjS0klkkPHF0G71wEK29VrEC95EHHdUr9ucxDolN+owkhRIjLs/5/a2hcr04GSLrtKtUyZZpyHWc9BIaW484Sgy1xrdBWe/NiYIUQ4k4hxIVCiHlNrzbup+cjpZJ1F0zsXIg7p+P7Tr6NgzU/U9oGBVO3FNvxG/G6A77tuLg4BgwYwODBg+nTJ5A15PV6yc3N7bgsOpETkjTQDiWtNbQFkJ2HwfsNzPSUzlDLZeI1EHeBeqwb688JR8eyHXsS2hCLYcOGYbFYyM7OxhgU6FxZWUl+fn6b9u3xyhAL1thhXeOQ+ZbGmrZlr42KmujF83akkG0wIfXSDkTYecDrgT3/Uaxn+aHxzSQNg/hmlJlT6+DDBbDsW3B8VY/PmA7pNjAoukoahMal1S9bq1JiLeOGY50W1NLJ44Jyjbej71mtHieS3q5NtFVJewBIBZ4C/g284nv9u4376fk0fAyOXeqx9Mejtvsq53QY+C4Y0lTjJucmbrvgPeJjlPiJkSNHYjAo/em01rQdO3Z0SQNhHR/uZroNRBNjskb584DzQPSP09Nx5QNBNw1jfyX+L/VH6vVsn4Nd8zvtIkwlFTSu29Ytx442WiVt1KhRAMTGxjJhwgTVe211eZ4qdavaPyXGGeif3rGm2JEyZbSVARmBG6LHC6u/jJ41rSOFbIOxtqfzQMUBeH8+bHoCXJp4O4MJzvoR3PgZ3LIVcv4MKaPC7+f0LvjkXnj7PPpWfgrenlcsWnq9oc3Vo2xJg1AlTUvSrd9StSKj6jB4gh6i4zIhPrqxcm1S0qSUw5t5jWh9616E9IS28om/THFRRZOYs2DQh0rNNR9ut5vMlHLunPcuaYlVquDdqVOnqi6QkpKSZlPmW0W6oG6ZYonQWix0wtMVljQAq6bo4TcxLk2bNGDxWRpiZ0LM2er3utGaVvnMv5HO3m1R83g8Ia2gmpQ0IMTluWfPHn9P4UhQld7wuhmbcBSxcyHYq9slb1swGEKL267Z2oDDGR2rkbZuV1sK2QbTpuQBlw22/A7evURRsLRkToPrP4GZPwNTDBjNMO7b8O31cNmryvvhqDnOyIJ/wtoftOszRIW6Qvj0AVh5C5Tu9A97TleqfmeG5ITQpuZRwDS4X7OKtjEtmfgr5qoHy3arlzPUsePRoN3pNUIIQ/ArmkJ1Ow0fgfNQ0ICAtJ91zrEsw2HgcrBOQUr8pTWS4+u4Y967jB0aKOaZlJTEmDFjVJu3Oy2++hUofVBRRotuBq/eE7RVmuvbGW20Ls9vopKmjUezBFkB0n6sfq/xE6WWYTfgLjxN3Tth3Ey9iMLCQpXS1RRi0cSoUaNISgokbbhcLvbsiTxW8uAJJ3icilJmK2dsw1LY/pxyM+4Czp8aS0Js4OG2wS7ZsLMxKvsOdXe2U0mboLZyuY6eRDrCJDkUbIR35kHu30K7l1gSYe7TcM0HkD4udFthgGGXwjXL4eplSh2vcBxbDnUdbwPWLjb+Ao5+AKfWw4oboVaZc10nilSrmQdHt/xGE0IIYmaFV7QSbrwUYdXEUp7OVS/3zY66TG0twXGWEOJLIUQD4PK93L6/HUYIYRVCvCKEOCGEqBNC7BJCtK2oSDSoV2dzkHg9WMd23vFMfWDg/6j1qN2Z8TEukurugfrV/jGtyzM3N7d9lcDrlgT+d+VB49q27+ObhHSCR50CHrbbQDQIsaR9A5MHtIVszUGWhti5YM1Wv1/1QqeL1Bw1Ly3F29B7H3K0rs6mEIsmDAZDiDUtoodDrwfyPuJw7h6wV4JHUQTHxh1U3i/YAI1lLewgOlgtBi6eqS55sHJzA15vx0JFpJQhiQPtjUkzpiSqMgal24PziOahsHATrLwJak8Qwogr4dufw4Q7/eWhHHuPUv6rF6n602s4dh8KhMYIAf1nweX/hRvWwpgFins0mKLNdDmuRiVOLnh5w09BenEXdL6rs4lwLk9hNpF442WhK4dY0qZEXZ62WsBeA9YB04ERvtdw399oYAJOAecDycCvgKVCiGFR2n/rSFdo/aWkOzr/uIY4vjjyHXLzAkGJJpNRaeheci9ULwJg/PjxxMUF6v/Y7Xb2729jOrX0gFMTmNrwaXsl/2bgKkJV0NiYqWRqdgYhyQP7v3lNxUPcnUGWBiFCY9Pql4de012Ep6KGWk2xy95Ea/XRINTleeLECcrKmlGw3HbY919Ych6VKx7ldEPALWUUbkbGBCmF2sy4TuLS2QkYg+52RWVuco90LCHHW12nsnYZ4mMRCa3UTWwBS0hcmuZB5eDbocH98f0UF+YlL6tioTxVtZTe93/UL1tLzavLKL71ZxRe9l1FYTtwPKCwpY+HeS/AVE3rwqJuqM9YujM0Hq5wE+z7L25NY3VTlBqrh0NbLw0g7tJzMPVVx4/jdkDlQfVYD1DShgK/lFIekFKeCH5FQxgpZYOU8ikpZb6U0iulXAHkAc040TsB23bwBlUONqRFPxatGY4czeOjry7gi30zADAam55uvFD+C7DvwWg0kp2drdquzS5P1ylCjJ+Na3t8dk+30hVJA02YMnF5gwrfSkfLhV3PNKQEVwuWNFB64lrGB2+ktNfqJmoXvY8nqG1Mb8Fut3PypPraDo5HayI9PZ1hw4apxkLmHVslfPUneGM6fPE41ORx2KZ2u42IOYbFEOTG01oiOon0ZCNnT1S3aFu5qWMJBNqkAWO/Puqg8jYSkuGpjUsr1dTGHH8bfHuD4sLU0LhuG946dTKBu/C0orDd8BOKrvw+VS8uxnnUd+4HzFHvoDssaSVbw49v/S2u4+r5oLPcnaAkf5iHqesDhpTdAKXWXHAz9cRBEBv9CmWR54EqLAMuAbqkcZ4QIhMYA4T0xhFC3A/cD5CRkcH69eujcsyh8a8xIC4wiZTZx3L05BdR2Xcw9fX1KpntdjunTimB6Wt3ZVNVF8uC87bh9QZkKdn7LHn19+L1enE4Ak+B+/bt46OPPiI2VtsnMjyplh2MS9bGOxSzZ9O/qXePCbtNc3L3BqIhc2bMGkYkBr6z8hoDR452bJ8tMTp+MGZDIBbt6M63KXOc32nHixbR+K5NooYZfQI3QK+0sHXTYUA9UadbL2BMUuAmLx1vsuvQHBze9rmcIiF43skyJ+B0+q6JSie7n/gTtTdc0MLW3Y/2/JSWlmKzBVy18fHx7N4dXnGKjY1VzTuff/45FouFONdp+pd/SN/KdRikel7ZXz/Gb3/2ChOZKXYczsA6VXs+5mB9yyULojXnZMZYcDgCFpjtex28u/wQfZLaF60Tk3uEtKDPUmvwciRIzrbKbXXVkR60v5KNX7HXt73ZVc308oAFUmJkm+civJvDP6CnLl1BrDNMTJsP59ETNLx4grIXF+Ma0Af7tNGMTTZgSpLK+ak4xs5PluKw9G12H9Em6/iHJIeT2emkcec6nM5E/9DXZUU4fd9NZ9yTrBdPJe2lUwiXm/qLppNfXgDr1XF6/cpXMzxI3gp3Xw53wr2xVSVNCPE6AT+PFVgmhNgIqAJ0pJRR9QkKIcwoddlek1Ie1L4vpXwJeAlg7NixMicnJzoHPvErcAXcWIOG3MWgxCjtO4j169cTLPPOnTtVrZ9quZKYwTcp3Qh8DE1xMnSgss3JkycpKgoEU1qtViL+DqoOQkWoq276+GpIb3kfWrl7A1GRueJLqAp8ZwP7zWZgK99VRzi+fQxWa6D114RREjI673jRIirftW0bFAZdn5bx5EwMU4pRzoWTHykxlT5mj98FGb/v2PFbIHjemRiTLC2WgJzpX+5n8q9+2O4yDF2B9vx8+OGHqnln+vTpzZ4/h0MptN2kmPY3FHNW+T9IqfIVRDUDqOeVo85JCFMsmOMwGszMPP8crF8H1ulnPE2/Vq6XaM45e0vKOBzU/aDcncWCnNR27au2sIHKoPOfNiWLyUFytlVuz6RsTv1zuX/ZWlHHhHPOVWpq5a2GY0HfbcYUzpt3Sdj9SJebU4+/hDdINmE2IV3hQyYs5bXEf7yDcvtITH1qybi4CutAJ7OHAmMjl79DeFxw9BRYQu9LUoKh0onF4AaT4k6eefUVfvdjp9yTcnLwfudmvDZHqJuziXUfQHlA3gGTL2PA1CjLQWTuzqPAMd9rP/AssClorOkVNXzZoq8DTqDr8oGdeZqsMhPEdY31Qhu8O3r0aKWdUDDOwDodqpmmdSU1ocelNU9XZXb6aHBr20N9g5IHWsrsDEYYIfUh9VjNm+BuoeJ6NDGZMAZN4NLpovofS1rYoOehjUcL5+pswmq1MmniBEaZ87g18T3uTHoXS+Gn4SvWWxJxTvoBxw3ngDUZDGYAxo4fCsagQraNpdDQRecL+Na56rINn+9qpLahfcVtQ1tCdUw5N6anYMwMuMuky43ziC+SSOvq7Kee/4Nx7D6Etz6QvWpMT2bw56/R55mHiT1/RvOFVI1mXKVWTi/ri9clujYurXwvuIOSb+L6wqDzAPDaDHidBnDWg/QgYq0YM9qnWLcFQ2J88woaQLkmnjIju3PkaG0FKeX/i+QVLYGE4tR/BcgErpdSdl0RokaNkhJ7NhiTwq8bRaSUYVtBYR6K7/FUwVMKHiXuZcqUKe2vBK7NnPOP7/U1EdcJwaVJSTd1Umanj3qXRklz7us17Vs6jDb+ThuPFkzidWAKjh9xQvW/OkUsLdJsJOXBm1Vj9cvW4jreTeUL2khNTQ2nT5/2LwshGDGimRwwjxMOLuFbjX/ihoSVDDEpVny32403+LpMGACz/w9u+4pjA3+KRwbmqIxUI2mpMdBHk73cRXFpADOzYuiTEpDJ5VbqprUHd4m2kG3H3ezW5uqllWiUtMzmlTTbF2oXaOycqRgS40n41vlk/u2XDNqwiD6/+SGx50yFoHsIBsUq5Gk0YjsWC8VdqKRp49H6z4Lz/wSWBNxVTUqlBEct5sH9OhT7FxVcjVB5SD2W0XIh3PYSUeKAECJJiEAqm68l1J98r5woy/QPYDxwlZSya/PaG9aol+Pb2Ui9jZSUlFBXF6iHZrFYGDJkCAhzaMNtl2JNi4uLIysrS/VWxE3Xm1PSQLemNUdXJg4ADm+muqG4tzZUhjOVlspvaBFmSPm+eqzmv+CpCr9+FJEmIwlXX4B5aFCjZ6+Xqr++2enHjgZaK9qgQYNC41odtbDrb7B4Fqx/GKvtlKo8BxLcLhekZ8GFf4Wbv4Qp3wVLIodPaFpBNTVV1xb87EIlzWgUXD5bXY7j4y0NeNpRjiNahWyDsWRpMzyPK65A7XfUkpK2cadqOeZcdcyfMSmBhGsvJPNf/8fgdf8h/cnvYRk3XCl66+spXb8vQalR1lX10oo1Slq/WZA4EGb/H67qIEOF14kpvo5up2KfKtGuNnYC249ZqKqLXsuxJiLN7lwHjAIQQnwfeAvFxGMGlggh7o2GMEKIocB3gWygRAhR73vdGo39t4inDmyaZs1xXaOkaSfLESNGBKxkFk0gvzMQp6R1eUZUCdxTBd7K5t/XlbRQvDbwBD81G8DUedlFCgIs6nY8HXV5NrodrCncwbqiXBye5oOKu50Qd2cLShpA0s1gDApwlo1Q3QWd6kxGhMlEykPq6anxk8049rbwINRDaLH0RkMJfPlrWDwdtv7O37RbAGZL4KaZ7x7Ecu8tsGANjL7Od6NXOKhV0pqaqmvLFHShkgZw4Yx4rJaAJaaqzsvRU23/PYS4Owd03JJmyVK7m537jykKgbb1UMIAwuE+XYkzuDm7EMTOyW72eMa0ZBJvvIz0X/8AEEihWK3seTF4Gg1d4/KUXijRtFfrP0v5O+4W3FJdo9Tk3hG+VlxXcjpwzebWn8WDe//Ac69X8ugLpymtjG65pEiVtNFSyqZiXA8BF0opH5JSPgTkAFFpaukr5yGklDFSyoSg1+Jo7L9FbBtQ6vL6MI8Ey7BOPyy0Ehdi0dQsCopLC1cJfO/eVqrTa11JQtNaw/YFeCNv+fKNwK11dQ5QLDidTZQ7D7yw733+tv9DFu57n38dXNWhfXUa0gUuzQTckiUNwBADKd9Vj9W84g8N6Cyk70Eq7uLZIeUTqhe+3qnH7ihSyuaVtLKvlYbdu/+pxAFpMFti2O8aw39qv81bddewozSeomJ1HSspJYfaoqR1oSs/PtbAtHExqrFt+9s250m3G/dp9cOuKSierL2EtIc6nI8s0Cgw/WYotQLDYNuktqJZJ43GmNp6yI5l/AjMIwb5lTTpFTQcjO+aUhxVR8EeZPm2JEKar3SLELisZ9Nk4QMwJ9lg/U+6t2RUWS6gKGjPnvoVdqkkNNTUe1n6aXTnnUiVtDohRFMQTjIQ7Iw9hhI/1rvRWJC8sRdSVFTUvmr+bcDtdof0zVM90bZgSTMYDJx1ltqU3arLU5s0EJejNK9uQtrA1g01cnoyXZg04HK5eO+999i4cSN5RWq3TEeUtHJ7LVtOB1onrSvKpcoRvUbTUcN1EtXDkjETjInNru4n+Q4wpASWvbVQ+0a0pVMhTYqSJgwGUn98u+o925e7sW1pe6FWm81GSUmJvz1cZ1FSUkJ9feD8W61WBg/29aLd/S9whnEpmWJh0r0YbvmSAwN+QKknYDnSzjslFR7qGgM30RiLYEim78EmZRSYg4q+2iqgXt32p7OZmaVW0r460DYlzVNeDd7A5zOmJ4e2DGoHpoxUjBnqZBTXbs183FzvTcC+Ud3LM1bj6myO2tpaDvRLwOnBX8uhYX9818SlaePR+s0AQyBWzl1SpyhuPkypbsXCt++1zpetOcp2s8unoLmlyZ8YA7Bpt43y6uhZ0yJV0l4FFgkhhgN/Bv4mhBjkU9wWAhujJlF3ID2qtkhSSt784DQvvvgif/nLX6ipqem0Q584cQK3O3BCk5KSyMgIMpu3YEmDUJfniRMnKC9Xm+HV22uUNMtoiNf0cNNbRKnpqsbqwLJly9i+fTuVlZUsW3UER3D/vg64O/dU5qmWJfBV+aHwK3cnbXV1NmGIh5T71GPaziHRxhS4kcTMnhLS86964euRZ1wDRUVFPPvssyxcuJD//Oc/nfqAqM0mHz58eCDEQtu0O7aP0qz7th1wzq8haXBIB4Lc3FzVPKZqqg6MHmzBaPRZQwxG6KOxEnexyzN7TExIB4Ki8shvrCGFbDOjV3YlpKjtHk1f2mYyO6XbjW1zrmosEiXN6/WyaNEivoxx4vKiJIJIcBRZlZ6ZnR2XFi4eLQh3QYnygGBUlGBTiu88bfkt1OR3rmzhcNaxqyCZ55oUNFC11fJ4YdXm9iWjhCNSJe1JYAvwNYpr8x7ghO81HvhO1CTqDhy54KnwLzbazRzIU9yAlZWVrFy5stMOHa70hipzxTwC1WlynwJvIL06XCXwFq1pGiUPy6hQJa1hjcr9IKXkrWPreHDzi6xxHMDzTetM4NYoaebOUdKKiorYtStwg6yoS6Wh0R1Q1Dxl7S4vsacqL2RsW1kPVNLakjSgJeFq9bJjT6e60WTQXV4IQaomNs2x5wiNa5upoh6GtWvX+ovFHj9+nE2bNkVH0DA06+p01EJtfuANYYCbN8FZP4KYFP9wVlaWKsnAZrNx4EBAmWg2Hq2Jbo5Li481kDXcqhrbvi/yPLVol98Ixjoh6JqXXpwngm74BnOoguvD8fVhVZcBQ2oSlonNl1RpYufOnZSUlNAYb6WkTwJeDMrDhfRZ0zo7Lk2rpPUPKGne+kY8FT4jiSUZYRCYEn1Kmrt73J67th8OVdCEWpX6dFsDDbboyBWRkuZr0fQEMBi4GrgVuB4lVi1HSlnc4g56OhpX54my4XiDUsf37NkT0jolWrRap8gQE+pe08SVaZ9qd+7cidfbzAUSrt1O7LkggiYsdwE4Azfw3IpjLDm+gcKGCna5T7LqlCZG4kxH6+40Rd/dKaVk1Sp1nJhXGjhd0weHwxFQ1NppTdtblR8ylltxDJu7Y/0L24PD42Rd0W7WF+8OTWAI6dnZBiXNPAxEkIvYWwPuwnbL2VasU8YSd+HZqrHqF95Aulu30Hi93pCwh/Xr16tcktHC5XKRl6dW2v3zjraXZuoYlaupCZPJxJQpakUruE1USGZna0ra6dzWBY8yMya03+Wpzexsb2P1cKgsaV4nzhJ1Edsmi5IW2xfqeLTYOVMRhpZv8U6nkzVrAlUNjg1Nw4Ny75NSUrc3HlnYeQ8L1BVCfdBv1GiBvtn+RVVjdWHANHggIqhqCMVb6FexuvPk07DrkJ3nPogPKGgABjO3X55Ecnzgu7Y5JJ9ui441LaK2UEKIN4BVwGopZfR7JHU3QaU3pITcI6E/uBUrVvDAAw9EtT5LY2MjhYXqm0jYYpLm0eDKDyw7D0NM4Glq0qRJfPjhh/5K4HV1dfz3v//FZDLhcrlwu924XC68Hgd3nrsPhNcXdyB55e8fcu55lzJ9wLlqN2fjWrAqwZu7KtSK3WdFuVw1RH0zOqPpAkvakSNHQmrlAZRUZTAgrdRvYbE69oZaPluh1FbFaVt1yLjL6yG34hizM7NCN+pE/n5gBRuKFWVgd//j/GjitUFCtaFGmhZhAGsW2LcHxhx7wdy5Ne2CSXnoFhrXbfPHK7mOF9Dw4QYSrr2wxe2Ki4tDMrMdDgdr167l6quvbmar9tFiiEVIgU5NuYwgZsyYwZYtgYz4w4cP89Zbb9FolxzKnxHk6pWs/uBdVnts/rloeJrkNpMHU5OLtSl5oAvrX00fF8N/lgdCWQ6ddFJT7yE5wdjCVgqhfTuj17NR1Wjd48J52oL0KLWbWypiqy29ETu3dVfnpk2bqK2txSNNVLpGUjJgNNP2lpHhUpIi3FUmar/YQHKYhh9RQRuP1neqSgl1nVTHKprGTITBFji1zj82tHgx1Hwfkod1kpAKOw/Zee71Cjxudbzod2af4PLzsnC4JEs/DcRyrtxcz5XnJmAyduyajtTduRK4HNgvhNgkhPilEKJruo53Nq4icO73L3o8Xo4WhU7qp06dYs+e6FZ911rR+vXrR0JCQuiK2rg0l9plabVamTRJbQI/dOgQ+/bt4/Dhwxw/fpxTp05hrzuIlB6kVyKlpLYxntKyepYtW0adVx0HEKy45terXWx5dSUUNVTwjaGTEwe8Xi8fffSRaiwpKQmLxUJpdcCN4nA4KMpfo928VcJZ0ZrYWhbSca1TqXLU+xU0gHXFu6lyBAWpd0RJA7BqCqV2YqcGi6tCqWEVPDZyCAnzc1Rj1X9/G+loucSD1orWxNatW1UFZ6NBOFen/+FTa0nr07ySNmDAAPr1C/TClFLy9ddfs2N/JW63G4/Hg8fjwSIrqKksoaamhoaGBpxOJ4dLnNQ0ev39BnHWdnlZhYxUE8P6BwK+pYSdByOzpoW4O6NoSTP2TcPYJ0VZ8LqQHoGrwidnM/XR3GVVOA8EXUNCKMVqW6C+vp4NGzZQ4x7IgYarOWWfRbGYw9/PfhhXkLmq4asGDu/4rCMfqXlai0c7pb73mIb0h/P/qLLuGqSj092efgXNg6qp+nf6/ZPLz1PK/1w2OwGLOai0S62XjbmN2l21mUjdnW9JKW8H+gM/Qenh+bIQokAI8W8hxHVCiAhSsHogmi4DlbYR2JzhG5V//PHHqifQjtJinaJgWsjwbELr8gxHepK6wGdFrdJaw+v18tWBFPXK9q/AU4WUMkRJA9hUGtLz/szEUwfe6qABs7omVxTYtWsXJSXqTg/Z2dncddddVNar6yF5Gnbx2WdtmzC1SQPBfFV+GLe3czMJVbKEiY3b2WSp9VSrYkPB3HarZZTLlrSExV0Nm58MGU958GZV6x13cRl1S1t2yTSnpEkpQxT4YLw2B7K50IZmaDHEQquktWBJg9DEJYAGj1phiTeWhawjERS50nEH95PUHrsLmKHJ8tweocvT3YlKmhAi4PL0KQTOUp91qZnMTrvGimadOKrV0hurPv6cQ9UzONZ4IU5vvHJci5nq1GF8NvQy/3rOI0ns/OCv7N+/v4W9tZOQeLSZqkXXKXUklXlIP0joD3M0TY6Kt8Ce/0RfPjQKmvSCb768p98/uTx9NaQr9SwT4wzMmxan2nb5F/VtSh4KR6SWNACkwlYp5ZNSyunAdJQ+njcDx4QQ3215Dz0QTTza4YIheIXk8CgX26Y7yJ3s5OgIFyWZHk46ytn4ZXTKU4SrU9Rs37yQDM9QJW3YsGGMHz++xWOmJ2qUtLpA/7Mvt59EmoO390Ljeqqd9dQ6Q58GNp3+hihp2hpp5oEgjNQ5G/m8ZA9FjR2zKLpcLj755BPVWHZ2NikpKQwfPpzLrn4YKQM/0+T4Oj5f/2HEipqUkj0aS1qw8b3eZWd/ddd1MthdEaqM7Cj3WYZDrGjDUQegREAXWtIApQxAkboItql/Bok3Xa4aq37pXVU/xWC8Xm+LLd0OHjwY4gqXbjdlj/+ZkzNvoui6H4coDc3hdDqbD7EIlzSQrimorGHatGnqbHTCKGmm8JbAYndfdQZrFycPAEwfr1bSdh9x4HS1flPVft/GKNRIC8aSNVJlsXGUWiFxEMSHr3Zl26QpvTG3+Yd2KSUrPy/ltXUDqHQFXKtWqwUQmONiWTviSspjlfMo7SZGFBfy5ptvRldRs1dBVdC9TIgQS6H7pPrh1TTYVy5q7LdhiMYHu/V3UB3VNuLsPBikoIH/nNzT759clrYS0saCKXANXXlugspjf6rUTe7hjsX9RhST1hxSyhKU8hyvCiGMQAvdSHsgXptSvNWHlPDVgRRKM71UpypPp954I5VWN5XpyvLB0x+w4ssDZKUNZUzyIMYmD6JPTHKbY9UaGxupqgooTUajkeHDh4dfOcTdeQKkEwKduhBCcPPNN3P8+HFqa2sxmUyYTCbMZrP/b7r718S69/gvourGwGRaV1dHuW0KGaagdO+GNeQ7wmcS5deVUthQzsD46GU1dQqeSgyiA93FwiQN1LlsPLTl71Q56jEZjPxu+t2MTW5f3NPmzZuprQ0UPzQajVx88cV8/bViVRg+Yhy2QxNwNQSUjX4p5f5g33nzWg4WKbFVUWEP7N9iMDEzYywbgyyh28oOMjmtmWsvikgp2V0ZOonmVhzD7fVgCikP03pmWgiWsSiNUHw3OE+JYp0zRvcmqmLDT+GGtarJOvm+BdT/71O8jcq1562qpfa/y0n5/k0hmxcVFani0eLi4khPT+fUqUAs5KpVq3jwwQf9LZnq//cpDSs2AOA6epKaV94j/Zf3typqWZnaqtW/f/9AiEW4pAFzeK9CEzExMTzwwAMcOXIEp9OJMJh4dmkKcR5lkhFC8OBdV9C/jxmz2UxlZSX//rfSDaLE0xe3R+n9aRCiW5S04QPMpCUZqKxV5nenS/L1UTvTxzf/ub12B96qoIKlRmPUG35bx49UudKdJZZmXZ3S7Q5V0ppxdZZVuXnp/Wq+3F2LWwaSxQwGA2azRYlrFgJvbCz/G3sL9+cuRAAZx+14+nh48803ueWWW0JaErYLbZeBtCywqq1/7lNaJc3nXhcCzvsDLL0AnD6F2eOAdT+Gq99X1VlrLzsP2nnujSAFDcDr4t5+/+DSNF+Sl6aper90E2dPjOXLPYF7zvIv6pk6Vv0w0BbaZEkDEELM9/XsfE0I8d+ml5TSI6UMtWv3ZGwbQQa0XIcng5KqZE73Vc6KEAZiYmIJtj14hWRfRR7LT27hj3ve5b6Nf+GeL57nmd1v81lRbsTlKbST5bBhwzCbm6lib0hQF5zFA85Qi4TZbGbs2LHMmDGDqVOnMmnSJMaNG8eoUaMYOnQoCZZSjEYDBoPySu2r/tHvOKjRsRvXkV/XfJHJHu/yrPo75E1hRvo9UN/OMiphkgY+LdzpLwTr9np4+9i6MBu2TkNDA+vWqbedM2cOaWnq8xCbMpO4uIAZPTNVuXbWrFnTqkVN6+oclzKYc/uprU3bTh/ssEk+EoptlZQHKYxNNLodHKg+2bHMziaE2aeoBdGJLk8AavLgqz+phoxpySTdpQ74r3n1fTzloT1Fta7OESNG8K1vfUs1VlRURG5uLqAoCdX/XKp637FLU0urGbTzjirEog1JA8HExsYyefJkpk+fTmpmFlKY/Q+JaUlmJo8fQN++fUlNTWXkyJH+OLZid1+QBKxp5V93eTkFIQQzstQK2fZWug94StTWc1PfNISx40pBMJYJI8EbiGN0nrYg+4RPBHDsPaouvZGSGFJ6w+OVrNpUz8N/Oc2OA424XOqwnSH9TFx3QSBiScTEcihtPLub3Kv5MaS5q/F4PNGzqLVQegOUQr4qi6UQmAcFWRIT+sM5v1Hvo3SH0imjg+w5GkZBA+4dszqgoAH01WQpA/PnquPK9x5zcLyw/W342qSkCSH+D/iXb7sbgArgUqC63RJ0JxpXZ1FNFjVJ4LAqNyyTyYgQwmcGDuB0ulQlLioddWw5fZAX9r3P28fWR3ToFifLcITEpR0Jv15zSBlSfmPEuEtUy5t2NOIVKYEBbw35Nc3f4DaVdkKMQrTwVEPFs4AHg3BC2ZPtq5kVxpK2U5PtmltxjHJ72wser1u3zp+1CYpVIicnJ3RF60RMJqNfUeuXGrh2WlPUtDFgE1OHkZ0+EktQ8cXT9pqwcYfRJpyrs4kd5Uc6njTQRIjLs5OVNFBuDBpLVNId8zEExQVJmz1EuYLwStqQIUNCkoE+/vhjXC4XdUtW4ylTtyRyHTuFdLUcLyulDCl03WI8WgtJA81x6KT6ZjRmqCXEy9AUP1vtTcIurbhcLiWBwFmvKLxdzAyNy3PHQTveFhquh7g6+0ffm2Dsm4YxJvBdSrfA5Rwadl3bFztUy7FzslVK48lSF7/6ZxmvrqjB4fSqrLYCD+P7HuPFx4Zx8yVJDEpX5iNhMSEMgg9G34jNFAMewaRCJbEjaopaK0qau6BUNWcb+6aFdnUYs4DKpBnqse3PQUX7E6KcLsnf3q0OUdDuuzqZS2P/qx7UlpIBRg22kDVcLefyz9tfSqetlrTvABdLKR8GnL6/VwHD2i1BdyGlKoMRYG9eP78VDcBoNDGtz2juHX8F/epjsDibJhupurkGs644t9VDezyelifLcESQPNDyQcuUVjlNiDgGD5uhstq43ZLSOnUMSn5wjIqGE/WlnKrvocZT+w78Li8AT3FoT8hI0FjSGg0DFKtPEBJYV9Q2V01lZaWqfAHABRdcoLKY+fEpHU2KWv809bXTnKImpQzJ7JyUNpwYo4Up6SNU41tPd36W5+7KVpS0aFjSIEzyQCfHpYHStWT9T1QuKkNCHCnfvVG1Wv27nyhV3H14PJ6QeLQRI5Rzc+mllwa6AKC07tn06WfU/Pt/oYd3uXEdOxUyHkxFRQWNjYG4OKPRqC6E3cakgXAczG+lPhpKzKXithUUe/ri9XgDbbC6weU5YaSVWGtAkayp93K0oPluDx5N+Y1oFrJtQtQXYskIjmEUOIua6deprY/m6zLgckuWrKnlsRdPc+SU8nmasm4BEoyljE9Yzg9uHYfFrBgkLpxcgXLJCYTVRI0lmdUjrgYBg/Kq/cfosKLmaoRyze9So6S5NK5O85D+hCAExwd+F2KC3M1eF6x7KCTzOlJWbqqnokatod13dTKXTG6EhqBEBoMZ0sLHgc8/T51H+eUeG2VV7Us6bKuSliKlbHosdQohzFLKbcD57Tp6d+Lcr8Sr+JDEsPmIheqUgIXMZDKyYPhcrhsxl0cm3UD2bgvZuRZGHTXR55SXYZY+WIzqsL5ye22rBUILCwtVAbNxcXH07x/mAgymlTIcrRIm3kcYDKGFcA8FKW1SUGhTBzv3MySrlntsAoE9TNcFe+TV3/1oLGl76i1hsyE/K85tk8vw448/VvVnTE5OZvbs2eFXtgQUZ5PJyKC+TuJi1RP2mjVr2LZNHeNR2Fiu6s9pNZoZnTQQgFkZ41TrbuvkUhwe6WVvmMzOJk41lFHaqJ6UMbcjJg26zJLmNmgU6or9sPsfqqHEb18WiKMBpNtD1cJAT9GioiLVA9+w+Dr6Vn8BjhrS09NDronify3BUxneaqsqwRAGbXcTVYhFO5IGwqEtYjsujJKWkJDAuHHK9VfsVjKl/fPh6a5X0kxGwdQxmizP/c3HsbpLtEpa9DI7/ZR+haVf0HdpMOM8mB+ymqe8Cud+9cNN7DlT8Xglv36lnHc/q/NbhKSU2O0OjMLFkJgvGR33MZPH9VcZCNIT3VztUzBEjPKdbBqUQ0HiUOJLBXENgWu1SVFrV6H30p3gDVJakoZBnDpr3n1SndkZ/DsKxmVOgbnPqAfL98KuF9osVk29h2Xr1X1rr5gTzyVnJ4SxNE8AY/gQpaljrAzMCOgGXgkrNrbPmtZWJe2YEKLpl7sXeEAIcTsQGmjR09FY0eo8UylK8frDz4QwMCyxH+OSlRIAU6ZMYeDAgVhcgrQqI0MKTIzZZ2Dx+Y/TP04dQ1TYSsafdrIcOXKkPyC4WTrq7gzXaQBCGrRv3xePxxf0W+BMxC09gPIrT49JYopJHSC/uafGpdl3hI7Z2qikSRnSt3NHTfgMveLGSvZXR2apKygo8CcGNHHJJZc0H5NoTFSq6fswmQT33DYbi0VjUl++nKKigJVmT2W+6v3xKUMw+QJqp2eMUWV5Hq8roSxMwdtokVdXTL0r4GZJMMcyPiW43pyHrxqCgvuN6WBUPxBEjDULVQ6rKw+8nVC535wKo65VD371J6gK/NaE2RTSLqrxk804disdPQKuTsm5sVu5PX4xYt1DsOR8qDzEvHnziPHdLM1ON2P2FjRrxXcebNlV2GLJH61VI3V0q0kDWipqPJTXBHsiYPiA8NXxmx4OS3xKmrvJ5dkNljSA6dpSHC3EpWm7DUSzkK0frZJmNOPQKGMAtk25qmXLhFEY01PYe9QRYtV0uVwkGfLJin+fPpYjCAGXXXYZWq6/IJHMNCPCbEUYwYvgnbG3IJFcn5CiWrdJUQu20EaEtoitxooGEVrSmhh5FYycrx7bubDNZV3eWVuHzRF42I6PEdxwoS9kQXtthnF1NmEwCOafp45NW/tVI/XtaBXVViXtCaDpinwceAj4A0rttN6FJh7t2OlRnM5QW9EuGTTdH09hMBi48sorVducOnWKA/v2Myhe/SRV0NCyCzDi+mjBhJThOAayDebTZjLnUlJSGDky4FZyuKyU1Q8DIN/huzh9yRXDEjIZbeqLMahP2cn6Mk7WR7fYZoeRbrDvDB23t7GdlbcGZODmLolhZ2XzbYbWFuW2LlqYulf9+vUjOzu75Q01LrwBaRXcfffdKkXN4/GwePFif8yJ1nI1KXWY//8USwLjUtQ1yDqzl6c2Hm1y2nBmZgQF+Es3OxuDgoLbG48GSrN1c3C2qgRH9OMnPQar0nA8JughzesKKawZd+k5WCaorYJVz7+GlJLjx49jwMsV8Z8xN2Y7pibLfONp+PAGYm0nufBCpVvB+APFmF0enC5X2LZvzkPNK2kejyekjIdq3olGPJqmqfrIgRZVcc9gxo4dS3x8PMUeRUmTUlHUKN/jr0PVlUwdq264XljmpriZhuudWcjWT8lXWDODvk+DGeeBvJCaeLaNmng0X5eBrzRFeZPiBSPjPmd47HrMBsVKOG3atLAeHItZcM/8FBACYVG+lFOJQ9k08HySv9rP9dddp1q/pqaGpUuXNt+KMBwh8WihHWzcBc1kdjbH3KchLuhceN2w7kcQYeu7wtMu1mxVt3JacGESCXG+CyNESctuWZzsOFITAxeVwyn5ZEvbW0VFrKQJIcYBMUAxgJRym5RylJSyn5TyvTYfuTtxl4FDnbK8Ki8elyWgQceYrOT0U09Uw4cPD0k9Xr16NQNj1Za0gobmaxbZ7fYQ83BESpoxFYzBsQ/OECtPi4QEZQduGtqClLsOpyMlnHCqlbShCZnECQuTNOUaNve0BALnQZBhnuxcx8EdWT0pZX31eTrlHRU2O7GJTaX7aGxlQjh06FBIoPgVV1zRuiVVG2fl3MuwYcO49lq1JaeyspL33nsPr9cbEo82UXPeZmpcnp3ZfUAbjzY5bQTT+gRf9x722Prg8PpisDqipEEXuTwFxKbDOb9VD5d+pdRPa1rLYCD1J3eoVrHv2E/Dum0U5h9hQcJKpliU7EyjKShL0FYOHy5g9tg0+sXEM/ZQILnD7nCQsOBi1T6dB0Nv4k0UFhaqLHDx8fGqbgHtzewM5lAErs4mjEYjZ511FrXeBBqlYrFzulxK0+zqo81u11kkxBoYr2243ozLszML2QJKvFbFfoxJHgwxvvNpMCNtdtz5AUu59Hiwbc5VbRo3dxpSSnZolLSzR5zA6j7oL79kMpm46KLm28tNHRvD7EmxCKvFb5NeNeJqyovsTEpIZ+7cuar1Dx06xBdfRNgx0uNSsjCDCWNJc5+IzN3pJyYVzvujeqzyEHz1h4jEev2jWoLzRTLTjFx6tq8XsJRhlLSWfyNmk+DyOWpr2kdf1uNyty2BLSIlTQhxF7AH+CewVwhxQ5uO0tNo/AwCDUnwmiex06P2Q8/tN5F4c2htk8svv1x1Q62qqqK+QO3ebMmSlpeXp3ri6NOnDykpKZHJbe5AXFoLNaiysrKwWgMT1L68/rjdbvKdPneTdAKS4YnKj+TcTHWsSo8rxWELE4/WRHBfx9bQJA3ssKmzq7LTR5JmDQSIOjyuFhXWcO2fRo8eHVZJd2tLEVjCKx3Z2dnMmKHObtqzZw8fbl5DTVAR4liTlZGJ6qfmWX3VStq+qhPUuzpQU64ZHB5XSLLFlLQRDI7PICOm6Rpz45RG9th8DyLtqZEWTFcmD4y6GoaqFSa2/g7qAoWQY2dNDumlePqZf3KDZQkjzYqbXBhEqLJuq8C46ttcUVGHyR24JhqMUH19DobEQEN5b30j7sLwVu1WQyyikDQQLrOzJZRQC+GPS/O4PXjD3Qy7CG2WZ7juA1LKMO7OKCcOlO0G6UEIFGuaMCoxgqByeTr3HsVbE7D0G5ITsEwcxanTbsqqgtzOBsmJg+rwnnPOOafV+85dVyYTF2cGk3KvtBtj+GDYfBpWbODSSy9l8GC1Jf7jjz9usSizn/K9ijLeRFxfSFLPrdLjwV2kvpbNrSlpAMMuVgrdBrP7n1DSwj0BpUyGVrG99bJkzCafitpQDI1B93VTjBIS0AoXz4rHaglYk6vrvHy+q22u4UgtaT8DFkgp+wI3AT9v01F6GhpX56G6bKqTAhe1EAbmjzgn7KZ9+vRh1iy11p+3Q11nKpwlzWaz8eWXX7Jq1SrVeKtZncG0N8PTa9NUzhdgDmT3WSwWJk8OTMoVdalUNyQF3J0A0snQBGUynZUxTuXyPNWgdnlWVFTwzjvvsHz58pCm0V1CuKQB/3ttcHlqLGm7GtQxUjP6jGHegGzV2NoitYU2mJ07d4b0YdTGhJQ0VvKDzX/lL41reeXQ6sB1FWIZOgBSCba+6qqr1FYRYPmOdarEhAkpQ/3xaE0MiEtncJCr3iO9ger/UeRg9SlcQS6svjHJ9ItNRQgRsKb5XPc7mlyeUVfSOrEMhxBK4HJQP0FcjfD5Y6oSAqkP3xFoIC49iKOHST0aUGyMRiMicRCMWaDavft0NZbVGzEHnb59Ewawat1azGOHqdbVJg9UV1ezdu1avvzyS9W46sHAUasufdGOpAGH00t+kTqbbuyQlpW0fv36MXDgQL/LE8DldLVbScvLy+Ott95i7dq1bXO9+dB2Hzh0wkltg9r16q1rQNqCSljEWjEkh+m33BGCFApLP6eq4XhwkkBjM6U3tP1HU2PK8QQ9fMXFxXH++a3n+qUlG7npklSCqvWwq+9Z7Fh7DIOU3HLLLcTGBuIWpZS8+eab1Ne3Ev8ZLh5NU6bFU1qhKiljSE1SPZC0yJz/BwlB7fSkV3F7NvMA6vVK/rtKnYwzerCZsycGXQ/aa7LPJFRfTDMkxBq4aIY6wejDL+pbLPGiJVIlbYCU8gPf/+8D0e0w3ZVIFzSuVw29V5CkijPONCYxKkndMzGYCy+8UGV5MtQ6Va6E4sZK3F4PUkry8vJYunQpv//971m+fHlI6Y2IXJ1NhMSlRXhDdeURbDnENAQMatO+2uUp2Hp8EFXuwDomHAyIU8IREy1xTElTl3BosqbV1dXx97//nZ07d/Lll1+yaNGidk2YHaIlJc3WBiUtyJLW6DWxv0H9czmrz+gQJe1A9cmwzeedTmdI+6epU6cyYEDgOpNS8pd9yyhoKMeLlw9PbmFHhe8cm/qAMVgRc/nPv9ls5tZbb1VdkzUJbmw2m1/Jm5g2zHcQrypeamZfdeHXznB5hrg600f4Yz0DLk/lZrijIVPRa6Lt7nQe9iu1nUJCfzj7V+qxU+vh8Lv+RcuYYSTMv0CJW7NXgvRg29YX6VK+C2fSGLh2BVywECbc5d+uZnMy0u0lBhtGvNhizRwZ3Zfi4mIqk9XB/c5DeXg8Hvbt28eiRYt47rnn+PTTT2loUMfCqB4OyzUKbMooMIcpBdMCRwtceIJ+5plpRlISWy/wOm3aNL8lDcDlciLb0cPz5MmTvPzyy3z99dd8+umnfPjhh23eR980E0P6BW684Rquh5TfyOzT5m4zrVIapKRlOpVSDz6c+wO/JftGTZeBc5VkjK+CLIBerxd3jVrBuOCCC1TKVUtcek4qw1NPq3SopekXUrd5DykpKdx4o7rETF1dXevxaa00VQdwadpBRWRFa8KaBDnPq8dq8mDb78Ou/kWujTzNA8Zd30pRn1dt1nELSQNarjwnAUPQrgrL3Ow8FLnxIlIlzX8Iqcz6be5U0GOwbQEZmLDchn5saVS7OnP6TGzxhxcfH88FF1zgXzZ5BDQGgnndXg/LN6zm+eef56WXXmLXrl1hG7PHx8ergvZbpb2WtBBXZ+gxBw8eTJ8+AbP9rsphqveHmCsxBVnPzukX6vL0er0sW7ZMlelz4sQJdu4ME8TfTux2O3l5edhszbjl3KfBHWwB09woHHvAG6G5OSjmb09jH9xBPTT7x6XRPy6NAXHpZKWon1nWFoda0zZt2kRdXeA6a2r/FMyXpw9wsFrtYl1xMmhCa8GF16dPH67zBfRKJLWJEim92O3K9zQpdRjUr4C8SZA/FRqUumrauLRd5UdxetpXz6c5vtYoaVPSAtff5LThWAwGQPntnHbHccqV0vbG6lqMaZouHS5wdl5iBADjb4EBc9Rjm59UuUlSrh6IcFX6lGXwNpix70knzz0Y12VvK64fIeDc38HEu3FVm6jfo1hqBJJYg50Tk5Px+qLcd9ac9j9+eb1e8tdu5JlnnuGNN97g0KFDYcvCDB06VO3q6oR4tHD10cIxZcoUTsvADdjrlbhLcttU48rpdLJ06VLVZ92yZQsFBQUtbBUebfeBJoWnrq6OvLw8HAXqos9Rd3VKqYrXsvTTKGkHjiG9XjyVNTj2qef12HOyqW3wcDjI7eyw20kyBuaU1NRUzj47NEi/OYxGwXfPPYEwBZSu8pg0/ve+kkA1btw4zjvvPNU2R44cYf369c18Pm9oO6hw8WintPForZSo0jLoPJhwp3pszytQuEk15HRJ3vxYbUWbMymWMVorcBsyO7VkpJqYPUl9XbWluG2kyla8EOJk0wtIDlo+5RvrHWhKb3zpOJ9GAhe1wSO4evx52q1CmDNnjmqii7UJ7HY7NpuN+vo6Pt62IcRq1oQQgszMTO69916V9aNVwlnSIqnNpbW4hak/JYRQWdPyHH1Uux5mKVO5jGZljFO5zwoaylm9fQMHDoS2p/noo4/anqIdhpqaGv7617/y0ksv8dxzz3HoUJibrrb0hnUydk/wU5gb7M27JFUEuTuVzMPA5z0rPfAdXjhQ3SdvXdFuVXuw+vp6NmzYoFrnnHPOITU1UIDR7fXw+lG1Gx6Ubgb+gsGtxFlNnjyZs88+m8ZYiccXR+J2uzG4vAyLlVD6Q/BWKYWNSx8Ebz2jkwao4upsHidfV7Vcb6st1LlsHKtVtxab1GTVA6xGCxOT1X0Pd9jHKe2dOkpXdx4QBjj/j2AM+k07amDTE8r/BxZj2vUjkqbVqAzb1TsG8Kl9AX0GDAval4BzfkvNwdlIb+CB0ZLq4ryp68gwKnNLUYzAbrPR2NhIfUMDzoN5zbqbTCYTgwcP5tZb1SVBwmV2llS42b7fRk19ZJmWh09qlbTm5zXnkRM4D+cDiutt6PiZ1MuA5c7taIDqyN3un3zyCRUVodbrDz74oM1WfG1cWu4RB8eOn/Q/cK98bbFqn6ZodxuozVesrE37z4jBkBwIO/E22HCfLFF6dQZN0JbxIzD2SSX3sMM/7PF4MHnLsBgCRolLL70Uk6ltLbtHTcri4rjVgQEJq2oGU3BK2e8ll1yiLooMfPrppyHZxIBSnsYeVLHLkghp40JW0zZWNw9pgyWtibOfCIl1Y/3D4Aw8LK/YWO/v2wpK2ZibL1X3Dw2fNBC5kgZw9flql/gBTXmUlohUSZsH3B70Cl6+zfe35xOmy8DyUnWc0eDGePqmtv7DM5vNXHrppf7lGJvA43HjditPgPYw1uTk5GQuuugiHnvsMWbNmhUSR9Qqxr5gCI4TawR38701/WgzO5uJ95k6darfgtgQK3B7jP6JYJi1FhoDSkSCOVbl8pTSyzu71N9tE42NjSGuvrYipeTdd9/1T8Z2u53XX389pN5YiKszZjp1Ls0kEElcmpR+d6eUsLOxrxLA6+OsoMzEOX2ziAkqaljpqGPjid3k5uby/vvv849//KPV9k8fFWynuFHd6qeJlad81rQIlI4rr7wS4xD1NW0osdF44ilVn1q8NVDzXwzCwIwMtYV22+noWZz2VOYF6yMMS8wkxaKesKYlqa2dOxqbDzVoE93ReSB5GMx4TD127EP4+B7Y8ChIL0ln1yKsivLjxIzDaWXG8boQ673z+CnqdzjBFFBgUs6pISXOwy2J75NhLKcmOQaH14PbF38Ya3NhtautUP3792f+/Pn84he/YOrUqSQmqquha5W0fY5pPPSnUp57vZIHni3hpferKalo3rrq9cqQ8hvNxaNVPf9fiq79EUXX/ZiqFxYD4VyeLlyFkSX45OXlsWnTprDvFRQUsGNHmHqJLTBioJnUpMBt0e7w8q/X1wVia8uqaGhsxONT1KKe2Vmi/tyi71QsWer52nngWGiXgbnT8Hq9fLGzEqfTic2nuCebA1a0gQMHhrQai4jMadw26nWSPE2Z7RI3Bv716gmklBiNRm666Sbi4wMxY1JKlixZovIeKJ9P6+qcEbYZuivEktYOJc0cDzl/Vse71RXAl78GoLouXOHaBPqla5TYupPgqA4sWxIgRR3u0xrDB1iYOLINBpkgIlLSpJQbpJQbgC+BscC3gXs0r56P6xi4AwVHi50p7K1X+4ZnJ47RbtUsU6ZMYdAgpbhrrF09wdpilFuT0Whk0qRJ3H333Tz22GNceOGFkWdzahEiNMMzEpdnC5mdwSQlJflj5Bpjvbi9Rv8NdpilJiThYk5moByJzWbndJIDSXjL3tatW9vlfmhiy5YtIfXlPB4Pb7/9Nl99FaSYhVHSal2a1h2RxKV5ykEq18YpVyJl7niafi4Wg4mJQTXHrAYzUxKG+SfH+vp6Xvx0MUuWLGHr1q1UVqqVr3nz5qliQupdNpYcV1vagllXvFvJugxROvaFNKQ2mUwkju9PcJDlAFcD1C1VMueCqf4neO0h3Qe2lx/CG6VG16GuztDJbVqC2t1woDGGBlfkMRvN0h09PAEm3xf6pJ0XyOo1xniJm16BXVpwSAsg6LfzaEjxzuq/va08IVgSwRSHOd1F/PgGrBYL8QYHtyS+Tx9zJTWauLTUqkasViuzZs3iBz/4AQ899BCzZ88OH4fkqIWaoHMkBG9/1c9vjXG5Yc3WBn74x1L+tLiCo6dCLQDF5W7qbYFrK9YqGJQZaq2p/3A9Nf8JVGuqfXUZ3vpGRo8eTaUpKGRAQsXB5vvR+kV3OHj33XdbXGf16tVtsuILIZgxPvA92e12CqtS/MtxjU6klDQ2NODxeKLft1NbmqLfdKxZ6vAUx96j2DYr3gCPx4PT6eSzmmJ+/ZvfsWlXBXa7XemHKiXJpsCcq61MEDHmWBIGjuVm72tBg5J9xQY27lbCKZKTk8PGpy1ZskRtzYwgHg3ArfktmFoqZNsSA86GSfepxw4shpOfsXRtHXZn4LpNiBWqJvN+tPFofSb7s23bwtWa4raR0tYjvQb8GKgDjmlePR+NFe0T27l43AFzfny9gRkjJmq3ahYhhL/AbYxNraR5k01cfvnlPP7449xyyy2MGTOmfT8QLW1tDyW9LdZI0zJt2jQkElusxNNkSZMw1FoLjl2YRbV/3SaXp8vlwuNxY49RthPCy9VXTGFgP/WTQ3vcD6A0o9dmxfo/npT873//U56mpRPsmh9U7HRqQyxpX7VeCDgorm1Hg9rVOTF1GI4GG5999hmvvvoqv/71rylc8zUOhx2324WUXqpTvLiNoQprampqSKufd/O+UJW+iDVaiBeB787hcbGmcCeYBoAhJejDN4ArX7Uvj/RyrLFUdUO+fOAOJT7NZld7xz3lUPsmk9KGE2sKHK/KUc+RmuaL9rYFbdJAOCWtnyGfQebAE60HI7mVUZhSQpS0fUqPzc7GYFICl5vJ/pJGK6tHzqImLmB5MCGofnGxf9lx4DiNn2wObGRJJOXWGQiDMu9YrRbihJ1bEt/HnhaYe0xGI/OGjeUXv/gF11xzDQMHDmxZVk3SQLF1NgdPhv+Nbtlr5+d/L+Opl8vYdcjujwELKb0xxILRoLEKHj1Jxa/VLbOky41j9yEMBgPJI9V1t1xFLZdMAEUB0z4A3XDDDSp3XmNjIx9//HGr+wqmKcvT5XLhcrmocQ/2/27ifW2RpG/fxdEuWVOq+dyZ07FMCChpXq+Xkjc/pL6olLq6OhoaG6nzutlRX055fRIeGbBgmoSdOIPieRg7dmzb4p+1DJjDBaM+ZUxVU2KRRDpd/GdZJet3NODxSMaMGaOK1QY4duyYuq9wK03VQZnTQxIHBmWGrBcxMx+HFPVnP/XRH1m7VW1FW3BhEgmxYe7RHXR1NjFltFWVmBIpbdUaLgPmSCl/JqX8f8GvNh+5OwiyBLmkgTXVaXiCSwOcNvibG0fKsGHDmDdvHnEOpWGw2WwmLi4eU0Yic+fOJSEhyunZIXFprVjS3MUggyYSQ5LScqcZsrKy8CZbkAaQCDxeIylGG8lGZSJOsQbM7AnmWLISBmO32xFCYja66Z99gEev/y+z+v2E7176MpOGBmLU2uN+8Hg8LF26VJV4YTabQ1xDK1asYNsXryBl0A3DNABM/bF7BoAhqOCwbFAK3raEK/AEukvj6pyQMJi//OUvrFmzhsOHD+NwOEioF1iDrKnSAOXp6pvdoEGDuO2221Q3kVJbFStOqSeu64efy1nBlgXgo1PblNpprViH8uqKaXDbMZlMmM0WYqWb2f2V2m1utxunU2MJqfobZiGZlq5W3KOR5XnaVq1y4ZoMRrJSh4au6DzKtPjggGxTdEqBmAZCcK9Z2Rii1HYa6eNh6g9Dx2NSKZnxIvudQ9k9RbHCG4RSH61h1Rf+YPBghQ2UmKO4h/4GE78DgNliwWQ2ESfsTBy4H6vZSEJ8PHFxcfRrdIe0DGsWTdLAusarW91k33Env19UwSMvnObzXY3sP65xdWqSBrwNNsoefg5pCy30bN+hXJsjZl2jGk9wFlBxujhk/SaOHj3Kli1bVGOzZ8/mrLPOYt68earxbdu2tcmKP3GkFYtJ+l2cLhlLo7cPVquVuMbA70cCy75Yz969UbLQOuugUvO7yzwLi8+S5vF4qG9owF1Zg9vj8fssivsnIw2CGre6ZV+yqRCjUTBmzBiuv/76jsk2YA7WTBc3l7+GSbr9MZW11Q7+9m41P/nLaTbtbmTevAtD7qFr165VvCB1hVAf9PBntEDf7JBDeSuqVWVODHGxGNJT2i+7KUbJmA6yfi0+eRVeew1NH0RVuFZLlJQ0IQRXzQ1jqWuFtippJ4H2OVa7G0+NKhbpy/r+1DgDN1WjWzDG0JekpKRwW7fIxRdfzG8ef5LM1D7ExMRiNBqxe5xUOOpa37ittLWHZ0jPztEhNWmCMZlMZI4P3Eg9XiODTYFAz1SLT0lzlyNr32dkzQrirI3EWxuxmh0ctyaQlCAVz6xJMn/2RvomBxIo2up+WL9+fcgEO3/+fG699VaMRnUsQ8HR5TgcgcBZYpoSIQTEzlTvuDWXpy9poNFrYr8tnWBLmsyvCckuFQgyyg2qkfrBFs4//3zuvPNOfvWrX/Hggw+qSm4AvH50raphe3pMElcNOZsp5kGYg2I1Tttr2F52CKyazDuH+iYb3K8zJsbK1MQSVfr3ydIkJdawCU8x1L2rbtFEdFpEfV2pblM0NnkQMUaN8iC94DrOtLggJU0Y2VF+pOMuVyG6tl6alrN+pChrTSQOhmuWc7BKuRnkD0unOiVWdR1XPf9f7LkHsX2ufphJeehWhMEA5/wGJt2DAOJiY0lMTCBtqAerweW31DsPtNzDU0VQPJpHGlhfok6CyZkW1+zT/8kSNy8urWLDLvVvIVhJk1JS8dTfcOWFV5IcOxUlrc/gcdhNgQcpI14Ob/kg7DZ2u53//e9/qrG0tDR/zcG5c+eqMtWhbVZ8kxESjQWqbNFazxDuufs7pHnVc05djJE333wzOhnsp3PViWCpY8CajGlQJoaEuNAHLB/F/ZUHkRr3IIQQmEwmrFYrN145gf/7v//j7rvvDo1DbCuZ08BgZvjoPC46sZom5UbaHSAlReVu/vJ2FY/9tZxR2dcRH682Trz99ts0Hl+n3mdGtqoGXBNat79pcGbHy5xknqX8HoE9DVPYUTcTPA5/Ud3bLkvGZAxzDOkNzX7u2z4lDeDcKbEMbaM1rVUlTQgxr+kF/Bf4QAhxc/C4772eTeN6mmoxAXxcNwm3J/CD6FNhYMyI9hfQjI2NbXMPz3YRrgxHSxmeEcajBWMdlOL/3+0xMthY5S++l2rZBScvgvzJuAru49K0zzAbAlau094kTroD28fFmrn67DUYfeu0JYmgoKBAbSpHsfRNmzaNCRMmcOedd6qakg/qU4zT6cRu97n1/EoaEKNR0lpLHvAlDexp7IMbg9+S1i82lRN7QhXjuLg4ZqeOI8YaQ1xcPImJCbiSTYyZM4Vx48YRFxdad+pQTQEbS9RKw20j52E1WogTFs7TtCVbcWprq5a0PcH9OqWDWakFKp189Y7z2XpglLqYYtWLTEsfoSpQXNBQTmEL7c0iYbfGZTk5jKsTdyFIB1mxFcQKF0osnYEaZwPH65q3pERMdyQPNGG0wFX/g2kPw/SfwnUfQcrIQNabEOyaOkRlWbVv/ZryR/+k2o116nhizz3Lvw1zfg2T7vUtCqwZTl9/QuWcuvIL8TZGGNMXpKTtacimyh6wJlgtgu98K5k/PtSXX96dzoQRrVvnhIDRgwLr1b39EQ0fbWx2fcfXh5EOn/KhsapUHPwsrGK1atUqqqurVWM33HCD33poMpm46qqrVO8XFBSoY1dbYMeOHch69XUiEibRPzYBq8lEjC8j32kx4jEZkVLyzjvvhBQMbjOapAEylbpnwmDAOGZo2DJOBiFIvXgO515wLabY/iQmJBAXF0dcnJVL5g6N3KLaGuZY6DuV+PENXJy/inkn12CUHqTbg6eiGk9NHd5GGycL7Pz9fzZKzLdS4x7ovzU1NDRweMPr6ojlMK5OCM3sbFfSQDjO+jHejLP4b2lQCL2zjrED3MwKLlwbTPVxcAZlS1tTILH9ZWJNRsH/uz+D712XEvE2kVjSXgl6/QDIBH6vGf93W4WNJq0WoZAS6gJPXiedieyzpeF2d8zVqWVQvPrprVOUNNNAEEEBwN4aJbaoOSLM7AymymDH4LPieKWBDNmIy6VkjBmEA5z78Xq92O124gwuJluabqYCEGysD8TBGAyCgRn1XDApMIFFkkTgcrlCiiLGx8dz7bXX+p+qRo8ezXe+8x1iYmIAyaD0Yv+2NrsNjyXIKhBiSdvasnLrs6QFmn4r38cYaz9VaRWj0chDDz3EE088wfduv4dZ/bN8lhFFxuY6EEgpWXRYrawOT+zH+f0DitlVQ9T1jPZVnSDPpcl8dOzxfw6318OBqqZYOgneeibHVxATo1wvBwtGUlTZjw1fT6DRFpQB6Mon3rFGlQwBHbOmeaU3JGkgO5yS5lSuT5OQZMeVAQGF5auyKLg8uyt5oImYFJjxqKKkxabh8Xg4cSKQvFTSPxnrTLUi6dYUTE394S1qS4IQMOcpiFeCqQ1WiSnFpVgGAKTEdeQEreKsUyUNrKu5WBVHN3tSLLExBoQQZI+J4an7Mnj6+xlKT8dmDBtD+5mJjfG1MNpzhKrn/qN63zx6KMbMQLiFdLpw7FXOc8ro81VFxZOd+SF9bg8fPsz27Wpl5txzzw0pATFmzBgmTlSf+0is+FVVVaxYsYIkUwGCQPJXnSOBosPK795isRAbE0NjvNqptHz5ctatWxeyz4gJSRoItHurTI9X3ecMBkFCQgJpMyaz4L7v4I0dr8w7vhOTNcxKXEyUy5kOmI0p0UPcUBtXHX+Pn2//LTPLdiK8HqTDhbfehqeqFk95NUX5dgobLiK/6hLqnUqB6qTGAzgdQdbA5pQ0TWN1c1trpDWH0cznff9KviNoHpKSOxJ/j/A2E6McztXZQatefKyBC2dE2D2BCJQ0KeXwCF4d0246yGlvLW8e+6z5Ipw1/1GVj/ikZhgIC16fmymx1kCs3cDw4cPDbx8hoUpaxywRYRGGUEWrpbg0rSWthaSBJvLrS1UWKm9lvC9bSFmWUsnmbGJWzAlAIAwWMCSw2XkRMiHQ2sZisTBr3B6GZQaC8VtzP3z88ceUlalvVtddd11IjN+wYcO47777yEzzkBAbmIDtdsnid3P9yiXWSSCCnpY8pSG9OVW4TwZKbwBNSlrMaXV5gzFjxtC/f3//TVRbM21DyR5cYSaArWUHQ/pZ3j3mEgxB1qxhiZkhitOHxYUggqxy3iol7hA4VluEzeObBKWNFGMDg811mM0mzJYY1u9REhbqbInsPDpS/WReuZCZmlIcW06H1ryLlJP1ZaG9Q8N18Qh6iJgWX6qK/fN3W+gI4ZS0SGoLdhKnTp1Sfe+JiYlkPn5vs+vHnD2FGI0SByjzwOhr/YuWTCe4A79J58EIXJ5BSQP1ngS21s9Vxe1cMC3U+jtqsIWf3JLGCz/N5JJZ8Zg1npsZWcpvzFNTR9lP/6Bu7RMXS9/nHyNmhvqc2L9SXJ6WgdMxmwLzTn/jaVUMq81mC3Fz9unTh0suuSTsx7vyyitV85jNZmP16tVh1wUlKP/dd9/F4XBgEk7ijYoLPjY2FiEE2/cFrmez2UzmhLEhIReffPIJH330Udgiwi0ivaFKms+SBnBUquP5zGYzBiH8FlZt30lti6uo4CvUnDRdKcWR3ljCzceX8fjuhUwr3+1XaqVUkgoMDhd2VzqnquZRc2I2xfsmYG90KlnmQkDm9LCHcWkbq7enRloYHE4vb260qtq3zUn6gjH2D2HHn8NvFKV4tI7Q4zoHCCHShBDLhBANQogTQohbWttGAkuPf86Pt/yDPZo4GGxboTyQ1+DwGllXPwq3J/DR+5YZyMjI6LDfPtTd2QlKGoQpw9HCzUz7XiuWtDqXjQp7rX9yE14oyR+C1+v1K7UulxO3x0NxZV++PHgWR7dnI0lXqrwb4im2Ozge8xCYlKrxQijxUVfN+JQYizKZtOR+OHr0aEjto2nTppGVlRV2/QEDBnDXzeouEcVVfTlw4CiLFi1SFDVhhhh1g+tm49KkF1yFvtIbvhuVMGI2GKnco1assrOzVcszM8aSYFaX19BapNxeD68dUWcaT+szOqw78Koh6qfNL0r2UmPUtjxSbrZ7qvJ9A17w1jMxtsL/0GfNuIf4lMB2Xx44C5vdGdBXXIeZFa+eHA/XFFDVzrhKratzYuqwkN6hynGDlLS4UoItaUdrCqkOdjW0B/MIjeW5Ejwlza/fyWgtQyNHjsQ6YRTxV4QvoJ360K1hxwEYHQgGt/R1KpY0Xxyf82AEBYmDXJ1f1JyPJ+ghJjPNyPhhzbvK+qWbuO+aFP7xs35cPy+RccMsXHZ2PPPPS0B6vZT/4oWQBtnpv34Q8/CBxExXdytpikujz2SVUtXHWMnBvYEHrZUrV1JbW+t/XwjBDTfcoNommJSUlJAkgu3bt3PqVPiHs02bNqnOT4r5FDExMf5Yvx0n1bfLPlljuP3220OKw37++ed88MEHbVPUqo6CM/DZsCb7MxJra2s54FL/DpuU2di5Z9Fg83JQUxz1rHGdoKT54tLiRtroe91p4kbVYUiMIcNeyW3H3uWxr18ku1JtqW6ak4tjh/In89N8uuZ2ao8YIC1Lad8UBq0lrc3dBprhw431VNV6wRQLxhiMws0tfX1lRXa9AMVh7gdaJa0D8WjtpccpacDfACeKW/VW4B9CiIi6/RY1VvCrHa/x4r4PqHPZwF0KJfcDgae5jQ0jaSANj8/qZnIJUqs67uqELnJ3QmhcWnNlODx1isXIjwnMLfvT8+uUH0hTAGqMXVBQNohVX82jqHocp2pzWLLhIv7y/r0sWnsj6/fMIT7pAmYN0LSJKsuDzBdousRMJhMpiU4un7aOJgd1OPeDzWYLqX2UmprKt771rRblTrEeIT4+DoMvSr6gXPlhHz9+nC1btijHiTQuzVMKuNjZ0GRFU9y4w80ZNNQEJkuLxcK4ceryHmaDifP6qS0fWpfnx4U7VFmPBiG4c7S6RVQT0zPG0jc2xb/s8nr4uFYd5I9diZ/xx6N5GwHJxFjfQ4KIx5D+U66+OpC5V92Qwt78kQFLI9Cn8V+MTApMiBLYXhZh6zEN2tIbYV2doLL0ppocjExIUR1/Z/nR0G3agjCCRaPcd7XLMwitktY076Q8dCvCbCIvYQib+86gxpxIXM4MrJNbqNuYPt5frd3S13eT9igPQRFZ0oKUtPXVF6lcnTnT4iIK1k5OMHLTxUn85rsZ3HN1CjEWA7X/WYZtg9olmXjLlcRfdi4AMdM0Stqug0i3G2JSMKaNQPh+wwYkabKEoqIiDhw4EJIZPnfuXIYMaXk+izSJoLS0NKRUx+SRRiyWgAJ4pDaGBlNA4Tf168PYsWP5zne+E9I5ZuvWrezatQuPJ8KSLyGlN6b5rZpff/01dYkxuE3KstFgwGAwYEiMxzp5DLlH7Kq+qQMzTKEFWaOBOc4fNxg3ykbfa8sY/OoCBixbSNov7mPk+WP5TtXHPLLnb0ysCmSpCqHMoBJ4d/Dt5K+YSOEHiXhqwz+AaRMH2tVtIAi3R7J4dQ1L1jTN3QKsSVyZ+RmZFt/9UXrhsx+quhHgdUO5JoY1I7tDsrSHHqWkCSHigeuBX0kp66WUG4HltLGjwdqiXfxg84t8fvDHSLdaUfrYfilg9Mej9Sk3YJAiKkpa35gUlbWg2tmgqn8VNSJttB5SH21oq+12TtQHlDqz2UJcozJh7s7L4j+r5/HWp1PYf3I4dpfypGa1Wrnuuus4N1Nt3dlUug8ZMxNSf+Afi4mJYdygY0wcqliWbDZbyMT44YcfUlOjLm56ww03+OLOWsC+A4PBQFxcPAaDgcKKgLJRVVWluEm0SlpzlrRm4tESKtUTe1ZWVtjA3IsGqF2euRXHqLArT8kNLjtvH1unWf8shiT0JRxGYeCKwWq5V1eYccugG6hjD26vx9f30+PvTTs51nftpz4ApgwGDRrEtGkBF8rmA9NwOOyBIreOr5mZrLZ2RRSXJr1Q9Xc4cR6jEl/A7a5jf5U6JmpSWjOhBE71NTqtj/ra3hmNUhwhLs8uTB4Iwu12q+LRIKCkmQdlcujau3hhwn28M3w+Cyd9F+P9LVjRmvBZ0yyZPiXN5/J0Hj6hKD4t4ctaO2EfxnH7KFWPyJyz2tZgvQn7tj3+TgJNWCePIe3Ru/3LpmEDMKYHSqN4G204D+YDIDKmYAmyjPU3nSY/P59ly5ap9tm3b9+Q3rfhMBqNzJ8/XzVWWFioimvzeDwsWbJEpVDFxMRw163fYnBmUNiHx8uBlMADUlNLqOHDh3PfffeFJAcVFBSEtINrljD10ZrIzc0FIahKVfbfZDmMmT0FYTKx44Da1TmtM1ydTWh604qSLVhGDyXplivJ+OMjDFr3KjOXPsljtyTzi9TtZDmUUJgm7MYYPhhzI3Wbqii66gc0fLJJZXH01jXgrQqylppNqhjGtnKyxMXjfz3N+xvUCmFCnJHrbtT02a07BRufCCxXHVGFEBCXAfFRSmJoAz1KSQPGAB4pZfDj+26gRUtaQ0ElJz/JBcDr9rDxkUXsXbmO5wtS+FXedObcUsWSlTbyrA+yr7SGjY8somSzouknnnCwePFiDh5UlktKSsjJyfHHLpw6dYqcnBw+/VSJaTt+/Dg5OTn+H9+hQ4fIyclh8+bNmAxGrMV2Nj6yiKpDSj2YNVs2kJOTo/zQUMztOTk55OUpT7qbN28mJyfH34dywwZl/aYn7k8//ZScnBy/iX716tXkXPkUJWXKhPLhWjs516/yB7O/99575OTkKIqO8yhLVtrIubWCRpsEyyjeeOMNcnJy/BaURYsWqVoULX71dTb97L+AYv0q+mwvS5cuBZTU97Vr16osXVVVVdxzzz3MyBiD2WDk8Nsb+ep371Jqq+ZYXTG/+Zud23xdcgwGwTMve1ixYhXJ8Yoi9txzz3HLLYpHe+/evfzpT39SZX8eOHCAhQsX+pcffPBBHnnkEf/y/fffz88ff8RvHbnn5zU8+28P0qooSh9++CFbtmxh//79lNYO4qYfV/PMv3w/WNdhrr/uKv74xz/69zd//nwWvvBPbF4j+23pfPmrleStUPZtO1jKW2+95T+XU6ZMIScnh0WLFim7c7mUa2H5WoYlZuK2u9j4yCJOrdvDuuLd1NTUMP3cWRxap6TrO2oa2fzoa6QetLV47ZkOVBNjNNNQXMXGRxZxeEc+m+sHcOi4m5xbK9j85RYO1xRQdrSQjT9dRNWh06QZ7ZQeqSbntlpy82f7r72FCxf6M+Ny99vIuUOy96Bizdyw1cGf7/w5DcVKyZXTO4+z8K5fciTvaODay8mhpKTE/93m5ORQfvDHUPFb3luxh1u+9yFf7XkEu8dF4fq9bHxkEUnSyuD4jNBr7z//IuemgFXr5SU2/vrdwLnOW76d5+97wl+iZOHChaob7h//+EdV/adnnnmGm266yb/8m9/8httuu82vpD35lzru/lm1X0n7+c9/zv333097OXXqVMi5f+ONNwAlizknJ4clS5YASt/Zc889l3379vnfX7Jkid+tX1hYzN2Lfs/p8u0YrBZKYgzMvf321uedCqU21oEaOzeX7mO3rQqkh33VZeScM7f5eWfDp+Q8uY1DJW7WVV9EWeEO1r99C/XVJ5g82kruV+tD551w5z5o3jn/nHM59pOnwetlRU0hN+VtxJEQQ8afHmXxkrf9514IwTJrIzflBbI+//WnP3PRRRdBxhTMZjMvf+ni+lds9Dedpqamhs8++8w/7wghqKio4Nvf/nbr5x4lwejQoUOsXLnS//4jjzzC3XcriuPatWtZvHixat45fPgw//d//+dvuL7rk1/y9aZn2ZuqWC5/XpTLU++87l//iSeeoKqqyh8y0zTvfPHFFzidTm666SaeeeYZ//rXX3+9et756Wss/CzQY/PyR97m73//O+Xl5RQWFvLWW2/xtkN5gDabzdyUt5H3PBV4PJId++tYv3gBJ/Yq8XoThnpDrr2cnBzee0/p9lBeXk5OTg4ffvgh0MZ73oA5HCpxk/N8BZuPOaFoM3v37iUnJ4ft27cjhGBf9Wmu+uvvMd92Fr99/UrOGXecjavvobZKmUfWSiMLyg6x/2QeZT/5Ax9cdx/nzzmH48eP4zpVwsb609yUt5Eilw3TwEw+XrOmxWvv888/D9zzgCVLlnB+Tg5LPynlsb+e5vNPl7B+8QK8HmXeyf96KbnLbyJ+1Pkw6R5e3tjIRX/x9X49/A5//3/f4/LLL/dbmhd+1sD8v1f6kwYinnd8PPnkk/5rDdo+73SCTbRDJAA1mrEaICRYTAhxP3A/gMlqZroYjM1lpszViPR6lD6FUpLbkMFRewqfVw1j1/4knM5yxdQtIaEKRJ1SX+jo0aOsX7+eyspKqqur+frrr4mJieH06dNUV1eze/duRWkpKqK6uppdu3YhpeTkyZNUV1ezc+dOnE4nhnoP0uvF5XLhdDr48thOqqur+eqrr6iurubgwYNUV1fT2NjI+vVKIcTq6mq2bt1KcXExubm5VFdXs2XLFvJPnODl7e+ztyKf36z/D98eNJevv/6a6ho7dqcXh8ODy+3G63Hw5aaPSUwe6N/fF198wfjMNbhcbrxeLw6Hk5ICIwcOHKC6upoNGzZgMpn88qxfvx6Ak5XFSK8Xp1MJVE0yxlLo9ap6T3p9y5mZmVRVVVFWVsa2jVsY4Erga49yPKfTwRtbVnAy/yTl9cOx2fMwCOVp32jw8q3pH/PqmqvweDwcPnyY1atXs379ejweDx6PB4fDQVJSEkajkYKCAr98hYWFWK1W/3JRUREuWz4Oh6LoeLxeHK4Ehgw/i4Lizf6nY4fDwVtLVuB0x+B2O3D4soxqKvM5dmyQf38VFRWUlVaysyZFsVZJ8HrB3OjFcboer9eL2+1GSum/Fg4ePMj69etxu91UV1dz4MABBmeO4YDTgfStv+zAepzuUk43VhPrVq4Nl9NBgrSQdzD02svKyuLLL7+kurqaQ/sOMHJiGiWuAuXacks+qBzBXc6jyndtK2b5Vytwu2woZWYkWZZSXLUuGp3p/P/2zjs8jurs2/fZrt67Jcu9N9yxjQ0GQjFgILTQE6rpkJBAki+FlrwQIEAgkJDQCSQhQKihyYBtMGCM5W7LVbZk9bIqW8/3x0janZ1daSVbzT73demyZ3ZmdLQ7e+Y5T/k9X6/ZQF2Di82bN9PY2EhWVhYNDQ14PB7qnHG43Y20trbi9viw+ZuJ9bpxu114vR78fh//WvU+c3eXavdeXR0rV64kNTWV4uJ1tDZuwlW9DleKCU9bkvh3lcV4PIna++T3k9piY/ny5YZ7b+f21R33JkCLOwZXYytmj6RFuvH6vHh8Xl7+5A3yzals27aN6urqjs+qpKSEysrKju0dO3ZQUVHRsb1z504OHDjAV8UtTE7R8ih9fj8NVatYs6WIPXv2GLy2XRE871it1rCffVFREa2trdTV1bFhwwaKiopwOp3U1NSQkZGBy+XS5gqTifXr15OYmMjqDS24PH58ZoHHYcXT6Keq1s3Xa7qYdzbvZVTMSDyedQirHykl3lYnHq+HxsqqiPPOzq/ewy/9NLv9LG9ehJ8dSClxu9xk2nfw3XffUVdXx6pVqygpKQnz2RdTV1fHihUrSEpKYv26dTRv3kFrcgxWszXwHTlnIWVbNhg++2qHJl3Rrv1VVbyZWlnHmlIfE7zejlzKLFO59jd5vR3zzujRo/nuu++i+uzbtx0OB1LKjnnM5XKxZcsWXnvtNVasWKGbd3Jzc9m2bRulpaXMblqPy5Xd1qzcxKakkTR5/Ph9fsrqazuuX15ejs/nY/HixXz66acd8059fT0vvvgiFRUV7Nixo+P4yspKSkpKKCoqwuJ14nc34vVacbndgKC2ycvWrVv597//jcvlwu/3szc9lgZ7IvYGF944B7vskn+8/gXVdakd75Hwt1C+q9hw79XV1bF+/XpSU1Opr6+nrq6O4uJiEhISIs474Z55wjeWZK8fv/Tj9npwVW1l77u/xlm9jzVfraSpqYnt27frnnmZ5s9wmJsRNh/CpHnNqmMzcHq099v5VTEtdSV898e/UTEkr+Pe8bjdVNtEl/de+3fts88+Iz4+nq+/3cT23c08898qLNaYjuu5XC4S4zxMKazh630NFBUVYfIvoIln8cvmtvce3Bteoa6qkN3fvEm2263de9LP9oZ4SouKop532rd37dqlO767847odhVKLyKEmAaskFLGBu27DVgkpTwt0nnDx4yUO7Zsx+P38tr2f/HPHUV4g2u5MWtJ7W2OQ5erFbfbzcjtFlJrzcyZM0eXr3MwvFTyMa/u+LRje+nQo7lstLH6qKioyNBk23BM2Xc8vD7g5r901AmcWThP29hzLLiDQlF5b0JMSLVM2ZXQFFg9kvkQJJ5HJHzSzwWf3Kurkv3dmIt49omnO7ZdLhd2ux2Hw8Ett9yiE//9tLyYB4sD1VeZMck8Oe8mLbel7hmouhMAr9dHc3Mzy4vnsHKzNuakpCTdjWs2m1m2bJlB/DUstY9B9b2B7YRzIOuPFBcX89JLL3WM2Ww28/+udWFrCQrHJC+D9F/or3fgFv5cson3GtpCdKYECp0ZxHwVyCObPXs2S5cujTikBncTP/zsQZ1QbWFCFrsaA+HkVHsCj8+7wSjwivH+2NdUxXUrHwsc4Kvm90M+ZoxD83r9svpWiuv2aq2xgOszv+X4NBsUfAxCvxbzeDw8/PDDHS11zlvwJqOG7CM2JhYh4G91p/JmbUBGZVHOZG6eeJZ+gFJC5Z3Q8Kxut8vl5leVi9ncmtn2nRPcNGEpx+ZONb5Jja/DgWWB7djjIfc5Hl7/GkVlgXypMwvnRczZiwq/C3aMIjg3lWEbwJwCgBDiGyll+FKzThgzZoxs94BHw1/+8hddTtrZZ5/NjBkzkFJy+6OV7CrzGM65fEkSp8zromvJppdg+Y+pLUqmfnWSlocXk07i5UtJve0y3aEd99W6p2Dlr/myYS4PlN6pJVPbk4h1CP5yZw42a/dkBmoffp76v+orL5OuPoeUG8KHbN2bd7L/+7d0bJuSE8j/9FmEtwn+Nga3x6O1MUNw34FLETbtPcjOzub66683VFVGw/Llyw3VnQkJCbom4AkJCdx8880doUu/X3LN78qpbfDhrdS+az/a+iIT67cy9JtXEaHlrWiV6UVFRR3zTlpaGrfeemvktoB7PoZ3Ap4X0sbDOR8ipeTBBx/USf6ceeaZzBg/EVO8Nr4X3q3njU8Dobz5U2K46fyg7irdJJrnEq+fYdR0Ay2nMWMy5MzRenLmzNIKIL7+AyWfvcHPdj6IX4LPbQGPiUU73+fk0o91+Xym+Fj8zkCecuKFS0i9I3L1c/CYpZQUfdPM39+qp8VltGvmTY7hiqXJxtZP1Zvg3yeBP+j7lzdPy08Lytvk5Odg6PGdvzfdINp5Z6CFO7cCFiFEcGLKFGBDZye5nC2UlpZilU7Osz3MHws+ZoIjqLLSlETwn+r1+rC6Bcl12r5DkY/WzqGs8AxtjRP84DJUeIYrHgjtNtBFZWd5c43OQEuyxTImf0RYQ+n00083dGeYkT4aW1DycUVLHdsb9rdd7FKI1SqtLBYzFouFBRNWk52iVYCFriwWL14cnYEG0BIyYTi0vKsJEyaQkpLSsdvn87FpV0hFUUtILzlAevYG5aMBmPHuqNUdM2VK51U+ibY4Zqbrk76DDTSAC0ceF9ZAC0deXDpHBbduElbeqtPuW7ffxOb6gIEGaEUDaT83GGigeYBOOeWUju0VG2fi8/o6pCFm2b8AGZiwvq7aqjM2kRKqfm4w0EDr0LCtNQXwdrQjCytiC4Z8NGxaNduMkPftm6qeFS90YLIb8zhdnU4pUdHU1BT1itjj8bBnj74yuF3yp7jEFdZAA/jvZ06d6HZYhi8BkzWQlyZ94Pfg3thJhWfbw+eT+raHTtv3dv6U2G4baM1FXxkMNMfsySQvOz/CGWAdVYApIaAV5a9rxLOjVJNHSB6hVS8KEEiyLVooymQycc455/TIQANNTy0jQz8/BxtooBnOwbllJpNgxvgYZFChwafZczGnJ4c10EBrTxU8xurqajo15svD56OVlZUZNBknTgwYaNBH0huhFETQrvd74cAaWPs4vHcpPDMe/rkYNr/MiJjtnJT6DgKB12rGZbewfPgJ7Lck6Yo4gg00iF7Itt7p44EXanj833UGAy3OIbj5ghRuviA1fG/OtHEw+079vn0r9AYaaAZoPzCgjDQpZRPwGvBbIUScEGIecAbwfGfneb1e/vrXJ3GWXALePeTZnNyVt4LrM78lzpqiS5aXUuL3+8hoKxgADlofLZghsYemwlNKycYQHa3dzgPsdbZdL1znAd0FvOAOmaStnTfY3eXUGxFD47V2HDNm6I398ePHG6QnAGItdo4KSfz+x44iDrTUaiU+mQ929NDUStv9nD77f1jM+gdUfn4+xxwTXpLAgJTQGqIv5NBEIE0mE0cfrU8O/XilUy+T5VoHfv1EV9pUQYU3MBHig9jawESSmJjI0KFhelCGEKqZFszQ+CwW5XSvnPvUYDkOYWGlM5dqr4MtrSl4/AEDLcPSTFb8RIgLrx8F2mfYvjgprc5hT2VuR0utsY4aEkyBh5fT08rDG/6jGWpSQtUvoP4Z/QXNGRC7iE2uDHztXmy/kyGxSaQ5IrRaM7Qs0+7PqWkjdN0P9jgrqWipi/i3REUvdB7weDw8+eSThibf4QjVR0tKSiI1VfsuBHtCQqmq97FyXRfFR/ZEGHpCwEgD8Lbi3rIzsgxE5TpqvSl862z7brcVDYTTRusMb3kVVXf+UbfPnJFKxu9vQXRiTAmzGfs0fWV069dthnPGFK2tXFuCfK5Vm/OOO+646BduYQhXRBDM7NmzGTNmjGH/8TNjCS6f3JY4nLI843HtJCYmMnmy/oH++eeRuy4Yigaytc/ku+/08g+jRo3SGZDl1V5KK4J06ARMGd0HRtrEH0Le/K6Pk1LzUjm1hfr5Gc+RYq3Fjxm/SdDssPPs3EtpkpErYKMx0krKY7jt4QpWbzR22Zg8ys6DN2cxb3IX9/XkKzv/m+JyIDZ8cVdvM6CMtDaWATFABfAycK2Usstl7+yRn+N3ftIxEZoEHJ9/HI/Nv5MF2YHqLp/Ph/BDRqU2gWRlZR3SJuh5cWm6QOuBllpcvvCr5M6oaK3rqAgMZsWBtreiq0brnlIg6Pea08Gc3OnvDPX0FMZr3qRZs2Z1aJSlpaVx1llnRSzPn5+lr/H4pmoby1Y8ykPF/2ZXi4RMLVnWZBJaKCChjuMmr+w43mazcd5550W/Wvbs0rSv2hHxOgN2xowZOh2jihoTTe7gaiEPuNYGNqWXNQ36vy2l2Y7ZH9g3ZcqUyKGLIKamjiDVHl577/LRJ+oMkWiYljaC3Nj2sVvxYeK9+kLWt+gXBpNiqhAZv+xUGVsIwZIlSzo+xxUbZ7blErqxCMnc2G2aod/G5+XreXj9a3grfw71f9dfzJwOef+EzIf4riUv6AXJFId+oaEjgict3hrDmCR9s+iDbrjeS50HamtrefLJJ6moqOj0uHDSG0IIdu53s26bXqh0dIHeu/rGp41da26NOgtLshdhbTvO14q/rhHfgWrjsW4n1Jfwaf2x+GXbPWiykJ9lYcSQzqu/g5F+P1W/eBR/sJSC2UzGA7dhTk+JfGIbBimObwJGGmiV4yaziVxbJdOmTesyDOf65muqb7uNhgfuRH73HGx+Bba9BtvfhJ3vwq4PGGkv5bgxNvIt+8k1lxMrNAM4NTVV510OZniejbGJeg/PJymdR6nmz9c/8Hfs2MH+/fuNB/p9UBHSlSRrBn6/v6Poo51Q7/23W/RGydhCW3hP0aHGlgBLXoEffAHHPgxjL4Ckrh0dceZmLiv4JzZHQMakLKaQvyw+Be9R4Y1eaydGmscrefK1Wt5YnUF9k77y3maBH52exC8uTyM1KYpniTBpTdjtSeFfD9MIvq8YcEaalLJGSrlUShknpSyQUr7U1TkOm5t547XVSHNzi5bAbJ8O6b8hxR7PbZO+zy+nXciYpCHE+SwM22nB7j70XjQAu9lGRpCulQSdJla0bKwN/3D7/MB6bcLuqtG6wUsRXaeBYAoTtC+I2Wzm4osv5u6772bevHnExUVuaTE9fRRxFv1qzif9LC8v5uYvnuCubdVsMF2AlJpBZjKZmD6ymBHZuwA45ZRTSEvrRsl1a2ioc5pOtd7hcBi0lLaXpui9acFSHN79rGkODomYMJXqJ8NwXsRwWEzmsN6yo9JGMjWtc69mOEzCFPCmtYUx368vDAnNwsTkgo6Qb2fk5OQwc6bmddxVMYT9NVm43S78fskFqZvJtOhDQZ+XfcHDW9fr5T/M6ZD3L+1+tGTxTbNek2yyebnB0+l0Ovngg//RXL8eX7DAU5Cn1yDFcbDdByIZaYcgJ7ehoYGnnnqKsrLIvUYj6aO9GeJFG1to44Zz9QbOnnIv34UYcgYKFiMcidgy2kOefvC5wuulVa1H+iWf1AWFOoWJY6PURmun8eV3af1C7+1Juekig/EViVBR29ZvNmpzW5uRZhKCuLg4Jmb6OPfccyMv3HxuvB8+wIGLb6DxPyupefwT9l/xCK6XfwofXQ8fXgPv/0gLwb39Axa3PMVFia9xaeK/uDH5b8x2fMt5553XaZ/L4+P0ArjfyHyq6yN7gHJzcw36bGG9abVbwBOo6iQmDRKHsnv3bp1wr9VqNYh5fx0S6pzeGwK2kRACEgtgzLmw6A9wwQq4+Fs4/s8w8XIthBiGo49KY9rYeN1nWcLRvD4ln7T/u1UnzWIbPwLLsLxwl8HZ7Oe3T1fx4VfGNl8jhlj5vxszOWluvO5+rqys5J133uGTTz4J7/2Oz4Fj7g//9/ZDp4F2BpyR1hNS4vUPk6pawfrqm3Vhzunpo/j9rCuYtyOV9JrADTJiRPcfll1xKERtN9btDru/tKmK3c4KTUk9+OPzloI/6Mveg8bquxv1IoLtnrR2ovFuxVjs/HjS9yN6kL6p2sbPS+L52f7vsbopG7sjBpNJcOrMj1i8aCqzZs0Ke15EWkNCBY6ZhkPavRbtbNmTpBeZDBK1bWndyYaWoN6CUpAYlI6Wnp5OTk70CtihmmkmIbh0dM+T4I/LmdJmBAvATIPfzjaX/qE+Kf/aqK93wgkntGnQCVZumoGUWnFIisXFXTlvk2lvm/j9jSCb+dyZx0MHpmuGmjkNcv/ZsWCocTWy32unvWjc1C6oW3GHlieFlmfz6KOP8tWq/+L1NNLU1ERTUxMtLiutnsA9Mz0kL+27mh098kh3YAsxHDwlmuiv3+it7glNTU089dRTYdXsw+WjDR8+nIoaryGUecYx8WSnWZgT0vC5s5AoABY7jDjNGPIM13mgah3bWsawz6V1BMFkwWyCY6ZFH+r07Cil9kF9TqJj1iQSL4u+AMs2fgTCETCMfBU1eEsPQPqEDiFXAcS4y8AV5nOSEna9D68swvns07qsBU+1lbIXcqj9LJnQaJpJiLZWTyCE5JS0tRSkdZ4bOqFpB5mtgfwwn8nMOys7/0xCc53XrVunM7yA8E3VhTCEOseNG6czIlta/WzYoTfce1UfLRrismDk6TD/HjjnI7hsI5z0LEy5FoYshAmXIWb/jKuWphAXGxirVzr4tnQIG1Jt5L75GKk//RFJ15xL5mM/D7toKK/28vMnKg1dFkwCzlmcwN3XZJCXofcIb9q0iUcffZTPPvuM//3vf9x///38/e9/Z8OGDfpnwYglMCZMcZ0y0g4OkwgSw5OC/6z6Hi++8qGhEW9zc7NhtXuoPWkQLi+t+8UDoX0dg/nsQLGWDB3aPSA4fBQh3ycSTZ5WKlqDqiuFyVAEES3T0kfy1PybuWHCGQaDVUOwxZXLfeWzuWXf8XzpH0d6upXjJ79H9Ov4Ngz5aEYPUmxsLBMmBB7SpVW5HRIj2jW+7jAi1tdsxhv0tUiSbuxBh06dOrVb3obcuDSOD8pNO7twAUNDjN/uEGOxB64XRpg42xFLRmL0Ca7x8fEsXrwYgO37C6moT8Pj8eDz+cmyNnP3sANkWpwgAyvWFc48/nBgHt7sV8AeCFN0NFQ3acbWKHstcWav1raq/nm2b9/Ok08+SUNDA6kJAcvX5/Ozp8zCfb/7Ha+99hqlpaUMjc8kPSiXze3zsr6j7VUPMCeAtTBohx/cm8DX864goe2IWltbefrppzu0yNrZs2eP7kGQnJxMamoqb61w4g9y5OVlWDhqjPbwOuMY/SJnfYmLklL9Q8nAqLMCnQdA86RtCFN0UbmOovaCAQCTlWljHCTFR5diID1equ78IzKoWbYpPpb0e25ERJEG0I6wWrBP1oe5XF9vAGscpISkc4Qqv9dsgbcvgPcuR9btwrk+TMqKhPpVSZQ9l4P7gP6zslosxCckkJCQgM1igk0vGs8Pwl9eycKyQFqGMJv4cHUTLa7I/YezMjPJTo0l1VRLgWUfo82b2fvOr+DLe+GTW+DtC409I7Nm4vP5KC7W/72h3vvvtrsIti2yUs3kpg8wRS1HMhSeAHN/CUtehgX3gj2RnHQL5xyfrPv+VLlH89o73+C2WUi8+DRSrv8Blkxjleq2vW5+/kQl+6v0Qs3ZaWbuuTaDc49PxGLWz89ffPEFzz//vK67CmhaeC+88AK///3vef/99wPetXl3QWJQzrEtATIj5xf3NoeFkSaE6FCk/+i7+eyt0lykr732ms7FvGvXLt152dnZnYbueoqxwrN7D4J6d1Onht2K8g1aWMDaSfFANz1pu0NCnbmxadjMPf/SW0xmFudO45G5y7hjyvmGHCOEFUQcpZ4EHq04imt2n8CXB76DpsgNkA34GsC9Wb8vQpgvOEekuiGFxmZLINTmb+h4776pLg2cJCU5zU5EkOnYVVVnOJaNO417ZlzG72ddwQ9GHNvt80M5JX8WJiEwyhwKJqYbPYldMXfuXNLT05Ft3jTQDA4pIdP1Cvdk/4csS5CXFhOrmkfzwNZiXdVnh5EmbCAcTI4N3Pet+3/DKy893qFTlRZkpAFUN6bgdrv56quv+NOf/sRjjz1Gjjtel4t10HlptpCQZ2sxeDvPJeuMuLg4Q2GKy+Xib3/7G1u3Br6L4UKdjc1+PgoJ1ZxxTHxHW7OR+TYmDA/NTevCm5YzG1thcE6NxL1uneEw94FNrGhYENhhsnLcjOi9aPV/+Reu9frPIvVnV2DJ6f6izhjy1OelddDeQ7G1TlOF/+fxUKpJHblK7Xjr278LQpMTscSAxQFmB+6aRMpeHk7dxhnIrPmQOxdSx7Q1e2tj4wvQiafWW17NjKq1xHnbPjOTieZWySdfG8NtbPknvLKQuRt+wLX2R7g66UUuTPgPS+Pep2Dv08hvH4Mtr8DeT6A55P7Lms62bdt07fIcDgejR4dUPIep6uzO4rG/WbowgYKcmKC0WcHWuql88MFHEc9ZvaGFXz9VSUNI/tmQNBf3LctkZL7+++L3+3nvvfe67KPa2NhIUVER999/P3/7298o3rIT30nPa/dJymgt7y5Cn9G+4LAw0gBsNitu+6msKZmq2//222/z8ccfA5HzQg41od6jvd30pIV60XJj07AGtZsqb6mlpHG/sXggWIajm0aaMR+t596eYEzCxOzMsfxu5o+4Z8Zl+lwjUxygraaqfTHcXz6TmvJ7DNWWEXF9S3sfUABsY8Ac/stUUFBAfr4W3pEI9lXldAhpAtDyJVJK1tTpQ+cZzoARkpeXZ8gziQaTMDEhpZAxSUMOyUSaFZPCzIwxYAoJb4g4JqWFb0LfGWazmVNPPRWAzaUjqGlMxucLSHJkWFu4O28F2ZYmQIApBYSFLyo28UDxP/H6fUgpWVsd9P0yxTMl1tkWPnXjbq3imAmBBVNaYp2u+KK6MVk3pv3791P5VQlOp5PW1hZ8Ph+rKjbyj5IiXt+9kvdLv+bTsnV8VbmF4pqdbG/Yz76mKmpcjbR4I+RvhVZ4uteDr+cSOQBLlizh2GP1hrfX6+W5557r6C4Qbt55/wsnbk/g3k1JMDF/qt5QCvWmfbG+hfLqTlo9CRO2o08P7sKDd38F/saAgW32tfBlaRbNvsDiNCnBxrQx0YXKXMXbqHvyn7p9sYvnEHdGzxYf9qP092vrmk3af0KNtANrYP0z8PLRsP5vBMcwO7xolliIycA+fTrmvEKwJWmJ4PYkpCWJuo9NlL2cj3v8Q7D0Tc1j107zAdgVeYHoK6vE5vcw70CbZI9Zu3ffXuHEF+wOrSyGopuhdhtCerFarbr6HSmlwaPTgS0RMqYYQp2TJk3SpZr4/ZJv+zMf7RBgswquOTsNmy2gkdbiS+XNT2vDFuG8vcLJ/S/U4A65/edNjuHsOQeIj9WbMl6vl1dffdXQlksIQXZ25GKEbdu28dJLL/G7J17hPduVVB//bxh2cg/+wkPHYWOkYRtD+ri/cdFFFxtypz744APee+89Skr01WS9ZaTlh3jS9jdX4ZOR3eKhhBppR6WPNEhbfF6+IbIMh69WX/GIDSwhnqwQIlV2HiqEEExIKeSX0y7k4TnXsjB7EmZhBlPAqPJiYk2DF2r/FN1FW0Lz0SInywshdN60vVW5eDwe/O0TbOtqSpuqqHAHPiczPmLqA96qnnjReotT82cDZjAlg3BoIUZTXOQemV0wZswYRo8ejZQmVm7W3keXq7Ujrz7D2sLd+evJiSvQaa99UbGZ+4v/yW5nBTWugIFrNzsYlX0xra2tHd6zKcM2kZuq5T1OHO0gLi6O+Pg4bDYbLV6jtEJio0D4tYdac3MT+2sreLnkE57Z+j+e2PQWD65/jXvWvswvv3mWH3/5FNetfIwffvoHLvjkPm778klN+iWYMMUDHo/+vu8uQghOPPFEvve97+n2+3w+XnzxRb7++mtDntqQ/GG8u7JJt+/UefFYLXoDfupoOwXZgfdaSk03rdPxjD8Ha1qQEeBz4167pmMztnUnn9QGhzotHDM93hAiCoe/xUXVHQ8THGczpyeT9qtre7z4sE8Zg7AE5mvvnjK8FTVGTaqd78Dnd4KrTj8mt6C5JA0caVpYSgiSr7uA3Nf/SNyShYbf595YQtk5t1L/wofIEWfrX9xg1P2Dtn6Sbfpd8w6sxoKvowl8Ra2PrzYEGUzfPqIrRhECrCEFCW63G4NfJyYNjvk9bmlm48aNupdC553tpR5dNWOMXTBumL7B+2Bg8kgHi6YndniPAfa1TuHfr3/Yse3zS/7+3zqeecuoR3jmwnhuPC+F0FTplpYW/v73vxuMXavVysUXX8xNN93E9ddfz+zZs3VCusE4nU6WL1/OAw88wH//+1993lofc/gYacnLwBTLuHHjuOyyywz5IsuXL+/o/dVOb+SjASTYYkm0BVbFHr+vWzpPoc2pxyUXhG9gHlqx2V7hGU7aQHSebxIa7hx6iDxp4ShMyOKWSWfz+LwbmJk5HkTgvSpuToe6x8BjTMA2EEXRQDATJkwgKUkLB+2t0pL/O1a1ravbKgjbvoxSMs52AGdjwIgM1T7qTyalFGq5bcKuiTWLWHJj0yIWbHSFEIJTTz1V6723ezT1zQn4/YG2PZhSSC98kbtmLiMnVp8r8mXFZn7zrV7KcGziEP7xTgzlNfp0gu9N/5Tzzz+HzORGhNC07BwOO2dfcDsXXXSRTqfK7BckNgaJUPu8NDc36cQvI1HSUMa9a1+m1RfkLTUYaZuobN7X5bWiYdGiRZx2mr4pipSSf//737oJPiUlhe922HQhmxi74PhZxrQLIYTBm/bJN03UOzt5YKSNxVagv5b78/92/N9TU0FxU9B9bLKwKEpttNqHnsOzS/9+pf36OsypEWQLosAUY8c2QT+PudZshLQJXc5ZJBbQHHsbfpHcIcZrzkjFMXcK5qQEMn53CxkP/0xXMQhaTl3tg89S/qdGPDVBKQP7V0KNMYfPWx7wtiZ6nMxo3U6wu/LNz9oWJ7XbNWMyGIsDS+oI9vly2OIZzjeuSRQ5Z1A26lYtqf6sd+DCr+CiNTDyDDZv3qzz8CcmJhqeU2tCvGhTRzuiMrIHIpefnkJSQsBQ8ksrRRtS2bJlCy63nwdfrOGdkAWNScBVS5P5wUlJOgMPoK6ujj//+c8G73VcXBxXXnkl48ZpVad5eXksXbqUO+64g7POOoshQyI7MVauXMlzzz1Ha2uUEZ5DzGFhpEkExJ3UsT1y5Eh++MMfRrSSQctHCxYGPNT0VNS2xetiR0iV5fjkocxIH6XLEatsrWdra8jE7tmlqc53s9OAX/oNRlphfHRKzwdDVkwKZw6d1xb21G7F4pYMpN8FVb/p/GTpB9ca/T5H59pFZrO5I4eovDYTn9+krWolmvRGxVog8PCcbNtPY4v2kBw+fHiHgTcQEEJwWsEc3b6j0ruu4O2MzMxM5s6di1+a+XDtfKQUuFwufKRoOmj2caQ7Erl7+mUGQ63WFfDwSCmp37CPzZtL+N+agDdDCBie62TK0DXgDX7YC8z2kUyYMIHLLruM22+/neOOO46EhARy95t1EW2/309zc1NUK9vdzgoe2/hmIB/FkgHm4MWHh4pGY85WTzn66KM5++yzO/UqFQ4bzpsh3rATZscRF0Hf6ujJMaQH6Tx5vPDuqqawx7Zjm6r3KLvXBhYzxfu1Vl3tjMhooSCra220lpVraXzpbd2++LNPIHZR93MgQ3GEhjy/3qDlk6VGEIy1xsKsO+Dc5ThX1enHdNoinYhu3PFzyP3PI8R9b57hMq5N+9j/7DD2PZ3LgX9nUv1hKg0P/47mT1bj3rYbf7P2UA420gBOcOzSbW/b62HrHjes/ZPOi9bkKIQflWC5eDVrC3/Da85T+F/zQla0zuKdnclaUn3mVEjIA7P2GYRqo02ePNmgyRiajzbYQp3BpCSYuXRJui76Vecdyl9eWcuv/1JpEKh12AQ/vTSNE2YbFzX79+/n8ccfN4RL09PTufbaazvSXYKx2+3MnDmT6667jhtuuIE5c+aEtRu2bt3Kk08+SV1dXQ//0p5zWBhpPhmnVW8FUVhYyBVXXEFMTEzYc3or1NlOT9tDba3fpwuN5sSmkmKPJ8ZiN7QZ+qyiBCzBYSK/1mUgNB+ti8rOAy11tAYlzcZbHaT10CPTXUYnDcFutoNJyyup8TnY74mHpneg+bPIJ7q3arIQ7ZiS22RJOmfmzJnYbDZ8fjP7a7I6ckRa/GY21LZV5UnN0Bgpa/H5tcljIIU62zk2dwoLsydhEoJhCdmcMyzKLg2dsHjxYmJiYti6bwTPfvR93lq9mGeLruSLbxvYs2cPLpeLtAiGGmj5Mk1NTfh3a+GJXRX5bC4dgRCC2Ng4LBYzVN2FzvKyDNHl16WkpHDCCSfw05/+lGVnXsqJFQUU7rKQv9dC7n4zmWUm4ve6GG/LZXr6KMYnFzA8IZuc2FTirfoH1ufl6/nvni8CO0K8aRXNkbXNesKMGTM4//zzI4odu61jOFATFC40w6lHRxbTtpgFSxboX39vpbPTqkLbPL1Hz72rHupK8PslX1fqVf6Pndq1geZrcFL1i0f04xqSRepPLu/y3GiwhxQPuNa0hfty5hgPHv19OP9zOOoGvBX1tH6pN7LD5caZU5PI+MNPyHjgx5iS9O+lNMXgqbbSUhJD45oEal7YTMUN97D/zJvYM+t89i68lJq7n9SdU5BtY8oo/YP8vx8fgG361lj7Ms/sEJResGCB7rWSkhKD0kBLS4uu4ASM805VndfQQmzamMEX6gzmxDnxjC7Qf2+LD0ymeFsDHo8bn0/LeU1JMPHbq9M7KqCDaTeiQtt8FRQUcO2110alvZmbm8sZZ5zBnXfeydlnn21YlJeXl/P444+HFyXuRQ4LI83rDz/JDRkyhKuuuipsR4He0EfT/W6DVlp0RlqoPtr45EAp8LyQkOfKAxvxhavwDBW27WZlZ2F8dp9VCllMZsYlF4CIob2IoLhdQb/yF7oekjoMoc4ZnSrstxMTE9PR5mpvpWbgut1uipvT8frbNaskmWYnthbNQGvvmTfQMAsTt0w6m5ePvYMHZ19Nku3gK5VjY2M54QRNx62sNovi3ePYVnKAN954gyeeeIJf//rXPPDAA7z/2luc3DqKFBGDbFtU+Hw+3G43ZrcktiXwWRSXnU1cfBpmc/t0E/KZ2sJ/F81mM+PHj+fWK65jcfZUcsrNDNlnYeheC4U7zMj3drKwMZ97ZlzOg3Ou4Yl5N/LXBbcyNF7fvuXZbR9QXNNmgIcaad6ee9Pd3vDT5+TJk7nwwgsNubFSwtpd+ofFgqmxXSqiHzcjljhH4P1sapV8HK6qsA3bUTPAFMiD8lRbkRv/xcbt9VQHdduwCC/zju465aPmnr/gqwju6iFIv/cmXQ/Jg8Fx1Djdd9e9dTe++kaYdkNAiiNrBpz5XzjuEYjTvPzON4t017FPGoVthNFb0k7cSfPJff1RvffP7OjQZNOQ4A14b3zV9Xj36T0z5uw0TgsxnL8sdnKgNeizTRpGdVLAyBwyZIihldyKFSt02+vXr9d5iNPS0sjL04u5hoY6RxfYSIzrWS/TgYLZJLjh/GxsNv2CwePx0tLSSlNTE97mvQy3v8lXn7/OZ599xvbt2zsqYPfs2cMzzzyjLwQDJk6cyBVXXNHtiJnNZmPGjBksW7bM8P43Njby5JNPsmnTph78pT3j8DDSZOQPITs7m6uvvlpnFTscjl7LR2unp4K2of06x6cEtNCmp48iJqghd42rkU2uEO+Re1u3uw0YigZ6MR8tHJNSCrX/tOlrdbQ58mwztiBqJ5yRFiXtIc/Strw0v9/P185M2vPRJDDZvp+GZi0fLbRn3kDDbrYdUqN61qxZZGZG7lNXXV1NcXExqz78lNRPa/FWNuF0NnZMmokNokO2ZPTo0Vx02e2Y0m6N/Au78PRarVbOP/98Fi40JoK/++67vPHGGx0PN4fZxk+nnKfreuGTfh4o/idVrQ1GI83T88+1qTXyw3H8+PGG3NiY1InsPqBPGT99QWQvWsd5dhMnzdUf91YnjdfNSQlYcgLzj/QL3Ctfp2il3nMzK20D8UmdSws0vb+Cprf1FXJJl59pCFEeDKaEOGxjCnX7XGs2aeKo537C6gnPwZlvakKvbUgpcb75ie6cuNO7rjC1ZKSQ8eidpN9zE5YhbfOcJSTa4o1sAANY8rKYPDKoqEP6kd4W3qkJ6gs69TpDTl2oN23t2rU6z09oons4TcZ+aajeB4wYYuPUeYlh57EESxmjYt+lvmoX3377Le+88w5PP/00d911F/feey9r1641SGzMmzePCy64wJCb3h0SExO56qqrOvLY2nG73Tz//POsWrWqx9fuDoeFkUYXEqjp6elcc801TJ06lREjRnDRRRdFDIMeKsKFO7vqv+f1+9hSr0+YD/ak2c1WZmXo8zQ+bwiZZN0bwBMihBvBU9HOLmfnnQZ6m46KRGEFEUNxS3ogtaPmD+ANY+AajLSu2yC1k5aWxvjx4ymtzkECXilY1dQWNpaAlEy276euSXtvB2Koszcxm818//vf7zSnsx2bRzB2i5UYJ4DE7IXcMu3hNGPGDC655BLtOilXgzXCwiiKbhgmk4mTTjopbN/YL7/8UpfYmxubxs0Tz9QdU+9u5vfrXsFj1U+4B+dJE7y7yokvgrE0cuRIrrrqKsaOHcu4cePwJy7SvT59rIP8KPLBAE4+Og5rUI57V43XbZMnEzwv1u1oZtV6vafhuNGdV7Z6K2qo/u0T+uuOHkry9RdENebuYJDiaNdLEyZ8ZuNn5Pp2E949AaNTWC3EnbLAcFw4hBDEn3Esee/+mfwVz5Pz/F1knF5NyjG1JExpxJHvxJIVj6FsEM2gjF04Q+t9O6/NcPY0g5R8XHciTb5YiM3SwrIhjBs3jtTUQIqAz+fjiy+0UHxDQ4NBfSB03nG5/RSXhHQZGMT5aKFcsiSd9BR9JWyadTsjYj7CIsJHVELDmwCnnnoqS5Ysiaq/clfYbDYuuugi5s3T5zRKKXnzzTd56623oipkOhgOEyOta5KTkznvvPO44oorej3UCZDuSMRuDkzATd5W6tydJ/yWNOzH7QsIwaTaE8iO0bf8mZ+t9wSsqm3R91Js/pSOCkUAc05bYn5kdjv17vyDUcTvCcMTcoixtBkEpnjqfQ72uNty4vyNUH2v/gRfDXiCq3fM4Jjard85f/58XB47lfVpFLtzaPDZ2pJ+JbEmDxNt5dQ1JYbtmXckkJ+fz89+9jMuvfRSTjzxRCZNmhRRI87mEUzYaGXieivjvobYFhMnnHACZ511ViDkJ2yQfk/4X9aFJy2YmTNncvnllxsMyPaclPp6LRduZsYYzh++SHfMtvp9PFWyXif7cjCeNIC/vVnPTx6pYM2W1rCLsCFDhnDppZey6MQL2BjS6e2MY7r2orWTFG/m2On673FnjddtE8aAOfAerapfgDtIZCrNWsXEMZGboEspqf7VY/jrA0UOwmoh/Xe3IGw9905EwjFD/x1zfbMxwpEazjf0XrTY42ZjTupeHq0QAnNSAvZZc4k7eQFJcxpI+14N2ecdYMgdCQz95hXy3nuSrL/+lrTfXEfqHVeS888HMaclAzB/aizJcXR43lr9Dj6sPRmmXANmm+H3mUwmg/jxl19+icfjYV2I6HBubi4ZGfqFfnGJC0+QTlh6spn8rAHWZeAgiHWY+NVVQxien0hqsoNjJzdy4tQakpOi+55YLBZ+8IMfGJrbHywmk4klS5Zw+umnGxaIK1as4IUXXjCEWg8lh88nPMAwCRN5censaAis9kqbKkmxR77hDKHO5ALDTTE1bQRxFgdNbXkT9V4fG1rSmdKu7i5DXPVdeNFavC5dA3iTEBTE96wdVE+xmMxMTBnKV5VbAROY4iluyWCovW2V1PgKJF0U8JaFtoKyj+/SEA2lsLCQvLw89lbmsipdC4W3P+5m2XdjFX7qmxIMPfOOJBwOB2PHjmXs2ECyucvl4sCBA+zfv5/y8nL279/PgQMHcLvdxLYIPNLEOeecw1FHHWW8YNwiiDsZmt7V74/CkxbMqFGjuOaaa3jmmWc6jDLQEnv/9Kc/cdlll5Gbm8u5w49he8N+vq4KJGN/sG8No7JncWLMh3ikiRrfwXsi9lZ4ue+ZaiaPtHPxKUkU5hiNmNCKzlH5VsYWdu++Om1BPB+sburwMu8p97J2qyusEK1t7DCkxcH2hKGsyl1AcYzeK7Mo6SPMmUsj/i7nq+/T8pm+ejr5hguxjS7s1pijJTR86tq4A39TC6Y4Y8TD3+Ki+T19s/JoQp2dMuFy2Bl0X+54B3H0b7AOycI6JPyi1WoRnDR0Hf+oCKQGvFO3lFPHzI74YJ0+fToffPBBh3ZgU1MTa9euNYQ6w3nvv92i96LNGDu4ugxEw6h8G0/8LA8pJUIMA7Rezs3NzR1zTllZmSZ2XVnZkeYQFxfHxRdfbMj7O5TMnTuXlJQUXn75ZZ1RtmnTJp566ikuueQSEhMPfWeCI8aT1h90t4dnqJE2LrnAcIzVZGF2ZnCFlonPmjp5yIV2JQhhT4gXLSc2FXuYVWBvM7E9Lw20kKcrxLis/IUmuwEHlY/W8SvaxG13VOeyxtWmkSMlSMm8mF0A1DUlGnrmHenY7XYKCgqYM2cOS5cuZdmyZfzqV7/itttu4/LLL2fx4sXhDbR20n+jie+2Y8kNkcWIjuzsbK677rqIib0bN25EILhl4lmGKtSnyjLY2ppMpefQpjys2+7iJ49U8Kd/1VJTH/BmV9f7+HxtSAuohQndfsBqjdf1Y37jU2O4p7HZz/+a8rnvqNt5fOrNfJs5HZ/Umw2Lkj+C9PDFMJ7d+6l5QJ8L6pg+nsRLTw97/KHAnJ6CtTDos/T5cH23JeyxzR99gb8pEOo1pycTM2/qwQ0gbx4kB805fg9seqnzc3xuTvTcg80UeGDXyCGs3BT5sepwOJg1a5Zu34cffkhpaaluXzgjbX1IqDPaLhGDkdDvRmxsLCNHjmT+/Pmcc8453HTTTfzmN7/hxhtvZM6cOdx22229aqC1M3bsWK6++moSEvRe23379vH4448bKnYPBcpI60W6Uzzgl35Dp4HxKeFvuvlZ+pL1L5y5+pBnMF0UDew0VHb2baiznUkpwflKgvWuofiC/ybXd9DwD+3/hk4D3TfSQGu3stkyHI8MfA3SzU2MtlbglwKPTDP0zFMYMZlMpKenM3r06K5zPa1DIOsJTTLFlAoZ90ZVlRuOhISEThN7H3roIb74dAVXFZyoSz3wYuH3ZbPY5ooc7ouGGFv4XJSib5q54Q8HeOWDBlpc/rbWQYHXc9ItPU74Di002LDDzfa9bqSUbN7l4pFXarjq3jJeXOmnKjaj472VUisgAJiTuILsDEfYfoT+VheVt92PbAkYBKbYGNLuuUmnP9Yb2KdHyEsLoemNj3XbcactQlgOMigkBIy/VL9v4/Pg76QN15ZXSXDvYFHSh4FrWGN563Nnp/nHc+fO1RkhDQ0NutcLCwsN8g81DT5dU3GTgHHd9MQebpjNZnJycsjMzOz1HPNgcnNzue666wztperr63nkkUd44oknWLVqVdh8uZ6gjLRexFA80BzZk1baVIXTE1gdxlrsFMSHr7CbnDqcBGvgpnT6raxtjlCN1035jb7OR2unMCFLp3HV5DOxy6zXe6L6XvBVt/XsDKKHRprZbKZxSAb+IGPwaMcuTAIamhOYOHGqQUZBcQiI/x4M3wjD1kHciQd1qUiJvQCVlZV8+OGHvPr4swzbaW4TLvYDVqp9MTxRcXAFIYmxXv7vhgwmjjAWWLg9kn993MiNfzjA/77U56KeviAes6lnhmm4xut/eaOO2x6u4JdPVvHZ2ha8PtAajZsJLh7IkmVclP5nbsq739h2qY2a+/6Ke/NO3b6Un/0oYsjvUOKY3nVemre8ipYv9Plb8Qcb6mxnzLn6Ss+mMtj9Qfhj/V5Y+zgAp6a+AUitd6gwsXO/hw07IucopaSkdCrpE857H+pFGzHESoxDPb77i6SkJK6++uqwi/g9e/bw5ptvct999/HXv/6Vr776ipaWyEU+XaE+5V6kO1ppofpoY5PzMYvwH4/FZGZuZtCEJiyscBp7HwJdN1Y3yG/0fqeBcJiESR/yBNbJ0/ShMX8NlF0FMqgM3ZzZZV/SSFS11lNuduL3BwyxeTHaA6quKfGIq+rscyLc392ls8Tejl+1vZ6U3R6cTifNLS6khFb/wRvgw3Jt/L8fpfGzS9PIyzB6c+oa/bjcAa9KUryJY6YdXLHC0oX6UMuOfR72Vhg9PsJiwSL9TKtcw3VrH+Ku2p9wcvJ/sAgfpBuNNOd/PsL5b71REnvi0cSfufigxhstjlBR23VbkW59VZ/zzSKdqr9t/Ahsow5RmMueCKPO0u9b/0z4Y3e8DQ27AMi172dGwjeakdbGW5933mM1UnK7yWRi0qRJhv2hRlq4hYGib3E4HFxyySXMnj077OtSSkpKSnjttde45557ePbZZ1m7dm23iwyUkdaL5Mam6Qyt6tYGmr2usMdurA0tGuh84pmfHTyhWfiyKQe3P+TjFLFgjmx0SSnDCNn2jycNYFKqXvNtfUMdpNygP6g1RJsmShHbcCwvW6ed2yb8OcxaQ65FCz20etN6XUtPcWiZO3cuV111FWPGjAlbfp+/10xCgwmfz4fPJ5BSdimLEw1CCKaPdfCHmzK5cmkySXGRp9VTjo7HZj24ZO8po/SN18ORmWLm3NEN/L8193PJ1pcYWbcVz4EgD1yIJ829dRfV9+iV9a1Dc0n/7fV9J2ydm4klJxB9kG4PrvUBYW4ppSHUGb/0uEM7iAmX6bf3fQZ1Ib2QpYRvH9XtOu2oBjAFjP5vNrdS44z8GRUUFIRtUxRJk3HDDv1zY5Iy0gYEZrOZM844g/POOy/s59mOz+dj8+bNvPLKK9x999289FIX+Y5BKCOtF7GYzGSFSGjsi+BNM3YaMBYNBDMhpZDkdoV5YaHZb+Xb0JCnbUSnBkxFa53OaIy12Mlw9F9/ykkhnrSNtbvxJl4Nlk7eix6GOqWUFJVpYRNLW4hjniMQ5olPHn9IdHYUfUthYSGXXXYZd955J0uXLtW1fxMIRpZYsLoF/vY8xENgpLVjNgtOnB3HIz/O4qxjE3S6ZgB2m+DEOQffFSJc43XQ8pRmjXfwi8vTePTHWZx5UjoJ3iZNVR9wVwQZaekBb43f2Uzlzb9HtgZW+MJhI+Oh2w9ZV4FoMeilfR0IebrXbcWzO9CSR9NGO/hWaDrSJ2jdDYLZ8Kx+e8/HUB0UihWCccedzYg8fVXvmpLOK/3CedPChTorarxU1OpbiY0Zqoy0gYIQgqlTp7Js2TJ+8pOfcNJJJxny1YLxeDwUFxdHfX31FOplogl5VrTUaWrobVhNZkYl5RmOC8YsTBzdUUBgAgSfOUPO6aJoIJw+Wn+WdOfHZehaG7X43JQ4q7WKwEj00Ejb2VjO3rZCDmGyYRKCOUGNk3MKZkU4UzEYiIuLY/bs2Vx55ZXccccdnHrqqeTn52P1CkZtt4Cv9+7zWIeJC05M5JHbslg4LQaTAKsFrlqaTHyERurdZf6UGI6dHosQml7Wuccn8MTPsvnJxWlMGe3AZBJYC/M0TTOTBcx2fE1mfE1mGHF6R9GAlJKq//cYnj36qrS0X17ba3IbnWHUSwsUDzhf/0j3WszCGZiTe6HH8MTL9NtbXtUEa9v5Vt/HlOFLECnDWTJfX9SxsTSOhiYfkZgwYYJO3NbhcBiKYMDoRRtTYDtob6yid0hNTWXhwoXcdNNN3HLLLRx33HFR9Q3tDGWk9TLG4gFjhWeoF21UYh5WU9fVSvOy9CHPr5uycQXn2XSZjxbSaaCP20GFIoQweNOKa3dpyeWxi8KcYQW7MX8jGorK9LpE0xJMpNq8CCFwOOykZBkT0RWDk8TERObPn8+yZcv48Y9/zFnzTmJWU+9XxqUnW7j+3FSe/XUOT/8i56Bz0YIxmQTLvp/CS3fl8sRPszlncSKpifocO2G1YB3Z5oW2J4Etgb3yDFh4f8cxjS+8RfP/VurOi//+CcSHaVTeFzimh+Slrd0MPh/+VhdN7+l7XcYv7aVcueFLICbowepugO3/0f5f9iWUf6U/fpqWkjFnUgxpQX1YvT5hKBoJxmw2c+GFF5KTk0N6ejrnnXde2C4foV0GJgxXXrTBQGZmJieccAK33XYb119/PQsWLDBU7UaDMtJ6mWg8aYZ8tAjSG6GMS84n1d62khQWWqWFr5uCDK0uPWkDJx+tnY4WUW0U1+zUQrbpd9HegL0D+2QwdX/C8vp9fFqudzcfO/R04pJGk5AQjy39SrAbV7SKwU9aWhrHHnssv77gHpYm7+gTz7HDZiLG3jtTrcXc+fht49rDvQIssTTWDwebNme0rt1M7R+eMRyfdseVvTDS6LAMy8OcGniQ+ZtasJZW0vLJavyNAYPHnJpEzLxpvTMIsw3G/kC/b/0zYXPRyF/UoTdnMQtOPlofzv58bedVfbm5udx4443cdtttOtHodqSUrFf5aIMaIQR5eXmccsop3H777Vx99dUcc0z0YXplpPUy0WilheqjhROxDYdJmII007QV3OfBIc8uPGk7Qys7B6CRtql+Dx6/V8uvSw55eMTqW6xEy7qaHboWXTEWO7NyF8PQFTB8O2Te16PrKgYRJgeXj5jIwwVF/T2SXiW0cbl1r5bi4Kupp/LW/0N6A+E4U0IcGX/4CcLef/pbQgiDXppt616cr4dooy1ZiAhN+juUjL9YX31cvQE2PqflowUzTV/YtHhmHOag0/ZVetlXEb7vZDSUVfuobQiI7NksmgyLYnBiMpkoLCzk5JNPjv6cXhyPAqORVt5ci9cfmBgb3c0duVGgqRqNTYpcJRLKvPZenkKbsL5pzqLZb9GuFKmhNeDyuSlrrtbti6TL1pfkxKSS5ggk3Lp9XrbWt6lxp94KMW0rENtYSL66R79jeZleZ2lu5jhN7FRYwdS3idKKfiTzfgoLDm+D3DZe37nDuucA0uej6qcP4quo0b2Wfs+NWAty+nJ4YQltERXz9WZaVunTEw55VWcoCUNg6PH6fZ//XL+dNR1y5ujHFWMyhCO/3NBKTwmV3hhbaMdqUfloRxLKSOtlYi2OQEgS8Em/rldmaCuowoRs4qzRq5GPTswjMya5w0hzS7MW8rQOB1Pk6+xxVhJc15YTmxpoct6PhM1Lq9ml/ccUC3n/gGEbIf9DMKcazu+KFq+LLyo36/YtylF6aEckwgIJZ/b3KHoV26ihugpvc0UttQ89ZzB6ki4/k9jjwus99TX2EL00284y8Ad5k8YO65uihlA5DhnSYWLajWGr52dP0M+7qzf0XMh0g8pHO+JRRlof0FnIs7vSG6EIIdoKCMwgNCmJzxrzIeXGTs8zdhrofy9aO4a8tFq9Ajrm5B4LoX5RsQmXLxB+SHMkMjHKHECFYrBhiovReccE0PDMG7pjHDMmkHzThX08ssjYRg/tVPoj/oxe9qK1M+QYSCwM/1rqWBgavnBhxnh9i6KSfR4q6zppLxWBcPloSsT2yKMXg/qKdobEZbCuJmBolDZV0V7zGepJi7ZoIJj5WRP4z64VYEoEGcO37kyaYk5DeF1UttZR0VJHRWs9lS11Hdv7QkKdhfH902kgHPo+nrClvhSXz6Prv9hTikJCnQuzJ2E6RMr3CsVAxDZuuE5fLBhzejLp/3fbwfe+PIQIsxn7UeNo+fQb42sWM3GnHmJttIgDMcGES2FVGAmgaddHXCimJpoZXWCjeFvAwPpqQyunzIsPe3wk9h7w0tAU8N7F2IVBi01x+DNwvpmHMQZPWnMVGaTS6nOzo0GvT9RdTxrA8IQccmJTtTCqsOKV8KPP/kCrL/qE1f6W3wgmMyaZrJhkDrTUAVo15pb6vUwO6UjQXWpcjayr2aHbp0KdisMd29hhNL33ufEFk4n039+KJbP7aQO9jeOo8WGNtJgF03XVn73OmPNg9e/AF+TRSizQtOY6YdYEB8XbAg22V29s6baRFpqPNq7QhrmLal7F4YdyIfQBBq20tnDn1vpSfEF5DjmxqaTYuy/OKIRgfpa+YW93DDSH2Rp1RWlfERryDPZE9pTlZet0eXjDE7IHRLGEQtGb2MaGLyBKueEHxMwO32i9vwnNS2un17TRIuFIhlEheYtTrtUEgjth9gR9yHPjTjf1zsjCtuFQoU4FKCOtT8gP8aTta6rCL6VBH+1gDCV9L8/oMAsTQ+MzuWnCmTql/4FAaMiz+BAYaYZQZ87AfEApFIeScEZazMIZJP7orDBHDwzsE0YapEBMyQnEHDO97wcz+xdaGy0hYOQZMK7r/L3sNAvpiYGFspRaP89o8fmlodOAMtKOTAZEuFMIYQceB44HUoHtwJ1Synf7dWCHiGRbPHEWB01e7Uva6vPgNLeysU7flmnCQSSwD43P4pT8Wbyzd3XHPovJTIYjqe0nmcyYZDIdSWTGJJPhSCbVnoDFZO7kqv1HqCdte8N+mr0uYntYgbqr8YCuWMIkBAuye9atQKEYTJjTU7BPGYPruy2A1sg8/d6bEAO4N62wWrBPGUPr6oDodPypvayNFomYVPj+++BtBUv0lfejcppZsysQ4vxyfQvHzYhuMby7zENza8DvH+cQDM1W+WhHIgPCSEMbx15gIbAHOAV4VQgxSUq5qz8HdigQQjAkLp0t7XpfQKXfqduGg/OkAVw55mROK5hDndtJpiOZFHv8oE2KT7UnkBeXxr4mrcDBJ/1sqtvD9PRRPbre8nK9F21K6nCdNIpCcTiT8X+3UvfnVyktLWX4727HnDTw7/34M47rMNKEw0bCeSf174C6YaABjMxpZs2uwPZ32100t/qJdXQ9J4drBWUyqXy0I5EB8QSXUjZJKX8tpdwlpfRLKd8CdgL94NvuHfJCQp4bfWU6KYhkWxw5MQeXwCuEICc2lXHJBaQ5EgetgdbOoQp5+qU0CNiqggHFkYQlL4v0u26g7tKTsWQdXMPnviLu9EWk/eY6muZPJuvxX2IdPqS/h9Qt0hM8ZKUGIhU+H3y7NbqQpyHUOVKFOo9UBoonTYcQIgsYDWzo5JirgKsAMjIyKCoq6pvB9ZAWTy1ud+CLt1mWI0XAnZ3iS2H58uX9MbRu4XQ6++699jp179nykm8o3N/9lihbmvZRLgI9U62YcW2uoGhL0aEYZa/Qp+/zIWSwjjtaBtu8E8qg+3zSrDjPmk99czUMpnEDTU1OMuPK2VMW6KDy+v924Kkx9m8OxueHNRvzcXsDnrOmyu8oKup5e6loGXT3B4NzzN1hwBlpQggr8CLwrJRyc6TjpJRPAU8BjBkzRi5atKhvBthD4ipzWLU2IFzrdruw2QKro8VjZrOoYE64UwcURUVF9NV7Pc3dxHvLA7dAHS5mzJtNvDWmk7OMvP3+o9iCGrEvypnMiROP7+SM/qcv3+dDyWAdd7QMtnknlMH4+QzGMYM27vOXjKf4iYB4eXmjg6PnTcBmjRy63LrHjTBXYm9zwiXFmTj7tKMRYbobHGoG43s9GMfcHfokHiaEKBJCyAg/nwcdZwKeB9zA9X0xtr4iVIYjlPHJSvU+lCRbHEODmr5LYEPt7sgnhKHV52arV1+goUKdCoWiLxg5xEpKQuAx2+qWrNveecgzVB9twnB7nxhoioFJnxhpUspFUkoR4Wc+gNDuwqeBLOBsKWXv+3b7kMyYZKwRKiljLXaGDiAx2YHEpNRC3bahRVQXrK7YjIdAS5ZUe4KhclShUCh6A5NJMDOkTdTqLhquhxYNKOmNI5uBlFn+BDAOOE1K2fOOtAMUszCRG5se9rWxSfmYB3mSf29hLB7Y1a3zQ7XRFmRPVO+1QqHoM2ZP1FeFfrWpFZ9Phj3W45Vs2a2MNEWAAfG0EkIMBa4GpgLlQghn28/A6fp7CBgSF76qanzKwFL7H0hMSBlKsKN/t/MA9e6mqM6tdTWytqZEt0+FOhUKRV8yfpidOEdgFnM2+9m0yx322K173HiCerGnJprIThuYWpaKvmFAGGlSyt1toU+HlDI+6OfF/h7boSRSXto4lY8WkXhrDMMTc3T71tfuiurcz8rX45eBFevQ+CyGJQycRvIKheLwx2IWzBin96Z9uSF8sChclwGVj3ZkMyCMtCOFcEaaxWRmVGJeP4xm8NATvbTimp28sWeVbt8i1QZKoVD0A7MmhOaltSClMeRpyEcbrkKdRzrKSOtDhsQZc9JGJeZiMw84JZQBRWiif2fFA7UuJw+tf41ffvMs1a0NHfsFqDZQCoWiX5gyyq6T3ahp8FNSqq+Nc7n9bNurD4OqfDSFMtL6kNzYNEId1yrU2TXjkgt0yf77mqqpcTXqjvFJP+/sXc31Kx8zdBcAODZ3CumORMN+hUKh6G3sNhPTxugNrtCQ5+bdbny+wHZWqpmMFLWAP9JRRlofYjdbyYxJ1u1TRQNdE2uxMzIxV7dvfVDIc3vDPm5f/Ree2vxORxP7YCZZ8rh67JJeH6dCoVBEYlaIFMeXG1p1Ic8NYfTRFAplpPUxC4PyorJjUpiUUth/gxlEhIY819XupMnTypOb3+YnX/6FkoYywzlD47P43cwfcbJ9Inazta+GqlAoFAamj3VgDirULKvyUloRKOVcH6ZoQKFQvtQ+5uzC+SRaY1m9+TuunHoWdnP3e1EeiUxOHca/dn7Wsb26cgtfVW4NK8cRY7ZxwYhjOSV/FhaTmXJKDMcoFApFXxIXY2LicDvfbQsYY6s3tJCfZaW51ZijpjxpClBGWp9jN9tYUjCH+B2t5Md33ipKEWBMUj4WkxmvX0vaaHA3hz1uXtZ4fjj6JNJU/plCoRhgzJ4QozPSvtzQytnHJbJplxt/ULFnboaF1ESlj6ZQ4U7FIMFutjImaUjE13NiU/nVtIv4yeRzlYGmUCgGJDPH6/XSdu73UFnrNfTrnKRCnYo2lCdNMWiYlDLM0GDdajJz9rAFnDV0vpIyUSgUA5rkBDNjh9rYvDsgtfHlhtawTdUVClCeNMUgYnHuVBxBBQBHpY3kkbnXcf7wRcpAUygUg4JZE/TetE++aWJXWWg+mspVVmioJ5ti0JARk8z9s67iq6otjEzMY1JKoWqZolAoBhWzJsTw3DsBoe095V7d6wXZFhLjVD6aQkMZaYpBRX58hiq4UCgUg5asVAuFOVaD96wdlY+mCEaFOxUKhUKh6ENCQ57BqHw0RTDKSFMoFAqFog+ZPTEm7H4hYPwwZaQpAigjTaFQKBSKPiQ/00J2mjHvbHiulbgY9VhWBFB3g0KhUCgUfYgQgtkTjN60CSofTRGCMtIUCoVCoehjZoUx0iaqfDRFCMpIUygUCoWijxk5xEpmSiDkGWMXjC1U+mgKPcpIUygUCoWijzGZBNedk0J6spnEOBNXLU0mxq4eyQo9SidNoVAoFIp+YPwwO4/fnoXfD2azEuZWGFFGmkKhUCgU/YQQArNqMKCIgPKtKhQKhUKhUAxAlJGmUCgUCoVCMQBRRppCoVAoFArFAEQZaQqFQqFQKBQDEGWkKRQKhUKhUAxAlJGmUCgUCoVCMQBRRppCoVAoFArFAEQZaQqFQqFQKBQDkAFnpAkhRgkhWoUQL/T3WBQKhUKhUCj6iwFnpAF/Ar7q70EoFAqFQqFQ9CcDykgTQpwP1AEf9fNQFAqFQqFQKPqVAWOkCSESgd8Ct/X3WBQKhUKhUCj6m4HUYP0u4Gkp5V4hRJcHCyGuAq5q23QJIdb35uB6gXSgqr8H0QMG47jVmPuOwTjuMdEeqOadfmEwjhkG57jVmPuOqOYdIaXs7YEghCgCFkZ4eQVwPfAiME1K6RZC/BoYKaW8KMrrfy2lnHEoxtpXDMYxw+Actxpz3zEYx93TMR9Jf2t/MhjHDINz3GrMfUe04+4TT5qUclFnrwshbgYKgT1tXrR4wCyEGC+lPKq3x6dQKBQKhUIx0Bgo4c6ngH8Ebf8YzWi7tl9Go1AoFAqFQtHPDAgjTUrZDDS3bwshnECrlLIyyks81SsD610G45hhcI5bjbnvGIzj7umYj6S/tT8ZjGOGwTluNea+I6px90lOmkKhUCgUCoWiewwYCQ6FQqFQKBQKRQBlpCkUCoVCoVAMQAa1kSaEeEEIUSaEaBBCbBVCXNHfY4qWwdajVAhR1DZeZ9vPlv4eUzQIIc4XQmwSQjQJIUqEEAv6e0yRCHpv2398QohH+3tc0SCEKBRCvCOEqBVClAshHhNCDIic10gIIcYJIT4WQtQLIbYLIc6M8jw17/QBg3XOATXv9BVHwrwzqI004D6gUEqZCJwO3C2EmN7PY4qWwdij9HopZXzbT9QCoP2FEOIE4PfA5UACcAywo18H1QlB7208kAW0AP/s52FFy+NABZADTEXTRVzWnwPqjLaJ/A3gLSAVTaD2BSHE6ChOV/NO3zGo5hxQ804fc9jPO4PaSJNSbpBSuto3235G9OOQokL1KO0zfgP8Vkr5hZTSL6XcJ6Xc19+DipLvo00+n/X3QKJkGPCqlLJVSlkOvAdM6OcxdcZYIBd4SErpk1J+jCasfXFXJ6p5R9EFat7pOw77eWdQG2kAQojHhRDNwGagDHinn4fUKYO8R+l9QogqIcQKIcSi/h5MZwghzMAMIKPNpVza5gqP6e+xRcmlwHNy8JRf/xE4XwgRK4TIA05GmzAHKuF6zwlgYlQnq3mnrxg0cw6oeacfOOznnUFvpEkpl6G5lBcArwGuzs/odzp6lPb3QLrJT4HhQB6avst/hRAD2XuQBVjRVoYL0Fzh04Bf9OOYokIIUYDmtn+2v8fSDZajrWAbgFLga+D1/hxQF2xG8xj8RAhhFUKciPaex0Zzspp3+oTBNueAmnf6msN+3hn0RhpAm9vwc2AIA7hLgRBiKnA88FA/D6XbSCm/lFI2SildUspn0Vy0p/T3uDqhpe3fR6WUZVLKKuBBBvaY27kE+FxKubO/BxINQggT8D6asRKH1vA4BS0vZ0AipfQAS4FTgXI0D9OraBN9tNdQ804vMgjnHFDzTp9xpMw7A7oKogdYGNi5IYs4fHqUSsK7bgcEUspaIUQp2jgHG5cAv+vvQXSDVCAfeKwtV8slhPg7cDdwe7+OrBOklOvQVrEACCFW0jMvgpp3+oYBPeeAmnf6mCNi3hm0njQhRGZbmXO8EMIshPgecAHwcX+PrROeQpvMp7b9/Bl4G/he/w2pa4QQyUKI7wkhHEIIixDiQrSKpff7e2xd8HfghrZ7JQW4Ga2qZsAihDgaLbwzWKqraPMW7ASubbs/ktFyW77r14F1gRBicts9HSuE+DFahdgzXZyj5p0+YBDPOaDmnT7hSJl3Bq2RhrZSuRbNTVgLPADcLKV8o19H1QlSymYpZXn7D9DdHqX9hRVtdVIJVAE3AEullANdt+guNLmBrcAm4Fvgnn4dUddcCrwmpWzs74F0k7OAk9Duke2AF7ilX0fUNRejJf1XAIuBE4KqNiOh5p2+YbDOOaDmnb7ksJ93VO9OhUKhUCgUigHIYPakKRQKhUKhUBy2KCNNoVAoFAqFYgCijDSFQqFQKBSKAYgy0hQKhUKhUCgGIMpIUygUCoVCoRiAKCNNoVAoFAqFYgCijDSFQqFQKBSKAYgy0hSDEiHELiFEixCiUQhRJ4RYKYS4pq2fm0KhUBxy1Lyj6GvUjaUYzJwmpUwAhqL1nPsp8HT/DkmhUBzmqHlH0WcoI00x6JFS1ksp3wTOAy4VQkwUQpwqhPhWCNEghNgrhPh1+/FCiLeFEDcEX0MIsU4IsbRvR65QKAYrat5R9AXKSFMcNkgpV6P1VFwANAGXAMnAqWhNeJe2HfoscFH7eUKIKWjNhd/pw+EqFIrDADXvKHoTZaQpDjf2A6lSyiIpZbGU0i+lXAe8DCxsO+YNYJQQYlTb9sXAK1JKdz+MV6FQDH7UvKPoFZSRpjjcyANqhBCzhRCfCCEqhRD1wDVAOoCU0gW8ClzUlvB7AfB8v41YoVAMdtS8o+gVlJGmOGwQQsxEmyw/B14C3gTypZRJwJ8BEXT4s8CFwGKgWUq5qo+Hq1AoDgPUvKPoTZSRphj0CCEShRBLgH8AL0gpi4EEoEZK2SqEmAX8IPictsnRD/wBtZpVKBTdRM07ir5ASCn7ewwKRbcRQuwCsgAv2qS3EXgB+LOU0ieE+D7aRJgKLAd2AclSyuDE3V8AdwEjpJQ7+vQPUCgUgw417yj6GmWkKY5YhBCXAFdJKef391gUCsWRgZp3FN1BhTsVRyRCiFhgGfBUf49FoVAcGah5R9FdlJGmOOIQQnwPqAQOoCX6KhQKRa+i5h1FT1DhToVCoVAoFIoBiPKkKRQKhUKhUAxAlJGmUCgUCoVCMQBRRppCoVAoFArFAEQZaQqFQqFQKBQDEGWkKRQKhUKhUAxAlJGmUCgUCoVCMQD5/xR0ceNATWueAAAAAElFTkSuQmCC\n", + "text/plain": [ + "<Figure size 720x288 with 2 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Separating the two equations #\n", + "\n", + "# Eq.2 ------\n", + "col = sns.color_palette()\n", + "col_pte = ['#436bad', 'orange','crimson', 'gray']\n", + "col_pte2 = [col[0], 'gray', col[4], 'gold', col[2], col[3]]\n", + "colors={1:'dimgray',2:'gold',3:'mediumseagreen',4:'darkorange',5:'crimson',6:'royalblue'}\n", + "\n", + "term = 'res'\n", + "res = '80km'\n", + "fig, ax = plt.subplots(1, 2, figsize=(10,4), sharex=True, sharey=True)\n", + "for i in range(1,4): # loop over simulations\n", + " ax[0].plot(dur[exp80[i]], eq2res[exp80[i]], color=colors[i],\n", + " linewidth=4, label=expname[i], alpha=0.9)\n", + "\n", + "#plt.legend(ncols=3, loc='upper center')\n", + "for i in [1,4,5,6]: # loop over simulations\n", + " ax[1].plot(dur[exp80[i]], eq2res[exp80[i]], color=colors[i],\n", + " linewidth=4, label=expname[i], alpha=0.9) \n", + "#plt.legend(ncols=3, loc='upper center')\n", + "#ax = df_track[['dfi', 'ep','itt', 'eq1res']].plot(kind='bar', stacked=True, title='', color=col_pte, figsize=(6, 3))\n", + "#df_track.plot(x ='Unnamed: 0', y='dp', kind = 'line', ax=ax, color='k', linewidth='3')\n", + "\n", + "ax[0].set_xlabel('Day', fontsize=12)\n", + "ax[0].set_ylabel('hPa/'+str(dt)+'hr', fontsize=12)\n", + "ax[0].set_xlim((3, 9))\n", + "ax[0].set_ylim(-4, 7)\n", + "ax[1].set_xlabel('Day', fontsize=12)\n", + "#ax[1].set_ylabel('hPa/'+str(dt)+'hr', fontsize=12)\n", + "ax[1].set_xlim((3, 9))\n", + "ax[1].set_ylim(-4, 7)\n", + "\n", + "#ax.set_xticks(np.arange(9, 32, 2))\n", + "#ax.set_xticklabels(dur[exp80[i]].to_numpy())\n", + "#print(dur[exp80[i]])\n", + "#ax.set_xlim(np.min(df_track['Unnamed: 0'])-0.5, np.max(df_track['Unnamed: 0']+0.5))\n", + " #ax.set_xticklabels(df_track['time'])\n", + "ax[0].yaxis.grid()\n", + "ax[1].yaxis.grid()\n", + "ax[0].xaxis.grid()\n", + "ax[1].xaxis.grid()\n", + "ax[0].axhline(y=0,linestyle=':', color='k')\n", + "ax[1].axhline(y=0,linestyle=':', color='k')\n", + "ax[0].legend(ncol=2, loc='upper left')\n", + "ax[1].legend(ncol=2, loc='upper left')\n", + "#plt.legend(bbox_to_anchor=(1.0, 1), loc='upper center')\n", + "\n", + "#plt.savefig('TimeseriesPTE_'+exp+'_'+str(dt)+'hrly_Eq1_upper'+str(int(p2level))+'hPa_box'+str(int(boxsize))+'_CyCen.png',\n", + "# bbox_inches='tight',dpi=200)\n", + "ax[0].tick_params(axis='both', which='major', labelsize=12)\n", + "ax[1].tick_params(axis='both', which='major', labelsize=12)\n", + "plt.subplots_adjust(wspace = 0.05)\n", + "fig.suptitle('Eq2: '+term+' Term ('+res+')',fontsize=14, weight='bold')\n", + "plt.savefig('CyclonePTEtimeseries_Allsim'+res+'_eq2'+term+'.png',\n", + " bbox_inches='tight',dpi=100)\n", + "plt.show()\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 207, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmcAAAEpCAYAAADWCIWQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAADJUElEQVR4nOydd5hU1dnAf2dmdmZ7LywssCy9LSAdpIstiQL2ErvGEo01MTFGjfFTNDFRYxI1xoqKKIJdQDoICNJ7r8v2vjv9fH/c2Z25M7O9w/k9zz4795xzz32nnXnve94ipJQoFAqFQqFQKNoHhrYWQKFQKBQKhULhRSlnCoVCoVAoFO0IpZwpFAqFQqFQtCOUcqZQKBQKhULRjlDKmUKhUCgUCkU7QilnCoVCoVAoFO0IpZwpFIqzHiHETUII6flLb2t5mhMhxCWe57W6heaf7PPaTW6B+fsKIVxCiONCiLDmnl+haI8o5UyhqCdCiOU+P0L+fzc1cK6BQoi3hBC7hRDFQohSIcQ2IcQDQghTI+U74iOP0zPvLiHEG0KITL+xk2uTXQjxnU//j0H6J4vA16BcCLFDCPG4EEI0Qv4nq+Zq6LmtQR3vf9Xf220tpy+e9+H/PId/9Wk3CiEe87xfJZ73bp8Q4gUhRLjfHPd6Pkc2IUSO53Ob0lrPQUq5F/gCSAPuba3rKhRtiVLOFIqGYwfW+/3lNnCOkcBNQHfgGCCBwcCLwD+aKF8psAkoB/oDtwEbhRA31OdkIUQacJ5P0wghxKBaTjmE9hqUAQOBPwMPNkLu9s4uvO/3IZ/23T7tBxszsdBolFJeB9PR3pNC4Cuf9ieAv3j6soGTQG/gYeDvPnI9DbyM9jk6CkSifW5X+CtxLcz7nv+/FkKo3y3FGY/6kCsUDSdLSjnG76/6h08IMdNjhbAKIVYKIS4OYqU6BlwFREspBwPpwBFP3y995kpvhHXuJynlaCllZ2AccBwIAf4rhOhdj/NvQFsbCvAqITfXMv5pKeUYIAMo8bRN9nkOVRan5R4rzDEhRKUQ4iuPIogQYjmawlB1ju45CyGihBAvCiEOCyHsQogsIcR/hBCxPue87TnniBDiCiHEHo9FaKUQoq/POCGEeMJjBSoVQrwHxNT1okgp7656v4Gnfbp822d7LId7PZamfCHEB1XP03P9aguhEOIiIcQuwAEM8nsO13v+lwoh/iWECBVC/J8QokAIcUoI8ae6ZMb7WfpWSunwaZ/o+b9XStlbStkH2Otp6+6RMwX4naftb54xY9BuJPoCd9Z0USHEPZ7n4RZC/MrTVmXZfVcIMVsIUeh5H+8UQiQKIT7xvF97hRC/8JvyG8AFdMXns6VQnKko5UyhaEaEEIOBeWhWCDuQDHzsP05KuVRK+bGU0uk5LgB2eLptzSWPlPIH4DeewxDg1nqcdpPn/0fAu57H19fDstMDsHge7wvSPwaYjWZhswAXA596+nahWW+qqLZICiHMwHLgAaAzmqUqCvgV8L0QIsTvOl2AOWhKRBgwAfifT/9dwJNAEpqVcQrwTB3Prb58imY57IWm7AjgGmCNECIuyPgFQChwyq89FfgP4ESzVt2FZg29B+31SwWeEkJMr0OeyZ7//lvTqzz/+woh9gsh9qEpXLuBRz1956F9ZqqeF1LKbcABT9sFwS4ohLgZeAVwA7dLKV/zG3IlcAtgBToB/wJWon0+7EAfYI4QIr7qBCllObDTczil1mesUJwBKOVMoWg43UWgr1Gsp+9hwIj2AzpAStmPemxTCiEGAlM9h//26XKg/cjvBYobKe9Kn8eD65DjXDTFEjTF7D3P42TgZzWc9pbQ/MS2oyldW/GxgvlgBM6RUg7Au+05SggxRUp5N/DfqoF+FsmrgXPQFJVzpJRD0LbjXJ72K/2uYwIuk1L2x/vajxNeZ/Iqa9AGNItlOoHKS4MRQkwEfu45vEhKmYlmTcwDugF3Bznt71LKDCllN7TXrwozmvLTB83yCdr7MgQYgKbYAEyrRZ4IND8t8Fplq3gCTVEGTZHsjabM7sSrKHb1GZ/j8zjb879bkMtehfY+SuAWKeWbQcaUeK43oUpUNEWuJ3C5py0KGOV33lHP/74oFGc4SjlTKBpOMJ8zp6evSvlZK6U84Xk8t7bJhBATgBVAOJrV7c9VfVLKk1LKfp6/zxopr+/3vC5n+6rty71SyvVSykPAWk/bTTWcU+VzdsRzPAR4Nsi4bVLKPZ7Hvq9Jbf5sAKM9/03ADo8ieARN2QPN4uJLsZTyC8/jXT7tyUKIaLxKxQIppd1jvZxfhwz1YbTP4+88chYCiTXICT6Ku5TS5dNeKKVcI6V0o22BA+yQUh6RUpbhVZZqc8yP9Xlc6td3LfAQcBhNKUpDe60uBz7wjKkpqKO2YI870T5vv5VSvlPDmNVSyiL0CuMiKaUNvS+f/3Or2jKPreX6CsUZQUs4oCoUZzpZHv+i+lLjj5nHSf8NNEvJv4B7PT/Izckkn8c7axrkcfC+wnOYIYQo8jyusjj9TAiRJKX0D354Wkr5tmeOj9CsJ3cJIR71bEcFvVwD5K8a6wB+CtKf7Xdc5PPY6fO4tms2OLq0jjk2EKgIH/M7Rkp5uoa5SnweO4O0Vc1dm9y+ltYov77ZaOv/Nx4FHCHEV2gWycmeLWxfeZPxBjske/4fJ5AytG3YXwkh3pNS5gQZUwIgpXQKb1Bv1XPzfc38n1u0539RkDkVijMKZTlTKJqXqq2pcUKIzp7Hl/sP8jilPwO8g/Yj+YCU8h5/xUwI0cXj2L5HCDGzocIIIcbhtc44gGDbTFVcjvdHPATNST4GTXGsaru+jksafP77ry+ZPo75vq9Jla9dhY/cET79Gzz/TcD9Ps735wJP4Y3kqxMpZQlepeISIYTZo4jMqO8ctbDB5/GLPnKOBX4L+PtetSgeC1uW5zDdr7sqAGKYEMIktAjIYZ42q8ea+D1exfAyAKGlZOnlafs2yGXvxhv5+Z0Qos5AiwbQ3fM/mD+jQnFGoZQzhaLhpAoh1vn93ebp+yuaL1QksEcIsZvgaSWuAv7geVwCXO07n8+4EDQfm77UI6LQwzlCiPVCiFPAGjQHeQeac3ZtP2xVW5rbpZTC9w/th9p3jC+Pe+Q+hNfytlRK6b+VZgN+EkLsxKswbkRz9gfY4zN2p2fODOBDYAuaJWWtEGKn53UtBr4mUPGoi+c9/8egbesdRotqbRJSyuVoUYUAHwktYne7R84VaP5xrc0Kz/+Rfu1VgRhj0bYXD6Gl3QBPEIjHqveCp+0hIcReYB3a+7Cf4MrmceAiNOvWUOBL0QyJYz3K+kDP4bKmzqdQtHeUcqZQNBwzmn+R718agJRyO5qCst8zrgBNEfMn1OdxbJD5mkIUMAJNQdwLvAWMrMUHCKFlxa/a/gzmf1X1Yz5YCDHcry8DTeauaD/O/yX4c96IFnEZiea39y0wS0pZtZX1JdoWbz6alWQ0EO7xRZqMlgPuCJpVJglti/YveC1v9eVVNL++PLTXfh3wWAPnqImZaM72e9CeQxqa4vM3vEpoa1IVbXuhX1Trr9Ce80607cJ4NKvvQ3ije/GMuR/t+fRAy533LjCppi1rz3dgBpoyfi7waZCI2oZyMZqP4Qna5nVUKFoV4V0XFQpFS+BRfA57Dm+u8s86WxBaDrNJwAop5eS2lebswrNduQMtieysJgSVtClCiIXAJcCjUsrZdY1XKDo6ynKmUCgUZygeH8aqvGUPt6UsjcXjp/gLNF+2l9tYHIWiVVDRmgqFQnEGI6X8nOaJRm0TPLU1lSFBcVahtjUVCoVCoVAo2hHqbkShUCgUCoWiHaGUM4VCoVAoFIp2hFLOFAqFQqFQKNoRSjlTKBQKhUKhaEco5UyhUCgUCoWiHaGUM4VCoVAoFIp2hFLOFAqFQqFQKNoRSjlTKBQKhUKhaEco5UyhUCgUCoWiHaGUM4VCoVAoFIp2hFLOFAqFQqFQKNoRSjlTKBQKhUKhaEco5UyhUCgUCoWiHWFqawEaS2xsrOzVq1dbi9FgysvLiYiIaGsxGkRHlBk6ptxK5tZj06ZNeVLKpIaco9ad1kPJ3Hp0RLk7oswNWXM6rHKWkpLCxo0b21qMBrN8+XImT57c1mI0iI4oM3RMuZXMrYcQ4mhDz1HrTuuhZG49OqLcHVHmhqw5rbatKYRIF0J8LYQoFEKcFkL8Uwhh8vRNE0LsEUJUCCGWCSG6t5ZcCoVCoVAoFO2J1vQ5+xeQA6QCQ4FJwN1CiERgPvA4EA9sBOa2olwKhUKhUCgU7YbWVM56AB9LKa1SytPAt8BAYBawU0o5T0ppBZ4Ehggh+rWibAqFQqFQKBTtgtb0OXsJuFoIsRyIAy5Cs5ZNBrZWDZJSlgshDqIpbnsacgGHw8GJEyewWq3NJXOzExMTw+7du9tajAbREWWGtpU7NDSUtLQ0QkJC2uT6itZDrTstg5K59egocp9N62prKmcrgNuBEsAIvAMsAH4O5PqNLQai/CcQQtwB3AGQlJTE8uXLdf2RkZGkpKTQpUsXhBDNLH7z4HK5MBqNbS1Gg+iIMkPbyS2lpLi4mK1bt1JWVtagc8vKygI+1+2djihzQ/Bfd1Z9/xUuozdKTK07LYOSufXoCHL7r6tn+rrTKsqZEMIAfAe8BowDIoH/AbOBMiDa75RooNR/Hinl68DrAH379pX+kRq7d+8mLS2t3S6QAKWlpURFBeid7ZqOKDO0rdxRUVGUlZUxYsSIBp3XESOQOqLMDcF33Tmnm1lOOP0UXLehul+tOy2Dkrn16Chy+66rZ/q601o+Z/FAV+CfUkqblDIfeAu4GNgJDKkaKISIAHp62htMe14gFWcP6nN4ZiJwQ1kWuJ36dvV+KxQtztn0PWsV5UxKmQccBu4SQpiEELHAjWi+Zp8Bg4QQlwkhQoE/AduklA3yN1MoFIpWISQcKvPbWgqFQnEG05rRmrOAC9H8yw4ATuABKWUucBnwDFAIjAaubkW5FAqFol6Uh/WAW/ZCREpbi6JQKM5gWk05k1JukVJOllLGSSkTpZRXSClzPH1LpJT9pJRhnjFHWkuuluD06dNcffXV9OzZkwEDBjBlyhTCw8MZOnQo3bp1o0ePHgwdOpTzzjuPI0eOMGjQoHrNe9NNN1WfO2TIEL7//vvqvsmTJ+syl/vP++yzz9KrVy/69u3Ld99913xPtp3gcrkYNmwYP//5zwHttVqwYAEABQUFDBs2jLfeeivouUeOHCEsLIyhQ4cyYMAAbrjhBhwOB6D5U1XNWcVNN93EJ5980nJPRtFuMTvar8VMrTvtm/z8fIYOHcrQoUPp1KkTXbp0qT622+1tItMzzzzD0KFDGT9+PEajsVqel19+mSeffLJaxgEDBvDhhx/WOpf6nDQvHbZ8U238/ve/b9H5n3322Rr7pJTMnDmTG2+8kY8++giALVu2UFpayoQJE7juuuuYOXMml19+OaB9SBvCCy+8wOWXX86yZcu444472L9/f53n7Nq1i48++oidO3dy6tQpzjvvPPbt29es0TkzFj/ZbHMFY8H02ud/6aWX6N+/PyUlJbr24uJiLrjgAu644w5uvvnmGs/v2bMnW7ZsweVyMX36dD7++GOuu+665hBdcQYha7mfVeuOntZYdxrLkUEzWmReKSX5QpC+Y0FAX0JCAlu2bAHgySefJDIykocffrhF5Kgvjz32GI899hilpaWkpqZWyweajA888AAPP/ww+/fvZ/jw4Vx++eW1prE40z4nbUlrbmueFSxbtoyQkBDuvPPO6rahQ4cyYcKEZr3O2LFjOXnyZL3GLly4kKuvvhqLxUKPHj3o1asXGzZsqPvEDsKJEyf46quvuO2223Tt5eXlXHTRRVx77bXcdddd9ZrLaDQyatSoer+2irMLt8HS1iIERa07HZM33niDkSNHMmTIEC677DIqKioAzQp13333MW7cODIyMqot9VJKHnnkEQYNGsTgwYOZO1crprN8+XImTZrElVdeSZ8+fXj00UeZM2cOo0aNYvDgwRw8eLBJcvbu3Zvw8HAKCwvrNV59TprOGWk5a0t27NjB8OHDW/w63377LTNmzNC1XXfddYSFhQFgt9sxGDTd++TJk4wZM6Z6XFpa2hmlfNx///08//zzlJbqs6/8/ve/5/bbb+eBBx6o91xWq5X169fz0ksvVbetWrWKoUOHVh8fO3YsYKtTcXbgMkaAtVD7i81oa3GqUetOx2TWrFncfvvtAPzxj3/kzTff5N577wUgKyuL1atXs2fPHi655BIuv/xy5s+fz5YtW9i6dSt5eXmMHDmSiRMnArB161Z2795NfHw8GRkZ3HbbbWzYsIGXXnqJV155hX/84x+NlvOnn36id+/eJCcn12u8+pw0HWU562A88sgjZGRkcP311/OHP/xB1zdnzhy2bNnCli1b+Prrr6vbpZQB85wpIclffvklycnJQX+YJk2axMKFC8nJyalznoMHDzJ06FASEhLo1q0bmZmZ1X0TJkyofl23bNnCJZdc0qzPQdFxCK88Am8PhK/Pri1vte60DDt27GDChAkMHjyYOXPmsHOnN4PUjBkzMBgMDBgwgOzsbABWr17NNddcg9FoJCUlhUmTJvHjjz8CMHLkSFJTU7FYLPTs2ZPzzz8fgMGDBzd4G7uKv//97/Tt25fRo0fz5JNP1jlefU6ajzPSclabb0ZLM3DgwBZ1Fn/hhReYNWsWL7/8MjfeeCObNm2q85y0tDSOHz9efXzixAk6d+7crHLV5RPWUqxZs4bPP/+cr7/+GqvVSklJCddffz0mk4nLLruM/Px8Lr74YpYtW1ZrksUqn7OsrCwmT57M559/XqcStn79en71q18B8Oc//1kpbWcBArf2oOwUSDcI7/2tWnf0tMa601iC+YQ1Bw1N5loVuDRkyBDefvttXcZ7i8W7hV6lwARTZIKNNxgM1ccGgwGn01nTabVS5XM2f/58brjhBg4ePEhoaGiN48+0z0lboixnzczUqVOx2Wy88cYb1W0//vgjK1asaLZrGAwGfvOb3+B2u+sV2XLJJZfw0UcfYbPZOHz4MPv372fUqFHNJk9b8uyzz3LixAmOHDnCRx99xNSpU3n//fer+++//36mTZvGzJkz6xURlZqaynPPPVevH9rRo0cra9pZhsQIIRHalqatpO4TWgm17nRMqhzxHQ4Hc+bMqXP8xIkTmTt3Li6Xi9zcXFauXNkqr+msWbMYMWIE77zzTp1j1eekeVDKWTMjhOCzzz5j8eLF9OzZk4EDB/Lkk0/Weiewd+9e0tLSqv/mzZtXr+v88Y9/5Pnnn69z7MCBA7nyyisZMGAAF154Ia+++upZFQkze/Zsunbtyi9/+Uvcbned42fMmEFFRQWrVq1qBekUHYmKsG5wyz64chmExra1ONWodadj8vTTTzN69GimT59Ov3796hw/c+ZMMjMzGTJkCFOnTuX555+nU6dOrSAp/OlPf+LFF1+s1xqqPidNR9RmJm3P9O3bV+7du1fXtnv3bvr3799GEtWPjlLDzJeOKDO0vdyN+Tx2xHpxHVFmACHEJillg4qfqnWn9VAytx4dSe6q71tHXHcasuYoy5lCoVAoFApFO+KMDAjo6Nxzzz2sWbNG1/ab3/ym1iSqirrZvn07v/zlL3VtFouF9evXt5FECkX7Qa07ZzbPPPNMwNb1FVdcwWOPPdagedTnpHVQylk75NVXX21rEc5IBg8erMuArVA0ClsxlB4HpxU6NWhXtF2j1p0zm6pqAE1FfU5aB6WcKRQKRT0xuO3wlse/LLYnXK2CRhQKRfOjfM4UCoWinkiDz/1s6QnooAFVCoWifaMsZwqFQlFPJAYITwFLNESmgbOirUVSKBRnIEo5UygUinricBrglz+BKi+jUChaELWt2UK4XC6GDRtWXSD7pptuqi6vUlBQwLBhw3jrrbeCnnvkyBHCwsIYOnQoAwYM4IYbbsDhcABaTin/otu+cx8+fJjRo0fTu3dvrrrqqnplxVcoFPWjpNLY7hSz/Px8hg4dytChQ+nUqRNdunSpPm7L7/+TTz5ZLcuAAQP48MMPq/t816wqIiMjqx+/8847DB06lN69e9crK31HoD2/T3379mXo0KEMGjSIzz//vLrv9ddfp1+/fvTr149Ro0axevXqWueaPHkyffv2ZciQIYwcOVIXgJWenk5eXl71se9vmZSS++67j169epGZmclPP/3UvE+yA9IqljMhRJlfUxjwLynlvZ7+acCrQDdgPXCTlPJooy94oIXrcvU6VeeQl156if79+1NSoi/xUlxczMyZM7njjjtqDT2uqvXocrmYPn06H3/8MdddV3ex5d/97nc88MADXH311dx55528+eab3HXXXXU/J4VCUScut8DlkhiNQRS0/7TwunNn8HUnISGh+kfwySefJDIykocffrhlZaknVbUZ9+/fz/Dhw7n88ssJCQmp9ZyCggKeeuopli1bRnR0NMOHD+eSSy4hLi6u2eS64vcnm20uX9xuNwZDCfOe7RLQ157fp3vuuYfHHnuM3bt3M2HCBHJycvj666957bXXWL16NYmJifz000/MmDGDDRs21FqVYM6cOYwYMYK33nqLRx55hMWLF9d5/W+++Yb9+/ezf/9+1q9fz1133XXWpzhqFcuZlDKy6g9IASqBeQBCiERgPvA4EA9sBOa2hlwtxYkTJ/jqq6+47bbbdO1lZWVcdtllXHvttfVWmIxGI6NGjeLkyboXEyklS5cu5fLLLwfgxhtvZMGCBQ2WX6FQBMdsclNha/9BAG+88QYjR45kyJAhXHbZZVRUaL5xN910E/fddx/jxo0jIyOj2nolpeSRRx5h0KBBDB48mLlztSV4+fLlTJo0iSuvvJI+ffrw6KOPMmfOHEaNGsXgwYM5ePBgveTp3bs34eHhFBYW1jn2u+++Y/r06cTHxxMXF8f06dP59ttvG/lKtG/a2/vUv39/TCYTeXl5zJ49mxdeeIHExEQAzjnnHG688cZ6p9IYO3ZsvX63ABYuXMgNN9yAEIIxY8ZQVFREVlZWvc49U2mLbc3LgRygKgZ9FrBTSjlPSmkFngSGCCHqLjTWTrn//vt5/vnnMRj0L++DDz7I2LFjeeCBB+o9l9VqZf369Vx44YXVbatWrao2hw8dOrTaDJ2fn09sbCwmk2YQTUtLq/eXQ6FQ1E1shJMoixPyd8ORxXBkUVuLFJRZs2bx448/snXrVvr378+7775b3ZeVlcXq1av58ssvefTRRwGYP38+W7ZsYevWrSxZsoRHHnmk+sdx69atvPTSS2zfvp333nuPffv2sWHDBm677TZeeeWVesnz008/0bt3b5KTk6vbHnnkEd06VsXJkyfp2rVr9fGZvI75v09vvvlmdV9bvE/r16/HYDCQlJTEzp07GT58uK5/xIgR7Ny5s15zffvtt8yYMUPXNmXKlOr329d4cTa95/WlLQICbgTeld6ingOBrVWdUspyIcRBT/se3xOFEHcAdwAkJSWxfPly3cQxMTGUlpYS4W7ZO9vy0tIa+7755htiY2Pp06cPq1atwul0UlpaisPhYOLEiXz11Vfcd999JCUl1ThHWVkZBw8eJDMzk4MHD3LppZfSo0cPSktLqaioYOzYsbpMz3feeSeVlZWUlpbidrsp9chXVlaGlLL6uLG4XK4mz9EWtLXcVqs14DNaF2VlZQ0+p63piDI3BP9158dF75O5/7cAVFi6Yh31P23daeG0GrWtO1XYbDZCQkLYsGEDTz/9NMXFxZSXlzNlypTqdeiCCy6gvLycrl27kp2dTWlpKUuXLmXmzJlUVFQQHh7OuHHjWLlyJVFRUZxzzjlERkZit9tJT0/n3HPPpbS0lJ49e7J48eIav2M2m43XX3+d1157jSNHjjB//vzqsQ6Hgz//+c+6H+/U1FRKS0uxWq3YbLbq76/NZsNoNDbrd7k+xbubMnddstb0Pk2bNq3N3qe5c+cSGRnJW2+9pfvt8DUyVFRU1Lquulwurrnmmupxq1atqh4rpeSLL74gISEB0IwML7/8cvXzraioqB7rcrl0x75Uratn+rrTqsqZEKIbMAm41ac5Esj1G1oMBFRhlVK+DrwOWgFi/6Knu3fv1oq3RrWsObS28rCbN2/m22+/ZcmSJVitVkpKSrjrrrsICQnh+uuv58CBA1x55ZUsW7asxkKzkZGR9OzZk23btpGVlcXkyZNZtmwZl1xyCeHh4ZhMJt25ISEhhIWFkZ6eTklJCWFhYZhMJoqKikhLS2tyQduOVBTXl7aWOzQ0lGHDhjXonI5YzLcjytwQ/NedkVNmwtE/AmAxlXE6NFT7nN3VdutOFRaLBYvFwt13382CBQsYMmQIb7/9NosXLyYqKoqQkBBiY2OrvxdSyur20KrngXdNCQ8PJzw8XNceFxdHVFRUtQN/Td8xi8XCgw8+yMMPP8z8+fO58847OXjwIKGhodXz+58bFRVFz549Wb58OUajkaioKHJzc5k8eXKzfpc/nd0y60J915ya3qfly5e3yftU5XPmy8CBA9m3bx9Tp06tbtu9ezeZmZk1zmU0Gvnwww8ZMmQIjz76KL/73e+YP38+AEIIIiMjq8/1/S1LT08nPz+/ui8rK4vevXsHvU7Vunqmrzutva15A7BaSnnYp60MiPYbFw10PFMN8Oyzz3LixAmOHDnCRx99xNSpU3n//fer+++55x6mTZvGzJkz6xWhk5qaynPPPcezzz5b51ghBFOmTKn2T3jnnXe49NJLG/9kFApFIJZYSBwEaZOg14x2mYi2tLSU1NRUHA4Hc+bMqXP8xIkTmTt3Li6Xi9zcXFauXMmoUaOaTZ5Zs2YxYsSIekVeXnDBBSxatIjCwkIKCwtZtGgRF1xwQbPJ0p5ob++TL7/97W/53e9+R35+PgBbtmzh7bff5u67767z3JCQEP7yl7+wbt06du/eXef4Sy65hHfffRcpJevWrSMmJobU1NQmP4eOTFsoZ/7fzp3AkKoDIUQE0NPTfkYye/Zsunbtyi9/+ct6mddnzJhBRUUFq1bVXSpm9uzZvPjii/Tq1Yv8/HxuvfXWOs9RKBT1w+408PcPC1nTZwH8/EOY9EK7S60B8PTTTzN69GimT59Ov351u+/OnDmTzMxMhgwZwtSpU3n++edrjchrDH/605948cUX61zz4uPjefzxx5k8eTIjR47kT3/6E/Hx8c0qS3uhPb5PVVxyySXccsstjBs3jn79+nH77bfz/vvv11tpCgsL46GHHuKvf/1rnWMvvvhiMjIy6NWrF7fffjv/+te/mip+h0fIVrrrE0KMAxYDnaSUpT7tScAB4BbgK+ApYJKUckxt8/Xt21fu3btX17Z792769+/f3KI3K2291dYYOqLM0PZyN+bz2BFN9R1RZgAhxCYpZYMql8emDJbTb/mW/ulm/vwrzW9UrTstg5K59ehIcld93zriutOQNac1LWc3AvN9FTMAKWUucBnwDFAIjAaubkW5FAqFon54jGS7j9jJLnC2rSwKheKMpdUCAqSUv6qlbwnQYVNnNJbt27fzy1/+UtdmsVjO+uR7CkV7JSzEzYVjIjhvVAQp8ar6HcAzzzyjix4HuOKKKwIczBVtS3O+TzNnzuTw4cO6ttmzZ5+xvoFtQYddXcyGArAfBHNPXbuUEtEOfUCCMXjwYF15C8WZQ2u5Cyhal+hwJ7deGgu2Eji6AkpPgHtQh1p3mpvHHntMKWIdgOZ8nz777LNmmaehnE3raoetrWk2FMJpvTEuNDSU/Pz8s+oNVLQ/pJTk5+cTGhra1qIoWoqiA/DNDbD6D4SW7lPrjkLRwpxt62qHtZwBYN8F0gFCq9WWlpbGiRMnyM31T5vWfrBarR3uw9URZYa2lTs0NJS0tLQ2ubaiFYjyyWZ+8B+c6DxWrTvNjJK59egocp9N62rHVs4AXAVgSgG03Co9evRoY4FqZ/ny5Q1OTNrWdESZoePKregAhCXi6jqNzaUjSOsUSo/u3cBgbGupaqQjfheUzK1HR5X7TKbDKmflzh7Qc1+7zDGkUCjObNZur+Sdbc9TUOLmZ5ER3NSOFTOFQtHx6LA+ZxIDR8pyWJ9Td/ZhhUKhaE7CQw0UlGjJVFf8VIHdofzNFApF89FhLWdFsoL71/2bqJAwMuMzCDNZ2lokhUJxlpDZy0JSnBGbXTJ5eDgOp8Qcoqz4CoWieeiwyplDugAodVTy7YmNzEwf38YSKRSKswWDQfDYTQmkJJgwGZVSplAompcOq5yZhQGQjE7swZD4jLYWR6FQnGV0iSiAPd9B2QkIS4TMO9paJIVCcYbQYZWzRFM+/+g8l/S4MRB9U1uLo1AozjZKj8GqR7XHSZlKOVMoFM1Ghw0IsAgH6ZYScOW0tSgKheJsJNIn31LpCZwuidOlAgMUCkXT6bCWMwBEaHUCWoVCoWhVwpOh71Wcpg+Ljw9m+bOnufFnMUwcFt7WkikUig5Oh7WclTt7QMZBSFsIaKUdthUcwul2tbFkCoXirMBghCl/Zy3X8/nuHpSUu1myobytpVIoFGcAHVY5kxiqE9Buzj/Ab3/8L3/a9C4rTm9rY8kUCsXZxOTh4Rg9K2lOoYvySnfbCqRQKDo8HXtb08PBklPsLz4JwCeHVzE5dQhG0WH1ToVC0YGIjzZy9fnRpCWbGNY3FKNBpdZQKBRN44zQYC7uOooIUyghBiPDEnphcznaWiSFQnEWMWNSFCP6hynFTKFQNAutajkTQlwNPAF0A04DN0kpVwkhpgGvetrXe9qP1jmhqwic2YQbY3l48OV0j0oh3hLVck9AoVAofCk+DHvmarnOYnrAiIfaWiKFQnEG0GqWMyHEdGA2cDMQBUwEDgkhEoH5wONAPLARmFvXfGZDPhweAMenQOknDEvspRQzhULRupSfhs0vw/75cHx5W0ujUCjOEFpzW/Mp4M9SynVSSreU8qSU8iQwC9gppZwnpbQCTwJDhBD9aptMYvQeOLNbTmqFQqGoiaiu3selxwE4dtrBmwuLOJGj3CsUCkXjEFK2fNJEIYQRqAT+BNwGhAILgEeA5wCzlPIun/E7gCeklJ/6zXMHcAdA97To4bu+icLhjiXXOpETFVfqrumSbsqlnWhDaMs9sUZQVlZGZGRkW4vRIDqizNAx5VYytx5TpkzZJKUcUdc433UnKSlp+Mcff+ztky7SsudhMydjMyfx1fEJbNgfDcA5GaVMHlTYQtI3jI74HimZW4+OKHdHlLm+aw60ns9ZChACXA5MABzAQuCPQCSQ6ze+GG3rU4eU8nXgdYC+ffvK8EF7AYgBennGONxOvj+1mfmHVxNjieT5kbchRPtx0l2+fDmTJ09uazEaREeUGTqm3Erm9of/uhP4XKdVPxL7rGw9lg/AkfxQxo3PxBzS9utPR3yPlMytR0eUuyPK3BBaSzmr9Px/RUqZBSCEeBFNOVsJRPuNjwZKG3OhUkclb+79FofbRY61mC0FBxmW0KvuExUKhaKJZPay0DnRRHpqCOeNCsdkrPschUKh8KdVlDMpZaEQ4gQQbA91J3Bj1YEQIgLo6WlvMPGWKKZ3Gc7XxzcQbQ6n1FFZ90kKhULRDBgMgr/dn4zJ2PbWMoVC0XFpzVQabwH3CiG+RdvWvB/4EvgMeEEIcRnwFZpf2jYp5Z7GXmhW+nhSwmK5IG0EoUZz0yVXKBSKeqIUM4VC0VRaUzl7GkgE9gFW4GPgGSml1aOY/RN4Hy3P2dX1mtFVCM7T4MoByzAwarujiaExXNp9XAs8BYVCofAjdztsfwNKT0BSJox7sq0lUigUHZxWU86klA7gbs+ff98SoNbUGUE5dQPYNmmPu3wKYWObJqRCoVA0FFsR7PtEeyxVXU2FQtF0OnZtTVMy2DyPnf4Bn3qsLrva4lQoFM2Pb66zshMA/LC9ko27KykocXP+6AjGDg5rI+EUCkVHpGMrZyEZENIbTClgCJ7vpNRewefH1vH18Q08N/JWukYmtbKQCoXijCayC0x6QVPSPIra4VN2Vm7WgpH6p5uVcqZQKBpEh1XOpJSQ+Jj2Vwsv7VzAxrx9ABwpy1bKmUKhaF6MIdD/Ol1TXLQ3h0Zhiau1JVIoFB2cDquc1TexbHJYbPXjAltJC0mjUCgUXjJ7WrjrsljiooykJnbYZVahULQRZ/yqMTqpH0mhMcRZIukTk9bW4igUirOALskhdEkOaWsxFApFB6XDKmcOh4OlS5cSFhbG2LE1R2kOSchgSEJGK0qmUCjOVBwOB4sWLSItLY0BAwa0tTgKheIMxdDWAjSW8vJylixexMFdC6F8KZR8WvdJCoVC0QTKy8tZtmwZu3bt0necXAufXw4fjIHlD7eNcAqF4oyhw1rOABCSXwz9N/LUuwgBRF0CQm0lKBSKliUnJ0ff4LLBqbXa48gjrS6PQqE4s+iwypnZbGbs2HMxhX4GlGmNzhwI6dKmcikUijOXkJAQJk2aROfOnfUdQXKdfbiohL1HbRSUuPnNVXH0TFN5FhUKRf3osMpZeHg4v/jFL+D0l+Aq1hLSEjyC8+19i8ixFlFgK+Wpc36JRSWjVSgUjSAiIoILL7wwsCO6G1w8R1PSIrUbxCOn7Ow8ZAcgr9hFTxWPpFAo6kmHVc6q6fRanUPWZO8k11oMQIGtjNTw+JaWSqFQnE0YzdBtiq4p3ifXWYHKdaZQKBpAx1fO6kG8JcpHOStVyplCoWhxzh8TwZjBYcRFG0mKNdZ9gkKhUHg4K5SzWennYnPZibNEkR6Z0tbiKBSKs4AenZX7hEKhaBwdWjlbu3YtOTk5FBQUcPPNN9dYNWB0cr9WlkyhUJyJSClZsWIFubm5mEwmZsyYEWSQG5xWCAlvdfkUCsWZQYdWzhYvXox0FdE1MYuK0w4iIlMgakZbi6VQKM5QpJR8++23gBaUpFPODn8LP/wZyk5Cnytg8l/bRkiFQtHh6bBJaAGSk5NJiCriinO/wlL8OBTVHRygUCgUjcVgMBASouVSrKiooLy83NspjFByBNyO6nQaVUgpW1FKhULR0Wk1y5kQYjkwBnB6mk5KKft6+qYBrwLdgPXATVLKo3XNOWrUKJyVSYSFf4XRaARndssIr1AoFB6mTJlCaGgoSUlJmM0+fmW+uc7sJUgp+fOb+eQWOiksdfPW46mYQ4K7XigUCoUvrb2t+Wsp5X99G4QQicB84DbgC+BpYC6aIlcrw4cPB/cgOD0fjClg6hx0XIGtlNf3fE2hrZRQo5mnht/Q5CeiUCjOTqZMmRK8I7YnXLkMotIgJAIBnMp1UFDiBqCw1EVKfIf2JFEoFK1Ee1gpZgE7pZTzAIQQTwJ5Qoh+Uso9dZ5tsEDnD2odYhQG1uXsBiDCFNpUeRUKhSIQYwjE99U1xUcbvcpZiVLOFApF/RCt5Qvh2dYciJbGfy/wmJRyuRDiJcAspbzLZ+wO4Akp5ad+c9wB3AGQlJQ0/OOPP67Xtd1S8mLFEtxoi+QD4ecRItom71BZWRmRkZFtcu3G0hFlho4pt5K59ZgyZcomKeWIusY1dt0ByC0JwSAkkaEuzCZJDQHlLU5HfI+UzK1HR5S7I8pc3zUH0BxVW+MPGA1EARbgRqAU6Am8CTznN3YNmt9ZjfP16dNHNoR12bvljoIj8lR5vnS5XQ06tzlZtmxZm127sXREmaXsmHIrmVsPYKNs4DrW0HWnvdAR3yMlc+vREeXuiDI3ZM1pNRu7lHK9z+E7QohrgIvRqpZH+w2PRlPe6uSHH35g37595OTkcPnll9OjR4+g41SuM4VC0Vx88803nDp1ipycHB544AFCQ33cJaSEylztf4RKeq1QKBpOW6bSkGhbnDuBIVWNQogINIvazvpMcvz4cfJPrSE9bgWGor9B+dIWEVahUCiq2LNnDwcOHKCkpIScnByfjrnw3x7w7lD46R9tJZ5CoejgtIpyJoSIFUJcIIQIFUKYhBDXAROB74DPgEFCiMuEEKHAn4Btsj7BAGi5znp0OsYF56wgJeQDqFjWck9EoVAogJQUr0VMp5xZYsBl1x6XHq9ullJSaXO3lngKhaKD01rbmiHAX4B+gAvYA8yQUu4FEEJcBvwTeB8tz9nV9Z14wIABlCdcQIR5CwaDAVw5dZ+kUCgUTWDs2LEMGTKElJQU4uLivB1Radp/czQYQ8kucPL0m3kUlLhIijXx0kNqm1OhUNRNg5QzIYRBStng2z8pZS4wspb+JWiKW4NJTk6GmAuh6ASYUsCSGXTc1vxDvH9gCQX2MobG9+TegZc25nIKhUJRo28r8f3glr1gjgIgosJNdoEL0PKcKRQKRX2ot3ImhDACZUKIWCmlrQVlajiW/pDyt1qHOKWL/SWnAMizFreGVAqF4mzDYKpWzAAiwgQmIzhd4JZgs7uxmDt01TyFQtEK1Fs5k1K6hBD7gATgVMuJ1DLEW7wLZoGtXoGgCoVC0SSEEPz9gRRiIgyEhSqlTKFQ1I+G+pzNAb70JI49gRZxCYCUss3DJN1uN06nU1/vzkPn8ASeG3krcZZI4nzubBUKhaIpuFwuLS+RKfhy2ilBVQVQKBQNo6GrRlUW/yf92iWQ0WRpGsn27dtZtmwZubm5jBs3josuuihgjMUYQr/YrkHOVigUioazYsUKNm3aRH5+PldeeSVDhngyAkkJlflQdkILDIhts6VRoVB0UBqknEkpa/CCbVuklEQbVtOnXw5dQzeALV3zQ1MoFIoWoqKigtzcXMAvnca21+GHp7THg26Gc59pA+kUCkVHptH2diGEzoGiMVGczUVSUhIDu+2lb9ohjEYD2Pcp5UyhULQoycnJ1Y9LS338WCM7ex+XngC0G8jSCjdOl1YMXaFQKGqjoak0zgFeBTKBqnolAm1bs81WnOTkZML6n0skORiEAFd2reNd0o1bugkxKF8QhULROPr27cs999xDUlISFovF2xHVVYvYjEqD6G6s31nJ3z8swOWCcYPDeODa+LYTWqFQdAgaqp28A3wB3AJUNL84jcNoNBLb+TKwZmi5zsJGBR33yeGVfH38R4rsZdzS5wJ+3m1MK0uqUCjOFCIjI4mMjAzsSBqi5TrzEHHQhsuT4iy/ROU6UygUddNQ5aw78Jinunr7ImKq9lcLTumuTqNRYCtrDakUCsXZhhC6w/gYbVMhzCIwm0SwMxQKhUJHQ5Wzz4Dz0WpidjjifVJoVDitbSiJQqE4W0iJN/LeU6mEquSzCoWintSpnAkh3sObz8wCfCaEWA2c9h0npbyh+cVrOBUVFZSVlemcdasYnzKQYQk9ibNEYTIop1yFQtF0pJSUlJTgcrmIjw/0JzMaBEazspgpFIr6Ux/L2QG/410tIUhTyc3N5bXXXqO8vJykpCQefPDBgDERIaFEhIQGOVuhUCgazs6dO5k3bx42m40hQ4Zw9dVXt7VICoXiDKBO5UxK+VRrCNJUoqOjGd7je6LDSokKr8DlvAujKaytxVIoFGcwERER2GxaqWFdrjOFQqFoAvXyORNCRANWKaXdczwNuNjT/YWUcnnLiFd/LBYL5/TaS1hIKQaDgYrSo0TF9WtrsRQKxRlMlftEaGgo4eHhNY5zu7U8ZwUlLqIjjCTEKLcKhUJRM/UNCFgG/BLYJYS4G61800eevrlCiMeklP9tAfkaREJyP4zOPVqwVFjNmT6cbhdF9nJizOEq15lCoWg04eHh/OEPfyAyMhIhavYrm/NdCZ+v1CLErzk/mllTVH1fhUJRM/XVTHpLKat8ze4DpkkptwMIIf6NlvuszZUzU+JvQFaAMRlCegYd8+RP77E1/yASmD3yVvqqepsKhaIJREXVrWjFRXktZYUq15lCoaiD+sZ2lwoh0jyPY4C9Pn0HgZT6XlAI0VsIYRVCvO/TNk0IsUcIUSGEWCaE6F7f+XREXQrR10DENDDGBB0SYjBWh55W5TxTKBSKliQu2kBEqKBrsomoCJVSQ6FQ1E59LWdvAW8LIW4H/g68KoSoChR4DFjdgGu+CvxYdSCESATmA7ehWeCeBuYCLZK+P94ShQBizBE4pLqDVSgULc+4wWGMz6zZJ+1MxuWWvPd1Mcs2VZDRxcxD18YTGa4UVIWiNuqrnP0J+DOwDXAAsWglnABWAdfUZxIhxNVAEbAW6OVpngXslFLO84x5EsgTQvSTUu6pp3zVOBwO8vLyyM7OJjMzE4NBvwjc1Pt8bu97scpzplAomg2r1UpOTg7l5eX0798/oL82f7QznU+XlvLVmnIAdhy0MXdxCbdeGtu2QikU7RzRkEpMQohYYDCQBlQC26SUh+p5bjSwEZgG3Ar0klJeL4R4CTBLKe/yGbsDeEJK+anfHHcAdwAkJSUN//jjjwOus2jRIqxWLfv/tGnTiIiIqPfzaw3KysqC1+Nrx3REmaFjyq1kbj2mTJmySUo5oq5xda07VquVRYsWARASEsKFF17Y7pSxtnqPjuSE8tn6ZHx/ZsLMbu44/wTGOoxnHfFz1RFlho4pd0eUub5rDtQ/lcb7wNfAt1LKVY2U62ngTSnlcb+FKxLI9RtbDAR42UopXwdeB+jbt6+cPHmyfoDjJEnup3Dbs6iwhRGdcXvQu9i2ZPny5QTI3c7piDJDx5Rbydz+qGvdkVKybt266nxnw4cPJzo6urXFrJW2eI/yi128+3IOZrNb1+4GEtLGMLRP7QnBO+LnqiPKDB1T7o4oc0Oo77bmV2h5zV4UQhxEU9S+llJurs/JQoihwHnAsCDdZYD/ShYNNMJbX9IzeStOpxObK45ii6XhUygUCkUNGMoqkQ4nIsS7dAohSE1NpbKykuTkZJxOZ9Bzi8tc5Be7KChx0burmZjIM9e1wumSvPhBAaUV7qD9a7ZV1qmcKRRnM/VSzqSUHwIfCs3kNQr4GfCGEKIT8C2asrZYSlmTQjUZSAeOeaxmkYBRCDEA+A9wY9VAIUQE0BPY2eBnY0zCYgklNBQicZPQIz3oMIfbSaGtjCJ7GX1i0oKOUSgUCn+M+cWUzvuO6Gt/pmu/44476tzKfPnjQrbt16xrj96YwPB+Z65y9sF3Jew7Zq+xf8POSu6YEUuIqX1t/yoU7YUGZWCVmoPaes/fnzzK2UVoAQH/EUI8LqV8Lcipr+NNWgvwMJqyVuVn9oIQ4jI0C92f0HzZGhwMgMGC6PRPMMSDKbDwOYBLurl66f/hktod3SfTHlfBAQqFon4YDEReMiWguT4+ZvHRZ0eusw07K/liVZmubUhvC4dPOSgp19bdCqtkyz4rIweoEnsKRTCaFM8spTwtpXxLSnkFkIqWEiPYuArP2NNSytNoW5lWKWWulDIXuAx4BigERgONrx4cNQsiJoNlAIjAp2cUBqLN3pD2QpXrTKFQ1BNXTCSGyMalxOicaKJbJxNDeluIiTwzU0mcznfy6ieFurb4aAP3XRXHmEF6RWzttsrWFE2h6FA0uHaREOISYBKQCFTfLkopbyDQsT8oUson/Y6XAK1WCDPREo1AEGuJxO4O7h+iUCgU/rijG5+rbObkKGZOPnPLNtkdkr/NKaDC6g3NNBrgoesSiI4wMn5IGIvWl1f3/bjbis3uxmI+MxVVhaIpNEg5E0I8AdyJtkV5BfAacC1a0th2Q3FxMVlZWeTk5NCnTx86deqk639+1O3tLtRdoVB0bHJzczl9+jS5ubmMHTuWsLCza8vu7S+LOJLl0LVdf1EMfbqZAejX3UxclIHCUm1r02aXbNpjZdxZmpxXoaiNhlrObgGmSyl3CCFullI+IIT4EPhjC8jWaJYsWcLGjRsBMBqNAcqZUswUCkVz8+GHH5KVlQVARkYG6enpbStQK7JycwWLN1To2kYPCuVn4715Jg0GwbjMsOqEtABrt1cq5UyhCEJDlbNYKeUOz2O7ECJESrlBCDGpuQVrNOVLmNTzJYYnHmbvyQxyc0e3tUQKheIsIDk5uVo5y87OPnOVs8IDcPgrOLIIrIUc73IXr30/VTckJd7IXbPiAm6Ex2WG65Szn/ZYqbC6CQ9VW5sKhS8NVc4OCiEGSil3AjuAu4QQhWiO/O0DdxmxoXsJEzawWCiP6t3WEikUirOA7t27U1FRQXJyMqmpqUHHHDxhp6DERWGJi6kjIzAZO4AVX0rI3wmHvtaUssL91V2V7lD+tjkKu6yAEM0CZjLCQ9fFExEWqHD17hpCUpyR3EItWtXhhI27rUwcpqxnCoUvDVXO/ggkeB4/CnyAlrPs7uYUqkkYkzGZjJhM4UQkhEHawIAhTreLfFsJhbYy3NLNgLjubSCoQqE4kxg7dixjx46tdcyzb+dT7EknMbx/GAkx7TSNj3RD9k9w+Gvtr+RY4BAJr2fdw0lbV6AUDCYwmrnt0lh6dDYHnVYIwbjBYSxc6U21sXZbpVLOFAo/6q2cCSH6AaHAfgAp5Qa8xcvbD5ZB0HkuGJPB1CnokCNlp3l4/RsApEel8I8xdwUdV18WHl1LpdPOJd3HEG5qg6zXUoIrD4yJoPzpFIp2S1y0sVo5KyhxtT/l7NQ6OPg5HP4GKrJrHbq46EJWF0/2HEmwFTNpdDJTR9SuaI0folfOtuy3UlbhJjJcbW0qFFXUt7bmTcAbaNuXMUKI66WU81pSsEZjjIbwCbUOibd4q0U1Nc9Zqb2CuYdWUOG08dXx9Twz4ma6RQZPgNvsSAnl30D+M+A4DJZM6PwBGONb5/oKhaJB9EvXIhbjoo2EWdrZjdTap2BbsBzifhhMHI2ewf8O3gl4c5V1NR/mtvDnEfJdEDX/tKSnhpCaaCIrT0tj5HLB+p2VTBsZUeM5CsXZRn0tZ78DLpdSLhRCzAQeB9qnclYPokPCSQqNIdYcQXxoNFLKRkdwLj71ExVOrSRLjDmCzuEJdZzRTFi3Qd6TYF3nbbNtg9zHoNO/W0cGhULRIG69JLatRQhOeTZsf73mfqMZuk6GHhdD9/NZsMCNy1QJbgM4ygk1WHko7VlCT5+ADbNhzGM1TiWEYHxmGJ8s9d4Yr92mlDOFwpf6KmedpZQLPY8XoFnR2jWFhYXs27ePnJwckpKSGDNmTHWfyWDkjQkPNMt1Lu0+jjhzJB8eWs41PacElIKqdNqwGEMwBKlW0Cic2ZD/HJR+DMjA/rKFUD4TIs5vnuspFIp6k5WVxaFDh8jJyWHgwIH06dOnrUWqHwc/1yzxvoREQLdpHoVsmnYMSCnZcei0Z0wkuB3clvIiXSwntLYtr0LyMMi4uMbLjfNTzrYftFFc5jqji8ErFA2hvsqZbyUAKURzaRotx6lTp1iw4DME0LNXb51y1mw4szHa9zIlZRATOt2LMcjL8ua+b9lffIrre01lRGITFmp3JRT9BwpfBanPJySlxOVyYzQaNAtgzu+g2xhti1ehULQa27dvZ9myZQCEhoZ2HOXswAL98dC7YcQjYLIEDM0ucFFU6sbt1v7CI2IY32kvWH0GLb8f4vtCbM+gl+uaEkK3TiaOnda2NqWEdTsquWBMZPM8H4Wig1NfJStCCHGs6g/N76zq+Linrf2Q/zx9LDfx8KzX6N91Pzk5Oc06vZSSR9e9xF/X38tnO/+I/ch0TM7DAVujJ8vzWHZqK0fLsnlmy4fsKznZiIu5oXQ+HD0XCl4IUMwcDie7DsdTVl5JWVk5brcbXNmQ/5emPEWFQtEIkpO9/qa5ufWqZtf2FB+BnM36tkG3BFXMAHYesmKz2SgrK6OiogKD8xRy2itatGYV9jJYdBs4yoPOATDeL/nsmq2q1qZCUUV9LWdT6x7SjnAXY5InCQ8VjBrenXMiL2mSX5k/BdYS9hQdBBLYJGK4NPYryH4A0haA8JrlD5eexmQw4nK5GRKfQd+YNLI4UP8LVW6EvCfAtjmgS0rIL41n/spMDmd3Z9KgHxjXfxNWm43wsDAoeR8iL4Xw8U1/wgqFol6kpaUxYsQIkpOTSUtLC+i32t1s3W+joMSF2w0/G98OLEUHF+qPU0dDZOegQ8vKyvj0qy3YbF7fWqP9CD8c7szEsU/CGp9iMQV7YcXDMO1fQaPIx2WG8eGikurj3UfsFBS7iG9vEawKRRtQL+VMSrkCQAhhBm4ChqLlN/NlRXMK1iSMKQgBYWGh9E1NgMTAXGcl9nKOl+dRaCslKTSGvrFd6z39wdwvAK2GXA9LMQYB2DZB0X8h7lfV487tNIiBcel8emQVEzsNrr/8rhLIfRTKFgTtdsoYlm8bwbJNnXFLzfi5etdI+qYdJCGqCJdZ2+Ik9xHo+j0Yzq4afwpFW5GYmMhll11WY7/VJvnr+wUARIaJBitnZRVujAYIa86M+v5bmr1mBB125MgRPvzwQ07kT9O1RxqzWbnyAGMeeQRz9iY48JnP3AshZQQMvjVgvk4JJnp2CeHgSW89zrXbK/n5ue1AYVUo2piGJqF9BxgCfAHUngSnLYm+GiIv1nKdGaKCDlmbs4v/7P4KgPO6DKu/cibtDHX9m+fTCjlkiyXSYPf2FTynOeKbe1Q3xVkiua3vRfWXXTog60awrg/SGUKO/RLe/CySkjJ9j8tt4usfp3H91E+x2T3WM8cRKPgrJD5e/+srFIoWIzrCgEGAW0JZpcTukJhD6m/R/3ptGZ8uLaVnWggzJkUxaqB247X9gJUlGyr4xYRIenUNngA2KPm7NQtXFcIIGT/XDXG73axatYrvvvsOuysUm9u7pgrcRBhzKS93sW79eiZOegEKdkPBHu8EPzwFSZnQaWTA5cdlhumVs20VSjlTKGi4cnYh0ENKWdQCsjQfpmSg9lxjcWbvAlNoK6tlpB9Fb2F2HaZPKPQJLdL3SRvkPAhdPoXGxkzk/19QxcwdfiHLto1nyYrAbdGwsDAqKys5kZ/KTwcGM7zXdq/1rOg1iPwFhA5tnDwKhaLZMBgEE4aFE2LUEtK63BKfeKs62XHQhlvC/uMOHE5vdOXnq8rYss/G2u2V/PKiaC6ZGPymNAB/q1naRAjzbllWVFQwb9489uzRlK0yl3ddFUIQbsjHILRSTCtXrmTMmDGYz/8vzL8I7J5oTLcTFt0Bl38H4fp1eVxmGO99493a3H/cQXaBk5T4hv40KRRnFg3VII4Bwb1EOxgpYXH0jUljTHJ/Bta3fJOrAAr/rm8z99MfW9dD8TuNE6r0C02Z8pu/NPot/rNgRFDFbMCAATzyyCOkpKQAsHz7WEoqIrHbbZ4Rbsh5SLPIKRSKNufXV8Txq1lxXHleNGGW+i/BbrfUKWQDMrSlOKfAyZZ9tur2KmtanUgZ6G/ms6V57NgxXn755WrFDKDMpa0zZrOZiIgIYsz51X3l5eWsW7cOYjNg6sv6eSuyYfGd4NKvQ4mxJvp211v6ftiuAgMUijpvT4QQvsEA7wILhRAv4betKaVcWsc87wPTgAjgNPC8lPK/nr5pwKtAN2A9cJOU8mgDnkdQKisrWb16NTk5Odjtdm6++ebqvvSoFGaPuq1hExa8CG7vXR6GKOgyD7J/AxU+Tz//GYiYBiHd6j+3fT/k+OVeM3VmX8UzfPT2Yior9QuWwWDg4osvZty4cQghmDZtGh988AF2p5lvNk3hqglfYK6yntl3Q+E/Ib55crspFIqaycvL48cffyQ7O5uEhAR+8YtfNMu8BoPg2XuSKa1wc+C4nbgozXE+Od7EC/cl88WqUpxOzZfLF5dL4nQFsc7l/KSvmWm0QI8LkVKyZs0avv32W1wul+6UCtmJ8PAwTKYQAEYNTOTYbm9/tfUs/QIY9mvY/E9vZ9Y62PAsjP2Tbs7xQ8LYe9TrHrJmayUzJtXT8qdQnKHUx3b8ZpC2//M7lkBGHfM8C9wqpbR56nQuF0JsBo4C84Hb0HzZngbmAk1OTGYyGvlh9TdYHSFIacDhcBASEtK4yewHoPgdHNKACbcWfBT3GzAmQNLzcGwySM/2qKyAnIe1Gp/1iRB1l0HWrbo0GZIQ1h68kS+XfB4wPCYmhmuvvZZu3bzK38CBA0lJSSE7O5tDp7uz42hfhvU6RFiYp9ZnwT8g8mdg7iB5lxSKDkpFRQUrV64E9Kk1mouocAPD+upr+KanhnDvlfG43YGJqcutbkzGIAmr/bc0u59HpcvEJ3PfZ9euXQHDO3Xuwf6TafimuZx10VD+dXAJdrumXJWXl7N+/XomTJgAI38LOVvg5GrvJFv/o1UaSJtY3TRmUBhvfVFcnQP3SJaDk7nK0q84u6nTpi6l7FGPv7oUM6SUO6WUVbZ36fnrCcwCdkop50kprcCTwBCPAtd4jv+ckGN9eHDmf4kK05SmvLy8xs+X9zTgYmFhT64/fDF/PDWdH+znan0hnSFRfzdI5Woo+aDueaXUth0dB3yaJMu2T+HLJacChvfr14/77rtPp5iBZkmbOtVr5Fy8ZQLFZSZcLrenxQHZD4HU3wkrFIrmxVchy8/PD7A+NQV3aTnFb31G/p//g23bvoB+g0F/Myj9s/5XT+SCg1/omooSJ/PKK68EVczGjx/P+GnX6xSzrskmUpKiGDt2rG7sypUrNWXNYILz/g0RqfrJds/RHcZFGRmYofeWWbtNbW0qzm5EjV/elriYEP9CS8URBmwGJgLPAGYp5V0+43YAT0gpP/U7/w7gDoCkpKThH3/8cY3Xyox7hAjTYVwuFysOPozDOJjIyEgMhoY76seEbGdA7FMA/C13LBsqu+B0R3K+eSiZIVW5jCQDYp4ixryj+jyXDGNLwd+xuxOr28rKyoiM9EYjpYZ9QXqk3kdt1/EBvLdoOL6OwkII+vfvT8+ePWvM1yalZPny5ZSWao64A7sf5KpJy3XWwiNlN5NV+bMGPX9/mTsKHVFuJXPrMWXKlE1SyhF1jWvIulPF4cOHCQsLIyoqivDwcN13trjCyKHT4ZRZjUSHOxmSXo+AJKeLiOWbifpyLYYKLRW/NAiKr5lOxaShNZ5WtbyXl+vfo5iy7Qw49FT1scsQxot5N1JQok9yHRISwtChQ0lNTWX17lg27PdWHclML+O8zAJsNhvff/89Tqezum/gwIH07KlVB4gp3cKAw96k2LaQJH7qr6//u/1oJIu3xlcfx0c5uGzEfqKiOtbnqqN+Fzqi3B1R5vquOdDwaM0mIaW8WwhxLzAWmAzY0PKl+afSLgYCnA6klK8DrwP07dtXTp48ueaLneoPFSdBRHDRBedC+KSAIUdKszlWlk2BvYxhCT3pHpkSRGgXHP8L2DWn1XwZCcKMyRzJz0dPIyPa567Q0ROOTQFZddfnYlyvBZD6XvX25vLly6mWu3I9nPwY8DrEukx9WfjDKCw+jsLR0dFcc801pKen1/x8PSQkJPDhhx8CcOB0f/aeOMzQPjkYPUpp39D59O12b4P84XQydyA6otxK5vZHg9YdD7WN2brPyvurNEf6gRlmJk9Oqu3aVCxay45XF3OiSNCLMKLM7ur+5HnLiYmKJ/b+6xG13HgGvEfLvwCzd90pTZ1O+UkXFovXgtWlSxeuueYaEhK06M3v9+RisXh9wy6Y2IkJQ8Or5VyxwpvqMjs7mxtuuEG7MXSOhf+9qEVtAhaKmTx6sC4qdHiFmzX7sqgy9JfbLVhlHL+Y3LGSaHfU70JHlLsjytwQWr1GppTSJaVcDaQBdwFlgH8RyGig1P/cBpHyd8jYDz33B1XMAL44to4Xd8zn7X2L2F1UQwWq0nlg95r5/5q2gjfGXMXvh1xFt0g/f5KQbpDwmL6tYimUfhI4rzMbTv8K8NnyMESzr+S32OzetyUmJoZ77723XooZwKBBg3y2VQTfbppMeYVPxm1ZCTmPBBY5VigUrUJctPf7WFDirnGcdfNuTl//KLkPvcA6Z1fe7X0Vfxr+KN+nTtCNK/7ffPJ+9yLSZq9hJj9cdjj0la5pt7Ov7rhnz57ceeed1YqZ3SHZf0I/f/90r3I3YcIEzL7KXmkp69d7UgKZLBDfXy9D7lbdYVS4gcxe+q3NvSf15Z0UirOJtixgbkLzOduJltgWACFEhE974zEmgCGi1iHxFq9JNGiuM3cZ5D+naxJRs0iKHc/o5P6YDEHKjMTcBKGj9G15j2vKWBXSAafvBJdfzc+UV9i6q1jXlJmZ2SDTrcFgYNo0bwbvMmsE3/w4Apfb50egchWU1r01o1Aomp/EWCPTR0dw5XlRXD41MCrRceQUOb95jtO//D22rVqC2P0xXrfeLu5CRKg+/UT5N6s5ffsTuIrqcU97fDnYfaLOQ+NZe0T/UzBixAhMJu/GysETdnxd5xJjjSTGevsjIiIYM0Yfw7Vy5UocDo9jf/JQvQw5WwLEGjdEr4ztPRVRs8+cQnGG0yrKmRAiWQhxtRAiUghhFEJcAFwDLAU+AwYJIS4TQoQCfwK2SSn31DZnc9AzujPjUwbw826j6RMTWAePwn/pFShhgYTf1z6pMEDy37WxVbhLIPf3XmtVsESzcffhCp3K3r17dc0DBgxowDPS0FvPYMuh/pwqSNcPyntCrzAqFIpWITzUwB0zYrliWjQTh3kVEldBMfnPvM6pGfdS8f266nYJDC7YTUbZUULDQzj3vYfo9L+/YEyI0c1r+2k3p6/7HY5jWbUL4FteCSjvNJXsvILqY4PBQN++ekva7iM1W82qmDBhgs6/tbS0lA0bNmgHSUP0g/0sZwAj+4di9LnfLS43ceikitpUnJ20luVMom1hngAKgb8C90spF0opc4HL0AIDCoHRwNWtIdSY5P48knklt/W9iOGJvfWdjlNQpHdaJfZOCOlS98TmHhD/O31b+bdQ9gUJlrWBiWbDJkD8Ixw6dAir1VrdHBERERCVWR/8IzdB8OH35+By+yyo7pIAq6BCoWh9pN1B8RufcPKiOyn98GukUx/dKYCZfSt47rlhvPv3vkR2jsOS2YdOc54npIf+ptJx9BSnr3+02uIWgKMCjizSNe116bccMzIyCAvTJ7LdfcSmO+6fHpiLPDIyMiByc8WKFZr1zN9ylrs1wLUiIszAOX4pQlZt0QcoKBRnC62inEkpc6WUk6SUsVLKaCnlYCnlGz79S6SU/aSUYVLKyVLKI81zYTe48sF+uOHn5j+rlWOqwpjEAeNlVDptNZ/jS+ztYBmmb8v9PT2j/qVvM3WGTv8CYQwIYe/Xr1+joksBBg8eTFKS19G4sCyGLcfP1w8q/057jRQKRZuR+7sXKXzpfdzlgekjLIN70+mdZ0h++feE9OhCiMkb9RmSlkKnOc8ROmKQ7hxXQTGnb3mc8iXr/KfTFDOnz3UiUll3RK8M+lvrXW6pSxIL0L9H8PqdNVrP4vpoSW6rqMiB8tMB548folcKv1pTzgffFeNyqe1NxdlFW/qctSzO03AwHQ4PhpOzGnaudQuU6bJ4UBH9MA//+D7XLnuW+354FVddSo0wakEJ+CS9dRdiFFafQSHQ6XUwJiClDFDOBg4c2DC5fQi0nsFnS+NxSR+/DncROA42+hoKhaJpuPIKqVj8Q0C7KS2FpL8+TKcPnid0eM3rgDE6kpTXnyDi4om6dmmzk/vAbEre80ti7belae16EcdPnNS19e+vt6QdO+2g0uZVjqLCDXRJCh7oX6P1zCUhUa9Ekrsl4Pzh/UIJs+hTBX22vIwn3sgjt8gZMF6hOFM5c5UzYzzg+TK78uqffFVKyHtS32buz2GhJZzVyhQbMNansLm5D8Q/VHN/0p8h9BwATp48SUmJ10k3JCSEXr161U/mGsjMzNRZz1xuwcn8TvpB1o1NuoZCoWg4uw7beO+bYl56L4fN8V6lxRAZTtwjN9Pl838SceG5NeY09EWYQ0ic/QAxd1yh75CSgtn/o+DZ/4LLDdYiLRjAh31uvSLWpUsXYmNjdW27D+utZv3SzbXKFcx69uOPPwYJCgj0Ows1G7jt0tiA9r1H7TzyUg4/7lLJaRVnB2eucibMYIgFQzSE9AB3edBha7N38dmRNfx37zeU2iug/GuwbtAPSnwSu9tF98hkDELQM7pT0LmCEncXmAcFtkddAdE3VB/6W8169+7d+FJTHoJZz7bvD8Wti9z0e64KhaLF2X/Mzucry1hz2MjRqK7V7REXTyDmxksRZu27/+OuSl76qIDvfywnrxbLkRCCuPuuI+Gpe9B51QMlc74k4aWPKXvnn7jKfW5SYzL4yW+7MlgAUqC/WfAtzSoiIyMDIjeXL1+OM75uyxnAxGHhPHFbIpGh+hvqcqvk+fcKePPzIl0BeIXiTKRVk9C2Oj22aEpaLcw9tIKjZVrU4uROA4gq/It+QPh0CJ/AsHAYltgLm8tOpaue+YQARAik/AOOX0i1Jc/cH5Ke09XdbM4tTV8yMzNZunQpublant/jeZ2w2X7y1ty0/tgs11EoFPWnOteZ00lJiDedhrm/vhLext1WVm+tZPXWSq48L4orpvmnhNQTddl0TJ0SyX3weZ0Pm2XPMfJ27QbZFUuqjbCelYRcNIkDBw7ozvdXzqSUQSI1A4MB/JkwYQI//PBDddWA0tJStmcZ0HnhVgUFBLHCDepp4fpJWWw5NYDN+/TK4bc/lLPniJ0Hr40nNfHM/glTnL2cuZYzqFMxA0iweBfGwoJPwHnUp9cIiY/rxluMZmLNDSwZYRkAnT+A0LHk2cZD5w/B4HV8zc/PJzvbm9ZCCEG/fk0rLVqFv/XsVEEKNrvTaz1zHNKCJhQKRavRMy2Eq6dHcc3pb5l0em11u3lAT924nYe8ismgnnUrRQBh44fR6d3/w5jsLYeEdIPbDhJspywUrYol64mf+MWnmxi97hBpxwtIjogmJUVfJeV0voviMq+l3WIW9Ohct0U/Kiqw5uY36/YiQ3zWTlsxlBylJsItbh69MYHrL4rG6PdLdSTLwW9fyWHlZhXNqTgzOetvO0Yl96VLRCLxIYIutkf1r0jMDWBumt9XNeHnQvi57D+wnC4mfWUBf6tZjx49CA9vvuzYmZmZfP/99+Tl5eFwmskpSsRiLvJazyo3QuQFzXY9hUJRO12SQphxjpXj+5ZXtwmTEXPv7tXHUkoevDae7Qdt7Dlip3fXum82qzD37UHqB8+T+8BsbNv3Y5B+1n6DCYfTTZjTScahPDIO5WH+8QTZh/6EZWAvzZolJRtLk3GXedfAdEshxX/9RrN4STDERRFx8URCuvkVNyeY9aycgs5pJDh8UljmboWY9Bqfh8EguHRiFP3TLfzjowJyC71bnVa75JWPC9l+0Matl8QQaj6zbQ2Ks4uzXjm7MG2k9qD0C8jO83YYomt35m9G/JWzxiSerY0q61lVweYT+al0isvFYjFrqTqsPyrlTKFoZey79JHSIb26VfuagWZBz+hiJqOLmUsn+p9dN6ZOiXSaMxvb5t3k//12xH479lyPgmcMxWnV+7CFGAxYN2zHumF7dduOjJm4k7y51Lru+4GSk8t055XO/Y7OC17CGKOvdhAVFcWYMWNYvXq1d75sIxNjtNxtgFYpoNeldT6XPt3MvHBvMv+ZX8i6HVZd3/JNFew7ZueSCZF0SjDRKcFEXJQBg6HuYAqFor1yZitn0qVt2blytC1Oc5+ax0b9Aiz9IO9pqFgCcfd7Ij5hb9Fx8mwl9IxKJSUsrl4RVPWlrKyMo0f1pn3/UPbmYMiQISxdupS8vDxO5KUyotc2bDa7Zj3zD4BQKBQtjr9y5r+l2RwIg4HQ3pEkjtqH5VwzzlIjlYfCyCkbjWPtTkxObctSCIHRGFiO7lBUuu44o/RIwBhXbgHlX60k+tqfBfRNnDiRdevWVVvPjlTEMDbMgblKCa0hKCAYEWEGHrw2nsXry3nry2J8c/WeynXyn/lF1cchJkiO0xS1lHij57+JTokmkuOMmIxKcVO0b85s5azsS8i+S3sc8TNIfaP28ebe0PldqFgNYd76mItP/cSSk5sBuKXPBVzSfWxNMzSYPXv26OrHderUifj4+FrOaBy+1rMTedoWhNPp1PxxrVvBbQND/XxaFApF07HvPqQ79g8GaDYOLKx+aIpyEXXBAJaKKWxItZCUW0qXk0X0KXFBmd7xvjgkirxQ71pkki66l50IeonKZRuCKmdRUVGMHj2aNWvWAJDlTMHh9FHO8raD2wXB6hQHQQjB+WMi6dvdwosfFnAqN3gEq8MJJ3OdnAzSLwQM6W3hN1fHExmmtkIV7ZMzWzkzenN8BRQZr43wc3WHh0q8terSoxqQRqMetFSUZjAyMzNZuHAhpZVQUhFJdHgZbrcbo9EBtm0QNrLFrq1QKPQsPRbGvl5XUBISxUUnlpDqYzmzOyRGIxibY2vuwALdoex1Kbu+2IXbaCC7UwzZnWIY+Mtf0iUyDuv6bbiLSkEI9hfHYjjmDVzqEVFJykPXI4TAXVFJ0T8/rO6zbtyJu7QcQ1REwOV9lbNidxRlTjPheLY2HRVQdADi+wacVxvdU0OY/esk3vy8mOWbGhYUICVs2WdjzjfF/GpWXIPOVShaizNbOTN1AkMcmFK0XGdBsLnsfHFsPQW2UhxuJ/cMuCRgzPDEPkSFhHOoNIueUYGOr43Fbrezf/9+XVtz+5v5YjQaSU9PZ+/evZzIS2VAt/24XC6MRo/fmVLOFIpWwVVSxn57LD8lZgKQF55ESN/06v7lP1Uw59tiBvSwMG1kOCP6h9UwUx3k74ECHwd8YSQrbAQlJR9UN4WEhFTnVfR17D+2sAhDnjc/5OAJScRcNLj6uPyLFTiOngJAOpxUrtlMxIX6G1uAxMREoqKiKC0tBQRZjiQSXHmYqrZRc7Y0WDkDLWHtPZfHMXVEOJv3WsnOd3G6wMnpfCcV1rrzoK3cXMH1F8UQoaxninbIma2cmTMgY2etQwzCwPsHvgfAKAzc2f/nAdn/r+ulpaKQUjarv9n+/furfTEAYmNjSU1tPuUvGBkZGZpylq8pZ06nU9tiUPnOFIpWw777EDEOb0WQ8tSuGKwnwdQFTBZ2HrRRYZVs3G1lYEYT3A38rGakTWDnIX1Ny5oSXteVfDZ86miK3/KWg6pYuj6ociaEoEePHmzbtg2AU64U+ruyvcpZ3jbgqno+oUD6p1sCcq+VVbg5ne8k26OsnS5wkZ3v5OBJB3aHprjZnbDipwouHt/A1EgKRStwZitn9SDEYCIqJIxSRyUu6abEXk6cJSro2OZUzCB4lGZzX8OfjAzNr6XK78zlcnn8zjbWmBBSoVA0L/ZdBxmSv5NOFTnEWPPJ6HkaPvoDTPkH9L2SU3nem7bB9cxvFoCUcHChvq3XDHZ9W3d0eHmlm6On9f5a/brr5QibOkqnnFWu+gnpcCJCAn9WMjIyqpWzLGcyTqcTi9mj7OVsqe8zqjeR4QZ6hZvp5Zd+5JOlJcxdXFp9vGh9OReNi2jxdbdJ2Iph57vgdkC/qyGyc1tLpGgFznrlDGBW+rkYhCDOEkWosf65hJqCy+Vi9+7durbGbGk63S7+t+87NucfYFhCL27sPR2LseYkkampqVgsFnKLE7A7QzCbHJrfmSsfHIc1a6NCoWhR7LsP0a38JN2K9oGjjPjBBVrHzreh75U8f28SWfkudh2y0TWlkct0zk/6JK9GM/kxozh9+rXqJiFE0OjwvX5lnbqmmIgM1+8oWDL7YIyPwVVQDIC7tBzrxp2EjR0SMF/Pnl5/utPOZO2mEI/fWd4OcDmglnWruZg6IoJPvi/F5cmrezLXya7D9qZZJ1ua5Q/B4a+1x9teg3Ofgd6XqRvpMxy12Q7MTB/Ppd3HMbHTYMJMrfMlPXr0KJWV3vIqoaGhpKenN3ie1dk7+Pr4BrIqCvj6+Aae3vw+FU5bjeOr/M7c0sCpfC0buMvliUlXW5sKRatg3+lJo2HSEkGbUzzKUM4WyNmCEILOiSbOGxXR+Hxdu97TH3c7j90H9NGW6enpQRNeB25pBq6LwmgkbNIIXVvF0vVBRUlISCAqStuRKJMRlLojvOuO26H3i2tB4qONjBwQqmtbtD543eV2Qflpr2IGYC+FpffBkru0QvaKM5ZWUc6EEBYhxJtCiKNCiFIhxGYhxEU+/dOEEHuEEBVCiGVCiO61zddaON0uXt31OV8d38CeouO6lBdNxX9Ls3///kHzDNXFpjx9QMGOwqM88dO7lDoqazjDu7V53CelBqCKoCsUrYC7rKLakR5hBKMFc7KPpWrn202/SGVBoL9Zv6vZuVPvg1uTtT6wnmbwHYXwKaN0x5XLNgRdJ6v8zqrI8ljPqmlAvrOmcv5ofUTp+p2VFJW6ahjdxhz7Pnj7wc9h3lQ4sap15VG0Gq1lOTMBx4FJQAzwOPCxECJdCJEIzPe0xQMbgbmtJFetnKzIY/HJn3hjz9f8dfu8ZvNLkFI2W1WAPUXHA9r2F5/kjxvfptBWGuQMH7+zfL3fmbKcKRQtj33PYd1xSI8uGMw+Cs2BBZpy1RT2fAgur4JlMydTHj8qIOF1sHXH7pAcOOGnnPUIvqMQOnYoItSruDlP5wU8vyqq1h3Q8p35BkO1hN9ZTQzqadEVTHe5YFkD03G0GkcX19xXfhq+vArWPAG17JYoOiatopxJKcullE9KKY9IKd1Syi+Bw8BwYBawU0o5T0ppBZ4EhgghmqfydxPwzW+W0YwpNE6fPk1hYWH1sdFopHfv3g2eJ89aQq61OGjf0bJs/rDxLXIriwL6qvzOTuV3QkqBlFIrhO44AK7CwMkUCkWzYd/trQzwcY9LeLnfr/n14XcocsaS60hiR0k/7Ls+bvwF3C7Y9Y6u6XTCBezeu69eCa8PnLDja9RKijOSEBPcqm8IsxA2Ru9jVrksuAXe1+8sy8fvDNBqbLYSQgimj9Jv5S7eUI7L3Xw7I82C0xpoGYtODxy3/Q2YfyHk7wrsU3RY2sTnTAiRAvQBdgIDgepvppSyHDjoaW8VTpTn8tqer3hu60e8s997p9I3tiu39LmASamZnJPYcOWpJvytZr1798Ziabiv256iY7X2Z1UU8PuN/+NUeb6uvcrvzO40k1OcAPj6nW1ssByKGrAfgbJvwZlV51DF2YN9l7cywJGobhwQyWS7ulPgSGBt8USeOvoMN74/gvlLg9941cmx76HUx7fMaCEnblq9rfW7D9eeQsOfsGmjdcf18TvLciWD9Fl3CvZCLa4Yzc2U4RH4BpXmFrrYuq/1rE/O03kUv7OQsi9XVAdUBHBqLTh9XpOITnDVchj268BggIK98OlFsOXfIN0tJrei9Wj1aE0hRAgwB3hHSrlHCBEJ5PoNKwYC8lkIIe4A7gBISkpi+fLlzSLTSVcRC63agtLJEEP3k96ooWhgGPGQV8byA02/XllZGZs2bcJm0y8EjXkuS2x7sPuYs4eZulEkKzjs8hZwP2XP5b4Vr3Bl6HCSDd6X1Ol0YrPZOJKdTHJMLna7DSklJ3fN5Vi5PmqqrKys2V7r1qS15Ra4iArZS5x5E3GWjYQZTwLgliFsL/o/KpzBEyH70hIyF7srOejKpbMhhk7GmGadGzru56O+NPe6k7R2EyF2bdswylrESekGt5HT1ji2lg1CAg6XoGT/tyw3pDR4/v6HZhNr925L5sSNJ7/cxfbt23V+XuXl5UGfy4oNydhsPk7zlVksX76txusZjDZS7PbqYub2bXtZ9elCXAmBnzWLxUJeXh42BPnOKIy2Clwm7Wdox6J3KY3wJqNt6c9V9/gEdh73+p+9u/AgJaf9f4rqT1G5ic0Hw5izcg9Xn3saYw2mD8u2g8S98TkGmwNAe7/TU7ENzsA6KANH9xQwGOhx8k06+byP2ZF9ObRqLTCOqLRYeh97BYvDV147rHyckk0fsb/rr7Gbk6gvHfE73BFlbgitqpwJIQzAe4Ad+LWnuQxNB/IlGghwmJJSvg68DtC3b185efLkZpEru7KQeau3aAeWENK7pRMXF0dMTPP/kH399ddYrVadpWzWrFnVd5QN4cv1+zCXeOe5ZMhkhif24e87PmVNtvcu2Ql8btjJ48Oup29MGgC9evXi4MGDnC5MQ4hdSAlms5mMmDwy0ibrrrN8+XKa67VuTVpFblcJVCyD8sVQsRTcRT6dXovDqIwl0HlOndM1t8x51mJ+88O/KceKURp4uP/ljE1p3ioUHfXzUV+ac91xV1g5VvgyeHJ8XXRqBdc+eR7xKeGErIin++7j5DtTOWXvwsUJy0me/O+GXaDoEOzZXT0/QNcL/8Sa73diMpkweRShmJgYLr300gA/Wpdb8r/lWVgs3i2+WRcNoUty7WkusuatxrbZmxpoiNVEdJDXKSwsjAULFgCQ404hmcPV+c6GdzVCpveclv5cdc6w89i/vcrNqWILA4f2JSm24T+LUkrump3NqZwKLBYL0Z26M3JAWMCY0ve/oOC/X4EUuvfIciqfyFP58N2PGBNiCDv3HMJcBzB1CsUYqlnCup17C93SJ3vOmAy262HN47Bvnu46SY79JJ14HCa9AD1/US/5O+J3uCPK3BBabVtTaKvAm0AKcJmU0uHp2gkM8RkXAfT0tLcK8ZYobulzAVfFjaHnfiOvvfYaK1asaJFrnT6tz87dvXv3RilmVpedw6X6ufrGdsVkMPLg4MuZ2nmorq/MYeXJTe+yvUBz1q3yO6sKCqj2O7Nugeq3RhEU+2Eoeh1OXgGHB0H2XVA2308x86NiGdha3yfky2PrKXdaAXBJN6/sWsjpiiY6mysajX3fEXB7t516xTuwWffx8fuvMHebgWviX+OlXnfyWu8bSc5bCMXBnetrxD/SM2U4JA0mK0u/tV5TwuujWQ4qbV7FLDrCQOekupUV/6jNinr4nZ1ypbSZ3xlA764hpKd6lU4p4fsNjQsMEEIwcZhXGVu7Tb9FKx1OCp7+DwWz/6d7/4Phyi+m7LPF5H5s4PgrXTn9QQrFG+KxV/olMbBEw9SXYPrrYPEzJNhLYMmdcGxZo56Pou1pTZ+zfwP9gV9IKX0/uZ8Bg4QQlwkhQoE/AduklK2T+AatSkB6cQTbPl1B2YFsAH788UfKy5s//42/chYsAWR92F98EpePb0FqeDyxZq0MiVEY+PWAS/h5N70vSKXLztOb57Axd1+131lJRSSllZppX9vysGtF0BWBOI7B8Z/DsfGQ9yRUrkGzS9aTwn+1lGRBcbpdLMvaomurcNr42/ZPcLrbaeqAMxz7roO64+xIM5999hl5eXmcdqVwwp6EBOJDqpLSvhM4SU04ymGvXyDBoJtxuVxkZ2frmuubQqNfd3O9otTDp+rXGtvGHbhLA9dPnd+Z08/vrBXTaYAnMMAvrcb3G8txuhoXGDB5eAQZKZU8dF08d1/uLajuLi0n+66nKf34O/0JBgPmPjVkjXJ53FUkWE+EUrgqkVNX/JacB2bjzPG7uer5c7hyGaRN1LdLCcvug3L9e6/oGLRWnrPuwK+AocBpIUSZ5+86KWUucBnwDFAIjAaubg25fBk4cCDR0d7d1WNJVh5Z8W/mHPieY2U5zXKNyspK8vP1zvkDBzYu7sE/hUb/2K66Y4MwcGufC7mih/4La3c7eXbrR6w+vcMT2i6qSzl5852plBpByXsSbD/VPsYQC5GXQcp/IPllfV/ZQnAEpj5pKTbk7qXYHmgJ2F9yivcOLGk1ORRe/JWz1AmjdMrPDyV99Skm9nxUf0f5/fM1i0kVYQmQ8XOOHTuG3cd3KTQ0VJdzzJeAYIAaUmj4E5LemZAeadXH0umictWmgHG++c6ynZoiWq2cFR0EW0nAOS3JhCFhhFm8r39RqZsfd1kbNVfnRBMzRucyZlAYISZtTsexLLKu/R3WdXqroCEijORXH6Pz/JdIW/o/Ep7+NeHTx2KI8FjfXH7BCUbtfahY/AOnLr2X0nnfIX0tcBGd4GcfwPinwbc2dGU+LP21FsGr6FC0ViqNo1JKIaUMlVJG+vzN8fQvkVL2k1KGSSknSymPtIZcvhiNRs4911u0tyRasteaxbzDKzlVkV/LmfVnz549ulD25ORkEhMTGzdXsf5Hvl9Mt4AxQgiu6zWVG3tP17W7pJu/bf+ERab9FMW4OZan8p3ViasEymtICBnSG2Lvhi4LoMc26PQKRF0CUbO0Pu8kUPRa8DlagCUna1YkFx79gR9z97aaLI3Cma3d/Z9B+CtncSMzGTJE8+qQEnbbe1FiN3m3+uwlcOAz6kTKwC3NfteB0RyQeLZfv35BE15LKeudfDYYAVubS4NvbVblO7NjJt8dp1dG87bX+3rNQViogQlD9Wk1mqtigHXjTrKu/S2Ow/qqDKbOyXR6/znCJwzXjpPjiZp5Hsl//x1dV79Hp38/QsyIfEISfdxLjF4l2V1aTv5T/yb75j/iOOQztzDA4FthxMN6QU6ugZ9eapbnpGg9VPkmH0aOHEloaCgSSXm4BCR2u6PZcpwFqwrQGNzSHWA56+dnOfNlZvp4ftXvZ/huTkhgR/lx9vVx8l50Lz4rG0y+M9Tjd/bjGfej2GTKvwV8F8tkSPwzdFsL3VdA4h8hbBQIH/8cYYC4u/XzlHwArpb3+cqtLGJz/gFdW7RZ/yP00s4F5Flb11JRb5yn4fh0yHkQ3I2zZLQ3pM2O/aD+h9qe3p0fs8bxU8kNbC69gXxHOmtKBuuz5+94q+7vY9Z6yPep1SsMMPCGBiW8PpXnpKTca40JNQudT1ZdhPul1KhcrRVC90ef76xt/c4gsGLAjoM2TuY2ze+2bMFSsm9/AneRPq7NMqQvqR8+j7l38O1MEWIiNCWLuMmFdLnlFGm/OkHCzFDMA3oFjLVu2sWpy+6n6D9z9a/zsHuhy7n6wZtehFM/NOk5NZjKAjixWis5pWgwSjnzsD5nN3/b8xmHR4SQnexm4K4Qeh400TnLSHxIZJPndzgc7Nu3T9fW2C3NE+V51U7eABGmUNIiarfAXdR1JL8ZNBOj0L/lJqORcqOJT8syuT93Bs9kjebHEiNOWwMdkc90yr7UH0dfA7G3gTm99vOiZoLRJx2CtELRW80unj/fn9qC7895z+hU/jDkGt37X+aobJ/+Z9IBWbeDKw9K58LJS1t1O7ilsO89gm92V1NaChFJ0RzNNlRHUR6qnMrCkluw2XwsWPk7ITtwi1CHv9Us/QKI7NyghNd7/KxmfbqZMRrrXxXFPKgXRp/0Ge6yCqwbAi1htfqdtWKlgCq6p4bQt7veQri4sdYzt5vCf7xH3h9fJtsYw87YPtVdERdPpNP/nsaYEFv7HEe9LgemGBdRV11I6kcvEP/bWxBh+m1m6XBS9M8POXXFg9i2eizhBiNMfUXb1q4e6IYld2vbnK1B/h6YMxK+vBLeHwlbX9OK2yvqjVLOPORai/kxdy+FITbsEYJQmyChwEjSQSfbtjXdQf7gwYM6v4+oqCi6dOnSqLn8rWZ9Y9MwiLrfysmpQ3h82HV0i/TmvzF6fhTcbgMSwabKVJ7JGsMd6/7HhweXBa0wcNbhKoEKv+jdyPqFqCPMEHuHvq34f+BuuXIxLunm+1ObdW3Tu5xDv9iuXNdrqq59d9Ex5h5qmcjkRpP/f2DzUUZs2+H4BVC+vM1Eag7suw/pjs39MzAZBTGRBsw+aRVCDIXsrUzD5etTtON/NU9cnq0vjg0w8GYg0Frfq1cvQkP1hb+r8Pc369eALU2oKoQ+UtcWLGrT1+8sy5kM+AYFtL7lDAKtZ8s3VWB3NGz3wF1pI+61zzn2ziJeHng7zw65n496zsIpDMTeczWJsx9AWOp4TV0OOO4XYdn9PITRSPQNl9BlwcuEnXtOwGmOA8fIuv5R8p95HXdZBUSkwNR/6gdVZMOy37ROktofn/cm0LWXwA9PwdxJcGSR2pWpJ0o58xBn0e7khBBEddKXNFm5cmWTi54HKzhsMDTu5ff3N+sfxN+sJoYm9OSlMXcze+StTO08lLAQ7U7M5fb4oEgJEgpsFcw9tII7Vv+DT6w/NZvfXYek/Dt0W5ohPcDcgC3p6OvB4JPKz10IJS1XPnZb/iFdWS+z0cSElMEAzOg+jmEJPXXjPzm8kq35esWhTYm6GkIy9G3uIsi6Dgr+0WEzoNv8/M0sA7T34dEbErhjZjwZCVmEG/OJMp5mozUTu6/17NBXUFFDgtTd74PbZ1srthd0GQ8EKme11fAN9DdreNUS/6jNihoKoVf5nWW7EnFj8PqdlR5vPeuOD2MGhREZ7l2Py62StdvqfwPlLqvg9E2PEbZ5H1GOMgrNsdo8IRFkPfx7Yu+6un61mU9v0G8DhiVA0tDqQ1OXFJL//ThJzz+IMd4vfYaUlH74NScv+bWmFHedpFUT8OXYUs2K1ZKUZwevCVpyBL69SasH6rsFrwiKUs489I/txm8zr+S5kbfy8Ej9Fyk7O5u9exvvPO1yudizR58ZpLGFzkGzdvjStxZ/s2AIIegb25X7Bs7grYkP0/NkKJFW3x88CdJe9YhDrlx+u+G/7dc/qaXx39KM/EVg+ZTaMEZB9A36tqL/gGxAGo4GsPiUPhDg3JSBRIRo1hKDMPCbQTOJs3i36iXw9x2fUmgraxF5GoylL6R9DREX+nVIKHgesm7WrJkdDP9gALNHOevV1cxF46L49VUp9Iv4CpPBxhFnV3JsEbirFBu3A3YHSWLscsCu9/Vtg24GISgsLOTUqVO6rpr8XAuKXeQUerdcjUZtW7OhhI7J1G29ubLzA543eP3OXJjIcSW0ud+ZOUQwdXjjAwOKXvkA+07Nx9OAZETeZoxCMnJQBClThtRxtg9H/aKou03Ttil9EEIQcfFEOn/+TyJn6C3hAK6cAnLu/T/ynnwVec5DkDJCP2DDs5BdR9R5U9g3D2QtrhInV8Mn02HFb6Eir+ZxZzlKOfMQb4liXMoA+sak0T2lC4MGDdL1NyUp7YoVKygr8/7wWSwWnVNsQyiyl5Hlk0TUKAz0iWnc9ihAdGgE46L6MGCHhScSvmNS2EEswgm4AK/CVuao5J+7FjbZgtjhcJVAxXJ9W323NH2JvQ3figE4j0PZF02RLChF9jI2+EVhntdZvw0Sa47kgUGzdAEiRfZy/rFzPu72YpUyRkOnNyHhMQKWqYrFcOJCsHWcu29pd+A4oL+pMvfXWwf79+9fHb0tEWyyDtJbz3a9p7eQARz+RtuuqiIkAvpcjpSSr776Sje0W7duNSa83n1Uv6WZ0TkEc0gDbkA8GEIthI0dqmsLtrVZe76zttna9M95tv+4g8On7DWM9uIur6RsgT6S+7zw47z2aAq/vz+jYUquv8Wp23k1DjXGRpH4l/tI+e+fMXULDFor+2Qx5V+uhvP+rU9S63bCkrtaJm2JlLD7A31b0hB9eg/QrN+734ePxsGWf1FSYmX1lgr2Hav79T5bUMqZH/m2Uq5e+n+s7pLL0a7ehfDIkSMcPXq0wfNlZWWxdOlSXdvgwYODhrLXh71F+miv9KgUQo0Nv8P1JSMjA7vDQnQF3Baznlc7LeTOpK1khOt9U7bkH+S7k2dZYfSALc10MDfC6mlKhugr9W2Frza7/8XyrG06B/8u4XH0d/wHDg2AUzeBW7tJyIzP4MqMSbpzt+YfYv6RNc0qT5MQAuLugc4fgUHvaoDjCJz4GZR82iaiNRT7gWO6iDpTp8SAbSmDwcDEid68hNvs/amwS6/1rDxL89nxZadfcEmfK8AcxdatWwNcKYYOHVqjfGMHhfHX+5K59ZIYxmWGMXpgWI1j68I/pUZlXX5nLj+/szYICgDolGAis5d+K3fRurqtZ+VfrcBd7s1FZ0yMpfc7T5DQq4F1UYsOQbGPe4HBpG1N1kHYmEw6z/8HMbfM0kyevlP+Zy4yNAWm/EN/UulxWPFQ8/t/nVqrbV9WYQiBi+fA5Uugy4TA8fYyKtf+laee/Z6X5mTx2L9zmL9MRXeCUs4COFSahUu6OWUvRCTr76Qaaj1zuVzMmzdPFxZvNpu54IILGi1fgL9ZbP39zWqiyv+jKhmtRdq4IPoIf+0rGBSXrhv79r5FOsvdGU/AluYlDdvS9CX2TvC1V9l3BQYaNAEppV9uM8l5EVsQJe9oPlsVi7REuh6u6DGRgXH6kP4PDy4L2DZvc8LPha7fgWWovl1aIedeyH2s3ZccCxYMEIxhw4ZVW5Rs0sIOW28cPoFEuqjM/N1aCg1fBt5ISUkJCxcu1DXHxsYyapReafLFYBB0Tw3hwrGRPHBNPJdOanhJuSrCJo8EH39a+94jOE8GZqmvWneynJoSU+13lru1zZzGzx+jX/NXba2kwlqzNVlKSelH3+jaIi+bjiEyvIYzauGY35Zm6hgw1+99MIRaiHvwBlI/mI0I8abzcZ7MofTTxVr07uBb9Scd+qphFSjqg7/VLONiCIuHhH7w84/gwncgRv/ZX140jWPlncBWBNZCPvyuiDUN8Pc7U1HKmR9ZPo7vQ7v00fXt3r07oAxKbSxbtiygpl1mZiaRkY1PzbHH74ezX0zD/M2CUV1nM68T4K2zabBu5N6BlxKC98tudTl4eecCXemoxpJdWUiFsx3nsGquLc0qzBkQcbG+rejVxs/nx57i45wor/LhcGN0FzAl1C/yq+QjsGspXUwGIw8OuoyoEK+VpCpBcWmQygJtSkgXSFsA0b8M7Ct+C05epiWtbafYd/r5mw0M7tZgMpl0ybA32TKx2x1ef6yTq6Fwv/Z4h5/VrPM4ZFwfPvvsM6xW7/fKaDQybNiwRlvrG4oxLprQYf10bRXLAhNbV7l25LnicGL0+p1V5ED56YDxrcGIfqHERXl/Fm12ycrNNX8XbFv3Yt/n3VGRQhB1RfCbb1ddZaH8/c26Tw8+rhYsA3sRefn5urbi1+bhttpgzOOQOFh/wg9PQl4zlbG2FsFh/VY6/a7zPhYC0qdrpabGPQXmaKSERYU/845x2cFWxKvzCjlw/Oze4lTKmQ9zDnzPiqxtmI0mZqWfy1WDzgtId7Fq1ap6zXXy5EmWLdP/MGZmZtK5c+dGy+dwOzlQonfw7dcMlrOqOptVRdDBs8Vg20xKaCRTzX1143cXHeOLY+safT2n28U/dsznV6tf4vrls9mYu6/uk9qC8kU0y5amL3H36I8r12jF5puBxdVWMze4ChkZfoxYk/8C54a8Z6qPEkKj+c2gmboRedYSXm6P/oXCDMmzIfnv6Pz3AKwb4fj5UNnKiTbriX23n3LWv2af01GjRlWnu8hxJXLckRJoPbOVwH6/Ld1BN7N58+aA4KPp06fX6GvWUoTVoxB6ld+ZGyPZrsR24XdmNArOG6W3ni1aX17jd6H0Q73VzJbZE1Mnb87J8ko3i9aX84d/5fDeN8X+p/ucWAJZfmtqI5QzgJjbL9el7HDlFlA691swmmH6a2D2MQ647LD4Vxhc9SwRVhv7P9XmqyK6G3QZFzjOGAKZt8M1a9nZ6VFO2Px+w1x2HJXlPP9ePvnF7SwHYyuilDMfcqzFHCo9jd3lpHN4At2ikpk0Sb/nv2XLFoqLa/mSoZnn582bp2Xb9xAZGcmll17aJPkOlWTh8PEnSgqNITE0upYz6k9GRgbF5dGUVWrmeKfTqW0b2XaQaerCOYn6DNWNrTnqcDuZvW0uy7O03HFuKfnX7i+axRLX7Pg77Dc0SjMYoUMhzG/BaoaC6OUOK2uyd1KlmIGT6dE1+EhWLNYpMSMS+zCju16mH3P38uXx9f5nNokt+Qd5a993VDptdQ+ujeirIO0LMKXp2125cPJKKHq9xm0xKSUrV66ktLT1/Fqkw6kloPWhKlIzGKGhoYwe7U1JscmWic1u91rP9s3T8p45fX5QIzpRHDeGL77Qf2a7du3KhAlBfH1aGP+UGtaNO3GV6KOB9fnOtK3NtvY7AzhvZAQGn6/58Wwne48GWnFcBcVULNL7aJZPHqY7PnDCzhsLith/3MHKzZU1F1U/scIvHUpPiElvlPym5HiirtVb6Iv/+6mW/ywmHSY8rz+h+BAZJ99o1LWqkTIwmrjftYGBAL6ExbOo8notXYjBrxKFvYzCYhvPvZOP1d4OfxsaSEVFBWvWNMyfVylnPsRbvHeXBZ5IloEDB5KQ4M207HK5WL16da3zfP/99wHbnzNnziQ8vBF+CD7samIKjdqoLoKeH1hnUwjBrwdcSmSIN0DA4Xbx8s4FDcoub3c5eW7rXH70s5QV2ErZWXikGZ5FM9LcW5q+xPpZz8q/AnvTKjKsyt6BzWX1lIZykmCsZGi4Jy9W6EiwDNefkPe0ToG5vtc0evtF/b6zfzEHSk42Sa4q7C4nr+35ioVHf+DXP7zKupzdTbPMhQ7W/NDCJ/t1uKB8Cb6Rxr7s3buXb775htmzZzf+2g3EcfgE0u61wBqT4jElxdV6zvjx46u3IffYe1LmCsXp8MxhL4ONf9WNl/2vZ/6Cz3XbmSaTiSuuuKLR+RSbQki3VEJ6+qxPLheVKwOrHFT5nZ3yJKP1+p1taWkRayQ+xsjw/vpgqO+CpNUo++x7fZBHt1Rs/fU+nIN6WoiP1l7/CpubQydr8I1shi1NX2JumYUh3Ouu4C4soWSOZ8ux9wxNcfIhqWgl7J/f+AvmbIECH4utMEDfq2o9paDExYadlVrgQ2gsCAOZEVs8vRJsxRw5ZeefHxfidre8FV9KySdLS7jpqVPc8X9ZzH43n0+XlrB1v5XyyqYpiOvWrePLL7+se6APSjnz4fwuw5k96jb+O+EBZqVrfh8GgyHgznPDhg1UVAT3Qzh+/HhA4MCwYcOalNesir0tEAxQRefOnT1+Z5pyVuV3RqXmKxJvieKOfj/TnXOg5BSfHKnfNq+mmH3Eprz9QfuXnWqbbYwaKV9M4JZm48ptBRA+2W97VGp5z5rAkuNrPIqZpiyfF30Uo5AQdi50/hASn9CfYNuiswyaDEYeHnw5ESb9j9LxsubJQzT/yOrqQJJ8awnPbZ3L/239kOzKwjrOrAVjHKS+B3EPeNtMnaHTv0EE96+q+m7qale2MAH+ZgOCBwP4EhUVxfDhmkLtxshm2yC99czX0mwIYYttYEB5uAsuuICkpCTaivDJ+moBwaI2q/zOTvtYziS0aVAAwAV+aTV+2F5JSbn3MyNdLkrnfacbE3XF+bpACACjQXDZ1Ghu/nkMr/++U/C0Gm4XHNOn4qgthUZ9MMZFE3WD/may5O0FXuvl+KchXu+uwtonGp9ew99q1m2aVqWgFpZsKMdV9TEWRrqkhPKHbk8wPMrzOXE7wV7K+p1W5i5pWUu3lJL3vylh7uJSyq2SwlI3G3db+WhxKX/5Xz43/TmL3/wtm1c+LuCbH8rYf9yOrcxK6SeLKH57Aa78ohrndjgcrF27tsEyKeXMh9TwePrGpJEYGoPJJ/HfOeeco3Pit9vtrFsX6HPlcDiYN2+eziIQFRXFL37RdIuLlJLd/sXOY9JqGN1wDAYDPXr0qFbOwPMDZv0RPD8JE1IGMS5Fr2TOO7SSg35+cP7YXA6e2foBP/kV4vblh5xdWF3tyAHUf0sz4udN39KsoipFhC8lc8HZ8G1igMMF6zhQvI8qa5FAMjX6OISfpykvhnAIGxEYjJD/rC7KMSUsjrsHaJ/V1PB4Zo+8lSmdG5BAswacbhcrTgeWQPsxdx/3/vAqnx5e1fj6nsIICY9A6jtgTIROb4AxIehQKSXjx48nLS2tVa1JNVUGqIuJEydWJ8PebB2I0yW9liUfrF3OY+Fiva9deno648YF8fdpRfy3NitX/aSzIILX76zAHYtNmr1+Z7ZiQu1tF+AxuJeFlHjvb4DLBSs3e7eRK9dsxnnCK58whxA5M7hCdf7oCC4eH0l0RA0BGblbwOoTAW+Ohk4jg49tADE3Xooh2vu75S4tp+StBdpBSBic9x8w+qQOqczXyi41FHsZHFygb+t/fa2nOF2SJRv01sgLpnTF2P8qftP5r3QLPeIZWAFOG/OXldYamNFU5n1fyuerak/CfSrPycrNlfzv82J+/89srn/oAH/8xMV/P8nliwfmkl8Y/PdLCMF5551HfHx80P6aUMpZPQgJCdFFUAGsXbsWh0O/0CxevJjcXH2JlVmzZhEW1vicQVWcriyk2O79MIcaQ+ge2cA8OnXQo0cPsosScbi06Eyn0wmuHCwGbRESQvCrfj8jxuy9q3RJNy/t/AyHf3JMDzaXnWe2fBBQHqhrRJJuG9nqcrAup50kFXWVQIVflGNzbWn6zqfzmbJD8ZsNn8e2k8X7nsN3G29IWC4pcdMg9U0w+Cy+CX8AfH4gnEeh+F3ddONTBnLfwBn8bfQd9IxufPCKLyaDkRdH/4qZ6eN1hddBs6i+d+B7Hlj3n6ZtbUdMh+7rIXRYjUOEEAwaNIi7776b+++/v/HXaiD1TaPhT0JCQnUy7DIZyT5Hhq4+L2i3Td8eT8Vm8/rxhYSEcPnll7fJdqYv5sG9MSZ6t2/dFZUBhdCFEGRkZCARnHZpVr4qq2ZEZc03cy2NwSCY7gkM6J9u5v6r47jAJ81G6Vy91SziwnMxxjYy6OKIX+LZrpM1p/kmYoiKIObmGbq2kve/9Fp54vsGlnfa+Tbk60t+1cnBL8DhoziFp0C3KbWe8uMuK4Wl3jXLYhZMHBoO4/9MWFwKj6b9mRiTx7fbXgzSxb8/LWyRJLULVpQy7/v6W+ak04W7sASnU3IsIo3VKWN4J2Qc277ZE3S8yWRizJgxPPjggw2SSyln9WTUqFFYLN4fuvLycjZu9CZkPXr0aEAk5/Dhw+nXTx9S3lj8U2j0iUnTWfeag4yMDNzSyKl8ny0GCdEh3ozzMeYI7hlwie68Y2W5fHjQT5kBrC47f9nyIdsK9P5U3SKTeHrEjUxKzdS1L8tqJ1ub/luapu5gGVTj8EYhTJ68Zz4Uv4NRNCBqyroJ2/ErWFGSqGue3ikNUl4F4bfAmzMgxi8VRcGLAaWQpnYeSrjf9mZTCTNZuLH3dP42+lf0D+Irebw8l8c2vs3LOxfobkIahKF+N0FCiFbb7pMuF/a9+s9/bcEA/vgGJP1kHYzL6cLpsyVbbEpj/VH9jdFFF12k85NtK4TBQNhkfemgiqWBW5vefGd6v7PIisCyT63JtJER/O3+ZP78qyTGDwknxKRZMZ0ns6lcqU/GHXWVf6mxBnDMTzlror9ZhdXNkSwHLrck6rqfY0zwJjuWlVaK3/TxLRt6jxZVWT3ADav+0LAt5T1+W5p9r9L8yGrhu3V6K9XEYeFEhBm0ChfTXiXJUsBv057GKJyaTLYSnC7J8+/mk1vYfGXvvllbxpxv9etfeKjgkevjuWNGLFNHhNOtk6l600Q6HLiLSpCuQB+0lDXfB7T50tBUNq2mnAkhfi2E2CiEsAkh3vbrmyaE2COEqBBCLBNCdK9hmjYjLCxMF0EFWloNl8uF3W5n3rx5ur6YmBh+9jO9j1ZTCNjSbMZggCqq/c7y9X5nUT7KGcCopL5M9dvuWnB0LXt8ZLS67Pxl8wds91PMukem8PTwm4g1RzLZTznbXnCY/PZQv7MlojSDEX01GHwcw90lpIQGKRjsj3RDxSo4eTXrSiMpd3uVsOiQcEb1ekFT/oIR9wAIH38ad2Gz5lqri/SoFJ4ZcbMnwCRQmVp6agv3rH2FxSc3tZ9SUk3AceQkstJr1TLGx2BMqb/i1KVLl2q/rKPOLuS546qtZ263myVZafgmNu7Zs2fAOtWWhE8JUgjdrX9fq5Uzn0oBEoisbAHlzF6mlbwqOlTn0MhwA91SAi1YpfMW6ZQXc/8MzJl9AsYFo6zSzXfryjiR47n5Kz2pLwIuDNC1dqtTbRw+Zefev2bzyMs5/OFfuThMZmJuu0wv/0ff4Mz25PM0hcK4p/WTnN4QmKalJvJ3B9bp7He17tBdqY/OPp7tYOchvQVM5+OXMgxGPESf8L3c3fllrc1lA0clxeVunns3n8paEgPXl+9/LOd/X+gzL4SaBY/dnMiogWFMHx3BXZfF8bffpPDOE6k8OiSLn+38jMy87cTZi3TnRTrLCVu1Cufp5qsVWrt627ycAv4CXABUr8pCiERgPnAb8AXwNDAXGNOKstWL8ePHs2bNmmqze2FhITt27ODYsWPk5+frxl522WXNsp1ZhX8wQHMkn/XH63fmVcZcLhdRIYHm2lv7XMRWH2XKLSUv7fyMv4+5EyklT2+eExBdmh6Vwp/PuYFoz7Zod3MxGZFxHCorrJ5j5entzEwf3+zPrd64SgOiNGXEz8mqyGdz/kG2FRzC6rJzabexnJPYu2nXMoRDzC1Q+LfqptTwL8HxMLhywJnl+Tvl85eF25GFzVqGy+Xi24JBSLcEAS63hRRrGt99swiz2YzFYsFsNmM2mwkNDaV79+5ERiZB3N1Q8IJXjqLXIeYmMAXW52sJDMLAeV2GMSqpD+/sX8L3pzbr+sscVl7d9QVLTm7mrv6/ID2qadv3ZWVlVFRUkJyc3KR5GkNgMEDPaj+y+jJ58mQOHjwICJaUT+Aqwxe4LG5O2hPZUuG1wpnNZmbNmtXm25m+hI3JRISFIiu1KFJXbgH2XYewDPKm5qnyO8sq97zPHr+zSOdBzVm+uXYITq6BJXdqvlUGE1z8AaSdW/d5Pki7g7L5+sjKqKsvqtd7+s3aMt75uhiXC342PoKbfh4bWBUgZbiWUb8RVNrc/G1OASXlmuJy6KSDxRsq+NmVF1L89kJcHoVM2h0UvzaPhD95LPfp0ymMOodOth3eydY9Dd3PB4s3VVNubi5fffUVhYWF1WvLSMeX9LFaQWgW6eKIQezdcpSw01sI334I8/aDmPOK6bbibYRJUzf8S2L1626me6qfEjzsXji+nIks44Qtjc/yrgR7Kfx/e+cdH1WZ/f/3MzUzk54QIKEjhCZd6TBKkSKKsioIqLiuoqt+3WXX8lvXdXVd3V1dd1fXjqhrwwKIDQU1iIJI772lF5JM2vSZ5/fHTWYymYQUSNP7fr3ygntn7szJ5M65557nnM/RGkjPhf+8V8xF51ByvXGXnRdW2kL26XVw/6JY+uq2w5Es8DoVuRqvA8+nh0l48zCXVN0wSkmpPpLMmG6ctii5JOEopvwfdxF7VS/QmSh3+dFFRBMRGQ96Mzgb1/zUYsGZlHIlgBBiJFD9Y70a2C+lfL/y8YeBM0KIflLK2hdxW4no6GiGDRsWspz52WefUVoamu0ZNWoUffqc44W7GhUeZ4immABSmyE4A6Xu7Ov1wYu01+vFrMtQlr60wS+qRR/BXQOu5OEd/wvsy7EX8crhz8mqKAwbAdQzqhOPDL+BKIMZ/BWQdydUfIFVfwEn5BgQSiCblrObOd3HNvoCdt6wrwPc2H069joS2ensw87cr8lz2EKetrfoJA8NW8jQhKYNsA8Qu1jJXEnl4mXQFMHpkXU+XUpw2O34fD5yvVEccCUBErfHgNurxbM3l++dtTcWGI1GbrnlFrok3wYlrysBIIB0QeHfoePT5/a7NJJog4W7Bl7J5OShvHDoE9LLQ+s1D5dksnTLi8zvbWVujwlNPic2btzIt99+S//+/ZkyZco5CUE3lqbWm1Wnd+/eJCcnk52dzUlvN54vWURX6eWgLRpfNRc+a9asRhcdNzfCaMA0bij29cEGqoq1G0OCs6q6s927S3HICEzCic/nQ4MPbMfCuwobi5Sw5yX44S8gK5eE/V7Y9Ee45quza3HVwL5+M76iYLZFE2XBMqNhOnLJHXRUrUh/u9PBwhkx6M6jhMarH5eQVxTaWLN2czkzx3Ykdsm1FP75+cD+8pXriF48B31XZSrMqeSb6ZR+f1BE1l4A256CcX8GoLS0lJdffjlEH1CLl9mx3+ERHqRbgyfLwuGjRoyZj2N0ePABDsAlBLbNu4ibMBKHy8+GGoX908eEdsYCSkB+6TPwwRTmdXiTbFdXtpSNUUY8RSSw7aATV3ksl17a+M/ph30Onn0vNFDSauHeK+0M3L4AioNdz9IPxWlxlG4L1xPtNjqXHqYjDFgf/M6Vrz9GTO8NCA0Iux23z4fU6zEajWga6b/awi3WQCBQbCSlrACOV+5vc9QUpa0ZmMXFxTF9+jnUH9TC4ZIMqlcAdIvsiEV/fmuCqujVqxcuj5GCEuWEU7KEEpzhGkVDE3ozo2toV9H6rJ1hgVmv6M48MuJGJTDzFULWNZUDxWFCZAZafwlIpY7gdHk+p8pbvkvLL/2KNMiJL/lD5jgWnZzB47mjWFvSJSwwU54veXLvB+Se65xRbTxEX1//81CuMU6nM5C53eBQAkOXx4DbqyeyXIPJWfdX2uVyKbNepRHifx/6YNl74GqdhowBcd3556gl3NhnKsYahdA+6efNY1/ztz3vYW+CeK3D4WDLFkVM9+DBg9hstvNhcoNx1+jUbEpwJoQI8Tsl/mj22eJDArM+ffpw0UXn3uHXHNTs2ix793O8+aHfmyqdxZp1Z+c8KcBjh6/ugM1/DgZmVRQdhtNnrxOqSWmNOZqW2VY05ob54irNs94peq6ZEoXfbYesGlJETZTQ2LTHTtr28G7GvCIfe465iJwzGV1lIAZKUXvJC+8Ftp3GTkr9WXX2vQqFh/B4PLz55pthws2DnUdhr4XSj7tTtLwfpZ93I+6oF5MjtFHOLyV7lr0DwMaddhyu4NUsJlLDqEF1rDBFd4UJj6MRkjtTnqJHxAklqPYo9WrbjkXz0qpiDp504WugDtqOQ07+9W4R1Z+uEbB04n6G7poeGph54cwnieGBmYCE6YXEjishckA5Qhd8MW+ZDsdJEz6fD5/XB1JRcWiKLExLLmvWRSRQUGNfCRDW+iKEuBW4FaBDhw6kpaU1u3G1ER8fHzYzs4pevXrVKrNRRXl5eaPt3ug+itsTvDCZS2Wz/e5+vx+/38/p/A4kRhdW1p35OH7gXTIqwiP/ntKI2aPFJmtvc+6kiWGavRfbv9+CUZPHgNhHidAG5+aZcTPYmMN2hxavVL4Eyzd/FDYyqinU91nbpZsTvjOc9J3hlK8Qh3Sh14CgqiZI4vFpkdQeFBS5Xdy34QUWRFyMoa4arwZg1AxmWIIXgR8pJS5X7R1JPp8XT6XoZbnbyNdlfXF4jXgru2tjs/0hXXu1kZGRwbJly0jt25sh8R0waYMis7YDd3Ow5A+Ntr8p53RtxAHXM5yvfIc45gvN/n2buYv9Wce4OmIocZpa7rTrwG63YzKZKC0tJSoqiry8PPLzGydZ0mS/4/fTacd+NNXkI3aUFuBrwmfl9/vR6XRUVIQ3S+j1ejp37hymr1id8/U3agrC6CEpQoe2tNJHuN3s/X//oGRhcAZleXk5LpeLDH0CPfWn8Xq9aDUaTm9bw8mcpi1HR7hyST39d8zO9DqfU7b+T+zrrWtQTakuM5+kH0KDxYM94/FW+1zr+5znjNBgMvjBBQfXbaOfI1gY79J3YMeeHBCNmyta5tDyRlpnXJ7ab8xeW3WcOaMKME0cRNzy4GdR+MEXHBqUgrdzAuXl5XzrH8xQGYPRE7wcl6y+lbdK5pCRmQlS0vFMBd2yS+iSW0qnihLsBFdZPFJXGYOEByK2Iyd5990VfHloKC5X8AasZ/cSvtt4OOz5QeLpY76IRNv3/LbTH/ljxjPYPOD1CyQ6PtlYzCcbi7FE+Ligk50+yXa6xLtqys0BkF5gZPWPSXh9wb+1EJKbu/2PwYeeDfHyfqeGojXJuLMiQn4fjUESOysHQw87LjeggYi+pdj3BwO4kh1mYlOKEULgl360Gi2eWiRw6qMtBGflQM2cYTQQ1tsqpXwJeAkgNTVVWq3WZjeuNnr37s1zz4WP3BkzZgxXXHFFLUcESUtLo7F2f739NIaiYKfotIHjsJ4H/am6yMjIIKf4CEIoXxopJb2Ti+idYq31+V2K+/CHbcvDvpJ9YlJ4eNgiJcvnOgDZ94CvCCkNeDwe3G43Qgis0ZnsdCVjEB7QRJJuKGX8hAnn3I1a32f9acaPrD+0SckfawQGCfirO2kteoMy1UGn0TIgthsxBgsbc4O1GSW42ZNQzNILf3FuS7GlPih4CJezGKMpEXQpSg2YrjPoksk9o2HNuq2U2iMpc1jIi9RR0NeHyWTCiMQgdNw+dSbCK3G5XLjd7sBPVlYWmZmZgbdKT0/nqquuItb8JOTcGNjf0bifjqk6MDeuDqcp5/TZuJIZbMk/yDMH1lDuCXavluHhA7GX3wy8mpEdGlaADTBz5kzy8vKw2+2BcUGNoal+x3MqmywpwKAIj2qiIxk/94omnycWi4XVq1eH7Z87dy4jR9a9FA7n/2/UWEqLfRT95cXAtmHrEQY9eBf6HsoSs5SSPXv2kO9MRqDUIEqgu3cP3RNPQeo1SidfQzm9Hr56GPylgc9fAnaPBukqRaPVEhERQaL3FNZUEyTXX+Jc+OgLlBmCIrIRFw2i7/zQYvtGfc4bPgvYBmAcdDXW8Y1rBvD5JY+8cgY0bqrEBIQITdRk2Yz0H5xK0oQJZG8+hOdE0Bekbj9JhyfnkpaWxkSrFXo+DV/cHHg8puIAHYoSMWcn0P9gDrE2BzqtFqNBp4hcI5CVnl+jt2BEgwT8ei05naI5mWAiOzkWh9mAPFxKqdOC0SgCdt4270ISY+sJQ1zD4f3JdC7P4r5uj/GnU08g/A6kNgpD5S/tlXAox8yhHIi2aLh4QASjLzQxsJcRnVZw6JSLV74pRKuTaKvezu/ljq4vcInudarP6vWWaDmzpi+eAonQi8rAXaCNjSDpD5dg7JsCOlPgJ7Z/Fo67XwMkSIkrOwb9hTcQEeWnOD8LndaP0UCl3MjyBv9t20Jwth8IXCGEEBagd+X+NknXrl3p1asXJ04E60ni4+PP+3ImKAKeR0oyQ/Y1R6dmdXr27Mnmb4MpcL/frwyWLlsJkXPCajQGxHVnTo9xrDoVnB3WN6YLfxq2UAnM7JsgdzH4y/D5/IGlOZfHgFHvZpA4gVkMwy4rQBqxuSvYU3Ti3Avu62FYzXox6QzZTDGZGdZpFEMTejMorgcRWgNSSnzSz6a8oBbQd3n76RXdOTBVooqcnBwOHjxI9+7dAx13dRI9H6KuZcuGdUy0hp5HhYWFvPjOszidwb97YUc/ZrM5UPw9OWUEoweEDpuuwm6389RTTwWmWvh8PlauXMmvbrkFTcRocFbL9BY+CqbPG1WH0xyMSupPj6hOPLF7BSfLgpmECq+Tx3a9zbzel3BNzwloGmhnx47nVxOwIbgPhOp0NaUZoDrDhw9n/fr1lJcHsy39+vULTBJoy0TNnUrpG2vwpleuOPh82J55iw5PKcvrVXVnx/cE/9bKhJIz8N3/gx+fgH7zYdBNEH2WZn7ph+3/gu1PhUQoXq+XLGc07xZPZZp5I731p3H47ZgtFsSuZ+sNzvzldio+Ds1MRs2b0ajPINROCadrdGY3YUlzzbflHDgZmmmfNtzJD/s9FFWYA/INX26pYNGMGGLvnE/Bb4PNQBVrvwvt5uxxmdItmvENbrsP2/ZIxu7OoKLMhkSg0WgwmUwIb0WgSVggQKPH1KcX5okjME0cScTIgUTn5/HVc88FRNlPFXfBJVxERCjLwBf1j6g/MAOlKeHSZ+DjufQxHeF3XR/j2azfYvNpACPVu5UBSiv8rN9qZ/1WO5FmDSP6RfDjfgcud7WI1evklg7/5BLdKvwegbdEh9emw1tiomTfBfjKqB6voe/ZhY4v/BFdSrgfMaRIDP034T4SnGVcfrQbsUuuI7wCtOHBWUtKaeiEEBEoKphaIUSEEEIHrAIGCSHmVj7+ELCnrTUD1OSyyy4LXBh1Oh3XXnsthmp3QeeL0+V5OH3BZZFYg4VOprPP5TtXevXqha0ihgqnUgvg90uk36UU8WdeDo7wgdgLel/K9C4jiTdGcWnyEB4eXhmYlX8K2fORvjKcThcVFRX4fD4OpPfhxbULKHeY0eNlpDFdcVj+EkC2iOZZZ1M8HU2xlVsSs6hgtCWHJR1282L3dfx31AJuSZ3ByMS+RGiVv60QgrsGXBkmAPy/o+vZUW001a5du3j22WdZt24dr7zyCqtXrw4TLQ5DaPETWr/idDp54403QmYmuvUSZ0dDSFfe1JThdb6s2Wzm8ssvD9l36tQptu/YAYl/DH2yay+Uf3R2O1uIjqY4nrjoZiZ1ujBkvwTeOf4NT+xegd3rrP3gNoCrRjOAsQn1ZtXR6/VMnRosGI+KiuKqq65qveaZRiD0OuLuXhCyr+KL73HtCwawvXr1olxayPIp3y1/dckNdynseRHeGQtrb4LM78LreFylsHaxMne08jG/lDgcTrbbUlhWeCUl3hh25w5GegQ+nx+Hw4FM/7pe4dXyTzbgtwezuNrEuLBaukZRuB/seZT7KrOBOhMkN26iw/FMNyvWVa95liRaiji27RU0pd9TUVGB2+0CJF9vs+P2SMxTxmDoF5o9Ln7m7eCGEPj630vht/Fkv9gN+/edEOVaDMKDAMwmk3K+eR0IjSSim5O4S4pJeXEBKZ8+R/z9t2AaOxRh0NOlSxfGjVM67z1+EzZPN9xud6Bm9rLaGgHqInk0DL0LgOGR23mhz2KWdnyQ8R12YNI46qzpKrf72bDDjt3hQ3q8SKcLf2kxV2e+wJBPNpHxXBfSn+5G9qvJ5K/qTNH3PZTArBoRIwbQ6c3Haw3MlI9MEPmLaaHv++F65DmOiGvJ2+MHUZo37gcWVv7/QSllATAXeAwoBkYB8+p6kbZCt27duP3225kxYwZ33HEH3bs3jzTboVr0zZrbGSt6ZxEczFQyV4E5m6DMZMy6CnJ+GTKsW6fRsqT/5bw6cSl3D7xKETEteR1yb8XrdVY6CuUOb+uRIazZMo0Kp4VPt00GYFzEceX7JX3gL2NLwaFmv/AKIZje5SKu6TmRvw7ozRs9P+P+zj8yPeYUHU2JYBxc63EmnZEHhlwXMgheAk/t/ZAcexGbN29mxYoVIReXLVu28Pzzz4dJrpwNv9/PihUrwmqkEsf3RasLLvl2j+zIBfWo+Q8dOjSsg/izzz6jzHMBRNZYii98HGTbGKVl1Bq4Z9DV3Nz3srDpAj8WHObeH18hs6JmyarSCHBOg9XPA2EyGgPPsbMXRQz7pptuYtasWfz6178mOjq8i6ytYp42Nqwhovjp4ISKKr2zD8tmst/dF6+/luolKeHUl/DJtfD+pXDgTfA4lOL+lTMC2SgJuD0eysvtrC29mM8LL6XP/jNc+dEuhq/JJf+1gTh2JuBxenE6ncidz9Rpt5SS8vfWhuyL/MVUhL7pC0+7ftjJ//IWs754Oj6phS4TQWes/8BKnG4//3q3KDibUkqktwJL2SplOpz+JFrhxul0Ybc7KKvwsWmPHaHREHtXaJDs2LAV/fEsPKeyKfzzc2TMfZTCzfFIV9DH6PFgjjCg0ekwj+lGhyvy6HpXBp3m5REz1od+4sJar0tTp04lLi6OM54+yMpww+Fw0DlBy4W9G/77AjByKXRQynkMGjcjIzfxf+YlvJIymfs63MOk2DTMlIDfQ9WZI30+fLZSfGds+IpL8JWUcdmBVYzZ8h3OzAh85ZW/ozYCTAlh4rmWy8bR8aWH0cacffpD5GwrIsIQ8DnenAIcm3Y17verQYsFZ1LKh6WUosbPw5WPrZdS9pNSmqSUVinlqZay61zo0qULEydOpHPn5tOHqtn52O88Djuviyq9s693j+PHI0Px+TXhg6IrPod0KxT8CXy20MekhMJ/IPPvx+FwYLfbA4HKN3vGsn73eCSCmJgYTuR2Z8fxQaTq80nQVij1C34Hbm8Fm1tgnNNVPcax4IJLGaBJQyeqXQoizz5Ls5M5nqUX/iKkPbrC6+TetOdZ9UntmaecnByeeeYZ9u7dW+vjNVm3bh2HDoUmkC8cfCGnzKEdwtNShtcbsAshmDNnDnp9sBjX6XTy8ccfQ/z9hFQ4eDPB1vD0e3MjhOCK7mP40/BFRFfWAFaRWXGG3//4Cj8WBIuKpZS8+uqrPP/88+zfvz80A9NCSCnDZTQaMRngbKSmpjJ+/HhiYmLqf3IbQmg0xP3mhpB9zi17AhexKr2zCmlhTcU0/pU/H1uvG5WLZm0UHYZv74U3h8OqWVCi3Cz6/X4cdjtFdvjo1GWItBjmrN7NkN2ZmBweNEKDx23AvrkTJe9dgP2EAdeBD6D0dK1v49p1KGTJCo2GqBqZksbSwbaehUnLmZP4IVrha7SExvKPS8gtVHyylBKH00EH+RV6jZLd0wgfCXolk+/1eqmoqGD1N8qNoWniCIxDQhuu4p9bRdbsX1P2/pfYS8tw+XX4qy0XavSS2DGSlI+fJenqEiypdjTGSn95wZw66wENBgOzr5jDGXewRtTv99MjPqvxSQatHib/V8kyVn8PjYeRlk3cGfN7lnW7jAc63MUlplVY3Ln4i0uQbi9KPZifyelrmXr6sxpGRoMxhprLo9E3XkniP5YijPWviGmiLBinjKG8ohyHw4HP56P8vS/qPe6sr3lOR6s0O4dqiM/2byZ9s5r07NkTn1/LV7vH89+Pr+F0YW3KJh4oeRlOj1GETKVH6T8uuBdP/j8oL68ILOX5peCTHyfzw+HhREVFs2DBApYuXUqPHj34evc4SipiGBdxUrkDRIK/lLTsbbW8ZzPgL4eKr0P3NWCW5rCEC1h0QbBOxOVyku0s5EQvb6BItiYul4u3336bNWvW1DrEuordu3eHdX2lpKQwavokil3BmiO9RsvEzrVn+GoSHx8fsiwGsHfvXg4ed0BM6EWT4n+BL1Q9u6U5evRoSCPD4PiePHXxrfSKDr0Zcnhd/HXXO7x7PA2/9HPixAkyMzPJyMjgnXfeqbXDsbnxZuTiLwu+rybSjK5Ly9e9tTVMY4cSMSr0fC1++g2k3x+oO6uizG9hp24qLNgG1qchoQ51JVcJeOxIwOV2U1ZWQebBZA5/MIohnxTS68QZNH6JVqPBYjZjsVjwCz1+BL5iI6VrelC4JpHs92rvVC57J1Q+w2y9CF2nxFqf2yDsBaSUrwu99+s2ucGH/7DPwdfblPpRKSUOh4MYDhCrD71WdDAcoSqD5Pf7OXiygg8/VXxqzeyZtsyuFLO7XHi9XiQClzQgInxEji6ky+1ZJIzeg77kE0ivIT/SP/S1alLq6wq64I2ERngpOP5po1YRAsT2gqkvQUTtpT064WN45HYWVzzNQ5/exW07nmZsVhqpRfu59vBbzDqxOhiCCS1ExIPBgi45iYhRg4mcO5WyqycR/dqjxP9+MaIRgs6n+nVGSvB4vUpS4tttwUkMTUANztowZ5wlnKk2zkiv0YZdmJqL6k6yuDyGVz8bwyufz+JUbhx2uwOn04Xb7cHr9eH32pAFD0P6JNynr8We+0rIspLXp+WD72ex93R/Lr74Yn7zm98waNAg9Ho9ixYtIjY+mTVbpirBGSiZN+ljb+F+CmrRGGsoBQUFDcuaVKwHqi3j6brWuaRZkzndxzK+40CcTkdg2bY4zk92Zx86nY758+cHhldXZ/Pmzbz44osUFYXrpGVlZfHBBx+E7IuMjGTRokX0jkvh1YlL+VW/mfSI6siYpAFE1TIGqS7Gjh1LSkpKyL7Vq1fjNN8OIjK4018CxXUv9TQIXxnk3t4k/bRjx47xxhtvsGzZMjIyghedDqZYHh95M5d0Du9WfvdEGo/vfpf03KxAIfTw4cOJimriQOpzoDbx2cY4+p8yNbNn7oMnsH+hNBNV9zugZI8f+9uTPPd1ISt8v+TH5P/HmejReP1KPVnVLZDP76e80IFtcyTZbwzG9WUn4vKVLJIAIoxGLBYLWq0WIQRmsxl3tYpv97EYXH87wom/Po30BG+afIU27Os2hdh0tjmafr+fY8fqGdieXuNGsMNgsDQscC8q8fHiSkVAVUqJ3W5H5y8iJSJ4IxsdHc1NN91Er67RROuyQ47/YF0u77zzDgzpExYkezweXJU+rMJi4IeRvfDc7CfRWoHOXOlHNz2sNF1UkdA/sNRYF19sriDCaAxkyuJ1J8HvYNWqVU0rPeg+Ga7/gcPd74UBN4TOBgXK9kSS90FHNG5JavFBrjnyNkt2/4cJjjTMvR1Ejyglfl4ySS//lZTPXqb79vfo8uVLdFr2CIenDeVtTz7LN3wZpmFaH7kxRmyxii82GI3g81O+qnE6etVRvUUbpma92QXRKejrGSh7vqias1md49mJvPTpbD78/hLO2Aw4nU7sdjvl5eWUlZVRXrwfV/G6kIyQw23krbSrKPGM5NZbb+Wqq64KGWtlNptZvHgxZZ4+nDrWh176yhEjUoLfyYbTb9MUDhw4wObNm1m+fHn9X7JzmKXp8/lI3ONAXxKaBcvu4mfUdVMZPHgw119/PbNnzw4bfJuZmckzzzzDgQPBYuSqBoDqn6FWq2XhwoWBZaxIvYlZXS/m6VFL+PWA+jN81dFqtVx99dUhSwqlpaV8+dV2iLsz9Mm2V8CTSZPwnIbM2UpzQc6N4G34zLljx47x+uuv4/Uq9UDLli0jPT24vG/U6rl74Bx+lTojrA5ta8ERVmv2s/T3S5k0aRITJ05smv3nSG1jm1QUjIMuwHJZ6Ii24mfeRnq8YcEZKNphGRkZ7Nq9m1Wbs3hqbyr/yLqadQV9KSj1YMvwkPdJDGeW96FoUzc85UZkZX5Ep9VisVgwGAzokpOIW3ojKZ88R/QvpmEwRYUs3eHR4HlpJaeu+DXOH5XSg/JVX4UEa7punYkYU3cwcvToUZYtW8aqVasCN2thZHwTut3AJU2/X/LM+8WUO5QaYLu9Ar/PQw/Tt8qAcJTs+G233UZqaipLlixh0tDQ70expwc7dx/h2WefxTt/WrXXVrroi+PMfD+uNx/PHkLuiD50mvcKQhM+XzRAvwVn9ZVZBR72HnchNBoiIpTrSaJBKdU4fvw427eHi5s3CEMURTEXw8QnYP5mmP89ctxfsO2/iMK1iWHFitEjS0m5JYuO1xQR/+DdRD/2AeZLJ6LvkRyoHdy8eTOffPIJAGfOnOGll16ipKThqwdzrrqKXrcvwKDXY6gsHylf2fTGADU4a8OE15u1zJImKHVngweHZ48kggPpqbz4+ULS9o7B7Ql+cf1+f0jTTKk9krfSrqXf0Ou5++6769SYiouL46abbmLL0fFcKIPF3VJKvs78AempXfC3LkpLSwOZp2PHjvHll1/W/WR/BdhrLmleXvtza+ByuXj99dc5vP8gfY7q0Xmr9HsEZouZtwu+J6viDEIIxo4dy2233UZcXGg63ul08r///Y9PP/0Ul8vFtm3bwoLJOXPm1NpwIoTAqG18h3BycjITJoSOnNm8eTMZZdNBW/0O3gOOGgrmDcXvVGaBglLDVtGw+ovjx48HArMqXC4X2dmhGQAhBLO6jeLPI24gpkYd2uxuo4mLUSZ1JCaew/LTOeA+qAZnZyP2rgXKzJxKvOk5lH3wJQkJCWGZ3doo9UeR5hjL51tmkv3WAEoPJFHhseBBT6W4A6aICMxmM+bRQ0j69wOkfP48MYuvQt8jmcRH7qTLu08heoYK3OrxUHHwGNmLH6Tg3qcoq1E3FHXtZXVmQE+dOsWRI4rC/I8//lh34HHJv2DG/2DgjRCZ3GAJjY83lrPvuKsyMLPj8/lJNu7ErFWy7506dWLJkiWBEV46nY47bryE5KRg1kqi5YznAoqKinghbS3FN85A07sLJztG8tWlqaydPpD07glo9DoWLlxIVLdhMPhXtRukNUCfq89qc/U5mnq9nqToCsza4Oikzz77LEQapkkIgTR3pXBFObZvBJiTlGVPvQU0OuIvLSL+0mJEdApcsRKG3BYWUP7www+sWbMmZF9JSUmjl16TF1yBKSbYpOPNzse5uWnKA2pw1oYJqzdrgWaA6syYMYOxY8cSFRWFTheasfP6dWw+NILnP1/EjuOD8MvQk72gJJ51h+7m+pseYurUqSGF6LWRnJzM/OtvoGBP/0oZQ4Ust4kDR+9p1PgLi8XCxRdfjBCC6OhoZs6cWfeTK9YrsyWr0HUFY/0Cv3a7nWXLlgWWMIxuQe9jOjRCg9lsQaPRYve6eHz3u4Gu065du3LXXXfRv3//sNf77rvv+Nvf/ha2zDl27Nh6BUabwuTJk8PmMH646jP8cZVjncyToet6RX+tKRhTodN/QURA0jMQc/a6FICTJ0+GBWYAl19+OaNH165DNSiuB0+Nuo0+ld2q07uMZErKsKbZfJ6QUp53GY2fGvoeyUTNDQ1KSl58D2l3Mn/+fIYOHYrFYqlziLvwS4ZvP82wbZl4pQ63NOCvvJzpdToi4+OImz+T5JX/otOrj2KePApRI3NtHJJKz8/fInJqOcKoZDcEoJNuHHY75Z9+ize72kxjo4HIOXXXhnXs2DHQHNazZ09GjapDakMXoSzNTXgcFmxVljXr4USWm3fWleL3+aioqMDv9xOlyyHJoMiBduvWjVtvvTVsCV+jEcy5pEPlkq7y+ZzxpCKlwOfz8V7RKV4bkcS6Ud3I6xQTCFquvvpqunWrvN6M+A1YOhFGr8shIrZOm51uP2k7qk+OEcyf0TXkWuJwOALZqqbiL7eTf8ejlK+udpOtMSAi4+nw3N+I/s9GuOpTmL8JOoX70i1btvDRR6FNXFqtlkWLFtWayT0bmigLlumhepc1A/yG0hZEaFVqweF1caosdMZkakyXOp7dPJhMJmbPnk1UVBQTJ06krKyMoqIiCgsLQ/7deCiRbUcHM2Hgj3RNzOb0mZ5okx7lxpsn1+lca6Nv375Mtt7CyVPPkWMOBnPfFOTTK/5FTJ2WNOh1tFot06dPp6ysjIsuugiz2Vz3k8tD75bq69IEJTP36quvkpcX+ve5IKIjk/oP5Z2MbwP7MivO8PS+VTww5Do0QhFwXLRoEd999x1r164NqYlzOBwhr9e7d++zB5bngMFgYM6cObz66quBfXl5eWzYOYhLRq8GU+2Cto3CMhW6bwFdh3qfeurUKV577bUwLbiZM2cGtJLqIjEihsdG3sya9M3M6d44rajmwJdTgN8WFEsSpgh03VumVrQ9EbPkOsrXfIN0Kst/vjM2Sv/3MQlLruW6666jY8eOTJgwAZvNRlFRUeCnOCeX5Le+IuFYXsjqlUYIjF07kbR4LpFXT0EbW3+toYiIJHHJLzH3fJySb+NwHYrDILxU+H04HI4Q32GZPv6sr2kymRgxYgRRUVH06dOnYb6vAeUTLreff79bjNvtw263I6VEK9x0j/gOIZS5qgsXLqxTZ3PySAsr1pUihAWX04nbE0mJN4VYvVKyUNPvjB8/nuHDq+km6i0w5mFYX8P/9jv7TODvdjmwO4N/oWiLhqljk7DIKaxdG5Qm2b17N8OGDSM1tfEj+7x5heTf8Sjuw6dC9mtio0h69g9EDO2n7DDXPgJs69atYVM3qgKzvn0bNoVEShlSJhJ17WWUfxQMFO0btuHNL0KXFC5JezbU4KyNcrQ0G1+1wstkcwIxhkaI9p1nNBoNMTExxMTE1Lo86XA4KCoqoqy8nCHDup49IDoLI0eOZGvRZDLd36PVKHezPzi6Mz/rj2gskzBGhWed6qJDhw706NEjbP+OHTvweDxcPHIgopFLmkVFRSxbtiwsw5WSksJNN92ExWIhx2sjLWdP4LGtBYd578S3zOttBZQluQkTJtC9e3fefvvtWusa4uPjuf7668Pq1M4nffr0YdiwYezcuTOw76uv0rjwwntIbHiPATpRCnn/B4kPgbaG7EEDA7Ply5eH1ejMmDEjbPm1LrwuN1lrdrBtlJ4RI0bUm6ltTlwHajYD9AzL2qiALime6IWzKXnlw8C+0uWriLpuOto4ZWlIq9WSkJBAQoJyXnnzi8i/8zHceeUQFRXQYJRGAx0evoPoyychdI27rIlBN2Pe9RzisnwcA4qp+DYZXYEej0/gcDgCNbJnawQIvJYQdWa6161bR8+ePbngggsaZd/rn5aQnusMabLqFrEJg8bBhRdeyHXXXXdWPxFp1jBuiJm07XYiTCa0Oh1FvgGB4Kw6ffr0qX3STe/ZcOT9YKdmxxGQPKbW9/P7JXaXZO3m0OXKySPN6HWC8ePHs2vXLnJzg9MgVq9ezT333BNW53w2dFkF5Dx6L74aHZG6rp3o+PxDgdFgdbFt2zZWrlwZsq+qvrehgeLp06f55JNPmDRpEgMGDECj0WAY3Bd9n+54jlbKr/h8lK/6itjbrmnw7wbqsmab5VAr1ps1BZPJREpKCqmpqU0OzKr45eRr0croQFFvmd/IPlcC+fvm4fOefbB3feTn57N69WpWr17Nhs//iPRXE7rVdQHj0DqPzcvL44UXXggLzHr06MEtt9xCZGQkQghu7z+b3jW6alecSCOrIrQovlu3btx9991hjsBoNHLDDTec8+fYEGbNmhXyPj6fr3FdVK5DDI67H8reh5xfKXIqjSA9PZ3XXnstLDCbPn16o4r5N23aRG5uLh999BFvvPFG/Qc0I+4DofVmxv5qvVldxPzyajTRwS5hf4WDkpc/qPW57qOnyV1wX8jnK4TA0KkD3d59kpg5kxsdmAFgjEEMuAGTyUREFzcxvziOaUIeHr0ysNrlcmEaOxTDhU0fJ3fgwAG+/vprli1bxueff95g7b2tBxx8vqkkkDEDSNAfJU6fzkUXXcS8efMadAM3o5oav16vx6vvTWRc6E12QkIC8+fPr/31hIBpL3My9e+si3uGlZaXeOPzUv77QTFPvF7IH54v4P+eyuPmR3OY92A2ix/J4XSuN+TwqaMUG7RaLXPnzg3JNtlsNtatWxf2tnXh+GEPiX9/OywwMw7qQ+c3n6g3MNu+fTsffvhhyD6tVsuCBQvo169fg+3YsGEDmZmZvPXWW3zxhbJ8KYQI08Er/3AdspF6i2pw1kYJrzdr28HZ+cSg1XNZr7F4fcH0zUZnT2KMJ9i7cck5Kb9//fXXgaWzwmIH0jA0+OBZujQzMjJ48cUXKSsLne3Rr18/br755sC8OFC6Ce8ffF2gUN2kNXDfkOtIsYQXp5vNZm644QZmzJihFC+bzSxatKjFZkFaLJaw0U4nTpxoeBeVNwOjtrKJw/kD2BveQJCRkcGrr76KyxUacE+bNo1JkyY1+HX8fj+7dweLblt71qR0OEOEK9VmgLrRRFmI+VXo8PCydz4LqfUCcHy/k9xFD+DNCZ0GYUjtQed3/h42kqjRDL4VodFjMpnQ6jXED87myNUWdg7rypYBHTl57cQmT2bx+/2BCzcos3Ib+lonThzH7Qhm1o2aUrpEbGXixIlcddVVDS4b6ZVioE/XYDZZo9XSKXUuo0ePxmAwEBsby+LFi0M66avjcPn553t27v3yEl7aNZp3vvHz8cZy0rbb2X7IyZF0N9lnvJTZ/bWWB4/oF0GHuGDg3KVLF8aODS1B2LRpU4iuYV2Uf5xG/u2PoHGE+g3TpIvo+OqjaBNiz3r8zp07w6SKtFot119/fa31wHXaUV7O0aPBkX3V/Y5l9qQQH+DNzsfZyIkBanDWBvFLP4dtoSdpaguJz7YVLk0ZhsEYjU8qDmWnqwsVfj09olbyw4ZXmvy6c+cqDkmr1TJ2yp/QdP8cuv8ICQ9B1C/qPM5YTaeniqFDh7Jw4cJal9A6mGK5d/C1dLV04G8X38LopLq/9BqNhokTJ/Lggw8yZcqU+oekn2dqG+306aefhgWitWKZSnrF9SDM0Gk5WC5t0HtmZmbWGphNmTKFSy65pMG2g/L53XnnncyaNYsePXpw4YUX1n9QMxJ/3y/ptuVtklf9m8S/3E3EqNa1p60Tff0stB2Dy+HS48X233cD22UffEneHX/BX24POc40cQSdXv/ruQnCVmHpCH2vQSOEMj9SI7gobieH+nfi4IDOfPTVOvbv39+kl9ZoNNxyyy306dOH6OjoMCmbszHkAh0Doj4mSpeDwE8P00ZmTp/MjBkzGh0sTh8TGbL97S4Xl82YzcMPP8zEiRMDS8c1ySvy8uALBWze66j18YZw+fjIsH1Tp04lNjY2sC2lZOXKleHTaKpRtmItZx74V4i8CShLzkn/uR+NOaKOIxV27drF+++/H7JPo9Ewf/58BgwY0IDfJEhkZCS///3vmTRpEsOGDSMpKVjXpo2ODJOLKXv/LKoBtaAGZ22QjIoCKqrNlYzUR9CllqzLT5nUmC50tiSg1cchEXilhi3O7mg0fnpEvtrk7Jler+fKK69k6dKlwbFb+i4QtwSMdQdQSUlJLF68OFATMXr0aK655pqzLikMjOvBv8bcTrfI2otRa9JaA6yFEFx55ZUhXVSB0U4NIMs+B7qlQeRlDXp+ZmYmy5YtCxnmDkoH6eTJDVdKr47RaGT8+PHcdtttzVqn11CEToehT3ci51x6foKHnzDCaCDuztDi8vI136DLzKf4n29Q+PBzUOOCHTVvBkn/eQBN5Hlc+h96BwiBRqPBbDKRpCukl16pGxJCYLfb63mBuomKiuKmm27i9ttvb1S5Qr9+/Vg4bzYXmNbR17KW668ej9VqbZINYy40EW0JXvLtTsnGnY6z+p29x5zc/2w+6bneOp9TGxEGQWKslr7dDNwxN5aBvcJryYxGI3PmzAnZl5OTw3fffVf36158IZqY0EAv7rc3Ev/gbfXWde7Zs4f33nsv5NohhGDevHkMHFjH9Il6iI6OZvr06Vx77bVhj0VeG+oP7WlbG/XaakNAG6Sm+GxqTFc04ucVRwshmNRpMO+eSANNDPhtfO/syRhLEp2GvH7OgUxNvbGG0KVLF2644QZOnDjB5MmTG2RDTZHUtkpCQgJTp07l88+Do2r27t3LoUOHGlCDIZQAtwFkZ2fXGphdeumlTQ7MVNo/liuslLy2Gs/xSt8nJYl/f5uSmmU6QhD3u5uIvuGK838zE9tLkYc4/jFarRaTycRYzw4y6MP111/fqFqk2tBoNCGZooYyZMgQnE4nRqORoUOHNvn99TrB5IvMrEoLFuqv/aGcKReHB4tSSj7bVMEbn5bgr3Ef3DVJx7B+EUSZNUSZNUSaNUSagv+PMmvQ6xr2t0lNTWXw4MHs2RNsoFq/fj2DBg2qNZOn75lC0rN/IO+XDyF9Xjr8/bdYZtZfm7pnzx7efffdWgOz5sq0G4ekor+gG55jlfXjjRSjVYOzNkjN4OznVG9WnUmdleBMaE1I3Bzy9EL2fQChr2MQcgvQq1evRmvftBfGjRvH7t27A4KvcXFx57XrMScnh1deeSUsMLNarUyZMqXVMocqrY/Qaon7v4Xk3/14YJ/G6YZq8hAiwkDiE7/FMqV2zbvzwtBfw3ElY6zX6egTVcQdsy6m0zkGZudKnZppjWTqKAurN5QH6sLSc70cOh3ajOP2SF5abWPDjvBM4ZgLTdzxi1giDOfvpnP27NkcPXo0IOnRuXPns66MRAzrT+Lfl7L7+BFSGxCY7d27t87ArDah9fNFVWNA0RNNK8NpH7f1PzNqNgP0a2Hx2bZCZ3N8IDAV2hi0ukjS8va2slU/XapGO2m1WiZOnMg999xz3urfqgKzmppKEydOZNq0aWpgpoLpkosxDq09CNImxtJp+WPNG5iBIgjbJXjBN+j1dMp+/ywHtC86xOoY2T+0Lmvt5qCKf1Gpjz+9VFBrYDZ/WjS/mR93XgMzUGq3Zs6cidFo5IorrmDJkiX1TvawTBmNO7X+6+L+/ftrDcyuvfbaZg3MqqjZGNAY1OCsjVHsKifHHpRq0ApNQP3854i1xoDrDTl7zqlbU+XspKSkcN999zFjxow6RS0bi9vtZvny5WE1OxMmTGD69OlqYKYCKBfNuN8sCtuv792Vzm/9DeM5SFk0iqE1ZsyeXgeFh1rmvVuA6WNC9TK37HNQ7tRyJN3Nfc/mcywzVA7HZBTcd0M8V18S1Wzf1REjRrB06VLGjBnTKOHys5GXl8fbb78dJltyzTXXnNPycGPQxkRhmdY0YWw1OGtjRGj1/HbQ1czoehE9ozpxQXRyk+Yn/lQY13EgOk2w0DPHXsSRkiYO41ZpEDVHwJwrBoOByy+/PMSxjx8/vkkdZyo/bSJGDCRybnAQeMToIXR+8wl0KS0jLQNAyjhIGhq6b/dzLff+zcyFvY0kJwYrmnx+WLsjgYdeKsBWFhrIdE7U8fgdHRjZvxGq1E1ACHHe/U5SUlKYVuI111zDsGEtO96tZmNAQ2kzwZkQIl4IsUoIUSGEOC2EOPtsiJ8oJp2RiZ0Hc1u/WTw9egmPjVzc2ia1KpF6Exd3CBVp/SanaYNkVVqPwYMHM2/evMAQ+JkzZ6qBmUqtJDy0hI4v/5kzv7mOji8/jCaqhSejCAHD7grdd3QVlP00bgqFEGHZs/QzEWH16sP6Gnn8jg6kJLXetI1zQQjBtGnTuPRSRd5n7ty5oWOpWgjj0H7oeze+brwtNQT8F3ADHYGhwKdCiN1SyqaJy/xEqJ41+rli7TyETXkH6B6ZhLXzECZ1bv5aAZXzz+DBg0lMTKRz585qYKZSJ0KrxTRmCG5XceudJz0ug9jeYKucRiB9cOwjGPbr1rHnPDNxmJm3vijF5a69RGTOpEjmTYtGq2nf31MhBFOnTmXgwIEkJ7dOeVCgMeBvyxp1XJsIzoQQFmAuMEhKWQ58J4RYAywC7m9V41RaneEJF/DPUbfRM6qTelFv57SWg1RRaRRCo9Sepf1GaRAYeqey3PkTwWLSMHGYmXVbKkL2G3Rwxy/iGDek+UfHtSSt7XcsV1gpfrpxY+XayrJmX8AnpTxSbd9uoE5luIyMDF577TUAPB4PVquVN998EwC73Y7VamXFihUAlJSUYLVaA0NOz5w5g9VqDYhs5ubmYrVaWbt2beC1rVYr69evB5RxNlarlQ0bNgBw+PBhrFYrmzZtAmDfvn1YrVa2blVE5nbt2oXVamXXrl0AbN26FavVyr59+wBlTIXVauXw4cOAMp/LarVy4oQyMHn9+vVYrVYyMpSuzbVr12K1WgODYj/++GOsVitnziizGleuXInVag0M0F6xYgVWqzVQgP3mm29itVoDY4tee+21ECHDl19+mSlTpgS2n3vuOWbMmBHY/uCDD7jiiisC208++SRz5wZHrjzxxBPMmzcvsP3oo4+ycOHCwPZDDz3E4sXB5dkHHniAW2+9NbD9u9/9jl//OnhHes8993DPPfcEtv/vrrt57pGnAoHZrbfeygMPPBB4fPHixTz00EOB7YULF/Loo48GtufNm8cTTzwR2J47dy5PPvlkYPuKK67g3//+d2B7xowZPPdcsMZkypQpvPzyy4Ftq9XabOdefn5+uzv37rnnnmY79/79738367nXWFS/8/PxO7/+Txq/2zMVLn8Xuozn1ttuq9fvVJ/r2tb9zvK/X0n+qW8AcJRl8/2Ka5g+cA/jhpjbxbnXnvzOg0/8lUd6NC6x0CYyZ0AkUFJjXwkQUiEohLgVuBUUpfdDhw6RlpaG1+vFZrNx8OBB0tLScDqd2Gw29u/fT1paGuXl5dhsNvbt20d8fDwlJSXYbDb27t1LVFQURUVF2Gw29uzZQ0REBPn5+dhsNnbv3o1OpyM7OxubzcbOnTuRUpKeno7NZmPHjh243W5OnjyJzWZj+/btVFRUcOzYMWw2G9u2bcNms3Ho0CFsNhtbt26lQ4cOnDp1CpvNxpYtW8jJyWHXrl3YbDZ++OEH0tPT2b17Nzabjc2bN3P8+HH27NmDzWZj06ZNxMfHs3fvXmw2G99//z0xMTHs27cPm83Gxo0biYyMZP/+/dhsNr799lsiIiI4ePAgNpuNDRs2oNPpAvakpaUByhevuLg4sH3kyBGKiooC2263m8LCwsD28ePHKSgoCGyfOHGC/Pz8wPbJkyfJy8sLbJ86dSrk+enp6ZSUlAS2MzIycLlcge2q+WpV21lZWRiNxsB2dnY2FRUVge3c3Fx8Pl9gOy8vD4PBwLBhw0hLSyM/P58TJ04EHi8oKOD48eOB7cLCQo4ePRrYLioq4siRI4Ht4uJiDh8+HNiu+ps2x7lXUVHRbOfemTNnAufK+Tz3fD5fs517R48ebdZzryGofudn6neycxrtdzp27BjYbut+x2EvYVT3M3ijS0jS2ciLdJCfdYC0NJPqd5rD77gbOWFCStnqP8AwwF5j31Lg47qO6du3r2yPfPPNN61tQqNpjzZL2T7tVm1uOYBtspG+SvU7LYdqc8vRHu1ujzY3xue0lWXNI4BOCFFdyGYI8LNuBlBRUVFRUVH5+dEmgjMpZQWwEnhECGERQowDrgT+17qWqaioqKioqKi0LG0iOKvkDsAE5APvALfLn7mMhoqKioqKisrPDyHb6SgcIUQZcLi17WgCicCZ1jaikbRHm6F92q3a3HKkSikbJUuu+p0WRbW55WiPdrdHmxvsc9pKt2ZTOCylHNnaRjQWIcS29mZ3e7QZ2qfdqs0thxBiWxMOU/1OC6Ha3HK0R7vbq80NfW5bWtZUUVFRUVFRUfnZowZnKioqKioqKiptiPYcnL3U2gY0kfZod3u0Gdqn3arNLUdT7P45/a6tjWpzy9Ee7f5J29xuGwJUVFRUVFRUVH6KtOfMmYqKioqKiorKTw41OFNRUVFRUVFRaUO0u+BMCPGmECJHCFEqhDgihLiltW1qDEKIPkIIpxDizda2pT6EEGmVtpZX/rQbfSchxDwhxEEhRIUQ4rgQYkJr21QX1T7fqh+fEOKZ1rarPoQQPYQQnwkhioUQuUKIZ4UQbV6eRwjRXwjxtRCiRAhxTAhxVQOOabd+pz35HGi/fqc9+RxQ/U5L0hSf0+6CM+BxoIeUMhq4AviLEGJEK9vUGP4LbG1tIxrBnVLKyMqf1NY2piEIIaYCfwMWA1HAROBEqxp1Fqp9vpFAR8ABvN/KZjWE51AmenQGhgKTUCZ9tFkqnfhHwCdAPHAr8KYQom89h7Znv9PefA60M7/T3nwOqH6npWiqz2l3wZmUcr+U0lW1WfnTuxVNajBCiHmADfiqlU35qfNn4BEp5Q9SSr+UMktKmdXaRjWQX6A4no2tbUgD6Am8J6V0SilzgbXAwFa2qT76AcnA01JKn5Tya+B7YNHZDmqvfkf1OS1Ge/Y5oPqd5qRJPqfdBWcAQojnhBB24BCQA3zWyibVixAiGngEWNratjSSx4UQZ4QQ3wshrK1tTH0IIbTASKBDZfo4szLtbWpt2xrIjcAbsn20Uf8bmCeEMAshUoAZKI6yLSPq2Deo3gPbmd9pxz4H2pHf+Qn4HFD9TnPSJJ/TLoMzKeUdKKnjCcBKwHX2I9oEjwLLpJQZrW1II7gP6AWkoOizfCyEaOvZgo6AHuVOcAJK2nsY8GAr2tQghBDdUFL0r7e2LQ1kA8odaymQCWwDVremQQ3gEEqG4PdCCL0QYhrKZ26u78B26Hfao8+B9ud32q3PAdXvtABN8jntMjgDqEwPfgd0AW5vbXvOhhBiKDAFeLqVTWkUUsotUsoyKaVLSvk6Sip2ZmvbVQ+Oyn+fkVLmSCnPAP+k7dsNcAPwnZTyZGsbUh9CCA3wBUqQYkEZQhyHUnfTZpFSeoA5wCwgFyWr9B6Kk2/I8e3C77RXnwPt0u+0Z58Dqt9pVprqc9p0h0MD0dH2az+sQA8gXQgBEAlohRADpJTDW9GuxiKpPUXbZpBSFgshMlFsbW/cADzR2kY0kHigK/BsZS2WSwixHPgLcG+rWlYPUso9KHeuAAghNtH4rEFb9ztWfho+B9q432nnPgdUv9PsNMXntKvMmRAiqbJdOVIIoRVCXAbMB75ubdvq4SUURz608ucF4FPgstYz6ewIIWKFEJcJISKEEDohxAKUDqQvWtu2BrAcuKvyfIkD7kHplGmzCCHGoizjtIduKSqzAyeB2yvPj1iUupXdrWpYAxBCDK48r81CiN+hdH29dpbnt0e/0+58DrRrv9PufA6ofqelaKzPgXYWnKHcmdyOkg4sBp4E7pFSftSqVtWDlNIupcyt+gHKAaeUsqC1bTsLepS7kQLgDHAXMEdK2R40hx5FkQ44AhwEdgKPtapF9XMjsFJKWdbahjSCq4HpKOfIMcAL/KZVLWoYi1AK+vOBycDUap2YtdHu/E479TnQfv1Oe/Q5oPqdlqKxPkedramioqKioqKi0pZob5kzFRUVFRUVFZWfNGpwpqKioqKioqLShlCDMxUVFRUVFRWVNoQanKmoqKioqKiotCHU4ExFRUVFRUVFpQ2hBmcqKioqKioqKm0INThTUVFRUVFRUWlDqMGZSrtCCHFKCOEQQpQJIWxCiE1CiCWVM9dUVFRUzjuq31FpadQTS6U9MltKGQV0R5kJdx+wrHVNUlFR+Ymj+h2VFkMNzlTaLVLKEinlGuA64EYhxCAhxCwhxE4hRKkQIkMI8XDV84UQnwoh7qr+GkKIPUKIOS1ruYqKSntF9TsqLYEanKm0e6SUP6LMPZwAVAA3ALHALJQBuXMqn/o6sLDqOCHEEJShv5+1oLkqKio/AVS/o9KcqMGZyk+FbCBeSpkmpdwrpfRLKfcA7wCTKp/zEdBHCNGncnsRsEJK6W4Fe1VUVNo/qt9RaRbU4Ezlp0IKUCSEGCWE+EYIUSCEKAGWAIkAUkoX8B6wsLKQdz7wv1azWEVFpb2j+h2VZkENzlTaPUKIi1Cc5HfA28AaoKuUMgZ4ARDVnv46sACYDNillJtb2FwVFZWfAKrfUWlO1OBMpd0ihIgWQlwOvAu8KaXcC0QBRVJKpxDiYuD66sdUOkU/8BTq3auKikojUf2OSksgpJStbYOKSoMRQpwCOgJeFGd3AHgTeEFK6RNC/ALFAcYDG4BTQKyUsnpB7oPAo0BvKeWJFv0FVFRU2h2q31FpadTgTOVnhxDiBuBWKeX41rZFRUXl54Hqd1Qag7qsqfKzQghhBu4AXmptW1RUVH4eqH5HpbGowZnKzwYhxGVAAZCHUsCroqKi0qyofkelKajLmioqKioqKioqbQg1c6aioqKioqKi0oZQgzMVFRUVFRUVlTaEGpypqKioqKioqLQh1OBMRUVFRUVFRaUNoQZnKioqKioqKiptCDU4U1FRUVFRUVFpQ/x/nstPF/RuEkwAAAAASUVORK5CYII=\n", + "text/plain": [ + "<Figure size 720x288 with 2 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Separating the two equations #\n", + "\n", + "# Eq.2 ------\n", + "col = sns.color_palette()\n", + "col_pte = ['#436bad', 'orange','crimson', 'gray']\n", + "col_pte2 = [col[0], 'gray', col[4], 'gold', col[2], col[3]]\n", + "colors={1:'dimgray',2:'gold',3:'mediumseagreen',4:'darkorange',5:'crimson',6:'royalblue'}\n", + "\n", + "term = 'DIABptend'\n", + "res = '80km'\n", + "fig, ax = plt.subplots(1, 2, figsize=(10,4), sharex=True, sharey=True)\n", + "for i in range(1,4): # loop over simulations\n", + " \n", + " p = diabptend[exp80[i]].copy()\n", + " n = diabptend[exp80[i]].copy()\n", + "\n", + " p[diab[exp80[i]] >= 0] = np.nan\n", + " n[diab[exp80[i]] < 0] = np.nan\n", + " ax[0].plot(dur[exp80[i]], p, color=colors[i],\n", + " linestyle='-',linewidth=4, label=expname[i], alpha=0.9)\n", + " ax[0].plot(dur[exp80[i]], n, color=colors[i],\n", + " linestyle=':',linewidth=3, alpha=0.9)\n", + "\n", + "#plt.legend(ncols=3, loc='upper center')\n", + "for i in [1,4,5,6]: # loop over simulations\n", + " p = diabptend[exp80[i]].copy()\n", + " n = diabptend[exp80[i]].copy()\n", + "\n", + " p[diab[exp80[i]] >= 0] = np.nan\n", + " n[diab[exp80[i]] < 0] = np.nan\n", + " ax[1].plot(dur[exp80[i]],p, color=colors[i],\n", + " linestyle='-',linewidth=4, label=expname[i], alpha=0.9)\n", + " ax[1].plot(dur[exp80[i]],n, color=colors[i],\n", + " linestyle=':',linewidth=3, alpha=0.9) \n", + "#plt.legend(ncols=3, loc='upper center')\n", + "#ax = df_track[['dfi', 'ep','itt', 'eq1res']].plot(kind='bar', stacked=True, title='', color=col_pte, figsize=(6, 3))\n", + "#df_track.plot(x ='Unnamed: 0', y='dp', kind = 'line', ax=ax, color='k', linewidth='3')\n", + "\n", + "ax[0].set_xlabel('Day', fontsize=12)\n", + "ax[0].set_ylabel('hPa/'+str(dt)+'hr', fontsize=12)\n", + "ax[0].set_xlim((3, 9))\n", + "ax[0].set_ylim(-2, 82)\n", + "ax[1].set_xlabel('Day', fontsize=12)\n", + "#ax[1].set_ylabel('hPa/'+str(dt)+'hr', fontsize=12)\n", + "ax[1].set_xlim((3, 9))\n", + "ax[1].set_ylim(-2, 82)\n", + "\n", + "#ax.set_xticks(np.arange(9, 32, 2))\n", + "#ax.set_xticklabels(dur[exp80[i]].to_numpy())\n", + "#print(dur[exp80[i]])\n", + "#ax.set_xlim(np.min(df_track['Unnamed: 0'])-0.5, np.max(df_track['Unnamed: 0']+0.5))\n", + " #ax.set_xticklabels(df_track['time'])\n", + "ax[0].yaxis.grid()\n", + "ax[1].yaxis.grid()\n", + "ax[0].xaxis.grid()\n", + "ax[1].xaxis.grid()\n", + "ax[0].axhline(y=0,linestyle=':', color='k')\n", + "ax[1].axhline(y=0,linestyle=':', color='k')\n", + "ax[0].legend(ncol=2, loc='upper left')\n", + "ax[1].legend(ncol=2, loc='upper left')\n", + "#plt.legend(bbox_to_anchor=(1.0, 1), loc='upper center')\n", + "\n", + "#plt.savefig('TimeseriesPTE_'+exp+'_'+str(dt)+'hrly_Eq1_upper'+str(int(p2level))+'hPa_box'+str(int(boxsize))+'_CyCen.png',\n", + "# bbox_inches='tight',dpi=200)\n", + "ax[0].tick_params(axis='both', which='major', labelsize=12)\n", + "ax[1].tick_params(axis='both', which='major', labelsize=12)\n", + "plt.subplots_adjust(wspace = 0.05)\n", + "fig.suptitle('Eq2: '+term+' Term ('+res+')',fontsize=14, weight='bold')\n", + "plt.savefig('CyclonePTEtimeseries_Allsim'+res+'_'+term+'.png',\n", + " bbox_inches='tight',dpi=100)\n", + "plt.show()\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABC8AAAIfCAYAAABQG/aqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdeXhU1fnA8e+Zmex7AoQlQNg3ERAEUdGouGAVF2xLXbFVrD+7aGtrba1Sbatt1dbWfUXFBdwRERU1oOz7HkhCIAnZl8k++/n9cSeTScgKCZPA+3meeTL3zr133rkzczP3vee8R2mtEUIIIYQQQgghhOiuTIEOQAghhBBCCCGEEKI1krwQQgghhBBCCCFEtybJCyGEEEIIIYQQQnRrkrwQQgghhBBCCCFEtybJCyGEEEIIIYQQQnRrkrwQQgghhBBCCCFEtybJCyGEaCel1Gyl1EqlVKlSyqWUsiqlUpVS1zWzbLhS6i9KqQNKKbtSqlgp9Z5SamyT5eYppbT3Nu+EvZhj4BdnagBjWOAXR8pxbGNBc/u7M7Z/oiml5nrjrVBKxXrnJfu9joXHse27vfvk7k4K94Q73s+tUirF7zOT3LnR+bbf7vfKe8xYoJRa0NmxeLffWyn1lFJqg/fYVR/bL45zuz9WSn2glDrit82STojX/zs773i3110ppd7wvsblgY5FCCECxRLoAIQQoidQSv0YeLfJ7BjgfOB8pdStWuuF3mUtwApght+yvYDrgMuUUila6y1dH7VowUPev6uAhQGM47gppYKBv3snn9FaWzv5Ke4GBgOHgf908rZ7ihQaPjOpwKFABeI1D+O4A7CgC7Y/APhVF2z3J8BVXbDdU8XfgRuBWUqpmVrrlYEOSAghTjRpeSGEEO1zq9/9BUAE4H8l8ud+9++kIXHxFg2JCzcQCbzYZVF2Ia218t5SAh1LV9FaL/B7namBjqcdfggM8d5/qX6m1vqQ3+uYF5DI2kEpFRroGMRRrMC/gbnA85243W+Be2mc1D1pdPVnWWudBnznnby3K59LCCG6K0leCCFE+7j97i/WWtcCb/vNC/e7P8/v/h+01qVa6w8wrvQDnKGUGt/SEymlEpRSO7xNhJ3eVh94u6jUN48+Tym1TClVq5TKUkrdpgy/V0rleLu0fKqUSmrrhSmleimlnlFKHfRur1IptV8p9Y5SapTfckc1v2/SZPvnSqn/KqXKvLcnlVJBSqkrlFI7lVI1SqlNSqlzmzx/s836O9LcXyn1nFJqqzK65ziVUlVKqY1KqTuVUsq7zDyllPZb7fymz9FStxGllEUpdY/3OWqUUjal1F6l1MNKqYiW4lZKXe59zXVKqUzv+6M6uu9bMd/7d4PWOstvu812G1FKLfSbf7ZSapFSqlwZXaHeV0r19S6X4t1Xg72rDvZb75Df9pK8+z5LKeXwbutzpdR5TfaJ/369Rin1ijK6DNQ18/hVSqkXvO9lrVJqRdN90ZH3ozlKqYuU8f05pJSq9sae490fw/2WO0RDqwuAb5t+PpRSJqXUXd73udr7Xu9SSt2rjFZY/s/b37ufq737/Dkgqq14vesme9+T8/3m1cei/eb1Ukr9WymVoYxuH1VKqXVKqVub3XAT3sTXb7TWi4HCVuIZ5d33Wim1uf61ej87Hu/8j/y2+5TW+gmt9fftiaOF55zufS0273v3mzaWv14ptVoZXarsyujG9zelVHiT5aKUUi95P7+VSqnFSqlpqpljUFufZe8yY5RSbyqji4xDKVXkfd9PbybGs5RSHymlCpVx7MpTxvc0uZmXVN/67xKl1OBmHhdCiJOb1lpucpOb3OTWxg2YjZHA0BgtL8KBu7zTGnjMu1ww4PTOq2iyjf/6Lf9T77x5fvPmAbHAVu+0HbjGb/1Uv2WL/e7X3z5pZt7qdry2z5pZr/52hd9y9fNS/eYtaCOmZYCryTwrENfadtv5fCl+822tvIaHmtnXTW+pLW0fMAPLW1l3CxDRTNwVgKeZ5W/s6L5v4X2LpOGz9q8mjyX7bWeh3/yFfvPLm3nOld7lUlqJ65B3mVEtvOca47vy4xbetxL/Zdv5OSoE+h7n++H/OfpDK+sXAb28yx1qZbkUjItAH7eyzKeA8m4rDNjXzDJ5zb1Xzbzfya08T/1+7NtGzC908Ljn/778opnHb/d7/EGMREyWdzoXiG9hu77PQgdiGQvUtLH/5vkt/79W9sMmIMy7nAK+amaZIy18dvz3SXOf5XOB2haetw6Y4betH3H08bH+VgqMarIPTvN7/PbO+N8mN7nJTW496SYtL4QQoh201ksxEhhVGFdia4CnMX6M/hv4s3fRBBrqCVU02Yz/dJ9mniYa+AKYhHEyfo3W+qMWQtoB9MaoSVBvNkaXlThgo3feDKXUgFZeGkD9VfIPMep4RAOnA7/FOAFpLwcwDjjDb94PgEXemP7rnRcDXN6B7bbHT4ERGCdPwRjx18f+a6WU0lov1Forv3VW6fZ1hZkLzPLe3wYMwzhJ/MI77wzg182sFw08ivHa/bsY3eR3/3j2/SQaPms721i2OVkYr2Ukxgk7wEVKqX5a61TvvjrsnX/Yb18le+c9hdElqgK4AAjFeA/SME7qn1ZGTY6mFHAZRgLwqCvRGEmVcd5tf+Cd1wf4vff+sb4f/r7C2PeJQBAQD/zN+1hvjNoCeF/rX/zWu0A37lb0IxrqODzq3U40DfVBrgCu8d6/GRjtvb8eSAKGYyTz2qS9XYFoaMGFXyz1n+tHaGgtsxDjeDSBhvdxvlLq7PY8XztjegnjswvwALAEI8niwUjSlXXWc2EcY+tbTDyLkei9EON704hS6iwavnMLMT4f4cDvvPOmYBwrAWZ6b2B8J8YC/YGD7Yipuc/ySxiJqsPAZCAE47tajPEdecYbYzjwHEYybivGZyME47vkwPgs/avJ8+3FSHYATGtHfEIIcVKR5IUQQrSDtxn82xzdxDsEGAP0a89m2nj8UWAqxlW7K7TWrVWVf0xrXQJ86TcvV2v9vDaKNn7tN39QG8+b5f07HeMEZA5GAuA/Wuvtbazr7zWt9V6t9TYaToYBHvHG9FkHYuooN/AykI2R+NmJcXIIRvKguWRRe/3A7/4jWuuDWutC4D6/+c0lYwqBB72v/XW/+YP97h/Pvu/rd/9YRm140Pta0mnoS980vmYppcJoOOGLwahnYAPSaThB70XjRFa9J7TWX2it67TWu5p5/F/ez1EpcL/f/Iu9f4/1/fB3BKOA5FqgGigD/uT3eHu67ABc6Xf/fu92KmmcVLzE+/dCv3mPaq2PaK0zgSfa+Vzt4b9vfqu1LtNa78RIsNbr7MTh7Rj7MwjjRB6M41NqJz+P//77o9a6Qmv9LQ3JE3/+78s8oADjuOqfDKh/Xy7ym/dfrfU+rXU+8HA7Ymr0WVZKjaDh8z8YoxWQHSPJ1ts7f7wyumedg5GgAON7kuZd9luMYwA0fOYB0Fp7MD5j0Pj7L4QQpwRJXgghRPs8hXFFFYwrqOEYP3pdGD/YP/E+VkrDlbHYJtuI9rtfxNHqryrm0/aV9EPev3V+8w773Xf43Q9pY1u3A/sxEjC/A14DNgMHlVIT21i3uZhaiqvdMTWtFdDGsnMx+oKfj5GoaO5/W1h7t9eM3n73s/3u++/v5pIjmVrr+lopNX7z/Qv7Hc++90+G6TaWbc5+v/stxdeSeIwrxm1JaGbetjbWyW7hfi/v32N9PwCjRgVGcu9OjFYbzX0W2/t5aU9SLKHJX2jcqqYjrZvaUr9vqpu0emjXvjkW3ud5yW+WC6PLRmer339VWmv/VmzN7b+OvC+9/Oa19NlrSdPPcnv3bUI7lw1tpoZLW0lwIYQ4aUnyQggh2meM92+d1vpN75W2b4AD3vkTlVK9tNYOGhIPUapxwcxxfvc3NfMcqd6/w4AvlVKxrcTjaue8NmmtN2itR2OMWjELox5ANcaVw390YFPNPr/Wuq246pMa/ifNQzvwvHP97v8Soy+7wmiK3RmK/e4PauF+c8koZ/0drXWzyYXj3PcFfvd7t7hUy5x+91tKfrQ0v4yGIrbp/t0X/LoxmLTWnzWzbl0z8/y1tI/rW5cc6/tR73SMrgEAezC6OZgwul01p7XEkP/znNPCfvhRk/ihoVVQ0/vt0Vo89fsmUikV5ze/vfumw7ytDX7nN8sCvNCZz+FVv/+ilFL+XUWa23/+r/GGFt6XqU22C8YwsfUGtiOmpp9l/+f9qpXvxZ4my77UyrK+xKI38Vb/vrZYTFUIIU5WkrwQQoj2OeL9G6aUukkpFaqUugCjXgAYJ4L1PzIX+q33mDJGD7mOhlECtrbQXP51GmpnTASWt2fkhOPlrb5/JcbJ6DcY/dbLvQ93dveO5tRfFR6vlBqslArC6LvfXv7JkUpAeUdWmNTC8qXev4ObnOC1ZJnf/T8ppYYopRKBx/zmN3eS3qbj3PfbaEggNFc7ojPU76te/rVTtNZ1NHRNGqGU+qdSqo931IYJ3lEgvm66sXb6rVJqtFIqAaMrVb2vvH+P9/3w/7zYMZJFg2jcRcVfqd/9070nkPX8Y/mv97WHKqWGKqWuVUoto6Guybd+y/5BKTVAKTUMo75JR/jiaaZ1jn88jyul4pRSpwH3+M1v9bOqjNFTeimletF4FKUIv/n1ywYB72AMHW3FqAMEMFspdaffuiilIpuub8w25jUdAaQZ/vvv70qpGO8x+NpmlvXfD39VSp3jfV8GKqVmKaXeBm7wPu7/Of2FUmqEUqofjUeZaRdvF6z6hPbFSqm7lVKx3tsUpdSDNIwYspaG7/otyhgZJUop1dsb779oqJ1SbywNdW6aS4ALIcTJrSurgcpNbnKT28lywxiSssVK/8DTfstagNUtLFcFTPZbdp7fY/O88/xHJVkJhHjnp/rNT/bOS/abl+q33QV+81PaeG0Zrbyu//gt19bzzPObf6h+vt+8FL9lF/jNf8hvvhOjb3pNO54vxTvvhmbirgVymu4v7/LLmll+QSvbP+7RLZrMP9TRfd/Ke1f/OVvfZL7/52Kh3/yFLewT//kpfvOfbiauhd7HxmCcSLcU/6HW3rcm8fo/fqSZbXXaaCMY38+9zax3oIV9NqW55/E+ZqL5z5P/rf5z1NJoI8XNPW8r7/m9zWyj/rW1NdrI8+3YfnIr6/teu3fZf/nNv8H73qyl4Ts4toXPWHO3BW3E1dJoI/77z/8Y9Gwbz1d/vG1ptBH/UUy+7cBn+XyMFhktPa//8ewnNIxi1dxtYZNt3+n32LD2/v+Sm9zkJreT5SYtL4QQoh201i9iXOH7moYm81UYo3r8EviV37L1dTAewTg5dWCc5L0PTNNab2nj6X5Nw9W5i4AlHakBcQyexrjqn4cRqw2jOf1DNG4O3lUewygoWP/832EUs2sXrfVbGFeWszBi34zRBSOzhVV+iXHyW97O7bsxuhT8FqO1Qy3GFft9GO/xedqvaXcHHe++f9n7d5pSasgxxtCaBRifxeKmD2it92G0EHoOY2QGB8bII3uBV4CfH+Nz3oFx4lmCsT++xNjHBd7nPa73w/v9nA18jvEdLsFIGP6qheU3ex/LpHFXG7RRQPEqjJEtNmC04rBjtCZa4Z2/1btsHUaR0w8xTsKtGDVObm/fbvF5BngeozaObhJPAUay5T/eeB3emNZjDM98rO/JUZRSF9PQauQDrfVb3vfmZozXFwa8rZRqq+ZOu2it92IUsNyA8bpyMIqsPtvC8v+HMWrMKozPpROjPsa3GCPXfO5dTmMUyn3Zu1wV8B5Gwrqef+ubtuJchTHKyBve53Ni/M/YiVEL5I9+y76DMbTqBxgJOhfGd20zRrexpsVc67vIfaONYq9CCHFKqR97XAghhBA9jPfEMA3javmjWus/tr5G96SUWkBDM/0LdOePVCFEi5RSZwAlWuts73QcRmLpKu8id2qtnw9UfABKqdEYiUEFXKa1/qKNVYQQ4qQjLS+EEEKIHkprbaehVsNdbRR5FUI073rgsFKqXCmVi1FMsz5x8T3wasAia/BHjMTFCklcCCFOVZK8EEIIIXowrfW72hidIEZrbQ10PEL0QKu8NxeQiNEVaQPwG+AibYwiFVBa65u93/NZgY5FCCECRbqNCCGEEEIIIYQQoluTlhdCCCGEEEIIIYTo1iR5IYQQQgghhBBCiG5NkhdCCCGEEEIIIYTo1iR5IYQQQgghhBBCiG5NkhdCCCGEEEIIIYTo1iR5IYQQQgghhBBCiG5NkhdCCCGEEEIIIYTo1iR5IYQQQgghhBBCiG5NkhdCCCGEEEIIIYTo1iR5IYQQQgghhBBCiG5NkhdCCCGEEEIIIYTo1iR5IYQQQgghhBBCiG5NkhdCCCGEEEIIIYTo1iR5IYQQQgghhBBCiG5NkhdCCCGEEEIIIYTo1iR5IYQQQgghhBBCiG5NkhdCCCGEEEIIIYTo1iR5IYQQQgghhBBCiG5NkhdCCCGEEEIIIYTo1iR5IYQQQgghhBBCiG5NkhdCCCGEEEIIIYTo1iR5IYQQQgghhBBCiG5NkhdCCCGEEEIIIYTo1iR5IYQQQgghhBBCiG5NkhdCCCGEEEIIIYTo1iR5IYQQQgghhBBCiG5NkhdCCCF6FKVUmFLqU6VUhVLqPaXUDUqpLwMdlxBCCCGE6DqSvBDdhlLqkFKqTilVpZSyKqXWKqV+rpSSz6kQp5B2HAuuAxKBBK31D7XWb2mtLwlgyEKILuJ3PKj2uz2tlJqnlHJ7pyuVUtuVUlcEOl4hROfyHgMe9Pv+2/y++9VKqSy/+3VKKY//8SLQ8YvOJSeForu5UmsdBQwGHgPuA14JbEhCiABo7VgwGDigtXYFKjghxAl1pdY60u/2C+/8dVrrSCAW4/iwRCkVH7AohRBdZW399x/4Od7vvvc2xO+xWUCe//EisGGLzmYJdABCNEdrXQEsVUoVAOuVUk8A9wI2YBhwFrAVuFlrfThwkQohulIzx4Jo4EpAKaWuBn4NuIHbtNbnBi5SIUSgaK09SqlXgf8CQ4GyAIckhBCiC0jLC9Gtaa03ArnADO+sG4BHgF7AduCtwEQmhDiR/I4FK4G/A4u9V1WkZZYQpzillAW4DagG0gMcjhBCiC4iLS9ET5AH1DcD/UxrvRpAKfUnoEIpNVBrnROw6IQQJ4r/sUAIcer4WCnl303sd4ATOEspZQVcQAZwjbe1lhBCiJOQJC9ETzCAhiagviSF1rpaKVUG9PefL4Q4adUfCxIDHYgQ4oS6Wmu90n+GUmoesF66iwkhxKlDuo2Ibk0pdSbGCcv33lkD/R6LxLgKmxeA0IQQJ1AzxwIhhBBCCHEKkeSF6JaUUtHeIc/eBRZprXd5H7pcKXWuUioYo/bFBukyIsTJq5VjgRBCCCGEOIVItxHR3Xzq7dfqAfYCTwLP+z3+NvAQMB1jtJEbTniEQogToa1jgRDi1PGpUsrtN/0V8EmgghFCCBEYSmsd6BiEaBel1EIgV2v9QKBjEUIIIYQQQghx4ki3ESGEEEIIIYQQQnRrkrwQQvRYSqm5Sql9SqkapVSmUmpGoGMSQhwfpdQvlFKblVJ2b4u71pa9RylVoJSqUEq9qpQKOUFhCiGEEOIEk24jQogeSSl1MfAy8GNgI9APQGt9JJBxCSGOj1LqWoxaJ5cCYVrreS0sdynwBnAhxqhTH2EMnfmHExSqEEIIIU4gSV4IIXokpdRa4BWt9SuBjkUI0fmUUn8FklpJXrwNHNJa/9E7fRHwlta674mLUgghhBAnykk/2khsbKwePnx4oMM4Sk1NDREREYEO4ygSV8dIXB2zZcuWEq117+PdjlLKDEwBliqlMoBQ4GPgd1rruibLzgfmA4SGhk4eNGjQ8T59p/J4PJhM3a8Hn8TVMRJXxxw4cKAzjgXjaDzixA4gUSmVoLUubbqwHAuOjcTVMRJXx3TSseCYdcfzhO76G07i6hiJq2PafY6gtT6pbyNHjtTd0bfffhvoEJolcXWMxNUxwGbdCd9roD+ggc0Y3UV6AWuAv7W2Xnc8HnTX90ri6hiJq2PacywA/gosbOXxTOAyv+kg73Ehua1ty7Gg/SSujpG4Oqazfhcc602OBe0ncXWMxNUx7T0WdL8UrBBCtK2+dcX/tNb5WusS4Eng8gDGJIQ4saqBaL/p+vtVAYhFCCGEEF1MkhdCiB5Ha10O5GJcZRVCnJr2ABP8picAhbqZLiNCCCGE6PkkeSGE6KleA36plOqjlIoD7gaWBTYkIcTxUkpZlFKhgBkwK6VClVLN1eh6A/iZUmqs9xjwALDwBIYqhBBCiBPopC/Y2Ryn00lubi42my1gMcTExLBv376APX9LJK6OOd64QkNDSUpKIigoqBOjOmU8glHr4gBgA5YAfwtoREKIzvAA8JDf9I3AX5RSrwJ7gbFa62yt9Qql1D+Bb4Ew4IMm6wkhhBDiJHJKJi9yc3OJiooiOTkZpVRAYqiqqiIqKiogz90aiatjjicurTWlpaXk5uYyZMiQTo7s5Ke1dgL/570JIU4SWusFwIIWHo5ssuyTGPVuhBBCCHGSOyW7jdhsNhISEgKWuBACQClFQkJCQFsACSGEEEIIIURPcEomLwBJXIhuQT6HQgghhBBCCNG2UzZ5IYQQQgghhBBCiJ6h2yUvlFK/UEptVkrZlVILmzx2kVIqTSlVq5T6Vik1OEBhCiGEEEIIIYQQ4gTpdskLIA/4K/Cq/0ylVC/gQ+DPQDywGVh8wqPrRAUFBcydO5dhw4YxduxYLrjgAsLDw5k4cSLx8fEMGTKEiRMnMnPmTA4dOsRpp53Wru3OmzfPt+6ECRP4+uuvfY+lpKSwefNm33TT7T7xxBMMHz6cUaNG8cUXX3Tei+0m3G43kyZN4oorrgCMffX+++8DUFZWxqRJk3jttdeaXffQoUOEhYUxceJExo4dy80334zT6QQgNTXVt816/tsWQgghhBBCCHHsut1oI1rrDwGUUlOAJL+HrgX2aK3f8z6+AChRSo3WWqcd6/Pdf//9xxFt6x599NEWH9Nac80113DLLbfw7rvvArB9+3aqqqqYMWMG8+bN44orruC6664DjBPnjvjXv/7Fddddx7fffsv8+fNJT09vc529e/fywQcfsGfPHvLy8pg5cyYHDhzAbDZ36LnbcvVXCzq8jta6XfUhPr649W0/9dRTjBkzhsrKykbzKyoquPTSS5k/fz633npri+sPGzaM7du343a7ufjii/nwww+57bbb2vUahBBCCCGEEEIcm26XvGjFOGBH/YTWukYplemd3yh5oZSaD8wH6N27N6mpqY02FBMTQ1VVFQAej6fLAq5/juakpqZiMpm44YYbfMsNGzbMt57T6aSurs73WHV1NR6Pp9Vt1vNf97TTTuPIkSO+9dxuNzU1Nc1ud8mSJVxzzTU4HA569epFcnIy3377LdOmTTuu/dCU1vpY1qI9q7W2f44cOcLSpUu59957efrpp337uaSkhEsuuYRrr72WG2+8scVtNH0PJk6c6Nu3tbW1uFyuRus2fQ9bYrPZjvqMHq/q6upO36YQQgghhBBCBEpPSl5EAsVN5lUAUU0X1Fq/CLwIMGrUKJ2SktLo8X379hEVZaxmMnVdz5n652hOWloaU6dObXGZoKAgwsLCfI9HRkZiMpla3WZz63799ddcffXVvvXMZjPz588nLCwMAIfD4dtuSUkJEyZM8C2bnJyM1Wpt13N2xLGMsKF1+9ZrLdYHHniAJ554gqqqKiwWC1FRUQQFBfHHP/6R2267rc1WOP7vgc1mY9u2bfz9738nKiqK8PBw1q1bx4wZM3zLZ2dnc80117S5/0JDQ5k0aVKbr60jUlNTafq5F0IIIYQQQoieqiclL6qB6CbzooG2myK0orWuHT3Z7373O37/+99TVFTE+vXrGz321ltvMWXKFMDojlJfq6G5FhFdMZRnW107mlNVVXVcSZRly5bRp08fJk+efFSLhAsvvJBPPvmEe++9lz59+rS6nczMTCZOnEh6ejrXXXddo3ohM2bMYNmyZb7pefPmHXO8QgghhBBCCCEadMeCnS3ZA0yon1BKRQDDvPN7nDFjxrBly5Yu2/6//vUvMjIy+Otf/8ott9zSrnWSkpI4cuSIbzo3N5f+/ft3VYgn1Jo1a1i6dCnJycnMnTuXb775hhtvvBGAuXPncuedd3L55Ze32cWjvuZFRkYG69evZ/ny5W0+94YNG5g4cSITJ05k6dKlnfJ6hBBCCCGEEOJU0u2SF0opi1IqFDADZqVUqFLKAnwEnKaUmuN9/EFg5/EU6wyk888/H7vdzksvveSbt2nTJlatWtVpz2Eymfj1r3+Nx+Np18ghs2fP5oMPPsBut5OVlUV6ejpTp07ttHgC6dFHHyU3N5dDhw7x7rvvcuGFF7Jo0SLf43fffTcXXXSRr+ZHW/r168djjz3GE0880eay06ZNY/v27Wzfvp3Zs2cf1+sQQgghhBBCiFNRt0teAA8AdcAfgBu99x/QWhcDc4C/AeXANGBuoII8XkopPvroI7766iuGDRvGuHHjWLBgQastHfbv309SUpLv9t5777XreR544AH++c9/trnsuHHjuOaaaxg7diyXXXYZzzzzTKePNNKd/eMf/2DgwIHcdNNN7SrkevXVV1NXV8d33313AqITQgghhBBCiFNXt6t5obVeACxo4bGVwOgTGU9X6t+/P0uWLGn2sYULFzaaTk5Oxul0tmu7TdedM2cOc+bMATiq3kNycjK7d+/2Tf/ud7/j4Ycfbtfz9FQpKSm+YpZN99Vrr73W4npN95VSirVr1/pqcTQtkNl020IIIYQQQgghjk13bHkhhBBCCCGEEEII4dPtWl6I9rvrrrtYs2ZNo3m//vWvufXWWwMU0clh165d3HTTTY3mhYSEsGHDhgBFJIQQQgghhBCnNkle9GDPPPNMoEM4KY0fP57t27cHOgwhhBBCCCGEEF7SbUQIIYQQQgghhBDdmiQvhBBCCCGEEEII0a1J8kIIIYQQQgghhBDdmiQvhBBCCCGEEEII0a1J8iLA3G43kyZN4oorrgBg3rx5vP/++wCUlZUxadIkXnvttWbXPXToEGFhYUycOJGxY8dy880343Q6AUhNTfVts57/trOyspg2bRojRozgxz/+MQ6Ho6teohBCCCGEEEIIcVxktJGM/l237eF5bS7y1FNPMWbMGCorKxvNr6io4NJLL2X+/PmtDn06bNgwtm/fjtvt5uKLL2bJkiXccMMNbT7vfffdxz333MPcuXP5+c9/ziuvvMKdd97Z9msSQgghhBBCCCFOMGl5EUC5ubl89tln3HbbbY3mV1dXM2vWLK6//vp2JxTMZjNTp07lyJEjbS6rteabb77huuuuA+CWW27h448/7nD8QgghhBBCCCHEiSDJiwC6++67+ec//4nJ1Pht+M1vfsO5557LPffc0+5t2Ww2NmzYwGWXXeab99133zFx4kTfbenSpQCUlpYSGxuLxWI0vElKSmpX0kOI7kYpNUIpZVNKLQp0LEIIIYQQQoiuI91G2tG1oyt8/vnn9OnTh8mTJ5OamtrosQsvvJBPPvmEe++9lz59+rS6nczMTCZOnEh6ejrXXXcdp59+uu+xGTNmsGzZMt/0vHnzAKPlRVNKqWN/MUIEzjPApkAHIYQQQgghhOha0vIiQDZs2MDSpUtJTk5m7ty5fPPNN9x4440AzJ07lzvvvJPLL7+cqqqqVrdTX/MiIyOD9evX+1pXtKZXr15YrVZcLhdgdF/p378La38I0QWUUnMBK/B1gEMRQgghRIAppVK9rTGrvbf9gY5JCNG5pOVFgCxYsIAnnngCMEYGefzxx1m0aJGvdcTdd99Nfn4+11xzDcuXLyc4OLjV7fXr14/HHnuMRx99lNmzZ7e6rFKKCy64gPfff5+5c+fy+uuvc9VVV3XK6xLiRFBKRQMPAxcBP2tj2fnAfIDevXsf1dIp0Kqrq7tdTCBxdZTEJYQQ3cIvtNYvBzoIIUTXkORFN/aPf/yDW2+9lZtuuol33nnnqNoYTV199dUsWLCA7777rl3bnjt3Lg888ACTJk3iZz9r9fxPiO7mEeAVrXVOW12etNYvAi8CjBo1SqekpHR9dB2QmppKd4sJJK6OkriEEEIIIbqWJC+6gZSUFN+Py4ULFzZ67LXXXmtxveTkZHbv3u2bVkqxY8eORtv157/toUOHsnHjxmOOWYhAUUpNBGYCkwIcihBCCCG6l0eVUo8B+4E/aa1Tmy4gLTKPjcTVMRJX15DkhRCip0kBkoFsb6uLSMCslBqrtT4jgHEJIYQQInDuA/YCDmAu8KlSaqLWOtN/IWmReWwkro6RuLqGJC96gF27dnHTTTc1mhcSEsKGDRsCFJEQAfUi8K7f9L0YyYw7AxKNEEIIIQJOa+3/w/h1pdRPgMuB/wUoJCFEJztlkxda6x4zPOj48ePZvn17oMMQXaC5YWtF67TWtUBt/bRSqhqwaa2LAxeVEKKzKKXigVeAS4AS4H6t9dvNLDfPu1yd3+wrmmsmLoQ4JWmgZ/zYF0K0yymZvAgNDaW0tJSEhIQek8AQJx+tNaWlpYSGhgY6lB5Na70g0DEIITrVMxjNvhOBicBnSqkdWus9zSy7Tmt97okMTgjR/SilYoFpwCrABfwYOA+4O3BRCSE62ymZvEhKSiI3N5fi4sBdqLXZbN3ypFXi6pjjjSs0NJSkpKROjEgIIXoupVQEMAc4TWtdDXyvlFoK3AT8IaDBCSG6syDgr8BowA2kAVdrrfcHNCohRKc6JZMXQUFBDBkyJKAxpKamMmlS9xssQeLqmO4alxBC9FAjAbfW+oDfvB3A+S0sP0kpVQKUAW8Cj2qtXc0tKCMMHBuJq2MkrsDwdh09M9BxCCG61imZvBBCCCFEtxQJVDSZVwFENbPsauA04DAwDliM0Vz80eY2LCMMHBuJq2MkLiGE6DqmQAfQUUqpVKWUTSlV7b1JczAhhBDi5FANRDeZFw1UNV1Qa31Qa52ltfZorXcBDwPXnYAYhRBCCBEAPS554fULrXWk9zYq0MEIIYQQolMcACxKqRF+8yYAzRXrbEpGFhBCCCFOYj01eSGEEEKIk4zWugb4EHhYKRWhlDoHuAqjnkUjSqlZSqlE7/3RwJ+BT05kvEIIIYQ4cXpqzYtHlVKPAfuBPzUd0727F+WC7ls4SeLqGIlLCCE63f8BrwJFQClwp9Z6j1JqELAXGKu1zgYuAhYqpSKBQmAR8PcAxSyEEEKILtYTkxf3Yfx4cQBzgU+VUhO11pn1C3T3olzQfQsnSVwdI3EJIUTn0lqXAVc3Mz8bo6Bn/fS9wL0nLjIhhBBCBFKP6zaitd6gta7SWtu11q8Da4DLAx2XEEIIIYQQQgghukaPS140Qwp0CSGEEEIIIYQQJ7EelbxQSsUqpS5VSoUqpSxKqRuA84AvAh2bEEIIIYQQoufwoAMdghCiA3pazYsg4K/AaMANpAFXa633BzQqIYQQQgghRI9S5qnB4XYRbO5pp0RCnJp61DdVa10MnBnoOIQQQgghhBA9mwsPO8sOMqX3yECHIoRohx7VbUQIIYQQQgghOsvmkgOBDkGIU5ttV7sXleSFEEIIIYQQ4pSj0GwqOYDWUvtCiICoeAtyL2334pK8EEIIIYQQQpyC3JTaysmqKgh0IEKcerQG63MdWkWSF0IIIYQQQohTk3awsURq/wtxwjnSwHmwQ6tI8kIIIYQQQghxavLY2VwsdS/Eyc3udvJS2nK+tqfh9LgCHY6h+tMOryLJCyGEEEIIIcQpRwFaO8iozKPMXhXocIToMu9lreaznI1scR3my9wtgQ7H6DIiyQshhBBCCCGEaFuocgIe0E62yKgj4iTl8rj5Om+bb3pLaXoAo/FypIEz07ivwtu9miQvhBBCCCGEEKeccJPTuAKsHWyUriPiJLW1NINye7Vvem/5YVwedwAjAqqXNdyPmNnu1SR5IYQQQgghhDjlhCmHcUfb2VGWid3tDGxAQnSBr45sbTRtczvJqMwLUDQc1WWkRl3Y7lUleSGEEEIIIYQ45QQpD/0sVaAdONwOdpVlBTokITpVmb2KrSVHdxPZWdaxUT46lWM/ODMAsDlM/OPpTe1e1dJVMQkhRFdRSoUAzwIzgXggA/ij1vrzgAYmhBBCiB7D6bIwKSSX5bVjUdrBppL9TOk9MtBhCdFpUvN34NZu0HaCsOFRLvDUsiv/Q34UuQJMkWCKBlOUcTNHg7k3hEwApbomKG+XEY9HsyuzL05X+1MSkrwQQvREFiAHOB/IBi4HliilxmutDwUyMCGEEEL0DHZnEJNCjrC8ZgxoB5uKD/Dz0RrVVSdtQpwo2oOu28BXhz4Etw3QzE3Yy5slY0C7SavyYLd+QIjJ0/z6kddC36e7JjZvlxGbzcbe7CEdWlW6jQghehytdY3WeoHW+pDW2qO1XgZkAZMDHZsQQgghega7M4QRQcWEmxyg7ZTZq8iqKgh0WEIcO8dBKP0nHJ7O3sz55NvqAE24yckVMQeNblKAExP7bfEtb6f6I3BbOz8++35wpuN0uqizQ0b+4A6tLi0vhBA9nlIqERgJ7GnmsfnAfIDevXuTmpp6YoNrQ3V1dbeLCSSujpK4hBCi5/EQitutmRCcx3r7EMDNxpL9DI3uF+jQhGg/Ty1UvQeV74N9i2/2yspJvvtnR1jZsHcKppoYdK9olNLsMt3I6fEh4Kny3iqhbi24iwENdesgclbnxlq9DK01NpuNjLxhuNxBnHnmme1eXZIXQogeTSkVBLwFvK61Tmv6uNb6ReBFgFGjRumUlJQTG2AbUlNT6W4xgcTVURKXEEL0PBZLENlF8UyKO8I6+xCUtrO5+ABzh6YEOjQh2kdryLsebBsbza5xW1hTPRBUGB4dTNb3CRyxuqmLtGOPhtDQMHbWxnND/G2Nt1f6KJT/z7hf930XJC8+xW53oLUmLXcYERERXHbZZe1eXbqNCCF6LKWUCXgTcAC/CHA4QgghhOhBLBYLBwsHMSEkDzMe0A4yKvMos1cFOjQh2seZ0SRxEQQRl/Gd+SEcpkTcOhxd6ibI6gIgsgKcTiegyajMo9Zlb7y9sHMb7td+37mxOg7gtqXhcDhwuc1k5ifzgx/8gPDw8HZvQpIXQogeSRnVtF4BEoE5WmsZnF0IIYQQ7WY2m8mzjiLc5GRkUBF47IBmc/GBQIcm2kFrjVO7Ax1GYFWvaLgfdi4M2Qb9XuXrUjcul5va2jp6FSkURhFaiwvCasHpdOHWHvZaDzfeXuiZQJBx35kOrsJOC9VTuRSbrQ6AjPxkBiWPZuLEiR3ahiQvhBA91XPAGOBKrXVdoIMRQgghRM+T0PcMrDXRTAo5AmjQTjaVSPKiu7O7Hfx244v8t/Zb1hQeVfLs1FHjl7yIngvmeA5VFbKvLJu6ujqUR9Or1ER0dDRTpkwxFqs0eVtfwK6yrMbbM4VCmF8Niro1nRZqVf7buN3G6CYH8kZyzTXXdHhkH0leCCF6HKXUYOAOYCJQoJSq9t5uCGxkAVTxJuTPB/veQEcihBBC9BjDhg3nYMEgJoUcQQNoBzvKMrG7pUFnd/Z94R4OVubjxs3nOZsCHU5guArAvs07YYHwiwB4e9sK6upqAU2c1USvqDjmz5/PzJkzUUoRXWnC7Xbh8XjYVX7o6O026jryXaeEWlW6FeVMN8J2m0kaNY+EhIQOb0eSF0KIHkdrfVhrrbTWoVrrSL/bW4GOLSAcmVD8B6hZBiUPBToaIYQQoscYNmwYWQWD6Gupop+5ErQdh9t19BVp0a1sKt7vu19iqwhgJAFU80XD/bDpYI5h45ZNpBbs9M0eZovljjvuICEhgZiYGPr06UNUtQJt1L7IqsynytmkAbN/8qLue6Mo6HHav+Vx3/0j5aOZcd6lx7QdSV4I0VOUPwu5V0Ht2kBH0nE1K+HQ9EBHcfKq+x7w/mOx7+qUfzJCCCHEqaBXr16U2cbg0YpJIbmgnYCHTSX721xXBIbD7WJbaaZvusReiT4Vf/v4Jy8iLmPjxo28/M17uC3GvojwBPGHm35BbGysb7FBgwZhcSsiaoyuIxrY07T1RegEUBHGfdcRcDapi9FBe/fuJS6ooftJn6E/w2w2H9O2JHkhRE9g3welfwXbJij4KbhKjm977irjar32dE58rfHUQuGvwXV8Bz7RiroNDfc9leCxBiwUIYQQoidRSjFw8FiOlPb11r0AtINNxQdOzRPiHmBn2cFG3XpcHjcVzpoARhQA7kqobUgIbE5L4KOPPqK4l/Hb3mQyM2fchcTGxDZaLTExkcjISKIrFVp7cLlc7GzaykgFQdhZDdPHUffCbrez+utX6R1TBoDZEk7i0Ot9j3u0h51lB9u9PUleCNETVC9vuO+phNK/Hfu2XAWQMxOyZzSM49yVKt8CT3nXP8+prMnY3jgPBSQMIYQQoicaOnQoWQWDGBFUTLhygLZTZq/iYFV+oEMTzdhYfHSrmFJbZQAiCaDabwEjgVNeO5APPlmHPVhTGe3BZDITER7O5cnTjlrNZDJxxhlnEF1lpAGcTkfzXaQadR059roXK1euJCnWqMuhlCIkbhaYjFYdZfYqFmx9kwe3vNHu7fW45IVSKl4p9ZFSqkYpdVgpdX3bawnRw/k3CwOoWgx1x1CcSGso+h24coxp6/Pe5pFdRDuh/Pmu274A5xFw5TWZdyggoQghhBCBcjznCMOHG0U7zUpzevAR0A4AGXWkG/JoD5ubeV9K7VUBiCaAaj4HwOVys2ZHFADFvdyYzWbCw8OZ2Gs4vcNim111ypQpRFYrlAdcLhfZ1UWUN91/4f7JizXH1CU5Ly+PNWvWMDrJ6OITEhKCJfYaALaWpHPP+ueObvXRhh6XvACeARxAInAD8JxSalxgQxKiCzlzwbH76PnFfwDtajQrt6aY1w58wQ5nbvPbqloCtV83THsqoK4La2hUfQBu46qFxyNNL7tE01YXIMkLIYQQp6JjPkeIjY3FoUZR5wgxuo5oN2gXm4sledHdZFTmUdZMoqL4VCraqR1Q8w1aa+rq6jiQOxSNprK/hbDwcJRSzOw/qcXVe/fuzdCByURW+7W+aFr3IngMmOKM++5ScKR1KESPx8NHH31EXGQZfWJKMZvNBIVE4gq7gNfTv+LhbW9R4ajt0DahhyUvlFIRwBzgz1rraq3198BS4KaW1snJyWHhwoWAUVE1JSWFRYsWAVBbW0tKSgqLFy8GoKKigpSUFD788EMASkpKSElJ4dNPPwWgoKCAlJQUVqxY4dt2SkoKK1euBODgwYOkpKSwatUqAPbv309KSgpr1xonh7t37yYlJYVNm4wr5tu3byclJYXt27cDsGnTJlJSUti92zhRXbt2LSkpKezfbzSNWrVqFSkpKRw8aPQLWrlyJSkpKeTkGFfRV6xYQUpKCgUFBQB8+umnpKSkUFJi1Ef48MMPSUlJoaLC+HIvXryYlJQUamuND86iRYu4++67feP+Lly4kJSUFN++fOmll5g5c6Zv+tlnn2XWrFm+6aeeeorZs2f7ph9//HHmzJnjm37ssceYO3eub/qRRx7hxhtv9E0/+OCD3Hrrrb7p+++/n/nz5/um7733Xu666y7f9N13383dd9/tm77rrru49957fdPz58/n/vvv903feuutPPjgg77pG2+8kUceecQ3PXfuXB577DHf9Jw5c3j88YbKuLNnz+app57yTc+aNYuPP/7YNz1z5kxeeukl33RKSkrnfPZqvqCg2E3KDaWsWNcPVBg5+W5Sfvg9Kz+5D4Ct+3YyYup4rn/+93xyeB0fHFzNlHOmNf7snX82m775PQDb9zpJuaGU7XudUL2sUz97DoeDhQsXcuaZU8jcuoC6OhtvL7Vy5pxqRBeoM5IX+21xfFI+jAp3sCQvhBBCnFKO5RwBGp8nDBo8hFm32Uj/OgsTHlx11Syc/3deWWQ8frznCZv37eCc82a0eZ6QlmacJHa384SvvvqKlJSUgJ8n1I8ysveVlWz/96e+x59e8K9udZ5w33338eyzz/qmO/U8IXs5Kdcf5oPPqyiriiYrL5hF771LUdphlFKYyu38ae5drZ6jvvTSS9h2GC13yzPy+dmVP2l8jnrBhWzPHA3App0OUi66ukOfvalTp7J3717GJGWwcq2Ly+fXsqtsOvdvXcxz77zK9/cuxF5RS1xIJJZt7a/lZ2n3koBSyqT1iajw16KRgFtr7Z8G3QGc77+QUmo+MB8gKCiItLQ0UlNTcblcWK1W9u3bR2pqKjabDavVyp49e0hNTaW6uhqr1cru3buJj4+noqICq9XKrl27iIqKoqysDKvVys6dOwkNDaWoqAir1cqOHTuwWCzk5eVhtVrZtm0bWmuys7OxWq1s3boVh8NBVlYWVquVLVu2kJSUREZGBlarlc2bN2O1WklLS8NqtbJp0yZKSkrYvXs3VquVDRs2kJ+fz/bt27Faraxfv57s7Gx27NiB1Wpl3bp1ZGZmsnPnTqxWK2vXriU+Pp5du3ZhtVpZs2YNMTExvu199913REZGsmfPHqxWK6tXryY0NJR9+/bhdrtZtWoVFovFF09qaipgfNDLy8t90wcOHKCsrMw3nZ6eTmlpqW86MzOT4uJi3/TBgwcpKiryTWdlZVFYWOibPnToUKPls7Ozqaio8L03OTk52O123+O5uUbrgvrpI0eOEBIS4pvOy8ujpqbGN11QUIDb7fZNFxYWEhwc7JsuKiri4MGDvuni4mIyMzN906WlpaSnp/umy8rKGsVTXl7O/v37fdP17+nxfvamDfwSu8OJx+PhQG4SQ4rPxmxfhMfjwVr0Nn/7ajDfZO+nrK6CeKcDh8OO1pqCqlK/z95BHDX7cNg0druFOkcQHo8Hh9NJdeEHbNmSfMyfvfXr1/PNN9+QnZ3No48+itlsJjMzk8ryQyh3HQ6Hwu4wUVwRDUgCo9PZNmJ1BfPQkbOxaQvp9jjujTgU6KiEOGZKqXjgFeASoAS4X2v9dgvL3gPcB4QBHwB3aq3tJypWIUS30a5zBGj5PKGuro46ewjBqoZRQUXsqEtEezys3reZYanJx3WesFcX8nH2GtLKs3lr03I8Hg85OTnNnifU1taSmpra7c4T6n+7Bvo84cv0DTg8dtxuNxE6GK01Doed4opSQkqd3eY8weVyceDAgRbPEyqs5WSnf8H3qxKwOcM6dJ4Q63oDj8eNy63Ylz0Qh8OJJ9SEy+3G4bAz3BHFQWtFs+eow4cPZ8OGDbhcLsKqwaHB7fFgtVWzZcsWampqfJ+9g/lDGdPfgcPhwmErbvdnb+vWrRQXF+NwOBg54AB7q01UuMzcvz8GHXcQp8uJ9njo545kjns8q+vaXxtPtbeKrlLKjHHmERuoHwZKqRnAe1rrvn7zbgdu0FqnNLfOqFGjdH1WqDtJTU1tlK3sLiSujunyuNxWyBqPx+OipqaG/y6dR0h4P27/wQesrgllSfkoqnQ0mGIareZw2AkLCeOlGfcQHxIFFW9DcX22WcGAD6Hg5+AuNGb1fx/Cz+5weBkZGbzyyivNPKK5deYS+sYVA7B232RW7Z7OY489tkVrPaXDT9RJuuPx4Lg+Q+4KyBrL2uq+/LNgKgAxZjuvD98CQ3YELq4uJHF1THeNSynV4rFAKfUORsvQnwETgc+As7XWe5osdynwBnAhkAd8BKzXWv+hrec/6Y4FXUji6hiJq2NaOxZ0cDsdPkeAxseC6upqnnrifn555UI+rxnNOzVTwNyHM3uP4k8Tj73E3prCPTyx6308fudcswedxbyRl2BSRzeC767vVXeIq7CunDu+N1o3BJnM/Hb8dTy86Q2Cg0M4LW4wf51yaxtbOHFa3V+OQ5B/IzgPQtAQGLgSTGHt27D24MyYQF3VIQAWfXst8cOu4P2oNFweNwD/OetOkqMS24zrvQ/f5wXPWrTJSOS9PvMPJIbF+cV5ELK9tS9MUTBkD6i22z58//33fPbZZ8RFWvnprHdZXHcWX1Ulg7kPoDArEzcOv4irBk/3fQfaeyxod7cRrbUbOAAktHedLlANRDeZFw2cYhVaxCmjZiVau7HZbOSW9KHKFs4Bypm3Zzovl5xGlTsItA20g6FRfVlwxk2MixsMgFt7+CZvm1Ezo2RBwzZj50PYNIi83O95PutwaHa73dd8zZ9SigkjKkjqXU5wcDDBoVGMPutx/vjHP3b4OUQbbJsATZY9hvqGdBXuEGoc5eA5xYYMEyeFDjb9vgV4RWu9R2tdDjwCzGvP82RmH2LK76/luq8f4dovFtB7whCm3n8d1339CFd/9md6TxjCtAd+xHVfP8JVn/yJ3hOGcNZDc5mz8mGu+OA+ek8YwtmP3MB1Xz/CLUv/ypApY/jVSw+zLHs9n+1YzdnnncMXXxqFltvbpVSaiht6epfSLm0qfhJ2Z+5Ex32OEBkZSWTscIor4r11LzRoBzuaDMvZEdtKM/j37g8bJS4Almav56k9H/tONkX7+I8yMiF+GAPCe/mme0zBzrr1kHu5kbgAcGaB9eV2r+6q2Yy9JhuAWnsodjWekNP7+T5LI6L7t5i4aOqsM6cR5Rt1xMW2wvTGCwQNAXM/476nCuw729xmXV0d3377LQB9BmezoGyWkbhQIYAiMSyWR8/8Kdckn9Ns8q4tHeo2ArwFLFNKPQXkAr5votb6mw4/e8cdACxKqRFa6/q9OwHY08o6QvRcNStwOp24XC6+KxzLnrFOaiM0EESoy4PF7KKPuYYbEvM5b/xDmEwhWB3VbCs0Wk1+dWQr1wY9jUl7u2sEDYV4o04GEZdDxWvG/erl0OsR6MBBZMWKFZSXG828QkNDue666+jduzcJCQmYC34Mdd4McsytJPcOWGOLk5u33sVBeyyoYG8laDf5zkiGOw9DyNiAhifEMWh3029gHPBJk+USlVIJWuvSpgv7NxU3hwbhdNqotdXicbnxeNzYnXZqbbW4bU48HjcOp4NaWy1Ou82Ydjmos9fh8E7XL19eWU2lvYZ1+XvI2FVHXXEl+8tzeHDTQl53bcRUWMfh8nzWbN3QapdSaSpuTLe3S2l1dTWpqandrktpW03FO6tLaUe7M9c3FW/us9e0qfiJ/Ox1ok45Rxg6dChZhYOYOnI7/SxV5HsicLhD2FxygHMSOzY+QJo1h8d2LPadVA6ISCApojcbioxE5ar8nVQ5a/n96T8i1BzcoW2fqjb5JS/O7D2ShNCGfFWJrQKtNUqpQITWPpXvQdG91A9x6mN9GmJuAHN8m5vI3PkM/UKNKg6ZBUOZ+5Mb+Mfhj32PXzTgjHaHk5SURBKx7KUM0KRmbOay5KkNCyhljDpS9Z4xXbsGQlvf/qpVq6itraUuVLM8fgAOpxkUoEI5N3Ecd465koig0HbH2FS7u40Y8auWxjLRWuuhxxxFByil3sVImtyG0Zx0Oc00J63XHZuGQvdoetUciatjujQujw135hhqq0uodgcx7/DNqGAja+l0Oghya27us5ZLI9MINmkqg++m/9i/4PC4mLviEXSwCXQtf+n7BRPCiwETJH0CoZON7WsXZE0ET5kxPWAphLUvyZCVlcWLL77om/7hD3/IGWd4D2a2LZB7pfcRMwxeC0EDgc5rHnqsuuPx4Lg+Q7lXg20jP826lDKdCLoOtIPfJG7mvBF/ady65kTG1YUkro7prnG1dCzoSNNvpVQmcJfWeoV3OghjpIEhWutDrT1/7Ije+vynrkUTjDJHokwhx/2a2mJWJs7qM5orBp3F6JiBR/3A7q7vlcTVMRJXx3Tm74KOniPA0b8L9u7dy/df/o255y3l3eozWF47Hsy9sJjM3DDswkbN3FtzqKqQP21+jRqXDYBeodE8dubPiAuJ4oV9n/HlkS0NMcQk8cCkG4gKMi76dNf3KtBxVTvruGXVv3B7yy++et5viQ+J4prPHjR+8wKvn/87YoIjAhajv0b7S3ug7HEo/0/DAubeoMLAZbSiIOY26P1wq9s8cOAAQfkXkRBlBSDb9QiDJ93BTan/AMBiMvP6eb9rNTnQ9H18b9VnPF9qjEQYTjBLr3m08f+nyveg6NfG/bBzYcCSFrddUVHB448/Th1OMsbXQpQDlCJYebh97C3MTJreYnKpvceCDrW80FoP6cjyXeT/gFeBIqAUoziXtLwQJx1PzSpsteVoDZsrhuA2WYgMDSXYFMR5sWNxb8wjomYvQad70BpCap7mnUVxXHzZjYyz9Gc3R8BTzVeVg43kRezPGxIXYPRZi5wFlW8Z09XL2pW8cDgcvP/++77pUaNGMWnSpIYFyv7XcD/qGl/iQnQyjx1s2yh3hVDmDgVzMGgn4CDPESkjjoieqiNNv5suW3+/zbbDyUFlvJr4rm+61jkQV+RP6TdyPmZLw48+RetX8FzaTUFtOQV1ZeTXlpFXW0p+bRn5dWWU2iobLevWHtYU7mVN4V6GR/fnykFncU7iOCwmc1vhCiHa57jPEYYMGcK7JQNwuc1cGLqf1LoR1OLG5YHX079iS0k6d592Db1CY1rcRn5tGQu2vuFLXMQEh/PwGbf41rlzzBXEBEfwXtZqAPZX5PLHTa/y0Bk30Su06eFP1Ntaku5LXIyIGWDUdAOiTCFUelsylNgquk3ywsdjg6K7oXppw7zg0dDvDbDvhoKfGvMqXofYn0HQ4GY3U11dzcrlz3PjeVZjhimMcZPvYHdFgW+ZQZF9Otyq4bLJ5/HS59/gNmtqcbD98D4mJfu13A0/t+G+bZPx+7OFhP/KlStxuJ2kj3LiiXBjRhGi3Px1RAgjBna8tl5zOtptxEepxmnHEzUKida6DLj6RDyXEIFUkLGQSG00NdxaPpSwyDBAcUnSZG4bNQvPJA/btk6hrPonxEeWEGxxMjTqTZ56qpTIwQkwsALQrK/uR4UaRUz8745+kogfNCQvaj6DXg8ZTcRasXLlSsrKvK01IoOIPWcYi7NWMTSqH6NC64ip/bJh4bhfHP+OEM2z7wScZNn7AGbABMoMGo44JXkheqyONP3e431sid9yhc11GWnK7gjBojy+1ERM8GFwPET5lscpcV5F7+H30Lf/yDaDtWAmOSqx2f7FdreD/NpysmuKWHlkKzvLGhqvZlTm8e/dH/J6+ldcljSFS5Oka50Qx6szzhHCwsJI7DeYnJL+DEnM4bF+X/O/qltIN0rAsLv8EL9e9xx3jrmCc/uedtT6pbZKHtryOlaHUXcq3BLCQ5Nuon9EQ8lApRQ3DL+QmOBwXt7vrVdSU8z9m15hwRmtjux6SvOvdzG11yjf/UgV6ktelNqrGOa3jsfjoaSkhNLSUvr3709MTMtJpy7hKoH8W8He0NKG8Asg8XkwR4FlAIROAdtmwAml/4C+zx61Ga0177//PgNija5WSilC4y9DmcPIqmpIXiRHtq/Whb+oyCgGmePJwvjXuWLXmsbJC0s/o9u58yBouxFr+DlHbaewsJDNWzaTleymLsZFuMmNUvCbxG2MSHqvw3G1pKNDpZ4BPAOcDtSndRRGE61ueemg2FPFX7e9zaiYJEbFJjEiegBhlq5vHirE8SgpLsRs/xq8XSDLIsZgNhv5wuHR/QEwmUxMnnIW9vJX0Eeuw+FwMnZQOtuzDhHj3kRJUDQZjl64lIlv9c+5urksafg5YIoGTyW4joB9B4RObDGuQ4cPs2LrasoHuLHGevDEm9h36OuGBTwV9LNcxJjQMkbFJDHaEcPAIM8xFeQRbbBtAOCgPQZUkDFPG/s5T5IXoofSWtcopT4EHlZK1Tf9vgpo7pLNG8BCpdRbQD7wALCwPc/jNiVxyPMv3KXPMzh+PUFmFwARIVVEhCzCkbuYDdumURt8I4OGnsXgwYOxWDp2vSfEHOxLbJzXdzyHqgr5NHs9qwt24vT2gS+zV/F25re8l7Waoa44xtRNaFzpXQhxwg0bNoyD+YMYkphDH1MFjw7JY3Htj/ng0Pd4tKbGZePxXe+zueQA80dfTri3tValo4aHtr5Bkc0ofhtstvDAxOsZGt2v2ee5YtBZRAeF89Sej3FrD8W2Cu7f/Cqz3KOaXf5U5vK42Vqa4Zue2qdhH0WrUPK8De7yK0s4UK7Izs4mOzubnJwcbDajBUxUVBT33HMPYWHtHNXjOIWZsyH3PnDlNMyMmQe9Hm4YsUMpSHgQjniLGld/DLafQ+jpjba1bt069u/fz80XGkU+w8JCscQaXbQPVRf6lhsa1ZdjMX3gaWTlGIV9d5Rk4nK5Gv/PCzu3ocBo3ZpmkxdffPEFeX3dlPZyEx7kAqW4OWEP0/pfCMHJxxRXczra8uJ14FPgp0Btp0XRhTw42Vy0ic0lewELJqUYFNmH0TEDvQmNgfQLi+/exV1OYWX2Kv65cwl5dQWMrBnfKHN9svJ4PKSueIJLxtUBYHNFYw2LBKfxlatPXtQLibsQ7HMJqvgQm83GrMmpRIRWE+kcTLojAaUi+KqoiKuGNVPESAVBxGVQ5b1wWf3ZUckLm9vBjtKDbCjax5dp66kba2S3zWYL4UFBfku6QdvId0aS74zkm5p4yH+OCEsoI2MGMCpWuo90Km+xzixHDBBMbW0NHo+TyFBNniMC7djZRoN3IbqtZpt+K6UGAXuBsVrrbK31CqXUP4FvgTDgA+Ch9jyBUooJU64CrqK0KIMj6Y8Tb/mEsCCjuHGwxcmYft/j8axlz44RLPtwKjG9pzJixAhGjBhB7969O/y7ITkqkV+Ou4qbR8zki9zNfJ67iXK78XxOj5tdriP8Zv0L3H3aNZzZW05ehAiUYcOGsXTbIC6asAaXy02obTU3DHuWSQnD+c/uD33JidT8ney1ZnPPadcyODKRR7a9RW6NMZKKWZn4/ek/Ymxc810A6p3X73Qig8L4x84l2N1OKh21vOvYzLiy8Zwef0LKCfYIu8sPUeuyA5AYFsugiD4AVFVV4bTWYguvw+12896KjxmY2/zpbVVVFWlpaY27OneV2lWMj3sAXC7vDBP0+gvE/PToFs5hUyBiFtR8bkyX/hX6L/Ytl5+fz/Lly4kMraF/glFQ2GIJgQhjlKdD/i0vjjF5ccGoqbyT+x1aeygPd7J7zx4mTpjgF+M5UPmG97V9Bwm/b7T+oUOHWFOwm9zhLiwmN2aTm4uisrk6LgfiW66RcSw6mrwYDPxJd6TKZzegPXUoTx2oUDymSA5VFXKoqpAVuZsBiA4Op09obON1OPolhpqDmdF3PDP7T5I+qifI8/uWkWbNweGxsyxnA/NHH3sBwp5i9erVxFjW+aZrY66iosJIXIRbQugf3kwCp9dDmGtWEh5uoo+pFofDxTTTYV73TKXKaeaIqYS91sOMi0s+et3IHzQkL2o+g4Q/glIU1pXzyv4VbCvNwOlxY7fbcZjqqyMrQkNDsZjMjIsbTFJ4LzJKviGz2oMLExDsaw1Q47KxrTSTbaWZnbeTTnXaA7aGkUZcboXb7QZMaK2p00FY7SXEaYcxCokQPUhLTb+11tlAZJN5TwJPHs/zJfQZTkKf5/G4/k1BxrOYq14mzGyMWGEyeRifvJ/xyfvJyPuOdesms2xZP6Kjo32JjDFjxhAc3P7vWUxwBD8aej7XJp/LmsI9fJq9nozKPMA4Xv5t+zv8eOj5/Hjo+dJqTYgAGDx4MOU1vamqiyAqrAaPqwKTfQdj4ybz77Pu5KX9y0nNN4aMLKqz8qfNr9E3LJ68WqPZvQLuOe1apvRqu+sZwBm9RvDw5Ft4ZNtbVDvrcOLiHzuW8Ow5v+x+9RsCZGOjUUZGoZSiurqaJ598kpKQCpzeXe0IOvqYaTabvb+RICMjo+uTF45DkHczZlWL8Xs4HPo+BxEXt7xOwh+h5kvADXXfQ20qRFyA0+nk3Xffxe12M3xwFmaTiZCQEAg7C8xxuDxusmuKfZs5lm4jYCTXY4LDsdqrcQVpvt62pnHywr+lhX07eKrBZPw71lrz1lcfkTnUSNSEBDs5LbyUO/vsQMX+HCzHllBpSUeTFx8BlwBfdGoUXSjJUsHt0evIcPQiw9mLXFcsbh2EhzCUKQSz2Uylo5ZKR/sakuwpP8zSw+u4afhFnNVnjLTY6ELri/Y1OlhlVeUHMJpjpJ3gKjb6i7Xjs5Kfn8/KlV9x+yVG3+iQkBDyQmcAxn4YFt2/+R+zlkRIuBdVsoDQ0FDcHjfBLg+xxUGUR7uoq61jRc7m5pMXYeeBigBdY3Q1cOyj1jyMBVvfJL/WqG3hcbtxOIyMt8WpmJQwjCvHn8+khGFGc0lXMQTdhcPt5KA9hn0hv2d/XQhp1hxfv0/RiRwHwFNJrdtCvjMKu8ON0hBap/CEKMwa8pwRxDlzIHhY29sTQmCyhNF/9G9B34O9fDn2wn8T5NqG2+3C49EM73+I4f0PkVvSl3Vpk9m6pYItW7YQGxvLnDlzGD58eIeez2Iyc36/0zmv73h2lx/ir+vfwO69cLL44CrSK49wz2lzfCMQCCFOjODgYAYOHERW4UBOT07D7XZhqvoYQicTERTK3d7ExHP7llHjsuHR2pe4ALijhXoYrRkVk8SjU37KQ1vfoMBhp8Zl482Mlfxi7FWd/Op6Hq01G4vTfNNTe48GIC0tDZvNRpDfz2tnCAwYMICBAwcyaNAgBg0aRE1NDc899xxgDN3c5cOp1izHNxSquR/0f7PtoeuDh0H09VD5pjFd+lcIP49ly5ZRVFQEwOikQ4SFhRmnExGXAXCktsQ3FG/v0Bgij/H/hUmZOCNxFN9kG7U5dlsPUV5eTlyctxujOR6Cx4JjL0aCZb2v5cfanZv4LioXbQKL2cWA4Cru67sRiykC4u46pnha02byQin1JviaIYQAHymlvgcK/JfTWt/c6dF1gorKKPqXezivv3GVstYTxEFnAunOXmyvHMyB2j7YTcFYLBZCQkLa9WHOqy3lHzuXMComiVtGXNxmkzDRcbUuGy+mLW8071B1Ufcfv9mfdkHeT6BuLUT9BPo83moCw+1289577xEXUUxcZAVms4ng0Dgy7A39n5t2GWkk5laofBflSCPIEkRuzWzCc6JgnBOX28XKrE3cOuwS4iOaVLI2hRjZ4OqPjenqz3i5YLgvcQFgqXLRr8hMrNXEuF5DuOOH8zGZ/JIo1pdA2wk2wejYQYxOuhmUQmtNYV0564r28Xr6Vx3Ze6I1tvouI9FobcHjcRNWpwivU9TGmgAP+c4IxjmzJHkhREcpEyHxVxASfwXUbYbyp/FUr8DlcuNyuRjYu4CkXp9RXBHP+v1nsDd7BK+88gpnnnkml19+OaGhHav0rpRifPwQbgmbzvrofF9hz60lGdy74QX+MGEuQ46xKbAQ4tgMHz6cA3uHcXpyGi6Xm6CKhRA9F0LGAXBu39MYHTuQ/+z+iN3lh3zr3TT8Ii47xgK8AyN7839jruTBja8BsPLINi7uf8Yp3+32UHUhJd7RmyIsoYyNHQRAdrYxxGiwHSyWIIKDg+nTO4FfzGhcLD4uLo7Q0FBsNhtVVVUUFhbSt28XHlP9a47F3dl24qJe/G+h6gPQteDYR/aef7Nxo5EUC7bYGT24xFf/johLARoX62ymcHRHTO47ilVHduB2u6iM9rBu3TpmzZrVcN4VPsObvMCoexExk2p7HU+kfYQz2EgVxIfU8ef+64kyOyHu10bSo5O1p+VFRpPpvZ0eRRcKComhyPIvstI2kBzzCSP6pXNaSAGnhRRwTeRuPBq2FQ1n3cEJlNcNJuX88xkxYgRKqaPOM3eUHuSDQ9/7+lztr8jlj5tf48zeo7hp+EUMiuwTgFd4clqU8Q1l9saj3dW57BTZrC0WM/N4PI1PqAOtermRuACoegfCpkH0j1pc/OuvvyY/P5+zxxgFcUJDw1ARF5JxpKEQT6vJCxUEfV+Gkj+TbzUz6qznuaI6lazCL6iN0DjcTh776AUe+eGvjCZn/iJ/4EterDqyhm8KG1pLXOAZRsFWo2aMxWLhh3Oua7yf3ZVQ+XrDdNwvfUkapRR9w+O5evDZrC/a13LsomPqGrqMON3Gvo6oNRFsh2ptJC+OOCLBeTiAQQpxEgibAmELMTkOEFz+HMFVH6C1C7fHTVJINbNjv+aMYbtY8v2VbNq0iQMHDnDttdcycmT7mov7C1fBPHTGTbyV8Q0fHvoegMI6K/dtfJk7x1zBBf0ndvKLE0K0ZNiwYaxcmczhogEM6ZsHuKHoXkhaZozsBfQKjeEvk2/ms+wNrCvay7l9x/ODgVOP63mn9B7JcHMfsjHqarywfzn/mno75lO4C9kGv1YXk3uN8HXdP3zY+I0T5IDg4CDMZjNljqqjLnSaTCaGDx/O7t3GSB0ZGRldnLxoGFmKoCHtX8/SB2J/DuVP4vFoLJVPYjbdgNtj4cKzFMH1TUyCx0FQEgCHqhrOEY43yX16/BCCg4Ooq3NRFaVZ/d1q0tLSmD59OpMmTSI07BywvmAsXPsdbu3hgdUvURFknBeHmJ3c3289/YNrwBQPsfOPK56WtPlN0Fr/pT23LomuEwQFBXHZZZcx5/qHmDRrM85+X2ALmkVQUAhmswmTgsmJGfxi+gdcMuAb1n70OeuXfkMfIhkePaDRbc6QGbxwzq+ZPeisRjUvNhXv5+71z/H03k+OGtf9VOTxePj8889ZvHgxVVVVba/QxP6KXD7P2eibjrA0XMU6XF101PJaaz799FP+/Oc/8/HHHx9TzJ1Oayj/b+N5xQ+AM7fZxXNyckhNTQVgZP8sQkKMz6cn/FIyKxu6y7SavAAIHgr93+JQ9U9RpmAuueQSUvo0VCzeSwGvvvaqr/KyT/iFoMLId0TwfH4vwOi3dmb0cIq/a+i6c8kll9CrV6/G61a8Dh7v+xw03NeUzZ9SiuuHXdh67KL96kcasUXj9LZMDK9VhNoUHo9CUz/iSFbL2xBCtF/wSEj8NyRvQMXdgcUSTUhICBEREQxOLOWmCz4gKqyaiooKXnvtNd5//33q6uo6/DRmZeLmETP5w4Qf+0ZGc3hcPLXnY15I+8zXPFgI0bUGDhxIUFAwn2+5AKdL4fF4jBHZKhY2Ws6sTMwePJ1Hz/zZcScu6l0YPIpgk3F9+WBlPl8d2dLGGie3RkOkeosZ19XV+bpTWDyKyOBwwCh+XOk8uhTAiBEjfPfT09OPerxTHWvyAiDu52hTL+rq6ogMreLMETuJjY3lnAlVDRfV/X5nZ1X7D5N6fMmLfmHx9ImIRykTbrOmJkJTXFzM0qVLeeyxx1j+bRlujxFEre0AL+/5gN3V2b71/y9xB6dHeLtPxf/KVxOjs7UrjaeUilaqoeqbUuoipdQT3ltKl0TWBUwmEwn9zqbP+CWEjdpIRN+fEhUd5+0/pJg2ajvXp3xMTtZm/vOf/7Bp0yaa1iaNCg7np6Mu45mzf8H5fcf75nu0ZuWRbdy59r+8k/ktbu050S+v29i9ezerV69m+/btfPVVx7oKuDxunt37qa+f0hkJw7mgf0PBGP+KuvW++eYb1q5di8fjYcOGDeTmNp8gOKFqUxuaVtXT1VB0t1Fs0Y/T6eS9995Da01UWDVJvUu9xd8sFKgzqHEZiYbmCsu2x50X/ZiIEOOgXheu2VtyiFdeeaXxD2tTGK6wC3mycDJ1Ogg8NhJDYwnfXOYrcjRw4EDOOafJ0EjuKqh4qWE67i5o4erA6fEdPICL5jmPGMPaAhl1sXi8w6PGuUIItSm0NoGGPGl5IUTns/SDXg9B8maIuxuTyURYWBgDE23Mm/kh8VHlAGzZsoX//Oc/pKWltbHB5p3VZwyPT72dgRG9ffM+z9nEnza/JhdJhDgBzGYzycnJlFfHsmbfFBwOJ1oDpY+BM69LnzvWFM61Q871TS/K+JrKk6h+WGpqKq+++mq7fq+X2Co56L2IZzGZmZRg1BbKyWkYfjQ6OpreYTG+6eaOkf41iQ4ePIjLNwpIJ/PYwFX/+VAQ1MEuP6ZI9uRf7PvtffaYzdww9xIsjlUNy0TO8t3tzJYXSikmxA8lIiKcoKBgKnopKqM8FPdyk9mrhtfyN/KLjBRuzLyU6zMvZ+nh9WjvOc3ZuoQfJHg7a5j7QfQtxxVLa9rbBulbYDiAUur/gHeAIO9tsXcs9p4leCgk/hs1eA1BMbOIjIwgKCiIgb3y+enF79InKoMPP/yQV155hdLS0qNWTwyL457xc3hy2h1MTGjoU+5wu1h8cBX/3v3hKXuF5MCBA777aWlpRyWAWrM0ex2HveMVB5st3DHmB40q5x72G8sYYMeOHaxcubLRvPXr1x9L2D42t4M95Yexu51tL9yS8qcb7ofNwPdVq1sLFS83WvSzzz6juNioFDxmUDZhYaFGdjVsOunVDQfg4dH9j6neR7gllIuTzyQkxGjBUtTbQ25uLi+++CJLly5l8eLFLFy4kAUbQjhQF4P2eNCuaoJT8ynKNf5hmM1m5syZ07i7iHZCwe3gNoYFw9Ifoq5tMY4eU6uku7NtAsDhURy2N/yzvvrcywi1KzxaAZp8ZwRux6HAxChOKm7tYUPRvkY/kk555hhjqLjEZ1HKQlCQhb69PNw+6zP6xhn7qbKyktdff5333nvvmFphDIjoxT+n3sY5iQ39pfdX5PKbDS806mMvhOga9Se86/ZNJq8kgpqaGlzOSij5U5c/97WDz6Wvt5t0tdPGmxlfd/lznghHjhzhiy++ID09naVLl7a5/Ca/Vhfj4gYTEWT8lq2vdwEQHx9PQkhDPbdS+9HJi/j4eBISjNH6XC4Xhw4dOtaX0Dq/i0Y2dx/fyHvtlZGRwTufmSmrNn7fRUcqkkx/bmjhbBkIwWMAKLdXUeFNaoWZg0kMiz3u8E+LT0YpE6GhoVQMDSFrgpnDwzzk9XdTluDhkCueKncwWmu0x+guklCh+cOo1Q0tQ+J/Y9TT6yLtTV6M0FrXX0b+FXCR1vpXWutfASnAH7oiuBMiaCD0ew2V8EfCwsIJDw8nKtzG9ed/wvTRWziYmcFTTz3F999/bzQZa2JodD8WnHETfznjZob6Zby+L9jN47vew+nposxeN3bw4EHf/aqqKt+JeVsKast492Cqb/onQy8gMSyOwY2SFw3dRrKzs3nvvfeO2s6OHTuorW3f6DFNebSHB7e8wZ82v8bft79zTNvAtgVs9UOdWqDPk0YdiHolfzdGi8C4OrdhwwbfQ+edUduQIIi4zDd8HsCI6AHHFg9wyYAzCA4OJjQ0lLJ4Ny6zpqCggHXr1rF9+3Y25u9jnW4Y6m9u9FaSVMPB/6KLLiIx0a8QkNZQ9HuoW90wL+GBDh+kxTHwFuvMrAnD6TGalUa6gzl36nQiLKFYHMbnx6UVJXXFoE/NJKroPEsOruLRHYu5d+OL7CmX1jyNRF0F/d4AFYbJpIiNcvPzK79m9KAS3yJbt27l3//+N/n5HR8xK8wSwr3jf8i8kZf4+rxXOGp4aMsbLD28rkMXB05FtbW1zf52E12vvjDi4cOH2b9/Pzt27GD9+vWsWrWKFStW8PHHH/POO8f4O+sEOeussxgwYAAebebzLRfg8Xiora2ltuRjaos+6NLnDjZb+Nmohu4BK49sZX9FN2hZfJz8L3Dm5OS0mdhtbpQRaKh3AUZBzoTQhuRFsa2i2W35dx3JyGha0rGT+BXrtLk71hKiurqaJUuW4NFmVu2ajtlsNlpi27c2LBRxma+unH+xzkGRfTplaO3T4xpaSSulCA4OJiIikrCwcCwWC26P8Rxm5aGfpYK+BWbuiEsnPMRhrBQ0pNX6fp2hvUOlVimlkrTWuUAM9eM2GjKB4ytvGmjKBPG/hNAzsBTeSYS5BLvdTsr4dQxIyOfTjRfz2WefsXPnTn70ox8d3ecfmJAwlMfj5/Py/hUs99ZrWF+UxqM73uW+039MiPnUOKkrLy+nvLy80bz09HT69Gm9mKnWmufTPsPhNpI9yVGJXDnoLAAGRfbGGDXbGOnF7nZSW1nNG2+84WtW1bt3b8xmMwUFBbhcLjZt2sT555/f4fj3V+RywPvPYUfZQQ5XFzZKnrSLf6uLqGshaICRhaz5Ghy7AQcU/pI804uNanRMmjCM+PC3GtaNuJSMys99k23Wu2jFyJgkBkf2MZI/EYqyeCd9io26LU6L5uAQY7+7PBYmhuUwK3wfqwfFsytnBqNHj+a8885rvMGyJ6FqccN03G8h6upjju9YKKXigVcwhm8uAe7XWr99QoMIhLoNaA0ZdVG+fyIj4pIwmUz07duXYFs1OtIoOJznCCXRle8r7CQ6xu52klmZx/DoAQSbOzqy+MnBoz186e1v7fK4eXbfUv497c5Tdn80KyIFBiyBvJvAYyUkyMlNM7/guwM/ZsX3xn6qqqri1Vdf5Y477mj2N0RrlFJcPfhshkX14/Fd71PhqMGtPbx64AsOVB7hF2NnE2oObntDJwmP9rCmcC8bnFlMc0331Qapp7Xm4MGDfPPNNxw8eJDIyEhOP/10Jk6cSFJSkrQC7GKlpaUsXry4UbP+nio4OJg777yTtWvXsnLlSrYfHMvEoXtxOV3UZPyCHelRTD3rIsxmc9sbOwZn9h7Fmb1Hsqn4ABp4Me0z/tnDi3c2TRocPHiQcePGNbtsrcvGLr9WZlN7GYWQPR5Po89XfHw8Fm/3aGi+5QUYyYv61tnp6elcdtnRNdqOm7PhAm5Hkhdaa95//31frcCc8tMJjq5CuXc2XtA7yggYo7DU66wRqXqHxXL14LNZnrORcEsIiWFx9A2LIzE8jsSwOMIdHpLK5xCtS1HAwt0/YsbonX6tLn7f5Rcy2/vpfw1YqJQaAvwbeEYplaSUSgKeAr7vqgBPqPBzYOCXqLAzCQ0NISIinFFJ2fx05mL6xBaTk5PDCy+8QElJSbOrm5SJ20fN4qrB033ztpZk8Lftb2NzO07UqwiozMzMo+a1J7v5XcEutpca6yrgrjGzfUVRQ8zBxCnjoOTRmsyyXF5//XVqaoymUuHh4dxyyy2N6jFs2LDhmK62rMpvfJD4vmB3xzbgOAA1XzRMx/2f8VcFQeL/AOMHpse2kwPr/8/X5653795cc0k0ylsok5AJuMyJZFZ1oFhnK5RSXDzgDMAoYhsyqT8zZ85k1uWX4zy/H5aYMMLDI4gPjeY3/XYSEx3FlReY+dOf/sScOXMa/2OufBfKn2iYjvqxkZw58Z4BHBjJ0xuA55RSzf8HPFm4K8GRhsvlIsseh9tjBhRTBhsvu2/fvkbRTm8djDxnROMhu0S7uTxuHt62iD9ufo0Ht75+yl7hTq/Mo9xe7Zs+UlPKe1mrW1njFBU6GZI+BrPxA9KkXJw/6m3uuinGN7pTdXU1L730EmVlZa1sqGXj44fwxLQ7GBnTkIz8vmA39218mbzao7u3noyK6qws2PomT+x6n1WOA42G4NZas3//fp5//nlefvllXyvQ6upq1q5dy7PPPsuTTz7J119/3Wx3YHH89uzZw//+97+TInFRz2w2M2PGDH77299S5J5PjS0MgIjQamxHFvD000+TldV1xbF/NvIygry/hzMr8/nqyNY21ui+HA5HoxYT0Px5Q71tpZm+LvhDovrS29storCwELvd6LIQFRVFWFgYvfxaXpS0UBdo6NChvuRlXl4e1dXVzS53XBq1vOjX7tXWrFnD/v0NbQN++MMfEdR3QeOFTLEQ1lAUtvEwqZ03esq8kZew+MI/sfD83/GPqbdxz/g5XD/sQi7qP4npyZMZ2Gcq0d79fsdVWwm2eM9dgsdC5JWdFkdL2pu8eBBYD+zE6CLyM+Cw9zYG+GmXRBcIlr4w4H2ImY/ZbCYiIoLEBBvzLnqfCUP2tvnjQynFvBGX8KOhDVeqd5Zl8Zeti6h12Zpd52Ti32XEf159C4nmVDnreOXACt/0DwZNY0RM4y4SfUxRvvvvfPUxhYVGttFsNnPTTTeRkJDAhAkTCAsz/qmUl5c3Ogi0h8vjZk3hnkbzvi/c07GTlvJnG+5HXGpUqK8XMgoS7kdrsNXVMTH5O/rHFxASEsJNN91EkOObRuvm1pT4WqIkhEYTF9KwD47F+f0m+P4B5rmsJJ85BusgC4d1ORaLBbPZzG9On0tCsAelQNm3GcUh/dV8C0W/a5gOOx/6/JOjxhXuYkqpCGAO8GetdbXW+ntgKXBTa+vl5OSwcOFCwCiUmpKSwqJFiwCjeXFKSgqLFxstSioqKkhJSeHDDz8EoKSkhJSUFD799FMACgoKSElJYcWKFb5tp6Sk+GqwHDx4kJSUFFatMoos7d+/n5SUFNauNYbP3b17NykpKb6Cftu3byclJYXt27cDsGnTJlJSUnxDe61du5aUlBnsP+jE4XDw7UYTWx98D1dZDSPikli5ciUPP/wwnvwqPFpRuDmb38zfR0Gusb1PP/2UlJQUX/L1ww8/JCUlhYoKo3nl4sWLSUlJ8XW5+uqrr0hJScHpHc5k4cKFpKSk+PblSy+9xMyZM33Tzz77LLNmNRSReuqpp5g9e7Zv+vHHH2fOnDm+6ccee4y5c+f6ph955BFuvPFG3/SDDz7Irbfe6pu+//77mT+/Ydite++9l7vuuss3fffdd3P33Xf7pu+66y7uvfde3/T8+fO5//77fdO33norDz74oG/6xhtv5JFHHvFNX3DVpXz0nNESKs2aw+xrr+bxxx/3PT579myeeuop3/R9993Hs882fP9nzpzJSy81FLNNSUnpdp+9TZuM+imtffY2FKVRtieH7+9dSFWO8dl54ZNFnDXjbN/xfuXKlaSkpPhOWFasWEFKSgoFBcYPq+Y+eyel4JGQtBSChnpnaJKC/8svb9QEBRktMCorK3n55Zd937uO6hUazd+mzOPSpMm+eYeri/jdhpca9Q0/2WhvUfRfr3+OnWUNJ4qr8ndS67SxZ88ennnmGRYuXNioL3xTJSUlrFy5kscff5xnn32WdevWdc0JzCnG7XazfPlyFi1a5DupNJvN9OrVi6SkJEaMGMH48eM588wzmTFjBhdffDGzZ8/mhz/8YYAjb7/o6Giu+/HP0L0e8XXvPWP4LkyO7bz44ossWbKEvLy8Vn/vHou+4fHMSZ7hm+7JxTsPHz581P5pLXnR3Cgj0LjexaBBg1BKNeo20lJR49DQUAYNGtSu5z5mfiONtLflRW5uru//OcCMGTMYNWoUhJ0F4Rc3LBhxMaiGVo+NinV2tJV4G1ptoRY2A6UgKMhCiMmvFlbCH1os2t+Z2tXuUxulRB9QSj0OjAeSgDpgp9b66LPVnk4FQe8FEDYFVfgbQkLAbHZz+ZRviIu0krrrbF5++WXuuOMOYmJijl7dOyxksMnCogzjhHSfNZuHtr7JQ5NuJDIo7AS/oBOjvqlmPbPZjNvtxuFwkJOTQ3JycrPrvZ7+JRUO44QpITS62SE1e5siyaIcm81GprWGwd6P7rXXXuvbblBQEFOmTOG7774DjMKdY8aMaXf820szqXI27nuXX1tGRmXeUcmUZjmPQJXfj/K4Xxy9TOztFGctIpTtmBRcOe0rahM+pnevGDjoV4wp4jIySvzrXRx7q4t6UUFhnJ04zte65PX0r9hrbfgHcPXgs5nUZwK4zjVGSwGoWQ6xtxv37buhYD7g/ccTPA76vRSoOhcjAbfW+oDfvB3AUX2FlFLzgflgfEbS0tJITU3F5XJhtVrZt28fqamp2Gw2rFYre/bsITU1lerqaqxWK7t37yY+Pp6KigqsViu7du0iKiqKsrIyrFYrO3fuJDQ0lKKiIqxWKzt27MBisZCXl4fVamXbtm1orcnOzsZqtbJ161YcDgdZWVlYrVZqa2tJTU0lIyMDq9XK5s2bsVqtpKWlYbVa2bRpEyUlJezevRtbbRF2ux2700OhK5L6YXkKdh0kbcduHA4HqsaNx2MBDXaPiezMNaTlncauXbuwWq2sWbOGmJgYdu/ejdVq5bvvviMyMpI9e/ZgtVpZvXo1oaGhvv2xatUqLBaLL576IX33799PeXm5b/rAgQOUlZX5ptPT0yktLfVNZ2ZmUlxc7Js+ePAgRUVFvumsrCwKCwt904cOHWq0fHZ2NhUVFVRXV5OamkpOTg52u933eH3V8vrpI0eOEBIS4pvOy8ujpqbGN11QUIDb7fZNFxYWEhwcTGpqKhWeOg5W5BOZ0BuHw/ghXlRSSGZmpm/50tJS0tPTfdMul4sDBw74pusTqPXT9e/pif7sDR8+nA0bNjT72duyZQs1NTWtfva+TjyC0+VAezyYXRqHw47daSe7ooC169aRnZ3Njh07sFqtrFu3jszMTHbu3InVamXt2rXEx8c3+9k7aQUlQdInkHcD2I1jbQIvcfcNc3jyzWjcbg/l5eW8/PLLzJ8/n6iojielg0wW7hxzJSNjknh+3zKcHjc1Lht/2/4OPx56Pj8een6n9H3uLsrsVTy371M2FR846rEqew0Pvf4klszGw7KbzWYmT57MeeedR1lZGdu3b2f3buMYWS8nJ4ecnByWLVvG2LFjueaaawgPD2/6FKINlZWVvPPOO40KIMbGxnLDDTeQlHTydVnsP2I+nrzVOK1fYLfbmTXlW1776kds27aNbdu2YbFY6N+/P0lJSSQlJTFw4EASEhKOq7vSNcnn8G3+dgrrrFQ763gz42vuGju77RW7meZaYhcVFVFVVXXUsdDlcbOlpOE733LyYiAej6fNgp31RowY4Wv9kZ6ezoQJE1pc9pj4JS/q2tHywmaz8c477/iSOgMGDODSSxu6htD7r5CfA9rWqJWz3e30tbhTwOCoE1jBIfwcaHoNP/RMCL/ohDy9as9VZaXUImA5sEJrfWztHQNk1KhRuqNX4BtxHISC27xNtd3U1tby/pofkJ43hF69erX542Pp4XW8eqChG8GQqL4sOOMmtq3d1OgqZneRmpp6zHGVlpb6rkyGhIQwbtw4tm41mrddeOGFXHzxxUets6f8EH/avNA3ff+EuUzrM/qo5V5auYSP7Nux221EV5oYvT+ICy64gEsuuaTFGAB++9vftrt/8ZO7PmB1wS7AGI6pvqnaVYOnc+vIS5tdp9H+Kv4zVLxi3A+dDklHF3NKS0vjo/f+x+2XvENwkNMoopn4c+MLn++96hyUDIPW8HzaZ6zI3QzAjcMv4rohM47aXktaeh+b7u96w6L78Y8zbzO66lS8DcXeK9ahU42m0M5cyL0C3N6CqZYBkLQMLB07WCqltmitp3Ropea3MwN4T2vd12/e7cANWuuUltZr7XhQV1fnu7J97rnn0r//8SeM2qND37nca6grX8XhujB+nXcdmEIZENuHV8/7LWC8hj/8awFpE+oIDbLTN7iOF8YFQ7+X29jwccZ1AnV1XFpr/rb9HTaXND5R+unIS5nt1yXwRMd1rI4nriM1Jdy11qjhE2IO4u9TbuW+Ta/4jo0/G3WZrzZRR3XWseBYHfdvg7Z4qiH/p1DX0Ks23/ULnllU6/uR2rdvX26//XbfCfOxvFcZlXn8Y8fiRgXqJvcawT2nXdtpF0oC+dn+vmA3z6d9RrXfhYV+4fEkOMNYV5YGaN9vAgCLxcLUqVM577zzjrq45HA4SEtLY9u2bRw4cOCorqWjRo1i3rx5xx3zyXgsaElmZibvvvtuo9Yro0aN4kc/+lG7E0E98ljgzIHsFDzuWmw2G19tPZP1+ye3uHhoaCgDBgwgKSmJsWPHNrr635zm3qtNxfv5m7eQvAL+OfX29l1Y60Rtfoa0G2q+NI5/5t5g6QXmXmBOABXE008/zZEjRotei8Xi6zo9d+7co5IIu8qy+POW1wGID4nilXPvQbnzwLGfr5Y/Q5g5h97RZQwd6MHpdMPAF7h+o1EAP9hkYfGFf2o2YZSdnc1zzz0HGK1p/vCHP3QosVTjtLGxeD+jYpPoH57Q+EGPHQ4OxbiyZGJV7mucn3L0uY+/JUuWsG3bNiPu4GB+9atf+UZFaU1G5RHu3WC07uwXHs9z5/yq3a/huI8F2gVZ4xpGQAEY8KHRUuQ4tPdY0N6KW58BlwNPKqUyMRIZy7XW244jxp4heKhxklYwH0vtN4SFh3HFmV/z8pdzKSmBV155hdtvv52IiIhmV589eDpBJgsvpH0GGP2THti8kEs9w5pdvifzb3WRnJzMqFGjfMmLjIyMo5IXTo+LZ/d96ps+q8/oZhMXAKrcjt1sdLupDdOMO21coybr9RISEhg1apSvy8j69eu54oor2ozd5nawwa+i8fXDLuCNdKMJ9ncFu7llxMWtX8lyl0GlX7HNZlpd1Bexstmi+XL7eVx1VqrRF7riNajb1LCgt5JwemVDl43jqXfhb2zsYAZEJHCkpqG/b5g5mN+Ov85XY4TIS6H494DHGJbTcQDyb29IXJiiod+iDicuOlk1EN1kXjRQ1cyy7bJ+/XrfP5Bt27Yxfvx4Lrnkkg4X1+sy2oGnbitOp5PDzv64PSbCQoMbFWkKCwsjMTSOfd7hq4qc4TjtGZwa5YI7x5rCPUclLgByato3atKJsLPsIBuL93PJgMkMimy9GPLx8G+yOylhGMOi+/PDIefxTua3ALyV8TVTe48i0Tucn/BjioT+i6DgLqgx/v/3C1rIDT9+kTff+RKtjRGfXn31VX72s5/5ujx21PDo/jwxbT5P7PqAHWXG/+AtJencu+FF/jBhLskn8mpcJ6py1PJC2md836Qr5xWDpjEw18KXq75GT9AoBZVRHnSEhfMnn825557b4gWl4OBgTj/9dE4//XRqamrYuXMn27dv913F3b9/P/v27etQi83uzuPxkJ2dzd69ezly5AjnnnsuFksLP/1dBVC3AcIvBHPrLYI8Hg+rV6/myy+/9HWtVUpx8cUXc/755zceVv1kFDQQ4u/FVPoI4eFhXH7WPnTED0jLrGu2S5jNZiMzM5PMzExWrVrF1VdfzbRp0zr0lGf2HsWUXiPZXGIU73wh7TP+MfW27lW8s+QRqHix2Yc8RPOD8TXUjAin1h5OXK+h7MstwapC2Fmax76dSRQ5NIUOTaHdQ6mjvnuJm6mhWaisUaBr8Hg004Y1JMsspig8ykFI+cOEW2ZT67Lj8LioctYSHXz0udmAAQN8rUsrKyspLi5uc1ABf//Z8yGbig9gMZm5efhMrhx0VkPyw3UYX5NYywC0368vm83ma0VZUVFBRUUFxcXF7Nq1y7fM1Vdf3a7EBTTuMjK0E+tdtIuyQOhZUOutORSectyJi45ob7eRd4B3lPHuTAV+ALyklOoLrMBIZnyltT7mE4duzRQOiU9D9kUEkU9cjIvZ077i7VVXUVhY6EtgtPTjY9bAMwk2W3h6zydojB/B7zjLmFZ3lq/4zMnAv+9Y8pAhxCb1pjrCg9MCxXWHePvA19RqB1Z7NVZHDSW2CgrqjJFJwiwh3D7q8ma3W1hYyIHNuzBNUXjMGk+IiYsvv7zFf47Tp0/3JS+2bNnCJZdcYgw11IqNRWnY3Ubf/qSIXsweNJ2PD6+l0lFLmb2KvdZsTotLbnkD1leNJl1gdKcIT2n0sMPhYNGiRdhsxjKHy6YSHBeJqq9z4fBrRh1xKU6Pq9GwsJ2VvFBKMbP/GY2KnM0f/YPG2WNzAoRNh7o1gIbc2eCpb4IXBH1fNep3BNYBwKKUGqG1TvfOmwDsaWWdVjUdxnDXrl3s3r2byZMnc9FFFxEbGwvaTW3hX0gr+Y7R/X5CeML85jfWFWw7cXr7uabV9kOZjDolTf9pDUjsR5C9EEKMf6H5tcUM0vqE1yXpiaqddby8v2GEn+SoRN8PhGy/72Mg5deW8fC2t3B53OwqO8RT0+/ssudaX7TPd79+iLo5yeeypnA32dXF2NxOnt+3jAcn3YhSCpfLhdaaoCBJlwGggqHvM5CdBs5M0NWM6f0OP/zhz1myZAlgdG96/fXX+elPj710WHRwBA+ecSNvZXzDh4eMlh4FdeU8sOU1FpxxE8OPY5jtQNhcfIBn9i1tVCi2d2gMvxg7m6KtxigiwSgirVATpwgOCWb8D89n1qijL2i0JCIigunTpzN9+nQ+/PBDX/2XZcuWMXz48KM+w1lVBXybt51BkYlM7zOGiKDQTnmtXaWwsJBt27b5unQB2O12XnzxRW688Uaio5vk/u374Mg1xv/6sHOg/5IW/2fU1dWxZMkSX70mMPbn3LlzGT58eFe9pO4n9najq7BjD0EWN1efvR6ue5uq6mpyc3Mb3eprSdVbtmwZgwcPpm/fjp10/mzUZewoy8TpcZNRmcfKI1u5NClgjVYas++FipZbebqdZSRE1REcUcuyqqlsrkzAGem9OGQDlddyw/5podtBG79//GtmmM3mho+p6zAJQR5qvbUjS+1VzSYvzGYzQ4cOZe/evUD7RkSsV1xn9XVfc3ncvHrgC3aVZ/GrsVcTFRzuK9apNZRYI30XxSoqKny1YFpyxhlnMGnSpHbFAU2KdUae4OQFQMw8qP3GOEdOeLDNxTtTh9J12rBBa/2gt1nHFGAN8BMgUyl1R1cE2S2YY6Hvs4CJoCALowaVcs4Yo0l/fn4+r732mu/EtDkX9Z/EPePn+DKk5bqWeza8wAa/H4c9mX+9C3u4i3c9q/jV5qdIP93BwdE2Dg+x807mVyzLXsv3hbvYXZ7lS1yA0S3Cv9hOvdraWl5//XVcThdhdQqlTISHh5HnaPkgN2LECOLj4wEj01lfhK41q/1GFTm/7+lYTGbO7jPWN6/VUUc8NQ3dRQDiftnon77Wmo8//thXvM5sNnPjjTcR1P8/RqLAnykeQqdwqKrQ1zS7X3h8p9ZJmdl/kq8q88UDzuCC/s3094v4QcN9j1/fwcSnIPzsTovlWGmta4APgYeVUhFKqXOAq4A3j3WbzY0ipLVm8+bNPP744yxbtpTiw7/i7t2HeTh3NE/sWdG4xUwX89Su8/XX3l/b15eQGxLVuE9lv379CK4zo1FG8sJhBnf3aTXQnb2e/hVWb4IoPiSKe8df53ssp6a4W4w48lbmN75jw+HqQvJru6YnZ7m9yjdstEkpzvQOUWcxmblrzGzqj3BbitN54dslvPbaa/zlL3/hwQcfZPPmzV0SU4+kgqH3Yw3T1Z8yaWQ5V199tW/W4cOHGw39fSzMysTNI2Zy3+k/Isw7bGq108aDW95gv7VnjPyQV1PKP3Ys5q/b326UuLiw/0T+Pe3n5G9K55tvGgpbJ9uiiYyMJCQkhDUl+475+3nppZcSGmokI8rKynx1s+p9nbeN3298iaXZ63l67yfMW/0vHtuxmHWFe31FtbuDiooKVq1axVNPPcV//vMfVq1a5Utc1MvJyeHpp59uXNTUmQN51zf8r69bA7Urm32OrKws/ve//zVKXAwePJhf/vKXHU9c1K6CQyfuam2nUxbo8y98p1J1q6D6Y6KiohgzZgwXX3wxt956Kw888AD33nsvP/nJT0hMNFpCuVwu3n33XV9B7PbqFx7Ptcnn+qbfzPiaKkdtK2ucIFpD8Z8Ab1esoCEQdi4EjzG6j2DC5XJx0BnPg6WzWGcbjEubj96GH4UmwVzHVbEZTAzz/oYxxVFaO4Ktmafx5bbz2F78R4i+wbdOgmo4oS+xHd0Cpt6IESN899PT01tcrqmmLcEANhUf4O4Nz7O3/DA4jHoXLpeLPem1FBUVUVRU1GbiIjExsVGB8/bwHyY1IC3sIi6A5C0weBOENN9qvqsc10DtWusCjGFUX1NKmYH4TomquwqbBnH3QPkTBAUFcfHk3RwuSiKnpD85OTm88cYbzJs3r8Wr/Of1HU+wycLju97HgXGV79Edi7k0aTI/HXkpIT11nHbtwlqwitMGfEtIbytvmk6j2lYNCkKCtN8ByQbuppl8xZmxkVw2oPmCOevWraO83EhyRNktkBiEUiYOVRUyKaH5f5Qmk4np06fz2Wef+bZx5plnttinrdJRw7bShiJCM/qe5v073ldzYk3hHm4bNauha0WjDbwFHu9BMigZIhu3INmwYYOvOwLAlVdeycCBA42J3o9DQcOICkRcAsrcJV1G6kUFh/PktDsoslUwLKqFYkKRs6DkT/iavwEkPABRV3dqLMfp/4BXgSKgFLhTa31MLS+01o2Gzrv55ptZs2aNrzWRx+0iwv43nsjoR5GzL6DZUptI0ZHf0Wfo52Dq+iK85flfEqQ1WkOejvVdGWza8qJv376EZiqqPAqzWZPnjATnYbB0XfeC1mzdupWioiJSUlJ8Jwhd6VBVIV8e2cLEhGGNCny1ZU/54UZD0N0x+nIGhPciwhJKjctGrctOqb2SXqFHF2k+UTIq845KpG4vzaRfeOf/691UfMD37R8bO9i4qoRx1dWRY2VoTTQ7dB5ae/jItZHxB4MIchnH2M8//5yJEye23Dz9VBN+DkRdB1XvG9PFf2Tamak4nU7f/6nMzExKS0tJSUlpPDR1B01PHEufsFge2vom1c46al12FmxbxJ8nXs/YuMGd8WqOidvt5ssvvyQ/P58pU6Ywfvx43//kcns1iw+m8tWRrbh1Qx2K2OAI7ho7mym9RvL55583SiqMHDmSvgMH8IZpM3VuB3m1pRyoyGVU7MAOxxYREcGll17KJ598AsC3337LpEmTiIqJ5tUDX7A8Z2Oj5Z0eN+uL9rG+aB8RllCmJ47hvL6nc1rc4BNeKNVms/m6v7Q4XGdUMNZRoZTlFZOcr6mqquLFF1/k6quvZsqkoZD3E3AXNl6n9J9GLS7v66murmb58uWNfsuAUR/qsssu6/hn1nHQ6I6qe/hIL6ETIebWhgtYxfdD0DAIPd23iFKKhIQEEhISSExM5Omnn8blclFYWMjy5cu56qqrOvSU1yafy7f5OyjyFu9cmbeNa5LP6cQXdQyql4Jtg3fCAv0WQnBDgkB7XPz51QfZGV8LJk1oSDDKrLA47ITZ64j2OBmdmMDIPvEkhphIDFb0DlYEmTxgPt8YySl4JJh7sXTlS77P+vVTZ0FsKBS/BkAvsoA4wNTicKnQOHmRlZWF2+1u12f4u4KGLh6jYweS5k0Ml9oq+fOW15nbp4prwxRut4vy6sa/FSwWCzExMcTGxhITE+O7xcXFkZyc3GYLcX9a68YjjZzobiP1AvS7ssO/LJRSszEq+vcC38UXtNY3Ayf/5b34u42stG09wcFmbr50I08suQybM5SsrCwWLVpkDHvZQrPZs/qM4S9n3MzD6xZi9/40/CJ3C3vLs/nt+Ot6Rv9U7QHHXqhdY+yLuvVE2MsZOjqUx8ovokqHGEPo4KF/cCWR1BBjshFrttM7TBNrthFnsRNrthNnsRFjdkCh1Whe6zdyhcfjaXQF75xRZ/Cl3Wjmdbi6sGlUjUyePJkvvvgCl8tFQUEBhw8fbnG0kzWFe30/mEbFJNHXeyIwJnYgCaHRlNoqqXLWsbPsIGf0GtFoXYULyp9vmBF7Z6NhjLKzs1m2bFmjuKZObRijmchLIeonUPUOoCDaGDYso7JhpJHOTl6A0cy4ueZ0PpZECJ0GtvXGdMw847V1I97iwVd3xraqq6t9rRpCQkIYPXo0Y8aMISMjgy++WMG4Pm+R3iuYfTWJ1Cd0FLDJ6uQHpX+H3o+0vPFOoD1ulH0TKCjzhOMICicYiLCEHlVvoG/fvoTaFJXaBNrFEUekUf067MwujbE56enpvPfee4DRjPmWW27p0ufTWvP4rvfIrSlhec5GZg08k5+OvJQgU+v/6pweF8/51d+Z1mc00/oY/d4HRfZmn/cHSnZ1UUCTF2+mH301dHtZJrMGdv57618D6Iy4YXz77bfs27eP3NxctNaYTZqg0zSOEHBZNNmDXAw7aBy/a2tr2bt3L6effnpLmz/1JDwINV8ZiW5XNpT/h3PP/QMOh4OvvjK68RUWFrJ48WLmzp17XDUDhkX356+T5/Hg1tepdNRS57Lz8LZF/Gni9YyPH9JZr6hDvv76a1avXg0Yx4UNGzYwc9YlbLBn8fHhNdjcTsBjFPrTNs6LKuG25H5Ehezky+Ub+O77hlaqo0eP5oYbbuD7779neu+xfJO3HYBv83ccU/ICYOrUqWzcuJH8/HxcLhcffP4JB0d4Go3IlRTRi2CThYN+zbVrXDZWHtnGyiPbiA+J4ry+44nwtH6VtTO43W42btzIypUrj+qSAMaJ0pgxY4gc3ZcllZuodtZhCw6i3GwmIceD2+1m6cfvkkQqiTF53saiQUayQtvBsQdqluMJv5xNmzaxYsWKRq2LQ0JCmDNnDuPHj+948J5aoxB+T09c1Eu4D2o+B1ee0Xol78cw4D0IOe2oRRMTE7niiiv4+OOPAaPW1siRIztUZyXEHMR1yTN8NeN2lB0MbPLCUwMlf2mYjv1Zo8SF3e3gqe0fsi3eBpjAo4gMjefX467Btq+QFWuMIUITJ07ksvN+3OpTud1u38hiYAyTSnAMlc4x9A7JpJelBjx1YIqgxN5yy4uEhATi4+MpKyvD4XBw+PBhhg4d2uLyYBSwrv/uB5nM/HniDeyxHua/ez6m2lmHW3t4K8/BrrDpzI/6jrKqWMCoY3HaaacRHh5+XCPO+CuyWalxGd/HyKDQRiOtnAo69N9RKfUQ8IJ3vR9iXO28FLB2emTdlTIbJ9mmWAAiQyu445r91J/QpKen8/bbb7fa/HNc3GBuDTub6X0aDlY5NcX8buOLLMte3y2aJreo5hs4NAlyLoHSvxhNC3U1GbWR/L18JlWeEBQQZoK/Dvfw71FmfuJKZ7b7IBe5D3FlfB0XxNmYGFFLckiVkbgAqFlmFDbTDU3oMjMzfU0eg4ODmTG2oV/foTaSF2FhYY36jq1du7bFZVf7ZVLP69fwY9ukTJybOM43/V0zXUd6h64Gt/eHjLn3/7N33uFxVOcefs/M9l31LqtZcu+9gG1MM2AgkNA7IQRCQnJDSUIKaZBGEm5CbhoBQgst9I5pNjbg3nuXJav3sto2c+4fs5rdVZdt2cbW+zx6tLN7ZvZsmznnO7/v90Hc5eZjbW1t/Oc//zG/C1lZWVx00UWdT17pD0D6nyDrP4bXBIaLcDvHLF85/QGjvnTSnZB63wntmRCdMpKammp+RsOKivjm5ZXYCr282WqkEQU1C76gHSklq1ozjRWXts8HtH8H9y/GIox0hp1tmVjD+dZD4zI6fZ9SUlJwB1V0adxfFnQbyotjwPLly83b27dvjymlNxAcaK2itDXyWb5Tsoofrf431W0NPe730r5l5n4d/Xdy3ZGVhQPH0LRzXe1u05BRDzWjBWrQtTY21u0z00iOFN6Q33wuKSU7313FokWLKCkpMa9Pqi4oKLYAAovFQusQG9mzIkqXdg+BQcJYUg31Wjv1f4fATs4444wY1/dNmzaZwYzDoSAug/un3khiOEjt04Lct/4/rK/d08ueR55du3bx8ccfm9u6kHzevIvbPn2Ix7e+S1soANILWg3j7CU8kLOYOzOWEef9L77iW5md9S1uXvAMZ036hDNn61x79cWmqufM7EnmcZdWbD7kNA5FUUzZdotb50VlExtrIibkp2SM4fczvs6Ds77BX2Z/i8uGziOjg2dZnb+ZV4s/499tn/H83iUDMpaTUrJ161b+9Kc/8frrr8cELoQQDBs2jEsvvZQf/ehHeE4dyhN1y8xKLYqiIMemkJGZgSI0vjz7XVzKDrxeL7qOMbZN+Jp5PH/5r/nH3//Kq6++GhO4GDduHHfcccehBS6khKofQGB7722/KCgeyHoClHBgW2+Eg5eDv2sh6IwZMxgzJpKW/OKLL9LU1L1KoCsmp0RM/7fWFx/b9KX6h2LHwUl3mA+Ve+v4wapHWVIZGWen4OKPM29lZvooiooir2PPnj29/mbKy8vNVJt25QJAZZtRECDV2gbS+L7X9qC8gP6njkTPAaamDsdtdTAjbSR/mvUNRie2V4/R2OhN44dV57JLGgtL48aNw+12H7HABcSadRZ4Mo/osb8I9De0fxNwtpTyDiAQ/n8hUHCkO3ZcY8mC9P81NzPj1nPdlyJSx+3bt/Pqq6/2+CN0CCvfn3A53xpzIXbVWK0K6hqP7HiXX61/lsZw3vVxRagCKm7tlD+/qy2RX1SdSUPQhS9ox27J5Bczf8zIYf9CyXma5SV38cSHl/HIoqtZX/93GLoRinZBUSkkRBkedghgRA9+c3JyKEyIKBBKW2t6HbDPnh0pa7hly5YuLw5VbQ1sC6+sqELh1IwxMY+3p5AALK/eHnuBkBrZrlcj24m3gGI3N1977TXzOR0OB9dee23XihyhQvzl4J4PQFvIb06kFCEoiu+9TvSAYBsG2U9Ayt1GH09golNGTKdnKaH2fsqrn+P/aqcjhIIUDpzNHkKahZCussmbgle3QOUdxurDAHFgx4vm7T2h0eaFqqPfBRieKkM8aejSOL2XBdwxdcePFs3NzTF50QDvvvvugAZnV1d3rhKyq/Egd674Z7eTtpKWal7cH5GjXzvsTNMTBgzlRTvHyrRTl7pZ/SgY8HK6Yz3plgbQmmgL+U1viiPFutrdhHQNXddR6v00lsae83Nycjj99NP5/hXfYOGwWTidLqxWG2sTqtEU4/PdvXs3dXVfqMrqA0/8VeBoD8IHoeoekJIFCxYwa1Yk93/x4sVHxDckz5POr6Z9lWS7UTkioIX41fpnWFPT9xzvw6WpqYnnn38eAIkkmOdi87gQxQUhglaJrrWhB6vIVUr5Sebn3DfkU0Y4GpDSSIlon6ikJdQxe/RWzhz9FGrxeCi9mDz304yW75Bh00D6aA02sap8keHhoDUZKtF+UFBQgHtaLttGBQnaJH6/DwFcN+xMvjf+MpwW4/qe60njmmFn8I9T/4ffTf8aC3NnEG+LLQv67J6P+cvWV49oYLGkpISHH36Yp556KibgnpCQwPnnn88999zD1772NcZNmsDDe97lsZ3vxaThAFQHmphz+Tlcd+4GirKMoLamabyz+lQONk6GpG+h48bn8+Nv3kS8Egk6JScnc+ONN3LNNdd0KkPbZ5qegpaoMvL2QwiAHI/Yxxomp0r42qE3wMHLDBPLDgghuOSSS0zTVK/XywsvvNCpdG9PpDkTzXTBgB5ie+OBXvY4fKSUBGWH73Ngf6z6OOVHoBqva2X1Du5e8bDh4RYuiZpao3JL8ulm37Ozs8100ubm5i69x6IpKYn49+TnR9Lgav2zQEkiRfUBGkg/tf6ea0hEe7Ts3r27h5bGa18aFYCZmxn53qY6Erhv6g1cNvRUQ42NpEl3sCrXSc1wKw7XkU8r3tcSUX8ds5SRY0h/gxeJUsr20FNACGGVUq7ESCM5ufCcY+S5hRmd9gLnnVlgbq9evZrFixf3eAghBGcPmcofZ94S8+VbXbOT7y7/e4wPw3FBzc9Nt1+UePBcxA7nz7m34jJqfPH4g3ZE0Mb9029mREKOuVu30U0hIPVnXQYwvK2NphMwGNIwt9VBWliyHdI1Dnp7PsllZWWZJzdd11m5cmWnNtH5axOTC0m0eWIeL4rLNk+ybSE/a6JLKLa+h1MNp3cocRB/nfnQxo0b2bBhg7l96aWXmiaivbG3uQI9PMHLdafh+KJ6oXyB6Ki8QEqo+x2+uof5XcUMvLoVFDuZngL+p+hLuLwCf8BOUCqsb00zZOC1vxqQvtXX1xspI2GqbBFpY3flsQrTckA3AhwNmgOvb+AHNh1Zu3Ztp8FYcXGxWQloIIgucTo9bYRpkNwcbOMXa5/ihb1L0KWOlJLdu3ezZetW/r7tDXOCMTIhh3M7OLdHlyI9VuVSl1VsZl9zBYGAH6ts4iueTYyzlSOEjq4FWXeEV9NXVm1H1zS83lY8VcZ7I4Tg/PPP5yc/+Qnf+ta3WLBgAUOHDuXmUQuJCxsK1wdbaZuQaB5nzZo1R7RfX3iEAmm/w8zY9S2H5hcQQnDBBRfEON6/+uqrMRW8DpUh7lR+Ne2rZkAuqGv8ZsNzMWVwBwpd13n++edpbW0lYJXsHge7ikKoKS4sFgWH1U+2s45bEz/jl0lvMlrsJSAz0TP+xfvbv8MH66ZQXDUETVewWq04nc6wADAEvpUMcb2KUncfpzuWGavdej0f7/0XFM+EfaNgTy7sHQs1vZ+bQ7rGw9vfZlVcBVIxzp0iILlIHc8lQ+d2ubIphGBkYi63jFrIY3Pv4ieTr2ZslK/IR2Ub+MW6p2kNdm/m3hfq6up49tln+dvf/hajXnM4HJx77rncddddzJkzh/j4eGp8jfxo9WN8XB4Zf4xIyIlZiPngwJOMzNpklGoHPt06jWWbhvGPf/yDd99fwcfrhplplHPHrsRqgTPOOIPvfve7jBx5GJXGfOuh+l4AQlLQ6LyS8oSHDv14xxuO8d0EMDob87tcLi6/PKLU3bNnD8uWLevX001MjowF2pVyA0VzsI171zzB/3o/4PolD/DDVY/x162v8+q2X7OqNZnygJuQbSrEXUZI13hq9wf8ev2zZmqDHtIo2G9h6D6VMSMi5o6KojB0aCSVrbdzXvT3Py8vz7wtsUH85aRY2sJ3tPVo2AlQVFRk/q67qggTzb7mCg62GotcTtXGtLCBdTsWReWavKH8PPtzElSfuXhUnqXx9O4Pe+zHoRCjvPgi2A0cYfobvNgjhGjX0W8GbhNCXAfU97DPEUEIsVgI4RNCtIT/Bv7K2xspPzWcdAFBgLnDn2HalEiawaJFi/pU6SLHncYDM27movyIUqDe38Iv1j7N4zsXHXFJ8CHhXWIY8rST+SjbHT/i5ztraQoYKyOWkGBhYCTDE3Nido2Obu7Zsyd2QtNNAKNp13VI3bh45uTkmBHq6B9pcR9WQaPVFytXruyUzhOdMhIdSY10T8Rc9JdVhmN3UkL9/0UaJtxoRpubmprMfEYwyh+NHRv5XvRGdMpI0QD4XQzSmU7Ki7oHkXUP8feqiRQH4kHYsVpS+P7EK5g9ZQbprQ4kAn/QxoqW8ISj8XHw9m/w0Rc+//xzclKNIJmqqpRqkRW+rpQXAFkZmdh9xkVZAmXeo6sYaK/S0k504O69997r1wpTX2kKtLIjrEAQwLfHXMR9U28wV50l8Myej/n1+md59Z03ePTRR3nw3cdZX2UEVFWhcNvoC82ARzu57ojyoqSlCr2fq7mHS1AP8fSej/D7/QQDbVwQt5kktY3xdqO0r6b5WX8EA90hXeOz8i20er1IKUlqULBYLFx33XXMmTMHtzvWKyfB5uamEeea2/viW2hxG+/R6tWrD6uCxgmJfbSh0mun5peg1aOqKlOnTjVLJ2qaxtNPP0119eEHzLJcyfxq2ldJD6c5hHSN3214ns8qO68KH0k+/PBD9u7dS2OczuZxQfwpFoQABS+pjkZuTNvAH9PeZJ5zL7qu8tH6Gdz3xJn8+ZGdfPxZI59tm84zS77M4uK/YR/6IiLpNqMUeQfmx0dWY9d5M6gPtSsgJej10PBX8HdfMaze38JP1zzB2yUrEULBbrfj9ArGbrWyb8nGPkn6LYrKtNQR/GLK9YyzRFI9N9Xt4werHqGyrf/D5La2Nt555x0efPBBNm7caN6vKAqnnHIKd999N6eddpqp6NxSv5+7VvyTPU2Rst9nZk/mV9Nu5LKh84w79FZW1ddTpzmw220EXZexYrfxWCgUYsmSJSzdNBpfwHgPUxNauPsbQzn77LP7VAI5pGvsb67k47L1PLPnIx7e/jZ/2PQiP1/zKHcv/xO37j+Na/Yu5NI9X+GGrXHctuLZfr8vxzWOCZD9XFQAoz4cwOicJlNUVBSTMrZo0aIYP4feiA5ebKwduOBFvb+Fn6x+nM31+wFoCnjZ1nCA90s/5/FylV+Vz+K2A2dx5c5JfGf537lrxcO8tC8yFkpUXYzaopJereJ2uTuVh+2YOtIT3SkvAIi/llQzeOGn1lffo9LT6XSSkxOZr/SkvlhaGTl/zEgfZSrmYwjuY6Krmt+mv0dReFoshMJrxZ8d8YpP+6N8d4YeizKpx5j+Bi9+ArTXdrwH+A7we+DOI9mpHrhdSukJ/x1G+PcIodgh8x8gjFUnEdzFl+eui/khvvjii2YJ0Z6wKha+OuIcfjr5GhKijBRfLf6MH656lIoBKofXJ3S/4aDcjucStvpz+MXap2gL+dE0DUtQMGq7helDOxsUZWVl4XIZE67W1lYqKzv4VXQIYEgJHpZw0axFKEJj2rTISmi+JxK8iI48dse4ceOIizMmL83NzWzZEslB3N9caQZAbKqFmeldl/qZkxF5Tauqd+IN+Q2jUv/68L02SLg53HfJSy+9RFubcQJNSEjgggsu6LWf0ewaYLPOQToTrbwoSHgD6v/Iu00FLGnJNUodKgncMmohw+KzsVqtnF44FYCQZmF5Uz6hsMqBqjtA61mq2B+8Xi9bN35Agss4pk9NoSYcLLQqKjnu1C73y8rKwua1IBEgocwvQet5FeJIUlxcbL6nNpuNm266yRz4VlRUxAzEjxRra3ebiqWRibnE29yMScrnjzNvYVzUauiy0k083LiEhgSdkhwNvz+ArutcXHBKlysYiTaPqSzwaUGqe1nNOdK8W7qakoZKAgE/iVYvF7i3IhTBWFsFAonUA+xuKjti5fJeX/0RdS2NgMTmFyTrTr72ta/1aCg3P2sCk8I52BaLhdKhRopAU1NTv8rQnTQk3wmW8KBZr4caw/DXarVyww03mNcsn8/H448/Tmvr4aekZTiT+NXUG00loSZ1/rjpxZgA/pFk9+7dfPjRh5RlhdgxMojisqEqGqpWw0UJG/hH/iIuS91LcpyTRv10Hll0A59tn4amW6iqigRbp0+fzkVfvgrFcwak3gt578PQTZDxD0paL4eEr5OZfAFjPCpgRcPKEu84ELEqSlre6bKflW313L3y4Rhjzvk5E5lXnYXDLwgEArzzTtf7doVFUTnPNpZrh51h3lfaWsP3Vz5iBlf7wtatW/nDH/7AJ598EhMAHDt2LHfccQcXXnihGUiUUvJWyUp+uuZJGsPnAVUo3DJqIbeP+RJWxUKeJ50iqw6yBQ3B+0354D6HlJEP861v3U5aWiRI6w/aWV88C6fTicvlIj74L5CBTn00jMz38Xrx5zy05RXuWP4Prvz413x3+d/585ZXeWHvJ7xdspJlFZtZX7OR3T4nlSE3rboN1ESiPP9PLByTIPsZQ5ELoNdB2WXg77zmetZZZ5nV5zRN47nnnuu1rGY745OHooSVA7ubykxvkyNJja+JH6/+dxcm+RL0qLGOcBKSKgdaqmPaTkkZxjWWaXi8xnSzqKiokxlx9Jxp79693S5uNDU1mdUHLRYLWVkdFm9sRbg8M3AKY4wUCDX3+p70xfdCl3qMSntuRud5DmCm58bh5UveYuKbFBRFQZeSv2x97Yj5knhDPirCwVBVKORGpbaeLPQ5eCGEGAU4gHIAKeVKKeUwKWWmlPLlgergcY9tOKTdb24qLc9y3ZcTTfmnpmk89dRTMRfjnpiSOpw/zbqNKakRtcKupjLuXPHPTiXyjhoNf4PgfuO2Es9m9SZ+ue5p2jTjYqb4dUbtsOBqi5V/taMoSszJqcsTRFQAQw/nWo/K2cOXT/mAiRMiPhQFnmjlRe/BC1VVmT494sT/+ecRY8XoQduM1JG4LHa6Is+TbgZNAnqIVdU7oPm/kQbxV4HFOHmsXLmSnTsj0vXLLrsMp7N/+W57ooIXw4+VWedJRHSZ1Jkj15Ko/4MdviQerR4P2EBJ5MzsKZw9ZKq5z5dmnYU1aJw+a/1OtnrDF9HQQag9cpVHPv30U9LjjbxkRVEoscyifcBX4MnounQvRsURu08gpQBkuOLI/iPWr96IVl1MmDCBlJQUTj014ob+/vvvH/EV+Wi/i2hJZ5I9jp9PuZ6L80/B52sjGAwQsEt2jgiiWSQgsXp1LiuY1+VxhRCxqSMtRy91pDXo49+b3iYQ8KMoOpcmrCPOpuN2uXErQYqstQihoen6EZENf/755/x3zSLaDagzvA6+ces3uq3U1I4QgttGX4A1/H30JQgaE4xjDBp3doHigrSoVIbm56DNKDOYmJjI9ddfbxpS1tXV8fTTT5s544dDmjOR+6feyBC3sQalSZ0HN73Ev7a/jU/rPDk9VJqbm3n6v8+ya3iI0hwN1WLBbg2RJCr45ZBP+GrqFuLUINjGIXJeJXfa63z9tp/GmBgCzJo1i4svvrhz5RU1BeK+RKn3ckj7BWT8iTOG3gRqMqgpfOxfiCzcAZmPRPZpfbtTP/1akN9teN409hPA9cPP4nsTLucrF15stuuxDGkXCCG4dOg87hx/iXmObgy0cu/qx/m8F7WLpmm8+eabPPXUUzEy9tzcXG699VauvfZaI7UxTFAL8n+bn+Ff299Ak0bFlgSbg19OvpyFOZMj4QHvEr6cGKlWtKh5DKG0/wNhIS0tjW9+85tMnjwZt9vNKaecwtwLHsdqTzfSdEIHofE/gGFK+oeN/+XmpQ9y3eLf8dM1T/DYzvf4qGwD+5orulYK6y2xwQ8lAYGKxzrwJcaPGY4pRgCjPYim1RoBjECsL5OqqlxxxRVmCk9tbS1vvPFGx6N1icfqNNW5EkPlcyQp99bxo9WPUeY1xkeKEJxnG8e/5nyXnw33cHPqes6N38d4ZwPJjtjAvwCuLJzPTyZfzcG9kcBg9FygnYyMDDMQ5/V6qaio6NQGjOp97eTk5HRd2jT+OlIt4TQt2UaNr2fFU8fgRVdKje0NJWbZVY/VaQbqOxHcj5QSXddpbEmgsNiKLVzprLS1huf2Lu6xL30lWnWe407ttZraiUifXrEQ4kbgXxjpIQlCiGullP/tea8B4TdCiN8CO4AfSykXd9VICHELcAtAWlpar94Th08mI+KnkWI3Klpo5Xcybfz3eOcjgc/nw+/389BDDzFnzhzTmKalpaXHfs2VQ3ASYklgFzo6gYCfX6/5DxMsOZxpG4V1gAwUO/bLoVYwKfl3CEK06RZeqruQ11peIoRxgXLoFoau11DbNLDb2bZtWyeTPoBgMGhGkz/99NMeZOOn4WhZzugsQ3I2KmcPdduuorXlZhYvXkyt3kIgYBxnc/luFjcu7uY4ETRNIxgMous6O3bs4PXXX8cTF8fbbZ8RkMaxEqtkj59HVsDOrqDR9r8b3mfqkDexKgFDHr+zkJati2ltbWXx4sXmpKywsJCSkpIYmVtv+GSQYq8h+VRQKF67g4Oi/yuXvX2/BonQ1NREMBikIOMAZ078jGY9hQfKpxPCAWoihXFZ3DJqYcw+8XHxjHJksUk7iETw0oE5TBjzQviAT4PnfHAdnhWQz+fjs88+47QxRjDLbrexTxtB+8Syu5QRAI/HQ4J00CC9KEIPm3YWg2PiYfWpr/3etCkSGGwPHs6bN4/ly5fj8/moq6tj1apVMSaFh0NI12J8HzrmowoJttU15JdK9g4V6KpEVS1o4ZWQjG1B9o7c3WnyhJQQ3EWuO5Ut9UYQqaS1mmlpsccfCKSU/P6DJ2j0G+UEMyxNnBu/B5fThXBMxeJbxnh7ObsCaYRCIdbV7mFOZjcrQn14rg8++IAPP/qQ+onGuVlRFL5+1uWdJL7dkeFMYsGQqbxVshKr1cbBbC8JjYJt27bR3NxsqgkGCeM+G9znGSUWAarvQfBjwBiYX3nllTz99NOAkef90ksvcfnllx+2q3yKI94oo7rmSdPD5a2Slayt3c3tYy6K8Ww4FHRd5x8vPcHKggb8dokQApddY4y9hLszV5Fs8YOSDCk/hPgrTTPo5ORkrrvuOnbt2sXatWvJy8tj1qxZfX69p2SM4eEdbxPQQhS3VLKvuYJCz3wQ9nDpzx0Q2Ac2Y4FFSsnft71hlj60KCo/nHglU8Pl0IcNG8b48ePNc9nrr7/O7bff3vWEqRvmZY4n1R7PbzY8R3OwjYAe4oGNL3DDiAVclDe702tr97aITh2Ij4/n/PPPZ/z48Z3a67rG/cvvYENzJGBQZG/gh+krSK1/KCqhWwV0ZroCJDROpFFzU6cnsabugFkS2uFwxHgwAJD0baOqHED9Q8i4K/nzllfY0EuKQrojgYK4TPI86STKUuJa/opHCeBRg8QnXokn425cFjuqUHh0x7u81ud39AuGYyoMeRYOXmn4xWk1RgrJkBeNqhyhCtCqSLFW8LWvtLFr+zI8jlY8zhdJdLqg+ZcQd1GPTzExuZBdjUaq8Ya6vczuYDp/qJS0VPOztU9SFza9tCgqd467hMC2KtKsPtK0fzI5MRxcS70PEr+GN+TjYGst5W11DHGlUBSfjaZpMYG/6DTydoQQFBUVmYrMPXv2kJ3dWXUcHbyI9ruIwXMeKdbnKAkC6NQ0fsLQ+Ku6fZ25ubnY7Xb8fj+NjY3U1tbGBAchNmXklPQx3S4aEdhrjv/rWxIYmjKEHFs8SzB+L68Wf8rs9NEMTzi8Rcl9USkjBSehWSf0MXgB/AC4VEr5mhDiy8C9wNEOXvwA2AoEgCuBN4QQk6SUnRKkpJQPAw8DjBw5UkbnlA0Y2lSjfGjoABBi7tA/MfrW+/nLY9sJBAJomsaePXv4+te/js1mY/HixfTWr9OBLzcd5A8bXzQlQtupxuuAu8dfFrMaeKSI6ZeUUH49++sTebexgCUtRbQJN4oNbFhItsdxMeP4XF8Mdhg/fjynn356l8etr683gxper5dTTz21y/zJQCDAr389k5ZRLcwYsQGHw4HHshZ4hOxJLxDCznMfryOoa/iRTD11pinp7om6ujpzEKJpGpmTCvGtXoINOx6rgxvnXdL9CQkY3TaR5cv+DEA5DUhbCLtqo6XNwbRTv4Yu4Z///CcWiwWLxVjJuPXWW/uUIxrN+to92NZ+ChgpI2fNPKOXPbqmL9+vQQza0xvG5O5CCpUHK6ZRq8WDmojb4uT7Ey7vMr/x/DFz2LTJcNFf3azSpp6BU/vIeLDyTsj72PRBORRWrFhBwN/K6NzdKIqCxWJlb0sKYPS3ML77i5YQgty4NPbp9aC0l0s9OhVHNm3aZJq9paenm5JYp9PJ/Pnzefddo6b7Rx99xJQpU7DZDt+QdlvDAdMYLM0mya+9AgILIflugiGNZ555hu3bt5OMisurUDHZQZvLCLTEl2skNCu8/vrrDBs2LNIf3Qfl10LbZ+SGzgOM13E0Ko5IKXll0Zt82rIDVFAVjetS1xDvciCEChl/Rmmex3hbOa+I8WjBAOtqdyOl7PfkVtd1Xn31VVatWoXXJQnaJIqikhafxMzc/gVDvlIwh/cOriEEeMPqi8RGyZo1awbPR12Rdj94PzEmNoEdZLveAM4CjPSAc8891/y9rF+/ntTUVM4888zDftokexy/mnYjf9n6GqvCiqVybx0/Wf1vLsybxTXDzsB+iEbRD73/H97z7CXsV4fboXFx4hauTdmKRUhwzIasR8NpA50ZPnx4zGpoX3FZHMxOG82SsKLyo/L1FI48D1zzofU9o1HrO2D7JgBvl65icXkkfe3mkeeagYt2Fi5cyPbt2wkGg1RUVLBy5coYH62u0HU9ZvV2TFI+v5txM/et+w/l3jok8PjORVR467h55HnmuGPTpk28/PLLMSVJR48ezaWXXmqm3Xbk4/3PxgQuTo87wDfSNmBXOi4OGW0sQnJWYj0vNQwBFN4pXW0GL7ok4QZo+AdolaBVsqL4b2yojaQKWBSVPE86BZ4MCuMyKYjLpMCTEVFUBA9CyXcgLhxFcZ4K2T8EEZl6XDvsTG7uvgdffBxTDQVG2VXhcsDVcKDzwkauC1JHR6rrgESr+C6q+2xDqdUNE5ILeXGfUS3rSJl27muu4Gdrn6QpnIJkUyz8YOIVTE0dzuJtVUaamwwHLmyjjO8Jxm9weMKQmMl5SUmJOR5ISkrq1ri+Y/Bi7ty5ndoUF0dKvnfyu2hH2EhxFYC3AYCaho8ht/vghaqqFBYWsm2bYaq6a9eumOBFSNf4rDKSbj63pwWC4H40zfjt1bckUjQ6h3hLArVxOpvr94fTR17ljzNvPSy1RGyZ1JPPrBP6njaSLaVsD46+CnQT8jo0wmacspu/ZQBSyhVSymYppV9K+QTwKbCw5yMfRdR4yPwXKInGtmwjNfg9vnGVI8bN9rnnnuuXWd2w+CE8OOvWmBW1Ay3V3L3yYRaVrhmwsoMBLcTi/U9wz84A3y05nXebhtJGovl4miOB+6fdSMP+yI+osLCwiyMZJCUlmSUoQ6FQzEkomo0bN+L3B/hwwxw2l842VzlS7MuheDaWpifJjcrz70vqCMQad65bt46PSteZ26ekj+0xcAHGqmJ7BRVNb+PzFiMq3BCYBELhk08+MaPCiqJw+eWX9ztwAbFmnYN+F0eH9pSR9IRaXm6ZwIa2NKNuO4I7xn2FTFfXF9t5hZOxhQf4Pqfk5Y2nGXJmAK3cqM5ziAQCAZYuXcrw7P04bT5sNhvCms2+tsjvvSflBUBhSg6y3fE66EEG9h9yf/pDdJrA9OnT2dlYylslK1lUuoZgoYe2bDsNCToHaeTFZe+EXbxrqPM3H/L5LFJlRDLNth4R2gn1fyJU/RueeOKJGDXY6VNO4dGF93Bl4XwuLZrHmCpDEdDY2MiHH4ZdwaUOVd+FNkNNlydX0j4BONA6sMELKSXvv/8+L+z7BD18Wip0NHJWcrUh4Y6/AmyFWFwTKbTW4lKCSBmk1tfU72ooUkqef/558zOrT9JRVQtut4sZ6aN6PS92JMURz4JwepWhvtCQSFatWjWgJXK/sFiyIOV75maO678QjKwuzps3L8bz6YMPPuiTCXhfiLe5+dHEq/jO2ItxWwxFqAReP7CcO5b/s98GcwEtxK8+e5I3WteZgYsUp58fZC3lxtQtRuDCfa4xkesmcHG4nJ49yby9tGKTkcLgPi/SIOx7saW+mMd2vGvefWb2ZM4ZEltlCIwUnugFmUWLFtHS0oLP56OsrIxNmzaxZMkSXn31VR577DF+//vfc++99/LOO+/wzDPPhMczfrJdKTww/WZGJ0aGzu+WrubBzS8RCAR47bXXeOaZZ8zAhaqqnH/++Vx33XXdBi5agz6e2htJg70w8SDfySrDbkk0zCKFg47rk34tnQUjf4rA+F2vr91DeU9+aooDkv7H2FdXeGzvVtqVfwuGTOW503/EgzNv5TtjL+aCvFmMSyqIBC5kACpuMTxdANQMyPhbTOAC6Nr48ETDOR2y/wOi+yAEgMNhRwlXupESfN56I7jZA6MScrGpxnta7q07JGPYaHY0lPCT1Y+bgQuHauXeydeYgb0461ZoeSWyQ+r9nT7TaKJNMKOre3QkOp1k3759ndJKQ6EQBw9GxsfdKi+AtPhIqnitdy8Ey7ptCz37Xmyq32f6yCTb4xjTnTJNBiFUiqZpSKC+JZ7c3FwUIbh9zJfM7/mBlmpe2Lukx/70xsleJhX6rrwwv21SSimE6GvQo09IKecfym4cb24/jvGQ8waUXRNWYOhkWf7CbZddyN9fSEJiSGjffPPNfkloXRYHd427hEnJhaYsMqCF+Nu2N9hYt5fbRl+I2+o4Ii+hXvfy+M5FfFi2hmZfKRCeuAknCCs57lTOzZnGGdmTcCi2GDlYT8ELMORi7RPF3bt3dykfi+TKC4IJP0IkLobGh427tGqo+TEFch57ZT4IJ8XNlYxLKuj1dRUUFJCRkUFlZSX+UICPS9eb3/55WX2rMz43cxw7G0tBBljaMoQFCcU0BKaglJXxwQeRXNIzzjgjxsG4P8SadQ76XRwNamtrUYROvUvwauMY46wiLFw2dF6P6QF21cbE5KGGBwrwUfEevnLKz3A2fsdo0PyckT7i7v9K6apVq2htbWXCpG0IIbBarfhcl5mluhQhKOhFeVWYkYtSAlihVbfS6DsQFX4cGCorK800KVVVqcmEP6x6NKZNsCiAz2esLm1v+ITnP19rDmjGJw/lZ5Ov7fek2QxeyCDTXEZgVEqJv/z3xMm5gBH8Pe200zjnnHMQQnBl0XxjX286L730EgDLli1jypQpZFieiKmulGdvBhkCoVLSWo0udZQjexk0+/zee+/x7orFVI8zBm82K3w9az2qAmCFpO8CYHFPxdb4KWNtFXwacBMKhVhfu6dfiry9e/fGmKeGct20z5VmpHVtYNwblxTMYdHBNWCVNHt8NMZLRF0de/fu7TLf+aQn4SZo+i8EtqCIAFT/CLKeAiEQQnDxxRdTX19vuvC/+OKLJCUldb/y2A+EEJyRPYkJyYX8bevrrA1XrSnz1vLD1Y9xUf4pXFXYtZpSSkmdv5kDLVUUt1bxUelatlbtNx8vctXzs9xlDLGHzUbjroL03/U40TlcxicPJdkeR52/mcaAl7W1u5mRvAAjbUID/xrqWvfw+40vo4WrBg2Lz+bWUed3O6maO3cuq1evpq6uDp/Px+9+97te/UdCoRCbNm1i06ZNWCwWRowYwbhx47hnzGU8svc9lob9y5aVb6Zq1W6suyNqhqSkJK666ipTsdYdL+x8hoaQ8RqSVR9XT3wI4Szo3FBKIAQyyNpPVjB/wmSmpG5lTY0xSVt0cA03DD+7+ydKuBoa/sYrVW6qQjYQXuLsqVw3/Kzuz9NaE9TcC/72RSILZD5seoOdlDhnQvbTUH6zYeApPGDJMP5U479QM2hTFXauf5hx+dvQNA1f7es4POd2e1ibamFMYj7rw2mTm+r2kTEk6ZC6uLFuH79e/ww+zbg+uy0Ofjr5GkYmhr+LUqPQE3U993wJXKf0eMzo6iFdjfnbSU5OJiEhgcbGRgKBAAcPHowJUJSVlZkBjeTkZDweT3eHIsWdD9iAALUhOzQ9Ayl3d9s+OnixZ88eNE0zF06XRnkNzskY26kamUnwAFLqaJpGs9eDplvIzc1l69atZLqSuX7YWfxrhxE8fXn/p8xKH31I1QQ1qccs2p6MZVKh78oLtxDiQPsfhu9F+3ZJ+L4BQwiRKIQ4RwjhEEJYhBDXAPOA9wbyeQ8JW5ERwLBPMu/KjXuDb3x5I6piXPA+//zzPlUgiUYIwVlDpvCHGbeQHzU4XVa5hbtW/DMmB+pQ8Ib8PLDxBf7VtpRXiz+j2V8DGBdGi4A5mVO5f9qN/GX2t7ggbxYui4Py8nJzpSAuLi7Grborok8QXZUkqq6uNhUZiqIwZcpUw8Qz/UECemT1O99yEPQm0GrYX788fHHuGSEEM2fOBKApXtLsNwZUKY54xiT2TUh0asZYBBIIsrktlbqQk9q2cbzwwgvmSTUnJ+ew5NG7ByuNHHVqampIjmtgRaD9e6AwMWWYObntidMLpqKEB3B18SE+3ZAInqgc1aq7+13lQ9M0PvnkE9x2L4VZxdjtdoSAYuV02r/pQ1ypvcq6s7KycITLpSIlZf1clT8UolUX2sQUHt/3Qac2VquNSPxbmpJSMAZen1dt69dzlnlrzaCOXQQY76xBlxKv14umaZwzZQmFmfs5++yzOffccztNUqZOnWoaUuq6zoZl9yLr/hTTJkENkGAxfuMBLURlW0O/+tgXqqqqePTRR1myZAmlQ0IgwKJamJbYyBRXWO2RcA1Yw4FR+wQsFgvjbWUoik4oFGRdP0umfv7554zK2cV50z7ilLle2lzGOd+qqEzuzpSsFyLqCyPodnBIRH0xSBcIC6Q/gLkW4/0Iml80H1ZVlWuuuca8vmqaxpNPPhlTIelwSXXEc+/ka7h9zEU4w8bVupS8sv9T7lzxD4q1WjbV7eOtkpX8fdsb/HDVo1y7+Hd8bemD/GKdUdJ9e40xeBdI5rn38qeC9yOBi8RvQfofBjRwAYbz/vysiK/PR2XrDZWH01BehqTgd+ufpCFg9Cve5uIHEy43V667wmKxcOGFF5rb/TVODYVCbN26lRdeeIHf/+Z3JK1uYoKaTTAYpLW1lY3xtfhtxpl97NixfPvb3+41cFHaWs2bpRvM7Rtzk3B2FbgAwwxdWMOpB8Z37NycKDXPwbU9V0EQNqrct/NyfXj8Jlu5pvCUrtN1tSao/SMUz4g1NU/9iaE+ONlxzoKh66FwNxTthPylhv9F5l8h9aeQdCtphV+nTjvf3EVrfhdkz+bW0SVT1x9i6sjq8qXcv/YRfKEWkH4SLDr3jxnGSMsmaHkTml+H2l/hsoRV08IBKff2eEy/3x/jU9FT8FoIERPc6FgytU8pI2FS7QmgGN/PmpATmv5jLD50Q0pKComJiYChem3vc0ALsTxqPNKjp1RwH1JKI6jbkojdbo9JPzkvd7o519CkzkNbXuva3LYXKrx15u81ye4h0dZ9EOdEpq/BizOA66L+orevDf8fSKzA/UA1RsL3t4GLpZSd6w4dD1jSjBOSKxLNzk1az60XLsZhNSb7W7dujSnb2VfyPOk8MOPrpjQXoKKtnnvXPM7eqNre/aEt5Of+df+J1HyXIZBe0i1erk3eyr+mzuXuidcwLqkgZuAffXIZOnRor7nWhYWFZpuDBw/GOGlDbIWCUaNGGeoUISD+StbV/h+k/BSUJArs7TXXNYrrPoPS88G7tNfXOWHCBBRFoSZFQwtXNJmXOb7PK6jJ9jjGxRkDO4ngU98stmwvM0u/WiwWLr/88n4ZekVT7282Xc/tqrXbMpiDHFlqampIT6jhQDC8WiEsXJQ3u/sIexTT00eaHgnNcTrLVn5OMPEXhhkXGLnCDY/0cITOrF27lqamJsbm70BVjPKJOGawJ6riV2EfpILp6elYvBFJbpkvAPqRL6XWjqZprFu3DomkdEiITR4joIAMUeCUnJWezLy0HGalFTE+IZ+4JgV3i4KlMUSCNSKnfb34s36lGERXGZngrMaChrfVS7PX+FwUIbn2rKWccUrXwVUhBBdddBFCCHJSy5ie/3wk71iN7JNnazFv9zc9oyd8Ph9vv/02f/7zn9mzZw8tbp36ZB2LxYLTqXJ90udGugg2SPpOZEfHBKxWC+PtFahCIxTS2Fy3v8/l2BoaGijZt4KLZi1i0tCtaKmrDXWb3sCkOAtOcejVJy4pmINFUbHZrLR6dBrjJZs3b+50zh8kjGOyocBop+ZeCEVW15xOJzfeeGOMI/+//vUv6uqOXAl1Y4FkMg/Nuo2JKZHJUGlrDc/7VnPvmif41/a3ea90DdsaSkyPGV3XaGvzomkhVHRuiF/Jj/I+w2UJp8em/BRSfwyHaTTaV87IjgQvVtfsNEoIh1NHHqkez47mBsBQr909/jLSnIm9HnPUqFFMnjzZ3FZVlbS0NEaOHMns2bPNFI//+Z//4Re/+AXz58/nzDPPJCMjdlVU0zR27dyF78O9yAYfINFUyf6hGhdeeCHXXHNNr9XJpJQ8svU5tHD1jtGOWuYO/VYf3pkIU1KHk+5IAIxyp59V9TwWfbzMRkAa59NCWwNnuz6PbaA1QO3voXg61P/RWFxqx3MxJHy9X/07oRGWHj0sADILzqPVF/4eaHXgX99j++jqF5vq9qLLvqemA2w6+Cy/3fA0gVAd6A0kiwp+lfEcQ5u/AxU3G+k/ld8w/E/aSfoOWHtWB+/bt89Mk8/MzOxRLQGx6u2OwYs+mXWGSXHEG0a9KEbwQquE1g+7bS+E6HJxdW3tLrwhw6g/y5Xcc/W/4L4Ys86cnJyYKkmKUPj22IvNQGlxS6XpVdIfoheqh3pOzpQR6GPwQkq5REq5BPgcGAlcAXytw9+AIaWsllJOl1LGSSkTpZSzpJTvD+RzHjaKC7Ieg4QbAeO6nZNykK8vfJMEVxNSSl5++eVDqt9uV618c8yF3D3+UrO8Z0vQx0/XPhFTZrMv+LQAv1r/TEyN82nuKn6StZy/53/ApdnJJKV0bXYTrR7pixzY6XTGpFNEqy80TWPNmjWRPkTl+QLo2CDpG5C/nPz0a2hfQSgOJKD71kPZFXDwcvB3rnTSjtvtJn9YIQ2Jxsk0FAoyL7NvKSPtzImLDCg/qs+KOcEuXLiwV/VJT0SrLgrjMvstnR+k/+i6Tl1dHWmJNZSGEsP3Wvvs4Jxsj2Nkci5CKEgBZdZm1m3cD6k/jzRqfAz0vk3aNE0LV4mRTCjYZnhdhH0OYi5a8T37XQDYbDaSFQ96OAG9NOAyKo4MEFu3bqXV28qBPI3yIRKLRQW9mXH2Hfw6/d/c7v4td3p+yj2eH/Bg/v/xl+Gv8/Pk97jT+ilfl3uw4gd0djWVsb2x7/n2Eb8LjenOnbS1tREICp748FKavB4cDgdOuw7l1xkGcl2QmZnJ2fOHc+mpb6MqOn6/H00dDllPmG1yLZHf55Ew7ZRSsm7dOh588EGWLl1qGP0hKcnVsFptOJ1O5njKGO5oMHZIuAEsUd9LaxGK6iHd2ka2tQmBTlvQx9aGvn3GK1eupCD9AIqQqKrKKm9Y6SX9zFBfh33jofyr0PyKUeqwH7SrLxRFRVFUDg7RCGmhI+bXcEKS8kN8WniyqzdB1fdiVIXJyclcf/31ppdSU1MTjz76KE1NTV0d7ZBJcyby88nXcdvoC3D2oO7SdR2tLYCoaCOpTDKuuo3fp73GZZnbsVotgArpfzau20eRHHeaaRgY0jU+qdwMnvP4sCmXd5uGYni+61w//GwmJHcu7d4dl156KXfeeSf33HMPv/zlL7nzzju58cYb+dKXvsScOXMYM2YMmZmZ2Gw24uPjOeuss/jud7/LXXfdxYIFCxgyJDLxUXVB4T4LSBBCIZjpoDnP1iez3VU1O1lfZ4w7FCS35Kcg7P1TSalCYUFOZAHs3dLV3bbdWLeXz6q2h32g4OtpG1EbHzEm1Vo91P4W9s+A+v8FPZL+grUA0v8XMv5y1AJXJwqjR49l50FDXaBpGv6613tsn+9JJ95mBEQaA96YUpp94em9nxMKTwfTLV5+nbOUHFsP53xLPiTe1utx+5oy0k70PKK4uNhcRJBS9kt5kWKPBwQIJ7Uhp3EabXqqx3268r1YWhGpmjYnY2zPv8/g/k7Bi45kuZK5tiiSRvzffZ/0WzW/fzBlBOi78qKdJ4DvAs3Ang5/g3REqJD6K1NaJQRkprRw04KXyUquxuv18tZbbx3y4edkjuO+qTfgCftdtAR9/Gztk30OYPi1AL9e/yyb6yMnhQtdgp9kvMk0dyWqUCHtN11eeDRNY//+/eZ2X3OZo09g0cGL7du3m4GcuLg4RozoxmtAjSMx8/skOvNAuPBLlcqgsRpF2zIou9IwzukG64gU0wTP7u2nU6/UOcX+CSo6SMmWJg1fWO45bNgwMy3lUNkVY9Y56HdxNGhqaiIUCmFNaMEnLSAE8VYHSf2Q4s1IG2WqLxoSdZYtW4buOh8s4dUBvR6anu/TsTZu3EhdXR0ZidWkJ9Zhs1kNvxnPhextjiir+qK8ABjiTkWXYbVTwAPB/X1+Xf1l5epV7CvQqMzQsNlU0OqY4tzHvVmf41Ji1QBCNpOV0sCw7P1MHbaJCQnPMM+1HrRaQPJa8eddPkdHvCGfWcIU6WeSw8iLLa7KodGbRJPn79gc7SaqVUb1EK2LyZ7WxGnDH8VlN1ZZWtocfLDlOrBPMHKTgTxrFe2mnSWHGLyo9TWxvaGEN7Yt5XtPP8AfPnuGdWl1bB0VZMP4AOtnSvRMJw6HA5UA1yR+Fn7DnJB0e+zBhAr2cbGpI8GQmfvcE6FQyAheZBglGX2qh20+I/AqkExzVwABo0pD5bdg7zgovwlaP+rza/1KB/VFU/ygcWePKC72NH8zsu39AJpfimmSl5fH9ddfb6r76urqeOSRR2hp6V9wqTeEEJyTM40/zb6NWemjcAk7w+KzOSN7ElfmzeNMbwEjl2uM/VxnzHYrc1qq+cmkFxiR2IjdbjdWPbMeg/jLjmi/+srpUakjH5etZ7dX4x/VM8z75iS7uSiv56ohHVEUhbS0NBISEmJWVHsjNTWV008/ndtvv53vfe97LFy4kLy8PBLbrEwWObjdblRV5fGdi3o1WwxoIR7b/qpR+hVYEL+fodnf7tfraOfM7CmmunB7Q0lMBYN2QrrGI+E8fYSD0xKaGe2sA9kCZdeHgxYPGdvtWIsg/S+Q94lhLiwGF2H6i8fjoawxkqLgr3uzx/aKUJiQFAnE9eUa0M6OxlJ2tBrnZAs69xW2kplwiqEcdy0wTHbdC8F9AXi+RJXvTMh+ChR7r8eOHuP3JXiRkJBgplqEQiFTbdHQ0EBzsxEYs9lsnRRNHXFbHUb6m+IkIFVadCt4P4Zg94si0XOY0tJS6pobWFUTUXXO7W2hM1p50ZzYrTrk/LyZjA57iBjpI6/2K31ksEyqQX+DF+cCp0gpfyCl/EX030B07oRACEi6DTL+AVhRhCA5QeOrC96gIOMA69at69L/oa8UxWfziynX9zuA4deC/Hr9c2ysixhu3lA0h+tSoyZZibeAvWvTtrKyMvx+4wIaHx/fbfmjjnTnexGdMjJ16tReUy/y47JBiQM1lf2WiyDsno1WBb713e5XbG+iXbURVx6iurof8m//RuKoZJKrGolA0wQNqUZ99EsvvRRFUZBSUuGtY2nFZh7b8S4/XPUYty77E28cWN7roD1aeTF80O/iqNCeN+5z67R/LwrisvpVbnJG2sjwaqigIUFSVV3Fzl17IfHWSKOGf/aYcwnGSqahuoAJQ7eHVRcCPOcTwhmzmtJbpRGzXXI2Um+vOOIesOBFTV0t74a2UpOmYVE0bEozp7gP8KOsFUbZPscMcJ5mDGyFMehRVUvM73yBczugg/Sxsno7FT254IdZV7vHNN4rtLcSF17521ORz6RJkxgz6WLIfBQj8xAI7ICKr8UGOGUQKm5G0fbicDjQdIUXPz2fxZ/uoaT0IDgmAJBrazL3O3AIaSMPbXmVmz75I99d+lf+tO0V1rkrqcjSqEvRaY0HkejA4XaaHirnJBSTZQsr8xK+2rXZnX0iVquFcfZyVEUnGAr1yfdi06ZNtLa2kJ9WihCCdf4h6EoSqKmMik8lydWxVGUAWt81gj/VP+v1uwyGj8KCIVOxWIzfRukQjfKKckpLS3vcTwiRLIR4RQjRKoQoFkJc3UPbG4UQmhCiJepvfq+dO05pCo41Put2an4Skz4CxiTgmmuuMSfQ1dXVPPbYY7S1HfmUsAxnEvdMvJLbXfO5b8J1jDroYtszSyhbvgOLT0cgSImr49ozF5GcaMXpdCDUeMh+Htw9mEAOMHMzx5vKxd1NZdy37j8EMcZI+bYmbs/c0e+SwkeC5ORk5s6dy2233cZ9993Hry76Nrke43fdpgX469bXe5T8v37gMyq8xuTFowS4OicD7GMOqS9Jdg+zo8qkvlva2ZPm3dJVHGgxznVO1cYNI78SedC/1ijx2451uFFNJG8xxF8y4P4mHQlXLfRFnQeOz7TyPhKwzCSkGd9hi74XeqkWFp3qtbEfvhdvFn8OGOfzuXGlZOQ/BtlPQvYTkP24EYTMegSyHobMf7Cn+Taw9R6IaGlpoaLC+K4qimL6SvVGdBChXbkRnTKSm5vbp+Bhij0OY15gM1JHkIZxZze4XC5TLSGl5M2tS80UzHxPRq9G2DKwt1flBRiqp2+PuRhbuFTqvuYKXtq/rNfX005M8OIkLZMK/Q9eHAB6D7cN0pm4L8GQF0BJwGKx4LBJvjzrPeKcLbzyyitRtZ37T38DGAEtxG83PBdTE/raotP5smcRViVsLqhmQfId3T5nx5SRvg4E8vLyzFXq+vp6amtraWxsZMeOyHWmY8pIV0R+tCrF6gVGhL8db9dliBoDrWxq2I/FYpw0UmpVNmzY0GXbLvEaq45zPKWEQsZFpT4dhp89lbdr1vLLtU9z/ZIH+ManD/HHTS/y+oHlbGs4QGVbA4/ueJeHd7xtTrQ6IqWMNetMGFReHA1qampw271UK85w7EJQEN9z1ZyODI3LJNWZgM1mRbNImuMkS5cuhfgrQQn7aIQOQMvbPR5n27ZtVFVVoSoa4/J3Yg3/Toi7nJLWajM6n+5I6NosrQtGZQ41lRflQQ96YF8ve/SfgBbi5ysepy5Fx24J4LD5OSO+mDszV2MRFkj9BQx5BYY8axiUFe6Fgo2I3Hdo8TzIB+vnsKc8nyxqmOioBOlDl5I3S1b0+txrokqkTnXsNM+ju8sKmDVrlvGQ61TI+N/ITm2fQtVdhiRfSqj+saHawvCtWXvwBsrqjBWNV199Fd1mrLjk2ZrNSXtpa3W3v+WuqGyrZ9GB1bS2thAMxnpJ2Gw23G63mQ7gtNiZnGDn6oRPjQbCDUnf7HhIA/sEFEVljK0KqxICJHsby6jzN3fdPsznn39OclwDHqcXm83GSm++YeqHyozs8yBvEeR9Csn3gK3D5KjxX1B2tSEb74WvFMzBqlqwWi0x6ote+CuGtj8DuAb4uxBibE8vR0rpifpb3GvHjmdSfhSl2mqCqu93MqUePXo0V1xxhXndLS8v59///rdpoH0kCQQC7N69mwceeICPP/44xmB31LAkvn3J5yTGgaoqoKYav3XnjB6OOPDEWZ3MSBtpbjcGvKDYcStB7slcicO3eED9f/qCEAK7auXbYy9GCX+OG+v28V7pmi7b1/ia+O/ej0Ean/FVyduJTzs01UU750QZdy4p32jm9wM0BFp4ds9ic/vywtNITroYbB1MC22jjMW5vI8h7uJjrbS4Peo8MLL35scvael57K80VuhDoRDBxp7HDxOiTDu3NBQT1HsPMNf6mvisKlJN44LkOlDjD7HHsUSnjOTl5RmKrD7QVfCiPykj7aSGPV1QnOHgBdD0bI/K7OjF1WVRVUbmZvZ0+QFkEN0fCbBoai7x8d2/j9nuFK4edoa5/d99n3SpfOpIc8BrXtutikq2K6XXfU5Ueg1eCCHOaP8DngReE0JcFX1/+LFBesM506hEomYaZmx2PxfM+ID6ulo+/LB7M5m+0FUA46drnoyZEAME9RC/2/g869plZTLI1Rk+LhXfhaanIw3T7gPF3e3zRZ+YeiuRGo2qqgwdGpG37d69m7Vr15qqhMLCQlJSev9B5kdFHPe3VBiruu10E7xYUr4RTepYrRbcLQqOgGDDhg19lzGHJdNT7SXomvHT8bvhhdbVPL93CWtrd9Mc7H5A9E7JKn634Xn8WmcjvCpfg1lX221xkOXsm5JlkMOjtraW9ETDrNMYPloo6KOqoR0hBNNTR2CzRlJH9u7dS1lFfawJX8Nfu62MI6Xk448/BmBY1j7i3boxoLUMAecpMSkjffG7MNtm52ELKxJDUqHa23cvib7QFvJz37qn2ek/iNPWhtUS5Lz4Pdyevg6LNQdyXoPEr8emngkBllRwTCSj6Caa1St5d63x+z3HtQ2kkZP+4cF1tAa7n4xpUjfL/SEDTLQaA5zqxmRcCSNjHfvjvgLJP4hsN78IdX+Ahodjznsi5W4mzfmZGeAsKytjZ7FxTo1TgyRbjMF9UNeo9PYs8Y5meflW2trakFJiDQgS6xVGBlK5bthZfH/Kldw37Qb+75Rv8czpP+TZ+d/jZxlv4VHDg6zEr4PazfnAMREhIM4uGGkzlDnBXlJHSktLKSkpIT/NUEDoqoP1bZHv1Mz0sNrONhSSvwN5H0DeMkM+3E7bMig5F/w9G/21qy+s4d9G6RCN9RvWm6q9jggh3MAlwL1SyhYp5TLgdQbeFPz4QXFD+h8j2973oeWVTs0mTJjAV74SWQkvKSnhqaeeOqyFkGiamppYtGgRDzzwAFu3bo0JjGRmZvLVGy7l+rPfx66Gq54IF2Q9DfbR3Rzx6BKdOgIgsHDHkEpDzSR94F18bDrWgZEJOVycf6q5/cSuRV2qzp7YtQh/yFhcyrc1cU5GJjh7X+jpiXFJBaYxeJsW4JOKSNnk/+z+yDRlzXIlc0HeTBAKZDwEtrGGmi7zX5D7gbE4NwClo09m3G43Vd5J5nZr9as9ts9wJpHlMq4TAS3E9ober/Xvlq5C0yPGr0VH0EOhvykj7UTPJ0pLS/H5fP0y62zH8L0AhJ1aPfy6tCpoXdTtPiNHGvGukCrZq9VAuL7bnIweqowABEvQwuVlm9vcZA/pfU50Yd4sRiYY6oyQrvHnLa90OTeIZl9LRHWR50k/qX3x+qLrerSL+37dYVsC/VuuPFmxDYPMvyH2Xojd7qAgvZQZI9exdKnKxIkTycrq38QpmqL4bH455QZ+uvYJWoI+WkM+frbmSX4x9XqGxWcT0jUe2PACa6q3Ghdv6efKpC1c7trRnspt4DrLdOfuCk3TYiKh/QlegHEia1da7Nq1i/LyyMSsL6oLiJVLFbdUget6jKVzadQW1xpBTTDb+LUAL++PrK5mNEpAUltby8GDB7uVeJlodWbNciXoI6FOpTrRkL53xG1xMDxhCMPjhzA8YQifVGwyo7grq3dw75on+fGkq0iwRYJD0UGmovj+pS0McujU1NSQkVjDqlC4souwMPQQ8ginpY3g3dLVWCxWGhJD5JXA0qVLueLSG8NBCx/4Nxmr/q45nfbftWsXBw8anicTC3eY6iTiLgehxJp19qN/SUlJOP0qPmP+zcGWSo7U8KQ16OOX655mW+0OHDYvAsmFni3clL4XxbMQ0h/s0yrOggULeOih7ZTUZDE2pZQcSxOlehxtmsL7ZWu5OL/rOvK7Gw8aK6pAguonT1SCNFJGZs+e3fk3lPQdCJVEpKP1/4tZnhLA8xVIuoMUITj99NN5/33DE/rdj8sYcZFEUQS51lrq/EZw9UBrFdnuvq18fFK8HpAoQme8V+erMy5l9NhTEV0NPppegGBY2abEx6YfdcRaCMKNxaIx2VnKupY8QqEQ62p2c0b2pC53Wb58OQD56QexWq1s9KUTCAsqc91pXa/m2Aoh8xGo/zPU/d64L1QKpRcapnxxF3XeJ8xXCuaw6OAafEobrR6dGoefjRs3dtd8BKBJKXdG3bcBOK2b9gCThRA1QB3wFPAbKbvOaxFC3ALcApCWlmamaR0vtLS0mH0a6jmdTKdRDT5UfAfr6wRBPanTPiNGjGDTJsNYbtu2bfzxj39k+vTph1z1qqGhwQi+lpWZlQKklPj9ftxuNyNHjiRnSAaJbd8joBmfo0Rhe+M3aSipAxYf0vMeCtHvV0c0qWMJgjfsDzHHOowkbzl+DD+d6h3/Yndz3xRsR7JfAGn2JaQ6PqHGfyrVvjPIlgrxISs1egsB/PxsyaNc4ZhmKjJKtHo+9K3GqngRwI0Ja9h04Bs07un+Ofrar6HBOPYGjGvPs5vex76rhQq9ibd8K2ifvE0XWXz6SbS0/cdRtz/pVx8GmN8IIX4L7AB+3JMK64twLqhrmYCURuBS9a9k6ZI30WT3flxJfgvFYfXMK6s/oNbWMf0vQlBqvNz2CSH8WITkXNd2duzLZ8fa17Hb7Vit1i7TM3r7bkPEjLo9SN3Y2Niv99dut5tGxC+//DL79+83z0XFxcUxc4bu+tUYqCYQNJ5/Z+MwTrcZqemNu/7I1sauF2alNMyrD8Z50SW0tfnIsSazfeVGui8FAIm2NQxzBZBSUtMYR1tbm9mXnt6vGXomWwP70NDZUVvMPe//nQvtE8zffUdWBfcTCBivydIQPKzvbF8+x+OZXoMXUsq+2zEP0jecszjo/TJDE98kGAxy2rjl7K/M5ZVXXuEb3/hGv8ygOlIYnxUOYDxJS7DNDGD8dPw8XtrzFqvqG2mPVFyWtIMrkqPSAtUUytsmUzD67z26Q5eWlprS0aSkpD77XbQTHYXdunWrqXxwOByMG9dLhDNMjjsNVShoUqfCW0ebdOK0TwyXlNKNSaJnodn+7ZJVZm33ZHs88zOGsLHMSBnZuHFj78EL7xJAomkaB6pTySyx0egOodqsjErMZVh8NiPihzA8IYdMZ1LMxGla6nDSHAm8st+Qge9sLOWeVY/y08nXmpHymJSRQbPOo0ZtbS15hfVUaQUIAapyaCVqJyQVYletaDYNryOIzy7ZuHEj5557LgnxV0Lj40bDhr91Gbz46CND1eN2tDIqtwxFaQ9eGIZ30WWQi/qhDFEUhXgS8GEogkrb2pgig+EUgUMnpGv8Zv1/2FG/FYEXkFzm2cBXkvaipP/OqLLUxwBcVlYWkyZNYkvxJnJTyznXtY1HmlJAdfHWgRVckDuzyxWG1VFmWpNsxRBO4zhQO4L5l0zs1B4hDAPiULlh3gW0D85xTDNWu8N9njdvHuvWraOmpoaqOictXkG8B3KtNWzwFwEqB1qqmJXe+ypzQAuxvbkUp82Hqmh8e8o75DlfhL1WsGQYFUTUTOO/JRMan4zsnHhrTBC282tSwD4eVV/OBHs5iqKj6YLVVTvQpd6pDLTX62XDhg0IpBG8sFlZUZMFGN83U3XR3XMl3wH2sVBxu2HSJ31QeZsRmEv5YZeS8VRHPGcPmcJrez7F7/dxcIjG0mXdlojzAI0d7msE4rpp/wkwDigGxgLPYyRw/6arxlLKh4GHAUaOHCnnz5/f/es9BixevBizT/p0OHAGhEqwE+TU4a9D5mOdflfz589nyZIlvPvuu4AxUSgvL+eqq67qcwBD0zS2bt3Kp59+ai5MtKcxgXEeufDCC42giKJA1XeheTvt3xvSH2TS2CsP56UfEjHvVxck1OTw9O4PmZIyjGuHnYninwGlbwCQ49xKzpRTD/tc2K9+SQ1qfgGNRvnsjLhtkGiFlB9T0DySH6x8FE3qVNJKW5GL8/Nmokmdu1b8E1soCFIwx3OQyelDIed/+l3Fo6t+TQ/6WLH0DwS0EI0EyJo8jHd3vodNNz7b6WkjuGnSsTFe7Sc/ALZipJxdCbwhhJgkpexShvZFOBdMnXot5Vv+SXZyJaBxyiQ/asIF3e5jq0xn68YXAGhOgPkz5nfb9oODa9G2Ciw6pCptTFD388meLJbvMIJ7Qgjcbjcejwe3201cXBwej4fKykrmzJlDYmJit8eura1l0aJF2O12bDYbF110Ub+CqS0tLXz6qTFerq+vN89F6enpLFiwoMt9On63gwfjWL3VUBfK5DHY7a8AknT7dtLHDe+2zGsgEODv5e8jhDGeuHjsaczPm9Vzhxv20LLfeM8avcmcccYZ5qJub+coV0kG/9xuFG7YRz0VeZKri07vsu2Gza9gKzcWGuaNnM78vEMvEtBbv453BnVex4iS1ssRjkmGq7yic9Gs9ygv28uKFb3nefeGEcC4Hk84L741WMcPVj/Fyvo62gMXlyTt5Ork7Ya5VtyVkP0cFKxjf8tNPaaLwKGnjLSTkZFBXJwxFo1O2Zg0aVLMgKknbKrFXCGUhA30XF2njnhDPlN1AXB54TymTIzUbN+wYYMZ1e2WcI3oQCDI3vJ8nD6Fr4qZ3Ok+i99O/xo3jzyPeVkTyHIld1rxVYTCDcPP5uujFprrvOXeOn6w6hF2hKV9g2adR5/2MqkhT0Sql+NKxqr032jMplqYlFKEqqqoqkp9ko6u63z22WeQcAvmqda7GPxbY/atra01JwzjC3Zht4d/A46ZYCtAlzr7ospjFfYzrSXLmYYM+16UBVwQ7NkwsS88vuMVNtduMErASsn18auZRwmtSc9C4lf7Pag+66yz2H5wOLquMMu+lzilBdCo9jWyvGpbl/uYTuAyxGSbcdsXtJGZf0FEudIRYYXMfxqy53YseZD17xj3dIvFwkUXGWoCiaC4Ih5dl2Hfi/6Zdm6s3UtANwIXWZZmhjjbv29BQ73gWw2tbxoTmtr7DX8UACUREm7u/QnsExAChjpa8Ajj2A2+FvZ2UYJt1apVhEIhUhNq8bj8hLCyyjvENNeL9gnoFvcCyH3bUH200/A3oxSt1jHuYHBJwRycNjtrf/pfXr/hj9x1510AU4UQMupvGdACdJTrxGNUOOuElHKvlHKflFKXUm4Cfglc2vuL+ALQMX2k9T1oea3LpqeddhpnnBHJ3t2yZQsvvvgijY2NNDU10dzcTGtrK16vl7a2Nnw+H4FAgJaWFpYsWcLvf/97nnnmmRhFJRj55VdddRVnnnkms2bNMiYgdQ9A838jjZLuMvx9jkOmpY7gT7Nu4/rhZxuBPPs4sIQXKvQmaOtbVaMjgt5iVOwJBy5MGv4Old9hWFw6XymIBLaf2P0+5d463j+4hv3N5SDbsAmNG1M2GyqyI6TOdFsdzM2IVFJ4cNOL7Gg0rhEWReWmEed2t+tRI2zGKbv5WwYgpVwhpWyWUvqllE8AnwILez7y8U1mZiYH6w3PISmhufzFHtuPTx5qjjH3NJXR0k0as5SSNw6E5xpS42zXTlQhqW1OjGnTbrq5Z88e1q9fz7Jly9iyZQt/+MMfePHFF03D845Ep4wMHTq03yqwjpU/2ulryghEpY0AtUEdnJHUrHaPq67IHzuM5jhjPhAKhZga33slxVDbTnMOUd+aGFMWuTfOy53OwtyIR9ALez/hk/KulYnRaSMnc5lU6FvayCADgMQCGX9FLTkbuz1ICg2cOfFT3nvPw5gxY0hI6GG1rQ8Uxmdx39QbuHf1Y7T4Y8v6fTmpmGvzRiPi7wHXfHPlob6+noaGBjRN6/FkE23WeSjBCyEEw4YNY926dTH3T58+vV/HyY/LoCQ8gShurmRkymmGrBmMSaKUIARvHFhhelGkOxM5K3sKQhruwl6vl6amJoqLi2O8OGKQOngXo+uSYDDIngrDMGj27NkxgZzeOD93Bqn2OP646SUCeoimgJd71z7BneMuiTFXHT5o1nlUaGhoAOmnya4aazVCUBDfNzOorpieOpIVVdux2ew0JPjIqlBZsWIFcXFxTMw4DQ8fG+PN+r9D5l/M/XbujJhOzh5biqKEhx/hCUFlWwNtYSlogs1Fsr27ReiuKUjKZm3zVlShURYIVxyxHbqg7uMDb/Jm8ceAcbG+zLOBnFqdd8q+y63zzux5525ISUlh3IS57K34gGHZ+znLuZNXvMmgeHjjwHLmZMYqsmp8jabBlSp9jFaNAc6+ijxmnnJqp+PHoHgg+2mougP01nB6S+dUiWHDhlFUVMSePXuoqE9nRLCGPFuTYdopoKSlb8GLj/asQhVGFsNEexmKJcGYeOhdlGyNJulboPbhs3ZMgEawWS2MVqtZrhmpI+tr9zAsKhCq67oZHM9PO4hqsfOnqmk06y5QINkeF9O+R2zDIOdtqLzdKOkJxjm39DzI/DfYY4MgqY4EFuROo+XXXkKhIJ4Whddv+OMaKWVMnmDY88IihBgupQwbmjAR6NlcI4IkJhfoC45rDsRfD01hNU71j4xBeBeVZ8466ywCgQDLlhkD8/Xr17N+/fp+P6WqqowfP55TTz3VVCSa8uLGpyLXWID4qyH5zn4/xzFDCMO7pT2A0PIOuOYN/PMGy6D8eghEBa7VLNDCirqWl0Gr5oqCh1lZvYPilkoCWoj/3fwyZd7asLmo5NKknaS6csF9zhHt3nm50/iwzBiPVfkiAciL8meb6tBjiZRy/qHsxhf8XCCEQI0/DzCUgqp/qRE870YtFGd1UhSfze6mMnQp2Vy/v0t14Kb6/RSHF0TsIsB8pzEGqWtOJCkpyQxwdoemaaxZs4Y1a9Ywfvx45s+fT3Z25NoRPS7uj99FO0OHDkUI0cmPrq9mnRBl2AlU+xrBOTcStGhbHmvyH8VOrQpFVdF1jbgmwcFd+8me3kWlryjamiNJJdJS0Gdz0nZuGnEO5d5a04vwL1tfI8OZxMjEiG9XSNcobY0Eiwo8J2+ZVBhUXhxbbEMh7X5sNjuKojClaDN5Kdt5/fXXj8jhh8Zlct8IBx6l3RxN5aKcMVw/7UVE1v+B+2xq65r4+OOP+ctf/sIDDzzAJ598wv33388zzzzDunXr8Hq9MccMhUIxqzPREdL+0PGElpWVFXPy6wsFUaWL9rdUgmOq4cwPRm57sJiWYBuvF0dWV64oPA2LYqyOR6eo9JCDDf4NoNcRDAZp9TmprE8jJycn1hCwj8xMH819U28wq0UYlV+eN12+E2zumIjxIANHTU0NqfF1lGiJGGMclYK4/n+m7UxNHY7AWLVvTTBMn/x+P2+99RaPvWKnubmZlpZWvNXPsmHNW1RUVHDgwAGzXG9WUg2p8eEJsXCC53yAWLPOfpZxBRiZkR+pOBKKO6xyqbsr/svft72BUdIUpjlKcOxK5tXl5zBx8txDPi7AGWecwdZSI23hDMcOVGmce3Y0lpoKpXaiU0aGq1U4FSM40KzPIi2t54EGYKRrZD9jGIrauj+HTZxopJ+U16cTCoXIjVJeHPTW9Kk++5qaXaiqEeiZ6q5CpNwDhduhcLdR0WPIS5DxV0j5iaG08HwJku7s2esiGrvRR4tFZZpnPwC6rrGyPFaxsmPHDurrDZPRwqxynmqczPLWLBCGSuWKwtM6pZn0iBpvKFaS/idyX3A/lF4A9f/XSYVxScEcHDZjUNfi6bbqUivwMvBLIYRbCHEqcBGGl0UnhBDnCSEywrdHAfcCXcsTvqik/sQw7gXQG6D6ni6Nf4UQLFy4kBkzDq3Sh8vl4owzzuD73/8+V1xxRedUytb3ofqHUTucCWm/PWIKgKOGJ8rPq/VdM91swPBthNLzYwMXibdDwXIjMNVO21Is5ZfzP6NOQw3/Dnc2ltIS9IJsJcPSysWJuyHp20fcHHNY/JBOgctkexyXFhzeOf1oIYRIFEKcI4RwCCEsQohrgHnAe8e6b4dL/vBzaPSGg9h6E7q3Z7VQdNWRDd2UTH3zwPLwLcnpcftwEkBKQUNrInfccQc/+9nPuP/++7nnnnu4/fbbufHGG7n00ks599xzOxnqb9q0ib/85S/8+9//Zt++fei6fshmne04HI4uU7kPWXnhb0I6olIs2pZ3sYfB0srNpgI8pU7pUwBY90WCNa74/pcutigqd4+/zExZDuoav97wHFVtDWab0taamIpz7nBxhpOVQeXFsSbuCkTrhzi01/F6vSyc9iGPLkpny5YpjB3bS3me3tD9DA08we9y2nijoZDh6V/ijKLbqKmpYdOm5WzatMmswxyNz+dj06ZNbNq0CSEEeXl5jB49mlGjRuH1egmFjIlCcnLyIStEOp7Q+qu6gNiKI8UtlUY02nmK4c4O4F3MazW5pmN2tiuF0zInmPtMnDiRlStXAsYJ+IILLuhacdL6EVIauXB7K0YiEcyePbvf/W1nZGIuv5txM/et+w/lHVzFh8cPGTTrPEoYlUZqWRNMNGIXwnJYdbOT7B6GJ+Sws7EUm91OQ0KQ1Drj+1RRn0Fx1RDy0w+i635qdv2G516MHRieOaMm4nfjucBQCAC7Gg+abQoPwUx0XM5w5E7juNUhFwHfHrpJqugeKWms/gu/3byWgDQCbzm2VpI2JrKmIg+LxWJO9A+VxMREknKuIBD6kASLj1Mcu1kaSAJh5bUDn/P9qFWI1dXti/I6Ux3GJF0CQ4Zfe1h96MjYsWN59dVXKa9LQ9M0PCJAiqWFWplESNco99aR6+k+WFLWWkttqBmXXcMmNMa768EV/twVV1gBc5i2UtahIDwIWpiZUMpf6yQSwdb64pjSh+1GnULo7EiI5+2m8CBX2Lgof3ZM2cQ+I1RI+YHhg1H5XZDGRIvaX0PdnyD+KqNaijWPVEcC5+XN4MUdi5E9Txi/CTwGVAG1wG1Syi1G30UeRl77GCnlAeBM4HEhhAeoBJ6ms6H4FxvFY6SPlIVTM1rfgZY3jAoPHRBCcNFFF2G329m8ebN5rdZ1HSml+T/6dmZmJrNmzWLixIndpm16LDuh4re0q62wT4DMf5jpRl8oHDMMpZVWC1qlYcTtmDowz9XyDlR+yyxvChZI/31k1TftN4bPTd0DxrZ/E4Xa17gs726eKzZMWJGG6uKm1M3YbEN6NMc9HM7Nmc7/bY3E/W4csQCnpX8ryMcQK3A/MAojN3o7cLGUckePe30ByC8o4LMNI5iQvwYpJU3lL5I4rHu10KSUQjNNekNt5+BFhbeOVdXht0VqnBe3G4LQ0BpPUnK6eQ5QVZWEhIROY3wpJQUFBSxevNg03gdDQbpz504yMzNpazOUzh6Ph4yMQxtTFRUVUVISWbRwOBykpvbdj8xlseNUbbRpAQJaiBbLKOKEw/gthooN7ytLbApuubeOXY0HsVotBHyQXKewt3ovjY2N3c91ZBAL5WbNg8T0Sf18pQZuq4MfT7qa76/8F83BNhoDrfxq/TP8ZvrXcFnsMabtBYcwDjzR+AJeeU4whID032PxrcEa3I8LHxfM+IDXXkunqKgIh+MwomvNL4BWzRAbfC2tnKXFRTz01kNdBizAOFk5HI4YqZaUkuLiYoqLi3n33XdjcskPJWWknfj4ePLz8ykuLsbhcDBp0qR+HyN6orm/uRIpJcJ1mhm8aGxeyhsHIn28quj0GOO/goIC4uLizHzgPXv2MGLEiM5P5P2IUCiElJI9Ffm43W4mTJjQuV0/yHal8JvpN/Gr9c/GTE77LNs+SRFC2IG/AWcBycBu4EdSynf6e6yamhrSE6spCY2KKpN6eHmE01NHsLOxFKvVSu68kZytD6ekpITS0lKW75hCfrrxWU8q3MLSrdPxB43ft6pojMyOWpmLuxyAfc0VvFUS8cE5FDPXBE88bg2CFsO/4UDDHob159onA4Qqv8/vtx+kJpgCSOxoZG2Ko7TSWN0YP348TufhO/fPO+0ctnw0jDG52zjHuY0lbWNQLIksr9pGZVs9Gc4kglJjY3hFSQt5mWQzUkaqGocwYl4vxlr9xOVyMXz4cHbs2I4vaMMeDJFna6DWnw2oHGit6jF48eHuVQg0BJKxtgocjkywHpparVvCpp34PifVrpGi+alRHQRCQbbU7weM73p7epKW08BzTaPDgmqFORkTuWH42YfXB88Fxuuq+FpE2SO90PgoNP7bUBEl3sqlhXN558BKWtu83R5KSlkHXNzNYwcwTD3bt+8G7j68zn8BcM2D+Gug6T/GdvUPjdLrls7nK0VRWLhwIQsXHqF0/8A+Rif8BsJVO7DkQ9ZTvXpjHbcIFVwLoPlZY7vlnQEIXkio/xvU/grTFFhJMCr2uKLS2oSA5O+Cmg7VPwA0CBVzqfpzVrivZ19rC+itTHRWMcNdAUm/HRCDUYC5mWN5af9Syr11TEkdxtzeykMeR0gpq4H+r4B9AVAUhZDjTGCNcUfLe2ZKdFeMSsjDplgI6CHKvLVUtzWQ5kw0H3+rZGX7N5LJiXFkqY34gkbKSHp6epfH7EhBQQE33ngjZWVlLF682Kx2BMTML4qKig55Ma6oqCimGkZeXl6/ihkIIUhxxJupFjV+L3GOabGpI3Ffjtnn08rN4X0VcvQELJoRdFy/fj2nndZNwavgQfSoMqm5hV3MIfpIliuZeyZeyc/WPklI1yhuqeLBTS/xw0lXsj/K7+JQKuKdaAymjRwPqImQ8RAOhwMhBEMzShiZ+RnvvXcYijcZMi6egN8f4I2l2bz/weJOgQtVVRk9ejSXX345P/7xjzn77LP5zne+w4IFC7pMi2ivMgKHnjLSzlVXXcV5553HLbfcckgTn1RHAm6LMflrDfmo9TfHmHa+XFaBL1w3Od+TzqkZsXIuRVFighBdpo5oteBfTyBgyOr2VuQyY8YMLJbDj/sl2jzcN/UGpqcZJztFiD5VLzjJsQAlGKUTEzBk4i8IIQr6e6Da2lqsCa34pfFZJthcJNq6L0PWF6ZHGR7u8JYxfeYMLr/8cu68806u/fojWNzjsdvtOB1wythdZtuFp1mwKC3GhiUHnLPxhvw8sPEFgmGpYL4nw/yu9JdE4TJvH2zp2mSrIz6fj62bllKxZi6P7FzPJm8yUkpCmkLGVg8tlRFZ5qEop7oiLi4OJcHwW8yzNjDaUgpIdCl5K2wwVqzVEtCNFeU02UiGxXjfpPPMQy4P2ROGokRQUZ9OMBgM+14Yg5XefC8+O7gJVTU+v8muSoRr7sDI7B3GecxisTAMQ82laSFWVhi5uO2qi6Y4na15DrMPYz1WvjP2y/1LF+kO+2jIW2yUTrVFVy3RDaVA6QWk1tzAhUPS8XgO73d2UpLyU7CEg9t6PZRdA1qXPqZHDu8SKLsMixJ+HiUJsv/TpefGF4qY1JG3u0zDOWRkkKK4fxjmu+3TRGsB5LwZG7iIJuFqyHoMhDGescha7kp6ijxbE/m2Br6ZvgFhSYe4rvP0jwR21cZvpt/Ez6dcx48mXjWoAD2OyBx6Mf6gsXBooRzp79rEGgzz8NFJkfSKDXX7zNvekN/0NgG4IA3TaLKuOZHMzP5NirOzs7n66qu56667mDZtWqfr76GkjLSTn58fc7z++F20k+KISh3xNRkm6O10Yda7tGKzefu07IiStKfUkdbGTeaCb0NrUp8DQN0xNimfb46+0NxeXbOTJ3e9H6u8OAyF8InCYPDieME1B5H0TVNpccaET9mz7U0OHDhwaMdreRtCxUgJTa2C9fsiE3eLxcKYMWO44oor+MlPfsL111/P5MmTcTqdCCHIysri9NNP55vf/CY//vGPueyyyxg3blyMCY3FYjmsExNAQkIC8+bNIyurf9UT2hFCkB/je1FhOOBbhlAXsvNOwxAjiIOhuuhqgB4tdd+8eTPBYDC2QetiNE1D0zQO1mYQCDkPOae4KxyqzYi0Tr6WP8y45aR3EO4NKWWrlPLnUsr94QoDbwL7gH4vndXUVON1ReTrBXHZhz1gy/ekkx42imoN+djaEPGHcbpcuLLuxG634XI5OXv6Ae75wR3Mnz+f2WOjPB3iLkci+Pu2N8y0Iodq5fsTLjukSigAqdbI96oy0NZjnrfX6+Wxxx5j/YrniGu4gnV+L++0GEGZoGYhZZ8Ld41xnkpMTOTss8/u3uz2EBg3/Ru0BYxgywWeTYTCZrvvl63DG/KxRzOCL7quMc0Rya3NHn5954MdAUaPHo3FYqGiPg1d1xliaTLPKyWtVd3u59cC7PVXYVGM4MU0TzU4O5fJPSKEfS8URXBKciSgsqJsC6FQiDVr1uB16uwaFkJRjYFWjrWZH46Zik09ggJMYTMk8bkfQtYz4Owgb/at5Hr7bxlpK+56/0G6R42D9D8B4QF9YKuhdJHBnvY6NLQ6qPwOlF0FobCZtLBD9pNgO3TF5XGDc27EHyu4HwLbe2zeZ/Q2KLuGdMeHkfscM43ARQ/eOgC4z4Yh/zWqDAE51hoeGvI8f877mAyr1/DAUQY2jSPR5mFSSlGXpakHOXYUFY1if5VxjdV1SXPlyz22n5Qc+a5tqIv4MXxctt5MJRziTmGys9wMXtQ2Jx5yikdqaiqXXHIJ3/ve9zj11FNxOp3k5uYelkLZarVSUFBgbh/KGCPa96LG3wjOqHTvDsGL4pZKiluM67lNtXDxpDPMRcqKigrKy8vpisbqDebtkMg5IgsoZ2RP4isFkUDna8Wfs6U+cs0cTBsZTBs5vkj5ARbvUizBlRAKcdHMRbz26gi++a07+/eDkBLqjWoGwWCQVTvHEwzZSEhIYOHChYwYMaLP6Sgej4cpU6YwZcoUNE1j3759HDhwgMLCwuNi9awgLpOtDUaAp7i5kmmpI8A5jxfLNxOQKuCnMCGPmWmjutw/JyeH5ORk6urq8Pv97Ny5M9ZrxPuRqTbZU5HP2LFje6xvfSioQmFy6uEFgk5WwmZ9I+ihGoEQ4hbgFoC0tDQWL16Mrut4m3ZTIY3vsERAnYiRKR4qaX4HpSHjIvjfVYuos0e+e4JEpqR4sCl1QBll2/+MwzoKf8N7iHA++dotOazwP82HUQZvC+wj2bVqM7s4NNRWBekWCCEpCzj4bOnLBPTO+aM+n4/ly5eTEbeJr537EWXSw6P1xmqFP2gjvs7FFJlN6rhUkpOTTcXUkXjfoonzT2NY6hLGWQ+SHKqlRqoEAn7++vFz7ApWEBBBdM3P1PhipJT4Qols2+QFjmw/2omPj6ekKomZIyTpsgZd8xMKWdlYuovFdcZztrS0xLwPm1sOENRD2BWNbEsjqUozn61XCehHvo8O1cvkZOM8NS1hF6JuAroiKPPWsbF2OzVtjeycAJoFIEii0sY9qZ+wafOF+AegPxG+gUs9l2zXG6Q6liHCmcF3Ji3igQF81hMW1xxI/4NRKQcMCXTlHZDx0JExcZQSWl6F6ntBj/gxhaQbe+ajA+cNcbRR7OA+E1rC5uit7xjKocOl7n9jyzDGXWp8XqKPLkOOqZDzOpRdbZRRNvubAAnXHX7/BvlCYrVaaVPmAobHRKD+Tcj/SbftJyRHJvob6/aihxcr3oxKQT0/dyZKcBFaWNlZ13LowYt2EhISuOCCCzj/fMNs/HAXg84//3zeeecdcnJyYgIZfSUtquKIobw4FcMeJQjBPRCqNlVky6JUFzNSR5Lkjmf06NFmSsz69eu7XGj1Nm3FE/55W5zD+93H7rh22Jkc9NayosoIrGrhz9Cp2siISgM6WRkMXhxPCCsi86/YfWcRaqklLaGOsZmvsnbt/P7Jsts+gcAWpARvm87qXUb087TTTjusSKiqqgwbNuywFRdHkvyOFUeAKnUmixrDEnwZ4JqiM7o9iQohmDhxIh9/bJSi2rBhQyR4ITX01o9NNcae8gIuvPTI5tQPcugIIazAf4AnpJTdLp1JKR8GHgYYOXKknD9/PrW1tezf8jAHQknhY1mZP24m87MnHXa/Empz2LL2aQCqnX5OO/W02O9f/V1Q+wsARnuWoCotOOzhU7FjNpl58/l05b+whSszLBgylW+OuZDDIbjTyYadO1GFRrkWxykzssF1SkybhoYGHn3kH8we8TGzRq2lWbPxUP18gljRRRyFKTn84fxbcR0FEzd/o4PA3qUIKflSwgb+3Xo2VquddZZyvIEgVqsNoTUywlaDEAJ70nnMn3n6gPUnJSWFt1/bixCCIWoDiqJhU+14hcaceXOxKCqLFy9m/vz55j4fLPoHlpCOACY7K7B7RnPK2EsGpoNSh70/B9lCqjVASptOjUdFSskW30EqxwlCDonDbsGlhPjZkOXkuDPJmThwMvRYboRQBTQ8Ck1PkdFbmdhBuif+CkMNUfd7Y7vlZcN4LvXHh3fcYKlRycT7Uez9notYf/AcTh13xuEd/3jDvTASvGh55/BLvgYPQsPDke2kOyD57v6nidmGQc4bRgAjEE4PSLjZNHAe5OQkcchX0LVHUYTEIbZBqAosXacoDI3LJM7qDBs/ejnQUk2Nr9FUcrotDk7PmohevBupG0q8+paUfhli9sSRSjnKysripptuOuT9O1YcQXGAYzL4DKN+w/fiQqSULKuMrH+1l2afPHlyTPDinHPO6ey7EdhLuwO6K6H/lUa6QxEKd4z7Cj9a9Rh7Y8w6M45MmucXnMF34HjDNgw14z4zRWPasI0c2PpXNK33knwm9f8HGGVN1+4ZRVvAicPhYMqUKQPR42NKQceKI8B/KyEU/mqPclQyJbHnHLTo1JFt27bh94eNyfzrCfmNFfQWnwtpG3NYJqWD9I4QYrEQQnbztyyqnYJRPjEA3N7f52k36zSCFwKE9YhJ8cYlFeBUjatZRVs9G6NyTgFIuAaU8EU1uJdc14vmQ17XJZ18Lr428tzD7tPorEJkuFxqRTCOgHdnzOM1NTX85/HfsXDiI8wetRZdCv7WPI9aPR6hphDnSOLHk68+KoELAHv8THSLkbc737MbS6AVkKbkNRQKMtF2EFVIFEUhIfvSAe3PqFGj8AbTDNNOAqSqrYCGJnUOejt7iEgp2dJ8ADWcMjLVXWVI1QcKoZi+F6qiMNbenkog2Zflp80lAYHDKvl+1kqG2pvA2U3+/UBhyTQm2ENeOrrPeyKS9F2Ij6qs0/BXaHjs0I4lNWh4BA7Mjw1cqFmQ9QRk/p2gTDyMzh6nuE7HWIUFAlsgeIgpuu3U/Q7jcgQtoSJIvuvQ/W0sGTDkFaOkatIdkPydw+vbIF94ho+cRmmNYditazotVd1XhFaEwsSYkql7eMMsjwpnDZmMU7Sih4xgRjBkweHJHxDPqGNJapTnRY0vHDCPTh3xGe/J7qYyM7DjstiZkmIoKEaMGIHLZaSwNjU1sW9f7FhO13VsoszcTs48hIpdPeBQbfxo0tUk2+PM+4bGHVqa/YnGYPDieCT+WtSEhWb0cv6Y19i+oY8DPt9aaPsUAH8gxIodkwDDUC/as+JEITdKeXGwtZYDLVV8VL6ddlHR1cnbEL5PezxGRkaGKZcLhUJs22asdugtHxEIGJOAvRV5zJ59yqCJ1QAjpZwvpRTd/M0BEMaH8CiQAVwiZf+TvmtqaohPaKBGc4MAVbGS6z4yJnRWxcKklEjO6S/WPcVTuz8gGDaZRPFAfMSfQRHGhFzi4m8lwryIOlUb359wGXb18N3lM93JKOHTfYPupKYuIpGsqKjgg9fu4rLZDzMkpRIp4UXfDDb7coySgsLCHeO+whD3kVmV6RNC4Mm8HiEENqFxqmWv+VsECAb9zI4zKo5YrC7DCHMAsVqtjBkzlop643yTY2no0bRzV/UBmoQPVdFxiBDj3Q2G5H8gsUdUdfOHBDo9bLVa+WZ2FZNd4f4e7eBFO/axA+f9cbIgBKT9GlxRVWJq7oWWt/p3HP82KP0S1PzUqA5jHBwSboL8JYYPw4mKGmdUcWmnpd8FqyL4NkFzZIxW3HL94afxqPGQ+iNI+d6AVRgZ5IuD0+mkMRTxW/NW9ex7MSEqeLHo4Bo2hCt0KUKwMHcGBPaia2GzzpZEMjJOPB+FlN6CF21G8GJZZWQ8NCt9lOkDpapqjFq9o3FnTXUF8c5GwFCbxCePP5LdB4wAzI8mXUWGM5EEm5vzc4+c594XmcHgxfGIEFiy/oKmGiuPVjVESuAutEBl7/vW/xUATdPZuLeQJm88QghOOeWUXnb8YuKy2Ml0GtJ/Ter8acsrRm6YsDPBWc0EV43hmN4L0eqLDRsMA562mjdNM6OS2uFMnjx5AF7BIIfA34HRwIVSyrZDOUBNTQ2hOGPyKYAcV8oRNSm7smg+zrBKQZeSl/Yt4+4V/4o4Rid+DXPVL8x7/gtYVhWpm37bmAuPWMDAoqgkikiWYGmjYf5UWrKHXZ9dzsLJL+OwBvDqVv7ZOp+3WiYTkh5A4cqi+TFVVI4WasJlZsD1srRVhPw+pJTouo5CgAl2Y8XDEjcPFFdPhzoiTJw4kfI6I3iRrdabwYsDXZh2vrvtM+M1KBrjHJXYVDHwwQJ75Bw2Jb0amz820HpJzkzOdH4SuaO7ygdHg8Rbjt1znygIC2T+A+ztikoJFd+CthU97obUwfsJlN8CJeeAP1J9ANtIw3Mh7f6TI03BE1VOtvUQgxdSQu19mJVFXAtoCo7tcZdBBjkUXGkXm7cdcrVhENsNE1MiwYuDrbXm7Rlpo8hwJkFwT0ylkcP1uzgeSbVHeV74m4yqII5pmI4JgW3oobqYKiNzOpQIjh73dzT1rzy4BkUx3sOAnoRQB6Z89LD4bP56yrf597y7ju4i0nHMYPDieEVNwFHwLEHNkJ+7bA0077qqZ2fxwG5ofde4GQiwfLsxqBk3btwRN5k8nsiPqtCxtynsCCxsXJ0czhf1ftLFXrFER1d37dqFt/kAImCUTtWlICn74hNSufJFQwiRD9wKTAIqhBAt4b9r+nOcxvqD1FsjwYOC+IIj2U3yPRn8adY3GB9lnFXcUsndKx7m+b1LCCmpEH+Z+dhefwKPlkcmCwuGTGVe5pGN4qfZIhfy6kA9pXuX4N+zgIkFxuRlXyiZnzZ8mc98E0AxLsIz0kZy+dB5XR5vwLENxeqZhqIIUqxeRgTrCQQCaJpGoVqHRwlgtVqxxJ9zVLozfPhw6loN2e4QtRGph4MXXSgv1tTsNFNGprgqwT7OKIk9kEQpL9yW3WR4I6bMRf4kbh6ZATKcEmcdavgkHCtcJ5h/wrFCcRoVQKzt55kAlN8IgZ2d24aqoO4vUHwKlF0JrW8CYTUYVkj+HuQuOnFMOfuCewHmMNi3yjDw6y/ej6JMOlVI7d5IcZBBDodho8+ipslYrEP6aKv/oNu2Gc4kc2EvmgvzwuVCA3tMs87a5qQTMnjhstjNFF6/FqQl5DMWOqKuldsqF1HnN0pBx9tcMYoVgNzcXJKTkwHD0HzHjsgCU2NNpNKIpuQxkFgUddDrIorBd+I4xhE/nmLfD9rj+ViCa5BVPZhy1f8NkOi6ZPuBHKqbUgCYM+fEluh2VfN4SupoRrnCA/VQMQT293iMlJQUcnJyANA0jZ3rHyYUMgZ2B2szmTZzcLB9PCClLA6nkDiklJ6ov//060CB7ZQEE43bwkJBXPYR72uGM4lfTLmOr488z5QhalLn2T0fc8+qRzlgvQpQ8OoWfl85h6A02hwpn4uO5Hhyzds1WhvO2i+TFl+FlLDIO5Jf1l1ElRxiSpQnWXK5e/xlx/SCKeIvMY1LL0lYh+4LomkaFyUagUWbzWZUDTgKqKpKYoYRyBliaQDCaSMdlBcNrU0cpMkskTo9rmZg/S7aseabXipCr+eyrEIyKlSy98M3x34J0fZZpO2xTtsYHIQdOdRkyH4G1PCKnN4YrlZRYagsWhdD+c2wfxrU/QZCHbwdnHMg70NIvuPkS09QU8DRLsOW0NK9j0CXyBDU3BfZjr/GMNwcZJABIC4ujqrWSeZ248Hne2zfcSJeGJfJmMR8YyMYlTZygiovhBAxqSO1ZupIxHh/acV68/Yp6WM6KXCFEEyaNMncXrcuolTzN0d84q2uwd/90WRwBHGcM3rat/l0mzHw1XWdUN3j0PhE54ahcjPnMhgM8tk2Q3WRk5NDbm5u5/YnEPldBC+uHnZmrEy7rX+pI77at83bzdr0I+bCPMixR9M0nMpes9KIYdY5MBduRSicnzeTP828jZEJOeb9u5vKuGvt27yi/5w/V19EuWY8/5H0uehIYepwoyQsUKF5sKpBWnUrf2o4jada5qOpyYCCy2Ln7vGXssA+xgy6HDM8X8Jqs6MoClPT93DqDh/nl5Qx27UfVVVRHSOMSftRYvjoM/EF7GSrjcbEUGqUe+sIaCGzzaItnyGFRFU1cq2NpNv8RydYIBSwR9Q6Z89K4cZhZ3N26kQmjp9geiEBx87vYpCBwZoPWU+DCKdPhcrg4CVQPAvKr4bWt4moLAiX3vw65C2GIS+c3BPu6NSRmvuh7fO+79v0PATDKhfhNkw6BxlkALEmnm/etoU+Ma5D3RCdOgJwQd4s07dN8+0y0iiABm+yqS440Yj1vTD8Kdp9L0JS8Fl9pPJVe5WRjkQHL3bs2EFbWxvBYBCh7Tfvdyceeb+LQbpnMHhxnON0OrGk/Q9bDxjut36/H1l9b+cLbMPDQBApYX9lOqW1hiT41FNPPeFNJjtOPGelj2JYfDa4Tovc2Qffi/bUESF0hmZGVqfSh155ZDo6yHFBXV0dqYk1lIQSw/dYKPAMrFlVtjuFX0+/iRuGn21G9oO6xhPFpaxsS6Y9B/NI+lx0pDAlBymNU35FKI5dgVTuqf4Sa0MTEKqRslIUn8UfZ97a7UX8qGNJRzjnmilbE4fsZFKG4fhts1nBfdZR7U5hURE1zVk4FI00tQVd86NLGVNx5NPSTQgkitCZ7KwErOA8SiZbUb4XNrmNBQsWkJ+fj5BthplzO9GmZYOcGDgmQOa/MPO5g/sgVNqhzSzI+D8oWA9pvwDbiKPdy+OP+Cs7pN181TAy7Q29NVKuFiDpW2A5MqbPgwzSHfkjLsbrdwJgoZ5gy6pu205ILsSmGOeDRJubue3Xdakh/XvMdqp9+AlXaaSd6HKpNf5woMIxHVDY5E2jKSQBnWR7HGMSu079SEtLi1Fmb9q0ifLychLdDQAoioLNPXguPZoMBi++AMyZM5f3N55LRX2aob4I+qD86xAsMRpoDdD4NGCoLpZuNgaw8fHxjB9/4kcDM5xJuC1GfrcAriw83Xgg2km87VND4tkD8fHxFBYWkpVUhdNmpJy0BeMpGL6wx/0G+WJRU1ODJd5LQKqAINHuJsk+8OZ0qlD4csGp/HHmLRR2UZZ1IHwuosnxpKGHU1OKQ0n8vGYhDUouQjFyQi/Im8lvp3+NLNdxtgIT9xUsFguKojAufwfDhxxACIHFYgXX0Q1eKIoCDuP8mmNpRNeN80RJi5E6EgqF2B2sQlWNlJFpnmrDQ+AoGIoCMbm8+DZG3V5Fe5oLtpGDk6wTFffpkP6H2PuUREi8FfKWQM7LEPcVUAb9m0wUD2Q/C2q4cpneZKTdtI+vuqP+H6CFU8bUDOM9HmSQASY1LYOyhtHmdu2BZ7ttG2d1ctf4S5ibOY4fTrwSaziQQeigee1q9TlJTisYyC4fU1K7ShtR48E+lqUthocVMsicjLE9psh2TB0pKSkh2WMoOVRVjQqADnI0OG6CF0KI24UQq4UQfiHE4108fqYQYrsQwiuE+Dhs3HdS4HK5mDZ9Li9+upBWn9NQX2h1hjGX3gqNj4NsRUqobEhiT7nx1syePfuEjaZGowqFr486j6Fxmdw88ryIEsNaBJawl4HeDL71vR5rwoQJFGUVm9tB66koJ8F7eDJRW1tFqyvsJCMg3zPkqD5/vieDB2Z8nSsL56OGL5ZD4zIHxOcimiSbB4c1CX/ITlswDsWWglBU3BYHP5x4BTePPC8yuDme8JyHUBw4HHbSEupIcLdgs9kQajw4px/17qRkG8HRIZbGqIojhtHf8p3r8Vk1VEXDoYQY46of+BKp0UQHL/wbjEoIAN7BlJGThvjLIfNhiLsSMv4KBesg9WdgG36se3b8Ys0zfEOUOGNbq4Syq0Cr67p9qBIa/hbZTrnHME8dZJCjgHQvMG8Lb/emnQAz00dz1/hLGZkYlT4e2IseZdaZnp4+IP08HoitONJo3g7YZrG8NWxaLQPM7WXhaMKECaaKff/+/WzevJ4EtxEMMYIXJ82U9LjguAleAGXA/cBjHR8QQqQCLwP3AsnAaqBnp5oTjLlz5+ILJfPyZwsJhowVPgLboPJ2aHgEMORMSzaMBQQWi4UZM06eesDzsybyv7O+wfntTsoAQoCzf6kj48eNZcSQ/eZ2Wv4VR7CXgxwPeBu3Uqa1R+MVhsYf/YuORVG5smg+D83+Jufbx/Pb6TcNiM9FNEII8hOycDiTsTvjEUJhZEIO/zvrG8xMH937AY4VigfcC7BYLLhcLqxWq2HU6TrtmBgMpuWchRCCHEsDiqITCoU4EFZefLjbkPCqisZERyVWRR4ds852okw70RsiaQMxfhcntoHzIIDnAsh4EOK+PKiy6Cv2MZD5b8wS1sG9UHYd6N7Obev+AO1Vum2jIe7So9bNQQbJKrwCTTemby5LMZpvX/8OENyD1m7W2ZJIZubAps0eS2I9LyL+Fmt9w/Hqxm890+o1Us17IC4ujmHDIt5A9dVbUMNlUrGknxylpY8jjpvghZTyZSnlq0BtFw9/BdgipfyvlNIH/ByYKIQYdRS7eEzxeDzMmjWL0tos3ls7n0DAbyyqtb4HurE60NDiZluJsboydepUXK6jJFU+nonxvVjcc1spcXl/T35mM6qq4nS6sSeePaDdG+QY4N8SMevEMmBmnX1hiDuVsZZs7OFyXgPNpJTIxffLBafyq2lfJd2ZeFSe+7CIuwQAi0VFVVWEAFxHp8pIRxRbHqiJDLE0IpBoIT8lrdVIKdncdAAhJIqQTHVXGSZ+jklHr3NCdFJfqKLVUGEYDQb9LgYZpDtcp0DmXyFsbIx/HVTcElui3r8DmqKk+in3ghhUZw5ysGNsxgABAABJREFU9MgaUsTBuiLAENfVFD/XvwME96LrkUojJ7TyIjptxB8JXixriLSZ496FkF0EKTswefJk83Z7ygiAxXkSGx4fI45DjXCXjAXMgrpSylYhxJ7w/ds7NhZC3ALcAobRyuLFi49SN/tOS0tLv/ulKAqhUIiV24tI9lQyd/xOIwcbkFLywZrxtPlCQAhVVQ/pdR9Kv44Gh9ovixBMTw0CEulfwaolb6FJd5dtc1wvkus2LgIWi4WDrQvYv3Rtl20Pt18DzfHar+MBG3soCRllhBEDb9Z5PHFV0XwK4zLJciVT1MtKw3GFa76Ru683hO8Q4DpG5YuFQHVNIjv4CQKJrgco99ZR3lpDvcNvlkid5qk2VBdHWx1inwBty4zbvo3EW21AeIXIPg7UhG53HWSQkx7PBZD6K6j5kbHt/Qiqvgfp/2sEB2vvx/w9OU8D9/xj1dNBTlKEEITsc4FdAAQaPwJ+2Of9g97tZqWRRm8qSUlJvezxxSU6baTG14SUEp8WYGXtfowpcIi5nhLwrYn1yeuCMWPGYLVaCQaDJHkaAFBVBcVW2ON+gxx5vijBCw9Q3eG+RiCuq8ZSyoeBhwFGjhwp58+fP6CdOxQWL17MofQrGAzy2WefsWTzaRQOCVCUXYEQ0NRqZUvJeOx2KyNGjODCCy88qv0aaA6rXyXTzJXHuVMV8HRxnIbHoeZlILwC7j6fgsx/UNDLisoJ+X6d4NhsZdRohqu0VbWTM0DVPY5HrIrl+Kkk0h+EFTxfgqYnjW37JLAcu8/NmTgLvWUxaWorpSEboVCI5S27kC4jZSTf1kiK1X90/S7a6aC8iLdGKfAG/S4GGaR3Em80zDjr/2RsN78Aapqh5PR+GG4kIPWnx6iDg5zsxGUsBK+RZe9WNoLU+qwA0ny7zNvCPsxcBD0RcVnsOFQrPi2IXwvSGvKxtmaXUd5cWMmz1pFvbzYqOPYSvLDb7YwZM4YNGzYMmnUeY47KN1YIsVgIIbv5W9aHQ7QA8R3uiweaj3xvj2/mzZuHqqroUuE/H51GqzYKXVp4c8VsQpqxwnfqqYMD1Bh6K5na/ArU/Diy7ZxrSEcHpaAnHLquE4iLVJ3JcaeapUsHOc5JuBEzuJhw3bHsCcIxEYvFSq6lAVXRCQaD7LQb6XuqqjHVVWk0PJp+F+04IuVS8W8kwbYpsj0YvBhkkL6R/D2Ivzqy3fBXqIiqKBJ3OdiPY6+gQU5ocgpOo8VnqIgtipfW+hV921FvQ9HKjZtS4E44sb/DQghSHbHqi6WVm8MP2pjrOWjcbvu8T8drTx1JigleFByx/g7SN45K8EJKOV9KKbr568vS1BbAHJEJIdxAUfj+k4qEhASmTzcc9n0BB08vvpRPK55k0z4j8peens7w4YOu4jH0FLxo/RAq/wcIu/Lbp0DWYyCOjgfBIEcXXQ9SqzrCW4KC+IJj2Z1B+oN9FOQvYWP9byHuGBvp2iditVoZYmkMm3YGCSg6itARSCNlRE0xypIebSx5oIQHa3ojbsv+8AMqOGd2t9cggwwSjRCQ9ltwRSo7oNeHH3NAyvePTb8GGQSwOxzUtUUCD/UH3+jbjsH9aJqR2tjQGk9a+hcoffQQSbFH1r73t1SwrnaPsSFszGkPXvjWge7r9VjDhg3D7XaTFNcAhIMXg2kjR53jRiskhLAIIRyACqhCCIcQoj2t5RVgnBDiknCbnwIbpZSd/C5OBk477TSzBGpxcQkffrjYfOzUU081y/kMEsYxDURYOh0qhsB+43bbCqi4GQivxNtGQvZToHTtiTHIFx8FH8VBI79TolIQl3WMezRIv7Dm0xoaZkwsjiWWIajWFHJtTQgkQhjBT1XRcClBRjrrDZVDD3XjBwwhwN5F2Tf7pEFH9EEG6Q/CApl/N8YQ0STeCpbBa8cgxxYZpaTTW5f2bafA7hizzoyMY2dYfrSIrjjy1oEVhMJlYofF55Dlbv8dB8HXs8cdGMGKSy65mJT4Vux2m5FyYxksk3q0OW6CF8BPgDbgHuDa8O2fAEgpq4FLgF8B9cBM4Mpj081jT2JiIlOmTDG3/X4/AC6XK8YNd5AwwgrOUyLbbZ+AfzOUXw/SeO+w5EL2c6CeuMZFg4BCgJJQYnjLwtCTyKxzkCOIEOCYSIGjFQBVGIMhVdWY5KzCIo5yidSO2Cd2vs91Suf7BhlkkJ5RnJD1ZERFZcmBxG8e2z4NMgiQlB3xtou3bkXq/l73kcE96OHJe11z0kkRvIiuOLKrqcy8PTdzXGz1rT6mjowelkB8nAO73Q5qKqhd2i8OMoAcN8ELKeXPu0gp+XnU4x9IKUdJKZ3hNJT9x663x5758+d3UljMnDkTq/UoO9t/UYhOHWl6AcquBj1smaKmQfbzYDnxT+InO4oSFbwQFvLjTtwSYYMMMPYJ5LvaUJAoig5IVEVnqifsLX0szDqj+tYJ5zHszyCDfJFREyHnLch8BHLeGJysDHJckJU7jUZvIgCKCNJY+VGv+wRatxMuNEKTL5WEhBO/+lR02kg7Ajg1Yxw4Z0Xu9PXRNyS4L3J70KzzmHDcBC8G6R/Jyckx6gtVVZk1a1YPe5zkRAcv/GtBqzFuK/GG4sJWcEy6NcjRRSoaQWmkXCXaPCTaBmX0gxwi9gnYVciwtKAqOqqiI4Cp7ipDyWU9hlJSR0flhbWz9H2QQQbpO4oLPAsHFzkGOW5QVZXGQCRFsLHi7V73CbXuiGxYik6KNPNow852xiTlG4qMaOWFbzXIYO8HHAxeHHMGgxdfYE4//XQcDsN8cPr06cTHd44uDhLGWgSWDsZEwgFZTw06hp9E6FHX6cKEvGPXkUG++IRTM/LtzSiKjqpoFNobSLL4j73KwZIbMe0EcEw15O+DDDLIIIOcMKieyMKc4vus58ZSIkJ7zU2b5+QY+3alvJiTES4Zb8mMVAuRPvCt7/2Awf2R24PBi2PCYPDiC0xKSgq33347N9xwAxdeeGHvO5zMCAHO6BrOVsh8FJzTj1mXBjn6BMKqCymV/2fvvsPjqK7Gj3/vNq16t9x7t3E31RjRS+gmYDA9QBJCEvKGNwlvCCGQ/EISSCDUUIIpBgzGppliimXjinu3bEsuktXLqkvb7u+PWW1RsSVbZS2fz/Ps453d2dmzkjw7c+bccxkiyQtxPCx9wZTEiMhKTApsVg/TY3xTpEZ1Y78L8DXtDKq+kClShRCix0kecKX/fpxtH153Vesre8tQ2nje6baSmNoNs2F1g9QmlRdmZeLMtLGBB+xBs3DVrTn6Bp2BBJAkL7qHJC9OcMnJyYwePdroeCuOLOFOwGpUXKQ9A9HndndEoos5MSYw8mJmcIyU/4rj4GvaeUn8AU6PKeD0qFyuTvBNwRYOyYLYawHwaqv/vhBCiJ4jtfdoyqqN3l1KeSnJXdz6ys6sJjONnBwNy6MsEdjNgX6AE5KGEG8LmlUwZOjIUZp2Vi2E2mWB5caqDdGl5IxXnDwixsOQbTB4PcReefT1RY/TWHkBFgbHSvJCHKeICcSYXfyuz/f8OnU1UWY32EaDJbW7I4O462HA12wqexZscnVICCF6GqUUNTowy2B18ZJW19XOLDwe30wj1SfHNKlg/IyCp0ud0Xt86AohM46sA+1uvhHtgZK/QOF9gNN4zDpEhp13E0leiJOLOQ7MSd0dhegmbm3s8szKSr+olG6ORpzwWpqStLv7XQSLGIvTm9zdUQghhOgktvjzAvfdrc+YUV+53X+/si6VmJiTp2H52b2NxqZ9opI4o9fY0CetA8DSz7iva6Bhe+jznirIvxMczwW9ZgT0mQdKZnjsDpbuDkAIIbpan4hELCbz0VcU4khampK0u/tdCCGEOGn0GnQl3uzfYVKauIhDOOsKsUU2r6poqNntv2KtLUNOiplGGs0ems6MtHGk2OOxm23NV7CfDtUfGPfrVoN9knHfeQDybwfXnsC6UedD2nPGxVDRLaTyQghxUtEohsRLGb3oAJY+YA6u4DEbB0FCCCFEF4hP7E9p9QD/cnHORy2v6Mzy37VGj+7ssMJO/+jUlhMX0GToiK9pZ+0KyL00NHGRcC/0mSuJi24myQshxEnF6zUxMnnA0VcU4miUCq2+iJgE5thuC0cIIcTJp8E01X+/vuyb5itoD1YO+xejE8Y3X+dkFtK0cy04/gt5N4K3wvegDXr9G1IeAiVVu91NkhdCiJOKxsyw+L7dHYboKeyBg0aizum+OIQQQpyUIpMvDNzX65uv4M5Fa6PRZHVdFKlpQ7sqtBODdTCYjVlb8FZCyUOA0dwUcy/ovxDiruuu6EQTkrwQQpyQlFIjlFL1Sqm32vM6rc0MkmlSRUeJvxOiLqDcORUS7unuaE54Sqn7lFLrlVINSqm5bVj/V0qpAqVUhVLqv0qpiC4IUwghwkbvwZfj8RoVATERRdRWZoc8723Yi9fjmyb1JJpppM2UgsgWhnxGTIABn4N9StfHJFolyQshxInqOWBde18UY7KHzvEtxPEwx0PfN9hd8aCMg+0YecCfgf8ebUWl1MXA74DzgcHAUOBPnRmcEEKEm8ioREprAtUUxQcXhTxf6wjMoFFV34voaDkGaiZ46AhAzFXQ70Ojt5UIK5K8EEKccJRSswEH0MLgziPrbU3t8HiEEB1Da71Qa/0hUNqG1W8DXtVa79BalwOPAbd3YnhCiG5ytKospdT5SqndSqlapdRSpdSgbgiz27htgcoBZ2VGyHP1VTv89z3mk+rH0nYx1xjDR1QEJD0Iac+Dyd7dUYkWyFSpQogTilIqDngU42rrj9qw/j3APQBxw1KJqDaRkZHRqTG2R3V1dVjF00jiah+Jq1uMA4Jb628B0pRSyVrrZsmP4H1Bampq2P1cwvV3JXG1j8TVaRqrsi4GIoOfUEqlAAuBu4BPMBKZ84GTZvqn2F6XQMWbxn3zJtDaGA4BeOv3+tczR47slvjCnjkOBq4AXQ+mqO6ORhyBJC+EECeaxzCutua0ZZ5yrfVLwEsAccPSdPopp5E+4sxODrHtMjIySE9P7+4wmpG42kfi6hYxQEXQcuP9WFqo3AjeF4waNUqH288lXH9XElf7SFydQ2u9EEApNQ3o3+Tpa4EdWuv3fes8ApQopUZrrXd3aaDdpPegiynfaMNmcRJlq6C8eDOJvSYDYNEH/etFxZ3SXSGGP2UCJYmLcCfJCyFE2FBKZQCtTdmwErgPuACYfKzvMU66bAvRLdLT01m2bFnj4lSllA56eqXWekY7N1kNBDcaabxfdYwhCiFOTOMwKq8A0FrXKKWyfI83S1701CqsZOcgBibvAWD7uhfwRN+EiXomx5fg9Wq82kR2jovymvZv+3ji6mwSV/uEa1xtJckLIUTY0FqnH+l5pdT9GI35DvmqLmIAs1JqrNb6qO2gTcpE/xjpeSFEdwg+WFJKbdBaTzvOTe4AJgLv+ZYnAoUtDRkRQvRoMUBxk8cqMKqwmumpVVh7112AUsYQkd5xWYw4Ox1P7VZqdoNSiorqeC659AoiIyOPsqWOjauzSVztE65xtZU07BRCnEheAoYBk3y3F4HFGGNgjyrBFIXFZO6s2IQQx0kpZVFK2QEzRmLSrpRq7ULLG8CPlFJjlVKJwEPA3C4KVQjRQZRSGUop3cptRRs20bQKC9/ySVWFldDncv/9eNt2vB43VWWb/Y9VNaQec+JCiHAhyQshxAlDa12rtS5ovGEcsNRrrZtecWlRRKvnQEKIMPEQUIcxBerNvvsPASilBiqlqpVSAwG01l8AfweWAgd9tz92R9BCiGOntU7XWqtWbm0ZTtZYhQWAUioa40LHjlZf0QMl9zmTepfRs8FuraUkbwW1FYFpUl0M7K7QhOgwkrwQQpywtNaPaK1v7u44hBAdw/d/uunJyyO+5w5prWO01oeC1v+n1jpNax2ntb5Da93QbcELITrNUaqyFgHjlVKzfOs8DGw9WZp1NjKZLVS4Ag05Hfmf4qnbE3jePqI7whKiQ0nyQgghhBBCCBHOWq3K8lVfzgL+ApQDpwGzuyfM7mWOmem/b6pfhclzwL8cETOmGyISomNJDbUQQgghhBAibPkqsB45wvNfA6O7Kp5wldL/ajj0DwAS7btRQX2+4lImdU9QQnQgqbwQQgghhBBCiBNcXPIp1DoTALBaXFhM9QA4XVZSeo3txsiE6Bhhk7xQSt2nlFqvlGpQSs1t8txgX8fh6qDbH7opVCGEEEIIIYQIL0pR7Z3c7OHKhlQi7PZuCEiIjhVOw0bygD9jTHnY2jw+CVprd9eFJIQQQgghhBAnBlv8udCwNOQxp+7fTdEI0bHCpvJCa71Qa/0hUNrdsQghhBBCCCHEiSZ10DXNH7QO7fpAhOgE4VR50RYHlVIa+Ar4X611SUsrKaXuAe4BSE1NJSMjo+sibKPq6mqJqx0krvYJ17iEEEIIIUTniYwZTHlDGjERhf7HbNHS70L0DCdK8qIEmA5sBpKB54B5GENMmtFavwS8BDBq1Cidnp7eJUG2R0ZGBhJX20lc7ROucQkhhBBCiM5Vp6YRw2L/ckzShG6MRoiO0yXDRpRSGb6Gmy3dVhzt9Vrraq31eq21W2tdCNwHXKSUiuv86IUQQgghhBDixBCZdEHIcmKvqd0UiRAdq0uSF1rrdK21auU241g26ftXdWScQgghhBBCCHEiSx14FV5tBaDG1QdrREL3BiREBwmbhp1KKYtSyg6YAbNSyq6UsvieO00pNUopZVJKJQP/BjK01hXdGbMQQgghhBBChBOrPRVT35eps1xGwqjXujscITpM2CQvgIeAOuB3wM2++w/5nhsKfAFUAduBBuDGbohRCCGEEEIIIcJaXJ9ZpE2YT2TCWd0dihAdJmwadmqtHwEeaeW5d4B3ujIeIYQQQgghhBBChIdwqrwQQgghhBBCCCGEaEaSF0IIIYQQQgghhAhrkrwQQgghhBBCCCFEWJPkhRBCCCGEEEIIIcKaJC+EEEIIIYQQQggR1iR5IYQQQgghhBBCiLAmyQshhBBCCCGEEEKENUleCCGEEEIIIYQQIqxJ8kIIIYQQQgghhBBhTZIXQogTjlJqtlJql1KqRimVpZQ6u7tjEkIIIYQQQnQeS3cHIIQQ7aGUuhD4G3AD8D3Qp3sjEkIIIYQQQnQ2SV4IIU40fwIe1Vqv8S0f7s5ghBBCCCGEEJ1Pho0IIU4YSikzMA1IVUrtU0rlKqWeVUpFdndsQgghhBBCiM6jtNbdHUOnUkpVAZndHUcLUoCS7g6iBRJX+0hc7TNKax17rC9WSvXFqLTYAFwBuICPgAyt9e9bec09wD2+xfHA9mN9/04Srr8riat9JK72Oa59wfEK02ODcP1dSVztI3G1j+wLmgvX35XE1T4SV/u0aV9wMgwbydRaT+vuIJpSSq2XuNpO4mqfcI7rKM9nAOe08vRKjIQFwDNa63zfa/4JPAS0mLzQWr8EvNT4/uH2cwnHmEDiai+Jq32Oti/oAmF3bBDOvyuJq+0krvaRfUFz4fy7krjaTuJqn7buC06G5IUQ4gShtU4/2jpKqVygZ5eMCSGEEEIIIUJIzwshxInmNeDnSqleSqlE4H7g0+4NSQghhBBCCNGZTobKi5e6O4BWSFztI3G1T0+O6zGM8Xp7gHrgPeAvXfj+HS0cYwKJq70krvbp7ri6+/1bEo4xgcTVXhJX+3R3XN39/i0Jx5hA4moviat92hRXj2/YKYQQQgghhBBCiBObDBsRQgghhBBCCCFEWJPkhRBCCCGEEEIIIcKaJC+EEEIIIYQQQggR1iR5IYQQQgghhBBCiLAmyQshhBBCCCGEEEKENUleCCGEEEIIIYQQIqxJ8kIIIYQQQgghhBBhTZIXQgghhBBCCCGECGuSvBBCCCGEEEIIIURYk+SFEEIIIYQQQgghwpokL4QQQgghhBBCCBHWJHkhhBBCCCGEEEKIsCbJCyGEEEIIIYQQQoQ1SV4IIYQQQgghhBAirEnyQgghhBBCCCGEEGFNkhdCCCGEEEIIIYQIa5K8EEIIIYQQQgghRFiT5IUQQgghhBBCCCHCmiQvhBBCCCGEEEIIEdYkeSGOm1LqgFLqYaVUte9Wr5TyBC3vD7pfp5TyBi1XB21nThvXm6uUciul+jaJ4xGllEspVeW77VFKPauU6uN7/kZfrKrJ6yxKqSKl1OWd/bMS4mTRgfuFfr7/78NaeI9FSqknfPe1UqpQKWUJer7x/7b2Le8Ieg+PL6bG5f/rip+LECeLjtoH+LaV3uT5XKXUe0qp6U3W00qp4U0eu933+PVH2eZhpdSfOu8nIoQI1pH7CHHykOSF6CirtNYxWusY4CfA6sZlrfWQoOcuBfKCnotp3IDWet7R1lNKRQOzgApgTgtxzNdaxwJJwDVAb2CDL4GxCEgAzmnymksADXzRYT8NIQR0zH7hMPANcEvwhpVSScBlwOtBDzt822p0GVAetK1xQdv/Drgv6D3/X4d+ciEEdMA+IEie7/FY4HRgN/CdUur8o8RwG1Dm+7fFbfq2OwP4kVLq6mP7qEKIY9CR+wi/4AsZomeR5IU40czCOEF5lJYPRADQWru01juAG4Bi4Nda63rgPeDWJqvfCszTWrs7JWIhxPF6nSbJC2A2sENrvS3osTcJ/f99K/BGJ8cmhOhC2pCrtX4YeAX4W2vrKqUGYVywuAe4WCmVdoTt7gdWAWM7OGQhRCfzVVLlKqV+q5QqAF5TSpmUUr9TSmUppUp91VpJvvXtSqm3fI87lFLrjrR/EOFDkhei2/l2GjPauPptwDvAu8BopdSUI62stfYAHwFn+x56HbhOKRXpe+944ArkBEeIsNJkv7AISGmyn7iF5v9vPwRmKqUSlFIJGP/vP+rsWIUQHa+NxwYLgSm+qsyW3Aqs11p/AOyi5YrNxvcbAZwFrDmWeIUQXauFfURvjMrrQRgJy18AV2MkMPtiVGI+51v3NiAeGAAkY1R91HVJ4OK4SPJCdDutdYLWesXR1lNKDQTOBd7WWhdilJK3Wn0RJA9jZ4bWeiVQiDGkBOB6YI/WevMxhC6E6CTB+wWtdR3wPr6qCt9JxlTg7SYvqwc+wai4mg187HtMCHGCaeOxQR6gMIaEtuRWAvuJt2l+zNDXdwJUCewB1gJHPR4RQnS/FvYRXuCPWusG33HDj4Hf+yq1GoBHMC5gWgAXRtJiuNbao7XeoLWu7OrPINpPkhfiRHILsCso0TAPuEkpZT3K6/phjHdt9AaB0vJbCB0zL4QIT68D1yul7Bj/b7/QWhe1sF7j/28ZMiJEz9cPo2eVo+kTSqmzgCEYlZpgJC9OUUpNClotz3cCFIeRAKlDjgmEOFEV+4aINxoELPIlKB0Y1VceIA1jmOmXwLtKqTyl1N/bcD4hwoAkL8SJ5FZgqFKqwDee7Z9ACqEN+kIopUwYw0K+C3r4DeB8pdQZGE2/ml69FUKEGa31d0ApcBVwM60nJr4D+mAcnMgVVCF6tmuAjVrrmhaeuw2jKmOz75hhre/xpn2vANBaV2AcD1zRGYEKITqdbrKcA1zqS1A23uxa68O+3nh/0lqPBc4ELqeVfYMIL5K8ECcEX6JhGHAqMMl3G0/LZaAopaxKqTEY/TF6YyQ6ANBaH8Q4qXkH+EprXdDJ4QshOsYbGM35EjCGhzSjtdYYJx9X+u4LIXoQZeinlPojcBfQbJpjX4XW9Rjj3icF3X4OzGlpJgKlVAy+RsCdFbsQoku9CPzF17gXpVSqUuoq3/1zlVKnKKXMQCXGMBJP94Uq2kqSF6Lb+eZrPvsoq90GfKS13qa1Lmi8AU8Dlzd2DwZu8M397MAY714KTNVa5zXZ3usY5WRSVi5EGGplv/AGMBBjSuSG1l6rtd7hm21ICHGCamEf0Nf3/V4NrANOAdK11ktaePnVGENA3mhyzPAqYMaYIt2/Td92D2L0x2q1qacQIny04fzhaYxzgSVKqSqMZryn+Z7rDSzASFzsApYBb3ViuKKDKLkwJYQQQgghhBBCiHAmlRdCCCGEEEIIIYQIa5K8EEIIIYQQQgghRFiT5IUQQgghhBBCCCHCmiQvhBBCCCGEEEIIEdaaTRXV0yQkJOjhw4d3dxjN1NTUEB0d3d1hNCNxtY/E1T4bNmwo0Vqndtf7h+P+IFx/VxJX+0hc7SP7gubC9XclcbWPxNU+si9oLlx/VxJX+0hc7dPmfYHWukffRo4cqcPR0qVLuzuEFklc7SNxtQ+wXsv+IES4/q4krvaRuNpH9gXNhevvSuJqH4mrfWRf0Fy4/q4krvaRuNqnrfsCGTYihBBCCCGEEEKIsCbJCyGEEEIIIYQQQoQ1SV4IIYQQQgghhBAirEnyQgghhBBCCCGEEGFNkhdCCCGEEEIIIYQIa5K8EEIIIYQQQgghRFgLu+SFUuo+pdR6pVSDUmpuk+fOV0rtVkrVKqWWKqUGdVOYQgghhBBCCCGE6CJhl7wA8oA/A/8NflAplQIsBP4AJAHrgfldHp0QQgghuoxc1BBCCCEEhGHyQmu9UGv9IVDa5KlrgR1a6/e11vXAI8BEpdToLg5RCCGEEF1HLmoIIYQQIvySF0cwDtjSuKC1rgGyfI8LIYQQogeSixpCCCGEALB0dwDtEAMUN3msAohtuqJS6h7gHoDU1FQyMjI6Pbj2qq6ulrjaQeJqn3CNq72UUrOBPwIDgQLgdq31d0qp84HnfI+v9T1+sPsiFUJ0g2YXNZRSjRc1djddOdyPDcJ1vy1xtY/EJYQQnedESl5UA3FNHosDqpquqLV+CXgJYNSoUTo9Pb3Tg2uvjIwMJK62k7jaJ1zjag+l1IXA34AbgO+BPr7HG0vF7wI+AR7DKBU/vXsiFUJ0kzZf1IDwPzYI1/22xNU+EpcQQnSeE2nYyA5gYuOCUioaGOZ7XAjR8/wJeFRrvUZr7dVaH9ZaH0ZKxYUQhjZf1BBCCCHEiS/sKi+UUhaMuMyAWSllB9zAIuAfSqlZwGLgYWCr1rpZaagQ4sSmlDID04CPlVL7ADvwIfC/SKl4l5C42kfi6hY7gNsaF+SihhCiteGm3RuVEKKjhF3yAngIY6fT6GbgT1rrR3yJi2eBtzDGuc/uhviEEJ0vDbAC1wFnAy7gI4z9g5SKdwGJq30krs4jFzWEEG3R2nBTIUTPEXbDRrTWj2itVZPbI77nvtZaj9ZaR2qt07XWB7o3WiFEJ6nz/fuM1jpfa10C/BO4DCkVF+Jk8xDGPuF3GBc06oCHtNbFwCzgL0A5cBpyUUOIk1lrw02FED1EOFZeCCFOclrrcqVULqBbeFpKxYU4ifguYDzSynNfA9LvRoiT3JGGm2qt65qsK8NJj4HE1T4SV+eQ5IUQIly9BvxcKfUFxrCR+4FPkVJxIYQQQoQ60nDT3wevKMNJj43E1T4SV+cIu2EjQgjh8xiwDtgD7AI2AX+RUnEhhBBCNHGk4aZCiB5CKi+EEGFJa+0C7vXdmj4npeJCCCGEAI463FQI0UNI5YUQQgghhBDiRNc43LSXUiqRwHBTIUQPIZUXQgghhBBCiBPdY0AKxnDTeuA9jCGmQogeQpIXQgghhBBCiBPakYabCiF6Bhk2IoQQQgghhBBCiLAmyQshhBBCCCGEEEKENUleCCGEEEIIIYQQIqxJ8kIIIYQQQgghhBBhTZIXQgghhBBCCCGECGuSvBBCCCGEEEIIIURYk+SFEEIIIYQQQgghwpokL4QQQgghhBBCCBHWJHkhhBBCCCGEEEKIsCbJCyGEEEIIIYQQQoQ1SV4IIYQQQgghhBAirEnyQgghhBBCCCGEEGHthEteKKWSlFKLlFI1SqmDSqmbujsmIYQQQgghhBBCdB5LdwdwDJ4DnEAaMAlYrJTaorXe0a1RCSGEEEIIIYQQolOcUJUXSqloYBbwB611tdZ6BfAxcEtrr8nJyWHu3LkAuFwu0tPTeeuttwCora0lPT2d+fPnA1BRUUF6ejoLFy4EoKSkhPT0dD755BMACgoKSE9P54svvvBvOz09na+//hqA7Oxs0tPTWbZsGQCZmZmkp6ezatUqALZv3056ejrr1q0DYPPmzaSnp7N582YA1q1bR3p6Otu3bwdg1apVpKenk5mZCcCyZctIT08nOzsbgK+//pr09HRycnIA+OKLL0hPT6egoACATz75hPT0dEpKSgBYuHAh6enpVFRUADB//nzS09Opra0F4K233uL+++/H5XIBMHfuXNLT0/0/y5dffpkLLrjAv/z8889z6aWX+peffvpprrzySv/yE088waxZs/zLjz/+OLNnz/YvP/bYY9x8883+5Ycffpg77rjDv/zggw9yzz33+JcfeOABfvazn/mX77//fu6//37/8s9+9jMeeOAB//I999zDgw8+6F++4447ePjhh/3LN998M4899ph/efbs2Tz++OP+5VmzZvHEE0/4l6+88kqefvpp//Kll17Khx9+6F++4IILePnll/3L6enp3fa3d+jQobD82xNCiI6mlMpQStUrpap9t8zujkkIIYQQHe9Eq7wYCXi01nuCHtsCnBO8klLqHuAeAKvVyu7du8nIyMDtduNwONi1axcZGRnU19fjcDjYsWMHGRkZVFdX43A42L59O0lJSVRUVOBwONi2bRuxsbGUlZXhcDjYunUrdrudoqIiHA4HW7ZswWKxkJeXh8PhYNOmTWitOXToEA6Hg40bN+J0Otm/fz8Oh4MNGzbQv39/9u3bh8PhYP369TgcDnbv3o3D4WDdunWUlJSwfft2HA4Ha9euJT8/n82bN+NwOFizZg2HDh1iy5YtOBwOVq9eTVZWFlu3bsXhcLBq1SqSkpLYtm0bDoeDlStXEh8f79/ed999R0xMDDt27MDhcLB8+XLsdju7du3C4/GwbNkyLBaLP56MjAzASMaUl5f7l/fs2UNZWZl/ee/evZSWlvqXs7KyKC4u9i9nZ2dTVFTkX96/fz+FhYX+5QMHDoSsf+jQISoqKvy/m5ycHBoaGvzP5+bmAviXDx8+TEREhH85Ly+Pmpoa/3JBQQEej8e/XFhYiM1m8y8XFRWRnZ3tXy4uLiYrK8u/XFpayt69e/3LZWVlIfGUl5eTmZnpX278nXbH315tbW2rf3s1NTXd9rcnhBCd5D6t9SvdHYQQQgghOpHW+oS5AWcDBU0euxvIaO01I0eO1OFo6dKl3R1CiySu9pG42gdYr9v+/z0DqAeqfbfMoOfOB3YDtcBSYFBbthmO+4Nw/V1JXO0jcbVPe/YFR7v59hV3tec1si9oO4mrfSSu9unIfcGx3GRf0HYSV/tIXO3T1n3BiVZ5UQ3ENXksDqjqhliEEJ2v2dVUpVQKsBC4C/gEeAyYD5ze9eEJIcLEX5VSjwOZwO+11hlNVwiuykxNTfVXyYWL6urqsIsJJK72kriEEKLznGjJiz2ARSk1Qmu91/fYRECadQpx8rgW2KG1fh9AKfUIUKKUGq213t2tkQkhusNvgZ0YzbxnA58opSZprbOCV9JavwS8BDB29EAdbn14MjIywrI3kMTVPhKXEEJ0nhMqeaG1rlFKLQQeVUrdhTHbyFXAmd0amBCis7R0NXUcRq8bwL9fyPI93ix5IVdbj43E1T4SV/fRWq8NWnxdKXUjcBnwTGuvsZsLwF0ClpROj08IIYQQHeOESl743Av8FygCSoGfapkmVYieqMWrqUAMUNxk3QogtqWNBF9tHTVqlFxtbSOJq30krrCiAXWkFRReqJwHSb/sopCEEEIIcbxOqKlSAbTWZVrrq7XW0VrrgVrrt7s7JiFEx9Nar9VaV2mtG7TWrwMrMa6mSu8bIQQASqkEpdTFSim7UsqilJoDzAS+PNLrct1xlJfOA+3qmkCFEEIIcdxOuOSFEOKk1Xg1dQdGrxsAlFLRwDCk940QJyMr8GeMaqwS4OfA1VrrzCO9qMFr5qFDoygt+7DzIxRCCCFEh+jxyYtyXcv28gON06kJIU4AR7mauggYr5SapZSyAw8DW6VZpxAnH611sdZ6utY6VmudoLU+XWv9VVtee9gZze+3fEtRnaOToxRCCCFER+jxyQunbuCh75/jt9+/xJqiXXi1t7tDEkIcXatXU7XWxcAs4C9AOXAaRk8MIYRoEwVoDQUN8H/fP0d+bVl3hySEEEKIozgRG3a2kwZvFXvKt/J4xX76RvflmsFnkd5nIlbTSfDxhTgB+RIU04/w/NfA6K6LSAjRk8TrBszKgxczJfUl/H79a/xpyq0MiEntlnj2Veax2pnNmLqJpEUmdksMQgghRLjr8ZUXsaYGTHjQ2gMeB3lV+3hux0LuWfEUCw+soMZV390hCiGEEKILeeqsPJCQgRU3eOspa6jgoQ2vcaCqsEvj0Frz4cFV/Pb7V/jOtZfHNs3DIxWiQhwXpdQIpVS9Uuqt7o5FCNGxenzywlqv+GvcF1wetYNI5URrJ3hKKa87zBt7v+TuFf/i9b1fyZhXIYQQ4iTh0REkVmseSFxKhHKBt5YKZy0PbZjLvsq8Lomh1t3AP7a9z9w9S/wJi9yaEjaU7O2S9xeiB3sOWNfdQQghOl6PT17Uu6J558sfMihP8UTSx8yO2Ui8qkV768BdQq2zlEUHVnDPiqe4c/mT/GXz28zPXsaGkr1UOGu6O3whhBBCdLDIyEjW7Z3IGFsRv0n4hkgqAU21q46HN7xOpiOnU98/p7qY33z/MqsKdzZ77pNDazr1vYXoyZRSswEH8E03hyKE6AQ9vulDbGws111/J8uXD2fTku2cO2EV/+z3EavqB7O4Ziz5bg3eWpQ5hrIGKCuuYl3xHv/rU+3xDIvry4i4voyI78fYhEFYTOZu/ERCCCGEOB4Wi4XY3jdQXbeCEZElPJi4hL9V3USN10atu4E/bnyDhybPYXzi4A5/75WFO3h2x0fUeZz+x87rO5EvDxgXireV7edAVSGDY9M6/L2F6MmUUnHAo8D5wI+OsN49wD0AqampZGRkdEl8bVVdXR12MYHE1V4SV+fo8ckLgPHjxzNu3DgOHDjA8uXLWbf3Wy6YuIKzkz9lU0N/vqodyT5XKvXUYTIngAokJ4rrKyiur2BN0S4Aekcmcv3Qc5jZ+xRJYgghhBAnqEsuvYIVH7/BaSOWMdhSyv1R3/Gs8woqnLXUe1w8uuktHptyG6MSBnTI+7m9Ht7c9zUfHVztf8xmtnDvmCtI7zORAzmHyKYcgE9z1nDf2Ks65H2FOIk8Bryqtc5RSrW6ktb6JeAlgFGjRun09PSuia6NMjIyCLeYQOJqL4mrc/T4YSONlFIMGTKE2267jetu/jvbHH/ls/UXM1KX87ukb/lPr/f4W/Ii7oz8nNMtLkbE9sXWwmwkBXXl/HvHh/x89XMsy98qjbWEEEKIE1BkZCQDxj+Ix2scCo2K2MzPUgaQFBELgNPj5sntH3RIY+/yhmoe2fhGSOKiT1QSf59+N+l9JgIw1TrI/9yy/K0ydPUIludvZaVzH3Xuhu4ORYQJpdQk4ALgX90cihCiE500yYtgaWlpXHfd9fxg9qtsr3qRdfumYwL6WSpIj87k3vh/M6f8Je6zjOdvk+/gvrFXcnH/qcRY7f5t5NeW8a/tC/nl6udZUbAdryQxhBBCiBPK6HFnUVBzpn/ZmvMMj0y8mWiL8X1fVOfgpd2Lj+s9djty+PXa/7C9/KD/sempI3ni1HtChob0NcUzPK4vAC6vhyW5G47rfXuqjPwt/HP7Qla6snhj39fdHY4IH+nAYOCQUqoAeACYpZTa2J1BCSE61kmZvGgUHx/PxZdczZlXLGZP7eNU1iX4nxualskI6z18v+APsKuM2wadz3/Oup8bh53rP6gBozP4E9sW8Ks1L7KqcKckMYQQQogTyIDxD9NYYT4kZQd713zDT8dc7n9+WcE2luVvPaZtrynaxe/Xv0ZZQxUACrh5+Hk8OHE20UEXRMCoEL1i4On+5c9z1+H2eo7pfXuqGlc9r+1Z4l9eVbhDjrtOYKWlpR25uZeAYcAk3+1FYDFwcUe+iRCie53UyYtGkZGRTD/7XnpN3UolV9I4Ti7aXsdVpy4iouL/+NeTj7Lsq2/5Qa+pvDTjfm4Yeg6Rlgj/Ng5WF/H3re/xP2v/w9qiXfJlKoQQQpwAYpLPwG2ZAoDJ5MVZ8gpDvUmc13eSf53/7F5MYV15u7a7tWw/T2xb4B9eGmuN5OEpN3PdkJmYVMuHX2eljfMPWylrqGJV4Y5j+EQ91zvZS0OG01Q4a8muyu/GiMKf2+1m2bJlHDhwAK83PI5NPR4PixYt4oknnuiwbWqta7XWBY03oBqo11oXd9ibCCG6nSQvgtjsifSfMo+oYR9gjuiLyWQkMSYO2cWt6W9wcPe7PPnkk2z+fgPXD57JSzPu54dDzibSbPNv40BVIX/dMp9frXmR5QXbpCeGEEIIEeYSBj+A2Ww04Z48dDuLFr7LHcMvok9UEgC17gb+tX1hmyshsirz+OuWd/3r94lK4snTfszk5OFHfJ3FZObi/tP8y5/krD2Wj9Mj7a8q4LOc75s9vrFkXzdEc+JYtGgRX3zxBVu3bg2LGQacTidvvvkm33/f/HfZkbTWj2itb+7UNxFCdDlJXrTAHHch0aPXENXrRiIj7ZhMJuKjq7gpfRGnDstg8aef8Mwzz1B0KI85w8/nPzN+ybWDzyLCbPVv42B1Ef/c9gH3rXqWrw9vlNJPIYQQIkypmEuJiDIaZkZF1JFoWc7GNeu4f/y1mH1VErsdOSzY/91Rt5VXW8qjm97yN5NMiojlkSm30CsyoU2xXNx/KlbfbGZ7Kw6T6cg5hk/Us3i1l//sXoxXa4CQHmQbSyV50Zpdu3axcWOg5cO3335LXl5et8VTVVXFSy+9RGZmZrfFIIQ4sUnyojXmREx9/4O1/ytEx/YhMjISs0lx1tj1XHPm55SV5vDKK6/w9ttv4611ceuIC/nPjF9yzeCzQiox8mvLeHbnx/xk5dMsPrSWBo+rGz+UEEIIIZpRFiwpdxMRYQwHnT5yC19//RUp7khmD033r/be/mXsPkIyoayhikc2vkmFsxaAaIudP065mbTIxDaHkmCL4ezep/iXPzm0pp0fpudZmr/F/3O3mMz8fMjleL1GImNPRS5VrrruDC8s1dXVsWjRIgAabBq3xRiu8d577+F2u7s8npKSEl588UUOHz7sf+ycc87p8jiEECc2SV4cTexVqEEZWOPOJTo6hoiICEb1y+aWcxcSG1nFtm3bePLJJ/n222+JVhHcNuJCXjr7V8wemh5yZaCkvpKXMz/nnhVPsfDAChp0139xCCGEEKIVcTdhi4jFZDKRllBC7/hcvvzyS64dMoNxiUZVhldr/rn9A2rdzadPrXbV8aeNb1JU5wDAZrbwh8lzGBST1mzdowlu3Lm6aBcl9ZXH9pl6gGpXHa/v/cq/nJ4wjs/++z6WUifV1dXUNzSwvmB3N0YYnj755BOqqqooj/eydZKLndOhzu6lsLCQr74K/DzxlEP1Z1D8eyj4OdRv6/BYDh06xAsvvEBZWRlgNKe96qoruCQ9tcPfSwjRs0nyoi0svaHv26iEe4iIsBETE0O/VAd3XPAefZMKcLvdfPXVV/zrX/9i586dxFjszB6WzkszfsVtIy4k3hbt31SFs4Y39n7Ni7XLWVGwvRs/lBBCCCH8zEmo2GuxRxoXHqaN2MK2bdsozC/g/nHXhEyf+p/dn4W8tMHj5C+b3+ZgdZGxKWXiNxOuZ3TCgGMKZUhsb8YnDgbAo718ntu5/QHC2Vv7vqHSV8mSHBFL/YoDOJ1OYstBay8NDfW8vGQ+S5YsoaqqqpujDQ+7du1i06ZNAOT19WC3R2KyWShK9RJhrSd/31wce38Bh86H/eOg4C6oeA2qP4DCn3VoLDt37uTll1+mttb4HVosFm6++WZOH7UZcq/o0PcSQvR8krxoK2WG1Ecg9QlMJitRkZGkJiluu+Ajxg00xu6Vl5fz5ptvMnfuXKqqqoiyRHDN4LN4acb93D3qUlLscf7NNeDiyW0L+DZvc/d8HiGEEEKESrgLi9mMxWJhVP8sYiOrWLJkCamRCaHTp+ZvZblv+lS318M/ti5gV9BwkvvGXsW0lJHHFcoVA0/z3/8ydwMNHudxbe9EtK8yjy9z1/uXp9b2prTAmDwizhFYryzaxbdLv+Vvf/sbCxcupKSkpIsjDR/Bw0Vqorw0JJixmL1EWJ3Yh5Zw/1WvcN1Zn2GpmYtu2NV8A6594OqYPiurV6/mrbfe8g9TiYqK4u6772bsmFHgeLlD3kMIcXIJm+SFUuo+pdR6pVSDUmpuC8+fr5TarZSqVUotVUoN6oYwIf4m6DcfTIlYLGZiY+xcf853XDB5HQrf+Ms9e3jmmWfIysoCIMJs5QcDT+PFs37JfWOvIs3XtEsDz+z4kK8Pb+qWjyKEEEKIIBFjIPJMIiIiMCnNtBFbyczM5NChQ8zoPZ7z+k70r/ri7sUU1Jbx3M6PWV+yx//4nSMv5tyg9Y7VtNRR/uOFalcdy/I7vpw/nDU26dS+5THR/cj9LjB17JT+o0mMjEMpEy6bpjZS4/F4WLduHU8++SRvvvkmhw4d6p7gu1HjcBEAR18zkREe8JZjVvWU6QiKvMZUvF6vpr6+HjBDxFSwDg5spG7VccXg9Xr5/PPP+fjjj9G+JqtJSUnce++9DBw4EOq/B0/hcb3HCcdTCfl3Qf4d4D7JPrsQHShskhdAHvBn4L9Nn1BKpQALgT8AScB6YH6XRhcs8gwY8BlYR6IU2GxWzp28gx9ftQ6rxbgyUlVVxauvvsrSpUv982pbTGYu6DeZf5x6N71MxpeHBp7d+RFLcjd016cRQgghRKP4uzCbTVitViYN3YHN4uTLL78E4K5Rl4VMn/rA9y+xNH+L/6WzhszgykFndEgYZmXiBwMC1Ref5qzxnwieDL4+vIm9FUZzR4syEbe5Eu3VgGbmFAfnTtjBGf1GExMTQ2RkJGpwfMjrd+7cyQsvvBBy5b+zebS3W39HwcNFPCZNfX836JrACkqxzTOU/LJerMmczFvfXsIe90cw4BOImxNY7ziSF16vlwULFrB8+XL/Y/379+enP/0pycnJxgNVHx3z9k9Ypf8Paj6Dmi+h4F7QMgth2KldARVvg7ehuyMRRxA2yQut9UKt9YdAaQtPXwvs0Fq/r7WuBx4BJiqlRndhiKGsg6D/xxB1HgAmpRiUsovfzllNWpLxJam1ZsmSJbz++uv+sX4AcbZobrBPZ2hcH/9jz+/6hC9y13XtZxBCCCFEqOgLwTqEiAgbdquTSUN3kJ2dzb59+4iyRIRMn1rtCjTuvKDfZG4edn6HhnJ+38n+GcwOVReztWx/h24/XFU5a3lj39f+5YmePlTmlGBSHi4/NYOLJixiUMw8ppg+BzQWi5XoMb256667GDVqVMi2duzYwQcffNDpSYVMRw4/Xflvnqtbxv6qgk59r5YEDxcB6HuaBac2KjAUGq+2gCmBTebbWFfwJ5ZuPYvsgkEsWPiFcYwaGZR0q1sJx/jz+vLLL/0JFIDRo0dz9913ExMTYzygXVD96TFt+4TlLoTKdwLL9avB8WL3xSOaa8iEvBug+AHIv9X4OxVhydLdAbTROMB/aUNrXaOUyvI93qzFtFLqHuAegNTUVDIyMjoxtDsYHGOhT6SxI7awhx9dnMfXm05lxZZ+aBTbtm1j3759TJ06laQk44qNp6aBixjKe+5yCrwVAPx7y0J27trFFOvAToz3yKqrqzv553VsJK72Cde4hDgheEqh5luo/QYadkD87ZDwo+6OSrRCKZUEvApcBJQAD2qt3z72DZoh4SeYin+L1Wpl+ogtrN87gS+//JJhw4YxKr4/s4emMy/rW/9LTus1mp+Mvhyl1PF+nBDRVjvn9p3EZzlGw85Pc9YwMXloh75HOHpj39dU+6Y/TbREU/vtASKsDVx75ueMGlCM2WzD7YZJluXgTQFTLJkVufSe1I/bb7+dwsJCvv32W7ZuNfqSbN68mcTERC666KJOiXdT6T4e3zKfBo8Lp27glczP+cu0OzrlvVoTPFxkQFoDB2ILocHotXZlciXvFw3EpiLYVZHPzy+/lwMHDlBTU0NVVRUfffQRN87+Iahoo1LDnQfuQ8aFunZYt25dSMXFtGnTuPrqqzGbzYGValeCt4x1NWm8VjIeeOu4P3vYc7wINDkZLv07RM4E+yktvkR0sfo10DhIre47KPo19HoaOnifLo7fiZK8iAGKmzxWAcS2tLLW+iXgJYBRo0bp9PT0Tg0OzjcyqkW/BdxE4OTqM1cw45S+vPvNKeSV9cbr9bJhwwYuvfRSzjrrLJYtW0Z6ejpnu87mkU1v+ksjl5PNyKEjuTxomrSulJGRQef/vNpP4mqfcI1LiLCkNTh3Qs1XUPMNNGzEfxADUPIIxM4Cc0I3BSiO4jnACaQBk4DFSqktWusdR3zVkcT+EMr+TkRECXFR1YwZsI8dh8zs2rWLsWPHcu2QGeypzGVd8R6mJA/n1+Ovw2IyH327x+Dygaf5kxfriveQV1tK36jkTnmvcJBZkcvXhzf6l/vvV8RElHP92Z/QK6ESW9AMbomWBobZ8shyDcRDJFvKsjkzbSxpaWnMnj2biIgI1q0zqlqXLl1KYmIi06dP79B4VxRs56kdi3B7A8MAdpQfZFvZfk5JGtKh79Wa4OEiURF1nHfu9/wu3+i7YlGKa8c+ynclCyijHo/2sre+gGuvvZY333wTgK1btzJu3DgmpJwGtb6kXN3qdiUv9u3bx4cffuhfHj16NNdccw0mU5Mi7+qPWFHVl38VTsMTPgXgncdTBhVvBJbNab5+Hy4ovBcGLAFTZLeFJ3xch0OXqxaApS8k/6574hGt6pK9hlIqQymlW7mtaMMmqoG4Jo/FAeEzJ1bcjdDvPeMPHSNRlxqXx08uX8zVZ3xLjL0Gr9fL4sWLmTdvHi6XkYGNttp5ZPItjIrv79/UK5lf8PHB1d3yMYToDF6vl++/P7ap/pRSI5RS9Uqpt4IeC48GvuLE5a2DmiVQ9Bs4MBVyLoSyv0PDBkISFwB4oHZ5S1sR3UwpFQ3MAv6gta7WWq8APgZuOdLrcnJymDt3LgAul4v09HTeesvYxdTW1pJ+3iXM/3YSJpOirsHCM//5jMzM3Xz11VcUFRVx/rnnMf5QNK+c/Svu7nM+F51/AV988YV/2+np6Xz9tTHsITs7m/T0dJYtWwZAZmYm6enprFpl9BXYvn076enp7N5tFJJu3ryZ9PR0Nm/eDMDhHdlsefA9Kvcb07D++6PXSE9PJzPTmOms8WJIdnY2AF9//TXp6enk5BgzRnzxxRekp6dTUGAMZfjkk09IT0/3z8ixcOFC0tPTqagwqkDnz59Penq6f7jrV199RXp6uv+4Ze7cuSHJ8ZdffpkLLrjAv/z8889z6aWX+peffvpprrzySv/yE088waxZs/zLjz/+OLNnzwaMnhF3/uZe1j++EICB3njWvf0Wm1b/l+RYB3Z7JP/3ZCX3PDaIsgYjCbH7lZVseWYxaBcbS/dy//33c//996OU4qqrrmLt2rV8+61xQr5o0SJuuOEGHnzwQf/733HHHTz88MP+5ZtvvpnHHnvMvzx79mwef/xx//KsWbN44oknAPgydz0/vGYWmR+s9D+/7o/vsf/jdczPNn7fF1xwAS+/HJhZIz09/ch/e+npzJ9vtHWrqKggPT2dhQuNn0dJSQnp6el88sknABQUFDBz5kz+9re/AVBTXcZnH7/Kf5YZ/ddq8qvY9Puv2bz+MMPMqVTllLDigbm89/XHjB07ltTUVObNm0d+fj4ffvgha3b0In1OKZt3uqB2JevWrSM9PZ3t27cDsGrVqhb/9r7//nvmzZtHdnY28+bNw263M3v2bJYsWRL6t/fxQib94DX+umccHhR5q/Lo8RwvgzaqiLCNhX6LQEUZy64sKPlT98UmAtwt/C2W/zs08STCQpdUXmit049zEzuA2xoXfAcrw3yPh4/I02Hgd1D+HJQ/CzixWi1MH32Q0f2zydg6mXV7J7Fjxw4yMzOZMGECaWlpRFvt/HHKzTy6aR67fVOt/XfPl3i0l2sGn9W9n0mI4+B2u9m0aRPLly8/nqnrngP8DWGCGvjeBXwCPIbRwLd7ypXEicd1EHKvBE/Tgr5GJrBPBRUBdb78em0GxF7ZyvqiG40EPFrrPUGPbQHOabpi8JBSq9XK7t27ycjIwO1243A42LVrFxkZGdTX1+NwONh9aDp1vpYWNouLpJhCDh48yMKFC3E4HOzYvoP4uHjKyspwOBxs3boVu91OUVERDoeDLVu2YLFYyMvLw+FwsGnTJrTWHDp0CIfDwcaNG3E6nezfvx+Hw0FtbS0ZGRns27cPh8PB+vXrjTh27ybCpXC5nDidDaw8fIAKRzlr164lPz+fzZs343A4WLNmDYcOHWLLli04HA5Wr15NVlYWW7duxeFwsGrVKpKSkti2bRsOh4OVK1cSHx/P9u3bcTgcfPfdd8TExLBjxw4cDgfLly/Hbrf7fx7Lli3DYrGwe/duHA6Hf2hiZmYm5eXl/uU9e/ZQVlbmX967dy+lpaX+5aysLIqLi/3L2dnZFBUVkZGRwUbXIYprHHi9XtwNTkbkrCJi8C7yiryYzXZcbiiunUpBWSyb828l0vIXUkw5oGPRnnK+O7ABd04OSin/9mNiYqivr6ehwWjCt3v3bjwej//5goKCkOXCwkJsNpt/uaioiOzsbP9ycXEx+/bt4/El/2W5ay9erxeP202My8LFEWNZqcHtcbOxMJM3v1lIeXk5mZmZ/tc3/k6P9Le3Y8cOMjIyqK6uxuFwsH37dpKSkqioqMDhcLBt2zZiY2MpKysjLy+PlJQUkpMSuWDiCjauaWBLTQpxWuP22rG6rGzatIm+w3vjcjnRXi9bCvby7dKlxMTEoJTC6XTicDj4cmkBXq8Xp8tFVfGXbNgwFofDwbp16ygpKfH/rQT/7ZWVlfHGG29gs9lwOp0opRgyZAirV69u9rf31bYPyHVG0UeD1gq3p4dXXngqoSJoHoLEX4BtMKT+GYr+x3is8g2IPt/otSO6jzuo8sIyCNwHjfvF/weW3hDdOUPORPupcOlcrZSyYCRT/gj0B+4G3Fprt1IqFdgH3AksBv4EnKO1PurJyqhRo3RjhrhLuQ5ByaNGZ2GMquSGhnoKy6L4evMMdhzoQ79+/bn//vv9YwFr3Q38edM8djoCU3vNHpbOdYPP7rRy1KbCdbiBxNV2te56Vn23igvOPa/bYqirq2Pt2rWsWrXKPwYX4PHHH9+gtZ7W1u0opWZjNOzdCQzXWt/sOwG5XWt9pm+daIxx7pO11s164ATrtv3BEYTj3xD08LhK/wHl/wp9zBQPUedC9AXGv+ZEqN8AuVcYz5vTYPDGVse/9uifVydQSrVrX3CE7ZwNvK+17h302N3AnCNdOGnzvqD491DxGvX1DWTmpPHu8qtITk7mV7/6Veg4/g5wpN+V1ppfrH6enBoj4Xb7yIu4etCZHfr+xxJXR8qvLeNXa16g3mNUeJzecIh7+74PgMlkIjpuIKrvXCOx2BjXmQNw5/yA27JmUOO1AjaeOvN/GRzXP2TblZWVPP/88/7qktjYWO69914SEhLaHafWmrl7l/BRUIXs8Li+PDx5DnG2aH775bNkmoxk/YSkITw69bbWNnXcdu3axRtvGFeGzxm/mvOn7GRF3RCeLpoCplj6RPfnuTPvw6RMLF26lDfNGylrML6T/zr9TsYkDCQrK4tXXnkFAJPy8n83ziPK7jV2dQNXGSfbrXC73bzyyiscPGic6FmtVn784x/Tr1+/Zut+mbueF3bMA21kBAdFxVGnevPyzP/pkH3BserU44Kyp6HMqIrBOgwGZhg9dbSGgrv95wiYk2HAt2BJBY7+f87tdvPdd99hs9k488wzO7zXTmvC9fukQ+I6cCq4c437A76CogegwdduUdmh3wKwT+n6uDpBuMbV1uOCcOp58RBG4qLRzRhJike01sVKqVnAsxidfdYCs7s+xHawDoQ+rxjT7pT8AeXMxG630zfVyQ9nLGbSkP58sfFC1qxZw1lnGdUVUZYI/jB5Dn/Z/Dbby40vgnezMliev40bh53LWWljMakenqUWx2V5/lae2rGICKfiDNeZRFvtXfr+FRUVrFy5ku+//95/latRREREu7allIoDHgXOB4K7JYZxA9/2C9fmqj05rrEJi4m3GmXVxfUzKay/gGrXKDSNJ6PGn5fCw/QUC2ZVC+SwZcWb1Hpabqjck39eYa5zh5XG3w0VrxMRYWNo7xx6xZdQVAobN27s8N4JR6KU4oqBp/P8LmO4wKeH1nD5gNO67MJGZ3N7PTy1faEvcaFJ1SXc3ecD//PW6DGoAfOb92CwDcPS+xkm5z/Diup+gJNNh55j8Pi/hqwWFxfH7bffzosvvkhDQwNVVVXMnTuXH//4x0RGtr3fgNvr4fldn/Bt3mb/Y6ckDeHBibOJshjfcadbh7LPW4ZHe9latp9djkOMSej4RuwFBQUsWLAAgIlDdnLOhK1YrXaWFA4CFQkqigv7TfEfNyqlmJoygq98/UTWFe9hTMJAhg0bxllnncXKlSvxahOZhxIY2e8QERERmGtXYGoleaG15oMPPvAnLgBuuOGGFhMXi3O+5+Xdi0EbxwVDbRX8acqPWZBXyMvN1u4hvLXgeCmwnPhzI3EBRhK81z/g0Aaj/4Wn1KjE6PNGmxpErlq1iiVLlgDGsdW0ad2W++kZtAfc+YFl6zDo86Zx8cJ90Ei45d0K/T8BW9f0sQl72gM1n4MpAaJmdOlbh03yQmv9CMYUqK09/zXQfVOjHquoGUYGr+INKPs7VmslXm8Ew/vmMCvyM+Z/ncTkyZOJijLGv0VaInho8hz+svkdtvmmRMurLeXJbQtYsD+Nm4efx7SUkV2WZRUnjgpnDf/Z/RleranQ9awu2sUF/SZ3yXsXFhby3XffsXnzZjye0LnLY2NjmTFjBqeeeip/+lO7xnY+Bryqtc5p8vce5g182ydcM+A9Ni7tguwc0Mb0k/1HPUd/S5/W18+/BGqM2aROHV8LiS2/d4/9eYW/PYBFKTVCa73X99hEOmpYqW0wRF+GqvkUmy2C00Zt5JPvL+Kbb75h8uTJWCxHP4zyer1orY+7UiO9z0TmZX1LhbOGkvpKVhXuYGafCce1zXCx4MB3ZFbkAl7M3nLuS/gUq/ICUKsnEzf0UzA3zVH5RF/I5F7fs6LauGq6oXQf11QugLjrQlbr3bs3N998M3PnzsXj8VBYWMi8efO444472vS7cXrcPLl9AWuLAjny03qN5tfjr8NmDvwdJJqiOCftFL7NM5Kg72Zn8Kcpt7bnx3FURUVFvPLKK9TW1jK4Vw6XTltGhD2SQw2x7GroC6Y4zMrEuX0mhbxueuoof/JiQ8kebh1h9Cq5+OKLOXDgAIcPH+ZQcT+G9zlIXV09+79/icjBpzJixIhmx53ffvutvy8LwKWXXsq4ceOaxfrRwVW8tmeJL3GhGRFRzh8HFRITPZFTUw81W7/HqHwLvOXGfcsAiL0m9HlzIqT925ieE4zZrSrmQsLRZ6lp7I8DsGHDBkleHC9PEeA7djWngMlu3Pq+DbmXG79Hbxnkz4F+H4MlpVvDDQuVb0Gxr3dQn7cguuuqveUyfldQFki4EwathLhbsNkiUErRN6mQQck7+Oqrr0JWt5ttPDx5DnOGnUe0JXDl/GB1IX/Z/A6/XfcqW8uyu/pTiDD31r5vqHHX+5f3Vua2vrL2dMgc1h6PhwULFvDUU0+xYcOGkMRFamoqs2bN4re//S0zz5qM3flxm7erlJoEXAD8q4Wnw7+BrwhfDTsCzdMs/eBIiQuA6HMD92uXdl5c4phorWsweuA8qpSKVkqdBVwFvNlhb5L4UwBsNhvjBmURG1lFRUUFa9euPeLLHA4Hn376KY8++ih/+9vfQk44joXNbOGyAaf6lz88uIpwGfp7PDIrcnk/ezngBU85s6LXM8RaBsDewqmkTPiy9cSFz+SB9xk9aoBddUnUFv4O6rc2W2/48OFce+21/uWsrCwWLlx41J9jrbuBP2+eF5K4OK/vJP73lB+GJC4aXTdkJibfyf6W0mwyff3MOkJxcTGvvPIKNTU1pMSVMuusL4iJjsCkFF/VTDeGwGEkVhIjYkJeOyFpCFZftc7B6iIK64yT68bhHpdeeikFFYGpeFOjM3nttf/yyiuv+BvAgtFUtrEhLcD06dM5++yzm8X6wf7vjMQFgK5nVEQZj/RdRUzCFaAUoxMGdMwPJdx4G6D8hcBy4r2grM3XizobEn4cWC59FJx7mq8XxOVycehQIOlz4MABHA7HcQZ8kgueacQSVDlkGwJ93/DvW3AdgPxbjaqak11toEkx5f/u0reW5EVXMidDr7+hEn+C1Wp82Z1zyhrWfb+awsLCkFWtJgs/HDqT/8z4JdcNOZsIc2Cnt6cil4c3vMHDG17v0C9EceLaV3k4ZGo5gD0Vh1te2VMFh2dB1jCofP+43nft2rVs2LAh5LFBgwZx6623cv/99zNt2jTjilbxb6Do/vZsOh0YDBxSShUADwCzlFIbMa6oTmxcMWwb+IrwVL8ucN9+auvrNYpKD9yvWyMHLeHpXiASKALeAX56XNOkNmWfDPbTUQoi7RamjzCuqC9duhSn09ls9fz8fObPn8/f//53Vq5c6R+m8Prrr/P111/j9XqPOZRL+0/znyxnVxWwrfzAMW+rQ3kqjaR4O9W5G3hq+0I8XhfaXcpIax6XRhq/uoxtZ9Jr3BtYrEcf1pFkj2dI3HDAjAcT22rioOBOcDdvFD1lypSQ2VE2btzIN9980/pH014e3/IuW33VsABXDTqDn4+9qtVhO32jkpnZ+xT/cuPMI8erpKSEl19+maqqKkzKyw9nfE5CvBmz2YxT9WFpzWjASJpc1G9qs9fbzbaQ6VvXl+z137darcycOZPb7v4HZquRAImJrCUxpoLs7Gyef/555s2bx+bNm/3DVQCGDRvGVVdd1awy493sDN7c1/hz9TI2ooA/9ltNtNkNMVcBYO6pQ6Gr5vumQ8XolxR7hJHuyQ+CbYxxXzdAwc9QtH5xKScnp1mF65YtW1pZW7SJu5XkBRg9dtJexH/K3LAZCn4K2t1V0YUnV2B/SP33UL+5y966h+41wlziz9AqBrPZTHKsg7EDd7N48eIWM/8x1khuHn4+L571Sy4fGDq+dWvZfn677lX+svltiuocXfgBRDjxai8v7f682eSOh6qLaPA0P7Cm7HFjR4Mbyv5hNI46BnV1dSEHfCNGjOAnP/kJP/nJTxgzZkxgbndPKVR/2t7Nv4SRkJjku72I0az3YmARMF4pNUspZQceBrYerVmnEADUBU3Za29DzwJLH7CN8i24oE6msQ43WusyrfXVWutorfVArfXbHf4mvuoLq9XG1BG7iLA2UFNT45/uVGtNVlYWr732Gv/+97/ZvHlzi9/p33zzDa+//rp/GtL2irNFc17QUICPDq46pu10GHcxFP4S9o+Bg6dBbdtP0rXW/HvDAg6W5+J1l2CnnntiV6KAj9ZeiLXX/QwY2PZeEVNSR4M5AVBsqE0zpj4s+HGLVYbnnXceU6cGTu6/+eYbNm3a1OJ2Pz64OiRxcfPw87l9xEVHHb77w6Dqi42l+9hTcYRqyDYoLS31Jy4AxgzMoW+qE4vZDCqa1dZHqXYbJ1RpkQlMCEpSBJuWMtJ/f0Nx86v8kVExRCefT0xMDFarlUG9Aid227dvZ/78+f6T59TUVObMmRMy7KbGVc8rmZ/zblaG/7FTYm083HclUSY32MaDbdix/yDCnXYZsw42SvgJmI7Q80vZIO15wBjKiHMHA6PfaXX1/fv3N3tMkhfH6UjJC4CYiyH1L4Hl2q8g9wdQcB+U/Bkcr0DVJ1C3Hlw5oFs49u5JtDaqUIIF93fpZO1KXijVU1OkXcycRF7tFdjtxpCQmePWkp21myN1O06MiOGuUZfy4lm/4MJ+U0Ky1euK9/D79a9RUFvW6aF3tdL6Sv62ZT7z69f7O2SLUEvzt/gPiiwms79M1KO9ZFcVhK5cv8EYU9nIndt8B9RGGRkZ/gPwxMREbrnlFgYNGtR8xerF+McStpHWulZrXdB4wxgqUq+1LtZaFwOzgL8A5cBphHsDXxEetA6tvIg8rW2vC66+qM3oyIjEiSLqfLAORymIiVJMHmpUByxbtoxNmzbx/PPP88orr7BnT+jJ4NChQ7npppsYNixwsrZnzx6effZZ8vLyjimUKwedQeNp84aSvRyqLjqm7RwX7QHHa3DobKh6H9BGsiDvRmOGFm9dqy8tKipiyZIl/OaFv/B13josqhKFl1vj1pFsquODlZfRYL0spDqiLaYkDwcsYIpnU22akZevXw0ljzVbVynFNddcw/Dhw/2PLVq0iKKi0J9ldmU+87K+9S//cMjZXDfk7FYTFx6Px19Z0y86hRlp4/3PHU/1RVlZGS+//DKVlZUAWCwWrj6vAovFlzRIuIslQbEHN+psKjh5sbV8P3XuhuYrRZ6JyaSIjLRz5YUpnHLKKc1WiYqK4rbbbvM3PK121fFO1lLuWfEUnx4KDKmalDyMh/rvxm7yHQfEXtWuz37CqfoQ3L6qaFMixN9y9NdEjIKUP/gX+0Z9YjT8b0F2dvNh4/n5+c3+dkU7BCcvrC0kLwDib4OE+wLLDdugeiE4noeSh6Hwx3D4SiOJmzUYssczJv7P4Dq2/XxY85SArgl9rPrT0KannajNDTuVUmagWimVoLVuYU8n2iO/7gqGpyzHanUSF1XN5KHbWbx4MSNGjDhi46gUezw/G3sl1ww+i3ezMviuYBsaKK6v4A8bXuexqbfROyqp6z5IJyqsK+ePG96goK4cp6eBjw6u4o6RF3d3WN1Ha/BWgznQl7LGVc8bewPjTq8adAblDVV8UVUKGEOM/F3OtcuY+qlpjUZtRru7J5eXl7NyZWC828UXX4zV2sJ4TjC+yI+Tr6Fv8PKJ2cBXdC/3IV9jLsAUC7aRR16/UVQ6OP5j3JfkxclJmYzqi6JfY7VaOX3Mdr7fM5H6+nree++9ZquPHz+emTNnMmCAMaZ/7NixLFmyhOXLlwPGPvSFF17g6quvDqkAaIu+Ucmc1ms0a3z9Fz46uJqfj+ucE8JDhw6xc+dOqqqqcLlcuN1uYq17mdj3HRIic32Fe5oSdxTRqoFIswdqnqMy+33WZN9ERcNgTCYTZrMxtKGoqIj8/HxcFs3uSbVERjhRaKbbD3G67TA7yv6PC6++kQEDBrS7Mfmo+AFEWSKodUOxJ5UcVywDbVVQ8arxu2vS38ZsNjNnzhyee+45SkpKcLlcvP3229x7773YbDYaPC7+uf0D3F7jpHtEfD9uGJp+xJ/V22+/jcPhICUlhQkTJvDDITP9x2kbSvayt+IwI+JbOTlqhcPh4JVXXvFP82qxWLjr1nOIUa/61jCRa76cHeXGMFCzMnFe39abdfeKTGBQTBoHqwtxez1sLcvmtF5jQleKDEzDG6k3cdONr5I7cyZffPEFWVlZ2O12brnlFpKTk6ly1vLxodV8mvN9s0TItJSR/GbchdgO/T7wYMyV7fr8JxTtgfJnAssJd4Mpqm2vjb/TaNpZmwFoo2qo33yICCTA3G53SL+LAQMG+HuRbNmyhQsvvLADPsRJyBVUFdVS5UWj5N+BtwoqXz/6Nr1lJNgKwPFcaNVGT9DiRU83OP4LKb9v4bmO1eZKCq21B6Ord3LnhXPy8OhISPoFERERKAVnjllPhSOP1avbVpLcNyqZ/zllFg9PuRmbychBNSYwekIFRl5tqVFN4msmBbCvsgdmL9tKe4yO1PvHGCVqvnLk+dkZVDiN7GdSRCzXDT6bEUHz2+8N7ntR/iw4W6juaUeZb6MlS5b4y0b79+/PhAmtdLx350P9kZvaCdFlQoaMTAtMW3c09tONed4BXFlGWag4+cTOAnMqSkFSnJNxA0OrLMxmM6eeeiq//vWvmTNnjj9x0fjcpZdeypw5c/zTRrvdbhYsWMCHH36I292+8dNXDzrLf39ZwdZOqUysqKjg5ZdfZt++faxatYrtW5bTx/wEZw16nBjrQdxuD063l+cLz+CenOu5O+963nGcgsNlJtqaz7kj/kWK6S0yd+9g+/btbNmyhfz8fDSa4jEVmCKNxEWiuZ6fpu0nYewXzLjotwwcOPCYZlSzmMxMTPI1mzRFs7GhMSmkob7lISF2u52bbrrJP2tMYWEhH39sNJd+Y+9X5NYYPTMizFZ+Nf7aVntcFBUVMXfuXCoqKnA6nbzzzjusWrWKATGpnNU7cPL53v72fd82/g7Ky41jIbPZbFQ5JmQEVoq+mK+KAidf01NHkhTR4uRbftNSR/jvrytpoUFkxFgw+ZqkegrBlU3//v256667+N///V8eeOABEvum8sber7lnxVO8v/+7kMRFn6gkfjHuah6cNBtb3RLA9/cdMRWsPbRJJ0D1Z+DaZ9w3xRoJibZSCnr9C0y+C5Decjh8HdQH+pnl5ub69xVJSUkhTVK3bNnSIxr4doujDRtppEzQ668waDX0edv4fSX9FuJug+iLIWKS0eMk+PS6hcbBJ7zgfhfmoJlXKt8Eb03z9TtYe4eBzAM+VUrdppQ6Xyl1XuOtM4Lr8eJuw2Trh80WQbS9jukjtvDNN99QU9P2X/zk5OHGl0MPSmAcrC7k/9b9l5L6ypDHD1QVnrw75voNULcC8Bolao4XOFRdxOKcxpMxzRVJU9m6YTMFW7LweIyy1b2Vvh2ycx+UPRXYXnzQVFx1K9s180hubm7I9GiXXXZZ6weaVR/hr/RQbbz6IERnCWnW2YZ+F41MERB5RmBZqi9OTsoG8T8CwGKxkj5pN6Cx2+2ce+65/Pa3v+Waa64hJaX1afTGjx/Pz372M3r16uV/bO3atfznP/+hrq71oRZNjU4YwKh4I1Ht9nr4LOf7o7yi/bZv347b7UahmTR0Oz++9C0mDtnlf77ObeWh/dfwRfVY3F4zlc4o3ndM4VfF1/Be1URqsDBz/FpuPvcDEqId/tdZRhfiSNCYFChl4v5+B0gevghzdDv+T7ZiSkpgGMimuqCT5IZtrb6mT58+XHlloBpgw4YNzF/9WdD3K/xo5CX0jWr52l1lZSWvvfZas9/fJ598wpIlS/jh4LP9w3zWFe8hq40XYiorK3n55ZcpKzOO5xoTFyOH9/MN1TG4Ym/l27zN/uWWGnU2NT1llP/+hpK9eHWTJrLKbCRtG9UFequoaBvvH17JPSueYuGBFdQF9dbqH53C/4y/lmfPvI/z+k4yhjhXfxTYTk8eMqI1lD8dWI6/46iz5DRjSYO+b+HRvuMlbyUcnu1PvAcPGRkyZAijR4/2J0NLS0s5fLiVRu3iyNqavGhkHQTR6RB3AyT90kho9HkNBnwGQzbB4KBG9s7d0PT/14kuuPIidjZYBxv3vZVQ2bwSsaO1N3nxUyAReAR4BXjVd3ulY8M6SZgiIOnX2Gw2TCbFaaM2gccRMv1UW7SWwCgMqlo4UWRV5vHQ+rk4fNUEEWarv7N6jbue0obKI72856pb47/r9WpcBY/w5Kp/Ul1bQ01NNeTVsHbeF3z44YfsXrUZd4NR3ltY56CioQqK/hcau1dHTIaUR415x8EYt1a/ofl7tkBrzeeff+5fHjt2LEOGHGHISfWHgfvJv2vjhxWik7S3WWewKJkyVWCMe1ZRKAV9kiv59U+n8rvf/Y6LLrqI2NgjX+1ulJqayr333hvSRyA3N5dly5aFlIQfzVWDAqX9X+Suo76lBs3HYefOnfSKL+GuSz7kytNXkhinsNvtREZGUh1xAY/XPsihmAFERUUTHR1NdFQ0toh46lQvPqmdzAOl1/Bh/VR696nj/lmf8uMbo5k1O4E9va0oI3PBFUlFTBo5FyLGHDWetpicHKgo2FFjos7rq5Q4QvICYNq0aUyaNAkAl0Uz99C3/t4V01NHcWG/KS2+rq6ujtdee80/VaXVaiU+Pt7//NKlS1m/ZAVnBA3LaEvvi7y8PF5++WVKS40hoI1DXEaNGgVVHxil6wDWYaypSqLKZSROUu3xTEw+ejPMEfH9iLMZJ8jlDdVkV7UwVj0q8PfVmLxYX7KHn6x8mg8PrqLBE7joMTAmlQdOuY6nz7iXmX0mBPqyuQuNCyQAKIi54qixnbBqvwHnTuO+ijSGjBwL+yS2O/4UqMDQ1UYvmdoVIcmLoUOHYrVaGTt2rP8xadx5DLzV4K3wLdiMmSGPl7lX0O+vJtADpacIrrywDYP4uwLLFa90erKmXckLrfWQVm5Dj/5q0aLYH6JsQ4mIsGO3Ojl99EbWrl1LQUHB0V8bpKUExkPr53ZbAsOrve2uksh05PDwhjf8X8KRlgj+OPlmRsQFsqAHqgpbe3mPputWU1/fQFVVNdXV1SwrT+GAuxyvtwGvx8ugg2aU79qOSSsia/BP4bc3/82goRsW6PWEcVUl6pzAG7Rx6Mju3bv9X55KKS655JLWV3buh4bGcjkrxF7fno8sRMfyOMDVWB5tMaa/bI+Qpp0r2lWtJHoQczzE3QQYVd4p5vf9Vz7bIyIightvvJEf/OAH/so1p9PJu+++2+bvztN6jaZ3ZCIA1a56vgm6+n68amtryT+8k9kzP6JvcjERERHYbFZsUcOo7v1f/lF1MftdNZjNFsxmM1cOPpPfTp7NkPjemM02lCWJOhJZWDmGew9fyoLKESTYXuHdsk04tZFQGBjh4pZJ/2x3z6UjSbHHMSgmDQA3ZrbX+apgGrYecWYtpRRXX301ySnJ7B/sxmn1UldXS7w1ivvGXtlidaHb7eatt97yH6+ZTCbmzJnDWWedZSQZfNavX499eyWNVYjfF2eyv2kzbZ+Kigref/99nnnmGUpKSvzbvfHGGxkzZozxGYKbbsffzpK8wLCCC5o0dG+NWZmYGpToWV+8t/lKkaHJi0NVhTy5dUFI0mJQTBq/mXA9T53+U2b0Ht/8vasX+z83kWcYlQU9kdZQFlR1EXfzcZ0E17qHQL8PjJNgAF2HzrsZc0PgWG3oUOPUqzHpBkby4nimYj4puYMqoax9jaEhx0up0IRsQw+bDM91MHDfOtioQGkcZubabyTyOtEx/4aUUqbgW0cGdVJRFkj6DRaLcQAwfcQWoiOqW5069UgaExhW35jMrk5glDVU8fXhTfxty3xuzvgbP/z2z/xl8zssL9jWcjfrIFvL9vPHjW9Q464HIMZq59EptzI2cZD/QATgQHX7kjo9gcfdQHVJBk6nE601JTXxvF1llIVG2uoZ6HARVWciJcXoCK6UIroKPB43Xo+LPUWfBDaW+NPADrWdyQuPxxNSdXHaaaeRmpra+guCqy6iz2t/+aQQHSl4yEjE+LY3UWtkHRYoJ9XVba5WEj1Qwt2A74p+3QqoP/JV/dYopZgxYwZ33323PwFSXl7e5tJvszJxxaDAcKaPD67C00FXvHbv3s2w3geIttdhMpkwmWyQ+D/kpyziwR1ZISfftww/nx+NvISz0sbx1Ok/5YFTrmNAdC8wRYMpiTpt5/3yUfzowMXsazCSLRZl5leTf40tooUZqo5TYOiIhY21vh5QnpJAs95WREREMPiSKTgSjWMvr9fLxLIk4m3Rzdb1er289957IVfCr732WkaNGoXFYuGWW25h8uRAgjR/ezaJZSbjuE7XMX/HP0Iqwerr61myZAlPPPEEGzcGkhFms5nZs2czbtw434rfG2XoACqSPPMFbPNN42pSiguO0KizqWmpgYbF60pa6IdlGwsmo4qkyungr5vn+oeIpNrjeXDibP51+o85M21sqzObhBwHxPTgISN1K6Gh8TvB6p9a+bhEjIJ+C8FsNJr1uOu4+rSPGdk3m8TERBISEgAYNmwY0dHG32hVVVWLU6kelfYcMbnXo7naOWSkrWxBPeWdu1pf70QUXHlhHWzs6+NuDjzW2OC8k7R3qtQpSqnVSqkajBp0F0YXHrkEdTxiLkdFjMdut2Mxezhr7Dr27dvH7t3tz9RNTh7O/026sUsSGG6vhx3lB3lz39f8as2L3Ln8SZ7d+RGri3ZR627A7fWwrjiTf277gNuXP8ETW99nbdEunJ7QxmQbSvby503zqPdl8+NtUfx56h3+jtyDg5MXJ1nlhcfj4YuPnkB7qgGorI3h77uvo8QTA0oRb3byxJlr+NPDv+DXv/41N910E+PGjSPKV1GqPZXsrfedpFkHQ+KvAhuPnIF/F9CwBTxH/htZt24dxcXFgHGQd/7557e+stahs4zEXNP2Dy1EZ6gL7ndxavtfr1SToSMZxx2SOEFZB0DM5YFlx/PHtbkhQ4aElH7v2tX2A93z+04ixmpMVVlY52BNUcccJO/YsYOhvY0hLCaTCZIeIMt6E7/b8Ja/kbZZmfj5uKuYFTR1qEmZmNF7PE+dYSQx+sf0Ma5Aqyg8/kNOK3NGXM2QhI4ZKtLU5ORA34uNdQMC52T+SsCW5deWsaBwtX8a+16FZorXZbFhQ2iiUmvN4sWL2bYtkLS66KKLQmaNMZvN/PCHP2TmzJkARt+Qil1oVzF4KljjqOVA9o/w1GXy/fff8+STT7J06dKQxq2jR4/mF7/4Reg0pRWvBe7HzuKrgkCzzakpI0m2t/0iwaSkYf5KiazK/OZNX5UJIk/HrRVPFEwjv84YwmI3W/n9pJs4rdfo1pMWYMzgUL++8ScCMT9oc2wnnOAZRuJmg6V3x2zXNhT6LwLLADweD2aTl2vO/JyzJpb6VzGbzSF/I+0eOlK/CQ5MgpzzjArFk017+120VURgn96jkhceR2CYjYoMVAfF30kgqb8KGnZ0WghtnirV53XgE+BOoLbjwzlJKRMkP4g5fw5Wq5VJQ3ayNnMyixcvZuTIkUecOrUljQmM/7f5HVxejz+B8etTriPCbMWjvXi0F6/24vZ68GqNR3vwaC973UXYi3ahtcbrK/XTWqMBrY1H6jwNbCvbz+bSbH+lxNE0eFysKNzBisIdRFkiOL3XaGakjafO4+Rf2xf6pyJLiojl0am30j86cEV/UGxw5UXLyQun08nevXsZNGgQMTEx7fp5hSuXy8W8efOI19/5H8tnOqVDkzF56sFbxi0pu0i2HoaSe6Df+2CyM2PGDFbt2IDZ5MGknOypT0BrUKn/AJM98AbmeKP/RcMGQEPtdxDb8hRm9fX1Ib1YzjnnnCP/nJ27wOUrQ1VREC3Td4luVh/U7yLyGBsDRqVD5VvG/doM6eNyMku4N9CIsPpjqL8L7O2b8jTYmDFjWLPG6G20a9euNk95aDfbuLT/NN7fb3xPfHRwNWf2GntMs3U0crlc7Nu7hwsuMcZpm81mtjpHh1x5t5ks/O+EHzI9dVSL2zD7khhnpI1lVeFO5mdnkFtdALg5JWkUVw3pvD7vYxMGEmm2UedxUuiKJM8VQz9btdH3opXvIrfXw1PbF1LvcWG1Wol2WRiQa1SMfvjhh/Tv35+0NONYZPny5axaFWhgefrpp5Oent5sm0opLr3kEvon7iCy7ll6xZdS4ZjJhvr+KODd0sHcUHoNH31xBV4dSAL06dOHH/zgBwwb1qR3hbvQmM2icTH2Nr7dFVi+uA2NOoNFW+2MSxzEVl/lxoaSPVzYdBuRZ/HmwVy21PUC5QQVxS/HXcPg2DYM/6j+OHA/6mwwJ7UrvvZSSkUAzwMXAEnAPuD/tNafH/GFx8tT7muoDmCCxHs7dvvWgdBvEY5NM4m0FGJSmukD5kLlVIgzhuNOnDjRv//Ytm0bV111VdvPHSrmgqfUuFW+3fHxh7vOSl4EV1409KDkRdOqi8bvGmtfI6nf+L3oeAnSnm728o7Q3uTFIOD3+qSd8qETRaWD/XQivKtxu6s5e9xaPvk+ntWrVzNjxox2b66lBMbv1r161Nc5nQ0s3rLzGD6AcbAyNnEQkxKHUrX9MDVV1cRM6s/6iixyaor969W6G/g2bwvf5oVmh3vZ4/nT1NvoExX6BTcophf4+jnk1Zbi9Lj9TTzBaJj1wgsvUFxcTO/evfn5z39uXCk6gTmdTt544w2ysrK47ixjx2qz2fjafSquOjcoK8Ni+3N+nG9ISMMGKLwPer/EwIEDGRBrp8xWQC1WajxW8iNm0zfqrOZvFJUeKHWsXdZq8mL58uX+WXDi4uKO/jdZtShwP/piMEW25+ML0bG0E+o3B5bb26yzUeQMjCsLHuMqrrsELK3PLNFeTo+bb/I2EW2J4OzepxzXCajoZPZTIOpCqP0K0FD0GxjwBSjrMW1uxIgR/u+t/Px8HA6Hvyz8aC4bcCqLDq7C7fWwpyKX3RU5jEkYeExxAOzbt4+E6Hz/kJEVNSN5sXA1bt9Y+miLnYcm39Sm9zArE2f3Hs+ZaWNZX5xJSX0lF/SbfOQr9sfJYjIzIXkoa4t2g7KwsbZXIHnRigUHviOzItcf85/OupXPsxZSXFyM2+3m7bff5mc/+xk7duzgiy++8L9u/PjxXHHFFc3/r2ptJDjL/s4pKVtwOl3U18PV0dtYXz8AtGZNdR9u6bWa00ZtZPXuacTFxXHxxRczadKklo9hKufhn3LUfiqZ9TEhU6VPDppppa2mpYz0Jy/WFTdPXmRU9uEjh2+72sX1Q2ZyRtrYpptpWXDyomuGjFiAHOAc4BBwGfCeUuoUrfWBTnvX2u/w9/WwTzFmouhgHlMar39zFded8T4pceVYLAqK7je+2+JvZuDAgcTHx1NRUUF9fT179uwxeqS0hTMrcL92mSQvOoptFI3nLriywdtgTNRwogueacTapF9Rwj2B5EXVh5D8f53S56a93x6LgIs6PAphZK6SH8RkUthsEYwbtIfU+BK++eYbqqqObf72pkNIOkOyPY4L+03hdxNv4M303/DY1NvoX2wjc/UWcrdnEbmjkmfO/BlPn/FTfjjk7GaJiUZ9opL4f9PvbPF5u9lGojJOfr1ak1MTGLfq9Xp5//33/cMZCgoKTvipourr63nttdfIyspCoRmQko/NZmOXpz9rKwKVLveMuxVz6qOBF9Z8BqWPoZTiitO3MzzC+Jl4Nezi2pbfLLjvRd2yFsc8VlRU8N13geqPiy++GKv1CAfoWjeZGu3qI35eITpdwzbANxODdTBYeh1p7daZ40KvrtctP97I/FxeN49veZf/7F7MP7cvZH3JnqO/SHSv1D+D8lWzOXeB4+gXCFpjt9tDplhtz9CRxIhY0vtM8C9/eHDVEdY+up07dzIkLYdDrgQW1Ezi36XT/YmLpIhY/jr9znYnR8zKxGm9xvCDgacRYbYdV3xtERg6YmVVdV/21CeQU7GXkvpKalz1/mpPgMyKXN7PDvxfvnHYuYxJGcxNN92ExWJcKCkqKmLu3LksWLDAv97gwYO5/vrrmyUa4qzb4fDVkD/HGJIJ2GxW7FGJFO4fjrk0kga3DY1iS0NfZo5fx1WXjuTXv/41U6ZMaTlxoV1Q8WZgOf4ONgTtI6aljGxTo86mgvtebCnLDhnWu6/yMM/t3UjjCdj0qDxmD2jjyV3Tht3Rl7Y7tvbSWtdorR/RWh/QWnu11p8C+4FjL4lqi+CeYZHntL7ecTh8+DDllTbmZVxDWU0a/laDxb+B+k2YTCYmTpzoXz94OvujcgX6tlC3Frxtq6juMYJ7Xlg7MHlhiqLe03ji7gVnD/lOb1p5Ecw+GezTGlcMbS7cgY5aeaGUehN/SpEIYJFSagUQ0jlRa31rx4d3komcDlEXYNNf43K5mDl+LR+sTGH+/Pnceeedx1RNMDl5OH+YfDNv7v2Keo8LkzJhNpkwq9CbyfdvUWEhfVL7YFIKUJiUMYeFwpjWzOR7bFBMGpOThzMoplezKw7r1gXGlu/atQuPx8OgmDQGDU/jpmHnkVWVx3cF2/muYDtlDVUMie3Nw5PnkBjR+jRzqaZYanAAxtCRYXF9AcjIyGh2kJeZmcmAAQOabuKEUFdXx3//+19yc40rQCnxpcTHgsVm59WcKTT+lz2v70RGJQwA7jS6/la8bGzA8R/wVjO81yqGl45ia0NfGpw2VmRlcv7AFqol7JPAFGtMu+bOA1cW2EKv3nz11Vf+cbh9+vQJ6WzdovoN4DbixxQfOkuDEN2hbm3g/rH0uwgWlR4YglKzFGJbSQy2g9vr4YltC9hYus//2LriPa2W5IswYR0ASb+G0r8Yy2X/MKaCPMYD4N69e1NRYYwl3rVrF2ecccZRXhFw5cAz+PrwJgC+L9pNXk0pfaPbN9tBpbOGzaVZLKpYj6fXAGpLB6OUwosVE9AvOplHJt9CamRCu7bbHaY2Ji+UmV31yfwm13dSmfMEjdftbGYLkWYbDR6Xv9HpmISBXDPYqFLs3bs3V111FR988AFASCPEtLQ0br311tBEvqcSCn/KuIQvoT44QWOD+NuxJd7HqKhakj99kf3R9VhMHra4BnBJajGnp74D1qCGd03VLAGPb9isORViLmNDycv+p4OTEO3RNyqZvlHJ5NWW0uBxsb18P1NSRlDeUM1ft8zH5fWAstHfUsKv0jZgqlttNJI8muALGN3UsFsplQaMBJoNvldK3QPcA8bUxRkZGcf4LpqpyZ9iMxnJ8e27YqhyH+u2Aqqrq0Ni2rdvHw0NDTQ0mFm86Q5uPOcjoi1G0iF324vk1NyI0+mkocEY6rRx40ZSU1P9ybfWWFQ101OCG9k62bn6RSpck9oUV7g4nrgmJ+3GbjZ+f5s35FLnObbttGRoVF/sZuN0ed/mBRTXlx7lFV3jeH5ew2NXkGo3fl5Z++oo2h66naSIMxgVZyTQ3XkvsGHbJLx0bMVJW4aN7GuyfGxjCkTbJP8OVfs1drudkX330zepgKws+O677zjnnGPL6E5IGsI/TrunTetmZGSQPin9mN4HjLnJgysf6uvrOXDggH/splKK4XH9GB7Xj9tGXEhxfQUp9vijXjFINcVyoDF54WvamZmZyVdffdVs3T179nDBBRcc82foLtXV1fz3v/8lPz8w3/rl56cQEWFjX30cua54MBlTyN4yPOjzpTxsJAtqfMM6K+cBMCqqAnelGbfXwvaiLLTWzUtblcUohW98be2ykORFfn5+SLOyyy677OhJtJDu4j845jJqITpM8EwjxzpkpFHUuVD2d+N+3TJjPvPjKIH3aC9P7VhklLgHyazoYfPC91QJ90DVB8YMELoOin8Pfece06bS0tLIzDRmfcjOzqa+vt7fPPJoBsb0YmrKCDaU7EUDHx9azU/GXH7E17i9HjIrctlcuo9NpVlkVebh9nioTWggxl+xqfBqCyPj+/PQpBuJa2HmjXCUGpnA0NjeZFcVAFb8feW1C5RxIO30uEMqDSItEdw//pqQ45GpU6eSnZ3Npk2b/I/Fx8dzxx13EBnZZDhk1XyoXRr0gBXi50DiL/wNHAcOhPuv+RG/3fQqJrOdbU4XXrUZk3M7lP0bkn/d8gcKvoIZN4fi+hoOVhsnnVaTmQlJxz7d7PTUkXx0cDUA60v2MiFpKH/fOp/S+krAGCb0f33WEmV2G434Em4/8gabVl/GXH3MsR0rpZQVmAe8rrVu1v1ea/0S8BLAqFGjdEs9S9rEuQ8OVQE2MMUydeyPjOOq45SRkRHSR2X//v3+GYlOPeMikoaMhKJfAjAsGYb1TkdrTVZWlr8SOTU1NaQao0X1myA3tBJq8qgqSElvcfWmcYWLY45LeyGrGjB+BqeddU37ZyI7gn3fv0dExHYAxqWZW/25drXj+j3mPAkNxs9r7JDLGNt0SLo+Gw5+CO4cInAyc3IRxN9yXPE2ddT/YVrrP3XoO4ojixgLMVdhqf4Im81G+imreXvZ1Xz55ZcMGTKEgQOPfRxrVwiuumi0a9eu5o2nMLqSp/nmqD+aXqZYf/3PwepCSktLeffdd/3PDxw4kJycHLTW5OTkUFtbS1RUx+2AOltlZSWvvvoqRUWBDPhVV13FyAGvQTXG9HLK2FlMTR4eWqWizJD2LBz+ITQEplgbHeuhIcc3/Z65nl17djN2VAtjIKPOCUpeZEDCjwDjwO6Fb96lIM0or01LS2OntZidB4ubb8ISwZSUESTZIqE6aGrWbjhoESKE1qEzjUQeZ+VFxClgSgJvmTH9YsMOo//BMfBqL8/t/JgVBdubPXeouogaVz3R1radvIpuoqyQ+nc47OsXVLsEqr+AmEvavanIyEj69u1LXl4eHo+HPXv2MGHChKO/0OeqQWeyocRolPxt3mauH3oOLq+bkvoKiuoqKK53UFxfQVG9g+K6CkrqK3B6Q2f/crtdmE3GPj/a5GJynAt7zQx+Mu0GrKbjPynrSr8cfw0f7F9BWeVq6pzF1Hst1JniqSOCencDwYMkzcrEfWOvbHZMopTi6quvJi8vj8LCQux2O3fccQfx8fHN37BudeB+9CWQ8iejOqeJcb2H0i82laL6Cmq9CeysS2ZCVAmUPw3RFzXfnzj3GFNxGpFC/C2sz9/rf3p84mDsxzEUZ2pKIHmxrjgTt9fDLoeRPDUpxQNjL6RvzRu+z7jK2Ke21o9Hayj9Kzh9U6+qyC5v2K2MMRVvYowVvK9T36w2aOhg5IwOSVw05fF4OHjwoH956NChYAtKmPt6ViilmDRpkv+i3ubNm4+evAgeAtCoNgP4w3FGfYLwFONPbJoSOzRxAVDrCfr/39BDrv27DwTuN+15AcY5ScKPoOQRY9nxMsTNOa6LPE216X+ZUioOqNdaO33L52M0wgH4RGud0WERCUj6DVR/SkREBEP7FDB2wF525ozk3Xff5ec//3nzbH9XchdCxetGF92Yy0P+GJ1OZ4vj7Hbt2sUPfvCD42o+l2qKAd8Q1ezKfN58603q641xefHx8dxyyy288cYb5OQYX7h79uw5+vCGMFFZWclLL71EaalRTqaU4tprr2Xa1Klw4McAZDXE05gZbhwyE8IUCX3mQu4V4Da+5BLSHiB5Tw4lrkq0CRav/bb15EWjulVGAyhl48k1b7MyKgd8+bLS6Ap27/my1c9hUorxcTGcY7FzerSFaFsyRLa97FmITuHKNhINAKYEsDZPpLaLMhn/Z6p9TWlrM44peaG15qXdn/Ft3mb/Y5cNOJXdjkNkVxWggT2VuSHTPoowFTnNODjzVb1R/HtjdgVT+6sUxowZQ15eHmB8d7YneXFK4mCGxvUhuzIfp9fNncufbNd7m5QiukoxwXaYHyRtYFx8LfaUH5Oxo98Jl7gAGBSTxv+cMgsqGqD4bePB6Muhz+N4tRen102du4E6j5MYi73VqhKbzcaPf/xjdu7cyfDhw1tOXGgdWuGV9NsWExdgfMdPSx3FZznfgyma9Q1TmBC1BHAbTRgHfO6/WAEYx1yNoi8GSx/Wl3zrf2hayrENGWk0NmEgUZYIat0NFNdXsORwoNryluEXMLn3GbA/Ebzlxr7Uuaf1oSNlT4Dj2cBy3OwOPyE8EmUcaL4KpAGXaa1dnfqGwf0uoo6tOvpo8vPz/cNB4uLiSEpKAm9QLzvXfn8F4MSJE/3Ji7179x79Qp6zheSFcxe4i469N9SJpLOadfrUuoOatzqbFQCdeDyVxqw0ANhanxI49kYofQJ0Nbj2GcdJ0R03w1Rb0yBLgeEASql7gXcw6vCswHyl1F3HE4RSKkIp9apS6qBSqkoptUkpdWmTdc5XSu1WStUqpZYqpTq+nW+4sA2BuJtRCiIj7Vw2PYOEaAfl5eUsWrSIbpvsxVMJuVdD+VNQ+BPIvTTkSsP27dv9CYWkpCRsNuPLt6ysLKSi4FjEqUgiLUYVQXFVOTmlxhgys9nMnDlziImJYdSowJfpnj0nTmOczz//PCRxccMNNzBt2jTjC8ljVDlkNaT4M/rD4vq0vCFLCvR7D2Jv4FDNjRB/BxN6B058dpUepLCwhalmrYMCTXd0HdStI6cwj6UFWwOrWG1HHS7i1Zqt5Yd5pmgKt++/lMeLLmR1UWZIWa4QXS54ilT79I7J/gf3canNaPfLtda8tudLvshd73/sgn6TuWvUJYwOaoSY6cg9jiBFl0r+PZh9PSY8+cZJ3DEYOzYwk8Pu3bvxeDxHWDuUUoqrB53ZrvdLtcdzYb8p/GbC9Tw59g5GbIU5SesYYSshwmLutBOyLhURlFz0zThiUiajGXhELH2jko86HCYyMpKpU6e2nLgAowO/76Deo6PANuKI25selHBYVz8WTVDj17J/Blb0VkPl+4Hl+Ntp8DjZVhY46ZyacuT3OhqLycyUFpKkM3ufYvw9KVPohYi6VhrClv0Tyv8VWI66EFIeOa7YjsELwBjgCq11Xae+k3YFVcQAkTM75W2yswMNNYcMGWJcCDQnGJUCYBy3uY1j4uTkZPr37w8YFRvbtzev6gvRUuUF+GZQOQl0VrNOn3pPWqCps6co6MT/BOUKVAAZ06S2cjxljoW4mwLLjpc6NIy2HsWN0Fo31rv8Ajhfa/0LrfUvgHTgeCe7D57eKB6jXuk9pdRgAKVUCrDQ93gSsB6Yf5zvGd5Sfg/WwZhMJuJizFx9+hJMysO2bdtYv3790V/f0bQ2uhq7g/5wG7bB4VmQ/yNwHggZMnLqqacycmTgy7k9ndNbYjQJ7YXT6cTtdlEbZSRwrr76an9zzuD327NnD15fd/Rw5nA42LIlMGXsjTfeGCjz8yWG3FpxyBWYhWVobCvJCzCu9KT9i8O1s0CZOKXXMCwWo+dEdbRmxYoVLb8uqEN2g2MJTyx6GY8yfn52l5mrBp/BFQNPb/F2+cDTGJ842OhHro3klQsTayqs/G3re9y+/B/8e8eHbCnNbuGNhehkdUHJi3YOGVm/fj1PP/00K1euDH0i+ISufh142jcj1NtZ3/LxoTX+5Zm9T+GnY67ApEyMiu/vf3y39L04cZgTIPmPgWXHK8aQonbq06cPcXFGc8PGnlHtcWavsYxPDFzbSYyIYWR8f2akjePqQWdy9+jL+P2kG3nq9J8yL/13vHz2r/jZ2Cs5M20sBzKziLHXkBpfhsViQSlrz6ieixiFca0N4xjGU9Hx7xGUJK10jT5qknRc4mDsZiOm/Ppa8qL/N/Bk+bNGLwIw+qnoauO+dThEnsW2sgP+4T79o1Po3cosbu0xtUn1xtC4Pvxs7JWBitnIoHHtLSUvyp4JTdhFnQ99Xu7Snle+i5o/BiYBBUqpat9tTqe8Yf160LXGfcsgsA3ulLcJbhQ7dOjQwBPWoPtBM4YEDxUJPr5sUfC0l5FnB+534ExaYa2TKy/A7Jsy1aeh/edCNa56Ht7wOg+ue5WyhmObfbLDHGmmkaYSfoQ/zVC3/Jg+e2vaWgdYpZTqr7XOxUguZAY9l4VRnnXMtNY1wCNBD32qlGqc3ugAcC2wQ2v9PoBS6hGgRCk1uqVGPD2CKQbSXoTcK7BaYWBaOemnrObbrTP4+OOPGThwIGlpHT93bqsq3wydsxsb/qkHaz7HU7WEYfGDyLdOx+WJYsqUKcTGxvqzvjt37jzuJj/x7ggaGoyT47pIzUWjTjUqFHz69etHdHQ0NTU11NTUkJeX589Ah6tVq1b5K2mGDh3KKacEXSGqM05uDjbE4dY2UNA7MpEYa9uHDY2M74/NZsPtdlET7WXTpk1cfPHFxMTEhK4YlQ6Vr6O1piD7PQ7af+B7QnHtiJn86JQrjvpeJaUfsyL7HyyvGkC2M8l/0FLrbuDbvM0h5fFCdJmQyou2Jy+qqqr48MMP8Xg8fPrppyQmJgauilt6gW0cOHcAviZ2beym/X72ct7fH7iqdXqvMfxi3NX+JoGjEwKl5nsqcvFqL6YOHCsqOlHsLKh6D+pWAB4o+g30/9gYA9wmRlPlsWPHsmaNsf9vrWdUaywmM49NvZ1yZzUxlkhs5rYP99i5cyeD04yEmdVqMZJ9XVjy32mUzTiBcPquQjdsh6ZN5o5X0JCRKtdoWimm9rOZLUxKHsYaX6PedQ2n0C/yTN++xAuFv4QBS0IbdcbfDkqFTKN8vENGGk1NGU6k2Uadx0m8LYoHJ9xAhDko8dC08iK4UXH581D216B1z4Her4QOfekCWuuDNM7r2hW6YMiI1+sNSWCGJC9sw6DBN8THlQUYM8pNmDCBxYsXA0bVRmVlpT8h2kzwNKnxt0Od77updvmRe5v0FJ2YvMjPz6ekpAQ9ZhTKN2Uyzt0Q1cLMf0fwee73bPVVWi3Y/x33jL7sKK/oRMHJrqMlL6wDIPoyqPnUWHa8DGn/PPJr2qitR0SvAXOVUkOAfwHPKaX6K6X6A08DrVzOPTYtTG80DvCnD33Jjizf4z2XfYJRgYExB/wZY7YytPcB3G437777Li5X5w7l82vYCcUPB5bjboVBqyBmlv8hl7OWU0du4aeXvcnlMwqJjbEzevRof9Y+JyeHqqpjzxjW1dVxaGMgZ2bqFc0VV4SeUJtMJkaMCJRPhvvQkbq6Or7/PnBidfbZZ4euUG8cvGY1JPgPAlodMtKKIbG9sVmsmExm6iM1DbhZu3Zt8xUjz0Rjpra2Dk9EGdVxRqlyVGQU14xLb9N7pbg+5+rELP45MINnxqdx/dCZ9OmAK0JCHDN3SdCVAitEtL1/wLp160JK9j/44IPQfVjI0JHgGQZa9/HB1czLCoxVn5oyggdOuQ6LKXBy28ueQIKvhL3W3UBOTfMGuSJMKQWpf8V/lb9hE1S8eeTXaC/UfAW513Bayhwof5YxYwK9iXbt2tXuoaJKKZIiYtuVuKioqCA3N5ehvQ8BGFMs9oQhI41aGDrSoYIqvKpco9v0kmkpgSuy60v2Qq9/gvIli1z7IP/WoMaXURB7HVprf1NWOP4hI43ibNH8fvJNXDP4LB6fflfz6XBto4xGxWD0vmiMy/ESlP45sF7kDOjzGpg6dmrEsBSUvNhfNJAXXnih5eOr45Cfn+8fjh0bG0tyctD0x8H9m5yBJERcXFxIkmPr1sAQ4BAeB3gdxn1lNxqrmnzDojyFgd9xT9ZJyYv9+/fz7LPPsmrVKrbsduPfhR9D9cGO8kDF+8aSvd3XOgDaV3kBxmxcjWqWQAfF3tZvtoeBR4GtGG1ZE4A7fc99B9zYIdHQ6vRGMUDTI7gKIJYWdNz8zZ2n7XPsjmB0/HgSbRuxWMxccepXPP/pLA4ebOCFF15oczMvE/W+eXaPnEVtGpdJ1TEx8TfYzUbZYq17INtyz8PLHmAWMZaJDIp+jQi9Fa01dms9k/ovpGLbWg5W30J0dCSlpeUALFq06JhmS/F4PKxZswYvNejexvGhM9bc4hAIl8vlb2y0atWqo0/r2YIVzn1sdudwqnUIpx7lP+fxzJW8b98+KiuNqchiYmLIz8+noMAYtxhhKmZKsrGTyKxJwOnyAg14C2rIKDv6+wXHFeeyUm0y4fF4cNicfP3114DRL6SR1pr+Kp5eseWsqhuFyeRBmewMUAlsXb2hpbcIYaKe6SkfY1JGNU5+/kD6ekxcr08h31TJZncO24O/JIToCiFTpE5q8wG1x+NpdhBaW1vLggULuP32242kbNS54HjO92QGcPERt/lF7jr+G9TwdkLSEH474YaQxAUYJ56jEwb4r8hmOnIZFNOFVXbi+NiGGVNjlvuaZZb9FWIua978TrugaiGUvwAuI9FuUk4o/QdDB83GZrPhdDr9PaM6u9Jy165dKDSDe+VgNpuNv/HIHpa8qHrHuN/QysncsfKUG8kGAKxUu9rWZHdqSlBPKkcO1aQSk/IwFPtGYtcFHePEXgfmOA5VF1Jcbwx7ibbYGZPQ/mOq1oxPHMz4xMEtP6kURJ4ZuIpat9qoDm2cUQDAfgb0eR1MJ8EMSZ5y/9+Rxsy7H+VQWQ2HDh1i8ODBHfb/NXjIiL/fRSNby8NGACZNmuTvlbFlyxZmzGjhan/IiegQo69a5NmB33HtMogIJOI2l2ax1JnJqNoJPefClLvje15orfn888/9Q9fXbHQwJsVJRITN6GnTDh7tZXdFoPdVQV05+bVl9I1OPsKrOlFw5YWtDdMz26eAigZd45uhrbhDGsG2KXmhtfYCDymlngBOAfoDdcBWrfVRB7IrpTIw+lm0ZKXWeoZvvdamN6oGmtY8xQEtXsrvsPmbO1G75tj1TIBDF4CnkCSTi+vOXs67y68kPz+f888/n3HjjlCA4q1GF/8JXfEOKmIYqvfzENH6+iFxaQ2Fv4DqUsAGKoqIAe8x0xb8xZzOtm2nsmHZY5w3YRWJsVXY7XYiVSkTop5iyJUxrNmexo5DIwF9TENHFi5cSFVVFXFRNpRyEhUVTZ3Fy4yZZzc78K+pqWHHDqNgp7a2ltNOO61ds7Pk1ZTy1KoMsCq+N+Vw34zZRFla/yI+1rmSPR4Pq1ev9s/bfcUVVzB9+vTACpULoMiotjioh2CzGetdMuUcJiYPbba9I8W1e1c1X+Sux+Px0JCgoM6YoaVxyI3Wmk8//ZRMRxq9xh5kRf1QImxgtkZxw/gLOadPGxJkVR9CoQaM8txTx90W8vRs7eX36+fy+dG3JETHCUleTG99vSZ27tzpTyxGRET4E6J79uxhzZo1nHHGGRA5PfCl7D6E3VzQ6va+L87kP7sW+5fHJAzk/ybd2OqV8VHxgeTF7oocLuo/tc2xn0x8xxanA41dgQ9rrVuZBqELJd4H1QuNkwNvFZT8EXq/YDznqYLKt4wSWk9LfzMuLPWfMXLkSP+wy127dnV68mLnzp2kJpQQba/DarUbV9mPcKxwwrEHfY91dOVFfVAfsohT8NK24RKJEbGMiOvL3so8PNrLptIszk67Bao/a95zIP52gJCqi0nJQ5sdA3WqyDMCJ7blzxmNaRvZT4W+bxgzn50Mar8D32S7DYymsjrw1DfffMNNN93U8uvaqWmzzhAhPS+yQp4aP348H330ER6Ph9zcXEpKSkhJSQl9fUtX0aPOCUpQLYdEY8a7Kmct/2/LO1S7aqjfvpC/nXpc8zSEj+CGnZaOGWa+d+9e/8yHAMUVyTQ0NKCUwqYyQ4dcHcWh6iLq3A0hj20o3dvpyYsaVz17KnIZkzgwdBrm9gwbAeNz2kYHhjc5d3dI8qJNPz2l1FtKqZsAk9b6O631O1rrD9uSuADQWqdrrVUrt8bERfD0RrOaTG+0A/B3oFFKRQPDCAwr6dnMyZD2LKCwWq0M71vAGaONP4QFCxbgcDhCVq+qqmLnzp2szfgXxRsmUJ33ItXVFVSXb8J94BKofKdt71v1HlR/EFhOfRxsza8orFu3nszDw3npyznk1t+BMgfyTFERlZw2ajN3XvgeMwf/AU/xP1qemqkVO3fu9DcCtXgUaZFJmM1mPNrbYjl1dHS0v8+F1pq9e/c2W+dIvjwcOAhxez3H32Sy7F9w8Gyo+ijk4a1bt/pPjqKjo5tP6xrUrPNAQ6AL+tB2DhsBGBFvZJNtNis10caX7cqVK/2lZ8uXL2fVqlXsLxhItjuJfE88ZpOHSLON03q1rfyVqkWB+zFXN3vapEz8dMzl7Yrbt9/JV0pVKqX2BM9qdFLNPiSOXV1Q8iLytDa/rLHfAMCZZ54ZctXqs88+M2btUdaQJnYJtk0tbmtf5WGe3LaAxmLJEXF9+cPkm0IPCJoI7nuRKU07j+Y+rXWM79b9iQswKnxS/xZYrv4IKj+Akv8HB6dD6WOhiQsVDfbTA8tVC0KGjuzcuZPOVFdXR3Z2NkN9/S6MISNnd8zMPOHCNhbwnei7so1ZPDpKSFPgtidJAaalBg0dKc40Khx6/RNMQYXF9tP9V8DXFQeGwzZtstnpgvuEBCcuIqZC37eOaWrgE1bQkJGCytDjpG3btvH/2Tvv8Diq823fZ/uuei+WZLn33hvIphgIvbfQSwIJIQkJKb/0HpJ8qRBCQu8QAibBFAPuvUnusmVZktV72V7m+2N2Z2YlrbSSZWPsva/Ll7fMzI6k3Z1z3vO8z1NbW9t9jwETCAQim3WCrJYI4a2S1VxBrFZrmIn922+/zdtvv82bb77Jyy+/zHPPPceW9a9itzvostvZsK2WN998E79Za8y6CQLyxLmss1ZJjjvUfpx6Z+sJ/3yfOQGnGqOOEfQZJ3xISZIUdTPI36UOtw27y4rL5cLr6QRvZdTH29/Wc9udTQOb1wwUvxTge9uf4Se7XuS3xa+rTwQccjsRAIbo22w06h3cQ3Mti/bK9D/gYmC/EGKDEOL7QogZQ3IGKn3FG/0HmCyEuEYIYUFuYyk5Y806e8O2CFIeVuJTz528nbw0uRfu5ZdfZs2aNbz00kv8+te/5re//im1e+5lQuIPMesblRYjKSDhsLfhOf4QUv3D8gc3Ep5SaPyuej/hBki8tsdmLS0tSoHAH9CTPf7Hsh9G8pdAn4Zep1NaN1LjWwk0PQaVi6DqEnnlyddLdGeQ7l8CU6dOZXKO2uN3rLP3fbunjkSLx+/rYSq5/US+JNwHoOUxuSLe8DD45GKLJEmsW6ca9i1YsACjsZsjd9DvotKTiC/YP51lTSZhAGadIcYkyl8wRqMJRwJISNTV1VFWVsaOHTt4//33AahtzWSDazwCAQRYkJ7d5wRLwd8WHhcZf0WvmxXED7ja+iugUJKkROBy4OdCiFlnZfpQjIETcIXLwy2zI2+rob6+XlntEkIwb948li9fTna2bMHn8/l47bXXZD8Mje9Fsml3j2M1ONv4+a6XcfvlQWWWNZnvz7g5sprLcwQqihjV/gCGoDy42t5Mp8cR1bnHOI2wLYb4q9X7DV+Ftr9CoEN9TJ8Bqd+Fwh2Q8xRSaHLt2s6E0dYh84zqj9LSUvx+PyOyKtHpdeh0ItzT5UxAZ9HEl0pDNogGBq3wgvDI1B3Nh/EF/GDMhfRfIg/R9ZD6MACdXqdSzBTAzPSei0knFeMYNQ44hHkG5L4km8yfLUgSONXixaHKnvas2rHrYKmvr1f8LuLi4sjI6Da51lk0E0h/eIwl4akjZWVlbNmyhR07drBnzx4OHjxIwF2G3+8n4A9QVWdgx44dbN1VqxZFJJfy3u6+WLit8Qzww/DVqLcN2UNSrNWqLvR6PUuWLCE/P5/Gdvlz43Q6qS7/KOrjHeileLG39Rhuv+eEzzUSlV0NVHTJ86udzUfUhJOwmNR8uc0oGkxqIR7P0Ezbo20beQV4JaiOmAt8AXhKCJENvA+8B3wkSdKgrq6aeCM3crxR6Kn7JUl6SZKkRiHENcBfgReBLcCNg3mtzzWpXwfnBoRrKzabmSvmf8C/PryRqqoq5cOSm1rHDReuIi2hTdnN5TGzdt9cZozcR0ZSCy6XC3/D85idxehyn+7ZtxRwQt39SuwlxjGQ8YteT2nHDtUPYezYsaSkBHOn038Iad8Fx3qa9v6ReLEOk8GLz+eTXczdu+V/TT+RJbapj/ZwNS4tLVWq13q9nssuu4x367exNfilGfpwdWfcuHF88sknyjECgUBU3hebGvbT6Q0v6Oxsls1xxGAcl7UKF8ktG1ulf5+ysjLl5zIYDMyfPz98P1+9Iucrc6UpqR2jEnMHfg7IUWpWgxmnz41kNeAxgdkDK1asoKmpSdlu+IhRbPC6IOhbUZQUZZxc13vIVjiAefqQxYVJkqRVVknBf6OQU4jOrvShGAPHvRvlfWkcA/qUqHbTqi4mTZpEUpJsYHbDDTfw17/+Fb/fT21tLR9++CEXn1ekbJtk3AeSRzHXtXtd/Hz3S7R57ADEGy38YMYtJJsiDPIlSe5195ZiAkZap1PqkC/Rh9qPMzvjFK+yfn74lRDi18gpaN+XJGl1pA1PtR+WUZzPjLQV6EV48cnlz6bacQWNrnORMAE7ARhlm0xm0Ju85uCfiYvLo7m5GRi8Z1Q0bN++nYDPTl56DQKB2+1hx24DnsBq4MS8nU4mAz2v0QkpZFjk61t5yRvUOU+8KCjwMi9jMyLYubR9h4eurkDU5yVJEiavoEty0eJx88qnK8jXpwBp2PS/REKH83gAWM1+Xy2uYOJaji6Z3Ru393ns7gzF33FM4kjSzfL4xe4byb7qB/CX7TyhY37u8JapE19dArsPyYtCXiMYfKCTBPv37+f48eMnlHinbRkZOXJk7+NQ40jVt8F7NEwdPWHCBBISEiIWPlPi1DFea5d8nSsuLmbB6HOhPaj4cKwB22IquxrC9t3aeIhLC7qNXT9vDLFZZ/cF1zlz5pCQkMAdd9xB8cfvALJ3xZ4dr+O3Lo/q+1xbvAilAXkDfva0HhuypKHu7G09Fna/uPkoS3OndWsZicLvIoRJo7wYoOdHJKK3ogYkWWe+Jfjvh8HixcXIhp1/F0L8QJKkJwd6EtHEG0mStAqIUsN+hiIMkPU4VJ2HwdBORoqHS+Z8wlsbL0YnAiyZtJUF43cihIRer0ev1+MU8zHk/46lYzJ59ZVnmJ77KlMKD+H1evG37cTqOR997p8gXiPpb/qBxuHaDNlP9hqXFggE2L5dvXhqY0vlfY0QtxSyRvCnf/6VMbnHmDaqnKmjmhChSQUBaP2z7FCtiQ+SJIlPP1Ud/AsKCoiPj2e4Xe37PRaheJGXl4fNZsPhcNDZ2UldXR25uf1P/N8/3nMg0OruoryzbuDtGpJHzmfX0v4cpHwlzGh01qxZxMV1k1o6VaPAMv84Qh+NUQkDbxkBuWVjTGIuJS3lmEwm7HEuzB49jY1qJT07O5uJF89n5f4ywEO6wclkw7bIB9XS9bZ6O+HKQZ1jJIQQjwN3AFZgF3Kh9Bd0Sx8SQoTSh3oUL053A98zZWJwqoj2vIbZ/k1BnDxRaWjPpqy8/328Xi8bNmzA55MnImazOey1Ro4cqfgQrFq1CrvdzgVjU7Ho6xBI7Nr4d9q9U/FLAd5w76TSL088dehYrpvKkW37ONLjVWWSjHuYmKy+Vp7vKHs9cjfUe7vW0GWqibBn35yuf8ch4lFgP7JP1o3Au0KI6ZIklfW28Wfih9Xhg4avARKYZ0LKg5jjLiSpl/jUPZs2kW+WB3ej4naxZMmNrFz5vvL8yThfn8/H6tWrGTWsCYM+gMUSh94ynoWT1DSxwXo7nWwGfF5tR6BJbskcn+5lfNYA9o2Eawcc1wEmMBayaNKVAz6vgwe6+OC4vBAUKIinaEzv++7a829MdbL/1YWj5lM0cmCGqkPyd/QUQsM3wJCNOeOXLNEnn9jxPo9oWkbc+rm0tXVxbLifxswAJr0BU7uPhE7Bc2v+w8PX30uccXAGpn36XYQwjVLjTT1loBlOmkwm7rvvPvbt24cQctu50WjEYDBgNBoZoX8DPfLYvrVLLu5XVFTQFZhNPM/KB3GuBb7P8W7Ki32tFdi9rkH/bKcFvRQvPq7ZRa2jhauGLxrwz1ZaWhqmuigqKmLXrl3YbDamzbkRf+0mJEkiNb6RZ599lvvvv79PL6NGZxvNLlmpZ9WbOG/YDP5bKc8PdjYdOWnFC226CUBJS6h4McCkkRBmrfKiFCT/AOLDe2dAxYvuSJJUhxyj+owQQo8s4Y5xMjHmQuYfoe5OTCYTU0YcJ6Dfz4jMcpJtdej1NnQ6HUIXB+k/wZJ4k6JouO/+r/HOO8M5vv0FLpy5BgjgsDdgqboLY/oDkP590s3roONl9fXSfxHer6ShtLQ0zLdh4sSJvW5XUFCAyZzEgaoxHKgaQ9qEW8lLKpbzy0O56y2/l/vHg+daXl5ORYX8AdLr9YweLVeTCxPUD3ok5YVOp2P06NFKPNShQ4f6LV5UdjUoFU690DE5pZDiFvnCsb2pdODFi64P5DgxLVIXncf/xKFDqrqjVwdol7ryW+ZRWy0Gq7wAGJ04jJKWcnQ6HdbCdGhVzy05OZk777yTJ8pXKqvG5yZUoXMdlfsd+0pocG4O5tIDiIgtI4NFkqQHhBBfBRYARcjqrAGlD53uBr5nzMTgFBH1edX8Cxzy+zk//xryE/vfZ9OmTUrhNzMzk2uuuSZsteucc87h2WefVVrljhw5whULL8HoeBG328OMEduQcr7KX/a/Q11NFya9/Nn5+uSr+za+lSQ4/ntwq21as5KO8YlnDCDwppoomhXFz9wLp+vfsT+iMfqWJEkbCfOcEOIm4BLgLyf7/KIm8VrV+NI0vofCUEuLexboEuXWEl8lU8e4WRl0OT58+DBer7dni+EJcvToUdxuNyOzq9DphKxSPJMiUrWcjLhUzWIDlrmDOsTs9LFK8WJb4yFuH3NBj238UoCdzUc0+wxNROqAMRVC3lufzWufLjhUM9W69jG4zA4aM/3o9QaMFjNd/i664qGWcrZ8/AtGJOUyKWU4E5MLmJgynFRzr0OVMCRJ4tixY8r9Hn4XIbRxqd6eHm3p6emce24vn2d/G5Q7AD0ICzn50+gsld9fuw9ZWZyrB/zg3oPka6KyK3zI5ZcC7Ggq5ZxoDN1PNs7NZFvfh8DsgbUvac06jcPY23qMv+yT/enaPXYenHh51IeSJImPP/5YuT9nzhxFtQlgS56Fv11eVM1MbsLpdPL000/zpS99SVWsd0OruhiblMec9HFK8WJXc6RlkBNDkiT2t4UXL4pbjsoK9MEqL/QpoM+S/TIkt6zgMI3qd7e+GHCDjxDiciHE74UQzwkhng/9kyTJL0lSLJD+VBC/HJLuRAiwWMzMG7udzORmTCYjer0OYVsIBZ9A0s1hAyWj0ci1117HyBk/4MXVN9BmT5Rb95xOXPV/Qaq6kpEJGuFM/JWQGDkFN2SkCbKCQBu9qUWn04Wbjx2sls8t52mU+plri2YSTJjqYsaMGUpiSJY1BbNeHry1urto8/RuujVunGqCFY3vxQca1cW8zPGcN0y1dNkxGN+LzlfV25p+L6n1HxgN8mrwxIkTe7o/g1wQIGjW6VJ/p4NVXgCMS9JI4rJUFY3NZuOuu+5CZzWyrakU2dBMT1FClfwl49ra41jyDyLJSpLq6wE5DgrrQjAMvSN+8LtlPXLK0ZcZYPpQjLMQKdCtD73/SYUkSWzatEm5v2DBgh4yXZ1Ox7XXXovNJn+G2tvb+XBLBlJIOOj4mDcO/SvMO+fmUUv7T+xxrFLduIOMs9SBJCtAStuPy73wZxHRGH33thv95YF/FpgnyP/6aT+UMEG8OmBO1q9S+tx9Ph9Hjgz9gDVkBjoiqxKDwSifou2cIX+d0wJteoqnVPbFOVFOwO8ixNTUEZh08ljouL2JWkdLj20Ot1crba2p5gRGnsB4IMYJIHnBuUG5e6gqm6Y0+btZr9ej0+kwGNQCo8vtpqKrnveqtvK7PW9y19rf860t/1BW1CPR2dmJwyG3NdlsNjIzI3iGaRNHPAMwmO8Wkzptmjrm3bn7iBxxGaS1/VPsvp6fla2ng++F5xhUX8+I+H9C868Gtm835cXWBlW4u75+n+JVFQ29qS7CMI1Frzdgs1lJje/AoPfS0dHB008/TVdX7/MYrVnnhOQCJqYUYAnOf2odLdQ4mqM+v2ipsjfS0c1jq8XdKXueDDRpRMsQt44MqHghhPgR8GRwv+uAZuRw+7YTPpMYAyPth0H3bA3CDOk/g9zXZTOVCMyZM4erb/oRb227j8M1hQB4PB4crRvQEVQFGAtlt/QIg62Ojg4OHFDfgD1aRrqhLV4o+xnzIPEGdaOW34MkUVVVpQzShBBhXwJ6oQszfqzoDO/DCzFmjLoqUVFRgdMZ2ZzU5fewulY19rsobzYzUkehC/7spe3H6Qj2rUeFt0ZjYCkg+19gyCcQkCDQzoyRspXDkiVLeu7rb1UMbao8KXgluXiRaU0mwdSzdSdaxiSpfZe1/nYuu+Jypk+fzr333ktGRgbr6/cpk6PRcRbyTcEvU408UkHyQOO3goauwYRCfRqk/3TQ5xclBtSUobM3fShG/3hKVWNEfQYY+w+jKSsrU1qpzGZzzwSgIImJiVx11VXK/fVbW2hwngfAms48Xj62m1CE3rLc6Vw3op+JoBSA5t9qHpAHJ+kGF+lG+TPp9nsjKs1OlBeOrOJrm54YXJH2M0QIkSyEWC6EsAghDEKIW4BzgA8+63M7IRKuU293rWDSBLWHXXvNHQoCgQD79+8n3mInI6lFThnBKEdinono4jWTPT94TtC0U5LCY1IHmDQSwqw3hUWg72jqueCyXfPYzPTRg/PhinHiuLaDFJzcGYZzoMxJc7q8gKPX6/nShEv5xoSryK7XY7ML/D6fbO6s4XBHDR9W7+h+5DBCXjcgt4xE/HubtHGpgy1eFDJx4sTg5x9qa2vp9KvFi6pWdWHRKlR14I7mI3gDPj5THKtRxqH26I0wgR7Fi+IW9Xfi9Lmjvib25nWhVV0AsrmqcQR6vR6bzUpWsuw30tTUxLPPPqsYs2o50KYmjU1MKcCoMzAlVVU8nIzUke6qixDFLUd7FLwGhLZ1xH3i1nQDVV7cBVwgSdLXAU/w/8uAwhM+kxgDQxfyogh26phnQv4qSL47KsfcYcOGcd+XvsWepm/waclCApLA7/fj8XjweEHK+jvoI0vbdu7cqURtFhYW9nRB7sbo0aMVZUZdXR0tLcGVhZSHUNUXcguCVnUxdepU0tLC3a0L47W+F3X0RkJCAsOGyWoDSZL6XLFaX7dPqSrn2FKZnFJIgsnG2OCEXwJ2NffaQt07na8TmrxgXSzLLFMexOORFRfzxu5ieEE2w4f3MqHSRK6V+adwon4XIVLNCaRZZLGC2+8ld9JIbrjhBiVBYXWtYiHB0hxNUUybIgKymejxa8Jbi8xTIe+D8C+nE0QIkSmEuFEIES+E0AshliN763xCLH0oRn9oFUOWOf2ueANhqouZM2disUTud508eTKzZs1S7j/3bjYljlz+Uj8D8EPAwdTUETww4bL+Jxn298ATrLsJK6Q9qjw13qK2dx1sP97vzzBQKrsa+Hf5eiq66vnb/hX4pcCQv8ZJxAj8HLmFrAn4KnClJEmnwXLgCWCZDYbgtSHQwfSxqqD14MGDBAJD9zeqrq6ms7OTwqwqhBDyNdo6t1ePqzOGoWwd8ZZD0NcGXRIYB5/+oY093dZP8eJk9brHiALNgo7PtIjDXbW4zfJ4L9FsY1nOdJaPmc9VGfOYvN/ErJ0m5talcd2IJWHtx93TO7qjLV5EbBkBMOQRKnjjrwd/lAJUT/hE1GKxMH68ujq+/5g6pq/qUN97o/UZZFvlNgenz83elmPRvd7Jwq2OXfEdB1/vC5q94lOvqW2B1B4LBGvrovt+OHToEMePy8fqVXURIqjCNhj0XH7RGGVsUF1dzUsvvRT23W73uqgMno9e6JTUwJlp6sLszqahV+Jp/S7y4lRleEnzYU06i67PBfJeCUscOcXKCyBZkqS9oZcXQhglSdpK5L7UGCcT0ygYvk6eOOa9M+AeIpvNxm233U58/rd5efWVdDji8QfgzbVzeeLp9WH50lokSQprGZkzp//VBrPZrPhWgFZ9kR+mvnDW/DJsdam3L4HCBDWWqq/VyGgjUz84rv4sy/NmowsWf7Q9pVGvSkoB6NCkdgbbbjyWq2jtlCvW8VYHX1hi731So/G7OOJTK5sn4ncRIvTlB3C4Q/3SrnW0cDBY4dULHYvzLkO5GHr2qxcD1w6oWh4ub4+/Boa9LXuxDC0ScovIcaAV+B3wsCRJ7wTb065BNu5sBeZxNqYPxYiI5NBIua39t4y0tbWFfe/0SADqhcsuu4zUVLl4XOPV8Yuac/BJ8ndHvrGBRyedh0HXjymV5Ifmx9T7SXfJ7XpBxhlLCRVCD2lWYYYKrSy1xd352Q9EB4AkSY2SJM2RJClBkqRkSZLmS5I0wKW30xAhIEGNJc+0rlHalDo7O6muro6054AJtYyMzK7EYDAEW0bO8OGcWdPCdaLFi+4tIycQtagtSOxrrcChkek3udqVaHiDTs/U1D4mszFOLpriRX3XeBqDLSM6nZ5zcqZi0suLcUuXLkWn06EPCByH6pnHcO4fd4myb1+Sf0mSeigvIiL04RJ+b+/j9h6EraLL76epU9XPxoYdXUg6ecGr0hUgpG5I18UzN0Nty97S+BmvGbl3h9937YpuP0mSVdJB9nb2bBHZ0VSK3dt3a1l3r4u5c+f2VF2E0PgHFmTZufLKK5X7R44cCTPzP9heFVoCpTAhC6tB9s/SxiPLkanRt7b0hyRJYcWLG0cWaV7rKL7QCRnylBTEqDF/tsWLMiFEqGlwL/BlIcQXkScQMT4L9ClgmTJo51adTsd5553H+Zf9H8+tvp/fvnE7e45NoKqqin/84x8899xz1NeHFwiOHj2qKCcsFgtTpkzp7dA96LV1BMLUF5JzIwUZ8sR64sSJijJAS6GmbSR0Qe+N7sWLkFJES1lHDYc75C8wg07Pshw1F1u7ErKz+Uh0q5LOzeALfvh1iRB3EQA7du5l80H52DqdIC9+hdLPHr6/uvpb5lKVL6MGahjaC2M1vhel7eoAWKu6mJk+hiRLhrz6F8KxDtpfhuNXgz9U1dZD+k8g68+yHG6ICU5Mzg1OShIlSZoiSdJTmudXSZI0XpIka7A3/tiQn0SMzyXvVW3li3u9PFY3mw6/Kao+9M2bNyvfD6NGjYrcX6zBbDZzww034DNA6RgvHT4jgYAgWefiBznriWv/f/2fbOd/wBssjOoSIOUBuRAYHIyOs9TLPdbAofahL16UdlNzrKkrjrBljFNKgpr0IRyrmTZZbfsbytaR/fv3I5AozKxSJONYz/TixRAqL5zdFF4nQLolkRHBhRlfwM/uZrUFYLtm8WRSynBshj5MtGOcPPwt4A61GOvYW5lKS6raMrI0d7qyaVpaWpg678MPPyTHpmYa1Dpaeh2TAjQ0NOB2uwGwWq19JlIAg2sd6cW/YPz48ZjN8nursbEVhzQdgCpPgtwuDKSJeOZmqpPwrY2HIv4cJ52AHTzdFhbdUcb2+puRQ6oAXSLFbbU9NvEG/Gxu7Pv7NmrVBYS3+nsOMHfu3LDtP/zwQ2pr5fM42M3vIkSWNUVRRHgCvh6xpidCnbOVFres3LEZzCzImkimRS7EOH0uSl1BY9Eo2nB7YByD7KkHeCsgcGIx1QMtXvwfENLwfwd4CHgM+MYJnUWMz5yxY8fy9W98m7yCCWHGmwcPHuRPf/oTb775Ju3tco+WVnUxffr0qN3PtZK08vJy1YfCmA+J1+MPBPB5fSyZJA8Ili5d2utxhmvaRirtjRGN7PLz8xXpd0dHB3V1PVtMQg7fAIsyJ5JoUnOmCuOzFFfoLq+Tw+1RrHh1vKLeTrgGdBYCgQDr169n19FJOD1mTCYzwlcJne+E7+vvBLcsbPJJOo45PcpToxOGVnkRKl5IktStZSRYvNGuvjX/GBofgVC8rS4Zcl+B5HujkuPHiHGq8AX8vHD4A7r8gg1dw3i4chl7HX07u3u93rDvtAULou/3LygowLpoOG6L7BPp9Rh4OOkTEv1tSB2vgqsk8s6SV/b5CZF0n1yMBrDI5zDS3I5JyJ+7emcbre6h9aTtXhDZVH8At98TYesYpwxToaaA7GPWOLXINFTFi6amJhoaGshIbiLO4pSLF7rUcFPLM5Gw4sVBpTg4KLTKi0H6XWiZk6EumGjbRHbEWkZODxzrUVqCzTNYX3uMgF6+n2VOZqxmjAWwbNkyZTxdVVVFbflx4o2y+bzb71Umit3Rqp5HjBghJwD1hTZxxBNli7O2yBEsfhiNxrDUwCPVuUhSqHghF1PSdfGMT8pXfo4WdydlnT0n/qcE9x4Uw/gQ0Sovuvld7NH4XWg/h+vq9hKJ7l4X8+bNIzGxu5e8hl5MK88//3ylxd3v9/P666/j8/nCkka0xQuAmWmq+mIofS+0fhcTkgvQCx1TFS8eP8WOYCvRQP0uQLY6UPaTwHNi3Z1RFy+EEOMBC1ALIEnSVkmSRkuSlC1J0lmem3RmYLPZmDRpEt/85jeZMUN1HpYkiR07dvC73/2O9957j7171Q/z3LnRR4MlJSUpH9JAIBDeypHyEG6XrEQoyKhh0UxBXl5eb4ch3mglPejf4Av4I8rv9Hp9mHFn99YRh8/F2jp1crE8L9x0VAjBLE3ryPZe+lDD8HeA/b/q/QS5k2H//v20tLTg9ZnYXT5bLfa0/kVuMwnh2k7oi7hKmoE3IF8UMy1JJ2TWGWJUYq5iw19lb8Dpc3OgrZJ6ZxsAcQaL+qWtLV74Nb9f0wTIfx9skcz+Y8T47CjrqMHpU811W/zx/HDnS7xatjqicmrPnj2Kq3tSUlJYkbU/fAE/xywdympV3hELgaYEPB4PdnsXjspvyvLU3uh4TaPSSpaLgSFsiwAwCIlRFtWJ/NAQ+l50ep1U28O/O51+D1saYtYxpwWa1pGcuPW9e0adAErLSFaVpmVkyQm1Pnwu0CeBITQZ8A5+EO1vAW+o59wI5uknfGrawsSOplL8UgCP30eJZmIVK158hmhaRgLWc9gvqQti5+fN7NEKnJycHNZW/dFHH5GrUV9URxi7Hj2qFhb6bBkJoW0Zj0Z54W+DQJt8W1hAryoNta0jG3cbafWZ6QqYQPJiNZhIEGYMOn1YW/XWz6p1xLW798ekKJK5NMWL+kABdU65gcCsN3LX2IuU50pajtLq7j0N5NChQ0obn8Fg6BFJ6wv4w8cdxgIQwbG8vxl8jej1eq6//npF+VZXV8f7H34Qpo7uUbzQ/O53DmFk6j6NimNSiqyumJ4afG9JPoqdwffJQJNGQoS1jpzYeyaqq5QQ4g5gD/B3YK8Q4rq+94jxeSYlJYXrr7+ehx56KGzy7/P5WLduneKcPGzYMHJyBtbOoK3qhgZPAG32RHYeUb+Al07ru3o6QuN7cWyQvhdravfgCvaL5cdl9PiCAMKKF/36XnS9o1SnMU0E82QA1q5VM8ENafchQjnU3lKwa4zxNX4XZYHJyu2RQ+B3AbIMLJTUEpAkjnbW8qlGdbE4exLGYFwb5smg65Y9HX855L0rfwHHiHEasqe1PHwlVZgISBKvHl3Nj3Y83+tK1+bN6udu3rx5ESOfe2NL40E6vA5MJjOppnhmJIxg1e4l+AM6AoEAvq7NbPv0+4oEWCHghhZNW0nKg6DXrNhYFyo3x5vKCa32HRxC34vuLSMhtMlLMT5D4i8n5D2k8+5hxuR45akTVV9IksSuXfI1dkTQ7wIAW9EJHfdzw1C0jmhTRsxTh6R9cnRiLslB9We7x8GR9mr2tpYrfe25trSw1oMYpxBJAqdavChtH01bnLzgJoSOi0f27pO0dOlS5ZpSXV2N2aUWOGq7FS8qKyt57bXX2LdPDU7r06wzhHGAbSPdUyM0BcsxY8YoHjuVtTqOukMtAhL5FqNSoJmboRb5tzSoBcCmpiaeeeYZVqxY0SNlZcjp7ncBIHWBJ4oJvaZ4UeJUizeTkoeTY0tlYnA+EJAkNjb0TCXqrrqYO3dumOqi3tnKAxv+zB8dn7A/5CMhdN3UF/IEPjMzk4svvlh5+IOda3F65TFDtjVFUYAr55gyHLMmMrW3aOXBoPW7mJQs/92VdBPJz2FXCna/YXDKCwj/2d0ndg2LtsT+KHCtJEmZyMZ43z2hV43xuSAnJ4e77rqLu+++m9zcnhPoaIw6u6P1vSgtLVW+3NasWcOG/bMIBHTo9XridMXg2BjpMGGtI9H6Xhw7dkyJI5IkifePq4OPi/Jm92qgOTV1pGK6V95Z13c2t7ZlJPFmEIKKioqw7Oc588+HpNvV7Vr/pK7Mav0uPGpRaPQQ+F2ox1JljXtbK9hYr34pL82Zrm4o9JBwdegOpH0fsp44s13oY3y+kfzsqV8DktyO9sW0/UxOVr8n9rYe4+HNT4QpqI4fPx7++Rzgd9qHmrazGeYCvnTf/SxZdhs7j6oxc7nmp/nrX34bXjzteBH8QamtPgOS7gw/sCFbGSCMNzecFN8LbfFijsaAbXdLWcSVphinEH0yxF2g3J07XpURn2jx4vjx49TV1WHQe8lPr8VoDBUv+on1PVMYiuKF1u9iCFpGAHRCF+a1tb2pNMzvQrvaHeMU4y1T0xZ0Cbxb0RYKgyOfJEUN3J3ExMQwA+iWo2qLRa2jBZ/Px65du/jb3/7GE088we7du5XUiYSEhF5933qgLV54yiKr/ZSfJTwmVYter2fyZHXxrKRFXazKM7Urt2ekjcIYHBtXdNVT72zF7/fzwgsvUFpayqZNm9iwYUP/534iuNVCuzuQrnk8Ct8Lr1q8KLZblduhyfqSbPU7Ym0vBf2DBw/2qbp44fAqGlzt+PHz/BG1yKE17cStjr/nz5/PqFHyAm5ngoTT6USSJHVR1XscPMcAMOoMTB3iyNQmV7uiwjbrjUpIQJIpjpEJ2YAfP4J9rvTBKy9Mp1h5AeRKkhRq0H8biC29nkWMHj2aBx98kBtuuIGUFHk1PikpiWnTpvWzZ0+ys7NJTk4GwOVyUV5eTmdnJ9u2baPNnsSeinGYzcEc6dY/RDxONHGpIF84QuqQQCBAWZncD1jaflxJKjHpDRTl9P6z2AxmpQILsLM5wpeE+4CmCmyEhKsAWLdunbLJ9OnT5cps8n0ggoZb7hJZihhwgktVQZQ5DcrtUUPgdxFijMa0893KTWERseOSurXppH0fsv4uR/CmPBjzt4hx+uJYh7diOQfaqwipFM5NaOAns+7lxlFF6ILv3Q6Pg5/veplnSj/AF/CHqS6mTp1KfHx8b0fvlTpHi5x9DuiEYIphGDqdjgULFjDr/OfxSckAJFjtTMz+hGeeeYY33ngDp71ZLlqGSHmo96JgUH0x1tKqmKUd6aiJ6PEzUA5qCiFLsieHrTStizIiLsZJJkEVueYkbEIE39thnlGDIOTxkp9eg8Wskwv3xrFgGLpC+WmNtnjhGqzyolvSyBCh7bff2lga7neREWsZ+czQtIxIlsVs7VALAAtS+m41PPfcc5V2YW9jJz6fF0kKsP3IHn7961/z+uuvK6aPIVJSUrj11lv797sA0KfLhs8gKw/8fcewdo9J7Y52bF/cYFNsPgp0qqrDajCHpd5sbTzE+vXraWhQo0o//fRTpSVzMNjtdlauXMnu3bt7Pulv05iOGmlwLlOfc0VRvPCFfN9gT6d6TZ0W/JkWZU1EH1SkHGo/Tr1TzaXonjDS3eviWGc9G+pV9czBtio1GTHCBF6n03HddddhsVjojA8gSQHcbhfjk/PBuQUql8j/7PLrztD4XuyINC8ZAFrVxbikvLCktGmphYD8O9rtyBicYSf06vkxWKItXiizFkm2lT3DmyJjdEen0zF9+nS++c1vcv/99/PQQw8pZpgDQQjRI3Vk/fr1igLjaOul6ENO2s6NYWoELdEqLyBcfXHokCxv+6BaVV0syZpCnDHyzxJV64g2HjX+YtCnsG/fvjD535IlS+QbhgxIvEXdvvXPwS9beXXVZxjLsS5VBjYUSSMhtAWKLk0E1Lk5U3sqT3QWSLg8vE8txumL5AXfZ2Sc9VnhOQI1t0PNDZR21uOR5AtujtFDev6f0BuSuXFkET+ddXuY9PKdik18e/M/2LxfHeQMxKgT4KMadd8ZaaNJ1KmrN8mp+aSMfgyr1YIQgvnjd5IU187OnTvZtuoBJF+TvKE+BxJv7f0FgsWLFIObbKM8UfUG/ENijhaQAmEGxOOS8sIKuKvrYq0jpwVxy5T2PYNUz8yJchErEAiEXVsGgtvtprhYLpSPzK5SPZjO9IhULWZ1ZRnPvt6Tv/pC8oQtNoSlc50gWrWnvKLdBsiTxYnJg5w0xDhxNMWL0sBsWiV5Uq7zCy4Y1XfxKiEhQbm+WFwCp9NFV1cX5a012O2qR5Ner2fmzJk8+OCDLFmyhIKCKNeJhRhY60j3tpFuFBYWkpAgXy+rPFZC1Yt83QEMQlXlaRV766v3hLVRgLxA+cknn0T3M3QjEAjw/PPPs3btWl577bWwYgEAbs3nzzyRDq9mnDqA4kWFJ5F2b1DpYrRSmCDPLRJNcUxLU3+n64PGnW63m82bN4epLs45J1yx9trR1XTXvnxUHTynsOJF+AQ+KSmJyy+/nK54eW+v14upyQNNPwm2pPuh+VcgSWHzkr0tJx6ZGtYyklIY9ty0RHXsVOIcNvgWuV48PwZLtEWIOCFEZegfkKS5XxV8LMZZgF6vp7CwUOmJGwxa34u9e/eGrX7OXnANQrPaREvv6oscWyqmoD9Di7uTTk/k6u64ceoXbGlpKR0eB+vr1IHf8rxZve2mnpNGxlncfBRvoNtAR/JC55vq/cSbaGxs5I033lAemjx5cnjcVfKXCcXD4tosm3cGOS7m4Qm+RoYlKSwB5UTJj8tQcsi1FGVP7WXrGJ8bAg6oWg7HZkH9107MQf/zgL8FGr8PlUvB8REAexzpgAARx+TsL0Dchcrmk1MK+eP8L4V9lg+2VlIywY3dFmDYsGHk5+dH/fK+gJ+Pq1VfnguH9fwOEYnXY4yfTVxcHGazjmVTN2I2uhmf9TE+X/Dvk/p12YW7NzS+F+NMxwkNIA8Nge/FcXsTDp/cU5tsiiPTkszCrInKpOloRy2VXeoKGv4WaPoFtPwZPKX9y5JjDA3CCAlXKnfnT1T/9uvXrx9URGFJSQkej1wEGZtXp3q8nE3FC0MG6INyfMkVXY+8FlcJSsyisVA+3hBhM5iZ3G3yADBdU9SIcYqRvPJiWpD3G8xIQSPGjHYDBbn9XzvOOeccTCYTFpcg9F3uNktISCQmJnLhhRfyne98h+uuuy6iWX2fhLWO9Fe8OKbZr2fxQqfTMXXqVCQkuiw6AsFFgQJTB0kmtbA9V1O8KG44gis47tDODzZv3kxzc+/GpH2xZcsWKivVqeWqVatYs0YtIIWZdZqnY/eNRlln9xySY1T7Ili8KHGmK54fU1JHoNP4f5yTPQWQ8Pt9vL1/DU888QQ//elPWbFihbJNd9VFeWcdmxp6qgo+rSmWCwxhppWHepiLZo0tAKs8Rtf7BMe3PkXAqfEA9OwH50ayrCkMi5PDPz0BX5jZ5mDQJo2EzDpDTLA5MQbDBI574mnqq32+L4QOTOp75kRaR6ItXiwDvqj5p71/a/D/GDGiYsSIEYo7f0dHhzKQyszMlFUZqV9DyQN2bgDn5h7HMOj05MerA4a+TDsLCgqU12tvb2dF6TqlODAyITssQrQ3cm1pZFvl1S+n3xMWYQSA/UMIBJUShlzcujm8+OKLiklfSkoKV111Vfg+xmFhbvI4VVPPMp9qXDpyCFUXIP/eRiWEH3NCcgHZMROwzzcdr6kXgs43oPb2/i/en0ckD7nWFVCxENqfISRlBMFe3/SgfDaeKWk9e8MTTXF8f/pN3Dn2QgxCh8fjxa+XODbcz7z5vZutRWJ7UyltHvn3m2pOCFsFURA6yPg5Op3AZrUydWQVV8z7EIvJjcvtRtIXQOINkV/EkKUMSMdZmobU90J7jHHJ+QghiDdamaMp7qzRqi+afgptf4OWX0NlEVSeA02/DDq7xwoZJxXNdSI3aRc2qzxAr6+v72FCHQ2hlpF4i52slNZgN6ARrAP7DHzuMWsK9gP1vXBp/C4s0SeuRYt2RTtErGXkM8S1HYJKC4+ukLUN6hhwinFYVCbPcXFxLF68GH1AYPTIn2GdUc9F113Ot7/9bZYuXTqgtsUeDCRxpJeY1O5MmzYNnwH8BgmvT4dF+Eg3OMOKF6nmBMYkDcPn8+H1e2lLkie4t99+u6Ia8fv9fPDBB72+RiTa29t73ef9999n/fr18h2tWadlOn7JqpkYB8L8MHoQcCutNXscmYSmwlNTR+D3+zl69CirVq1i77sbsbd34XA4qHG3cLDxmOJHAmA2m3t4Xbxc9qlye17meJKDSgO7zyV7zOlTQB9cyJTc4YUkYH9bJRaLBSF0JHQJ5o5ci8vlCr/Mtv0DgJmacc6JpI60urs4bpfVoAadvsecyByoYoI1WIASBopboozj7Y0hah2JqnghSdIaSZLWAJuAccANwN3d/sWIERV6vT6slSPE0qVL5f4+4/DwiX0E9YW2daSij+KFNjJVQuKDKrVlZHkEo04tQoiwaKIerSMao04p4Xr+/dbbSt+fwWDg1ltv7V2pkvJVevsIlrmTldvdCw1Dwdhu3hZLI/h9xPicIAWg/Z/hjzlWQ/X18or5mYKnDCqXMTz+eQhoKv/Whbhz/8dBVyqhz9OUXlYuQf4sXzF8IfemLwW/PAhxJEjYc3qqkfpCa9R5Xu70yCuillkQfw0AZrOJ0bnyoFcKSBxs/IK8st4XVjkydYK1WfG9ODAEygtt5Kq2lUzbOrK2dg8BKSAXTewrww/gLYO2v8LxS6BiDjT+n2ywPFD5fYz+MU9Xilg6HFy0RL1eaZOsoqG2tlYxqB2ZU622jFjnnn1mzCdi2qk16xxCv4sQvRlzztT0uMc4xWhaRrZ5F2MPttyaXYLZudG31S5btowLLriAYfHpxMXFYbPFkVSQOaCEq4gYtcWLPiaXfcSkasnLy8OQJbcL+AN68owdCAHJxuKwgvXM5FGKEX5gWDt3XnqIAm7n1gs2YNDLBfc9e/aEqSj6Y8WKFcriX3p6eljiyv/+9z82bdrUTXkRvG6ZZ6iPufpILAy21/okwV5XJiHFxlhrDn/4wx946qmn+Pjjj6kuryS5Tf2+bU6VxwzZ2dksXLiQ+++/X2mvATjSUc22Rrk1XQA3jVzKVIN6ff2oOjhuMEduHdnfVoEQAovFwghdKzmpDfh8PjxeTfXC8RF4jjIzXeN7cQKmnVrVxdjEYUqSiYK3nOm2kBJTT3FzFIk2kTCryvsTSRwZqHfFc8DDQCdQ1u1fjBhRo20dAUhNTWXKFM1gIkWrvlhPorFnVJHWtLM8St+LzgSJeo/smGw1mMMchftCO5jQphWYdM3yRDHI1gMj2LNHHQhdddVVvSa1yDuPgPhLwx8zDKesS52YjRqimFQt2qqqUadnUdakIX+NGKcQx8eaHlbNRce9C45fIbtUf95x7YLjl4evGBlHQM6zkPsGh1yJipFlXlw6Kd2ixbpTs+sI2fXy94vRaOTlo5/i8Uc38a53trIruMohgPOHzex7h/Tvg7AhhFDMiJs7k/n3B4H+TReDrSP5pk4sQh7Mtbg7aXK197VXvxxq6714MSt9DPFG2buj0dUu98E6N0EgGDEr4tSe1RC+Gmh/GmquhfLp0PAt8PX9fRxjAAgRZtw5bUSpUnA/evSoUoyIhpDqAmDOxFZ0uuDA/GxqGQlhGaTyQpLCY1KtQ6+8yLKmUKBRlo5OzO33Oy3GSURTvPikI0PxaEtr1lFYWBj1YfR6PcuWLWP6iInoggXvGucQLTB0TxyJRB8xqVqEEKSOkhfP/AEdOTr5GmDWN8pqAUkCTxnp1W9hNjqIt9jpSvFRmLEFPIdI4BOuW6Zer997772o2tz27dvH/v3qeP+qq67i9ttvZ/hwtZXhkw9fweMMXsOEDUzB8blF077Zl++FT963zJ2MMyBfk9MtiRzfd5SWlvC/R1qzHp1Oh9FoQoxN5Xvf+x5f+9rXuOyyy5QwgBBa1cWirEkUJmQx2ZCrGH/ub6ukqqsx3Pei2wQ+FIduMBi4apz6d9y0fwwuvcZbo/2fTEouHJLI1P2tkVtGAPAeY6o16E8h9BS3HB1UyyJwapUXGi4CFkqS9KgkST/R/hv0GcQ4Kxk3blyY4qGoqCi8+mwqDFNf5Nle73GMkLEO9K28ALV40ZDhly88ksS52VOwGSL0m3djUkqh4hVRbW9WviQyLKsh2AvW5Z/OO++p1d758+czc2Y/E5uUr4Xd9VnmU65JTxlKs84Q01JHEmeQDXeW5U7v06w0xueAtqfU28n3QMavUHo/vWXypN99YrFUnyn2T6H6WgjIbt8ByQzpP4WC1bKvhRDsaVEHZFM0EWK90dLSQmlpKTm1egw+gdFoosHVzv+qtkR1Oh/X7FLMuKaljSIr2FIWEUO2nCgCGI0mdDrB2r3zsDtcYWlEvWKVTd4MQmKsuZ5Qr/TBE1Bf2L0uquzyQEQvdIzWFEgNOj2LNcXMNXUlYNfIdxNvgBF75aJRwvWgSwo/eKAFOl6Chq8P+vxi9IISWw0m3ybmzlIHmP2+h4J4vV527ZKvTxaji+Hph9QnbecPzXl+nghTXuyVFWzR4D2qtonqksNXvIeQeRnqIL+3NpIYpwh/i9KC0Oqzsquti0CwUJ7RbBiQV1KIkFcBQK1j4H4QvWLSXPe8FZFVcGF+F4V9HtKQobaxGO2oE9aGb0LFQvzli5ib+By5RrmY7sbIXqdadJuUt5m8dPlaU1FREVaU6A2n08k777yj3J89ezYjR47EZDJxxx13KL/rnNR6XC4XHo9X/hyL4NzBolVe7CAiQb+LYkeGsu/U1JFh5zdhwgRuvPFGfvml75CZlC6ngAg3Nf62Xg95qK2KnU3qosYNI4sAiNeZwz6/H1XviGja2ebpoib4fjDgYXbqEXQ6HT6/ng37pvP+5jxV9NLxGia6mJKiiUwdZOvIXk3xYmKvxYtyRprbidd5AAPtHjsVWk+sgdCP50e0DLR4UQlEN9uLEaMPrFarMrHPycnpfZKvUV8kmfZC2Wg4Oh7Kp0D5DApbbgV/E/ibqGwrwV91JXT9t9fXS0pKIiU3g9aUACDh8/tZnhe9Q7hZb2RqilrZ3tl8BKQAmRa50hoISKzckKx8uefn53PppZf2eqzwA08A2wXK3ePMVFaA0yyJJJtOoAcyAgkmG3+Yfz/fnXYDd4+9eMiPH+MU4t4PzmAPKDpIuhOSbofsJ1FUGP46qL4SnNsiHOQ0puPfsn+HFFQo6FLY1/YjuUijabko0RYvUvouXmzZIhcpDH7BTF+uEkX3Zvm6Po1/QTbqXNWPUWevJN8PpokIAT7jHA4dl+We69evp6OjD/MrQyYY5W21vhcHT8D3orRDVV0MT8jCrDeFPa9tI9tYvx9354fqk3EXyU7jcRdC1h9hRAnkvg5Jd6h9vCCr0bRxfDFODGM+WEJpOAGWzlKVN3v37o3KEG/v3r2KvHvOhOMY9MFRsHkamPuOejwj0WfJHjkAkr1H73lEukekRli5PlGuHL6IRVkTWZI9mcsLzjI/klNMn2vInW8pW6xxLsDjkydbCZ06ClNzBpW6l2NVPcZq7ENUvNDFa76DvZEVl55u6sU+aMauKER8LXH4fMGCiGszkrcCl8uJEDDTfBzZLNvIVv8XwCK/X/U6uGHpVnRC/p29//77imqlNz788EM6O2WFR3x8PJdcconynMVi4c4772TYsGHkpMoTZ5fLRW1rtnoA01hZHQjgr4+cvqaYdWYQmgaPsWRTUSFP4oUQXHPNNUybNo3UpBTmZ6oT7nX1e3s95MtHVdXFOdlTwjz5lmvGCZ/UFuMxatrmNaaV2kWJMeZGzPoAVquF3Ucn0+WKY0uJgQ5XcLFBckLHi8zQtI7sahp48aLT66QyuPirFzrGJXUrxkl+8FaiEzDN1qgUewbte6FPVVuVJLdcaBsE/X7rCiGWhf4BzwPvCCFu0j4efC5GjAFx9dVX89BDD/GlL32p956/buoLJIfc6+5vBn89iRwjVW8H/HgkP3Wd++WkhUDPCYgv4KdiZAAp+I5PcZsYkZDdY7u+CItMbSwF1xYs+jokCdo7JUrK5HaMuLg4brnlluj7GDN/A3HLIfGLlPnVL8mT4XcRIsuawrzMCb0mj8T4HKFVXcR/AYzBFoD4SyH3JRDB4legA2quB/tHp/4cB0vr36Hhq0BwwGQYBnkr6PKF++U4fW6OdNQo9yf3tnIQxOfzsX27Kvm+edpycoJmtXafi9fK10TaFYBdzUdoccuDq2RTXJjbep/ozJD3NuS+SeK4FWRly59tr9fbf5Rc0PdinKVV8b04kcQRbcvI+O4DFWRPnNDvxOG1s609OLTXJYJ1XvjGwgi2xZDxSyjcAbbz1Oc6Xhz0OcbohUT1Wpik+1D1cZKkqNQX2paR+ROPoQgfE/owjT2TEWJwvhdavwvr0PtdhIgzWvjW1Ov55pRrsUapEI0xOJoCnexu7mUy5imF5l8AcpfEp13Dlcl3epMurJVhIORqlRdD1TYC0cWl9hOTqqXK3ojRKI8RO2sz8HpVNYfX68Xp1lNaPQJvRTaSPg30aWztSiWQ+f9AyO2HqQmNnDNFVq40NTWxdevWni+ErMzQJg9edtllWK3WsG2sVit33XUXI3PV4u2q9Y1qq7bQg0Xj4RapdcRbjTug56AzVZmMG+pdytMjRowgLk5N+Ts3R/2eWF+3V2lRDbGvtULxgdALHTeMKgp7flraSDItskqxy+tkc5sPpS3ee0wxV1fCACQ3E0zy30lvsKFPfyh4JMGqHaNUBUzb08xKLVRep6T1aNTtryEOtlUqxbuRiTk91ei+GkBeNJkW5yKk6j0h34shaB2JpmT8L82/rwBZwC+7Pf7PiHtHiRDiRSFErRCiQwhRKoS4p9vz5wkhDgohHEKIT4UQscDrzzk6nY6cnBxMJlPkjdIeBePYiE8XmtUvsWPuRLkaqTXyAQJSgMcPvEuVXt02vszZf795N7TmOHtay3G3vQrI1d/ioyPwBQwIIbj55ptJSkqKdJieGLIh5xnI/A1lnaoU62T4XcQ4g/A1BleFgiTfF/68bTEM+7dmddENtXfJySSnGQ6Hg7Vr13L8+HFZvt30M2j+qbqBaTzkvRvuqB7kQFsl/qDke3h8Vp/Rwnv37sXhkIubSUlJTJowkdvHqMqnlVXb+uwb/bBalaIu68uoszd08WBbiM4Qx0UXXaQ8vHXrVpqamiLvF2wdGWdpUYoXRzvrBp3rXqox6xyb1DNpSQjBuaHoZMnFms5ggcO2rG+DUaGTFRghOl6VXd1jDA1xXwARHFh69nPeEvX6sGPHDrq6uiLu2tTURHm5PBjOSm4m2Rp6D5gg4aqI+53xDKZ40V15EeO0QgiRKoT4jxDCLoSoEELc3N8+fiR+vPMF/nHwPVz+YARuwA11X5avm0C5NIMKlwG/348IQErr4IsX2RrlRb2ztcdkeNBEkzjST0xqiHaPnQ6PA4PBiM4PztZEVu2aR7t7LG7rHbz46WX88Z17+PfGLzA+924SzXJcaIu7k6Mugzx2B3RCcO7U3aQlyNfVjz/+WFGAhfD7/bz1ljqWGTduXLgHngab1cqYfIeimKxpzuDVV1+lri7Ybh2NaaevmgOuVHzoAD15celU7FdVC5MnTw7bfFJKISlmeSGozWOXvaA0vKLxujg3Zyq5trSw53VCxwUa9cWH1cXh7WYeuYVPMeMOdKnpHom3sfCcq5Q5xa7Dw+lyBX2n/HVkBzYor+fx+9jXdqz3nzkCezURq5OSe/e7CDEtSfXd2ddWgTcwSINubevIIFua+y1eSJI0Iop/vWftDIxfAYWSJCUClwM/F0LMAhBCpANvAT8AUoHtwOk3Ao8x9BiyoeBTNje+AiMPw4j9UFgsr/IN38zwzBtAlwbCzDFPMGtZY6YlSRLPln7IJzW70en16HR6smv1JDVJlJT0EaXUC1nWFPLjZCmYN+ClpGEzfr8fr9dLcblsQHrxxReHOSMPlDLNCvLJ8LuIcQbR/jyhijjmmeFmVSEsU2DYCjCELkp+2Y+g+Xfg7zxVZ9onfr+fp59+mpUrV/KPJ/9Gx5G7oO0JdQPLPBj2tvxd0At7NBffKZpViN4ItYwAzJ07F51Ox7yM8UxIDsa6SQFeOLKq132bXB1hjt4XRNsy0gtjx45VvickSeLDDz+MvHHQtDNB7yXP2ApI+KVAmNokWgJSoFvSSO/92ufmhIoXbnY6Mmn3m+SWkf6wFUHIXT3QCvb/DfgcY0RAnxj2NyhI/IBhw+Tik8/nkx34I6BVXSyd3aAadcZfDPoBFNrPNMKKF1GMB/zNmiQHo5pyEON04m+AB3mh9RbgCSFEVK7k71Vt5eub/y4r25p/pq4KCzOfeG8CBH6/n9QWHQa/GJBZpxaz3khGcCU+IEnUO1sHdZweRKW86D8mFaAy6Gmg0+lIwYZAsOngDFbuuZ//rJvK4eNZ+AN6UlNTWVq0NCxme0vDIUi6WykkmE06rliwDoGE3W5nzZpwheOaNWuUhD6TycSVV14ZOQXQW4GODmw2G16/jTZ7EoFAgO3bt1NWVgYWTQt6JOWFr1r2uwBAz8SEfI4eVX8v3QMF9EIXZmyvjREvaTmqFAD0Qsf1I86hN84bNkMx7tzbWkEN4RN4t98jj/8lN+BjvKVFLlanPIDRaOT882VfIn9Az4Y9owko6osnw5KIdkbTOuI9LocNEI1Zp6rUyYrLV1SZbr938N5bp0h5cUqQJGmfJEmhZRop+C9Umroa2CdJ0huSJLmAHwPThBBnYaPmWYgQSBhBFwf6ZDBkgCEHjAUUJk0AYZCLF+7gIExTvHizfB0rKlUp2uy4keQf1yMQ7NjRh6FPBJSsdcnN9q5kvF4vDe1p1LVmMGXKFBYvXjzoH9MX8IebdSbElBcxIhBwQ8ez6v3uqgstpkLIewdMmgty6x/g2Axo+Da4952ss4yKLVu2UF1djVHv5ar57yK63iIQCF6Y4y6C3FfkiVsEtGadU1MjD8bq6uo4duwYIA/IZs+WPW+EENwx9kJlu431+3u9KK+q2akMGKamjlAu4oNBCBGmvtizZ0/k1AhDuqI+G2tpUXwvtAqKaKlxNGP3yateiSYb2dYU9u3bxzvvvEN9vWp6nGNLZVxiOuDDj471nQVyYaLfH0wPibeq99ufH/A5xuiDpDuVm6LzLZadow6AN23ahMfj6bGL3+9XrnU64Wd8rqZnO/Gmk3eunwe6Fy/6c9B3alJGzFNl/5cYpw1CiDjgGuAHkiR1SZK0HlgBfLGv/RzVLVR+uBuA6o5GFp+7iC//7S18ksDhlDj3djPPv74Sv9+Pz+5iw69fp6qqiuTkZJqamigqKuLdd98F5OtMUVER77//PgBVVVUUFRWxapVcFD969ChFRUV4DsiT9c6qJi6/8BI2btwIyOrAoqIiDh6UV6R3795NUVERu3fL57dt2zaKiorYu1f+HG/cuJGioiIOHToEplGs2eKm6JZmjh6Wt1+1ahVFRUXy9cXfxvur6yi6pZm6JgPoM3n33XcpKipS1H9vvfWW/Pq18nW1evVeNv/8dbxer/L8t7/9baV9JhAIcMEFFygtlMfe28F3b3pAvhZk/o7HX3JyyT0tFGY3MnP0HrZt28ZXv/pV2traAPjxj3/MAw88oPwt6uvr+dKXvqTc/9nPfsatt6rXlB/+4FHufLQNnU6QkLGELVu2snLlSgKBAP/973/55g9X8OCPgyprdzEPf+0hHn74YWX/Bx94gEd+VhL0u4Ddf3yPlb99QWnFWL16Nb///e+V7W+99VZ+9rOfKcmE23/xJk//8e94/D4kSeK6a6/jyBvy325Z7nTuu/EO/vSnPyn7P/roozz++OOkmhOYlT6GDY8+z7H3dvBhm7wYU3RLM88+/wqHO2rwer2sf+R5HGtKSNB7cRhuouj8G3jttdeYMWMG8fHxvPTSSzz3jhGXS6KpJUDRtZ/StVl+fVdLFz+86at9v/eWTGTN6zOZmfYgu3e8yLP3/YqWfVUIQDreSVFRkVLs3r17N0WX/Ijd++W//bY9Oj7++lN0lMvv3TdXvau+95CLUEVFRUohKOy9h+x5UlRURF2L/Lt/92MXRVe9Efbei5bTquFdCPE4cAdgBXYB7wWfmgQUh7aTJMkuhCgLPt5DcyKEuA+4DyAjI4PVq1ef1PMeDF1dXbHzGgCRzqsx0InH40YA5STgdnvwudayrfRTdnqrWKWp6o3VZ3EOhXzsLSMQCHDkyBHefffdsJzm/hB++fUMwsH2rgxuMsPOw6MxmcxkZmb2qCgPhMZAJ11OufctXlgo3rS9nz0ic7r+HWMMEV3/kVcBAfQ58gpqXxgyYdhbUHcXOOULHZJD9iXoeBHMsyDpNoi/XPZnOEV0dnay+pP/kp9ezbJpG8lNrUeSwOF0YM28B332b+TiZATsXhdHO2VTLp0Qvcseg2hVFxMnTiQxUS2IjEvKY3H2ZNbXyQPCZ0o/4Ndz7lZWf/xSgFXV6ipO1EadfZCfn8/kyZOVQej777/PPffc0/uKk20RtJcywdLCJ10eECYOtFVyFYsG9Jrhqos86urqeOmll5AkiV27dnHHHXcoq4lFyR4OBRcEVzsm84U+CkhhJN4ILb8DfODaKstCuxlCagtOMQaAda7cquDaBngZn72O1NRUWlpacDqdbN++nYULF4btsn//fux2+boybXQ9JkPQE8qQq/ipnLUY8uXEnEC77AvkqwJjQeTttS0jJ9HvIsagGQv4JUkq1TxWDPTIAtbOE4xGIxPJosvjx+NzIUk+ttqzeaRiKteZOqnrLMfmsmNxu9G7QXglDAYDq1evpr29nba2Nvbs2UNCQgItLS20tbVRUlKCxWKhoaGBtrY2iouLMRgM1NTU0NbWRl67C48HvF4PbV0d7Ny5E4/HQ3l5OW1tbTgcDlavXs2RI0doa2tj+/bttLW1cfDgQdra2ti8dQuf1hZTub+MtrY2tmzZQmuDHo/XRyAQoKv9AKtXr6a4uJi2tjY2bdpEfW473uDzbfYkDq5Zy549e2hra2PDhg0kJSWxd+9e+fiHduMxu/H5fOglgcfjIRAI4Ha7kSQJt9tNQUEBjY2NtLW10bm/Br/Hi9/nw+F18fYn75Gss9Fon0wgsIVAQGLp1M3867Vx+P1+nnnmGaZPn86WLVvw+/243W6lGNTQ0KCMX8vLy6mvr1futzUfwh8I4HZ7ON6aRnq6jubmZiRJoqKigrKyGjKtRtxuD+ChrvYAvkCSsn9t7TFyEn1Uu5KQkM3226ubcGfIn3udTsexY8eU7evr6zGZTNTsPIzNqycQCOD0unj2039jFHra3V0k+5Pwebzk1Rlpbm7m8OHDyv4+n4/S0lJWr15Nls+AFAjg9/l4r8bOtfny36KztZR3t32C19MFSGQbOnC6JDYdnUJb23vs27ePrKwssrKykCSJLodg64F8RuccIRAIkNi6kkDGRXi9blxeNxt3b+31vedofI+A6zAerw0kA3vL/kog4Mfr85DoM7Fvt/xe2LFjB3a7nSNHjuBxt+PxBnC7JY5UOMDtx+v14PG42VF1QHnv1dbWsnv3bvm9s3kzlZWVYe+9srIySkpK5Ps7G7hknBevz0fA72Tjhk9ITMpUxkLRIAad1XqSEELogQVAEfAbSZK8Qoh/AY2SJH1Hs90G4ClJkp7t63jjxo2TQlWh04nVq1dTVFT0WZ9GDz5v5+UL+Lnx01/KPYP+Bl4a8V/i9D7Wmp/j/x3coBjRTE0dwQ9m3IJRZ+Cll15SPiTnnHMOF18cfeKGL+DntjW/we6qAinAL9P+y0drr+WWO/6PjIyM/g/QB5/U7ObP+94G5Gi0708f/KrY6fp3FELskCQp+piXIeZ0/D4Y8N9KkqDqfFVul/Z/kPJA3/sge7Ns3rQOR90/mVa4i/TEFoxGoyohBzn6L/FGSPwiqzdWDP17yN8hr3C694C7hMbqTzGJagSyGiF0PVq/fw7t+nu48cabekzmtb+vrY2H+OXuVwC5zer38+7v9WXdbje/+tWvcLtlcd/dd9/N6NGjw7apd7by4Ma/Kv3H35p6nSIV3dF0mJ/tegmQFQv/WvINjLrwospgPnNNTU384Q9/UH7uO++8U4l1DqPrv1B3H5XuBB6qWg76VJJMcTx7ziOR5bW9nNfj+99VfDtuHb0M98aqsAGD0WjktttuY/To0XRW3MSdBxLlvmBdAo8vejTMaK5P6r4EXSvk20l3QoZseufx+9jWdIjH97/Ly8u+G/su6EZU7yH7R3ICD4CIY2vD4/xnhWz6mpyczCOPPBJmFv30009z+LDc7vTVa7eTmxRUWqU8DGnfHrrz+gwYkvOqvl5NbMp+SjY+jsTxy1VlZ/bTEN97K9UZ/fs6CQzVuEAIsQR4Q5KkbM1j9wK3SJJUFGm/0HdBg6OFP+/8PnsV+xgdRmMm6ZYUah1ygTCjMkB+tYHLL7+cBQsWRDpkv6yo2MTTpXIM9UV5s/nShPB0uv7+Vh8c384TB+R0vUenXs+CrImyKq9sJBD00BhZBjqN6WXnf6D+Qfl23MWQ86+Ix/+/7c8q7RD/N/1mdr29hqNHj+J2uzGbzVgsFr7xjW+ELf79bNdLSmvlXWOXc/nwBbJPU+UF4D2Mz+dnT1kGr6+/FBAsXLhQUZwIIfjqV79KTk4/7dLHrwJXcCEi+Bl888032bhxI2azmZkzZ3Ld4o/AHkwezPgNJGmEN+69bDpwO7+pmwsYGJU0Gev/qhQlySOPPEJaWu/XuZeOfMwb5bI58sKsiTS62jncLieX9PY3hPC/o18KcP/6P9Lk6gD8PJK+ksUJNaBL4adt32Fnw1bAx9cyd7I0/2LI+HHYsSRJ4m9/+xvV1dWkJ7bwwKVvYLVaAMHP2n/IjhZ5Iee+8ZdwSf7c8BNxbISam5E7qsDt9vBG1zTebJ8NwsoX8udy7/hL6EHlUsWTg7yVdOrHctvq3yAhLxg9f+63iTdae+7XHxWL1RamvJWK0Wq03wWnpG1ECLFaCCFF+Ldeu60kSf6g1CsP+HLw4S6g+7JPInB6NG3H+Mww6GSzHQCEiQpPItvtWfzp4MdK4WJsUh7fnXajMtmYNUtdNd25c2ef0U29vd6kOJuSCb+5cyTLlt91woULiPldxIgS5wZNL64VEm/pc3O3282aNWt47LHH+ODDT1hXMpK/rriaf71/CVsP5NDZ5cbj8cqtGoE2aPs7VC5iQtLPwHPsxM+3632oux+OLYDy8XLqSfPP8LW9hTlYuADZSdxisfLBznNZt28eJSV7WLt2bZ+HjrZlpLi4WClcpKenM2pUT+PPLGsKl+araRovHF6lGFKFGXXmTO9RuBgs6enpzJ2rDjJC8tceBE0780ydxOkcgES7x07dAHultcqLdJ+tx0qH1+vl2Wef5eD+rSR4NzIzLthKIsysrismahLVwaK/401Kmvbzl33vcOfa3/FYyRtK60qMQWA7TzWxluzMHF2CzSYbuIVWgEO0tLQohYt4i53sBE2LWML1p+yUT2vMU9XbDd+Ehu/IvfLdF/YCbnBpPgOWz6zuFiMyg5orhFoiMt2v8tOsd7grfS9GAqBLwhuQFBNnv99PerNcGBysWWcIbdthjWPgcanbm1Rxyae1wfelMMqxyiG6x/8OICa1yq6ax+fHZzBtWri/y/Lly3uolrXpW1sbgxNeYYLM3wMCg0HPuPxqJhXI5x4qXAAsWbKk/8KF5A831rVMB2DePPW6XVJSgkensTjp7nvhrVZaRhA6sn1xyhwgOzs7YuECUFpHADbV71cKF0adnmsjeF1o0Qsd5w8LeXLo+bBDXkDx+9s41LqfULLaBFtnrwtSQgiWL18OQFNHKoeqcvAHAoDETKs6FtrV3M33wr0Xau8gVLgAOSRhnzMNArLaY1JKYc8TlgLdDF4LSTBaGR0MEwhI0uBVlCaN54enRwNFv5yS4oUkSUWSJIkI/yKZBBhQPS/2AconJ9jXNir4eIyznML4ULa1kQ/aC/lt3Rz8AflDWhCfwQ+m3xwWNTZmzBjlS7erq4vS0tLuh+yTfLv6QdvuHMmUKVP72Dp6yjrVTOrRMb+LGJFo+4d6O/HGiIZ7Ho+HtWvX8thjj/H+++8rKRsygqqmYbyzeTl/fPtW3t82g+p6gd3hwOPxIkkSyaZiqLmOgKeWzs5OKisrKSkpYe3ataxYsYLnn3+exx9/PPKEG6Dtn3KrSte74FONoSQJxXE8IAkcvuEYUm7GNGIFxnQ1aOr9999Xen97Y0+reuGc3NvFF3m1QhvBNm/evIhqhWtHLCHeKPex1zlbWVm1jRZ3J9sb1e+IC4bN7HXfwbJs2TKMRjnFo66ujuLiXooE+jQwjUcnYKw2MrU9esMsh8+l5LnrhKBim9pSN3z4cKWNxu/3s3X1Y3i9TooSqpAvxXrW1JYQrVJTsizgqH8SzzRN4t6jC/nhzuf4uGbXoIoWQoivCCG2CyHcQohne3n+7EoiEzpIeVC5a+h6lkUL1IL82rVrlb+T1tdp2ZwWdKERn2WB7IUTIzz+N9ABHc/D8Uuh8lxo/Rv4gj5U7hIUg2TjCNmLJsbpRilgEEKM0Tw2jX7mCna7nT3bXoTmX6MTcHlyGb+fnM/IJPWrRAoEsHWC1SUwmUxkZWX1ccT+GWZT3z8DLV5IkhRWiN7dUoY7lJKiTbFQzGVD94+pt/tJGmn3yOOFkLnolClTiI+XEzeGDx8eVnQPMUdTvDjQVqmaQVpnK0lUZrOZC2asw2ZW0/5SU1M577zz6BfPYbndFUCfpZh45+XlKWkcPp+P/eUaL5ruiSO+ako0Zp26GrvyVPeUke4UxGcyPDjf0F4Jl+fNJt0SXVvl+bkz0QXHHyXOTGo9cVR5ErB7ZZ+OVL2LrNTr5FbfXhg9erRi9r21dDpul7woM1O8B8jjsJ1NR9TikeeYrLiQgnIifRbkf4Ddn8phV4q8T8DBxJRe2uX89UraDroUZaw5NU1dKCpuGWRkaljiyP4B735aGHYKITKFEDcKIeKFEHohxHLgJuCT4Cb/ASYLIa4RQliAHwIlkiQNLmMlxhlFYUJQISiMrOnKxyPpQfKQaU3mxzNvI8FkC9ter9czY4Yap7R9e/TeEna7nfE+VSxUJdJo9USOqIsWvxSgvFNj1nmWKy+EEGYhxL+CUWedQohdQoiLNc+fXROWEJ4ycGjSMJLu7rmJx8O6dev47W9/y8qVK5V+d4CUlBSuvvpqrrrqKkaNGoUQAofbxqaDs3hi5Rd55dOL2Xs0m87OLjweD11thziyfjGP/eYnPPHEE7zyyiusXLmSTZs2ceDAAaqqqli7di1vvfVWzwJG10po+lG3szOCeQrHO5awcvsSnv34Wv7y369iHbcBsv4fWOdz2WWXhbm4v/rqq4oTuZYOj51jnfJkXC90SmJId6qqqqitlQuDBoOBmTMjFx/ijVauH6G2R79evoZ3KjYqUayTU4YzLG5oJy2JiYlhRr8fffQRPl8vEWTB1JFxGtPOgbh9H+moUQZc2aZkDu5RBwyXXnop999/P6mp8mrg2NwynE4nU43HiTPIktB6ZxsH+yiWOH1ujnRU88bRtXx18+N8o2IG77SNpsVvgYBaOMu2pnD9yP5XqTTUAD8Hnu7+xFmbRJZwpexZAeBvZtHU4xgMshqotraWI0eO4Pf7Ndc2iamFmgFi4o2n9HRPa2znQfqPwdDt+8N7BJp/Acdmy4P/tqfU5yw9J24xPnskSbIjfx/8VAgRJ4RYBFwBvNDXfjohkej8Dh5PcEJtnknBsEf57Zx7uH7kOeiFDp/fT26trLrIz88Pa80aDJnWZCV9osnVoRYfoqDO2UqHR/1O9fh97G4OFirCIji7TSw1yRF9FS+q7I3K7by4dHRCh9Vq5f7772fmzJncfffdSlSpllRzAmOT5LQpvxTge9uf4Sc7X5ALLWnfBcMw9HodiXF+LpiuqiqvvPJKTCZT/z+4W1PY1yT9CBGe/LJmUysSwb+P93BYslqzo4pqr1yEMQg9rQeqlecmTeo/lOac7PACh0ln4OrC6I360y2JzEoP1taEgY86hrPfmUaoHDLB2oZIfTDi/lr1RXl9PrXNifj9AXKMTUyKk4/hlwI8VvI6ext3Qs2N4A9GsesSIfdlMI9jY/vVwahYyDM0kKzvJdbc0/v7ZVqq+h4bdPEiTHkx8MSR06J4gfxX+zJwHGgFfgc8LEnSOwCSJDUiOwj/Ivj8PCB29Y0BaJQXwqg8lqK385NpV5Fq7t2MM5Q0AHDw4EG6uqIrQGza8CFjUyspNLYAgoAwcffa3/P1zX/nX4feZ0vDATq9zn6P051qexNuvzwhSTUnkBLhvM8iDEAVstFWEvLk5HUhROFZO2EBaNf0qNouCIs683q9rF+/nt/97ne89957YUWLpKQkrrrqKr75zW8yZ84c5s6dyz333MN3v/tdLr/8coYPH44k6SirK+SNDZfy2rrL8PklAgGJ7OQGLp//IUJEUFcgr/C+++676sq8ayfUP4CyPmGeBXnvw6jDtCW8xlPvjGNn2RRqW7IpWnaRsmoCcnHxlltuUR5zu9288MILOJ3hn6u9moiv0Ym52DTqKi1ao85p06YpEvtIXJI/V5H0dnldvFOhRlCeSDxqXyxZskQ5r9bW1rBzVggWL8ZbWhTlxd7WY1GrIbSFDkOjOlAZN24ceXl5pKamcv/995OdlcbIHPl3G3A7GE2Ksu3q2mI6vU72t1bw4fEdPH3ofX6y8wXuXff/uOnTX/HIlqd4qewTjtubQKirX0l6O5fkDOc3c+7miUUPcfOoZVH+ZkCSpLckSXob6G158uxMIhNGSFYd+c2Op5kzWy3Ir1mzhtLSUjo6OgAYndeOzRgsjov4vn0dzjaETk5rGr5RNjVOuAGE9jsiAI7Vag89yKapMU5XHkA2/W8AXgG+LElSn8qLpLguUuLbcblcuL1GyP4bCCMGnZ6bRy3jqSVf53rPFFLa5CnTYCNStRh0ejKtycr9Wkf0LYC9JU1taQyu5WrjT3soL7QxqX0UL7rU4kV+nNoSnZ6eTl5enqIU7I2rCxcpRRmAXc1lPLr1n/y8eAVHrP8HyOqLScOPMCrnGPPmzWPMmDGRDheOa7d6O9gyEmLYsGGYzfIYoK6hHac/tJ4lhRU9StrUhZBCoxm/Wx53p6WlRaWmWdyteHFx/pyI84xIKIbfwsDHnQXsdaoLIuNTJ0ZUXYQoKCgIxrkKth2ejtstKxofyVxFjlW+XnsDXn65658ctQeTV4QFcl5QFA8lzlEQLPBMsjZAyx/CXqOsrIztm/+N1+uTO+iMhcpzE5LzMemDxXJHy+CifntrG5EG0MI/8FcceoLFiR5uwN22WQWc2QOSGINiuNI2IgADcTonP8rdRI7uKND7gnxGRgYFBQVUVlYSCATYvXt3vzGnTqeT2qNvoUuXmGOu4pgvCySBBJR31lHeWce7wVjW4fFZTE4ZzqSUQialDCfJFNfnsWN+F+EEV1B+rHnov0KIcmAWkEZwwgIghPgx0CSEGH9Gq7H8bdChqdEk36vcdLvdPPnkk4rCIERiYiLLli1j9uzZva4UJSQksGDBAhYsWKD0y5eUlHD0OLy3bRGXzdsAwLhhx7hiUTGHmm8mOTlZ+Xfw4EF27ZJlmZs3b8ZkMnHReeMRtberckNjIeQ+B3q5IPDf/6qxa1lZWT3SEQDi4+O57bbbeOKJJ/D5fDQ1NfHqq69y++23K9uEzMQApqT2PhBzOByUlKiZ7Nre2EgYdHpuHX0ej5W8EX5ORgsLMidG2OvEsFqtLF26lP/9738AfPLJJ0ydOjW8pzjoezHW0opJuPEgcdzexLam0rBe40iUBvtzA4EAjvIm4oIDF61cNzExkftum4a/ykfADx2OeJq3tOKZrsdkMvPB8R18cDy6iGmL3sy8JDPnmlcz1daIITEFku/sf8eBcUYlkQ0kJUpHHrPSTRhEF7iPkJu4C4/HgyRJ7N+/n6qqKsXnZdaYUiVGtcE1g7K1W0/aeZ1KTs55XYFOXEiaaQsZltUkmXo64O8uCeD0R37ds+v3dXohSVILcOVA9rGZ3YBcsHpzzWxmSHYmar7qU80JtFWoUdJDUbwA2fci5KdR42imMCG6VpRDvRQvtjaW4gv4MRg1xQut8sLfJntagTyR1Ud+La3yoiC+74l0d+ZnTuCvC7/C60fXsKauRIkX395UyvYmmBt/PTclvs/wOLjtor0YRz0Z/cHDlBfTw54yGAzMmDFDaRE9VpvCxLzgk66dYJPH9yUdDkAurKfahWKGMnny5H7Nr0H2xpqbMY6tjYdIMtm4qnDgiU0z0kaTak6gxeWh3W9mk10d80/Iic6o/8ILL2T//v3srRhL0ZRNmEx+UgwV/GhcDt874KHFUYUDiZ/ULOBXwzaSO/yvYQlJlYF20CVAoI1J1iZofwGS7gHTCHbs2MG///1vzp28HWeyEyEEDW0BcpOcWK1WjDoDk5KHsyuo9ilpOTrwhR1jgezZJjllZYivaUC7nxbFixgxToQUczyFCVkc66zHrDfxg+xPKDR3yK7gcUsj7jd79mwqKysBuXVk0aJFfX55bdy4kbxU+cN6SUIp+uTz+Kg6gTbhVr6gQ1R01VPRVc//qrYigNkZ47i2cDHjkvN7OXK438WomN9FD4QQWcgxaPuQVVpn3YQl1/YfhsfJVXSHr4DirV5A3m///v0cO3ZM2dZisTBmzBgKCgpwOp2sW7cu6vOZNGkShYWFNDdPoMaZxojk9wHB9MLtJKVPo855MYFAgJaWFtLT00lPT6e6Wp4Yr1/zLtNTv0pqfBsAvkA8e2ofwlUuFxAaGhrYuVM10MrPz+/z3MaPH6/07e/Zs4e///3vFBQUsHr1atY5duEJFkh8FW2sPr66x/5lZWWKAiUpKYkjR45QVlbWY7vuSJJEus9KTWiwB4wIZLNx3fqI+5zoxMDv96PX63E4HEo6yvTp08nMVAeP01KysRkqOT/uCO+0JyBh5G/b/02XZYHSRxvCrGsgw7KaROL59NMAO52H8EgevF4vppYAbrePzMxMysrKwn4nhfEvkGM14Al4OVBVgLHZR6DNhyPOh8EYecigQ0eKsJGui2eMIZPRIoNUTxmT4l7E7wFv46tsP7gMv9R3IXeAxAON3R5rB3pdCpMk6R/AP0BOGDjdkhcGnAbR/BVolVfMZo/azOHZd1JSIhvaeTwezGYzRr2XKYXl6HWyLDt/5LfItw7MbPJ0Tak4uecV7FL0VkHnm9DxuuzbYyti3sRboI+xwtn5+/r8IoRAp9NRUj6GvRVjOfDyy9x2221K8pPT6aSurk7ZNi8vr6/DRU2uLY2dyOaKtQPwvdAqLwSyvrHL6+RAWyVTEiN4XnRvGRGRhffa4oVWeREtObZUvjb5Kq4dsYTXjq5hXd0epWVxa1ciW9uXsSCumhtTDzK85beQ8fP+Dyp5wa0R0Fim9dhk7ty5SvGi5LCR8bmSnKbmkscQkiRR3BW8hkngOmoHZLVGNC0jIR6efDU7mw4zJmkYyab4qPcLYdDpuWDYTF47+mnwVOTvEos+jsKkCX3tqpCVlcWMGTPYtWsXO8smc+6Unej1NrJdz/LDYdl8v0yHPWCk3W/mx43X8cuRcwnpO3wBPzX+NnR6M2BkorUZ8EHzr9hccRfvvPMOACnx8nhTkiQ2ba+l9N1fMXPmTBYuXMjU1JFK8aK4eRDFC6ED0zhw75bvew6CPvqW3FjxIsYZwaNTb2Bj/T7m2o6T3ylHJ4ZlsvfClClTePfdd/F6vdTX11NdXR3xouRyudiwYQNfPFeWXidY9Nw0/CJyWvzMXTyfA21V7Gs9xt7WCso6apQeeZAvLNsaD7Gt8RBTUkdwTeFipqWODCuUxJQXkRFCGIGXgOckSToohDj7JiySF459A/zyBMSc/yhF0+TCXFNTE6tWrVIkk8uWLaOoqKhPaWe05zV+4QtQdx/Y3wNgvPklxuecD3EXKNude+65vPTSS5Qe2sNN564izlgPmDGb4zEPe5P5wYmS1+vlj3/8o3KeM2fO5Jprrun3PNLT05WiQFVVFYmJiSy64Fw6167GhBmDTs9NRZdh1of3zEqSxI4dO5TXu/jii3s1GYtEbttoHt2mtuncu+DqPlehhmJikJ2dzYsvvgjI579r1y4WL17M8uXLZU+Dxkuh/Z9cl36Uj50zcGOmHQ+mCRmqnNXfAa1/Dvboe3HHeWhOKyCwR2AIGPHZPSRKJoRZcPPNN1NQoOn1lySo+Db4zJhMZtz6c7GY9eTV+Skf4UMX0JNgiycvLp38uAzN/xnk2FIx6Lqpe6TzoOr1YE+rxJJpDWHqCyHEaiKrLjf0Yegd4uxOIku+C9oeB8kFnn2cv9CIRmgEwJKZneh1QaNU4yiwnJzWpzMWYz6kfl2OlvU3gD6jz8JFjM8nloRxbC2/HLDj9/t54YUXuPPOOxk5ciRVVWrLXXZ2NhaLJfKBBkCOTU22qI6yeOH2e8P80ZZkT2FtnVyw3NJ4kCkpy9UV7UAb+FtBn9IjNaIvqro0SSODKF6EGBaXzjemXBMsYqxmQ/1+QAe6RDbZJTbbc/iSazXLk8r7bGMBgqaOQcNcw3D5Z+pGTk6Ooqg+3piB1+vFbDaBexdIEjX2elp88rTXpvPiq5MLD4mJiQMqSNkM5h7tIwPl/NwZvH50DRIG5JQRwdiUsT2voX0d4/zzKSkpYeeRKSwYvwOTz4fRvZtC4Ac5KfywZhEekmjw6PnJzhf45ew7STDZKOuowYcfEway47JJN8jXB3fLW2xb5wVkH8HMFIcSYd/alYzX62XLli1s2bKFjPH5+DJ9GAwGSlrLCUgBdH0UxHrFNF5TvDgApuiVraeL50WMGCdEji2Va0YsIT9VYwTn2tVnD5XFYglzF+7LuHPLli0YaCAtoQ2dTmAwxiumXTaDhVnpY7htzAX8du49vFD0KD+acSvXjFjMuKTwL8Q9LeX8eOcLfGvrU2xuOEBACuCXAhwNM+uMKS9CCCF0yGZbHuArwYfPvglL13vgD75H9OkQfyUgT3BXrFihRH0VFBRw3nnnnXDhQkHoIOsvYA710weg7sty9FYQvV7PzTfdyK0XbCM/XVYQudxuDrR9RXYZD7JmzRpaWmSJrMVi4eKLFf/VPrngggsYP17tGCwuLua/u9Yo98cl5fUoXICsumhqkqWIZrOZ6dOnR/V6ynGT87lxZBEWvZErhy8csHx2MEyaNIk77riDuDhVnbB+/Xoef/xx2bQ06HuRYnDzhRRVxvzK0U/x+V3Q9i+omC9PaEMDPeBQzSuAD4/bTXyXQCAUZU4YngPgk1f1hD6B5Vf+mAkTJpDRpGf6bhMTdsCjyRfx/+Z/iW9MuYbrR57LgqyJ5Mdn9D7oEgKSblPvdzwfFkE5yCQyLWd3Epk+FRJvVu5mGF7vEQM8Z5wmNi/xxtjEe7AIAYasPlesY3xeERiGPcntdz4Yllrx3HPPUVlZSUWF6q90ohGpWnI1camh9pH+KO+sUxbHhsWlcV6u6nWzteGgvIqvNeMM+VxEGZPa6XHQ5pHViia9IcyXY7AUxGfyranX88f5X2Z+5vigH5IRCcHbbSOh5df9HyQ0yYVeVRchQq2hLZ0pdDl08uXG3wS+4xQ3qckjY4xtSJJcyIi2ZWQoybAmMzN9jJzgIeJAl8LElLEDOkZqaipz587F7raxr3IsbrdbubyOt7byndG5GAzyULnK3shPd7+E0+cOa7mdmDoRKe4y3G43breb86atByTy8oZRkBMgPj4ei8WCKS7cl6ThYCXeDid2exfN9nbuXvcHvrLxr3xr61P8aMfz/Lr4Nf68723+eWglLx35hP9VbqFTYzILdEscOYB/AK0jsW/hGGcWhlzQB9NHJDt4DvW5uda4s7i4WOnF1xJKbyjMkgf1JpMZYZ0Hut4NAm0GMzPSR/PF0efzm7n38OcFD7A0Z1qYidGRjhp+XfwaD216nDfL14WZdQ7U/OdMRchXk38BWcA1kiSF/jhn14RFkrrFo96uvPcOHDjA4cOHlaeuuOKKXl3ATwidFXKeBUOwECc5oOaL4FNbnQztv2XcsFLFV+OT4kU8/+9mpSDY3Nwc1lKxfPlyJXat35fX6bjhhhvIyJBXgPx+P/8rXoPD4SAQCDAlpfeBmNb0csaMGdG5mXfjxlFFvLrs+9wx9sIB7ztYxo0bx9e+9jVFsgxygsRf/vIXtu8zKBLTqxI2YDPIRarqrmrW7bsWmn6g9jUDoTz3Q64E8Lfj9XmJt8v79xpNZ/9AvW1bitFk45ZbbmHKlCmYvAKLW/DB+x/0ME/tk/irVQNEz6F+FXHdEUIYgiljekAvhLAIIUKq0VgSWfL9hIzXcG7ggiWq9DYr1UmSKeTkroOEa0/56cWIcbrjlyxgmUFKSgr33nuv4jXk8Xh45plnwnyThsrvAuS2kRDRto1o47HHJeUxKWU4cQZZCdLgaudYVz2YtIkjwdaRKGNSK8OSRjIGvpreB4UJWXxn2o38ft59GA1ykajWG0dr24c9I027ozXr7OZ3oWXKlClYrVYkBNVNafj9weQu1y5KWoKFXAkKfG3KPv1FpJ4sZONOA+jiQRgjJqb1xdKlSzGZTGwtnU4gEMDnCw6TE25k5sgf8bVJVxEqyxxur+bXxa+FJYRMTC5gzd4FOJzy7ykvvY4lMxzcfccV6HAgBJgsqdz3pe9wzz33MGGCXHAQCBI7BIFAAJfLSW17E8ftTRxur6a45SibGw7wSc1u/lu5hTfK1/LUoZX8YOdzeEJ/D+hh2tnuUhdk+iNWvIhxZiFEmClNfwPlESNGKPGALpeL/ft75g1v27YNu93OyKxKhBDyqrYt+qi/gvhMvjb5Kh5f9FUuyZ+LUbNCedzexCtlnyr3Yy0jYTwBTAAukyRJO1s6uyYsrh2y7BEAEyTJppVer5f//ld1wJ83bx65uX2rdjq9Tp4/vIpPa4qjTqkAwJABuS/KUVsg53/X3AqBLmh/HtoeRwiw2ayU1i9ka+l0AN566y1KSkp49913FXXIsGHDBtS+AbJS47bbblMGlR0JAfx+H3a7nc5DtYoxYYiOjg727VNrWfPnzx/Q633WJCQkcMcdd3DZZZcpBSGfz8e/3/6Y2uYUAgGJBL2Ly9MD4G+BQDuvNqTik4LDFEMBZP0d8lciYeCQKxVJ8mIyeInv0jFq1KjeVxC1xYu4iwBZWXP11Vcrv/uuri4+/vjj6H8YfQIkXK3eb39+QL8L4P8AJ/Ad4Nbg7f+DWBIZILc1BJVYAAWJ77JkyRLS09O58Qt6VWhhWyYrB2LEiBGGT+PDk5aWxj333KOo31wul6Lgg6FVXqRbkhTFWpvHjsPn6ncfrd/F2KQ8DDo9s9PVVfEtDQfD41JDyouoY1KHpmWkL0Yl5jI6aQQIeRHmoCsVmn4epsrrgdass1vSiBaj0cisWXJrXHVLNh6PPJn3O3ewtzWkcJbIdMoqgLi4uCH9mw6EWeljSLfIYyqrwcyYpGEDPkZCQgKLFi2isT2dbaXTcLm8BOKvg8zfghAsyZ7MfePVdKnilqOUtKjvhZrth/ngk0PsLJMLOAaDnovm7MAiNLHoxkKETh433HbbbTzyyCMsWrSIwmYrRo98gfF6Pf0uahzrrOe5wx+qD5g0GRyeQzQ6G3ruFIFY8SLGmYe2p9cZuRUEZPOl0Bcd9Gwd8fl8rFmzBoFEYdZxzGazPBgcQPEiRJY1hfvGX8I/Fj/M1YWLsPYS7Rgz65QRQgwH7gemA3VCiK7gv1vOuglL+z/V2wlXg0FeWV2zZg2trXJElc1m48IL+1YHSJLEYyWv89ax9fxp33/4w95/K4qfqDCNhex/olgleQ5A9TXQ+D1lExG3nEnn/pvs7BzlNV955RUOHVIVUN3VIX4pwPbGUv55aCVbGiLnfaenp/P1r3+d7NH5uC3yIEcEJI6sL+YPf/gDe/bsUQoy27ZtU24XFhZGFYF2uiGEYOHChTz44INhpp37y5Ox2+34fH4uMz1FvE6W+Nb74vi4cxyk/QiGr4WEy8E8gcNdN1DhSQRJwmTwMNLYxPnnn9/zBX214A6tMBrkyW4Qi8XCpZdeqtzfuHFjj2SbPtG2jnS9KxdcokSSpB/30lLyY83zqyRJGi9JkjXYhnIs+hM7Q0h5QLkp7O9zyfnj+OY3HibbprZXkXjDZ3BiMWKc/vikcBVgZmYmd999dw9vi6SkJJKTk4fsdfVCR7ZV9W6oiaJ1RJs0Mi5JNoCfm6lOAjc3HoCwxJGQ8mLgMakFJ6l4AcgqA51cED/gTAPXJnB80vvGAQd4SoN3dGCe0uexQ60jNc1Z+Hw+AgGJ8vZ9dPnkxKUknQuzQx7HTJw4cejVqlFi0On53rSbuChvNt+ddkPEuPf+WLJkCVarlVXFS/j1G/fxUfEltLR2KGOgi/PncPOonuEFOqef/ZvlhbH1++ciiQSsVhs6f3l4K0+3YldaWhqXXnopP3v4+9ypm8vMnSamFZsYvxsW12XyvSk38K2p1/GViVdw19jlnD9MbW36X9VWtjUGx4OGdNWkU3LSZC8lWmLFixhnHhaNk7qr7+IFyMaBIY4cOUJbW5tyf8eOHXR2dpKR3EScxSWrLvRpAzKW6U6KOYHbxlzAPxd/nVtGLSPRpGbKz86IMu/6DEeSpIrgJMUiSVK85t9LwefPjgmLrw66/qfeD8ajtrS0sGaNOjG58MILsdls3fcOY0vjwbCK+7q6vXx/+zM0uzqiPx/bYsh8TL3v3gMEzWnN0yD7cay2eO6++26lzUPLvHnzyM+XB1yNzjZeLVvNfev/yM93v8x/K7fwq+LX+OehlfgCvXvVWK1WbGOziIuLQ6/Xk9ClQycJOjo6ePnll/nXv/5FfX09W7duDXvNzzM5OTl85StfUdQjlY15SJKEw+FA7+3iquRg25Cw8XrXxXgS7wahtsjs6lqMLyCv7uUZ2rllyXoKC3pReNk1KyLW+aAPt5WZMmWK4qcQ8lqJWr1jngzm0PesF9qfi26/GNFhngC2UBuQBG1PgHMD+IJG0LoUiDt1rU8xYnyekKSefj05OTncfffdiuEzDK3qIoS2daSmn9aRZlcHTcHrtVlvVJQRM9JGK4reY5311Ac0xXrv0UHHpOafRJ+nickFgB6Elf2uoPdH8y9696nTjjNMY0DXd2JVeno6o0aNoqZF/jm9Xg8lbS2ADySYZKqlwyEXrAaSMnIyGJmYw5cmXMrU1JH9bxwBq9XKuefKvtcBSc/q1at57LHH+PnPf87TTz/NBx98wAR7Kudnql4hHo8Xfb0TEWwqGTt+LgkF31WVetq5UwSDV4vFwnXXXsfiOQswewQ2p47m/VXsemcts5JGcf6wGVw+fAEPTricOZo49z/ve5sWd9CiTqO+aHJUdX+JiMSKFzHOPMxTCPV646sAX/dginCSk5MZM0YtGoSiGf1+vzJBHJFVhclkkj/Y1sVDYtoVZ7Rw3chz+Mfih/nW1Ov45ew7GZ04cNlYjDOY9ueB4MXcskAxOPrf//6Hzyf3Dubm5jJnzpwIB5Dx+H08U/pBj8ePdNTwra1PhUlR+yXxBkj5WvhjhnzIeR50cgElPl4uYIRaskBWhyw7/zy2NBzgp7te5L71f+TVo6t7FE/+W7mFn+56sae5U5BKfws6nR6bLY4lI2eGmVuWlZXxxz/+kY4O+ZhxcXGfWT/rUGI0Grniiiu47bbbaOwahccre114PF5yG1yYpDTQJdDstvNhdXjBttzZjMNtQkIw2thIRlIbtPym54v00jKiRQjBZZddpqxSHTt2jN27d0f/QyR9Ub3d8ofo94sRHSlfUa3s3pkAADbSSURBVG93vAGtf1HvJ1wDYohMfGPEOEvIy8vjjjvuICEhAaPRyOLF0XgID4yBFC+01+kxiblKy4nNYGZaqtoqsqVNo6j0Hg2PTDUWntSY1GgZn5wvT5t18ZS7U3AG9HJcZue/e24cpd+Flnnz5uFw22i3J+DxeNntSAXJA0hMNNXR4UjAYrEwevToE/9hTgMWLlyomM2GcDgcHD58mNWrV/Pyyy9z/NUtxFW5sdu7CAQCpLbK74NZs2Zxww03oEu5V/YN7E4fbUY6nY7LL7+cpUtVZcexY8f45z//qcTUCyF4aOIVip9fp9fJ/9v7lmw8q1kIbvRGf42KFS9inHkIY3hPXDDjuS+0rSM7d+4kEAiwa9cuRZY/OrdWNfyzRUr2GxwWvYlFWZOYmPLZ9N3FOE2RPNDxono/GDFZWloa5s0SjUnnisqN1DvbAIg3Wrl9zAWKgWyLu5Pvb3+G1bXFfRyhG6nfUs3/9GmyH4YhfKCTlJTEPffcQ3Z2Nv44PXHnjeZrO5/kV8WvsbPpCNo1+0STjQnJ+cr9kpZyvrX1KSq6wg2cJEmiUtNy8IWpS/jmN7/JwoULe3ULnz17thwxeoYwYcIEHvjKd9hU+QCbD83guY+vZcWG84g75MFu78Ln8/Fm+Tpcfo+yz+GOaiRJ4PGaGGtpwWDQQ9uT4NysHtjfCY4N6v0Iq/RZWVlhA/j33nsvevPO+MtVzxR6V9bEOAEsc8Ecuo55ZeVFiMQzt6suRoyTSWFhId/+9rf54Q9/qKgGh5Iw0057P8WLjmrl9thuSXbzMtWV7a1NFaALLhxIbnBuUjfsK2nE66TV3QWASTc0SSORiDdaKYjPAnT4RRyHXcH2mZbfQiDcwyosacQcOWlEy8SJE0lISKCmJYsOv5F9zjQggARMChYvxo8fr3hKfd4xGo3ce++9nHPOOYwaNarXOF+BIP+wROFhHYUHIaVVx/z587n66qvlMaTOAqmP9nLwwj5fWwjBhRdeGJYgV11dzZNPPkl7ezsACSYbX598tWIeuqelnP8c2xCWONLks0b988aKFzHOTAbYOjJx4kTlw97S0sLRo0eVdAS9zseo3EZVTmVdMsQnGyNGL3S+K0d8AehzIO4i/H4/7777rrLJrFmzesZddqPZ1cGb5euU+zePWspVhYv40cxbiTfK73lvwM8f9/6H5w5/pMSw9YnQQeafIG8lFKyRpZwaJEmiqquR1e37qV+YQOk8A2vth5SBUYhpqSP51tTreHrJN/nF7Du5SdOXWeds5Ttb/xXmg1HvbKUj6N1q0RsZlZiL1Wrlsssu46tf/WqYrFcIMWBj0M8DCQkJXHrtz8ib9ndcyKsWmQ069C4Jp9NBTVsjr+2XDTVbWlpoCHpieP0GRsWHBq4S1D8sG64COFajRKuaJoIxcub90qVLB2feqbNCwvUD+EljDAghwtUXIcxTwDz4NscYMc52DAbDSSuC52jiUmucfXteHGoLTxrRMjt9nDIx3N9WSYdOoyiwr1Jv92XW2aUaJg6LSw9LyDsZKAsWujj2u4PjGF8NtD8dvmGUZp1a9Ho9s2fPpro5mx2ufMXMerSxiTS9g3ZHwhmhytSSlpbGxRdfzD333MMPf/hDHnnkEW666SaWLFnCyJEjZc8+BOktepKb4dxzzuXyyy8PX/xKuLpnW3w/xYsQ55xzDldddZVyv7GxkSeffJLmZrkoNyV1BNeOUOdPr5R9yiGXuujVPIDixZmzJBUjhpaw4kX/0XxGo5Hp06ezebO8Gvnmm28qFcORuc1YQm2PxpFgjLV2xDgFtD+j3k66DYSB9evXKM7nZrOZ5cuX93uY54+swhU05hwenxWM54KpqSN5bO59/GL3yxy3y8f8z7ENVHU18o0pV0c8noIQYXnr3oCPfa0VbG8qZXtjKXXO1l53SzHHc17uDM7PnUG2ZuAGcMPIcymMz+SPe/+D0+/B6ffwq+LXuHFUEdePOCc8nzx5uCKbBblH+f7772fXrl3s2bOHKVOmhLWtnEkIIZg4cSJjx45l48aNfPLJJwyrCXCs0Iff7+OlA6uIK3fS6urCZwQBWISJseP/ClXLINABvkpo+qnsSt5Py4iWkHnnK6+8AsjmnbNmzSInJ4qkpKQvhhvQxhha4i4A4xjwqvHJJMRUFzFinK4Mi1OjjWvszUiS1KuK0Bfwc6SzRrk/plvxIsUcz/jkfA60VRGQJLY5RnCeKej9FOZf0FfSyKkx6wwxMbmA949vBwQH/HOAnfITrX+GxJtBnyT7dSgxr8YBFWLnzJnDi8XZ1LuNSpLJHHMlXr8BXyAurF38TEMIQVpaGmlpaUydOhWAQCBAS0sLNTU1lJaWctFFF/V8rwk9pP8Aam6S7+sSQB+998ncuXOxWCy89tprBAIBWltbefLJJ7nrrrvIzs7mhpFFlLSUc6j9OH4pwB9Ki/lDhpE4vZfGmPIixlmPNnHEVQxS/6kK2taRUOEC4JxZmovJELeMxIjRK67d4A5eyDFC4i20t7fzySeqG/cFF1ygrIBH4lBbFWtq1Yz6u8ddFD7ht6Xy27n3MDt9rPLY9qZSvr31n7QGeveckCQJb8CHw+ei0dnGqupd/Lr4VW5b/Vt+vPMF/lu5pUfhQiDHgn132g08tfjr3Dr6vB6FixDzMifw67l3k6WRrL5atprflrzBtibVjXpKas9BmBCCmTNncvvtt4cZ8Z6pGAwGzjnnHB555BEuKpyL2S1/T/kNEisqNrG1Yq+y7YS04eiMuZDxS/UAHS+C/SNwaFbm4voviA3avNM0RvYMinFyELqw5BEwQsJVETePESPGZ0uKKR6LXu71t/tcdHp7v+5WdNXj8cs+V5mWJMU/QMvcDNX8cEuX9nmNmjLK4kV+/MkvXkxIVlWjhxwGfIZC+U6gXfXs0aouzBPDzKj7IyUlBWv2fPa5swH5WjXXUkmHI55x48arreBnCTqdjvT0dKZOnUp6enqvRTJAnuck3Qe6ZLlFONJ2EZg6dSpf/OIXFbVSZ2cnTz75JMXFxUj+AN+Yco2SrFLvbOfvzYvxSjra/D1bXSIRU17EODMxZMhSJ+8xwCO7FVv6nswMGzaM7Oxs6urqlMdMJhMjso+DL/iAdeARqTFiDBit6iLhCjCk8957r+DxyF4GWVlZSvpEJAJSgKcOrVTuL8icwNReJvw2g4XvTr+RF498LPcgAsftTTzrqeeD9YfxBHz4JD/egB9vwBcxCaQ7Vr2JaWkjmZ0+jlnpo0npZbAVieHxWfxu7n08tucNJSFlc7cY1SmphVEf70wnPj6e666+Ft2+NJ48shK/30dddoCkNnnQodfrmTUsOLCNvwq6VoI9mGJTdz9ILvm2PkdOBumHkHnnn//8ZwKBgGLeOWPGjH73JfsJaPkT8LNB/KQx+iXhatn0zrkeUh8GffJnfUYxYsSIgBCCbFsqxzplf6daRwuJpp5pGqXtkf0uQszLHM9zhz8CYHeHH3eyHrOu2/U6ypjU/LiTlzQSIsOaTLolkSZXBy6/l2PmrzDa94j8ZNs/IemuQZl1ajGNH4a3vhi9zs8oYzPpejvljvwzrmVkyMn4sfxvkIwfP5677rqL5557Drfbjcvl4tVXX8VisTB9+nSuH7WAZ2tXA7CuM4Mc/di+D9iNmPIixpnLAH0vhBBh6guAxQsnofeFzBH1YF0whCcYI0Yv+Jqg8231ftJdHD16lJISVUFx2WWX9Ws09WltMUc6ZJmpSWfgjrGRoxL1QsftYy7g4clXKZFrXnzUOVtpcXfS4XHg9Ln7LVxkW1O4tGAeP575RZ4v+jbfmXYj5w+bMaDCRYgEk40fzriVSwt6Rp3GGSyMSIiiTeEs44oJ5zAmPR+r1UbAIGhJk1fczGYz45OC/cVCQOavQR9cWQsVLgDil0e9ytLdvHPlypXRmXfq0yDjp1G9RoxBIIyQ+xKMOAgpD3/WZxMjRox+GKYx7ayOkDiiTRqJVLzItaVREFRMeAKCXY5uBYgBxaSefOUFhKsvDnhGaAoUHmh5LNysM0q/Cy3l+lYCwSjcuZZKADqdiYwbN66v3WIMASNGjOCee+7BZrMpj7lcLjZv3syWlz4gpS6Ax+NBwsDrrQP7e8SKFzHOXLStI87+ixcA06dPVyaFBoOBRTMkCOUimKeDPjHivjFiDAkdL6OYJ5pn4DdOYcWKFcrTU6dOVST7kXD4XLxwWG0FuLJwIVnWlH5fuihnGj+ffScZlqQ+tzPo9Fj1JhJNNianDOf2MRfw14UP8sSih7hn3MVMTxuFUXfiwj6DTs894y7mKxOvCGt3mZhScNLNxD6PGHR6bhq1FIPBQHx8HFarFZPJiF5vYEySxqtHnwaZv+t5AFvkAldvaM07Ozs7ozfvjHFyEUb5WjVAuW+MGDFOPTnaxJEIxYtDmuJFd7NOLfNCrSNCzxZ7twJ/HzGpXV4nLe5OeTOdPqrxwlAQVrxor4K076tPdr4enoIVZdKIsrvXSUlLOTqd3B4SKl4YbSOwWqP3V4gxePLy8nj44Yc5//zzSUkJf09lHPQg2ty4nF657TSa1tMgsbaRGGculjnqbdc2+YPRz2AuPj6em266iW3btrFw4UJs/EN9MuZ3EeNkI/mg/Tn1ftJdbN68mfp6WVJqMpm45JJL+j3MG+XraPPIKRNplkSuLozeZ2BcUh5/X/w13v70PRbOX4hRp8eg02MUBow6AwadDt0pLhycP2wGeXHp/Gnff6jzNHFNYSzxJxILsyYyvDyLiq56DAYjgUCAvLh04o3dBmtxF0DCDdD5mnxfxINt4YBe64TMO2PEiBEjRlhcak0vxYtOj0N53KDT96k6nJc5njfK1wGCbY48fNIuDCI4KYzS7+JUJI2EmJisJoTtb61Asl6HsC0DxyeABFIwEUvYeqSa9ceWhoP4pQB6g4WRugrS9cExUdaUoTr9GFGQkJDAeeedx9KlSzl27Bg7duxgz5494PUy6qiBg5P8IElEX7qIKS9inMmYxoEI9g766+UIpiiYNGkSd9xxB2PHjAHHWvUJW8zvIsZJxv4++Gvl2/p0Oinio48+Up5etmwZSUl9qyJq7M28W7lZuX/7mAuw6AdmTKUXOtJ08eTYUkm3JJFsiifOaMGkN5zywkWI8cn5PL7wq3zFVsT4UMRajB7ohI6bNZGzEFlmTPpP1dWslAcHZIYWYtDmnTFixIgRo1vxomdcammH6ncxIiEbkz7yuvOohFzSLLJCuMtvZr9TPXbfManapJGT73cRIj8+gziDbNTY5rHLZt9p3we6LTSap8hJGANgY/0+AITOyDyb/PMJIcgr7NmKGuPko9PpGDlyJNdddx3f+973uOaaa5iUOZK8SiNS9793f8c6SecYI8Znj9CHm3RG4XsRhrcCfEGpnogHSxRmdDFinAhtGqPOxFv54MNPcbvdgJzhvWjRon4P8XTpB4o3xYTkfJZknTnGVEKIWLtIFMzNGMfoxFzl/kSNNDcMfQLkrYAReyDloUG9lhAiLCv+2LFjvPHGG5SWluL3R2fuGiNGjBhnK7ma5K1aR3OP4m9plC0jIH8fa1tHtmpbR/ooXlTaG5Tb+acgJjWEXugYl6z+TPvbKsA8ARKuDd9wEC0jxS1HlftF+XOw2azY4nOwJM49oXOOceJYLBZmz57N/fffz29vfZRp5s4B7R8bBcY4swkz7dw2sH2da9Tb1gVyH3GMGCcL9wFwbQre0XO8axk7duxQnr7sssuU6KlI7Gg6zPZgnKgA7hl3ceQ4rBhnLEIIvjLxCobHZ1GoT2dJdh8yWWGUPTBO4H2SmZkZZt65a9cunnnmGX72s5/x8ssvU1xcHJ2ZZ4wYMWKcZSQYbYr6wOX30urpCnv+UBRmnVrmZ4aKFwa22LNVK4HTKCZVi7Z15ECb7EtB6rcBjRJwgGadWxvllhGAMUnDyM77OYa859AXrpKL9jFOG9LT0/n+5DF8Mf1g1PucdsULIcQYIYRLCPFit8fPE0IcFEI4hBCfCiGGRzpGjBgKA0wcCSPWMhLjVKKJR5XiLubtd9XWjwkTJvTrju0L+Hm69H3l/vnDZjJKs/oe4+yiMCGLPy34MtdbZmHWn/zC69KlSxk+PPyy7Ha72bNnD6+++iq/+MUvePrpp9m0aRPt7e0n/XxixIgR4/OAECJMfaH1vQhIAQ5rYlL7U16AXAyQiyF6Gn02yj3BVtMoY1JPZdsIdDPtDBUvjMMg9RvybX0G2JYN6Jgb6vYptxdmTgSdBeIvBmOs5fR0xJL+da4ddVHU2592xQvgb0DYErkQIh14C/gBkApsB1479acW43OHNnHEvQ8Cjuj2k3zg1Lgcx4oXMU4m/nbo/Ldyd3/NfKqr5QGLXq/n0ksv7fcQ71VtpdouD3psBjO3jB7YxT5GjBPBYrFw7733cu+997Jo0aIezuJ+v5/Dhw+zYsUKfv3rX39GZxkjRowYpx9hvhd2tXhRbW/G7pPjrJNMcWRakvs9lkGnZ3bGWBCyUnNLV3afMal2r0tJGjHo9GRa+3+NoWRM4jAlTaza3kx70GyclK9CwRooWD+gpL/uLSMLsyYO6fnGOAnokyDtu1FvfloVL4QQNwJtQPe8tauBfZIkvSFJkgv4MTBNCDH+1J5hjM8d+kTZuBMAP7iLo9vPXQKBjuAxssE4+qScXowYAHS8CpIsq/frx/LWe6pM9NxzzyU1NTXSngDsa63glaOrlfs3jDyXZFP8STnVGDEiodfrGTlyJJdeeinf+ta3eOihhzj//PMZNmxY/zvHiBEjxllKWFyqUzXtLO0IbxmJtg1U9r3QAyY223Mh8ZaIManHtUkjtvSwWPJTgUlvCPNoOhhSXwghJ4wMsM2je8vIqYp9jXHqOG2iUoUQicBPgfOAu7s9PQlQZp2SJNmFEGXBx3s0yQgh7gPuA8jIyGD16tUn6awHT1dXV+y8BsCJnNfIhCyyLHsAqNzzCtUOd7/75NneJD/OA0CDaxRlFWt63e5M/H3FONX4of1Z5d6u8pk4HHIhIzk5mXPP7Tuid0P9Pv649y28QZPOYXFpfCE/5qYd47NFCEFOTg45OTmcd955tLW1ceDAAfbv309ZWdlnfXoxYsSIcdqQG6cWL6rtTQxHNto81Ba9WaeWGWmjMOr0eEmhwp9IXdzXydY8L0kS7V479Y5W1tbtUR4/1X4XISYkF3CwrQqA/W2VzMucMOhjbajv1jIS44zjtCleAD8D/iVJUlUvlcV4oLHbY+1Ar+U4SZL+AfwDYNy4cVJRUdHQnukQsHr1amLnFT0ndF4d9dAg+1eMSWlnTG4Uxzn+Z3DJZkH5BTeTn9D7Pmfk7yvGKSXFtAt8FQB4A3Gs+FRd9bj00ksxmSLHV/63cjP/OvS+ko+dYo7nW1OuP+UrJzFi9EdycjILFixgwYIFNDc386tf/eqzPqUYMWLEOC0ITxxpgVDxYoBmnSGsBjPT00axrbEU0PNi2SekmROoc7ZS52ilwdmK0+/psV/BKUwa0TIxuYD/ILdqHwgWMQZDl9dJSUu5cj/WMnJmckqKF0KI1UCk5cMNwFeA84FIWZRdQPeGp0RgYNkqMc5Oupt2SlLfzvoBO7jUlAesiyNvGyPGCZJtXQnIb8tdZRPw+uSv5TFjxjBxYu8X3oAU4IUjH/OfY6ovy7C4NH4449aYRDLGaU9aWlr/G8WIESPGWUKONbxtJKCTcPrcVAUjTHVChLVWRMO8jPHB4gWsr9sb1T7T0kYN6DWGivFJqpFmWUcNLr8Hiz7ywk0ktjQeVKLixyTmxsZDZyinpHghSVJRX88LIR4GCoHKoOoiHtALISZKkjQT2Afcrtk+DhgVfDxGjL4xjgRdMgTaINAK3nIwjYy8vXMT4JVvmyaA4bOpRMc4C/CUkWwqBkx4fT4+3SGvrOh0Oi699NJe+1u9AR9/3vc26zSDkXFJefzf9JtJMNlO1ZnHiBEjRowYMYaAOKOFJFMc7R47voCfTuHiSEcNgWDOaX5cJjaDeUDHnJ0xVm4dCU7mu2M1mMm2psj/bKnMSBs1oNaUoSTBZCM/LoMqeyN+KUBpezVTUyOno0QirGUka9JQnmKM04jTpW3kH8CrmvuPIBczvhy8/x/gMSHENcD/gB8CJZIkRR8KG+PsRQiwzAHHR/J917a+ixeOdeptW99+AzFOHkKIrwB3AFOAVyRJukPz3HnIyUQFwBbgDkmSKj6D0zwxgl4XkiRxsDKPNrscabZ48WIyM3vGldm9Ln5T8lqYLHJe5ni+MfmaUxKHGSPGqaaf74FCoBywa3b5jSRJPzuFpxgjRozPECGEGXgcWcGdChwBvidJ0srP9MQGSK4tVUnaaJUclIa1jAzc9DjZFM83p1zLp7XFxBusZFtTyLKlKAWLBKMtagPQU8GE5AKqguahB9oqB1y8iLWMnD2cFsULSZIcgJJhKYToAlySJDUGn28MFi7+CryIPFm58bM41xifUyyzNMWL7ZB4Q89tPMega0VYZCXWWETqZ0gN8HNgOWANPaiJTr4HeBfZL+c1YP5ncI6DQ/JB2z+g/QUA3G4Pmw/IBlUJCQksXbq0xy7Nrg5+uuslKrrqlccuzp/DPeMuRh/BRTxGjDOAXr8HupEsSZLv1J1SjBgxTiMMQBVye3olcAnwuhBiiiRJxz7LExsIObY0xe+hJWCnpl1r1pkfabc+mZ85gfknYH55KpmQXMCH1f+/vXsPj+qu9z3+/iYhN0Kg4VagFwqUW6uF1krV1o4WqaJiEc+RWmqte8u2Vs+D22pPj5XNLrrteU7Vp1vbuttTbbfYWj2ivehGSyX0glJouV8CJdxvIcAEkpD79/yxhiHkAjNIslaSz+t55iFrzVoz32EmH8I36/f7BUO2N51ccSQNGjLSc0SiedGSu89rY99iQEujyrlpOe/FSfV7g4ZF5QttLKOaDXlatSEs7r4QwMzeAzS/ljG5dHLi/nlAuZmN7RJXY9Wsg7JvQF0w7MPd2VdewI6DwQ8nU6dOJTc397RTdlWW8cCqBZTXHEvumzXqJmYMvz5SvzkROd/OkAMiIrh7FTCv2a6XzGw7cA2wI4yazsXQZsulHmmqZk/FqWn9zuXKi65m/AWXJL8uie+moakxrcnHlx3cmPxaQ0a6t0g2L0TOu9wJBGteN0LdFjj6GFT91+mNjNNkw4DvQEZ7v+iTEHXJpZMzqOXi3s8xJP8ljKbk/n2H+/HMkhupqa2jf//+HD169LQadzUe4Xc1q6lNzMOSQQYfzbmCATsbWdrOEr7nQ1SX21Vd6YlqXefZTjNz4GXgm+5e3tZBUcmC9kT1vVJd6VFd4TKzwcBozjAvXhSz4HDDQerqagEo9TLiDcGS6dlk8c6KDZTaxjOd3ik68jPk7mTXG5VeQx21/HbJHxic2XKthrYdroyzvGojTYmfray0guIdHVNnOqL6PRfVulKl5oX0DBn5kHMF1K4FHA63NSS6F+THoM+noPcUyCjo5CIlRV1v6eTq16BsXmJJ1ETsWg57az7Hoy9U0is7n9xc44tf/CJDhgxJnvby3rd4ftOreHYG2eSQl5nNt67670zsP6rDS47qcruqKz1Rres8KQeuBVYD/QnmwfklwRCTViKRBWcQ1fdKdaVHdYXHzHoRZMDTZ7oSM4pZMPz4Qf7rb5sAiNedIDs7mKDzqv4j+PDVrYeShqGjP0NvrS3n9cSkmwWXDyZ2SWpXP//45V+SRTDv16jCodwyaWqH1ZiOqH7PRbWuVGmgtPQczYeOJGVC3o0w6Edw2VoY+jT0+bQaF9HWdZZObjwKB78O+z6baFwEPPcDbK5+jJ8tzKXJg8siJ02alGxcNHoTPytZxCMbX6TRg98kXJBTwPfec2enNC5EOoOZFZuZt3N7/Wznu3ulu6909wZ3P0iw7PoUM0vt13UiEnmp5oSZZQC/AOoIsqBLGZLf9hwNYa0AEoZxF1ya/DqdeS9KGk/NBfYBDRnp9nTlhfQchTPh2HPg1ZD3Pij4FBRMhcz+Zz9XoiT6Sye7B/OolN8PjYdP7c8opCrvm/y/P2eyefOpIR/5+flMmTIFgOqGGn6w7re8Vb41ef9lfS7k2xNuZUBu3057CSId7WzLqJ/LQyb+1EQwIt1EKjlhweRPTwKDganuXt/RdZ1vOZnZ9M8t5HCzua0ARveg5sX4fqfmvdgY34W7n3Ver6r6GnY0HiYrseKaVhnp/tS8kJ4j50oYHsxkTIrj6CQ8ZpZFkFGZQKaZ5QINRH3pZE8MS4r/9PTdvT/Jm6Wf4I9/XkldXV1yf25uLrfddht5eXkcPHGU761+hl2Vp0bFXDdoHHOunE5uZnanvQSRqGgvB9y9wcwmAXFgK3AB8O9AsbtXhFWviITiMWAcMNndT4RdzLkamt+/VfNiTGHPaV5cUjCIvKwcTjTUcqT2OAdPHOXC/KIznrP80ObkXBejtMpIj6BhI9KzZBaqcdF13A+cAP4nMCvx9f2JJZRnAN8DjgKTiMrSyd4UXG3RvHGROYTD2T/kkd++i9+/tOy0xsWkSZP40Ic+xIgRI9h4dCfffPOJ0xoXn7nsBr717v+mxoX0ZG3mQOK+EcAigiFj64Fa4NYQahSRkJjZpcA/AROAA2ZWmbjdFm5l6Rva4j/qQ/KL6JOdH1I1nS/TMhjb7EqTVIaONF9lRENGegZdeSEikZRYMnleO/dFb+lkb4JD34JjzyR3NeZOYfG6T7D0tbdx9+T+QYMGMX36dIYPH05xcTGv7FvFY5teSq5RnpWRyVfHTyM25KpOfxkiUXKWHHgWeLYz6xGRaHH3nXSToWJD8k8fxtyT5rs4aVy/S1h1eBsQDB350NAJ7R5bUrGH1Ue2Jbc1ZKRnUPNCROTv5Y1Q9s9w/DfJXfGGG3nimdEcOfpWcl9mZiYf/vCHufHGG8nMzKTRmyiu28LqDfuSx/TN7s3/umomY/pd3KkvQURERMIzrEXzoifNd3HSuGbzXrR35UVdYwPPli7h+Z3LaEr8Ymhk4RANGekh1LwQEfl7eD0c/B9Q+TwATU3O1gNX8fSiS3A/tQDKiBEjmD59OgMGDACgtrGeH67/LW/Wb08uiXZpwWC+PeFWBuX16/SXISIiIuEZ0mLYSE9sXozuO4xMy6DRm9hTVc6xuioKs3sn7y+J7+bHG59nT1V5cl8vMvmH0R8No1wJgZoXIiLnyuvhwF1Q9Ufcob6+npVbLuel5RPwxFWs+fn5TJ06lauvvjo5a3ZVfQ3/tuZZNhw9tXzqtQPH8M9Xfpq8rJxQXoqIiIiE58K8IvKycqirq6V3Vi7DCwaHXVKny8nMZmThULZU7AFgc8Ue3jtwDLWN9fyqtPi0qy0A3lV0GddUDGR8s2VWpXtT80JE5Fw01cKB2VD9Mo2NTdTU1PBmyXheXvXBZONi4sSJTJ06lYKCguRp8bpKHnh7AaXHDyT33XLp+7n98slkmuZQFhER6YmyMjK5e9wnWbB6EV+44uNkZWSGXVIoxve7JNm82BTfRd9e+fz7xt+zt+rU0vN5mdncMfojTBl2Da8ufTWsUiUEal6IiKSr6QTs/yJevZS6ulpqa+t4c8sEXlnzAcAoKipi+vTpjBo16rTTyk7E+Ze3/5P91UeS+2LZY/jC6Cmd/AJEREQkaq6/8Eoacsu5btC4sEsJzbh+l/D7ncsA+POet1pdbfHuosu4e/w0zXHRQ6l5ISKSjqZq2H8HDcdfpaamhqamJpZtuoal668jIyOTG264gZtuuolevXqddtquyjLmvf0LjtQG82BkmHH3+GlkbqkI41WIiIiIRM7YZhOWVzXUJL8OrraYws3DrkkOw5WeR80LEZFU1W6icf/XqDv+NvX19QC8tuG9vL7xWi6++BKmT5/OkCFDWp22pWIP81f9kuP1J4Dg0tB73vUZrhs0juItxZ35CkREREQiq292by7qPeC0STmvKhrB3eOnaUJzUfNCROSsvJ6GQz+koeyH1NdXc/LqxSVr38eqHe9n2rSbmTRpEhkZreesWHuklH9b/Sw1jUGzIy8zm/smzOTdRSM68xWIiIiIdAlThl3Dz7b8ibysHO68fAofGXa1rrYQQM0LEZEzaqhaSVXpl8lo2IInuhaNTRksXn09tbm38vWvf5K+ffu2ee5fD27kB+t/S0NTIwB9euUxd+IsLu87rNPqFxEREelKpl36Pt4zcDQXZBdoFTY5jZoXIiJtaGqoZv/Gb1DY+AzmTZycKmrv4cG88c4M3n/jHYwfP77d8xfvXcWjm15ITjLVP7eQeRNv5+KCgZ1QvYiIiEjXNTS/f9glSASpeSEi0oy7U7rhWXKPfZs+ueXJpkV9YxbL3/kQA0Z+kztnv5fMzNZLmFU31PD6gQ0s3rcqucwXBP8A/+vVtzNQYzVFRERERM5JZJoXZlYMXAc0JHbtdfcxze6/CXgEuARYDnzB3Xd2dp0i0v3U1tZSUVFBedkOqnd/h9GDl0Huqfv3HL6Uyvx/4SOfuaXVKiLuzsb4ThbvXcUbZRuoa2w47f4RhUOYO/E2+mUXdMZLERERERHpliLTvEj4qrv/35Y7zWwAsBD4R+BFYD7wHEGzQ0QkJfX19SxZsoSKigri8TgVFRVUVR7kwsJSRly4k9FDS7locHXy+LqGHA7Uf4lR188lNy/vtMc6XHOMJfvX8Mq+VeyvPtLqubIyMrl+8BV8acxUevfKbXW/iIiIiIikLmrNi/Z8Gtjg7r8BMLN5QLmZjXX3zaFWJiJdRlVVFX/+858Y2PcwIy/cxTVjdnLRgP1kZjS1OvZY47UUjX2CKwtHAtDoTeyqLKOkYg8rD23h7cNbk/NZNHdpwSBuGjqR2JB3U5jdu8Nfk4iIiIhITxC15sX3zexBoAT4trsXJ/ZfAaw5eZC7V5nZtsT+Vs0LM5sNzAYYOHAgxcXFLQ8JXWVlpepKg+pKT1TrClu/guN87RM/pyCvutV9GRmGWQaN9CNz8Hz6XDCdDcf2UvLOK5RU7GFrxZ7kcqct5Wfl8MEL38XkYRMZ2WeolvMSERERETnPotS8uBfYCNQBM4EXzWyCu28DCoBDLY6vAPq09UDu/jjwOMCYMWM8Fot1VM3nrLi4GNWVOtWVnqjWFbZDmfncX3Uz+ScayMsIbvkZDeRn9yU/5xLyckZS1tCHLdv2s7/6obM+3ruKLmPy0IlcN2gsOZnZnfAKRERERER6pk5pXiQm47yxnbvfcPfr3X15s31Pm9mtwFTgx0AlUNjivELg+PmuVUS6ryY3jjT15kiTgeWAZQd/1mYk0mTXGc8vyunD2H4XM7rvRVw3cCwX5hd1St0iIiIiIj1dpzQv3D12LqcBJ6+93gDccfIOM+sNjEzsFxFJUQZkFIH1OuuRWRmZjOwzhDF9L2JMv4sZ0/diBuS27KGKiIiIiEhniMSwETPrB0wClhIslfpZ4IPAnMQhvwP+j5nNAP4AzAXWarJOEUnHwIy+/McN93CioY4TjbWcaKiluqGWmsY6qhNf9+6Vy+jCYYwoHEKvjEhEpIiIiIhIjxeVn8x7Ad8FxgKNBJNw3uLuJQDufijRuPgJsABYTjAvhohIyjIwBuddEHYZIiIiIiKSpoywC4CgOeHu17p7H3fv5+7XufvLLY5Z7O5j3T3P3WPuviOkckUkAsysyMx+Z2ZVZrbTzD4Xdk0icv6YWY6ZPZn4/j5uZqvM7GMtjrnJzDabWbWZLTGzS8OqV0RERDpWJJoXIiLn4BGC1YkGA7cBj5nZFeGWJCLnURawm2DC777Ad4Bfm9lwADMbACxM7C8CVgLPhVKpiIiIdDg1L0Sky0lM2jsD+I67V7r768ALwO1nOm/37t089dRTANTX1xOLxViwYAEA1dXVxGIxnnsu+L9PRUUFsViMhQsXAlBeXk4sFuPFF18E4MCBA8RiMRYtWpR87FgsxuLFiwEoLS0lFouxdOlSAEpKSojFYixbtgyA9evXE4vF2Lw5mLpn9erVxGIxVq9eDcCKFSuIxWKsX78egGXLlhGLxSgpKQFg6dKlxGIxSktLAVi8eDGxWIzdu3cDsGjRImKxGAcOHADgxRdfJBaLUV5eDsDChQuJxWJUVFQA8NxzzxGLxaiurgbg5ZdfJhaLUV9fD8BTTz112vK7TzzxBJMnT05uP/roo3zsY6d+Kf7www8zbdq05PZDDz3EjBkzktsPPvggM2eeGv03f/58Zs2aldyeO3cud955Z3L7vvvuY/bs2cnte+65h7vvvju5PWfOHObMmZPcvvvuu7nnnnuS27Nnz+a+++5Lbt95553MnTs3uT1r1izmz5+f3J45cyYPPvhgcnvGjBk89NCp5XOnTZvGww8/nNy+9957efTRR5PbkydP5oknnkhux2KxyH32VqxYAYTz2UuFu1e5+zx33+HuTe7+ErAduCZxyKeBDe7+G3evAeYBV5nZ2JSeQERERLqUqMx5ISKSjtFAo7tvabZvDW0syWxms4HZAL169WLz5s0UFxfT0NBAPB5n06ZNFBcXU1NTQzweZ8OGDRQXF1NZWUk8Hmf9+vUUFRVRUVFBPB5n3bp19OnThyNHjhCPx1m7di25ubmUlZURj8dZs2YNWVlZ7Nu3j3g8zqpVq3B3du3aRTwe5+2336auro7t27cTj8eprq6muLiYd955h3g8zsqVK4nH42zevJl4PM6KFSsoLy9n/fr1xONxli9fzv79+1m9ejXxeJy//e1v7Nq1izVr1hCPx/nrX//Ktm3bWLt2LfF4nGXLllFUVMS6deuIx+O88cYb9O3bN/l4r732GgUFBWzYsIF4PM6rr75Kbm5u8u9j6dKlZGVlJespLi4Ggv8QHz16NLm9ZcsWjhw5ktzeunUrhw8fTm5v27aNQ4cOJbdLS0spKytLbm/fvp2DBw8mt3fs2HHa8bt27aKiooLKykqKi4vZvXs3tbW1yfv37NkDkNzeu3cvOTk5ye19+/ZRVVWV3D5w4ACNjY3J7YMHD5KdnZ3cLisro7S0NLl96NAhtm3bltw+fPgwW7duTW43NDSwZcuW5PbRo0cpKSlJbp98Tzv7szdq1CiWL1/e5mfvrbfeoqqqKpTP3rkws8EE3/snVxq7guD7HgiaHWa2LbG/1YTezbNg4MCByfcmKk5+tqNGdaVHdYmIdCB379a30aNHexQtWbIk7BLapLrSo7rSA6z08/B9DdwAHGix70tA8ZnOi2IeRPW9Ul3pUV3pSTcLCCb2Xgz8R7N9TwIPtjjuDeALZ3s8ZUHqVFd6VFd6ztfPBed6UxakTnWlR3WlJ9Us0LAREemKKoHCFvsKgeMh1CIi58DMis3M27m93uy4DOAXBHPcfLXZQygHREREehA1L0SkK9oCZJnZ5c32XcWpy8lFJOI8WDnM2rldD2BmRnCFxWBghrvXN3uIDQTf9ySO7Q2MRDkg0iOZ2eVmVmNmC8KuRUQ6hpoXItLluHsVwSoDD5hZbzP7APApgt/Oikj38RgwDviku59ocd/vgCvNbIaZ5QJzgbXu3mq+CxHpER4BVoRdhIh0HDUvRKSr+gqQB5QBzwJ3ubt+4yrSTZjZpcA/AROAA2ZWmbjdBuDuhwhWHfoecBSYBMxs5+FEpBszs5lAHHgl5FJEpANZMD9G92Vmx4GSsOtowwCgPOwi2qC60qO60jPG3fuE9eQRzYOovleqKz2qKz3Kgtai+l6prvSorvT83VlgZoXASuAm4B+AUe4+6wzHJ1ceAq4Ezm0JpI4T1fdKdaVHdaUnpSzoCUullrj7e8IuoiUzW6m6Uqe60hPlukIuIXJ5EOX3SnWlTnWlR1nQWpTfK9WVOtWVnvOUBfOBJ919dzBNzpm5++PA4yefP2p/L1GsCVRXulRXelLNAg0bERERERGRyDnbqkRmNgGYDPwo5FJFpBP0hCsvRERERESki3H32JnuN7M5wHBgV+KqiwIg08zGu/vVHV2fiHSuntC8eDzsAtqhutKjutKjuqL5/G2JYk2gutKlutITdl1hP39bolgTqK50qa70/L11PQ78qtn2PQTNjLs66fk7QhRrAtWVLtWVnpTq6vYTdoqIiIiISPdnZvM4y4SdItJ1qXkhIiIiIiIiIpGmCTtFREREREREJNLUvBARERERERGRSOu2zQszW2Bm+83smJltMbN/DLum5szscjOrMbMFYdcCyaWoasysMnErCbumk8xsppltMrMqM9tmZjeEXE9li1ujmf04zJpOMrPhZvZHMztqZgfM7CdmFvrEvGY2zsz+YmYVZvaOmU3v5OePbB4oC1KnLEidsqDd51cWpEhZkFY9yoL061IWtENZkDplQeq6SxZ02+YF8H1guLsXAtOA75rZNSHX1NwjwIqwi2jhq+5ekLiNCbsYADP7CPC/gTuBPsAHgdIwa2r2d1QADAZOAL8Js6ZmHgXKgCHABOBG4CthFpQIxueBl4AiYDawwMxGd2IZUc4DZUEKlAVpUxa0TVmQHmVBCpQF6VEWnJWyIAXKgrR1iyzots0Ld9/g7rUnNxO3kSGWlGRmM4E48ErIpXQF/wo84O5/c/cmd9/r7nvDLqqZzxAEwWthF5JwGfBrd69x9wPAIuCKkGsaCwwFfuTuje7+F+AN4PbOKiCqeaAsSIuyID3KgjYoC7oFZUF6lAVtUBZ0C8qC9HSLLOi2zQsAM3vUzKqBzcB+4I8hl4SZFQIPAN8Iu5Y2fN/Mys3sDTOLhV2MmWUC7wEGJi4j2pO4xCkv7NqauQP4T4/Osj0PAzPNLN/MhgEfIwinMFk7+67s1CIilgfKgtQpC86JsqC9IpQF6VAWpE9ZcHbKgrbrURakSFlwTrpFFnTr5oW7f4XgMqIbgIVA7ZnP6BTzgSfdfXfYhbRwLzACGAY8DrxoZmF3oAcDvQg6lzcQXOI0Ebg/xJqSzOwSgkuung67lmaWEnRRjwF7gJXA78MsiOCHgjLgm2bWy8ymEPy95XdmERHMA2VB6pQF6VMWtENZkDJlQZqUBSlTFrRNWZA6ZUH6ukUWdOvmBUDiEpTXgYuAu8KsxcwmAJOBH4VZR1vcfbm7H3f3Wnd/muCSnakhl3Ui8eeP3X2/u5cDPyT8uk76PPC6u28PuxAAM8sA/kTwD3BvYABwAcF4wNC4ez1wC/Bx4ADBbxR+TRCcnV1LJPJAWZA2ZUEalAUp1aIsOAtlwTlRFqRAWdCasiBtyoI0dKcsCH2G0U6URfhj2WLAcGCXmQEUAJlmNt7drw6xrrY4bV/K03kFuB81sz2JWqLo88CDYRfRTBFwMfCTxDjOWjP7OfBd4FthFubuawk6qQCY2TLC7UaHnQcxlAWpF6AsSJeyIHXKgtQpC85OWZAiZUErMZQFqRegLEhXt8mCbnnlhZkNsmDpnAIzyzSzm4Fbgb+EXNrjBME4IXH7KfAH4ObwSgIz62dmN5tZrpllmdltBDP2/inMuhJ+Dnwt8Z5eAMwhmJE2VGb2foLL56IygzCJrvN24K7E+9iPYLzdmlALA8zs3YnPV76Z3UMw0/FTnfTcUcwDZUH6lAUpUha0+9zKghQpC9KnLEiPsqAVZUH6lAUp6k5Z0C2bFwRduLsILjk5CjwEzHH350Mtyr3a3Q+cvAGVQI27HwqzLoIxY98FDgHlwNeAW9w9Cus4zydYLmoLsAlYBXwv1IoCdwAL3f142IW08GngowTv5TtAA/D1UCsK3E4wGVYZcBPwkWazfHe0yOWBsuCcKAvSoyxoTVmQOmVB+pQF6VEWNC9IWXAulAXp6RZZYNGZAFVEREREREREpLXueuWFiIiIiIiIiHQTal6IiIiIiIiISKSpeSEiIiIiIiIikabmhYiIiIiIiIhEmpoXIiIiIiIiIhJpal6IiIiIiIiISKSpeSEiIiIiIiIikabmhYTGzHaY2QkzO25mcTNbZmZfNjN9LkV6EGWBiICyQEQCygJpjz4AErZPunsf4FLgQeBe4MlwSxKRECgLRASUBSISUBZIK2peSCS4e4W7vwB8FrjDzK40s4+b2SozO2Zmu81s3snjzewPZva15o9hZmvN7JbOrVxEzidlgYiAskBEAsoCaU7NC4kUd38T2APcAFQBnwf6AR8H7moWPE8Ds06eZ2ZXAcOAP3ZiuSLSQZQFIgLKAhEJKAsE1LyQaNoHFLl7sbuvc/cmd18LPAvcmDjmeeByM7s8sX078Jy714VQr4h0DGWBiICyQEQCyoIeTs0LiaJhwBEzm2RmS8zskJlVAF8GBgC4ey3wa2BWYvKeW4FfhFaxiHQEZYGIgLJARALKgh5OzQuJFDO7liCYXgeeAV4ALnb3vsBPAWt2+NPAbcBNQLW7/7WTyxWRDqIsEBFQFohIQFkgoOaFRISZFZrZJ4BfAQvcfR3QBzji7jVm9l7gc83PSQRRE/AD1FEV6RaUBSICygIRCSgLpDlz97BrkB7KzHYAg4EGgoDZCCwAfurujWb2GYLQKQKWAjuAfu7efBKe+4H5wEh3L+3UFyAi54WyQERAWSAiAWWBtEfNC+nSzOzzwGx3vz7sWkQkPMoCEQFlgYgElAXdk4aNSJdlZvnAV4DHw65FRMKjLBARUBaISEBZ0H2peSFdkpndDBwCDhJM2iMiPZCyQERAWSAiAWVB96ZhIyIiIiIiIiISabryQkREREREREQiTc0LEREREREREYk0NS9EREREREREJNLUvBARERERERGRSFPzQkREREREREQi7f8DpKnRQoehQl0AAAAASUVORK5CYII=\n", + "text/plain": [ + "<Figure size 1296x576 with 8 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Separating the two equations #\n", + "plt.rcParams['savefig.facecolor']='white'\n", + "# Eq.1 ------\n", + "col = sns.color_palette()\n", + "col_pte = ['#436bad', 'orange','crimson', 'gray']\n", + "col_pte2 = [col[0], 'gray', col[4], 'gold', col[2], col[3]]\n", + "colors={1:'dimgray',2:'gold',3:'mediumseagreen',4:'darkorange',5:'crimson',6:'royalblue'}\n", + "\n", + "term = 'All'\n", + "res = '80km'\n", + "fig, ax = plt.subplots(2, 4, figsize=(18,8), sharex=True, sharey=False)\n", + "for i in range(1,4): # loop over simulations\n", + " ax[0,0].plot(dur[exp80[i]], dp[exp80[i]], color=colors[i],\n", + " linewidth=3, label=expname[i], alpha=0.9)\n", + " ax[0,1].plot(dur[exp80[i]], dfi[exp80[i]], color=colors[i],\n", + " linewidth=3, label=expname[i], alpha=0.9)\n", + " ax[0,2].plot(dur[exp80[i]], ep[exp80[i]], color=colors[i],\n", + " linewidth=3, label=expname[i], alpha=0.9)\n", + " ax[0,3].plot(dur[exp80[i]], itt[exp80[i]], color=colors[i],\n", + " linewidth=3, label=expname[i], alpha=0.9)\n", + " ax[1,0].plot(dur[exp80[i]], tadv[exp80[i]], color=colors[i],\n", + " linewidth=3, label=expname[i], alpha=0.9)\n", + " ax[1,1].plot(dur[exp80[i]], vmt[exp80[i]], color=colors[i],\n", + " linewidth=3, label=expname[i], alpha=0.9)\n", + " ax[1,2].plot(dur[exp80[i]], diab[exp80[i]], color=colors[i],\n", + " linewidth=3, label=expname[i], alpha=0.9)\n", + " ax[1,3].plot(dur[exp80[i]], eq2res[exp80[i]], color=colors[i],\n", + " linewidth=3, label=expname[i], alpha=0.9)\n", + " \n", + "ax[0,0].set_title('Dp')\n", + "ax[0,1].set_title('Dfi')\n", + "ax[0,2].set_title('EP')\n", + "ax[0,3].set_title('ITT')\n", + "ax[1,0].set_title('ITT:TADV')\n", + "ax[1,1].set_title('ITT:VMT')\n", + "ax[1,2].set_title('ITT:DIAB')\n", + "ax[1,3].set_title('ITT:res')\n", + "\n", + "\n", + "ax[0,0].set_ylim((-18, 12))\n", + "ax[0,1].set_ylim((-6, 6))\n", + "ax[0,2].set_ylim((-1.4, 1))\n", + "ax[0,3].set_ylim((-13.5, 9))\n", + "ax[1,0].set_ylim(-55, 14)\n", + "ax[1,1].set_ylim(-2, 65)\n", + "ax[1,2].set_ylim(-21, 12)\n", + "ax[1,3].set_ylim(-4, 7)\n", + "\n", + "ax[1,0].set_xlabel('Day', fontsize=12)\n", + "ax[1,1].set_xlabel('Day', fontsize=12)\n", + "ax[1,2].set_xlabel('Day', fontsize=12)\n", + "ax[1,3].set_xlabel('Day', fontsize=12)\n", + "\n", + "ax[0,0].set_ylabel('hPa/'+str(dt)+'hr', fontsize=12)\n", + "ax[1,0].set_ylabel('hPa/'+str(dt)+'hr', fontsize=12)\n", + "ax[0,0].set_xlim((3, 9))\n", + "#ax[1].set_xlim((3, 9))\n", + "#ax[2].set_xlim((3, 9))\n", + "#ax[3].set_xlim((3, 9))\n", + "ax[0,0].yaxis.grid()\n", + "ax[0,1].yaxis.grid()\n", + "ax[0,2].yaxis.grid()\n", + "ax[0,3].yaxis.grid()\n", + "ax[0,0].xaxis.grid()\n", + "ax[0,1].xaxis.grid()\n", + "ax[0,2].xaxis.grid()\n", + "ax[0,3].xaxis.grid()\n", + "ax[1,0].yaxis.grid()\n", + "ax[1,1].yaxis.grid()\n", + "ax[1,2].yaxis.grid()\n", + "ax[1,3].yaxis.grid()\n", + "ax[1,0].xaxis.grid()\n", + "ax[1,1].xaxis.grid()\n", + "ax[1,2].xaxis.grid()\n", + "ax[1,3].xaxis.grid()\n", + "ax[0,0].axhline(y=0,linestyle=':', color='k')\n", + "ax[0,1].axhline(y=0,linestyle=':', color='k')\n", + "ax[0,2].axhline(y=0,linestyle=':', color='k')\n", + "ax[0,3].axhline(y=0,linestyle=':', color='k')\n", + "ax[1,0].axhline(y=0,linestyle=':', color='k')\n", + "ax[1,1].axhline(y=0,linestyle=':', color='k')\n", + "ax[1,2].axhline(y=0,linestyle=':', color='k')\n", + "ax[1,3].axhline(y=0,linestyle=':', color='k')\n", + "ax[0,0].legend(ncol=2, loc='upper left')\n", + "#ax[1].legend(ncol=2, loc='upper left')\n", + "#plt.legend(bbox_to_anchor=(1.0, 1), loc='upper center')\n", + "\n", + "#plt.savefig('TimeseriesPTE_'+exp+'_'+str(dt)+'hrly_Eq1_upper'+str(int(p2level))+'hPa_box'+str(int(boxsize))+'_CyCen.png',\n", + "# bbox_inches='tight',dpi=200)\n", + "ax[0,0].tick_params(axis='both', which='major', labelsize=12)\n", + "ax[0,1].tick_params(axis='both', which='major', labelsize=12)\n", + "ax[0,2].tick_params(axis='both', which='major', labelsize=12)\n", + "ax[0,3].tick_params(axis='both', which='major', labelsize=12)\n", + "ax[1,0].tick_params(axis='both', which='major', labelsize=12)\n", + "ax[1,1].tick_params(axis='both', which='major', labelsize=12)\n", + "ax[1,2].tick_params(axis='both', which='major', labelsize=12)\n", + "ax[1,3].tick_params(axis='both', which='major', labelsize=12)\n", + "plt.subplots_adjust(wspace = 0.14)\n", + "fig.suptitle(''+res+' simulations (interpolated to 1x1 degree)',fontsize=16, weight='bold')\n", + "#fig.suptitle('Eq1: '+term+' Term ('+res+')',fontsize=14, weight='bold')\n", + "plt.savefig('CyclonePTEtimeseries_Sim123_'+res+'_Allterms_in_onefig.png',\n", + " bbox_inches='tight',dpi=100)\n", + "plt.show()\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABC8AAAIfCAYAAABQG/aqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd3wUdfrA8c93S7LpkITee28CYkMWBSsiiNhPsZx66s/TO+tZzju9s571rJwKKiqi2BErQemhhN4hEEoS0tv2/f7+mM3uJqRCIIk879drX5m2M8/OzE52nvkWpbVGCCGEEEIIIYQQoqkyNXYAQgghhBBCCCGEEDWR5IUQQgghhBBCCCGaNEleCCGEEEIIIYQQokmT5IUQQgghhBBCCCGaNEleCCGEEEIIIYQQokmT5IUQQgghhBBCCCGaNEleCCFEHSmlJiqlflJK5SqlvEqpAqVUilLq0iqWjVZK/UMptU0p5VJKHVJKzVFK9a+03DSllA68ph23D3MEwuJMacQYHguLw34U63isqv3dEOs/3pRSVwTiLVRKtQhM6xr2OWYcxbrvCuyTuxoo3OPuaM9bpZQ97Jzp2rDRBddf52MVuGY8ppR6rKFjCay/lVLqJaXU8sC1qzy2O45yvZcrpT5TSu0PW2dOA8Qb/p2ddrTra6qUUu8FPuO8xo5FCCEai6WxAxBCiOZAKXU58HGlyQnAGGCMUup6rfWMwLIWYD4wOmzZZOBS4DyllF1rverYRy2q8ffA34XAjEaM46gppSKAfwdGX9VaFzTwJu4CugB7gBcbeN3NhZ3QOZMCpDdWIAHTMK47AI8dg/V3AO48Buu9Erj4GKz3RPFv4BrgfKXUOK31T40dkBBCHG9S8kIIIerm+rDhx4AYIPxJ5K1hw38ilLiYRShx4QNigbeOWZTHkNZaBV72xo7lWNFaPxb2OVMaO546mAp0CwxPL5+otU4P+xzTGiWyOlBK2Ro7BnGYAuAF4ArgjQZc7wLgHiomdX83jvW5rLXeAvwWGL3nWG5LCCGaKkleCCFE3fjChmdrrcuAD8OmRYcNTwsbfkBrnau1/gzjST/ASUqpQdVtSCmVpJRaGygi7AmU+iBQRaW8ePSZSqlvlFJlSqndSqmblOE+pVRGoErL10qpjrV9MKVUslLqVaXUrsD6ipRSW5VSHyml+oQtd1jx+0pFtm9VSr2slMoLvJ5XSlmVUhOUUuuUUqVKqVSl1BmVtl9lsf76FPdXSr2ulFqtjOo5HqVUsVJqhVLqT0opFVhmmlJKh71tTOVtVFdtRCllUUrdHdhGqVLKqZTapJT6p1Iqprq4lVIXBD6zQym1M3B8VH33fQ1uDvxdrrXeHbbeKquNKKVmhE0/TSn1gVIqXxlVoT5VSrUNLGcP7Ksugbd2CXtfetj6Ogb2/W6llDuwru+UUmdW2ifh+3WyUuptZVQZcFQx/2Kl1JuBY1mmlJpfeV/U53hURSl1tjK+P+lKqZJA7BmB/dEzbLl0QqUuABZUPj+UUial1O2B41wSONbrlVL3KKMUVvh22wf2c0lgn78OxNUWb+C9XQPHZEzYtPJYdNi0ZKXUC0qpHcqo9lGslFqqlLq+yhVXEkh8/UVrPRvIqiGePoF9r5VSK8s/a+Dc8Qemfx623pe01v/RWi+qSxzVbPPUwGdxBo7dX2pZ/iql1K/KqFLlUkY1vn8ppaIrLRenlJoeOH+LlFKzlVKjVBXXoNrO5cAy/ZRS7yujioxbKZUdOO6Dq4jxFKXU50qpLGVcuw4o43vatYqPVF767xylVJcq5gshxO+b1lpe8pKXvORVywuYiJHA0BglL6KB2wPjGngqsFwE4AlMK6y0jpfDlr8hMG1a2LRpQAtgdWDcBUwOe39K2LKHwobLX19WMe3XOny2b6t4X/lrQthy5dNSwqY9VktM3wDeStMKgJY1rbeO27OHTXfW8Bn+XsW+rvxKqW79gBmYV8N7VwExVcRdCPirWP6a+u77ao5bLKFz7dlK87qGrWdG2PQZYdPzq9jmT4Hl7DXElR5Ypk81x1xjfFcur+a45YQvW8fzKAtoe5THI/w8eqCG92cDyYHl0mtYzo7xEOiLGpb5GlCBdUUBm6tY5kBVx6qK4921hu2U78e2tcT8Zj2ve+HH5Y4q5v8xbP6jGImY3YHxfUBiNesNngv1iKU/UFrL/psWtvwrNeyHVCAqsJwCfqximf3VnDvh+6Sqc/kMoKya7TqA0WHruozDr4/lr1ygT6V9MDBs/h8b4n+bvOQlL3k1p5eUvBBCiDrQWn+FkcAoxngSWwr8F+PH6AvAI4FFkwi1J1RYaTXh462r2Ew88D0wDONmfLLW+vNqQloLtMJok6DcRIwqKy2BFYFpo5VSHWr4aADlT8nnYrTjEQ8MBv6KcQNSV25gAHBS2LQLgQ8CMb0cmJYAXFCP9dbFDUAvjJunCIz4y2P/s1JKaa1naK1V2HsW6rpVhbkCOD8wvAbogXGT+H1g2knAn6t4XzzwJMZnD69i9Iew4aPZ98MInWvralm2KrsxPktvjBt2gLOVUu201imBfbUnMH1P2L7qGpj2EkaVqEJgLGDDOAZbMG7q/6uMNjkqU8B5GAnAw55EYyRVBgTW/VlgWmvgvsDwkR6PcD9i7Ps2gBVIBP4VmNcKo20BAp/1H2HvG6srViu6jFA7Dk8G1hNPqH2QCcDkwPC1QN/A8DKgI9ATI5lXKx2oCkSoBBdhsZSf148TKi0zA+N6NITQcbxZKXVaXbZXx5imY5y7AA8Dn2AkWfwYSbq8htoWxjW2vMTEaxiJ3rMwvjcVKKVOIfSdm4FxfkQD9wamjcC4VgKMC7zA+E70B9oDu+oQU1Xn8nSMRNUeYDgQifFdPYTxHXk1EGM08DpGMm41xrkRifFdcmOcS89W2t4mjGQHwKg6xCeEEL8rkrwQQog6CBSD/5DDi3hHAv2AdnVZTS3znwROxnhqN0FrXVOr8k9prXOAH8Km7dNav6GNRht/DpveuZbt7g78PRXjBmQKRgLgRa11Wi3vDfeu1nqT1noNoZthgMcDMX1bj5jqywf8D9iLkfhZh3FzCEbyoKpkUV1dGDb8uNZ6l9Y6C7g/bHpVyZgs4NHAZ58ZNr1L2PDR7Pu2YcNH0mvDo4HPsp1QXfrK8VVJKRVF6IYvAaM9AyewndANejIVE1nl/qO1/l5r7dBar69i/rOB8ygXeDBs+vjA3yM9HuH2YzQguQQoAfKAh8Lm16XKDsBFYcMPBtZTRMWk4jmBv2eFTXtSa71fa70T+E8dt1UX4fvmr1rrPK31OowEa7mGThz+EWN/WjFu5MG4PqU08HbC99/ftNaFWusFhJIn4cKPyzQgE+O6Gp4MKD8uZ4dNe1lrvVlrfRD4Zx1iqnAuK6V6ETr/u2CUAnJhJNlaBaYPUkb1rNMxEhRgfE+2BJZdgHENgNA5D4DW2o9xjkHF778QQpwQJHkhhBB18xLGE1UwnqBGY/zo9WL8YP8yMC+X0JOxFpXWER82nM3hyp8qHqT2J+npgb+OsGl7wobdYcORtazrj8BWjATMvcC7wEpgl1JqaC3vrSqm6uKqc0yV2wqoZdkrMOqCj8FIVFT1vy2qruurQquw4b1hw+H7u6rkyE6tdXlbKaVh08Mb9juafR+eDNO1LFuVrWHD1cVXnUSMJ8a1Sapi2ppa3rO3muHkwN8jPR6A0UYFRnLvTxilNqo6F+t6vtQlKZZU6S9ULFVTn9JNtSnfNyWVSj3Uad8cicB2podN8mJU2Who5fuvWGsdXoqtqv1Xn+OSHDatunOvOpXP5bru26Q6Lmurog2X2pLgQgjxuyXJCyGEqJt+gb8OrfX7gSdtvwDbAtOHKqWStdZuQomHOFWxwcwBYcOpVWwjJfC3B/CDUqpFDfF46zitVlrr5Vrrvhi9VpyP0R5ACcaTw6frsaoqt6+1ri2u8qRG+E1z93ps94qw4f/DqMuuMIpiN4RDYcOdqxmuKhnlKR/QWleZXDjKfZ8ZNtyq2qWq5wkbri75Ud30PEKN2G4Pr74QVo3BpLX+tor3OqqYFq66fVxeuuRIj0e5wRhVAwA2YlRzMGFUu6pKTYmh8O2cXs1+uKxS/BAqFVR5uC5qiqd838QqpVqGTa/rvqm3QGmDe8MmWYA3G3IbAeX7L04pFV5VpKr9F/4Zr67muJxcab1gdBNbrlMdYqp8Lodv98cavhcbKy07vYZlg4nFQOKt/LhW25iqEEL8XknyQggh6mZ/4G+UUuoPSimbUmosRnsBYNwIlv/InBH2vqeU0XvIpYR6CVhdTXH5mYTazhgKzKtLzwlHK9D6/kUYN6O/YNRbzw/MbujqHVUpfyo8SCnVRSllxai7X1fhyZEiQAV6VhhWzfK5gb9dKt3gVeebsOGHlFLdlFJtgKfCpld1k16ro9z3awglEKpqO6IhlO+r5PC2U7TWDkJVk3oppZ5RSrUO9NowJNALxM+VV1ZHf1VK9VVKJWFUpSr3Y+Dv0R6P8PPFhZEs6kzFKirhcsOGBwduIMuFx/Jy4LPblFLdlVKXKKW+IdSuyYKwZR9QSnVQSvXAaN+kPoLxVFE6Jzye55RSLZVSA4G7w6bXeK4qo/eUZKVUMhV7UYoJm16+rBX4CKPr6AKMdoAAJiql/hT2XpRSsZXfb0w2plXuAaQK4fvv30qphMA1+JIqlg3fD08opU4PHJdOSqnzlVIfAlcH5oefp3copXoppdpRsZeZOglUwSpPaI9XSt2llGoReI1QSj1KqMeQJYS+69cpo2eUOKVUq0C8zxJqO6Vcf0Lt3FSVABdCiN+3Y9kaqLzkJS95/V5eGF1SVtvSP/DfsGUtwK/VLFcMDA9bdlrYvGmBaeG9kvwERAamp4RN7xqY1jVsWkrYeh8Lm26v5bPtqOFzvRi2XG3bmRY2Pb18etg0e9iyj4VN/3vYdA9G3fTSOmzPHph2dRVxlwEZlfdXYPlvqlj+sRrWf9S9W1Sanl7ffV/DsSs/z5ZVmh5+XswImz6jmn0SPt0eNv2/VcQ1IzCvH8aNdHXxp9d03CrFGz5/fxXrarDeRjC+n5uqeN+2avbZiKq2E5hnourzKfxVfh5V19vIoaq2W8Mxv6eKdZR/ttp6G3mjDuvvWsP7g589sOyzYdOvDhybJYS+g/2rOceqej1WS1zV9TYSvv/Cr0Gv1bK98uttdb2NhPdisqAe5/IYjBIZ1W03/Hp2JaFerKp6zai07j+FzetR1/9f8pKXvOT1e3lJyQshhKgDrfVbGE/4fiZUZL4Yo1eP/wPuDFu2vB2MxzFuTt0YN3mfAqO01qtq2dyfCT2dOxv4pD5tQByB/2I89T+AEasTozj936lYHPxYeQqjQcHy7f+G0ZhdnWitZ2E8Wd6NEftKjCoYO6t5y/9h3Pzm13H9PowqBX/FKO1QhvHEfjPGMT5ThxXtrqej3ff/C/wdpZTqdoQx1OQxjHPxUOUZWuvNGCWEXsfomcGN0fPIJuBt4NYj3OYtGDeeORj74weMfZwZ2O5RHY/A93Mi8B3GdzgHI2F4ZzXLrwzM20nFqjZoowHFizF6tliOUYrDhVGaaH5g+urAsg6MRk7nYtyEF2C0cfLHuu2WoFeBNzDaxtGV4snESLa8GIjXHYhpGUb3zEd6TA6jlBpPqNTIZ1rrWYFjcy3G54sCPlRK1dbmTp1orTdhNGC5HONzZWA0svpaNcvfhtFrzEKM89KD0T7GAoyea74LLKcxGsr9X2C5YmAORsK6XHjpm9riXIjRy8h7ge15MP5nrMNoC+RvYct+hNG16mcYCTovxndtJUa1scqNuZZXkftFG429CiHECaW873EhhBBCNDOBG8MtGE/Ln9Ra/63mdzRNSqnHCBXTH6sbvqcKIaqllDoJyNFa7w2Mt8RILF0cWORPWus3Gis+AKVUX4zEoALO01p/X8tbhBDid0dKXgghhBDNlNbaRaithttraeRVCFG1q4A9Sql8pdQ+jMY0yxMXi4B3Gi2ykL9hJC7mS+JCCHGikuSFEEII0YxprT/WRu8ECVrrgsaOR4hmaGHg5QXaYFRFWg78BThbG71INSqt9bWB7/n5jR2LEEI0Fqk2IoQQQgghhBBCiCZNSl4IIYQQQgghhBCiSZPkhRBCCCGEEEIIIZo0SV4IIYQQQgghhBCiSZPkhRBCCCGEEEIIIZo0SV4IIYQQQgghhBCiSZPkhRBCCCGEEEIIIZo0SV4IIYQQQgghhBCiSZPkhRBCCCGEEEIIIZo0SV4IIYQQQgghhBCiSZPkhRBCCCGEEEIIIZo0SV4IIYQQQgghhBCiSZPkhRBCCCGEEEIIIZo0SV4IIYQQQgghhBCiSZPkhRBCCCGEEEIIIZo0SV4IIYQQQgghhBCiSZPkhRBCCCGEEEIIIZo0SV4IIYQQQgghhBCiSZPkhRBCCCGEEEIIIZo0SV4IIYQQQgghhBCiSZPkhRBCCCGEEEIIIZo0SV4IIYQQQgghhBCiSZPkhRBCCCGEEEIIIZo0SV4IIYQQQgghhBCiSZPkhRBCCCGEEEIIIZo0SV4IIYQQQgghhBCiSZPkhRBCCCGEEEIIIZo0SV4IIYRoVpRSUUqpr5VShUqpOUqpq5VSPzR2XEIIIYQQ4tiR5IVoMpRS6Uoph1KqWClVoJRaopS6VSkl56kQJ5A6XAsuBdoASVrrqVrrWVrrcxoxZCHEMRJ2PSgJe/1XKTVNKeULjBcppdKUUhMaO14hRMMKXAMeDfv+O8O++yVKqd1hww6llD/8etHY8YuGJTeFoqm5SGsdB3QBngLuB95u3JCEEI2gpmtBF2Cb1trbWMEJIY6ri7TWsWGvOwLTl2qtY4EWGNeHT5RSiY0WpRDiWFlS/v0HbiXw3Q+8uoXNOx84EH69aNywRUOzNHYAQlRFa10IfKWUygSWKaX+A9wDOIEewCnAauBarfWexotUCHEsVXEtiAcuApRSahLwZ8AH3KS1PqPxIhVCNBattV8p9Q7wMtAdyGvkkIQQQhwDUvJCNGla6xXAPmB0YNLVwONAMpAGzGqcyIQQx1PYteAn4N/A7MBTFSmZJcQJTillAW4CSoDtjRyOEEKIY0RKXojm4ABQXgz0W631rwBKqYeAQqVUJ611RqNFJ4Q4XsKvBUKIE8cXSqnwamL3Ah7gFKVUAeAFdgCTA6W1hBBC/A5J8kI0Bx0IFQENJim01iVKqTygffh0IcTvVvm1oE1jByKEOK4maa1/Cp+glJoGLJPqYkIIceKQaiOiSVNKjcS4YVkUmNQpbF4sxlPYA40QmhDiOKriWiCEEEIIIU4gkrwQTZJSKj7Q5dnHwAda6/WBWRcopc5QSkVgtH2xXKqMCPH7VcO1QAghhBBCnECk2ohoar4O1Gv1A5uA54E3wuZ/CPwdOBWjt5Grj3uEQojjobZrgRDixPG1UsoXNv4j8GVjBSOEEKJxKK11Y8cgRJ0opWYA+7TWDzd2LEIIIYQQQgghjh+pNiKEEEIIIYQQQogmTZIXQohmSyl1hVJqs1KqVCm1Uyk1urFjEkIcHaXUHUqplUopV6DEXU3L3q2UylRKFSql3lFKRR6nMIUQQghxnEm1ESFEs6SUGg/8D7gcWAG0A9Ba72/MuIQQR0cpdQlGWyfnAlFa62nVLHcu8B5wFkavU59jdJ35wHEKVQghhBDHkSQvhBDNklJqCfC21vrtxo5FCNHwlFJPAB1rSF58CKRrrf8WGD8bmKW1bnv8ohRCCCHE8fK7722kRYsWumfPno0dxmFKS0uJiYlp7DAOI3HVj8RVP6tWrcrRWrc62vUopczACOArpdQOwAZ8AdyrtXZUWvZm4GYAm802vHPnzke7+Qbl9/sxmZpeDT6Jq34krvrZtm1bQ1wLBlCxx4m1QBulVJLWOrfywnItODISV/1IXPXTQNeCI9YU7xOa6m84iat+JK76qfM9gtb6d/3q3bu3booWLFjQ2CFUSeKqH4mrfoCVugG+10B7QAMrMaqLJAOLgX/V9L6meD1oqsdK4qofiat+6nItAJ4AZtQwfydwXti4NXBd6FrbuuVaUHcSV/1IXPXTUL8LjvQl14K6k7jqR+Kqn7peC5peClYIIWpXXrriFa31Qa11DvA8cEEjxiSEOL5KgPiw8fLh4kaIRQghhBDHmCQvhBDNjtY6H9iH8ZRVCHFi2ggMCRsfAmTpKqqMCCGEEKL5k+SFEKK5ehf4P6VUa6VUS+Au4JvGDUkIcbSUUhallA0wA2allE0pVVUbXe8BNyql+geuAQ8DM45jqEIIIYQ4jn73DXZWxePxsG/fPpxOZ6PFkJCQwObNmxtt+9WRuOpH4qqZzWajY8eOWK3WY7H6xzHautgGOIFPgH8diw0JIY6rh4G/h41fA/xDKfUOsAnor7Xeq7Wer5R6BlgARAGfVXqfEEIIIX5HTsjkxb59+4iLi6Nr164opRolhuLiYuLi4hpl2zWRuOpH4qqe1prc3Fz27dtHt27djsX6PcBtgZcQ4ndCa/0Y8Fg1s2MrLfs8Rns3QgghhPidOyGrjTidTpKSkhotcSHEiUApRVJSUqOWcBJCCCGEEEL8PpyQyQtAEhdCHAfyPRNCCCGEEEI0hBM2eSGEEEIIIYQQQojmocklL5RSdyilViqlXEqpGZXmna2U2qKUKlNKLVBKdWmkMIUQQgghhBBCCHGcNLnkBXAAeAJ4J3yiUioZmAs8AiQCK4HZxz26BpSZmckVV1xBjx496N+/P2PHjiU6OpqhQ4eSmJhIt27dGDp0KOPGjSM9PZ2BAwfWab3Tpk0LvnfIkCH8/PPPwXl2u52VK1cGxyuv9z//+Q89e/akT58+fP/99w33YZup3Nxchg4dytChQ2nbti0dOnQIjrvd7kaJ6V//+lcwBrPZHBx++eWXeeyxx+jQoQOnn346/fv356OPPqpxXUdzrjz55JNyrgghhBBCCCGOiybX24jWei6AUmoE0DFs1iXARq31nMD8x4AcpVRfrfWWI93egw8+eBTR1uzJJ5+sdp7WmsmTJ3Pdddfx8ccfA5CWlkZxcTGjR49m2rRpTJgwgUsvvRQwbhzr49lnn+XSSy9lwYIF3HzzzWzfvr3W92zatInPPvuMjRs3cuDAAcaNG8e2bdswm8312vaxkj5w0jFbd9cNX1Q5PSkpibS0NAAee+wxYmNjueeee4LzXS7XMYupOg899BAPPfQQALGxscH4wIjx7rvv5pZbbiEzM5Phw4dz6aWX1thV6ZGeKx9//HGTPVeEEEIIIYQQvy9NLnlRgwHA2vIRrXWpUmpnYHqF5IVS6mbgZoBWrVqRkpJSYUUJCQkUFxcD4Pf7j1nA5duoSkpKCiaTiauvvjq4XI8ePYLv83g8OByO4LySkhL8fn+N6ywX/t6BAweyf//+4Pt8Ph+lpaVVrveTTz5h8uTJuN1ukpOT6dq1KwsWLGDUqFFHtR8ags/nQ2t9zNZfl/3qcrmwWq288sorvPvuu3g8Hrp168b06dOJjo7m1ltvJS4ujjVr1pCdnc0///lPJk2ahNaaRx55hB9//BGlFPfeey9Tpkzht99+49///jetW7dm3bp1TJw4kf79+/P666/jdDr58MMP6d69e71iL4/R5/PRtm1boqKiyMjIoFWrVlW+93icK06n87DvoBBCCCGEEELUR3NKXsQChypNKwTiKi+otX4LeAugT58+2m63V5i/efNm4uKMt5lMx67mTPk2qrJlyxZOPvnkapexWq1ERUUF58fGxmIymWpcZ1Xv/fnnn5k0aVLwfWazmZtvvpmoqCgA3G53cL05OTkMGTIkuGzXrl0pKCio0zaPteLi4mPac0VdPmNkZCSRkZFcddVV/N///R8A9957L5988gn/93//h9VqJTc3l6VLl7JlyxYmTpzIH/7wBz777DM2bdrE+vXrycnJYeTIkZx77rlER0ezYcMGNm/eTGJiIt27d+emm25i1apVvPTSS7z77ru8+OKL9Yq9PEaz2cz27dvp3bt3jQmQozlXTjnllDqdKzabjWHDhtX6OYQQQgghhBCiOs0peVECxFeaFg/U/si8BjVV7WjO7r33Xu677z6ys7NZtmxZhXmzZs1ixIgRgFEdZcKECQBVlmxoSl1dVle143jbsGEDDz/8MAUFBRQXF3PeeecF502aNAmTyUT//v3JysoCYNGiRVx55ZWYzWbatGnDmDFjSE1NJT4+npEjR9KuXTvAKHlzzjnnADBo0CAWLFhwRPG98MILvPnmm6SnpzN//vxal/89nitCCCGEEEKI35em2GBndTYCQ8pHlFIxQI/A9GanX79+rFq16pit/9lnn2XHjh088cQTXHfddXV6T8eOHdm/f39wfN++fbRv3/5YhdhsTZs2jf/+97+sX7+eBx54AKfTGZwXGRkZHC6/wa+pukv48iaTKThuMpnwer1HFN/dd9/N6tWrmT17Ntdee22F+KpypOdKRkZGcFzOFSGEEEIIIcSx1OSSF0opi1LKBpgBs1LKppSyAJ8DA5VSUwLzHwXWHU1jnY1pzJgxuFwupk+fHpyWmprKwoULG2wbJpOJP//5z/j9/jr1BjFx4kQ+++wzXC4Xu3fvZvv27Zx88skNFs/vRXFxMe3atcPj8fDJJ5/UuvyZZ57J7Nmz8fl8HDp0iF9//fW47NdLLrmEESNGMHPmzFqXPZJz5eOPP5ZzRQghhBBCCHFcNLnkBfAw4AAeAK4JDD+stT4ETAH+BeQDo4ArGivIo6WU4vPPP+fHH3+kR48eDBgwgMcee6zGp9dbt26lY8eOwdecOXPqtJ2HH36YZ555ptZlBwwYwOTJk+nfvz/nnXcer776qvQeUYXHH3+cUaNGMX78eHr16lXr8pMnT2bw4MEMGTKEs846i2eeeYa2bdseh0jh0Ucf5fnnn69Tw7T1PVcuu+wyOVeEEEIIIYQQx4U6lj04NAV9+vTRW7durTBt8+bN9OvXr5EiMhQXFzeJhjArk7jqR+KqXfj3TSm1Sms9orFiqep60NhSUlKo3KhwUyBx1Y/EVT9yLThcUz1WElf9SFz1I9eCwzXVYyVx1Y/EVT91vRY0xZIXQgghhBBCCCGEEEHNqbcRUcntt9/O4sWLK0z785//zPXXX99IEYmG9q9//euw6kFTp07loYceqtd65FwRQgghhBBCNGeSvGjGXn311cYOQRxjDz30UL0TFVWRc0UIIYQQQgjRnEm1ESGEEEIIIYQQQjRpkrwQQgghhBBCCCFEkybJCyGEEEIIIYQQQjRpkrwQQgghhBBCCCFEkybJi0aQm5vL6aefztChQ2nbti0dOnRg6NChDB06FLfb3WhxPfbYY/Tp04ehQ4fSv39/Pvroo+C8adOm8emnn1ZYPjY2Njg8c+ZMevXqRa9evZg5c+Zxi/lYy83NDR6bpnasymMZOHAgX331VXDeW2+9xfDhw+nbty8nn3wyixYtqnFddrudPn36MGTIEEaOHElaWlpwXteuXcnJyQmOp6SkMGHCBAC01tx555307NmTwYMHs3r16ob9kEIIIYQQQggRIL2NvNH+2K371gNVTk5KSmLx4sXExcXx2GOPERsbyz333HPs4qiH22+/nYceeojt27czfPhwLr30UqxWa43vycvL4x//+AcrV65EKcXw4cOZOHEiLVu2bNDYpj64v0HXF27Okx2qnJ6UlBS8ma/qWLlcrmMWU23uvvtu7rnnHjZv3szo0aPJzs5m3rx5vPnmm/zwww907dqV1atXM2nSJFasWEHbtm2rXdesWbMYMWIE7777Lvfeey8//vhjrdv/7rvv2L59O9u3b2f58uX86U9/Yvny5Q35EYUQQgghhBACkJIXTcb06dMZOXIkQ4YMYcqUKZSVlQFGiYc777yT0047je7duwdLP2ituffeexk4cCCDBg1i9uzZgPFkfMyYMVx22WX07t2bBx54gFmzZnHyySczaNAgdu7cWad4evXqRXR0NPn5+bUu+/333zN+/HgSExNp2bIl48ePZ/78+Ue4J5q+8GN1zTXXNPqx6tevHxaLhZycHJ5++mmeffZZkpKSADjppJO47rrr6txV6qmnnsr+/XVLEn355Zdce+21KKU45ZRTKCgo4ODBg3V6rxBCCCGEEELUhyQvmohLLrmE1NRU1q5dS79+/Xj77beD8w4ePMiiRYv45ptveOCBBwCYO3cuaWlprF27lp9++ol77703eOO4du1aXnrpJdavX8/777/Ptm3bWLFiBTfddBOvvPJKneJZvXo1vXr1onXr1sFp9957b7DKxNChQ4PT9+/fT6dOnYLjHTt2rPMNcHMUfqx69+7d6Mdq+fLlmEwmWrVqxcaNGxk+fHiF+SNGjGDjxo11Wtf8+fOZNGlShWljx44NHvObbropOL0pHHelVC+llFMp9cFx3bAQQgghhBDiuJJqI9VU7TjeNmzYwMMPP0xBQQElJSWce+65wXmTJk3CZDLRv39/srKyAFi0aBFXXnklZrOZNm3aMGbMGFJTU4mPj2fkyJG0a9cOgB49enDOOecAMGjQIBYsWFBjHK+++irvvfceu3btOqz0xLPPPsull14aHC9v80Jrfdh6lFJHsBdqVl3VjuMt/FgVFxdz3nnnBecdz2P1wgsv8MEHHxAXF8fs2bOr3eda61qPx9VXX01paSk+n++wtisWLFhAcnIyYJQWee6554LrrexYHPdavAqkHu+NCiGEEEIIIY4vKXnRREybNo3//ve/rF+/nr///e84nc7gvMjIyOBw+Q1jVTeOVS1vMpmC4yaTCa/XW2Mct99+O1u3bmX27Nlce+21FeKoTseOHcnIyAiO79u3j/btj2FbIo0s/Fg98MADjXas7r77btLS0vjtt98YPXo0AP3792fVqlUVllu9ejX9+/evcV2zZs1i9+7dXHXVVdx+++01LluusY+7UuoKoAD4+bhtVAghhBBNklIqJVAasyTw2trYMQkhGpaUvGgiiouLadeuHR6Ph1mzZtGhQ82lDM4880zefPNNrrvuOvLy8vj111959tln2bJlS4PEc8kllzBz5kxmzpzJLbfcUuOy5557Ln/729+C7WP88MMPPPnkkw0SR1MUfqw++eQTOnfuXOPyx/pYhbvvvvu4//77mTNnDnFxcaSlpTFjxow6NaRptVp54okn6NGjB5s3b6Zfv341Lj9x4kT++9//csUVV7B8+XISEhKCpUiONaVUPPBP4GzgxlqWvRm4GaBVq1akpKQc8/jqo6SkpMnFBBJXfUlcQgjRJNyhtf5fYwchhDg2JHnRRDz++OOMGjWKLl26MGjQIIqLi2tcfvLkySxdupQhQ4aglOKZZ56hbdu2DXpD/Oijj3LVVVfxxz/+scblEhMTeeSRRxg5cmTwfYmJiQ0WR1MTfqz69OlTa48jx+NYlZs4cSL79+9n/PjxmM1m4uLi+OCDD+qcVIiKiuKvf/0rzz33XIW2PKpywQUXMG/ePHr27El0dDTvvvtuQ3yEunoceFtrnVFbVRWt9VvAWwB9+vTRdrv92EdXDykpKTS1mEDiqi+JSwghhBDi2FI1FWn/PejTp4/eurViqbG6PFU+1oqLi4mLi2vUGKoicdWPxFW78O+bUmqV1nrE0axPKTUUmAUM01q7lVKPAT211tfU9t6qrgeNraneXEpc9SNx1U9DXAuOhlwL6k7iqh+Jq34a8lqglEoBBgAK2Ao8pLVOqWK58BKZwz/55JOG2HyDKSkpCbYr15RIXPUjcdXP2LFj63QtkJIXQojmxg50BfYGSl3EAmalVH+t9UmNGJcQQgghGs/9wCbADVwBfK2UGqq1rtD3vJTIPDISV/1IXMeGJC9OQP/617+YM2dOhWlTp07loYceaqSIRHUa8lhNnjyZ3bt3V5j29NNPV+jZppl4C/g4bPwejGTGnxolGiGEEEI0Oq11eANfM5VSVwIXAHXre14I0eSdsMmLunQf+Xv10EMPSaKimWjIY/X55583yHrq41hUS9NalwFl5eNKqRLAqbU+1OAbE0Icd0qpROBt4BwgB3hQa/1hFctNCyznCJs8oapi4kKIE5LGqEIihPidOCGTFzabjdzcXJKSkk7YBIYQx5rWmtzcXGw227HezmPHdANCiOPtVYxi322AocC3Sqm1WuuNVSy7VGt9xvEMTgjR9CilWgCjgIWAF7gcOBO4q/GiEkLUxl9SRtEH39R5+RMyedGxY0f27dvHoUON96DW6XQe85u6IyFx1Y/EVTObzUbHjh0bOwwhRDOhlIoBpgADtdYlwCKl1FfAH4AHGjU4IURTZgWeAPoCPmALMElr3bRa5hVCVJD/8iyKP/y2zsufkMkLq9VKt27dGjWGlJQUhg0b1qgxVEXiqh+JSwghGlRvwKe13hY2bS0wpprlhymlcoA84H3gSa21t6oFK/UwQEpKSoMF3RBKSkqaXEwgcdWXxNU4AlVHRzZ2HEKIutMeL6XfLKzXe07I5IUQQgghmqRYoLDStEKgqr6ffwUGAnswukecjVFc/MmqViw9DBwZiat+JC4hhKgbx+I1+ItK6vUe0zGK5ZhRSqUopZxKqZLAS4qDCSGEEL8PJUB8pWnxQHHlBbXWu7TWu7XWfq31euCfwKXHIUYhhBBCHKXSb+tX6gKaYfIi4A6tdWzg1aexgxFCCCFEg9gGWJRSvcKmDQGqaqyzMulZQAghhGgG/KUOyhasqPf7mmvyQgghhBC/M1rrUmAu8E+lVIxS6nTgYoz2LCpQSp2vlGoTGO4LPAJ8eTzjFUIIIUT9lS1YgXa6AbD27Fzn9zXXNi+eVEo9BWwFHqrcp3tTb5QLmm7DSRJX/UhcQgjR4G4D3gGygVzgT1rrjUqpzsAmoL/Wei9wNjBDKRULZAEfAP9upJiFEEIIUUel834NDsdeeCZ8+Uqd3tcckxf3Y/x4cQNXAF8rpYZqrXeWL9DUG+WCpttwksRVPxKXEEI0LK11HjCpiul7MRr0LB+/B7jn+EUmhBBCiKPlyyvEsTgtOB59/ug6v7fZVRvRWi/XWhdrrV1a65nAYuCCxo5LCCGEEEIIIYQQ1Sv9YQn4fABEDu2LtWObOr+32SUvqiANdAkhhBBCCCGEEE1ceJWRmAvqXuoCmlnyQinVQil1rlLKppSyKKWuBs4Evm/s2IQQQgghhBBCCFE178FDuFZvNkbMZmLOPb1e729ubV5YgSeAvoAP2AJM0lpvbdSohBBCCCGEEEIIUa3S7xYFh6NOGYw5qUW93t+skhda60PAyMaOQwghhBBCCCGEEHVX+u3C4HDMBWfW+/3NqtqIEEIIIYQQQgghmhf3jr24t6YDoCIjiD57VL3XIckLIYQQQgghxAnH7ZVboeZKa807Xxcwe3Ebdh9wN3Y4og5K5/0WHI62j8QUG13vdcg3VgghhBBCCHHCKSi1UFjia+wwxBFYv9PFd0tK2Z8bycxvCxs7HFELrXWlXkaMKiMOp58vFhbXeT2SvBBCCCGEEEKccLSGVVucjR2GOAKbdoVKW2xJd1Pm9DdiNKI27nXb8O7LAsAUF0PU6JMAmPNLMbPmF9V5PZK8EEIIIYQQQpxwtPazZG1JY4chjsDWvaHkhc8PG3a6GjEaUZuSb0OlLqLHn4qKsAKwfIOjXuuR5IUQQgghhBDihGNCs3ZrCU63PLVvTnw+zfaMiu1cpG1vZsmLrDWw4C7Y83NjR3LMaa+Xsu9DXaSWVxnJzPWSnV+/aluSvBBCCCGEEEKckNwuF2ub243vCW5vlgeXW1eYlrbNida6mnc0MX4v/HATbP0EfvwjOAsaO6Jjyrl8Pb5co10Sc6tEbCMHALB2e6DKlq578lCSF0IIIYQQQogTkvJ7SN1Yv6LronFt2XN47yKH8n0cyPE2QjRH4MAyKD1oDHudsPf3XfoivJeRmPNOR5nNAEbS0OuAskN1XpckL4QQQgghhBAnJBNelm8sw+drJk/tBdvCkhcmFZq+dlszKUGz4/OK4+nzGyeO48DvdFH209LgeHmVEZ9Ps2FbEbiKgLp/9yR5IYQQQgghhDjhmP0+FJriYieb0w9/mi+apvCSF/06hRpcTdvWDHqO8Xlg17cVp2UsMEpg/A45fl2Fv9Qo2WTp3I6IgT0B2LG7AEdxIRpNC1NWndcnyQshRLOjlIpUSr2tlNqjlCpWSq1RSp3f2HEJIYQQovmIcpeBX4HPReomqTrSHOQV+sgpMBp5jLDAyT1D3Wxu3OXC7WniJWgyUsBdqWtQTxns+62qpZu90nmhXkZiLzwTpRRozdofPge/D601/Wyr67w+SV4IIZojC5ABjAESgEeAT5RSXRszKCGEEEI0H1FeB/gVyu9mxaZm1ODjCSy8i9QeHSNoGeulfbIFALcXNqc38aojO74IDVtjQsPp3x/xKh2L13Donuco+3n5kccVjONHWHA3pL0O2WlG46JHyF9ciuPXVcHxmPNHGwMbZ5K2xxb8vpVR91JPliOORgghGonWuhR4LGzSN0qp3cBwIL0xYhJCCCFE8xLpc2LzluG02MjOdZN+0EO39hGNHZaowdY9oeRE3y7GsRrSOzLYWGfaNhdDetkaJbZaeRywJyxJMeohWPQ3Y3jPD+D3gclcr1V6M3PI/vOTaKeb0vmLaHHbFST86XKjhEN9+Dyw7AlYP73i9IhYaDMS2p9qvJIHg9lap1WW/bQM7fYYq+nXHWv3jnBoHaW/Pc0Ox3towKstFFL3WCV5IYRo9pRSbYDewMYq5t0M3AzQqlUrUlJSjm9wtSgpKWlyMYHEVV8SlxBCNE/9C9axuu3J+D1OUjc5JXnRxG0LK3nRu0sEJVkwtLeN75aUAka7F9ddmNBY4dVsz49GFRGAFj2h/x9g1fPgyDFe2auh7ch6rbLg5VloZ2ifFLz2MZ70AyQ/fgcqMnQuZ2RkMHfuXAoLCznppJOIj48PraQ0C368BTJXHL4Bd4nRJkfGAmPcEoXXOozc+ZH4nLGo6BZgNqEsFpTFDFYLymQCqwX3pp3B1cRceKbROOePt7C+uB8+rfBrE2ZTMaeePKTOn1eSF0KIZk0pZQVmATO11lsqz9davwW8BdCnTx9tt9uPb4C1SElJoanFBBJXfUlcQgjRHCkGHFjP6rYno30uVmx0cNm4+NrfJhqF26PZdcATHO/dOYLVWTCgWwQWM3h9sC/bS06Bl+QWTfA2d+eXoeGeFxulLLqcA1s+NKalf1+v5IVrww5Kvlpw2PTSeb/iPXiI1i8/iLllPOnp6cyYMQOXy4XL5WLBggVcfPHFxsIHlxuJi7Ls0Ao6jYXIFnBwKZRmVli3t8BN5od78BYE9q8lCqyxoGpojUIpYs47HVL+AkV7WFN4HgBOHUmHqL2cd955df7M0uaFEKLZUkqZgPcBN3BHI4cjhBBCiGZEo+iTuQmz9mLSHvZkesjOO/I6/uLY2rnPjc9oq5P2yRbiY4wqFpERJvp3iwwut3Z7E2z3wlUEe38OjfecZPztFnbjvmse1LHdFa01+c+9GxyPGjOCuMvODW1uzWYOXn0/O1KW8M477+ByhfZJWloaHrcb1r4JX10aSlwoE5z8IFzwPox7Fa5ZBVcuAfvz0HsqPlNHsma3CSUuALwOo9SIt6zaWKPHn4rl0Fewex4+n591ZcNw6kj8mLhwbA+io6Pr9JlBSl4IIZopZVTmextoA1ygtfbU8hYhhBBCiBCliPS56Otbx0bLSfi9XlI3O7nw9NjGjkxUIbyxzj5dKlbvGdo7knU7jBv0NducnD0yhiYlfT74AvEnD4QWPYzhDqPBGm1UJylKh/ztkNi71tU5flmBc6VRW1pZzCTecz2Wru2xdG5H/n9mgtY4d2VQ+Md/0HJ0T7LbhEoU+Z1FFH52JcmFS0MrtCXCuDeg4xmhaUpBQldI6Iq/40Sy3ngET9k2iPCgcJF09j6siR60X6H9CmK7o/vfgI7rDl4v2uvDFG3D1gP4/jI0sKe4Jfs9nfFqC5ERignjBtRrN0rJCyGOpaIM2DIbnPmNHcnv0etAP+AirbX0byaEEEKIetPKwuAio0cEv9cpXaY2YVv31JS8CDXSuX6HC5+vcXqO0V4vuf94jZavfY43Myc0Y0d4lZFJoWFLpFFNo1wdeh3RHi95/5kRHI+7/Hys3TqglCJh2iRav/gAXpPC4XBgdXsZu2Ar/TNLGTFiBMnmfKYlfELUwbBSIG1Ogkt/qJi4CON3uMi+419GGxbKDNYokl/4J7H3v0Vkv/bYOrmI6uIkKmkT0dn3EmOdS4x9ALETxhB9el9Mi+4EvweP281vJXZc2iglc1LfeKyW+qUjJHkhxLHic8NXkyHlbvj+hjoXA6uO1hrtPc5FGR15R9VF0rGilOoC3AIMBTKVUiWB19WNG5kQQgghmhVzBP0z16PQ4HOxabeb4jJ/Y0clKtFa15i86NjaQmK8cWtb5tRsz6h795sNqeTznyme8wNRadvJeeBFoztQRx7s+zW0UI+JFd/UNazqSPr8WrdR/PE8vHsPAmCKiyHhT5dXmL+jVRRfntYZh83oFcSi4fTl6Zyxajk3JX1BkqkAn9eH3++HAdNg4lyIbV/ltrTHy6G/PB0s5QGQ9OitRrenncfCZQtg5L1gDlTb0Ro2fwAfnwGbPzK6XS3OwK81hU74qeQCACIjIzl5YP3bl5HkhRDHStYqKDlgDB9cbrQgfIT8ThfZtz/B3pFXUPTxdw0UYA18Hlj0MLw3CGbbjXp6TYjWeo/WWmmtbVrr2LDXrMaOTQghhBDNh7LaiMly0T1iMybtxe/XrNospS+amsxcXzCpFGNTtE+u2PqBUqpC6Yu0bY3T7oVj4crgsHPlBsq+Xwy7vgEdaKyjzQiI61jxTV3GGSUaALLXGL1/VMNXWEzB658ExxNuvQxzi7jg+OrVq/n444/JaRnN9+f2pzQ5nuiYGEzag+Pj3/D81A5foRUvZtYl3wSj/w3mqnvY0T4fOQ+8gOO30D1My79eR9zUUNsaWCJh+N1weYrxOYIfPh8W/jWYjHE6nXxVPI5cbxdMJhMREREM6RVqp6SuJHkhmjStNV/+WszizQk43c0sC35gScXxjTOPeFX5z7yL49dVaI/X6BLpWJbAcBbAvKthwztG9rRwF2yccey2J4QQQgjRGJTCZI7AVxLBMMtiQOP3ukjd5GzsyEQlW9JDyYjeXSIwmdRhywwLT15sP/7HUHu8OFdsqDAt/7kZ+Dd/EZoQXmWkXGQCtD81NF5D1ZHC12fjLyoBwNK5HfFXXhCct2LFCubMmWOU9gBiunak39evE3PGSUaXp4B7Zzx5H/Zh3eens+rnUrzuqkuoaK3J/cfrlH6/ODgt4ZapJFw/uerA4rvAeTPhvHcPS854vF6WlvQnzXkyPm3FZrORlGCmfav6N78pyQvRpP2cWsYH3xWxfHsCr87JD34Zm4WDyyqO7/jSKDZWT6U/LKb4k1ARMn9RCa41h/UI2jDyt8PcC2D/oorT1/8PvEeXwfburz6LLIQQQghxvGmrcfPkN1kZXGY8MddeF2nbnLia20Oz37nwxjr7dqn6if2gnpGU5zR27vNQWOI7HqEFudZuxV9WsdSO92A2RV8GfrcrE/SYUPWb61B1xJN+gOKwEtgt774WFWFUDVm6dCmff/55cF7btm25+eabadG+La3vHkLckPL29xQOHU3iAScj569j91k3UPDGJ3gPhdrnM3oymUHJ3J+C0+KuupAWd1xV8w5QCrqeC5cthGF3gsmK1pDuSOaXstMp9rXHarVisVgY0suG0fZ+/UjyQjRpP60oDQ4v2+BkybpmUozP54bMlRWn+T2w9eN6rcazL4vcv7922PSyhalHE13V9vwMn08wWjouZw201OzIgW2fVPm2unCu2cyBy/56dPEJIYQQQjQgHbjxwxxBcm4u7Sx7we/G7SXYc4VoGraFtXfRu3PV1Rxiokz0Cpt3vI+hY0lacNhXXpXD56RwWTyeAgu0Pw2iW1f95q5hVTH2L66yynb+8zPRXiMhYxven+hxpwCwaNEivvrqq+ByHTp04I9//COxsbGg/ah1L5E4Po/Wl2bj75uENSK0j7wHD1Hw3w/ZP/4mDv31WWa9s5Wb/rqZb+dnBpeJvfgsEh+4se7JBmsUjHoArlzCiqTbmJE3AT9mynQnbDajdMyQ3vWvMgLNMHmhlEpUSn2ulCpVSu1RStWSAhLN1d5MDzv3V+z9cvoXBeQVHd8s6hHJXgO+wAUz/Iu+6T3Qdcvka4+XnPv+g7/YSOCoqNCX3LGgAZMXWkPa6zD/WnAXG9MsUfjPfI2i3Mk4MwLbTXsd/PXf936Hi5x7/4O/sKThYhZCCCGECHMk9wg6wih5Ybba8ObYGBa1CJP2orWfFVJ1pMkodfjJyDaqTJsU9OxkrXbZoWE3xWu3Hd9j6Fi8JjhceNlYIgb0BK8T7VPkp7SsuspIubgOkDzIGPZ7ICOlwmznivWU/bI8ON7y3htQSrF7927mzZsXnN6pUyduvPFGoqOjjQm75kHeVpSC6D4mDv71Flp88hyb+7XDFWnB6/UGOgXwkZGykU8Xu8kr9PFVl/MpsUQTPe4Ukv5xG8pU/7TBgWLFl2ll+DHj1VY8lvbBBMigHidI8gJ4FXADbYCrgdeVUvXrIFY0CwtWlR02rdSpeXNuM6g+Et7eRc9LILKFMVy097CLUXUKXp6Fa902wOi/uc1rjwQTGJ49B/CkHzj6OH1uozeUZY+HekOJbQ+TviJ3xk7y3ttK5sftjARGUXqdWkCurGjmF+wujuDNPn84+niFEEIIIapW73uE8pIXymTBlRvPsCijfr/f42TVZic+fxP/vXmC2BZWZaRreyu2iOpvYYf2Cm/3woX/OB1DX36R0ZUogMmEq39Xku680EhEAGXbonEc6lLzSsJLX6SHqodov5+8Z98NjsdeZCdyYE8cDgezZ88O3hd17tyZG264gaioqPI3wuoXQusceANeSxxthg4gf9IZfDFpKItP605plzYAbGjZL7ioV5lZM2oirZ75K8pS/7Yp/H4/n3/+eTC2uFYnYbEY37fuHazEx5jrvU5oZskLpVQMMAV4RGtdorVeBHwFVHtXlJGRwYwZMwDweDzY7XY++OADAMrKyrDb7cyePRuAwsJC7HY7c+fOBSAnJwe73c7XX38NQGZmJna7nfnz5wfXbbfb+eknoz7Qrl27sNvtLFy4EICtW7dit9tZssS4kd2wYQN2u53UVOOpeVpaGna7nbS0NABSU1Ox2+1s2GA09LJkyRLsdjtbt24FYOHChdjtdnbt2gXATz/9hN1uJyMjA4D58+djt9vJzDSK+Xz99dfY7XZycow+hufOnYvdbqewsBCA2bNnY7fbKSszkgQffPABd911Fx6P8SWbMWMGdrs9uC+nT5/OuHGhVmRfe+01zj///OD4Sy+9xMSJoa5/nnvuOaZMmRIcf+qpp7jiiiuC448//jjXXHNNcPzRRx/l+uuvB8Dr0zz/9MOs+u4+AEb2LGLtL4+z5oeHWL3VRcqqMu666y7uuuuu4Ptvv/127rnnnuD4zTffzIMPPhgcv/7663n00UeD49dccw2PP/54cPyKK67gqaeeCo5PmTKF5557Ljg+ceJEXnrppeD4+eefzxdffBEcHzduHNOnTzdGDizF/nwuM5aWQeexeHpehv35XD5YXgYbZ9Z67mV88zPnP/pXfio2jqXrugs57947WNrOuBgd8DgYe9451Z57e/furf3cO/N00l4aB1s/ITXdjf35XDY4e8Ml3/Hrot1c9NpT7HSVgCWabz6LwP6fXHbNfxa0rvHcc7vdzJgxg5EjR/Llu++R/vKHPBrRjulLnkQIIYQQoqEdyT0CwN7sTD4t2AuAq8DGne+sImfbHLTXRX5hKaeeNua43yds2WK0j9DU7hN+/PFH7HZ7o9wnbN3jZuOvz5L67V+CXaQ++OCD3HzzzcHl77nnHm6//Xa6d7ASF20i7ae/s/CLR9iTacR7zO8Tzj+fd3N2ABA5qBf3/ePvvP31a8QOMEoeX5O5hVfufATtMUqQ2O32w+9RUwOJDrfGfsdMZn9kdKJ34KNvuGTee8wvOoCKjMB7zfnY7XYefvhhCgsLKSkp4eOPP6Z169bYbLbQuffBk5C7mV2HvNhfyGdh4UBjf27dyvTp09l78AB7uiYzo38810Zn8kvr1iilKMjdwqLvbuQbWyLaYjmic+/kk09m06ZNAKSnp/P+28/gLDkEgC/nl8POvbqqVxpFKWXSuo5l3o+N3oBPa70tbNpaYEz4Qkqpm4GbAaxWK1u2bCElJQWv10tBQQGbN28mJSUFp9NJQUEBGzduJCUlhZKSEgoKCtiwYQOJiYkUFhZSUFDA+vXriYuLIy8vj4KCAtatW4fNZiM7O5uCggLWrl2LxWLhwIEDFBQUsGbNGrTW7N27l4KCAlavXo3b7Wb37t0UFBSwatUqOnbsyI4dOygoKGDlypUUFBSwZcsWCgoKSE1NJScnhw0bNlBQUMDy5cs5ePAgaWlpFBQUsGzZMvbu3cvatWspKChg6dKl7Ny5k3Xr1lFQUMCSJUtITExk/fr1FBQUsHjxYhISEoLr++2334iNjWXjxo0UFBTw66+/YrPZ2Lx5Mz6fj4ULF2KxWILxpKSkAMaJnp+fHxzftm0beXl5wfHt27eTm5sbHN+5cyeHDh0Kju/atYvs7Ozg+O7du8nKygqOp6enB5ffkRlFmdOLz+fDqsoY0mkf82IdZOb6cblcvPrJQdzp+4mw6OD79+/fT2RkZHD8wIEDlJaWBsczMzPx+XzB8aysLCIiIoLj2dnZ7Nq1Kzh+6NAhdu7cGRzPzc1l+/btwfG8vDxcLldwPD8/n61bt7JwwU+cnL4Iv/bj8XpZkq7xu3sGxn24ts9jueezas+9ZFMElkffQGuN1+OhqHcHdnSKJz8/n/TWXRnmduHxuHEV5VV77pWVlVV77pWWlrJ/w0J8mWtwZ0bg6mjB7fHiMseTGncVOSs2svv9uWi/H4/Hg9sajbfEgsdvwpW5ltXfvsbarc7gubds2TJ++eUX9u7dy5NPPonZbGbnzp1kZmZS8MYnHEg8mVJrDFD/RnmEECcepVQi8DZwDpADPKi1/rCaZe8G7geigM+AP2mtpaK6ECeeOt0jwOH3Ca6oSNxuNz6/Ge1VdInYSonfjdOlyM4tO+73CXmFLhYsSGHnzqZ1n1B+39QY9wmLVrbG6/Ph9/nwFG0jJaWMvXv3Bm/cU1JSyMjIwOVy8euvC0mOTsLnM6o6z/l2Ayf3Kqr5PkFrcpenEZG6mV9POhl/i9h63yeU7M/C643A7XaT2zYe7xYvZXuXEX2qm9Jt0WgU7oOHWPnPlyg9e3jwmFa4R80opKhzC3zuLPw+D7vX/MDCxFZEPfeOcV/g9ZJz5iD27dhCVlYWO3bsoEePHrjdbqKiooLxlJ97xatn4OrmxuXx4TS3YM2mnfTs2ZPly5fj9Xrx+437qpycHA6VlIBqSYu4KHRZJNpsIjPXzfufLceRm1avc2/16tUcOnQIt9uNy+UiKSmJ4tJduNxulMuFX2ccdu7Vlapr8XullBkoAVo01g8DpdRoYI7Wum3YtD8CV2ut7VW9p0+fPro8K9SUpKSkVMhWNhVNJa6n38tl5WajntrkMbG0t63h1NPO5J6Xs8nMNS5GA3tE8sgNSVV2lVQdZ9oW0BrbsH61L1wHVe6vzFT44mJjOL4rXBWoQvLtVaEqI8PugFF/O2x92ucj64+P4VyxHgBzq0Taf/YCpRbFq6++ijsrhylfrMVms2GJjKDTb+9hjo+tW1zlSjNhth3cgYaAlAlOeRgG3wJK4S9zsu/sG4NtbQDgLkJRRvsbDmAdPAYueB+AHTt28Pbbb1e5maScEs78ZRcvnPYwDms0rkgL898YuEprPaLqwI69png9aCrfucokrvqRuOpHKVXttUAp9RFGydAbgaHAt8BpWuuNlZY7F3gPOAs4AHwOLNNaP1Db9uVaUHcSV/1IXPVT07Wgnuup9z0CGNeCRRNuovT7xWjtJ2rkWnZ268nzOU+jolvRNjmSV+5pc0S9ItRHVp6Xn1NLWbCqjKwcB2NHtuCuK1oe8+3WR2OdQz6f5rp/HsTlNu5ZX7+/DcktQs/fq4orZXUZr84xes/o3y2Cf9zcqsZtOJatI+smo9RF9LhTaP1irf9GKtBas++sG/EdMnoVbDfradIOLmdUurGewtQk8pd3BxSmuBg6fPsa5sSEqle2+O+wPlCSe8B1FKwfQsFrRoP/5uSWdPj2NXLLSnjllVeCpWBGjRrFpEmTKq4n/XuYb5RoxxIFV6+AqKQK+2vu3LnBUtkJHcezal+fw8IZNcDGPdck1Wt/LFq0iG+//RaA6Ohorr3xL9zzSgEAkRGKdx9ph9VS8dyu67WgztVGtNY+YBtQv+gbVgkQX2laPFDcCLGIY6SwxMearaEGduwjjB4vIiNM3DG1ZbD9yw07XXy/vLSqVVTJsXgN6dc+yq5p/6jQ4E2DC2/vov0poeEB00LDmz802puopHD6p8HEBUqR/NRdmFrGM3fuXIqKinBGRXAoMZoyh4Oy4hKy5y2sf3yrXgwlLiLi4Pz3YMitwYZFS79JCSYuLJ3bEdGnK1hj0F5F3k+J6D0/Q+5mXC5XlcW8lFIkJSYyZmsuS7ufgzMiBhUZQdcuLeofqxDihFLPot/XAW9rrTdqrfOBx4FpddnOzt37OP/ql/nvnHy+SMln5Kgzmf72e0DjVSmVouKGmqqUQvVFxcs1dpXS+++/n9deC/USVqFKKdUUFT+BqzM3oCO+R7D26QaAUiaK8tvR17aGKFWG3+MkK8/H3kxvQ8YZ5PVplq138Pg7OdzxbBafp5RQUGwUcF+yzkGqNBgKwN4sTzBxkRhvqpC4qM6QXqHGILfucVPmrLnigGdXRnDYkZKKL6+wXjF6duwNJi5McTFEDOhBcsHi4Pz4S0/F0rk9AP7iUgpemVX9yrqFukx1/PIDhe+Euj9tcefV+COtfPTRR8FrcqtWrbjgggsqrkNrWPl8aHzANIg6/BZ+5MiRweG0Hb5g+xT24dHB6ambnPXqLMHhcLBgwYLg+FlnncXWvaHCEv27RRyWuKiP+ra+MQv4Rin1ErAPCEaitf7liKOou22ARSnVS2u9PTBtCLCxhveIZubXNWX4AteYPl0iaJ9sobwMYJ8ukUwcHcuXvxr1xz74roihvWy0S675VC51+Hnv20J+HvE3zNrPXz/6lZPPGnVsPsCBpaHh9qeFhjufDbEdoGQ/OPNg1zfQ65LgbOeqjRS8Njs4nnDLVKJGDWblypWEPyHc36EFSbmleH0+Vr8+E2uiFbvdTkRYt0fVKtoDWz5kW1kfdjl7Mvbyq4jsPDY4W2tN0YehFovjr7yAyMG9OXjNA2C24dgFZdujiVn7OvOLzyY/38hq22w2Lr30Ulq1akVSUhLOH5aw48N1LO4xGqWMLPM157fkjQcPi0gIIcLVueg3MAD4stJybZRSSVrr3MoLhxcVN1ujycxx8sPSfKNo7gE3r3+aw4Kd22lhK2TPgRJ+WrSDiJhFWHTBcSkqXlZWZlSbbGJVShuzqDhUrFIKVFtUvHz+vn37ABqtSqnX62Xbtm2HVSktH6+yqPhxqM5cXlS8piqljXHuNaAjvkeI6NctOKwLk7AqD4Nsy1nuOheIJXWzgy7tqu/dor4yc0OlLApLqr+pfm9eISf1tWExN53SF41hS1gXqX271K2HipZxZrq2s5J+0IPPDxt3uRjZP6ra5X3ZecFh7fVROu834q+ZUOcYw7tItZ06BGU2V0heqL6TSbwvmew7/gVA8ac/Ejv1XCL79zh8ZW1H4i5OIv8HM46dEWArAZOViN5diL14LN99/z0HDx4EwGw2c+WVVx5+D7DnJ8gJPAy12IyHlFXo2LEjbdu25cDBQxS62xFh8hAREcFkexzZeV427Xbj1/BzailTz66cG6zawoULg8nvli1bMmrUKF78OJQMGhLWoOqRqHO1EQCl1O5qZmmtdfejiqTuMXyMkTS5CaM46TyqKE5aLqn9QH3XEyl0bWulc1srXdpZ6dja0ugXgqZafK+x49Ja89eXssnIMrLct17SgrNHxlSIy+PV3P9KdrDLpN6dI/jnLcmYq6g+4vNrfl5Rysc/FlOYWYTfaVwAz8hezl3vTsGc3PKo4j1sf/k88G5f8DqM8atTja6Pyq1+GVYEnuC0GQGTjT6ZfQXFHJhyF74s4/e2bXh/2rz9TwqKi3nppZdwuYyaWiNGjCAqM5+Oz3xk7Aurmc+mDCO+ZUsmTJjAgAEDUEpVfxx/+TOHNqZw987XcKl4BvZvy6M3JQeLJYYXmzNFR9Hx5/9hiosh959vUPzx1+DMwxzro831+/lPzmSK/EYf1lOnTuWkk04CwO90cWDC7cyKOp1lrUdgirbRo3cCT93eCrPZJNVGKmns71x1JK76kbjqp7riofUp+q2U2gncrrWeHxi3YvQ00E1rnV7T9lu27q/HXv4B2mzDFBmLyVR9q+fRNkW39lZ6dIige0fjb5tEc4MX526qx0riqh+Jq34aqtpIYF31ukcA43fBxt+Wsu+sGwDwmv20umoBy8vO4s28RzHFtKF7xwievqP1UcVWWOJj3Q4XC1aWsX5n1bXvh/WOZPSwaF7+6ACYjBvt6y5MYMIZh1cPbgzH9RwqzYTUZyF5IC9tuJhFa43f1ddPSOCC0yvuj+rimjW/kC8WGg87x4+K4eZJLardXM5DL1PyZeg5fES/7rSf83y1y1eWdfNjwQRG0mO3EXdmG1wfn01kRARExMK169HmCLJvexzHb6sBiBzWj7bv/bvC/xJfTj4Fr31M8YdzwB24l7DGoOKTafu/f7AnSvHuu6FeRyZMmMDpp59eMRitYe4FcGitMT74ZjjtseDsyvtr8eLFfPD5WnY5xmI2m+ndNYEX/9KGxWvLePFj4yFlYryJ1+5ri7mW++fCwkKee+45vF7jHu3yyy9n0KAh3PDEQcqcRs7hhbtb07H14cnAul4L6lXyQmvdrfaljrnbgHeAbCAXo3Guai9KPp9i3XYX67aHLhRmE3RobaFzW2swqdG9g5WE2Op/vIjjY9d+TzBxEWFVnDbo8Cyp1aK447KW/O21Q/j8RvdJ3/xWwsVj4iost36HkxnfFgaL+2lfKLu9P7odpT8sIf6qCxv2A+SsCyUu4jtXTFwA9L0SVv7H6DYpayXkbEQn9SfnoZeDiQtTiziSn/4L2mTi008/DSYukpKSuOiii7Bareye/SuOfZng8dE6u4Qsk4lZs2bRq1cvLrrooqpjy98O2z9jedFFuPw2sMWyYZebhWsc2E8yiocVz/omuHjMxWMxxRlVdlrcdQ1lPy/Ft78EX4mbvIXRjByexs9lo+nTpw/Dhg0Lvq9oxhfsL1Cs6DIcZVKYom1cc358vdomEUKcsOpT9LvysuXDtRYT7xyxnQda3UmGpwd7PL3Y6RtONj3RpqjDkhJlTs3GXW427go9/Yu2Kbp3iKB7Byv9u0XSv1sEUZHNqgM3IX6P6nWPUM7cqiXmpAR8uYWYvYriggQGJyzHggef38Ou/Yq9mR46tbHUOWlZ6vCzabeLDTtdbNjlqrbqScs4E2eNjOHsEdG0amnclq1YVciyHcbv309/LsJ+UjSx0SfY9eXn24MlmbdkjgSMh43lPY3UxdDetmDyIm2bE611lcfP79esP2Tlt56X4TJHMjn9W5I378K9dTcRfWq/9fU7XThXbQqOR502FHa+EVqg6/lgiUQBiffdyIFl69AeL641mymd9xuxF56Jv8xJ0XtfUvTOF/jLHKAiAeN+Inawmxav/BdnrI05YVXUevfuzWmnhZXwLpexIJS4MEfCkD/VGP+wYcN47dMCAHw+H307GdVRTh4QRXxMIUWlfvKK/KzZ5mREv+pLr4BRdaw8cdG+fXsGDx7Mjn2eYOIiMd5Eh1b173Y13BG/WylV4Vt0vHoh0VrnAZOOZh0+P+zN9LI308uiwIkB0KuTlZP62hjRL4oubet+gRINZ8GqsuDwqQNtRNmqvlh37xDBlLPi+OQn4zfqRz8WMayvjc5trGTmenl/XiErKtUVTHAXUaCMm/T90e0onv9pwycv9oe1d9Hu1MPnR7eC7hfCji+M8Y0zKdwyEsfC1OAiyU/ciaVtMkuWLAnWI1VKcdlllwWLhSWcczqmj7/D4/HQNbuErLbGb/bt27fz0ksv0aFDB84880xMprD9l/osaD+rSkYaFzOzsa735xUyoq+NyLxDlKWE4gjfN+b4WFreewM59z6FdrpwrE1kcK8dpMacweTJk4PfFW9WLoVvz+XbzlPwozDFRDG4dxSDex5dETEhxAmjPkW/NwbmfRK2XFZVVUYOp+lrW0tf29rgFJ82s847gt0trsDZ6hxySqLZtd9DcdnhP2/KnNq4Kdnp4qtfSzCboU/nCAb3jGRILxvdOlirLA0ohDh2jvQeQSlFRJ9uOJakoZQiv7AnXVquoq8tjfWeMZjNEfz1pWwiIxRtEs20TbTQNslCm0QzbZIstEm0kBBjYluGO3hd2LnfQ02F24f1iWT8yTGc1Md22NPsoV2L2Z3Xgaw8H6VOzae/FDFtQov6fqzm69C6YOIiz5NITp4bojxERFjrVX2nT5cIbBGKMoeXg4c8bEsvoE+3UInrvEIfv6wq5efUMrLUGHSS0a5DTMdSrto5l5IvF5B4X+3JC9eqTWiXkdy2du2ApV0y/BxWo7HnpOCgtVsH4q6ZQNG7XwCQ/9wMdJmDgtdmB9vMAMAcga2rm5Zjcols40bbivj0028oKTGSMbGxsUydOvXwe1WtYVVYiZH+10BMmxrjj4yMwmHqQXlrEFb3ZqAjVoti7PDoYFX9H5aX1pi8yMrKYtWqVcHx888/H5PJxNrtofuxwb1sR31/Xd+uUk8CXgUGA+V3Iwrj0zbJYgvJcW7+elUiezI97Mn0sDfTQ1Ze1Y2ObM/wsD3Dw+wfi0mMNzG8XxTD+9oY1COSCKv8CDnW3B7Nb2mh5IV9eEyNy0+2x7Fys5Nd+z34fPDqnHwG94zk60Ul+MIOcYRVMXlMDEPveZ4nBv2ZQmscbpOVfesP0ebgISztam6BuF4Ohrd3UUXyAoxGcwLJi+JP5lGwcCvl3YjGXzuRaPtIcnJy+O6774JvOfPMM+ncuXNwPNo+kuKPv8NqtXKSz4YaNYrlK1agtcbn87F9+3bmzJnDpZdeitlshkPrYdc3lPmi2Vw2ACJDRe6KSv18+H0hl+6cR/l/2qjTh2HtVrHUSMyFZ5I96yv00qWY8OP6tTVX3u8hISHUWnLBSx+wy9ya9S37oSxmTLZIrjm/bnXkxNHRWuNyubDZJFEkmi+tdalSai7wT6VUedHvi4EqHi/xHjBDKTULOAg8DMyoy3Y8pYkcav9HIg99RrxnPwBm5WOYdTnDSpdTXBLDjojTOGXoZSR0GolHtSE908fO/R527fdQUimh4fPBpt1uNu128/GPxcTYFIMCiYzBPSNpnXh0T5qEEMdWRN/uwWL/JlcXYBUjolJYXxBqeN3l1sGHn/VlNkGvThEM7hWJfXg0rWpodNJshmvOT+A/s4yb2flLSznnlFja19K+2+/GureCg1sd/QANrkJ6dm9ba7V/h8NBRkYGe/fuZe/evXiLu1DiMhrKfPl/y3n6bxexNcPETytKWb3Fib88weQPXdP3xRjLl36zkJZ3X4uy1rzfw9u7iDp9GGSuhFKjTQpsLaHDGRWWb3HLZZR+nYIvpwDfoTxy//F6hfnWnp1p+dfriCp5BbXnBwB2/fI6W7eG4pg6dSqxsVVUJ9q3ELKMaimYI2DoHTXGDrA53Y02RQFlWFUZ+3Ysxesdi8ViYdzJMcHkxZqtLrLzvNX+P/v++++DDX726tWLnj17ArA2rPbD0F51a7OkJvX9FswEvgZuAMpqWbZJSHDv5JRtkzml01kw6CxoPZQyt4mMLA97DnrYk+ll9wE3O/ZVzJDmFfn5cXkpPy4vJcICg3raGN7XxhlDo6Ro6DGSutkRLFbUuqWZ/t1qLhpmMStun9qS+17Jxuczqpzs2u+psMzooVFcc14C8e4i9nlcdCg9QGELoxugfTHt6Dt/EQnXT26YD+DzQOaK0HhVJS8A2o6EpH6ULtlD7ndxEOEASzS2UYNpefe1+P1+Pvnkk2Cxq7Zt21ZoyR3ANnIgKsqGdjjx78vigsEjGHnyyXz55Zfs3bsXMFoN9/l8XH755ZhTnwZgXelQfKZYMFuJtqng/v5xeSl9V2yiPD0Sd/XhJVJ8Ph8/9EzgzGVWorQLb3Y0SQtSYKITLDZc67dT/NUCvul/EwCm2GjOGBpNt/Z1L+InjozH4+GL+/6J2riTTndcw6iJF9T+JiGariqLfiulOgObgP5a671a6/lKqWeABUAU8Bnw97pswORwYXlpB3G3PIFvVDTFqa/SIm8x+I3Md5wqZZjnR3ybf2bb2u5s9A3D2nk0Z/Xpzc0X9kRZk9m138vWvW7W7XAedjNT6tQs2+Bk2QbjiVP7VhbGDIvmzGFRdWopXwhxfIU32mkrawHAGTHzyfZ3Zmuru8gqIPibqa66d7AysEckA7tH0rdr/aqWjRpgo2/XCLaku/H54YPvCrnvD43Z4eNxUpoJO78Kjm51DDAG/F768CswtcLixcXF7Nmzh08//ZS9e/dy6NChCvNjlCIPIxmRUdSN257OxOGpdAOtNVHuMsosUSgFh2Ja48MEeYU4Fq0meuzJNYZcobHO04dCdqj0AV3OAXPF0iKm2Gha/vkP5DzySoXp5uSWtPi/q4i9eCzKYoEt58OeH/D5/bi3fonRERecccYZ9O7d+/BAtDaqppfrd3WtpS4AUjc5sJjNmEyKFpYMnE4HmzZtYvDgwbRNsjCkV2QwAfFTailXnXt4F6/p6els3rw5OH7eeUaPKaUOP9v3hqpcDup5/JMXXYCHdH1a+WxkWmuc+1IxH1yNedULKFsLojuOoU+nsfQZPBZOMRrgKS7zk7bNyarNTtZsc1a4QLm9sGqLk1VbnHz6SxE3XdyixhZrxZFZsDK81EV0ndpI6NzGypXj4/lgflGF6b06WZk2oQW9Oxs3zq4NRinijqUH2BRMXrSn9LsGTF7krAdP4DPEdYT4TlUvpxQOz3hyvv7CGPc4iBgymNYvPYCyWlgYaD0dwGQyMXXqVCyWil9VFRlB1GlDKft5GQBlKam0v2Eyt9xyC1999RW//vorAOvXr6eFczvnu39BAatKTjYaDgLOPzWW9IMeVm1x4ne6mN3mHP6SvZPIzm2IOuOkw8L+5Zdf2ON1sLZ/J07euBOzgoKfLMSseA/TqX8k7+m32dSiD7viumCKtGKJsnL5eCl1cTxs+PhL+sw1qizl/uc9kOSFaMaqK/qttd4LxFaa9jxQ91bVwt/rcJH/4gdYu3ag1cNPEjkgmZzfXsS6/WPM7nzQYMZPv4gd9GMHOVk/sXrPQH78ti+Rca3o1asXQ3v14srx/Sh1mVm/w8W67U7W7nAFuzssd+CQl49+KOKjH4oY2CMS+0nRjBpowxYhD0OEaArC2zawHiwia0hr2piymRr/OpbxpxDVbzLFZX4yc31k5XnJzPWSleslM88YLyj207G1hYHdIxnYM5IB3SKPqp0KpRTXXZDAg68ZN+Opm5xs3OViQPejv/lr0ja8C/5AMrjdKLYVTqS8OkOfog9gT0voYjzQKykp4fnnn6ewsJDIyKr3S7zlQHDY5Y8jr8hPVNgt3IDuEYzt7qH9Xc/w76F3UxjVAn9kBDm2RNo4cyj54pcakxferFw82/cAoKwWbCMGwuovQgu07FXl+2IuHkvJt7/iXLYWFRVJwvWTib/uYkwxYcF1GYfGREGpl9amQ8SoUuLb9uTcc8+tOpj9iyArkDgxWetU6kJrbVSzVwqrNYIEs/EANDU1lcGDBwNwzqiYYPLil5VlXDYuvkIJGK018+aFeiocOnQo7dsbCaONu1zB0i3dO1iJjzn6ihr1TV58DpwDfH/UWz5OtAa3K5TxUaWlmAtmY970KWazCdVqEOau44nrfiGjhw5i9NBofD7N1r1uVm12snKLkwOHQk9U8or8PPN+HqMG2LjhohYkJjTJ2jLNg8cBe36EtiPI9bWpUKyovAHJupgwOpaNu12s2eqiZZyJa85P4IwhURWSH+WNYXYsPWgU//J62RfTHvem+Xj2HMDapf3Rf57wLlKrK3UBuNZtI/uF1Wi/CdBYWzpo8+i5mGKjOXjwYLB/doCzzz47eAGoLNo+Mix5sYKEGyZjMpm4+OKLycjI4MCBA4Cmc+aHOGwOIqOiWeM+C0zG1/6kvjbOGhHN+h1OHA4XB6LbsqjtKCZfNQBlqvgPd//+/cFu3jYM6MDJOXlwKB+/y0TeczOJvrEPZWnb+Gbw7SgFKjaac0bF0Dbp9/mEUft8KHPT+O773R48L84K1tuLPZiPy+Wq9h+5EAK0NfQkzJO+n6ybHiXmvDNIvPd+LOc+gWvzZ7jWTMeam4bP68Xv1ySb8jkn+jfGRi9lo6s3q9MGsmrVKlq0aMGUKVM4c1hPzhwWjdaajCwv6wLJjI27XLjDCmaU14n/35eKUwZFMWZYdK0lDYUQx5alSztUVCTa4cKfk08+A2mD0ftE8aZviO5/CfExZuJjzMEHY+H8ft3gDZP37BTB6KFR/JZmtM8389tCnrq91e+3AXSPAza9Hxx197+FXSvagDkffC56R22BBXfB1J8hpg1btmzB6azYvp3JZKJdu3Z06tSJzp0707lzZx56s5Td+0sBoyvjuGjF2OExnDUymg6trDhXbyJTe2njyKYwJhFliyQrqjVtnDk4FqbiyyvEnHh4aQMAZ1ipi8iT+mOKtkFxRmiBuKofZCqTiTavP4IrbQvWnp0xt6ziYV9UEkvLzuDt/dfj9EfztzZ30LPNViypBUaPhW2Gh0pWHFbq4iqIbVftri6XftBDToFR4jAhNoJYdxYAO3bsID8/n5YtWzK8r42WcSbyi/0UlvhZsdHBaYND92mbNm0KPnQ1m82MHz8+OG/djtC93eAGKHUBdUheKKXepzzlBZHA50qpRUBm+HJa62sbJKIGlulNYm7JGHpE7KGHdQ+x/jK8fi9eAr8k9qzAlJGKZekzmAZeR8Tof2COjA+0Hh7JHy5IIDPXS+omB18uLKGw1Hiasnyjk3U7srjq3HjOGRXz+72QHCs+N3w12WiUJ6YdC9vOD84a2CMy2OJyXZhNigeuTeJAjpc2iRaslsOPhTcrBzBKXiiLGUyKfTHt8KMo/W4RLW697Og/U4X2Lqqqng3unRlk3fY42uEGSxTmqGIiprh46/t8Wu4vIGvzHHyBBjs6duzImDFjqt1c1JnDQSnQGlfaVnwFxZhbxKGUYuDAgfTs2ZO9Sz6gs+UAXi9sL+hCgW6FUhAfY6JnRysmk+Li7sV8dMDY5vzO47nw7IpF0Xw+H59++mmwHlvnHt1pe/5EDt14L6ApTfPjeOwFVrY6icyo1piibERHW5gyNq5yyM2ec/UmCl7+ENfaLSTcejktbpla+5uOsd3P/Q9bThEWfJiUD5PLT+bO3XTp37exQxOiyfK2TyLx/hsp+O+H+EuNG4PS+Ytw/LqKhNsuJ/7qqUQOvBJyN8PGmfi2fILPWYzX50V5vQyN3MTQyE0c8LUhpeQU3n67gJEjR3LBBRdgs9noHOjJbMIZsbjcfpZvdLJwdVmFH3JOtyZlVRkpq8po1dJMx/gEhg730SKuaSRGhTiRKLOZiN5dca01ulOPMA2CQPLCkrm41vcfq/uAq86NZ9kGBx4v7D7g4dc0R70e8DUr2+aAq8AYju/CTvMYfP48iEygvd5AnKUYnMCCP8OFHwarSQMMGjSI0047jfbt2wcbty9346Qo/vVmNhaKSLZu5+EbJtKxQygZ4cs22hZp68hmu8losy2n50BI3YT2+iid9xvx10yoMmTHkjXB4ajThhoDJftCC8R2rPbjKqsF28iB1c5PXbWel9Nvw6ON473IOZkB+W9B/vrQQnGdjERGbPtQ1fU6lroAo0RPuRH9o4kr68H27UZb2UuXLuX888/HbFaMOzmGOT8bnST8uKIsmLzw+XzMnx+6hzvllFNITEw05vk1adtC6x/Sq2HaZKtLeaYdwM7AaxPwNLA4bFr5q0mKio6l7Wk3srXtzbzluJX/FV3BAsep7PF2wB/4+H6/xu324FrzNmUzT0Hv+bnCOtomWbhodBwv/qUNZ40IXTAcLs3bXxXy8BuH2JtZsa0FUYsVTxmJC0CXHOSXxfuDs8YOr/9F2WRStE82V5m4APBlGiUvWrgLibX6UZEROM028iJbUjp/0RF8gEr8Xji4PDTe/pTDFvEePETWzY/hLzC+/KakJFpOzefZ/Ef4Jb0nH36Xw+YM42mgxWJh6tSpRmOb1TAntSBycCDR4Pfj+HVlcJ5SivPOPZdLOm4PTvu24EIcDhdaa07qawv+oz09dS5tHdkAuKNjeW9BqKQSGP1BZ2ZmBuOaMmUKMWNPJ+aMUBFLV2Ex33U8O9g16kWjY39XXQ+7t+wm60//JPPav+FcuQHt8VL45idoT/0b7WpInr0Hcc78CgteopSTSDxEKje5G7Y2alxCNAfxf7iI9l+/SsyFoSSxv8xB/nMzODD1LzhTN0BSPzjzKczT1hFx9nNEdzyJ2Lg4omOiiYyMoIMlmyvjvuKkyPWkpqby4osvsm3btgrbiYwwceawaB65MZk3HmjLVefG075SV3GH8n0s25bAn5/P4odlJfj9zaZ2rhC/G+FVR+J1RzyBZ7yRzoNQmN4oMSW3sDBxdOhh0IffF+JyH5cOHo8v7Yf100PjA29ka0bgN5Yy0bdfJ+OBHcC+X2HdW+zZsye4+KhRo+jatethiQuAkf2jmXryVnpF/0hLazrpuyvetgaTF2XZECh5nNOjf3B+yZe/VBOyH8fSUI9VUacPMwaKw5IX1ZS8qE1eXh4vfJhJvq8VHm0FZeKAt+vhCxZnwI7PIe3V0LQ+l0Nch8OXrcLyjaFeN0f2tzFixIjg+G+//cYLL7zA0qVLOWOwObj7N+x0sf+Qcd+7cuVKcnKMB8SRkZGMHTsWAJfbz/Oz8oKdZERYVb26ua1JrY+3tdb/aJAtNRKr1RpsNMTv95OTk0NGRga79u1jyd7t2HJXMsi6kZ7WdLTWeAsycMy9FHO/y4m0PwW2FsF1xUab+NOUlpw5LJo3Py/gYI7xpdqe4eG+V7KZeGYsl54Vf8L3TOL3+/n+++8pKiriggsuIC6u0hP4fb/B2lD/x1sc/cnK1xClibKZGDWgfpk5rTXffPMNy5YtY+TIkUyaNOmwZbyBaiMK6NrCxyZHBEqVkhHTnuQdG3Bv30NEry71/aghORvAYxRJI7Y9xHWuMNuXV0jWHx8LVl9RUTZav/FP3p6/jN3OHmg02lNGMe1oad3LueeeS+vWrWvdbNSYkcGnBI6FK4mdODY4T+39kVZ6H67ISMpcHlY7RuP1+SgrK2NQd+OYeDIy8fyWypTYbF7tfyMqysbS9Q7StjkZ2tvGwYMHWbBgQXCd55xzDsnJyQC0fPwxHOf9Ab9L8Vu7MyiMiMMUbSMh3sKEM6poAbkZ8uw5QMErH1aZ4NJuD+7Nu0IJpONMa83BR14BpxObCj3NNeOjcPO2Gt4phChnaZ1Iq6fvJm7KOHL/9RaenUbRV8+OvWRe/zAt7/oD8TdegoqIhQHXQf9rUVkrsWyciWXn11gj3DidTs6NXkiCqYiUwtN49913GT58OBdeeCFRURXbx0pKMDPZHsekMbFsz/CwcHUZi9eWURpoZ6vMqZn+ZSEpq8u4ZXLLenULKOrG6faTfsDDjn0edu53s2u/h6gIxV1XJv5uqzqKuono2zU4HJtdTEZyJ7qbd+P3a0o3fkbMaX9tlLguPjOWn1JLKSzxk1/k56vfSph69u+sTbG9C6AgkFSIiIO+V7D149Bvmz4Du4H3tuBNun/Zv1G544HWKKXo1KnmJEGvXr3YsGEDANu3b+eMM0I9gHgDXZS2cYSSF1lRrVER1uBvPffW3RWSWwDuTbuCDyTNSQlYe3cBVxG4jWl+FQFR9W9k1efz8cwbi8h1Gu1leFQkEdGx7I8+G8571+jNJGslZKeBz1XxzSYLDPu/Om0nMzfUc47FDMN627Ba+pOQkEBhYSEAhw4d4quvviIy8ntax0ziYFEiJpOZn1aUceX4KH7+OfTAf8yYMcTExJBf7OPp93LZuS/0YP/cU2KqfcBcX3W6Siul4gGn1todGD8bKG8R7mutdUqDRHOMmUwmWrduTevWrRk+fDhgtNK/betWvv/mGUar74hWTrweL771s/Cl/0LUOS+hup9fYT0Dukfy3J2t+TylmM8XFuPzgc8Pn6eUsGSdgwlnxBJhVSgCSUKlKC9NZlLGtPRsG16frrXLn+Zow4YNwQYjrVYrl1xySWimIw9+ubPC8gsKxhsZV28Zpw9uRWQ9GzD75ZdfWLLEaKxw+fLljBgxgo4dKxbTKk8aAHRrZ2HTboWKjGBfTHuG5W2g9LtFR5e8qNzeRVgfxv6SMrJu/SeedKN0ibJaaP3ygyxydSAl53SgALTGqjyU+ZLp2rUrp51WdbWTyqLtIyh4+QMAHItWoz1eo00P7YfUZwCIjIxgS8IVFO8xuoT1+zysXvQRI/tdh+Pj70Brehanc2rEflItRlGv/31ZwFO3teSzzz4LVmPp1KkTp59+enDbli69aHF5X/Z9mMFPXc5DKT8mXcjUuPeIWmWGTmOg7SiwNr/Gbb2ZORS8MZuSz3+hQr+7SmFOSsCXUwCAa+3WRktelM1fhGPxKmzKiVIaa4cyPPtijOvOjs21vl8IEWI7eRDtP32BolnfUPjabPxlxtOo/Bffx3con5b332C0BaSU0WNU25FwyiOYvr+eqOw0vBYvp6o0EkzFfF06jlWrVrF9+3YmT55M376HV+FSStG7cwS9O0cwbUICKzY5eHPOPhxeo07w9gwP9/83m4tGx3LpWXH1/r8oDB6vZs9BDzv2uQPd3LrJyPJSVbPz73xdwN+mJR//IEWTEdG3e3DYs20PxT1HQPFuAFTqM/i6n4W57bDjHleUzcSV58TzxtwCAL5YWMLZI2NIjG+eJVxTUlLYtWsX55xzTuj3elj3qPS9Cm2NYeue4uCkPp0jIOk+o1HKQ2vxe5xMiv2BdwovwxYfX2WJi3Dl3XYC7Nq1C6/XG2wM35dVXm3kEMpsXGv352sizzoF5/zfACj5cgGJ91VMXjgWh6qM2E4davyPCGvvwhXRiihV//u82V/8xtr9oXMxKioapRSFZYri1uOJ6xposNPngdyNoWRGyX4YMK36DgMqWbk5VKVjcM9IomwmwMStt97KwoULWb16NW63URrb5XLhL/2NkrJxWCwWvl/ioa11FcXFxjGKi4vj9NNPZ2+Whydn5Abb0QC4aHQsV5/XcMm2uqaYFwB/ADYppW4DHgM+DsybrZR6SGv9vwaL6jiyWq0MGDiQHj3f4udvPyFp84v0j9iO1uAtOkjZF1di7jUJ27j/VMieRVgVl4+P57TBUbz1eQFb9hgHNyvPx9tfFda6XZerNWn7svnTlBb06fL7algvvMjsli1b0FqjAm0zsPCvUGY0BkNUEs7e17N0yyhj3FPG2GH1K1K0du3aCg1cAixbtoxLL720wjRvdih50aNbNOw2euzYH2M0ZlM6fxEt/u8qI84jUU17F9rlJvvPT+HeFMgmK0Xy03ezv2M//vfmITBH4kcBGoVG62guOv9cTKa6/VC19uqCpUNrvPuz8Zc6cK7cSNSpQ0guXGLU1QawRnOo58PY1jtwOp3EWrLIOriHt//7Gme99yvK4UQDrWPW4CrriNtnoahIc/sjC2kfaSRczGYzU6ZMOSyuuD8/yuJ9H+Ey2TBF+GkTcZCzre/COh+se9Ood9duFHQ8E5Krr9fXVPjyiyj832cUfzQP7a5YFSz6rFG0uPNqnEtXkffk/8BkNUq9/OGi4x6nv7iUnH9Px+wtwYTGNjAPWxs/BftiAIjKygh974QQdaKsFhKmTSLm/NHkPPCCUW0EKJr1Db7cApL//WdURFhJiJg2cNGnqJ9vw5r+A2ZLDIMs6cSZvmBOyQSKimDmzJmcdNJJTJgw4bBSGOWsFsXpg6NxHDpAjv8kvgh7KPLFQuOhyE0Xt2BYn4apL/x7l1fkY+UmB6mbnazf6aqQf65J2jYXhwq8tGoCXdn6/JplGxyYTYpRA2xyLT9OrL26GE/e/X486ftR3W4kN+1HkkwFeF1lFM+6CMf5c+nav+auM48F+/Bo5i0pYW+mF7dH8/EPRdx2acvjHsfR2r9/P99/b/T74HQ6ue2224zfq/uNJAHKBANvIDPXR3GZUT0mNkrRLtliPAEe9xp8Oh6fK59EUwHjY34jLeEPtW43MTGRpKQkcnNz8Xq9pKenBxMavkDJiyifkxbRUOg3nluVjRuHKZC8KP12IS3vvtZ4QBjgXJoWHA5WGQlr78JlrX8ydOPmHcxOseEPNMPeoZWiRUIkGdlGCYl92R76dQ3cN5qt0Hqo8eKmem9rRViVkZMHhP4/tWjRgosvvphzzz2XNWvWsGTJEnJycog3HyDCVILbG0tugZfPfthJUuBf4vjx49m6189zs/KCPXYqBTdOTODcUxq2NHZdU/m9tNabAsN3Amdrre/UWt8J2IEHGjSqRmCz2bhwyrW0unIO36vLKQk0juLz+nBv+YzSd0fi3/45ldP1ndpY+cfNydw8qQXRtvr9c9l/yMvDb+Tw9pcFOJy/n/pru3btCg4XFxeH+lze8iGkh3VUY3+BZeYbcAb2dfuIPfQq+7zO29m7dy9z5sw5bPratWspKwt1u6q1xpeZExzv0acFACrCyr64jmjAu/cg7o31b7pFOVy4d+zBsWQ1JRtiKFwWT+5H+8j+81McvPJe9p3zR5zL1wWXT3r0Vnynn8Jzs/Lw+cDj9RBryqatJdBKr9Lkfvt3oxpKXbavFFFjRgbHHSmp4PPQKfPj0EIDb2LVLisRERHYbDYSLMaFNXrZRrxFJXi8XgpsZrZaCmltSQ02zJnlGojTb1QvOfvss2nTJtRXdF6hj3mLS3h0dhw/JF+DKT4aZbVyVZtZWFTYL0W/x8iSL/83fHtV/Xbucebels7+C2+jaOaXFRIXtlGDaTfraVq/9AARai2R+/4BzjxwFQSr7Bxv+S+8j/fAXsz4MMV4iDk1h5QOt/D24NvJiOtMbGEpRUVFta/oBFZS5ie3sI53NeKEYmmTRJs3/07MeaFixaXzF5F1yz/wF5dWXNgaDee8DQNvwKQU0VFR9Iov5IYWc2lhKgBg9erVvPDCCxw8eLDm7ZrhivHxPPt/rekbVjc4O9/Hv2fk8sKHeeQXyzlbmdaafdke5i4o5m+vZXPLk5lM/7KQtG0uvF592O82gI6tLYwZFsUNFyUEe47QumKX7Y2lpMzPv2fk8uJH+fxnVh6L1jpqf1MTVFxcTFZWFnv27GHr1q2sXbuWZcuWsXDhQubPn88XX3zBRx991NhhVmCKisTaNdDDm9YMTe7KbzE34tTGORLlK8Tx5VXM/vD9+v+PPbQePj0H5oyD4v21L1+J2aS47sJQI5MLVpWRfvD4tbentYYGaOcr/AFnRkYGDoejYlsX3S6A+E5sSQ+rMtIlMtQgakI3OOPfeANZySERmxkYvbtO2+7VK9Rt6Y4dO4LD5W1eAHRqHUpOHOrQE3OrQOOTuYUVSlr4S8pwpW0JjkedOsQYKAoveVF79e9wJSUlPPvuDpx+4zhHWhWP3dqNLu1DSfN9WQ3T1lphiS/44B1geN/Dk+M2m41TTz2Vv/zlL9xwww3079+PZGvo+OW4+wDQqlUrCnVf/vVubjBxYYswOlNo6MQF1L3kRbFSqqPWeh+QAIT/Yt8JtKn6bc1Pjx496PTn10j5/lyi1z7L4IjNoMFXcgjHV9dj6jefqHP/a2S7AkwmxfhRMQzvZ+OH5aXkFfrQBP5fao0Go49bbfzVGpakhYrqzF9WSupmJzdPasFJVZw8zUl+fj75+fkVpm3fvp3WEcWw+NHQxIHXQ5dxLPj+EFhjwF3MWQk/odamQr8rgt151rSd9957L1iloVWrVpjNZjIzM/F6vaSmpgZ76vAXFAdvRk2x0bTrFEu0rZgyJzii48mPaEGiu4DS+b8RObBntdsM59q8i0N3PUW73fs4YDGBMw6IMzLGUVW3St3izmuInnIO/3onl9xCHz6fD4+zmKSYlUT6E8nydkIB23JbMujzi2D0U9D38lpjibaPpPjDbwEoW5hKy4ujsLkzISICIuJxD7yVdd8aP8giIiK4/JyBLPh+E723ZQXXsbVPG6NUiHUbeZ4elPpaoTFx0HsGl556iDPPPJO8Qh/LNjhYut5R4YKHsoA1lh7drJz6x+lwcJnRmNK+XyH/2LW9oJRKBN7G6L45B3hQa/3hka6v9OuF+ItKguORA3vR4s/XGP+QSrPg+xshfT4R8aAsndFeF94D2Xiz87C0Tjzqz1NXrrVbKf7oc0x+4xoSfUYmq9vfz6wNl+JLLqLA1pK7NzxOZmYmCQlVd+11IvP6NJ/+XMznKcUoBTdMbME5o2IaOyzRxKgIK8nP/AVzUguKZn0DgDN1A5nX/Y3Wb/y94nfeZIbTH4f4zrD0H1gtFjrEubkl8hvePzSOA762FBcX884773DLLbcE2w2qTvlDkQWrynh/XmGwPYwl6x2kbXdyzXkJjDs5+oR+Gu/zaw7kRfD+d4WkbnIG2yAzaLxeH26XC6/PR7S1lC5tTAzrn8yIQa3p3j4iUDza0CLOzPMfGjcvP6WWMmVsHOZGqtK756CHZ97PJTs/lKT6YVkpo4c2n94lcnNzmT17drDrxOYmom93PLuMhzx65z6uvu0RNs5Posumh1Ba08GcRe6ul3n++R2MGzeeU089tcbG1QHY+wv8eDN4Asmxlc/B2BfqHdvgnjZO6hPJ6q3Gjf3Mbwt59MakY34t8JeUkX3X07RbtJKih8qI/8PEI15XeNIAYM+WVfTdPjc0YfDNABV+Z1bumtbfcwqbXM/Qx2zcjo4smwPFf621kcpevXqxbNkywLg3KW8T0XcodN/SqWMUGzKNbe875KP3RDuFbxvxlXzxM9F244GhM3UD2htojLJvN8zJgVIw4SUvIlrVGE84rTXPT0/hYGkPwHg4ecuUZDq3jaRTazdgJDH3ZTdMwmr1Fmcwr9unS0SNvVwppejVqxe9evVi9Nhc7n4xH6fLS6mvFQ5/IpbWF/Pm56FkXss4Ew9OS6Jb+2PTBXhdkxfvAjOUUn8EXgBeVUqVN+T5ENAA3TU0HREREZxz0VQyhp7CD58+zSmuz4g3leDz+fBv+ginKx/bhBnGE5cwifFmrhhftzo9vVpuZENWv+AFKLfQx5Mzczl9cBTXX5TQbHtq2Lnz8NILO7dv4fSD/wRv4OlBy95wyiNk5nrZtNvoMtTkKWZ0wgIoyoMdX0DvSw9bTzmn08nMmTMpLTWegEVHR3Pdddexe/duPvvsM8Bo+2L06NGYTKYK7V2Y2xgX+W7trWzc5UbZItgX085IXny3iJZ/uc6os1YDX34Rh+58Eu/BQIkSf9iNvOnwL6qyRZBw06Uk/HEKH/1QxPqdRo8fDoeDblG/EmkqxRPdG2gJ7kK2lfUF3yeQcrdRh+30J8BSfdUi28iBmGKi8Jc68O7LwjP/xdA3e+if2LjPhjvQmGi7ZAvnjD2JHnmZeOeuRUVGQrSNUX/7P+xJLYmKiiK7MIInZpShAR/x5JkH8ffpeWwNT1iEfz5l1JW7bUpLVIQZuowzXgClmZCx0Ehk5G0Gan7yWE+vAm6M5OlQ4Ful1Fqt9cYjWVnweAItbr+ChFsvRwFs/hCW/hPcxoVZmSGyrQvnPhv43bjStmA5p25tlBwt7fGS+7enwFkEGqxditnbtR0rzTeiLMa1ZH9sR3J1GzzbN9CnT5/jEldzsWu/m1c/zQ82UIWG6V8UEBdt4tRBza9tFnFsKZOJlg/ciLl1IvkvvAeAe9seMq95gDZv/h1rt7AfykoZP7pjO8DPd2DyuWgR6eOW9j8yJ3cMG8o6U1JSwvTp07nllluCXclVx2RSnD0yhhH9bMz8tpDf0oz/n2VOzVtfFFDi8DPZ/vvrjrou9mZ6+M+Heeze15bIyJKwOYGkhdtJFPtpa80gISqDSFMpFMGWZZCzI5mhQ4cydOhQkpKMqsAj+9tIiDFRWGo0hrhmm5MR/Y7/9WDxujJe+7QAt6diSZEte9xk5RldwTd1GzduZM6cObhcrtoXbqIi+najdJ7Rbpt7627izGYGX/h/OFpp9OK/4/V4GRyxhWxvMt9+62bVqlVMnDiRbt26Vb3CzR/Br/eBDis1tfNLOO0fEFn/dgD+cEECaduy8Wuj14d1210M6X3sHnxqn49D97+Ac9lalF9T8Nps4q64oEL1ibpyu90VeggB8K17B3yB35eth0Gb4ThcfpZtCJU46tu14m/rrOxsvi0+k7bxB2hhKcGqHXVKCHXv3h2lFFprDhw4QElJCdGYgm0cKVsEHTtGwcpA8iLbS+zFZwWTF46FK/HlF2FuGV+hFEbUqUNDGyk+spIX3/6wjGU7Q439nzIgggvOMK5RHcNKg+zLbpiSFyvCukgd2b/u50+3TkmMGa5YvK4Mn89Lnu1y9m8M3bN2aWvhwWnJJCUcu/vYulYbeRRYBqzDqCJyI7An8OoH3HBMomsA5txCdF0rPFbSqVMnJt/5EtuHvckGTz8AtF/j2Tkf9+eXgDO/ljVULy7KxwPXJfHny1sSFx06DIvXObjrhWwWri4LFt9vTsKrjJTrsH8WOifQJ7HJatRXs9hIWR3IQCsTQ7uUkWgNFNta/bLR4GQVfD4fH330EVlZRqkBs9nMH/7wB5KSkhgyZEiwTnF+fj5btxoZWW9YlRFLG+NC0L2DcSFUVisHko1/OL6s3ApFwKqifT5y7vtP8EZXm0xYWvqxdXQS07eU+EuGknjfDbR67h7avvdvOsx/k86LP6DFrZexcrOTz1NKIJC4aGNdQ4JlP5GRkUy7YgzKYgNbEtvcQ0KlXDfPgi8mQtHeamNSFjO24V2N3k6cuTjWBRo4ikqCQTexekvoAjW8rw2tNbG/rCYyIpKIiAiSL7+A/iNOolu3brRt25bBfRK54PRYjL5ZjP6cKyculIKBPSL548UJTP9bWx6+IZnEqi5UMW2N0iPjXoXLqu5q6kgopWKAKcAjWusSrfUi4CuMtnmqlZGRwYwZMwCjsV673c4HHxgNnhbtO8gVuxfxTeF+bMMHUJSxHvvgNsx98XZwF5FT4sf+fC5f74gnsr2LQ143V+xZxrw5nwXXbbfbg22w7Nq1C7vdzsKFCwHYunUrdrs92Ljshg0bsNvtbNlinHNpaWnY7XbS0tIASE1NxW63B1vHXrJkCaMHDGTzurVoNMs9BUxJ38XyhFtYucVN1p5FLPruJspKMlnX+iSWfTYLu90e7Ob266+/xm63B7u0mjt3Lna7Pdii9OzZs7Hb7cEqVz/++CN2ux2Px8jyz5gxA7vdHtyX06dPZ9y4ccHx1157jfPPDzVu/NJLLzFxYujpzHPPPceUKVOC40899RRXXHFFcPzxxx/nmmuuCY4/+uijXH/99cHxBx98kJtvvjk4fs8993D77bcHx++66y7uuuuu4Pjtt9/OPffcAxilLc6+YBoTpv4lmLhI/fYvbPz1WSPW2XlMuPhKHn/88eD7r7jiCp566qng+JQpU3juueeC4xMnTuSll14Kjt9///289tprwfFx48YxfXqoKKzdbq/23CsrK8NutzN79mwACgsLsdvtzJ1r/GDKycnBbrfz9ddfA5CZmYndbg/2rX6k515qaipQt3PPbrcHr6kLFy7EbrcHr/c//fQTdrs9+KR1/vz5tZ57zYVSioQbLyH5iTsh8HTVeyCbg394oOpqY90vhImfgs1ITkSY/Fye+DOnRBv/A4uKivjf//4X/N7VJiHWzJ2XJ/LIjUm0SQxdYz/8vij0P/QEkrrJwUOvH+LAobAf8FqjtIc4tZvW+gf6R31Ir+gfaR2xxUhchMnJyeGnn37iueee47XXXmPp0qU4HaXYw7po/2nF8d2vPp/m/e8KefGj/GDiwhah6BDWne6va5r2sfb5fMybN48PPvggmLgwm80kJyfTsWNHevXqxaBBgxg5ciSjR49m/PjxTJw4kalTpzZy5IeL6BtKQrg3h37TRo38P6KHTiM6OhqT2cTZ0YvpZt1DZmYmb731Fp988gkHDhwIlghGa0h9zmjrTVe6D/E6YftnRxRfx9ZWzh4ZOl+Xbji21YryX3wfx8LU4Li/uLTW38rV2bNnT2j/AGa8tM6ZH1pg8M2gFCmry4LVD9okmitUowOj2rhLR/JdmT1U6iUzldrYbDY6dw4lCHbu3Fmh1IW5dRKd24RK1mdkebB270jkEONBkPZ4KZ1ntIHhWJIWWm95exdQoZtUl7VuJS/S92TwzjwfPm1sOzlBcd/1XYMlav6fvbMOk6NKu/ivqlrH3TJxd3chCYQQAgkW3HfRhV1scVgWWFwXW3yDW3CSAAlEidvEZyKTmUzGfaa96n5/VE9Vd8YjLHy753nyZKq7rLurbt177nnPyQw5p2OhvPAHJLbkmGOD0f3bR9ZOGx2JJElYLFbcPvO5NLSXnYeuST6uxAW0UXkhhNCAeyVJegoYCGSi61eyhBCNR6u/Ich1bgrn3ELk7KlEzZxkynraCEVRmDJ9Frm9BrLq/asYa1uD0AS+vF+Q552GZfanejTmEUCSJCYMiWBQTztzv6tm2Sa9Aapzabz4aSXLN7u4+ow4Un4HbDvokqdQ8kJRFDKlA4ywrkNVI7AoCoy5BxL7UVwRYOEv5ozJ5Mn9YHO0Hi9UtQf2zYfupzU6xvz588Pq5c466yy6dOkC6OarI0aMYPlyvWFZvXo1ffv2baS8AOjaUD8mSRR2HQA58wGoX7ACxzAz2/lwVL30UVimc8V1s+gd/YwxK8/5N0Jct0bbFZYFeOETvYH0+nxEcIA0m+6FMWfOHPr1SiEqoog6l4U6qSOH0q+gQ9Hb+sZlW2HedDjxJeg0VX9N9UPhGshdCAd+IEKuxOXXpciuPRE4hgFD/4ywRLB+l1keMkAroOiyx/BuNNMooi88lcNx3kkx/JLlprLWJJEkSU/aGTvQyej+jv+0OqgXoAohQutStgAnHL6iJElXA1eDfo3s2rWLJUuWEAgEqKqqYufOnSxZsoSYvQf0uOSAn7yN/yKmZh6apxJ/wIHX56OGJOrs0ex1TmRS6g8I4QChUb5pO0uWLKGkpISqqiq2bNmCxWLh0KFDVFVVsWnTJoQQ5OXlUVVVZbg379+/n6qqKlwuF0uWLGHPnj1UVVWxfv16qqqq2LVrF1VVVaxbt46ysjJ2rlhO4GAhJHQBAXLvOopz4tldnITL7cXv8yOCD7qslGF0OvQlVVX6wDMhIYGtW7dSVVXFypUriY2NZdu2bVRVVbF8+XKioqLYvn07VVVVLFu2DIfDgcfjoaqqiqVLl2KxWIzzWbJkCaAPiCsrK43l7OxsKioqjOWcnBzKy8uN5b1791JaWmos79u3j5KSEmN5//79FBcXG8u5ublh6+fl5VFdXU1dXR1LliwhPz8fr9drvH/woN5haFguKNCJwU+/WsnCTYnsyfdgczrxer1YFEFytBuf4jc62lk5LiIj84ztS0pK2Ldvn7FcWlrK3r17jeXy8nJycnKM5UAgQHZ2trHcQKA2LDf8pk1dew3f9fbt+rVUV1dHVVUV27ZtIyEhgerqaqqqqti6dSvR0dFUVFRQVVVFVlYWDoejxWuvR48erFmzpslrb8OGDdTX17d67TVcK2vWrKGwsJDNmzdTVVXF6tWrycvLY8uWLVRVVbFq1Sr27t1LVlYWVVVVLV57vzdEnTEVOTGW0lueQLi9aFW1FP3hPpKf+qshIzaQOhzO/BbmXwTV+7EoMjPj16EKiXXuAVRWVvLGG29w9dVXN44SbwaDejh45qZUHvl3Gdv36WTyv+ZVEhclM+Q4zrr+6hACKnZDVDrYY0NeFnyxpI4PfzClyVZFY1CXejzl6wnUbEcWGgQf7YqiMHz4cL3ksaKCzZs3s23bNsM5H3TSLz8/n2+//ZaO3YYixBgkSWLjbg9lVQGSfgXjzlqXxrMfVLB1r6lUSE+y8NeLE8gr8vPcR3q/YdkmF+dMjf5NlgrV1NTw4Ycfkpuba7wWFxfHRRdd1Cj5LRSqKli9/bfn5xFGXmQfQAQCSBaL3gma9DiWqj1EFm/A5/NxJj/wdvUcKrU4Nm3axKZNm7BYLGSmpzLN/iMdXb8gKwqyLCMlDYDO02BDUB2w8z09GeIIftOJQyL4MUiybcnxHjeD7trPF1Hz9peNXncv24BjZPtN2A8vGelny8Gu1qKJKOSoDOh6KpommL/SHB/MnBBl+l0EkZenT+jl+zNQFAsgoCZXJ4UsLbeHPXv2NNQfOTk59Opo7tuSHE9mikkUFJQGUDVB1OwpBlld9+VinJOGE8jTlcSS045jWF/zACHKC08bykY8Hg+PvppFfUAfO1gsEn+7pgsRIaVtqfEKiqKbiFbUaLg8Wtj77UVuqcOwL+mYaml3RHT/bjYykiwcCinXO3l0JFeeHvurlNxJbZndlyTpPWA+sFAIUdHa+r8lDHDEim97TNEXFAXn+CFEzZpCxJRRSPb21eLs2bOHrA9u5kTHEiRAVmScSd1QZn0C8T1b3T4US5YsCZvFBNi028NrX1aFxctER8g8fmPyr+Z+3dR5tRXl5eXGzKTdbmdI3y6MzL2TaKkeu92GvfvJMPN9fAGJe/9Vyv5DOnuYFKvwz9tSsW54DDa9oO8ssT+c84PRqC9ZsgS73c7XX39tHG/KlCmcfPLJzZ4DwK233orywfdUv6Ybe8Zddx5xf7qAghI/Nz1bAkCs7OPer24G9JzmzMVv6g+qw+D6eS0lNz5iLMdeM4c9PXyMPHCP/kJEClyyqdGDyOPTuPvlUvKLAwQCfgKeUvpEfotF8jFp0iRjtvqxueVsCKokrj87jimOT+CXB3TTSwiyB1foZpF5P5mECaC6ZPJf6gjB29ny12Qyr55HXinc+nwJwu/HXlfD31c+gCVE1RIxbSwpz97R6LMCZOf5eOubKiKdMmP6Oxl1DAgLSZI2CCFGHNVO9P1MBD4VQqSFvHYVcJEQYnJz2/Xu3Vs0zB6HQqgqB4bNwVtXi1Vz0fGmfVjtwd9RkmHwtTD8Vj321e9GfbEf+S/oh5Zi0+m09pMjklBC2+45oWmUnDML9+ZyhBDICR7mTx9EVL8ZLM2dTHW9/ptqNdVobr1zfmv9HYz9YH7rtbhHcV7/CbT1vAKq4Isltcz7qRY1RMjVp7ONP82JJy3RQmllgHteKTVIutgomYevTW73g7w95/Vr47d6XseqLThSNNcWtAZvVjbFf3oYrTLY/ioKSQ/eQNTsKY1X9lTCwsuNGUG/KnirZDq5Pj3lKi0tjauuuoqICH0WtS2/Vb1b4/7XSg0Fkd0m8ferkuieeXxqi9t6XscEvlpYfAMc+BEUO/S5AAZfg9fRkZc/q+KXreZAN8ruJdH3JVZRGrYLi8XCqFGjmDRpUiPPH5/Px65du9i0aRPZ2dloWrjCs0g5izpVn4yac2I05550ZNF+bf2+coP+FqUh/hbD+zi48dx4Ip0yXp/GVY8U4fbqD/Z/XJfcqPb/eJxXe7B3714++ugj6urMwWbv3r0599xzjeu6KWia4On3K1i7w8Nnj2X+5tqC/KlXGiaOGV+9gK17SPSkqwTmzYD6QjQhKPPH8HLRTLxCL++14ePMqIV0s5qK2QNaFzYkXkOHjHQm59+ClWC/7sxvdLLzMLT2WwVUwZUPFRrXxnO3pNAh2drs+kcCz9qtFF/9gOHrYOmUjmvPAWw2G9buHenw1Qvt3ueLL75IQYFuVmqxKFwW8R4pSjlOpxPrxAdgyPWs3+nm8Xf07z7CIfGvO9Nw2sMH6k899RTl5frE5N96/YBUewC7zaaPG1pJtsvLy+OVV14BICYmhhsHjKXsrucAiDxlAslP3cZVjxRSFewXvHBbKik2L/knXG7450Wfdwq1H+uKEeek4aS+fJ++c18dvNULgAo1hW9TXmbqCSNJjFUafYYGPPvqQhZmdQb0bv7lp8Vz/ilpjda75bli8oNmnUfbFtz5zFb2lurqwLOnRHP+ye1v65ZtchmTspfMiOH0iVFHTaC1tV/QVtrmO2AGelTqSkmS7pEk6dcPOj4ShH6Rqop72QZKb3uK/MlXUPbAS3g27WxzeUaPHj3od+6TfOOegYqMpmq4y/ahfXE6FG846lMd2tvBMzelcOo40zyu1qXxUchMw28ZoaqLLp07M1F8Q7SkSzbrVTtMeQ4kmTe/rjKIC0WBmy9MwGoJ1gs3MKbl2yFvsbG/kpISQzINMGDAgDDJegMSExPD6vxXr17dpPIiLcmC3aZfG9Wqlbo0/cGkllfjWdfYMsF/4JDRuIEeiRR3/fnE1IWsmzG2EXEhhODVz6vILw6gaRoedz3dnEuwSD66d+8eRr6ENkS783y6qenszyEY54oQsO0t3RPEF35NKHFR2HvG6zNVESkUVE4Dxcran/NQq2pRK2vpVbzdIC4kq4Xo807RpdDNoFcnG4/9KYX7rkxi2ujI/7TS4nDUAYe3tjFAbRPrtgq1vBq/qw6rWovs8OL21uFyu/FF94Azv4Mx9+rEBYDVidJtCJZY/SEiPK4waenxgOu1u3FvDl7HArJGZ5AnOhCRMt4gLhJiZAbEmxLpPdogSktKjut5/VZxoNDP3S+X8skik7iwWuCymbE8cHUSaYkWvNv2EL13N/demWQkRVXXaTz8VhlV/0t0+B+agX1QL9LfewxLZtCnXFUp/9uLeDbtbLyyIx5O+zgYYwdWReKy9BXEKnozVVRUxFtvvaW77bcRkU6Ze0Lqib0+waP/Lqeo/NjUQf/HUHMAvjhdJy4AVC9s/zdl78zmvkeW8csW85mXHFVNkvsdNI8pz7bZbEyaNInbb7+d008/vUmzYpvNxqBBg7jsssu4++67mTVrVpiE3O7ZQCCg900Wr6tHVY9f6e6KzS7uebkkjLg4Z2o0t1+SQKRT75rbbTKjB5hy7uVHUDqiaRq5ubnMnz+fnJwcAoFjc51omsaSJUt48803DeJCkiROPvlkLr300haJC4B5P9eG1dz/1mDraypo/bsPS7KISIFT/g0WB7IkkWKr5ZZBexjYvx/psTIXx3weRlxk+fryUfUMdu8r4KcV61lTloovWI7JjveO6PwsikT/bqYXWlbOsfUY8ecVUnLz46YhZe8upL/3GMKitzv+vfkECopb2kUjuFwug7iQJIlTBkaTouj9Gq8mQ9+LAPhupdmPOWlUZKNBf319vUFcKIqCLW2g+WZF6+UsHTp0wOHQxxo1NTVU7TN/KyVoxByqvsgv9iNHRxJx4mjjtQbiAsA5rnHJSIG3A3/a8yafrUrj5mdLuPSBQi59oIAbnsjnjuf38beXdvLwy+t58LkfWbTVzLwY2M3CuSc3nYHRMVQRchSlIwFVsK/YbFfa43cRiklDI3jsT8n889ZUZk36dVVhbSIvhBAfCiEuAdKBWwA78LokSQclSXpDkqSzJEn6TTpH+TNTSHzwBhzDw0sBtNp66j77kaJL7qJg5vVUv/UFog0RQH369GHI2ffzad0sfFjRVA1XZSHa1+fAgcWtbt8anHaZK06P467LEo3Xlm1y/6pxSEeKULPO0XG5xFf+Yix/WT0JtxzD4nX1/BQSRXbZTDOmDGci9A2xLNj4PAhBcXExGzZsMEimzMxM5syZg9yMsebYsWONvzds2IDvkDmAayAvFFmiS7pZOlI63pw1azBqaoDm8lBy0+Nodfp5WzJSSHr8FiRFIaY+hLxIH8vhWPBLPSu2uBFC4HK56GhfRYRSQUxMDOeff37YrHgoeZGdF5S2pg7XmeQOEw7ftW4MN+BKvXN82VYi5vwRFAcgEbFiKyU3/INVX+w0mOJ+lbtBUYg66yQ6fPsSifddixz5uzUpzAYskiSFSp4GA0dk1qkWleEXKgu6zWZ+jzMoDHRgcc1wHtw+lnnLdUl9GDLGY88IdhZU33GNTNV2LaDiZd0vRAhBVW+FX2IH06FDJmuzzYfO9DFRjOtrdhizbKOoyD16UvX3hpVZLu54qcQgSAF6drTy1F9SOW1CFIos4dm4g8Lzb6Po8ntIWLWMOy9LpEE4U1yhBuO+ftvx1Zr22/NECgQChkfK/2dYO2eQ9u5j2Hrps2UioFJ6y5OoZU34YFkcepRqhC4fduDi+m4bsARnXgsKCpg7d25YOUNrSIhVuOeKRJN0q9f4x9tlVNf9Tkm3gpX6TPZh6VTZrt7cue9p9ldEg7scPJUMSthOdO17WGS9/bXb7UyZMoXbb7+dGTNmtLkMJzIykrFjx3LdddcxcqRe9hNryUf11SCEoCJo3Hmssa/Ax/MfVfD8x5X4gl1Op13irxcncN60mEby+ElDzGf0yiw3gTYSKsXFxSxcuJAnn3ySV199leXLl7Nz505ee+21o47RdrvdvPvuu3z//fdGvywyMpIrr7ySKVOmNNs3a8D6nW4+WXRE8wy/Gmy9Q30vmojhTB4Ik58zFmOq1nNhxnr+nPkD3eM8OCOc2O02dkWdys/iNDTMvt4mT388Hg+qpunGnd4j+z0G9zTJi83H8FpVa+oouf5htGqdlFKS4kl56V6UhFi8fUyyz7V0fbv2GzpGyMzMZJC0xlje6u8P9lhyC/1sC5ZQyRKcMrZxElhDyQhARkYGcmLI+K4N5IWiKHTrZpJT5dnmeSnJurVAqEFmg9oh6owTm9yfc9wQcyGYNLKsego+zYLf76Ourk6PDS6tIedAHZuzvazeAcu3R7IyJ5OA0PtxsZFw79XdGrUBDehwjEw7d+734vHr92hCjEy3Dkeu2OmeaSM96de3NmhXwYzQsUYIcX9Q1jECWAlcAOyVJOma43GSRwVZIvqsk0ib+wgdFvyLuD+dj6VTetgqgbxCKp+ZS/HVD6BWtG6iNWDAAEaddSvv15yBSzh1BUZNJWLhZZD92TE57WF9HGGZu+8taJu5138Kpt+FYIBtFz2L/40sSciKzEbvAHJ8XVmx7gBvfFVlbDNhiJNTxhzWMA25Tjf1BCjegGffYubOnWt0iGNjY7nkkkuw2ZqXS/Xs2dNwcvd4PNTsNxu6BsNOIOyGLeox2PjbtWi1MeAXQlD+wMv4c/T6OMlmJfnZ21HiokFoxNTvMA+cEZ44sWhtPW9/Ww0IPB4PCcouEm17URSFiy++mKio8Ozj7plWQ7iRXxyg3h0cPDkTYeaHMPpuyJwEI26Fc36Ei9bChIchcyIoVpyTTaWVfc9BSldsIzdaf9BICEaMTqHDNy+S9OANWDr8vtONhRD1wOfAg5IkRUqSNB6YDbx7JPsLFJezOmMci7rMYFHaTG499DEfVN5MXSCB9evX89RTT/Htt9+a0tiMcdg7hJAXWceevBBCUL9wOYcueQS1LmgU6JD5aoDO/nfuPYl9Bfp1alHgpFERjByZgBzsTOY6elKas/mYn9dvGQFV8PoXVTT4gVkUuHhGDA9dm0xGyAO2wXALoOqlD+nTQeHmCxJo6DM0yLn9gd8WQSCEYNNuD/f+q5SL/3aIb5b/SgMAXx1sehH2Lwx7WQhBSUkJK1as4O233+bvf/87999/P+vXt69T+3uEJVnv0Mtx+mBZLa2g9K9PI5qa2Y5Kh5PfMJ5tMb4D3DBAf16CbmIXGv3dFnRMtXLnpYlYGrzqylUem1uOx/fbJt0aYftc+O4C8Fbpy4oNpr7Akm7fcv/B56gOxOkvSyqXxz/JX8TZXBn7MX2se0hJTuSOO+7g5JNPJjLyyOOOp0+fjsPhQJY04uTdBpF0rIw7VU2wZrub+18t5Y4XS1mxxVTaZCRZeOT6ZEY1Y5jXv5udhBi9q17r0locpFZXV7N06VKef/55nnvuOZYuXdqIeM/Pz+fFF18MGwC2B/v37+eTF+6kKHu18Vrnzp258cYb6dGj9aj5glI///zYJPn6dzt+5U5HgzDfi13NKCt7zIJhfzGXsz+FugJkScJqtWOf/hKjrv+Ye++9j9tuu40LLriA1NRUDqmplAQScbvdiIAHQmNC24FQr5tt+3zH5Hkl/AFKb3kSf25QIWG3kfLPu7Ck6Z5q3oHdjXXdy9s3ORJKXgzsGEFU+WqQ9FZweWUvKioq+C7E62LMAGeTJfOhaSWdOnWChD7mmxVt64v17GnOe9UeKDD+VlL0MULHJgwyHWMGoSSHp0RZ0pOxhKZOBf0udtb3JaAKVFVDEfUgWiYbFFnmzisyW1Q4hyeOHPkkQajiaVQ/52/SR6c1HLnbByCEKBJCvC2EmIOuyvhNW4hbO6YRd935dPjuZdLefZToOScjR5sPPM+6bRSeeyve7Xta2IuOIUOGMP6M63mn5myqtWhUVcVVX4f46c+w5V/H5HwvPCXGGMxuyfGydc9vV2JXVlaGVH+I86K+YVbUIpTgrJIvoiOLXeMJCBtvLRAEFWh0TLVwzZlxjW+ayDToYyYQVC95iMpK/UFns9m47LLLiIlpuTZLlmVTfSFEuPIi2AADdMswG6c8EYslQ4800mrrDRfh2g/mhykxEu67Bnv/4AO6YhcWNShvi0iGOLNR/2Z5La9+UaV/Bz4/Vq2QTMdaAE4//XQ6dgypnwzCaZfpnGae056DoRGsCgy9AU77SCcvkvo3KlGxduuIpaNZJ7crticaErLDRu++cXR9/HqshxF3v3NcDziBEuBD4LojjkktKuNATJCJlwRWRzQ1oic762ex1zWVam8CK1eu5Mknn+THH3/EHdsPe2ZwkCBUvJuOrQGhZ/Muii6+k9KbHyEQlIMLYMWQnnhtdqKjo9lTZhoFTxgSQUykQny3ZHrU6O2XELB7/3/2oeTzC+5/cTd/fGA7W3OO/0B7+z4v9UGH8rhomaf+nMLsSdEoh81keNaZv1egqIz6b5cysp+Ta86KC9mXj39+XIH6G1A4CCHYsMvD3S+X8si/y9l9wIc/AB8vqv11CJZf7oc1j8D3V+I5uJ6tW7cyb948Hn/8cZ599lm+++47srOzDUn6ggULjpk8/bcMS3oyyY/fYrTFnnXbqPrnB02vnDYSJvzDWEytXc0fRpgd0L1797J+/fp2ERh9u9r5y/lmZ3rPQT/PfVh5XMsdjhSqqrJgwQLeeustsrKyEAEfLL8blt8FWvBaiUhBPe1z5uacxEs/p6Lak8CZSJQT/pp+JxMdehczXSlhTtyPXBv/IU7XgRaO2jZERkYyffp0AJJsOXi9XjRNY+NuD+XVR65mqXdrfLuijhufKuap9yrYmRuurhnVz8Ej1yeHSdQPhyxLTBxiKuoajN0b4PF4WLt2La+99hqPPfYYCxcuNFJ+GuBwOOjfv7/R36qtreW1115rF8lYV1fHJ598Qs4rV3DSou+5ZPsi+ko5TJgwgauuuqrJMp3D4fJoPPFuheHTkBSrk8a/RYSRF7tzmy8vH/lX6DI9/DVrBMx4x+jLSpJEYmIigwYN4oILLsBisbLZ2x9N1fB6PLDzXWhj+Xoo0hItRgKRzy+ajbNvK4QQVDz2Bp7Vpil90j/+jH1QL2PZE0JeeNZuQ3O3vVwlJycHCUGE5GKguhQJsCgKe/1dqNTiyNq+n+WbTcJw5oSoJvcTSrx17twZEkIi4dugvIBw8iIQUlpuCSovOjahvJAUhahZk8P24xg3JHwcU3uQgFDY4+mNFhxi9478liHR7zM0bh5jOixnQvedTOhdxLi+9Yzorfvc3H5ZOsP6tqwaC20njlR5IYRgXSh50f/3afbcbq2HJEmz0B39k2jIUgSEEJcCpc1t91uCJEk4hvbFMbQvCXf+keq3v6TqpQ9BCAJFZRRdejeJf7uOqFlNGHCFYMSIEfj9ft75xsp50V+TQjlulwvnqgeRojpA99OP6jw7pVqZPCyCnzfoN/O7C2p47E/2ZiVF/zEIjZpf/slVsR9gw49isegXRnRHavs/jP/AT+S6J1KnyURFNUgkE3HYmuHOhvwJdn6AECoRlZvIULqxn3hOP/100tPbNvgePnw433//PZLLA14/qmLFEhURRlZ1zTAZ//2HAkSeMoHqt/TOUf385cixUVQ++ZaxTvSck4k+M8Rn49Aq8+903e9CCMGni2v5dLE+UFNVFSVQQPeIRciSxvDhwxk1alSz5927s80oEdp9wMfgnm1vWCRJIvrsaVQ+p4sPsgdMQomIQbJYGDHsN1nVdVQImgefcSz25c7dT2FUkL2XwWKxYbHaCQQC1Hk7U+3KJEopJjWwlcWLf2LVqlX8pWt3JEsVIiAROFhEoKQCS8rRdcT8eYVUPvsOrh+D15Zfn4WQ7RrlY+PITtUJiwFDxvPBSvMB1OCTI1ksDAnsIxv9wbyrvHHyza+JNz/fz5qdGiBz/ysHeenunmEKiGONtdvN72TcQCcdmhgUqOVV+Pfmh71W/cY8ImdNZuqISKpqNSPRYPU2D29/U80fZsX+R2YnhBCs3+nhs59qDZVNKLw+wc5cL4N6HMcOiLcakT0Pn89HwB/gp7fu5hd3Y4O5ULhcLnbs2MGgQYOO33n9RuAcP5S4P51P1YsfAlD91ufYB/cOq4820O9iKNsGO94BoEfZR8wZcwufrtYjZIuLi/n44485//zzW5XeN2DMACdXzorlra91deaGXR5e/6qq6cmB/yAWL17MsmX6RED+nq1EpS6js7UApeFzJg9CnPwWL37nYMUWc/a1Y7qTYeklLMrqTa3DzWD7DuxWGafTieIrgh+vgnMWgcXe1GHbjFGjRrF27VoKCwuJthTi8XTEGRHB4nX17TburKq38NY3Vfy83oXHFz4oVWT9Nzt1fFSbDfcmDYvgq2X6d7Juh5t6t4bDJli7di2LfvwRtbIGr90SNqFhsVjo27cvQ4YMoVevXlgsFux2Ozt37sTtdqOqKvPmzaOgoIDTTjutWWNnTdNYt24dCxcupIdnC31+rMZXGQfAiaV7SZvjaZMptKYJXvik0oi4tVrgr5ck/Na8tAxYMlORI51o9W7UimrU0sqmn++SDFNfgK9mQ/lO3Q9jxrt6WUkTSE1N5bTTTmPBV/VMjVgJPj9K8VasJZshtf1WgoN7OvhhjT6JtiXHw4DuR34f1H4wP8zLIe7684k8JbxkWU2Kxdq9I/69+QivD8+arMZpS9X7dRKhrhDqD0HdIXyVeZynbiI6vg5F0ogu0vukisXCWs8QAH5YU2+oJnt2tDZ5f6iqaiSLQVB5ERWBkIL9iroC3fjX1nKfNzExkYSEBCoqKrDXe1GFgqIohvIiNJq0oNSPqgkUWSJq9lSq3zTn6Z3jh4TvuO4g+z3d8Wk2BBI2qY5zz5rOgAEDiIiIOKo2OT3JgiyBJqCkUsXj05ofRzWD/Yf8BiEb6ZDo2/Xo2s3/FNr1qSVJ+hvwanC7OUA5MB2oOuZn9itBstuIu/ZcUl66xxjYCq+Psrufp+KxN1r1wRg7diwTTzmH92rPIj+QTiCg6lKwZXfqjsRHifOmxWAL3pP7D/lZmfUbi5Wq2gdfn036vhex0WDCaYGBf4RzfyKj/2SK/UOoCXRA0zQ0TeOGOfEt10jFdIKeZ6EGVIQmGO9ch81mY8iQIW0+LafTydChQ4lw6Uy0z+fDkpIY1nBkpliMOvfyahV1ykTjPdfPaym95UnDrMg+oCcJd10VfpBDpqcH6WMQQvDughqDuBBCYFXz6eH8AYvkIz09ndmzZ7fYeDXpe9EOxFx5JmlvPUThA39gV0o/IzVleN/frbfFr4Kavfsoi9CVN5IEf78mmVH9HFgsFiIjI3A6nbhEOntdJ7HLdRqHalJZeUDClhacddCOzvdCraql4rE3ODT7RpO4UL1I+IkZWUPq1UV8m6aTKxaLhWrRzzCi7NPZFkbEDU/1G6UjB/y9KCwsO+LzOhpUVKssXG0OuF1e+Nu/CqipPz51+ZomWLfDbB+bk2F7NjRtyOtarMugz5wcFWaa/P3qer5YUtdom+MJLSgzv/2FUp54tyKMuLAoEOPwGAOQjbuOryLPvfUD6mur8Hq8qKpKB6Uw7H273U6/fv2YPXs2Y8aMMV5ft27dcT2v3xJir56Dc5JJ6JTd8zz+A4eaXnn8Q5AWJLCFYFj565wyzpQ9b926lR9//LFdx58xNoozTjBnKRevc/HZT78dT4GcnBx+/vlnAJLkCq6I+YQkbzb19fV4PB4CnU+FWV/wyeqosJKKEX3tjMlcw/bNy6jS4vjeNZlFaY/iGHs7kiV4f1fthQ3PHPU5yrLMrFmz9HO05uAPBAgEArpxZxvVV3VujWc+qODtnzJY8Et9GHER5ZQ484QoXro9jZsuSGhXUkCnVKvh0RVQBfO+38Nzzz3Hd59/wejvNnHW55sYvWY/Erqx/DnnnMM999zDhRdeSL9+/bAE+wHJycn86U9/Ii3NVGiuXr06zHQzFIcOHeKVV17hyy+/JMabz8SVOaiVdpBAkiX8hQ4K//gY/pUftfoZ5v1cy/qdZlt17VnxdOvw2ywZAZBkGWvvLsZyi6bctig442s45W04b2mzxEUDRo0aRfe+Q9nh0ycZPG4P3s1vHtF5DukV6ntx5Kad7hUbqXjcPIfIGROIve68JteNmGSWKLuXhZSOqD5Yejt8OB6+/wOsvBc2v6ybzBetIU6uQUHDoijGzLdI6MeBQAc0IbM1L5aGUrrmVBeFhYVhZeSxsbGgWHHbTSXq4d45zaFnz54gBE63z1AKNnheREfIxEbpQ2R/AMNY19otE8cYvcxcjo3COXZI+E5r89np6ocANCERIRcxYMAAIiMjj5pMtlqksCS0BiKwPdgQ0l8Y3teB5VeINT0eaG/ZyJXANCHEzYAv+P/pQJdjfWK/NiImjSD9oyexhsQh1bz3bZt8MCZNmsTEE2fyad1p1GhRBPwBPNWFiKW3H5EULBSJsQozx5s38Yc/1Pw26rC1AGx6CT6diihcY0hdy7U4aqe+C+MfBGsk2/aplARMNnlUz9pmBxVhGHqj4cbcw3qAQRmy8QBuK8aOHWuQF4FAAJEULmtUFCmsTONgZBrWLnrtmnB7UEv1qCY5LprkZ29HsoXM4goNCs2aTy1tHK9/WcU3y80OQLy9mC7WBSiSH4fDwcUXX4zV2rIxTmiHJiff125TPkmWcYwaSL49A1dQPp8QI9M57dc31Pk94VCZ2pAyS6KlnH5d7fz1kkSevTmFE4ZF4rBbiYqMxOl04tES2e+exFcVl2JJDUocj9D3Qnh9RH6/loIZ11Lz3rdhZGlkfx8ZfzxEwpRKdjuH4xK6dHjgoKEs3Wyud8q48FrvpK5pdK1uKB2RWLp0B/8JvP1NWaP6+4ISL0+8W3Fc2rA9B/1G5GlUhEyfzk13jEPThORYs22tfn0eQggkSeKymbGMH2S2U58srjE9aI4jNL+fn15cxk23beGJfx1kX041Wp0Lrc6FUl/HFHK4tnwuAze+DS4PHpeLjbuPH3lRXl5O8ZJn0VTNeJR1sBSS2aEDU6ZM4eqrr+a+++7jkksuYcyYMUyaNMnYds+ePVRU/K6S1Y8YkiyT9OhNWDoESw/rXJTe/HjTkmrFCie/bqZI+WqY5Hqb8aNM36UlS5a02zfkwukxTBoacs0uquXn9fUtbPHroKamho8//hiAHtb9XBH/OXFK0KBQwKLqYTy6vhNvfpHNZ4tN48ITRzrp5lzCpg2mwnHgwIGcddE1yGPugrH3mwfZ/LKuaDlKdOnShaFDhxJrycMiefB49LKRtgwK690aD71Zxqqt7rBuX4dkC1efEce/7kzjwlNijZSY9mLSUCeqqlJf7+Krnw5RXlLCxOV7SCuqQZYk+hXUctOAcfzhD39g+PDhRprC4UhMTOTaa69lwAAzTnL//v1hEZZut5tvvvmGF198kYMHD+KQPJyRtRo1Xx+ASbJFL2UFApUWCq9+Fu/Cfzd77ocbdM4cH8mkoS2nkfwWYOtjKhd9u5ow7QyFNVIvH7G3Xj4jSRJnn302ORZdnSWEwLvjEzR3VbvPsX83O0pwJJdb6D8i017/gUOU3vYUBKOD7YN6kfjQjc0OtkOJWvey9XpJTW0BfHUG7Gw6PSW0jFDYYyGxL3SbiW3GazgcTir93fCpNjRNIzFWYUwz44T8fFM12blzZ+Nvlz2kFLuNpSM9evTA5lORNUEgEECOiggzsW/OYyL5yVtJuPca0uY+EqbmBqD2ILvqdTJaQybeWXVUfjyHI/MoTTt3hZSuhXqm/N7QXvIiTgjR8ITwSZJkFUKsRS8j+d3D2jmD9PcfJ+JEc/aorT4YU6dOZfTEaXxbr7vR+n1+fDnf6gY+R4nZJ0QTFaH/VKWVKt+vPj4dEuEP6BRjayjfAZ/PhDX/ANWHpmmomsRKzwg+9F9JQj89/rOkIsDzH1XoSgwgWikiM2JLS3s24LJnsN1tNkzjnO1PTUhPT6dThC73FECJ1ljJEMr87ysIEHnqxPAVZJnkJ2/Dkp4c/nrFbvDoXhyqI5kXFiXxY4i5V490Fwnez5El/UFyzjnnGCaiLSE1QSE2Uv+tXR7BwSNgVoGwGKThfRy/KfnwbxGHvOYgNi3a7GRlpli5YU48L9yWyinjooh0WrHb9ZmOXO8QcpMbYmxVvOs3t+uYIhCg+NoHiZ23BK3WvKftw/qS/uz5JJ+0E2tcABWFb/PNB7MjcTTVdXonIz5GZvRhD3lLp3QGlgbvM01i4+5fP/0hO8/H0o3mZ0q1bQcEqqqyfW89r8yrbHNEdVuxdnvojK0DpZkZhQa/i4Cq4rrsVCS73gb4du7Ds3IToNeZ33BuvFH3qqqQtefYRtEdjqLyAPffvZkXNsWTX62guTxoLg9KXS2T9i7m7uUPceK8J4ifv5hJWetw+jxYPH4OFvuOS0xmQUEBn/3rbzgCNcyr+iN/OfQlj5S+gtfejT9dPIOTTz6Zrl27hknG4+Pj6dXLrI/esOG/J+1GiY0m+RmT5PZlH6DiwVeavs4jkmH6W7o5JSBVZnOqYyEpKaYn05dffhlmcNcaJEniurPjGRSSQPDmN9WUVv7nvEc0TePjjz9GdZUzM3IRZ0s/4CiPIsIRibA6mVc3g5WekRTXxPDpUgv1LheqqjKoh4043yI2bjSvnyFDhnDeeeeZ11u/S6iJDKYMCBV+vhnUo2/rTjnlFJwOK4nWPWiahs/nY9Halvtc9W6Nh94qC1NIDe1l594rdAJ82uhI7O2Ud4eioqKCkn3fU19fh6qq1KmpDFhXTkZhNQ67naioKGw2G57nP8CfX9Tq/ux2OxdeeGFYVHt1dTXPvfQez721kkeffJVffvlFJ3PRmJO3BLZH6f0ISSL2mjkkP3cPklX/LTS3TNGfX8X14SuNjnW4QeeA7nYumdH6AP+3AFvfUN+LVsiLdiIiIoJJ59xEiRo0kfe7yVnwRPv345DpGTLpteUIIlNr3vvWTNNLSyL5+buQHc2XE9iH9DEG7YGiMvzLv4B506Fks7lS+mjodymMugMx+Vk+dZ/Dq9UX8VTl1VSfuQrmLIaTX0dO7EOXLl0p8fXV9xdQmTE2stnnd25urvF3aMyxy9F+8qJ79+5EePR7VtU0pMTw67JjMx4TSnwMMefPwNajU9j6+N0IVxm73P0BEEhkxB/byYUOR2HaqWqCnHxzHNTcBM/vAe1tTfdKktQ/+Pc24DpJki4BmsgHO7aQJGmJJEkeSZLqgv+OSzahHBVB8rO3E3fjRUb9YIMPRt3XP7d0fpxyyikkDJzFBq8uGfN6vHh+ul1nJI8CkU6Zs6eY9Vvzfq495rOAgeJyDp19E+k3PItr8ZrmV9z2Nsw7Bcq2Gi/V2jvzds0clrnH0KlrT2RZxucXPP1BBfUegcViwSq56OJcxv59e9G01s9906ZNrHDp7K6iyKS7N0JlTrs/V69EM1Ujt7aqkRlaaOLI/kM+IqaPD3s//s8X4Rw7mEYIqi78wsLTRQ+FSV1H91OwV36ELOmfc9iwYfTv37/xPpqAJElhD6KcIygdAdgfQl4M6/P7ZVd/DQhNo0hKMZbT0xurVJLjLfxhVhwv35HG8L6m/O9L2/mGusq3PbtNccsNcK/YFGYcae2UTsrzd5E29xHsbpP0zHWMpVbTZ6m6d+/O6l3mNTt9dGQj2Z+lUxoDy4PqAgF7KxJ/1QhFIQT//rbKkHYmWfcxOWMVHez6QMTj8bJ8k8sorzpWxwx10B7djAmVWlGNf08eXq+XOo+b93I2UzHSNPuqfmOe8bdFkRg9wLyPjpfCQVUFXy+r5ZYnC9heYZ63TfMztXA5925+htl5C7HXl+P16h1TixagW0UOsqYR8PvZdIzPbc+ePfzr1TeoqU3k9sIP+bb2IupEHHu9fbkr93l+XtZ8R37ECFNS3F4Dyt877P17kHDP1cZy3TdLqPvk+6ZXThkMJzxlLMoHfuCsTgcMSb+qqrz33nuUlrbdSsyiSNx2YYIxO+f1Cd74quqYE4VtxeJFi3AcXMDVUe/TI6ucqvd7UfJxGsXvdEfJeJYRZ9+DLTKDfe7JCGRUVUV1F2Cv/IgtWzYZ+xk+fDhz5swJ91aQZPZmXgdKcJBVvv2YmKXHxMRw4oknkmjT+xs+n5f1O1zNGnfWu/WY2r0HzYHEtMEV3H1FEoN7NTNxULoVVtwLxZsavxcCt9vNggULeOaZZ9izawMxFr1ky+pXqaaXQVo0zBZrLjdldz+PaMM9J0kSU6ZM4bLLLsNms1Pi68PW6pks2JDAmuLpZNefTLmvO7P8e4hYZTc+R8TU4cTddiORp80gbe7jyJH6byICUHLPO9T880njGI0MOuMUbr4g3hiYqlW1VL169BN8xwthcamtKS+OAN179MDd9Wxj2ZL9IQdDlAVtRWhkalZO+58FDWl6AAl3XWWYVjYHyWrBOT6oqPbX4377HvAEVXayBcY/DLM+h0mPwbC/UBQ7iV21SVRo8Vgj4sLKlgCsMX1xa8FjCh8njmpeqdCs8sIRQiS0MXHE6XTSKSrO3IczXBmdmRpq2tkGoqCugGJ/OjWBWAQSiuQLU0ocCxyNaWd+ccC4F6McKklxv02/mbagveTFvUBD1uSdwJ+BJ4FbjuVJtYAbhBBRwX+9W1/9yCDJMnHXzCHlxcY+GNVvf9H8dkEpWG7aRVRqOoPnqyun7rur9TKDo8D0MZEkx+sXWp1L46ulx7Djr2mU3f08/n0HkYSg4ul/I5oiGLa+CSvuMZ3BFRuMvof59j9RourKhO7ddSfiN7+uMmYhbFaFfgmrscoe6uvrKS4ubvl8hGDdunWUqMns8XfGarMBwjA5aw+SsSIHH7pVimD79vB6964ZoeSFH1v3jkSdPQ3QDTpj/nBW0zsuXINXs/P0oQdZV9bXeHnaqAgS/AvwenQWOzY2ltNOO61d59w7hA09EvfoovIA5bX657JaYOBRGDj9N0Atq6IoMlgvKUGX7inNrhsbpXDJqXFGVG9WYCxlwQe98Ljb1cGp+2Kx8XfUGVPJ+OoFIk4cjVS01jCD1SSFL3PNGK5OvSaSk9/gLQMnNfGQt3bOIFb10KV6H2gSaFpYrfHxxootbnbud6NpGhbJz70pd3J55Ptck/g8ydZdaJqGPxDg08W1LNt0bKIID5YEKCzT2yW7TWrWwNK9bhsejwevz0dFQiSqRWGh04sWNEH2rN+OZ6NZZjO0t7mfTbs97S7jag37D/m4+5VS3p1fjadSn92VEUwR2Tw1roBLz82g81/OoXjmGFb3S2XT0I5sGtqRgNNOz7KdAAT8/mNKrGzanMVTry5nc8VMVtfPol6L1qXiQZWAT7Px8pIMXvykAre38XOiX79+hky2pqaGnJz2k86/Z0SddRJRZ0w1liseewNvVjM12L3OgUEm2dG5bB5/OLED0dH6ZIXH4+Hf//439fVtV1s6HTLXnW0OPjbu9vLL1l/fKyt363KS1t3CzPrl+Odl4F6XordHigO/K5Gyhz7F8eD7lHlPwWLTFZIWyUP3iMVUlpt+ISNHjuSss85q0sDUY0/X0x4asOFpqGw9La41jBs3jo6pDqIthQgBbo+Xn5oowXF5dOKioU0GuPqMOAZ2bsEjx18P350P297S//dUNbnajh07eOqpp1i2bJlBACZY92LXBFZVsCV9BEgS0RecSuobDyIFM3O9m3ZS8/aXbf6sKRk90dKu4pBvDAJzMFOvpVMamMCz5Xfybp8/sDu+L5aeGSS98BRS8LewjxlP+icvYUk0t6t47nMq7rsfNaCGGXTaLHD7JQk4K8uoefdriq64l/wTLqfqhffbfK6/Nmw9OhnfayCv0FAnHEv0m3WvYTabLJex+ONnDJK6rRgSYuy+ZY+33WSl/4DpY2Tt2amFNU04x/bT4439dbj2BEn+iBQ4/TMYeGWYeWyogqx79+6N7uVdxaYRf4KSQ0QzXdaamhojfdBisYQZ+LvDyIu2KS8AOoeQF5VS+POs3URBbT47XfpEpSZkIpUS4uPjWt6mneiYeuRlI7sPmNdVRoL3d63IbjN5IUlSH8ABFAIIIdYKIXoIIdKEEL/piNQjRcQJjX0wql7+qMUGTFEUzr/4SlbazkUEA4xF/jJqVr94VOditUhccLLpeP3dyjoqjiLCKxQ1c7/CsybLWA7kFeJZe1j96La3YeV95nLKEJizGG3wdezdb7K2Xbt2ZdVWNz+tN7+jy06LZUgfszPVWmf24MGDBsGxOTAca4PXxYEf2+0hopVWGD4Trggbq1atCnu/Y6qVhsmc4gqVOrdG0t//ROcNn5D4t+ubvbndh7bxcN7f2eoertcwA7MmRjEoPZucHLOjOmfOHJzO9pll9j5K087QWdiB3e1HJVf9b0DgYD6FUTpBIEmCPv1b5kW7ZtgY3ldXQqhC4efu0/S6JNWHd0vbHppqeRXupaahYeyVZyE1uMdueM54Pd8xijKv3jFJTU1l5yFTVj5hcESTTu2W9GRkm4NBJRv020VorNr063gPeHwa7y2oDqouBNOjP6FLRAGyLDM4aj/3pNxOgkVXPggheHleJTv3H305Rmj015BedmzWxvetpmlseW+e4aVTnKoPEGscCgd7mAqtUPVF90wr0cGSveo6jf2Hjk0Jjs8veH9hNXe+WMq+Aj+a24sIqGS4irgp+y2ue2AcHa86ndjLz2BdZhRfytXs6pvOrr7pBE6fSOqYIfQq18kLAipZOW68vqMjyIUQzP1sIw+86WK/awwadkD3AEl1VnLlNJUMe9DlXfOzdJObO18q5UBh+HeiKArDh5s10f9Nxp2gT2Ik3HuNEbUo/AFKb30StbKm6Q3G3AsdTEf/qDV3ceWZEw2Pp4qKCt577712Rc/26mTj5NEmsfn2N9XU/QqeLQBoKp61/yTm2zNIW++h+vNuqBUOJFkBexw440GSCUgyr8kTOHTIg8XlJc5p56T+udhlkyQYM2YMZ5xxRsvJK4OuhuSgOlL1wZJbQDu6vpGiKMyaNYskq95X8fv9zF9RGWbc6fZo/OPt8jDi4o+zY5k2uvlZYwCy5xklp/hqYfvbYW+rqsq3337Lu+++i8tl9qM6duzITel2Ijw6EVXsSKZ8+mkk3PVH7AN7Envtuca6VS992CYifc12N7c+X8KuPD0u1mq1Yrd4sNusRDntSPUefJKVjakjeXXoX/j7+Od4f4mHvCI/miaod2uUp/Sn/qU32dN7ABtSRrK8w2Q+WWnn0RsXsn6HGxCIQIBLIrZhv/F2Ck65horH39JVh79xVZZks2Ltlmks+7Jzj/kxlIh4rH3OMcb6Xd2/8M0337RrH107WIlyBifpajXyitreVmj1bsPfTbIoWDKSW9kCqMzBWfUoqPqz23vIjhozAs7+HtIbp+nt2WMSig0TnA0oKPWz8wBGXztOzmoU9duA0IjUzMzMMCWWx5YCliCJ4y4DV9uMytNsZv+82O8OI34OJwpanbyoO8hOV18EeslItKWsTRHC7UFoWltReaBd/mG7QiZDM+KPbxns8Uab9CySJF0OvI5eHhIrSdLFQoj/hNbrUUmSHgN2A/cIIZY0tZIkSVcDV4PurrxkSZOrtRnStaeR9Oi7WIsqwOdj/TOv4Zo0pMVt4vqcxNoNGxhl1wcQ6vK/sbQ0FhGjy5zq6urafV5CQKwjjZJqG14vPPX2dk4ecnSDEkt+MclPvIsUjC7QhMDn85H9z39T6dGdt1PLv6dbwevGNrURvdkZeyPq5nxqarYbTKjdbmdz1i7mLumA16s3Kn061OPw5OD3+w02eeXKlS2WjmzZssVYtzZ5IG51MbLmw1u2h83fv4/bkdnstocjefde/SIXgioLVOzezddff01MjEkERVnTKHHphMHn362hU1LLN7XNX8GOPZMNhtXr1xjbu4R4bTPz5i0xZkm6detGfn5+mMytLQioEn5/RzQN9h30svCHZThsbe94zl+VghB2vF4vERSyZMnRG5n9f8ahLVnUWfVSL6vw0bljXKvbzDkpnvXb6/D5YW3sBKbZvifOX4N33Xq4uPWI5LpvlxpJNr5uGWYHqXgTHFwK6A+/Lw6YxOmI0VN48TtzkD5jbNOdZMlqwZqZyoB9W/i65xwQEll7PNS5NaKcx5fI+npZHeXVKoGAn3ilnPNiXzfIQ7vNRqaviIfTruWuwn/j9XdCkmw88V4Fj16fHOai3V6E+l2M6teYLFRVlY8//pjMrGwkBAoqA/sV0SEih9WeYaxId3DuThWLouBetgHfrv3Y+nRFkSWG9LKzfLO+/427PXTPPLo60W17vbz6RSVF5frvL1QVua6WU/J/YkrhCpL/fCHWTukIIVi0aBE//fSTsW3Pnj255JJLqCl8i+TlG0iuL+aQNQO3x8+2fT6GH2GJ2PZ9Hp5/bx8Hip2A/v3ZpABxlmrOSf6IadMGYBlyNVMOnMMbhVeztOpEEBqHSgPc9XIJV54ex4kjzRi4ESNGGLGYO3fupLa21lAT/DdAdthJfvYOCs+9Fa22nkBhKWV3PEPKK/chHR4rKVtg2qvw+Qwo2wP+etI238WF5zzNOx99Ceh13vPmzePcc89t82zZhdNjWLfDTWWtRnWdxvsLqrnmrJbl4EeNsu2IpbfiXrWF2kWd0Kr0ZAqsEUjRicT/5RIiT59M9dyveXWZxJ4Yk+C5YO37jKmUqT3zRDbWl9OpUyfGjBnT+ueVLTD5Gb3mXgtA8XrYPlef/T0K9OjRg/FD1pG/2ktA2Ckq87Bxl4uR/SJ14uLf5WGTC1fOimX6mKYTEgwI0YisYOsbMOgasEZQUVHBhx9+GBYFGRMTw8yZM+m6v4zye/7JwO4y65OGINmsZE06ixFBYif2j2fjXrYBb5Zevlh657NkfPyU4ekTCrdX49/fVodNMkmSxHnTkzl/WndqSspY8OcXWaWM4lBkByRJQo6Lpcot8/WyOr5eVockhc4lRcGge9EqKw1hLl6QKqoAiRMOLqdP3kKamoqxD+4NjQOgfjOw9emGL1ufoPNt34tjWL9jfgznsD/i3zsPt9tDf3s2izf+Qq/+LcdRh0KRdbVhg8Jqc7aHzuktm8M3IBDikWLJSDES6ppDYtUq+PwtFH899vQ0vIV2UCLwxNxMZGRqo/VVVWX/fpNI69GjR9j7C36pByQsFgsRYj8OuZa9e/eSkZHB4QglL0L9LgA9sja+NzT4fVXuhogkWkOMX1CPPv9UKWmUl5eTlKRvFxOpEBMpU1Ov4fMLSqtUUhNa+H5q89nl0q8PDYkuqVqbYoTbA7tNJjVBobhCRQgoLAvQKa1tv3V2CHmRnvBfQF4AdwDnCCG+kiTpTOA+4NcmL+4AdgA+4HzgG0mShgghGjlaCSFeA14D6N27t5g8efJRH7ymzGfECHXcUUD6/Te1uk3BgD5UfDiVRKkcCwE67X2aDtetweZwsmTJEo7kvBI7enjozXIA9pTYua5vXzqmtu3CPRya20vhM7fiVyyg6EZ/rj0HsNls2HfmMWDwMJSib2DXXAjK5Ekdjn3mB0wMZiivXLnSMDAcOHAgea4hBEQ9djvER8v87fouRDplKisr2bVLn5V2uVyMHz++yeQNn8/HkiVLjH3OPuscIrJ34931BXabjdFpNTBkcps/Y573dTS7HU3TCMRFYbdbUVU17LvfWV5pPMTjUgYweVLLneyKrIW8UHM6EqBJFv4wO5nTJ3bh1VdXY7FYsFgsJCcnc80117SaLtIcFu0sYW+w7Cal8yiG9W7boMTt1fjXokIkyaubcp0xhOS4/yWNtIR92cWATl6kaoXIcuuDg75dbPTp6iAr249ftrKk4zTO2DcP78atrW4rhAgrGXFNGGS+ufE5489DEaModusDycTERA7Vd0FVdTlyz47WFgfR1k7pxO3aSaeaXA7aOxLw+1m/08PkYcfP4b2sKsBXS2vx+/3IqFwc9yKRVg+KEgndTkPKXYjNbidZlPGPtKu4u/hdhLUDdS6NR/5dziPXJRvGxO09bsO9osg0GsD7/X6+evd5IrIXk15dgyKpyIqgY6c9+DQ3A+27WGMfyoH0NLqVeJDQ1RfJT90GwLDeDoO82LTbw5wTYzgS1Ls13pkfPmAAQfe6A5y9ZS4pnjKsPTsTc/kZCCH48ccfjXhJMIkLq9WKtXMGFouF3mU7KIrJIBAIsGm3p93khRCC176o5JtlFfj95nXvtAa4IOFdTk/6Eqfig74PgtWJI6UnN0jPMSBiK6/XPIBPOPAH4NUvqti218s1Z8bhdMgkJyfTpUsXcnNzEUKwYcOGI3re/Z5h7ZhG0qM3UXLDPwBw/7KZmve+Jfay2Y1XdsTD9LfQPjhJX67eR99DL3PK9MtZ+P0PAGzevJmkpCROPPHENh0/0ilz5aw4nn5fn+BYtM7FpKER9O16HMoIVR+sewJt7WuU/RRJ/ZZOICQ0JLDFEjl+JIkPXI+1ky7zXjJ4NhsKq5BdboTby6l5PzKkYhueNWBdk8WUySOJu3lc22XNiX1h6J/NyNS1j0DnaRDTseXtWsHpp81g8eafKHT3RdM0Ppqfx4DuvXlkbnlYSeeVp8cyY6xOXGia1rxsv2Bl43p8TyXs+oitjOTzzz/H4zEJ6r59+3LOOefAmm2U3P8SACPKNrMhfQRKbBS/bPVy2WkCRZGQLBaSHrmJQ3NuRri9+PfkUfnP90n46xVhh8vO8/HPjysorjBVDwkxMjeem8CA7naEGkDccSkTNlYxgR8oiOrIjktuYo03hep6cxKl0UeULcjx8VBdSYM3uggE6FW9l9MOLKQhG1OyWnCMHUzElFE4TxiJJSUBPmi/UeWvBVu/7hD0u6t+4zMipo/Xz/lYInU41tQBBAq2gN9Pf1s2G7KsnHrqqcTHt41wHNzLbpAXW3K8zD6hbWRxaKSzpUtjwiAM656iV97TxnjA2dOPtyIFFAeu5ZuJPG1Ko03y8/Px+fQLIj4+noSEBIQ/QPkDL1O+eS8/9bsJLDYURSFF1ks29+7dy8SJExvt68ABU+Ud6ndhIKGPSV5U7IYO4xuvcxi00kosFgv+QAC300pOTo5BXoCuvti+Tz//gyWBFsmLmvIyDnk7ok89Cfp1b4XMPEJ0SLYY929+ib9N5EVFjUpJQ9yrBVJij8xP77eCtvYUM4QQXwX//hJoW1FUGxE04xTN/FsBIIRYI4SoFUJ4hRBzgZXAqcfyPFpC5OmTDVm3d1tOm+RjHTp1gynPowW/5kT/fjbNvbZNhpXNYVAPh+EmLgS8v7AZKWobUPnMXPz7dIZfctpJffk+fF31zoXwB6h77QlYGlJPmjIUTn0fbGajGFrLZovpzY9rTMnnFafHERmc6Y2PjycxUbdLCQQCYY1QKLKysgzVRVJSkt5AdTrJXOHAojZ/Pq3OZaQ42CKceO3677dp0ybcbnOmNtS0M9QtvDl8scJPQOj76hBVxqxJUSxbtsxghWVZ5txzzz1i4gIIM+1sT+nI1j1eQ4nZKc3yP+KiDTgYoi5MsbRNySRJEuednIjFYkGVFVZnTqROiSBQVEmgpOV9+Lbtwb9Hv1Ykpx338GCZStl2vTQKfRbgq3zz4Txx0mQWhaTZhMYnNwVLp3SEbGFQyUaEkJA0P6uPc937ewtq8AUg4PfRw7aD8ZELsVqtSJ2n6TPLMz/CGp2CJEukWgq5O+lGZG85CEFhWYAn3ysnoLbfUyK0ZKR/d7ve5mgBOLSawMq/U/bSAE4u+zvjq7ZgQUWSwJ7uR7EJ7HY7FkkwzrGBXsN+IeDRvYTqv1+JP1fv1A3p5TAkvTn5fmrq2y911jTBI/8uDyMunHaJy7qVcM2yZ0jxlIEkkfTA9WBRGhEXvXr1MogLAGvXDlgsFnqW70QSeorLuh317a51zsrxBIkLvd2T0OibXsxbZ3zPuSkf4ZQ90HEKRKWjVtcikoYBMDluMY9N/cFIYwFYmeXm9hdL2H9Ib69GjhxpvLdu3br/mGnkfxIRk0cSe9U5xnLVix8QOFTS9MqJ/djT8Xpz+cCPTIrcEGaAumjRIjZv3tzm44/u72BEX5PQ+tcXVcc8plhoGtp31+Ga9zYFb6ZSvzkWISS8woovOpmUh28m9c0HDeJiZZaLD3+oQZJl5KhIpkxMYPZoG4TMULqWrKPowtubL7VpCsP+DPHBpBu/C5b99aij6uPi4ph1gimj354LD7xWzM79XlRVxe/3M65nEd6SRbz11ls8+eST3HfffSxYsIAPPvggrD8D6D4XDYjUTQsFULn0MT764F2DuFAUhZkzZ3LJJZcgb9tL6a1PGiUW/dM0EjNjQJKortfYEpKCZO2SQcJtJllRM/cr3Kv1kmBVFazaHct9/yoNIy7GDXLy9E2pDAh6Y9U+fAN1K6uM9/uf35+r/jqOV+9K467LEhk30ElDhaPTLpEUp9A1w8rA7nbGDY7mlCnxzLIvYPaez7h0+xv8cfNzWLUiIgepJN9xMh2XvU3qy/cRPWf6sScBjgMiZ05CSYoDQC2vpvS2J9tlzN0mSBL0vRiHw44sSwy1b8fv9zFv3rzWtw1icIjvxc5cb5vLCMP8LjqlN7/igcUmOQgQ0wXn1c+Aoh/XvXJjk0axh5eMSJJEzbvfUPfVT6zwdcJTVY/QNDqnW4lSdBXI/v37Gxk9BwIBI8oXmlBeACSElPy20fdCLa1ACfqauCJsjcraw3wvWjHt3H1IQb+jIVopoWuXtqvE24PMkAnrgjb6XoSqLnpk2ox43d8r2nr6Bv0t9B7IMf3YQojJQgipmX8Tmtss9LyON5S4aCJOMiNU6+a1bRDdddRsqrtfZiz3qv6Snz//11F15C4+xZz527DLc0Q1466l66n9cL6xnHDnH7F2ycA1MVg7GvBQ9+lC89mfPAhmfgh289iaphlyME3I/LzdNDoc3sfBmAHhs4ChcrHQBi0Uodn2I0aM0GdeOk3F+KmL1oG3uk2fUQ0ZRNo7pJEadDj2+/1s2mS6fHfNMImC1mray6tVFu0xG6RJPQooLCxk0SLzepg6dSqZmUfXaPU5QtPOX7LMAerwNqo1/ttR6Dav6bSYthsfDu/joHO6lYBQ8FltrMicovteZLXsdB2quoicPh7hDM6EbnzeeL04cgT5dbrqIjY2Fp+1D5W1wXjUaDksBaMpWDulIyk2BpVuAg3QAmzO9uDyHJ+6990HvKzMcqOqKhbNxaXxz6HIGpaYdDjhab1z1mEc8tkL0eL0DkZ3+06ujbsH4a0EobFjv49Xv6hq97FDU0ZG9XNAzucwdxDiqzPxrnmWSJ9OQgQORYKkE0+O3rEw9EbktOHYg5FwsSmVODOKEJ4KUP1Uv6VbOUVFyPQKIRM3Z7e/vd2x3xdGQo7q5+CZKywMfudpZM0Pmo/o6T2xWdex84MbyF9hDnJ69erFxRdfHEaGWjpnIEkS3WrzcPj1z19U5mu3gdcnPxYbxEW05RBzRmXz9B3jSMj/wFypzwXUL1xB/sTLKLgvG82jt8Ud3T/z6J+SmTrCVPMUlavc/XIp63e6GTBgAA6H3gZVVFSwb9++dp3b/xfEXX8+1p46ESncXsr/8Xqzz//yuAkw+DpjWdrwDGcMcYbViX/22WfNkv+HQ5Ik/jArFodN/80OlQb4sp1m31ptPY4Nu6n54DsqX3ifsgdeouSGf1B44e0cnH41eUNmknfTDkrmpRCoUVCRcQknZb260e37N4ieM91QUGTn+XjxEzOcrn83G9ddnEHyQzfQ4asXiJxhdve0eneYF1erUGx6+UgD03hwGez+pF2ftSnMmjGWRKfelxACNu+qora2lvr6ehLFMkpyPmPNmjXk5ORQUVGhqzwDAbZu3cqHH37Iww8/zLvvvsu2VQsQuSHJM6fMJWCNpb6+HsVVSN9gukl8fDzXXHMNEyZMwLdjLyU3PoLw6feopVM6af+6n0nDTPJ62cZwD7aoc6fjnDjMWC6/95/s31PNfa+Wsmp3LA1l+067xI3nxnPzBQlEOWWEENS/8xwV75hx9pEndCf2rvv1r1eRGNbHwc0XJvDuAxl8+HAG7zyQwSt3pPHEjSnc/8ckbr4wgavO68wVj1/IedMWMaXXYjLnFNDxhjySJ20gsv5h5C8mwZpHofrYp3ccDyjxMSQ/cSsEy3O8G3dS+c/3jv2Bep2DZHHgcDpJtZSRYSlj7969VFS0bUIlMVYxki0CKmzf37Z+YyAvRHnRHHnhd8OKu83lDhPh7AXYxp6EkqwTUFpVLd6tjf3sQic4e/ToQaCgmKqXPyQgySxPG4PQBKLezRmT44mLCwYd+HxhRAXAoUOHTOPahASiopqYwEnoY/7dRvIiUFKBRdG/N7fTyt69e8OIk9Bo0vxWnq+7SuJpaNkjlRI6djw65VdzyExuv2nn7pD+R+/fcURqA9pKQkRKkpTX8A/d96JhOT/42nGDJElxkiRNlyTJIUmSRZKki4BJQDMZZMcHUWebmdh13yxBeNvWOHQ+42m8MXqHXUGjY85T7N/bjPt4G9A1w8bEIebg5d0F1e0iQ9SySsrvf8FYjpg6mqizdHWDe0QfZJsKvmr8FVa8B+2QNABmfhRGXAAUFhYaMwXV0jBKqvROg90mcWHiPmo/nB/GUPfs2dP4uynyorS01OiUybLMsGHBB3BEMnXOYOdNqJC/pE2fM1BcbvxtSUtk9OjRxnLo7FWXdCsNlQKHygK4WxjgffFTFYHgzFVP526S0qP45JNPjMYuMzPzmMijQwdLe/J9YUZhzSGv2M/KEPKitQHu/6CjUDLrNDMy216XL0kSF0xPRlIsIMPyzKl4ZAu+1b80u43m9lI/f5mxHHVmUAJekQ37vwN0VvabAjOi7YQTTmDhavN3ndZEPOrhsHRKR1YsJLjL6ODOR0KgBvxs3HXsU0c0TfD2tzqhqPnqGBuxmF72rVgsFpSpz4fXncZ0IurixeTKekLPCOdSzot9BTzloAVYssHF5uy2n2OtS2PHPpNMGNlbgeV3o3kqcblcqEFfkQAKntIMJHssOJNxXPkMjL4Lzvga67QX8Fv1TpNzWJkugfeUU//ZlwTy9A52aNnWkXyHSzbUQ8AN7nJOjPiMv3qGI900FbVgH3jKUZQyYjLew7XwBjIL3mFO1HcMtm+nd+/eYYqLBlgykpFsVuyKRI/yXUhCEAgE2pU6UloZYEtOaLxjDVdcMhvl0HKoD9ZBOxOh8zSq3/4SNI1AuZf63UGvlZJN2C2C686O58Zz47EHB8gBFd74qhpZsTJkyBBj//9txp0NkKwWEv9mEhLupetw/biq+Q1G36UPDoJQlt7ExaeNITlZVwCoqso777xDWVnbDOmS4ixcON18ds/7uZaCkrYZz3qzsjl4yjUkvPoVFY+8TvWrn1L32Y+4lqzDm5VNIL8AUVcF6CVIfmGhyhrF+ikDGPjZP7FnmBMaOfk+Hn+nnOAtSXqShdsuSjTaMmuXDJKfvI3YK82EL+/mtqcGAJA6DAZeZS7/8jeobzndrDVYLBZmT2mcQNXBvp4U285Wtw8EAuzYsYNDPz5KbW0NLpeLioj+bMjzsaioM1rQb2ysYyP9+/XlxhtvpGPHjvjzCim+9kG0er3tV5ITSH3tASzJ8UwcahKG63a4w/oskiSR+PcbkGOjqLFG8b5zPLc9WxRmLNqni42n/5LCpKERaG4vtV8sovCsayl94JOGiWPs3aNJevn1Jkt3FEVq+RkU0xnnnYuJu/s+nKP7I4WW/buKYdML8OF4+OpM2PVxq9/hfxqOUQOJ//NFxnLN219Sv2j1sT2IPRa6z8KiKFgUC8Mj9Gvr8IS8lnAkkan+vBDlRedmykY2Pge1undbQImCk14GeyySJIURZe6l68M283q9YT4V3bp1o/wfryE8PrYm9Kc6mDIUWVvBSGth2ARnKOkBbSgZgXDyonJ3q8oroWmoZVXIsowsSbidNnw+X9g5dwxLHGmh3VR97Kw2z8tprw8rPzmWCFVetKYGaUBo0sh/E3kxFbgk5F/o8sXB/48nrMDDQClQBtwInCGEaFuY7zGCY9QALJn6QEerqcO1uI2Nl2Il8Zx3kW16BzhNKSUp74N2NUqH44KTYwyVZU6+n1VtlIQLISi7/0XUcn2woSQnkPj3PxkPqET3GiK75Brr12V3htM+Bkdco301NC4eLZpDnoE0qCPOyihGu/MfVDzyOqV3PGMQK926dTOOU1BQEOakDeGqiz59+oQZvFXGhJgXBaX1rUEtMjt3SkoigwYNMlzL8/PzDUbbZpXC2NXcoqYbg7KqAIvW1tDwdD+380/s2FdkJKNYLBbOPffcY2LQkxSnEB+tn6vHJzhY3Dq7+smPpsS2S4r7qI0F/xug+r0UWc0HdrfB3VtYuzHGDYogJcGKJku4rBGsTp+Ae92GZtd3LV5tpBVZOqVjbzD/2vSC8aAtjxzKvmq9cxoVFUVC+mBj1l5RYFoLGegNsHZKR1YUNGS9dAQQqp/V24596ciyzW72HvQjtAB2rYY5ca8C4O52XlA1FQ7FEYM46VWWe/SygpMj3mV81E86gaF6eWd+dZvIOoANO93GTGLPjlYSqpaieatxuVy4AhY2egfwSd1p7B7wHlJtPFicYLFiHxLs5EgyUp/zCZzzM+u8Q5DT3VjSXAghEJ56au6YAzs/YGivUOWFp83nB3oqwaqtLvDVgOZnWtQ8PAckareY7Vv05GLcaq1BtgDMiF3LxWdMNVInQiEpCpZO6VgsFnqV7UAS+iBpw862R/l9tbQcf5BcjrYc4oyZ4/T2cVeI6qLXHNQ6D74dwY6kJOMpCkq9/fV6BxGYNDSCJ25MISZSb7PKq1V+yXKHlY5s27atUZv/3wLHkD5En3uKsVzx6BtGSWMjyBaY9i+IDs7a+epwLLmOyy8624igdblcvP76622elT15TCQ9MvUOr6rqHiWtOed7Nu6g+Kq/oVU3E/sphKmClDXUSMHOrhl8e9ogxt19Y5jL/qqtbv72Wik1Qc+EqAiZuy9PbNLjxj7CNET0bGoneQEw8g4IGqPjq9FnjI+yfOSs6T2IDrELynRuYkBmKb1792bs2LFGicdf/vIX/v73vzN58mROPPFEUlP1/qIFP0PsO0BAIKDy5Z5EPvvsM1bX98WHFSToGOnioolpOJ1OhD9A2R3PoAXLZuSYKFJf+xvWYP+zS7qVTml6u+AL0Khd1+Lj+eXiv/LIkJtYnTICzeNDeHzIsm7k+sBVScTVllLx5NscPPEPlN/7T3xZ22no21jiFFLmvonUzqS0MFgjoe+FcOY3cN5SGHI9RByWZFG4BpbcfOTH+BURc+WZOE8w27Pye/8Z5hdxTNDvYgAsVgsDnXuw4WPHjh2tbGQitHSkrQrBQAh5YWmKvKjYDVteMRYPpF+ik9pBOCeZZW3uZeHkxf79+40y+bS0NORVWbiXbUAAS9PHGTG044rWUPf4a3Tr0sXY9nDyokWzzgZEpEKQEMFXC/WFTa8XhFZRbZRjSTGRaMFaitDJ1bYmjvgqD7HPrZMvAolenR0tpyQdBTqEKC8OlQdQWym39fkF+0JU5aGTo79XtOmbFUIsFUIsBVYBvYHzgD8c9u+4QQhRKoQYKYSIFkLECSHGCCHaNoI9hpBkmagzTLOs2jaWjgDISX1xTvybUVs1MXITv3zxUrvy20ORHG/h1HGmbOrVL6rIa2bQHYrajxbgXmYOrpL+8WeU+ODNvucreub/k6hBQVmpbKF+byKqr2nvhn379iEE5LvHIsn6Ot3SFIZ/8pKxjuuHX6j7RBfIOJ3OsHKK0AZCVVU2bDDPK7TOF6AyJmQ57ydMS+vmEaa8SE0kMjIyjNnNyjIlqd0yzM+4vxnfi8+X1KEGJdY9nbvpkq6GNbCnnnqqMTt2tJAkiV6hpSOt+F7syfexZrvJtI/v07bSmv92HNq7Bz/6bx/jrabjkL7t2l5RJM47OQk1SFgt7TSNut1FzdbEhpaMRJ95ol7C4C2CPV8AetdxfpF5jU6YMIFvV5od03EDncRFt06OWTJTkWQZTbIw8OBmPbJZ9bFptwfPUUZqhsLt1fhgYTUIgfBUcUrUxyRbiqiSkomf8Uyz2w0cNJi9cWfwed0pBLBwftxL2CU3eKvIL/Ly8/q2DXJDr/lR/Z2w50vcbjeaqrHBO5DvXZMZOPMmBtvN+9I+oAdyZHinPLVjT7zD7+KtmguoHmy+XrvBgrrgdrpsu9EgE+s9gj35bS/lWr3Njc/rByHoaD9AV8seyr/XO38CCa2zj4NpDrJ9Xcny9aVai8ZmsxHjlLH80vzAy9o5A1mW6V2ZjRRcZ/ted5tKg3x+wQ+rTLJzUOcafaDlKg0nh/tcgGfN1rBz8BZEm4tFppoiI8nCjHEmsfbVslrS09Pp0EGPIVZVtV1+Df/fEH/zJWbtfGkFlf98v/mVgwaeRvRf1V4SNv2NSy8xy4dqamp48803qalp3RdCkSWuOSveUBjuzPXx84bm7zH36iyKr/m7MeuvRTqIPnc6cdedR8I9V5P8zO0k/tFC4sU5xF25A+cf9/DZ7OGsHtOdMdNPolcv3XtCCMHnP9fyzAcVNDSJUU6Juy5LbDZdyD7YrFv37dqP5mqn0snqhBOeMpf3L4B937VvH4fv0iLx9+u6MGFIDDddkMzrT5zPLbfcwuWXX86sWbOYMGEC/fr1Iy0tTb93Y2I46aSTuOmmm7j11ls5f4SDSIved6jSYtjj18kVr3CwSxpBZEQENpsVabPed6p+7VNDgi9ZLaS+ch+2nuGzzZOGmGzKsqChsBCClVku/vJMMfPykvBHmARpr6KtXDo4h+nsouy6Byk49Tpq5n6FVlOnk1BCRVIEUYO8pL3/NErGMZS8x/fUI4EvWg+n/Bu6TCdcjvHbhyTLJD36F3MCs85F6c2Po7mPYWpD6giI74XFYsEqBehnzyY3N5e6umYIxMPQr6uN4BCDgtIAZVUt95O1OhdqWRWgX2eW9MOUAkKD5Xea/e20UZTEh5tyOscMMvwAfbtzCYRMGob2j3t16EjFo3rowbK0seQndUeOjcKCyrgSXcmVmW2SDQcOHDBKGoUQbVNeSFK7SkcCpWYJmzXN7COE+l7ERilGXLrXJyivbtrzau/eYsMLL0EponuXxskrxwoRDpmEGP2cVBWKKlr+nfcW+AwvvIwkCzGRv697rym0lxaaC9wE1AJ7D/v3X4GoM6YatW+eNVlhkqvWoAy9DnvnCUiyhCxpnG37gB0f36o3EEeAsyZHGx1ql0fw8NtlLTZWvr15VD71b2M55tJZOMcN0RcK18DiGwCBPc2HLdMK9niET6X+m6WN9qWqKrm5uVT4u1OrpmGxWJAluDCwBlEcLmetePxNw+C0Od+LXbt2GUROdHS00flpQL2ji86qAniroHhj819MwzmWmOSFkqY3yoMHmyOTLVvM2s5uHUyiYF8TvhellQF+Wl8Pmv7eecnvsnKPy1CV9OjRI6ws5VigV8cQ084DLT8gPwxRXYwZ4CA17vftJPxrIXuTeQ2muQ8RmdD+KMETR0YTE6UgSVBlj2NjwlA8OxqXRfkPFps13LJM5Cy9E9Ch5HOjDaiKHMDOCr1T6nA4iEsbxuptZue9NaPOBkhWi57XLltIrS8mXcoDzY8vAJt2H7vO1pdL63QvDn8d8VIRM2PeR0XmYJ+7kG3NJ5vIssz06dPZ7e/B3JpzCKhuZiV8pg+SAx4++rGmxfItAK9PC5PGjuolCOxdYKgXdvp6c+655zJ69Gg868wUGMfw/k3u78QTT8QX1YX342ZQERuJJiREQKJmYwzS/m8Z2s08n43t+A5/2uAy2o0pcYuo2T8Bb106LqKplCJ5f+AJvF93FvPqZrI9+Q84T3sTh9Oh69jyfoLsz5rcrzXoDJ+guUj0FgW/kwBZe1o/txWb6wzjUZtczxknBUv6sj8zO6qpwyG+J57V4b4DgRoJtSbY+SkKn2k7ZUwUNqs+Qs4rCrA52xtGRP+3GncCyNGRJNz5R2O59qMFeLNaKB9N6q/7xTQg9wc6lX7OpZdeaqj7KioqeOONN9o0uOmSbuX0iWb78c78aqpqG3fEXcs3UHL9Q4jgoExJiqPstgtIvP864v50AdJpE9lT9C4i8AMi0oVs05jvOpFqLZYRI0Ywbdo0APwBwUufVfHhD+azKS1R4ZHrU1qc+VNio7F2Dw6cVRXf9qb9sVpEh/HQ15T5s/IeCBxdyVz/bk7uu6oDMyYktWtGNSkxkf7aKiIjI4mKisTb8wI6duqCoigMGTKE4Ve+imINklRF6/AsmkfVq2aYX9yNF4UROg2YGEJebNvrZe12N/e9WsZzH1ZSVqX/rnJUBGlqFVfveoert75F/0deoOSGf+BeaXp+4avFEuMifnIlmX8qIOm5x7H0PbZ9GQOKFbqcDKe8DZdsgDH36e3M7wRKTBTJz9yOZNMJRF/2ASr+8eqxa9OCxp2yJOml0/ZtgGDnztbLk0CP0ezbxSwd2ZLT8rMgdPxiyUxrHOO8+1N9bAC6ImziY3okaQjkqAjsIc9U93JzEjK0j9/jl92opRVsj+vNV11nIkc6kRSFE9LriPHr7Zf31c9Ii9YVW4FAwFBbVFXpPjMANpvNUDQ1iXaQF6G+eJEdTb+PgwcPhpn6Z4b6XjSjgt6130WDcinNur95dcgxQljpSCu+F6Fmnb3+H5SMQPvJi1OAcUKIO4QQfw/9dzxO7rcIS1pSWI1X3Zc/tX1jWcFy0ovYo3TZrQWV3mXvU/fhqVCT3+5ziYqQuevyRJx2vbNYWaPxyNvl1Lsbd/qFz0/Z7c8YPh22Xp2J/4suUcNdAYuu0/0kAOJ7En3VDUYjVTfvh0aN86FDh6hzw0GvbqopyxIzBknEfWDOJsnRkcaxS299Cs3ladb3IrRkZPjw4Y1LLyRJjz5rQBtKR0KVF0qqPtPZr18/Q4ZdVFRESYnu/N41LHGk8cD/859rdWmW6qd3xE56WdaSXa0rVhwOB+ecc84xl4j1bqPyYtteL1nBh5QkwXnTjizK8b8RuXtMhUpqoKiFNZuHzSpxxompoOj3yE+dpnPwmy8arVf/ldlWOCcMxZKaCLUHSa7UyUEBLCw1lR/jxo3nw0UhqotBznaVAlk7poFsQwDDAr8gaSoI7ZiljpRWBvh6Wa3uEeGv56zY13HIbpa6x9Bn/Nmtbt+rVy+6dOlCqZrEUtdoTo78iHhLBQTcVNepfLWs5QHZ5hwvvuAzOzPFQkbdIvzBtJBSNYEOg05k6NChAHjWmyV6jlEDmtyf3W7n9NNPB0lmbb/u1GsOhGShdkM0mldiWEqusW5bfS+KygPsyvWB5keWNEaryyn9tpw6l4uAqrJlcCauSDvR0dGcd955XH311SQNmAEDrjR3svK+Juv2rV10RYPFYqFblV6+oZeOtP77zltUbLTpmdEH6N+/r04c7frQXCk4+POs3hK+sWzFkxccbBWHkxdRETInjTQHVV8tq2Xw4MGGWqCoqIiDBw+2eG6SJCVIkvSFJEn1kiQdkCTpwhbWvVySJFWSpLqQf5NbPMB/EBHTx5v9ByEo//vLLScX9DwTBl1jLq9/ih6W/Vx00UXG86a0tJS33norrLPdHOacGE1KfNBZ32N61TTAtXgNpX9+1DCIVFISSPv3IwQ6JON2u/nhhx/44Jlb6Fz0vuGNsNY7GKnbqdx4442cffbZKIpCrUvjwTfLWBpiJtm/m41Hr08hPan1BCyjrIsjLB0BfWDcMOHhKoWDjSdhfhUUroFyffAp2yLpedp9XHfddTz00EOcd955OBO7Qi89kUbzSpTd+woEpfaOEQOIuWxWk7tNiFUY2N0cqD75XkWYuXdUhMwfzojnqWvj6Fuj97UkNaRvKEk4hySSckYuHf5YQOyoGpRJt0GXkH7W8URECgy5Ti8rOQYIphZ6QtqB41JWbu/XnYS7TV+Vui9/ClNUHjV6nQOKHVmWSVXK6GHNbZ/vRa9Q34uWyYuwkpHDzTrdFbD6QXN50DWQ2IemEHGCSUA1+F7U1dVRVKT3qZIr6rH8sIaCiDTe7XkuclQEyDI9O1r54+3Djf65Wl7NyByz396g3AjzoOjYseW+dljiSMuXgFoaYuqfnmwow4UQYeOTUKIgvxnfi50HZcOsM9GSf9Sm/a0hNOmrNd+LXSHtQp//UvIiDzgOIeG/L0SfZTbudV8sRgTa4fAe2wXbnPlUKSENxaFfEJ9MhZ0ftLs2s2uGjb9enGD4X+SXBHji3XJ8/vD9VL7wPr7duQBINitJT9yKZLfpM75LbjIM2gJKFMz8kMgzT0MKpiD4sg/gO2yGaN++fRR4R6AKOxaLhaQ4Cyet/cgkR/p1J+29R419+PcfpOKR1+jUqRO2YEZ0ZWUl5eXlVFdXs3u32cgcXjJiIJS8yGv9YRHqeWEJNo4Oh4M+fcwGuEF90SUtnMUMjZkqqQjoEltNA6FybvL7uP36AAngtNNOC6vvPVbommEzfteicrXJiEYhRNjM1gnDIsKinf6HlpFfbjbkKZaqI97PzInxOBT92i+NSGH9xsqw94WqhnVwjPKzzS8jof+utZF9ySrVB342mw2ih7P3YNBlXglPGWoLLJ3SUYK+F0Nq1wECND8bd3satQ9HgrnzqwkENPBW09WezbiIH8gNZFKWcTYJCa1H4EmSxPTp0wHY7etOQPVyfvJcfeZf9fPN8tpmJZoAa7ebg7VR/Z0Eds0zZKY7fL0YM0ZPh1Kra422D0UJGxgdjv79+9O7d2/yOyZQG+XAr0loXpnazdEMtK827sfcQj8VLZxbA5Y0SPM1P4Mj1uH7HnxefbuKhEj29k5n0qRJ3HLLLQwZMsQ0xxt1F8QEZ258Nbp097Bng6Vrh+BHUhhQpg+OhBCs3Vbb4kzgnnwf+wv19k1CY+bERJ0sLt4AVcEOmzUSup9O4FBJY3WhbMVTECwPqTkArvDoz9MmRBnlCdv3+ThUrjBo0CDj/TYYd74E+IBU4CLgFUmSmpbL6FglhIgK+bektQP8pyBJEgn3XIPk0Nsd3+5cat5rZfA25h7oEBK69tMN9E23cd555xnXS2FhIW+//bZhoN0c7DaZq8+IM5Z/yXIbJq/1C1dQcssTBpli6ZBC2txHEBlJ7NmzhyeeeILVS+ZzmuMbGrrplbYudL/wLS6//HIyMnQlUEGpn7teKtFJuyCmDI/g3iuTmvS4aAqOkHvUu+UIyQt7DPSeYy6HJn38mgiNR+15tm7MCOFGmEOuB0miYnECgZJ60ALI0ZEkPfqXxrPhIZg0tLEnhaLo9+CLt6VyytgoIscMJPbyM4z35bhoYq84kw7vXE/qpEVEdHPr81TdT4ehfz7aT/ufxg0h7UBjucoxQtTZ04iabfo5VTz8Kt6dxyhNyREH/S4xJvAmOdewZ09Oq/d2A4aE+F5syWnZn6khDhzA2vkw8mL1Q+AJ9mOiO8LwW5rdT5jvxZoshNdnEA+SJpiwuZAaazRv9L4YnyMSyWEjOV7hjksTccQ4SfirGe+bvGYXsVX6c7NhH20qGWnAESovlJTEsMnV7GxzzHO478Xh0DTBzmKzRCspspaYmOM7iRgW4dqC8kIIEUZq/n8w64Q2kBeSJE1t+Ae8A3wlSdIFoa8H3/uvgXPS8LDaVfeKTS1vcDgS+7Gr7zOsC4zWa541gbe+ApbeBgsuMZ3e24iBPRxcf7Ypd9+x38eLn1YaxjLu1VnUvP2l8X78rZdj6xHsGGe9BgdM7449HW+AqAzkqAgiTzE7TLWf/RB2zFWby6nw6+aGiqJwWZ8KAj+YKQoJd/0RW/dOJN5jzhrVffkT7gUr6NrVTFLYs2cPGzduDDP1TEw0zYDC0GG8HocGeqPUilqlKeUFENaR3rJlC0IInA6ZjOCMkBBwoMhsDOb9XIuqAZqfvhHb6WNdz0F/CgIZp9MZ5qh/LGGzSmFeHNlNqC827vaGmTmee2Lb0zL+Byj0mIPs1Ji2uTY3hQiHzIldzft2pW1CWNSXZ81WoxZUjosmYsooOLgCdupKJQEsqjQVAcNHjuWzn83OyukTokiOb33GMhSWTunIsoyKTGpVISmWAlD9eHyCLW10Im8O63e6WbPNo5tiCZULYl/Ah41v605i5Ki2S467dOlCnz598GNlh7cno+zz6eLYBwE3vgB8+H3T3i0BVbB+Z0jJSHcfgdxFxmxwWdx4I6bMu2GHMfC39+umz/o0A0mSOP3001FsVrb3z0DVJIQQ1KyPwVm2JkySu6mVVBRNEyzZ6NIJYk1lROnP+Aoi0ZAREhw6ZyJ/vvkmZsyYYUSKGrBGwKSQuv3c72Hv1+GrBJUXAP3KclEkfZatoiZAbmHz1/Jni4rMyDnbAU6YEJw1CzXq7D4LrJG4Q6IqlQSToPUUhZRXFYcb1CbHWxg3yBxUfb2sLoyQ3rJlC15v0zOCkiRFAmcD9wkh6oQQK4CvOf6m4L8arJmpxF1/gbFc9fJHBApaSMSQLXDSvyA6OJPnq4WFVzCoZyZnnWUmc+Tn5/Puu+8aBF5zGNzLEZZW9tKnlbz05Ba+e+JnCm2JaEhYO6UT+eJd/LwziyeeeIIdO3bg9bg5PXIR0VI9siJjj0mh05Xz6drdLPHcttfL3S+XUlxhEnsXnxLDdWfHtZqQFAr7UFOB5t20C6EdoU9Pl+nm3wd+BK11wvGYou6Q7rnRgAFXNL1eXHfqKydSty1Y1hOoJ/G+a7Ckt+yhNbq/kwiH+b2O7Ofg2ZtSuWxmLJFOs3sfd8ulJD/zVyqumU3HxW8Sf83JWLfeZpSzkdgXJj9rxsz+Dy1CkiQS7r0GW69gBLLPT+ktTzRvwtteDL0BIduRFV190V3OCRtMt4ROaRbiQvyZ9jXj4QYtKC8OrYbdISkwE/4BVidCCDy+xsNGa+cMrMHthduLZ/12Q7nQe3cREdUe3up9IdX2WOToCJx2mTsvSyQ2SidoIqaPxzFqoH4ekszwDQdACA4ePIjH42mbWWcD4kM4q8rsFu/5UOWFkhxP797mttu2bSMQnJgOiyZtQuVwsDSAy6d/lmi5itSMZsYwxxChIQMtkRdF5Sq1Lr39jHRIxjjn9462fIo3m3jtkcOWBdDt6E/n9wHJaiHq9ClUv61Lw+vm/UjE5JGtbBUOe0Q0kdMe5Z2vXub0qEUk+KqwWq0oeT/Bx5P1xqLnWW1+mEwaGkFljcp7C/VZ+FVb3cRHy1x+WiyVz8w11nNOGEb0hafqC8UbYU3ITznoGip9Zicz+pyTjdni+oUrSLjjD8hREbg9AVbtNc2cxvS30WnuczQMrSNPnYQj2PmInD0F9+ot1H+rSzYrHvwXve+4gAadRU5ODoWFZgParOoC9A59hwl6HThA3qJmOwOax4tWpUvIJYuCkmh2vPv06YPdbsfr9VJeXk5BQQGZmZl0zbByqExvBPYf8tGrk42i8kDI7KmPc9Pex+/3UxBIA/TB17FIF2kOvTrZjIiz7AM+RvQ1O52aJsIGd9NGRbZ7gPvfDLfbR5nQvVBkoZHWof1+F6E4+9w+fP/3WvyShYKITnz+yWpuvFkvn6j7wiQIo047AalqB3x/hdF5rI/qw7rt+m9rsViokYdTUaPfUbGRMmdObj8p1WDoqKEgqm2McC5hvrsbErqJ5Mh+R+Yk7/FpvPlVtR79GXAzKeZHutu28kXdKfjtSfTr16/1nYTg5JNPZteuXWT5+jLEvoOLk1/j4YOPg4hh6SY3M8b5GpXL7NzvxeXRCYnEWIUu7vm4vTqZcEhNZcC4mcbMZljJyIimS0ZCkZiYyJQpU1jk+55hWw7g8HpR6xV8WTsYeoKNbXv1gfem3R5OHNl88sv2fV5dOaL5iZJr6PZLHhoKSDK2c6dxwd23NRlDaCBzAvS7BHa8qy+vCM7AB53elbho5NgotOo67ECiyKeEHgQCfjbs8tA1o/EMS029yqqtJnEwvr+qpzr56sLJkb56pYZnlVkyEn3hTKpf/wzh9RGoVAjUKliiVZ286Doj7DizJkWxYouujFm1zc35J3cgOTmZ0tJSfD5fmFnyYegFqEKI0J76FuCE5r8ohkqSVAZUAO8CjwohmuzNSZJ0NXA1QHJyMkuWLGlht8cRnWJITo7FWlAKPh87bnyIihvPpq6+vtlziky4lgEV9yALP5TswDN3EoGu99KrVy+2btU9XXbu3MnTTz/NyJEjW3wu9YiTWSEy8Phkymr9LHJL0HU2AFYC2GPr0V5ci4MSnLIXixCMsKylu+0AimIBxU5W6g2Ur96Pqu1H1SRyS5z8tC2hoeIBiyKYMayMWOFmaXsrNoQgzaYg17mhrIKVH39BIL3xgKCurq7l31BojNAisAaqwFfItgWvUxvZvPLqWKHhvDoVfUAHr34f1ET2Z/vWYqAxUSVX1pL2QR3WIMnq7F5KlqUIbxuuz+kDbeQURtAt1U3HJC+7t0GTYnkb1PXuwPKVS+i/9z6i3Dq5HlCiyYq9Bu/KtUf4aX9TeFSSpMfQv4J7WlJhHYu2QDnvBJL/8Q6yx4dvbx7brriLiuvPMHzxjgbp0VPJrPgWgWC8fTXf/Ph9m9OFEp2JFJfpz6Z587czpnfTkwBJG7di8/kQwLpDuVR8+ikOm8L4Qw8Q6fOBBOWxY8jeb6Fk80oWbEyirKYDCzZuZ/KASuKjzGY2pnMSUXt0hcTOdz5jU7KEpaKW/lsK+GTAZeRFdkCzW1HVAFP6HWLfzmz2hVh5WE4cRPIvG5E0QVqxl/S9JeR2jOPzzz8nNzfXSC05cOBA2JihAaFtgXHP42PTj5/gsac3Wh8gIWsHDp/ez9pRVIB7nxNFUXC5XHi9Xj799FPS09Op98h4vTp5nHPAw88/7wgbmmXlRiE0GQnoad9KRSDCOJdW26gjhNtnntPefA8//bSjyctue14kXq/edmbEuVm2LPu4ntevhVZHOkKIrq2t89+IqLOnGeSFa9kGAiUVWFJal0qHYvjw4WzcOIY3cxOZHLGaMfI2IiIjkHw18NONsH8+THwcItqWFTxrUhTlNSoLftHZ3/m/1BPrrmJYMOZOsllJfPAGvcPsrYZF15rmbClDYfTdsHylsT/boF7YenXGl30A4fZS/90yos87hbe+LMCj6jMENkXlEusOfNl6oyU57cTfcqmxD0mSSLz3GnxZ2fjzCtFcbtLmfo/cJwpNkdmxY4ehunA4HAwY0MrgotNJJnlxoHnyIkwOlpwQJr20Wq3069ePTZt0xUxWVhaZmZl062BlZZbe0Whgq+f9XGtEMfaP3k1fx2bq61UKAmkoinLcTXl6dbLx3Ur998w+LOFg1Va3oRCxWSXOmvI/1UV7kL+/ACH0J1Cyq4TY7l2Oan9xnXsxru55lkZPBmDzTjvV1dVEIeNavMZYL+rE3jD/Ij1qEvBZEviyZhqgE4/9Bo3l29Umu3/+yTE4He3vDFk66gQbkgW12saIiGXMr7sE0FUL/oDAamn/TNuni2opK68Hbw3RSg3nxb1MlqcPu/w9GDdymOFv0Fakp6czZMgQNm8WlGtx9LCtY0TUGtb7poHFyTvzq3ngqqSwgf7akJSRkf0cuLI+MGZns7V+nBJizOtZt8342z6ypeoDE5MmTWLTpk0cTI8nPrcOhMCdrTLs/BLeRSd9svZ4Caii2RnlnwzSM8AobSmKS8KPjJIUT+8H/tIycdGAMffqJXJ1h8BToRMY0/5lvG3t0gHvlt1YFIVOgQOUWHqgaYJVW6o5Z2pj2er3v1Th8eptRoRSzuknB7+nvd+AP3i+8T0hZZg+yxaivHCeMALPmiz9+5StePPtWPq5whJHGtA1w8agnnaycrwIAd+trGfkyJHMnz8fgBUrVjT3iaOAw3va1UBzjdsyYABwAOgPfAwEgEebWlkI8RrwGkDv3r3F5MmTmzuP4w5vciaFF+vlQLbsg3T32VgXJdH8OU2GnHj46QYQAjsVjCl8mDGnzmVpt24sXLgQgOrqagoLC7ngggtaJDASMtw8+2YBPrcPPeZcoEkSNTYHwusEzH6HXXJTXnsWn9TYUIVFLysqavyTNNz68dEyd1yaSPfM9kVPh6Jk3C+4lujX1mB7LNFNfC9Llixp4fsKQj7TULgNTyyDMeHrC1Wl6rn3UMuriL/9SpS4o3+OLlmyhMkTxsJ7N0CwTDZ5yh1M7tb4XIWmUXz13/FoOilkiXKRMr2StIgt+iTWMcSSn39mkvY5qPn6eckW7Kd9wNiMscf0OP8h3AHsQC85Ox/4RpKkIUKIJgMFjlVbUJ+QTunNjwNg25VH532VxP6xdc+n1rBiUTXdvStRq8tIs1aS4drIxIm3tGmyTIlzsfdjveSjXmQyefLQJtfLv/9tVJsNfyDAL7k5uErzGOtYj8W5H68EAex8WzGKfYVudhR3QCCjaRoHK2P4eHUcsyZEcdbUaBw2GbcjgeLlOomasLcINT6ZE7IOsaLLdLamDEayKNiio7hydhwzxjY9112RV03N+9+iCcGobYWUdEmisrLS6FOkpKRw8sknN7ltWFtQOxwKlgMwplccdJ3c5DaHXvoaX/D+HHriCdgH9cLn8xmDek3TmDx5MkIIPltbSJ1bHwwMHDqBpDhz+Jz1URkSuQD0tG1jxJTb6Nazb+PzOsaYt66Q6jq939Nv8IQmE5x2fV6J3a4/208Ylczkyf2P+3n9Gjg+IbT/BbB2ycAxItgRVlXqv/653fuQZZkzzzwToThY5JrIO1WzqJNCCJD9C+Czk6A6t037kySJy2bGMmaAKUF+f5mPDYl6mUTESWN1gkUIWHIr1AaN02wxcNIruhP0YfuLOltvKFRk9ny+hmWbXPy4zmRbx3U5hPbqO8Zy7B/OxpIWTrbIURG6Q3MwTknaV8Do7frsQ2ht9pAhQ1of+HQ+yfy7YIUxADwcoX4XoSUjDTg8dUTTtLDEkf2H/BSVB1jWYDgmBOfGvoovaGRWEEhj0KBB2O3H1wKmd2dz/zn5fiPPOaCGe13MHBdJfBsiNP8HEwf2FxplBmn1BUdNXiBJzEzejhxMDimjI1/M30j9d8sMAzxb747Ysm8Fd7CkyR7LLwk3sCNf/y0VRaHQN8zwpOiUZmHKiObLHFqCNTMVJAlJsaLW2ugk55BsKQRNxeURfBSSUNNW7D/k49slpXriD4JLUt+gPiDxY/0koBXlVAs46aSTkCSZLG9f1IDKBYmvo6j6vb1jvy+sREQIWLPD9LsY3c2NUqzPGgrA3u8cw1dHranDt2u/vqIs4xjWNlWIxWJh9uzZHMqIQ0UGAa59TjqoG0kOGh66vSKsrj8U9W6NtduC56j6GVmoD9ZVIRM5dTRyhKPJ7RrBFh0e+7j3a9g331gMLR0Z46im4YLek+8zpKINUDXBV0tNUrdXarFRWhNWMtLnApAk/DkHUMt1HkGOi8bWu4v5zJOteA4GP0PpFt209TDMnmQmW/y8vp7uvQbzwQcf8Nhjj3HLLbcADJckSYT8WwHUAYezLjHoCWeNIITYJ4TYL4TQhBBbgQeBc5pa97cG++DeRJ93irFc8egbSK3FgvY8E6a9BkrwueCpgK/P4YROLqZONat3t2/fzmeffUZ1dTU1NTXU1tZSX1+Py+XC7XbjKi2n22dv8ref7uGPW1/nxL3f0aV6F5rdhwgh1RRFwemwY5XBo0XoxIViA2vzqUdd0q08+qeUdpkLN4Ww0pGNO458R6GlI/sXNnq7fuFKqt/+grqvf6bikdeP/DiHY+9X+u8DEJWhp2w0gdr3vjVNcW2RJJ1ahuwQugeaq6zJbY4UGWXfQM4884VxD8LvgLgImnGKZv6tABBCrBFC1AohvEKIucBK4NTjfW6R08YSc9lsY7nyuXcblVkfCQKWWJQhVyEHDYRGW1eyJ6dtHqSDepj9xuw8X5Mm/lptPWqF3r77NBVXhI04uZoJziAZLWB+7VR+zB3HpvwueH0BfD4ffr+furo66urczPu5hr88XczKLBf2YX2NCHJffhH9tx+iROvJkq76dS9HR3LKuChmjG2+7Yi74QKUhFgsikKEy0f/7YVhBs9tnixso+9FWNlIcPI5tAx8586duN1uJEkK85g4PHFk5z7TXLyDbQ8dOv06hQiZYaUjTZcHhSWNtJDy9HvD/8iLo0DUWeZAuvbzRUcUl5SSkmKwX3mBDrxQOAtv93PNFVwl+ixtg3FOK1BkiRvPTaBvFxsIgfD6+Kj7WWTHdDPPd/u/dVVHAyY/DTGddAPNimr2F3hYmeXik0U1vB4YwROD/8ydo+7nwaiz+Of7pfiDUYRRSjGn5a4xyjMsHVKIuXw2TcHWpyvxIaY8PXcXkZkf/plGjmxD6U10pl6fCbrkvqDpGbxQv4vDyRTQo00jIvRBYU1NDQcOHKBriL9EXrGfj36oMVQXAzrU08exGX/AT7kWh0c4GDv2+D/0E2MVEmP1wZLPLzhQpDdQSze6jLriCIfErBP+p7poL/blVoGmdwxS6wqJ6Ni0tLA9yBjZnWHF+sNf1gTfr1M5+PY83WNAaER12mqShhYHnPoeG/ebBFynnuNYtc2s0bxsZiyKLHEkkOw2LGlJyIqMKhRErZWp0d8YpSpfL6sLSwNoDaomeO39XWgevcPTPzKLofE7eL9mNj5sdOjQgfT0I/sOExMTGTFiBNu8fRBIJIp9nBTzlaEMe3dBDYEgcVdUZaOyRu+MRTklOtd8SiCgf6a8QAeGTTBLGLwbd4b4XXRv0e/icPTo0QPn2ME6eQH4Cm1ouesZ3tskHhrMDg/Hqq1uIwmlo20vKfv0QYiQLCTNmNTmc9B3MBl6n2cur7gLPFWAGZcK0FOWiFT04/j8AbYc5smxcaeb8mr9e1MkaFSibwABAABJREFUL2ec2FlXf1Rkm74VsgV66mP/0IhU55jBSLJsRuJJMp5Dcfrfqg/KzCjaBgzsbqdLejBSMAArtsKjjz7KnXfeyZ133gmwQQghhfybAGQDFkmSeobsajDQVrt9gS4j+F0g/i8XoyTrnWa1rJKYL5a1sgXQbSbM+gwcwTI31Qs//JGTUvYzYYLpU7V582Yee+wxHn30UR555BEefvhhHnroId666ma2TryIon9/QaC6jI7F2+lXu4rozuvoH/0Zg2M/56T+ecyeFMXogfHESJVIDSyvJIMtFkWRsFklIhwSsVEyibEKqQkKp4yJ5MFrkoxn1tHAPjTEtHPzUQRHdJiol5wCVO+DyvDo1dBoR9cPKw1voqOCELA1pOK6/xX6vXUYfNm5VD4bMvlz1fk4hgU9RFRvuNnn0SJ/CZ0L3zWX+14E/S87dvs/jhBCTD6srTi83WhyM36ltiD+pktwDDeJ8fIHXqY2pFT0SCENvk4nsIEkuZKq9XNb2UJHbJRi9Gc1oZcwHg7/AbP0ojbKDhJMj1iKTdaQJFhaP42PKu6kJmAS5BFKOZ2sPxKplBokRkFxHU+/V8aDc6soHzMRADUQIPaAja/6nockgey0M6x/JJfPbNnYXo6OJO5m06y0785ComrN51irZp0NCCMvmm47hD9gkPNIEkpiHACpqamG+bCqqmzbpis3w007TaKgokaluFx/2FslH8mRVcd9UrMBoYRKQRO+F3Vujfzg67IEPTr+/zHz/x95cRSImDbO6AwH8grxrm9r/yockydPJjlZN2aq9Qo+KRoOM941Z1eq98PCKyDQcuxRA2xWidsvTSTD6kJogoCk8Ha/S9jo6M7KFbtY8M1aPim9kDeLruXJ2te44aOunPfX9Vxy3z5eW9SD6x7N5dG3CvhgYQWrdvopjutAQNIbE+HxEgioSKj0DSwh6ueNxnHjb70c2dH8TRt9walETNXN/CyKwpjV+4io1z9Tenq60WC0ik4nmn/nNh2ZqjZj1mm8pihhJSpZWVlEOmVSE/TPqaoYJSQA5/beoBuhCV11kZmZac5aHmf0DmFLd+f58PkFnywyZ81nT4omyvm/W7m9OFAijACHtPqiJq+T9sJ+wkym5gdd7TWocqeTVRmDy1VPwFMGSVtwezx4AxoVI54gz6v7AOiQ2F9rKoKG93EwqEcbZ+ibgaVTOoqsoAoZtdrG9OiPGJ6y33j/X59XNmkE2xR++Gope4L+K4oU4KreC/jEfQ71Qq+tPVLVRQOmTp2KW45hn78TqqpyZvw7RMg6MVpYFuDHNTrJs7fIJCCG93Xi2WbGNpbFTTDaUjiykpFQ9B8ziupE/TcQAjyrNjI0lLxoJjL154aSEaEyQf4GtdyBAGS7A+foQU1u0yLGPRAe+/jL/QBYQpQXMbUe4my6e7ymaazKCq+++PTHIqNuOC0ilxHDg9daaDxql+lGmaI7JCLVMVo3U7MP7m0o6PwVVtT6YLtTFB6ZCrpy74wTzFm2BavqGTS45WtECFEPfA48KElSpCRJ44HZ6F4WTR1jhiRJqcG/+wD3AV+1eJDfEOToSBLu+oOxHLF0M94tbRiopw6HM7+FmC76shBIqx7g1NjVjBo5vMlNnC4fE5bnMHF5Dk632fk+mBnPz1N6Y42L4cQTp3LvnTfy1+unc/15HfnbwFf5d/dZ/KvrOcztfR7v/6WKjx7tyEf/6MD7D2Yw928ZvHFPOv+6M40X/5rGH2bH4bQfm2eRrV9381rLLUCtbL9SDACLHTInm8shqSN6aZRJvImASu373x3ZcUIQ7co2CT3FbnjIhEJ4fZTe8ayR7mLr2424Gy6EoTeYK217S/ejOVoU/AI/XospNRwJEx75f2PQKUlSnCRJ0yVJckiSZJEk6SJgEvCrRMxIVgspL96DrZ9ZJlV+/0vUfdV+RXYYHPF4e5sEU0bhR2iBtj2vB/c0++Kbm4hMDeTpzwoBVDoU+tj20M2WhzUins9ctzLX/TT2yGQiIyOJiIhg6lC48UyVril19IpYQGfnCqySG78/QH19Peu2VfEw0/iy8wzynKl8OPhKVFkBWaZTlyhuuiABpQ2mvVGzp+IY1AtFUZA1wbCN7TDrbEBYXGrTygu1vMqY2FASY422BsLVF5s3bwZoVnmxK9eLpurtaTfbTizRaW07x2OAMNPO0sbkRWjfrmuGFYft/8844f/PJ/kPQHbaiZxpzqLVzmt6IN0aLBYLZ555prG8Y8cOttelwdQXzJWK1uqRpqJtrttRTplri74g1qc/8H0R0Tz3UQXPfebhzcI/8knJBXxXfjqLcruRUyBR5YrELyIQ6O76fn8At9tNbW0tXgQgiPVV06NkB6nKdnpFLOSkrTuRGvwqRg4gYlrLSgRJkkh86AYs6clYLBasfpXxK/ciaaJtqosGHB6Z2oTiJUx50cygNLR0ZOvWraiqGqa+aMCgHnZ6a4vwBY19CgLpv4rqogE9Q8iL7DwfP6yppyI48xwbKXPq+OZNA/+HpiGE4GB1nLGcqlYYksejgaXbQDraihlQps9a2/wqHw26gsU9TsXWrRqsAfw+P5+WjuXJjzfwyiuvGNvGZ05kTzCgRJHhkhlHH7Vl7ZxumHaq1TYQKjd2fMHICA+o8NR75a3GflZs/IIPl/4fe/cdHkd1NXD4d7evepdsy733gm0MpojeQjUBQ2gBAgnlCyEhkIQQAqmQkEIChBZqEiD0EjoyHWzccO+WLatZvW2/3x+z2qK+sspKPu/z6PHO7szoamXNzpw595zwB+WSUYWoI29lZ5lxYm2xWKL+nlporal//h0q77if6nufpu5fr9P49qe4Vm/Cu6eUQHP4pCotLY1DDz2UNW4js8ruq+DsjP/QcsL97Hv1NDYH2FYS/j3NH1WNo86o+uXHRO5hl0d9f9eX4QuT7hTrbG369OkUtVT819C0upzpozQt5znFFT7KqqJPGvbt94U7AGkvc0o/AyCACeu8qd2fMhLJngpH/T68vOW/sPvdqMyLwN4yZo4L3/FesbEx1CZv334f63e2/I41Jx6aaEzR83th63/D+51idMHQXh+u5RGFThcZv1uT045t+gTjSZMtPHWkrG3wAmDRDGdomk1DU4CimmGkpaV19dNeAziBcuDfwPe01usBlFKjlFINSqmWs9jjgLVKqUbgDYzAR+uC4nEt4YTDcR5tBHUUUH7jXXi27Op6w9SxcParRiAjSK17hLMS3uDoxQtJT08nOTmZ5KQkpu2p5Rv/W8eoPdWo4PdxO618etQkdiw9mjOXnsctt9zCCSecEG7xt/UFWH0fJqVJNteTsOA72MYd0+NMsFiZHHZsU8Pp190K6nQkcurIrvDUEd/O4qjUcTA6qwUamzkQefsjMlsnnh3OkolQ/Zen8G4N1gpz2Mj+/Y3GBdTYU8NBKU8dbHyq5wNpLIN3r4VXzzX2BZA4DE58uM004UHOCvwKqAD2A9cDZ2mtD+A/TWxMyYnkPnR7+P+s1uy/9a80vBZrtdpo6Uf9GI8yjrOpuorKzx/s1nazI1qmrm2nu5h3dzjQ3ZRi4YSEjyj1jeFnu+7hjbrzUWYbJpOJzDQrv7w6l5uvnMqxxxzN4sWL+e53r+bwGVamJr1Ejm0DCo3P56PR66Uw9zDuX/hDmqyJgCItw8FPLs8hoZt1u5TJRMZPr8JiMT5kRxTXMGxfDQ6Hg6ys7tX/Iz3cAYnaHe1Oa2xdFy/S7NmzQzWpduzYQW1tLfkdZF5s2u0JdTSZZP8aa0b/lYkcGdkutZ0uKFFTRoZIi9QWErw4QElLwhfSTe98hr+uZ1HysWPHRl3Av/zyy7hGHA+Lfh5eadvL8OXv29m6Ld++cpyff85Vm57A6XehbRb8zTVovw+tNRpNc8BG66w6pRQ2UwMplr3k2tYz2vEJ4xJe49qvfsmNH/6Ci764lyNL32RS6TbySoJ39kwmMn5yZbcK0JlTk8m6+4coiwWL2UzW/gbmbSyLrd1ozjywpxmPm8pg/7o2q3RV8wKMTiHJyUZKXmNjI9u3b2+3Qv/5xyfjKfoEHbwQqLKOjWq32tci+zJv2OHmxcLw9O8lwWJJBwullF0p9YhSardSql4ptUopdUrXW0arrvPR6DUugh1+FynJvXdCbp+Sy1nbniXDVYUpoFHAstHHc9+km6jxZ/Bu0xGs90RXvA9oE9trwxfXJxyayIicAz+5tIzMQylFQJkJ1NlAg6N6JT++MIkkp/EzV9cHuOvJylCdjTY2/YdHX9hLc8CJBrLt5TQmOnjg8fBF78yZM3E62wZ/ah/8L5W/+Dv1z75F7T+eo+o3D1Fx412UXnQLxad8l6IF51O06EKKT7uG0m/fyqJmC7uYRLN2EPAHOMH2T7ITjQuJhqYAf3uumqoG432xWRW5pQ+H/i73MJ7Js8JtWgP1jXg27zIWTCYc86YSq4SEBNShcwkEj5PNO2zY6tYzY1xEy9RWU0cKV4SnAc3M2IF9lxFoDGAm86QjYx5DyJgTYUI4yM2HP8aamxS6e+orLuewWSOwquD71Rhg+17jhOal98tDbd9SLcWcUDDP2EfJ5+H6K4l5kG809XB/vQXdbPxclvxcrCPDd5Oi6l7sCZ4gl65oN4hsNitOPyKcffH6J42ccebZoeNue7TWVVrrs7TWiVrrUVrrf0W8VqS1TtJaFwWXf6S1zg2uO05rfZvWuuc9jweAUorMn12Fchrvpb+sktJLfkpzRKeXDjkz4fTnjKkkLfvb9SYnex/hx9dfwU3fuozLtzVz5Op9ZNicRjAjOZlhl57NvC//y3efvJ/rrr+e+fPnR9ebKl9j1MUKqk4+BBbc1Gs/c3dFt0zd2MmaXRh1nDHlBaB8pZG9BFGtgFsE6htpeOn9nn+vxjIyaz8PL8+4os0qTR98Sd0T4e4+6T+8DOu4YCtckxnmXBNeec0/jPa4sfB7je2eORK2vRh+2pQAJz0KCZ23YB1stNYVWusFWutkrXWa1nqR1rpndxMPgDk1mdyHfhlqoYrW7P/pX2h8s8MCxV0yOdMozvxGaNm69m/G77cLU8bYsNuMz4ayKj+lldFB9pZpI96AxpoV4POGk/hFyT/Y7R4XqmlzyBQHf/i/nDYZoGPGjOGyyy7jB//3XU5Z4GZK4qskm0vRShGIOB01meGWa0aSkxFbFzz7zImYTz48tDx/xW5Gj8jH1N0uLrYkSA5mRgd8UNO2Zqu/Ijxt3ZwTfY2QkpLCuHHhwOnq1aujMi/2lvtCZQI27fKgtRG8mGBbR/Kw2LqtHYj8Vu1SW5cu2LQ7fHNosgQvRCT7tPGhSKt2e0ItQXvilFNOISnJOGjU19fz1ltvwezvwvTLwiutujdUObszDS+9D1ozvLmMi5veJMO/mqnWLzjEuYxjEl9hvONzhju+YlziJxw7ZSv/d7aXh28dyY/OLuPBn+ZzzVkWFk0sJ9O2nURLJcVjjJNNDUzcWsa8lUWheWnJ3zwR26Qx3f45HXOmkH7dBTidThx2O/N2VmPztE156pDJHD11ZHfbz6iual6AUTA1Mgixdu1axo+IvmCcPdHOpPQy/A1GgVG3tjF+/imhqHB/GDvcGrrTW1UXoK7RuBjKSjVz/MKDLuvCAuzBaJ2YipEm/qxSakwsO9mzqzSUQZvbUIJ1WE6vDdA+bxaZrkpuXPEbplatAzTKBNvNM/lF7Qs0zvg5U6dOjbqASxx+ElX1xuE4waE47/gDz7oAsI4y7sybzBaaaoxjS8DnIU9v4MYLM2i5ibq92Mv9z1dHffi5XC6K3v4dnz7/BJ/XHkZAa/wBhVOtZfPuUmMaVVB7mVONb3xIzb1dH6sCDU14d+/DtXwdjb9+mMVT57DeY9w50b4GLhwVPsmPLNw5Z6Id+86I4nPjz4yqxO76agMtfRttU8ZiSu7Z38r4U47BFwwQ+hsseL8qZO6U8MlcZPDCH9AUrgrXETnE/CrevcGLd7OVxKNja6ndxuI7wRk8njWWolbfhWVE8P+u1kxOSiPFEmyB6Pfzxdd1eH2K95aHg+rzxjeSmRk8WSt6L7zvsacYx1ai6104FkUHasPBCwvu4uAUnqYyaChud8jHzE8IBcrKq/1UefL56U9/GvOPPpRZhueQ85dbCDiME8xAQxPl37sj1Kq8840dcMI/YNbVoaf0vpXU/uAM9p11bdTUKcuoYeQ+fAdZd1yHOaWDwnlN5UYbZ3/wxDd9IltHfT988d+P7LPD6d/u1R0X3uuSMwPyFhqPtQ6dM0R20wldcAJ1T72K9neejdahDU+iCG6btxCyjL8X7fXR8PqHlHzrZsqvDycHOY86hOSlreLvk74JCcG/66YyeHwWvHO1UcS9q+nD+z6D50+Ez34ZPeVkwpmsnvxnyGmbISd6jzktmdyH78A6Mfj/KRCg4uY/0fj2J51v2AnHwuto1kbA3NK0D735mS63sZhVVJD9w1VNrNzs4o1PGnjk5Rr+vH8mv579A352+J38M+UnPF3zf3i1HWzJWCwmLj8jlZsvySA1qeP6NcOHD+fCCy/k1h9fwdKjqhif+DEWsxE810px5mGNUUXnY5H/0+/itRnfO6nBzaSG7mWdh3RR98JXHnGNkNM2M2ru3HCHltWrV5OebCLBEbyJ4dZU1QVodgXYWexG6QAKzQTHOpJHxH6TpKdSk0yhz1aXRxut2YP8fs3WPeFztMlDqFgnSPCiV0QW7mx4oedFepxOJ6effnpo+fPPP6dozx5YfEd0l40Pb4E9hR3uRwcCoTsHGnAnrueuYZdxc84PuDbrduYmv83MWalcf/Es/nTHRdx8/RmcdvwsRg5Lwmox6k8cc8wxXHPNNfzsZz/jm9/8JvZTj0QHo54ZVU0kN7ixWCyYUpJIu/5bMf+sKVecg33yGGw2GyYNnnXbut4oUtTUkbbvuT/iwNRZLYPIVPd169aRnxN9B/6841Oo2fwe/mCR0n3+XBYeuii2sR4gi1lFdUIJjy25R60uBzOtdaPW+nat9a5gh4HXgJ1A+xO9O7BrZzkEPwvzGopx5B94sc4W9iON6tqJvkauXPt3Ttn5KiZLACxOGlQur60cTeros0OFCxctPo7t1RNC23/zuBSSE3rn0GwZZdwxN5tMeGqNC01/wA9lK5k5wcFlp4cLaH28ppmXP2ygqamJRx99lMqP/oJj5T08VnEdGiM7JMlahM1cE9omLS2NE044gbFjo1MlXV+tZ//P/hp+T+ZNJe2apSR/80QSChZgnzERS15W1DxTY3B+5tlS2ajnABDwB5hfdw8TR7T9fz41YxdJHiP11YeFMQVXRY9hRfiizbEw9ikjoe8zYwa1w4PBCg2173/K3Enh4MW67e5Q1srX29yhYqKpiSam7/kf2mv8Lk3DsrGM6WZdn444M4y56i02P4t1ZDjwZquoZVxe+OLmk9U1rC9yhKrN2031nHlixMlVZPAiIiAcedffuSj6Ysc+ZwotDeU9+534XR3XvQBw2EycHFFh/uVlDT0qbj3UOQ+fw/6bLgxVvdc+P/t/fi/Vf/tX1++XMsHhv0AfdgeNWxLY99hwqt8OoGvLjCCE2Uzq5ecw/IU/41zUSdag3wNvXQGNpcayLQVOfgy/uWcdjw6UfU5E0c5120L1IXokaurIW+hAANeX4WNE5u3XYgoGdHx7Smn6oG0L4C75vbAxojzLjMvxlVdR8/d/s/eEK9l/8z1R01/MmalktbSvj2SxGzeuQvt1G+2M37oCnpgFH/wA9iwLt7oHY4rIe9fBK0uiL9bSJ8I3noXj78djjU6PF33DnJFK3sO/xDo+ePff72f/j++h8d3PO9+wA+Mmz2KF1wi+BQIa3xd3tzsVorXIuhfPvVfPbx+r5J+v1fLm541sVHnsd2QQwITJFDwZUoqRwxL53bU5nHJYUvfaeQNZWVmce+4Sfvuz87j4lP2MyVrOoomruOCimE7Lojjysqg+JDz9I688xuyjLupeRGVeZLf9u5g+fXroJmVpaSmlpaWMzI2eprF1rwevz49JBRhh3Umy1YU5dUxs4zwASqmoDN3Iop27S72h85LMVHNUa9ehYGj9NAMk6RtHU/2Hx9BuD55NO3Fv2I49onBPLGbOnMnKlSvZvNn48HnhhRe4/vrrMR9/P7x8tjFFQvvhnavgzJcgs22Kkuvztfj2lQdPWho4ZtIaFBplUqiMyRxy3v9YnNQ20tjuz5aUxLx585g3bx7lm6uoe+ND/H4/FrMZpRRp117Qo77oLZXrPVuMOZ/uddtwLm6/F3W7RhaAMhvvRflq425R8E6F9vrw768x1jOZQlWE25Ofn09GRgZVVVW43W5Ki7dx7PzhvL+iiRMOTWTSKBub33mdlktbX9bc7szZ7nWTR9vYHDF/bXi2haPmDswJZTwJFuubRCfdCJRSVwFXAWRnZ1NYWMia9bVobZxY5DaUUOZ3sDPY2/uA+fyMNivwGdH4E3a9zoQTyvhH3fdpdhu/w0derqDwiyJOnrufVbtyqK417t6nJfpwerbSW0PB42W4x0MgEEDXmQn4NV6vl6rVr7GlejIODZPyMvh6t3HS/s+XSln/zn+YbXqLI1NX80zN96j05xDQJjxaMyp5A7lZw8jMzCQjIyM0VaQwYsDmsiqyf/sUpmDbR29eJruXHo1OcACtilkFAqgmN8lvfEbSu8bFb9Fby7AcMouS/RnkWSvxNNdxZMa/Wec2pkwYNXncJGz6HTqYPlNkmkLN15uB8El71lsfYQvWqdls9eM+gDe1aewIsndtMR4v383Orz8m0TqMqgYrbjc8/cIXZCc28Pqr23C7jb/LEZl7sOwO4MMIItdOGcuyZQc2/9mQxByVg9O9F/BQ5SvGHPw5N767jBHjclleFECj2F3qp7LaESrUmevYSmnJcMpKS3C4S5lbbqTiB5SN5dt8BHYUoprd5C3/GhXc5itvHYFW711Wbhq23aWYAiYadplxjHNR+uV/2Vmc1u6IkwMm/L4R+PyKTTvdPPnftmm8Anwjcxj277spv+bO0JSn2geexbe3zLjItbU/lUxrTfNHX1Fz7wY86yaCu6VtrsaWVk7m94/Dft6F7Xa8iNgJfHRLuPOMMhkZHaljgd29+WN2myUnA0t+Lr69Zcb51YbtUdkYMRlzkpGNALD3QzzrNhIITvM1Z6VhmzmR5PNOovZhI5ur7omXSTw+xhsVW1+ApgqjuO/+4dTfv4mm9x5H+6KzOJTVQsKJi0m7dinmrA7OxWZeafwONj8DlRFTZjz1xnObnzGmDY073Zjytfpv0ZkW1gQ45EaY+Z2hVt9iUDBnppH78B2UfftWvLuKjWDkj+5G3fPjUOH67rJarTSM/SZNe1eQoJoJ1BUbGdgzvt3pdrMnOYDaNs/rQCA03RI06ZYK8ix7mTYqwLnfuwqbtWc3xVJTUzn7rNM460xj390NfnRkyvlnUPflFsxmM47Ne2LbODLzorqd4EXkDc6ctsELh8PB1KlT+fpro26WMXVkUeg8fE+5jyZXAL/fjxnNJPvXRuZn0og2++pL+TmWqDHNDsZ7NkcU6xxqWRcgwYteYUpOJOGEw0JTRhqef6fHwQulFGeccQZ//vOf8Xq9lJWVsXLlSiMt+5Qn4cXToGGf8SH1xkVwzhvGB1cLv5eGf/4DXJUQ8OGcWYkyGwcSizMV51lPQTcDF60lf/Mkmt76BEswNds6YRTJ55/UxVYds08bT0ss1bNua4wbp8CwhUaKJEDR+zBlKdDqoJSZ1vbubgSlFLNnz+aDD4yq0GvWrOF7F07nsm+k4rSbaG5uxrx/Vag0SN6sPm8b3q7W/ZmXnpDSrcrNQ5lSygo8DTyute4wp1hr/SDwIMDkyZN1QUEBr36wDLTx/uU1ljD1qAtJDrYs7g0lk+7FvdGYauSYnMixP/4jsxst/PHpylAq395qOy+vymRfWVOotdZ1S4excPqkDvfbE3tG/gdvSQXNjW50vR0yvAw3FTN8jAeqt3LkjO38sqqAjdX5oANsrDuac3KfYbdnAu82fBOUBeypfP/cdE5c1Hm6v7+6jpJv3YzPFwCbDXNmKuP+dRfTR+R2ul1zxjDKPjRSuJOqmrj00kt5+543Gca7oGGRep6N87/NZ18343a7mT0xkUm1n6GCf5g5h1/FnMMLQvsL1DdSVPZXsNlAKQ69/IIeTxsBWOfX6A9+ggICxRaOnDWR3Y1JvPaxcbEQcEzBal/D3up0WrqkHTF8I96i4HQ7ZWHqxeeScPSBdWQJcZ5vTCEERoz0UmUzjg9jrAmMWXI6765fR4M/l0AgQL3LZrSrw8/5p4zhmGMWB3+of8LO4HFl9PEcdayRMdS0bAXlwTtOtiljOer0tse8qhU7qXvsZfCDvyQJ+xQvo+0VjO7kb6i4uYa3gx1jiuondrjewc6Sm0ne47+h4od30/zJKgAaX1uGv6yS7L/c0ma6R/MXa6m591/haRVmOzgyMFFD6qH7SZlfh6p5Cl7dBsffD4kd/C2u+yds+k94edHPYeTRffEjxsQ+ewq+vcFpm2s29zx4kTrGuBtbtRn8blxvvRR6ybFwJkopki88jbrHX0Z7fbhXbsS9dgv2Wd08Hvtc6C/vomlDAtWf5+KrTQfrp1GrmLMzSD7/ZJLPPaHjoEULkwVmXWV8VW2BbS8ZX3W7wus0V8L6x9puO/4MOOwXkNR7GYUidpbsdHIfvZOyy36Gt6gE7fNT8cO7yf7TzSQUxDaFcPL0uXy2bR7HOT/B6/NiX/lXo8CypeMC0MOzLJx6eCLvftlIYoKJ4VkW8jItZLuqsN7/L7KaK8nQ6xh+/tegIPHUf2HuYeAi0oEGLVoMP+EIfMn/AL8fz5Zd+Gvqu3+ztItpI11lXoAxdSQyeDHjiMWh1/aUeamo9qP9RrbDRNvXaEdGuC1zP4muxRFRSHRXRPBiiNW7AJk20muSIwp3Nr7+YVQV/VhlZGRwzDHHhJY/+OAD/H6/cdJxypOhvs80lhoBDE+D8bXmH/gfWURT4SojnVCDbUoVAUxs8E/H9M23o1OpYuRYOAPr6HDac8bNV6AOoPaDbUY4Vd69PsZpIwCjIqbS7A5PHYmud9F1+8vIqSMbN27E7XaH2r2tXv4pWcoo7mUymxg+5xvt7qOvTRtrxxEsvjQ+38qh0w+shWa8UkoVKqV0B18fR6xnwmif6AGu63CH7fD7NcV1yeGucU1lWHK7WcW6mxJOPRvMDrA4Sb7+FrDYyUw1c8fV2Zx6ePgiuqLaT8sNkOnjbCyY1vu/V+uocMcRd60THdDohhJ48zL44tdYtv6HGzNvItNcggaadQJ/3f9rnqi5GW1yYErIZPbkJE44tPMe7drtofz63+ArMgqBKYeNnHt/hqWLwAVgXCAET3g8W3Zj82uyFl2JP/gRZalax4ULSxiebcFq0Rya8TEpwTtKPrOTYQujWxG6Vm7slXoXLSYfdQSB9OAvyq+oeOk/zJscUbRzi4tNxYm03GAdN8JK2o7X8VcFf582G46FMw9oDFEiUuCthOfte3cWk5WVxYj0mtBzgeB/sEz7ThYfNi+8j8gpIyOPDT10RbZIPaz9+fGOQ4J1L8xW3C0dRyo3gLex3fUBTj8yKdSZcU07rftEmCkpgZy//Yykc8PnFa7l6yi96BZ8xeEL+dIrbqPsitui6kEoh43UK77JiPf+Tep5C1EtU9ZLPjdqIbQE/CPt/Rg+/UV4edK5xkVzHLDPDV+EuA6k7gXA6PDfjevTL0OPHcH2xZacDBJPPiL0fN2T4Xo7XVr7EHUfNFLxWjbe/c6oixjHIdPI/uNN5L/9IGnfPa/rwEVrGZNg4Y/hgk+MG1azrgq3To6UNsGYInLCAxK4iBOWnAxy//krLKOM34f2+qj4we9xb9wR034mT57MGu8cGnQCAX+AQEMpbGi3g3SUb5+exlN3DOfBnwzj9u9k891z0jkpZS+zqjeS27CX5NQaAAImO+bI6elxwJSUgL3lOkHrqPo9XUodT+jgV7cbvE1RL/siu420k3kBMGnSJBISjL/juro6LIFwI4CiUi9bitzo4NStCfZ1WNLGdH98vWRkq6KdLSI7jUjwQnTIPn966OAUaGii4bkDay992GGHhVKyq6urQ72GyZxqtLlqSf+s3AAvnwVPzYfPfknj8ga03zhDNOW4WZk4lftqL6Zq9m3Ycw6skIwymcj+049JPPkIMu+4DmcHJ7bdZR2Xj3IaFwD+8qqog0m3RNa92LssNAfQX9a9ehctcnNzyc01TgR8Ph8bNwZTqQMBdi5/CVPwKtefMgHl6PwCrq8kJ5j4+RVZXHBiCrdckompn9rV9TetdYHWWnXwdQSAMsL6jwC5wJJYuwuU7PcaF5lakeauwen3duv/SSySr1hKxs9/QNYfbyPx1PAJgcWs+PbpafzggvRQMKrFpael9todi0gtxyWTyURVtRGk8QfCxa/8gQAWTwn/l/lTbMpFQJso1+PZ7psDjgzMFhNXnZ3e6dh0IMD+n/01fBGlFNm//2G371qakhKwTQx2vwwEcH+9lQVHnsguJgf3r3Et/yP33JDDtScXkbkn3C7ONewYlCW6KJh7RUSbz14IGlitVvyT0kLLde9+xJQx4YBiWZWfL7eGjw2LpplI3BROc3XOHYvJ2bPCZe3KmRO6eLEmVUHA+BPw7jKKZh46s23B14I55nBHGG8zFEcUkBsVDl40RxTrdB7afn0E+yHTgsEmhbs8gYBbhafwdSAv08KiGQfejvhgoawWMn9xDek3XBx6zrtjLyUX/piy791Bybdujio4qawWki88jRFvPED6Dy/FPGwknPwYLLwlXGyzqQJePQ9W3xfuDlO325iGGqyYT85cOOruUDBxoDkighfuVZsOrF5KMOin/eDaWBH+HhH/z1MuPTP0uPHtz/CVhNfrUHMlzS8+QPWHRlDCb3KiHHaSlpzA8Of/RN7jvyHxpMWdZoF2i1LG3/7ht8NFK+D0/8LUi4znFt0K33wP8o/oYieiv1lyM8l79E4s+cYxW3t91D/zv5j24XQ6GTVuEp82G9l7Pp/XyL5rdVHentaf3S03GPC5MKUa5837nbPAGn/H58jP78jW512y2INT3oKqt0S9HJmhbcluP5hoNpujivpXFIe//7a9XppdfiBAurmCLGs5lvQx3R9fL8lvVYdDa6Nw5/5g8U6bVTF62NCbNibBi16ilCLlgnB6bc0Dz+KvjbHATASHw8ERR4Q/hELZFwD5R8JRd4VXrtwQ6uHd8HUSKBPakkjhyOm813wEDTqFww8/nN5gmzSG7D/8iORzDjxCq8zmqD7ung0xzoNOGx/uh+5tNO4sAb6INqndvaMemX2xZo1x53Hbtm0kNRjpZkpB4rijYhtfL5s0ysY5xySTltxx9eeDxP3AVOB0rXVzrBvvLqoEHUAHjGKdJrMFSy8HL0wOOymXnEHS6QXtvn74rAR+d102Y4IfKmceldRum97eYI0IXuypHEV1IBW3ORVGHEHdqCW8VnMYT9eeyYtNR5PhXA/OTEzOdPwmOyjFkmOSGZ7V+Ul3zV+fjmoHl3HTt0k4LrZ5vVHF+VZvwmq1YpsVvnBz7n0Db3MD1VUVjPSuNp5UkHnolW32FXmHJtQd4wA5j1oYeqw2lmMxw8wJ4YBEfbPxd2k2Q4Z1J4l7/aExJh3fy+n3ymS0TgXMSX6UyQheBGob8NfUc8SCCdhM4SyIRHM5p50QUVNo3ydR3SRIMQJHvopqvFuN+gbKasE+r/22b+aUpHCwSVlx7wu+Dy31EjpwxpEddLgQ7VJKkXrlErLv/mHowtdfWUvzRyvDK5nNJC05gRFv3E/mT7+DJfIuojLBvP+D0/5j1EcA48r981+FC3O++W1w1xivJeQarTQtvRhoO0DWCaMwJRoXVf6KKvz7ynu+s5zZkJCLu8SO9mgIeLGMyMGaH85isE0ZGw5m+P3U/ev1Lnfre+u3VDyfZGTzKQuuCWPIf+8Rsn55LbbJY7vcvkdMZhhxOBx9l5GNMecaqW0Rxyx5WWTdeX1o2fXpmpgDcdOnT2e1exr1OhGvzwfN+9ufNtQF7y6j0LUKuDEHgxeNeQUx76c/9Dh4AR1OHdFuD4HaYH0YsxlTRsc3JSO7juzYsprIexD+gB8Tmom2dVgsZlTyqNjG1wsyUkw47UZwqtGlqW0IRLVInTjSimUITjGX4EUvSj7/5HD2RV0Dtfd13c6oM4cddhgOh5GSW1lZydq1ET3JpyyFeTdEre9uGIOnJguc2TSb7GwbbdTCmDFjxoAUmewO+/Tw1BFPrFNHlILRbVumxpp5AURFV7du3UpTUxOfffYZ+RYjQm212rCM6N8uI6ItpdRo4GpgDlCqlGoIfnW75U3RropwvYuGfaikBExJ/V/8dES2lbuuz+Z7J+/lolP6LqOn5ZhkNpuh1sIDtRfzTt5d7Jp5F/d8mcnn9VPY7cvHZ8vgR989kQtPDt+FGJ5l4ayjO59jWv/ft0NF7gCSLziV5ItP72SL9tlnRwQv1hgZHFOOu5pmk5FF4NSNbHz773h3f0iSMu42aXsG9rHHRO0n0NCEuyUQqpSRJdALhp1zIViMjBVzdYCi5auYN7ntNJ8FUx3s3/A+geLgXSxlwnn8cW3WO2DBu8jKBNbU8N03765iRo7MJyehNPTcjPxKhg2LSCMvej/8OGL6XeSdfPvsKZgSOp7GZJ8f7OBisuEqCq5X1n7HkRYTRtqYMT5+LowHi8RTjiT34V9iSo0I/ihF4mlHM+KVe8n65bVYhmV3vIP8I2DJ25AbUf1/15vw9KHhSvwmK5z0cMc1MQaIMpujMrhcqw5g6kgw6OfaHfz/6ndFZV20SLnkjNDjhufeJtDQ8d3tQPlmyn9fSCDYdcecm0vVd8/GnBp7IXMxtNnnTAkF4nz7yvEFgwjdNW3aNPxY+KR5AX6/n4DWsPrv0YVau8FXVALaj9J+zKlu/Jiwjjs5pn30F/ucKaHArXf7HnwRtSq61EHHkch9mLPSUKaOL4VHjhxJRoYREHa7XaQ6I1qj+/0oAkyyr8VsMkNyfvfH1kuUUozIjp46Ej1lZGh+3krwohcpm5X0H1wSWq5/5n94dxb3eH9Op5PFi8MFYj744INQ1XgAFtwEh90GE86EEx6kofkSsDjRWrM9LwmvzfgPHZnBEW9sEcGLHtW9iJw6svsd0Dqq5kV3gxeZmZnk5xsHHr/fz0cffcSmTRsZbjEuAKw2a/SJnxgQWuvdwSkkDq11UsTX093dR9G+plDGdG7jPix5vVvvIhZKKZy2GPuXx8g6Opx5kVxvfPBu3LiRRx99FLfbiNA7nU6uuOIKxo4dy5JjkvnWySlMHt7ELZdmdtqOt/mTVVTe+Y/QsvPo+WTcfHmPpr9Ezm13r96MDgQwW214x50VXmnzM+Q1hNvNmSae2aaDgmtVRL2LyWPaFDjsKWveFKz5RoaDAvb997l2gxeHz7RiXfkpBFukWrIdWMf0QQXyEUeA1ajlYU2pC7VN9O0sxmQycdphJvLsaxlu/ZhzT44okKl1qxapHdS76KylJuCYHwwKma24WupelK4A3fn/5xuWpnPGUZKBESvHIdMZ9vRdJJx4OElnHcvwF/5M9u9/EFWHqlNJw+CMF4wuFi0CETPujr47bj/j7HPDU17dB1r3YsxJ4eCFz93utDLnkfNCf7OBhiYaXnyvzTpgdHmp+uFNeMqMjAdltZH9tzsIpMn/b9GWslqi/r81f7o6pu2Tk5MZOXIka9xTqfUn4/P5wFUN6x/v9j601nh37wOfcS5gTvWw3Tua7BF9lCF0gExOe/SNjeUxZF9EZV6Ejxv+ivAUdUsH9S5aKKWYM2dO+AlP+KaA3x8wMi9CnUb6P3gB0VNH9pR7h3ynEZDgRa9LOH5RKE1Z+/xU/eGxA9rf4sWLQ50IKioqWLcuomCNUkYv8OPvJzDiBBrf+AgAj9fDtnHGBVl+fj4jR448oDH0JfuM8Em1Z9222OezDlsUOoGnrghqtkVlXsQyHSBy6khhYSFpploSlAuLxYzZmQ5p4zrZWgwWu/ebQ8U6c+tLcHSjoORgZsk3MrDMZjOJjR5UQFNXV4fXa1y4JCUl8Z3vfCd0nDCZFGcdncxp8/czrJ3pIlprvDv2UvfvN6i48S4ITmezTR1H9l0/7HERX8vIPMzB9M1AfSPenXsBGFZwAyaz8VE11rSDqXaj0JnZYiZ57iVt9uP+MmLKyIIZPRpLu5TCNisntGhevoq0ZMXovPDPm5Zswql3M7w4eAxSkLBgTO+NIZLZBiONrBNLhi80DaSl7sWpJx/Lt05O55h5dmbOjHgfarZBfbAehy0J8ozpMFprXJH1LrqoaRQq2qnMeEodBLzKmH5Q03khutQkMxf3YabRUGYdM5yce35M1q/+D9vE0bHvwGyFxXfA8Q+EPzfBKAA5+bzeG2gvaz2l7EAE0ufjLglmRWk/jslti/kqk4mUS8LZY3VPvYr2+dqsV//g/TR8Eq6Jkf6DpTg6mGolBIBjcXgaQvOnq2Lefvr06QQw84lrvhG8APj6IfB1rwhyoKaeQH0j+F1gDqASfWz1TQxlF8Qjx8Lw51dzLFNHOgpeRBbr7KDTSKTI4EVz7U601mit8fv9OE2NjLDuxGw2DUjmBUB+RObFjmIvu/aFg9KtOxUOFRK86GVKKdJvCvdebl62PKoAWqycTmdUvYr3338/OvsiqOm9L4wDElBjN1OeY6QsLl68uE+KAPYWy6i8UMq+v6oWf0S9im4x2yA/Yj757nejal7EUogxcuoIQH4o68Jm3JFS8ucy2GkN5fUOCCjMOkB2UwXWztKthwBTggNzdgZKKUxoEhvDJzmpqalcffXV0VMKWmm5U1P/37ep+PEf2XvsFRSfcR1Vv36QQKNRcsSSl0XO328NpcT2hFIqqg2ie7UxR9WcMRF/ttElw0QAhyl4VyEpv907xa4VfRS8AFKPPSzUNjllbwM7t25l/tTwz3zU3AQ2b9pA6t7wyYPz6Nhqf8QkOHXEmuGNCF4YqcgOh4MTTzyR0aNHR38GRHRmYsRRoXnyvt0loWOnKSkB2/TO232bM9OwjjVO1jS2iLoXnU8dEXFgwhlwzv9g+qVGocdFtw70iDplnzUJgqndni27O53G0RX32u1ojP+r1kwvlvp2uq8AiacfgynYltFXXE7T+19Eve5atZHqe8KtZZMW55B89Xd7PC5xcHAePif02PXl12hPTPXGmT7dCBqvc0+hxuMw7sM0lcOW57q1fcuUEfw+zKkeAspETepCI3MgTjkOjax7EUPHkZTRxjUCQFMZuGqAVsGLLjIvALKzs0OZ2XZVjdfrDV2HTbCvw2oJFkUdoODFiIiOI59/3Yw/eIk4IttCUsLQvG4Zmj/VALNPn0DSGeF52NV3PYJuKbbZA0cccQQ2m/EHWFZWxoYNG9qs0/CCcULq9XrZOiYDlCIlJYWZM3uxPV8fUCYTtmnhk2T3ugObOqJ3voO/sja03FVKWKSUlBTGjQtnV4ywlGIyKSwWC+TOj31cIu74AgoCPrSG7KZSzEoN6LSR/mIdFcy+MJlDU0cyMjK4+uqrycpq+/P76xpwfrKWilv+xN7jrqD4tGuovP0+Gt/4KCrlEsCUnEjOfbfG9LfWkY7Sw5MXfCeUfQHGiYJjxvltOiL4q2rDxxCTqdfqXbSwzT0Sc5Jxt8viDbDltfc4/cgkFk5zMHFYE2cemcCe5Ssx1wQ7PlnAceypne3ywIw6DpQZa7rXmAKgA0ZKcGf2RNa7CNfiaP5sdeixY/70bmXQOBYEsy9MVtx7g8GL0uXdHb0YSOkT4MjfGoUeTT3Lluov7XUj6inX52vBbPxfdYx2we72O8OZnHaSzw/XAah7PNw21VdRTcV1t6KD2Wu2XC8Z9/whrm8UifhgHTUs3Da12W1Mc4xBVlYWOTk5+DHzhWt2OPti9X0Q6Po6w7t7H/jdaDTmNA+7vCPJGDYm1h+jX9lnTUY5jGsgX1EJvu4W7TVZIC1iymS1cUMkOnjRvRucLdkXDlMNXq83WO9CM8m2zqh3YU8F28DUucnPCU8bcXnC2etDsUVqi7gJXiilrlNKrVBKuZVSj7Xz+nFKqU1KqSal1AfBwn1xK+37F4X+2DxbdtPw8gc93ldCQgKLFoWLRb733ntR0yu8e8tChdbcXi87xhl3kg877LC4jqa2iCraua4HJyWjwoEi//aV4DNOKMwZqSh7bH+8kdkX+ZYSrDabcaNVghdDgvE5HwCtGNZQjDJZMB8EwYuWkyWb3U62TzF+/Hiuvvpq0tPbtgjzFpWw74zrSX/8TRpfWxb1Qd/ClJxIwjELybj5coa/8jdsk8b0yjjtc9pmXgCYxp+BLSE1lPVgs9swT17SZvvmD78KtYC0z57c60XzVO48nOOMbBMTAZo+/AKHTXPTxZmcvmA/5aW7Gb17pzFMBY5xYMrsw2l7jjQYvsjIvADwu/EVlXQcLPfUQ0nEHeTIehcRxTodh83p1re3t0wdMdtw7ele0U4heiJ66khsF3yRmr/8OhS8cI5uhrKV0FjW7rrJS08NFQt0r9mMe81mtNdHxY2/x19qbGNyBMi55XhM2RPb3YcQrUVOyXPFWPcCwtkXq13TafYHL1zrdsGOrjvjeItKQvUuTKluNnnGk5OT08VWA0tZLTgibmy4vjiwqSO+yJoXHbRJbW3WrFkopbCqJgi48Hq9mAiE610kD9z0/Ox0M7Z24s9TJHjRL/YBvwIebf2CUioLeAH4OZABrAAOrJVHH7PkZpJ6+Tmh5Zq/Pn1AqY5HHnkkVqtxkCotLWXjxvCHd8NLRjEpv99PcU4SzQk2LBYLCxcubHdf8cY2I7JoZ4ztUgEScmCYkZrtryNciKgH7S9nzpyJ2WzGhodsSxU2q9WYLpIzJ/Zxibjj92vj4lYbnUZMJlOvt0mNRy3tUi1mMyfOPIQrr7ySlJSUNutpt4eKG+/Cvz+6orcpKQHn0QtI/9FlDHv2j4z8+Aly7v0pKRef0e0P/+6wTRuPshgBV+/Ovfhrgu2mbUnYppxDQkKC0UI1ZzpkTG2zfdOy8F3/hIIFvTauEEc6CTOMIIoChu8pZdu2cLbY+vXrGVkSPjFyHtIHhTpbG30SJofGnOA37qh5vPhKOph+t/ejUGFPsmaEOktovz/qhLCrYp2h9Vra0JosuPc50D6geiu4azvdTohYRQUvethxxF/XYLRkVwosNhwjg50Dgp3KWrNkp5N4WrhFet0Tr1B19z9xL19ppN4ryD6nCctJt/RoPOLg5Iyqe7E65u1bghcebHzROJ3QrcxV94aC9x3xbdsWKtRrSvWyxTuOvLy8mMfQ3yK7AkW2Qu9SO+1S/ZHdRrqZMZqcnMyECRNQCtIsu/H7/SSbq4LBC9OAFesEMJsUw7PbtkmeJMGLvqe1fkFr/RJQ2c7L5wDrtdbPaa1dwO3AbKXUlHbWjRspl50VKgbj319N7aMv9nhfSUlJUdkX77//vlE0xu+n8SUjDdjj8bB9vJF1ccghh5CQ0P/tH3vC1qpdasxFOwEmLwXAV28BnxEk6m46WKSEhASWLFnCIaPMJDgdRhpoxmSjsJ0Y9HwtN6S1IqexBJPJhDlv6AcvWjIvAHx7Sjtcr+r3j+LZtBMAbTaRfsPFDPv33Yz8+Aly//4zUi87C/u08ag+yugyOezYpoanbrnXhLMvmHEFFqsDs9mMmnl5mykj2uPF9cnq0LKzoG+ypZyHzgp967SqZtZ9YnQ/0Vqzae3XpJcYF0QKhXPxvD4ZQ5Q2dS80vl0ddLmK6jISnjLi2bAjVDPJnJ2BdVz3TsQsuZnB/1sKHbDiLm2pe/FVrD+FEJ2KmlK2dkuPpuK6l68PZ2ZNHIbJETzX2NX+1BGIbpva+Pan1P/rNfAafyvpR1XjPPcaIwNKiG5yLJwZCtJ7Nu7AX1kT0/bDhw8nNdUoevx5wzR8Ovh5XLke9i7rdFvvlvWhxxVJqbi0I+4zL4DoLi1frO3+dUI77VJjrXnRYu5cI+g00vE5ExPeZkn6PVhNXkwDnHkBkJ8bnXqRlGBieDsF14eKwfKTTQdCPdy01o1Kqe3B59uE4JVSVwFXgVFopbCwsJ+G2ZbzhLmkP/Y/AMof+A/rRiTjz0yhoaEh5nGZTCZ8Ph9+v58dO3bw7LPPMmp/E5lF+whoTb1JsyPbScDtxmw29+jn7sm4DpjW5FlNmBpdUOnh4+dewp8TfTe3q3GZAqnM95lx14AO+PC5m6j2NLKxhz/LtIwmAmUB3B4PZe5cdnSwnwF5v7ohXsc10HwBMxqjm2Ne3T5MFhOW3INn2ggEC3a1o/GND6l/9s3Qcu15xzL5yrZTM/qafc6U0Jx29+pNJBwdDEJkz4Rvvsv6T95m3rS2XUZcy9cRaAoWEB2Zh3Vc35xMmMbMxzb8C9x77ZjxU1P4Bd6LL6S2thbH9n2Yg9WyLBlerLMWd7G3XpAyEjKnYckog72A34N3ZzHOI1oFTrSGovbrXUS2SHUumhXT3H3HvKk0FJWAyYprjwNHvttomRoxJUWIA2UZkYM5Kx3//moCDU14t++JeR/Nka2Ajzgc+NBYKP7ICEhEdmAJsk0ag2PRbONvRGtjPR0gYVITKcelwIzLe/ojiYOUKSkB++zJuL4y6tc1f7aGpG8c3cVWYUoppk+fzqeffkqTdrLLuZiJruD/5VV/g5EF7W6ntcZXFJwipWGLcxRWq7Xd6aPxxjZtHKakBAINTfjLKvEVlXSvTXTraSNa4y8P3yOPJXgxbdo0rFYrXq+XZEspOZYyzCaTMU10gIp1tojsOAJGi9ShXINnsAQvkoCKVs/VAu1OaNZaPwg8CDB58mRdUFDQp4PrjD7qKEpW7cSz0WgfN+WLbWTfdSOFhYV0NC7t9lD/7FvUv/AuuqkZU2oy5rRkTGnJpFXAjooK3HYLZs9qxrptuGw2XC4Xu8dlYXU6mTRpEqeffnq7++5KZ+PqS2ULP6T5E6Nt1LzkLBILjox9XOaluD56IzgvzcfYBfNI6+nP8sYjUG2kXI1acDajJre/n4F6v7oSr+MaaAGtQIPT10yyuxZz+vBQt5uhzDoynBbq21uK9vujsie8O4upvP3+0HLiyUfQVDCXgWCfMwWefBVopy1i+kTqkorbZF0ANBVGTBk5en7ffXDnzsU5zoW72I5ZB8gq2s+WLVsoKSlhxL4qTASMFqnjmiG783ajvWbMyVjTHzYe+13tF+2sXG9UXAewp0FOROpyREcsx6LYxuyYP4OGl94HsxX3HjscBpR8HuMPIETnlFLY506h6R2jO4h71SbIdcS0D1dEm0XH0UdB8ctQuRH8HtizDMa1X1w35dIzgsGLAHibsGZ4yTplP+rQv4HF3vMfShy0HIfNCQUvXJ+ujil4ATBx4kQ+/fRTAD6smcrEhE+NKYH7PjUy39rpxBUo3k6gyW20ircG2GA26l2YTHGThN8hZbFgP2Q6zcGpoa4vv+5e8CJphBGU9DaCu4ZAxe5QlzRls2JK6X5Wtd1uZ9q0aaxZYwRB00x14bqCA555ET1tZCgX64R+mjailCpUSukOvj7uxi4agNYTtFOA+t4fbe9SJhMZN18RWm5848PoVOgI2uej/vl32Hvq96j6/SN4t+7GV1yOZ8N2mj9dTeMbH5G7fAsz1+3jkK+KmPTqlzR8/JXRytDrDU0ZWby4H+729bLIqSPu9T3oOAIw5QL89cEDic+FJbPtXZRu0To67TlPinUOHRq0Iq9xH0qZD4p6F2Dc6TFnpQGgvb6olsSBZjcVP7wrlLVgHTWMzNuvaTdA0B+i2qWu24puqabeCa01zcvChSKdBX1Y7ydzBgnjgnOG0YwoqWHNqtWUlpYyuqQSRXDKyMwUcPTTHa0xJ2HNDBbt9Lnx7mjnrnTklJGRx4DJOFYGXG7cERXvu1vvooU9VPfChqvYgfZjdBwJtqUTordEF+2Mre6Fr7wqlK2hrBZjGsrok8IrdDJ1xLl4rtEVzduAyeYn5+xyTCNmwIQzY/sBhAhqXfci1unSY8eODQUdtpW58Iw+Lfziqr+3u433i5cA0Gi8KYpGEgdFvYsWzsiWqd0t2qlUVPaFf8fq0GNzTkbMNzlapo4ApJjrI4IXA5x5kROdizCUi3VCPwUvtNYFWmvVwdcR3djFeiB0O0gplQiMDz4f9xzzp5NwfLheRdXd/4wqqqMDARr/9xH7zrieyl/8HX9Ze2U/DEqpUOFOAI/bg9frZX9mIrVpCeTk5DBx4uCrem2fEdlxpAdFOwFy5uJzpwYXNGZf25ay3VK7A9w1xmNHBqSM6dl+RPzRBIt1FoPJclC0SW1hGRmeOuItCte9qPrtQ3i27AaMOxHZ9/x4QLNRLHlZWIYZgVjd7A6NrTPerbtD7dNMSQk4erlFavQA7dimT8DsNKaHJLjc7Pt0BZTsJ6nODYCyahzz+7FNddYMrPkt6a/aKMrW2u6I4MXo8JQR96pNaI8R+LCOzY85oGcZkWP8HSkT2m/DU2YzihlGBkuE6AWOiOCFK8bgRWSRP/vsKZic9lC9GMAo2hloFSjVGrxNqMYScn96NBnHFDPsshKsmT447DajmLcQPWCbNg5TqnHX37+/Gu/Wrj/nItntdkaNGhVa3p4UGYh70yic3IpvdbgeRnWScXNvMNS7aOGIDF4s/7r7AZ/08A0R/87wcaClJmEsJkyYQGJiIqDjKvMiL8OC024EYmxWxfj8oR28iJtpI0opC8Z4zIBZKeUAfFprH/AicLdSagnwOnAbsFZr3bOS0wMg/cZLaV62Au314V69CceK0eiCApqXraDmr0+1OUE3Z6aS+p1v4jxyHoGaevy19QRq6gnU1tNYup/P3n4Xm8uL3e0jYLeycqaRPrV48eJBOc8pqmjnhu1t0tq7RSn8nkzASI221L4H/DD2wZRGtPrLPWTA7kCLPhIw2qSaTKYedaQZrKyjhoXusPuKSuCw2TS88gENL7wbWifjJ1dimzJ2oIYYYp8zGV+JMVPQvXoT9mnjO12/qTAi6+KIeaH2hn1FDTsE59hXadiQgEkHyN1bRQoBzMqYMuIY7UIN78dpN0phmXM8qELQ4CutINDkwpQQTKt3VUP5ytC65BeENnV9FlEHIMasC2N3Cvsh0/G9vgzMdlx7HdiHe2D32zCp/2umiKHLNm08ymY1OursKcVU29DtbSPrujgOnWE8yJ4FiXnQWGrcsHj9AvB7jcfuGuPvJtiZwQyktPxJjz4eRgy+DFcRP5TZjPOwOTS+aSSfN3+8KuaW4xMmTGDXrl0ArC/xMXXMibDrbePF1ffBMX8Kr9xciXfHDlqS2IsTjRs3ubm5B/Jj9CvrxNGY0pKNa6LKWrzb92CbMKrrDSMyL3xF4ZujlhjqXbQwm80sWbKED996kURlNrJfbMlga9u9rT+ZzYqrz0njzc8aOenQRGzWoX3dEk9h41uBZuAW4KLg41sBtNYVwBLg10A1cCiwdGCG2TPWUcNI/lY4rSv1v4WUXnQL5df9OipwYUpOJP37FzHif/8g5aJvYB09HPvsySQcNZ+kM44h5eIzGHbT5fC9c/nkiAm8f9wUCo8YT12qk4SEhKiUpsHEnJOBOctIsQ40NePd1c6c7S7oQAB/ffi/tNm1pt3oc5fKIoMXMmVkqNEachuMTiMHV+ZFOD3UW1SCZ3sRlXc+EHou8dSjSDr3xIEYWhv2ORGdBbpxh7U5okWq8+h++JvNmYtzjDHNxqwCDCupJb+0zqh3ATjH9mO9iyA14RSsacGpI343vsi6F3uWGfP1AXLmgTN80hZZxNB5WM/G7FgQnDpituPaEwyYFL1v1BIQopcoqyWqtbpte/fPE6LqXbTUdVEqOvui+BMo/RKqt0BTeShwET0IExz6s5jHLkRrjsVzQo970jJ1woTw38K2bdvQc64Lv7j1eWiI+PvY9Ra+auOGoF+bqEwyLrYHU/BCmUw4FswILXd76kjktJF9e0OPzT1s8z516lSuvvBU7PZgvZvk/Li4ybl4VgJ3Xp3NEXOGfh23uAleaK1vb2dKye0Rr7+rtZ6itXYGp6HsGrjR9kza1edhSjNqjJqr66NqXying9Srvkn+2w+S+p1zw3fMOlBQUNAmw+LQQw+NmlIymCil2rRMjVWgqhbtC4DZgckewGTTsOnfsQ8mst5FO0WPxCCnFTmNpcE2qQdP8MI6JlzcyrNpJxU33o1udgdfG0HmL74XN1lbUXUvVrdfI6iFv7IG99otxoLJhPPIfvibzZmLY6wLpRRm/GTtb2BYeQMmAiilcI5vNu7q9qdhh2Fp+e+s/XjXfRF+rSicXRPZBcS/vzpUTJpWJ4axcBzSUvfCgntfkhEn8TYaF4NC9CJHRGDTtr2DlsCtePeU4is2ppUppwP7jIiptZPPB9VJlqfZBgm5xgXQiMVw3N+j2y8K0UPOw+aEHrtXbiAQ/Dzurvz8/NAFdG1tLZWWMTAsOEU94IM1/wivvON1vFXG9YFPW6hLcWC320MtVweLyJapri/WdrJmhIi/V39ZuPeDOecAMm/rw0EQkga23sXBKG6CFwcDU3IiaddEJ4woq4WUi08n/80HSP+/b2FK7l6RyYyMDObNC7fCM5vNLFq0qJMt4p99Rjg13L0u9uCFr6VWiMWBJSU4d3XLc0YaaHft/TDUCxplhpw5MY9DxLd0TyV2r9vIvDiIpo1EZl64vlgbLl7nsJF9z02YEp0DNbQ2bJPHoBzGnE3fvvLw33Y7mj/8KlRDyDF3Cua0dptQ9a7UsVgyErFle1AKLAE/toAPpcCa4cU6ZizYul/FvFeYrVjHjg4teld/ZDzQftjzQXi9UceHHtY9+WrovbPPmdztz5/WLGOGhwrCBrx2vBXBIPrut3u0PyE6Yp8bvova3eBFVNbF/GnR08py5sCS/0HBn+CkR+CM5+Gb78HFK+HKHfCdXXDJKjjvfTj9OSnSKXqNJS8L63ijVoL2eHF/FVsZP7PZzNix4Wme27Ztg7kR2RcbnzKmPrlr0Xs/wldtMaYVYqYhyUFOTk7c3LDorqjgxfJ1aL+/642cWUb9OsBfFzA+E+l55gUA9RFFsQe4WOfBSIIX/Sz5myeReOqR+JMTSDrneEa8cT8ZN1+BOTMt5n0dc8wxOBxGhsaCBQtISRnYOVcH6kAzL0KFTs12zGnBYjXNldF3HTvjbYRlN4WXx58B1qGffnWwGdZQTADTQVnzoj0ZP7sq5rm2fU1ZLdhnTAotu9d0PHUkskWq8+gFfTquEGUypo6MDU4dIYBJBaeM9GeL1FasM8JTZrxbjPomSU3bjBNYgIQcyDKyJPx1DdT/53+h9VMuPqPH31cpFc6+sBh1LwCjg0OMVfSF6ExkxxHr7lK0u+upSVH1Lha2U0g3awZMOR/GngLDD4PMqUYtDEtsrViFiFVU15FPVsW8feupI4w8BjKDBat9zbDuUdj1Nv56TcBrIqDMeCwWXA7LoJoy0sI6Lj88xby+Ec/mXV1vpFQoE9LfYA5NZzT3oOZFSENE5sUAF+s8GEnwop8pq4Xsu35I2R+vI+uO60JV9XsiMzOT6667jksvvZTTTz+9F0c5MOyRwYtNO7vVIjGSL6L9o3lM+MKn21NHvrwrHE21p8Lht8f0/cXgkFdbEkoTPphqXpiSEzGlRwc4k844hqSzjutgi4FlnxMxdWTNlnbX0W5P1FzhhIJ+Cl5A1NQRm0VhNRkX8UbwYk7/jSOCde4xoce+4lpo2Ed6fcQJ8chjQh0S6p9+LdTv3jp+JAnHHXpA39ve0uHFZKNhXTr+ZpNRCLGim6m9QnSDOT0F62hjCpzyB3Bv6Lw7mda6/XoXQsQB5+FzQo8PtO7F9u3bCWgNc68Pr/D1I7DlOSPrAvBjoT7ZAUoNqjapLZRSPZs6MtL4bPQ1WMBvTM+xyLSRQUuCF4NcZmYmU6ZMCfV7HszMmWnhFoluTyitvbsiW8xaJkdMoSl63ziJ7kzZV7Du4fDy4XdAQs8DSyJ+5dbtQ5lMmBKcqAFsCToQIrMvrONHknHr1XGbNhp5h7Wjop2u5evQzS4ALKOGYRk7ol/GBhjBi3wXyqoxKyPzQlk1jnwX5AzMBZJl4iRjjj7grbKid75Jev3K8AqjjEBVoKGJuidfCz2deuUS1AF+hjiPmAfBDlGeSiel/8rDV2eWqSOi10VOHWl67/NOWyZ6txXhr6wFwJSahG3ymL4enhDdZj9kOspmTLPzbt8TdROuO3JyckhONqZKulwuiouLYdxpkBKcQuiugeKP8VaH613UJxsZRYMx8wJatUz9sptFO0cdi9atMi96bdqIZF70t8F/xSuGFNv0iLoX6zu/o9Ja5Lx489iJMPxwY0EHYPOzHW/o98KyH4XTm/OPhknnxvS9xeCRF+w0Ys7NjNsL976SdIZx98GcmWrUueiiMPBAiiza6dmwvd308MgpIwkFC/r395kzF2UGxygXBLwo7cc5uhlls0Dm9P4bRwRzdjqmJKPWRsBjIrD8XyQ2txTktED+UQDUP/sWgTqjzaRlZB6JpxxxwN/bOmoYGT+50kjRNTvwVlopeXoYni//1/XGQsTAPjdctLPusZcp+/ateLbsanfdyI4EjoUzDzhIJ0RvMjnt2OdNCy03f7Y6pu2VUm2njpgsMPt7Uev5qi1gsuAL6MEfvIjIvHB/tRHt7UaWduo4ArbRaJ8CNCYbmHp680rrVtNGJPOiv8lRXMSVqKkjMRbtjMq8yMmEKReEX9z0n47nXq/6K1QFOxpYE+Cou+Ki7ZHofSYCZDZVHHT1LloknXcSI964nxGv3YdtfDf6ow8gc3oK1jFGJoX2+tqkh2utaS7s5xapkRKyIHkkSdMaQk8lTmuE9MkDNldeKYVlXLiAm3d7xHuWtxDsKQRcbuqeeDn0dOoV56AsFnpDytJTyL77hyi7cVLorzdT+vdG3J8s65X9CwGQcOyhUVP+XCvWs+/cG6n89YP4a+uj1u2y3oUQA8wZ0TLV9cnqmLdvPXUEMLroRGQPe2usaJMdDdQnO3A6nSQl9XNR6V5iyc/FMjwHgEBTM54upo4BoBT+pHBGtjkptmnpUdy14Al+7lucoWKgov9I8ELEFVtECzP3uq0xbRuVeZGXaaTO2YJz/Ot2QcnnbTeq2gwr/xpeXvgTSJEUsKEqM1COCgSMTiN5B1/wQimFddSwHneV6G9RdS9WRU8d8W7eFUqxNSUn4oi4e9VvcuaSMKWJnHPKyTizhITJTQNWrLOFdfw4MAXTkKsiWmcHW6Q2vPAu/v01AJhzM0PZOL0l8eQjyLnv5yinEcAJuEyUfu93NH0UbkHtr2voaHMhumROT2H4i3+h4YT5KEuwzWkgQP2/36D4tGuof/ZNtN+P9vlwrQh3cHBKvQsRh6KKdn62unsdNCKMHx/OWN61axcejwcsdpj5ndDzvioLAWV8HtSlOMjNzR20madG3YtwW+/mz7tX98JvDwcvzfbang+gddbFIH0fBzMJXoi4EjltxLt1N9rTvTanWuvozIvcLOPu58Szwyu1LtwZ8MOyH0Ig+D1yD4Hpl/V06GIQcPobw51GDqJinYNVZ3Uvmgq/DD12HjE3uv1hf8mZi1KQMKEZx7hG4xxmgNsrW8cMB7MdaB28OA7t9VH36Iuhp1K/fXZovnVvch4+h7zfnonJaXRg0U1NVFz/GxpeMzIwmt5rJ5AsRAxMyYnUffNYhj3/56ginIGaeirveICSpTdR/8xbBBqaADBnZ2AZM3yghitEh6wTR4c7aNQ24IlxynRqairZ2UaWhd/vZ/fu3cYL0y4BZxZag7c+Cb82LrIbkuyDdspIi6iind2se+EPjACM98Bsq4W6op59c6l3MeAkeCHiijklCUuwqKD2+vBs2d2t7QK1DaE58aZEZ3guW+TUkR2vgbsuvLzuUSgLFrMzWeHoP4LJfMA/g4hjARUKXlgOwmkjg01U8GLNpqjCfM2FK0KPE45Z2K/jCsmd1/a5gQ5ejB3RNniRNALSJ9HwamEoW8WckUrSkhP6bBz24y5g2LdKsKT4IOBB+3zsv+VP1D35Co2vf9Rn31ccXGzjR5L70O1k//kWLCNyQs97Nu6g6rcPhZadi2YN2jvNYmhTSvVq15Ft24JTru0pcOZL+Kf/HK1S8QcCeK1m3PbB2SY1UlTdi9WboBt1L/yV9aGC1uYkv1HMvyek08iAk+CFiDv2yKKd3Zw64i+LaJMaeVGaNdPo2Q7gc8H24FzvuiL48nfh9eZ9HzIi2quKIcnnN6OCASrJvIh/1nH5oSku/spafHvLAPCVV4WPDWYzjiPaCSL0h6yZoba7xlhsRs2LAWQZM8Io2KbMofZ4jDoO7fdT+/DzofVSLj0Tk9PedwNJzMU6ZQZ5F5VizfKG2tNV/f7RqDoEQhwopRSJxy9i+Mv3knbtUpTd1mYdqXch4pkjcurIp6s6WbN97QYvANLG4XMeCcpEwO8PtUkd7MELS15WqHuadnuw7djX5Ta+8qpQ8MKS5IM9PQ1eSObFQJPghYg7tsiineu7V7TTVxo5ZSQieKEUTLkwvLzp30bhzmU3ga/ZeC5jSnRfbDEoKKUmKqVcSqmnuruN328JtRWWzIv4p0ymqK4jLVNHmiPqJzjmTcWcMkCFxyyOcHAUIGsGmHt/GkYsQu1wLQ58NRa0H5hwJo1vfYqvqAQwUu6Tzz+57wcz5iQsSX7yLizFPrp7pxtKqeuUUiuUUm6l1GPdWP8HSqlSpVStUupRpVQfRmREPDM57KR9bykjXv0bCSccFnpeWS04Iu5sCxFvnItmhR6712xBNbtj2n7s2LGhzKJ9+/bR2NgYes0bPO4HAgHqk43D42APXgA4It4z+6aup4D4K6pCWYnmJD8Ufwy+2N5nIDrzQjqNDAgJXoi4Y+9B8KLDzAuAieeECthRvho+uwOKg2nLymRMFxngCw7RI38Hlne5VgRTQIeCF5J5MThEFe1sCV58EFHvomBBv48pSk5E1scAF+sEY9qcOScDrEloSypbUq5D5x1K7UP/Da2TcvHpPW8TF4vRJwFgdgTIPXsbzqO6lSGzD/gV8GhXKyqlTgJuAY4DxgDjgF/2cLRiiLAMzyHnTzeT+/AdJC05gay7fijBahHXzJlp2KaOMxb8/m5djEdyOp3k54cvpLdHdJry7dpHIBAIdRpJSkoiMXFwFO3uTGQ2lW1z11PM/RXVRqakshjBC58LSj6L/RvX7Qo/luDFgJDghYg7tqnjQtV7Pdv3EuhGBDq600iri1JHOow9Jby89h/hxzO/A7lzEYOLUmopUAO8F9N2GkwmhXI6Bk3HjYOdfU44s8G9ehN4vDRHTDtIGOjgxZSlYLKgMRvt6eJAS4tZLE4aG/Jp/mA53m3GybApwUnyt07rn4FkTIYUoyWvSTeQc9Niks7tvM6G1voFrfVLQGWnKxouBR7RWq/XWlcDdwKXHdCYxZDhXDSLrF9eS2JEFoYYvLrKylJKHaeU2qSUalJKfaCUGj0Aw+yxyLoX9g07O1xPa41r1UYq73iA6j8+TqDRyCKeODHcrS9y6oi3qIRAwCieXJ/sGBJZFwCOBeGOI7YdJQSaXJ2u7y+vMh6YbUbwAqAoplNI2L8eqoLFw5UZ0iZ0vr7oEwNQnl2IzpmSErCOHYF3x17w+/Fs7vgg3iK600g7d1imXADbX4l+LmUULLjpQIcr+plSKgW4A+Nu6xXdWP8q4CqAadYk/P4AjQ4Ly5Yt69uBdlNDQwOFhYUDPYw24mVcqtlNnteL0tqoc/H5OtzBVpu+3Aw+2bkFdm4Z0DFaxt1LY2Mj9vVVQOGAjgUg1eQn0WMUMPYXlbDj1U+wBZcbjpnDjlVfdbZ5rxrDZIZ5jBPp0k8fZWfBdzDPzIdzX+6N3U8HIne0BshVSmVqrdsEPyKPBdnZ2XHx/ztSvPzNtSbjio2Mq8+0ZGWdBDgjX1BKZQEvAFcCr2IEMp8BFvXzGHvMuXgutY+8AIB9/a42rwea3TS+8SH1/3odz+bw667l68i571YmTJjA++8bdRwiMy+8RSX4I4IXk4dI8MKcmYZ14mi8W3ejAgHcqzZGtZ2NpAMB/Purgxvaw8GL3e/B4ju7/02/fjj8eNxpYE/t4ejFgZDghYhL9ukTjOAF4Fm3DfI7n9MeWfOizbQRgPwjjYr7DcXh5476A1j7IXVa9LY7Me627ulO9Xit9YPAgwDTbSnabrORMGkc0woK+naU3VRYWEhBnIwlUjyNa9/D/wudrOW88xU2m1F0K+us4+X32I66PXVUfb4BgIwvNpFQ0wg2G8puY9xt38eSnd5/gym2wavvADA6sInRRx8dyqzrBUlAbcRyy+Nk2snciDwWTJ48WcfL76tFPP0fiiTjio2Mq29orV8AUErNB1rn658DrNdaPxdc53Zgv1JqitZ6E4OAfe5UlNOBbnZh2V+Dt6gE66hheItKqH/2TRqef5dAfWOb7dzrtlJ68U8Yfv/PsVqteL1eqqqqqKysJCM9Hd+eEgJ+42J9KGVeADgXzsS71Zgy0vDiezgWzGi3/Xegph4d7EhiSk/H5HQYde/qdkHtTkgd2/U3a9oPW18IL8/6Tm/8CKIHJHgh4pJtxkR4tRAI1r3In9Pp+lGZF+3VMlAmmPotWH6XsTxlKeQf0TuDFb1GKVUIHN3By58A1wHHAz2b66Mw2qRKvYtBxT5nSih4YSmrgmDwIuHoAZ4yEqcso4eHH5dXh96vpHOO79/ABcCwhcbdKXctBXeuY9klodmqhyildMSan2itYz0oNwApEcstj+t7OFohxOA0HSPzCgCtdaNSanvw+TbBi3jNwsoYnY1j7XYCWrPu9r9grmnAvm4HrcO92mrBPW0M9jXbUIBn6y7qlvwfuQWT2B7s7PTaa68xNiWDvLoGfD4fbquJevzs3buXpqamHo0v3rJ37AmQ6fEQ0JrqV96nfPkaai49Be+44VHrWfaUkRPMPvTaUii1TCS9yWi3vvOd+yjN6noqZX7Zc4x0GcGjBucEvt5QBxsLO90m3t6vFvE6ru6S4IWIS/YZ4Xlk7nXb4KQ57a6ntab2H8/h3Rmu/ttu5gXAnGvB12R0Gznkxt4cruglWuuCzl5XSt2AUZivKJh1kQSYlVLTtNZdVgNsydQw50nxtsHEPmcK9c+8GfWcKSUpqpinCAvVvIigrBZSLz+7/wdjssCo42Hr8xTemGkcexf8CKXUV1rr+Qe49/XAbODZ4PJsoKy9KSNCiCEtCaho9VwtRhZWG/GahVVX3EjVpofweDykfxmMudjCrX8tI/NIXnoKSWcfhzklica3P2X/zfcYWQXNXo57ZwPuQ4ZTkZOC1WplwfDRlNlsuN1uGlKc2O12TjnlFJxOZwcj6Fy8Ze/oo46ifHMJte9+hs1mw1ZZT+KfniPl4tNJu/5boXbgTR+uoDz4PqZOHEvuwhPgw7UATHEWM6Wrn8nvhadvCP0u7AU3UzDxmC7HF2/vV4t4HVd3ScFOEZesk8aA2QyAd1dxu22jtM9H1R33U/O3f4Wecx49H3Nqu59VRkeRQ38Ki34G1p4duMWAexAYD8wJfj0AvI4xB7bbpPL84GKfM6XNc84jD0FZJP7eHsvwbJQ1+r1JPL0Ay7DsgRnQmIg/z11vdrweoJSyKKUcgBkjMOlQSnX0i34CuEIpNU0plQ7cCjzWG0MWQvQfpVShUkp38PVxN3bROguL4PKgysLqqGaD88h55Nx3KyNev4/US88MtQdPPPFwcv/xi1D3KJvHz7HvbyZ/TzXbt2/Huzu600hKSkqPAxfxSJlM5PztZ9QuPQ7ldBhPak3dE6+w75zv0/yFEaDwV1SHtjHnZMLIY8M72fcpeJs7/0Y7XoWmcuNxQi6M+0Zv/hgiRhK8EHHJ5LRjmzDSWNAaa1FZ1OuBJhfl3/899c+9HXrOcegssn/3g/4cpuhnWusmrXVpyxfGCYtLa936jkunzLkybWQwseTnYs5Ki3ou4RiZMtIRZbFgGZkXfsJkIvXKJQM3oJEF4XbVlRugbk9na98KNGO0QL0o+PhWAKXUKKVUg1JqFIDW+k3gLuADYHfw6xd98jMIIfqM1rpAa606+OrOdLKWLCwAlFKJGDc61vfVmPuCZfSwUBcNU3IiKZeeyYg37if3/ttIOGo+ytT2ss2xcCZ5j/0ac1Y6JpMJs4YjP9rKsLW7qF6/NVSssyHJPqTqXbRQJhONxx7CiJf+gvOwcLty355Syq64jcpf3heqoQdgzk6H5BFGNywAvwf2fdLxN9Aa1j4UXp5+qXEzVAwYCV6IuGWbHp46Yt1VGnrsr6ql7Iqf07xseei5xNOOJveB26T95UFGa3271vqiWLezDJPgxWCilMI+O5x9oSzmDu9QCUPk1JHEk4/AOmrYwA3GlgQjIq4/dr/T4arBv+nWFy+3B18r0lonaa2LIta/R2udq7VO0Vp/W2vddW9tIcSg00VW1ovADKXUkuA6twFrB0uxzhZKKXIfvJ2Kn1xM/nuPkHHTt7t17LZNGUvek7/FMmoYlmDW8sIvd9H8SmGoWGddioO8vLzOdjOoWUbkkvPg7WTdeX3UtUD9c29T93i4KZU5J8N4MOq48MZF73e847KvoCJYTsVsg2kX9+awRQ9I8ELELXtE8MK22wheeItKKLnoFtxfbw29lnrFOWT99vtt0qSF6EiHdVFE3Iqsb2E/ZLoEKruQeHoBmEwEEhykXbt0oIcT09QRIYRoR4dZWcHsyyXAr4Fq4FAgDg58sVNWC96xwzAlOGLazjoyj2FP/hY1cVTouUBtPYGINqk5OTm9OtZ4o5Qi6ezjGP7yvSQce2i765izg8GLyKkjRe8ZGRbtiWyPOvEccMr540CT4IWIW7aIop3W3aW4v95K6UW34CsqMZ5Uioyffof0H1zSbiqdEO1RDhumlM5b74r4k/iNAsxZaWiTaWAKTw4yiSccRv7bD1L2m6uwjh7e9QZ9bcyJ4cclnw/cOIQQg1JnWVnB19/VWk/RWjuD01B2DdxoB4Y5M43cR+6gLNco/+H3+/EP0TapnbHkZJD9l1vI/uNNmDNTo19ruXmVt8DICgSo3wM129ruqGEf7Hg9vDxT2qPGA7niE3HLNnF0KJvCUlFD6eW34q+qBUDZbWT/6WZSLuy6vZEQkSw5maGuI2LwsGSnk//2Q5Tec51MGekmS14WOsa7d30mMQ+yg/ORA76BHYsQQgxR6SOGsXbJYRSNykADAa1pdlrx2ixDPvMiklKKxJMWM/zlv5F0egGYzdjnTQ3fGDVbYcRR4Q3amzqy/jHQRvCH4YdD5tS+HrbohrgJXiilrlNKrVBKuZVSj7V6bUyw4nBDxNfPB2ioop8om9XoOhKkgx1HTKlJ5D5yB4nHLxqgkYnBzDxQHRfEAVM2a/xcjIvYjYmpKZAQQogeGD95Ep8sHs/aWflUZiayfMEY0tPTsdvtAz20fmdOSybrtzcw6rOnyXv8N9GZ2lF1L96L3tDbDBueCi/PvLJvByq6LW6CF8A+4FfAo52skxYs1pWktb6zn8YlBpA9YuoIgGVEDsOe/B2OdlonCtEd0iZViAEiwQshhOhzEyZMAKVYP2M4b580neL89INmykhHTAmOtlm3oyLqXpR8AZ6G8PLW58FdYzxOGQWjT+jzMYruiZvghdb6Ba31S0DlQI9FxA/n4eH0cNvUceQ99Xus4/IHcERisJNinUIMkIwpkDxyoEchhBBD2vjx49s8d7AHL9qVmAuZ043HAS8Uf2w81hrWPRJeb8blYDL3//hEuwZbe4bdSikNvAPcpLXe395KSqmrgKsAsrOzKSws7L8RdlNDQ4OMqztMmoTzCvDW1FFywqFsWb9moEcUJe7er6B4HVc8sORJm1QhBoRSMO8G+PDHAz0SIYQYspxOJ/n5+ezduzf0nAQvOjDqWKhcbzwueg/GnmwEMao2G89ZE2HyoGxcM2QNluDFfmABsBrIBP4OPA20m4OqtX4QeBBg8uTJuqCgoF8GGYvCwkJkXN10zDHxOS7i9P0ifscVDyTzQogBNPUCGHcafDe163WFEEL0yPjx4yV40R2jjoNV9xqPi943si4i26NOPg/sKQMzNtGufpk2opQqDBbcbO/r466211o3aK1XaK19Wusy4DrgRKWU/G8SQsREMi+EGGByIiiEEH1qwoRwzTilFNnZUqy8XbnzwBb8TGosgZ3/g6J3w6/PuGJgxiU61C/Bi2C/5da9mVu+jujJLoP/Sr9DIURMzBK8EEIIIcQQNnr0aFJTjQy3cePGYbVaB3hEccpkgZEF4eVlPzKyLwBGHw9p4wZkWKJjcTNtRCllwRiPGTArpRyAT2vtU0odCtQAW4F04K9Aoda6dqDGK4QYhCwWTKlJAz0KIYQQQog+Y7Vaueqqq9ixYwfTpk0b6OHEt1HHwfZXjMctHUZA2qPGqbjpNgLcCjQDtwAXBR/fGnxtHPAmUA+sA9zABQMwRiHEIObLSWvbKksIIYQQYojJyMhg/vz5JCQkDPRQ4ltk5kWL9Ekw4sh+H4roWtxkXmitbwdu7+C1fwP/7s/xCCGGHm2Nm0OeEEIIIYQYaAnZkD0bKiI6Gs68wuiQJeJOPGVeCCGEEEIIIYQQ/WfUceHH9lSYeO7AjUV0SoIXQgghhBBCCCEOThPPBlOwqOns74HVObDjER2SHGohhBBCCCGEEAentPHwzfegcR+M6EkjTNFfJHghhBBCCCGEEOLglT7B+BJxTaaNCCGEEEIIIYQQIq5J8EIIIYQQQgghhBBxTYIXQgghhBBCCCGEiGsSvBBCCCGEEEIIIURck+CFEEIIIYQQQggh4poEL4QQg45SaqlSaqNSqlEptV0pdeRAj0kIIYQQQgjRd6RVqhBiUFFKnQD8Hjgf+BIYNrAjEkIIIYQQQvQ1CV4IIQabXwJ3aK0/Dy4XD+RghBBCCCGEEH1Ppo0IIQYNpZQZmA9kK6W2KaX2KqX+ppRyDvTYhBBCCCGEEH1Haa0Hegx9SilVD2we6HG0IwvYP9CDaIeMKzYyrthM1lon93RjpdRwjEyLr4DTAS/wMlCotf5ZB9tcBVwVXJwBrOvp9+8j8fq7knHFRsYVmwM6FhyoOD03iNfflYwrNjKu2MixoK14/V3JuGIj44pNt44FB8O0kc1a6/kDPYjWlFIrZFzdJ+OKTTyPq4vXC4GjO3j5E4yABcC9WuuS4Db3ALcC7QYvtNYPAg+2fP94e1/icUwg44qVjCs2XR0L+kHcnRvE8+9KxtV9Mq7YyLGgrXj+Xcm4uk/GFZvuHgsOhuCFEGKQ0FoXdLWOUmovMLRTxoQQQgghhBBRpOaFEGKw+SdwvVIqRymVDtwAvDawQxJCCCGEEEL0pYMh8+LBgR5AB2RcsZFxxWYoj+tOjPl6WwAX8Czw6378/r0tHscEMq5YybhiM9DjGujv3554HBPIuGIl44rNQI9roL9/e+JxTCDjipWMKzbdGteQL9gphBBCCCGEEEKIwU2mjQghhBBCCCGEECKuSfBCCCGEEEIIIYQQcU2CF0IIIYQQQgghhIhrErwQQgghhBBCCCFEXJPghRBCCCGEEEIIIeKaBC+EEEIIIYQQQggR1yR4IYQQQgghhBBCiLgmwQshhBBCCCGEEELENQleCCGEEEIIIYQQIq5J8EIIIYQQQgghhBBxTYIXQgghhBBCCCGEiGsSvBBCCCGEEEIIIURck+CFEEIIIYQQQggh4poEL4QQQgghhBBCCBHXJHghhBBCCCGEEEKIuCbBCyGEEEIIIYQQQsQ1CV4IIYQQQgghhBAirknwQgghhBBCCCGEEHFNghdCCCGEEEIIIYSIaxK8EAdMKbVLKXWbUqoh+OVSSvkjlndGPG5WSgUilhsi9vOtbq73mFLKp5Qa3moctyulvEqp+uDXFqXU35RSw4KvXxAcq2q1nUUpVa6U+kZfv1dCHCx68bgwIvj3Pr6d7/GiUuoPwcdaKVWmlLJEvN7yt62Dy+sjvoc/OKaW5Z/2x/sixMGit44BwX0VtHp9r1LqWaXUglbraaXUhFbPXRZ8/rwu9lmslPpl370jQohIvXmMEAcPCV6I3vKp1jpJa50EfBf4rGVZaz024rVTgH0RryW17EBr/XRX6ymlEoElQC3wrXbG8YzWOhnIAM4G8oCvggGMF4E04OhW25wMaODNXns3hBDQO8eFYuA94OLIHSulMoBTgccjnq4J7qvFqUB1xL6mR+z/I+C6iO/5m179yYUQ0AvHgAj7gs8nA4uATcBHSqnjuhjDpUBV8N929xnc7xHAFUqps3r2owoheqA3jxEhkTcyxNAiwQsx2CzBuEC5g/ZPRADQWnu11uuB84EK4IdaaxfwLHBJq9UvAZ7WWvv6ZMRCiAP1OK2CF8BSYL3W+uuI554k+u/7EuCJPh6bEKIfacNerfVtwMPA7ztaVyk1GuOGxVXASUqp3E72uxP4FJjWy0MWQvSxYCbVXqXUzUqpUuCfSimTUuoWpdR2pVRlMFsrI7i+Qyn1VPD5GqXU8s6ODyJ+SPBCDLjgQeOIbq5+KfBv4D/AFKXUvM5W1lr7gZeBI4NPPQ6cq5RyBr93KnA6coEjRFxpdVx4EchqdZy4mLZ/ty8BRyml0pRSaRh/9y/39ViFEL2vm+cGLwDzglmZ7bkEWKG1fh7YSPsZmy3fbyKwGPi8J+MVQvSvdo4ReRiZ16MxApb/B5yFEcAcjpGJ+ffgupcCqcBIIBMj66O5XwYuDogEL8SA01qnaa0/7mo9pdQo4BjgX1rrMoxU8g6zLyLswziYobX+BCjDmFICcB6wRWu9ugdDF0L0kcjjgta6GXiOYFZF8CLjEOBfrTZzAa9iZFwtBV4JPieEGGS6eW6wD1AYU0Lbcwnh48S/aHvOMDx4AVQHbAG+ALo8HxFCDLx2jhEB4Bdaa3fwvOFq4GfBTC03cDvGDUwL4MUIWkzQWvu11l9prev6+2cQsZPghRhMLgY2RgQangYuVEpZu9huBMZ81xZPEE4tv5joOfNCiPj0OHCeUsqB8Xf7pta6vJ31Wv6+ZcqIEEPfCIyaVTWtX1BKLQbGYmRqghG8mKmUmhOx2r7gBVAKRgCkGTknEGKwqghOEW8xGngxGKCswci+8gO5GNNM3wL+o5Tap5S6qxvXEyIOSPBCDCaXAOOUUqXB+Wz3AFlEF+iLopQyYUwL+Sji6SeA45RSh2EU/Wp991YIEWe01h8BlcCZwEV0HJj4CBiGcXIid1CFGNrOBlZqrRvbee1SjKyM1cFzhi+Cz7euewWA1roW43zg9L4YqBCiz+lWy3uAU4IBypYvh9a6OFgb75da62nA4cA36ODYIOKLBC/EoBAMNIwHFgJzgl8zaD8NFKWUVSk1FaM+Rh5GoAMArfVujIuafwPvaK1L+3j4Qoje8QRGcb40jOkhbWitNcbFxxnBx0KIIUQZRiilfgFcCbRpcxzM0DoPY977nIiv64FvtdeJQCmVRLAQcF+NXQjRrx4Afh0s3ItSKlspdWbw8TFKqZlKKTNQhzGNxD9wQxXdJcELMeCC/ZqP7GK1S4GXtdZfa61LW76AvwDfaKkeDJwf7P1cgzHfvRI4RGu9r9X+HsdIJ5O0ciHiUAfHhSeAURgtkd0dbau1Xh/sNiSEGKTaOQYMD36+NwDLgZlAgdb67XY2PwtjCsgTrc4ZHgHMGC3SQ/sM7nc3Rn2sDot6CiHiRzeuH/6CcS3wtlKqHqMY76HB1/KA/2IELjYCy4Cn+nC4opcouTElhBBCCCGEEEKIeCaZF0IIIYQQQgghhIhrErwQQgghhBBCCCFEXJPghRBCCCGEEEIIIeKaBC+EEEIIIYQQQggR19q0ihpq0tLS9IQJEwZ6GG00NjaSmJg40MNoQ8YVGxlXbL766qv9Wuvsgfr+8Xg8iNfflYwrNjKu2MixoK14/V3JuGIj44qNHAvaitfflYwrNjKu2HT7WKC1HtJfkyZN0vHogw8+GOghtEvGFRsZV2yAFVqOB1Hi9Xcl44qNjCs2cixoK15/VzKu2Mi4YiPHgrbi9Xcl44qNjCs23T0WyLQRIYQQQgghhBBCxDUJXgghhBBCCCGEECKuSfBCCCGEEEIIIYQQcU2CF0IIIYQQQgghhIhrErwQQgghhBBCCCFEXJPghRBCCCGEEEIIIeJa3AUvlFLXKaVWKKXcSqnHWr12nFJqk1KqSSn1gVJq9AANUwghhBBCCCGEEP0k7oIXwD7gV8CjkU8qpbKAF4CfAxnACuCZfh+dEEIIIfqN3NQQQgghBMRh8EJr/YLW+iWgstVL5wDrtdbPaa1dwO3AbKXUlH4eohBCCCH6j9zUEEIIIUT8BS86MR1Y07KgtW4EtgefF0IIIcQQJDc1hBBCCAFgGegBxCAJqGj1XC2Q3HpFpdRVwFUA2dnZFBYW9vngYtXQ0CDjioGMKzbxOq5YKaWWAr8ARgGlwGVa64+UUscBfw8+/0Xw+d0DN1IhxABoc1NDKdVyU2NT65Xj/dwgXo/bMq7YyLiEEKLvDKbgRQOQ0uq5FKC+9Ypa6weBBwEmT56sCwoK+nxwsSosLETG1X0yrtjE67hioZQ6Afg9cD7wJTAs+HxLqviVwKvAnRip4osGZqRCiAHS7ZsaEP/nBvF63JZxxUbGJYQQfWcwTRtZD8xuWVBKJQLjg88LIYaeXwJ3aK0/11oHtNbFWutiJFVcCGHo9k0NIYQQQgx+cZd5oZSyYIzLDJiVUg7AB7wI3K2UWgK8DtwGrNVat0kNFUIMbkopMzAfeEUptQ1wAC8BNyGp4v1CxhUbGdeAWA9c2rIgNzWEEB1NNx3YUQkhekvcBS+AWzEOOi0uAn6ptb49GLj4G/AUxjz3pQMwPiFE38sFrMC5wJGAF3gZ4/ggqeL9QMYVGxlX35GbGkKI7uhouqkQYuiIu2kjWuvbtdaq1dftwdfe1VpP0Vo7tdYFWutdAztaIUQfaQ7+e6/WukRrvR+4BzgVSRUX4mBzK8Yx4RaMGxrNwK1a6wpgCfBroBo4FLmpIcTBrKPppkKIISIeMy+EEAc5rXW1UmovoNt5WVLFhTiIBG9g3N7Ba+8CUu9GiINcZ9NNtdbNrdaV6aQ9IOOKjYyrb0jwQggRr/4JXK+UehNj2sgNwGtIqrgQQgghonU23fRnkSvKdNKekXHFRsbVN+Ju2ogQQgTdCSwHtgAbgVXAryVVXAghhBCtdDbdVAgxREjmhRAiLmmtvcA1wa/Wr0mquBBCCCGALqebCiGGCMm8EEIIIYQQQgx2LdNNc5RS6YSnmwohhgjJvBBCCCGEEEIMdncCWRjTTV3AsxhTTIUQQ4QEL4QQQgghhBCDWmfTTYUQQ4NMGxFCCCGEEEIIIURck+CFEEIIIYQQQggh4poEL4QQQgghhBBCCBHXJHghhBBCCCGEEEKIuCbBCyGEEEIIIYQQQsQ1CV4IIYQQQgghhBAirknwQgghhBBCCCGEEHFNghdCCCGEEEIIIYSIaxK8EEIIIYQQQgghRFyT4IUQQgghhBBCCCHimgQvhBBCCCGEEEIIEdckeCGEEEIIIYQQQoi4NuiCF0qpDKXUi0qpRqXUbqXUhQM9JiGEEEIIIYQQQvQdy0APoAf+DniAXGAO8LpSao3Wev2AjkoIIYQQQgghhBB9YlBlXiilEoElwM+11g1a64+BV4CLO9pmz549PPbYYwB4vV4KCgp46qmnAGhqaqKgoIBnnnkGgNraWgoKCnjhhRcA2L9/PwUFBbz66qsAlJaWUlBQwJtvvhnad0FBAe+++y4AO3bsoKCggGXLlgGwefNmCgoK+PTTTwFYt24dBQUFLF++HIDVq1dTUFDA6tWrAVi+fDkFBQWsW7cOgE8//ZSCggI2b94MwLJlyygoKGDHjh0AvPvuuxQUFLBnzx4A3nzzTQoKCigtLQXg1VdfpaCggP379wPwwgsvUFBQQG1tLQDPPPMMBQUFNDU1AfDUU09xww034PV6AXjssccoKCgIvZcPPfQQxx9/fGj5vvvu45RTTgkt/+Uvf+GMM84ILf/hD39gyZIloeXf/e53LF26NLR85513ctFFF4WWb7vtNr797W+Hln/yk59w1VVXhZZ/9KMfce2114aWb7jhBm644YbQ8rXXXsuPfvSj0PJVV13FT37yk9Dyt7/9bW677bbQ8kUXXcSdd94ZWl66dCm/+93vQstLlizhD3/4Q2j5jDPO4C9/+Uto+ZRTTuGll14KLR9//PE89NBDoeWCgoIB+79XVFQUl//3hBCitymlCpVSLqVUQ/Br80CPSQghhBC9b7BlXkwC/FrrLRHPrQGOjlxJKXUVcBWA1Wpl06ZNFBYW4vP5qKmpYePGjRQWFuJyuaipqWH9+vUUFhbS0NBATU0N69atIyMjg9raWmpqavj6669JTk6mqqqKmpoa1q5di8PhoLy8nJqaGtasWYPFYmHfvn3U1NSwatUqtNYUFRVRU1PDypUr8Xg87Ny5k5qaGr766ivy8/PZtm0bNTU1rFixgpqaGjZt2kRNTQ3Lly9n//79rFu3jpqaGr744gtKSkpYvXo1NTU1fP755xQVFbFmzRpqamr47LPP2L59O2vXrqWmpoZPP/2UjIwMvv76a2pqavjkk09ITU0N7e+jjz4iKSmJ9evXU1NTw4cffojD4WDjxo34/X6WLVuGxWIJjaewsBAwgjHV1dWh5S1btlBVVRVa3rp1K5WVlaHl7du3U1FREVresWMH5eXloeWdO3dSVlYWWt61a1fU+kVFRdTW1oZ+N3v27MHtdode37t3L0Boubi4GLvdHlret28fjY2NoeXS0lL8fn9ouaysDJvNFlouLy9nx44doeWKigq2b98eWq6srGTr1q2h5aqqqqjxVFdXs3nz5tByy+90IP7vNTU1dfh/r7GxccD+7wkhRB+5Tmv98EAPQgghhBB9SGs9aL6AI4HSVs99ByjsaJtJkybpePTBBx8M9BDaJeOKjYwrNsAK3f2/90LABTQEvzZHvHYcsAloAj4ARndnn/F4PIjX35WMKzYyrtjEcizo6it4rLgylm3kWNB9Mq7YyLhi05vHgp58ybGg+2RcsZFxxaa7x4LBlnnRAKS0ei4FqB+AsQgh+l6bu6lKqSzgBeBK4FXgTuAZYFH/D0/EG601eLwou22ghyL612+VUr8DNgM/01oXtl4hMiszOzs7lCUXLxoaGuJuTCDjipWMSwgh+s5gC15sASxKqYla663B52YDUqxTiIPHOcB6rfVzAEqp24H9SqkpWutNAzoy0ae034+5ogbXV+vxl1fhK6vEX14V8dhY1v4AyUuOJ/MX1wz0kEX/uBnYgFHMeynwqlJqjtZ6e+RKWusHgQcBJk+erOOtDk9hYWFc1gaSccVGxiWEEH1nUAUvtNaNSqkXgDuUUldidBs5Ezh8QAcmhOgr7d1NnY5R6wYIHRe2B59vE7yQu609E2/jUg3NZP/uKbLLqihSqsv1K59+jfWzRhJIT+6H0cXf+9UiXsfVm7TWX0QsPq6UugA4Fbh3gIYkhBBCiD4wqIIXQdcAjwLlQCXwPS1tUoUYitq9mwokARWt1q0F2r1KlbutPRNv46p74hWqahrxKIXN1r0pIQtHjcNxyPQ+Hpkh3t6vFvE6rj6mgU4jXPXNFgIBjcnUdSBMCCGEEPFh0AUvtNZVwFndXb+izsZDL9UwZ5KdGePsOB2DqjusEAetTu6mSu2bg5BrRThGbR2bj3V8PuacTCy5mZhzMjDnZGDJzaL6T0/Q9N7nAPj2lkM/BS/EwFBKpQGHAssAH3A+cBRwQ2fbNblNPP9BPd88rvWhRAghhBDxatAFL2IVCMDbXzTy9heNmM0wZbSN2RMdzJlkZ8wwK6ob6cdCiLjQcjd1PXBpy5NKqURgPFL7ZsjSgQCulRtCy9l/vhnb+JHtrmsdPTz02LevrM/HJgacFfgVMAXwY0wdO0trvbmzjRR+nn2nljHDrCyY5uyHYQohhBDxr/mTVTR/9BVJ5xyPbdKYgR5OG0M+eBHJ74f1Ozys3+HhX29BapKJORPtzJ7kYMZ4O+nJ5oEeohCCLu+mVgF3K6WWAK8DtwFrpVjn0OXdvodAjZFYE0hyYh2X3+G6lhE5oce+4vI+H5sYWFrrCmBB7BuCdtdx77NmfnuNhRE51t4fnBBCCDFIBFxuqu/+J/XPvAlA84dfMfz1++LuRv+QD15kJHk586gkVm9xsbvUF/VabUOAZauaWbaqGYD0ZBPjRtgYN8LK2OFWxo2wkZFiirtfmhAHgU7vpgYDF38DngK+wKiJIYaoyCkj7okjOz0mW/JzQ48leCE6YlFe8DXT3Ojk909W8dtrskl0yrRSIYQYLLTfT8UP7ybnyzW4/pKFY8GMgR7SoOXZXsT+m/6IZ8vu0HPeohJ8e0qxjho2gCNra8gHL1I8Ozg/6zEuOuG7VDVZWLvVxeotbtZsc9PQFIhat7o+wFebXHy1yRXePtFkBDKCwYwZ4+0kJcgJjhB9qau7qVrrdzECG+Ig4P4qPGXEM6njrAsAywgJXoiu5ViKsSo3XnctJRVW/vpMFTdfkikFPIUQYpBwrVhP07ufY/F4qLzjAYa/cq/ccI6R1pqG59+h6ncPo12eNq+7V26U4EV/U9qPq/BWmr78O84jfk7BvG9RcEgi/oBmR7GX1VtcrN3qZkexB4+v7fZ1jQHWbHWzZqsbAJOCKWNszJ/qYP5UJ8OyhvxbKIQQA0ZrjSsyeDGx/VoXLSzDskKPfaX70V4fyirHaRHNorxcnvF7Hqi8Ddx1rNxs4tl361l6ohTwFGKwU0pNBL4G/qu1vmigxyP6hm9f+AaFd+deXF98jXPRrAEc0eASqG+k8vb7aHzrk9Bzym7DPnMSrhXrAHCt3EDSWccO1BDbdVCc0WkNqrEE79vXUP/x3diO/hVpM85g4kgbE0fa+OZx4Pdr9u33saPYy859HnYUe9lV4qXZraP2FdCwYaeHDTs9PPFGHcOzLUYgY4qDSaNsmM0S8RNCiN7i21OKv6IKAFNSAt4R2Z2ur+w2zNkZxjaBAL6ySqwRU0mEAKjTKRya8AG7PZN4s34p+Bw8/wGMGWZl0Uwp4CnEIPd3YPlAD0L0LX/p/qjl+mf+J8GLbnKv2UzFj/8YlaFqHT+S7D/8iEBtA6WX/cxYb+XGgRpih4Z88KJeJ9OkbSSoZtDgaNwJb3yLnYXTsR11ByNmnQiA2awYmWtlZK6Vo+clABAIaMqq/OwIBjM27HCzba83av/7Kny8UtHAKx82kJRgYt5kOwumOpkz2Y7DJtNLhBDiQLi+Cte7sM+bCuauj6uWETmhgIdvb5kEL0QbJkcaX3vSWZL6EHu8E1jvXogy2/jbf6sZnm1hVJ4U8BRiMFJKLQVqgE+BCQM7GtGX/OVVUctN73+Jr3Q/lrysDrYQOhAg6X+fU/LmcqOTRVDyeSeRftPlmJx2tNuDslrQXh/eXcX4q2oxZ6QO4KijDfnghTkpl6qTnmTHst8y2V2IFWNuSGbTevSbS1j7wXwcR97GhDlHYzJFnxSbTIphWRaGZVlYHAzkVdf7WbnJxYqNLtZudUVNNWloCvDhqmY+XNWMzQJzpzhYNN3JvCkOEhwSyOip1VtcbN6XwNFay1w2IQ4y7hXhKSOOQ6Z3axvLiFzcq43mM74SqXsh2rJYLFROuYGm7T/i6ow7uLP8ASrcNtwqjbuerOR31+ZIfSshBhmlVApwB3AccEUn610FXAWQnZ1NYWFhv4yvuxoaGuJuTBB/48pYuwGHx0NAazweo17DmrseoP6MIwZ4ZIZ4e79Us5uMB14iacMuPMHrqYDTTs0lJ7PrkMnwxWehdbNy07Dt2AfA8sefxTV34oCMuT1DPngBMG3OQvTsFyjatJz6D37ByIZPUGgUMMa9Av+7Z/HFBwtJmXcZU448H7Ol47clPdnMcQsSOW5BIh6v5uvtbr7a2MyKjS6q68MFQD0++GKdiy/WuTCbYc5EB4tmOJg/zUmSVDTvto9XN/GXZ6pxu7NIy67n/BNkPrIQB5PIzAvH/OlQXdLlNlHtUveW9cm4xOB3wmlLeP7PhZxhfobrM2/l1xX34fE5KKty8qf/VPHTyzIxSwFPIQaTO4FHtNZ7OrvZpbV+EHgQYPLkybqgoKB/RtdNhYWFxNuYIP7Gte9vL+Ox2fB4PNhsNgByVm5n3u9viYtaV/H2ftU+8gLV20vwKIXNZsM+ezLZd90YVei8RfVXu6n954sATPJbyIijn2PIX0WbGow2qEopRk9dyIxr/of37DepSjkEgsc1MwGm+z9n5PLvUv7nMex95nJ8ez6BgL+TPYPNqjhkioOrzk7nHz/J43fXZrPk2GRG5kT/wfj98NUmF3//bw1X/qqEXz26n693G8EP0TG3J8AT/6sNLb+4rJ695d5OthBCDCW+0v2h4INy2LBNG9+t7aLape6VzAvRjoDG6XQy94wfsMo9nXzbTq5I/w3aXQfaz9qtbv71Vt1Aj1II0U1KqTnA8cCfBngoop9EThsxJRq1ivz7q2l67/OBGlJc827fE3qcdM7x5D3263YDFwD2Q6aFHkd2fIsHQz54Ya6speLH9+DfXx16Lmvi4Yz5biGmM1/AlTqFyOBsYqCWlN3P0fzMKTQ8MBnfBz+CvR9BoJ1WJBGUUozPt7H0hBTu+UEuf/5BDktPSGbMsOh5s/4ArNnq5p01mdzyt3KK5WK8Q6993EB1XTibxe+HB1+sQWsJ+ghxMIjsMmKfPaXbd1IswyMyL/ZJ8EK0ZSmtJOByM336dErHfIeaQArzEz7i9JTHwV0HaF75sIFlK5v6fCxaa6rq/FTVW/AH5PNNiB4qAMYARUqpUuBHwBKl1MqBHJToG9rjxV9l3ODUSpF80TdCr9X/582BGlZc8xWHM1ETTz6i03Mq+9wpoceejTsINLn6dGyxGPLBC4DGNz6k+PTrqPv3G+iI4iRJk04g56ovsZ31LLV5J+JRjtBrOqAJNJTRvOIfuJ8/i8BjM6HwRqje1q3vOSLHypJjU7j7/3K490e5XHRyChPyowMZe8p93PL3Cj5Z0/cnR4NNdb2fl5Y1tHl+4y5Pv5xMCiEGnjtyykjEXYCuyLQR0RXl9VH32EsAnHLmN3nHewoAZyb/kzn2ZeAzsjbvf6Gar7f13klbY3OAzbvdvP1FI4+8XMMvHqzg8l+VcvVvS3nsg+E88EJNr30vIeJdZWVlb+7uQWA8MCf49QDwOnBSb34TER9ainIDBFISSD7/FDCbAXCtWIdnW9FADS1uRXYWsXRRyNycmox1wigAtM+P++stfTq2WBwUwQswetlW/fpBSi68Gfe6iACEUtgnnsLIS54n5bpd7JrxG9bruTRqI/1Ia3C7PTRU7sW15nECzx0P6/5pvNBNeZkWzjw6md9em8N9N+dywYkpmE3G9i6P5s//qeaRl2vw+uSOS4tn36nD5THej/wcC/PG1Ydee+KNOuqbAh1tKoQYIlwrIjqNxBK8yMuCYAFmf0UV2iMZbqKt2oefx1e6n5SUFGadfDXL3bMxKc0V6XeSr9ZDwI/fD394uoqi0p79H/J4NS8vq+e3j+3ne78r5bI7Srj1gf089FINb37eyIadHhoiPs8Kv2qSjMwu+AOax1+v5aUvsvlqk0uyMbvg8/lYtmwZu3btIhCIj3Mnv9/Piy++yB/+8Ide26fWuklrXdryBTQALq11Ra99ExE3fBFTRvxpyVhyMkg47tDQc/X/+d9ADCtuaa8PX5kRLNTQrY4sjnlTQ4/dq+KnZeqQD174c9KxjBoWWvas30bJBTdR+esHCdQ3Rq1rcyYy69TrWfDD99lT8DKvqktZ4Z5FvU4EDR63h8baSjzv30TgjYuhKfbjYXaahXOOSeaCI0vJzTCHnn/z80Z+/o8Kyqs6n55yMCgq8/LeinB2xcWnprJ4Sg1Zqcb7Vd8U4KmIWhhCiKHHX1mDd8deAJTVgn3W5G5vq6wWLLmZoWXfPjl3FW1pl4fqe54AYP78+ezOvZDKQBoJqpEbMn9EOnsBTZNL85vHKqmq67wOVmu1DX5uf6iCp96sY+VmN/tru7f9m583dr3SQezDlU289nEDO8qc/O7xSm5/aD9bijwDPay49eKLL/Lmm2+ydu3auOh84PF4ePLJJ/niiy9p9PddS0ut9e1a64v67BuIAeUvC2ftBNKSAEg+/+TQc42vFBJokEztFr6SitCN90BaMsrWdTtw+9yI4MVKCV70m4DTzogX/0LaNUvDvyitqf/3GxSffi0Nry1rE7W3WCwsPPQwlt74F9K/8Teetd7Ek/XnUO7PRGtwudw0bXoV99NHwK53ejSunFQvv78uh0Onh6eqbN/r5cf3lrNiY3OPf96h4Kk3akOJLbMm2Jk7yY7Vorn8jHCP4fdXNLFpl3uARiiE6GuuiA9K2/QJmJz2mLaPLEIVOc9TiEiNb3yIa/UmlFKccc55vNF8IhpFuirjR1k34MAIJFTW+vntY5U0u7p357q43MtP76tg657oLAqzGUblWThitpMLTkzh5ksy+PtNudx6eTjYtmxlE83u+LhDHm+01rz6cfSU0g07Pfzs/gr+8HQlxRWStRJp48aNrFwZLvnw/vvvs2/fvgEbT319PQ8++CCbN2+m3DOdzY2nDthYxOAWWazTn54MgGPhTKzj8gEINDXT8NqyARlbPIqcMuLL6l7nxsjpuu7Vm9G++LjBPuSDFwDKbiPtmqUMf+mvOBfPDT3v31/D/lv+RNkVt4Xu8EUym83MnTuX79/wA44+/yZesVzNl645AAT8AdzV+2h68Txcb38fvLFH9xKdJn74rQwuPS0Vc/A30ejS/P6JKp76Xy1+/8GXCrlmq4tVW8JBiUtOTaWl3dWCaU7mTw0Hex58qQbfQfgeCXEw6Gm9ixZRdS8keCFa0Qnhz5Kq3z6MDgTIyspi+jEX87nLOE/IYyPfz7+blm6pu0q8/PFfVV1+7qzb7uan91dQXm1kWigFF5yYwh9vyOGpXw7nj9/P5ftLMzjnmGTmT3WSk2Fh1gQ76UnGhXezW/PRKrlj2J6129zsKfMRCARQ+FtmhwFGe/ob/1TOgy9Wx5wlMxQ1Nzfz4osvRj3n9/t59tln8Q3ARcj+/ft54IEHKC4uRmtFuWdaqL2lELHylYczL/zBzAulFMlLTwk9X/+f/8m0sqDI4uX+rLRubWMelo05mMUaaGrGs2V3XwwtZgdF8KKFddQwch64jew/3oQ5OyP0vOvLr9m35Aaq/vDPNlNJAEwmEzNmzOD/fnATlqPu5DnXucZUEsDn9eFZ8yg1jxyKd9+KmMeklOIbRyRxx9XZZKSEfx0vf9jALx/ef1B9APsDmifeCE8HOeaQBEa36tZy+Rmp2G3GmeSeMh+vf9y2qKcQYvCL6jQyf3rM20cX7Wyn44jfC774qZ4t+pc/PRllNy6cPOu30fjyBwAceeSR7Ew9DQ9W0DDN8zxXHRW+U71mq5uHXuq461XhV4386p/7aXIZr9usih9fbAQqRuVasZhVu9sppZgzJvx59ubnjXLS3Y7XPm7A7/fT2NhAgnc1UxNeZFx2bei9Cmh458smrr+7lH+9VUtj88GbwfLqq69SX2/UC0tMTMQcLGZYVlbGO+/0LGu4p4qKirj//vupqjLultf7h2O2p+NwOLrYUoj2RU4baQleACSdXoByGv+vvNuK4q7N50CJLF7uz0ztZM0wpVR03YseTB3RWrd7bX0gDqrgBRi/iMSTFjPi1b+RcskZocq02uuj7rGXKT7tGuqfeyuqK0kLi8VCQUEB537/z3yW/ys2eccbL2gw1e2i+V/HU/rGT9H+2CPak0bZuPv/cpg9MZwavXGXh5v+Ws4X6w+OaSTLVjZRVGq8dzarYumJbdOastMsnHdccmj52XfrpE6IEENMoL4Rz6adxoLJhGPOlM43aEen7VJrd8GTc+Gx6bD6PggcPEFiYdAWMymXnRlarv7LkwQamjCbzZx69lLWuI1sH5/Xx2H1v2bJseHPnfdXNPH8B/XR+9OaZ96p4+//raHl9CE92cSdV2cxf6qzW2OaNrIhKji/cZfUcYhUVOZl1WYXzc3NaK3JMK/H3VCMqeJJxlpeIDuxOlSQ0uODFwsbuO4PZby3/OCrIbJx40ZWrVoVWj777LOZNi2cwfbhhx+ya9eufhnLhg0beOihh2hqMrKJLBYL2eNOlqwLcUDamzYCYEpOJOn0gtCyFO40RE8b6V7wAlrVvYixaKf2+ym/6naKDvsW1X98vOMVa3fBa0u7vd+DLnjRwpSUQMaPL2f4s3+I+sX4q2qp/OX9lJz3Q1zL17W7bWpqKud+60qyL3iBj63nGHdoAAJ+EtbdS9HfF9JQtj3mMaUkmvnpZZmcf0IywZkS1DUG+MNTVfz1mSoahvAdhGZ3gP+8XRdaPvOoJDJSzO2ue+riJEblGb2JPT549NVauUMlxBDiWrUxVFjKNnkMpuTEmPcR2QaszbSRtQ+Cq8poh/n5r+DVc6FO2qodbFKvWII5x8jC9O+vofbB/wIwatQoakYuQRP8IN6zjPPn7uPoueEgxDPv1FMYbNvt9Wn++mw1/30/HNAYlWfhN9dkM25E9y/Q7FbNUXPC3+Otzw6+i+7OvP5xAx6Ph0AgQJplD3ZT+JzB4i8hpeFphvMKCeZwEKOhKcADL9Tw3Ht1He12yGk9XWTWrFlMnz6dMWPGMGHChNDzzz33HG5339YO++yzz3jqqadC01QSEhK45LLvsK00oU+/rxj6IruNBNKSo15LXhou3Nn07mdR6x6sIs+D/Jndq3kB0dN2XV9tiOl6q/mjlTR/tgaA2n++SOPbn7RdSWt4/3rY+2G39xs3wQul1HVKqRVKKbdS6rF2Xj9OKbVJKdWklPpAKTW6N76vbfJY8p74Ddl3/zCqbYxn8y5Kv30r5Tfe1eF86bHjxnHS/z3K7gUPU6KHh55Pd22l4Ykj2fPVyzGPx2RSnHtsCj+/PJP05PCv56PVzdz4pzJWbh6aac6vftRAdb1xspGebOKMo5I6XNdiVlx9dnpo+atNLpZvGJrvixAHI/eKcJqnY8GMHu0jKngRmXnh98K2l6JXLvkCnjsONv4rpjbYYnAzJThIv/HS0HLdk6/gLSoBYPHJF7DZOw4wWk3Wf/ZHvrsknRnjw9mRDzxfzadrm7jjkf18vDqcITl7op07r84mK80S85hOWhT+7Pt/9s47zqkqfePfk55Mpjfq0HsRpIPASFERQey9rl3Xddf223VdXd1d17LqqmtHsaCigAgqgghDZ+i9ztBmYPpMpqUn5/fHzdwk0xvWeT6f+UxOcstJcnPuOe/7vM+Tvs/xmyodrQ+lFT5WbS1XF9t9zeuY3Esyc8Z04uKUAJQQYNVk0947lwTfUoSvBF+ABvP5inI+XV72m0h0hJaLWK1WLr5YYRgJIbj88svVUo3i4mKWLj0zWWm/38/SpUtZvHix+pnHxcVxzz33kFuegMutPNchsem/kTa0QUpZZ9kIgKF3V4yBcgfp9VGx8Mctk/o5ItR1rbGaFwD6nilqAslXWII3K7fR+5Z/sTysXfTkG6pdq4qMLyFvW6OPCT+j4AVwGvgH8F71F4QQCcBC4HEgDtgKzGutEwshiJg2ng5L/kfMvVcjTMFMiX35Bk7NuI+S/36Mv7Jm+YZWq2XYuZfS+d4tnEi6XM3UWGQ51h9uZN+Cx5vlqz2op4kX/5jMhJBMT0m5n2fmFPHGghLsjVQ8/yWguMzHV2uCtb5XnxeFyVD/pdk7xcCUEcHI/ezFtjZ19p8xikp9fNRmb9uGRsIZJtbZdL0LAG1iLEKvTIx9RaX47YEAZ9YqcNmUxwYriADDy1MJqx+C724Gey0aGW34VSJi+gSMZyk2vNLjpeSFOQC0a9eO0pQr1e3EkS/RuYp46Lo4OicHris/vPRpCQdDyjumjLDwfzfFYzE1b3rVpb2evl0N6vF/iyUPtWHphnIqKh1o8NPDsJ+HE19liucjxhjSefDBB7nmmmvo1ElxGRAC4vTH6Kb5DI3rCHa7HSklC1eV89HSX3cAo3q5yKxZs7BYgnOl6OhoZs6cqbbT09M5dOhQq/bB7/czf/581qwJZlI7derE3XffTXx8fJgYbSjTqA1taCz8pRVItyJwrLGYkbW4kUVdE3SyKf982c/GKeOngN/pwlcQYJ9otfhi604QV4fQajEOCVrVN1b3wptbiGNteFDCX1ZB4WOvIKvWxZ5K2Ph0o/tShZ9N8EJKuVBKuQgoquXlS4F9UsovpJRO4EngLCFE0wuh64HGbCTm7qvp+PXrRFw4Idg3t4fSd+Zz6qJ7caTvrnVfizWKQTe/T9n4N3EJZTDW4qdz5svseWMm9vKmL9ysZg2/vzKOR26IIzoi+FWt3GrnwZfz2ZPx62AbfLa8DLdHmUyktNMx8ezG0QmvuyCaqMDnUlzm54sfatYg5xV7Sd/nYN73ZTz7YRH3PpfLE28XUG5vC3T8mHjtixIWr2kTV21Dw/A7XLj3ZahtY4hYVFMgtFq07RPVtsq+OLIguNGAm+GSryEmSKXmxPfw+blw9JtmnbcNvywIIYh79Hdq274yXaW5nj3tDk77FAaP9LooXPMfIswa/nJzODOyCtdfEMUdl8TUKcrZWFwwJlgm9X165W/eVcvtkXz1Qw56vwOLxsEl0R9gDgjysfttNF47gwcP5p577uG2226jTx9loq0RPnqYVxLBcZxOJyBZsraC9xaX4vf/Oj5Tv8OFa88RpNdbo1zkrLPOYsCAmsHfIUOGhD2/YMECVY+iNbBs2bKwAErfvn25/fbbsVqt2Mp97DoSLFU5Z0hb+Ugbmg5fiNNIVelfdVimjEEbEKb05RdjX7XlR+nbzxG+nEL1sa5dvKr32FgYh4aUjjRS96LiyxUQCFLoUtpTpYfg3LSL8rlfKxvteA3sgeoGS2Jth6kVvxS+1gBgV1VDSlkphMgMPH+w+sZCiDuAOwASExNJS0tr+hkvPBt9n2SiP/sBw4kAReZULifufIL8p2/HH1nXgNsB2ed5uh58ijiUL6RrZRrHXhvJsZ5/xprYFYCKioom9euyERp+2BPH4dPKeU/lw2Ov2zmraznj+9sw6FrnRtzUfrUUBaV6lm1srzK1B3fIYu2amj+Muvo1rEsE3+1QbHwW/uCiICeDMoeOglIDBWV6XJ6aE8ysXHjlg2zG9Ws5E6DBz0v6MLnzcBqCP9wfAz/291gf7C4N2w90amPjt6FRcO06hPQqVG99zxS0sY2vzawOXftEvIEyAO+pfAydY+D4suAGvS6HuN5w+XJI/yfsma087yyB5bdD78th3D/A2Pw+tOHMQwgRB8wGzgMKgT9LKT9p7P7Gwb2xXjyJiq9WAlD87Gw6zH+R+IQEDne6nA45/1POs/8D5OQnSIgx8ZdbEvjbWwU4XBK9Dn5/ZRxjBrVOFnnUADMxkaXYyv2UlPvZst/Zasf+xaE8mxWfLsBtH4dOQJw2n7Gxm9FqNHgB3OVwaB4M+h1CCHr06EGPHj3Iy8tj5cqV7N69m27mNI47/DhcPTEaTXy3qRK3V3LHJTFoNT/efbm1IT1ecm9+DPe+DAy9u5B+/uCwcpFQhkUohBDMmjWL48ePU1lZSXl5OV999RXXXHNNi/u0ZcuWMMbF8OHDmTVrlup0smG3g6q4Ud8uBpLjfinLkDbUB59fUmjzkVvopcDmo1sHPT06nTlB1tDSgyorz+oQeh3Wy86j9O0vAEW4M2LqmDPWp58zQuUPQsXMG4umOo5In4+KBSvUduz91+E+cJTS2QsBKHnpI0wDEjHseiO408i/AI0T7fyljBpWoKDac6VAZC3bIqV8G3gboE+fPjI1NbV5Z00Fecs1VC5Oo+TFD/AVl4JX0j89g4R/3F/vrr7zLuXUJ1cRU7gWgM7a08Qc/TN50c8wdOpNrF69mqb2a9r5sH63nXe/KqUiwBw4mGOkxJXMH6+Ja5WBIi0trcn9ai6klDw9uwiDQYnCD+1j5KYrujepXxOlJN9ZyL6jCm13U0a74IsaMNZkkgHg0XUiNXVoi/pfX78ApXb+q0sgdzP0vwEmPNvi87VKv35krNpaicFg+6m70YZfCFzbQ/QuQoSimgNdp2RIVx57T+XB0SPgC1D8EwYqgQsAnQnGPQ1dzodVf4BKJeDB4flwegNMfQuSh7WoL204o/gf4AaSgSHAN0KIXVLKffXuFYKYP1xP5fINSIcTT8ZJyr9YTtQ1F9Jv+oOUv/MBkaICvbecU6tfo9OUh+jaXs9zv09i4x4HI/qb6JSkb/gkjYROK5g8IoIFAQHQZZsqfnvBC3s+bH8F/76P+O7Qi+rT50V9ibnPdIjpBptfVp7c867CotIEs4nJyclcffXVGI1GtmzZQlfzGk44/TjcfTEYDKzcasfrk9xzWSzaFjJlQvFjlqSUfbREZanZ92fSae9Bjp/Tk/zkqBrlItVhtVq59NJL+eijjwDYvXs3AwYMYPDgwc3uT0ZGBosWLVLbffv25ZJLLkGjCdVvCzI8xg9tY138kiClpMKhZW+mi5xCL7lFXk4XepXHxV5CTRq1WnjmnkS6dTgzAYxQpxFdHcwLgMgrz6f03QXg9+NM343naDb67p3OSJ9+zgh1Ggm1kW8sjIN6IfQ6pMeL51g2vuJStHF1O5Y41u3Am6uwPTSxUVgmjcIyeTSODTtxHziKdHso/OOTtL/CjdABiWdBnytobPDiRykbEUKkCSFkHX/rGnGICqB66isKKK9l21aF0GiwzppE/D9+H+zMopU4t9fvG6w1RZJyyzdUDvqDmnGPFBV02/kH1s6+H4/H06z+jBts4cUHkhjeL+iNnVfs48l3CtmbeWZVo1sbOw672BPosxBw/bTGW/dUQQjB7bNi6mRARZgEA3sYuegcK7fODB4/M9uD70zTRm2ZSuAC4OBnwUXTbwxbDjhBStzu5r1/IUQvIYRTCPFxyHNnRMC3DT89nFtD9C6GN0/vogo17FKPzA++2Ouymjt0OgeuXKUwLqpQcRq+uwW8v6zx9bcCIUQEcBnwuJSyQkq5DlgM3FDffllZWcyZMwcAj8fDlCsvZdlg5Xpx+L2cf9ctfPr+HGLiEjkRM43pb9lZvNeL3P0W+Xl5pKamsmXDUi5JjUTnLyI1NZXvvvtOPXZqaiorViiZp6NHj5Kamsrq1asBOHToEKmpqWzYsAGAvXv3kpqaysGDCpF0586dvPb3GZTmK7+Ftes3M2bsRPbuVRzQNmzYQGpqqqpVUJUMOXr0KAArVqwgNTWVrKwsAL777jtSU1PJzVVYpEuWLCE1NZXCQmVyuXDhQlJTUyktVdiI8+bNIzU1VS0l+P7770lNTVXnLXPmzAkLjr/zzjtMmTJFbb/++utMmzZNbf/3v/8NYwG88MILXHZZ8Pf373//m6uvDkxaPQ6evnMq10/qAXvfY1txX75ft5StK/6OVngYdek1PLY6iTvePYpXq5TXPPT+Hu69aZZ6vAceeIAHHngAIQQXX3wx6enppK1aQVfTWiL8+9jy7cPsSXuGNTscvDKvhJtuvoW//e1v6v7XX389Tz8drMO++uqr+fe//622L7vsMl544QW1PXPmTP773/+SW+Tl3ufzuPrWJ7j+zhfILVJq7KdMmcI777yjbp+amhp27aWmpvLxx8rtzW63k5qayrx5iqxbaWkpqampLFyoZCwLCwtJTU1l0Ydzsb0xjwKPk6uPrWNFySmMLi/9l+/i248+JSdHCcDWd+3179+fxMRE5s6dS05ODosWLWLdunWkpqayc+dOQGFSpKamNnjtbd68mblz53L06FHmzp2LyWTi6quvZvny5eq1d7rQy5pV35I293K8rmJG94APrr2LNvy8UW73s2RtOQ+8lM/b33fk7+8W8vYiG4vXVrD1gJNTBeGBCwCfD77dcOb0ekLFOusqGwHQtUvAkjpCbZfP++6M9ennDG92CPOiGcELYTRgGBAsr3XtqFH0EIaKL4IMV+usSQiDHqHXkfDvPyKMBvC5cWeVUbImYL5wzj9AND4k8aMwL6SUqS08xD5AlQQPTFZ6BJ7/UWCZMBzL5NHYf9gEQNHTb9Hh8/+ognC1QgjaT/sHZSkj8C27E623Ei1+hhTPYVveLvIG9ie5fccm9yU2UssjN8SxeoeD95fYsDslTrfkn+8X8qdr4xjR/+efoSmt8PHuVza1PWWEhZTk5mWuOibq+f2VsXy7vpJoq4ZuHfR0ba+nawc9CdFaRCB4JKXky1XllJT7cbol2XleurRvvWxZDRSHUKv8HijaD0lDztz5foawOzxs3ltKpd3TLOHaAP4HqMWKIQK+twFLgKdRBHxHt7C7bfiJIT1eXLuC4nHGs1uBeRGA99gxsG5UGkIDPWfVvpMxCia9Al3Ph7QHwV0GjkLIXg1dz2tRf9pwRtAb8EkpD4c8twuYWH3D0JJSvV7PwYMHSUtLw+v1YrPZOJFgwR5lxpNfjN/j5cTcxaR160pp3Ln45YdIJFHeHL6f9xw2m409e/YQGRlJcXExNpuN3bt3YzKZyM/Px2azsWvXLnQ6HadPn8Zms7Fjxw6klJw8eRKbzcb27dtxu90cO3YMm82G3W4nLS2NjIwMKipK6RZVRqnLhcft4XRBJVu2bKGwsJC9e/dis9lIT08nJyeHnTt3YrPZ2LRpEydPnmTXrl3YbDY2btxIZmYmu3fvxmazsWHDBuLi4tizZw82m43169cTHR2tHm/t2rVYrVb27duHzWZjzZo1mEwmnE4nNpuN1atXo9PpOHjwIDabTS1NPHToECUlJWr78OHDFBcXq+0jR45QVFSktjMzMykoKFDbR48eJT8/n7RVP9D/2D/wZqfj8/pwOl0sKZ6FX27Hh5bkeAdHbRpOnjxJaWkpWdaJdCv9Fp/Ph+PUNvV42dnZAGrbarXidDpxu50ksxKtrxCvNwqXy8WqrS4y99rw+3zq9nl5eRgMBrWdn5/P0aNH1XZBQQGZmZlqu6ioiCNHjvDs7ENk55rx+2F3hp07/3WSnu3s5OaXcujQIXV7m81W49o7cOAAaWlp6me9b98+0tLSqKiowGazsXfvXuLi4igtLcVms3Hy3c/pX+rB7fXgEeDUCZASISXG4jIyXpyNDsHp/Dz12uvZsyfp6elh157VakUIgdvtxmaz8cUXX2Cz2di6davaT5vNVu+1V1xczIcffojBYMDtdiOEoFu3bmzcuDHs2juY3w2Px4OUkuTIUo7f+SjlGzc34yffhjMNKSX7j7lZsbmSjXsdNYITtSHaqiEpVsuRLCXIuWGXnZunRxNhbv08uTe/4bKRKkRePQ37SoWCWfHVSmL+cD0ai6nefX5t8OYEixd0HZPr2bJumIb2w7VTCVo4d+zHMnlU7efKK8K+JijUGXlZcN5k6NGZ2AdvpPhvChO9bGsU5okjMTeR2Sp+LqrLQggdSjDlCaATcDvglVJ6hRCJQAZwK/AN8HdgopSywcVKnz59ZGspKXtzCjg18z6kQ8nAxT50M9E3z2rcvsUZ2D67BEPFcQAkkqPaIQz+QxpaXfNjSFl5Hp6eXajajGoE3H15LKmNFL2sjh+j3MDtkTz5ToE6wJmNglceTCYmsm4Bmdbq1/MfFbE5YKt65yUxTBkZ0cAe9aPefm15Hra9FGyf808YeEuLztcq/foR4HA4SE9P5+uVmewpGguAUVPGktdGb5NSDm/scYQQV6MI9u4Hekoprw8sQG6WUo4NbBOBUuc+VEpZbzi4NceD1sJP/V3VhZ+iX86dB8m9/v8AReCp07dv1NimKf1y7TpEznWPAmDopKfDrIDHeKeJcNGnDR8g/V+KoBQobIxJr9S5adv32DQIIZo0FtRznPHAF1LKdiHP3Q5cV1/ipK6xoPL7jRT8MVDip9XSYcFLGHqmcPTDa0nIXQJAtqYXff64Ra3jby1U/672Zrr4+7sKO8JkELz153bNdjFpLqTHy9qly5gwc/qZP9m2l5T7JiCBLWUD+fvJF/FKLVqthncf70qHxGAt6IbvFzL22APgD7gIXPYdJNZe9lBWVsbrr79OaWkpUkKBPAcbg9WShqG9jTx0fTwGffNKSA6fdPPYG8oCweVyYaxWs9qni4GZ460M62dqsc6GY+Mu8m5/AlBsfBeP60JlhJEJa47Q0SnRBeaUpuEDSXzpEVU3qK6xIDMzk3fffVdtT548mXPPPbdR17fX6+Xdd9/lxIkTgBIUvPPOO+nYMTwxJ6Xk9y/kkVesrILvPauYrv94HIBu+75qlbGgufglzgu8Xi9r167FYDAwduxYNUnXUpRV+li93c6KzXZOF9Z05/D7nPTpGkm7eB3tE3R0SNCpjy0mDVJKHnm1gOM5yvz+1hnRTBvbeGeLxiLvnqdxBBbIiS//H1t0zjo/L+n3c+qie1X9q+R3n8I8uvnlUU3Bz+X+m3P1w7j2HgGg3Qf/ZFN5QZP7ZU/bQv59/wQUnaj2nzxX63a2N+dhe02ZX5lGDKTd+/8Ie13ueZ/8B/6L45gZEGhTetLhq/+hjY5s9Lzg56R58VeUwEUVrkcJUjwppSwQQlwGvAZ8jFLF3LjCmFaErn0iMXdfTcmLHwBg+99nRFxwDrp2CQ3vG9eThNs2UrzgBnTZK0BCD98ujnz7LH1nPtbsPnVO1vOPuxJ5anYhecU+/BL+90UJlQ4/08e1/oDRUkgp+d/8EjVwAXD/VbH1Bi5aE71SDGrw4kiWu8XBi3pRVE3UJn8H8OMEL34qlJaWsn79ejZv3ozL5SLHGYzMxptymnQsIUQU8BQwGfhdyEs/voDvGcTPSVw1FD9Fv6xLNxEVKC+yJUWSUcv5m9Ivja2CdlXlSifzcQUeZ3j6UtCIY0TYkxkc2Me3fxFbmIHU1M7WavsefzK0almpZcpoTCMH4dy8B3w+St/6nMTnH6LD+X/D/eHXICWd/EfYt+5LBk+8vOEDtgADuhvolKQjO9+L0y1ZvcPOtDE/3n3dX15J7k1/od3eIxQfyCX2kVtbbZFUA6c3wtb/qM2s+Bm8fHA6XqnMDUYPtIQFLgDc+jjoMROOKCUV7H4bJr9W6+GjoqK4+eabefPNN3G5XCSyDqNeQ75nEEIIdhx28dG3pfzu4pgmd11KySfLggLgKQlO2rePYufhYKnZoRNunj9RTLt4LTP6nSBVvoVhwBX4ulxAaYUfW7mPknLlf3GZD1vgcbsEHdecF6U62EiPl+J/vg0olqSHO0ZRkKRc/nkPXk3/XTlUfqdUYzu37iXn6odIevUvGHp3rbP/PXr0YNy4caxfrwR3f/jhB3bs2MHUqVMZPHhwmGZF9fe9YMECNXABcNVVV9UIXAAcyfKogQuzEbrOfbfGNm1oPDZs2MDy5csBMBqNDB/estjPweMulm2qm2XRo5OeqSMj8JVu5bwpNUhtKoQQTB1p4Z2vlN/D8vRKLhgT0erjRmjZiC4pDopP190njQbTsP5UBIIXniPHf7Tgxc8FqtsaAebFweoykg3DODRo8Onen4nf7qzBYKku1Bl5RTW2qtOG2Po88dPKOf1+B/zeKHyFZRT9/Q0S//Nwo/vyswleSCmfRLFArev1FUCrWqM2B1E3zKDiq5V4MrOQDifFz71H0ouPNG5ng5W4qxeQPfcqIk8vBSDx0Is48i7HnNyngZ3rRlKcjqfvSuQf7xVyMleJlM75WhH1vHJK5JmbbDQDn68oZ8Nuh9q+aXo0w/v9eGUuvToHxYOOZJ1hDYriauvo/B21b/dzhpSNcknJy8tj7dq17Ny5E1/gzicllHo6I4TAYDBw31VjmPNCAwcKx9PAbCllVrVr+KcR8D1D+LlE5qvjp+hX3rw1OAzKb7TDxedjreX8TemXlJKTT3+IdNjBKdH7jWisJgZc9BDoGxG4lBPh03eg7CTgZWIPDXSp/dxt3+NPhsOATgjRS0p5JPDcWTSzrFQIQeyDN5Fz1UMAVC7bQMz9uZg696UkcRwR+crC0JH+Ct5xs9Qsd33w+/1IKZvM1BBCcN7oCN5brCwElm2s5ILRrb8QqAslr8zFfVhZmJZ9tASkJPbR37X++R1FsOIekAqD1J0wjDd3pVDs6QGA0WjgqvPrqNMefEcweJG5GEb/FSLa1bppu3btuP7665kzZw4+n48ozxrMkTpOlPdDCMF3mypJHWZpsvj5nkyXKhquETDlrGJmTe/PiRwPX6+vYO1Ou7ogzC308M5yPXM1N2NY5aXUkI1sQH4uyqLh4onK7a3soyV4jp/C7/dT6nGxdWAvACIjI7noskswX29G37srtlfngpR4T+WTc93/kfCvP0A9VbLnn38+x48f59SpUwAUFxczb9481qxZwwUXXECvXr1qfO8rV65UtTEApk2bVqs1K8DaHUGhzrO1uXBMua40ET//MuefI6r0cQC2bdvWouDFmh12Xv28pMbzZqPgnCEWpo60qMKbaWkNs/XPGWLhw6VluNyS7HwvB0+46de1DvX8ZsIbItipTY6vN3gBhAXv3IeOt2pffu7wVzoUwwkUBxZtYmwtab6GoY2ORN8zBU/GSaTXh2vPYcyjwoNAjg071RIVTUwklinV3F22Pg8uGzorJFymIX+hMg+zL99A5eK0Rvflx+Uf/gog9DriHw8KDNmXb8CxbnsTDqCh3WXvUioVkRK9dGNbeEOQ9thMxEZqeeqORHqnBG+681eW896Sn4+f+ZodduavDCbDzhsVwfRxZ5D5UAu6d9Sra/GsPC92Z7N1GOqHxw7lJ8Kfs2WCq+X2rD8aMhbDu91g0cXK+6kFPp+P+fPn8/LLL7Nt2zY1cAFgiu6B1hiH1WolLtpEp/mfNfrUQoghwBTgpVpe/skEfNtw5iB9vjALLmMLxTpBWfzp2ieCVwmYest00G1a4wIXQNnHS8h6OQ7b+oDY79GvW9ynNrQupJSVKBo4TwkhIoQQ44CLgY+ae0zjgJ6Yx5ylNPx+yuYsAiD+3D8jApT/3uxi27rl9R7HZrPx9ddf89RTT/Hss8+GLTgai4lDLZgMyjlPFXjVRfKZhmv3Yco/Wxr2XNnHX1Py4get66gh/YrDj10RlJOmOL4oTuV0ZQ8kGjQaDQN6WOnTpY7FT+JgaB9g+Pm9sPf9ek/Xs2dPLr30UkCJy+vLVxJvzkcpVIF3FtmaJOatsC7K1Pak4RZiIpT5XJf2eu69PJbXH2nHrIlWLCahjEVSYvdFYPNEIxshBLwm4NDhzS3E9sY8/H4/drudXQM74LAYMBqN3HDDDVgsFoQQxNxxOUmv/BmNRQkMSIeTgj8+S+SS9cg6xAuqyj2mTZuGyRTMpubk5PD+++/z7rvvqgKwoIjKVgnSAowYMYLx48fXemyvT7I+kLSSfj+D1ixQX4u+88oG338bwuHxeDh58qTaPn78ODabrdnHW78rfH7Xo5Oeuy6N4a0/t+OOWTFNdgyxmDSMPysYlPo+vXWFO6Xbg78k8JvTaNDGNyz2b+jTVX38WwtehOpdaNsnIlpQ7hhmmbqjpmVqxRfBe2KVUKeKogOw7wO1abnlb2HMjOJ/vd3ofrQFL5oB0/ABWGeeq7aL/vUOfmfjleh15mj2t78Xf+Djj6g4QPnqf7a4XxFmDY//Lp4hvYM3+e82VvLaFyV4fT9tAOPAMRevLwhGdgf3MnLrjOgfnRViNmronBzMlGVmn6GJYMlhhXpQHQW7aj73c4SjGNY8ojik5G5R3FJqQXp6Otu2bQt7rkuXLtx44430G34FBoMBIQSDIstwfL2qKT1IBboCJ4UQucBDwGVCiO0oGdWzqjb8KQR829D6cB86jr9SmeBqk+LCxDZbAl3HRPAppWLeUl3tLiO1wO90UfLSR/gqBLb1MXhKdHD8O/A1zymqDWcU9wBmIB/4FLi7KTaptSHqd8HrpGLRSnxFNgwp4/HGKJM3LX5KN75Wq4tSTk4O8+bN47nnnmPT+tV09e8n3rGfDz74gBUrVjRJvNhi0jAxRMPqu00VLXhXjYP0eil66g31HuY3BiegZe8vwvbK3NYLYOx6E06uRAJer49VzGL30RIK3ArR1mw2M2N8raS6IAbfEXy8/yPwOOreFjj77LNVdxQhIML+HV6PMofLPOVp0mJr834nmdnKmKDTwhWTq8fVIS5Ky3UXRPPmI4nc3GEOCfoghRuvk0iLhpR2Ogb3MjLxbAuzJlq5+aJoqvTgT+Z6yc73UPL8+/gq7djtdoqjTRzunYzBYODWW2+lc+fOYee0nDuSdp88i65zkIUSuWQ9Odc8gitgr1oder2eCRMm8MgjjzBx4sQwVtHRo0d5/fXXmTt3Ljt37mT+/KBzU48ePbj44ovrnM/tOuKi3K5c89FOG91ylEWPLqU9UddfVNdH24Y6kJWVFZYoAti1q3lzSyklGdnBe9rjv4vn3/cmMXlEBGZj85eIU0cFEwQb9zjU7781EMa6iI9BNIL9pg8JXijMgZYljH9JCHMa6VAHg62RMA4NCV5sDw9eePOLsa/eqrZDhTqREjY8obLr6HgOdL2A2IdvRZ/SHkCd/zUGbcGLZiL2wZvQRCo/Tu/JHMre+7JJ+xs7j+JAxIVKQ4LY8V9k7tb6d2oETAYNj94Yz9gQT/i1Ox288HExbs9PE8DILfLy3MfFKm2yc5KOP10T16re6k1B77DSkTO0EKleMlKFvCawdH5KbH9JcVmowt73goNOAA6Hgx9++EFt9+rVi7vuuou77rqLfv36sf1QVUBP0ntTk+2p3kYJSAwJ/L2JItZ7PvAlMFAIcZkQwgT8DdjdkFhnG37ecG0Lt0htrcCmLsqtXrteRyx0qj07WB3ufRlItwc0ehBaKnZZFebU6fWt0q82tB6klMVSyllSyggpZYqU8pOWHtM0ahCG/krZgnS5KZv7DQhB5LgHVfbFIM1WNq5bXdUHMjMzef/993nllVc4sCud0cat3BvzAZdal3JN5FcMM+7ihx9+4IMPPlBtSBuD80YHFwJb9jkpKm2E9H8LUDb3G9wHjwEgTAYK/noTlnNHqq+XvjOf0jfntfg8Mncr3o3/xOl0UVFRwcriPnx/yEexpzteacRgMJAcb2DUgAZKC7qcB1EBt2yXDQ5/0eC5J02axLBhisK9UVNOtH+zagX76fIybOUNf8Y+v+Sz5cH75LSxVuKi685qmvPSmG6Zw2s97+DlHnfzRq9b+LTvDN572MR//pDM47cmcN8VsVx3QTTTx1k5u0+QAbF6SSblS9dit9vxS8nW4V3Qm4zccsstpKSk1Ho+Q88U2n/6PKYQard7fyY51zxC8b/fxV8Rfg1WlhSxZ906DHmbuGBIAo/efjETzu6OSeNCgzKGZmzZzrZ/vEJSlqI5kJiYyHXXXVdvSdSaQMmI9PoYkrEeTYDlEvfQzeGZ2TY0CseOHavxXHODF4U2H2WVyndrMQkGdm+d8o7uHQ306Kh8t14fpG1rPfaFL8RpRNeA00gVtNGRqiuJ9HjxHK+/zOTXhDC9i04tC16EMS92HgoLAlV8+QNVCz3T8IHou4Vo3xz/Dk4pJZcILYx9CoRAYzGR8OyfoIlskCYFL4Roggnrrxza+BhiHwjayJe+uwDPicb/GIQQdJ31PFm+DgD4vR6c3/wO3C1nvuu0gvuvjmXqyGC2ZttBJ0/PLqTA9uNGGyscfv41p4iKqqh7hIY/3xx/RqyTGoteKT+C7kWoWGdU1+DjZupeSCkpfuF9Ts28D/uqM2wtVnosjNqlPHcUslaHPZWWlqZOwGNjY7nhhhvo0kWZQBaX+jh6SpkIajweeh7a1KQuSCntUsrcqj+UUhGnlLJASlkAXAb8EygBRvETCPi2oXXh3BISvBjW8pKRKug0wYmel36gaZzUk2tniPq81kj5nkikF8hsKx35LUAIQfTvLlXb5Z9+i7/Cjq73JWisyn07Qjgo2Pg2O3bs4PXXX+fdd9/l9JEdpJo3cG/0B6SaNxKld2O2mNHqtEy2rKedNo/Dhw/z2muvcfp04+YMKcl6BnRX7lt+Cd9vbl0adii8p/OxvRaM/cTcfTW+5DgS//Mw5onBunrb/z6j9N0F4KmE/R/D11fDusegMrfBc+Tn57Ny6ZfkfnwJ9vIy3G432Z4kVjtGIyXku/uj02kxGo1MH2dtONGh0cLAEE3nPe/UCLZXhxCCSy65hJ49ewKQbNiLdBfg9/mwOyUffttwiee6nQ6y85U5lckgmDXRis/nq5tZs/c9ALTCR0djNgn6QnTSBceW1rr52MGBoI2UrF1XSGUgcHG8azwlHeK46aab6Nq1a7191MZEkvzW34i5/3qkLrBA8Psp+/hrTl38e+w/pIPPzd6ln3Dv0/t56nMzj72Rh33B1Vi/ncm0oid4rMMnPOz6mHs2f8UNi9eTuvUAF6zezbhDJ7jpppswm+sOLtmdfrbsdwASf4WdYYE5kGnUYMwhAbE2NB5Hjx6t8VxOTg75+fm1bF0/QufA3Tsa0LTQCScUoeyLFZvtrcbW8oUyL5LiGr1faOmI5/DxVunLLwHeUyHBiw4tY7RqOySpQSC/3aFqIkm/n4oF36vbWUOFOr0u2Pj3YHvAjRAflLA0DupFzB1NE79u9ApSCKEFKoUQrau68guG9fKpGANiSdLtofhf7zTpx9m+YydO9nwIp1QmJT7bcfxr/9oqfdNqBLfPimHWxKAy+cETbh58OZ/V21tvEKkPXp/khY+LyAnYLel18MiN8STG/rQ6sT2riXaekc+iOCR40fea4OOCnTXKSbLyPPzl9XxemFtUZ3mPY+02yuZ8hedodpOvsyYj/V9BDRYREg3dO1t9WFJSoiqTgyL2pdcHMyhbDzrVx93tWZh9wXZzIKV8Ukp5fUh7hZSyr5TSLKVMlVIeb9EJ2vCTQvr9OLfvV9vG4f1b58AeOzrvbrXp9TT+xu0MpUTqTPgdGuxHLHB8aYs1itrwy4Blymh0VZTW8krKF3wPWj3mEfeok/whmi18/vk8Kk7v5QLLKu6J+YAxpu1EGPxERFiIsFjQ6/VYLBbMRh2XWJdhFC5KSkp44403apTd1YXzRwfv5Ss2V56RUlApJUX/fEe1g9f36oItdQj79+/n62XfsWFCbwo6xeFwOHDaK8j/53/JvXUolUvvpeLQUirSX6PsrYGkv3Ixc95+hdmzZzNnzhw+/PBD5s6dy2effcYrr7zCSy+9SNT2J4jw2wBwSgOLKs7HHBFF5z5T0Zo7YLFYsJg0TBreSNv3vleDIVBeYsuEkw2XKWq1Wq677joSEhLQCD+djBuxOxxIKVm708HezLrLgb0+yecrgqyLGeOt2IpO8fzzz7N8+XJ2794dvoMtE7IDCQAhYNBtwdcyFtV6jmF9TRgNAp/dQa6IIieiHV6dhj3Du3HTTTfRvXv3Bt8jgNDpiLnjcvKfvDWo5YLi2JB/399ZeM1fefrbnlR6lc8609GLf2f9DafdSNm2SPLmdMK2KAXf0WiEBA0SPT4G7jyG9tmHwVVW16nZvM+BxwvS5aG9LYsOjjzQaIh79Aw61/yK4fV6w/QuQsuFmsO+yAwpGenVqXVZMGMHmzEble/4dGHr6fV4Q5xGtI1kXkA10c6Dx5vfgdLjsO1lOPFD7eXhPzN4TwXLRvQtZF4IIcLZF4F5knPjLpXhoYm2EjFldHCn3W8FRM8BYwwMr+kqEnXzLLRxDWuXVKHRwQsppQ9F1bvxV8qvHEKrJe7xOyFgI+VYvwP78g1NOsb4adfwg2cqAH6fH8++uYpQYmv0TwiuuyCa66dFqSKVDpfktS9K+M/cYsoqzxz1VErJ21/awgar+66IDRMU/anQKVGnDqilFX4KbWfgcwgtG+k+PTipshdAxSn1JbdH8sLcYo5keUjf61TplaGQUmL7X1BzwptTgCfjZI3tWgW5W+DoN8p5fVCp+wPugsB3dnIl2JSI//Lly9Way06dOjF4cLji8LYDAXEun49+hzeemb624VcDz9Fs/DaFdaaJjULfvXMDezQSx79DZw1kqYUOb1HjysSklLh2hfyGNXoQGsp3RoKzBE43jUnUhl8mhFZL9C2z1HbZB18hPV40A25Eb1EmWknaIq6NXMRd0XMZatqHyaAlwhqBxWxGG98HUl+CK9MQBismo5H2Vg8XRa4GJF6vl/nz57No0SK8DdRgj+hvIjZSmWuUVvhJ39f4+uDGwr5iE47VW9S28cEbeHfO+2RkZLBhwwa27tzKgWGlaJKLMfor0Ek3jrVxVO6Mwe/z4/f5weuin3MlF5Y8RVz2F2Qc2seBAwfYu3cvu3btIicnh2HG3fTWB8pSBBzqcBeX3/wA//d//0e+Z1CgBEEweUQEFlMjp6kGK/S9Ntje3TjxN5PJxLXXXotOpyNKl0O09ihOpxJsf/crW51BohWbK8kvUe6BVouGUX0czJkzh9LSUtxuN59++ikbNoTMBwOsCwC6TIUh9wSdvE5vUOYG1WA0aBjY3h2oBZfsST6bvUNSuOLO36mMkabAlxRL0ttPkvDsn9DGWPC7SlncaRIfWa/FYzfg92hA6JAY2Gcbwj/W/YP8Vcl4igJzABEQQbb61dIp2/wD2O46V2Fr1hLUXbtTESj1V9gZVqgsriMvP69e69Y21I3s7Gx1rIiLiwsTSd21a1eTE1sZIbpvoYm91oDZqGHC0GDwsbUYY6HMC11TmBd9u6mP3UeON/3EUsLeOfDFZNjyHCy9ARZe+LMPYoQxLzq2XEssTPciINpZ/sUy9TnrxZMQxsC15KmEHa8Gdx7xCJhiahxTE2Em+rbG6ZFB0zUv5gJfCyFuEkJMFkJMqvpr4nF+NTAO6EnkVReo7eJ/z65RR1gfrFYrHSfcw163YpXqdrnwr34Iyk81sGfjcfGESJ66I4HkuGAWPX2fkz+9nM/WA60/AQL4ak0Fq7YFP4drzoti7OBGZlDOMDQaEWaFdri1S0fsheAoVB7rzBDdFRKD2Y7Q0pGFq8o5XRC84R8+WbMvjjXbcFcT2HKsDdfOcLvdZGVlkZ6ezjfffKPanTUJUsLGp9Rm8Y7RFLy0jpxPu+HOD0Tk971PdnZ2mD3ahRdeGJZBcbr97M5QMlbS4WJAibIINI8b2vQ+teE3AefWkJKRs/u3Xkbu8AJ00YHfl86ENzu/UZM77/HTwWBKhFmpx9SacGaZ8BTr2lxHfkOwzjwXbUIMoEyaK79eDaYYDAOvRxug4XfVn8Jo1GO1WjGbTGjbD4fz34Or0qDvVRDbCyYoPtF6nY6h0aeYmBgMQKenp/PWW2/hcNR9P9ZpBVNGBmnYK7c0fp7RGPgr7BQ/847ajrzyfA4JF16vl0hNBePN6dwb8wGzopfTbvohdO2DC5HytR3YuWMYub5E9TmTcDHZvJ67oj9moOEgIqCZ0E6bzxTLenR6HWaLGcuo3zP+hn/Sq1cv9h3zsv+Ycg/UauDCsU10Ixt4K1RVN59aG16+WQ/at2/PzJkzAehk3ILfa8fjcXOqwMuStTUFUl1uPwtWBUt8p43S8dknc2p8f0uWLGH58uVIVxkc+jykn79T7FzbBVxSpL/WMaWsrIy4pR+oC6NdHc5m5N8fpHfv3o16X7VBeB1YEzYQe9l2Php3A6s6K8KlUkL7kjzOPbkZXyX4PYJ9sYP5dOCd+C3JaBK6EHnTdXT48jU6fv0i5n7B+ZxttQHbM/9GfjEFsteozxeX+diT6cLvcIHPx9Ci3WgiI4i575oa/WpD4xBaMtKtWzf69u2L0agQ4ouKipo09/P5JZmnggH9nk20CG4MpoaMWen7HJRWtDxZ6AtlXiQ1Pp+u79VFfdxk5kVlLnxzLaz7i+peBigi/EtvgEUzICvtZxnECA1eaFso2AlgGhZkxjq3H8CbX4wjLRj0tl42Nbhx4V4lgAGKLlH/66kL1ivPb3Qfmhq8uBuIBZ4E3gVmB/7ebeJxflWIvf+64OSmoBjbG00Tsho3bhybjRdj80chJbjLC2HV/eBvPUZA365Gnr8/KUwHo7TCz7MfFvPGghIcrWQZ6vFK5nxtY+53QRph6jALl6Raa27s8yjZ/FoyDmcavToH6XFHagkYtAihrIu4PspkKuns4HOB4MWJHA+LVodrnIRS+CDAunj9sxrPFSxdzerVq/n000958cUXefLJJ3n99ddZtGgR69atY9u2bRw+fLjOLn61ppxn5hRyIifkfEe/hjyFwuz3GKjYVnU+MyVrFWtfeXAeK74NitP279+fbt2C0WyAPRkuvD5ASpJt2cS7FJeZyGun19mfNvy24QoNXrRWyYg9H7JXozH7EXqplH7YHfhLG3ZrcO4MtWwdiGXCMNAp4nnlOyPh2LetOj634ecLYTQQdf0MtV363pdIvx8x+HYslggirBFYrZGYjEY0KZNg5gKYtQS6XRBcSAP0nAn9bwRAq9FwvnU95/SNVV/Ozs5m9erVYZTw6jg3pIRid4aLgpLWK1+yvfqJmtHUJsQQ88AN7N+3j/Msq3kg8VPOjdpJgsWPyWzCEmUi6YoitN2s+I3RYE6g464ojJF/xznmPxgSeyllHxYzyVYfVyau58+907htUntu77aN6EgLFrMZfbuhaMc9CYDf72fu/Bz8ZRX4CksYU76XhJgmWvpFdYZuFwbbe96pe9tqGD58OEOGDEGvcdDeuBOn06lYgf9QRn5x+Oe8dGMltnJlzhRjFWTv+0y1qmxX4qCfzYPereyzatUqtn36f8iqCXxMT0VpH6DnxcGDZoYzbk+fPs3Cvz3D8F3rMXoVJkh5Qmf0MU1nXAAgJfG29fDZeAo3f8KTOf9kb9RZaM1+hFbDQNthfr//PS488g1TTgf1rXYkD+Xb6x6n4w+ziX/iPgxnDUPT9RySFnyLecwgtbTUtiEG2+J85JKrYelNYMtk/S47fp8faXfQo+w4se4you+6skn08DaEIzR40b17d/R6Pf37B++ZTSkdOVXgxeVWFtuxkZp6xWabiy7t9ep82+eDtG0tD7p685tXNqLv0l5lBPgKivGV1F3upEJKOLII5qUGy74AolJAG6KikLddCW4suhiy1/5sghj+8kr8ZcqcRxgN6lq1JdD3TFENK3wFxdhe+wTpDQh1DuuPoUcIc7YwxPSr3ch6Ncc0psarUjQpeCGl7FbHX+MK736l0ERGEPvQLWq77OOvcTdBDEar1XLe9MtYXDkVicDt8eDLXg+73mjVfpqNGu64JJY/3xRPTGTwq1+51c5Dr+Rz4Fjj7V5rw+lCL4+9UcA364MZmf7dDNx5SUzNTKrXCYsvgW+vV37s3pZpIjQVvcNEO1vZcSQseBEQpUkOYR3k78Dnk7yxoARftZhRVp4nzBXGsXqryrpw+rxUVFRQXlFB5Za9/LD4a3bv3k1BQUGt2eQ1a9bUeA4UdsfHS8vYfsjFMx8U4XT7lUBS+r/UbeyO6UhPoHNaA46jkThPGfE6bFhPK+JiQgguuOCCGsffsl/5Lv1OFwMKFR0DXUp7zOPPrrFtG9rgWL+DymVB/RRja4l1ZnwF0o8QoEuyqJPsUNuwuhBqAWYa2lfJCARKRyr2WpHlhZCT3jr9bMPPHpFXXaAwcADPsWwlyxTTHTHiYbTWdoheF8Pl38P0udBhTLAcoDrGPgnxCuVW+D1caFjMjAvOVe+Pbrebzz77rE52UGKMjrN6BSd4q1phIQDg2nOEsk++Udtxj/4Ol06DPWszw4x70AiJ0WjEoNdjiO6EfsyjGO/cTqfFX2EZOhitVotWo0G+uQDn/62h8sTv8Cb9CW1EMnqdDr1OR6Qrix6Z/8biyVfer8EKU9/C7/JTvuB7lt3wGkcyKvA73eh8HlLXfoxrZzMMpEJtUw8vaHRyRAjBrFmzSEhIIFF/EJMoweFw4PJI3v86KN5Z6fCzKE1JOkgpSdRtpyBfEV5tn1fG9NWZTFibwVVL9nLO2iN0zioiPnsJDodD8dgYeEvw+ug2PRjgykmHihxKS0v54vPP+fDpZ+n5w2500ke/gr0IowGd2cT63c1gyzqK4esr6X3yJY4URvLnYy9ywtkVNHpERByXXNyZP12gwRTI6UzPTePcyBy0sZFo46JYXZbMvPXhARxhMpL03muYJ08GvRUQlG6MxrY2Bnn8e/j8XNas2o0sL0f6/QzL34I+yUDUKJ8ienzsOzixooYQ+E8BTcWZYSC3Nnw+X1hws0rzZMiQIepzu3btarQVc2YI67jHGWBdVOG8EOHO7zdX4ve3bGHf3LIRodOhD1lYuw8dr38HZwmsuBt+uCfovicEnHU3XLkart2ksL00IVoheVvh66tg8aVwqmkyAmcCYU4jHZJahdUqtFqMQ/qo7YqFK9TH1svPC9+4aG/wcULrCbE32/JBCKEJ/Wu1Hv1CETF9AqaRg5SGz0fJC3OatH+/fv0wdTmHdc7hIMHpdCK3PAf5zbM/qg9n9zXx4gPJjAmxU80v8fG3twtZsz8GezNYGGnb7Tzyaj7HTgcDAcP6mnjkhnh01ZXCpYQ1jwZtQ8uOw/HlzXkrzUavkNq+o6fcrSt+FirWWRW8SBwSfK5gN9+sK1Ppejqt4sIC4PPD8QAbIpR14XA42NM5iqIY5TsTUpKcFx41TkhIYNCgQerglJmZSU5OTo3urd8VnPAWlfpYtLoC9s2BMkU1GGMMFQeqedXrLZSsjsHpdDHctBuBZNSoUSQmJoZt5vdLth9yAjKsZCTq6mkIzW9+mGhDNXiy8yh4+D9qlsI0chCGfq0UCz+yQH2o6xJkB3lPNyJ4EeI0YhzaF/PYIYo/utaE36mh8lAEHPumniO04dcETWQEkVcGA7WlsxcqAYZhD8CNO2HKG42bmOlMMPVt0CsMClF6lLHexdx+220q9bukpKRe6neogOWqrXZ8LVwISK+XoqfeUH+D5nFDsVxwDgcPHqSjVrl/aIQGTWwvOO8duG4zDH8QItqhiYwg6e0nwn6z/tIKyud/T+5TGzk1dwQlRy7CXRJV47zurn+m6LXlZE+6lYInXmexDH5+5+RuItpTjnvvkaa/oeRhkBRIFvg9sP/DRu9qNBq59tpr0eu1pJg34vf7cTqdbD3gDDhmwJK1FVQ6JUiJTtrwlQQ1naY6jOi0WoQQRBiMdM+tIHXtYcSH7bAtS6LwoAF7h2nBE1oSoMM4pARXgY6Df32Y9TNup+tfZ3Pht3uJKnMigGH2w2gjFfbqht2Opi3+pIS0P8Kp9Wwqn8ATx/+NzRcPxmi0EfHcfWUiN1wUS+wdl9Pxm9dJ/M/DdP5hNve9OJXxw6MAZT7x5eoKvqrGFBVGA0mvPoZ58gQwJ4DOTOkmJYBx0t6eY/lmJRjld3PW6fXEnr0NkXYffH8HLLsVlt4I3/z0JSTaolLch2raj/7ckJ2drdr5xsbGEhMTA0CPHj2IiFACBOXl5bVaqdaGjDCxTt0ZYxOOHWzBYlKuo7xiH3uPNj9RKqVsttsIVHMcqU/34sQP8Pm54YyoyM4wYwGMeRx0RohIhnP+oQQxBtwcHsTISYcll9P/6JNQ2fCco1Xg9yprRm/w8/Vmh+pdtLxkpArGoTUZspooK5apY8KfDGVexA9stfM31Sr1bCHERiFEJeAJ/HkD/3/TEEIQ9+fbguKdG3biWLe9gb3C958+fTobnSM55UvG5/XhdTvhh3tbxT61OiItGv54TSz3XxWrDioAWzOiuOOZXN5eZONkbsNfq8Pp55V5xfzvixKVfqbVwi0XRfPojXG1W6LumV3Th/3w5zW3O4OItmpJjA1kYn2El0+0FGHMi4CwTUQyBOz1cu0xzFteom5yxeQoBoVk0zIDAkqO1Vtx789Usj9+Hwf6ted0hxgECltnmN/MrFmzuPvuu/n73//Ogw8+yLXXXsuAAcFJYKgjCCgDf/q+cJbLV2ml5G74WG17u92Fc2vgPQiB0GlBZ8KZbcJ13EKcppQ+lhwmT55c461nZHsorfAj3V4inGWkVGQjzEasl9Tctg2/bfgdLgoe+LdKadQmxZH43J9aR++i5AgUBNT+NXp0fYLMp9CbeW3w2crxHMsGQOh1GAb0RGi1Sh2nTvmdVuyyKsK2DdgxtuHXg8gbZiD0CuXVtesQrm37G9ijDsT0gPHPBttHFtLNvTmM+n3gQN1aDSP6m7FalPtqYamPvRktY0yWf/It7gMKFV0YDcT99U6EEOzbt48OOmXSrdFqlJKX7tNBG+5IoI2y0u69p4m+/XJ07cOD2d7cYkqX5XP6496cmnc2pemxVOyLIPfrUZy+/yvVfnZ7wlnkmpMQAsxaP5NOrwXAtS+z6W9IiHD2xb45YZP5hlClfxGhLSRBfwSPx4PH4+a9JaXkFXv5en0FIHG6XET7NqARyhhw/rjxWA6Gl/yYTSaMWh/SrcV1MJbiRZ04NP42cp78H44NOyn79Fvyv4wm67WOnH6vA7pFR+l0ogijS2E56HQ6IiIiGHf7BCKtynylqNTXNIv3498hj3/P/IKreDXvMTw6pczHGmnhr7cmMGl4MCuua5dAxPnj0MZFo9EI7r0ilmF9TerrH39Xxvfp4aKLwmgg6eX/wzxxBBiiwBRP6eZEvt85Db9LuU4HFO4mrlMx5h4/X4ZD6TsLGt7oJ0b1kpEqaLVaBg0apLYbWzqSke1WAhbuMnrsuhk+G6+wdFoZBr1g4tnBoOvyatdQU+C3lSPdynxdY7WgsTZNSy/McaQ25oWnElY/ouhY2EPmCn2vgStWQIfRNfextofx/4JrNkD/G8JKI6Ir9oYLVp5JLL0JFk6Db65WxXNDkzW6VtC7qEKo40gVrDNTw0s/fJ7w9dBPyLz4AFgFDAe6B/66Bf7/5mHo1QXrpcFFWvELc5ANKIiHon379gwfOZrFFefhRo/L6UKWHoUV95wRaz4hBOOHWHjxgWQG9QhecC635Pv0Sh78bz6Pv1XA+t32WpkJmdluHn41X1GTrnoPCTqeuSeRC8dZa1+EZK8L9/utQlZai6KTbrebffv2UVHRcD17FULZF60m2in9UBLM2qrMC4CkoUgJb+Xcizsw+HZpp2PmBGuYUFJmtmLfWvLaJ9gdDjxeL0d6JeGwGIg7bxyRkZFEWCx0zClj5MiRpKSkYDAE9z/nnHPUxzt37qS8PBj8ysj2UFQaHl33Oiv5IOsqpRHVlcrMDmGZcOulU5ESPH4d9k1JSAnndzyN1VpTx6RKAFY6nPQvOYQGiXXGuWp9XBvaAEoQrfipN3AfDDgO6HUkvfQo2oTYBvZsJA6HTES7nocuJUgVDbUNqw2hVHVDv+7qzdh6yWSEwQxCgzPbhPtkCeRubZ3+tuFnD11SHBEzz1Xbpe8tbP7Bel+mWHtWYd1fOCsluEisL3ih1wkmDg2yJn/Y2vzSEW9OASWvfqK2Y+66En3ndng8Ho4cOUL7QPBCq9GGlz5WgyYygtg/XE/HZW/R7sN/EXnlBWiiQ+4PQoOnQEfJ5h4U/tAH5/HgfMIrNCzrcb6yEImP4aJzIrB6lffk3t+M4AUouhcRisUtjiLI+LL+7ath+PDhDB06lA6mbeiEC4fDSV6Rm7++WYDLLXG53Gi9ecTqlPFr9OjRDHPqkB5lnubu2o4OX71K9M1TMcY4q8gLeKQebYWDojlfknPb38j/++sUrDqKt1ILErT40eBHq9EQkZxAwsxJJP/3z8RdP52RA4LfeaNLR9wVsO4xvim+mHkF1+MXRjBE0T7RwL/uSWJgyLyvNui0gj9dG0f/bsH5xduLbKzfHX7NCYMe4z8e4cSEC0nrMIFP+9/KD/JCpF+AEAwr3EXs70Yjel8KPWYqQbCu50HKZEUXrJUghDAKIWYLIU4IIcqFEDuEENMa3hMql63HnZnVan05EwhlVHTt2jXstbPOCorC79mzR3WDqwvukmxOHC9QxOU9dnoY9ios6Cb+VhqLUOHOrfudlJQ3j+XhC9W7aCLrAsKZFzWCF14XLJoJB4LJPMwJcMEHkPof1TVQerw4Nu0OK8kAILIjTHgWrl4PvS4NPp/zIzju2fMhK2APnZOuuKJQjXnRqeVOI1UwDOypBvOrUKNkxJahsN8AIjuBsfW0bpoavOgCPCalPCClPBH612o9+oUj5t5r0VgCtbEZJ8NqgRqDKVOm4DQks7QyFb/fj9vthpM/hLlAtDbio7X89dZ47r4shvjIcAbCweNuXv60hLufzeWz78soLvXh90sWrynnsTcLyCsODkCpwyw8e18iKclaFi9ezEcffaSKWAFQlgUr7lQ8OAGSz4bk4cpj6YcjzZsMOhwOXnvtNT7++GNmz57d6Hq/0OBFq4l2lp0ET+DGbo4HS0gmKmkoK21T2Vt5Fvg8CAF3XxaLTivo0TGYzcrI9lC+YiOl2/fh9XrxawT7+7fnnHPOYep9t6mTQl9BMZ5atFVSUlKIjVUWgT6fj02bgraOm/YGJz09OuqVqLvHztbyUeysOBtG/ZnKb9ep21gvmkj0XVfikn7cUoev0IznaDTJ7n2qbWooth10In0+/C6PWjISee2FNbZrw28b5Z9+S8WSNLUd9+fbMJ7VSpNY6YeMkLGk12Vh9mA1JhzVUGX9BeGWYLqkOMypI1SRLoV90eY68ltC9C2XqHoFjjXbmqRtVQPj/gGxAdcIr5Nex17AqFHujTk5OeH3zmoIzZZv3u9otu158b/eQToUJp6+ZwpRN88CICMjA423nHiNTWFdaHSNovwKjQbT2f2J/9tddE6bQ9JrjxEx7RyEqcpqUxPMSmq1WKaO4cD//RNbUmc0FhORVh0zZ3RUGayeY6cCNqFNhFYPg34XbO9+u0kCekIILr74YtonRdPRqAQoHQ4HJWU+PB4PLpeLDsYdCAEDBw5kxowZVH67Vt3fMaIfhh6diR1bSMfbT9HhhlwM4yzYA4FQv5RUVlZidzjw+SU+tAiTF0OPMqxXdqXH0rfovulTkl56lIgADXvcWcHgxcY9jsaVC215jgKbj08LbgChwac1M7CHkX/dk0j7hLqF80Jh0AsevTE+bI7y6rwSFq4qZ87XNp56t5Db/pHD7c8X8lrUhSzuPZPNiWfj0JkBDRafixEXDsBw/Zsw+TWY+qZSfnTBHLjwI7jih0b1o5HQAVnARCAaeBz4XAjRtcE9paT0nfmt2ZdWhc/n48SJ4FIrlHkByrwvOlpZHDqdzroF28uzYc2jHP/gFnxupcS3nSEHqzbAhijcW/t+LUTnZD19uwTEMv1KyVtz4G2m00gV9KFlIxknwxPMmYvDHYq6XQhXroKuIe4ZQOHjr5J329/IPu8Ocm/5KxWLVoaPU1GdYfy/g3o2xQfB1Qhx0JYgxMUQgK3PQWVeWLJG1yGR1oLGZMQwICgebBzaD0PPlPCNQq+l+NZjXUDTgxdfAuc1uNVvGLrEWKJ+F4y42f73aZOtUydNmsR+dx82OIcp1qlSwp53FR/tMwSNRjBpeAQ3pubw5O0JjBlkRhtyddjK/SxYWc7dz+byp5fz+WhpGVWBXbNRcP9Vsdx7eSxmo4atW7eyceNG9u/fz/LlAS0LjwOW3aII4ABYkuC82dDvuuBJDn/RZIVev9/PF198QUGBIsqVm5vbaKuocNHOVgpe1FYyUvWSZRgf5gcmVH4PM8ZbVZGkbh30qobXqXwPu554HW/gAz7SK4kxF57PhRdeiEanwzx2iHpMx5ptNboghAi7saWnp+PxeJSSkZDgxeWTI0lN3gKKjBjvF/8Ju2ugGo0WRgOWqWOoNGrZ0zUWPxq8aHFsSQYf4b71QH6xl5O5XqTDhU566VOaiWnU4JoDWht+03DuOEDJc8Frx3rJZKxXNN4iq0HkbFYmaKBE+lMmoQ/JODRUNhLKvDAO6Rv2WuQV54NWyZBX7LXiP9RWOvJbgr5rByyTR6nt0vdakKXUW2DqW6qLjaY0g0uSguN5feyLlHbhCv5rdjR9gW9ftRn7qs1qO/6Ju9VM2v79+2mvVX4nOp0Ou7mLWjLVWAi9DkvqCBKff4jOaXNI+NcfME8YhvGsPsTcdw2dvn+H6GcfZsmJGKqoCZdMtGKNNaPv3kk5iJTN1yLod72qLULxQbA1jcVRpX+RZD6BVZuP3+/HbrfjcDiI0BYQpcuma9euXHnllfgLbTi3BCbqQuAY0U9JYhz8FCHA2MFNx389RtTCF1k9tT9HuydQEmMmu1Ms24alsP+SJNrddZwOV9joOjIbU9/uNTSiBnQzqtpYtnI/B441MGfJ3wV73+O93Dtx+41giCQ+ystjt8Rjra2ctx5YTBr+cks8nZKU68Pnh0+Xl/HN+kr2ZLoorfSr710bZUUYlWtTg58LC9aReN/VdR063JGnhZBSVkopn5RSHpdS+qWUXwPHgGGN2b/y27V4TtbUCfs54NSpU0oyE4iOjlYTVFXQaDRh7ItQO3tASaylPQSfjoX9H5FpD+pA9YwOec9FzSyHawSmhgh3rthS2Sy9njCxziY4jVRBGx2pOpRIjxfP8dPBF0MDAINuU4Js5vBz+B0u7CEC484teyn86ytkpd5C4V/+i2PTbqTfrwgSV60BpIT8xssINAt51dYC7grY8ES4YGfH1mNeAJgnDFcfR9WWpCwK0btIaD29C1CilPVCCPERVasbMAJfCiHWAbmh20kpb2zVnv2CEXXjTMo//w5fXhG+olJKZy8k9g91e9tWx9ixY0lPT2dN0WjitDYGOI5jsVgQ6/4K0d2g04Qz1nchYEB3IwO6Gyku87FicyUrNldSErAF80vFXqkKPTrpeeDqONrFBy+lLVuCfr8HDhzA5/WiXf2n4KCo0cP5sxUdiO7Tg77JxQeVSF1isHavIaSlpdWY5B06dIjOnTvXsUcQXdvr0WqVyV9ukY8Ku1+tJW42anMaCeC9TV2x+5RFVbIumysn9FBfMxo0dE7WcSLHg7OsnOJKC9GATytIvPtqUs8LxgzN44dRuVRhRzjWbSf69strdKN9+/ZkZWVRWlpKZWUlO3fuJKHjWSpTxmwUnBV9iJ6Gx0nXvIXDb+G0txtffZZBldyO5dyRaKwWvp8/nz39kul+OBeDz4jP5qdir5VI0zwY+ahKpdt20AlSIp0uepUexeh3E9Vmj9qGEHjziyn443OqrZZhQE/iAzX2rYYQoU56XAxaQ5hQlfd0PlLKWs8pPV5cezPUdvXghWnMWei6dMZ7pBS/C+zby7BO36GIBLbhN4HoWy/FvkJhs1UuXUfs/dc1v5Y4rg+c8y9I+xMAA3X7OGxIZJ+7LwcOHGDMmDF17jppeARHsmwArNxayfRxEU36HZXPD4pkR15xHqYAy8jv93PgwAHOCpSM6HQ6yi29aDpBOwiN1YJ15rlYQ8puAL5ZXa7OLWIjNVwwRmEVGvv3wJOh6Ee492ViOrsZ9snGKMWaLytNaZccgtim2Yy2a9eOWbMupuLzHzhYOUOl4ncw7qBdu2RuvPFG9Ho9ZcvWBUsthw/AH2NVmKRVDgVRXSHlXPoKDZa/Pcz777+P0+lECMHw4cOZNHE0poVjwedWJvy2TEUbJQRarWD0IDPLNikZ8g17HHWXffi9sOYRtpYNZ2v5KIUtpjMxeXBWTQH1RiIqQsvjtybw17cKKCipyfQx6AUpyTpS2ulJSYwkdsV3JOzcTKdHrkEbW1Ow9ceAECIZ6A3sq+W1O4A7APrrrWpgYN8TL2O7qVGVJmcUFRUVpKWlqe2MjAxcLkW7xWAwsHp1TZcWt9utbrN9+3YSExOx+grpmL+AxJLVCIKB9kOVPfALHT6NCdm+Py678v5lzi7SV61AitqXh9X71RR4faCRnXC4NWTnwodfpNMtuWlOg5EbtxAZ+K5OVNjYG+hLU/oVF2PGFEhY7lj4NY6Ryvgy6MhKrIFjHyiOw1bLZ2zcf5z4yloS0m43rvnLKJ6/DF9cFPYxA4jvFk87v8TldpO9fh5Z7Zr0VpuEAZnLiHKHBzTl/vlUHB4BbuU3n378CP4iJbnbku9RRddorDPG4LNaOG7yQrXj9c9MIzrQp0OnfBRXtPB8IWgMbyyjWvvMheV+JdCYjcQ+cAOFf34ZgLIPFxN55fk1xKzqglar5ZJLLuHdd99lScUUYjQL6aIrw2gwwPI74JIlENvrDL4DBXFRWq6cEsWl50ayZb+TZZsq2Hc0+OOYOcHKNedFhd0MT58+HcZ8cDqdFK/6J4mZXwUPPP6Z4GTfYFWoWVULjsNfNDp4cejQIb7//vsazx8+fJgpU6Y0uL9BL+jaXk9mQHH5SJaboX1MDezVAOpgXmza4yD9gFehzPq93NX+VYylcRARnJymJMGBjEp0bg+nolLoZstETD+H1Etmhp3CPG6oEmWSEufOQ/jLK2toSmg0GsaOHcvSpYqt6bp162g3oLf6+rC+JvRbniJGZ+PKxE/4oOg+0OhZfDqB/vpIoj3lRFw0kZycHLZt2wYGHQf6tWd0RhG4Pdg2xGAdkI049AUMuhWArQecSKcb6ZcMsB1C1yEJc+pw2tAGUAIDBQ8+j69QYV9pYqNIevlR1Xe9VeD3KUKaVeh9mXKuyAg0kRH4yyuRLje+Qhu6xJr6Gu79mUiXMsbpOrersY3QaIi8/DxKnjsCXgfluyKxZn7dFrz4DcE4uDemkYNwbt4DPh+lc74i/i+3N/+Afa6CU+vgyEI0Wg2TLBvY7+7D0aNHcTqdmEy135PGDjbz/teluD2SrDwvGdmesFLI+iD9/jCGUdRNs9THJ0+epLKykg7WPIRGoNVqqTD3qOUoLUOlw8+iEPeKyydFYtArcwlD/x6wWKnfbrbuBShlOVlpyuPiQ0qypIkYNmwYR48exZ6+kRz3YOL0R+kU7+CWW+7GbFZKOUJLRiIuHK8EMkKZiQNvVhkGKSkpPPDAAxw4cIBu3bqRnBzIhqZMhmPK/ZqMr2D4n2r0ZezgYPBi0x4Hv5sRjba2YMTeOTjzDzM793VAgCGSScMj6BjXMnHXuGgtT96WwNxlZfj8kpRkPV3a6+nSTk9SrBaNJqQvE64CrmrR+VoCIYQemAt8IKWs4bkrpXwbeBtgQEySrNINM+7IYOA/+7equGFzkJaWRmpqqto+duyY6kg0fvx4RowYUWMfKSWZmZkUFBQQo7FxVvEcEktWK6XahpDlXvvRHKu4BI3fggbBhed1w7i2u8pYnDi4o2rp3FC/mopTzlK+Xqdo0+W7enFLatPYE4Wr9lER+K56jR5OVKAvTelXyc4sSg8p77W3zkpsaqoiLnk4BwLHHjLlRjDXDNmWbP+Q0sA2ERdOwNC3GxWLV6nBVgAqnJi/3wY+J8UJnUiaUUyPiCJ6tOBzqxd+L2SeUvtOp4mQvRqfQ4PBUQ7meITZzPiLpqkB7pZ+jyrOm1r781LCsTy1T4PPvUYpp2klNJhmllL+vTF/rdajXwkipk9Q64Gky03Jyx83sEc4evToQWpqKl70fFF+EYUOvVJG4C5TVHAdRQ0fpJWg0wrGDDLz5O2JvPhAEtdfEMU/7krghmnRNaL4oawLgG76E1j3hyjtDrgJ+l0bfoI+VwQfZ3ypDCINoKioiM8++0xtp6SkqD/KrKws7PbGler06tTKpSO12KRWOPzMXmJTntPomRSznIERu8MoamVlZZw4vA48XjR+yemozpgirQx64g81TqGNj8FYVWvm8+HYsLPWrowYMUIV8szPzydtS9DhZFTifshRsocXJHxHx/ZWpMeLU+r4JmUqmtgozOOG8u2336r7+GeMx5icAHoLvnItZTuiYO9skH7sTj/7jrrwB+qnB5QcJPLqaQittkkfXxt+vSh+7r2gnoRGQ+LzDzU6oNtoFO4Bl015bEkMauoQbhPmq0P3whmyoDNVY11UwTprEsKg0NFdp4y4N33T5HK3NvyyER1SGlqx8Ht8JS2oZxZCqY82xSGEIErnpJ02D5/PV3fdOgqVf+zgoA7Cyi2NV/D3Hj+Nv1RZQGhio9B1aa++tn//fkDSQZeHTqdDABWW3rUfqAX4el0FFQ7ld5Mcp2XSiGAA3jAgGCxxtSh4EaKjU1L3Z1kfhBDMmjWL/p3LGWhdSPfog9xyyy2qvoDnZA6uPYqlq9DrsEwdS1TlvmAiQ2eGPuFlE9HR0YwePToYuACFJVaFUHvGEPTtYiA2Upm2l9v97M2sJRhRcRq2PMuCwqsp9CSBIQKr1cD101pHLC8pTscfr4njoeviuXJKFKMGmGkXrwsPXPzEEEJogI8AN3BfQ9v7I0yYhinZd+n1tawc7AygIb2LKgghGN2vHdMjVnBn9FwiTn0T1JgD6DAWZsyn8rz5nC6PAARajcJCJj6E3VRUg6jSapgyMugOsv2gk+LSmiye+hAq2NmcshEAQ99gyYy7yi61+EBQXDIqpdbABYAjfbf6OOL8cUTfegkdvvwv7T97gchrLgwXKtYYcGWbsa2LUcpGzoDxAqCMbVVaexHtYdKrYIjCW6pTvn9PJbqOSa3LcG0IFafBVao8NkQpgp2tiEZx5IUQUUIIQ0h7shDiP4G/1Fbt0a8EQqMh7uFb1HblN6vVG1xjMWXKFDp37kyFjODz8umUO3yKt3zZSVj2O4Vi+COjc7KeiydG0qdLTbqi2+0Oq7OL0diYFbEMn8et1B21GwljaxEe7TAOIgJ8KkdRUDG3Drjdbj7++GOcTmWhHB0dzQ033ECnTsEfR32TvlD0ak3dC587XMQyTpnwffhNKbYqaqwVbkyerbweCF6UlZXx9ttv4604ii5Ap8+J6ULCzbPqdF8wTwhmeh1ra+peAJjNZoYPVxZvDl802fnKwGzQw9Ccx9XtdAOv59ZLkpFO5f1vSRhK7qQLOXw0k4wMhXglhOD8i2cQfccVgRptQenGaPz5xyErjZ2HnXhdHqTXRyd7DrHCifXShtkvbfhtoOKrVZR/GgyExT5wA+bRg1v/RFlpwcedJqriihBe71mX40iYWGcdwQttQiyW88ZTVadfvsEOBY2zpmvDrwOmsUPUCbB0usOu7WbBYIUuynip1+noaVAWKvXpXgBMGh5cCKzf7cDpbpz+imtX0BHLOLiPOqmVUrJv3z6iNBVECAc6nQ4MVhzGDk16Ow2htMKnZl8BrpwSzuA09OkWLtppbxq1XEVcSNClmcELUGj6d955J5dffjkPPPBAWNChqoQTwDR2KNqYSNoXLg3u3PsKpYSlIXSZogQ6qvpaVIMsgEYjwgJWtbqOrPsrJ8vjWVJ0icL01EVww7QoIltaEvsLgVAu5tlAMnCZlLLhbJhWQ/SdV6rNioUr8IZoK/zUyMnJUctBoqKiiIurZWFdehxWPcCo4w8z2HAQDVIRfJcSOp4DMxfCzPnQcSxHTwXnup2T9QrjKVSQt/DMBS86JuoZ0F2Zd/ulon3RFPhaKNgJoO/VRX3sPnhceZC/M7hB4pDaz11WEWSCaTQYRygilEIIjAN7Ev/YHXROm0NilXWw0IDQYD9iQTrt4czs1kSo3kXyMLAkwKi/KMELUIIXSU2zlG0xwvQuBoTNxVoDjR3NVgE9AYQQ9wCfAvrA3zwhxG0t6URj7I0CAZODQgi7EGKVEKJLXcf7ucA0fACWyUFP4OLn31OCD42EVqvl6quvxmQyke9L5MuyyTicLiUQkLsZVj/842f8jn8P392i+Amv+yvselOhaRfs5sCODTidys00Oc7KlVFLMQk3fr/Ea0hQxG+qecQDoNFC7xDdhkOf13l6KSULFiwgN1eRXNFqtVx33XVYrVb69AlmWRobvAgT7TzpbtL3UwMlR4JR7qguoI9gd4aTVduCLJDbLtQSoQ20A8GLpUuXUlRURK+cY+i9XoQQlJjj0Vx1cfUzqDCPC9rWOdZtVwSCasHYsWMBsHm74PV68fl8DG2Xj7EiMHk1RMHZf2RgJ8Gggj3qfp9oh/H550Hl7eHDh5OcnEzkFecri0CdGb9TQ9mWKNgzWykZcSg31wElB4mYPgFtTGQjP7g2/JrhOnCUoqfeUNuWqWOIumXWmTlZdkiNaufUsJdCmReeWkQ7pZS4doYs6obWHrwAsF45TRVarNwXgf/AV3Vu24ZfH4QQYeyLso+W4LOV17NHI5CiBC90ej099ccBOHjwYL2Wh327GOgQcI1wuCQbG2mh6dwVyjAK3jfz8/MpLi6mgzYPhKJ3QeKQVhVVBFi0ugKnW7nXdk7ShTlpAGgsJvTdOioNv7/5op0xIeW1tsxGsTrrgtlsZtiwYSrjogqVS6uVjJSfIq4sKITKwFtoFPQW6BJCwc6sfUwZOzi4CEnf5wi3sT++DHnsO97NvQef1IIhij5djaSe/SMvXH5avAH0A2ZIKRv1g5A6LaYxZ2EcrAS7pNtD2fs/H/bF0aPBpFi3bt3CM+iBoAWfjYdDn6MVEm1Abf+4pxMHev0TZnwOHYJrkYzs4O+gSviXhBA3iDPIvIBw4c71u5omNhwaVGqOVSqAvkt7tVzVV1CsMOcKdgY3SDyr1v2cm/eqay5Dv+5oo6w1thF6HRFTRpP02l/QdUjCL3T4XRocJ8yQu6XG9q2CvBAx0OSzlf/9r8frDzJMdO5dP+56McRpZLPrfN5YUMLJ3OaPv9XR2DtSLyllldbF/cBkKeX9Usr7gVTg/1rYj3rtjYQQCcDCwPNxwFZgXgvP+aMg9k83InQKdd61/YAq9NVYxMXFcemlyiTpiKc7y8tG4PEELoDDX8CO11q1v3XCVQar/gjf3QTHl8GJ75Wazo1PwfLbYcEF9Fw/i4di3+K2qE+4OeoLkg0KZciHhl3t7g+3Da2O3sGoNye+D7qSVMP69evZvTtI25o1a5Yqztm7dzDLcvjw4UZZpibHaVWRzkqnJKeoeZZzQI2Skd0ZTl6ZF3wfoweaGDmyRzC7UnGa0pzD7NqlDCpn7cmioz0XEAiziROOuicchoE90QREsHyFNtwHa5/cxcfHM2DAAGweJdbndrsZowsRNBx8O5jjcKzeyszMJeilF6HVcKjAx0mbQiU2m81MnapMqoReR8w916gq7mVbonAfXMf2PTZVK2BAyUGirmsT6vy1w1/poHzed5S8OpfiZ96l8LFXyL//GXJ/9zdOX/kg2RfeTdbEm8i95mH12tB370TC078/M/RFd3l4BqLj+LCXw+1SazIvvNl5QT0OqwV9zxS2bt3Kf//7X9avXx+2rWnkQNUz3e/SYF+yrK105DcGy9Qx6FKUMdJfXontf5+27ICdJyLRotFoaK8vxCoqcDqdHD9+vM5dhBBh7IuVjbQfDAvShVgUKyUj0D6kZISkIU15Fw2iqNTHdxuDrIurz4tCW0vJgbF/sHTEva+ZpSPGKIVGDQolvOxE/ds3Ee7Dx9Vad2EyYEkdAfs/RNW473iOIsraWPQMSVhkfFXrmNKrs56EGGVOaXdKdh4OsFLcFbD2L6wuncwB+wDQmdHoDNx+cczPqqTjTCKQ1LwTGALkCiEqAn/X1bef1GqVgGQI+6L8i2X4imxnsruNxrFjwfmdWjLiqVSEfgNBi9DyEHvcMD4uv5RPy2ex4VjNOW1GCMu4yvEuzMqyaN8ZvZ+N6GdWJThOF3rJK25cOYV0ufFXBYm1WrTxzSuFEjod+hAXPPeh4+HsybqCFyElI+ZR9TNHhRBYzhujCp/aD1qUpPOZQHXmBYDQ4I1MVZ/WaY/VWY52RhAIgK20TeH5zZNYudXOcx8VNcthpjY0NnhRLoSo4uRHA4dCXstEoWc1G42wN7oU2Cel/EJK6QSeBM4SQtSdGvuZQN+lA5HXBC1kSl76EOlpWt3ToEGDGDlyJADpzqFsKeuBr2phvvkZyPy61fpbK06thy8mw6G640U+vx+f14ceL4m6YqL8yuQH4NvKSWw+3kBJRmxPSAqwCfweyFhUY5PMzMwwDYaRI0eqZREAHTt2JCJCiehWVlZy+vTpGseoDiFEMPKMwr5oNgKUMI9fx4cnL+fp2UWUVijfU4RJcOvMGIXGmRgc9A6tnYeUkk7ZJSSUu0ix5yAECIuJjOy6+yK0WsxjQ9gXtVimVqHvoHNw+APlJ147Q9yfKI81euh/AwCVS9KIc9mYdGoNHg34/ZLTrrNBY+bmm28mMjLIooi4aAL6Xt1Aa8Tv0bB96zDKi+1ICdGecnr2jVFov2341UJKScGDz1P09JuUvvUFZXO/puKrldhXpuNM3417fybekzn4ikpVZxFNhJmk//4ZjfUMZQFPbwjWlMYPqBEsDXMcqYV5EVYyclYfKiorWbRoEbm5uXz99dfqwg4Cwp3XXopaOrLJSYSzmdnhNvwiIXQ64h68WW2Xf74Md6hoW1NhiKTM2g9B00pHJp5tUW3ND55wc6qg/uyWv7wST2aW0tBqMQwMshOqrvEOujz0gfs3SWc3/b3Ug/k/lBEYEujRSc+I/rULkhpCgxctFe2sQsmhurdrBkKFOi2pI9EYNXBgbnCDgbc27YCdJyklRABlxxUNn2oQIrx0ZEMV22brC1SUlfNh3q0KU8YQyUXjrXRpXwvb9VcKKeUJKaWQUpqklNaQv7n17hgI7pgnDMPQTwkOSKebsg9+xMVeHfD7/WEBTDV4sWc2HPwsXNOi43i4eBHGyxaR5VVKvY4ePUpZWbgmT+jcsmdV8CKys+och7MEKsMMJVsVBr1gQPdg6fmuw40rCwtjXSTEtEhTzdA7SN73HDgMxQG2thBhc/RQhAYvTI0oe3UM7Y1PKoOz/YgFeeoMMC9cpWAL+GpodJAQNDzwFvtBp8y3dNFe2PCEkoj+MVC0j83lo3kz536lX0BesY8dh5pZAlgNjQ1evA/MEUJ0A14C/ieE6BQIaPwXWFfv3k1ELfZGAwA1LCalrEQJmgyouffPD9F3XYkmQC/ynsxpVn3sRRddRFJSEiD4tmICR53tVP9aVt2vsCFaO1LqdcL6J2DJFVARdBCh5yzFn3704wolsstUSkQybpSbpE6nQyMEOp2OLa6z2OvuS1ZWFuXlDdBqQ0tHDs8Pe8nhcPDpp5+qZR2dO3dmxowZYdtoNBp69QpOxKqXjkiPl9IPvqJ0ziKkNxhAClVoz2iJ7kXxQbJcnfnz8ZdYciQYV4u0aHjo+nhiIwMDbWAyKKWkLCMNpGTQnlMYDAZSKrMRZhNCoyHzVP2T0DDdi3V1e0hn2+LQBgb53sYd6HyBwavHDLAk4SspU/cfk7kMrUapQfRKIzE9riUlJSXseEKrJfb316mD4paiMUiX8nkOKDnYZo/6G0DFwhX1XnPVoYmJJOGFh4JU8DOBrLpLRoAadqnVUb1kZMuWLWGU/QULFoSNYdZLz0MYlYWX67SRuINpLeh8G36JME8aiakqA+fzUfLs7BaVHpZEKmO6TqejR6B05MCBA/UeMyZSy9l9gwGAhtgXrt2Hg9Tn3l3QWJR9S0tLyc7ORoOf9rp8NfmgJhVaAblF3rD+XXt+VJ0srFYT7QxlPhTXHrxwZ5zEua1pVHkpZc2SkWPfgDOwwLJ2DC8DaQx0Ruh6QbBdR6Z0XEjwYusBJ+7Te2DPu3ycdzPlvigwRBIfo+fySW2lm02BEELR9Qqg/LOljS4H27NnD2+88Qbp6emt2qecnBxV3y0yMpL4+IDOQ2i2vf0ouHgRzJgH7UcSFRUVJuoZylYuLvNRXKYk1Qx6QaekwO9ciHDRzhDa/5nAkN7BMWvH4ca54LSGWGcVQhNs7t07gkGgmJ7BAGIIvPnFeI4qDiVCr8M4tHY3liocO3aM13/4hmKdFikVhqZzf7EiZNmaCBH+J36AWs4K4D2Vr7wXoVGCF/Z82PJc656/NrjK2JsTzUvZjyKlBkJsd6vcklqKxlilAvwNeArYDXiAGKAqpLwWuKZVekOd9kZWoKDapqVArSNzqH9zYmJiy71sWwER555F9BeKEOXpF9/H/pfrmtyvHj16cPr0aXw+H++fGst9Hb8jXlcGbjcsvo5ySx9OtruWMmvzYzpV3r8R9gx6Zb2K2RUMWni1Vo52vJ0i3TilyId+QD/8Rj/fn+yAy+XEJFxMGNqNDpE+/BoTm4orcLmUm/mXX35ZYyEcCp03geEeP0J6ITudnd/NxWHqiM/nY9OmTerCwWg00q1bN9atqxkz83g8qrDRhg0b0GiC8Tnzxr3Evq8Ejg5lncA+XqGGVRaZcLmUhc2mXeX0iN7Z5M9LSijdGcO8vJfxSAMerR/pc9E1ycH5Q4oozPKTFkh2xdu09Ha78Xq9JPiySD7WhVibA5/RSHJFNh6dBlwudh6wk5ZWM/NSBSEdtHO7EYBryx4Of70UaTWH9Qvg2zXt0AgtPvxMivhG/Xz2uAZTkZaGJW0H0XYHHo+bgmgT8fpNZHmmoNfr2bBPwxeL15MYpQRSpASvT+DyCCw9BkB2DrvjhwTmwn76lm/neNlRKpdm4DB1Qoo2t5FfG7w5BZQ8F7QBtEwahWn4AESkBU2EGY01Ao3VgsZqQVgtaCIjECbDmVe6zkoLPu40scbLodZ3vpwCpM8Xlrlx7QxmuPWDe5O++ruw/e12O/Pnz+fmm29GCIE2LhrLxEFULleooOZ1++EB2erCVG34+UIIQdyjt3L68j+B349j4y4cq7cq5QPNQEnUcCj6FK1OR3dDNlq8FBcXk5+fH+5MUQ2ThlvYsl9Z4Kzebq9hYR6KMLHOEFHaKoZHvLYYk04qv9eIdhCRDNTP/mgs5n1fRhVreEB3A4N61BT+roKhTzfVEtxzNBu/3akGWpqEBhxH3EdOkHPFn5BeH9F3XUnsfdfW2KY2uHcfVhYHKFbM5nPOhtXvBzfod52i59VU9Lg4mLzJ+ApGPVZjTOnWQU+7eC25RT4cTj/bl3xIXGUvfrCdD1oD6EzcOiMas/G3IdLZmrBMHoW+ZwqejJP47Q7K535NzL31L3F8Ph8LFy7E6XRy8uRJunbtWu/vtSkILRkJ07sI1aU45xmIDyeiDxkyRNXK2LVrF+eccw4AmSGsi+4d9eFWu/EDICc9ePyuTQy+NQFD+pjga6W0fE+mC69P1jlmVcHXCnoXVQhlXrgPHIGqYaIOsc5Q1oVxSF805rrHLiklS5cuxS8lxzvFkJBZjg4/lQcjMOduhZ4zW9T3MISVjARZclLKQJJGsUrWRQcStvvmKPbcZxBHDxzmuazH8UodaHQkxukoKFGCQzsPu8gp9NI+obHhh9rRqL2llH7gr0KIF4BBQCfAAeyWUh6td2dACJGGomdRG9ZLKc8JbFeXvVEFUF2uOQqoNSQa6t/cp08f2Speti2EHHcOp3YcxXsyB7ySdit3cfabTzf5OMnJySxatAiJkY+Lzuf+lB8wSaV+1Og9RkL2P5WJ+8j/gyRlcS6lpKysDKvVqmbg68LqVSuYaN0Gh14OeEMHWAkpkzBO/A+DImoOyHv2KAtso9FEVHQy5137oBo0KItew9KlQeXtBr8L30VwTAkwjIo9AaOuY+HChZSXl2M0GhFCcPvtt9OtW+1lCZWVlezbpwzqdrudUaNGqV7sRRuOUB54P91KPSQG+lLh8PPNjhwAyl1Gxo7ro/rNN4S0tDSGDh/P65/nsz1XEeYSCCwRFm68MJoLxkTUXLSV90TOfQ23200HfRFDjhRiMpnQ6/UMuGo8kWVm3B6JR8Lgs8cTF1X3d5bzaZo6GR2uiSAidYLar9TUVApsXkqW5WEyS3SVlQyzKJkiR1Rfhl94h3KMd5dS6vfj90tO9kgi0ZyDKVmSX64wK5bt6Y7ZKLA7JZVOP1XJaNnnXnzJZSCVKL7e72ZUlzUkFRVCEYq2R8JApX4waQjYq8cf29BakC43Ja/MxbXjADF/uL7Besxmn0dKip74H/5Khaqs79KBhOf+hMZU9438R0HZCYVmDcp1135kjU00EWY0sVH4S8qQHi++ghJ07RIAhUrvPhKg/Gu1HNX5VKqt0WhUA36HDx9m06ZNjBkzBoDIm26kcvkWQOLZq8F/cieaLq2XqW5D/QjMLUYDVVS6U1LKJogMtByG3l2JvOI8yucpwa7i597DPHYIwtB0ur7T2B6iuyNKj2LSSbroT3HU04UDBw7Uuxga2ttEbKSGknI/pRV+dhxyMqK/udZtXSF2wLXpXXTQ5qPXBfreSiUjecVePvymlM37g5Tha8+PrjegqYkwo+/WUcl2+v24Dx+v0764XjTgOGL/fqNa2lb61heYhg9slBNSxTdr1MeWKaMROhEuGNz1/Kb3FaDTBDBGK3TwilOKxWJVHXsAQgjGDbaw4AcbeO2sO9mFXM9olIVKFMP6mussx2lD/RAaDTF3XE7BIy8CUPbx10TdOBNNZESd++Tl5ansCIAffviBa69tXBCsIVQX6wTAaQtm8DV6iOlRY7+BAwfy1Vdf4fP5yM7OprCwkISEhGpinYbwnRJCHEfOsGhn+3gtSbFa8kt8uNySg8fdDKwnmAngbQWnkSro+3RVH3tOFCJ9ILQ0Su/C1MD86siRI2RlKdnK451iODvzNEg/lYfNxGdvQrRq8CJUrDM4TviLS1URfU1MPNoe4+DUWmW+vvZRiH2w9foQgtOFXv4534zDr4ztsRY3T96WwHtLStl2UPmNLNtUwc0XxbToPI21Sv1YCHEtoJFSrpVSfiqlXNSYwAWAlDI1UIdW219V4KI+e6N9gHpFCSEigB4Ey0p+9hB6HbF/vFFtR6TtwHOi6fShkSNHMnCgMsCU+GN4NXcWzp7XKgNYAP6sNDyfTyX7vWnMf+dfPPXUU/z73//mhRdeUH9QNeBxQO5WBmY8Blv/E6RQ6S0w8XmY9lEgA1MTW7YE67iGDx8exnbo3z9IQzty5EhQbLQu9AkR7jw8n/379oQdf/r06XUGLgAiIiJUy1QpJUeOBO1pQy2WQmmoVrNGVWz3+eHY6caXjhzLM/Hgy/lsPxi8caVYC3j2viSmjbXWPjmzdsQprEi/RJuvJbG4Ar1ejzDoib15Bt07BL/LUEur2mAeH5xcOtbWpPGn71X6JYAh1p1EaJRA1zpbb6SUeE7mUL55D26PBykEJ1PiGDNmNI/e2kutoy6t8JNb5KOsMhi4ABAGpc9VWaGBxbuJPyvEXszrUNSV97wLP9wHG/9e73upjsC4kyOEKBNCHA51Nfolug+dKXjzi8m99XHKPvgK1+7DFDzwLN7cwjNyroqFK3Bs2Kk0hCD+n/f/9IELCC8Z6TBWyT7WAn0ddqnVqfSbdgWpmGPHjlWzVgDffvsteXnKvsbRZ6PvoBAA/W4N2bMeo+gfbzWf5l6ZB0uugo+Hw9xR8MlYRZBtXqqiOzT/PFgwDb68CL65Do4tbfCQvwHcF1Lb/qMGLqoQc9+16uLGezKHsrkt0KEKlBrodDrVdSRUb6U2aLUizFHihy21l45Iv1+51gOoYl44HA51kdRBl4tO3zolI063n0+Xl/HAi3lhgYsR/U1hTl91wdAaop0NOMectfQAANYoSURBVI64Qo8rJYV/frnBUgHp9WJfHhTxjbhwgkLfdimZZLcuDuKaKcmm1UO3oE4aGSGuI64ypUR43WOMzb4NHAXgqSS9fAwnnF3BEIHBoOPWGfUHhtpQPyznj0PfRdGM8JdXUvZJ/aXeJ06EC8Hu2bOHnJycFvfD7/fXLtZZFDIexPWp1cXPbDaHidgvWrSIRYsWsWpDJg6HHbvdztH9abz55pu8+uqrvPTSSyzffipYjn4G7VJBCcCFl440rIUQyrxoadmINjoSbeAY0u3GU1wVsK0ZvJBS4twUItY5pvYAR9W2K1asUNjYnk5kxp1NhTlgDevQUPTD6jr3bTKkXwluViEk2OzNDs5vdB0SYfwzwXVi/k6Si79vvX4EUFzq4+nZhZTZlbEnQlvJX88/TFKcjvNHB4N/q7bZcTXS1rsuNJZT9g0wDdgvhFgvhHhMCNHa6aX67I2+BAYKIS4TQphQylh2h5SV/CJgmTIa0zBlMS/8fkpe+rDJxxBCcOmll6p2XcVOLe8d7s7Gbi9wQJ5FWUUlFeUVOOwOogrXMbXkGaZolxCtKcVmK+Gjt19k7/K3kfs+gPV/g2+uhbkjYXYPWDQTqyPkRt5uBFy+QqE/1nEjLC4uDgsQDBsWniFISEggMVERzvN6vWRkZNT/BjufC+bAgFKZy/7v31FfGjx4sGr9WR+qu45UIbReznsyB395sPYqVLTzcCNEO70+yezFNr5MT6K00q8KBU6P+4pnUpeS0q7urJsEjlfGAODclYBBF/ihXzQRbUIsPToF9w2NktcG8zkhuhfrd9SwTE3fG/gp+VyMi0wDAZXSzMb8BDIzMzn05lycgazy6Q7R9Bo+lBkzZpDSzsAlqbXXy2q1EG1VAj69u5rpW36ccflbua5PLtrUh5Wa3SqF95bhGaCrlDIKmAn8Qwgx7JfsPtTacO3NIOfqh8Ko4P7ySgr//DKyHovF5qB6uUjUjTOblwk9EwjNeNZSMlKFukQ7nSFind5endWFnBCCUaNGcf7559OuXTvlda+XefPm4fP5EEIQeckodV9/hYPyz5aSc+WDnL78j5TN/QZfaRMsNHe9qWRHKk5DeZbCJrFlKhnjogNKHXLBLiXbkrUKlv0OVt7/44lwtaFWaGOjiLnnarVd+ubnqnNNk5EyGQgNXshGaUZNGhGcHG4/5KS4rObv35OZhb9CCWxoE2LU38Phw4dVfZduETY0Vff7ZjqNSClZs8PO/f/JY+GqclWgE2DCUDP3XRHbqOMYQ3Qvmi3aWY/jiJQS977wOYmvoJiix1+tV2fEuWUfvkIboHyOppED4eRK9XVb1NCWlY/1nBV8nLkYNj8HX86AOf0Vq/q975PiXkcnY0gySqMHXQSXT44iKa5llOzfGvTe0rC20GqJvj2owVb20WKVbVgbanMEWrFiRYv7FcroiIiIUOfSYcGLUJeQajjrrOAiOzMzk02b0sku1ODxePF6vZQV7OXEiROcPn2a/Px81uzJxe0JzCHLjisONmcQQ/sEEx87mxi8aGnZCIChbzdAgvThKdArwpLxA2ts5z2ZoyaENBHmMD2e6jhy5AhHTxRw1DGJTMck8pjCNyOuV193byvkyP6dLe47AKXH1IAppjiICubwvDlBprOuYzLEdIehv1ef65LzSauyoSvsfp5+r5BCmw/8XgwaF3/p/AQpPbsCcFYvI8lxQZekdU20yK2OxpaNfAp8GmBHjASmA+8IIdoB3wHfAt9LKZtldB5ib+RCsTeqeulOKeVcKWWBEOIy4DXgYyAduLrWg/2MIYQg9qFbyLnmYQDsKzbh2p8ZZgnWGJjNZq655hreeustpFQmNgqjYgjxmi6MN6fTz6DckAUwyHCI/oYjeKQOk3DDTnDu02Mym6j19qrRw8hHYfCdDdZsbtsWrLfq3bs3sbE1JyX9+vWjoED5kRw4cIB+/eoRutHqoeclsOddfF4vHSvWs43z0Gq1zJgxo1HZhD59+rBypTKRqLJM1Wg0eHOLwrZz7c9U6fW9Ugys3qH8mDKy6g8Y+PySV+eVsGFP8McXYyjn3nZPMMS6HZL+Wu/+mZmZZJRH0c6tx300Ep1emSRF3ahQyRTrKiWwklmP4wiAoX93tPHR+IpK8RWX4t6XiXGQkmkqLvNx8ISyv/BWMjJqEwavnrVlA/GjZfFXXzF68SqqpImcowdw5ZVXqsyZK6dEMnqgGZdHEmEWWEwaIkyaGiU1rv0+vCdOY5l6M+hChhR7PuTvgsLdyoKr5DDQ+GyElDI09C8Dfz1QXIj2SSm/ABBCPAkUCiH6/tICmi1B5bdrKHz8NdWGlCrGk9+Pc8teyj5YTPStl7TKuaSUFD35eli5SMzvW4cW22L4PHAqRP+mcz3BixDdi1C7VNeO4GWTYfArdyJgwIABaqD4qquu4rXXXsPn85GTk8Py5cuZNm0akddeitz3OWU7IvCVBa9/98FjFD/zDiUvvI9l8misl07BNHowQlNPziC/JnuqQRyeD6c3wrn/hY4NB3d/hXhGCPFvFBe0x6SUaXVteEb1sNpbSIyzos8tBreb3Y88S+mNFzS8XwgqKipYfcTECK8Ord9OjM5NlC+XAm9cg5pRAInWZLKLlAXBu/N2MbJXeFDLsnYXMW5lvHAkRZO5Wgn6bd26FZfLhV54iKUAl1sDCDYfLMV3JC1MQ6kh5NkMrNoby+nicEZWuxg3qQOL6RDnZnMjHeMNzlISAv3NW7+VvdX60Nh+9fPEEONWghaH1nxBcbRS9qUpKaddYByQGg0iEPx3L1vH8adexj6x9hxdzJylWAL9qujbicy1axl8ZD4RgedO6/qR2YJrS0gfw3wm9L4ycGfDptpF9kZGrOak+2b8Qo9PYyTeWEmUP4O6Tt2U7/G3BKOnUHHV6zhOfS5i+gRsb87Dm52H31ZO+effEX1L7ffT6swLUNhS2dnZKhO4Ct7cQpASXfvEGvtUR2jJSPfu3WvXuwgV2ayGfv36ERkZqQY+XTISn1RYADrhwiDCgxM+dBR4Y+ikD4wbxQeUJOYZwoDuRrRa8PngZK6X4lIfcdF1rznCy0ZaIXjRuyuOlRsAcOcbiIjrrojmVkMo68I4fCBCV/vSWUrJx1/u4kDlxXilEYNB0fram5xKgflLEh35uI9GsuazlzDe9nSD43mDqF4yErI+CmNeVCVthv4ejiyEsuNo/XaFDT35tZb1AYVh9685hWTne0FKtNLFQ53/RW/LIUhQgmsajeD80RF8+K1ybX23sZJJwy3NZog1KTwrlVB0euDvb4HgxTQUwc43hRCPSynfamonpJQnoPZ1dMg2K4CfSZqv+TAO6oVl6hjc3yiTBtv/PiX5f/UvdmtDly5dmDp1KsuXLw97vsgfy9euizgRB+P060hy7kMb4P/bHQ78gQyIx+PB5/dhNpvRajRKsVdUF4rccXS46FmIr19JFxRK29atW9V2qG1pKPr168eaNUp96MGDB9VgQp3ofQVyz7u43G76GDIxVLrpkNIVq7WmAnBt6NSpExaLBbvdTnl5Obm5ubRPSqrh2e0+cDQYvAip/Ttcj+OIlJI5S0rDAhfD+5m4y/QC0cWBgaQBuui6detweZNx7okHBMLvxTxuKIaA77RqXQVkZnuQUtb5AxcaDeZxZ1OxWBGDdazdpgYvNu8L9NHvob9pG9G6Mny6CHbmK5Fl/8HjWMuVaLc0GTj/8QfR64OsDyFEo2zWjP171B6AsyQpgk+hok/XNW2gEkK8DtwMmIEdKIHSf1LNfUgIUeU+VCN48XMU8A1FkyeUfj+RX60lcmlQ1dxvNlJy50wMR7KJ/Ea5Gec+P5u9WheeLu1a3C/Lut3ErFLOJ4HTl4zlyKaNzTpuS1H984qsPMjACmVS49bHs21nNohTte5rKS9WF2/H07dj69cOfD7ape9C41Z+a2sKs3AZlPHJaDSGnat79+7s3auosK9YsYLKykoS46IYNaSEhEEFeE5bOJYzHNP2TERVutntxrV4JSWLV+KLi6Lk5mm4+9ZS5ST9jMzehtav9G9Pz2fwaq0I6UfgA+lH4Ffa0kdy8XISSwKMk+JjsOBiTidcxMl21yJDygh/5QuWR4H9KDpZVwNLhBBDpJS1punPtB6WwxRL3l1PAWDYcoj+D9+BsV/3BvYKIi0tjYmpqeCdBplLAOgfcZpNToU50FB/NdF2Xv1cYXyctHXg4YlDw+4dhSt2UxHQfUq+IJWzUlPxer2kpaVhNBrprCvCbDIoc4K4PoyffKHar4bOXVrh45NlZaqbiDGwBoi2arju/Cgmnm1Bo2na+O8f4eDkKwtBSgzFFfQbOTpMtLMx/QLAkAa7FXbV4E4mGKbsY1+ZTn7g8zANH4C+d1fKP/kGgOTFG2l//WUYeoQvMKTbQ9af38Ef2G/A3Tdg7BULB08pGmEaHe7EkY3rV33QXa2I64VCCEgYDJ3GQ8cJTNQNZeF/bWhQJvMP3ZTAgO51V041+vP6LWLdY3D592oJhtDriP7dpRT9/Q0Ayj74ishrLqxRJmmz2SgtVbLfBoOBnj17qmVeK1as4Oabb1a3dW7dR97tTyD9knbvPYVpWP3i+rXqXYASVKhCPcELg8HAHXfcwb59+xBCcDgnkqObTQgh6N3JwK0X3qLO+d555x2klJysjKCDqVRhXxXuPaPBC7NRQ7+uRvZmKtmCnUecTBpet7ZIuNtIQovPb+jTVWFjAe4CQ51inY4QvQvz6EG1b+Py8+KHx0g/GWRuGAwGPB4PUqvn24FXctPW15BOHV3zspgzZw533nlny4RdQ5MdIWKdEO6opqsql9UZlfKRbwICtEcWKqX6nSY0uwten+SFj4s5UpX0lV7u6/Afhlq3Q2QnRb8ngHOHR/DZ8jLcXjie4+HQCTd9uzav7LhF3DIpZS6Kjer7QggtCoW7DQ0g5t5rKAkELxyrt+LadShMOKuxmDhxIk6nk+PHj5OUlETnzp3p3LkzSUlJQWHOnHRIfwZyNxMREUGFC07bzRT5Yin0xVJmT2LU+dfRa9hU0Oo5nJZGh0YELkBhNVSJ2kVERITpW4QiJSUlLJhw6tQpOnfuXPeBEwbiNHfBV7YXHdDPdIzonlMa/bloNBp69uyp2kMdOnSIJK0RqpVUhNJQU9rp0evA44VCm4+Scl/Q2jQE81eW812I1c+QbuU8cn1XxJyQQSSu7s8vLy+PQ4cOYfUk4DwQq0ws/R6irgtm6JLjtFhMikBmud1PQYmvXhqoecKwsOBFFX05fV+AhuexMypBWdBqe86ks2U4Bw4coOtx5UagEYK4iydjiY2uefCfGFLKe4QQvwfGAKkoOfEmuQ/9HAV8Q9GUCaW/wk7Boy/hWL1DFdPVd+tE0mt/Qd+lA9LjJTf3z7j2KKVcXeevo/3n/6lXGbuhfnlzCzn9f2+rk/WoG2fS57brG9j7zKHG57VlK2QpfTP2vYjU1HPr3NehiyJvvjL2RgkDQ1JTce3PJAcBBgNOqwlXpBkjkJSUxGWXXRa2+JswYQJz5sxRS+UyMjKY/oc/YCoaiCtnF1E9fJz1p2vxWwdQ+e1ayheuCKelVzixzF5Kpx/eRRtVLRhbegwO+QEDmBMYPu22Bqjnd0Lm17DmEXDZAOhWtoxu+pMw6TU1AP1LXbA0RuhbShnqS/iBEOIa4ELg1TPdv9pgPudszBOG4VizDaSk5N/vkjznn03PLqVMhswlaunIJucwVTMqNMBcHaMHmpm92IbdKckr9rH/mJsB3YO//TA74CHKnOPo0aOqIG3PqPJgYqGOiXwovD7J3kwXG/c42LjHgcMVLLXQamH6OCuXnRuJxdQ814tWE+2MDRHtDLFLdYX8Ng0DehJ7/3U4t+zFc+QE0uWm8OH/0P7T5xHGYELBsW67WnKq65SMYXBvOPR58PjtRuLTBvVHmo3hD0LxQXAWQfvRygKjwzgwxaibdABmjvfy/eZKZk2MDPuu29BElByGfe/D4DvUp6wXT8L25uf48orwFdqomP89UddfFLZbaMlI586dOe+889TgxaFDhzh58iQpKSlIKSl56UOkRykxrly6rt7ghZQy7Niq3oXfq1wXVainbASU0u2JE5VhNHOJDYNBuXaHDYijd++gD0KvXr04fPgweb5EPJ4TGA2GM657ATCkV0jw4rCrzuCFlLL1y0Z6d1VLvt35htr1Lvx+nJuDrn+1iXUePunmlXnFHM0K1sfFWAXXTo9h9qICEII9SWdzNKY33UsO0+FEGY44B++99x533XVXrYz1RiHUaSQpvGS/VuYFKMzUnhfD/i+U9pr/gytX1co4aQh+v+TVz0vYdSRodXvrqGOckx8QM652bVrNGs4ZYlED3N9trGx28KLJdxQhxEwhxH+EEB8IIT6s+pNS+qSUbXYCjYChZwqOkcEFbsmrnzTrOBqNhmnTpnH33Xdz2WWXMXLkSNq3bx/uKNJ+FFz8JVy/FXHDDiLvP0XZlM/41nkBG53D2WdP4b0v17J0+Qq15rWxCBXSHDZsWJ1OJhqNJqxUpMqSrU4IwfbKYCZ/fNJp1TGksejTJxgMOnz4ML5aBAxDBcB0WkGPjsEJSkYt7Ivl6ZV8viJYGTV2sJlzB5Yg7LngDtDsDFGKvVwdWLtWcfvofKQU6VUCEvoED6bewc9OoxF0D+1LA6UjprFD1JIB194MfMWl2F0a9h91KYI+XiejIgNZ8kG/Y/z48Qi/ny4nihBCYLFYiL30vHrP8VMiMLasQ3E5upsmug/9WuA5mUPOdY/iWB383ZknDKP9J8+q4mJCryPh2T8hzEp20nMsm5L/zGn2OVV3kUCdvD6lPTG/v675b+JMIDst+LgevQsIyUCAanMY6r6QHRVcGI4ZM6bGolOj0XD55ZdjsSiLk9LSUsX9KTRgWbQPTWQEkVddQId5L9Bh4ctEXX+RKugoHU4qPl9Ws3MFIbbICQPrDVx4fZKTuR5k9+nKxKNzSMCm6AAsuAB2vo5KtfsFojFC37XtRgMszjONuIdvReiU8dy5bT/25RuafpDOk0AItBoNKcZ8TMLZKM0og15wzlmhwp3BQLuvtBzPcYWRJHRaVQwzVAy0T6wj+OHVIdbp9Um2H3Tyv/kl3PaPHP75fhErt9rDAhdn9zHy4gPJ3DAtutmBC/U9tYZoZ1ztdqmhCQzjgB4Io4HE5/6kBivch09Q8mK4Nlnlt2vVxxEXnKOMEVmrghukTGpeH6vDHA8XL4SrVsOEZ6H79LDARRVuuDCaD5/swKXn1q5R1YYmYOsLimhyAMKgJ/p3l6rt0tkLg2WaAYSWjHTp0oXk5OQwrYkqdrRry94wbSrPkZqlJqEoLy/HblfuuxaLhaSkwALUdhR8gT5EtK/1mqgLoRpqPas5jVT1Oc+bEBTWL65fKLg1ECraueuIE5+vdq2ZKpcwUKyJm2WbXA26lHYIjfJZ+iq1+PS9amzjPnQcf0DAVxsfjb5XiK6ET/LZ92X89c0CTuW71DVUnOEEL/2xHRdPiKRPR+U7FEYTX/W8HCk0mE4INH4/ZWVlvPfee1RUNENbxGNX7vWgzBWqBV6q5jdQLXgBMPbv+DSB+0TZcdjxStPPDyxZV8GG3UEW+hWTI5nWLkR/LNS9JoALxgSDU5v2ObCVN2+O0qS7ihDiCeCtwH5XoBging/YmnX23zDKZ4xTF5zOTbtwbtl75k4mBFg7KG4hQjBixAjuvvvusGjfmjVrmD17dpjdU30oKysLC0LUVTJShaYEL7KyskjLjkMiQEB7eRyjO6/efaqjV6/gIHTixAns2bk1tvGcOK0uykDRvajCkWqinZv2OHhnkU1tD+5p5PdXxirri6JQCl+/Ohcd5eXl7Ny5E+H30+dQLiLgiBA1vAyRvzNs254hop2Zp+rX4NBGWYPMHSlxrN9BZq4ZvwS8dvpY9hOnL1bE15LPplu3blzefRBWH0RYLOjbJWAaUX/0/v/ZO+/wqOr0i3/u9JnMpFdIgxA6oVcFQwcFVBCxV1Zd29pWXdd1m+vqrmvbtRds2LGhgoLSe+81EBII6ZmU6eX+/riTe2dSJ6GI/nKeJ0/mztw2ycy93+95z3vOOQINSsrQLzp9qK1wrN/JySt+jydPMWiLuvFSEv/7SKMIN216CrF/kINZqP1oEfYVm2kP6r78EceaQPJGfbpIO1QcZwxOK9R/dwShVfmjppPSZ+wtLkf0eHEFzDq9Ph+FZolQ1Ov1DBgwoMl9REZGcumlSu/zzp07KXQEqZYaVKt03TOJfXgusQ/eJD9XM/9bRHeD73VF0D2giZt+PXx+kUdfKeP+50v525sVODQJcOH7cP4ToAkM6PweWP84LJyN3l3a7L5+yRAEIVoQhMmCIBgEQdAIgnA1MAZoghk6e9B26Yzlqovk5aqn38bvdLWwRRMwxcvO8VqNmq5aaaLTKvEPjBuikBdrdzmorpMGh8ETJ12vrqgMevx+fwh5kaQK8iQKIi+8Pti8z8F/P6nk5sdP8s93Kli+xY7NGTrR6JSg4Q83xPGHG+LlBK9TxWkx7WyYOOL3Bsw6lf3p+nSTfmdnEPPADfLzNfO/ka+ffpsD+/KN8msRF46WKreFy5X9p50m8qIDZxGBMZu7Djb8I+QVy6yJqBOkKr+vrJLaz0JTGhqSFwATJkyQie+8vDyOHj1K9eufhWznPlTQoilsRYXSItGlS5cgv4tgs87mW0YawusTQ5L0gseYICUDajQaSn3x+H1+fH6/NLb1exvu6rQiPVlDTGSgtd0pcqiZtu3TrboAENxWtHH1cx4Bd2nja5ZzvdyhjGFYP/n/cKLMw6Mvl7Hgp1pEUcTlcqEWPGQaVzPnAhedkqMBGN2rCq0GBJ2O41HpbE4ZjuDU0KNSSpssLy/n7bffDnvuJaNsp5IKGdMDdAp5Kfr9oW0jnRqQF6ZEjqUEFaG2/Q+qDtEW2J1+vlyu1AunjIhg9nhLAz+WxvOKLp10ctKUzwdLgwj2tqCtlPhNwERRFO8F3IHf04HMdh39/zF8SbGYZ+TKy9b/fdDihex0o3Pnztx5550hCoWjR4+ycuVKdu3a1eq5bN26VV4nMzNTcUFuBt26dZOVGcXFxVRWVja77rJly6gTIzjiSUer0aBSqZTe7jBhsVjo3LkzIFWPT+5uetDn3q/EUAVfzIN9L3bnuXjuY+V8szpreeDqWDTqwM0kWMLXQsvIunXr8Pl8pBdUYXb7ETQ61CYf5t51jYz6glUgrZl2AhhHB6WOrNrKoZMmKfrR42CEJRDp1vdmeZ20vBKMRiMqlQrzRRcgNKOa+bkgCEKiIAhXCIJgFgRBLQjCZCRvnZ/4laQPhQv7qi2U3PpX/DUSOy/otMT/8x5i7r++2f+b+dLxmMaPkJcrHvtvI8+X1qCqrKHqqaB0kWunYxgYXkvZWcOJ1ZK6CCSZeytVKEGvkwei+P14Sypks06P2015vDQAGDRoEAZD85Wdvn37hiQrLd12UrlmVjTNoUVcNCZkEGz7dmXoCuVB5EUTjuf1OHbSQ16ggrY7z8UT8yqkqnffG6Se7eCEiJPryTn0INQ0E5H9y4YWeByphawcuAu4RBTFAy1udRYQ/ds5qGIkcZj3ZBk1b3/VyhZNIENqldRoNGQHIlPrPaNaQlaqTr6X+XywZKM0OAxpGQmQ3SdOnJDN/OJMokJ0qfUQ2xNRFPlgcTWvfJ/KU+9WsnKbA3sDwiIuSs1F50Xwj98m8Ow9iQzqceoV0WAEKy/aHUGsD1JE+j1QnY+vuBxfpeRVoLJEoElTFJOWK6ZivEDp9a/403/xllVhX7YR0Sndj7Xd0iXZeclWRXkZkRKq8ujALwJOXdD49eBncFIhqAS9jqi5s+Tl6jcWyOoLp9NJcbFUGBMEgfROiSCKxMfHM2iQ4kGw7p2PcaxTJsEA/pq6kAl5QwSTF3LLCIRt1tkQhSUeAsIF4qPVRJlDxw4Gg4GePXviEI3UihF4PR7wuSSlxxmEIAgMDFJfbD/YNNEbbNapOU3kBWXb0SXUG55r8Bw+3mgV54aglpERUs1s2wEnD75QKhcWvV4vRk7QK+JrEgzHGDs2V94m0uRj2vlmEAQErZrvul6CS61jtFdQiJATJ5g/f36r1/YQNBORCuArtyoqlWgLKnPjNraS2ImSySdI18RVD8tx8eHg2zV11Dmk9ZNi1Vw/LUqiAEPGMU0XRYPVFz9ssDWrtmkJbSUvokVRrD8ztyAIWlEUN9J8X2oHWkDUbXNC5KXOBhe3Mw2TycR1113HhAmKn4TT6eSDDz7g5ZdfDsmXDoYoiiEtI0OHtm7oo9fr6datm7zcXAXp5MmT8mu73D3RBVy/EqpWtumLBaGRqZUHm74AB1dygnPn84578Pklpvpf71VQ31GTEi9VlozBUthg86RmzDrdbjfr168HUaTn/mJ0Oh2otFgG1SJoUKrHAWQFRbceOeHB72/5vRtHKxevynV7KCw3SDce0cdwy1owJUDWdLyllVT9dz72pYrde8T0c/LrKyK1iBwHqoCngXtEUfwq0J42C8m4swoYzi8wfSgciKKI9dl3qf8AqhNiSX77H5in57a4nSAIxP31DmWyXFFN+WP/C5sgFUWR6Pe+l5VJmnOxXQQaVDxzw9okWH3h2rIXb3E5flHEiZ+qGOkmP2LEiOY2lzF9+nRiY6W/73FHpGTMBdL1oIlqlaDThvRLV7/9Zej/I3hQ2oLyomFL2/5jbh6fV4Hd6YfoLLj4Kxh8n2TCDGh8dbDtZ7GAOKMQRbFMFMWhoihaRFGMFkVxhCiKpz+8vh1QWSKIuVNJ46l+c0HI4DsspEv3ZbVaTTd9ISr8smdUa5g6SvFT+WG9Da9PDFFe6AO+EcGqi2GZWqVlJL4fqLVsP+jiixV1uL2hQ8WEGDUzRpt54vYEXn4oiRumRdM9XddmQ85woOvZVVYzevIK8TvaqGKpR0xw68gBXLuD/C56Z4WkAAmCQPzjdynXz8pqKv74PLbvFMIxYupo6UFQRCrp404tIrUDPwu8agt0DfKyWP2HkGu45bKm1ReFhYWIoogKH7Pj12J4vzf8MBd8bsaOHSv7x0Qv2Yy3ibZsz+GCJs9HFMVGygsZYcakNkRwil52g5aReuTkSH4OJd54PF6vdD9rhow/nRgQQl40rUAINutUJ8WdngOX7UCXWE9eaHEfzA95WfR4cW5R3r9heA6iKPLal1bcgY+HWgVdIneTbfoBncrGsGHD5ISyelx6gYVoiwpBr6VaF8Wy9ElodpzkkunT5XUOHz7M6tWrCRvBfhdJg0Ne8p4I8rtoqLqoh6CCMf+SxwkUrQv17mkBdQ4/36xWWl0uG2eRirl1RUp0qy5SMuxsAiP6GomKkL4bVTV+Nu1to+qEtpMXeYIg1H9bdgO/FQThWqQJRAfaCG1qEuaZShLD2VZfgNTDPX78eG688Ua5jxuki/Jrr73GO++8Q0lJaMvGkSNHZOWEwWCgX7+m3XcbIpzWkWBXfHXWVNSBSqrBXQwlbZO+B5MXdceK5MfNVXLiotTEWAKtPG6RLfuc/OOtCrmXN8ai4tEb4xox1uGQF1u2bMHhcJBQVkt8lR2tRoNgMGEZFPjS1uSDQ2Hh46PU8pfb4RI5WdGydE/Xs4t8c92lTsPv8YPXTpbxMAm6Mtymiyn/08ucmHwL1a9+KkvWdd0zpOrROYbAxOSCwKQkUhTFfqIovh70+lJRFHuKomgM9Mbn/4yne8bg2r4f90FJlioY9aR8+C/0Od1b2UqCOtpC/D/ulpcdKzZT+/HisLat+/JHDHsC5GVgIH9OtYuARGYeD1JkteJ3UY9g3wtbwDjZ43ZTHmdGVAlkZWUp/cUtQK/XM2fOHARBwCEasXqM2G02fB6nJE1vApbLJ6MySf49nrxCHKsD1RNbiZK5ro2AqMxmj3vouKfRcwcL3Dz+Vjk2h19yyx/6AEyZF7TCJ1J0cQfOGsyXTUTXXZKRiw4XVc++28oWDRDXGyKSEYAIrY/OGqnCG07ryKgcI9GBe1lVrZ91O+pw71JkwU2RF91jlBZKEgciiiILlimy4PhoNRePMfPkHQm8+Pskrr0wiuw0Xbuj7sKFKsKINlNSUeL342kwwQgbDXwvgo10m0rLUsdEEv/Pe2QywrF2u2TEGkDE1IDtSsGPykbp49t3bh34+THyz6AJeKtV7IO978kvCXpdqPdFQH1x7Ngx1Pi41LyYXqpAIsXRRfDTXcTFRDN48GAiqx2kHq+STXH1g5RxcMPJcj1KS0vl9Y1GY2giRTvbRoK907I6N23627NnT/R6PSW+BPw+P36f/6yQFznd9NTznnknPHKrWzBC20ZOI3mREEReHMgPedm18wBigCzVpCahTU3iRJmXcqt0fka9wK0X1aG3r0EQJKK5KXNso0HFFRMjEXR6BAF+Sp9EhUNPP1VEyPo//PADJ0+ebLR9I4hiA/KiQdJIsN9FagtpJnG9oP+tyvL6v4XMQ5rDN6vqZAVeSryG0QMCc8eGBZhm7g1ajcCEYYr6YvH6tnt+tJW8eBSo/9Q8DNwN/Bu4r81H7gAAUbdchqCTLiSunQdxtLM3/VTRvXt37r//frKyskKMN/fv38/zzz/PZ599JsdBBasuBgwY0KL7eTB69lQm9kePHsXhcIS8Xl5ezq5dikTrgnGTIUthJuuj48JFWlqaLP3WVNfJkizTWEUpEqy8EAQhxMTomQ8qqbYFtjEI/PHG+EapH4LohaogE7UmyAu/3y8zqr32FaMLmIGZLx6LOiOIOS/bHnIuXYN9L5qYsISchyBgPG8AADti+yB4POBzM8i5keKPkin683bqvl4mS8lAYmRjH721mT124FxA7YeL5McRF41Bk9y2eDDjqAFEXqt8h6qenic59zeA6Pfj2nUI60sfUTTnASr+pGR/R14zDcOg8AdJZw3VR6AuUIXWmZs1GGyIYPMqRyC/3e3xUB4vVatHjhwZ9imkp6czfrw0YSn2xuHz+bHZbGz/cT5eb2PCUWWJwDxLUbrJ7QQhUsveUlWkGQQrL8YMVIyMDxV6+Hs9gQHSRKp+UONzw6636MDZg6BWE/OQ0qpn+2YFVc+9F+Kz1PIOBMiQihtS6ohEJoZDXmjUApOGK4PDb5dW4rdL91t1Yiya5HjKy8spLS2V958gBik6kgax96ibA8ekz5paJfL3W+O5ZmoUWalnnrBoiJCCQ3B6T1vQIHEk+N6v69OYvAAwjsgh6oZLGj2vz+mONj1FIh3rB+wqLXRuzke2A+c8LJ1h0O+U5Y1PgV0xejc3VF8sWELh0UPMMn9Hd+3RUMP6vIWw+hHGjR1L330S6ejz+fAM7kHEFOUz4jncdDtfsOq5S5cuSgKQowLsgWKixgBRXZrYumkEkxcNzTrrodVq6d27N6VeaZzh8XpC701nCBFGVYjnXHB6RT2ClWunxfNCFKF0O9rEwNharcVzuAAx6L4d0jISSBkJPrd+3fTs2aqI/YYPH05kZEMveQm5g01kdjYiaEQ8Ki3fdp2O/bulTJgwQW5x9/l8fPLJJ02OHUJQV6QUI3QWiAk1Gm02aaQpDL5PUUg4q2D931tcvcbm49s1Ctlw+XgL6voW+jBaRuoxcXiETFjtOeKmsKTlOU5DhE1eCILQEzAAJwFEUdwoimI3URSTRVH8vE1H7YAMTXI8ltmT5WXrix+edfVFPUwmE3369OH+++9n4EBlIiCKIlu2bOHpp5/mu+++Y/du5QM6bNiwsPcfFRUlf0n9fj8HDx4MeX358uXye8/OziY1NRW6TFVWKN5IW6BWq2XjTpPdLV8QjKOHyGapnqMn8NsUEiW4dcQXmANoNfDw9XFkpDQmaQyuk3JONOZOUm9tA+zdu5fKykrMtU5Si6rRaqVjWK6ZHjrhKt0Wsl231Db6XowZjFOlY390NwS3B59dTdelh3CeiAqZDOkH9CThmd/T+buXzs1JaQcA8FVYsS9Rkgoir7iwXfuJuedapQLsdFP20DOIHi/+Whu2H9ZQ/ugLHB93Eyev/D3Wlz4KqUhq0lOIvvvni0VtEYXLlcedzpcUB2EgpBLh90vtHqJIWYKZqKioEJI1HIwdO5bJkydTEhjwIULZvuW88MILIWZu9Yi8ZpqUIwk4N+yU1F9hmnXanX6OlwZ6WQW45ZJobp6hSFTzjnv425vl1Nn90uS3/+3KxnvelgzpOnDWYByeE+I9U/3GAk5Mu53aBUsQw0n3CrSOaNQasnXSZ6k1z6h6TBwWUf8x41CRl2NmaYBa71sTrLrI7tYNdXlQ22riAD4PUl30SrURH316DDjbg9Ni2hmkvBArDzSKSW0O0XdfHUKeQFDLSOFy5cmUYRKJ2oFfLvrfBpGZ0mN3DWx8Qn5JZdCHqi9e+4ShJf8jK2Cmq9ZoQidse98jYs3zZJ+okZ9alxqBtlu6vNyc8uLIEaXNudmWkdieoArPq8zp9lNYokyIu3Zq/l6Zk5NDsS9AXng8iOV72tyy3R4M7K4oO7c10ToSrLzQnI62kboicJSjNvjRRIogqBE9Xjz5ikrbEWTWaRxRT14o55YYUSm38Wk0GjmStimoVQLXT4tB0En/s81Jw9m36igq4PLLL0ejka6vxcXFLFnSSvdjsOoiYUCjYkeLZp0NoTXBeUEmtQc+hhPNJ2R9tbIOp1v6PKQlahiZE5QEGaK8aJm8iItSM7S30i70/fq2GXeGRV4IgnADsAt4BdgtCMLsNh2lAy0icu4sBEMgmmvfkRA/gp8DMTExXH755dx9990hqR1er5dVq1bJcUCdO3cmJSWlTfvu3VuZLAcPnqxWK9u2KZP3sWMD0X9JQSkm5XukeKA2oHv37iCKIeSFNrMT2q4BplEUQ24gwYQBSBOE+66KpVczWcQmZ1DPYjNmnStXSn2yPfcXo9NKfcXGMYPRZaW1SF50DZL2HW5FeQFgHDmAfXE98Qoa8Iuk1J4g3lEmXZzUaiKmnk/KB/8i5f0niZh0HoLm5xuMdqB11H2+VFbK6Pv3QNcz/CpLMAS9TopPDSi83PuOUHTJ3RSOvo6y+/5N3Zc/4Su3hm6kVuPqmUHSy38699pF6hHcMpIWvm9LcNsISKoLgPJ4M8OHD2828rk5qFQqcnNzSeiZizrgYZSkKaOsrIxXXnmFhQsXyhLg+uNHTFLUHTVvfxWaUNKCWWcwiZmerEWvUzFlpJlbLomWnz9ywsNf3yin1u6HzMk4dQEjQncN7JvfpvfWgVNH3J9uRd9PuY/6yq1U/PlFTl5+P44NO1veuPP5oJakxkm6GqJUkvoxHPVFtEWtxKZ6vKxMlj5z+v49EEUx5H47oGu00qtsiOFgVTI7D0ufWUGAYdk1/JwIiUs9DYkj3mPH8FdLRJ4q0tyitFrQakj41/1y/LSg1WCafJ70YnDLSEfKyC8fah2c/7iyvP+jkImior4Q8RYeJfFAwERbJaAacj9c9j10U5Koat76DL3gQQBKkiLZ53dwVFQmv54jx0NIzIKCAj7++GP27FHuB6FmncHkRfiFp6NFHpl/SEvUhHq2NUB2djZuQzJutIh+EZ+ttE0th+Xl5cybN4+vv/5aniuEg5DI1IOuRj5vIZ4Xp0N5UaYQE9p0Jamjvi3Nb3Pg3qkUWA3D+uHxiuw5Un8PFinJVzxwhg0b1qzqoh59s/QMzSiXuyk+j5uAc/NeEhMTmTpVKdSuXLmyWc9BINSss4HfBbQSk9oUMidKUcz1WPWQEscbBGutj8XrFJJh9oRI1ME+R2H6dtVj8ghFHbhiq13y7QoT4SovHgIuE0UxEckY7w9hH6EDrUKTEEPklcoHx/rih+FVZc4wUlJSuOmmm7j55pvp1KlTo9fDMepsiGDfi4MHD8oXtxUrVshtHZmZmQrbrI9UKiair9EEvzV0794dnduHyi9KxzLqUZlNIT2uwXFpWalatEFz+ttmRjOkl5HmEEpeNK7YHjt2jMLCQnQuL12PlktGnUDkdRdLKzQkL4IY7mAiJb/I3aojr2gysbL7JCSvS8gp24bKpCPq5tmkfv8qCf9+IGy/hA78vBB9Pmo/URIfLVdMbWHt1qHLziDm3uvkZc+xIkRv6DVGHRuFecZYEp5+gLRV71Bx3xy0GY2/9+cEfG44sUZZDtPvAkINO30+Hz6fj+ooI36jvl3XtHqIsb0xmUwYDAaSNJXUfw/Xrl3Lc889F6I0iwySotu+X4P3cHjKi0NBpmvB6UgTh0dw28xoeTn/pIe/vF5GtR2KEi5WdrDzNfC1TZ7ZgVODOj6G5PlPEf/E70IG3e4D+ZTc/Bildz2BJ8iTKQRao9yKoNFq6NaGyFSAC0dJg0PR42VHbB+qtRb0/Xtw/PhxOSVBo9HQo4HfxefLFYXOef2NREec2bjE1qDr2UXun3bnHW979CyEJI64i1RyzKC+T1arbTDazE4kvfZnIiafR/xT90lpB34vHA9KDErvIC9+FUgfB5mTlOXVfwS/9FlRGfREXTdVktf73Ti2xiN6BQ5EXSr5DAkqGPscpI/DW6embpcZwVOHQQN7+kiFviXr16JOiAFAdLlx5p9g27ZtvPjii7z88sts375dHgtbLBaSk5UUnBDyopXKdjCCWw2zmmkZqYdaraZv3xxKvZK6wevxhO174fP5eO+99zh48CDr1q1jzZo1rW8UQJdOWiIDPm+1dj9Hi0LvU6FtI6dBeRHUpq3LTpMfu/fnA+Datk8eI+m6Z6COi2Z/vgu3R7qvRxo9VJVK6q3WVBfBuG6CgEYjXU+PWjJZuVDax4gRI8jKUuYln376afPxqS34XUAD5UXnFjwvgnHe3xXlmDUPtr/YaJUvV9TK7z8jWcPwPkHJUq4aqAnMh1Ta0HjqZtA3S0/nBGnC5XSLrNgWfnE6XPKikyiK9VlfXwLpLazbgXYg8qZLFSO3wwXYvw//S3+m0a1bN+644w7mzJlDTIx00Y2KiqJ///5t3ldycjLR0dGAlGxy9OhRamtrQ3w0ZNVFPZKCJhTFm2gLIiMjyYiQZNUi4LFIlShdL4XNDq7kGPUqbr00hh4ZOu6YHcPYIRG0hAhnkCw8rrHyYtWqVQB0O1yKUVAjCAK67hkYhgdMTiMzQR+QfTuroEbZX7RFTVyUVMl1e5Hl4s3hixW1FJpTERDRCF7GdfuB1Pm3EXP/DW32SujAzwvHyi14T0oGjqqYSCImjTrlfVquvgjjeaG+ELpeXYm67XJS5j9F6vJ5xD/xOyKmnI868hyXPxdvAm+g3Ssys0WDy4bQpCQobWMB1UVZgpmcnBzM5va/b6cuEUEbgU6nJcGiIqebMui0Wq3MmzePTz/9FIfDgb5PNwzDAtcAn5ea5YGqt0rTYtTioaBBaHCPMMD4oRHcPitaXi4o9vLXN8rJN40DY+D7bzsJh79s93vsQPsgqFSYZ4yl8zcvEX37FQhBaib7so0UXXI3lf96C8HWxGA1KDK1WyAytSnPqKbQtbOOHikCos+PT1CzrtMIdL26htxvc3Jy0Fcrk6J87Ri27FfOY2auhZ8bKrNJIVJ9PjwNjPXCRiBxxF2sk9MkGraENAfDwF4k/Of3yrW4ZIsSkWruFOqp0YFfNkb9TVJhAJTthP0fSI+dVZgNr6E2St8Pv03L1h3DcPcJ8g5Ta2Hi69Tu74nok0ixiGQr0RnSNb64uBh7QhSiKOJyufjgif/wySefcPx4qBdVTEwM11xzjeJ3Ae2OSQ1W7gaT3s2hf//+lPgkkt/j9eIv29XKFhJWr14t++gALFu2DLs9vAmpSiXQPzu0dcRms7Fo0SK2b9wkK6UEjRp1XFRzuwkfQQl/ur5KwcB9KB8gRBXX2O9CROtR5g0teV00REqP/kwyfSfv59PjibicXlQqFbNnz5Z9+qqqqvjmm28a78DnhvKg/0eDmFTR58MXGDtCGG0j9YhIhqEPK8tbn4dqRf1RWePjhw2K6mLOxMjQdKlgYi2me1htvIIgMDkoNvX7IFVHawiXvJDPUJRMCdpq9NmBVqCOicRyrRLVZH3xoxDjmJ8bKpWKAQMGcP/993Prrbdy9913y1+ytkAQhEapI6tXrw5pRQluVQEgOYi8aGPiCEBWtDJxr9FJH+Vggy7XvtAY1QsGmXj8tgRyBzXORm6IltpG9uzZw549exD8frofLAlRXciVHkEIVV+sfDCkLz0rpHWked+Lo0VuPvuxFkHlRR3hZXbaPLLPs6LqO6vZbTpw7qL2I8Wo0zJzAoK+5WpJOBBUKhKee5jYP/yG+L/fRepPb9Hp02eIufMq9P17hEQFnvNoZ8sISLJvTWIsoigGkReWNhl1Nr1jlTygVAkCV0zoy+WXX47RqCi3tm7dyrx58/D7/UTeEFBE+L3U7TDjdwqS8Za66f+1KIqtmq6NHRLBnbNjZFlqYYmXT9an4ugZNLje8dJZ6WHuQGOoTAaib7+Czt+8hHmGQtKLHi81735N0qOvYWtYuAj4XqgEga6Gk2hx4/f7Q6TlLWFCrDKZWJs6ijqPjx07FMn00KFDQxSNXxxVvgfD+xhISwrPS+ZM43SadrqK9Qp50YLfRYtomDLSEZH660FkOgy8S1ne8E+oPAhfz0JVvYeo4RIR4RR1mHZoSE8JVSj67F5qd8RIZDQQPcLK5bE/kaqRkiT22Kqoq6vD5XZjLA5K0VCrGTRoEHfccQejR48mPT2oTuzzQJWSGFRn7MkLH1fy4mdV5J9sWU0X3G7YsDUawFdTR+W/51H91heIokhmZiY1Wqm1WvSL1Bxd1+L+ASorK1m6dGnIc06nk59++qmZLRojuHVk2wEn7777LitXruTbdz/A5ZaIA3V8zKmPVUS/REoFoBs8Wn5cr7xwrm+avBBFEbfbg+CQoqc1Gg1jxowJ/9jGWOYMXE2ET5qoV6gtfP2JNAeJiori4osVpeSWLVtC2usBqcW0vqUjMhOMoS00vtJKWTGijo9uW9tvn+shIVCU9rlh5UPyWOGLZbXU+/1nddYypFeD+V8bW0bqccFAE4bAvOxEWfhz3nA/ARGCIBTU/wBRQcuFgec6cIqIvP5iVBaJhfIcK8K2cEUrW4QH0ePFtnQ9NR98i/W1z6j6zztU/O0Vyh78DyW3/52T1/6Bopm/4/jE35Dwt7cbTeaDoVaryczMDIlVbSuCfS92797N+vWKx8fYsWMbSziDyYvizdKFpw1IMymVozK/ZM6n66HIUNudHe+uQ+8ODAxVGohWBkFlZWV8+umnAGQcqyTSI6JSqVAnxBJxUYMLXXYQwXBiNXxzuRxXlBVs2nmi6RuU2yPy34+r8Lnt4Koh23iAaTGfQe/rmp0IdeDchafgJI41gcmEIGC5fHLLG7QBKqOeyKsvwnzpeEn6/EtFYdsjUoOhSU2SzMjql/t2Iy0trcVtwkLQTVuo2MvAgQO57777yMnJkZ8vLCxkx44dGM8fhDYrDfwe/B4VtTssEN987HRFtQ9rrXTtM+gEWW7ZEBcMMnHX5QqBUVGrZYlttuR9A1B5AArCH1B24PRDkxRH/BO/I+Wjp0OiE1U2J2UPPE3dwuXKypbOsqpPr1WRqZUqtKtXrw7L3LtvyS6i3dJky6Yz8/E3B3G7pcFvQkICGamdIFBZPeFKZe2RaHnbmWN/ftVFPXSnybRTFMFdoigv9H3bS14EfYc6WkZ+fRhwB1gC9wSXFT6bCJX7ATDl1FGrN+BBi8nhwbwmNJGj9oNv8TvcoI9Bm6TCmOXAoIXLLd+QoC6nIkIr33uiqh1ERkYyadIkHn74YWbPni2Z1TeE9bBiDm9JY8EaWLXdwfItdn7/QilPv1/BsSZIjBqbj5LKwGRWTSPjedHvp+yep6h55yuqnnkHx7KNqFQqYropqSje4h20BFEUWbhwoewrFzw/WL9+PRUVFc1tGoJg5cWePBtHjkmtbUaHG5fLjdvtRn06zDprjimqKUMsmt4D5QKRr6wSz9ETuPcHVAcqFUUxBr5c+CN7Dlupra3F5bRj0UiJHm1RXdTDktaHS7yfyctfbvJhrZX+RwMGDKBfP2Uc8Pnnn1NXF2S03ZrfRXDSSLiqi3qo1DDmX4oB6InVcPgLyqxelmxSVBGXT4xsPE9rQ9JIMEwGFReEUShudKphrjcOuDboJ3j5msDvDpwi1JFmIq+fIS9bX/0kJNqyPRD9fsp+/zRl9zxJ5ROvY33hfarnfUHtJ4uxfbcKx8otuLbtw33wGN6TZWiPl1L5+Kun+lZaRJcuXdDrpYtUTU2NPJBKTEwMUWXIiMzAownIxNw1IexzOIj2CbJ0qEojUlpaenqy46uC0lKiusoyKZfLxfvvvy+Z9Iki/Q6XyyoVy5UXImgbTDqyZ8Kwh5Tl0u3w1cVQe4JuacFxqU0rLz5eYqXweCW4atCpnNzV+T/4tJHQ98a2v6cO/Oyo/Xix/Ng4Zkj4PYv/T6D1ViuySUENnc9r8z7UKQnydcdp0DBgyvjTc3LBN+1AJcJsNnPllVeG9MT+8MMP+OrVF4FJVM3mSMSo5qXAwX4XWanaUKOsBhg9wMR1FyrS2uU7RMSeQakxO14K+y114MxB37cbye88QcIzv1eM1USR8j++QN23wX4KkvpCq9XSwyDVikpKSholdjUF7679nF+8AZBUR0s3K+Z9Q4cORajcJ0+Kvqi9SR64Duyup2vnc4f81p8O087YHnitGvwuFYheVDGRqFMSWt+uIWzFikxapYVObb8GdeAch8YA5/1NWa4nDgQ1hT3vZ2svyZdNrVZT+9bniC7pfuK3Oah5PyD3F1RE3XsPQkQ8KkEgUi9yheVrfLHSRFWjVpOtNfPggw8yduzYltsWgyrbvtjerN4R2o6xYY+TB14o5en5oSRGXlDLSNdOWjTq0PtGzXsLcW5U2hAca7cD0GXIVMTAyFnnOIHHXt3sqe3du5f9+/fLy9dff72sGvH5fHz//ffNbRqCKLOarFQtfr8fp9NFrVfyCTHZA/dql4tyf8sqk7AQ1DJCQn8EjSYkBabgf+/hcjqx2+0c1fp486MPWLQiT1aIR6jLUAse9Hp92F4XIUgexuS0b0iyFwMiDqefeQutsp/EJZdcgsUiEcc2m43PP/9cIapb87toq1lnQyT0g75KxDdr/8znP5RRb8OYnaYNSYaREUxetMGPBWDSiJbb85tCWOSFKIorRFFcAawDegBzgJsb/HTgNCDymumooqUPrfd4CXVf/tjKFi2j5s3P25xe4tpxAPfhMyemUavVUgpIA4wdOza0v68egkCtKagPvI2+F/6yKjmGyGHUceCAJPc6ZRlqpXKxrjfrFEWRBQsWyH1/ncrtJNl9CIKAYNA1XUUXBClffMxTivTUmgdfzqBrhJIDfqzYg8cbWmnbd7CCr5ccl1NYrkmcR0qnOHZ1+ycYTwND3YGzCr/DRd0XynfecsWUn/Fszk1E1QYlNCQNlnLO24hKnYA/MBioSo4hpx3+PU0imLwoD63G5ebmyhUpq9XK+vXrMV90AeqAGaLPpsa2s/lKenDLSHYrpmsA44eY0Gml60lhqZe8+LmyjJmidVCytYWtO3C2IAgCEZPOI+Wjp/F0Dkyk/X7K//CcQmBkTASk1pG+kaXUm8HWJ1k1B9HjxbX7ECNLN6P1e/CrBKrsJmy+RFmiXl/JK3EnsapKqbbOGnfuqC6ggU9Ve007o7MlvwsAvxd9766tmnU2iYJlyuOU4R0Rqb9WZEwKVdWoNDDxFXY6sjjcLRGnQYtarcZXWkntAinesm7BEtmfQZOaRMTMS+GiD0FnQafXE2fwcXmvDZgjTJhMJnQVNQjhFCmDPAX2+sbIKryG4Vgbdkskxn/mV1BQ7Am5b2Q1ICPdB/OxPvdeyHOuHdL4ODWjG9WqwPVIFCnY3jQB4XQ6+frrr+Xl4cOHk56ezkUXKSEEu3btoqAgvDnFgO4GnE4noihS4+1MfHw86SZF2XCgvJh161pvY2kRweRF4gAAdD0yEUWRuro6ar5YisvtxuvzUZwkHbvWq7QGdY6pY9SoUdx6660yydAmJA/FnGbj0sJPQJSKzGu21vK7/5Swcpsdg8HIZZddJq++b98+tmwJkBatKS/aEpPaHIb+HiIk4qi4WsuyDYpy5spJTagufJ7QYm4blBcA6Ula+nRtG1He1sahd4B7gFogr8FPB04DVGYTUTcpWdLWVz7BX9e2eNB6ONZup+q/H8jLxvMGEnXTTGJ+dw2xf7yF+H/eQ+L//kjy2/+g04JnMY0dJq9bt6CVnOFTRHDrCEBsbGyIVKohaiPaT174Sitk8sJu0snVqlPOjq8McnwPyHpXrVrFrl0Si220u5lY5kUdIGTMF49DHd3Cha73tTDhVamSA2A7iXnxxSRZJHMon48QRt1ReoQX39wu97/lRGxn8mDg4i9x6zoMOn+JsC9ejb8mMPBJS25ksNkBiK4LkrC20e+iHtv1ymDRcOFotNrT1Ncf20NSgwDU5INHkVoaDAbGjVMGwsuWLcPpthM5QBkY1Hy5q9lWgEMFLftdNITRoGJkP8Vv46d9Zuh2ibLCjpdb3UcHzh7UMZFSwk92hvREgMCwLVol+SIZJLNsi9pOsqYcgCNHjlBYWNjcLnEfyEd0ujH5HAx1HsITKJ+VunvRu3dvIiIi5IH8VxWz8AvS56pPVx09Ms6tiOTTYtqpj8RVoZD6uq4x7TuZwo6Wkf8XEAQ4/58Bb4E4mPQmdL2I/Px8fBoVe3unyPHY1W8swF9np3rel/LmUTddKkXSx/eBKe8gqPXo9Tpi9VZ09R9Dvx/P0ROtn0tQnPbqEqUNceKwCP51VwJDe4d6EKzf7eT+50v5ZrXSchB83xBdbsoeeraRutt98Bh+u1MquAWZgpbuXUZTWLp0KTU1UgtGREQEkydLBbr09HT6Bhlhfvfdd2G1uUVpTsjtJzXeTlxyyaUM7dodTYClsZt0fP3112zcuLHVfTWLoKQREgYAoOueicfjwS+KqIOS/YqTI4mPT8Cn74bRaMRiNnPX3ElMnz6dlJSU9h0/OgvBFM2QxI0MLN0MiIhON+XVPv77SRWPvFyGT5vBiBEj5E0WLlxI5YkDSqKHWt/IZw8aKC9aiIBuETqzVEwFFpTPwedxgc9F7y46+mY1cV+wHgppaULftjYagFsujSE7LfxxWFvJiynAKFEUHxJF8a/BP23cTwdagOWKqajjowHwlVRQcvvf8dtadxYPhreolLIH/wOByCXD4N4k/u+PxNx3HVG/uYzIKy/EPD0XU+5QDEP6oOvRBcuVF8rb1329TJbBnQn06NEjhL3Lzc1F3ZBCDkKNKSiGtK3kRUlFiPIiPz8fl8vVbOJI2AhRXvQiLy+PxYsXY6lxMmzDUWYv3ochT4nAi7x2RhM7aYCsaXDhfNAGZFQuK91c34FPqjLJLPrxlbz3ygJKHNEAmNQ2bp/qRDXpVaW3vQO/ONQEG3VePvn0m2hWH4WVD8PueW32jjknIIpE1QaRF6m5bd5FZWUl22vLWTg9h0VT+9LvN1eevvPTGCAm0EMviqHXCKSqVH1ik91uZ9tPH2HOqUbQiiCocR8+jjMg2w2GzyeGeN6Eo7wAGDtYuRas2WHH3fu3yotHvwtxE+/Azw+/xUTyG39VJMx+P2UPPYvth3WQJk2SVYLAmAzl3lyfaNUU6quoAONTqmSDWqs3nexegWJF6TYqPbH8ZJ0oE+ezziGvi2CEGG2307TTXaG0U+lT23F99XlCI1LTOsiLXzUi0+CqtXDtdsiciNPppKRE8hXIy05CF4jt9JVWUnLb3/CVSX5l6vgYzBcHfTY6jZD8BALQRSlGnZ6DQal1TUEUoVJSXnj8GtYXKMWp0QNMdOmk48Fr4/jXXQmNjBTtTmUiHpw0UvXCfDyHpOMKBh3qhIAHls+HO/DdispS2qG8JTsaRXcWFRWxdu1aefmiiy4KMaieMmWKPK4/duxYY/PJBnA4HGxZ+yVqIXB900ShMaUhVlRjNBpRq9U4jNJ7+OKLLxQ1Qlvg94aqIhMl1aWuR6ZMmgBoNRqMkRZu/tffmX31XfhVFrRaLWaTmq6dT7HYIQiQPBRTDztX73uLy/I+x1Rbia+qBr/NzuEjdh57tYx91lGYoqR7gdvtZu0XL8peKSTkNJno4T1xCp4XwciYQFHKjayoDrTUumqYk6tpWqnWTr+LYHSK1/DE7eGfb1uv3AXAuUXH/wqhMhmIue96edm1dR+ld/wDv72ZzN8GEF1uSu95Cr+1FgB1QizxT/++sddCAxhG5OANRBD5q+uw/7Shne+gdRiNRkmyCqSkpMiPm4PN2FUxn6zJB3tZi+sHw1tSgSAIqFUq7CYtPp+PvLy8RjLUNpE1oggVivKiRtuJxc+/yvkrDjLtm510z6/EqFUmGJFXT0Ob2ampPTVG6vkw/TMwSDeTLN0+cFrB65R8L3bPY+tH/2FJeeDGKAjcPFEkbswditFOB35xcO06JA8aBJ0W86UTTu8BSrbC5xfB3nel7Po1f/rlpU5U7kfnrZIe66OkG3gbsWGDdF2rsxhIHD6A2NjTbFzaQuuIRqNh4sSJ8vLxHd8jGHxY+tXKE8fgyp28XqlX7oeNiVQRG9k80RuMHlEOog3Sdc3uFNlYnKFUikURdrwS7rvqwFmCOi6a5Df/Jpm5gkJgFHSR1+llUiq1u3fvbtYQz7VduUfpEvyY1RKZrlKp2XcyHlw1YD3M1xUz8YlaUGnJTtM2XV07B6A7Rd8L0e/HrdQT0CXUtv0kSjaDO7CdubOUENSBXz9U0jW3oKBAVhAkpHYieq5iuO7arpDVkdfPaJwSljVDbjHSRlfJfkee1tq0HWXgkL7j212jsLulc0mIUYdUq7t00vHQdXE8dWcCg3uGkhgmg0BKfKCIt34nNe98Jb8Wc/8NGEcrY/B60jOyy0hUamlMmaAqZd8+5Xri9/v54osv5L9FVlYWAwYMCDlmXFwcw4cPl5cXL14s+0Y0hR9++AFbXQ2RmiIEQcBgMLD9oBNfYAxvMhqJyOgsr79gwQK2b9/e7P6aRNUhJWY9IgVM0oTZ2SkOb9C5GQwGLMP7Exkfy45DytwrJ9vQot9U2EgeiiHNic7o4byilTyy/VnGH/sJVV0dPmstvvIqNq6vYEfReMqsA/H6dWgqd+JxB4oYTbSMwGlSXgTwad2diEiftX6mrfQu+XfTKwapgtrqd9FetDrTEQRhXP0P8C7wlSAIVwY/H3itA6cR5hljiX3wJnnZuXk3pXf+o9VUDFEUqXj8VfnGLmjUkhlYQuvySEGlwn6+0rpR+9mZbR2ZOXMmd999N7fddluLqgsAUaVVInwg7MhUv9Ml9x+qdTqcBulCv2vXrkYyVHdbZKiOMnBWIopgPxbDriv/weivtpB6vEq+yALo+/cg8YU/EPPQTa3ssAES+8MlX4G5M92MhwARXFbydmynbsU/eaXoTmk9Qc3wfhZGT21DVFMHzkkEx6NGTB3dcotRW3F8pZRi47Iqz+2eBxufOn3HOBsIjkhNHSMPKMOF1+tl82bl2hE8sDptCCEvGsdZ9u/fn+TkZAASKMblcmEZUgsa6drkXL9DcToP4FChQqx2D1N1YV+2kePjbmbEpm/xV9ciuj38tNkG/W9XVjrwcZuI4A6cHTQiMHw+yp5dhe2ANPEx1OyjX5b0GRJFsVn1hWuH0oe8011DglaafGi1Wn7aZMdZtJNqbyRLrFOlfn5BYNa4JnqazxGcqmmn99hJ/C7pvalNPtTtCcoLSRnpiEj9/4ZjxxSVREZGBubZk1HHh46vVZFmLLOb8DfT6CFdIq918W7wSZNi96FWlBdBfherHdMhYKR5fo6xye9q1846Hr4+jifvkJQYUWYVV0+JQqUS8NXUUf7Ic/K6xtGDsFwxFf0ARd0sK7biesstlQnqCnZuVyKVN27cyPHjUvKRWq3mkksuafJcxo8fLxvWl5eXN9vucezYMTl5MFJ9AoPBgCAIbDvoxFcqqVQEQWDGjdfJ909RFPnkk0/kVu2wUBak3AyaU+wvPIbdJN1bNWo1giBgHKFEpNYjOBHllJA8FEEN8dPL0ad4MPrdXFS4hEe2P8fg8h2IIohuDz6biwp3TwqKL+T4zhHYK30SYZTYuOArerx4SwJEtiCgaY8ZcQCFJR5W7/aDTmoBuSLhPdjzNpxsoqjdzpjUU0E4Zdo3g37uBJKAJxo8/8apnoggCO8LgnBSEIQaQRAOCoIwt8Hr4wVB2C8Igl0QhGWCIGSc6jHPdUReN4OY+xUFhnPjLkrveqJFo6q6BUtCDP9ifn8ThoFNJHg0A/uofhCQqjs37MRTcLIdZx4eVCoVKSkp6HRhGrU0jEwNA/UXPQBdcrw80Ni9ezcOhwNdb0V94WrLYKhyP7YDJsrnp1P8cQyWYwrbaTIaMV0whOR3/kHy+09iGje8ffL/6Cy45GsykwUEQWK3j9dG8mLRPVR5Y0GlJSoujt9c0U7TsQ6cM/BZa6Xe9gAsc06jUWfeQvjuWtnUNUSds+0F2P7zJ0/Y7XZWrlwpD4aaReFy5XE7WkZ2796N3S79HaKioujZs2crW7QDwTfvisbkhUqlYsoU6f+bpC7D4/GginQTMUbpL65++8uQbYLJi3BaRkRRpOrpt8HnY3DxFkSXG5+1lh0bSznyVTk+U0Cx4nPD7rfCf28dOGtQx8dIBEbXQGyiX6Ts2xRsB6RWoIlpCum0ZcuW0Dg9wFtaKZu3+bUadturiNKcQK+qRavVYnOKrNpYyreVl+D260ClJTNFy6Ae56bqAhooL/KOg9vTwtqN4dpzWDat1SW7EaxtSy4DOvwuznEIghArCMIXgiDYBEE4JgjCVadz/w3JC5VBT9TNl4asE3nNNFTmZtp3s6YBoE3wgLdt5IXDb2BzlaI2PK9/yy3CWamSEuONP6YwaXgEoihS+bdX5HGxKiaSuL/dhSAI6PsrJvqunQekCbIpAbVFKvBp8VJ+ZDNut5va2tqQBJHc3Fzi45v2WTOZTOTm5srLP/74Y6P2E5/Px+effy4vD+xpRBtQiu/Pd2OrUK5t5ozO3HzzzSQmSooJURT56KOPKC4ubvFvIaMJs06QxgZVMdLfUxM4tmF4Dm6PyN6jypwrp9tpuj4m9AeVFmOGk5Qr80hb8jwJzzxI+iUjuMGzhnt3v0LX2vzAygIutZFvI6/gi1W3U71b37RZZ3G5bBWgTohB0LWvvcXrE5m/OBAlq9EzMOkE3U0BQmv5ffLnFpAUnKehbaStaHVGJYpilzB+ura2nzDwTyBTFMVIYAbwuCAIgwEEQYgHPgf+BMQCm4GPT8Mxz3lE3XgpMfcoSbTO9Tso+92TTbY4uHYepPIfr8nLERddgOWqCxut1xL8MRaMo5UvRd3nS9tx1mcIIeRFeGY9vhJFTmtMTZYZW6/Xy86dO0MHQ/uOhH0qdV98T9lXCXjKdHgD1gGiAOIFg0j76r8kvfQnDIP7nDqpYE7BOPNjUs1W6RiiwOba4aAxgiGWWy+LJ8rctupzB8491H2xFDEwENf1zkLX7zRJkfe8C0tvU8yUIlLgsiVyegEA6x+X1vuZ4PP5eOutt1i0aBGvvPIK+fn5Ta/odcLJoOSk1LarjepbRgCGDRvWdLrRqSLI5IyKvbI0OBjdu3ena5dMEjUVkqjK5SJyruK9YV+8WhqIBBDiGJ/aOnnhXL8TzzFJHx/jstK9WiJm/T4/S786wvF/qyn7Oh5ngR5x17wQY9EzCr8Xji2FVX84O8f7hUMdH0PSm39H2yVAYKgMlC+Mx3bQRHzhR3TrFEgm83obOfAHS9hrkqIQVSoEQaRferX8uV+4K4HFlYFUALWWmWMt5zQR3lAtqT3eNtWQO4i80Ke4oOpwk9/PZlF3UmkXVWnbFdPcgTOOFwE3UqH1auBlQRBOy4zK5/OFGORmZmYCYJ49maPpObyTPYe9nQZgueqiZvYApI0FrQlttAdB8ILfi6+kAl9NXfPbBBR8m2uH4xYlFUNaooaMlLZNTm3frsS2eLW8HP+XO2RVtrZLKiqL5LXmq6jGe1zyTtAk5cjK6ARVKSdPnuTbb7+VCYjY2NhW40JHjRpFVJTUkm6z2VixYkXI6ytWrJAT+nQ6HVfOvoj0ZOm9eb1+DkVItWqVJQKVUY/ZbGbu3LkyYeL3+9m8eTN5eWEUIIPNOgPkhd1u58iRI1ijJcW0VqNFZYlA17sr+4+5qPc07RSvISGm5fb7sKExSLGkAaidB4iYNIq4x35L6ncvM3LBY/z5cgO/jdxBgrdaFnj9kDqNY0u6c/Iv7+OvDb1vh8aktq9lpKLax19eL2fL/nqCQmDO7CFKqlv1UdjyjLJB3QlwB4gOXaTUSncWcM40yIuiuEcUxXp6Swz81M8sZwJ7RFH8VBRFJ/AXoL8gCGegbHbuIWruLKLvulpedqzZRum9T8mTHQBfZTVl9/1Ldg7Wdc8g7i+3t2sgYpml9NrXffkTorcNN/cziaQhyuOyneBtPSrNG0ReaJLjGTJE2ceWLVva1UMr+nxYPwiYhorgVas42D2JQw/OIeedf6HrnhnWfsKGIYasnByJsBDU0kVEH0nukAiG9ja2vn0Hzm34/dR+olQxIq+88NQnEKIIW5+HVQ8rvhbR3eDShVIyzsRXodMoZf3Vf4BDX5zaMduJDRs2cOKE1MPv8/l4//33sVqtjVcsXCYn6xDdDSxtu0kWFxfLxIhKpQq5FpxWGOPAFBg4+FxNmmIKgsBFo/ugQ7qGV7u1lCalYBgiqTZEr4+a9xcC4HD5KSzxBraDrNTWB6zBLUiOIT3J7aNGCPTpbkoYiE/UYTsQSfFHyZx4KYI9v7uZ4uNhON63Atfuw9R++n1jdaD1CGx4At4fCouugz3vnPKx/r9AkxBD0pt/Q5vZGTRGRLSUfZVA9QotM+KVite6detwuxWSy7VTMes8olPMeWdNSsWgEwCRk7VmHH6p2tgpXsPwPqF98ucigk07tcfCrLYGIN3jBRBU6JLcEqlb00rVOxiFwRGpIxRj7Q6cExAEIQKYBfxJFMU6URRXA18D17a0XWFhIW+//TYAHo+H3Nxc3n//fUCa2Obm5vLxxx9z8uRJampqmD9/PoWFhURHR1NeXk7upMn8zZzJzrQhvJp9ERdMm8bixYvlfefm5rJ0qVQIPFJQRO4LdlbmudDGechzVHLF0dWsXCB5UOzevZvc3Fz275fIx+3bt5P7u/lsL/SwpmYMlSV7WD7/MtIipfvK2rVryc3N5cAB6fu+YsUKcnNzOXJEKsYtXbqU3Nxcjm7aRuXjr7KitoQrjq7GNmkYpvHDWbhwIbm5uVRUVqLvl83imiKuOLqa0rWSGebHW71c+IoNu1skSV3G559/zoMPPih7V/j9/hAfp9dff50JE5Q5xEsvvcSMGTPkFJJNmzZx1113yff4v/zlL9x+u9LKWFJSwm233cbA7tK1aN/q53jsyHIA1ElxPPbYY9x4441YLBbmzp3Lhg0bWLRoEX6/n2+++Yb777+fO+64Q97fPffcwz333CMt+Nzc8d81PLAgMNlO6M8tt9zC7bffLqlSYs38uXI/z5btxzAiB0Gt5re/uZ69a54DICdbzxVXXMGTTz4p73/WrFk8/fTT8vKMGTN4/vnn5eWHHnqIl15S1K0TJkzg9ddflxaShpL7TAVvr7ND8caQz542NQnNhefxxLY3uGBSIWkJLryeWpb8cCf/isig5quf2D3tNsYMHsrChdJY4cSe/VxxdDUrakvQdE5s/Nk7coTc3FyZPDpw4AC5ubmy6eqnC7fQZ8Bo1q2XisPWkj3s+HoOtfZSGPEnNuW7yX2mgt3fvgBlu6TP3sQLOVAsjU9WFCeRO3Zso89ePeG3ePFicnNzZZVM/WevvFwq1ASrb1rDaaKQTg8EQXgJuAEwAtuA7wIv9QHkRiVRFG2CIOQFnt/fYDcIgnALcAtAQkICy5cvP6Pn3R7U1dW17bx6JGCZPBTLwjUAuJeuo+Sq+6i89WJQCcQ9/yn6AqnS5jfqKbwil4Mb2p6FXFdXx0ajjySjFnW1DYpK2PC/eTgH/LymVHV1dSzfsIuBxGFwnwTc7P5+HrURLfNX5jUbiAwM6CrtNdTV1UlxSH4/hw8f5qf4RLIDr7t2H2T5kqXQmrHptoMkFdeBKCLofXw/OR1rTBaju3dtxCifLnjsZlzEgtoAfohU2ekWlcfy5U0bLrb589WBnw36Pfl4C6WLuSrSjGnK+ae2Q9EPa/8Ku15XnkscAFPfB2PAnFJjgClvSz4YpdslguOnu0FrhsyJTez0zKC2tpYffvgh5DmbzcZ7773HrbfeqrSU+dySQqQeGW0/x2DVRe/evYmMbHucV9iI7wsFAdfv8j1Nmvp10lZi12rweryUeBPY9P33XHXDxTg3SxPSuk9+IOqW2Rwp18r8U1qSBqO+5ZqDt7gc+zJFmVY7/TzGXTadD/9RhK3aRYVDwxFLBt28dnDX4KnQYvjuGNv23UeveU/J1cS2wn24gOLrH0F0uXGs2Ubiv+6EI9/A/g/bnBDVgVBoEmNJeuvvlNz4KJ4jbnBVYV0TjS5vPwNyLWwXY3E4HGzevJlRoyRS0rVdmsx4vF6KoiSpc2RkJP37dic3v5bFa2uUxCFBYOaEeFSnw4juDEPXOwvbd1KLne5YSStrKxB9Plx7A+pKlQZdcoDoqTwgtWiGgwKlJbejZeScRHfAJ4riwaDndgCNpAHB8wStVsv+/ftZvnw5Xq8Xq9XKvn37WL58OU6nE6vVyp49e7DZbLjdbkRRRKPRsHz5cqqrqykqrSU2xodFo8bp8lNUamPnzp0YDAZKS0uxWq3s2LEDjUZDUVERNp8Bt9eGKs6JeEJEFEXyVm9A6NKZo0ePYrVasdvtLF++nMMH9+F326lyxbPNPQiPrwhRFFE5D7J8uZPdu3djtVrZsGEDJ0+eZPv27VitVtavX09BQQE7duzAWmXl8MNPk1FpxeP14teoOTCkK2XLl7Nr1y6sVitr1qwh1aLF6/VK57PoJw4lRVBglYYHIiLxQikulxFRFHG5XKSnp1NWVobVapXHmwcOHKCqqkpePnjwIJWVlVitVgwGA16vF5/Px7x58xgwYAAbNmzA5/PhcrlkMqi0tBTRtheXKwmfz0u1zoLL7aYGL/n5+ZSVlcn7j4+Pp6KiAlEUOXbsGHl5eQiCIL9e34q6fPlyzPbD+HwefCqBamLZtm6b9P+w2YiNjeVIvBFHrBm3zsyBEdnsXb6c4goHWrMXl8sF9uOUlpZy5MgRef9lZWXk5eXJyxUVFRw6dEhe9nq9HDx4UF6uqqriwIEDLF++nNhqPX7Rj8frpWLXQnbU9G/ys3fgwD6mpe7gxcqpCAIcjunJMZedyMIinMVHyHtlPssNRlzrNyGKIh6vlwJXHXnr1jX67FmtVrZt20a3bt3YsGEDVquVLVu28tMOI0vXleL1+vG4PXjcLvqkVlC2tY7NmzdjzeqKW5OOX9yF2+2k8osb2ea6FkdNBW6PB5fbz0mHAau1JPSzZ7Wybt068vLy2LlzJ1arlbVr1xIbGxvy2YuKimL37lCD85YghJO7ezYhCIIaGAnkAk+JougRBOFNoEwUxYeD1lsDvC6K4tst7a9Hjx5iPSN5LmH58uUhfWDhoup/H1D9yifysil3KJqMTiHOwYkvPorpgvZVFevPq+q596h+YwEAxguGkPTio+3a3+mC/Pdadq9kMgcw4lEYcHuL21U88Tq1H3wLQMwDNxB1wyXMnz9f/pKMGTOGfv/9Gm/A2yPl46fR9+nW4j6Lr7kXx5p1IIJmYBVv9b+C2++4k4SE9pvjtIZDhW4eeUmRyP55bnyLjvDt/XydaQiCsEUUxTNU8m4d5+L1YOdldxG5X2KmI6+/mNjf39j+nfk8Uk/ioQXKc53Ph8lv4fRrWLduHZs3b8ZsNtOvXz/6dU8javmNSqSnWieRHKnnn5XP0Mcffyy7hUdGRlJXV4c/0LOZk5PDFVdcIalQtv1PqtwDdq8G001bwdR0j21TcLlc/POf/5QGIMDNN99Mt24tf8/bipC/14YnJT8RgAF3wIg/Nt5gwxP4tryAzWZjnWMQyx2juPH664l4+CXZfT7md9ewvPtk3g/0n44bYuK3s1o2X67673yqX/0UkHp29187jtzcXF770sqSDZLMdHQXD1ef/JaaD96DgEjCKepZfNEgpt93R7v+NmUPPC1Jkv0e8DrodEMRutiaxiuaEiBxIMLUdzquBQ3Q2nfOW1pJ2QP/xrVunRyfLWrULO+bzcHuSUTHxPDAAw+g8vkpGH4loseL3W7nk4tzcBm0jBs3jokTJ3KizMM9/yqQDXwTI+y88Pj5qNVNkxfn0v3EuXEXxTf9CQBbYhR9fgpPxePOK6Do4rsBUJtcpN0UqIcN/T0Mvrf1Hfg88E4fcAfk/XNWNJs0ci79vYJxrp7X6RoXCIIwGvhUFMXkoOd+A1wtimJuc9uFey344IMPZHPIGTNmMHLkSERR5N5nSzlRpiiUoyJUvPxwMlpNM2Sgxw7v9KV6jY6qFTFgjMNy5XTiHr1VXkX+X5XtggWTWVI1hddK7gZjAtlp2jbFSla/9QVVzwS+J2o1Ke8+gb5/j0brOdZso+TWvwISSdjpk/+ANQ8+Go3Nbqfao+fpkqvR6/UYDAbuu+8+LJbwjcXz8vJ44w3FInHUqFFy1V8QBO666y5SUlIAyXfhxr+dxF7twF9r56GdL9Btcj/iH7+70X4/++wz1q5di16vZ9CgQcyePbvpE9j9Nqx+RHrc7WKY8DJOp5PHH39cVpI88MADxMVJ8beVNT5u/Wdx/Z+NeX9KabV40BAtfufspfDuAGVZpYXkIdKYLXVMwBcjUEz9+AL+seMattUOxOnR0630ILfufB1jwAxV1z0DIcKEa5vU1hb39zuxtJBYV39elTU+nvuwkn35imovxqLi3itj6dWlwRyjOh8+GSvfexj2ByjdBvmSyoixz0GPy8P7wzSDcK8FZ6VtRBCE5YIgiM38rA5eVxRFX0DqlQrUh9LXAQ3LZJFAO3KuftmIvuNKooKimezLN4UQF9G3X9Fu4iIY5pnKh96xamtI//XPijb6XvhKg9pGkqQL0uDBiqfH1q1b0fZSIuhaax1x7z+KY9MeqalJJVLcXculM2edUeICpHzuwT0NqFVw9ZTIczbKrgNtg/dECfqdymfOcnkTDuXhwuOAH24OJS66XoRr/JusWLeFf//73/zwww9UVlZSUFDAt99+y5PPvsJ7lRdSq4rDL4qSwuH7G6RY1TOMvLy8kJizyy67jBkzZsjLO3fuZOXKlVBXBFuelZ8vSL6iTcQFwI4dO2TiIj4+nqysMCut7UVwXFgTpp0AlO9GrVKh1Wop8UnXj0Xff4/leuVvUDP/Gw7mK+ZYrZl1ih4vdQuUlKhg49dxgxVztw3HddTeOJO9syPQdpEIBp3gptf2Y7z99tvs3au424cDd14Btu9Xg7MKnJXgdVC9KuhcVRrInAJT3oGrN0uqnw60GZrEWJLnPU7MvdcgBKyOBK+PkVuPMO6nA7hPlLBr1y7c+44gerz4/X6sRg2uQMpWfatU5wQtA+MVj6dL+hU2S1ycawiOONcUVYQdce7erVxn9T2CWs6qDjaxdhMo3qQQF5Y0qXWtA+ca2jVX8HhaN36tr+zXIyND8mHYnecKIS4Aqm1+1u1yNL8zrQnSx6ONDxzX68LTnGlnwKxzTc0YEKTvcWtGncFw7TuC9b/z5eXoWy5rkrgAQry2PAfzpXTDyEzQGNFqtZgFOxEqyfB68uTJbSIuQIpTDTbJricuAEaPHi0TFwAatSAlewSKGRsSBqMOjOEbIjg1bOfOnbIpdyOEJI0MACRlSD1xkZycLBMXALsOK+2PPdJ1bSYuWoUpEeIV3wv8HihaB5v+DV9Mh7d7w6LrJVP1qkNcl/QGKkHEo1azP7kXK7oMkIs97oPHZOICQJPSOrm145CT379QGkJc5GTr+ffdiY2JC4CoTBj6oLK85T+hPmRnKWkEzlLbSEuMZwvQoHhe7AHk2I1AX1tW4Pn/VxAEgejfXQM+P9XzQnvUjWMGE3XbqbFe9dCmp2AYnoNzw07w+6n78keib5tzWvZ9SmiYOCKKLUaVBaeNqBMlyXx2djYWi4Xa2lrq6uqwxqZR/zVtjbyoeX8hfo8TFaDrWkNxVDbT+vVrcZvTAUEQePj6ONweEZ32lzHI7EDrqP3ke+r/m8ZRAxQzurbC54ZF10g3vvqnelzJGtU0Vj7zPDZb84aMe49VcEI1hmsjFxCtdaDVetB8cxWmTpKpot/vx2azUVVVhdVqDfmpq6ujS5cuTJ48uU3mlz6fj6++UkjXfv36kZ0tDZxOnjwpt3gsXryYnNKXianPZY/rRUncZNpidiSKohzBBtJA54ybEraSOBLs0K3X66lAGrQVFxeTN+o84pPiJBO3cisH91SCWorIbI28sC9dh6/cCoA6IRbTuGGwWqoPZKVqSUvUUFjqxe0Ree+L3fj9OQwevhdPfiQqRDJPlLGrtIb333+fOXPm0L+/FCVXWePjs59qcTj96LQCep2AQSug0wnotQKuzzdCdA+0plqiXVbSa45iOxBBtC8W7flXQvasNhNO9RAE4U6kdtJ+wIeiKN7Q4PXxSCZ96cAG4AZRFNtgZPDLgqBWE3X7XIyJRyn/92LcZTr0gofkkmou/G43Bz0f0GW41Dri8XgoD5h6ZmdnExMTUO0cXMDtEX/inai5JOuKGD/yFEjTswyVJQJtegqegpMIfj/uA/noc7q3up1rz2H5sa5fT+Su5HDJi4YpI+ewsen/YxwENIIgZIuiWB8l059W5go2m40NGza0GJ1ttVqpqQkQvTodSUmSr9Hidcq91WwUqHOIgefrGDOwBZKh6zR0CYGKtc+J+1ABoig2vjdV7KHSE8seW1/QahAEGNkvPK8z0e2h/A/PyV54+n7ZRN3SjCoBUEea0XZNxXPkOKLXh3vvYQyD+0iRqcWbcakEkjWVqDMGMGzYsLDOoSGmTJnCgQOBNJMAYmNjGT9+fKN1xw2NYN06qXC6MXEQ18RXNbnP1NRUoqKicDqdeL1etm7dyvnnN9F+G0xeBMw6g1sV+vYNnXzvOKQUDvpnnyE/oCnzYMercGKVooCth7sOji2RfoA0fSETO2/hyxPj8Pp8fNfzUjJ66em9dh+iM5TE1XRunrzw+UXW7o9i2/dKcVcQ4PIJFmbmWlpuH8z5DeR9Lf0tfW7Fh0ylheizZy9wTnheCIKQCIwDvgEcwATgSqA+4ugL4N+CIMwCvgUeA3aKotjI7+L/AwRBIPq+6xD9fll1oUlLJv7Je9sXydkMLJdNlMgLoO7zH4m6ZfZp3X+7EJ0F+ihwVUsVvuqjEN182E2wYkSdJA2e1Wo1AwcOlKq6wD5vHQMC67j2NE9eeMuqqF24AiGQ3GDoX4E67aaz6s7+/4W4EARBD7yEdC2IBQ4Dj4iiuCjw+i9+wuJ3uKgNSvOxXNm2ZKAQrH5UJi5EID9mOvPXRGOzhfpJxMTEMHbsWERRZOfOnRw5cgRRFKn2R/JhzcVcE/k5Jq8TnCfIqHyI13fv5Vi1Vq5MNIXCwkJsNhszZ84Mm8BYvXo1ZWVSG5ROp+OiixR39unTp1NSUkJ+fj4ZmkI0+d/ii4hArVLB+U8gHmihotXM+Z08KbWFaTQaBg1qnI/eHPYedfHjJhtDexsZ0bcN5riRGVJ1zWMHe5kkDzUFDSbspeCQrk0qnZk+oy6idLnkl7Nk2U/85uqLqH7mXaq1FiqsXtSxIjqditTElm/ZwUadlssnIWiU9QVBIHewifcW1eDz+diep6d7hIG1hgGc1+M4joNmdCoPA3fn8+MFffjoo49wu9306jOYv75RTlGD6mI9RK8PX00PyJYq0YIKJh5bwtQTy6k+OZn4/rc2uV0bUAQ8DkxG8sMKfk/1SWRzgYXA35GSyEac6kHPdegufoSUmu+w/lBN9cYodIIH0SPQ87stlG04goYAeREvEV9DhwaI/xNrYPl9RGs8/K7z05JEOeOX5d+g65Mlx7i79uaFRV4EFyZ0g4dB/dS2PnFE1cJ3y+eBI98py2m/rL/X/xcE/PA+B/4mCMJcYABwMTCqxQ2BL7/8Eq1W2+z9ITgFKy0tDbVaTZnVy6Z9ygT3gWvi+Ptb5fh8cKjQQ95xd/PpUOnjUUerUen8+N1e/NXV+EorZYWwjMp9rK0ZDQig0tCnq57YyPAS5qrfWCC3IApGvTRHaMXTTd+/B54jkk+Ea8dBmbwQSrZgMpkY2tXEwBtvbvZe76+to/a1l9HECJjG9EDQ6KXvlkoHKg1Jai3jcuLZuXsfdr8Jm2jikksuUfytgjAgW0+cv5Yy9NjVRjZ7DTRFswqCQGZmpmxyumHDBs4777zQsbnHrhCVggri++LxeAhuF+rTR1FM+v0iO4OUF/2zz5Da2dwJzpNadbCXStfnE6vg+CopyaMBLh9SyrJaAxVVNlz+SD4zZPHXFy9G/eyHuHZLFzXBaECT3HSxoNbu55kPKtlyMAp94C1FW1T8bk5seIpulQZyn4EFk0OTmmK6g7p90aztwbmSNiIitYgcB6qAp4F7RFH8CkAUxTIkB+F/BF4fDlzx85zquQFBEIh54AZi/3gL5pkTSHrtL6gjzaf1GKZxw1FFSfv0FpXiXLejlS3OAgRVA/VF80ZwoteLr6JaXtYElBdASNLAjtoKmQX2HDoms9QNUffp93hstQiIaJLtCJ0EjJ3Dnwh1oE3QAIVIRltRSDHJnwiCkPlriU6ueW8h/iqpkqNJScA4pnFud1jY/xHsex8RcLndLKkexGvbY7HZFOlkVFQUl156Kffffz9Dhw5l2LBhzJ07lz/84Q/MmDGDjIwMKvyxfFQ7A5eoAxEMYh2Xiq/TXb2v+WMHsGXLFhYuXEg4HkpWq5Uff1SM7yZMmCDHqIFELl599dXERJmZFLESUQSHw4G3ywxIab4y1hyCjTr79++PyRSe5NbjFXn6/UpWbnPwn/mVvPRZFU63v/UNQbpOxQZFppY3KPyF5KL3ZvSYC+TzqqqqYl96NCpLBAXmVESfH9HtIauztkVpv/tgPs4tksRY0Kgxz5rUaJ0xA02oBHC73dT5EnH6LdRmXEbMNKltRSUIZJysJKZSqiZ+tuArHnz2YLPEBYBod8jGj4JGRGVUsabTGHwqPbZvVuAtKm1223AgiuLnoih+CVQ08fL/3yQybQTC+X8kJtdK8lXFGKMdqAhIiK01eL1e/KJIWYKZiIgIevfuLZlTfn+zEp0c2xMmvQGqX1bcdnBKmGNV6y1uoteLe7/SJqPv309JBAoncWTX61CTLz3WRnREpJ7buB2J5CwFPgR+K4piWCrtzz77jJ07dzb5WnDLSL2p8Q/rbbKZct8sPX266jkvR+FXF61rXvGIzoyQPjaodcQpEw0yRBHK97C6JldaVmk5v394JLo7r5Dq1z+Tl2PuuS4sZad+gHLplOOW46RJvVqlorOhCq22mUlq+W6qbp9B1YufU/b4Akp/+yd8n98E310jmYN/PRO+mM64qn/zm+iPuTv6LS7vVS2rLhtCpRIYVa38P34qat5ku3PnzugDs/Hy8nI58UI5t12KQXFMNmgjOHz4sJzQFBcXJ6tpAApKvFTXSeubTSoyO52FibkpEbIvlciBqzfClWthzFPQdZqUYmZJJWrQVcyZFIMmUJg46erPtzv3kPzeP4m+62p0fboR98hvmiSpKmt8/PnVMnbnKaRM3yw9/74rsRFxkZeXx1dffcWuXbsaF6/iesHAu0KfO4stI3COKC8C5ESLQcGiKC6FNqmFf/UQBIHIU6nWtrZ/vQ7zjLHUvCfF8NR9vhTjeQPP2PHCRtIQOBaoWBdvgp5Nt7P4Kqoh8KVTxUQi6JSLT0JCAunp6RQUFODUqnBGmTDWOBA9XtyHC9D3ClVziC431R9+hz8Qz2rIqYBOIxB+YYO+XwpEUbQhTUTq8Y0gCEeBwUAcgQkLgCAIfwHKBUHo+UtRY/mqaqh5S4mFivrNLAR1Oz5LpTtg1cOIItjsNnY5urHMptxEIiMjGTduHEOGDJGz2oNhsVgYOXIkI0eOxGq1smvXLpZvj2W843XUeNHh4ZKIH8gylLLddCmWmHiio6Pln/3797Nt2zYA1q9fj06nY8qUKS2qkb755hu5xzgpKUlORwiG2WzmlpFqVBurQASnT83C4z2Z4w+TPAjAbreHDEZbkgU3xI5DTmrtyvGWbbFzqNDNvVfFkp4UxkAmvi+UbJYeV+yB9LHKaxW7Q9YzGo2MHTuWb7+VzIV/XLeG31w6jmPLpKqe3+6gW1rLRp21Hy2WH5smjAwha+sRbVHTK0Nk3U7p71/p7sa4CSPRafoS8d1vsO2PQCv4GHv4GAuG9iHfMRprrYhe70Kv13HFxEgiI9S4PCJuj4i9tJryd5bi9ou41ToOde2F3ZSO3aPlSGQG2TVHqZ73JXF/vKX1v1f78KtKImtzSpQYSz9NBubEQ8RfXUv10i6wzyI7+nvUAqUGNVmxsaz/6Sv6HX4EvUdS/Lg1MeyKvh33utYn/+daepVW5SLB7cYvilQvWcPRf7+Mc2ivZtfXHC8lsUbyq/DFWFi1ewe9vTFEuSWj5AMrPqUyqmmxjt5dxoAD/0AlSpOcY3FzKFrTst/Wufb3qse5el6nE6IoVgKXtGWb+nujKIp8/PHHaDQaiewLQkPywu0RWbpJKRBMHSnF5k4ZaWblNkkduGaHnWunRhJlbube3nUauoRNuIr04HPhPpgfOsa2FXOy1kieoxsIKtQaNcPDUACKfj8Vf31JaRfJ6Y7liimtbIW8bj1cO6X2DiHIwynC0QTR57HD5v8gbn0N2+ZO1NfFHXlGiuZ1ImF6GYZ0ZcKsEgQiIiIQ/X4G+JaB1wWapqv+wwrW8W33QXgFNXmVao6ccNO1c2OVhkajYeDAgXKL6IYNG0K9rUq3K48Dfhd79iicVt++fUPGLTsOKoqanG561Gc7iUkQJI+JqEzoHZr0e+Eoke9WG8g/UYdP1LF6bwSTjhfS5dbZRN/adFtQWZWXv75RTkmlT9797PEWZo2zNHpvW7ZsYcGCBXLLbVRUFCNHjmTYsGEYjYHP36DfSWliVQEJW/yZb58PxjlBXnTg3IV51kSZvLD/tAFfZTXq2KgWt/EcK6Li76/iq7CS8NS96Lpnnt6TClZelDSvvPCVNDbrDMaQIUMoKJCY7pMRGroGjPHde/MakRe271bhLClDhReV2YMhu46IXlPB2v630YHwIQhCElIM2h4kldYvesIS+dGPmCutALjio9gSp4U2npfGW0POoQfRe+rwerwUOaP4smoUHtGNwWAgOzub9PR0HA4Hq1atCnu/Cf0uYldlJr0KnyNSrEQQYIiwj94GOweSHsCpj8Tv91NZWUl8fDzx8fGcOCHJG5csWUJBQQE9ekiGYFqPlcSqZWi91RTFX8Rxq8jWrcpkKS0trclz03oqGXjgf6DR4PF4WFYzkE3FBVS98grp6elh/w/z8vJkv4+oqCgOHz5MXl7Lvjb1WLQ1DpcrInR/hS7uebqOcf0q6ZNmC2l7bzgxSKoQ6Bqo6lTs/IGD1Qqp1P3YEuICr+WVqihdvhyfz4darcZut+NyuXhNrKbadB4gInq8ePesYbkp9HzqIThcJH2yCJVbIiWKuiexJ3AuDc/LWXoCUZQGyFZ/dw4dyiNPBV3HZiLuk1QSsUfLqek1iCp/GiDidDrpHruXWCECwSGgBRCg27dfYNm3ERDRp9v5oNPDrCzrjKDTsD2qBxnlByifv5A9fTvhjzq9ysAAzEBZg+eqgSad5ERRfA14DaSEgXMteaFdaRC9X4QvpoEOsqYc5ptO48hca8Pg9HA0KxGd0cDll15E/JpbQKgBnQ60Eegv/oJRYVbLzsWUivLDZVR+vAidTkenL9fQ6fo5TRJ2AHVf/Eh5QJZuGjGQXrm5oF0Gu6TbRU6qAQbnNn2gxTeAVgR0ENeL7jP/RfdW5NHn4t8Lzt3z+rlhNptJSEigrKwMv9/PBx98wHXXXUf37tJE3uFwUFwspU4IgkBqaiprd9qpC5Db8VFqBveSPBGy03R0S9Vy+LgHrw9+3GRn5thmjC0zJqJNlJJz8Hvw7N0DXKq8XrGH1dWBuq5Kw8AeBszG1gXzdQuW4NoqKSYFjZq4v9wednFEm5WGymzCX2fHV27FV1SKJrGXNNsVRYyuE+B1SnHrAAXLYNXDUFuI46gRv0sFCFJyGeBzQvFnGURPNBE1Toug8oHPjar6KHhsUgt4/vfQbUajc/E7XJisZfSv2M3WhP4IgsD36238dlYD8sLvxeQ4Rr+MCOxb92JR2bAcWYln4XdoPZVgK5baN+uR0B+fzxdCXgS3jADsOKSQLQPOVMtIO6HVCNw4I57H33Dh8Xgoc/fgs69W8sDvMpssHBWVe/nbG+VUVAeKuQJMHVTO5RMat9yvX78+xI8MoLq6msWLF/Pjjz8yaNAgRo0aRWJiIkx4BZbeBrpI6H7ZmXmzzaCDvOhAi9B1S0ffvweuHQckJ/uvlxF1wyXNrm9bvJqKx17Eb5eY54o/v0jyB/86vb4QCQOkviu/V2L9nFYwRDdazRts1tkEedGvXz8WLlyIx+PhhFFFRmDy4N6bB7MmyuuJooj13a9wu92Y8GPoV4HBoEOVej5Yz5EUll8xBEHQAvOBd0RR3C8Iwi96wuIpLKZow/8QA4PpytljyW3CrKpF+H3w7VUg1ODTaKhxwhf2i1DpzEwdJ0VjNivtDAu5rPqxC6P9X0vmTIDef5IRxx+DC/4TMtC44IILmD9/Pvv2SYOl/Px8BmfoGaLfDke/kCXqGc71fFoxGr1e6sUcNGgQs2bNokn8eCdo/KAxUmlIY3vVYPR6NYWFhURGRjJt2rRW34EoimzZskWWkk6dOjVskzG3R+TNZSfR6yVN8MVjzCxaW4c70D2xYl8nfDojt1wSjdEgDSYbTQxKouCLeQB00lvpFPzaB3+QJpFA79GX0ztBqlokJyfz/vvvA2AXBY7GpEtNlQiMPLKXXr//fZPnW/PBt1QigE6Htls62b+5Rr7mBp9XeXk5i79filbVG69oQK2PJaZzTwb2MMCw3pQtvxDbPi0r0iZQ7O2JVq/B6/WRqNuL1raZmpoRzJgxA0EQ8BSc5MSGXUiOswKxUyKYPHMaG96uBb3IvrQhXFa4GAHod7iCmPsb/88EQVhO86rLNaIoNuG6FoKOJLKkQVI83YFP0Ov0DO6+mbcTLsdU56Em0kDXzHTitz0qyaYBBDVMfPWsy3xPN2IfupmyJWugzom/uo6Kv75E4v/+2ORYI8Sssz4KPTbIJ6OqmZjM/O8hP8g3aPRTZ7WvuwNnB4IgMHfuXF599VUqKyvx+Xy899573HjjjXTt2pXCwkJ53eTkZPR6PYvWKUOQySMjQqrXU0aa+d+nkrnkDxtsXDzG3HTLnz4SXZ++sETav3tXaGu2WL6X1TUKeXH+gNZVF97SSqqeeVdejrzx0jYVEAWVCn2/bByBNnHXjgNoLhwDUV2l2FREyVjS3BnWPgaHlYmubV+E5G2hj8R4/hBce/Pk1ljrCnDa+hD/5L2SH8PmZ2Dz09KGBz5qkryoTws8r2QjW5MGgiCweoeD6y6MIqKexHHVwOcX0r9sP/pjOmZE2fF5pUm6/+gB+T4bguQhHD16FKdTUldERkaSmpoqv+xy+9mXr5AXOWfKrPMUMLyPgX7djGzd50FExaajndi/fz+9eoUq0I6d9PD3N8uptklEm1oN918Vi630UKN9rly5kkWLFN+suLg4HA6HnN7i8XjYsGEDGzZsIDs7m/POO4/s2cvaZNZ+unCueF504ByG+TJlIl/32ZIm+9pFl5uKv79C2QNPy8QFgGvXIRwrNp/eE9IaQwdeJU3vvzXlhcFgkN2Fq2JMspS9YeKIa9Nu7HsOI4h+VBofxj5WNBFxENu8TLUDpweCIKiA9wA3cGfg6V/0hMX63w8UOeeAnjgHtMOhedNTcGKV5HPhdPJ13QSs/mjS09MZP378KRIXEnxqE0x4GUb/U3KSBqlSsvQ2WPmwJPVEktxeddVVdO/WlR7aw1xjWUD3nXfh3jVf6a0H3LVlTBE/YpxxDSaDlqlTpzZ94KL1cEhpqYme9j+691SqIjt27GDnzp2t+mvk5eVRXi6Ri3q9ngEDBoT93rcecOJ0S/tPjlNz9ZRInrwzkbQgw8zVOxz8/r+lHDnRTFRjbE/J+wKgOk+S1oI02KrvsVdpIFaJrevTpw833HADEREROP1R2HVGRFHE7KpGt2IV7oP5jQ4jimKoUecVU5sli3/66ScEfMRqj6DRaFCr1SzfEjgvUyJRt13BlsShLMy6FNHtxajR0CWhms566Rq7fv16uU2o+tnnpXhewJDuxHDNk/TuZsFsFACBGnMchRFSJGXtx4vxVTf+eoqimCuKotDMT2vEBUhKrP71C/9vk8iG/QG0EajVKpL11fQ37aUmyggCzIjdCAWKxwxjnpTSMn7hUJlNVF2vXEMcKzZT9+WPTa4bfE/X9wlIyWOC4iKbShzx2GD1H5XlXldD8qnH0Hfg3ERkZCRz586V/Ze8Xi/vvPMOBQUFjSJSDxV6OHJCurdp1DBuSKiP0qgcI5ER0rW/otoXYurZENqRilm1J78EMchfID+/lCKXNKnW61QM6dn6JLryyTfw10pqQ016ClHNtBG0BF1QlKpze4DYiwtSJmx9Hj4aHUJc+FXR2E+kgyEGBDUx911Hp8+exTBUGas7N++haNY92JdvkgjX+vvU8RVSJHoD1I/hM+sK6IzkX+f2iKzcFhSFuvddqFb8LYLHPh63m5BRgiEG+v8W4vs2ShkJvmfuy3cT4D9ITdQQF3XutYcLgsBvLk1AF2iHr/am8uGXW+ToVICDBW4ee61MJi50WoFHbohjaO9QEkwURZYuXRpCXKSmpnLHHXfw8MMPM2vWLJKTk0O2OXToEG+//TbPPvssmzZtCsvv7HSig7zoQKuImHw+qgjpw+7JPxGSJQzgKTjJyWsepvZjpec62CzG+uKHp/+DndS6aWcweaFuRk5ab9xZGRuhkBcH8kNMO6ve+QqX240aH/qeVgxRWoROI35xJme/NAjS3eRNIAmYJYpi/Uz4Fzthce3Nw/bdSnk55v7r2x65d3QRbPsfIA2wltcN4rCnCwAXX3zx6WXBBQH6XA8zv5Xy3uux911Jql59FFzVaHa/xvW6V5kdvYQ0jZQC4HQ6cXs8kDQIryEBV6BNYrhhG3ekLcNMTePj+b2wJmjCkDUDVdoY5syZQ0KCZCrp8/n48MMPefPNNyktbd4MMtioc+DAgU26mTeHdTsVAva8HBOCIJCWpOWfdySEDFRLKn088nIZi9bV0egSpzVK6UggGa/Vx6BV7FXWicmW5bX16NGjB7/73e+ITOyHKAj41Co6Vx/DbrNx8MlXG11LnRt3ye7wKpMR87SmhQwVFRVs374dgDjtYfR66bgb9jpk+fOBnr/l45wb5G2yqnbz7MNDyMlR+lkXLVpE3YGD2L5ZLT8XfXkOpF2AWi0wuJd0rxB0WvZkjwQkz47aD75t8rxagyAIGkEQDIAaUAuCYBAEof4G8wXQVxCEWYF1/n8mkUUkST3IgF6nY4xxAwbByfnmXSRWfK+sN/AuaRL+K4G7VwaWq5TJX9WTbzYyiBU9Xtz7j8rLstlnTLDy4nCocz5IleH6CZUhFob/kQ78uhETE8NvfvMbLBZJxOl2u5k3b16Ib1JmZiaL1tXJy+cPMBEZEToW1GoEJgxTWvwWB63fEOp+F6M2S9df0e3Bu3+7/Nrqw4rP0dDuAnpdy/d2+7KN2H9YKy/HPfZbVIa2tzzog8gL144myIv878EddP/OnoUj+T+IXumyrO2SirZ7JpqkOJLe+CvRd14JgXGJv7qO0jv/QeWLixETA8a3oggHPml0HvXqaQEYYzwuP//9ept0H/R5YPc8ZYPEgah7zWGzbxhL7KNZUDOZYwNfgKs2wNyjcMMeGPkn/H4/e/cq9+HGEalnIWXkNKBrZx3jhlrkIeTOoq5s2yYpZnbnufj7m+XYndJ4wWQQeOzmOHK6hRJgoijKLSH1yMzM5Oabb8ZoNKLVahkyZAh33303c+fObaTsKC8v5/PPP+eLL74IIU7ONDrIiw60CpXJQMRFY+Tlus+WyI9tP6zl5OX3496nMJ+mSaPo9MULCAZpcOzedwT70vWn96RCfC+aVl54g8mLJpQXAF26dCE2NhaXQYvNpMPj9SC6PXiOShdKT8FJapeuQxRF1IIPY/9Kidnt1GryVgdOHS8DvYDpoigG52P+YicswXJO09hhGAa2Ub1TdRiWSZMUETjk6Mxqh/RdGD58OJ06te4m3i7E94XLvoes6cpzFXvgs0nw3iBY/zgqWxEmoxG1WoUfFXvc3XmtdDo7s57gE/8t5LkzAFCrVcS48+DTCXCsQaV0zztQESBHNUYY+RggqaSuu+46eVAJkrLihRdeYNGiRbhcrpDd1NTUhPSzjhgRfnKm0+1n836lUjYqyD1er1Px21kx3D0nBoNOGjH4fPDW19V8uTGB1dvtVNUGOXMHD/gqAucTnDTSjMmVxWKhc9ZIDAYDXo2a1JpjiIDvp018/L9XZB8PIIQ0jpiRi8rcdJrKsmXLZOKjb/c4uqcb5fNftcPOsZMe/j2/Gr9Fqjwm209y/ernUG/4gpkzZ8p/+7q6OooevV+uEBrSfRhu+Ld8nOF9AoMjQWBPhtKmU/P+N/htbYu5DeBRpAj1h4FrAo8fhY4kshD0+w1EZqDWaIg0iFwT9z2TojYhU6PdLoFhD/2MJ3hmEHPvdWjTUwDw2xyUP/pfxKBBtCevEDHgBaPpnIg6JiDa00c2nzhSsQ92vqYsj/xzk62pHfj1IS4ujrlz5xIRIZEPTqdTVvABRMelsW6Xch2bMqJpH6JJwyOo7yTZc8RNQbGnyfUwRKNLU3zk3GsCagafi7WlyqT6vCFJDbcMgb/OTsXjr8rL5kvGYRyR0+I2zSGYvPAcOIrf6YIg004ZkRkw7SMY/19sPyktLxFTz5eVDIJaTfRtc0ie9/eQcXjN+99w8nUd1RsisR004V75MX5H6P3BF9T6PSrJJt9zT5R52XPELRVybFKxxKOJgou/QD3hfzhy7mOzqz/7Pd1YecAOkWkhhqAFBQXU1kpKwIiICDIyMkKOu+NQkFnnOdgyEozrp8VjMkrqC4c/hve+PsSmvTaeeLtcVo9aTCr+PDeeHhmhRIzf7+frr79m5UqloJadnc2NN96IwRD6vgVBICsri+uuu44HHniA8847T27JBdi0aRMfffRR42SSM4QO8qIDYcE8U2kdsf2wBl+FlYonXqfsvn/hr5MkXIJWQ+wjvyHhP79Hm9kJS1ASivWlj0IGFKeMYPKidJvEwDZAfb8cgCaxafJCEAQGD5YiKitjTXgCgxz3HklmWv3eQtwuFyCiy6gjIkmQBoMpI0/L2+hA0xAEIQO4FSmnvVgQhLrAz9W/1AmLY802nOsDN3iViuh7rm15g4Zw18EPN0u/gRoxik+rchFRYTKZmDSpcTTmaYXOIhk0NWwj8SoDDsEYh27kg3yq+z1f2yZxwpvEhx9+yK5Dx/m0bhrLHCPRGyOk75DLCouuhfX/kL6/9jLY9C/leIPvlTLQA4iPj+fee++lS5cu8sDI5/OxcuVKnnnmGXbt2iVPzoNljJmZmSERaK1hy34nbo+0bWqihvTkxi04oweY+NddiWSmKK8dLTHy/MdV3PJEMfc8U8KbX1lZbx9HrTdAuNTHpQYnjcQ17ztwuNCDTqfDaDETrZcks4Iool64iueff57Dhw/jLanA/qOiMLFc0XQrTkVFRYhR6oQJExgbpCD5fp2Nf7xdjsMlIugMxGjs3LLjv5i8DqxPP49Bq5J9Rjo7StBuVarbUbfNliLeAuifbUCnlf4/JT4TFV0kgs5fXUftp0EqgDAhiuJfmmgp+UvQ60tFUewpiqIx0IaS3+aD/Bqg0cPIPyMABr2erAgr2kCcHp1GwtjnlDamXxFURj3x/7xHruw6N+6i9kNF/tyk30U9glq2qAxUmEU/rHwQxMAgvNPIs25G14GfF4mJidx8882NJnBRUVFsOqipD7EjO01LVmrTir64KDXD+ijbt6S+0AaZRXq2SYW+qhIr5R7JH8qsczOgd/MxoQBVL8yX1cbq2ChiHrixxfVbgjrSjLaL1K4ien1S21XiQKmgAJJvzsA7YfZPkDoGf50dx8ot8vYRUxp3/BkG96HTgucw5Spjd3dBLVUrYin7MoGi/0LB4FkcnzCX4psfo+JvL2NfpqT6mFOiGTNQuWct2WCTIowDKImdJKsYg1PF9u/fj9VqDTmX4MJG7969Q9SqldU+CkskFZZaDb27hK/Y/DkQG6nmsvEx8pjoYEUPHn+zGJfbD4jEWFT89Zb4Rgktfr+fzz//XE5nAejVqxfXXXddqyrVuLg4pk2bxsMPP8zAgUo6zq5du3jvvffk+NkziV/fnawDZwS6PlnoekrSdNHp5sTFd4XIgDWpSSS/9ySRV10kf4mibrwUwShdvD2HjmH/fs3pO6GIJLCkSY+9ztBqZgDhKC9AMg4EqXXE6/PhF0XJaKjWRuXHi/CLIipELANK0eq0krNuXO9m99eBU4coiscCkxSDKIrmoJ/5gdd/URMW0e+n6llFdWGeOR5dVlobdiDC8vvkWCqfoOXd4gtwitL3a9KkSZhMTVfcTyvq20gu/Sa0jSSuN+Q+C9dsQTvqj1w59x65zUN+CwiI/W9Hc+mXEBHUP7n9RVh4Gaz6A7gDvghRXSCncbym0WikX79+3HnnnSHVkpqaGj744APefPNNSkpK2LhRGfS0JR4VYO0OhYwJVl00REq8hn/8NqHJytuJMi+L19v4z+pB3HRwPr8/8gLvbMxg634nvrLQmNSm4HL75UqdWq1m4gOz0AV6ebPyynCVV/Hmm2+y/q/PInqlgZZhSF903dKb3F+w6iIrK4vMzEzO629Co1bOt6pGIpeNeoE/XGkixmUFwL7Hh/ubp+nXrx9ZXbsw8eB28AmIooi+qwHD5feFHEunFRjYPVCREQQOjlPc82ve/grRdeYHNv9vkTkZOo8OfS66G0x+q1F70q8J+v49iLrxEnm56tl38ORLLR/uIPJC35C8CGkdCfhe7P8ISgITMZUWRj/Z9ta+Dvyi0FRXc0pKCjfffHNIdTktLZMfNiiqt6mjWk5QCn59xTYHNkfTBTxdUNKN+2gJ2Io5cFwhPkZ0LkDTlOFnAK4dB6j98Dt5Ofbhm1FHN5NwEib0/YMiU7cfkPwipr7HicSZcNkPMPwRqTUSKYmwXt2k65GJtmtqk/tUR1tI+O8jxD48N9BaLiiECIDXibe4HOeGndR+8n1Ii7omKY5Jw5V77Yad1VSdCCi+VVqK45TiTXx8vByTKooimzYpreWiKLaSMqKoLnpl6jG00qpzLmDWuBjZl8Mn6nA63dTV1eG2l9A3Zhl7t//E7t27sVqtiKKIz+dj69atbNmiEE45OTlcffXVaDSa5g7TCAaDgcsuuyxE2XrgwAHmzZsnm6GeKZz7/5UOnBMQBAHzzAnyst+qmK+Zxo+g06fPoO8bOjBQx0YReY3iMG998aMQM6JTRlKQeVaD1hFRFEOVFy2QF9HR0WRnZ1MZK10YPR437r151CxYgrtGep/eaIjo6gmoLoZ3+F10oE2wfbtS7rsWDDqib7+ybTvY8bKUqR3AatUMitxSP2ynTp0YOnRoc1ueGST0kwYwY5+Hi7+Ey5ZAzzmyNNNsNnPzzTcTG6t4zcjqkJRh0vppY5X9FW+Co8rgi/P/0eJkq1OnTtx6663Mnj1blveC1Ery3HPPUVMj9eNGREQ06mdtCXann60Hmm4ZaQo6rcDNF0fz5B0JjOxRTa9MHSGJdCppgJbv7MI3hcP559vl/HXb9Tj9gQFxMyTokSIP/sCAunOChsSJQ4nM6YHJaETrE8k+VILg96P9abM0SHG7iZgzucl92Ww22WQTYHwg2cZsVDGsT+j7U6vh99fEkj12AKbze8rPW1/9DKGuiJmpNnQHJBJFFME6+xKEJq6FwfvdoclAnSB9DnzlVdR9+VOT59mB0wBBgPP+FvjcAcZ4uPB90Lccb/5rQPQdV6LrLhGaotNN+R+fR/R6ce1RzDpbVF5UHQBHBaz/u/LcgNslX5oO/KrhcDc9nktNTeWGG27AYrGg1WqJTBklk7xRZhUj+7V8f+iVqSM9Wfouuj0iy+rNkRtA26ePlNIBeMq1+A4vYk9pivz6eT2baTlB8nQp/8tLMgNjPH8Qpqmjm10/XDTpe9F5FAXJV0FcaLurbbHifxTRyrEFQSDymml0+uq/xD48F8vsXIyZDjTRXilXlSaYJECT2ZmMFC09MgIRrG4HP1kDivBuF+PRxoSsH1y02LRpk9zOcPLkSaqqpCQYg8FAt26h14Rfit9FMPQ6FTdfkoQqKPHGoKqmm+FbThbsYvny5cyfP5+nnnqKxx9/nOeff56iIsUgdfDgwcyZMwd1mHG6wVCpVMyYMYOxY5XxXH5+Pm+88UZIe+vpRgd50YGwYZ6ei6BXJhSCVkPsQzeT8NxDqCxN9/1F3nCx3IPtyT+B7duVTa7XLgS3jjQw7fTX2hCdUoVPMBoQmukDr8fgwYOpigmQF24P7v1HKXnjU/yBG4IwwCkb3HX4XXSgLRBdbqz//UBejrzuYjTNGMg2iRNrYcMT8mJFysUsPqJUdE67SWe40Jmhx2yJjGiiMhkVFcXcuXNJTk5Gq9Vy2WWXKeoQYxxc+J6UktBQyp45BdJyWz28IAgMGjSI+++/n1GjRjWZsDFkyJA2VRI273PKLuMZyRo6J4SX2pKVqmNkj2r+dmsC7zyWwp9ujuPSC8xkpxuUAYUogs/FPltvnjn+B7zmrlLffRM4VKCoE7LTddKA78ZL0Wg0mCMiyMm3kplfidHhQQSqVH5e37We/fsb274cOnRINtLq2rUrXbp0kV8bNzj0unj7rBj6BQy9oh/+gzwJtu/X4/7oHsS33we/9H7qErR8XlaLo0GfMsCgngbUgX9rXpEX39WK7L76rc9DDJE7cJoR2wMunC+56l/yNUQ2rcb5tUHQaYl/4h6EgJzIteMA1a99hicooUfXu2voRg0TR9b/HVxSixaRGbIJagd+3bC71Bw45mrytczMTB588EEee+wxNh1SyIoJwyJaVEOAdI+aOlK5Vy9eV4ff33hyrs1KA21ApVylZcfGvdg90sQ5RlNJr57JjbapR/W8L/EckvxaBKOeuD/d2mzaVFvQkLxoznTfZ63FuXa7vGxqomWkKWjTU4i8Zhpxjz9K0m2xpN5ygoz78un83BQS//dHYh+6CcsVUzFeMJSYe65F10v67k4aHiG1dHmdLKmaik9UQb+5jfbfu3dv2aeptrZWvjcGp4z07NkzZMLu94vsPPzLIy8AcgdbGNLbgk6nI97ioF/scnSqxvdmu91OWZkS8ztixAhmzpx5SmNIQRCYNGlSSILciRMnePXVV6murm73fltCB3nRgbChskQQGZBmalKTSH7nCSKvnd7ihVIdZSHyOiW/2frKJ6dv4JqimMFRvClE++crVgyWNImxrV7Me/fuDTEWHEYtflHEY3fgOVECgFunpsugcsX4rIO86EAbUPPRItkBXxUTSdRNl7ayRRA8dlh+r9SHDYhJg3n3sDL5HDx4MOnp5+7kJCYmhrvuuou//OUvjVyqEVQw6C6Y/plinKeNgFF/bdMxjEYj06dP56677gppJREEgWHDhrWwZWOs3RncMtK+Nhy9TkVONwNXTYniidsTmTfufzyc9jcmxHwv+4NsqxvMSyfvaXIgC5B3XKm0ZadKBErElPPRpCRIRIaoYtz+clSB61peVgJlVZW88847zJs3j5IS6dpVVVXF8eOKS/u4caERmf266ckdbCIqQsVvLgntKdb1zsaUq6jbKucfpm6rFkEQ8COwqndP6my2EJfyepiNKvp0VQZ+e7uNRBWQMXtPlGL7blUYf8kOtBupo2HknyAq8+c+k7MKXc8uRN02R162vvSRPN7QpKegjmwg8w9uG6k8EJp4cP4ToDm3zfo6cHrg88Ojr5Tz0mdVVNc1VgdrNBpOlInsy5dIZbUKJg1rumDXEOcPMGIyBDyAKn1sP9iYJFEZ9WjSpTZSHyp+3J+BIEqf2/OiVqJOaMIsE/AcK6L6lY/l5eg7r0LTOXx/p5agzUqTUwZ95VX4TpY1uZ79x/WIAcZfn9MdbWobjy8I0FOyLBPUoK39DlPuUCKvnUHco7eS9OIfiZo7Sx7Dj+xnxKKqBkQqPPFs1V4NCY2NSdVqtZwmCEr6WMOI1GDkn/RQG0jeioxQkdGE39W5CpVK4M+3dOLFh9J594mB/P0vD/HAAw9w5ZVXMnr0aLp27RrSAgUwZswYZsyYcdqKX2PGjOHSS5XxbVlZGa+++ioVFRUtbNU+hF+S6kAHgJg7r8IyezLq+GiEMCVGkddOl5zma+rwFpykbuFyLEEtKO0/mR5S9dddB/YSqD0uuQoT6lKsTo5vdVdarZYBAwZQ+f1OOp+w4nQ4ZNVFca9YBut2AUKH30UH2gR/rY3q1z6Vl6NvvbzZNIgmsenfUFsoPdZHsc5yI6XlkspIr9czeXLTrQLnElq9MXYaAZf/JDmHJw2Wv8NtRUpKCrfeeivbtm1j165d9OvXL6RtpTXUOfxsPxR+y0i4MCV1Y3DRYgZbNhGlsbKgTJpcrSrpR+R31Vx/UVQjcvVgoaK86JYmKb4ErYbI62ZQ+dSbAGh8ImazGZfXS0Fvpcf44MGDHDp0iBEjRuBwOGTVRWZmptwHXA+VSuCOy0LltsGIuv8u7Ct3gNeBsyBoItc9g+MpUive2rVrGTx4MCkpKSHbDutjkKtYGw95GXXNdKz/kxRI1W8saOWv1oEOtA9Rc2fiWL4J1+5DIc/re2c1Xrk+ccReIhPEAHSdBuljG6/fgV81lm2xs3GPg6umRDFhqClEhh9suDm8j5HYqPDGvwadivFDI1i4qk7ez6CejUkxb4+eLHelsqrTGKod0aCRxp/nx28N9YgKQBRFKv76suI10TuLyKsvarReeyGo1ej6ZuPcIMXEunYcQNMpsdF6wUR0xNTwVBeNkD0L1j8uxRWXbJFS1WK6NbmqFjfjzF/xVZ1U5f/BfhXNNc0OHTqUZcuWAZICcf/+/bLqQKPRkJ0d2hK254hCLPXL0of8/38J0KiFEIPxuLg44uLiyMmRyB2/309lZSVFRUUcPHiQKVOmnBaVTjCGDRuGwWDg448/xu/3U1VVxauvvspNN91EcnLzCqK2okN50YE2Q5MUFzZxAQHFxg2XyMvVp0t9oVJD4iBluURpHQk26wxXoi+1jkgTy3riQhQEMmZ0Vr7gHX4XHWgDql9fgL9aGrRo0pKxzJkS/sal20PctO39H+T7VUoc2cSJE0OiQ3/RMMRAr6tCe9DbgfpWkuuvv1424g0Xm/Y4ZBf5rM5akuNOE7cflCgyJ/59SYEBoNLy7RobX64IdaG31voot0onotUQMhgxz5yAqkH1OObCMdz55z+G+J6Iosi6devYvn27/Fy910VboO/VFdP484GgAY7aQPIj95MV6BUWRZGvv/66kax4aG+F/Nl31I1w6VSlhfDocTrQgTMBQaMh/onfhbS4gmQ63iQaXnO0EZJvSAf+30CvVYgrm1Pk9S+tPPJyGXnHJRK5zuFn5fageNSR4aku6hFsNLntoIuT5cr4t7jCy1sLrTyims5XWTOpNMQiBlrzuhjy6JpmarIts27BEpwbd0kLajVxf70DoQ0tkuFAPyCodWT7gUave8uqcG4KKBkEAdOk89p3IGMcZCiJhhz4qPl1D3/JRPMCQARBzfaTcRRXND2fiImJoWdPxbvp00+VQlKPHj0apWrsz1eKBud6ykh7oFKpiI+PJycnh/j4+NNOXNQjJyeHa6+9Vm7Zra2t5dVXX2XHjh14PM37t7QFHeRFB84KIq++CFUgX91bVErtgiWnZ8chvheKaacvzKSRYHTu3BmxW2jV93iXeHqmBZnOdOqISO1AePAWl1MzXzHZjLn76oDDdhjweWDF/Uo1sPP5fLVfL0dQJSUlhTg8d+DUsSaoZWTkaVJdABCvSH4FAeYmv8RwyzrZT+KD72v4cZNyjTl8XBlAde2sC+mrVkUYsVwZGodqmTMFs9nMzJkzufvuu+natUFfP5CRkdFIdREuou66XvHmEDTocvpiumAI06dPl1U1+fn5IUQJSBFu2WkS8eIXYWuhqtko1w504HRC2zWVmN9dE/Jco6SRegS3jgAMfajJSncHfr2IjvDy8PVxJMYoham84x4efrGM17+08u3qOjk+Oz1ZQ8/Mtk1sk+M0DA5SWyxeV8eeIy7+9V4Fdz1dwqK1NtyCjnqS2OSxcUnMBzyW8ShCE0pfT8FJKp96S16OvG46+l6Nr/unihDfi52NyQv7krUQUPYZBvdu0Ri/VfQISrs/+JmkwmgIUYRdr5OkK2GgeStoTYDAko3NG0MGG3fa7YphasOWEVEU2X9Muff2zPzl+F2ci+jZsyc33XST3KridDr56KOPeOKJJ/jqq68oLCxs1kclHHSQFx04K1BFGEN6/atf+/T0ROaFkBdKPKI3KGlEHabyQhAEukwMdUo2zJmMtlTZb4ffRQfChfXFD+XPuK53FqbJbahK7HgFKgIxYRoDBZl3snPXLvnl6dOnt8sZGqDW7qfW7j+lG8evDTU2H7uCjLpOV8sIIEXKBsXBqQU/d3d7iz5ZynOvfmFl4x6JPDlUqFQmuqU27rmNvOoi2SBZ1zsLw7B+8mspKSnMnTuXa665Rm6ZEQSBiRMntrvKou+dhWniBWBKBGMc0XddhyAIJCUlcf75ikx40aJFjcw7hweljmzc65Q8kgy/vopWB849WK6ZhnHUAEDy6NLldG96xbggP4H4vtD3hjN+bh049zC4p4Fn703isnEWOUIa4IcNNj77SUnXmzrS3K5rabBa47u1Nv7yejmb9gbFSWrUJDtKufzgR/xly0PMjnsHs7quUZuy6PVS/vCziA5pW22X1Lanl4UJfY5CXrj3H200ZrctUlJGwjXqbBbpY6V7DIC9FAqWNV7n5Hqo2AvApPgl8n31p8122Wi7Ibp3705UVGjaklqtpkePUMXVyQofNTaJiIkwCKQmdrgqnCq6dOnC3LlzFaN2JBJj/fr1vPTSSzz33HOsXLmS2traFvbSNDr+Ox04a7BccSE173wtmf+UVlL76Q8hUartQuIgyfhP9EPlfnDXgs4SorzQJLXueVGPnNzRrEl9k5TjVRzPjGPMjKHwdbH0os4SOtDpQAeagftwAXVfKTffmPuuRwjXFMmaB1v+Iy/6B93P5z9ulZdzcnLaXUVfvK6ON7+W3J9NBoHEGA1JcWqSYjWBH+lxfLQyehNFEY8XnG4/LreI0y3Kv91ekaQYNZ0SNGdMgng2sGG3U44mzU7TkhB9Gm+NKrU0AC1RMtV1iT15cHwcf36tnPyTHkQRnv2wkkdviudwkN9Fdnrjib46Lprkd/6BY90OzBeNafR3FwSBPn360KNHD/bu3cuhQ4fa/XmpR/wTv6P6rXS0XVMx5SqE8dixY9m2bRu1tbXU1tby448/Mm2ack0f3tfI+4ul2Nodh5x4LClYrphKzdtfndL5dKADrUFQqUh86VEc63ag69EFlaGZSmq3iyF/MTjKYexzSsxsB/7fQacVmDMxkgsGmXjza2sjc02TQeD8Ae0jtnO66UmJ14S0jNRjQHc9F40wEn3VfeCoAbcfv1MFOkKUewDVr32Ga+dBAASNmvin7kVlPDMqAXW0BW1GJzzHihA9Xlx7ldhhb3E5rm2BAotaTcTEU1QlqzTQ/TLY/pK0fOAjyJwYus6uN+SHAwdlEb9BS7nVR53dz6GTETTlpKdSqRg2bBhLlihq76ysLIzG0P/j/nzlf90z85fnd3GuIjU1lXvuuYeNGzeyZcsWOaYWoLS0lEWLFrF48WJ69OjRplbfjqt0B84aVEY9UXNnUfmkdAGqfuMzzLMmntqFV2eG2F5QsUciMEq3QeqYdrWNAJjNZlJf+TM7ly5n8JSJmKuVSWOH30UHwkXVs+/Jckrj+YMwjmjsht0kRD+s+D34AhPYhBzW2ftSUrIYAJ1Ox4UXXtiuczpY4Obtb5TYKrtTJP+kh/yTjXsQVQIIYmfeWl6E0y3SmkjDbFLRM0NHz0wdvTL1dO2sbTVG7lzC2l2KYuC8/u1LGWkRcX1CyAvi+2IyqPjjjXE8+koZJZU+vD546t0KggNIuqU2rVLQdc9E1z2zxUNqNBpycnKorKxscb1woDKbiLn76kbPGwwGpk2bxocffgg0Nu9MjtOQlqShsMSLxwvbD7gYdtsc7IvXwJ5TPq0OdKBFCBoNptGDW15JY4Ap887OCXXgF4HkOA2P3BDHhj1O3v6mmopqqaw/YVgEBl37BOsqlcC08yJ4/SvpHqzVwAUDTVx4npm0JElhV9Q1Fff+I0At3godRKshWjGVdO04gPXVIAPwO69q2oj2NEI/oCeeY0Xy8cmMBsC2WFFdGIf3Qx0XfeoH63GFQl4cWwL2cjAFio81BZD/vbyqOucmJooRfPhDgBzPNzfcm4whQ4bw448/yubVDVtGADlJBmhzW1AHWobFYmH8+PGMHTuW/Px8tmzZwq5du2T/C1EU2b9/f5NR782ho22kA2cVltmT5DYOX7mV2o++O/WdhrSOSKadwYad4baN1KNPv35cee9ddO/VE4rWKi+kdPhddKB1OLfswbEiYB4rCMTce234G+/7QJJGAghqbEP+xpKlioJj3LhxjSSQ4cDm8PPcR5X4/K2vC5JHgd2lxuFqnbgAqLP72bzPyfuLavjjy2Vc95ciHnu1jA++r2brASc2R5gH/hlgrfWFuIyP7HcaW0bq0aB6Vm/iGW1R86eb44m2SLdih0tStYAU1Rbcg32uol+/frKyoynzzmFBrSMb9jpQmU3EPnrrWT/PDnSgAx0IF4IgMKKvkefuS+TaqZHMHm9hzoTIU9rnhGER3HppNDfNiOKVh5O5dWaMTFwAaLMzJCWxNgJXhQWGPAAaqbjnr7NT9ofnqHeVNgzuTeSNl5zS+YQDfVC7lWuH4nsR3DISMTW03brdiOkGSYF4U78XDn+uvLZ7nuIBljoGYrszboiJ+u7Zoko9x5ooxABERkYyeLBEYkZERNCnT2MF9b6jQcqLjA7y4kxApVLRtWtXZs+ezSOPPMKsWbPIzMxs1746lBcdOKsQ9DqibplN5eOvAlD91hdYZk9uW3xkQyQPhT1vS49PbsTvdMkJD4JGjTqu7ZM9QDIHKlqnLHf4XXSgFYiiSNUz78rL5mkXoOvRJbyNbSWw/u/K8oDfsmhTAS6XdFONi4vjvPPa7uYtiiKvfmGlrEoa9JgMAv++KxG9TqCk0kdxhZeSSi+lVT7+r717j2+6Phc4/nmSNEnvF0oBRUCQO2jRIU4Q4kCdNxziJiq66SZzUzd35mUep8cNt7nNHY/Hy5zOTTecU8+Y98tELSoqgtwZBeR+K5S2Kb2mTfI9f/zSNC1taUrb/Fqe9+vVF/n+8kv6tClPkiff7/PdXxKkqDRI2aGmxQanE7xJgscteN0OPG7rstMBO/bVU1nTtMJRH7Q+ybA+zagkyQWXn5PBzLM6tl64K32yriZaoBk9xE1ORhcUDJovN8tt/OSnX46Ln16byz1PFFNd2/h7HH6C23a/q5aICDNnzuShhx4iHA6zfft2XnzxRfLz8xk2bBiTxnr5R2TN+IrCWoIh02TpiVJK2ZXX7WDm1M7Z1cvhEGac3vpOJe7hg6kCSEpjl8wi99Sbo9eV/uZPBHfus+4nLcXaUaeDfa/icdiOIzNPp37nPurWfwFYW3inzOjE5uGj5sD+SPP9wudg/PUQrLYuNxh/PWAV/yeNSY7OnHznsyq+c0lWi3c7c+ZMxo4dS//+/Zv0YAAoqwixv9R6feRywrBWZjyqzuP1evnSl77El770JUpKSlixYsVhTb/bosUL1e3SZ5/DoT/9k+DeA4TLDnHob2+QNe+yjt9hQ6UW4MDnhHbvjA6dudkdT/CHdkCV9WSBO/3wT0+Vaqbmvc+in05Ikousm+JopPXRf1o9WwAyhrAz7zI+f6lxOvPFF18c3XoqHos+q+aTmGURN1yaTV6OdT+ZaU5GtNBXoa7e8K93P+LsaZPxugVnG0tAwmHD3oNBCrfXUbg9QOGOuugLgQb1QVjw5iG2763nhkuz8HRw6m1X+Dhml5FObdQZK2e01VwsWGNtC5s5pMnVgwck8ZNr+jD/Twdp2EV6WAvNOu0qLy+PKVOm8MEHHwCwcuVKVq5cicfjYfjwEaS6z6Ay4Ka6FtZtCZA/wnuEe1RKqWNL0vBB0cuuPQejl6sWfUrlwkXRcc5d83Ad3697YjppEI6UZMLVNYSKS3GWVlC1qXHWhffMCdEG0p1i2MWw5G7rubJ0IxSvtpaD11nLQ8gcajX3jDhnUmq0ePHZ+hq+PTOzxaK/y+U6rElng40xS0ZOGugmyWX/Dw16kz59+nDOOedwzjnncPvtt7frNvZ5BRkhIsNFpFZEFjQ7Pl1ECkWkWkTeF5HBiYpRHR1JcpF5wzei40NPv3R0O4+kD4TMyKfb9dWEPngselU8/S4OEzvrYsAkbeSl2mSCQcr+56/RcfoVF7T/BcbW12Hbm9Fh+Kxf88rr/4qOR48e3eoTb1t2FtXz59f80fE5k1LbtSzCnSSkeUOkJjvaLFyA9WnSwLwkZpyeyk3fyOGR2/rzhzv78x9X5nDBmakcl9v4/+aj1TX89PGDFJe1vC97dystD0X3dheBM8Z1UfEiKRmmPQDHTwHfg9bU4GZGn+jhx1f1ISPVQW6ms81P6Ozo7LPPZvDgpk/LgUCAdevWEjq0ioqKCqqrq/nnO1soLy9v5V6UUurY5B7emD+T9hRjjCF4oJSSex+NHk/96hRSL5rWbTGJ04l7fGPfjaSte5r0u0i9oJOWjDRwp1sFjAaFz8HapxrH47/d5Plz9Ilu0pKt1yhlFeEWe3gdSeGOxiUjo7XfRY9gu+IF8CiwLPaAiOQCC4G7gRxgOfB894emOkvaxT5c/a1GPOFDlU26GMdNBE7/SXQYXP0GGOuT36MrXsT2u+jEaXGqV6p8+X3qt+0GrGmdmde3bzaRM1QJH93VeGDUlSzf52HPnj3W9U5nkx0c2itQF+bB50qjn+QP6u/iWxd2cAlVnHIynHx5fDLXXpzF727JY8bExmma2/fVc8cjxazbEmjjHrpHbKPOsUM9ZKV34TTc4bPg4hdgyLmtnnLaKC+P/6Q/j93Rj+yujKULeL1err/+eq6//nomT55MdnZ29LpMlzUbLhgM8vmGAL/61f2JClMppWzJ2T83uoTaURMgtL+EkrsfJuy3ZmQ6+/Uh554bun05YWzfi9SP1lC/eQcA4nV3zRLAkZc3Xt7wLJRvtS6702HE15uc6nRIk5l8nxfWEq/CJs06u2bnFtW5bFW8EJE5gB94t9lVlwLrjTEvGmNqgXuBU0RkVPdGqDqLJLnwxuzAEFjZ/i6zLRp6ERxnNdQMHZLo9HtXnM06o4xpWrzQfheqDeGaAP5HGtdkZlw7C2d2+5p7Ddn3V2tfc4CUPKrzb+Xttxu7ak+bNo2cnPj/jv/8Wjm7D1iVC3eS8KMrcnAndf90SJdT+O6l2Vz/taxoc62K6jDznzrImx9XNmnu2N0+XlMdvTy5q5aMxCnJJT2i10VLnE4nQ4cO5aKLLuK2227jBz/4ATNmzGDkIBcusV5U1ptkqkJ9ExypUkrZi4iQdFLj0pHS+/5AzZKVDVeS+4sf4sxofVeNruI5pXHWp2fDjujllGkTcaR2wfPmgDMgY4h12cT03xp1hbXDYDOnjmosXqyIs3hREwizbW/jbI0R2qyzR7DNPHgRyQB+DkwHvt3s6rHA6oaBMaZKRLZEjh/2rldE5gHzAPr27UtBQUEXRd1xlZWVx3xcKR5DVp1V8dzx5vuUDs1u9dz2xJWSdBGn1H1AwC+YYC1BU8XW8hLWdODn8QaKmFBmJemQI5ll60sw/z78fvRxVAAVz75GqNjaktKZm03G1Rcf4RYRe5aQV/ouuCNPmFN+yTuLl1Jdbb2pzsrKYtq0+KeILllTzbvLGt+Yf3tmJgPzEttD4dxJqZzQz8Xvni2lvDJM2MCfXi1n6956rr8kq9MKK2UVIT5cWU1etovxJ3lITW65Rl9cFmTzLutFi9MBk7pqycgxSkQYMGAAAwYMYPr06QT/VkTB5zUEg0HKQ4OOfAdKKXWMcY8YTGCV9bamuqBxEnrGty5p/5brnSy2eBEr5atTuuYbisCoy+GzX8ccc8C461o8fcIILw31/s276imvDJGZ1r6Zi5t31UW3Jx/U30VaK68XlL3YpngBzAeeMsbsauFTpzSguNmxcqDFFsDGmCeAJwBGjhxpfD5f50baCQoKCjjW46o7YSh7n7e2gUzeX874adNa/cSxfXH5ILUQ3njLqmCbGkZPPp3Ujvw8hX+HbZE3lIN8TDt7+lHE1f3sGldvFCqvoPypxi29sr5/OY6UdjQkrPXD4tsaxyeez15vPkuXPhI9dNFFF+F2x/dJQFFJkD8s9EfHk09O5uzTjmI3n040eoiHX9+Ux28XlLBlt1U4KPi8mt3767ltbh9yMo9uqURlTZif/r6YA5GdVRwCIwa5yR/hIX+ElxOPS8LhsHJMbKPO8Sd5SE/RFy1daeqpWXy8NoTb7SYlQ5fhKaVUc7EzLxq4Rwwm++arEhCNxZmdgWvQgOhuJwCO1GSSzzq1677piK/Dst8Q3Qps8LmQ0XLROy3FwYDsACVV1pKP1ZsDTJ3Qvtc8TZaMDNYlIz1Ft7xaE5ECETGtfH0kIvnADODBVu6iEmg+BzsDqOjCsFUXSzpxII7IFLhQaXmTxNhhE28nFElgmBDOQx+1fX5rmiwZ+fLRx6V6rfI//oNwRRUASYOPI23WjCPfKFQHb18Hh7ZbY3cGZvIveOWVV6LLKIYPH86YMWPiiiUYMvzP30upCVj30S/HybxZWbZahtAn08nP5/Vl2qmNLy6+2F3P7Y8coHB7x/tghMOGh58vjRYuAMIGCnfU8fd3KvjJo8Vc/8si/vf5Uj5YWc1Hq2N2GWlHE1N1dMYP85Dssf4OSw7Z5+9RKaXsIrZpJ4C4k8j99X8g7sTOnPQ2m32RfPbpOLxd+GY/7TgYFPNa6pTvtnn60H6Nz+fx9L3Y0KTfhS4Z6Sm6pXhhjPEZY6SVrymADxgC7BSRIuBWYLaIrIjcxXrglIb7E5FUYFjkuOqhxOFouof00fa9AEjuQzA0IDp07nsWqptP2jmC5v0uBmjxQrUsuK+Yimdfj46zfjgXSTrChDYThvdvgX2fNh6b9ltWbd7Hjh3WUiWHw8FFF10Ud9HhubcPRWc0OJ3woytySPHab0aBO0m48bIsrrs4k8hECMorw/z8qYP8e1vHChj/LKhgxcbG2w7qf/jjcKgqzIeranj4hbJoV3KnE04fq8WLruZOEiboFqlKKdWqpGbFi+wfXXNYQSMR3M2KF6nnd/IuIy35yv9C/o0w43Frx782nBhTvFi1qZZQ6Mi9tIIhw+ZdjcUL3Wmk57DLq9onsIoR+ZGvx4HXgfMi1/8TGCcis0XEC9wDrDHGdMK7XZVInlMae64GVh/9w2lCIUJVThDrjYvLcwg++1V8d1KxEyr3WpeTUqHv+KOOS8VPRG4SkeUiEhCRp5tdZ4utk/2PPoeps94Ee8YPJ+WcdhS6Pvs1fPFSdLij/1xqjz+HN99s3Cp1ypQp5OXlxRXLio21vPJhZXR81XkZDBto3ydjEeH8M9O4+9u50SUb9UG4/5kStu2Nb+vkNV/U8vyixol4M6em8bsf9uOPd/Xn5m9kc1Z+MhmpLT/d5Q/3ttoXQ3Wu08fFX7w4Qh4YEpnBWRnzdXdnxauUsj8R8YjIUyKyQ0QqRGSliJyf6Lg6wpmVTtosa5ly2sU+0q+6MMERWbwTGl+rOzLSSD4zv+u/qScTzrgLTpp5xFNz0+vJybCex6trDZt2Hvk1xI599QTqrCJHbqaT3Cw7dVJQbbHFKzZjTLUxpqjhC2uZSK0xpjhyfTEwG/gFUAZMAuYkLGDVaWITYm0nzLwIlZRDKAzudBzesFXD2Pg8HFh9xNtG7f2k8fKASeDQhJYge4H7gD/FHrTL1sl1m7ZT+fL70XH2f3zzyDMl/r0AVj7cOB5zDXv7XsJ7771HRYX15js9PZ2zzz47rlg2bAvw8POl0fGEkR4unNz9Xck7YtwwD7/8fl+y0q2no5qA4b4/lbD3YLBdty8pD/E/z5VFl8aOHuLmynOtVYaZaU6mTkjhB5fn8OR/9uf+G/ty+TnpjBzsRsSaDfD16S22TlJdYMIIb3THmTi0mAeayTLGpEW+5nc0PqVUj+QCdgHTgEys1wYviMiQRAbVUbnzb2bfgz8g91e3IA5bvE0jacQQ0mZNJ5ziJee2a488w7SbicCpI+PbMlWXjPRc9vhf0Ywx5l5jzNxmxxYZY0YZY5Ijy1C2Jyg81Ync44bT8Gq2/oud0d4BHRXaX2JdcLpx9c20LhsDS+5ubPxzJLHFC90iNWGMMQuNMS8BJc2ussXWyWUPPRv9m0qeehreiePavsHO9+DDOxvHg2fAlPuoqKxkyZIl0cMXXHABXm/7P6F+b3kVP3vqIJU1VizZ6Q5uvCw72piyJ+jfx8VPr80lxWvFfKgqzPw/HqSkPNTm7YIhw++eLaGi2tpOLSvdwY+uzMHpPPxndziEYQPdXPaVDO67oS9/vXcAf/mvAbaendLbpHgdTBoT3xKdNvKAUkphjKmKvG/YbowJG2NeA7YBpyU6to4yqfZaYici5M6/maIHb47ODLGbJlumbjxy8SK2x5YWL3oWe5XO1DHHkeLFPXIIdf/eAkBg9UaSp3S8g3Fwf+PrW+fwCeDYCOF62L/cmqo/fFbrNw6HYPM/YPvbjce034UdJXzrZPemXeS+YxUcDLD7zJFsaON+U2q2MW7L3TjD1hNqVfKJrHNfQWjxh6xatYqaGmu9Zp8+fSgrK2tXjOEwfLghi8+3NPYyTvGE+MqYYlYu39jhn61BIrbbPW+8m//7pB/BkLDnAPz4d19w+eT9JHsa93qPjev9tdms22bNnHAITBu5n9WfH/3P3hF23Z7YbnGNzhXqTkzn/zr3bneIiAHeAW4zxhxs6SS7b6Nut8eqgcYVH40rsUSkHzCCNvriaS7omMqqKnvGVVlJffAzgvUDCYWFL3YGeOWND8lIafkDEGNg+frjCQSsD08PHVhNQUF9l8Rl19+XHeNqLy1eqITzThgdLV7UrtxwVMWL0IHG4oXrhMFw8vWw6jHrwKfzYch5kNRsCyVjYMciqzdGacx7X3eG9ruwp4RunWyMoejJnxCIbGGadrGPkXO/0foNKvfCwh+BKwy4Ie14PLNeY2pqP9auXUtZWRkejwcR4brrrmPAgAGt31dEVU2Yh/5eyrrdATyRht+D+7u445t96Js1/Kh+vgaJ2m53zLha7v9LCaEQVNV7WLw5m//6Ti7JkcajDXEtWV3Nv/eWRX/+q8/PYObUod0ebwO7bk9sx7i+Cvyk7ebx7XUQmAisAvoAjwLP0tgvqwm7b6Nux8cKNK54aVyJIyJJWDngmbb64mku6Bh7xzWNpTsPsnqzNaPCkzMB3xktL5/ddzBI6F/78XggxSvMvujMLpmtau/fly/RYXSYLZeNqGOLJ6bvRWDV0X1qGiqKmXmRlwOn/hBS+loHqopg5SNNb1C0DF7+Grz1zaaFi+Q+cPaD2u/CnhK6dXL1u0sJrLb+TiXJRdZNV7R+cuAQvDEXqvdbY3cGXLAAk5LH2rVreemll6KnTpo0qV2Fi6KSIHf9vpiVmxqnPE4c42X+DX3p2wsaTuWP8HLzN7Kj4y176vn1X0uoq29c9rVrfz2/X+iPjieN9XLxWT2jx4dqdKRt1I90e2NMpTFmuTEmaIzZD9wEnCsizfODUqqHam+eEBEH8FegDisXqGPMabFLR9roe9Fkychgd49aZqt05oWyAU9+TPFizSZMMIi4OvanGYyZeeHslwvudDj9P6HgR9bB1Y/BqDlQX23NtNjxTtM7SEqFU26Ak78Lbn0zZFPrgW82DLpz62RTV4//f/4aHadfcQGu4/u1fHKoHv51fWNRzJEE5/4Rv6MfL//lLxQWNhbLUlJSOPfcc4/4/ddtCfC7Z0ui/S0AZvnSmHNORq968p18cgpVNYYnX/IDsH5rHQ8+V8qtV+VQVy888GxptEt4/z5Ovn9ZdtzbyqrEM8b4OvsuI//qH4NSvUR78oRYTwBPAf2AC4wxnb8GQNnehJFeeLUcsF4v1dUb3EmHPx00bdbp6bb4VOfQ4oVKOFf/XJz9+hDaX4KpqaVu0w48Y4Z16L5CBxp3XHD162NdGPl1WP80FK+GUB28ehlU7mnawNORBGOvgQk/hJTco/hpVGcRERdWjnICzsg2yUGsrZN/KyKzsbZU7ratk8v/+A/qt+8BwJGWQub1l7V8ojHwwe2w58PoofDU3/DxdnjnnQepq2t84vR6vVx11VUkJ7fdyHDRZ1X88WU/oUj7B5cTvjc7m6kTUtq8XU917qRUKqvDPPevQwAs31DL7xf62bGjD3tLrJ1I3C649ao+pHh1EmFv1VoeMMYERWQS4Ac2A9nA/wIFxpjyRMWrlEqI3wOjgRnGmJpEB6MSo38fF8f1dbG3OEhdENZtDTTZhaTBBm3W2aPpKz5lC94Jo6OXA6s6/h40VNTYp82Zl2NdEAdMua/xpIrdjYULERg+G+Z8CJPna+HCXn4K1AA/AeZGLv80UVsn123aTvmTjW0Gs266Emd2C7PTjbH6q2xs3L21fMT1PLaomNdff71J4WLSpEmcffbZDB3aeq+GUMjwp1f9/OGfjYWLrHQHP5vXt9cWLhrM8qUxM2Y5yOIV1Wzc2/gzf/fSbAYPSEpEaKr7tJgHItcNBd7CWjK2DggAbazjUkr1NiIyGPgukA8UiUhl5OuqxEamEiF26cjKFpaO+CtCFJVYjTydThh2vBYvehqdeaFswZM/iqq3rKWLgVWFcOWFcd+HMYZgcczMi/4xhYh+p8HwS2HzwsZjg6bDpDuhz5gOx626jjHmXqxtUFu6bhHQbVujmlCIknsexdRbn/h78keRfsX5LZwYtrblXfdnawhs95zOk4vqMGZP9LS8vDxmzZrFkCFD2uz4HKgL8+BzZU32LB8yIIk7rskhtxf0tzgSEWHu+RlU1oR5b3l1k+vOnZTa64s36oh54Dngue6MRyllL8aYHehSMRUxYYSHVz+sBODzjbVcZ0yTZaWFOxo/QDppoLvFZSXK3nr/q1/VIzTpe7GyYzMvwhVVmBprKpgke5C0Zm9spvzC+jcUgHHfhuPO6ND3UceeQwteI7BuM2A16ezzsxsRp7PpSSYMH9wBG54FIBgM8u+aQTy/Y0R0Ib7T6eQrX/kK06ZNw9n89s2/Z1WI+58pYfOuxqW7k8Z5uenr2Xjdx86kORFh3teyqKoJs3S9VcQZNjCJb12UmeDIlFJKKWUno0/0kOwRagKG4rIQuw8EOaFf4wzN5s06Vc+jxQtlC+6RQ5BkD6YmQHBfMcGig01nTrRDaH/MNql9cw5v4OfJhOnNdhtR6gjqd+7D//Cz0XHmDZfjHnZC05PCIVj8Y9j4AmFjqK2tZW3VEF6p+gphrCLF0KFDmTVrFrm5R/67PlAa5Bd/LmHvwWD02CVT07jyvN7VmLO9nE7hh3NyeHHRIdYWlnD7NYNJch17vwellFJKtc7lFE4e7mHpOuvDjhWFtU2LFzEzL0afqM06e6Jj5+M7ZWuS5MIzbnh03LAVZTxim3U64yx8KNUSYwwl9z6GqbWe7NwjBpN53aymJ4Xq4b2bMBtfoK6+nqrKSlZVDeOVqnMJ4yQlJYXLLruM73znO+0qXGzbW8ddjxc3KVxcNzOTuednHpOFiwZJLuHKr2ZyXn4p2eltz1pRSiml1LHptJgmnSs2Ni67ra0Ls21P42zWkTrzokfSmRfKNjz5o6hdtg6AwMoNpJ43Oa7bB2NmXkSbdSp1FCoXLqL2s7XWwOGgz/ybkaSYtBmqh0XfI7TlNWprawkFQ6wKjOGtah8GBxMmTOCCCy4gLa192+6u/aKW3y4opSZgLTRxOuGHl+fw5fFt70SilFJKKaUgP6Z4Ubi9jqqaMKnJDjbvrCMcWcd7Qj8Xacn6GX5PpMULZRueCTF9L1Z1YObF/sadRqLbpCrVQcH9JZT99s/RceY3L8Ez9qSYEwKE3/4O9V+8QaCuDgx8HhjPO9VTyc7pw6xZszjppJNauOeWLVldzcMvlhGymmCT4hVuv7oPY4fqtEallFJKqfbITncy7PgktuypJ2xg1eZaJp+cwobtjUtGRg3R11Y9lRYvlG14ThkZvVxXuJVwTQBHcvuTS5OZF1q8UEfBGEPp/McJV1o7XLgGDSDzxpjdWOtrqFz4Ddj9AeHI/qWf1ebzfuAspk6byvTp00lKav8Wnq9+WMFf3jgUHWdnOLjrW7m6DahSSimlVJxOHeVlS2SJyMqNASafnEJhbPFCl4z0WFq8ULbhzEwnaehA6rfuxgRD1K3bjHfiuHbfvknPizwtXqiOq357CdUFy6Lj3J/diMNrFdKqyw9S+reLyahYF73+49rT2Nrn69x06aUMGDCg3d8nHDYsXp/Fut2NhYuBeS7uurbPMbEVqlJKKaVUZzt1pJcX360AYNXGWoIhw6ZdMc06h2jxoqfSV8fKVjwTRlO/dTcAgVWF8RUvYncb0ZkXqoNC/gpKf/lkdJz+ja/inTiOuro6li5+i7wVtzFA9kav/6T+TDJn/Bc3nHEGDkf71k+WlodYtqGGj1bXsHpLBp7IBKNRg93ccU0f0lJ0HaZSSimlVEcMPT6JzFQH5VVhyqvCvLusikCd1fCiT6aTvtn6Frin0kdO2Yo3fxSV/3gHgNpVG8mM47a6bER1hrJfP0WotByw/o7Sf3Aln3zyCcvf+wcXO/9OjqM8em5h1qWccfn/kpnZ9l+qMYZdB4IsW1/Dsg21bNldf9g5p4/x8sM5ObiTjt0dRZRSSimljpbDIeSP9LJ4hbX89//eq4hep0tGejYtXihb8eTHNu3cgDEGkSO/mTOBOsL+SGJyOnH2iafsoZSl+sPPqXy1IDounTOd5554HO+hDXwj/XVSpAYAcTioGH8bp5/301bvKxQ2bNpZx7J/1/LZ+hr2l4ZaPfeCM1O55sJMnMfwVqhKKaWUUp3l1JGeaPHCXxGOHh+lS0Z6NC1eKFtxDTkOR1Y6YX8F4fJKgtv2kDR04BFv12TWRW4W4nR2ZZiqh3LUBKh66yNMTYBwbQBTE8BE/g3XBqhe9CkAwWCQ7YNyeHfrWoYnbeNrGW/hIoQ4BLc3DddXHyf9pJmH3b8xhq176lm8spqPV9dQXhU+7BwApwPGnOhh4lgvQf9KLj5/aJf+3EoppZRSx5JThntxOiDU7KXYaN1ppEezTfFCRAqAM4Bg5NAeY8zImOunA48Cg4ClwLeMMTu6O07VtUQEzymjqFlsNUusXV3YruJFbLNO7XehWuM8UEbxrQ8cdtwAJhwmHA4TCASocTn4aGwep3rWcG7KhzgE3B4P7vQ85Py/QP8vNbn9gdIgH66q5oOVNew9GDzs/gG8bmHCSC8Tx3g5daSX1Mj+4gUFrc/IUEoppZRS8UtNdjBqiJv1WxsbdaZ4hYH9bPP2V3WA3R69m4wxf2x+UERygYXAd4BXgfnA81jFDtXLeCc0Fi8CKwtJnzXjiLcJHdB+F6odDATq6qxChTHRgoVpdtryiUM4M/szzkheicftxu12I5lD4IJnIcuaJVFZE+aTNTV8sKq6yfZbsTLTHEwc7WXi2GTGD/OQ5NJlIUoppZRS3WHCSG+T4sXIQW5dotvD2a140ZpLgfXGmBcBRORe4KCIjDLGFCY0MtXpmvS9WNm+hzdYFLPTiG6TqloRcAlf5KUQdDkIOZ0EXY7IZUfkspPKTDeTT/yUk1N34Han4RCBvAnw1WeodeWwcm0NS1ZXs7ywllALkya8bmHSuGSmTkhm7FCPPkkqpZRSSiXAaaO8LHizcTv6UbpkpMezW/HiVyJyP7ARuMsYUxA5PhZY3XCSMaZKRLZEjh/27lZE5gHzAPr27UtBQUHzUxKusrJS42pNXT0DgkEkHKZu41YWv/YmlYTajCvjsxWk1VmV1a2HSljTTT+DLX5fLbBrXIl2KM3DR2cNP+y40+kkMzOTvhlJzOEF+oX34RDrCa5m4IWsOO43fPrPMCs2FlFX33yeBjgEThnuYeqEFCaO8eJx61anSimllFKJdHxfF3nZTg6UWZ82jdZmnT2enYoXdwD/BuqAOcCrIpJvjNkCpAHFzc4vB9JbuiNjzBPAEwAjR440Pp+vq2LusIKCAjSu1u2b8C8CazcDMDG9L5+ZyjbjOvDyUqrdVkIaNeXLpPmmdkeYtvl9NWfXuBLNleThzMlTycnOIDMzk6ysLDIzM0l11ODY/iaseQLKt1MdTuXzyol84ryWVUvHUh+sbvH+hh2fxFkTUph8cjJZ6dokVimllFLKLkSEay7M5I8v+xk/zKM7jfQC3VK8iDTjnNbK1UuMMVOMMUtjjj0jIlcAFwAPA5VARrPbZQAVqF7Jkz8qWrwIrNwA+Se0eX6Thp15OV0am+q5quoz+cuSk/G6hfTkMBkcJL1+Oel1W8hwlpPqPIMttXNZVXkqoaRsSEo57D4G5rmYNC6ZKackMzAvKQE/hVJKKaWUao9JY5OZNDY50WGoTtItxQtjjK8jNwMaFouvB77ZcIWIpALDIsdVL+SZMAr++ioAgVUb2yxehEr81O/cFx1rw07VpmANtbW11JbVUYwBToh8RYiAOxNc3uihQf1dnDEumTPGJXNCPy1YKKWUUkop1d1ssWxERLKAScBirK1SLwemArdETvkn8FsRmQ28DtwDrNFmnb2XJ3909HJg3SYInt3iebUrN1D8H78lXGY145Ekl26Vqlrlog5HXRlh00JPCqcbnF5weUCcDBmQxJfHJzNpnJfj+2rBQimllFJKqUSyRfECSALuA0YBIawmnF8zxmwEMMYURwoXjwALgKVYfTFUL+XKy8F1XB7BvQcwtXUk7TrQ5HpjDBULXqXsd89ggpEtH0TIuuVqxKPr2VTLBnu28Nyor1ETTqYilMmhzEkcyp1BReYkDoUzqKwOk5HqYOKYZPr3sUt6VEoppZRSStni1bkxphiYeIRzFmEVN9QxwpM/iuBeq2jh3ronejxcWU3Jfz1K1dtLosccmWn0/c2PSZ48odvjVIkhIjnAU8C5wEHgTmPM3450O0feyaQOm0nqsIvpnz6wq8NUSnWQiHiAx4AZQA7wBfCfxpg3Y86ZDjwKDML6YONbxpgdCQhXKaWUUl1M9/NTtuXJHxm97N6yF4C6L3ayb85tTQoXnvHDOe7/HtTCxbHnUazdifoBVwG/F5Gxbd2g2jsIZr8J+d8DLVwoZXcuYBdWw+9M4G7gBREZAiAiucDCyPEcYDnwfEIiVUoppVSX0+KFsi3PhMa+F+4vdlP5+gfsu+I26rc3zsJIn3M+/Z/5Ja4BfRMRokqQSNPe2cDdxphKY8xHwCvA1W3dbsfuIp5++mkA6uvr8fl8LFiwAIDq6mp8Ph/PP2+99ykvL8fn87Fw4UIADh48iM/n49VXrUayRUVF+Hw+3nrrLQB27dqFz+dj0aJFAGzduhWfz8fixYsB2LhxIz6fj48//hiAdevW4fP5KCy0WvesWrUKn8/HqlWrAFi2bBk+n49169YB8PHHH+Pz+di4cSMAixcvxufzsXXrVgAWLVqEz+dj165dALz11lv4fD6KiooAePXVV/H5fBw8eBCAhQsX4vP5KC8vB+D555/H5/NRXW1tC/vOO+/g8/mor68H4Omnn26y/e6TTz7JjBkzouPHHnuM888/Pzp+6KGHmDlzZnT8wAMPMHv27Oj4/vvvZ86cxtV/8+fPZ+7cudHxPffcw7XXXhsd33nnncybNy86vvXWW7nxxhuj41tuuYVbbrklOr7xxhu59dZbo+N58+Zx5513RsfXXnst99xzT3Q8d+5c5s+fHx3PmTOH+++/PzqePXs2DzzwQHQ8c+ZMHnrooej4jjvu4LHHHouOZ8yYwZNPPhkd+3w+2/3tLVu2DEjM3157GGOqjDH3GmO2G2PCxpjXgG3AaZFTLgXWG2NeNMbUAvcCp4iIztJUSimleiFbLBtRqiXu4YOQZC+mphanv5KDd/x39DpJ9tDn3htJu3BqAiNUCTQCCBljNsUcW00LWzKLyDxgHkBSUhKFhYUUFBQQDAbx+/1s2LCBgoICamtr8fv9rF+/noKCAiorK/H7/axbt46cnBzKy8vx+/2sXbuW9PR0SktL8fv9rFmzBq/Xy4EDB/D7/axevRqXy8XevXvx+/2sXLkSYww7d+7E7/ezYsUK6urq2LZtG36/n+rqagoKCvjiiy/w+/0sX74cv99PYWEhfr+fZcuWcfDgQdatW4ff72fp0qXs27ePVatW4ff7+fTTT9m5cyerV6/G7/fzySefsGXLFtasWYPf7+fjjz8mJyeHtWvX4vf7WbJkCZmZmdH7+/DDD0lLS2P9+vX4/X4++OADvF5v9PexePFiXC5XNJ6CggLAekNcVlYWHW/atInS0tLoePPmzZSUlETHW7Zsobi4ODreunUrBw4ciI63bdvG/v37o+Pt27c3OX/nzp2Ul5dTWVlJQUEBu3btIhAIRK/fvXs3QHS8Z88ePB5PdLx3716qqqqi46KiIkKhUHS8f/9+3G53dHzgwAG2bt0aHRcXF7Nly5bouKSkhM2bN0fHwWCQTZs2RcdlZWVs3LgxOm54TLv7b++kk05i6dKlLf7tff7551RVVSXkb68jRKQf1v/9hp3GxmL9vwesYoeIbIkcP6yhd2wu6Nu3b/SxsYuGv2270bjio3EppVQXMsb06q8RI0YYO3r//fcTHUKL7BbXvuvuNtvGXmI2Dj/fbBt7idk29hKz+8Lvm8DmHYkOzRhjv99XA7vGBSw3nfD/GjgLKGp27HqgoK3b2TEf2PWx0rjio3HFJ95cgNXYexHwh5hjTwH3NztvCVbfix732sCuj5XGFR+NKz6d9bqgo1+aC9pP44qPxhWf9uYCXTaibM0zoens39TzJjPg77/FfdKgBEWkbKISyGh2LAOoSEAsSqkOEJECETGtfH0Uc54D+CtWj5ubYu5C84BSSil1DNHihbK19Etn4MjOwCS5yLnjOnIfuBVHWkqiw1KJtwlwicjwmGOn0DidXCllc8YYnzFGWvmaAiAigjXDoh8w2xhTH3MX67H+3xM5NxUYhuYBpY5JIjJcRGpFZEGiY1FKdQ0tXihbcx2Xxwnv/Ymi/76JjKtnYr2OVcc6Y0wV1i4DPxeRVBGZDFyC9emsUqr3+D0wGrjYGFPT7Lp/AuNEZLaIeIF7gDXGmMP6XSiljgmPAssSHYRSquto8ULZniS5MB53osNQ9vN9IBk4ADwHfM8Yo5+4KtVLiMhg4LtAPlAkIpWRr6sAjDHFWLsO/QIoAyYBc1q5O6VULyYicwA/8G6CQ1FKdSGx+mP0XiJSAWxMdBwtyAUOJjqIFmhc8dG44jPSGJOeqG9u03xg18dK44qPxhUfzQWHs+tjpXHFR+OKz1HnAhHJAJYD04FvAycZY+a2cX505yFgHNCxLZC6jl0fK40rPhpXfNqVC46FrVI3GmO+lOggmhOR5RpX+2lc8bFzXAkOwXb5wM6PlcbVfhpXfDQXHM7Oj5XG1X4aV3w6KRfMB54yxuxqz/JiY8wTwBMN399uvxc7xgQaV7w0rvi0NxfoshGllFJKKaWU7RxpVyIRyQdmAA8mOFSlVDc4FmZeKKWUUkoppXoYY4yvretF5BZgCLAzMusiDXCKyBhjzKldHZ9SqnsdC8WLJxIdQCs0rvhoXPHRuOz5/Vtix5hA44qXxhWfRMeV6O/fEjvGBBpXvDSu+BxtXE8Af48Z34pVzPheN33/rmDHmEDjipfGFZ92xdXrG3YqpZRSSimlej8RuZcjNOxUSvVcWrxQSimllFJKKaWUrWnDTqWUUkoppZRSStmaFi+UUkoppZRSSilla722eCEiC0Rkn4gcEpFNIvKdRMcUS0SGi0itiCxIdCwQ3YqqVkQqI18bEx1TAxGZIyIbRKRKRLaIyFkJjqey2VdIRB5OZEwNRGSIiLwhImUiUiQij4hIwhvzishoEXlPRMpF5AsRmdXN39+2+UBzQftpLmg/zQWtfn/NBe2kuSCueDQXxB+X5oJWaC5oP80F7ddbckGvLV4AvwKGGGMygJnAfSJyWoJjivUosCzRQTRzkzEmLfI1MtHBAIjIOcCvgWuBdGAqsDWRMcX8jtKAfkAN8GIiY4rxGHAAGADkA9OA7ycyoEhifBl4DcgB5gELRGREN4Zh53yguaAdNBfETXNByzQXxEdzQTtoLoiP5oIj0lzQDpoL4tYrckGvLV4YY9YbYwINw8jXsASGFCUicwA/8G6CQ+kJfgb83BjzqTEmbIzZY4zZk+igYlyGlQg+THQgEScCLxhjao0xRcBbwNgExzQKOA540BgTMsa8BywBru6uAOyaDzQXxEVzQXw0F7RAc0GvoLkgPpoLWqC5oFfQXBCfXpELem3xAkBEHhORaqAQ2Ae8keCQEJEM4OfAjxMdSwt+JSIHRWSJiPgSHYyIOIEvAX0j04h2R6Y4JSc6thjfBP5i7LNtz0PAHBFJEZHjgfOxklMiSSvHxnVrEDbLB5oL2k9zQYdoLmgtCM0F8dBcED/NBUemuaDleDQXtJPmgg7pFbmgVxcvjDHfx5pGdBawEAi0fYtuMR94yhizK9GBNHMHMBQ4HngCeFVEEl2B7gckYVUuz8Ka4jQB+GkCY4oSkUFYU66eSXQsMRZjVVEPAbuB5cBLiQwI60XBAeA2EUkSkXOxfm8p3RmEDfOB5oL201wQP80FrdBc0G6aC+KkuaDdNBe0THNB+2kuiF+vyAW9ungBEJmC8hEwEPheImMRkXxgBvBgIuNoiTFmqTGmwhgTMMY8gzVl54IEh1UT+fdhY8w+Y8xB4L9JfFwNrgE+MsZsS3QgACLiAN7GegJOBXKBbKz1gAljjKkHvgZcCBRhfaLwAlbi7O5YbJEPNBfETXNBHDQXtCsWzQVHoLmgQzQXtIPmgsNpLoib5oI49KZckPAOo93IReLXsvmAIcBOEQFIA5wiMsYYc2oC42qJoeWpPN0XgDFlIrI7EosdXQPcn+ggYuQAJwCPRNZxBkTkz8B9wO2JDMwYswarkgqAiHxMYqvRic4HPjQXtD8AzQXx0lzQfpoL2k9zwZFpLmgnzQWH8aG5oP0BaC6IV6/JBb1y5oWI5Im1dU6aiDhF5DzgCuC9BIf2BFZizI98PQ68DpyXuJBARLJE5DwR8YqIS0SuwurY+3Yi44r4M3Bz5DHNBm7B6kibUCJyJtb0Obt0ECZSdd4GfC/yOGZhrbdbndDAABE5OfL3lSIit2J1On66m763HfOB5oL4aS5oJ80FrX5vzQXtpLkgfpoL4qO54DCaC+KnuaCdelMu6JXFC6wq3PewppyUAQ8AtxhjXk5oUMZUG2OKGr6ASqDWGFOcyLiw1ozdBxQDB4Gbga8ZY+ywj/N8rO2iNgEbgJXALxIakeWbwEJjTEWiA2nmUuCrWI/lF0AQ+FFCI7JcjdUM6wAwHTgnpst3V7NdPtBc0CGaC+KjueBwmgvaT3NB/DQXxEdzQWxAmgs6QnNBfHpFLhD7NEBVSimllFJKKaWUOlxvnXmhlFJKKaWUUkqpXkKLF0oppZRSSimllLI1LV4opZRSSimllFLK1rR4oZRSSimllFJKKVvT4oVSSimllFJKKaVsTYsXSimllFJKKaWUsjUtXiillFJKKaWUUsrWtHihEkZEtotIjYhUiIhfRD4WkRtERP8ulTqGaC5QSoHmAqWURXOBao3+AahEu9gYkw4MBu4H7gCeSmxISqkE0FyglALNBUopi+YCdRgtXihbMMaUG2NeAS4Hviki40TkQhFZKSKHRGSXiNzbcL6IvC4iN8feh4isEZGvdW/kSqnOpLlAKQWaC5RSFs0FKpYWL5StGGM+A3YDZwFVwDVAFnAh8L2YxPMMMLfhdiJyCnA88EY3hquU6iKaC5RSoLlAKWXRXKBAixfKnvYCOcaYAmPMWmNM2BizBngOmBY552VguIgMj4yvBp43xtQlIF6lVNfQXKCUAs0FSimL5oJjnBYvlB0dD5SKyCQReV9EikWkHLgByAUwxgSAF4C5keY9VwB/TVjESqmuoLlAKQWaC5RSFs0FxzgtXihbEZGJWInpI+BvwCvACcaYTOBxQGJOfwa4CpgOVBtjPunmcJVSXURzgVIKNBcopSyaCxRo8ULZhIhkiMhFwN+BBcaYtUA6UGqMqRWR04ErY28TSURh4HdoRVWpXkFzgVIKNBcopSyaC1QsMcYkOgZ1jBKR7UA/IIiVYP4NLAAeN8aEROQyrKSTAywGtgNZxpjYJjw/BeYDw4wxW7v1B1BKdQrNBUop0FyglLJoLlCt0eKF6tFE5BpgnjFmSqJjUUoljuYCpRRoLlBKWTQX9E66bET1WCKSAnwfeCLRsSilEkdzgVIKNBcopSyaC3ovLV6oHklEzgOKgf1YTXuUUscgzQVKKdBcoJSyaC7o3XTZiFJKKaWUUkoppWxNZ14opZRSSimllFLK1rR4oZRSSimllFJKKVvT4oVSSimllFJKKaVsTYsXSimllFJKKaWUsjUtXiillFJKKaWUUsrW/h/ymv0xxUuBigAAAABJRU5ErkJggg==\n", + "text/plain": [ + "<Figure size 1296x576 with 8 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Separating the two equations #\n", + "\n", + "# Eq.1 ------\n", + "col = sns.color_palette()\n", + "col_pte = ['#436bad', 'orange','crimson', 'gray']\n", + "col_pte2 = [col[0], 'gray', col[4], 'gold', col[2], col[3]]\n", + "colors={1:'dimgray',2:'gold',3:'mediumseagreen',4:'darkorange',5:'crimson',6:'royalblue'}\n", + "\n", + "term = 'All'\n", + "res = '80km'\n", + "fig, ax = plt.subplots(2, 4, figsize=(18,8), sharex=True, sharey=False)\n", + "for i in [1,4,5,6]: # loop over simulations\n", + " ax[0,0].plot(dur[exp80[i]], dp[exp80[i]], color=colors[i],\n", + " linewidth=3, label=expname[i], alpha=0.9)\n", + " ax[0,1].plot(dur[exp80[i]], dfi[exp80[i]], color=colors[i],\n", + " linewidth=3, label=expname[i], alpha=0.9)\n", + " ax[0,2].plot(dur[exp80[i]], ep[exp80[i]], color=colors[i],\n", + " linewidth=3, label=expname[i], alpha=0.9)\n", + " ax[0,3].plot(dur[exp80[i]], itt[exp80[i]], color=colors[i],\n", + " linewidth=3, label=expname[i], alpha=0.9)\n", + " ax[1,0].plot(dur[exp80[i]], tadv[exp80[i]], color=colors[i],\n", + " linewidth=3, label=expname[i], alpha=0.9)\n", + " ax[1,1].plot(dur[exp80[i]], vmt[exp80[i]], color=colors[i],\n", + " linewidth=3, label=expname[i], alpha=0.9)\n", + " ax[1,2].plot(dur[exp80[i]], diab[exp80[i]], color=colors[i],\n", + " linewidth=3, label=expname[i], alpha=0.9)\n", + " ax[1,3].plot(dur[exp80[i]], eq2res[exp80[i]], color=colors[i],\n", + " linewidth=3, label=expname[i], alpha=0.9)\n", + " \n", + "ax[0,0].set_title('Dp')\n", + "ax[0,1].set_title('Dfi')\n", + "ax[0,2].set_title('EP')\n", + "ax[0,3].set_title('ITT')\n", + "ax[1,0].set_title('ITT:TADV')\n", + "ax[1,1].set_title('ITT:VMT')\n", + "ax[1,2].set_title('ITT:DIAB')\n", + "ax[1,3].set_title('ITT:res')\n", + "\n", + "\n", + "ax[0,0].set_ylim((-18, 12))\n", + "ax[0,1].set_ylim((-6, 6))\n", + "ax[0,2].set_ylim((-1.4, 1))\n", + "ax[0,3].set_ylim((-13.5, 9))\n", + "ax[1,0].set_ylim(-55, 14)\n", + "ax[1,1].set_ylim(-2, 65)\n", + "ax[1,2].set_ylim(-21, 12)\n", + "ax[1,3].set_ylim(-4, 7)\n", + "\n", + "ax[1,0].set_xlabel('Day', fontsize=12)\n", + "ax[1,1].set_xlabel('Day', fontsize=12)\n", + "ax[1,2].set_xlabel('Day', fontsize=12)\n", + "ax[1,3].set_xlabel('Day', fontsize=12)\n", + "\n", + "ax[0,0].set_ylabel('hPa/'+str(dt)+'hr', fontsize=12)\n", + "ax[1,0].set_ylabel('hPa/'+str(dt)+'hr', fontsize=12)\n", + "ax[0,0].set_xlim((3, 9))\n", + "#ax[1].set_xlim((3, 9))\n", + "#ax[2].set_xlim((3, 9))\n", + "#ax[3].set_xlim((3, 9))\n", + "ax[0,0].yaxis.grid()\n", + "ax[0,1].yaxis.grid()\n", + "ax[0,2].yaxis.grid()\n", + "ax[0,3].yaxis.grid()\n", + "ax[0,0].xaxis.grid()\n", + "ax[0,1].xaxis.grid()\n", + "ax[0,2].xaxis.grid()\n", + "ax[0,3].xaxis.grid()\n", + "ax[1,0].yaxis.grid()\n", + "ax[1,1].yaxis.grid()\n", + "ax[1,2].yaxis.grid()\n", + "ax[1,3].yaxis.grid()\n", + "ax[1,0].xaxis.grid()\n", + "ax[1,1].xaxis.grid()\n", + "ax[1,2].xaxis.grid()\n", + "ax[1,3].xaxis.grid()\n", + "ax[0,0].axhline(y=0,linestyle=':', color='k')\n", + "ax[0,1].axhline(y=0,linestyle=':', color='k')\n", + "ax[0,2].axhline(y=0,linestyle=':', color='k')\n", + "ax[0,3].axhline(y=0,linestyle=':', color='k')\n", + "ax[1,0].axhline(y=0,linestyle=':', color='k')\n", + "ax[1,1].axhline(y=0,linestyle=':', color='k')\n", + "ax[1,2].axhline(y=0,linestyle=':', color='k')\n", + "ax[1,3].axhline(y=0,linestyle=':', color='k')\n", + "ax[0,0].legend(ncol=2, loc='upper left')\n", + "#ax[1].legend(ncol=2, loc='upper left')\n", + "#plt.legend(bbox_to_anchor=(1.0, 1), loc='upper center')\n", + "\n", + "#plt.savefig('TimeseriesPTE_'+exp+'_'+str(dt)+'hrly_Eq1_upper'+str(int(p2level))+'hPa_box'+str(int(boxsize))+'_CyCen.png',\n", + "# bbox_inches='tight',dpi=200)\n", + "ax[0,0].tick_params(axis='both', which='major', labelsize=12)\n", + "ax[0,1].tick_params(axis='both', which='major', labelsize=12)\n", + "ax[0,2].tick_params(axis='both', which='major', labelsize=12)\n", + "ax[0,3].tick_params(axis='both', which='major', labelsize=12)\n", + "ax[1,0].tick_params(axis='both', which='major', labelsize=12)\n", + "ax[1,1].tick_params(axis='both', which='major', labelsize=12)\n", + "ax[1,2].tick_params(axis='both', which='major', labelsize=12)\n", + "ax[1,3].tick_params(axis='both', which='major', labelsize=12)\n", + "plt.subplots_adjust(wspace = 0.14)\n", + "fig.suptitle(''+res+' simulations (interpolated to 1x1 degree)',fontsize=16, weight='bold')\n", + "#fig.suptitle('Eq1: '+term+' Term ('+res+')',fontsize=14, weight='bold')\n", + "plt.savefig('CyclonePTEtimeseries_Sim1456_'+res+'_Allterms_in_onefig.png',\n", + " bbox_inches='tight',dpi=100)\n", + "plt.show()\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### " + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (based on the module python3/2022.01)", + "language": "python", + "name": "python3_2022_01" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.9" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/Scripts_for_analysis/Check_impact_of_remapping/Plotting_PTE_timeseries_comparison_channel_80km_and_2km_0005_check_remap1vs025.ipynb b/Scripts_for_analysis/Check_impact_of_remapping/Plotting_PTE_timeseries_comparison_channel_80km_and_2km_0005_check_remap1vs025.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..86bb2aeb4ff38d8b249b0fbb0051c89d082eca60 --- /dev/null +++ b/Scripts_for_analysis/Check_impact_of_remapping/Plotting_PTE_timeseries_comparison_channel_80km_and_2km_0005_check_remap1vs025.ipynb @@ -0,0 +1,538 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "tags": [] + }, + "source": [ + "# Plotting separate PTE terms for\n", + "## simulation channel_2km_0005 regridded to 1x1 and 0.25x0.25 deg latlon\n", + "# and\n", + "## simulation channel_80km_0005 regridded to 1x1" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Ting-Chen Chen (ting-chen.chen@kit.edu) " + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "# set time step in hours\n", + "dt = 6\n", + "\n", + "if dt == 1:\n", + " data_dt = '1hrly'\n", + "elif dt == 6:\n", + " data_dt = '6hrly'\n", + "\n", + "# set upper level of PTE analysis\n", + "p2level = 50\n", + "\n", + "# set boxsize around location of minimum surface pressure of PTE analysis\n", + "boxsize = 6" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "# set strings to handle sims within this notebook\n", + "exp_name = {\n", + " 1: 'channel_80km_0005',\n", + " 2: 'channel_2km_0005',\n", + " 3: 'channel_2km_0005'\n", + " }" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "# set strings to handle regridded sims within this notebook\n", + "str_regridded_sim = {\n", + " 1: 'channel_80km_0005',\n", + " 2: 'channel_2km_0005',\n", + " 3: 'channel_2km_0005_025x025'\n", + " }" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# set data_res strings for loading data\n", + "data_res = {\n", + " 1: '1x1latlon',\n", + " 2: '1x1latlon',\n", + " 3: '025x025latlon'\n", + " }" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "# set strings to handle grids within this notebook\n", + "str_grid = {\n", + " 1: '80km 1x1',\n", + " 2: '2km 1x1',\n", + " 3: '2km 0.25x0.25'\n", + " }" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "TC_work = '/work/bb1152/Module_A/A6_CyclEx/b382037_TingChen/Task3/PTE/'\n", + "# this is indicated here specifically for the 0.25 latlon remap\n", + "CB_scratch = '/scratch/b/b380782/check_remapping_on_PTE/'+exp_name[3]+'/PTE_out/'" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "path_track = {\n", + " 1: TC_work+'cyclone_PTE_timeseries/',\n", + " 2: TC_work+'cyclone_PTE_timeseries/',\n", + " 3: CB_scratch+'cyclone_PTE_timeseries/'\n", + "}" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "### Not required anymore. Keeping this to have an overview about sims.\n", + "\n", + "#####################################################\n", + "# cyclone specific data\n", + "#####################################################\n", + "# channel_Xkm_0001: control simulations\n", + "# channel_Xkm_0002: +4K, qv consistent with T\n", + "# channel_Xkm_0003: +4k, qv from control\n", + "# channel_Xkm_0004: +temperature anomaly from MPI-ESM1-2-LR far future\n", + "# channel_Xkm_0005: +tropical temperature anomaly from MPI-ESM1-2-LR far future\n", + "# channel_Xkm_0006: +polar temperature anomaly from MPI-ESM1-2-LR far future\n", + "\n", + "# Note that the 2-km experiments contain outputs every 6 hrs\n", + "# Note that the 80-km experiments contain outputs every 1 hrs\n", + "\n", + "\n", + "expname = {\n", + " 1: 'CTL_RH0', \n", + " 2: '4K_RH0',\n", + " 3: '4K_RH-',\n", + " 4: 'Tanom_RH0',\n", + " 5: 'Tanom_TR_RH0',\n", + " 6: 'Tanom_PO_RH0'\n", + " }\n", + "\n", + "exp80 = { \n", + " 1:'channel_80km_0001',\n", + " 2:'channel_80km_0002',\n", + " 3:'channel_80km_0003',\n", + " 4:'channel_80km_0004',\n", + " 5:'channel_80km_0005',\n", + " 6:'channel_80km_0006',\n", + " }\n", + "\n", + "exp2 = { \n", + " 1:'channel_2km_0001',\n", + " 2:'channel_2km_0002',\n", + " 3:'channel_2km_0003',\n", + " 4:'channel_2km_0004',\n", + " 5:'channel_2km_0005',\n", + " 6:'channel_2km_0006',\n", + " }\n" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import pandas as pd\n", + "import scipy as sp\n", + "import scipy.ndimage\n", + "from netCDF4 import Dataset\n", + "import matplotlib.pyplot as plt\n", + "import matplotlib.ticker as mticker\n", + "import matplotlib.patches as patches\n", + "import psutil\n", + "import datetime\n", + "import time as tm\n", + "import seaborn as sns\n", + "import cartopy.crs as ccrs\n", + "from cartopy.mpl.gridliner import LONGITUDE_FORMATTER, LATITUDE_FORMATTER\n", + "import warnings\n", + "warnings.filterwarnings(\"ignore\")" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "# define function to load path track data that has previously been stored in csv files\n", + "def load_path_track_data(exp_str,expname,data_res,path_track,dur,dp,dfi,ep,itt,eq1res,tadv,vmt,diab,eq2res,diabptend,lon,lat,pmin):\n", + " \n", + " ifile ='PTE_for_'+expname+'_'+data_dt+'_'+data_res+'_upper'+str(int(p2level))+'hPa_box'+str(int(boxsize))+'.csv'\n", + " df_track = pd.read_csv(path_track+ifile)\n", + "\n", + " dur[exp_str] = df_track['time']+1 \n", + " dp[exp_str] = df_track['dp'] \n", + " dfi[exp_str] = df_track['dfi'] \n", + " ep[exp_str] = df_track['ep'] \n", + " itt[exp_str] = df_track['itt'] \n", + " eq1res[exp_str] = df_track['eq1res'] \n", + " tadv[exp_str] = df_track['tadv']\n", + " vmt[exp_str] = df_track['vmt']\n", + " diab[exp_str] = df_track['diab']\n", + " eq2res[exp_str] = df_track['eq2res'] \n", + " diabptend[exp_str] = df_track['diabptend']\n", + " \n", + " lon[exp_str] = df_track['lon']\n", + " lat[exp_str] = df_track['lat']\n", + " \n", + " pmin[exp_str] = df_track['pmin']\n", + " \n", + " return dur,dp,dfi,ep,itt,eq1res,tadv,vmt,diab,eq2res,diabptend,lon,lat,pmin" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "#####################################################\n", + "# Read in PTE track data from file\n", + "#####################################################\n", + "#\n", + "#path_track = '/work/bb1152/Module_A/A6_CyclEx/b382037_TingChen/Task3/PTE/cyclone_PTE_timeseries/'\n", + "\n", + "# initialize dictionaries\n", + "dur = {}\n", + "dp = {}\n", + "dfi = {}\n", + "ep = {}\n", + "itt = {}\n", + "eq1res = {}\n", + "tadv = {}\n", + "vmt = {}\n", + "diab = {}\n", + "eq2res = {}\n", + "diabptend = {}\n", + "\n", + "lon = {}\n", + "lat = {}\n", + "\n", + "pmin = {}\n", + "\n", + "# fill dictionaries\n", + "for i in range(1,4):\n", + " dur,dp,dfi,ep,itt,eq1res,tadv,vmt,diab,eq2res,diabptend,lon,lat,pmin = load_path_track_data(str_regridded_sim[i],\n", + " exp_name[i],\n", + " data_res[i],\n", + " path_track[i],\n", + " dur,\n", + " dp,\n", + " dfi,\n", + " ep,\n", + " itt,\n", + " eq1res,\n", + " tadv,\n", + " vmt,\n", + " diab,\n", + " eq2res,\n", + " diabptend,\n", + " lon,\n", + " lat,\n", + " pmin)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "tags": [] + }, + "source": [ + "# PLOT the time evolution of the cyclone-associated PTE " + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABC8AAAIfCAYAAABQG/aqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd3gU1frA8e/Zkl5I6BCaCoiCYrvYXUGvHQtXxY4Nf1ds114Re7k2rr1jFwsWFEFAglKl994DpGfTN9vO74/ZbDbJbrIJSTaB9/M8+yQzc2bmnbKzM2dOUVprhBBCCCGEEEIIIVorU6QDEEIIIYQQQgghhKiLZF4IIYQQQgghhBCiVZPMCyGEEEIIIYQQQrRqknkhhBBCCCGEEEKIVk0yL4QQQgghhBBCCNGqSeaFEEIIIYQQQgghWjXJvGgBSqlxSild41OhlNqulPpQKdUj0jEGUkpNCIizd8D4u3zbclczrLOfUupnpVS2UsrrW3eTryeSapwHtgjGURlDeiPnt/m2ZVzg+dFUy99XNc7f+j69IxFjS1FKpYe7L3zpRwWZ5lJK7VZKTVRKHd7A9fcOsjyPUipPKTVDKXVBkHm2hzo+NeKbUGNanFLqCaXURt/1NUcp9a1S6rCG77mWoZQa7tsPeUopt1LK7jtm/wqSNqztq7GPRrXYxkRQjW0eV0/a9r79mK6U2qWUcvjO7+lKqX8GSR/R61lrFnh9CSNt2MfIl357uMtuiBq/w6PCTD+upb9LATFuDxgX9LutlDIppZ5VSm1TSjl905fXN60tUEoNDjgGgyMdT1NSEbonVCHu8Rswf7uAY3JRUy+/NWrIsapx35PeIgEeYCyRDuAAFgX0Am4AzlRKHaa1LolwTPW5CyPmHcBrTbzsT4EhTbxM0TxswOO+/9OB7ZEKRLQIC9ANuAw4Syl1hNZ65z4szwSkAsOAoUqpi7XWP+1LgEopCzAVOCVgdAfgX8DZSimb1nrJvqyjqSmlLge+rjE6GTgNOE0pdb3WeoIvbZvbvlasLzC2xrhuvs8ZSqk7tdb/a/mwRCtV+Vs3G5gQwTjqMhp4qBHT2oLBVB2D7cDySAUi/NpRdUw+AX6MWCTigCQlL1reExj7/TCMTACAHsCFEYuodTjG93c9EKe1Vlrr10IlVoaoFomsiWitx/m2S2mt0yMdT3MJ2EZbhNY/KiAGhXHTWen0wGla6+2RiLGlaK1tNfbFjoDJfWpMq+kT3/heQOWDcTJwTSPD2eFbXjLwgW+cAm5r5PIC/ZuqB/svqHqw9wAJwHtNsI6mdn3A/+OAeKrvi/8L+L8tbl9rthq4DugEpACvBEx7QilljkhUDaSUionkegOvL5GI40CjtZ4QcM2eEDDpmID/K3/jBocxbZ9F6hxsjLZ439gYB8p2toSAa90Bcf/eVkjmRQRowzpgUsDonoFplFJpSqm3A4r6FSilflNKnVojXQel1JtKqa1KqTKlVJFSaoNS6iulVH9fmsAiTBMC5g06viZlVBPQGA8xAL1qFmlUSsUqpZ7zrbtEKVXqi+l7pdTxdSx7lG/ZlaWADgXKKotmVa7b93lSKfWIb51u4MSAffCqUmqzMopTFyul5iulrq+xrsBlTVBK3aqMoqmlSqnJSqmuSqn+yijGXaqU2qSUuiVU7DWWfYlS6i9lFOWuUEplKqX+VErdE5AmaLGzwH2plDpNKbVUKVWulFqslDpRKZWklPpAGUXK9yil/hd4w1DHchtSzG2YUuoXXwwlvnNul1Lqc6XUIQHptlOV4w4wq+Y6VIjickqpI3zn5V5lVEXI9e33U2qkC4z7Qt/5naWUKlRK/a6U6lvf8QiHMoqjTvKdN0W+mDJ9446tkTawGOSJvv1SoIzi/t8ppbrUSB+vjKLpa3zHskwptUwpdbcy3qJXpqtWvFApNUIptd43z2yl1KG+8/J733HZoZQaq5RqsWu3r5TFpwGjeoZKG+byioDXm2p5PqMC/n9Qa52ntf6eqoyro5VSg+pbiKqqxlHg+w7sVEbVvt410gVWxzlUGVXein3nzwdKqaQwYvYE/D9Ra10GfBkwLq6ptk8ZVSVWqKpqQJcH2Y5TfdeAMmX87tykDPf7rgV23/c1rb4NC/d6EiSGevelL83vvu/IXqXUM4C1vpgCrAQGa60/1VrnaK3twH1AsW96O6BjPdv3dEDM3yulrKp6kf4nlVKP+7ahSCn1iVIqUSl1glJqgW8fr1ZBilwHWVe132ml1GjfNcIFjPSliVFKPaqUWuVbdqlSapFS6oYgy+unlJrmS7dXGb/bNwesY1xA2sBjM9C330sxSgGFrDbSkGPkO8ce9H3XypVSc1SN62+N9ClKqf8q417D4du/s4PtS9/+nu9Lt10pdXd9+ztg3lE1tus0FeS3TYX5u1bHeqJ825PlO25Tan5HasakAqqN+GK8KSBZ5W/yhLqmBSzzSmXcqxQq495lo1LqGaVU4PWn2u+6UuoipdRypZQTeNA33aSUGuM770p8x3KVUupeFfo3b4JS6lrfd6FcKbVOKXVdQNp04OOAMD6uuf0h9lM4940NOY+GKKXmBZxH96gQ1Y+CnSN1jQ8R/9vKuA/M8Z1TxUqpv5VS/1ZKqYB09W5nuJRSCcq4Tq1Sxn2NSxnX/D+V7/fCl24csC1g1usCj2c962jMfVGd50g960tUSr2vjN/zImVUfR0S7FjUOJ4XK+N3PxcoDzLdFjBfsjJ+pyrX8RXQOUQ89T6viTBpreXTzB+Mt2ra9xkXMP7VgPE3BozvD+QETAv8eIDLA9L+GiKdBs73pekdMG5CwLyhxk8IGN8bo5pAqHVs983zZh1pbqtj34yqYz5bjXXnBpneBaMoYahlvBuwrsBlBdu/fwN7gowfWs/xHeI7LsHWvzjEeWALGF85rgQoqzF/PvBnkOU+GcZy61tfesC4B+vYh9lAB1+6uva1rY7lnw44QsznAa4KEXdBkPTrAUsDvn/pIfbDyDq2pRQYEOI7ESymGQFp4zFKKoRa9hTAFOQ7mEft82gzxlvimsu4oZHXosDj17ue72PgNeHOgPFPNWB9gdu3PWD8kQHj/wo3xmDxYVTBc/nGFdZI/79w9xlG0epQxywfOCzEORXsfPggjH0zPOB4j8PIrBgTsIznG7N9NfbRKIyH8aW+4Qrg4hDbEeya+FOQcX+GsW1hXU8aui8xSkpkBUkTeN0eV198QeKNxvjOa4xrsDXU9RIj87Zy3Jf4rkU19nuwfTkD4xofOM4N9G3Ad6jmb+Ao33mzoI79/UbAsjoCe4Ok2R1s/9U4NoHrTq85vbHHiOrX+8pPEUZmUrBlb65jW+8LSHtYwDENFceoOvb7qDrWU7n9Yf+u1bGeCfXEuD1ETKNqnJ81P8GW65/mm/f1OtIsAmKDfA/yqf47NQ7jReiPdSxrMqCCnM8FIdKfHOT8q/mp69jZAtIFu29syHl0KLW/tzW/M6OC7Kf0GjHVGk/oe7RQ55QGHg93O8M853r7xnWpY50auK6O72vN8yrY8ht7X1TnOVLHNipgej3HLdSxqLYvQx0r3zpmBVnHnhDrqPd5TT7hfaTkRQQow6HAxb5RpRgX90rjMYoFF2L8OMZg1NNdj/Ej8YaqKhJWWRJjEkZx7CTgCOAeIKMp4tVap+vqRc536KriU71rxLEA4wYpHuOifyuwro5lT9DVi5zO1qGLZrUH7sDYzh7AKuApqkqETPClOTIg1tFKqWA50O2Bi3yxbvONOw7jpjMNuDQg7RWh4vc5mapSTCdgPGykARcAX9Uzb6B4jGOfDHzrG5cCHOVb7kEYP6LhxNRQ0zGOYWeMN2SpwDO+aR2BqwF8x/uJgPlOr+N4BXoX4wEBjCLwSRj7342x715XSsUHma8Qo85rN6rOo/4Yx2pfLQXOArr6YkvyxQbGA0GoUjfbgIOBfhgPYgDDlFJdff/fBRzt+3+ab/kH+dYHcA6+N6Y1pGKc3+2A+b5xB/uGB2Bkkmnf+KY+/iEpo0HhyqoiHqrOzcYuLwm4PWBUXd+RbQFvOzTV38JVak9Vya3CGtMChzvVEVMv4EnfoB2j3Ylk4GnfuBRCt/PzN8YxHoKROQBwdeAbsmC01j9jZGAUYzwQlwJvYLzpeRV4zJd0X7YvCeMcPArjhvhirfUPIUJagfFdvytg3HCM70QKxnYCnKKU6l7HpkGY15Mg6tuX/6FqO3/E+J08GuMmcl88QlVJlw+11q5giZRSD2LcxILxe3O11todJGksxu9Cb6pKdAwD5vlivtc3zozRlky42gPP+5bRCfgd45pR2V7UbRjViDoC3/jGjVFKVV6P7sJ4SAHjRrojcKwvjvrsAAZi7Kf/qyNd2MdIKdUOeMA3WIFxPW4HvO/bjpqexLgmeoARGPs5DSODH+DpgOvwY1Qd07d8yx2K8b2uVz33JjbfuMb+rgFGCRWM6ktgPDD9A+MY/xlqniBxKox2BypVVgccVdc0ZZSIraymNgHjvIjDKIUExnnxb2pLwai61g1jn07AOIcv9E1/DuP7nkTVNfN8qu53A7XDuEdsB7wQMP4a37bZqF697nodvNpMXYLdNzb0PKo8hu9jbP+Zvr/N5QaMe/5EjPvJI6i6n78zxG9LsO1siGLgcoxrVhzGc8eJGJm5YHyv0VqPA/oEzPdJwDEZVcfy76Jx90XtqOMcqcMZvg8Y92yHYZyzW+uZD4xr1dkY++GIOtL9EyMDCYzMsEMxtmtTiPTN/rx2wIh07smB8KHunMrNwGkBaWMxfvjqygHVwPG+9Cupyul7ESNn/hh8OZi+NL0D5psQxvgJAeN7B4zf7hu3Pcg2/uybZsd4AL8Z34N8mPuoVi6lb7wtYNrvQeYLzOFMDRh/Z8D4p4Msa05A2okB42/0jYsKGDetntgvCUj7I8aN6flAxzrOA1uQbXditPcBxk1D5fjPAtLO842rCGO59a0vPWBcF4wbvM0Ez/V/u77lhlo+xkN+5bgVNdL+EDDtjCDLvy0g7UsB40c24PuXHmI/JGH8GK6ldokXDfwW4jtxfsD47wLGV34n5wWMOyog7YUB4z8P8h3cFZD2hYDxTwWMrzzfNzTyWrQ9YLm9g0wfFWQ/VH72Av9q4Pp617G8cozMR1VHjHV9JvjSdw0Yt7PGsp4OmPZgHXGODkg3PmC8maq36C4gJsg5NTAg/eKA8V3q2TenYmQ+1NwuD/Ab0LMx21fjGJYG/B1Wz3ej8vs3IMQ5+WzA+BPq2baGXE/C3pfAwoBxRwSkfSpg/LgGnqP3B8y7AN81OMj1LPAt/tvUPm8D9/vnAeMDYx7mGxd4TXy3nvh6B6RdH2S9c4Ps35qfynMjsITG4IBlPBNs/9U4NifWdf6E2N46jxHGA0vluEkBaWMxfg9rLjvwrWmoz0hf2sDSH8kBy/gsYPyoMM6PyrTpNcY36HctxLIDf+dfCRh/cMD47SHOsVEB4ycEjO9dYx1Bp9U45qE+U4PsBzu1vyNfhLGsd4Kcz4ElUweGWG/Qba7nmNkC5gl239iQ8ygzYFxKiG0eFWQ/1Txfao0n9D3a5RjfrZqlXCo/ncPZzjr2T61zAuOB/VaMa0Qh4K2xzvIQ16QJYS6/sfdF9Z4jIbbx+YC0dwWMPzOMY/FwkOXVOlZUv0+7IyDtsBDrqPd5TT7hfaS3kciLpXpd0FTCewvS3vf3Zoyc9f5U5ZgD7FBKXaS1Xl7HMpry+N+NccN6HEbub6VcpdRVWuvfm2Ady4KMq6ybXKK1zg8YH9gwYbA3ktsD/i+vOZ/W2hmQuR1N3X7AuFG/EeNCfKFvvEcp9Y7WOtwGCbO1Ue89aEw+Tt/fcBpjCuv4KqP9hJkYOdOhxIazrBAC64/X7KWivuO0IeD/0oD/m6KRsG8w3vSFEmqb64sp1PbWt62B0+s7/vWdk80huonXa6LqjVYofXRAo6q+usUf10iTh5Hha8F4OxMosL2EbEILesy01h6l1G6Mt8cWjOvznhrzNvYcHR8Q37UYGWEnYGRcnI1RZeMo9m37Kt8878W4carLdt/f+s49qOM82MfrSX37sn3AuIwQ/4dNKfUCRuYFGKWdzg24BtcU2AbAdO27Gw1he8D/wfZnWPsyiBVB1huyRFGAyv3WIWDczhD/hxLs97eudUH9xyhoWq11uVIqj6pSIpUasq2Vf4u11oEllJrqDee+/K5VatLzuYEasi8DbQjyHWn0sgL+b+rf90rBztvGfGeKtdYFAdPD7nErsD2HMNKOpP4Su8Gun+F+P0N5AKPUTCj7ekwae1/U2HOktV3rYN+e10QAqTbS8p7AuFm5EiNHtRvwg1KqstG6ypxWgE26es8Ila16m7TWvwJorRdqrQ/FKMZ1DkZd4xKMqhSVRawqi99C9S/8QQ2MPeTNmtZ6s9b6H77tOROjiNhejAvI66Hma6DyIONyfH8TlFKBxfgCGwEMdlMfrKhvXeND0oYxGMUIh2AUZ/sNIxNqjFLqhDAX1diY9vX4HkHVg8YajFxvE0aR8WDqumkPJifg/5qNM9Z3nAKLbzd0vSH5zpXKjIss4HCM41VXEcFwYwq1vS12TjaRTzAyVv+JUaQ0BfhEKdXYKjs7MM6rQzHOsyiMoqh37UuQWmsnVQ/miap6g5KHB/y/qI7FBD1myuh1orKKhBvj+lxz/Y09Rwf4/pZrrT/TWpdrrf8ANvrGD1ZKddjH7Uv3/T0Y+N1XTD+UYOdZY869hl5P/MLYl7kB/6eF+L9eSimzUuoDqjIupmC8IbfXMdsGqjKuvlJK/bOOtM31XQ72Gxh4LUkLcc9QuZ2B+y+w6k+P+lastQ627mAacoyCplVKxRL8YbdyW0uA6BD3Rm/WWHaiUiq5njgaY19+1yo1yfncSIFxXRXivPlHkPnqOwdPCrGsYNWjwrl27uvvfl3xNvQ8CswsDvWdqcyYbOy9dmDVidsx2h1RVFWvCCXc72c4670I337ByDyvqTHHpLH3RY39fW30tY7w92WDvr9hPq+JMEjmRQRorZ1a668wGrkEo27n875p5RhvrQD6KqVeVEp18rWae6QyWsuunI4yWoW+ACPD4w+Mt8mVucOVF4VMqh5wT1JKpSqlEoBHGxh65UWsQ806z0qp+5TRInEM8BdGVYzKG72m6E0glF8C/n9JGS1ID8RXP8/n12ZcP8roIeQBjGKkGzHeoM4PSNKc2w/Vc64v8MU0hOB1TIMJvKGuwLiY9iR03/CBP2ZHqHp6vtBab6TqgewIZbSWn+A7b8/3jS+g+j5rbpVVsyr/L8LIaHuqCZYdeE4+o5TqrIzeKsYGjG/Wc7KpaK3dWuvpVPUwYyZ02w/hLE9rrTdglDSo3P/jlFId6pgtHBMC/n9eGb1r/Auj7QqApVrruuoAT6Xqe3CNUupk343qWKre4PyhtXbsY5yBdvv+xiqlrlFGjxGnY1xHwLhpq3zTNCFgvoZs3ydUtZ0xGJhSVx38JtLQ60lDzAr4/wnffjiK6j0q1EkpFY3RbsuNvlGfABfWUeKiUiZGiRg7RsbbD0qpk8NdbzMKvN58qJTq6zuX+imlrlZKzaGqXaiZAWnH+e4FjqYB+y8MDTlGCzCqFQGcq5T6p+979zTBeyep3NYE4AOlVA+lVJxS6nCl1GiMdluCxfGsMnoFOB2jmmdDVP7e9Qp8QdJEv2uBMV6jlDrOt45nQs3QhALPm6eVUif5zpseSqlzlFJfAlc1Yln/892rxiilDlJGT2y/UFXfv6EC7zcGNqQUQx0ach4Ffmee9p1Hwwh9HlXejw1SSvVSSllp2H1F4PWzCKOZvOsxSuE1p8D12gGrUuoxgmciBh6TvmH+prT0fVHgcbvNd13sSvXe8vZV4Pf3NmX0VtiFqt/casJ8XhNhkMyLyHoK4+IEMFIpNdj3/11UveG7D+PNcBGwHHiZ6rm4l2O0N7ET40ZxK1U5i9PAeGCgqhhaGkamQh7V+/8OxwLf33ggQ1XvGuks4Gvf+h0YpS4qlz+tgetpiLFU/VjcgLHfVmG87QOjPnFzPxT3wMh8Wo5xISqnqvG/UmBOM69/ClUXwFuVUsUYx8ob5vzrqWoM82iM3OTtVC92F2hBwP/jMarH1Jcj/n9UZaC9i/Em/2eMG1QvcLvWujTEvE1Oa11M1Y9bd2AXxvesrqLu4RpP9UaoMjEajKr8PvyGkbnXlrxJVVH4E5VS9b5Fr4vWeinG9QKMqg8P78vyMNog+Mv3/1UY5/C3GJktJRhtWtQVz06qbqJSfMsqDBhXQPUM0aYQ+KblU4zrxh9UVQl7L+Btd6O3T2v9NFWl304AfvI9wDeXhl5PGuJVqt7OXeRb9lIaVgXyBKpn7F4HuFRAw7AqoCu8QL4MogswjlUc8KtSqqG/o01tPEb7IGD8Dm/EiG8DRvsOJwWkfQ3jegTGw1ceRg8Agb8V+/qmO+xj5CvpUvk9iMa4VyjEaAsiWGbSWKoa2L4G476nFKNHpneBwO6CnwpYxq0YD2R/hFhuXSp/73oD+ap6d7L79Lvmy8itbFCzA0aDtflUNTTYbHz3RW/7Bvtg3KeUY+zTKRiNQof7vZpI1YPnMRj3QuXAFuB74Dwa36juMqpKM9xD1Xe1dyOXBw0/jyqP4e0Y59EM399Kgd+ZL3x/4zDa/CmkKjMrHD8E/P8Jxvn6JlWZ3c0lcL3pGL8rd1B9OwHQWpdglKoDo1HPElVP97W0/H3RDN8Hql4s7sEohVhpX691v1NVurGyU4W9VC8RGaje5zURHsm8iCCtdS5GI4RgXNif841fh/GW7G2Mk9uJcQFcC3xI9Za+38D4Qd7jS+fAuKg8TvU6VXdhXAhzfOl+pmEXVDAarPma6sW/Kn2C8YOX4YvBhXHhfoX6WwVuNK11Jkar2K9h/FA6MS66CzC6DqyrVfSmsgSjHv46jOPkwbhh+wWjYZ9m/dHx3QCeh3HjU45xQ/oYxk1kOPO7MYp0/4Zx85WL0QXjHSHSL/ZN20L1In11rWMWRhHUiRg/WpVF8H/F2Edf1DF7c7naF08BxnH7HOPHZZ/4blZPxcjAWofxI+XAuKG7FxiutQ43Y6lV8FVdCHxD8mx9JW7C8ChV58+tqqrqXIP5zuGzMW40N2NcB/IwSkEN0VovCWMZz2G0V/MHxvngxriefQQcrbVe29j4QqzvPYwHyJlUVRcsxvge307A968Jtu9OqjKLhgHfNNEbzFoaej1p4LKzMRqpm4HxncrG+I1paCnCfYlhDsZ1wo2R8TZVKdUUmZ6NjacM43rzKMYb4zKM34GtGA8kN+ArBam1zsHYf9Mx9l8WRsZ7YNXOYMXEGxJPQ4/RExilcjIwrpULMaqe1rrP0FpnYfzev4jxoFBZsmcTRre1VwSkXetbzkKM78sujF5l3mrgJt1O9RcEgfE0xe/aaIyXUjkYx20GjS+l0CBa61sxfgdnY1zzXBjHYRZGVaPfwlyOF+PaeRvG/i7BODY7MEq13Ub91R5CLXs3Rkm9tVSvIttoDTyP1mNcMxf40u3EuLcOfNgP/M48j3HvVXlP/hfVMxDri+0LjIzybRjfn8UYD/tbGrCJjfECRqPMuzHOw9kYvfPU7OGq0jUYvbMUhZheTUvfF/le2o4APsDYhmKMDP/AjP59vdZpjAzaj3zrKMHoSSRUqedwn9dEPSr7XRZCCCGEEPsxpdRQYIn2NWKplOqL8ZBa2cPFwKbOqBOiLVNKnQX8WVkSzlfa6neMBpzLMdqaqdUekogsX5W4XF/Jysq2zj6mqlH9f2ut34lUfKLxpLcRIYQQQogDw4vAUUqpHIwSnx2pKtL/kmRcCFHLF0A7pVQWRvWmwHYg7pWMi1brSuAepZQdo+pPZ6qee+dglJgQbZBUGxFCiDZKKbW9Rl39mp/ezbjuCfWse1RzrVsI0WjfYvReE4Px5jgXo2j/JVrr++uaUYgD1KcYbcgkAskY7Rr8AJyutW5oNSTRcmb7Pm6MjIsyjGpNdwPDfNVhRRskJS+EEEIIIQ4AWusXkG75hAib1vruSMcgGk5rPRmYHOk4RNOTNi+EEEIIIYQQQgjRqkm1ESGEEEIIIYQQQrRqknkhhBBCCCGEEEKIVk0yL4QQQgghhBBCCNGqSeaFEEIIIYQQQgghWjXJvBBCCCGEEEIIIUSrJpkXQgghhBBCCCGEaNUk80IIIYQQQgghhBCtmmReCCGEEEIIIYQQolWTzAshhBBCCCGEEEK0apJ5IYQQQgghhBBCiFZNMi+EEEIIIYQQQgjRqknmhRBCCCGEEEIIIVo1ybwQQgghhBBCCCFEqyaZF0IIIYQQQgghhGjVJPNCCCGEEEIIIYQQrZpkXgghhBBCCCGEEKJVk8wLIYQQQgghhBBCtGqSeSGEEEIIIYQQQohWTTIvhBBCCCGEEEII0apJ5oUQQgghhBBCCCFaNcm8EEIIIYQQQgghRKsmmRdCCCGEEEIIIYRo1STzQgghhBBCCCGEEK2aZF4IIYQQQgghhBCiVZPMCyGEEEIIIYQQQrRqknkhhBCiTVFKxSqlJiulCpVS3yqlrlJK/R7puIQQQgghRPORzAvRaiiltiulypVSxUopu1JqnlLq/5RScp4KcQAJ41rwL6Az0F5rfanW+gut9T8jGLIQopkEXA9KAj5vKKVGKaU8vuEipdRypdT5kY5XCNG0fNeAsQHff0fAd79EKbUt4P9ypZQ38HoR6fhF05KHQtHaXKC1TgR6Ac8DDwAfRjYkIUQE1HUt6AVs1Fq7IxWcEKJFXaC1Tgj43OYbP19rnQC0w7g+fKOUSo1YlEKI5jKv8vsP/B++777v0ydg2jnAnsDrRWTDFk3NEukAhAhGa10I/KyUygQWKKVeBu4FHMDBwPHAUuBarfWOyEUqhGhOQa4FScAFgFJKXQTcCXiAm7TWJ0cuUiFEpGitvUqpj4D/AQcB+REOSQghRDOQkheiVdNa/w1kAKf4Rl0FPAV0AJYDX0QmMiFESwq4FswAngUm+t6qSMksIQ5wSikLcBNQAmyKcDhCCCGaiZS8EG3BHqCyGOivWus/AZRSjwCFSqkeWutdEYtOCNFSAq8FQogDx49KqcBqYvcBLuB4pZQdcAObgYt9pbWEEELshyTzQrQF3akqAurPpNBalyil8oFugeOFEPutymtB50gHIoRoURdprWcEjlBKjQIWSHUxIYQ4cEi1EdGqKaWOw3hgmeMb1SNgWgLGW9g9EQhNCNGCglwLhBBCCCHEAUQyL0SrpJRK8nV59jXwudZ6lW/SuUqpk5VSURhtXyyUKiNC7L/quBYIIYQQQogDiFQbEa3NZF+9Vi+wFngFeCdg+pfA48AJGL2NXNXiEQohWkJ91wIhxIFjslLKEzA8HfgpUsEIIYSIDKW1jnQMQoRFKTUByNBaPxrpWIQQQgghhBBCtBypNiKEEEIIIYQQQohWTTIvhBBtllJqpFJqnVKqVCm1RSl1SqRjEkLsG6XUbUqpxUqpCl+Ju7rS/kcplamUKlRKfaSUim6hMIUQQgjRwqTaiBCiTVJKnQl8AFwO/A10BdBa745kXEKIfaOUugSjrZOzgFit9agQ6c4CPgWGYvQ69QNG15kPtlCoQgghhGhBknkhhGiTlFLzgA+11h9GOhYhRNNTSj0NpNWRefElsF1r/bBveBjwhda6S8tFKYQQQoiWst/3NtKuXTt9yCGHRDqMWkpLS4mPj490GLVIXA0jcTXMkiVLcrXWHfd1OUopM3As8LNSajMQA/wI3Ke1Lq+RdjQwGiAmJuaYnj177uvqm5TX68Vkan01+CSuhpG4Gmbjxo1NcS04nOo9TqwAOiul2mut82omlmtB40hcDSNxNUwTXQsarTU+J7TWeziJq2EkroYJ+xlBa71ff/r166dbo1mzZkU6hKAkroaRuBoGWKyb4HsNdAM0sBijukgHYC7wTF3ztcbrQWs9VhJXw0hcDRPOtQB4GphQx/QtwNkBw1bfdaF3fcuWa0H4JK6GkbgapqnuCxr7kWtB+CSuhpG4Gibca0Hry4IVQoj6VZaueF1rvVdrnQu8ApwbwZiEEC2rBEgKGK78vzgCsQghhBCimUnmhRCizdFaFwAZGG9ZhRAHpjXAkQHDRwJZOkiVESGEEEK0fZJ5IYRoqz4GbldKdVJKpQB3Ab9ENiQhxL5SSlmUUjGAGTArpWKUUsHa6PoUuFEpdZjvGvAoMKEFQxVCCCFEC9rvG+wMxuVykZGRgcPhiFgMycnJrFu3LmLrD6W1xxUTE0NaWhpWqzXSIYnIewqjrYuNgAP4BngmohEJIZrCo8DjAcNXA08opT4C1gKHaa13aq2nKqVeBGYBscD3NeYTQgghxH7kgMy8yMjIIDExkd69e6OUikgMxcXFJCYmRmTddWnNcSUkJJCXl0dGRgZ9+vSJdEgiwrTWLuBW30cIsZ/QWo8DxoWYnFAj7SsY7d0IIYQQYj93QFYbcTgctG/fPmIZF6JxlFK0b98+oiVmhBBCCCGEEEK0vAMy8wKQjIs2So6bEEIIIYQQQhx4DtjMCyGEEEIIIYQQQrQNrS7zQil1m1JqsVKqQik1oca0YUqp9UqpMqXULKVUrwiFuc/eeOMNDj/8cAYOHMgVV1zhrwqRn5/PmWeeSd++fTnzzDMpKCgAYMKECdx2221Ntu5DDjkEpRS5ubn1pv/zzz85+uijsVgsfPfdd00SgxBCCCGEEEIIEa5Wl3kB7AGeBj4KHKmU6gBMAh4DUoHFwMQWj64J7N69m3fffZfFixezevVqPB4PX3/9NQDPP/88w4YNY9OmTQwbNoznn3++ydd/0kknMWPGDHr1Ci/vp2fPnkyYMIErr7yyyWMRQgghhBBCCCHq0+p6G9FaTwJQSh0LpAVMugRYo7X+1jd9HJCrlDpUa72+sevbPvCixgdbj96rfww5ze12U15ejtVqpaysjG7dugHw008/kZ6eDsB1112HzWbjhRdeqDbvr7/+ytNPP83kyZO59957iY2NZf369ezYsYOPP/6YTz75hPnz5zNkyBAmTJhQa91HHXVU0JjuuOMOEhMTeeaZZ5g2bRrPPPMM6enp9O7dGwCTqTXmdQkhhBBCCCGE2N+1usyLOhwOrKgc0FqXKqW2+MZXy7xQSo0GRgN07NjRnxlQKTk5meLi4srlNFvAleuoKSkpidtuu42ePXsSExPD0KFDOeGEEyguLiYrK4uEhAR/16DZ2dkUFxfjcDhwOp18+eWXvPHGG0ycOJHo6GhcLhfFxcX89NNPTJkyhQsuuIDff/+dV199FZvNxty5czniiCOCxqG1pqSkhOjoaAAeeeQRbDYbJ554InfddRffffcdpaWl/vQul4vy8vKQ29WcPB6Pf70Oh6PWMY2UkpKSVhNLoNYalxBCCCGEEEI0RlvKvEgAcmqMKwQSaybUWr8HvAfQv39/bbPZqk1ft24diYnGbHnN2HtF5TpqKigo4LfffmPbtm20a9eOSy+9lJ9++omrr7466HyJiYnExMQwd+5cVq5cye+//05SUhIAVquVc889l6SkJP7xj3/QuXNnjj/+eAAGDRpETk5OyDiUUiQkJPinJyYm8vrrr3P22Wfz6quvcuSRR1ZLb7VaiY2NDbm85lRcXOxfb0xMTMjSIy0tPT2dmudXa9Ba4xJCCCGEEEKIxmhLmRclQFKNcUnAPhUDqKtqR3OpbG+iY8eOAFxyySXMmzePq6++ms6dO7N37166du3K3r176dSpk3++gw46iK1bt7Jx40aOPfZY//jKkhMmk8n/f+Ww2+1uUGxr1qyhffv27NmzZ182UQghhBBCCCGEaDJtqRGDNYC/KIBSKh442De+TenZsyeLFi2irKwMrTUzZ85kwIABAAwfPpxPPvkEgE8++YQLL7zQP1+vXr2YNGkS1157LWvWNP1m79ixg9dff51ly5bx22+/sXDhwiZfhxBCCCGEEEII0VCtLvNCKWVRSsUAZsCslIpRSlmAH4CBSqkRvuljgZX70lhnpAwZMoQLL7yQo48+mkGDBuH1ehk9ejQADz74INOnT6dv375Mnz6dBx98sNq8/fv354svvuDSSy9ly5YtjVr///73P9LS0sjIyOCII47gpptuQmvNjTfeyDPPPEO3bt348MMPuemmm3A4HCxatIi0tDS+/fZbbrnlFg4//PB93gdCCCGEEEIIIUS4WmO1kUeBxwOGrwae0FqPU0qNAN4APgcWAiMjEF+TeOSRR4J2g9q+fXtmzpxZa/yoUaMYNWoUYPQWsnbtWoBqvYn07t2b1atX+4eD9TQCRq8id9xxR63xM2bM8DeKecwxx7Bq1SoAjjvuODIyMsLaLiGEEEIIIYQQoqm1uswLrfU4YFyIaTOAQ1syHiGEEEIIIYQQQkRWq6s2IoQQQgghhBBCCBFIMi+EEEIIIYQQQoh67DzlWtx7cyIdxgFLMi+EEEIIIYQQQoh6eAuKQKlIh3HAkswLIYQQQgghhBCiDt7yCgBMSQkRjuTAJZkXQgghhBBCCCFEXdxuAEomzYhwIAcuybyIgF27dnHeeecxYMAADj/8cMaPH++fZrPZWLx4cZOs5+yzz6Zdu3acf/75YaV/5JFHGDBgAAkJkpsohBBCCCGEEJVMifG0u+NqPDn5kQ7lgCWZFxFgsVh45plnWLduHQsWLODNN99k7dq1Tb6e++67j88++yzs9BdccAGzZs1q8jiEEEIIIYQQoi0rn7+Cos9+xpNTEOlQDliSeQHY3/qa7QMvYvvAi7C/9XWt6fn//dg/vXDCj7Wm54570z+9+Ntp9a6va9euDB48GIDExEQGDBjA7t27q6Xxer1cd911PProowAkJCTwwAMPcMwxx3DGGWfw999/Y7PZOOigg/j555+DrmfYsGEkJiZWG1dYWEj//v3ZsGEDAFdccQXvv/8+AMcffzxdunSpN34hhBBCCCGEOJC4d+3F0q0TUYcdHOlQDliSeRFh27dvZ9myZQwZMsQ/zu12c9VVV9GvXz+efvppAEpLS7HZbCxZsoTExEQeffRRpk+fzg8//MDYsWPDXl9ycjJvvPEGo0aN4uuvv6agoICbb765ybdLCCGEEEIIIfYXnjw7sScdRdLV4VXJF01PMi8iqKSkhBEjRvDaa6+RlJTkH3/LLbcwcOBAHnnkEf+4qKgozj77bAAGDRrEaaedhtVqZdCgQWzfvr1B6z3zzDMZNGgQY8aM4YMPPmiSbRFCCCGEEEKI/ZYGc0oie699KNKRHLAskQ6gNWh360ja3Toy5PTU+64n9b7rQ07vMG4MHcaNadA6XS4XV1xxBVdddRWXXHJJtWknnngis2bN4p577iEmJgYAq9WK8vUpbDKZiI6O9v/v9rV8Gy6v18u6deuIjY0lPz+ftLS0Bs0vRGuhlOoLrAK+01pfHel4hBBCCCHE/qndrSPRWlPw6md4yyswxUZHOqQDjpS8iACtNWPGjGHAgAHcfffdtabfeOONnHvuuVx66aUNzpgIx6uvvsqAAQP46quvuOGGG3C5XE2+DiFayJvAokgHIYQQQggh9m9FX/6KJysPc6dU6XEkQiTzIgLmzp3L119/zR9//MHgwYMZPHgwU6ZMqZbm7rvv5uijj+aaa67B6/U2aj2nnHIKl156KTNnziQtLY1p06axceNGPvjgA15++WVOOeUUTj31VH+7Gvfffz+HHnooZWVlpKWlMW7cuH3dVCGajVJqJGAHZkY4FCGEEEJEmFIqXSnlUEqV+D4bIh2T2L8Uff4LuryCqEN64i0ujXQ4BySpNhIBJ598MkVFRbV6AgFIT0/3///EE0/4/y8pKfH/XzNTIXBaoL/++ivo+HXr1vn/f+WVV/z/v/jiizz22GNB4xKiNVFKJQFPAsOAG+tJOxoYDdCxY8dq37HWoKSkpNXFBBJXQ0lcQgjRKtymtZYG3USz8ObZMXdoR6c3Hqk/sWgWknkhhGiLngI+1FrvqmwLJhSt9XvAewD9+/fXNput+aNrgPT0dFpbTCBxNZTEJYQQQuy/vI4KtMuNSoijfN5yMJmIPf6ISId1wJHMCyFEm6KUGgycARwV4VCEEEII0bo8p5R6HtgAPKK1Tq+ZQEpkNs4BH5fHi/n+K9g2ezYJ0xZiKi6jyBG63YsDfn81E8m8EEK0NTagN7DTV+oiATArpQ7TWh8dwbiEEEIIETkPAGsBJzASmKyUGqy13hKYSEpkNs6BHpensBhPVh5R/XpTUgzlfy2lYx3rPdD3V3ORBjuFEG3Ne8DBwGDf5x3gV+CsyIUkhBBCiEjSWi/UWhdrrSu01p8Ac4FzIx2X2D9ULF1HwfjPATB3lN5GIkUyL4QQbYrWukxrnVn5AUoAh9Y6J9KxCSH2nVIqVSn1g1KqVCm1Qyl1ZYh0o5RSnoCeBUqUUraWjVYI0YppoO6GsYQIkyfPjjk1GYDoI/vT4Zk7IhzRgUmqjQgh2jSt9bhIxyCEaFJvYhT77oxRuupXpdQKrfWaIGnna61PbsnghBCtj1KqHTAEmA24gcuBU4G7IheV2J94cu2Y27cDQMVE4c7IwtKtU2SD2g94S8oo+vyXsNNLyYsI2LVrF+eddx4DBgzg8MMPZ/z48f5pNpuNxYsXN8l6PvnkE/r27Uvfvn355JNPgqZ55ZVXOOywwzjiiCMYNmwYO3fu9E8zm80MHjyYwYMHM3z48HrXt2TJEgYNGsQhhxzCHXfcgda6Vprp06dzzDHHMGjQII455hj++OMP/zSbzUb//v3968zOzm7EVgshhGirlFLxwAjgMa11idZ6DvAzcE1kIxNCtHJW4GkgB8gFbgcu0lpviGhUYr8RM2QQcaf/wz+cNeYZvCVlEYxo/1Dwvy+wv/Fl2Oml5EUEWCwWnnnmGU455RSKi4s55phjOPPMMznssMOabB35+fk88cQTLF68GKUUxxxzDMOHDyclJaVauqOOOorFixcTFxfH22+/zdixY/n+++8BiI2NZfny5WGv89///jfvvfcexx9/POeeey5Tp07lnHPOqZamQ4cOTJ48mW7durF69WrOOussdu/e7Z/+xRdfcOyxxzZ+w4UQQrRl/QCP1npjwLgVwGkh0h+llMoF8oHPgOe01u5gCaWHgcaRuBpG4ooMX9XR4yIdh9h/RQ8+FF9D8SilsHRMwZNTgCkhLsKRtV3a5ab0l9kNmkcyLyKga9euJCQkAJCYmMiAAQPYvXt3tcwLr9fL9ddfT48ePXj66adJSEhgzJgxzJgxg5SUFJ599lnuv/9+du7cyWuvvVarZMS0adM488wzSU1NBeDMM89k6tSpXHHFFdXSnX766f7/jz/++JAlNCoVFhbyj3/8g59//pn+/ftzxRVXMHToUM4//3yKioo44YQTALj22mv58ccfa2VeHHVUVe+Whx9+OA6Hg4qKCqKjo8PdfUIIIfZfCUBhjXGFQGKQtH8CA4EdwOHARIzi4s8FW7D0MNA4ElfDSFxC7J+ybhxLu9uvJOaoAQCYO7XHnZ2HtU/3CEfWdpXPXYa3qKRB87S5aiNKqXSllCOgca59Lg5mf+trtg+8yP+pWLOZijWbq42zv/U1ALtOv8E/bs+ldwOQO+7Namnd2eG3Prt9+3aWLVvGkCFD/OPcbjdXXXUV/fr14+mnnwagtLQUm83GkiVLSExM5NFHH2X69On88MMPjB07ttZyd+/eTY8ePfzDaWlp1Uo4BPPhhx9y5pln+ocdDgfHHnssxx9/PD/++CMAycnJvPHGG4waNYqvv/6agoICbr75Znbv3k1aWlqD1vf9999z1FFHVcu4uP766xk8eDBPPfVU0GonQggh9mslQFKNcUlAcc2EWuutWuttWmuv1noV8CTwrxaIUQghxAHGvTeHihUbqFixAU9uAUnXDcfSvXOkw2rTSn9tWKkLaLslL27TWn/QVAtrd+tI2t06stb43qt/rDWux6yPao3rMG4MHcaNafB6S0pKGDFiBK+99hpJSVX3arfccguXXXYZjzzyiH9cVFQUZ599NgCDBg0iOjoaq9XKoEGD2L59e61lB3vwryzqFMznn3/O4sWL+eWXqgZTdu7cSbdu3di6dStDhw5l0KBBHHzwwZx55pl8++23jBkzhhUrVjRqfWvWrOGBBx7g999/94/74osv6N69O8XFxYwYMYLPPvuMa6+9NuQymouucLLjmMvotXISytTm8veEEKIt2whYlFJ9tdabfOOOBII11lmT9CwghBCiWXiy88l/8SOUyYT1oDS6ffsKRFkjHVab5S0tp2zW3w2eT57MIsTlcjFixAiuuuoqLrnkkmrTTjzxRGbNmoXD4fCPs1qt/swAk8nkL61gMplwu2tX701LS2PXrl3+4YyMDLp16xY0lhkzZvDMM8/w888/VysFUZn+oIMOwmazsWzZMsCo0rJu3TpiY2PJz8/3ry8jIyOs9WVkZHDxxRfz6aefcvDBB/vHd+9uFLtKTEzkyiuv5O+/G35CNwWvowIAT17NkstCRIZj2boGlegSoq3SWpcCk4AnlVLxSqmTgAsx2rOoRil1jlKqs+//Q4HHgJ9aMl4hhBD7P+3xYOnZFXzPYq6tGey54j4KXqz9UluEp2zW32iHEwDrIT3Dnq+tlrx4Tin1PLABeERrnR44sb5GuZKTkykurlUCtcVorbn11ls5+OCDufnmm6vF4vF4GDlyJPPmzePiiy/myy+/xGIxDlNluoqKCqxWa7X5am7PiSeeyEMPPeTvPWTatGk8/PDDtdKtWLGCm2++mUmTJhEbG4vH46G4uJiCggLi4uKIjo4mLy+Pv/76izFjxlBcXMzrr7/OIYccwqOPPsqoUaOYMWMGCQkJxMXFMXPmTI477jg++ugjbrnlllrrs9vtnHvuuYwdO5YjjjjCP93tdlNYWEj79u1xuVz8+OOP2Gw2//TKuMCoztLcjU516JbKwp+n4Dq47npsrbUBrNYal2ic/GffJ2bIIFLvvT7SoQjREm4FPgKygTzg31rrNUqpnsBa4DCt9U5gGDBBKZUAZAGfA89GKGYhhBD7KWU20/7hm8m+/Vl/DyPe4jI8OQURjqztKp3yp///hPNOhZ9eD2u+tph58QDGzYsTGAlMVkoN1lpvqUxQX6Nc69atIzExWNtfLWPOnDlMnDiRQYMGccoppwDw7LPPcu6552I2m4mPj+ehhx7C4XBw66238sUXXwD4Y46OjiY6OrraNtTcnsTERMaOHcvQoUMBePzxx+nVqxcAY8eO5dhjj2X48OGMGzeOsrIyrr/eeCjq1q0bU6ZMYdWqVdxyyy2YTCa8Xi8PP/wwxx13HBs3buSzzz7j77//JjExkWnTpjF+/HieeOIJ3nvvPUaNGkV5eTnnnHMOI0aMQCnFzz//zOLFi3nyyScZP348W7du5aWXXuKll14C4Pfffyc+Pp4RI0bgcrnweDycccYZ3H777ZjNZsDInKncxpiYmGoNfza10hkLcJx0LIdd+S9MsXU3JNpaG8BqrXGJxok/71Tcu6XrYHFg0FrnAxcFGb8To0HPyuF7gXtbLjIhhBAHIueWXZT/uYRuk14j45+jAdCOCtzZeRGOrG3y5BdSPne5fzjunFPCnrfNZV5orRcGDH6ilLoCOBcIL7umFTj55JMpKioKmoES+Lb8iSee8P9fUlLVEuu4ceOqzRM4LdANN9zADTfcUGv8k08+6f9/xowZ1aZVlm448cQTWbVqVa15+/Xrx7p16/zDr7zyiv//Y489ltWrV9eaZ/jw4f7eUB599FEeffTRoPEuWbIk6PiW5tq4He3x4snJx9Sza6TDEQc4rTUFL00gemDfSIcihBBCCHHAce/KxLllJ+bO7eny+fNYe3TBW+Gk6IPvIx1am1T6+zzweACjC1prWvgNn+4PbV5IA12iSbn3ZONct5WiCT9GOhQh8BaXApD60E0RjkQIIYQQ4sDjybNjTk1Gmc3EDD4Uc/t2WLt1ov3Yf0c6tDYpsMpI/Lnhl7qANpZ5oZRqp5Q6SykVo5SyKKWuAk4FpkU6NrH/0A4nMf8YJMX0RcRprxfnqk0oq4W8Z94j8/+eqH8mIYQQQgjRZLwFRZjbt6s1Puf+l/0vmUR43HtzqFjqK8VvNhN/1kkNmr9NZV4AVuBpIAfIBW4HLtJab2jogoJ17Slav5Y4bh1fupeES4bhzshq9nUJURfXtgwyb3wMj72Y8rlLqVi4Sq5dQgghhBAtKPGKc1FJ8ZT+PpeKdVv9453rt+HOknYvGqL0tzn+/2OPPwJTUgL2974Le/421eaF1joHOG5flxMTE0NeXh7t27f3dz8qWj+tNXl5ecTExDTfOrxeCt/5hqTrLybp2uHNth4hwuHevhdlsaAsFrweD97iUty7sxtUN1AIIYQQQjReyY8zKXhpAspsxtq7O91/eRNvcSmmxHg82fnQgK4+D3Slv872/x9zwmAyRz2CJzf8XlvaVOZFU0lLSyMjI4OcnJyIxeBwOJr1IbyxWntcMTExpKWlNdt6PLl2ir/+jXa3jiThsrPQXi/K1NYKKIn9hXtPNt5yB8pkwtS+HYmXn42le6dIhyWEEEIIccAo+nIKeLxgNuPJzmfnKdfiLShCxcXiKSiKdHhthnPzTpwbthsDUVbKZs4nbtjxJI26EMzvh7WMAzLzwmq10qdPn4jGkJ6e3qzdfTbWgR6XZ28O5q4dAci6/lHa3XUNMYMPbfb1ChFM0jUX4Fi6FutBPYg6uAcqNlpKiwkhhBBCtCDtqCB++Ono8gpMiXGU/mKUHjAlJ5Bw3qkRji582uUGrzdi6y+d8hdaa3S5g4Rhx9PxpXtR1oZlRxyQmRdChOLem4OlawcAzB1SjEY7JfNCRJAnz07SlecRc9zASIcihBBCCHHA0WUO2j96C+Z2iWini9Jf/zQeuk2Ksr+WEHfKMZEOMSzZtz1Dhx27YOjQFl+31pqSH2bgtRejTCbizjihwRkX0PYa7BSiWcWedBSp998AgKVbJ+lxREScLinD3KUD2uki48yb0RHMMRdCCCGEONB0fOleTEnxAKgoK2kzP6Tn4omk3n0dJd9Pj3B04fE6KlCx0USv3YZjydoWX79j3nKc67ehoqMwd+9E/FknNmo5knkhRAB3dh4qJhqA6MH9MbdPjnBE4kDXbdJ4rD26oKKsaI8H15ZdaLc70mEJIYQQQuz3tNOF9eAe1drAs3RKRZlMmDu3x5MTfmOTkVSxfD2ewlJQJrLveA5vSVmLrFdXOCmfs5Sy2YsxtUvCFBdD/D9PREVZG7U8ybwQIoD91c9w+Poejhs6hMQRZ0Y4InGg8paU4dy6i6KJUwHIf+FD3BlZ7D7vVpxrt9YztxBCCCGE2FfODdvJvv3ZoNMsHVOM3kbagJLJs7H26EypbTDewmKybnsGrXWzrtNb5mDv1Q9SPGkGpVP/QpmNrIf4cxvfTohkXggRILDNC09uATkPvBrhiMSBqmz6fHaf829y73+ZgvGf48kpMEpcaI1z045IhyeEEEIIsd9z787Ck5lH0ac/U5a+qNo0c6f2dHjhPxGKLHza5aY8/W/MnTsQN38NGnBnZIHb06zrLf9rKdpRgXa58eTaATB3TCXmuMMbvUzJvBAigHtvLpZuRleUKiGOsunzpI0BERGu7buNbrm0BrMJa7/emOJijW652kgRRSGEEEKItsy5ZReunXvIf/Ej8l/8yD/e66jAtWOP8XLJ6YpghPUrn7sM68E9SBkzksLLh9Lx5fuIOiiN4m+mNet68//7MRVrt1D68yxwGlWe488+CWU2N3qZ0tuIED7a66XdrSMxtUsEwBQTjSkpAU9OAZbO7SMcnTjQaK8XLGZwm7D26kbMcQOxHpxGxbJ1tPu/yyIdnhBCCNH2NXOxedH2qSirv32Gyheczk072HPxnQDocgfdp7xNVP8+EYuxLp48O1GHHUzqQzcDUDrsWBJsJxHVpztZNz9O/AWnYU5KaJZ1J148FPtbE/HkGS/dVEzUPlUZAcm8EKKaxKvOQynlH7b27oYnO18yL0SLS71nFEnXDMedlUdUn+6YEuJAa/Kffo/Ue6+PdHhCCCFEm2fJzEd7PPv0Jljs3+LPMkoKuPdkY+3dHQBL147+6drlxp2Z26jMC3dmLubO7as9ezQl7XazZ+S9mGJjSLnzGnT/3v5pUf160+7Oa9AVLrTLTdGEH0m85gJMvo4L9oXj71V4HU4q1m3FlJqEt7QMFWXF0rMrUQMP2adlS7URIXzK5ywl+7bqDfJ0/vhpogf1jVBEIhSlVLRS6kOl1A6lVLFSaplS6pxIx9XUvMUlRB2UZmRcAObO7fGWlLZYC9FCCCHE/kw5Xbg27Yx0GKIVK/psMta+PWn/6C0kXX0+AKaEOMwdU7H06IKlWyej/YgGynvmPTLOuInsMU83W8OZZb/Pw719DxVL15E79nW0w1lteuIlZ6AdFWSNeZqC8Z+Tc+fz6ApniKWFL/+/H5N1w6OUz1yI9eAemBLiUFFWEs47dZ8zaiTzQggf954czB3bUbFiA4Uf/0DuQ69RMmkm5QtXRjo0UZsF2AWcBiQDjwHfKKV6RzKoppb74Gu4tmb4h5XJhLV3d1y7MiMYlRBCCLH/cK6THrxEaK7NO1HW2t16ps14n7Tf3qHD8/8h6rCDG7RM7XRR/NUUAMr/XIJnb84+xVg+dxk5975E2cyF1ca79+aiXW6IjiLpyvMwxcXUmrfg1U8pmzrHv5ySyen7FItrawbOdVvRTjfa7aZi+Xr/tPhzTtmnZYNkXgjh59mbg6VrJ4q/+52Clz+hZHI65X8upnTKX5EOrdXSWlP06c/kPDwe9+6G5zrvw3pLtdbjtNbbtdZerfUvwDbgmBYLogW4M3P9vd9U6vL585jiY3Ft2x2hqIQQQoj9h3PDtkiHIFoxT54dc/vkWuMrqxrF2Y4j5qgBDVqme3d2tWFTYnyj43Nn5pJ953OUTp1D9p3PYX/ra39JjsQrzsXcMYXkGy8m8crzgs7f4dk7MaUkoV0ukq67kIQRZzY6FgDMJhIuHApoLIf08PdoEjXgIKwHpe3bspE2L4TwM3duT8Wy9ZT+VpVZ4S1ue0X0PfZi8DRv10eVKpasJe/pd/EWl4LbQ/w5J+MtKSN6YF8svbqiTC2TP6qU6gz0A9YEmTYaGA3QsWNH0tPTWySmcJWUlNSKyZyZj6mkjA65+fy1chn49mPMso2kvPsTyumi/PiBFIwe3qJxtQYSV8O01riEEKK1cK7fHukQIqps5kLMXTsQ3cDSAwcKU7tEzB1SQk4vn7+C0p9n0eG5u8JeprVPd3qt+oHd/xxN6pO37VPmhf1/X1SrDmJ/62tc2/fQ4anbUGYTncY/ROyJg0POb4qJpsPTd1D4wfek3DsqrGod7t1Z5D37AZ6cfJTVAmYTymJBWcxgtaBMJuIuGopz9Wb/PPHn7VtDnZUk80IIn6Qrz2P3V7/5hxMuGkrc0CHkvzQhckE1wq6TryHxjKNh2LBmX5eKi0FXOFGxMZRO+ZO4of+gPH0R9je+xFtcRo/0j3Fty8C1bXeztR2ilLICXwCfaK3X15yutX4PeA+gf//+2mazNUscjZWenk7NmPKefIeir39DO90cneUg6YpzAahI6cqeN39Eu710KHVxZDNuS7C4WgOJq2Faa1xCCNFaVKzfita62RpNbO2cm7bjmbdMMi+C8JZXYE5JpvD977D06OK/HwtkiovBGVDFN1yenALce3OI7tuz0fFVrN5Myc+zao0vnfIn7r05tLt1JDHHDax3OfHnnUrsCUeGl3GRnU/mTY/jrqMKs65wglL+Xlq0y41z43Z2n3crHZ69k+gj+9e7nlAk80IIn+z/vIBzWwYKQClSH7kFZTHTsUuH+mZtNbTb6ENZle97YzvhsHTriHa6MLWLwdwxlbizTiL+7JMBo9SKirLiKSim9Nc/yRv3VpOvXyllAj4DnMBtTb6CCHFt340yKVRsTLUWra19exndp7qUse+93hYr3SKEEELsb5THize/EPfubKxpnSMdTkS49+biXLUx0mG0ShXrtlLy8yxM8bG1Mi+0x4M7IwvXjj24Nje80Vfnuq3EnnBknaU66qK1puClj/3Dsacdi6Vze4q/mYbWGseStey97G66T3mn3heIymTClJxI3hNvkfLAjf4eR9zZ+Vg6pfrTeQqKyLq57owLAO1woqKj/MPmTqmU/pwOGCVVJPNCiH2kXW7KZy2i0/8ewr1tN548O6ZY44uroqx4yxxBG7lpbVxbM7D2SUNp3SIPtioqipS7ryX5lstq9RFdWQQu9vgjiD3+CPKeeQ8WftV06zayhz8EOgPnaq1dTbbwCLP06IJp3VbcWXlY+3T3jzfFxZD2x4fsueA2Or3xiGRcCCGEEPtIO1041287IDMvvOUVlEyagbJa8JaU+Xs329809p7YuWYz2umC+NhqL5MAvEWl7D7vVrTW6OJSvF4vpgasw9qjCyo+lqIvfyUpRHsUdSn/428ci43a0spiJvXe67H07oaKj6Xg5U/AYjzmZ93yBJ1ee4CYfwyqc3nKasFTUETxZ5OJP+9U7O9+S+lPf9D546eJOWoA3pIysm55AteWXf51th83Bmuf7miXG6/LDW432uki5+4Xaf/IaFRcLKa4GDz2YvLGvgHgj7mxJPNCCMCTnYepfTLxQ4fUmpb3+Juk3HMdMUcfFoHIGib/vx/j3LqLhBXrKf7ud5IuO7t5V+j1knrfDWElTX34Znj0lqZc+9vAAOAMrXV5Uy440jo8MQZ75/ZolwtLjy7Vplm7daLLR09FKDIhhBBi/6LdHlwbtsEZx0c6lBbn3rkH60FppN53PfgaoNzfaK3ZccQltH/qNhIvPqNB85qSE4g55jAShp+OuWNq9WntEjElxOEtKUMlJaDzC6FDCtrtJv+Z90hZswH3oQOx1CjB7c7Kw5OZi6VnV3SFk8L3vqN06hy6fPy0vxHQerfJ5Sb/5Qn+4cTLz/G/7PIWlxpx2YvAasFbVELWLU/QftwYEi48vc7lptx9HXuvvJ+K9dsomzYXAPvrX9LpzUfJvu0ZnGu3GAmVosNzd1XrPaR8/gryX/6E6MEDsKR1JjHgGcSTW4D7xkuIOWEwMUcdGtY2hiKv7YQAPLl2rD27Bp1m6d6pVqvAkaC19lcLCTrd5aZs2jyj0R6PB+eqTc0WS+mMBZTPXcbeK+/HuT68Vrqbot/oSkqpXsAtwGAgUylV4vtc1WQriTD33hws3TsHfVNg7twer704AlEJIYQQ+w9tUpiSE6hYe2B2l+rathtrn+7E/GMQ3sL9877CW1AEgGvD9obP7PEQPagfyTeNqPXgr5Qi+ugBxBw7EOshPXDu2AtAyQ8zKf72d2KXbyL3wdf8PX9UKps2l71XPcD2wy+kbPp8nJt3ULF0HZ7M3LDDKv56Cu6dxvpMifEk//tywLjXLp+9BBVlRSUmYO7ayRjvcpP7yHgKXv8CasQTyNqzK0lXnkfsqcdUZWZpTfYdz1QrMdF+7P/V6va09NfZuDbvpPjbqcTWKOVh7pBCyn+uJfb4I6pVJ2kMKXkhBBB9ZH86B7zNdu3cS/FXU3Bu3IE7MwfrQT0iGB14HRXk3P0ijvkrSHngRpJGnlMrjbJasB6URtxZJ7F35lx/IzlNTXs8FLz4Ea5de9FlDrQ5vDzQfb1YVYtB6x3Aft2ylrlTKtaDg593hR/9gKV7J5Kvu7CFoxJCCCH2H8prPMi5DtDuUqOPPgzrQWk4Fq2m8P3v6DLhmUiH1OTcGVkAODfvavC88WefQtzptUtlV+r81mMAZN36FLq4FIDy2Yv90x2LV1M2ba6/PTgwGtnUXi94vWC1gqMCANeOvVi61191yVNYjP3tb/zDyf93GeZ2iYBxr939lzcp/OA7XJt3kfLQTeTc9gzOjTsAKHz3W1IG9cF1yACsNUr2Vmp360hjPXmFRA/oQ8l30yn1lcIASLnnOhIvPavaPNrjoXzuct8GOon750n1bkdjSckLIQDH36uqlVTQjgqKPpuMY+FKvEWlRA/etyJO+6rgxY8p/3MJ2uU2ukQKUgLDk1+IrnCS+sANFF5zFhXLa3W80STKZi3CvScbXeFCRUdh7dEFrTWegiJcdTTgc6C24t1YKbdfFbLfcHOXDjgWrKB44tRaOfpCCCGECJNS4HThzsw1upo/0LhcWHt1I/rI/lSs2WK077C/UYqEi4fhLSpp8KzuHXvQvsyFupg7puLJzkO73Dj+Xl1tWsFLE/CWVy3D0rWD0UinxULyqAvp9Mr9dP7gybB75St8e6J/Wyw9u9bqAcUUH4tzzRbizzvVqGr86XPEnny0f3rskg3sPvffZP3fk5TN+hvt8dRex8c/oItLKf1tTrWMi+RbLiX5+otrpVdmM91/eZP2T94GGqKaqYdBkMwLIQAo/n4GmTc+Rvbtz1L4/ndGo5cWo7iUt6CIqMMj131U6e9zKf5mqn/YW1RCxbLaGRPa7SHlrmtQJhOutE50+fyFZoknekAfkq65AFN8LAkXD8O1aSe7jr+SXadcS+6Dr4acz707q1ni2d+UpS+idOYCskaPw1vmqDVda419/GeUTJ5N3lPv4MkpiECUQgghRNunLWa0y3ghFG412P1J9l0v4NywHVNCHNY+3alY3XxVjiMlelBfOjx1O92+ebnB8xZ+NCmsBiYtnVLx5BRQsWID3rLqzbC5M3Mp+miSfzjlP9fS6eX76PjCf0i55zp0hRNLt47+hu7r4tq+h+Kvf6u2rJolrT35hVSs2kTsqccCYEqIo9MbD5N4eUA7eFpTPmcp2bc/y+6zbsH+zje4A+4nY087jsJ3v6H4++n+cYlXnke7264MGZspPhZL5/bEnnwU5joaftVa49qagddXUqWhJPNCCMC1eQdeewlls/6m7I+FKKuFlAdupNP4h+j88dNkXv1gZOLKyCLv8dpdjJbNXlRrnLl9ctWFyWzCuXpTs/wQW7p3JuWe6+gx73NSHxmNuUM7vKXGhTpU10mOZevYc9k9TR7L/sj+5ldk3/4sJT/PwhmkGKtSiqj+ffzVcFybdrR0iEIIIcR+wRsTBVYL2umifN6ySIfTorTXi2v7Hn9Dj8k3/wtTcmKEo2p6hR//QPncZZT8MBPX1oyw5/M6Kij99U+KvppCwauf1pk26fqLSb75X5TPW+4f52lXtS8LP5yEK6PqJV7McQNJuup8lMWCY+m6qoYw61Hwyidot1FSIuaYw4gL0shs2Yz5xJ50VLVeEpXFQuqjt9Dp7cdwDOxjlDjycWfmYn/jS3afeRM59/yX8oUrKZs2B29RKfjaq0u4cCipD96ILq27ffzyBSuIOf6IkNMLP/qBjDNuYvfw2yhLr/0sE442l3mhlEpVSv2glCpVSu1QSoXOAhIiTK5dmeBru8HatxcASVecS9ywIcQc2R/3zr1Bi1U1J+1yk3v/y/6cSeXruhWgfFb1L7w7O5+sGx/HscTIHTYVllL48Q9kjh6HY9m6Rq3fW15B0Ze/+pcZqPS3ORS88CHmpATMnVJRVgsqNgZzh3a1ihx6yyvIve9lvIUNL653oNFa49q+x6gHaTZh7dUtaLqYowcQfdShxA8/HVONLmqFEEKIA1FjnhEUoItK8NqLKPt9XgtE2Xp4svMxxcf63/jHn3lCyMbr2zLHgpVotwfH4jUNuif27M3FU1BExZI1lE6dEzSN9ngoX7CS4m+mkvvY65TPrcoAK7zsdKIOP8RI53RR8NLH/mmZN471l3Sw9uhq3PvVtx1/r6Lsj4X+4ZT7bvBXyS6d8if2N7/CU1BE9DGHkTz6X7XmV0oRd8ox5N9xKd2nvE3yDZdgSkmq2ha3h9Jpc8m6cSz2N79GxcWAUsSdcTwJI84g+5YnyBz1iNFeRwjJ111YrZeRmrTLjScrz9ie+Svq3eZg2lzmBfAm4AQ6A1cBbyulDo9sSKKt6/zeOLp99wodnruLhIuGVpumoqyYUpLwZOe3aEz2/31BxcqNRgwWM53fesyfgeHasafaha7glU8onTaHglc+w7FsHYmT51I2cwGuLbsa/WOc9/gb5D/7PpnXP1YrA6M8fRHRxxhdxyqzmbRZH9Pz76/oNml8reJrRZ/8iLsBLSgfyHSFk4SLhhLVvw/mdknVflQCpT54E+bEeJIuPzvsOpJCCCHEfq7Bzwg6ygqVjXY2okHHNs1kIvmWS/2D3uJSdg29ocVf1jU3d0YWlrROWA/ugWvzzvDn25ONKS4WTGYs3ToFT6QU2bc+Rf5zH1D02eSqajcmExWH9ab9wzf7k5bNWED5gpV4ikpwrtqEuX0yAJbe3fw9h4SivV7y/1uV+ZFwgY3ogYf4h+1vf4P97YnsGnYDzvXbierXu87lWXt0IeXua+kx80M6vHA30UfXbmNNRVmJtR1Hyn+uJeuWJyifvwLn+m2UzVhQLV3plD9x783BW1yKa8cezO3bhVxv7AlHAkZVFhXTuIb821TmhVIqHhgBPKa1LtFazwF+Bq4JNc+uXbuYMGECAC6XC5vNxueffw5AWVkZNpuNiRMnAlBYWIjNZmPSJKNeUm5uLjabjcmTJwOQmZmJzWZj6tSp/mXbbDZmzJgBwNatW7HZbMyePRuADRs2YLPZmDfPeHhcvXo1NpuNRYuMt+bLly/HZrOxfPlyABYtWoTNZmP1aqOhl3nz5mGz2diwYQMAs2fPxmazsXWr0Z3TjBkzsNls7NplXGynTp2KzWYjM9Mouj958mRsNhu5ucaD46RJk7DZbBQWFgIwceJEbDYbZWVlAHz++efcdddduFzGm/MJEyZgs9n8+/L999/njDOq+kd+6623OOecql4vxo8fz/Dhw/3DL730EiNGjPAPP//884wcOdI//NRTT3H11Vf7h8eOHcv111/vH37ooYcYPXq0f/jee+9lzJgx/uG77rqLu+66yz88ZswY7r33Xv/w6NGjeeihh/zD119/PWPHjvUPX3311Tz11FPoCiemxDiue/ox3lizgJijjYfyESNG8NJLLwEQN3QIF11zFePHj/fPf8455/Djjz/6h8844wzef/99/7DNZmv0ubfrl5mcM/YeZhQbx7LiuvM4+77bmN81FoA9rnJOP/ufzJgxA60166fO4sr85cyeNwdlNrOhWwJXZCxkaXk+pdPns2rVqgade3/++AsXvPU8WyqKwevllzvHctqQ49myYSPa6WL6b1M5/6Vx/nNv+oK5nH766bXOvcy1Gyn8cBJTi/YwclvwXGtRxRQTTftHRtP9p9fpteL7Ohs5NXdMxbVtdwtGJ4QQQrROjXlGANhemMf3FdmAwul2YTv11Ig/J6xfb7Rr1tzPCb8tnMvwd1/0Pyf8OH0al6+bSc4SY/k1nxOmT5+OzWZrU88Jd955J56iEixdO3H/5C955IsP/dPre0646X8v8PGwg+j44t0kXXchI0eO5Pnnn/dPHzFiBC+/8gqWtM5gMjE6byUf52wGjHY27n/icT6cO5OEC4x9dPX2uYy/4iaKPvkJS59unD50KBMmTMC1aQdlO3ZzQkpXJox/A6h97u356hcumfIpU4v2oKKjcF99jv/c8+QWsGfjZkZum0N6zk7K/1gY9rk3f/EiEs47lbz7r+K6+Ew2nXwoprhY1pYXcmXuMjb1TKHwnW/YfOKhjNw2hw3OElybd/rPvTXzFpLzwKt8d+LFnNSrLytf/QAIfe7lt4+n6xcvsPzByxjxx8Rqz6jhalBXqUopk9Y6dFmR5tcP8GitNwaMWwGcFphIKTUaGA1gtVpZv3496enpuN1u7HY769atIz09HYfDgd1uZ82aNaSnp1NSUoLdbmf16tWkpqZSWFiI3W5n1apVJCYmkp+fj91uZ+XKlcTExJCdnY3dbmfFihVYLBb27NmD3W5n2bJlaK3ZuXMndrudpUuX4nQ62bZtG3a7nSVLlpCWlsbmzZux2+0sXrwYu93O+vXrsdvtLFq0iNzcXFavXo3dbmfhwoXs3buX5cuXY7fbWbBgATt37mTFihXY7Xbmz5/Pli1bWLlyJXa7nXnz5pGamsqqVauw2+3MnTuX5ORk//L++usvEhISWLNmDXa7nT///JOYmBjWrVuHx+Nh9uzZWCwWfzzp6emAcaIXFBT4hzdu3Eh+fr5/eNOmTeTl5fmHt2zZQk5Ojn9469atZGdn+4e3bdtGVlaWf3j79u3V0u/cuZPCwkL/sdm1axcVFRX+6RkZRr21yuHdu3cTHR3tH96zZw+lpaX+4czMTDwej384KyuLqKgo5n09iXaf/EY22WzdutU/PScnhy1bthjD/ziIgiklbNq0yT89Pz+/WjwFBQVs2LDBP1x5TBt67nUwRWEZ+w5aa9wuF0X9urO5RxJ2u52sXrE4ndm4XE4qivJZsWIFUWUVlOMFpXCaTczPycDeuR2euGiKTz2a7Zefx2bfObZkyRJKS0vrPfe2fTbJqAvpcuFUThzb8yjP38yWS+/Efuo/KDykK4U7V9d77q0bN57uhcW43W48URYoq/9LLoyigabUZKIO6RkyjfWg7ri2S+aF2P8opVKBD4F/ArnAQ1rrL0Ok/Q/wABALfA/8W2tdf9PwQoj9TVjPCFD7OcHVORFdDm6LicLs3Ig/J5SVlZGent7szwlb3vmCoh27qz0nuKxm1nw7mbVlBbWeEyr3R2t7TigpKSE9PT3kc8LWJ8ew9e8FZLsriD6oc/DnBK3JW7icqEXr+PPof+Btl0BOZibt56xi8RX/AkrJzg7+nJDVqzOmpGjYNg+P14PT6SSvSxLu9W42btzIWtsZdPplFl6vxpNbQO7zH6KtZuzJBaxfv55jVuZhWrsNb4WTbUtX1jr3Zk/7ndiXPjKeC9xuck8dRMbm9f5zLxkz5acPxj1pNW4Um3umsGv+/JDn3iGHHMLChQtrnXuFFQ62DO5N1EVDyVq8nLLvvmRDOwsdv5vJ1n8NwZ0YR+bN57P8sC6sXrrUuM//9DuOqKjA7XLhcTrZ0y6W9PT0kOfe/IULSU1NZfXatbWeUcOmtQ7rA5iBciA63Hma+gOcAmTWGHczkB5qnn79+unWaNasWZEOIaj9Pa7yZet0+dK11caVTJ+vs8Y8HTR97hNv6Yzzx+itfc/V9g8nNVtclbxut957/aN62+EX6m2HX6h32q7X7jy7f7orO98/bdsRl2h3YXHVtKw8Xf73qmpxuXMLtGPtlgbF4Ckt1zuOv7JqPYdfqLceco7e3PlUve3QC/SOk6/RXkdFvctxrNhQbRllC1ZoYLGO0PVDt9LrQbBzKPue/+riX2bXOV/Z3GXa/vEPzROU3v+vBU1N4mqYuq4FwFfARCABOBkoBA4Pku4sIAs4HEgB0oHnQy1Xt8FrQWsgcTWMxNUwTXVf0JhnBO27FmTf/aLe0uefeuuA4brou99baMtDa6ljtffGsbr0z8XVxpXNWaqLf/ojaPrWeg7VFZdz515d8ttf/uGyBSu0p7S8Vrqy+Sv896tZdz6ntdbasWaz3n3JnWHF4PV69fZjLtNbDxuutx1+oXYsX18tLvsH3+utfc/Vmzudojd3Pk3v/td//NOyH/2f3tz5VL11wAW68Itfai274M2vqp4LThulPSVlQWNw7c3RO068SnudrjpjbehxzBn7hi54e2LQaaWzF+nMmx/X2wZdrLcfd7mu2LyjQcsOFO61IOxqI1prD7ARaB9+1kiTKwFqVgJPAg7AjplFQ5XPXUbm1Q+Sec1D1Rq8ce3Yg7lLh6DzuLbtxrUtA+3xUv7n4maPsfD973D8vcoYUIoOz9+FOTXZP93SMaWqjQOPh/K/lgKQNeZpwGi9OJBzw3YKnv+gQTGU/pLubyTU0rMrUf17g9agFJ7iUrTDiSdI45ve4lIq1m3FsWQNWmvyX6gqmhc37Hhih4RufVhU596bg6VL3Zdaa+9uWDq3p+C1zyhfuLKFIhOieTWw6Pd1wIda6zVa6wLgKWBUOOtpjVVKW6qoeEOrlLbFouJNUaW0UrCi4pVVSgGGDx9erUrpAw88wFtvVfUS1pRVSvfH6sxNqNHPCNb+fYy2DdSB1V2qe/turH3Sqo2LPekoEoafHqGIml7Fyo3V2mgoeOXToL20ubZWtXdSnr4IT34hnjx7ne03VJt/80685Ub39qbEeKIOP7ja9KRrLsDcvTMqNgbQeEuqiiInXX4OUYcdTKf/PUTipWdVm6984UoKP/7BP9zujqswxccGjUHFRNPhubtQ1gZVrKhX8nUXEn1Ev6DT4k49ls7vjSNt5gd0eOp2rAf1aNJ1B9PQrfsC+EUpNR7IAHTlBK31H00ZWAgbAYtSqq/WurIj4iOB+jvgFQe88vnL/f8XfTmFuKFDAOOCUzo5nYpVm0i+/iLizz7Zn87atxeORatRFnO1Lo6ag2PJGuxvTfQPJ99yadAH/tjTjqNilXH6l6f/TeyJg6lYstbf8E+g6CP7U7F2K7rC6e9asy5aa4q+nOIfTrriXKKP6Mfeqx/EFB2FLisHk8LcMaXafM4tO9lz4R2AkeGRcvuVVKwwbm6U1ULKPdeFsQeE/c2vMKUk4dq8E3OH1DrTFn0/HfuLH6GSEkj2eCRzSOwvwi76jVHi4qca6TorpdprrfNqJm7tVUpbqqh4Q6uUttWi4vtapbRyOFRR8crhvLy8alVK3W6jqHhTVynd13MvVFHxhlQpbY5zrwk1+hkhakAftMuNt7T8gMm80G43lt7dsXSt/fIua8zTpN57vb8L1bbMnZFVrbHNqEN64ty8k+gj+1dLF9gov3Z7KJ3yF1GHH0zMSUeFtZ7yecvRRaWomChiTjgSZan+iK2irHR4/N9k3fo02lGBa1cmFWu3EH3YwUQPPMSIx+X2Zzw4t+yi4JVPKZ9d1btgVL9eJFwYOmPJk2cn9pRjwoq3IawHpWHu1hH37iws3Tv7x2uPB7Q2ttXtIfako+psqy2Q9npxbtiOY/4KYk8+qt4GRqvP3LAiWdtCfLY2ZDn78gG+xihSGg+cRIjipJWf1lg0VOu2WfQqkpoirux7/ltVjWHQxdqdk6+11jrr9mf942sWlXNuzdCOFRu0Y/02nXHuv5slLq21dhcU6Z1Db/DHsffah7TXFbzYV8X6rf50O46/UpdMn6/33jg2ZFx7Rt6rS/9aop3bd9cbR2CxuR3HjdSeohKttda5T7yttx1+od7S+59622HDtae4tNp8njJHQHWWi6ttS/5LE/zpkGojtVQeK2+FU28beJFRTaffeSGLBVYqmTZHb+5i01sPPV9n3vx4s8XV2khcDdNa4wp1LaABRb+BLcDZAcNWjJcqvYMtW7eRa0FrI3E1jMTVME15X9DQZwTtuxa4svL0lgEX6M2dTtVbDj5HF371a4ttfzCRPlbZD7wStPpMpOMKpa64ch57XRdN/M0/bP9wks57/oPa6R4eX62qc8Yld+qdtuv1nivu09n3vay9Xm+dMWTe/Lje0vMMveWgs3TRt9OCxuX1evXuS/+jN3c7XW87/EK95+oH/ct1LF+vnTv3andOvs594i297YhLqsWz/djLtWP5+pDrdxcW6x3Hjay3ykiwuMJRMm2O3nvdw8Z2eDy6ZNocnTH8Nv95kn33i7r4x+DVjYLJfeY9/7YVvPGl1jr8a0GDehvRWvcJ8TmoIcvZR7diNMyVjXGB+rfWWkpeiHq5swJexHm9lPq6EC2buQDtdgPUyvmz9ulO9BH9iOrXi26T32iWuLTW5D7yP3+/x6Z2iXR44e5aubb+mPr1xuKr5uLJKaB44lSiB/cPmta1cy9aQ/Ztz5D78PigaQIVf/GL///4C0/39/3d7q6rjZIdysiRtr/1dbX5TLHRWNI6G7mzHVNx780BwJyaHLSvaVGba+de8F2YLd07hSwWWClqwMFYunUg/swTSbzyvBaKUohm15Ci3zXTVv4vVUmFODA16hnB3DEFc0wUeL3oomKKv57a3HFGXPm85RR9NSXotJhjDqNi8f7xaJU8+lLizjjBPxw3bAhxZ51UK50nu3phPefaLbi2ZeBYtJqKpWvrLFHgdVRQ9tcStNuDLnMQc8xhQdMppYg96WhUtBWAimXrKJ3yFwCWg9Io/u53dp97K8XfTIPK7mqVImH46XSf/Eat0iIArq0Z5Nz7EvkvfIS5Y0qTVxmpFHf6EFw79+LcuJ2S76eTc/d/cW3ZReHbE/E6KihfuJKY48MvARwT0DVr+bzlDYql0V2lKqVMgZ/GLqehtNb5WuuLtNbxWuueOkQL5ELU5MmqfmEqnWp03Wlu347uk9+k8wdPYj0oLdisKKUonfIXnoKiJo+r8L3vqhUL6/D0Hf7MiVCxxNqOA8BbVk7Z9HkUvvcdjuXra6U1JSVQsWYzusJJxYoNuAOKxdXkysiiLL0qjqQrz0N7jc6FzEkJpNx3A6a4WJTVQtHnv1Cxbmu1+bv/9g6d338Cb2ExymRcEtrdcZU/A0TUzZSUQMp/riX2pKPQZY5601t7dCFx5LnEnnQUcb7zQYj9gL/od8C4UEW/1/imBabL0kGqjNRkKq/wZ1oLIfYPjX1GUEoRfeSh4HtAda7d0iz3e61JxbJ1ePLsQafFHDsQ7Ylk55JNx1tUgimp6j7U2qtb0Ht9d05B9REeL7rCCb4XSnWpWLIWb2EJuFzGSyhv6H3X7o6rSL7lUv9wwUsTKP52Ghln3EzBSxPwlJZVliIiZsgRdP3mZTo8e2fI54KKVZsonTqH4q+mVGtHo6kpq4XEy86m+KspxJ97qn98zElH4Vi8BnNKMpbO4TeLGTPkCMwd2hF/7ikkXnZ2g2JpUKaDUupopdR8pVQp4PJ93L6/QrRa2uutlatasXQdzm0ZeEvKsB7cg9jjj0BFWUMuo/ibqbg27wx7naVT/qTsr6XsGnoD2f95geJvaufkF387DfvrX/iHk64dHtaDaJztOOOHxe1GlzvAbCKqf59a6cztEok5sj/egiIsB/eslYFTLZavpxgNc2I02GRJ68yei+8k/8WPcO3KxFvuwNzJd2Hyesl/8m2jvpuPUgr7+M/R5UYvhVH9epFw8bB6t0UYLJ1SSb7xEhIuHErsyUeHNU/KvaNIvLxhF30hWjOtdSkwCXhSKRWvlDoJuBD4LEjyT4EblVKHKaVSgEeBCeGsx5KZx97L7zNKPAkhDnjRg/qhYqJQcbHEn3NKvaUf2zrXttqNdVay9ulOxxfvbuGImp72eMi86gEIyIjRXi8Zw27yN0xfyVPz5Z7VgoqJJuXBm2h359XUpXzecuOlnVKomGjcu2q3kVc8cSq5Y98g98FXiT/vNMwd2hnrzckn74m3cWfmgNOFN9eOuWMqnd5+jM4fPEH0gLorNzg3bgdAWczEnjS4zrT7KvGys0i4aBim+Fg6PHU7AKWT09FOFyl3X9ugZZlTkkib9TEdX7ynznY8gmloiYlPgFnAscBBvk8f318hIsadnc+uYTcGLX0A4MkrRLs9tcaX/jKbuKFD/CUFQtFaY05OpGLNlvDi2ZtDzv2vkPV/T+Bct5XSqXMom72k+rp/n0vek+/4h2OGHEHKf8L78sccNxAVGw0xMaAh+rCDMcVGB02b+vDNRB99GB2fuq2qp5IavKXllHw/wz+ceNV5lM1cgGvLLoo+/ZnMax+mbPp8kkdd6C+SVrFqEyXfTffPU7FqEyU/z/IPpzxwI8psDmt7RBXP3hwsXTuGldabZ6f422kAlM5YQP7zHzR7w7INUbFig/8NghANELTot1Kqp1KqRCnVE0BrPRV4EeO+ZIfv83hYa9BQPmcJ2Xc8h3ZJCQwhDnRRA/pgSkpAuz14CgrrfJm1P3DvzsLau1vI6cXfTKVsdvP3stecPNn5mNolVWuwXplMWPt0x7U1wz/O66jAW2T0oqesFsydUlFKoZ0uVHQUMUcHrwZSqXzecoiOgphorH26E3Vo7ZeJZX8spPj76RR98hPubbtJubNGB1q+eyWVEEvy9RcRd8oxYTV+mXDJMNo//m8Sr7mAhEvOrDf9vjCnJmPp1Y2KlRtJuHgYXb99hW6TxhN73EDiTv9Hg5cXbuOeNTU086IX8IjWep3Wekfgp1FrF6KJONduwZOVR/msv4NOD1XioPyvpXR86d6g0yoV/zCDXSdcRckvsyn9dXZY8VRWv9COCqMYostNxYr1/qJk5fOWk/vAq/6LVdThh9Bp/INh11VT0VHGhc1qQcVGE2sLfdGIPuxgYk86CsfStSHTlP4yu1r3qLEnH40noAhdwnAbzuUbSLjkDJJvquriruC1z/DkFqB1ja5Rhw6R3i8aKerQPsScHF7r1tqrsb/+JY7Fa8i563mKPv+F/GfebeYIw1OxahN7r3qAvSPuqpapJUR9QhX91lrv1FonaK13BqR9RWvdWWudpLW+XmtdEfaKvJqK1ZvYc/GdlC+Q7oaFOJBVll5VJhMVKzfVk7rt6/LFC0TV8VZfVzirVWlui9y7s7Gkda41PuqQnji3VHWNGni/a+6QQsIFNuP/lKR62/5wZ+Xh2rQDU2w05uREtMNZq4qH1pqKNZvB7QGzmegj+xN/4enEHG/UelSx0cQPPR4VH4uKjsKbXxj2NkYd3JP4C2yUTZsbsv27puTesYecB15BezxEDzgIS9cOZJxxU7NWWampoZkXPwD/bI5AmotlT67/zaTYf7k27SDqsINxLAre7VZg5kX0UQP8mQSOJWsoeC1YaeQqpsQEvCVlqJgoCNGIZk2Wrh2JOf4IdJkDFWUl+tiBdPnoKVCKipUbyb7zef/bPmvv7nR++zFMCXFhLbtSnO04cLvBYqH8r7pzxxPOP42ovr2CTtNaUxTQUGfSleehTCaSrrmATuMfwtKlAzEnDib+/NMwJcSRfNMILD27AuAtLiX/vxMomzoHx7J1RmNFHg/RRx3aoG1pawKryzS12JOPDjvjR8VE4ckpYO91D/vfGlSs3txssTVE0Wc/A+DcuAPHgpVol9uoPypEK6CjrajEeJTJhHNbBpk3PkbOvS/hysyNdGhCiAiw9OqKio1GRVnw5tnx5BbUP1Mb5cmzU/rL7DpLHUcffRiOJaFferUF5k6pJF1zfq3xccOOx9wxxT/sycmvNk/ChUPRWuMtc1A+exGeOjITHAGNTUYfezjaUVH7XkdrOr58H3FDhxB1aB8sPbqgTCY6v/0YXT5+mrTf36fDi3eT9vt79FrybdilsCu5Nu3E0rl9yIb+m1L0kf0xJydS/tdSABzL1mM9uEeDn2H2Rb1bqZT6DKPrMYBo4Ael1BwgMzCd1rphe7qFKLfHKMoj9mvOTTtI/NeZ2N/8Cl3hrFZEDMCdVXVDGtW3J+bkBEpn/Y0uLiP/pQmU/DSLbt+/ijk1udayo/oZD/2mdkmY4mPCiifOdhzmjim4d2fT5bPnMCcnoqwWnFt2kXXrU0Y7FYC5c3s6vz8u6HrrE3vqMajEeNCaiuUb8NiLMbdLDJo2+sj+aI8HrXWtYlqOBSv9xedMcbEkXDS0ajuGDSH2lKNRUVb/A7WKjqL9I6PJuuUJAEp/nU35X0tAa7wFhai4WArf/ZakURc1ukhYa+VYuhb7/76kYsV6kv/vctoFNLq0Lzz2YvLGvoG1d3dKZ8yn85uPht2/uqegCLweUCbjx7agCG9xaUQbStVaY27fDhUbjS6voOTnWZT+9hftx41pcN1GIZqDq3tHOjw6BvsbX+LOLQCXm5Lf/qL01z+xHtqHLh8+2ajrshCibVJmM1H9euNYtg6cLpwbthMdG7Nftn3hXLeVkp9mkTA89O9xVP/eeItL8ZaUteiDaVOy9OiC1feyLVDcsCHVhgPbuzB3TMF6UBpR/XvjmL8CHRdD6ZS/SLq6diYIQPm8ZVXLPekodGk5HntxtcYrlclE7JAjsPZJM55RfPfGymoh5riB/nRFfyyEhatIuuaCBm2nc/3WOkvRNLXEK86l+KspxNmOw7Fghb8ESWM4N+2gbPp8yhesCHuecEpebMboS30LsBZ4AZgbMK7y0yp542Io/WV2nS2/irav/WP/R/x5p5H2x0e1Mi4APJlVJS/MndoTf+4p4NVGtQ1fo5emlJq98xksaZ1Jm/khXSe+hHtnZtA0wTj+XkWc7TgsHVIom7mAivVbyRo9Dq/d6MXP1C6Rzu+NC7t9g1qsFiOnVSnwein/s+7SF3suvYeiz38h9/E38TqqSlYXfR7QPepFQ2v/SJkUmTc9Xm2e2JOOIv6ck/3D3qISo3qM2YwpLgZvSZnR8vJ+wrl+G1n/fpLMax/GsXg12uWm8N1vmqyuvGtbBmV/LKTwo0k412zGFCITqiavvRhMlRlE2t8oVaQbIVRKkfrAjaTN/NBfSke73Dg3bY9oXEIESrrmArpNfpOEi84AFN6CIjz5dhzzlrHjmMso+emPSIcohGhBUf37GK9rTSay73yO7FufinRIzcK1LSNk73qVlMVC2owP2mzGBUDe2Dco+fXPWuM9eXb2XvtQ1XC1zItUtMtNxfL14PHgsRdR/OPMoMvXXi/l86seumNPOopuE18K2euGJycfS9c6ehOMtuJc2/BHahUbE3ZD700h/uyTSH1kNADWPmnEnXlCPXOEVv7XUuxvfU3F0nVhz1NvyQut9RONjqgV8CbEoh0VFH04ieSb/xXpcEQz0C43jsVriDv9Hzg3bMO1bTfxZ59cLY07oNqIpXN7Yk87DhVlNh78vBpz144hSwkokwlL5/ZolxtPTj7a7Q6raFbSqIvQDqPoWPH303Gu3Yq30Mi4ULExdH7rMaIO7tGobc6++0U8OQV47cX+0hTlsxfXmYvu2pZB3rg3McXGEGc7jrjT/4FrV6Y/00O73OgyR63tq1i2Hm9hMaaY6g2Cptx3A+V/LfXXc1NKEXP0ACzdOmFJ67JfNILn2rEH++tf+rvVDaSdLpzrthJ9RL99X8/23cYyvRpMprAyL7TW5D/9rlGyLMqKKcoKZiM/2r0rk+jDD9nnuPaVOSmBhAtPJ//FjzHFRuPJsUc6JCGqsXRKpdPL95J42T/JvO5hvHmFYFLoCic5D4/Hk1NA0o2X7HelyIQQtUUd2hsU6LJy3HtcaJcn4iUZm4Nr2x6sh9R//+ncsB33toxqXWO2Je5dWZjPa1drvCklCee6bf5SJe6AaiOWTqm4M3NRZrPRLJ3Hi2v9NpwbttXq1c+5dqv/haS5fTKOJWvIe/pddGk5nd58pFpaXeEk87qH6Tn385BP39aeXas1hF+fvCffwbVlJ9Z+vUkceU7Y8+0rFR2Fiomm9Pd5+1yaNuaEhpfaCKvNC6VUklIqKmB4mFLqZd/H1uC1tiAdE0XHF++h6ItfcG7ZhXa7pW/3/Yxrxx4KXpoAgLekjMKPfqiVJrDNC3OXDpjiY4k/8yRMHVJQHdoRE0YbA8pqwdy+XZ3djfrXV1RCyTfTMMVG4y0pw7l2C+7dWUbPCxYznf73UKMfer3FpZTNXEj5nKVGnUxfo5/lc5bWmWEQc+zh4JteNnMBAMVf/1bVJ7XXS8mPM8ka/US1+n1l6YuCtiJs6ZRKuzuu8g9H9etFt59ep/N742g/9v+wBNQnbGvcmbnkjnuT3cNvr55xoZS/eyswetNoCrHHH0mH5/9D0jXnE33UoWE9KJVNnUP5vOWYLGaU10vsyUf753Nt39MkcTWF0l//RFnM9Jz/BR1f+E+kwxEiqNghR9B71Y8kjroQzGZUtBWlFAWvfUbB8x9K6U0hDgBRhx5ktANhNoPbg4qy4Ny0//VJkHT9RcT/88R60+mycgo/+bkFImoe7t1ZWLp3qjXe3+OIr9FOT1b1kheenHzjxVB01Uuhkp9qNzxePreqykjMCYMpnTaX8jlLcazc4L8P01qjtca5cQfWnl2Dlg6vZO3VDSxm3Jm5eHyZInVxLFlD+eI1FL49Ea+9qN70TcrrJee+l8l96LV9WkxU/94kXnEuHf97T9jzhNtg5yzgEACl1K0YXZdZfZ+JSqmbGhhri7J06UDXr1/ClJpM1i1PUvBq3Q00irbFtWkH1r49AaOfbvf2PbX6b3ZnVy95ARB31kloh1H3rPzPxWF16Zh00wiwhu4+q2LNZrL+/ST5L3xI6bS56Aon2Xc+j2tPNrrMgTfPTuIV5xLbiJzGSo5Fq8HjAZcba99eWHt0AYzuTh11tIqcePnZmFPbkXzDJSReca7RPeoko3tUXe7rFQWjLmRgq8GenHxiQ3SBlDjyHNrdOpK4M0+g42sPtvmuUT0FReT/92N2n/tvI/c7oGHOuKFD6PbDeJJHV7Vz0VSZF5auHUk4/zTaP3Qz3SeNrze9t7i0qncXsxlTSjLxZ53kn+7eFX71pqakvd5qmcNaa7p9+wqmxDjjZlCIVkxZLXT67710/fYVlNWKt6TM36Bx7v2vtGhr6kKIlmft2wtMJlRCHChFt0nj6+0msy3yFpVgCqNNn+iBfXFtzcBbWh7+sssrcG3NiHiDp1prrH171ur5o1LMcQP9zwrVGuzs3J6Yow8j7ff36PD8fzAlGKVuSn+dXesFoWP+cv//sScdhbVHV6NEt8frvw9zb9tNxuk3kPPgq6Dqfuwu/nYaztWbyTjjpnqrLeoKp5FB4vGivd5apUKam6VLB+LPOomoQX33aTnKZKL9I6OJP+eU8NcdZrq+WuvKJmfvAIZprVcBKKXeBiYDHzQk2BZnMrHnwttxb99N+YIVRPXvXWcRe9F2ODfuIKpfbwBUlJWoI/rhWLLW6I0D4wLmCWhB3twpFTC6pNSOCkyx0bh37sW5ZgvRA0MXtfeWlBF1aB8qlq7F4quWosorcG7ZhSenAE9WHsXf/U75X0vQDiempHgy/nkznrxCX5O3GlNCPPta+Dj2tGPp+tV/KfllNtbe3XBt203xl78CUJ6+KGTGSNyw4+m57Fv/2/mir3/zX7ijDu1D/AU2Ct/9lo7/vadaA0cdXwydG6pMJtrdOnIft6h1cG7cTuaoR/29dlSKGXIEKXdcRfSRRhdUga1IN1XmRaXyecvxFBSRcF7dRTQLXv0MT64dAHPnDujCYszdqt4uRKrNi/I5S8l/8h0SrzyPWNux5N7/Cl2/+i9dPnwq7G6AhYi0uJOOoue8z9l9/hjcu7NRyQmUTE6n5IeZdHrvceKHHR/pEIUQzcAUG23cV23NwBvtxLFghf8F0f7CW1JG5qhH6Lnwq3rTqugoog87iIoVG4zi/fVUBy54+RMKPzZKP6fcO4rkURc1RciNopSi81uPhZyeet/1/v+rtXnRySg1XPzFr5hSkrB07YgnJx9PXiHlc5f5ny28JWVGuxg+sSccibl9O7wuF96sfOLOOB5WLadizWY8uQXovTlEHz2g7pjjYvEUFKGirLjru4+LspI27V0KP/kJx9zlEWmbpMNzd0IdPdY0l3DvJouVUmla6wwgGQi8Y98C1O5Et5Uxd2hH9KC+RhGh8grcmfUX/RfVuXZl4i0sIap/b5TVgna5W8UDSfxZJ6EC2mPo+OLdmJIT/MNeezHa6QLAlBDn/4J78uxGWxa+aaVT/wqZeeEtLmXnCVfhLXOgTCa6/vAaufe+RNdtGeyJqioC5ikoApcLtNGdpifPqH5hslrxxgFWC64GNPoZjDKbsXTtQOKIM4jq15vyecv9mRdlsxeR8uCNwedTCvs732Dp3on480+j+Itf/dOSrr6ApKvOI+ECW7Uf6uIfZmCKjwureGFLU0qlAh9idN+cCzyktf6yscsrnTy7WsZF9MC+tLvz6lqZQVH9eqNiotAOJ+69Obiz87H4MsT2lWPp2jq7LgMjwySw++f2j9yMt7gUS3ej4VetNe5dkcm8KP5sMu7MXApe+YSir6aQcOHpKKsFS48ueLLzsHRv9T8VQgBg7pBC2pxPyR/7JkU/zEAXFoPWZF77MB2evZPk6y6MdIhCtGra663396w1ijr0IFxbMzAlJRgNuzeT0t/nGes77GAs3Tu1WLs6rm27sfbuXuvYaK0pm7GA2BOOrPYg3PG1B8FsIuvmcXSds5iiR8pIumZ40GWbUqsavnfvyWmeDQhTxerNlP+5OOQLNteOPZT9Po/km/+FJ6eqlIilk1E625NrJ6pfbxKG2yj8cBIAJT/O9GdeOBatRruN0rlRh/bB3CGF2A4pRA/qi7e8AnP7doDR4LuxYDNxpxxTZ8zWXt3A7UaFUVpVKYWlSwcsnduTcPHQOtM2l0iVtg73qvIxMEEp1Qd4FXhTKZWmlEoDxgO1W7NrZZTJRMcX7iZmyCDMKUnEDhkU6ZDanJLvp7N35L3sOOpfbB94Edm3PRPpkAAwpSZj6VVVUkDFxVDm+1GAGu1d+KqMuLPzKZmcjqVHF391kdLf5oSs12xKjDeKnpkU2ukk+9ance/Orp0uKd7ovjTaioo2MlRUTBTtbruChOGnkzjyXDrXaMSnMcpmLqToU6MeYsxxA/1debkzsvx1+IIxpyThWLASx/wVuLb5ukeNj/U3uBOYceHek03h299Uywiqj3a5KftrCUVf/or9ra8bvF0N9CbgxMg8vQp4Wyl1eGMX5t5b9UPbbsxIunz1YtBSLMpqIXpgVTG5wJz3feXZm4u5jpaotctN3hNv+ds5iT3tWOLOPAFvmYO8p9412ipxufHk2lu8iLunqATnxu3+OPF4SL5pBABlM+ZT8PZE3Nn5OLfsbNG4hGgsk8VC+2fuIOHCoUZPPr7eqYo++gHXtt2RDk+IVslTWEzWmKfZddI1lIXoBU1r3Wrbn4s61Ch+r72awg8nhVWluDEK35lIzt0vsvvsW6hYsrb+GZqIa1sG1t7dqo1zLF9P5pX3k/OfFyic8GP1GUyKzOsewbFgBcqrsb81MWT7apZuncBsxtK9U8S7mHVu3B70Pt3PZKJ44lSjd7wyo1qMiokyqgxhvOA0d2hnXP99ymcvNl5SUr29i9gTBvv/V9FRuPdUrTfl7mvp+v0rKCD2lLp7BIk5/giSb7uSdv93Ge0fvjms7UwedRHJ118cVtr9RbiZF2OBBcBK4EHgRmCH7zMAuKFZomsC5rxCtK/euikhjm7fv0bnd8ZiDlEHSoRWsbx6EXnnhm0RiqSKt7Sc3ef+HwRkOiizmbxxb/kbu3EHVBmpbO+iYvFqir+cgnPDNrSvC1BPVl6dD6JRhx1sVKdQyp9Lq00mLD27EnPMYcSfczLJN15C8qiL6Pj8f+j6+XN0n/ouPed+TsqdV5N89fm4mmifVazY4K/GoKwWYk46yj+tPH1RyPmijz0Mx5I12D/8Hu2oQGtNwkXDahU3c+/JJvO6R0i65nxiw2jMNFD2mGfIf/Z97G9P9JdqaWpKqXhgBPCY1rpEaz0H+Bm4pq75du3axYQJEwBwuVzYbDY+//xzAIoy9jJy2xx+KdxNzDGHU1RUhM1mY9IkI8c9NzcXm83G5MmTiT6iPzkuByO3zWHKt9/7l22z2Zgxw2hHZOvWrdhsNmbPng3Ahg0bsNlszJtnZKytXr0am83Glt/+YM9l9/DHdfdwwdvPs6bIyGxbtGgRNpuN1atXAzBv3jxOGTSYdauM4YWuQi5bOoVt27ZR/NUUZkydxpV5y9hdYZQe+fXLidhsNjIzjZI+kydPxmazkZtrfB8mTZqEzWajsNAoHTRxopG+rMzI9Jg+fTo2mw2XyziGEyZMwGaz+ffl+++/zxlnnOEffvfzTxkdk0n7p24j8ZIzmHh0Jy66zNc+SHQUr7z5BhccMpC8R18H4Pnnn2fkyKo3Ik899RRXX321f3js2LFcf31Vsc6HHnqI0aNH+4fvvfdexowZ4x++6667uOuuu/zDY8aM4d577/UPjx49mocequoa7frrr2fs2LH+4auvvpqnnqrqFm/kyJE8//zz/uERI0bw0ksv+YeHDx/O+PFV7ZM88MADvPXWW/7hM844g/fff98/bLPZQp57ZWVl2Gw2Jk6cCEBhYWHIcw8gMzMTm83G1KlTgcafe4sWGdeK5cuXY7PZWL58ORD83LPZbGzYYPwGzJ49G5vNxtatWwGYMWMGNpuNXbuMjNOpU6fWe+61FUopOj3/H1LH3ervDtqdW8Deax5s8mpjQrR1ntwCsq5/lLL0RVj79sSTX0jhRz/gLXPgWL6evVc/SMY/R7Pz6EspnfJXq2wMszLzAgXOzTtwzF1G6e9zm3QdusKJc0tG7XW2AOshPUm45EwAvI4KtMuNe+deKlZtAqDok59wB5REsL/5FY75y/2ZON7i0mr3ytrjIfPGsRR99jOxJx1Fr6XfkDbtPVLuvJpICtVYZyVL9054CourNXBu7tQepRTuvTnEnXk81oN7YD0orarasMtN6ZS/AKOab6XAe3Cvo4Lsf1fdSyizGaUV1oN7ED2o7ob6TTHRRPfthWtHeKVntdYUvPzJftG7X0OEVeZfa+0FHlVKvQQMAtKAcmCl1nprM8a3z0wl5ey99G7iLxxKwnmnYu6QQsxxA/EUlWB/5xuSb7m0RbtAK1+w0ugu09SyJ1rWmKdJvf8Go0hSI1l6dcWSkenPDPAWleKxF2MOo1vH5uLasgtrn7RqRZeU1UL0UQNwLFpN/JknBC154dyw3TfCTHS/3ri2Gj8ipb/NCdk4U8fxD5L/zHsUbt6Jshjry//3RfS/s3p7tXuveYi4oUNqLSfqiH44N+3EW+bAFBfTuO3dsQdLWmcqlq8naVRVseW4047zlzYpS18Eh5wddH5Prh3Xtt1ULF1r3IgXl5Jw2T+rpdFaY27fjtRHRvuLx4VLWS1YunQwcp21xp2RVW9f4o3UD/BorTcGjFsBnFYrJqVGA6MBrFYr69evJz09Hbfbjd1uZ926daSnp5O0ZYdR5cLtZtH2zRRm78But7N69WpSU1MpLCzEbrezatUqOsZ1xONyobUmb9ka0tPTyc7Oxm63s2LFCiwWC3v27MFut7Ns2TK01uzcuRO73c7SpUtxOp1s27YNu92ONyObkuU7Ka4owhVlYXW5HUd6OuvXr8dut7No0SJyc3NZO3chzl2ZuDqm4lRO7Mf1o3DNQhYsWMDhCVF4fJkM3goXzmgnm/9eit1uZ968eaSmprJq1Srsdjtz584lOTmZ1atXY7fb+euvv0hISGDNmjXY7Xb+/PNPYmJicDgc2O12Zs+ejcVi8ceTnp4OGA/EBQUF/uGNGzeSb7ezes8unKcOYPuvm8nLyyM9PR2TuxjtduPVXopWbWDDzD/YunUr2dnZ/vm3bdtGVlaWf3j79u3k5OT4h3fu3ElhYSElJSWkp6eza9cuKioq/NMzMozvcOXw7t27iY6O9g/v2bOH0tJS/3BmZiYej8c/nJWVRVRUlH84OzubrVu3+odzcnLYsmWLfzgvL49Nmzb5h91uNxs3bvQPFxQUsGHDBv+w3W4Pee5V7us1a4xzqaSkJOS5l5iYSH5+Pna7nZUrVxITE1PnuXfIIYewcOHCoOfekiVLKC0tZfPmzdjtdhYvXuyPM/DcqzxXFi5cyN69e1m+fDl2u50FCxawc+dOVqxYgd1uZ/78+WzZsoWVK1fWe+61NSljrsB62EHk3PYsSik8+YVk3vgYHV+6j6i+PaVKlBAYD3TOjTuMrsRXb6Y8NRlLWmfweLD26ELKf67B3Kk95o4pmGKim+0Fx77wZyRo0KUO9l73MOakBGJPPqbR927l81dgPaSnvxc2b4WT5GuHU7F2C7rcUe0Fkre4FMuuLEpnLCDutGObvHp21KF9/FVGSn+eRf5zH2A9xGj0XlktJF5+NiraaJi+eNIMir+c4u99xb89fy4h5riBAJT9Pg/HwpU4Fq6k+OupdPv59SaNt7E82fnEHBO6MK4ymbD27k7FyqpMaEvHFLTbTcbZ/wdaU/T+93T/7R0SLjzdn1ld8uNMYk89xt8mhYqNJiagLQtTYjza6cJb5vCPq1i3hajDDg4r7rizTyYuoAH2YLTWRicAhcWUTE4n5Z7rwlr2/kKFUxxKKfU5MAWYqrXOry99azIwJln/coivYU6zmdiTBpMw/HRiTz6arJseJ+7sk/Bk5mLtk0bi5cEf+JpS5o1jjS+5WdHrrbHEBuTWNZeKFRvIvv1Z0v74EGWp+yKYnp5e7e1qMCU/zCRq4CFGnbkWavMiVFzFk2ZQsXgNHZ69s9r4wo9+wL03h/aPjKbgf19Q+N63ALT79+W0G3MFJT/PIu/Jd1AWM4lXnuefbm6fTNrM4PupbNbfZN/+rH84+ZZLWTGoe7W4PEUl7D7zZnr8+UnQ7pBKp88n9sTBjSpOp11udp10Ddpiwtq9M50/egqzr+9xT0ERu04bZZRAUYqdz97MqRec65/XsXw99te/xLFwJbrC6W/bQUVH0e3nN4gZfChg1BHMf/Y9unzybKOPbf5/PzZ+fNO6kHDR0GrtQSillmitj23UggMopU4BvtVadwkYdzNwldbaFmq+/v3768q3x4G0x8POYy7z11/suXgipoB2VAK5M3PJf/Ejf2aRirLSc+FXjd5fy258iJSF64xSMOeeQocX76mVoaq1Jvu2Zymfbbwpj+rXi64TX/avs+TX2dj/9wXRxx5OyY9/oJQySvvc/K9GxQThXQtqcu3cy94r76fbt69g6dqx2rTtg0egLBai+vem0xuPYE5JCrGUpo+rJUhcDdNU14LGCnUtqE/Fyo1k/vtJ3FszUHExEBON8niJP+N4Uu67fp9eELTWYyVxNcyBHpf9/e8p+N/ntH9kNEkjz6k3fWu8FuwaegOe7HyjxwyrBXNyIp3eepS4UxseprfMQcaZN6HLHMSfdyqpD9yIyXfvFsyuoTdQnpFJVFQU3X97p8kbDN0z4i46vHg3UQf3JPfxNyn5fjoA8eeeQspd1xhVPwDH3//P3lmHSVW9cfxzpmu76e5SEVswsFERxcTETgxMDAzEFrHBRmzsRkHBBElBurd7p+fOPb8/7u7dGXZ2d7YA/fF5nnlgZm6cmb1z7jnved/vdwUFl92LVMKobi/GtGQCVW4sFgvm7h1p/4kWpMgffw/+35YBkHTp6bsl4yLWtS2lBCkb1F1R3V48P/5BSbXdp/O4Q0mZMI5tx1yGWlqBuVcXOs1/DbXKw7bhF+rBtoQzj6PqXS3z0X74flHCoBUzP6J06kxM7TLYdt7RHDz+PDzf/waqGp89bTiM9/vfohzkdkbJL2b70eO1sm5V0unXWY0eN5I9tY+Kty+Id7T9BXAC8IQQYgNaIONLKeWShnfbA4icBITD+H5ajO+nxRgSnFiH9qPknmcRNisGuxUsJhJGH13/sVqIkl+M/48VWrN8AT3S2dZUvPwBiReeStXsr0gcN6rFx3ONPqoVWtU6mHIyMMboDJyjRiB9WtQzVuaF6+QjqHj1YzKm3ICpR0fcc+bqasL+P/+uo3UQ2pKrexmrbi/2w4dqIkA/a+lj4eIyhMOO/5elWPfrV6+Ps+PIYSjb8gksKcB24KBGg0mRBJatQfX6kKpK2OGIitQbUxKxDu5NYMlqkBLrig0wCgIr1lH+7Gx8C/7St5XVqc8Gh420e6/SAxf+xX9TNOER0u67ukVBqUgF5zbEDew8+00EGjfGjkG4pEIPXBhSEusNXIAWnHG/+zXSILS/QVCzl7UOajgdsD6qTj2MvlecS2DlOspfeC9mJph37u964AIg9e4ro/5G9oOGEPhrNeYenfBUe5HvascRKSWlD88g6eLT6gQuADp89zKGBGeD3+2uJLByPdIfwDa02TIpe/k/xDqoF+3efoT8C+8kuHYLeHxIVeL57lfCFW5y3pyyu5u4l73sNgIr1+P9ZgHtPngC607Wje4vfiKweBWpd122xwt5Wvp2w1dYClYLwmoh4ewTGk35rw/3pz+iVmgLRv5Ff2tBzwYwtc+C7dU2mzsKWzV4IcNhQptzMbXTMsUi7UxdY0bqgYvQ1jwKJ0ytFaTs34OMx25i85gbtPc3bKsuy8gi69k7qfrwO22OceGeI2Rc9e7XJIw+CuoZjwOESysILPpbf27MTCVc6cGYlqQFLzpo35MhwYnjqAPwfLVAP3YN9oOjF6GDqzeCqqIUlmJZsxUZUnAeHb9DlRSC4jufRrjsmLLSscSYK9Zkjyu5RZja1R1v/deJq/eQUs6WUo4DcoAbASvwshBiuxBihhDiNCHE7qsdaIBQh0zSJl+Dbb/oFH61yoP3hz+01J6KKtRKT5unrwmLmeQrz8TUMZtg386a00U9ApGtRY2tY8KZx1H+4ntR+g//BewHDY5Z2mDKSEH6/KhVnqjPXBO8AAjnFWFsl4HBZMJ5bG0AxPPlT1HHUr1+Cm+YqgsgCpOJxPNPjipVKXvmbbYdOo6qD77FNap+C97csTex9dDzKbhiMsF1TRMuDJeWY8xIRfoCGJzWOpPcyO/BsWAFhdc8SN7Zt0QFLjAacY48COugXnRZ+wWJ52nBLNXtpfjWJ0mfeiOOI4Y1qV27ibWASQgRaTA9GPi7nu0bJBxDFyWS0LZ8Cq5+gMq3PkfJL66O6KOJ+NEyy1Q1wYFt/wHY9h8YZVGrv+/2UvrQS/rzhDOO0QNONRhTk0ibdEXU/o3abLUSnm8XUvbEG/h/XUo4v7jeAKlv3p+UPfLKLmlTY/j/WkXeWTeTf+GduOfM3d3N2cu/DHPnduS89wTWof2qbeIkakUVtgMGtvk9fS972ZNQcgt1LQSlsJTC66eQdMWZdQIXnm8WUnzH01S99zUld0/Xtej2VCzV7TfYbdj3H0DC6SObnS1o7pitayY4TxoetaAWc/tuHQhlp2E/bF+Erf6Jd3NQdhRiTEvWFmyBrGfvouOCN8l68R49OBOudFN41QN6wMWYnkL2zMmgqAR6d9SP5Z2vibEKq4XEc06k3afPYExKQAZDhLbk4vtlaZRw5a5EBkOUTZ0JpobdMEIbtuH78Q/9uTEjBWvfbmS/fB+2YQPJfPo2/T3XqbEXbu0HD4l6buqUozkgCkHiJwvYMuwsNvU5KW59F/c7X6HkFVNw8d1Uzfo85jbhgmIwGhEOG47/Q+vuJoU+pcbvUsq7q9M6hgILgbOBDUKIy9uikS3CIEg47WiyX3+I9l+9QPLVZ2GqHuALITAkJ4LRgBoIaqvvpRVt1hRjahLJV51F+y+fxz+gG0U3Pcq2wy/QlWvbBJORzOl3YnDacRw+FG/Ej/S/QO5p1+vCnDtTNm0Wvl+WRt0oaiamUlFIOPM4PXXPefxh+jbe73/TA1lSSkrufY5QTadjMGDp3x33B9/qHZFUVXzzF6EGglpWT3bdyW8N5vZZoChIKQn8tbpJn9V5zCF0+GEmtmEDSDy37gTRPqI208q6frumfVGDwYBr1AjafzadzKdvQy2vQq3+3oIbtmpith9Pi+musScipfQAHwGThRBOIcQhwCnAm805nhKVnRMt5ltzDXi//YWiW58gsGQ1wm7V7IKrJyqRNZPNRckr0hxtIs7r+WYhuWfcqHuQG9OSSJ5wfsz9S6fMQPXV1li21JI3HqSUVLz0AeUzP6TgygdIuvzMerN2zD07E/h7Q5u3KR5qBLdAEyP7fxO7aisC/2yk8MZH/y+cOEwZKWS/cA/mbh0wpCSB1Uz5s7PJHXUNlbO/1BcO9gRh673spS0ILFtD7pgJlE2diaqqFN/2JAlnHBNzldm34C+oDlgE/t6AjNAD2BOp0b0QJiPK9nzcn89v9rHsh+xDzqypZL/1MFWzvsDzdcPin+n3XU3R5EvIev7uOgsVLUUGgnXKEYzJCdgP2QeDw4YMKRTd+CihzTs0XYWwSsbTt2HKTqf4zqdRIgQwfT8vjjpOzYJayUMvsePEqyi47F68P9YvIN+WKLlFGHMyGrXyNHfviFJYq4ZgrLZJlWEV2379Maan6O/ZDhyEMSM1an9TTgamru2jXnOecBj2I4aRdL5mJyt9AdRKT9TiaUOY2mchjAYIh+sV7kwYexyd/5hNyg3jSDw/tm3tf5kW5W1JKfOllK9KKc9Ay8rYoyXEzR2zSb7yLNp/8RzZb04h4YxjMCYnYEhORFjM+OYvYseoqwn8vR6gzSLDQgjsi9fg+WYhankV/l+Xtsl5lNxCcsdM0D+HfcT++ObHtq1q8DhFZVrpwcIlqFUe/XWpKATXb91tA/9waQVKXnG9Vp62/Qfg/2NF9MS0enIoTCZSJpyvd7aWQb30dDm1yqOrCFe9/WVUJoalb1cCy9fi+WYh/j810blwcTmGlEQIh7U09AbKB2wHDgKjEXOHrOYJP6kqyuZcHMfWLZUxd+uIKUZ6ofO4Q2k352nSp9yAuVMOwmTCul8/gmu34P58PgWX3INSVFbHceRfwFWAHSgEZgNXSilbnnmxU/ApuHK9JrTr9mJIdJE++Rravf8E2a8+oJcHBZatpaVYB/TQrUX9S/8h/7zbKLrpUZRttUGIlImXYEyMfb2rbi9qaQUYDUgpCReVRglGtQWBJasJ/rMJ6fUhQ0FsB9ZvQW3p1YXQht3XX0RS89sFrZzP04KB6V40ZDhMcNlaqt75ktJH94wMm7bGlJNBxtQbERYzxgQXGAyYe3cluHwtUkqqPvmRHadeR8GVk/daBO9lt1I5+0vsv7ZcKFfJL6bo1icpuuMp8sffg1rloeLNz6h86QPS7rmSpMvHxtwv7d6rcI0+CnPXDmS/fG+Dmg97ApHuHzKo4J4zN2qS2xzChaWY2mWQeMHum2xaenauV9yxpvTT/9sypD+gjScURddIs+3XDxmxOOH/YyWqL1DnODUlKQBK3u7JvFB2FMQsX90ZU/tMpNePVLXsoRpBVWu/7qTdfUXUtsJoxHXyiKjXbAcPqZMFbenRCds+fVHdXpT0JFAUDMkJ9Y7ddsbcuR2GlCTMfbpi7t6x3u1Ur5/KmR+1lSj+Hk2TgxdCiJOFEI8LIV4XQrxR85BShqWURW3RyNZGCIFtn76k3XMVHee9Ssq152JwaRoCoQ3byTvzZqo++YGiWx6ndMqMNhls+wd0q/3/kvrtOVtCxasf4zhsPz3y6Bg+lPRHbmzycQJ/raL8+XcpuPw+Cq/XrAMLb3yErcPOJvfU62qdO3YxwbVbsPTqXK9bjG3YQHy/LtO1L4TdiiHBiXvOXIrufJr8S+7WgzFCCJzHHarv6/nyZ/xLVlMWMQhPOOMYnMcfhnDYEA6bno1hykyl/ZynSbr4NJwnDW8w0us6+Qgyp99J5jN3NEs7RPoCJF5wCsakulVaQggSxozUnzuOPIB2Hz1FxmM3Y9mpA8x85g6UbXmUPfE6WTPv0zvs1kCqKlUffEvZE29QdMtjbeaRLqUslVKeKqV0Sik7SSnfbu6xlML6My+sA3uSdNGpmLt1IGn8aSScfgzBfzYRXLdFT71UcgubNbCJTDEXDhvC5aBwwlTyz4u2YTQkukibdAWuEw+v91jh8kpKHnqZcHG5fs0r29s2+8I6uDept14CQuA65aiY12UNBocN1ylH4l+0EvecuTEHPbuCcEk5oQ3bol6rmPHhHp/GvKchpUT11/4NA39vwP3tL5i7dcC/aNVubNmuxX7IPiRfrVn+CiHwfrsQx9EHISxmyp96A7WsCs/nP1H5+qe7uaV7+S8ipSRcVtnofdbSvSMpr36pO6s1B7XKQ8Fl9+L5Yj7uT37UxsZSavbxpRWYO7erdzwmjEbS7rua7LemRK1m76mYOmTpwupqlQfnsYfg/e5XZEih6r2v9cyqplD5+iek3HgBO46/st6M4bam4uUP8P26LOZ7VW9/qWs5yJCiZZhaLZQ/+QYyHMa6bz9MecWYu3dE+oOES8rxVAuXR2LulI0pJwPbfv0w5dRvVdqWWAb0IPW2SxrdThiNmDplQ/VlW5N54f3xj5ifzXXKkVHP7YcMiXlcY2YqMhCk8KHLSbl1fJPE002dc+i06B1y3nyYtDsvq3e74OqNWHp32eP1Y9qCJqnyCSHuAa4A3gHOAF4EzgHebf2m7RqE1ULyFWOx9OtG8a1PaquWqqTwhqmgqhgTnARWriNr5uRmC81JRYGwGiXi6N+3Fyn9+2I/ZB/MPTu31sfRCZeU4/niJ9p9UmtZJKwWlLVbUAwCa/8ecR8r0s/ZWp3CJoTQSyuCazZhHRD/8VoL6Q9ga6DMwdK7C65Tj6Ts6bcQQmCq9m+u+uBbfL8tAyVMYPla3fHFecJhVLyiJQ95f/wD/58rdbEi64CepN5+KYEVa7EPGwg2i1ZnptSW/ARWriP5sjMabLPB5SBh9FFNqouWUuoDAuG0a0Kh9ZB48Wisg3qxaMNaep09pv6DhhR8C5aQ/dqDMXUWWoIwGCh74g09Wp9yy8VRjiN7IvVpXkgpCW3cTurNF2oK2tV/N2Gzovy9AeuAnvirxZ4Cy9ZgGnlQk85b/tw7ZL32EXm9viK4bjNqlSdKxFWYTSSceyJJl53RaNTemJaMWlap3ciqtThCm3Ox9OrSpDY1CYMB7/e/kv7g9SScfkyjm/v/XKkPjnJ6dMI6sGcje7Q+/sV1k3NCW3Lxzv0N5zEN25PtRcO/ZDVlj72GpW830u66HM93v1L+zCyCG7aBEtZWsiL6rf86SZedQWD5Wnw/aWnUxXc+TdbrD2E/fChKYRnS6yNcUl5nPxlSdpljV1sRLquk/JlZJF15VqsGwffSOKovQNH1U/D9shTXqUeSdv+1dX5zgRXrqJz1Oa6xx1J+7kiKJj5OztuPICzmJp1LKgpFNz+mBz+EEMhQCIIhDCmJJF08utFjCIOhToB7T7RKhWobzd5d9PJe26H7IowGtp98DeFt+ahuX6OfOVxcFhWoyXrxHgwuB6aO2QSWrcExfNcbrPgW/IWlOjvY/8cKzN07YkxLxrfgL0qnztS3c44agf/3FRjsVlynHwNSYjtwML4N67AFDJr5gKpSfOMjmDJTo0qOnccdGrUYuDuQHl9UGW6920mp6dlVB+GMGSkElq3B++MfWlBjJ8zdOmA7cDD+35ZhSHJhP2hIzOOau7bXfyvJlzYwFo+BEILAyvWUPfoqOW8/Uu92wX82YenTrd73/8s09a55MTBSSrlSCHGRlHKCEGI2cFcbtG2X4jh8KDnvPErhdVMIrt8KvgCEw4SVsFbT2gKFfN/Pf1F8x9M4jzsE12kjsQ7sidIunaQ2tKlRfQFSJoyrM5gIrFxHcPlarFNuiPtY9sP2QyphAkv/wbZvX5TCUky9usA3CzFmpe22NHDHiP1jinXWIIxGbeJW0yllp2uT0fVbtcmd0RAVODL37oK5S3ut1s/nJ1y9em1ITiDjyYkIixnbfv1Jf/A68sbdjv3QfWHePH3/5MvHYt1JGDYWqtvLjlHX0OH7lxutxwOoeOFdgqs3kTR+DFUffYf94H3qtVsSBgO2YQNRvA0LQgmrJUqIqLUxdcwmWF1+pWzP3+ODF0p+ZGlRbfDC/cG3VL3zFTnvPxE1yTDlZODJK8I6sFdt8GL5GpxNDF6ENmzDVFSOd/vvILQMixqcxx9K8vXjdLXrxnAeczDuj77XbsTVwYvIkpM2QQljP2IYCWOPjetaFg4bqseHwWknuH7L7gle/FkbvDAkuXRRsoqXP8Qx8uDdOuGWikLVe9/UipzVLKZGrqpW/9+Q6MQ1+ui4BmitSWDFOvLH3a79f+V6rEP6UPbIK2Q+dxfFd07DmJKklfJV97v/DwiDgfQpN5A39iaUHYWobi8ltz9J9qxHSDz7BDxzfyN5p5U3GQyx48SrsB0wkIRzTsTar/tuan3LKHvqTdwffofny59JveNSXCfXL1i9l9ZD0yaYqpe4uj/+Aet+/eo45pU99Sbebxbi+eIn1IuOJ/HckwhXuim55zlSb7047sWLkodm4F3wV23/KASENQtNQ3IC4YKSZvVFu9oVqylY+nTTgxehtVtQ3R5CK9chEl1UvPQ+rlOPxJiaFHNfJb+YHcdfge3gfXCNPQbv5/NJf+gGAKz79CGw9J8GgxemHUV45/2JsqNQu7+2UpAztGkH5q4dUN1e8i+5G6TEmJGilZhWL85YB/Ui47GbCSxbg7V/D72k2JSRgn9IT9TP/gQlDELT0LDshsXLxih74g3sRwxrMFsVQK10awttqsSYnY6wWci/4A7CpZUIm4WkcSfXcQ/MePQmPN8sxDa0f73lT9b+PbRF4u++p3jSdNLuuaJJ7oLmTjmEtuTGfE/ZUYAMq9hHDEXw/3GP3Zmm/hqSpZQ1RXNBIYRZSvmHEGJ4azdsd2Du3I6cWVMpvnMa7u9+QZZXQUjBO38Rgb/XNylbIRL3pz+iVnmoev9bDImuNh+wq14/hgQHCWccW+c9xxHDNIE6RanzQ5IhBWIEIuwHD9HVdFW3l+1Hjyft/mvpuOBNjMm7z2Sm9LFXSTznRF2rIhbuT39EenyIBKe2oq6ESb7+PKre+wbQlIVrEELgPOEwyp97p/YABgMZj94cVTtnzExFLa2ICtoo+cVYB/WKK8hlcDkwJDoJrtnc6IBVdXupfPNz1Eo33h9+x5iaROI5JzZ6jt2N65QjUIcPxdQhq9UzO9qCKFHX7HTClW5CG7ZRNm0WOW9MqZOWZ+qQhSHBiWVAD32FObC0aaKdUlHwfrMQ4QtWpywKMBiw7tuX1Jsu1NXJ48UyuDeu047G1Lkd5U++AbT9wFDJKyLxvJPiClwAmHt0JrB4FY6RB2HKjE+8qrWJ1LtIu/Myiu+ejvQHCa7eiH/hEi0ouZsoe/JNKl//JO7t/b+vJPu1B9qwRXWxDOih6Qn9uRIElD70EhmP3ox1QE/aV2f6SUWh+I6nSZt0hZ56/V/HmJRAxhMTyR93OzIYIrh2C6WTnyftoetJ6dOV0JZcPJ/PJ/nqswHNfUHJK8L98Q/4f1tO+29e3M2foOmEtuTi/uh7AF0TqCGU/GKUrXlY9+3bpIH8XqKRqkrxnU/j+/mvqNfLpszENnSAbq3pX7Ia3y9LkEoYKQSh9uk4Rh5E3tibCa7fQnDVBrJm3Iule10rxqjjTp9NxYvvIawWhMNG0hVjsfTpRtHExzGoEukLkH/JJDIeuQnHkQfE/TnCFVUUjL+n6V/ALsLSt1b3IrhmE+kPXU/Fc+8ijEaSrhjboE5Y1awvkCEF3/w/Ca5Yi+3AwXoAwn7Q4EbHC2lPv0+hVytNsR++X6vYpapuL5iMWnbB4lV6IFytcOsZMKbsdDKevh2DzYr9gEGx2zblBtyfzUctr0BKFWVbHsZ+e1YAQ7NxbbxkJVxYijAakaEAxoxUwkVlWsa1qmJIdNYJXAAYUxJJPOv4Bo9b9uxsKqbPJiccwpuSTPr91zSp/YbUJFDChCuq6mQrVbz2CVWzv0SYzaTeddlezYs42CCE6F/9/5XAlUKIcUBZA/u0CkKIeUIIvxDCXf1oubx/DAwuBxlPTiT1+nEYUpMQThvh/GLyz78D96c/Nvl4UlGi6qudO4m9tAVV73xF2dTYgmmm7HRMORl1Ok6loITcMTeQc82TeOf+Xu+xa8Qrw0WluzVwIVUV93vfIhoRmTQkufQggzErDWE2kXjOibT/eBrtP55W1250JxXmlOvOrePAIUwmjJmpKHlFOOcuxvvD79rq0yfxXx+WPl2pfO1jyl9ouOLK99tyvfzCmJ2ODIYaFPDZU0g850SSrzoL18lH7PH1rVJVCUdqXmSmUXLPs+SdPZHE807CvJOSNEDp5OcJLFtD0YRH9AFAcNWGJmUh+RYsQQqBmuBAJLowpqeQOe12sl9/qMmBCwBjghPfwiUYU2vt3NrKLlVKiaqq5J1+I7IJ2hWpEy/CkJxIxmM36+Vau5JwaYWWeYVWkmMfMYyEMbXlLhUzPtzlbaoh8Pd6Kt/8rEn7+Jes3uWZb0IIUm6+EMfRB9Lu0+l0+G5Gnb+lMJlACVP1zle7tG27G2v/HqRG1Ci7P5uHuyZQnp5C1btf604s/t+X69u5xh4XdwBwT8LcuR1ZL96DuWsH7MNrMyHVKk9UaaQMKZS/8C47jr+C/IsnkXvytXi++nmvrWwzkFJS+tDLUY5JujaD10fxHU/r+j3Wwb1xjjwYY2YqCaOPIpyVSnDdFkJbczUb+YJigv9sbvB8le9+TekDL2ouaR4f1n36knTp6Xi/WUDGlBv0BSDpD1J4/cNUvv1FEz4MOBtZGd+dWCLsXoP/bMJgs5I+5QZMWWkknnNig6U34WJtWiRVFbXSQ/J15+rv2fbrT9IlpzV47nBabUaHsqN1RC8NLgcd5s7USn6UMNbBvbXJeYSdaOrtlzZa/mWwmHGdPAKRloKwWvEtXIoSUXq7J6DkFja4sFlDuLAUTEakEtZ0Krx+rIN6YerWAXOPhoN6DRHasI1wWQWGgKK5UTURGQjiOP4wPF8vjHYOBELrtiClRMkrxNCAzth/maaGvu8CapbLbgPeBlxoqv+7gmuklDPa+iTCYCD58jOw9OlK8W1PolZ5CJdVUnTTo4RLynGeOBxjRkpc6cXCZKLdJ88QWLIa/x8rY0a4ZUghsPQfLP17NM+BIvJYgSCVb35G1vOT6t0m4/Fbouv6VZXiO54mtHE7QkpKH38N+xH7xxSBcZ58BPYRw3Z7GYCSW4Rw2RvVAdAiqJrdU6RNUclDL5Ny3bl1IueW7h1xjRmJ+8PvSDjjGBLrucGkPzwB4bCT+OE8Cj76CbWskvZfPhdX21VfQBe7MjhsJJxzYr2fw3n0gZg/nkbFjA+rbZ8M/8pB7p5MuLhc1zYxJLnwzq8WajIaKH/2HZzHH1YneyRcUk5o8w6Ew4YxPUXLxAkECf6zKe7MKvecuVofYjSQOPY40u65qsWpoeZOORDxu60v7bClhIvK2H7c5ajF5ZQ+PJP0B6+Laz9jdeZZuKhsl5c7AHqJD4BlQE8MDhuJF55C1btfIZUw/kV/4/9rFbZ9Gy//ak2kolBy73O1abuDe+PYuQQp4n5TMeND1LJKCIdRtuXv8pUXc+d2KNsLUNZvxVJPZlXSlWdScNFdmiX1v8/JqNm4TjuawJLVuD/+AYDSh2dg6dsN66BeJJx1PBWvfET6/deSdv+1JJxxLFXvfEXCmKMbOeqei/3gIeS8+xhlT71BaHs+Ve98hfu9b0l76HqcRx9I4O/1lEx6huDaLfo+oa15FN3yOJaXPyD5uvOwDx/6r9BHCa7ZhLlXl93a1vLpb0cFBRPOPgHXyUeQP+42rbx3yWoqX/2YpPFjtHKmqTeierwYrBZY/Ce2ffqS/eoD5J13G+ZOOTiPr1+bILRpB2VPvgFGAygqwmzCecJhlEyajurx4Tj6QCx9ulJw5f1aoLw6sKLkFWlubjHGkKHtBfh+/B3vD3/g/2u1bp+6J2Lp0QlRPbFVtuahur0kjD0W1edH9fkxNhC8SJ9yA0mXnUH5C+9i7tqhTvlnyX3PkXD2CfVqUgV7tMfesT2m9pkYU1pnghpYtgbV7cV+yD7YDxyE/cBByJDCtqMu0a1rzT3rn7CHS8qxLlsPI0ZgP2w/PF8vAIcN70+L8H77C+au7Um9bTzG1CSUghJCm3YQzivCum9fzJ3btcpniAcpJQlnHY8xPbnRbcOFpWAwIGxWDOnJmLt1IOftR/B8uxD7Yfs1uw3WgT2pMhi0oF8zrvHAor9xf/AtALah/aNK5A2pSRicdtTyKqz9/53lhi0l7swLIUQfwAbkAUgp/5BS9pBSZksp92iL1ObiGK7pYJi7d0SYTahVHs2/+NjL8H7TsE9zJEIIbPv2I/mKuhZSpY+9yrZDxpF/0V2aAE4LcX82D0ufLlE2TztjapeBNyLdsPL1T6JWgZStefj/qGupFVi9keDytZgyUyl/dvZu9a9XtsQnRKgWliKcdkDqkyUZUnC//w3CVjcdDDSP7c6L39MmkzEGKUphKf7Fq8g99RqEEoZwGGGzYBvSN662G+xWbEP6aE4VUkYJosbC0qMTqbdeQsq155ByzTlxnWMv8bNzyYj3i5/BH0QIoVm7xZicGXMydaV1c8fa9yMdQho8Z0k5vvm10XT7QUMouf+FFnyK6vZ3zNYGIdUBrnBhaZu4eijb85Een2aPuW5L4ztEkP3K/bslcAHRJSO2oVoSoSknA+dJtZWPuyP7onLWFwRXb9SeWMykPXQ9SReeGv244BT9Edn3tVWAqgZthadIXyWXIYXCG6ZiHdQb+xHD6t3P0r0jzpOGt8jd4N+IEILUuy7X78EypGgLH2WVJJx7IsrWPK1sUwisg3uTPuUGjGnJu6WtSlFZs1wTIpFSUvbYqyjbC6ia/RUVL76P6vVRMeMDSh9/nbxzbo0KXEQGV4Nrt1B4zYPkn3cbvt+Wxzj6noPq8WnW827vbmtD5ZufUvHi+/pz5wmHkXr7eM0RK2J8Wf7sbIL/bCKwbA3BVesxpadE1ebb9h9Ax59exzqoN+Gi2InT4YoqCq5+AFldDiScdrJnP4LvBy0zN+PRmxFGo1Zu/eYUrBEW8ZWvfkzxxCeQgSBSSgKrN1L+7Gxyx9zAjuMup3TqK1pfvAcHLgCExRwVGA6u3QxA0gWnID0+wmWV9eypYcxIIf3hCTHH/jKs4l9cvytT5ZgRZL10L2n3XBWVAdISvN//RmDl+uh2BEOaJSogTEZM7erai8qQQvnz77Dj+CtJffETlIIS7IftqwfUg8vWkjH9DoyZqeSOvg7fb8spnzaLgvF3UzzpmVaZ2zQFIQTJV54VlwuHUlSGEAKD044pQ1uUleEwRbc80aLStoQzj8eYnkKofQZZz9zR5P1NnXJQfQFUr5/QlugM2swnJpJy4wUknH0Cxt00ltrdxPWXEUJcCLyMVh6SJIQ4T0r5fsN7tQlThBAPA2uAO6WU82JtJIS4DLgMICMjg3nzYm4WN+KKk0if8iaWSjei3E04pLB10tMUSg/S3jwhT7fbzbx580jcsgVXudZxrHn7YyrwtKitRtWDOKwfqxv6zFKSdcfzFBefhQiFyHjkTUS1wJ8qJcFgkLXTXqPMN4q0J95FyUkj2L09tsVrCPbtjMdbQuLqf5DrN+A5cl/M2wqRFhPBHm23+lfzfUVx+iENf04gY80GzEYBisKSrRsJzfNgLCwjzWpi/oIFzWqLeUs+mZNnABLVasGblojSLq1J11lCdgLOlSq+gwawLW8r4Xnu+jeWkrRH38ZzxL74948vQBLz+9pLTJSI4AUmI4EV62g35ymqZn9F6s0Xxtwn9daLIRTCecqRqBVVBJZpAajAsn/gvJMaPaf78/l6tkewWzutJtnfskkEQPK15yKsZipe+QhleyHCaEDZno+llR2NlB2FIATCbm2ypon/r1WEtuTWEZbbFQQinEZs+w/Q/590yRit7EtKfD8trlbxbp0BY2MoOwoon17r8muwWfF99yuW8fUrlJu7ttcDzqFNO6AejcTcMTfg7NcRWiAOHS4sZfvISxE2C9aBvXCecBgGu5XUOy+tE9xV8oq0dNmSCszdO5I68WKklP8JV42mYLBZyXjyVvLG3qSl5+cVUXzrE2Q+P4ns1x9q0NZS2VFA+Qvv4Tz2kDbVX5EhhfwL7sCUmUbmc3c1O+uz8o1PCSz9h+w3phDalk/ZU28iAiH8v68gsHytPoEQNgsp152Hc9QIKt/4lMq3PtNLzgLL1lAw/m5sBwwi5bpzm1U219b4F/+Nbf8B9Qr0tTXuT36kNKIc2H7YvqQ/eL3+/SaNH4Pvp8UElq/VAma3PYkpJ11zUNqvf53jmbLSyHjkRmQwRGh7AeYOWchwGO/3v+E48gCKJjyilx0anDaSbr0Y+0GDsfTuWifz2JiWTNbM+yme+DjeH/8AwPP1AkIbt6FWeVHyiur9XNbBvaGuAdQeg6VPNz34Fvx7g56VV/nmZ8hAiOTrzsX90fckXnhKncly8V3TsA8fGvNeZ92nD/7fVsDZJ7T9h6gmtHkHzlHREoWRot6mdpmxJ+xGA94f/kD1+lCy0wgsX4tz5EFYB/YksHwtqCrBxatIvfkinMceijEjJSoI0lplL/Hi/Xkxns/mk/HIjY1uW1MyrLprr1O1rFLTu2jBPcvgsNF56Qf8ef/TmHs1ffxlapehfYehMM4TDkOqatT1Ze7SHnOX9v+KjLW2IN6/zK3A6VLKT4QQo4FJwK4OXtwKrAKCwFnAZ0KIIVLKDTtvKKV8CXgJoHfv3nJEK7h6VBYHKX7wRWRZJSKokNS5Az36D2q2GOG8efMYMWIEPlsqBT8uxdQ+k8x9BpLcgrYG/l6Psc+AuFY1S0atIadCwfPFz4SMJjBqkT7v+i1YLBasq7fSO609+ZvyYVM+YtkGhNFIh1emYHA58CdmUjThEcLfLQI054/M8ec1u+2NUfN91eD57lesA3pECWnGYmvgZcJGI2qFmwOOOYriO6dhcNoIJiTQr5nftQwE2fzAm8hAAFUIer3/FKbM1KZFaUeMoPjOaVoq8ZnHNbip+/P5VDoTGHDjZXGXjOz8fe0Oyl94j9DG7Sg7CnSLsD2RyMyLcH4xKTecj3VQb6yD6h9AmzvlYO7ekXBRKbahtZPgwLK1jZ5PSol7zlxtJVsIvIcOQskvbpVsBM83CymbOhO1vBKMRoTLgbK19YMXzpOGYz9sP5SteQhr0yz3wgUlVM74iHBhGZY+XXeZXVy4rFIfhAqTUbd9Bi0Y4Bh5EN5qX/eKGR+S8djNbd4mKSUlD76kT+JM3TqgFpbiOvXIBveLTMFtKPNCBhWCPepqtjSFGo0G6Q+iur24xozEdcqRMfsi92fzKZ/2FgBJF43GOqCHtlIcDutClf8vmDtmkz7lBgqveRAA3y9LqXzrcxLPPZH8cbeT+dwkjCmJUfvYFv3DjgnTkSGF4D+bsB2yT5sNTt0fz8XULlMT426C9kTwn02UTp1J6m2XaCvCqkrms3dhcDkwd8zGdsBA/L8uA2HW224bNpC0e6/Sx0sp159H4rknUjHjQ6re/VrXbfH/vpy8c5fjGLE/yRPOx7IH6Tv5f1tOuLCU8ufeadCuvC3w/vgHxXdP159b9+lLxhO3Rk2uhMlE+kM3sOP0G1CLywms3kBw9UYyHp/Y4LF9vy6jdOpMct59lKIJj+L/bRnWIb11XTQpJdbeXfHMmYvrhMPrLRk22K1kPHUrpQ/PpGr2lwDRGTc17TSbsB00GMcRw7AP3187XgN2kLsbS7/uUK13VzHjAxzHHoIpM5WkK8ay7bALcH/yAzIQxJieHOW0E1i2hsCKdaQ/PCHmcW2D++D9qnkLaM0ltDkXc9foRcbI+4epS+zSDmEwkHLjBRRceg+m7YX4/1iBc+RB2A/fTwteAN75i3GecDjWgT3xL1lNuLQC6z59MeVk1FkIkCGtTNL/1ypSbxvf6mMAZVt+3OPNcGGp9h+DQHp82mulFa2SDef9ZiHJs75D3BP7GmgIYTKR+cwdlE2dSeotF9V533bAwP/bwAXEXzbSTkpZI4H+MdB8FZMYVItxynoeCwCklL9LKauklAEp5evAQmCXhSydo0ZgtNs0NW2rhbTJ1zQYuJBSUvbEG5qgWgOrLLb9+tH+8+do//WLJF/Z/BuilJKSe54l+E98pRyOI4ZR8cqcWs9uu5Ws5yYR7Kp9JhlSqHx1jr69MSkB54nD9Q7BOri3JnJTPeiJdZNqS8qfe4dweVWD26huL2qVR09TDazegP/35Xjm/o40NP9HL6wWXKeMwNytI6VXjiZv9PW6NWVTsA7tFzNtUKoqxbc/hfeH3wm7vZQ9/jppd13+r9O68Hw2D8+XPxFYtqbW+nEPJBwhNGU/4gDsR8Wnlp589dkknnsSlt5d9BIkJbcQpeZmWA/BlesJrd+KdHtRS8pJ+GwhoY3bYgqDNhXpDxAuLdfKRqpTckNbW7+sQAhB+bS3UApKmpzSGtpeiH/x35RNe0sPFuwKovQu+vdA2Cyo/tqSmqSITAfPNwsJbW7bcgzQBje+nxZrT4TAOfIgzN07UvX+Nw3uF3mtKJt3xNxGBkOENm3HlN/w9dgYapUHQ0oiqs+viU8LUa9QnTFCZC5cpmUUOk8aTuXsLxvtr/+LOEbsT1KERWr59LcJF5Zi7t2Fylmf19k+2KODfr8Krt5I4M+65ZuthfPE4aQ/cC1JF49GhsMU3/tsoyVmUlUpeeBF/H+uZMep11Py0EskXngqhkQX3p8WkXvaDYTWbsGQkoQwmTA47aTdcyVZMyfXGS8Z01NIvW087b98HtdpR+ulbgDeeX+Sf87ERtPydyWOYw4m4byTGkz1bwv8f6yg6KZH9f7c0rsLWc/dpZWd7oS5Szscw/dH+vzIsirUKo8+uawPx/Ch2PbrR/45t+L/bRnS58f7/e/IcBipqhjsNsxd25Mz+9FGtc6E0UjqHZeSslPGoiHBifPE4WQ8fgsdf36DrOcmkXDGsbtdOy0enCcermsnhEsqKLr5UWRIwZiUgHW/fvrkt+zpt/D/sYK8cybi/upnSh99leRrzq7Xgc7crQNZL927iz6FRua02zF3aY9v4RLcc+YSXLeF4Kba+0dDcxr7QYNJueUign066Top9sNrgw6+hX/p2g6q20tocy45b04h45EbcR4XratS+eZnuD/5AWVbPsW3PUm4umyltVByCzHFaTEfLtL+fsJoJFxeiXfu7yh5RSRdclqLBYXdn//Uov3NnXIQ1rrXjwwpbD/yEt0h5v+ReIMX+kxPajPxprqUNIiUcoSUUtTzqE9NSEa2q60xJifgOPpAsJjBH6DytYbt7AJLVlPxykfkj7udvLNuqTeAIcwmzF3atTiC5v9lqeb7e3h8AjOqP4gaMZhMvW085i7t8B5W66wRXLOZzJfuIfmqs0i+/jxSrq/NrBBGI+2/ekHrwAf2xH7IkGaJ0jQHGVJQtuY1OtmruakIITAkJ+D7vtpFRQljbh9fx1YfqbdfSuL5JyNUFeuQPjHtlBrDtl9/pNdX53Xf/EW4P5tH4XVTKLjsXjKevm2PTKNtDFOEtVdoa34DW+5elAIteCHDKuYu7RoVga1BBoL4F/2NMJuibJQbGyy658zVzyesFoxlVSSceRyu0Uc18xPUYh3SB8KqpvNS3ae0leNIcO2WOivH8WAb0ltrm6rqNcS7gkBk8KJPN7YfeQnbjx6P75elAFj7da9N05eSilfaVsopXOmm9OFa/emEM4/Dtl9/kq88k4oZHzXoImKKzLyoJ3ihVrqxDuqF6+v63aPiwTnyINLuvEwrazKZGqz5N3fKwX7QYJwnDtczW8wdsnCOPCgqGP7/RPJVZ2GuznySvgAlD75M4kWjqXr3a826MAI12UXCOSdgHdKH7FfuxzZsYJu0yf3xDyjb8/VsL4PLAUGFwqsfqBPAUKs82BavofLtLyi+ezq+hUsIl1ehlpTj/vA7tu5/JlsPOJvCqx7Qg9TCIHAedwiZ027HO2+RvqIZC1NOBumTr6H9J89EiUeqHl+UFtfuRPX6MXduh+Pogwiu3tjgglRrEvh7PYXXPlRrY9kph8wX7qm3dEWGFAJ/ra4OLkqwWii5a5q2iNMAqbdfigyGEC4HqtsHRgNSVXGNOoKsl+8l/YHr4i4rEkKQdOGpZM2cTPJVZ5H18n10/Ol1MqZOwHnsIXtsBmZ9GFMSyXjkptpFsL9WU1adXZb5xERMnbIxdcoh9fZLqXznKwLL11J082MYEpxRmRixcH/yI/6/6g+G+Rb8ReXsLyl9/LUWu0qFK92o/gDCbKLq/W8onvQMuaOvxzfvD30bUyOZ5EkXnELJjWfppTOWvt0wVutEqOVVBFasA8Dat1u9vxNlRwHlz83Wn6tVHsqefqtFn21nDC4nljhLNfTFJpMRY1YaRTc/SsFVD1B025NNclKLRfp9V1F478XN3t+YmlTHCt09Zy7uz+YhbJYG3W7+68QbhHAKIbbWPNB0L2qeb6t+rc0QQiQLIY4VQtiEECYhxLnA4UDDy1OtjGvMMQghEHYbVR9+16DQVaStqrV/9zZP76l8/ROSLh4dl0BNuLiM0vufB4MBqYRxHHmAtvIB+Ib20W23lK15GKwWrIN7Y0hw1rnpqKUVJJxzAjmzH9XELSNXTub+TuXbX7SJjV9o8w5MORn1RrRriNQyMHdpj6V/dzIevwVL326YOjev3KcGY1oySRePxrZyY7Prks2dcsicfmed1ytf1wJjUglr4p4RQlj/JhLOOp60ydeQ/cr92A9om0F4axAuKEEqCmpZBVXVg494UPKKKXvsNZTcwqgSk2ADop2qL6DbDYNEVK+eeX/4o1VWH2xDemPu3pH0h27QssRou8CRsj0/KkAVL+ZenXEcfRCJ404m8dzG9UFaC/+ftaJh4dJywsVlqOVVFFx2r54VEJV98dm8NrV/K3/yDcLF5QAYM1JJuvwMbPsPwDKoF4YEB5VvfFrvvqZ2GfrAJVxSEXNyYkxPIevl+zAVlbV4Ban8lTkQDqO6PXgaEKu27T+ArJfvI2PqBBJOr7WgTbrsDCx9u7WoDf9WhNlE2j1X6s998/8ktGYzieNOjvmbT7nuPLLfnNJmgYtwcRmlj76CcNhr22g0knb/NZiy0ii64WF90hFYvpbtx11O6oufaPacH/+gLeAEQ2A2IQOhOlo9huQE0h+eQOb0O7HtPwBTdhr5F96pW0fWh7lLOzIevZmki2sdvhoTs95V+Ob9Qcnd0zFlpGDp07XRYEBrENqaR8EVk1GrAz/GjFSyXrq3QRtLYTaR+dStWAZpmbEGhw0lv5jSh16udx/VF8DzzQItcFHlQSQnaq5mBiNp916JbZ/4dLZ2xn7AIJKvOgv7QYP/9Xo3tmEDSYmwOq189WM83/+GMSWRzOcnYT9oMNZ9+uD7aZH22wmESL7+3EazZZW8Qnw//lnv+8V3T6f0wZeofPXjFt+LAotXUf7MLEDT7qhBBmpX75vqCCKE0IQ7q/HN18rIjekpCJuF8E4Zt3qZ5E59hvuj7+sIibaE5CvGxjUul6qq34OF0UjqzRchQ4oWtAir+lyouRjTU1DatawcuOK1jwlu2AZoQdTiu6dTPPFxgqs2tlhs+d9MvMGLI4FxEY/I5+dV/9uWmIEHgCKgGLgWOFVKGZ+0fythGzYAU4cshN2K9PqoeO1jQKtt2zklNmH00bhOH6mlyzUSfW0N0h+6vk5qViyklBTfPZ1wSQUyFAJVJe2+q/XgirRZony33R98R/nz7yKDdYMQhqQEqt76nHBF9Gf3fL2AwuunUPrQyxTd+kSrr1KY2meR8cQtjW4XWQ5gHdCTxHNOxHnsIRjTU3AefVADe8ZH/kV3EXbZcRxZv+J+g+0rraDwlsfIO3ciJffV2qymP3ITiReeigyGsMYQ2vq34BixPwmnHY1t2MDdJnIWD0p+sXZ9h1VC67c1OGmsQUpJ4XUP4ftlCduPuUyri63Gv6z+Abd37m/6aqt1cB86L/2Qwvsuwf3+N1Fe681FmEykTboCS4RCemtnXkhFQSkpx9ylA8ZG/OBjYUxKIP3+a7WgaSPaDq1FuLyqtrTNaMR5wmH6e46jDsSYrFnRWffrh7V6sC5Dih5IbG38f62i6v1v9eepd1xK5StzKL73ObYdfB6hjdspmzar/ow9ozFqlSy0qW72RflLH1D57tegykbLUBoiXFFFcNUGhMsBQkSV38SLKScDx8iDCNQ4qvyfYRvSh4SxtdpGpVNmkHj28RgzUuuk/gqzqU0XO8pffB/XqBF1rBuF0UjaA9eSfNVZCCHw/bmSgkvvQa2IFpMWBoFw2hFJtRlqwmrB1C4T12lH0/6TZ3CdNBwhhCbeWqX1d0UTn4irfdahtTbF/iV7SPDi12XYDtKyUrNevKfNzydDCsW3PqHZIQOGRBdZL91T528WC+vg3lh6diLhnBP168j92bw6QcfQ1jxKH32V7UddQsmk6YTWbAYljCyvxJDgpMP3L2OwN0/E9b9I4sWjsQ+vtassuWsaoS25WAf2IrQlD+83C2n/1YvYD9kHQ3JCXOWU1iF98TcQoDNFZAi3VPQytGkH5q4dtIya04/BceQBmDrlaGWmNedrhp1pVOnIT4v0/7f/5Jmo9gN4v/slqkxS18KQktKHXmpxkL2G4tufiioJrQ+1tEIvxzIkJ1Ax8yOsBwzElJGCqX1mq7SlJageH95vf6H82dlamf+6LVA9JjC1z2xWxvd/hbjCoVLK+QBCCAtwITAE2Dm3en5rNmyn8xcB+ze6YRsjDAZcpx5F+fS3tRrPeX+i5Bbh/vA7XKePJP3eq/VtrYN7Yx3cG3n7pdpKRSPUpKD7flmK89hDomynGqPitY9xnjg8ruh21Ttf6Z2HsJgRZnOddEDXmJFUvacNdt2fz8eYnoJjRF1BHYPdim3YQHw/LcY1agSgRQZLH31V38b77S+43/umUVHKphAuLMWYldbodpGZF6asNAquup/U28YTzi1sHXshVSXYp3OdDjpewmWVuD/6HpQwoS15pN59JUIITJmpWAf1xDqwJ8mXnd74gfbSbKSqEi4srY1gW0zYDh7S6H5CCC3YICVSSow5tddj8O8N9bor1JSMACSMPgqDzUo4yQmSVgvwOI49RLNLNRhAVbXgTCDYaje60Ppt5J4+AUOii+JbHifj8cYDiXWOsTWXyjc+w37goFZpU2MEIurUrQN64Bx5MKZ3H9PK9iLETIUQJF06hsKrtFTNqg++JemyM5pVHlMfMhii5N7aYKVjxP6Ye3ch/4I7sO6jlVoIlwOpKITzijC1iz2IMnduR2i9lvQY2pJb557h+fIngn9vQIQV3HPmknjm8c1qr//3FSAlwmpBCEFg0d9IKZs8wQ6XVFBwyd20+3jav6LWvbVJmTAO7w+/ES4uJ1xUStm0WagVVdiG9o8KbLQlMqQQXLmOzOcm1b4WDmulZhYzwmjEOrg35S99QOmDLyJcDoQQqE4bCaNHouQWYTtwEKZ2mRjTkzGmaQ/htNe5HgKrNpA39iZAC260++gpreRze0GDJZ+RJZLBfzahev3NdkJpDaSU+H9dhm3YQAouvw/vwqXYhvQm562H2+ycFS+9r6fgC7OJrOcnxS26HC4uw//7Cjp89zKlFoueBVwy+XkMN43FO+9PqmZ/iW/hkjr7CocN11EHknb3FbvNznpPRRgMpE+5nryxN6FsL0B1eymaMJXsWY+QOvEiCi69B8dRBxJat5XsVx+Iq3+0DuhBaO3mescLjuFDMXdtj6ldZkwL06YQ2rgN6+DeCIOB5MvPADRtiq0HnqN9PrMJU07T/+b2AwchzCatb1mzWRcfD5dW4P56IQazCSW3EPsh+1A6Zaa+X8LYY0m84BRyT7lWK3davhbPJz+2uHxWrfLg+f430h66vtFtlQibYFNmKtLrJ2HUEfiz0qPcyHYX4bJKfL8uAyDw1yrsh+6D6+QjCK7d3Gr2uf9Wmqpd8TpwA1AFbNjp8X+B69QjwWBAmE34f1tO1duaqrL7g+8IxEgXrxnwNUbpY69RcPl9VL7+Cd7vf4u7Pf6l/1D52scYEhqvIwxu2BoVWEi68FSsg3ppftsRWPv3wNyrCwCqx4u5Z6d6nTQcRx6AP8J+sPLVOVHuDQClU2e2am172WOvagPqRqixQAIwZqdjcDnx/7GClIkXx7WC0RiBVRtJfHdu4xvWg7lbB4ypSciQglpehRKxeur7ZSlpd17WIp/pvTSOWlqhDRwSHBhSkkg441hNfT8OzO0yMSS6NNs4o0kXiJKBYEzh3ND2gtoaboNBz8gyllZizE5rtdXWihfepeKVj2oHO1IS2t56pSOhrXnIUAiloBjV52/WMSx9uxNcvWGX1Y5HlozYqrOZLL27YO7eEen2Evh7PYFla/Av+htz766Ye3VGBjRdoJIHXmjVdla88pEulGxw2Em963LKp2npvDUioZbeXbEfPFhfZYmFuUv9uhe+v1Zp16DJCAYDobVbm/UZwmWVuD/5URMArM4YUvKL66QDx4MpMxXXKUdQObNttUT2VAwJTlJvG68/r3rnK2xD+1Px6sdIpf7yysCyNVr9dWuIs5mMZL/9SFQwLrhqI1sPOJu8826j4tU5eH9eTPnz72iB2Qo3IiWB4hvGYu7WESWviIQxI3EeczC2ffth7twOQ3WAY2csfbvppUI1izOB5WsouOzeBtOdjUkJmGtcRsJhgn+3Xjp5cwgXlGBsn4kaCGoT/kAgaszT2viX/kP5i7VmfsnXNs061vvzYhxHH4jB5SD19vG6I5ta4SbrzpcovObBOoELU8dsUm66gI4/vkrWc3ftDVzUgzHRRcYTE/WSveDaLZQ++CLmnp1xnXIU5c/OxrZfP6wDe8Z1PIPLQYcfXql34TFp/BjSJ19D8hVjm+1sWIPzuEOxHTg46rVQRFamqUN2s0ThDS5HVIaw72dtcTS0cTtlj71K8V3TKH/uHUoff10XxzSmp5BywzjMnXJIvPBUfd+yp95ocUmWkluoZSXEMZ4KR4irGzNSMXfvSGjDNiz9ezTL3rS1MeWka9daOEy4uBxTu0zSHrwOY2YqqZMu393N2600NXhxHHCwlPJWKeV9kY+2aNyeiCk7vbbGy2BAShUpJY4jhjUrhbqGyAmTb+Ffce0TWL2RouunkDb5mjr6DzIcjhqshis95J97G+H8YqSqYunVmZTrzyN14sVRK4/6/h4v4ZJyLStga169A1/nqOEknH0C7k9+pPju6ZRHDExrVpJlMETRTY+heps30dmZ4PqtWKqDKw0RmXlhzErDdsBAfL8sxbpP8wQ2d6bdB09QMuHMZu8vhCDp8jMxZaaSNXMypk6afoAMhki/9+o2q3neSy1KvnaNCGHA0r8b6fddHffALeOp2+j057t0+PIFrAN7Rq18x9LN8Hzyg/5/+6H7YKrOHlKy08iaMbklHyMKY/ssQuu2Ykhw6JMipRV1L3SRwbCKqUPTNS8ATBkpCEvdmti2IrLUwTZMW1EpmfwCoc25BFdvpOTe5yidOlNTjF+4hKTxY5D+INIfxP3eN7r1X0sJbc6l4qUP9OfJ152LKTtdExVOdCGEIPO5u8h6fhKhdVsbzOoyd4l0HIl2RvF9vRC10g0GgQiFMHVtp+kUNBH/78txz/ke6fZG6Rf5/6x/8ub7bTlVH31PxcsfaPeQCBIvPg33Z/OiVrx2RgiRKoSYI4TwCCG2CCHOaWDbC4UQYSGEO+IxIt7Pt6txHHtI7fhBSqre/RpjWnK9rjvFk54h79xb8Xw+n6oPvo25TbwEVqyj8PL76mZILF2trXwu/Qfv979RdN0UCCmIBCfCaceUkUbm/a9R9vRbmstFnBliNVlMjpEHkTP7URLGjMS2X38sfbtROeuLBveNtDHe3aUjnq9+IrB4FaU12VImI9Lj07UoWhPV7aX4tid161rb0AEkXnByo/tVvfe13scljD6atElXANoYLP3B63TxZhHpiiYE9uFDyXx+Eu2/eI6ki0br5XP/RqpdC/0R/UCblJVb+3Un9Y5L9efuj3/APWcuKTeeT9p9V5P2wLVNOp6yLb9ZpXhNQUqJbdhAzDtpVEWWlDYm1tkQjuG1RgE1uheWvt2QVR6klEhFwbdgsb5N6m2X6P1I0qWn65nU4ZIKyp97p9ntAE2LLN5s6JpgCoAxIwVLj04oeUUknntilAj77kIYjbhGH0XiRaNJnagJfyrbCwiu2dyo5t9/naYGL7YC/9/fGJBw2kgAzR4xECL5yjPJfOYOTO0yCZeUN2uFy7b/AMw9O5N47kkk3xCfhEi4sJTUu67AcXh0SYfq9VN43RQqXnxPf23H8VcQ2rRdq+8KhEh/5CaE1YJlQA/UiqqoNstwWBMSC6tIfwBlSy7BekQMhclE/vl3UDTxcSpf+1h3z7D06072W1N0QcLQpu2UPvRSk76TWKhuL+HiMkwdG++cIjUvVLeHilfn4PnyJ3aceHUDe8WPuXM71JSW3eyTx59Gp0XvYkxPoeqD7wiu38qOU69rE6HT3UHpo6+Sf8EdbDvyYpQdBbu7OXUIF5QgpUQtr8SQtHMlXMMYkxMoe+xVPF9oFXPWwbUD7sBOuhcyHI4qGbEdOBgltxAZDmMsqWxQjb+pKFtyqfrwO/x//q2VjxC9wtJSEk47moRzTyL19vFRApdNQfUFcI0aTvlL72s2gG1IuKKK4JrN2hOjEeuQPviXrMa34C9MWWnYhg2k3ftPkPnC3RgSnVQ8944mnDmwJ4YkF8LlRK30tDj7QkpJyX3P6Svo1gE9STj7eGRIIe2eK+m04A1Sb70Y+6H7YsxKQwaVBkUOTRGp9ztnXgQ3bMOYmoQQgspRh2DKTG1WwDaw5B/tniHR1faBBleey596k5K7p1P29Fso26N/86aMFHJmTdWtB+vhWSAIZAHnAs8LIRoS//lVSumKeMxr5GPtNoQQpN55uW6tHFyzGUvfbph7xHafjywVqJj5UYMZGg0hpaT0kVcQDlud67hG0FcGgvj+WKHfe8wdsmj/9YsIqxkRUlAr3fh+a5r7h/OYQ8h88taoleiUCedT8eqcOk4rkdiG1N+XNpXA3+tb5IRW9uSbeqaI48gDaP/ty5g6t2uTe3TpwzP034whwUn6lOsbF33ML6b04ZnkX3gnuWNvonLW51EuBLZhA0mKWN02JCeQdNFo2n/1AlnP3oXjsP3iEnr/l3BNRD/QZhZtrjEjcZ1Sq9dU+sCLBFZv1ILQTZxUBtdupvLthoN5LUUtq2TbUZfUeT3SDtzcAhH7KN2L35cjA0GMWWkIuw374UMxJDj1LGL7YfviOPYQfXuDw0bqLRfpzyvf/pLg+uZ7QDhG7E/mU7fGtW1U5kVmGvYj9ifjsZujRLx3N+kPXY9t2EASxo3C4HIQXL0RS5//T/HrSBrtsYQQR9Y8gDeAT4QQZ0e+Xv3e/w32w/fDmJ6sOY9YLbUCNEDBFZPZceJVlD/3Th0hy4YwuBy0n/M0qbePx3FYw3anoU07qHz7CxzDh+IcGS08Ga6oouDiSfjmL6J8+mzcc+bi+215VCmHMTtdTzkWQlB0w9SoNHdlR6E2wBFoA1aDocFVH2NKIqrXp93gFW2QkHr7eCzdO5F2Z21qk/vjH3B/3kJpFClJveOyuNLbIjMvVLdPW50Mq9DMAWBbEdqSS8mkZyh94EV2HHcF1oE9//Xq3DUElq3Bv3gV4cJSQtv2vOCFUlCsTc6EwNK1Q+M77ISpXQZKnhYki0zt3bmEzP/7Cl0t3JCcgHfub2w/5jK2Dj2ThE9+btDBoalYB/XSRP+MBmT1Sltri3aGc4uw9OvebO0CYTJS8drHVL33DZ5vFjY4kWkpgcWr9PILS6/O5F9yNwWX3oPrpOG6g5KUkoJL78U3fxFKfjHFtz9N4sWjtbYaDVTO/pL8i+4iuKH5gyrPxz/UlugZjaTdqzk0eecvovCGqRjTU0gcdzLCYEAIgaVXl1qR0RhEZl6EtuRGiZ1Z+nTFfvh+WAf1ItC/K6Etzfv7K8VlYDJBtd10Df4IDZGdMaQl6//fOfMCwNy1fVQgLxIhhBMYA0ySUrqllAuAT2l7UfBdhrlDFslXna0/d388F6kouqJ8JK6xx2LMSsN5wmFkz7y/2WWEla98hO/nxXi++1XTWYog7c7LSL31EhAG/fjmTjlkv/4Qlq7tMdhtSKsFU046zohJR3Mxd21PztuPNGiZaY1wuAgs+afZQn6+35eTd+bNehC3qaiKomcoGJx20h+8DkvHbDr+8EqrZyl4vl2I++Pa7Ly0SZfrJR8NUfHS+3pANLh2M7FCrMk3nk/GE7dQevkpdJw7k5SbLmiV0tn/V4QQpN51uW7HKYMhim58pFklD9YhfbRrvA1LKEObtmPulINSWErhhKlUzPgQ/+K/Wy3zwty5nV7WIn0BzUJeCM3ueZ8+SF9A09SxWbTg7U7ZX45jD6nNNA6HKX3o5WZ/H77flsctbrpz5kXlm59RdMtjeH9apAeYdztCUPrAi6jVwZRwfjHW/t0b2em/Tzx3wpkxXntop+cS+L8JBQmzCdeoI6h4dQ5YzRjTtXKR4LotBKvV1CtmfEjiuFGtfu7Qtnzyx99NyjWxM2kNDrumCl+z/fZ8Kmd/CVYzIqBlWrT79JmoQZD9yGH4fvwDa3V9qrlTDpmP3UzJPc8Ryi1ECIHn6wWk3npJzAGH47hDtcma3QYmI84TDtfttZynHIHvt2V4qoMWpZO1FPumWjLVIGxWEqptXRtC9Qf0H7swGVHLNdVu1RfAoDR/FaYtCG3agXf+IgwOG6rXR8LYY3d3k1oNc8ds3e5OaUXdhdZC2ZqviVlazHGJwO6MKTsD/x+anoKldxeEzYL0B1F2FKIUlem2du45tRMG10nD8Xz3K6AJ6IlAKK5BarxY+nbHmJGKweUgtFGbELV28CLz2Tsb1GNoDGE2YUhJQtm4DZGUQGjDtibVdTeFyJRcU3YGnrm/In0BvAuXkHLjBVp7hCD5qrMovFoT6rT07YrrxOFUPDNLsyItKcd22tEUXjuFnNmPYExq2sRFhhTKnnxDf554/ihdad3z6Y9R7ic1pEwYh7GB68KYnIAhyYVa4Ub6g4QLS/WSp3BJOc6RB+MafRRrvp9LwmnNm2gJowFjSiJSSpKvPJPKV+YgA0GUrXkoBSV66VMk9gMHYUxJwJiSpOvA7EykKv1O9ALCUsrIVL9lwPAGmrmPEKIYKAXeBKZIKWNGqIUQlwGXAWRkZDBv3rwGDtuGdEokIyMJ844iCAZZf+V9SLsV99Wn1GmTuHks0m6FzWu1RzNI+Xo+dgMQCrHjnukUmgKo1Zlmjp+WkvxW9eJEWCWUmUbJZSey7p+V8A+k+D3IrtkUjT2KDYv+aMGHjsb5/Bv4h/QknBmj3FZKsi1GDG4fFJey8N05KDl1rzW3213v39BQ5SXj/tcov/IUts6bjxqHLtjOmDfnkZzsZPN5RyICh7JxsWZrad5agPD4CfaNXRffULtitrWsisz7XsEQ1DI8vMP6sdmhQhzHMPZrR8LQXtgXroSwgaXJJmSs/Szg7t2e+b/GLlH6jzBFCPEwsAa4s6EsrNboC4xnDifjwTcw+IMEN2xl5UW3U3rVqVFZao0iJVmVlSz46DPCabVaNDXXkOPnZRiLyjEVV1B28YnNciVz/LwMi1myZdaHpH4xH76YT6BXR4QSxlJ9za0sKyAYx3dQ37Wd2Dkd13ot2L76jQ+pDFVg2lFExpOvIcLaWKFy1EFsWr8a1q+us7/pqEFk/PIXQpUEFyxm8+Mv4h/ap852jbUrdfpHeA8egH/fxk0PUpevwlb9+Vdt20LqjM8wVHpAlfy0cAE0QwOkvna1hHSXlbxpr2AqqSDUMZNQlxzCLTxma7Rrd9Jo8EJK+f8taVoPrjEjqXh1DkIIvD8vpvC6KSSMO4mUGy/Av/hvDHZbq9tDKgUlFIy/m6RLT69XkbfG5zv/ortwjRmJbUgfKl58X0tny0gh+/WHMJij3U8cI4ZROnUmyVedpb8WXLOF5AnjqHrjU4JrtyB9ATxf/BTTNcSck6GtzNksGBKcpNx4fm17hCDtrssJLl9LaGseqtdH0c2PkTNralRqY7yUPfYapk45JJ57YoPb7SzEk3j+yTgO2w/f4lWYOzWvTr+tsO0/EGOSC5GUgGVwH11Q8L9Awrkn4TxpOKaO2a06QW8t/H+t0ko2jKaYdpONYe7dBSW3kMCyNZrDUP8e+qp0YNkaTEcfSLiiCu/c3/V9nCcfQeDvDaAohMvdGHx+jNlND5zUhzEjBecJh2E/bD+KbtAU8VuzbESGFNyfzYsriNgQCWcdR8Xz75E5/Q7M3Zqe9RIvkYLEajCgObs47dgPiHY6cQwfSsoN4zB1ysZ5jLbCbD90P9zVWiXCYsJx5DCKb3mczBfvaZLAamDpP1opHlp/lHyl1tcqpRX4/1xJ+k7K6MqOAoKbdhD48DtcJx+BbWjsPsHcpb2e5RPatEMPXoTWbibx/OpaeZNR0/BookOIlBL/78uRShjp9eE48gACi/7Wv8/A4r8xnXB4nf3iCdpHZo3shAuo2Om1CqC+6MtPwABgC9AfeBdQgCmxNpZSvgS8BNC7d285YsSIRtvaVgQyOpB33m0gJebiSoxJLlLzyjl4VOsuegQ3bMU44yHyx91GuLictLuvoE+1rXrlW59T+t48sGirjJbeXch6+T6MqUm1Bxgxgnnz5tHS76rGtcPz9QLS7r2Kin8KCf2xgYzHbo65feHBv+CdpwULBluTSIhx/obaVf7sbORZJ9Hn0rPZdsRFtJsT2+VGhsOUP/UW4ZJyUiZeHJVREVixjqAzlf47ncP9xU94l/5G5pUXxDx3U74vqaoUXHYffkWCxYIpJ4Mez9/XtPHj6adQ+c5XBFauo/eJ9TvXtMbfcQ/mVmAVWsnZWcBnQoghUsqYhgKt1Rd4UnMomjAVAMs/W+m8sazJ5ZTB2V3p07ldVGlfzd9q2+Q39PFsv9796+hWxNVGxQb7KwTXbqGi+reePuJAPJ/OI1z9fNgpJ9TrbBVJfdeQz5ZKwc/aQk7mliL2GT6c3DE3EHAHMCS5sPTqTM/JNzWYVVy6tYLKWZ8D0OHrRbS76sK4nYZq2pU7bQ5pxx+tL8Y2RO6znxKs/vwD+ven2PINYaMfDJIRR7XM9WTndrWEoi8Xoxa68c1fgurxkTR+DGlnnLrb27U7+c8Uuu1qzF3a1Q4oVRX/X6sIrduKb+ESfPMX4Tr9mBafY+f6VkOii5SbLiTxrIYt7wwuBzlvP0LiWcdTFZEi6jj6oJg3b+uQ3iSee1JUmlby5WeQcOpRuMbUfo5YpSPhSjdlz8zCkJKIMJlIumRMHcFDg8uhKTRXd1rB1Rspfey1Bj9DfQTXb41S2a+PSL0LY1YaxkQX1sG9Sb54NM6jD2pgz12PMcmFZUBPMh64jqzpd+zu5rQq1gE9sB+yD+ZOOXtkKUywOjMBNQyiad2h6vWTd9YtlD//LvkX3YVUVayDImz+qieVni9+0tN6Lf26Y+3XnZw3p9Bx/ut0+u1tPCOHtartlRACtcqD9Pl1oTYlr7hV3ApUtxffL0taLKoFkHzFmdqgpk+3Vg/01hCudNeWxBm0tHjncYdowcwjhtXZPmn8GD1wAZqwag2+BUtImXA+ydec02RnmMjSQscRwzA4bIS25JJ/7kRNwHGn41W98zXFtz5BxcyP8C2oX8A5qnRkk+ZgIkMKoa15WLp3REqJddl6doy6mvzz72iSZkJo3RbCJRVaWZXZjKV3l6ggin9R/aUj9TFixAgt5XrC+QD7CSFkxGMB4AZ29qVNRHM4q4OUcqOUcpOUUpVSrgAmA/8Kf2nr4N76YoAQAtUbwPn9n80+ngwpBP/ZhPvjH2ozuwJBCq+4H2XzDjKenEi7j57CedyhqFUeSiY/T+nDM2rbM6AnWa/cHx24aCWklBRccjcFl92L+6Pv8c37k8QLTsH/16qYLm2wU+nIX0271mQwRNIVY0m+7hyExYzjqAP17M+d8Xy9kIpX5+D+9EdKH3o5ug0De5JwRt1MSHOXdvj/WBHTVaqpVL31Of7fNDtEhCD9oeub1R8mnnU86ZOvaXF79kSqxThlPY8FAFLK36WUVVLKgJTydWAhcEJbt8058iASLzhFf1721JtNFtc1ZqfXu3gSKT4ZbzlEnTYefSDO4w7FdcoRpN13NQljj8W6T189oC4sZowtdJix7dcPg9OutXN7ARUvvk9w9Ub9npN2z1WNjgGTrzlb73+U/GIqZn7YpDZIKVF2aG4j8RBZNmJqn0nihadgHdAD2379mnTetkSGFIyZaXh/+B2pqkhfQHdx+n9mb/CiBbiqVx6FECAElW99jv3woWQ+fTv2Awc1sndsAqs3UvLgS2w/4UoqZmg/3HBJOQVXPwiKgvOYg/VtpapSOesLvD/8Xuc4wmxCBoJRN2xXjJVS1R/QBvQnHk64WgG+/Ll39JVi56jhejQ4uHojgZ1syyqefae2PMNiJvHCU4iFpU9XUiJEeare/iJqNTpeQuu21CtuFkmk3sW/wfYr47Gbse7f/1/R1v8SankVNUXCkYrZ8WBw2BBOO+GyStRAkHBJBZZI3Yvl2qA8sr5/54wpYbPgH9C11eunzR2yUXKLaq8nVW32wCeSwLI1FFx6L6F/NlF47c7Vg01DCEHqxIsRxra7DQX+Wq2Xt5jaZRBat5X0B68ndeLFcfm42w4aAkIgpSSwYh2qx4d1UC+q3v26SQPUSAcp++HadVY1+0tCW/LwfPkzxXdNi9re0r+7lh6shAmsXFfvcSMDuUqNroXJSPuvXtRtupNnfUtgxTp8C5egNEF3xl8tzijDYSzdOiAMhihLPP+ilfXtWi/z5s1DSkm40g2wWEopIh6HAmsBkxAi0mtwMBCvHL9EU2v6V5By/XkYM7QFBRkKaddaMERgZWx7UKmqeL5ZSMUrc+q85/tlKbmnT6D4rmlUvfUZAJWzv8TSpyvWwb2xdO+EKTsd79zf2XHytVS9942+r3WfvmS9fG+Ty6HiRQgRpd5f8erHGOxWUq49t16nBes+EaKdS+M3jgisXE/u2JtASr081nXa0bg/+j5mHX2NtSOA99uFujaRkl/MjhOvqiPMWfXR9+SdM5HQ+q1UvP5J3O2KRPUHCCxbQ2DV+qhysqSLR8fVL+0chAwsW0PFjA//S8KbUUgpR+zUV+zcb8TcjV3UF6TcMC5qwlty73NUzfm+gT2iCa3fSvE9z8Z8z3XyCJKvOov0B65rdoZi4TUPohSWYu7cjoQxI0m7+0pMWbVjTVPH7BZfO8JswnZQrRVr+fS3tfIZVWLq0p6qD78juK5+DSfQRGqTJ9TKG1W+MqdpWaNSkvHkrRgTGxdflyFFC84DVPdPqTdfRPZbU8maeX/852xrjAZN0FUIUMIY05PjtuL9L/Pf7Ol2EY6RB+saEOHSCsyd2+E8+gAcRx3Q7GMqm7ZTNftLlK15+BYs0QQ4L70HS58uUdH4cKWbvDNvpnTKyxRNfDzm6oX3xz80uzzA1CFLtwgEUIrKKL73WXJPuwEZCOL98XdK7p6OcUcRFa9+jLmH5rNuTHRFBUzcH36n/z+4YSuV73xVe0IhooRBdybh7BNwHFn73RRPegYlryju70YGgtgOGoIxDpHA8E42qXs65k45cXW4e2k9pKqCqiJcDgyJLmyH7NP4Tjth7pCFMAisfbshff5o0c6/1xNYuV7XwREWM84To9Psw4WlZN3+Yss+SKx2deuA9PiiRLhao3QktDVPU+43GprszhIL16gRGNrwuq8pcZBSEi6r1HR74kxDBTAkODA47agl5aiVbvy/aiuktgMHUf7MrLgs7pT8Yl14U5hN2IYN1NxnvvgJtawSKSUJO2XqWQb0xDF8KKYOmTgayBQzRWZebN6BDIfJO+MmSh+egXvOXKSqEmqXDkYDhMME122O+7O7v/4Z6Q9COIx1X20V3Dq4t756Ftq4PaYgZzyIesQapZQe4CNgshDCKYQ4BDgFTcui7nGEOF4IkVX9/z7AJKB5M8rdgCHBSertmguAEALbknV4vl5A4TUPUjplRpQdp1JYSt4ZN1J006OUPfE6qi8QdSxL7y76/4NrtxD2+Kh8ZQ7JN5yn7184YSqF10+JWnF0HHUgWS/c3WbZTzUkjBuFIcFJwlnHk/HIjYAWzE265LSYGUGWft1rr7XNOwiXVTZ6DtXtpWji4yRfeWaUrpd1cG8Szj1RFxSvQSuNWlH7XAlTNesLVLeX7UePJ7hpu2YVHCEYau6cA2EVQ3JCs2xcpZQUXf8weefeyo5R16L6tZp7S99uJNejZbbzZ8wdM4HKNz/V21X1zlewB2Y27iqEEMlCiGOFEDYhhEkIcS5wOPBNY/u2yvnNJjKn34mlX62QYsndz+L+5Me49rf0605o4zZUf6DOewlnHEvyVWfhOvXIZglky2AI3y9LMaZEJ7QpWyOcRlog1hmJfXi086EQAmG3ENqwFfdH39e6fjWA65Qj9cm5DCmUTn0l7vNLrz+uxU2oFpOuDmYa05L0vsaUkdJsIfK2QBgMGFOTNG0rRcF53KFRLlT/r+wNXrQAg92qT0aEEBiSXBgz01pkoVWz0geaAGjhlfdjO3hInZuaIcGpD/qlP0j58+/WOVZkoMF16pF6ZFWGw+SfdyvuD75D2ZpH5awvsB+8D4G/VpM861vC+UXknXGTvrLoOn2kfhzPFz+henxIKSl7eKaWUozmfW3q0o7Cax6kKuK8kQghSLv/Gl37QK10UzTxibhTmYXVQsbUCXGlbEdmXsQT7NhL27On2b+GSyuQ/iDCasGYntKs4FHOO49iP2w/0iZdgblTjnbjq05ZlP4gpVNr9Y4dRx9Y5xyhDdtQslv/+nQcdwiO4w4BNYwMaOUikYOV5iLMJixdO2BIdGLq2PiAR0pJ1YffUTL5ecqemUXl21/g+fYX/Ev/IbQtH/c3Cym68ZG4zy9Dit7nxEONmGqNRaX9yLqlIvWeKxCk4PLJWl8iJVIJ41u4BNDU1dOnTKDw+imUv/ielpFWjxBwZNmHbWh/LWPHaMR10nAcxxyMY8SwqBUr0IJiWc9N0tp88JB62xiZeRHakkto0w78i1binvM9ZdNmIQwG/Pv0xHnicBwjD4rbu16GFPx/rESt0sRAjZlaANhgt2KJOEYs1xG1ykPlO19R/tw7lL9Q974ENNaHXwXYgUJgNnCllPLv6v06CSHcQoiaEepRwHIhhAf4Ei3w0bKUoF2MY+TB+qBfAGVPv0XGYzejerzknna97mBgTE+OFsnd6XdgzErD0q87jqMOJHHcKAxmE9lvPYy5W0eqPvyO3FOuxVtdTlJzvIwnbiHjqVv1dO+2xJSZSoe5M0m7K9pFI7Q5l7yxN9W5Pxhs1qj06PrKSyIpfXgG9gMG1nFFEUKQcNbxUUEbAGXTjjqvVX3wLe5P56F6vEhfgKp3v45albYO7IWwWbD06IR1UK8m39eC/2zCt3AJqtuLdHuQwRDCZiFj6o1xlVaWPf4aoQ3bKJ36CkU3TEXZUYB33p+4Tj6iSe34j2EGHgCKgGLgWuBUKWX8KTstxJDgJOvle2uvWSkpvmtaXA57BpsVS49OBP+OnXHVEoJrt2Dq3K7OtRXaUjseMLXAJjUS+6F1s1edxx6qC5gquY0vVgqDgdQ7LtPnQb75f+KNyI5qCN8vSyh9IL7FoJ118fZkEs46HmOii4ynbiPp2sYDnP8P/P+GalsJ15iRVL37NQDe736l2GDA3D6T5KvPbmTP2BhTEkmdeBGmHp2x79eP0JbcmJFEIQQpN11A/gV3knj+KJLGR5f5KrmFtZ7sQkR5UgujkcQLTtHrO4N/r8fgGo11SG+sc39D2DXXi5raM+u+/TB37UBo03ZUjw/PNwsxpiTiq16FxGDAPnwo5U/PQvX5sfReRsKYkcTCmJRA+qM3kX/BnRAOE1iymvJn3yHl+vMa/W7cH/+A6g80qvkB0ZoXSl4xWw8dh7ljNo5jDibpotGN7r+X1qPkvufw/bJUtxRtCUIIK/AccDSQCqwH7pBSftXgjjFQthdoorFGQ7PrPYXRiKVP1yirT+vg3nqJRmBJraq2a7RWtuX7bTnCYsLUIZvg2s2E2re+kKn/12XkXzxJq6UPhjBazYS2ttztJeH0Y7AfNBhDalIdnYZYVLz0AeXPzKr3/bDXBx4/7s/mYR3Yk6TLzsA1akTMbYNrN1N4/cPkbMvF/2pWo+nVapWH4JrNyHAY6QtgHdK7SVoVwmrBNrQf/l+WEPb6ECYjvoVLdOFL+8FDcBx7CGXTZlH+zNtk2cyoPx5YZwU7Uu/CXm2DLcNhPN8sJOvFexpcRWlMFNXcKUf7O1TX+gaW/gNKGGG36XZq3uH7kNVEYa7AirXgD2qTZWHAOqg2TdU2tL/uIORf9HdUZh5ojk41A0hjahLJV5zZpHNLKUuBU+t5byuaqGfN85uB2IqP/xKEEKTdeRk7/lgJwSDhghIKr3mQjCdvJfGiUzEkOPHO/R3rPn1Iu+cqCq5+AOkLoOwoiNLKEUKQNeM+TVT19xVUvv4JjmMOpuDiSVGitaCVUaTcfOEuz/aLlfVk6pyDISWJqg++JfHsaIkC6z59CSzXHFYCS1bjGLG//p7v12U4flqKeuBBGGxWAJIuGVNvX66WVpA7ZgIdvp+hB2t8vy+vu12VB+93v2oBC5MJ505BAWEx03Hea1oQ9o8VTdZysnTrgOPoA6ma/SWgBQRTbrowrpIA1RcgsKK2jMxx7CH4F60i6YqxdVbW/5+QUhYB+ze6YRtjTEog6+X7KLj4Li3bTkqK73gaYTLiPK6+6haN5OvHtYmouZJbiP2AgXVej7TPbq3MC1NGCpZ+3Qmu0jRS7Yfui6V/d0Lrt5I4fkzcWhLWgT1xjT5Kt3UumzID+4GDG/2tNU3vokz/f01wfk8l6ZLTqJz5ESKsYo5DVPX/gb2ZFy3E2q+7HmmVgSDmzjlUffgd3vqt4BolcdzJ+Of/iefLnzG1y6Ti+XcpuunRmOfu+MNMUq49F4PdGvWe++Mf9FUa+8FD6nSKCWccq6eLZjx+i3bei0bjH9BVFwiqSYEXQkRlX1S98xWlj74acaxjcAzfHywmDIlOPU2+PmxD+pByTW1wp/LVOYQrYuqxReH/a1Xck4/IzAuCQdTyKgIr1jVY1rKXtiFcXK5N5iNSb1uACdiGZp2YhJYm/p4QokuT21VSjsHlQAgR0/IxXtLuvhJ7RMmJdXBdey9TTga26gFE6YMvkX/+HWw/8mKtvn1A6xs6mbq2R3r9yOpyAWg9u9SCax4itDlXnzDUh+fLnxoMXGiNCoOqIr0+An9voPiuZ/Sa850xJCUQLqvEUFZFyf0vNNpO/+JV2rHdPoyZaeSedDU7TryKkgdejNtDPvmKM+n42yyM7TIRNivhghJCG7bVbhBSQJWobi/eQwbUCVzIkKJrR0BE8CKkkHzVWY2mf/oX/U3hdTGNMwAtwKIP1qTE3L0jxuw0ki4bg/OkaHfRolseiwqyNXje35aDxaS5UBgElh617YwU7Qwsrls2EzmJCpdVamVGe2kQU7tMMp++DdWm6Uupbi+FV04muFybqAZWriN39HWEtuTS4afX6fTnO1h6d9Um2vP+JLByPTKkkDvqaqpmf4khJRGlqIzc026IClyYOuWQNWMy6ZOv2WPKFIUQpNx8IRUvvlfn+owqw1taW6Lh/XkxBZfeQ/Jb31Lx/LsEN2yj5KGXMXdtX2csVIMxLRnrvv3wfltrFeqPCF5YetVe40p+ER1/nUXapCtwxnDUMbgcWPp0bZJgpwwpuL/4ifyLJ+H9/jcMqUkY0lOwH74fCXEsyIAW6MiZ/ShJl5+B87hDsQ7uheuUI0i6ILbW2F52PcbkBLJmTMZc07erKkW3Ponn24UN7mc7YCDCHn9JY7w4jzmY1NvGU3D1g+Sdfzulj7yCkl8cNR4wdWpcBD9eki8fqx2zfSapd12uZQQZjSSefQKWXl3iPk7K9efp99PQ1jx8vyxtdB8ltyhK4LTBbQsjsrPTkyiZ/AIVr8zB8+0vcY8PdhU1mWPFk575Fyk6tS17gxetQKQQpve7X8l4YiIldz8b90BxZ9yfzcP702JsBwxix6irNQHNb3+pzXSIIFadqlRVLXgRo301CLOJzKdvw37ovvpr9oMGUzrhTDr8MJMO38/AmJZce4yTj6h1C1m1Qe/4DIkukq89F3PPTiSedTzJl59B4oWnNvoZEy85TR8sSCVMsB6BMu+8P/F89yuGKi+h9Vsx94yzni2iY4qsG44n1X0vrYupGdZe9SGl9Egp75VSbq52GPgc2AQ0SW0zuHYzJXc9o9eYtsSqNLBiHe4vftKfRw64a3CNPgphMCBVFWVHrWhi4jknEhjYvc72LcXcPgvhcmAd2BNhtSClJLSt5ZkXUkqU7fmN2rX5F/9N8Z21IpTWffuSfNVZWqBzxP5YB/TElJ2uBUBqbsaKVhJSn46EMJtQK6rAaMT/50pKn44pg1DbhkUrkcEQskazQVUJbcklsGJdkzIwjIkJOEbsjzBpnu81pSMAtqEDcB5/KIZEF8aSyjp9vn/xKlSv1v+YOmRhqi7zUMurcNWTnRaJqUOWvvJcH+bOEaKdhaVkPHITKTdfVGelL7RhW9y6J75fl2Fw2DE4bFgH9cbctVZbwzqkj54GHFy7pUZ8U0eYTSSeexJJl51B6q2XgLpnDQT3VOwHD6H4lnP0MkephCme9Axl098m+bpzyXx2EpWvfUzV658QLi4n98yb2X7UeCrf/IxwcRnCbKL99zNwnXEsnq9+purtL5ABTU8Bo5Gki0+j3UdPNVtMvLWRIQX3nLkEVq7H2rcbKRMuiNKWgOprrZqaAI1UVQqvrBXU83z3K8W3PBYVfKgP1+ijcH+sCShLVcX/R21gJ+3eq/VS3ND6bZQ+/AqJ552EKSMl5rEsPTqhbMuvoz2yM0phKeXPzmb7yPEU3/oEgWVrkFJqLgJpSaRPvkbvj6SUjY4bhdlEyrXn4hp7LPnj7mj0/HvZ9RhTk8iecR/m7pp2HOEwxROfwPP9b/XuEy4sJfeUa+tMnKWUlD0zi6KJT5A37vYmlymVPf464Uo3gUUrCfy1mso3PgWiy0bicfCLF8dRB9Dp11m0mzMNc4csTB2zUSuqCJc3vkAZiTEtOWruUlMC2hC2fftijTO7IzLzQthsVL33NWVPvE7pgy822U1sV2A/bF9tPGfaWzABe8tGWgXXScMpe+w1ZCBI8J9NCIuZnHcexeBy6CnG8RJct4XSR14h+5X7MeWkYz9kH92twD1nLvadaqNj4f9tOUqulrZuSE6IaQnYEEKIOq4XxpREHEcfiOerBVGvJ199tu6UkDbpCtyf/oj3u19JOKNhq9ga5foaIbvAyvVRq9c1VLz0PoHla8kOBFDaZ8clVCNDCuHicu2JwUDa5GtIufEClG35mDrEF5XdS+uReN5JuMaMxNwhCxpZrW8q1WJ9vWjAjUAIcRlwGUBGRgbz5s0j4b0fSNqwFSSEgyE2V5Wzct68pjcgrOJYuBzHguVUbVynBSKUMDlqGBGhgbAi00543jyEL0Byn44YC8sw+AKsOu0a3FedwrzmnLsRUvfpQeEBfUhduQ5CIYIbtzLv+7mai0UcuN3uOu0ylLvJDCv8tOiPevczFpSSMeUtDF4/AKHsNLacNRzpsAHZdba1rtqMZcMOHL+vgmCQdZ9+S4UregBnWb0Zgz+I9aD+hEIhlEMHsyMjCT77EsfCFbiP3Bcs5qh90r/5GWswiLSayQt4cFT/TUozXaxt4vftSLWRHNQmgls/+pqSztV2kkkCTh6GGDkY+9vfsvrkqyi663xtch9SSHv6fayBAAhBWad0Nr33MfZfV+Kau4jChy5HTYgtXKl9cQrOHxaTvGk7K4++kOI7L4hZqpMoQriq2/bP1z/gGbk/cn5tnXXN3zHFYmDrF9/iL+xb5xiRCF+A7D9XIFQVEQhRkeFi/U7fV3pWMpYtWjDsj1ffITB4Jy2NgyKeL4y+Z+ylfpSOmeTMfpTCq+7Xxe0qXngPZXsB6ZOvIefdx5GBIMJuJfWWi7AO6oWwmJFS4v1pEeXPvF0n89HStxtpk6/BugfZ6/n/WKEJdu8oxH7ovmS9cDeuU44guGEb0h/UBfNMmamYOmShbC/QxlerNmAd3Jt2Hz5J7pgJgDZhkf5gXMFAx/ChSK+m2RX8Z5MuaG5MT8YysCcJY4+lYsaHyGAQ/18Ni/EKi5m0e6+KrcEjJf6/VlH19pd4v/8VuZMejhACGVbJeWsqxvSU6l0kZU+8jm/eIrJeub/eoAlAuLyKkjueJm3y1fVmmuxl92JMSyZrxmQKLrpLE1NWwhTf/CjiiYlRwvU1mLLSwGxC2ZYfVcYhhMA9Z66u0aDkFze6eFBDuLSCqg++xXnaUfoinjEtCWwW1Art2hdWS6vrwkUuqgqDgYSxx6FWeZrsqmY7YCCV1Y4+/hglXjWobi/mjbnIlKwo4eKGiFzgjMxmMHVovcW21qTqna8JV7gb3/D/hL3Bi1bAkODEMfIg3ZbU/eF3pE26Au+8P/F++wtpD14XdwDD3LkdWdPv1CfpydecQ2DxKpIuPR3nySPiOoY7wqLJddJwra4/DqSUCI+/3vddY46JCl6Ye3Qi4cxoD3T78KGUPvgSqi/Q6E3V2q87NbHYYAw7QNWjpZIDIATtPp4WlyJ6ZKdkTEvGYLVgyEprUWnAXpqPqbpGzxMhFtcaCCHMwCzgdSllvbLvUsqXgJcAevfuLUeMGMG2B2cRFAYQEqPVQu9DDyChiboAoK2qbbv6CdQqL0n+MB2v1ZwD8oZ+r9l0ArYDBtHr9Ii03uO130xwwzYKr30IV3ISI5px7kbb1ncghkQXO75epJdLHdKzb9RKfUPMmzcvql1KYSm+35ahjDuF3gcfErNfCZdVknfurSiKChYLxrQkur39CP0bSOX0L/6bihkf4bNq/YWr1Ms+I0ag5BcjvX5Un5/Cu18l44mJ2CZcFtUupaCE0rnLCT72PikTxuE47lBN56PKw5bcJxEuJwhBj2l3IyxmAsvXYkxPicokiAelzwC2v6spx1u3FdP/gIPq9G/z7Fb2GzCYfmnJuD/4luD6rZT/tRYMBgwJTnqfOxrfgr+o+PwXCCkMqZIk1qPvAVp/vO3uV1EA5/YS+vTur/+WIqnM9VC6QFtBztlchH35dlJvG1/brnnzOMCcRKk/jPrFH6QOGYJzZP0OJt75iyisXt0xD+hJt+n31hl0li7aROVr2qCyd8hIahtcv/+vmLLSyH79IYpuelTP8vF8Pp9wQQkZT9+ml3vUlO/4fl9O+TNvR5VVABicdpIuH0vi+aP2uNU6Y0aqLt7nW/AXgRXrsA7sieeTHwmXVZB+/7X6ttbBfVC2a9lqgWVrNNvX3l3pvGIOCz74hGy/AdepR8U1xhJmE84TDkPZkhc1GbING6ilZp9zIpWvf6ItgOQXE1i+FuugXjGPFS6vAouJ0sdfwzF8fxwj9teCSF/9TMZjr5NfWB61vZQSY3IiieNGES4tx2CzoVZoouXpD15H+TNvU/nqxwAUXDyJ7NcfxJiaRLi0gtCWXGz71AYdK158TxP7Paxp9t572bWYMlLIeuV+Ci68U3PqUsIU3fQoGU/eGqXfUoNtSB8CS/+po0Fhap9VG7zYURh38CKwfC3WAT2wdO1Ahx9eIbhqA2qlm3CE/pWpU06bW+ym3HRBs/az7dsPjEbNKWvNZsLlVTEDIDtOvJKM3EIKPH46DuqFpSbjpQEiMy8svbqQeuslKNsLMOY0T/+srUm758rWKr3+T7C3bKSViBSo9HzxE6ovgO2AQQTXbKLq7S8b3V+GwxTfPZ1wcVlU2rkpK412nz+rpZ0bG18xDVdU4Z37u/48VslILIJrN1Nw6b2kPz673hpl27ABUROf1FsvqTMoMiYlYOnfA/9vdUtcdsYyoHZ1LhBDZVmGFJIuPAXr4N6EMpKj0rUbIlLvwtSCcoC9tB6qx0fJXdMa3U4IMU8IIet5LIjYzoBmnxgErmlKW6SU2IYNQCRqE1vM5ijP86ZgTE9GWC0QDhMurdBTeCMHlQlnHhdz39C6LXGlOjcXYTIS2rwjaiDUErtU/6/LKLnjaSpmfkTx7U/VeV8GghRe+5BeUiZsFjKfubPRGlRjarKmI1HjsrR2C6HNuRRcPIm8cydScOm9pN59ZZTWQg2mrDQyn7qN9Aevo/KtzwnnF2s2pF8vRC2pQKoqlj5dMSQ4NQHO/Qc0OXABYMpO1wX1ZDAUU+sB0FZRgyE8Xy2gfNosrRQmFAI1jKVvNzyf/Aj+IMJixtyt4QGWEAJL325a203G2kDuTpi7VrdLSpQteVEijjX4/1pFcN0WwsVlBFfUDRRHbRvRd5s65YCh7qTQtl+E7sWiuo4je2kZBpeDzOl3RmlN+f9cSf55t+llZ4Fla8i/5G4KLrk7KnAhbBaSLhpN+69fJOni0Xtc4ALA3LU9zuMOwZCcQPJ15+lp60mXjsH30yKCazfr21r3qS0d8S/9B9Xt1Ur15szFVFhG4riTm2TzGtqcS/7Fd9UKmqMFmAE8X/2MqWaMYzRS+ean9R6n6t2vKbzqQSpfmYP3ey0wX/nqxxRNfALz9sKobW379SPxzONQK6rw/rwYz+fzcRx3iCb27PFSfPtTmPt00SZqaFbXhgQnUkpKHniR/PPvoPRxLbtXSkny9eeRcsO4uD/zXnYfpsxUsl59QLctlyGFoglTCcTQhnOefERM8cjEcSeRdv81ZM2YrAsxx0Pw7/VYqoNvpsxUHCP2x3XyEVHjgNYS62yI0sdfY/vxV1Bw2b1Rv+3GMLgcWGvmCVLWER6WwRAFVz9AuKRC0/hTpR7obAwlwm3E0rcbieNGkXr7eJLiKHvfHRic9ja3s/43sefd1f6lWIf2x9QpB2VrHqrbi/v9b0g8/2QynrqN/PNuxTqgR8xa+BrKp81C2VEYM32rKVFRz+c/IYOaNaKlf4+4BHJUt5fc024AwBwM4v91WZQWRmQ7Mp6cSMVLH2A7eEi9JSzpD1yruRE0grlbB4TdivQFCBeWohSWRvkrG5MTSJlwPsqOAgpvfIjK1z7GlJOuRWMbIFKU07g322KPwPPtwijtkfqQUo5obBuhLbHNBLKAE6SUoaa0RQhBxoPXE1jyD6EtuQghmn2dCIMBS7/uyG4dMHftgPQHwG4lYdwohNWCISWxjhtDDWqlu8E+oaUEVm2g8vVPtUFT9U1faYHjiLKjoFq/QdQpv5KqSvGd02onUUKQMfWmelctIzF1zkGtqMLctT2hjduR4TAFV05G2ZaPDKsYHLaYJWWR2PYfQM6sqQCUTplB5VufIxw2hMGAbVhdpfXmYD90X0IbtwPaanGsPhK0NNysl+4hd/T1mvCl2Yh9+P6ak9TdV1D2+GsIl0MXcG2IhDOPw9yrM9IXwHF47FXWmmCMdHtRisuo+vRHzN06RF1blp6dQUpUf5Dghq0NntP323ItCCcl/nl/aqtR/aLFHa379dNdTgKrN6K6vRhcDZTA7KXJCLOJtHuuwtwhm7KnNH2X0Mbt5J0zEUu/7vh+/qvO9q4zjiVp/Jio++ieSsrES0hz2KJsWg0JTpIuPYOKlz4g7Z4rCfy9ASW3UNOBsJjxL1rFthEXYe7aHnPX9oispouOWnp0wpiRim/hUj1b3HbAIGQgSMUL7xEuq4SwCmEVz7e/knJjUUwXCNsBAxEmI6o/gH/R3/h+Xab/nUALIjlPHE7iOSdg6d2V/PH3ABBctobEcaOw9O2GEILMJyZSeO1DBFdvJGPqBLzf/Ur6wxMQZhOer37WBUYrX/0YU6d2eD77kezXHmzz1fK9tB6mrDSyX7mf/Avv1EqgQgpV736F9d6ro7ZzDB8aUyzSecwhdV6Lh6QrxupW6ZEouzh4EVi2lsCyNSjb8nFt2tEk4U7bsIG6TbL/jxVRWYPB1Rvxza82R1Alxqw0DInxTfAjM7QbKtHay57J3t6vlRBCRNl8lb/wHuGKKswds8l8dlJMu9MaPN/+guerBWQ8elOLV0kiS0Yas9mrweBykDR+jP688q3P693W0qsLGY/dHPPYMqRQOmUGRbc/xbZDx6FW12HXhzAao3zca+yVdqbq3W9wLFhBulmI8AABAABJREFUYMlqfAsaz76IdCswpibtFbTaAzB3ad9k7ZUGeB7oC4ySUjYeEdkJpbCUgismE84v1lONW1JS1G72o6TfezVp91ypOy0YbFYSzz+5XttPgISxx7Wpba8xLZngqvWE84pQfVo5WEscR4w56RjTUjCmJevCkzWUT5uF5+vakrLUWy7CcVTdut5YCIMB28FDMHVph1RVhBBYB/fSavstJjIeuSlmCZpUVXwLlxDatCPq9eTrz8OYmYKo3idWxkZziAyg+BYubXBbYTJh7twOkZyASHRhapdJaOM2bPv0ocP3M8h56+G40tydxx6C68ThBP9er2X4xMCYmYqwWbS6einx/768Tp9nHdyb5CvGYnA5SL3zsnrPpxSVEVq3BekPaMGQvGL92ok6Z6ILS414cjisDy5rCCxbQ9m0WRTf+yzuz+Y1+jn3EhshBEnjx2hjg2rB7HBJRXTgwmjENWYk7b98nrQ7Lv1XBC5AmzBEBi5qSDjzONLuuZLgui1UvPAeaqVHEx2u8hDOKyTnoydp9/4TZDxyE/79eqO6vQTXxO/6AdU6GZVa0aqpfSbmDll45/2JWuVBBkMIlx2qnZoq3/4i5jGs/XtgO3AwBoeNpCvGUnjzo3pad7BbOzrMnUn6fVdj6d0VGQ5jsFsRJiMypOA8cbj++xdWCxlP307iuSfhOPIA0h65Uf9bW/fpqy8SOU89kqpZn5Mw+ui9gYt/Iabs9KhyKP8vy+qKc6oqO46/otli/1HHCodxf/S9fh+MJLS5VqzT1LntgxfmXp015y9V1W3k4yVy8WFn0c5AhNC/v18XEs87Kaq8qj5kIKhrfmA0xrXYupc9i709YCuScOZxemqYWumm4rl3AbAO6IH0Byie9ExMpWBTVhoZT07E2MIfUGDVBt26S1gtOE84LO59ky4fi+OoA1GyUkm+8sxmnV+YTXi+WUhg8SqUvCK839WvrFyDtX9t6UgwRukIaB2fUFUwGXURs4aIzLxQcovYuv+ZbDviYipemdP4h9hLm2Dbpy+Zz9zR4uMIIToDlwNDgHwhhLv6cW68x/AvXAImo56hZHA5WrxqXP7s7DoTuFhUffgdni9/IrB8LaVTZ7bKIKVeVJXQhu14fvgdWT2ZDW3NbWSn+kkYfTSWnp3IevFuEkbXBi+rPviWihkf1m539gkkjBsV93EDy9ei5Bbh++43ZJVHqxv/5hccxx5K+iM3xQyCeOf9yY4Tr6Lg8vuofOOT6DdVlXBJhTY5EIJwWSWhTTtabH9m3a+fHkAIbdquiyLHQgZD+H5foentGI2Yu3Ugf/w95I69ieDK9RiT4hcuM/fopLW/HpV5YTBoLkrhsJYNEVbrpBabcjJIue48DC47hnqCIKCJokkptWOZTGA0YOkeO/BuHTqgdr+d0nmD/2yi4qX3cX/wXb3uMXuJH+fxh5E14z4MSRGZBkLgPHE47T99hvT7ro6ZHfBvRJhNGBKc2PbtR/ZrD5B+71Xaaqqqola6Kb3veUDLGM2862W2HnQueefd1jRLXosZUS0eXVMyYhs2kJTbxoOq4hh5sB5ccL//bcx+WphN5Lz+IImXjKHytU+QFTXinymUXnFq1G9cGI1kPnMH7efOxJiSqDsX1WCwWzFlp1M+fTZlD76s91Wm7HQyX7qX9PuvRRgNWHp1xnnqkfF/zr3sUViH9NEDdkpuIcrm6PuxMBgwZqYSaKS0Lx5CG7dT+erHmm5UlSfqvV2deeE69hCs+/Yj9fZLmzQvAe07qwnmhTZsQ4nQqnAcfSDpD08g4ZwT8Q4fQuotF8V1zMhjGNOT9wYD/4Xs/Yu1IsJiJmXC+frzqne/0lcFDSmJhEsrKX30Vf19tcpD+YvvYxnYM2oS31zcH9VmXThGHtSk+iiD3Urm07dReP/4FqWy1yj9CosFz+fzGt++f8O6F6DVo3mH9iZp/OmNuphAtOZFzQQ1XFRa3+Z7+RchpdwipRRSSpuU0hXxmBXvMXwLl2DpU6sLYMxuuUCTsV0G4bziRrcre+w1iiY+Qe5ZN1P17tcxV0VaC3OX9hgSHNWCV6quidASjKlJUXbDvoVLKLn/Rf25ffhQUm+9uEkOS8JpI7DsH1R/QLNCrPIQrnCT8cTNuI6NnS5rSHCgVFu/er74OWpy4V+yWl8BNXfrQMnd09kx6mp2jLy0yTZzUee0WaOyOBrS4PEvXoWszlgwdcoh6fyTaffe4yRdeKpegxz3ee1WzJ1zGgyWWLp1QDgdYLGQcOZx9fb95i7toyzy6rS7Wu9COOxY9+uL/bB961WItw2tLd/zL47WvYhcyVJLyus9317ix7Zff3JmPYLjmINxnXok7T56ioypE+IW4N3TUas8Ma0kw8VlevAVQFQL+xpcDkQgCFIifYGo1eTGCC5bAyYTUgnrwQtjSiL2YQOw9OtO5jO3Y+6ilWOpbq/u+LYzUkqk20NovVaKJUxGMp6ciJocu5wlnFeMMS0Zcz2OCEmXnU7wn42UPTxTD2AIIXCNPgrXyUeQNumKPdLGcS/xIcymqEwC3y9L62xjG9yHwLJ69cfjJrB8LdbBvfF8u5CtB53LjhOupPLNTzXb9C2RmRdt33/Y9h9Ahy+fJ2ncqDpOho1hsFuxDo6wTP6zNvvClJWG66ThpN1xKQavX7v3x0HkfMCYmkjBVfdT8uBLVL37dZPatpfdx97gRSvjOPpAfYArlTClj70GVOtFPHwDvgV/aWm0qkrRbU8RLiptlaif6g/g+eIn/Xm8JSOtTeJFo8mcfic5s6YSXLul0dUQ64Ce+v+DK9frN+zKt7+g+M5pVM35XvODH3UoqTdfGFOheWciMy+E2aSvcuy1Sd2Lwe3DO+8PQptz9WuzNVxoTNkZDU4uQRPTrVkBESYj5t5d4hLhbS4GlwPHqBEknD4SEbHaI5XmT+Azp9+JMT1ZW9WZ/SVFNz6iWwVa+nYj45Gml76ZO7VDmExamYjJpK2K2q16cCIW1n376aJ2rtOOigpKBP6ozQKIHCgZs9L0FZzmYj80snSk/uCFb0FtWn+NNoYpJ4OkS09v1uQj58OnMHXKQfXHLoEzdWkH4TDCbNRLl2KRNvmaeuuNpZT4f1uOEAKDw0babePJeWtqvceKFO0MrlwXVapi6d2F5KvPIm3SFSSef3Ijn24v8WLu0o7MJyaS/sB1cdmG/xuQqkrZ9LfZfsxlFN34SJ0ghDE9hYwnb0XYrAibNapWPdQxC4xGLL06I+PMYlO9fi1LTlFQqzxRk8ng3xuwHzgIg9lM4vm12WOVb30Ws9+sevdrqt75WtdzSpl4cYNp695vFuI47pB6+wCDy0HWi/fgX7Ia/69aIFHJL6bi5Q+w7dd/r2DffwBbZPnhL3XvIbaDBiPM0U5eUkqK75pG/oV3sv3Yy+IKwgeWr8UysCfB6tKK0NY8VF8QtTxiHGK3trpNan0E122ptwSrMWzDarP8fDuVjujbLFkXdyZrOEKsU9hs+H5aTNXsL6l856tmtW8vu569gp2tjBCClFsuIu/MmwHwzf8T32/LtRtigpPMp24lXFSGa85XqJVuUp+6tVXO6537u94hmTpmY22lOu+mYj9wkP7/zOl3QiOBGVOnbAwuB6rbS7i0gnB+MaacDLzf/op/0Urcn/xAwpnH4fx7DVwWn7p2pOZF6l2XY8pJR8kvabLH9F7+exi8fqQ/iGfOXCQg7MYWi7qqvgDG7HSUHQW4P5+P66Th9WwoSbzwFJSt+YQ2N020qrmYUpMwd++Iv3M7wkWlSCWMkhe/TzxUu1hszcPz5c+4P/0R6Q/WyWQyZaeT+exdMWvYG0OYTWS/8RD5592OuVdnfRUzsHRNvSULQggyn7oNY7sMDLbo7BX/otrgRU3KqX/xKmz7D9j5ME3GdnDtwNP/23JkSIkZEPH9tFj/v/2w2MKe8eKdv4jy6bMJrt1E0sWnkXL9eXW2MXdpD0oYYbc1uAJtTE8mXFKui5lGomzJ0/tOg8uB++O52r2qnjR1Y1oy5q4dCG3ajgwpBJavwV69im3ulEPylWc19yPv5f8IYTAQXLFOH79UvPwB6Q9eF7WN/aDBGJISkOEwwbVbdIHY8vOPY8BxI+v0AQ0RWLJam/yZTQiLmXBxmS7Y5xp9FM5RWv/tHHUEZdNmoZZXoewoxPvD71HCif6l/1A2dSYYBNIfwnnyCbjGHhvznDUkjBuFiOHeE4khwUnOm1MQVguhzbmU3Ptso4LFe/n3YD94iP5//x8rNI2VCNtx+8FDtG3mzdNfE0Lg+2VprV1qfuP38KRLTsPgtFP22Gua1ooSxtq/e3TJSMfsXZfJo6pUvfMVieec2ORdbQcMhOfeAcD/x8qY25jzSght2kH53+uxHz4Ua7/6XVmighcRJVzmvQuc/xr2Zl60Adb+PXCdfIT+vOyRmfoqr6VXF2wHD0EoChmP39LilcAaIktGXKcetUfUcJk7ZGn6Ag1Q49ZQQ2DlemQgSGB5rX6AkldMoHfjvs0AUlE026RqTJmpmnheh6y9avh7QXgDmt2cqiIs2m+vqWmMO6PkFlJy1zTKn3uH8mdn17udMSWR1JsvInPa7bSb83Tc9ZktwdQhC2VbPuZOtQOdeEQ7w5Vu7AuXU3Tbk2w/6hK2H3s5JVNmaPoU+dHlMYYEJ5nP3dUioUDbvv1Ivesy7BGZVZH2j7Ewd+tQZ9ISLq2oFfEyGEg45wQyp99JxwVvkHTp6c1uX+Q5a64XzbJxbZ1tQtsLCG3SXElq7FlbgvT6CCxdjVpaUa+osblzO83S1GSstywktHE7BZfczY7jLqfgsvvqvO/7dan+f9vQ/oQ25zZqK2vbP8IydfFey9S9NI+kK8YC2nVsi1gAqcHgcmDp2UmbaKmqrgmgJruaFLgALegI2oTQum9fqt7+gnClGxlSKH/uHd2u1GC3RtlcV75ea5uqFJVRNOERrcxNlaCo+H5dhvez+VHnkuEwhddNoeq9r/Gv2kC4uEyzU24EYbUgVZWiWx4Dg4HEi9tO2HkvuxZzp5xa21RfIGapQ8l9z2HKK4l6LdJyvDHRS9UXQPX4MKYlkz7lBjr9Ppuctx/BOqTPLi8ZqcHcrSNKXlFcrnM7Yx3UG2HTtJqUrXlaBmmEhpVUVUz5JZROnUn59Nn6b7w+IoMXloE9yXjyVlJuvEAPXO5lz2f3z3CrEUJcI4RYJIQICCFei/H+UUKIf4QQXiHEj9XCfXssydefp//Ygmu34P7kR/09IQRVpx7eaqrgoe0F+H+v/rEaDLhOOaLhHXYRMhCk6JbHUb111eojiRLtXLkOTEayX32AlAnn4zj+UM1l5ICG7VFrCJdU6GnsxtSkehX69/L/ibSYSDj/ZM1mr3qQ2lLNC1N2OjIcRq3OHJLVegsN4f3xT82XvI0xdcwhtDVfHywBDWoegJZemnvytaS8/jWez+cTLizVtGP8fgiFkD4/hgQnjiOGkXrrxbT7dHqrZJEknnNilB1oYGnjAqg74/tpsf69Wgf31kXzhNHYrKyQnRFCYIssHYnhfuT7uTbrwjZsQJMnVztj6dddE5hVwii5RXXel4EgUqqIBCfCaEDZmhe7XM9kJLByHeEKN6F1m+u8rd9DAOuBg1G25GHu1qHBtlkjSkf2CnPupbnY9ulL1kv30u7TZ3CNGoEMh6O0q0DLoqohsDS+2vZYRKadJ553EsJqYfvwC8m/ZBLuz+ZFrUQnnHWCvsAUWLaGwLI1yJBC0U2P6NlnwmpGmAyEC4rrCNf6f1+B94ffKZn8Avljb8I79/e42ykMBrJfe5DM6Xe2aXnhXnY9NQ4yAP4YuheqL4Bl/fao15KvOZusl+6l/RfPYduv4fFwYOk/lD08Q38urBasg3phcNoJ7WKxzhoqZn6E9AfYMepqgms3N2lfYTZFlWP5f19B0Q1TyR17EyX3v4CyvYDyc4/Rf7uhDdsaPJ4SkTlq6doB58iDSLp4dLMtafey69ljghdALvAA8MrObwgh0oGPgElAKrAIeHeXtq6JmLLSSLr4NP15+bRZbeYs4P64VkzKfsiQFq8ktxbCbsM6sCfeuQ27jlgGRIp2bkAYjVgH9ybpktPImHIDWa/cjwirVL7xKcV3TaNk8vP1HiscaZPaCloGe/lvIcJh0iZerIuxQcs1LwxOO7YDByOsFlxnHqeLxNaHlJKSu6Yhw40HOVqKpVdnLH26RA1SGtKSkIEgRTc+Qri4LOp1YTSAwYiwWki64kw6LniDzGfuIHHcya3qkW7p111P4wxt2k64vCrufaWi4PmhdnIQjz5Oc7Af3LDuRWRAw37YfnXebyqmjtlkTLsDU4cssl57oM77gZXryBt7M2pJuW71qMQQjzV1yEI47BBWUUorCVfUfrcyHMb/uzapUyvdBJb+g6Vft6h05lhECpgGlq1p9Nrfy17qw37wEH2SXvU/9u47vK3yeuD499X03nbs7D0II+wNAsIum0Ioe6VlFShQyt6UXaCMlhn2+hFGgAYI4BAIhOy9yHSGt2VbtrXf3x9XliWP2E5sS07O53nyxFe6ujpe19K55z3nw6/Z/IdrqHnz83Cviajkxfzta2gYqHE1VS+ZTCSPPxjvyvUEGzw0zJjXoi+WJTeT5JOPCG/XvPk5lY+/jmfe8vAxsv5xBaaMNJTJ1KLpeN0XRiVG41Xi5BM69+bIlJyIKSmhU48R8S9q7HYryQv7XqOwrYm+yJB44J4kHjLOGMHdTsW2Z+FK7Hu23njfH1l5MbjnKi88C1agA0H8JRX4N5V0+vGNjXXBSEB6FizHu2wNtR9Mxbe5BG0ykXjIONIuPIWk8Qdt81iByGkjvWS0tIgWNz0vtNaTAZRS+wHNL/ecCSzVWn8U2udeoFwpNVprveNtebtJ2iWnU/vRNwTKKgmUV1H92idk/rXDEx07RAcC1H36fXg75YzYNOqMVPvhVGomfYavqJikEw/D9dkPpJziaHN/W7NxqVprlFLoYJD6b38h6fhDUcsWU/mYManFlJZCVhtdtyOv1qjUZHzrt2Dpl9dly3NE76YT7Ci7LWrpgzl/x5NcBa8/SNHRl5F+8WntXmkPbClFJSb0SA8Wc2Ya5uwM6gtnh9eJ+za2nbyofPS18LhlbTaRecOFJBy4J751m2j4dRG+jVtIOnK/brsSaEqwYxszNFwW7lm4kqQj99vmY/zF5dT+3ze4/u9bo1mv2cjJJzq2/bjtlXjwXqEJLgG8y9YQqKwOj7nWHi/uWQub9j1sx/pdgHEFNuXYg7GPGIQ5veUUA+/SNS0auPnXb26xfleZTOQ99Xfcc5aSfuVZUaMcvcvWGomPoEb7/NRP/ck4Z5rb6VnUJxvLwAKj2sPjxbP09/AVspp3vsS73Pj6ZP7tYmzDW+9fIkQkf2klzmfeRje4qXzsNbCYSfvTydgjrrx6Fq0KVxdprfEXFeNdvhbr0P7bbGTqmb20qTJrt2GolCR8a4rQdfVoraOW+zZKu+hUXKHXWHXfzIyqmMu8/gLSzjsR3+oNmLPSybj2vKjHZv7tImxjhlLz7ldonw+r/A4IjLG8jX0ovMvXEqhwYs7OaLp/7zGYPvhiu4/vWbyKlNOPafU+34bInhc9V3lh6ZsLGvD7W60gbE/UlJaf5xOsNJaHm1KTcf80D3NtHX1eurdDx4pcNiLJi96pt7yjGwuEXxFqreuUUmtCt7dIXiilJgITAXJzcymMaHzT0xKP3ZvMSUYH29L/vM+SfqkEstNwuVxdEpd96TqyNxqZ1GBKIrNNDVGNfjqrK+JKXrqM9N83AFDz+1qqJ4xnxbaOqTX5VhOmOjdUePnpo08J5GViW76B9A+/pyzBj8tmItcEJrcXyiuZ8ekXBDNbvvlLnjGHdK8XgLrf11F73BVopag520HdsV1/Jbarvo9dLV7jijV/bgZa66iJNJY+XVOpZJQ7t11NUfXkG8bI5KpqbCN65kWs9ngpv/VfkGhHuz3o5MQ2e17UffUjtR82jQqrPudoRl1xFgD2PUZAUJN99192eBlEe+zjRjclLxasaDd5Uf/dLKr/8yHa6yNY14ApIxXrwAJq3vkSa/98Evbf3agi6KKEiyk1GfueI/HMXw5a0/DLQlJCV2fdc5ai3cb5xzqob5eW5aoEG74NW7ENi+7/o4NBlNWCNpshXLWyudXESZJjf5Ic+7dY2tQ4IpVAAGWzEnR7MCfaOzQ5JmGfMbhCP1Pu2UvDyYuGGXPDU1dSzz1RkheiQ4LVtZjzcwj+vhHroL6knnUsAJZ+eZhzMgmUVxF01YdLw53PvE31Kx8DkD7xj9tMXjT82pRYTDhgD5RS9PvuFTYdeQnpV55N8gmHtXiMbeRgEg7ay/gdiUhcJB17MGmXnYFSiqRjDqLmrSktfl/MOZmkXXgKKWcdi39LqYw5FYDRw8W+16jwiOmGXxZGNfq2jR5C5Q3nbPfxU047GsvAfGremkLiEfuGxyk3Nt9uZOnBZSMpZ4zH0j+f2g+mttkEeltsuw0NN/cPVlZT8METBKtd+EsrcD79NvV/OaX9g4RETiyS5EXv1FuSFylA81RdNdDqpUut9UvASwCjRo3SDoejW4PbFn3EEWydvw7v8rUAjJ71O7mP/Y3CwkLaikt7vNR++DW1k6eh6xswpadizkjFlJHa9HG6sV23YD0NNqOvQ9qEkxk9vvVsa0dtK66O8g0dxeaPf0Ql2MjafQxjDj2EwJaybTauKzngRxp+no/Wmr2Ts0hxHEnZF09gv/Icxh51FIWFhRT89UJUgh3riIGMGDe61X4WlXPXUxP6eiQlp+C3uQAYc9D+pHTDz0FXfL26Q7zGFXNaE6x2oT3GG0xTcmKXNXLNvPGitp/W46X69U+Mj1H0ff+xLnnO9piyM0ApFNooXdYa/6ZidCAQ9Wbet24zFfc2LcdKPuEw6h1Npa3a56fivheiSqi7i33caHhrCtB+006AlFMdVP3rDWNZXjAIQU3C/rvj+vBrwFgvO2DmO6jErqsWSTx0nJG8ANw/zw8nLyL7XezolJHmGn6ej2fe8haTGNIvOZ3672ZhGZAfXkK4rb4mlY+/jqVfXlTX94bGBmdmE+mXn4Vn0SrMeR1bDpSw3+7hK9OeOUtgotEYtbEaBSBQ6ezQsYSwjRhE34+eouaNz7DtMSL8d14phX3v0dR/+wsQWjrSJwHbyKZkhXfF2m0e2x3R76KxMag5MYHEQ/cmWFXTZoVm2sWnNiX4AOuQ/uQ8cF04GWEbMxTvirXhqtFIOhjE/dtiEttJwopdS8LB48LJC/fMBS2mlNmWb6C2ahqprVRTN//7HXWfx0uSY39qJ0+j8tFX4dFXSTn9aHIe/CvByurw8nVTUiLmLlzy2R77HiOwjRqM84X3tqsSWlks2PcdS8P02QB4l60h9Y/H0/DTPCx9cwnkdywJEXTVNzUNNSmKL7kDa/98Y6l66GKNiH89krxQShUCbbVx/Vlr3TLdHc0FNB9enwZ0fEF0jCiTiaxbL6f4kjsA4+pm2vmtjwrSfj+uz37A+cL7UVeGaaezcKOUM2O/ZASMJkC5/7o1PB7WPXcpFQ+9RN9PnmnzyoNt7HAjedHgpuymJ6j7vBD3rEVk33NVeJ+OnFiiel5kZ4DPj7+kokcbE4n4Zd1SQUPhb+HtruyLUvvJNNCQ2srvoS9ijaclL7NHxqRC6AX/XiOxDCzA/ctCgh4v2uc3RhKHupcHGzyU3fQYwXrjD7p1YAHZ914Nc5q+Tv4tpZj7ZPfI8iv7Xk1rdT1LVqP9/m1WAJhSk8m47nycL7xP0FWPUiqqBNe2xwhMiV1bLZJ46D44nzMmyzTMnB+uZGiYMa9pny7odxHJNmIQNe98gXvBCux7jYo6l+a/+TD1P/xG3edGY2jfus1tHsfSJztqnGrQ7QknYpTJRPqf/0jFnc+SOuHEDsUVOZbbPX9F+PuVfOpR2PfdDXN2BrYxQzv1uYpdm7JaWv17bx8XkbxYsAKOH4dt9FBMGanYxwwlYZ+2Gxn6SyvD1RrKaolahpJ9118IVFW39VASD90b227D8C5bgyk5kbxn/hGV9G6cahYoq2rRiN2zcCVVz7zdbT14RO+UeOjeOJ97FzD6XjRPfGm7lZqXPzamB4aWUZdceS/+TcUESisZ+Nv7rf49rvtmJg3T5xBs8IRvs40xJvr5oqouenBMaoiyWbEO7od31QajmrOTEg/cI5y8cM9aTOofjyfhoD3JHT6QlStaH6HaXKDcGf7YlJKEb/VGfKs3Eqx3S/KiF+mR5IXW2rGDh1gKXNy4oZRKBoaFbo97CfuNJWn8QdRPMxpXVj7+OlzeNA9cB4PUf/0zzn+/G3Vy6Qz7XqPiqiw3+diDwx/b9x6DbnDjXbEOexsvYu2NTTt9frTXT/1P88i68SJMqcmdet7InhcZ1/6JxIP2NK6yt7N2W+wi/H78kaN0u6i5baCqBvesxfh+3wg+f9SIPQBzegpZt16Or6gY18ff4lu/uccSGClnjAeTIlhTF36T6ttYHE5eVP7zZbyrjGVeymYl96m/t6hG8RcVtztXvqtY8nOwFOTi31qGbvAYL3S2MbMdjD4UVY+/jlIKU0oSKX88DsvAfNyzFkdNM+oqtt2MN0xBZy2Bcie+VRswl1aFKx5Uoj2qmWVXqPjny7hnLmDr+bcy4NuXsfTNA8C/uQT3nGXY9xwZ3te/jcoLy6C+1P80D9+mEiz98vDMXxFutGkd0t9oYGuzYR3asfHUln55WPJz8BeXG+f5ZWux7zmSxFZGXgqxIxIimna6Q8kLy5B+DJjxZrtvxCIngdj3Gh2V0DRnpUdVCjWnTCb6vHAndd/+QuJh+7R6Luz/9X/BasG7Yh22lRsJ7luHKTWZ+qk/k3z8IZ35NMUuwLbbUEzpKQSrXQTKq/Ct3hD1msA3xLjg5l20ykhWm0xGE+tQvwb/1rJWL8p5Fq3CtscIzOmpKAUNsxaHqwD9EUlraw+OSY2Ufd81230xMeHApr4X7tmLCdS4aPhxrlG1ssLof1X/3Sx8azZi6ZvXajIicsmIUdVVB4BlQJ8W+4r4FTfLRpRSFox4zIBZKZUA+LXWfuAT4HGl1FnAl8DdwKJ4btbZXObfLqZh+hy0z49nwQoS5gxCOxw0TJ+D89m3w28eGpmz00m/8o8kHr6P8QK5upags5ZgdS2BapfxsbOWgLMWU6KdjBsujNFn1j5lMpF8ioO6z39oM3lhGzscrbXRMyAQALeHxPEHt7rvtkT1Mgi9MZVxqSLMbMaU2NS9vasqL/wbt+L6+Fu027ja0SJ5EVr7rD1eXB9/i3XItkdQdqX0y84AwLd6Yzh54d+4FQ7eC9fnP+CaPC28b9ZtV2AbPSTq8Q2/LKR+xlxse43Ct3ZTu+Mzu4J93Cj8W42Vgp4FK9pNXtQXzgl/nHjYPlj75mE9Y3yrJbddQZnNJB4yjrqvZgDQ8NM8EoqazuEJB+zZ5ecdU2JCOKnkWbomnLxwz1lGw09zST7p8HAjUX9xOcF6d6uTCqpf+ZiGXxbgnrmA/tNewf1LRB+AUMKhz/N3dDgupRT2fcfi/9KYrOCeuzQqkSJEV7HtNgxlsxoTdYqKMVW7Onz1OHLZR8KBu+MrKsa/qQT7uNEdqswy52SSdt5Jbd5f+fjr1H78Lfj85Hi9FP13CglH7odn9lIK3vpnh2IUuw5lNpN48Djqpv4EGFOqoi5oKEXyqY5wpR0YE6MakxeBNiqKPQtXknzyESSMG03K6Uejff5whYYvYtJYT/a7iGQdOgB/STnWlKROV35YRwxCpSYb74Mqqql54zN86zaHl9z41m+h8p8vA2DffUSryQt/xKQR+x4jSb/ybPybijEX5O7AZyV6WtwkL4A7gXsiti8A7gPu1VqXhRIXzwFvA7OACT0f4vazDiwg9fyTqZn0GQDp/1dI8YL1eBaujNrPlJpM+mVnkHr+H5peeLbdf6rXSLtg2810zHlZWHKz8APa7cWck4FlYOeu9OpgULoIi23y52YQiJjx3VWVF+aCXDCb0Jrwm+7WeNduwjKwoEen3wSqanB99j2WiKuFvo1b8a7ZSMUD/wnflnzSEaScfVyLxzf8PI+aN6eASaEsFjL+sv2NxDrKPm4Mdf8zXtR5FqyAP7W+1C4cY6iUFOixteWJh+zdlLz4eT726qYXRYmH7d3Ww7abfexwGmYvwTqowOjtgdGstP77WVhHDERZLVj75YWr9/wbt7ZIRAGgCDdd9a7eENXEMPHgvfBt2EL9NzNJv/LsDseWsP9Y6hqTF3OWkX7pGdv7aQrRJmW1YNt9eHhUafNxktsS3e9iL+q+KMT5vFF6n3Hd+eEk7/YK1rgIljsxhSYCaa+Phulz6PPv27EO6dfOo8WuKOHQiOTFzAUtfgbT/3xO1Bv87Dv/jLJaMRfktNo4W2uj31PkeT/ytUZks85YLKWuuP9F6mfMw7dyHf1/eA3bsM5ViyuTCUufLNxri8Bkovrlj8l79rbw/bbhTdWC3jVFRjNrU3TVdWTlhaVvLvY9RmzXEhYRW3GTvNBa3wvcu437pwGj27q/N8j48zm4Pv2eoLMWc1VtVOJCJSaQduEppF96eqeXSsSzQGU1rs9/oG5KIZk3XYIpM63V6gulFLaxwwlMn432+Ug6cj9MppZLPapf+Rj3b4vxrtpAn1fvizr5BSurwyMDTWkpMh9dtKDt1qjqHHNXJS9yMkg+6QhjdGRBbqt/NMFoEJp+6eld8pwdD85E9X8+JCuif4x3xTrK/vY4OrQu1jq4H9n3XNX6+OGNxWhXPSrBhrWTCcXtFdX3YsHKbewJgQonnkWrjA2TCcugvlQ+8TrJxx3arRUACYeMi4hxBXaPB0xGE7Wu7ncBkHb5mWC3gtdP8vGHAlD56Kt4l61BJSaQfPyhWIb0CycvfOs3t5q8sA0fRMP0OZjzc/BvLg03k9ZaU/X0W2C3oevdnUte7Nu0RMYzb9k2G8oJsSMSxo2JSF603dslkq+oGH+od5hKTMC++wicz74DGM2ILV0wLjvpuEOpCTUaDse658ioc5kQkRIPHhf+2DNvGcEGT1QVkFKK2g+nYhnYl8SD9mx3qalSiqxbLm3z/shGzpbBPb9sxLdhK/4tpWivD9/G4k4nLwBUqCE/gQBBZw2JhzZdKDBlZ5B63klY+uUZy+gjpgM1CkRUXpjzuq7nmehZ0gigB5lSk8m4OrpgRFktpF14Cv2n/ofMv56/UyUuAEqvf4SqJybhXbme2ve+oubVyW3ua999GDoYRHv9qMTWEw/uectomLkgtEZwY9R9kf0uTKmJNPy6CP/mkvA8eCEg+ufE0kXLRpTJRN5Tf8ecm0XKmeNbTVwAWAbkk3LqUV3ynB2OzWwm4Kyl9u0vCFYbPY7dsxY1Na9LsJH71C2YkhNbfXzKGcdg7pNF4lH7Y+2hPh22UYNRCcaLFP+W0qjvWXMNP84Nv0gxZ6VR/Ke/UzPpM2rf/1+3xmjJy8I2ajBgvAFSfuM8Yx3SH2v/rl8/a85IxT52ON5V6wEjMezfUopKTUIlJ2Id3A/r4KYrvL71rb+xS//zH0k69hByHrqewNay8NfOOrgvvrWb8MxZSrDG1anYLIP7Ys7JACBYW2c0QKuto+zvT1F8xT0UX3535z9hIVph37vpGlZj8kL7/bjnLaPmnS+NnmLNRFVd7LebUcExdhjW0Nhh+35tT0LrqETHflj69aF/4etseenvFEx+Gu/K9VENAoWIZMnPCf8Maq8Pz9zW2/i5Pvq6Q8ereWsK1a990up9Wmv8GyIqL3qoh1UkS0GOcYHEZMK7cNsXJdpi7pMNoYssKj0VTE0XXJRSZN8xkfRLTifxsH1aTaBHVWf34LQV0bUkedHDUv94PMknHU4gNYmUM8fT76sXybr18qju+DuTyHnO/q1lNPw0j2BtXav72sYOR5lMmLLSjMaHre0zPGIs2uroPiGRV9SD1XWUXHE3m47/c3iMnxDQbCJNF04bAXB9/gP+LdHTgXQgQMk1D1Hx0EtsPukvNES8kO4JymYl6KrHPXsJ2uszRqZGyLpj4jav6DQuw8j71z96rCmwslqw795UNeFZ2HZ7o/rCpiUjSRF9chp+XdjmuaarJB7ScnlI4hFdX3XRyDZqMN6V6wHjxW7yKQ6sAwuw7znCWDYScTUtcqJIJEufbGyjB+NduS4qwWPfM3SFOBCIOk5HKKWiqi/cc5ai7DbqvvoR968L8cxdGp7IIsSOsEc07bRuKDYacmsoufxuKv/5MjVvfEagWfItqt/FAUbTv6ybL6XfZ/9mwIw3W0wI2R4mi4X8Nx/GnBZaNuKsxdIvr9O/S2LXElk50PDz/Bb3J51wGA0/z+/Q3zL3vGX41hZRfPndVE/6NKrHRaDcGZ4oZkpONMao97C0S8+g4IMnyHv2NlLOOna7jpH37G1YRg5GJSWiA4Hw38OOalw2rLWWpeW9mCQvepiyWsh97CZKnryWnPuvxbKTN4lJPv5QEg7ck+wHriX/jYdJOGhP6kKjziL5SyvRPj/BunpQCu+KdWi/v+Xx/nAEuU/9nX5fvNCiisUf8aY0stoiFhlmEb/8JU0/J13V8yJ8vIIc/Fuie14ESitpmD6b2ve+wrv49x5fa6qsFqNCwGoBkwkCTW8iU049ipTTj9n2AXx+0i87s83KjO5iHxexdGThqlb30R4vDTMXhLdTzzuJhNBVVGUyoWzWbo0xoZXeFomH7dNtz2cuyCXpmANDpe45pPzhSCz9+pA/6SEguoO8v43kBRjLhBoKZ4fn3VuHDSDr9isoeOdRcv/1DzKuOa/Tsdn3bRpT6Zr8rdEwNFRJqP2Bbk8kiV2DOTMt/HOuAkE8y9YYibuIxKp32drwx1rrFv0umh+vqzROSQKo+/rn8PIuIdqSGLH8MPJvWSNzWgqJR+yHZ/Hq8G06GMQfUUHQyLNwJb6iYtyzFlH1xCQaZswN3+ffGLFkZGBBj49JBbANG4B97HBSzz4OS8H2vfZSSmEb0h/t82EymXDPWtSpx4cbdvr8lF7zEFv++DeqQkvIRO8RNz0vxM7JlJJE/qv3h7ezbp+IOSO1xX71X/9ExQP/Rde50do4QfnWFGEbFb1m2zZycJtXiSMrL6yD+qIS7Pg3Fcesq7KIQ8Eg2u0FwJSUiGo2EnRHWQpyW1ReNPYg0MEgWMxdXu3REWkXnYb2eHB9Xohv3SYg9Ib1zj+3+yJG2W0tEoU9IfIKq2dB65UX7tlL0A1uwHhBZh3an9xnbqXhx7kk7De22ycNJeyzGyoxIRyDSkwgIeJNfHdIv/R06n/4DVNyIt6V67GNHBRepmRptmykeZVNo6TjD6XqqTebjnnFWZhTUzDtMQLfus0kHNj5MaeJh+0TnnbiXbWB4otuI+PGC7EU5GLOzsCU1LPJL7Hzsu89Orx+v/67X7GPG03S0QdgGzEI25ghRlPbEN/vGwmExmOb0lPCS726Q8NP82gonA2n7E/qhBMxZXRdYkTsnOz7jg1P0PGtKcJfXN7iokrOozeilEIHAmw59Tqjb0QgyKC5H4YbcgbrGrAOG4A7NFEMonsv+SKbdcZoTGojz6JVVD72GgVvP7Jdj9duD8pu9AZx/7a4ww2itdbhhp06GDRGey9fKw11eyGpvBA9ypKXRcPMBS0mMrhnLzXGTFrM4XVqnqVrOnXsyHXxqeefTMHbjzCgcFKXX10XvZeKqDow98nu0qsPvo1bMaWl4Fm+jpo3Pw/fbhs5mNyn/k76pWeQeMS+MbniYU5Lxrd2E+kXnoJSCnN2utHnogNNbV1TCql8ouU68u4W2ejOu2yNUR7eTNSSEcf+xueWnkrKKY4eqWpTVku4DB0g8cA9urXao/7bmWw8/GJKrnqAmjc/x7tqfVSC15ybGa6QCbrqCVY4Wz1O7Xv/w7+1FO3zYc7LIvnEwwAjAVz1zNvb9TNqHVhA1m1XhNcj+9Zuovq/H2Hpm4d9t2E9OmFH7Nzse48Jf1wz6TNKLr2TpGMOIufh60m78NSo3333rIiqiwP2aLMfUVewjRmKZ/lazGVOTEkJWGRNvWiHKdGOfZ+mhHfDLwta7KOUovKRVwgUlxNscBuN6YPBqGpjU3Ii+S/fR/8vXyT7/mtJPe+kqKrjyEo8y6DYXtCzDu2Pd2Xr1dXt0V4fvnWbwj2xPHOXhxv1g9F/qurJNyi55kE2n3F9VAI/WFsXvnilTObw3yqLVGf3OpK8ED2u4ef5uD79Luo2c0EOoFB2W/hFrnfJ7506bmTlhUW6CItWNDZVhK7vd+EvKsb50ke4PppK/fe/NT1PZhrJxx1C1i2XUvDmP7v0OTvKMqgAf1ExKeccT7+vXqTfFy90qNO365PvqH7xAzwLVuBZvrbd/buSOTMt3IBS+/x4lkUnM7XWxlXOkJ4akdpcyh+OCH+cfIqjW5/LNnqo8YLL78ez9HeST3GQcHBTGbxSCsugbfe9CLo9VD3zJtrVQLCqxmiOajHOub61m3boKlTahBPJffym8Dk8UFJB8UW3tRgJLsSOSDr6wKiLEu45S9ly9t+oeOglAqGmxOH7mvW78CxcScVDL1H37S8EnNH77ijr4L4EyipJ++RH6r6e2aXHFjuvxEPHhT92/7yg1X2014/rix+x9DOaQZsy0whW1YTvr3nnS+pnzMXSJ5vUM8eTfcfEqMdH9r+wDoxt5YUpJQlzdgbeNnrbtcU1pRDf+s30/fIFrP2NhEOwvgFv5GsDi5nayd/SMH0OvtUbjKbUIZHNOq3DB9D/h9fJf+ufpJzW1JtP9A6SvBA9yl9aiUqy45oyPSojmn3blQxZ/SV5z98JZuPH0rNkdVuHAYw3NJHrqP1RIzAleSFaEZG86IrxeJEsBbnG+K7aevzFZS3ud/7nQ9xzWu8m3t0s/fPxFxWjlMI6sKDDU43cvy3Gs2Q17l8X4V3auWRiV4jqezE/eumIb+X68JUnU2oyCft073KNtiSdcBh5/76dimvOJOm4Q7r1uSwD8rH0zYFgkEBVDYGi4hbj4KImjmxombxwTZ6G9viMDZMJlZCADgTQWuNbv2WHS2iTTziMvOfvDE+MCla7KL7ibuoj1l83b6goRGeYM9Po+8kzuI7dD2UJTRQIBql97ys2n3w1tR9ONX6m/f6oc27iQXtR/+Mcat/7irIbH8X53LtdGpeyWMi6/UoS5q/q9nOB2HlENe38ZUGrE/KST3VQ98V0ch6/iYGz3mPgjDejRoHXff0Tytp21Z8/4m9BLJvIlvzlfjYefD7eVevD44s7wl9aSfltT7PpxL+w9fS/Yt+/qUF0w69NfS+UUlGNxb2hqWoQnbyw9MnGkptJwt5jerwPmdhxkrwQPUJrTdlNj7Np/BVUvzIZ7fHiXWQ04dPBIJWPvIIOBEk8bO9wybJv9Qa019fiWPXfz2Lz6X9l4/7nhhvtaK2jKy/6yFIR0VLUspEuXk5kLsgl9ezjMOdmknXLZS3ur//u15iVzptzM8m4/oI2eyC0xVdUbFzpN5ux9O/50spt9b2oL2yqbkk8bO+YfW2VUiQddQCevYZ3+5IgpRT9pr5k9PEJBCj922PUvDUlap/oiSPR41K1z0/Na5+El+aZ87KxDiqg7osfKTrkAmo//gbVBeO6Ew8ZR/7rD2IKNUPUDR7KrnsY1xfTAeN3QYgdYUpNpuaPR1Pw8dNRTTiDzloq7v8PWyfcQu0HXxN01QNgzs3CMrgv7t+WhPdNOGDHR6Q2Z8nPxZ+f3S3jksXOyTpiEOYcY4lRsNqFt5Ul0/a9RmFKSURBi+bZ2ufHu3wd9t2Ht3p8rTW+jU2VF7HsAxesbyBYW4cpKbFTfZC8S383EpJ1biyD+5EY0ZfJ3WyCW9olp5P7+E30nfw0iRHnhugxqTJppDeT5IXoEUopo6IiGDTG6h24J7ZQ1tj92xLcvy1GJdoxp6WET6za58e7akPLg5lM+H7fiPYH8K02ys6C1a6mNfFKUf/tL7jnLg2/cBECgIgrGpYuXjZiSrSTfd81KKVajMvUfj++dZuiOuL3qGCQhl8XsfW8Wyg66rJWr+y0JvNvF5H7+E1kTPxjeB59T4pKXixcEZV8aSicE/446agDejSuWDInJxpX3PwBlMWMbWz0C9bIygnf2ujkhWtKoVGtYjFjGTaA/tNeIfOGC/Gt30ywtg7v8rUtKjm2l3334WRefwHa7SVQWU3AWUv5P/5FzVufU/fljC55DiFswwbQ5+V7yX36H0YpfV0Dwepa3POXU/nPl8P7JR60J0opMq45j/QrzsK+16jwZKKuZEpLpuaMI9rfUYgQpVS7U0eUUuS/+1irPdz8RcVY+uW1ee4OlFWFm0qbUpMxtdI0v6dYCvKMD0wmKh95pcNTqEypyVgH9cWUlUbCuNFRvaY8C1ZARN+LpKMOIPnEw7GNHBx1UaNxTCqAuY8kL3ozSV6IHtM41zlh/91JdOxP7fv/Q3t9uP7vG1LOPi581dI+dlj4Ma0tHbGNHBT+OFhnJCcCEeMvtddH+V3/pvjiO6I6LwsR1fOiGxq5KouFrH9cEU4OBKpr2XzG9ZRMvA+UqcfHjYbjMpup+/Q7PHOXESirJBDR6GtbbCMG4V2xnsybLo5J8znr0P7hJS6Bimr8m0oAo4Q0fG4wm0noxvGk8cg6uB+m7AysIwdj32NE1H2RE0ciS4W130/1Kx8DxgvhtAtPIVhpTGHwbza+rkFnbZeOjjSlJKFsFqN6J1T1VPnoa1F9CITYUUopkscfRNrFp4EyLnxEvpkBwm92Eg/ak8wbLqTgnUcxZ6V3eSz2scPx7Dms/R2FiJAQuXRk5vzWd/L5Kbv5iagGlWD8nTTnZ1N0+EUUX3JHi/5UkX8HYjUmtVHm3y5iwPRJDJz/EQkH7EHxpXcSKK9q93EJ+43FlJxI3/ceJ/OGC7Hk54SXe2iPF9vatkeDN2ocL6u1xpyWsmOfiIgpSV6IHpOw/+70++pF8l9/kJTjDqH+21+oee8r6qb9gikjLZyBjbyS2No6e3NBLgXvPMrAX9+l70dPAeAvbloyQrBpaYB1gKxl21kppUYopdxKqbc7/JiIZSNdXXnRKPXcE8ITJ/wbtuJbvQH3b4sx98vrlufrKHN2Rjip4isq6dBjfBu34lkQuwSgMpmipo40Lh2JnF+fsM+YXe6FiCktGWWzkvfkLS3W60Zu+zcVh/u81H09E39oXJ4pNZmE/cZSfte/Ach59G/0nfIc5uwMkk48vMviNGelg8mEOSMVU1rHlqMopa5VSs1RSnmUUpM6sP+NSqlipVS1Uuo1pZR9R+MWvVPCniMxJSVizkrHFHFOUFYLCRFXtoWIN4kHNS2D8CxchWrwtNhH2az4t5ZR//N8/GVVeEJN7Ws+nIr7l4VofwD3nKUtelpFj0mN7WtiS59sY3S22UzW7VeSdPSBlN3yZIcemz/pIWx7jgxXUyREfM3sK9pv/hmuvPD6qHzsNYqOvJjKJyd1+nMQsSezy0SPUSZT1AvrlFMcVL86Ge3zU/73J0k6+kDynr0NezvJC6VU1BsaaKq80FpjGzUY2+ih+BpL6cTO6nlgdrt7RermyguA8rv+TcL+u5Ny6lHGm0eMKwPmlKRueb6OSjn9aHxrN5F9/7WY8zpWMukvKsYS4wSgfdwoGn6aB4SSF4ePpuGHiH4Xjv1jFVrM2EYNwb778BbnQTDWQ5vzsgiUVqL9AcwVNehgkOqX/y+8T9qFp2AbMxT/hq1orVFKoevd2EYNxtqFST3bmKH0eeV+zFlpqNRkKh98iYbp7f7KbgEeBI4HtlmqpJQ6HvgHcHTocZ8A94VuE7sY25ihpF96Braxw4yf763l1P1vBomH7dNtyWohuoI5OwPbmKHG0r1AwHgzfmLL/ZJPOpySS+80qjiVYtC8j4yR1APy8a/fgnVI/xb9ViLHpFoHxXbSSCSlFBlXTzBGmPr8+DeXttlM1PXJd9j33Q1rRGIm4YA9qP3wawBsK1tZYg7GBRutURYLgbKq8G3KaiVQUd2iQkv0DlJ5IWIm6diD8SxaGV6nlxDqHmwbMzQ8f9m7ZhPBVjLQzTVOGlFKkXTCYeQ+cTN9P3giZk38RPdSSk0AnMB37ewaLfSzphITOjxxozM8S37Hs3g1zufeo/q1T0g8cn8K3nsc2+4jotZoxkLjWE1Lfg7K1LFTv39zKZaBsZ2Bbh83JvyxZ8EK8PpoiFh2kLQLJi+sIwbRMGNe2/dHLB2xFFfQ8MNsfKGxdKakRFLPPxlTUgIoqP1wKq4phZiSk0i94A9dGqcpNZnEg/bENnIw1oJc8p65lZSzj93mY7TWk7XWnwIV29zRcDHwqtZ6qda6CngAuGRH4xa9kyk1mcybLib5hMOwDupL4kF7knPfNSQfe3CnmxWL+NNeVZZS6hil1AqlVL1S6gel1KBWDhO3Ivte2Jeta3Wf5JOPBCDo9RGsraPs9mfQrnr6ff4cAwpfJ+efN7R4TGTlRSybdbbFlJqMZ8lqii++Dfe8ZS3u1x4vlU+83uL1fML+TT1rbGu3Eqx3h7ed//2ILWffyMYDzqPhF+P1QrhhpyZcHRvrizNi+8g7OxEzppQkcp+7A9/K9bhnL8Eeap5lSknCOqQfvrWbIBDAu7L1k3ik6EkjcoVlZ6aUSgPuB44BLu/A/hOBiQC7WVPwer34M1OYPn16l8eWMHcl2fOXQyBA5VffUznU6BORV1zK2j6JBAoLWzzG5XJR2Mrt3WJIJnTwuWwffcfG9SUEstNZ/vq7+IbE5oqNavCQ7/OhtDb6XPy6BE9o1Ka/TxY/r1sF61bFJLZIPfp9BHj6Ota38XzppgDJXqOBcWDjVtZO+RlbaNt11DjWzp+LZVMpeSXlFN/xLP68TEofngiZlg7/fGw3x1jMe/SHsz/riqONBSIPtBDoo5TK1lq3SH5Engtyc3N79vvVAT3+M9RBO0Nc9qXrSH/ra7yjBtKwz0g8e7U+maGn4+pJ8RpXJ7RZlaWUygEmA1cAUzASmR8AB/VwjNst8dC9qX51MgD2petb3B9s8BhTy+xWgk4XmE24Pv4GU2KC0a8oJzM8tSRS1LKROEleBF31+LeWYR3aH2U2k7D3GHIevoHS6x8h54Hroi5KVDz0Espmw7d+C6a0lHDvMHN2BtYRg/Ct3oAKBvHMXx4eOxsoKce7wnjv4FtThD5073BvDVNyIgN+fQddUxce6S16F0leiB6n/X7qv5uF6/++wbt6A/2/faVFRtU+driRvAC8S36H/i3XtDeOR/VvLonqeWGW5MXO7gGMq61FHWk8pbV+CXgJYPeEdG2z2UgbOZTdHI4uD8yT3Y8tL01B+3zkaDN7OhwEXfUU+V9kzNmnhUdURiosLMTRDbE0p7Wm5NI76fPfe1B2W7v7L3r6Q1JWbQJrMSMvOZskx4HdHmNbtrzyP7wr1wOQ9+1cbDYj/pzTx3fL93F79NT3sSNqimqo/NW4gpU1awVJzjqw2VB2G0Pvvh5Lbiba62P9Y+9DIICtpp6xU+eTfPIRJB2+bztHjyspQHXEduPHqbRSuRF5Lhg1apSOl+9Xo3j6GYq0M8RVNW8j1S43SXNXMXDMSLK68fPZGb5e8UhrPRlAKbUf0L/Z3WcCS7XWH4X2uRcoV0qN1lqvoBew7z0GlZiAbnBjKXfi27gV68ACfBu3GhVyH08zllgAym7FlJqM1hqtNcUX3kafl+7B0i96yYgOBvEXRVRetLEsoydtPuVafOuM1/f9v30ZS0EuYCRv+jx3hzH6NCJ5Uff5DwRd9ZRceQ99/ntPOEEBkHjAHvhWG0tGXJ98R8L+u6NsVqxDm6aj+beUEXTWhhudmtJSMCcnQXJsl/KK7SfJC9HzlKLy0VfDJVz1P/xG8nGHRO1i230ETCkEQn0v+o+Luj9Y72bT+CsI1rhQVgvmvk0n7NZGSYneQSlVCBzZxt0/A9cC44G929inQ7rrZ8Q6uC9Zt12BpSAXS2jdqUq00/fjp1tNXPQkpRSB0kp8m0qw9MtD2W3b7DpuKXMSdNVjykjFMiDWS0dGh5MXlpJKCCUvko7c9ZaMdIQlYl2zpbQq/PVKOXN8eGqMslmx5mXh/X0jKiWJ2ne+wDp8YLcmLxwOR2TF075Kqcha/p+11od18pAuIHI8SuPHtdsZotiJaL8fZTFe5noWNVVnxXoJn+gWYzEqrwDQWtcppdaEbm+RvIjXKqysQbkkLFpDUGuW3PsMZqcL+5K1RP2l1hqTx0vdXsOwL14LFjO+1etZffq1VFz/R/z9m3q9mapqyQ9VKgaTEpgxfy47oiuqd3I8DeFKwN++mIp3RLMx7CNysP33TawbS6hz7E2B222sJPd6+c1ZjI54fnsSZHu9BLWm6vPvKZ29EOfFJxLITMVy/Vn4CnLQKYlYvpxKXug5fTZTj32/47XaKV7j6ihJXogep8xmUs4cT/V/PgSl8K5a3yJ5Yd+9qaTTs+R3OH5c1P2mpARUoh1qXASqXQQbPCiLmWC9G9eXP2JbvZHEw/bGnB67edai87TWjm3dr5S6ARgMbAy98U4BzEqp3bTWHZ6Xac7vnuocU2oyaef/gdIbHiX337cBxsQR4qT3ir+kgq0TbkY3eBjw4xvbHBVYcfWZDHjoTTJvuzIukhe1H0yNus2UloJ9XMuGlSK650UjZbWQftkZUbdl3no55X9/kqDXh/b522yWtiMqH3mF+h/nEqys5n9PPEViaKytUmqu1nq/HTz8UmAv4MPQ9l5ASWtLRsSuQfv8VNz3At7la/FvKWPAT2+izGb6vHwv3mVrQktUx8Y6TNH1UoCyZrdVY1RhtRCvVVg1m+uoXPEyXq+XzN9CORdbU6WkZUA+qRNOxLtyPTmD+lK1dANaKZTFgq3Bx8DnPyPv37eTEPoZb5i1iJLQ4+1jhjF6Bz/PrqjeKZsym/ryGiz5OQzYfU8SD96rxT7+0eWUXHkvlmovtj+fS7C2nkB5FSNPju5iqo84gtKVW6me9gs2mw1bRS3J//qItAtPIeO68zElGsOn6n+cQ2no65A+Yghje+j7Ha/VTvEaV0fFxytqsctJPeMYlMlEyulHY+nbciKIdeRgMJshEMC3fnOrY6NswwdSv3Er2usNLztRdis1oTWDfT/+lyQvdj4vAe9HbN+Mkcy4qjMH6c6+KMpqwTNvGd5FKym96kG014dt1GAK3n2s256z48EpglU1qAQ7DdPnkHLGMW3valJYBvcj/cJTejDA1tnHjW5xW+Lh+4avqopolr65KKslXCYLRsPWxvLcRtbBfQnWNaASbCirBdvooV0eS6CyJjyiNVBR3c7eoJSyYLw2MWMkJhMAv9a6tbbwbwKTlFLvAFuBO4FJXRO56I2U1ULDzAXhyk7f+s3Yhg1EWS3Y9xrV6oQeEXvtVV12oCqreRUWoe1eVYUVuSQi6vbD9yH1vJNIPGwflMmEe/5yKh/8L0G3B1NKEsHKGkxZaQRr6yiZeC+5j99M0jEHhs+9AJaBsV8yApD9wHXkJNi22Tjckp9D/psPU3770yQdfWCbv7fKZCLvuTvYeO+/yPvfbHSDG7Sm5s3Pqf/hN7LvvZrEA/dsmjQSDILNhvZ4O7R8VsQnmTYiYsLSrw8ZV09oNXEBYEq0YxseKiXTGuvGkqj7g/VuY3CEzYo5I814YXLAHqjIDHX/2F4tFl1Pa12vtS5u/IfxgsWttW5+xWWbzH26d2mRpSAHz6LVBGvr8JeUd2hiTk9IPetYVIKdhIP2IvmUtl4nGgIZKeQ8fH0PRbZtlv59MOdkRN2WdJQsGWmLsliiq2VMJtKvOKvFftaBBaScMZ6Bcz5kwIy3sPTNbbHPjjJnN1X3BCqdHXnInUADxrjTC0If3wmglBqolHIppQYCaK2nAo8BPwAbQv/u6broRW9kGzMs/LFvzaYYRiI6Smvt0FqrNv51ZDlZYxUWAEqpZGBY6PZewzKoIDxFw5SaTNrFp9Hvqxfp8+LdJB2xH8pkQmuNdVBfzLlZKLPZeP27xwgsecZFGe31UXrjo9T+3zfRzToHxUezTlNSQocmnpkz0+jz4t3tJhyVyUTd0fvS79Nnoqo4/EXFlFx+NxX3vRDuoac9Xuq++pEN+55D5WOv7dgnImJGLluJuGUbOzy8zt26vjh8e6CymtJrHsSzeHV4zX7yyUeSffdfqPtiOr5NxQQrqsMdicXOS2t97/Y8zlLQzcmLfn2MDtdagz+AbfSQbn2+jko+/Wjcc5eS++TN7VYtKJ8f27AB29ynpyilsO81mvrvfjW2LeY2r1AJg3Vwv/ALtuQTDmu1y7yy28h99EbqvpkJgUC3LBtJu/g0Uv94PKbsdExpLRsvNxf6nb63jfs2YpSHR972FPDUjkcqdhYZE88m/dLTsY0a3C0jsUVstFOV9QnwuFLqLOBL4G5gUW9p1tlIKUWfl+5lzdsfcfC5ZxgjrZvzByg68hKjp0tSArYxQ0k8aC9Szjmekj/fZ1RbBINU3PsCpoym6uPIXkjxxPXJd1gG98U+bvQ2+3C1x9KvD3kv3Uvdp99T+dhrBGvrAKj5YKoxHtVsgkAw3H/MlNG8UEf0FpK8EHHLPnY4rsnTALBtMJIXvo1bKfnL/VGlcOmXn0nG9RegTCZSzz0hJrGK3qU7J9LUz5iLBrzL1pD2p5MxpSaRfNIR3fZ8naFsVnS9u9XlVP7SSix5WYAxmSTlq1+orfKTfvFpPR1mq+zjRoWTF/Z9x8qbknYkn+KgvnA2waQEMq6Z0OZ+Vc+8Tf13v5I64cQ299kR0kBZ9LTIK7XBejf+oq1YRwzq0NVeEdfuJLqy6gLgPuBerXVZKHHxHPA2MAto+8QXx5TVgm9IQeuJi9D95rwsAiVGa5/cJ2/BMiAfpRQFb/2TkqsewLtsDQBBZ9OqmXgZkxop6Kqn4uGX0Q1urEP7k//6g5izM7b7eEopUs44hoRD96b0qvtpmLkAgkFUgh2VmgxKYc7NJFjvxjpQqrN7KzmTi7hli2jaad1QjGfxaoov+EdT4kIpsm6/kswbL5IXJaLDVIKtQ1eAt1egvIr6b2fiWbiSQGU1GVdNwDZ8YLc9X2dY+/fBX1yO9ke3D6j7ZiabT/wLrs9/AKD8lidJ+WY2rk++w7N4dSxCbSH5Dw7MORlok6lF40nRUvKxB9P/m5coeXgi1m1ccQu66vGt3YR1SPPJg0L0fu7fFrPlrBspOvwiqp56M9bhiB2gtb63lSUl90bcP01rPVprnRhahrI+dtF2L9vIQdhGDiLJsT9oHa5YMGdnkP/aAyQc1LIJZndU1u2ouq9/NvpUACiFKaKJeMOvi9h6/q1UPvIKDT/P79RxLXlZZNx8CaaUJDCZ0P4AAKbkRPq8dC+D5n5I0tGxG/8udoxUXoi4ZRsxKNx0zlLmpPiyO9Gh3gHKbiPn0b+ReMg4PItW4f19Iwn77441xlMRRPyz5GXvUGliu8fPzwV/EO314pmzhKpn3ybrpku67fk6Q9ltmLPS8RdXYA2NcvWuXEf5Hc+gPV7Kb38G7Q/gW1uEqcGDd8U6CAZjHLXBkptJ/29e5sdp3zFKlox0iCU/B93G1btGjYkN65CWE0qE6O3cs5cAEKx2oXV8nMuE2FF9Xry7zftMKUn0efEuym9/mrr//QQY1abxWK1o32MEKWcfS/1XP5F69rFRr808C5bjWbgSz8KVaH+g00tFbcMGouw2LKnJxjRCjw/7XiOx7T5cLnj2cnGTvFBKXQtcAuwBvKe1viTivsHAOqAu4iGPaq0f6MEQRQ9TNivWkYPxLv0dIJy4MKWnkPf8nSSMG03ZLU+ET87Z91wlyQvRLnNB1zcljGQbM5TMv11E3VczsAzui23EoG59vs7qM+khTMmJVD35BraxwzBlpmEuyMW/dhOWgQUkHXMgVY++irZawGyK+ZjUSMpmbffNuOgc65B+JB9/aLcupQJjKZKud0svItFjtNZRZfMJ++0ew2iE6DnKaiHn0b9hHTGYhumzW23YHA9sIweTc+81BG++FJpdVEo8eBy+34uom/oT9j1GdvrY5txM+k39rzF9y2QiWO9GJdq79eKV6Blxk7wAtgAPAscDbb26yWhjXJrYSdl3Hx5OXgBY+uXR58W7sQ41SpxtIweHkxcV972IZ+nvWAf2JeXsYzF349IA0Xt155hUAHNGKsmnHU3tB1PxFxVjGzW4W5+vs6z9+xCorkWlJFH35Y94lv5OyikO/KOHYs7LxDN3GQUfPsWsGTPYp+8gTJnS1Gpnlnjo3t3a/FR7fWw++WoCldWgNQPnfigvHkW3q508DeczbxGoqCb98jONUcH9+sQ6LCF6jDKZyJh4NhkTz451KO0ypSS1uM0ypB/1P/yGKSmRxEPHdfqYSqlwhSnQZg8R0fvETfJCaz0ZQCm1HyCLbwUAiYfsTe0HUwHjinbeC3dhyc0M328dPQTrkP7YRg6i7uufcf3ftwCknDk+JvGK+NfdV5gBfBu24C8uh5IKqt+eQu4Df+325+wMc3oqGX/+Y3hb+/1gNlP94gfUfvg1DT/PJ230AJI+OieGUYqdgbJZCThr0R4vANpVbzROE6IbmZISCFRUA+BduZ7MG+Oj75AQomNMCXbynr8T6+C+mHMy239AO3zrNuPfUoplQD6WglyUNW7eAotO6m3fuQ1KKQ18C9yitS5vbSel1ERgIkBubi6FhYU9F2EHuVwuiasjTJqkcxz4nDVsPfZAVi1d2HKfm87GVO0if4rRbDCYaGfG/DktStC6Q9x9vULiNa540BPTDwJby8CkwGQCb6Dbn29HNY5NzbjaaM6utWb699/HMiSxEzFnp+Pf5EbZbQSqXXG59lrsXGyjhwJgSkpE2W0xjkYI0VnKZiXxoD277Hh1X/2I88UPAGNKYeaNF3XZsUXP6i3Ji3Jgf2ABkA08D7yDscSkBa31S8BLAKNGjdIOh6NHguyMwsJCJK4OOuqoduMKNnhwZ+TjLypGe32MPuqoHgktLr9exG9c8aAnKi+CNS6ClTVgMffKcVxKKQjNQhdiR+VPeghTShIqOVGWjIgeYRmYT78vXsAyMF+a8wmxCwu6PfjWbabmva/Ct1nicGys6LgeSV4opQqBI9u4+2et9WHberzW2gXMCW2WhJp7blVKpWmta7ouUtFbmRLtJB25X6zDEL1AT1RepF96BlVPvoF9z5GknntCtz+fEPGsJ37nhIikTKa4HA0phOg5gQonRUddFp6alrDvbviKiqW5fy/XI8kLrbWjqw8Z+l8u4QghOsXcQ2+k+k97BVNyopTICyGEEEL0MFNWOqbkRIK1xrDKnEf/Jsn0nUDcLBtRSlkw4jEDZqVUAuDXWvuVUgcCTmA1kAk8CxRqratjFa+IH4EaF57ZS/GuWocpPZW0P50c65BEvLJYMKX3zBQa+QMphBBCCBEbSimsIwYSKHdiGzYA7fXFOiTRBeImeQHcCdwTsX0BcB9wLzAUeBjIA2owGnae18PxiTjlW72B0uv/CYBt9BBJXog2+fMyZM29EDGgg0Hj6pc/gDk7I9bhCCGE2AXkv/4gSnp47VTiJnmhtb4XI1HR2n3vAe/1ZDyi97COGBT+2LtiHcEGD6ZEewwjEvFKy2gsIXpc3be/UH7LE2h/gOQTDiP3iZtjHZIQQohdgCQudj7Sgln0eua0FBL22x0A28hBKLs1xhEJIYRoZEpNRvuNkcGBCmdsgxFCCLFLcc9dSu3kabh/W0ygSuY89HZyGVLsFHKf/QfuXxaSsP/uMhZNCCHiiDkrDcAYl2q3xTgaIYQQu5K6L2dQ++FUALL+fhlpF50a44jEjpDkhdgpmNNSSD7+0FiHIYQQohnrsAEMmvuhJC6EEEL0OM+C5eGPTWk907RddB+5RC2EEEKIbqPMZklcCCGEiAlzQS4AymIm4aA9YxyN2FFSeSGEEEIIIYQQYqeTdduV1PbPx77vbjLGficgyQshhBBCCCGEEDsda/8+ZN12RazDEF1EkhdCCCGE6Fba7yforCVQWY25T3aswxFCCCFELyTJCyGEEEJ0q/J/PE3d1J8AyHn0bzGORgghhBC9kTTsFEIIIUS3MmWmhT8OVjpjF4gQQgghei1JXggheh2l1ASl1HKlVJ1Sao1S6vBYxySEaJs5OwNTRirWof1RCfZYhyOEEEKIXkiWjQghehWl1LHAo8C5wG9AQWwjEkK0J/3PfyTjL+fEOgwhhBBC9GKSvBBC9Db3AfdrrX8NbW+OZTBCiPYppWIdghBCCCF6OVk2IoToNZRSZmA/IFcp9btSapNS6jmlVGKsYxNCCCGEEEJ0H6W1jnUM3UopVQusjHUcrcgBymMdRCskrs6RuDpnlNY6dXsfrJTqi1FpMRc4BfABnwGFWus72njMRGBiaHN3YMn2Pn83idfvlcTVORJX5+zQuWBHxelrg3j9XklcnSNxdY6cC1qK1++VxNU5ElfndOhcsCssG1mptd4v1kE0p5SaI3F1nMTVOfEcVzv3FwJHtnH3zxgJC4B/a623hh7zFHAn0GryQmv9EvBS4/PH29clHmMCiauzJK7Oae9c0APi7rVBPH+vJK6Ok7g6R84FLcXz90ri6jiJq3M6ei7YFZIXQoheQmvtaG8fpdQmYOcuGRNCCCGEEEJEkZ4XQoje5nXgOqVUnlIqE7gB+CK2IQkhhBBCCCG6065QefFSrANog8TVORJX5+zMcT2AsV5vFeAGPgQe6sHn72rxGBNIXJ0lcXVOrOOK9fO3Jh5jAomrsySuzol1XLF+/tbEY0wgcXWWxNU5HYprp2/YKYQQQgghhBBCiN5Nlo0IIYQQQgghhBAirknyQgghhBBCCCGEEHFNkhdCCCGEEEIIIYSIa5K8EEIIIYQQQgghRFyT5IUQQgghhBBCCCHimiQvhBBCCCGEEEIIEdckeSGEEEIIIYQQQoi4JskLIYQQQgghhBBCxDVJXgghhBBCCCGEECKuSfJCCCGEEEIIIYQQcU2SF0IIIYQQQgghhIhrkrwQQgghhBBCCCFEXJPkhRBCCCGEEEIIIeKaJC+EEEIIIYQQQggR1yR5IYQQQgghhBBCiLgmyQshhBBCCCGEEELENUleCCGEEEIIIYQQIq5J8kIIIYQQQgghhBBxTZIXQgghhBBCCCGEiGuSvBA7TCm1Xil1t1LKFfrnVkoFIrbXRXzcoJQKRmy7Io5zfgf3m6SU8iul+jaL416llE8pVRv6t0op9ZxSqiB0/3mhWFWzx1mUUqVKqT9099dKiF1FF54X+oV+34e18hyfKKWeCH2slVIlSilLxP2Nv9s6tL004jkCoZgat2/via+LELuKrjoHhI7laHb/JqXUh0qp/Zvtp5VSw5vddkno9nPaOeZmpdR93fcVEUJE6spzhNh1SPJCdJWZWusUrXUK8Bfgl8ZtrfWQiPtOBLZE3JfSeACt9Tvt7aeUSgbOAqqB81uJ4wOtdSqQBZwB5ANzQwmMT4AM4MhmjzkB0MDULvtqCCGga84Lm4HvgAsjD6yUygJOAt6IuNkZOlajk4CqiGONjTj+DODaiOd8uEs/cyEEdME5IMKW0O2pwEHACmCGUuqYdmK4GKgM/d/qMUPHPQy4XCl1+vZ9qkKI7dCV54iwyAsZYuciyQvR25yF8Qblflp/IQKA1tqntV4KnAuUATdprd3Ah8BFzXa/CHhHa+3vloiFEDvqDZolL4AJwFKt9eKI294i+vf7IuDNbo5NCNGDtGGT1vpu4BXg0bb2VUoNwrhgMRE4XinVZxvHXQfMBHbr4pCFEN0sVEm1SSl1q1KqGHhdKWVSSv1DKbVGKVURqtbKCu2foJR6O3S7Uyk1e1vnBxE/JHkhYi500jisg7tfDLwHvA+MVkrts62dtdYB4DPg8NBNbwBnK6USQ8+dDpyCvMERIq40Oy98AuQ0O09cSMvf20+BI5RSGUqpDIzf+8+6O1YhRNfr4GuDycA+oarM1lwEzNFafwwsp/WKzcbnGwEcCvy6PfEKIXpWK+eIfIzK60EYCcu/AqdjJDD7YlRiPh/a92IgHRgAZGNUfTT0SOBih0jyQsSc1jpDa/1Te/sppQYCRwHvaq1LMErJ26y+iLAF42SG1vpnoARjSQnAOcAqrfWC7QhdCNFNIs8LWusG4CNCVRWhNxn7Au82e5gbmIJRcTUB+Dx0mxCil+nga4MtgMJYEtqai2g6T7xLy9cMfUNvgGqAVcAsoN3XI0KI2GvlHBEE7tFae0KvG/4M3BGq1PIA92JcwLQAPoykxXCtdUBrPVdrXdPTn4PoPEleiN7kQmB5RKLhHeBPSilrO4/rh7HetdGbNJWWX0j0mnkhRHx6AzhHKZWA8Xs7VWtd2sp+jb/fsmREiJ1fP4yeVc7mdyilDgWGYFRqgpG82EMpNS5ity2hN0BpGAmQBuQ1gRC9VVloiXijQcAnoQSlE6P6KgD0wVhm+jXwvlJqi1LqsQ68nxBxQJIXoje5CBiqlCoOrWd7CsghukFfFKWUCWNZyIyIm98EjlFKHYzR9Kv51VshRJzRWs8AKoDTgAtoOzExAyjAeHEiV1CF2LmdAczTWte1ct/FGFUZC0KvGWaFbm/e9woArXU1xuuBU7ojUCFEt9PNtouAE0MJysZ/CVrrzaHeePdprXcDDgH+QBvnBhFfJHkheoVQomEYcAAwLvRvd1ovA0UpZVVKjcHoj5GPkegAQGu9AeNNzXvAt1rr4m4OXwjRNd7EaM6XgbE8pAWttcZ483Fq6GMhxE5EGfoppe4BrgBajDkOVWidg7HufVzEv+uA81ubRKCUSiHUCLi7YhdC9Kj/AA+FGveilMpVSp0W+vgopdQeSikzUIOxjCQQu1BFR0nyQsRcaF7z4e3sdjHwmdZ6sda6uPEf8Azwh8buwcC5odnPToz17hXAvlrrLc2O9wZGOZmUlQsRh9o4L7wJDMQYiexp67Fa66WhaUNCiF6qlXNA39DfdxcwG9gDcGitv2nl4adjLAF5s9lrhlcBM8aI9PAxQ8fdgNEfq82mnkKI+NGB9w/PYLwX+EYpVYvRjPfA0H35wP9hJC6WA9OBt7sxXNFFlFyYEkIIIYQQQgghRDyTygshhBBCCCGEEELENUleCCGEEEIIIYQQIq5J8kIIIYQQQgghhBBxTZIXQgghhBBCCCGEiGstRkXtbDIyMvTw4cNjHUYLdXV1JCcnxzqMFiSuzpG4Omfu3LnlWuvcWD1/PJ4P4vV7JXF1jsTVOXIuaClev1cSV+dIXJ0j54KW4vV7JXF1jsTVOR0+F2itd+p/I0eO1PHohx9+iHUIrZK4Okfi6hxgjpbzQZR4/V5JXJ0jcXWOnAtaitfvlcTVORJX58i5oKV4/V5JXJ0jcXVOR88FsmxECCGEEEIIIYQQcU2SF0IIIYQQQgghhIhrkrwQQgghhBBCCCFEXJPkhRBCCCGEEEIIIeKaJC+EEEIIIYQQQggR1yR5IYQQQgghhBBCiLgWd8kLpdS1Sqk5SimPUmpSs/uOUUqtUErVK6V+UEoNilGYQgghhBBCCCGE6CFxl7wAtgAPAq9F3qiUygEmA3cBWcAc4IMej04IIYQQPUYuagghhBAC4jB5obWerLX+FKhodteZwFKt9UdaazdwL7CXUmp0D4cohBBCiJ4jFzWEEEIIEX/Ji20YCyxs3NBa1wFrQrcLIYQQYickFzWEEEIIAWCJdQCdkAKUNbutGkhtvqNSaiIwESA3N5fCwsJuD66zXC6XxNUJElfnxGtcnaWUmgDcAwwEioFLtNYzlFLHAM+Hbp8Vun1D7CIVQsRAi4saSqnGixormu8c768N4vW8LXF1jsQlhBDdpzclL1xAWrPb0oDa5jtqrV8CXgIYNWqUdjgc3R5cZxUWFiJxdZzE1TnxGldnKKWOBR4FzgV+AwpCtzeWil8BTAEewCgVPyg2kQohYqTDFzUg/l8bxOt5W+LqHIlLCCG6T29aNrIU2KtxQymVDAwL3S6E2PncB9yvtf5Vax3UWm/WWm9GSsWFEIYOX9QQQgghRO8Xd5UXSikLRlxmwKyUSgD8wCfA40qps4AvgbuBRVrrFqWhQojeTSllBvYDPldK/Q4kAJ8CtyCl4j1C4uociSsmlgIXN27IRQ0hRFvLTWMblRCiq8Rd8gK4E+Ok0+gC4D6t9b2hxMVzwNsY69wnxCA+IUT36wNYgbOBwwEf8BnG+UFKxXuAxNU5Elf3kYsaQoiOaGu5qRBi5xF3yQut9b0YZeCt3TcNkNJwIXZ+DaH//6213gqglHoKI3nxI1IqLsSuRC5qCCE6IrzcNLS9OZbBiPjg31KKb91m/FvLsO89GtuwgbEOSeyAuEteCCGE1rpKKbUJ0K3cLaXiQuxC5KKGEKI921puqrVuaLavLCfdDr01rvS3vyH5xwUAVJ97DHXH7BsXccVKvMbVUZK8EELEq9eB65RSUzGWjdwAfIGUigshhBAi2raWm94RuaMsJ90+vTUu56pynL8uA2BYehZZPfQ59NavV7zrTdNGhBC7lgeA2cAqYDkwH3hIa10GnAU8BFQBByKl4kIIIcSuLGq5qda6HHgKOCmGMYkY865aj/O5d8Pb9t1HxDAa0RWk8kIIEZe01j7g6tC/5vdJqbgQQgghgHaXm4pdlG/dZggGAUhy7E/yCYfFOCKxo6TyQgghhBBCCNHbNS43zVNKZdK03FTsogKlleGPzX2yYxiJ6CpSeSGEEEIIIYTo7R4AcjCWm7qBDzGWmIpdVOJRB5Cbl0WgtALriMGxDkd0AUleCCGEEEIIIXq1bS03Fbsma/8+WPv3iXUYogtJ8kIIIYQQQgghxE7Js2gV3tUb8G8tI+WkI7AO7R/rkMR2kuSFEEIIIYQQQoidUs2bn1M39ScArIP6SvKiF5OGnUIIIYQQQgghdkrm/KZmnf6t5TGMROwoqbwQQgghhBBCCLHTCNbWUXzZXZjzsvH9voGUUxyYC3JJ2HdMrEMTO0CSF0IIIYQQQgghdhr+kgq8y9fC8rVYBxaQ888bYh2S6AKybEQIIYQQQgghxE4jUFIR/tjcJ3sbe4reRCovhBBCCCGEEELsNOx7jaLgnUfxl1RgSk6MdTiii0jyQgghhBBCCCHETsOUkoR9r1HYYx2I6FKSvBBCCCGEEEIIsdOq+2YmvtUb8G8tI/3P52AdkB/rkMR2kOSFEEIIIYQQQoidVu2HX+P+dSEASccdIsmLXkoadgohhBBCCCGE2GlZCnLCHwe2lscwErEjpPJCCCGEEEIIIcROY8uZ14PJhLlPNjn/vIHEI/fHnJOJpSCHhP12j3V4Yjv1uuSFUioLeBU4DigHbtNavxvbqIQQQgghhBBCxJr2+fGu3ghaw4p1mBITSB5/EMnjD4p1aHFPaw2AUqpHnq/yyUkEq2o6vH9vXDbyPOAF+gDnAy8qpcbGNiQhhBBCCCGEELEWqHAaiQvAnJ2Osva66/UxobUmUFLB5pOvxl9aSfntzxhfy25U/90sXJ9+3+H9e1XyQimVDJwF3KW1dmmtfwI+By5s6zFFRUVMmjQJAJ/Ph8Ph4O233wagvr4eh8PBBx98AEB1dTUOh4PJkycDUF5ejsPhYMqUKQAUFxfjcDiYOnVq+NgOh4Np06YBsHbtWhwOB9OnTwdg5cqVOBwOZs6cCcCSJUtwOBzMnj0bgAULFuBwOFiwYAEAs2fPxuFwsGTJEgBmzpyJw+Fg5cqVAEyfPh2Hw8HatWsBmDZtGg6Hg6KiIgCmTp2Kw+GguLgYgClTpuBwOCgvN9Z1TZ48GYfDQXV1NQAffPABDoeD+vp6AN5++21uuOEGfD4fAJMmTcLhcIS/li+//DLjx48Pb7/wwguceOKJ4e1nnnmGU089Nbz9xBNPcNZZZ4W3H3nkESZMmBDefuCBB7jgggvC23fffTeXXnppePu2225j4sSJ4e2bb76Za665Jrx9ww03cMMNN4S3r7nmGm6++ebw9sSJE7ntttvC25deeil33313ePuCCy7ggQceCG9PmDCBRx55JLx91lln8cQTT4S3Tz31VJ555pnw9oknnsinn34a3h4/fjwvv/xyeNvhcMTsZ2/jxo1x+bMnhBBdTSlVqJRyK6VcoX8rYx2TEEKI2DHnZdF/2isUvPMoOY/eFOtweo26T79n86nX4lm4kiLHJdS8+yWbjv8zlU+8TqAT1RGdESir6tT+vS0NNRIIaK1XRdy2EDgyciel1ERgIoDVamXFihUUFhbi9/txOp0sX76cwsJC3G43TqeTpUuXUlhYiMvlwul0smTJErKysqiursbpdLJ48WJSU1OprKzE6XSyaNEiEhISKC0txel0snDhQiwWC1u2bMHpdDJ//ny01mzcuBGn08m8efPwer2sW7cOp9PJ3Llz6d+/P7///jtOp5M5c+bgdDpZsWIFTqeT2bNnU15ezpIlS3A6ncyaNYutW7eyYMECnE4nv/76Kxs3bmThwoU4nU5++eUX1qxZw6JFi3A6ncycOZOsrCwWL16M0+nk559/Jj09PXy8GTNmkJKSwtKlS3E6nfz4448kJCSwfPlyAoEA06dPx2KxhOMpLCwEjGRMVVVVeHvVqlVUVlaGt1evXk1FRUV4e82aNZSVlYW3165dS2lpaXh73bp1lJSUhLfXr18ftf/GjRuprq4Of2+KiorweDzh+zdt2gQQ3t68eTN2uz28vWXLFurq6sLbxcXFBAKB8HZJSQk2my28XVpaytq1a8PbZWVlrFmzJrxdUVHB6tWrw9uVlZVR8VRVVbFy5crwduP3NBY/e/X19W3+7NXV1cXsZ08IIbrJtVrrV2IdhBBCiNhTJhOW/Bws+Tnt7yzC/FvLCFbVoEwm419KEolH7Q++ANrjxV9SAUphycvqkufTWpP7+E0EyirhnM86/qDe8g84HChudtuVQGFbjxk5cqSORz/88EOsQ2iVxNU5ElfnAHN0x3/fCwE34Ar9Wxlx3zHACqAe+AEY1JFjxuP5IF6/VxJX50hcndOZc0F7/0Lniis68xg5F3ScxNU5ElfndOW5YHv+ybmg43aGuJyvf6LL7nhGb73sLu0rrey+oHTv/HqV3fmsXjviJL1myPF63djT9Pp9/6grHn45fL/rqx/1hoPP1xUPv6x9JRVdGldHzwW9rfLCBaQ1uy0NqI1BLEKI7tfiaqpSKgeYDFwBTAEeAD4ApAuTMN7Men0ouy3WoYie9U+l1CPASuAOrXVh8x0iqzJzc3PDVXLxwuVyxV1MIHF1lsQlRPyq+/JHvMuNJdCBLaVYcjO75Xn8JRVYikq75djdKfueq8i45jz8W8twz1pM6p9OwpyWEr4/+cTDse+3OzWTPqXs+n+S+8TNWPr16dEYe1vyYhVgUUqN0FqvDt22F7A0hjGJnUywwYPro69Ju+jU9ncWsXAmsFRr/RGAUupeoFwpNVprvSKmkYlupQMBzGVO3HOXEiitxF9SQaC0MuJjY1sHgqSeNZ7se66OdciiZ9wKLMNo5j0BmKKUGqe1XhO5k9b6JeAlgFGjRul468NTWFgYl72BJK7OkbiEiD0dDKJMLVs7Wgpyw8kL/9Yy7HuN6pbnL7v5CfJmLYQLz+mW43cXZbFQ9/XP2McMJeMvrcduyc0k65ZL0X4/ytLzqYRelbzQWtcppSYD9yulrgDGAacBh8Q0MLFTCZRWUPnYa6ScfRympIRYh7Ora+1q6liMXjdA+LywJnR7i+SFXG3dPvEWl3I1kPvI2+SWVLKxA+O7Kt75gqV7DiCYmdoD0cXf16tRvMbVlbTWsyI231BKnQecBPw7RiEJIYSIoZIr78W7aj2WvCyy778W+9jhAKScOZ7EQ/fGXJATvq07ZFxzHtULl3fb8buT+9eFWAf3a3+/WYvx/r6R9ItP64GomvSq5EXI1cBrQClQAVyltZbKC9FlAuVG11v/5hJsIwbFOJpdWqtXU4EUoKzZvtVAq+9S5Wrr9om3uGre/JxKZx1epbDZOrYk5ICBQ0nYt2cmacfb16tRvMbVzTTQMwPqhRBCxJ1ASQXBqhq8VTVRY1KTHPv3yPMrk6LhoLForVEduOASTwKllZhbacjZ/HPRbi+e2UtgB5IXNW99TsOPczHndrwBaK9LXmitK4HTYx2H2Hk1juwJVFTDiBgHswvbxtVU6X2zC3LPacpRW4f0xzqsP+a8bCx9sjHnZWHOy8LSJ4eqf71J/Xe/AuDfVAo9lLwQsaGUygAOBKYDfuBc4AjghthFJYQQIpYCFc7wx+Y+2T363Nrro+SqB6h+ZGKvSlxorw+0JlBZgzmnqRdIoLoW16ff4/roG/q8cl94gos5J4NAuXOHntOzdA0Nvyxsf8cIvS55IUR3SzhoL2y7DYs68Ym40Hg1dSlwceONSqlkYBjS+2anpYNB3POWhbdzn74V27ABre5rSkkiWO8Gn5/6738l5bSjeipMERtW4EFgNBDAWDp2utZ6ZUyjEkIIETMDfnqTQEU1gZIKTBENJ3tC7SffYc7NJO3TH6k3p5J41AG9IolRP30OZTc+Cgk2ii+7k7wnb8E2cjDl//gXDTPmAVD74ddk/vV8AMx5WQRqXDv0nNuT/GjZyUSIXZyubyDj2vO6rYmPaJ9SKkMpdbxSKkEpZVFKnY9xNfVr4BNgd6XUWUqpBOBuYJE069x5+dYUEXQahTXBlESsQ/u3uW+gqhpdV4/2evEsXt3mfmLnoLUu01rvr7VO1VpnaK0P0lp/G+u4hBBCxI4ym7HkZWHfY0SPJg60z0/FPc/jXbaG1Ck/U3LVA3gXreqx598RvqKtBGrrCGzcinfRaspueBStNSlnHhvep/6bmY0jyjHn59Dvyxd26DmzbruCvBfuJPv+azv8GKm8EKIZ5wvvY9t9BAn77BbrUHZl27yaqpQ6C3gOeBuYhdETQ+ykIpeMeEYMaPWFiNaaYIWThP33wPWx8d7Vv6mkx2IUQgghRM/RgQBlNz1O3m8LcT+TQ8L+u3focRX3/wd/0Vb8W8sp+OgpTIn2LovJt24ToFGJdrTHi25w41m8Ou4viHrXbKT6Px9Cg8eoczab8G3cir+omKSj9ifxiH1JOuYgkk88PPwaTClF7cffknzcIZhSk7freW3DBrRZSdsWSV4I0Uygwon75/l4l6wm58G/xjqcXZLWugxos6uS1noaRmJD7AI8c5uWjHhHtl514Vu7iS2nXYelvzFvXKUkYynI7ZH4hBBCCNGz3HOWUj/tVyxeLxX3/4e+n/+7Q1UWDT/Pw7+5FDAae5oG9+2ymLTXT8JBe+GZsxT8fggG8K5Y22XH72paa1wff0vlI6+g3V5UWrLxf4LRGN0zbznWgQX0eeGuVh9f+84X2McOxzZ6SI/FLMtGhGgmUO7ENnoIgaqaWIcixC5Pa407MnkxovUMfcOPcwCj2kLZbJgS7QSqatA+f4/EKYQQIj4opUYopdxKqbdjHYvoPv4tpeGPfes24Z61GICgqx7t8bb5uMgLG/6tzYfX7Rj77sPxFxXT5/UHqf7TcfT/7lWy77umS5+jqwRr6yi/+Qkq7n0B7Ta+XspsxtqvD8pkpAgi+421xpyTib+ssttjjSTJCyGaSTnjGGx7jtzhDrpCiB3nLyomEPrDaEpJwtev9WqKQFkVmM3Gfo1dsoNB/CUVPRKnEEKIuPE8MDvWQYjuFSguj9qu/eB/AFQ98zYb9j2HjYddiOvzH1o8Lv3P55D3/J30nfw09r27tog3UONCu+pJ2G8sdcfsS/03Mwl04esQ7fejg8EdPo5n4Uq2nH0jdV//HL7NOmwAfV5/gKw7rmzab97ybR7HnJtFoLxqh+PpDFk2IkQzaX86GX9ZFYkH7hnrUITY5bnnNvW7sO8zBsyt59yz/n4ZGVedS8PMBVS/OhnvsjWAUYlhDS0lEUIIsXNTSk0AnMBMYHhsoxHdKVAafcW//vvf8BeXh5MFQWctymZt8bjEg/fqtph8qzZgHT4wvHzFs2wNtjFDsfTN6/SxtNa4Zy7AvudITKnJBOsaKLvpcWwjBpF508XtH6C1YwaDpPzvV7ZOnQ2BQPj21HOOJ/OWywjWuFC7DUdZLWifH9/6zQQqqzFnpYf39ZdW4vr4G9IuOIX0K85CJSduVyz1P86h6olJmHOzSDxi3w4/TpIXQkQIlFdRfNld9Pv8OTL/dlGswxFil+eZ01SymLDv2G3ua0pNJvn4Q6n//rdw8sK3cQsJ++6GssqfOyGE2JkppdKA+4FjgMu3sd9EYCJAbm4uhYWFPRJfR7lcrh2PKRDAUupEeX34BuXHT1xdKGvRMhK8XoJa4/Uayx4WPvYfrFtKsPt9qKBm4ab1eAt7bvmodc1mbMP7sLKwEJfLxWaTn+DXP+AyNXT6WOaSSvrc9QpaKfz9c9FKYdtYAt//yu/V5dQd3fE3/ACqwUPWfz4lZdl6vKHkSjDRjvOiE9iw+1BMU74i/Z1vqRu/L6l9MrCt3QLA7Dc+xL33CABSP5lOyte/oYKa1Vs2UX/IHqgGD8GstE5/fkk/zCNjxVpYsZatuu1lPs3JqzkhIgQqnCiLUXpefNld5D17G6aUpBhH1bvpYJDa9/9HsKYu1qGIXiiy8iJhv7FQtbXdx1j65RFscKM9XipufwZr/3wSDxnXjVGK3sZSUoUOBsPreoUQO4UHgFe11kXbatyotX4JeAlg1KhR2uFw9Ex0HVRYWEhnYvIXl+OZvxzvmiJ8azeR+dcLCLrqKXvy/wiUVTHg+1e3exrEjsTV3bY89xlemw2v14vNZjSYzJu3hv7fvgwmRaCyhhHpKa1WX3QHz8KVeJLqsZ+5H9aRg/lx1i+MPPpwGn5ZSOaIMVj6da4KtPbjb6kIfV4ZI4eiLBbqi40lGiP69CWjk9+L6lcnU7VmK16lsNls2PcaRe5jf8PSrw8Nvy6i5KbnCVRVk5uaRsKxh1P9+icAjAxYyAo9V22pm4rv5gPQd95a0g89iPrp88l75h+digWgavFmqhu/b/vuBa937HE7/V9tk6vzmS6x6wqUOzFnZwBGE59AhTOm8fR2vo1bKbnsbuq+/JGkow+IdTiil/EXl4fHnaoEG7bdhnXocZb+fSAQBJ8f7fW323BK7HqU20P9tF9jHYYQoosopcYB44F/xTiUHlHz7pdsPuN6dCCAZ8EK6r6ZCUDy+IMwZaZi3304/b96kYQD9qBhxtwYR9t5gfIq6r76kap/vUntB1Nb3ydi2YgptHQhUF5F/Xe/osxmLLmZPZa4AKj7dibltz7FlnNvpvqV/8PkdFHz4VTqpv1C8SV3dvp4KsGObcxQMJlI2H8Pch67Cfs+Y8i++y9kXHNep4/nW1MU/jjlzPHkT3oonFAJNDYuDWpMWRnY990tvG/kxLfkk4/ElJpMwn5jybjuT5hzMre750X6JafTd/LT9PnvPSSfdESHH7fTV16YK6op+/tTZP39UsyNTdyEaIvJhC00i9mclU6gwol1UNeNUNrVuD7+lqSjDyD1/JMhqGMdjuhlIqeM2Pca3erSD9+6zbjnLSPx8H2x5GUBYOmbh7JY0ADBIIHNpS0eJ3ZxSmHfb7f29xNC9BYOYDCwMVR1kQKYlVK7aa33iWFcXc6zcCXV//2QvBfvBqVIPuEwkk84rNV9s2+/AlNG50v6Y6Xmrc/xbSzGvvsIyu94BjCqLlPPPSFqP+31EaisNj5WitQL/kD1fz8CoPb9qW1+PRofW3rNg/iLKwg4axjw4xsdGrHaHs/SNWivD5WShG3MMILU4V25nmCNC5/HS6Ci6QJpR6ScfAQpJx9B0FUPWmNKtJP/+oOoUHPyzvJvLgl/nHzCYVGvqbTWmPKyCNY1YB3SN6qRqXf5WoL1bkxJCZiSE+n3xfPhz8NXVGw0TN8OptRkbKnJMHJw5x63Xc/Wy9R99SObT7mWmve+Qkc0JxGiucSD9yLz2j8BYB3cD93giXFEvY9v3WaKL70T75oiMm+8iLSLTkWZzdJzQHSaJ3LJyL6tv9Gs+98MKu55nk1HX0bVs+8AxrIRbBZMaSlYhvQn55839ES4ohdR/kCbV/OEEL3SS8AwYFzo33+AL4HjYxdS96h8chLZd1+Nfbdh7S59s/Trg/u3xdscHRovAuVVOJ97j9r3vgonLgC8K9ejdfQFsEDEeM5gWhKp554YnjjmnrME7+8b23weZbPiWbwa37pNBKtqCDpruyT+xIP2xJSeim3YQOy7DQWLGfuYoei6Biy5Wds9/cyUkhRe9tNW4iLYgfcr/ogLOZZmjcxTzxzPwO9fY8iqL8n48zmY01OxDh8IgPYH8CxeFd43MgFjycsi5YyjO/y5dIWdP3kR+lkP1tZR+dBLbP3TrXiW/B7bmETcqp08jYZfFgKQ89BfSTx07xhH1Htov5/q1z5h64X/IOnYg7EO6RfrkEQv554TMWmkjeRF/fQ54Y9tIwcBYMnPQVksKLuNYFU12uvr3kBFr1T9/Pv4m43aE0L0Tlrreq11ceM/wAW4tdZlsY6tK+lgkD7/uYekYw7s8GNqJn1Kw6xF3RhV13BNKSRYZyz3tw7uR9LRB5J+xVlk33MVNBsP6o9YMhLISMWSl0XSMQeig0F0IEDN219s87nMBU1j1/1bu+ZHJPGgvUg5/Rj6TXkuPF0k+/5rSDruELLvvwZ7B5e+doYOBql68g2KL7rNqNBoaz+fP5w80Rivk5rzLPmdsr8/iSkpAYCEfcY03Te/9ZGpym4j46oJO/AZdN7On7wwKXRQE2zwoINB3L8sYPOJf2HTyVfhW7sp1tGJOOOeuYBglVGG5p67lIaf5sU4os5r+GUhJqerR59TB4PoBg/eFWspeP8J0v50sjTCEzskUOEMn6OV1YJ9z1Et9tFak/KHI0g4cE9Ugi2cbFRWC5Y+2eH9/Ft2qteuoiuYFMHqWqqeejPWkQixy2p+Nb2Lj32v1vqCbnuCGHB9MZ2Ku58Lv7nsqMSjD6T++1ndFFXXSbvkdHKf/geWAflk3noZec/eRuYNFxpLHJpVHAQiqhiCGSkApJ57AtrjJVhZTfV/PqDivhfbfK6c+66h7+SnGfjLO0ZfiS5g32sUuY/eGHWbbdhA7GOGRvWb6Cpaayru/DfVr3+Cd/laym56HO1rfbKKf2sZhH7fghmprfYC8ReXg79phYJ974jkxbzWkxcAxZffjXdN25UuXW2nf3fh75tDzr1XYd9tKMpkQnt8aLcHz+wlbDnnJmo//6FbT56idwmUV2EKlUN5V66n/vvfYhvQdii58h5Svu65P1KehSspve5hTKnJ5D52E9b+neumLERr3BF/KG1jh2NKtLfYRylF2oWnkv/q/Qz46a2obuqRXb0j13kKAcYaaWw2aqf8QMUjr6CbXdUTYmfiWbgSc0ll+zv2IN+6zWw5+epYh9Fr+IqKqXz0VdIuOKXTj0066gAaCmfH/dJ5pRTJ4w+i3+fPkXT4tseARjbrDGSmApBwwB6YM4yP0Rrfprb/9tv3HIlt5GBMqcld0u8CjCaq3tUbWtyeet5JJI0/uFPHcr7wPq4vf9xmdaBSCvt+ESPkLRa0v/XvceSSEX9O6z1QAqUVmHOzwtuRy3U9C1ai/U2JEd+6zVQ++iql1z2Md9V6Ap08v/jLqth44HlsPukqSq97uFOP3emTF9piJvWcE+g35XkKPnwSrGZQgAb/llLKbnyU4svuoua9rwj6/Tj/+5GUke7CAmVV4cau5pyMXjdtRHu8qAQbNWd0vGvvjqp583MsAwokCSi6VEf6XUQyJUQnNyz98sIfe1evp75wtvyMijCdlGBUjFVW4/z3u73iqqQQ28s9ZymZr38V6zDC3POXU3zJ7SQdf2isQ+kVdCBA+T/+RfoVZ2EbPaTTj7cOLCDvmdugi96kd7eO9EjzlzZVXgRClRdKKez77AYmE6DwLvu9R//u1370TavJA0u/vHDVQ0cEnLU4X3if8lufYvMJf95mP4vUM8eTcfUEUs85gbxnbm31Qg8Y73nDx8/JiLov2ODB/dtigtWuqCXf5oJczKEq1mB9A95VTYmZQHUtNW9Nof6H3wjW1HW6aWegvIpgXQO+jVu3mWRqzU6fvIhkGzmI/tNeJeNvl2Du3wdzVjoqwY571iLK//4kG8aeTuVjr7L5tOuo/b9vYh2uiIG+k5/GOtiYLmLOzgh3Mu4tApXVJJ9wGGmfziBYW9ftz+ddW0TN+19R88Zn1Lz+abc/n9h1RE0aibyy0EGNyYuAs5aK+/5D6bUPyVJBERbITEWZlDEFyeej8v7/SHJL7JSCrnoSDtwTS3HFdjcM7Eo6EMCcnUHOozeRef1Otaqj2yizmYxr/0TahZ2vumhkHdof79I1XRhV19jeqrfIZSONyQuAvKf+jqV/PqacDALO2qgxn91Fa03p3x7Du2Q1vvVboioUAIKuBracfSP1P83r0PKKyP4Stt2GtZmQaJR+1blk3fVnlKXtpI8/IkEQyE6Pus+3tojiy+7C+fx7uD6ZFr5dKRXd9yKiIraxpwcY/TSwtN5IVGvd6vuRyPGqlmbJlPbsUskLZbFgHz2E7H9czsAZbxpTECwWY21+ajJBZy26to5AcTme5WvaXDckdk7a6wvPhgaw7TacnIf+GuOoOsdSkEvOg3/FsqWchl+7vzlT5T9fQdlsKLOJ6lc/7vbnE7uGYG0d3hXrjA2TiYRxo7f9gFY0/mFVSkGoVLathlNi16MtZtInnm1ciVSKoKuuRxK+QvS0+ulzcL74AQ37jaH2/dhVX2itcT7/HpWPvIp1YAGJB+0Zs1h6E/eCFbg+/Z7Eg/faoV5ivqJiym59Ku6StNUvf0zJNQ/iW7e51ftr3ppC+W1Ps+XsG6MqEFpbNgLG+M2UUxwopVBKUfv+/7b5/FrrbTa67IhASQV1X/1IsK6ByvteCFV+NHH93zf4i4opufJe6j79od3jWYf0J+PqCSQcuGeHBgc0fq7bEr1sJDp50dgXLFjvRkUsv4VmfS8iXkOZczLIvPEicp+4mb7vP07ySYe3eE4dCFA68V42Hnw+VU++EXVf4mH7MODnt+j76bNk3np5O59htF0qeRHJlJJE1t8vo++HT2DfewwmkwlTeoqxXsjjpf77WRQdeYkxXrUXjBcSO85fWknVv94Kbyu7tdctG3G+8D7uecvw7D6Uhp+7v9lo6vknY0pOBNihKwJCRHLPXx4usbSNGhzVy6KR8/n3KLnmIWo/nNrq72l4DJjVAkGNfc+R4Z9VIQAyr7sA8+ACI3nh9lLzyuRYhyREl2uYPoeE/cZCMED1m5/3aGO9Rtrro/zWf9Hw0zwy/vzHHn/+3ipYW0f5rU8Z7092kG3MUPD68K3t+saR28tfUkH1K/9Hw/Q5bDnjr7gXrGixT+2HX+OaUoh3xTp8Ef0kIqeNBDNSox6TOuGE8Mf1036J2rdRoMLJ5lOvZeMB57H5lGt36PPwLlsDZjOmjFRso4e2SDJZBhYYY1wDATxL2594aR3cl4yrJ5D/6v1kXHPeDsXWKLL3VyA7uueFsluxjxsNwWDUGFSIXrbrnrssnPxSJhPpl59pNFO1WaltZbpLw4x54QmO1a9/Qt03Pzc9p1KY01OxDR+ILTSStaPiJnmhlLpWKTVHKeVRSk1q5f5jlFIrlFL1SqkflFKDuuJ5baOGkP/mw+Q+fhPWgQWYMtMwZaQRLHMSqHBS9fRbFB1zOb4tpXi7oVOsiB/BCifmnAzqv59F6bUP0TBzASWX303Q3f7s5HhR97+fMCUn4hk7ZJudgbtCoLKaqsdeZ9DCjyn44AnS/3xOtz6f2HV45jSVeSbsv3ur+9RN/ZmG6bOpuP8/rb4YaExeqAQ7liF9KXj3MZJPbHllQOy6TEkJ5Nx9Nab0VFCKmrc+x7dxa6zDEqLLaL+fhp/n0fDLApJ/Woyurafi7ud7PI66//2E9vno89qD4b5iYtu01lQ88B8SD9+XpKMO2OHjKaWMqSPfxU8j+oaZ89Fu4wKxdWh/7LsPb7GPbdTg8MfeVesB42vT1rIRANvIwdhDyx20P4Br8rctjmtKS8G3bjO6wU2gvCpcbb89y1hse4wk4y/nkHLWeJJOaNnHxb7HCEwpidhGDcG++4hOH78jgq563LOX0PDrIuq/a9nDKXLqWvOeF0lH7EfB249gGZBP1u1XRt1nHT4wfAEpUF6Fv6i41eeu+3Zmi9trP4puwVBx74tdsnSt/Y4oPWcL8CBwPBB1eUwplQNMBq4ApgAPAB8AB3XFEyulSD7xcBIdB1Az6ROqX52MdntRVgu6rgGtFGU3P4FnzlIyb76UjIlnd8XTijjjL6vClJVO6V//CUDDzAWYstIJVlZjiljbFa+CtXX4i8uxDhuAf8t6+n78dLc+X93Un7DvPgJlNmMf2/IPjhDbyx3VrLNlvwv/llJ860JjVBNsJBywR4t9zLmZRtMvn59gVS3Benenx8uJnV/yyUdQ8+6XeH5bTBCoemISec/eFuuwhOgSngUrybrjz9iG9qem8Dd0MIhnyWqCDZ5219F3Bd+GLfi3lJF8qoPkU46UEeqd4fVhSk8l86aLt/sQOhiM+pqnXfCHqFGYsaJ9frzL1pBy+jHYRg2h8pFXyLj6vFZ7NiSfdhT2fcZgGzk43Kw0WO1Ce30AmJIS0aGf5WBtHd7lazH3ySb1rGPDF/FqP/ya9CvOijq+slow52QSKKtEJdgJVDgJ1rgovvROBhRO6lDT0EaW3Ey8y9eSetZxJB1zYIv7zfk5DF70SavjSbeHDgbxr9+Cv6SCxIP3ovKx16h99yv8W8swZWdgyc+OiiPo9hAoC1WfmM0EMltW8mivD+2qx5wVvaREmc3Yx42iYYZRze2ZtxzrwILozy83s0XDTn9xOQ0z5kbdFqxxUX7Hs/R56Z4dOhfEzVlEaz1Za/0p0FpK5kxgqdb6I621G7gX2Esp1fmF0NtgSrSTcdUE+n3xAsknNU1r0D4/Dd/NIlhdS8V9L1D7efvrlUTvY999OCmnHR3e1l4fprQUAuXO2AXVCb6NW7GNGEjptQ+T9sH3eJaspv7HOd32fHVfTCflVEe3HV/smoINHrwRlRT2iGZRjSx98+j35Qtk3XoZaZec3mLSCBh/cM0FueHtyE7bQjRSSpH9jyvQHi/a7aXu25nUvBs/UxmE2JZggwfP4tUtGgSC8Zpg64W3UfXkJOq/+5Xakw+hz/N3YkpNJljp7PbY3POWUXzx7fiLy4w1+ZK46DBzRTWBqhqy75jY6t+39uhAgKpn36G8WY8L68ACsJgJVNd2Zbid5vr8B4ovuQPnU29i320Y+W883GYPlKTD9yXtTyeTsN9YTClJgDHSs5E5r2m0p2fpGoovu4vNJ19N7UffYA41pgyUVlL/w+wWx86f9CADZr7NwN/ew5KfQ/VL/0ew2hXVMLyjfKs2YB3R+vIHpRTe5WspmXhvp48LxvvQxokc5Xf9m6LDLqLk6gfCU7LSLz+TAb+8jUpKAB0kUFpJoMYVfnxga9MUTUt+trGEpTmrhf7TXmn199S+d8TSkVZ6hzUmgSJ/1lyfTINQFYtlYEF40o3714XUvvMFwQbPdvdfiafKi20ZCyxs3NBa1yml1oRub7FASik1EZgIkJubS2FhYeef8aR9sI7qQ/r732FbuwWTSYE/CH4/q6d8S03ajo0bcrlc2xdXN9uV41L1brTVQtK5R2Gqc6PtVgKJdtauXkGgckvM4uqMTL+HhMKl6FEDWfjFNyTNWUFF0NX+AzvBVFOHuaSSpCQzKz1VEPn5a238kxcpYjt5Fq4MjxqzDh+IObP1eeTWQX2xXnjqNo9lKcjFH1oG4N9c2ul1laJ3UEplAa8CxwHlwG1a63c7+nj7niNJPHJ/6r+didZQcc9zpPzxWEzWrrlKJkR30D4/xZfcgXfp79hGDiLv37dj6dcnfH/dlEKC1bX4g0G8y9dSe/ZhJDsOxbNgBXVfzSD9yu6rIvb+vpHSvz5CyhlHk3RUyyvRom06GCTz5SnUeyyk/enkzj/e5zeWPv88HwD7HiNJu6jpb2X1fz7Etvvw7Tp2V9BaU/P2F+Q9dwe2PUYQqK6l9OoHSbvwFJKOPTjcNH9bIpceNI7yhOikhiU/h4QD9qD6pY8AqH3/fyQfe3DUcayD+kZte3/fSNJxh1D//axONZQN1tYRqHY19dpqhblvHp7la9s9Vtmt/4JAAPs+Y0g++QjM6ak4X/yAQIWTnPuuIfXcE8n46wVYcpuWXzX2qUg8fB/w+bEOH2gsxwm9fIrsd2Fpo5I8UO7EX7S1Rc8LoM2JI95V63G++AH+TSUkHbFf+HYdCOD6uGlqSeZfz8e7fC3Vrxp9par+9RbVr3xMsN6NOSeT/NcfxJKf0+7XJvw5dHjP2EoByprdVg2ktrIvWuuXgJcARo0apR0Ox/Y9qwP0pedR93khlU+8boyZSbCRu2oLex922DZH0rSnsLCQ7Y6rG+3KcZXf+zz23YaRetf1HX5MPH29at77iorFazGlpqA3ljDkkVsomfIrYw84qEvL5auefAPna5NJOnRvdssfhH3scFyf/0D9tF9xz19O3pO3tFrGL0RHeOZF9LuIaBS1PSz9+8As48WSZ9FKgpXV+LeUdlkDLBE3nge8QB9gHPClUmqh1nrpNh8VIfP2K6kPNRML1riofPAlcu67pjtiFaJL1Lw1JVyl5l21gS0TbiHvqb+H+wQF693G1U6LmeRTj8L4FYGMa/+E6uYlI771WzAlJ1Dz+qdoj4/sZuvoRds8C1agGjykTjhxux6vrJaoJFbDrEWkXvCH8BX1xKMPpPa9r2KWvEBrMq45j4RDxqGUQmtN+sQ/Uv3fD3E+/z45D16Hfa9R2zxE5KQRS0TlhSk5Cfu40QRKK7H0zSP1nOOpfuVjCAZxz1qEb+0mrEP7tx6Wz4+/qJjcR2+kftqvnfucrBbynrt9m9VF5pwM8AcIVFa3WJoRGUP997+iGzzUTf2JpKMPhPRU6r+fFf571FpfkEZpF52GbnCTcooj6vbISSONY+TDz+n1UTf1J/ybSnDPW07+K/e1OK59jxFGKwWfH9+6TeHPQXt81H/7C2A0QA1WuzBnpNLw03z8xUa1hykzjaSjDyTpmINomLkA7/K1BD1eAqWVmDJS8RcVt9qUfVt65PKoUqpQKaXb+PdTBw7hIpw/CksDur3uSZlMpJx+NDkPX48pJQmTxUKgwkn9j3PC3xixcwiUOVs0knK++L5x4usFnM+/Dxp0gwdtMWMbPQTbbkOj+gfsqEBVDdXvfUWwqob6GXPxh0rRPPOXU//9LIJVNbjnde1MbaXUCKWUWyn1dsRt3dLAV8SG9vmp++ZnfOu34J4T0e9iv+h+F2U3PU762980f3ibIq8wVP3rLcrv+jfO/3woIzF3IkqpZOAs4C6ttUtr/RPwOXDhth5XVFTEpEmTAPD5fJxw9eV8Ndh4AdVgNvGHp+7jvdeN+6urq3E4HEyebFw1Ki8vx+FwMGXKFACKi4txOBxMnTo1fGyHw8G0acaVp7Vr1+JwOJg+fToAK1euxOFwMHOm0eBsyZIlOBwOVqwwCkkXLFiAw+FgwYIFAMyePRuHw8GSJUsAmDlzJg6Hg5UrVwIwffp0HA4Ha9caV/WmTZuGw+GgqMhoMj516lQcDgfFxUajtSlTpuBwOCgvN87fkydPxuFwUF1dDcAHH3yAw+Ggvt4YH/jtt9/icDjw+Yw15pMmTYpK2r/88suMHz8+vP3CCy9w4olNb7yeeeYZTj216crvE088wVlnnRXefuSRR5gwYUJ4+4EHHuCCCy4Ib999991ceuml4e3bbruNiRMnhrdvvvlmrrmmKdF0ww03cMMNN4S3r7nmGm6++ebw9sSJE7nttqa+Jpdeeil33313ePuCCy7ggQceCG9PmDCBRx55JLx91lln8cQTT4S3Tz31VJ555pnw9q233soLL7wQ3h4/fjwvv/xyeNvhcET97DkcDt5+2/jzVl9fj8Ph4IMPPgDa/tn79M13cL74AWU+NxPW/cT02hKCVTXMv/gWDt9tT6ZNm4alXx6Vpx7CxdYiZivje7ly5UqOPvlEfnjhdRp+WcjCX3/D4XAwe7ZRUt8VP3tHHnYYG9eswb+5lOm1JZz88O0UzTLWy0f+7AXrGnjjT39BRKv78kcaDhq7Q8tssv5xOfa9RpE+8Y/kPXtb1LESD90b75LVUcsKelLtO19SXzibuq9m4C+rQilF0pH7kf/Oo2TdfiXmnAz8m0uonTwt3ESzkdYa7fdHNeuMXDaSdMyBFLz9CP2/eYnMv12EJT+HJMf+Tc/9wdQ249IeL5nXX4Bt1JBOXeCofu0Ttp57M65Pv9/m61+lFAkH7Unt5GlU/vOVFp8bGFNLdGgcrKVfHpb8HHybSghWVWPbo/1Gn8FaF+6ZC1rc7t8UUXnRLHnhLy6n/PZnqHxyEu5fWj4WQNlt2CJ623nmr2hxLN+aTXhDlSWuj74O355y+tEomxVltZDzyI0ou814r+L3E3TVY0pK7PQkuB6pvNBaO3bwEEuBcMea0IuVYaHbe0TSEfuRdMxB1H9nZOPK7/g3tsF9yfz7ZfjWbyb1jPHtHEHEu2CFs0W5lCk5qVeslQ9UOCEQoN+XL+CZs5QVS5eilCL3qb9jymi1QGm7aK+PhD1HUrelFOuoISQdbXTAtu89JtxV2Lt8XZc9X8jzQHixYnc38BU9S/v9lFx5j5G0MEUvx7Pvsxtaa9wzF5B46N4kHX8I9rufJej2dGgdcHjiiFKolCRj/aXWuBesIOnwfbvl8xE9biQQ0FqvirhtIXBk8x0jl5RarVZWrFhBYWEhfr8fp9NJyZFH4a9eScDjRQcCbHjncwqHDMblcuF0OlmyZAlZWVlUV1fjdDpZvHgxqampVFZW4nQ6WbRoEQkJCZSWluJ0Olm4cCEWi4UtW7bgdDqZP38+Wms2btyI0+lk3rx5eL1e1q1bh9PppL6+nsLCQn7//XecTidz5szB6XSyYsUKnE4ns2fPpry8nCVLluB0Opk1axZbt25lwYIFOJ1Ofv31VzZu3MjChQtxOp388ssvrFmzhkWLFuF0Opk5cyZZWVksXrwYp9PJzz//THp6evh4M2bMICUlhaVLl+J0Ovnxxx9JSEjA7XbjdDqZPn06FoslHE/jksmVK1dSVVUV3l61ahWVlZXh7dWrV1NRURHeXrNmDWVlZeHttWvXUlpaGt5et24dJSUl4e3169dH7b9x40aqq6vDyzaLiorweDzh+zdtMpr5Nm5v3rwZu90e3t6yZQt1dXXh7eLiYgKBQHi7pKQEm80W3i4tLWXt2rXh7bKyMtasWRPerqioYPXq1eFtv9/PqlWrwttVVVWsXLkyvN34PY382Vu+fDmFhYXhr/XSpUspLCxs82dv4ysfslu1D6/fR9BixmMz4/V68frceEs28/tTr5J0yvFsGpxDzS9BFixdwvDhw5k1axZOp5N1s+bS74VP2WDx4VRVzJ07l7q6uh362dsycw6LVyyjbt0m1v00iwGD++BbuAVfejKzV69gTUNN1M/ekDe/pfaX+Jl8ES8yrjufup9/bn/HEO3zg9kUlaBQNiv5kx6KajoZdNUTKKvCOqQfOY/+LSY9SHxFxVQ8/BKYTNR9+h1pF55C1q2XGzErReLBewHgXVNE/f9mUP3iB+S9eBf+jVupefcrfKvWk/qnk/CXtr5spDWpE04M94ZwffY9GddfEFWNrLUOL/toXF5T++FUAuVOMq6e0OoxI3kWrsSzYAWexatJPGAP2KftilHv0jXhSoXk04/GPmZo1P22scMo+PBJPHOXgdn4/pjTU8h9/OYOfb+sAwtw/V/LySr+rU2LFyKrciBiCklQY2qjIgQgYe8xeEKjbN3zl5F0zIGYMtPIefRvWPrlUf3Kx/jLKvGXVFD/Y1OjztSzjmv6/IYNIPPmS6h86CVM2RmgNZl3Tmz+VO1S29sso6sppSwYyZR7gP7AlYBfa+1XSuUCvwOXAV8C9wFHaq3bfbMyatQo3Zgh3lH+rWVsPvVa48q21liyM/AXl6NsVrLvu4bUs47t8LHiablBpF05rqrn3iXx8H2x7zYsfMJ3fTGdhumzyX385lYfEy9fr/rpc6h5a0q43KsxLu3zG401zzimy56r4sH/gtlMykmHh0v7/KWVNBT+hn3f3bAO6d/mSVYpNVdrvV+rd7a+/wSMhr3LgOFa6wtCb0Au0VofEtonGWOd+95a65ZDwiN05fmgq8TLz1BzPRVXzfv/o/LB/wLGHHrPsjUopbAMLCD/5Xspv+cFgrV15L96P9isrB10LJaCHBIPHkfOfddsc+yeZ+FKtp5/KwAqOZGEfcZg33s3kk84tEW37B21q38fO6uz54JtHOdw4COtdX7EbVcC52/rwklb54KyO56l9s3PMaWngNlM34//1WO9UuLxe6V9fmb872uOODVGJebbEI9fL+j+uBp+WUjJlfeEt/MnPYSlfx9Kr3s4fOVTa03CPmPJe/Yf4b5Bka8LisZfiW/VOkzpqWTddgXpF5+2QzFpv5+tE27B+/tG8Pro9+ULoExgMWNtpQ9A/Yy5lF5lVLcMWfpZl5wLtlc8vS7wrliH9gf4pXxTh36G/KWVlN34KEmO/dvsYeIvLsf53LvUfT0T2/ABFLz3uDGtoqi4Rc+H9uzoz3blY69R+3/foOvdAOT9+/ZtjoGtfuMzPPOWk+jYj4q7ngMg6bhD0G4PDaE3yLlP/4PZFnebcelgkM1/uCbc/6rPK/eH+1l412yk+LxbCdY3oBLtZFz7J9IvPg3PwpWU3/sC/T55ptVjRtp03EQ8y37HlJRIvynPYRs1JHxf86/XlvNvxf3LQkxJCWTfcxWpfzy+3eN7V2/AOrR/h3qBBMqr2HL2jQwonBR1+9YJt+BZshqA/Dce4tfasnBcniW/UzPpU7yr1mMdOZi8J1p/v1NfOJvSax8CjD5RBe8+FnV/5eOvY87OQHu9OJ97DzBG3ee//mDUflprSq9+IDy9xJyXRd9PnsGcntrh1wXx1PPiTozERaMLMJIU92qty5RSZwHPAW8Ds4D202FdzFKQS8ZVE6h66g2jc+z6LeD3Y0pPoerpt0g+7pBOr9sR8SPjyrPZsN+5RsNJwDpiEMpuJfHAjjftiZXEQ8dFrYNTDR5qJ0+j9uNv8a3aYCQVuujNmjkng5RTHFHZW0teFqnnnNAlx2+klEoD7geOAS6PuKvnG/h2o3hr+tqox+LKtpJ25J6kfDuHuopKrKHS9JpEM65TrsZ17H64zjuCVXN+w1JUSk6SnWBtHe6f5rJ84bzWu2aHmJwu8r3GOu+gRbHu3NAUqbUrjX9daJf/PsZOly4rzbpjIrXvfYX2B1BA9X8/bDN5vbML1tZRfPHt5C9ZTeXyYjL/fhlK7VizcrFjtM9P5UMvhbeT/3BkeHld/pv/pOKuf1M39Sfw+mgonMXWCTeT9+/bsY0cHH6MslrI+PPZlN/+DNrriyop316170/Fu2Kd0WdDa5Td1mZjQO3zU/XY6zv8nDuj6lc/xr7PblCQ1O6+vvVbKL7kdgLlTjyLV2PbbRiJh+7dYj+VYKfuyx/RPj+exavxrt6AOSeTrefeTP/C17drmsn2CNY14Prse3IeuA7f2iLcs5e2WBraXNp5JxE46YioRpz+DdEN9C15WdBGU30wlv8n7LsbrlDywrd6fTh5Yc7KIFjfABgVzJYCo2mkbY8RBKtq8G3c2u5r5/yPnmTzkZeSdsWZWIcO2Oa+9jFD8C1bS/rEs9rt6wFGtUzx+f+g//evGtWj7TBlZ5D3wp24Pv8B3+qNpF16Ouas9KgKcku/PrCiqRLDvvtwcp+4mWBdgzGtpK3Y924a8OldtqbF+PmU045Ca03ZtQ+Hb0v943E0p5Qi+/7r2HLm9QSragiUVlJx34vkPnlLu59f+HPo8J7dTGt9L8YI1LbunwZ06WjU7ZF24Sm4Pvse35oiTCmJYDFjTk8l79nbJHHRiwVqXJRcfnc4cQHgW70Bc14WmTdeFMPIOsb96yJse44Mb6d+/hMVMxYDxsm54ef5XZK80H4/GX85d7seux2juR4AXtVaFzV7wRybBr7dZFe9ehjl2PF4Fq6k6sX3adhaAcEgBX86Dft+Y6l67HVsCzaR/pdz8CT8P3vnHR1F1Yfh58723Wx6pXcQUEBARRSxK/beu5+999479l7Ajr0LKIJIFZCOolTpSUhPtre53x+TTHaTTbIJCaDmOSeH7E7dsDNz76+871o2ZKViqfCQdPhI+h3aeEWRlJLND7+PDAQhLBk1dHib3afb/x93GWsAoxCit5RybfV7g2hhW6nBbiX5vOOo+vB7MCi4v/2F5EtOwdKve9Mb/8sof3ECwTWbAE0cEilJu/2S9gDGLqTqg+8JbdwGgOKwkXaT3lGNYrOQOfZmgn9vxT9/OcJsIrytiIJz7iDzseshyjzHedqRBFauI+W84zG3wnfbMqQfloG98S9fTcrFJzUYuABNdyC0Yav+GdrRUD0+fLOXkH7XZbB8SZPrGztmY+rWkUhJBaBZ48YLXhhSndgP3Q/Pj3Mw9eyMWl6FuXdXzP164J+/IkYToi0Rdiu57zxSG0i7MoFtzCYUq5mqH+eQ+extWPp1x9gphy0HXaivY8jJgLJ8pKrimTgTQ3YGxtxMTN1qq0qig3fB1Rv135VUp6bBoAjw+DB21sbJQlFwnjWGSEl5k2Nng81KyhWnJTQ2TrnkFLw//0bqlYnl333zlmMZ1Ee3iG0KIQTFN44ltDkfYTBgHTEIy6C+RMo0PSNhMmLISouT5oOCc+8g6/EbGrwfGFKcmHp1IbRuMzIcIfD7mpjkrqlnZzzT5ustKkqqE/thI+Luy5iVRuZD11B0rRbo8P70K57vZiT0GWEnCXb+mxAmIxn3agJDQlEgHCFpzChKH3xNizi3848kUlSmRV3rWPWEi8oovu3ZXXRWiSGlpPjWZ1AraoMD3v0H6r9HyirwzVq0Q8cIbdIeDCV3PI/35wUt2kf5E+MTXlcIMRg4DHguzuJdJuDbTtth6t8D/8zFqOUuZFjFus+ehFZvxDdzIZXvfE3+Sddj2bM37mP2x374/gn1ogohMOZl6a+bq19T9cF3bBl9ERWvftLsz9POzkFK6UHTwHlICOEQQowETgA+aOk+Mx64CtuIwcgqN2qli+Ibnmh6o38gNW3DVR9PxvPTrwTXbET1a2JxgRVrcH3yQ8z6VR9OpPzZ92q3+3AixXc8R8G5dxDa2HDm899C2ZPjUavF9HYF4cISKl77VH+des1ZMU4LAGpZpda6oapInx8Z0f4tvvFJnN/PRUY0G2phMpL16PWE/t6i6wHsCJYBvUi95ULSbrqAtBvia+Wq/gDlr3xC+cu1LsYpl5++w8f+t+D95Tcse+/RoD14XYTJSNbTt2Du242cNx8g+awxDa6bctmp5H30FB2+eVF3g7Mfuk+r/N8nglRV3F//3KDTR2MIhw3/3KUoBoMWSAhHUMurtIWKgiFD02mIlFZSctcLbL/0PgrOuS1mH+a+3fTfo4MXQgg6z3iHzvMm4BgzCnPv2hbB1MtPw9qIfoWOyZhwUs+Qm4kMhVDd3nrLIpUuZDhWxNM3cyG2g5oXXJL+AFSLgYbWbY7RuzDkZTXYfhIpKo0RP41HjGXq0r9ilvkXrqTkjtohe41QZ9xjlVZg2XsPkk6tlVsoe+zNuOvGoz140QKswwaQdPzBgBbA8MxahLlfd0ofek1/qJfc8yJlY98h8Mc6dhddkXYaJlJSgalbRzpNG0eXRZ+S8cBV5H08lk7TxuH5aW69G8ruRKSgmEhRGdtOuJbCi+4huGYj4c45OMYcSPptF9Nx8muk39lymzLV46PgnNvZdsJ1eKbMxbJ34wVQMhQmsHx1zPfeO3MR7u9nNOewo4FuwGYhRCFwC3CKEGIJWkZ1UM2Ku0LAt50dI96Du/j6J4hUuVFSnZi65mHslIN32jx9ue3AvVEcNkJdcwlvLkh4EBTtux7emnjwQvUHKH/uAyIl5VS8+gmhTf/+ydk/mKsAG1AEfAxc2Ryb1LoIIVDSkrWKHTTrQu8v/y5hQRkIkn/MVZqIX0EJnu9+ofiWpym+eawmonvZA0Sq3EQqXQiPD7W6/arqnW+oeHECUkrNMWDiTALLVunVAP9WVF8gxpp0V1A+9h2kT0uSmft0xRlnsuqZMhciEYTNiu2AvWOyz87v51Jw1m0Eoj+D2UzlO9/s8LlJKSl/7E3MfbvGiETW4J2+gPxjr6Z87Nu6U4SxSx7J5x67w8f+t+A4fAQZ9yVQjhCFITONvM+f1dsgGsLcpxuWvfrEVE3Zjxi506ou/L8uwzVhYqNtng0hFIXUG86j/IUPkOEw4SibVENGKsKofd+iW0uMdUQ8TVHBC61yoHZMrzgdKEYjOa/cre8LtO904UX3ECkpb/T8qt79horXP0vsswhB51nvxa2kKHvkDbaMPI/tlz9I4HetiNB+xP7YD49fvdAQ5gG9MPXoRMoVp2MZ3C/WaaShVq5AEOn1NynwbxkSFbxYogUvAn+so+CsWym65lEiUQmiaKHOupQ9MY4tI8/D8+0vKMlaNazq8TX94appD160kLSbL9DLjyNbCjHmZRFasxHf9N+IlFbg/n4mVe99S8GZt8RY+rSzeyL9AX0ypFgtOE89AsuevTHlZmJISSJSVrWLz7Bh/EtXadmUUBj/wj9QkpMAyHrqZpLPPx5TlzxkKERoS2GL9u/69EfUChfBv9YjQyGUpIbL7ouufYzN+51NwTm3E64+npSS8mfebe5h30QLSAyu/nkdTaz3SOBrYKAQ4hQhhBW4D1jRlFhnO7sH4aIyth1zJeUvfBhjFWbdew+thNNowDpsAEIIMp+8icxHr8fUuyup12vWiaEOmYS3bU+40i36YR1cs4GqD76j6IYn2H7lw/gX/tHgdsGV65DBkP46noJ3O7sHUsoyKeWJUkqHlLKLlPKjprdqnPQHr9YG2lIirBb8i1vXAnpX4/3lN4wds1GS7KTddD7ZL99Nx+9eJvvlu6maMIlwWSUEQhAIgpSYe3VFRiJIKal86wsqX/8UY6faa6s1dBN2Z8Kb8jF2ymmyR7+t8M1brgUmqkm/67KYiVYNztOOJPuFO0g68RCSzz2OvI/HYo0q7Q7+uZ6Cs26j7IlxqG4v9oOGEd66neDaTUhVbdJGOlxcjuvTH/HOXhzzvn/ecmRExdaAi5Pq9hLatl0TvPdqFSHpt1zYYGb2v0akvArfnKX1qn8ToaWuIcacDGwjh7SkpbfZVE2YiPPslov+2g4ciql7J0IbtjUYpBAWM46jDsCy9x6Y+/eM2d6Q4tRdSWQoXK9SzPvLb1RNmBTznhACQ0Yq3pkNVy5HyqsIrtpYL1jSGIFFKwksj9XcklLiX/yn1jo0dykYFCJVbqzD92zWvgEcR43EMqgvadecjWWvPrF6F51igxdSSirHfYnr2+lYDxgCTbQExlReLFuNDIcRJgOB39cSLq0AVUtaWocNxNS9Y4P7qWl1kqEwqVed1eygVrO+8UKI9mBHNYaM1JjSuKr3viX9viuxjR6GZ9o8qC7NswzZo97NSPUFMBRX7MzTbacJ7KOHk3HP5XGXGTJSUcsrd/IZxSKlpOzpd9h2/DX1MoDGvCxM3bXAi7FLXtyHn/fHubg/m1Lv/QQPjrBZEQiSLzghblZFXzUSqc1WVg/2/fOWE/p7azMPKb1SysKaH7RWEb+UslhKWQycAjwKlAP7sgsEfNtpPlJKSu97mUhpJZVvfUHxTU+hev0U3fAE/qWr9KyQdag2QRBCkHTCwXT46nkM1UE5jAayX7yrnq1qQ0RXXoQ2FVD25Nt4p83HM2UuRdc/3uB2gWWxgwvXNz/HBDPa+XdjSk8h5cozQDEg7DbcX06NWzH0T8X99c84TqyvGRMpKKbi5Y9QzCaE3YqS5EAm2bGPHo4xJxO1rBLV46P8pY8gopLx0DXkjHsIx5gDd8Gn2HkYOmSRftvFuCfN2unHbkyksy7CZKTq3W9Juegkkk46FEOqk5w37iP1unORxuoJgqpS9eFEtp1wLb5Zi0k67Qhcn/5Iwek3U3L/K/WPLyW+BSsovnks2w6/lNKHX6foyofZftXD+BdrBU6uT38k5cITG9RDsR8zSptkK5pttXW/vbA14jLxX8Pzw+yY4FRjSFVtteNWvv0VlW9+0Wr7i0e4sITgn+sRVgtbD76I4luebna7ihCC7Bfu0DQXthQiw9ocK7rNwdyrC1lP30Le+4+T+ch19fYR3ToSWrMxZpl/8Uq9qika+yENt9aobi9bDjwf16c/4Pr654Sr7H1zl1L25HiKbx5LWXViT61068sVhw1z325Uvf8dlS1oWbUdsHdMO1Z4W1TwokOs849aXkX58x9Q9tDrBBaubFLPyNAhWw8CqV4fwTWbahNEvgAIUFWVpDhCndEIswnFrundWPfdk9TL4jvlNETCwQghhAHwCCF2jiztP4CkUw/HMrA3ADIYovK1T4m4PHi+mU7W07eQdPzBOE8+rN52vl8WkH33m1R9OHFnn3I7DeCZNh//sviJ+7xPn4mxPtoV+GYvpurdbwn9vZWyx96KuUkaMlPpNPVNOv08nqzHb4i7ve2AvfHNbVoAKh4pl5xMx8mvkXbbRaTffGGj61qrS8qMXfJq+6LrRLNbgpTyASnluVGvp0kp+0kpbVLK0VLKjTt8kHbaHOnxxVRbOM85lqp3vwGjISYTYRkW22da94FqGdwPtarxDGENxo61mQbV5dH7Y4XR0KhNnH9JbD+nWl6F9+f5CR2znX8HGXdfhrFrHiBRXR5cX/47qm+kqmLsmIP90H3191S/ZgFf+uhbyGpdB/OevbEMH0jVKQfhPPsYOk15Q7M1VFXUKg/ur38mUlKObb+9MKSn7KqPs1MIrd2Md/YSSu97qVUnj4nQmEhnXSKlFYTWb8G8Rw/9PWE0knrZqRQ9cDG2EYNq191eStH1j+OfvwLXR5MIrtqA96df9ZJ11eWh6sOJ5J9wLdsvuQ/PlLn6pFFGIri/nEb+aTdRctcLpN/1PxzHHtTgefnnLEWqKkpaCorDRsadl7YLv0bhmTQLx7GjElq34LSb2H71o7g++7HZGixSVbVA1B3PUfXhROwH74t3+oI2bW835mbS4duXCSxbRaSkAs+PcwisWNPs/aguD5uHn0nxNY+hVlQhpdQn0okQI9q5aqP+u5SS4J9/I6xmgqs2xGxjO3AohCNx/z7Bv/7W3o+oqFXuhL/PSnISvtmL8UyZi2+6low0pDrp9PN4Ov74BlnP3Y4wGPDNWIhtdPMdhJW0ZJBSP+fwttqqOFOdyosaPQwZDCEjTd/XhBCx1RdL/kJxOki75UKUtGSUrHSMack4Dtuv0f3kvHE/XX77mC4LPsbUoxPJF57YrGdIwsELKWUETdW7efUr/2KEwUD6vZdDdcmWb+5SAgt+xzK0P+6vfybj4WtIOik2syEjEdyTZmsWbOO+2OkPwXbi450yB+/UeYTzi+r9n/iX/UVw/eZddGbajbXildroa7igmNA67XykqlJw2k2oLi/GnIwGrZeMXfMIrt1MqBmChTIUxjN5FsE1G/F89wsyEGyyxDPplMPpNP1tOk1+DefJhxHaUrjDYqHt/HtQkuzkvPUAabdeRMqlp2Dq1oGqCRNJOvkwXXBWSUtu0m7MM3kWFc8npscY3TYSKSgm5dJTSbtZK1duyBZMSklgef1gpqul1Uvt/CMRBgPpt1yoDQSDIare+zYm+PaPRUoy7rsCxWohUuWmbOw7bDvqCtzf/oJv5kJ9tcwHrybvk7G4j9wXU6cchMVMztsPYz9sBEqKVglV+uBrbD3qCnzzV6AGQ/jmr/jX6YMAFF50D64PviOyvYzgHztP9yIRkc5ofLOXYN1vr7gVkpHsNLLffIDMJ2/Sg7gAgSV/EqnyaBMwixnvzIWU3P8KWw65mLInxtWrnDRkpiI9PkAiPT7c3/yM6vU1WJWpWaO+jTAYEIrAeeoRMRPJXY3YxePw0NbthLcUYhsxuOl1N+YTrBayLhv7LiLBCsQavFPmaoGoiTNxffIDxj5dIaISWruphWffOKrLQ8Vrn2BIdRL862/9/RrR0OYgkuwgNH0GVBVUtdFroS7RLhrBtRv13/0LfsczZQ6lj75J2RPjYrZRnA5y3rg/bmAiUlyGYreipCRhGdgr4fOwHTRMDxSENuXrrVpCCEydcrDtP5hwYQnhguKE7FTrIoSg8MK7UasdRmIqLzrGVl4oTgfJF56AuV8PjLmJTe9jdC+qRTsDy1YhDArS7cW63yDNwSUBFIcNYTCgOGykXHpKQttA8zUvJgAThRAXCCEOFUIcUvPTzP38a7AM6IXzjKP012VPjCfl0lORgRCVb34ed5uawUGkpKJelK+t2HrU5fV6rNqpJbS5gMq3vmDrEZeRf9L1BJavJv/UG9k88lyKb3kG3+yWVS20Br5Zi+uJhNWcT2jDNpS05EbVqcuefoeth16KDAQJLE1cFqLsyfEU3/Ys+WfdiuvTH7HtP7jJbQzpKTEPE9enP+j2s/EsvNr57yEUhZQLTiDthvMIF5aQeuWZhDfX6rFY9+7fZAbD3L8ngT/XJ3S8uoKdznOPxdS9I7YRg8gd/3DcbcIb82uDKQ6b3o/pX/gHoQ31hQmrPppE6rj2Srp/I0nHH4zidKC6PIQKiim64Qkq3/56V59Wi5FSUnDaTXrPd9HlD1L13rdEissoufsFfT3n6UdiHdyv3rWoWC1kv3QXtuq2BSXVSXDtJrZf/iCb9z6N7ZfeR/kz7+28D7SzEGj3AUXB9fnOC2KWP/2uXs5u6h1fpBO0sUDo760Iq5mkExoekgshSDpmFB2+ezlG6V9YTMhACMwmKl//DPeXU/UKHNXrRwbD2A/dl7wvn6Pjj29gG72PNkGRkkhpJe6vpjWYvXd9PFkXPFacDlKvOatFf4u2QrZQM6K1MHbIInfCk4225NZQ06YDYBuR+CRR3+ag4Xq5fmjjNkJ//k3aLRc0ez+J4v76Zz34lfv+Y3T44jnSb7sYy+DGhd/jIYTAsmcfLWEsFFAlhuzE8+mm3l3136MrL4y5mSipyaAoMc4cNfiX/qW3d0TjGDOKrGduJfmiE0m5JPGJt6l7R1L+dyoZ915B3qdPI2zxGxrSb78krq5NIhgy0yh/cQLFtz0bM8801BHsNHXJI/2Wi7AfPBzHsaMT2rd1aG1lrH/JX4SLyvDNqA56S9msQE40SacfmfC6zb1irwTSgAeAccD46p9xjWzzryftunMwZKYCWiSu8q0vyHr65rj+tsJgIPWqM3Eduz95E56M6cFqKyIVLsJbtxPYidmCfxqRwlK9h96YlwUGA8FVG7Q+tEAAtXTXaF5IKePaNPqqxbKCf6zTW5caQpjNWqTaZKxnfdcQvjlLcH36o3YOHh+hTfkx0dZEUL1+3F9O01/viFhTO/8+IiXlWPbsTfK5xxJYVDsgs9ZpGYmHuXdXwlsLExLtVFKdCJtWYaF6faiVbgKL/8Sy9x5UvPG5rtESjX9ZbcuIZdhA7KNqRehcX/wUs66UEtenP2Kfsxx3gj3L7fxzEBYzqZedhjCbkGXaJK3ipQkE129plf1HSit2qiNZcMUaZDBc3Q4DyRedBGhK72qlWyvFzkwltQG7SwDFbiX7lXuwDOqrObPYLKiBAGq1Jkxo47a4Qb7GkFISWLGGknteZMuoCyi+5endxqlNqqo2kTcaEA4rspH7jn/ZKqxL1zQpfJkIvnnL8fw4R3+dcXd8kU6Aijc+Y+txV1P17rcozvpOBnUxpDjJfOBqct9/DFPPzgirBRShZ2trMPXugiHViTAZ8P68AFnpRrFayH3rARxHH4iwWhE2i+ZC8/JH9f7PIuVVMZUjKVecrpeHh4vLd4tAlyHBFsS2QEqJ57sZCQt1Ok85XHOQu+NSnM2Y7NWg2K0knXEkzrPGkPf5s1gG9sJxxEgMGanN3ldTyEiEqo8nk3zucYCWuDD3607y+cejNFD12BSZj16Hdf/BKE47wmSMaRtxffGTVj02b3nc57qpa54epIkUlxGptltVfQFNlLh7J0w9O9f7Dhs75uD+clrcqrvA0lUoVkuj4pR1EQYDKRecgP2I/bEM6BX3mlacDt3VsiUIk5GqCRPxTJqJWi3IKixmfa5aFxkKY8xL7Dto6tWl1rCiuEy77qvbyYwdsxu0Ym0KxZq4KkWzghdSyu4N/PRoeut/L1q/z0X666oPJxIpq8TcuytlT46v5/KQetWZuI4/QHvwt/A/uTmE84tIOvkwnGc37AH9Xyf1unOw7N1fqxzokhdzEav+IJHSil1yXr6Zi/Sqi+iWjcDSvzSLu7IKTD06NTpQSjpRy8KYe3UhsPSvJm1fQxvz2X7Vw0SKyrQHgNQeQs3tUfRMmqmfl7FLHrYD927W9u38O/AvWolnWqxWhJSSousex/vzAnxzl8YIlVmGNq3mL0xG0q4/FxlqWkBTCFGn+mI7UqpY99kT9xc/ES6ub4MWiNK7sA7pF5MRcH/zc8zAyDdrMf5FK1G8ASpfa764Vju7P84zjkLJTgcJRCKoHh+uHdTykeEwle99y9ajrsD706+tc6IJ4P7mZ5JOPESvqLAfPgLriMEIkwklJQkhBOm3X1IrkNsASpKdnNfv04PnitGI9PqJlFZi7JxL4M/1CbXFql4/ri+nUnD6zRScfRvub6YTKavU+uIb0KHa2chAiORzj8V56hFkv3w3jgYqG3y/LqPwvDtJf+0bthx0IUU3Poln6ry4E6lGjyclwXWbKXvsLf29xkQ6VY9P0+MJhfH9uhRRnVlPBOve/bVs+A3naU5lkQjCZMRxzEHkfqAJH8pgCIRASU7SkxjCYibr+du1SWR15rjyjc+peCk2gFHx8kf6OMDUJY/k6iRG1YRJbBtzJZXv7PoqJuFJzLmqLQit3kjFa5+AMfG5gKnaYtZ2QMvGVOk3X0jG3ZdhqdZFkVKy7bhrYlwpWoPgqg0YMtMw79Wn1fZpzMtCen1gMWsT7qhK3/Jn3qPk7hfY/r/744orC6MRU8/altTg6o3avytWa0Ghia+Q8+q99arNjNnpmLp1iOtOFlyzCVPvLs3+HBWvfVKbhFy3Gd+85XoyRvUF2HrYpc2yDq2L47jRCIMBGVE1N0K0FtqGqlrTb7s44WCJMBiwDK5tZ3F/VZuktI4YpAeFGiJSUk5wzUYiZZUtlk5oWT0K9Z1HpJT/afEGxzGjcH81Df9vv0MkQvnT75Lz5gMYO+ZQfOOT5H74RLOiSq2JpX9PTLddjGfSLJIaEVT6ryJDYUydc+nw0VPa63AYDAbyJjyJIS8LqUZQy9veSqreedWpunCecRT+RSs1kaBwRMvKTJ1HcMUaKl7/jJzX74vb2mHqkkfHia9i6taB/JOvJ7hyfYN9dFJKSu5+AbWsihqROpGegmIyUvH8B+S880hCokSRKjflr36C6vOj2Kwkn3l0i+282vnnonp8lNzxHOHCEnwnHUr67ZegJNnxTJ6NDEcw9etO4Zm36q1F1n32jBGaa4zk845PODNr7JCt9/SG87eTXh1sNmSmEdqwFVOn2D7QaKcRy5B+WAb3w9ghm3B+EWqlG8/Uefq91LJnb1BVpNFA8K8NyGCo3f7vX4bidJBy5hjK3/wMWeHCkJ1O2l2X7tA+K8d9RcXLmqNr2RPjd1pbnSEnE8dxo2vfiERQK6oQFu07axs5BPtRByS0L8XpIPvN+9l+yX0E//ob4bAhK12ENuVTcvuzVDz/AY6jD8Rx7Kh6GgfB9ZtxffIjnu9nNOjiEvxjrS4CvStRbBYy7rsS0Kowtow8j44TX6mXra6aMEm/l8lgCO/UeXinzkNJsmM/bD8cY0Zh3WdgvUyrlJLQ+i34f/sd/6KVBBatJBJVAdGUSKfq8mAbOQT3dzMw5GTG9PYngjAZSfnfqTiOG01g+WrC20uxHzQMU9cOqF4/Wc/ehnf6AhSnI6a1QbFZ6bLoU4pvHotvljYRq3zzc5CS1OvOIbR2E67PayvV0m67uHZ7AdLnx5CVuGZBW6H4AwRXb9glwuyeSbO0CpZdKF4qhMC23154Zy0m+cyjW22/lgG9yH3n4Vb9bFJKIkVlICVqpRu1OjAoAqFa7QiTUROtjIO5bzeC1S2nobUbse23F8F1mzH36Rp3/RocRx9IuE4iGiBSWIy5d7dmfw5Tz86Eqqv33J//RNWEiQijgbTbLsbYIRtz3+5ay2oLcZ5yuJaoCYZxfTIZiBUvr0vVB9/hOP5gDCnOhPZvGdI/pp1ehsKobi/eKfOw7rdXI1uC58e5uraI84yjyLj3ioSOGU1zrVL3FkLME0J4gFD1T7j63/80QgjS77y0Vrzz12X45izBec4xmHp0ouzhN3ZJCaSMRNh++YPIYIjSB19tMuv+XyRSWkHxHc/pr4XRqPXWDeqLMTsdY2baLlFS981cpN9khcVM8kUnYYsqX/dM+xXfL79p3ytVbXTSZ+qmuSrYRu6Nb07D+h1CCNJuvkCLhgqBcNihemDpX7QS/9ylTZ636vGxZd+zCP25Hun2gcVUT7i2nf8GvpkLCReWAOD9eYHWOx0IUvHc+6TdeD4lNz2FWqVZhBmy08l66qaEBzqeH2ZTGsfWLx7RD23/gj8ovuM5Ci++F9/8ZVS9+23MupEKF6ENWo+uMBkxD+iFMBhIOqW2P9wd1fNuSE/BMqgvvuH9SLvxvHY71X8pzvOOw2C3IZIchDfmx1TntITkc47RS3iVlCQiRWUYtxZR9eHEVnFoiocMhki94nSM0aXWH03WhfSExUz6PZc3a7JhSE4i9+2HSfnfqZi75CGslmoxR01cuvLtr8g/+Qa2nXQ9lW99gfv7GRReeDf5J1yH6+PJMYELYTHHtNIGViama9OWSCmpfPcbPZEgFAXLoL71rJQjlS78v8Z/PqpuL+5vprP9sgfYetillD0+Dt+vy6j6eDLFN49l60EXkn/idZQ99hben36NCVwApF5/bqPChMbcTLKfvwNzn65kPHBViyeLxtxMHEeOhHCEgnNup/Th11E9PhxH7E/WEzeScfdltX+XUJjtVz8KqiT7+TtixiaVb31BxQsfUvbUO5qwIpo+g+2gWucE52lHYureiUhxWYvOtXURVL715U4/qlRV3JNnNerSsrOwDO5H8I+1rba/4NpNlD/3PsJoJFLlJrB8davMP9QKl5YgUBSUVCdV47/SFkQiJF94Ao6jD8B28D4NJstiHEeqKy9Cazdj6tV48CL5vONi9A2D67cQXL2B3I/HYuzWsGtZQ5h61AYv/Iu0ig4ZjmDqkodv1iJsBw1tbPMmCW/X7GnNvTrpAUNjh/rBi/Jn3qNy3JeUjX1X07xJkGjHEUCbL5iMSDVC4PfGq7QjJbXVrg21sTRFc1Oh7wG/AMOAHtU/3av//c9j7t2VpJNrJ2llT78LkQgZD1ytTSzjBC+kquqD+7YgsGINkZJyrR0iK10X6WqnlkhxOYbMtIaXl1RQcOatO/GMahxGPtZfO08/EmN2umbbVI1v+iKMHbKxDOiFeY8ejYp21uA48RCs+zYeFQ0sX63pBDgdGJKTsEYpYJe/8GGTZV7RAocgsQ3bU++Pa+e/hXA6sI0cguJ06N9hzCYyn7sdz3e/6EJSwmQk+7nbG70O62LsnJfwYCs6eBFY9hdqhQv/b79rfd517svRpermPXroFXNJJx2KqC7t9S/+k+D6zchgiNC2InLefYSya05BmM0oSU33m7fzz8OYnY7j+IMRVrNmKZpg4Ay0+3lN6W4NitNB+p3/I+2mC+jw+bOobi/ZD71L2RPjqHr3mzZJdhRd8yie6QsofewtAstXE8ovovylj/TlqVecjqlzbrP3qzgdpF1/Lh2nvEHu+4+hpDgRdXQXQms3Uf7Ch5Tc+Tz+KI0bAFPXDqTfdjGdpo8nPSoLF0xQlLctiRQUU/rAq1S+/x1lj2vZQsvgfvVaWrzT5us98cFuuXT49iVSrjgdY5e82P2VVFA1YSLbL3uAskffxDNlbr1gBWhaPfbDR5D13O16q0VjqB4f5v49cYw5sKUfVSfl4pPoOPFVhNWiB2rrBmU9P8xG+gOaW4DZpAUwooITleO+xD9/efWHUbSqi6igijAZyXrmFix1J0E7gBDCIoQYL4TYJIRwCSGWCiESKiXwTJnbajo2iSIUhdx3H8Xcq+m2AxmJ4J25qNnWqIns1zd3KcbuHTH379lq+62aMBFh1fQlfLMWU3DO7WwZeR7lL3y4Q/uNFJXq91MlMxXfghUE12xE2q2k33IRWWNvIfvZ2xrcPjo4WhO8yHz8+oQERMtf+FBrhwuFKXt8HNuOv4ZNe52EZ+LMZn8Oy+B+iBQnhRferZ+HMBqwDO6HqVcX7Ic2bjXaFMacTIJrNhLaUmuTaqxTYSqDISrf+Zqy594nUlSKkpZY1QWAeWCvWIFZg6K1jykKkZLGdZyU5CRM3TuhOB0trrxqbttIV+BuubuoKO2GpF59Nt7Jc1C9PkLrNuP+ahrO048i+dxj8c1fgeKwYdmzN8Lto/iO5/D/ugxhNtFx6lttUjbmm7lIn/Ca+/ck+NffCd0o/0tESiswZDU8aTKkp2ie0qq601offDMWxmTDki8+GdBK1JWUJNRKN5GyChxHjSTnlXsStu8z9+ysaWVUeTAkxw8oeCbORCgKMhDE2LcbmU/cQMFpNyH9QYJ//Y33p19xNFJWHC4o1nr1jEaEyUjS6Uc089O382/BfuBQ7AcO1QTvAiGtfWTWImQ4gvv7Gfp66Xde2mxLMHOfroQ2F6D6A0225EXbg4U2bMNx4iFaBZIQ9eyDa6y/INYSzJidjm30cLzV+h3uz3/CftQBFJxxC9LnJ23knlRtK8Nx9AGa6G87/zpSLjoJ91fTUJIdBJauwjt3CZY9elL+4odIf5CMB66K+S5KKdl+0T2EtxXhPGsMKRefFLM/x5Ej9d/N/XugWkwgtXtoeOv2FgUSGiJcUExg5TrsZVW4PpqE66NJCJu11smiVxeSLzxxh44hFAX7qGF0Xfo5qFLTs5k0E+8vvyH9dXQfDAbsh+yD84yjse67pz7+EX27axWsqkpowzZUj2+Hyqd3lMAfa5HhCGpZJcFqi3LHmAMJ/vW3Nnaobh3xTJqlb+Mbvgfmnp0xX3M2qVefRfD3tXh+mI178mzCm/K1DKUQEFFBaEJ1SqoT67ABWIfviXX4AEy9ujRrvKE4bI1O2pqLIdVJ+q1ae104v4iCc+4g5X+n4DztSDAaqHr3G1JvPF9fX5hNZD93O0U3PhVjtwta8sXcu35m29ynG3nvPw4fPNFap20EtgAHAZuBMcBnQog9pZQbG9xKSmQopIntP3Fja51Lk3inL8CSoB5E4Pe1FF39CMJixjHmQDIfvnaHj++ZPIvyZ98nXFhCyv9OJe36c3d4n6BVL3qn/ErH718G0Nrp0QJsNe1pLSW8vRTp9iL9AaTLS/o9l2Hq1QXyNya0vSkqeBFat5lIRRXh7aWYU5MJrt1EuKAYxemI366mqninzqPq/e/w/DAbQiFQFIJrNjX7PmXMTkdxWHEv/AMhBClXnE7KhScibJaEgpVNoSTZUexWvboDNFebaPTEuapqiRdT4v83itWCeUAvPYhr3bs/WU/eCBYz+cde3eh8NuXik/RnYUvDCc2diX0NtM9EGsGYlUbyJSfrryte+Vgvi1TdXopveopIeRXSZsY3cxGRskrChSWE/m6biG+4sATb6OEApF59FrYRg9rkOP9kRHISpk65+Jf+FVdoRkZUMJtaRT08EeJpXRirgyvCYNB1LYSoVedNxGJLSm0wufWwS9ky6nxdHMjz06/6TSywegOBFWuQUqKkp5D78VjM3TuRfPax+n4qXvqo0fI/1yc/IOxWDGnJ2A/dD8cORpDb+ecjFAXFZqHihQ/xL/6T8qfe1pclnXQoSac1XzVdmE0kHTdatzRtjBpNCyklkfIqHIfvT+47j5B+5/+w1gmaRGdU62ZjnFHn6f72F21goKqakCNasCM6+NHOvwtTtw7YD91X86VPdeL6YirlL36I+4upeCbOrJedFkLgX7qKcEExFa99EteGT1/XaMQ/pA+OI0eSfvdlrV6t5v5uBo4jD9DdK2QwFCNEnXH/lQk9R5pCSklg8Z9sO+4aSh95ncxHrqPzjHfJfOx6bKOGYhnUl9RrzqLT1LfIfu52bPvtFTPQVWwWTD061eyM4OqdYyffEOH8Yi2IYDBg2bM37kmzKLr2MYpufBLXl1O1dYrKasX8hMA3vHbiI4TAslcf0m+/hOyX70JYzKiBILK8ChkMYszOoMNXz9N51ntkP38Hyeccg7lPt2YnSorveK7N/lbGDtnkvHYvvpmL2HbCtQQW/oGpR+d6gpFaAOM2bAcN199TnA5Sr9451qhSSo+U8gEp5UYppSqlnAhsAJqswZehCJ7JswltLmj7E0W7/krufSnhxJPvl9+07QJBvT19RxFWiz72c387naKbn6pXFdUSgqs24DhutF5JaUhP0d1UrPvsuUP7jhSVgaH68xu0LL/35wWY1yQ2hzKkOHWHEhkK4502n4rnP8Q3cyH5J11P0VWPUPXON3G3tR+yL96p8/D8OAdhUAABqkrl+C/ZMvoiSu56Ad/8FQmLUHqnzIXqirzwpnyUJDuVb31JxZtfJLR9U9gPHUE4P6ryomNs5YXidJB++yUkX3ACyXUC64lgG1VbaZV89hiMHbIxpKcgA0FUf2IVQi1ucUtgxx+gD82wAF8LIeYAMcolUsrz6277XyX5/ONxffYjke2lREorqRz/FWnXn4vjsP0IrlhD8a3PwFkHYd1vL7xT52FITyG8rQhzz9aviIiOIhs75RDauK1Zpdn/BSJFpVRNmEjVhInYRg0l59V7Aa1Hv+T+l1ErXBi7dqi9CtqYmKoLq1m3sqvBduBQPD/MQVgtMb1jiVD2+DjCxWUQimjfvcxUim99BkN6Clljb6bkzue1CLLRiOOwERiqB9DJl56M6/MpqC4PoU35uL/9BWeUBkANqj+A68up+g2pNSLI7fw7CKxYg7e62qHGVss8oBcZzeyxjybj/qsSWq+mbUQIgUhLxpCTgTE3UxO+rR4UgjaYibaUrhu8sI4YhLFzLuEthaguD/7f/kCYTMhQmHBWKpa998C/+E8cY0a16PO0s/uTcvHJeKfNRxgNuD+bgjCbajNucSYiwmjQWkZCYfwL/2hU0b3i4mMYPHp0m5y3MS8T+0HDUF0e3HmZVE2YpNsGOk87olWFMUsfeJXQuk2ovgDeectwjN6HpOMPTljN3tK/J6HqKofgyvVY927aPrmtSLnwRJynH0Vw1d8YMlIJLF1FaP0W1Eo37u9nkHrZaXinzKkVHR42ADU1vlOL98e5mpig0YEaDKHYrKguD4bczBZVdYY2F1D25NtYBvfFO+XXFgnfJYq5X3dy3rgf3/wVmPfsQ1YDk1CtheR2yp4cj3/B76TdcmFCLa1tgRAiB+gD1JuRCyEuAy4DGGBMIuL1ETYIVt7/PBUXtJ5oZUNYl63FkWLn79UrYXX95W63mxkzZuivHeXF2DOcmApKWZdm5o+oZS1GjZBjMSKkxNuvE6KijM1fTsTtbjjIWve8GmT/3lCz3uDOMOgcDMUVbCwrgBktdzVxzluIU0oUBMH0ZP4OuFCXLsX2yxJm9Onc9A6A9FQb1i1aJdj6r39EOmys37aJrKD2nvvPNfwZ7zOqKjlFxRjcXrCaUcIRVIuJSDgMlVUEvphC2RdTiKQn4x0xAO+Igbjtpgb/XukZTsL9u+A+Yh/tnjFjBplfT6HqxFEEW+H/V+zdhby3v0IJhgDJgo1rUUs1C2u3283s5UugsxPFKRDBEJHmHrNbCknHjSCSZGejNaz/fxtvPZMNc+fWBpnagETC7OvqvP6zLU7k34Ris5B2w3mU3Pk8AFXvf6f1e+dlkXrd2ZQ9+iaKy0vq5aeTcukpmPfo0SbtCJ6p8yAU0gfSkQoXhRfeTec5H+xSZePdjapxX6L6AlrGJ6o/VditelbXmJWGITXxfrCWUr/q4mi96qIG28ghSDThIt/SVaguT0JZOiEESScdSnD9ZlSvH988TVSWSITw9hIKzrwFzCaUtGSEEDEiUobkJJIvOomKF7V+xYpXPyHp2IP0wW8N3h/m1P7NOmRjGz2MdtoBLRgoLGYi1ZkeJS2Z7Odvr/cdag6+BSsILP6T1KvObHQ9xelAcTq0THMwRKSkQrums9O0TE41wT/X67aGxs659a49oSg4Tzmc8uc/ALRy6uzxD6JWuCjcuhEZCBIpKsM7YyH20cNp59+HZa8+WPfZU9NMSbIjIirCbtXaMW0WZDgc4yaR8+b9oCiYunbYJcLPoNmROo4brT/3LUP74/l5PrJKqyZMvuDEVjuWEALbofsS3JQPvgCu977DMXqfZu3D3L8nfPcLsOt1L4JrN+GdOk+/xyjJSaAoml5OKIwMh/FMnq2v35jmhPPUIxBWM65Pf0R6/Ri75JFy/vEtHo/55y3HN3Mh3p/moiQn7ZT2GlsTTgKgVYJm3HN5m59Lo+cghAmYALwnpaznuSulfBN4E2BPk1Mq4QiKyUTa0nUMfLR/XHHD1qR44iKsF57Mng0EK2fMmMHo6GXVv4e2FNIrK63V3AuDn/TC1K0jwmTE/d0v+GYuIquRAGq986qD6gtQctszZL14Z5vMM0p+WYnLbgO7jezbLiH5rDGo/gDr3vqersu2YO7aAevIIY0K3JYv20Llak2U21HhJ/n4I7AdvA/bv/4VQ24m5j5dGdjAZyw7YwtV1fa+thP3xzKoD54f5ujBVgDcfmxTF5MxdTGp3XLY461H4raSlv+RjxCC1JOOAzQhy21VbzHg0nNapQrO9e0vFHn9IAAhGHnoIRjsViD2/7Hqw4mENhWTcXrzqy84on4SM7h2E4bMtDYNWjb515FSPthmR/8X4zhmFFUfTiS4ch0yEKT8+Q/JevJGhNFIxv1XIaf8hLFTTpuKu3m+nY796NoHqTErDWEyESksae/JjkYIrMMHQESN6YerKXMTJiPBNZt2yoTE98tvMVUXKRedWG8dQ0YqwmzWsnxeH56pv+I8uf4NJB6O40YTKa1ARiKk3XA+/sV/UnTtoxjTU3CecwwVz74PaBPLutZ9yecei+ujiURKKohsL6Xqkx9IueAEfbmUkqqPalXynWcejdCFO9v5r1H57jcIg4Jlr76Y+nZD9foIFxRrAxpFIWvsLTt8H1LsNrzT5jUZvACt+iK8bTuYTUTyizBmpWHMzcJ5Tm11kD+qZcTagIBX0omHUPHyR8hwhMDSvzBmpWMeMRjLjTOpmLoIGQxhyExrD178i0m55GT8v/2OYjJCkomcN+4nUlCMwW6j/KUJeCbP1vQL9tkT+2EjUGy7xia9hrInxmHu31O3QQxvzNcDF0paMsaueY1t3mwch++vTc475TaqJ9UQ5gG1woGBXR28WLme0KbaVgJDWjK5bz9MaFsRvqm/Es4vJvC7JhwsTEbsh+8PyxbH3Zepe0dSLjoJ14cT6TjxFc1dZQc0yHzzlgGa8Hu028d/HSGEAnwABIFrmlpfKgLMJoioSBGh8u2v2zz4kn7X/1oUuG9NHRwgRovEMqgv/gW/79D+gr+vIVJa0WYJ0khRqb7vGtckxWpBGhQqX/kYYTGT+/bDjQYvoq2Ehd2C7QAt2NFxYtMizL45S1DdXoTdhnXvPUi59BRSLjuN4Mr1uL+djmfyLNRKt76+Zc0WKl75mMxHrqu3L+vQAYSj2pQilS6SLzyxVQIXoP2tdBSF8N9bMQzsVX+94rJWsyyWoTBlT76NbeSQuPMX1e3Fv+RPDFnpGLPT69lNJ0pC6X4hRLIQwhz1+lAhxDPVP6NbdOR/OUJRdLEjAM+kmfoDDsD59Syq3vs23qatggwE8S/8o94E1Nyvuz45bkdDmE2k334JHT5/FudJh+nvGzvn0Gn623RZ/BmOMQcS3tbyUrdEqFd1cebRDbb4SK8PVBXV5cHzfeJKx8bsdNJvu5iMO/9HOH87lS9/hHVIP7JfvYfwhm36eo6jDqh3A1XsVlIuO01/XfnWFzE2d4Flq2JERu2H74/7+xmUPvQaZU+OT/gc2/nnI6Wk6p2vKXvybfLPvo0toy6g6sOJ+qAj7YbzEsrgNUW0aGdTGDpkI0NhhMmoBTHQRO6Sjj+YUI3mS7RYZwPBC0NmWowS+Pb/PUBgxRqCPTS7NOn1a+0x7fxrse4/uHYAHAjhn7dcr3BMveZssl+6C/MePfD+8huoKr65S/HOWrRLzlX1+vFOnYf9kH319wLLa+vULXv1bfWJhmWvPmTcewUpF52I45hRhDY1z+XMXCPaiSawW6PPtCsIbdiKqXvHmPeswwZgGzEI67574vlhTu37+w9pskLTN2sRlqH9sQzQ1PoT1TyIR9pNF5Bx7xUkHX8wadee0+L9/JsQ2pd5PJADnCKlbNL/Udqs2A4ciqy+DNxfTSMcVZHX2gSWryZSUr5LhWjjYeragcxH60+ym4N/6apWdZCpS2R77YTckF1r+RxJSdKDQYbqxGNDmKoDNlJKwtvL62lBxEOqKp6pv+Jf+AfS64dQGG+1MK0QAsvAXmTcfRmdZ7xL1vN3xOi+eH9eEPc6t40YFGO/au7ZhdTLT6u3XksRBgUUBSU5CfuRIzH3j28MGikur1dl2hL8v/3Opr1PwzttHlUffB93ndCGbRRd9QgFp93E9sseaPGxEu1V+AXoBSCEuAr4GDBV/3wqhLi0xWdAYvZG1QGTVUIIrxDiFyFE46a8uwHWYQNiBrllY9/WlVW9Bw3B9dmPeolyaxNcuxnzgF71HqTJ5x2HsZUjt7sLzdV/qMHct1vcDLAwGjFmpyMUBUNGSoy4WVvgm/5brXWk1UxKA8rvkfIqpM+nlYIhCK7bnLBAUA3+pX+Rf8J1OI4bTc74hzF17YB36jx9eVIDvuPO047U9QPUCldMAM41obbqwnHMKGQwQMmdz+P6bAruiTPbxPqvnd2T8NbtREqr7f/CESLbS6sFrsB++AiS40TkW4KwmLEM7KMHIxpDd9dRFEJbi/AvW8WWgy9mQ58xFN/wpCY0uCxqUjekYeu0aIHR0LpNYDIS7NEBx7EHYT/6AGzDB7b8Q7Wz2yOEICVKmLvqg++JVLfLCSEw9+pC8tnHkP3sbSgOGzIQpOLFCQndA8OFJVS8/hmFl9xHyQOJ27E2hHfaPCyD+2qOCtXH9y+PrjBqnstPcwlvLqDwvDuJVLmbXrkaxW6tDRio6i4T7Qz8uZ7g6o0Y6wQvQEsEJJ93PO7JtS4jidiUeqb8iuPw/QEovuVpAgnaPcfD1CUPy5B+GDvl1IqctvMasAdwnJTSl8gGkXQnaqULS59ugCamWdMa0BZUvPIxob+3ttn+d4TK8V/tkGhneGsh1iGaRk24oJjy5z/A9+uyVrN4jQ4qGaKqK9xH7oO5f0/sRx3QZBWBqWueFuhQVUJrN8YV6q9LaP0Wiq56VHMYkRKpRjDvUd9aVpiMOA7bj+yX79Jbj1SXB1+NbXAUUlUpvFBzC5TBENuOvyZhoctE0AImEswmzHHci0ofeo3SR95AhsKY+uz4lNqQnaFp/yiCSEn84F/0PG1Hqj0SDV70llLWaF1cBxwqpbxOSnkdMBq4o8VnoBFtb5QC3Itmb9QNQAiRCXxV/X46sAj4dAePuVNIu+l8hFErnQ8s+Uu32QvnZWDu3xP3pFnISITA8tVUvvtNqx3XMrAXOePqd/zYRg7B1K3+g/ifjgyF2TL6ohYFMDLuu1JvEWkIY+c8/f+xLZBSUvFaVNXFWWMarLpQkuzkffE8SlY6wmZBLa/Sgx6JYhncj85zPiD5nGMQQuCbuUivojB2ycPcgH2XMBlJvapWObzqve80x5yiMrzTaoMfyeccg6lHZ5Tq4JlaXhVT2dHOPx/V48P16Y+UvzSBssfHUXL3ixRd9ziFl9xH0XWPI+xWZDCEWulCmDULLlOPTmQ+fG2rZnpz330kIbFjU78eup5LOH87hhQnkeIyEILwpnwt4FJ9/1CS7Jr9WgNY9xmIoUM2ajCEDIYJLFuFdFjJeuJGUi45hdCWwga3bYxIpYvi256h9KHXdygj207bYz98BMZqjSTV5aHilY8bXNc2ejiq1x9T8dAQkZIKKl7+CP+CFfhmLt7hoK8hO4PkC0+k4MxbyT/2aipe/xT/4qgKo2ZaFDcXU9cO2A7Zh8q3mqegb+lfOzEIrtw1rSNlD72Od/ZiSh9+ncDKuvJvUHzLWILV7wurucFWsXBRmX49p1x+GvbDtKSWdWh/Aot3TEbON3tJfRva/yjVSc3LgcFAoRDCXf3TaFmKNBgw9eiE7eBabRbX51PaJGEVLi4n8PvamMx8Y/jmLaf0wVfxzljYagGAukgp8S/5k/Ln3qdy3Bf4fl3W4n1lPnwttkO0v6Nv3nIqx33J9sseoPiWsTt+noGgrqkmFYXw1kJcn/2I6/MpeA8ZijAacJ5yeJNtesJo1J7v4QjCaCC4emOTxzb37oqSXq3hIIBgCHMjE34hBPYjRuivvVPm1l9HUQgXlRLeUoh/0UpNt6aVtExAe5YoGakIITB2qlNdIiXu72fg+uQH3JNnxej9tRRjhywwGDDkZWHq3inus0vYrdhGDMLUuyumbh1afKxEgxcuIURNWDeFWG3c9WjlWS0mAXujk4GVUsrPpZR+4AFgkBCi4dTYboKpawecZ43RX5c/977+EEu74TzM/Xuw7cjLKTjndsqffrdVbJqklJQ/8x4yzo0uvG07245vsgXwH4duQWdunoe06vZSfHPTN9WkYw9KqK++pXh/XlBbdWGzNFh1AaD6/PjnLCHp2NG6ZopvVvwe24YQQsRU5Xi+n6H/nnTsQY1OLh3HjtIndqrXR+VbX2hVRNUOEtah/TH37Y4QguSzjyH1mrPIGf+QXrHRzj8fKSXFN4+l9OHXqXzjc6omTMT97XS80xfgX7CC0NpNWmmlyagJ21U7MmS/cGer6/wE127C9fW0JtdTK6p0x6Dw1iLtYa4omriiouBf9Ie+rmVQ30ZFlIWiYNmrD7KiClQ1xvrVMqhvi60BK1/9FPekWdqA7JMfWrSPdnYOwmgk/eYL9deuz6YQjBZti15XUUg+62j8c5c2uV/zHt31ayRSXEa4hYEw0AKM1qH9teqn4jJCm/JxTZhEaEN11tdgwDywd4v3nwhSSpKOOQj35z/ptoyJYI4OXuwC3QsZDBFY9TfSH0BWuOoP/oHQlu1Irx/V68c+ep8G2wDKHn6dLaMvpOimp5CBoC6wbeyci+vTH9l+5UNUtjDT7/t1mW6f/l9HSrlJSimklFYpZVLUz4RGN1QEpm4dUZLsmPfQSuulP0jVe9+1+jl6p/6K7aBhCevgeH6cg+vznyi65lEq3/is1c8HtPFgyT0vUTn+KyIlFfhmN288WUNocwFVH0/Wx4/R+hnWoQN2+Dyjqy4Up53C8++i9KHXqay2NrWN3kdr1UsAc5+umguUwUBozUZ9/+6vf2bjwBMpG/tOvW2ExYSwWRFpKaTfd2WT111NhRWAd/pvcRMSpu6dCK7fomnqHdS6AvfhbdshGEKGI/UEaIXHr88R1QpXs6u34yHMJrou+pSucz+kwzcvxp1H2Pbdi5y3HqTj1y+QfkfLmzYSDV68A7wrhOgOPAe8IoToVB3QeAGY0+jWzSSOvdEAQK+5kVJ60IImO3417ARSrjhdU6hGK6F0fTwZ0Po6jZlpGKL6rXyt0Csd3rAN96SZiGpV2WgMeVmoZZVEKl07fJzdCbW8StNpaGTSLUNhKt/7lsp3v0GGtZuIb84SvL/8hueH2Q325ar+AP5Ff+oOA62NVFUqo6ouks8c06iITfD3tQSWr44R6NqR702kvCpme0cDLSM1CIMhpr/W9ckPMRMtZ5Q9aupVZ5J6xRnY9t1rh1wl2tm9cH81LeHvnJJkx5CWTObTt9TrHW8NpC+A68OJTa7n+WY6SO0BHc4vQpiMdPrxdTIevobMh68h+HuURWojLSM1mDrlgFC0EsnyKoxbNU0cxWbB3LtLQqWoMZ9DSqomTERWulE9voRaYdrZtdgO2QfrvtXaLZEI5U+Ob7BSwnnOsQkFtYTBQOo1Z5P5+A10mjZuhzJiVe9/S/nzHxAuLEGxaxNr86C+1DwlzX26osQZJ7QWrq+nkX/MVRRedA9Jpx+FISej6Y1qzm0ninYG123Gvzi2VD5S4dLKwgMhjF3yMKTEtuD6V6zGN2uR5jji82M/amTcfUcqXZrIX6Ub9xc/4V9YGyQVJiPBDVvxzV6Cb07Tga0aZCiM6g8gIxEihSVYh/0jhsK7NcnnHEPScaNjdL1cn/ygt4O1FknHHxyjh9cYUlVjElO2NhSBth9YPZ40Ggmu3dSiffh+XaZXIgEkHT8a51ljMPXqgrUBa93mEC1AaeqcC9WC8OHNBQhfAPvBw/EnOC4x9+2OUAwIs4lgdfDC98tvlNz7EkA9TcJwURlqWZU2nrFbST73uCYdacx79SGSVl19XOXG/1t9MVTLgJ6o5ZUIgxJT+dMahLcVIYMhZCiEsVOOds+oCaCYjGQ9dztpN52PYrfpc9QdRZiMBNdtpuD0m1tlfw2RqKTpfcBDwAogBKQCF1cvmw20LM0UhwbsjZKAusbDlUBcZaRo/+asrKzEPInbGMfBg0j5XLP+yn/2Hbx3ncOMGTOwz1lB0roNCJuJwIAe5HvKd9jf1zF1IcZu2ayfGV/IMTM9ia0ff0WwX/2Sp4Q9nHcyiZyXNcdB/qV3U37liXGX2+b9Qdo7WuBo9ZZNeA8cRMrHk3EWlrDt+sdxHzaMqtMPidnGMX0xKZ/8rKlQGxWWD471kU7kvBSXF/PqzfgH94Y4rSfWpWtI/30NANJs5PfemaiN7DNp0jwUhxGX9JAbDCKAwMLfWTPxB2SSLeHzqsE+YympXq01NNijA3P/Xg1/N1HerEgyO2Zg3lAAwSB4tJaTSKqThQZ/rb93O/86wgXFMZUG9kP2xTpsAMJpR3HYUJIcKEl2hMNG0XWPk/XUzZj792gz9XFz326ENuUjA8EGA2SRskpUl0cf7EQKipERLRuRct7xAFS8/JG+vmVw04Jjhux0lPRk1NJKMCg4Zi2Hc08HtL5hJSWJlMtOS/hzCyHI++xZto25AvthI0hLcIDbzq5DCEH67ReTf+pNmjDnvOX4Zi6K2z4gFAXvjIWE84tIjgrwxiP53GN3+NykquL+9heynr4Vy8BeOMaMwjfjt5h+9oZEaVuNYFivJg2uXId3ylyMXfJiWkIawty3OwgBUhL6eyuq198mgZbg2k0UnHYTMhwh5YrTSbvmbEDTtEi97FRcqUlkPnxt/Q3DEVCrA1WqxJCeGnf/4c2FGLLSCW3bDkLgPL1WoM82ahjCYtb0dpav0gWFm8K/YAVF1z2OZcgeJF9yckJW6e00jOL1U/nuNwSXryHjsesw9epCaN1mVK8P14SJLa6ki0fgj3XNatXKeuYWfDMW4V/2F5Y9265Kyn74CNRAANuBQ2sDss0ksOQvrCNqt7WNHFLPNGBHiLY1N+ZmYsxKR1jNmPt2Z5OUmHp1Ie/TpxPal7lPV4RVGy/UtI1YovR/hMlIpLRCTyT6F6zQl1kG90uockYIgW9oX2yztG09U+bW+3u0VUW3lJJwfhEYDEhfgOIbniScX0Tue49i3bs/0mLCMXoEoS2FuD75sVXHZ4a05Npq+DYioeCFlFIF7hFCPA3sCXQCfMAKKWWT1hVCiBloehbxmCulPKB6vYbsjdxAXcPYZCBuSDTav7lv376yMU/inYUceQDblv6t2eKEJbnTl7P36w8jR+zP1p8Wk/PJk5h7dm56Rwmw/fO5OM89CfvofeMur8r3YO7dFWscUbmmPJx3FU2dl2fyLGSfflRMXcqgBtYr/XUtLrN2s+peGSJr9GgKxk/BZzRgNJvpNWoEyXW29fiNFH81Gykl0uuvdw5NnVfhFQ/hnTIXxWEjb8LB9R5aUkoK35hEoPq8Ui46ib7HNzywVT0+Sr6Zj+O4w3EcdQAFH8/Q+6iHKQ4co0cldF7RFIz7UT9+7vknNehvXRefPYPtl9wX817qpaexx2GHJrR9O62HDAQpf3ECgaV/kXr9udhaOPho8jhSUnr/K6geLdhl6tqBzKduitunGVi5DlS1TQMXoIl2mrp2ILh6I5YGtFoCy1ZhGdyPwJ/rUcurkKGwprCdm0lg+Wq8sxYRXFtd8m8wJDRITD77GML5RZS/OAFhtWCbvxLV7cX12RS8MxcRXLkOx9EHNitzHlz1N0nHH0zSSYcS3lTQLsLXBNVji/2AmnrcbVLKthVxqIO5Tzecpx2B69MfASh76m1s+w/WdV6iMXbIovTB13CedmSr2eE1RGDJXwirRa9gUGwWHEcfiPvrn/V12lrvwjZ6ODz8OsJmxZCeTMTlofL+V8h568EmXTkUhw1T946asKGqElyzsUH74oaQgSBbDr6YDl8822CW1Dt1nt7yWPnG51iHDdSdkEIbtmHq0Tmu/pTnx7na5EdVse4/pMFr1bJnbzr++DoVr32Kb/qCmM9tzM3E3KMT5r7dSb3+3LjJjXj45i9HBkN4Zy5ESXbgPPmwpjdqp0EUt4+qDyeillWRvGYTqZedSvFtzwJQ9eFEks8/vlUCRFJKiq97nI7T3oJEJr+KgnXv/lj37r/Dx24K67ABegWPd8ZCDGnJzb4/BJavIvXKM9ri9AAI13Eaybjrf4A2/k/+6gcqN1di7NoBJcleW0nSAMaenYmUV6GkOgmt24wMhzH37U7OG/cT2lyA/ZB9Yyqgo4MXzQnu+Ib2herghffn+ch7r4i590fKqyg47SZSrjwD5ymHJ7zfplDLKpG+AMKgIEGv5Ayt3Rz7fQpHsB24d6sdFzT7benxIYOhuM/BVjlGIisJIT4UQpwNKFLK2VLKj6WU3yQSuACQUo6u7kOL91MTuGjM3mglMCjqfBxAT2rbSnZ7hMlI2o3n668dM5YS2pSPsJhxnnEUrglNlz0nSvbzt2Nr5MJNPvuYuIGLfzLuSbMRditqpavBMr9oi6WaMtSUi08i5dqzsY8ejmWP+jZCxrwshNGg6TUoQp+0JYxUNVtTwDd/Rb3FgeWraz3izSaSLzi+0d2VjX0b/5I/8UyZS+CPdTE3Hd/s5reOhDYXEFimFTgJowHHUQckvK1t372wjdAvS4TZhPPUhm++zRWeq77vFAghqoQQa6Jdjf6J7kNtRbiojMKL76XqvW8JrFijRdib0VveGJGyypjX7q+m1Yp5CUHGo9fVC1xUfThRc0q492Ws++zZpoGLGnLefABzHP/yGixD9iDttoswRbXo1TzMZTCE98e5mko21aX0CVrYKUl2jBlpCCFQ/EG2Hv4/Kt/+iuDaTUh/AP+S5onxmffoQcqVZxD4fS2uL6c2a9v/MNdE9bbv1MBFDanXnK1PbsKbC6hq4Hlu7tMNU5dcvNMXtPk5KckOTTA86vqTqkpgxRr9dVtXXhhzMsh971G6zHmfrLG34Dz1CGz7DaLwvDsTukeZd1C0s/K971Cr3EQqG3Y6CUTvV0pK7nxeH0M4xhxI8tlj6m0jw2G8P81FcTq0AFHfbo0GY4Si4Dz1CDIfv6HespRLTgG0MvhE75XhrdX3Ll+gzTVL/gtIk1Gr8kHi/30N9iNHYuqqiQmqLg9VH01uleNECksQDhuGVirRbyuCqzbo5gLNIe+zZzDugAhjU8RUXkS1oPnmr8AxazkVL39MYMlfVL7WtJ+DrHQjjAaEEMhQmNBGrW3cNnIIyWeNidm/lBJ/1Pg9etzbFKHueXq7nFpZv3VEmIyEC0saFOhvKTX3CEzGWkMCRalnamDq3pGMe69otePKcJhwfjHmvfrgi6Px5P5+Bt4ZCwn8sU5v328JiWpeTAKOBv4UQswVQtwthGi9WiCNxuyNvgYGCiFOEUJY0dpYVkS1lfwjsB+2nyaeBQhVpfy59wGtFzbl0lNa5RiB5avx//Z7o1mdcEExRTc80SrH210Iby7A1DWP5ItPRjZgNRTdLxfeXIDq8iDsVpzHH0z2y3fHjTKbB/aiy+LP6PzTW3SZ9Z5eZpYohrQUhMWCqXfXmJthDdF9dY5jD2ryBub7dTmRghItW+QPYDsgSvdi7tJmi+54JtW2FllH7o0hPaVZ26feeL4eWU065fC42weWr6b45rFsPeSSZu0beBzoJqVMBo4HHhFCDP0nuw+1NoE/1lFw5i0xLgaqy0PJnc9rYlQtQKoqFeO+IvOBt9l62KW6C03ddpHk84+Pmwn1z1+Of8EKAstWJeSf3hrIiBrTS16X8NbtmLp0iBGNDddoVKSnENqcr/eCNmdCFykqjwkgqi6P1mda6QIEri9+SlhfKFJSjjEnA8sePUg69iA8k2bt0MO9nZ2HIS05pvy38vXPGnS+cp5zLKH1WxLet+ryNLsEV/UHMOZlYR8VKwAXWr9Fv54Nmak7RUTZOnSA3s4lhCDt5gtIueRklCR7kwFtS5TuRXNFO2Ukgnfqr3T84fW4iQnQJiXBOi4ikeIySu99CSklqsuj2f/Vwb9wJZGSCgAtc9uAXlYNqj9ApKwSc7UVZzSWof3xL/6zWcH97OfvIO+L5zCkp7Rqtva/imq3kHbt2Vj26ot17/4Ig4GU/52qL6/64LvmJ67iEFy3+R9RTWfZs7eeVEuU4OoNhDcXtmmyItKATWr0+9Z99iS0YRvh4sadB4PrNsXso0a0Mx7hzQV6sFVx2GL0eJpEUXAcUSvc6fnp19jFSXZSrzpTr/ZqLWqeGUJRMPXuSu7HY+ny28f1WqA8U+fh/vaXVjuuf9GfbDvqcgKL/6Ry/Fcxy6SqUnrvSxRd8ygFZ96iV7y1hETbRj4GPq6ujtgHOAZ4SwiRC/wITAamSilbpGwTZW8UQLM3qll0uZRygpSyWAhxCvAy8CGwAGg764c2QghB2i0XUXDWrQB4p80n8Od6LP17Evb68M1Zgu2AHSvfcX3xE+a+3RvtMzNkpOKbvQTVH2hVW55dhYxECOcXYeyUS+rlpzW4XriwNOZ14M/1eL6bgXXYAK2/Ng7CUFvGGalwVZe/JjbB985chPRrIkIYjSSdGKunEdpSiPfn2gxc8vmNV11EqtxEikqR/gBKcpJWIm80YMhIIVJaSaSskuDK9Qn3RUop8XxfG7xIOq5xoc54WPr3JPfDJwhvysd++Ii466huL544NlEJnF90ZZWs/umJ5kK0Ukr5OYAQ4gGgRAjR758W0NwRPJNnUXLvy8hAtU1ejTuGqk3kq977jpSLT2r2foWi4PrgW6x/bUTNSsM7YyGOY0ZR+sCrMe0iqdeeXW9bKSWBFWuQUqLYrdgPbV0BqoaIFBRT/vS72D5/tt4y1eun8OJ76Dz7/ZjS8XD+dsIFxWw74TrU7aVgUDBkpmHdu2m9ixrSbr4AGQlj+bIf28Z9jrnSi7CYtfuGyUhg6Sq2jr4I+6H7kXTyYVj32yuui0lg5TrcX05DSUki7fpzMXbORVhMbL/iIeyjhjV5b/iP87gQ4gk0F7S7pZQzGlqxTfWw8uxkpSdhKiyDYJAVtz1J5flH1V/PDPTPjasLFK1VZF67heTPf8G0aTv+oX0pvyzx74B95jIsf23EP6gXhjIXvv36E8lIwT57OalB7X7hy05pUBersfNqFVIVWDCfjBc+p+qEAwj1jC/ka/ZXkll9vtvnLuKPOufQ6HlJCVcey7plS0i7/GtKbz27Ortei1LuIje/uopBURDVwf/g5FkUbC/E+scGtj/yP9T02K7l1Hd/wF59Xu59+2FfsJLV037W2z7qnpd18WocM5dSelOcYauUpPTO4++fpiEtiZdYW5euxd63M7OXJe4Msbtqmu1qpMVM6hVnYOrRWQ8wOY4ZRcXrnxLeuh21woXrsx9Juaj5z9NozD064TztCMIFxRjzshpdV3j8SFVt1PWqrTAP6EXg9zWoXp8u9NsUri+mYuyQhWXP3gTXb6H45rFYhw/ENmpoky0ciRLbNlIbeEi+4AQ2ZznolZaFuZ82//HNXtxoO5X0+DH360FgqWYbHVy1EceYUXHXja66sAwbqDmUNQP7kSOp+uB7oLp15J7LYxLMbaF7oVdeoAV+DSmxNqypb09i++dzCW8pSNi2NxFqXJlUr7+e8Kta4dIDForTsUPzz2b9D0gtNLyg+ue+6uDF0WiCna8LIe6VUr7R3JOQUm4CGg3XSSmnAbu9NWpTWPbsjf3wEQSrM94Vr3xMziv3oLo8FN/6NEmnHIF//nKyX7qryZtbXaSq4pu9JCZiHA9hNmHqmkdo3RYsjZRa/2NQFDpOehXFbsU3dymeqb+S+cDVMavIcLieZ3fwr7+JlJSjZKYmdJjK1z4l6aTDsB8aX0skGtXloejqR5CqipKShFC1LE5036Trw4lQPViyjRyCudp+tCEMyUmkXHQSkdIKbCOH6BUPtpF74/5Oi5z6Zi9OOHgR/H2tLqamOGwtVrK29O/ZqACbZVBfbWLdAismIcSrwIWADViKFih9lDruQ0KIGvehesGL3VHAN5pmDyhVFee3s3H+UBv4Um0Wyi8/HvParTgnaZH9wrHj+cMQINQ1t9nnlNyvE8mrNhLyeFk1cy7qsuWk/qIdTwL5J+3P2vnz6m8oJYbrTyH1zW+RVjMbN62DLQl1FyZM3L9XMETen+uYMXUa1Kk6M6/aRHKGk1nz52F3lemTt40LllDRJ4u8SAiDAFRJMBBgsa+8UcFcAMP2ckzbilEq3Pj37oPaPQ337WeRXlCOfc4KbItXI7w+RCiCdFgJfDed8u+mE0lPpvzCo2PFkqUk+843MG8swLd3H37vkoJ5/TbS12+Bv7dQumYDxZ2d9SZeO/T3+vdwO/Anmk7WmcD3QojBUsq4afq21sPyWdPYfsVDAJgXrqb/rZfFzfp7Zy7Cv/B30m+JFWWN1ioK5m4g/4UvwWTCnl/GXgc1bmFdg5SSghe/Ju2Wiyh/+h2CazbBDwvIfvluvAGBu1rfKOeo0Q3qQ9WlrbSwfJZUiu98nsxHrotrE6gO97H5xa9ASsxlbvbYZ78Y0c6Gzsu/bBWVb31Jzit3I6Vk67Nf0K9nv3r6M97pCyiq/ntYhw3A1Kcbro8moXr9JM1cBkKwx7LNZD1UK8EmgyG23PkWavV2A667iPKXPqJn7z0w5GSgWC3MmDGD/Tv3wPXxDyQdN5rKgkXYzj2RPRv6Gx58sPZ5fQGIRBKzkx49GnlVwyLF8dhdNc12FxxH7K9XrwqTkZRLTqb0wdcArUrWedaYHZpwBddtofiO50BC7tsPNWofmvbuZLY+/Rm2UUNJueTkHXIdag5VH07E9cVPqF4fvgW/40jQASOwbBVJ1U51/gUrCK3bTGjdZiJFZa0WvIiunjbmaK0QvjlLCKxYg3n1ZpzPn4exQzZpt1+CIaXx1pykkw5F2CwU1wQv1m5scF1flN6Fbb/mu6ZY9uqDITudSFEZaoUL/6KVzWo9aQnh/CL9d2NeJqFN+THfIctfG/H5QqhVHpJOaj2dOmNuBoacDESVG2PHnNgAnKqSdOIhRIrLd9h9cIcUo6SUhWg2qu8IIQxoJdztNEHq1WdRXh288M1cRGD5aiyD+iJ9ASpf/xRhteCbuxTnqUc0a7/B1RtRkuz1bnK+ecspe2Ic1r33IP2+KxFCYBk2kEhxWQN7apxdFQ1uiMj2Ul18z5Cbgf+3+uXjkdLKepPn4J/riZSUJ9xrpmSkEiltvBRN3/eqDVoZaDiCqVMuhqw0fHOX6poSqsuD66tp+vqJZlaDK9fhPPuYGDV726ihMcGLRKO47om1WTf74SParApHSbKT9cQNmHp0hj2+bXqDKKSUVwkhrgVGAKPRqrOa5T60Owr4RtOcAaXq9lJ8+3P4Zi6F6sGzqXsnsl++C1PXDshQmMLCO/WSz25fzCHvs2cS9pSvcewIdu7JcqeDfvsOpceBQ8k/8Tp9sJ58/vH0vfTchs/R62fr05/SccLTrd7HCQ3/vfL7TqRbXrd6AdmKVZ8iDz+QgaNH4zMms/0L7XufLMwMPvRQtnT8mGCZC4wGrHnZjDq56Wux8t1vKH97MpHSCpIvOomsx67XJizHHweXV/dJf/A9ZWPfQZhMtZNOtx/7+B/o9PM4ve85sHId+SVVqEYjKeVeBh57NDIUZsunvxApq8RUWsX+nXpg7t0yWZd/6oQlEaFvKWW0eMR7QoizgDHAS219fvGwHbA3tlFDNXtDKSl/Yhw57z5aL+hg3qMHJXc8R+rlpzcoBGjq0xUlOUlrXchKR61wYUirq1ten8DSv5CBEEqaUwtcAMJqxjpsAOVPv6uvF62svzMIbdiG95ffEBYzyedootS2A/Ym5+W7KbrxScwfj63XWtmYaGdg+WqsC/9CHnBATCZUqiplj72lP1OFEFiHD8S/aGW9sVEgqmXEPKAXadedg3/hHwQWr9QqNyRY+sVWZfrmLNGci9CyjKY9e2MfPZzSh14nsGI1nadrrXWeb2fg+uQHqj6eDKEwGXdeSkOUPj4O9zc/QzBE2q0XNelGI6Wk6t1vSD73uEbXa6d5eGctwv3FVLJfvBOApBMOoeL1z7QxZkkF7i+mttgJSEqpBTbVCMJkwvPDnAaDFzIQxPLXRiIouL+c2qIKypYS2V5KaN1mkOD5fkZCwQvV7SW0MR9zdaA22tGoNSxSQfv7xWsbqXznG/wLVmALBgn8+TfGDtkYs9Lw/DAb28H7NDiuLX/mPeyH7ae/Dq7aGP+4qhqjU9ESJxahKDgO31/XQvL+NLftgxdRlRfGrh0Jb8yH6iCSDIYwVHq0MaSUmFrJLAJAGI10/nk8Fa9+ggxHYuaKhsw0Mh+5rlWO0+wZqBDieCHEM0KI94QQ79f8SCkjUsq29Ub5l2Du1QXfPrWlyeUvaRZ9jmMOQvVXl3Qm6FUcs99+3cl555GY9yJllRTfPJbQ+i24Pv8Jf7WASsZd/8PeAk9h99c/s2W/cyi+5elmCzC2Fb45S3B9pim9m7p1JFJcrg8uaojEEQfzzV6CITcT3+xFjfpaq/4AoY35qB4fwXUJ9iorAsuefZD+AOa+3Ui7/tyYXnrX5z8hfX7tnHt1wbr/4IR2m3bTBfU83a37D9ZbBgJ/rKsnshgPGQrj/XGO/tpx7OiEjt9SHGNGYa4zCEyU6nvLHDSXoytppvvQv4XQ5gIKzrkd38yF+nu2UUPJ++hJXVxMmIxkPnkTwqZlJ0MbtlL+zLsJHyP/jFvIP/cO8k+4Fv++/XGccjjFt4zV++RNXfJIvfacRvfh/eU3LIP7tkngojEy7r9KL1mMxrrfIBzHjwaI0eAIb9MyE8kXnIAwGbXqowQHWuHNhdr9T5VxgwqK00HKlWdg6ppHzuv3kXzusfokVfr8uD+boq8rvX5MA3qiJNmwH7yPdi52K85Tj8DUKZe0K8/A1ERV1r+RRIS+421GE1WcbU36rRcjqtsH/Iv/xFunxxk0G07bAUNwfzO9wf0IRSHntXvpPPcDOnz+bEKBC6hW4b//SkzdOpH11E3YDtgbx+H7IyMRQhu3afs2GmLEMNsa/6KVbDvuasqffY+q976NGTtYBvWl4/evYMzJIPDHunrbxhPtDG0uoPDCu0l/63sq3/wiZn33N9MRZhOOY2pLwG0H7o0aR3smWkfDMqAnwmIm66mbEHabNrBXBIHFsaK7nsmz9d8dRx2AoihUfTwZ7y+/IX0BTaROVfFMnqWvl3rtOTHOBXURZhPhLYXIULje8aIJby/F+/MCgivXUfXhxITdSdpJDGNelhYoq0aYTaRccrL+unL8V7Vtms3E/9vvqOWVul13qJExZ2hTPrI6IGfq2kF/vu8MdA0nVSUY53qMh7CYyR3/kF4NnPnIdeS8+QApl56C7YDWkUescQmD6paD6gosc99u+jrRuhWuT6fEtHtEIwNBqj6ahKlPV70CIFJcRqS8qt66wdUbUasFfA0ZKZhamESwHxmlezFtfpvrWdWMbwAcRx+AuX8PpKoS2qq1yxbfeR5Zz95K5lM3t6qdbQ2G7HTUivp/z9aiWcELIcT9wBvV250GlAJHAhWtfmb/clzHjdQnnP75y/Ev/IPkS08m5cITyH7hzhZFpzyTZtVXyTcoqFW1Sts1F3+4qIyK1z9r1v5lJELJvS+hen14fpxDcNWGZp9jWxDeVKBnVITBgP2QfYnUEesJF9WvMglt3Y735/lUvPiR3vcWj8o3PmfbsVfh+X4G0utP6JysQweQfN5xJJ16BBn3XoHidOD+ahrFtz9LpNIdo0affMHxCZUDh4vLEQ5bvZJSQ3JSrdiolHEVfuvim7dMD3IYstOxDm+4fHE3wkity9A/2n2oufjmr6DgzFtjhP5SLjqJ7Jfuqpe5NXXJIz0qy+f65Ae8Mxc1eYzgeq3MM7B4JZHyKtRkB1Vvf4V32gKtlLbGXaSJKg7FaSf5vJ2v0WDeo4fu7FODjEQw9+qiBxiMHWpb8cKFJchQmOCK1aAoSFXFMiQxvQtT7y5Yhw9AWM2YesYXYBNC4DzjaFRfgPQ7LiX9tov1ZVUTJiGDmqGWqUcncl64k84/jyflitP1ddJvv4T02y8m8PvaneLY8k9DCJEqhDhSCGEVQhiFEOcAo4ApTW3blpi6d8QZlTkvf/pd1Dgi0snnHqe1CTSCZVDfZjkTRCpcCKFlOxWbBceYUeS8fh8Zj14XI+pr3qPHTtW7sgzqqz+3wvlF9SZuisOGDAQpufclyp5+J0Z4Op5op+ry6AG96ApC0FwIMu65POaaSTpudD29Ak2sszZ4YR6gVWyZe3cl4/4rUVKSMGSm4ZkyV79/qh4f3hm/6ds4xhwIgO2AIUifX9vn6o0AZDx6nSZinZ0eMwGOh+OoA0BVkaraoFsaaP3yRdc/zraTrte0ddrvC62Gb8EKKl75GP+yvyh7/n39fecph2PI0rL8keIyXF+0zAWq4qWPQAg9Ex1cu7nBBKC5TzcKn7mG3A8eJy3qubEzsAzZg+yX7yb3vcdQEgyYhrcUxriMKHYrtv0Hk3bDea0WeGlIrNN2wN4kX3AC5ReNwXFsbaGe7eDhMddqNKEN2zB2zkWxWWMSAzXXbjT++XqH8g65p1kG99O/R2p5Ff5FzXMiaw5SVWPaRhxH7E+4sITN+57NtqMup3Lcl4S65+E4YiTCqOhOa61J0smHkd6KLiZ1aW7lxcXA4VLKG4Fg9b/HAd1a+8T+7URy0kmqzgYCVLz8EaZuHUm99hxCm/IT63mM3l9ZJWWPvFHPZcSQ4qTT1LfIfOx6ct95RK+2UGwWqt7+ulmOBJE6AQCh7B4PztCWAoyda/v6s568sZ6ic7RNau2bET2iauzS8A3WmKf11gmTsVluHqFVGzD37Y6wmNl+9aOUPvom7q9/pmr8l/r5GDJSSGpAJCga35wllD0xDtdHk+Iuj7bGTcQy1RM14Es65qAYYdLdASFEthDiTCFEkhDCIIQ4Ek1bZzr/EvehRPHOXsz2yx/Ug5DCbCLz8RtIu/mCBv/fkk46FPuhtSWRpfe9VE/zpS7B39dpAdVQRLPt8/ioGvcVwmJC+gIkn3cc1kYm9zIUJlJepZXOJ1hJ1JoE//qboutjXZSCqzdScO4d+mthMesDCFSV8PZSAktXgSJAVRMupU8+aww5L91N7ruP1nN0AIhUusg/+XoqXv2EsvtfQaoqjmNGxQyCPZO0zKzr0x+pmjARY8ecemXttoP3JbBiTcKOJf8xTMAjaC1kJcC1wIlSytWNbrUTSL3yDH3gHy4opurd+u1ylkF9Sb3s1Ba7AsXD9clkKsd9We99oSgEltX+WeI5a7UlwmTEfsT+2A/dj8yHr42r5yUsZnLffYTAstWU3PWCnmiJrryosTgXVgvBvzQtHRkVAPIvXol1nz3jVvmVPTGOUFQpdaSwRA/gK05HzBjCeebRKDarHmAsvfclwsXlWnVFdXWsqVcXXdzReeYYjLmZ5E14krTrzwVFwbbvXmTc9T/wB5t0qjD364bj2NHkvv0IueMfanA9/7zqiZQ/qAl2t9NqqGWVeKfNRxgMBP+oDWoJiznGDbBy3JfNrr4I/L4W/+KViKjAv1rl1jQQvH78C/+gcvxXeH6KEjY3KFiH7BFXC6YtESYj9tHDsQzqS2j9Zv0aaIzSR9/UnqNtSLRYpzE6eLH/YNJvvQjfiIExz0/76OH4Zi6OO2YPrtuMubcWtDD3qa2kiOc44l8Q1TKyX8tbPYSixIjae39qvoh9okRKKmqrVFKdqFVuyse+o1d7h9ZtBjSNnbLHx+nVQK2J9Phi5hmtTXODF6lSyhpBgaAQwiSl/I2G+1LbaYSUK86IKS/1z1uO4nRQ+c7XhLYUNmtfvtlLsO67V1yLVGNeFknHH4x1+ED9PcXpQElPJrw58eMY87Lo+vvXdPzuZXJev69Bh46djfOMo7Hs3V9/HfhjXT2LnnjBC2GzYMhIxXnWmEZ7vowdczB2yMbUoxP+X5clfF72w0fgOGokALZ99kSYTchgiKpPf6w997PGJCRcU/bcB7g+moT7q2kEVqyptzzartE3dwlE4gdZwkVllL80IcbD29ECl5GdgERrEdkKlANPAzdIKb+tbk87BU24sxzYl3+g+1AiSCmpeO59qJ7gGLLSyX33UZKOG93odkIIMh68unayXFpJyX0vN9rqlXTiIXSe8Q7JF5+I8+xjSP1gitYuYrUgA0FM/eLbDdYQWPoXm4afweZhp1PxxufN+6CtgKlPN0IbtsYMtgKL/8Q6JFbnObr6IrD4T8KFJQibBSXFGVOC2hTCbGrQHUpJTtIGEOEw4S2FhDZsQ5hNMf3Sle9+gxoO4/765wbtDhWbhY4/vo4hJa6cy38aKWWxlHK4lNIppUyVUu4npWxZWrSVUZwO0q6pdeOpHP9lzOC7Bt/cpRTfNLZVjinDYVyfTcF51pi4y6MrL5pjB9xaZD50Ddkv3EHSSYc2qPNhSHGS89aDGLPS9aCOuV8PXaw2tH4Lqi+AsUM2toOG4xk9hJSLT9SW/b2VohuejKk0jSZSVhnTux7domLu3zOmN1sIgZLqrL1/llVSevcLMa0gjqMPrN2+e0dsB+9Trz3VN3cp5r7dMWY13kInDAZyxz3YpF2ieWBv7VyTHSRfcEKj67bTPGrGgIrTQXhr7LjYeeqOVV9UjvsSYTDUc+4IrduM96dfKbzoHsqfe79VLSt3FMVuJeuZ25rMygsTB5EAAJStSURBVMtwmODva9tcQydarNNQRxsnHqauHch57d64QteOY0aRcf9VADHzmGCd4IUMhfEvjtLvaIHeRcxxo1pHvG3YOhLeFqV30SEbQ1Y6kfIqzQUuLRklPRXQvsuGrLRWr+BS3V58C1ZQet/LMU6Dnh/nUPXJD3h/XpBQe3tjNDd4sV4IUVNf/gdwpRDiPLQJRDvNxNQph6STawetFS9/hLBZcJ50GK6otoJE8M1ejK2ZEVpz3+4EVzXPCUAIgalHpx22dG0tpJRYBvaKicQKk6FeL3F020hNJkcoBkSSnYy7L2t0cGEbOYROP71J1nO3JVwRI6XE2DFbL5mzHjAE6357oTjtelmosJhxnh7HSq8Ooc0FtaXtwVBcn3Bzv+61JWmVbkwbC2KWB1dtoOSuF9h25GVUvvG5PsEz9+ka13t+V1M9MTmoelKSLKXcU0r5VtTyaVLKflJKW3Vv/MZdeLptRmDZqlrRPZuFvI+fSjjjZkh1kvlobfuZb+YiXFGBs7jbpKeQcddlGDvnYF25AekPIqstgj2TGo+iB5avRvoCqG5fTMnizkKxWTB2zovRr/Ev/SsmsAmxuheeSTORUmrXa25WoxoEdXF9/hNlT46Pu0wIUW1lbARF6H8P5+lH6gPY0PotVL71BUpacqN6MMJopPLdb/AvW7Xb6Ay10zRJpx6uZ/WkL0D5c+/XW8cyZA/8i1fGDDbjES4qwzN5Vszkuy7e6b9h7JSDsFqofOuLmIxjzQRDP+4uCF4kimKz6FVlhZfcR2jDNkzdNCtVGYkQWrMRxWYh55W7qTz7cJLPOx4pJWVPjifl0lMa1JawDh9IYGGtmHcwSqyzrluWDARRyyrJfPImffLj+3WZJsRajePoWNmVzEevx37kyJj3PFN+xX5EfAvxuoQLSyh54JVG10m9/DSynrmVnDfub7GGVDvxMXXvRMbD15By2WmkXBzb5iMs5ljti2ZUXwTXb8b783xUt1cT4oyy4g6u2RhTBRVYvnq3usdb99mznn5cXYKrN2LokIUhxYl31iI8k2c1q0I5UWLbRpoOXgAYMlMJxkn2+WYsrB0DRyUs6raNBFas1iu7jJ1yMMXR1GoOlsH9dC2wSFkl/kb0bXaEaL0LY6cchMmIsWMOee8/TpfZ75Pzyt3aORSX1VaitiLBNRspuv4JwvnFVIyrTSRXfTSJskfeoOj6x/VxbUtpbvDiHqDmW3MHcB0wFrhph87iP0zKZafqIjeBFWvwzVyE8+wx+OavILRtuy6U1xRpN52Po7okKVxQTNVHk5osR8185Np6D9t/GpGSCraOuTLmPVOPzoQLimJKNaMrL+wHVzt1GIRe+ZIIhoy0JkvvQZswVb7xOVuPvJxI9Y3ffuBQ8j56ClPPLvoxk44fjSE9pcn9CaOBpDOPxtSlA9b9h8QNoAghsI0crL+2/rEBqap4f/mNwovuIf/UG3F/94teSgZaRDb9nsubPH47uw7Xxz/ovzuOGYUxN7NZ29v2H0zyebWK9OVPvxMjSFaDVFUCv6+l/OWP2dDnGEruqTZrMBm0qgSbBd+M3wjG2baG4LotmqOPybjTnQxqSLnkZBRH7fVhGdg7puIMwNgxW//dVy3oJcuqCCz9k9IHXk24RSOyvbTRQVT6PZfTdf5HOI4cqVdCKU4HSado3vMyHKHyzS9xHH0AaiNaOpXvfE3pvS9TcOatcQdi7eyeCIOBtNsv0V97Js6k/PkPYp7pit1K0gmH4Pqk4aCi++uf2XrIxRTf9ixVn/zQ4HrWof1Ju+kCiq55lPIXPqT4lqd1TY3Qui2o1Xowhuz0Zt9H2orGJmrCZMR51hi2X/kQwmZBVrd5ur6tH2AMrlhDeFtRoy4d1uF7Eqwul4ZYsU5zta6GlJKiG5+k7Nn3sOzZB9uIvUi58MR6+7Ls1ae+daWq4v7iJ81+vPpzJZ1wsHb9J4AhPQXPpNlNjvk838/Av2BFu95FKyNMRpwnHaYJx/5e/z6bVLf64svEqi+qqidvMhTGOmyA7jgH2nVp7NYBy5A9SDrlcNJuugDCrddGtqNUvf8d2694CH8jmnCGjFTSbjofGQpT9sR4im97loLTbyYYpc/VGkRXrkVrXjRGaFM+pQ+/Xu/9ssfH1YqQRwt+rtscUw0R0zKyg1UXUK3JF9M6Ul/MuTWIcRqpHu84Dt0PUS1yWnzL02Q99C6Vb3zeYKXejmDskK3dnxRBeGttIjVSUqH/bmiiGq0pEg5eCCH6AVagAEBK+ZuUspeUMldK+VXjW7fTEMbcTJynHam/rnjlY7yztD6tbUdeHlPe3xChLYWobq9eiln2+DjKHnuLgrNuixHVVH0BvL/8Rsl9LxPOL0KqKr4EhPx2Z8JbCuoNIoTJiLlPt5hJWjiq5Mx24DBQFITRiFrlabIftQYl2YF1+MAmo8ren36l/Jl3iRSW4Prg+9pz2FygDZ5UbWDjTNDmTFgtJJ9+FJ3nvh+TSa+LbVSt7oX919/ZduzVFF37GP6obBNo0d+sZ2+l4+RXsdbJSrez+xAprcA7tfbhlnxmyx4yaTecV5sB9gcpvv1ZZCiM6vLg+WkuJfe8yNZDLqbgrFupePkjVLdXHxibunfCNmIw1mEDsQ4biOvjyQ0eJ+XSk8l67jZyxz/car7uzSXp2IMwdtF616WUpFx8Ur2JWowjiapqn9VY+ygMb8xv9Bj+RSup+uB7/MtWIawNt3wZczM1B5OD94kpZU8+91gwGFD9ASLbCil78m1KG8m4RorKwKAgA0E8P8xucL12dj9s++4Voz1TOe5Lth17Fa4vp+rJBecZR2HIbnggZ44SrPQv/CPu8ye8bTvhojL8vy7Tn3u+GQsJ/a1NIPzLavvRG9Ot2Zn45i6l4PSbCRc3XLjrOGw/ct95hPCmfFSXF8JhqsZ/RfmzsVUslkF9yf3oybhtszUYu+aR99kzgHZvqGuTCtqg3zt1Hq4Jk7QSckUh9bpz6jmzRLeM1CDMJsqeHM/Woy6nw+VjKbrpKcz9ezTqMlJ3e0v/HnhnL8YzdV5c5wMA3/zl2Hag976dxjF170gozjNAsVpiqy/earr6IrR1O+7Js7UgXSSCDEdwfTRJq8KIRAiu2YgQgrwPHifzwatxnnxYo9/hnUnle99S/tx7+H5dhvuraQ2upzhs2EcNw/31NMKbtYlqeFvRDk9O6xJdeVHXUrkhLIP6Ei4sIVxQa4Spur1Eyiv1Sb0hOUkfI8hQOOb/3hcl1tlUS1eiOI6Iah35eX6rah7VEF35auygfc60my/AUm1lG1y9EdPWIrxzluiafq2JITsdy6C+OI4cifPEw/RnVtKJh5J0yuHYDhoWUy3fEhIKXgghLgR+B14H/hBCnLZDR20nhuRLT9EHwcG//sa/8A8tU1Llxju76eCC+7MpeKojeL65S/FOX6Dt68/1qL7ajF7JrU9TdO1juL+ahne6JjxVev8rCZWplb/8Ed5Zi5DBEKFN+Xh+mkvFa580We7a1oQ3xYp11pD73mNY9uwNVPtDR0VtTd06YOrRCdXjQ/r89frcGkIoCtkv3hnTGxuP4KoN2g3JaIgp7az6cCIEQ6hVbmyjhmJO0FvZ/fXPuD77EaEoGFIb7n23jRisC+8Yyl36g0R7w4Dj6API++gp8j58olplePd4SLYTH/dX0/RKGcugvi0uExYWs2afWl3hFfzrb/JPvI4tB55P8U1jcX05ldCW7doDJhzWKoMMBgL9upLz2r3kvv8Yue8+QtZzt+OZPCuuc4+UElOXPJLPHINtv712uk1qDcFVGyg8/y4APN/+QtnYd+qtE902UvumCWEy4jjhYD070RDeafMoe3I8vrlLY6+xBkg++xiSjj845viOI0aAPwBSs0q1H7Jvg9s7jjpAez5EIlDXTaqd3Z6Mey/Xn0WgZZ9K73+FgtNvxrdghXbdnHd8gxl3U68uGHIysA4fSPJZY+IK6FW++y3en+eTctmputNJxkPXYKmelAeX7zqxznhUvPoJ2y9/kOBff1P20GuNjkHMvbqQ/vA1EA6DlMhQGFtN9SSac49n2vwmXVmEEPjnLsU3fwXhbUWolVpAUUlO0gOaNa0kqi+AISMFIQTCZCTrqZt1+2lhMsatWBUmoyZ4XJ05d38xFc/EWfXWa4xISQVFVz9K8Y1Pxrgc1KC6vYRWbcQytD3p0FYYu3VEbaDCtrnVF1XvfK3dt6XEkJlGeOt2Qhu21Qon/r21TSavrYF1cD9tPKmqeGcsinuNSinZdvy1hLdtx3H0gaRUz2VSLj2lWS5JiRCjeZHgxFcYjdhHDcP7S63rSGj9FkzdO8WInZvi2K2qHl9MpaM1QRv1prDsvQeGzFRAu94bs0ZuKTFtI9VBGt/8FVS+8zVSSsKFWjBHev21IsCtiFAU8iY8SdbTt5B61Rn6nCn1slPJfPBqcl65p0Hdo0RJtPLiduBUKWU2mjDenTt01HZiMGalkXxWbbljYPmqaicPgWfSLLZf/iDh/CIiFS7twVtUFnMj8c5erGc6rcMHknrNWQiziaSTDo3JskRn5r2//IYhO12b2DeS+QBNc6Hy9c8ouuoRth5+KWWPvknxTWOpeOUTAlF9tLsCQ1Ya9tHD670fLizRhWLUKrceIVfsmtWo9AeRPj+qPxhzY2uI8PZSfPNXUHjh3XiaWN8x5kBsIwZrFo3VE85IpQv3Nz+DyQiRCI7jD0no80kpcX81jaQGBP2iUZyOeuKEitNBykUn0WnKG2SNvaVdofwfgoxEcH1W6/joPPPoHdqfuXdX0m48X38d2pSPrB5ky0AQ6faglldhyEgl+fzj6Tz7PUpvOgNT1w56JsiYnU7SiYfinTKn3v6DK9ZQeMHdO3SOrYGxSx7BVX/rQlvGOD2q0YKdNViH9iftlovIvO9K3Va1IWrElBW7Fes+AxtdF7RruPiWp2PsMp0XnKD10tssSFVt1Dveus9Act9+hK7LvyT92nOaPF47uxeGzDRyJzxJ5mPXxwy6g6s3sv2S+7SEwqSZFF58b1xxPKEodPrpTXLfeYTUq86sZ3Gqur14Js3CeeoRCKORjLv+R95HT5EUZRvo382CF9E6NP6lf9UTuqyLff8hiLQUTUMmEgEhCG0uIOnb2ZQ+/Fpcl4B4hAuK8Xw7PVbvYkBPvdLMOmwAWU/dhLlHJ8x71f6dTN06kPPm/TiOHEnmkzc1mDW0jRisBZylREl2xJSIJ4L96ANQqoOn/kW1QoH+336n5J4X8fw8n8yxN+9Um9v/GoasNPImvhLXslaxWki5uNZyt7Hqi3BRGe6vfwa0azjziRs1/QghtHGgolXThbfs2gRgQ5gH9sKYm4llyB4kX3Bc3HaWmkmyoUO2JlJ8w3l0nPx6jFV0axHbNpJY5QVAymWn6S6LAMZuHcioY+EZrfsWXLUR0ATIa8ZI5j5dE66gagphMGA/rPa+4GmD1pGYyouaZE0kgm/2ElSXh8xHr8N92DBs+w/GsIM6Ho1R/tJHbVYtmmjqtYOUssbr6xvgrUbWbacFJF98Eq5Pf0T1+ghvKyLl4pNIuex01PJKQhu2oaQ4tSDCa58Q2rgN6Q+Scf+VWEcOIVJQjLk6syPMJlKvOAPHmFH1Ilu20ftgmjAJ++jh2A/ZFyGEJtr519+NlvB4f65tXTEP7IO5Ryd81a4boVbua2suDQmHqlVuKt/4DMeRI2OqLmoGj9Lr0/rQ1WDMQKYhKt/4HNdnP6JWujB2ycMRdTOsi/O0I2NagQDcn/+E9AWQ/gDCbKLktqex7bsnhiZ8tP2L/wRFSXjAmXLFGYRue4aQUMm9/EySTjgEpT1b+4/DN2uxXuqopCXHlBq2FOc5x+CbswTf3KX6e+Y9ehDaXIBqdiGMRtLvvSJm0lOXtBvOi1vW6p44E1ucIOLORrFbMXbMIbhuM4Elf8XofdRgzMvSMqRR5ffWIf00i8MEcBw2AkNWGu4vp2HsVL/qKxopJZHCEgLLVlH1wfek/u9UAERE1e7PJiNCCNxfTiX9tovj7kMYjdj2H0xo63Z8MxaRdNKhCZ1nO7sPQlFIOv5g7IeNoOrdb7QMWLUehfeX3/DOXgyqxPznRjg4zvaNWNl5Js3Cus/AmPao6CB1pLRCrxASZhPmPRp3DdoZ2PbbC+eZRxMpKSfjnsubrNRSkuxYenYmtHEbqj/A9v/dT+plp5Py+S9IozGuRkE8rMP3pPLNL1CiJiLRLSGGzDQcY0ZR+c43JNcJGFuH7NFky0363ZdhO2w/1kyZQYdKf8Ll7TVYhg5A+gJY9t0TU4/aykzvL7/h/mY6ri9+Ivn843e6feZ/hUhZJUXXPU5g+WqUlCS6zPmg3jpJpx1B5fiviJSU69UX8bRWXB98r1dJGTtkIWwWOk1/m+Cqvyl/YrymjQIE127C1K1D236wFiAMBjr99CbCYEBKGVdjJbDkT6x77xGzbEfbAeKh+gN6pZQwGjBkNK0VV4OpWweCqzegpjhR7Fakx4epV5eYdWJEO9duBMC3YIX+XmvoXURjP3wErmr9Iu+0eaTfeWmj9/jmICMRIlFtMjVtI6ZuHQht2MqW/bVxjiMSRowYjLENBDtrMGSlNZkcbymJVl7o30yppfybK/TZThMY0pJxnqfZ6Akh8E3/DcVmxtQlD/tBw1AcNsy9upAz/iE6z3yPjj+9ie3AoSg2q1YSXqeVwdQlr97E2JidTsdvXyLtxvP1yXD6LRdiGRDbz1kX2/6DSb7wBIydc3Ecth/mQX2xHbA3yRecgGXogEa3bWuKbnqK0IZt9d439+6qTcr8gdiIbfVgIrpEN1xY38KuLnpfmFCabJVR3V62HXeNXh0jQ2GqJkzSfvcHQTEgAyH8CxtWjgetj7nkzucw79krRim+MWz77UWnme9S/OAlJJ99THvg4h+KK0qYz3nyYQnZ6TaFUBSynr+D9Dv/R+bD19Jp+tvkffo0qVediXXoADCbNBXuRjRdhMmId87SGOcEGQrj/nIq1uEDdguldMeYUUi3F2O3jnEtkIXJWG+AZRncj5L7XsaXQAll0kmHkn7zhSg2az2Xgrp4p81n6+H/I7huM67qewBo7kAZD12jD/rcX0xtUtVdGA2UjX0nYZX7dnY/FLuV1KvOpOPEV2NaiQhHUN1eMsd+FGMt1xShrdsRTgfpd/6vwXWiLVLN/Xvq7WO7mvQ7LiHrudsTbjGrCTIoVgvOc47FMqw/IBB2G+H84sY3rsbYNQ8ZjuBfUluqXaN3UYOUkkhJBabuHRP7INH7z07HmJ2Ob+SepF1/XrO3tw0bgHlQX9Jvu5jkc2onxDX3JbXKozuYtdP6KMkOgivXoVa6CReWxL0nJ6J9Eal0xTh7GTvlECkux5idjn3UMGxRya/Q2h1zXWgNIlVuysa+Q+XbX8c8w4XBgHfGQkpufSbudobMNBxN2La3yvlFO41kpjXZul2X8mfewzdnCQAl975MIMr+FOJXXvjnt13wwjpsgB6AiZRUEFi6qoktEidSVKZXjBgyU1FsWpWWITcTGQjpCVwRUTEP6BXXvbC1MGalEy6u32bcKvtOcD2HEGJz1OuUqNcCLabRJc527TSD5AtOwPXRZFSXR9OV+H5mTJat4vVP8c1eQsaDV+vCK0DctoloZCiMd+YiIkWlqG4f0qWJVKpuD5EqN5HiCoRUUV1esiIhAjldYvZv7tud9L7dSbv5Qk3gzmDAcdh+DR9wJyGlxD9vOcp9V9ZbJswmTN07EVqzqZ7Qj5SSnHceoeDUmzTrtc0FqL6AfpHHw9SzM5a99yBSWIrShENIcM1GlCSbPjHx/DCbSPUFXBNQklLiX7YaxxENK5G7vptBeGM+noIS1PIqcl67r9Hj6p+9XYX8H01oc0FtdYQQOE8/svENmoFis8QMigFSLjiBlAtOwLdoJWUPvtbgwMA9cSaeH+bg+3UpisVM0qlHYOqcS7i4nEilm8IL7saYm0nHya/t0glS6uWaJFNdl5FojJ1yCEeVqlsG98P/2+8xwl6NES4qTajv1jJQmxgJk5Hw5gJkJIL0BfAv+B3n6Ufi+ngyofWaE4Tr859iSpLrnXNuJuY9euCduahVKnHa2XUYczLIfOx6nGcfQ9lT4wks+QthNSO8PopveRoZDJHUxKRAdXspvPhewhu3kXbT+aRcfnr87OiyqJaRXeQCFI9ENJdkJKJnJM0DeuKZrGlIqCXlmHt1wX30vvTYbxjGBCf0QgjyvnqebUfXlo3XXKPR63SaPr7Fz9HSB1/DcORQrGc1P7EjTEZswwcSWPynpjlQTeaDV+OZMoeK1z7DcUJiLaftNB9hNGLq3pFIhQthMBAuKMYcpze/qeoL10eTdHcfU68uyEAoRuPMHJX5j3bA2RVIVaX4hid1G2ZTtw4xGkymbh1jAqDRGLt3xDtpFuq+ezU6ft5RYoIXzaxmArCNHo5vxkIcR+xPaP3mepUXxq55CIsZGQgSKS4jtGFbrdmBwYB1WOsmaYXBgP3QEbg+0wJcnilzW+0YMU4jHWqd1YTBQOe5H1B8w5OEt22nwmbQ3HXayHkqUlZJpNJFpKyKqo8mYeraAf+ilRiy0rDu3X+HrZ4TDV8dApwX9RP9+tzqf9vZQQzJSSRfcLz+uuKNz3TBvuDaTVSN/4rgn+spOPPWmJuJZ/Isysa+E1fwS6oqxbc+TfENT1D22FtUvPghle98jeuzH/FMno1vxiL885YRXLOJcEExpq1FlD3yRtzzE0K0WmlTa6ALbqXEFwbKGnsLpt5dY9tGcjK0dpk+3RAOK4rdipCyyZ5Z+yH7kvf+43Sc8gbZY29pdN3gqg36hSmlpOr97/RlSWeOIf3uy7AM6IVtROOK4Z5vpmuVGtBokKOdfxfRGRvbqGHxBSbbgPDmghhng7q4P5+Cb+ZCCIUxD+xN5RufARBat0kfuCjJjl2e2Q1tLmDjwBPxzljY4DrRD3VDZirGzrnIiIp32jzKn3u/SbtU1eVNKGNhyM3E1L0T1gOHknrT+chACNcnP+D6ahpCUUi+8AR93aoPvo+xMq6LlBLr0P6UP/MeFa983OSx29n9sQzsRe57j5H17K2YOucizSakP0DRdY/j+n5GzLrhwhJcn0+h+NancX8znfLnPyC06m9kJELlG5/HtUAGCKyI1rvoF3ed3YVwYYkuCBwuLGHbmCtxffETMhKJqXIK/rkexemg8pwjSLnk5GYlU8Ibt+mCjEpaMoY8TQOnJuMcXL8Z79R5Lf8QUpLxSssN+CxD98C/JNaa0jKoL+be3XCefBiGOFbp7bQemU/cSOYTN2I/cmRMRj6aetUX42qrL1SPTxNnryb5kpMJbdgWM2GO1jgKrdm1lRdVH3yvBy4AvSW8BmOXXM2ho7QipiojUuli2+H/o+y599k25krdKKAtaIlNajT20cPxzl5MpKRcqz6oEwARBkPM/0/Vh9/r+kOWgb1Q2uCas0e7jkyb36SLYaLEE+uswTdnCSlXnkGHL56j8twjKLrpqVY5Ztzz2FJIxYsT8E1fgPurafjnr6DyrS8oe+wtvLMW7/D+EwpeSClnSilnAvOAvsAZwCV1ftppBZLPPQ6l2lEivHW7JvKIJu5FdUbUsmdvXeNCdXkoe3I8Ve99y7bjr4mxRgWoGv9Vg3arUkqkEKCqMRdOYPnqXR4NToRIaQWWIf0azJAYMlIIbdga98YXKS6DKNX2QAK6F6BdkI0JfJbc86Lm3WwwIIMh/L/9rv+fCKuZtGvOIvmsMTiOOgBfI5MrACXVSfqdl5B08mHYDmlYY6Odfw+qL6CLfAE4zzxqpx07tHYTloG9G1werbBfE61XXR6Kb3wKy9ABKHbbbiEGWCOsJRrJBEULeVoGa/cQ/7xleH6cQ+X4rxqcCNZgHdyP7Beb1q0WQtDhu5fIe/thjHlZRIrKKHvmXXxzllByz4tYhw3Uy+YjxWV4JjcsbhX8cz3lr3xMaGshVRMmNRroaOefgxACxxEjyfvkaUIds8BkRIZCFF/zKK5vpuvreX/5jdIHX8Pzwxy80xfgPOtoMBgQFgsZD1wd171KhsIE/qhtOdwdrs94SClxf/0z+SdeR+n9LyOlpPy5DwhvK6L0gVcpuevFGK2O4PqtMQK4zSGwfLWe6LEM6KWPH8oeH0f+qTdScucLeoVHS8gaewslN57R4u3tBw0n66mb6r1v3qs3yRc1XJnVTutg7tONpGNGkXFH49OapNOOqL13F9U6j7i/nKon1oydckg6+gA6TnxFc/GqxtSzsybcCXp7864guGYjFc/H6nrUrbJQy6sw9exM0bWPUXrfy/r73h/moFa6EUIQKS5D2NuuRTk6AWlshlinvk2HbDLuvwoZjpB67dlx5wzRuhfub2vvu9ZWskiti3VYfwzVVdyR4jICS/9qYovEiGeTWoP/t9/xV7fPKJUeZBt+74wds5GqSqS8ivC2opj2EWMr2Og2V7viPeAGwAWsr/PTTiugJNlJubg2olvx+meobi9Jxx5Eh69fwDZyCBkPXKWXdru//plIaaW+fvSg3PfrMspf+kh/bRs5hJSLT8Z51hjMA3qimE3YDxyKZegAMh++NkaR1/3lVGQ43GrRwLbA3LMzOa/e2+Dy0N9bKb3/lRiLpRoBrUhphW55BdrEIBHCWwp1/Yq6qC4P7m+m41+0EveXUwkXl1P56if68qQTDtGtTm0HDcM7Y2GDGgHBtZuIFJeRcvnpZD50DYaUhi1S2/n34P1xDmpV9cCncy62kUPa7Fh1v3tpt12M84yGgyWOI/bX1MR/eJ3MR64l85HrcH8/A9uIQeS99yid531I2k0XtNn5JorisGlixns3bCdoGz1cHzzWaA9Yhw1EqR6AhaO83qNxf/cLZU+/Q+kjb+CeODOh86kZKAV+X0PFa5+gVriQ4TCeSbNQUpJi2niq3vumwXuCuX9PTB1zIBwhUlxeL0PWzj8bQ1oypTedgblvd5QUJ0hJ8Q1P6Grt0c42/kUr8c5YSMqFJ5Lz0l0knRBH5RMt6VFTvWfskN0mYnqtQWjNRkrufQnV7cU3ewmuDycSiNKlcJ5yGEqSvVbvIRIhtHpji45VM4iWkUiMWGdg2SqCqzbgX/A7SmrjQtqNYRnYi+AejTsWNYawmPFMmUvFO19Tcs+LmqW7lChJjnotLu20DUqSnXBBMTLccIBYq76Ich4Z9yWq20vlO9/o76VcfBLh/GLc30xn84hz2HrU5ZQ/9z6KzYKxc7XYs6rG1W1ra2QgSPHtz9ULggfXbEL1+vXX4aIyAstWEVixRkvcRbQ5QSi/CMfRB2DISse2/2BsbTTJhzo2qS1oGwGwHzQMGQzFFVeFWN2LmnsmgK2V9S5qEEYj9qiKMc+U1nEdiam8qOMkYuqSR2iTNrYxVLhj5kCtjZKRqtm8W8ykXH0mjqMOIPWqM3GefmSMNW1LSVTzooajgO5SyoodPnI7DeI882iq3v+WSEkFke2lbL/qYXJeuw9T1w7kvHF/7LrnHYeSlkz50++QfselenlTOL+I4tue0RX1rUP7k/3y3QiTEd/8Fbg+nqyt9/cWUm+9CHOvLhjzsqiotkF0f/cL5n7dKX/hQ+yH7EvScaNjsjahv7fim7uE4PotWAfvQdKJO78P0/vzAoTD1uBN09S3G6ENW5Gh2gqLmhtfpLhME1GqLh9NNHhhyEhFLauIuyy4eqNWzVLlRmSkkn/sVTEPhuTzaluCTD064TztSKQ/GDdDbOrRidz3Htut2nTaaXuqooU6Tz8yIWEqGQpT8cZnpFxwQrO8s7dffC9KqhPHkSOxjRyC+5vpcd05ajBkppFy6Sm1x41EKHvsLTIfvwHQSi/FDnp3txZ13X7qYunfk44TX0EGgvqgxdS3G8aV63AcMwpTA/2Y3ukL8E6bj+ry4Dzz6EadWepiHdIf1+dTMPXqglpehXW/vTAkJ5F0+pFUvPkF0ucnuGYT/l+XxQ1aCSFIOvEQfHOXECmtbNPBYju7BtVpJ3fcgxRech/BtZtASopufYaM8iqcZ43BccxBWAb0xDJ8IKbeXcAfbLSkOTqLujvpXdTF3Lc7yeceS9WHEzF2ycM8sBcdvnuZqve+IbypAOs+e2rrDeipD74DK9dBh+bfb0J//o0wGZGhMJZqsU4ZCtcKJ0YiWPcf3Cqfq6WUPvgaqtuDYrPiOPpADFlpFN3wJJ0mv7ZLz+u/RMldL5Dz5gONCqQmnXYkleO/1rQvisrYfsVDtfpmmWkknXAIrs9/wvOjNq4Ob92utySae3fVXYBCazbF6MztDMpfnKB/54XVjOJM0s49EiG4cp2uGWXu1x3hdOgOFqZt1S5oVgspl5+GuX8vPeHSVoSjNS9aGIANrtpAwVm3kvno9XGDveY4E2phMbdptZr98P1xfTYF0ETag3+sxbrfIGwjBmEZ1LdFLbjRhgJ1Ky+MXfLw1CRd6rTitTZCCLKfvY3AopU4jvx/e/cdHlWxPnD8O9vTe0IHRcFKsXttq2LBrliwl6vYULFd9We5KhbsHSv2hgW9VlTUoIIgKkV6J0BIz26ySbbP74+zOdlNNskGkuwS5vM8eWD2nD37brKZnDNn5n0PxZSX1W5+xo7o6MyLIkAVmO5ihmRbxB1Mz9/LKLv2wYjR0EZCCFJPttP36xf1muLS46VswiMEQ3WqjXnZ5D5+q17i0LbvHvpFjvT6sA0finmnvtgOGoY/lAE36HRR895X2nS4D7+lIZR5t/aj6dR9P4v62QuoeuR1XJ/8QMOsv7vum9GG+hm/R5QEas5gs2Lq3zsigY0xP4eSS+6k+oWpiGQbMqBl5fWu2dRuFn/P0jU0/PEP3pUboo6US7cH84DeSK8fWVMXOXBx/kkR5bCEEGRcdnrElF79OF4frv/93GLUVOnZPP+s0sv2CouZ1NNHtfscKSWV903G+dJHlFxyZ8Qf+bb4i8twz1tM/Q+/U3H7U7gXr8L12YwOxSuMRvoXvkFKBy7gE4l5YJ+Iuy2ppxyJdHvJGn9eqyeSjSebBGXUSiZtse6zO56FK+hX+Aa933uEzKvHAmDMSCPtjKafdfidu+YyrxlLrzcfQta7Y/pZB6qciCh/N5TEZczJpNeU+7HsMkAbvPR4Kb/5cZyvfUreIzeSftEpBB21WrLqdtZiexY0TUVO9HwXmTdcSOY1Y+nzyVPYRu6OIclK5lXn6IOjEFnW1Lt0DeYNJVQ9+jplEyZF5JZqjQwG8S5dg0hJ0srGhnL8CLOJ/r+8RcFr95N1x+Ukd+GMt1hYhw+B0PlD6ZX3UX7zY5gH9I5rTDsaU78C6n+cE/W8u1Hz2ReeBU1VI9IvPgVhteBbU6TlVgudf1t20/62mHdtyrHg6+Zl2g1zFlHz1v/0dtbNl5B02D56O3zQUwhBxsWnYEhLoe8Pr+IboJ2XNlYpMyRZO1wSuKMil41s3eBF4+96aznyos0GsI7cvVMqvbXGtv+eGHMztUYwiGfRSpyvfEzJpXdRdMgFlF59P863/od35fqYK7m1NfPCuvcQsu/RkhV7dx9E9h2Xd8r7aIt1n92RDZ1/DtLu4IUQ4qjGL+Bt4H9CiHPDHw9tUzpR6ilHkv2fy/S2+8/FlI1/kGBD9DVKhtRkhBDaxcwDL+szCYTJSN6Tt0asMRJmE9l3XUmvdx6m38+vE6xxUXLebQiDgfpDtTscUsqI8j3JRx9Iw5xFOCZ/iHvuP3jCynz61mzs1PceK1/RFkwD2/6Dnjn+XIJ12i+OMBkxZKfjXbEe34q1NPz2N+bGqXuBgJZXpA01r39G1SNTkD5fU115KWn47W9KLr2L0qvux7dqA8JqxpBsA7Q1xvnP3kHWbZdFHKts/INs2Pdsik+7vkXpVeeUadR++K2qGrKDCS+PmjL6MH2JUVs8fy7BFVoX712xvmlUHe0EpPqZd6P+0WsILwN20HD8G7a0KBkYC2NuVo/5nBpzMgg6atqcKpxx9Vgyx5+HMS+rQ98v39pNNPz6F0mHjMQzbwnW4UOxDhuib0+78GQ9p5F7zsIWuYvCCbOJ5OMOaTdBWv3Pf7DxyMvoddNzlN0wiYZZ8xN6GaDSpHEAwzy4P8JqwZCaROU9z1MVKlHsfPkjZAyDUp6FK/X/J2q+i0aGJCuZ14zV/3ZG0zxpp7Gsmpq3v6B+xhzcfy1t9XmN/Bu2EKxrAIMBQ2pyxBR0Q1oKtpG7kXzoPnEvMZ5y4hFa9YNQ3+1ZsBxDJ6wTV2JTeu2D1P84l8oHXtFvKLQm9azjWpT7NaSn6rP/vGs2knnNWAbM/YA+nzylJ5e1hCXt9HZjudRAjYuK/3tabycdtg9pY0djDatu0zzvReZV52jvMbRkxLNkNVWPvdEt8cK2VxsBrVR8v+9eJunwfaNuN6antqi80dWzG4XJRO6km7RcY83Oo2SDh4Zf/6b6sTcoPmMCm+yXUHH3c23etJA+f1OOPyEwhZIRNzIk28AXQHq82OYti0jU2lXyn769SwZeY5l5MSXsazxQADzU7PHXtjUQIcS7QogtQogaIcRKIcTlzbYfLYRYLoSoF0L8LITY+kWF24n0i04h6+amGRjuP/6h7LqH2kzu4/r0h4iEf1m3XoZt5O4t9ks98XBsI3dHGI2YBvTGu3qDVlL1X3uDwaBdkFjM5D50A5nXjAWziYrbnyT3kZtIPWMUvjUbST3zGLL/cxlZ/4lPvlb/phJM/Xq1uY95lwFaMV+0GSiypo5gbR2ywYMQBixhFxCedpaOGHvnat8XgwHfpjLqvp9N3sQ3Kb3qftzzFgMgA0EwGUk6fF96vfUgvd6dRPJRB7aY/i99oXwigSB130dmNndM/hDP30vZfMr4mBOJKtu3gKNWX9sOtJl7Ipxt/73InXgdGI2knn406ZeeBmif5dKr7teyOz/wcouL1rQzRtHnf8+ROf5c0s45Hu+S1W0m62wu6PZQ98PvlN/yODXvf41n6Zo2L/q3B8JkwpCRRqCqptV9Uo45mMyrzqbP589i27f1nBrN1U77gaqHXqXht79xR8lVYe5XEFH+1Pnm520eL+vGi0i/6JRWt0spqX78TQgEEEFJ/Y9zKL3yPjafeI1W4i+0XE5JXMbcLG0AY+d+2gBGeirOF6fifOMzfBu2RJQzjMZfVqUnbxM2S9Rp0dubiJkXazYRSG+aeRKeqK414X9Pg1VOAs2e411VROXElzoh0m2TdvZx9Jr6eFNeBIuZ9HNPiG9Q2wkhRLYQ4jMhRJ0QYoMQ4ryOHsOYmYawWhBmU7sDC81nXwCkX3CSPisq68aLsOwxWJvps9tO+kBHeHWL7hq8kFJSdf9L+mCAISudnPuvQwihzfYJ8Sxa0eKmh+2AvfFv3ELql7Oo/3EuMizhfZfGHAzqS3FAmz29tUx9C9pcimseGrlc1NZF+S7CJR00jN4fPkb/394m78n/kHb2cZiiXOwHKp1aUuPTr6fuu1lRj+UvqdBTBRjzsqIuO6n4v6e15f4LV0eUi+8qdd/8EnGzrLO0m/NCSrltxVhj9zDwbymlRwixG1AohJgvpfxLCJELTAMuB74EJgJTgdjrY22nMi49HQJBqkMZgd1zFlJ+wyTyn72jxXQmz6KVVD34it5OOfEI0s5r/w+ewWbF1LcA7+oigllpJB22Lw0z5yGEwLd2E1kTLiRQUU32nVeSdOAwZCBAoKqGzGvP65SssVur98dPYWzn9d2//U3Q6cKYlY4xPxtjVjr9Z79L2VX3YztoOIa0ZOqnax2Bd9naNo9l3XsIKSccRv2MOfg3bsE5+QPMXi9YQj8Ho5G0c44n/eJT212/aDtwGA2z5mPMycC7rGnQxLN4NYHyagw5Gfg2bGmxZk3pmVyfzdBPBix7DNarCcUi9fSjMe/cD8ueg/VZELVTpxOsrQOg7vvZZFxxZou7CpbB/bEM1rLiW3bfuc3qHOEa5iyi/PqH9Tr2jet5C169r93yv4muz7Sn9WpPrZGBAIFKR4fuJmhT9rVpuuGlK8OlX3Ka/r2sn/4b/gkXtlqD3ZBso+bDb7HttyfmQX0Qpsg/5e45i/TcAOH8G0uofuptHM+/T/Kog0g7+3is++3ZY2bP9DTG3CwKpkyk9LK78a3TKuBUPfAyySccrk9Db034FHbrXru2u//2oDFpp29DsTYw5w+SdcMFGPvkx/T7qC/LEwLTrgNx/7GY1NObplb71m3CvFPfLos/VkIIzP16UfDyf5E1dbj/WRlRbUVp0wuAF+1G6wjgayHEQinlklgPYB7cH0OSFeOA3jEtG0g96zicb3xOoKwKQ1oKaaGkkEG3B1Ov3KjLu8wDe+u5VwKllQRqXBjToy9p6Cx1X/+i/40ByL33Wv0c3rxTPwxpKQRr6whUOvFvKm2amQzkPXIjrq9/If3LWVR7Z5J6avdMuA9WOZF+bXm3IS1FL8veFSxDBmrl4EOvZdmj+37njBlppBz7L/0mhm9TKe65i3D/vpCGuYsIVms3VYJOF+U3P0b9z3+Qc+e4iDxnkWVSoy87Nw3sg39DMUZn3TYNBMXCX1JBzQff4N+whUCVk4xLT8eyx86kjD5sm4/d0ZwXXUZKuURK2TilQIa+GofZzwCWSCk/llK6gXuB4aFBjh4v4/IxZF53vt5umDWfshsfiRj5DFQ5Kb/pUT3PgmXIQK0qSYwnpSmjD9NLh6aNaVp/XfvZj1Q/8w5YzKSEcmoIo5GsCRdAKF9EPAQqqvFvLm3//VktEAggpdQvBIzpqUifn+SjDmyxhrYtKcf+i7xHb8Y6fCgNvzbVKRZJVtLPP4m+30zGMmQQlrC1jK1JPe0o+s14jYIpEyPuoBlSk0k9YxSGJCu2/ffCmLX1Wc+V7UQwqCdtAkg/94QOX0xahw+NuIDNuftKUk44HENaCr1eva/Vi2DQcuT4i8tirmhjGTqIYPP8MEJg7cCAS6Kq+/ZXqh59nfLbn2p11lOgvJrymx7r0HGtI3Yj5fhDyb7t32Tdemn0ffbaBdt+WpI06Q9oteZb4Xz9M6ruf5HNo6/Cs2hli+3hS5Aa9tuN9AtPjjjJkT4/dd/+Rsmld1F8ynXUvPNFp5Re9SxeTe3H38Wt9F9PZMrLomDK/ZgHhS6qbVbqZ/6JY/KHbf7MwgfJrMMSe8lIRzSuXQcwlVWTccWZpJ54eEz9T/jfeNuBw3D/uUTr/0J3on3rNmPeqV/nB70V6n/4nZrXP6P+xzlQ16AGGGMghEgBxgB3SyldUsrfgC+AC9t63saNG3nzzTcB8Pl8nPrmUxRefjTSWYtx9CHY7XamTp0KgNPpxG63M23aNAAqKio46vjj+POCI8i46mzkI9dz9GknM336dDwLVrDw+vux2+3MmKHllFq7di12u51fZs3CvHM/1nhqGbvuN375VBvcXrx4MXa7neXLtcHHBQsWYLfbWbBgAQDz5s3DbrezeLE223f27NnY7XZWrNB+32fOnIndbmftWu1m3IwZM7Db7aybN5+qB15mZm0pY9f9Rt2xB5B89IF8+eWX2O12KquqsO69K9Nrihm77jfKZmvnuFOnTsVut1OzbiM1b3/BZ1Rz7pZ5BEP58d58803sdrv+vXz11VcZNarpGmLy5MmMHj1abz/zzDOcckrTrMHHH3+cMWOaEoFPmjSJsWPH6u3777ufCZu0WIwFOdxzzz1cemnT39A77riDcePG6e1bbrmFa6+9Vm9PmDCBCRMm6O1rr72WW265RW+PGzeOO+7Qyp5b99qVWzf/zZNly7AdNAxhNHLBBRcwceJEff+xY8cyadIkvT1mzBgef/xxvX3KKafwzDPP6O3bbruNyZMn6+1Ro0bx6quv6m273R7x2bPb7bz77ruY+xVgHH0IZ/35FbOvGU3BK/dSn5fB2HW/Mb2mmLqvZrL4pKs4fN/9+fJL7Vxh85LljF33GzNrSzH1zWfjxo0tPntnfPkmhT/MwOhwsbq2CrvdzuzZWqWTxs/evHnaAM62fva+/+prTv/kFTas0dpfPPsSx1x+ESUlJQD6Z6+iQpsB0vg7FYuEGooXQkwGLgGSgPnAN6FNewILG/eTUtYJIdaEHl/e7DAIIcYB4wDy8vIoLCzs0ri3hsvl6lhcQ/NIO25/0r4MzRKY8Tul591E1ZWngkGQ88zHWIu0O23BJCsbx9pZOff3to6oCQYxbyjBVFlJQ/UWXC4XfyQFKEgyY3TWIdZuxPXJdBbu2QfC6lSTb4MlC2F591TDaP79sv25nKQ/llF9Tdt1z1P/mk+mEPjcbjbW17AkdAzbIbuzqki7OOnt1S7EPItXUvjDDGjnDlXu5i1YNpWAxYzfZqbk7ouwLt9A6tibMReXs7S2Es/wDuQPsAE//wxBScqMP6kbczDi1AMw1NSzfCs/ux3+fClxY12yHv9GrTM3pKeSfPyhre7rWbKauum/kTXhwjYr0QiTidyHb8C/uazdO5KepWuoeuR1+kx9vM39Ghmz0kk6cG+8q4qQDW5t1obN0m7ywO2Bc8o0fBu2aIOH++6hVyMIFyitbHfGV3OmvCzyHr+l3f3SLz0N95/aiYHro+/JGHdW1Ltxvg3FofxHEvfvCyPKwvpLKrSSdiG1Jx9C9rljyLzhAuqnz6L24+8i1jT71m2i6pHX8fyzirxHb+7Q+wrnXV1EycX/h/R4aZg1n/ynb9/qYymRTPnZFLw+kdJL79JmHQSDOCZ/SMMvf5H70A2Yd255we1ZEDZ4MbLn3Oex7DGYum+0JXaWDaXt7N1EBgJ4ljbNrkw76ziCtXW45y+n9PJ7MOZlYx0xlMyrz+n0mLeGbd89qP3gG0RKEtm3XBLvcLYXQ4CAlDJ8RHch0CKrdPh1gtlsZvny5RQWFuL3+3HU1LCyeBMHVjlY+u33OBwOlixZQmFhIS6XC4fDweLFi8nOzsbpdOJwOFhWspmsf/2LqorNOBwOFi1aRI5rCVUNLpxlFSz8ez4mk4ni4mIcDgfz588nI9mEz+dDSsma3+YidurLunXrcDgc1NfXU1hYyOrVq3E4HPz55584HA6WL1+Ow+Fg3rx5VFRUsHjxYhwOB3PnzmXLli0sWLAAh8PBnDlzKCoqYuHChTiqHay+/XEGVjnw+f0ETUZW7Lcz5YWF/PPPPzgcDmbNmkW/NDN+v1+L59ufWFWQwpIlS7Tj/f47O82ej/DXI80mlozoz/LCQj2exvPNFStWUF1drbdXrlxJVVWV3l61ahWVlZV6e82aNZSXl+vttWvXUlZWpre3rFlHMBjE6/VSg5/169dH7F9UVITT6dTPeTdu3IjH49G3b9qkzVhrbG/evBmr1aq3i4uLqaurC7WDeHIz8GJhxUG7srSwkNLSUiwWi75/WVkZa9eu1dvl5eWsWbNGb1dWVrJq1Sq97ff7Wblypd6urq5mxYoVervxZ6p/9hwOli1bRmFhIW63G4fDwdJly+jVuzd115yCf9lP+P1+vF4v9Zu24N6yljUvvUehLQnPnHlIKfH5/RR5XKz5/XccDgcLFy7UP3t1JsF64cNw7amUb16Pw+Hg77//xuv16p+9v/76i7q6um3+7C0r3YyUEAxo8fr8frzBALNnzyY7Ozvis5eRkaEPisRCxJrBtLsIIYzAwYAdeERK6RNCTAHKpZS3h+03C3hVSvlmW8cbOnSobBwVSiSFhYURo5Wxqn7+fZwvfaS3k+37YxrYJyJzcP4Ld5F8xH7tHivoqmfzyeO19WQCUk8+ksXHDucAYxp13/5G7dTpyAY3KSccRq/X7o94rm9TKWVX3kffrye3cvTO1fz75Xz1E4I1dRE5QaKpfOhVnFM+1ZKU3n45GZecppUzrXfrSbk2nXC1XkWg99THo16whNt0wtX41mxEmE1UHjWSfZ/9L1WPvo7z1U+Qbg/Zd1yh5QmJUcVdz5JkPwBDkpXqp9+hz8dPxvzc1mzt56urCSH+klK2/+HsIonYHyw68zrSl2tJb9MvPpXsVu7M+4q2UHLB7QSqnKQcfyi5D90QsaYx6PYQKK1ss7RboKKahl//JvmYg/XBhpp3vsS3bjM5oSzUjdr6DAVd9VrG/jjcDezKz/aWC26jYdYCDClJpF96Gtk3X6Jvq37+ffzriwl6vMjaenq9+UCnxyWDQYrPmKBnn8+64QIyrjizxX5103+j7PqHkQ0eMq48i5y7rmyK87n3cL78MaDdXV5+4VEt4vKuWEftR99R99VMLYFhSO8PHtvqGTTltzweMSW5zydPYWml5CyoviCa9j5D/rIqym95DM/fTVVEhNVC1k0Xk3buaH09t/T6KDrwXH1mRv+Zb2LMyeyyuLqT+49/KLnsbgDq8jPY86e3Ynqed00RxadeD2j5r/r//DrB2jpqPvwWxzPvApBy2tHkPXDdNsfYKX1BIMCG4dod6YHzP+mUZT+J9HMM11l9gRDiMOBjKWWvsMeuAM6XUtpbe15rfUHx2TeTc+e4rU52W3n/i9TPmKNVfUqy0WvK/RGJmp1TplEdSsKbNnZ0RD/emT8r5+ufUf1k6PfEaKT32w9FfU8Ns+ZTeuV9gDZI2OejJyK2b9j3bOplgF6XnkFW2GzwrlQ7dbqehyb1tKPIfeD6qPsl6me7K+Kq+36WVk7Z2VSi1jJkICIlGc987W9DzsTxpLVSsS7o9jD31Xc5+LquzVcopaT60dcJuuoJVNVg3Wswlj12afP6NNa+oFuWjQghCoUQspWv38L3lVIGQlO9+gFXhx52Ac3nz6cDtV0ffWLJvPZcMi5vmmJVXzgvYuAi85qxMQ1cgLZEobFMjwwEcX1ZCIEAVRNfpu6zH5GhCxT3H4tbJHYx9c0n4Kih4p7nKb1mIqXXPritb61DfEVbMA1oO1knQKCsEkOSDWEyYSrI0dbzVTnZdOwV+j7NM5i3xbt8Hf6iLdqJhNFI3ZH76I9LfwBMJixDWz9hj8ay+2AaCv/A9dmPpJ4RvbNReib/5lKsi5o+c2lnH9fqvrUfTSdQ5QSgYfYC/XcyWO8m4KglUFLJ5hOv0XNdRFPz4bdU3P0cRQedh/P1zwBtNodl745VGmmsbtTTWIcPxbL7zuT892pST7ZHbHPPmk/d9N+o/+F3kg4Z0SWvLwwGMi45TW/XvPdV1BLOSYeMJP/5O+lX+EbECa/0+XF9+oPebi3xq2XoTuTcfRX9fnqd5CMP0B93hA2Md4R3TVGLJGLOVz/ZqmMprTPlZ9PrjQfIuuli/WJWerxUPfwqpePu0/sE77K1+sCFaUDvbRq4SDThuR9MxZXtljhv5F3c1M9aQ0tPKu97Ec/fyxAWM1JKXJ98nzBLnoTRSNbNF5N+yak9Il9JN+nUa4WU0YfqVaC2hnXk7gQc2kvLBndTAtaQiHKpXZS007NsLY7n3tPbmePObHUwJjzXlm/l+hbVDZNHHYzB1YAxb+vKlW4Nf1lTmdStrTTS06Qcewh9PnuWpEObytt6V27QBy4ATL2j58sLOGop2u8cMj74Mer2ziSEIOvGi0g++iAKXriTzKtjvz5tT7cMXkgp7VJK0cpXa3OkTTTlvFgC6JngQuvaBoce36EIIci84QItkWczSYfvS8ZVZ3foeMlHHoAhK520M0ZhSE/B9s9afBtLkD4fItmm3dkNBnF9HvlBF0Jg23dPat7/moZf/sI9d2G3luFLPe0okmKoxR4oq0L6/QSdLgx5WWwadTmbjx1HoKyKoKseiDwZam/wovLhVwk4XQQqHSQdPJxglpYnIP+Z2yl47X6y/3NZRAWT9gRd9Qirmdqp02mYNZ/Uk1rMblR6sNqPvmsshkPSv0a0OWsi66aLSTvvRITNQsGLd2PMzsD56idsHn0l9T/MxjyoDyknHE7tx99Hfb70eKn/pqmiiSFVm3mUerKdpINHdNZb2q6lnXsiuQ9cR9pZx2EZMihimy80OwujgZRTjuyyGFJOPFw/SQtUOHB98XOLfQxpKaQc+y9kvTuidFr9jN8JVDi0MPOyST7qgBbPjThOShKZEy7Uy7Q1zJy3VRWOnC9/As1mcdZ9Pxvfus0dPlZzQojxQog/hRAeIcSbUbbvUJXIhNFIxmWn03vq41iGNL1V95yFFJ9+A64vC3GHJeu0JXiJ1I4ypKXoS+FEKF9Q2U2PsmXsrThf+7TV54V/ri17aYO11v32xJiTwYB5H9Lrtfsw9cnDYOu6hIAdlXHp6WTfEn0mnhLVSsAkhAifPjacrbhWkH4/yfYD8G8pb1E6NFZJh+5D0iEjMOZmYSzIaZHDLLJcalHUsubbQnp9VNzxtD6Qad17VzLGndXq/sb0VH0JmvQH8C6N/FuQc9c4AnmZ2PZpWcGwqwRKmwYvTF2cYHJ7YsrPJv/Fu8m+cxzC1jKprKlv9MELQ4a2DFWau2fJP1JSfuMjnf7ZToiEnUKIfCHEWCFEqhDCKIQ4DjgX+Cm0y2fAXkKIMUIIG3APsEhK2SLfxY5ACEHmTReRfvGp+mOm/r3InXRjm2WAokm/5DT6F75B7gPXk3TISAxVNRhsFjCbSTpomH531TXtxxaDE6mnH40xlAROur34i8u38Z3FzrzrwJgqcfhLKsBgQPp8YDQRrGvQSqX6/IjQspHwpJ2eJa0PXvjLq2n4+Q/weMAfwHbAXvo2Q1oKxvQUMq4YE3MFFiklm0+6hsp7JyO9PoINHmo/+R7/5tjX8fZUQgirEGJKqNRZrRBivhBidNj27f6CJdjgoXbaDL2d1k4pPGEwkH3H5fT59GksewymeMwEvKuKKHh9ol5TPuPfp1PzzpdRE/kJq4XUM4/VSrYNGUjKCYcjfX6sw4e2mdBzR2Lqm99i0AK039X85/6P3Aeux7JTP700clcQZlNEGdSaNz5HtpIcufaj6VpCv8Z2WKLOtLOPbVGFJBrL4P6kHHeI3nZMntqheH3rNkcsF9HzL0iJc0rrF5MdUAw8ALzefENYJbK7gWzgT7RKZD2eZcggen/4OBmXnaEPPgVr66i442mckz9s2q+HDV5AZNJO96KV1H8/G8/iVXhXrm/1OeE3Jhr/5tv23wv3vMUIoxHp8UVcTCrbHyllHVp/cL8QIkUIcQhwKvBOR49V+8E3bDr+SkrH3RvxdzpWgYpqSi68g4IX76F/4Rv0/fzZFvsYwyqRBGtcegnTzuJ87VN9CaJIsmrXCO3M4gmfleFZGJkMWvr8mModmAf3b/X5wboGnFOmUTf9t065YA3/nqiZF5GEEKSfewJ9Pn4qotS9SLK1ek7XeE0nPN1T6lZYLYgkG0FH5y6USIjBC7TKIlcDm4Bq4HFggpTyfwBSynK0DMIPhrYfCMSeVKAHEkKQdcslZN85jtQzRlHwyr1bVWbJkGzTE//lPnITlrXFJI86iIELPyXvqf/oo3T+4jLcvy+MeG7ykQeQc8/V5D1xK30+fxZTr+7pWIINHjbZL231hL6R9PsJVDq1AR2DgUBxGSLJBkJg6leg/xKHl0PyrdrQagZ318ff6SeJCKEdqzGm2jrKrn2wQ1MMhRBYQ4n2DGkp4PdT/cRbVNz1XMzH6MFMwEa0RFsZaBcnHwkhBvWUC5aad77Uy1+ZeueRdPi+be4fcNTieO59nFOmIcwmen/8JHmP3oRlcNPUU8vQnej1xgOtnqBkXHY6/X97h96fPo0hNRn330spvXpi1H13RMFKB5tGX9XicSEEtn32IPW0o7Q7aNkZXRpH2phj9OogvqIt1P84N+p+1hG76XcFvSvX4/5rqRavyUjqmGNjfr2Mq86OnH3Rzgy0cM5XPtZryycdug859zVleq/7aib+4rLWnhoTKeU0KeXnQGWUzTt0JTJhMZN100X0euvBiCnp4XlMbCN63rci/IZDY74qoNUbKNLvx7u8KVln41JR8879SD3tKO1mhs0aUflL2W5dg5b0vwz4ALi6I2VSG5l3GQhCm73QOADQEd41GzHmNP2dCK/21EgIgXmXsKUjW/E6bb1++NK9rAkXtTmzs5E1rL8IL7cMYMhMo+zui9tMFl799DtUP/U25bc8Ttn4hwiEznG2VvjMQmN+9y1X2Z6Yd+pLr3ceJvO687HsuQs5/3dFm4NUqaceRd1R+7S6vbMZ87K03IqdKCEW0oUGJ9qcLy+lnAH0vL/C26Bx1K2zBKuciKAk5/7rMFjMGHrlkXrKkdS8o5XhcU2b0WKpRt2MOWTffHHUbOddxb+pBFPfgjY7UIBApVMv52pIT8VUkMOAPz4gUF6NDC0ZAa2+sqlvPv7NZUifH+/qIqzNaqpLj5faqd+G1saCuV++NvNio3ZC5F2+DvOQgR2e+ZJ04DD8G0vwLms6sUoO1XnekYXuoNwb9tBXQoh1wL5ADqELFgAhxL1AhRBit+1lNlaguoaa15vKQmVcMSbq51lKiRCCmg++wfHc+yQfe7CewLG1wUpT33ycb35O+oUnRz2mIblp0M27ZI2+/lsBQ3YG0lWP9PoikqGGC5RWYizo2pMoQ2oyaWNH6yefNa9/RvIxB7fIM2IdPhTni1Op/fQH3H80zQZJHnUwpg6c6Fl2GUDKcYfoMyickz8k//k7232eb0Mxrq9/0duZV5+DdfhQbPvthfvPxUh/AOcbn5Nz57g2jrJNelQlsm2pEiVuOIP0j38m5demmwxBq5nZm9dCybatp0+06lVmg4c8r5eglLj+WoLryJG4D9gDf24GK6LEadpURn6NltwukJXGr4vDbsTs3gt++QWMBiiwQSe8z0T7fjVK1Lg6k5SyCjhtW49jHtwfY0EussGDNWyWbax8aza2OUOhkWXIQH2QwLtyfUzLodsjg0Eq75vctFxk2BDSxkbPf9RceEJRz6IV+jkIaLM//f0LWn9dr4+6r2bq7YaZ8yg+YwJ5j96Ebf+Ofw+h+bIRNXjRGmE2kXnlWWRe2fqyoEa5D17P4m7qB3wbivEuW8vm065HGAwM/OezTsmXlhCDF0piMOZkUj3uFAxJTWs+U8ccow9e1P80l0CVM+KuozErjYa5iyIGL3wbiqmc+DKBSgd5j9wYdRr2tvAXlcSWrDOs07PutQu2/fYEoO6bXzD1zouI2bLHYPybtTuE3qVrWgxe1H3zqzaLw2rBOrAPfae/pE3J3riWYG0dnuXr2sys35rUs48j7ZzjCThrafjpD+p+mE3y0Qd1+Dg9nRCiAK0M2hK0WVrb9QVL+oc/klrlAMCTm8FfOeaWJ83BILkPv4t3cF/8vbLxTBhDID8L1izXvlojJbkffoWrshT3vm1PGc+a8SvuYYNpiPI9SdQT3a6Oq1fAz8KL/4Oxtp76Q/am4eDIk66sNAurVy5Dblwb8Xhnx2UYlElBMIDwB/D+vYR1r7yDd+iAiH0y3/yG5DVF1N/2BFKCMGqDp8VDCvSy0LHGZRo5kPwvtJWa3u9nsertqfgGtH6iqr++2w2AZ/eBrK/eAoVbsO4/mJzZfwNQ8d6XLNmrD8GMjs8MjEEq0Px2uxNIi7azlPIV4BXQKgwkWnb6bc5Mf/yx1M/8k8r/vkCgopq0c09kt6OPjn9cXaBidTlVU7/FYrWQu7SIPg/e0urFjeuzH6mwaOvCkw8aye6h9+JbX0zdD7Pxrd2EMBpIv/S0iJlsWysRv1+QuHElIlN+NgNmvknx2TeTPrbjNwmFxayfc7YlcubFxg6/TjSuT3/QKxIJk5Gce69p92afHs/g/hhSk7UKERUOAsVlmPq2/XegUcOs+S0ShgfKqyj59z1kXnU2GePOjGkpY6Ngg0c/njCbMHTxjEel8wWqnBA2C6SzEr2rwQsF0GYO1M34nbxp3+HtM0gfcLDsMgDr8KF4Fq7QMtl/8XNENnzbgcOo/2muPgOkbvpvVN7zAsF6bdpq5X9foNf7j3ZqZQJDZiopow5ud7/w6WYiNZnqJ98m66aL8C5dgzE3Mi+FdY/B1P/wOxBaGzvmGH2blJKad7/U22nnnUj1k2/r5VCLz76ZQJUT86A++MurY855AU2/yMaMNFJPP5rU07f9RLOnEUKYgfeAt6SUy4UQ2/UFi29jCcVzn0eGTqarzjoSe5QLjIZZ8ykpriRlXQmGvCwG/N/4VmcDNFcfTMbxysf0vmlcm797zvUOUo45OOrJSaKe6HZ1XFuGTcf61xKE0UjfQ/cnu/lrtfLaXRFX5YIiPQHr4AXrKbjyoojtzg1Oqv5YgXR7wO/HkJSKeZcB7HrFBfrPvSNxlf+9Xq8asuufa8m/6JxW9/UVbWHz/Ocg9Dke8N/r2Du0DE4ecQRbflmCN5Qkce/VlWTdfFKLYwghCml91uWsNhJ6N1KVyJpJPmI/kr57Gd+mEsw7t3/nd3uVfdu/Kf9hFrjcBJ0uKu+bTP7zd0bt7yKSdYaVQne+Po3aj74jWOPCmJdN5g0XdkvsyvajebnQWCXb96fum19x//EPlt13jrpsBJol7WwjZ0us/GVVVD/5tt5Ov/T0Dt1AFAYD1r13pSG0TNyzcEXMgxd13zYlBE86ZCSepWu0pbHBII7JH+L+4x9yJ90Yc46tQHilkdysDs9sVuLPuveuGKwWAo4a0s47sdOOqz4JCgBVj0zB+dJHmDeV6yUUG6We2XQh7/rkh4gkPLYD9gZ/AOnxUnHfZMpufkwfuADw/LOKhpl/dmqstn33jOkiP2K6WZ98aj+ajgwGCZRXtxi8sLRRLtUzbzHeFesBLelR6phR1BfOI1DhQNS78W8sIVhbj2/lBoyZUa+fla0khDCgJdvyAuNDD2/XFyyO595vms45YjfcI3aNul/9j3OQbi/BBjeppx4Z88AFQNKR+8e0VjfjktNiPjHZUaRfdIp+l6qxwkjZDZPYcv5tlF33EOW3Pdl9sVxyWlMuil//bnFym3TwcPD5tOVxZu3zkTZ29FYPFmeETTmt/2ku3uXrWt3X+dqn+rI824HDsIUGLiCUVDosq33t1OkEnC1/PbeyElk4VYksCmG1YBk8oEeWM25kSE2m+mI9hzMNM/9sURWtUfjf9PBlcr41G7XlIoEg0u3WS8crSqOG3xfSMGt+h59Xdt1DVD4yhZLL7qbs+odb3c8cNnjhW7up3Vxu7ama9Jo+W8E0oHdEnx6r8CS/7gWxVVoJNnio/3me3s666SL6fPJUxHIR959LKB4zgfrCedEO0UL4ObzKd7F9EiYTmdeMJfXEI8i595pOO64avFAASDurKblb84zHKccdiiFUmcO3fnNkLeGCHITVwvq9TsM5eSoEtYGN8GQxjhc+6NQyORV3PYtncfvl/CI6vrxMMBq0QQgptXaYiMGLFesjknY2LpsBSD3lSIwZaRizMwhUVmOqcILNSrDKgWlQH1WPvRMJ7cx7ClAAjJFSNqZH3m4vWDxL11D3TVOOgKybL25KAttMxjVjMWalk3zUAaR3cMRaGAz0mfp4m9nzG35fSMWdLTOg7+i8q4tIOeFw8l+8W8/V4Fm0Es/CFdR9N6upZGo3MA/sQ/KopmVkNW98Hrl914Fk3nghMhDEkGTFkJy0TeWWLUMGkXxM06w2x4vR8+D6N5dSF1bCNTNKie6kI/fXp0QH6xuoff/rrYpJCGEKVRkzAkYhhE0I0djRqkpkOzDv7gMj7uZVT5qCr1m1LunzRwzChf+tN/XNx9y/F8Jqxpif06MHe5St41u3ifoZv3foOYFKB56wi35Ls2XI4YyZaRjztAtz6fHi37j11ebqf/6D+u9n6+2ce67eqtK/kRVHYhu8aPjlT2SDtoTQvFM/zEMGYSrIoeC1+8gcf66ezD7odFE2/kGqJr2G9LZd8cKvKo30CKZ+BWA2dWjJUHvU4IUCaEkiU044HF+/fO2CKowh2UbKiYfrbdcnP+j/r/t+NjUffEvQWQtICARIPvZf9PnsWb32sHfZWupnzKGzuOctxpAefQpeOH/Y4EXQ4cJfVELxqddhGtC7xbpWY1Y6pt55QCi79LpNQCjTf9gocfoFJ1Pz3tf4N26h8v6XCKSn0PutB7GO2I3c+8ajdKoXgd2Bk6WUDWGPb7cXLOHTOZOPPADbyNbrpdd/P5u0c46n9zuTMA/o3eHXEhYzjskfRkyZDudZtLLLq2Zsj4TRiKl3LsmH7YupbwHBendTpmwB5v7t59vpTBmXnq7/v+7bX/FvaVoxJYTAu3Qt+P1IKUk5xa6X3ttamVc3LRWp/3EO3hUtZ184X/sU6Q/Nuthvz6jJ2ITBQMblY/R2zbtfRVTB6IC7gAbgduCC0P/vAlWJTIGsGy/CkJZCoLoGX9EWSs67LaKsu2/NRv0iydQ3H2NW06S9vEdvpt/0lxm0/Cv6//JWt8euJLbGEvb1v/yF4+WPY36eb81GTDv1Je2MUVh23xnrXru0ub9ll6blXVu7dCToqqfygZf1duppR5F00LCtOlb44IVvxTqCbk+7zwlfMpIy+tCmJJ9GI5lXnUOvNyZGDEDUvPsVW86/Defrn1E3Yw7eVRtavE74jVSVrHP7ZR7cX6/w1FnU4IUCaFN78h69ifJ7LsG6Z8uONvWMpqUjdd/PIlDpoPKhVym/6VEQUit2iyBl9KHkPXEr5kF9SAurhOKY/GHECcXWkl4fgbIqfaChLeHr5YKOWkR6CphN2lTRKMJHx71LtGmmte99DaFZI0mH74t5p764/vcT/vJqvKuLMFY68a3cgHX4bhFZmpVtI4QYCFwJjABKhBCu0Nf52+sFS8Os+bjnhPKMGgxkTmh9fbUMBkk/70Sybrqo1X1iYUhNpqbZMrBG3iWrsahKIy2Y8rMJlFfrbWGz0O+HVyl47X5STrJjKohtvW5nsQ4bog8OSH+Amre/0Lf5Sytp+PVvRHISSG3JyLayDBkUMduj+ewL/5ZyXJ//pLczrmo9L0bK8YfoJTyDThc1H02n/LancH0WfXp/NFLKe6MsKbk3bPsMKeVuUsqk0DKU9TEfXNnuGZKspJ4xCvwBCAbxrd9M7Qff6ttby3cRcYxkm5p1obQQdNVT/fibeJeuwfnqxzGfw/o3l5F00DByJ15Hn4+fJOWEw9vc3xyWk2Jry6VWP/uePtvYmJ1B1i2XbtVxQKtkZt5JS2gv/YEWS6mbC7rqafjlL72dcnzLFX+2ffekz6dPk2zfX3/Mu2wt1U++RfmESRSffgNF+53DplGXU/Lve6i8/0Xqf/6jKSY182K7Zdl1IOmXnb61Ny+iUoMXSkwsew7Wq2lIt5fNp16nTwMWyUlgNtH706fJf+YO/SQg49LTEUlaWUbfqg3UhxLBbYtAlRPr8KExLc8In3lh6puPZed+SLcX76roZePCp5N6lq4hWFsXcZKdfsHJ2rF652kDGoEAxqoaDNkZEVOtlW0npdwQukixSSlTw77eC23fri5YZDBI9VNNsy5SzzgaSytl1KTXx5Zz/4NvU2nMGcJbkzrmGBr++AffhuIW24TNimWv6Pk2dmTG3nlIX9N0VmEwYOqdR9JBw8h/4lYyb+z+pH7plzXNvqj95Ac9f4Tr0x8gEMCQbMO2/15Ydtn2SgnQbPbFjDkRdwOdr33alLNl5O7YDty71eMIk4mMsNidL06l7uuZVNz9XKfEqSgAtoOGIRpLQAeCVD/1Fr71Wp/nDRu8iHZjRlFaY8zOwJifhSEzDen24t8U25KO1NOPJvuuK2N+nfB+u7Xz07Z4Fq6g9oNv9Hb27f/e5vxr1uFhJVPbyXtR/9NcfXaTZeigiEp+4YyZaeQ9939k3355q+fw/pIK3HMXUfvRdy2WqCvbL9fnP1F2w6SIJfnbQg1eKDERQmh3N0KCjqbka6mjDyPZvj+m3pGdizE7g/QLmjLMO174cJuTEZl65dLrzQfb3U9KGTHzIvPqc+j1xgMYbFbMg/pGfU74XWjv0jW4PvtRTz5qHtwf28FamoXU044i5Zh/kXTISLxD+pN8xH6kjFLlTZXW1X39i77uWtgsZF5zbtT9pJSUXHoXwmzC3G/bE2kaUpLIuPhUvMvWttiW9+hNnfIaPU3SQcPIe+wWvR2er6duxpyIXDrdFtOh+2AZouUvkQ1uaj/4Funz65VIgvUN+IuKKb32QRrmLOrQsWs//YHSGx+JvEM9dKeIks2Nsy/8JRW4ps3QH8+8+px271innnqUvqY7UFKBbGh/CrKidIR1+FB6v/cI1v32RGSkIt1eKu58Bun341nSdNe4tZkXitKalGMPIfmI/cm46mw991t7aj+bQbDKGfNrRCTtXNWxmRfS56fi3slNM4QP3Yfk0Yd16BjRdCTvRd303/T/p7Tz2kII0i84iT7/e47s2y8n7dwTSDpkpDZDr41qIqZWztuV7UPqqUcizEYt10kn5EBUgxdKzFJPtiOsFr0tzCayb/s3eU/fRq/3HolaHz39klP1Ndi+9Zup+/qXFvt0RMOs+TFlKg7W1iHdXi3OJBsiNVmrMCIAf/SRP2v4spEV66h57yu9nX7hyfpJevKRB5By0hEIiwVjdS3FYyYQrHdvw7tSejLp8eJ47n29nX7Rqa2u36z79lfqf5yL+68llFx2d6d08hmXjyHl+EMjjuX+cwnONz/f5mP3RNLnp/z2pyi98j42jb6K6klT9G01r33aIqFxdxBCkB6W+6L2/a+p++bXplwcJjPeFetpmDmPhl9ir+4kpcS3qgjXh99Sculd+IvL9G0Rsy9++B3vyvU4p0xrmnUxfKg+oNtm7BYzGZeepv0/NRlDRoqaAqx0KmN6Kkn/GkH+E//BELqj61m4Aucrn+ALmzVk2aPpb7zrq5nU//oX/i3lnZpQXOlZcu4chyE9BXP/3hhzMmN6juOpd5DB2D9T5sH99cTdvqItMeWYaOR843N8odkaIslKzt1XdsoSqOaDF639jgQctbhnL9DbyVGWjERjHtCb9AtOIufOcRS8/F/6ffsSA//6iL5fvkD+83eSfdtlpI0dTdIR+5M14cI2k54qiU8YjeQ9dgvuv5biDpXh3RZq8EKJmSEthfTQSaipXwG93npIv6gPlFXheOWTFs8xZqSRftEpetvx0kfbNG2ofuaf+GPI9h8oqdD/b8rP1jtz2757kHKyPepzjLlZejkm6fbi36ydyBsy00hplsHfmJOBd9UG8ia+RcPvCyOWBChKuJoPv9UvCg1Z6RHT6Jur++YXDGnJWtLIAb06bR127ac/4HjmXb3tnruIYE1dpxy7xzEZqfviZ+p/+xv/xhK8YWuQ/aWVcSvZlnL8oXqun0CVk8oHXtK3pZ50OASDyGCQhg6cGAghsO6zO9Z99yCwpZzS6x5qmv67204kH3mAvm/VpCnaMpWQWGZd6PGdeSyGzDSEwYD0+skcf17MMSpKrCy77RSRg8Ux+UP9fMM0oDfG9FRAG7SreuBlyq6eyKZjrojLgKSy/TAP6htzIs1AlZNARTXOt/+H6+tfCFTXtPscQ5JVzw1EMIhv3eaYXsu3oRjnS005iTLHn9dppc/Ng/vrM00CFdUEwhJFh6v/cY6evNk6bMg2zeYUZhPmnfqSbN+f9AtPIeeuKyl44U4yLh+jctL0AIbUZHq/8zC2g4cjPd5tO1YnxaTsILLGn0e/H6fQ9+vJEQkqDSlJOF/9BN/mUgI1rojnpF94MobQSYO/aAuuLwu3+vX9G7dgiqHyQvjJiLFXU4K9nAeuJ+3MY6M9BSBqRty0s45rUW7KvMsALEMHQTCIMBq3eX2h0jMFa+twvtKUpTzzyrNbrQbh/nMJaWccQ9qZxyLMJtLDEt5uK9uBw6j9+Du9/rtnyWq1/rsVQgiM+TkQSs7mnruITaMuZ8vFdxKorNZmcMUjLrMpYiBYX35hNJJ5/QVY9tyFzKvPIf+p22I+ZtDtIVDpwL+xBIxGhNEYcVKRcU1THlz3H//oAxvWvXbFdsjImF/HkGzTcwYBrSaRVZRtlXH5GVij5PIJ/9seKK0k6KoHtJsy8RqQVLYPKSceTt1XhTHlo/Ct2Yj0B6h9839U3PZk1HxT0YSXNfetbP91pJRU3vdi02DzHoNJP79jJdXbIozGiJxYrS0dqfsmssqIorTFkJaCrGtg82nXR9wY6vBxOjEmZQdhKshpkUiw9sNvCZRXsenIy6j7cmbENkNaCumXnKa3ndsw+8K/YQum/u2P7EaUSXW6qPtuFr6NJZj6FWBIa73MqqXZ4IUwGSOqpjQyZqRhGTKQYFoymE2Yh+7UgXeh7Cicr35K0KkN5pn69yLtnOOj7hesraP81icwZGeQ+/AE+s18E0snfqbM/QpIOnRfaj/6DgD/+mJVaaQNpr75ZF5/Ab0/egIIJRH7awkFL/03pmTBXSX1jFH6QHCj5KMPxDKoD/1/nELWdedjHtQn5uPV/ziXhp//IPs//ybnznH0/vCxiBN06+47R2SHb5TRgVkXjdLPP7FpCWGoFLWidDoJ2fdcHbHEFWjR36WdfZw262if3dVdXaVN5oF96PXeo5h26kvtFz/rNwGiMe3cD0yhvxFCRAxKtPkauzYtu46l4ojr0x9w//GP1jAaybnvWoSpc/82WUeELR2JkrTTX16Ne95irSEEycce0qmvr/RMhtRkMq8+h7LxDxIIyw3TkeV7avBC6RwmIwiB9PmjliJNP/9EDKH66v7iMmrDph93RK+3H8I8sP2T88akelJKPItXUn7zY2wefRWBsDXd0TQfvEg+7tCo+QkqHnyF6iffJpCZyoA575N0aOx3IZUdg7+kIiJvStb157d64Vv99Dsk2/fDNmI3AH16c2fKuPwMPSN/n69eUHkH2pD78AQyLjpFG+gMJREz5ee0mkW9uxhSkkg7N7IcauOAmHfl+pireHj+WUWgyonrsx9JPf1o0s8/kYwrzgSfn8r7XqTmva/1fcNnX4DWRyYdvm/MMctgkNqp07VYO6GUq6JEU/POl2w88jI27HMW7t8XkHXDBRHbw2eamXrlknPP1fR++2EKXriru0NVtkP+TaUUn3o9ZVffT/ULH7S6X6CkgtwHrydj3FmkjhkVc5LP8EGO9mZ4+Iq2UPXI63o7/aKTI3K2dZaIvBeLWg5e1P8wW5+haNt3D1URRIlZ6ilHknL8oVTe/6L+WHiJ+vaowQulU5gH90ck2zDkZIJsWQvbkJIUWTLvlY87vOYpUOPCu3pjTKPL/sZKI8Eg+LT1eIaMVIx98tt8XvPBi/QLT466n/u3v5FeH5Y1m/GXVrZYVqIojhc+0D/jlj0Gk3xc9LsSwtWAe84iMm+8qEvjsew6kPRzT6Bh1nwafvlL3W1sg7CYCTpqMPfvpSUR+2oyaeeOpnLiy/EOjfTzTtRnj1n2GIztAK1UqTE/h/offm+3opP0+ii/5TE2HXMF7tnzsR3UlHRTWC3kv3AXzlc/oT6U+NO6x2CSjzpQ3yfzmrEd+uw0/PIXlRNfYuNR/0a6PQibpf0nKUqHSS2BrZT4i8tIu+Akkv41AtBydFnClrkqSkcFKqrxbyhGWCw4X/gQ38aSqPtVP/EWpoIcsq4/n9x7r435+OYYy6VKv5+K259CNmhJ4s079Wu1etm2sg5rGrzwLl/X4py97tumKiOxJupUlEaZ159P9p1XIgMBrUJkK3lVolGDF0qnsO27J/1nvEbO7f8m6+ZLou6TNvYEfb14oKxKL/MXK++SNRH5A9rSVM5QkDL6MJIOHk7SwSPaPek25WeTdIQ2TTrl+EOx7hU9L4CpVy4gEL4AQUf7CZmUHYt3dRGu//2st7NuuhgRpQxY0FWPtJjIefD6NpczdRbPsrWUXnkf3qVr2t95B1b3za/UfPANEEoiNqgPhpSkhLizZMzJpNdbD5J166UUTL5L79OMmWkYczLxrdlI0O3R1/Q3V/vx9/g3lxF0exApSS1mA5n7FZD39G04nnufirueRUpJ7kM3kDHuLHIn3Rh1GUlbat75EtBKvAqzWc2+ULqEsXfoxoQQBOsaEAYD+ZPvIv/Fu+n19sPqBoOyTVJOOAzLkIEYcjKxjhiK4/n3o+7nW1OkVQ/pIPPA3npfHCitRNRFr2DnfOUTPItWAtqy5txHbsSQ1DWfbWNmmj7TWfr8eMLOG/wlFXjmLwvtaCTlmIO7JAal5xIGA6a8LKqfeIua1z/Dt6k05ufGb/Gu0qMYkm0Ykm3UffMrxvxskg/fr+U+SVYyLh9D1aTXAHC+9gmpY46JueP1F23BNKBXTPs2Dl4Io4GMq85udRAimvzn7sC/uQxTn7xW98m4fAyBimpca4qw7btnzMdWdgzVT72jT6dMOnQfkg4aFrFden3UTv0W52ufknzYXpR8/gLmnfuRfuHJpJ11XJfFZdltJ5KO2A9bs3iUSMa8LLzL1wLasgdZ10CgrCphEvtZhgzCMmRQi8dN/Qoov+UJ/JtLybrhgogEn/o+A3ph2qkvvuXryLz1shYJZGUwSN0XP+NdthbP4tWY+vcm88qzyLr+/A7HKaUk5YTDCFQ68K3bTNp5J2BIS6F++ixY0uHDKUqrkg4aRt/pL2s5uUIXgcJkIvmw2Jc4KUprhMFA7qQbMeZkYkhPJVDpQAaDETclAtU1SI9vq/5OCJMJ88798K5YD4C5uKLFPp6FK3C8HJYAfPx5UZPMdybriN30pKOehStgUCYAddObZl0kHbh3zGVkFaW59ItPZcu5t5J1XeznGGrmhdKpbAfs3ZREKIq0s47VO/ZAhYPaD7+J+di+jVswD4gtGV14ws6O/iERBgPm/r1aJCUNl3TISNLOPp66w4ZjCOURUBQA919LaJg5T2sIQdaNF0ZsD7rq2XzKeBrm/EPBq/dhLtY+q761m9r83ekMQggKXrgL2z57dOnrbO+Medn41mxk82nXU7T/WMquexjr8KEJP+iTPOogfGs3Ij1eGn5fEH2fw/Yl5+4rMfbKJW1sywSy4Sfj0uOl+sk3CdRGn8XRHiEEaWOOoc9nz9Dn4ycw9c7DkJpM9l1XbtXxFKU1htRkzP0K2k2oG6h0UPXo69R++gOexau7KTqlJ7AMGYQxJxNhNmHqlUv1o6/rM8sAMBrIvnPcVi/JNIflvTBtjpxCH3TVU37H0xBaFmjbdw/SLz1tq16nI8KrCoZXHAlfMpIy+rAuj0PpuUwFOeQ/+39UPfZGzM9RgxdKp7IdNAz33NYvwITVQsa4s/S28/XPWp3e3FzKsYeQfPSB7e4XdHv0Cg/CZMSYkxHT8Tsq7YKTqDnT3iXHVrZPUkqqn3xbb6eedASWoTshpaS+cB41H3yDITWZgsl3U/DCnViGDEKm2DAka0m90s7rvFJnytaz7NKflBMOx7e6COnx4ttQTPKRB+gJVROVZa9d9f40UOFoNXt33ReFZFx2eqtT6bNv+zeWPQaTevrRpJxwOFX3TUYGW+YyipUQImKmSEeXnihKZ/EuX0fN219Q+d8XqHr41XiHo2zH0i86Befrn1H/41xAS9bpeO1Tym9/itppMzp8vPCkneZmgxdVj76Ov2gLoA3U5T50Q5s32DpLi4ojUuIr2oJ3iTbwJ8wmkkcd1OVxKD2bda9dKHj13pj3V4MXSqcy79yfjKvOxvPPqlb3SRtzDKZQ4sxgdQ0178c2+8I0qA+mAb3b3S9QVqX/35ib1WUdvBAC4lg2UUk8DT/9od+dEGYTmePPxb1gOSUX/x/VT71NoNJB/S9/Eqh2EnR7AKgZY6ffT1PIfXgC1gS/ON5RGHOzSLvoZP3iP1BexZYL78AXOnlMVJZdB2BITabPtGfo8/GTUe8ABusaqP9xLikn2Vs9jrBa6DXlfvIev4W8STcSqK6JWkVKUbY3vrVNn+PwJImK0lGGjDTSxh5Pxb0v4N9cStWkKXgXr6Luq5nU/zinw8cLL5dq2ty0bKRuxhxcYYMh2XeOw9S3YNuCjzWmXQboN1cC5VUYq2ojZl3Y/jWyW/J1KT1feEWo9iTc4IUQYlchhFsI8W6zx48WQiwXQtQLIX4WQsRWPFnpNg2zF7DxkAsou/ZBKh9oPSu/MJvIuOpsvV3z5uetVh6RwSDO1z4l/ZOf2WS/FFkfPYlROL1MqtdHoLqGmve+xhtD3WxF2RbS76f66Xe0HAluD6lnjMLUt4CG3/4m7fRR9Jn2NHWf/0TZNQ9QcvGdBCsd+nMNqcmknmxXFUASyOZjriDzmrEY0lLIuPIsfCvXYwyVe05UwmTCdsDe+Esj10v7SyvxhgYfRLKNXu88jCkvq81jGdJSEEIgrBYKXrsP8y4D8CyJbZq99Pkjlu4pSneRPj++TaUEqqMn0rbuuyeZ488jZfSh2Pbfq5ujU3qKmg++YfMJV+F47n2y7xyHsU8+3pXr9ZtllqE7dfiYzWdeSCnxl1VRee8L+uMpxx9KyklHbPsbiJEwGrHsvWtTXGs3R+S7SDlBLRlRul/CDV4ALwDzwh8QQuQC04C7gWzgT2Bq94emtMXUrwCkRHp9UWtCh0s92R6q2AHBGldEFuNwtR98S/XT75A6fS7S64upZrY/NPNCen0EyquoevhV6r4s7NB7UZSOcv3vZ7yriwg6agnW1uH67EeCtXVkjT+P1NOPRhiNBMMG30RKchtHU+LNkJJMyvGH0n/2u2RcerqWnC018X9m1uFD9Sm9jRzPvUfx6TdQcdez1H74rdZXd4AQgqDTxZaxt1J87q0Ea+va3L/uu1lsPm4c5f95stW+XVE6W/WTb7Nh37PZfPyV1H01M+o+1j0Gk3nV2eQ9dgup3XgRqPQsnvnLCVQ6AXB98A3+TaUEq2vIn3w32f93RUR56VgZe+XqCZQNDR4CpZVU3v0cQUettr0gh+x7rur2mxzheS9SfluEL1TKVdgsagmgEhcJNXghhBgLOIAfm206A1gipfxYSukG7gWGCyHUHOsEYuqbj0iyYR7UFyEE0udvdV9hNkUkv/PMXx51P1nfoP0nKAk4amJad62XSfUHIJR8zrJn12ZkVnZswQYPjuc/0D6vfj8gCLrqCYROOholHTqSpENGYh25u0r0muCM+dkEyqu1C/e6BmwHDNsuZsZkXHkWGVc2zWwzFVfg+qIQgkFqP/2B6ife2qqldP4NxchAkIbCeRTZL8XfSk12KSU173yJ9Aeo++YXGn75a2vfiqJ0iCE9Ra/y1NrnU1E6Q+b4c7WcagU5pJx2FKa++fT+6AlSRh1E+nkndqjCXSMhRMRSpqoHXqZh1vzGjeQ+eAPG9NTOegsxsw5vynthXbZB/3/yEfvHdENRUTpbwizYF0KkA/cDRwP/brZ5T2BhY0NKWSeEWBN6vMVVrxBiHDAOIC8vj8LCwi6Keuu5XK6eGdfDV4BB0Oum5/n1q28JZqW1umuyVZLp1ZaLbPj2Z6p2jjKNeacs8tOSEH4fdfYRzCws1AckWpP+x1+ker1gMeEePphgajIbaysJdMH3u8f+HJUOqX3vKwLlVYiUZKTXh0i2kffErZj7R5b2zXv05jhFqHSU7cC9ESbtIt9UkEPBC3fGOaLYCKuF2ve/IeXkI/D8tRTzpjKSDh5Ow6z5mHrlknL8oe1WZIim/se5CIPAkJGGMJkwFORE3U+66vXy18JiJu3sriv9qyjhGsubG/Oyt+ozriixMg/oTf5L/8U2cjeE1QJ0bM1+ayxDBuJZoF3W1Bc2TUJPv+TUFiXXu0v44EW45OMP7eZIFEWTSL37RGCKlHJjlLtbqUDzYXQnEPXKWEr5CvAKwNChQ6Xdbu/cSDtBYWEhPTku96v5DNl9Z30KXDTe/jtTPPVnAJJKnex9xBFR72zKo45k5i+/xBxX2f/mUm+xgAX6XjGWlBMO36r3EIue/nNU2hdw1uKcMk1L7igg+56rsA4bSvIhI+MdmrINMq86R/+/e95i/JvLSD3tqDhGFBshBNXPvkvlQ69oVT4O2I2C1yfRMGch5bc+sdXvIeumi7DsOZjqp9+h15T7CRSX07BkNSnHHRKxnyEthV5vPohn6Rq8K9ZhzO6aak+K0lzyqIMZ+PfHCIs53qEoO4CuGEyIlkTWMmQgWded3+mvFStjVjqmAb31aicAhpQkkg7bJ24xKTu2blk2IoQoFELIVr5+E0KMAEYBT7VyCBfQPFNaOlAbZV8lAVj32xPvsrVt7mPeqR+G0BS4QJUzomMMJwwG0j+YQcPcRTG9diAsUZwxP/rdQUXpDAFHLc7XPiVQ40LW1GGwWcm8/Ew1cNEDNPz2NzUfaJWQPAtXbFfVNqx77YJ0a7ParEvXI6Uk6aDh9H7/0a1KJNco5bhD6Pvl85j65CM9XqomTcH19S8A1H42I6LstXWPwaSdPmrb3oiidICwmNscuHB9/QvltzyOY/KHeBbHlnxWUWIRrHe3Wpq6I8KTdoL2mc595Ka4D8jZms2+SDrygFZLbStKV+uWwQsppV1KKVr5OhSwA4OAIiFECXALMEYI8XfoEEuA4Y3HE0KkAINDjyuJyOuj8t7J1H0/q9VdhMEQWUM6LO9FIKwSA4B19SYMMSY4DM9yb2xlarOibCvXZz+yadS/cb7+GdJVD1KSM/E6NV25hwi66nHPWwxofYoxv+3qHIkk+cgDEQIsu++Me//dwB+gbvpvbc6Ei5UwaZ9vy+D+FLx6L9WPvUHlpNeovPt5is+YQMOc2AaZFaW7uef9Q93037TBi7+XxjscpQepuP0pNux9OhtGjNmmgTFzs8GLrBsvajGgEQ+WZoMXKaNVlRElfhIlYecraIMRI0JfLwFfA42LZT8D9hJCjBFC2IB7gEVSyuhZHpW4kVLiK9pCw+wF2A7bl6qHXm0xEBHOOrwp56pn4fLQvyvYdPS/qbjzWbyri5BSYix3YBrQSysdVVLR2uGQgQCBiqbXM+Vnb/N7UuJDCDFeCPGnEMIjhHiz2ba4lk6u/fg7Ku5+jkB5NcGKaqTPj+1fw0kZrdaA9hTGvCwCocpFgbKq7WoWV8pJR9D325fo8/GT1IyxI90eKu97ETo54ahllwHkPX0brk9/AMBfXEbdFz936mu00w8MCs3gdIV93d2pASg9hm910+wp8+D+cYxE6UxCCKsQYooQYoMQolYIMV8IMbq7Xj/oqqf+p7kASH8AYe54QuRGxsw0Uk8/GtCq8qWdf2KnxLitbCObztUN6akk/WtE/IJRdngJcYtQSlkP6PNNhRAuwC2lLA9tLxdCjAGeB94F5gJj4xGr0o5AgOJTr9MrjaSdfxK1U6eTeU30H1d4h+gOzbxwvvk50h/A9b+fkIEAOXddiT8vk9oPp1P3zS/4N5fSf+ZbUas1BCqdSL+fYHUNwmbF8dJHZF51tp5QSdmuFAMPoA1i6imtw0onXw58iZYvZypwUHcFZjtgbwypydrFrdmESE8h+9bLtotqFEpsjHnZBKq0Uni5k25EGLafn60xMw3/hmKCdVq1prpvfsV28HCMma0nUN5a1uFDyb3vWspufQKDzUrW7c3zbW+zqP1AM5lSytbLWyk7DOn3Eyirwl9cjql/L0xhsy+z/+8KfCvW411ThGXooPgFqXQ2E7AROAIoAk4APhJC7C2lXN/lr240YuqVi7+kAmNuFuadt21gLHfidSw5aFeGnHh8JwW47cxDBpF6+tFUfPkz2bdeqmaYKnGVkJ8+KeW9UR6bAajSqAlOmEyYBvXV60CnHHsw1pG7I4NBRJQqIZa9dgWjEQIBfKuLCFQ5CTpd+vaMy07HkJpMxV0Xk/X0NH3deUPhH1ETcQZKK7VSaYEA0uPVBk6uj1+iI2XrSSmnAQgh9gP6hW3SSyeHtt8LVAghduuu2VjmgX0QoSn4Ij2FlCMPwLb/Xt3x0ko3MfXvRd+vXgCg4de/trt69tVPvU3GFWcC4PpqJhlXjOmS1xFCkHLC4RRkZlBx4yTcvy9skcRzW7TRDyhKC5X3Tsb1+U8A5Nx9FWnnNF0AWvcYjHUPVTa9p5FS1gH3hj30lRBiHbAvsL6rX9+QZKXgtfup+3omyUcf1CkX9jIlsUqpCyHInXgdi4/ai92OPDLe4Sg7uIQcvFC2b7Z9dseYnYF5534YszKQDR5KLryd/JfvxZQXuW7ckGzDMnQQ3qVrAPAuXUOv1yfiWbiChjmLsAwZpC1B+XM5KSccjuO59xBJ1oi8FuH8pZXgDwBaTg3LHoPV3fCeJ+6lk1O/nUPm4lUE05KRgQCr/jWUZVt53EQta6vigqTfF+Mevgu9bn6eLc/dCKbWpwMn2vcrLc3M5mnf4DpyOKvOPoygzwldHJ/52tOo++9zOBctwr3/7l36Ws1sEEJI4AfgVill1LWFiV5GPdE+Q422p7jSGmpJC5VgXzlrLrUF3X8RuD19v3oiIUQBMIQ28uJ1SV+wZ28o2aB9baNE/Vm56uoSM65E/X6puLqEGrxQOl3O3Ve1eCzp8P2ouv9F8p69o8Vggm3k7vrghXv+MpIO3Qfr8KFYhw+lYc4iKm5/Cjn2SFJPsWPqV0CyfX8MKdFnDwfKKsFixpCdQdIBe5N+0cmd/waVeOv20smepWsw9++FIS2FYDBI0bVPITPSMJlNpJ5sZ+gFZ3f4mI0Staytigs2Pz2N7MMPoSI/B/uooxMmrljUB5OonTod34rN7HvWKZgH9O6W1w2ecTIYjfjWbSJQVtXVM1YqgP2BBUAO8ALwHk35siIkehn1RPsMNdqe4nJVB6j+axWm3nn0OmBf0uMQ9/b0/epphBBmtD7grbZmYqq+YOuouDpGxdU11OCF0i0yrxlL8dk3U/fVTFJPtkdss47cDd77CgDPghX64w1zFlHxnyfIe+JW1tRVYOqdR+qJeW2+TqCkUhscMRqxHTSM5MP36/T3osRdt5ZO9q3dROnl/8VYkE3KsYdg7N8bCQizCWE2kTn+3K54WSUBmPKy8CxevV0l62xk3W9PZCBIxv89Cad3X9I3vaKJz0/VI1Oom/4b2XdcjjGj5diiEKIQbZ16NLNC1chaJaV0AX+GmqVCiPHAFiFEupSyZivfgrIdSzntKD3hodIzxNpPCCEMwDuAFxjfPdEpitLd1OCF0i0C5VXkPXqTXmYvnHXEbkgpEULgWbQS6fdDIIh1z8EUvHYfliGDYp7u7C8LL5Oa20nRKwlmCXBxY6MrSycH3R5Kr5lIwFmLf2MJ3mVrMQ3oo88eSjv3BEx9Czr7ZZUEYczPQZhNZN18SbxD6TBjeioEgwRTkzHv3P2pIqzDh9Ln06dxPPMuZdc8QK93J7WYdSeltHfyy8rQv2qt4A6qtWWipdc+QNDpwjy4P5lXnY2pd9s3QpTEEUs/IbQf/BSgADhBSunr6rgURYmPRCmVqvRgrq9/YfNJ1+JZshpjQQ4173yJlFLfbuqVizCbCDprCThqqHz4NcpveRxDWoo2cNEBjaUNgYgs48r2RwhhCpVGNgJGIYRNCGGiG0snG2xWMsadhXTWgsVE6phjCBSXadtSk/WEiErPlH7ZaSQfeQC2fbo1f0Onqf3oOxoO2iNur29ItpF9x+UUvHIvBAJUP/1Om6Wzo2mjH0AIcaAQYqgQwiCEyAGeBQqllM5OfivKdkxKiWf+cjwLlmtlfVUerJ7oRWB34GQpZUO8g1EUpeuowQulS9X98LuWs8Lnp/K/k2n4fSGuz3+k7n8/6/tInx/Z4EF6vEhHLa6Pvyc7St6McP6SCpxvfIbr618iH99cqg+MGPOzO/8NKd3pLqABuB24IPT/u0IllMcADwLVwIF0Uelkf2klaWeMIvfRW8i5fzz13/yqb8scfx7GrOarV5SexNQ7H+eUT3G+Pi3eoWyVXlPux3XcgfEOQ8tRFJQQCFI8ZgI173zRkadH7QdC23YGpqMtGVsMeAC1jkuJECivJlijVTEzpCZjVDc2ehQhxEDgSmAEUCKEcIW+VKk5RemB1LIRpUslHTQMy2474V22FvNOfbEOG0LuQzdQesW92A4ahqlXLu6/l0JAqxCCgKQj9sXUxsBDfeE8ysY/CIBl951JPVErmSqlxLd2E8GaOjAZ8S5dg2XXgV3+HpWuESqZfG8r27q8dHLNh9/ifOkj+nzxHGnnHEfJ+bcjfX5AW+qUdu7ornx5JQE0zJqP6/OfyJmolk9vK2Exk3XzxSQfczCV978Y8/Pa6Qc+AD7olACVHsNfXo1/4xb8xeXYRu6GsU8+/Wa8hm/NRgKOWlWBrIeRUm5ALRVTlB2GmnmhdClDWgoFL91DygmH0+uthzDlZ2MZuhPpF56M5++lAFiHDSXj6rGIJBukJONbvr7NY9r23QNhMQPgXbYW39pNAARr65ANHkBqgyFWS1e+NaWHqp/5JxX3Tab2g2/o9fZDGNNTqXn3KzyLVwFaos6c+65FGFsvm6n0DI2DqKbtMGFnorIOG0KfT56KdxhKD1b96BRKLvo/Km5/Cve8JQghMPXKJemQkfrNDkVRFGX7pGZeKF3OmJNJ3qM3RTzWmCvAt6GYirufw9QrD0NeFri9+LeU4y+pwNQresJNQ1oKyUceQLC2jpQTDteXhwRKK5tyaRgMWPfcpevelNIjuT77kfK7nsWUn0Pvj5/AlJuFr2gLjufe0/fJuOocLIP7xzFKpbs09i3mQX3iHImiKLEy9c7X/+8P5ShSFEVRegY180KJG/dfS9l88nisuw8md9IEbHsP0bd5Fq5o45mQ+9jNFLxyL6mnHaWX5guUVWHMSseQk4ntgL0x9VNVIJTYeVZtoOzGR0BKAuVV1Lz5OVJKKu+djHR7AbAMGUjGZafHOVKluxhzs8j49xmqooyibEfMg/tj2XMXko85OC6VdhRFUZSuo2ZeKHHhWbaW8hsfwZidQdolpyIMBqwjdsM9b7G2ff4yUo47pNXnC0PLcTd/aaW+zbLbTmpdqxIzGQjgePpdrHvvinftJixDBpJ51Tm4ps3A/cc/2k4GAzkTr0OYVbe5oxBmE1k3XhTvMBRF6YDUU48k9dQjAS0XVrCuQUsaqyiKomz31Fm40u2Cbg9l1zxAoMqJZfedCVY4oHce1pFN+Rc9C9qeeRFNoLRC/78qk6p0RPXjbyLdHnp/+jQ1r31K6phjCNY1UP3YG/o+GRefqpYiKYqibEcCFQ42HXkppj75WIcNIe/xW+IdkqIoirIN1LIRpdsZbFZyJ45HmE14l62l/D9PEKxrwDp8qL6Pd/lagg2emI/pL6vCt6Vcb6tSaEp7ZCCg50ix/WsE+U/fhsFiJvOasRjzs6ma+BJBVz0ApgG9ybi2S6qxKoqiKF3Et2YjoOW+UPkvFEVRtn9q5oUSF0mH7kP+C3dR895XpIw6WJ/Sad65H761m5D+AN7Fq7Dtv1ebx6n7bha1H32H+49/MGZnIANBhNGAUVUHUNoQdHuo+M+TACQdMpK0c46P2F7/3SzqC+fp7dz7rsVgs3ZrjIqiKMq2CZRVIkxGpD+AWSVaVhRF2e6pwQslbpL+NYKkf42IeMw6cne99KlnwfJ2By/cfy3FPXcRAN7VReD3g9Golo0orQq66im79gEa5i4i6HBhbFbVJuCopeqhV/V22tnHt/s5VBRFURKHd+V6fGs2Eiiros+0Z5AyiDCqU15FUZTtnVo2oiQU24imvBfuGPJeRNRsDwQBLWGnWjaitEbYLEiTiaDThSE1GYPVErG9+pEpBKqcgLb8KOsmlbBRURRle+J4/gPKb32C6qffwbtyPZbBA1TJY0VRlB5ADUMrCcU6Ijxp5zKklG1WDbEMG0L2neMgKCm/7QnwS7CYMeZkdEe4ynZImEzkPXoTWzaVkH7uCWRccpq+rf7Xv3B9Wai3c+65Wi/FqyiKomwfTH3y9P/7i8vb2FNRFEXZnqjBCyWhmAb1wZCZRtBRS9Dpwr9uc5t12oUQpJ97Ar6iLRgz05FSYszPRhiN3Ri1sr0w1LspHXcvtkNGkn7hKeD14Zj8IbLBQ9DtoX7GHH3flBMOI/mI/eIYraIoirI1rMOGkHz0QZj65GHZY3C8w1EURVE6ScIMXgghCoGDAH/ooc1SyqFh248GXgAGAHOBS6SUG7o7TqVrCSGwDt+NhplaskT3wuVtDl40CpRV6c83985rZ29lR2Uqrcb1za/Uz5rf5oweQ2Ya2bdf3o2RKYqiKJ0l5YTDsR04jGBNHab+BfEOR1EURekkiZbzYryUMjX0FT5wkQtMA+4GsoE/galxilHpYraRYUtH5i+P6TmBskr9/yrfhdIqKTGkp7Q5cAGQc9eVGLPV0iNFUZTtVd30WWw++VqK9h9L9bPvxTscRVEUpRMkzMyLdpwBLJFSfgwghLgXqBBC7CaljO3qVtluROS9iHHwwl/SNHhhUmVSlVYEk22kHH8oBpsVYbMikrV/DTYrIsmGSLJiGdwf6/Ch7R9MURRFSVi+NUUASJ8fQ5rKXaQoitITJNrgxcNCiEnACuBOKWVh6PE9gYWNO0kp64QQa0KPt7i6FUKMA8YB5OXlUVhY2HyXuHO5XCqu1nh99Pb7EcEg3hVrmfnVt7gItBlX+h9/k+r1ArC2ppJF3fQeEuL7FUWixhVv/l7Z5D/5n3iHoSiKonQxkWTDmJdNoLwK8y4D4h2OoiiK0gkSafDiNmAp4AXGAl8KIUZIKdcAqUDzdNFOIC3agaSUrwCvAAwdOlTa7fauinmrFRYWouJq3ZaR3+P5ZxUA+6fl8Yd0tRlX2f/mUm/RSl7udujBpNoPb3XfzpQo36/mEjUuRVEURekO2bdeSvatlxKsrUNYzPEOR1EURekE3ZLzQghRKISQrXz9BiClnCulrJVSeqSUbwGzgBNCh3AB6c0Omw7Udkf8SveLXDqyrN39GxN2Apjys7skJkVRFEVRti+GtBSE1RLvMBRFUZRO0C2DF1JKu5RStPJ1aGtPAxqz6i0BhjduEEKkAINDjys9kDU8aeeCFW3uG6h04CvaordVwk5FURRFURRFUZSeJSGqjQghMoUQxwkhbEIIkxDifOBw4LvQLp8BewkhxgghbMA9wCKVrLPnso7YXf+/Z/FK8Aei7ueev4ziM28iWF0DgDCbMKnBC0VRFEVRFEVRlB4lUXJemIEHgN2AAFoSztOklCsApJTlQogxwPPAu8BctLwYSg9lys/G1Ccff3EZ0u3FvLEsYruUktp3v6T6ibeQjQMbQpA54UI1PVRRFEVRFEVRFKWHSYiZF1LKcinl/lLKNCllppTyICnlD832mSGl3E1KmRRahrI+TuEq3SQ874Vl7Wb9/0FXPRW3PE7VI6/rAxeGjFQKXrqHjItP7fY4lfgQQmQLIT4TQtQJITYIIc6Ld0yKonQeIYRVCDEl9PtdK4SYL4QY3Wyfo4UQy4UQ9UKIn4UQA+MVr6IoiqIoXSshBi8UJRrriKH6/y1rigHwri5iy9hbqftuVtN+e+9Kn0+eIumQkd0eoxJXL6BVJyoAzgdeFELsGd+QFEXpRCZgI3AEkAHcDXwkhBgEIITIBaaFHs8G/gSmxiVSRVEURVG6nBq8UBKWdWRT3gvL6k24vv6FLefeim990yyMtLGj6fXWQ5h658UjRCVOQkl7xwB3SyldUsrfgC+AC9t63saNG3nzzTcB8Pl82O123n33XQDq6+ux2+1Mnapd+zidTux2O9OmTQOgoqICu93Ol19+CUBJSQl2u53p06frx7bb7cyYMQOAtWvXYrfbmTlzJgArVqzAbrcze/ZsABYvXozdbmf5ci11z4IFC7Db7SxYsACAefPmYbfbWbx4MQCzZ8/GbrezYoWWwHbmzJnY7XbWrl0LwIwZM7Db7WzcuBGA6dOnY7fbKSkpAeDLL7/EbrdTUVEBwLRp07Db7TidTgCmTp2K3W6nvr4egB9++AG73Y7P5wPgzTffjCi/++qrrzJq1Ci9PXnyZEaPbrop/swzz3DKKafo7ccff5wxY8bo7UmTJjF2bNPqv4kTJ3LBBRfo7XvuuYdLL71Ub99xxx2MGzdOb99yyy1ce+21envChAlMmDBBb1977bXccsstenvcuHHccccdevvSSy/lnnvu0dsXXHABEydO1Ntjx45l0qRJenvMmDE8/vjjevuUU07hmWee0du33XYbkydP1tujRo3i1Vdf1dt2uz3hPnvz5s0D4vPZi4WUsk5Kea+Ucr2UMiil/ApYB+wb2uUMYImU8mMppRu4FxguhNitlUMqiqIoirIdS5ScF4rSgmXXAYgkG7LBjdHhouK2J/VtIslKzr3Xknri4XGMUImjIUBASrky7LGFaHdoIwghxgHjAMxmM8uXL6ewsBC/34/D4WDZsmUUFhbidrtxOBwsWbKEwsJCXC4XDoeDxYsXk52djdPpxOFw8M8//5CWlkZVVRUOh4NFixZhs9koKyvD4XCwcOFCTCYTxcXFOBwO5s+fj5SSoqIiHA4Hf//9N16vl3Xr1uFwOKivr6ewsJDVq1fjcDj4888/cTgcLF++HIfDwbx586ioqGDx4sU4HA7mzp3Lli1bWLBgAQ6Hgzlz5lBUVMTChQtxOBz8/vvvrFmzhkWLFuFwOJg9ezbZ2dn8888/OBwOZs2aRUZGhn68X3/9ldTUVJYsWYLD4eCXX37BZrPp34+ZM2diMpn0eAoLCwHtgri6ulpvr1y5kqqqKr29atUqKisr9faaNWsoLy/X22vXrqWsrExvr1u3jtLSUr29fv36iP2LiopwOp24XC4KCwvZuHEjHo9H375p0yYAvb1582asVqveLi4upq6uTm+XlJQQCAT0dmlpKRaLRW+XlZWxdu1avV1eXs6aNWv0dmVlJatWrdLbfr+flStX6u3q6mpWrFihtxt/pt392dtll12YO3du1M/eX3/9RV1dXVw+e1tDCFGA9rvfWGlsT7Tfe0Ab7BBCrAk93iKhd3hfkJeXp/9sEkXjZzvRqLg6RsWlKIrShaSUPfpryJAhMhH9/PPP8Q4hqkSLa8tld8t1e54qV+w6Wq7b81S5bs9T5aYTr5GeVRviHZqUMvG+X40SNS7gT9kJv9fAYUBJs8euAArbel4i9geJ+rNScXWMiqtjOtoXoCX2ngG8HPbYFGBSs/1mAZe0dzzVF8ROxdUxKq6O6azzgq39Un1B7FRcHaPi6phY+wK1bERJaNaRkbN/U447hN4fPoZllwFxikhJEC4gvdlj6UBtHGJRFGUrCCEKhRCyla/fwvYzAO+g5bgZH3YI1Q8oiqIoyg5EDV4oCS3tjFEYstKRZhPZt11G7uO3YEhNjndYSvytBExCiF3DHhtO03RyRVESnNQqh4lWvg4FEEIItBkWBcAYKaUv7BBL0H7vCe2bAgxG9QOKskMSQuwqhHALId6NdyyKonQNNXihJDRTn3z6//Q6JU+OJ/3CU9DOY5UdnZSyDq3KwP1CiBQhxCHAqWh3ZxVF6TleBHYHTpZSNjTb9hmwlxBijBDCBtwDLJJStsh3oSjKDuEFYF68g1AUpeuowQsl4QmzCWm1xDsMJfFcAyQBZcAHwNVSSnXHVVF6CCHEQOBKYARQIoRwhb7OB5BSlqNVHXoQqAYOBMa2cjhFUXowIcRYwAH8GOdQFEXpQkLLj9FzCSFqgRXxjiOKXKAi3kFEoeLqGBVXxwyVUqbF68UTtD9I1J+ViqtjVFwdo/qClhL1Z6Xi6hgVV8dsc18ghEgH/gSOBv4N7CKlvKCN/fXKQ8BewNaVQOo6ifqzUnF1jIqrY2LqC3aEUqkrpJT7xTuI5oQQf6q4Yqfi6phEjivOISRcf5DIPysVV+xUXB2j+oKWEvlnpeKKnYqrYzqpL5gITJFSboxlebGU8hXglcbXT7TvSyLGBCqujlJxdUysfYFaNqIoiqIoiqIoSsJpryqREGIEMAp4Ks6hKorSDXaEmReKoiiKoiiKomxnpJT2trYLISYAg4Ci0KyLVMAohNhDSrlPV8enKEr32hEGL16JdwCtUHF1jIqrY1Rcifn60SRiTKDi6igVV8fEO654v340iRgTqLg6SsXVMdsa1yvAh2HtW9AGM67uptfvCokYE6i4OkrF1TExxdXjE3YqiqIoiqIoitLzCSHupZ2EnYqibL/U4IWiKIqiKIqiKIqiKAlNJexUFEVRFEVRFEVRFCWhqcELRVEURVEURVEURVESWo8dvBBCvCuE2CKEqBFCrBRCXB7vmMIJIXYVQriFEO/GOxbQS1G5hRCu0NeKeMfUSAgxVgixTAhRJ4RYI4Q4LM7xuJp9BYQQz8UzpkZCiEFCiG+EENVCiBIhxPNCiLgn5hVC7C6E+EkI4RRCrBZCnN7Nr5+w/YHqC2Kn+oLYqb6g1ddXfUGMVF/QoXhUX9DxuFRf0ArVF8RO9QWx6yl9QY8dvAAeBgZJKdOBU4AHhBD7xjmmcC8A8+IdRDPjpZSpoa+h8Q4GQAhxDPAIcCmQBhwOrI1nTGHfo1SgAGgAPo5nTGEmA2VAb2AEcARwTTwDCnWM/wO+ArKBccC7Qogh3RhGIvcHqi+IgeoLOkz1BdGpvqBjVF8QA9UXdIzqC9ql+oIYqL6gw3pEX9BjBy+klEuklJ7GZuhrcBxD0gkhxgIO4Mc4h7I9uA+4X0o5R0oZlFJullJujndQYc5E6wh+jXcgITsBH0kp3VLKEmA6sGecY9oN6AM8JaUMSCl/AmYBF3ZXAInaH6i+oENUX9Axqi+IQvUFPYLqCzpG9QVRqL6gR1B9Qcf0iL6gxw5eAAghJgsh6oHlwBbgmziHhBAiHbgfuDnesUTxsBCiQggxSwhhj3cwQggjsB+QF5pGtCk0xSkp3rGFuRh4WyZO2Z5ngLFCiGQhRF9gNFrnFE+ilcf26tYgEqw/UH1B7FRfsFVUX9BaEKov6AjVF3Sc6gvap/qC6PGoviBGqi/YKj2iL+jRgxdSymvQphEdBkwDPG0/o1tMBKZIKTfGO5BmbgN2BvoCrwBfCiHiPQJdAJjRRi4PQ5viNBK4K44x6YQQA9CmXL0V71jCzEQbRa0BNgF/Ap/HMyC0k4Iy4FYhhFkIcSza9y25O4NIwP5A9QWxU31Bx6m+oBWqL4iZ6gs6SPUFMVN9QXSqL4id6gs6rkf0BT168AIgNAXlN6AfcHU8YxFCjABGAU/FM45opJRzpZS1UkqPlPIttCk7J8Q5rIbQv89JKbdIKSuAJ4l/XI0uAn6TUq6LdyAAQggD8B3aH+AUIBfIQlsPGDdSSh9wGnAiUIJ2R+EjtI6zu2NJiP5A9QUdpvqCDlB9QUyxqL6gHaov2CqqL4iB6gtaUn1Bh6m+oAN6Ul8Q9wyj3chE/Ney2YFBQJEQAiAVMAoh9pBS7hPHuKKRRJ/K030BSFkthNgUiiURXQRMincQYbKB/sDzoXWcHiHEG8ADwH/iGZiUchHaSCoAQojZxHc0Ot79gR3VF8QegOoLOkr1BbFTfUHsVF/QPtUXxEj1BS3YUX1B7AGovqCjekxf0CNnXggh8oVWOidVCGEUQhwHnAv8FOfQXkHrGEeEvl4CvgaOi19IIITIFEIcJ4SwCSFMQojz0TL2fhfPuELeAK4L/UyzgAloGWnjSgjxL7Tpc4mSQZjQqPM64OrQzzETbb3dwrgGBgghhoU+X8lCiFvQMh2/2U2vnYj9geoLOk71BTFSfUGrr636ghipvqDjVF/QMaovaEH1BR2n+oIY9aS+oEcOXqCNwl2NNuWkGngcmCCl/F9cg5KyXkpZ0vgFuAC3lLI8nnGhrRl7ACgHKoDrgNOklIlQx3kiWrmolcAyYD7wYFwj0lwMTJNS1sY7kGbOAI5H+1muBvzAjXGNSHMhWjKsMuBo4JiwLN9dLeH6A9UXbBXVF3SM6gtaUn1B7FRf0HGqL+gY1ReEB6T6gq2h+oKO6RF9gUicBKiKoiiKoiiKoiiKoigt9dSZF4qiKIqiKIqiKIqi9BBq8EJRFEVRFEVRFEVRlISmBi8URVEURVEURVEURUloavBCURRFURRFURRFUZSEpgYvFEVRFEVRFEVRFEVJaGrwQlEURVEURVEURVGUhKYGLxRFURRFURRFURRFSWhq8EKJGyHEeiFEgxCiVgjhEELMFkJcJYRQn0tF2YGovkBRFFB9gaIoGtUXKK1RHwAl3k6WUqYBA4FJwG3AlPiGpChKHKi+QFEUUH2Boiga1RcoLajBCyUhSCmdUsovgHOAi4UQewkhThRCzBdC1AghNgoh7m3cXwjxtRDiuvBjCCEWCSFO697IFUXpTKovUBQFVF+gKIpG9QVKODV4oSQUKeUfwCbgMKAOuAjIBE4Erg7reN4CLmh8nhBiONAX+KYbw1UUpYuovkBRFFB9gaIoGtUXKKAGL5TEVAxkSykLpZT/SCmDUspFwAfAEaF9/gfsKoTYNdS+EJgqpfTGIV5FUbqG6gsURQHVFyiKolF9wQ5ODV4oiagvUCWEOFAI8bMQolwI4QSuAnIBpJQe4CPgglDynnOBd+IWsaIoXUH1BYqigOoLFEXRqL5gB6cGL5SEIoTYH61j+g14H/gC6C+lzABeAkTY7m8B5wNHA/VSyt+7OVxFUbqI6gsURQHVFyiKolF9gQJq8EJJEEKIdCHEScCHwLtSyn+ANKBKSukWQhwAnBf+nFBHFASeQI2oKkqPoPoCRVFA9QWKomhUX6CEE1LKeMeg7KCEEOuBAsCP1sEsBd4FXpJSBoQQZ6J1OtnATGA9kCmlDE/CcxcwERgspVzbrW9AUZROofoCRVFA9QWKomhUX6C0Rg1eKNs1IcRFwDgp5aHxjkVRlPhRfYGiKKD6AkVRNKov6JnUshFluyWESAauAV6JdyyKosSP6gsURQHVFyiKolF9Qc+lBi+U7ZIQ4jigHChFS9qjKMoOSPUFiqKA6gsURdGovqBnU8tGFEVRFEVRFEVRFEVJaGrmhaIoiqIoiqIoiqIoCU0NXiiKoiiKoiiKoiiKktDU4IWiKIqiKIqiKIqiKAlNDV4oiqIoiqIoiqIoipLQ1OCFoiiKoiiKoiiKoigJ7f8BMhlYdqWnZIoAAAAASUVORK5CYII=\n", + "text/plain": [ + "<Figure size 1296x576 with 8 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Separating the two equations #\n", + "plt.rcParams['savefig.facecolor']='white'\n", + "# Eq.1 ------\n", + "# color codes for sims defined by TC\n", + "#colors={1:'dimgray',2:'gold',3:'mediumseagreen',4:'darkorange',5:'crimson',6:'royalblue'}\n", + "colors={1:'crimson',2:'crimson',3:'crimson'}\n", + "lstyle={1:'solid',2:'dotted',3:'dashed'}\n", + "lw={1:3,2:3,3:1}\n", + "\n", + "fig, ax = plt.subplots(2, 4, figsize=(18,8), sharex=True, sharey=False)\n", + "for i in range(1,4): # loop over simulations\n", + " ax[0,0].plot(dur[str_regridded_sim[i]], dp[str_regridded_sim[i]], color=colors[i],\n", + " linewidth=lw[i], label=str_grid[i], alpha=0.9, linestyle=lstyle[i])\n", + " ax[0,1].plot(dur[str_regridded_sim[i]], dfi[str_regridded_sim[i]], color=colors[i],\n", + " linewidth=lw[i], label=str_grid[i], alpha=0.9, linestyle=lstyle[i])\n", + " ax[0,2].plot(dur[str_regridded_sim[i]], ep[str_regridded_sim[i]], color=colors[i],\n", + " linewidth=lw[i], label=str_grid[i], alpha=0.9, linestyle=lstyle[i])\n", + " ax[0,3].plot(dur[str_regridded_sim[i]], itt[str_regridded_sim[i]], color=colors[i],\n", + " linewidth=lw[i], label=str_grid[i], alpha=0.9, linestyle=lstyle[i])\n", + " ax[1,0].plot(dur[str_regridded_sim[i]], tadv[str_regridded_sim[i]], color=colors[i],\n", + " linewidth=lw[i], label=str_grid[i], alpha=0.9, linestyle=lstyle[i])\n", + " ax[1,1].plot(dur[str_regridded_sim[i]], vmt[str_regridded_sim[i]], color=colors[i],\n", + " linewidth=lw[i], label=str_grid[i], alpha=0.9, linestyle=lstyle[i])\n", + " ax[1,2].plot(dur[str_regridded_sim[i]], diab[str_regridded_sim[i]], color=colors[i],\n", + " linewidth=lw[i], label=str_grid[i], alpha=0.9, linestyle=lstyle[i])\n", + " ax[1,3].plot(dur[str_regridded_sim[i]], eq2res[str_regridded_sim[i]], color=colors[i],\n", + " linewidth=lw[i], label=str_grid[i], alpha=0.9, linestyle=lstyle[i])\n", + " \n", + "ax[0,0].set_title('Dp')\n", + "ax[0,1].set_title('Dfi')\n", + "ax[0,2].set_title('EP')\n", + "ax[0,3].set_title('ITT')\n", + "ax[1,0].set_title('ITT:TADV')\n", + "ax[1,1].set_title('ITT:VMT')\n", + "ax[1,2].set_title('ITT:DIAB')\n", + "ax[1,3].set_title('ITT:res')\n", + "\n", + "\n", + "ax[0,0].set_ylim((-18, 12))\n", + "ax[0,1].set_ylim((-6, 6))\n", + "ax[0,2].set_ylim((-1.4, 1))\n", + "ax[0,3].set_ylim((-13.5, 9))\n", + "ax[1,0].set_ylim(-55, 14)\n", + "ax[1,1].set_ylim(-2, 65)\n", + "ax[1,2].set_ylim(-21, 12)\n", + "ax[1,3].set_ylim(-4, 7)\n", + "\n", + "for r in range(0,2):\n", + " for c in range(0,4):\n", + " \n", + " ax[r,c].yaxis.grid()\n", + " ax[r,c].xaxis.grid()\n", + " ax[r,c].tick_params(axis='both', which='major', labelsize=12)\n", + " ax[r,c].axhline(y=0,linestyle=':', color='k')\n", + " ax[r,c].set_xlim((3, 9))\n", + " \n", + " if r==1:\n", + " ax[r,c].set_xlabel('Day', fontsize=12)\n", + " \n", + " if c==0:\n", + " ax[r,c].set_ylabel('hPa/'+str(dt)+'hr', fontsize=12)\n", + "\n", + "ax[0,0].legend(ncol=1, loc='upper left')\n", + "\n", + "plt.subplots_adjust(wspace = 0.14)\n", + "fig.suptitle('Results from simulation Tanom_TR_RH0 on 80km and 2km regridded to different regular latlon grids',fontsize=16, weight='bold')\n", + "\n", + "plt.savefig('/home/b/b380782/CyclEx_figs/CyclonePTEtimeseries_Tanom_TR_RH0_compare_regridding_2km_80km.png',\n", + " bbox_inches='tight',dpi=100)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmAAAAIfCAYAAADXH2DEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAADZS0lEQVR4nOydd3zcRPbAvyPtunu9ronTIUAICRBC74EQegs5OhyhH+Xg6NzBhdCOXi90+BFK6L0dHVNCDQRCCYSWXtzL2uttmt8fktdaZ22v1mVd5vv5OFmNpjxJI+lp5s17QkqJQqFQKBQKhaL30FItgEKhUCgUCsVgQylgCoVCoVAoFL2MUsAUCoVCoVAoehmlgCkUCoVCoVD0MkoBUygUCoVCoehllAKmUCgUCoVC0cskrIAJITYWQswRQiwWQviEEA1CiJ+FEA8IIXboKQGFENL6K+upNroTIcQYIcRs629KH5Bntu0c9qg8QojzhBC/CCH8Vnu1PdleKugL/bE7rqmtj87sifq7gnUPyQT/5va2fL2JEGKKg3Mx2yqzNM4+nxDia+se1R3KMDdOfc1CiF+FELcJIQra5J/Z0fVpI9+YNvt2EkL8TwhRYz1Hvk9G5t5CCFFonYNfrXMSEEL8Yb0rS+LkT+j4bOdoaa8dTIqx94sE8h4ohHjE0kdqrP79gxDi+jj9MaXPs45wJZJJCHEicA+Q3mbXOOuvGDi0WyXrv4wBrrBtl6VGjN5FCLEvcGuq5VAkTEsf/RCYm0I5FL1DNjDZ+hsJnN/F+tKBjYB/ALsKIbaTUhpdqVAIcQDwErHvpYmYz5VtgWO6Un93I4RwYT7fJ7bZtQFwFrCXEGJLKWXAyt+vjq+PczawT5u0CdbfEUKIraSUdb0vljM6HQETQuwJPIh5w0ngGswbOB3YBPgXUNODMg4KhBAZqZahi2xt+z0T0KSU3o4K9MdjllIK629KqmXpKaSUs23HWZaC9pfa2hfAHrbdH9r3SSln9rZ8vYmUsqzNuTjRtvuRNudidpwqNgAygFNsaacLIdxJinQioAPbAfVW2tbAjknWB4AQIg14AFM5aQSmAKXA+1aWo4UQB3aljR5gG1qVr5XAWGA48KOVNg6r7/bT4+vLBIC7MfteJrAD5jUAs8+fnCK5nCGl7PAP+AJT8ZLA7e3kcVn/L7TyVQOZtv0FQNDa95YtfSPMTrkU84TWAJ8B+9vytLRd1qbNLYAngTVACKgEXgV2bZNvtq2OQ4C7gHVAHfA2sHGb/Brm18tXgA/wA98DF7YcZwfnaq6trbZ/s608Zba0iZYMjS3HZ7X9IbAaaLba/xm4Acht057A7GifWMcTsM7lvHaOf4qVtgGwwkprAHa30qcAbwFrretVAXwOXN/JcS9t55jLEjlmK8/BwLtWHwgCy4GHgDFt2rLXtRvwGtAE/In5khHAxdbx1Vp9YkQC/bzI6ht/WPXVA79g9rFxHfXHNuf4b8CdmPdANebXrRs4EFhkHfdXwC5t2m+vn3fW3hRb+j3AN9Z1C1nX9kvgDEBYeWa2c63s16u9+l3AeVYbjZj98yfgKiC7PbmB/a1j9gO/W9dHdHZNbHVN6eD8XIn5zFhn9ZtG6zz/C0iz5Rtjq2Mu8FfgB0umxcAJcdrdFXjFdj7XAk8BW3Rw308HHrfO/RpLjhbF6VcrvQzYLNHjb9OW/frNTeB+HGNLr7allzpo0358M23pL9jSj05UxnjyAQfZ0h5scw1a0p9P8D6+DfgN83nYYPWPEzvoU1cCF1hlmoBvgf0SaGtbWx1P2dLvsKUflszx2c7RUlvaqYBhpc8HPG2OYy5wplW2EfPZV4qpCL5rpf0KnJ7gde/0eZLMucS8Hy7FfMb7Md9f29j7RQKy5cZJu9Amx7229Nm29ClWWnvvwKW2vJsDH9H6jDgYSANuBMqt8/IY4E3mXpZSdqyAASU2YSQw3MHD4YQ2Hacl/XArbQfrwOO9CGbbysZ7Ae2B+fCPVzYCHNvOya+Jk/9nWhVIDXOIuL0X1Kt08OLAuQJW2fb4gDc7qOP9Np342fbyttf5gFG2TlYL7GTlG4V5w8Srr7KT6760nXJlCR7zPzs45mpsL6s2dVXEyf9ynLSPErihX+9AhgM76Y+zO5HpNSDcJq0WyO+o3gTbm2JLb++ekMAVce7R9q7XevVjjnq80UHZr7EpYbb0OlpfGva/4xJ+SHWsgP3cgUwP2/KNsaXXtJN/F1v+4zCfJfHyNbc573M7uf7x+uTvdPJBl8Azdm4C9+MYW3rLcUewKacJtGk/vpm29Bdt6VMTlTGefJhKfEvaeba8Bbb05Z3IOZT2n0USuK+dPhWvPwSBDTtpT6N1gGIFsCEwDHMETGK+34qTOT7aKGDWOW25j97HutfaHEe8vvcl5sd82/Q9E7junT5PkjmXxD5fWv7qsekDTu8Lq97LbfVd1t7zknbegXH6ZtvzGST+M/DRZOSVUtLZAW1na6QugROQjvmVKIHPbOnvWWnlWDe+rZNKTE17OJAH7AscYivbksf+AlpiS/8bkIs5uhWy0qptHdR+8pcCW2J+FfxkS9/RynuULe0/QL5V92229MM6OQf2zjg7zv4y2/6vMeesM4FNrf37WjLmY444DAf+Zyszycp3hC1tJTAN085jLLEKrP34j8X8MpFAFbCNLd8MW74jMTX9ocBU4MoErr29nSmJHjMw2nbdajBHtTzA1bYyb7dT17uYX7zn2tJa+oSX2NHbzj4eWm7+5632czG/gM5vOecd9Ef7sa8CNgO2aiPTXEsm+9fxsR3Vm2B7U2zpx2COKudgjrptTutXXjWxX61x22uvfqvvtKR9g/myGULsB8O/4tQvgWutYz/LlvZWR9ejg3uq7fmZDoy3rpkbs/8vtPJGgAIr35g2Mp2B+by53pZ2n5U3m9YXSQjTvjUXON2W9xebDHNt6d9jmmgc2qa9aywZ7aNGOzt+YCehgGE+l0+2pT3jsE378c3EVDy2xXxpSquPpbUjY2d/Y6wy99nSTrLVpdvSmzuR8wFb3ocxlZst2pyPlg9Oe58KWv0oD3P0siX9nwmcmxziK9jfEvtid3R8NpmXYt57LR8DbxI7u2Q/DgPzPViEOZLfkv4d5nvkL7a0BxI4toSeJ07OJeZzwN9yvMDeVt5b7OcvifuilFbdoxEY2c7zrN13YJx751FLXrtsEczZjBJb3gAORvRj2uvkoBwpYFaZK2xltsR8SLd8/d9s5dnIluc3THuh9uqLefBi2p1FO1abvC/a9u0V5+Sfbct7sy39KCttnr0TtPN3byfHb++Ms+PsL7Pt3ynO/q0xH9KraVVM7H9HWvnsnfuEDuSxH3+j9X8560+jTLbl+wBzVGo6CUzfxWlnSqLHDJxm23dHmwdTyxdICMiIU1fLNR5vS1thq+M/tvQdO5F/kZVvNeYQ80zrWmht8sX0xzjHfo0tfZ0tfayVtrct7Z8d1Ztge1Ns6Uda56ea+KM3Qzprr736gSdsadNtebe0pX8Sp/61gG6l5djSf074IdWxArYX5kupnPVHGSWwvZVvjC1tga38RFv6m3Gu0ctt2lto27eRlTbXlnaKlZZpSwtivTSJ7e9HJ3oObO3PtJWf206epXHOQ8vf80CewzbndlDfQmDzDmTs7G+MVaY9BcVlS+9MAbOP9BTY0s+1pV8Tp089Z8t7oC29s2e9Zp3PeMe1htj3jaPjs13DZlr79StAegf3hv3+e9qWfrKVlmZL6/QDiASfJ07OJbCfLe0FW95MWs2UpMP+ORJzilBacv6lg+dZu+/AOPfORnFk/tiW1/5MTHhK3/7XmRH+UttvjxBiWCf5wRzNCli//4Y5UtOyxPZB6/8htvy/SGerZ4ptv5e32bfM9nu9JcCYNj0tNNp+txiDxyvTlsIE8iTKQvuGEGJD4GNMxaeU+KtUM63/7efwpwTby7L+/x1T8Y0ipfwG+DfmSNAUTOXlBWCFEOIFa8VPd7CwzXbc6ymljGCOJoF5HmKWFlsstf7329LsfSBo+912BW9bTsXsH6XARZhf0AuAP4QQkzopG0+m9uRKWCYn51wIcRSmfdLumKOn8e7tzDhpidLefdfZPfe7dS0h/j2XNEKInTFtFvex5IvnqiDeMXf2HOjKM2YpgJTSfu3LbdtO+mRPkINpvtBdZBH/vLfQdqGAIPYctrDO9ttr++2x/S7vRJaW6+aTUlbb0rv6XmiPg4DDrN+fAyMwn1PPY84e/FcIcYi1P9njS6f1/JZJa0VlOyy1/V7v2SOldPLsSfZ50tm5tL8/W4zmW+6Xqo5kakfOTTHt4TbFVFSPl1I+10GRdt+BcVhq/d8d75e4dKiASSnLMeeQW7goXj77i8Iq86S1eSytq3Y+kVL+bP22d8ZxQggnDmErbL9Htdln347XmUO23zLOfnuZnds+OKyHxxGdyBev3vgZYx/SYBr5tXTqxzG/4gTx3TvYz+H4BJv8wPp/B+BFa2WOXZ5rMIevJ2NOx86zdk0HDk+wjQ6Jc8xxr6flF2e4tRnG/AprSzjBtETk+kJKuSmmceZ+mEaiPswp0hscVBW3fSllZ3K13Mz2h/6GDto9yvb775gjLgJzurA7aO++S/iek9ZnYzdyOK3PsJZFKgLzw6EjOnsOdOUZ0219spvYAFPpeMra3ht4pAv1nYj5ErvQ2t4EeFUI4Wm/SEJ8Zfu9me33hHbyxKPluuUIIfJt6V19L7SH/bn7opRylZSyhtb3H5imIZD88VXQuqryZsslVHu018+S6X/JPk86O5eVtt8jWn4IITJxOLghhNgGc8BiJKb98iFSyic6KdbhO9BOO8/sbr2XE1F8LsOcWwY4x3JqNkwI4Ramc9Z/Yc6927nd+j8X0xYGWke/kFL+RuuozVjgTqvOXCHEVNtXw3pIKZdg2oABbCGEOE0IkSOEOAhzyBNaV1M65TXb7zuFEFsKITKEEBsKIQ4TQryGaaPUEXYtfnxHFzgO9ovbBDQLIXbEXLHVlldsv6+1zluWMJ1Y/rud+q/CXFkI5oP4qRYHgEKIzYQQV2JOKS3HnM5911a27Yuou3iT1uM+Xgixi/Uwn4WpDIK5+KC5h9oHQAhxrdWHIphGrs/Q6l6lp47dTsuX1eZCiNGWm4CrHZS39516QFgP663ayd/ST0e3eVm1h/3euEwIsYEQYgimDVULrycsbfdgP2YfELZ8Le3fxXrn03rt9xNCHGw9Y06l9Xz+Yj3H+jxSygrMFcKrraSDhRB7d6E+v5TyFlqfQSMwP1i6wluY03YARwkhdrf612xbnoc7qcPeR28WQuQLISZirtxtoTv76Crb7+lCiOHWvXS0Lb2lHyV7fE2YI7zLMUcuHxBCdMvHcCc4fZ4kyueY06oA+wsh9rae99dg2pklhOUe633Md0QV5iKQNxIo2u47MBV0qoBJKd/FND4NWvmvwOx4QUxF6FrMIUp7me9o1TTBvIDPtqn6FFqHKM+y6qzHfOl3dpH/Rus0532Y02avYF5AA/i7lLKxnbId8TStN+jWmIaULUvnnwcOoPPh+99o1fKPAAIOPPD+j9bOeRrmzfcp8f2sPQu0DLWOoHWZ8Z+Ynaw9Tsdc6QnmyNbDQgiBOXQ+C3PEsxLz/LY8EAzgnQTkd4yUcrnVLpj96GPMlXMtaTXEPkB7iiMx+9ByzGP/A/PLCsyHZ0/TMtqYhdmH6mj9oEiEF22/H8HsO3cR+5Kw87n1/xigWtg8qbfD05j9E8x74w9M+679rLRvMN1v9CYv0fqVfTXmvfoK7R9zQljPjr9j9ns3ppF1A3C/lSWA+QzqN1jHdKUt6Trrvu8Kl2J+sACcK4QoTbYia3rsVMwXfzam7dFaYE8ry5NSytfil44yi9YPmZMwR82/x+zjYC6ySObDvD1eoHUaq8UPVTXmgiYw32cPQ9eOT0q5ClNZqMScjpwnhNgvXt5uxOnzJCGklLW0ziikYz5b6zAXxTQ5qGoW5gAPmCNnn4nYSA1lHZRt7x3Y6yQ09SelfBBzZORuTKXLj/my/wVTm7w+TrHbbb/nSSljTq51I0yyyi/DHLqsw1y5Zp/2jCfPB5gLBJ7G7MQtU1SvYxoNz+ugeEf1tqwiOduSw4f5sF2GOVJzNp0MwVojNUdirvZz0qGQUv6OOQ25EFMR+xPTr8t6w6rWdM4RmDf1fMybvcV/1lNt89vKRTC/0D60ko4H5mC+UO/BXDFTg/lgrcH8ytjPshHrEaSU12Ge9/cx+0AY82H2f8BkKWWiNm5dYY7V/mrM89iMOfR/Be1MvXcz12Outm1p/2Ng50QLW33+PMw+04xpv7Yf5sdDPP6OuaQ6nnIfr/4IZt+8ALN/NmHeG4sxlZ/dkvzoSRop5SeYZg4/W7L8hHlPfNINdc/DtIV8DfMLO4w57f8MsJ1MgYPabuD/aLXRmUzn5hQdIqVcTOt0ZhatH03J1vc6ps3Rm7T6NfwBcyXy8QmUX4vpT+p2zH4fxHyGf45p+N6tSrPV33fG/PD41ZI3hPnsmoe5AOQPW/6kj09K+QvmyK4P86PgeSHE7t15PG3ac/o8ccKVmIu8VmKegy8wp2orOirUXXTwDux1WpaRdn/FQpwO3GttTrJGxRQKhUKhUCgGPd21si2KEOI6TAO+MVbSC0r5UigUCoVCoWjFyerDRCnFVL5qMVeDnNQDbSgUCkW/Rwgxs43tStu/uT3Y9phO2l7aU20rFIoeGAGTZnDcmd1dr0KhUCgUCsVAocdswBQKhUKhUCgU8emJKUiFQqFQKBQKRQcoBUyhUCgUCoWil+nzClgbQ9GyJOuYZHnwn+0wrl+v08Yod2YK5Zhrk2NKN9d9nBDiOyGEz9aGtz9dp97GyT3g5Nq1d39Z16BHrr8TrH7R0icO7cV2HZ0XYUahuEcIsUIIEbb2v9TZvv6AEGKK7RqMSbU83Umbe2VML7Zb1tJukuXH2K7JlO6uvy/i5FpZfbbHF7J0lW43wu+jTMJ0qAlmgM1vUyXIYEcIsRmm88Z4yv8k1HVSxOKltU88QqsH677GLNr3jt/Rvv7AFFqvQRmxQZ8VqWEMrdcEzOui6Gf0+RGw/oIQIqPzXJ0jpZxrC/49tzvq7GNsRWu/uwLQrWOt7Y3Gk7lOQgiXSFG8sBZ5bX1iSm+0K6WcbWuzrDfa7A90cF62tv3ewNp/aAL7ukx3PXt6g1TeS73JYDnO3sD2DJxpu/eWplis7kFK2Wf+gDzMoN01mKF1ngS2x4z3JoGyNvnHA4/RGpuyHDM+4ha2PGW28m3/ZtryHQN8RGuIiJY4l1lt2ozKAhyKOUoTBGa32b8UM+zEN5ihmxYAOwEe6xhrMcPO3Alk2Oqf2Y58S231bo8Za7MJM/TQjUBaGzlHYIYW+tOSrwYzlt9ucc77gcAizJATPwPHAXNtckzp5LpNojUuWj1mOI61Vto2CVyLpb19ndo5Dvu5/xtwi3WNDGBMEud1f8zQTs2YIWCOb++8diavfX+y1w4H9xdmkODO5Nwf+IrWeKkXY62sTuYcxDl/dhna/s215dsVMwZkBa197ylsz4Hueu60PS+YIxHtytjBvpbrqmHGwv0KM8yMHzN+4YWAy9bumDb1nmZd7xDW/QFkAJdb5Zsww8V9hRmGx368U2x1XYkZXuo3q8y3mKHH2j534v11dO1m2vL12r3U9jy1d/5s6fY6WuTKwRxt/R4zDFUI83n9EXCk0+Ns5/yUtZSzpY3C7Lc/W+cihBn/8S1gWjsyt9ev1qvfSi/CDHn2G+bzswH4DDgx2T7Syb1Vihm+q8E6l/cBByVwLXbFfJfXAX+2d62s9GFWXp/Vxj0dtLEB8Cjme7PZuq4/WHWXJHJM3fnXq411cqEEplLRtkOttv22Pwh3sTpDvE7oB3Zt2xHj/LU8uP7bQZ6vgExbuy3p1ZjxEtt2/JZtXxz5qjFv4rZtXNXODT3Tlr7USmuyOk7bOi635R2H+TKKdzwRbA8RYCpmnLuOznu7D1qrjqM6OH+NwPhOrsXS3r5O7RyH/dxXtql/jMPzOqWd87oq3nntTF7bdlky1w7n99fsTuSsw3zJtK3vuGTPQZzrMTtO2Za/uVae49qcL/tfc0f1d8d5oQsKGKby9VIHeV6l1VWQvZ22fXMmZizGzzuoa06b69KSXhMnbxDYsM1zJ95fR9duZgfyjqGH7iW6RwEb2sExS+CERI+zg/NT1pLPlrZDB21GgD3iyLxev+qg/qGdXM/7kukjHRxjBqZy09F1a+9a2M/l0g6uVSZmPNq2baxup40fOzj+iV3VY5z+9WpjnVysfWwn4lfMG3QoZsDMlnT7g7DlpC/FDCybhjkSU26lL2rnJpnZpl17p38YGGJd1Att6efb8tsv2KOYGn6erUPY91+HOeL1jC2twWpzA+u3BH7tTFZib5y5mBHg7Vr+L7a8b1pptZg3Ujqwke2cVWCNmGF+/bTU8U9L3iOIfbl29hLbBNjbul5pmFHq/2Yrf3uC16LXrlM7x2FvvxlTscwGxmK+4Jyc1/m2umZZ57WtojolUXlt++z3QMLXDuf31+wE5LwW00brLFvaW7a8js5BO9dkjC3v3Db7sml9OYQwRw5zgdNtZX7ppP7uOi9lLelx2oi7r825+A+Qb8l/my39sDjnoeXZUggUY44AXGrbd5Z1boqAp23pk626ptjSgsB0zL72uC39n50dcyfndaatTK/dS+31lw7S59rSW+61bMz7aDTmMyYd2BHzY1IC3yZ6nB2cn/X6BOY9fzAw3GozC3OEu6X+l2x57ddwdoL1P2Ar8zBQAGxB7Ltlp2T6SDvHeKot71eYI54bE6swtXct/sB85mcAm3Vwrez3+mfWuRsL/NS2Dcz7pSXtDuv85mMGcL8cGJlI3+7Ov15trJOLdYPt5JxjS59qSy+z0ja2pXX0NzTOTTKzTbvXJlDPm7b8LWm1xLnB2nTaLCvtDFv6Y7a8n1ppgXZu6Jm29KVWWhjIs6W3fCk0W9uZxP9abPu3A+aDomX0oALQbPV+bMvb4UMX84F4g9Xp441K/q+z4+vt69TOcdjbv7/NPifnNct2Xqsw7dxa6rG/TKYkKq9tf8s94Oja4eD+stJndyLn2pbjwpyyaUn/2UpzfA7auSZjbHnnttm3t23fy232LbTt26g7njudnJeylvQ4bcTdB8xLoD/dG+c8/Mz6U73zE6jrUivvFFvac7Y6DmzbbkfH3Bfvpfb6Swfpc23pY6w0AZyJOaIYb6TXn8hxdnJ+1usTmB+vl2FO8fninI/Ftrz2azg7wfrto0IFtvRzbenXJNNH2jnGp2x5D7Wl2xWz9q7FMXHqi3et7B8YB9vynty2DcwR5xorbQlwDXAsKRj5avnrS0b4hbbfK9v53UJJEnW2RyJ1xavnFyllUwdlym37/bb0ZbbfQev/tARkaGGdlLLOtt1o/Z9u/V8AJGL8WYip/bf0gTVSSsO2P955b49nMO1/xmM+XNsSL80pPXWd2mNhm20n57WA1vO6SkoZse1f3kn5ROV1eu2c3F+J8LvtuBpt6S0G4V05B4lS3EGd9vuso77T3efFCcn26e+k9Ubphrp+sf2Odx27g1TdS3acrPi/BLgL0w7Qg6mQ2Wnv3LQ9TqfciakUbIn5gdWWrj5HW+4Xn5Sy2pbe2b2SbB8psv1e3s7v9kj0XCZ8/1rPyOOtfRtjKruPA98LIb4XQoxMsM1uoy8pYJW23yPa+d1Cue33O7J1ZUT0D3NE4EcrT9uHVXt1HdtOXdvFKeePk2Yn7DA9UUJtttseW4sNEZhTm+2dm9cxvwZaXtylQgh7f4h33tdDCJGPOY0DsA6YgPlw3SKxw+nwWOz01HVqj7blnJzXato/r53d5InK6/TaObm/EiHaD+MoA9C1c2Cnoz5RYfs9qs0++3Y57dPd58UJdrl2bqdPHRGnXLw+Yq9rRDt1XRynnP150t657ugaJEJv3ksB22+7grChA3mPsv0+FEi3ZKrqpFyyz5q27QYwF2y5MRXAeCRzTVrulxzrud1CZ/dKIn0kHvZ7a7jtdyL3f6Ln0tH9K6V8DfN4x2FO916F2RcnYk5D9ip9SQH7wPb7bCHEOCHEUODfbTNKKX/FHEIEmCaE+IflsNErhNhGCDELc/izBfuNM1EIYf8aes32+xohxM5CiAwhxEghxH5CiCcwhyn7BVJKP/CetbmxEOJGIUSJECJXCLGlEOL8lv1SykbgSytvEXCJle8IYOcEm2yZSmj5XW/VdXUS4vfZ6+TwvDZhTl+AeS4utPIdhflg7Q55nF67hO+vbpKvu86BvU9sLISwjwzMx1REAfYTQhwshMgRQpyK6e4EzBHF3zqov1fPSxvsffpOqx9lCCE2FEIcJoR4DdgtiboeEkJsbNW1iTAdH3+CadOUDPZrsEUbJcgxPXwvraVVCdtZCFEghMjB2cvV/pFcC7iFEP8msRmVrtDSrmG1mw3c1E5e+zUZL4RIZBbF3kduFkLkCyEmAufZ0l9PUNZEeM/2+xIhxDAhxEaYKyq7C/v9e6kQYrgQYmx7bQgh/otpXuDDtEN8ntb+0vYjrudJ1dxn2z/aX41kXylTZsu/O6aW3J79gD3vcMyT3DZPyzzy3R3UI4m1xVqv/jbH0bJ/qS1tpi19ti29rCW9nbz2dpe2rbdNur2O8Zg3aHvHY5dtKvFXkdlXoUzp5Nq9E6f8knauRdzj6+3r1M5xtCtbEud1Cp2vUNw9iX5lP5cJXzuc31+z413/9uTsjnPQwXWJt5JqprXv2HbOgaRrqyCdnpeylvQ4bcTdh/kB/FoH/cl+/cbY0ubGaSML09C5o7pa7qMptjT782hKvDYwjZTXq68P30sPt+kDAVoN6Nse29w45+eydvpDTdtj7+w4Ozg/6/UJYo3kW/7sz1H7Ockg/irSKR3U39kqyHvbnPOE+0g7x9jeKkj7dXu4o2vRpr5416q9VZD2c2O/3h3ZHv4j0evXXX99ZgRMmmfnUOD/MA0ffZh+pKa3k/9DTAeHj2LO6YYwh6sXYbor+Jct7yrgr5hG4oE4dZ2JuZz9Q6vtkFXnB5jD9v/r+hH2HlLKxZgrQu/BXE0SxDyun4CHsHnlllK+h3nef7Dy/YbpY8j+tdQZx2EaQ9ZY7TwOHJmE3H36Ojk8r2XAIZi+hIKYD9ITMP3CtdDZlEZn8iR87ZzeX91BN56D4zHdt9THaWMe5kvhNauuMOZU+DPAdrITJ7KpOC+2tg3M83M28IXVdgDTJudNK/2bdiuIrasJc7Tsckx/WU2YH6h/AC8CJ2G++JKRcwFwDqavt7YmEEnRw/fSPzD9eFVY+V/BNB5PlBswV6WuwjyHHwJ7WvL1JOcB92JOAzZi9um94mWUUjZjPmO/xrzWnSKlXIupTN+OeS2DmH3uc0xfcd0arcGScRqmj65GzPfD/ZgKbgtdfQb6Mc/RC1YbtZgK+KntFLke+ATzHIcxz903mP37jq7IkgwtPmYUCkU3IoRwA3sAH0gpQ1bavph+n9KBNZi2Oka7lfRz1DlQdAeqH/VfhBA7Y9r5lVvbpZjK0g5Wlv2klG+mSr5UoxQwhaIHsOxOGjBHDNZh+nfKs3aHgRlSyldSJF6voM6BojtQ/aj/IoR4DpiBOdIVxPTf2DLz9oyU0vFMyUCiz0xBKhQDjADmNMgyzKX0mZjLrx8Hth0kLwx1DhTdgepH/Zc3MKfXBaaLizrMKd2TiV1tOihRI2AKhUKhUCgUvYwaAVMoFAqFQqHoZZQCplAoFAqFQtHLKAVMoVAoFAqFopdRCphCoVAoFApFL6MUMIVCoVAoFIpeRilgCoVCoVAoFL2MUsAUCoVCoVAoehmlgCkUin6HEGKpECJunDyFQqHoDygFTKFQKBQKhaKXUQqYQqFQKBQKRS+jFDCFQtFvEUKkCyFuF0Kstv5uF0KkW/umCCFWCiEuEEKUCyHWCCFOTLXMCoVCAUoBUygU/ZvLgB2AScCWwHbA5bb9Q4E8YDhmAOC7hBD5vSyjQqFQrIdSwBQKRX/mWOAqKWW5lLICuBI43rY/ZO0PSSnfAHzAuBTIqVAoFDEoBUyhUPRnhgHLbNvLrLQWqqSUYdt2E5DTG4IpFApFRygFTKFQ9GdWA6Nt26OsNIVCoejTKAVMoVD0Z54ELhdCFAshioBZwOMplkmhUCg6xZVqARQKhaILXAN4gEXW9rNWmkKhUPRphJQy1TIoFAqFQqFQDCrUFKRCoVAoFApFL6MUMIVCoVAoFIpeRilgCoVCoVAoFL2MUsAUCoVCoVAoehm1ClKRFF6vV2600UapFqPHaGxsJDs7O9Vi9Bjq+PovA/nYYOAf39dff10ppSxOtRyK1KMUMEVSDBkyhAULFqRajB6jrKyMKVOmpFqMHkMdX/9lIB8bDPzjE0Is6zyXYjCgpiAVCoVCoVAoehmlgCkUCoVCoVD0MkoBUygUCoVCoehllA2YotsIhUKsXLmS5ubmVIvSZfLy8li8eHGqxegx2h5fRkYGI0aMwO12p1AqhUKhGDwoBUzRbaxcuZLc3FzGjBmDECLV4nSJhoYGcnNzUy1Gj2E/PiklVVVVrFy5kg022CDFkikUCsXgQE1BKrqN5uZmCgsL+73yNdgQQlBYWDggRi4VCoWiv6AUMEW3opSv/om6bgqFQtG7KAVMoVAoFAqFopdRCphiQHHbbbcxYcIEJk6cyNFHHx2dVquurmbatGlsvPHGTJs2jZqaGgDmzp3L2Wef3S1tz5kzh4022gghBJWVlZ3m/+ijj5g8eTIul4vnnnuuW2RQKBQKRf9AKWCKAcOqVau48847WbBgAT/88AORSISnnnoKgOuvv56pU6fy66+/MnXqVK6//vpub3/nnXfm3XffZfTo0QnlHzVqFHPnzuWYY47pdlkUCoVC0bdRqyAVPcLSiYf2WN1jfnip3X3hcBi/34/b7aapqYlhw4YB8PLLL1NWVgbACSecwJQpU7jhhhtiyr7++utcc801vPrqq5x77rl4PB5+/vlnli1bxsMPP8wjjzzCZ599xvbbb8/cuXPXa3urrbaKK9M555xDUVERs2bN4q233uLaa6+lrKyMMWPGAKBp6jtIoVAoBhtKAVMMGIYPH86FF17IqFGjyMzMZO+99mKv3acAsG7dOkpLSwEoLS2lvLw8puyLL77IrbfeyhtvvEF+fj4ANTU1vP/++7zyyiscdNBBzJ8/nwcffJBtt92Wb7/9lkmTJiUk1/XXX8+2227LrrvuyjnnnMMbb7yhlK4+hgyFCXz7MzIYclxWZGeSvsUmCHVNFQqFA5QCphgw1NTU8PLLL/Pnn3+SK3SOOOIIHrnlDk44t2Mbrw8++IAFCxbw9ttv4/F4oukHHXQQQgg233xzhgwZwuabbw7AhAkTWLp0acIKWFZWFg888AC77bYbt912G2PHjk36GBXdj+FrYt3pVxL47pek68jaYztK/vuvbpRKoVAMdJQCpugROpom7CneffddNthgA4qKigj+8ieHTN2bz79byPH1PoYMGcKaNWsoLS1lzZo1lJSURMttuOGG/PHHHyxZsoRtttkmmp6eng6YU4Qtv1u2w+GwI9m+//57CgsLWb16dRePUtGdGE3NrDvz6i4pXwBNH3yJ0RxAy0jvPLNCoVCgFDDFAGLUqFF8/vnn1P++jAxN54MvPmPyZhNA1zn44IN55JFHuPTSS3nkkUc45JBDouVGjx7NzTffzPTp03n22WeZMGFCt8q1bNkybrnlFhYuXMj+++/PoYceyvbbb9+tbSicYzQHKP/7fwh8YwvJtO1EhEtPuI7mbxYjA0Gzvpp6tNLibpdToVAMTJQCphgwbL/99hy27/5st89euDMzmLTllpx+1lm4Sgq49NJLOeKII3jooYcYNWoUzz77bEzZcePGMW/ePA4//HBeffXVpNq/8847ufHGG1m7di1bbLEF+++/Pw888AAnn3wyN998M8OGDeOhhx5i5syZfPXVV3z//fdMnz6dmpoaXn31Va644gp+/PHH7jgVik6QwRAV591A8xeLomkFF5+E568HO6pn9V/OI/jznwBEKmtxKQVswCMNg/q5LyObA3hmHoqWlZFqkRT9FCGlTLUMil5CCHEUcAUwClgLzJRSfiyEmArcZaV/YaUv66iucePGyV9+iZ22Wbx4MePHj+8R2TtDRiIgBOFV63CVFiNcXfu2GEyxIFtI5fXrbsrKypgyZUrcfTIUpuKCm2h6/4tomvec4/Ce9hfH7aw7bTb+T78FoOSuy8nafZuOC3QDHR3bQKCvH1/9vNepvu4BAAouOQnP8c6UdiHE11LKnu8oij6PWrYzSBBCTANuAE4EcoHdgD+EEEXAC8C/gQJgAfB0quRMBqOpmeDPf2LUNuAeWRpVvqSUBH9djjTUR4bCREYiVP7r9hjlK+9vRySlfAHohd7o70h1bRelU/R1ZCRC/eOtI+TBX5enUBpFf0cpYIOHK4GrpJSfSykNKeUqKeUq4DDgRynls1LKZmA2sKUQYtNUCpsoRnOA0J8rkeEI4dXlRGrro/uEEGBEIBJJoYSKvoI0DKpm3UXj/z6JpnlOPBTvWUcnXadWmBf9bVTVdUk+Rd/H//E3hFesjW5H1DVXdAFlAzYIEELowDbAK0KI34AM4CXgImAC8F1LXilloxDidyv95zb1nAacBlBcXBx1bNpCXl4eDQ0NPXYc8RD+AK5wBDSBoQmaImFokSEUxmUYhNZVYniywEHA6Ugk0uvH0pvEO77m5ub1rml/xefzxR6LlOTNe5vsj6JdncYpW7F08mj48MOk28mpKscTNI3wf//6W+o3Kky6rkRZ79gGGH35+Apve5p063oD+H7/k8V9VFZF30cpYIODIYAb+AuwKxACXgYuB3KAijb56zCnKWOQUt4P3A+mDVhbO43Fixf3ut1UJCxhdClGrQ99aCGZNjcAwSVLkaEIWm0D7uICtPS0hOsdjDZgGRkZ7Xrz72/Y7YiklNTc8BD1ny+GNLMP5MyYxsZXnNFl56m+WoPKVz8DYGRuPsW9YLvU122kukpfPb7g78tZ/fuaaB8CyNLcTOyDsir6B0oBGxz4rf//K6VcAyCEuBVTAfsI8LTJ7wH69PCPDIUxmprR803RdW/bQwB0HXTrBRsxelE6RV9BSknt7Y9R//hr0bTsA3ancNbfusVzvX0KMlJV2+X6FH2XhifeWC/NqFZTkIrkUTZggwApZQ2wEohnjf4jsGXLhhAiGxhrpfcJDH8zhq8JKSUyGMJo8hNathppmwqIh8hIR7hdiIx0R9OPioFD3b1PU/fQC9HtrL13oujavyP0xH19dYTdCN+oUS/jgYrR0IjvlQ/WT/c1JRW+SqEApYANJh4G/i6EKBFC5AP/AF4DXgQmCiFmCCEygFnAIinlz+1X1XuEK2sI/bGS0LLVRKrqCC1dTei3FYj0NPSi/Ji8K1asYI899mD8+PFMmDCBu597Eq0gDy07kz3324cFCxZ0i0z77rsvXq+XAw88MKH8l112GSNHjiQnJ6db2lckRt3/vUjtXU9FtzN335biG87vsosSO3qBGgEbDPhefA/pDwDg3ng0un3ks6a+vWIKRYcoBWzwcDXwFbAEWAwsBK6VUlYAM4BrgRpge+CoVAlpJ1JVS2RdlbkhIVJeFR31Mhr90Ma9hMvl4pZbbmHx4sV8/vnn3HXXXSz+9VdkuHtXQV500UU89thjCec/6KCD+PLLL7tVBkXHZL/3NTW3PhLdztxpEiW3XoRwd6/VRYwbipoG0x+dYkAhIxHqn2ydfvQcewBavm31q1LAFEmiFLBBgpQyJKU8U0rplVIOlVKeY7mdQEr5rpRyUyllppRyipRyaXe0WXv3UyydeChLJx5K7d1Prbe/+qaHo/vr5r4Usy9SU0/lFXexesZ5rJ5xHo3vfGpOI1p2Xa5hJQg9tvuWlpYyefJkAHJzcxk/fjyry9eBLW6jYRiccMIJXH755QDk5ORwySWXsPXWW7PXXnvx5ZdfMmXKFLbYYgteeeWVuMc1derU9QzY6+rqGDduHC3OaY8++mgeeMB01rjDDjtQWlrq4MwpukLDs2+R9/R70e2MbSdSfMc/EQ4WYSSKcLvQcrPNDcPAqPN1exuK1GJ3PaF5csg+YPeo7SlARNmBKZJEKWCKPkektoHw6vLYRENCOIJ7dCmukUPRPdkd1rF06VIWLlzIDrvvimvEUADC4TDHHnssm2yyCddccw0AjY2NTJkyha+//prc3Fwuv/xy3nnnHebNm8esWbMSljkvL485c+Ywc+ZMnnrqKWpqajj11FOdHbiiyzT+72Oqrro3up2+5ThK5lyGltlzQbJjRsHUNOSAw76AI3fGNLTM9NipZzUCpkgStQpS0aeI1PkIr1rXmiAAKQEJbhdaVmandfh8PmbMmMFtt95Kjp5GpLIGGYlw+umnc8QRR3DZZZdF86alpbHvvvsCsPnmm5Oeno7b7WbChAksXbrUkezTpk3j2Wef5ayzzuK7777rvICiWzF8TVRdfZ/VXyBts7EMuXcWWnbnfaYr6IV5hJauAizHnBv3aHOKXiT4+3KaPzfvZRkxyNh+cwA02wiYWgmpSBalgCl6DO+ZR+E9s31zsoKLTqTgohOj25GGRsIrLS/T0ixffPOFhH5dbipikQhSStPDfTuEQiFmzJjBsccey/T9DyD0xypkOAyhMDvttBMffPABF1xwARkZZgBdt9sdrU/TNNLT06O/w7apy0QwDIPFixeTmZlJdXU1I0aMcFRe0TUann4To96cAgwX5jHk/tmt04Md0LxwMb4X3iXw/a+UPnUTWoaz0TLNvhJShSMaUDTMewMZiSAb/Ugpqb7hITK/WETDM29iNDWjZWWoETBF0qgpSEWfwPA1tYb4kNY/kQjhZatNX14tSlcH/ryklJx88smMHz+e888/37QXE5hlDXPf/vvvz+GHH+5YuUqE2267jfHjx/Pkk09y0kknEQqp5em9heEPUP/Iy9HthgN3RPfGd6Rr+AM0vvs51bfMBSC8Yi3ujUZh1PmIVNQ4bjt2JaQaDRkohCtraHj2LWRTM7I5iJaVSeC7X4hU1JB9wO6IdDdSSuV+RJE0SgFTpByj0U9o+Zro1BEuDaREGhIZCsf48Opoldn8+fN57LHHeP/995k0aRKTt9+Ot7741PT5ZBnsn3/++UyePJnjjz8ew0jOOeuuu+7K4YcfznvvvceIESN46623WLJkCQ8++CC33HILu+66K7vttlvUzuziiy9mxIgRNDU1MWLECGbPnp1Uu4r28T3/TtQY2jW0CP/2E2L2S0vhrr3vWVbucSINT76Ba1gJMhIh5+A9yDvhEIa/OgfXiCGO29aVM9YBgQyHCSxaQmj5GgxfEyt3O8HsU5pAL/Ii3C5yDp2K55gDCHy/BKO2AaO6jki1GgFTJIeaglSkFKOpmdCy1VHlS7hd6CUFhFdXIISBXlJoOjv0N5sFwhFoZ4Zol112Qcr1fc1G6n2UffxR1P/TlVdeGd3n87WuWmurGNn32fn444/jpi9evDj6+9Zbb43+vvHGG7nxxhvjC63oMjIYou7/Wp2tek6aDi6dSF0D/ve/pPHdzwkvXcWw1+4ie9qO5B6xT8wqthaCvy1HL/TiHjnUUft6gTf6W62I63+EV5dT/Z8H8H/5PUQi5B69P/nn/RV9+BCwoiV4zz+BzO02J33iRshIhNCSZeazSBOEK6tTfASK/opSwBQpw/C3Ub5cLlyjhyFcOu4NTS1LpKchmwNRF/7J+PTScrPjxwBQDAh8L79PpNx8CWqFebg2GA6BWmpueQSjzkf2fruQtfs2CCFwb9i+XZ7vxfdInzAW98h9HbWvxayCVApYfyK8thLNk4Nr7Cjkp99CMIT/g69In7QpkTVmiFwtLwfP0ftHV9IKXUcfUhj1/xVZpxQwRXKoKUhFSjCaA6byZRimcqTr6CUFRNZUgqahZaSjZaQjhEC4bGFjklDAImsr1cjEAEWGw9FQQ1JKdG8u9fc+A0DRVWdTcsel5By4e0LG+HqhN6kpRPsUpDLC7z8ElyxlzVEXIdLceE85DM3yExdatpqa21sdLefO2Hs9NyaFs84ATSAK8lpH5xUKhygFTNHrGIEg4aWrTYN6y+BepLkJr6tCL85ff5WjLW5fUp7GXXqMM1bFwKHxjY8Jr1yHEQwifU24Rw+n5N4rkqrLVMCcK+q6GgHrl9TcMY+8k6cj0txoudl4Zh5K2iajyb/0FEJ/mm5F0DRyj95vvbJZe2yLyM5EaBpGnS9qY6hQOEEpYIpepUX5kpGIqXxJCdIMdivS0xBZGeuViR0Bc+gawh8wA3j7mjCaA12UXtGXkIZBzX+fIFLXgKxtwD1mOMW3X5K009XM3bYm55A9HZeLWQVZXRvXDlHRt2heuJjQr8vIPbJVuco7aTqlz91G+I8V0Y/ArKnb4yotXq+8cLlwlRZH8xm1Db0juGJAoRQwRa8hgyHCy1a3fi1qApGbZf6va7GKlh1X8iNgRk0dRk090t+MbPQnK7qiD9L07meEfl0KzUEQAqPR36UXoWt4Ca7RzkNGiezMaJgj2RxU/awfEKmpp/C6cxFp7miacLswfE34Xi2LpnmOPbDdOozaBmQwFK1PoXCKUsAUvYIMhwktW226lQAQwvyyDATRPDmmIezwIXGdrAq9CzZgLt10Y6FpKlDyAMIwDKpm34MMhEDXEVmZZO46mdCy1fg/X0TmFz8R+mOlozpDf65i7dEXO5ZFCNFmFExNQ/ZlGt/9jIp/XE/F36+j7pGXW59JgO+Fd5F+c6Q8bdwY0rferN16REYaMmIgDUNdc0VSKAVM0eNIKQmvXBf9WmxRviLl1ehDinCNGIJrxFCE1o6He/sIWAcK2IoVK9hjjz0YP348EyZM4I477kBkpKPlZrP3icfx9eKfuuV4HnnkETbeeGM23nhjHnnkkbh5br31VjbbbDO22GILpk6dyrJly6L7dF1n0qRJTJo0iYMPPrjT9r7++ms233xzNtpoI84555y4U1zvvPMOW2+9NZtvvjlbb70177//fnTflClTGDduXLTN8vLy9cr3dSKVNVTf8JDpLw5oeOINQstWoXlz0Yu9lM67gZLbLqHxjY9Zd8os8h96Df/8bxy1oRd5k36RxtiBqZdxn0VGIlRceDPSH8Co99H48vtgPXdkJELDk29E8+Yee2C7UTciNfVEKmuRDY0YNfXRFZEKhROUGwpFjxMpr8ZomZaREtfIoRi1DeglBa3eytuPLhQzNdmRAuZyubjllluYPHkyDQ0NbL311kybNo3xm26KRKLFsS9zSnV1NVdeeSULFixACMHWW2/NwQcfTH5+fky+rbbaigULFpCVlcU999zDxRdfzNNPPw1AZmYm3377bcJtnnHGGdx///3ssMMO7L///rz55pvst1+sYXBRURGvvvoqw4YN44cffmCfffZh1apV0f3z5s1jm222iW43NPQfmxXfi+9R9Z/7kf4AkfJqMqftSNP/PkbzehBC4Dn+YDJ3mgS0UYQqax21o3lyTJcngWB0SjHhsvaVkMoQv8/S+PpHuIYUIjWNyIq15F8wMzrC7v9wAeFV5seJlpdD9v67tluPlpuFjBiYBqwG4XVVvSG+YoChRsAUPUqkoZFIpRXexTDAkMhgCNfIoXGdYcbFPgVpGEgjvpFzaWkpkydPBiA3N5fx48ezatUqhKYBAgwDwzA44YQTuPzyywHIycnhkksuYeutt2avvfbiyy+/ZMqUKWyxxRa88sor67Xx1ltvMW3aNAoKCsjPz2fatGm8+eab6+XbY489yMrKAmCHHXZg5cqOp8Pq6uoYN24cv/zyCwBHH300DzzwAGvWrKG+vp4dd9wRIQR//etfeemll9Yrv9VWWzFs2DAAJkyYQHNzM4HAwFh04BpdivQHkJEI9U++QcMzbxH47hfTRYnbhWfmodG87g2Hk7HNBPzbbIp7kzGO2hFCkHvUfjFTUoli78sR5Yqiz+J7+QOK/nMuI16ZQ/GtF5G581bRffXzXo/+zv3L3h3GBBUuF3qR1zRvEILwqnU9KbZigKIUMEWPUXPnPJZvexSrZ5zH6hn/IPjbcoK/L2fFLsezbOKhLJ14KLV3PwXAij1OYqmVtvrw8wGonH0XSyceyrLNp7N6xnmtUzsJ2HItXbqUhQsXsv322wPmyzUUCHLssceyySabRMMENTY2MmXKFL7++mtyc3O5/PLLeeedd5g3bx6zZs1ar95Vq1YxcuTI6PaIESNiRpri8dBDD8WMWDU3N7PNNtuwww47RJWpvLw85syZw8yZM3nqqaeoqanh1FNPZdWqVTFBvRNp7/nnn2errbaKBhYHOPHEE5k0aRJXX311v1ullzF5M9K22ATpD5B3+hGtIauAnOl74SopiG5n770zQ+deS81pB5NzwG6O2yq45GS0nCzH5WJdUdQ6Lq/oHYbcN4uMrScg3C6y9945mh78dRnNXywyN3Sd3KPWdz3RlpxD9kRkZZiOeNv5KFQoOkJNQSp6BGkYZB+wG1lTTQUIXYNQBKRk+Ov34B4zLMa4fuQH/7deHUWzz6Jo9lmAGSZGBoJm3ZEIwt1+1/X5fMyYMYPbb78dj8ccmRCZ6Zzx97M54ogjuOyyy6J509LS2Hdf0/P55ptvTnp6Om63mwkTJrB06dL1jyuO8tKenQjA448/zoIFC/jwww+jacuXL2fYsGH88ccf7Lnnnmy++eaMHTuWadOm8eyzz3LWWWfx3XffJdXejz/+yCWXXMLbb78dTZs3bx7Dhw+noaGBGTNm8NhjjzF9+vR26+hrGI1+im+5iPCqcoRLZ+1xl5o7dN0MO9SNVN/0MJm7bU3m9ls4Kqd8gfVtDF8T5edeT8ldl0VDktlpeKJ19Ks91xNtcZUWI4NhtGyhbMAUSaFGwBQ9QnhtJbLF75YQuEoK0TzZ6MX5uEeVxq5sTIBEveGHQiFmzJjBsccey2GHHYaUkkhNPTIQZIctJvHBBx/Q3NzqudrtdkcVGk3ToqNGmqYRjuNzbMSIEaxYsSK6vXLlyujUX1veffddrr32Wl555ZWY0aiW/BtuuCFTpkxh4cKFgLmyb/HixWRmZlJdXR1tzz592VF7K1euZPr06Tz66KOMHTs2mj58+HDAnJY95phj+PLLL9s7fSknXFFD7b3PIIMhZCRC9S1zqbj4VtylxWRuM4G6+5+N5s05cHfcSQTP7gijroHwaueLFOzhiAxlhN/nqLrmPkR6WtxpxUi9r43riQMSqtM1qtQ0q0AtvFAkh1LAFN1OpM2qIL0oH70gD9eoUtN5YQejV+2id26IL6Xk5JNPZvz48Zx/vjmNKYQwlcFwhBMOOJj99tmXww8/PK5ylQj77LMPb7/9NjU1NdTU1PD222+zzz77rJdv4cKFnH766bzyyiuUlJRE02tqaqK2WZWVlcyfP5/NNjOXut92222MHz+eJ598kpNOOolQKERpaSm5ubl8/vnnSCl59NFHOeSQQ9Zrr7a2lgMOOIDrrruOnXdunVoJh8NUVlYCpnL62muvMXHixKSOvTeouf5Bauc8waoZ/2DdKVcQ/P43iq49B4DAT7/j/+hrM6MQ5J0yo9vb1/PzMBwa70MbZ6xqBKxPEVpTTsPjr+H/aAFV196P0dAYs9/3/DvIZnN0PW3TDUif3L7rCTvu0UNNm1brI0+hcIpSwBTdiuEPELaC2CJBy8kiUl2HDIU6nDrrjERGwObPn89jjz3G+++/H3W58MYbb7SOtkk475xzmDx5MscffzyG9fXqhIKCAv7973+z7bbbsu222zJr1iwKCkwbpFmzZkUN9y+66CJ8Ph+HH354jLuJxYsXs80227Dllluyxx57cOmll7LZZpuxZMkSHnzwQW655RZ23XVXdtttt6id2j333MMpp5zCRhttxNixY6P2ZK+88krUTm3OnDn89ttvXH311THuJgKBAPvssw9bbLEFkyZNYvjw4Zx66qmOj7s38H++iMa35gMQ+nU5kYoahjwwO7pStu6B56J5s/fZGfcGw+PX88UiMj/9nrr/exHD1+RIBn14SVL+4uzxIJUNWN+ifu7LYDlcbXprvmk4b2G6nvhfdNvTgeuJtujFhWYsSMMgsq6ye4VWDApEfzPIVfQNxo0bJ1tW7LXw048/spE7BxkKgZRIQ6Klp6EX58eMECRDuLyaSIU5LacXeXENKXJU1mj0QyRi2p7FsQFpS0NDA7m5uUnL29eJd3yLFy9m/PjxKZLItBtseOp/1Nz2GNn77ETh1X+PvgyDvy9n9SHnRPMOe+F20tpZ5bjqoLNp/OUP0tLSGPbiHaRtPLrHZY9U1rBiyomA6cJg1PzHe6ytsrIypkyZ0mP1p5ruPL5IXQOhP1ZRe8djNC/4kYLLTsNz9P7R/U3vfUH5udcBoOV7GPnugwm7IAmtLmf5Vn8xF4XoLjZc9Z614rpjhBBfSym36TSjYsCjjPAV3YI0DDM0hzfdjPEYMRBCmIbzXRj5aiFRX2DxcJUUIENhpGEkpHwpUoPQNDzHHEDgu19wbzw6ZiSi7oHno7+zpmzbrvIFcQziN05chvCaCvwff03uEfs6ER0t32P2cynN4MyhcHJT7YpupebGh3FvOIIhD19D8/yFZLRZXFE/77Xo79y/7O3I/5urpKB1Ra4RIVxRg3tIYbfIrRgcqClIRbdQ//BLrUb3SNN7vaaBS0ckGRw5hpgpSOdTh+iaqRgq+jSB736h+csfyD1sr2haaPkaGt/4OLqdd9rhHdaRscMWNG03Hs9fD0Yv9jpq32hojPEHlShC12N9gSmboJQT/HUZ/k++JveIfRBCkLnL5BiluPHt+TR/+b25oevkHulM6RYul2mbKgToOpFlq7tTfMUgQClgii7j/2IRNXc8bk47SomWl4tIT0NkpeMaXtKhQ8NEiRkBizg3oJfhCOHl6gHZHqkyRbC3K8Nhqq66h/wLZ6LlZkfT6x56IbraLHPHLUnfYpMO6/T+7QhqTzmIgotPIm3sKEfy6IXepG24NOULrE9Re8fjeE46LKYvgdnPam55hIrzb4qmZe+1A66hiZs1tOAaMQSRnWmaWCQw/ahQ2FE9RtElwuXVVF58CxgG2opyaolgNPrRSwpwbzACPa+b7Ki6EpAbc4RChiP9zglpbyClpKqqioyMrodqckrt7Y9RedmdROrM0Eh5p/4lJgRMeG0lja98EN3ubPSrq2jeXKSvKTlv+DY7R+WKIrUEfvqd9O23wNPGoWqksoZ1p86m7uEXo2muEUPIv+CEpNpJ23RDRJo5balcUSicoowUFEkjQ2EqLrgpuuw+57n3qc33UDW0EE02d1LaYVuGQWSttdJICFwRf+Jlw2Er+G4jWmNtQp7Om5ubU6KQ9BZtjy8jIyPG435vEFj8B3VzX4ZIhKYPvsB73l/xHB7r0qPu/16MKkPpk8eTvs2EHpVJ6Dqlz99mTlk7JGYlZBKuLBTdg2EYlJ99LeF1VTR//h0Fl56Ce+RQmr/9mYrzbowu5gHI3H0biq77B7onJ6m2XKNL4eufzHbVtLPCIUoBGyQIIcqAHYCWT/tVUspx1r6pwF3AKOALYKaUcllnddbc9iiBhYuRUiKbmik56xjSNh6Ne4Ph3W7sLqVk+fFHIIMhAEZ9+VTCwbWbyr6i/OxrMZqaydpjO4Y+dFWnZcrKythqq606zddf6QvH53//i2hYKdkcJFJeHbM/UlmD7/l3otve04/okiuThIkYyEY/os3UVWfE+AJT8SBTRu3tjxH8+U+0fA/Nn34LQP3jr1Fz88OtC3iEwHvW0eSd9peEVi62h6xvRDb4EHm5RGrUCJjCGWoKcnBxtpQyx/prUb6KgBeAfwMFwALg6c4q0pqaqX/U9HklG/0QMai48BYilbU9stJQCNHmBZf4w67FOFrLyljPCaMidXjPOpqS//4LLS8XLd+Dt41j1fpHXomGn0rbbCwZO01KqF6joZGsTxZRe/9z1D34fOcF2lB948MEFi1xXC5m9aWajkoJ0jDwv/8FWXvtiNA0cv6yN7V3Pk719Q9GlS/Nm8uQe2fh/dsRXVK+APTSImTEQIbDBH78vTsOQTGIUCNgisOAH6WUzwIIIWYDlUKITaWUP7dXSK+sgzzTkaGMGBAOI8JhAt/9QuaOW/aIoFpBHljTkEZVLSQYhsY1vIS8U2bg/+QbMnec1COyKZIja4/tyNh6M3KP3j/GBUCkroGGp9+MbjsZ/TIa/XgffZPatDT0Iq9jj/nJGuLHhCNS3vBTQuC7X9Dychn6yLX43/uC6tseIbxsTXR/2oSNKLntYlzDSjqoJXFEViaEwhg19aaTV4XCAUoBG1xcJ4S4HvgFuExKWQZMAL5rySClbBRC/G6lxyhgQojTgNMANnPnEAwGCRfmQV42ek0DgQkbsGyTIigr6xHhC8LNZATNEZFvyj4mULOmkxI2Jo0kb9GPhOoraUpAPp/PR1kPHUdfoM8cX8SAQ7eHQE1Mv8l95RNya00lJjSsiC9FY+L9KhxhqJQEg0HkmgrK3nvfkU2Xp6GGyGdf0ehxNt2ZvmIphVb/XL14CT/00PntM9euh+jy8c2cxrJb78c79w20QCia3LjbltQdOZUlS36CJT91XVAg3WiiGEBC2NdE2TvvgvL/pkgQ1VMGD5cAPwFB4CjgVSHEJCAHqGiTtw5Yb/milPJ+4H6AiRl5Mj03h9EPXEXo1+Wk77wVWrq7+1Y9xqHynUX4lqwCYOLIMeQ69JZd8/0qhK7jTaCc8jbeM4SWrsY1uhQhBMFfl1F52Z2UPnVTzFRQaMVaVn90N9JaXTb84lOYsOdujtpZuPt7jBk/Dr04n0123RVhhaJJhOa8IQhNI33LcY7aDBQMY80DpmPPHFc6W/TQ+VV9Mz4Nz74FQhBauor6uf8DBKSlIdLTKPz338g5dM9ulzVQPIKVNz0JgMuby66Tt4mZilYoOkIpYIMEKeUXts1HhBBHA/sDPsDTJrsHaOiszqx9dgYJOdOndp+gHRCzzD+JKaK0sSPV6rQUEi6vZs3RF5E2fkMKZv2NqqvvJeewvWKULyklVVfe0xoceZPRZO29k+O26o7bm/wklZSMrZILx6QXeaO/lR+w3iX423KqrrkP99iRhJa0rh9yjRxKye2XkDZugx5pVy/IA5eOlp2JPqRIKV8KRygj/MGLBATwIxA12hJCZANjrfT20XX8Hy1ApCc+stBVtAKbp/EkjJyz998Nz18P7k6RFA6ovvZ+jIZGmr/8nrXHXYoMhck9fO+YPI0vvU/z59aMuKZReNXfez18lP/zRaw76xrH5bR82wdCTb3yOdeLrDvjKiJrKmn+YlHUbUnm7tsy7Jlbekz5AisElSEhYmDUqmuucIYaARsECCG8wPbAh5huKI4EdgP+AVQDNwkhZgCvA7OARR0Z4AOIUJi8kw/rMCZfd6MXeKO/Iw6NnH0vvod//kIC3y+h+KYLO/WmruheZCSCe1Sp6S3cMPCefQwZk8cjbA52wxU1VN/4f9Ftz18PIn3iRr0uq+bJbvU556RcZjpaViZGkx8ZCmM0NCbtX0qROA0vvEvwuyWYhlgR08XEOceRd8phXV7l2BlaRroZ3siQZrxZX5Nj9yWKwYsaARscuIFrMG29KoG/A4dKKX+RUlYAM4BrgRpMRe2oRCr1f/h1z0jbDjGOLh2OgPk/XYjvtQ8JfP8roeUOjPcV3YLQdfIvOIHSJ28ka9qO5By8x3rKe831D0bdhLhGDsV71jEpkLRlFWRyqxg12zSkoaa7e5xweTU1t8xFZGWApiNyshn68DV4u+jfywmaJxtpBZpV7kcUTlAK2CBASlkhpdxWSpkrpfRKKXeQUr5j2/+ulHJTKWWmlHKKlHJpp3W6XRRd+/celbstWkyol1pnZb0e0AQYBoZymJgyZFOz6WPLiA2o3vT+FzTalvEXXnEmWheCuLtWrKP2nqeouvpefC++56isXpBH2qYbJDWdFBOQW72MexQZDlN58S2E11SCruHaaCTDXrqzx9zgtEfauA0QLhcyEMT3v487L6BQWCgFTJEU4aEFuIYn5oeru4h1xOos7Ef23jtRcPnpaF4PGcoXWEqQoTBVV99LwT9PjQkHZTQ0UnX1fdHtnEP3JHOHLbrUlntFObV3PUXD02/i/+y7zgvYEG4XQ+6dlZTXfV0F5O41au+Yh/+rH5DNAYTbRclNF5Kx+ca9LoeMGBjVtRj1PuofeqHX21f0X5QCpkgK6dI7z9TNxChgNfXINqMoHZGx7UTyjjmA0V89hXvsyJ4QTxGHwKIl0ZGk5q9+wD16GFlTt4/JU3PrI9H4fHqRl/yLT+pyu0Zeq+1VMopQ9U0PE1qx1nG5mGlypYD1GI3vfm4G1I5EQEq85/6110e+WtCyMrBmIM3FF1b0BoWiM5QRvqLfINLcaLnZpp1QJIJR34judeZ3LPDT77g3HImrOL+HpFS0EPzlT9YcczGuUaXkHL4P3hMPJWP7zWNGlpq/+oGGZ9+Obhf869RuMVwPDy0k79S/oBd6cW8w3LnsP/1OeFU57pFDHZXTVDiiHie0bDVVl99pxqCNGKRvOQ7v6X9JmTz60EIQAuF2k775JhiBILotqoNC0R5qBEzRr4ixsUlihKH+kZcJ/vhbN0qkaI+G598FzBdm/X3P4P98UcyqR6M5QNUVd0W3s/bcnqxpzn1+xSNS6CH/3OPwHHcgmTs7DzqebDiiGF91SgHrdgx/gIrzbsDwNSGbmiEQJHPP7ZNatdpduEpLQNfQvLlk7LilWvmqSBilgCn6FTHx9pJ4wekFeWpqqJfQsjPRcrMhGEJkZZCx9WYx++vueTq6IlXLyaLgstOSsrvqCfRCb3L9yz4CplZBditSSqqvuofgkmXm6Jc/gDQkDY++ktJA2O5RQ9GsCCBq1FPhBKWAKfoVsYb4iT/sjKZmKi+/E//8b6m968meEE3Rhvxzj2P4W/ej5Xsouv4801+SRWDxH9TNfbk17wUn4BpSmAox45J/0UxyjzvQcblk+6eic3zPvoXv1TJzI2IgMtMRaS70gjyypmybMrn0onyQEiklRo2zxUGKwY2yAVP0K5I1chZuF76X3keGIyBMx6D26TBFzyBcOgWXnkLmdptH02Q4TNWsOaYBNZCxzURyZkxLlYhxCa+uILxyHZk7TXJUTlc2YD1C4IffqL7uweh2zvSp+D/5hvyzj0GkuWOU+95Gz/dgNDSieXLUNVc4Qilgin5FjC8wB1+bwu0yH5B1DSAlRp0vZrRC0f3IcJjw8jXkHrZXTHr9o68SXPwHgBko+coze8Rppu/lD2he+BORilryTp1BxqRNEy4b+mMlDc++5VgB0wq7Fq9UsT6R2gYqzr8xGmIobdwY8k47HC0zg9wj902xdNYzSQhkMEjo9xXUP/kGnqP3T7VYin6AmoJU9CtipngceisvnPU38s88mrRxG8T4oVL0DI1vfUrVf+6PSQstXxMzBew98yjco4f1SPv+z77F99w7+D/8ivCfqxyV1fM9SdlwaZ4chOWixWj0YzQHHNehaEUaBpX/vI3w6nIAtNxsim+7hLQNhlM4628pls5Eb1HAfE2EV5dTd/9zqRZJ0U9QCpiiXxFrY1PrqGz2vruQtfeOEIkg0noviPhgQkYirJ15GTVznqT2rifxnnZ46z4pqZp9d9RPUtqmG/RocHTd5mokUlnjrGyRN6kRLCFEbFBuNSXVJerufxb/x99Et4uuPQe9uIDVfzkPGQylULJWRFYGmicb07ZBEimv6jOyKfo2agpS0a/oqpFzsu4FFInR/Pkimhf8iH/+QmQoTPr2rbZfvhfepfnL780NXafwqrN71HYna8/tcQ0rQS/KJ23TDRyV1UsKKbzq7KTa1Yu8Uceykao6XMNKkqpnsOOfv5Dau56KbueddBj6kELKz7sekZ7WZz6ihBC4h5UQ9DWBEOQeeyAyFO4z8in6LkoBU/QrYm1snCtgmjeXrD23R0rZZ1weDCQaW2LhpbnJPXxvNLf5EgqXV1Nz89xovry/Hkz6ZmN7VJaMrcaTsdX4pMoKtwv32JHmi9Shkhg7TV6bVPuDnfCaCiouuRWsKAoZ207Ee84xVF19H02vf4xId1N737N4Tz+8k5p6BxkKgxBoudnkHLg7WnZmqkVS9APUFKSiX6EXeKO/I0ks+RaaRtHVf1fKVw9ROOsMvGcdTfpmY8mbeWg0vfo/95sRDADXqFLyzjoqRRImztoTLye8cp3jcjErIVXgd+eEwlScfyNGbQMAenEBxTddgAyEaHzjYxBAWhoZ201MrZw2tHwPGKaymMxzSTE4UQqYol+h5eWAtWLOqPdFV0YlQtNHC1h32myWTppB1VX39pSIgxu3C/+n35J34qGkbTIGgMZ3PqPp3c+jWQqvOAMtIz1FAiZOstPVMaO0yhmrY/Ke/YDA97+aG7pO8S0XohflIzLSKL7lQnIO24v0TceQ7mBVa0+jF3mjsWmV3Z8iUdQUpKJfITQNvaB1hVqkph5XSUFCZY2aBvyffotR20Dw12U9KOXgJbDgRyJVtWTtszMAkXof1de2roTMmTGNzO23SJV4jtALk4uaoJyxJo/vtQ/JLlsIaWYsxYILTiBjshlBQeg6vuffJe/0w0nbeHSfGsV2DSuJ+hVUI2CKRFEjYIp+R7Lx9rQCK46kpinbnB7C9+J75J06A6HryEiEqivuiq5A1IsLKLhwZq/KUzn7LtadcRWrDz/f8cq0rGk74Rpa5LjNmGly1c8SJrymgqor745uZ+29E7nHH9S6f10VzV/9QNrYkSl1vBoP98ihiJxMDH+Axjc+pvbupzovpBj09K1erFAkgH2Zv5MXXPrEjSm5+3Ka3voU1wbDe0CywUvTB1/iHjuSwqvOAkz/TVX/nkPTO59F8xRcdpoZG7IX8ZctiCqAkeo6RwpVzgG7JdVmbLQGNQKWKPXzXkP6Tb9p7tHDKLrq7JhRrsY3PyFr6vaI9LRUidguWkGeaeMYCNL81fdEqmvxntn37RwVqUUpYIp+h94ykoWzKR4930PWbtuQtds2PSHWoMXwB6j85+2E11aSsd3mlNw7i7r/zsP3ygfRPJ7jDiR7rx16XTa9yNuqgFXUOFLAGt/+lOBPv5P/j+MdtampcESOMZqa8T3/bnQ7/6ITo86SZShM6M+VEAqTc8ieqRKxQ/R8D4QNQIAhiVTUIIMh5YpC0SFKAVP0O2KmeJJ4wQV/X07ol6Vk75/cCIcilqZ3PiVSW48MBInUNVB37zM0PPt2dH/OX6aRf8nJKZHNe+5xEI6gF3pxjx3prLCmEfp9heM2Y6fIax2XH4w0vlYWXSUbLvaSudvW0X3+j7+m/JzrSJuwEa5hxakSsUO0gjzQBbjScI0YQsHFJ0VdaCgU7aFswBT9jph4kElM8UTWVtHwwnvdKdKgxjW8BC3Pg8jKxFXopeGJ16P7cg6aQuGsM1JmMJ2169Zk7bEd6VtsgpaV4aisXpiXnLNfuxF+TQPSCjquiI+Ukvp5rX2mcc/JMbFBG55/F6PJT/OCHwku6ZuLZ/R8D0JoaBlpaJ5scqZP7ZNTpYq+hVLAFP2OGBubJEYY9EKvGpnoRtK3GEfGVpuSd+KhNH/7czQ9e99dKLz67B4JtN0b6MUFSTnUbAn8DoBhRP1ZKeLT/MX30ZFGLSuTph1b/XtJw0BkZyIDIYRLJ2f61FSJ2SF6QR7Ck41ITyNSrVZBKhKjfz4ZFYOa2BEGZw+7qivvpvz8G2n+8gcCP/zW3aINTnSNjO02p+Gp/0WVraw9tqPoun8gXP3XysE9YghD7p+dVFld2YElTMPjr0Z/Zx+yB9I2Uik0zYyaMGEjim+/pMcCt3cVkZOFEAIZCiP9zSoIuyIhlAKm6HfYX25OpyDDK9cRWrYakZOV1OiZIpbQynWs2OWvVN8yN5qWuctkim+5qM+5CkiGmlsfxfA7f5mqlZCJEVqxlqYPF0S3PcccsF6eSHUtnpmHkLPfrr0pmiOEEOByIS3Fy1C+wBQJoBQwRb9Dy09uFaRZNs98WEpJZF1Vd4s2qJDBEJWX3Ep4TUXUxitju80pvv2SPrP6K/j7ctaecgWrDzuX8r//x3H5xjc/ia6idELMR4JS9Nul4an/RY3VM3feCncc9zBZu20TVzHra+jeHGTEwGj0U3Xl3VTZHBArFPFQCpii3xHrabwW6WC1kffMoxj2/G24x44kbcJGPSHeoGHV9HNpeudTpBBIKUnfajwl//1Xnwsz1Pz5dwSXLEtuRWNhXlKhZTQVkLtTjEY/vhdaXU/kHru+kuX/YhGVl9/Zm2IljVaYD4aBbPLT9P6XNL3/RapFUvRx+v8cgWLQIbIzEelpyEAQ2RxENjUjEjSWdo8xbUhcQ4sw6nw9KeaApuGZNwl89YO50diEe8JGDLn78qSM1nsSvSg/+jsZWyytwBsNe+WoXTUF2SmNr30YE6A9c5fJ0X2Gr4l1p1+JDIXJnLJtqkR0hHtkCYHvs5B1DaYvsPJqZCg8IKbiFT2D6hmDDCHExsD3wHNSyuOstKnAXcAo4AtgppSyb673xrS30AvyCK+pAMwXq9MXf7Jx/hTQ9P4XVFz+X3NDCLR8D6WPX9frXu4TQfPkUHL35ehF+THTgolSdOWZCMshqBN0NQLWIabridei255jDohZLdv4v49p/vZnjKo6ZDBEfj/wKq+XFCF0DZmVQdYBu+I5cr9Ui6To4ygFrJ8ghLiqnV0BYCXwppRyXQJV3QV8Zau3CHgBOAV4FbgaeBrofbflDtAK8sBSwIzqOhg51FH5nEP2RC/O7zyjIgb/J99QccFNEApDZjquoUUU/utU9LzcVIsWFyFElyIfGM1BZF0DaWNHOSqnF9pH3pRBdluaP19E6I+VgOl6IufQWA/3ja9/BIaBSE8jd8a0VIjoGL3Ag1FTj1bgJW3McDJ3mpRqkRR9HKWA9R82AaYDXwIrgJHAdphK00HA3UKIGVLKN9urQAhxFFALfAq0GEAdBvwopXzWyjMbqBRCbCql/DlePX2BWF9gzqd4MneZjDSM7hRpwOP/fBHl516PEQgi/QHSJoyl9MmbcJUUpFq0HsP/4QJCf66k8PLTHZXTCu3Ogmu7War+T/3jraNf2YfuGQ071ELJf/9F4xsf43u1jOyDpvSucEmi5+eBpoE0HLvHUQxOlALWf9CAo6SUL7YkCCEOAY6RUu4ghDgBuB6Iq4AJITzAVcBUwB4XZgLwXcuGlLJRCPG7lf5zmzpOA04DKC4upqysrBsOKzm8TQ1kBYMA/PDJZzSJpoTK6VV1FN76NHpFLQBr7r84bj6fz5fS4+tpnB6f+/dVFN32NCIYRjQHMXIyWXXWIfz+0yL4qefkTJbuun4Zq5eT+cMvfO+wLr28hiFW/2xauoJfurEv9fe+qVfUUvLOfFpiI/w0tpCI7Xh8Ph8ff/IJRfc/RcU/j+eXb79OiZxOyVi5jCIkoUCQ1T8t4Yd+fI0UvYNSwPoP+wBHt0l7DXjM+v04MKeD8lcDD0kpV7QJC5MDVLTJWwesN6ckpbwfuB9g3LhxcsqUKYnK3u3UfL2MugVLANhkyHC8CcoSqalnxRUPIyXIcIT2jqGsrKzdfQMBJ8dnNPpZfd25hNEgLQ2tuIDiO//FuK0361khu0B7xyeldBQWqTm7iNofVrClw75g+JpYftUjAKSHDHbfffduC8fU3/tm9U0PU59mhunJ3GUymxx5WMz+srIytq6XNG66MRP26pue7+PRnFPM6rtfRHe7yU3PZIt+fI0UvYNyQ9F/+B04o03a36x0gCKgMV5BIcQkYC/gtji7fYCnTZoH6NPxU2KmeBz4WdI82SAEaJrptToU7gHpBha1dz1JeFU5ADISIfvgPUjfZHSKpUqchuffYdXBZ7N8p+Oou/dpR2XdY0eSe+yBjtsU2ZmIDFPJkIEgstHvuI6BSCKuJwAa3/iYnAP6ruPVeGj5HrTMDBAQ+O4X1p54ORUX3pxqsRR9GDUC1n84BXhBCHEJsAoYDkQwbbgAxgH/bqfsFGAMsNz6Cs8BdCHEZsC9wAktGYUQ2cBY4MduP4JuJNYXWOI2YELXGf7KHGQ4TN0Dz6kl4p0QWLQkaq8jpUT6/NQ//CK+Z96i+LaLu2Tg3ltIfyBq8O3UpYRekEfWnts5btNcqeslvNpUXCPVdevZOQ1GfK+WRV1PuEeVkrnzVrH7X/sQLexDy8kic4rz855K9II8M2pCJILRHKT5qx/QhxSmWixFH0a9ffoJUspvLBcSOwDDgDXAZ1LKkLX/I+CjdorfDzxl274QUyFrGVG7SQgxA3gdmAUs6ssG+NAm1p5DP0st3raLb7ygO0UacMhQmMor7gJrsYKrKJ9QfaMZ3zESIb2fOLLVi7zR305dQkgpWb7d0Yz6bB4iPc1Zu4V5MQqYe1Spo/IDDSklDfNej27nHntgjOuJqqvvpeHpNxkSDiP32xWR1r9eT1peDlhOiZHmPROpqFG+wBTtonpFP0VK+ZEQIlsIkSaljDv1aMvbBESt1IUQPqBZSllhbc/AtB97HNMPWJ93umP3NG7UJOfosvLyOym45OQ+6b+qL1D30POEfrXcwWWkgQDvOcfS/Pl3uEYOTcqvVirI2GkSw164Hb3Qi+Z15i5DCIHmzSVSXYertNhRWa3AG/2djDPXgUbzZ98R/GMFhMKIzHRyDtkjZr977EgAtIZGImsq+l0gd6Fp6J5sIhU1kJtN0fXnmR8purL0UcSnf/XwQYwQYnPgFUy/XyMwfXXtjjl9eKSTuqSUs9tsvwts2i2C9hLJTkHaCSz8mXB5NWlKAVuP4O8rqLvvWcBcrFBwzrHkHjYNLSfLnIpMIkB1qtA9OeienOTLF5re8J0qYHpBq2mligcJ1bc+ilFZC0jcJQWI9DQilTUYTc24R5XiGjkEIxACXafgyrNSLW5SaAUeIpU1aBnppG08Km5sS4WiBaWA9R/uAWZJKR8TQrREB/4QeCCFMqWMWAWsHmkYMdMZiaDlewivKifN+vJWmEjDoOqKu8xFCsEQMhgic5etozZMQghEVkaKpew9sqZsm9R0WMw0eZIfCf0RGQrT/OX36EMKcY8qpXLWHMJrK2n+7Ftzak4IwsvXsGybI9HzctCLvAx74Q5kMEzO/rvw57A8Nh63QaoPIyncI0qJrK0ClANeRecoBaz/MAFzihBAQtRnV98KvtdLCLcLLTfbNOg1DIw6H3p+28Wc8an7vxepvftJIuXV6IV5ZO22dQ9L279oeOp/BL79GRkIYviayN53F1zDnI3+DCS8Z7X1/pIYgy0epDQMfK99SPVV9xBZW0Xpkzfi3nAEmTtsSeNb89GyMzEaDLS8XHKP2hfvucfjst2z2VN3IHvqDvzUj/1nCW8Ohq8JLScradMIxeBBTU73H5YCMZqCEGI74LeUSNMHiB0Fq024nHC7kM1BRG42WvHA9eKeDOE1FdTebur5RqMfkZFG81c/0PDU/1IsWfdg+AOOXY/4Xv4A3ysfOG7LPgJmDIIRMMMfoPK8G4isrULkZhFatgahaWRN25HAwsWINDdafh5DH7ySotlnxShfAwW9IA/ZHEBKGR0Bk1KmWCpFX0UpYP2HfwOvCyGuBNKFEP8EngMuT61YqSM23EviLzjNevALIYisrex2uforUkqqrr6XSE0dMhzBNaoULducdqx76AVziX0/pfz8G1m+/dEs3/ZIAj/86qhspLae4E+/d56xDTFG+AM4HJEMhvC98gFaVgbes49B5OWgez1R43PfKx9g+Mw1QGkbDCdjAMdIdBV6QWjIYIi6B55j5f5nsO6UK1ItlqKPoqYg+wlSyteEEPsCpwJlwChgupSyf8Tp6AGSNcTP2msHRn3+BL7XP0rqxToQkeEwjW99StPbn2I0+tG8uZTM+RdV/7oTvaSA/HOORctMT7WYyRMMYVjOUB37Aiv0EnSotJnlBu4UZPNXPxBeuQ7XBsOpmjUH95jhZO29E94zj0LLySL3qP3QcrORhkHDE29Ey+Uee4BjW83+hJbvAU2AlISWrTbtJoOhVIul6KMoBawPI4S4Kk5ypfUHcIgQ4hAp5axeFKvPoNtHGBwoYFqGqUi4ivLxD3L3AEZTMw1PvE79468Srqw1la+8XDzHHUTmNhMZ+vj16MX53RZGJ1XoxfmANf3sSyxuaLRsoRejqdl5m/YPhAEyAhapqafy4lvwf/YdCA09P5eCy08ja9pO0T6Sd+pfovmbP/uO0J+mE1wtO5Ocg/eIW+9AQS/IQ/PkIAVRxStcXq18gSnionpE38a+PC8DmAF8BSzDHAHbDng+BXL1CWJGGJKwsdGLvIPePUDFeTfgn78Qo6ERaUg0by7u4UPIP/c4AFwlA8NGznvOcXj/cTyaJ8exMpmxwxZk7ril4zY1by5omrlIpN43IF7CWl4Ogd9WIAMhSHORtc9OZO+9c7v5622jXznTpw74aABavgekRABpW46j+PZLcJWW9PvrrugZBu5Y8ABASnliyx8ggKOllDtLKY+RUu5CP3CY2pNo+XY/S84VMPfYkeRfMLMbJep/5B5zgKl8+ZshEgFNo2DW3wbci1LP96Dn5SY3kheORMMxOUHoOnp+q+PX/u6KIlLbQNXl/wV/M+gaudOnkjfz0Hbzh5avwf/Rguh27tH794KUqUUvyDNjfzYHAUHa2FFog8hli8IZSi3vP+wHHNsm7WXg4RTI0ifoSjgiKSXSMJBIjGAILc3dzdL1DwLfL0EGQ5CdhZaVQc4Bu/eL+I69iiaouflhco/a17F3dr3QG+2bkeo6XP0oNqDRHEC4XQhdB6Dq3//FNayE4e8+iFFTj3vk0A7LNzz5BlgrADN32xr36GE9LnOq0VtswMIRIsoNhaITlALWf/gNOAu405Z2JjBorci74g1/1QFnEl6+hkhlDSPK5pK+af90/OgEwx9AZKRFR4Ea3/6UugefR/N6ELqG5s2l4NKTUyxl30PoOlpeDpHqesdTslq+faVubTdL1rPUz32JhufeQc/LofjOf1J868XRqTS9kxFSw9eE78X3otueYw/sUVn7Cpo3F6FpSCOMUedDRiJRBVahaIuaguw/nAKcL4RYKYT4QgixErjASh+UxMSDdPhyi8Z/1DTCy1Z3o1R9l8rL7mDdKVfQ/NPvaLU+9CKvaZdkuQsouOTkGKV2oCGlxPA1EVq5znFZvdCb1DR3V0ZpU4kMhWl4+i1Cf6yk+csfaF7woyM7JrvrCfeY4WQkYUPXHxEuF1q+B5GRBlJi1DYgDSN6LhQKO2oErJ8gpVwohNgY2AEYBqwBPpNSDto1zjEvtxpnYT/0Ag9aViayOdDvbXMSIfDdLzS9/SkAqw88i/xNRlCVnhkdDcvcdTLZB+6eShF7FMMfYMWux5sOeNPTGLXgaUf2YIXXnotrxBDH7ca6oqh1XD5VhP5ciREIIP3NuEYPJ2f/3RIuu57riWP2H9CuJ9riKikk2OhHhsKsPuICjJp60rfYhKFzr021aIo+hlLA+hGWsvVxquXoK2iebNB1iERMQ3IHq8xK5lyG0HXqn3idjO0m9rCkqSew6BfQdWQwhNAEobHDCX34HQAiM4PCf/+t37ua6AgtMx2s45OBINLXhHAQhN1VnO/Ygz60/UjoP4p+2iZjKJ13A1WX3UnO4XsnfF9JKam+5n5CS1cBoOVkDXjXE20RnmyMqloz1uzKdQi3i/Cq8lSLpeiDDJ7PEsWAQ2haTPxHJyNZLXYZnmMOIG3sqG6Xra/hOf5ghr1wO67SIrL22Zns91v99+b/43hcw0pSKF3voBflIzLScA0vcTwlVPfwSzE2TYkSE62hn/mcc48qpfSJG8mdvldC+aWU1Nz4fzQ882Y0Lfe4AwfcitrO0IvyQYIUAgwDsJT+SCTFkin6GmoETNGv0Qs8RCprgORWmTU8/SYyGMJz/EE9IV6fIm3sSEqfuJHys69FRAzQIX3LceQetW+qResVhr1wR8wiBCfohV5H8Uaj5ZJ0FpxqAt/9Qs2d8xj6UDxf0OsjpaT2jsepf+zVaFr2AbvjPePInhKxz+IqzANNIKQk76yj8Z4yY9ApoYrEUAqYol8Ts8osiRecjESi0yUDncY3P6H5u18I/vwnYHqFL7zyrEGzSqsroZT0gjyCS5YmVa6F/qSA1T/2KllTEndHUnffM9Q92OoTOmvvnSi69u+Dpm/Z0fLzEOlp5u80t1K+FO2iFDBFvyZZI2cZiZgrlAIhQn+s7AHJUo/hDyBcOsLtwmhopOLCm2OWxeed+hfSNhr406/dQdrEjcDlXJnQi7zR305jUKaC+sdfI7R0Ff6Pv6Zw9pkJlal7+EVq5zwZ3c7cfVuKbzjfsc+0gYKe74kqXf1J6Vb0PoPzDlEMGJIdYQgsWsLa4/+JDIXRsgemp+q6e5+m6d3PyT//BOqfewujvtFcuAAENhkZE7NP0TFpG41KSlmNidZQU4eUss8udpChMHUPPk94bSUYBsFfl5Gx1fgOy9Q/8To1tzwS3c7caRIlt140qEPvaAV5GP5mhKZhOFydrRhcKCN8Rb9Gs9nYGA78LOnW1KVwu9CHFHW3WCknvKbCHM1Ytpq1p82m8aX3EVZIlPQtx1F91mGD7iUppSRS10Dw9xWE/nQ27RyprmP1jH84blPLSEfLzjTbD0cw6n2O6+gtmt77nHBFNegaruFDSJ+4cYf5G557m+r/PBDdzth2IsV3/DM6/TZY0fM9YEhkOEKk2lS6I1W1SfmfUwxslAKm6NfETEE6WOavFXjQ8nJwjRqGbGruCdFSSnDJMoTbZa6+CgQQ+R6ESydts7EMuXcWsgv2UP0V//tfsmLn41l9yN+pvtlZBC8tN5vQ7yuQ1qo2R2VtriicfCT0Nll77UDOoVPRsjLJPXLfDhV036tlVF15T3Q7fctxlMy5rEt2dgMFvcA0wscwCC1fw/Jtj2TF7jPNOJoKhQ2lgCn6NclOQeqeHEbNf5zhr9+FUe9DBoI9IV7KyNp9GwouOw0jHAYJQgjSNhnNkPtnt0YBGGR0xR5LuF2I7EyM2gbn7Rb0E2esmkZg4WKG3H8Feae1Pz3d+NZ8Ki+7MxrnsUWpbxnpG+xo+R7T8ayUyCa/FZgbwquVLzBFLEoBU/RrYl9uzkcXhBBoBXl9+8WYBP75C6maNQehaQhNI23DkQx54Ep0b26qRUsZWqEXLTsT16hSXMOKHZfP2GYi0u98tDTGGWsfNsr2f7gA3ZND+qRN2/Vc3/TBl1RecmvUv9VgV+rjoed7IM2N5skh0mj2Fy0nC82bi7SUVoUClBG+op8TEw8yyZebXuglUlk7YJyRNn/5PeXnXIcRDCGbmnFvMoYhD10VowgMRtwjhjDqiyc7z9gOJXdcmlS5/hKOyDVqKPmXntzuIgH//IVUnH8jMmw6FHVvMGLQK/XxEGlutOxMIlV1aJnpDP/ffbhHOg9jpRj4KAVM0a9pOwWZzCqzkjv/OSCCUMtIBP9n31Fx3o3mlGrEQM/3MOzJG3GVFKRavH5Pw4vv4h49jIzJmzkq19dHwJo+WoBISyNto5HtRoVoUepbwjG5RpUqpb4DtHwP4eVrIDMdQoM2XK+iE9QUpKJfI7IyEBnmqisZCCIb/QmXjVTXEVj8B/5PvjFjJfZzav/7BGuOuIBIVS2GYaAPLWL4m/cNmJG9VBNc/CfBH39zXC7GFUUfGwGToTBVs+aw5ogLWH3khYTLq9fL07xwMevOujZqJ+kaVsLQh65SSn0H6IVeMxyRlP0qBqiid1EjYIp+jRACvcAbNXCNVNcl7Hm69q4naXj6TYzGJrKm7cTQbfpvUO7m7342V/ZFIsjGJjSXRsaW43CPKk21aAOGlqlqx+Xsxv99bBVk41vzCa+rRgZDyFA4JrYqQOCH3yg/4+qo7ZteXMCQB6/EVerchm4woee3roSMVCtfYIr4qBGwQYIQ4nEhxBohRL0QYokQ4hTbvqlCiJ+FEE1CiA+EEKNTKatT7NOHThwfRssJrV94KW+P4O/LKT/tSjAsA1+Xjmv0cHIP3zu1gvVBIvU+gkuW4v/0W8KrnPll0ou8SdlwxcSD7GMjYO7Rw3ANL0FkpOE55oAY1xPBX/5k3Wmzo4HL9cI8hj50lVLqE0Av8KB5ckDTiFTXEqltIPDjbwSSGEFVDFzUCNjg4TrgZCllQAixKVAmhFgILANeAE4BXgWuBp4GdkiZpA7RkjRydg0rIW2T0Rj+QA9I1TuElq9h3SmzMRr95vJ3CVn77UJ4xVoydt4q1eL1OWr/+wQNT74BQMElJ+E5/uCEy2bvvxvZ++3quM0YG7A+5hk9ffONKX30P4TLq3FvMDyaHvx9OetOnR11HKt5cxny4FW4NxyRKlH7FeYImOmKIvDNz1RffR9gOqtVKFpQCtggQUr5o33T+hsLbA38KKV8FkAIMRuoFEJsKqX8udcFTQL7tIkTI+ec6VPJmT6V0Mp1hP5Y0ROi9SjhVetYd9K/iVSYdjt6dhZDHpiN0dQMQvTZkDepJEYZcjrqGYkQ+PZnMneZ7KiY/QPB6GMjrc1f/4heUkjGpE2jaaFlq1l3yuzovaTlZjPk/tmkbdyvBsZTilbgQTb5weXCfNSaKF9gCjtKARtECCHuBmYCmcBC4A3gWuC7ljxSykYhxO/ABODnNuVPA04DKC4upqysrFfk7ozcumpyg6aB8C9ffI2vKIlQKBEDbMfj8/n6zPHFQ6+qo/CWp3BVmi9J6XZRdcr+LP1jCUZulhk4ugP5+/rxdZX2ji+zroKcglyMvGzK66tocnAO9Ko6im54gnU3nuFMGCkpjYQREQOCQT586x1kuttZHTa67dpJSfEV/0fd0XsRHG8qV3plHUU3PYFeYzqcNdLdVJ2yP3+Ur4Dy3vlIGQh9M3PNSgqkAaEQq5etIF1IIoV5RDwDM+6sIjmUAjaIkFKeKYT4O7AjMAUIADlARZusdcB6zn2klPcD9wOMGzdOTpkypSfFTZi6ZXXUfPAtABsWFFPgUK5IbQOrDjqLUR8/Gk0rKyujrxxfW/zzF1Jx64MY9X6k7kLLTKdkzmWM22kSa/76TzzHHkj2Xjt3WEdfPr7uoN3jmzIFLjkrqTplIMjyax5j9913dzy6uKL0MSLWCsOdN9+ySytTu+PahStqCC1ZSk1RAZv97a8IIQivrWTtzMsINwYgLQ2RkcaQe69g020mdKktpwyEvtmk57L2wdcgYjAkx8OQRS+19hmhQhIpTJQCNsiQUkaAT4QQxwFnAD7A0yabB3AecyVFxPoCq3VcXvNkIxsakaFwnw5QLQ2Duvufpfaup8wwJ8EQRr2PrN2nkjZ+Q5oX/EikspasqdunWtQBiUhPQ6SnIX1NCIee3/VCb1QBS7XTXxkMsebw84hU15Nz8BQIRwjXNrDu5FmErYDRIs1NyX8vI6OXla+Bgp6fh3C5QDMwauqUOYAiLn33baPoaVyYNmA/Aie0JAohsm3p/YJYBcyZkXNg0RLT1kUIwlU1uIf2zeX1kboGKv95O/6PvgZM/0IyFEbLy8X/yTfU3vk44ZXryDtlhvngV/QIhVf/3bLrcUZfcsba+NZ8IpW1SMOg6ZOFeGvqWXfabELLVgNm3Mvi2y4hc8ctUypnf0Yv8EQ/5pQbCkV7qCf1IEAIUQLsCbwG+IG9gKOBY4BPgZuEEDOA14FZwKL+YoAPXXu5tSyzN3xNGHU+6IMKWGDxH1T843rCq1oNeDMmbYqMRAj+8BsiPY28048gvGIt6TZjakX3k7Xb1ubqNof0JQUssrbS9GivCXIP24vys64h9Ntyc6euU3TjBWTtvk1KZezvaPl5yEgEo6ER4XYlFaFDMfBRCtjgQGJON96L6fttGfAPKeXLAJbyNQd4HPgCOCpFciZFbDzIWmdl8z0YviYzWG5aEsb7PUzDi+9SffV9yGBrOJO8E6fjPfdY0HX8739JeF0lgUVLyNxt6z49hdpXCC5ZSnhtJUZVHVl774SWnZlw2YpLbiV7v13J3qdjG7u2xPiqS7EvsJwZ06h94HlyZuyF/8OvCP6y1NwhBEX/OZfsaTumVL6BgJaZjsjKgJp6ZChMpLIGo6ou5iNKoVBP60GAlLIC2L2D/e8C/XboJMYNRU0DMhJB6HpCZTO23ozI6GGE11bSvHBxjC+kVCIDQar+8wC+59+JpmnZmRRec07MCzJr6vYElyxl3WlXMny3rVMhar+j4oKbCf25EoBhEzdy5F5BL0zOGWuyvup6goZn3iRrz+0J/vhbq/IFFF11NjkH7JY6wQYYeoGXyMpypJT4P/qaqivuSrVIij6GUsAU/R7hdqF5ckynkYaBUedLOLh20TXnAFB988MYtX1j3UF41TrKz7uR4E+/R9O0gjzSx28Y18C+7v7n8JxwMFpGem+K2W/RC71RBSxSVQcbOyubnDf82KDxqUJKSdM7n4Gux/SvgstPJ2f61JTJNRBxFXoJpblASrRMdW8q1keFIlIMCLr6gtMLknuxdjf+T75h9REXRF+OUkpcw0owqmrxz19I3X3PxOQPl1fT/NX35B6xbyrE7Zekb74xmTtuSfaBu6N5nK1mTN9yHO7Rwxy3GWMDlsp4kOEIWnF+rPJ18Ul4jtovdTINULQCD1peLkLTQNdxbzjCsRNfxcBGjYApBgR6YR6hpasAa4pno1EOy3uj5VOBNAzq7n2G2nueBml6zhYunYKLTyK8tpL6/3sRAN+rH+KZOT36Re0qKWDYK3Mc2TENdvIvOKHzTO2QmWR4p1Qb4ctgiDUn/Zvgd79ghMJoLnOK3nvOcXj+mng4JkXi6Pl5GP5mhMuF0ehn+CtzzB33XZFawRR9BqWAKQYEWpIBuVvIPngKOYfs0Z0iJUykroHKS27D/8k30TS9pICS2y4hfctxyHDYXO2YmUHRdedGla/wqnX4Xv0Q79+OSIncg5Hg7yuof/jF6NR1omgpNsL3/e9j/B98CcEQuHRkQR7evx2B97S/9LosgwWtwAPhCBKBYSndzV9+n2KpFH0JpYApBgQxU5AOpnjCFTUEvv2Z8Op1hFeuo/Cy03tCvHYJ/r6C8jOvjq6OklKSsd3mlNx8YXTURLhclNz5T0RWhjmdgRmEu+qqe0mfMLZX5R3sCLeL5gXOXeTFLhSpd7RQpKtIKan5zwOm8iVAZKaTd+KheM8+plfaH6xEA3IbRjQIu2tUaYqlUvQllAKmGBDETvHUJlwu+ONvVJx3AzJixm3rTQUstGw1606eRaSyBgBpSNwjSkjfbGzM8QBoOVmtMv/8J2tPmYXn2APwnDi91+RVmIp+MraCwu1Cy8sxfc1JiVFTj16U3/0CxqH+0VcJNzSa8UGFIPfYA8m/YKbyS9XD6PkeEMJcGGSNgLmGFqVYKkVfQilgigGBZhthMBzY2ERHJjSBbA722shEeNW6GOWLNDeunCzCqyuof+Rl0rcaT/ZeO7Tmr6ih/sHncW86hpxDpzL8jXvQPTk9LudAxGhqpvmLRaYiZRiOFjCI7Ez0vFyM5oDjVad6oddUwDDtwHpKAYvUNhD84Vf00iJqbppL42sfonlzkQV55B46lcIrz1LKVy+g5XsQlrlAJAmzCMXARylgigGBXpjcFKQ+pJCsKduiFeThe/5djNqG9Uafupvw2krWnjyL8NpKAERGGiV3/5v6uS9FQw0Fv/uF7L12QEYi1N4xj4bn3ybn4D3I2nVrhBBK+eoCRkMj5X//D2D2G0cKmBCMePfBpNrVC7yE/rC5v+hmZDBE3YPPU//oK0SqatGLvBg+P8Ja6Zk+cWMKrzgjOo2t6Fn0fI+5oCYcSXn0A0XfRClgigGBXuCN/nbysHMNLaJkzmUA5M6YFjPV1xOEK2riBj3O3G5z0saNYe0Jl5F30nSy9tye5m9+ImPyZujFXoY9f7uavugmYuwFHTruBfC9/AHpk8fjHjnUWbtF3tZ2u/mFLMNhGt/5jNo5TyCFMA3tESAlQtPQ8nIoue1iRJq7W9tVtI9WkAeGNMOcKQVMEQf1KaQYEMSEeknyYacPLYoJ+dPdRGrqWXfqFYSWrUYacr2gx3peLkMfu45IZS2r9j+DxjfnA+A5/mClfHUjwu0ie5+dyTl0T/JOPNSMi+iApnc+jfEgnyix0+S1jsu3K89HC1i1/5n4nn2LvNPNFbFaZgZGy/S2EBTfcD6uYSXd1qaic/R8D2giaoQvLfcyCkULagRMMSCICfWSpL1Fzc0Pk7n7tuQc2G7UpqSJ1PtM5eu35chgCKOhCc/ZR0eDHrcE66299REidT6GPHw1aWOd+TJTJE7xLRclXVYr8ialQMUsFKl0Xr61cITah1+i8bUyhj50Na7hQyi++ULSt9jEfMlLSe0DzyHSzdim3jOOVA5AU4DIzjSvgQSjOYBsakYof30KG0oBUwwItNxshEtHhiMYDY3IYMjxdEuyYWY6w/A1UX76lQR//hMZCGLUN6J5svG99B45h+9N+Lfl1N7zDEMfv46Cy05DuNRt2ZdJNmpCjJ1ikqO0kapaSs+4har6JkRGGsElS8ncbvPo/vDKdTQ8/WbUyD5z563IO/3wpNpSdA0hBHpBHtLXBJgfhsphssKOetIrBgRC09Dy84hUVAPmCy7RaTv/F4sI/baCwI+/47Yelt2F0dTMujOvJvD9r2aC2417wxEYDY3gdlNz7QNEauoovPps9Lzcbm1b0TPkHrWf6V7AId3hDV8Gghg5mWguF0LTaHzp/agCZjQHqDjvBrNvAa7SYoquP6/X/I0p1kcvyIsutjGq62DEkBRLpOhLKBswxYBBz29VYJy84HzPvk31dQ/Q/OX3iOzuM8I3mgOU//0/BL5ZHE0rnPU3hj52Henbbc7Q+68gbfONKH36FjImbdpt7Sp6Fi0zHaPeeeB2uwJmJLkKUh9aRNV5R6B7PXjPOY6Cy06L7qu+9n6CP/8JmHZuxbdcFOMAVtH76PkeZL0PgiHlikKxHmoETDFg0Aq8wDLAmSF+i3G0cLtwj+geQ2UZClNx/o34P10YHYEouPgkcmdMo/bep3EPKSR94sakT9y4W9pTOCO0dDX+z7/DqKrFvfEosvfeOeGywcV/UHvXkwx95D+O2tRiojXUOioLEF5XxbrTZhM+dzoj3n8oxg9Zwwvv4nvxveh2/iUnk77FJo7bUHQvmuUNXxpSrYRUrIdSwBQDhmTDEWVsOwEMAwzDDHZ9fNeCE8tQmPLzb6TxjY+R/gCaN5eCC2eSOWVb1v71n2h5uRRe/fcutaHoGoFvf6b6mvsAyN5/N0cKmF6UT6SixnGbMf2zui668CJRGl/7kPStNgVNi1G+Aov/iB4LQPaBu5N7ZOK+zRQ9h15gecOXhhoBU6yHmoJUDBhijZxrEy6XvffOFP77b+SddnirZ/okkZEIlf+6ncZXPkD6mwEJ6WnkHL4Pga9/IvuA3Sm559+4insnDI0iPrrt/DsdjdKKvEnZcGnZmVHP6DIQRDb6EyonpSRcUY3vpffJOXRqzL5Ivc8MpWW5T3FvPJrCWWcoT/d9BC0/D+F2ITQdQylgijaoETDFgCHWF5jzh51ekIfRBX890jComnUXjf/7BJGVgQwEISMdPTsD/yffkDN9aueVKHoF16hScv4yDb3QS9pGztx9aLnZ5J0yw/EIFlhG2Vbg9Uh1XUKOf4OLlrDm+EvRiwti0qVhUPnPO6JOfbXsTEpuuwQtK8ORTIqeQy/wRN2BRGrUFKQiFqWAKQYMWhdXmYn0NNImboxsanZcVkpJ9TX343v5fbMuXSdj560I/b6C7IP3IHvajo7rVPQc7pFDKZp9VlJlhRDknTIjqbJ6obdVAauqxT2qtNMy9fNeQ0YMIuuq8D33Nuy1BQB1D76A/8OvovkKrzkH95hhScml6Bn0/DxkOIz0B9QUpGI91BSkYsAQa2NTm1QdpY9d59hXj5SSmhv/j4Zn3oymZR+2F+4xwyn5778o/Oep0a9gxcBg7Un/JvDDb47LafnO7BRlJEK4vBqjug5pGOQeeyAA/s8XUTvniWg+z8xDlJLfB9EKPIBAhsLKCF+xHmoETDFgsC+5d2KEL4Mh6p94HaO6Hv9X31PkwEBeSknN7Y9Re7/ledww0PM9FJx3PLrtZasYWIh0d1L2gnY7RSMB2zOh6+Qevg8EgmTtuT3p4zdE+/lHKm972Fw4AmRsvRn55x7vWBZFz6Pn51nhiKQaAVOsh1LAFAMG+xSko69NIai5ea5Zrt5HcMlSSNAdWN19z1B3z9NIXyPS14hIS8M763Q0r/K/NJDRC71J2fTEOmOtTahM40vv4fnrwWTvtysyFKbgvpejU+x6kZeimy5EuNWjvC+itayCFM4+ChWDA3XXKgYMyS7zF24XmicHo94HQjONmjcp7rRc3f+9SO2cJ83VjlICgtyj9sNzzIFdOQxFL9H0/hcEvv+VSGUNuUfuR/rEjRIum7bZWLRM58buTl2lSClJ23RDsvbc3rQzvPH/SPtjNaSlga5TfNOFuEoKOq1HkRq03Gw0twtR6EX6m82FOQqFhVLAFAMGLSsDkZmO9AeQwRCy0Y9IYJUZgOevB4MQBBb+ZCpidKyA1c97nZpbH8EwDKTQEPl5CJeO95xju+FIFL1B49uf0vjahwBkTN7MkQLmOeaApNrUi7zR3wktFAmGyL/gBABq732ahiffiO7KP/c4MradmJQcit5BCIHm9RBauRbhdqlpSEUMSgFTDCiSWeYP4P3bEYAZOBuXDp9/1m7ehufM0EVSSvA1oXtyGP7Ro8jyKtwjh3b9IBS9Qld8gQUWLaH5m5/Im3moo3J2I/yOpskD3/1Czd1PEVz8O0Mfvgb/R19TO+fJ6P6svXbAc6KzthWpQS/wEPp9OQgt6RigioGJUsAUA4q2Clgiy/ztyGCI0OI/2t3ve7WMqivvQUqJrPehFeQx4v2HcRV4oEDZffUnMnfaCi0zA73IS7rDWJxGox//R187VsBiRsAqa9vNV//4q/jLvsRoaKLyynsI2uKJBjYdTfEN5ytnq/0ELT8PhIaUhnLGqohBuaEYBAgh0oUQDwkhlgkhGoQQC4UQ+9n2TxVC/CyEaBJCfCCEGJ1KebuCGQ/SJJmAx+EVa6m59ZG4+xrfmk/lZXcirdVnrjHDGVk2F1ehWu3YH8nccUu8Zx5F7hH7krbJGEdl9cK8pOI5trVTjEek3kfTu58jm4MIXSfw5ffRfRnbTKD6rMOUW5N+hJ7vsVZCGmoETBGDUsAGBy5gBbA7kAf8G3hGCDFGCFEEvGClFQALgKdTJWhX0W2jUMn4AtMK8uI+JJve/4LKS25FhkIYdQ24NxzO0Ln/iXF9oRg86IXepBQwzZsLmvnYNep9yFB4/bo9OQx7ZQ7uTUabC0lc5kRF+pbjKJlzGTLd3SXZFb2Llu9BZGYgMtLVCJgiBjUFOQiQUjYCs21Jrwkh/gS2BgqBH6WUzwIIIWYDlUKITaWUP/e2rF0l2YDcgUVLaHzzEyLl1YSWrbFWNZr45y+k4oKbMJoDGHU+XKNK8Z5+JGv+8g+y9tkZz/EHkT4hcQNuRf9HK8hj5HsPOS4nNA29wBOdfoxU1+EaUrhevuZvfiKyrhrdmwtA2vgNGXLvrIRtGhV9BzMgN6YvMDUCprChFLBBiBBiCLAJ8CNwBvBdyz4pZaMQ4ndgAvBzm3KnAacBFBcXU1ZW1lsiJ0x25TryguZS7z8WLqK+rCShcpmf/UD+w+YKs+CoIfgafJSVlZH28zIK73wOEQqjNTQRHlLAqn8eS92DT5PR2ETghXdY0VBL/eF79Ngx9QQ+n69PXr/uojeOL+PrXwhsNgZpBdhOlGIhcVt99Is33yE0OnbhRvp3v1F04zxkmhvcLkLDi1l2wjSWfG2GHVLXrn+RtW4NXn8zWiDE0kU/plocRR9CKWCDDCGEG5gHPCKl/FkIkQNUtMlWB+S2LSulvB+4H2DcuHFyypQpPSytc3w+QeXL8wEYmeulOEEZm/Rcyue9C4Bn9Agqs7PYIW8I6x66FyMiIS0N14ThjHn8OsYV5LH2+fkE0tJACDb/55m4RwzpqUPqEcrKyuiL16+7SPT4au54nMi6KiJVtZT891+ItMSn91bf+SJFB+xN2qYbOJJt7eMf0FxhjoRMHrsJmbtMju7zz1/IugdfJxKRaFmZpG04kqEPX41e1LpiU127/kVj0E35U+9hBEIMz1YmC4pWlAI2iBBCaMBjQBA420r2AW2fCh6goRdF6zYSMXKOR9pGo8g//wT0fA91Dz1P5vwfKH/9QdOha5Mf99hRDH34alylpn+w0seuI/DDbwQW/tTvlC9FK74X34uGFIpU1+EaWpRwWa0gOTuwGG/4tpWQDc++ReWsu5DNzYiMNNyjShny4JUxypei/6EXeE27PxWOSNEGpYANEoS5Zv0hYAiwv5QyZO36ETjBli8bGGul9zvssfacKGCu0mLyTpoOQMNL7+F94m3CgTAyEMQ9Zhilj/5nPZcW6RM3cuS8U9H30Iu8rQpYRY0jBUwv9HboSqL9cuv30eZvf6biktuQjU2AwDW8hKEPXRXXPkzRv9DyzXBEIisjKYVdMXBRCtjg4R5gPLCXlNJvS38RuEkIMQN4HZgFLOqPBviQuKPL9ggtW03z54vQmoOgabhGDmXoI//BveGI7hRT0UfIO2k6RnMQvdCLe8wwR2U9Mw9Bz8tx3GbbeJCBH35j3SlXIBv95uIPTVB868W4hiVmv6jo2+gFeQhLATNq++XEgqKHUArYIMDy63U6EADW2hw4ni6lnGcpX3OAx4EvgKNSImg3YHcLEampR0YiCF1PqKzR1Ez5P25AhsJITeAaWsSQh65y7CNK0X/I3n+3pMumbTgCoznguJx9mjzwzWJ8L7yH0eRHZGUg/c24NxpN1pRtk5ZL0bfQ8nJAM73gy/D6bkcUgxelgA0CpJTLMBdCt7f/XcCZK/A+inC70PJyMOp8ICVGbUPMiEN7SCmpuuoeQr8uM+NJSoMh984ifbOx0TxNHy2g4ek38RxzABk7TVKeyAc5jf/7BP/n31F8/XmOymm2KcjAoiWA6Z5CG1oIwRBD7r+iW+VUpBahaejeXHNE3pCdF1AMGpQjVsWAQ7d5w0/UDsz3zFs0PPMWRr0Po85Hw77bk77luJg8DY+/hv/DBaw7/UrqH3y+O0VW9EP0Im9S09z2/tmClpuN55gDyNxxUozSrxgYaPke0LRoFA2FAtQImGIAohfmEfpzJWA5Y9244/yBRUuovv5BCIaQoRAiI53QBrEG9+G1lfg/X2RuaBrZ++/aE6Ir+hFaQZLhiGzxIAG0rEyG3DsLaRhk7bZN9win6FPo+Xng1tWouSIGpYApBhyazcbGqOl4hCJSU0/FBTeZIWE0AS4XWk42ms8fk881tIjhr86h4ck3MOobcQ1XricGAqHla6id8ySRqlpcQ4souvachMu6SovJ3N25rZZe6EUvyjdXX7p1im650FzkoetoWRmO61P0fbQCD1qmuraKWJQCphhwJBqOSEYiVF56G+E1ph9ardBL/rnHk7bxKJZXrl4vv3v0MAouPaX7BVakDBkK0fjGR4B5fZ2g53vIP+dYx20Kt4vi2y+h6a35BH9dRuVFt+AaXkLaxI0puvIsx/Up+j56vsdc3BMn9qdi8KJswBQDjkSdsdbd9yz++Quj2yW3XkzezEPI3HkrjLzsHpVR0TewOzlNZjpx7YmXJ+VcM2PSpnhOOITmr34k0tCI/9NvydxpkuN6FP0DvSDPdDESDHWeWTFoUCNgigGHFqOA1cbN4//kG2rveTq6nXfKDLL22K6nRVP0MTRPDkXXnote5E1otWxbIlW1RCprYtyfJFx2XRXukUMJLlmK5s0le5+dHdeh6B+YRvhCGeErYlAKmGLAYR8BM+JMQYZXl1Nxya3mFymQsd3meM8+Om5dzQsXE1lXRdbUHRBudbsMNIQQ5BySfCB1vdCb0EKPeKRvOY5hr/wX3wvvJuVPTNF/0AvyzHBEUrmhULSi3iiKAUdMqJc200MyGKLi/JtMP2GAXlxA8Y3nI1zxb4W6u5/C/9l36CUFFP3nH2TusEXPCa7od7jHjkQGg0mXl81BMnfbBldJQTdKpehraF4zHJFWkAdrUy2Noq+gFDDFgKMjP2DVNzxE4IdfARAuneJbL4raAYUraqi++l4iNfUUNNQRHLkh/s++M+uprMU9Uq18VMRSePnpjvJLKQn/uSoa2qrxjY/wf/INJbdf2hPiKfoIeoEHIQQykLyyrhh4KCN8xYDD7mnc7ijT98oHNDz9ZnQ7/4KZZGw1ProtXDpN739BYOFi0v5cg17gxXvmUehFXrL22E65nlCsR/PXP9L0/hed5pNS4v98EWuPu5TVh59PuLwaAN9L75Nz6NSeFlORYlpi1BpN/k5yKgYTagRMMeDQcrMRLh0ZjmD4mpCBIKFlq6m66p5onux9dyH3uANjy3myQQiQEs0fQMvJwnvmUeSd+hciKojugKXxfx/T8PSbRCpryTlsL/JOmp5w2dDS1QQWLiZrz+07zVtzy1yCi/8AoO6B5/AccwDhlWvJ3HmrpGVX9A90by4AQqgxD0UrSgFTDDiEEGj5eUQqzFGG0Iq1VPzjBmSzOfzvHjOcwtlnrueVWug6JXdcipabzYIli9lYNx+Wwu3CVZyPYmASqaqjecGPAIRXrXNUVi/0JhTuSgiB95xjKT/jajNeaUY6Wm4WRdeeqxZ3DAKE24XmyUnKZYli4KLufMWARC/wRBWwiotuIbR8DQAiM4PiOy5By8mKW65lJCPcWInQ1NfqYMAeGihSWeusbEHeemWCvy2n+bNv8Rx/cEx6xk6T8Mw8hLTNxiL9AcKrytXo1yBCz/ck5WtOMXBRCphiQGJ3RRH6dVn0d9GVZ5I2dlSHZcOr1iGUseygIWObCQx58Cr0wjx0h6sR08aNoeT2SwAwQiEqL7qFxnc/h0iE0J+rkKEw4VXleE44hIxtJtD05nyCP/yGa/gQZCi8XsB3xcBFK8hTo52KGFRvUAxI/r+9+w6PskrfOP59Zia9V0JRUVBQUbHr2rBiW+u6igV19ecqYu8dFUGw11Vsq1hx7WtvWNeC7lpQUWx00nsyk5k5vz8mjPSQkMwkk/tzXbnMW+c+0p6c97zneJZ6E3KJrFH7k7H/rm1eW37V3fT5/Gsqv11AzvEHLzNbuiQeb2EeaR39NU5OoumDL6l97N8EF5QSrq6DpCRwjsZ3Pyd3zJFk7LcLyZsMwpORxoC37u/c8NJjdGSyXklsKsAkIS09FxhAyuYbkX/h39q8LvDzHJo/+QpPIEDtwy+SPWr/rooo3dT8Q84kXBuZJ67f87fjzc5c5vi8kadE1/Qb8PoUkoeuT9GN5+PrV0xwQSkLDj+HtF22JXfs0aRsMijm+aV78uSrAJNlqQCThLR0r5UnL5uimy9co+7/wDez8WSkQSCAb0AffP2KuzKmdEOhssroRL2EV5y5PFRaucyiyks/RkzeaCD9X7qLpIHtW9hbEp960mV5GmUsCSl97x3xFubhycqg+KYL8JUUrtF1KZtvhKWlEM5Mo/iOS7o4pSQiFV+yMhn77RxZE1KklXrAJCElrVPCgDfvA2jXwNekDQYw4M37ee+D9xnaxmB9SUz9nrsdWhdN9mSt+LZs/1fv+WPD541VLOnhkgetyzrvPAjJU+MdRboJFWCSsDr6xpEl+SIL50qv1Na6jGvamyqyPL0FKUvTvzIiIiIiMaYCTERERCTGVICJiIiIxJgKMBEREZEYUwEmIiIiEmMqwERERERizJxbcaZnkbaYWR0wK945ulAhUB7vEF1I7eu5ErltkPjtG+Kcy4p3CIk/TUoiHTXLObdNvEN0FTObofb1XIncvkRuG/SO9sU7g3QPegQpIiIiEmMqwERERERiTAWYdNSUeAfoYmpfz5bI7UvktoHaJ72EBuGLiIiIxJh6wERERERiTAWYiIiISIypABMRERGJMRVgIiIiIjGmAkxEREQkxlSAiYiIiMSYCjARERGRGFMBJiIiIhJjKsBEREREYkwFmIiIiEiMqQATERERiTEVYCIiIiIxpgJMREREJMZUgImIiIjEmAowERERkRhTASYiIiISYyrARERERGJMBZiIiIhIjKkAE5Eeycx+M7O94p1DRKQjVICJSEIzM2dmg+OdQ0RkaSrARERERGJMBZiI9Ghmtp2Z/cfMqs1soZndaWbJrcfebz3tKzOrN7Mj4xhVRCRKBZiI9HQh4BygENgR2BMYA+Cc27X1nC2cc5nOuafiE1FEZFkqwESkR3POfeGc+8Q5F3TO/QbcC+wW51giIqvli3cAEZG1YWYbATcD2wDpRP5e+yKuoURE2qAeMBHp6f4B/ABs6JzLBi4FLL6RRERWTwWYiPR0WUAtUG9mQ4HTlju+GNgg5qlERFZDBZiI9HTnA0cDdcB9wPID7ccBD7e+JfnXGGcTEVkpc87FO4OIiIhIr6IeMBEREZEYUwEmIiIiEmMqwERERERiTAWYiIiISIxpIlbpkNzcXDd48OB4x+gyDQ0NZGRkxDtGl1H7eq5Ebhskfvu++OKLcudcUbxzSPypAJMO6dOnDzNmzIh3jC4zffp0RowYEe8YXUbt67kSuW2Q+O0zs9/jnUG6Bz2CFBEREYkxFWAiIiIiMaYCTERERCTGVICJiIiIxJgKMBEREZEYUwEmIiIiEmMqwEREJK7CdQ20LCjDtQTJePsLXDgc70giXU4FmIiIxI0LBik9cyJzdz6O2qdfJ/3jb2h6L3HnGBRZQgWYiIjETcUVd9Lw+kcQDlN18yPU77YlNfc+TTjQEu9oIl1KBZiIiMRNy4JSvHnZeDLTyTn+IAJD1iUw+3fm/ulYAj/PjXc8kS6jAkxERGKu6T9fEVxcQclD4+n34h1kH38wuaePIvvZ9wg3+XHNfuqefDXeMUW6jAqwXsLMpptZs5nVt37Nat2/g5m9aWaVZlZmZk+bWd945xWRxFX/3NuUX3ILocUVmMdD8qB1yb/gRMzjoWH3LTEzwo1NNL33uQbkS8LSYty9y1jn3P3L7csDpgCvA0HgTuAhYN8YZxORXqDq9sdoeGk6JQ+OJ2mDASscDwxZl6y/jgSvl5bf5mMe9RNIYlIB1ss555bp4zezO4H34hRHRBKUC4UIB1poePUDPDmZeHIyV36iGQVXnoZrCTJ/v1Pxf/0jKZtvFNuwIjGgHy16l4lmVm5mH5nZiFWcsyswM3aRRKQrOX+AwKxfI9+HQnHJEG5oonTsBBafcDnBuYsI/PArC4+7hHCzf5XXWJKPnFP/SuDnOTFMKhI75pyLdwaJATPbHvgOCABHEXnUONw59/NS52wOTAcOds59sJJ7nAKcAlBUVLT1tGnTYpA8Purr68nMXMVP6AlA7eu51rhtzpHy9c/kPPUO/o3Xo2nboWS98h8qzjwCfN6uD9rKU9NA/p3PEOxXSEv/QrKfeQ9zjpoj96Rhz61XOH+l7QuFwZsY/QW77777F865beKdQ+JPBVgvZWavAS875+5o3R5M5NHjxc65qW1dP2TIEDdr1qwuThk/06dPZ8SIEfGO0WXUvp5rTdtWdcdjNL7+MfmXnEzaTlviQiHKzroeT142BdeMxcy6PixQcc09eAtyyBlzFGZG43sz8M+YSe65o1eaYfn21U59kZoHnqPk0etJGtAnJpm7kpmpABNAjyB7MwcYgJmtB7wFXLsmxZeIdE/hhiaq73qCUE0dWUftT7/nbiNtpy0BMK+XwknnEvj+F+qff7vLs/i/mkXLvMXkX3oyuaePihZb6bttQ955x69RAVh108NUXP8AgVm/Un3PU10dWSSmVID1AmaWa2YjzSzVzHxmdgyRsV6vm1l/4B3gLufcPfFNKiId4Zyj/uX3mf/n0wnOWwyhML6iPCxp2fesPBlpFN99BRkjd6Yrn340Tv+cxWOvi4w983b8cWfKNptiZlhqCvVPvUa4adVjxkR6Gr0F2TskAeOBoUAI+AE4xDk3y8yuAjYArmr9HgDnXGIOoBFJMM45QgtKqXvs3xTddAGpW2682vN9xfm4cJjFJ1xG3kUnkbLJoE7NU/fsW1Tf8ThFN5xH5YT7aHr3MwquGrNCMbgm0nbZiqT1B5C0QX88+blYanKnZhWJJxVgvYBzrgzYdhXHrgaujm0iEVlboZo6qu98AvN5yb/oJEoem7TG47rM4yHr2D9TesYE+j4+GV+fgrXOs6RHzdevmD4PXEPVxPto+WUeLb/MI1RaSfG9V7V73Jl5PPR79tZo8Racvxhf/54/DkwEVICJiMRc00f/pf6Fd6ED00LkLVjAgtufx//Nj2CGJy+b+pemk7b95suc5wItNH/xHQCW5CV1m2Er3MuTmsL8kaeQtsf2azUo34XD+GfMxFuYR9IGA3DhMC2/zodwGDweMg7eo8P3X1J8hesaWHDEefR79lZ8JYUdzirSXagAExGJoaZPvqb09PG4YMfm5EoLBGgOO/B6cNV1hGvqACNcXbfMeS4cJlxRHdnweAhV1KxwL+cchMI0vvExzrkOFUku7HC19WBGsLKGwE+/R+/tSU8la9QBZB6wa7vvuzxPVgaZh+1J7T+fJ//ik9f6fiLxpkH4IiIx0vLrfMrOmdTh4ivc5McCLXhSUzDf2v/8bGaYz0u42Y9raOrQPVxjE3g9WHbGMgWcmeGaAwS++REXaFnrrABZxx1E3bTX8c/6rVPuJxJP6gETEYmBUHUdi08fT7iuAQBvUT5555+ArcEEoy4YpHnGdzS+/hGVOw5l4312x4VC+L9qnYvP4yF1+NBlr2kJRh5TAubzrXY5n3BDE1U3PUz6XjuQ9qfha9Se4KJy8Hjw5udEJkltCWLJSZFjC8qouvlhAJpnzKTi6n9QMP6MtXrM2fjeDKpvm0q4oZGGVz8gZcjADt9LpDtQASYi0sVcS5Cys68nOGchAJaaTPGdl5Ky6eA1ur7+penUPf4yzh/AJW9Oxr47A5B5wG6rvS7zzyNWuj9UU0fDKx+QPWr/6L7UrTdl0fGXkHX43qRsMWS1923+YiaVE+8j/7JTyNhnJ4JlVSw69iKyjz2QrGP/HCm0nKPqlkci+V94h6T1+5Nz8uFr1N6VcX4/gR9/x5KSqJv6EtnHHIivKK/D9xOJNz2CFBHpQs45Kq6+m+YZfyyxWjjxnDUuvoBI8RUKY0k+LBxeqzwtvy1g0agLqbxuCrWPvxzdnzSwH33uu5rkoeuv9vqGtz6h9OxJFE44m4x9diLc7KfszAkE55dSOenBaM9X9t8OJfPQPaPXVd06lYY3Pu5w7vTdt8dbnI+lpeDNz6b2kRc7fC+R7kAFmIhIF6p94Fnqn38nup13zmgy9t5xja93oRBpe+1I8uB18GRl0LjLFmuVp+ah52hp7YmrmvwgwfmLo8eSNxqIawmy+JRxhJYb1A+RYtKbm0WfKeOiM+y7Jj94Wv8p8Xiib2OaGQVXnkbqtn+8fVl+6a34v53dodyW5KP4losY8PYD9Ln/Guqff5twfWOH7iXSHagAExHpIg1vfEzVrX+s7pV56J5k/+3Qdt3DvF5cTT05pxxByeOTCWelr1Wm/ItPJmXYhlhKMoWTz11hXi1PZjrJQ9an7Ozro4PnXThM5Q0PUfvwC6RusykpG28QPd+bl03Jg9eSsf+u5F98Emk7b/VH9iQfRbdeRNK6fSP3aQ5QOva6yPixDkjZYgje7EyS1utH2o5bUP/S9A7dR6Q7UAEmItIF/N/OpvzSW6PbqdsMo+DK09o9ED3c5Kfu2TdJ3W6zZQqfjvKkpVB0x6WUPDyBjH12Wuk5uecchyc7k4oJU3CBFsovvJnAtz8t80hxaZaSTOGkc8g++oAVjnlzsii++wo82ZHFNULlVZSePp5wB9+6XKLgilPJOnLftbqHSDypABMR6WTBReWUjr0O1xwAIGndvhTdelGHluNpeOV9UrYYStI6JZ2Wz1eUR8qwVY9BM4+HwuvPIevQvah95EVcOEyfKePw5mQBkbcyV7hmNYVl0sB+FN1yIeaLrAsZmPUbZRfejOvARLRLeLIyaP7kK+qf6/qFxUW6ggowEZFOFG5oonTsdYTKqwDwZGdSfPcVeHOz2nUfFwxGpqzwGDknHNwVUVf4vPrn3o4uKeRJTyVliyFkH38wRTeej6VE1mFsmbOQ+QedQdNH/23X/dO235z8q06Lbje99zlVNz/Soayh6jpqHnyOsotvoXzcXZ02z5hILKkAExHpJC4UouzCmwn88CsA5vNSdMuFJA3s1+57Nb7zGXN2P5HANz/hycvu7KjLCNc1UDpmPOVX3EHNP55a5pgl+bDWQfbhugZKT7+O4JyFLB4zvt29T1mH7kXOiX+Mgat9+AXqnn693Xmb3p9B1c0PE66sxTU2U/fMm+2+h0i8qQATEekkVTc/QtN7n0e38686bYU1GtdU3ROvEC6tpPaRl2h49YPOirhStY+9TNPH/wOg+u4naf5i5krPC5ZWEm6MjN0yr4ekDQa0+7NyzzmO9D13iG5XjJ9C03++atc9MkbuFJkAFrDsDJqmf97GFSLdjwowEZG1EJg9B4C6p1+n9uEXovtzTjyUrEP36tA9ww1NhMoqcYEgpKWQdcTITsm6KjknHxadAT/3tCNJ2WqTlZ6XPGgd+j5xAynDNqRwwlltTti6MubxUDjxbJKXvFAQClF27mQCP89d83ukJJM7dhQF145l3Y8epc+9V7U7h0i8aSZ8EZEOavr0axafdCU5p/6Vmvueie5P32N7cs85rsP39WSkkT5yZ3wD+5O23Wb4Sgo7I+4qmc9H0U0X0PTpN2TstcNqz/UV51Py2PWY19vhz/Okp1J852UsPOoCQmWVkUebY6+j7+OT1/geWX/94w3I4OIKyi+6mT4PXLNWuURiST1gIiId1PjWJ2T8eQTVt0yF1jf6kjfegMLrz4mOm+qo5EEDyD//RLJHH9QZUdvkycpYafG1ZFD+0jqjyPH1KaD4rsuwtBQAgnMXUXrWRGhZ8Q3LtniL83EtQRrf/M9a5xKJFfWAiUiv58JhWn6d36636Vw4TMYBu1J28S2QmowLh/EWF1B852V40lPXKk+wrIr0fXde6yJubQV++JUFfzmHfi/cQfKgdTr9/imbDKJo0rmUnnU9OIf/y+/JDbfgH9D++c7S99uZqlum4l2npF3/37wFufiK89v9eSJrSwWYiPRqLhik7OxJNLZjILdzjnBVLZaTicfrxcwI1zeSPWo/fH0K1jpT2dnXk/P3I0jfdZu1vldHuVCI8qvuAmDBwWdQ8sgEUlcxNmxtpO+xPXnnjqbqpsgakumffcfCI85tZ9Yw4aZmCIZYeMS57StcPR4KrxlL5iF7tOszRdaWHkGKSK9WOenBdhVfAK6hCcIOGpoij+jMKLhqDHWPv0ywtLLDWZo++i+L/nYFLb8vILV1UHy8NLz6IYGZkXUbPZnpeHIyu+yzsk84hMzD9+7QtS7QQriyBpqaIRzGObfSx6arFA5TMe4umj/7pkOfL9JR6gETkV6r9rGXqXvileh20sD+WGryaq9x/gDNX3wHHsOFwljYUXDVqWT9dSThhkYqJ0yh+NaLO5bn0ZdofPsT8Hqpe+Qlctq5bmRnyjhgV4JzF+L/7w/knj6K5EHrdtlnmRkFl/8dT2oKC9/6kMy8vDW+1oVC+L/4/o9Z9f0t+DYYsEYT34bKKglV1OCCIUrPnkTfxyd3aM42kY5QASYivVLj+zOonPRAdDtj350pvOG8NtdqbJm3iPIr7sT/+bcAZB62F5lH7ANAzt//SnM757RaIrionKYP/4slJ0FyEultvI3Y1cyM3NOOit3nJfnIv+Rkvt5xMJuOGNGuaysnP0jgh1/JGrU/rrGJ+mffouThCW1eF1xUzsJRF0bexKytp3TMtZQ8MTm65JJIV9IjSBHpdQI//kb5BTdBOAxAyhZDKBh/RtvF128L8KSmUPLgteRffDJpO25BwRWnYma4QAuVV/+DsnMnU3reDQQXlrUrk6+kkKIbziPziJFk7rszSev27XD7epu8846n5MFrydh7x0jPXVkVzTNWPpns0nwlhRTfcWm017NlzkLKzpqE68CbmCLtpQJMRHqVYFkVpadfR7ghMqO7r28RxbddjCc1ZbXXOecov/x2mj74EjMj+9gDKb73qugC2xXX/IP6F97B+QM0vvExZRfc1K6xSC4YpOrGf5J97IEU3nh+xxvYCy09LYb5fBReOxZfv6I1ujZl2GAKJ5wd3W6e8S0VV9/dvnFkIh2gAqyXMLPpZtZsZvWtX7OWOranmf1gZo1m9q6ZrRfPrCJdJdzsp+ysidHeKU9GGsV3XYa3cPVjjlw4TOMbH+Oa/WQcNCK6f+m37XL+7y94siMD1TMOGoELBql76rU1ztb47ud4SwpJ2WRQmz1xsnqpW28KztHy+4I1Oj9jnz+Rd9ax0e3659+h9qHnuyidSITGgPUuY51z9y+9w8wKgWeBk4GXgGuBp4D4DkAR6WQuHKbi8jvwf/1jZIfHQ+GN55O80cDVXxcKsfiMifg//zbyuGoVk5AmrdeP4lsvwj9zNtknHELw1/nteruy7olXyD7mgDU+X1at5Zd51D71KqH5pRTfedkaXZN98uG0/LaA+hfeAaDqlkfwrdu3zZUBRDpKBZgcBsx0zj0NYGbjgHIzG+qc+yGuyUQ6UfXdT9Lw2ofR7fyLTiJ9l63bvK7qxn/S/P4MXDhMw4vvkrrdsFXOM5W63WakbrcZAEkbDCBngwH4v/6R5GGDV3mN//tfCJVWknvmMaRsOrgDLZMlWuYspOKae2j+5Ct8g9bB1TYQmPUryUPWb/NaM6Ng3BiC8xdHxo85R/nFN+N7eIJ+XaRL6BFk7zLRzMrN7CMzG9G6b1Mg+tqWc64B+Ll1v0hCqH9pOjX3TItuZ43af416m1ygBf/XPxKuawAzvIV57Zrk0zlH1c2PUH3Xk6s8p+beaSz+v6sou+jmyPQW0mHevGz8X0V+bgz+PJe03bam5oHn1vh6S/JRdOvF+FpfgHDNAUrHTiC4qLxL8krvph6w3uMi4DsgABwFvGRmw4FMYPnXtWqAFd7DNrNTgFMAioqKmD59ehfGja/6+nq1rwdbun3JP82j4OYnsVDkjcfmTQby2w6DYA3bn5NqpPQvpGWdPvw+fMAaXweAc2Rl+ci57l5+rCmnaefNlznsrail+JX38dY00PLzHL745UeCzaufyLU3/dp1RM4Wg0j/4CuatxjMvHVyCBfnM7Od9/OO3puiiVPxNPlh/iJmHX0+5RcejWtjjjiR9lAB1ks45z5davNhMxsF7A/UA9nLnZ4N1K3kHlOAKQBDhgxxI9o5V09PMn36dNS+nmtJ+1rmLmLhFQ8S9vrAC0mD1mHw1OvxZGWs0X0CP/3O4p8W0veVe/FmpEffeFxTNQ8+R9W7/yOckUbxP19lwNGHkbTBgOjxUHkVpTv8h+aP/kfmbtuy0dF/WeO2Jaq1bV9w6DAIh/H1K45sLyqn8Z1PyT66fePrmgYOpvTUq3HBEMml1RT9+3OKbru4UxYiFwE9guzNHGDATGCLJTvNLAMY1LpfpMcK1zVQevp4wlW1AHjzcyi+6/I2i6+lpx9o+XkuuWccjS83u93FF0DGgbvhLc7HUlNI2X5zLHvZz/YU5BKurKXksUkUXH16u+8vK/KVFEaLL4i86Vp91xO0zF3Urvuk7bA5+VecGt1unP45VbdO7bScIirAegEzyzWzkWaWamY+MzsG2BV4HXgOGGZmh5tZKnAl8LUG4EtPFW7yk/bh15SeM4mWX+YBYMlJFN9xKUkD+qz2WhdoofS0a2mc/jnh+kYy9t2ZrCNGdjiLrzif4rsuJ+uIfSh58FrKzp1M4MffosfNjD5TriJ1+83azCYd48nKIOvI/ah98Nl2X5t1+N5kn3hIdLv2oeep/dcbVN06ldpHXuzElNIbqQDrHZKA8UTGepUDZwCHOOdmOefKgMOB64AqYHsiY8REehT/zNlUTnqAUFUNOU++TcOrH0ZnNC8cfwYpWwxZ7fXOOcqvvJOmD79k8djrmLfnSfi/mrXaa9ZEysYbUDjudDwpyWQduhfll9wazVU37TUsI03zfnWxzEP3pPnzmTh/oN3X5p19HOm7bwe0/h45/0Zqn3gFT97yIzdE2kcFWC/gnCtzzm3rnMtyzuU653Zwzr251PG3nHNDnXNpzrkRzrnf4hhXpN2aPvyS0tOuJWXrTWl6+xM8/gCetBTCtfVkHXMAGfvv2uY9wpU1+P8X6fh1Tc1YZjrJm2/UqTkzDtkDb0kRVbc8QvP/fqDqjsexFA3s7gou0EL9C++y8KgLKL/wJvq9eEeH/l+b10vhpHNJ3ngDCIaiy1clb7ge/pmzOzu29CIahC8ibWr5bQHVdz1OuLYh3lFWEKquw//FTFK22oT6p16l8YMvsYZmnNdD8vCh5F98MtX3Po0nPZWso/aj+dOvqZ36EgBpO21J9uiDAPAW5NL38cksHnMt/v/9QPFdl3d6z5SZUXDVaczb/1Sq734S3zoluPpGaGMZJGm/cH1jZEmhQAsA/m9+ovb+Zyi46rQ2Vz5Y2b3S99qBUHk1wdIKQqWVzD/kDFwgSPru22I+/VMq7affNSKyWsHSShaddAWhxRXxjrIM51ykN8LjgaQkAt/9HDkQDGHBEHiMlCEDMTPS99qBquvvp+6ZN0n903CaPvovAN7i/GXu6c3PoeT+a2j+7/ekDG178s6OCHz7E67Jj/MHCJVXEVxc0e6CQNrmzc8hY79dqH/hHSw5iZaffsdbUkjtIy+Rd+7oNb5P4Oc5lJ42nqwj9qHo9otZcNAZuMYmXGMTeL00vvs5nvTULmyJJCoVYCKySuEmP6VnTOiWxZerb4RQGMvJxLzLjabwGJ7srOiUAcmD1qF4yjga3/6U+mcjT99deMXFllvmLiI4Z+EazZDfUSnbbEryRusR+OFXMvbZSbOsd6Hs4/5M0vr9yTxsL7z5OQQXlrHgL+eQfdKheHNWmOpwBYGffmfxyVeSd94JZB60O/UvTceSfDgMfF4sLRXX0IhLS9E4Pmk3FWAislIuHKb8stsILBnn4vVScPkp+PoWxTVXuNkfmdXeOXJOOxLPco/vQrUNfPv9d2yx/bbL9CyZGRl77UDKsMH4v5pF+eW3Y8lJOH8gOjao6uaHSd54EGk7bdll+b3ZmfSbdjOBn34neUOte9+VkoeuT/JSPZm+vkVkjdqf4NzFbRZg4SZ/ZH3P2y+NvsCRccCutMyeQ82Uf5G2x3Zkj9qf4MKy9v2Z2OWFDrVFEo8KMBFZqeo7HqfxjY+j2/kXn7RWUzJ0lpa5i0jddhh55x4PXg+Bb2eTstxg+eb0EGk7b7XS630lhfhKCkkZNpjKyQ8x/5AzKb7tYsJ1DQS+nU3hxLO7vA2W5CNlk0Fd/jmyoryxR+PCYVxLcJVzu9VOfZGG1z+mZOrEZd6eNY+HvHNGR9b83GFzzOvFhcPUPvwC2ccciCUnxaoZkgD0FqSIrKD++Xeoue9f0e3sYw4ke9T+cUwELb8voHLi/fgG9CH/opOwJB/Vdz7BwmMuovaRF5eZQHVN+Pr3ofi2iym44lR8fYuoe/oNcs8+boUeNUk81bdMpfbhFXuiXDhM5eQHqXv6DYomn7vKx4ppO20ZfbxtHg/Nn35D/YvvdmlmSTwqwERkGc0zZlJx9d3R7bRdtybvwhPjmAj8X81i0fGXkbTRetF/FBte+5CaKU+Dc1ROfpDG1z/q0L3T/jQcT1YGhePPIGO/nTsztnQj4fpGah97mfLLbyfj4N2pnfoi4cbmZc5p+XUeLT/9TsnUifj6FROqqaPhtQ9Xe1/nHDl/P4Ka+5/BBYNd2QRJMHoEKSJRLXMWUnrWxOhEockbrUfR5PPiuv5dy28LKD1jAgXjzyB9122i+1O3HUbK8KH4//cDabtsRfpeO6zV52gqgcQVbmxm3j6nEK6tByB79EGkbLkx9c+8QfZxBxGua6DhlQ/IOnJfiqeMw8xwLUHKzplM82ffEPjuF3LPPhbzRPosgqWV1Nz3LwLf/ARJPvpOnYivfx/8//2B1G2HxbOp0oPobxwRASBUW0/pmPGEayL/SHkLcym+8zI8melxyxRcVI5vvb6UPD55haV6vAW5lDxwDdX3TCPnpMNUQMkqedJTSfvT8GhvVt3Tb5B7+ihCpZUEF5Wz+NRrSNtxC5xz0R7Wmvv/RfNn30S+f/BZ0kZsQ+pWmwBgKUnUPfFK5PskH84foM89V3ZovVDpvfS7RUSiP+23/DYfAEtJpvi2S6KLGrtgkIaXPyC4qByA5CEDSR+xLfXPvU2wtBIAT1oK2aMPovnL72j+/I+13DMP2QPzeqh75q3ovtQth5K63WbUPvYy4fpGALwFOWT9ZR+aPvwS/8yfCc5bROCHX+n71I2rXCfRUpLJO+vYzv8fIgkna9R+BH76naxR+5P55xF4MtII9y1i/kFjyTnhkOiEvEtkH3cQ/m9n0/TeDHLPOCZafAF4c7JIWrcvLXMW4lqCBH6eS8omg6h97GV8JYWk77l9rJsnPZAKMJFezjlHxXX30vzp19F9hdedGX37K9zkB+do+uALfOuURK5pnV3cBVpwzf7IeUsuDoai+yIHwjiPZ5l9Sx5xOn8gut81B6LHXLMfX98i8s4ZHX3s41qCBBeWkbRu3879HyC9QspWm9Dv+duXGVgfqqyh8JqxK31j1pOZTvHtl9Dw2kdk7L/LCsdzzxmNJy2F5GEb4s2NTGnh619M9R2PkbbHdpoXTNqkAkykl6t9+AXq/xVdGpTcsUeTse/OBBdXUHXTP3HNAYpvv4SiG89f4dqsI/ddYV/qdpuRut1mK+xfWU9Vzt8OXWFf+u7bRRc/XsI5R+WEKTS8+iFFN13QpfN0SWJaWUGUtG7f1Rb05vWSecDK1xHN2HvHFfal7bYN1Xc8RtN7M0gfsW3Hw0qvoLcgRXqxxnc+peqmh6PbGQfuRs7fj6DumTdZcPjZ+AaUUHj9OXFMGFH36L+pe/oNwvWNLB4zHv+3WgRZOldwcQX+r2at1T3MjNwxowjOXdhJqSSRqQdMpJfyf/8LZRfdDK3zZ6VsuTGZfx4BoRBJGwyg7+OTu83jvtTthuHtU0BocQUZ++5M8qaaxFTWTqi8iqZPvibzwN0INzZTOvY6Wn6eS8G1Z6yy12tNLBn/5YJBvRgiq6UeMJFeyFNdT+np43FNkfFX3uJ8LDWZiuumEFpcQeqWG3eb4gsgecj69H3iBrKO3JfCa07X+BrpMBcKUX7Jrczb+/8ov/iW1gl+7yPw/S+4QAsVl91GcP7idt0zVFFNqLImut38xUwWn3J1Z0eXBKMCTKSXCTc2k3/nM4Ra31601BTC9Y2kbb85/Z+/HV//lb9xGG++4nwKrjg1um6jSEeY10uotiH6IkjdE6+Qc8oRJG0wAID8y05Z4z8Ddc++xbx9TmHubidQN+216P6ULYYQXFhG8xczV3O19HbqHxXpRVw4TOnY8ST/PJ+wAzwe+t53NclDBuLNzwEij2Zafo1MR+HJzyF50DrL3CNYWknw9wUAeIvySRrYb9nji8oJzl0UOd6nYIWetOD8xQQXlAHg61e0wj92LXMW0vL7Anz9ikgetG7nNFxkKdlH70/Te5+TssUQUrbelKR1Suj72CQa3viYrMP3XuP7mMdDcEEpAP5v/hiXaD4fOScfTs2Uf5F676adnl8SgwowkV6kYtzdNLz8Pp6wwwHJmwwibcctljmn6dNvKL/oZgAy9t+FosnnLXt8+mdUXHMPAFlH7EPBVWOWOd7w2odU3fhPALKPP5j8C5Zdxqj+hXepvvtJAHLHHEXumKOWOV731GvUPvwCvnX70ufuK1Yo8ETWVuqOW9DvX7eQPHT96D5PVka7ii8gugi8JSex/FPxzIN2J1xTjwuHo1OpiCxNBZhIL1H/3NvUP/sWJCeDPwCtcxh1V8E5C1l49IX0e/52fMX58Y4jCcQ8nmWKr47yDexH36duJHmjgSvMgm9JPnL+digtvy8gaT39ECErUgEm0gs0f/4tFdf8A+ccnuwMmvL6kDdoPZIHr7PCud78HFK3iTw2SVq//4rHi/Kjx30rGajvKyn843j/4hWP9y3643jfohWP9y+OHPd4SN9rBxVf0m2Zx0PKpoNXedy1BFl0/GX0mXIVyRsNjF0w6RFUgIkkuJbfF1B69vWEmwOEa+pI3XYYc049kE32G7nS89N23GKFx5JLW9lEqUvL2HdnMvbdeZXHMw/dk8xD91zl8eyjDyD76ANWeVykp7AkH9mjD6Jmyr9WOpGx9G56MC2SwAJzFzL/gDGEqmpxjU1487Lpc+9VuLSUeEcT6RWy/jqSpk+/jr7YIrKECjCRBBVubGbBAacTKqskXFWLC7TQ54Fr8ZUUxjuaSEJxoRCBn36n7rm3cMHgMsc8men0+ceV+Pqt+LhdejcVYL2MmW1oZs1m9uhS+/5qZt+bWZ2ZfWdmh8QxonQC5xylY68jtLg8siMUIvPwvUnbYfP4BhNJQAsOOYsFh55FxRV30vLLvBWOpwwbTPMX30WnrBABFWC90V3A50s2zKw/8ChwLpANXAA8bmYrjp6WHqP2oedp/uwbPNmZAKTusQN97rwszqlEElPSoAHR7/3f/LTSc5o/+4aa+5+NVSTpAVSA9SJmdhRQDby91O4BQLVz7lUX8TLQAGixvR6q8e1PqbrlkchGchKe/FxyTzsyvqFEEljKZhvhLcwjffft8BblrfSc7NEH0fDahzFOJt2ZudaFeCWxmVk2MAPYEzgJGOycO9bMvMA7wE3Ay8CfgTuBIc65huXucQpwCkBRUdHW06ZNi2ELYqu+vp7MzMx4x2i3pN8XUXjD41ggMg4lmJNBsF8hlecsW4D11PatqURuXyK3DXpo+0Ih8HhYYTbW5WQ/+TZb3zv+C+fcNjFKJt2YCrBewsxuAxY45yaZ2ThaC7DWYycBtwGpQAA4orUnbJWGDBniZs2a1cWp42f69OmMGDEi3jHaxT9zNguPPB/nHGaGd50SaAnS554rSR687JI+PbF97ZHI7UvktkFity/c2Iw3I00FmACaB6xXMLPhwF7Alis5thcwGRgBfAlsDbxoZvs55/4Xu5SyNoIV1Sw49CzCNXVYUhKe/sWU3HU53j4FeDLS4h1PRABPemq8I0g3ojFgvcMIYCAwx8wWAecDh5vZl8Bw4H3n3AznXNg59znwKZGCTXoAFw6zaPSlhGvqItvBIFl/3Zeah55T8SUi0k2pAOsdphAZVD+89eseIuO9RhJ5I3KX1l4yzGxLYBfg6zjklA6ovmUqLb/Nx9IjxVb26IMI/jqPpPUHtHGliHSWcJOfpk++pub+Z6j55/PxjiM9gB5B9gLOuUagccm2mdUDzc65MuC91jFh/zKzPkAZMME590Zcwkq71D3zJjUPPYeZYRlpZPx1JJmH7kXFuLsouvnCeMcT6TVafpvP4pOvBMDXr5icEw6JbyDp9lSA9ULOuXHLbd9J5M1H6UGaPv2aymvviW6nj9iWwgln0fjGx+RfdBKWnBTHdCK9S/LgdbGUZJw/QHBBKaHyKryFK5+SQgRUgInEVXBROVU3PERwUfky+4ILygDw9SnA13/ZOXGDC0oJLiyDUBhLSQYgeej6FE46l1BFDen77oy18Tq8iHQuS/KRsd/O4POSstlG0T+bIquiAkwkToJllSw69RqCs+cssz/c2IxriDwxbmlqJlRetezxhiZcYxMAlpaKb2B/iu+8DJxj4ZHn0+f+q0ketE5sGiEiUYXjz4x3BOlBVID1EGZ2zSoO+YF5wGvOucUxjCRrIdzsZ/7IvxMqrcSyMzBPx96HcYEWCi45GV9JIVW3P0bq9pup+BIR6QFUgPUcGwGHAp8Bc4F1gO2Al4jMXn+3mR3unHstfhFlTS34yzkE50fqZVddR+G1Y0nZelMAQpU1hMoivV6evGx8xfnLXBsqryJUUQNA6g6bk7xeP4KLyql76lX6PXNr7BohIiIdpgKs5/AARznnnluyw8wOBo52zu1gZscD1wMqwLq5msf+TWDmz9HttF22Juekw9fqnt6iPPpMGYevpHBt44mISAyoAOs5RgKjltv3b2Bq6/ePojcZu72mD7+katKDeDLScF4P3pIiSh67fq3u6Z85m1BZFekjtu2klCLSUc0zZtL47mf4v/6R7GMPJGPkTvGOJN2UJmLtOX4GTltu36mt+wEKgQak2wr89Dtl590A4TAAqdsOY8Bb9+HxdfznIOcclRPvJ1xV21kxRWQtNH/2DbUPv4D/v9/j//L7eMeRbkw9YD3HycCzZnYRMB/oD4SAw1qPDwGuiFM2aUNwYRmlp19HuCHy9qKvpJCi2y/Fk5qyVvdtfP0jnD9AxsG7d0ZMEVlLycMGR7/3f/tTHJNId6cCrIdwzn1pZhsCOwD9gIXAf5xzLa3H3wfej2NEWYVwbT1z9zgJ19SMZaThzUin+O7L8RWt/SSNjW99Qv4FJ3b4LUoR6Vwpmw8h55QjSNlsQ5KHbRjvONKNqQDroZxz75tZhpklO+f06LGbCofDzDtgDOHK6iU7KLjrcpI3Ghg9p/GdT/H/94fIhhl5547G/9UsGt/6JHpOxiF74CvOp2bKv6L7kjffiMIbztOkqyLdiDc3i7wzj4l3DOkBVID1EGa2GfAikXm/BgBPAbsBxwNHxjGarEbNnU8Q/G1BdDvjzyPIWG6wfKi6Dk9OJixdSCUn4cnNim5akg/MltnnSU9V8SUi0kOpAOs5/gFc6ZybamZLpkZ/D7gvjplkNepffp+aKU9j2RnQ4CF56PoU3XEpAC4UovL6B0jbdWuyDttrhWtTNt6AlI03WGF/zkmHrbBPRER6Hg0c6Tk2JTLVBIADaH30mBa3RLJKzf/7gYrLbwfAzMjY50/0e+lOPB4P4SY/ZWdPouWXeaRuuXGck4pIVwrXN8Y7gnRT6gHrOX4DtgZmLNlhZtsBs+MVSFYu8PsCys6ciGsJApC0wQCKbroAT1ISAJWT7scy0uhz84WRR4siklCcc1RccQf+//5Ay9xFrPvRVDxZGfGOJd2M/vbvOa4AXjaze4AUM7uEyLxgJ8c3liwtuKCU+XuejMPhSU3Bk5dN8V2X48nKoGXeYjzZGeSfdwKWma7xWyIJyswIzPqNlt8j4z/9M38mbYfN45xKuhs9guwhnHP/BvYFioDpwLrAoc65N+KZS/4QbvYz/4AxhOvqcXUNuGY/xbdfQtI6Jfi/nc2i4y6h+bNv8WRlqPgSSXApm0WmoLAkH8EFpXFOI92ResC6MTO7ZiW7y1u/AA42s4Odc1fGMFbCC/w8h5SvZtNIBkmD1yVpQJ9ljvu//4XQ4goAkoeuj6+kMPLI4dp7CJZWRM/LOvbPpG65MY0ffEH5pbdROO500vfcPqZtEZH4yDr6ADIP3oPkoetjKcnxjiPdkAqw7m2dpb5PBQ4HPgd+J9IDth3wTBxyJaym/3zF4lPGUeD3U5r8b/Iv/T+Sjj5gmXPqpr5E/YvvAlA4/kwyD9mDusdfoeGFd/HkZOPq6kndZWsKx40BIFxRQ/Edl5I6fGjM2yMi8ZE8eN14R5BuTgVYN+acO3HJ92b2JDDKOffMUvsOA46IR7ZElbr9ZuSccAhl9z61xtc0vj+DykkPAGAeI+OIfSmYfA7Vdz9J0qB1yDxkj66KKyIiPZQKsJ5jP2D56ZVfAB6KQ5aEZR4Peecdz68/zaa/Jxlfv+IVzkkeuj5pNfUAuJYWyi+4KbrAdsrmG1Fw9Riqrv4HgVm/0eevI2OaX0REegYVYD3HbOB04Pal9o0Bfo5PnMRWe9SebDVixEqPZY8+iOzRBxEsq2LR0Rf+scB2v2KKb7+E2in/IlReRclD4/FkaJo2kd7MOUdwzkJck5/koevHO450IyrAeo6TgefM7EJgPtAfCAKaGn0tuJYgTf/5H+m7btOu68LNfsrOmkhwYRkAnow0CsafAR4P2f93OJ60VM3xJdLLNX8xk9IzJhKurSd1u80oefDaeEeSbkTTUPQQzrn/AhsCo4CbgaOBDZ1zX8Y1WA/mnKPimn9QOmY8Vbc9imt9jNjmdeEwFZffgf/rHyM7PB4KJp1L9e2P0fDGx3izM1V8iQi+/n0I10aGKwS+nY0LheKcSLoTFWA9iHOuxTn3gXPuKefc+865lvbew8w2NLNmM3t0qX3pZna3mZWbWY2Zvd+5ybun+ufepv65twGoue9fNL71yRpdV333kzS89mF0O/+ikwj+Mg9L8pGlMV8i0srbpwBvYR6e3CxStt6YcJ2WJZI/6Mf03ucuIlNZLG0Kkd8LGwOVwPAYZ4qLjH3+RONb/6Hp/S/IPHgP0vfesc1r6l+aTs0906LbWaP2J+PPu7Hg4DMpmToR8+hnGhGJMDP6PXMLnvwcTb4sK1AB1ouY2VFANfAxMLh13xDgIGCAc6629dQv4hIwxjyZ6RTffgl1T75G1l9HtvkXZPOX31Fx5Z3R7bSdtyLvwhPxJCXR/8U7tNabiKzAW5Ab7wjSTZlzLt4ZJAbMLJvIQt57AicBg51zx5rZaOAC4C3gOGAhMG7p+caWuscpwCkARUVFW0+bNm35UxJGfX09mZmZ0W1vWTVFE6fiqY+88djSr5DyC48m450vCWel07jb8Dgl7Zjl25doErl9idw2SPz27b777l8459r31o8kJPWA9R7XAg845+Yu19MzABhGZEb9fsCORBb9/s459/3SJzrnphB5XMmQIUPciFVM09BdhRubafl1HimbDm7z3OnTp7OkfeG6BhYecxEtgRAkJ+PNz2H9RyczuK6B0s+eoO+0m/CVFHZx+s61dPsSUSK3L5HbBonfPpElVID1AmY2HNgL2HIlh5uAFmC8cy4IvGdm7wL7AN+v5PweyYXDlF98C00ffknhdWeSsd8ua3ZdS5CycyfT8ss8ACw5ieI7LsVXnM/CMyeQd94JPa74EpHYCjf5CfzwC4Fvfop3FOlGVID1DiOAgcCc1t6vTMBrZpsQefyY8GrumUbjO58CUHbBTfgG9idl4w1We41zjsqJ99P0n6+i+wrHn0HKFkNwgRayjzuIjINGdGVsEUkAldfeE10/VmQJvbLVO0wBBhF5u3E4cA/wMjASeB+YA1xiZj4z24lIwfZ6PIJ2pqqbHqb0rOsJNzaTceBuJK0/AIDs4w9us/gCqHv0JeqmvRbdzh1zFBn774r/29kEvv+FzEP31JtNItKm5GFtD3uQ3kcFWC/gnGt0zi1a8gXUA83OubLWucQOBvYHaoD7gNHOuR/iGHmt1T//Do3vfoYnPZWmD78gad2+lDx2PbmnH0XeuaPbvD7lq9lUTv5jmc2M/Xch57QjCTf7Kb/4FoKLyrsyvogkkJTNh5C0wQAyD94j3lGkG9EjyF7IOTduue2ZRAbfJ4y0XbcmZZtN8fUvxsxoePM/JA8ZSO5pR7V5beDH38i7/yVwkd6tlC2GUHjtGZgZVbc/RvLQ9ckYuVNXN0FEEkTKsMH0f7F1CpsJZ8U3jHQb6gGThBL4eQ6lZ0zAmWE+b/QRYbi2nkWjL8X/1azVXh8sq6J0zHg8/sgiA77+kQW2LSU5MpB25mzyL/97l7dDREQSmwowSRihimpKT7+OtN23o/ycySwcdSH+mbMByDp8bwrGjWHx2Oto/uyblV4fbvJTdsaE6ONFT2Y6xXddjrcgl3CTH/N5KXl4At7crJi1SUREEpMKMEkILhSi9KzrydhvF/xfzaJ5xreEyipZdMLlhMqrAEgfsS19/nElSYPXxQWWXUbThcOUX3Yb/m8jr4k7M4puPJ/kwesCUHXjQ1Tf81RsGyUiIglLBZgkBPN6yTvzGHLPOJqM/XaJLguU+/cj8BbmRc9LGTYYb34O5ZffTtXtj7FkJYjqO5+g8Y2Po+fVHrUnaTtvBUDTx/+j6b0Z5JxwSOwaJCIiCU2D8KXHq7nvX/gG9iejdTHttB02p+9jk6j/93tkn3TYSq/Jv/hkSk8fT8XiClK22oSaKU9Hj2UdfQC//WlDAJw/QMVVd1Fw9ela61FERDqNesCkR2t47UPqpr1OyvChy+xP2mAAeWces8p5urz5OfR54FpafplLxRW3R/en7bIV+ReeGN22lGSK77mCtJ1WtoiAiIhIx6gHTHos/zc/UTnhPgonn4cnK73d14fKqwjMWQgeD84fIGmjgRTdcD7mi/yxaHxvBqGySrL+sk9nRxcRkV5OPWDSY/nW60vhxLOpuvEhFp94OcGyqjW+NlRbT+mY8biaegAsNRnX0ERwcUVku76JinF3kzSwf5dkFxGR3k0FmPQ44fpGyi6+BcyoffwVAj/8iv+bn1h0/KUrvN24Mq4lSNk5k2n5bT4QWWC776OTyDv7OBb/7XL8M2eT+/ibZOy7E6nbbNrVzRERkV5IjyClR3HBIGUX3IivbzGezHTS/jScpg++gHCYnJMPx5KTVn+9c1ROmELzp19H9xVOOIuULYaQssUQfP2K8PUtIpSXRe6Zx3Z1c0REpJdSASY9StUN/4RgiPxLTsbMyD7mAHzrlhD45ieyDturzetrH3mRuqffiG7njh1Fxr47R7dTt9ssct4Ru+NJS+n0/CIiIqACTHqY1D8NJ3fsKCzpj9+66btsTfouW7d5beP0z6m68Z/R7YwDdiPn73/tipgiIiKrpQJMeoSmD78kuLCM9D13wDLb/8Zj4IdfKbvgJmideDVl+FAKrzl9ldNUiIiIdCUNwpduLzDrV8ovvQ1vcQELj72YistuX6PB9ksESytZfPp4XFMzAL4BfaILbIuIiMSDesCkW/PPnE3padeSd9FJ1D74LME5C6mfs5BQZQ3F/7iizR6scJOf0jMmEGqdXiKywPZlePNzYhFfRERkpdQDJt2W8wdIGtif4jsuJWOfP+FbMieXGVlHjGyz+HLhMOWX3EJg5uzIDq+XopsvJHnQul2cXEREZPXUAyYdYv4WnHNdMobKOUftQ8/T/MlX9JkyjpQthgBQMG4MSQP7AZC+5/Zt3qf69sdofOuT6HbBpf9H2p+Gd3peERGR9lIPmHSIb1EFFePuxrUOau8sLhSicuL91L/4LgXXjF3mmJmRc+Kh5Jx4aJv3qX/+HWrufya6nX3sgWQduW+nZhUREeko9YBJhzV/9g2uOYB14nxZge9/peWXefSdOhE8Hfv5oPnzb6m4+u7odtpu25B3wYmruUJERCS21AMmHVZw+d87bbLSUHUd9c+/Q8qwwfS5bxzh+kbmH3g6Nf98vl29bC2/L6D07OtxLUEAkjdaj6JJ52Jeb6fkFBER6QwqwKRDggOKSe2k8VQt8xaz6NiLafl5Ls45XEMTpaePJ1RWSdWN/6Tq5ofX6D6hmjpKx4wn3LrAtrcwl+K7LsfTgXnDREREupIeQUrHrKRXqiOD8lt+nc+iv11Bzv8dTvbRBwAQDoaik61ako/0XbdpO86SBbZ/XxC5LiWZ4tsvxde3qF15REREYkEFmHSIb3El80f+nbRdtybz0D0JlVVR+9BzFN99BZ6MtDW6h2sJ4u1bSOGEs0jbcYvofm9uFiX3X0PFVXeRut1mpG47bPX3cY6K8ffS/Nk30X2FE84iZfONOtY4ERGRLqZHkL2MmW1oZs1m9uhKjl1lZs7M2lzVuqV/EcV3X46vbxF1T73G4rHX0fjuZyw88jxaFpS2maP+ubdZdOLlWEryMsVXNEtyEgUTziLz0D3bvFftP5+n/pk3o9u5ZxxDxsid2rxOREQkXlSA9T53AZ8vv9PMBgF/ARau6Y2SB69LzkmHkTJ8KDiHJScR+GUeCw89i+q7ngAg8PNcXCgUvcY5R/U906i+5ykKrxkbfWS5ZND8cpnazND49qdU3fxIdDvzoN3JOeUva9oEERGRuNAjyF7EzI4CqoGPgcHLHb4TuAi4m3bKOmwvgr/Op/l/P1B828V4sjMINza3zkR/K6FF5aTttCUZB+6Gr28RTR98Qcmjk/AV5QGRIq301GsouOo00nbeao0/1//dz5RdfPMfC2xvtTEF48ZogW0REen2rLMn0pTuycyygRnAnsBJwGDn3LGtx44AjnXOHWxmvwEnO+feWsk9TgFOASgqKtp62rRpfxwMhyEUhqQVa3pveQ0p3/yMS/bRtNPmkYKptUjy1DVSOHEqvvIanBnVo/elaafN2myPp6qOogmP4K1pACBYmEv5JccSzuqcNx7r6+vJzMzslHt1R2pfz5XIbYPEb9/uu+/+hXOu7TeLJOGpB6z3uBZ4wDk3d+keIjPLBCYA+7R1A+fcFGAKwJAhQ9yIESPW/NNX8VQw8PNcStMzCCY3YWkpDD/sAFI23mC1two3NrPo+EsJNLVAcjKerAz6PjqJTTYYsOZ52jB9+nTa1b4eRu3ruRK5bZD47RNZQmPAegEzGw7sBdyyksNXA1Odc7929ucGZs9h0clXEaqqXeU5yYPWoeSJG0jZYghFk89rs/hy4TDlF99C4PtfIjtaF9hO6sTiS0REpKupB6x3GAEMBOa09n5lAl4z24RIET7AzMa0nlsETDOzSc65SR39wKaP/kvZeTcQrm+k7Ozr6XPf1Vhy0krP9RXlUTJ1IrYGSw9V3zKVxnc+jW4XXH7KSt+iFBER6c5UgPUOU4Anl9o+n0hBdhoQBpaujD4HzgVeXZsPdM0Bwg1NAPi/+4XAT7+Tsmlk3L8Lh1cottak+Kp79i1qHnouup19/MFkHTFybWKKiIjEhR5B9gLOuUbn3KIlX0A90OycK3POVSx3LARUOefq1+Yz0/fcnrxzRuPtU0DfRydGiy//V7NY+JdzaPl1frvu1/zZN1Re84/odtpu25J37ui1iSgiIhI36gHrhZxz41ZzbGBnfU72iYeQ+Ze98WZH3mgKLiil9KyJhMqrWXj0hRTfeSmpW2/a5n1afltA6dmTcMHIfGLJQwZSNFkLbIuISM+lAkw6JGleGfP2Orld14TrG2mZuwjCYcLVdZSdM3mV48KWua62gXBj5HGmtyg/ssD2Gi53JCIi0h2pAJOOCYUILipv92WezHTCtQ1Yeiqhypp2XWupyRTfcSm+ksJ2f66IiEh3ogJMYsqSfHjys9s9W70lJ1F4/bmkDFt+An8REZGeRwWYdEiwfxED3rwvZp/nyc7UY0cREUkYKsCkQ5zPi69vUbxjiIiI9EiahkJEREQkxlSAiYiIiMSYCjARERGRGFMBJiIiIhJjKsBEREREYkwFmIiIiEiMqQATERERiTEVYCIiIiIxpgJMREREJMZUgImIiIjEmAowERERkRhTASYiIiISYyrARERERGJMBZiIiIhIjKkAExEREYkxFWAiIiIiMaYCTERERCTGVICJiIiIxJgKsF7GzDY0s2Yze7R1ewcze9PMKs2szMyeNrO+8c4pIiKSyFSA9T53AZ8vtZ0HTAEGAusBdcBDsY8lIiLSe/jiHUBix8yOAqqBj4HBAM65V5c7507gvZiHExER6UXMORfvDBIDZpYNzAD2BE4CBjvnjl3JeWcDRznndljJsVOAUwCKioq2njZtWpdmjqf6+noyMzPjHaPLqH09VyK3DRK/fbvvvvsXzrlt4p1D4k89YL3HtcADzrm5ZrbSE8xsc+BK4OCVHXfOTSHyuJIhQ4a4ESNGdE3SbmD69OmofT1XIrcvkdsGid8+kSVUgPUCZjYc2AvYcjXnDAZeBc5yzn0Qo2giIiK9kgqw3mEEkUH2c1p7vzIBr5lt4pzbyszWA94CrnXOTY1bShERkV5CBVjvMAV4cqnt84kUZKeZWX/gHeAu59w9ccgmIiLS62gail7AOdfonFu05AuoB5qdc2XAycAGwFVmVr/kK66BRUREEpx6wHoh59y4pb6/Grg6fmlERER6H/WAiYiIiMSYCjARERGRGFMBJiIiIhJjKsBEREREYkwFmIiIiEiMqQATERERiTEVYCIiIiIxpgJMREREJMZUgImIiIjEmAowERERkRgz51y8M0gPZGZ1wKx45+hChUB5vEN0IbWv50rktkHit2+Icy4r3iEk/rQWpHTULOfcNvEO0VXMbIba13MlcvsSuW3QO9oX7wzSPegRpIiIiEiMqQATERERiTEVYNJRU+IdoIupfT1bIrcvkdsGap/0EhqELyIiIhJj6gETERERiTEVYCIiIiIxpgJMREREJMZUgEm7mNmjZrbQzGrN7EczOznembqCmW1oZs1m9mi8s3QmM5ve2q761q+Em0zXzI4ys+/NrMHMfjazXeKdqTMs9Wu25CtkZnfEO1dnMbOBZvaKmVWZ2SIzu9PMEmauSjPb2MzeMbMaM5ttZofGO5PElwowaa+JwEDnXDZwEDDezLaOc6aucBfwebxDdJGxzrnM1q8h8Q7Tmcxsb2AScCKQBewK/BLXUJ1kqV+zTKAP0AQ8HedYneluoBToCwwHdgPGxDNQZ2ktJF8A/g3kA6cAj5rZRnENJnGlAkzaxTk30znnX7LZ+jUojpE6nZkdBVQDb8c5irTf1cA1zrlPnHNh59x859z8eIfqAn8hUqx8EO8gnWh9YJpzrtk5twh4Ddg0zpk6y1CgH3CLcy7knHsH+Ag4Lr6xJJ5UgEm7mdndZtYI/AAsBF6Jc6ROY2bZwDXAefHO0oUmmlm5mX1kZiPiHaazmJkX2AYoan3EM6/1MVZavLN1geOBR1xizSN0G3CUmaWbWX9gPyJFWCKwVewbFusg0n2oAJN2c86NIfJ4ZxfgWcC/+it6lGuBB5xzc+MdpItcBGwA9CcyIeRLZpYoPZh9gCQivUO7EHmMtSVweRwzdTozW5fI47mH452lk71HpMerFpgHzACej2egTvQDkR7LC8wsycz2IfJrmB7fWBJPKsCkQ1q70T8EBgCnxTtPZzCz4cBewC1xjtJlnHOfOufqnHN+59zDRB6D7B/vXJ2kqfW/dzjnFjrnyoGbSZz2LTEa+NA592u8g3QWM/MArxP5gS4DKATyiIzn6/Gccy3AIcABwCIiPezTiBSa0kslzBsmEjc+EmcM2AhgIDDHzAAyAa+ZbeKc2yqOubqSY+WPR3oc51yVmc0j0qZENhq4Pt4hOlk+sA5wZ+sYU7+ZPQSMBy6Ma7JO4pz7mkivFwBm9jGJ14sp7aAeMFljZlbc+op/ppl5zWwkMAp4J97ZOskUIsXk8Nave4CXgZHxi9R5zCzXzEaaWaqZ+czsGCJvCb4e72yd6CHgjNbfq3nA2UTePEsIZvYnIo+PE+ntR1p7K38FTmv9vZlLZJzbV3EN1onMbPPWP3vpZnY+kbc9/xnnWBJHKsCkPRyRx43zgCrgRuBs59wLcU3VSZxzjc65RUu+gHqg2TlXFu9snSSJSI9CGVAOnAEc4pxLpLnAriUyfciPwPfAf4Hr4pqocx0PPOucq4t3kC5wGLAvkd+fs4EgcE5cE3Wu44i8tFQK7AnsvdQb5dILaTFuERERkRhTD5iIiIhIjKkAExEREYkxFWAiIiIiMaYCTERERCTGVICJiIiIxJgKMBEREZEYUwEmIiIiEmMqwESkRzCz38ysyczqzKzazD42s1Nb1xEUEelR9BeXiPQkf3bOZQHrEVkP8SLggfhGEhFpPxVgItLjOOdqnHMvAkcCx5vZMDM7wMz+a2a1ZjbXzMYtOd/MXjazM5a+h5l9bWaHxDa5iEiECjAR6bGcc58RWZt0F6ABGA3kAgcQWdj5kNZTHwaOXXKdmW1BZFHrV2IYV0QkSgWYiPR0C4B859x059w3zrmwc+5r4Algt9ZzXgA2NLMNW7ePA55yzgXikFdERAWYiPR4/YFKM9vezN41szIzqwFOBQoBnHN+YBpwbOug/VHA1LglFpFeTwWYiPRYZrYtkQLsQ+Bx4EVgHedcDnAPYEud/jBwDLAn0Oic+0+M44qIRKkAE5Eex8yyzexA4EngUefcN0AWUOmcazaz7YCjl76mteAKAzeh3i8RiTNzzsU7g4hIm8zsN6APECRSSH0HPArc45wLmdlfiBRX+cB7wG9ArnNu6cH3lwPXAoOcc7/EtAEiIktRASYivYaZjQZOcc7tHO8sItK76RGkiPQKZpYOjAGmxDuLiIgKMBFJeGY2EigDFhMZrC8iEld6BCkiIiISY+oBExEREYkxFWAiIiIiMaYCTERERCTGVICJiIiIxJgKMBEREZEY+38cuWYDPodsfAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "<Figure size 432x576 with 2 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Separating the two equations #\n", + "plt.rcParams['savefig.facecolor']='white'\n", + "# Eq.1 ------\n", + "# color codes for sims defined by TC\n", + "#colors={1:'dimgray',2:'gold',3:'mediumseagreen',4:'darkorange',5:'crimson',6:'royalblue'}\n", + "colors={1:'crimson',2:'crimson',3:'crimson'}\n", + "lstyle={1:'solid',2:'dotted',3:'dashed'}\n", + "lw={1:3,2:3,3:1}\n", + "\n", + "fig, ax = plt.subplots(2, 1, figsize=(6,8), sharex=True, sharey=False)\n", + "for i in range(1,4): # loop over simulations\n", + " ax[0].plot(dur[str_regridded_sim[i]], lon[str_regridded_sim[i]], color=colors[i],\n", + " linewidth=lw[i], label=str_grid[i], alpha=0.9, linestyle=lstyle[i])\n", + " ax[1].plot(dur[str_regridded_sim[i]], lat[str_regridded_sim[i]], color=colors[i],\n", + " linewidth=lw[i], label=str_grid[i], alpha=0.9, linestyle=lstyle[i])\n", + " \n", + "ax[0].set_title('lon')\n", + "ax[1].set_title('lat')\n", + "\n", + "for r in range(0,2): \n", + " ax[r].yaxis.grid()\n", + " ax[r].xaxis.grid()\n", + " ax[r].tick_params(axis='both', which='major', labelsize=12)\n", + " ax[r].set_xlim((3, 9))\n", + " ax[r].set_ylabel('deg', fontsize=12)\n", + " \n", + " if r==1:\n", + " ax[r].set_xlabel('Day', fontsize=12)\n", + " ax[r].set_ylim((41,53))\n", + " \n", + "ax[0].legend(ncol=1, loc='upper left')\n", + "\n", + "plt.subplots_adjust(wspace = 0.14)\n", + "fig.suptitle('Cyclone tracks from simulation Tanom_TR_RH0 on 80km and 2km \\n determined after regridding to different regular latlon grids',fontsize=16, weight='bold')\n", + "\n", + "plt.savefig('/home/b/b380782/CyclEx_figs/Cyclone_track_timeseries_Tanom_TR_RH0_compare_regridding_2km_80km.png',\n", + " bbox_inches='tight',dpi=100)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAs0AAAIfCAYAAACLueGlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAADP4UlEQVR4nOzdd3gUVdvA4d+z2fSe0It0IlIF7J8SROwFRLAggg3ra0EpKiL28orYe0HsXewVor42ioqACCKg9JDe657vj5mESbLJJiHJJuG5r2uv7J45M3POtDx79swZMcaglFJKKaWUqp7L3wVQSimllFKqudOgWSmllFJKKR80aFZKKaWUUsoHDZqVUkoppZTyQYNmpZRSSimlfNCgWSmllFJKKR98Bs0iMldEjOP1iJc8j1XKM9cxbYEjvXt9CtkQy1AViUiYiDwhIltEpMTetu/7u1yq6ewLx4CIJHq7LvmhHEll5ajn/N3ta/FcEUls6OXvLRGZUul/QE2vKf4oY1Px8j+zpleivW8rp5eKSKqIfCUip9SjDJu9LDNHRFaIyLUiElApv/N/7JRK05zl2+xlXVNEZKmI5IpIloh8IyIn17XMTUVEBojI6yKyTUSK7XL/JiIzRSTQS36f9au0jRY0WWX8qFKdk2qR/yoRWSQiG+1jMVVElonIpZW3u7+vZzVx12Oe80RkljEmF0BEwoFzG7ZYqgnMAS71dyGUX+kx0HJ0B25xfE7yTzFUE3EBccAo4GgRGWuMWbSXywwHhtqvrsC0vVweInIXcEOl5KOAo0TkEmPM03u7joYkIj2Bn7C2RRk3MNh+9QOmOPK3qPo1c/cBwY7P4VjH+HDgWOB0fxSqrurTPSMKOMfxeaKd5pUxZooxRuzX5nqsr0GWoSwiEmK/HeZI7mFv2zF+KFKTcdS9xWrgOtT5GGhp29AYk+S4dsz1d3kaizEmsayeflr/Asd2FuBWx+RbndOMMQv8UcamYoyZW2lbvOiYfH6lbZFUafZ/7HmigWftNAGu3Isi9QBCgIscaZd4a1WtCxEZDMyyP66x1zMI2GGnzReR9nuzjkYwgT0B86dALHAIUGCnnSsiEdBi69ecJWN9AemFtQ/OAUrtaWNFZKi/ClYXdQ2a/7H/Olunyt5v9jaDeOlaUfmnDBE5T0RWi0i+iKwVkcl1XEaSiIwTkT/tZXwjIvuLSEcRecf+KeAfEZkjIq6altuY66uOWD/RfS4iO0WkSER2i8hPInKPI4/zJ7/EWqQ7yzrG/vmpCHjS/snjGEcRNonj52uxfrL/xS5HsYhki/Xz1GUiUuGfsohEishtIrJKRPLE+glrjYjMqJTveLuOaXYdN4vIIyLSppbbp6w+t4rIDBHZJCKFdr1OrJQ/yZF/gIh8ISK5wGd1LU8t902oiNwtIuvsfZ8r1k9Q74jIod72SaV1VEmvtF/HishzIpIC5Dvy9BORl8T6mbFIRJJF5G0RGeRje3avxTFQ3fEzy57uFutn3l/s+haIyB/2sRBeaX3lP+2KyAh7nnwRWS4ih4tIlIg8KyIZIrJdRB6WWgTnIjJYRN61618o1s99v4jIU2IHBFJN94xKx8hRIvKRffxuEpGLxDJDrK4rGSLyoYh0ccxf3XJr3R1ERPYT62fiP0UkXaxzLcU+3kY78i0AljhmvaXyOqSanzNFpI2IzBeRDfY2yhaRH0Xk/Er5Kp9j19nz5Nn7/gRf+6M2RCRCRF4U63qRatc5Q0S+FZEzK+V1dvmYKiJ32vsjR0R+EJGDvSx/ioh8b9ezUET+FpEHpep57ey+MNBef9n/n1NFJEhE7hPrnNot1nkW0xDboDaMMVmAsyvkfnu5vEJjzHNAup0UBvi89vpwHlZAD3CPMWazMWYV8IRjHRN8LUREBonIayKyw3EOfCgiR1bK57wmniZWt9BdIpIp1jW+Ty3KXOp4/4ExJsMYsxRYb6cFAEENUT8RcYnIQkeZH7avK856XGqnp9mvB0QkUEROFpHfxbq2LhOR//NVsdpeT+y8ddqWIhIt1jU6XawuKq8Bdf3C0N8Yc48xZqMxJs8Y8xqO/8lAXx/1O8k+p41dx87SiHFZtYwxNb6AuYCxX7cChfb7g7G+oRmgCOunw7J8cx3zL3Ckd7fTujvS0h3vna//q8MyUrFOBuf8G4DVXpZ7QU3Lbcz1VbN99wPyqtkGKdXsh8RapJelpVUq64Jq1lW+37C+dVeX5xbHOtoAf1aTL8mR77oalrcRaOdjGyU68u/2sowSYLQjf5JzG1YuU23LU4d981gNy7vSyz5JqlQ/b9vMuV+ddTD29P+roWz5wJE1bM/utTgGqjt+5mL9Y/mkhmWsAMK91C/HS5nTgG+9LOM2H8dEWDXHQtkrwsuxM7eaY8TbchZ5Sfu2mmNybi3Sy9fnSDu0hvKXAiO9XI+q21/elt8BqzGjunmfqqbc6V7yFgE9ff2/qOb4nVupTNWVxwCTHXmn+ChTKhDtyP9UDcvdDHRw5HVul8r7vwjvx/fC2ta/0rZw7r8pPs7HzY70wY707+q4Tmf9nP/byrZjKRBUmzLWUD7neXugI/302m4zYCTV/78pBSZWc0x5Ox7+BNw+1tcV65pj7H0cgxXLlJXhp/rUr9I2WoAVbD/nSLuvmnp4u/Z8hPU/zZmWAcT6qFutrid13ZZ2XZZ4ybPd8T6pprLVUOavHMs4orrrJVb3jbJ9tApo72W7N1hcVtOrrtH2buAd+/1l9gs7bVcdl1UmBrjc/nuvI31SHZYRB1xlL+NHO62X/bkfe4J7gLPrWc7GWt9BQKj9/iysPj8dsVoBH2uAssYCrwCd7PLNNdbPf9+UZTBVf76+AOgDRGJ96x4EbLWnXS1S3tp8G5Bgv/8fMBDrZ5fhwFsAItIVuNvO8xnQDeunwrPstB7A7DrUJwI4EatL0Ew7LYCKx47TP8AArCDr0jqWp7b75ij7709AW6xtsD/Wcb22DnWrjgDH23Uoa0V+xi7bP1jdLIKBA7HO0RBqOHaM1WLi6xgoU/n4WYC1LcpaHn/FOvY7AJ/baUOBq72sOhx4COun57ccyz8QOAzoiRVYg+/zph97WspmYNW5LdaXibux/unU1kp73mscaadiXd9igaV22pEi0rkOy/XlH+A0oAtW+cOBspu+XNjb0BgzBSu4KHNrDfvL6Xas4xus/RaPFYiV/WI4VUQO9zJfOFZgEIO17wECgTO95K2rbHs53bGO5xDgcKwvUwDX1jBvIlYdkuzPcVjXAux6TLXT/wGG2NNfsNO6YV2vvCn7mf4B+3MgcBzWvmjPnu11puPa16hEJAr4jyPptb1cXrCIXIi1TwHeMcYUVZP9BUfrnQE2VZPP2dKYWc37dj6K9hR7+rlehnVdH4N1/rqAR6TSL1eOdQzBui6VXWMTsK7Z1TLGbMH6/7wO6xqWDvxsl+FDYKwj+97U73Gs/6MAtxtjZlSTrwjoj3XNLHMS8DLWMfmwnRaNfazXoFbXEy98bctjsc49sILQ/bH+D/7lozw1EpFjgKPtj78DP1ST72jgfax99CtW46C3eLNp4sBafBOYy57o/ErgSPt9HntajY7C6qZRls/ZsrDAkd7dy7eD5Y68Axzpn9VhGVscee91pN/uSC/7VrSupuU25vqq2b5DHfMvwerzMxboUsN+SKxFuvMbapiX9SaV5fEy7Ux7euVWxrJX2be8rY60btXU72Iv81f5VutjGyU68r7iSBdgi2NafOW6AYfXtzx12DcfOLb1Q/Y6DsPRklNpnyT5Sq+0X2+slL9PLepgcLSsVbNdazoGqj1+gFcd08c60gc70v/nZVlFZcvC+gdZlv6SI+8Pdlqhj7K3A4rtvCuwbmqcAPSu4diZ663uwDF2Wj9HmvMcv8uRfpiP5fpcnyMtCLgJ+A3ry0Ll/bfW13J9LN/ZEhTnSL/akX6Hl+W/7ch7siP9yZr2SQ3XK+d2EKwvkz9h/bP2VKpzviPvFEf6/Y70Kx3ps7zso2sdeWMc69jqSN/syN/bTjvBkfadI6/zeO9Y223gmH+BY/4pXqZ397Lvy7cH1pcfqeM6N9ewzHdwtNB7KWNNr82OedY50ns60o9xpH9WQxn7OvKtrDTtPce0svPTeUw5f8G735F+lo/t0gH4o5q6raJia2yt61dpH+Y63t/g49y4w5G+y5Hey047tqZlVVpuXa4ntd6WVIxxrnLkHeVIT6qpbF7KejSQZc+7G+hb3fXMsT1/AmJqOHcaLC6r6VXnfh3GmO+wOsWH2q8/jDHf1nU5Dusc73Md7+tyw9E/jvf51aSXfat23r1ZHV+jijTY+owxvwA3Y7XAJGJd/N8FtojVX9NXWXxNX2eMyfORp5yInAW8DozA+qbr7Rgpa30t+yaeZ4z5x0s+8N3SAFbrUW39W/bGWGfBVsc0b330fq1veeqwb6YBy7BaA64CnsYK/raJyLE1ragW+7e+dYC6bdfqeDt+2jre/+t47zwGvJUx2bEsX+dNEDUwxiRjfVFPwfpycyvwBvCXiHxnt9TV1uZalgl8Xz/qMiLRw8AdWF82vLWmhXpJq4uy/ZRjjElzpPvaTw1xTa7OTKxfQQ7BalWs3HJb3Tp8lcnrMWmMycD65wzVnzeb7b8Nsf8bmgvvx8beiKDqdneqcLMi1q9v3jhb+2Ic753nXnIN66nuOgKNd4zOxPpyDFbf5CisRoj1WI12H4lIJ3t6fesXZv8txPcoN5sd770df3U59up7PfG1LZ3/R7ZW877WRGQsVteYSKxtfLQxZn0Ns5Rtz6X2+Vydho4DvapvZ+gnHe+fqDZX7RQ73pt6LqO6n2J9/URb6HjvPNl6NtL6vDLG3IEV8A3F+um77CfRscB4+319y5rvY3plZzne/wcItS+cv3jJW3ZRCROR6m5UcV5UbjIV7xwvuyjXNggExw0x9k+lXRzTUipnNsZUrn+dylObfWOM2WCMORjr563RWD/z77Dnc97MU3bC1mX/QdV96KzDl9XUwWWMWVOLZdd13WC1DJTZr5r33v6ZNPR58xxWy9FAYBx7fsr8P+CKOizK2/ob69rhVHauFWJ1UQik+pGI6nNtLNtPESIS60j3tZ8a4ppcHef1ZQwQbB+vqT7m81Umr8ekffNe2Tb1GsAZY+qz/xvLP1j/l/fHapwKwuqycs1eLLMH1jXtdfvzsVQc0aO+ljneH+B437+aPJVVdx2p/Lkhj9F+jvcLjDHZxpgNwBd2WhjWuQj1r99yrIaWYOATERlSQ3m8HmfVHJO+1OV64uRrWzr/r3ap5n2t2F2E3sLaNn9j9WNe5WO2Jfbf/0jNN1c36P+X6tQ3aF6I9fPJe8BLDVecJuf8BnIKgIichvXTepMQkQNE5Fasb4f/Ym3TrxxZyi4e3sp6CBX7YDUE5wGWZa1Gzsfqd1rZB473C0Wkv1gjSQwWkcvt9M/Zc1JeL9aoFWH2Ha0jReRJ9vRNro2xInKsiEQC09lz4v5qjPH1j7dO5antvhGR6WLd+R8CfIfV4rndmcdWtg8Hikg3sUZ4uL32VbcYY/5iz93eo0XkGhGJsV/DRWQOe/5BNoaPHO9vEpEeYg29dI8j/eNGXH/ZqBD3Y52ryVj9ERc5suzVaAO14DwfR4tIiL0NauqTW1nZuebB6gYTDvy3mrzOY7ufiNTYEm9z7qf7RSRWRAZUKmOj7icvnNeXDCBQRG5m738Vcdb1KrFGxIjB+rm5rFW1qetaL8ayDmv0hrIgZq7UYqShGpa5G2vIubLr0qm+fgWrhYWO8s2yRzIYyJ57nfKAN2so03r2XMcGiTVCSoRYD3Mpe3hIOnv6pzaEbY73U8Qa/akX1heJMun23/rWbw3W/+UirBbqL0QkwUu+hlaX60ldLHG8v1JEEkSkA9avsLUm1ohaz2Ldg/QrVsD8dy1mHcOeX1tvEZG9Hl98b9QraDbGZBljTrdfmb7naLbeYM+Bdp+IZGF1OK91d4YGEIfVH3Mp1je6QvbcvOIBvrTff8Kek/lyEcnG6uPjaeDyvOd4/yLWtniMihebMnPY89POCKy7VPOw+lRNADDG/MueG+tisW66ycW6eC8GLqFuP/umYwW+Wey5+a+UWgbedSxPbffNcVhB6kasO3x3sGcM5LKb42BPK3UY1g0Vmez551BXU9kztuh8rO2SjtXycSt1Hw6oLt7A2m5g1XMjsJM9Nwf+wp5W38YSgjUKyndYv3gUAV87pn/ubaaGYozZzp6fXodiBbXbqFuwXnauhWL1s8xgz40xlW1gT4vPBKBs6KXEGpY/hz3B/QVY9yiswuoHCNboGQ0ZkNSG8/qShNX38iqsutebMeYHrG5RYNXvd6zz4UI77R8qPhym2bO7h5V9+Y0CbtzL5eVScfzsu/fmxkZjzEr2fFHuj3XD4O9YN4kBTDPeb9hyupQ9v9o8hdVC+wFWK6kH+I9d7obyMHt+PbsM6//IBvYMd/Yb1qgZe1U/Y8zXWA9982B1Q/lKGv9pxnW5ntTFF+y51vXBGlljBxVb3GvDebP+gcBO5w2n1bUiG2v4xROw9hPAPBG5uI7rbjD1H6uuFbC/5YzF+kdSFuxczp47+5vCRqwuLiuxLvKl9t/FwAn2hbOsb95JWAFcPtY/6ZuxAqYGY4x5BaslahPWNlmOdcBW+UZojEnBGq7ndqxv1wVYQfNarCC/LN99WHf+fmqXuwQryPoR64aEhXUo4jOO8hVhXcROM8Z8WeNcFctd2/LUat9gfbn4BKuPVwFWS/YGrLvxnaPA3IO1v7bbZf8OOKK25a5Uh2+wAtaF9nqLsYKi37G6hOzVP1gf6y7FGl3iOqwWgDysf3xrsY6Foxr4H5036VjbchlWMFmK9Q/3B+AcY8z7jbx+sB7stAjrn1MB1nEwpQ7zX4vV1S0Z64vbR1QcO7ucMaYA6wbdFdTyS70xZifWSDYPYp2/RVhB6k9YQy7542mQ92LdG7AN6zr2DdY/9r1ufDHGXAKcj3Ue52CdExuxbs4dbm+PlmY2e34Zu7yGbnC19Tx7GjqGUotxlGtijLkRa5svx9qfOVhB5ynGmKdqMf8SrP8hb2Bdg0uwrmMfY93Y/koNs9envCuxui68iXUdLsE6d//EapU92hhT7Mhf7/oZY95iz0NpumAFzh1rmGVv1fp6Uhf2vUNjsI6dTKxt8C4N/yt3TWXYhfVrQNk5/KR9/1WTE/uOQqWaLbs1rewnoltNK36ym1JKKaWap326pVkppZRSSqna0KBZKaWUqiURWVCpL2bl15RGXPcUH+te0FjrVkrVbUxRpfzCGJNEzeOKKqWUUko1Ku3TrJRSSimllA/aPUMppZRSSikfNGhWSimllFLKBw2a/cR+ulDZzRtJ9VzGEBGZa7+GNGwJG1alG1im+LEczpt4Eht42eeKyEoRyXGsI6Yl7aemVpdzoC77rrrzy94HjbL/68I+LsqOiTFNuN46bRexnpb5hIhsEZESe/r7vqa1BCKS6NgH3f1dnoZU6Vzp3oTrTSpbbz3n7+7YJ4kNvfzmqC77yj5m9aZPP9IbAVu2Iex5ytVmrKcZKT8QkQOwHm7h7YvoEHQ/qYpi2HNMvIj1JNLmaA7WU9vqOq0lSGTPPkjCOjeVf3Wn4pMbk/xTDKW805ZmVSMRqcsjrqtljFlgjBH7taAhltnMHMie8+kWIMCua0ZTrLw++0lE3CIS0BjlqcW6QwAcx0RiU6zXGDPXsc6kplhnS1DDdhnmeN/Dnj6mFtP2WkNde5qCP8+lprSv1LMpOK6BUxzn3mY/F0v5YozRVyO/gGjgWaxH/2YBrwGHAMZ+JVXK3w94CetRs0VYj8V8GxjkyJPkmL/ya4oj3zlYj/3MxHrU8XrgTiCs0jrLy4L1yMzf7HXPrTR9MzAC+AXrsaLLsR5LGmXXMQPr8aQPAyGO5U+ppnybHcs9BOvJf3nAv8B9QFClcnbBerR12WO007Eeh32Ul+1+MtZjpcsek3ousMBRjkQf+20I1uNCN9j7rRjrMZ7vYj2W19e+2NzU+6maeji3/aXAPHsfeYDu9diuJ2I9WrwA65G8k6rbrr7K65xe331HHc4vrMek+yrniViP587Hevz0DOyRhuqzDbxsP2cZKr8WOPIdCXwA7GbPsfc6jutAQ113Km8XrBa/astYw7Sy/eoCrrC3Y469LVcB1wNux3q7V1ruVHt/F2OfH0AI1uOkV2FdG3Lt5V5Qqb6JjmXdivWY9w32PL8BJ3i57nh71bTvpjjyNdm5VHk7Vbf9HOnOZZSVKwLrV41VQKq9jTOwrjtn1rWe1WyfpLL5HGn7YR23f9rbohhIAT4HRldT5uqOqyrLt9PbAPPt/V0IZGM9Tv38+h4jPs6tjliP4s62t+VTwCm12BdHYv0vzwQ2Vbev7PROdt4cex1P1LCOHsBCrP+bBfZ+XW0vu11t6qSv2r38XoDW/sIaX3iJl4vAdsf7JEf+/7NPYG8XjnzgSDtfUjV5DHv+2TxSQ55lQKhjvWXpaUCpl4tV2eccL+VLw7rwVl7HbY7lT6lcPjt9s52WZ5/slZcx25E3ASuA8FafUhwXfmAUUOJjuyf62Hdn1bD9coF+PvbF5qbeT9XUw7ntUyotv3sdt2tiNdt1m7ft6qu8js9J9dl31P38muujnJlYgUHl5Z1b323gZX/M9TJv2WuBnefcStvL+SqoafkNsV3Yi6AZK2B+v4Y8H7JnuFPneiofm1OAMOCnGpb1aKX9Upae7iVvEdCz0nXH26umfTelhvJ2p5HOJRomaO5QQ50NMLm29axh+ySV5XOkHVrDOkuBkV7KXOW4qmH5HXzsz6fqc4zUUMcQrIC0pv1W3b5wbsvNNeyrUGCtl3Vsr2Yda2qo/4C9jWP05dj//i5Aa38BxzkO3r+wLqodgG8c6UmO/GUnymZgKBCE1eKZbKf/7sg7xbGMKZXW67xQvQC0t0/E6x3p0xz5nSfZQqxv0tGOk9g5/W6sluU3HWnZ9jp72O8N8JevslLxYrcAiKfit+l1jryf2WkZWBe/YKC3Y5vtxm6ZxmplKFvGDXZ5J1AxIEr0se/6Asfa+ysIiMRqdSmb/8Fa7osm20/V1MO5/gKsLwPhQC+soKQu2/V7x7Lm2Nu18peLxNqW1zHNeQ7Uet9R9/Nrbi3KeSdWn+MrHGmfO/LWaRtUs0+6O/IuqDQtnD3/0IuxWugjgUsc86zzsfyG2i5JZele1uF1WqVtcRcQa5d/viP9dC/boezaEg+0xWppm+WYdoW9bdoAbzjSh9rLSnSkFQFjsY61lx3pN/iqs4/tOsUxT5OdS9UdLzWkL3Ckl51r4VjnUTesa0wwcBhWA4ABfqttPWvYPlWOCaxz/lSgs73OMKxfksqW/74jr3Mfzq3l8p9xzPMCEAcMouL/lsPrc4xUU8eLHXmXYf2y0IeKQW51+2Ij1jU/BDighn3lPNd/tLddL+CPyuvAOl/K0h6yt28sMBzrF5qutTm29VW7l98L0NpfwL2OA/oqR/ooR3qSndbHkVbTq4Odf4ojbUql9d5Zi+V85shflpaBl4tipQtNmJ12mSP9JUfeH+y0Qkea17Ky58JWAkQ70su+kRfYn0Px3ipT+XUo1sW9rJVuN+ByLPc7R95EH/suyt5/f+C99f9TX/Vr6v1UTT2c63+60rS6bNcwx3ZNxeq3XbYcZwCQWNvyOqaXnQN12nfU4fyy0+f6KOfOsnph/Zxdlv6nnVbnbVDNPunuyLug0rRjHdMWVZr2q2Na74a47vjYLkll6V7W4XUa8EotjqcnvWyHP6naDeb7Wixrlp030ZH2tmMZJ1deb011bo7nUnXHSw3pCxzp3e00AS7Harn39otKfm3q6WP7VDkmsBocbsLq/pDjZXusdeR17sO5tVy+s/U1zpF+tSP9jvocI9XU8XVH3jGOdGcwXd2+OMfL8rztK+eXwlMdeS+svA6sX3bS7bT1wB3ARLSFuVFeeiNg44t3vN9azfsy7eqxzOrUZlnelrPOGJNXwzzJjun5jvR/HO+L7L9BtShDmV3GmEzH51z7b7D9Nw6ozQ0o8VjfssuO7R3GGI9jurftXp03sfqz9sP6h1iZt7S6aqz9VJ1fK32uy3aNY8923WaMKXVM/9fH/LUtb133XV3Or9r421GvXEd62U1pe7MNaqttDct0nmc1HTsNvV3qor7H9EpjRwENsKx1jvfe9mND8Ne55FSXEbBmAo9h9WuPwgqinarbNpXrWVcPYwVyg7G+FFe2t9fRsvMlxxiT5kj3da7U9xhp43j/bzXvq1PbbVnr89e+Rk6yp/XB+oLyMrBKRFaJSNdarlPVggbNjS/F8b5LNe/LJDvef2n23FFb/sJqeVtj56n8D6a6ZU2sZlkHe5kv30uaU0kd02uruNLnynUr6xMLVreP6rbNx1jfusuCrY4i4jzOvW33KkQkFusnboBdQH+sf4iDaledGuvi1Fj7qTqV56vLdk2j+u3q68Jc2/LWdd/V5fyqjfLj0EsAB3u3DZxqOiZ2O97vV2ma83My1Wvo7VIXznIdUc0xNcHLfN6OEeeyulSzrBle5nNeT6rb1jXtg9poynOp0PHeGdT1rEN5z3K8HwME22VK9TFffa81lddbiHXTeCBW0O5NffZJ2fkSYV+3y/g6V2pzjHjjPLc6O97X5vyv7bas0/lrjPkIq74JWF1hbsM6FgdgddFQDUSD5sa3xPH+ShFJEJEOwM2VMxpj/sL6eQVgtIhcYz8EIUZEhovIHKyfhso4L3YDRMTZ6vCR4/0dInKEiISISFcROUFEXsX6CadFMMbkA1/bH/uIyH0i0k5EIkVksIhMK5tujMkFltp52wAz7XwTgCNqucqyn1nL3mfZy7q9HsVvtvupjts1D+unXbC2xfV2vrOw/hk2RHnquu9qfX41UPkaahs4j4k+IuJsgfse68sDwAkicqqIRIjIxVhDG4LVcr+hhuU36XapxHlMP2wfRyEi0lNETheRj4Cj6rGs50Skj72svmI9TOh/WH1068O5DwZVClzrrJHPpZ3sCZyPEJE4EYmgbgGRs2EjAwgUkZup3S+Xe6NsvR57veHAf6vJ69wn/USkNr9WOo+R+0UkVkQGANc60j+uZVlr42vH+5ki0klEemONxNFQnOfvLBHpLCK9qluHiDyC1fUqB6tf/TvsOV4qf/FWe8Pf/UNa+4vq72J33mGd5Mg/AuvbaHX94Zx5O2OdGJXzdLenP17DcgwV+xZXWX6lepRN3+xIm+JIn+tITypLryavc72bKy+3UrpzGf2wLqrV1cdZtlF4H33Aefdyoo9996WX+ddXsy+81q+p91M19ai2bPXYron4HtliRD2OK+e2rPW+o+7n11xv+7+6cjbENqhhv3i7A3+KPW1iNdvAsHejZ9R1uySVpXtZh9dpWI0xH9VwPDn3X3dH2gIv6wjDutmqpmWVnUeJjjTn9SjR2zqwbpSqsrxmfC69UOkYKGTPTXyV67bAy/a5qZrjIb1y3X3Vs4btU+WYoOKNemUv53XUuU1C8D76SGINy/c1esaTlbZ5rY+RaupY3egZzv32Qk37otLyvO2r6kbPcG4b5/6uqS/9NbXdf/ry/dKW5kZmrCN6DPA81s0XOVjj/I6tJv83WA8NWIjVR6kY66e837GGJrvRkXcbcB7WjWqFXpZ1OdbQVd/Y6y62l7kE6yfNT/e+hk3HGLMWaySRJ7DuQi7CqtcfwHM4nk5mjPkaa7uvtvNtwBoD1tkq4cu5WDdkpNvreRk4sx7lbtb7qY7bNQk4DWus1yKsf36TscbtLuPr515f5an1vqvr+dUQGnAbTMIaqjHLyzpewfpH/pG9rBKsbkJvAgcbHw9m8cd2cazbg7V9rgR+ttddiNXH9DM7/ZdqF1BxWXlYrdKzscYzzsNqVNgIvAdcgBWs1Kecy4GrsMbirtw9rF4a+Vy6Bmuc5d12/g+wbmCrrXuxRjPZhrUNvwGOtsvXmK4FnsTqIpGLdUwf4y2jMaYA6xq7Amtf+2SM2Yn1BehBrH1ZhHXM/YQ1lneDPrXSLuNorDGUc7H+PzyN9aWkzN5eA/OxttG79joysL40XVzNLPcA/8PaxiVY2+4XrOP7ob0pi6qobKxMpZTySUQCgZHAEmNMsZ12PNa4vMHADqy+p55qF9LC6TZQDUGPo5ZLRI7A6reebH/uiBXgHmpnOcEY85m/yqcajwbNSqlas/tRZmO1zO3CGn832p5cAowzxnzgp+I1Cd0GqiHocdRyicjbwDisFuUirPH1y365f9MYU+dfJFXLoN0zlFJ1UYj1E/E/WMNmhWINtfQycNA+8k9et4FqCHoctVyfYHU9Eqzh7DKxurtcSMVRSlQroy3NSimllFJK+aAtzUoppZRSSvmgQbNSSimllFI+aNCslFJKKaWUDxo0K6WUUkop5YMGzUoppZRSSvmgQbNSSimllFI+aNCslFJKKaWUDxo0K6VUIxORKSLyvwZeZncRMSLibsjlKqWU8k6DZqWUauU0wFZKqb2nQbNSSimllFI+aNCslFINRERmicjfIpItIn+IyNiKk+UREckUkT9FZJRjwhQR2WjPt0lEJtrpLhGZLSL/iEiyiCwUkehq1r1ZRI5xfJ4rIi/bH7+1/2aISI6IHGbnuUBE1opIuoh8LiLdGnSDKKVUK6JBs1JKNZy/gSOBaOBW4GUR6WhPOwTYCLQBbgHeFZE4EQkHHgZOMMZEAocDv9nzTLFfI4GeQATwaD3KdZT9N8YYE2GM+VFExgA3AqcDbYHvgNfqsWyllNonaNCslFINxBjzljFmuzHGY4x5A/gLONienAw8aIwptqetA06yp3mAASISaozZYYxZY6dPBB4wxmw0xuQANwBnNVDf5EuAu40xa40xJcBdwBBtbVZKKe80aFZKqQYiIueJyG8ikiEiGcAArJZlgG3GGOPI/g/QyRiTC5wJXArsEJGPRWR/O08nO59zHjfQvgGK2w14yFHWNECAzg2wbKWUanU0aFZKqQZgt9A+A1wJxBtjYoDVWIEoQGcREccs+wHbAYwxnxtjRgMdgT/t5WBP71ZpnhJgl5ci5AJhjs8dHO8NVW0BLjHGxDheocaYH3xWViml9kEaNCulVMMIxwpOdwOIyPlYLc1l2gFXiUigiIwH+gGfiEh7ETnV7ttcCOQApfY8rwHXikgPEYnA6kLxht2dorLfsLpuBIrIcOAMx7TdWF1AejrSngRuEJH+dnmj7XIppZTyQsfsVEqpBmCM+UNE5gE/YgWoC4HvHVl+BvoAKVgtxWcYY1LtGwWvA17CCrp/Ay6353keq4vGt0AI8Dnwn2qKcDNWkJ0OfAO8CsTZZcsTkTuB70UkEDjeGPOeHYi/breSZwJfAm/t5aZQSqlWSSp2sVNKKaWUUkpVpt0zlFJKKaWU8kGDZqWUUkoppXzQoFkppZRSSikfNGhWSimllFLKBx09Q6lKYmJiTO/evf1djEaRm5tLeHi4v4vRaLR+LZvWr+VasWJFijGmrb/LoVRj0qBZqUrat2/P8uXL/V2MRpGUlERiYqK/i9FotH4tm9av5RKRf3znUqpl0+4ZSimllFJK+aBBs1JKKaWUUj5o0KyUUkoppZQP2qdZqVooLi5m69atFBQU+LsoeyU6Opq1a9f6uxiNpnL9QkJC6NKlC4GBgX4slVJKqdZAg2alamHr1q1ERkbSvXt3RMTfxam37OxsIiMj/V2MRuOsnzGG1NRUtm7dSo8ePfxcMqWUUi2dds9QqhYKCgqIj49v0QHzvkZEiI+Pb/G/DiillGoeNGhWqpY0YG55dJ8ppZRqKBo0K78SkStFZLmIFIrIgkrTRonInyKSJyJLRKSbY5qIyL0ikmq/7hNHhCQi3e158uxlHNOE1VJKKaVUK6NBs/K37cAdwPPORBFpA7wL3AzEAcuBNxxZpgJjgMHAIOBk4BLH9NeAX4F44CbgbRFp0U+rmj9/Pv3792fAgAGcffbZ5d0O0tLSGD16NH369GH06NGkp6cDsGDBAq688soGWfejjz5K7969ERFSUlJ85v/2228ZOnQobrebt99+u0HKoJRSSvmTBs3Kr4wx7xpj3gdSK006HVhjjHnLGFMAzAUGi8j+9vTJwDxjzFZjzDZgHjAFQET6AkOBW4wx+caYd4BVwLjGrk9j2bZtGw8//DDLly9n9erVlJaW8vrrrwNwzz33MGrUKP766y9GjRrFPffc0+DrP+KII/jqq6/o1q2b78zAfvvtx4IFCzjnnHMavCxKKaWUP+joGaq56g+sLPtgjMkVkb/t9D8rT7ff93fMu9EYk13N9CpEZCpW6zVt27YlKSmpwvTo6Giys63FpRx6br0qVBttfnrZa3pOTg7FxcUkJycTFRVFVlYWMTExZGdn89577/HJJ5+QnZ3NuHHjOPHEE5k9ezYFBQUUFRWRnZ3NZ599xn//+19ee+01Lr30UkJDQ1m/fj1btmzh8ccf59VXX2Xp0qUMHz6cJ598ssr6e/fuDVgjUuTk5BAcHAzA9OnTiY+PZ9asWXz11Vfcf//9fPLJJ8THxxMfH09paSn5+fnl266xlZaWVllXQUFBlf3ZUuXk5LSaunij9VNKNWcaNKvmKgLYXSktE4h0TM+sNC3C7tdceVrZ9M7VrcwY8zTwNEBCQoJJTEysMH3t2rXlQ5mlNuLNZdUNB5eQkMD06dPp378/oaGhHHvssYwZMwaA3bt306dPn/L5U1JSiIyMJCQkhKCgIL766isefvhhPv/8c9xuN4GBgeTk5PDNN9/wwQcfcOaZZ/L999/Tv39/DjroIP7++2+GDBnitRwiQkRERHk5H3jgAQ466CCOOeYYZs2axSeffEJ0dHR5/sDAQEJDQ5tsmDtvQ+qFhIRw4IEHNsn6G1tSUhKVj83WROunlGrOtHuGaq5ygKhKaVFAdjXTo4AcY4ypxbwtTnp6OosWLWLTpk1s376d3NxcXn7Ze6u005IlS7j33nv5+OOPiY2NLU8/5ZRTEBEGDhxI+/btGThwIC6Xi/79+7N58+ZalyssLIxnnnmG0aNHc+WVV9KrV6/6VE8ppZRq9rSlWTVXa7D6LQMgIuFALzu9bPpgYKn9eXClaT1FJNLRRWMw8GpDFKz76vcbYjF18tVXX9GjRw/atrXuZTz99NP54YcfOPfcc2nfvj07duygY8eO7Nixg3bt2pXP17NnTzZu3Mj69esZPnx4eXpZ9wqXy1X+vuxzSUlJncq2atUq4uPj2b59+95UUSmllGrWtKVZ+ZWIuEUkBAgAAkQkRETcwHvAABEZZ0+fA/xujPnTnnUhME1EOotIJ+A6YAGAMWY98Btwi728sVgjbLzTlHVrSPvttx8//fQTeXl5GGP4+uuv6devHwCnnnoqL774IgAvvvgip512Wvl83bp149133+W8885jzZo1Xpe9N/755x/mzZvHr7/+yqeffsrPP//c4OtQSimlmgMNmpW/zQbygVnAufb72caY3VijXdwJpAOHAGc55nsK+BBrVIzVwMd2WpmzgOH2vPcAZ9jLbJEOOeQQzjjjDIYOHcrAgQPxeDxMnToVgFmzZvHll1/Sp08fvvzyS2bNmlVh3oSEBF555RXGjx/Pxo0b67X+hx9+mC5durB161YGDRrERRddhDGGCy+8kPvvv59OnTrx3HPPcdFFF1FQUMCyZcvo0qULb731Fpdccgn9+1d7D6ZSSinVIojVBVQpVSYhIcGsW7euQtratWvLW3ZbMm83yrUm3urXWvYdtP4bybR+LZeIrDDGDPedU6mWS1ualVJKKaWU8kGDZqWUUkoppXzQoFkppZRSSikfNGhWSimllFLKBw2alfKiaP1mPPmF/i6GUkoppZoJfbiJUpW4d6Wx8+K5iMtFzOVnEjF2lL+LpJRSSik/05ZmpSpx5RZQ/OdGijZuIe2BFzGFxf4uElu2bGHkyJH069eP/v3789BDD5VPS0xMZPny5Q2ynuOPP56YmBhOPvnkWuW/6aab6Nq1KxEREQ2yfqWUUqq50qBZqUqMS8DlgvwCSjZtZ9fUWzBF/g2c3W438+bNY+3atfz000889thj/PHHHw2+nunTp/PSSy/VOv8pp5zC0qVLfWdUSimlWjgNmpWqxAQF4oqLhogwJDKMvKRllCSnUbRxK6XZuZRmZJP+0MtsHjCGzQPGkPH461WWkfbfF8qnZy54v8r0lLmPlU/Pfutzn2Xq2LEjQ4cOBSAyMpJ+/fqxbdu2Cnk8Hg+TJ09m9uzZAERERDBz5kyGDRvGMcccw9KlSznxxBPp2bMnH3zwgdf1jBo1qsrDQTIzM0lISKDsgS9nn302zzzzDACHHnooHTt29Fl+pZRSqqXToFmpSko6taH9EzcTnngwruAgXDFRiAgmr4CSzdso/mc7pSnpUOrxS/k2b97Mr7/+yiGHHLKnzCUlTJw4kb59+3LHHXcAkJubS2JiIitWrCAyMpLZs2ezaNEi3nvvPebMmVPr9UVHR/Poo48yZcoUXn/9ddLT07n44osbvF5KKaVUc6Y3AirlRdhRwwk7ajiFf/xN1oJF5IiAgCk1YAzGYzDGg3jAeJoueM7JyWHcuHE8+OCDREVFladfcsklTJgwgZtuuqk8LSgoiOOPPx6AgQMHEhwcTGBgIAMHDmTz5s11Wu/o0aN56623uOKKK1i5cmWD1EUppZRqSTRoVqoGwQf0ou1909i9ejUB8TGUpmViikuIHH8skROOQ9wBIELJ9mQC2sQiQYEAxE0/n7jp51e73DZzr6DN3CvqVJbi4mLGjRvHxIkTOf300ytMO/zww1myZAnXXXcdISEhAAQGBiIiALhcLoKDg8vfl5SU1GndHo+HtWvXEhoaSlpaGl26dKnT/EoppVRLp90zlKoFCQjA3aENQQndcXduh4QEIQEuMGCKSyhNzaDo7y2UJKdhGqHbhjGGCy+8kH79+jFt2rQq0y+88EJOPPFExo8fX+eAuDbmz59Pv379eO2117jgggsoLvb/iCJKKaVUU9KgWak6kIAA3G1iCerbA3eXDkhosB08G0xRMSXbkylatwlPQcM+GOX777/npZdeYvHixQwZMoQhQ4bwySefVMgzbdo0hg4dyqRJk/DUs8vIkUceyfjx4/n666/p0qULn3/+OevXr+fZZ59l3rx5HHnkkRx11FHl/aZnzJhBly5dyMvLo0uXLsydO3dvq6qUUko1S2KM8XcZlGpWEhISTNlIEWXWrl1Lv379quQ1xmBy8ynetgvjeIKgBLoJSuhhdd9oRrKzs6uMjtGaeKtfdfuuJUpKSiIxMdHfxWg0Wr+WS0RWGGOG+7scSjUmbWlWai+ICK6IMIJ6dcUVFgpiTyj1ULxxa4O3OCullFLKPzRoVqoBiNtNYJ/9CIiPRQJcVgt0QSHFG7dSmpHt7+IppZRSai9p0KyaNRHpJyKLRSRTRDaIyFjHtIvstBwR+UxEOjmmiYjcKyKp9us+KRtKovHKSmCX9ri7dUIC3YCBUg8l23ZR/O8OSrNzG3P1SimllGpEGjSrZktE3MAi4CMgDpgKvCwifUVkBHAXcJo9bRPwmmP2qcAYYDAwCDgZuKQpyh0QFUFgr65IaAiIgMdDaXomJRu3UrIzBb2PQCmllGp5NGhWzdn+QCdgvjGm1BizGPgemAScArxljFljjCkCbgeOEpFe9ryTgXnGmK3GmG3APGBKUxXcFRxEYM8uuKLDMR5jDU1nDCW7UvFoi7NSSinV4ujDTVRz5q07hQADgI2Vppe9HwD8DfQHnI+uW2mneV+RyFSs1mnatm1LUlJShenR0dFkZ9ejb3J0OC5jCEjPBruFufjfHRTERuKJDLNaoptQaWlp/erRQnirX0FBQZX92VLl5OS0mrp4o/VTSjVrxhh96atZvoBArOB4hv3+WKAI+BwYBaRgdb0IBZ4CPMDZ9rylwP6OZfUBDPYwizW9+vbtayr7448/qqTVRUl2rilY85cpWLW+/FW0ZYfxlJTWav5///3XJCYmmv33398ccMAB5sEHHyyfNmLECLNs2bJaLScrK6vG6QsWLDC9e/c2vXv3NgsWLPCaZ968eaZfv35m4MCB5uijjzabN28un+ZyuczgwYPN4MGDzSmnnOKzPMuXLzcDBgwwvXr1Mv/5z3+Mx+OpkueLL74wQ4cONQMGDDBDhw41X3/9dfm0ESNGmL59+5av8++//64y/97uu+ZkyZIl/i5Co9L6tVzActMM/m/oS1+N+dKWZtVsGWOKRWQM8AgwE1gOvAkUGmO+FpFbgHeAaGA+kA1stWfPAaIci4sCcowxfulQHBARhqt3N4q37MTkFWA8HjwZ2RTnF+IKDyOgYxtquk/R7XYzb948hg4dSnZ2NsOGDWP06NEccMABDVbGtLQ0br31VpYvX46IMGzYME499VRiY2Mr5DvwwANZvnw5YWFhPPHEE8yYMYM33ngDgNDQUH777bdar/Oyyy7j6aef5tBDD+XEE0/ks88+44QTTqiQp02bNnz44Yd06tSJ1atXc9xxx7Ft27by6a+88grDh1vDw7bmVnSllFL+pX2aVbNmjPndGDPCGBNvjDkO6Akstac9ZozpY4xphxU8u4HV9qxrsG4CLDPYTvMbCQoksEdnXPHRiMuFKfXgySugZHcapbvTa5y3Y8eODB06FIDIyEj69etXIXAE8Hg8TJ48mdmzZwMQERHBzJkzGTZsGMcccwxLly7lxBNPpGfPnnzwwQdV1vH5558zevRo4uLiiI2NZfTo0Xz22WdV8o0cOZKwsDAADj30ULZu3Volj1NmZiYJCQmUPTDm7LPP5plnnmHHjh1kZWVx2GGHISKcd955vP/++1XmP/DAA+nUyRoYpX///hQUFFBYqONfK6WUaloaNKtmTUQGiUiIiISJyPVAR2CBnTbAHlpuP+Bp4CFjTFn0uRCYJiKd7aHorgMWNFS5Mh5/nc0DxpS/CtdsoHDNhgppGY+/DsCWkReUp+0483oCO7Uj65WP2HHmdeyYYL2K/tiAJ6+gVuvevHkzv/76K4ccckh5WklJCRMnTqRv377lj7jOzc0lMTGRFStWEBkZyezZs1m0aBHvvfcec+bMqbLcbdu20bVr1/LPXbp0qRKYV/bcc89VaBkuKChg+PDhHHrooeUBcHR0NI8++ihTpkzh9ddfJz09nYsvvpht27bRpUuXOq3vnXfe4cADDyQ4OLg87fzzz2fIkCHcfvvt+OmHBKWUUvsA7Z6hmrtJwEVYfZq/A0YbYwpFJAZ4FeiF1S3jBeBmx3xPYbVKr7I/P2unNYiYy88i5vKzqqR3X/1+lbSuS56vktb2nmuJu2kqxRu3WjcIulyUpmYgoe1r7KaRk5PDuHHjePDBB4mK2tP75JJLLmHChAncdNNN5WlBQUEcf/zxAAwcOJDg4GACAwMZOHAgmzdvrrJsbwFnTWV5+eWXWb58Od9880152r///kunTp3YuHEjRx99NAMHDqRXr16MHj2at956iyuuuIKVK1fWa31r1qxh5syZfPHFF+Vpr7zyCp07dyY7O5tx48bRrl07LrmkSUYWVEoptY/RlmbVrBljphtjYo0xEcaYE4wxG+z0DGPMIGNMuDGmgzHmBmNMqWM+Y4yZYYyJs18z/NWfuToBkeG4O7VFXC4wBk9mdo3dNIqLixk3bhwTJ07k9NNPrzDt8MMPZ8mSJRQU7GmtDgwMLA9CXS5Xeeusy+WipKSkyvK7dOnCli1byj9v3bq1vFtEZV999RV33nknH3zwQYVW37L8PXv2JDExkV9//RWwuo6sXbuW0NBQ0tLSytfn7NpR0/q2bt3K2LFjWbhwIb169SpP79y5M2B1WTnnnHNYsWKF1/mVUkqpvaVBs1J+5G4bR0DbWCu4LfVQmpxGaWbVm9mMMVx44YX069ePadOmVZl+4YUXcuKJJzJ+/HivAXFtHHfccXzxxRekp6eTnp7OF198wXHHHVcl36+//soll1zCBx98QLt27crT09PTy/sap6Sk8P3335ffqDh//nz69evHa6+9xgUXXEBxcTEdO3YkMjKSn376CWMMCxcu5LTTTquyvoyMDE466STuvvtujjjiiPL0kpISUlJSAOsLxUcffdSgN0YqpZRSTho0K+VnAR3a4IoKLx+zuWRbMqVpmRXyfP/997z00kssXryYIUOGMGTIED755JMKeaZNm8bQoUOZNGkSHo+nzuWIi4vj5ptv5qCDDuKggw5izpw5xMXFATBnzpzymwenT59OTk4O48ePZ8iQIZx66qkArF27luHDhzN48GBGjhzJrFmzOOCAA1i/fj3PPvss8+bN48gjj+Soo44q73f9xBNPcNFFF9G7d2969epV3j/6gw8+KO93/eijj7JhwwZuv/328ronJydTWFjIcccdx6BBgxgyZAidO3dmypQpda63UkopVRvSzH6xVsrvEhISTNlID2XWrl1Lv379Gm2dprSU4o1bMYVFmFIr4HV3aY87PqZB15OdnU1kZGSDLrM58Va/xt53TSkpKYnExER/F6PRaP1aLhFZYYwZ7u9yKNWYtKVZqWZAAgJw79fRevyKMWAMpVt34cnL93fRlFJKKYUGzUo1G67gINzdO5V30zACpbvTdRg1pZRSqhnQoFmpWmqK4LVsRA1EEHHhycmjNDm10dfbWukXDqWUUg1Fg2alaiEkJITU1NQmCcLcbeNwt4+3WpyNoTQlg9KMrEZfb2tjjCE1NZWQkBB/F0UppVQroA83UaoWysYU3r17d9Os0BhKMzLx5Bcg4oJd23HFROEKDfY9bw0KCgpadRBZuX4hISEVnjqolFJK1ZcGzUrVQmBgID169GjSdXpy8tg29mqKVv0FIUFQWES7R24k8oxj673MpKQkDjzwwAYsZfPS2uunlFLKf7R7hlLNlCsijI4L7kAiwiA3Hzwedl97H4W/r/d30ZRSSql9jgbNSjVj7s7taf/sXHAHgDGY0lLSHnoJU1rqc16llFJKNRwNmpVq5sITDyZ+zmXgciHBgRT+vIr0Bxb6u1hKKaXUPkWDZqVagJjLziTmirMxBUWYwiKyXlxE9jtf+rtYSiml1D5Dg2alWoi4m6YSNupQPLn5GGNIu/Np0h97jeJ/d/i7aEoppVSrp0GzUi2EuFy0f+oWQg4aAEBpVg5pdz3DjvHTyP3yRz+XTimllGrdNGhWqgVxhYfS9oHpAJjMHCgupmRXKtmvfaJPv1NKKaUakQbNSrUwQb32I/7mS62h6AyYgkLCxx6NiPi7aEoppVSrpUGzUi1Q5JnHE3HSUUh0BBIUSMb9CyhNSfd3sZRSSqlWS4Nm1ayJSD8RWSwimSKyQUTGOqZNEJG1IpItIn+IyBjHNBGRe0Uk1X7dJ62oKVZEiL/tSgK7dMAVFUHJrlR2TL6xvItG7lc/kf7gS5iSEj+XVCmllGodNGhWzZaIuIFFwEdAHDAVeFlE+opIZ+BlYBoQBUwHXhWRdvbsU4ExwGBgEHAycEmTVqCRBcRF0+auq60PIhT++ie7LppD0T/bSb35ETKffYddF83VFmillFKqAWjQrJqz/YFOwHxjTKkxZjHwPTAJ6AJkGGM+NZaPgVyglz3vZGCeMWarMWYbMA+Y0uQ1aGShhw8havJpSEAArphI8r74geSL5+LJzgWgZHsyBLr9XEqllFKq5dP/pqo589adQoABwFxgrYicCnwMnAIUAr/b+foDKx3zrbTTvK9IZCpW6zRt27YlKSlpL4vehIZ0pe2nMQRuTYaQIAqyssg7egiRXy5n29kj2fDrivKsOTk5LatudaT1a9m0fkqp5kyDZtWc/QkkA9NFZD4wEhgBLDHGlIrIQuBVIAQoAsYbY3LteSOATMeyMoEIERHjZWw2Y8zTwNMACQkJJjExsZGq1DiKe+3P9gnTMAVFBOUUEJtRhOnfl95jTiIgNqo8X1JSEiNGjGi1I20kJSXR0vZdXWj9WrbWXj+lWjvtnqGaLWNMMVa/5JOAncB1wJvAVhE5BrgPSASCsILpZ0VkiD17DlZf5zJRQI63gLk1COzZhbgZF5R/LlixBnentuw8dxYl23aVpwckp7Nz4kyKN23zRzGVUkqpFkuDZtWsGWN+N8aMMMbEG2OOA3oCS4EhwLfGmOXGGI8xZhnwM3CMPesarJsAywy201qtiPHHETbyYMAaXaPg17WEnzqS7Pe+BqA0I5v4h9+m8Pf17Jg4k4IVrXpzKKWUUg1Kg2bVrInIIBEJEZEwEbke6AgsAJYBR5a1LIvIgcCR7OnTvBCYJiKdRaQTViv1giYufpMqG4YuoG0cAJ70LAp/+YOYy8+icOU6ct79ioD0bABMYRHi1t5ZSimlVG1p0Kyau0nADqy+zaOA0caYQmPMN1g3A74tItnAO8Bdxpgv7PmeAj4EVgGrsW4WfKqJy97kAmKj9gxDB+R//yvZr3yEKS4ha8H7ZB9/CAFt42hzz7UED07wY0mVUkqplkWDZtWsGWOmG2NijTERxpgTjDEbHNMeNcb0NsZEGmN6GmPmOaYZY8wMY0yc/ZrRWvszVxZ62GCizh9T/jn9gYW4IsNo/9xthP/vd6Imn0r46MP8V0CllFKqBdKgWalWKPaqcwnq1xMAU1zC7hkP4O7agd03TCL0yKGY4hJMUXF5fk92Lqm3PUlpVo6/iqyUUko1axo0K9UKSaCbtvddh4QGA1D89xbS71+AJyaCoF77kf3W5+yaOpfSjGwrqJ52H9lvfsbOibMo3rrLx9KVUkqpfY8GzUq1UoE9OhM388Lyz9mvf0rwSqt3S+SZxxM0sA87z5lB9qLF5P9oPQemeNNWCleu80t5lVJKqeZMg2alWrGIcaMJG3Vo+efYFz+lJDkNCQgg7ropRJ0/Bk9qJm3vm4YEuom5/CwiTjrKjyVWSimlmicNmpVqxUSE+FuvIKCdNQydKyeflBkPYIpLAIgcfxwxl4wnoG0cMZefTfRlZ/qzuEoppVSzpUGzUq1cQEwkbe66BuxHZxcsX03qLY/hHEzEFRdF9jtfkPHYaxXSTWkp2W9/gSkpaepiK6WUUs2KBs1K7QNCDx1EzH8mln/O+WAJmU+8Uf45qNd+dHz5Hgp+XEnGAwvL09PnvUjq3MdJ/s9deHLymrTMSimlVHOiQbNS+4joi8eRd8TA8s8Zj79OzvuLyz8HtIml/XO3EXn2CXgKCsn95DuyFn4AQP53v5D7ybdNXmallFKqudCgWal9hIiQMfFYQg8bXJ6WOvcx8n/6vfyzKyQYd6d25CctI/2hl4kYNxqAsJEHEzH+uCYvs1JKKdVcaNCs1L7EHUDb+TMJ6tsNAFNSyu5r76Xo738rZAs//v+IuexM8pcsJfriM2hz19WI3SdaKaWU2hdp0KzUPsYVEUa7x28moK01ooYnO5fky+6gZHd6hXwRY46m7f3X44qJxBUZXmU5mS+8R8nOlCYps1JKKeVvGjQrtQ9yd2hD+yduxhUWCkDJ9mSSr7wTT15BhXwhBw8kevJp5P+4kszn3ytPz3nva9Lnvcj28dPKH4yilFJKtWYaNCu1jwravwdt5l0PAQEAFK3ZQMqMeZjS0ip5A3t2IWfRYtLnL6QkM5u0e54FwJOeRc6ixVXyK6WUUq2NBs1K7cPCjhxG/E0Xl3/OS1pG+n0vVMnnbh9PhwV3kv/T7+S89gntHp9NQNs4Ant1JX7OZU1ZZKWUUsov3P4ugFLKvyInHE/Jll1kvmB1v8h65SPcXdoTNemUCvkCYqPo8NxteHLycEVH0uGVe6GkBFdYiD+KrZRSSjUpbWlWShFz7STCjzui/HPafc+T9/XPVfK5IsJwd2hD1ovvk3bn0+WP53bKfuMzst/4rMKTBZVSSqmWToNmpRTichF/51UED9nfSjCG3TPnUfj7eq/5oy8chys8hOTLbq/wpMDCletIu+dZUm9/ktQbH8KTX9gUxVdKKaUanQbNqlkTkX4islhEMkVkg4iMtdMnikiO45UnIkZEhtnTRUTuFZFU+3Wf6EDDNXKFBNPukRtx79cRAFNQRPJ/7qR4664qeSXQTZu7ryGwRxfyFu9pkc54+m1McQkARRv+RVy6yZVSSrUOGjSrZktE3MAi4CMgDpgKvCwifY0xrxhjIspewOXARuAXe/apwBhgMDAIOBm4pImr0OIExEZZQ9HFRAJQmppJ8mW3U5qVUyWvBAQQd/MlRJw6kvzvf6VkVypt511PxJijcUVF0Hb+TCQ4qKmroJRSSjUKDZpVgxCRU0Vknoi8KCILy157udj9gU7AfGNMqTFmMfA9MMlL3snAQrOnI+1kYJ4xZqsxZhswD5iyl+XZJwR260S7R25EggIBKN60ld1X34MpKq6St6zxvmj9ZnZOvpHS5DTa3HEVnd59kMAu7Zu03EoppVRjEr1ZR+0tEbkFuBR4Has19yngHOANY8xVe7HcgcCPQGRZMCwiXwI5xpixjnzdsFqZextjNtlpmcCxxpif7c/DgSXGmMhq1jUVq3Watm3bDnvzzTfrW+xmLScnh4iIiFrlDVm2lrhnPiz/nD+kD+kXnQx2MF1Z2De/Evnxj6ReM4GSTm2qTHelZWFCgzGhwfUrfC3UpX4tkdavZWvN9Rs5cuQKY8xwf5dDqcakQbPaayLyD3CSMWa1iGQYY2JE5GBgtjHm1L1YbiCwDngSmA+MxOqqscQYc5wj383AKGNMoiOtFOhvjPnT/twHWA+4jI+DPiEhwaxbt66+xW7WkpKSSExMrHX+zOfeJX3+nh8Mgg/sR7tHbyQg2ut3D3K//JHgQX1xt4+vkF68aRu7Lr4Fd5f2tHtyDq6Qxgmc61q/lkbr17K15vqJiAbNqtXT7hmqIcQYY1bb74tEJNAYsxQYsTcLNcYUY/VLPgnYCVwHvAlsrZT1PODFSmk5QJTjcxRWC7V+S6yDqAvGEn1+eaM+hb+uZeekGyjZsdtr/vDRh+FuH8/u6+8n/+ffASjNymHn5Bsp2ZlCwfI1pNzwYFMUXSmllGpQGjSrhvC3iPS3368GLhORSUD63i7YGPO7MWaEMSbebl3uCSwtmy4iR2D1e3670qxrsG4CLDPYTlN1ICLEXjeZuBkXlKcVb9zKjnNmUrR+c7XzRU44jpTp88hbspSAqAiipoyxlhcaQuT446qdTymllGqu9ImAqiHMBsp+j58FvAqUjWixV0RkEHa3Cnt5HYEFjiyTgXeMMdmVZl0ITBORTwCD1Ur9yN6WZ18Vdd6pBLSLI+WGBzHFJZTuTmPneTfS9qFZhB4yqEr+kIMH0u6x2SRfeQeBfboRfcFYTFExoYcNJnhwgh9qoJRSSu0dbWlWe0VE9gdCgB0AxpilxpjexpgOxph3G2AVk+xlJwOjgNHGmEJ73SHABKp2zQDrZsQPgVVYrd8f22mqnsKP/z+rP3JEGACenDySL72N3M/+5zV/8MA+dHrHGkXDk5tPzKUTNGBWSinVYmnQrOpNRKZgBaVPAqtFZHxDr8MYM90YE2uPx3yCMWaDY1qBMSbGGPO1l/mMMWaGMSbOfs3Q/sx7L/SQQXRYeBcBba3HZ5viEnZffz9ZCz/wmj+gTSylKelsO/VKijb8W2W6p6DQ6+O6lVJKqeZGg2a1N2YCZxhj2gFnATf4uTyqCQT17U7HV+8lsFfX8rS0+54n7b8vYDyeKvkD2sQSO20yuy65lZJte54u6MnOJfmSW0m++m5y3qvyvUcppZRqVjRoVnujkzFmkf3+fWA/P5ZFNSF3x7Z0WHgXwUP7ladlvbiIlJkPeH0ISsRJRxF94emk3vVMeVr6/JcoWPEHACm3PEbR31VbopVSSqnmQoNmtTek7I3d9UGPp31IQHQk7Z+eS9gxh5an5X76P3Zdehue7Nwq+aPOOYm286bjySvAk51L7LWTCNq/BwCx084jqJd+51JKKdV8aZCj9ka4iPxb9gKiHZ+32GmqFXOFBNN23nQizz6xPK1g6SprXObkNK/5c975kl1X3AFuN+2fnEPb/15HtD0knVJKKdVc6ZBzam8c7e8CKP+TgADibrwYd/t40h98CYCi9f+wc+JM2j05hyBH32eAyIknUbhmA7uv/y/tHpxF+AlH+qPYSimlVJ1oS7OqN2PMN8aYb4AfgQTgTODCSi+1DxARoi8aR5s7r0bcAQCU7NjNzkk3kP/T7xXzuly0uf0/gJD/429VlmWMIfO5dyn6e0sTlFwppZSqHQ2aVUN4EbgGyAb+rvRS+5CI00bS7rHZSGgIAJ6sHHZdNIe0+1+ocIOgBLpp98gNhB01nKI/N1E2GqDxeEi782nS5y9kx4TryHr1Y7/UQymllKpMu2eohnA80MMYk+Hvgij/Cz3iQDosuIPkK+6gNCUDgKwFiyj4cSVt7p1GUG/rhj9xuTClpaTOfZzQo4YRc/lZFP+9pXz4OVNYBB4dWlsppVTzoC3NqiH8CwT7uxCq+Qju35uOb80n9P+GlqcVrdvMjjOvJ+vVj8tbliUggHaP3UTuR9+Q9fJHBPXpRsdX7yVo/x6EDO9P5DknVrcKpZRSqklp0KzqRUSOLnsBC4FFInK2M92epvZR7raxtHviZuJuuBgJCgSs1uO0u54h+fLbKdmdDkBAfAztn72V/O9/wRQVE5TQg46v/Ze286YjroqXKE92LsX/7mjyuiillFLaPUPV13Ne0u6q9NkAPZugLKqZEhGiJp5EyCEDSZkxj6L1/wCQ/90v7Bh3DfG3XUlY4kG4O7Wj/RNz8OTkUbhqPSHD+hMQH1NleWn3PEfu5/8j9trJRJ59QpWgWimllGos+h9H1YsxpkctXhowKwCCeu9Hx9fvJ2rKaeVppWmZJF95J6m3PYEnrwCA4i072X3tfeT/uLLKMvKSlpGzaDGmoIi0u5+hYOnqJiu/UkoppUGzUqpJSFAgcdefT/tnbyOgXVx5evabn7NjwnUUrtlAcL+etLnvOlJmP8zOC+dgjMF4PAAEtI8nqG83AMJPPJLQQwf5pR5KKaX2Tdo9QynVpEIPHUSn9x4i9dYnyPviBwCKN29j58SZxFx5DlHnj6HLF09T8u9ORITd0+fhyS8k4rREOrx4F1mvfkLkmcdXWW7ZzYVKKaVUY9CWZqVUkwuIjqTtvOm0uf0/uMJCATAlpaQ/+BK7LpxDaXIagT06AxB/6xWEjz6M7Dc+Z+dFtxBzyXjweCoEycYYdl99D2FLfqkwHrRSSinVULSlWSnlFyJCxNhRBA87gJQbHqRw5ToACpavYfvYq4kYN5rwk0cQtH8PIsYcTcSYo/HkFwKQdufTFP25ifBTRxJxaiL5364gb/HPxBQVsWtrBh2eu82fVVNKKdUKadCslPKrwP060uHFO8l8+m0ynnwTPB48OXlkvbiIrBcXEdirKxEnjyD8pKNwd2oHQJv7r6fo9/XkLFpC6q1P4MnMxpSUgDGEHjm0yjpKktNwRYXjCtHhxJVqaNo1Su0rNGhWSvmduN3EXH4WoUccyO4bHqTEMRZz8d9bSH/oZdIfepmQYQcQfvIIwo47guDBCQQPTgCs8Z+3nz2dkp9+p3DlOgpXriufBlijbXz/G6EjhhF96QSCeu3X5HVUqrVKu/NpfxdBqSahfZpVsyYi/URksYhkisgGERnrmBYmIo+LSIo9/VvHNBGRe0Uk1X7dJyLin1qo2goenEDnDx6h/VO3EH7yCCS0YstwwYo/SL31CbaOmELyVXeT+8UPmMIiJDiIzu8+xI7HpxE8oA85H1uHQv4Pv1G8dRf5363Ak5dP7qf/A/QwUKohxV59rr+LoFST0JZm1WyJiBtYBDwJjAZGAB+KyIHGmPXA01jHcD8gDRjimH0qMAYYjPWQlS+BjfayVDMmbjehRxxI6BEH4snNJ2/JUnI//ob8H1ZCaSkApriEvMU/k7f4Z1yR4YQdezgRJx2FJyqc6DF7HkSZl7SMnHe+xOQXYEpKCTqgF0G9ulZYnykuIXXu40RffAaB3Ts1aV2Vag0kIszfRVCqSWjQrJqz/YFOwHxjdZpbLCLfA5NE5GXgVKCLMSbLzr/CMe9kYJ4xZiuAiMwDLkaD5hbFFR5KxMkjiDh5BKUp6eR+9j25H39D4aq/yvN4snPJeedLct75kvYRIWRPKyLi9GMQt5v4Gy8m9j/nkPPJdxRv2krYyIPJ+fhbggcnENilPQD5P/5GzqLF5H76HdFTzyD6kgnojxJK1Z6eL2pfIdqBXzVXIjIQ+BGItINmRORLIAd4D5gOfAVMAnYAc40x79j5MoFjjTE/25+HA0uMMZHVrGsqVus0bdu2Hfbmm282ZtX8Jicnh4iICH8XY68F7Eoj7Oc/CP35D9y7M8rTPcbgEqG4QxxZ4xIpHNQLnP/QjSHq7STCflhFcdd25IwaTuiv6wn7wXq6YP7w/UmfemoT16b2Wsv+q47Wr2WQ/EICUjIp6WrdmBvy618cNm3qCmPMcD8XTalGpUGzarZEJBBYh9U6PB8YCXwELAG+Ae4EbgXuAg4DPgYOMsasFZFSoL8x5k97WX2A9YDL+DjoExISzLp16xqnUn6WlJREYmKiv4vRYIwx1igaH31D7mf/o2BXCkFBQeXTQ4YdQOy0yRVuCgTrxsG8JUsxRcUE9t6P5MvvwFNQSJePHiOgTWxTV6PWWtv+q0zr1/wZY9h97b3kf7uCuNmXEHr4ELaPn0a3/72kQbNq9fRGQNVsGWOKsfolnwTsBK4D3gS2AvlAMXCHMabIGPMNVjB9rD17DhDlWFwUkOMrYFYti4gQPDiB+Jum0uWLZ8gaexQuR//KghV/sGPiTHZf91+KHSNySHAQ4cf/HxGnjiQooTvBg/sSEBVByY6UCss3Hg/5P67UIbWUsmW//BF5X/2EKSom5eZHKN2VSsdX7vV3sZRqEho0q2bNGPO7MWaEMSbeGHMc0BNYCvzuY9Y1WDcBlhlsp6lWyhUaTM4Jh9L50yeJOvdkJHDPLRu5n3/P9lOvJPWuZyhNy6wwnwQE0PbBWcReO4nkK++g4Lc/y6flvPc1uy6+heQr76JkZ8WAWql9UeiRwwjs0w1jDAHRkUhoMIH7dfR3sZRqEho0q2ZNRAaJSIg9vNz1QEdgAfAt8C9wg4i4ReQIIBH43J51ITBNRDqLSCesVuoFTV1+1fQCYqOIm3URnRY9Qvjx/1eebkpKyX71Y7adcCkZT79d/nRBsFqsw084kk7vPUzwoL7k//Abed+tIP3+BQDkf7OM7Dc+a+qqKNXsBHbvRIeX7yGoZxdCDh5AYG8d81ztOzRoVs1d2U1+ycAoYLQxptDuunEacCKQCTwDnFfWhxl4CvgQWAWsxurv/FQTl135UeB+HWl7//V0fOVeQob3L0/35OaT8fDLbDvxMrLf+wpjD2MHEBAXjbhcePIKSLnhQQLaxmKMwd21A9FTx/ujGko1O7mLFiMhwbS5+1rEpWGE2nfokHOqWTPGTMcaJcPbtDVYNwB6m2aAGfZL7cOCByfQ/oU7yP9mOekPvEjxxq0AlO5OI/XmR8la+CGx104i9Mhh5UNnhR9zKCFDEki9/SkC2sURc9mZuCo9aMUUFmE8pkq6Uq2Np6CwwiPow445jLBRh+qxr/Y5+hVRKdXqiQhhiQfR6d0HiZ97eYURMor/+ofky+9g57mzyPtuRflNfwFtYmn74EzaPTiLoL7dyXj6bUxRcfl8GU+/xfbTr6Zow79NXh+lmkrekqVsO+lyCn77k6L1m9l93X8JaBuLu328v4umVJPToFkptc8Qt5vIM46l8ydPEHPl2bjCQsunFa5cR/Jlt7PjrOnkJS3DGIOI4IoIw5SUUrT6L7ZPuI7C1Rso+usfsp57l5ItO9l18dwKI3Mo1VoUb9lJyo0PUborlZ2TbmDn5BsJPfoQfZiJ2mdp0KyU2ue4wkKIufRMOn/yOJFnn1hhpI2iNRtIvvJOdky4jryvf8Z4PATERtH2oVlEX3wGyVfdRdGfmxB7PGhXTCQSoj9Tq9andFcquARjDCavgIgxxxBx0lH+LpZSfqN9mpVS+6yANrHE3zSV6IvGkfX8e2S//QWmsAiAorUbSb76boL6diP60gmEHXMYEScdRfgxhyLBQRQsX0PRmg20f+42AqK9PmhSqRYtZHh/Or31ALtnzif8uCOIPOdEfxdJKb/Slmal1D7P3T6euBsussZ4nnwaErLnqYJF6/9h97T/sv30a8j97H/gDgCspw2W7k6nNCXdX8VWqtHlff0zUVPGWGOf60gZah+nZ4BSStnc7eKIm34+XT5/mujzxyKhIeXTijf8y+7r72f7mKvJ+egbwk88ktjp55N8yW2UJKftyffvjvLWaqVasrykZWQ+/x7BB/T0d1GUahY0aFZKqUoC4mOIvW4yXb54muiLxlW4YbB401ZSZs1n+6n/gVIPcbdcRkCs9cT2wjUbrMd2X38/pqTEX8VXql482bnsnvEAJbtSKdrwLyk3P0K7B2fi7tjW30VTqlnQoFkppaoREBtF7DWT6Pzl00RfOgFXRFj5tOJ/d5By00PkvPsVJdt3s/OCm9k55SY86VnkLVlK2l3P+LHkStVNaXoWuy6eS+4n37Jj/DSKN26lzV1XEzw4wd9FU6rZ0KBZKaV8CIiOJPbKc+jy5TPEXHEWrsjw8ml5X/5I8nX3EdA2FgkOxhiDKyqCiNOO9mOJlaobV2QYnpw8jDEU/7sDT14+YUcO8zmfKS0lc8H7jV9ApZoBDZqVUqqWXJHhxFx2Fl2+eJrIs/eMJFD85ybyf/qdwD77Edi1Ax0W3KEtdKpZMx5Phc/idhN96XhMTh5BfbsRcepIn8so+usfdk66gfT7FzRSKZVqXnTIOaWUqiNXZDjxN00lqG830u58GlNSiic1g8LsXGKvOIvAPt3KH46iVHNSvGkbGU+8gYQF02buFeXpxuMh++0vCTloAB1evKvGkTJMYREZz7xN1rPvYEpKm6LYSjULGjQrpVQ9RY4/Dvd+Hdk97T48mTlQVEz6/JfI+3YFwYMTiJs2GbBusCpY8QdhiQf5ucRqX1a8aRvbTvsPeDwQEED0BafjigwnP2kZEWNHETfzQoISutcYMBf88geptzxO8aat5WnOhwMp1Zpp9wyllNoLoYcMouNr/yWwR5fytIJlq8l67l0ynn6L0tQMdl5wM8lX3U3ulz/6saRqXxfYozMhBw0AwJSUkPbfF9h+2n8o+nMTxuMhuF/PagNmT3Yuqbc/yc7zbqwQMAcf2I+Ob89vkvIr5W/69VAppfZS4H4d6fjqvey+/n7yv/8VcbkwpR7S7nmWvK9+pGjtRgBSZj5A8MAncHdo4+cSq9auZFcqJr+QwO6dKqTHXHk2mS4hsG93ilb/RftnbyWob/cal5W3ZCmptz9JqWM8cld4KDHXnkfkhOP0oSdqn6FBs1JKNQBXZDjtHruJ9PsXkPXyR0iAC4KDKd62G1dcNJ6MbOJuvkQDZtXoMp9/j4xHXyVk2AG0f+bW8vTS1Axy3vmS6IvPIHhoPwgIqLHffcnudNLveZbcz7+vkB464iDi9VhW+yANmpVSqoGI203crIsI7L0faXc8BYAnIwtPRjYRZ4wmcuwxfi6hau3yliwl/YEXAcj/cSUFK9YQPDiB7Nc/I+OpN4k4bSRBB/RC3NX/+zfGkPP+16Tf9wKe7Nzy9ID4aOJuuJiw447Qm1zVPkmDZqWUamCRZxxL4H4dSb72XjyZObjCQ8l583NckRG0ue0K/TlbNZrQI4cSccZoct7+kqC+3TDFpWCgaP1mOiy4g6Be+9U4f/G/O0id+zgFS1dVSI8YczSx088nIDqyMYuvVLOmV27VrIlIPxFZLCKZIrJBRMba6d1FxIhIjuN1s2M+EZF7RSTVft0n2jSimlDIwQOtGwR7dkGCAnFFhJH1/LskX3MPnrwCqzXvwyR93LZqUOJ2E3/L5cRePwV3z65kPvsOEuimzW1X1hgwm9JSMp9/j+1jr64QMLu7dqD9M7fS5o6rNGBW+zxtaVbNloi4gUXAk8BoYATwoYgcCBTZ2WKMMd6ijqnAGGAwYIAvgY32spRqEoH7daTjK/eye8Y88r/7BVegm7yvf2b7mdcT2K0j+UnLKFqzgbhZF/m7qKoVKfp9PVnPv0fE6ccQfesVPvMXb95Oyk0PUbhy3Z5El4voyacRfflZuEKDG7G0SrUc2tKsmrP9gU7AfGNMqTFmMfA9MKkW804G5hljthpjtgHzgCmNVlKlquGKDKfdozcRdd6pVreMomIKl60m592vwEDWyx+Rl7TM38VULVRpagZ5X/9cMdHlIv7Oq4i9ZhKu8NBq5zUeD1kvfcD2cddUCJiD9u9Bx9fuI/a6yRowK+Ugxhh/l0Epr0RkIPAjEGnsA1VEvgRygGuBTcB29rQkTzfGpNj5MoFjjTE/25+HA0uMMV5/XxSRqVit07Rt23bYm2++2ZhV85ucnBwiIiL8XYxG09zrF/bdSqJf+hxXbgFSUoIJCCDn5MPInDAK3AE+52/u9dtbWr+6kcIi4ue9TtDmnWSekUjBoF6E/biG7LFH+Zw3IDmdmAWfErxhz5jLJsBF9smHk3PcIbU6Hp1Gjhy5whgzvM6VUKoF0aBZNVsiEgisw+pSMR8YCXwELAHGYbVE/wbEA49hBdfH2fOWAv2NMX/an/sA6wGX8XHQJyQkmHXr1tWUpcVKSkoiMTHR38VoNC2hflmvfkzqnU/jychG3AHEXnUusddNrtW8LaF+e0PrVzdpdz9L1isfAdaIFwFx0cReex6Rp1c/SovxeMh+/VPS5y/E5BeWpwcldKfNXVcTlNCjXmUREQ2aVaunfZpVs2WMKRaRMcAjwExgOfAmUGiMybE/A+wSkSuBHSISZYzJwmqNjnIsLgrI8RUwK9XYos45iZJ/d5C58EMQyHj+XdzdOhJ5xrH+LppqYaIvP5OiPzeSv2w1rohwYqaeUWPAXLJtFylzHqPg59/3JAYEEH3xOGIumaCPw1bKBz1DVLNmjPkd6wZAAETkB+BFb1nLsth/12DdBLjU/jzYTlPK72Knn0/xll3kJS3Fk55Fys2P4u7cntDDBlP4+3qCBvbRcXCVTwHRkbR/ei65X/6AKyKcsMSDvOYzxpDz9hek/3cBnrz88vTA3vvR5s6rCO7fu6mKrFSLpjcCqmZNRAaJSIiIhInI9UBHYIGIHCIiCSLiEpF44GEgyRiTac+6EJgmIp1FpBNwHbDAL5VQqhIJCKDtfdMIPqAXrvAwPBlZ7PrPnaTe9TQ7zplB1rPv+LuIqgXw5OSRPO2/hAzrX23AXLIzheRLbiX11if2BMwuF9EXjaPTm/M0YFaqDjRoVs3dJGAHkAyMAkYbYwqBnsBnQDawGigEznbM9xTwIbDKnv6xnaZUs+AKD6Xdozfh7toeCQ2hdFsyGY++Bh5D+sOvkPfdCn8XUTUz+T//TuHajQCYwiKSr7qbgDYxBHh5nLUxhpz3vmb7mKvI/+G38vTA7p3p+NLdxF4zCQkKbKqiK9UqaPcM1awZY6YD072kvwa8VsN8Bphhv5Rqltzt42n/+M1sP3cWntxATFYupRlZhB17OMED+vi7eKoZKVq3id1X3Q0G2s6fQc6HSQTERRM/59IqXXlKdqaQevtT5H/jGMpQhKjJpxJz5Tm4QnQYOaXqQ4NmpZTyo6D9e9Bu3nSS/3MXnkA3prgEV0wkrujWO/Saqhvj8bB71oN4cvMxxpBy6+O0f2w2gd07IwF7hoYr/ncHWS+8R877izHFe5755N6vI23uvIqQA/v5o/hKtRraPUMppfwsbMRw4mZeiISFgDHkfvQNGQ+97O9iqWZCXC7a3n+d1Q2jsJjwUYcS1Kdb+WgXRes3s3vGPLadfAXZb31RIWCOmngynd55UANmpRqAtjQrpVQzEDXxJIr/2U7Wwg/wZGaT8dRbuLt3InLsMZTsTsfdNtbfRVR+FNizK6H/N5SCkCBirrBu3yhcuY6Mp9+u2A3DFjw4gdhrJhFy0ICmLqpSrZYGzUop1UzEzbyAkm27yFv8M7hcpM59nJIdKWQvWETcDRdBbN2e0qZaJmMMRb+vJ2hQ3/L+yvlLllL0+zo6vHwPhb+vJ/PZdyhYuqrKvKGHDSb64jMIPmiADluoVAPToFkppZoJCQig7b3T2Dn5Rgr/+JvS5EzSbn0CV1wUqbc9QeCVYyHR36VUjSn/x5VkPPE6hb+spd1jswkbMZzSzGxCjhpGZE4eyZfcRtGaDVXmCzvmUKIvOoPgATqEnFKNRYNmpZRqRlwRYbR7bDbbz5qOJ68ACgrxZGTj7t8eE6xDhLV2+d8so/CXtQBkPvUmJbtSyHz0NSQ6gpJN2ypmDggg4uQRRF0wlqBeXf1QWqX2LRo0K6VUM+Pu0Ib2j89mx3k3ULojBTweAuKiKGkf5++iqUZiSkooTU4j+MB+mBfexxQXU7DiD/L/9ysSFoKkZZbnlaBAIsaNJnrKabg7t/djqZXat2jQrJRSzVDwAb1o99/r2XXlneDxUPTHRmJf+AQz6mjEZQ18ZIzRfqsthCkpISA1k4Jlqyn+dwd5S5ZSuGw1gfv3oHRnCiU7U6G0FGMMprgU3G5MUTESGVa+j13hoUSeeQKRk07RG0OV8gMNmpVSqpkKG3kw8bMuIu3e5/Bk5xL642qyFn5A9JQx5P+4kqzn36XNPdcSEB/j76IqB+PxULxpG0W/r6dw9V8U/r6e4r/+oX1ePjuDgijNyAJ7WLiSlAxcocEYY6CwCE9uPhIWgisoEOwn9rlio4g69xSizjkRV2S4P6um1D5Ng2allGrGIs892XpoxcIPcGVmk3bH07h7dSH1hofwZGSzfcJ1tH98NkEJPfxd1H1WSXIaRXZwXLjqL4rWbMCTk1dtfgkKKh9L2RQU4gkOhKxcCHQTPKw/wf164O7UDnfndrg7tyd46AG4QvUpfkr5mwbNSinVjIkIcTMuoHDlOnJ+WYPkF7D76nuhuNjK4DG44mL8WsZ9iSc3n6I//qZw1V8UrlpP0aq/KNmZ4jWvMQZKSssfQlIaFU5wQk8C2saSn7SMoEF9cXdpT8zF4ynNzSP4gF7lXW+UUs2PBs1KKdXMSaCbNndfQ/Ypl+MKDsYUFhHcvxfF/+yg7fwZ2r+1CZjCItIfepns1z6p8MQ9r3mNsYLfgiJwB9D2gRmEHjaYb1cso19iIp78QjJfeJfsVz4mZPgA3N06EqjBslLNnp6lSinVAgT16krWuBGICCJC4W/roKS06jBkgCkt9UMJWyZPbj6ptz9Jwa9rrZZhL4r+/pcdZ08na+EHXgNmCQkieGg/oqacRtv7r6fL508R2LMLEhKEuAMo/usfqy+yvfycRYsp+XsrHd+YR+xVE7V1WakWQlualVKqhcgdOZSu27Mo+Pl3JCgQiQon4+m3KM3KIXryaQAU/7uD5EtvI27OZYQeOsjPJW4+jDEU/72FoN77VUjP++onst/4jOw3PiN0xHDaPza7wjw5b35O2n3PYwqLytMDu3cm+MD9CR7Yh+BBCQT26lreBaNM9NTxpMx8gIB2cQR0akvhqr9oc9+r5IfFE3nm8USddULjVlgp1eA0aFZKqZbC5aLNnVexfezVeLJz8exOJ/TURMJPPIrS9CxK0zJJmX4/xf/uYNfUucTffAmR44/zd6n9zpObT+otj5G3ZCkdXr6Hkn93UJqeRdjRh5B651OYomIIdBMyrH/5PKXpWaTOeZTcxT+XD/kmwUHEXjeZyLNPREQozcwm++WPKH33K+JvvLjCOsOPPwJTXELIgfuz+9p7Kc3MIW/kYEKG99dhApVqoTRoVkqpFsTdoQ1xN00lZdZ8AHI/SCL8WCtAS735kfKuGeIOIKhfL38WtdlIufkR8r74AYCdk2/EFRJM+2fm4goNJmLsKHLe/YqS7btxtYkBIO/HlaTe+BClu9MwOXkYY3D37Er7J2YTbG/TkuQ0tp9yBZ7cfAgIIOrckwncryMlyWnkff49uZ9+R+SE43F3bkfcjVMJHtqPv7/9FgkI8NdmUErtJe1IpZRSLUz4SUcRftwR5Z9Tb3mUkGEH0O6xm5CQYFxx0cTNvoTgAb39WMrmI/Y/E3GFh2IKizA5+bR/5laCEnrgigwn/oaL6bbsDbr+byGhBw8iZfYj7Bh3DcWbt+IpLrG6ZbhceHang6PLs7tdHEED+wJgiovJeukjiv/dwfbT/kPRn5uIueJswk86CnG7rdZl7besVIunLc1KKdXCiAhxN19KwS9rKd2dRmlqJqlzH6ftQ7Po9M6DFK5aT/ioQ/HkF+r4vkBgj87Ez70cT2YOoUcO9froaXG5SL76bgpX/4UrKhxTUITJzkVCgpHwUNxd2xPUr2d5fk9eAcH9e5H/w69IQAAhB/XH3bUDXZNeQIKDmrJ6Sqkmol99VbMmIv1EZLGIZIrIBhEZ6yXPLSJiROQYR5qIyL0ikmq/7hPtSKhakYCYSOJvu6L8c97in8l9fzHudnGEjzqUwrUb2T7mPxSu2QBYQd6uy2+n4Ne1/ipykyjNyKZo/ebyz8YYMp58k5yPviXyrBOqBMzGGHLe+5rtZ0yjaM0Ga3QSt5vwYw9nv1/fpvPnTxJ5xmhKtu9m53k3kvn8exRv2oYnK4eiDVtoe9809vvxFcKPPdyaVwNmpVotbWlWzZaIuIFFwJPAaGAE8KGIHGiMWW/n6QWcAeyoNPtUYAwwGOtH1S+BjfaylGoVwo4cRuSZx5P9xmcApN3zLCEHD7CeItevJ7HXTWbXpbcRd/0Ucj/9H/n/+4WCpatoO28GYSOG+7n0Da/wj7/Zfe29mOISOr31AK64aDIefIm8b5bT/plbq+T3ZOeSeusT5H72v/I0CXQTe+15RJ57stWlon08wbdeSfzsS8n/4Tfyv1mOJyuH4B6daf/YTU1ZPaWUn2lLs2rO9gc6AfONMaXGmMXA98AkR55HgZlAUaV5JwPzjDFbjTHbgHnAlMYvslJNK/a6KQTu1xGwRolIuekRjMcDQPixR9BhwR3kfvkjhX9YLc6moIiSrbv8Vt7GYgqLSL7iTkq2JVOanMbu6fMoWr+ZgmWr6fDCHVUeAFPwyx9sP/2aCgFzYPfOdHj1PqLOO7VKH2QJdBM2Yjjxcy4leHBCk9RJKdW8SHWDuSvlbyIyEPgRiDT2gSoiXwI5xpixIjIeONcYc5qIbAYuMsZ8ZefLBI41xvxsfx4OLDHGRFazrqlYrdO0bdt22JtvvtnItfOPnJwcIiIi/F2MRrOv1i/w7220ue9VxL6eZ56RSO6xB1fMs2Er8Q+8Qe6xB5M95sgmKW9d7e3+C161kbhH3sYEB5I7arhVT48H7AA4YFc6Iav/JnjVRoLX/lO+vQByjxxM1oSRmEbsXtGaj8+RI0euMMa0vp8vlHLQ7hmqOfsTSAami8h8YCRWF40lIhIB3AUcW828EUCm43MmECEiYrx8UzTGPA08DZCQkGASExMbrBLNSVJSEq21brAP1y8R0vMg86m3AGj36VI6TplAUN/u5VlKB2Wy69MVtImJJ/7II5vl0Ge12X/GGEp3p1OyeRuu+GiCejkeVpKYSFa7TuQnLSMmq4i2ww+m6Lc/yft2Bfn/+4WSfx29uAIDAXBFRRB/6xWEjz6sEWpUUWs/PpVq7bR7hmq2jDHFWP2STwJ2AtcBbwJbgVuBl4wxm6qZPQeIcnyOwmqh1p9WVKsUc+mZBB1gjSFsiktIueFB66EdtoC4aDq8eCclW3aScuPD5enGGHIWLcGUVH08dH2lz3uR9EdeIeuVj/HkF9ZrGZ78QkpT0qukZ73wPluPvoCdF9xMzltfVJhmikvI++pHijdthcAAtiZOYdelt5H96scVA2Zb6BEH0undB5skYFZKtXza0qyaNWPM71itywCIyA/Ai8BlQBcRudye1BZ4U0TuNcbcC6zBuglwqT19sJ2mVKskgW7a3H0NOyZchyksomjdZjIee43Ya88rz+OKCKP9EzdTtHYjAKaomIxHXyPz+XfJW/wzbe+bttejPxhjyHrlo/KAPWLsqIrTPR62jroIV0wkAXHRtH/6lgqt3vk//EbqnEcp2ZlC2OjDaDd/ZoX53V32jH5RvHk7pqiYghV/kP/dCvKSllG0diMSFuK137aEhhB62GBCjxxK6JHDcHdos1d1VUrtWzRoVs2aiAwC1mP9KnI50BFYALwNBDqyLgOmAZ/anxcC00TkE6zRM64DHmmaUivlH0G9uhJ7zSTS7n0OgMwX3id0xHBChh5QnkeCAgkenGAFp7c8RvG2XYjLRd7XP5H16sdEn19lVMcqjMdDwU+/k/vJt8TPuQwJ2nMqmtz88oBZQkNwhYVUmNeTlWuNLb07jdLI8CrdRFzhoZTsTAGsoBgcXTL+2U7RX/9gikuQ4CAKlq/m38Mm4ikoxOTkIeGhuMJDKywvsEcXQo8aRuiRwwgZ2q9CWZVSqi40aFbN3STgIqwA+TtgtDGmEKjwm6+IlALpxpgcO+kpoCewyv78rJ2mVKsWOfEk8pKWUfDz7+DxkHLjQ3R6ez6uiLAK+UIOG0z4KSPIfP49TGER4aMOJWrSKbVax64L51CwbDVgdXEIP8FxY6HLRdxNU/GkZ2FKSqvMW5q6p8tFQFx0+XtjDK7MHEpd2ZiCQvAYijf8w7bTr6Zkyy5MfkF5PtwB4PFYDyDxePBk5iDuABBBQoIIOWQQof9ntSYHdqn6IBOllKoPDZpVs2aMmQ5Mr0W+7pU+G2CG/VJqnyEuF23uvIrtY6/Gk51LydZdpN39LHE3XFQhcBYRYq86F1dsNHmffkeb+69H3LX7lxBy8IDyoDn77S8JHXkw+T+uJPedLynNK6Bk8zZKtuwEAxkPv4y7UzsIclP891YwBoxBQoIo2bGbTT2PxxQXYzyGTsaQHBeNKSm1WqsLCilN/R1XlDXihCfL/k5sQEKDcYWF4MnIJqBNLJFnnUDYiOEEDzsAV4g+BVEp1fA0aFZKqVbG3aENcTdNJWXWfAByFi0m58Mkgnp3JXhwAsGDEgga1JfAHp2JnnQKURNPonRXKsW70wke1BeAkh27yVqwCFd0BDGXn1Vh+eEnjSDzuXcJ7NaZkq272Lz/KZiCQiQwEIm0A/OycY4FSlLSrVbgYEfXCHFZgXFwIBIUiADFxXa3jrAQxBn4BrhwRYYTlNAdd6d2uLu2J7B3N4L374FEhBHYozP6wE+lVGPToFkppVqh8JOOIn/JUnI//95K8HgoWv8PRev/IdsedcIVGU7wwD7WwzoC3WS9uIi2911H6BEHUrBsNVmvfIQrIozIc06k+K9/KVi2mvylqyhctprSnDxrZIziEggIwBUXXfGBIC4vgzN5acl29mn2BAUQtH8vArt1xN2tE4H7dSSwWyfc3Trhio7QwFgp5VcaNCulVCskIsTfeRXubp3IT1pK0YYt1oM+HDzZudajoX/4DbCGbNtx9gyC+vem+O9/MSUleDKy+ffQiYg7AFNYhCcnD1yu8lE2ylqJA3t0IeSgAeWP8cYdgAS4IMCFuAKsvwEuCAiw5rffS4DLCrADXHz74w/sP3JkE28ppZSqHQ2alVKqlXKFBBN71URir5qIJyePwjUbKPp9PYUr11H4+3pK0zIr5JdANwgUrd8EhcUYA+ISPFk5uGIiwR2AKzoScQcQ2L0zIQcPIOSgAQQPH1DlMdX1oi3JSqlmTINmpZTaB7giwgg9ZBChhwwCrFEoSrYlU/T7OgpXrqfw93UU/Wk9K0jcbjwGyCuAwCBcYSEEdu9M6CED9wTJ7eL8WBullGp6GjQrpdQ+SEQI7NKewC7tCT/xKADroSh/bqJw5ToKVv2FKyyYkIMHEXKQBslKKaVBs1JKKQAkOMgaXWNwQoVn0CullLKesqaUUkoppZSqgQbNSimllFJK+aBBs1JKKaWUUj5o0KyUUkoppZQPGjQrpZRSSinlgwbNSimllFJK+aBBs1JKKaWUUj6IMcbfZVCqWRGRbGCdv8vRSNoAKf4uRCPS+rVsWr+WK8EYE+nvQijVmPThJkpVtc4YM9zfhWgMIrK8tdYNtH4tndav5RKR5f4ug1KNTbtnKKWUUkop5YMGzUoppZRSSvmgQbNSVT3t7wI0otZcN9D6tXRav5arNddNKUBvBFRKKaWUUsonbWlWSimllFLKBw2alVJKKaWU8kGDZqWUUkoppXzQoFkppZRSSikfNGhWSimllFLKBw2alVJKKaWU8kGDZqWUUkoppXzQoFkppZRSSikfNGhWSimllFLKBw2alVJKKaWU8kGDZqWUUkoppXzQoFkppZRSSikfNGhWSimllFLKBw2alVJKKaWU8kGDZqWUUkoppXzQoFkppZRSSikfNGhWSimllFLKBw2alVJKKaWU8kGDZqWUagAiskBE7hCRI0VknSM9QUR+FZFsEblKREJF5EMRyRSRt/xZZqWUUrXn9ncBlFKqNTHGfAckOJJmAEnGmAMBRGQS0B6IN8aU+KGISiml6kFbmpVSqnF1A9ZU+ry+PgGziGhDh1JK+YkGzUopVQ8icqCI/GJ3u3gDCLHTE0Vkq/1+MTASeFREckTkNWAOcKb9+UI73wUislZE0kXkcxHp5liPEZErROQv4C877WQR+U1EMkTkBxEZ5Mi/WUSuF5Hf7S4gb4hIiGP6afa8WSLyt4gcb6dHi8hzIrJDRLbZXU0CGns7KqVUS6FBs1JK1ZGIBAHvAy8BccBbwLjK+YwxRwPfAVcaYyKMMWcDdwFv2J+fE5ExwI3A6UBbO/9rlRY1BjgEOEBEhgLPA5cA8cBTwAciEuzIPwE4HugBDAKm2OU+GFgITAdigKOAzfY8LwIlQG/gQOBY4KK6bRmllGq9NGhWSqm6OxQIBB40xhQbY94GltVzWZcAdxtj1tpdNu4Chjhbm+3pacaYfOBi4CljzM/GmFJjzItAoV2mMg8bY7YbY9KAD4EhdvqFwPPGmC+NMR5jzDZjzJ8i0h44AbjGGJNrjEkG5gNn1bNOSinV6mjQrJRSddcJ2GaMMY60f+q5rG7AQ3ZXiwwgDRCgsyPPlkr5ryvLb8/T1S5TmZ2O93lAhP2+K/B3NWUIBHY4lvkU0K6edVJKqVZHbypRSqm62wF0FhFxBM774T0g9WULcKcx5pUa8jiD87L8d9ZzXb2qSS8E2uiIHkop5Z22NCulVN39iNX/9yoRcYvI6cDB9VzWk8ANItIfym/IG19D/meAS0XkELGEi8hJIhJZi3U9B5wvIqNExCUinUVkf2PMDuALYJ6IRNnTeonIiHrWSSmlWh0NmpVSqo6MMUVYN+5NAdKBM4F367ms94B7gddFJAtYjdW/uLr8y7H6NT9qr3uDXY7arGspcD5Wf+VM4BusrhkA5wFBwB/2ct8GOta5Qkop1UpJxS55SimllFJKqcq0pVkppZRSSikfNGhWSimllFLKBw2alVJKKaWU8kGDZqWUUkoppXzQcZqVqiQmJsb07t3b38VoFLm5uYSHh/u7GI1G69eyaf1aIGMoWruRVfkZKcaYtv4ujlKNSYNmpSpp3749y5cv93cxGkVSUhKJiYn+Lkaj0fq1bFq/lmnrCZfS9bOn6vtETKVaDO2eoZRSSql6C+7fOn+ZU6oyDZqVUkopVWeevAJyPv6WmKsm+rsoSjUJ7Z6hlFJKqTorWrOBlJkP+LsYSjUZDZqVqoXi4mK2bt1KQUGBv4uyV6Kjo1m7dq2/i9Fo9oX6bdq0iS5duhAYGOjv4qh9XOGqv/xdBKWalAbNStXC1q1biYyMpHv37oiIv4tTb9nZ2URGRvq7GI2mtdcvKyuLoqIitm7dSo8ePfxdHLWPc3dqS+j/DaVw1Xp/F0WpJqFBs1K1UFBQ0OIDZtXyiQjx8fHs3r3b30VRivDj/4/w4/8P4/FAwCv+Lo5SjU5vBFSqljRgVs2BHoeq2dFjUu0jNGhWSimlVL3pFzm1r9CgWakWYMuWLYwcOZJ+/frRv39/HnroofJpiYmJDfYwluOPP56YmBhOPvnkWuW/6aab6Nq1KxEREfVa32+//cahhx7KkCFDGD58OEuXLi2fdvfdd9O7d28SEhL4/PPPy9Pru67K/vzzTw477DCCg4O5//77azVPXbePUkqp1kODZqVaALfbzbx581i7di0//fQTjz32GH/88UeDr2f69Om89NJLtc5/yimnVAh062rGjBnccsst/Pbbb9x2223MmDEDgD/++IPXX3+dNWvW8Nlnn3H55ZdTWlpa7/V4ExcXx8MPP8z1119f63nqun2Uaq0ynn6brJc+oOC3PzHFJf4ujlJNQoNmpVqAjh07MnToUAAiIyPp168f27Ztq5DH4/EwefJkZs+eDVgtsjNnzmTYsGEcc8wxLF26lBNPPJGePXvywQcfeF3PqFGjqow+kZmZSUJCAuvWrQPg7LPP5plnngHg0EMPpWPHjvWul4iQlZVVvp5OnToBsGjRIs466yyCg4Pp0aMHvXv3rhKcp6SkcNhhh/Hxxx+TlJTEiBEjmDx5Mn379mXWrFm88sorHHzwwQwcOJC///67yrrbtWvHQQcdVGXotmXLljFo0CAKCgrIzc2lf//+rF69utrto9S+xng8ZL3wHmn3Ps/Oc2dRmpzq7yIp1SQ0aFaqHjIef53NA8awecAYMh5/vcr0tP++UD49c8H7VaanzH2sfHr2W59XmV6TzZs38+uvv3LIIYeUp5WUlDBx4kT69u3LHXfcAUBubi6JiYmsWLGCyMhIZs+ezaJFi3jvvfeYM2dOrdcXHR3No48+ypQpU3j99ddJT0/n4osvrlOZq/Pggw8yffp0unbtyvXXX8/dd98NwLZt2+jatWt5vi5dulT4krBr1y5OOukkbrvtNk466SQAVq5cyb333suqVat46aWXWL9+PUuXLuWiiy7ikUceqXWZDjroIE499VRmz57NjBkzOPfccxkwYECD1Fep1qDknx14snMBCIiLJqBTOz+XSKmmoUPOKdWC5OTkMG7cOB588EGioqLK0y+55BImTJjATTfdVJ4WFBTE8ccfD8DAgQMJDg4mMDCQgQMHsnnz5jqtd/To0bz11ltcccUVrFy5skHqAvDEE08wf/58xo0bx5tvvsmFF17IV199hTGmSt6ym42Ki4sZNWoUjz32GCNGjCifftBBB9GhQweCg4Pp1asXxx57LGDVfcmSJXUq15w5czjooIMICQnh4Ycf3osaKtX6uKIjiLvxYopWb0DCQvRGQLXP0JZmpVqI4uJixo0bx8SJEzn99NMrTDv88MNZsmRJhScWBgYGlv8zc7lcBAcHl78vKalbH0SPx8PatWsJDQ0lLS2tTvMed9xxDBkyhIsuuqjKtBdffLG8LuPHjy/vgtGlSxe2bNlSnm/r1q3lXTfcbjfDhg2rcHMgUF4/2Pv6pqWlkZOTQ3Z2dot/CqRSDS0gLpqoc06izV1XEz/7En8XR6kmo0GzUvUQc/lZdF/9Pt1Xv0/M5WdVmR43/fzy6dFTxlSZ3mbuFeXTI8cf53N9xhguvPBC+vXrx7Rp06pMv/DCCznxxBMZP358nQPE2pg/fz79+vXjtdde44ILLqC4uLjW837++ef89ttvPPvss1WmderUiW+++QaAxYsX06dPHwBOPfVUXn/9dQoLC9m0aRN//fUXBx98MGC1OD///PP8+eef3HPPPQ1Qu6qmTp3K7bffzsSJE5k5c2ajrEMppVTLot0zVKsnImcBtwD7ATuBKcaY7/xbqrr5/vvveemllxg4cCBDhgwB4K677uLEE08szzNt2jQyMzOZNGkSr7xSv6dzHXnkkfz555/k5OTQpUsXnnvuOXr06MGzzz7L0qVLiYyM5KijjuKOO+7g1ltvZcaMGbz66qvk5eXRpUsXLrroIubOnVvr9T3zzDNcffXVlJSUEBISwtNPPw1A//79mTBhAgcccABut5vHHnuMgICA8vkCAgJ4/fXXOeWUU4iKiuKAAw6oc1137tzJ8OHDycrKwuVy8eCDD/LHH3/w/vvv43a7OeeccygtLeXwww9n8eLFHH300V63z3HH+f7So5RSquUTb30HlWotRGQ08CxwJrAU6AhgjNlW3TwJCQmmbKSIMmvXrqVfv36NWNKmkZ2d3apHf9hX6tdajsfKkpKSSExM9HcxGk1rrp+IrDDGDPd3OZRqTNrSrFq7W4HbjDE/2Z+rDZaVUkrVLPvdr8j9+FuCB/Yh7JjDCB7Q299FUqrJaNCsWi0RCQCGAx+IyAYgBHgfmG6Mya+UdyowFaBt27YkJSVVWFZ0dDTZ2dlNUOrGVVpa2irqUZ19pX4FBQVVjtHWICcnp1XWq0xrqF/Me58R9vMf8N1yMlOTyU0Z5u8iKdVktHuGarVEpBNWy/IK4BSgGFgEJBljbqpuPu2e0XLtK/VrLcdjZa25+wK0jvptO+lyiv/ZDkDHV+4leHACoN0z1L5BW5pVa1bWmvyIMWYHgIg8AMwGqg2alVJKedf+mbkUrvqLwlXrCdq/h7+Lo1ST0qBZtVrGmHQR2QrozylKKdUA3J3a4e7UjvDjjvB3UZRqcjpOs2rtXgD+IyLtRCQWuAb4yL9FUkoppVRLo0Gzau1uB5YB64G1wK/AnX4tUT1s2bKFkSNH0q9fP/r3789DDz1UPi0xMZHly5c3yHqOP/54YmJiOPnkk2uV/6abbqJr165ERETUa33Tp09n//33Z9CgQYwdO5aMjAwAFixYwJVXXlmvZVa2adMmDjnkEPr06cOZZ55JUVFRlTy//fYbhx12GP3792fQoEG88cYb5dOmTJlCjx49GDJkCEOGDOG3336rcX2FhYWceeaZ9O7dm0MOOcTrI8vz8vI46aST2H///enfvz+zZs0qn7ZgwYL/b+++w6Oo1geOf8/W9F4gBESqqKBgR9GggKIXKyiKiopi94L1qtj1J3jtBdtFsSsWREWxoEEFCyC9F4EESM+mZ+v5/bGwAgkkJLuZZHk/z5OHndmZOe8kk/DumTPvITU1NdBefZPCCCGEaHmSNIuwprV2a61v0FonaK3baa1v0Vq3uXmRLRYLTz31FKtWreL333/npZdeYuXKlUFv54477uCdd95p9PbDhg0LTH3dFIMHD2b58uUsXbqUHj168Pjjjzf5WHtz1113MX78eNatW0diYiJTpkyps01UVBRvv/02K1asYNasWYwbNy6QwAP897//ZfHixSxevDgwuczeTJkyhcTERNavX8/48eP3OqPg7bffzurVq1m0aBFz587lm2++Cbx30UUXBdqrb/pxIVqa1hpfVU3DGwoRxiRpFqINaN++Pf369QMgNjaWXr16sXXr7iWnfT4fo0ePZsKECQDExMRw1113cdRRRzFo0CD+/PNPzjzzTLp06cIXX3xRbzunnXZaneoTZWVl9OzZk50VRS6++GJef/11AI4//njat2/f5PMaMmQIFoslcKzc3Nw628ycOZMTTjiBoqIirrjiCq6//noGDhxIly5dmDNnDldddRW9evXiiiuuqLOv1poff/yR4cOHAzB69Gg+//zzOtv16NEjMIV3RkYGaWlpFBYW7jP2W265hYcffhjwTxV+8skn4/P5mDFjBqNHjwZg+PDhzJ49mz2rFEVFRTFw4EAAbDYb/fr1q/fchWgtvNsL2XLCKLad/29KnnjD6HCEMIQkzUK0MZs2bWLRokUcd9xxgXUej4dRo0bRo0cPHn30UQCqqqrIyspi4cKFxMbGMmHCBGbMmMH06dO5//77G91efHw8L774IldccQUffvghpaWlXHPNNUE/rzfeeIOhQ4futm769OlMnDiRr7/+mpSUFABKS0v58ccfeeaZZxg2bBjjx49nxYoVLFu2jKVLl+62f3FxMQkJCYHEPDMzs86HjT39+eefuFwuunbtGlh377330qdPH8aPH4/T6QRg4sSJfPTRR/z000/ccsstvPnmm5hMJrZu3UrHjh0B/x2C+Ph4iouL99qew+Hgyy+/5LTTTgus+/TTT+nTpw/Dhw8nJyenoW+dECHnXLoWfD5cazfjWrPJ6HCEMIQkzUI0gWPyh2w6/NzAl3PFepwr1u+2zjH5QwByBl4VWLdtxK0AFD340m7begpKGtVuZWUlF1xwAc8++yxxcXGB9ddeey2HH3449977TyU9m83GGWecAUDv3r055ZRTsFqt9O7du95xtvsyePBgevfuzY033hiSMbaPPfYYFouFUaNGBdb99NNPTJo0iZkzZ5KYmBhYP2zYMJRS9O7dm/T0dHr37o3JZOKwww5jy5Ytux23vjr0Sqm9xrF9+3Yuu+yyQAIM8Pjjj7N69Wrmz59PSUkJkyZNAvy9xa+//jqDBw/mpptuCiTZ+9Omx+Ph4osv5pZbbqFLly6B89u0aRNLly5l0KBBgV5rIYzk2VYIO65je+/uBkcjhDGk5JwQTZBww0gSbhhZZ33n5Z/XWdfxp7q3MlMevJGUB2/crzbdbjcXXHABo0aN4vzzz9/tvf79+/PTTz9x2223ERERAYDVag0kayaTCbvdHnjt8Xj2q22fz8eqVauIjIykpKSEzMzMfW6vtcZXVomudXLW5ZeQX1DA0UcfXW/C/dZbb/HVV18xe/bs3ZLLLl26sHHjRtauXcvRR/8zZ8Ku57Hz9d7OKyUlBYfDgcfjwWKxkJubS0ZGRr0xl5eXc9ZZZ/Hoo49y/PHHB9bvHH5it9u58sorefLJJwPvLVu2jOTkZLZt2xZYl5mZSU5ODpmZmXg8HsrKykhKSqq3zbFjx9K9e3fGjRsXWJecnBx4fc011+x1TLQQLSn+qvOIvfB0XCs3YE5LbngHIcKQ9DQL0QZorRkzZgy9evXi1ltvrfP+mDFjOPPMMxkxYsR+J8SN8cwzz9CrVy8++OADrrrqKtxud0MB4y0qxVvs4KvXprJ48eJ6E+ZZs2YxadIkvvjiC6KionZ776CDDuKzzz7j8ssvZ8WKFU2KWynFwIED+eSTTwB/gn7OOefU2c7lcnHeeedx+eWXM2LEiN3e2759+45T0nz++eccfvjhAGzevJmnnnqKRYsW8c033/DHH38AcPbZZ/PWW28B8Mknn3DqqafW29M8YcIEysrKePbZZ+ttD+CLL74Iy5n/RNtkioki4tjeWDvX/8FTiHAnSbMQbcDcuXN55513+PHHHwOlyL7++uvdtrn11lvp168fl112GT6fr0ntDBgwgBEjRjB79mwyMzP59ttvWbt2Lf/73/946qmnGDBgACeffHJg3PSdd95JZmYm1dXVZGZm8uCDD+44ksIUHQmAr6oan6v+JPumm26ioqKCwYMHc+SRR3Ldddft9n7Pnj157733GDFiBBs2bGjSOU2aNImnn36abt26UVxczJgxYwBYsGBBoDLFtGnT+Pnnn5k6dWqd0nKjRo2id+/e9O7dm6KiIiZMmBD4EPPkk0+SkZHBlClTuPrqq6mtrWXMmDEUFxfTrVs3nn76aSZOnBiIZWfljdzcXB577DFWrlxJv379dist9/zzz3PYYYdxxBFH8PzzzzN16tQmnbcQQojgUvWNvxPiQNazZ0+9s1LETqtWrQqLHr+Kioo61TFCxb15G77KajCbsGa2wxQT1fBOzdSS52eEnecXLtfjnrKzs8nKyjI6jJAJ5/NTSi3UWh/d8JZCtF0yplkI0Wy+WidojSkyIrDOnJqEKSkeU0zUPh++E0K0bs4V6zEnxWNulyK/y+KAJkmzEKJZfJXVuHPyUEph6ZKJyWYFwBQV0cCeQoi2oPi+F3Ct3Yw5JYH01x7E1qOz0SEJYQgZ0yxEI8lQprq0z4dnawH4fGivF09OnnyfQky+v6Il+apqcK331wr3FpdhyUgzOCIhjCNJsxCNEBERQXFxsSQse1AmE5aO6aAUymLBkpEmt29DSGtNcXFxoKygEKHmK6sg4pjDMUVHYu3WqUWeTRCitZLhGUI0QmZmJrm5uQ1Ordza1dbWhiTh8jmdKKsFtWljve9rtwddXQtWS0iHbYTq/FqL2tpaEhISGqyTLUSwWDLSaDflYbTPh7e4zOhwhDCUJM1CNILVauXggw82Ooxmy87Opm/fvk3e31dZja/GiSU1seGNd6ic+TNFdz0NgP3w7rT/8L9Nbr8hzT2/1i7cz0+0Xspk2q/feyHCkQzPEEI0iqeghLwr7qXghkfwVdU0er/Ik/qirP7P587l63Ct2xyqEIUQQoiQkZ5mIUSDtNNF3uV348nNB6Dw9v+SNvm+Ro1fNsfHEj10ANrtJubc07B2kaEFQggh2h5JmoUQDVJ2G/FjR1B8/4soi5noISfu1wN/yY/dIg8ICtHGOFdtxLl4NfbePbD17By4YyTEgUp+A4QQjRJ7/iC8RQ7sh3Ul8sT9G1crCbMQbU/1979R9trHAMSNPoekO640OCIhjCVJsxCi0RLGDjc6BCFEC3EtWxt4bT+8m4GRCNE6SNIshGhxzlUbsbRPxZwQa3QoQoi9iBrSH1NCLM7l67Ed3t3ocIQwnCTNQoh6OV6Zhq+8krgrzsWSlhSUY1Z9/xtlr3yEa80mEm+/gvgrzg3KcYUQwRc74nRiR5xudBhCtBpSck4IUYe3vJLyN6dT/vYXbD19LM5V9U9asr98lVW41mwCoHL6bJlhUQghRJshSbMQoo6qr+YEajFbOrbD1rNzUI4bPbg/KtKOstuwHdIFXeMMynGFEEKIUJPhGUKIOmIvPhNLRhplr31M7MVnokzB+Xxtioki7cV7sR/aFVNsdFCOKYSon6/GScmk/xF/9XCsmelGhyNEmydJsxCiDqUUUVnHEHnK0RDkIRSRx/UJ6vGEEHV5CkspvPn/cC5fh/OvVbR/b1KjP6hql5uC8ZOwH9YN2+HdiBxwlJSNFAIZniGE2AelVNB6mYUQoedcuQFPQQnebQW41vwNgHtjLlWzfm30MVyr/6ZmzgIckz+kZOIUSZiF2EF6moUQQogwUXTn07g3bcWcnkz8NcNxvPoxSXdfvV9VMJzL1wVe26XUnBABkjQLIQDQbg8lT7xB7Igh2Hp0Dnl73qJSKr+aQ9UXP5H2wj1YOsiYSyGaw1teiXvTVgB8xQ7ix5xP9LAsrB3b7ddxok47HlNcDK5l67D36xWKUIVokyRpFkIAUDXzZyo++JqKD74m5rzTSHnk5pC2V3T/i9T8vBCAyhk/kXDDyJC2J0S485WWE3H0YThXrMd6cCbKbtvvhBnAkp5MzL9OgX+dEoIohWi7ZLCiEAKtNWVTPgssWzq2D3mbMWcPDLyu+v63kLcnRLizHpRBu6mP0em390h78d56t9Fa43j1Y5wrN7RwdEK0fdLTLA4ISqnuwDLgE631pUbH09oopUiZOI6y1z6h9s9lxF08NORtRg08lsgB/Yga0p/owf1D3t6ByFNQQtVXc3Ct3IApMY7ke8caHZJoAcpiqXcWT+10UXT/S1TNnEPFh9/Q/oMnsLRLMSBCIdomSZrFgeIlYL7RQbRm9sO6kfbcf/CWVbRIDWVlt5H+8v0hb+dA5nOUU/r0WwD+5EiS5gOaJ7+Ymp8XAOAtLKHsjekk33PNbttoraVahhB7IcMzRNhTSo0EHMBsg0NpE8zxsUaHIILAV1mNpWN7lN0GgCevCG9JmcFRCSNZO7Un9Zm7UBYzsSOGkHTHlXW2KRw/iW0X3kbxI6/g3rLdgCiFaL2UDvLEBUK0JkqpOGABcBowBuhW3/AMpdRYYCxAamrqUdOmTWvROFtKZWUlMTExRocRMnJ+/4j5ah6xM+ehvD6chxxE+fkn4+6YBmZziKNsOvn5NZ1103asW/JxHZyBJyN5nz9nS24Bng6psGePstak3/ES5vJqAAoevApPRuOGbwwcOHCh1vroJp+AEG2ADM8Q4e4RYIrWOmdftxy11q8BrwH07NlTZ2VltUx0LSw7O5tdz825fD2+sgoi+h9p+C1ZT0EJtXMXEXPeaU0+xp7nF2725/zyP55LjdkCZsgYcyEx5wxseCeDyc+v6UqfeouyadkAxF99AYnjLtvvY3jyi8mt9YDNhikmihNHni+TGwmxC0maRdhSSh0JDAL6GhxKq1X6zNvU/rEU22HdSH7geuyHdm3xGLTWFI6bRPVPf4LPh61PD2xdO7Z4HOHG5ygPvLb36WFgJKIlOJetDby2NWFCkqrvf8MUFUHHee/iWr4eb1GpJMxC7EGSZhHOsoDOwJYdvagxgFkpdajWup+BcbUKziVrqP1jKeCfNtcUZ8xtcaUUKMDnA6Dq8x+x3TbakFjCSfv3JuF1VOBavg7LQaEvISiMFTWkP6akeFxL12Lv3fikWWtN+ZufU/r0W5hiomj3zuNE9j8ydIEK0YbJx0gRzl4DugJH7vh6BZgJNH4+2TBmbpdC7MVnouw2Ys4cgDXTuBn5Ys71D8mIOOZwbNIrGjTmhFgiT+oX6DHUPh/a6zU4KhEKcZecRdrTd5L5w/+wpCc3ej9dWU3F+zMB/8OjJZPeCFWIQrR50tMswpbWuhqo3rmslKoEarXWhcZF1XpY0pNJvncs8WNHgMGJVORJfenwzStNmr1MNKz8vZlUfz8P16qNpD51B5EnHfA3WsQOptho0iZPIO/Su7H1OpjUJ283OiQhWi1JmsUBQ2v9oNExtEaW1ESjQ0BZLJIwh5D771xqF6wAwLligyTNYje2Hp1Jn/ootm6dUDar0eEI0WrJ8AwhhAgj2uOhes6C3Woy2w/rFnjt2bzNiLBEK2c/tKskzEI0QHqahTjA1C5cgb1PT5S1df/6a5db/hNvAveGHApufBQAe99etH/ncSJO7Eva83djO7Qr5v0Y7ypaP191LUV3PoWtdw/sfXoQecIRRockRNhq3f9rCiGCylxURv64FzCnJhF35bnEjhzaqspKabeH6tm/Uzl9Np7thWR8/nyriq8tcC5bF3htTo4HwJKWhOXU44wKSYSQa/VGqrPnU509H2vXjnSY8YLRIQkRtuR/IyEOIDHf/oH2ePFsL6T6u99aXUKqnS6KH3qZmrmLcG/MpebnhUaH1OaYYqKwH9ETZbNi79PT6HBEiDmX/lOfeX9KzQkh9p/0NAtxAPGkJWJKjMNXWk78tSOMDqcOU0wUscOHUPbmdDCbca3dTFTWMUaH1aZEn3ES0WechHZ70C630eGIEIse0h9zQhzO5euIOK6P0eEIEdYkaRbiAFI1+BgyJ9xC9Q+/EXF86/wPNnbUWWifj7hRZ2HJSDM6nDZLWS31jlv3VVbjyS/C1rWTAVG1HlprvEUOlMWMOTHO6HCazJKRRsy5pxJz7qlGhyJE2JOkWYgDjCnSTsywLKPD2CtLuxSS7rjS6DDCjieviPwx9+Pesh1LuxQyv3/d6JAM4Vy5gepv51L+3lfoWhcJN4wk4YaRRoclhGgDJGkWQogDgDk5AU9eEWiNZ3sh3pIyzEnxRofV4or+8wzujbmBZc/WAgOjEUK0Ja3rKSAhhBBNVvHJd1ROn41r/ZY602UrqwVbz85gNmPrcRDeYochMRrJs61gt4RZRdjAYjYwoubRWhsdghAHFOlpFuIA4Jj8Idrnw65r8B17PKaoCKNDahTtclP19S9UTv+BtJcmYIqJMjqkVq3stU/wbPP3nLaf9hT2Q7vu9n7qk7djSorHFGE3IjzDecsqsffthXPRKuxH9KT9e5OMDqlZCm95HG9JGfbDuxN3+TAsHdKNDkmIsCZJsxBhTmtNxYff4C0pI9nlwnvW6Zi6ZBodVqPkj32I2gXLAaic/gNxl51tcEStl7eoNJAwK7sNW/eD6mxzoD9Yae/VhfbvPI63vBKfo8LocJpFa03twpX4yitxLllD7KizjA5JiLAnwzOECHOe3PzAlMq+SDuWzhkGR9R40UNPCryu+PQHuR29L2YzCbdcStTAY4k8qV+rn/HRSOa4GKyd2hsdRrN4cvPxlVcCYIqPwdKxncERCRH+5K+qEGHOnBhH6n9vw7lkDSWbN7e6CU32JfrsgVRMm0X00AHEjBiCUipox/Y6KqiZu4joMwcE9bhGMSfGkTB2uNFhiBZi7diOjr+8jXP5Onyl5WFxDQvR2knSLESYM8VEET10ANFDB7A0O9vocPaLKdJO+0+eCUlCUPrfN6mc8SNVX2aTfP91gaEL1T8vIPK4Pii7LehttgZaazw5ebhWbsDWozPWNjJUJ9i01vhKy/Hk5mNKjMPaBntqzYlxRA04yugwhDhgtJ0uJyHEASkUCXPN70upnPGj//Wvf+FauxmAis9+oOCGRym45XG00xX0dluD0ifeYOuZ11N4+5NUff+b0eG0mNJn3qZy+mw8BSUAlL3yETknj2b7JXdS+en3BkcnhGgLJGkWQhxw7Id3I27Uv0Apos84iaisY3Cu2kjx/S8CUDN3EaXPvWtwlKFh7fHPA4KulRsMjKTleIsdlE35jKL7XmDrkGvwVdVgaZcaeN+zNd/A6IQQbYUMzxBCtBm+iioqPvmOqEEnNOt2uikmiqS7ryb6zAFYOviHZdh7dSHhhpE4Jn+IrVcX4q+7MFhhh1z1j39Q+cVP2Hv3IPKkvth6HrzXbe2HdsWUEIv90K7Y+/VqwSiNUzNvceC1rU8PTNGRWDqkYYqKxJKZtlsC3Rb4KqrQHm+bnv5biLZIkmYhwlj5u19R+fls7H16Ev2vk40Op1kqPv2e0klv4KuuwZtXTNLdVzf7mPYjeu62nHDDSMxpSUQN6Y85LqbZx28pNb8vpfqH36n+4Xe007XPpNnaozMdf3n7gHpwzH7kISTeOpqaX/8i8qR+/nVHH0bHP95vk9+Hyq/mUPLYa1g6tiPu0mHESbk5IVqEJM1ChDHn4tW4Vv+Na/Xf/tvy7SKNDqnJLO1S8FXXAP6xx/E3jgxJYhs7fEjQjxlqruXrAq/tfXrsc9u2mCQ2l7VjO+KvOo/4q84LrGtLVWT25Frm/3l7cvJgj5kfhRChI0mzEGHMuWxt4LX9iJ6Qv8XAaJonov+RWLsfBD4fcaPP2e9Z7cremI52e4i/6rz9rmHsXL6e8jenk/zYLa1yNr3kh27EuXQtzmVrsR3e3ehwRIhpjwdls6Jdbmy95ectREuRpFmIMJbx6bM4l6/HuWQNtu6d2nTSrJQi/dUHMKcm7ndvqXtjLo4X3kO7PVR/+ytprzyAJS2pUfs6l68n/5oH8FVU4S2rJO3Fe1pd4mzrfhC27gcRe8Fgo0MRLSD1idvQbg+utZuwdetkdDhCHDAkaRYijJlioog8vg+Rx/cxOpSgaGyiu6fy975Cuz0AKJsNc3J8o/et/XMZvooqAFyrNuDdVthmpiHfG+314ly6FteKDXhy80j6T/PHh7dW2ufb61AMX2U17pw8PLn5WDLTsffq0sLRNZ2yWrAf1s3oMIQ4oEjSLIQIe0l3X42lU3vKXplG8sM3oszmRu8bf9V5aJeb8ne+oN0bj4THZCA+Tf6Y+9EuNwDx114YlpUYfBVV5A69joijDiNyQD9iLhi8212K8ve/xvG8v7Rg3Ohz2lTSLIRoeW33SQghxAHPk1eEe9O2BrdTFgvxo88h8/vXsfXovN/tJFx3IR2+eHGfVSmMopvwIJiyWrD17BxYDtd6zTV/LMPnqKB69u9UfDSrzrAea2Za4LUnV2o1CyH2TXqahQhD2uPBW+TA0i7F6FBCwp2Th+OlD6ie9SsRJ/Yl/aUJjdrPFBPV5DbNyQl11nkdFagIm2FjnH0VVeScOgZbr4OJOOIQEm69vNHjvSMHHoe1cwdsh3ULj97zeriWrAm83llqbleWThlYu2T6h2bsUX6wtaqc+TO2QzpjPTizTVcAEaItkqRZiDDkWreF7SNu9dccPu14ku8da3RIweX1UTXzZ9CamjkLcG3Iwda14+6blFeGtNayt7Sc/DH3EXFsb8PGBDuXr0fX1OL8axW6xknifjwgmTB2eAgjax0Sbr2c6HNPpXbeIiKOqzuu3354Nzp88aIBkTWNJ6+IorueBsCclkTm7CkHZAlBIYwiH1OFCEOupf5Sc96CEnwlZQZHE3zWzhlEnXI0ABFHHYp2unZ73+uoYNvZN1H80OTAQ3zB5Ktxkj/mPlxrN1P+wTe41htTlcS9fnPgtb33vuszH4iUUti6diTusrObNCyntXEu/aeEpPWgDEmYhWhh0tMsDKOUOhs4BUgBAn/9tdaXGxZUmPCVV6IiI9A1tdgamOyirUr496XEX3sh9nrq1Jb+9028RQ4qPv4O1+q/aff+E0FNMFSEDVPCjgfnvF5qfvrTkNJfcZedTdTpJ+FasR5zEyuLiLbDFBdDVNYxOJevwy71uIVocZI0C0MopR4ArgM+BEYArwKXAB8ZGVe4iL9mOHFXnot7Qw6mxMaXV2tLbN0Pqne9dnt2612Ov/bCoPfIKaVI+s8Yiu59nqQ7riTi2N5BPf7+sKQlYUk71rD2RcvZWT5Saw0emQlQiJYmSbMwylXAYK31cqXUlVrr8UqpD4DGPdElGqQsllZZ7SHUlNVC6nP/ofr736hdsIKorGNC0o6tR2faT3uqTd8id67aSPW3c3Gt3EBk1jHEXXKW0SEFha/WiXPxGiL69ULZrPvc1pNXhGvlBjxb87F279wmaporpWA/Z7UUQjSf/NYJoyRorZfveO1SSlm11n8qpU4JVgNKKTswGRgEJAHrgXu01t8Eqw3Ruqha/9hmpRTRQ/oTPaR/aNtrwwkzgGvVRsr+9ykAKioibJJm58KV5F/7ECrSTsy5p+3zQdiqWb9S+uRUAGJHDm0TSbMQwhiSNAujbFBKHaa1XgEsB65XSpUCpUFswwLk4B83vQU4E5imlOqttd4UxHaEgbTW1M5bTPlbM0hZuxF9+mDDklnt86Gra5tV2q6x3Fu2Y0qIbVaFEPuhXQOvXSs3BiOsVqFm7iIAdI0TZd738+6WDumB156tUqtZCLF3kjQLo0wAkne8/g/wPhAD3BCsBrTWVcCDu6z6Sin1N3AUsClY7bQ21dnzsbRLwdqtI8oS/r/iurKagnGT0DW1WF0uaucuqrcmb6g5l6+n5PHXsbRPJfXJ20PeXvEDL1E7fznWgzJImTi+3gciG2Lt2pH4K8/DdlhXbLsk0G2dOTkBa6f2uLdsb/BasHbpQGT/I7FkpmNrwvewpVR88h2+8irsvbtjO7w7pkhjaoMLcSBTWmujYxAHGKXUIcChwDKt9boWbDcd2AwcqbVevcd7Y4GxAKmpqUdNmzatpcIKLp+PduNfwFTjRNss5D86Fl/CPz2RlZWVxMSErnZxfezLNqJqnZicbnzREdT27UHkHyuxbtyGyelCOd2UXnUW9jVbiJv+M8rpxtUtE8cVQxvdRtxHs4mZvZCqbh2ouuwMPO2TG94piMwFpaTd9z/Ujr+nRbeNxNUz+NU0Aj8/r492457D5PRPg5036Xp8ibFBb6+lBfv6NBc68CbEtJrxv805v9RHpmLNKQCgaPxFuHrV/yCsUQYOHLhQa3200XEIEUqt4y+JOGAopa4AXsc/DCNeKXWp1vrjFmjXCrwHvLVnwgygtX4NeA2gZ8+eOisrK9QhhYR7Yy5bvRpsNkyJcQw456zdhipkZ2fTUufmWv03tkMOpuCLP1EmEyrSju2gdsRlZVFNNJ7MAkxREaioCKKyjsN3dDWeU09B2W2UvfYJR5zQH2W3Naotz6F9yFt/F3rjNrpHJhJjwM+vcMFGqr7+BWW1cHhcCnEhiGHnz89bVEp+r264127ClBjPyecNC3pbRmjJ69MITT0/X42TLUUvgM3/+3D8pcMxxUYHOTohREMkaRYt7S5guNZ6hlLqPOA+IKRJs1LKBLwDuICbQtmW0bTPR/TpJ+JcsgZrz4MNG9tb/v5MKqZ9S8bHT5P29J113q+vooU5MQ5zor/2ceqk8Wi3p9HtWdKSyPjyRX79fjY9h53a9MCbIfHW0WiPl8R/X4r1oIyQtmVOSSRj2lNopwvP9qKQtiVaAa1Jvu9anMvW4Sspk4RZCINI0ixaWobWesaO15/j73UOGeXPGqcA6cCZWmt3KNszmq1bJ1KfugPwl90yQs3cRZS99jHt3n4c1cTb4trrZds5N5P26gNYO7Zr1D6mCDu+2NA/gLc3lnYp9X5ACCVlt2HtHLwEXbvcDZZoEy3PFBVB7PAhxA4fYnQoQhzQZBpt0dJ2nflPE/pr8GWgFzBMa10T4rZaFVNEyz8opLWm/L2vSH3qDqyd2jf5OMpsJmpIf8rfmtHwxqLZih99lW3n/5stx47E66gwOpwmc65YT8nj/6P6l4X4ahr/odG1IYfy92dS8uSbVH3/WwgjFEK0ZZI0i5YWrZTasvML/7jmncs5O9YFhVLqIOBa4EggTylVueNrVLDaEP/wOirwlVeS9tIEIo46rNnHix31L6pm/oy32NH84Aziq3XiyWv9wydcy9fjWrsZ7fHiWrHe6HCarHr2H5S/9xUF1z9C6RNTGr1f7R9LKfm/1ymfOoOaX/8KYYRCiLZMhmeIltZiA0611pvZpWdbhI52eygcN5HIk48m/qrzgnJMS2oiSXdetV9jm1sLrTXV3/9G6ZNTsWSkkv7mo0EbX+7esh3n0rXYe3fH0ql9UI5rO6wrzuXrAsePPLFvs49phF0T3oj+jT8HS+YutZpzpVazEKJ+kjSLFqW1ngOglLIBV+DvBd6zBtOclo0qPFR9Nw/3xhzsfXpi79OjRSbYAH+CWPzwy5hio4m74pygHjvmvNPwFJTgq67FFBUR1GOHkmdrAUV3PoX2ePFsK6D627lEn3FSUI5dkz2fkifeACB2xBCSH2h+afPYkUOJPuMkbL26tNh1EwqJt46m5teF1M5bvF8z+9m6diTm/EFYOqRj69k5dAE2Qc1vSyh75SNsvbsTedJRMmOhEAaSpFkY5S3gCOBLQLp2gqDqqzlU//gHAMkP30Ts+YNapF33us24120hfcrDKFPwR3yVPvEG9iN6EHfZ2UE/dqhYM9OJveQsyt/+AlNCLASxHr5z2dp/2unROSjHtHVvXTV/myry+D5NSiotHdJJebh1FtZxLlpF7cKV1C5cCW6vJM1CGEiSZmGUM4CDtdYOowMJB1prnEv/SaaaMjtcU3gKSrD16Ey79yaizOaQtBF3xbkUjptI7Mgzm1yNwwgJ11+EMpuJu+aCZk11vSd73174KqtxLluHvXePoB1XtE67fkhqzTMWCnEgaDv/A4lwswWQeWCDxecjcfzlOJeuwbVuM9YumSFv0rV2E/lXP0D7j5/Gkh66Gfjsh3fDclAGVV//Qsw5A0PWTrCZYqNJvG100I8bd8lZxF1yFq1xNldPXhFlUz7D2rkDcaPOMjqcsJD80E24lq/DuWwdEUcdanQ4QhzQJGkWLUYptetDgG8DM5RSz7HH8Ayt9Y8tGlgYUGYzMecMbLGk0ltUSsFN/0fS3VeHNGHeKemeqzFFt92xtqEQiolrtNZ484vRTtd+T9DiySsib/Q9eLYWkHz/dUGPbV+02wMWs2GT+YSSJS0Jy6nHEXXqcUaHIsQBT5Jm0ZLqqwH1f3ssa6BLC8QimsHx6sfEnHsq0UMHtEh7tq6dcG/ahnPVRuy92u7l4SksxVdahi1IY5GDqebXvyi69zm8xWVEDT6BtGfuavS+2u0hf+yDeLYWENn/SCKzjg1hpLurzp6Pc9laqr6aQ+SJ/Yg5fxD2w7vt93GcS9dS/cPveLYVEHF8H5lIRAhRhyTNosVorQ82OgbRPFprdGU1SXdcCZbQjGHeG9eqDZR/8DXt3368RdsNBu32UP7eV5S9/BHmdilkfPJMqxufbUpOwFtcBoBr5Yb92ldZLSTcPIqiO56kZt5iXKs3YklLCrzvLa9EO91YUhODGnPFtFkUP/Y69kO74NlaQMW0Wdj7HtKkpNm1bjNlb3zmX7CYJWkWQtQhk5sIIRqt7NWPKX5wMspmDUmljH2JGnwC3oISahevbtF2g8FbWk7Z5I/wVdXg3pBDxYff7PcxtNYkTP2G8re/oHbRKrTPF9QYbd06oawWTFGRWNqnoV37N+N89OATSH32P6Q9dzdRJx+9W9wlD7/CtvP/TXX2/KDFW/X1zzhemUbGZ8/i+js3MANgZP8jm3Q8S4ddajVvLQhGiM22P7MaCiFCr3V1dQgh9ptz+XpKHnsVW+8eRJ7Yl6hTjm54pyao+nYulZ98R7v3nwjJ8RuiLBbiLj+bine/IuLIQwyJoaksaUnEX3chpU+/hfXgTKxNKPHmyckjat4yShaswRQXQ8e57wQ1RmW10GHmZMztUpr8gSgq65g666q+yKZq1q8AFNz0GBmfPIPtkObfdPLVOEl/9QFsXTvS4auX2X7+v4k4tjfm5IQmHc/atSMJN4zE0iEd68Edmh1fc3nLKsg9dQyW9qnY+/Qg+aEbW93dCSEONPIbKEQb51y8Gucy/9P1vrLKvSbNnoIS4qb9SOmSXEzxMUSecAS2ngfjXLIGFR2JKT4Wc3wMymats6+vspqSJ94g7cV7d7vt3tJiLxhMzLAsw9pvjrjLhmGKjSLm3NPqJD/e8soGy9K5dszYB/6SgqF46M2Skdao7XyV1ZRN/ZyEay9sMJEzpydjTk3CW1hCzPDBzU6Ya/5Yiq+0nNgLBv8Td0oC6VMeJu+q+3AuX9+k4RmW1EQSbhjZrNj2RmtN7W9LYD9676tm/ox2unBv2oqKipCEWYhWQH4LhWjjnEvXBF7bj9h73V5lUmi7DWW34S0owVtagdaa0mfexltShq+8Etth3Ul/6V6KH34F55LVmOJjMcXHkPrf2+gw4wXDZ4tTdhuewlIqv8hucyXNlNVC7IjT66z3FJSw9YxriTjhSGIvGLTXKgn2I3riuGQwXdxmbE1ICoPFV1VD/g2P4PxrFa5Vf5P2zJ31ftDaKfL4PmRMf46ylz8i4d+XNqtt55I1FN3xFKlP3l7nPVv3g0h+4AY8uXlNSppDqeKDr3G89AFp+KiJTSPyhCMa3Ee7PZhio/FVVBHTQhMVNYV2eyj73ydGhyFEi5CkWYg2LumesUQPy8K1dC2Rx9f9z9izNZ/S598n5bGbqTjnJBKysnZ7v93Ux+rsE3/9RXiLSvGVVeIrq0BZLKiY1vHnwhQbheOlD4g67Tgs7VKMDqfZqr74Ce1yUzNnPrqqeq9Js6VDOtVZfUnZ4+fX0qq+moPzr1UA1MyZT83cRUQN9FfL8JZVUPvbEiKOPwJzQmxgH3NCLEl3X13nWNrnw/Hcu8ReclaDpQtd67dQcMv/kfzwTUQc27vebaIHHQ9A9U9/EnlSv1bRO6s9HqIG9ydqcH/mf/gZ7r9ziTzhCHxVNZiiI/e6X/zoc4gbOZTq2b8TOeCoRrfnLavA8dKHVM/6ldhLhxF/5bkh+z64N+ZSePezu/2shQhn8iCgEG2cOSGWqAFHkXDjxXUmNXFv2U7elfdh79MDZWn8f5yW1ETsvboQeXwfok8/MdghN4s5PpaYcwZS/u6XRoeyT1prtM9HzW9LqJj+A47JH1K+4wHAsv99Sunz71H1/W84V6wPTFRSX4+iJ68I7XS1XNwuN84V66mYNgtfRVWd92MuPJ34MecDkHTXVUQNPJbq7PnkXTmBradfS9V38zDFROLetM1fP3kfyqfOoGzKZ/6HBGf/sXscWuOrqsGTX4wnrwhzUjzJD90UGDft2pBD/o2PUvXt3N0metFaU/np95Q8/r/mfiuareKjWRTd8zyW1EQsqYk4e3cl7pKz8GzNZ+uZ11Ex/Yd9TlKj7DaizzwZU2x0g235Kqrw5BWBT6NsFtJemoBr1Qa8BcVoz75/DvtL+3xotwdveSWxFwwi7ZX7g3p8IVor4z+GCyFCwldZTf5V9xF/7Yh6hwW0ZXGjz6HghkfQXm/Ipu9uiK+yGveGHDzbC4k8sS+eghIcz72LZ3shnrwiEsYOJ/bSYZS/PQNzcgKW9qmBnnHbYd2oXbiCys9n491eSIevX6b0yak4V21E2azYenXB0rEdymSi+MHJOJeuJWZYFqZD0huIqvnyrpyAc4l/yI+lQzqRJ/bdfQOtiRx4LJ7tRVTNmkvsyDMxxccQN/ocIo7vgynCP9Fn2Ruf4Vq+juQHbsB+RM867XiLSnG8+D4AvrJKnCvWQ59/HsCr/WMZ+Vffj/b6MEVH0um393Z70NCTk0fNnAXUzFmAOTWJlInjiDyuD0opUiaOZ/sld1IxbRaxF57R6HOv+WMplZ9+j2drAVFZxxB/zfBG77unys9/xPHax/XeybF0SCf91QcpeuAlqmb8RMoTtzX5WQHtdFH+wdeUvzmd+LEXEjfqLJJuvxIgUGu7+LHX8FVUkXT7FZhTmlf2z52TR/F9LxB1+onEXXxmm3soV4jmkKRZiDDkq67FFBNF2o7qAuHG0i6F9p8806Jl73zVtbhWbSDiqMMof38mpc+8g7VLJpYMf3UDc2Ic0f86xZ8ct0/BlBSPUor0l+v2wkWecESdca0J119Ezc8LqfrmV0qffpt2Ux/FtX4LVbN+RVnMlL39BerBK0J+njsfDgV/veaI/kf6H0hbswn7ET0pnfQGNX8sJSrrGP+4crOJiL696hwn+aEbqfr6Fwr+PZH4q84j7vKzd3vfnJJI+qsPUHT3s5jTkki4/iKY+2vgfVN0JNrnw1dWgTkxrs4Qg12HNujqGqxd/rnOTTFRpD1/D44X3iNmxOmNfmjSm19M1de/ADRr6I97y3ZKn3uXdlMextqxXb3b2A45mPbvT6Jyxk+Y42Nwb9mOpV3KPseH70lrzfbL78GSnkz6lEewdetU73aJ4y7D8cpHbD3v3yTeejmx5zVtjHTFJ99R+ty7xI85n9gLw+uDuBCNIUmzEG2Yr6Kqzq1b15q/yb/hUdq//0RYJswBbg/5tz5B6lN3BHo3g0n7fCiTicrPf6Tik+9wrdmE/dAupL/+ENH/OoWY8wfVaTd6SP8mt2c/tCv2Q7vutq52yRrMSfF4i0pRZhPWbUV4yyrYftHtmBPiMCXGEpV1LLEXnUHljJ/QtU5MibGYUxKJ6HcovhonymJGWS3+us5Kgc+HrnX5//X6UHYbpkg7nvxi8Hgwt0vB3C6FiCMPwVtWSU7/S/E5Kog8+SjSXr6PxNuvIKkRY2SVUsScdTKRJ/XFV1qBr6qG2gUrdqvuEnHM4bT/7Fl0VU2dpFhF2tEV1ZiT4ut9sM/SsR0J11+EKTaayJP61Zk4xdo5g9Sn7sBTUAJaN2q6d0vmPz357tz8Brevj7ekDGun9mTMeL7BiijKbCZ2x5Ccig+/oebnhZjbpWA/sicx556GNbPunQWtNdXfz6Pm54UkP3Iz6a/cjzkxbp/tmKIjSbrtCmKGZeHemBs4v/qOXx/tdKHsNnyV1bSb+ii2rvUn50KEO0mahWijtNdL7mlXY0qK89dxffgm3OtzKLjpUZLuuaZRSUJbpuw2QFE14ydiL2r8Lfh9cS5ZQ83cRdT+uRxfeQUZnz2HuX0KCTeMxN63F6ZIf5Js3o/ewOaIGTqA6NNPpPbP5Zgi7Wwu3Y4pJor01x7EV1qOt6wCc2I8AL7yStwbc/CWloPJRES/Qyl/50vKJn+A9ngByPjkGbTbQ95VE/zDWkwm4scOJ/6Kcym44RF8FdVgMmHv3Z2UJ24l79L/4C0sAZsVe99D/D37+9m7b46PxRwfi3tjLqWTplA5/QeS7v7n+jTHxcAeyaXWGlu3TmR8+SL2I3rW21NsaZdCwo0XN9h+9XfzqPwym/Zv/9+Oa2bvrN06kfzITVgy0rB2at/4k9yh5rclFN3zHB2+eKHBhHlPSXdeRXmn9hSOn0T17N8p/9+nZP705m4Jce3CFZQ88Sb4fCSOuwygwYR5V7YenbH16Iy3qJS8UXcSfcYAEm6+ZK9VcbTWVH/zCyVPvUXGJ88Qf8W5+3VOQoQbSZqFaKPcG3LwVdfgq65BO91gs1L6zNskP3hjvZNMhKP4MedRNOEFYoYPbtLYZl9lNVUzf8ZbVknC2OFU/fAbCkXcmPMCQw4ij+sT7LD3izKZiDx+RwzZ21Fmsz+h2yOpi7tsWJ19E8YOJ/6aC0Dr3YayHDT/ozrbZnz67G7Lvlonym5D7ehN9xaWorVucn1oa5dMMqY/h+O1j9l+0W1kfPFivYmldnsoGDeJ+CvOIeKYw5vU1q5iR52Fc8lqih96meTHbtln/Oa4mCYPXahduIKiu54m9Zk7G/XgXn18jgpMifHg82E/rje185cTNfgEXKv/xtazM77yKuKvPJeoIf2bNTTJnJJIxowXKX36LbYOu8k/jGSPh4i9ZRWUPPwKrnWbSXvu7v1KzoUIV5I0C9FGeXLyUXYb2unC0jEdqmtJf+0Bwx6MM4K9by8i+vXCW1CCpX3qfu1b+vx7VHz4DRHHHh54WCzptitCEKWxlFL+YRn7yRRhJ23yfRTe8n+Y26eSdO/YZk+oouw2Em8eRdwlZ2GOi6Hio1nY+/XCtnOGRK+Pov88gzKbsPcNzgNmSimSH76Z/GsewLNpW0hm+9Na43jxA1ImjifiqMOafJz4Medj7ZJJ5fQfiBx4HGWvTsPx3Lv4amppN/WxQGm/YDAnxJLy8E04l67F0rEdziVrMCXEYj0oA1+tE5TC2iWT5MduCcnwJyHaIkmahWijok47jk6/v0/Fx99R+uzbuDfk1FulIJwppUh59Ba017vP0l3g78Gsnv07rlUbSRx/ORH9ehF74elhUes5VEyRdtJemgBmU1AfugxMdW1S5F11H7EjTifh2hHEfP0bXoeT9MkT9qtEYkNMkXbavfM4AJ784qAOXXJvzMWclkT6lIeb/T1SVgvRQ/oHxsbHnn8atX8sw37UoSFLXO19/BMiuTfmUvLUVOy9umCKjyX1ydsbNfxFiAOJ1GkWoh7Vvyz0PzjVytX8vgTHyx+SPvm+Ay5h3lXBLY9T+/vSvb5f/t5McgdfQ8VHs7Ad5n/YLvKkfpIwN4KyWUN29yJ2xOlkfPos7r9zKZvyGVWn9iPt+bsbHHvcFEopPJu2sf3CW3Hn5DVqn4Y+iLk35pI35n6ci1eHpJKLsliIPLFvi/T0xpx3GhmfPENk1rEkP3hDyNsToi2SpFmIPZiqnRRc/wh5l9+Da91mo8PZJ29BCekv3kvE0U2/JRwOogedQNmUzwLL2uejZt5iSp54A6011oM7kD7lIdq9+SjRQ1rXZC0HOktaEmnP3EX82OHo6Mh9zpLXXNaDOxA/9kIK//04vqqaerepnrOAvNH3kHPaGEr/++Zej+XOySPvmgdI/PelRJ7UL1QhtyhLuxTiRp211wcDhTjQSdIsxB7MJeUAOBevpvzdrwyOpn5V382latavxF4w+IDuYd4p+l+n4N6Yg3VzHlWzfmXbv26k9Kmp/vGrPh+R/Y+UMlmtXDCHY+xL7CVnYju0KxXvz0S7PWiXe7f3dU0ttQtX4s0vxr15+16P41y4kvirLyDm3FObHVPtolW4N29r9nGEEKElY5qF2IMvJhJltWCKjSbx1suNDmc3jpc+oDp7Pp6t+SQ/eGOglvCBTlktJP3narZs34I5JZGUx8dh69Oj2Q+uifCjlCL5/uvBpKhdsJKC6x9GRUVgTk0i4aZLMGek+XuhTQrX8rW41m7C1qNzYPZJb1EpzmXrgpIsg38ISMkjr+Bau5mIow4l+aGbsHbOCMqxhRDBJUmzEHvwJsTQ/pOn8eYVY46P3e097fXiq6jGnBC7l72Dx52T568Z/OtfWA/OJPG20ZjTkkj6zxgc//uUwlufwBQTRepTd9Sd6vgAFD2kP+5s1wE/VEU0bOese5HH96HTwmn4yirxFpZgSoxH2W3EXnwmeL3oGidV383D1qMzBdc/gnPZOlCKuMv+FbRKFq4VG3Ct9Q8Dc65YjzklISjHFUIEnyTNQtTD1rUT1HM7v+KDb3C8Oo2kO64kelhWUHsyfVU11M5fjjkpHluvLuSPfZCIvr2IGjogMOVy7IjT0VrjWjbRv09lNZYOjZvVSwhRlzKZMCfG7VaHOPX//l1nu7RXH8BXVomvomq3mQOb3b7FTNTAY6n+eSHRQ06U8cRCtGKSNAvRSJ68IhzPv4evuoaie54Dn27WLVrt9vhLpVXXUnj7k7iWr8d2WFfiRp+Dslro8PXL9SbluqqGiL69cC5bi3Z5sBy0/zOXCSH2j1IKc0Js0O8y2Q45mLQX7sFTWApud8M7CCEMI0mzEI3kzS/GFBeNr7oGa5dMos8c0Kj9tNeLa/Xf1P61Eve6LdT+sQwVacezZTvJj9xM9NCTiLv8bLx5RVi7dcLatSPAXnuxTTFRpL1wD1prfKXlMm5XiDBgSU00OgQhRAMkaRZiTz79T41mpQJJqf2InmTMeAHHi+8TNfiEwLhI8E85XHTfC3hy8vA6Kug461Uqv8ym/K0ZuDdtxRQfi2dbAaBQVjMZ057GenCHQD3aiKMOZcsJo/xNWi10+vNDlPWfX0/t9eKrqtlt2mGlFOak+NB+L4Q4gGm3B+10yZAJIQQgSbMIc0qpJGAKMAQoAu7WWr+/r32sWwvxlVVSu2AFheMn+ZNXi5nk+68n+oyTqPp2LtU//uGfeGBAP5L+czWl/32Tih3l6ZTFgremFnvvHiTffz3Wrh1RkXY29x0BXi/4NNYumbsl3e6NuYHXls4ddkuYAdybtrHtnJsxpyYRcWxvUieND9a3SAixh6rv5lL65Ft48ouJvWCQv9pGkO2sxiGEaDskaRbh7iXABaQDRwIzlVJLtNYr9raDu2Ma5sQ4ogefQNSy6eDxol1uf5JrMdP+/SfQbg94vKgIf09x3GVnU/3jH3gLSwHwFTnqlI2Kv/xsVKTd/3T8HjONqQibv9bwhhxsPTvXjWnDFgC8hSX4HOVN/FYIIRpDWSw77gyBJzc/JG04XvqQ2t+XEHP+IKLPOEl6s4VoA6TAqwhbSqlo4ALgPq11pdb6V+AL4LJ97ZeTk8PUqVMB8Hg8DBw8iPenf4qyWqipqWHQyOF8Nm8O1oM7UBVlIysriy//+p3kB2/EPOkWRkfn8c2C3wHIy8sjKyuLWbNmkXjbaCqGnciwyROZ/cvPAGzcuJGsrCx+y9tC6sTxVDx6LcN//Yx58+YBsHz5crKysvhz/gKUzcrKmjIu+OEDFi9eDMD8+fPJyspi+fLlAMybN4+srCzWrFkDwJw5c8jKymLjxo0ALFy4kKysLHJycgCYNWsWWVlZ5OX5pxX+8ssvycrKoqioCIDPPvuMrKwsysrKAPjoo4/IysqiuroagHfffZesrCzcOx5gmjp1KllZWYHv5euvv86gQYMCy5MnT2bo0KGB5eeee46zzz47sPzkk09ywQUXBJYnTpzIyJEjA8uPPPIIl156aWD5/vvv58orr9ytvbFjxwaWb7/9dm688cbA8rhx4xg3blxg+cYbb+T2228PLI8dO5a77747sHzllVdy//33B5YvvfRSHnnkkcDyyJEjmThxYmD5ggsu4Mknnwwsn3322Tz33HOB5aFDhzJ58uTA8qBBg3j99dcDy1lZWYFrz+12k5WVxbvvvgtAdXU148aN46OPPgKgrKyMrKwsPvvMPxNiUVGR/1r88ktg92sP/Nd1VlYWP/zwA/DPtTdnzhwA1qxZQ1ZWVp1rb/78+QAsXryYrKysJl97P/zwQ4PX3rhx41rFtWfJTOflwrXcnLMAX40TaPjau/vuuxu89l588UXA38s87olHuf+7zyh+cDI1vy9t9ddeVlbWPq89IQ4E0tMswlkPwKu1XrvLuiXAKXtuqJQaC4wFsFqtrF69muzsbDweDw6Hg1WrVpGdnU1tbS0Oh4MVK1aQnZ1NZWUlDoeD5cuXk3RyEmWeCsqctSxftZK4xARKSkpwOBwsXbqUiIgICgoKcDgcLFmyBIvFwrZt23A4HCxatAitNVu2bMHhcPDXX3/hcrn4+++/cTgcrEm2o/57HXkLFlP19pssWLAAh8PB6tWrcTgczJ8/n6KiIpYvX47D4eCPP/5g+/btLF68GIfDwe+//86WLVuoqanB4XDw22+/sWHDBpYuXYrD4WDevHkkJSWxbNkyHA4Hc+fOJT4+PnC8X375hZiYGFasWIHD4eDnn38mIiKCVatW4XA4mDNnDhaLJRBPdnY24E/ESktLA8tr166lpKQksLxu3TqKi4sDyxs2bKCwsDCwvHHjRgoKCgLLf//9N/n5+YHlTZs27ba9y+WirKwssJyTk4PT6Qws5+b6h8HsXN66dSt2uz2wvG3bNqqqqgLLeXl5eL3ewHJ+fj42my2wXFBQwMaNGwPLhYWFbNiwIbBcXFzMunXrAsslJSWsXbs2sFxaWsqaNWsCyzt/pnu79rxeb/3XXlISZWVlOBwOli1bRmxsbNCuvYULF1JVVcX69etxOBxNvvaWLFnS4LXn9Xpbx7Xn8VJ2aj+qtueyZszprMnObvDa27JlS4PXntvtJjs7G+vmPDxVNVgwUWO3MJ+qVn/t7fXv3o5rT4gDgdJ73CYWIlwopQYAH2ut2+2y7hpglNY6a2/79ezZU+/sLQs32dnZu/XGhRs5v7btQDo/b0kZVTPngDIRd+m/jA0sCJRSC7XWRxsdhxChJD3NIpxVAnF7rIsDKgyIRQghAsxJ8cRddnbDGwohWg0Z0yzC2VrAopTqvsu6I4C9PgQohBBCCFEfSZpF2NJaVwGfAQ8rpaKVUicC5wDvGBuZEKIt0F4vnrwiPNsLjQ5FCNEKSNIswt0NQCRQAHwAXL+vcnNCCAFQ+dUcthx9EbmDrsbx0gdBOaYlp4Dy92fiLa8MyvGEEC1LkmYR1rTWJVrrc7XW0VrrTg1NbCKEEADmxDh/PXbAk1sQlGNGZy+i5P9eJ3fgVVR88l1QjimEaDmSNAshhBB7sHRIB/wP7Jniopt9PF91LZHzVwGgnS6sXTs2+5hCiJYl1TOEEEKIPVg6ptPpjw8wRUcG54BKUXHeycStzEXXOLEfeUhwjiuEaDGSNAshhBB7UGYzKlgJM2CKtFM1sB8ZD92Kt6wCpVTQji2EaBkyPEMIIYRoQeb4WKNDEEI0gSTNQgghhBBCNECSZiGEEKIeWms8BSXULl6Na83fTTqGr7oW14acIEcmhDCCjGkWQggh6lH1+Y8U3fcCANFnDiD1idv2+xgV02ZR+tRbRA89CUvfzkGOUAjRkiRpFkIIIeph6ZAWeO3Zuv+1mn3VtZS/OR20purrX7BFyc1dIdoy+Q0WQggh6mHJTMcUF4OtVxes3Tvt9/6+iipsh3f3H6tdCtUn9g52iEKIFiQ9zUIIIUQ9LBlpdJr3btP3T08m/aUJOJeuxVtWAd6KIEYnhGhp0tMshBBChJC9Tw+iBhxldBhCiGaSpFkIIYQQQogGSNIshBBCBJEnvxittdFhCCGCTMY0CyGEEHvhq6zGvTEXz7YCTAlxRB7fZ9/bV9eybfh4bF0yib9+JBHH9ZYps4UIE9LTLIQQQuxF9ZwFbL/kTgpvf5KKD79ucPuKD7/BV1pO7cKVFN/3Ani8LRClEKIlSNIshBBC7IU1Mz3wujG1mn0VVSir/yZu/NjhgddCiLZPfpuFEEKIvbB0SMPW4yAsHdKx9jiowe0T/30psSOGUPHBN8Sce1oLRCiEaCmSNAshhBB7YU5JJOOz5/ZrH0tGGom3jQ5RREIIo8jwDCGEEEIIIRogSbMQQgjRDNrlRns8RochhAgxSZqFEEKIZih/50u2nn0zlZ//KMmzEGFMxjQLIYQQ++ApLMW5aBWerflY2qcSfcZJgfd8VTWUvTkdn6OCognPg9lEzLAs44IVQoSMJM1CCCHEPjgXraLw1icAiDz5qN2SZte6zeDzz/5n6ZC223tCiPAiSbMQQgixD5ZdazXn5u/2XsSRh5D57auUvzcTa6d2UpdZiDAmv91CCCHEPlg7tiPylKOxZKRhPbhDnfdNsdEkXHehAZEJIVqSJM1CCCHEPphio0l/aYLRYQghDCbVM4QQQoj9pH0+o0MQQrQwSZqFEEKI/eCrrGbrv27E8co0fJXVRocjhGghkjQLIYQQ+6H8/a/xbNmO48X3yRtzv9HhCCFaiIxpFkIIIRrgzsmjJvtPPLkFlL/3VWB93MihBkYlhGhJkjSLsKOUsgOTgUFAErAeuEdr/Y2hgQkh2iz3xlxKJr0BQMTRhxNz7qlUff0z0cNOMTgyIURLkaRZhCMLkAOcAmwBzgSmKaV6a603GRmYEKJtsmSmBV57CoqJOfdUYs491cCIhBAtTZJmEXa01lXAg7us+kop9TdwFLDJiJiEEG2bJSOd2AvPwJKZjqVTe6PDEUIYQGmtjY5BiJBSSqUDm4Ejtdar97LNWGAsQGpq6lHTpk1rwQhbTmVlJTExMUaHETJyfm2bnF/bNXDgwIVa66ONjkOIUJKkWYQ1pZQV+AbYoLW+tjH79OzZU69Zsya0gRkkOzubrKwso8MIGTm/tk3Or+1SSknSLMKelJwTbY5SKlsppffy9esu25mAdwAXcJNhAQshhBCizZMxzaLN0VpnNbSNUkoBU4B04EyttTvUcQkhhBAifEnSLMLVy0AvYJDWusboYIQQQgjRtsnwDBF2lFIHAdcCRwJ5SqnKHV+jjI1MCCGEEG2V9DSLsKO13gwoo+MQQgghRPiQnmYhhBBCCCEaIEmzEEIIIYQQDZCkWQghhBBCiAZI0iyEEEIIIUQDJGkWQgghhBCiAZI0CyGEEEII0QBJmoUQQgghhGiAJM1CCCGEEEI0QJJmIYQQQgghGiBJsxBCCCGEEA2QpFkIIYQQQogGSNIshBBCCCFEAyRpFkIIIYQQogFKa210DEK0KkqpCmCN0XGESApQZHQQISTn17bJ+bVdPbXWsUYHIUQoWYwOQIhWaI3W+mijgwgFpdSCcD03kPNr6+T82i6l1AKjYxAi1GR4hhBCCCGEEA2QpFkIIYQQQogGSNIsRF2vGR1ACIXzuYGcX1sn59d2hfO5CQHIg4BCCCGEEEI0SHqahRBCCCGEaIAkzUIIIYQQQjRAkmYhhBBCCCEaIEmzEDsopd5VSm1XSpUrpdYqpa42OqZgU0p1V0rVKqXeNTqWYFJKZe84r8odX2E3OY1SaqRSapVSqkoptUEpNcDomIJhl5/Zzi+vUuoFo+MKJqVUZ6XU10qpUqVUnlLqRaVUWMyToJTqpZT6USlVppRar5Q6z+iYhAgVSZqF+MfjQGetdRxwNvCoUuoog2MKtpeA+UYHESI3aa1jdnz1NDqYYFJKDQYmAVcCscDJwEZDgwqSXX5mMUA6UAN8bHBYwTYZKADaA0cCpwA3GBlQMOxI/GcAXwFJwFjgXaVUD0MDEyJEJGkWYget9QqttXPn4o6vrgaGFFRKqZGAA5htcChi/z0EPKy1/l1r7dNab9VabzU6qBAYjj+5/MXoQILsYGCa1rpWa50HzAIOMzimYDgEyACe0Vp7tdY/AnOBy4wNS4jQkKRZiF0opSYrpaqB1cB24GuDQwoKpVQc8DBwm9GxhNDjSqkipdRcpVSW0cEEi1LKDBwNpO64/Z274/Z+pNGxhcBo4G0dfrVQnwNGKqWilFIdgKH4E+e2Tu1l3eEtHYgQLUGSZiF2obW+Af/t7wHAZ4Bz33u0GY8AU7TWOUYHEiJ3AV2ADvgnWfhSKRUudwnSASv+XtgB+G/v9wUmGBhT0CmlOuEftvCW0bGEwBz8PcvlQC6wAPjcyICCZDX+OwN3KKWsSqkh+H+GUcaGJURoSNIsxB523Gb8FcgErjc6nuZSSh0JDAKeMTiUkNFa/6G1rtBaO7XWb+G/RXym0XEFSc2Of1/QWm/XWhcBTxM+57fT5cCvWuu/jQ4kmJRSJuBb/B/Co4EUIBH/GPU2TWvtBs4FzgLy8N/Jmob/g4EQYScsnt4VIkQshMeY5iygM7BFKQUQA5iVUodqrfsZGFcoaeq/ddzmaK1LlVK5+M8pnF0OTDQ6iBBIAjoCL+54ZsKplHoTeBS409DIgkBrvRR/7zIASql5hOfdAiGkp1kIAKVU2o6SXjFKKbNS6nTgYuBHo2MLgtfwJ/9H7vh6BZgJnG5cSMGjlEpQSp2ulIpQSlmUUqPwV5f41ujYguhN4OYd12kiMA5/xYKwoJTqj39oTbhVzWDHnYG/get3XJ8J+MduLzE0sCBRSvXZ8bsXpZS6HX+FkKkGhyVESEjSLISfxj8UIxcoBZ4ExmmtZxgaVRBorau11nk7v4BKoFZrXWh0bEFixd9rVwgUATcD52qtw6lW8yP4SwWuBVYBi4DHDI0ouEYDn2mtK4wOJETOB87Af42uBzzAeEMjCp7L8D80XQCcBgzepQqREGFFhd9DykIIIYQQQgSX9DQLIYQQQgjRAEmahRBCCCGEaIAkzUIIIYQQQjRAkmYhhBBCCCEaIEmzEEIIIYQQDZCkWQghhBBCiAZI0iyEEEIIIUQDJGkWQggDKaU2KaVqlFIVSimHUmqeUuo6pZT8fRZCiFZE/igLIYTxhmmtY4GDgInAXcAUY0MSQgixK0mahRCildBal2mtvwAuAkYrpQ5XSp2llFqklCpXSuUopR7cub1SaqZS6uZdj6GUWqqUOrdlIxdCiPAnSbMQQrQyWus/gVxgAFAFXA4kAGcB1++SFL8FXLpzP6XUEUAH4OsWDFcIIQ4IkjQLIUTrtA1I0lpna62Xaa19WuulwAfAKTu2mQF0V0p137F8GfCR1tplQLxCCBHWJGkWQojWqQNQopQ6Tin1k1KqUClVBlwHpABorZ3ANODSHQ8OXgy8Y1jEQggRxiRpFkKIVkYpdQz+pPlX4H3gC6Cj1joeeAVQu2z+FjAKOA2o1lr/1sLhCiHEAUGSZiGEaCWUUnFKqX8BHwLvaq2XAbFAida6Vil1LHDJrvvsSJJ9wFNIL7MQQoSM0lobHYMQQhywlFKbgHTAgz/5XQm8C7yitfYqpYbjT4iTgDnAJiBBa73rA4ATgEeArlrrjS16AkIIcYCQpFkIIdo4pdTlwFit9UlGxyKEEOFKhmcIIUQbppSKAm4AXjM6FiGECGeSNAshRBullDodKATy8T8wKIQQIkRkeIYQQgghhBANkJ5mIYQQQgghGiBJsxBCCCGEEA2QpFkIIYQQQogGSNIshBBCCCFEAyRpFkIIIYQQogH/D9LRpyqanPhCAAAAAElFTkSuQmCC\n", + "text/plain": [ + "<Figure size 432x576 with 2 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Separating the two equations #\n", + "plt.rcParams['savefig.facecolor']='white'\n", + "# Eq.1 ------\n", + "# color codes for sims defined by TC\n", + "#colors={1:'dimgray',2:'gold',3:'mediumseagreen',4:'darkorange',5:'crimson',6:'royalblue'}\n", + "colors={1:'crimson',2:'crimson',3:'crimson'}\n", + "lstyle={1:'solid',2:'dotted',3:'dashed'}\n", + "lw={1:3,2:3,3:1}\n", + "\n", + "\n", + "fig, ax = plt.subplots(2, 1, figsize=(6,8), sharex=True, sharey=False)\n", + "for i in range(1,4): # loop over simulations\n", + " ax[0].plot(dur[str_regridded_sim[i]], pmin[str_regridded_sim[i]], color=colors[i],\n", + " linewidth=lw[i], label=str_grid[i], alpha=0.9, linestyle=lstyle[i])\n", + "\n", + "ax[1].plot(dur[str_regridded_sim[i]], pmin[str_regridded_sim[2]]-pmin[str_regridded_sim[1]], color=colors[3],\n", + " linewidth=lw[2], label='2km 1x1 - 80km 1x1', alpha=0.9, linestyle=lstyle[2])\n", + "ax[1].plot(dur[str_regridded_sim[i]], pmin[str_regridded_sim[2]]-pmin[str_regridded_sim[3]], color=colors[3],\n", + " linewidth=lw[3], label='2km 1x1 - 2km 0.25x0.25', alpha=0.9, linestyle=lstyle[3])\n", + " \n", + "ax[0].set_title('absolute')\n", + "ax[1].set_title('difference')\n", + "\n", + "for r in range(0,2): \n", + " ax[r].yaxis.grid()\n", + " ax[r].xaxis.grid()\n", + " ax[r].tick_params(axis='both', which='major', labelsize=12)\n", + " ax[r].set_xlim((3, 9))\n", + " ax[r].set_ylabel('hPa', fontsize=12)\n", + " ax[r].legend(ncol=1, loc='upper left')\n", + " \n", + " if r==1:\n", + " ax[r].set_xlabel('Day', fontsize=12)\n", + " ax[r].axhline(y=0,linestyle=':', color='k')\n", + " ax[r].set_ylim((-3, 7))\n", + " \n", + "\n", + "\n", + "plt.subplots_adjust(wspace = 0.14)\n", + "fig.suptitle('Minimum surface pressure from simulation Tanom_TR_RH0 on 80km and 2km \\n determined after regridding to different regular latlon grids',fontsize=16, weight='bold')\n", + "\n", + "plt.savefig('/home/b/b380782/CyclEx_figs/Pmin_timeseries_Tanom_TR_RH0_compare_regridding_2km_80km.png',\n", + " bbox_inches='tight',dpi=100)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (based on the module python3/2022.01)", + "language": "python", + "name": "python3_2022_01" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.9" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/Scripts_for_analysis/PTEstep1_Find_cyclone_track.ipynb b/Scripts_for_analysis/PTEstep1_Find_cyclone_track.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..9a0b6f0d70bd950c73860b0bd20f5077c03c9dc2 --- /dev/null +++ b/Scripts_for_analysis/PTEstep1_Find_cyclone_track.ipynb @@ -0,0 +1,5911 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# (Step 1 for PTE) Find cyclone track from minimum surface pressure" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Christoph Braun, KIT, IMK-TRO, June 2022\n", + "\n", + "Based on a script by Hilke Lentink" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "import numpy as np\n", + "import pandas as pd\n", + "import xarray as xr\n", + "from matplotlib import pyplot as plt" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "#####################################################\n", + "# cyclone specific data\n", + "#####################################################\n", + "res = '2km'\n", + "exp ='channel_'+res+'_0005'\n", + "\n", + "data_dt = '6hrly'\n", + "data_res = '025x025latlon'" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "####################################################\n", + "# load data\n", + "#####################################################\n", + "# File to read in\n", + "\n", + "datapath='/scratch/b/b380782/check_remapping_on_PTE/'+exp+'/'\n", + "# datapath='/work/bb1152/Module_A/A6_CyclEx/sim_data/production/'\n", + "\n", + "ipath2d = datapath+\"remapped_atm2d_latlon_025x025/\"\n", + "#ipath2d = datapath+exp+\"/remapped_atm2d_latlon/\"\n", + "ifile2d = \"icon-atm2d_ML_reg_con_202101*.nc\"\n", + "\n", + "# Read in variables\n", + "ncdat = xr.open_mfdataset(ipath2d+ifile2d)\n", + "\n", + "# File to save figures/output \n", + "dataout=datapath+'PTE_out/'\n", + "#dataout='/work/bb1152/Module_A/A6_CyclEx/b382037_TingChen/Task3/PTE/'" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# select timesteps every 6 hours. \n", + "# Not required for 2km simulations because here pp_data is only available every 6 hours\n", + "\n", + "def createList(r1, r2, r3):\n", + " return list(range(r1, r2+1, r3))\n", + "\n", + "if res == '80km' and data_dt == '6hrly':\n", + " ncdat = ncdat.isel(time=createList(0, 216, 6))\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "# set relative time-axis\n", + "\n", + "ncdat[\"time\"] = ncdat.time - 20210101" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "# select subdomain without meridional boundaries\n", + "\n", + "latmin = 10\n", + "latmax = 80\n", + "\n", + "ncdat = ncdat.sel(lat=slice(latmin,latmax))" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "<div><svg style=\"position: absolute; width: 0; height: 0; overflow: hidden\">\n", + "<defs>\n", + "<symbol id=\"icon-database\" viewBox=\"0 0 32 32\">\n", + "<path d=\"M16 0c-8.837 0-16 2.239-16 5v4c0 2.761 7.163 5 16 5s16-2.239 16-5v-4c0-2.761-7.163-5-16-5z\"></path>\n", + "<path d=\"M16 17c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n", + "<path d=\"M16 26c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n", + "</symbol>\n", + "<symbol id=\"icon-file-text2\" viewBox=\"0 0 32 32\">\n", + "<path d=\"M28.681 7.159c-0.694-0.947-1.662-2.053-2.724-3.116s-2.169-2.030-3.116-2.724c-1.612-1.182-2.393-1.319-2.841-1.319h-15.5c-1.378 0-2.5 1.121-2.5 2.5v27c0 1.378 1.122 2.5 2.5 2.5h23c1.378 0 2.5-1.122 2.5-2.5v-19.5c0-0.448-0.137-1.23-1.319-2.841zM24.543 5.457c0.959 0.959 1.712 1.825 2.268 2.543h-4.811v-4.811c0.718 0.556 1.584 1.309 2.543 2.268zM28 29.5c0 0.271-0.229 0.5-0.5 0.5h-23c-0.271 0-0.5-0.229-0.5-0.5v-27c0-0.271 0.229-0.5 0.5-0.5 0 0 15.499-0 15.5 0v7c0 0.552 0.448 1 1 1h7v19.5z\"></path>\n", + "<path d=\"M23 26h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n", + "<path d=\"M23 22h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n", + "<path d=\"M23 18h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n", + "</symbol>\n", + "</defs>\n", + "</svg>\n", + "<style>/* CSS stylesheet for displaying xarray objects in jupyterlab.\n", + " *\n", + " */\n", + "\n", + ":root {\n", + " --xr-font-color0: var(--jp-content-font-color0, rgba(0, 0, 0, 1));\n", + " --xr-font-color2: var(--jp-content-font-color2, rgba(0, 0, 0, 0.54));\n", + " --xr-font-color3: var(--jp-content-font-color3, rgba(0, 0, 0, 0.38));\n", + " --xr-border-color: var(--jp-border-color2, #e0e0e0);\n", + " --xr-disabled-color: var(--jp-layout-color3, #bdbdbd);\n", + " --xr-background-color: var(--jp-layout-color0, white);\n", + " --xr-background-color-row-even: var(--jp-layout-color1, white);\n", + " --xr-background-color-row-odd: var(--jp-layout-color2, #eeeeee);\n", + "}\n", + "\n", + "html[theme=dark],\n", + "body.vscode-dark {\n", + " --xr-font-color0: rgba(255, 255, 255, 1);\n", + " --xr-font-color2: rgba(255, 255, 255, 0.54);\n", + " --xr-font-color3: rgba(255, 255, 255, 0.38);\n", + " --xr-border-color: #1F1F1F;\n", + " --xr-disabled-color: #515151;\n", + " --xr-background-color: #111111;\n", + " --xr-background-color-row-even: #111111;\n", + " --xr-background-color-row-odd: #313131;\n", + "}\n", + "\n", + ".xr-wrap {\n", + " display: block !important;\n", + " min-width: 300px;\n", + " max-width: 700px;\n", + "}\n", + "\n", + ".xr-text-repr-fallback {\n", + " /* fallback to plain text repr when CSS is not injected (untrusted notebook) */\n", + " display: none;\n", + "}\n", + "\n", + ".xr-header {\n", + " padding-top: 6px;\n", + " padding-bottom: 6px;\n", + " margin-bottom: 4px;\n", + " border-bottom: solid 1px var(--xr-border-color);\n", + "}\n", + "\n", + ".xr-header > div,\n", + ".xr-header > ul {\n", + " display: inline;\n", + " margin-top: 0;\n", + " margin-bottom: 0;\n", + "}\n", + "\n", + ".xr-obj-type,\n", + ".xr-array-name {\n", + " margin-left: 2px;\n", + " margin-right: 10px;\n", + "}\n", + "\n", + ".xr-obj-type {\n", + " color: var(--xr-font-color2);\n", + "}\n", + "\n", + ".xr-sections {\n", + " padding-left: 0 !important;\n", + " display: grid;\n", + " grid-template-columns: 150px auto auto 1fr 20px 20px;\n", + "}\n", + "\n", + ".xr-section-item {\n", + " display: contents;\n", + "}\n", + "\n", + ".xr-section-item input {\n", + " display: none;\n", + "}\n", + "\n", + ".xr-section-item input + label {\n", + " color: var(--xr-disabled-color);\n", + "}\n", + "\n", + ".xr-section-item input:enabled + label {\n", + " cursor: pointer;\n", + " color: var(--xr-font-color2);\n", + "}\n", + "\n", + ".xr-section-item input:enabled + label:hover {\n", + " color: var(--xr-font-color0);\n", + "}\n", + "\n", + ".xr-section-summary {\n", + " grid-column: 1;\n", + " color: var(--xr-font-color2);\n", + " font-weight: 500;\n", + "}\n", + "\n", + ".xr-section-summary > span {\n", + " display: inline-block;\n", + " padding-left: 0.5em;\n", + "}\n", + "\n", + ".xr-section-summary-in:disabled + label {\n", + " color: var(--xr-font-color2);\n", + "}\n", + "\n", + ".xr-section-summary-in + label:before {\n", + " display: inline-block;\n", + " content: '►';\n", + " font-size: 11px;\n", + " width: 15px;\n", + " text-align: center;\n", + "}\n", + "\n", + ".xr-section-summary-in:disabled + label:before {\n", + " color: var(--xr-disabled-color);\n", + "}\n", + "\n", + ".xr-section-summary-in:checked + label:before {\n", + " content: '▼';\n", + "}\n", + "\n", + ".xr-section-summary-in:checked + label > span {\n", + " display: none;\n", + "}\n", + "\n", + ".xr-section-summary,\n", + ".xr-section-inline-details {\n", + " padding-top: 4px;\n", + " padding-bottom: 4px;\n", + "}\n", + "\n", + ".xr-section-inline-details {\n", + " grid-column: 2 / -1;\n", + "}\n", + "\n", + ".xr-section-details {\n", + " display: none;\n", + " grid-column: 1 / -1;\n", + " margin-bottom: 5px;\n", + "}\n", + "\n", + ".xr-section-summary-in:checked ~ .xr-section-details {\n", + " display: contents;\n", + "}\n", + "\n", + ".xr-array-wrap {\n", + " grid-column: 1 / -1;\n", + " display: grid;\n", + " grid-template-columns: 20px auto;\n", + "}\n", + "\n", + ".xr-array-wrap > label {\n", + " grid-column: 1;\n", + " vertical-align: top;\n", + "}\n", + "\n", + ".xr-preview {\n", + " color: var(--xr-font-color3);\n", + "}\n", + "\n", + ".xr-array-preview,\n", + ".xr-array-data {\n", + " padding: 0 5px !important;\n", + " grid-column: 2;\n", + "}\n", + "\n", + ".xr-array-data,\n", + ".xr-array-in:checked ~ .xr-array-preview {\n", + " display: none;\n", + "}\n", + "\n", + ".xr-array-in:checked ~ .xr-array-data,\n", + ".xr-array-preview {\n", + " display: inline-block;\n", + "}\n", + "\n", + ".xr-dim-list {\n", + " display: inline-block !important;\n", + " list-style: none;\n", + " padding: 0 !important;\n", + " margin: 0;\n", + "}\n", + "\n", + ".xr-dim-list li {\n", + " display: inline-block;\n", + " padding: 0;\n", + " margin: 0;\n", + "}\n", + "\n", + ".xr-dim-list:before {\n", + " content: '(';\n", + "}\n", + "\n", + ".xr-dim-list:after {\n", + " content: ')';\n", + "}\n", + "\n", + ".xr-dim-list li:not(:last-child):after {\n", + " content: ',';\n", + " padding-right: 5px;\n", + "}\n", + "\n", + ".xr-has-index {\n", + " font-weight: bold;\n", + "}\n", + "\n", + ".xr-var-list,\n", + ".xr-var-item {\n", + " display: contents;\n", + "}\n", + "\n", + ".xr-var-item > div,\n", + ".xr-var-item label,\n", + ".xr-var-item > .xr-var-name span {\n", + " background-color: var(--xr-background-color-row-even);\n", + " margin-bottom: 0;\n", + "}\n", + "\n", + ".xr-var-item > .xr-var-name:hover span {\n", + " padding-right: 5px;\n", + "}\n", + "\n", + ".xr-var-list > li:nth-child(odd) > div,\n", + ".xr-var-list > li:nth-child(odd) > label,\n", + ".xr-var-list > li:nth-child(odd) > .xr-var-name span {\n", + " background-color: var(--xr-background-color-row-odd);\n", + "}\n", + "\n", + ".xr-var-name {\n", + " grid-column: 1;\n", + "}\n", + "\n", + ".xr-var-dims {\n", + " grid-column: 2;\n", + "}\n", + "\n", + ".xr-var-dtype {\n", + " grid-column: 3;\n", + " text-align: right;\n", + " color: var(--xr-font-color2);\n", + "}\n", + "\n", + ".xr-var-preview {\n", + " grid-column: 4;\n", + "}\n", + "\n", + ".xr-var-name,\n", + ".xr-var-dims,\n", + ".xr-var-dtype,\n", + ".xr-preview,\n", + ".xr-attrs dt {\n", + " white-space: nowrap;\n", + " overflow: hidden;\n", + " text-overflow: ellipsis;\n", + " padding-right: 10px;\n", + "}\n", + "\n", + ".xr-var-name:hover,\n", + ".xr-var-dims:hover,\n", + ".xr-var-dtype:hover,\n", + ".xr-attrs dt:hover {\n", + " overflow: visible;\n", + " width: auto;\n", + " z-index: 1;\n", + "}\n", + "\n", + ".xr-var-attrs,\n", + ".xr-var-data {\n", + " display: none;\n", + " background-color: var(--xr-background-color) !important;\n", + " padding-bottom: 5px !important;\n", + "}\n", + "\n", + ".xr-var-attrs-in:checked ~ .xr-var-attrs,\n", + ".xr-var-data-in:checked ~ .xr-var-data {\n", + " display: block;\n", + "}\n", + "\n", + ".xr-var-data > table {\n", + " float: right;\n", + "}\n", + "\n", + ".xr-var-name span,\n", + ".xr-var-data,\n", + ".xr-attrs {\n", + " padding-left: 25px !important;\n", + "}\n", + "\n", + ".xr-attrs,\n", + ".xr-var-attrs,\n", + ".xr-var-data {\n", + " grid-column: 1 / -1;\n", + "}\n", + "\n", + "dl.xr-attrs {\n", + " padding: 0;\n", + " margin: 0;\n", + " display: grid;\n", + " grid-template-columns: 125px auto;\n", + "}\n", + "\n", + ".xr-attrs dt,\n", + ".xr-attrs dd {\n", + " padding: 0;\n", + " margin: 0;\n", + " float: left;\n", + " padding-right: 10px;\n", + " width: auto;\n", + "}\n", + "\n", + ".xr-attrs dt {\n", + " font-weight: normal;\n", + " grid-column: 1;\n", + "}\n", + "\n", + ".xr-attrs dt:hover span {\n", + " display: inline-block;\n", + " background: var(--xr-background-color);\n", + " padding-right: 10px;\n", + "}\n", + "\n", + ".xr-attrs dd {\n", + " grid-column: 2;\n", + " white-space: pre-wrap;\n", + " word-break: break-all;\n", + "}\n", + "\n", + ".xr-icon-database,\n", + ".xr-icon-file-text2 {\n", + " display: inline-block;\n", + " vertical-align: middle;\n", + " width: 1em;\n", + " height: 1.5em !important;\n", + " stroke-width: 0;\n", + " stroke: currentColor;\n", + " fill: currentColor;\n", + "}\n", + "</style><pre class='xr-text-repr-fallback'><xarray.Dataset>\n", + "Dimensions: (time: 37, lon: 204, lat: 281, height: 1, height_2: 1,\n", + " plev: 1, bnds: 2, plev_2: 1, plev_3: 1, depth: 8)\n", + "Coordinates:\n", + " * time (time) float64 0.0 0.25 0.5 0.75 1.0 ... 8.25 8.5 8.75 9.0\n", + " * lon (lon) float64 12.5 12.75 13.0 13.25 ... 62.5 62.75 63.0 63.25\n", + " * lat (lat) float64 10.0 10.25 10.5 10.75 ... 79.25 79.5 79.75 80.0\n", + " * height (height) float64 10.0\n", + " * height_2 (height_2) float64 2.0\n", + " * plev (plev) float64 0.0\n", + " * plev_2 (plev_2) float64 400.0\n", + " * plev_3 (plev_3) float64 800.0\n", + " * depth (depth) float64 5.0 20.0 60.0 ... 1.62e+03 4.86e+03 1.458e+04\n", + "Dimensions without coordinates: bnds\n", + "Data variables: (12/40)\n", + " plev_bnds (time, plev, bnds) float64 dask.array<chunksize=(1, 1, 2), meta=np.ndarray>\n", + " plev_2_bnds (time, plev_2, bnds) float64 dask.array<chunksize=(1, 1, 2), meta=np.ndarray>\n", + " plev_3_bnds (time, plev_3, bnds) float64 dask.array<chunksize=(1, 1, 2), meta=np.ndarray>\n", + " depth_bnds (time, depth, bnds) float64 dask.array<chunksize=(1, 8, 2), meta=np.ndarray>\n", + " pres_msl (time, lat, lon) float32 dask.array<chunksize=(1, 281, 204), meta=np.ndarray>\n", + " pres_sfc (time, lat, lon) float32 dask.array<chunksize=(1, 281, 204), meta=np.ndarray>\n", + " ... ...\n", + " tqi (time, lat, lon) float32 dask.array<chunksize=(1, 281, 204), meta=np.ndarray>\n", + " tqr (time, lat, lon) float32 dask.array<chunksize=(1, 281, 204), meta=np.ndarray>\n", + " shfl_s (time, lat, lon) float32 dask.array<chunksize=(1, 281, 204), meta=np.ndarray>\n", + " lhfl_s (time, lat, lon) float32 dask.array<chunksize=(1, 281, 204), meta=np.ndarray>\n", + " qhfl_s (time, lat, lon) float32 dask.array<chunksize=(1, 281, 204), meta=np.ndarray>\n", + " w_so (time, depth, lat, lon) float32 dask.array<chunksize=(1, 8, 281, 204), meta=np.ndarray>\n", + "Attributes:\n", + " CDI: Climate Data Interface version 2.0.6 (https://...\n", + " Conventions: CF-1.6\n", + " source: @\n", + " institution: Max Planck Institute for Meteorology/Deutscher...\n", + " title: ICON simulation\n", + " history: Thu Apr 27 06:35:57 2023: cdo -P 32 remapcon,/...\n", + " references: see MPIM/DWD publications\n", + " comment: Nicole Knopf (b380906) on l30144 (Linux 4.18.0...\n", + " cdo_openmp_thread_number: 32\n", + " CDO: Climate Data Operators version 2.0.6 (https://...</pre><div class='xr-wrap' style='display:none'><div class='xr-header'><div class='xr-obj-type'>xarray.Dataset</div></div><ul class='xr-sections'><li class='xr-section-item'><input id='section-b7667638-e73b-45dc-a329-1e379f8f0e5c' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-b7667638-e73b-45dc-a329-1e379f8f0e5c' class='xr-section-summary' title='Expand/collapse section'>Dimensions:</label><div class='xr-section-inline-details'><ul class='xr-dim-list'><li><span class='xr-has-index'>time</span>: 37</li><li><span class='xr-has-index'>lon</span>: 204</li><li><span class='xr-has-index'>lat</span>: 281</li><li><span class='xr-has-index'>height</span>: 1</li><li><span class='xr-has-index'>height_2</span>: 1</li><li><span class='xr-has-index'>plev</span>: 1</li><li><span>bnds</span>: 2</li><li><span class='xr-has-index'>plev_2</span>: 1</li><li><span class='xr-has-index'>plev_3</span>: 1</li><li><span class='xr-has-index'>depth</span>: 8</li></ul></div><div class='xr-section-details'></div></li><li class='xr-section-item'><input id='section-036702a9-e226-44d3-a777-9028e2f7b3d6' class='xr-section-summary-in' type='checkbox' checked><label for='section-036702a9-e226-44d3-a777-9028e2f7b3d6' class='xr-section-summary' >Coordinates: <span>(9)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>time</span></div><div class='xr-var-dims'>(time)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>0.0 0.25 0.5 0.75 ... 8.5 8.75 9.0</div><input id='attrs-d084402b-f67c-4f07-99fa-3ebc0154a2bc' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-d084402b-f67c-4f07-99fa-3ebc0154a2bc' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-1890df13-0f06-481f-885b-6ba362b91f97' class='xr-var-data-in' type='checkbox'><label for='data-1890df13-0f06-481f-885b-6ba362b91f97' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([0. , 0.25, 0.5 , 0.75, 1. , 1.25, 1.5 , 1.75, 2. , 2.25, 2.5 , 2.75,\n", + " 3. , 3.25, 3.5 , 3.75, 4. , 4.25, 4.5 , 4.75, 5. , 5.25, 5.5 , 5.75,\n", + " 6. , 6.25, 6.5 , 6.75, 7. , 7.25, 7.5 , 7.75, 8. , 8.25, 8.5 , 8.75,\n", + " 9. ])</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>lon</span></div><div class='xr-var-dims'>(lon)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>12.5 12.75 13.0 ... 63.0 63.25</div><input id='attrs-15e710dc-8525-4043-af40-238d2f7966a4' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-15e710dc-8525-4043-af40-238d2f7966a4' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-8749706a-63cf-47a8-a61c-2ea5b9a4c2ea' class='xr-var-data-in' type='checkbox'><label for='data-8749706a-63cf-47a8-a61c-2ea5b9a4c2ea' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>standard_name :</span></dt><dd>longitude</dd><dt><span>long_name :</span></dt><dd>longitude</dd><dt><span>units :</span></dt><dd>degrees_east</dd><dt><span>axis :</span></dt><dd>X</dd></dl></div><div class='xr-var-data'><pre>array([12.5 , 12.75, 13. , ..., 62.75, 63. , 63.25])</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>lat</span></div><div class='xr-var-dims'>(lat)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>10.0 10.25 10.5 ... 79.5 79.75 80.0</div><input id='attrs-c7537378-af05-4a44-b8b4-5ed009adbd35' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-c7537378-af05-4a44-b8b4-5ed009adbd35' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-45ce724a-7442-4e67-933c-a96f386a0026' class='xr-var-data-in' type='checkbox'><label for='data-45ce724a-7442-4e67-933c-a96f386a0026' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>standard_name :</span></dt><dd>latitude</dd><dt><span>long_name :</span></dt><dd>latitude</dd><dt><span>units :</span></dt><dd>degrees_north</dd><dt><span>axis :</span></dt><dd>Y</dd></dl></div><div class='xr-var-data'><pre>array([10. , 10.25, 10.5 , ..., 79.5 , 79.75, 80. ])</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>height</span></div><div class='xr-var-dims'>(height)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>10.0</div><input id='attrs-c38bd768-814f-4881-b7cb-6b10b1040022' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-c38bd768-814f-4881-b7cb-6b10b1040022' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-7f468ca0-a0a9-405c-805f-98b48a840997' class='xr-var-data-in' type='checkbox'><label for='data-7f468ca0-a0a9-405c-805f-98b48a840997' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>standard_name :</span></dt><dd>height</dd><dt><span>long_name :</span></dt><dd>height</dd><dt><span>units :</span></dt><dd>m</dd><dt><span>positive :</span></dt><dd>up</dd><dt><span>axis :</span></dt><dd>Z</dd></dl></div><div class='xr-var-data'><pre>array([10.])</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>height_2</span></div><div class='xr-var-dims'>(height_2)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>2.0</div><input id='attrs-eabec0f5-7962-4b10-a997-25e4117881be' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-eabec0f5-7962-4b10-a997-25e4117881be' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-352694d2-a54f-4648-8dda-bf1f8435f870' class='xr-var-data-in' type='checkbox'><label for='data-352694d2-a54f-4648-8dda-bf1f8435f870' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>standard_name :</span></dt><dd>height</dd><dt><span>long_name :</span></dt><dd>height</dd><dt><span>units :</span></dt><dd>m</dd><dt><span>positive :</span></dt><dd>up</dd><dt><span>axis :</span></dt><dd>Z</dd></dl></div><div class='xr-var-data'><pre>array([2.])</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>plev</span></div><div class='xr-var-dims'>(plev)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>0.0</div><input id='attrs-a65c3585-338e-4093-8a84-1f4e29ecea98' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-a65c3585-338e-4093-8a84-1f4e29ecea98' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-8f614231-e6ad-4ba1-b594-6ffef9b14454' class='xr-var-data-in' type='checkbox'><label for='data-8f614231-e6ad-4ba1-b594-6ffef9b14454' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>standard_name :</span></dt><dd>air_pressure</dd><dt><span>long_name :</span></dt><dd>pressure</dd><dt><span>units :</span></dt><dd>hPa</dd><dt><span>positive :</span></dt><dd>down</dd><dt><span>axis :</span></dt><dd>Z</dd><dt><span>bounds :</span></dt><dd>plev_bnds</dd></dl></div><div class='xr-var-data'><pre>array([0.])</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>plev_2</span></div><div class='xr-var-dims'>(plev_2)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>400.0</div><input id='attrs-a6971576-ff30-4bd8-b5ad-d858263e64de' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-a6971576-ff30-4bd8-b5ad-d858263e64de' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-5b6b8039-083c-4560-ab1d-d03c66ef0f51' class='xr-var-data-in' type='checkbox'><label for='data-5b6b8039-083c-4560-ab1d-d03c66ef0f51' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>standard_name :</span></dt><dd>air_pressure</dd><dt><span>long_name :</span></dt><dd>pressure</dd><dt><span>units :</span></dt><dd>hPa</dd><dt><span>positive :</span></dt><dd>down</dd><dt><span>axis :</span></dt><dd>Z</dd><dt><span>bounds :</span></dt><dd>plev_2_bnds</dd></dl></div><div class='xr-var-data'><pre>array([400.])</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>plev_3</span></div><div class='xr-var-dims'>(plev_3)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>800.0</div><input id='attrs-6e14d7af-2bd3-4ea5-8c05-3e84a8eb11c0' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-6e14d7af-2bd3-4ea5-8c05-3e84a8eb11c0' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-4f17030d-439a-43a5-82f3-ca82d79100cd' class='xr-var-data-in' type='checkbox'><label for='data-4f17030d-439a-43a5-82f3-ca82d79100cd' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>standard_name :</span></dt><dd>air_pressure</dd><dt><span>long_name :</span></dt><dd>pressure</dd><dt><span>units :</span></dt><dd>hPa</dd><dt><span>positive :</span></dt><dd>down</dd><dt><span>axis :</span></dt><dd>Z</dd><dt><span>bounds :</span></dt><dd>plev_3_bnds</dd></dl></div><div class='xr-var-data'><pre>array([800.])</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>depth</span></div><div class='xr-var-dims'>(depth)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>5.0 20.0 ... 4.86e+03 1.458e+04</div><input id='attrs-de8c4591-390e-4ff5-94c5-80934fdd99c8' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-de8c4591-390e-4ff5-94c5-80934fdd99c8' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-67f42dfa-45ab-4ae8-95f7-fef963824764' class='xr-var-data-in' type='checkbox'><label for='data-67f42dfa-45ab-4ae8-95f7-fef963824764' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>long_name :</span></dt><dd>depth_below_land</dd><dt><span>units :</span></dt><dd>mm</dd><dt><span>positive :</span></dt><dd>down</dd><dt><span>axis :</span></dt><dd>Z</dd><dt><span>bounds :</span></dt><dd>depth_bnds</dd></dl></div><div class='xr-var-data'><pre>array([5.000e+00, 2.000e+01, 6.000e+01, 1.800e+02, 5.400e+02, 1.620e+03,\n", + " 4.860e+03, 1.458e+04])</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-4294dc1d-6471-4da5-8577-e8869b24aca0' class='xr-section-summary-in' type='checkbox' ><label for='section-4294dc1d-6471-4da5-8577-e8869b24aca0' class='xr-section-summary' >Data variables: <span>(40)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span>plev_bnds</span></div><div class='xr-var-dims'>(time, plev, bnds)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(1, 1, 2), meta=np.ndarray></div><input id='attrs-97bebd5c-d2f0-4298-8821-d4ade6297cfb' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-97bebd5c-d2f0-4298-8821-d4ade6297cfb' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-10c55a94-c8a7-4752-a756-e82f69261f4a' class='xr-var-data-in' type='checkbox'><label for='data-10c55a94-c8a7-4752-a756-e82f69261f4a' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><table>\n", + " <tr>\n", + " <td>\n", + " <table>\n", + " <thead>\n", + " <tr>\n", + " <td> </td>\n", + " <th> Array </th>\n", + " <th> Chunk </th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " \n", + " <tr>\n", + " <th> Bytes </th>\n", + " <td> 592 B </td>\n", + " <td> 16 B </td>\n", + " </tr>\n", + " \n", + " <tr>\n", + " <th> Shape </th>\n", + " <td> (37, 1, 2) </td>\n", + " <td> (1, 1, 2) </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Count </th>\n", + " <td> 148 Tasks </td>\n", + " <td> 37 Chunks </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Type </th>\n", + " <td> float64 </td>\n", + " <td> numpy.ndarray </td>\n", + " </tr>\n", + " </tbody>\n", + " </table>\n", + " </td>\n", + " <td>\n", + " <svg width=\"165\" height=\"151\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"80\" y2=\"70\" style=\"stroke-width:2\" />\n", + " <line x1=\"10\" y1=\"30\" x2=\"80\" y2=\"101\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"30\" style=\"stroke-width:2\" />\n", + " <line x1=\"11\" y1=\"1\" x2=\"11\" y2=\"32\" />\n", + " <line x1=\"15\" y1=\"5\" x2=\"15\" y2=\"36\" />\n", + " <line x1=\"19\" y1=\"9\" x2=\"19\" y2=\"40\" />\n", + " <line x1=\"23\" y1=\"13\" x2=\"23\" y2=\"44\" />\n", + " <line x1=\"27\" y1=\"17\" x2=\"27\" y2=\"47\" />\n", + " <line x1=\"30\" y1=\"20\" x2=\"30\" y2=\"51\" />\n", + " <line x1=\"34\" y1=\"24\" x2=\"34\" y2=\"55\" />\n", + " <line x1=\"38\" y1=\"28\" x2=\"38\" y2=\"59\" />\n", + " <line x1=\"42\" y1=\"32\" x2=\"42\" y2=\"63\" />\n", + " <line x1=\"46\" y1=\"36\" x2=\"46\" y2=\"67\" />\n", + " <line x1=\"50\" y1=\"40\" x2=\"50\" y2=\"70\" />\n", + " <line x1=\"53\" y1=\"43\" x2=\"53\" y2=\"74\" />\n", + " <line x1=\"57\" y1=\"47\" x2=\"57\" y2=\"78\" />\n", + " <line x1=\"61\" y1=\"51\" x2=\"61\" y2=\"82\" />\n", + " <line x1=\"65\" y1=\"55\" x2=\"65\" y2=\"86\" />\n", + " <line x1=\"69\" y1=\"59\" x2=\"69\" y2=\"89\" />\n", + " <line x1=\"72\" y1=\"62\" x2=\"72\" y2=\"93\" />\n", + " <line x1=\"76\" y1=\"66\" x2=\"76\" y2=\"97\" />\n", + " <line x1=\"80\" y1=\"70\" x2=\"80\" y2=\"101\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"10.0,0.0 80.58823529411765,70.58823529411765 80.58823529411765,101.35785719894074 10.0,30.769621904823087\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"44\" y2=\"0\" style=\"stroke-width:2\" />\n", + " <line x1=\"11\" y1=\"1\" x2=\"46\" y2=\"1\" />\n", + " <line x1=\"15\" y1=\"5\" x2=\"50\" y2=\"5\" />\n", + " <line x1=\"19\" y1=\"9\" x2=\"54\" y2=\"9\" />\n", + " <line x1=\"23\" y1=\"13\" x2=\"58\" y2=\"13\" />\n", + " <line x1=\"27\" y1=\"17\" x2=\"62\" y2=\"17\" />\n", + " <line x1=\"30\" y1=\"20\" x2=\"65\" y2=\"20\" />\n", + " <line x1=\"34\" y1=\"24\" x2=\"69\" y2=\"24\" />\n", + " <line x1=\"38\" y1=\"28\" x2=\"73\" y2=\"28\" />\n", + " <line x1=\"42\" y1=\"32\" x2=\"77\" y2=\"32\" />\n", + " <line x1=\"46\" y1=\"36\" x2=\"81\" y2=\"36\" />\n", + " <line x1=\"50\" y1=\"40\" x2=\"85\" y2=\"40\" />\n", + " <line x1=\"53\" y1=\"43\" x2=\"88\" y2=\"43\" />\n", + " <line x1=\"57\" y1=\"47\" x2=\"92\" y2=\"47\" />\n", + " <line x1=\"61\" y1=\"51\" x2=\"96\" y2=\"51\" />\n", + " <line x1=\"65\" y1=\"55\" x2=\"100\" y2=\"55\" />\n", + " <line x1=\"69\" y1=\"59\" x2=\"104\" y2=\"59\" />\n", + " <line x1=\"72\" y1=\"62\" x2=\"107\" y2=\"62\" />\n", + " <line x1=\"76\" y1=\"66\" x2=\"111\" y2=\"66\" />\n", + " <line x1=\"80\" y1=\"70\" x2=\"115\" y2=\"70\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"80\" y2=\"70\" style=\"stroke-width:2\" />\n", + " <line x1=\"44\" y1=\"0\" x2=\"115\" y2=\"70\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"10.0,0.0 44.97771149200627,0.0 115.56594678612393,70.58823529411765 80.58823529411765,70.58823529411765\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"80\" y1=\"70\" x2=\"115\" y2=\"70\" style=\"stroke-width:2\" />\n", + " <line x1=\"80\" y1=\"101\" x2=\"115\" y2=\"101\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"80\" y1=\"70\" x2=\"80\" y2=\"101\" style=\"stroke-width:2\" />\n", + " <line x1=\"115\" y1=\"70\" x2=\"115\" y2=\"101\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"80.58823529411765,70.58823529411765 115.56594678612393,70.58823529411765 115.56594678612393,101.35785719894074 80.58823529411765,101.35785719894074\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Text -->\n", + " <text x=\"98.077091\" y=\"121.357857\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >2</text>\n", + " <text x=\"135.565947\" y=\"85.973046\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,135.565947,85.973046)\">1</text>\n", + " <text x=\"35.294118\" y=\"86.063740\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,35.294118,86.063740)\">37</text>\n", + "</svg>\n", + " </td>\n", + " </tr>\n", + "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>plev_2_bnds</span></div><div class='xr-var-dims'>(time, plev_2, bnds)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(1, 1, 2), meta=np.ndarray></div><input id='attrs-31f75fa7-32cf-47d3-867e-69a26b469ed6' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-31f75fa7-32cf-47d3-867e-69a26b469ed6' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-60e1c09e-ed85-470a-ae1d-49f109325365' class='xr-var-data-in' type='checkbox'><label for='data-60e1c09e-ed85-470a-ae1d-49f109325365' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><table>\n", + " <tr>\n", + " <td>\n", + " <table>\n", + " <thead>\n", + " <tr>\n", + " <td> </td>\n", + " <th> Array </th>\n", + " <th> Chunk </th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " \n", + " <tr>\n", + " <th> Bytes </th>\n", + " <td> 592 B </td>\n", + " <td> 16 B </td>\n", + " </tr>\n", + " \n", + " <tr>\n", + " <th> Shape </th>\n", + " <td> (37, 1, 2) </td>\n", + " <td> (1, 1, 2) </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Count </th>\n", + " <td> 148 Tasks </td>\n", + " <td> 37 Chunks </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Type </th>\n", + " <td> float64 </td>\n", + " <td> numpy.ndarray </td>\n", + " </tr>\n", + " </tbody>\n", + " </table>\n", + " </td>\n", + " <td>\n", + " <svg width=\"165\" height=\"151\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"80\" y2=\"70\" style=\"stroke-width:2\" />\n", + " <line x1=\"10\" y1=\"30\" x2=\"80\" y2=\"101\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"30\" style=\"stroke-width:2\" />\n", + " <line x1=\"11\" y1=\"1\" x2=\"11\" y2=\"32\" />\n", + " <line x1=\"15\" y1=\"5\" x2=\"15\" y2=\"36\" />\n", + " <line x1=\"19\" y1=\"9\" x2=\"19\" y2=\"40\" />\n", + " <line x1=\"23\" y1=\"13\" x2=\"23\" y2=\"44\" />\n", + " <line x1=\"27\" y1=\"17\" x2=\"27\" y2=\"47\" />\n", + " <line x1=\"30\" y1=\"20\" x2=\"30\" y2=\"51\" />\n", + " <line x1=\"34\" y1=\"24\" x2=\"34\" y2=\"55\" />\n", + " <line x1=\"38\" y1=\"28\" x2=\"38\" y2=\"59\" />\n", + " <line x1=\"42\" y1=\"32\" x2=\"42\" y2=\"63\" />\n", + " <line x1=\"46\" y1=\"36\" x2=\"46\" y2=\"67\" />\n", + " <line x1=\"50\" y1=\"40\" x2=\"50\" y2=\"70\" />\n", + " <line x1=\"53\" y1=\"43\" x2=\"53\" y2=\"74\" />\n", + " <line x1=\"57\" y1=\"47\" x2=\"57\" y2=\"78\" />\n", + " <line x1=\"61\" y1=\"51\" x2=\"61\" y2=\"82\" />\n", + " <line x1=\"65\" y1=\"55\" x2=\"65\" y2=\"86\" />\n", + " <line x1=\"69\" y1=\"59\" x2=\"69\" y2=\"89\" />\n", + " <line x1=\"72\" y1=\"62\" x2=\"72\" y2=\"93\" />\n", + " <line x1=\"76\" y1=\"66\" x2=\"76\" y2=\"97\" />\n", + " <line x1=\"80\" y1=\"70\" x2=\"80\" y2=\"101\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"10.0,0.0 80.58823529411765,70.58823529411765 80.58823529411765,101.35785719894074 10.0,30.769621904823087\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"44\" y2=\"0\" style=\"stroke-width:2\" />\n", + " <line x1=\"11\" y1=\"1\" x2=\"46\" y2=\"1\" />\n", + " <line x1=\"15\" y1=\"5\" x2=\"50\" y2=\"5\" />\n", + " <line x1=\"19\" y1=\"9\" x2=\"54\" y2=\"9\" />\n", + " <line x1=\"23\" y1=\"13\" x2=\"58\" y2=\"13\" />\n", + " <line x1=\"27\" y1=\"17\" x2=\"62\" y2=\"17\" />\n", + " <line x1=\"30\" y1=\"20\" x2=\"65\" y2=\"20\" />\n", + " <line x1=\"34\" y1=\"24\" x2=\"69\" y2=\"24\" />\n", + " <line x1=\"38\" y1=\"28\" x2=\"73\" y2=\"28\" />\n", + " <line x1=\"42\" y1=\"32\" x2=\"77\" y2=\"32\" />\n", + " <line x1=\"46\" y1=\"36\" x2=\"81\" y2=\"36\" />\n", + " <line x1=\"50\" y1=\"40\" x2=\"85\" y2=\"40\" />\n", + " <line x1=\"53\" y1=\"43\" x2=\"88\" y2=\"43\" />\n", + " <line x1=\"57\" y1=\"47\" x2=\"92\" y2=\"47\" />\n", + " <line x1=\"61\" y1=\"51\" x2=\"96\" y2=\"51\" />\n", + " <line x1=\"65\" y1=\"55\" x2=\"100\" y2=\"55\" />\n", + " <line x1=\"69\" y1=\"59\" x2=\"104\" y2=\"59\" />\n", + " <line x1=\"72\" y1=\"62\" x2=\"107\" y2=\"62\" />\n", + " <line x1=\"76\" y1=\"66\" x2=\"111\" y2=\"66\" />\n", + " <line x1=\"80\" y1=\"70\" x2=\"115\" y2=\"70\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"80\" y2=\"70\" style=\"stroke-width:2\" />\n", + " <line x1=\"44\" y1=\"0\" x2=\"115\" y2=\"70\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"10.0,0.0 44.97771149200627,0.0 115.56594678612393,70.58823529411765 80.58823529411765,70.58823529411765\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"80\" y1=\"70\" x2=\"115\" y2=\"70\" style=\"stroke-width:2\" />\n", + " <line x1=\"80\" y1=\"101\" x2=\"115\" y2=\"101\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"80\" y1=\"70\" x2=\"80\" y2=\"101\" style=\"stroke-width:2\" />\n", + " <line x1=\"115\" y1=\"70\" x2=\"115\" y2=\"101\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"80.58823529411765,70.58823529411765 115.56594678612393,70.58823529411765 115.56594678612393,101.35785719894074 80.58823529411765,101.35785719894074\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Text -->\n", + " <text x=\"98.077091\" y=\"121.357857\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >2</text>\n", + " <text x=\"135.565947\" y=\"85.973046\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,135.565947,85.973046)\">1</text>\n", + " <text x=\"35.294118\" y=\"86.063740\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,35.294118,86.063740)\">37</text>\n", + "</svg>\n", + " </td>\n", + " </tr>\n", + "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>plev_3_bnds</span></div><div class='xr-var-dims'>(time, plev_3, bnds)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(1, 1, 2), meta=np.ndarray></div><input id='attrs-a55a7aa8-dc70-4821-a26a-da1bd9c6adae' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-a55a7aa8-dc70-4821-a26a-da1bd9c6adae' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-8f077399-7fe0-4c4e-85a9-06c3c75bdb9b' class='xr-var-data-in' type='checkbox'><label for='data-8f077399-7fe0-4c4e-85a9-06c3c75bdb9b' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><table>\n", + " <tr>\n", + " <td>\n", + " <table>\n", + " <thead>\n", + " <tr>\n", + " <td> </td>\n", + " <th> Array </th>\n", + " <th> Chunk </th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " \n", + " <tr>\n", + " <th> Bytes </th>\n", + " <td> 592 B </td>\n", + " <td> 16 B </td>\n", + " </tr>\n", + " \n", + " <tr>\n", + " <th> Shape </th>\n", + " <td> (37, 1, 2) </td>\n", + " <td> (1, 1, 2) </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Count </th>\n", + " <td> 148 Tasks </td>\n", + " <td> 37 Chunks </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Type </th>\n", + " <td> float64 </td>\n", + " <td> numpy.ndarray </td>\n", + " </tr>\n", + " </tbody>\n", + " </table>\n", + " </td>\n", + " <td>\n", + " <svg width=\"165\" height=\"151\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"80\" y2=\"70\" style=\"stroke-width:2\" />\n", + " <line x1=\"10\" y1=\"30\" x2=\"80\" y2=\"101\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"30\" style=\"stroke-width:2\" />\n", + " <line x1=\"11\" y1=\"1\" x2=\"11\" y2=\"32\" />\n", + " <line x1=\"15\" y1=\"5\" x2=\"15\" y2=\"36\" />\n", + " <line x1=\"19\" y1=\"9\" x2=\"19\" y2=\"40\" />\n", + " <line x1=\"23\" y1=\"13\" x2=\"23\" y2=\"44\" />\n", + " <line x1=\"27\" y1=\"17\" x2=\"27\" y2=\"47\" />\n", + " <line x1=\"30\" y1=\"20\" x2=\"30\" y2=\"51\" />\n", + " <line x1=\"34\" y1=\"24\" x2=\"34\" y2=\"55\" />\n", + " <line x1=\"38\" y1=\"28\" x2=\"38\" y2=\"59\" />\n", + " <line x1=\"42\" y1=\"32\" x2=\"42\" y2=\"63\" />\n", + " <line x1=\"46\" y1=\"36\" x2=\"46\" y2=\"67\" />\n", + " <line x1=\"50\" y1=\"40\" x2=\"50\" y2=\"70\" />\n", + " <line x1=\"53\" y1=\"43\" x2=\"53\" y2=\"74\" />\n", + " <line x1=\"57\" y1=\"47\" x2=\"57\" y2=\"78\" />\n", + " <line x1=\"61\" y1=\"51\" x2=\"61\" y2=\"82\" />\n", + " <line x1=\"65\" y1=\"55\" x2=\"65\" y2=\"86\" />\n", + " <line x1=\"69\" y1=\"59\" x2=\"69\" y2=\"89\" />\n", + " <line x1=\"72\" y1=\"62\" x2=\"72\" y2=\"93\" />\n", + " <line x1=\"76\" y1=\"66\" x2=\"76\" y2=\"97\" />\n", + " <line x1=\"80\" y1=\"70\" x2=\"80\" y2=\"101\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"10.0,0.0 80.58823529411765,70.58823529411765 80.58823529411765,101.35785719894074 10.0,30.769621904823087\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"44\" y2=\"0\" style=\"stroke-width:2\" />\n", + " <line x1=\"11\" y1=\"1\" x2=\"46\" y2=\"1\" />\n", + " <line x1=\"15\" y1=\"5\" x2=\"50\" y2=\"5\" />\n", + " <line x1=\"19\" y1=\"9\" x2=\"54\" y2=\"9\" />\n", + " <line x1=\"23\" y1=\"13\" x2=\"58\" y2=\"13\" />\n", + " <line x1=\"27\" y1=\"17\" x2=\"62\" y2=\"17\" />\n", + " <line x1=\"30\" y1=\"20\" x2=\"65\" y2=\"20\" />\n", + " <line x1=\"34\" y1=\"24\" x2=\"69\" y2=\"24\" />\n", + " <line x1=\"38\" y1=\"28\" x2=\"73\" y2=\"28\" />\n", + " <line x1=\"42\" y1=\"32\" x2=\"77\" y2=\"32\" />\n", + " <line x1=\"46\" y1=\"36\" x2=\"81\" y2=\"36\" />\n", + " <line x1=\"50\" y1=\"40\" x2=\"85\" y2=\"40\" />\n", + " <line x1=\"53\" y1=\"43\" x2=\"88\" y2=\"43\" />\n", + " <line x1=\"57\" y1=\"47\" x2=\"92\" y2=\"47\" />\n", + " <line x1=\"61\" y1=\"51\" x2=\"96\" y2=\"51\" />\n", + " <line x1=\"65\" y1=\"55\" x2=\"100\" y2=\"55\" />\n", + " <line x1=\"69\" y1=\"59\" x2=\"104\" y2=\"59\" />\n", + " <line x1=\"72\" y1=\"62\" x2=\"107\" y2=\"62\" />\n", + " <line x1=\"76\" y1=\"66\" x2=\"111\" y2=\"66\" />\n", + " <line x1=\"80\" y1=\"70\" x2=\"115\" y2=\"70\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"80\" y2=\"70\" style=\"stroke-width:2\" />\n", + " <line x1=\"44\" y1=\"0\" x2=\"115\" y2=\"70\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"10.0,0.0 44.97771149200627,0.0 115.56594678612393,70.58823529411765 80.58823529411765,70.58823529411765\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"80\" y1=\"70\" x2=\"115\" y2=\"70\" style=\"stroke-width:2\" />\n", + " <line x1=\"80\" y1=\"101\" x2=\"115\" y2=\"101\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"80\" y1=\"70\" x2=\"80\" y2=\"101\" style=\"stroke-width:2\" />\n", + " <line x1=\"115\" y1=\"70\" x2=\"115\" y2=\"101\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"80.58823529411765,70.58823529411765 115.56594678612393,70.58823529411765 115.56594678612393,101.35785719894074 80.58823529411765,101.35785719894074\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Text -->\n", + " <text x=\"98.077091\" y=\"121.357857\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >2</text>\n", + " <text x=\"135.565947\" y=\"85.973046\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,135.565947,85.973046)\">1</text>\n", + " <text x=\"35.294118\" y=\"86.063740\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,35.294118,86.063740)\">37</text>\n", + "</svg>\n", + " </td>\n", + " </tr>\n", + "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>depth_bnds</span></div><div class='xr-var-dims'>(time, depth, bnds)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(1, 8, 2), meta=np.ndarray></div><input id='attrs-74045be3-d737-4894-b451-c79614f2ca10' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-74045be3-d737-4894-b451-c79614f2ca10' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-a94cf8e9-3d41-4d73-ad51-28570c64d8d7' class='xr-var-data-in' type='checkbox'><label for='data-a94cf8e9-3d41-4d73-ad51-28570c64d8d7' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><table>\n", + " <tr>\n", + " <td>\n", + " <table>\n", + " <thead>\n", + " <tr>\n", + " <td> </td>\n", + " <th> Array </th>\n", + " <th> Chunk </th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " \n", + " <tr>\n", + " <th> Bytes </th>\n", + " <td> 4.62 kiB </td>\n", + " <td> 128 B </td>\n", + " </tr>\n", + " \n", + " <tr>\n", + " <th> Shape </th>\n", + " <td> (37, 8, 2) </td>\n", + " <td> (1, 8, 2) </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Count </th>\n", + " <td> 148 Tasks </td>\n", + " <td> 37 Chunks </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Type </th>\n", + " <td> float64 </td>\n", + " <td> numpy.ndarray </td>\n", + " </tr>\n", + " </tbody>\n", + " </table>\n", + " </td>\n", + " <td>\n", + " <svg width=\"165\" height=\"162\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"80\" y2=\"70\" style=\"stroke-width:2\" />\n", + " <line x1=\"10\" y1=\"42\" x2=\"80\" y2=\"112\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"42\" style=\"stroke-width:2\" />\n", + " <line x1=\"11\" y1=\"1\" x2=\"11\" y2=\"44\" />\n", + " <line x1=\"15\" y1=\"5\" x2=\"15\" y2=\"48\" />\n", + " <line x1=\"19\" y1=\"9\" x2=\"19\" y2=\"51\" />\n", + " <line x1=\"23\" y1=\"13\" x2=\"23\" y2=\"55\" />\n", + " <line x1=\"27\" y1=\"17\" x2=\"27\" y2=\"59\" />\n", + " <line x1=\"30\" y1=\"20\" x2=\"30\" y2=\"63\" />\n", + " <line x1=\"34\" y1=\"24\" x2=\"34\" y2=\"67\" />\n", + " <line x1=\"38\" y1=\"28\" x2=\"38\" y2=\"70\" />\n", + " <line x1=\"42\" y1=\"32\" x2=\"42\" y2=\"74\" />\n", + " <line x1=\"46\" y1=\"36\" x2=\"46\" y2=\"78\" />\n", + " <line x1=\"50\" y1=\"40\" x2=\"50\" y2=\"82\" />\n", + " <line x1=\"53\" y1=\"43\" x2=\"53\" y2=\"86\" />\n", + " <line x1=\"57\" y1=\"47\" x2=\"57\" y2=\"90\" />\n", + " <line x1=\"61\" y1=\"51\" x2=\"61\" y2=\"93\" />\n", + " <line x1=\"65\" y1=\"55\" x2=\"65\" y2=\"97\" />\n", + " <line x1=\"69\" y1=\"59\" x2=\"69\" y2=\"101\" />\n", + " <line x1=\"72\" y1=\"62\" x2=\"72\" y2=\"105\" />\n", + " <line x1=\"76\" y1=\"66\" x2=\"76\" y2=\"109\" />\n", + " <line x1=\"80\" y1=\"70\" x2=\"80\" y2=\"112\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"10.0,0.0 80.58823529411765,70.58823529411765 80.58823529411765,112.92101333799243 10.0,42.33277804387479\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"44\" y2=\"0\" style=\"stroke-width:2\" />\n", + " <line x1=\"11\" y1=\"1\" x2=\"46\" y2=\"1\" />\n", + " <line x1=\"15\" y1=\"5\" x2=\"50\" y2=\"5\" />\n", + " <line x1=\"19\" y1=\"9\" x2=\"54\" y2=\"9\" />\n", + " <line x1=\"23\" y1=\"13\" x2=\"58\" y2=\"13\" />\n", + " <line x1=\"27\" y1=\"17\" x2=\"62\" y2=\"17\" />\n", + " <line x1=\"30\" y1=\"20\" x2=\"65\" y2=\"20\" />\n", + " <line x1=\"34\" y1=\"24\" x2=\"69\" y2=\"24\" />\n", + " <line x1=\"38\" y1=\"28\" x2=\"73\" y2=\"28\" />\n", + " <line x1=\"42\" y1=\"32\" x2=\"77\" y2=\"32\" />\n", + " <line x1=\"46\" y1=\"36\" x2=\"81\" y2=\"36\" />\n", + " <line x1=\"50\" y1=\"40\" x2=\"85\" y2=\"40\" />\n", + " <line x1=\"53\" y1=\"43\" x2=\"88\" y2=\"43\" />\n", + " <line x1=\"57\" y1=\"47\" x2=\"92\" y2=\"47\" />\n", + " <line x1=\"61\" y1=\"51\" x2=\"96\" y2=\"51\" />\n", + " <line x1=\"65\" y1=\"55\" x2=\"100\" y2=\"55\" />\n", + " <line x1=\"69\" y1=\"59\" x2=\"104\" y2=\"59\" />\n", + " <line x1=\"72\" y1=\"62\" x2=\"107\" y2=\"62\" />\n", + " <line x1=\"76\" y1=\"66\" x2=\"111\" y2=\"66\" />\n", + " <line x1=\"80\" y1=\"70\" x2=\"115\" y2=\"70\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"80\" y2=\"70\" style=\"stroke-width:2\" />\n", + " <line x1=\"44\" y1=\"0\" x2=\"115\" y2=\"70\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"10.0,0.0 44.97771149200627,0.0 115.56594678612393,70.58823529411765 80.58823529411765,70.58823529411765\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"80\" y1=\"70\" x2=\"115\" y2=\"70\" style=\"stroke-width:2\" />\n", + " <line x1=\"80\" y1=\"112\" x2=\"115\" y2=\"112\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"80\" y1=\"70\" x2=\"80\" y2=\"112\" style=\"stroke-width:2\" />\n", + " <line x1=\"115\" y1=\"70\" x2=\"115\" y2=\"112\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"80.58823529411765,70.58823529411765 115.56594678612393,70.58823529411765 115.56594678612393,112.92101333799243 80.58823529411765,112.92101333799243\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Text -->\n", + " <text x=\"98.077091\" y=\"132.921013\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >2</text>\n", + " <text x=\"135.565947\" y=\"91.754624\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,135.565947,91.754624)\">8</text>\n", + " <text x=\"35.294118\" y=\"97.626896\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,35.294118,97.626896)\">37</text>\n", + "</svg>\n", + " </td>\n", + " </tr>\n", + "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>pres_msl</span></div><div class='xr-var-dims'>(time, lat, lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(1, 281, 204), meta=np.ndarray></div><input id='attrs-7be1e3e0-8bd5-4e1f-87db-4356ff4009e1' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-7be1e3e0-8bd5-4e1f-87db-4356ff4009e1' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-01c0984d-12e4-4bb6-ad94-fd5e28c39368' class='xr-var-data-in' type='checkbox'><label for='data-01c0984d-12e4-4bb6-ad94-fd5e28c39368' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>standard_name :</span></dt><dd>mean sea level pressure</dd><dt><span>long_name :</span></dt><dd>mean sea level pressure</dd><dt><span>units :</span></dt><dd>Pa</dd><dt><span>param :</span></dt><dd>1.3.0</dd></dl></div><div class='xr-var-data'><table>\n", + " <tr>\n", + " <td>\n", + " <table>\n", + " <thead>\n", + " <tr>\n", + " <td> </td>\n", + " <th> Array </th>\n", + " <th> Chunk </th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " \n", + " <tr>\n", + " <th> Bytes </th>\n", + " <td> 8.09 MiB </td>\n", + " <td> 223.92 kiB </td>\n", + " </tr>\n", + " \n", + " <tr>\n", + " <th> Shape </th>\n", + " <td> (37, 281, 204) </td>\n", + " <td> (1, 281, 204) </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Count </th>\n", + " <td> 148 Tasks </td>\n", + " <td> 37 Chunks </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Type </th>\n", + " <td> float32 </td>\n", + " <td> numpy.ndarray </td>\n", + " </tr>\n", + " </tbody>\n", + " </table>\n", + " </td>\n", + " <td>\n", + " <svg width=\"170\" height=\"193\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"33\" y2=\"23\" style=\"stroke-width:2\" />\n", + " <line x1=\"10\" y1=\"120\" x2=\"33\" y2=\"143\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"120\" style=\"stroke-width:2\" />\n", + " <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"120\" />\n", + " <line x1=\"11\" y1=\"1\" x2=\"11\" y2=\"121\" />\n", + " <line x1=\"13\" y1=\"3\" x2=\"13\" y2=\"123\" />\n", + " <line x1=\"14\" y1=\"4\" x2=\"14\" y2=\"124\" />\n", + " <line x1=\"15\" y1=\"5\" x2=\"15\" y2=\"125\" />\n", + " <line x1=\"17\" y1=\"7\" x2=\"17\" y2=\"127\" />\n", + " <line x1=\"18\" y1=\"8\" x2=\"18\" y2=\"128\" />\n", + " <line x1=\"19\" y1=\"9\" x2=\"19\" y2=\"129\" />\n", + " <line x1=\"20\" y1=\"10\" x2=\"20\" y2=\"130\" />\n", + " <line x1=\"22\" y1=\"12\" x2=\"22\" y2=\"132\" />\n", + " <line x1=\"23\" y1=\"13\" x2=\"23\" y2=\"133\" />\n", + " <line x1=\"24\" y1=\"14\" x2=\"24\" y2=\"134\" />\n", + " <line x1=\"25\" y1=\"15\" x2=\"25\" y2=\"135\" />\n", + " <line x1=\"27\" y1=\"17\" x2=\"27\" y2=\"137\" />\n", + " <line x1=\"28\" y1=\"18\" x2=\"28\" y2=\"138\" />\n", + " <line x1=\"29\" y1=\"19\" x2=\"29\" y2=\"139\" />\n", + " <line x1=\"31\" y1=\"21\" x2=\"31\" y2=\"141\" />\n", + " <line x1=\"32\" y1=\"22\" x2=\"32\" y2=\"142\" />\n", + " <line x1=\"33\" y1=\"23\" x2=\"33\" y2=\"143\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"10.0,0.0 33.565058103744434,23.565058103744438 33.565058103744434,143.56505810374443 10.0,120.0\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"97\" y2=\"0\" style=\"stroke-width:2\" />\n", + " <line x1=\"10\" y1=\"0\" x2=\"97\" y2=\"0\" />\n", + " <line x1=\"11\" y1=\"1\" x2=\"99\" y2=\"1\" />\n", + " <line x1=\"13\" y1=\"3\" x2=\"100\" y2=\"3\" />\n", + " <line x1=\"14\" y1=\"4\" x2=\"101\" y2=\"4\" />\n", + " <line x1=\"15\" y1=\"5\" x2=\"102\" y2=\"5\" />\n", + " <line x1=\"17\" y1=\"7\" x2=\"104\" y2=\"7\" />\n", + " <line x1=\"18\" y1=\"8\" x2=\"105\" y2=\"8\" />\n", + " <line x1=\"19\" y1=\"9\" x2=\"106\" y2=\"9\" />\n", + " <line x1=\"20\" y1=\"10\" x2=\"107\" y2=\"10\" />\n", + " <line x1=\"22\" y1=\"12\" x2=\"109\" y2=\"12\" />\n", + " <line x1=\"23\" y1=\"13\" x2=\"110\" y2=\"13\" />\n", + " <line x1=\"24\" y1=\"14\" x2=\"111\" y2=\"14\" />\n", + " <line x1=\"25\" y1=\"15\" x2=\"113\" y2=\"15\" />\n", + " <line x1=\"27\" y1=\"17\" x2=\"114\" y2=\"17\" />\n", + " <line x1=\"28\" y1=\"18\" x2=\"115\" y2=\"18\" />\n", + " <line x1=\"29\" y1=\"19\" x2=\"116\" y2=\"19\" />\n", + " <line x1=\"31\" y1=\"21\" x2=\"118\" y2=\"21\" />\n", + " <line x1=\"32\" y1=\"22\" x2=\"119\" y2=\"22\" />\n", + " <line x1=\"33\" y1=\"23\" x2=\"120\" y2=\"23\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"33\" y2=\"23\" style=\"stroke-width:2\" />\n", + " <line x1=\"97\" y1=\"0\" x2=\"120\" y2=\"23\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"10.0,0.0 97.11743772241994,0.0 120.68249582616437,23.565058103744438 33.565058103744434,23.565058103744438\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"33\" y1=\"23\" x2=\"120\" y2=\"23\" style=\"stroke-width:2\" />\n", + " <line x1=\"33\" y1=\"143\" x2=\"120\" y2=\"143\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"33\" y1=\"23\" x2=\"33\" y2=\"143\" style=\"stroke-width:2\" />\n", + " <line x1=\"120\" y1=\"23\" x2=\"120\" y2=\"143\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"33.565058103744434,23.565058103744438 120.68249582616437,23.565058103744438 120.68249582616437,143.56505810374443 33.565058103744434,143.56505810374443\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Text -->\n", + " <text x=\"77.123777\" y=\"163.565058\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >204</text>\n", + " <text x=\"140.682496\" y=\"83.565058\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.682496,83.565058)\">281</text>\n", + " <text x=\"11.782529\" y=\"151.782529\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,11.782529,151.782529)\">37</text>\n", + "</svg>\n", + " </td>\n", + " </tr>\n", + "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>pres_sfc</span></div><div class='xr-var-dims'>(time, lat, lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(1, 281, 204), meta=np.ndarray></div><input id='attrs-22a5a217-f23a-4d32-a9e5-1be179ddf65d' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-22a5a217-f23a-4d32-a9e5-1be179ddf65d' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-658c1ff9-8a8d-4d05-85bb-9e58f6ad6ce5' class='xr-var-data-in' type='checkbox'><label for='data-658c1ff9-8a8d-4d05-85bb-9e58f6ad6ce5' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>standard_name :</span></dt><dd>surface_air_pressure</dd><dt><span>long_name :</span></dt><dd>surface pressure</dd><dt><span>units :</span></dt><dd>Pa</dd><dt><span>param :</span></dt><dd>0.3.0</dd></dl></div><div class='xr-var-data'><table>\n", + " <tr>\n", + " <td>\n", + " <table>\n", + " <thead>\n", + " <tr>\n", + " <td> </td>\n", + " <th> Array </th>\n", + " <th> Chunk </th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " \n", + " <tr>\n", + " <th> Bytes </th>\n", + " <td> 8.09 MiB </td>\n", + " <td> 223.92 kiB </td>\n", + " </tr>\n", + " \n", + " <tr>\n", + " <th> Shape </th>\n", + " <td> (37, 281, 204) </td>\n", + " <td> (1, 281, 204) </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Count </th>\n", + " <td> 148 Tasks </td>\n", + " <td> 37 Chunks </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Type </th>\n", + " <td> float32 </td>\n", + " <td> numpy.ndarray </td>\n", + " </tr>\n", + " </tbody>\n", + " </table>\n", + " </td>\n", + " <td>\n", + " <svg width=\"170\" height=\"193\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"33\" y2=\"23\" style=\"stroke-width:2\" />\n", + " <line x1=\"10\" y1=\"120\" x2=\"33\" y2=\"143\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"120\" style=\"stroke-width:2\" />\n", + " <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"120\" />\n", + " <line x1=\"11\" y1=\"1\" x2=\"11\" y2=\"121\" />\n", + " <line x1=\"13\" y1=\"3\" x2=\"13\" y2=\"123\" />\n", + " <line x1=\"14\" y1=\"4\" x2=\"14\" y2=\"124\" />\n", + " <line x1=\"15\" y1=\"5\" x2=\"15\" y2=\"125\" />\n", + " <line x1=\"17\" y1=\"7\" x2=\"17\" y2=\"127\" />\n", + " <line x1=\"18\" y1=\"8\" x2=\"18\" y2=\"128\" />\n", + " <line x1=\"19\" y1=\"9\" x2=\"19\" y2=\"129\" />\n", + " <line x1=\"20\" y1=\"10\" x2=\"20\" y2=\"130\" />\n", + " <line x1=\"22\" y1=\"12\" x2=\"22\" y2=\"132\" />\n", + " <line x1=\"23\" y1=\"13\" x2=\"23\" y2=\"133\" />\n", + " <line x1=\"24\" y1=\"14\" x2=\"24\" y2=\"134\" />\n", + " <line x1=\"25\" y1=\"15\" x2=\"25\" y2=\"135\" />\n", + " <line x1=\"27\" y1=\"17\" x2=\"27\" y2=\"137\" />\n", + " <line x1=\"28\" y1=\"18\" x2=\"28\" y2=\"138\" />\n", + " <line x1=\"29\" y1=\"19\" x2=\"29\" y2=\"139\" />\n", + " <line x1=\"31\" y1=\"21\" x2=\"31\" y2=\"141\" />\n", + " <line x1=\"32\" y1=\"22\" x2=\"32\" y2=\"142\" />\n", + " <line x1=\"33\" y1=\"23\" x2=\"33\" y2=\"143\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"10.0,0.0 33.565058103744434,23.565058103744438 33.565058103744434,143.56505810374443 10.0,120.0\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"97\" y2=\"0\" style=\"stroke-width:2\" />\n", + " <line x1=\"10\" y1=\"0\" x2=\"97\" y2=\"0\" />\n", + " <line x1=\"11\" y1=\"1\" x2=\"99\" y2=\"1\" />\n", + " <line x1=\"13\" y1=\"3\" x2=\"100\" y2=\"3\" />\n", + " <line x1=\"14\" y1=\"4\" x2=\"101\" y2=\"4\" />\n", + " <line x1=\"15\" y1=\"5\" x2=\"102\" y2=\"5\" />\n", + " <line x1=\"17\" y1=\"7\" x2=\"104\" y2=\"7\" />\n", + " <line x1=\"18\" y1=\"8\" x2=\"105\" y2=\"8\" />\n", + " <line x1=\"19\" y1=\"9\" x2=\"106\" y2=\"9\" />\n", + " <line x1=\"20\" y1=\"10\" x2=\"107\" y2=\"10\" />\n", + " <line x1=\"22\" y1=\"12\" x2=\"109\" y2=\"12\" />\n", + " <line x1=\"23\" y1=\"13\" x2=\"110\" y2=\"13\" />\n", + " <line x1=\"24\" y1=\"14\" x2=\"111\" y2=\"14\" />\n", + " <line x1=\"25\" y1=\"15\" x2=\"113\" y2=\"15\" />\n", + " <line x1=\"27\" y1=\"17\" x2=\"114\" y2=\"17\" />\n", + " <line x1=\"28\" y1=\"18\" x2=\"115\" y2=\"18\" />\n", + " <line x1=\"29\" y1=\"19\" x2=\"116\" y2=\"19\" />\n", + " <line x1=\"31\" y1=\"21\" x2=\"118\" y2=\"21\" />\n", + " <line x1=\"32\" y1=\"22\" x2=\"119\" y2=\"22\" />\n", + " <line x1=\"33\" y1=\"23\" x2=\"120\" y2=\"23\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"33\" y2=\"23\" style=\"stroke-width:2\" />\n", + " <line x1=\"97\" y1=\"0\" x2=\"120\" y2=\"23\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"10.0,0.0 97.11743772241994,0.0 120.68249582616437,23.565058103744438 33.565058103744434,23.565058103744438\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"33\" y1=\"23\" x2=\"120\" y2=\"23\" style=\"stroke-width:2\" />\n", + " <line x1=\"33\" y1=\"143\" x2=\"120\" y2=\"143\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"33\" y1=\"23\" x2=\"33\" y2=\"143\" style=\"stroke-width:2\" />\n", + " <line x1=\"120\" y1=\"23\" x2=\"120\" y2=\"143\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"33.565058103744434,23.565058103744438 120.68249582616437,23.565058103744438 120.68249582616437,143.56505810374443 33.565058103744434,143.56505810374443\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Text -->\n", + " <text x=\"77.123777\" y=\"163.565058\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >204</text>\n", + " <text x=\"140.682496\" y=\"83.565058\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.682496,83.565058)\">281</text>\n", + " <text x=\"11.782529\" y=\"151.782529\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,11.782529,151.782529)\">37</text>\n", + "</svg>\n", + " </td>\n", + " </tr>\n", + "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>ddt_pres_sfc</span></div><div class='xr-var-dims'>(time, lat, lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(1, 281, 204), meta=np.ndarray></div><input id='attrs-ef655290-d196-4e7a-9bd9-c19816e158f5' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-ef655290-d196-4e7a-9bd9-c19816e158f5' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-ced2ff23-a3d1-4687-8be2-be63c800f0e7' class='xr-var-data-in' type='checkbox'><label for='data-ced2ff23-a3d1-4687-8be2-be63c800f0e7' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>standard_name :</span></dt><dd>surface_pressure tendency</dd><dt><span>long_name :</span></dt><dd>surface pressure tendency</dd><dt><span>units :</span></dt><dd>Pa s-1</dd><dt><span>param :</span></dt><dd>2.3.0</dd></dl></div><div class='xr-var-data'><table>\n", + " <tr>\n", + " <td>\n", + " <table>\n", + " <thead>\n", + " <tr>\n", + " <td> </td>\n", + " <th> Array </th>\n", + " <th> Chunk </th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " \n", + " <tr>\n", + " <th> Bytes </th>\n", + " <td> 8.09 MiB </td>\n", + " <td> 223.92 kiB </td>\n", + " </tr>\n", + " \n", + " <tr>\n", + " <th> Shape </th>\n", + " <td> (37, 281, 204) </td>\n", + " <td> (1, 281, 204) </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Count </th>\n", + " <td> 148 Tasks </td>\n", + " <td> 37 Chunks </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Type </th>\n", + " <td> float32 </td>\n", + " <td> numpy.ndarray </td>\n", + " </tr>\n", + " </tbody>\n", + " </table>\n", + " </td>\n", + " <td>\n", + " <svg width=\"170\" height=\"193\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"33\" y2=\"23\" style=\"stroke-width:2\" />\n", + " <line x1=\"10\" y1=\"120\" x2=\"33\" y2=\"143\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"120\" style=\"stroke-width:2\" />\n", + " <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"120\" />\n", + " <line x1=\"11\" y1=\"1\" x2=\"11\" y2=\"121\" />\n", + " <line x1=\"13\" y1=\"3\" x2=\"13\" y2=\"123\" />\n", + " <line x1=\"14\" y1=\"4\" x2=\"14\" y2=\"124\" />\n", + " <line x1=\"15\" y1=\"5\" x2=\"15\" y2=\"125\" />\n", + " <line x1=\"17\" y1=\"7\" x2=\"17\" y2=\"127\" />\n", + " <line x1=\"18\" y1=\"8\" x2=\"18\" y2=\"128\" />\n", + " <line x1=\"19\" y1=\"9\" x2=\"19\" y2=\"129\" />\n", + " <line x1=\"20\" y1=\"10\" x2=\"20\" y2=\"130\" />\n", + " <line x1=\"22\" y1=\"12\" x2=\"22\" y2=\"132\" />\n", + " <line x1=\"23\" y1=\"13\" x2=\"23\" y2=\"133\" />\n", + " <line x1=\"24\" y1=\"14\" x2=\"24\" y2=\"134\" />\n", + " <line x1=\"25\" y1=\"15\" x2=\"25\" y2=\"135\" />\n", + " <line x1=\"27\" y1=\"17\" x2=\"27\" y2=\"137\" />\n", + " <line x1=\"28\" y1=\"18\" x2=\"28\" y2=\"138\" />\n", + " <line x1=\"29\" y1=\"19\" x2=\"29\" y2=\"139\" />\n", + " <line x1=\"31\" y1=\"21\" x2=\"31\" y2=\"141\" />\n", + " <line x1=\"32\" y1=\"22\" x2=\"32\" y2=\"142\" />\n", + " <line x1=\"33\" y1=\"23\" x2=\"33\" y2=\"143\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"10.0,0.0 33.565058103744434,23.565058103744438 33.565058103744434,143.56505810374443 10.0,120.0\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"97\" y2=\"0\" style=\"stroke-width:2\" />\n", + " <line x1=\"10\" y1=\"0\" x2=\"97\" y2=\"0\" />\n", + " <line x1=\"11\" y1=\"1\" x2=\"99\" y2=\"1\" />\n", + " <line x1=\"13\" y1=\"3\" x2=\"100\" y2=\"3\" />\n", + " <line x1=\"14\" y1=\"4\" x2=\"101\" y2=\"4\" />\n", + " <line x1=\"15\" y1=\"5\" x2=\"102\" y2=\"5\" />\n", + " <line x1=\"17\" y1=\"7\" x2=\"104\" y2=\"7\" />\n", + " <line x1=\"18\" y1=\"8\" x2=\"105\" y2=\"8\" />\n", + " <line x1=\"19\" y1=\"9\" x2=\"106\" y2=\"9\" />\n", + " <line x1=\"20\" y1=\"10\" x2=\"107\" y2=\"10\" />\n", + " <line x1=\"22\" y1=\"12\" x2=\"109\" y2=\"12\" />\n", + " <line x1=\"23\" y1=\"13\" x2=\"110\" y2=\"13\" />\n", + " <line x1=\"24\" y1=\"14\" x2=\"111\" y2=\"14\" />\n", + " <line x1=\"25\" y1=\"15\" x2=\"113\" y2=\"15\" />\n", + " <line x1=\"27\" y1=\"17\" x2=\"114\" y2=\"17\" />\n", + " <line x1=\"28\" y1=\"18\" x2=\"115\" y2=\"18\" />\n", + " <line x1=\"29\" y1=\"19\" x2=\"116\" y2=\"19\" />\n", + " <line x1=\"31\" y1=\"21\" x2=\"118\" y2=\"21\" />\n", + " <line x1=\"32\" y1=\"22\" x2=\"119\" y2=\"22\" />\n", + " <line x1=\"33\" y1=\"23\" x2=\"120\" y2=\"23\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"33\" y2=\"23\" style=\"stroke-width:2\" />\n", + " <line x1=\"97\" y1=\"0\" x2=\"120\" y2=\"23\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"10.0,0.0 97.11743772241994,0.0 120.68249582616437,23.565058103744438 33.565058103744434,23.565058103744438\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"33\" y1=\"23\" x2=\"120\" y2=\"23\" style=\"stroke-width:2\" />\n", + " <line x1=\"33\" y1=\"143\" x2=\"120\" y2=\"143\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"33\" y1=\"23\" x2=\"33\" y2=\"143\" style=\"stroke-width:2\" />\n", + " <line x1=\"120\" y1=\"23\" x2=\"120\" y2=\"143\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"33.565058103744434,23.565058103744438 120.68249582616437,23.565058103744438 120.68249582616437,143.56505810374443 33.565058103744434,143.56505810374443\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Text -->\n", + " <text x=\"77.123777\" y=\"163.565058\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >204</text>\n", + " <text x=\"140.682496\" y=\"83.565058\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.682496,83.565058)\">281</text>\n", + " <text x=\"11.782529\" y=\"151.782529\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,11.782529,151.782529)\">37</text>\n", + "</svg>\n", + " </td>\n", + " </tr>\n", + "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>u_10m</span></div><div class='xr-var-dims'>(time, height, lat, lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(1, 1, 281, 204), meta=np.ndarray></div><input id='attrs-ae212e49-5ea5-4615-a72c-08990d416e0a' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-ae212e49-5ea5-4615-a72c-08990d416e0a' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-c068fa3d-3d55-4d1c-aabc-bd31dcf0485d' class='xr-var-data-in' type='checkbox'><label for='data-c068fa3d-3d55-4d1c-aabc-bd31dcf0485d' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>standard_name :</span></dt><dd>u_10m</dd><dt><span>long_name :</span></dt><dd>zonal wind in 10m</dd><dt><span>units :</span></dt><dd>m s-1</dd><dt><span>param :</span></dt><dd>2.2.0</dd></dl></div><div class='xr-var-data'><table>\n", + " <tr>\n", + " <td>\n", + " <table>\n", + " <thead>\n", + " <tr>\n", + " <td> </td>\n", + " <th> Array </th>\n", + " <th> Chunk </th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " \n", + " <tr>\n", + " <th> Bytes </th>\n", + " <td> 8.09 MiB </td>\n", + " <td> 223.92 kiB </td>\n", + " </tr>\n", + " \n", + " <tr>\n", + " <th> Shape </th>\n", + " <td> (37, 1, 281, 204) </td>\n", + " <td> (1, 1, 281, 204) </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Count </th>\n", + " <td> 148 Tasks </td>\n", + " <td> 37 Chunks </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Type </th>\n", + " <td> float32 </td>\n", + " <td> numpy.ndarray </td>\n", + " </tr>\n", + " </tbody>\n", + " </table>\n", + " </td>\n", + " <td>\n", + " <svg width=\"372\" height=\"184\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"0\" y1=\"0\" x2=\"40\" y2=\"0\" style=\"stroke-width:2\" />\n", + " <line x1=\"0\" y1=\"25\" x2=\"40\" y2=\"25\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"25\" style=\"stroke-width:2\" />\n", + " <line x1=\"1\" y1=\"0\" x2=\"1\" y2=\"25\" />\n", + " <line x1=\"2\" y1=\"0\" x2=\"2\" y2=\"25\" />\n", + " <line x1=\"3\" y1=\"0\" x2=\"3\" y2=\"25\" />\n", + " <line x1=\"4\" y1=\"0\" x2=\"4\" y2=\"25\" />\n", + " <line x1=\"5\" y1=\"0\" x2=\"5\" y2=\"25\" />\n", + " <line x1=\"6\" y1=\"0\" x2=\"6\" y2=\"25\" />\n", + " <line x1=\"8\" y1=\"0\" x2=\"8\" y2=\"25\" />\n", + " <line x1=\"9\" y1=\"0\" x2=\"9\" y2=\"25\" />\n", + " <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"25\" />\n", + " <line x1=\"11\" y1=\"0\" x2=\"11\" y2=\"25\" />\n", + " <line x1=\"12\" y1=\"0\" x2=\"12\" y2=\"25\" />\n", + " <line x1=\"14\" y1=\"0\" x2=\"14\" y2=\"25\" />\n", + " <line x1=\"16\" y1=\"0\" x2=\"16\" y2=\"25\" />\n", + " <line x1=\"17\" y1=\"0\" x2=\"17\" y2=\"25\" />\n", + " <line x1=\"18\" y1=\"0\" x2=\"18\" y2=\"25\" />\n", + " <line x1=\"19\" y1=\"0\" x2=\"19\" y2=\"25\" />\n", + " <line x1=\"20\" y1=\"0\" x2=\"20\" y2=\"25\" />\n", + " <line x1=\"21\" y1=\"0\" x2=\"21\" y2=\"25\" />\n", + " <line x1=\"22\" y1=\"0\" x2=\"22\" y2=\"25\" />\n", + " <line x1=\"24\" y1=\"0\" x2=\"24\" y2=\"25\" />\n", + " <line x1=\"25\" y1=\"0\" x2=\"25\" y2=\"25\" />\n", + " <line x1=\"27\" y1=\"0\" x2=\"27\" y2=\"25\" />\n", + " <line x1=\"28\" y1=\"0\" x2=\"28\" y2=\"25\" />\n", + " <line x1=\"29\" y1=\"0\" x2=\"29\" y2=\"25\" />\n", + " <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"25\" />\n", + " <line x1=\"32\" y1=\"0\" x2=\"32\" y2=\"25\" />\n", + " <line x1=\"33\" y1=\"0\" x2=\"33\" y2=\"25\" />\n", + " <line x1=\"34\" y1=\"0\" x2=\"34\" y2=\"25\" />\n", + " <line x1=\"35\" y1=\"0\" x2=\"35\" y2=\"25\" />\n", + " <line x1=\"36\" y1=\"0\" x2=\"36\" y2=\"25\" />\n", + " <line x1=\"37\" y1=\"0\" x2=\"37\" y2=\"25\" />\n", + " <line x1=\"40\" y1=\"0\" x2=\"40\" y2=\"25\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"0.0,0.0 40.060598776365545,0.0 40.060598776365545,25.412616514582485 0.0,25.412616514582485\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", + "\n", + " <!-- Text -->\n", + " <text x=\"20.030299\" y=\"45.412617\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >37</text>\n", + " <text x=\"60.060599\" y=\"12.706308\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,60.060599,12.706308)\">1</text>\n", + "\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"110\" y1=\"0\" x2=\"124\" y2=\"14\" style=\"stroke-width:2\" />\n", + " <line x1=\"110\" y1=\"120\" x2=\"124\" y2=\"134\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"110\" y1=\"0\" x2=\"110\" y2=\"120\" style=\"stroke-width:2\" />\n", + " <line x1=\"124\" y1=\"14\" x2=\"124\" y2=\"134\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"110.0,0.0 124.9485979497544,14.948597949754403 124.9485979497544,134.9485979497544 110.0,120.0\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"110\" y1=\"0\" x2=\"197\" y2=\"0\" style=\"stroke-width:2\" />\n", + " <line x1=\"124\" y1=\"14\" x2=\"212\" y2=\"14\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"110\" y1=\"0\" x2=\"124\" y2=\"14\" style=\"stroke-width:2\" />\n", + " <line x1=\"197\" y1=\"0\" x2=\"212\" y2=\"14\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"110.0,0.0 197.11743772241994,0.0 212.06603567217434,14.948597949754403 124.9485979497544,14.948597949754403\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"124\" y1=\"14\" x2=\"212\" y2=\"14\" style=\"stroke-width:2\" />\n", + " <line x1=\"124\" y1=\"134\" x2=\"212\" y2=\"134\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"124\" y1=\"14\" x2=\"124\" y2=\"134\" style=\"stroke-width:2\" />\n", + " <line x1=\"212\" y1=\"14\" x2=\"212\" y2=\"134\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"124.9485979497544,14.948597949754403 212.06603567217434,14.948597949754403 212.06603567217434,134.9485979497544 124.9485979497544,134.9485979497544\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Text -->\n", + " <text x=\"168.507317\" y=\"154.948598\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >204</text>\n", + " <text x=\"232.066036\" y=\"74.948598\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,232.066036,74.948598)\">281</text>\n", + " <text x=\"107.474299\" y=\"147.474299\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,107.474299,147.474299)\">1</text>\n", + "</svg>\n", + " </td>\n", + " </tr>\n", + "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>v_10m</span></div><div class='xr-var-dims'>(time, height, lat, lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(1, 1, 281, 204), meta=np.ndarray></div><input id='attrs-d39d654c-8aab-4ca9-ba5f-14da40911320' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-d39d654c-8aab-4ca9-ba5f-14da40911320' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-a6050b9c-96fb-4f7d-a567-422c00c2856c' class='xr-var-data-in' type='checkbox'><label for='data-a6050b9c-96fb-4f7d-a567-422c00c2856c' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>standard_name :</span></dt><dd>v_10m</dd><dt><span>long_name :</span></dt><dd>meridional wind in 10m</dd><dt><span>units :</span></dt><dd>m s-1</dd><dt><span>param :</span></dt><dd>3.2.0</dd></dl></div><div class='xr-var-data'><table>\n", + " <tr>\n", + " <td>\n", + " <table>\n", + " <thead>\n", + " <tr>\n", + " <td> </td>\n", + " <th> Array </th>\n", + " <th> Chunk </th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " \n", + " <tr>\n", + " <th> Bytes </th>\n", + " <td> 8.09 MiB </td>\n", + " <td> 223.92 kiB </td>\n", + " </tr>\n", + " \n", + " <tr>\n", + " <th> Shape </th>\n", + " <td> (37, 1, 281, 204) </td>\n", + " <td> (1, 1, 281, 204) </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Count </th>\n", + " <td> 148 Tasks </td>\n", + " <td> 37 Chunks </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Type </th>\n", + " <td> float32 </td>\n", + " <td> numpy.ndarray </td>\n", + " </tr>\n", + " </tbody>\n", + " </table>\n", + " </td>\n", + " <td>\n", + " <svg width=\"372\" height=\"184\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"0\" y1=\"0\" x2=\"40\" y2=\"0\" style=\"stroke-width:2\" />\n", + " <line x1=\"0\" y1=\"25\" x2=\"40\" y2=\"25\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"25\" style=\"stroke-width:2\" />\n", + " <line x1=\"1\" y1=\"0\" x2=\"1\" y2=\"25\" />\n", + " <line x1=\"2\" y1=\"0\" x2=\"2\" y2=\"25\" />\n", + " <line x1=\"3\" y1=\"0\" x2=\"3\" y2=\"25\" />\n", + " <line x1=\"4\" y1=\"0\" x2=\"4\" y2=\"25\" />\n", + " <line x1=\"5\" y1=\"0\" x2=\"5\" y2=\"25\" />\n", + " <line x1=\"6\" y1=\"0\" x2=\"6\" y2=\"25\" />\n", + " <line x1=\"8\" y1=\"0\" x2=\"8\" y2=\"25\" />\n", + " <line x1=\"9\" y1=\"0\" x2=\"9\" y2=\"25\" />\n", + " <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"25\" />\n", + " <line x1=\"11\" y1=\"0\" x2=\"11\" y2=\"25\" />\n", + " <line x1=\"12\" y1=\"0\" x2=\"12\" y2=\"25\" />\n", + " <line x1=\"14\" y1=\"0\" x2=\"14\" y2=\"25\" />\n", + " <line x1=\"16\" y1=\"0\" x2=\"16\" y2=\"25\" />\n", + " <line x1=\"17\" y1=\"0\" x2=\"17\" y2=\"25\" />\n", + " <line x1=\"18\" y1=\"0\" x2=\"18\" y2=\"25\" />\n", + " <line x1=\"19\" y1=\"0\" x2=\"19\" y2=\"25\" />\n", + " <line x1=\"20\" y1=\"0\" x2=\"20\" y2=\"25\" />\n", + " <line x1=\"21\" y1=\"0\" x2=\"21\" y2=\"25\" />\n", + " <line x1=\"22\" y1=\"0\" x2=\"22\" y2=\"25\" />\n", + " <line x1=\"24\" y1=\"0\" x2=\"24\" y2=\"25\" />\n", + " <line x1=\"25\" y1=\"0\" x2=\"25\" y2=\"25\" />\n", + " <line x1=\"27\" y1=\"0\" x2=\"27\" y2=\"25\" />\n", + " <line x1=\"28\" y1=\"0\" x2=\"28\" y2=\"25\" />\n", + " <line x1=\"29\" y1=\"0\" x2=\"29\" y2=\"25\" />\n", + " <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"25\" />\n", + " <line x1=\"32\" y1=\"0\" x2=\"32\" y2=\"25\" />\n", + " <line x1=\"33\" y1=\"0\" x2=\"33\" y2=\"25\" />\n", + " <line x1=\"34\" y1=\"0\" x2=\"34\" y2=\"25\" />\n", + " <line x1=\"35\" y1=\"0\" x2=\"35\" y2=\"25\" />\n", + " <line x1=\"36\" y1=\"0\" x2=\"36\" y2=\"25\" />\n", + " <line x1=\"37\" y1=\"0\" x2=\"37\" y2=\"25\" />\n", + " <line x1=\"40\" y1=\"0\" x2=\"40\" y2=\"25\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"0.0,0.0 40.060598776365545,0.0 40.060598776365545,25.412616514582485 0.0,25.412616514582485\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", + "\n", + " <!-- Text -->\n", + " <text x=\"20.030299\" y=\"45.412617\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >37</text>\n", + " <text x=\"60.060599\" y=\"12.706308\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,60.060599,12.706308)\">1</text>\n", + "\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"110\" y1=\"0\" x2=\"124\" y2=\"14\" style=\"stroke-width:2\" />\n", + " <line x1=\"110\" y1=\"120\" x2=\"124\" y2=\"134\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"110\" y1=\"0\" x2=\"110\" y2=\"120\" style=\"stroke-width:2\" />\n", + " <line x1=\"124\" y1=\"14\" x2=\"124\" y2=\"134\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"110.0,0.0 124.9485979497544,14.948597949754403 124.9485979497544,134.9485979497544 110.0,120.0\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"110\" y1=\"0\" x2=\"197\" y2=\"0\" style=\"stroke-width:2\" />\n", + " <line x1=\"124\" y1=\"14\" x2=\"212\" y2=\"14\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"110\" y1=\"0\" x2=\"124\" y2=\"14\" style=\"stroke-width:2\" />\n", + " <line x1=\"197\" y1=\"0\" x2=\"212\" y2=\"14\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"110.0,0.0 197.11743772241994,0.0 212.06603567217434,14.948597949754403 124.9485979497544,14.948597949754403\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"124\" y1=\"14\" x2=\"212\" y2=\"14\" style=\"stroke-width:2\" />\n", + " <line x1=\"124\" y1=\"134\" x2=\"212\" y2=\"134\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"124\" y1=\"14\" x2=\"124\" y2=\"134\" style=\"stroke-width:2\" />\n", + " <line x1=\"212\" y1=\"14\" x2=\"212\" y2=\"134\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"124.9485979497544,14.948597949754403 212.06603567217434,14.948597949754403 212.06603567217434,134.9485979497544 124.9485979497544,134.9485979497544\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Text -->\n", + " <text x=\"168.507317\" y=\"154.948598\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >204</text>\n", + " <text x=\"232.066036\" y=\"74.948598\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,232.066036,74.948598)\">281</text>\n", + " <text x=\"107.474299\" y=\"147.474299\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,107.474299,147.474299)\">1</text>\n", + "</svg>\n", + " </td>\n", + " </tr>\n", + "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>t_g</span></div><div class='xr-var-dims'>(time, lat, lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(1, 281, 204), meta=np.ndarray></div><input id='attrs-51b1695d-bb3b-43c4-b838-0e868fa4f1c8' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-51b1695d-bb3b-43c4-b838-0e868fa4f1c8' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-2ce67648-3f96-45cb-999f-ad10eb4f115f' class='xr-var-data-in' type='checkbox'><label for='data-2ce67648-3f96-45cb-999f-ad10eb4f115f' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>standard_name :</span></dt><dd>t_g</dd><dt><span>long_name :</span></dt><dd>weighted surface temperature</dd><dt><span>units :</span></dt><dd>K</dd><dt><span>param :</span></dt><dd>0.0.0</dd></dl></div><div class='xr-var-data'><table>\n", + " <tr>\n", + " <td>\n", + " <table>\n", + " <thead>\n", + " <tr>\n", + " <td> </td>\n", + " <th> Array </th>\n", + " <th> Chunk </th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " \n", + " <tr>\n", + " <th> Bytes </th>\n", + " <td> 8.09 MiB </td>\n", + " <td> 223.92 kiB </td>\n", + " </tr>\n", + " \n", + " <tr>\n", + " <th> Shape </th>\n", + " <td> (37, 281, 204) </td>\n", + " <td> (1, 281, 204) </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Count </th>\n", + " <td> 148 Tasks </td>\n", + " <td> 37 Chunks </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Type </th>\n", + " <td> float32 </td>\n", + " <td> numpy.ndarray </td>\n", + " </tr>\n", + " </tbody>\n", + " </table>\n", + " </td>\n", + " <td>\n", + " <svg width=\"170\" height=\"193\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"33\" y2=\"23\" style=\"stroke-width:2\" />\n", + " <line x1=\"10\" y1=\"120\" x2=\"33\" y2=\"143\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"120\" style=\"stroke-width:2\" />\n", + " <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"120\" />\n", + " <line x1=\"11\" y1=\"1\" x2=\"11\" y2=\"121\" />\n", + " <line x1=\"13\" y1=\"3\" x2=\"13\" y2=\"123\" />\n", + " <line x1=\"14\" y1=\"4\" x2=\"14\" y2=\"124\" />\n", + " <line x1=\"15\" y1=\"5\" x2=\"15\" y2=\"125\" />\n", + " <line x1=\"17\" y1=\"7\" x2=\"17\" y2=\"127\" />\n", + " <line x1=\"18\" y1=\"8\" x2=\"18\" y2=\"128\" />\n", + " <line x1=\"19\" y1=\"9\" x2=\"19\" y2=\"129\" />\n", + " <line x1=\"20\" y1=\"10\" x2=\"20\" y2=\"130\" />\n", + " <line x1=\"22\" y1=\"12\" x2=\"22\" y2=\"132\" />\n", + " <line x1=\"23\" y1=\"13\" x2=\"23\" y2=\"133\" />\n", + " <line x1=\"24\" y1=\"14\" x2=\"24\" y2=\"134\" />\n", + " <line x1=\"25\" y1=\"15\" x2=\"25\" y2=\"135\" />\n", + " <line x1=\"27\" y1=\"17\" x2=\"27\" y2=\"137\" />\n", + " <line x1=\"28\" y1=\"18\" x2=\"28\" y2=\"138\" />\n", + " <line x1=\"29\" y1=\"19\" x2=\"29\" y2=\"139\" />\n", + " <line x1=\"31\" y1=\"21\" x2=\"31\" y2=\"141\" />\n", + " <line x1=\"32\" y1=\"22\" x2=\"32\" y2=\"142\" />\n", + " <line x1=\"33\" y1=\"23\" x2=\"33\" y2=\"143\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"10.0,0.0 33.565058103744434,23.565058103744438 33.565058103744434,143.56505810374443 10.0,120.0\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"97\" y2=\"0\" style=\"stroke-width:2\" />\n", + " <line x1=\"10\" y1=\"0\" x2=\"97\" y2=\"0\" />\n", + " <line x1=\"11\" y1=\"1\" x2=\"99\" y2=\"1\" />\n", + " <line x1=\"13\" y1=\"3\" x2=\"100\" y2=\"3\" />\n", + " <line x1=\"14\" y1=\"4\" x2=\"101\" y2=\"4\" />\n", + " <line x1=\"15\" y1=\"5\" x2=\"102\" y2=\"5\" />\n", + " <line x1=\"17\" y1=\"7\" x2=\"104\" y2=\"7\" />\n", + " <line x1=\"18\" y1=\"8\" x2=\"105\" y2=\"8\" />\n", + " <line x1=\"19\" y1=\"9\" x2=\"106\" y2=\"9\" />\n", + " <line x1=\"20\" y1=\"10\" x2=\"107\" y2=\"10\" />\n", + " <line x1=\"22\" y1=\"12\" x2=\"109\" y2=\"12\" />\n", + " <line x1=\"23\" y1=\"13\" x2=\"110\" y2=\"13\" />\n", + " <line x1=\"24\" y1=\"14\" x2=\"111\" y2=\"14\" />\n", + " <line x1=\"25\" y1=\"15\" x2=\"113\" y2=\"15\" />\n", + " <line x1=\"27\" y1=\"17\" x2=\"114\" y2=\"17\" />\n", + " <line x1=\"28\" y1=\"18\" x2=\"115\" y2=\"18\" />\n", + " <line x1=\"29\" y1=\"19\" x2=\"116\" y2=\"19\" />\n", + " <line x1=\"31\" y1=\"21\" x2=\"118\" y2=\"21\" />\n", + " <line x1=\"32\" y1=\"22\" x2=\"119\" y2=\"22\" />\n", + " <line x1=\"33\" y1=\"23\" x2=\"120\" y2=\"23\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"33\" y2=\"23\" style=\"stroke-width:2\" />\n", + " <line x1=\"97\" y1=\"0\" x2=\"120\" y2=\"23\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"10.0,0.0 97.11743772241994,0.0 120.68249582616437,23.565058103744438 33.565058103744434,23.565058103744438\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"33\" y1=\"23\" x2=\"120\" y2=\"23\" style=\"stroke-width:2\" />\n", + " <line x1=\"33\" y1=\"143\" x2=\"120\" y2=\"143\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"33\" y1=\"23\" x2=\"33\" y2=\"143\" style=\"stroke-width:2\" />\n", + " <line x1=\"120\" y1=\"23\" x2=\"120\" y2=\"143\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"33.565058103744434,23.565058103744438 120.68249582616437,23.565058103744438 120.68249582616437,143.56505810374443 33.565058103744434,143.56505810374443\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Text -->\n", + " <text x=\"77.123777\" y=\"163.565058\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >204</text>\n", + " <text x=\"140.682496\" y=\"83.565058\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.682496,83.565058)\">281</text>\n", + " <text x=\"11.782529\" y=\"151.782529\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,11.782529,151.782529)\">37</text>\n", + "</svg>\n", + " </td>\n", + " </tr>\n", + "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>t_2m</span></div><div class='xr-var-dims'>(time, height_2, lat, lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(1, 1, 281, 204), meta=np.ndarray></div><input id='attrs-6a8ebe1d-03eb-4e15-b233-09c1351430bb' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-6a8ebe1d-03eb-4e15-b233-09c1351430bb' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-a7691408-bf12-41fc-9406-ca6e2aa351d3' class='xr-var-data-in' type='checkbox'><label for='data-a7691408-bf12-41fc-9406-ca6e2aa351d3' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>standard_name :</span></dt><dd>t_2m</dd><dt><span>long_name :</span></dt><dd>temperature in 2m</dd><dt><span>units :</span></dt><dd>K</dd><dt><span>param :</span></dt><dd>0.0.0</dd></dl></div><div class='xr-var-data'><table>\n", + " <tr>\n", + " <td>\n", + " <table>\n", + " <thead>\n", + " <tr>\n", + " <td> </td>\n", + " <th> Array </th>\n", + " <th> Chunk </th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " \n", + " <tr>\n", + " <th> Bytes </th>\n", + " <td> 8.09 MiB </td>\n", + " <td> 223.92 kiB </td>\n", + " </tr>\n", + " \n", + " <tr>\n", + " <th> Shape </th>\n", + " <td> (37, 1, 281, 204) </td>\n", + " <td> (1, 1, 281, 204) </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Count </th>\n", + " <td> 148 Tasks </td>\n", + " <td> 37 Chunks </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Type </th>\n", + " <td> float32 </td>\n", + " <td> numpy.ndarray </td>\n", + " </tr>\n", + " </tbody>\n", + " </table>\n", + " </td>\n", + " <td>\n", + " <svg width=\"372\" height=\"184\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"0\" y1=\"0\" x2=\"40\" y2=\"0\" style=\"stroke-width:2\" />\n", + " <line x1=\"0\" y1=\"25\" x2=\"40\" y2=\"25\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"25\" style=\"stroke-width:2\" />\n", + " <line x1=\"1\" y1=\"0\" x2=\"1\" y2=\"25\" />\n", + " <line x1=\"2\" y1=\"0\" x2=\"2\" y2=\"25\" />\n", + " <line x1=\"3\" y1=\"0\" x2=\"3\" y2=\"25\" />\n", + " <line x1=\"4\" y1=\"0\" x2=\"4\" y2=\"25\" />\n", + " <line x1=\"5\" y1=\"0\" x2=\"5\" y2=\"25\" />\n", + " <line x1=\"6\" y1=\"0\" x2=\"6\" y2=\"25\" />\n", + " <line x1=\"8\" y1=\"0\" x2=\"8\" y2=\"25\" />\n", + " <line x1=\"9\" y1=\"0\" x2=\"9\" y2=\"25\" />\n", + " <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"25\" />\n", + " <line x1=\"11\" y1=\"0\" x2=\"11\" y2=\"25\" />\n", + " <line x1=\"12\" y1=\"0\" x2=\"12\" y2=\"25\" />\n", + " <line x1=\"14\" y1=\"0\" x2=\"14\" y2=\"25\" />\n", + " <line x1=\"16\" y1=\"0\" x2=\"16\" y2=\"25\" />\n", + " <line x1=\"17\" y1=\"0\" x2=\"17\" y2=\"25\" />\n", + " <line x1=\"18\" y1=\"0\" x2=\"18\" y2=\"25\" />\n", + " <line x1=\"19\" y1=\"0\" x2=\"19\" y2=\"25\" />\n", + " <line x1=\"20\" y1=\"0\" x2=\"20\" y2=\"25\" />\n", + " <line x1=\"21\" y1=\"0\" x2=\"21\" y2=\"25\" />\n", + " <line x1=\"22\" y1=\"0\" x2=\"22\" y2=\"25\" />\n", + " <line x1=\"24\" y1=\"0\" x2=\"24\" y2=\"25\" />\n", + " <line x1=\"25\" y1=\"0\" x2=\"25\" y2=\"25\" />\n", + " <line x1=\"27\" y1=\"0\" x2=\"27\" y2=\"25\" />\n", + " <line x1=\"28\" y1=\"0\" x2=\"28\" y2=\"25\" />\n", + " <line x1=\"29\" y1=\"0\" x2=\"29\" y2=\"25\" />\n", + " <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"25\" />\n", + " <line x1=\"32\" y1=\"0\" x2=\"32\" y2=\"25\" />\n", + " <line x1=\"33\" y1=\"0\" x2=\"33\" y2=\"25\" />\n", + " <line x1=\"34\" y1=\"0\" x2=\"34\" y2=\"25\" />\n", + " <line x1=\"35\" y1=\"0\" x2=\"35\" y2=\"25\" />\n", + " <line x1=\"36\" y1=\"0\" x2=\"36\" y2=\"25\" />\n", + " <line x1=\"37\" y1=\"0\" x2=\"37\" y2=\"25\" />\n", + " <line x1=\"40\" y1=\"0\" x2=\"40\" y2=\"25\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"0.0,0.0 40.060598776365545,0.0 40.060598776365545,25.412616514582485 0.0,25.412616514582485\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", + "\n", + " <!-- Text -->\n", + " <text x=\"20.030299\" y=\"45.412617\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >37</text>\n", + " <text x=\"60.060599\" y=\"12.706308\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,60.060599,12.706308)\">1</text>\n", + "\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"110\" y1=\"0\" x2=\"124\" y2=\"14\" style=\"stroke-width:2\" />\n", + " <line x1=\"110\" y1=\"120\" x2=\"124\" y2=\"134\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"110\" y1=\"0\" x2=\"110\" y2=\"120\" style=\"stroke-width:2\" />\n", + " <line x1=\"124\" y1=\"14\" x2=\"124\" y2=\"134\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"110.0,0.0 124.9485979497544,14.948597949754403 124.9485979497544,134.9485979497544 110.0,120.0\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"110\" y1=\"0\" x2=\"197\" y2=\"0\" style=\"stroke-width:2\" />\n", + " <line x1=\"124\" y1=\"14\" x2=\"212\" y2=\"14\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"110\" y1=\"0\" x2=\"124\" y2=\"14\" style=\"stroke-width:2\" />\n", + " <line x1=\"197\" y1=\"0\" x2=\"212\" y2=\"14\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"110.0,0.0 197.11743772241994,0.0 212.06603567217434,14.948597949754403 124.9485979497544,14.948597949754403\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"124\" y1=\"14\" x2=\"212\" y2=\"14\" style=\"stroke-width:2\" />\n", + " <line x1=\"124\" y1=\"134\" x2=\"212\" y2=\"134\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"124\" y1=\"14\" x2=\"124\" y2=\"134\" style=\"stroke-width:2\" />\n", + " <line x1=\"212\" y1=\"14\" x2=\"212\" y2=\"134\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"124.9485979497544,14.948597949754403 212.06603567217434,14.948597949754403 212.06603567217434,134.9485979497544 124.9485979497544,134.9485979497544\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Text -->\n", + " <text x=\"168.507317\" y=\"154.948598\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >204</text>\n", + " <text x=\"232.066036\" y=\"74.948598\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,232.066036,74.948598)\">281</text>\n", + " <text x=\"107.474299\" y=\"147.474299\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,107.474299,147.474299)\">1</text>\n", + "</svg>\n", + " </td>\n", + " </tr>\n", + "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>qv_2m</span></div><div class='xr-var-dims'>(time, height_2, lat, lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(1, 1, 281, 204), meta=np.ndarray></div><input id='attrs-1fe8655a-5277-4457-be44-bb135bffd8ae' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-1fe8655a-5277-4457-be44-bb135bffd8ae' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-ded3bd8d-cc38-4ac2-8160-a73c1d60d09f' class='xr-var-data-in' type='checkbox'><label for='data-ded3bd8d-cc38-4ac2-8160-a73c1d60d09f' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>standard_name :</span></dt><dd>qv_2m</dd><dt><span>long_name :</span></dt><dd>specific water vapor content in 2m</dd><dt><span>units :</span></dt><dd>kg kg-1</dd><dt><span>param :</span></dt><dd>0.1.0</dd></dl></div><div class='xr-var-data'><table>\n", + " <tr>\n", + " <td>\n", + " <table>\n", + " <thead>\n", + " <tr>\n", + " <td> </td>\n", + " <th> Array </th>\n", + " <th> Chunk </th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " \n", + " <tr>\n", + " <th> Bytes </th>\n", + " <td> 8.09 MiB </td>\n", + " <td> 223.92 kiB </td>\n", + " </tr>\n", + " \n", + " <tr>\n", + " <th> Shape </th>\n", + " <td> (37, 1, 281, 204) </td>\n", + " <td> (1, 1, 281, 204) </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Count </th>\n", + " <td> 148 Tasks </td>\n", + " <td> 37 Chunks </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Type </th>\n", + " <td> float32 </td>\n", + " <td> numpy.ndarray </td>\n", + " </tr>\n", + " </tbody>\n", + " </table>\n", + " </td>\n", + " <td>\n", + " <svg width=\"372\" height=\"184\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"0\" y1=\"0\" x2=\"40\" y2=\"0\" style=\"stroke-width:2\" />\n", + " <line x1=\"0\" y1=\"25\" x2=\"40\" y2=\"25\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"25\" style=\"stroke-width:2\" />\n", + " <line x1=\"1\" y1=\"0\" x2=\"1\" y2=\"25\" />\n", + " <line x1=\"2\" y1=\"0\" x2=\"2\" y2=\"25\" />\n", + " <line x1=\"3\" y1=\"0\" x2=\"3\" y2=\"25\" />\n", + " <line x1=\"4\" y1=\"0\" x2=\"4\" y2=\"25\" />\n", + " <line x1=\"5\" y1=\"0\" x2=\"5\" y2=\"25\" />\n", + " <line x1=\"6\" y1=\"0\" x2=\"6\" y2=\"25\" />\n", + " <line x1=\"8\" y1=\"0\" x2=\"8\" y2=\"25\" />\n", + " <line x1=\"9\" y1=\"0\" x2=\"9\" y2=\"25\" />\n", + " <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"25\" />\n", + " <line x1=\"11\" y1=\"0\" x2=\"11\" y2=\"25\" />\n", + " <line x1=\"12\" y1=\"0\" x2=\"12\" y2=\"25\" />\n", + " <line x1=\"14\" y1=\"0\" x2=\"14\" y2=\"25\" />\n", + " <line x1=\"16\" y1=\"0\" x2=\"16\" y2=\"25\" />\n", + " <line x1=\"17\" y1=\"0\" x2=\"17\" y2=\"25\" />\n", + " <line x1=\"18\" y1=\"0\" x2=\"18\" y2=\"25\" />\n", + " <line x1=\"19\" y1=\"0\" x2=\"19\" y2=\"25\" />\n", + " <line x1=\"20\" y1=\"0\" x2=\"20\" y2=\"25\" />\n", + " <line x1=\"21\" y1=\"0\" x2=\"21\" y2=\"25\" />\n", + " <line x1=\"22\" y1=\"0\" x2=\"22\" y2=\"25\" />\n", + " <line x1=\"24\" y1=\"0\" x2=\"24\" y2=\"25\" />\n", + " <line x1=\"25\" y1=\"0\" x2=\"25\" y2=\"25\" />\n", + " <line x1=\"27\" y1=\"0\" x2=\"27\" y2=\"25\" />\n", + " <line x1=\"28\" y1=\"0\" x2=\"28\" y2=\"25\" />\n", + " <line x1=\"29\" y1=\"0\" x2=\"29\" y2=\"25\" />\n", + " <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"25\" />\n", + " <line x1=\"32\" y1=\"0\" x2=\"32\" y2=\"25\" />\n", + " <line x1=\"33\" y1=\"0\" x2=\"33\" y2=\"25\" />\n", + " <line x1=\"34\" y1=\"0\" x2=\"34\" y2=\"25\" />\n", + " <line x1=\"35\" y1=\"0\" x2=\"35\" y2=\"25\" />\n", + " <line x1=\"36\" y1=\"0\" x2=\"36\" y2=\"25\" />\n", + " <line x1=\"37\" y1=\"0\" x2=\"37\" y2=\"25\" />\n", + " <line x1=\"40\" y1=\"0\" x2=\"40\" y2=\"25\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"0.0,0.0 40.060598776365545,0.0 40.060598776365545,25.412616514582485 0.0,25.412616514582485\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", + "\n", + " <!-- Text -->\n", + " <text x=\"20.030299\" y=\"45.412617\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >37</text>\n", + " <text x=\"60.060599\" y=\"12.706308\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,60.060599,12.706308)\">1</text>\n", + "\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"110\" y1=\"0\" x2=\"124\" y2=\"14\" style=\"stroke-width:2\" />\n", + " <line x1=\"110\" y1=\"120\" x2=\"124\" y2=\"134\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"110\" y1=\"0\" x2=\"110\" y2=\"120\" style=\"stroke-width:2\" />\n", + " <line x1=\"124\" y1=\"14\" x2=\"124\" y2=\"134\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"110.0,0.0 124.9485979497544,14.948597949754403 124.9485979497544,134.9485979497544 110.0,120.0\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"110\" y1=\"0\" x2=\"197\" y2=\"0\" style=\"stroke-width:2\" />\n", + " <line x1=\"124\" y1=\"14\" x2=\"212\" y2=\"14\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"110\" y1=\"0\" x2=\"124\" y2=\"14\" style=\"stroke-width:2\" />\n", + " <line x1=\"197\" y1=\"0\" x2=\"212\" y2=\"14\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"110.0,0.0 197.11743772241994,0.0 212.06603567217434,14.948597949754403 124.9485979497544,14.948597949754403\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"124\" y1=\"14\" x2=\"212\" y2=\"14\" style=\"stroke-width:2\" />\n", + " <line x1=\"124\" y1=\"134\" x2=\"212\" y2=\"134\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"124\" y1=\"14\" x2=\"124\" y2=\"134\" style=\"stroke-width:2\" />\n", + " <line x1=\"212\" y1=\"14\" x2=\"212\" y2=\"134\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"124.9485979497544,14.948597949754403 212.06603567217434,14.948597949754403 212.06603567217434,134.9485979497544 124.9485979497544,134.9485979497544\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Text -->\n", + " <text x=\"168.507317\" y=\"154.948598\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >204</text>\n", + " <text x=\"232.066036\" y=\"74.948598\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,232.066036,74.948598)\">281</text>\n", + " <text x=\"107.474299\" y=\"147.474299\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,107.474299,147.474299)\">1</text>\n", + "</svg>\n", + " </td>\n", + " </tr>\n", + "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>td_2m</span></div><div class='xr-var-dims'>(time, height_2, lat, lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(1, 1, 281, 204), meta=np.ndarray></div><input id='attrs-ee0c5820-aa84-4aaa-aba2-ab29553152f2' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-ee0c5820-aa84-4aaa-aba2-ab29553152f2' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-f45c04bc-8644-4904-911e-26a15e4929a8' class='xr-var-data-in' type='checkbox'><label for='data-f45c04bc-8644-4904-911e-26a15e4929a8' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>standard_name :</span></dt><dd>td_2m</dd><dt><span>long_name :</span></dt><dd>dew-point in 2m</dd><dt><span>units :</span></dt><dd>K</dd><dt><span>param :</span></dt><dd>6.0.0</dd></dl></div><div class='xr-var-data'><table>\n", + " <tr>\n", + " <td>\n", + " <table>\n", + " <thead>\n", + " <tr>\n", + " <td> </td>\n", + " <th> Array </th>\n", + " <th> Chunk </th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " \n", + " <tr>\n", + " <th> Bytes </th>\n", + " <td> 8.09 MiB </td>\n", + " <td> 223.92 kiB </td>\n", + " </tr>\n", + " \n", + " <tr>\n", + " <th> Shape </th>\n", + " <td> (37, 1, 281, 204) </td>\n", + " <td> (1, 1, 281, 204) </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Count </th>\n", + " <td> 148 Tasks </td>\n", + " <td> 37 Chunks </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Type </th>\n", + " <td> float32 </td>\n", + " <td> numpy.ndarray </td>\n", + " </tr>\n", + " </tbody>\n", + " </table>\n", + " </td>\n", + " <td>\n", + " <svg width=\"372\" height=\"184\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"0\" y1=\"0\" x2=\"40\" y2=\"0\" style=\"stroke-width:2\" />\n", + " <line x1=\"0\" y1=\"25\" x2=\"40\" y2=\"25\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"25\" style=\"stroke-width:2\" />\n", + " <line x1=\"1\" y1=\"0\" x2=\"1\" y2=\"25\" />\n", + " <line x1=\"2\" y1=\"0\" x2=\"2\" y2=\"25\" />\n", + " <line x1=\"3\" y1=\"0\" x2=\"3\" y2=\"25\" />\n", + " <line x1=\"4\" y1=\"0\" x2=\"4\" y2=\"25\" />\n", + " <line x1=\"5\" y1=\"0\" x2=\"5\" y2=\"25\" />\n", + " <line x1=\"6\" y1=\"0\" x2=\"6\" y2=\"25\" />\n", + " <line x1=\"8\" y1=\"0\" x2=\"8\" y2=\"25\" />\n", + " <line x1=\"9\" y1=\"0\" x2=\"9\" y2=\"25\" />\n", + " <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"25\" />\n", + " <line x1=\"11\" y1=\"0\" x2=\"11\" y2=\"25\" />\n", + " <line x1=\"12\" y1=\"0\" x2=\"12\" y2=\"25\" />\n", + " <line x1=\"14\" y1=\"0\" x2=\"14\" y2=\"25\" />\n", + " <line x1=\"16\" y1=\"0\" x2=\"16\" y2=\"25\" />\n", + " <line x1=\"17\" y1=\"0\" x2=\"17\" y2=\"25\" />\n", + " <line x1=\"18\" y1=\"0\" x2=\"18\" y2=\"25\" />\n", + " <line x1=\"19\" y1=\"0\" x2=\"19\" y2=\"25\" />\n", + " <line x1=\"20\" y1=\"0\" x2=\"20\" y2=\"25\" />\n", + " <line x1=\"21\" y1=\"0\" x2=\"21\" y2=\"25\" />\n", + " <line x1=\"22\" y1=\"0\" x2=\"22\" y2=\"25\" />\n", + " <line x1=\"24\" y1=\"0\" x2=\"24\" y2=\"25\" />\n", + " <line x1=\"25\" y1=\"0\" x2=\"25\" y2=\"25\" />\n", + " <line x1=\"27\" y1=\"0\" x2=\"27\" y2=\"25\" />\n", + " <line x1=\"28\" y1=\"0\" x2=\"28\" y2=\"25\" />\n", + " <line x1=\"29\" y1=\"0\" x2=\"29\" y2=\"25\" />\n", + " <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"25\" />\n", + " <line x1=\"32\" y1=\"0\" x2=\"32\" y2=\"25\" />\n", + " <line x1=\"33\" y1=\"0\" x2=\"33\" y2=\"25\" />\n", + " <line x1=\"34\" y1=\"0\" x2=\"34\" y2=\"25\" />\n", + " <line x1=\"35\" y1=\"0\" x2=\"35\" y2=\"25\" />\n", + " <line x1=\"36\" y1=\"0\" x2=\"36\" y2=\"25\" />\n", + " <line x1=\"37\" y1=\"0\" x2=\"37\" y2=\"25\" />\n", + " <line x1=\"40\" y1=\"0\" x2=\"40\" y2=\"25\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"0.0,0.0 40.060598776365545,0.0 40.060598776365545,25.412616514582485 0.0,25.412616514582485\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", + "\n", + " <!-- Text -->\n", + " <text x=\"20.030299\" y=\"45.412617\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >37</text>\n", + " <text x=\"60.060599\" y=\"12.706308\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,60.060599,12.706308)\">1</text>\n", + "\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"110\" y1=\"0\" x2=\"124\" y2=\"14\" style=\"stroke-width:2\" />\n", + " <line x1=\"110\" y1=\"120\" x2=\"124\" y2=\"134\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"110\" y1=\"0\" x2=\"110\" y2=\"120\" style=\"stroke-width:2\" />\n", + " <line x1=\"124\" y1=\"14\" x2=\"124\" y2=\"134\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"110.0,0.0 124.9485979497544,14.948597949754403 124.9485979497544,134.9485979497544 110.0,120.0\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"110\" y1=\"0\" x2=\"197\" y2=\"0\" style=\"stroke-width:2\" />\n", + " <line x1=\"124\" y1=\"14\" x2=\"212\" y2=\"14\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"110\" y1=\"0\" x2=\"124\" y2=\"14\" style=\"stroke-width:2\" />\n", + " <line x1=\"197\" y1=\"0\" x2=\"212\" y2=\"14\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"110.0,0.0 197.11743772241994,0.0 212.06603567217434,14.948597949754403 124.9485979497544,14.948597949754403\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"124\" y1=\"14\" x2=\"212\" y2=\"14\" style=\"stroke-width:2\" />\n", + " <line x1=\"124\" y1=\"134\" x2=\"212\" y2=\"134\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"124\" y1=\"14\" x2=\"124\" y2=\"134\" style=\"stroke-width:2\" />\n", + " <line x1=\"212\" y1=\"14\" x2=\"212\" y2=\"134\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"124.9485979497544,14.948597949754403 212.06603567217434,14.948597949754403 212.06603567217434,134.9485979497544 124.9485979497544,134.9485979497544\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Text -->\n", + " <text x=\"168.507317\" y=\"154.948598\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >204</text>\n", + " <text x=\"232.066036\" y=\"74.948598\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,232.066036,74.948598)\">281</text>\n", + " <text x=\"107.474299\" y=\"147.474299\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,107.474299,147.474299)\">1</text>\n", + "</svg>\n", + " </td>\n", + " </tr>\n", + "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>rh_2m</span></div><div class='xr-var-dims'>(time, height_2, lat, lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(1, 1, 281, 204), meta=np.ndarray></div><input id='attrs-a277dec8-3272-41b8-910e-3e041209e148' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-a277dec8-3272-41b8-910e-3e041209e148' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-3f47318d-6bd4-414c-ae24-d58180342dd8' class='xr-var-data-in' type='checkbox'><label for='data-3f47318d-6bd4-414c-ae24-d58180342dd8' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>standard_name :</span></dt><dd>rh_2m</dd><dt><span>long_name :</span></dt><dd>relative humidity in 2m</dd><dt><span>units :</span></dt><dd>%</dd><dt><span>param :</span></dt><dd>1.1.0</dd></dl></div><div class='xr-var-data'><table>\n", + " <tr>\n", + " <td>\n", + " <table>\n", + " <thead>\n", + " <tr>\n", + " <td> </td>\n", + " <th> Array </th>\n", + " <th> Chunk </th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " \n", + " <tr>\n", + " <th> Bytes </th>\n", + " <td> 8.09 MiB </td>\n", + " <td> 223.92 kiB </td>\n", + " </tr>\n", + " \n", + " <tr>\n", + " <th> Shape </th>\n", + " <td> (37, 1, 281, 204) </td>\n", + " <td> (1, 1, 281, 204) </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Count </th>\n", + " <td> 148 Tasks </td>\n", + " <td> 37 Chunks </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Type </th>\n", + " <td> float32 </td>\n", + " <td> numpy.ndarray </td>\n", + " </tr>\n", + " </tbody>\n", + " </table>\n", + " </td>\n", + " <td>\n", + " <svg width=\"372\" height=\"184\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"0\" y1=\"0\" x2=\"40\" y2=\"0\" style=\"stroke-width:2\" />\n", + " <line x1=\"0\" y1=\"25\" x2=\"40\" y2=\"25\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"25\" style=\"stroke-width:2\" />\n", + " <line x1=\"1\" y1=\"0\" x2=\"1\" y2=\"25\" />\n", + " <line x1=\"2\" y1=\"0\" x2=\"2\" y2=\"25\" />\n", + " <line x1=\"3\" y1=\"0\" x2=\"3\" y2=\"25\" />\n", + " <line x1=\"4\" y1=\"0\" x2=\"4\" y2=\"25\" />\n", + " <line x1=\"5\" y1=\"0\" x2=\"5\" y2=\"25\" />\n", + " <line x1=\"6\" y1=\"0\" x2=\"6\" y2=\"25\" />\n", + " <line x1=\"8\" y1=\"0\" x2=\"8\" y2=\"25\" />\n", + " <line x1=\"9\" y1=\"0\" x2=\"9\" y2=\"25\" />\n", + " <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"25\" />\n", + " <line x1=\"11\" y1=\"0\" x2=\"11\" y2=\"25\" />\n", + " <line x1=\"12\" y1=\"0\" x2=\"12\" y2=\"25\" />\n", + " <line x1=\"14\" y1=\"0\" x2=\"14\" y2=\"25\" />\n", + " <line x1=\"16\" y1=\"0\" x2=\"16\" y2=\"25\" />\n", + " <line x1=\"17\" y1=\"0\" x2=\"17\" y2=\"25\" />\n", + " <line x1=\"18\" y1=\"0\" x2=\"18\" y2=\"25\" />\n", + " <line x1=\"19\" y1=\"0\" x2=\"19\" y2=\"25\" />\n", + " <line x1=\"20\" y1=\"0\" x2=\"20\" y2=\"25\" />\n", + " <line x1=\"21\" y1=\"0\" x2=\"21\" y2=\"25\" />\n", + " <line x1=\"22\" y1=\"0\" x2=\"22\" y2=\"25\" />\n", + " <line x1=\"24\" y1=\"0\" x2=\"24\" y2=\"25\" />\n", + " <line x1=\"25\" y1=\"0\" x2=\"25\" y2=\"25\" />\n", + " <line x1=\"27\" y1=\"0\" x2=\"27\" y2=\"25\" />\n", + " <line x1=\"28\" y1=\"0\" x2=\"28\" y2=\"25\" />\n", + " <line x1=\"29\" y1=\"0\" x2=\"29\" y2=\"25\" />\n", + " <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"25\" />\n", + " <line x1=\"32\" y1=\"0\" x2=\"32\" y2=\"25\" />\n", + " <line x1=\"33\" y1=\"0\" x2=\"33\" y2=\"25\" />\n", + " <line x1=\"34\" y1=\"0\" x2=\"34\" y2=\"25\" />\n", + " <line x1=\"35\" y1=\"0\" x2=\"35\" y2=\"25\" />\n", + " <line x1=\"36\" y1=\"0\" x2=\"36\" y2=\"25\" />\n", + " <line x1=\"37\" y1=\"0\" x2=\"37\" y2=\"25\" />\n", + " <line x1=\"40\" y1=\"0\" x2=\"40\" y2=\"25\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"0.0,0.0 40.060598776365545,0.0 40.060598776365545,25.412616514582485 0.0,25.412616514582485\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", + "\n", + " <!-- Text -->\n", + " <text x=\"20.030299\" y=\"45.412617\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >37</text>\n", + " <text x=\"60.060599\" y=\"12.706308\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,60.060599,12.706308)\">1</text>\n", + "\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"110\" y1=\"0\" x2=\"124\" y2=\"14\" style=\"stroke-width:2\" />\n", + " <line x1=\"110\" y1=\"120\" x2=\"124\" y2=\"134\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"110\" y1=\"0\" x2=\"110\" y2=\"120\" style=\"stroke-width:2\" />\n", + " <line x1=\"124\" y1=\"14\" x2=\"124\" y2=\"134\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"110.0,0.0 124.9485979497544,14.948597949754403 124.9485979497544,134.9485979497544 110.0,120.0\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"110\" y1=\"0\" x2=\"197\" y2=\"0\" style=\"stroke-width:2\" />\n", + " <line x1=\"124\" y1=\"14\" x2=\"212\" y2=\"14\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"110\" y1=\"0\" x2=\"124\" y2=\"14\" style=\"stroke-width:2\" />\n", + " <line x1=\"197\" y1=\"0\" x2=\"212\" y2=\"14\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"110.0,0.0 197.11743772241994,0.0 212.06603567217434,14.948597949754403 124.9485979497544,14.948597949754403\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"124\" y1=\"14\" x2=\"212\" y2=\"14\" style=\"stroke-width:2\" />\n", + " <line x1=\"124\" y1=\"134\" x2=\"212\" y2=\"134\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"124\" y1=\"14\" x2=\"124\" y2=\"134\" style=\"stroke-width:2\" />\n", + " <line x1=\"212\" y1=\"14\" x2=\"212\" y2=\"134\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"124.9485979497544,14.948597949754403 212.06603567217434,14.948597949754403 212.06603567217434,134.9485979497544 124.9485979497544,134.9485979497544\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Text -->\n", + " <text x=\"168.507317\" y=\"154.948598\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >204</text>\n", + " <text x=\"232.066036\" y=\"74.948598\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,232.066036,74.948598)\">281</text>\n", + " <text x=\"107.474299\" y=\"147.474299\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,107.474299,147.474299)\">1</text>\n", + "</svg>\n", + " </td>\n", + " </tr>\n", + "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>rain_gsp</span></div><div class='xr-var-dims'>(time, lat, lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(1, 281, 204), meta=np.ndarray></div><input id='attrs-36520423-e171-4d46-a14b-93dccbc6e704' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-36520423-e171-4d46-a14b-93dccbc6e704' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-f6efc453-77a2-40fe-8193-fe7e3d256c78' class='xr-var-data-in' type='checkbox'><label for='data-f6efc453-77a2-40fe-8193-fe7e3d256c78' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>standard_name :</span></dt><dd>rain_gsp</dd><dt><span>long_name :</span></dt><dd>gridscale rain</dd><dt><span>units :</span></dt><dd>kg m-2</dd><dt><span>param :</span></dt><dd>77.1.0</dd></dl></div><div class='xr-var-data'><table>\n", + " <tr>\n", + " <td>\n", + " <table>\n", + " <thead>\n", + " <tr>\n", + " <td> </td>\n", + " <th> Array </th>\n", + " <th> Chunk </th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " \n", + " <tr>\n", + " <th> Bytes </th>\n", + " <td> 8.09 MiB </td>\n", + " <td> 223.92 kiB </td>\n", + " </tr>\n", + " \n", + " <tr>\n", + " <th> Shape </th>\n", + " <td> (37, 281, 204) </td>\n", + " <td> (1, 281, 204) </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Count </th>\n", + " <td> 148 Tasks </td>\n", + " <td> 37 Chunks </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Type </th>\n", + " <td> float32 </td>\n", + " <td> numpy.ndarray </td>\n", + " </tr>\n", + " </tbody>\n", + " </table>\n", + " </td>\n", + " <td>\n", + " <svg width=\"170\" height=\"193\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"33\" y2=\"23\" style=\"stroke-width:2\" />\n", + " <line x1=\"10\" y1=\"120\" x2=\"33\" y2=\"143\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"120\" style=\"stroke-width:2\" />\n", + " <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"120\" />\n", + " <line x1=\"11\" y1=\"1\" x2=\"11\" y2=\"121\" />\n", + " <line x1=\"13\" y1=\"3\" x2=\"13\" y2=\"123\" />\n", + " <line x1=\"14\" y1=\"4\" x2=\"14\" y2=\"124\" />\n", + " <line x1=\"15\" y1=\"5\" x2=\"15\" y2=\"125\" />\n", + " <line x1=\"17\" y1=\"7\" x2=\"17\" y2=\"127\" />\n", + " <line x1=\"18\" y1=\"8\" x2=\"18\" y2=\"128\" />\n", + " <line x1=\"19\" y1=\"9\" x2=\"19\" y2=\"129\" />\n", + " <line x1=\"20\" y1=\"10\" x2=\"20\" y2=\"130\" />\n", + " <line x1=\"22\" y1=\"12\" x2=\"22\" y2=\"132\" />\n", + " <line x1=\"23\" y1=\"13\" x2=\"23\" y2=\"133\" />\n", + " <line x1=\"24\" y1=\"14\" x2=\"24\" y2=\"134\" />\n", + " <line x1=\"25\" y1=\"15\" x2=\"25\" y2=\"135\" />\n", + " <line x1=\"27\" y1=\"17\" x2=\"27\" y2=\"137\" />\n", + " <line x1=\"28\" y1=\"18\" x2=\"28\" y2=\"138\" />\n", + " <line x1=\"29\" y1=\"19\" x2=\"29\" y2=\"139\" />\n", + " <line x1=\"31\" y1=\"21\" x2=\"31\" y2=\"141\" />\n", + " <line x1=\"32\" y1=\"22\" x2=\"32\" y2=\"142\" />\n", + " <line x1=\"33\" y1=\"23\" x2=\"33\" y2=\"143\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"10.0,0.0 33.565058103744434,23.565058103744438 33.565058103744434,143.56505810374443 10.0,120.0\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"97\" y2=\"0\" style=\"stroke-width:2\" />\n", + " <line x1=\"10\" y1=\"0\" x2=\"97\" y2=\"0\" />\n", + " <line x1=\"11\" y1=\"1\" x2=\"99\" y2=\"1\" />\n", + " <line x1=\"13\" y1=\"3\" x2=\"100\" y2=\"3\" />\n", + " <line x1=\"14\" y1=\"4\" x2=\"101\" y2=\"4\" />\n", + " <line x1=\"15\" y1=\"5\" x2=\"102\" y2=\"5\" />\n", + " <line x1=\"17\" y1=\"7\" x2=\"104\" y2=\"7\" />\n", + " <line x1=\"18\" y1=\"8\" x2=\"105\" y2=\"8\" />\n", + " <line x1=\"19\" y1=\"9\" x2=\"106\" y2=\"9\" />\n", + " <line x1=\"20\" y1=\"10\" x2=\"107\" y2=\"10\" />\n", + " <line x1=\"22\" y1=\"12\" x2=\"109\" y2=\"12\" />\n", + " <line x1=\"23\" y1=\"13\" x2=\"110\" y2=\"13\" />\n", + " <line x1=\"24\" y1=\"14\" x2=\"111\" y2=\"14\" />\n", + " <line x1=\"25\" y1=\"15\" x2=\"113\" y2=\"15\" />\n", + " <line x1=\"27\" y1=\"17\" x2=\"114\" y2=\"17\" />\n", + " <line x1=\"28\" y1=\"18\" x2=\"115\" y2=\"18\" />\n", + " <line x1=\"29\" y1=\"19\" x2=\"116\" y2=\"19\" />\n", + " <line x1=\"31\" y1=\"21\" x2=\"118\" y2=\"21\" />\n", + " <line x1=\"32\" y1=\"22\" x2=\"119\" y2=\"22\" />\n", + " <line x1=\"33\" y1=\"23\" x2=\"120\" y2=\"23\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"33\" y2=\"23\" style=\"stroke-width:2\" />\n", + " <line x1=\"97\" y1=\"0\" x2=\"120\" y2=\"23\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"10.0,0.0 97.11743772241994,0.0 120.68249582616437,23.565058103744438 33.565058103744434,23.565058103744438\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"33\" y1=\"23\" x2=\"120\" y2=\"23\" style=\"stroke-width:2\" />\n", + " <line x1=\"33\" y1=\"143\" x2=\"120\" y2=\"143\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"33\" y1=\"23\" x2=\"33\" y2=\"143\" style=\"stroke-width:2\" />\n", + " <line x1=\"120\" y1=\"23\" x2=\"120\" y2=\"143\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"33.565058103744434,23.565058103744438 120.68249582616437,23.565058103744438 120.68249582616437,143.56505810374443 33.565058103744434,143.56505810374443\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Text -->\n", + " <text x=\"77.123777\" y=\"163.565058\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >204</text>\n", + " <text x=\"140.682496\" y=\"83.565058\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.682496,83.565058)\">281</text>\n", + " <text x=\"11.782529\" y=\"151.782529\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,11.782529,151.782529)\">37</text>\n", + "</svg>\n", + " </td>\n", + " </tr>\n", + "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>snow_gsp</span></div><div class='xr-var-dims'>(time, lat, lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(1, 281, 204), meta=np.ndarray></div><input id='attrs-9416e712-dd36-40f7-85a0-cfcebdcbe904' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-9416e712-dd36-40f7-85a0-cfcebdcbe904' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-e13261ad-4873-4ae6-9ea6-c05a8365aac7' class='xr-var-data-in' type='checkbox'><label for='data-e13261ad-4873-4ae6-9ea6-c05a8365aac7' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>standard_name :</span></dt><dd>snow_gsp</dd><dt><span>long_name :</span></dt><dd>gridscale snow</dd><dt><span>units :</span></dt><dd>kg m-2</dd><dt><span>param :</span></dt><dd>56.1.0</dd></dl></div><div class='xr-var-data'><table>\n", + " <tr>\n", + " <td>\n", + " <table>\n", + " <thead>\n", + " <tr>\n", + " <td> </td>\n", + " <th> Array </th>\n", + " <th> Chunk </th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " \n", + " <tr>\n", + " <th> Bytes </th>\n", + " <td> 8.09 MiB </td>\n", + " <td> 223.92 kiB </td>\n", + " </tr>\n", + " \n", + " <tr>\n", + " <th> Shape </th>\n", + " <td> (37, 281, 204) </td>\n", + " <td> (1, 281, 204) </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Count </th>\n", + " <td> 148 Tasks </td>\n", + " <td> 37 Chunks </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Type </th>\n", + " <td> float32 </td>\n", + " <td> numpy.ndarray </td>\n", + " </tr>\n", + " </tbody>\n", + " </table>\n", + " </td>\n", + " <td>\n", + " <svg width=\"170\" height=\"193\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"33\" y2=\"23\" style=\"stroke-width:2\" />\n", + " <line x1=\"10\" y1=\"120\" x2=\"33\" y2=\"143\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"120\" style=\"stroke-width:2\" />\n", + " <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"120\" />\n", + " <line x1=\"11\" y1=\"1\" x2=\"11\" y2=\"121\" />\n", + " <line x1=\"13\" y1=\"3\" x2=\"13\" y2=\"123\" />\n", + " <line x1=\"14\" y1=\"4\" x2=\"14\" y2=\"124\" />\n", + " <line x1=\"15\" y1=\"5\" x2=\"15\" y2=\"125\" />\n", + " <line x1=\"17\" y1=\"7\" x2=\"17\" y2=\"127\" />\n", + " <line x1=\"18\" y1=\"8\" x2=\"18\" y2=\"128\" />\n", + " <line x1=\"19\" y1=\"9\" x2=\"19\" y2=\"129\" />\n", + " <line x1=\"20\" y1=\"10\" x2=\"20\" y2=\"130\" />\n", + " <line x1=\"22\" y1=\"12\" x2=\"22\" y2=\"132\" />\n", + " <line x1=\"23\" y1=\"13\" x2=\"23\" y2=\"133\" />\n", + " <line x1=\"24\" y1=\"14\" x2=\"24\" y2=\"134\" />\n", + " <line x1=\"25\" y1=\"15\" x2=\"25\" y2=\"135\" />\n", + " <line x1=\"27\" y1=\"17\" x2=\"27\" y2=\"137\" />\n", + " <line x1=\"28\" y1=\"18\" x2=\"28\" y2=\"138\" />\n", + " <line x1=\"29\" y1=\"19\" x2=\"29\" y2=\"139\" />\n", + " <line x1=\"31\" y1=\"21\" x2=\"31\" y2=\"141\" />\n", + " <line x1=\"32\" y1=\"22\" x2=\"32\" y2=\"142\" />\n", + " <line x1=\"33\" y1=\"23\" x2=\"33\" y2=\"143\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"10.0,0.0 33.565058103744434,23.565058103744438 33.565058103744434,143.56505810374443 10.0,120.0\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"97\" y2=\"0\" style=\"stroke-width:2\" />\n", + " <line x1=\"10\" y1=\"0\" x2=\"97\" y2=\"0\" />\n", + " <line x1=\"11\" y1=\"1\" x2=\"99\" y2=\"1\" />\n", + " <line x1=\"13\" y1=\"3\" x2=\"100\" y2=\"3\" />\n", + " <line x1=\"14\" y1=\"4\" x2=\"101\" y2=\"4\" />\n", + " <line x1=\"15\" y1=\"5\" x2=\"102\" y2=\"5\" />\n", + " <line x1=\"17\" y1=\"7\" x2=\"104\" y2=\"7\" />\n", + " <line x1=\"18\" y1=\"8\" x2=\"105\" y2=\"8\" />\n", + " <line x1=\"19\" y1=\"9\" x2=\"106\" y2=\"9\" />\n", + " <line x1=\"20\" y1=\"10\" x2=\"107\" y2=\"10\" />\n", + " <line x1=\"22\" y1=\"12\" x2=\"109\" y2=\"12\" />\n", + " <line x1=\"23\" y1=\"13\" x2=\"110\" y2=\"13\" />\n", + " <line x1=\"24\" y1=\"14\" x2=\"111\" y2=\"14\" />\n", + " <line x1=\"25\" y1=\"15\" x2=\"113\" y2=\"15\" />\n", + " <line x1=\"27\" y1=\"17\" x2=\"114\" y2=\"17\" />\n", + " <line x1=\"28\" y1=\"18\" x2=\"115\" y2=\"18\" />\n", + " <line x1=\"29\" y1=\"19\" x2=\"116\" y2=\"19\" />\n", + " <line x1=\"31\" y1=\"21\" x2=\"118\" y2=\"21\" />\n", + " <line x1=\"32\" y1=\"22\" x2=\"119\" y2=\"22\" />\n", + " <line x1=\"33\" y1=\"23\" x2=\"120\" y2=\"23\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"33\" y2=\"23\" style=\"stroke-width:2\" />\n", + " <line x1=\"97\" y1=\"0\" x2=\"120\" y2=\"23\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"10.0,0.0 97.11743772241994,0.0 120.68249582616437,23.565058103744438 33.565058103744434,23.565058103744438\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"33\" y1=\"23\" x2=\"120\" y2=\"23\" style=\"stroke-width:2\" />\n", + " <line x1=\"33\" y1=\"143\" x2=\"120\" y2=\"143\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"33\" y1=\"23\" x2=\"33\" y2=\"143\" style=\"stroke-width:2\" />\n", + " <line x1=\"120\" y1=\"23\" x2=\"120\" y2=\"143\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"33.565058103744434,23.565058103744438 120.68249582616437,23.565058103744438 120.68249582616437,143.56505810374443 33.565058103744434,143.56505810374443\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Text -->\n", + " <text x=\"77.123777\" y=\"163.565058\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >204</text>\n", + " <text x=\"140.682496\" y=\"83.565058\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.682496,83.565058)\">281</text>\n", + " <text x=\"11.782529\" y=\"151.782529\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,11.782529,151.782529)\">37</text>\n", + "</svg>\n", + " </td>\n", + " </tr>\n", + "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>prec_gsp</span></div><div class='xr-var-dims'>(time, lat, lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(1, 281, 204), meta=np.ndarray></div><input id='attrs-94834c4d-d80e-4a65-9d5e-cbf7080ae1d7' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-94834c4d-d80e-4a65-9d5e-cbf7080ae1d7' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-c4e81179-7006-4892-84d4-cae82328d7b7' class='xr-var-data-in' type='checkbox'><label for='data-c4e81179-7006-4892-84d4-cae82328d7b7' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>standard_name :</span></dt><dd>prec_gsp</dd><dt><span>long_name :</span></dt><dd>gridscale precip</dd><dt><span>units :</span></dt><dd>kg m-2</dd><dt><span>param :</span></dt><dd>54.1.0</dd></dl></div><div class='xr-var-data'><table>\n", + " <tr>\n", + " <td>\n", + " <table>\n", + " <thead>\n", + " <tr>\n", + " <td> </td>\n", + " <th> Array </th>\n", + " <th> Chunk </th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " \n", + " <tr>\n", + " <th> Bytes </th>\n", + " <td> 8.09 MiB </td>\n", + " <td> 223.92 kiB </td>\n", + " </tr>\n", + " \n", + " <tr>\n", + " <th> Shape </th>\n", + " <td> (37, 281, 204) </td>\n", + " <td> (1, 281, 204) </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Count </th>\n", + " <td> 148 Tasks </td>\n", + " <td> 37 Chunks </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Type </th>\n", + " <td> float32 </td>\n", + " <td> numpy.ndarray </td>\n", + " </tr>\n", + " </tbody>\n", + " </table>\n", + " </td>\n", + " <td>\n", + " <svg width=\"170\" height=\"193\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"33\" y2=\"23\" style=\"stroke-width:2\" />\n", + " <line x1=\"10\" y1=\"120\" x2=\"33\" y2=\"143\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"120\" style=\"stroke-width:2\" />\n", + " <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"120\" />\n", + " <line x1=\"11\" y1=\"1\" x2=\"11\" y2=\"121\" />\n", + " <line x1=\"13\" y1=\"3\" x2=\"13\" y2=\"123\" />\n", + " <line x1=\"14\" y1=\"4\" x2=\"14\" y2=\"124\" />\n", + " <line x1=\"15\" y1=\"5\" x2=\"15\" y2=\"125\" />\n", + " <line x1=\"17\" y1=\"7\" x2=\"17\" y2=\"127\" />\n", + " <line x1=\"18\" y1=\"8\" x2=\"18\" y2=\"128\" />\n", + " <line x1=\"19\" y1=\"9\" x2=\"19\" y2=\"129\" />\n", + " <line x1=\"20\" y1=\"10\" x2=\"20\" y2=\"130\" />\n", + " <line x1=\"22\" y1=\"12\" x2=\"22\" y2=\"132\" />\n", + " <line x1=\"23\" y1=\"13\" x2=\"23\" y2=\"133\" />\n", + " <line x1=\"24\" y1=\"14\" x2=\"24\" y2=\"134\" />\n", + " <line x1=\"25\" y1=\"15\" x2=\"25\" y2=\"135\" />\n", + " <line x1=\"27\" y1=\"17\" x2=\"27\" y2=\"137\" />\n", + " <line x1=\"28\" y1=\"18\" x2=\"28\" y2=\"138\" />\n", + " <line x1=\"29\" y1=\"19\" x2=\"29\" y2=\"139\" />\n", + " <line x1=\"31\" y1=\"21\" x2=\"31\" y2=\"141\" />\n", + " <line x1=\"32\" y1=\"22\" x2=\"32\" y2=\"142\" />\n", + " <line x1=\"33\" y1=\"23\" x2=\"33\" y2=\"143\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"10.0,0.0 33.565058103744434,23.565058103744438 33.565058103744434,143.56505810374443 10.0,120.0\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"97\" y2=\"0\" style=\"stroke-width:2\" />\n", + " <line x1=\"10\" y1=\"0\" x2=\"97\" y2=\"0\" />\n", + " <line x1=\"11\" y1=\"1\" x2=\"99\" y2=\"1\" />\n", + " <line x1=\"13\" y1=\"3\" x2=\"100\" y2=\"3\" />\n", + " <line x1=\"14\" y1=\"4\" x2=\"101\" y2=\"4\" />\n", + " <line x1=\"15\" y1=\"5\" x2=\"102\" y2=\"5\" />\n", + " <line x1=\"17\" y1=\"7\" x2=\"104\" y2=\"7\" />\n", + " <line x1=\"18\" y1=\"8\" x2=\"105\" y2=\"8\" />\n", + " <line x1=\"19\" y1=\"9\" x2=\"106\" y2=\"9\" />\n", + " <line x1=\"20\" y1=\"10\" x2=\"107\" y2=\"10\" />\n", + " <line x1=\"22\" y1=\"12\" x2=\"109\" y2=\"12\" />\n", + " <line x1=\"23\" y1=\"13\" x2=\"110\" y2=\"13\" />\n", + " <line x1=\"24\" y1=\"14\" x2=\"111\" y2=\"14\" />\n", + " <line x1=\"25\" y1=\"15\" x2=\"113\" y2=\"15\" />\n", + " <line x1=\"27\" y1=\"17\" x2=\"114\" y2=\"17\" />\n", + " <line x1=\"28\" y1=\"18\" x2=\"115\" y2=\"18\" />\n", + " <line x1=\"29\" y1=\"19\" x2=\"116\" y2=\"19\" />\n", + " <line x1=\"31\" y1=\"21\" x2=\"118\" y2=\"21\" />\n", + " <line x1=\"32\" y1=\"22\" x2=\"119\" y2=\"22\" />\n", + " <line x1=\"33\" y1=\"23\" x2=\"120\" y2=\"23\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"33\" y2=\"23\" style=\"stroke-width:2\" />\n", + " <line x1=\"97\" y1=\"0\" x2=\"120\" y2=\"23\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"10.0,0.0 97.11743772241994,0.0 120.68249582616437,23.565058103744438 33.565058103744434,23.565058103744438\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"33\" y1=\"23\" x2=\"120\" y2=\"23\" style=\"stroke-width:2\" />\n", + " <line x1=\"33\" y1=\"143\" x2=\"120\" y2=\"143\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"33\" y1=\"23\" x2=\"33\" y2=\"143\" style=\"stroke-width:2\" />\n", + " <line x1=\"120\" y1=\"23\" x2=\"120\" y2=\"143\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"33.565058103744434,23.565058103744438 120.68249582616437,23.565058103744438 120.68249582616437,143.56505810374443 33.565058103744434,143.56505810374443\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Text -->\n", + " <text x=\"77.123777\" y=\"163.565058\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >204</text>\n", + " <text x=\"140.682496\" y=\"83.565058\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.682496,83.565058)\">281</text>\n", + " <text x=\"11.782529\" y=\"151.782529\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,11.782529,151.782529)\">37</text>\n", + "</svg>\n", + " </td>\n", + " </tr>\n", + "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>rain_con</span></div><div class='xr-var-dims'>(time, lat, lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(1, 281, 204), meta=np.ndarray></div><input id='attrs-51a4ca95-6993-4a15-ba70-287745fb0192' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-51a4ca95-6993-4a15-ba70-287745fb0192' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-6f6824e3-8600-48b9-9ad4-4ec8e4e94606' class='xr-var-data-in' type='checkbox'><label for='data-6f6824e3-8600-48b9-9ad4-4ec8e4e94606' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>standard_name :</span></dt><dd>rain_con</dd><dt><span>long_name :</span></dt><dd>convective rain</dd><dt><span>units :</span></dt><dd>kg m-2</dd><dt><span>param :</span></dt><dd>76.1.0</dd></dl></div><div class='xr-var-data'><table>\n", + " <tr>\n", + " <td>\n", + " <table>\n", + " <thead>\n", + " <tr>\n", + " <td> </td>\n", + " <th> Array </th>\n", + " <th> Chunk </th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " \n", + " <tr>\n", + " <th> Bytes </th>\n", + " <td> 8.09 MiB </td>\n", + " <td> 223.92 kiB </td>\n", + " </tr>\n", + " \n", + " <tr>\n", + " <th> Shape </th>\n", + " <td> (37, 281, 204) </td>\n", + " <td> (1, 281, 204) </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Count </th>\n", + " <td> 148 Tasks </td>\n", + " <td> 37 Chunks </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Type </th>\n", + " <td> float32 </td>\n", + " <td> numpy.ndarray </td>\n", + " </tr>\n", + " </tbody>\n", + " </table>\n", + " </td>\n", + " <td>\n", + " <svg width=\"170\" height=\"193\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"33\" y2=\"23\" style=\"stroke-width:2\" />\n", + " <line x1=\"10\" y1=\"120\" x2=\"33\" y2=\"143\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"120\" style=\"stroke-width:2\" />\n", + " <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"120\" />\n", + " <line x1=\"11\" y1=\"1\" x2=\"11\" y2=\"121\" />\n", + " <line x1=\"13\" y1=\"3\" x2=\"13\" y2=\"123\" />\n", + " <line x1=\"14\" y1=\"4\" x2=\"14\" y2=\"124\" />\n", + " <line x1=\"15\" y1=\"5\" x2=\"15\" y2=\"125\" />\n", + " <line x1=\"17\" y1=\"7\" x2=\"17\" y2=\"127\" />\n", + " <line x1=\"18\" y1=\"8\" x2=\"18\" y2=\"128\" />\n", + " <line x1=\"19\" y1=\"9\" x2=\"19\" y2=\"129\" />\n", + " <line x1=\"20\" y1=\"10\" x2=\"20\" y2=\"130\" />\n", + " <line x1=\"22\" y1=\"12\" x2=\"22\" y2=\"132\" />\n", + " <line x1=\"23\" y1=\"13\" x2=\"23\" y2=\"133\" />\n", + " <line x1=\"24\" y1=\"14\" x2=\"24\" y2=\"134\" />\n", + " <line x1=\"25\" y1=\"15\" x2=\"25\" y2=\"135\" />\n", + " <line x1=\"27\" y1=\"17\" x2=\"27\" y2=\"137\" />\n", + " <line x1=\"28\" y1=\"18\" x2=\"28\" y2=\"138\" />\n", + " <line x1=\"29\" y1=\"19\" x2=\"29\" y2=\"139\" />\n", + " <line x1=\"31\" y1=\"21\" x2=\"31\" y2=\"141\" />\n", + " <line x1=\"32\" y1=\"22\" x2=\"32\" y2=\"142\" />\n", + " <line x1=\"33\" y1=\"23\" x2=\"33\" y2=\"143\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"10.0,0.0 33.565058103744434,23.565058103744438 33.565058103744434,143.56505810374443 10.0,120.0\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"97\" y2=\"0\" style=\"stroke-width:2\" />\n", + " <line x1=\"10\" y1=\"0\" x2=\"97\" y2=\"0\" />\n", + " <line x1=\"11\" y1=\"1\" x2=\"99\" y2=\"1\" />\n", + " <line x1=\"13\" y1=\"3\" x2=\"100\" y2=\"3\" />\n", + " <line x1=\"14\" y1=\"4\" x2=\"101\" y2=\"4\" />\n", + " <line x1=\"15\" y1=\"5\" x2=\"102\" y2=\"5\" />\n", + " <line x1=\"17\" y1=\"7\" x2=\"104\" y2=\"7\" />\n", + " <line x1=\"18\" y1=\"8\" x2=\"105\" y2=\"8\" />\n", + " <line x1=\"19\" y1=\"9\" x2=\"106\" y2=\"9\" />\n", + " <line x1=\"20\" y1=\"10\" x2=\"107\" y2=\"10\" />\n", + " <line x1=\"22\" y1=\"12\" x2=\"109\" y2=\"12\" />\n", + " <line x1=\"23\" y1=\"13\" x2=\"110\" y2=\"13\" />\n", + " <line x1=\"24\" y1=\"14\" x2=\"111\" y2=\"14\" />\n", + " <line x1=\"25\" y1=\"15\" x2=\"113\" y2=\"15\" />\n", + " <line x1=\"27\" y1=\"17\" x2=\"114\" y2=\"17\" />\n", + " <line x1=\"28\" y1=\"18\" x2=\"115\" y2=\"18\" />\n", + " <line x1=\"29\" y1=\"19\" x2=\"116\" y2=\"19\" />\n", + " <line x1=\"31\" y1=\"21\" x2=\"118\" y2=\"21\" />\n", + " <line x1=\"32\" y1=\"22\" x2=\"119\" y2=\"22\" />\n", + " <line x1=\"33\" y1=\"23\" x2=\"120\" y2=\"23\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"33\" y2=\"23\" style=\"stroke-width:2\" />\n", + " <line x1=\"97\" y1=\"0\" x2=\"120\" y2=\"23\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"10.0,0.0 97.11743772241994,0.0 120.68249582616437,23.565058103744438 33.565058103744434,23.565058103744438\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"33\" y1=\"23\" x2=\"120\" y2=\"23\" style=\"stroke-width:2\" />\n", + " <line x1=\"33\" y1=\"143\" x2=\"120\" y2=\"143\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"33\" y1=\"23\" x2=\"33\" y2=\"143\" style=\"stroke-width:2\" />\n", + " <line x1=\"120\" y1=\"23\" x2=\"120\" y2=\"143\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"33.565058103744434,23.565058103744438 120.68249582616437,23.565058103744438 120.68249582616437,143.56505810374443 33.565058103744434,143.56505810374443\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Text -->\n", + " <text x=\"77.123777\" y=\"163.565058\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >204</text>\n", + " <text x=\"140.682496\" y=\"83.565058\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.682496,83.565058)\">281</text>\n", + " <text x=\"11.782529\" y=\"151.782529\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,11.782529,151.782529)\">37</text>\n", + "</svg>\n", + " </td>\n", + " </tr>\n", + "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>snow_con</span></div><div class='xr-var-dims'>(time, lat, lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(1, 281, 204), meta=np.ndarray></div><input id='attrs-e93ba4cf-f260-4beb-b976-0c6835873ded' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-e93ba4cf-f260-4beb-b976-0c6835873ded' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-5cdc8ec8-172c-4f5c-b53f-eac240e03278' class='xr-var-data-in' type='checkbox'><label for='data-5cdc8ec8-172c-4f5c-b53f-eac240e03278' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>standard_name :</span></dt><dd>snow_con</dd><dt><span>long_name :</span></dt><dd>convective snow</dd><dt><span>units :</span></dt><dd>kg m-2</dd><dt><span>param :</span></dt><dd>55.1.0</dd></dl></div><div class='xr-var-data'><table>\n", + " <tr>\n", + " <td>\n", + " <table>\n", + " <thead>\n", + " <tr>\n", + " <td> </td>\n", + " <th> Array </th>\n", + " <th> Chunk </th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " \n", + " <tr>\n", + " <th> Bytes </th>\n", + " <td> 8.09 MiB </td>\n", + " <td> 223.92 kiB </td>\n", + " </tr>\n", + " \n", + " <tr>\n", + " <th> Shape </th>\n", + " <td> (37, 281, 204) </td>\n", + " <td> (1, 281, 204) </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Count </th>\n", + " <td> 148 Tasks </td>\n", + " <td> 37 Chunks </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Type </th>\n", + " <td> float32 </td>\n", + " <td> numpy.ndarray </td>\n", + " </tr>\n", + " </tbody>\n", + " </table>\n", + " </td>\n", + " <td>\n", + " <svg width=\"170\" height=\"193\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"33\" y2=\"23\" style=\"stroke-width:2\" />\n", + " <line x1=\"10\" y1=\"120\" x2=\"33\" y2=\"143\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"120\" style=\"stroke-width:2\" />\n", + " <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"120\" />\n", + " <line x1=\"11\" y1=\"1\" x2=\"11\" y2=\"121\" />\n", + " <line x1=\"13\" y1=\"3\" x2=\"13\" y2=\"123\" />\n", + " <line x1=\"14\" y1=\"4\" x2=\"14\" y2=\"124\" />\n", + " <line x1=\"15\" y1=\"5\" x2=\"15\" y2=\"125\" />\n", + " <line x1=\"17\" y1=\"7\" x2=\"17\" y2=\"127\" />\n", + " <line x1=\"18\" y1=\"8\" x2=\"18\" y2=\"128\" />\n", + " <line x1=\"19\" y1=\"9\" x2=\"19\" y2=\"129\" />\n", + " <line x1=\"20\" y1=\"10\" x2=\"20\" y2=\"130\" />\n", + " <line x1=\"22\" y1=\"12\" x2=\"22\" y2=\"132\" />\n", + " <line x1=\"23\" y1=\"13\" x2=\"23\" y2=\"133\" />\n", + " <line x1=\"24\" y1=\"14\" x2=\"24\" y2=\"134\" />\n", + " <line x1=\"25\" y1=\"15\" x2=\"25\" y2=\"135\" />\n", + " <line x1=\"27\" y1=\"17\" x2=\"27\" y2=\"137\" />\n", + " <line x1=\"28\" y1=\"18\" x2=\"28\" y2=\"138\" />\n", + " <line x1=\"29\" y1=\"19\" x2=\"29\" y2=\"139\" />\n", + " <line x1=\"31\" y1=\"21\" x2=\"31\" y2=\"141\" />\n", + " <line x1=\"32\" y1=\"22\" x2=\"32\" y2=\"142\" />\n", + " <line x1=\"33\" y1=\"23\" x2=\"33\" y2=\"143\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"10.0,0.0 33.565058103744434,23.565058103744438 33.565058103744434,143.56505810374443 10.0,120.0\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"97\" y2=\"0\" style=\"stroke-width:2\" />\n", + " <line x1=\"10\" y1=\"0\" x2=\"97\" y2=\"0\" />\n", + " <line x1=\"11\" y1=\"1\" x2=\"99\" y2=\"1\" />\n", + " <line x1=\"13\" y1=\"3\" x2=\"100\" y2=\"3\" />\n", + " <line x1=\"14\" y1=\"4\" x2=\"101\" y2=\"4\" />\n", + " <line x1=\"15\" y1=\"5\" x2=\"102\" y2=\"5\" />\n", + " <line x1=\"17\" y1=\"7\" x2=\"104\" y2=\"7\" />\n", + " <line x1=\"18\" y1=\"8\" x2=\"105\" y2=\"8\" />\n", + " <line x1=\"19\" y1=\"9\" x2=\"106\" y2=\"9\" />\n", + " <line x1=\"20\" y1=\"10\" x2=\"107\" y2=\"10\" />\n", + " <line x1=\"22\" y1=\"12\" x2=\"109\" y2=\"12\" />\n", + " <line x1=\"23\" y1=\"13\" x2=\"110\" y2=\"13\" />\n", + " <line x1=\"24\" y1=\"14\" x2=\"111\" y2=\"14\" />\n", + " <line x1=\"25\" y1=\"15\" x2=\"113\" y2=\"15\" />\n", + " <line x1=\"27\" y1=\"17\" x2=\"114\" y2=\"17\" />\n", + " <line x1=\"28\" y1=\"18\" x2=\"115\" y2=\"18\" />\n", + " <line x1=\"29\" y1=\"19\" x2=\"116\" y2=\"19\" />\n", + " <line x1=\"31\" y1=\"21\" x2=\"118\" y2=\"21\" />\n", + " <line x1=\"32\" y1=\"22\" x2=\"119\" y2=\"22\" />\n", + " <line x1=\"33\" y1=\"23\" x2=\"120\" y2=\"23\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"33\" y2=\"23\" style=\"stroke-width:2\" />\n", + " <line x1=\"97\" y1=\"0\" x2=\"120\" y2=\"23\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"10.0,0.0 97.11743772241994,0.0 120.68249582616437,23.565058103744438 33.565058103744434,23.565058103744438\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"33\" y1=\"23\" x2=\"120\" y2=\"23\" style=\"stroke-width:2\" />\n", + " <line x1=\"33\" y1=\"143\" x2=\"120\" y2=\"143\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"33\" y1=\"23\" x2=\"33\" y2=\"143\" style=\"stroke-width:2\" />\n", + " <line x1=\"120\" y1=\"23\" x2=\"120\" y2=\"143\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"33.565058103744434,23.565058103744438 120.68249582616437,23.565058103744438 120.68249582616437,143.56505810374443 33.565058103744434,143.56505810374443\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Text -->\n", + " <text x=\"77.123777\" y=\"163.565058\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >204</text>\n", + " <text x=\"140.682496\" y=\"83.565058\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.682496,83.565058)\">281</text>\n", + " <text x=\"11.782529\" y=\"151.782529\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,11.782529,151.782529)\">37</text>\n", + "</svg>\n", + " </td>\n", + " </tr>\n", + "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>prec_con</span></div><div class='xr-var-dims'>(time, lat, lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(1, 281, 204), meta=np.ndarray></div><input id='attrs-e6340fbe-4f56-4cb8-bf6d-92c4e8415c24' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-e6340fbe-4f56-4cb8-bf6d-92c4e8415c24' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-a5553f72-b268-464a-abeb-a0daf959cc6c' class='xr-var-data-in' type='checkbox'><label for='data-a5553f72-b268-464a-abeb-a0daf959cc6c' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>standard_name :</span></dt><dd>prec_con</dd><dt><span>long_name :</span></dt><dd>convective precip</dd><dt><span>units :</span></dt><dd>kg m-2</dd><dt><span>param :</span></dt><dd>37.1.0</dd></dl></div><div class='xr-var-data'><table>\n", + " <tr>\n", + " <td>\n", + " <table>\n", + " <thead>\n", + " <tr>\n", + " <td> </td>\n", + " <th> Array </th>\n", + " <th> Chunk </th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " \n", + " <tr>\n", + " <th> Bytes </th>\n", + " <td> 8.09 MiB </td>\n", + " <td> 223.92 kiB </td>\n", + " </tr>\n", + " \n", + " <tr>\n", + " <th> Shape </th>\n", + " <td> (37, 281, 204) </td>\n", + " <td> (1, 281, 204) </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Count </th>\n", + " <td> 148 Tasks </td>\n", + " <td> 37 Chunks </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Type </th>\n", + " <td> float32 </td>\n", + " <td> numpy.ndarray </td>\n", + " </tr>\n", + " </tbody>\n", + " </table>\n", + " </td>\n", + " <td>\n", + " <svg width=\"170\" height=\"193\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"33\" y2=\"23\" style=\"stroke-width:2\" />\n", + " <line x1=\"10\" y1=\"120\" x2=\"33\" y2=\"143\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"120\" style=\"stroke-width:2\" />\n", + " <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"120\" />\n", + " <line x1=\"11\" y1=\"1\" x2=\"11\" y2=\"121\" />\n", + " <line x1=\"13\" y1=\"3\" x2=\"13\" y2=\"123\" />\n", + " <line x1=\"14\" y1=\"4\" x2=\"14\" y2=\"124\" />\n", + " <line x1=\"15\" y1=\"5\" x2=\"15\" y2=\"125\" />\n", + " <line x1=\"17\" y1=\"7\" x2=\"17\" y2=\"127\" />\n", + " <line x1=\"18\" y1=\"8\" x2=\"18\" y2=\"128\" />\n", + " <line x1=\"19\" y1=\"9\" x2=\"19\" y2=\"129\" />\n", + " <line x1=\"20\" y1=\"10\" x2=\"20\" y2=\"130\" />\n", + " <line x1=\"22\" y1=\"12\" x2=\"22\" y2=\"132\" />\n", + " <line x1=\"23\" y1=\"13\" x2=\"23\" y2=\"133\" />\n", + " <line x1=\"24\" y1=\"14\" x2=\"24\" y2=\"134\" />\n", + " <line x1=\"25\" y1=\"15\" x2=\"25\" y2=\"135\" />\n", + " <line x1=\"27\" y1=\"17\" x2=\"27\" y2=\"137\" />\n", + " <line x1=\"28\" y1=\"18\" x2=\"28\" y2=\"138\" />\n", + " <line x1=\"29\" y1=\"19\" x2=\"29\" y2=\"139\" />\n", + " <line x1=\"31\" y1=\"21\" x2=\"31\" y2=\"141\" />\n", + " <line x1=\"32\" y1=\"22\" x2=\"32\" y2=\"142\" />\n", + " <line x1=\"33\" y1=\"23\" x2=\"33\" y2=\"143\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"10.0,0.0 33.565058103744434,23.565058103744438 33.565058103744434,143.56505810374443 10.0,120.0\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"97\" y2=\"0\" style=\"stroke-width:2\" />\n", + " <line x1=\"10\" y1=\"0\" x2=\"97\" y2=\"0\" />\n", + " <line x1=\"11\" y1=\"1\" x2=\"99\" y2=\"1\" />\n", + " <line x1=\"13\" y1=\"3\" x2=\"100\" y2=\"3\" />\n", + " <line x1=\"14\" y1=\"4\" x2=\"101\" y2=\"4\" />\n", + " <line x1=\"15\" y1=\"5\" x2=\"102\" y2=\"5\" />\n", + " <line x1=\"17\" y1=\"7\" x2=\"104\" y2=\"7\" />\n", + " <line x1=\"18\" y1=\"8\" x2=\"105\" y2=\"8\" />\n", + " <line x1=\"19\" y1=\"9\" x2=\"106\" y2=\"9\" />\n", + " <line x1=\"20\" y1=\"10\" x2=\"107\" y2=\"10\" />\n", + " <line x1=\"22\" y1=\"12\" x2=\"109\" y2=\"12\" />\n", + " <line x1=\"23\" y1=\"13\" x2=\"110\" y2=\"13\" />\n", + " <line x1=\"24\" y1=\"14\" x2=\"111\" y2=\"14\" />\n", + " <line x1=\"25\" y1=\"15\" x2=\"113\" y2=\"15\" />\n", + " <line x1=\"27\" y1=\"17\" x2=\"114\" y2=\"17\" />\n", + " <line x1=\"28\" y1=\"18\" x2=\"115\" y2=\"18\" />\n", + " <line x1=\"29\" y1=\"19\" x2=\"116\" y2=\"19\" />\n", + " <line x1=\"31\" y1=\"21\" x2=\"118\" y2=\"21\" />\n", + " <line x1=\"32\" y1=\"22\" x2=\"119\" y2=\"22\" />\n", + " <line x1=\"33\" y1=\"23\" x2=\"120\" y2=\"23\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"33\" y2=\"23\" style=\"stroke-width:2\" />\n", + " <line x1=\"97\" y1=\"0\" x2=\"120\" y2=\"23\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"10.0,0.0 97.11743772241994,0.0 120.68249582616437,23.565058103744438 33.565058103744434,23.565058103744438\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"33\" y1=\"23\" x2=\"120\" y2=\"23\" style=\"stroke-width:2\" />\n", + " <line x1=\"33\" y1=\"143\" x2=\"120\" y2=\"143\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"33\" y1=\"23\" x2=\"33\" y2=\"143\" style=\"stroke-width:2\" />\n", + " <line x1=\"120\" y1=\"23\" x2=\"120\" y2=\"143\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"33.565058103744434,23.565058103744438 120.68249582616437,23.565058103744438 120.68249582616437,143.56505810374443 33.565058103744434,143.56505810374443\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Text -->\n", + " <text x=\"77.123777\" y=\"163.565058\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >204</text>\n", + " <text x=\"140.682496\" y=\"83.565058\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.682496,83.565058)\">281</text>\n", + " <text x=\"11.782529\" y=\"151.782529\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,11.782529,151.782529)\">37</text>\n", + "</svg>\n", + " </td>\n", + " </tr>\n", + "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>tot_prec</span></div><div class='xr-var-dims'>(time, lat, lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(1, 281, 204), meta=np.ndarray></div><input id='attrs-11a19178-94e6-47e5-b4c5-d641648fab73' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-11a19178-94e6-47e5-b4c5-d641648fab73' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-27bae375-3f25-4537-a02f-dcbf042799d7' class='xr-var-data-in' type='checkbox'><label for='data-27bae375-3f25-4537-a02f-dcbf042799d7' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>standard_name :</span></dt><dd>tot_prec</dd><dt><span>long_name :</span></dt><dd>total precip</dd><dt><span>units :</span></dt><dd>kg m-2</dd><dt><span>param :</span></dt><dd>52.1.0</dd></dl></div><div class='xr-var-data'><table>\n", + " <tr>\n", + " <td>\n", + " <table>\n", + " <thead>\n", + " <tr>\n", + " <td> </td>\n", + " <th> Array </th>\n", + " <th> Chunk </th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " \n", + " <tr>\n", + " <th> Bytes </th>\n", + " <td> 8.09 MiB </td>\n", + " <td> 223.92 kiB </td>\n", + " </tr>\n", + " \n", + " <tr>\n", + " <th> Shape </th>\n", + " <td> (37, 281, 204) </td>\n", + " <td> (1, 281, 204) </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Count </th>\n", + " <td> 148 Tasks </td>\n", + " <td> 37 Chunks </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Type </th>\n", + " <td> float32 </td>\n", + " <td> numpy.ndarray </td>\n", + " </tr>\n", + " </tbody>\n", + " </table>\n", + " </td>\n", + " <td>\n", + " <svg width=\"170\" height=\"193\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"33\" y2=\"23\" style=\"stroke-width:2\" />\n", + " <line x1=\"10\" y1=\"120\" x2=\"33\" y2=\"143\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"120\" style=\"stroke-width:2\" />\n", + " <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"120\" />\n", + " <line x1=\"11\" y1=\"1\" x2=\"11\" y2=\"121\" />\n", + " <line x1=\"13\" y1=\"3\" x2=\"13\" y2=\"123\" />\n", + " <line x1=\"14\" y1=\"4\" x2=\"14\" y2=\"124\" />\n", + " <line x1=\"15\" y1=\"5\" x2=\"15\" y2=\"125\" />\n", + " <line x1=\"17\" y1=\"7\" x2=\"17\" y2=\"127\" />\n", + " <line x1=\"18\" y1=\"8\" x2=\"18\" y2=\"128\" />\n", + " <line x1=\"19\" y1=\"9\" x2=\"19\" y2=\"129\" />\n", + " <line x1=\"20\" y1=\"10\" x2=\"20\" y2=\"130\" />\n", + " <line x1=\"22\" y1=\"12\" x2=\"22\" y2=\"132\" />\n", + " <line x1=\"23\" y1=\"13\" x2=\"23\" y2=\"133\" />\n", + " <line x1=\"24\" y1=\"14\" x2=\"24\" y2=\"134\" />\n", + " <line x1=\"25\" y1=\"15\" x2=\"25\" y2=\"135\" />\n", + " <line x1=\"27\" y1=\"17\" x2=\"27\" y2=\"137\" />\n", + " <line x1=\"28\" y1=\"18\" x2=\"28\" y2=\"138\" />\n", + " <line x1=\"29\" y1=\"19\" x2=\"29\" y2=\"139\" />\n", + " <line x1=\"31\" y1=\"21\" x2=\"31\" y2=\"141\" />\n", + " <line x1=\"32\" y1=\"22\" x2=\"32\" y2=\"142\" />\n", + " <line x1=\"33\" y1=\"23\" x2=\"33\" y2=\"143\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"10.0,0.0 33.565058103744434,23.565058103744438 33.565058103744434,143.56505810374443 10.0,120.0\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"97\" y2=\"0\" style=\"stroke-width:2\" />\n", + " <line x1=\"10\" y1=\"0\" x2=\"97\" y2=\"0\" />\n", + " <line x1=\"11\" y1=\"1\" x2=\"99\" y2=\"1\" />\n", + " <line x1=\"13\" y1=\"3\" x2=\"100\" y2=\"3\" />\n", + " <line x1=\"14\" y1=\"4\" x2=\"101\" y2=\"4\" />\n", + " <line x1=\"15\" y1=\"5\" x2=\"102\" y2=\"5\" />\n", + " <line x1=\"17\" y1=\"7\" x2=\"104\" y2=\"7\" />\n", + " <line x1=\"18\" y1=\"8\" x2=\"105\" y2=\"8\" />\n", + " <line x1=\"19\" y1=\"9\" x2=\"106\" y2=\"9\" />\n", + " <line x1=\"20\" y1=\"10\" x2=\"107\" y2=\"10\" />\n", + " <line x1=\"22\" y1=\"12\" x2=\"109\" y2=\"12\" />\n", + " <line x1=\"23\" y1=\"13\" x2=\"110\" y2=\"13\" />\n", + " <line x1=\"24\" y1=\"14\" x2=\"111\" y2=\"14\" />\n", + " <line x1=\"25\" y1=\"15\" x2=\"113\" y2=\"15\" />\n", + " <line x1=\"27\" y1=\"17\" x2=\"114\" y2=\"17\" />\n", + " <line x1=\"28\" y1=\"18\" x2=\"115\" y2=\"18\" />\n", + " <line x1=\"29\" y1=\"19\" x2=\"116\" y2=\"19\" />\n", + " <line x1=\"31\" y1=\"21\" x2=\"118\" y2=\"21\" />\n", + " <line x1=\"32\" y1=\"22\" x2=\"119\" y2=\"22\" />\n", + " <line x1=\"33\" y1=\"23\" x2=\"120\" y2=\"23\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"33\" y2=\"23\" style=\"stroke-width:2\" />\n", + " <line x1=\"97\" y1=\"0\" x2=\"120\" y2=\"23\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"10.0,0.0 97.11743772241994,0.0 120.68249582616437,23.565058103744438 33.565058103744434,23.565058103744438\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"33\" y1=\"23\" x2=\"120\" y2=\"23\" style=\"stroke-width:2\" />\n", + " <line x1=\"33\" y1=\"143\" x2=\"120\" y2=\"143\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"33\" y1=\"23\" x2=\"33\" y2=\"143\" style=\"stroke-width:2\" />\n", + " <line x1=\"120\" y1=\"23\" x2=\"120\" y2=\"143\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"33.565058103744434,23.565058103744438 120.68249582616437,23.565058103744438 120.68249582616437,143.56505810374443 33.565058103744434,143.56505810374443\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Text -->\n", + " <text x=\"77.123777\" y=\"163.565058\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >204</text>\n", + " <text x=\"140.682496\" y=\"83.565058\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.682496,83.565058)\">281</text>\n", + " <text x=\"11.782529\" y=\"151.782529\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,11.782529,151.782529)\">37</text>\n", + "</svg>\n", + " </td>\n", + " </tr>\n", + "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>rain_gsp_rate</span></div><div class='xr-var-dims'>(time, lat, lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(1, 281, 204), meta=np.ndarray></div><input id='attrs-0a857de7-4044-4f42-97c6-8223ce328858' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-0a857de7-4044-4f42-97c6-8223ce328858' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-50769384-2499-4a50-9c76-6c814972f5f7' class='xr-var-data-in' type='checkbox'><label for='data-50769384-2499-4a50-9c76-6c814972f5f7' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>standard_name :</span></dt><dd>rain_gsp_rate</dd><dt><span>long_name :</span></dt><dd>gridscale rain rate</dd><dt><span>units :</span></dt><dd>kg m-2 s-1</dd><dt><span>param :</span></dt><dd>77.1.0</dd></dl></div><div class='xr-var-data'><table>\n", + " <tr>\n", + " <td>\n", + " <table>\n", + " <thead>\n", + " <tr>\n", + " <td> </td>\n", + " <th> Array </th>\n", + " <th> Chunk </th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " \n", + " <tr>\n", + " <th> Bytes </th>\n", + " <td> 8.09 MiB </td>\n", + " <td> 223.92 kiB </td>\n", + " </tr>\n", + " \n", + " <tr>\n", + " <th> Shape </th>\n", + " <td> (37, 281, 204) </td>\n", + " <td> (1, 281, 204) </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Count </th>\n", + " <td> 148 Tasks </td>\n", + " <td> 37 Chunks </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Type </th>\n", + " <td> float32 </td>\n", + " <td> numpy.ndarray </td>\n", + " </tr>\n", + " </tbody>\n", + " </table>\n", + " </td>\n", + " <td>\n", + " <svg width=\"170\" height=\"193\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"33\" y2=\"23\" style=\"stroke-width:2\" />\n", + " <line x1=\"10\" y1=\"120\" x2=\"33\" y2=\"143\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"120\" style=\"stroke-width:2\" />\n", + " <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"120\" />\n", + " <line x1=\"11\" y1=\"1\" x2=\"11\" y2=\"121\" />\n", + " <line x1=\"13\" y1=\"3\" x2=\"13\" y2=\"123\" />\n", + " <line x1=\"14\" y1=\"4\" x2=\"14\" y2=\"124\" />\n", + " <line x1=\"15\" y1=\"5\" x2=\"15\" y2=\"125\" />\n", + " <line x1=\"17\" y1=\"7\" x2=\"17\" y2=\"127\" />\n", + " <line x1=\"18\" y1=\"8\" x2=\"18\" y2=\"128\" />\n", + " <line x1=\"19\" y1=\"9\" x2=\"19\" y2=\"129\" />\n", + " <line x1=\"20\" y1=\"10\" x2=\"20\" y2=\"130\" />\n", + " <line x1=\"22\" y1=\"12\" x2=\"22\" y2=\"132\" />\n", + " <line x1=\"23\" y1=\"13\" x2=\"23\" y2=\"133\" />\n", + " <line x1=\"24\" y1=\"14\" x2=\"24\" y2=\"134\" />\n", + " <line x1=\"25\" y1=\"15\" x2=\"25\" y2=\"135\" />\n", + " <line x1=\"27\" y1=\"17\" x2=\"27\" y2=\"137\" />\n", + " <line x1=\"28\" y1=\"18\" x2=\"28\" y2=\"138\" />\n", + " <line x1=\"29\" y1=\"19\" x2=\"29\" y2=\"139\" />\n", + " <line x1=\"31\" y1=\"21\" x2=\"31\" y2=\"141\" />\n", + " <line x1=\"32\" y1=\"22\" x2=\"32\" y2=\"142\" />\n", + " <line x1=\"33\" y1=\"23\" x2=\"33\" y2=\"143\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"10.0,0.0 33.565058103744434,23.565058103744438 33.565058103744434,143.56505810374443 10.0,120.0\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"97\" y2=\"0\" style=\"stroke-width:2\" />\n", + " <line x1=\"10\" y1=\"0\" x2=\"97\" y2=\"0\" />\n", + " <line x1=\"11\" y1=\"1\" x2=\"99\" y2=\"1\" />\n", + " <line x1=\"13\" y1=\"3\" x2=\"100\" y2=\"3\" />\n", + " <line x1=\"14\" y1=\"4\" x2=\"101\" y2=\"4\" />\n", + " <line x1=\"15\" y1=\"5\" x2=\"102\" y2=\"5\" />\n", + " <line x1=\"17\" y1=\"7\" x2=\"104\" y2=\"7\" />\n", + " <line x1=\"18\" y1=\"8\" x2=\"105\" y2=\"8\" />\n", + " <line x1=\"19\" y1=\"9\" x2=\"106\" y2=\"9\" />\n", + " <line x1=\"20\" y1=\"10\" x2=\"107\" y2=\"10\" />\n", + " <line x1=\"22\" y1=\"12\" x2=\"109\" y2=\"12\" />\n", + " <line x1=\"23\" y1=\"13\" x2=\"110\" y2=\"13\" />\n", + " <line x1=\"24\" y1=\"14\" x2=\"111\" y2=\"14\" />\n", + " <line x1=\"25\" y1=\"15\" x2=\"113\" y2=\"15\" />\n", + " <line x1=\"27\" y1=\"17\" x2=\"114\" y2=\"17\" />\n", + " <line x1=\"28\" y1=\"18\" x2=\"115\" y2=\"18\" />\n", + " <line x1=\"29\" y1=\"19\" x2=\"116\" y2=\"19\" />\n", + " <line x1=\"31\" y1=\"21\" x2=\"118\" y2=\"21\" />\n", + " <line x1=\"32\" y1=\"22\" x2=\"119\" y2=\"22\" />\n", + " <line x1=\"33\" y1=\"23\" x2=\"120\" y2=\"23\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"33\" y2=\"23\" style=\"stroke-width:2\" />\n", + " <line x1=\"97\" y1=\"0\" x2=\"120\" y2=\"23\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"10.0,0.0 97.11743772241994,0.0 120.68249582616437,23.565058103744438 33.565058103744434,23.565058103744438\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"33\" y1=\"23\" x2=\"120\" y2=\"23\" style=\"stroke-width:2\" />\n", + " <line x1=\"33\" y1=\"143\" x2=\"120\" y2=\"143\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"33\" y1=\"23\" x2=\"33\" y2=\"143\" style=\"stroke-width:2\" />\n", + " <line x1=\"120\" y1=\"23\" x2=\"120\" y2=\"143\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"33.565058103744434,23.565058103744438 120.68249582616437,23.565058103744438 120.68249582616437,143.56505810374443 33.565058103744434,143.56505810374443\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Text -->\n", + " <text x=\"77.123777\" y=\"163.565058\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >204</text>\n", + " <text x=\"140.682496\" y=\"83.565058\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.682496,83.565058)\">281</text>\n", + " <text x=\"11.782529\" y=\"151.782529\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,11.782529,151.782529)\">37</text>\n", + "</svg>\n", + " </td>\n", + " </tr>\n", + "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>rain_con_rate</span></div><div class='xr-var-dims'>(time, lat, lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(1, 281, 204), meta=np.ndarray></div><input id='attrs-95c559dc-65ed-494a-bdb0-b061380d8422' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-95c559dc-65ed-494a-bdb0-b061380d8422' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-81c053b3-92fa-4de3-8d51-b1edddd26041' class='xr-var-data-in' type='checkbox'><label for='data-81c053b3-92fa-4de3-8d51-b1edddd26041' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>standard_name :</span></dt><dd>rain_con_rate</dd><dt><span>long_name :</span></dt><dd>convective rain rate</dd><dt><span>units :</span></dt><dd>kg m-2 s-1</dd><dt><span>param :</span></dt><dd>76.1.0</dd></dl></div><div class='xr-var-data'><table>\n", + " <tr>\n", + " <td>\n", + " <table>\n", + " <thead>\n", + " <tr>\n", + " <td> </td>\n", + " <th> Array </th>\n", + " <th> Chunk </th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " \n", + " <tr>\n", + " <th> Bytes </th>\n", + " <td> 8.09 MiB </td>\n", + " <td> 223.92 kiB </td>\n", + " </tr>\n", + " \n", + " <tr>\n", + " <th> Shape </th>\n", + " <td> (37, 281, 204) </td>\n", + " <td> (1, 281, 204) </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Count </th>\n", + " <td> 148 Tasks </td>\n", + " <td> 37 Chunks </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Type </th>\n", + " <td> float32 </td>\n", + " <td> numpy.ndarray </td>\n", + " </tr>\n", + " </tbody>\n", + " </table>\n", + " </td>\n", + " <td>\n", + " <svg width=\"170\" height=\"193\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"33\" y2=\"23\" style=\"stroke-width:2\" />\n", + " <line x1=\"10\" y1=\"120\" x2=\"33\" y2=\"143\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"120\" style=\"stroke-width:2\" />\n", + " <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"120\" />\n", + " <line x1=\"11\" y1=\"1\" x2=\"11\" y2=\"121\" />\n", + " <line x1=\"13\" y1=\"3\" x2=\"13\" y2=\"123\" />\n", + " <line x1=\"14\" y1=\"4\" x2=\"14\" y2=\"124\" />\n", + " <line x1=\"15\" y1=\"5\" x2=\"15\" y2=\"125\" />\n", + " <line x1=\"17\" y1=\"7\" x2=\"17\" y2=\"127\" />\n", + " <line x1=\"18\" y1=\"8\" x2=\"18\" y2=\"128\" />\n", + " <line x1=\"19\" y1=\"9\" x2=\"19\" y2=\"129\" />\n", + " <line x1=\"20\" y1=\"10\" x2=\"20\" y2=\"130\" />\n", + " <line x1=\"22\" y1=\"12\" x2=\"22\" y2=\"132\" />\n", + " <line x1=\"23\" y1=\"13\" x2=\"23\" y2=\"133\" />\n", + " <line x1=\"24\" y1=\"14\" x2=\"24\" y2=\"134\" />\n", + " <line x1=\"25\" y1=\"15\" x2=\"25\" y2=\"135\" />\n", + " <line x1=\"27\" y1=\"17\" x2=\"27\" y2=\"137\" />\n", + " <line x1=\"28\" y1=\"18\" x2=\"28\" y2=\"138\" />\n", + " <line x1=\"29\" y1=\"19\" x2=\"29\" y2=\"139\" />\n", + " <line x1=\"31\" y1=\"21\" x2=\"31\" y2=\"141\" />\n", + " <line x1=\"32\" y1=\"22\" x2=\"32\" y2=\"142\" />\n", + " <line x1=\"33\" y1=\"23\" x2=\"33\" y2=\"143\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"10.0,0.0 33.565058103744434,23.565058103744438 33.565058103744434,143.56505810374443 10.0,120.0\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"97\" y2=\"0\" style=\"stroke-width:2\" />\n", + " <line x1=\"10\" y1=\"0\" x2=\"97\" y2=\"0\" />\n", + " <line x1=\"11\" y1=\"1\" x2=\"99\" y2=\"1\" />\n", + " <line x1=\"13\" y1=\"3\" x2=\"100\" y2=\"3\" />\n", + " <line x1=\"14\" y1=\"4\" x2=\"101\" y2=\"4\" />\n", + " <line x1=\"15\" y1=\"5\" x2=\"102\" y2=\"5\" />\n", + " <line x1=\"17\" y1=\"7\" x2=\"104\" y2=\"7\" />\n", + " <line x1=\"18\" y1=\"8\" x2=\"105\" y2=\"8\" />\n", + " <line x1=\"19\" y1=\"9\" x2=\"106\" y2=\"9\" />\n", + " <line x1=\"20\" y1=\"10\" x2=\"107\" y2=\"10\" />\n", + " <line x1=\"22\" y1=\"12\" x2=\"109\" y2=\"12\" />\n", + " <line x1=\"23\" y1=\"13\" x2=\"110\" y2=\"13\" />\n", + " <line x1=\"24\" y1=\"14\" x2=\"111\" y2=\"14\" />\n", + " <line x1=\"25\" y1=\"15\" x2=\"113\" y2=\"15\" />\n", + " <line x1=\"27\" y1=\"17\" x2=\"114\" y2=\"17\" />\n", + " <line x1=\"28\" y1=\"18\" x2=\"115\" y2=\"18\" />\n", + " <line x1=\"29\" y1=\"19\" x2=\"116\" y2=\"19\" />\n", + " <line x1=\"31\" y1=\"21\" x2=\"118\" y2=\"21\" />\n", + " <line x1=\"32\" y1=\"22\" x2=\"119\" y2=\"22\" />\n", + " <line x1=\"33\" y1=\"23\" x2=\"120\" y2=\"23\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"33\" y2=\"23\" style=\"stroke-width:2\" />\n", + " <line x1=\"97\" y1=\"0\" x2=\"120\" y2=\"23\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"10.0,0.0 97.11743772241994,0.0 120.68249582616437,23.565058103744438 33.565058103744434,23.565058103744438\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"33\" y1=\"23\" x2=\"120\" y2=\"23\" style=\"stroke-width:2\" />\n", + " <line x1=\"33\" y1=\"143\" x2=\"120\" y2=\"143\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"33\" y1=\"23\" x2=\"33\" y2=\"143\" style=\"stroke-width:2\" />\n", + " <line x1=\"120\" y1=\"23\" x2=\"120\" y2=\"143\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"33.565058103744434,23.565058103744438 120.68249582616437,23.565058103744438 120.68249582616437,143.56505810374443 33.565058103744434,143.56505810374443\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Text -->\n", + " <text x=\"77.123777\" y=\"163.565058\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >204</text>\n", + " <text x=\"140.682496\" y=\"83.565058\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.682496,83.565058)\">281</text>\n", + " <text x=\"11.782529\" y=\"151.782529\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,11.782529,151.782529)\">37</text>\n", + "</svg>\n", + " </td>\n", + " </tr>\n", + "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>cape_ml</span></div><div class='xr-var-dims'>(time, lat, lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(1, 281, 204), meta=np.ndarray></div><input id='attrs-d9d99be1-2e9e-474e-87a5-f326fd3603b3' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-d9d99be1-2e9e-474e-87a5-f326fd3603b3' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-7cb652a3-6464-49aa-ad6f-c0727c3c8930' class='xr-var-data-in' type='checkbox'><label for='data-7cb652a3-6464-49aa-ad6f-c0727c3c8930' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>standard_name :</span></dt><dd>cape_ml</dd><dt><span>long_name :</span></dt><dd>cape of mean surface layer parcel</dd><dt><span>units :</span></dt><dd>J kg-1</dd><dt><span>param :</span></dt><dd>6.7.0</dd></dl></div><div class='xr-var-data'><table>\n", + " <tr>\n", + " <td>\n", + " <table>\n", + " <thead>\n", + " <tr>\n", + " <td> </td>\n", + " <th> Array </th>\n", + " <th> Chunk </th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " \n", + " <tr>\n", + " <th> Bytes </th>\n", + " <td> 8.09 MiB </td>\n", + " <td> 223.92 kiB </td>\n", + " </tr>\n", + " \n", + " <tr>\n", + " <th> Shape </th>\n", + " <td> (37, 281, 204) </td>\n", + " <td> (1, 281, 204) </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Count </th>\n", + " <td> 148 Tasks </td>\n", + " <td> 37 Chunks </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Type </th>\n", + " <td> float32 </td>\n", + " <td> numpy.ndarray </td>\n", + " </tr>\n", + " </tbody>\n", + " </table>\n", + " </td>\n", + " <td>\n", + " <svg width=\"170\" height=\"193\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"33\" y2=\"23\" style=\"stroke-width:2\" />\n", + " <line x1=\"10\" y1=\"120\" x2=\"33\" y2=\"143\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"120\" style=\"stroke-width:2\" />\n", + " <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"120\" />\n", + " <line x1=\"11\" y1=\"1\" x2=\"11\" y2=\"121\" />\n", + " <line x1=\"13\" y1=\"3\" x2=\"13\" y2=\"123\" />\n", + " <line x1=\"14\" y1=\"4\" x2=\"14\" y2=\"124\" />\n", + " <line x1=\"15\" y1=\"5\" x2=\"15\" y2=\"125\" />\n", + " <line x1=\"17\" y1=\"7\" x2=\"17\" y2=\"127\" />\n", + " <line x1=\"18\" y1=\"8\" x2=\"18\" y2=\"128\" />\n", + " <line x1=\"19\" y1=\"9\" x2=\"19\" y2=\"129\" />\n", + " <line x1=\"20\" y1=\"10\" x2=\"20\" y2=\"130\" />\n", + " <line x1=\"22\" y1=\"12\" x2=\"22\" y2=\"132\" />\n", + " <line x1=\"23\" y1=\"13\" x2=\"23\" y2=\"133\" />\n", + " <line x1=\"24\" y1=\"14\" x2=\"24\" y2=\"134\" />\n", + " <line x1=\"25\" y1=\"15\" x2=\"25\" y2=\"135\" />\n", + " <line x1=\"27\" y1=\"17\" x2=\"27\" y2=\"137\" />\n", + " <line x1=\"28\" y1=\"18\" x2=\"28\" y2=\"138\" />\n", + " <line x1=\"29\" y1=\"19\" x2=\"29\" y2=\"139\" />\n", + " <line x1=\"31\" y1=\"21\" x2=\"31\" y2=\"141\" />\n", + " <line x1=\"32\" y1=\"22\" x2=\"32\" y2=\"142\" />\n", + " <line x1=\"33\" y1=\"23\" x2=\"33\" y2=\"143\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"10.0,0.0 33.565058103744434,23.565058103744438 33.565058103744434,143.56505810374443 10.0,120.0\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"97\" y2=\"0\" style=\"stroke-width:2\" />\n", + " <line x1=\"10\" y1=\"0\" x2=\"97\" y2=\"0\" />\n", + " <line x1=\"11\" y1=\"1\" x2=\"99\" y2=\"1\" />\n", + " <line x1=\"13\" y1=\"3\" x2=\"100\" y2=\"3\" />\n", + " <line x1=\"14\" y1=\"4\" x2=\"101\" y2=\"4\" />\n", + " <line x1=\"15\" y1=\"5\" x2=\"102\" y2=\"5\" />\n", + " <line x1=\"17\" y1=\"7\" x2=\"104\" y2=\"7\" />\n", + " <line x1=\"18\" y1=\"8\" x2=\"105\" y2=\"8\" />\n", + " <line x1=\"19\" y1=\"9\" x2=\"106\" y2=\"9\" />\n", + " <line x1=\"20\" y1=\"10\" x2=\"107\" y2=\"10\" />\n", + " <line x1=\"22\" y1=\"12\" x2=\"109\" y2=\"12\" />\n", + " <line x1=\"23\" y1=\"13\" x2=\"110\" y2=\"13\" />\n", + " <line x1=\"24\" y1=\"14\" x2=\"111\" y2=\"14\" />\n", + " <line x1=\"25\" y1=\"15\" x2=\"113\" y2=\"15\" />\n", + " <line x1=\"27\" y1=\"17\" x2=\"114\" y2=\"17\" />\n", + " <line x1=\"28\" y1=\"18\" x2=\"115\" y2=\"18\" />\n", + " <line x1=\"29\" y1=\"19\" x2=\"116\" y2=\"19\" />\n", + " <line x1=\"31\" y1=\"21\" x2=\"118\" y2=\"21\" />\n", + " <line x1=\"32\" y1=\"22\" x2=\"119\" y2=\"22\" />\n", + " <line x1=\"33\" y1=\"23\" x2=\"120\" y2=\"23\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"33\" y2=\"23\" style=\"stroke-width:2\" />\n", + " <line x1=\"97\" y1=\"0\" x2=\"120\" y2=\"23\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"10.0,0.0 97.11743772241994,0.0 120.68249582616437,23.565058103744438 33.565058103744434,23.565058103744438\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"33\" y1=\"23\" x2=\"120\" y2=\"23\" style=\"stroke-width:2\" />\n", + " <line x1=\"33\" y1=\"143\" x2=\"120\" y2=\"143\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"33\" y1=\"23\" x2=\"33\" y2=\"143\" style=\"stroke-width:2\" />\n", + " <line x1=\"120\" y1=\"23\" x2=\"120\" y2=\"143\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"33.565058103744434,23.565058103744438 120.68249582616437,23.565058103744438 120.68249582616437,143.56505810374443 33.565058103744434,143.56505810374443\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Text -->\n", + " <text x=\"77.123777\" y=\"163.565058\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >204</text>\n", + " <text x=\"140.682496\" y=\"83.565058\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.682496,83.565058)\">281</text>\n", + " <text x=\"11.782529\" y=\"151.782529\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,11.782529,151.782529)\">37</text>\n", + "</svg>\n", + " </td>\n", + " </tr>\n", + "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>cin_ml</span></div><div class='xr-var-dims'>(time, lat, lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(1, 281, 204), meta=np.ndarray></div><input id='attrs-0e925d7c-f1be-4521-b9cb-cbdf8b910342' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-0e925d7c-f1be-4521-b9cb-cbdf8b910342' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-d515b1d2-2f71-4235-967e-b2c56e68ae00' class='xr-var-data-in' type='checkbox'><label for='data-d515b1d2-2f71-4235-967e-b2c56e68ae00' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>standard_name :</span></dt><dd>cin_ml</dd><dt><span>long_name :</span></dt><dd>convective inhibition of mean surface layer parcel</dd><dt><span>units :</span></dt><dd>J kg-1</dd><dt><span>param :</span></dt><dd>7.7.0</dd></dl></div><div class='xr-var-data'><table>\n", + " <tr>\n", + " <td>\n", + " <table>\n", + " <thead>\n", + " <tr>\n", + " <td> </td>\n", + " <th> Array </th>\n", + " <th> Chunk </th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " \n", + " <tr>\n", + " <th> Bytes </th>\n", + " <td> 8.09 MiB </td>\n", + " <td> 223.92 kiB </td>\n", + " </tr>\n", + " \n", + " <tr>\n", + " <th> Shape </th>\n", + " <td> (37, 281, 204) </td>\n", + " <td> (1, 281, 204) </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Count </th>\n", + " <td> 148 Tasks </td>\n", + " <td> 37 Chunks </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Type </th>\n", + " <td> float32 </td>\n", + " <td> numpy.ndarray </td>\n", + " </tr>\n", + " </tbody>\n", + " </table>\n", + " </td>\n", + " <td>\n", + " <svg width=\"170\" height=\"193\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"33\" y2=\"23\" style=\"stroke-width:2\" />\n", + " <line x1=\"10\" y1=\"120\" x2=\"33\" y2=\"143\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"120\" style=\"stroke-width:2\" />\n", + " <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"120\" />\n", + " <line x1=\"11\" y1=\"1\" x2=\"11\" y2=\"121\" />\n", + " <line x1=\"13\" y1=\"3\" x2=\"13\" y2=\"123\" />\n", + " <line x1=\"14\" y1=\"4\" x2=\"14\" y2=\"124\" />\n", + " <line x1=\"15\" y1=\"5\" x2=\"15\" y2=\"125\" />\n", + " <line x1=\"17\" y1=\"7\" x2=\"17\" y2=\"127\" />\n", + " <line x1=\"18\" y1=\"8\" x2=\"18\" y2=\"128\" />\n", + " <line x1=\"19\" y1=\"9\" x2=\"19\" y2=\"129\" />\n", + " <line x1=\"20\" y1=\"10\" x2=\"20\" y2=\"130\" />\n", + " <line x1=\"22\" y1=\"12\" x2=\"22\" y2=\"132\" />\n", + " <line x1=\"23\" y1=\"13\" x2=\"23\" y2=\"133\" />\n", + " <line x1=\"24\" y1=\"14\" x2=\"24\" y2=\"134\" />\n", + " <line x1=\"25\" y1=\"15\" x2=\"25\" y2=\"135\" />\n", + " <line x1=\"27\" y1=\"17\" x2=\"27\" y2=\"137\" />\n", + " <line x1=\"28\" y1=\"18\" x2=\"28\" y2=\"138\" />\n", + " <line x1=\"29\" y1=\"19\" x2=\"29\" y2=\"139\" />\n", + " <line x1=\"31\" y1=\"21\" x2=\"31\" y2=\"141\" />\n", + " <line x1=\"32\" y1=\"22\" x2=\"32\" y2=\"142\" />\n", + " <line x1=\"33\" y1=\"23\" x2=\"33\" y2=\"143\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"10.0,0.0 33.565058103744434,23.565058103744438 33.565058103744434,143.56505810374443 10.0,120.0\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"97\" y2=\"0\" style=\"stroke-width:2\" />\n", + " <line x1=\"10\" y1=\"0\" x2=\"97\" y2=\"0\" />\n", + " <line x1=\"11\" y1=\"1\" x2=\"99\" y2=\"1\" />\n", + " <line x1=\"13\" y1=\"3\" x2=\"100\" y2=\"3\" />\n", + " <line x1=\"14\" y1=\"4\" x2=\"101\" y2=\"4\" />\n", + " <line x1=\"15\" y1=\"5\" x2=\"102\" y2=\"5\" />\n", + " <line x1=\"17\" y1=\"7\" x2=\"104\" y2=\"7\" />\n", + " <line x1=\"18\" y1=\"8\" x2=\"105\" y2=\"8\" />\n", + " <line x1=\"19\" y1=\"9\" x2=\"106\" y2=\"9\" />\n", + " <line x1=\"20\" y1=\"10\" x2=\"107\" y2=\"10\" />\n", + " <line x1=\"22\" y1=\"12\" x2=\"109\" y2=\"12\" />\n", + " <line x1=\"23\" y1=\"13\" x2=\"110\" y2=\"13\" />\n", + " <line x1=\"24\" y1=\"14\" x2=\"111\" y2=\"14\" />\n", + " <line x1=\"25\" y1=\"15\" x2=\"113\" y2=\"15\" />\n", + " <line x1=\"27\" y1=\"17\" x2=\"114\" y2=\"17\" />\n", + " <line x1=\"28\" y1=\"18\" x2=\"115\" y2=\"18\" />\n", + " <line x1=\"29\" y1=\"19\" x2=\"116\" y2=\"19\" />\n", + " <line x1=\"31\" y1=\"21\" x2=\"118\" y2=\"21\" />\n", + " <line x1=\"32\" y1=\"22\" x2=\"119\" y2=\"22\" />\n", + " <line x1=\"33\" y1=\"23\" x2=\"120\" y2=\"23\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"33\" y2=\"23\" style=\"stroke-width:2\" />\n", + " <line x1=\"97\" y1=\"0\" x2=\"120\" y2=\"23\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"10.0,0.0 97.11743772241994,0.0 120.68249582616437,23.565058103744438 33.565058103744434,23.565058103744438\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"33\" y1=\"23\" x2=\"120\" y2=\"23\" style=\"stroke-width:2\" />\n", + " <line x1=\"33\" y1=\"143\" x2=\"120\" y2=\"143\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"33\" y1=\"23\" x2=\"33\" y2=\"143\" style=\"stroke-width:2\" />\n", + " <line x1=\"120\" y1=\"23\" x2=\"120\" y2=\"143\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"33.565058103744434,23.565058103744438 120.68249582616437,23.565058103744438 120.68249582616437,143.56505810374443 33.565058103744434,143.56505810374443\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Text -->\n", + " <text x=\"77.123777\" y=\"163.565058\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >204</text>\n", + " <text x=\"140.682496\" y=\"83.565058\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.682496,83.565058)\">281</text>\n", + " <text x=\"11.782529\" y=\"151.782529\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,11.782529,151.782529)\">37</text>\n", + "</svg>\n", + " </td>\n", + " </tr>\n", + "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>clct</span></div><div class='xr-var-dims'>(time, lat, lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(1, 281, 204), meta=np.ndarray></div><input id='attrs-bd29cf7f-5d1c-4201-8ed2-ca3720a547bf' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-bd29cf7f-5d1c-4201-8ed2-ca3720a547bf' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-31dbc902-196b-47e3-bbd2-38789f3ffd87' class='xr-var-data-in' type='checkbox'><label for='data-31dbc902-196b-47e3-bbd2-38789f3ffd87' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>standard_name :</span></dt><dd>clct</dd><dt><span>long_name :</span></dt><dd>total cloud cover</dd><dt><span>units :</span></dt><dd>%</dd><dt><span>param :</span></dt><dd>1.6.0</dd></dl></div><div class='xr-var-data'><table>\n", + " <tr>\n", + " <td>\n", + " <table>\n", + " <thead>\n", + " <tr>\n", + " <td> </td>\n", + " <th> Array </th>\n", + " <th> Chunk </th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " \n", + " <tr>\n", + " <th> Bytes </th>\n", + " <td> 8.09 MiB </td>\n", + " <td> 223.92 kiB </td>\n", + " </tr>\n", + " \n", + " <tr>\n", + " <th> Shape </th>\n", + " <td> (37, 281, 204) </td>\n", + " <td> (1, 281, 204) </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Count </th>\n", + " <td> 148 Tasks </td>\n", + " <td> 37 Chunks </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Type </th>\n", + " <td> float32 </td>\n", + " <td> numpy.ndarray </td>\n", + " </tr>\n", + " </tbody>\n", + " </table>\n", + " </td>\n", + " <td>\n", + " <svg width=\"170\" height=\"193\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"33\" y2=\"23\" style=\"stroke-width:2\" />\n", + " <line x1=\"10\" y1=\"120\" x2=\"33\" y2=\"143\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"120\" style=\"stroke-width:2\" />\n", + " <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"120\" />\n", + " <line x1=\"11\" y1=\"1\" x2=\"11\" y2=\"121\" />\n", + " <line x1=\"13\" y1=\"3\" x2=\"13\" y2=\"123\" />\n", + " <line x1=\"14\" y1=\"4\" x2=\"14\" y2=\"124\" />\n", + " <line x1=\"15\" y1=\"5\" x2=\"15\" y2=\"125\" />\n", + " <line x1=\"17\" y1=\"7\" x2=\"17\" y2=\"127\" />\n", + " <line x1=\"18\" y1=\"8\" x2=\"18\" y2=\"128\" />\n", + " <line x1=\"19\" y1=\"9\" x2=\"19\" y2=\"129\" />\n", + " <line x1=\"20\" y1=\"10\" x2=\"20\" y2=\"130\" />\n", + " <line x1=\"22\" y1=\"12\" x2=\"22\" y2=\"132\" />\n", + " <line x1=\"23\" y1=\"13\" x2=\"23\" y2=\"133\" />\n", + " <line x1=\"24\" y1=\"14\" x2=\"24\" y2=\"134\" />\n", + " <line x1=\"25\" y1=\"15\" x2=\"25\" y2=\"135\" />\n", + " <line x1=\"27\" y1=\"17\" x2=\"27\" y2=\"137\" />\n", + " <line x1=\"28\" y1=\"18\" x2=\"28\" y2=\"138\" />\n", + " <line x1=\"29\" y1=\"19\" x2=\"29\" y2=\"139\" />\n", + " <line x1=\"31\" y1=\"21\" x2=\"31\" y2=\"141\" />\n", + " <line x1=\"32\" y1=\"22\" x2=\"32\" y2=\"142\" />\n", + " <line x1=\"33\" y1=\"23\" x2=\"33\" y2=\"143\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"10.0,0.0 33.565058103744434,23.565058103744438 33.565058103744434,143.56505810374443 10.0,120.0\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"97\" y2=\"0\" style=\"stroke-width:2\" />\n", + " <line x1=\"10\" y1=\"0\" x2=\"97\" y2=\"0\" />\n", + " <line x1=\"11\" y1=\"1\" x2=\"99\" y2=\"1\" />\n", + " <line x1=\"13\" y1=\"3\" x2=\"100\" y2=\"3\" />\n", + " <line x1=\"14\" y1=\"4\" x2=\"101\" y2=\"4\" />\n", + " <line x1=\"15\" y1=\"5\" x2=\"102\" y2=\"5\" />\n", + " <line x1=\"17\" y1=\"7\" x2=\"104\" y2=\"7\" />\n", + " <line x1=\"18\" y1=\"8\" x2=\"105\" y2=\"8\" />\n", + " <line x1=\"19\" y1=\"9\" x2=\"106\" y2=\"9\" />\n", + " <line x1=\"20\" y1=\"10\" x2=\"107\" y2=\"10\" />\n", + " <line x1=\"22\" y1=\"12\" x2=\"109\" y2=\"12\" />\n", + " <line x1=\"23\" y1=\"13\" x2=\"110\" y2=\"13\" />\n", + " <line x1=\"24\" y1=\"14\" x2=\"111\" y2=\"14\" />\n", + " <line x1=\"25\" y1=\"15\" x2=\"113\" y2=\"15\" />\n", + " <line x1=\"27\" y1=\"17\" x2=\"114\" y2=\"17\" />\n", + " <line x1=\"28\" y1=\"18\" x2=\"115\" y2=\"18\" />\n", + " <line x1=\"29\" y1=\"19\" x2=\"116\" y2=\"19\" />\n", + " <line x1=\"31\" y1=\"21\" x2=\"118\" y2=\"21\" />\n", + " <line x1=\"32\" y1=\"22\" x2=\"119\" y2=\"22\" />\n", + " <line x1=\"33\" y1=\"23\" x2=\"120\" y2=\"23\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"33\" y2=\"23\" style=\"stroke-width:2\" />\n", + " <line x1=\"97\" y1=\"0\" x2=\"120\" y2=\"23\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"10.0,0.0 97.11743772241994,0.0 120.68249582616437,23.565058103744438 33.565058103744434,23.565058103744438\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"33\" y1=\"23\" x2=\"120\" y2=\"23\" style=\"stroke-width:2\" />\n", + " <line x1=\"33\" y1=\"143\" x2=\"120\" y2=\"143\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"33\" y1=\"23\" x2=\"33\" y2=\"143\" style=\"stroke-width:2\" />\n", + " <line x1=\"120\" y1=\"23\" x2=\"120\" y2=\"143\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"33.565058103744434,23.565058103744438 120.68249582616437,23.565058103744438 120.68249582616437,143.56505810374443 33.565058103744434,143.56505810374443\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Text -->\n", + " <text x=\"77.123777\" y=\"163.565058\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >204</text>\n", + " <text x=\"140.682496\" y=\"83.565058\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.682496,83.565058)\">281</text>\n", + " <text x=\"11.782529\" y=\"151.782529\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,11.782529,151.782529)\">37</text>\n", + "</svg>\n", + " </td>\n", + " </tr>\n", + "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>clch</span></div><div class='xr-var-dims'>(time, plev, lat, lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(1, 1, 281, 204), meta=np.ndarray></div><input id='attrs-f92605b1-560c-432f-b3eb-4759ad08b37d' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-f92605b1-560c-432f-b3eb-4759ad08b37d' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-f3f66c53-5a38-42ab-b7f1-39c8e5d04ef0' class='xr-var-data-in' type='checkbox'><label for='data-f3f66c53-5a38-42ab-b7f1-39c8e5d04ef0' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>standard_name :</span></dt><dd>clch</dd><dt><span>long_name :</span></dt><dd>high level clouds</dd><dt><span>units :</span></dt><dd>%</dd><dt><span>param :</span></dt><dd>22.6.0</dd></dl></div><div class='xr-var-data'><table>\n", + " <tr>\n", + " <td>\n", + " <table>\n", + " <thead>\n", + " <tr>\n", + " <td> </td>\n", + " <th> Array </th>\n", + " <th> Chunk </th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " \n", + " <tr>\n", + " <th> Bytes </th>\n", + " <td> 8.09 MiB </td>\n", + " <td> 223.92 kiB </td>\n", + " </tr>\n", + " \n", + " <tr>\n", + " <th> Shape </th>\n", + " <td> (37, 1, 281, 204) </td>\n", + " <td> (1, 1, 281, 204) </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Count </th>\n", + " <td> 148 Tasks </td>\n", + " <td> 37 Chunks </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Type </th>\n", + " <td> float32 </td>\n", + " <td> numpy.ndarray </td>\n", + " </tr>\n", + " </tbody>\n", + " </table>\n", + " </td>\n", + " <td>\n", + " <svg width=\"372\" height=\"184\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"0\" y1=\"0\" x2=\"40\" y2=\"0\" style=\"stroke-width:2\" />\n", + " <line x1=\"0\" y1=\"25\" x2=\"40\" y2=\"25\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"25\" style=\"stroke-width:2\" />\n", + " <line x1=\"1\" y1=\"0\" x2=\"1\" y2=\"25\" />\n", + " <line x1=\"2\" y1=\"0\" x2=\"2\" y2=\"25\" />\n", + " <line x1=\"3\" y1=\"0\" x2=\"3\" y2=\"25\" />\n", + " <line x1=\"4\" y1=\"0\" x2=\"4\" y2=\"25\" />\n", + " <line x1=\"5\" y1=\"0\" x2=\"5\" y2=\"25\" />\n", + " <line x1=\"6\" y1=\"0\" x2=\"6\" y2=\"25\" />\n", + " <line x1=\"8\" y1=\"0\" x2=\"8\" y2=\"25\" />\n", + " <line x1=\"9\" y1=\"0\" x2=\"9\" y2=\"25\" />\n", + " <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"25\" />\n", + " <line x1=\"11\" y1=\"0\" x2=\"11\" y2=\"25\" />\n", + " <line x1=\"12\" y1=\"0\" x2=\"12\" y2=\"25\" />\n", + " <line x1=\"14\" y1=\"0\" x2=\"14\" y2=\"25\" />\n", + " <line x1=\"16\" y1=\"0\" x2=\"16\" y2=\"25\" />\n", + " <line x1=\"17\" y1=\"0\" x2=\"17\" y2=\"25\" />\n", + " <line x1=\"18\" y1=\"0\" x2=\"18\" y2=\"25\" />\n", + " <line x1=\"19\" y1=\"0\" x2=\"19\" y2=\"25\" />\n", + " <line x1=\"20\" y1=\"0\" x2=\"20\" y2=\"25\" />\n", + " <line x1=\"21\" y1=\"0\" x2=\"21\" y2=\"25\" />\n", + " <line x1=\"22\" y1=\"0\" x2=\"22\" y2=\"25\" />\n", + " <line x1=\"24\" y1=\"0\" x2=\"24\" y2=\"25\" />\n", + " <line x1=\"25\" y1=\"0\" x2=\"25\" y2=\"25\" />\n", + " <line x1=\"27\" y1=\"0\" x2=\"27\" y2=\"25\" />\n", + " <line x1=\"28\" y1=\"0\" x2=\"28\" y2=\"25\" />\n", + " <line x1=\"29\" y1=\"0\" x2=\"29\" y2=\"25\" />\n", + " <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"25\" />\n", + " <line x1=\"32\" y1=\"0\" x2=\"32\" y2=\"25\" />\n", + " <line x1=\"33\" y1=\"0\" x2=\"33\" y2=\"25\" />\n", + " <line x1=\"34\" y1=\"0\" x2=\"34\" y2=\"25\" />\n", + " <line x1=\"35\" y1=\"0\" x2=\"35\" y2=\"25\" />\n", + " <line x1=\"36\" y1=\"0\" x2=\"36\" y2=\"25\" />\n", + " <line x1=\"37\" y1=\"0\" x2=\"37\" y2=\"25\" />\n", + " <line x1=\"40\" y1=\"0\" x2=\"40\" y2=\"25\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"0.0,0.0 40.060598776365545,0.0 40.060598776365545,25.412616514582485 0.0,25.412616514582485\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", + "\n", + " <!-- Text -->\n", + " <text x=\"20.030299\" y=\"45.412617\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >37</text>\n", + " <text x=\"60.060599\" y=\"12.706308\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,60.060599,12.706308)\">1</text>\n", + "\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"110\" y1=\"0\" x2=\"124\" y2=\"14\" style=\"stroke-width:2\" />\n", + " <line x1=\"110\" y1=\"120\" x2=\"124\" y2=\"134\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"110\" y1=\"0\" x2=\"110\" y2=\"120\" style=\"stroke-width:2\" />\n", + " <line x1=\"124\" y1=\"14\" x2=\"124\" y2=\"134\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"110.0,0.0 124.9485979497544,14.948597949754403 124.9485979497544,134.9485979497544 110.0,120.0\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"110\" y1=\"0\" x2=\"197\" y2=\"0\" style=\"stroke-width:2\" />\n", + " <line x1=\"124\" y1=\"14\" x2=\"212\" y2=\"14\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"110\" y1=\"0\" x2=\"124\" y2=\"14\" style=\"stroke-width:2\" />\n", + " <line x1=\"197\" y1=\"0\" x2=\"212\" y2=\"14\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"110.0,0.0 197.11743772241994,0.0 212.06603567217434,14.948597949754403 124.9485979497544,14.948597949754403\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"124\" y1=\"14\" x2=\"212\" y2=\"14\" style=\"stroke-width:2\" />\n", + " <line x1=\"124\" y1=\"134\" x2=\"212\" y2=\"134\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"124\" y1=\"14\" x2=\"124\" y2=\"134\" style=\"stroke-width:2\" />\n", + " <line x1=\"212\" y1=\"14\" x2=\"212\" y2=\"134\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"124.9485979497544,14.948597949754403 212.06603567217434,14.948597949754403 212.06603567217434,134.9485979497544 124.9485979497544,134.9485979497544\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Text -->\n", + " <text x=\"168.507317\" y=\"154.948598\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >204</text>\n", + " <text x=\"232.066036\" y=\"74.948598\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,232.066036,74.948598)\">281</text>\n", + " <text x=\"107.474299\" y=\"147.474299\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,107.474299,147.474299)\">1</text>\n", + "</svg>\n", + " </td>\n", + " </tr>\n", + "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>clcm</span></div><div class='xr-var-dims'>(time, plev_2, lat, lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(1, 1, 281, 204), meta=np.ndarray></div><input id='attrs-f5846c03-f479-4dbd-a747-e373f6048b58' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-f5846c03-f479-4dbd-a747-e373f6048b58' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-0f40ed9c-53e7-48d2-a1ed-6380afc5bf75' class='xr-var-data-in' type='checkbox'><label for='data-0f40ed9c-53e7-48d2-a1ed-6380afc5bf75' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>standard_name :</span></dt><dd>clcm</dd><dt><span>long_name :</span></dt><dd>mid level clouds</dd><dt><span>units :</span></dt><dd>%</dd><dt><span>param :</span></dt><dd>22.6.0</dd></dl></div><div class='xr-var-data'><table>\n", + " <tr>\n", + " <td>\n", + " <table>\n", + " <thead>\n", + " <tr>\n", + " <td> </td>\n", + " <th> Array </th>\n", + " <th> Chunk </th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " \n", + " <tr>\n", + " <th> Bytes </th>\n", + " <td> 8.09 MiB </td>\n", + " <td> 223.92 kiB </td>\n", + " </tr>\n", + " \n", + " <tr>\n", + " <th> Shape </th>\n", + " <td> (37, 1, 281, 204) </td>\n", + " <td> (1, 1, 281, 204) </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Count </th>\n", + " <td> 148 Tasks </td>\n", + " <td> 37 Chunks </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Type </th>\n", + " <td> float32 </td>\n", + " <td> numpy.ndarray </td>\n", + " </tr>\n", + " </tbody>\n", + " </table>\n", + " </td>\n", + " <td>\n", + " <svg width=\"372\" height=\"184\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"0\" y1=\"0\" x2=\"40\" y2=\"0\" style=\"stroke-width:2\" />\n", + " <line x1=\"0\" y1=\"25\" x2=\"40\" y2=\"25\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"25\" style=\"stroke-width:2\" />\n", + " <line x1=\"1\" y1=\"0\" x2=\"1\" y2=\"25\" />\n", + " <line x1=\"2\" y1=\"0\" x2=\"2\" y2=\"25\" />\n", + " <line x1=\"3\" y1=\"0\" x2=\"3\" y2=\"25\" />\n", + " <line x1=\"4\" y1=\"0\" x2=\"4\" y2=\"25\" />\n", + " <line x1=\"5\" y1=\"0\" x2=\"5\" y2=\"25\" />\n", + " <line x1=\"6\" y1=\"0\" x2=\"6\" y2=\"25\" />\n", + " <line x1=\"8\" y1=\"0\" x2=\"8\" y2=\"25\" />\n", + " <line x1=\"9\" y1=\"0\" x2=\"9\" y2=\"25\" />\n", + " <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"25\" />\n", + " <line x1=\"11\" y1=\"0\" x2=\"11\" y2=\"25\" />\n", + " <line x1=\"12\" y1=\"0\" x2=\"12\" y2=\"25\" />\n", + " <line x1=\"14\" y1=\"0\" x2=\"14\" y2=\"25\" />\n", + " <line x1=\"16\" y1=\"0\" x2=\"16\" y2=\"25\" />\n", + " <line x1=\"17\" y1=\"0\" x2=\"17\" y2=\"25\" />\n", + " <line x1=\"18\" y1=\"0\" x2=\"18\" y2=\"25\" />\n", + " <line x1=\"19\" y1=\"0\" x2=\"19\" y2=\"25\" />\n", + " <line x1=\"20\" y1=\"0\" x2=\"20\" y2=\"25\" />\n", + " <line x1=\"21\" y1=\"0\" x2=\"21\" y2=\"25\" />\n", + " <line x1=\"22\" y1=\"0\" x2=\"22\" y2=\"25\" />\n", + " <line x1=\"24\" y1=\"0\" x2=\"24\" y2=\"25\" />\n", + " <line x1=\"25\" y1=\"0\" x2=\"25\" y2=\"25\" />\n", + " <line x1=\"27\" y1=\"0\" x2=\"27\" y2=\"25\" />\n", + " <line x1=\"28\" y1=\"0\" x2=\"28\" y2=\"25\" />\n", + " <line x1=\"29\" y1=\"0\" x2=\"29\" y2=\"25\" />\n", + " <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"25\" />\n", + " <line x1=\"32\" y1=\"0\" x2=\"32\" y2=\"25\" />\n", + " <line x1=\"33\" y1=\"0\" x2=\"33\" y2=\"25\" />\n", + " <line x1=\"34\" y1=\"0\" x2=\"34\" y2=\"25\" />\n", + " <line x1=\"35\" y1=\"0\" x2=\"35\" y2=\"25\" />\n", + " <line x1=\"36\" y1=\"0\" x2=\"36\" y2=\"25\" />\n", + " <line x1=\"37\" y1=\"0\" x2=\"37\" y2=\"25\" />\n", + " <line x1=\"40\" y1=\"0\" x2=\"40\" y2=\"25\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"0.0,0.0 40.060598776365545,0.0 40.060598776365545,25.412616514582485 0.0,25.412616514582485\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", + "\n", + " <!-- Text -->\n", + " <text x=\"20.030299\" y=\"45.412617\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >37</text>\n", + " <text x=\"60.060599\" y=\"12.706308\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,60.060599,12.706308)\">1</text>\n", + "\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"110\" y1=\"0\" x2=\"124\" y2=\"14\" style=\"stroke-width:2\" />\n", + " <line x1=\"110\" y1=\"120\" x2=\"124\" y2=\"134\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"110\" y1=\"0\" x2=\"110\" y2=\"120\" style=\"stroke-width:2\" />\n", + " <line x1=\"124\" y1=\"14\" x2=\"124\" y2=\"134\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"110.0,0.0 124.9485979497544,14.948597949754403 124.9485979497544,134.9485979497544 110.0,120.0\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"110\" y1=\"0\" x2=\"197\" y2=\"0\" style=\"stroke-width:2\" />\n", + " <line x1=\"124\" y1=\"14\" x2=\"212\" y2=\"14\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"110\" y1=\"0\" x2=\"124\" y2=\"14\" style=\"stroke-width:2\" />\n", + " <line x1=\"197\" y1=\"0\" x2=\"212\" y2=\"14\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"110.0,0.0 197.11743772241994,0.0 212.06603567217434,14.948597949754403 124.9485979497544,14.948597949754403\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"124\" y1=\"14\" x2=\"212\" y2=\"14\" style=\"stroke-width:2\" />\n", + " <line x1=\"124\" y1=\"134\" x2=\"212\" y2=\"134\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"124\" y1=\"14\" x2=\"124\" y2=\"134\" style=\"stroke-width:2\" />\n", + " <line x1=\"212\" y1=\"14\" x2=\"212\" y2=\"134\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"124.9485979497544,14.948597949754403 212.06603567217434,14.948597949754403 212.06603567217434,134.9485979497544 124.9485979497544,134.9485979497544\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Text -->\n", + " <text x=\"168.507317\" y=\"154.948598\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >204</text>\n", + " <text x=\"232.066036\" y=\"74.948598\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,232.066036,74.948598)\">281</text>\n", + " <text x=\"107.474299\" y=\"147.474299\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,107.474299,147.474299)\">1</text>\n", + "</svg>\n", + " </td>\n", + " </tr>\n", + "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>clcl</span></div><div class='xr-var-dims'>(time, plev_3, lat, lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(1, 1, 281, 204), meta=np.ndarray></div><input id='attrs-e82b375c-c5cd-422d-8662-e9aeac6f8c8a' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-e82b375c-c5cd-422d-8662-e9aeac6f8c8a' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-207e66a4-6714-4b73-8b6e-a3787110cc3b' class='xr-var-data-in' type='checkbox'><label for='data-207e66a4-6714-4b73-8b6e-a3787110cc3b' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>standard_name :</span></dt><dd>clcl</dd><dt><span>long_name :</span></dt><dd>low level clouds</dd><dt><span>units :</span></dt><dd>%</dd><dt><span>param :</span></dt><dd>22.6.0</dd></dl></div><div class='xr-var-data'><table>\n", + " <tr>\n", + " <td>\n", + " <table>\n", + " <thead>\n", + " <tr>\n", + " <td> </td>\n", + " <th> Array </th>\n", + " <th> Chunk </th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " \n", + " <tr>\n", + " <th> Bytes </th>\n", + " <td> 8.09 MiB </td>\n", + " <td> 223.92 kiB </td>\n", + " </tr>\n", + " \n", + " <tr>\n", + " <th> Shape </th>\n", + " <td> (37, 1, 281, 204) </td>\n", + " <td> (1, 1, 281, 204) </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Count </th>\n", + " <td> 148 Tasks </td>\n", + " <td> 37 Chunks </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Type </th>\n", + " <td> float32 </td>\n", + " <td> numpy.ndarray </td>\n", + " </tr>\n", + " </tbody>\n", + " </table>\n", + " </td>\n", + " <td>\n", + " <svg width=\"372\" height=\"184\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"0\" y1=\"0\" x2=\"40\" y2=\"0\" style=\"stroke-width:2\" />\n", + " <line x1=\"0\" y1=\"25\" x2=\"40\" y2=\"25\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"25\" style=\"stroke-width:2\" />\n", + " <line x1=\"1\" y1=\"0\" x2=\"1\" y2=\"25\" />\n", + " <line x1=\"2\" y1=\"0\" x2=\"2\" y2=\"25\" />\n", + " <line x1=\"3\" y1=\"0\" x2=\"3\" y2=\"25\" />\n", + " <line x1=\"4\" y1=\"0\" x2=\"4\" y2=\"25\" />\n", + " <line x1=\"5\" y1=\"0\" x2=\"5\" y2=\"25\" />\n", + " <line x1=\"6\" y1=\"0\" x2=\"6\" y2=\"25\" />\n", + " <line x1=\"8\" y1=\"0\" x2=\"8\" y2=\"25\" />\n", + " <line x1=\"9\" y1=\"0\" x2=\"9\" y2=\"25\" />\n", + " <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"25\" />\n", + " <line x1=\"11\" y1=\"0\" x2=\"11\" y2=\"25\" />\n", + " <line x1=\"12\" y1=\"0\" x2=\"12\" y2=\"25\" />\n", + " <line x1=\"14\" y1=\"0\" x2=\"14\" y2=\"25\" />\n", + " <line x1=\"16\" y1=\"0\" x2=\"16\" y2=\"25\" />\n", + " <line x1=\"17\" y1=\"0\" x2=\"17\" y2=\"25\" />\n", + " <line x1=\"18\" y1=\"0\" x2=\"18\" y2=\"25\" />\n", + " <line x1=\"19\" y1=\"0\" x2=\"19\" y2=\"25\" />\n", + " <line x1=\"20\" y1=\"0\" x2=\"20\" y2=\"25\" />\n", + " <line x1=\"21\" y1=\"0\" x2=\"21\" y2=\"25\" />\n", + " <line x1=\"22\" y1=\"0\" x2=\"22\" y2=\"25\" />\n", + " <line x1=\"24\" y1=\"0\" x2=\"24\" y2=\"25\" />\n", + " <line x1=\"25\" y1=\"0\" x2=\"25\" y2=\"25\" />\n", + " <line x1=\"27\" y1=\"0\" x2=\"27\" y2=\"25\" />\n", + " <line x1=\"28\" y1=\"0\" x2=\"28\" y2=\"25\" />\n", + " <line x1=\"29\" y1=\"0\" x2=\"29\" y2=\"25\" />\n", + " <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"25\" />\n", + " <line x1=\"32\" y1=\"0\" x2=\"32\" y2=\"25\" />\n", + " <line x1=\"33\" y1=\"0\" x2=\"33\" y2=\"25\" />\n", + " <line x1=\"34\" y1=\"0\" x2=\"34\" y2=\"25\" />\n", + " <line x1=\"35\" y1=\"0\" x2=\"35\" y2=\"25\" />\n", + " <line x1=\"36\" y1=\"0\" x2=\"36\" y2=\"25\" />\n", + " <line x1=\"37\" y1=\"0\" x2=\"37\" y2=\"25\" />\n", + " <line x1=\"40\" y1=\"0\" x2=\"40\" y2=\"25\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"0.0,0.0 40.060598776365545,0.0 40.060598776365545,25.412616514582485 0.0,25.412616514582485\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", + "\n", + " <!-- Text -->\n", + " <text x=\"20.030299\" y=\"45.412617\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >37</text>\n", + " <text x=\"60.060599\" y=\"12.706308\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,60.060599,12.706308)\">1</text>\n", + "\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"110\" y1=\"0\" x2=\"124\" y2=\"14\" style=\"stroke-width:2\" />\n", + " <line x1=\"110\" y1=\"120\" x2=\"124\" y2=\"134\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"110\" y1=\"0\" x2=\"110\" y2=\"120\" style=\"stroke-width:2\" />\n", + " <line x1=\"124\" y1=\"14\" x2=\"124\" y2=\"134\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"110.0,0.0 124.9485979497544,14.948597949754403 124.9485979497544,134.9485979497544 110.0,120.0\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"110\" y1=\"0\" x2=\"197\" y2=\"0\" style=\"stroke-width:2\" />\n", + " <line x1=\"124\" y1=\"14\" x2=\"212\" y2=\"14\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"110\" y1=\"0\" x2=\"124\" y2=\"14\" style=\"stroke-width:2\" />\n", + " <line x1=\"197\" y1=\"0\" x2=\"212\" y2=\"14\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"110.0,0.0 197.11743772241994,0.0 212.06603567217434,14.948597949754403 124.9485979497544,14.948597949754403\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"124\" y1=\"14\" x2=\"212\" y2=\"14\" style=\"stroke-width:2\" />\n", + " <line x1=\"124\" y1=\"134\" x2=\"212\" y2=\"134\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"124\" y1=\"14\" x2=\"124\" y2=\"134\" style=\"stroke-width:2\" />\n", + " <line x1=\"212\" y1=\"14\" x2=\"212\" y2=\"134\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"124.9485979497544,14.948597949754403 212.06603567217434,14.948597949754403 212.06603567217434,134.9485979497544 124.9485979497544,134.9485979497544\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Text -->\n", + " <text x=\"168.507317\" y=\"154.948598\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >204</text>\n", + " <text x=\"232.066036\" y=\"74.948598\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,232.066036,74.948598)\">281</text>\n", + " <text x=\"107.474299\" y=\"147.474299\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,107.474299,147.474299)\">1</text>\n", + "</svg>\n", + " </td>\n", + " </tr>\n", + "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>tqv_dia</span></div><div class='xr-var-dims'>(time, lat, lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(1, 281, 204), meta=np.ndarray></div><input id='attrs-34073b40-caa7-4cd3-9067-412d33bc33a4' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-34073b40-caa7-4cd3-9067-412d33bc33a4' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-96e157fa-8e7d-49bf-8067-4b8529dc0fd7' class='xr-var-data-in' type='checkbox'><label for='data-96e157fa-8e7d-49bf-8067-4b8529dc0fd7' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>standard_name :</span></dt><dd>tqv_dia</dd><dt><span>long_name :</span></dt><dd>total column integrated water vapour (diagnostic)</dd><dt><span>units :</span></dt><dd>kg m**-2</dd><dt><span>param :</span></dt><dd>214.1.0</dd></dl></div><div class='xr-var-data'><table>\n", + " <tr>\n", + " <td>\n", + " <table>\n", + " <thead>\n", + " <tr>\n", + " <td> </td>\n", + " <th> Array </th>\n", + " <th> Chunk </th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " \n", + " <tr>\n", + " <th> Bytes </th>\n", + " <td> 8.09 MiB </td>\n", + " <td> 223.92 kiB </td>\n", + " </tr>\n", + " \n", + " <tr>\n", + " <th> Shape </th>\n", + " <td> (37, 281, 204) </td>\n", + " <td> (1, 281, 204) </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Count </th>\n", + " <td> 148 Tasks </td>\n", + " <td> 37 Chunks </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Type </th>\n", + " <td> float32 </td>\n", + " <td> numpy.ndarray </td>\n", + " </tr>\n", + " </tbody>\n", + " </table>\n", + " </td>\n", + " <td>\n", + " <svg width=\"170\" height=\"193\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"33\" y2=\"23\" style=\"stroke-width:2\" />\n", + " <line x1=\"10\" y1=\"120\" x2=\"33\" y2=\"143\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"120\" style=\"stroke-width:2\" />\n", + " <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"120\" />\n", + " <line x1=\"11\" y1=\"1\" x2=\"11\" y2=\"121\" />\n", + " <line x1=\"13\" y1=\"3\" x2=\"13\" y2=\"123\" />\n", + " <line x1=\"14\" y1=\"4\" x2=\"14\" y2=\"124\" />\n", + " <line x1=\"15\" y1=\"5\" x2=\"15\" y2=\"125\" />\n", + " <line x1=\"17\" y1=\"7\" x2=\"17\" y2=\"127\" />\n", + " <line x1=\"18\" y1=\"8\" x2=\"18\" y2=\"128\" />\n", + " <line x1=\"19\" y1=\"9\" x2=\"19\" y2=\"129\" />\n", + " <line x1=\"20\" y1=\"10\" x2=\"20\" y2=\"130\" />\n", + " <line x1=\"22\" y1=\"12\" x2=\"22\" y2=\"132\" />\n", + " <line x1=\"23\" y1=\"13\" x2=\"23\" y2=\"133\" />\n", + " <line x1=\"24\" y1=\"14\" x2=\"24\" y2=\"134\" />\n", + " <line x1=\"25\" y1=\"15\" x2=\"25\" y2=\"135\" />\n", + " <line x1=\"27\" y1=\"17\" x2=\"27\" y2=\"137\" />\n", + " <line x1=\"28\" y1=\"18\" x2=\"28\" y2=\"138\" />\n", + " <line x1=\"29\" y1=\"19\" x2=\"29\" y2=\"139\" />\n", + " <line x1=\"31\" y1=\"21\" x2=\"31\" y2=\"141\" />\n", + " <line x1=\"32\" y1=\"22\" x2=\"32\" y2=\"142\" />\n", + " <line x1=\"33\" y1=\"23\" x2=\"33\" y2=\"143\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"10.0,0.0 33.565058103744434,23.565058103744438 33.565058103744434,143.56505810374443 10.0,120.0\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"97\" y2=\"0\" style=\"stroke-width:2\" />\n", + " <line x1=\"10\" y1=\"0\" x2=\"97\" y2=\"0\" />\n", + " <line x1=\"11\" y1=\"1\" x2=\"99\" y2=\"1\" />\n", + " <line x1=\"13\" y1=\"3\" x2=\"100\" y2=\"3\" />\n", + " <line x1=\"14\" y1=\"4\" x2=\"101\" y2=\"4\" />\n", + " <line x1=\"15\" y1=\"5\" x2=\"102\" y2=\"5\" />\n", + " <line x1=\"17\" y1=\"7\" x2=\"104\" y2=\"7\" />\n", + " <line x1=\"18\" y1=\"8\" x2=\"105\" y2=\"8\" />\n", + " <line x1=\"19\" y1=\"9\" x2=\"106\" y2=\"9\" />\n", + " <line x1=\"20\" y1=\"10\" x2=\"107\" y2=\"10\" />\n", + " <line x1=\"22\" y1=\"12\" x2=\"109\" y2=\"12\" />\n", + " <line x1=\"23\" y1=\"13\" x2=\"110\" y2=\"13\" />\n", + " <line x1=\"24\" y1=\"14\" x2=\"111\" y2=\"14\" />\n", + " <line x1=\"25\" y1=\"15\" x2=\"113\" y2=\"15\" />\n", + " <line x1=\"27\" y1=\"17\" x2=\"114\" y2=\"17\" />\n", + " <line x1=\"28\" y1=\"18\" x2=\"115\" y2=\"18\" />\n", + " <line x1=\"29\" y1=\"19\" x2=\"116\" y2=\"19\" />\n", + " <line x1=\"31\" y1=\"21\" x2=\"118\" y2=\"21\" />\n", + " <line x1=\"32\" y1=\"22\" x2=\"119\" y2=\"22\" />\n", + " <line x1=\"33\" y1=\"23\" x2=\"120\" y2=\"23\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"33\" y2=\"23\" style=\"stroke-width:2\" />\n", + " <line x1=\"97\" y1=\"0\" x2=\"120\" y2=\"23\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"10.0,0.0 97.11743772241994,0.0 120.68249582616437,23.565058103744438 33.565058103744434,23.565058103744438\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"33\" y1=\"23\" x2=\"120\" y2=\"23\" style=\"stroke-width:2\" />\n", + " <line x1=\"33\" y1=\"143\" x2=\"120\" y2=\"143\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"33\" y1=\"23\" x2=\"33\" y2=\"143\" style=\"stroke-width:2\" />\n", + " <line x1=\"120\" y1=\"23\" x2=\"120\" y2=\"143\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"33.565058103744434,23.565058103744438 120.68249582616437,23.565058103744438 120.68249582616437,143.56505810374443 33.565058103744434,143.56505810374443\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Text -->\n", + " <text x=\"77.123777\" y=\"163.565058\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >204</text>\n", + " <text x=\"140.682496\" y=\"83.565058\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.682496,83.565058)\">281</text>\n", + " <text x=\"11.782529\" y=\"151.782529\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,11.782529,151.782529)\">37</text>\n", + "</svg>\n", + " </td>\n", + " </tr>\n", + "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>tqc_dia</span></div><div class='xr-var-dims'>(time, lat, lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(1, 281, 204), meta=np.ndarray></div><input id='attrs-30728fb0-1e5f-481f-b64f-f5bb47f68760' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-30728fb0-1e5f-481f-b64f-f5bb47f68760' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-1973f410-1c09-4ad0-b747-33d852c1041d' class='xr-var-data-in' type='checkbox'><label for='data-1973f410-1c09-4ad0-b747-33d852c1041d' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>standard_name :</span></dt><dd>tqc_dia</dd><dt><span>long_name :</span></dt><dd>total column integrated cloud water (diagnostic)</dd><dt><span>units :</span></dt><dd>kg m**-2</dd><dt><span>param :</span></dt><dd>215.1.0</dd></dl></div><div class='xr-var-data'><table>\n", + " <tr>\n", + " <td>\n", + " <table>\n", + " <thead>\n", + " <tr>\n", + " <td> </td>\n", + " <th> Array </th>\n", + " <th> Chunk </th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " \n", + " <tr>\n", + " <th> Bytes </th>\n", + " <td> 8.09 MiB </td>\n", + " <td> 223.92 kiB </td>\n", + " </tr>\n", + " \n", + " <tr>\n", + " <th> Shape </th>\n", + " <td> (37, 281, 204) </td>\n", + " <td> (1, 281, 204) </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Count </th>\n", + " <td> 148 Tasks </td>\n", + " <td> 37 Chunks </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Type </th>\n", + " <td> float32 </td>\n", + " <td> numpy.ndarray </td>\n", + " </tr>\n", + " </tbody>\n", + " </table>\n", + " </td>\n", + " <td>\n", + " <svg width=\"170\" height=\"193\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"33\" y2=\"23\" style=\"stroke-width:2\" />\n", + " <line x1=\"10\" y1=\"120\" x2=\"33\" y2=\"143\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"120\" style=\"stroke-width:2\" />\n", + " <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"120\" />\n", + " <line x1=\"11\" y1=\"1\" x2=\"11\" y2=\"121\" />\n", + " <line x1=\"13\" y1=\"3\" x2=\"13\" y2=\"123\" />\n", + " <line x1=\"14\" y1=\"4\" x2=\"14\" y2=\"124\" />\n", + " <line x1=\"15\" y1=\"5\" x2=\"15\" y2=\"125\" />\n", + " <line x1=\"17\" y1=\"7\" x2=\"17\" y2=\"127\" />\n", + " <line x1=\"18\" y1=\"8\" x2=\"18\" y2=\"128\" />\n", + " <line x1=\"19\" y1=\"9\" x2=\"19\" y2=\"129\" />\n", + " <line x1=\"20\" y1=\"10\" x2=\"20\" y2=\"130\" />\n", + " <line x1=\"22\" y1=\"12\" x2=\"22\" y2=\"132\" />\n", + " <line x1=\"23\" y1=\"13\" x2=\"23\" y2=\"133\" />\n", + " <line x1=\"24\" y1=\"14\" x2=\"24\" y2=\"134\" />\n", + " <line x1=\"25\" y1=\"15\" x2=\"25\" y2=\"135\" />\n", + " <line x1=\"27\" y1=\"17\" x2=\"27\" y2=\"137\" />\n", + " <line x1=\"28\" y1=\"18\" x2=\"28\" y2=\"138\" />\n", + " <line x1=\"29\" y1=\"19\" x2=\"29\" y2=\"139\" />\n", + " <line x1=\"31\" y1=\"21\" x2=\"31\" y2=\"141\" />\n", + " <line x1=\"32\" y1=\"22\" x2=\"32\" y2=\"142\" />\n", + " <line x1=\"33\" y1=\"23\" x2=\"33\" y2=\"143\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"10.0,0.0 33.565058103744434,23.565058103744438 33.565058103744434,143.56505810374443 10.0,120.0\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"97\" y2=\"0\" style=\"stroke-width:2\" />\n", + " <line x1=\"10\" y1=\"0\" x2=\"97\" y2=\"0\" />\n", + " <line x1=\"11\" y1=\"1\" x2=\"99\" y2=\"1\" />\n", + " <line x1=\"13\" y1=\"3\" x2=\"100\" y2=\"3\" />\n", + " <line x1=\"14\" y1=\"4\" x2=\"101\" y2=\"4\" />\n", + " <line x1=\"15\" y1=\"5\" x2=\"102\" y2=\"5\" />\n", + " <line x1=\"17\" y1=\"7\" x2=\"104\" y2=\"7\" />\n", + " <line x1=\"18\" y1=\"8\" x2=\"105\" y2=\"8\" />\n", + " <line x1=\"19\" y1=\"9\" x2=\"106\" y2=\"9\" />\n", + " <line x1=\"20\" y1=\"10\" x2=\"107\" y2=\"10\" />\n", + " <line x1=\"22\" y1=\"12\" x2=\"109\" y2=\"12\" />\n", + " <line x1=\"23\" y1=\"13\" x2=\"110\" y2=\"13\" />\n", + " <line x1=\"24\" y1=\"14\" x2=\"111\" y2=\"14\" />\n", + " <line x1=\"25\" y1=\"15\" x2=\"113\" y2=\"15\" />\n", + " <line x1=\"27\" y1=\"17\" x2=\"114\" y2=\"17\" />\n", + " <line x1=\"28\" y1=\"18\" x2=\"115\" y2=\"18\" />\n", + " <line x1=\"29\" y1=\"19\" x2=\"116\" y2=\"19\" />\n", + " <line x1=\"31\" y1=\"21\" x2=\"118\" y2=\"21\" />\n", + " <line x1=\"32\" y1=\"22\" x2=\"119\" y2=\"22\" />\n", + " <line x1=\"33\" y1=\"23\" x2=\"120\" y2=\"23\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"33\" y2=\"23\" style=\"stroke-width:2\" />\n", + " <line x1=\"97\" y1=\"0\" x2=\"120\" y2=\"23\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"10.0,0.0 97.11743772241994,0.0 120.68249582616437,23.565058103744438 33.565058103744434,23.565058103744438\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"33\" y1=\"23\" x2=\"120\" y2=\"23\" style=\"stroke-width:2\" />\n", + " <line x1=\"33\" y1=\"143\" x2=\"120\" y2=\"143\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"33\" y1=\"23\" x2=\"33\" y2=\"143\" style=\"stroke-width:2\" />\n", + " <line x1=\"120\" y1=\"23\" x2=\"120\" y2=\"143\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"33.565058103744434,23.565058103744438 120.68249582616437,23.565058103744438 120.68249582616437,143.56505810374443 33.565058103744434,143.56505810374443\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Text -->\n", + " <text x=\"77.123777\" y=\"163.565058\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >204</text>\n", + " <text x=\"140.682496\" y=\"83.565058\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.682496,83.565058)\">281</text>\n", + " <text x=\"11.782529\" y=\"151.782529\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,11.782529,151.782529)\">37</text>\n", + "</svg>\n", + " </td>\n", + " </tr>\n", + "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>tqi_dia</span></div><div class='xr-var-dims'>(time, lat, lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(1, 281, 204), meta=np.ndarray></div><input id='attrs-e720d729-0498-41ff-8a43-b92478acd39d' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-e720d729-0498-41ff-8a43-b92478acd39d' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-6cad1bcc-1645-457b-9641-aee2034a6ea7' class='xr-var-data-in' type='checkbox'><label for='data-6cad1bcc-1645-457b-9641-aee2034a6ea7' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>standard_name :</span></dt><dd>tqi_dia</dd><dt><span>long_name :</span></dt><dd>total column integrated cloud ice (diagnostic)</dd><dt><span>units :</span></dt><dd>kg m**-2</dd><dt><span>param :</span></dt><dd>216.1.0</dd></dl></div><div class='xr-var-data'><table>\n", + " <tr>\n", + " <td>\n", + " <table>\n", + " <thead>\n", + " <tr>\n", + " <td> </td>\n", + " <th> Array </th>\n", + " <th> Chunk </th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " \n", + " <tr>\n", + " <th> Bytes </th>\n", + " <td> 8.09 MiB </td>\n", + " <td> 223.92 kiB </td>\n", + " </tr>\n", + " \n", + " <tr>\n", + " <th> Shape </th>\n", + " <td> (37, 281, 204) </td>\n", + " <td> (1, 281, 204) </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Count </th>\n", + " <td> 148 Tasks </td>\n", + " <td> 37 Chunks </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Type </th>\n", + " <td> float32 </td>\n", + " <td> numpy.ndarray </td>\n", + " </tr>\n", + " </tbody>\n", + " </table>\n", + " </td>\n", + " <td>\n", + " <svg width=\"170\" height=\"193\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"33\" y2=\"23\" style=\"stroke-width:2\" />\n", + " <line x1=\"10\" y1=\"120\" x2=\"33\" y2=\"143\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"120\" style=\"stroke-width:2\" />\n", + " <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"120\" />\n", + " <line x1=\"11\" y1=\"1\" x2=\"11\" y2=\"121\" />\n", + " <line x1=\"13\" y1=\"3\" x2=\"13\" y2=\"123\" />\n", + " <line x1=\"14\" y1=\"4\" x2=\"14\" y2=\"124\" />\n", + " <line x1=\"15\" y1=\"5\" x2=\"15\" y2=\"125\" />\n", + " <line x1=\"17\" y1=\"7\" x2=\"17\" y2=\"127\" />\n", + " <line x1=\"18\" y1=\"8\" x2=\"18\" y2=\"128\" />\n", + " <line x1=\"19\" y1=\"9\" x2=\"19\" y2=\"129\" />\n", + " <line x1=\"20\" y1=\"10\" x2=\"20\" y2=\"130\" />\n", + " <line x1=\"22\" y1=\"12\" x2=\"22\" y2=\"132\" />\n", + " <line x1=\"23\" y1=\"13\" x2=\"23\" y2=\"133\" />\n", + " <line x1=\"24\" y1=\"14\" x2=\"24\" y2=\"134\" />\n", + " <line x1=\"25\" y1=\"15\" x2=\"25\" y2=\"135\" />\n", + " <line x1=\"27\" y1=\"17\" x2=\"27\" y2=\"137\" />\n", + " <line x1=\"28\" y1=\"18\" x2=\"28\" y2=\"138\" />\n", + " <line x1=\"29\" y1=\"19\" x2=\"29\" y2=\"139\" />\n", + " <line x1=\"31\" y1=\"21\" x2=\"31\" y2=\"141\" />\n", + " <line x1=\"32\" y1=\"22\" x2=\"32\" y2=\"142\" />\n", + " <line x1=\"33\" y1=\"23\" x2=\"33\" y2=\"143\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"10.0,0.0 33.565058103744434,23.565058103744438 33.565058103744434,143.56505810374443 10.0,120.0\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"97\" y2=\"0\" style=\"stroke-width:2\" />\n", + " <line x1=\"10\" y1=\"0\" x2=\"97\" y2=\"0\" />\n", + " <line x1=\"11\" y1=\"1\" x2=\"99\" y2=\"1\" />\n", + " <line x1=\"13\" y1=\"3\" x2=\"100\" y2=\"3\" />\n", + " <line x1=\"14\" y1=\"4\" x2=\"101\" y2=\"4\" />\n", + " <line x1=\"15\" y1=\"5\" x2=\"102\" y2=\"5\" />\n", + " <line x1=\"17\" y1=\"7\" x2=\"104\" y2=\"7\" />\n", + " <line x1=\"18\" y1=\"8\" x2=\"105\" y2=\"8\" />\n", + " <line x1=\"19\" y1=\"9\" x2=\"106\" y2=\"9\" />\n", + " <line x1=\"20\" y1=\"10\" x2=\"107\" y2=\"10\" />\n", + " <line x1=\"22\" y1=\"12\" x2=\"109\" y2=\"12\" />\n", + " <line x1=\"23\" y1=\"13\" x2=\"110\" y2=\"13\" />\n", + " <line x1=\"24\" y1=\"14\" x2=\"111\" y2=\"14\" />\n", + " <line x1=\"25\" y1=\"15\" x2=\"113\" y2=\"15\" />\n", + " <line x1=\"27\" y1=\"17\" x2=\"114\" y2=\"17\" />\n", + " <line x1=\"28\" y1=\"18\" x2=\"115\" y2=\"18\" />\n", + " <line x1=\"29\" y1=\"19\" x2=\"116\" y2=\"19\" />\n", + " <line x1=\"31\" y1=\"21\" x2=\"118\" y2=\"21\" />\n", + " <line x1=\"32\" y1=\"22\" x2=\"119\" y2=\"22\" />\n", + " <line x1=\"33\" y1=\"23\" x2=\"120\" y2=\"23\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"33\" y2=\"23\" style=\"stroke-width:2\" />\n", + " <line x1=\"97\" y1=\"0\" x2=\"120\" y2=\"23\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"10.0,0.0 97.11743772241994,0.0 120.68249582616437,23.565058103744438 33.565058103744434,23.565058103744438\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"33\" y1=\"23\" x2=\"120\" y2=\"23\" style=\"stroke-width:2\" />\n", + " <line x1=\"33\" y1=\"143\" x2=\"120\" y2=\"143\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"33\" y1=\"23\" x2=\"33\" y2=\"143\" style=\"stroke-width:2\" />\n", + " <line x1=\"120\" y1=\"23\" x2=\"120\" y2=\"143\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"33.565058103744434,23.565058103744438 120.68249582616437,23.565058103744438 120.68249582616437,143.56505810374443 33.565058103744434,143.56505810374443\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Text -->\n", + " <text x=\"77.123777\" y=\"163.565058\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >204</text>\n", + " <text x=\"140.682496\" y=\"83.565058\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.682496,83.565058)\">281</text>\n", + " <text x=\"11.782529\" y=\"151.782529\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,11.782529,151.782529)\">37</text>\n", + "</svg>\n", + " </td>\n", + " </tr>\n", + "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>tqv</span></div><div class='xr-var-dims'>(time, lat, lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(1, 281, 204), meta=np.ndarray></div><input id='attrs-3c8713ce-ed0f-46e4-a664-dbf0544e1600' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-3c8713ce-ed0f-46e4-a664-dbf0544e1600' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-fc306155-92f8-4268-95a0-b90f3aabb1b3' class='xr-var-data-in' type='checkbox'><label for='data-fc306155-92f8-4268-95a0-b90f3aabb1b3' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>standard_name :</span></dt><dd>tqv</dd><dt><span>long_name :</span></dt><dd>total column integrated water vapour</dd><dt><span>units :</span></dt><dd>kg m-2</dd><dt><span>param :</span></dt><dd>64.1.0</dd></dl></div><div class='xr-var-data'><table>\n", + " <tr>\n", + " <td>\n", + " <table>\n", + " <thead>\n", + " <tr>\n", + " <td> </td>\n", + " <th> Array </th>\n", + " <th> Chunk </th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " \n", + " <tr>\n", + " <th> Bytes </th>\n", + " <td> 8.09 MiB </td>\n", + " <td> 223.92 kiB </td>\n", + " </tr>\n", + " \n", + " <tr>\n", + " <th> Shape </th>\n", + " <td> (37, 281, 204) </td>\n", + " <td> (1, 281, 204) </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Count </th>\n", + " <td> 148 Tasks </td>\n", + " <td> 37 Chunks </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Type </th>\n", + " <td> float32 </td>\n", + " <td> numpy.ndarray </td>\n", + " </tr>\n", + " </tbody>\n", + " </table>\n", + " </td>\n", + " <td>\n", + " <svg width=\"170\" height=\"193\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"33\" y2=\"23\" style=\"stroke-width:2\" />\n", + " <line x1=\"10\" y1=\"120\" x2=\"33\" y2=\"143\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"120\" style=\"stroke-width:2\" />\n", + " <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"120\" />\n", + " <line x1=\"11\" y1=\"1\" x2=\"11\" y2=\"121\" />\n", + " <line x1=\"13\" y1=\"3\" x2=\"13\" y2=\"123\" />\n", + " <line x1=\"14\" y1=\"4\" x2=\"14\" y2=\"124\" />\n", + " <line x1=\"15\" y1=\"5\" x2=\"15\" y2=\"125\" />\n", + " <line x1=\"17\" y1=\"7\" x2=\"17\" y2=\"127\" />\n", + " <line x1=\"18\" y1=\"8\" x2=\"18\" y2=\"128\" />\n", + " <line x1=\"19\" y1=\"9\" x2=\"19\" y2=\"129\" />\n", + " <line x1=\"20\" y1=\"10\" x2=\"20\" y2=\"130\" />\n", + " <line x1=\"22\" y1=\"12\" x2=\"22\" y2=\"132\" />\n", + " <line x1=\"23\" y1=\"13\" x2=\"23\" y2=\"133\" />\n", + " <line x1=\"24\" y1=\"14\" x2=\"24\" y2=\"134\" />\n", + " <line x1=\"25\" y1=\"15\" x2=\"25\" y2=\"135\" />\n", + " <line x1=\"27\" y1=\"17\" x2=\"27\" y2=\"137\" />\n", + " <line x1=\"28\" y1=\"18\" x2=\"28\" y2=\"138\" />\n", + " <line x1=\"29\" y1=\"19\" x2=\"29\" y2=\"139\" />\n", + " <line x1=\"31\" y1=\"21\" x2=\"31\" y2=\"141\" />\n", + " <line x1=\"32\" y1=\"22\" x2=\"32\" y2=\"142\" />\n", + " <line x1=\"33\" y1=\"23\" x2=\"33\" y2=\"143\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"10.0,0.0 33.565058103744434,23.565058103744438 33.565058103744434,143.56505810374443 10.0,120.0\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"97\" y2=\"0\" style=\"stroke-width:2\" />\n", + " <line x1=\"10\" y1=\"0\" x2=\"97\" y2=\"0\" />\n", + " <line x1=\"11\" y1=\"1\" x2=\"99\" y2=\"1\" />\n", + " <line x1=\"13\" y1=\"3\" x2=\"100\" y2=\"3\" />\n", + " <line x1=\"14\" y1=\"4\" x2=\"101\" y2=\"4\" />\n", + " <line x1=\"15\" y1=\"5\" x2=\"102\" y2=\"5\" />\n", + " <line x1=\"17\" y1=\"7\" x2=\"104\" y2=\"7\" />\n", + " <line x1=\"18\" y1=\"8\" x2=\"105\" y2=\"8\" />\n", + " <line x1=\"19\" y1=\"9\" x2=\"106\" y2=\"9\" />\n", + " <line x1=\"20\" y1=\"10\" x2=\"107\" y2=\"10\" />\n", + " <line x1=\"22\" y1=\"12\" x2=\"109\" y2=\"12\" />\n", + " <line x1=\"23\" y1=\"13\" x2=\"110\" y2=\"13\" />\n", + " <line x1=\"24\" y1=\"14\" x2=\"111\" y2=\"14\" />\n", + " <line x1=\"25\" y1=\"15\" x2=\"113\" y2=\"15\" />\n", + " <line x1=\"27\" y1=\"17\" x2=\"114\" y2=\"17\" />\n", + " <line x1=\"28\" y1=\"18\" x2=\"115\" y2=\"18\" />\n", + " <line x1=\"29\" y1=\"19\" x2=\"116\" y2=\"19\" />\n", + " <line x1=\"31\" y1=\"21\" x2=\"118\" y2=\"21\" />\n", + " <line x1=\"32\" y1=\"22\" x2=\"119\" y2=\"22\" />\n", + " <line x1=\"33\" y1=\"23\" x2=\"120\" y2=\"23\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"33\" y2=\"23\" style=\"stroke-width:2\" />\n", + " <line x1=\"97\" y1=\"0\" x2=\"120\" y2=\"23\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"10.0,0.0 97.11743772241994,0.0 120.68249582616437,23.565058103744438 33.565058103744434,23.565058103744438\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"33\" y1=\"23\" x2=\"120\" y2=\"23\" style=\"stroke-width:2\" />\n", + " <line x1=\"33\" y1=\"143\" x2=\"120\" y2=\"143\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"33\" y1=\"23\" x2=\"33\" y2=\"143\" style=\"stroke-width:2\" />\n", + " <line x1=\"120\" y1=\"23\" x2=\"120\" y2=\"143\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"33.565058103744434,23.565058103744438 120.68249582616437,23.565058103744438 120.68249582616437,143.56505810374443 33.565058103744434,143.56505810374443\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Text -->\n", + " <text x=\"77.123777\" y=\"163.565058\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >204</text>\n", + " <text x=\"140.682496\" y=\"83.565058\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.682496,83.565058)\">281</text>\n", + " <text x=\"11.782529\" y=\"151.782529\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,11.782529,151.782529)\">37</text>\n", + "</svg>\n", + " </td>\n", + " </tr>\n", + "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>tqc</span></div><div class='xr-var-dims'>(time, lat, lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(1, 281, 204), meta=np.ndarray></div><input id='attrs-4ca456bd-9990-467c-b5e3-e601cb3c5574' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-4ca456bd-9990-467c-b5e3-e601cb3c5574' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-82d3a053-dae3-43c7-a584-c8ca50bf6ad8' class='xr-var-data-in' type='checkbox'><label for='data-82d3a053-dae3-43c7-a584-c8ca50bf6ad8' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>standard_name :</span></dt><dd>tqc</dd><dt><span>long_name :</span></dt><dd>total column integrated cloud water</dd><dt><span>units :</span></dt><dd>kg m-2</dd><dt><span>param :</span></dt><dd>69.1.0</dd></dl></div><div class='xr-var-data'><table>\n", + " <tr>\n", + " <td>\n", + " <table>\n", + " <thead>\n", + " <tr>\n", + " <td> </td>\n", + " <th> Array </th>\n", + " <th> Chunk </th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " \n", + " <tr>\n", + " <th> Bytes </th>\n", + " <td> 8.09 MiB </td>\n", + " <td> 223.92 kiB </td>\n", + " </tr>\n", + " \n", + " <tr>\n", + " <th> Shape </th>\n", + " <td> (37, 281, 204) </td>\n", + " <td> (1, 281, 204) </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Count </th>\n", + " <td> 148 Tasks </td>\n", + " <td> 37 Chunks </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Type </th>\n", + " <td> float32 </td>\n", + " <td> numpy.ndarray </td>\n", + " </tr>\n", + " </tbody>\n", + " </table>\n", + " </td>\n", + " <td>\n", + " <svg width=\"170\" height=\"193\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"33\" y2=\"23\" style=\"stroke-width:2\" />\n", + " <line x1=\"10\" y1=\"120\" x2=\"33\" y2=\"143\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"120\" style=\"stroke-width:2\" />\n", + " <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"120\" />\n", + " <line x1=\"11\" y1=\"1\" x2=\"11\" y2=\"121\" />\n", + " <line x1=\"13\" y1=\"3\" x2=\"13\" y2=\"123\" />\n", + " <line x1=\"14\" y1=\"4\" x2=\"14\" y2=\"124\" />\n", + " <line x1=\"15\" y1=\"5\" x2=\"15\" y2=\"125\" />\n", + " <line x1=\"17\" y1=\"7\" x2=\"17\" y2=\"127\" />\n", + " <line x1=\"18\" y1=\"8\" x2=\"18\" y2=\"128\" />\n", + " <line x1=\"19\" y1=\"9\" x2=\"19\" y2=\"129\" />\n", + " <line x1=\"20\" y1=\"10\" x2=\"20\" y2=\"130\" />\n", + " <line x1=\"22\" y1=\"12\" x2=\"22\" y2=\"132\" />\n", + " <line x1=\"23\" y1=\"13\" x2=\"23\" y2=\"133\" />\n", + " <line x1=\"24\" y1=\"14\" x2=\"24\" y2=\"134\" />\n", + " <line x1=\"25\" y1=\"15\" x2=\"25\" y2=\"135\" />\n", + " <line x1=\"27\" y1=\"17\" x2=\"27\" y2=\"137\" />\n", + " <line x1=\"28\" y1=\"18\" x2=\"28\" y2=\"138\" />\n", + " <line x1=\"29\" y1=\"19\" x2=\"29\" y2=\"139\" />\n", + " <line x1=\"31\" y1=\"21\" x2=\"31\" y2=\"141\" />\n", + " <line x1=\"32\" y1=\"22\" x2=\"32\" y2=\"142\" />\n", + " <line x1=\"33\" y1=\"23\" x2=\"33\" y2=\"143\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"10.0,0.0 33.565058103744434,23.565058103744438 33.565058103744434,143.56505810374443 10.0,120.0\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"97\" y2=\"0\" style=\"stroke-width:2\" />\n", + " <line x1=\"10\" y1=\"0\" x2=\"97\" y2=\"0\" />\n", + " <line x1=\"11\" y1=\"1\" x2=\"99\" y2=\"1\" />\n", + " <line x1=\"13\" y1=\"3\" x2=\"100\" y2=\"3\" />\n", + " <line x1=\"14\" y1=\"4\" x2=\"101\" y2=\"4\" />\n", + " <line x1=\"15\" y1=\"5\" x2=\"102\" y2=\"5\" />\n", + " <line x1=\"17\" y1=\"7\" x2=\"104\" y2=\"7\" />\n", + " <line x1=\"18\" y1=\"8\" x2=\"105\" y2=\"8\" />\n", + " <line x1=\"19\" y1=\"9\" x2=\"106\" y2=\"9\" />\n", + " <line x1=\"20\" y1=\"10\" x2=\"107\" y2=\"10\" />\n", + " <line x1=\"22\" y1=\"12\" x2=\"109\" y2=\"12\" />\n", + " <line x1=\"23\" y1=\"13\" x2=\"110\" y2=\"13\" />\n", + " <line x1=\"24\" y1=\"14\" x2=\"111\" y2=\"14\" />\n", + " <line x1=\"25\" y1=\"15\" x2=\"113\" y2=\"15\" />\n", + " <line x1=\"27\" y1=\"17\" x2=\"114\" y2=\"17\" />\n", + " <line x1=\"28\" y1=\"18\" x2=\"115\" y2=\"18\" />\n", + " <line x1=\"29\" y1=\"19\" x2=\"116\" y2=\"19\" />\n", + " <line x1=\"31\" y1=\"21\" x2=\"118\" y2=\"21\" />\n", + " <line x1=\"32\" y1=\"22\" x2=\"119\" y2=\"22\" />\n", + " <line x1=\"33\" y1=\"23\" x2=\"120\" y2=\"23\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"33\" y2=\"23\" style=\"stroke-width:2\" />\n", + " <line x1=\"97\" y1=\"0\" x2=\"120\" y2=\"23\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"10.0,0.0 97.11743772241994,0.0 120.68249582616437,23.565058103744438 33.565058103744434,23.565058103744438\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"33\" y1=\"23\" x2=\"120\" y2=\"23\" style=\"stroke-width:2\" />\n", + " <line x1=\"33\" y1=\"143\" x2=\"120\" y2=\"143\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"33\" y1=\"23\" x2=\"33\" y2=\"143\" style=\"stroke-width:2\" />\n", + " <line x1=\"120\" y1=\"23\" x2=\"120\" y2=\"143\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"33.565058103744434,23.565058103744438 120.68249582616437,23.565058103744438 120.68249582616437,143.56505810374443 33.565058103744434,143.56505810374443\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Text -->\n", + " <text x=\"77.123777\" y=\"163.565058\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >204</text>\n", + " <text x=\"140.682496\" y=\"83.565058\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.682496,83.565058)\">281</text>\n", + " <text x=\"11.782529\" y=\"151.782529\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,11.782529,151.782529)\">37</text>\n", + "</svg>\n", + " </td>\n", + " </tr>\n", + "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>tqi</span></div><div class='xr-var-dims'>(time, lat, lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(1, 281, 204), meta=np.ndarray></div><input id='attrs-e12c70fd-c0c9-44ec-81c2-58dae3b4a80f' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-e12c70fd-c0c9-44ec-81c2-58dae3b4a80f' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-987f35cf-69c7-4e16-80db-2ee6e4c2d67a' class='xr-var-data-in' type='checkbox'><label for='data-987f35cf-69c7-4e16-80db-2ee6e4c2d67a' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>standard_name :</span></dt><dd>tqi</dd><dt><span>long_name :</span></dt><dd>total column integrated cloud ice</dd><dt><span>units :</span></dt><dd>kg m-2</dd><dt><span>param :</span></dt><dd>70.1.0</dd></dl></div><div class='xr-var-data'><table>\n", + " <tr>\n", + " <td>\n", + " <table>\n", + " <thead>\n", + " <tr>\n", + " <td> </td>\n", + " <th> Array </th>\n", + " <th> Chunk </th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " \n", + " <tr>\n", + " <th> Bytes </th>\n", + " <td> 8.09 MiB </td>\n", + " <td> 223.92 kiB </td>\n", + " </tr>\n", + " \n", + " <tr>\n", + " <th> Shape </th>\n", + " <td> (37, 281, 204) </td>\n", + " <td> (1, 281, 204) </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Count </th>\n", + " <td> 148 Tasks </td>\n", + " <td> 37 Chunks </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Type </th>\n", + " <td> float32 </td>\n", + " <td> numpy.ndarray </td>\n", + " </tr>\n", + " </tbody>\n", + " </table>\n", + " </td>\n", + " <td>\n", + " <svg width=\"170\" height=\"193\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"33\" y2=\"23\" style=\"stroke-width:2\" />\n", + " <line x1=\"10\" y1=\"120\" x2=\"33\" y2=\"143\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"120\" style=\"stroke-width:2\" />\n", + " <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"120\" />\n", + " <line x1=\"11\" y1=\"1\" x2=\"11\" y2=\"121\" />\n", + " <line x1=\"13\" y1=\"3\" x2=\"13\" y2=\"123\" />\n", + " <line x1=\"14\" y1=\"4\" x2=\"14\" y2=\"124\" />\n", + " <line x1=\"15\" y1=\"5\" x2=\"15\" y2=\"125\" />\n", + " <line x1=\"17\" y1=\"7\" x2=\"17\" y2=\"127\" />\n", + " <line x1=\"18\" y1=\"8\" x2=\"18\" y2=\"128\" />\n", + " <line x1=\"19\" y1=\"9\" x2=\"19\" y2=\"129\" />\n", + " <line x1=\"20\" y1=\"10\" x2=\"20\" y2=\"130\" />\n", + " <line x1=\"22\" y1=\"12\" x2=\"22\" y2=\"132\" />\n", + " <line x1=\"23\" y1=\"13\" x2=\"23\" y2=\"133\" />\n", + " <line x1=\"24\" y1=\"14\" x2=\"24\" y2=\"134\" />\n", + " <line x1=\"25\" y1=\"15\" x2=\"25\" y2=\"135\" />\n", + " <line x1=\"27\" y1=\"17\" x2=\"27\" y2=\"137\" />\n", + " <line x1=\"28\" y1=\"18\" x2=\"28\" y2=\"138\" />\n", + " <line x1=\"29\" y1=\"19\" x2=\"29\" y2=\"139\" />\n", + " <line x1=\"31\" y1=\"21\" x2=\"31\" y2=\"141\" />\n", + " <line x1=\"32\" y1=\"22\" x2=\"32\" y2=\"142\" />\n", + " <line x1=\"33\" y1=\"23\" x2=\"33\" y2=\"143\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"10.0,0.0 33.565058103744434,23.565058103744438 33.565058103744434,143.56505810374443 10.0,120.0\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"97\" y2=\"0\" style=\"stroke-width:2\" />\n", + " <line x1=\"10\" y1=\"0\" x2=\"97\" y2=\"0\" />\n", + " <line x1=\"11\" y1=\"1\" x2=\"99\" y2=\"1\" />\n", + " <line x1=\"13\" y1=\"3\" x2=\"100\" y2=\"3\" />\n", + " <line x1=\"14\" y1=\"4\" x2=\"101\" y2=\"4\" />\n", + " <line x1=\"15\" y1=\"5\" x2=\"102\" y2=\"5\" />\n", + " <line x1=\"17\" y1=\"7\" x2=\"104\" y2=\"7\" />\n", + " <line x1=\"18\" y1=\"8\" x2=\"105\" y2=\"8\" />\n", + " <line x1=\"19\" y1=\"9\" x2=\"106\" y2=\"9\" />\n", + " <line x1=\"20\" y1=\"10\" x2=\"107\" y2=\"10\" />\n", + " <line x1=\"22\" y1=\"12\" x2=\"109\" y2=\"12\" />\n", + " <line x1=\"23\" y1=\"13\" x2=\"110\" y2=\"13\" />\n", + " <line x1=\"24\" y1=\"14\" x2=\"111\" y2=\"14\" />\n", + " <line x1=\"25\" y1=\"15\" x2=\"113\" y2=\"15\" />\n", + " <line x1=\"27\" y1=\"17\" x2=\"114\" y2=\"17\" />\n", + " <line x1=\"28\" y1=\"18\" x2=\"115\" y2=\"18\" />\n", + " <line x1=\"29\" y1=\"19\" x2=\"116\" y2=\"19\" />\n", + " <line x1=\"31\" y1=\"21\" x2=\"118\" y2=\"21\" />\n", + " <line x1=\"32\" y1=\"22\" x2=\"119\" y2=\"22\" />\n", + " <line x1=\"33\" y1=\"23\" x2=\"120\" y2=\"23\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"33\" y2=\"23\" style=\"stroke-width:2\" />\n", + " <line x1=\"97\" y1=\"0\" x2=\"120\" y2=\"23\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"10.0,0.0 97.11743772241994,0.0 120.68249582616437,23.565058103744438 33.565058103744434,23.565058103744438\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"33\" y1=\"23\" x2=\"120\" y2=\"23\" style=\"stroke-width:2\" />\n", + " <line x1=\"33\" y1=\"143\" x2=\"120\" y2=\"143\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"33\" y1=\"23\" x2=\"33\" y2=\"143\" style=\"stroke-width:2\" />\n", + " <line x1=\"120\" y1=\"23\" x2=\"120\" y2=\"143\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"33.565058103744434,23.565058103744438 120.68249582616437,23.565058103744438 120.68249582616437,143.56505810374443 33.565058103744434,143.56505810374443\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Text -->\n", + " <text x=\"77.123777\" y=\"163.565058\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >204</text>\n", + " <text x=\"140.682496\" y=\"83.565058\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.682496,83.565058)\">281</text>\n", + " <text x=\"11.782529\" y=\"151.782529\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,11.782529,151.782529)\">37</text>\n", + "</svg>\n", + " </td>\n", + " </tr>\n", + "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>tqr</span></div><div class='xr-var-dims'>(time, lat, lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(1, 281, 204), meta=np.ndarray></div><input id='attrs-2e0024be-50f0-454c-b968-ee4afa3b2784' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-2e0024be-50f0-454c-b968-ee4afa3b2784' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-bb95bc6c-3d43-43f0-8978-a2b1cde29d5a' class='xr-var-data-in' type='checkbox'><label for='data-bb95bc6c-3d43-43f0-8978-a2b1cde29d5a' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>standard_name :</span></dt><dd>tqr</dd><dt><span>long_name :</span></dt><dd>total column integrated rain</dd><dt><span>units :</span></dt><dd>kg m-2</dd><dt><span>param :</span></dt><dd>45.1.0</dd></dl></div><div class='xr-var-data'><table>\n", + " <tr>\n", + " <td>\n", + " <table>\n", + " <thead>\n", + " <tr>\n", + " <td> </td>\n", + " <th> Array </th>\n", + " <th> Chunk </th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " \n", + " <tr>\n", + " <th> Bytes </th>\n", + " <td> 8.09 MiB </td>\n", + " <td> 223.92 kiB </td>\n", + " </tr>\n", + " \n", + " <tr>\n", + " <th> Shape </th>\n", + " <td> (37, 281, 204) </td>\n", + " <td> (1, 281, 204) </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Count </th>\n", + " <td> 148 Tasks </td>\n", + " <td> 37 Chunks </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Type </th>\n", + " <td> float32 </td>\n", + " <td> numpy.ndarray </td>\n", + " </tr>\n", + " </tbody>\n", + " </table>\n", + " </td>\n", + " <td>\n", + " <svg width=\"170\" height=\"193\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"33\" y2=\"23\" style=\"stroke-width:2\" />\n", + " <line x1=\"10\" y1=\"120\" x2=\"33\" y2=\"143\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"120\" style=\"stroke-width:2\" />\n", + " <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"120\" />\n", + " <line x1=\"11\" y1=\"1\" x2=\"11\" y2=\"121\" />\n", + " <line x1=\"13\" y1=\"3\" x2=\"13\" y2=\"123\" />\n", + " <line x1=\"14\" y1=\"4\" x2=\"14\" y2=\"124\" />\n", + " <line x1=\"15\" y1=\"5\" x2=\"15\" y2=\"125\" />\n", + " <line x1=\"17\" y1=\"7\" x2=\"17\" y2=\"127\" />\n", + " <line x1=\"18\" y1=\"8\" x2=\"18\" y2=\"128\" />\n", + " <line x1=\"19\" y1=\"9\" x2=\"19\" y2=\"129\" />\n", + " <line x1=\"20\" y1=\"10\" x2=\"20\" y2=\"130\" />\n", + " <line x1=\"22\" y1=\"12\" x2=\"22\" y2=\"132\" />\n", + " <line x1=\"23\" y1=\"13\" x2=\"23\" y2=\"133\" />\n", + " <line x1=\"24\" y1=\"14\" x2=\"24\" y2=\"134\" />\n", + " <line x1=\"25\" y1=\"15\" x2=\"25\" y2=\"135\" />\n", + " <line x1=\"27\" y1=\"17\" x2=\"27\" y2=\"137\" />\n", + " <line x1=\"28\" y1=\"18\" x2=\"28\" y2=\"138\" />\n", + " <line x1=\"29\" y1=\"19\" x2=\"29\" y2=\"139\" />\n", + " <line x1=\"31\" y1=\"21\" x2=\"31\" y2=\"141\" />\n", + " <line x1=\"32\" y1=\"22\" x2=\"32\" y2=\"142\" />\n", + " <line x1=\"33\" y1=\"23\" x2=\"33\" y2=\"143\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"10.0,0.0 33.565058103744434,23.565058103744438 33.565058103744434,143.56505810374443 10.0,120.0\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"97\" y2=\"0\" style=\"stroke-width:2\" />\n", + " <line x1=\"10\" y1=\"0\" x2=\"97\" y2=\"0\" />\n", + " <line x1=\"11\" y1=\"1\" x2=\"99\" y2=\"1\" />\n", + " <line x1=\"13\" y1=\"3\" x2=\"100\" y2=\"3\" />\n", + " <line x1=\"14\" y1=\"4\" x2=\"101\" y2=\"4\" />\n", + " <line x1=\"15\" y1=\"5\" x2=\"102\" y2=\"5\" />\n", + " <line x1=\"17\" y1=\"7\" x2=\"104\" y2=\"7\" />\n", + " <line x1=\"18\" y1=\"8\" x2=\"105\" y2=\"8\" />\n", + " <line x1=\"19\" y1=\"9\" x2=\"106\" y2=\"9\" />\n", + " <line x1=\"20\" y1=\"10\" x2=\"107\" y2=\"10\" />\n", + " <line x1=\"22\" y1=\"12\" x2=\"109\" y2=\"12\" />\n", + " <line x1=\"23\" y1=\"13\" x2=\"110\" y2=\"13\" />\n", + " <line x1=\"24\" y1=\"14\" x2=\"111\" y2=\"14\" />\n", + " <line x1=\"25\" y1=\"15\" x2=\"113\" y2=\"15\" />\n", + " <line x1=\"27\" y1=\"17\" x2=\"114\" y2=\"17\" />\n", + " <line x1=\"28\" y1=\"18\" x2=\"115\" y2=\"18\" />\n", + " <line x1=\"29\" y1=\"19\" x2=\"116\" y2=\"19\" />\n", + " <line x1=\"31\" y1=\"21\" x2=\"118\" y2=\"21\" />\n", + " <line x1=\"32\" y1=\"22\" x2=\"119\" y2=\"22\" />\n", + " <line x1=\"33\" y1=\"23\" x2=\"120\" y2=\"23\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"33\" y2=\"23\" style=\"stroke-width:2\" />\n", + " <line x1=\"97\" y1=\"0\" x2=\"120\" y2=\"23\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"10.0,0.0 97.11743772241994,0.0 120.68249582616437,23.565058103744438 33.565058103744434,23.565058103744438\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"33\" y1=\"23\" x2=\"120\" y2=\"23\" style=\"stroke-width:2\" />\n", + " <line x1=\"33\" y1=\"143\" x2=\"120\" y2=\"143\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"33\" y1=\"23\" x2=\"33\" y2=\"143\" style=\"stroke-width:2\" />\n", + " <line x1=\"120\" y1=\"23\" x2=\"120\" y2=\"143\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"33.565058103744434,23.565058103744438 120.68249582616437,23.565058103744438 120.68249582616437,143.56505810374443 33.565058103744434,143.56505810374443\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Text -->\n", + " <text x=\"77.123777\" y=\"163.565058\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >204</text>\n", + " <text x=\"140.682496\" y=\"83.565058\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.682496,83.565058)\">281</text>\n", + " <text x=\"11.782529\" y=\"151.782529\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,11.782529,151.782529)\">37</text>\n", + "</svg>\n", + " </td>\n", + " </tr>\n", + "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>shfl_s</span></div><div class='xr-var-dims'>(time, lat, lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(1, 281, 204), meta=np.ndarray></div><input id='attrs-20ffef52-247e-4f26-bee4-1fd80963c7df' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-20ffef52-247e-4f26-bee4-1fd80963c7df' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-179c21bf-7b8e-445e-9432-175d2e57def1' class='xr-var-data-in' type='checkbox'><label for='data-179c21bf-7b8e-445e-9432-175d2e57def1' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>standard_name :</span></dt><dd>shfl_s</dd><dt><span>long_name :</span></dt><dd>surface sensible heat flux</dd><dt><span>units :</span></dt><dd>W m-2</dd><dt><span>param :</span></dt><dd>11.0.0</dd></dl></div><div class='xr-var-data'><table>\n", + " <tr>\n", + " <td>\n", + " <table>\n", + " <thead>\n", + " <tr>\n", + " <td> </td>\n", + " <th> Array </th>\n", + " <th> Chunk </th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " \n", + " <tr>\n", + " <th> Bytes </th>\n", + " <td> 8.09 MiB </td>\n", + " <td> 223.92 kiB </td>\n", + " </tr>\n", + " \n", + " <tr>\n", + " <th> Shape </th>\n", + " <td> (37, 281, 204) </td>\n", + " <td> (1, 281, 204) </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Count </th>\n", + " <td> 148 Tasks </td>\n", + " <td> 37 Chunks </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Type </th>\n", + " <td> float32 </td>\n", + " <td> numpy.ndarray </td>\n", + " </tr>\n", + " </tbody>\n", + " </table>\n", + " </td>\n", + " <td>\n", + " <svg width=\"170\" height=\"193\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"33\" y2=\"23\" style=\"stroke-width:2\" />\n", + " <line x1=\"10\" y1=\"120\" x2=\"33\" y2=\"143\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"120\" style=\"stroke-width:2\" />\n", + " <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"120\" />\n", + " <line x1=\"11\" y1=\"1\" x2=\"11\" y2=\"121\" />\n", + " <line x1=\"13\" y1=\"3\" x2=\"13\" y2=\"123\" />\n", + " <line x1=\"14\" y1=\"4\" x2=\"14\" y2=\"124\" />\n", + " <line x1=\"15\" y1=\"5\" x2=\"15\" y2=\"125\" />\n", + " <line x1=\"17\" y1=\"7\" x2=\"17\" y2=\"127\" />\n", + " <line x1=\"18\" y1=\"8\" x2=\"18\" y2=\"128\" />\n", + " <line x1=\"19\" y1=\"9\" x2=\"19\" y2=\"129\" />\n", + " <line x1=\"20\" y1=\"10\" x2=\"20\" y2=\"130\" />\n", + " <line x1=\"22\" y1=\"12\" x2=\"22\" y2=\"132\" />\n", + " <line x1=\"23\" y1=\"13\" x2=\"23\" y2=\"133\" />\n", + " <line x1=\"24\" y1=\"14\" x2=\"24\" y2=\"134\" />\n", + " <line x1=\"25\" y1=\"15\" x2=\"25\" y2=\"135\" />\n", + " <line x1=\"27\" y1=\"17\" x2=\"27\" y2=\"137\" />\n", + " <line x1=\"28\" y1=\"18\" x2=\"28\" y2=\"138\" />\n", + " <line x1=\"29\" y1=\"19\" x2=\"29\" y2=\"139\" />\n", + " <line x1=\"31\" y1=\"21\" x2=\"31\" y2=\"141\" />\n", + " <line x1=\"32\" y1=\"22\" x2=\"32\" y2=\"142\" />\n", + " <line x1=\"33\" y1=\"23\" x2=\"33\" y2=\"143\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"10.0,0.0 33.565058103744434,23.565058103744438 33.565058103744434,143.56505810374443 10.0,120.0\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"97\" y2=\"0\" style=\"stroke-width:2\" />\n", + " <line x1=\"10\" y1=\"0\" x2=\"97\" y2=\"0\" />\n", + " <line x1=\"11\" y1=\"1\" x2=\"99\" y2=\"1\" />\n", + " <line x1=\"13\" y1=\"3\" x2=\"100\" y2=\"3\" />\n", + " <line x1=\"14\" y1=\"4\" x2=\"101\" y2=\"4\" />\n", + " <line x1=\"15\" y1=\"5\" x2=\"102\" y2=\"5\" />\n", + " <line x1=\"17\" y1=\"7\" x2=\"104\" y2=\"7\" />\n", + " <line x1=\"18\" y1=\"8\" x2=\"105\" y2=\"8\" />\n", + " <line x1=\"19\" y1=\"9\" x2=\"106\" y2=\"9\" />\n", + " <line x1=\"20\" y1=\"10\" x2=\"107\" y2=\"10\" />\n", + " <line x1=\"22\" y1=\"12\" x2=\"109\" y2=\"12\" />\n", + " <line x1=\"23\" y1=\"13\" x2=\"110\" y2=\"13\" />\n", + " <line x1=\"24\" y1=\"14\" x2=\"111\" y2=\"14\" />\n", + " <line x1=\"25\" y1=\"15\" x2=\"113\" y2=\"15\" />\n", + " <line x1=\"27\" y1=\"17\" x2=\"114\" y2=\"17\" />\n", + " <line x1=\"28\" y1=\"18\" x2=\"115\" y2=\"18\" />\n", + " <line x1=\"29\" y1=\"19\" x2=\"116\" y2=\"19\" />\n", + " <line x1=\"31\" y1=\"21\" x2=\"118\" y2=\"21\" />\n", + " <line x1=\"32\" y1=\"22\" x2=\"119\" y2=\"22\" />\n", + " <line x1=\"33\" y1=\"23\" x2=\"120\" y2=\"23\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"33\" y2=\"23\" style=\"stroke-width:2\" />\n", + " <line x1=\"97\" y1=\"0\" x2=\"120\" y2=\"23\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"10.0,0.0 97.11743772241994,0.0 120.68249582616437,23.565058103744438 33.565058103744434,23.565058103744438\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"33\" y1=\"23\" x2=\"120\" y2=\"23\" style=\"stroke-width:2\" />\n", + " <line x1=\"33\" y1=\"143\" x2=\"120\" y2=\"143\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"33\" y1=\"23\" x2=\"33\" y2=\"143\" style=\"stroke-width:2\" />\n", + " <line x1=\"120\" y1=\"23\" x2=\"120\" y2=\"143\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"33.565058103744434,23.565058103744438 120.68249582616437,23.565058103744438 120.68249582616437,143.56505810374443 33.565058103744434,143.56505810374443\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Text -->\n", + " <text x=\"77.123777\" y=\"163.565058\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >204</text>\n", + " <text x=\"140.682496\" y=\"83.565058\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.682496,83.565058)\">281</text>\n", + " <text x=\"11.782529\" y=\"151.782529\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,11.782529,151.782529)\">37</text>\n", + "</svg>\n", + " </td>\n", + " </tr>\n", + "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>lhfl_s</span></div><div class='xr-var-dims'>(time, lat, lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(1, 281, 204), meta=np.ndarray></div><input id='attrs-130953ba-0ace-4004-b573-613f5fad60fe' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-130953ba-0ace-4004-b573-613f5fad60fe' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-d7f25bab-a6f6-4508-a2e2-ab3102011b0d' class='xr-var-data-in' type='checkbox'><label for='data-d7f25bab-a6f6-4508-a2e2-ab3102011b0d' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>standard_name :</span></dt><dd>lhfl_s</dd><dt><span>long_name :</span></dt><dd>surface latent heat flux</dd><dt><span>units :</span></dt><dd>W m-2</dd><dt><span>param :</span></dt><dd>10.0.0</dd></dl></div><div class='xr-var-data'><table>\n", + " <tr>\n", + " <td>\n", + " <table>\n", + " <thead>\n", + " <tr>\n", + " <td> </td>\n", + " <th> Array </th>\n", + " <th> Chunk </th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " \n", + " <tr>\n", + " <th> Bytes </th>\n", + " <td> 8.09 MiB </td>\n", + " <td> 223.92 kiB </td>\n", + " </tr>\n", + " \n", + " <tr>\n", + " <th> Shape </th>\n", + " <td> (37, 281, 204) </td>\n", + " <td> (1, 281, 204) </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Count </th>\n", + " <td> 148 Tasks </td>\n", + " <td> 37 Chunks </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Type </th>\n", + " <td> float32 </td>\n", + " <td> numpy.ndarray </td>\n", + " </tr>\n", + " </tbody>\n", + " </table>\n", + " </td>\n", + " <td>\n", + " <svg width=\"170\" height=\"193\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"33\" y2=\"23\" style=\"stroke-width:2\" />\n", + " <line x1=\"10\" y1=\"120\" x2=\"33\" y2=\"143\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"120\" style=\"stroke-width:2\" />\n", + " <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"120\" />\n", + " <line x1=\"11\" y1=\"1\" x2=\"11\" y2=\"121\" />\n", + " <line x1=\"13\" y1=\"3\" x2=\"13\" y2=\"123\" />\n", + " <line x1=\"14\" y1=\"4\" x2=\"14\" y2=\"124\" />\n", + " <line x1=\"15\" y1=\"5\" x2=\"15\" y2=\"125\" />\n", + " <line x1=\"17\" y1=\"7\" x2=\"17\" y2=\"127\" />\n", + " <line x1=\"18\" y1=\"8\" x2=\"18\" y2=\"128\" />\n", + " <line x1=\"19\" y1=\"9\" x2=\"19\" y2=\"129\" />\n", + " <line x1=\"20\" y1=\"10\" x2=\"20\" y2=\"130\" />\n", + " <line x1=\"22\" y1=\"12\" x2=\"22\" y2=\"132\" />\n", + " <line x1=\"23\" y1=\"13\" x2=\"23\" y2=\"133\" />\n", + " <line x1=\"24\" y1=\"14\" x2=\"24\" y2=\"134\" />\n", + " <line x1=\"25\" y1=\"15\" x2=\"25\" y2=\"135\" />\n", + " <line x1=\"27\" y1=\"17\" x2=\"27\" y2=\"137\" />\n", + " <line x1=\"28\" y1=\"18\" x2=\"28\" y2=\"138\" />\n", + " <line x1=\"29\" y1=\"19\" x2=\"29\" y2=\"139\" />\n", + " <line x1=\"31\" y1=\"21\" x2=\"31\" y2=\"141\" />\n", + " <line x1=\"32\" y1=\"22\" x2=\"32\" y2=\"142\" />\n", + " <line x1=\"33\" y1=\"23\" x2=\"33\" y2=\"143\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"10.0,0.0 33.565058103744434,23.565058103744438 33.565058103744434,143.56505810374443 10.0,120.0\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"97\" y2=\"0\" style=\"stroke-width:2\" />\n", + " <line x1=\"10\" y1=\"0\" x2=\"97\" y2=\"0\" />\n", + " <line x1=\"11\" y1=\"1\" x2=\"99\" y2=\"1\" />\n", + " <line x1=\"13\" y1=\"3\" x2=\"100\" y2=\"3\" />\n", + " <line x1=\"14\" y1=\"4\" x2=\"101\" y2=\"4\" />\n", + " <line x1=\"15\" y1=\"5\" x2=\"102\" y2=\"5\" />\n", + " <line x1=\"17\" y1=\"7\" x2=\"104\" y2=\"7\" />\n", + " <line x1=\"18\" y1=\"8\" x2=\"105\" y2=\"8\" />\n", + " <line x1=\"19\" y1=\"9\" x2=\"106\" y2=\"9\" />\n", + " <line x1=\"20\" y1=\"10\" x2=\"107\" y2=\"10\" />\n", + " <line x1=\"22\" y1=\"12\" x2=\"109\" y2=\"12\" />\n", + " <line x1=\"23\" y1=\"13\" x2=\"110\" y2=\"13\" />\n", + " <line x1=\"24\" y1=\"14\" x2=\"111\" y2=\"14\" />\n", + " <line x1=\"25\" y1=\"15\" x2=\"113\" y2=\"15\" />\n", + " <line x1=\"27\" y1=\"17\" x2=\"114\" y2=\"17\" />\n", + " <line x1=\"28\" y1=\"18\" x2=\"115\" y2=\"18\" />\n", + " <line x1=\"29\" y1=\"19\" x2=\"116\" y2=\"19\" />\n", + " <line x1=\"31\" y1=\"21\" x2=\"118\" y2=\"21\" />\n", + " <line x1=\"32\" y1=\"22\" x2=\"119\" y2=\"22\" />\n", + " <line x1=\"33\" y1=\"23\" x2=\"120\" y2=\"23\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"33\" y2=\"23\" style=\"stroke-width:2\" />\n", + " <line x1=\"97\" y1=\"0\" x2=\"120\" y2=\"23\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"10.0,0.0 97.11743772241994,0.0 120.68249582616437,23.565058103744438 33.565058103744434,23.565058103744438\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"33\" y1=\"23\" x2=\"120\" y2=\"23\" style=\"stroke-width:2\" />\n", + " <line x1=\"33\" y1=\"143\" x2=\"120\" y2=\"143\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"33\" y1=\"23\" x2=\"33\" y2=\"143\" style=\"stroke-width:2\" />\n", + " <line x1=\"120\" y1=\"23\" x2=\"120\" y2=\"143\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"33.565058103744434,23.565058103744438 120.68249582616437,23.565058103744438 120.68249582616437,143.56505810374443 33.565058103744434,143.56505810374443\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Text -->\n", + " <text x=\"77.123777\" y=\"163.565058\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >204</text>\n", + " <text x=\"140.682496\" y=\"83.565058\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.682496,83.565058)\">281</text>\n", + " <text x=\"11.782529\" y=\"151.782529\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,11.782529,151.782529)\">37</text>\n", + "</svg>\n", + " </td>\n", + " </tr>\n", + "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>qhfl_s</span></div><div class='xr-var-dims'>(time, lat, lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(1, 281, 204), meta=np.ndarray></div><input id='attrs-12d8315c-f1b9-4133-a5d0-664b948a8952' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-12d8315c-f1b9-4133-a5d0-664b948a8952' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-a625f608-d008-4442-8390-01ca9a07254f' class='xr-var-data-in' type='checkbox'><label for='data-a625f608-d008-4442-8390-01ca9a07254f' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>standard_name :</span></dt><dd>qhfl_s</dd><dt><span>long_name :</span></dt><dd>surface moisture flux</dd><dt><span>units :</span></dt><dd>Kg m-2 s-1</dd><dt><span>param :</span></dt><dd>6.0.2</dd></dl></div><div class='xr-var-data'><table>\n", + " <tr>\n", + " <td>\n", + " <table>\n", + " <thead>\n", + " <tr>\n", + " <td> </td>\n", + " <th> Array </th>\n", + " <th> Chunk </th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " \n", + " <tr>\n", + " <th> Bytes </th>\n", + " <td> 8.09 MiB </td>\n", + " <td> 223.92 kiB </td>\n", + " </tr>\n", + " \n", + " <tr>\n", + " <th> Shape </th>\n", + " <td> (37, 281, 204) </td>\n", + " <td> (1, 281, 204) </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Count </th>\n", + " <td> 148 Tasks </td>\n", + " <td> 37 Chunks </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Type </th>\n", + " <td> float32 </td>\n", + " <td> numpy.ndarray </td>\n", + " </tr>\n", + " </tbody>\n", + " </table>\n", + " </td>\n", + " <td>\n", + " <svg width=\"170\" height=\"193\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"33\" y2=\"23\" style=\"stroke-width:2\" />\n", + " <line x1=\"10\" y1=\"120\" x2=\"33\" y2=\"143\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"120\" style=\"stroke-width:2\" />\n", + " <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"120\" />\n", + " <line x1=\"11\" y1=\"1\" x2=\"11\" y2=\"121\" />\n", + " <line x1=\"13\" y1=\"3\" x2=\"13\" y2=\"123\" />\n", + " <line x1=\"14\" y1=\"4\" x2=\"14\" y2=\"124\" />\n", + " <line x1=\"15\" y1=\"5\" x2=\"15\" y2=\"125\" />\n", + " <line x1=\"17\" y1=\"7\" x2=\"17\" y2=\"127\" />\n", + " <line x1=\"18\" y1=\"8\" x2=\"18\" y2=\"128\" />\n", + " <line x1=\"19\" y1=\"9\" x2=\"19\" y2=\"129\" />\n", + " <line x1=\"20\" y1=\"10\" x2=\"20\" y2=\"130\" />\n", + " <line x1=\"22\" y1=\"12\" x2=\"22\" y2=\"132\" />\n", + " <line x1=\"23\" y1=\"13\" x2=\"23\" y2=\"133\" />\n", + " <line x1=\"24\" y1=\"14\" x2=\"24\" y2=\"134\" />\n", + " <line x1=\"25\" y1=\"15\" x2=\"25\" y2=\"135\" />\n", + " <line x1=\"27\" y1=\"17\" x2=\"27\" y2=\"137\" />\n", + " <line x1=\"28\" y1=\"18\" x2=\"28\" y2=\"138\" />\n", + " <line x1=\"29\" y1=\"19\" x2=\"29\" y2=\"139\" />\n", + " <line x1=\"31\" y1=\"21\" x2=\"31\" y2=\"141\" />\n", + " <line x1=\"32\" y1=\"22\" x2=\"32\" y2=\"142\" />\n", + " <line x1=\"33\" y1=\"23\" x2=\"33\" y2=\"143\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"10.0,0.0 33.565058103744434,23.565058103744438 33.565058103744434,143.56505810374443 10.0,120.0\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"97\" y2=\"0\" style=\"stroke-width:2\" />\n", + " <line x1=\"10\" y1=\"0\" x2=\"97\" y2=\"0\" />\n", + " <line x1=\"11\" y1=\"1\" x2=\"99\" y2=\"1\" />\n", + " <line x1=\"13\" y1=\"3\" x2=\"100\" y2=\"3\" />\n", + " <line x1=\"14\" y1=\"4\" x2=\"101\" y2=\"4\" />\n", + " <line x1=\"15\" y1=\"5\" x2=\"102\" y2=\"5\" />\n", + " <line x1=\"17\" y1=\"7\" x2=\"104\" y2=\"7\" />\n", + " <line x1=\"18\" y1=\"8\" x2=\"105\" y2=\"8\" />\n", + " <line x1=\"19\" y1=\"9\" x2=\"106\" y2=\"9\" />\n", + " <line x1=\"20\" y1=\"10\" x2=\"107\" y2=\"10\" />\n", + " <line x1=\"22\" y1=\"12\" x2=\"109\" y2=\"12\" />\n", + " <line x1=\"23\" y1=\"13\" x2=\"110\" y2=\"13\" />\n", + " <line x1=\"24\" y1=\"14\" x2=\"111\" y2=\"14\" />\n", + " <line x1=\"25\" y1=\"15\" x2=\"113\" y2=\"15\" />\n", + " <line x1=\"27\" y1=\"17\" x2=\"114\" y2=\"17\" />\n", + " <line x1=\"28\" y1=\"18\" x2=\"115\" y2=\"18\" />\n", + " <line x1=\"29\" y1=\"19\" x2=\"116\" y2=\"19\" />\n", + " <line x1=\"31\" y1=\"21\" x2=\"118\" y2=\"21\" />\n", + " <line x1=\"32\" y1=\"22\" x2=\"119\" y2=\"22\" />\n", + " <line x1=\"33\" y1=\"23\" x2=\"120\" y2=\"23\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"33\" y2=\"23\" style=\"stroke-width:2\" />\n", + " <line x1=\"97\" y1=\"0\" x2=\"120\" y2=\"23\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"10.0,0.0 97.11743772241994,0.0 120.68249582616437,23.565058103744438 33.565058103744434,23.565058103744438\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"33\" y1=\"23\" x2=\"120\" y2=\"23\" style=\"stroke-width:2\" />\n", + " <line x1=\"33\" y1=\"143\" x2=\"120\" y2=\"143\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"33\" y1=\"23\" x2=\"33\" y2=\"143\" style=\"stroke-width:2\" />\n", + " <line x1=\"120\" y1=\"23\" x2=\"120\" y2=\"143\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"33.565058103744434,23.565058103744438 120.68249582616437,23.565058103744438 120.68249582616437,143.56505810374443 33.565058103744434,143.56505810374443\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Text -->\n", + " <text x=\"77.123777\" y=\"163.565058\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >204</text>\n", + " <text x=\"140.682496\" y=\"83.565058\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.682496,83.565058)\">281</text>\n", + " <text x=\"11.782529\" y=\"151.782529\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,11.782529,151.782529)\">37</text>\n", + "</svg>\n", + " </td>\n", + " </tr>\n", + "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>w_so</span></div><div class='xr-var-dims'>(time, depth, lat, lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(1, 8, 281, 204), meta=np.ndarray></div><input id='attrs-ff70d7a2-1fd8-4772-b854-4c70ad64796a' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-ff70d7a2-1fd8-4772-b854-4c70ad64796a' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-8c7e5016-bfb8-4163-9ab8-b752fba05ef2' class='xr-var-data-in' type='checkbox'><label for='data-8c7e5016-bfb8-4163-9ab8-b752fba05ef2' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>standard_name :</span></dt><dd>w_so</dd><dt><span>long_name :</span></dt><dd>total water content (ice + liquid water)</dd><dt><span>units :</span></dt><dd>kg m-2</dd><dt><span>param :</span></dt><dd>20.3.2</dd></dl></div><div class='xr-var-data'><table>\n", + " <tr>\n", + " <td>\n", + " <table>\n", + " <thead>\n", + " <tr>\n", + " <td> </td>\n", + " <th> Array </th>\n", + " <th> Chunk </th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " \n", + " <tr>\n", + " <th> Bytes </th>\n", + " <td> 64.73 MiB </td>\n", + " <td> 1.75 MiB </td>\n", + " </tr>\n", + " \n", + " <tr>\n", + " <th> Shape </th>\n", + " <td> (37, 8, 281, 204) </td>\n", + " <td> (1, 8, 281, 204) </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Count </th>\n", + " <td> 148 Tasks </td>\n", + " <td> 37 Chunks </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Type </th>\n", + " <td> float32 </td>\n", + " <td> numpy.ndarray </td>\n", + " </tr>\n", + " </tbody>\n", + " </table>\n", + " </td>\n", + " <td>\n", + " <svg width=\"375\" height=\"188\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"0\" y1=\"0\" x2=\"40\" y2=\"0\" style=\"stroke-width:2\" />\n", + " <line x1=\"0\" y1=\"25\" x2=\"40\" y2=\"25\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"25\" style=\"stroke-width:2\" />\n", + " <line x1=\"1\" y1=\"0\" x2=\"1\" y2=\"25\" />\n", + " <line x1=\"2\" y1=\"0\" x2=\"2\" y2=\"25\" />\n", + " <line x1=\"3\" y1=\"0\" x2=\"3\" y2=\"25\" />\n", + " <line x1=\"4\" y1=\"0\" x2=\"4\" y2=\"25\" />\n", + " <line x1=\"5\" y1=\"0\" x2=\"5\" y2=\"25\" />\n", + " <line x1=\"6\" y1=\"0\" x2=\"6\" y2=\"25\" />\n", + " <line x1=\"8\" y1=\"0\" x2=\"8\" y2=\"25\" />\n", + " <line x1=\"9\" y1=\"0\" x2=\"9\" y2=\"25\" />\n", + " <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"25\" />\n", + " <line x1=\"11\" y1=\"0\" x2=\"11\" y2=\"25\" />\n", + " <line x1=\"12\" y1=\"0\" x2=\"12\" y2=\"25\" />\n", + " <line x1=\"14\" y1=\"0\" x2=\"14\" y2=\"25\" />\n", + " <line x1=\"16\" y1=\"0\" x2=\"16\" y2=\"25\" />\n", + " <line x1=\"17\" y1=\"0\" x2=\"17\" y2=\"25\" />\n", + " <line x1=\"18\" y1=\"0\" x2=\"18\" y2=\"25\" />\n", + " <line x1=\"19\" y1=\"0\" x2=\"19\" y2=\"25\" />\n", + " <line x1=\"20\" y1=\"0\" x2=\"20\" y2=\"25\" />\n", + " <line x1=\"21\" y1=\"0\" x2=\"21\" y2=\"25\" />\n", + " <line x1=\"22\" y1=\"0\" x2=\"22\" y2=\"25\" />\n", + " <line x1=\"24\" y1=\"0\" x2=\"24\" y2=\"25\" />\n", + " <line x1=\"25\" y1=\"0\" x2=\"25\" y2=\"25\" />\n", + " <line x1=\"27\" y1=\"0\" x2=\"27\" y2=\"25\" />\n", + " <line x1=\"28\" y1=\"0\" x2=\"28\" y2=\"25\" />\n", + " <line x1=\"29\" y1=\"0\" x2=\"29\" y2=\"25\" />\n", + " <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"25\" />\n", + " <line x1=\"32\" y1=\"0\" x2=\"32\" y2=\"25\" />\n", + " <line x1=\"33\" y1=\"0\" x2=\"33\" y2=\"25\" />\n", + " <line x1=\"34\" y1=\"0\" x2=\"34\" y2=\"25\" />\n", + " <line x1=\"35\" y1=\"0\" x2=\"35\" y2=\"25\" />\n", + " <line x1=\"36\" y1=\"0\" x2=\"36\" y2=\"25\" />\n", + " <line x1=\"37\" y1=\"0\" x2=\"37\" y2=\"25\" />\n", + " <line x1=\"40\" y1=\"0\" x2=\"40\" y2=\"25\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"0.0,0.0 40.060598776365545,0.0 40.060598776365545,25.412616514582485 0.0,25.412616514582485\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", + "\n", + " <!-- Text -->\n", + " <text x=\"20.030299\" y=\"45.412617\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >37</text>\n", + " <text x=\"60.060599\" y=\"12.706308\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,60.060599,12.706308)\">1</text>\n", + "\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"110\" y1=\"0\" x2=\"128\" y2=\"18\" style=\"stroke-width:2\" />\n", + " <line x1=\"110\" y1=\"120\" x2=\"128\" y2=\"138\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"110\" y1=\"0\" x2=\"110\" y2=\"120\" style=\"stroke-width:2\" />\n", + " <line x1=\"128\" y1=\"18\" x2=\"128\" y2=\"138\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"110.0,0.0 128.28115963685428,18.28115963685427 128.28115963685428,138.28115963685428 110.0,120.0\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"110\" y1=\"0\" x2=\"197\" y2=\"0\" style=\"stroke-width:2\" />\n", + " <line x1=\"128\" y1=\"18\" x2=\"215\" y2=\"18\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"110\" y1=\"0\" x2=\"128\" y2=\"18\" style=\"stroke-width:2\" />\n", + " <line x1=\"197\" y1=\"0\" x2=\"215\" y2=\"18\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"110.0,0.0 197.11743772241994,0.0 215.39859735927422,18.28115963685427 128.28115963685428,18.28115963685427\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"128\" y1=\"18\" x2=\"215\" y2=\"18\" style=\"stroke-width:2\" />\n", + " <line x1=\"128\" y1=\"138\" x2=\"215\" y2=\"138\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"128\" y1=\"18\" x2=\"128\" y2=\"138\" style=\"stroke-width:2\" />\n", + " <line x1=\"215\" y1=\"18\" x2=\"215\" y2=\"138\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"128.28115963685428,18.28115963685427 215.39859735927422,18.28115963685427 215.39859735927422,138.28115963685428 128.28115963685428,138.28115963685428\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Text -->\n", + " <text x=\"171.839878\" y=\"158.281160\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >204</text>\n", + " <text x=\"235.398597\" y=\"78.281160\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,235.398597,78.281160)\">281</text>\n", + " <text x=\"109.140580\" y=\"149.140580\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,109.140580,149.140580)\">8</text>\n", + "</svg>\n", + " </td>\n", + " </tr>\n", + "</table></div></li></ul></div></li><li class='xr-section-item'><input id='section-c2ebcd3f-b907-4938-92dd-7d3817c1de5e' class='xr-section-summary-in' type='checkbox' ><label for='section-c2ebcd3f-b907-4938-92dd-7d3817c1de5e' class='xr-section-summary' >Attributes: <span>(10)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><dl class='xr-attrs'><dt><span>CDI :</span></dt><dd>Climate Data Interface version 2.0.6 (https://mpimet.mpg.de/cdi)</dd><dt><span>Conventions :</span></dt><dd>CF-1.6</dd><dt><span>source :</span></dt><dd>@</dd><dt><span>institution :</span></dt><dd>Max Planck Institute for Meteorology/Deutscher Wetterdienst</dd><dt><span>title :</span></dt><dd>ICON simulation</dd><dt><span>history :</span></dt><dd>Thu Apr 27 06:35:57 2023: cdo -P 32 remapcon,/home/b/b380782/icon-climxtreme/CC_postprocessing_scripts/grid_info_025x025.txt icon-atm2d_ML_reg_20210101T000000Z.nc icon-atm2d_ML_reg_con_20210101T000000Z.nc\n", + "Thu Apr 27 06:35:45 2023: cdo -P 38 remap,/home/b/b380782/icon-climxtreme/CC_postprocessing_scripts/grid_info_2km.txt,remapweights_2km.nc /work/bb1152/Module_A/A6_CyclEx/sim_data/production/channel_2km_0005/icon-atm2d_ML_20210101T000000Z.nc icon-atm2d_ML_reg_20210101T000000Z.nc\n", + "/home/b/b380906/icon-on-jet/bin/icon at 20220714 143542</dd><dt><span>references :</span></dt><dd>see MPIM/DWD publications</dd><dt><span>comment :</span></dt><dd>Nicole Knopf (b380906) on l30144 (Linux 4.18.0-305.25.1.el8_4.x86_64 x86_64)</dd><dt><span>cdo_openmp_thread_number :</span></dt><dd>32</dd><dt><span>CDO :</span></dt><dd>Climate Data Operators version 2.0.6 (https://mpimet.mpg.de/cdo)</dd></dl></div></li></ul></div></div>" + ], + "text/plain": [ + "<xarray.Dataset>\n", + "Dimensions: (time: 37, lon: 204, lat: 281, height: 1, height_2: 1,\n", + " plev: 1, bnds: 2, plev_2: 1, plev_3: 1, depth: 8)\n", + "Coordinates:\n", + " * time (time) float64 0.0 0.25 0.5 0.75 1.0 ... 8.25 8.5 8.75 9.0\n", + " * lon (lon) float64 12.5 12.75 13.0 13.25 ... 62.5 62.75 63.0 63.25\n", + " * lat (lat) float64 10.0 10.25 10.5 10.75 ... 79.25 79.5 79.75 80.0\n", + " * height (height) float64 10.0\n", + " * height_2 (height_2) float64 2.0\n", + " * plev (plev) float64 0.0\n", + " * plev_2 (plev_2) float64 400.0\n", + " * plev_3 (plev_3) float64 800.0\n", + " * depth (depth) float64 5.0 20.0 60.0 ... 1.62e+03 4.86e+03 1.458e+04\n", + "Dimensions without coordinates: bnds\n", + "Data variables: (12/40)\n", + " plev_bnds (time, plev, bnds) float64 dask.array<chunksize=(1, 1, 2), meta=np.ndarray>\n", + " plev_2_bnds (time, plev_2, bnds) float64 dask.array<chunksize=(1, 1, 2), meta=np.ndarray>\n", + " plev_3_bnds (time, plev_3, bnds) float64 dask.array<chunksize=(1, 1, 2), meta=np.ndarray>\n", + " depth_bnds (time, depth, bnds) float64 dask.array<chunksize=(1, 8, 2), meta=np.ndarray>\n", + " pres_msl (time, lat, lon) float32 dask.array<chunksize=(1, 281, 204), meta=np.ndarray>\n", + " pres_sfc (time, lat, lon) float32 dask.array<chunksize=(1, 281, 204), meta=np.ndarray>\n", + " ... ...\n", + " tqi (time, lat, lon) float32 dask.array<chunksize=(1, 281, 204), meta=np.ndarray>\n", + " tqr (time, lat, lon) float32 dask.array<chunksize=(1, 281, 204), meta=np.ndarray>\n", + " shfl_s (time, lat, lon) float32 dask.array<chunksize=(1, 281, 204), meta=np.ndarray>\n", + " lhfl_s (time, lat, lon) float32 dask.array<chunksize=(1, 281, 204), meta=np.ndarray>\n", + " qhfl_s (time, lat, lon) float32 dask.array<chunksize=(1, 281, 204), meta=np.ndarray>\n", + " w_so (time, depth, lat, lon) float32 dask.array<chunksize=(1, 8, 281, 204), meta=np.ndarray>\n", + "Attributes:\n", + " CDI: Climate Data Interface version 2.0.6 (https://...\n", + " Conventions: CF-1.6\n", + " source: @\n", + " institution: Max Planck Institute for Meteorology/Deutscher...\n", + " title: ICON simulation\n", + " history: Thu Apr 27 06:35:57 2023: cdo -P 32 remapcon,/...\n", + " references: see MPIM/DWD publications\n", + " comment: Nicole Knopf (b380906) on l30144 (Linux 4.18.0...\n", + " cdo_openmp_thread_number: 32\n", + " CDO: Climate Data Operators version 2.0.6 (https://..." + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ncdat" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "time = ncdat.variables['time'][:]\n", + "lon = ncdat.variables['lon'][:]\n", + "lat = ncdat.variables['lat'][:]\n", + "pmsl = ncdat.variables['pres_msl'][:] / 100. # surface pressure in hPa" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "# Dimensions\n", + "nx = len(lon)\n", + "ny = len(lat)\n", + "nt = len(time)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "lon= <xarray.IndexVariable 'lon' (lon: 204)>\n", + "array([12.5 , 12.75, 13. , ..., 62.75, 63. , 63.25])\n", + "Attributes:\n", + " standard_name: longitude\n", + " long_name: longitude\n", + " units: degrees_east\n", + " axis: X\n", + "lat= <xarray.IndexVariable 'lat' (lat: 281)>\n", + "array([10. , 10.25, 10.5 , ..., 79.5 , 79.75, 80. ])\n", + "Attributes:\n", + " standard_name: latitude\n", + " long_name: latitude\n", + " units: degrees_north\n", + " axis: Y\n" + ] + } + ], + "source": [ + "# Longitude, latitude issures\n", + "lon2d = np.empty((ny,nx), float)\n", + "lat2d = np.empty((ny,nx), float)\n", + "\n", + "for i in range(ny):\n", + " lon2d[i,:] = lon\n", + "for i in range(nx):\n", + " lat2d[:,i] = lat\n", + " \n", + "print('lon=',lon)\n", + "print('lat=',lat)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "# search of the minimum pressure starts in a box around the start lon/lat\n", + "# here: use entire domain. In case track does not look reasonable, refinement may be required.\n", + "\n", + "#start_lon = (ncdat.lon.min()+ncdat.lon.max()).values/2\n", + "#start_lat = (ncdat.lat.min()+ncdat.lat.max()).values/2\n", + "\n", + "#boxsize_lon = (ncdat.lon.max()-ncdat.lon.min()).values #size of the box in degrees\n", + "#boxsize_lat = (ncdat.lat.max()-ncdat.lat.min()).values #size of the box in degrees\n", + "\n", + "# To avoid identifying the early-staged cyclone center near the sounthern boundary, I constrain the search as below:\n", + "\n", + "start_lon = lon[int(nx/2)].values\n", + "start_lat = lat[int(ny/2)].values\n", + "boxsize_lon = (ncdat.lon.max()-ncdat.lon.min()).values\n", + "boxsize_lat = (ncdat.lat.max()-ncdat.lat.min()).values*2/3" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "<div>\n", + "<style scoped>\n", + " .dataframe tbody tr th:only-of-type {\n", + " vertical-align: middle;\n", + " }\n", + "\n", + " .dataframe tbody tr th {\n", + " vertical-align: top;\n", + " }\n", + "\n", + " .dataframe thead th {\n", + " text-align: right;\n", + " }\n", + "</style>\n", + "<table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: right;\">\n", + " <th></th>\n", + " <th>time</th>\n", + " <th>pmin</th>\n", + " <th>lon</th>\n", + " <th>lat</th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <th>6</th>\n", + " <td>1.50</td>\n", + " <td>997.546692</td>\n", + " <td>36.25</td>\n", + " <td>44.00</td>\n", + " </tr>\n", + " <tr>\n", + " <th>7</th>\n", + " <td>1.75</td>\n", + " <td>996.248657</td>\n", + " <td>43.75</td>\n", + " <td>43.00</td>\n", + " </tr>\n", + " <tr>\n", + " <th>8</th>\n", + " <td>2.00</td>\n", + " <td>995.287598</td>\n", + " <td>48.50</td>\n", + " <td>44.25</td>\n", + " </tr>\n", + " <tr>\n", + " <th>9</th>\n", + " <td>2.25</td>\n", + " <td>992.571960</td>\n", + " <td>53.50</td>\n", + " <td>44.00</td>\n", + " </tr>\n", + " <tr>\n", + " <th>10</th>\n", + " <td>2.50</td>\n", + " <td>988.541199</td>\n", + " <td>57.50</td>\n", + " <td>44.75</td>\n", + " </tr>\n", + " <tr>\n", + " <th>11</th>\n", + " <td>2.75</td>\n", + " <td>982.179688</td>\n", + " <td>61.75</td>\n", + " <td>45.75</td>\n", + " </tr>\n", + " <tr>\n", + " <th>12</th>\n", + " <td>3.00</td>\n", + " <td>977.645264</td>\n", + " <td>18.50</td>\n", + " <td>45.00</td>\n", + " </tr>\n", + " <tr>\n", + " <th>13</th>\n", + " <td>3.25</td>\n", + " <td>973.324219</td>\n", + " <td>22.00</td>\n", + " <td>46.25</td>\n", + " </tr>\n", + " <tr>\n", + " <th>14</th>\n", + " <td>3.50</td>\n", + " <td>968.580139</td>\n", + " <td>24.75</td>\n", + " <td>47.00</td>\n", + " </tr>\n", + " <tr>\n", + " <th>15</th>\n", + " <td>3.75</td>\n", + " <td>963.109375</td>\n", + " <td>26.75</td>\n", + " <td>47.00</td>\n", + " </tr>\n", + " <tr>\n", + " <th>16</th>\n", + " <td>4.00</td>\n", + " <td>961.238098</td>\n", + " <td>34.75</td>\n", + " <td>48.50</td>\n", + " </tr>\n", + " <tr>\n", + " <th>17</th>\n", + " <td>4.25</td>\n", + " <td>959.273499</td>\n", + " <td>38.50</td>\n", + " <td>49.00</td>\n", + " </tr>\n", + " <tr>\n", + " <th>18</th>\n", + " <td>4.50</td>\n", + " <td>955.893311</td>\n", + " <td>46.50</td>\n", + " <td>49.00</td>\n", + " </tr>\n", + " <tr>\n", + " <th>19</th>\n", + " <td>4.75</td>\n", + " <td>950.388855</td>\n", + " <td>52.75</td>\n", + " <td>49.00</td>\n", + " </tr>\n", + " <tr>\n", + " <th>20</th>\n", + " <td>5.00</td>\n", + " <td>944.334473</td>\n", + " <td>56.00</td>\n", + " <td>49.75</td>\n", + " </tr>\n", + " <tr>\n", + " <th>21</th>\n", + " <td>5.25</td>\n", + " <td>940.405945</td>\n", + " <td>57.25</td>\n", + " <td>49.25</td>\n", + " </tr>\n", + " <tr>\n", + " <th>22</th>\n", + " <td>5.50</td>\n", + " <td>935.754517</td>\n", + " <td>14.00</td>\n", + " <td>50.75</td>\n", + " </tr>\n", + " <tr>\n", + " <th>23</th>\n", + " <td>5.75</td>\n", + " <td>937.536377</td>\n", + " <td>14.50</td>\n", + " <td>49.50</td>\n", + " </tr>\n", + " <tr>\n", + " <th>24</th>\n", + " <td>6.00</td>\n", + " <td>937.546631</td>\n", + " <td>24.75</td>\n", + " <td>51.50</td>\n", + " </tr>\n", + " <tr>\n", + " <th>25</th>\n", + " <td>6.25</td>\n", + " <td>937.565063</td>\n", + " <td>26.50</td>\n", + " <td>52.00</td>\n", + " </tr>\n", + " <tr>\n", + " <th>26</th>\n", + " <td>6.50</td>\n", + " <td>942.418457</td>\n", + " <td>35.25</td>\n", + " <td>51.00</td>\n", + " </tr>\n", + " <tr>\n", + " <th>27</th>\n", + " <td>6.75</td>\n", + " <td>940.635559</td>\n", + " <td>37.75</td>\n", + " <td>51.75</td>\n", + " </tr>\n", + " <tr>\n", + " <th>28</th>\n", + " <td>7.00</td>\n", + " <td>942.385132</td>\n", + " <td>38.00</td>\n", + " <td>52.50</td>\n", + " </tr>\n", + " <tr>\n", + " <th>29</th>\n", + " <td>7.25</td>\n", + " <td>945.292175</td>\n", + " <td>49.00</td>\n", + " <td>50.75</td>\n", + " </tr>\n", + " <tr>\n", + " <th>30</th>\n", + " <td>7.50</td>\n", + " <td>950.658508</td>\n", + " <td>56.25</td>\n", + " <td>49.00</td>\n", + " </tr>\n", + " <tr>\n", + " <th>31</th>\n", + " <td>7.75</td>\n", + " <td>953.673889</td>\n", + " <td>57.25</td>\n", + " <td>49.75</td>\n", + " </tr>\n", + " <tr>\n", + " <th>32</th>\n", + " <td>8.00</td>\n", + " <td>959.765259</td>\n", + " <td>14.50</td>\n", + " <td>48.00</td>\n", + " </tr>\n", + " <tr>\n", + " <th>33</th>\n", + " <td>8.25</td>\n", + " <td>958.518616</td>\n", + " <td>31.00</td>\n", + " <td>45.75</td>\n", + " </tr>\n", + " <tr>\n", + " <th>34</th>\n", + " <td>8.50</td>\n", + " <td>954.275574</td>\n", + " <td>42.25</td>\n", + " <td>46.25</td>\n", + " </tr>\n", + " <tr>\n", + " <th>35</th>\n", + " <td>8.75</td>\n", + " <td>949.302429</td>\n", + " <td>48.00</td>\n", + " <td>48.00</td>\n", + " </tr>\n", + " <tr>\n", + " <th>36</th>\n", + " <td>9.00</td>\n", + " <td>945.325684</td>\n", + " <td>51.25</td>\n", + " <td>49.50</td>\n", + " </tr>\n", + " </tbody>\n", + "</table>\n", + "</div>" + ], + "text/plain": [ + " time pmin lon lat\n", + "6 1.50 997.546692 36.25 44.00\n", + "7 1.75 996.248657 43.75 43.00\n", + "8 2.00 995.287598 48.50 44.25\n", + "9 2.25 992.571960 53.50 44.00\n", + "10 2.50 988.541199 57.50 44.75\n", + "11 2.75 982.179688 61.75 45.75\n", + "12 3.00 977.645264 18.50 45.00\n", + "13 3.25 973.324219 22.00 46.25\n", + "14 3.50 968.580139 24.75 47.00\n", + "15 3.75 963.109375 26.75 47.00\n", + "16 4.00 961.238098 34.75 48.50\n", + "17 4.25 959.273499 38.50 49.00\n", + "18 4.50 955.893311 46.50 49.00\n", + "19 4.75 950.388855 52.75 49.00\n", + "20 5.00 944.334473 56.00 49.75\n", + "21 5.25 940.405945 57.25 49.25\n", + "22 5.50 935.754517 14.00 50.75\n", + "23 5.75 937.536377 14.50 49.50\n", + "24 6.00 937.546631 24.75 51.50\n", + "25 6.25 937.565063 26.50 52.00\n", + "26 6.50 942.418457 35.25 51.00\n", + "27 6.75 940.635559 37.75 51.75\n", + "28 7.00 942.385132 38.00 52.50\n", + "29 7.25 945.292175 49.00 50.75\n", + "30 7.50 950.658508 56.25 49.00\n", + "31 7.75 953.673889 57.25 49.75\n", + "32 8.00 959.765259 14.50 48.00\n", + "33 8.25 958.518616 31.00 45.75\n", + "34 8.50 954.275574 42.25 46.25\n", + "35 8.75 949.302429 48.00 48.00\n", + "36 9.00 945.325684 51.25 49.50" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#####################################################\n", + "# Find minimum pressure\n", + "#####################################################\n", + "pmin = np.empty(nt, float)\n", + "lonmin = np.empty(nt, float)\n", + "latmin = np.empty(nt, float)\n", + "\n", + "boxcent_lon = start_lon\n", + "boxcent_lat = start_lat\n", + "\n", + "for t in range(nt):\n", + "\n", + "# select area of the box around a given lat/lon\n", + " lonW = boxcent_lon - boxsize_lon/2\n", + " lonE = boxcent_lon + boxsize_lon/2\n", + " latS = boxcent_lat - boxsize_lat/2\n", + " latN = boxcent_lat + boxsize_lat/2\n", + " \n", + " pmsl_box = np.where((lon2d>lonW) & (lon2d<lonE) & (lat2d>latS) & (lat2d<latN), pmsl[t,:,:], np.nan)\n", + "\n", + "# find minimum pressure and corresponding coordinates in the box\n", + " pmin[t] = np.nanmin(pmsl_box)\n", + " lonmin[t] = np.nanmax( np.where(pmsl_box == pmin[t], lon2d, np.nan) )\n", + " latmin[t] = np.nanmax( np.where(pmsl_box == pmin[t], lat2d, np.nan) )\n", + " \n", + "trackinfo = {\"time\" : time, \"pmin\" : pmin, \"lon\" : lonmin, \"lat\" : latmin}\n", + "df = pd.DataFrame(trackinfo, columns= ['time', 'pmin', 'lon', 'lat'])\n", + "\n", + "\n", + "df2= df[df[\"time\"] >= 1.5]\n", + "\n", + "df2\n" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcMAAAHACAYAAADeEgNwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAACVH0lEQVR4nOyddXgU1/rHP2c1LsSNhIQECy6lFC2lRltaoO5G3f1321vaW7dboXIrVKgLLS1t8eLuToIkECLEPavn98dsQlwgJEDO53nm2d2ZM2fe2d2Z75xz3vO+QkqJQqFQKBQdGV17G6BQKBQKRXujxFChUCgUHR4lhgqFQqHo8CgxVCgUCkWHR4mhQqFQKDo8SgwVCoVC0eFRYthBEELECCGkEGJQO9owVQixvb2O314IISYIIZKFEHYhxBftbU9zEUKMdv1nAtvblubQ2vZ21P9rR0WJYTvgumAbW75obxvhhNwM3gBGtVZlQoibhBAlrVXfCeRT4BcgGnignW1RUCWcs4QQGUKIMiHEViHELe1tF4AQ4m4hxAEhRIUQYoMQYkSt7cJ1baYLIcqFEIuFEL1qlTELId4TQuQIIUqFEL8LISJrlUmp597zSluc48mIEsP2Iazacns962rcMIUQxja1roUIIUzNKSelLJFS5p5oe1qKEEInhNCfoLr9gEBgrpTysJSy8EQcR9FihgHbgMlAIvAh8LEQ4pr2NEoIcSXwDvAS0B9YCfwthOhcrdjjwCPAfcBg4AgwXwjhXa3M28Ak4GpgBOADzK7nf/48Ne89L7TyKZ06SCnV0o4L2sUoq32OASTan3gRUA7cCwQA3wFprnU7gJtr1SXQLpJkwOIq+3Ktege5PuuA94EDQHw9dt3kKl99ucm1TQL3ADOBUrQWnx74zFVfucuGxwFdtTqnAttrHedmYCdQASQBD9XaxwftRpXhKrMLuBIYXY99U137+ANfAvkuWxYAvWqdWwlwIbAdsAMjARsQWsu+F4Gtjfx+DR6rARtHN1CPCXjV9ZuVAuuA86r9rvNddQvXOi/Xdzyt1rEuAja7vqsNwMAm/n8mtBtvqus/sx+4v1adY4E1QBmwHhhQbf/m/C8XAx+4jpODdvN+o9bvnAI8DfwPKHLV91itenyBj137FwNLcP2fa9kbeIzX4o/ALw39X4HOwG7X722o9j+6wLW+DPjdZedk1+9TCMwA3Jtpwxrgk1rrkjl6HQu0a+Ff1ba7u76PO6p9T1bg2mplogBn5X+q2nf+aHvd+062pd0N6OgLDYthimtbFyASiAAeA/oBscAU1x9+bLV9XwYKgFuArsCZwN216h0EGF03sB1ARAN2ubtuWLuBUNfi7tomXTek21y2dHHV+Tzak2oMcIXLllur1Vn75nK768KuPM+LgUzgXtd2AaxAE8vzXce6ALgM7Sb+AJpwVNrn5dpvlsvukUBv1w3qUDX7b0ITwJXAWUAC4O3a5/Fq9ulc+z3QyO/X4LFcNvZ0fV8TXTaaGqjnG2C1q55YtAcgK9DXtT0cTUgec32e7vr9Ks9ptOs4u4Hz0Fo7P7m+T49G7K8Uskmu444BbqhV51rX+u7AXLQHkkpRbs7/cjGaKDzv+q6vcH3/V1crkwLkus67K1qrRwJnVvsvLAf+BIa4yvwHTTjDatl7rGI4B/i0vv8r0MP1u75V7dxvQnuAWgAMRLve0tEeXP4A+ri+t3zgkWYc3+T6Xi6vtf59YInrfazrHAfXKvMn8KXr/dmuMkG1yuwAnqv1nWe6vvfNwL9o4P/ZEZZ2N6CjLzQshs25eL6vvHjRWgoVwJ0NlK2sd6Trol8FdGqi/qqbQa31EnivGfa9AixoqD7gIHB9rX0eBHa63o9De5rt0UD9NwEltdbFV55ntXW+aDfj26rtJ6nVagIeBXZV+3wBWmspoIHjN+dYgTTSInSViXOdZ+da638DPqj2+VKXPf9xvfattm206zjVWwNeaA8ktzVh//kNbK+ss3pr4izXusjm/C9dnxcDq2qVmV+rTArwXa0yycDTrvdno7XC3GuV2YzrAYbjEEO0FrUNGFL7/4omvjlUa43V+h91q7buDcBR3QbgC2B2M2wIr/1/cq3/N7DH9X6Yq0zt/8p0tK54gGvQRFXUKrMI+F+1zw+jiXUftAfbnOq/SUdbDChOVtZX/+Dq638SrYswAjCjPUkudhXp6Vq3sIl6v0FrjY2RUpa2ln0uG+9Eu6ii0VpGRrTutzoIIYLQum7+J4T4sNomA1orALQxkwwp5a4W2NUDTVhWVa6QUhYKIbahfUeV2NFupNX5EnhRCDFMSrkSrYX9m2x4nLO5x2qKAWjnvFMIUX29Ge0GVln3b0KIb9G6Ex+XUm6pp67qtpQ0YUt/l/3/NGHf1mrv012vwUBaM/6X9dVRWU9wC8oMBDyA7FrfkRvaw8QxI4Q4C/gWrXt4ba3NEWjX1PNSytfr2d0ipdxT7XMWkCmlzKm1riX/B1nbxHrWNadMbWqUkVK+VW3bViFEEfCDEOKJRv7zpy1KDE9eagvVo2jjgQ+gDfyXoI3BVN4sBM3jT+AGtCf8ea1ln2vg/22XnSvRuq/uQevSrI9K5607XeXro7nn1Nx9qt8sLFJKR42NUmYLIX4HbhFC7AEuQeu6Pd5jNYXOVX4wWuukOuVVBxPCzVXGgdZNeLw09/utblPleVX+fk39L+uro7Ke2g58jZXRoYnKCOpS1IjtjSKEGA78BfxbSvlhPUVy0FqtVwkhPpVS5tfabq/H5uaca33koP22obXWB6OdO2jdmrjKHGqkjB6tVyK7VpmljRx/jeu1K1rXaYdCeZOeOgwH/pBSzpBSbgb2oY2/VLITretsbBP1fIrWFfmbEOLcJspa0S6q5tq3Rko5TUq5UUq5l0ae2KWUWcBhIE5Kubf24iq2EQgTQvRogX070f7XZ1auEEL4oI3n7WzGeXyCNqZ1B9rNZUEjZY/3WJVsQhOm0Hq+i8PVyr2O1vIaB9wshJhQT11Dq9niiTZ22FDLeqPL/jEtsLU2Tf0vW4uNQAjgrOc7OnIsFQohRgJ/o42jvd1AMQvaQ1E+msem/7EcqzlIKa1oTk/jam0ax9EHxgNoYldVxvWQNKJamQ1ogly9TCRaT0ZDD56gjfuC1nPU4VBieOqQBIwVQgwXQnQHpqE5nQAgpSxGc8l+WQhxsxAiTggxRAhxV+2KpJQfo3lt/iaEqH3hVScFiBZCDBBCBAohzE3YN0AIcYEQIl4I8QxNzymcCjwuhHhICNFNCJEohLhBCPGUa/tCtKfVX4QQ5wkhugghxgkhLq1mn5trXaAQwkNKmYzm1PI/IcQIIURv4Gu01sO3TdgD2lhWLvAs8LmU0tlQwVY4VmU9SWjd118IISYLIWKFEIOEEI8KISYCCCHORxPo66SU/6B9d58KIWq3Ip52fR+90MaRrA3Z4rL/R1c9k1zf7wghxPXNtZ0m/petyAI0Z6pZrv9YFyHEmUKI52rPw2sOQojRaEL4EfCNECLUtQTVLiulLEfrIShEE0S/4ziPpngLuEkIcZsQoocQ4h20scSPXLZItB6YJ4UQE4UQiWhjkiW4fmepTd/5DHhdCHGOEKI/mkfrVlwPd67v7iEhRD/Xd3kFmsfv71LKgyfw/E5e2nvQsqMvNOxAM6hWOX+0qQzFaJ6cr6H9eRdXK6NDG7/Zj3YTPAS82FC9aF2UpcC4BmwzAz+jPRVLak6tmFyrrAntAsxHc9r4DG3gP6VamanUnVpxNdpTf4Vr3+XAVdW2+6G11rJdZXYCV1Tb/iFa95KkhVMrGvlN/o02lhbTjN+vqWM16UDjKmd0fT+Vv10mmmfqQCDI9fnftX7rxWg3dMFR55FL0G56Ftf3OriJ45pd/6XDrn32cdSbt7LO6s4gNf5HNO9/uRjXFJBq676gmlMJ9bj5194PzeP3HTTv18r/9/dovQv12tvIeX9B3Wkvkkb+r2jj4AvRpr341fc/Qus2Tqm17hVgfQvuCXe7vg8LWiuvtkONcNlWOd1oCZBYq4wb8B7ag10ZmndrVLXtA9C8lwvQ/re7XXU26Hl8ui+VLsIKxQlHCPEymuPO0CYLtyMuh56uUsrGWs0nFa6Wzj9o7vQ5jZdWKBS1UQ40ihOO0Nz/YtHGM2t7DJ40CCF80VpiN6CNGyoUig5Cm40ZCi1Q9F9CiHwhRKYQYpoQwuDaNlYIsVtoMQL/EUJEt5VdijbBF61704o2R+5kZRYwG5gupfyzvY1RHDtCiL+FECUNLP/XTjZ1bsSmElEz5JqijWmzblIhxF9oYwp3ovW3z0cbC/oWbZziNrR+7f8AI072rjSFQnHyIoSIQBvjq488KWVeW9oD4Hr4j2mkSIqUsvZUDUUb0ZZiuAstqspfrs+vo8Wd3IDmmDHMtd4TzSGiv5Ryd5sYp1AoFIoOTVuOGb6DNnF1MZoH2gXAM2geYFWRNKSUpUKIfUAvNA+nKoQQU9BiH+Lp6Tmwe/fubWK4QqFQKE4NNmzYkCOlrDNFpinaUgyXoAVmLkKbKP0lWuzFi6gZJQG0+TzetdYhtflxHwMMGjRIrl9fJyKYQqFQKDowQoh6Q0A2RZs40AghdGjR7mcCnmhzr/zRUtaUoHWXVscHbd6SQqFQKBQnnLbyJu2EFpR5mpTSIrUgsJ+j5ZPbAfStLOgaM4xzrVcoFAqF4oTTJmLomgR8ALhLCGFwhTO6EW2s8Fcg0RUOyg0t+sdW5TyjUCgUiraiLWOTTkRL0JoN7EWL9v6QlDIbLbHoi2ghrc4ArmpDuxQKhULRwWkzBxqpRbQf3cC2BWhZtBUKhUKhaHNU1gqFQqFQdHiUGCoUCoWiw6PEUKFQKBQdHiWGCoVCoejwKDFUKBQKRYdHiaFCoVAoOjxKDBUKhULR4VFiqFAoFIoOjxJDhUKhUHR4lBgqFAqFosOjxFChUCgUHR4lhgqFQqHo8CgxVCgUCkWHR4mhQqFQKDo8SgwVCoVC0eFRYqhQKBSKDo8SQ4VCoVB0eJQYKhQKhaLDo8RQoVAoFB0eJYYKhUKh6PAoMVQoFApFh0eJoUKhUCg6PEoMFQqFQtHhUWKoUCgUig6PEkOFQqFQdHiUGCoUCoWiw6PEUKFQKBQdHiWGCoVCoejwKDFUKBQKRYdHiaFCoVAoOjxKDBUKhULR4VFiqFAoFIoOjxJDhUKhUHR4lBgqFAqFosOjxFChUCgUHR4lhgqFQqHo8CgxVCgUCkWHR4mhQqFQKDo8SgwVCoVC0eFRYqhQKBSKDo8SQ4VCoVB0eNpEDIUQJbUWhxDivWrbxwohdgshyoQQ/wghotvCLoVCoVAooI3EUErpVbkAIUA58BOAECIQmAk8A3QC1gM/tIVdCoVCoVBA+3STTgaOAMtcnycCO6SUP0kpK4CpQF8hRPd2sE2hUCgUHZD2EMMbga+klNL1uRewpXKjlLIU2OdaXwMhxBQhxHohxPrs7Ow2MVahUCgUpz9tKoZCiM7AKODLaqu9gMJaRQsB79r7Syk/llIOklIOCgoKOnGGKhQKhaJD0dYtwxuA5VLKA9XWlQA+tcr5AMVtZpVCoVAoOjTtIYZf1lq3A+hb+UEI4QnEudYrFAqFQnHCaTMxFEIMAyJweZFW41cgUQgxSQjhBvwb2Cql3N1WtikUCoWiY9OWLcMbgZlSyhrdn1LKbGAS8CKQD5wBXNWGdikUCoWig2NoqwNJKe9oZNsCQE2lUCgUCkW7oMKxKRQKhaLDo8RQoVAoFB0eJYYKhUKh6PAoMVQoFApFh0eJoUKhUCg6PEoMFQqFQtHhUWKoUCgUig6PEkOFQqFQdHiUGCoUCoWiw6PEUKFQKBQdHiWGCoVCoejwKDFUKBQKRYdHiaFCoVAoOjxKDBUKhULR4VFiqFAoFIoOjxJDhUKhUHR4lBgqFAqFosOjxFChUCgUHR4lhgqFQqHo8CgxVCgUCkWHR4mhQqFQKDo8SgwVCoVC0eFRYqhQKBSKDo8SQ4VCoVB0eJQYKhQKhaLDo8RQoVAoFB0eJYYKhUKh6PAoMVQoFApFh0eJoUKhUCg6PEoMFQqFQtHhUWKoUCgUig6PEkOFQqFQdHiUGCoUCoWiw6PEUKFQKBQdHiWGCoVCoejwKDFUKBQKRYdHiaFCoVAoOjxKDBUKhULR4VFiqFAoFIoOjxJDhUKhUHR4lBgqFAqFosPTpmIohLhKCLFLCFEqhNgnhBjhWj9WCLFbCFEmhPhHCBHdlnYpFAqFomPTZmIohBgHvArcDHgDI4H9QohAYCbwDNAJWA/80FZ2KRQKhUJhaMNjPQc8L6Vc7fp8GEAIMQXYIaX8yfV5KpAjhOgupdzdhvYpFAqFooPSJi1DIYQeGAQECSH2CiHShBDThBDuQC9gS2VZKWUpsM+1vnY9U4QQ64UQ67Ozs9vCdIVCoVB0ANqqmzQEMAKTgRFAP6A/8DTgBRTWKl+I1pVaAynlx1LKQVLKQUFBQSfUYIVCoVB0HNpKDMtdr+9JKTOklDnAW8CFQAngU6u8D1DcRrYpFAqFooPTJmIopcwH0gBZz+YdQN/KD0IITyDOtV6hUCgUihNOW06t+By4TwgRLITwBx4EZgO/AolCiElCCDfg38BW5TyjUCgUiraiLcXwP8A6IAnYBWwCXpRSZgOTgBeBfOAM4Ko2tEuhUCgUHZw2m1ohpbQBd7uW2tsWAN3byhaFQqFQKKqjwrEpFAqFosOjxFChUCgUHR4lhgqFQqHo8CgxVCgUCkWHR4mhQqFQKDo8SgwVCoVC0eFRYqhQKBSKDo8SQ4VCoVB0eJQYKhQKhaLDo8RQoVAoFB0eJYYKhUKh6PAoMVQoFApFh0eJoUKhUCg6PEoMFQqFQtHhUWKoUCgUig6PEkOFQqFQdHiUGCoUCoWiw6PEUKFoJw4dOsSYMWPo0aMHvXr14p133gFg8+bNDB06lH79+jFo0CDWrl3bzpYqFKc/hvY2QKHoqBgMBt58800GDBhAcXExAwcOZNy4cTz++OM8++yzXHDBBfz11188/vjjLF68uL3NVShOa1TLUNGqNNTamTp1KhEREfTr149+/frx119/tbOl7U9YWBgDBgwAwNvbmx49enD48GGEEBQVFQFQWFhIeHh4e5qpUHQIhJSyvW04JgYNGiTXr1/f3mYoapGRkUFGRkaN1s5vv/3Gjz/+iJeXF48++mh7m9juHDp0iBtuuIHMzEx0Oh1TpkxhwoQJ9OrVi9jYWGw2G3v37kWn0xEUFMTKlSuJjo5ub7MVilMCIcQGKeWglu6nukkVrUpYWBhhYWFAzdaO4ii1u0f79+/Pxx9/zIwZM5g4cSL3338/8fHxDB48mO7du3PrrbeyYMGC9jZboTitUd2kiiZpqOuzkjfeeAMhBDk5OTXWp6SksGnTJs444wwApk2bRp8+fbjlllvIz89vM/tPNqp3j7q5uVFUVMTw4cOZOHEiAF9++SWbNm3i6quv5vLLL1cONApFG6DEUNEklS2ZXbt2sXr1at5//3127twJaEI5f/58OnfuXGOfkpISJk2axNtvv42Pjw933XUX+/btY/PmzYSFhfHII4+0x6mcVEgpufLKKykvL+flay/AMv3/qHjvXnwNEg9pI87PnUWLFhEfH9/epioUpz1KDBVN0pCjB8BDDz3Ea6+9hhCiqrzNZmPSpElce+21Va2dkJAQ9Ho9Op2O22+//ZRu7TTWUn7vvffo1q0bvXr14vHHH2+0nvnz5vHrr7/ir3cw+oqbGPzUNP5evpq+Ae6UFhfRr3cvnrztOj567YUTfUoKRYdHjRlWoz7HhgceeIDHHnuMP/74A5PJRFxcHJ9//jl+fn7tbW67UL3r8/fffyciIoK+fftWbZdScuutt9KjRw8efvhhZFkuWArJyMolLLYHwuTFr7/+SmJiYjuexfHR0JSIrKwsZs2axdatWzGbzRw5cqTBOqwWC68/di+vnJvI/YOiqtbbnU7unL2N5bcMI9LHHYSAFZ/h7NkNXVhsW5zeSUND1+OWLVu48847KSkpISYmhm+++QYfH5/2NldxiqO8SavRkCdkWloaZ599NgaDgSeeeAKAV199tVWPfSpQUlLCqFGj+Ne//sX555/PmDFjmDdvHr6+vsTExLB+/Xp2797NiBEj6N09Dp2tBJx2XrjxTL5fksSW/TkIg5mYrt35aPrXp82UgQkTJnDvvffyySefMGXKFM4555xGy0spuX7cWfiVZPH62G41ts3bl80bK/cx7/qhNXdy98bt4U8QHh3npt/Q9XjjjTfyxhtvMGrUKKZPn86BAwf4z3/+097mKk4SlDdpK9CQJ+S5555bVWbo0KH8/PPP7WViu1G763Pbtm0cOHCgqlWYlpbGgAEDWLNkLo75T4ClGByWqv0v7B9ytDK9GQ7/hgy5HaE3tvWptCrVW8qPPfYYy5Yt41//+hdubm688cYbDB48uM4+yxct5JuFq0gM8uaMA9kAPDc6gfO7BvPzzgwu71XPQ4LNin3dXIyjLj/Rp3TS0ND1uGfPHkaOHAnAuHHjOO+885QYKo4bJYYNUNsTspLp06dz5ZVXtpNV7UNl12f3bvE8eOUQnNs/o5ejgsxFryICekDwALrEJbBuxT8EbJ8G1mKQzoYrdFggaxty/Ycw5F6EODWHrms7CdntdvLz81m9ejXr1q3jiiuuYP/+/TXGUwGGepRT9szF4LDXqfPji/vUfzC7BfuKXzGMmITQnZrf1/FQ/XpMTEzk999/Z8KECfz0008cOnSovc1TnAZ0vKuqGdS+yVXy4osvYjAYuPbaa9vRurZn+dLFzJgxg3/+/IEBoycy4NIn+WvOPMjZgkyeiVzxNNjLkDt+AGtJ40JYidMGObvh0KoTfwIngPqchCIjI5k4cSJCCIYMGYJOp6sz3QTAvuzHeoWw6YNakBn7jtf0U47a1+P06dN5//33GThwIMXFxZhMpvY2UXEaoFqGtajvJgfa3K/Zs2ezcOHCOk/6pzPSXsFZHmtxLHkEnPXcwJ1WAPZ/fT0U7QNaMAbtsCL3zkF0Pqt1jG0j6jgJWUuhooQJF5zDwgXzGT16NElJSVitVgIDA2vs60zdCsV5Ddb90rJk0ooriPZ1p7Ove9VrmJcbep0OWVp4ok/vpKK+67F79+7MmzcPgKSkJP7888/2NFFxmqDEsBq1b3KVzJkzh1dffZUlS5bg4eHRjha2LVJK5LZPoCwbZBMtmYoyWiSElZTnIgtSEX6nTrixFStWMGPGDHp370rf2O/BYeWFKwZxY2I4t/24jMTYLzB5d+LLL7+s8+BkX/UjDX1PKQVlfLA+lWdHJXCosJw5e7M5WFhOamE5eeVWInw8iPn7IF16JBITE0N0dDQxMTHExMQQHh6OwXB6Xc4NXY9HjhwhODgYp9PJCy+8wJ133tmOVtakIQ/YvLw8rrzySvbv309OTg5RUVFIKZk8eTLPPfccP/30E1OnTmXXrl2sXbuWQYNa7P+hOE5Or6vnOKm6ySX2oGe3zhxMy8Lfx4Os3GI83N0Yd84YMjKzsdvtREVFERwczBdffHHaeEXWoegAFB9qWggBHA13jWYVlGN3OAnyccNk1NdznENwConhWQMTsf36GJTmgb2i2hY7X005E4QOdAaE12GkdFaNicqCTGRmMuh14Kz7fX284SDX94nk9gGd62yrsDs4VOogY+wdHMwpICUlhblz55KamkpKSgrZ2dmEh4dXiWN1oYyJiSEiIgKj8dRyVqq8HhO7xdMn6nuwWvj38J7sL7HyybaDCA8vJk6+nJtvvrnGfhUVFYwcORKLxYLdbq8SHNDmgU6bNg2DwcD48eN57bXXWtXmhqbdfPHFF4wdO5Z58+bx/PPPU1ZWxgsvvMDw4cO54IILSExMZObMmdxxxx2tao+i+SgxrMZZZ/TBmTodrDlkZOWTkV3EgF4RFJdYGDRxGt+8cj6Rnbvi0+06hMGLd999l+eff56PPvqovU0/IciD/2hje80rDYDN7mTLgVxW7znCqj1HWL37CAWlVtxMenKKKvB2NxLi506InzvBvu4E+3sQklBBaPddhISEEBISQnBwMCEhISdlK1xaSnDM/jdUFILT0UAhp9YFnPQPTocN/Zm3AOA8uBWEDuGmR9pqimGp1c6MrWksvWlYvVW6GfR069uXPpfV701qtVo5dOgQKSkpVcuiRYuq3mdmZhIWFlavUEZHRxMVFXXSjb2dGRNG8TPXI4vywWqhqkUd4sFdCYEgBPoYE1gqwM29aj+z2cyiRYvw8vLCZrNVCU55eXmz54EeKw15wM6aNYvFixeTlpbGvHnzWL9+Pb///jslJSUIIdi+fTtTp05l586d7Ny5U7UM2wElhi6krRAOfe6aDuAkLNibsGBvALy9zPSIC+ZwVh49uxbCwc+QUTdTWlp62o4fSqcD8nbQVNdnVl4pq3ZmsnrzIVbvymTj/lxigr0Y2i2YsX0jePqK/nSL8EWnEzidkrwSC1kF5VVLdpGNLIuD1atXk5WVRVZWFkeOHCErKwuj0VhHIKsv1df5+Pi0yW/hXPlJ40JYHYcVuX8Fzqj+6CL7Iy1l2rirQQcC8sqsrE4rYFVaPosO5OBh1DP6y1UEeZhYP2UEANf/uomk3FIQgiL9Jvzen8fmzZvrHKoyIERcXFy9pthsNtLS0mqI5dKlS/nqq69ISUkhPT2dkJCQBsWyc+fOmM3mFn1Xt9xyC7NnzyY4OJjt27cDWuLiO++8k4qKCgwGAx988AFDhgyp+9Wl7KHsnUc1oav3u9V6Kxy7NlD2+n14PPYewiWIQgi8vLyqzttmsyGE4MMPP+TJJ5+sOo/g4OB6bWyNSf0VFRWcccYZ7Nq1i6SkJFJTUwkLC2Pnzp3Y7XasVivJycl4eXnh7e1d1TKs7b2uaDuUGAJSOuHwt+CooL6bf0paPpt2pnNG3yjAyb9en8WMWc/h2ymcf/75p83tbRPs5WjOxloLptxiJzktnz2HCkg6lM/OlFzW7Mokv9jCkB6hnNk9mP+7oh9nJATj61l/C0OnEwT6uBHo40avzv6ulQbEOa8i3HxrlJVSUlRUVEcgs7Ky2Lp1a511NputWaIZEhJCp06d0B3D9ARZXohM29o8Iaz6Hi04t/2BiOhHypF8lm44xMp9Wazcn0taQRmDw/04M8qfF8Z0wyklnTxM3P771qrdZ1zWHwDhH8j/pQcec+Qjo9FIly5d6NKlS/1m2u0cPny4SihTU1NZuXIl3377LSkpKRw+fJjAwMA6Yln5vnPnzri7u9eo86abbuLee+/lhhtuqFrXnMTFsqyYsveebFgIq2Oz4szOoPzzl/C46+hcQ4fDwcCBA9m7dy/33HMPZ5xxBklJSXXmgdZn42233VZjUv/rr7/e4nmMlQL8/fffc/HFF+Pu7s7q1auZOXMml112GUlJSdx///28/vrrLF++nClTprSofkXro8QQoGw/2Ot3ACkptTD5vm/47/+Nx8fLDYAXHx7Hi4+M5+VvMpk2bVrVeMSpjtPprJrUvHvnNvYsWcieg3kkHconM6+M2HBfEqL86Rblx7jB0fzr+iF079wJnU6AlFBc2vKDBvWqI4SgPd37+vri6+tLQkJCk9WUlZXVEcisrCz27t3LypUra6wrLi4mMDCwSdEMCQkhMDCwaqzNmbQImtn4tDucbEsrIOz9ZUQeKQGeJQYI1QvGe5mxdg/B/5xh6KVLlEstGBftgeQjbKywYfx0Obaz4nD2CAOTAd2oSZScfwsvdu4M//0vVFRAWBhceim8+CLUEqKWYjAYiI6OJjo6mlGjRtXZ7nA4SE9PrxLKlJQU1q5dy48//khqaiqHDh3C39+/TqvSzc0Ni8VCWVkZHh4ezUpcbF05BxzN7Z4H7FYcuzbizMlAF6h1Uer1ejZv3kxBQQGXXXYZ27dvb3AeaGpqao3qjndSv81mY/Lkydxwww1MnDiRsrIyDAYDubm5zJo1ix9++IHPP/+c8ePH88ILL5yQ7lpFy1FiCJC3GqS1zmqbzcHk+77lmov7MfG8WrE0pZVrzoviots+PuXEsLi4mD179tRZkpOT8fHxoVu3biQkJNAt1I9zB3WmW2d/YkJ9MOgbaU0JASYjWFtwE9OZEAnjj/+EAA8Pj0ZbPtWxWq0cOXKkjnBmZGSwZcuWGuvy8vLw9fXF4XBQWlKEu1HPDcNjCfFxI9jHjXUHcpm3LR2TQU//aH96RvixIukIa/blENnJg18tWneeNToS4/hLcF82G8+dhxBrUpFJ2VjuGo40mTB/sQFdeiEVnTyZJyUX55Rg/nUzVjcDziGxbNl6hA/z8tDn5cGIERAeDr/9pgmjEPDmm63yPTaEXq8nKiqKqKgoRowYUWe70+kkIyOjhlhu3LiRXbt2cfDgQTp16oSvry/BwcHcfPPN3H777eh0Ov773/+yY8cOoqOj8fLyQjqd2Bb87BojbAHSiXXxb7hNvqvGaj8/P0aPHs2cOXOaPQ/0eCb1VwWo6N6d+++8hH594ti7P50+vaLYuv43MjLSmTlzJuefdx63X389SEnU6hWk3zMFfUAgOOxIRwt6HhStRoePTSqlE/a+Ru1WoZSSmx7/GX8/d95+8kKw20FKklNziY8NBoOe92asZuku00kZns3hcJCSklKv6BUWFhIfH0+3bt2qloSEBBISEvD1PdpKcybPhPQVIJt5cUoJ5RZwyKb30Zsg8Sp00SOP4yxPPA6Hg9zcXP78809K1/3IK98v4YHzepBdVMGWg/lsSMklspMnuSUWQn3cGN0zlLPigzgzPogALzP6l+cj9hxBXnYeYuYcHNsX4vjmTYxvz0dU2HH0Dsc5OBrj9FVIg469d43k0h82sKVnKIbFyTjD/XBMf4FP357NXXPmaEYVFoKPD1xxBfz0E0yYoAnjSUhKSgoXXXRRVdf2/fffT2RkJCEhISxcuJBNmzYRFBREamoqHh4exESEE1mWTWdPE1HebkR7u9PZ250obzd8TI0/uwv/ILxe/Jbs7GyMRiN+fn7kH8pk3JixXNv/bI4U51Oot/PfGR+TmpPJ2LFjOXjwIKmpqVx00UVVY4a7d+/m/vvvJzc3l0suuYR3332X3NzcZp3v8uXLtdi8PaO0HhPgqYcu4r2P52OzOVi3aT8ebiakzYGnwUCR1UbSJRcwJz2TZ7fuIKuiAl+TiYG9e7OglWMvdxRUbNJjxWlBGxurefNetGofM2ZtQicE7321EoNOR4/YQPYeyqfCYgMhMBn0XDj+Qu69917MZnOTi8lkala5yqU541q5ubl1xC4pKYn9+/cTHBxcJXaJiYlMmjSJbt26ERkZ2ay6ReRIZMbK5k8fFAI8PMGvD6StAkRdb1S9WSvX90Z0EXXjdp5s6PX6qtbMXv1uPvp9FQ+d3wOAq99fxjd3DWdsr7CmK9Jpl5qu1xicZ6zFceZ+DP/sQbczAxmmOWfIYG+c3iYQILsEwOJkREYB9J/IKxue45YBAzBv3AgXX6y1DH//HQIDwRU8/mRGp9MRFhbGvHnzKCgoQAjBE088gY+PD97e3sTHx1NRUUHf7gmMLDXzxeZ9fLYjDb0QWJ0SpMTdqKeLjwe9A7zoHehNn0BvegV4VYmkrCgDtADf1111DSXp2ViLyhhiCMVv/068pJPP9UnEBUbg7uvNB++9Xa/T1fFM6j9rgDvO3K+pfT/ZlZSOp4eZvMwC4oWZMLOZOxPiuGr5agDODw/l/PBQrly2in8l9qBvaAgFP36H3xVXH8vXrTgG2kwMhRCLgaFA5aS1w1LKbq5tY4H3gc7AGuAmKWVqffW0vmFGKp1EqnP2gCiKlj7GlBf+xKDXsWF3BrdO6EdBSQXdowOwOyRf/7WNkszdxI8Yjs0hsFgsWCwW8vPzq943tlit1ka3GwwGTCYTQghKS5s3Hufm5kafPn245ppr8PPzqxLWkpIStm/fTnJycosE2mjqjTl3A2aDE7NRX/W0Wy86E3Q+B13MucgeE5EHl8HB5VqINqED90BE3DgIG3BKBugWEYmakLtIyixmeVI2z/yyBTejnlevHMDg2ID6d3bXBE8IHYaLH8M5bz38swfhkIhCl6OI+ejlKD21aSVCwvJ5C4np0QPzjTfCQw/B0qVH6734Yog+ReZoSkl4eDhLlixh9OjRVYmLq0+DOGvIYK7p7s3QMD/O6RzI/f2iXbtKcits7CssY3tuCdtyivk+KYNdeSWEeJjpE+hN34hghvz5JxE2Nx49FI2jPBSQVXccg9Bxu7M7AKJYR+G9M8iO7w0h7jVsPJKdfUyT+mXFPqjYDTjIzinCaNTj5+tJebmVhUt28uCks+ipd+P3Q+l09/Fm9uEMHFKyKPMIVqeTZ7fuIM9q5ebV6+jp68PXgKlzNB5D659uo2hd2rpleK+U8tPqK4QQgcBM4DbgD+A/wA9ownnCEToDUu8JjpKjK602hNWOl4eJZ6eMZMRtXxIe5M2QxHDOSIyoKuZm1vPLwj3cf64ZetyF0B37DV5KSWZmZo0W3vbt29m2bRuZmZlaF1JMDF26dKnhoODn59cssW1MoF9YsYK++fmAdt8o1elIMxiYbTYzzWQix1KGxWrFx+rgDeACwBvYqxd84GVmoY8bZqOBSVYdz6a9rn2v1PQ12RMaynuTJmE2/4jZPKvNW9Ctga7z4BqtZIfTSX6plRXPnMe6A7lc88Eykl6fUG9rQ+hN1d4b0LnHACANeqSfJwAHM4sY/d5ScsqsTPl6DV8AUgi++Ws6jyZGwa23gtEIq1dDr15w223www+Qng4rVpzAMz82rr76ahYvXkxOTg6RkcE8N/VGPvn4Lh548A7sdh1ubl588sknNaZB2AFRT0ACIQSB7iYC3U2cEepXtd7udLKvsJytOcVslx68+dKrrF+1BiklnfGiM950xosovAnFHX1lAASnE1tRGZeMOIcDflZy8/OJjAjkuaevoqTUwvv/+xswMnFi3Un99SGlhPJNVLYIM7IKuOnuT7CXW7EXl3NJeBBDVmXStXcvcsotpJeX09Xbiw+HDMDPNb/z/PDQmnVaLBTM+FKJYRtxMnSTTgR2SCl/AhBCTAVyhBDdpZS728QC/yGQu1SLtCIlWDRnGofDyVX/N5OCYgsJ0QE1hBDg89+3cMW4nmDNh7ytEDiwyUOVlZWRnJxcb9emyWSqMY43atQoEhISiIuLO7ETokePhiVLoEcPDGefje+BA/jOn0+v4mIeiolBbt4M5jwYcxFixyEcMQHYogPotWIvHxRWcOj2C8i96DqM+ws5/NdfOByOqiVm3jwMNhsO1xhldRFuTgu6qdazxWJBr9e3SDxbKraV+xQUFFDqNLByXz5mvRNfDxODu3TiUF4Z0QGaoKXllRLh73m0BV1fRo5duxCfas+E4uJL0F9/LcydTLQDUvZ+AiEB6J+aDq//jOwdzfszHkH/1m8ASE93GDgQYTDA4MGaGG7bduL+G8eKlHz37YtApfPJUYHbsP4jjj4ueeKw2xg4aHDVNIgzewYw//3/8fH2Q3y3J4P+wd68OCwBf3Pdh02DTkc3f0+6hQZyw5RnWfzkrxzESAEWDlHMQUrYSA6/cYACLERIT6JcAtkZb25wxNN9VA/GfHUB1Z90HrjnIsAVLcmRDoaIOseugT2zhhNez0A/5o8ZiLPMChY7TidYywT+JhPfDW/+c74jNwdL0h7MCd2aLqw4LtrMgcbVTdoL7QrYA/xLSrlYCPEOYJJS3lWt7HbgWSnlL7XqmAJMAejcufPA2i7Rx4p0lMOBaZoY2uyaE0g1Nu3O5IwbP+ef/13HWf20rOQvfracDbsy+OX1yVpLwByISHwQ0DzrDh06VEfs9uzZw5EjR4iNja0hepVLp06dWuV8WkylGN54I3zxhbZu1y4YOhSKimDiRLjlFrjoIqTZDFtmg4cBXpuOmDYD+vaFeiaCM38+nHsu6HSwezfEx7e66VJKbDZbi8SzpWJbuRQUFLBx40Z6d/bHUl5OZkEZFpsDTzcjpRYbBWU2jDqB1SHR6wRmg565DifDHU6SjUbWeHgQ5XQyrKQEo5RkuLnx+NChlPj68vrSf+iaX8Qhfy/Sg3wZuDcdg1Py/eTh7O0fR3RWAddO+x2dU5KVEE1pZBxRq1djLCsj+6yzSH7ttZOmBa39MElABvUNQdREB/gBfSgoLOSyyy7j7X89jtcPbxGglwgBL6zdR2aZhQ/G9GqwFuEXiLj3PX6Juw6HpX6P5nJpJ40SDlJSJZTplNJJuHHW+D4MHNyVfn260L9vLKGh/tX21IOxDxjqhsmrOt2SVWBNBsCeVUTBW3ORFluVvtqtArtVR7Pn5lSdGHhPmIT/jU23ThUap4IDzRPATsAKXAX8IYToB3gB2bXKFqL1xNVASvkx8DFo3qStZZjQuyODL4Qjf4G1vM72/t1D6RMfzL8/WsLCj67jy9lb+XP5Xma+Ppn1OzPYk5rLnoMFJOUtYs/eVPbu3Yufn18Nobvwwgvp1q0bMTEx6PX1xOc82ejRA6ZMgTfewP7bb7w1Zw6PA6J7d+jmyuR+bjFMm4FzyxbyUlMJrDZ2dcstt3DT118zEmDyZIiPZ+rUqXzyyScEBQUB8NJLL3HhhRcel5lCCEwmEyaTCW/vOn+ZVuPqq69m/fq1WK0WDhWV88zVg7k+MYDbP17J1oP5BHqb+eHKAYzpGYrUm7DZHVj7XY3nPf+BlSuJt9noWlyMw9MTS0IC6Weeyf5LL+Uqg4Gy8jQ2nhuFnLGAqG0HCNuXQV6IH0uH92JrQiTW/BKykBSO68+4zfsJTzmM/95D5JnNrIqK4lMpyX3kkXZvQVeVN5VjNmdiNusxm02YzcZay9F1mj4XAAfx84tm9OjRzN+8g/smXId1wc9greDGHhFc8dfmhn8ckxvud0xl949Laozp1sZdGIjHj3j8qtbZpZNsswWDXzhH8op5891ZbNpyAKNBT78+XejXtwv9+nShb+9DxCRMxGp3o6KiosZSXl5Oed4qKkrTKS+3kv31KnZn5LExp5BNuYUU27RBy56+Pgzw98MhJRanE4vDicXpwOJwcl2X6DrdpABIcOTVnf6haH3aTAyllGuqffxSCHE1cCFQAtSOdeQDFLeVbQDCpxcSJxT/BEB2filGgx4/bzfKK2zodYK1O9K58P7vWboxFS93E10v/YCEzp3oFh1AQpdgJlwwiu79R5OQkHBCb8xthmvOnsHp5JbzzoNff4Vq53WkvJxgtGd7nWsidSX3Dh3KgM8/1z48+WTV+oceeohHH330RFveqkgp+XzGU1idk6nuJegsLuGzhFgMqWlaj4IQSE9vdD0vwz1uOB5GN1hxflV5gXbBGQBPINpVt9W5CIiEO7SyDsAXuNi11GsT7gTrxnCpEFzazHOobEG3Ruu58S7uI1itFiwWGxaL1fVae9HW63QCs9mEm5sJk8mDgoICAgIC+MzHB097BcbSQrLLLJTY7Fz192ak1BpbTimRQocUAl1UV5hyPwW7UikuP+L6frRnZSdgxUGK63YS57rVyKpFIivAfd5+3MM8kVISEuxL8t4M5i7YxNwFm6p9i3fX+V4DAwPrnatYnShPd3IqrOwsLGJnoXadjA4JwuGULMvO4ZKIcPp38mtwf6Gv+4CuaH3ac8xQot0fdgA3Vq4UQngCca71bYrw6Y00zAVrARk5Jdz07B/YbQ5sJXbOCwzjph5RPL1+M25Cj7+7mdBAL4YkhvPR/12oTRnocjHCt+loKacM+/drr0Yj+spWX/HRZ5TP3n6bp9BuOM5a4j9g7lwAlnl5MaJ//zYw9sRhdezB6kymtru89PbCNqg3tkG9q63VY9D54GFwa1bdklygBYEKjlqFJB9B87rWq7egjwe73V6jRVS7lVRRnk95+XYqKixUVFhrLOXlNdeVV1hJS8tmzZpdlJdbKCkqQ+8UZKdnkp6eXufYf6U0IDopzY/gso+i+jccKYZ6qjGZDPj6euLpYSYltW6B+oTw3Igguvt5YdbrMOl0mPQ6jOjRO/QU2Gx8nLyfxVlaZ5i7Xs/QwE646ervLRImPcbI0+DB+hSgTcRQCOEHnAEsQXNYvBIYCTwI5AGvCyEmAX8C/wa2tpnzTG1M/mAtIDE6iD/OO4eypBLNU8x1Hxw7Qnt6FyYdQi8Iu9w1jiCdYGxZMN+Tml274JNPtPcXXYQ1MfHo+sJCfl+yhMFWzWFgj9FIkMsjEICkpKpJ4J8GBlI9Xsm0adP46quvGDRoEG+++Sb+/tXHZk4+nNKCxbmdpse+KnFgdx7C4UxAr/NrurQzh9oi2xhSSqxWOxUVpdgse7Bbw+sXpYbE6jjXSylxd3fHzc0NNze3Gu+1BdzcHLi7a609N1err3Lx8fEkONiv6rPJaOA8UyTFq9Mxeegx2CVGdBiFHhM6PDw9MOr0DH71bmLO6go2K8LdC11YZ0QtAdn+5o/89n/vsNKaxmqy8MbIUEI5gxD8RcNBxvVuBga9eBY97+yLlJL09DzWb9zLug17WbcxmXUb9lYJYWRkON2796wa/ggMDGTr1q2sWbOKNWtWUVZmZd7hbOYdPjryE+puJt7XEzMGFmQeFdSzggJwOCU/HUzDz2RifETd+apSSjzP6Nrs/4fi2GkTBxohRBDwF9Ad7crfDTwjpZzv2n4OMA2t56hynmFKY3W2VgSa2sj87TiTf+bQtF1Yj1iQ9sa/H2EUhF3TGa9+0ZD48EmVxaK+iPzPPPMMs2bNQqfTHc3HeM01Vd6knH02pKTAvHlgs0FMDCxbRorNRknPniRWVODs1Yu5mZmcX1SEsNm4OzCQ53ftOprV/dZbYfp0KgYOZFBFRdWxs7KyCAwMRAjBM888Q0ZGBtOnT2+fL6eZWOy7sTh3UKN71OmkosJGRYUNS4VVe7XYtBZPuZWKCjt2qx/SFt2g0JSXl7tip25j374UcnIaaLGcJOj1etzc3JqRQNhJ8x8cwFFqw9lILswaNrib0RnrHr+wsLDe8u7NfNYXgNHbBDrNg9xg0NMnMYY+idGu1xh69YzCy8sbTANAX3+QBWfBAnLuewMpJWmlFWzLL2JHXjHb84vZkV9ERpmFa2M683CPhKrpFI2fsMBjUBgBd92A8B3erHNRHLsDTYcPx1YbKR1kPHE7JVvzmhTCSoRRR/Rrd2LufV6r23M8LF26FC8vL2644YYqQSoqKqpKR/Puu++yc+dOPtq9WxND0Dw/fXy08cJLLtEmefv6kpKSwo3nn8+SwYOx//EHjsJC9huNfODry4f5+YSHh7N27VpCnU5tX6uVrE8/Zex//1t17OpUhumqb1tzqOyuO9GtotKyHCwWSw3hs9kcuLkZMbsZcXPTnEHc3Iy4uZtwczMihCA/r4SCfDt5eXnYbE13g3p4mOkSG0psbBixsaHExmmvgUG+2jHctLrd3ExV0zb0Ig6DrvmtBiklpaWlVRPcL7jgAl5++WUGDx5MWloaDzzwAElJSSxevJiAgAaCBzR5kENAKs0JW7Tj5aWkfL0FZ3kzkkcDOnczZ/3wAn694ygqKmLmzJl8/fXXbNy4kUmTJnHddddhe3cRWYs2NV1ZJQIiz4th1HTt2hVC4OPj0cBDrQFMg0EfXG9VTkcpObdMBmf95251OJEVRrRbbhMPzQJ0PmZC/28k+ugrEOZmRDlSAKeGN+kpgaOgmJJtBc0WQgDplBQsPkBI76bLtiUjR44kJSWlxrrqedmq8jHWSqHTELkGA8yYgQHQS0ms1coLFRX8lpjIb7/9RkFBAZkVFVQsWUJFRQWpqakUFRXx3XffUVFRQVZWFmazmYqKCv755x8cDgf333//MYkVUE8XXUNdd3XX+/j4EBwc3GR5u24xZjeDS/xMmM0GcnOK2bc3g/37skg/nEt6eh6Z6flkpOeRnJRDcVEZoWH+dOkSy/Dhw4mIiCA8PLzOq7e3Nw6Zid25mZZ0lWroMeqi0Qm/Fu1V2S1dVlaG0+nEx8cHPz8/brvtNt566y0mTJiAr6/vMaeK0jQwj6Zah/ZSKznf7sLdIqCZwSrsVge/PPc26wJtzJkzhzFjxvDUU08xfvx43Ny0Mdq82N78eeZ92Muakf4JMHgaGfXSGPz8vJoujBN0vkenIgHo9ZpTWZcu6C6+GENAKPbsDABEhQWvjUmYD2cjbA7svp6U9oqlOChCG3pxCaJn6iG896dgKC4BnQ67lweFZ/bD77lR6H39wVSPl6mi1VFiWIvCP+eB0NOim5NDUjj3H4Km3IyuhQlQjwetu65x0agUpK+//rpq3a+//sr69esxm81MmjSJe+65p9F69u3bR2lpKQ6HA51Oh16vw+FwYjTqcXN3o6S4jAkTJuDp6VklJAcOHKCwsBCr1cqtt95M774x5OQUUpBfik6np5N/IJdffmWVIDVXxCqX2t11FRUVjBw5sipd0OTJk3nuuefq7xauJ21QdaSUZGdnk5yczJade9i3N0NbkjUB9PJ2o2t8GLFxoUREBjBwUFfCwvwJi+hEeHgnAgK90emMeBnPRyc8Gz2Wrsoft6ViaEAQ2MJ96s/z9/vvvxMREUHfvn1bXF9dfAET0LgYpf26SzvtJpBSkuwoZIklg5XWTMKXenHPS8/wwQcf1Dsvt1PvWMb+9jwLL/1344IowOBhZNwvF+PXvZnze3UhUH3ssXJY4cABbU7tpk34hYWSP7ovDj34/bMJY24hdj8v7OHemFMz8Vu+BUZAWXgYdqsO3x178E3ah9TpKA8PQXq4YdbZCBjXGRHoDd5DW2Xopb4hk59++ompU6eya9cu1q5dy6BBLW5MnVYoMaxF8bKVSGvddE4NYXM6sTid2G1W9i5dhoiJbpPuu/Lycux2e5NCIqWksLCQOXPmVK3r378/w4YNY82aNezbt48JEyY0LjwmJ2ViA3pTCSazHrObAZPZ4JrErUMgMOuDCXI7B71Oi/PolGUUWv/BLnPRWgnVW9oC0GEQgfiaxqATx5eLD8BsNteIcTl8+HAuuOACHnvssapcdO+++y7PP/88H330EQAFBQUkJyeTlJRU4zU5ORmdTkdCQgIxcW50jQ/hksvOqBJAHx+PZljkRND0g5EQOvSiCw65l+aPtenRiy7HdJOsnedv69atvPjii1WBqY8bIUB2Bho/n7RZu3GUNtx9nO4oZZklg6XWDHQIRpnDednnDCL9AhmYMIhOEyfW2zrj4osJf/hhxq98l3WPf0zYgp+JdB7BT5aiQ5Ip/JlrHkLYqGgGvzgU/56d4EgB/OtLmLsBisshIQKeuBwmnlXNIj0YawWNGDIEpk3T3ruCVOgyMvFaraM8OhRjbiFSpyP/3CFIkxFPDzc8dxzAc/t+rNGhGCtK8EnWPLbLX7ga/ZgeGKN8XL+rATx6Izxaxzu9viTGiYmJzJw5kzvuuKNVjnGqo8SwFs5GAmK/sXcnf2SmYXE6sTodWJxOHNXGXP1WLSQoNLRFXXe+vr6EhIQcU1ef0Whs8oZYOTb39ddf19mWmprK+PHjueeeexrc3+4sIb10Jj7oqCcOAuBEAhWOLNLLfiHcYyIISb7lDyQV1D92JAEHdnmEPMss/M2XoBfNEZiGEULUiHFZmWm88uafnJzMn3/+SUpKCmeddRZJSUlUVFQQHx9PfHw8CQkJnH/++dx///3Ex8dXjZlV2Ddhde6jJU4hAHoRghDNu7z0Ig6nzEZS2Izj6BD4oxexLbKnNpV5/mbNmsWBAweqWoVpaWkMGDBAG/8NPdbuuXC0rtKGu0ttBTVbbflOC7vt+ey0FbDLnk+e08JwUygPefUhTu9T9T+XDge24rKjO9bTOuOrr+i0fDnnzXkVx5nLKT9ixpKbg3thNl5dQrl82dd4hHlBxWLACpNfhPXJkBgN4/rDzyvgutfhWwGXDgP0YIgHXSOez9WCVJjSjmDz064Vu68n0qR1A9uC/AAw5BeD3Y45MxchJdLNiPvCzfDSL+DtBhcNgBdeQPie2dIvvkHqGzLp0aNHq9V/OqDEsBbC1PDT/JToeM4JCiXLUqEtFeVV74/YLByx2sjKyiIiIgJfX18iIiKIjIwkIiKiaomMjCQoKKhtQ2O5kFKyJ3kX3eJ7IITg999/p3v37o2Ud5JZNhsnFpp2iHDikOVklv+Jm17XiBDWOAKSCgqtc/E3XXrM3UEWi4V9+/axe/du7r33XrKzswkLC2PixInk5eXh5eVFaWkpnp6e/N///R8DBw4kPj6e0NDQJo9p0se7xLAlGDDrmx9LUggdRt0Z2J0bcZJLw12menQEYdD1O6bvqnqev/LychYsWMCjDz5EVlZWVX0xMTGsX7/+qGfwsSAEyF5oTuPZHJ3iriGlJMNZxkrLYXbZ8tlpL6BEWulm8KOHwZ/bPHoQb/CpCqpdo2qdDr17tWu0ntYZKSlw//3wyy/oV63AC7Sg5p99hldUMIS7zs08Cma9qQmh2QjzXwJfT4gIhDd+gZd/gkuHg6EbGJrhqOQKUiFsdtzje8OmPVVCCCBdXfsC0EkdOrv2O4sKG/JAjia8s9cjPlkE4gv4X+uJoaJplBjWwr1Xd6xph6GeyPk+RiP9fOsfXxBGI12++YRiJIcPH66xbNq0idmzZ1d9LioqIjQ0tEogd+7cSWpqKv7+/nzzzTdERkby3nvv8ffff2MymYiLi+Pzzz9vsVND9awBoRGB3PH4xSxfsI3UvRnodQa6xMTxyf8+b3D/cschHLKc5ic0lDhlMU4MLdrHIUuwOTMw6Rsey7Pb7aSkpNTpzkxKSiIjI4POnTuTkJDAlVdeSWRkJDNmzOC1117jnHPOqXrwePnllykoKGDkyOYnFNYJLwy6KOzONJo3rqdDJ3zRi/o9DhtCCD0G3SAkBTic+3GSRXWPQx0h6HWxLXaYqU5GRgY3Xn8DloJCKnILGWkKxPup6Sx68jN8+/cg+o7Lj7nuOggd0BNkCQ7HAbZsWc3y5dtYtnwry5dvg3IH8Q5Puht8ucgtmii9F7pmCLy0O/BLbKBVXK11xh9/QEUFuDUS/EDnDltcnqzdosHXC9DBGa4W0/YUsA8F96DmnXP1IBU9E4GfMXj5ogsKxZmXg3D9nhJwv/Im3DMLYIPWKyO++10T9rfegkcegV9+gf/9r3nHVbQKSgxr4T/xYooWLUFamj9uiBB4DOqHsZM/nYBOnTrRu3fDrqUVFRWkp6dXiWNQUBCFhYXMnj2bp556qmq9j48PkZGRbNmyhVGjRjFx4sQ6rUx/f/8GWwmfz/iAvUVzcUobTleUk8uuOzoFXoeBfLEUf9s4vIx1u8QKLZuRLYyOYtBpXaAtw06ZfRsGEUpaWlodsUtOTiY1NZXQ0FASEhKqujUvvPBCEhISiI6Oxmis6ZFYUlLC1q1bOffcc6vWXXPNNYwfP57nnnuuRda56wdTJitwyKYmyOvQ4YWnYcQxtdyEEAj80ekHIqWDo5FpjAhx/PFsI4sd/FfGIX0kToPWTSldc/wKN+xkx0Ov8XXUKDyKLRyDb04V5eXlrF27lmXLlrF8+XJWrVpFREQEI4YPY8IlN/L6ayMJNvsyb9BNOBsIqt0Q3j1i8E5oOGB2ZesMmw3y8rQkyI2Rmam9+oSC24UgbRDgmgMoJRRZ6x8dqE2tIBUM1DLY6A4dJuDfbyONenjq/2DBWujTh/v+WEDKr7+yqFoVeXl5/PTRR9wBZJaWYs7PP+mDUpxOKDGshblLNKbOUVj2Hai3dVgfwmSi0xWXNfsYbm5uxMbGEhurPeFeddVVpKSksGXLFla48tI5nU5ycnJIS0vj559/ZsGCBdjtdlauXElaWlqVYFosljoCGRERQVCYHw7ffQSF+RAQ7IOxnsnKTuwgYV/RXGJ9zsXbeHQuk5QOLM7mh7mqRN+ECEgpOZJVxP69mezfm8W+5Cz2783iwL4sUvbn4e/vX2Mcb+TIkSQkJBAbG1vlPl8flV2APu4eZMxbyl/ffM/d48az+p2PGXDNJExBAY13CzfgLs/FFyMefhgPnxFYHDuxZa7D/NRXGOZsQBRX4OwWjuXJSdgnDcOoi8FN3xfRpSvUl1Fl2zaojOTTBJr4tV5A99ylG9h61ws4KywNlnGUluMor2DdxAcZ/Nu7eEQ3b25bfn4+K1asYNmyZSxbtowtW7aQmJjIiBEjuOuuu/j666/r7XYNGtmPI/9sRNqb9/Ck93Cj2wNXNl6oWuuM5mSBCXOdY3ExCIO2lLi+IyHA17fhfdeuhXvvrRuk4t13ISICBg2C9esRI0ci+vbV0m0B4umnuSkkBK9772Xh6NGMLS6G664j2d2dGw9pKa92jxrF36+8wquvvtr0ObSQrLJ0Cqx5OJx2THozDtm8eZ6nO0oM6yH8mcdJvethnGVl0ERQAmE243fReXj0bji9zLFQORUgODiYZ599lvvvv5/rrruuTrmSkhLS09NrCGRycjJ/LFhL5uEcjmTkk59bjJ+/F0FhfgSH+RMS7k9wmH/V5+AwP8rC/mBI55vQ67SnYqe0ItAhXS0hh8NJ8u4Mtmw4wOb1B9iz4zAOe92Hhca6uqw2O6kHsnFzM9IlLoTYriHExYdw2eVDiI0PY3DP+/D2PrYn4UNJe7n+iiuxFhQhkYz1C6PXmiQe//47Up96DKOHG7G9e/HJ1zMar6gBhwyxfDluEYmYJ92CWLsOZ2IcjnPj0P+0CI9r3kL+dAZicq18ljffrAUwqOR4xuGOA2teIVvvfrFRIazCKbGXlLH55qc5c+Gn9bZw09LSqoRv2bJlpKSkcMYZZzBixAheeOEFzjjjDDw9G59SAjDw3UdYOPIurHmFVS3UTdYcppftxolkrDmSie5dOGAv4uPy3Ujhjs9zD/JByAcMqa/C2q2zxrpIq4wYeHTfwkJN/CoTJffuDV6NzD/ctQv27NF+48TEGkEqAJg9Gx59FP76SyvXowc89RRcfjkj0Zzb7oyIYO2YMTBzJn327kWfkAD33ku3iRO5Y8yYVhPDq66+ikX/LCQvN59ecb258oGJePl58tlzX1GYV8y5F4yjT9++LF6wuFWOdyrSsSPQNNIasEy+gkPPv4azvAJdUSFByTvwzD2CzmHH6uFFbmw3SiOj8ZswnqDbb0QsWQLPPQdbtoDVqg3kv/YaDBjQLFMaisjy4osvsn79embOnNnsrrciaxopxYu0lh9gtzvIyy4iKz2fIxn5HMko4EhGPtkZ+a51BRzJzMegNxIZEUVERARSOkg5tIusjAJKXU/K3j5unH1eH/oPiaVH70jM9SRbddPrG7TTYNARFR2In3/9N8pA842I+pLhNoElM5vdtz6BPa8AaWvgKVcIdGYTXf7zMP5j6nFMaEFOR8xmyMrSbnpPPQWvvFIzp2NMjNYyPHBAe9/OpHz0Ewfe+7Z5YuhC7+FG30+fw29IIrt27WL58uVV4ldaWsqIESMYPnw4I0aMoF+/fnW6qZtLWdoRll78KJbcQqwl5dxXuJx/ew8kQOfGE0Wreci7L5+X7+GWcydw78z/MWfeXF577TUWQ5MhBImM1H6b3bth5UpIToaQEDj/fO3B5I03tIfdIUNg/XpN/CpbcDYb/PgjXN6K46i1qH3N+/n5UVBQULXd39+f/Pz84z6O3WljReZCCq35OGTDrXC90JPgm0h3/5MsekgLURFojod6WgPmr74idv4CipL343b9dbjlHsHi7UuZjx/e6QeJ2LoO6x03Y5pyk3YhnXeeJoKXXqp1r/z6K4wapd0g4+KOyawvv/yS2bNns3DhwhaNQR0p31olhAAGg97VAqy/1VVcVMaOTSmsW5LE0r92sXDhwhrbTSYDQaG+VJRZ+eu3DaxblUxImB8h4f6EhfsREu5HaJg/IeF+hEQFEB7RCXf3lmVH0OFxTEJoLyllz21PYsvOa7xbW0qcFRb2P/0mCdOew7t/M1rytR0y+vTR1nfvfvTpf9gw7XXrVigtBU9PysvLcQcK4uLw0OsxdesGd97Je04n06ZNw2AwMH78eF577bUWn29LkU4nBz//tdlCaJdOki1FbC/M57krLmdbaQ4+Pj6MGDGCUaNG8a9//Ytu3bq1Wgxej8hgxq3+lPQ/lvPrf94lrNSTSL9AkJIR9gj2xHnQydiNkGvHoTPoKSws1IImVGa1aKp1NmfO0Qde0B5ivvwSoqO131WIOi24oshIni0v54+nnuK2fft48skn2bJlC3feeSclJSXExMTwzTff1IjmdLIipWRV1mIKLHk4m5i245AOkgq3Y9KbifU5jbLvNBMlhtCge7buicfxu+UWyD2CNJuRS5Zg7tQJpr2rzSf6+H9w913w00+aEPbtq4kgQL9+Wivxrbfg/febNEFKJw5pY0feEqzOMlYt3MhbL3/Gon8W4uHRsjl4pfbauZKPYrPaSd6ZxvaNB9i+cT/bNx4g83Ae3Xt3JrF/LM//51nOHDqc6OhoCq2bKLBuorrTiMViIzuzkMyMAjIP52uv6QVs33SQzIwCstILyMoowNPLTKhLLMMjOhEa7kdYuD9h4f6Eutb5d/KsmmDsrm/eWFptjvz4J7b8wmaP70qLldSX3ifxpw+ad4DqDhmHD2vvq6erqnwvJRQU4HBzY19BAV3OOQfvmBh2fPstfbZvh3vvRRcfz9Zt2zCbzRw50vLx2GPBkpWHo6Sswe3lTjs7KwrYXpHP9op8dlsKCDN60NvNnxGE8vWWhURERJxQG/VmE1GTzyacPPrO9GLkU8+hMxrIXTqfDVs38/4993Deeefx6KOP4nQ6WblypSZmzaE5oQZDQmCG1n3ucDjon5DA/BUreDUyksGDB3PJJZdw22238cYbbzBq1CimT5/O66+/XhXMobUICQkhIyODsLAwMjIyCA5umUdyfWSVp5NvyW1SCCtxSAfb8zbS2SsWg65jyUPHOtvm0EBrQHTvjlt/V7iqkSO17ZWtgcqxiYwMcA2AVz25rl7d5CEvvXw8y5eupCCvmNG9LuOmRy/l22l/YrPYGXvOaHTCwIhho/j04+ZleJDVxEtKScreTFYt2s7Kf3awaVUS4Z0D6TWgC30GxXHtHeOI7R6O0WhAh4FufhMw67UbvLexB4XWTTUmSZjNRiKjA4mMrn/8S2DA3aAnN6eAjPQCMtPzST+cT0Z6PhvW7quxzlJhIyRME8noqL5ERUbXcAaKiIggLCyswRx80uHgyLe/t8zzF7BmZFO6MxnPnvFNF67ukFEpCtVyOla9dzlbrF27lqmjRjHXFdHlzy5d6PS//xF58CDXGgyYXeH66rvRVSbgLS8vr7FUZVOvZ2lsW3l5OaV5+RxJ3YHFbsMiXcEipEN7Lx1IIN7kS293fyb7xdDL7I+XXuvyFEbDCRfC2udv8HDDr7fWk2JYZ0YIwYcffsh///tfJk2axI8//sitt97KggULTogNa9eupWvXrjWc22bNmsWePXuqpuSMGzeO8847r9XEsMxezuHSDIadO5w3PnqLJ598gi+++IIJEyYcd91JBTuOyUEmrTSFGO+OlTqqRWIohBgHXAUESykvFkIMAnyklIua2PXUooWtAaZMgU8/1QSwcy237+o3zlpIKdlbtI6H372GB+UVNbaNv3pUjc96YaTYloe3sWkPuZIiC2uWbmfVoh2sWLQN6ZScOSaRCdcM56WPbsfHr/4xO4kTvTg69qPXudPJfBZ5lpVImr6gBAYC3EajF05E0EoCg3zo3bdhN/iyMguZ6UUUZkWQnak5Zuzfv59ly5ZVOQNlZWXRqVOnOt6yERER+BVXYM/PIdApqm7gzcFptZH9y5wmxdC2dSuGTz5BAGVnn01ucDBRgHPnTpbOmkWJXk/Xzz6jO5AbEcHXn33GzmXLsGZm8vjjj1NeXs7WLVs4/8gRIoH0ffvo7OpaCwkJQQhRR9B0Ol1VlCF3d/d6l4a2BQUF1dmuL7eyP3UaRpsTs9BjEjpMOj1moXN91jfoAawzH18i4JYSGRnJocqHSbT/Q3h4OK+88grvvPMOAJdffjm33XbbCbPh8OHDREVF1bBpzZo1JCYm8vvvvzNhwgR++umnGnYeC1dffTWL/llEbm4ukZGRXHrfZAZccwYfPvwu33z5NUHhwXz6zWc4pRPdMQwfAFgcFeRbGkiI3AgOaWdf4W4lhg0hhLgPeAD4FJjsWl0OvAsMa33T2pEWtgbw8tIG6b/7ThvIj4nRPNK++krrgmmAw6W7yChLwtnIoHYlDmljS85chgRfiklfM5an0+lkw4YNzJ07l7lz57Jp8wb6DI5l2NmJXH3HOcQmhDVrjMegc0NfKwmqt6k7Eif5llXIOjFGK9Eh0NHJPAIvY+WEaAcl9jXUjUtaicDDw4M+3cfintiwKDkcDrKysmoEMUhLS2PRokWkbNnGweR9HLGUIYAgoxtBJneCjW4Em9zw0huxOB3aIp1H3zud2D/Zjv6fX6tE6OOkJIYAe77+msXffkukzcY4tGnvqTodl2/dSuH+/cx0d6dXeTlR115Lqq8vcRlahoKfEhLYt28fgRkZvLN9O4etVsoCAvBITibOlWVjRXw8v77zDikpKfz73/9mwYIFeHh41BC0pvMFtgzpdLLsnd+x5dWf868xfAe0bbiuwYMHk5yczIEDB4iIiOD777/n22+/5auvvmLJkiWMHj2aRYsWER/fjBb9MVKfQ6EQgunTp3P//ffz/PPPc8kllzTYW9Fcnnl/KmMPj8fmsOF0OHA6nDgdTm57/W6k04nD7mDZ/pVsP7SDMwIHgVPicDiw2+01XutbV/laWJ7Pztyt2OxWrX6nE4dde3XaHYTFhDJobP967atwNNy1frrSkivvQWCslDJFCPGEa91uoPlxp04FGpg826TrtdmstRABsrPh6ae19xdcUO9hnNLBgeLNzRLCo/vYOVy6my4+/cnIyGDevHnMnTuX+fPnExQUxPnnn8/TTz9N36GxHLGvrppo3xwEBoLcetcrmj6mnrjpwyiybaPUloyWbkBQGWbLy9gNH1MiRt3ROVnuhm4YdSGUO3ZQ4diHqJaiQCJx03fFXd8TQ7V96kOv1xMeHk54eDiDBw+usS37t3kcevMTHGUVlDrtHLFWkG2rcL2WU2i3Ytbp8TYYCRR6zDodZp0es06Pb1wMCU/cVSVCCXfcAevW0c3hIEFK8PNDuHI6Rj/0EGsrHTKysuDRR4n76y/icnK0/8BTT3HnVVcBsGHWLJbefTfn2mywaRPlwOGoKGb4+TH03XcZPXo0AC+99BKBgYEEBTUzuskxInQ6om6aQMoH3+OsaF538tqybD7M241h/namvOLJk08+yZVXXsmePXsALcC5n58fmyu9Z6vhdDqbdaNu6PWee+5h5MiRVNisdBnah5cWfUfEOQOZdP3VGNHhaXbnlptv5uuvvz6m4zRVJisri23btnHZZZdht9tJSkrC6XSyc+dOHA4H7u7u/Prrr1RUVDBgwIBjPg6A3qDXwssZdOh0OoReh16vR6cT6Ax6LUOMQY/JYMLHzRu9Xo/BYKjxWt+6ytcySylbd2whIzUTZ7Uci/7BfsT06IzZo+HQk6fmHIPjoyVi6A1U9g1UfldGoGUDNicjzZw8y4gRR12v4ajggVZu3DhNFP/+WxPEHj3gvvvqPWROxUFa8pezWmxsX5fM/5b8xI4VB0lNTWXs2LGcf/75vPLKK3Su1j0rpZPc/A04ZUvEEDqZG+4WMen9CdSPpJP5TKzOPKS0oRMmjLpO6BoISG3Q+eGtOwsvwxDssgApbQhhxCD8EOLYXPFr2BQUADqdFqRbb8TL3UisezPChQhBpzOGETt27NF1a9ce3VzPLk6nU7uR+fjg+PDDuje4gwdxOBx4JCRwqU7HtHfe4aDdzn8euJ9xt91Gzt59rPzwQ5xSctCVVmvNmjU1xONE3NwdDgfW0nKy0tZjd9hxSi20ukNKHEicrleHlDiR2KWTA9Ziwt29cfPx4tlnn+WDDz5Ar9dX1VdQUMCRI0fw9fWt9ybf0M25OTfwCmmHTp54GHzISsvgyNez0On1+EWHYTAYEDrBvDVLidwZ2KL6zWZzs8oCPPLII4wbNw7pY2Td/z3LZXdeg5+/H3HhMcR4h/Hm629w0UUXcdlll7X4XNHBjwdmYW9BlCaDMHBO5EgiPOsPgiClJD09nS1bttRYUlNTCYkJYuSlZxHTvTMxPToT3T0K34CmvWDN+mbM0TzNaPY8QyHEz8AmKeWLQog8KWUnIcTjQD8p5TUn1Mp6aPV5hg1keAeqWgP89ReUlGiu9U89Ba7WAADnnKNN0C4q0rpGJ0yA55+HBjKGb8mZR741o0HTpJQcPpDFuiXbWbd4G1vXJBHVNYyho/ty1SU3M3b4BY12qZXb80kunN1k69DpdOJ0CDq7j8JDH9oqN9/jaRm0pKzNaiV34QocNnvVDf3oTd11o5eaH51dOqtu/E4h0Ad1wmnQN/t40PRN3mAwoNPryS0uojhPmx9m8vbGvVMn0Okoy8rCYbFgNBjo2b07wcHBzRKIlohJg62E3Qc4/OUfCJsdPQKdENorAr3rvV4IUqylzCk9zGc/f4dX53CmT5+OEIJ777236thDhgzh119/JSEhoe75H0cA+iXpu5ibthWbs3GhMOr09OnUmSvjWifXX3WklLz7/Se8+NRUnA4HgyaM4uzbJ7D8mzms/nEBUsLZF53Ll+98gpuh5V2l+4tSWJ65BpuzZU4t4R6hXNB5LBaLhV27dtURPp1OR9++fWss3bt3Z0X2AgqseS06ll7o6eXfnzjfhoP4n8wc6zzDlohhGPAHWtTCCGA/UARcLKXMbOmBj5dWEcN2ZO2RWZTZC+rd9ud3S/j2vdmkp2pTJHR6HQl9YvDy8cDpkLgJL4TT0KSI2OxWrLYy7K4xCYfdicM1HuF0SBwOp+bB18Iba1vdwJtTpnDBCkpWbkQ4nNpNvfImLwQGUe1m71p0CNyCAujx0YsYDIZm29Kcm3xBRQVPL1lCbnkZ9kauK7Nez7CISO4aMKDVb+aNkbN4HdvvexkpJc7yuvMO9Z7uLKvIZl+/cL748XsAZsyYwZo1a5jmmnq0dOlSHn74YVr72ttbmMX0PYubFMJKjDo9F3bux/DQ1hulkVLy58GVJBcdatQOvdDhY/Lkuq7n4W5oWTLv31PmkF2R26yyRbmFHNp9kLQ9B0nbc4ji/QXs3buX2NjYOsLXUAaWw6WpbMhe1SKPUp3Qc2HnSRh1betA1Vqc8En3UsoMIcRgYAjQGa3LdK2UsmWJ3hSA5nLSEN37xnLrE5Oqxgx0ei27vE6vw6g30cWvLwEe4c0SE51eUOrIIM++GztFGPQGhB7cTb6EefYlwCO+hgfpqcScOXN4fvkCKtIzuaRTJDeFxvNx+h5+yzmIn+up/Z6I7pzle9SJSZhNxP3ncfxaOZebzenkueXLyCkvq5Hjsj4sDgcrD6cR4O7OlT17tqodjRE4ejDDV31Nxm+LOPjxz1Rk5CD0OqTDgXdiPDF3TCYrP43UhTWnLVS/yX733XdcffXVrW7bvGa0CKtjczpYmLadYSEJzcp20RyWZGwiufAQtibG8R3SSaGlhO/3LeDGhAta5O1ZbKubL7W0sJSs1EyyUjJI23PIJX4HsdnsRHXrTFS3zvQcmshVj09m+MCzGo3RW5swjyg8DdsothUimzEso0Wh6XXKCuHx0CLXNak1I9e4FsVx4GHwo8Ref6iluJ5RxPWMqnebTugZEDgOr2ZMsThKFDCkamK/ThjQtUIWhPak0tli/vz5BFicDB48mJH+2pjK1cGxXB9aN+qPMJuIeuhW/EbWG9nyuFibnk52WdNCWInF4WBWchIXxcfjeYyhzI4Fg5cHUdddRNR1F+G02HCUV6D38kBn0P4PnVetqnd6A2hptGbOnMmGDRta1abcihIOlTSvtVQdm9NBUkEG3f2byEzRDMrsFWzI2YOjmc/2TiQF1hL2FR0m3rf+a7U6JSUl7N27l9VLVpB2II0jqZlkpWSSlZqJ3WojODqUkOhQIhKiOPvac4nq3hn/0E5VDyJGnZHeUX1aJIQAOqFjeNg5LEmfS7m9tNHJ93qhJ8orlm5+p3Y4tmOlUTEUQhyiGV4eUspGcqoo6iPCqwc5lkM4Wzgh1k3v1UIhPIoQOgyiZd06Jyu1J0dff/89rF2+Hgp0CH01odfp0JmMmKPCiHzgZnyH1u9Kfrz8lrQHi6Nlqat0QrA4NZXxXdtnPpfObERXK75s9ekNnUKC+WzGV9z95gt8m7SBvas2EJcQT2RkZKvakVSYUZXrryVYnHa25R1qFTHcmruvxTbYnHbWHNlZJYYVFRXs37+/Ku1Y9VRk+fn5xMXF4RnhjX9UAAmDujN80ihCokPxCfRtsrvcKZ24H6NTi1nvxpiIC9mRt4mDJdq0serdpnphwKQz0d2vD9HecW3adX8y0VTLsHqahMHAjWjzClOBaOBe4KsTY9rpjY8xELPOnXJHw5Pya6PDQJTXsYUtO92oPTk6pkc31hQVEHJmP76YPp05Fbn0Do3g2WtuIvbSC/BI6HLCbMkpK+NwI8EVGsLicDD/wIF2E8P6MBgMvPrftzhzzCjKbVa6XzCGHWYbO9KSWfbdN4QO7sErGxYwKa4v8X6tMy2k3G7F7mqRSSkpzsolc/cBMnfuI2v3AUpyCzCaTRjczBjdTBjcTBjN2vutvgFsiUzAw8OjRYu7uzv6ag9NW/KSsTdnvq/dQX56NjmpmeQczCT3YBaf577O/r37yMjIIDo6uirn5sCBA7nqqquIj9ceIHQ6Hdtyd7IhZ2ujAbPrw8voiY+pOYkV68eoM9IvcAiJnQaQVppCfkUudmnDrHcjzCOSQLeQDiuClTQqhlLKqgi3Qoj3gfOklIerrfsbmAO8ecIsPE0RQtDdfzhbcuc1a66hQIen0Y8Q9xN3Uz+VaGhy9L0PP8TUl15ECMEzzzzDW7vXMz3h7hNqS35FBUadDlu1+KhSSkrS08nZuYvi9MOYff1w79QJ94BOuPn74x4QgMFsptDa/EwSbUFWWTErO0ku+fz1Ol2+Ix6/C4Dkwhze3LyYG7oNYljY8f0fMzMzWbdwKSuWLiBj136ydu0HIQjtEUtojy4MuPJ8fEICsFus2Cos2Cqs2Cu093aLlUCdJ2azmeLiYrKysigrK2vWUl5ejslkqhJHq8GBwWzC6GbG5G7C6OZ672ZCbzRQmJVHTmomBZm5eAf6ERgdSmDnUEJjwrn8qgsZnDiAmJiYJoMmJPjFsSFna4u+I4Mw0DegdVLEGXQGYry7drjoMs2hJWOG4UBJrXUlaJ6lisZoIFWU78UXk3j3VWx3bsQpHRhzCon7zw90WrQVQ2k5ZXFhpN5/MbkXn4mn0Z++AeOOjvX9/TeMH6+FhIuO1uZIdiAaCt0VUi3iz+23385FF110wm3RCYHD4SAveS85u3eRs3MXubt2oTeZCOjRA5+oKCry88jft4/yvDwq8nIpz8tHbzLhGdCJw93eJTw8vCrMXOX7yvNp7ag0DVFis/DqxoUU2yxNjo3YnA6+2rMeX7M7vTqFNqv+vLw81q9fz/r161m3bh3r16+ntLSUnv36QHQn+lw8mtAnbsErqFOzWikmnZ4LO/fnrNCWZ1iQUlJRUVEljh9u+oXS8lJs5VZsLuG1Vlg18bVY6XZWXwI7h9IpMghjtTB1Jp2BcfHnEujm16zjmvVmevonsCs/qVktUYHAzWCmi7caiTrRtOQq+x34XQjxApCG5pXxlGu9ojnUkyqq01dfMXjxX6T45BJx0434bNpPSY8o8nv2Iej31fS68wNyvRLwv+bqo0KYlgbXX68Jq71jZameM2cODzzwAHa7nfz8fPbu208GRt759HNCew/g/4Tgmd8WcfWwfvw9cyaJzcws31LKyspYvXo1y5cv558lS1i+ahUegYEE9uxB5NCh9LvlZjwaiS4jpcRaUkInq5WrIqM4fPgw6enpbN26lTlz5lSFnsvNzSU4OLiGQFZ/rXzv5+d33N1cCw4lUWqzNjsUhM3pYMae9bw8dHydYxcXF7Nx48Yq0Vu3bh3Z2dkMGDCAQYMGcdVVV/HGG29Ujfm+uGkWhdaWhQBzShgYeGwtUyFEVfShgIAAYkvjyLMUtbgeh3TiZXBvumA1Bgf1p9RWysGSw40Kog6BWW9mfOdxHS6DRHvQknmGbsBU4HK0VmIG8CPwnJSy/EQZ2BCn1DzDFiSOlWYTGftXIPx88X/2PdzeeK9m4li7XcuTmJamTex/770O0zJ0OBwkJCQwf/58IiMjiY7tSpHFAjodQQOGUXLoAPnJO3EPCEJnMOAXEs6Xn33CmD7HP30hNzeX5cuXVyW53bZtG3369KlKcrtcJzhga37EH9ASId/atx+jG0lHZLPZyMzMJD09vUogK99Xf7XZbA22Litfw8PDG/RGdDidPLj8N8rsLQsoZdYbuLvbGRQfSKvR4ktNTaVPnz4MHjyYQYMGMXjw4KpJ+vWxPGMPfx3a3OzpFXqho39ANFd2rSdR8zGwKSeJxembsLXQoa2LdxiXx57d4uNJKdmWt5MtuTtxSif2Gg4tekAS5RnBsNAhuBs6XjSY46Et5hlWAE+6FsXx0mCqqB6Eh7t+x5Hj4I33aiSO5amnYN06LZP3338f06ErW1cOh4PbbruNJ598kscee4w//vgDk8lEXFwcn3/+OX5+fq10sq1DdQ/Srzcn43fm2XhJSZfxV7Dl/ZeIv/xmNr/3AoOefBWTtxY96K3Nqbj5BXBm54YDptdHampqVWb35cuXc+jQIYYOHcqIESN45ZVXGDJkSI08k1GZmby5dk2LPUrPbMIz02g0EhUVVcNZqD6Ki4tJT0+vIZApKSmsWLGial1GRgY+Pj71ti7t3u5klWai9/fB3c8H0UCQAYfNTv6BQ+Ts2UdO0n5y9uzns8OZJPbsxaBBgxg5ciQPP/wwvXr1wtiCKSNnhsazLe8QB0tym+w+1CHwMbpzSczAZtffFL38u/BP+sYW7WPUGRgSfGwPWkII+gT0IrFTDw6WHGZ/USoVjgqMOgPB7kEk+MYpEWxjWpK1osHHn9MuhVNb0dJUUYsWwZtvwttvwxlnHJMYVp+fF1kteem4ceN4+eWXMRgMPPHEE7z88su8+uqrx3V6rU2lB+mSA+n8sHUver8ASvfv4cimNZj9A/DuHFtnH4vDyUuLN/HuRcPo0qn+mIyVgZiri19FRQUjRoxgxIgRTJkyhb59+zY6dtc3JIT4Tp3Yk5tbw5GmIUx6PTf16Yu5gZZSS/H29qZbt25069ZwRBan00lOTk6dVuX69evZvj+Z5NQUSnPysJaW4d7JD48AfzwCO+ER4Id0OslJOkBBShpeoUEEdYsjICGWbuPPZnC/ATwz7MLmGdrA+Ln+4ou59YH7+TJrCynFORhzcrlo2nd0X7UZc1kF2dFhLLzxUnaPOws/kwd39ByL+8TJsGED5OSAuzvExmoPmHfe2eLvz6Q3MiZ8AP+kb2zWWJ5B6InyDKazZ8sesmqjEzpivKOI8W56rqLixNKSjujPan0OAkxo44d170KKpmlpqqjp07UbyLx52pKUpG0/ckTLsPHee0cFtgEaSl761FNPVZUZOnQoP//8c6ucYmsipURKyafrd2NxaILjtNs4MPsHBjzScKJVq8PB15uTeeZsrSVhtVrZsGFDlfitWLGCTp06MXz4cMaOHcvUqVOJj49v0RicTgieGHomL65Ywf7CAqyNtBBNej1XdO/B2JiYZtffGuh0OoKDgwkODqZ//5rzLZen7+fbpA1YnA4cVhtleQWU5eZTlpNHWY4W2zJ2zFkExMdgdK/ZYjEeS97DesbPTV99xa3LlpEc1gO/284mZNtuMrt2Zm98NInzV3L90+9yILw7UTdOwqDTw759WqJtf3/YsgVWroS77tKupYsvbrFJ/QMTKLdbWH1kR6OCaBB6wj0CmRAzosNPRzidaEk3aY27rBBCDzwNtHyCleLYUkVJqY0Z/vlnzbrKy7V1L7zQ5GEbSl5anenTp3PllVce86mdKCIjI9m97wABrlRElvwc3DoFcWTTGlY/e1/VujXPPciQZ97C7OsPgK28jNl/z6Fo/i+sW7WS9evXEx8fz4gRI7j++uv53//+VxVl5XhwMxh4dsQI/t6/jz+Skym327E5HDilxODqdoz18+fKHj3oXU+m+/bE382j6sauNxnxDg3CO7TpeYQCCHL3avkBhwwBV7zTqvHzlBR0DzxAt1tugW27kWYzziVLCPDxxv7cyxjeeJMu7/wPbtameLBjx9H6nE5NFIuKYO/eltvjYlhob8I8AlietZXs8gIk4JAO9Ghpltz0JoYE9aR/YPwxJ91VnJwcs4uSlNIhhHgRrWX4VuuZdBpzvKmifvutZn1Tp8Jzz7XIgaah+XmVvPiiFsD62muvbenZnXAGDx7MnqQkemQcxuwfQOaapfS+4zFiLzkaK3PZY7fQ/8GpFCTvoCBpJ/nJOyjLPIxvTFdix4zmiSeeYNiwYfhWZiRpZQw6HRd3jWd8XFd2ZGeTUliI1eHAw2ikX0gIYV7HIBxtQHe/YPTHcHM36fSMijjOOWsNjp93Jzw8RiszchS88WbN8XOADz/URLEyY0zPnnDN8SXR6eITThefcHIrikgtyaDCYXWN5fnT2VNNTj9dOV5/3XHQSLA7RU127YI9e7RUUYmJdVNFzZ59NFXUnj3aTeKpp+Dyy1vNhIbm5wF8+eWXzJ49m4ULF56UF7zBYGD4lIeY/9a/kU4n4cPH4RVx1BMzffkCLPm5rH3pUfzje+IX34vu19yBT0w8JpOJywZ244LedWOWngh0QtA7OPikawE2hF6n4+zIeP5O3VUVDaY5+JjdifOpP01Zi2jp+HmlGP7yCyxcqL03GrVk2q30wBHg5kOAW9O5/xSnBy1xoKkdp9QDcAPuaW2jTjsWL25euZAQmDGj+fVOnaotLaB67MmIiAi+//57vv32W+bMmcOrr77KkiVLanhJnkzM2naY4vCenPXyx3W2WUuKSPpxOgMffwm/rt0RupqOKUIIjMeRa68jcE5UAkvT91FkrWjWXEOjTs91CQNb58GppePnlSxYAFarNmY4caLmYJadDV9+efw2KToULWkZXlfrcymQJKVs+UxVRbthMBiYNm0aZ48dR1FJBVGJ43jum0PM+ehW9MLB6DFjMRp0DB06lI8++qi9za1iYVImby3eg9QLdAbtnlid1DkzCR5wJv4J9YetMugFEb6ebWDpqYuX0cwTA8byyoYFlNqtjWbgMOr03NBtEIkB9WdfbxHHMn5eXKy9CgEmEwweDN26afNv1607fpsUHY6WiOFgKeUbtVcKIR6WUqoxw1OErLwyZm/3oPfEd7DZtezvhaVWzrz+Q/Q6gV4v6NbZj6dvGdzeplZhtTt5cf4uLHYnwqHH7FbT089aVMDhJXM5Y+o7DdZh1OkYGN46gaVPZ0I8vJk65Hx+2b+VtVkH0QEW10R4vRDohI5ob38mH2+g7uMdP//lF/j3v+HMMyEgALZv1+begtZVqlC0kJZEoCmSUtbpQBdC5Ekpjy2n0HFwSkWgOUlIzynl/jeXUlpux9nI727QC3y9zLz/6Ej8fdp/4u/c3Zm8smAX5TbtpuzuacVgkFWtwz3ff4J0OOh+bf3zy0x6HVf36cq1/eLbyuTTgnK7jXVHDpJZWoTN6cDf7MHA4ChCPI49e0KNeYY6nTZ+3qVL3fHzrKyj4+clJdC9uzZ+ftVV2vaVK+HJJ7XWY34+uLlpLcOrr9bqaaX5m4pTjxMWgabaZHu9EGIM1Ej6FYuaWnFKYHc4eXzaSkrKbTT1/GN3SAqKLfzro9W8/9iodnem+W5DapUQAlSUG/Hy0mJoWgpySV+xkGH/+aDeffVCEOLlzsReKttHS3E3GBkZ3soOR601fj5sGCxd2iomKRTQvG7Sysn2bsD0auslkAnc19pGKVqfVdsyKSmzNimElTicksPZpexMyadXlzZv+Ncgvahm6FvpFJSWGPHwsnHgzx+JGD4Os19dG6WEYG933rjgTNyNKtCxQqFomCbd66SUXVwT7r+pfO9aYqWUw6SUKmvFKcCPC5Ipt7QsbqbF5uDnhcc+gbm1cDjrKrjTqaO02ERpZhae4dFIpzbv2unURNDpAGkz8siwfvi7m9vBaoVCcSrRbF9zKeUNJ9IQxYmjwmpn3+GWO/1KCet3HTkBFrUMX7f6Az5LKQg+6zIOzJlFaamBinJtKSsxUlJswmoxEOLdsvQ6CoWiY9KoGAohdlV7f0gIcbC+pSUHFELECyEqhBBfV1s3VgixWwhRJoT4RwjRcE4bRYspLbdj0Nf/U0vpZMtfr1KYlVzvdqvdWW/LrC0Z3yscUwP2+3YfDFKSt2Mjdpseu02Pw6EDBJF+7oR4t78DkEKhOPlpaiDl9mrva88zPFbeB6omAgkhAoGZwG3AH8B/gB+Aoa10vA6P0aBrRNAEeWnbyU7ZQOzgyXQZOKnGhHWdTqBr52A0l/aO4Mu1KfVuE0IQNuYKMv75Cb/uR6eDuBv1XD84pm0MVCgUpzyNtgyllMurfQyWUi6pvaBlr2gWQoirgAJgYbXVE4EdUsqfXDkTpwJ9hRDdm1uvonG83I24m+t3NRdC4BXQmR6jp5B7cAvrZj5NedHRrtHwQI929yYN8DRzUa8w3Az1/10D+o+mIjuN0jStdasXAn93I2fHnxqh0BQKRfvTkvhUtVM4VVI3NlY9CCF8gOeBR2pt6gVsqfwgpSwF9rnW165jihBivRBifXZ2drOMVmituwkjYzE2ICZeAdHYLWUMmvgfgroMZvX3j5CxezFuJj1XjD055uY9PKYbAyL96xVEncFI6IjLyPjnRww6gZ+7kQ8uH4TZoOaaKRSK5tGkGAohYoUQsYBOCNGl8rNrOQeoaOax/gN8JqU8VGu9F1BYa10hUGdmr5TyYynlICnloKAgFU2kJVx0VnSdEGaVeAV0piQ3FSF0dBk4kYGXTmXfuh/Z+Ofr9I1t4zilo0drIbaEAINBS8szYACG557j9dFduGZgNB5GPeEVRTzz7Wv8/cxkljx+IfPXz+ecHavp6W5hxvVDCc3L1CZgx8drYbv8/LQ0QSdhnkaFQtH+NKdluBdIRgvMvc/1uXL5Cq1bs1GEEP2Ac4D/1rO5BKgd2cYHNZm/VfH3cePuSb0xG+u2ljQxPOoH5RMcx6jr32FInxiGDhnEssowV21Jjx5axvJhw7RQW88/j35Af6ZEuzHnzlFM/+4Fxq+fT2lAEFuHjSMuO43vrRUMnfU+nTxMWpivH3/UQntdcw2EhsKaNXDFFVr4L4VCoahGkzORpZQ6ACHEEinlqGM8zmggBjjoGn/yQoto0xP4CLixsqAQwhOIA3bUqUVxXFxwZjROh5P//bYDu0NWOdV4depMSd5BpHRiNOjR63U8cd1gzuo7idmzZ3PFFVdwyy23MHXqVIzG+qc5tDoNJH/l/vsx3XILpm2bwGwmcut6In19tVBdr7zC4Llzyc3NJSA+Hnbv1lqGoOW6Cw/XcuH9+Sece27bnIdCoTglaMk8w2MVQtDGFeOAfq7lI+BP4DzgVyBRCDFJCOEG/BvYKqXcfRzHUzTA+OFd+ODx0Zx/ZmfMRj0ebgb8/Pwwmj3Bks+lo2L59KkxnNVXy0Zw0UUXsXnzZjZt2sSwYcNISkpqe6Mrk7+Clvy1MiZt9+5HY1kOGwZAL4eDT995R2sRxlcb75RSCwYNEBXVRoYrFIpThZbkMzQAdwOjgECqxSiVUo5sbF8pZRlQVq2uEqBCSpnt+jwJmAZ8DawBrmr+KShaSmSwF/df0ZcpE3px6EgJ5RY7OWv6cff4AC69pG4KpJCQEP78808++OADhg0bxssvv8xtt93Wtl6mzUz+qgO++/BD7n/qKdzdXRPuS0u1BMlWK/TvD3fd1XZ2KxSKU4KWeJP+F7gDWAoMBH4BgoFFLT2olHKqlPK6ap8XSCm7SyndpZSjpZQpLa1T0XLczAbio/zo0zWQIYP6sWfXrgbLCiG45557WLp0Ke+//z4TJ04kJyen7YxtQfLXrgMH8tVXX2mfDx2C4cNh/nzNOWfRoqNZ0hUKhcJFS8RwInCBlPIdwO56vRQYcyIMU7QtvXr1Yvv27U2W69mzJ2vWrKFr16707duXeW3hjNJU8leokfz1vqee4s0338SxcqU29rh5M9xxh+Y44+d34u1VKBSnHC0RQw+gclpEuRDCwzWu17/1zVK0NYmJic0SQwCz2czrr7/Ol19+yS233MJDDz1ERUVzZ9g0k8rkrxddpCV3LSo6mvx1/Hgt+avVqiV/vf56eMuVX/rppxk5ciQD3NxgzBjIzNTGCN3c4LHH4MEH4dtvW9dWhUJxytMSMdwFVMa7Wg9MFUI8DRxudasUbU7Pnj3Zs2cPDkfzM1ucc845bNmyhUOHDjFkyBC2bdvWegbt2gUffqi1+BIT4dlntRZeZKQ2B3H2bLjuOm388McfNSeb776Dyy9HCMFdkyaht1q1ug4dgnfeObqoqRUKhaIWLcl0Pxite3STECIe+BBtisSjtcK2tQkq033rExcXx99//01CQkKL9pNS8sUXX/D444/z9NNPc99996HTteQ5q/VxOBx069aNL774guHDh7erLQqFou041kz3TWWtOLtyQYsI4+96HwW8BPwfYDoWgxUnHy3pKq2OEIKbb76ZVatW8d1333HBBReQkZFxAixsPnq9nkceeYTXX3+9Xe1QKBSnBk09vn/WjOXTE2mgou1orhNNQ3Tt2pVly5YxdOhQ+vfvz6xZs1rRupZz0003sXr1anbvVlNWFQpF4zSVtaJLM5bYtjJWcWI51pZhdYxGI8899xy//PILDz30EFOmTKG0tLSVLGwZ7u7u3H333bzxxhvtcnyFQnHq0L4DO4qTitYQw0rOOussNm/ejMViYcCAAbTX+O4999zDzJkz273bVqFQnNwoMVRU0a1bNw4cOIDFYmmV+nx8fPjyyy95/vnnufDCC3n55Zdb5K3aGgQGBnLNNdfw3nvvtelxFQrFqYUSQ0UVZrOZmJiYVo8/euWVV7Jhwwbmzp3L2WefTWpqaqvW3xQPP/wwH3/8McXFKhGKQqGoHyWGihq0ZldpdaKioli4cCEXXnghgwYN4rvvvmv1YzREbGwsY8eO5dNPla+XQqGoHyWGihqcKDEEbbrDE088wZw5c3juuee47rrrKCysndf5xPDYY4/x3//+F1tl5gqFQqGohhJDRQ0SExPZsePEppIcOHAgGzduxNvbm379+rVJ8uBBgwYRFxfHDz/8cMKPpVAoTj2UGCpqcCJbhtXx8PDgww8/5N133+Xyyy/n6aefPuGttscff5zXX3+d5kZdUigUHQclhooaxMXFkZ6e3mZzAy+++GI2b97Mhg0bOOuss0hOTj5hxzr//PNxOp3Mnz//hB1DoVCcmigxVNTAYDCQkJDArkZyG7Y2oaGh/PXXX9xwww0MGzaMTz/99IS03oQQPProoypEm0KhqIMSQ0Ud2qqrtDpCCO69914WL17Me++9x6RJk8jNzW3141x99dXs2rWLjRs3tnrdCoXi1EWJoaIObeFE0xC9evVi7dq1dOnShb59+7Z6l6bJZOLBBx9UIdoUCkUNlBgq6tAeLcPqmM1m3nzzTb744gtuvvlmHn744VZNHjxlyhTmzp1LSkpKq9WpUChObZQYKupwvNkrWovK5MGpqakMGTKk1Wzy8fHh1ltv5b///W+r1KdQKE59lBgq6hAdHU1+fj4FBQXtbQoBAQH8/PPPPPjgg4wZM4Z33323VZxrHnjgAWbMmEFeXl4rWKlQKE51lBgq6qDT6ejVq1e7jRvWRgjBLbfcwqpVq/jmm2+48MILyczMPK46IyIimDBhAh9++GErWalQKE5llBgq6qU9nWgaomvXrixfvpzBgwfTr18/fv/99+Oq79FHH+W9995r1fFIhUJxaqLEUFEv7e1E0xBGo5Hnn3+en3/+mQceeIA777zzmAME9OrVi0GDBvHVV1+1spUKheJUQ4mhol5OFieahhg+fDibN2+mtLSUAQMGsGHDhmOq57HHHuPNN9/E6XS2soUKheJUQomhol5O1pZhdXx9fZkxYwbPPfccF1xwAa+88kqLkwePHDkSX1/f4+5yVSgUpzZKDBX1EhYWht1u58iRI+1tSpNcddVVrF+/nr///puzzz6bgwcPNntfIQSPP/44r7322gm0UKFQnOwoMVTUixDipHSiaYjOnTuzaNEiLrjgAgYNGsT333/f7H0vu+wyjhw5wooVK5gzZw7dunWja9euvPLKKwA888wz9OnTh379+nHuueeSnp5+ok5DoVC0E+JUTWczaNAguX79+vY247Tm7rvvpkePHtx3333tbUqL2LBhA9dccw1Dhgxh2rRp+Pr6NrnPBx98wNy5c9m+fTvz588nMjKSwYMH89133xEZGYmPjw8A7777Ljt37uSjjz460aehUCiOASHEBinloJbup1qGigY52Z1oGqIyebCnpyf9+vVj+fLlTe5z0003sWzZMsLCwoiNjcVkMnHVVVcxa9asKiEEKC0tRQhxIs1XKBTtgBJDRYOcCk40DeHp6clHH33E22+/zeTJk3nmmWcaTR7s4eHBOeecQ3Z2dtW6yMhIDh8+DMC//vUvoqKi+Oabb3j++edPuP0KhaJtUWKoaJDKKDSnalc6wIQJE9i8eTPr1q1j+PDh7N27t8Gy5513HikpKTWi21S2Al988UUOHTrEtddey7Rp00643QqFom1RYqhokMDAQNzd3ataR6cqlcmDr732WoYOHcpnn31Wr8D37NmTkJAQ3n33XQDS0tIIDw+vUeaaa67hl19+aRO7FQpF26HEUNEop3JXaXV0Oh33338/ixcv5t1332Xy5Ml1kgcPHjwYgA8//JDc3Fy+++57ho0+lxXrt1FutQPw+++/07179za3X6FQnFiUGCoa5VR1ommIxMRE1qxZQ3R0NH379mXBggVV2wwGAx999BFWm42omDiKgwbw/MI8LrvxbgIjuxLUOZ6ffvuTt99+u/1OQKFQnBCUGCoa5XRpGVbHzc2Nt956i88//5ybbrqJRx55BIvFgs3uZHVpBD2vewWn3kzomZOpsDmJn/w0/e76H91unobp7Ed5aV46pRZ7e5+GQqFoRZQYKhrldBTDSsaNG8fmzZs5cOAAQ4YMYcqbv7B8zxFMIfGY/ULJ3bm0RnkJlFsd7Ewr4N7pa7HYWhb6TaFQnLwoMVQ0Ss+ePdm9e/dpG8g6MDCQX375hREXX8c3z99OyopfkVISMWwyh1f+XK+jjc0hSckp5eNFye1gsUKhOBEoMVQ0io+PDwEBARw4cKC9TTmhpHcaQuLNb5G9dSG7vvs3nqFxIJ0U7t9Ub3mr3cms9WmqdahQnCYoMVQ0yencVQqw5WABReU23AMiSLz5LbxC49jyyb24B0RyeOVPDe4ngH92ZrWdoQqF4oShxFDRJKe7GO5MK8Dm0LqBdXoDnc++iW6T/0VJehKFBzZRklH/RP0yq4PNKfltaapCoThBtJkYCiG+FkJkCCGKhBBJQojbqm0bK4TYLYQoE0L8I4SIbiu7FE1zuothhdWB3VFzbNCncyJ97/iQoL7nUHJ4d4P7lloaDvGmUChOHdqyZfgyECOl9AEuAV4QQgwUQgQCM4FngE7AeuCHNrRL0QSnUiqnY8HTzYBRXzf4tsHNk/gJjxI66KIG9/V1N51I0xQKRRthaKsDSSmr302la4kDBgI7pJQ/AQghpgI5QojuUsqGH8kVbUb37t1JTk7GZrNhNBrb25xWZ2CXAHQ6AY6WxWD1MOk5Iz7wBFmlUCjakjYdMxRCfCCEKAN2AxnAX0AvYEtlGSllKbDPtb72/lOEEOuFEOurZxdQnFjc3d2JiooiOfn0nErQNdSbyE4eLd7PZNAxLCHoBFikUCjamjYVQynl3YA3MAKta9QCeAGFtYoWusrV3v9jKeUgKeWgoCB1E2pLTvdxw1vHdMXN2PzLwc2o49rhXdDrVG5DheJ0oM29SaWUDinlciASuAsoAXxqFfMBitvaNkXDnO5iOKpHCBMGRTVLEN2MOgbHBXLVmTEn3jCFQtEmtOfUCgPamOEOoG/lSiGEZ7X1ipOE092JBuC+87px/YhYTHodZkPdS8OoF5j0Os7rG86LV/bTxhkVCsVpQZs40AghgoGzgdlAOXAOcDVwDbASeF0IMQn4E/g3sFU5z5xcnG7ZK+pDCMFNo+K4dFAUf2xM45e1B8kvsSIBH3cj4/tHMHFIFCG+7u1tqkKhaGVEW2QxF0IEAT+jtQB1QCrwrpTyE9f2c4BpQDSwBrhJSpnSWJ2DBg2S69evP5FmK6phtVrx9fUlLy+P/2/v3qOjLu88jr+/mVy4hHCRBIiBoESTNCBaAlp3RbaAbm3V7rKnZeuu4I3uVs7udqvbG61o6YqtWz0VXatHRbwddZfKYStab2gLKkYttsQgKGAIAaICSbgECM/+8ftNGWPQmZCZSeb5vM6Zk5nnmZl850uGz/x+85t5+vZVGIhIz2RmrzvnqhO9XUq2DJ1zTcC5nzL/LKAVU3uw3NxcysrKqKur44wzzkh3OSIi3UpfxyZxy/SDaETEXwpDiZsPB9GIiJ8UhhI3Hw6iERE/KQwlbtpNKiKZSmEocTvppJNoamqiubk53aWIiHQrhaHELRKJUFlZSW1tbbpLERHpVgpDSYgOohGRTKQwlIToIBoRyUQKQ0mIDqIRkUykMJSEKAxFJBMpDCUhJSUl7Nu3jw8//DDdpYiIdBuFoSTEzHQQjYhkHIWhJEwH0YhIplEYSsL0vqGIZBqFoSRMYSgimUZhKAmLhmEqFoYWEUkFhaEkrKioiEgkwvbt29NdiohIt1AYSpdoV6mIZBKFoXSJwlBEMonCULpEYSgimURhKF2iD96LSCZRGErCnnrqKWbPns2aNWu48cYbAXj88cepqqoiKyuLmpqaNFcoIl3x1FNPUV5eTllZGQsXLgTgo48+Yvr06ZxyyilMnz6dXbt2pbnK5FAYSkLa29u5+uqrefrppxkxYgRLliyhtraWsWPHsnTpUiZPnpzuEkWkC6LP7RUrVlBbW8sjjzxCbW0tCxcuZOrUqWzYsIGpU6f+OSQzjcJQErJmzRrKyso4+eSTGTduHJMmTWLZsmVUVlZSXl6e7vJEpItin9u5ubnMnDmTZcuWsWzZMmbNmgXArFmzeOKJJ9JbaJIoDCUhDQ0NjBw5EgjeN9y/fz8NDQ1prkpEjlfscxuCFWoaGhrYsWMHI0aMAGDEiBHs3LkzXSUmlcJQEhL7rTNjx46loaEBM0tjRSLSHTr7RimfntsKQ0lISUkJ9fX1QLB6xaZNmyguLk5zVSJyvGKf2wBbt26luLiYYcOG0djYCEBjYyNFRUXpKjGpFIaSkIkTJ7JhwwbWr9/I9g9zaWzcTt2Wwfzwp89x38NvcvBge7pLFJEuiD63N23axPraRu5YdC8NGwZzQsFY5lx2HWtrGlh832IuvvjidJeaFNnpLkB6l6ysCF+/5FomnjkZ546Qk9uPxh0HWL9+BbesuY+2A82cO2U6EydOYOULz6a7XBGJU3Z2Nj/47k+ZcMZfcvjwYcpKJ9PyUX9GFk7lpdduZ/JfTaAgv5C77lyc7lKTQmEocTtyxPGL/36ZLTuKmP7VWwF4+fmf07y7nhNLz+TE0kkAmEHfPjlsqd9N6chB6StYROK2tqaBV593XDjl4x+d6JM7gPP+4nt/vrz04fW0Hcjhq18/LdUlJpV2k0rcHv7fP/LG2kbaYnaFFgwaSfPu+o9dzznYt/8Q1920kpbWtlSXKSIJaqjfzaKfv8jBts9+m+NgWzu/WfonXvnd5uQXlkIKQ4nL/v2H+M0zGz4WhAAFg0po3lXf6W3aDrbz3EubUlGeiByHZY/+kUOHjsR9/YNt7Ty25I2MWtNUYShxeXH1Fjo7yLqzLcOogwfbWf70Oxw5kjlPGJFM09rSxhuv1uMSfJ62trSxvjZzPnOoMJS4PPfSe5/YKgTIH1jM3tadtLcf6vR2Bw4cZvP7u5NcnYh01dqaBiKRxD9P2NZ2mNUr30tCRemhA2gkLs0tBzsdj0Ry6J9fxMvP/4xIJO8T89kR48qNdzOwoE+ySxSRLtjR2EJD/W7cMfaSjiisouLkaZ+ccLDro33JLS6FFIYSl0975Thx8r+wt6Xz3SV5eREu+nIlpSUDk1WaiByHP9RsZdUL79J+uPPdpP37DT3mbXNyIskqK+UUhhKXkuICdjTt7XRu0JDRDBoyutO5nJwsLvnGlyg8oX8SqxORriobvY3t773Igf2HE7pddk4WJaMGJaeoNNB7hhKXr5x/Kn3yEn/tNGb0EAWhSA9WddrwLm3hGTDlvFO6v6A0URhKXMZVFtGvX05Ct+mTl81XL6hIUkUi0h2yIlmcd2ElObnxB6IZlFcNY8jQzHmhqzCUuJgZ//ZPZ5Eb5xMmNyeLqopCJowfkeTKROR4nX9hBUOL+sd9VGmfvjlc+s0zk1xVaikMJW5V5YVc860vkJcbISvr2E+avLwIVRVFXHP12Z96PRFJsSlTgs06M8jOhsGD4fOfJ+/GBfzg2jMZVlxAbm6EAW3NXPXGr7htxdXcvfwKbnhhHhMb1pCdnUX//Fy+v+A8hi1aCKedFtyPWXDfvVhKDqAxszzgDmAaMATYCPzAObcinJ8K3A6MAl4FZjvntqSiNknMhNOLufmG83jiyTp+98r7RCKGO+IwM9qPOEYU5fM3X67g7DNHEsnSay2RHqmyEr74Rdi0CZ55Bt58k4IlS5j/3Epeens/p152IaVNG9k6cCS1g0qprn+ZuTWLWP2FUXzu+rkMGtwXVq2CIUNgzBh45510P6LjlqqjSbOBeuBc4H3gAuAxMxsHtAJLgSuB5cBPgEeBs1JUmySoePgAvnX5RC77+9P5U10TrXsPkpsbYWRxAaP0EQqRnm/SJFi0KDj/9ttw1lmweTN51/470y+/HJo2ciQ3j20PL6e97wB2PXALhfct4uyXHoLB1wa3W7ky+HnllQrDeDnn9gLzY4b+z8w2AROAE4B1zrnHAcxsPvCBmVU45+pSUZ90Td++OUw8Qwv7ivRqlZUwZw7cfDMsXx7s+gSyKiuYdMH44Dqt58F9i+Ctt2DvXuifOQfORKVlP5aZDQNOBdYBVcDa6FwYnO+G4x1vN8fMasyspqmpKVXliohktpNOCn4eOgQNDcH5AQOOzkfPOwe7d6e0tFRJeRiaWQ7wEHB/uOWXD+zpcLU9wICOt3XO3eWcq3bOVRcWFia/WBERH7wXfsdoTg6ceGJwvqXl6Hz0vBkMzMy3QlIahmaWBTwAHATmhsOtQEGHqxYALYiISHK9/TbcfXdw/itfgQkTjo7vCbdTVq0Kfo4bB/n5qa8xBVL2dWxmZsA9wDDgAudcdJmDdcCsmOv1B8aE4yIi0t3WrIG5c2HzZvjtb4Pdo6NHwy9/GWwZVldDTQ2ccw6MHw+PPhrcbt68o/excCHU1cHq1cHlujqYPRuGDg3ef+xlLFWLM5rZncDpwDTnXGvMeCHBRy0uB34DXA+c65z71KNJq6urXU1NTfIKFhHJNFOmwIsvBuezsqCgIHi/8KKL4NvfProLdMcOuOYaePJJaG2Figr4/vdh5szO7ytWaWkQsmliZq8756oTvl0qwtDMSoHNQBsQ+22w33TOPWRm04BFQClHP2e4+dPuU2EoIiIddTUMU/XRii3Q6ULp0flnAX2JpYiIpIW+IkRERLynMBQREe8pDEVExHsKQxER8Z7CUEREvKcwFBER7ykMRUTEewpDERHxnsJQRES8pzAUERHvKQxFRMR7CkMREfGewlBERLynMBQREe8pDEVExHsKQxER8Z7CUEREvKcwFBER7ykMRUTEewpDERHxnsJQRES8pzAUERHvKQxFRMR7CkMREfGewlBERLynMBQREe8pDEVExHsKQxER8Z7CUEREvKcwFBER7ykMRUTEewpDERHxnsJQRES8pzAUERHvKQxFRMR7CkMREfGewlBERLynMBQREe8pDEVExHsKQxER8V7KwtDM5ppZjZm1mdniDnNTzazOzPaZ2QtmVpqqukRERFK5ZbgNWADcGztoZkOBpcCPgCFADfBoCusSERHPZafqFznnlgKYWTVQEjP1t8A659zj4fx84AMzq3DO1aWqPhER8VdPeM+wClgbveCc2wu8G45/jJnNCXe11jQ1NaWwRBERyWQ9IQzzgT0dxvYAAzpe0Tl3l3Ou2jlXXVhYmJLiREQk8/WEMGwFCjqMFQAtaahFREQ81BPCcB0wPnrBzPoDY8JxERGRpEvlRyuyzawPEAEiZtbHzLKBXwNjzWxGOP9j4C0dPCMiIqmSyi3DecB+4HvAP4Tn5znnmoAZwE+BXcCZwMwU1iUiIp5L5Ucr5gPzjzH3LFCRqlpERERi9YT3DEVERNJKYSgiIt5TGIqIiPcUhiIi4j2FoYiIeE9hKCIi3lMYioiI9xSGIiLiPYWhiIh4T2EoIiLeUxiKiIj3FIYiIuI9haGIiHhPYSgiIt5TGIqIiPcUhiIi4j2FoYiIeE9hKCIi3lMYioiI98w5l+4ausTMWoD16a6jBxgKfJDuItJMPVAPQD0A9QCg3Dk3INEbZSejkhRZ75yrTncR6WZmNb73QT1QD0A9APUAgh505XbaTSoiIt5TGIqIiPd6cxjele4Cegj1QT0A9QDUA1APoIs96LUH0IiIiHSX3rxlKCIi0i0UhiIi4j2FoYiIeK/Hh6GZzTWzGjNrM7PFHeammlmdme0zsxfMrDRNZSaVmeWZ2T1mtsXMWszsTTP7Usy8L3140MwazazZzN4xsytj5rzoQZSZnWJmB8zswZgxL3pgZivDx94antbHzHnRAwAzm2lmb5vZXjN718zOCcczvgcx//bRU7uZ3RYzn3APenwYAtuABcC9sYNmNhRYCvwIGALUAI+mvLrUyAbqgXOBgQSP+TEzG+1ZH24ERjvnCoCLgAVmNsGzHkTdDrwWveBhD+Y65/LDUzn41QMzmw7cBFwGDAAmA+/50oOYf/t8YBiwH3gcjuPvwDnXK04Egbg45vIcYHXM5f5hQyrSXWuK+vEWMMPXPgDlQCPwNd96AMwEHgPmAw+GY970AFgJXNnJuE89WA1c4XMPYh7jLOA9jn46oks96A1bhsdSBayNXnDO7QXeDcczmpkNA04F1uFZH8zsDjPbB9QRhOGTeNQDMysAbgC+02HKmx6EbjSzD8xslZlNCce86IGZRYBqoNDMNprZVjNbZGZ98aQHHcwClrgw+ehiD3pzGOYDezqM7SHYZZCxzCwHeAi43zlXh2d9cM59i+CxnUOwK6QNv3rwE+Ae51x9h3GfevBd4GTgRIIPWC83szH404NhQA7wdwTPg9OBM4B5+NMDAMxsFMHbR/fHDHepB705DFuBgg5jBUBLGmpJCTPLAh4ADgJzw2Hv+uCca3fO/R4oAf4ZT3pgZqcD04BbOpn2ogcAzrlXnXMtzrk259z9wCrgAvzpwf7w523OuUbn3AfAL/CrB1GXAr93zm2KGetSD3pzGK4DxkcvmFl/YEw4nnHMzIB7CF4VznDOHQqnvOpDB9kcfaw+9GAKMBp438y2A9cAM8zsDfzpQWccYHjSA+fcLmArwePuyIsexLiUj28VQld7kO43P+N4czQb6ENwJOED4flsoJBg03dGOHYT8Eq6601iH+4EXgHyO4x70QegiODAkXwgApwP7AUu9qgH/YDhMaebgf8JH78vPRgU/ttH/x+4JPw7KPelB2EfbiA4mrgIGAz8jmAXuk89ODv8tx/QYbxLPUj7A4rjAc8neAUUe5ofzk0jOJBiP8ERZqPTXW+SelAaPu4DBLsAoqdLfOlD+Af+IrAbaAb+CFwVM5/xPeikJ/MJjyb1pQfh38FrBLu8dhO8QJzuUw/Cx5kD3BH2YDvwS6CPZz34FfDAMeYS7oG+qFtERLzXm98zFBER6RYKQxER8Z7CUEREvKcwFBER7ykMRUTEewpDERHxnsJQJEnMbLOZTUvy72g1s5O78f6cmZV11/2J9BbZ6S5ARLrOBeu5ARAufr3VOTcvfRWJ9E7aMhQREe8pDEWSzMzyzOxWM9sWnm41s7xwbkq4Ht13zGynmTWa2WUxtz3BzJabWbOZvWZmC8zs9zHzzszKzGwOwfd0/ke463R57HzM9Reb2YKYy9eGv3ObmV3eSd03m9n7ZrbDzO4M18wTyTgKQ5Hk+yFwFsG6c+OBSQRrz0UNBwYSrM93BXC7mQ0O524n+DLi4QSLmM7q7Bc45+4iWOfyZ865fOfchZ9VlJn9NcHKF9OBUwi+zzHWTQSLSJ8OlIX1/fiz7lekN1IYiiTfJcANzrmdzrkm4HrgH2PmD4Xzh5xzTxJ8CXt5uKL5DOA659w+51wtn1yu5nh8DbjPOfcnF6wGPj86ES4ZdhXwbefcR865FuA/CVYOEck4OoBGJPmKgS0xl7eEY1EfOucOx1zeR7BUVSHBczR2VfuOK9wfb12vd6grqpBgyajXg1wEgjUDI934+0V6DG0ZiiTfNoJluKJGhWOfpQk4DJTEjI38lOt3tgTNPoJQixoec76xw/2Nijn/AcHyN1XOuUHhaWDs0asimURhKJJ8jwDzzKzQzIYSvO/24GfdyDnXDiwF5ptZPzOrIFjZ+1h2AB0/c/gH4BtmFgnfIzw3Zu4xYLaZfc7M+gHXxfzuI8DdwC1mVgRgZiea2fmfVbdIb6QwFEm+BUAN8BbBosRvhGPxmEtwcM124AGCYG07xnXvAT5nZrvN7Ilw7F+BCwkWgb0EiI7jnFsB3Ao8D2wMf8b6bjj+ipk1A88SrCgvknG0uK9IL2JmNwHDnXOdHlUqIl2jLUORHszMKszsNAtMIvjoxa/TXZdIptHRpCI92wCCXaPFwE7gv4Blaa1IJANpN6mIiHhPu0lFRMR7CkMREfGewlBERLynMBQREe8pDEVExHv/DzyIOtbXkz6ZAAAAAElFTkSuQmCC\n", + "text/plain": [ + "<Figure size 504x504 with 1 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "#####################################################\n", + "# Plot pmin track\n", + "#####################################################\n", + "plt.rcParams['savefig.facecolor']='white'\n", + "fig = plt.figure(figsize=(7, 7))\n", + "plt.plot(df['lon'], df['lat'], '-', linewidth=1, color='k', label=exp)\n", + "plt.scatter(df['lon'], df['lat'], s=200, c=df.time, cmap='Spectral_r')\n", + "xs = df['lon'].to_numpy()\n", + "ys = df['lat'].to_numpy()\n", + "time = df['time'].to_numpy()\n", + "for j in range(0,len(xs)):\n", + " plt.text(xs[j], ys[j]+2, ''+str('{:02.0f}'.format(j))+'', ha='center',va='center',fontsize=10, zorder=1000)\n", + "for j in range(0,len(xs),4):\n", + " plt.text(xs[j], ys[j]-2, 'D'+str('{:02.0f}'.format(int(time[j]+1)))+'', ha='center',va='center',color='red',fontsize=13, weight='bold',zorder=1000)\n", + "plt.xlim([lon[0], lon[-1]])\n", + "plt.ylim([lat[0], lat[-1]])\n", + "plt.xlim(10, 70)\n", + "plt.ylim(5, 80)\n", + "plt.xlabel('longitude',fontsize=12)\n", + "plt.ylabel('latitude',fontsize=12)\n", + "plt.xticks(fontsize=12)\n", + "plt.yticks(fontsize=12)\n", + "plt.title('Track trajectory of exp '+exp+'', fontsize=14)\n", + "\n", + "fig.savefig(dataout+'cyclonetracks_' + exp + '.png', bbox_inches='tight',dpi=100)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcMAAAHACAYAAADeEgNwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAB8lklEQVR4nO3dd3hUVfrA8e87JZOeEFIICSS00Is0sYAoIvaGBXVXXXVd2+rquvaCFWxrr/uz67p2UewNBBu99xIIgYQE0stkyvn9cSchCamUBJz38zz3mZlbz72Z3HfOuaeIMQallFIqmNnaOwFKKaVUe9NgqJRSKuhpMFRKKRX0NBgqpZQKehoMlVJKBT0NhkoppYKeBsMgISLpImJEZHg7pmGyiCxrr+O3FxE5TUTWiohXRF5r7/S0lIiMDXxn4ts7LS2xr9MbrN/XYKXBsB0E/mGbml5r7zTCfrkZPAocta92JiIXi0jpvtrffvR/wIdAGnBdO6dFURM4p4nINhEpF5ElInJJe6cLQESuEpGNIlIpIvNFZHS95RL439wqIhUiMkNE+tdbxyUiT4tIvoiUicinIpJab53MBu49U9viHA9EGgzbR3Kt6a8NzKtzwxQRZ5umrpVEJKQl6xljSo0xO/Z3elpLRGwiYt9P+44F4oGvjTHZxpii/XEc1WqHA0uBs4ABwPPASyJyfnsmSkTOBZ4EHgQOAX4BvhSRrrVWuwn4J/B3YASwHfhWRKJqrfMEMBE4DxgNRAPTG/ie30vde8/9+/iUDh7GGJ3accL6ZzS1PqcDButL/ANQAVwDdATeAbYE5i0H/lJvX4L1T7IWcAfWnVJvv8MDn23As8BGoFcD6bo4sH7t6eLAMgNcDXwElGHl+OzAy4H9VQTScBNgq7XPycCyesf5C7ACqATWANfX2yYa60a1LbDOSuBcYGwD6Zsc2KYD8DpQEEjLd0D/eudWCpwILAO8wBjAA3Sql74HgCVN/P0aPVYjaRzbyH5CgIcCf7MyYC4wodbf9dvAviUwLzJwjZ+pd6yTgUWBazUfGNbM9y8E68a7KfCd2QBcW2+f44DfgXJgHjC01vYt+V7OAJ4LHCcf6+b9aL2/cyZwB/AiUBzY37/q7ScGeCmwfQkwk8D3uV564/fwf/E94MPGvq9AV2BV4O/tqPU9OiEwvxz4NJDOswJ/nyLgTSCshWn4HfhPvXlr2fV/LFj/C7fXWh4WuB5/q3WdqoALaq3TBfBXf6dqXfMb2+ved6BN7Z6AYJ9oPBhmBpZ1A1KBFOBfwBCgO3B54As/rta2U4BC4BKgJ3AYcFW9/Q4HnIEb2HIgpZF0hQVuWKuAToEpLLDMBG5IlwXS0i2wz3uxfqmmA+cE0nJprX3Wv7n8NfCPXX2epwA5wDWB5QL8jBUsjw8c6wTgDKyb+HVYgaM6fZGB7aYF0j0GGBi4QWXVSv/FWAHwF+AIIAOICmxzU6302QLbXdfE36/RYwXS2C9wvc4MpDGkkf28DfwW2E93rB9AVcDgwPLOWIHkX4HPrwT+ftXnNDZwnFXABKzczvuB6xneRPqrA9nEwHGPBi6st885gfl9gK+xfpBUB+WWfC9nYAWFewPX+pzA9T+v1jqZwI7AeffEyvUY4LBa34XZwOfAyMA692EFzuR66d3TYPgV8H8NfV+BvoG/679rnfvFWD+gvgOGYf2/bcX64fIZMChw3QqAf7bg+CGB63J2vfnPAjMD77sHznFEvXU+B14PvD8msE5CvXWWA/fUu+Y5geu+CLidRr6fwTC1ewKCfaLxYNiSf57/Vf/zYuUUKoErGlm3er9jAv/0vwJxzey/5mZQb74Bnm5B+qYC3zW2P2Az8Od62/wDWBF4Px7r12zfRvZ/MVBab16v6vOsNS8G62Z8Wa3tDPVyTcCNwMpan0/Ayi11bOT4LTlWPE3kCAPr9AicZ9d68z8Bnqv1+fRAeu4LvA6utWxs4Di1cwORWD9ILmsm/cc3srx6n7VzE0cE5qW25HsZ+DwD+LXeOt/WWycTeKfeOmuBOwLvj8HKhYXVW2cRgR8w7EUwxMpRe4CR9b+vWME3n1q5sXrfo9615j0K+GqnAXgNmN6CNHSu/30KzL8LWB14f3hgnfrflVewiuIBzscKqlJvnR+AF2t9vgErWA/C+mGbX/tvEmyTA3Wgmlf7Q6Cs/xasIsIUwIX1S3JGYJV+gXnfN7Pft7FyY0cbY8r2VfoCabwC658qDStn5MQqftuNiCRgFd28KCLP11rkwMoFgPXMZJsxZmUr0tUXK7D8Wj3DGFMkIkuxrlE1L9aNtLbXgQdE5HBjzC9YOexPTOPPOVt6rOYMxTrnFSJSe74L6wZWve9PROS/WMWJNxljFjewr9ppKW0mLYcE0v9jM+lbUuv91sBrIrClBd/LhvZRvZ/EVqwzDAgH8updo1CsHxN7TESOAP6LVTw8p97iFKz/qXuNMY80sLnbGLO61udcIMcYk19vXmu+D6Z+EhuY15J16quzjjHm37WWLRGRYuBdEbm5ie/8H5YGwwNX/UB1I9bzwOuwHvyXYj2Dqb5ZCC3zOXAh1i/8b/ZV+gIP/p8IpPMXrOKrq7GKNBtSXXnrisD6DWnpObV0m9o3C7cxxldnoTF5IvIpcImIrAZOxSq63dtjNccWWH8EVu6ktoqag4mEBtbxYRUT7q2WXt/aaao+r+q/X3Pfy4b2Ub2f+hX4mlrHhhVURrO74ibS3iQRORL4ArjLGPN8A6vkY+VaJ4nI/xljCuot9zaQ5paca0Pysf62nerNT8Q6d7CKNQmsk9XEOnasUom8euv81MTxfw+89sQqOg0qWpv04HEk8Jkx5k1jzCJgPdbzl2orsIrOxjWzn//DKor8RESOa2bdKqx/qpam73djzDPGmAXGmHU08YvdGJMLZAM9jDHr6k+B1RYAySLStxXpW4H1vT6seoaIRGM9z1vRgvP4D9Yzrb9h3Vy+a2LdvT1WtYVYgalTA9ciu9Z6j2DlvMYDfxGR0xrY16haaYnAenbYWM56QSD9R7cirfU1973cVxYASYC/gWu0fU92KCJjgC+xnqM90chqbqwfRQVYNTY77MmxWsIYU4VV6Wl8vUXj2fWDcSNWsKtZJ/AjaXStdeZjBeTa66RilWQ09sMTrOe+YJUcBR0NhgePNcA4ETlSRPoAz2BVOgHAGFOCVSV7ioj8RUR6iMhIEbmy/o6MMS9h1dr8RETq/+PVlgmkichQEYkXEVcz6RsqIieISC8RuZPm2xROBm4SketFpLeIDBCRC0Xk1sDy77F+rX4oIhNEpJuIjBeR02ulLzQwL15Ewo0xa7EqtbwoIqNFZCDwFlbu4b/NpAesZ1k7gLuBV40x/sZW3AfHqt7PGqzi69dE5CwR6S4iw0XkRhE5E0BEjscK0H8yxvyIde3+T0Tq5yLuCFyP/ljPkaoaS0sg/e8F9jMxcH1Hi8ifW5p2mvle7kPfYVWmmhb4jnUTkcNE5J767fBaQkTGYgXCF4C3RaRTYEqov64xpgKrhKAIKyDG7sV5NOffwMUicpmI9BWRJ7GeJb4QSIvBKoG5RUTOFJEBWM8kSwn8nY3VfOdl4BEROVZEDsGq0bqEwI+7wLW7XkSGBK7lOVg1fj81xmzej+d34Grvh5bBPtF4BZrh9dbrgNWUoQSrJufDWF/eGbXWsWE9v9mAdRPMAh5obL9YRZRlwPhG0uYCPsD6VWyo27TirHrrhmD9AxZgVdp4GevBf2atdSaze9OK87B+9VcGtp0NTKq1PBYrt5YXWGcFcE6t5c9jFS8ZWtm0oom/yV1Yz9LSW/D3a+5YzVagCaznDFyf6r9dDlbN1GFAQuDzXfX+1jOwbujCrsojp2Ld9NyB6zqimeO6At+l7MA269lVm7d6n7Urg9T5HtGy7+UMAk1Aas17jVqVSmigmn/97bBq/D6JVfu1+vv9P6zShQbT28R5v8buzV4MTXxfsZ6Df4/V7CW2oe8RVrFxZr15U4F5rbgnXBW4Hm6sXF79CjUSSFt1c6OZwIB664QCT2P9sCvHqt3apdbyoVi1lwuxvrerAvtstObxH32qriKs1H4nIlOwKu6ManbldhSo0NPTGNNUrvmAEsjp/IhVnT6/6bWVUvVpBRq134lV/a871vPM+jUGDxgiEoOVE7sQ67mhUipItNkzQ7E6iv5CRApEJEdEnhERR2DZOBFZJVYfgT+KSFpbpUu1iRis4s0qrDZyB6ppwHTgFWPM5+2dGLXnRORLESltZLqtndLUtYk0lUrdLtdUG2uzYlIR+QLrmcIVWOXt32I9C/ov1nOKy7DKte8DRh/oRWlKqQOXiKRgPeNryE5jzM62TA9A4Md/ehOrZBpj6jfVUG2kLYPhSqxeVb4IfH4Eq9/J+VgVMw4PzI/AqhBxiDFmVZskTimlVFBry2eGT2I1XJ2BVQPtBOBOrBpgNT1pGGPKRGQ90B+rhlMNEbkcq+9DIiIihvXp06dNEq6UUurgMH/+/HxjzG5NZJrTlsFwJlbHzMVYDaVfx+p78WTq9pIAVnueqHrzMFb7uJcAhg8fbubN261HMKWUUkFMRBrsArI5bVKBRkRsWL3dfwREYLW96oA1ZE0pVnFpbdFY7ZaUUkqp/a6tapPGYXXK/Iwxxm2sTmBfxRpPbjkwuHrFwDPDHoH5Siml1H7XJsEw0Ah4I3CliDgC3RldhPWs8GNgQKA7qFCs3j+WaOUZpZRSbaUt+yY9E2uA1jxgHVZv79cbY/KwBhZ9AKtLq0OBSW2YLqWUUkGuzSrQGKtH+7GNLPsOaxRtpZRSqs3pqBVKKaWCngZDpZRSQU+DoVJKqaCnwVAppVTQ02ColFIq6GkwVEopFfQ0GCqllAp6GgyVUkoFPQ2GSimlgp4GQ6WUUkFPg6FSSqmgp8FQKaVU0NNgqJRSKuhpMFRKKRX0NBgqpZQKehoMlVJKBT0NhkoppYKeBkOllFJBT4OhUkqpoKfBUCmlVNDTYKiUUiroaTBUSikV9DQYKqWUCnoaDJVSSgU9DYZKKaWCngZDpZRSQU+DoVJKqaCnwVAppVTQ02ColFIq6GkwVEopFfQ0GCqllAp6GgyVUkoFPQ2GSimlgp4GQ6WUUkFPg6FSSqmgp8FQKaVU0NNgqJRSKuhpMFRKKRX0NBgqpZQKehoMlVJKBT0NhkoppYJemwRDESmtN/lE5Olay8eJyCoRKReRH0UkrS3SpZRSSkEbBUNjTGT1BCQBFcD7ACISD3wE3AnEAfOAd9siXUoppRS0TzHpWcB2YFbg85nAcmPM+8aYSmAyMFhE+rRD2pRSSgWh9giGFwFvGGNM4HN/YHH1QmNMGbA+ML8OEblcROaJyLy8vLw2SaxSSqk/vjYNhiLSFTgKeL3W7EigqN6qRUBU/e2NMS8ZY4YbY4YnJCTsv4QqpZQKKm2dM7wQmG2M2VhrXikQXW+9aKCkzVKllFIqqLVHMHy93rzlwODqDyISAfQIzFdKKaX2uzYLhiJyOJBCoBZpLR8DA0RkooiEAncBS4wxq9oqbUoppYJbW+YMLwI+MsbUKf40xuQBE4EHgALgUGBSG6ZLKaVUkHO01YGMMX9rYtl3gDalUEop1S60OzallFJBT4OhUkqpoKfBUCmlVNDTYKiUUiroaTBUSikV9DQYKqWUCnoaDJVSSgU9DYZKKaWCngZDpZRSQU+DoVJKqaCnwVAppVTQ02ColFIq6GkwVEopFfQ0GCqllAp6GgyVUkoFPQ2GSimlgp4GQ6WUUkFPg6FSSqmgp8FQKaVU0NNgqJRSKuhpMFRKKRX0NBgqpZQKehoMlVJKBT0NhkoppYKeBkOllFJBT4OhUkqpoKfBUCmlVNDTYKiUUiroaTBUSikV9DQYKqWUCnoaDJVSSgU9DYZKKaWCngZDpZRSQU+DoVJKqaCnwVAppVTQ02ColFIq6GkwVEopFfQ0GCqllAp6GgyVUkoFPQ2GSimlgp4GQ6WUUkGvTYOhiEwSkZUiUiYi60VkdGD+OBFZJSLlIvKjiKS1ZbqUUkoFtzYLhiIyHngI+AsQBYwBNohIPPARcCcQB8wD3m2rdCmllFKONjzWPcC9xpjfAp+zAUTkcmC5Meb9wOfJQL6I9DHGrGrD9CmllApSbZIzFBE7MBxIEJF1IrJFRJ4RkTCgP7C4el1jTBmwPjC//n4uF5F5IjIvLy+vLZKulFIqCLRVMWkS4ATOAkYDQ4BDgDuASKCo3vpFWEWpdRhjXjLGDDfGDE9ISNivCVZKKRU82ioYVgRenzbGbDPG5AP/Bk4ESoHoeutHAyVtlDallFJBrk2CoTGmANgCmAYWLwcGV38QkQigR2C+Ukoptd+1ZdOKV4G/i0iiiHQA/gFMBz4GBojIRBEJBe4ClmjlGaWUUm2lLYPhfcBcYA2wElgIPGCMyQMmAg8ABcChwKQ2TJdSSqkg12ZNK4wxHuCqwFR/2XdAn7ZKi1JKKVWbdsemlFIq6GkwVEopFfQ0GCqllAp6GgyVUkoFPQ2GSimlgp4GQ6WUUkFPg6FSSqmgp8FQKaVU0NNgqJRSKuhpMFRKKRX0NBgqpZQKehoMlVJKBT0NhkoppYKeBkOllFJBT4OhUkqpoKfBUCmlVNDTYKiUUiroaTBUqp1kZWVx9NFH07dvX/r378+TTz4JwL/+9S/69OnDoEGDOOOMMygsLGzfhCoVBDQYKtVOHA4Hjz32GCtXruS3337j2WefZcWKFYwfP55ly5axZMkSMjIymDJlSnsnVak/PA2Gap+75JJLSExMZMCAATXzFi9ezGGHHcbAgQM55ZRTKC4ubscUHhiSk5MZOnQoAFFRUfTt25fs7GyOO+44HA4HAKNGjWLLli3tmUylgoIGQ7XPXXzxxXz11Vd15l122WVMnTqVpUuXcsYZZ/DII4+0U+raX0PFo5mZmfz888/8/e9/x2azMW/ePABeeeUVTjjhhHZOsVJ/fBoM1T43ZswY4uLi6sxbvXo1Y8aMAWD8+PF8+OGH7ZG0A0L94tGnn36ak046ibvuuotp06bVXKcHHngAh8PBBRdc0M4pVuqPT4OhalZDxZ6LFi1i1KhRDBkyhOHDhzNnzpwm9zFgwAA+/fRTAN5//32ysrL2a5oPZLWLR0NDQykuLubII4/k2muvpXfv3gBMnz6d6dOn8/bbbyMi7ZlcpYKCBkPVrIaKPW+66SbuvvtuFi1axL333stNN93U5D5eeeUVnn32WYYNG0ZJSQkhISH7M8kHBWMM5557LhUVFTx0+al4p9+P54Ob2bFxBa+/9CzT3nyJ8PDw9k6mUkFBg6FqVkPFniJSUwmmqKiIzp07N7mPPn368M033zB//nzOO+88evTosd/Su7811iRi586djB8/nl69ejF+/HgKCgqa3M+3337Dxx9/TFyI4agz/sywKx/jyxm/sm7bDspLSxl/9FEM7pbE3y65sC1OS6mg5mjvBBxILrnkEqZPn05iYiLLli2rmf/000/zzDPP4HA4OOmkk3j44YfbMZUHhieeeIIJEyZw44034vf7+eWXXxpcz1QVgqeU7Xk7SUztibGFcv/993PFFVe0bYL3oepnfkOHDqWkpIRhw4Yxfvx4XnvtNcaNG8ctt9zC1KlTmTp1Kg899FCD+6iqcvPobdfy8DnD+ccxdX8YjEzvyENnDWFYWhyIgMOO2bEJ6ZjWFqd3wMjKyuLCCy8kJycHm83G5ZdfznXXXcedd97JtGnTsNlsJCYm8tprrzX7Y0yp5mjOsJaGigN//PFHpk2bxpIlS1i+fDk33nhjO6XuwPL888/z+OOPk5WVxeOPP86ll15as+y8Sedy2KgRrF69ki5duvLyI3/nnedupXePLvTp0Znk+HAuvvji9kv8XmqsScS0adO46KKLALjooov45JNPGtzeGMMlpx9Lnw723QJhAyuDpwLvZ/dhKkv25Wkc8Bprh/mvf/2LJUuWsGjRIk4++WTuvffe9k6q+gMQY0x7p2GPDB8+3FRXP9+XMjMzOfnkk2tyhueccw6XX345xx577D4/1sGk/nWJiYmhsLAQEcEYQ0xMDMXFxZiqIlj7MnjLwF/V8M5sTojqBelnI7aDu3AiMzOTMWPGsGzZMrp27Vqnt5gOHTo0WFQ668fvGHPMeAakxGALVI6577SBuL1+rn93AXmlbmLDnAzu0oHPrz3K2sgegm3YROyHnNYWp3VAOu2007jmmmsYP358zbwpU6awefNmnn/++XZMmTqQiMh8Y8zw1m53cN+J2sCaNWuYNWsWt99+O6GhoTz66KOMGDGivZPVTgymeBFUZtI5MZIZ0x5g7LGn8f2vW+nVqxfGUwqrXwRvKdDEjyy/B4rXwMZ3MN0vQOTgLKAoLS1l4sSJPPHEE0RHR7d4u8MTfFS9dAH4vbstO/2Q1IY38lXhX/o5tiGnHLTXa29kZmaycOFCDj30UABuv/123njjDWJiYvjxxx/bOXXqjyD4/qtayev1UlBQwG+//cYjjzzCOeecw8Gam95T5006l8MOHcbq1avo0nssL7/2X16acjo33vkCQ0Yez+03Xc6Lj/wVsqZZOcKmAmE144XSjbBz8X5P//7g8XiYOHEiF1xwAWeeeSYASUlJbNu2DYBt27aRmJjY4Lb+xZ80GAib5a2C/Mw9TPHBq6EfHQ888ABZWVlccMEFPPPMM+2cQvVHoDnDZqSmpnLmmWciIowcORKbzUZ+fj4JCQntnbQ2Yfxu/vvvE8A7CoyvzrJ50/+x64O/HAq30qJAWLONB3JnQcdD9kla24oxhksvvZS+fftyww03YDzl4C3nlBOP47XXXuXWW2/j9ddf57TTdi/SNNtXQHlho/u+//PlbNlZTlrHCLp2DCe9YwRpHSNIjgnFLjZMRTHB1OqwoR8dtZ1//vmcdNJJ3HPPPe2QOvVHojnDZpx++un88MMPgFVkWlVVRXx8fDunqm0YY2D7x+Ap2C0Q7sZdTqsCYbWqQkz51j1KX3v5+eefefPNN/nh2y8Y0juFQ/qm8/nTV3DzMfDdBy/SK60T3371Obfccstu25qV0xrd78b8Up75YQ1D0zpQ6vby5dJt3PrRYo6Y+i0x135In5s/YPz5V3DppZdy33338cYbb/DTTz+xefNmvN49yGke4Or/6Ki2du3amveffvopffr0aY/kNaqhTiqq3XHHHYgIGRkZdZrlTJ48mZSUFIYMGcKQIUP44osv2jrZQU8r0NRy3nnnMWPGDPLz8wkJcWC3CV1S4zlkSE8WLdlE9tYddOwYT2RkJIWFhcTGxrJo0aJ9moYDianMhu0fgPE0v3JJGXgaviHn7ijF6/OT0CGCEKe97kJxQpeTkY5D90GK24ZxF2MWPwvuQvC5G1jDBjY7JB+O9Dyt5hmfKduO+fYOfAWlUOXfbatbPlyEMfDQWUN2W1bp8bG5sIrsgX9m0/YCMjMzyczMZNOmTWRmZpKXl0fnzp1JT08nPT2dtLS0mvfp6emkpKTgdDr37YXYz2bPns3o0aMZ2KcXUlECHjf3TBjEa/M3sbaoCntEDGnde/DCCy+QkpJSs11lZSVjxozB7Xbj9Xo566yzuOeee9i5cyfnnnsumZmZpKen895779GhQ4d9nu6ffvqJyMhILrzwwjpNtLKysvjzn//M6tWrWbp0KS6Xi2HDhvHJJ5/w3nvvERkZqbXV9wGtQLMPvPP2K1D1G/hL+Gn2UiIjXFz416d46+W/B9awgS0GXKP45423ExMT067p3e+K57YsEILVBADweHwsXpvLr0uy+W3JFn5dsoXCEjehLgf5heVEhYeQFBdBUscIkuIiSYiLJKlbNp26DycpKYmkpCQSExNJSko6IHtfMZ4yzIJ/Q1VJE7llP/j9sO0XjL8K6X2uNXv7ChDBFubA76mqk5Euc3t5/ZeN/HzL+Ab3GOq003vgIfQ/7awGl1dVVZGVlVUTJDMzM/nhhx9q3ufk5JCcnNxgoExLS6NLly4HXK9Ah/dMoeLJy6CsEDxuqi/Y8ekDwO4ABFuPoTgT6nYI4XK5+OGHH4iMjMTj8XDkkUdywgkn8NFHH7W4HejeGDNmDJmZmbvNv/7663nyySc54ogj6Nu3L0lJSTXNcmbMmMHChQt56623AHjwwQc58cQT93naVOM0GFbzl0Plj4AHMIw5sh+Zm7bXXwn8hZjy73nvvXf54Yc/bi02Y/xQsaHZ9XLzSvh1wSZ+/W0dvy3azIJVOaR3jmXUoBTGjezGHZeNpnd6R2w2we837CyqIHdnGbk7SsndWcb2Aje5lV5+++03cnNzyc3NZfv27eTm5uJ0OncLkLWn2vOio6PbpA9Ps/p/zQTCWvweyJ2PiR+AdOwPngrw+8BpA4GdpW5+Xb+Dn9fn8cPKXCJcDkY//B0JUS4W3WWNVPHB/Czum76MVTnF/DbtDUY2cqiQkBB69OjRaM8+Ho+HLVu21AmWP/30E2+88QaZmZls3bqVpKSkRoNl165dcblcrbpWDXVi8a9//YvPPvusJr2vvvoqsbGxu1+67DVUvXE7eCob3rnPKoXwb1hI1cs3EnLpo0hIGGD1jhQZGVlz3h6PBxFh2rRpzJgxA7DagY4dO5a8vLzd0rgvGvVv3bqVjRs30rdvX2w2G4cffjgpKSkMHjyYyMhITjvtNF566SUKCwtrasja7Xb8fj/Dhw/nsMMOa9Xx1N7TYlKwcjWV34Kp+9wrc9N2Tp74AMvmPVln9Z9mr+CGW15n3vzVVg8hf0DGVw5bXgSsm35FpYe1G/NYvcGaVq7N5beFmykoquDQIV0YNTiVw/okceiAFGKiQlt+ILFD/38izqi6xzeG4uLi3QJk7an2PI/H06KgmZSURFxcHDZb6x+Xm6oSzK/3WDVhWyO6G3LItWyc+V9mffJ//LxiKz+vzCUrv4yR6R05vGc8R/RMwO/30zHSxV9e+70mGK7cVoxN4Op3F/Po6x8zYkRj4XDveL1esrOzdyt+rZ6ys7OJj4/fLVhWv+/atSthYWF19tlQceE333zDMcccg8Ph4OabbwbYLXdmKkpxP30ZVJa1LPF2J7YehxAy6c6aWT6fj2HDhrFu3TquvvpqHnroIWJjY3drBzpt2rTd0lhcXFxTa/Wpp55ixYoVvPDCC626nnPmzOG8885j/fr15ObmkpaWxsyZMzn00ENJTU2lc+fOzJ07l1dffZWLL76YG2+8kcTERG688UbuvPNOtm3bxiuvvNKqYyqLFpPuDX8umF3FMM155/1ZnHf2keDPA3vD1ecPRn6/n+zsbFavXs2qVctYPf8j1qzfzuoNeeTkldC9axy9uyeQ0T2R8aMzuP3vx9KnR4IVWIyBwuLW16GJ6rlbIATr131MTAwxMTFkZGQ0u5vy8vIGg+a6dev45Zdf6swrKSkhPj6+2aCZlJREfHx8zbM2s7XhLuca4vX5Wbohn5+XbmX2si/5edVU/H4fR/aI4sg+8fx1fAaDOsdgK60bWDPz6waAvsnR4HJAVMf92r7Q4XCQlpZGWloaRx111G7LfT4fW7durRMo58yZw3vvvcemTZvIysqiQ4cOu+UqQ0NDcbvdlJeXEx4eznHHHVezz1GjRvHBBx/sdizvom+hNRWCfB78GxbiL8jB1qETYOWyFi1aRGFhIWeccUadZ3e1NVSkWbvNaFlZ2R6VOCQmJtb8ONi+fTvGGE499VTCwsLIzs5m+/bt2Gw2Tj75ZAAiIyN57rnneOutt+jdu3ej6VX7jwZDAM8aoGX/fF6vj4+m/cb8nx+xtjsIg2FJSQmrV6/ebVq7di3R0dH07t2bjIwMeqd2ZMKYDHp3TyA9tQMOh73xnYpAqAsqGqpQ0tg2Tug0dq/PByA8PJxu3brRrVu3Ztetqqpi+/btuwXObdu2sXjx4jrzdu7cSUxMDD6fj7LSEsJcdi6a0I+kDmFEhDp57esV7CiqJC0pmn+eO5Ql6/OZvWwrv6/IITUhkiMGdObEw3oyZerf6Db8ZPj2NijLrUmLCbHjL/dCpQ8E6rSbsAsS7kDCQpHQ2H1ynfaU3W6nS5cudOnShdGjR++23O/3s23btjrBcsGCBaxcuZLNmzcTFxdHTExMnWD55ZdfMmHCBJYvX05aWhqRkZEY48f368fgbcX3CMAYfHOmY5twWZ3ZsbGxjB07lq+++qqmHWhycnKT7UBh7xv1G+MHvLh9vxASnkliUiwLF7/DrJlbOOfsSzlr4kQ++OADip55ECkv5pjcHVzz17MJH3cyp95+L253K89f7TUNhsaAf0fTq/h9VoNn4+fb75bQJyOZlM4dwZ9vbX8AFpX6fD4yMzMbDHpFRUX06tWL3r1707t3b0499VQyMjLIyMioUynI7PwBShYBu9d8bFCoC7x+a2rumZo4IfUEJKKRHlf2o5CQEFJTU0lNbf7YPp+PHTt28Pnnn1O+ejpTXv6GtKQotheW884Pq/F4/STGhrN0Yz7XPPEjF4zvwzVnDOa/dxxPx5hAsaEtBOmSiNhsmN4nYRa/BT6rqzqx27BHhWAiDVT5kQo3YhNsHVyIwwY2B3Q5DGRtE6lsfzabjZSUFFJSUjjiiCNq5ld347dkyRJyc3NrguWrr75KaWkpy5Yt46yzzmLTpk2Eh4eTnppCF+8O0mJcdI0JI61DOGmxYXSNCSM6tInasD4vvpU/45xwGXl5eTidTmJjYynIyuGzN9/jgkOOYWRsOo9edQsPvvx0o+1Aqz3wwAM88MADTJkyhWeeeaZV7RgnTTqFmTN/Jj+/mPQup+B02nnk35dic+zk1lvvwOv18tuX0/F4vZz0xH+4a2gGH2duY9mn3yGPvUR8uAuHHFiVmYKBBkM8WM0t697wTz17Cl9/u5Aqjxdb1NnEx0UyqH8qq9flYAzEdLoAm81G17TujBlzFC6Xq9kpJCSkRetVTy15rrVjx47dgt2aNWvYsGEDiYmJNQFvwIABTJw4kd69e5OamtqyZ2ZRQ6F0CZgWBkMRiIwEW/ddPcvUf75mCwEEup6GdBjYsv22I7vdTmJiIn/5y1/Y8EU2z787k+vPsZqBfDJ7PT88fhbJHSPYtqOMY67/gKl/O3L3nYiAPfAcNe0I2LYQcpfX6btVRMBlx+ayg4gVCMUOYXHIoPOAN9rgbPcfm81GcnIyycnJrFmzhuLiYpYvX86OHTu48EJriCq/38/oEUMZVr6a3zZs46Gf1lLusX5U+fyGUKedbh3CGdQpOjDFMDApaleQrKoArN5//jTpfEq35lFVXM5IRydiN6xgpPHwgu1z3o7/gM4JSXz0xWfNpru1jfo9vhW89vaVwOV4PF7OPPU+jj3uEE4/43CWLc1kR85OukSGUVll1dIu9XgZFBfNwA7RJIVbFZReWJnJgp0llH3yNhGnX9Cay6z2QpsFQxGZAYxiV3lktjGmd2DZOOBZoCvwO3CxMWZT26TMTkM5nxceu4ht2RN49NmvEYRZv6/lvDNGsj2/hP99PIcHbz8DvzHk7fDg6tANj8fgdrtxu90UFBTUvG9qqqqqanK5w+EgJCQEEaGsrGWVCUJDQxk0aBDnn38+sbGxNYG1+lf42rVrWxWgQ8q74vKsxhUCrhB700FUHBB7KBJzGKbzeNgxH/Lng68CEAiJhcQjILbfwdlBd1zvOqUAuTvLSe4YAUByxwi2F1Q0vJ3fB7FWLU8RGxx6FWbe/8G2RYEcYgMPWh2hEJEAR9yIOMN2X34QMsbw1Vdf8dBDDzFz5kzCw8MpKiqqOxzWkEFceFpvHp+xgrfOGcbo9I68vmAzGwvKuXpUN9bvLGdpTjFLcor47+JsVmwvoVOUi0GdohnSNYnh/T8nxRPKjVlp+Co6AabmjhMpTm40gwGQHTZmj7uFiK8fhqSwOmlct24dvXr1AlrXqN/rz8JHJuDDGMMVf32a3n1Tue760wHoHeJk+Zlj+dv38/kld6e1jfHzbXYev+TuZFlBCQJ0iQjj0UP7U/bZezhS03ENP6KxQ6p9qK3vSNcYY/6v9gwRiQc+Ai4DPgPuA97FCpz7n9iBUGBXFW7jqSS5o4vkjmnc/a9TGXPqwwwfnEbX1I58M2M5j917Dsce1a96B2CPgQ6nI7Lnl9MYQ05OTp0c3rJly1i6dCk5OTlWEVJ6Ot26datTQSE2NrZFwbYlAbrR4FxZhruqCrfbi91uwxVixxXi2DW5Aq9h0bjCP2gmR7yuXXLQ+4LED6L1NYQE4voiIbsqCYnNASP+BgUbMGu/soKi2Dn/se+ZuTSb/BI3KZe/w99uPZ2Y7Nt46Jb/UrCjlJNOOpEhQw7h66+/3pentd9YnVj8SH5+Pp1T4vjnHSfzzKNfUeX2csyxh2OTMA4bdXhNTc2oqCj69uvP1sJC1u4o48g0q/3gMT0SOPXN35k8rg8JES5GddnVUN7r87NuZxmLc4pZWhHKYw8+xLxff8cYQ1ci6UoUXYmkC1F0Igx7dQcIfj+e4nJOHX0sG2Or2FFQQOfUjtxyx5l8+/Vi1q/JxW4LIz29By+88FKz52qMwWtWUV37+pefV/Lft35kQK/OjPxwNlR5uXVwD8Z1SuLF0VZAHv7xTL4+4TA6hoZwQc8Giuyr3JS++6oGwzZyIPw8PxNYbox5H0BEJgP5ItLHGLOqTVLg7AmelVT/oqOqvGZR756dGH1oT777aSXvvHQ5N93zPrN+W8sdUz4h1OXkkclnMeKQXuDeAKEtq/W4du3aBos2Q0JCaoo1e/fuzVFHHUVGRgY9evRo1wbRxhioWIcp/BVP+XbcVV7cbg9VXoPb7cFtYnCH9KVKEloVbPcqQNea7HZ7q4Jna4Nt9TaFhYWUVdn4ZcV2XHZDbKSLn5dl0yUhisJSNx1jQqlwe3E57dhsgRykzYGkjdvtmooIxPVADr0a463EVBTwxKjT2MkWfE4HplZpxbiTD0GwAULH0L4YY9qkTeXeMMbw0us3UOqtPncrSJx/UfWN3TqfMHtPjPEjYrNGpli8hEMfupJ+361g+upcTunTiY+Wb2NLUcO5bofdRp+EKPqkJPCns2/jxxs+ZDNOCnGTRQmbKWUB+XzCRgpxk2Ii6BIIkF2J4kJfL7of1YuRbx1N9Q+dP/9lbPXeAUO4o/nKdX52YD1ysRyekUzpXadDeSW4Pfh9UFFctwLavDN2r7Vbn68gD8/61Th79G52XbV32joYThGRqcBq4HZjzAygP1AzdIExpkxE1gfm1wmGInI5cDlA165d912qHGmBYAj4rEb31UpLK1m9Lhe/Aa/Xj9fnp6ConF+/vJW5CzM5968vsn7uFKR8cU0w9Pv9ZGVl7RbsVq9ezfbt2+nevXtNwDv22GO5+uqr6d27N3FxcQ0krv2JCIT3QsJ7EeLZQUjlVqJMlfX8z5WKOPd9l1YtZYzB4/G0KnjuaYAuLCxke0EZN77wC+7KCkorPJx+22eEhzopKKnE4/PT8ZQXcHt82G1i5aBdYbjC3mo22HpshYijihCXHWeIgxCXg5AQJyEuR73PPxEb/hnJ0YNaHdDbKgcNUOz5mXLvaqqD4O6sYF/hW4/fXYHTc2TNyBRxRxzCixN/5J+fLWTKjLWc1DuJEHszaXdFUBneha3fzEOADuKiAy4Gsasf4QrjZQulbKaUzZQwm21s9ZcR9+FcRroXMXhEdwYMTmPQ4DSSOsVSXb5a7v0VjBeXo/GBmP3+7JpzNdsL8D/+P3Dv6mXI59nDHy9VbirnztJg2AbaMhjeDKwAqoBJwGciMgSIBPLqrVsE7Nb4zBjzEvASWI3u91nKJASch4BnYZ0eLzweL2dd8jx/Of8IVq3L4dHnviY1uQNnnjQUEaFPr054PD6ef3UG27aXsGbz26xes5F169YRGxtbJ5d34okn0rt3b9LT07Hbm2iicID66quvuO666/D5fFx22WXccsstLFq0iCuuOIHKykocDgfPPfccI0eObHKbxYsXc8UVV1BaWkp6ejpvv/12q8YCrE9ECAkJISQkhKio3dsr7rGxY2HmTOu93U6pzcYGY5jm8/FabhHXXD6a80Z05qrbP+VP6/M5xusnRgS6dsD/58PwHNkTd9eTsX+9gsi//73BQxQMGsQvDz5IXsl6cktWUuV2U1XlxROYqtweqqq8VBSW1/nsqVqJ3TsP43W26gfA/s5BV6+PYyce2wpCXILL5SCkOpi7nLhq3lvF6zabl1L3Zi4567g6I1P0O+0ipidGg8fN2vxSvlyb2+A1BMDpIuTc21n57swma3aHiYNexNKL2Jp5XuMnz+XGH5tAzs5SnnviC5Ys3oTTaWfAoK4MHJzGgEFpDBiUzYCeF+DzhlFZWVlnqqiooKRsIRWVuVRUuCl/+1tWZu9gXk4x83OLKK6yguSADlEMi4/FZwxunx+3z0elz4/b7+fiXl04sWvS7ok24C9oura72jfarQcaEfkK+BzoCTiNMVfVWrYUmGyM+bCx7feoB5p6NziioqBbNzjlFLjhBggvwhR9D9sL4J4PKPlkLmE+P44+ncm/cAy9p3xCv96dycreSVWVj1N2lnKF18cAm+B32CnvlETeHXfTedKkfXtjbmc+n4+MjAy+/fZbUlNTGTFiBO+88w7/+Mc/uP766znhhBP44osvePjhh2u6u2psm4suuohHH32Uo446ildeeYWNGzdy3333te8JNqT6u9K3L+boo6lYt5jQH3/D5vFR0SWehR/fjq1jOIecch+uZVsw3TtieiQgP65BvH7Mu+8g50yCOXPgv/+tu+8XX4TKSrj8cswLL7Cy8H94TXmDyWhMiC2S3jHntLi4tHYOem9zz81NJRWbqaqqoMrtxe32UlXl3fXe7aWqylPz2WYTRAS7w0Zch/iawGq32wn3V+KsKGLjzjLiw5106xCBCZyL34ARwSDQqQeERlC4chMlWVYXiiaQJfMDVfjIpASAHkQHlldP1pquxDBCO4dhDLjdHjasy8Xrbb7Lvfj4ePLz85tcJy06lLzyKsq9tYq+O8fjNYaZ23Zwelon7h3Wp6Y2aX2hY8cQfeltzaZFWQ7GHmgMVhPj5cBF1TNFJALoEZi/f/TtC8ccAxs3wrffwsKF8MYbMHs2hIbBn+9DFmwkE9gUFcbxy7eQcPN/eTilE1lVoXwvIZxfUcRVXh9+hx05fjDERePaUEFceLgVZP9A5syZQ8+ePenevTsAkyZNYtq0aYgIxcXFABQVFdXpv7GxbVavXs2YMWMAGD9+PBMmTDgwg2G1kSPJmnolmaWLCF1zEkNPuY+wrHx63fUW284djWvZFvwuBz9/fh++6HC6T/mArs9MRx6cCudMgpEjranat9/Ck0+CzQY33kiZdxt+U9X48Rvh9VdS7t1OhLOB3EQDaueg94bX662TI6qfSyot305u8QzclZW4K61ny5WVHtyVu17dlR7cbi+VFVVs3rSD32avxem0syMvD5/PjwC+ehWVckvdLN9e2nCi1uS0OP3rKW54wfYSqN8VMRAS4iA6JpzwcBebN9UvwKLBQHhit3j6xUUQYrfhCkwObNi8dgrdXp5dkcn3W63twux2jkiKI9TRSDFwiBNH14OvY4+DUZsEQxGJBQ4FZmIVxJ8LjAH+AewEHhGRiVg5xbuAJfu18szIkVA9OvbKlTBqFGRmwrXXwjkDkQUbMS4Hna47j5j1hZQtXUHsmvVcWFLO1mFpXNYxgdTvZwBQ9ehfcJ1/KOCADqeAo+N+S3Z7yc7OpkuXLjWfU1NT+f3333niiSeYMGECN954I36/n19++aXZbQYMGMCnn37Kaaedxvvvv09WVlabnktr+Y2PjSULMfgp79WZrRccRdcXvqLjt4so7WudX3mPZHzR1ggbRcOs50pmyRKkrAwiIurucOpU6/Wss6BXL0rK5+JvYe9HEMjhVXlxu8vZWLyUKGk4KDUWrPZ2vjGGsLAwQkNDCQ0NrfM+NDQUp8uLPaScsDAHLpcTV2hgcjlwhTqJigojPiEqMM/JmKPtnBKRhnteAU6x4/RAiNhwYidEbIRGhOOy2Rk+9SrSx2Qg3ioIjUASuiC2uo8blj32Hp/c9iS/VG3hN3KJwskoOnEoSXSQxjsZt4XaGfDgCLpf2Q9jDNu2FrBowUYWztvAgvkbWDh/Q00gTE3tTJ8+/Woef8THx7NkyRJ+//1Xfv/9N8rL3XyxMZ8vNu4KkskRLnp3CCcEB99s2RVQR3eKw+c3/G9DNrEuJ6emdWroD07o4QfX4NcHq7bKGTqB+4E+WE+ZVwGnG2NWAwQC4TPAW1jtDCe1UbqsXOLll8Ojj8Jnn0E/6wbniYqkYn0hxuPHHWtVEHEWFyNeL2F5+Ygx+O12/FM/g9vehJgIOGcRPPggHEBDDzX03O7cc89l9erVAC0al7GhonQR4fnnn+fxxx9n4sSJvPfee1x66aV89913TW7zyiuvcO2113Lvvfdy6qmnHnDDBtVX7i1GkJp8SmWXBABsHh8SGNWk3Gknc002VW4P8Vt2MBAQY/j87bcpjIioCSgxa9fy58BA0f8OCWHBn/7EyjWL2LhhEwU7Gsn1HCDsdjuhoaE4HNYtw+v1UlpaSmlp/XT7MI1Wmtmdr8wLPtN4g5VC60Uu+AZbmAubc/dbVlFRUYObVuLjMzL5jMymW8RUgPPu2TBZ8Pv82B02+g/oSv+BXTj1jJHcetdE+vRLJTIyigjHYYTYu9TZ/LzzzgPAXfUb3hvvwBhDVkkli/NKWZJfwtK8Epbkl7K11M0lvbtw06CedHC14HtvtxF6aB9s4X/woeIOEG0SDI0xecCIJpZ/hxUo20d1f5YeD+RYjdv9xobxWGX8JnADEMDm8WJ3W8VaNp8PZ0kppUlJRO7YiTz5JFRUWM+EDgA+n4+rr766znO7U089lXfffbdmnX/+85/NjsuYmppaJwe3ZcsWOnfuzNSpU2tG6j777LO57LLLmt2mT58+fPPNNwCsWbOGzz//fI/Orbq4bn/liv69YAFDgS8/+5a/z/zZqrzi9nBvWSU3YNUC++/0udwG5K3IYvLlzxIS6mR8RRVnYj2r+vsdd7ClsBCPx6pyX90l9ZfAPwPj1lULDQ8hNS2BLukJpHZLoEt6IqndEojrGGVVPAl1Bl4dSKBWaIJrEEnhg1t8zXJycsjNzWXw4MGUlJRw9NFH89Zbb3Hbbbdx5ZVXMn78eL755hueeuoppk+fvkd/l1LPMko982lJF35Zj60g791MTEXLgqctzMXh79xPzMAeFBcX89FHH/HWW2+xYMECJk6cyJ/+9Cc8T/1A7g8LW55ggcTjUxnx6ljrowhR0WENPosVaLItsdMxGK9NED90jQ6ja3QYp/RIqFle5fXjLXO2rEMnEWxR4UROGge1asSq/edAaGfY/jYExu1zOjHx8TVBr5oEetA3gN/pwBe6q8glb+gQquI7YHO4iHj/Q/jwwwMmGDb23K5fP6vDAGMM7733Hj8EciuNGTFiBGvXrmXjxo2kpKTwv//9j7fffpvXX3+dzz//nBEjRvDdd9/RpUsXFi1aRGVlJeXl5SxZsoQXXniBiIgInnvuOS6++GLuvfdenE4n5eXlfPTRRyQnJ3P55Ze3OlgBuxXRNVZ019D86OhoEhMTG12/5w03wMKFDD2iL0/ccz4hLidxW/I5YtIjUFrJppEZJPXrAq99T4bPT4/kDmTmFdMzyyoeW+mwk9i9G0NTu5CSkkJ/p5Mz/v1vMIb+b75J8WmnERUVRVHVJrJKZ+Kv1UatJWw46BzZg6iQ2BZvExsbW9ObSmxsLP3796ekpASn04nf7yc2Nhafz0fXrl0bHGOwJcJ9PXG4V2OaKfr1lXupeD+bcLfNen7aAt4qHx/e+wRzOnr46quvOProo7n11ls56aSTCA21urvb2X0gnx/2d7zljYyDWI89wsGhU44gKjai2XUNPuzSeDMimy0MSU7HZG9scHmIw4YzykdFiR3jr64y0eCK2KLC6XD7+diiYwHNGbYFDYYrV8J//mO9P/lkyv0+IgFnaSni8WCcTkJ3FgDgiY7COBxUxdRrCuAzuDesIQKsvjnbiN/vbzJoVOfAPvzwQyoqKli3bh1r167F6XRSWVnJmjVr8Hg8PPHEE80Gn/Lycnr16oU/0EB60KBB2Gw2TjvtNGw2W03fkxdffHFNgElJSbGeJxo/nbslM2/jHLLXbWXT6s04bA4GDRrEKaecUhOMWhPcqovrqmVlZXHhhReSk5NDeXk5l19+Oddddx3nnnsuS5YsAVpWJAyB53KB4XciF24g7rKnicotZNj2IpzAJptwVZUHR7mbo5Ni6Z5byDsbcinq3Zkea7cCIM9exYxLHiTUEfg+XHqp1an74YfT9U9/qjlWtLOL1UVbKyt128RJpDOldRvVkpmZycKFCzn00EObfPbbWk5bEjYJw2dKmlxvx6dbGo0FtRljWOMtYqZ7Gz+7c0j5KZKrHriT5557rsF2uXEDuzPuk3v5/vS7mg6IAvZwB4d9PJ6oPrHNJwRw2lKwSdNjdYYcex7u/z0O7oY7CRAbhEX78FYJnkqblUsUAYcdsdmQiFDCTzyU0NEDsIWFAd322UAADT0ymTx5Mv/5z39ISLBysA8++CAnnnjiPjnewSY4g+GcOXDNNValmW++sYpH09PhqacoemQqztgYXIVFJM/+laqYaCKyrRtcYYbVX2FVTAzlnZIIz8klfsFCSuM6EJ1jPT/KnziRbUuXtkmlBq/X22TAKC4upqioiHfeeYfQ0FCysrIoLCwkJyeHsLAwVq9ezYgRI+jXr1+T+/HbDb8XLqOUcuxOB3aXA0eIwwqCCCI2ksLiOb7LkYQ5rJtFpbeCX3JnUeDeiTF+aj8VksA2ca44DksaTahj7/vedDgcdfu4HDaM8ePHN1kkXFhYyNq1a1mzZk2d17Vr1zK9rIwjgaTcQo7dXog7NITiHp3Yefwwcq85idsDFWa25RURfu//6PjDEuJnraC8V2c2//0k8k4eQW9boARh61aoLha99dY66RaxEe/qz/bKxS1+1iY4SAgduMe90JSWltY0cI+OjuaOO+5o9Nlva4kIEY4hlHh+bTJ3uPPzLfjLGz/frb4yfqrcxkz3NmwijHV15qHYQ0mNieeQ3sOb7KCi87HDOOmXp5h700vkzlxsDUwT6Bjb5rI69U44qgv9pwwhul9sC8/MTqi9X/NrDR4N7z/d5Doi4HQZHCE+jB/8NgeuC07CntgBR3pS4O9qA1JAGqhUswcae2QCcP3113PjjTfuk+MczIJrpPva7QxtNoiOtp4XnnoqXH89xMSw5a+X4t+8mbgVKwnL3Y7N58MTGUFRr57cWVTEtC1bcft9OL0+Jvv9nAFEAxuAN1wuPunShdAGAsreFOk1Nt/pdDZ5Q/z111+ZPHlyTV+WU6ZMAeDWW2/F6/WSkpLC/PnzmxzKqKSqjPc3fEmlr4omqjlgQwhzhHJOjxMQDN9u+ZIqn7vJbQTBZXdxbOqJhO2DgFjbaaedxjXXXMPhhx9eE+guv/xyjjnmGHJzc1mzZg2VlZX06tWLXr16kZGRUee1Y0erVvC6orlkl62q0z1aS3RwdWZwx/EtWtcYP+tLvqDCm99sQBTsRDiS6BY1YY8G+/V4PJx88slMmDCBG264AYCYmBgKCwsREYwxxMTE1DSZ2RPGGArcX+P2b6GxHmiWnfojZYsLaj4X+N2s9BSwwlPICk8BO/1uRrs6cZQrmR6O6JrvuT3cxaAHrybtggktSkvZljw2vPM9JRtyQCCqezI9zh9HaHIExVVfYGjJoN52Qu39CXO0bJQV38YVVD77L6hqwZiETgeuy87G0ad7zbEs3UC6NLZVqzV2L3C73URGRv6hguHB2M6w7QUahDdFXCH4Q13kDx2y27KrEhOY0KkTOZWV5FRWsqiikq8D73PdVeR6vTi3byclJYWYmBhSUlJITU2tGeet+nNCQkKbdI3V0LO+1998A78xfPfdd/Tp06fJQOg3fj7J/K7ZQAjgx1DureTTzO+JCfE3GwjBavDs9rn5aev3HNflpD3O6bjdbtavX18T9BYsWMDXX3/NnDlzKCwspEePHsTFxREaGsqJJ55YE/A6derU7DFTIvqwtWx1q0oxbeKga+SAFq8vYqN71PFsKv2BMs+2RppaCIKdKGcKXSOP3qNAaIzh0ksvpW/fvtxwww0Yvx9/ZRWdO3dm5syZjB07lh9++KFmxIZmNdKJhZxyCh2uv47CsBDcvo3I9gKibv8Q1zfLsJVU4s3ohNOfyPeVblZ4CljpKeRXfzl/qb//ys18H5pCSa2/kdhs2BtpnN6QiNQEBv6r4crp0SHHU1L1HX4qaXhwb6v/1FD7wN1zhU104GG/4QZCr3qIyhduh9JyQn5chiNzB3h8+DuE4xmejq+/1Z2k65I/4Vi+AS55HFZthkoPJCfD6afDAw9A2L75kdhYU6f4+HieeeYZ3njjDYYPH85jjz1Ghw7t171iewquYNgCrj598WRng3/3nEC008khcY18UZxOUv/zMsXG+uLVnhYuXMj06dNrPhcXF9OpU6eaAOn1evn5559rnsHdfPPNdO7cmf/85z8888wzOBwOTjrpJB5++OFWnYvD4eDJp5/i6PHjKKuqZMBJR/KxewUfzVvOV8+/zPhTxuPxe3E2MpzS5tKtVPgqmw1q1QyGck8JTpu0bhtvGXkVuSSGN14k5PV6yczM3K04c82aNWzbto2uXbuSkZFBWloaP//8MzfffDOXXHIJXbp0wWazceWVV3LaaafVqfHaEmGOKBLC0smryMTfgmJMwUakI5bYkNYVb9nEQXrkeCp8eeRVLKXYs5ldD9UM0SHpJIQOINyR0NRumvTzzz/z5ptv0rdrNzJeeRPj8XJ5Uh/+bovjqomTsMVGEdGxAy+91PwoDXU00ImFvPEGHWbPxpM8GM4+Eue8VeR2imFFYjRHLN3CWLbwfUgsvZzJnBqWRnzxQvBXssnVGW+tGptVtrpNEPxeHzEDutdPwR6xSQTRIafg8WdT6VuBz+zACoAGsOOy9cTlyMAuTdQDaKQDD/vs2YTf9z/MIUOwrcrBHx+JPyEG++qthH61DM+o43H8624kczOc+yfrfjN6NHTuDJ98Ao8/bpWnPvbYPjnXxpo6XXnlldx5552ICHfeeSf//Oc/eeWVV/bJMQ82GgzriT7lVMpmzsS0pIijmghhQw7B0SGOOCAuLo6BAxsvUqmsrGTr1q1kZ2eTlZXFtddey6mnnkpxcTFvvfUWn332GXl5eYgIvXv3pkuXLmzbto177rlnt1xmhw4dGs3dbK8oYmWKh0vfnUqV3/rl6w8EqQl3XEqIzcFDiz7mT72OIj1q914uFuStwONveYNwAJfdj7+VJe9e42VV4QriQxPZsmXLbsFu7dq1bNq0iU6dOtUpzqzO5aWlpeF0OmuKAP/xj3/UFAGCFUg/+ugj5s+f37qEBfSOPZwqXzlFnu34TeMBUbAR5ohiYMfxe5TLFRHCHYmkRY3Db3z4jFUBxC6h2GTv+7MdYI/klxFnWd2ZRdatXPJS2HDsEWE4oiPpF9/K51T1OrEwo0YhmZmsPO443gkN5d4Fq3CL8OCEkxl2zNGU/zqXkBde5Ebj58cwK7dSfbVWh/eg3N54bii6bzpRvfZdJ/0iNkLsXQixd8EYD4YqwI4Q0rLcdxMdeMgllyAr12BcLmTJSut55YMPwWOP4/z4W746dBzTLr2U56t/eE+fbj26OecceP99Pvn3vzny1luJj9/7phWNNXVKStrVg9Ff//pXTj755L0+1sFKg2E9IWnpOLt0oWrjhgZzhw2RkBBizjizxccIDQ2le/fudO/enV9//ZVhw4bV/BqrLstfsGAB55xzDj169KiTy/zll1/YsmVLzWe3271bgExJSSEqoQO/ubMITYgmsmMMdsfuf+rqAPnGmh/5c6+xdIve9Y/h8/vIqWi6z8WGOJu5fxhjKMovYuvGHHIyc9iaab1uy8whP2sHHTp0qPMcb8yYMWRkZNC9e/ea6vON7ffSSy+lT0YGlw4eSd4b7+P3enHExvCrp6zZIuGm2MTGoI7HklmyhC1lKwCDz+z6kWDDAWJICutJz+hh2G3OPTpO3WPasUnz1f1bqmD2fFZe9yD+ysZ/5PnKKvBVVLLo3BsY8t4ThHVNbtG+3VVVfDt9OrNmzWLWrFmcU17OP4Beq1Zx/jnnwIIFuAYN4snXApWIOiTCCy8S7SnGYTN4/bt+OIwt/BWb8VNmDyczNJWNYbsCnz08lIxrz92T028RESfCXvzt6nfgMWiQtd8+fSA51Qr4Rx0Njz2OWbKEG6+8ks++/Rb/JZdg+/13ysaNI6JnT8ynn1LkdPJ6XBxH7pMz2/XIZP2GDexwOnjx9de5+uGHeOOXnzlmwEBSo6P5+OOPGTCg5cX7fzQaDBuQcNMtbLvhOvzl5VZ1+CaIy0XUhBMI7b9nX6LGyvLXrl3LsmXLePTRRwkNDeXRRx/liiuu2G370tJStm7dWidArl27lpmfzmNnTh4leQWUFRQTHhNFVEIHohI7EJUYR1RCXOBzHNEJHXi57CvuOOJ8Qu3WzaDK78Emgi9w/n6fn23rs9m0dD2ZS9ezdW0W/gY6MnbYGq8x7/X4yM3ajjPESXJ6JzqlJ9G5WzKHnzSKzt2S+etRVxIbvWfPK2Z+8y1vvvkmGZExfP36W+D3c116P45K7sL/LZvDcQMHUbF6PWG9Gx+GpykiNrpFDyEtaiD5lZvZUbkFj9+NQ5zEujqRFNZ9nwTB/cFTUMTKf0xpMhDW8Bt8ZeUs/9tdDPvipQZzuFu2bGHWrFkMW7uWDOCD99/n1e3bGT16NPfffz9HLF4MN9yAw++nT3U/vbX76w28FyA8OpSSEg9V4qQoJIotxmD37GSor5TBZasQDHf5K5nnySfMH8WAlx/j1SMH7HE7yP2udgce2dnW+4bO3RgGde1Kt3794PLLqVy0iIh582CeNQQVxx5L9sqV+yxZxmbjgltvYejo0fj9ftKPOZo5Ph9zb7udazM3EmK307dnL/732mv77JgHGw2GDXB26kSnhx4l545bMZWVmMoG2ivZbIjDQdSJJ9Phoov3+FiNleV7vV4KCgr47bffmDt3Lueccw4bNmzY7eYUGRlJRkYGGRm7BhZeW7SVpHWzdxWNen2U7iyiZPtOSvIKal43ZmZb77cXUJJXwOOOq+kaaCTu8/tZmbmKwtwC3IH2WqGRYQw46hC6De7JyFOOwBmy+80/NqTxZlF2u52E1AQiYxrO8URH7Vnj4qrcPJJfepflx0zEeOoW6xp3FQ/0GgJuYeM1t5Fy5/XEjBm1R8cBK8eWGNaNxLBue7yPtpbz4Te0rNuTAL+hKr+A4nnLiB4+gJUrVzJ79uyanF9ZWRmjR4/myEDljvPOO48L3nhj1/ZffGG9Op2QEmgLWVKr3WH1exFGTX+S2effzSzXWKrKKrm6YDaTYw+ja+ky4r1FJFRuZWhcP2479yqGP/5Pbr39NqZMmcJDDz20F1dkP6rVgUdT525E6JCeDl9+CZdeitNu55GJE+l39tkk33knQ7/7judcLa8o1JQKr5f7f55NZlISxz1Tt9nHiOuurXnvstv5uaiIs5JbViLwR6PBsBEhXbqQ+uL/UTbrJ4o+fB/fjh3gcFg5RZ+P8CNHE3Pa6YSk791NsbGy/NTUVM4880xEhJEjR2Kz2cjPz69pHNuUWdtW1ARCAJvDTnRiHNGJDbfNqiwtZ+uKDWydt4ots5fy/fff11nucDqIToilqrKKhV//zvr5q4lJ6kBsYgdik+KITexATOA1PKEDCZ3iCAltXZ+jYfZwbHtQQ9JXWkbmNbfh3VHQdLG2MRi3m+z7/o3j0buJGNy/1cdqqYYaN+/cuZNzzz2XzMxM0tPTee+999qk1p7x+9n6xjT8lS0bGcNr/KyuKGLpjgJWnnM2i0vyiY6OZvTo0Rx11FHcfvvt9O7d2/pRNnYsrF9ft2Z0vU4sGDZs1/yiIoiJgZ9/tuYNHEh4726M++whcr75jY+efJ3k0ghSY+OxV9jAC94QuObL14gbZvWcM2rUKD744AP2p4b+fnfeeSfTpk3DZrORmJjIZ1VV7BaqWnHuRV274nY6YcUKALwuF2tjYvjg3/9mxoUXwp130ruqilbUXGiQ3xge+vUXNhYW4mnmsY/b5+PjNauJDgnhuO77ppLSwSS42hnuIWMMvvw8fCWliNOJIyEBWxPPr1rD6/Va4/599y2FYTZOP3o85zxwM5sXrYCiMp5/+N/s3LyVcePGsXnz5hZVzLhn3rt4G6no4fN42b4ui63L15O9fB1bV6ynKGcHnTLSSenfg6tOPp/Rhx1BWloa8/KXMT9vOb5a+/JUeSjOK6Qwt4DC3J0Ubt9J0fYCCnMLKNq+k6LcAgq3FxAaEUpcUgdr6hQXeB9HXCdrXsdOcUTGRlpj2YmdAXGDyYjt2+rrl/fG++S98R6mquXdmYWkpdLrzWdafayWaGwcx9dee424uDhuueUWpk6dSkFBQZvkbtw5+cw/8XL87oaDYbnfy4ryQhaX72RJ+U5WVhbS2RnO4PA4hsQlc8nMD0hJaaSnm1pjPnLMMbt3YjFrlpU7GjkS5s2DgQNh8GB4911rnffeg7PPtpo8nXAC2/r2ZVVJCaPDInAsXQzAB0ceyVmzZtUc8pRTTuHcc8/lT7V68dmXGvv7paam1gxC/dRTT3H81KlkbNu2x+e++v77ufann/j6/vvhsMPA52Nz167M3L6d09xuoo3hE+DaLl2YM2cOnTrtWeP7BTk5PD7ndyp9Le883WW38/KJJ+FqoJ7BwUDbGe5HIoIjIRFHwr4fV8zhcPC3e29l+NjR+H1+Mk4cQ2liBDFHH8JPU1+id7++hLlCefKl51tcQ7F2IDTGsGPTNjb8toT1vy0ha9FqYpLj6dyvBykDezHyvONJ6J6K3eHAaXNw8oAT6eCyqpL379CL+Xl1h5V0hjjpmJJAx5SGc6hOsRHnMhTtKGJnbgE7c3eyI2cnO3MLWLtoHTtzrfc7c3ZS5fYQl2gFy4HdB9G1S9c6lYFSUlJITk5udGQL4/Ox4/3PWhUIATy5eVSsWkdYn56t2q4lGusPdtq0aTUDH1900UWMHTt2t2BYPQBvRUVFnam6x6GGpqaWVVRUULazkPx1y6j0eHEbH1XGh9vvx218uP3WqIG9Q2MYFB7HpI7dGRDegajAc2NxOhoPhLWtXAmrV1s1IQcMqNOJBWDVkrzxRqv4dPVqK4DceqsVCAF69oRzzyXqq684PD8fR3Q0jBrFrCFDmOlwcFbgMA888AAOh4MLLrhgL/9KjWvs73drrZ6DysrK9vrce5x1FmtffpmN8fHEvPk26y79CwN3FnC+3+BL7YI59RTumjaNBQsW7FVt0mlr1rQqEFb7ecsWjklP3+PjHoxaFQxFZDzW8EqJxphTRGQ4EG2MabqnZ9UgYwzvbZjPlm7RnPP2o3WW2Z0Ojr7zKsCqaDDLXsHI0gK6RDZftOYtc7NujhX81v+6GOM39Bg1iCGnHMXp915NWHTDz+z8xk9IrTaH4Y5QxiQPZ9a2eY3mNGtziJ1jUg7DIT4WyByiO0aT3i+t0fXdFW4Kc4tIcHfCW+Bny5YtbNiwgVmzZtVUBsrNzSUuLm632rIpKSnElVUiBfkk+oVIR8srr5gqDzunfUVKn2uaXK86MDUXcGovnzNnDnl5edx0001UVFSwZMkScnJy2LhxI5deemnNeuvXrycjI2O37W02W52+WhuaGluWkJCw23JHZRWb73mOEI8fl80aI7D2q0vs2Bv5kWVrbnitFnRiAUBSErz5ZuPLU1PhtddYWq+XlNlTplA9XPTrr7/O9OnT+f777/e4c4aWaKxCG8Dtt9/OG2+8QUxMDJctXgwteGTR2Lk7gJvun8rw0UdRUeWh6wnn0O2kSdjE+vEdF+4i9+Np+FrbTqmWInclawt2tno7t8/H5+vXaTBsjIj8HbgO+D+o+bFWATwFHL7vk/bH9+PW1czOWU+Vv+lAY4AKn4fHl37P5GEnEx1St4jW7/czf/58vv76a77++mvmLphPysCe9DhsMCPPnUB8t5QmbyCXXHE/3RZYNddMvd40+t1wA/5OQ/k5ZwEh+QUc9th/SZu1GGdZJYXdkpl3+WlsnDAKm9gY23kkPWOs4Of65gc6nXM5YgxlKfF8MfOJOscUhPDwcI4YcRTdohuv4enz+cjNza3TvGTLli388MMPbFqyjKy168ipLEcEkkLCSAwJJdEVSpIrjCi7k0q/lQNy+/24/T7rs8+HJ3MJ8vVHTeawgFYHpurx/Tp27EhYWBhlZWWEhISwZcsWrr766pr1JkyYwKeffrrb/up3QL63jN/PnOen4yloeMy/pkQf0vpi673RUI9J//3vf/nqq6946KGHmDlzJuH7eazQxiq0gZUzfeCBB5gyZQrPPPMM99xzzx4fZ/qKTKaVhTH4tifx+30Yv5/y4kL8fh/4/RT6fPT/x/3c+elMrhnVFxsGn8+H1+ut89rQvOrX7KIiNq9YgdtThfH7rclnvfr9PiKTk+k8vOHSxJ0NVRr8g2vNf94/gHHGmEwRuTkwbxXQe5+nKgh4/T4+3bS02UBYm9vnZcbWNZyaPoht27bxzTff8PXXX/Ptt9+SkJDA8ccfzx133EGnQT34dOuCOpVoWqK8Vw/Cjzt+t940BsyeTefuJ+C44HCiF61gR0ZXdh6ZRvcvf+H4fz7NiqgUOl94FbGuQBXyLVtIvuIWK7AGhr9yiBMRq/6RwU96VHd6xfQhKiS6iRRZNVA7d+5M586dGTGi7pCYBdO/ZdtT/4e/opJSn5ft7gpyqyrZXlVJrruCQm8VLpudaIfTygXZ7LhsNkJtdqK7p9PthiuazG05na1vKlHdB+TNN1v/IlOmTKFXr15s3ryZoUOHkpyczLZt20hOTq4ZTml/EpuN5D+fStaL72IaeW5Y3++l23kydyWOoiVcPjWMW265hffff5/JkyezcuVK5syZw/BGbqJ+v79FN+rGXq+++mpGjxlDRaWH+G5D+euUaSyY9hj4vfQfNJSwEDu9evXk4osv3qPjNLdObm4uS5cu5YwzzsDr9bJmzRr8fj/jxo2rWae8vJyVK1fy2Wef7fFxAMRuR8SG2O1W7fTAe7HZEJv1+rvdzochTjpFR2K323E4HHVeG5pX/VpYXs7SJYsp3pZTp3JZaIcOxKSn42iiturBWpdkb7QmGEYB1dUeq6+UE2ucU9VKC3dsqekNpiV8VR6yl67h3hf+x13LMtm0aRPjxo3j+OOPZ+rUqXTtuqtxst/4+SZ3aauDYciowxvtTSPukktg0QqMy4V3xo+ERoVROXkqEY89Rb9n34G/Bn4feb1w7rkQEYGcfz48/TThjgjGdD4Gr9+Dw+YkJiQWRyNdwLWGIz7OunGIEOVwEuVw0iOi6eAKgAgxhx1O6rhxLT6W3+9v0c02NjaWFStWMG3adLIzK3ni8ec4YdzFxMWkc+01N3Hl1Zfw3/++zaBBg/j888/36Eba2nWryivIy5yL1+vFj8FvjDUevbEmP7tevX4/G6pK6BwWRWh0JHfffTfPPfdczbGcTifjx4/HZrM1epNv7Obckht4aaWfcqKRcDvbc7PJ2/4BEQndrL+z3YFbbBR7Qvjyyy9btX+Xy9WidcEa3eTY8eMpMOH8PPcOhp/+F8LDQhnaL4PDeiTwxWfTiI2N5ZFHHmn1ufoRznt3BuXeljd1CXXYuefYoQxLbbhY1hjD1q1bWbx4cZ1p06ZNuJKSSBszhpj0NGLS04lNS8PVzGDeADH7qFnHwaQ1d6SfgFuAB2rNuxb4cZ+mKEj8nLMet6/xYGWMoXhLLllzlrBl7hK2LV5FbNfOdBs1hBsfup+zxh3faJGaTWxc2PtoXlrxTbMB0fj9NR0LGJ+PwsJC68YWF0fE+ecT+cILmM8+Y2dKCh2ByvR0craX4NtWSEVyVzIAs2QJs778kiqnkx4vvEDanDnMfvBBEubNoy9QXlbGlx98tc9u7tWvnqoqChf/gs/rxWusbuB8xl9zk6++4fuNwVv7VcC2eTH+155t8fGg+Zu8w2ENa1Va4ubMM08HwOWMYvpXb2OMYcGiWXw87T3CwkIZMWIYzz77bIsCRFM32MZu8vVfK/oMJPft6YjHi11s2AC72LAj2EWwBV43ukv4vDibl9/7HxFdk3nllVcQEa655hrsdjuTJk3i7rvvZvjw4Q2me286oH9v5gZe/WYNyZ6mS0tCnXYGDurEzecM3ufPD40xLN3h46bJd+D3+4kbNoGd6WOZ+9Zkvn3n/0BsdO3alU/feY1e3Rt/Ht6YH9dvxbQyzZVeH+8u2cCw1ATcbjcrV67cLfDZbDYGDx7M4MGDOemkk7jtttvo06cPd/48mw2Fha06nstuZ4I2rWhiRZFk4DMgHkjBGrWoGDjFGJOz31LYiLZsWrE/3DP/c7aWN/wcZ9X0GSx8axolW60xEsVuIz6jG67IcPAbEl2RhIm92SBS5amixF2B3+fD7/Nbr34/ft+uZwfGGGYARwFvORxcHR5ec3O71O1mSmAon/9FRTGppIT5YWFc0qsXdrudEWVlvLhmDQBnjRpFn/Jy7l2yhJf69uWLnj05f80aJq1eTV54OP84/fQW3+xbEyBKZ/xCxe8LEJ8fhwg2ERy1b/YidSYbQmh8R7o/eR8Oh6PFaWnJTb6osIL7bv6Kgh3leJv45R/isjPqyHQuueawfXszb2IkBW64gZ1L1rLq+qk4PRV03bSYuNI87H4v5SGRZCX0pDC5OzPKtrO6f2deu+pvcM89uOfOBbcb11FHwcMPM/aGG3j00UcbLSbdUwvX5XPbq3Nxe1qWYwp12vnrCb0548h91/mB3xjunr6CH9dsp7KJdDjtQnJMGK/8eTixYa0rSv/7tF9YmVfYonWrigsp2bKR0qwNlGdnElu8nQ3r19G9e/eawFc9NTYCy6/Z2Tw3f16rapQ6bTb+c+JJROzBY4IDwX5vWmGM2SYiI4CRQFesItM5xrSmawtVzd5EA/OEvt0Z8ddzsNlsiN2G2GzY7HbEbsPlcHJS+kB6xyW3KJhgEzaU5PL7jnXkV5XgdDgxAnHh0YxJ6c+QhO64xo2HmTP50wUX8Kfa3THdeKPVa77TyaR//hMmT2ZYRgaLq0eK/+wzqyq5CB98+y38+c+wYgVXdO/OFX5/zXOKBGN4u6gInn56V3dV+4j3pJNZd+G1+IpaNv6euELocveNRPXdt5VDvB4fU+/8lh35Zfh9Tf/ArHL7+G12Jh06hnPm+UP2aTqARkdSiJs9m5Ez38A/+BBCirIpc0VRFp5IfGE2fbcsoPjiM9ncrwfe/70DEyZAVRW5w4ZRUFDA4O+/h6OOonO/5ge43ROvf7u2xYEQoNLj480f1nHa4enYbPvmB8UzM9Y1GwgBPD7DtsIKrnxnAW9ePAJHK3LD20rKd99fWQnl27dSnptN6ZZMSrM2Upq9Eb/HQ2SXbkSldiex3xDumHQKJx05qsk+eusbkZxMUkQEW0pKarpWbIrLbue0jIyDNhDujVY9uDFWNvL3wKT2QqfwaLaUFTT41LBjj6507NFwz/whNjvHDxlPakTLey/pShfGMhyf34/b7yHE5sBha2YUhFb2JEJkpFXc6vXC55/X3VdFhTXv/vtbnOaWcnSIJf2p+8m85jZ8ZWU0NWSGuELodPVfiDpi5D5Px/zfs9iR13wgrFbl9vHFJys4/rR+hEe0rreeZjUxkoLjkktg/RpwuQjL2kCI04VMuR8efpjoz96n64nPI0uWQFUVDB7M2xMnAjD43Xdh8WLO3rJl36YV2LqjnFVZha3ezu3xMXdNHof22fv2v4XlVfxv3haqfC0LyB6/YUtBBbPX7WBsRvNNLEpLS1m3bh2bf5vBjuzNVORupXx7NuW5W/F7PYQndiYsKYXIlDS6HHMKkV264eoQX5Pbi3A66DtwcKsCIYDDZuOuI0dzx8yZ5FWU422iFxqX3c6YLl05q/f+r9h1IGoyGIpIFs0PA40xZt+NqRIkjuncm8U7sltdySXOFdGqQFib3WYj3NbEg/E5c+Caa3bvTeOpp6zeNIYPt3rTGD16V28aAHfcYb1+8knd/U2eDPfcA2lp1j73k9BuXen+yuPkPPMKpb/OA5FdNSdtNsTpICS1M52uvIjIkYfslzRM/3AZ7srW/S1FYPYP6znulP3YhKGRkRTo0wdbQjw2gCOPhIcfhiVLGNGvH3MDz5j8W7fy+Ysvc+6fb6Ji42bCgL5FRZTu4yTOW5PXaOfuTalw+5i1NGefBMNPFm9ttE/dRo/v8fH6b5k1wbCyspINGzbUDDtWeyiygoICevToQUl4HMQlEpsxgOQjjyM8qTMh0Y0Pw1bN6/cTG7ZnlVqiXS4eOvpo3l6+nBmbNyFQp9g01G4nIiSEs/v05Zi0tP3ajvNA1lzOsHafRyOAi7DaFW4C0oBrgDca2E41o1tUR2JDwtheWdL8ygEhNjsTuuyfYipg73sSaUchSQl0ve9mvIVFFH49A3dmFqbKgyOxI7HjRhPac/91rL0jr4xtW1pWTFtbldvHD1+v2b/BEFo8kgLG4CgtpdvUR9l21d9IzstjNnlw/99qVrWVlXHU2OM45JDBzJ61b+rOlVZ48ARyZMYY3CV5lOSsozhnDSU566gq24nN4cLudO32Wra4A4WLuxMeHt6qKSwszHqMEPDRomzcLajhaXw+3AU5uPO3ULkjmy07tnD062VkbljPtm3bSEtLqxlzc9iwYUyaNIlevXqRmpqKzWbj/SUbeG3+GtwtzIFWS4oKo3P0nrexDHM6uWzIEP48YAA/b9nCuoKdVHi9RLtCGZGcTP/4+KANgtWaDIbGmJnV70XkWWCCMSa71rwvga+AfTMccxARES7uPYonlv7QoraGDrGREhHLyITW12Br1r7qSaS+yZOtqQ05YmOIP/e0Nj1mYUEFDqcNTwO1ICsqi1i29jPCQjsQHtaB8FBrCgvtgNPhorioDRo3t3AkBUTIcdv5cGUC7/7pVQ5fN5vE0u1sj0ykb+4qjl7/E96kPhx34r2EOO3M+GUTYw/fu+9jTk4OS+fOYOPPP1K4zQp+AkQl9yIqqRepw04jNCoen7cKv9eNz+Pe9epxE5fgwuVyUVJSQm5uLuXl5S2aKioqCAkJqQmOO90CThe26ikktOa92J14ivKozN9CVdF2nFEdCY1PwdUxlehOXbngnLGMHTGY9PT0ZjtNOL53F16dv6ZV1yjUYWfSoD0beqw+l8PBMenpQde7TEu05plhZ9ithKQUq2ap2gM9ohP4W9/RvLhyFl6/v9F2hyE2O53DY7huwNHNP+tTba6pChwiNsLDOlJRWcDOokzKKwooryykorIAm81JZEQca8f/HykpKXTu3Lmmq7nq90lJSXvXK00rnv36+g/gtqfnUlzixo6Db3sfC0B0ZTEXLPgfAAtShgBQ5fHx/OvziY0JZUj/JFpi586dzJs3j3nz5jF37lzmzZtHWVkZvfsNRkwSnQceR9Rx1+CK7NiiXEpoiJ2/ntCHM45Ib/n1CDDGUFlZWRMcz3zuR8rKyvFXWcHWX2UFW7+nEr+nipjeI3B1TMUVl4zNuesZb0SInaOPHU6PhMgWHTfK5eT0ful8unITlQ2MB1qfTYTY0BCO6h6cwyq1pdb8l30KfCoi9wNbgC7ArYH5ag8NiOvM7YecwFdZy5mXvxl7YEBdG9UPzkM4LrUfR3bqgVMD4QEpLj4cbyNt40JdUfTvecJu840xVHnKiOno44wLerJ161ays7NZtmwZX3/9NdnZ2WzdurVm2K7GgmX1a2xs7K7nbnv47PfX4y+itKgKY+D/3v0bi1MG4bE5GZq9kJjKYrJiUvi8365zqfL4ePGN+Tw39YTdgldJSQkLFiyoCXpz584lLy+PoUOHMnz4cCZNmsSjjz66q0PsB38gr5W5ZL/fcNywPfstLiI1PQ117NiR9O692Lhj95qezfH4/CREte5Z3mUje7O9rILfNm9vMiA6bEK0K4THTh6Fy6H/+/tba4LhFcBk4AWsXOI24D1gzzvoU4BVs/Ti3odxbo9hrCjIodTrxiE2ksKi6RGtZfkHupjYMHr0TmDVstwWbyMiREfH8ue/jOTIYxovAvN4PHX6Zq0OmjNmzKgzz+Px8KMxHAqwciX+VauoCg2lIiWFkqOPxnfddSTHxxMq0uCzX//NN/Pir+F4vNYIIJlx6RySvZiwqgoKw2L4ss9xvHPIuVQ6w+qkr6C4ksXLs6koyaqT49u0aRODBg1ixIgRnHjiidx9991kZGTUeU5X27lHdec/X67G3UyD+2oOu3D04M5EhO6bJgCThnfhiR/WUtGK5h0CDE+LI7qxNDTS7tN2yincfv31vNsxmv8t3kBk0U4ufOc/jFw6l/DKCrYkd+F/J0/Cc+ZErjuiv1Vx5tRTYf58yM+HsDDo3t2qGHXFFXt97sqi4xkqtQ8snp/Ns4/81Koapa5QB8+8fjYhrr3vmq60tLQmUNYOmrXnbdu2jaioqN1ylykpKVR6w/lyRi5ij8EVFo000g7W7/NSXLCZgvz1FO5YT2H+espLcxg4oD/Dhw9nxIgRDB8+nP79+7eqb1efz88///M7qzYXUtVMRRa7TYiPCeU//xhNZCsbvTemvMrL+KdmtagSTbUwp53HzxrE8LSGB83ebbzH6naf1Tn12bPxJSdTPnQ4UYsXsi29B7k9Mhg48zvsXg988AEEmrbQv79VE7hDB1i8GH75xZr/6adWpwqqxn5vdC8ixzS2TIdwUsFu4CGd6ZERz9qV2/G0IHcR4rLzp0uH75NACBAZGUlGRgYZGRmNruP3+8nPz98taM6bN48ly9axZm0m5aU78HjKCQ2LJTQ8jtDwDoSGx4HxU5i/geLCLMIjE+kQ34PY+O6kZxzLyBFDefiuCXuVfrvdxtRLRnLXG/NYlllAZVXDOcSwEDsJMaH8+4pR+ywQAoSHOPjHMT158od1VLYgILocNoZ2jWVY1xY0c2qi3af9kkuIWrwQXC6SF80nOSbGqqE9dSrcd9+uYLi81riifr8VFIuLYd261p+salBr/hNfrvc5AQjBen4YfB3ZqeDURNHXP67+O488MY9N63fiKilg0vJ3GJS7hFBvJdsik/ks41TmpowkxGXnvGPiGfPKXXDVPNi2DRwO6NPHKr4866wmk7CnbDYbiYmJJCYmMmTIkDrLvp+1kf/8dyFutw+fz0NleUFg2klFuTUmXkq3I4jt2A2Hs27Db4dz33QaEBpiZ+olI5m/Lp//zVjPsswCnHYbIuDx+umSGMl5Y3swekAnnI497wO1MWcP7UJRhYfXft3UZEAMddgYkBLDQ6cPbP0jjCbafdY0YTo8MCLekiVQVgYRgfFHn3/eCooLF1qBsF8/OP/8Vp6lakxrumOr01BLROzAHUDLG8op9UfRQJdnrjfe4JYZP/HdohL6XHYa6fnryIruwrLoLozM/p1r5j3DB6m30/e2q+lfsBques+qxHL00fDTT/D773DOOfDVV3DccW16Oh3jwrEFbux2u5OIqEQioppvzC4CSQkNDxa9J2w2YURGAiMyEigsdZNXVInfb+gQ5SIxNqz5Heyly47oTv/kGF6cvYG120vBGKp8BoddcNhsRIc6uHBUGhMPSWlVN2x1tKLdJ4WFu4Lhhx/C999b751OOOEEq+cntU/scRmNMcYnIg9g5Qz/ve+SpNRBoJGiL8cN/+D4Sy6B/HX4Q1ysfv59yhxhZL3/DN0++A9nbZwOg++HbD+sWgW9eln7KC6Gzp2tnMDnn7d5MBzYJwG7vfU395AQOxPG7ps2cPXFRrqIjWz7oYQO696Rw7p3JHNHGb9n7qSk0kuo006fpEiGdW2+t5hmtaLdJ7WHW/ruO6ubvMWL4cwzrX6D8/Lg9df3Lj0K2ItgGDAe0I66VXBrpOjL1rcPx55/qLVO2CnwwX92FX2l1GsSYIyVUwDo0qUNE2+x222cOK4HH3+xGk8rKpF0iA6ld49GKpAc5NI7RpDecd/leoE96/O3pMR6FYGQEBgxAnr3hi1bYO7cfZu+INaaCjT1+ykNB0KBq/d1opQ66Oxp0RdYwfHss61f/YccAlde2SZJru+kY3vx7cyNFBZX0pJK5iFOO3/781Bt+tOcve3z98MP4a674LDDoGNHWLYMZs2ylp2wextWtWdakzP8U73PZcAaY0zrO2VU6o9mT4u+srKsNmSLFlmVcz7+uG6gbEPRkS7uv2Ust035kdKyKnxNjMAR4rRzxYVDGTKgUxum8CC1t33+ZmRYwfOHH6CgAEJDYehQOO88az9qn2hNMBxhjHm0/kwRucEYo88MVfDak6IvsCrMnH465OTA3/5mjffYzuPIdU6K4vF7juOtD5cy+/csxAZut9XMwW4X7Dahe1oH/nzWIPplxLdrWg94+6rP38MPtypYqf2qNSPdFxtjohuYv9MY0+YPDbTRvWoX9RtS1y/6mjXLyhmOHGkVfQ0cuKvoy+OB996zfvGvWGEFzcpK6xnhmWfuOsbIkQdElfmKCg+z52aRva2EKo+Pjh3COXx4KslJWoNRHbj2W6P7Wo3t7SJyNNQZeqw72rRCBaO9Lfravt0KhGAVlT755K59X3TRAREMw8KcjB+jTYhVcGg2ZygiGwNvuwKbay0yQA4w1RjT5p11a85QKaVUffstZ1jd2F5E3jDGXLgniVNKKaUOZC1uZauBUCml1B9Vk8FQRFbWep8lIpsbmlpzQBHpJSKVIvJWrXnjRGSViJSLyI8ish+Gc1dKKaUa1lwx6V9rva/fznBPPQvUdJsgIvHAR8BlwGfAfcC7wKh9dDyllFKqSU0GQ2PM7FofE40x79dfR0Ra3MW+iEwCCoFfgJ6B2WcCy6v3LSKTgXwR6WOMWdXSfSullFJ7qjU989YfwqnaSy3ZWESigXuBf9Zb1B9YXP3BGFMGrA/Mr7+Py0VknojMy8vLa1GilVJKqea0pJ1hdUMjm4h0Y/d2hpUtPNZ9wMvGmKx6fRlGAvUjWxEQVW8expiXCATf4cOHt6y3AKWUUqoZLemObR1Wm0LByrHVlgNMbm4HIjIEOBY4pIHFpUD9nm2i0cb8Siml2khL2hnaAERkpjHmqD08zlggHdgcyBVGYvVo0w94AbioekURiQB6AMv38FhKKaVUq7SmneGeBkKwijZ7AEMC0wvA58AE4GNggIhMFJFQ4C5giVaeUUop1VZaM56hA7gKOAqIp9azQ2PMmKa2NcaUA+W19lUKVBpj8gKfJwLPAG8BvwOTWn4KSiml1N5pTW3Sx4G/AT8Bw4APgUTgh9Ye1Bgz2Rjzp1qfvzPG9DHGhBljxhpjMlu7T6WUUmpPtSYYngmcYIx5EvAGXk8Hjt4fCVNKKaXaSmuCYTiQFXhfISLhged6DdUQVUoppQ4arRnpfiUwApgDzAMmi0gxkL0/EqaUUkq1ldYEw+sAb+D9DcDzWE0k/troFkoppdRBoMlgWGuU+4bmPRh4DdnXiVJKKaXaUnM5w8b6I63NYHXLppRSSh2Umhu1oltbJUQppZRqL62pTaqUUkr9IWkwVEopFfQ0GCqllAp6GgyVUkoFPQ2GSimlgp4GQ6WUUkFPg6FSSqmgp8FQKaVU0NNgqJRSKuhpMFRKKRX0NBgqpZQKehoMlVJKBT0NhkoppYKeBkOllFJBT4OhUkqpoKfBUCmlVNDTYKiUUiroaTBUSikV9DQYKqWUCnoaDJVSSgU9DYZKKaWCngZDpZRSQU+DoVJKqaCnwVAppVTQ02ColFIq6GkwVEopFfQ0GCqllAp6GgyVUkoFPQ2GSimlgp4GQ6WUUkFPg6FSSqmgp8FQKaVU0NNgqJRSKuhpMFRKKRX02iwYishbIrJNRIpFZI2IXFZr2TgRWSUi5SLyo4iktVW6lFJKqbbMGU4B0o0x0cCpwP0iMkxE4oGPgDuBOGAe8G4bpksppVSQc7TVgYwxy2t/DEw9gGHAcmPM+wAiMhnIF5E+xphVbZU+pZRSwatNnxmKyHMiUg6sArYBXwD9gcXV6xhjyoD1gfn1t79cROaJyLy8vLw2SrVSSqk/ujYNhsaYq4AoYDRW0agbiASK6q1aFFiv/vYvGWOGG2OGJyQk7O/kKqWUChJtXpvUGOMzxswGUoErgVIgut5q0UBJW6dNKaVUcGrPphUOrGeGy4HB1TNFJKLWfKWUUmq/a5NgKCKJIjJJRCJFxC4iE4DzgB+Aj4EBIjJRREKBu4AlWnlGKaVUW2mrnKHBKhLdAhQAjwL/MMZMM8bkAROBBwLLDgUmtVG6lFJKqbZpWhEIeEc1sfw7oE9bpEUppZSqT7tjU0opFfQ0GCqllAp6GgyVUkoFPQ2GSimlgp4GQ6WUUkFPg6FSSqmgp8FQKaVU0NNgqJRSKuhpMFRKKRX0NBgqpZQKehoMlVJKBT0NhkoppYKeBkOllFJBT4OhUkqpoKfBUCmlVNDTYKiUUiroaTBUSikV9DQYKqWUCnoaDJVSSgU9DYZKKaWCngZDpZRSQU+DoVJKqaCnwVAppVTQ02ColFIq6GkwVEopFfQ0GCqllAp6GgyVUkoFPQ2GSimlgp4GQ6WUUkFPg6FSSqmgp8FQKaVU0NNgqJRSKuhpMFRKKRX0NBgqpZQKehoMlVJKBT0NhkoppYKeBkOllFJBT4OhUkqpoKfBUCmlVNDTYKiUUiroaTBUSikV9NokGIqIS0ReFpFNIlIiIgtF5IRay8eJyCoRKReRH0UkrS3SpZRSSkHb5QwdQBZwFBAD3Am8JyLpIhIPfBSYFwfMA95to3QppZRSONriIMaYMmByrVnTRWQjMAzoCCw3xrwPICKTgXwR6WOMWdUW6VNKKRXc2uWZoYgkARnAcqA/sLh6WSBwrg/Mr7/d5SIyT0Tm5eXltVVylVJK/cG1eTAUESfwNvB6IOcXCRTVW60IiKq/rTHmJWPMcGPM8ISEhP2fWKWUUkGhTYOhiNiAN4Eq4JrA7FIgut6q0UBJGyZNKaVUEGuzYCgiArwMJAETjTGewKLlwOBa60UAPQLzlVJKqf2uLXOGzwN9gVOMMRW15n8MDBCRiSISCtwFLNHKM0oppdpKW7UzTAP+BgwBckSkNDBdYIzJAyYCDwAFwKHApLZIl1JKKQVt17RiEyBNLP8O6NMWaVFKKaXq0+7YlFJKBT0NhkoppYKeBkOllFJBT4OhUkqpoKfBUCmlVNDTYKiUUiroaTBUSikV9DQYKqWUCnoaDJVSSgU9DYZKKaWCngZDpZRSQU+DoVJKqaCnwVAppVTQ02ColFIq6GkwVEopFfQ0GCqllAp6GgyVUkoFPQ2GSimlgp4GQ6WUUkFPg6FSSqmgp8FQKaVU0NNgqJRSKuhpMFRKKRX0NBgqpZQKehoMlVJKBT0NhkoppYKeBkOllFJBT4OhUkqpoKfBUCmlVNDTYKiUUiroaTBUSikV9DQYKqWUCnoaDJVSSgU9DYZKKaWCngZDpZRSQU+DoVJKqaCnwVAppVTQ02ColFIq6GkwVEopFfQ0GCqllAp6bRYMReQaEZknIm4Rea3esnEiskpEykXkRxFJa6t0KaWUUm2ZM9wK3A+8UnumiMQDHwF3AnHAPODdNkyXUkqpIOdoqwMZYz4CEJHhQGqtRWcCy40x7weWTwbyRaSPMWZVW6VPKaVU8DoQnhn2BxZXfzDGlAHrA/PrEJHLA0Wt8/Ly8towiUoppf7IDoRgGAkU1ZtXBETVX9EY85IxZrgxZnhCQkKbJE4ppdQf34EQDEuB6HrzooGSdkiLUkqpIHQgBMPlwODqDyISAfQIzFdKKaX2u7ZsWuEQkVDADthFJFREHMDHwAARmRhYfhewRCvPKKWUaittmTO8A6gAbgH+FHh/hzEmD5gIPAAUAIcCk9owXUoppYJcWzatmAxMbmTZd0CftkqLUkopVduB8MxQKaWUalcaDJVSSgU9DYZKKaWCngZDpZRSQU+DoVJKqaCnwVAppVTQ02ColFIq6GkwVEopFfQ0GCqllAp6GgyVUkoFPQ2GSimlgp4GQ6WUUkFPg6FSSqmgp8FQKaVU0NNgqJRSKuhpMFRKKRX0NBgqpZQKehoMlVJKBT0NhkoppYKeGGPaOw17RERKgNXtnY4DQDyQ396JaGd6DfQagF4D0GsA0NsYE9XajRz7IyVtZLUxZnh7J6K9ici8YL8Oeg30GoBeA9BrANY12JPttJhUKaVU0NNgqJRSKugdzMHwpfZOwAFCr4NeA9BrAHoNQK8B7OE1OGgr0CillFL7ysGcM1RKKaX2CQ2GSimlgp4GQ6WUUkHvgA+GInKNiMwTEbeIvFZv2TgRWSUi5SLyo4iktVMy9ysRcYnIyyKySURKRGShiJxQa3mwXIe3RGSbiBSLyBoRuazWsqC4BtVEpJeIVIrIW7XmBcU1EJEZgXMvDUyray0LimsAICKTRGSliJSJyHoRGR2Y/4e/BrX+9tWTT0SerrW81dfggA+GwFbgfuCV2jNFJB74CLgTiAPmAe+2eerahgPIAo4CYrDO+T0RSQ+y6zAFSDfGRAOnAveLyLAguwbVngXmVn8IwmtwjTEmMjD1huC6BiIyHngI+AsQBYwBNgTLNaj1t48EkoAK4H3Yi++BMeagmLAC4mu1Pl8O/FLrc0TggvRp77S20fVYAkwM1usA9Aa2AecE2zUAJgHvAZOBtwLzguYaADOAyxqYH0zX4Bfg0mC+BrXO8SJgA7taR+zRNTgYcoaN6Q8srv5gjCkD1gfm/6GJSBKQASwnyK6DiDwnIuXAKqxg+AVBdA1EJBq4F/hnvUVBcw0CpohIvoj8LCJjA/OC4hqIiB0YDiSIyDoR2SIiz4hIGEFyDeq5CHjDBCIfe3gNDuZgGAkU1ZtXhFVk8IclIk7gbeB1Y8wqguw6GGOuwjq30VhFIW6C6xrcB7xsjMmqNz+YrsHNQHcgBauB9Wci0oPguQZJgBM4C+v/YAhwCHAHwXMNABCRrliPj16vNXuPrsHBHAxLgeh686KBknZIS5sQERvwJlAFXBOYHXTXwRjjM8bMBlKBKwmSayAiQ4BjgccbWBwU1wDAGPO7MabEGOM2xrwO/AycSPBcg4rA69PGmG3GmHzg3wTXNah2ITDbGLOx1rw9ugYHczBcDgyu/iAiEUCPwPw/HBER4GWsX4UTjTGewKKgug71ONh1rsFwDcYC6cBmEckBbgQmisgCgucaNMQAQpBcA2NMAbAF67zrC4prUMuF1M0Vwp5eg/Z++NmCh6MOIBSrJuGbgfcOIAEr6zsxMO8h4Lf2Tu9+vA4vAL8BkfXmB8V1ABKxKo5EAnZgAlAGnBZE1yAc6FRrehT4IHD+wXINYgN/++r7wAWB70HvYLkGgetwL1Zt4kSgAzALqwg9mK7B4YG/fVS9+Xt0Ddr9hFpwwpOxfgHVniYHlh2LVZGiAquGWXp7p3c/XYO0wHlXYhUBVE8XBMt1CHzBZwKFQDGwFPhrreV/+GvQwDWZTKA2abBcg8D3YC5WkVch1g/E8cF0DQLn6QSeC1yDHOApIDTIrsGLwJuNLGv1NdCOupVSSgW9g/mZoVJKKbVPaDBUSikV9DQYKqWUCnoaDJVSSgU9DYZKKaWCngZDpZRSQU+DoVL7iYhkisix+/kYpSLSfR/uz4hIz321P6UOFo72ToBSas8Zazw3AAKDX28xxtzRfilS6uCkOUOllFJBT4OhUvuZiLhE5AkR2RqYnhARV2DZ2MB4dP8Uke0isk1E/lJr244i8pmIFIvIXBG5X0Rm11puRKSniFyO1U/nTYGi089qL6+1/msicn+tz/8KHHOriFzSQLofFZHNIpIrIi8ExsxT6g9Hg6FS+9/twCiscecGAyOxxp6r1gmIwRqf71LgWRHpEFj2LFZnxJ2wBjG9qKEDGGNewhrn8mFjTKQx5pTmEiUix2ONfDEe6IXVn2NtD2ENIj0E6BlI313N7Vepg5EGQ6X2vwuAe40x240xecA9wJ9rLfcElnuMMV9gdcLeOzCi+UTgbmNMuTFmBbsPV7M3zgFeNcYsM9Zo4JOrFwSGDPsrcL0xZqcxpgR4EGvkEKX+cLQCjVL7X2dgU63PmwLzqu0wxnhrfS7HGqoqAet/tPao9vVHuN/bdM2vl65qCVhDRs234iJgjRlo34fHV+qAoTlDpfa/rVjDcFXrGpjXnDzAC6TWmtelifUbGoKmHCuoVetU6/22evvrWut9PtbwN/2NMbGBKaZ27VWl/kg0GCq1/70D3CEiCSISj/Xc7a3mNjLG+ICPgMkiEi4ifbBG9m5MLlC/zeEi4HwRsQeeER5Va9l7wMUi0k9EwoG7ax3bD/wHeFxEEgFEJEVEJjSXbqUORhoMldr/7gfmAUuwBiVeEJjXEtdgVa7JAd7ECqzuRtZ9GegnIoUi8klg3nXAKViDwF4AVM/HGPMl8ATwA7Au8FrbzYH5v4lIMfAd1ojySv3h6OC+Sh1EROQhoJMxpsFapUqpPaM5Q6UOYCLSR0QGiWUkVtOLj9s7XUr90WhtUqUObFFYRaOdge3AY8C0dk2RUn9AWkyqlFIq6GkxqVJKqaCnwVAppVTQ02ColFIq6GkwVEopFfQ0GCqllAp6/w80XTrAXt5UIwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "<Figure size 504x504 with 1 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "#####################################################\n", + "# Plot pmin track\n", + "#####################################################\n", + "plt.rcParams['savefig.facecolor']='white'\n", + "fig = plt.figure(figsize=(7, 7))\n", + "plt.plot(df2['lon'], df2['lat'], '-', linewidth=1, color='k', label=exp)\n", + "plt.scatter(df2['lon'], df2['lat'], s=200, c=df2.time, cmap='Spectral_r')\n", + "xs = df2['lon'].to_numpy()\n", + "ys = df2['lat'].to_numpy()\n", + "time = df2['time'].to_numpy()\n", + "for j in range(0,len(xs)):\n", + " plt.text(xs[j], ys[j]+2, ''+str('{:02.0f}'.format(j))+'', ha='center',va='center',fontsize=10, zorder=1000)\n", + "for j in range(0,len(xs),4):\n", + " plt.text(xs[j], ys[j]-2, 'D'+str('{:02.0f}'.format(int(time[j]+1)))+'', ha='center',va='center',color='red',fontsize=13, weight='bold',zorder=1000)\n", + "plt.xlim([lon[0], lon[-1]])\n", + "plt.ylim([lat[0], lat[-1]])\n", + "plt.xlim(10, 70)\n", + "plt.ylim(5, 80)\n", + "plt.xlabel('longitude',fontsize=12)\n", + "plt.ylabel('latitude',fontsize=12)\n", + "plt.xticks(fontsize=12)\n", + "plt.yticks(fontsize=12)\n", + "plt.title('Track trajectory of exp '+exp+'', fontsize=14)\n", + "\n", + "fig.savefig(dataout+'Cyclonetracks_' + exp + '_remove1p5days.png', bbox_inches='tight',dpi=100)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZMAAAEdCAYAAADJporJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAABmc0lEQVR4nO2dd3gcxf2434+7jW2MwTYtFNNsDJheQo0JJtTQaygJBEILBINJoRjTQgv4h01xgK/pLQQCoYVgJFu2JUuWLUtyk2RVq1q918/vj10pd2eV093t7dqa93n2kW53Z+a9md2dm9ndGVFVDAaDwWAIh0FuCxgMBoNh+8dUJgaDwWAIG1OZGAwGgyFsTGViMBgMhrAxlYnBYDAYwsZUJgaDwWAIG1OZDEBEZI6IpLntsSMgIieLyFoRaRGRGLd9+oOIxIjIfLc9giXSviKiInJZpOIb6JjKJAxEZJKIzBORLBFpFpEtIvKNiJwb4XTMxd+7zANSgAOAS7rbQUQW2ReuwCU+qqYDBBEZKiJP25V8vYgUicj7IrKPB9z2EZEvba+tIvL/RGRYwD6Hi0isiDTa15SHRUQC9jldRFaJSJOIbBaR3wVsv7GHY26EU99tiFMR7+iIyH7AMqAW+BPWBWUQcCbwKhD1A1dEhqlqS7TT9Ul/qKq2upV+d4jIIEBUtd2hJA4EFqhqfh/7/Re4LmCda2W1gzMKOBp4AlgD7Aw8D3wrIkeoapsbUiIyGPgKKAdOBXYF3gIEuMveZyzwPbAEOA44BFgE1GN9B0Rkf+Br4E3gV8ApwMsiUqaqn/ok2YD1I6cLVW1y5ttZkZslhMUuzEJgdDfbdvH5f2dgIVCKVfHEAsf6bL8RqMOqhNKwDpofgf19tmvAcqO9TYE7gH/a4Z4DBgNvANlAI5ABzAYG+aQ5B0jr5bvtZ8d9DRAHNAEbgJk++5xh73MusBLrwng+1okxG8iy008FfhUQ/8NALtAMFANv+2w7DYi386QaSAAO882rgLg6PXYLyM9z7fxsAw4DhgFPAwV2XiUCZ/dRxsOBF4ESOw/igVMC8mibcukmnkXAv3tJ53SgFTjDZ93vgBpgsv05ButHyjyg0l6e9S3XHuI+EVhsf+dq4AdgT584XwaeBLZiHaPPBRwrv7Lzqtbe/gmwVzf5f6ZdVg1AEnB0sMe4z34XAKvsvM7GqgyG+WyPAeaHeL4eanse7rNOgct8Pj9g58MJ9uccrGN1kf3984ErgXHAh/Z3ysDnvOjD4RygA/hJQP42AWPtz7fZ5T7SZ58HgS1YP4rAOo4zAuJ+HVgRmOeRvOb1+f2imdiOsgDj7YPiz33sJ1gX46+A47F+xT5mHyx7+BR6K9Yv1+OBI4DVwHf29pH2Cb4B2N1eRtrb1D7BbwYmA/sDQ4G5WL9q9gOuAKqAm3y85hBcZVJgh58CvIRVOexl73OGvU8qMNNOf4J9AdgI/ML2uQbr4nGeHe5S+/ufh9V6Oxa40942BOsi+RzWL6opdvipPZ0gdF+ZtAHLgZOBg4ExwHtYlcFptuudWBXg9F7yYR5QZLtOBf6OdQHZA6vS3t3+bnf7lks38Syil8rE3udJrIvVePt71wM3+GyPwbqgvWRvvwKrcri3lzin22W2EDjS/g63Avv4xFltHy8H23G2AVf7xPEbrIp5Mtbx+SOwpJv8Xwn8zHb7DljP/y5+N9LLMW7vc7Z9XPzaLvufYR1HzwXkQaiVyYm2594+6xS4DOs8fQ7reJ/msz0HqABuBw7Cahk0Yf2QvB7rfH4D6xwcEYTDXCA9YN0E2+Nn9ue3ga8C9jnO3qfzB+YSrNaw7z6X23k81CfP27F+tBUA/waOcvS66GTkO+pinxAKXNzHfjOwLj4jA9avAWb7FLoCh/hsvxbrQjfI/jyHbi7+driXgvD9K/Bfn8/dxuezfT877r/4rBsEbAIetz+fYe9zqc8+O2FdvE4NiO9F4Gv7/3vti8TQbtIdb8d5eg9eNxJcZaLAMT77HIBV+e8TEPZz4OUe0trJLoPrfdYNxmpxPe6zro4eWiQ++yzCukjXBSxP++wzFKsF8E8gGfgoII4YO//FZ92DQEEv6b4HxPeyPQafX7P2uu+B13sJMwWfi7JP/p/ts8/JAft0lklvx/gS4KGAtC6y80l8fPtdmWC1SpcBX3Rz/lwJ/J+dt/sFbM8BPvD5PNoO8/+6OVeODcJjIbA4YJ3gU4ED/wHeDNhnHzuNk+zPm4CHA/Y5zd6n80fqScANWD8iTgX+gdVqPKi/+RfsYu6ZhIb0vQsAx2D135YF3D8bgX9fZrOqbvT5XIh1cRmH9cuoN5K2kbNuxt0M7IvVshmK9Qulv6zo/EdVO0QkAau7oKf0D8X6bt+KiPqsH4p1YoLVTXI3kC0i3wHfYp3kzapaISKLgO9E5AesLplPtO/7EYG0YVXYnRyNVWbrAsphOFYXUHccYHsv61yhqu0isoJt8yAYlgC3BKyr8om7VUSuAdKxfunO6CaOeLWvFDYrgMdEZKyq1nSz/1HAZ314rQ34XAhM7PwgIkcDj2BdlMbzv2N/H6xfvN3FU2j/neizT1/H+DHA8SLygM8+g7CO392xWoj9RkSGAO/a6VzYzS7PYR0vJ6hqaTfbu76XqtaJSANWa7yTEvvvRIJDg1gfuI/0dx9VXYHP+Ssiy7HOibuA3wfp2i9MZRIaGViFNpXeT9ZBWAfbqd1s8z35A28Idh4owTxtV+/7QUSuxGoJ3IfV1VODdV/l4iDiCgXf9Dt9LwDyAvZrBVDVfBE5BKv//OdYXQePiMgJqlqvqr8WkRexuskuBJ4QkYtU9Tus1kVgRT60G6dm9b/hPggrT4/r9PChsYfv1d0JTC/r+qJBVTP72OdELNdxWN0fVSGk40swP3oC80NtB0RkJ6wuq86HB0qB3YClWL/2e4qnu+O3r2N8EPAo1o+NQMp6/QY9YFckHwCHY92PKu9mt++Bq7G68hZ1s727/Onru/ZEMVarzZfdsFq8JT777B6wT2dF1dc+bVg397fB/iGUhNVd5wjm0eAQUNUKrJPsThEZHbhdRMbZ/yYDk4AOVc0MWLr7FdQTLVgHXDCcAiSo6nxVTbYvYAf0FagHTuz8x3408XisvvCeWId1U33fbr5vV8tIVZtU9StV/QPWBX4aPieZqqao6tOqegZW18YN9qYyYJT9xEsnRwbxPVZjXVh378ZrSw9hMrHy/RSfPBiM1X2wLog0+4X9dOB8rIr/e+A9+2LoywkBj4ieCBT20CoB6/jrroUTLFOwLnZ/VtUlqrqB4H+B95dkYEo35ZOpITx9JSJDgY+w7s/8TFWLe9j1a6z7Da+IyA097BMpVgBTRWRvn3VnYZ0zq3z2OTXgEd6zsFpyOT77/Dwg7rOAJO3haUr7uDmCEFt4wWAqk9C5HesClSQil4vIISIyRURu439N4/9idZP8S0TOEZH9ReQkEXlURLprrfREDrCviBwtIruJyPBe9t0EHG2nd5CIPIT1tFAo3CYil9ktiRexus1e6WlnVa3F6jZ4TkR+IyIHisiRIvI7EbkFup5/v9l+ln5/rBuurUCGnT9/FZGfisi+IvIzrBOg8+KdgNUSesqO+1KscugVVd2Edf9gkf19JovIsSJyn4h0+26Iqtbb3/WvInKuiEy1P0/CegKqvwwXkd0Dlgl2ngzG6oqJVdXXsLoo98bqXvJlT+BF+1i7DLgfeKGXNJ8FjhKRhSIy3Q53swT/vkUe1oXuTjvPzsN6gMQJ5gLXiMhcETnMPpcuE5Fn+huRXQl/glXZXg2oT56PDNxfVf+NVaG8KiLXh/k9euM/WN2Yb4vIUSLyc6wy+rvPD4L3se5tLLLz4RLgj8DffLo4XwX2FpEXRWSqiNyMdV/quc6EROQRETnbLrcjsR4UOMIO6wxO3YwZCAvWUz0vAZuxTrpC4BvgHJ99xmA9FVSA9Us3H+uxwgPs7TfS903l4Vg30CrZ9tHgywLCDrMPnEqsbpI3sB5vzPHZZw7B3YC/FqurrAnrpvk5PTn6rO98Zr6zlVKG9Uv7LHv7RVi/rKr43yO659vbJmHdgN5ih80DnsHnZj3wS6wKsxGrdfirgLzaJj/t9UPt773ZLodi4At8btR3E8b30eBmfB4N9tkn2Bvw2s1SYG9/yPaZ4BPmLKxKtvNR5BisC8F8O+8qsboIB/eR9ilY92sa7XD/5X83aWMIuKFNwJNnWDeos+xjYCXWU1eK/Rhzd8cBATeluyuTHsLNxOpCa8Dqnk3CftKvJ98+jt/ulht99vM7f7C6ZxuxH7rA+hF3X2/ljXWPULGP4SDc9sF6sqoBq0vqJWB4wD6H22XWhNWSeASfBy/sfU7Has01Yz1G/buA7S/wv8fvS7HOlZPCud71tXQ+JWEwdGF3uWQDx6nqNjf4DdFHrKFa0lT1TrddDIbuMN1cBoPBYAgbU5kYDIbtChE5VUTqelpc9Hq1Fy/n7lV4BNPNZTAYtivsm+h79bRd+34E2xFEZCIwtofNNdq/Jzi3O0xlYjAYDIawGbAvLe6222663377hRS2ra2NIUPczzrj4S0H42E8vO4QCY9Vq1ZtVdUJgevd/2Yusd9++5GUFNqDSuvWrePQQ0MZUSOyGA9vORgP4+F1h0h4iEi3QzOZG/AhMHx4b+8MRg/j4S0HMB6BGA9vOYBzHqYyCYFhwwKHJXIH4+EtBzAegRgPbzmAcx6mMgmB8vJux1KLOsbDWw5gPAIxHt5yAOc8TGUSAqHeuI80xsNbDmA8AjEe3nIA5zxMZRICqampfe8UBYyHtxzAeARiPLzlAM55DNj3TI499lgN9Wmu9vZ2Bg8OdkR45zAe3nIwHsbD6w6R8BCRVap6bOB60zLpJx0dHSxe3NPkfNFl6dKlbisA3vDwggMYj0CMh7ccwDkP0zLpB1VVVVx//fVMmjSJv//97w6ZGQwGg3dxvWUiIneKSJKINIs1z7fvtjNFZIOINIjIjyKyr882EZGnRaTcXp6xZw3r3L6fHabBjiNwBrKIkZuby/fff8/rr7/O66+/7lQyQRMbG+u2AuANDy84gPEIxHh4ywGc84hay8SeMawDa3Kdkap6o71+N6zJd24GvsSaye1UVT3R3n4rcC/WnOGKNdHS/1PVV+3tK7AmW/oL1jzObwAHqWqv80aHes/krbfe4sYbb2TYsGHExcVx3HHH9TuOSNHQ0MCoUaNcS99LHl5wMB7Gw+sOkfBwvWWiqv9U1c/ZdsL7S4B0Vf1EVZuwZsObLiJT7O03AM+raoFa83U/jzVzGyJyMHA08IiqNqrqp0AqcKlT3+OGG27g0ksvpaWlhcsuu4ytW7c6lVSfpKWluZa2L17w8IIDGI9AjIe3HMA5Dy/cgJ8GpHR+UGvu7Sx7/Tbb7f99t21Wa+7x7rb7ISK32F1tSYWFhVRUVLBs2TJaW1u7mn6xsbE0NTURHx9PWVkZ6enpbN68mby8PFJSUqisrOT666/n+OOPJy8vj6uvvprFixfT2NhIQkICpaWlrFu3jqysLPLz81mzZg1VVVUsXbqU9vZ2v3QaGhpYuXIlJSUlrF+/nszMTAoKCkhOTqa6uprY2Fg6Ojr8wtTV1ZGUlERRURGqyqZNmygsLGTVqlXU1tZ27RsTE9MVpra2llWrVlFYWMimTZvYuHEjRUVFJCUlUVdX5xd/Z3rV1dUkJydTUFBAZmYm69evp6SkhJUrV9LQ0OAXZu+992bp0qVUVVWxZs0a8vPzycrKYt26dZSWlpKQkEBjY6NfmLa2NuLi4qisrCQlJYW8vDw2b95Meno6ZWVlxMfH09TU5BemtbWVZcuWUVFRQWpqKrm5ueTk5JCWlsbOO+/M8uXLaWlp8fvuzc3NrFixgq1bt5KWlkZ2dja5ubmsXbvWr/w7w8TExPRZ/nFxcbS1tW1TlgkJCYwePdqvLFevXk11dTVLlizZpizr6+tJTEykuLiYDRs2kJGRwZYtW0hOTqampobY2FhUtcfy37hxY4/lX1ZW1hWmpqaG5ORktmzZQkZGBhs2bKC4uJjExETq6+v98qujo4MlS5ZQXV3N6tWr+yz/mJgY2tvbeyz/MWPGdFv+ra2txMXFUVFRQUpKCrm5uWRnZ5OWlsbWrVtZsWIFzc3NfmFaWlpYvnw55eXlpKamkpOTQ05ODqmpqZSXl3eVv2+YzvIfO3asX/mnpKRQUVFBXFzcNud/sOeyb771dC77lv9PfvITv3wLpvw74w/lXO48dgLLv6Ojw6/8A8//3so/ISGhu0urhZNzAvcwB/LjwCKfz28Afw3YZxn/m+e8HZjis+0grO4uAa4D4gPCPuEbf0/LMccco6Gybt06zc/P14kTJyqgf/rTn0KOKxzWrVvnSrqBeMHDCw6qxiMQ4+EtB9XwPYAk7eaa6oWWSR3bTigzFqjtYftYoM7+Un2FdYShQ4ey995789FHHzF48GCeeuopPv/8cyeT9KO1tZU33njDMy9BDR061G0FTziA8QjEeHjLAZzz8EJlkg5M7/wgIjsBB9jrt9lu/++7bbKIjOlhuyOMGDECgDPOOIO//vWvAFx//fVs3LjRyWQBqKio4Be/+AU333wzV155JTNmzODHH3/sbJW5Qmd+uIkXHMB4BGI8vOUAznlE89HgISIyAhgMDBaRESIyBPgMOExELrW3PwysVdUNdtC3gXtFZC8R2ROYBSwCUNVNwBrgETu+i4EjgE+d/C6d/dEAs2bN4vLLL6e2tpZLLrmEurqep6Bua2sjJiaGBx98kPfff7/fFcCmTZs48cQTWbx4MRMmTGD06NH8+OOPzJgxg1NPPZXvvvvOlUrFNz/cwgsOYDwCMR7ecgAHPbrr+3JiwXpKSwOWOfa2nwMbgEYgBtjPJ5wAzwAV9vIM9iPN9vb97DCNwEbg58H4hHPPpKqqyu9zTU2NTp06VQG94oortKOjo2tbfX29fvbZZ3rDDTfo+PHj/b7/qaeequnp6UGl+cMPP+guu+yigE6fPl3z8vI0JydH586d6xfvcccdp1988YWfg9ME5ocbeMFB1XgEYjy85aAavgc93DOJ+g14ryzhVCaxsbHbrFu/fr2OGTNGAX3sscd00aJFetFFF+nIkSP9KpCDDz5Y77jjjq6b90OHDtU///nPWl9f32N6r732mg4ZMkQB/eUvf6m1tbV+HjU1Nfr000/rhAkTutKZPn26vvLKK/ruu+/qe++9p++//75++OGH+tFHH+nHH3+s//jHP/Rf//qXlpeXh5wPveVHtPGCg6rxCMR4eMtBNXwPU5lEsDJpb2/vdv2nn34a2PJSQI8//nh98skndf369V37VlRU6K233tq1z/7776/ffPONX3xtbW16zz33dO0ze/Zsv7QDPerr6/WFF17QPfbYo1uP7paddtpJ77nnHs3Ly4t4fkQTLzioGo9AjIe3HFTD9zCVSQQrk5iYmB63zZkzR4cNG6ZnnXWWLliwQAsKCnqNa/ny5Xr44Yd3Xdwvv/xy3bJli1ZXV+u5557b1Xp58803g/ZobGzUV155Ra+99lq9+uqr9aqrrtIrr7xSL7/8cr3sssv00ksv1YsvvlhPOeWUrnSHDBmi119/vaalpfUvM3rxiCZecFA1HoEYD285qIbvYSqTCFYmkaalpUWfffZZHTVqlAI6ZswYPeiggxTQ8ePHO9o8Tk5O1quuukoHDRrUVbFccMEFGhcX51iaBoNh+6WnysQLjwZvd3S++Rophg4dyn333cf69eu58MILqa2tJSMjgylTprBy5UpOO+00xzyOOuooPvjgAzIyMrj99tsZMWIEX375JaeccgqnnHIKn332Gc3Nzb3GEen8CAUvOIDxCMR4eMsBnPMwQ9CHQH19PTvttFOEjf7Hl19+SUJCAvfddx/jxo2LqkdpaSkvvfQSCxYsoLKyEoBx48ZxySWXcNVVV/Gzn/2MIUOGOO7RX7zgYDyMh9cdIuHh+kCPOxLr1q1zNP4LLriAxx9/vNeKxCmPiRMn8thjj5GXl8cLL7zA9OnTqaqq4s0332TmzJnstdde3HnnncTFxdHR0eGYR3/xggMYj0CMh7ccwDkPU5mEwE9+8hO3FQBnPUaPHs0999zDmjVrWLduHY888ggHH3wwpaWlLFiwgFNPPZV9992X++67j5EjRzrmESwDoUz6g/HwxwseXnAA5zxMZRICVVVVbisA0fOYOnUqc+bMYcOGDSQnJzN79mz22WcfCgoKeP755zn//PMpKCiIiktPDLQy6Qvj4Y8XPLzgAM55mMokBAYPHuy2AhB9DxHhqKOO4umnnyYnJ4fly5dz5JFHkpuby2mnnUZOTk5UfXwZqGXSE8bDHy94eMEBnPMwlUkIeGG2NHDXQ0Q46aST+OGHH5g+fTrZ2dmcfvrpZGVlueJjysQf4+GPFzy84ADOeZjKJARKSkrcVgC84TF+/HjmzZvHSSedRF5eHqeddlpURk8OxAt5AcYjEOPhLQdwzsNUJiFw4IEHuq0AeMfjqKOO4rvvvuO0006jsLCQ008/PepPrnglL4yHP8bDWw7gnIepTEJg9erVbisA3vIYM2YMX3/9NTNmzKCkpIQzzjiDtWvXRtXBCxgPf4yHtxzAOQ/z0qIhojQ2NnLJJZfw7bffMn78eL7//nuOPvpot7UMBkOEMC8tRpDY2Fi3FQBveowcOZLPP/+cCy64gIqKCmbMmEFCQkJUHdzEePhjPLzlAM55mJaJwRFaWlq45ppr+PTTTxk3bhxr1671zEtbBoMhdEzLJILs6L8w+kt3HsOGDePDDz/k3HPPpaqqil//+tddw69Ey8ENjIc/xsNbDmBaJhEnnJZJbW0tY8aMibDRjulRUlLC4YcfTllZGS+++CJ333131B2iifEwHl52iISHaZlEkE2bNrmtAGwfHpMmTWLhwoUA/PGPf2T9+vVRd4gmxsMf4+EtB3DOw1QmIbDHHnu4rQBsPx4XXXQRN954I01NTVx33XW0trZG3SFaGA9/jIe3HMA5D89UJiIyVUQWi0i1iGSKyMU+226219WJyLcisqfPNhGRp0Wk3F6eERFx0rWurs7J6INme/KYN28e++67L6tWreKxxx5zxSEaGA9/jIe3HMA5D09UJiIyBPgX8G9gPHAL8K6IHCwipwNPAr+0t2UDH/gEvwW4CJgOHAGcD9zqpK9X7jNtTx5jx47lrbfeQkR48sknI/648PaUF9HAePjjBQ8vOIBzHp6oTIApwJ7AC6rarqqLgWXAdcAFwCeqmq6qLcBjwGkicoAd9gbgeVUtUNUtwPPAjU7Kjh071snog2Z78zj99NOZNWsW7e3tXHfdddTX10fdwWmMhz/Gw1sO4JyHVyqT7rqlBDjM/ivd7HuY/XcakOKzPcVe5xhbtmxxMvqg2R49HnvsMQ477DAyMjK4//77XXFwEuPhj/HwlgM45+GVymQDUArcLyJDRWQmcDowCvgauEJEjhCRkcDDgNrbAEYD1T5xVQOju7tvIiK3iEiSiCQVFhZSUVHBsmXLaG1t7Xr2OjY2lqamJuLj4ykrKyM9PZ3NmzeTl5dHSkoKlZWV1NTU0NbW5hemsbGRhIQESktLWbduHVlZWeTn57NmzRqqqqpYunQp7e3tfmEaGhpYuXIlJSUlrF+/nszMTAoKCkhOTqa6uprY2Fg6Ojr8wtTV1ZGUlERRURFDhgxh06ZNFBYWsmrVKmpra7v2jYmJ6QpTW1vLqlWrKCwsZNOmTWzcuJGioiKSkpKoq6vzi78zverqapKTkykoKCAzM5P169dTUlLCypUraWho8Atz0EEHsXTpUqqqqlizZg35+flkZWWxbt06SktLSUhIoLGxkdjYWEaMGME999zD0KFDeeWVV/jkk09ISUkhLy+PzZs3k56eTllZGfHx8TQ1Nfml09rayrJly6ioqCA1NZXc3FxycnJIS0tj4sSJLF++nJaWFr/v3tzczIoVK9i6dStpaWlkZ2eTm5vL2rVr/cq/M0xMTEyf5R8XF7dN+Tc0NJCQkMCuu+7qV5arV6+murqaJUuWbFOW9fX1JCYmUlxczIYNG8jIyGDLli0kJydTU1NDbGwsqtpj+W/cuLHH8q+srOwKU1NTQ3JyMlu2bCEjI4MNGzZQXFxMYmIi9fX1fvnV0dHBkiVLqK6uZvXq1X2Wf0xMDO3t7T2W/2677eZX/r5lGRcXR0VFBSkpKeTm5pKdnU1aWhpbt25lxYoVNDc3+4VpaWlh+fLllJeXk5qaSk5ODjk5OaSmplJeXt5V/r5hOst/woQJfuWfkpJCRUUFcXFx25z/wZ7LvvnW07nsW/4HH3ywX74FU/6d8YdyLnceO4HlP3jwYL/yDzz/eyv/XrunVdUTC9b9jligHPgOeBd4w952B5CBVeH8CavCONXeVg0c7xPPMUBtX+kdc8wxGioxMTEhh40k27PHU089pYDuscceunXrVlccnMB4+GM8vOWgGr4HkKTdXFM9+9KiiCwH3lLV1wLWHwysBvZW1Up7v/9T1b/b238D3KKqJ/YWvxlOxV3a29s5/fTTWbZsGVdccQUffvghDj+EZzAYIoDnX1q0u7FGiMgoEbkP2ANYZK87zH4EeB9gITBPVSvtoG8D94rIXvYjw7OARU667ujDIvSXUDwGDx7M22+/zejRo/n444/57LPPou7gBMbDH+PhLQcYAMOpiMizwM3AUGApcJeqZorIOGAJcABQC/wf8KCqttvhBHjaDgvwOvCA9vHFwmmZqKonfkXvCB4vvfQSv//97znuuONISEgIOZ4dIS+Mx47t4QWHSHh4vmWiqver6i6qOlpVz1HVTHt9laoeoao7qeruqvqnzorE3q6qOltVx9vL7L4qknBZsmSJk9EHzY7gcdNNNzF+/HgSExOJj493xSGSGA9/jIe3HMA5D89UJtsTRx11lNsKwI7hMWrUKG691XrH9IUXXnDFIZIYD3+Mh7ccwDkPU5mEQGZmptsKwI7jcccddzBkyBA+/fRTcnNzXXGIFMbDH+PhLQdwzsNUJiEwadIktxWAHcdjr7324oorrqCjo4MFCxa44hApjIc/xsNbDuCch6lMQqChocFtBWDH8rjnnnsA+Pvf/x7SQHQ7Ul5EAuPhjxc8vOAAznmYyiQE2tvb+94pCuxIHscddxwnn3wyVVVVvPXWW644RALj4Y/x8JYDOOdhKpMQGDdunNsKwI7n0dk6mTdvXr+n+N3R8iJcjIc/XvDwggM452EqkxDIz893WwHY8Twuuugi9t13XzIyMvjmm29ccQgX4+GP8fCWAzjnYSqTEDj00EPdVgB2PI8hQ4Zw1113Af1/THhHy4twMR7+eMHDCw7gnIepTELAK2N67YgeN910EzvttBM//PADqamprjiEg/Hwx3h4ywGc8/DMcCrRxgz06F3uuusu5s+fz0033cTrr7/uto7BYPDB88OpbE/s6AO29ZdIe/z+979HRHj33XcpKytzxSFUjIc/xsNbDjAABnqMNuG0TDo6Ohg0yP16eEf2uPDCC/nyyy+ZO3cuDz30kCsOoWA8jIeXHSLhYVomESQuLs5tBWDH9uh8TPjll1+mubnZFYdQMB7+GA9vOYBzHqYyCYHp06e7rQDs2B4/+9nPOOKIIyguLubjjz92xSEUjIc/xsNbDuCch6lMQmDz5s1uKwA7toeIdLVOXnjhBfrqjt2R8yIUjIc/XvDwggM452EqkxCYMGGC2wrAju9x9dVXM2HCBFavXs3SpUtdcegvxsMf4+EtB3DOw1QmIdDU1OS2ArDje4wYMYLbbrsNgL/97W+uOPQX4+GP8fCWAzjnYSqTEGhtbXVbARgYHrfffjsjRozgX//6Fz/++KMrDv3BePhjPLzlAM55mMokBMaPH++2AjAwPCZNmsSf//xnwKpYWlpaou7QH4yHP8bDWw7gnIepTEIgJyfHbQVg4HjMnj2bgw8+mA0bNvDcc8+54hAsxsMf4+EtB3DOw7y0GAINDQ2MGjUqwkbGozcWL17MmWeeyYgRI0hPT2fy5MlRdwgG42E8vOwQCQ/Pv7QoIlNFZLGIVItIpohc7LPtChFZLyK1IrJORC7y2SYi8rSIlNvLMyIiTromJiY6GX3QDCSPGTNmcO2119LU1MSdd965zaPCAykvgsF4+OMFDy84gHMenmiZiMgQYB3wKjAPOB34EjgKqAeygV8C3wLnAp8A+6lqqYjcCtwLnAko8D3w/1T11d7SNAM9bn+UlJRwyCGHUF1dzT/+8Q8uvfRSt5UMhgGH11smU4A9gRdUtV1VFwPLgOuAvYEqVf1GLb7CqmAOsMPeADyvqgWqugV4HrjRSdkdfcC2/hItj0mTJvHUU08BcPfdd1NbWxt1h74wHv4YD285gHMeXqlMuuuWEuAwIAlYLyIXishgu4urGVhr7zcNSPEJl2Kv2zZCkVtEJElEkgoLC6moqGDZsmW0trZ2ZXBsbCxNTU3Ex8dTVlZGeno6mzdvJi8vj5SUFCorKxER2tra/MI0NjaSkJBAaWkp69atIysri/z8fNasWUNVVRVLly6lvb3dL0xDQwMrV66kpKSE9evXk5mZSUFBAcnJyVRXVxMbG0tHR4dfmLq6OpKSkigqKmLChAls2rSJwsJCVq1aRW1tbde+MTExXWFqa2tZtWoVhYWFbNq0iY0bN1JUVERSUhJ1dXV+8XemV11dTXJyMgUFBWRmZrJ+/XpKSkpYuXIlDQ0NfmFOPPFEli5dSlVVFWvWrCE/P5+srCzWrVtHaWkpCQkJNDY2+oVpa2sjLi6OyspKUlJSyMvLY/PmzaSnp1NWVkZ8fDxNTU1+YVpbW5k2bRpHHXUUW7Zs4Q9/+AM5OTmkpaUxZcoUli9fTktLi993b25uZsWKFWzdupW0tDSys7PJzc1l7dq1fuXfGSYmJqbP8o+Li9um/BsaGkhISOCggw7yK8vVq1dTXV3NkiVLtinL+vp6EhMTKS4uZsOGDWRkZLBlyxaSk5OpqakhNjYWVe2x/Ddu3Nhj+XdOexwbG0tNTQ3Jycls2bKFjIwMNmzYQHFxMYmJidTX1/vlV0dHB0uWLKG6uprVq1f3Wf4xMTG0t7f3WP4HH3xwt+Xf2tpKXFwcFRUVpKSkkJubS3Z2NmlpaWzdupUVK1bQ3NzsF6alpYXly5dTXl5OamoqOTk55OTkkJqaSnl5eVf5+4bpLP9DDjnEr/xTUlKoqKggLi5um/M/2HPZN996Opd9y/+kk07yy7dgyr8z/lDO5c5jJ7D8d9ttN7/yDzz/eyv/hISE7i6tFqrq+gIMBTYDs+3/ZwItwHf29puAOqANaADO8wnbDkzx+XwQVneX9JbmMccco6GydOnSkMNGkoHqsWrVKh00aJAOHjxYV69e7YpDTxgPf4yHtxxUw/cAkrSba6onWiaq2gpcBJwHFAOzgI+BAhH5OfAMcAYwDOt+yusicqQdvA4Y6xPdWKDO/tKOMG1atw2fqDNQPY4++mjuuusu2tvbue222+jo6BiwedETxsMfL3h4wQGc8/BEZQKgqmtV9XRV3VVVzwYmAyuBI4Elqpqkqh2qmggkAD+3g6YDvsNgTrfXOUZeXp6T0QfNQPaYO3cue+65J/Hx8bz++usDOi+6w3j44wUPLziAcx6eqUxE5AgRGSEio0TkPmAPYBGQCJza2RIRkaOAU/nfPZO3gXtFZC8R2ROrVbPISddddtnFyeiDZiB7jB07lhdffBGABx54gPb29qg7dMdALpPuMB7ecgDnPIKqTERkqIgcJiKn2H+HOuByHVAElGI95nuWqjaraiwwB/iHiNQCnwJPqup/7HCvYT1GnAqkAV/Z6xyjra3NyeiDZqB7XHbZZZx99tlUVVXx2GOPueIQyEAvk0CMh7ccwDmPXisTETlPRL4EqrEe1f3Q/lstIv8WkfMjJaKq96vqLqo6WlXPUdVMn23zVfVAVR2jqpNV9Xmfbaqqs1V1vL3MdvJ+CUBjY6OT0QfNQPcQERYsWMDw4cP5/PPPWbx4sSsevgz0MgnEeHjLAZzz6LEyEZFlwG3AB8CBqrqzqu6tqjtjvePxHvA7e78BxcSJE91WAIwHwAEHHMCDDz4IwC233EJDQ4NrLmDKJBDj4S0HcM6jt5bJ71T1fFV9X1ULfTeoapGqfqCq5wO3OmLmYbKystxWAIxHJ7Nnz2by5MlkZWUxZ84cV13czotOjIc/XvDwggM45+GJ4VTcIJzhVJqamhgxYkSEjYxHOCxdupQzzjgDgISEBI49dpvRHqKCF/LCeHjTwwsOkfAIezgVETlSRO4SkUdFZG7nErLRdkx8fLzbCoDx8KW9vZ177rmHjo4ObrrpJtcmIvJCXoDxCMQLHl5wAOc8gmqZiMgtwAvAf4BzgG+w3lL/l6pe44iZw5iBHnc86uvrOfzww8nOzuaJJ57omlTLYDBEjnBbJrOBX6jqxUCj/fcywBvzUEaZzjF53MZ4+DvstNNOLFy4EIBHH32UDRs2uOLhBYyHP17w8IIDOOcRbMukRlXH2v+XAxNUtUNEKlTVG3NR9pNwWiatra0MHerEqzbGIxION910E2+++SannHIKsbGxDBoUvXdzvZAXxsObHl5wiIRHuC2TAhHZ3/5/E/BLETkVazDGAcfKlSvdVgCMR08Ozz33HLvvvjtxcXG8+mqv09o46uEmxsMfL3h4wQGc8wi2MnkGa84RgLnAu8Bi4FEnpLzO1KlT3VYAjEdPDrvssgvz588HrKFWojkmkhfyAoxHIF7w8IIDOOfRZ2UiIuOwxsGKA1DVb4BdgF1U9RVHrDxOQUGB2wqA8ejN4dJLL+WSSy6hrq6O2267bZtpfqPl4RbGwx8veHjBAZzz6HM4FWAL1gRVBSLyMwBVbVHVOkeMtgN23nlntxUA49GXw/z58xk3bhxff/01H3zwgWsebmA8/PGChxccwDmPvlomjwEPAKOBh4EnHLHYzuicxc5tjEfvDnvssQfPPfccYE3zW1ZW5oqHGxgPf7zg4QUHcM6jr8pksj3IYgOwADjQEYvtjPr6ercVAOMRjMNvfvMbZsyYwdatW/nDH/7gmke0MR7+eMHDCw7gnEdflUnXdlVtA4Y4YrGdsfvuu7utABiPYBxEhIULFzJixAjee+89li5d6opHtDEe/njBwwsO4JxHX5XJKBFZ0rkAY3w/2+sGHBkZGW4rAMYjWIcDDjiABx54AKBrul83PKKJ8fDHCx5ecADnPHp9aVFEbugrAlV9K6JGUSKclxabm5sZPnx4hI2Mh5MOjY2NTJ06ldzcXF5++WVuu+02VzyihfHwnocXHCLhEdJLi6r6Vl9LyEbbMTv6gG39xQsefTmMHDmS55+35lR78MEHKS8vd8UjWhgPf7zg4QUHcHmgRwARmQkcifVkVxeq+nDktZzHDPQ48FBVzjrrLH744Qduu+02Xn75ZbeVDIbtjrCGUxGR+VhvvR8D/CRgGXDs6AO29RcveATjICLMmzePwYMH89prr7FmzRpXPKKB8fDHCx5ecAD3B3osB45U1XxHLFwgnJZJS0sLw4YNi7CR8YiWwx/+8AdefPFFTjnlFJYsWYKIuOLhJMbDex5ecIiER7gDPZYDVSGnHgQiMlVEFotItYhkisjF9vprRaTOZ2kQERWRY+ztIiJPi0i5vTwjkbw6dINXuseMR2gOc+bMYeLEicTFxUX8zXgv5AUYj0C84OEFB3DOo8fKREQmdy7A88B7InKS73p7W9iIyBDgX8C/gfHALcC7InKwqr6nqqM7F+B2YDOQbAe/BbgImA4cATg+L/0hhxziZPRBYzxCc9h555156qmnALj//vupq4vcyEBeyAswHoF4wcMLDuCcR28tk0wgw/77CtZFepn9OdNneySYAuwJvKCq7aq62E7rum72vQF4W//XP3cD8LyqFqjqFqyK78YIeXVLUVGRk9EHjfEI3eHGG2/kuOOOo7CwkCeeiNwoQV7ICzAegXjBwwsO4JxHj5WJqg5S1cH2356WwRHy6K5bSoDD/FaI7AucBrzts3oakOLzOcVet22EIreISJKIJBUWFlJRUcGyZctobW0lNjYWgNjYWJqamoiPj6esrIz09HQ2b95MXl4eKSkpVFZWkp2dTVtbm1+YxsZGEhISKC0tZd26dWRlZZGfn8+aNWuoqqpi6dKltLe3+4VpaGhg5cqVlJSUsH79ejIzMykoKCA5OZnq6mpiY2Pp6OjwC1NXV0dSUhJFRUVUVFSwadMmCgsLWbVqFbW1tV37dt5ki42Npba2llWrVlFYWMimTZvYuHEjRUVFJCUlUVdX5xd/Z3rV1dUkJydTUFBAZmYm69evp6SkhJUrV9LQ0OAXZtSoUSxdupSqqirWrFlDfn4+WVlZrFu3jtLSUhISEmhsbPQL09bWRlxcHJWVlaSkpJCXl8fmzZtJT0+nrKyM+Ph4mpqa/MK0traybNkyKioqSE1NJTc3l5ycHNLS0mhvb2f58uW0tLT4fffm5mZWrFjB1q1bSUtLIzs7m9zcXNLS0nj88ccBeP7553n33Xe78q2v8o+Li9um/BsaGkhISKC1tdWvLFevXk11dTVLlizZpizr6+tJTEykuLiYDRs2kJGRwZYtW0hOTqampobY2FhUtcfy37hxY4/ln5WV1RWmpqaG5ORktmzZQkZGBhs2bKC4uJjExETq6+v98qujo4MlS5ZQXV3N6tWr+yz/mJgY2tvbeyz/1tbWbsu/tbWVuLg4KioqSElJITc3l+zsbNLS0ti6dSsrVqygubnZL0xLSwvLly+nvLyc1NRUcnJyyMnJITU1lfLy8q7y9w3TWf7t7e1+5Z+SkkJFRQVxcXHbnP/Bnsu++dbTuexb/qNGjfLLt2DKvzP+UM7lzmMnsPwrKir8yj/w/O+t/BMSErq7tFqoqusLMBSr62q2/f9MrIm3vgvY7yEgJmBdOzDF5/NBgGI/XNDTcswxx2io5OTkhBw2khiP8B1+/etfK6DnnXeeqx6Rxnj44wUPLziohu8BJGk319Te7pn8U0SO67kaAhE5TkT+2ds+waCqrVj3Pc4DioFZwMdA4MD71wOBL0rWAWN9Po8F6uwv7Qg1NTVORd0vjEf4Dk899RRjx47lq6++4quvvnLNI9IYD3+84OEFB3DOo7d7Jq8CL4vIRhFZKCKz7G6iWSLymohsBOZj3U8JG1Vdq6qnq+quqno2MBnoml9SRE7Guq/yj4Cg6Vg33zuZbq9zjL322svJ6IPGeITvMGnSJObMmQPAPffcQ3NzsysekcZ4+OMFDy84gHMevd0z+Y+qHgdcC+QDJwCXAccDecBVqnqCqn4fCREROUJERojIKBG5D9gDWOSzyw3Ap6paGxD0beBeEdlLRPbEatUswkHWr1/vZPRBYzwi43DnnXdy6KGHkpmZyWuvveaaRyQxHv54wcMLDuCcR9DDqTiNiDwL3Ix1z2QpcJeqZtrbRmB1f12qqj8EhBPgaTsswOvAA311c4Xz0mJraytDhw4NKWwkMR6Rc/jXv/7FRRddxO67705WVhajRo1yxSNSGA/veXjBIRIe4b606Diqer+q7qLW+yTndFYk9rYmVR0XWJHY21RVZ6vqeHuZ7eT9EoDly5c7GX3QGI/IOVx44YUcc8wxFBcX88oroffceiEvwHgE4gUPLziAcx6eaZlEGzPQoyGQr7/+mvPOO48JEyawefNmRo8e3Xcgg2GA4fmWyfZE53PZbmM8IutwzjnncOKJJ1JWVsb8+fNd84gExsMfL3h4wQGc8zAtkxBoampixIgRETYyHl5w+P7775k5cybjx48nOzubsWPH9h3IAY9wMR7e8/CCQyQ8wm6ZiMghInKFiPzGdwnZaDvGiaHLQ8F4RN7h5z//OaeeeioVFRXMmzfPNY9wMR7+eMHDCw7gnEew85n8GWuYkllY42V1Lr9yxMrjHHDAAW4rAMbDCQcRYe7cuYA1zEpVVZUrHuFiPPzxgocXHMA5j2BbJvcAx9vvlfzMZ5nhiJXHKS0tdVsBMB5OOZxxxhnMmDGD6upq/va3v7nmEQ7Gwx8veHjBAZzzCLYyaQQ2OGKwHTJy5Ei3FQDj4aRDZ+vkxRdf7Nd88V7ICzAegXjBwwsO4JxHsJXJQ8BLIrKHiAzyXRyx8jhDhgxxWwEwHk46nHzyyZx99tnU1tby3HPPueYRKsbDHy94eMEBnPMItjJYBPwWa+DFVntps/8OOCorK91WAIyH0w6drZOXXnop6K4BL+QFGI9AvODhBQdwziPYymR/e5nss3R+HnDss88+bisAxsNph+OPP57zzz+f+vp6nnnmGdc8QsF4+OMFDy84gHMeQVUmqprb0+KIlcdJT3d0UOKgMR7OOzz66KMALFiwIKgZ6ryQF2A8AvGChxccwDmPHl9aFJGFqnqL/f87WBNObYOqXu+ImcOE89JiW1ubJ/o/jUd0HC655BI+++wzfv/73/f57okX8sJ4eNPDCw6R8AjlpcVsn/8zgawelgHHsmXL3FYAjEe0HDrnO3n11VcpKAicry16Hv3BePjjBQ8vOIBzHmY4FYMhCK688ko+/vhjZs6cybvvvsuECRPcVjIYXCESw6nsJyIXisg1vktkNbcPdvQB2/qLFzycdpg7dy5jxozhP//5D9OmTePTTz91xSNYjIc/XvDwggO4PNCjiPwJeBhrOtxGn02qqqc5YuYw4bRMGhsbPfECkvGIrkN2djY33XQTP/74IwBXXXUV8+fPZ9ddd42qRzAYD+95eMEhEh7htkxmAceo6rGqeqrPsl1WJOGydu1atxUA4xFth/3335///ve/LFiwgFGjRvHhhx8ybdo0Pv/886h6BIPx8McLHl5wAOc8gq1MyoEcRwy2Q/bff3+3FQDj4YbDoEGDuP3220lNTeW0006jpKSEiy++mF/96ldUVFR4Ii/AG2UCxsNrDuCcR38GelwoIseKyD6+iyNWHmfr1q1uKwDGw02HyZMn8+OPPzJv3jxGjhzJe++9x7Rp0/jkk0+i6tETXigTMB5ecwDnPIKtTIYBM4GVWC2UziW7xxA7MMOHD3dbATAebjsMGjSI3//+96xdu5ZTTjmF4uJi7rzzTn77299SV1cXdR9fvFAmYDy85gDOeQRbmbwM/BkYCwz1WYZFSkREporIYhGpFpFMEbnYZ9soEXlZRLba25f4bBMReVpEyu3lGRGRSHl1x7BhEfvaYWE8vOFw4IEHEhMTw9/+9jeGDx/O66+/zlFHHUVCQoJrTl4oEzAeXnMA5zyCrUyGAP+nqnWq2u67REJCRIYA/wL+DYwHbgHeFZGD7V0W2uun2n//4BP8FuAiYDpwBHA+cGskvHqiP0OSO4nx8I7D4MGD+cMf/sA777zD4YcfTmZmJieffDJz586lra0t6j5u50cnxsNbDuCgh6r2uQD3A3/BfpQ40gtwGFDnGz/wH+Ax4BCgBhjbQ9jlwC0+n28C4vtK85hjjtFQqaysDDlsJDEe3nJQtTwaGxt11qxZijUEkZ500kmamZkZdQ8vYDy85aAavgeQpN1cU4NtmfwemAPUiUie7xKB+gygu24pwapkTgBygUftbq5UEbnUZ79pWFMKd5Jir9s2QpFbRCRJRJIKCwupqKhg2bJltLa2dr3IExsbS1NTE/Hx8ZSVlZGens7mzZvJy8sjJSWFyspK/v3vf9PW1uYXprGxkYSEBEpLS1m3bh1ZWVnk5+ezZs0aqqqqWLp0Ke3t7X5hGhoaWLlyJSUlJaxfv57MzEwKCgpITk6murqa2NhYOjo6/MLU1dWRlJREUVERixcvZtOmTRQWFrJq1Spqa2u79o2JiekKU1tby6pVqygsLGTTpk1s3LiRoqIikpKSqKur84u/M73q6mqSk5MpKCggMzOT9evXU1JSwsqVK2loaPALk5KSwtKlS6mqqmLNmjXk5+eTlZXFunXrKC0tJSEhgcbGRr8wbW1txMXFUVlZSUpKCnl5eWzevJn09HTKysqIj4+nqanJL0xrayvLli2joqKC1NRUcnNzycnJIS0tjYSEBJYvX05LS4vfd29ubmbFihVs3bqVtLQ0srOzyc3NZe3atX7l3xkmJiamz/KPi4vbpvwbGhpISEhgxYoVZGdn87vf/Y4PPviAiRMnsmLFCg4//HDeeOMNP7f6+noSExMpLi5mw4YNZGRksGXLFpKTk6mpqSE2NhZV7bH8N27c2GP5f/HFF11hampqSE5OZsuWLWRkZLBhwwaKi4tJTEykvr7ez6mjo4MlS5ZQXV3N6tWr+yz/mJgY2tvbeyz/FStWdFv+ra2txMXFUVFRQUpKCrm5uWRnZ5OWlsbWrVtZsWIFzc3NfmFaWlpYvnw55eXlpKamkpOTQ05ODqmpqZSXl3eVv2+YzvKPj4/3K/+UlBQqKiqIi4vb5vwP9lz2zbeezuXVq1dTXV3Nyy+/zBlnnMEtt9xCRUUFMTExQZV/Z/yhnMudx05g+S9evNiv/APP/97Kv9eu2+5qmMAFOL2nJZjwQcQ/FNgMzLb/nwm0AN9h3atRrMpsmJ1uHTDVDtsOTPGJ6yB7/15bUeG0TNra2kIOG0mMh7ccVLf1KC8v18svv7yrlXLJJZdoeXl51D3cwniodnR06DHHHNN1DIwaNUrvuOMOzcjIcMUn3LwgnJaJqsb2tAQTPoj4W7Hue5wHFGO9JPkx1mRcjViTcD2uqi12mj9iVThgVSxjfaIbC9TZX9oR4uLinIq6XxgPbznAth7jx4/no48+4q233mLMmDH885//5JxzzqGxsbGHGJzxcAvjYbXeVq1axdixY5k5cyYNDQ0sWLCAgw8+mIsvvpilS5fi4OVqGxzLi+5qmMAFq0UwF8gA6u2/jwEjggkfyoJ1L+RW4EysVsoQn21fAnf77Pdbn22/weF7JgZDKGzevFn33XdfBfTaa6/Vjo4Ot5UMUeCcc85RQB999FFVVU1NTdXf/OY3OmzYsK7WynHHHacffPCBtra2umzbN/TQMgn2wv4GEAecAxxq/10CvBlM+CDTOAIYAYwC7sN6h2U4VrdXJtY89EOAk4Fa7K4t4HfAemAvYE+s8cN+11d64VQmMTExIYeNJMbDWw6qfXukpKToTjvtpIA+9dRTrnlEi4HukZqaqoCOHDlSP//8c79tRUVF+tBDD+muu+7aVan89Kc/1ZaWFkedws2LcCuTcmBcwLrxQEUw4YNM41mgEqvb6hvgQJ9t04AVdqtoHXCxzzYBngEq7OUZgnjqLJzKpL6+PuSwkcR4eMtBNTiPzz77TAEVEf3iiy9c84gGA93jhhtuUEDvuOOOHh3q6+v11Vdf1d13310Bffzxxx11Cjcvwq1M0oE9A9btBaQHE96LSziVSUJCQshhI4nx8JaDavAejz/+uAI6evRoTU1Ndc3DaQayR35+vg4dOlQHDRqkWVlZfTr897//VUCHDRumaWlpjnmFmxc9VSbBPhr8DvCtiPxWRM4RkVuAr4G3RWRG5xJkXNs9++67r9sKgPHwmgME7/HnP/+Zq666irq6Oi644IKIj5e0veWH07jhMW/ePFpbW7nsssuYPHlynw5nnnkmt9xyCy0tLfz617927GVXp/Ii2MrkVmAM1mO6LwN/wnpq6ndY91PeAF53QtCLVFRUuK0AGA+vOUDwHiLCm2++ybHHHktOTg6XXXYZLS0tUfdwmoHqUV1dzWuvvQbA/fffH7TDM888w957701iYiIvvviiI25O5UWwjwbvH8Qy2RFDDzJ06FC3FQDj4TUH6J/HyJEj+fzzz9ljjz2IjY3l97//fWcXclQ9nGSgeixcuJDa2lrOOOMMjj322KAddt55ZxYuXAjAQw89xKZNmyLu5lReBD1tr+F/jBgxwm0FwHh4zQH677HXXnvx+eefM3z4cF577TVefvllVzycYiB6tLS0dLUqZs+e3W+Hc845hxtuuIGmpiZ+85vf0NHREVE/p/LCVCYhUFpa6rYCYDy85gCheRx//PG8+eabANx999388MMPrng4wUD0eP/99yksLOSwww7jF7/4RUgOf/vb39h9991ZtmwZCxYsiKifY3nR3V35gbCE8zRXVVVVyGEjifHwloNqeB5//OMfFdBddtlFy8rKXPOIJAPNo6OjQ6dNm6aALlq0KCyHzz//vGv4laysrIg5hpsXhPk0l8GHNWvWuK0AGA+vOUB4Hk888QQ/+9nPqKys5Pnnn3fNI5IMNI9vvvmG9PR09tprL66++uqwHH75y19y1VVX0dDQwM033xyx+2mO5UV3NcxAWMJpmbS3t4ccNpIYD285qIbvER8fr4DutNNOWlpa6ppHpBhoHmeccYYC+uyzz0bEoaysTCdMmKCAvvbaa5FQDDsvMC2TyLF06VK3FQDj4TUHCN/jhBNO4LzzzqO+vp5nn33WNY9IMZA8EhMTiYmJYezYsdxyyy0Rcdhtt92YP38+APfddx95eeHP+uFYXnRXwwyExQz0aPAqSUlJXeM5FRcXu61jCJLOqQZmz54d0Xg7Ojr04osvVkB/8YtfuD5AKKZlEjk6J5NxG+PhLQeIjMcxxxzDhRdeSGNjI08//bRrHpFgoHhs3ryZTz/9lKFDh3L33XdH1EFEePnll9lll1349ttv+fDDD8NRdS4vuqthBsISTsuktrY25LCRxHh4y0E1ch7JyckK6IgRI7SwsNA1j3AZKB533HGHAnrjjTc65vD6668roPvss482NDSEHE+4HpiWSeTYsGGD2wqA8fCaA0TO46ijjuKSSy6hqamJv/71r655hMtA8Pj++++73lq/7777HHO48cYbmT59Onl5eWENteJUXpjKJAT22msvtxUA4+E1B4isx5w5cwB47bXXKCgocM0jHHZ0j/j4eC666CJaW1uZNWsW06ZNc8xh8ODBXY+MP/nkk5SUlIQUj1N5YSqTEKipqXFbATAeXnOAyHocfvjhXH755TQ3N/PUU0+55hEOO7JHeno65557Lg0NDdxwww0888wzjjuceeaZXHDBBdTV1fHII4+EFIdTZWIqkxAQEbcVAOPhNQeIvMcjjzyCiPD3v/+9X4+F7qj5ESqR9sjJyWHmzJlUVlZy4YUX8vrrrzNoUO+X00g5PPPMMwwePJi///3vpKWl9Tu8U2ViKpMQGD16tNsKgPHwmgNE3mPatGlcddVVtLa28uSTT7rmESo7okdJSQlnnXUWhYWFnH766Xz00UcMGTIkag5Tpkzhtttuo6Ojo9d7NE57BGIqkxAoKipyWwEwHl5zAGc8Hn74YQYNGsQbb7xBTk6Oax6hsKN5VFVVcfbZZ5OZmcnRRx/NF198EfQovJHMi0ceeYSdd96Z7777jm+//bZfYZ0qE1OZhMDBBx/stgJgPLzmAM54TJkyhWuuuYa2tjYef/xx1zxCYUfyaGho4IILLiAlJYWDDz6Yb775hrFjx0bVoZPddtuNBx98ELCeIOvPrIxOlYmpTEIgOTnZbQXAeHjNAZzzePjhhxk8eDCLFi0iKyvLNY/+sqN4tLa2csUVVxAXF8fee+/N999/z8SJE6PqEMhdd93F/vvvT3p6Om+88YZrHl109/LJQFjMcCqG7Y0bb7yxzxfjDJGnvb1dr7nmGgV011131XXr1rmt1MXHH3+sgE6cOFGrq6ujkiZef2lRRKaKyGIRqRaRTBG52F6/n4ioiNT5LA/5hBMReVpEyu3lGXH4EZKYmBgnow8a4+EtB3DW46GHHmLw4MG8/fbbZGRkuObRH3YEj5deeon333+f0aNH8+233zJ16tSoO/TEZZddxk9/+lNKS0uDfrnVsTLproaJ9gIMATYB9wKDgRlAPXAwsB+gwJAewt4KbAT2BvYC1gG/6ytN0zIxbI/cdNNNpnUSRWpra7uGgP/nP//ptk63dE5bMHz4cM3JyXE8PTzeMpkC7Am8oKrtqroYWAZcF0TYG4DnVbVAVbcAzwM3OmbKwBm8Lli84OEFB3De409/+hODBg3ivffeY8uWLa55BMv27jFv3jzKyso46aSTuOiii1xx6IsTTjiBq6++mubmZv785z+75uGVyqS7bikBDvP5nCsiBSLyfyKym8/6aUCKz+cUe922EYrcIiJJIpJUWFhIRUUFy5Yto7W1tSuDY2NjaWpqIj4+nrKyMtLT09m8eTN5eXmkpKRQWVlJW1sbbW1tfmEaGxtJSEigtLSUdevWkZWVRX5+PmvWrKGqqoqlS5fS3t7uF6ahoYGVK1dSUlLC+vXryczMpKCggOTkZKqrq4mNjaWjo8MvTF1dHUlJSRQVFbHzzjuzadMmCgsLWbVqFbW1tV37djZlY2Njqa2tZdWqVRQWFrJp0yY2btxIUVERSUlJ1NXV+cXfmV51dTXJyckUFBSQmZnJ+vXrKSkpYeXKlTQ0NPiFmT59OkuXLqWqqoo1a9aQn59PVlYW69ato7S0lISEBBobG/3CtLW1ERcXR2VlJSkpKeTl5bF582bS09MpKysjPj6epqYmvzCtra0sW7aMiooKUlNTyc3NJScnh7S0NPbff3+WL19OS0uL33dvbm5mxYoVbN26lbS0NLKzs8nNzWXt2rV+5d8ZJiYmps/yj4uL26b8GxoaSEhI4Cc/+YlfWa5evZrq6mqWLFmyTVnW19eTmJhIcXExGzZsICMjgy1btpCcnExNTQ2xsbGoql+YSZMmMWPGDFpbW3nkkUd6LP/m5uauMDU1NSQnJ7NlyxYyMjLYsGEDxcXFJCYmUl9f75dfHR0dLFmyhOrqalavXt1n+cfExNDe3t5j+e+zzz7dln9raytxcXFUVFSQkpJCbm4u2dnZpKWlsXXrVlasWEFzc7NfmJaWFpYvX055eTmpqank5OSQk5NDamoq5eXlXeXvG6az/Pfbbz+/8k9JSaGiooK4uLhtzv/Oc3nTpk1dozbffffdpKSk+J3LvvnW07nsW/5HHnmkX74FU/6d8fd1Ll999dUMHz6c999/n4SEBL9jJ7D8x44d61f+ged/b+WfkJDQ3aXVorvmSrQXYCiwGZht/z8TaAG+A0YDx2J1hU0C/gF85xO2HZji8/kgrG4x6S3NcLq5kpKSQg4bSYyHtxxUo+ORmJiogI4ZM6bH+bwHUn4EQygef/rTnxTQM8880zWH/vDHP/5RAT3uuOO0tbXVMQ+83M2lqq3ARcB5QDEwC/gYKFDVOlVNUtU2VS0B7gRmikjnA951gO/D3mOBOvtLO8Iee+zhVNT9wnh4ywGi43HssccyY8YMamtree2111zzCIbt1aOkpIR58+YB8MQTT7ji0F/+9Kc/sffee5OYmNjraAlOeXiiMgFQ1bWqerqq7qqqZwOTgZXd7Wr/7ewaSwem+2yfbq9zjLq6OiejDxrj4S0HiJ7H7NmzAXjxxRe7urTc8OiL7dXjqaee6npJ8YQTTnDFob+MHTuWt956C4C5c+f22CXllIdnKhMROUJERojIKBG5D9gDWCQiJ4jIISIySER2Bf4fEKOq1XbQt4F7RWQvEdkTq1WzyElXBxs9/cJ4eMsBoucxc+ZMjjjiCIqKinjvvfdc8+iL7dEjPz+fV155BYDHHnvMFYdQmTFjBvfeey/t7e386le/6rbicMrDM5UJ1pNbRUApcCZwlqo2Y7VQvgVqgTSgGbjaJ9xrwJdAqr39K3udY/RnCAUnMR7ecoDoeYhIV+vk2WefpaOjwxWPvtgePR577DFaWlq48sormT59et8BHHAIhyeeeILDDz+czMxMZs2aFTUPz1Qmqnq/qu6iqqNV9RxVzbTXf6Cq+6vqTqq6h6per6rFPuFUVWer6nh7me3k/RKg10cyo4nx8JYDRNfjiiuuYJ999mHDhg38+9//ds2jN7Y3j8zMTN58800GDx7M3LlzXXEIlxEjRvDee+8xbNgwFi5cyBdffBEVD89UJtsTU6ZMcVsBMB5ec4DoegwdOpR7770XoOsRVjc8emN785gzZw7t7e3ccMMNER8QMZp5cfjhh3dNqHbzzTf7zcrolIepTEJg1apVbisAxsNrDhB9j5tuuolddtmF5cuXs2zZMtc8emJ78khLS+P9999n6NChPPzww644RJJ77rmHGTNmUFZWxk033dR1r8Qxj+6eFx4IixlOxbCj8OCDDyqgF154odsq2zUXXXSRAnrnnXe6rRIx8vPzddy4cQroK6+8EpE48fJ7Jtsb2/sQEZHGCx5ecAB3PO666y6GDx/OF198wfr1613z6I7txSMxMZHPP/+ckSNH8pe//MUVByfYe++9efXVVwG499572bhxo3Me3dUwA2EJp2XS3t4ecthIYjy85aDqnsfvfvc7BfQ3v/mNqx6BbC8eM2fOVEBnz57tmoOT/OpXv1JAjz32WG1qagorLkzLJHIsXbrUbQXAeHjNAdzzmDVrFiLCO++8Q2Fh4YDPj0B681iyZAn/+c9/GDt2bNfj1tF2cJr58+ezzz77kJSUxG9/+1tH0jCVSQgceeSRbisAxsNrDuCex4EHHsill15Ka2sr8+bNG/D5EUhPHg0NDV1PxN17773suuuuUXeIBjvvvDPvvPMOIsJ7773H8uXLI56GqUxCIJhpU6OB8fCWA7jr0fmr+tVXX2XNmjWuefji5XJpamrioosuYtWqVey999784Q9/iLpDNDnttNOYPXs2u+yyC42NjRGP31QmIdDfuZ+dwnh4ywHc9TjuuOM444wzqKmp4fvvv3fNwxevlkvnnO6dc7n/97//dfwNdS/kxdy5c/nhhx8488wzIx63qUxCoKmpyW0FwHh4zQHc9+hsnSxcuJCqqipXXcD9/OjE16OtrY1rr72WL7/8kvHjx/P9999zyCGHRNXBLYYNG8ZOO+3kSNymMgmB1tZWtxUA4+E1B3Df4xe/+AUnnngiZWVl3HbbbVgP37iH2/nRSadHR0cHN910E5988gljx47lu+++44gjjoiqg9s45WEqkxAYP3682wqA8fCaA7jvISK8/fbbjBo1ig8//LDbEYWjidv50cn48eNRVW6//fau/Pn666859thjo+rgBZzyMJVJCOTm5rqtABgPrzmANzwOOuigrpvJt99+O9nZ2a65eCE/AHJycpg1axavvfYaw4cP58svv+Tkk0+OqoNX8sIxj+5ePhkISzgvLdbX14ccNpIYD285qHrHo66uTi+55BIF9OSTT+51Glcn8Up+PPDAAwro0KFD9auvvnLFwSt5Ea4H5qXFyJGYmOi2AmA8vOYA3vFISkpi4cKF7LnnnixbtqxrBNloE25+ZGRkUFtbG1YcTz75JE8//TSDBw/mww8/5Nxzzw0rvlDxyrHhmEd3NcxAWMxAj4aBwH//+18FdPDgwbpixQq3dfrFN998oyKikyZN0o8++kg7Ojr6Fb6kpESvvfZaBVRE9N1333XIdGCBaZlEju1l8Lpo4QUPLziA9zzOPPNMZs2aRXt7O9dee23Yv/JD9egvLS0t3HPPPagqJSUlXHnllfzyl78kPz+/z7AdHR28/vrrTJkyhffee48RI0bwwAMPcO2114bkEim8dmxEnO5qmIGwhNMyaWtrCzlsJDEe3nJQ9aZHU1OTTp8+XQG98cYbXfPoD3/7298U0IMOOkhffvllHTt2rAI6evRonT9/fo+DJq5bt05PPfVUBRTQmTNnalZWlifKxQsOquF70EPLxPWLultLOJXJkiVLQg4bSYyHtxxUveuRnp6uI0aMUEA//vhj1zyCobS0VHfeeWcF9Msvv1RV1S1btnQ9UADoSSedpGlpaV1hGhsb9aGHHtKhQ4cqoBMnTtT333+/q2vMC+XiBQfV8D1MZRLByqSysjLksJHEeHjLQdXbHgsWLFBAx40bp3l5ea559EXncPpnn332NvdJ/vnPf+oee+zR9WTWww8/rN9++60edNBBXRXNb3/7Wy0vLw/bI9J4wUE1fA/PVybAVGAxUA1kAhd3s88j9gHzc591AjwNlNvLM4D0lV44lcnq1atDDhtJjIe3HFS97dHR0aHnnXeeAnrGGWdEpdulv/mRkpKigwYN0sGDB2t6enq3+1RWVuqtt97aVXl0LlOnTu3xV7cXysULDqrhe/RUmXjiBryIDAH+BfwbGA/cArwrIgf77HMAcBlQFBD8FuAiYDpwBHA+cKuTvk4OU90fjIe3HMDbHiLCG2+8wcSJE4mJiWH+/PmuePSEqnLPPffQ0dHB7bffzqGHHtrtfuPGjePVV18lNjaWQw45hOHDh/PYY4+xZs0aTj311LA9nMILDuCchycqE2AKsCfwgqq2q+piYBlwnc8+84EHgJaAsDcAz6tqgapuAZ4HbnRStqUlUMEdjIe3HMD7HpMmTWLhwoUAPPzwwxQVBf42i45Hd3z++ef8+OOPjB8/njlz5vS5/2mnnUZ6ejpbt27lwQcfZNiwYRHxcAovOIBzHl6pTKSHdYcBiMjlQIuqft3NftOAFJ/PKfa6bSMUuUVEkkQkqbCwkIqKCpYtW0Zra2vX43KxsbE0NTURHx9PWVkZ6enpbN68mby8PFJSUqisrCQlJYW2tja/MI2NjSQkJFBaWsq6devIysoiPz+fNWvWUFVVxdKlS2lvb/cL09DQwMqVKykpKWH9+vVkZmZSUFBAcnIy1dXVxMbG0tHR4Remrq6OpKQkioqKyM7OZtOmTRQWFrJq1Spqa2u79o2JiekKU1tby6pVqygsLGTTpk1s3LiRoqIikpKSqKur84u/M73q6mqSk5MpKCggMzOT9evXU1JSwsqVK2loaNjmuy9dupSqqirWrFlDfn4+WVlZrFu3jtLSUhISEmhsbPQL09bWRlxcXFd+5uXlsXnzZtLT0ykrKyM+Pp6mpia/MK2trSxbtoyKigpSU1PJzc0lJyeHtLQ0tm7dyvLly2lpafH77s3NzaxYsYKtW7eSlpZGdnY2ubm5rF271q/8O8PExMT0Wf5xcXHblH9DQ0NX+fuW5erVq6murmbJkiXblGV9fT2JiYkUFxezYcMGMjIy2LJlC8nJydTU1BAbG4uq9lj+Gzdu7LH8V69e3RWmpqaG5ORktmzZQkZGBocccghnnXUWNTU13HvvvX751dHRwZIlS6iurmb16tV9ln9MTAzt7e39Lv/W1lbi4uKoqKggJSWFTZs2cc899wBw//33s3HjRpqbm/3CtLS0sHz5csrLy0lNTSUnJ4f8/Hyys7MpLy/vKn/fMJ3lX1ZW5lf+KSkpVFRUEBcXt835H+y57JtvPZ3LvuXvezzHxMQEVf6d8YdyLnceO4Hlv3nzZoqLi0lMTKS+vn6b87+38k9ISOju0mrRXd9XtBdgKLAZmG3/PxOrBfIdMBrIAPa3983B/55JOzDF5/NBWH2ovd43CeeeSUlJSchhI4nx8JaD6vbjkZWVpcOHD1dAY2NjXfPo5K9//asCOm3aNEeGfvFCuXjBQTV8D7x8z0RVW7Hue5wHFAOzgI+BAuBR4B1V7Wm0ujrAd1absUCd/aUdwc2B83wxHt5ygO3HY/Lkyfzxj38E4M4776Strc0VD4CioiIef/xxAF544QWGDBniiofTeMEBHPTorobxwgIsx7qRvgbYilXJFGO1RCqAB3z2+61PuN8A8X3FH07LpKGhIeSwkcR4eMtBdfvyaGho0P33318BffHFF13z+PWvf62AXnDBBY44BOvhNF5wUA3fAy+3TABE5AgRGSEio0TkPmAPYBFwJta9kyPtpRCrkllgB30buFdE9hKRPbFaNYucdF25cqWT0QeN8fCWA2xfHiNHjmTevHmAdTO+uLg46h6rVq1i0aJFDB06lOeffz7i6QfrEQ284AAOenRXw7ixAM8ClVjdVt8AB/awXw7bvmfyDFZrpYIovGdiMOxInH/++QroddddF9V0Ozo69OSTT1ZAZ82aFdW0DaFDDy0TUeduLXiaY489VpOSkkIKGxsby+mnnx5hI+OxvTtsrx6bN2/m0EMP7Xp66rTTTuszTGZmJv/4xz9oaWnp9Udbbm4uP/nJT+jo6KCjowNV7fq/rKyM999/nwkTJpCRkcHOO+8c7tfuES+UixccIuEhIqtUddspKns7EHbkJZyWiVsTDQViPLzloLr9ejzyyCMK6OGHH95r2JaWFn3iiSe6ngSLxLJw4cJwv26feKFcvOCgGr4HPbRMIv/YxAAgPj6eU045xW0N4+Exh+3Z44EHHuDtt98mNTWVBQsWcPfdd2+zz8qVK7n55ptJTU0F4Morr+Sggw5CRHpc8vLy2H///Rk0aBAiwqBBg/z+nzRpEldeeWXEvndPeKFcvODgqEd3NcxAWMJpmVRUVIQcNpIYD285qG7fHl9++aUCOnbsWC0qKupaX1tbq3fffbeKiAI6efJk/f777x3zcAIveHjBQTV8D7z+NNf2RF5entsKgPHwmgNs3x7nn38+559/PjU1NcyePRuAb775hmnTpjFv3jwGDRrE7NmzSU1N5ec//7ljHk7gBQ8vOIBzHqabKwR22WUXtxUA4+E1B9j+PebNm8f333/PO++8Q1lZGd9++y0ARx99NK+//jpHHXVUVDwijRc8vOAAznmYlkkIOPW2cH8xHt5ygO3fw/fN+G+//ZaRI0fy3HPPkZCQ0O+KJByPSOMFDy84gHMepmUSAo2NjW4rAMbDaw6wY3g88MADJCYmMmzYMJ5//nkmT57sikck8YKHFxzAOQ9TmYTAxIkT3VYAjIfXHGDH8Bg5ciRfffWV6x6RxAseXnAA5zxMN1cIZGVlua0AGA+vOYDxCMR4eMsBnPMwb8CHQFNTEyNGjIiwkfHY3h2Mh/HwukMkPHp6A960TEKg1wlioojx8JYDGI9AjIe3HMA5D9MyMRgMBkPQmJZJBOmc5tJtjIe3HMB4BGI8vOUAznmYlkkItLa2MnTo0AgbGY/t3cF4GA+vO0TCw7RMIsgOP8lNP/GChxccwHgEYjy85QDOeZjKJASmTp3qtgJgPLzmAMYjEOPhLQdwzmPAdnOJSBmQG2Lw3bDmpXcb4+EtBzAegRgPbzlA+B77quqEwJUDtjIJBxFJ6q7P0HgMbAfjYTy87uCkh+nmMhgMBkPYmMrEYDAYDGFjKpPQWOi2gI3x+B9ecADjEYjx+B9ecACHPMw9E4PBYDCEjWmZGAwGgyFsTGViMBgMhrAxlYnBYDAYwsZUJkEiIneKSJKINIvIIhc9hovIGyKSKyK1IrJaRM5xyeVdESkSkRoR2SQiN7vhYbscJCJNIvKuS+nH2OnX2ctGNzxsl6tEZL2I1ItIloicGuX06wKWdhF5KZoOPi77icjXIlIpIsUiMl9EojrDrIhMFZHFIlItIpkicnGU0u3xmiUiZ4rIBhFpEJEfRWTfcNMzlUnwFAKPA2+67DEEyAdOB3YGHgI+FpH9XHB5CthPVccCFwKPi8gxLngALAASXUq7kztVdbS9HOKGgIicBTwN/BoYA5wGbI6mg08ejAYmAY3AJ9F08OFloBTYAzgS67y5PVqJ2xXXv4B/A+OBW4B3ReTgKCTf7TVLRHYD/ol17RgPJAEfhZuYqUyCRFX/qaqfA+Uue9Sr6hxVzVHVDlX9N5ANRP0irqrpqtrc+dFeDoi2h4hcBVQBP0Q7bQ/yKDBXVePt42OLqm5x0ecyrIv5UpfS3x/4WFWbVLUY+BaYFsX0pwB7Ai+oaruqLgaWAdc5nXAv16xLgHRV/URVm4A5wHQRmRJOeqYy2c4RkUnAwUC6S+m/LCINwAagCPg6yumPBeYCs6KZbg88JSJbRWSZiJwR7cRFZDBwLDDB7k4psLt1RkbbxYcbgLfVvXcQ5gFXicgoEdkLOAerQokW0sO6w6LoEMg0IKXzg6rWA1mEWcmaymQ7RkSGAu8Bb6nqBjccVPV2rO6UU7Gazs29h4g4jwFvqGp+lNMN5AFgMrAX1kthX4pItFtpk4ChWK2BU7G6dY4CHoyyBwAisg9Wt9JbbqRvE4t1kawBCrC6dD6PYvobsFpm94vIUBGZiZUno6LoEMhooDpgXTXWeRwypjLZThGRQcA7QAtwp5sudvM9DtgbuC1a6YrIkcDPgReilWZPqGqCqtaqarOqvoXVlXFulDUa7b8vqWqRqm4F/uaCRyfXA3Gqmu1G4vY58h3Wj5ydsEbL3QXrnlJUUNVW4CLgPKAYqwX9MVbF5hZ1wNiAdWOB2nAiNZXJdoiICPAG1i/RS+0D1gsMIbr3TM4A9gPyRKQYuA+4VESSo+jQE0r3XRzOJahaiXWR8sqwFtfjbqtkPPATYL5dyZcD/0eUK1dVXauqp6vqrqp6NlYL1s2ZstKB6Z0fRGQnrPM2rK5yU5kEiYgMEZERwGBgsIiMiPYjhj68AkwFLlDVxr52dgIRmWg/gjpaRAaLyNnA1cDiKGosxDoJjrSXV4GvgLOj6ICIjBORszuPCRG5Fuspqu+i6WHzf8BddvnsAtyD9SRRVBGRn2J1+bn1FBd2yywbuM0ul3FY93BSeg0YYUTkCPvYGCUi92E9WbYoCun2dM36DDhMRC61tz8MrA27q1xVzRLEgvXEgwYsc1zw2NdOuwmrudq5XBtljwlY/dFVWP3RqcBvPVBG77qQ7gSsx5Jr7fyIB85yKQ+GYj0OW4XVrfL/gBEueLwGvOPm8WB7HAnEAJVYE0J9AkyMssOzdvp1wDfAgVFKt8drFlb38AasrtEYrEf8w0rPDPRoMBgMhrAx3VwGg8FgCBtTmRgMBoMhbExlYjAYDIawMZWJwWAwGMLGVCYGg8FgCBtTmRgMBoMhbExlYtjusQdWPMr+/88i8nqQ4XrdV0SuFZH/BBnXnM65VERkH3sej8HBhA0WEckRkZ/3sG2kiHxpz5nh2ouCPj5d+RHFNIfbc3RMjGa6BgtTmRgiin3BaxRr4q4qEVkuIr+zx0lyIr0LgFpVXQ2gqk+qalCTdPnua0+ipL6jGqjqe6o6s79Oqpqn1nwe7f0NGwaXYQ2vs6uqXh7FdKOKiPzMnsypWkRyfLepNR3Cm1iDbhqijKlMDE5wgaqOwXpb/69YJ/cbDqX1O6wBLwc6+wKbVLWtu40uDv0TaeqxKoz7e9j+PnCDiAyPnpIBTGVicBBVrVbVL4ArsU7wwwBE5DyxphuuEZF8EZnTGUZEvhKRu3zjEZG1InJRYPwiMgyYgTWsS+c63+6mztbGDSKSZ8818pfu9gWW2H+r7C6qk0TkRhGJ89l/nu1bIyKrpIfpcH1bOXY8vlPYNnX+ohaRQSLyR7Gm1i0XkY9FZLxPPNeJNT1zua93N+k9ijW+0pV2GjfZ7stE5AURqQDmiMjOIvK2iJTZ8T7Y2WIM2L9KRDaLyE/t9fkiUioiN/TisL+IxNot0u+xRuj13f6JWNPmVovIEhGZZq8/TkRKfCs7scaMWtNdOqq6UlXfoYfZI1W1AGvokhN7cjU4g6lMDI6jqiuxRrPtvPjWY40oOw5raO7bfCqLt4BfdYYVkelYAwZ2N+nWQUCHfQHpjVOAQ4AzgYdFZGo3+5xm/x1nd1Gt6GafRKyxnsZj/QL+RKyB8npEVVfo/6aw3QVr3K4P7M2/xxqe/HSs2fgqsaYfRkQOxRrQ8zp7265YQ/x3l8YjwJPAR3Zana3AE7AuuhOBJ4CXsKZ6nmyneT3W9L747L/WTut94EPgOOBArDKZLyKje/iq7wOrsCqRx7AGVPTlG6zymggkY83Dg6omYs0EeJbPvr8ivNbmenxGxTVEB1OZGKJFIdZFGFWNUdVUtaaVXYt1cT3d3u9fwEEicpD9+Tqsi2RLN3GOI7g5GB5V1UZVTcEaMTakC42qvquq5arapqrPA8OxKqlg+X9YFWlnK+NW4C+qWmD3988BLrN/pV8G/FtVl9jbHgI6+qlcqKov2V1fLVgtxD+pNe9KDvA8/tPHZqvq/9n3ej7CGr59rlrDt//HjuPAwETEmgTrOOAhe98lwJe++6jqm3a6nd9zuojsbG/u+gFht8zOxqqcQqUW69gwRBFTmRiixV5ABYCInGDfRC0TkWqs+x67QddN1I+BX9ldMFfT86/USoKbHa7Y5/8GrJnm+o2IzBKR9XZXTRXWr/zd+gjWGfZWrPlXrlHVzkphX+Azu1upCusXdTvWjfQ9ga7ZI9WaWjVwLu++8J19cjdgGJDrsy4Xq1w6KfH5v9FON3Bdd3m3J1BpO/rGDVjTCYvIX+3uvBogx8cJ4F3gArvVcwWwVFWL+vhuvTEGa9RkQxQxlYnBcUTkOKyLVuf9h/eBL4CfqOrOWPOQ+E4k9RZwLVa3VEMPXU4AGVb0slcP2/tDr8Nn2/dHHsC62O2iquOwpjrtcwIsO+xjwC9V1Xe61HzgHFUd57OMUNUtQBFWy6AzjlFY3U+hfqetQCtWBdbJPsCWfsbZHUXALmJNsuQbdyfXAL/EGvZ8Z6wJzcDOO/v7rgAuxmophftAxVSiPGeJwVQmBgcRkbEicj5W3/u7qppqbxoDVKhqk4gcj3Wx6cKuPDqwumF6vLCoNcPkf/lfF1k4lNlpTu5h+xigzd5viIg8zLZTn26DiPwEq8voelXdFLD5VeAJEdnX3neCiPzS3vYP4HwROcV+0GAuYZyvdtfVx3Z6Y+w078VqFYSFquZiza3+qIgME5FTgAt8dhkDNGO1rEZh3d8J5G1gNnA41uRN3WI/tDACa94WEWvCp2E+2/fC6k6ND+9bGfqLqUwMTvCliNRi/fL+C9Y85L43em8H5tr7PIx1kQvkbawLS18Xu9fw7/cPCVVtwLpJvczudgp8Gug7rJvIm7C6cJrw70bqiTOB3YF/+DzR1Tk96jysFtp/7LyIx7oJjqqmA3dgteKKsLr0wp03/C6sezabsVqJ72M9ZhsJrsFyrwAewSq/Tt7GyrMtwDq6v9B/ht3tF9BdFshpWN1tX2O1fhoB3xdLrwHesrtLDVHETI5l8CQicj1wi6qeEsS+ccBdnS8uGrZPRCQLuFVV/xti+OFY3VunqWppROUMfbKjvMhk2IGw7w/cjjX9bJ8EU+EYvI2IXIp1j2dxqHHYrZEpEZMy9AvTzWXwFCJyNtZ9iRLCezzUsJ0gIjFY79Tc4fOkm2E7w3RzGQwGgyFsTMvEYDAYDGFjKhODwWAwhI2pTAwGg8EQNqYyMRgMBkPYmMrEYDAYDGHz/wGafCqOw8xLLwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "<Figure size 432x288 with 1 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "#####################################################\n", + "# Plot pmin vs. time\n", + "#####################################################\n", + "fig = plt.figure(figsize=(6, 4))\n", + "plt.plot(df['time'], df['pmin'], color='k', linewidth=2, label=exp)\n", + "plt.xticks(fontsize=12)\n", + "plt.yticks(fontsize=12)\n", + "plt.xlabel('Day (initialized from day 1)',fontsize=12)\n", + "plt.ylabel('pmin (hPa)',fontsize=12)\n", + "plt.xticks(np.arange(0,10,1),np.arange(1,11,1))\n", + "#plt.xticklabels(np.arange(1,10,1))\n", + "plt.grid(color='gray', linestyle=':', linewidth=0.7)\n", + "plt.title('Central pressure of Exp '+exp+'', fontsize=14)\n", + "fig.savefig(dataout+'Centralpressure' + exp + '.png', bbox_inches='tight',dpi=100)" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "#####################################################\n", + "# Write out track data\n", + "#####################################################\n", + "\n", + "\n", + "df.to_csv(dataout+\"/cyclone_tracks/Track_for_\"+exp+\"_\"+data_dt+\"_\"+data_res+\".csv\", header=True)\n", + "\n", + "del time,lon,lat,pmsl,lon2d,lat2d,ncdat,df" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (based on the module python3/2023.01)", + "language": "python", + "name": "python3_2023_01" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.10" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/Scripts_for_analysis/PTEstep2_Compute_all_terms_in_2D.ipynb b/Scripts_for_analysis/PTEstep2_Compute_all_terms_in_2D.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..84872f9d755d8dd24e0cd017aff66bb89e835968 --- /dev/null +++ b/Scripts_for_analysis/PTEstep2_Compute_all_terms_in_2D.ipynb @@ -0,0 +1,4542 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "tags": [] + }, + "source": [ + "# (Step 2 for PTE) PTE analysis " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Original script taken from Georgios Papavasileiou (https://publikationen.bibliothek.kit.edu/1000123919)\n", + "\n", + "Modified by Ting-Chen Chen (ting-chen.chen@kit.edu) in Feb, 2023" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "#####################################################\n", + "# cyclone specific data\n", + "#####################################################\n", + "# channel_Xkm_0001: control simulations\n", + "# channel_Xkm_0002: +4K, qv consistent with T\n", + "# channel_Xkm_0003: +4k, qv from control\n", + "# channel_Xkm_0004: +temperature anomaly from MPI-ESM1-2-LR far future\n", + "# channel_Xkm_0005: +tropical temperature anomaly from MPI-ESM1-2-LR far future\n", + "# channel_Xkm_0006: +polar temperature anomaly from MPI-ESM1-2-LR far future\n", + "\n", + "# Note that the 2-km experiments contain outputs every 6 hrs\n", + "# Note that the 80-km experiments contain outputs every 1 hrs\n", + "\n", + "res = '2km'\n", + "exp = 'channel_'+res+'_0001'\n", + "\n", + "compute_DIAB = True # Always set 'True' when the explicity-calculated diabatic heating rate is available\n", + "\n", + "data_res = '1x1latlon'\n", + "dt = 6 # INTENDED delta t in hrs for the PTE analysis \n", + " # (not the time interval of the input data) \n", + "\n", + "if dt == 1:\n", + " data_dt = '1hrly'\n", + "elif dt == 6:\n", + " data_dt = '6hrly'" + ] + }, + { + "cell_type": "raw", + "metadata": { + "tags": [] + }, + "source": [ + "# PTE analysis in ICON simulations over the North Atlantic domain\n", + "# author: Georgios Papavasileiou, KIT, MAR 2018 \n", + "# for any comments of feedback please contact me georgios.papavasileiou@kit.edu\n", + "#\n", + "#\n", + "######################################################################################################################## \n", + "#################################### Surface Pressure Tendency Equation ###############################################\n", + "######################################################################################################################## \n", + "## This script is used to calculate the components of the surface pressure tendency equation and its residuals ##\n", + "## based on the work from Fink, Pohle, Pinto and Knippertz 2011: The role of diabatic processes in explosive ##\n", + "## cyclogenesis over the eastern Atlantic ocean and western Europe (GRL) & 2012:Diagnosing the influence of ##\n", + "## diabatic processes on the explosive deepening of extratropical cyclones ##\n", + "## ## \n", + "## ##\n", + "## dP_sfc / dt = ro * (dfi / dt) + ro * (vertical integratl of dT / dt) + g*(E-P) + residual [Eq.1] ##\n", + "## ##\n", + "## where, ##\n", + "## P_sfc = surface pressure ##\n", + "## fi = geopotential ##\n", + "## T = temperature ##\n", + "## E = evaporation ##\n", + "## P = precipitation ##\n", + "## ro = air density at the surface ##\n", + "## ##\n", + "## The temperature term dT / dt (ITT: vertically integrated virtual temperature tendency) can be further expanded to: ##\n", + "## ##\n", + "## ITT = TADV + VMT + DIAB + RES [Eq.2] ##\n", + "## ##\n", + "## where, ##\n", + "## TADV = temperature advection ##\n", + "## VMT = vertical motion ##\n", + "## DIAB = diabatic processes (such as radiative cooling/warming, latend heat release due to phase changes of water) ##\n", + "## ##\n", + "## ##\n", + "## author: Georgios Papavasileiou, KIT, MAR 2018 ##\n", + "######################################################################################################################## " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "we load libraries" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "import numba\n", + "from numba import njit\n", + "import math\n", + "import psutil\n", + "import numpy as np\n", + "import pandas as pd\n", + "import xarray as xr\n", + "import matplotlib.pyplot as plt\n", + "import datetime \n", + "import cartopy.crs as ccrs\n", + "import matplotlib.ticker as mticker\n", + "from cartopy.mpl.gridliner import LONGITUDE_FORMATTER, LATITUDE_FORMATTER\n", + "import warnings\n", + "warnings.filterwarnings(\"ignore\")\n", + "from platform import python_version" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "3.9.9\n" + ] + } + ], + "source": [ + "#print(numba.__version__)\n", + "print(python_version())" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "parallel_options = {\n", + " 'comprehension': True, # parallel comprehension\n", + " 'prange': True, # parallel for-loop\n", + " 'numpy': True, # parallel numpy calls\n", + " 'reduction': True, # parallel reduce calls\n", + " 'setitem': True, # parallel setitem\n", + " 'stencil': True, # parallel stencils\n", + " 'fusion': False, # enable fusion or not\n", + "}" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "def print_memory(msg=None):\n", + " process = psutil.Process()\n", + " if (msg):\n", + " print(msg, ':', 'memory =', np.round(process.memory_info().rss/(1024*1024)), 'MB')\n", + " else:\n", + " print('memory =', np.round(process.memory_info().rss/(1024*1024)), 'MB')" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "# Some functions: to be used for the calculations in the SPTE script\n", + "\n", + "def get_es(t): \n", + " '''\n", + " # t is the temperature in Kelvin\n", + " # function that calculates the saturation vapour pressure\n", + " '''\n", + " es = 6.112 * np.exp((17.67*(t-273.15))/((t-273.15)+243.5))\n", + " return es\n", + "\n", + "def get_e(t, rh):\n", + " '''\n", + " # rh is the relative_humidity & es is the saturation_vapour_pressure\n", + " # function that calculates the vapour pressure\n", + " '''\n", + " e = rh*get_es(t)/100\n", + " return e\n", + "\n", + "def get_shu(rh, t, p):\n", + " '''\n", + " # function that calculates the specific humidity\n", + " # pressure must be given in hPa\n", + " '''\n", + " shu = (0.622 * get_e(t,rh))/(p-(0.378*get_e(t,rh)))\n", + " return shu\n", + " \n", + "def get_mix(e,p,t,rh):\n", + " '''\n", + " # function that calculates the mixing ratio\n", + " # e : vapour pressure\n", + " # p : pressure in Pa\n", + " # t : temperature\n", + " # rh: relative humidity\n", + " '''\n", + " mix = (0.622 * get_e(t,rh)) / ((p/100)-get_e(t,rh)) \n", + " return mix\n", + " \n", + "def get_adia_lr(t,rh,p):\n", + " '''\n", + " # function that calculates the dry/moist adiabatic lapse rate\n", + " # t : temperature\n", + " # rh: relative humidity\n", + " '''\n", + " if rh < 95.:\n", + " adia = g/C_p\n", + " else:\n", + " e_h = get_e(t,rh)\n", + " mix_h = get_mix(e_h, p, t, rh)\n", + " adia = g * ((1 + ((LV * mix_h) / (R * t))) / (C_p + ((LV**2 * mix_h * 0.622) / (R * t**2))))\n", + " return adia\n", + "\n", + "def get_rhm_sfc(t2m ,td2m):\n", + " '''\n", + " # function that calculates the relative humidity in the sfc\n", + " '''\n", + " rhm_sfc = 100 * (get_es(td2m)/get_es(t2m))\n", + " return rhm_sfc\n", + "\n", + "def get_theta(t, p):\n", + " '''\n", + " # function that calculates the potential temperature for given Temperature(t in Kelvin) and pressure,\n", + " '''\n", + " theta = t * ( 1.e5 / p) ** 0.286\n", + " return theta\n", + "\n", + "def get_T_v(t, shu):\n", + " '''\n", + " # function that calculates the virtual temperature for given Temperature(t in Kelvin),\n", + " # Relative Humidity(rh [0-100]) & Pressure(p in hPa)\n", + " # we calculate the specific humidity\n", + " '''\n", + " T_v = t * (1 + 0.608 * shu)\n", + " return T_v\n", + "\n", + "@njit\n", + "def get_T_adv(T, u, v, lat, lon, ntimes, nlevs, nlats, nlons):\n", + " '''\n", + " # function that calculates the Horizontal Temperature Advection (T_adv)\n", + " # we use as imput the u and v wind components with shape (ntimes, nlevs, nlats, nlons)\n", + " # and the temperature gradient components with shape (ntimes, nlevs, nlats, nlons)\n", + " '''\n", + " deg2rad = np.pi/180.0\n", + " \n", + " T_adv = np.full((ntimes,nlevs,nlats,nlons),np.nan,dtype=np.float64)\n", + " \n", + " for lati in range(nlats):\n", + " for loni in range(nlons):\n", + " \n", + " latiU = min (lati+1, nlats-1)\n", + " latiL = max (lati-1, 0)\n", + " #loniU = min (loni+1, nlons-1)\n", + " #loniL = max (loni-1, 0)\n", + " loniU = loni+1\n", + " loniL = loni-1\n", + " londis = lon[loniU]-lon[loniL]\n", + " if loni == nlons-1:\n", + " loniU = 0\n", + " londis = 2.\n", + " if loni == 0: \n", + " londis = 2.\n", + " \n", + " # Zonal distance between two points at the same latitude \n", + " #------------------------------------------------------------------------------------------------------------------------------\n", + " # Based on an ellipsoid (e.g. WGS84):\n", + " # ps., more realistic for the Earth but not necessary the assumption used in the numerical NWP/climate models!\n", + " #\n", + " # zon = u[:,:,lati,loni]/(rearth*np.cos(lat[lati]*deg2rad)) * (T[:,:,lati,loniU]-T[:,:,lati,loniL])/(deg2rad*(lon[loniU]-lon[loniL]))\n", + " #------------------------------------------------------------------------------------------------------------------------------\n", + " #------------------------------------------------------------------------------------------------------------------------------\n", + " # Based on a sphere with a constant radius:\n", + " # ps., likely used in ICON-NWP models!\n", + " # \n", + " zon = u[:,:,lati,loni]/rearth * (T[:,:,lati,loniU]-T[:,:,lati,loniL])/(deg2rad*(londis))\n", + " mer = v[:,:,lati,loni]/rearth * (T[:,:,latiU,loni]-T[:,:,latiL,loni])/(deg2rad*(lat[latiU]-lat[latiL])) \n", + " T_adv[:,:,lati,loni] = -1* (zon + mer)\n", + " \n", + " return T_adv\n", + " \n", + "def get_ro_sfc(t_sfc, p_sfc):\n", + " '''\n", + " # function that calculates the density in the surface for given surface pressure\n", + " # and temperature (conventionally we can use temprature at 2 m)\n", + " # Pressure in Pa\n", + " # Temperature in K\n", + " '''\n", + " ro = np.full((ntimes,nlats,nlons),np.nan,dtype=float)\n", + " ro = p_sfc / (t_sfc * R) \n", + " return ro \n", + "\n", + "\n", + "def get_ro_lpl(tv, p, ntimes, nlats, nlons, nlevs):\n", + " '''\n", + " # function that calculates the 4D density \n", + " '''\n", + " \n", + " ro_lpl = np.full(tv.shape,np.nan,dtype=np.float64) \n", + " for ti in range(ntimes):\n", + " for la in range(nlats):\n", + " for lo in range(nlons):\n", + " for il in range (nlevs):\n", + " ro_lpl[ti,la,lo] = p[ti,il,la,lo] / (tv[ti,il,la,lo] * R)\n", + " return ro_lpl\n", + "\n", + "@njit\n", + "def get_dT_dp(t, p, ntimes, nlevs, nlats, nlons):\n", + " '''\n", + " # function that calculates the vertical temperature gradient\n", + " '''\n", + " dT_dp = np.full((ntimes,nlevs,nlats,nlons),np.nan,dtype=np.float64)\n", + " #dT_dp = np.full((ntimes,nlevs+1,nlats,nlons), np.nan,dtype=float)\n", + " for ti in range(ntimes):\n", + " for le in range(nlevs):\n", + " leU = min (le+1, nlevs-1)\n", + " leL = max (le-1, 0)\n", + " dT_dp[ti,le,:,:] = (t[ti,leU,:,:]-t[ti,leL,:,:]) / (p[ti,leU,:,:]-p[ti,leL,:,:]) \n", + " \n", + " return dT_dp\n", + "\n", + "def get_dT_dz(dT_dp, ro):\n", + " '''\n", + " # function that calculates the tempertature advetion due to vertical motions\n", + " '''\n", + " dT_dz = dT_dp * ( -ro ) * g \n", + " \n", + " return dT_dz\n", + " \n", + "def get_T_vmt_dry(T_v, dTv_dp, omega, level):\n", + " '''\n", + " # function that calculates the tempertature advetion due to vertical motions\n", + " '''\n", + " T_vmt = omega * ( (R * T_v ) / ( C_p * level) - dTv_dp) \n", + " \n", + " return T_vmt \n", + "\n", + "@njit\n", + "def get_p_levs(level,ntimes,nlevs,nlats,nlons):\n", + " \n", + " p_levs = np.full((ntimes,nlevs,nlats,nlons), np.nan , dtype=np.float64)\n", + " for ti in range(ntimes):\n", + " for la in range(nlats):\n", + " for lo in range(nlons):\n", + " p_levs[ti,:,la,lo] = level\n", + "\n", + " return p_levs\n", + "\n", + "@njit\n", + "def logp_integral(var_datanan0,logp1D,ro,ntimes,nlats,nlons):\n", + " \n", + " I_var = np.full((ntimes,nlats,nlons), np.nan, dtype=np.float64)\n", + " for ti in range(ntimes):\n", + " for la in range(nlats):\n", + " for lo in range(nlons):\n", + " I_var[ti,la,lo] = np.trapz(var_datanan0[ti,:,la,lo],x=logp1D)*-1 *dt * h_in_sec * ro[ti,la,lo] * R\n", + " return I_var\n", + "\n", + "\n", + "def get_pv(vor,dT_dp):\n", + "\n", + " PV = (vor+f) * dT_dp * -g\n", + " \n", + " return PV\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "/work/bb1152/Module_A/A6_CyclEx/sim_data/production/channel_2km_0001/remapped_atm2d_latlon/icon-atm2d_ML_reg_con_202101*.nc\n", + "/work/bb1152/Module_A/A6_CyclEx/sim_data/production/channel_2km_0001/remapped_atm3d_latlon/icon-atm3d_PL_reg_con_202101*.nc\n", + "/work/bb1152/Module_A/A6_CyclEx/sim_data/production/channel_2km_0001/remapped_ddt3d_latlon_only_totnwpphy/icon-ddt3d_PL_reg_con_202101*.nc\n" + ] + } + ], + "source": [ + "# Path on Levante for the input data\n", + "# Interpolated up to 10hPa\n", + "datapath='/work/bb1152/Module_A/A6_CyclEx/sim_data/production/'\n", + "\n", + "\n", + "#----2D atmospheric variables----\n", + "ipath2d = datapath+exp+\"/remapped_atm2d_latlon/\"\n", + "ifile2d = \"icon-atm2d_ML_reg_con_202101*.nc\"\n", + "\n", + "print(ipath2d+ifile2d)\n", + "\n", + "#----3D atmospheric variables----\n", + "ipath3d = datapath+exp+\"/remapped_atm3d_latlon/\"\n", + "ifile3d = \"icon-atm3d_PL_reg_con_202101*.nc\"\n", + "\n", + "print(ipath3d+ifile3d)\n", + "\n", + "#----tendency terms----\n", + "ipathddt3d = datapath+exp+\"/remapped_ddt3d_latlon_only_totnwpphy/\"\n", + "ifileddt3d = \"icon-ddt3d_PL_reg_con_202101*.nc\"\n", + "\n", + "print(ipathddt3d+ifileddt3d)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "ds2d = xr.open_mfdataset(ipath2d+ifile2d)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "ds3d = xr.open_mfdataset(ipath3d+ifile3d)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "ds3dddt = xr.open_mfdataset(ipathddt3d+ifileddt3d)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "# select required variables\n", + "\n", + "ds3d = ds3d[['temp',\n", + " 'qv',\n", + " 'u',\n", + " 'v',\n", + " #'w',\n", + " 'omega',\n", + " 'geopot',\n", + " 'vor']]\n", + "\n", + "# total temperature tendency from NWP physics [K/s]\n", + "ds3dddt = ds3dddt[['ddt_temp_totnwpphy']] \n", + "\n", + "# pres_sfc: surface pressure [Pa]\n", + "# pres_msl: mea-sea-level pressure [Pa]\n", + "# tot_prec: total precipitation [kg m-2]\n", + "# qhfl_s: surface moisture flux [Kg m-2 s-1]\n", + "# t_2m: temperature in 2m [K]\n", + "# qv_2m: specific water vapor content in 2m \n", + "ds2d = ds2d[['pres_sfc',\n", + " 'pres_msl',\n", + " 'tot_prec',\n", + " 'qhfl_s',\n", + " 't_2m',\n", + " 'qv_2m']] \n", + "\n", + "ds = xr.merge([ds2d,ds3d,ds3dddt])" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# Select timesteps every 6 hours. \n", + "# NOT REQUIRED FOR 2KM SIMS AS OF NOW BECAUSE DATA IS ONLY AVAILABLE EVERY 6 HRS!\n", + "\n", + "\n", + "def createList(r1, r2, r3):\n", + " return list(range(r1, r2+1, r3))\n", + "\n", + "# Note that I name the first day (time index starting from 0) as day 1 instead of day 0 \n", + "\n", + "if res == '80km': \n", + " \n", + " if data_dt =='6hrly':\n", + " \n", + " ds = ds.isel(time=createList(36,216+1,6)) # day 2.5- 9, every 6 hr (starting from t=0)\n", + " \n", + " elif data_dt =='1hrly':\n", + " \n", + " ds = ds.isel(time=slice(36,216+1)) # day 2.5- 9, every 1 hr\n", + "\n", + "else : #2-km experiments\n", + " \n", + " ds = ds.isel(time=slice(6,36+1)) # day 2.5-9, every 6 hr " + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "# set relative time-axis\n", + "\n", + "ds[\"time\"] = ds.time - 20210101" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "<div><svg style=\"position: absolute; width: 0; height: 0; overflow: hidden\">\n", + "<defs>\n", + "<symbol id=\"icon-database\" viewBox=\"0 0 32 32\">\n", + "<path d=\"M16 0c-8.837 0-16 2.239-16 5v4c0 2.761 7.163 5 16 5s16-2.239 16-5v-4c0-2.761-7.163-5-16-5z\"></path>\n", + "<path d=\"M16 17c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n", + "<path d=\"M16 26c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n", + "</symbol>\n", + "<symbol id=\"icon-file-text2\" viewBox=\"0 0 32 32\">\n", + "<path d=\"M28.681 7.159c-0.694-0.947-1.662-2.053-2.724-3.116s-2.169-2.030-3.116-2.724c-1.612-1.182-2.393-1.319-2.841-1.319h-15.5c-1.378 0-2.5 1.121-2.5 2.5v27c0 1.378 1.122 2.5 2.5 2.5h23c1.378 0 2.5-1.122 2.5-2.5v-19.5c0-0.448-0.137-1.23-1.319-2.841zM24.543 5.457c0.959 0.959 1.712 1.825 2.268 2.543h-4.811v-4.811c0.718 0.556 1.584 1.309 2.543 2.268zM28 29.5c0 0.271-0.229 0.5-0.5 0.5h-23c-0.271 0-0.5-0.229-0.5-0.5v-27c0-0.271 0.229-0.5 0.5-0.5 0 0 15.499-0 15.5 0v7c0 0.552 0.448 1 1 1h7v19.5z\"></path>\n", + "<path d=\"M23 26h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n", + "<path d=\"M23 22h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n", + "<path d=\"M23 18h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n", + "</symbol>\n", + "</defs>\n", + "</svg>\n", + "<style>/* CSS stylesheet for displaying xarray objects in jupyterlab.\n", + " *\n", + " */\n", + "\n", + ":root {\n", + " --xr-font-color0: var(--jp-content-font-color0, rgba(0, 0, 0, 1));\n", + " --xr-font-color2: var(--jp-content-font-color2, rgba(0, 0, 0, 0.54));\n", + " --xr-font-color3: var(--jp-content-font-color3, rgba(0, 0, 0, 0.38));\n", + " --xr-border-color: var(--jp-border-color2, #e0e0e0);\n", + " --xr-disabled-color: var(--jp-layout-color3, #bdbdbd);\n", + " --xr-background-color: var(--jp-layout-color0, white);\n", + " --xr-background-color-row-even: var(--jp-layout-color1, white);\n", + " --xr-background-color-row-odd: var(--jp-layout-color2, #eeeeee);\n", + "}\n", + "\n", + "html[theme=dark],\n", + "body.vscode-dark {\n", + " --xr-font-color0: rgba(255, 255, 255, 1);\n", + " --xr-font-color2: rgba(255, 255, 255, 0.54);\n", + " --xr-font-color3: rgba(255, 255, 255, 0.38);\n", + " --xr-border-color: #1F1F1F;\n", + " --xr-disabled-color: #515151;\n", + " --xr-background-color: #111111;\n", + " --xr-background-color-row-even: #111111;\n", + " --xr-background-color-row-odd: #313131;\n", + "}\n", + "\n", + ".xr-wrap {\n", + " display: block !important;\n", + " min-width: 300px;\n", + " max-width: 700px;\n", + "}\n", + "\n", + ".xr-text-repr-fallback {\n", + " /* fallback to plain text repr when CSS is not injected (untrusted notebook) */\n", + " display: none;\n", + "}\n", + "\n", + ".xr-header {\n", + " padding-top: 6px;\n", + " padding-bottom: 6px;\n", + " margin-bottom: 4px;\n", + " border-bottom: solid 1px var(--xr-border-color);\n", + "}\n", + "\n", + ".xr-header > div,\n", + ".xr-header > ul {\n", + " display: inline;\n", + " margin-top: 0;\n", + " margin-bottom: 0;\n", + "}\n", + "\n", + ".xr-obj-type,\n", + ".xr-array-name {\n", + " margin-left: 2px;\n", + " margin-right: 10px;\n", + "}\n", + "\n", + ".xr-obj-type {\n", + " color: var(--xr-font-color2);\n", + "}\n", + "\n", + ".xr-sections {\n", + " padding-left: 0 !important;\n", + " display: grid;\n", + " grid-template-columns: 150px auto auto 1fr 20px 20px;\n", + "}\n", + "\n", + ".xr-section-item {\n", + " display: contents;\n", + "}\n", + "\n", + ".xr-section-item input {\n", + " display: none;\n", + "}\n", + "\n", + ".xr-section-item input + label {\n", + " color: var(--xr-disabled-color);\n", + "}\n", + "\n", + ".xr-section-item input:enabled + label {\n", + " cursor: pointer;\n", + " color: var(--xr-font-color2);\n", + "}\n", + "\n", + ".xr-section-item input:enabled + label:hover {\n", + " color: var(--xr-font-color0);\n", + "}\n", + "\n", + ".xr-section-summary {\n", + " grid-column: 1;\n", + " color: var(--xr-font-color2);\n", + " font-weight: 500;\n", + "}\n", + "\n", + ".xr-section-summary > span {\n", + " display: inline-block;\n", + " padding-left: 0.5em;\n", + "}\n", + "\n", + ".xr-section-summary-in:disabled + label {\n", + " color: var(--xr-font-color2);\n", + "}\n", + "\n", + ".xr-section-summary-in + label:before {\n", + " display: inline-block;\n", + " content: '►';\n", + " font-size: 11px;\n", + " width: 15px;\n", + " text-align: center;\n", + "}\n", + "\n", + ".xr-section-summary-in:disabled + label:before {\n", + " color: var(--xr-disabled-color);\n", + "}\n", + "\n", + ".xr-section-summary-in:checked + label:before {\n", + " content: '▼';\n", + "}\n", + "\n", + ".xr-section-summary-in:checked + label > span {\n", + " display: none;\n", + "}\n", + "\n", + ".xr-section-summary,\n", + ".xr-section-inline-details {\n", + " padding-top: 4px;\n", + " padding-bottom: 4px;\n", + "}\n", + "\n", + ".xr-section-inline-details {\n", + " grid-column: 2 / -1;\n", + "}\n", + "\n", + ".xr-section-details {\n", + " display: none;\n", + " grid-column: 1 / -1;\n", + " margin-bottom: 5px;\n", + "}\n", + "\n", + ".xr-section-summary-in:checked ~ .xr-section-details {\n", + " display: contents;\n", + "}\n", + "\n", + ".xr-array-wrap {\n", + " grid-column: 1 / -1;\n", + " display: grid;\n", + " grid-template-columns: 20px auto;\n", + "}\n", + "\n", + ".xr-array-wrap > label {\n", + " grid-column: 1;\n", + " vertical-align: top;\n", + "}\n", + "\n", + ".xr-preview {\n", + " color: var(--xr-font-color3);\n", + "}\n", + "\n", + ".xr-array-preview,\n", + ".xr-array-data {\n", + " padding: 0 5px !important;\n", + " grid-column: 2;\n", + "}\n", + "\n", + ".xr-array-data,\n", + ".xr-array-in:checked ~ .xr-array-preview {\n", + " display: none;\n", + "}\n", + "\n", + ".xr-array-in:checked ~ .xr-array-data,\n", + ".xr-array-preview {\n", + " display: inline-block;\n", + "}\n", + "\n", + ".xr-dim-list {\n", + " display: inline-block !important;\n", + " list-style: none;\n", + " padding: 0 !important;\n", + " margin: 0;\n", + "}\n", + "\n", + ".xr-dim-list li {\n", + " display: inline-block;\n", + " padding: 0;\n", + " margin: 0;\n", + "}\n", + "\n", + ".xr-dim-list:before {\n", + " content: '(';\n", + "}\n", + "\n", + ".xr-dim-list:after {\n", + " content: ')';\n", + "}\n", + "\n", + ".xr-dim-list li:not(:last-child):after {\n", + " content: ',';\n", + " padding-right: 5px;\n", + "}\n", + "\n", + ".xr-has-index {\n", + " font-weight: bold;\n", + "}\n", + "\n", + ".xr-var-list,\n", + ".xr-var-item {\n", + " display: contents;\n", + "}\n", + "\n", + ".xr-var-item > div,\n", + ".xr-var-item label,\n", + ".xr-var-item > .xr-var-name span {\n", + " background-color: var(--xr-background-color-row-even);\n", + " margin-bottom: 0;\n", + "}\n", + "\n", + ".xr-var-item > .xr-var-name:hover span {\n", + " padding-right: 5px;\n", + "}\n", + "\n", + ".xr-var-list > li:nth-child(odd) > div,\n", + ".xr-var-list > li:nth-child(odd) > label,\n", + ".xr-var-list > li:nth-child(odd) > .xr-var-name span {\n", + " background-color: var(--xr-background-color-row-odd);\n", + "}\n", + "\n", + ".xr-var-name {\n", + " grid-column: 1;\n", + "}\n", + "\n", + ".xr-var-dims {\n", + " grid-column: 2;\n", + "}\n", + "\n", + ".xr-var-dtype {\n", + " grid-column: 3;\n", + " text-align: right;\n", + " color: var(--xr-font-color2);\n", + "}\n", + "\n", + ".xr-var-preview {\n", + " grid-column: 4;\n", + "}\n", + "\n", + ".xr-var-name,\n", + ".xr-var-dims,\n", + ".xr-var-dtype,\n", + ".xr-preview,\n", + ".xr-attrs dt {\n", + " white-space: nowrap;\n", + " overflow: hidden;\n", + " text-overflow: ellipsis;\n", + " padding-right: 10px;\n", + "}\n", + "\n", + ".xr-var-name:hover,\n", + ".xr-var-dims:hover,\n", + ".xr-var-dtype:hover,\n", + ".xr-attrs dt:hover {\n", + " overflow: visible;\n", + " width: auto;\n", + " z-index: 1;\n", + "}\n", + "\n", + ".xr-var-attrs,\n", + ".xr-var-data {\n", + " display: none;\n", + " background-color: var(--xr-background-color) !important;\n", + " padding-bottom: 5px !important;\n", + "}\n", + "\n", + ".xr-var-attrs-in:checked ~ .xr-var-attrs,\n", + ".xr-var-data-in:checked ~ .xr-var-data {\n", + " display: block;\n", + "}\n", + "\n", + ".xr-var-data > table {\n", + " float: right;\n", + "}\n", + "\n", + ".xr-var-name span,\n", + ".xr-var-data,\n", + ".xr-attrs {\n", + " padding-left: 25px !important;\n", + "}\n", + "\n", + ".xr-attrs,\n", + ".xr-var-attrs,\n", + ".xr-var-data {\n", + " grid-column: 1 / -1;\n", + "}\n", + "\n", + "dl.xr-attrs {\n", + " padding: 0;\n", + " margin: 0;\n", + " display: grid;\n", + " grid-template-columns: 125px auto;\n", + "}\n", + "\n", + ".xr-attrs dt,\n", + ".xr-attrs dd {\n", + " padding: 0;\n", + " margin: 0;\n", + " float: left;\n", + " padding-right: 10px;\n", + " width: auto;\n", + "}\n", + "\n", + ".xr-attrs dt {\n", + " font-weight: normal;\n", + " grid-column: 1;\n", + "}\n", + "\n", + ".xr-attrs dt:hover span {\n", + " display: inline-block;\n", + " background: var(--xr-background-color);\n", + " padding-right: 10px;\n", + "}\n", + "\n", + ".xr-attrs dd {\n", + " grid-column: 2;\n", + " white-space: pre-wrap;\n", + " word-break: break-all;\n", + "}\n", + "\n", + ".xr-icon-database,\n", + ".xr-icon-file-text2 {\n", + " display: inline-block;\n", + " vertical-align: middle;\n", + " width: 1em;\n", + " height: 1.5em !important;\n", + " stroke-width: 0;\n", + " stroke: currentColor;\n", + " fill: currentColor;\n", + "}\n", + "</style><pre class='xr-text-repr-fallback'><xarray.Dataset>\n", + "Dimensions: (time: 31, lat: 65, lon: 51, height_2: 1, plev_3: 100,\n", + " plev: 100)\n", + "Coordinates:\n", + " * time (time) float64 1.5 1.75 2.0 2.25 ... 8.25 8.5 8.75 9.0\n", + " * lon (lon) float64 12.5 13.5 14.5 15.5 ... 60.5 61.5 62.5\n", + " * lat (lat) float64 15.5 16.5 17.5 18.5 ... 77.5 78.5 79.5\n", + " * height_2 (height_2) float64 2.0\n", + " * plev_3 (plev_3) float64 1e+03 2e+03 3e+03 ... 9.9e+04 1e+05\n", + " * plev (plev) float64 1e+03 2e+03 3e+03 ... 9.9e+04 1e+05\n", + "Data variables: (12/14)\n", + " pres_sfc (time, lat, lon) float32 dask.array<chunksize=(1, 65, 51), meta=np.ndarray>\n", + " pres_msl (time, lat, lon) float32 dask.array<chunksize=(1, 65, 51), meta=np.ndarray>\n", + " tot_prec (time, lat, lon) float32 dask.array<chunksize=(1, 65, 51), meta=np.ndarray>\n", + " qhfl_s (time, lat, lon) float32 dask.array<chunksize=(1, 65, 51), meta=np.ndarray>\n", + " t_2m (time, height_2, lat, lon) float32 dask.array<chunksize=(1, 1, 65, 51), meta=np.ndarray>\n", + " qv_2m (time, height_2, lat, lon) float32 dask.array<chunksize=(1, 1, 65, 51), meta=np.ndarray>\n", + " ... ...\n", + " u (time, plev_3, lat, lon) float32 dask.array<chunksize=(1, 100, 65, 51), meta=np.ndarray>\n", + " v (time, plev_3, lat, lon) float32 dask.array<chunksize=(1, 100, 65, 51), meta=np.ndarray>\n", + " omega (time, plev_3, lat, lon) float32 dask.array<chunksize=(1, 100, 65, 51), meta=np.ndarray>\n", + " geopot (time, plev_3, lat, lon) float32 dask.array<chunksize=(1, 100, 65, 51), meta=np.ndarray>\n", + " vor (time, plev_3, lat, lon) float32 dask.array<chunksize=(1, 100, 65, 51), meta=np.ndarray>\n", + " ddt_temp_totnwpphy (time, plev, lat, lon) float32 dask.array<chunksize=(1, 100, 65, 51), meta=np.ndarray>\n", + "Attributes:\n", + " CDI: Climate Data Interface version 2.0.5 (https://...\n", + " Conventions: CF-1.6\n", + " source: @\n", + " institution: Max Planck Institute for Meteorology/Deutscher...\n", + " title: ICON simulation\n", + " history: Thu Jul 14 22:59:00 2022: cdo -P 32 remapcon,/...\n", + " references: see MPIM/DWD publications\n", + " comment: Nicole Knopf (b380906) on l40622 (Linux 4.18.0...\n", + " cdo_openmp_thread_number: 32\n", + " CDO: Climate Data Operators version 2.0.5 (https://...</pre><div class='xr-wrap' style='display:none'><div class='xr-header'><div class='xr-obj-type'>xarray.Dataset</div></div><ul class='xr-sections'><li class='xr-section-item'><input id='section-c4830563-7aac-49e1-8d2e-2df2611d4c96' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-c4830563-7aac-49e1-8d2e-2df2611d4c96' class='xr-section-summary' title='Expand/collapse section'>Dimensions:</label><div class='xr-section-inline-details'><ul class='xr-dim-list'><li><span class='xr-has-index'>time</span>: 31</li><li><span class='xr-has-index'>lat</span>: 65</li><li><span class='xr-has-index'>lon</span>: 51</li><li><span class='xr-has-index'>height_2</span>: 1</li><li><span class='xr-has-index'>plev_3</span>: 100</li><li><span class='xr-has-index'>plev</span>: 100</li></ul></div><div class='xr-section-details'></div></li><li class='xr-section-item'><input id='section-88e28d69-2744-449e-9c51-71ee0ead5595' class='xr-section-summary-in' type='checkbox' checked><label for='section-88e28d69-2744-449e-9c51-71ee0ead5595' class='xr-section-summary' >Coordinates: <span>(6)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>time</span></div><div class='xr-var-dims'>(time)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>1.5 1.75 2.0 2.25 ... 8.5 8.75 9.0</div><input id='attrs-fa8a6292-b1ba-4812-ac0f-77a0e2c855ea' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-fa8a6292-b1ba-4812-ac0f-77a0e2c855ea' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-a289bd99-8743-44ff-8dae-5f91669e4ebb' class='xr-var-data-in' type='checkbox'><label for='data-a289bd99-8743-44ff-8dae-5f91669e4ebb' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([1.5 , 1.75, 2. , 2.25, 2.5 , 2.75, 3. , 3.25, 3.5 , 3.75, 4. , 4.25,\n", + " 4.5 , 4.75, 5. , 5.25, 5.5 , 5.75, 6. , 6.25, 6.5 , 6.75, 7. , 7.25,\n", + " 7.5 , 7.75, 8. , 8.25, 8.5 , 8.75, 9. ])</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>lon</span></div><div class='xr-var-dims'>(lon)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>12.5 13.5 14.5 ... 60.5 61.5 62.5</div><input id='attrs-c02ad9c3-1269-4e31-9e53-f1c4c6665191' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-c02ad9c3-1269-4e31-9e53-f1c4c6665191' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-b7620069-0361-4b33-bfba-9532809db4ef' class='xr-var-data-in' type='checkbox'><label for='data-b7620069-0361-4b33-bfba-9532809db4ef' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>standard_name :</span></dt><dd>longitude</dd><dt><span>long_name :</span></dt><dd>longitude</dd><dt><span>units :</span></dt><dd>degrees_east</dd><dt><span>axis :</span></dt><dd>X</dd></dl></div><div class='xr-var-data'><pre>array([12.5, 13.5, 14.5, 15.5, 16.5, 17.5, 18.5, 19.5, 20.5, 21.5, 22.5, 23.5,\n", + " 24.5, 25.5, 26.5, 27.5, 28.5, 29.5, 30.5, 31.5, 32.5, 33.5, 34.5, 35.5,\n", + " 36.5, 37.5, 38.5, 39.5, 40.5, 41.5, 42.5, 43.5, 44.5, 45.5, 46.5, 47.5,\n", + " 48.5, 49.5, 50.5, 51.5, 52.5, 53.5, 54.5, 55.5, 56.5, 57.5, 58.5, 59.5,\n", + " 60.5, 61.5, 62.5])</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>lat</span></div><div class='xr-var-dims'>(lat)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>15.5 16.5 17.5 ... 77.5 78.5 79.5</div><input id='attrs-35f8c38b-611d-4abc-8e5a-aa60372b6615' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-35f8c38b-611d-4abc-8e5a-aa60372b6615' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-57b385dc-18c6-475d-87ad-71f3b4a52d52' class='xr-var-data-in' type='checkbox'><label for='data-57b385dc-18c6-475d-87ad-71f3b4a52d52' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>standard_name :</span></dt><dd>latitude</dd><dt><span>long_name :</span></dt><dd>latitude</dd><dt><span>units :</span></dt><dd>degrees_north</dd><dt><span>axis :</span></dt><dd>Y</dd></dl></div><div class='xr-var-data'><pre>array([15.5, 16.5, 17.5, 18.5, 19.5, 20.5, 21.5, 22.5, 23.5, 24.5, 25.5, 26.5,\n", + " 27.5, 28.5, 29.5, 30.5, 31.5, 32.5, 33.5, 34.5, 35.5, 36.5, 37.5, 38.5,\n", + " 39.5, 40.5, 41.5, 42.5, 43.5, 44.5, 45.5, 46.5, 47.5, 48.5, 49.5, 50.5,\n", + " 51.5, 52.5, 53.5, 54.5, 55.5, 56.5, 57.5, 58.5, 59.5, 60.5, 61.5, 62.5,\n", + " 63.5, 64.5, 65.5, 66.5, 67.5, 68.5, 69.5, 70.5, 71.5, 72.5, 73.5, 74.5,\n", + " 75.5, 76.5, 77.5, 78.5, 79.5])</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>height_2</span></div><div class='xr-var-dims'>(height_2)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>2.0</div><input id='attrs-d2ad6128-fb62-4356-a0ae-062c31c9b18f' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-d2ad6128-fb62-4356-a0ae-062c31c9b18f' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-5ab9c572-ce3b-4b46-b65a-ae358d8ee49c' class='xr-var-data-in' type='checkbox'><label for='data-5ab9c572-ce3b-4b46-b65a-ae358d8ee49c' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>standard_name :</span></dt><dd>height</dd><dt><span>long_name :</span></dt><dd>height</dd><dt><span>units :</span></dt><dd>m</dd><dt><span>positive :</span></dt><dd>up</dd><dt><span>axis :</span></dt><dd>Z</dd></dl></div><div class='xr-var-data'><pre>array([2.])</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>plev_3</span></div><div class='xr-var-dims'>(plev_3)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>1e+03 2e+03 3e+03 ... 9.9e+04 1e+05</div><input id='attrs-e8238332-6d2c-4ce6-ad64-0af8c94e352e' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-e8238332-6d2c-4ce6-ad64-0af8c94e352e' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-5a0e6dbf-e8ab-46c3-bdd2-b70aaa9cf27d' class='xr-var-data-in' type='checkbox'><label for='data-5a0e6dbf-e8ab-46c3-bdd2-b70aaa9cf27d' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>standard_name :</span></dt><dd>air_pressure</dd><dt><span>long_name :</span></dt><dd>pressure</dd><dt><span>units :</span></dt><dd>Pa</dd><dt><span>positive :</span></dt><dd>down</dd><dt><span>axis :</span></dt><dd>Z</dd></dl></div><div class='xr-var-data'><pre>array([ 1000., 2000., 3000., 4000., 5000., 6000., 7000., 8000.,\n", + " 9000., 10000., 11000., 12000., 13000., 14000., 15000., 16000.,\n", + " 17000., 18000., 19000., 20000., 21000., 22000., 23000., 24000.,\n", + " 25000., 26000., 27000., 28000., 29000., 30000., 31000., 32000.,\n", + " 33000., 34000., 35000., 36000., 37000., 38000., 39000., 40000.,\n", + " 41000., 42000., 43000., 44000., 45000., 46000., 47000., 48000.,\n", + " 49000., 50000., 51000., 52000., 53000., 54000., 55000., 56000.,\n", + " 57000., 58000., 59000., 60000., 61000., 62000., 63000., 64000.,\n", + " 65000., 66000., 67000., 68000., 69000., 70000., 71000., 72000.,\n", + " 73000., 74000., 75000., 76000., 77000., 78000., 79000., 80000.,\n", + " 81000., 82000., 83000., 84000., 85000., 86000., 87000., 88000.,\n", + " 89000., 90000., 91000., 92000., 93000., 94000., 95000., 96000.,\n", + " 97000., 98000., 99000., 100000.])</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>plev</span></div><div class='xr-var-dims'>(plev)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>1e+03 2e+03 3e+03 ... 9.9e+04 1e+05</div><input id='attrs-5ab6af5e-be7a-4deb-8b4c-f32019e664f0' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-5ab6af5e-be7a-4deb-8b4c-f32019e664f0' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-aff726f1-486d-47c0-8559-6f91d1912ea3' class='xr-var-data-in' type='checkbox'><label for='data-aff726f1-486d-47c0-8559-6f91d1912ea3' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>standard_name :</span></dt><dd>air_pressure</dd><dt><span>long_name :</span></dt><dd>pressure</dd><dt><span>units :</span></dt><dd>Pa</dd><dt><span>positive :</span></dt><dd>down</dd><dt><span>axis :</span></dt><dd>Z</dd></dl></div><div class='xr-var-data'><pre>array([ 1000., 2000., 3000., 4000., 5000., 6000., 7000., 8000.,\n", + " 9000., 10000., 11000., 12000., 13000., 14000., 15000., 16000.,\n", + " 17000., 18000., 19000., 20000., 21000., 22000., 23000., 24000.,\n", + " 25000., 26000., 27000., 28000., 29000., 30000., 31000., 32000.,\n", + " 33000., 34000., 35000., 36000., 37000., 38000., 39000., 40000.,\n", + " 41000., 42000., 43000., 44000., 45000., 46000., 47000., 48000.,\n", + " 49000., 50000., 51000., 52000., 53000., 54000., 55000., 56000.,\n", + " 57000., 58000., 59000., 60000., 61000., 62000., 63000., 64000.,\n", + " 65000., 66000., 67000., 68000., 69000., 70000., 71000., 72000.,\n", + " 73000., 74000., 75000., 76000., 77000., 78000., 79000., 80000.,\n", + " 81000., 82000., 83000., 84000., 85000., 86000., 87000., 88000.,\n", + " 89000., 90000., 91000., 92000., 93000., 94000., 95000., 96000.,\n", + " 97000., 98000., 99000., 100000.])</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-4699a398-bc36-45f7-a2e8-acc7a740efac' class='xr-section-summary-in' type='checkbox' checked><label for='section-4699a398-bc36-45f7-a2e8-acc7a740efac' class='xr-section-summary' >Data variables: <span>(14)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span>pres_sfc</span></div><div class='xr-var-dims'>(time, lat, lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(1, 65, 51), meta=np.ndarray></div><input id='attrs-3e3e12e6-23c1-4630-8e92-6a585d962361' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-3e3e12e6-23c1-4630-8e92-6a585d962361' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-b68f1555-1dee-4cd0-bb7a-91b5d72cea73' class='xr-var-data-in' type='checkbox'><label for='data-b68f1555-1dee-4cd0-bb7a-91b5d72cea73' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>standard_name :</span></dt><dd>surface_air_pressure</dd><dt><span>long_name :</span></dt><dd>surface pressure</dd><dt><span>units :</span></dt><dd>Pa</dd><dt><span>param :</span></dt><dd>0.3.0</dd></dl></div><div class='xr-var-data'><table>\n", + " <tr>\n", + " <td>\n", + " <table>\n", + " <thead>\n", + " <tr>\n", + " <td> </td>\n", + " <th> Array </th>\n", + " <th> Chunk </th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " \n", + " <tr>\n", + " <th> Bytes </th>\n", + " <td> 401.43 kiB </td>\n", + " <td> 12.95 kiB </td>\n", + " </tr>\n", + " \n", + " <tr>\n", + " <th> Shape </th>\n", + " <td> (31, 65, 51) </td>\n", + " <td> (1, 65, 51) </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Count </th>\n", + " <td> 173 Tasks </td>\n", + " <td> 31 Chunks </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Type </th>\n", + " <td> float32 </td>\n", + " <td> numpy.ndarray </td>\n", + " </tr>\n", + " </tbody>\n", + " </table>\n", + " </td>\n", + " <td>\n", + " <svg width=\"187\" height=\"203\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"43\" y2=\"33\" style=\"stroke-width:2\" />\n", + " <line x1=\"10\" y1=\"120\" x2=\"43\" y2=\"153\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"120\" style=\"stroke-width:2\" />\n", + " <line x1=\"11\" y1=\"1\" x2=\"11\" y2=\"121\" />\n", + " <line x1=\"13\" y1=\"3\" x2=\"13\" y2=\"123\" />\n", + " <line x1=\"14\" y1=\"4\" x2=\"14\" y2=\"124\" />\n", + " <line x1=\"16\" y1=\"6\" x2=\"16\" y2=\"126\" />\n", + " <line x1=\"18\" y1=\"8\" x2=\"18\" y2=\"128\" />\n", + " <line x1=\"19\" y1=\"9\" x2=\"19\" y2=\"129\" />\n", + " <line x1=\"21\" y1=\"11\" x2=\"21\" y2=\"131\" />\n", + " <line x1=\"24\" y1=\"14\" x2=\"24\" y2=\"134\" />\n", + " <line x1=\"25\" y1=\"15\" x2=\"25\" y2=\"135\" />\n", + " <line x1=\"27\" y1=\"17\" x2=\"27\" y2=\"137\" />\n", + " <line x1=\"28\" y1=\"18\" x2=\"28\" y2=\"138\" />\n", + " <line x1=\"30\" y1=\"20\" x2=\"30\" y2=\"140\" />\n", + " <line x1=\"32\" y1=\"22\" x2=\"32\" y2=\"142\" />\n", + " <line x1=\"33\" y1=\"23\" x2=\"33\" y2=\"143\" />\n", + " <line x1=\"36\" y1=\"26\" x2=\"36\" y2=\"146\" />\n", + " <line x1=\"38\" y1=\"28\" x2=\"38\" y2=\"148\" />\n", + " <line x1=\"39\" y1=\"29\" x2=\"39\" y2=\"149\" />\n", + " <line x1=\"41\" y1=\"31\" x2=\"41\" y2=\"151\" />\n", + " <line x1=\"43\" y1=\"33\" x2=\"43\" y2=\"153\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"10.0,0.0 43.665158371040725,33.665158371040725 43.665158371040725,153.66515837104072 10.0,120.0\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"104\" y2=\"0\" style=\"stroke-width:2\" />\n", + " <line x1=\"11\" y1=\"1\" x2=\"105\" y2=\"1\" />\n", + " <line x1=\"13\" y1=\"3\" x2=\"107\" y2=\"3\" />\n", + " <line x1=\"14\" y1=\"4\" x2=\"108\" y2=\"4\" />\n", + " <line x1=\"16\" y1=\"6\" x2=\"110\" y2=\"6\" />\n", + " <line x1=\"18\" y1=\"8\" x2=\"112\" y2=\"8\" />\n", + " <line x1=\"19\" y1=\"9\" x2=\"113\" y2=\"9\" />\n", + " <line x1=\"21\" y1=\"11\" x2=\"116\" y2=\"11\" />\n", + " <line x1=\"24\" y1=\"14\" x2=\"118\" y2=\"14\" />\n", + " <line x1=\"25\" y1=\"15\" x2=\"119\" y2=\"15\" />\n", + " <line x1=\"27\" y1=\"17\" x2=\"121\" y2=\"17\" />\n", + " <line x1=\"28\" y1=\"18\" x2=\"122\" y2=\"18\" />\n", + " <line x1=\"30\" y1=\"20\" x2=\"124\" y2=\"20\" />\n", + " <line x1=\"32\" y1=\"22\" x2=\"126\" y2=\"22\" />\n", + " <line x1=\"33\" y1=\"23\" x2=\"128\" y2=\"23\" />\n", + " <line x1=\"36\" y1=\"26\" x2=\"130\" y2=\"26\" />\n", + " <line x1=\"38\" y1=\"28\" x2=\"132\" y2=\"28\" />\n", + " <line x1=\"39\" y1=\"29\" x2=\"133\" y2=\"29\" />\n", + " <line x1=\"41\" y1=\"31\" x2=\"135\" y2=\"31\" />\n", + " <line x1=\"43\" y1=\"33\" x2=\"137\" y2=\"33\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"43\" y2=\"33\" style=\"stroke-width:2\" />\n", + " <line x1=\"104\" y1=\"0\" x2=\"137\" y2=\"33\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"10.0,0.0 104.15384615384616,0.0 137.81900452488688,33.665158371040725 43.665158371040725,33.665158371040725\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"43\" y1=\"33\" x2=\"137\" y2=\"33\" style=\"stroke-width:2\" />\n", + " <line x1=\"43\" y1=\"153\" x2=\"137\" y2=\"153\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"43\" y1=\"33\" x2=\"43\" y2=\"153\" style=\"stroke-width:2\" />\n", + " <line x1=\"137\" y1=\"33\" x2=\"137\" y2=\"153\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"43.665158371040725,33.665158371040725 137.81900452488688,33.665158371040725 137.81900452488688,153.66515837104072 43.665158371040725,153.66515837104072\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Text -->\n", + " <text x=\"90.742081\" y=\"173.665158\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >51</text>\n", + " <text x=\"157.819005\" y=\"93.665158\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,157.819005,93.665158)\">65</text>\n", + " <text x=\"16.832579\" y=\"156.832579\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,16.832579,156.832579)\">31</text>\n", + "</svg>\n", + " </td>\n", + " </tr>\n", + "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>pres_msl</span></div><div class='xr-var-dims'>(time, lat, lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(1, 65, 51), meta=np.ndarray></div><input id='attrs-c4c39aae-cac7-416b-beb1-daccbba357e2' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-c4c39aae-cac7-416b-beb1-daccbba357e2' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-0dd1b4d8-e44a-468a-9487-0950400c5b06' class='xr-var-data-in' type='checkbox'><label for='data-0dd1b4d8-e44a-468a-9487-0950400c5b06' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>standard_name :</span></dt><dd>mean sea level pressure</dd><dt><span>long_name :</span></dt><dd>mean sea level pressure</dd><dt><span>units :</span></dt><dd>Pa</dd><dt><span>param :</span></dt><dd>1.3.0</dd></dl></div><div class='xr-var-data'><table>\n", + " <tr>\n", + " <td>\n", + " <table>\n", + " <thead>\n", + " <tr>\n", + " <td> </td>\n", + " <th> Array </th>\n", + " <th> Chunk </th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " \n", + " <tr>\n", + " <th> Bytes </th>\n", + " <td> 401.43 kiB </td>\n", + " <td> 12.95 kiB </td>\n", + " </tr>\n", + " \n", + " <tr>\n", + " <th> Shape </th>\n", + " <td> (31, 65, 51) </td>\n", + " <td> (1, 65, 51) </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Count </th>\n", + " <td> 173 Tasks </td>\n", + " <td> 31 Chunks </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Type </th>\n", + " <td> float32 </td>\n", + " <td> numpy.ndarray </td>\n", + " </tr>\n", + " </tbody>\n", + " </table>\n", + " </td>\n", + " <td>\n", + " <svg width=\"187\" height=\"203\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"43\" y2=\"33\" style=\"stroke-width:2\" />\n", + " <line x1=\"10\" y1=\"120\" x2=\"43\" y2=\"153\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"120\" style=\"stroke-width:2\" />\n", + " <line x1=\"11\" y1=\"1\" x2=\"11\" y2=\"121\" />\n", + " <line x1=\"13\" y1=\"3\" x2=\"13\" y2=\"123\" />\n", + " <line x1=\"14\" y1=\"4\" x2=\"14\" y2=\"124\" />\n", + " <line x1=\"16\" y1=\"6\" x2=\"16\" y2=\"126\" />\n", + " <line x1=\"18\" y1=\"8\" x2=\"18\" y2=\"128\" />\n", + " <line x1=\"19\" y1=\"9\" x2=\"19\" y2=\"129\" />\n", + " <line x1=\"21\" y1=\"11\" x2=\"21\" y2=\"131\" />\n", + " <line x1=\"24\" y1=\"14\" x2=\"24\" y2=\"134\" />\n", + " <line x1=\"25\" y1=\"15\" x2=\"25\" y2=\"135\" />\n", + " <line x1=\"27\" y1=\"17\" x2=\"27\" y2=\"137\" />\n", + " <line x1=\"28\" y1=\"18\" x2=\"28\" y2=\"138\" />\n", + " <line x1=\"30\" y1=\"20\" x2=\"30\" y2=\"140\" />\n", + " <line x1=\"32\" y1=\"22\" x2=\"32\" y2=\"142\" />\n", + " <line x1=\"33\" y1=\"23\" x2=\"33\" y2=\"143\" />\n", + " <line x1=\"36\" y1=\"26\" x2=\"36\" y2=\"146\" />\n", + " <line x1=\"38\" y1=\"28\" x2=\"38\" y2=\"148\" />\n", + " <line x1=\"39\" y1=\"29\" x2=\"39\" y2=\"149\" />\n", + " <line x1=\"41\" y1=\"31\" x2=\"41\" y2=\"151\" />\n", + " <line x1=\"43\" y1=\"33\" x2=\"43\" y2=\"153\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"10.0,0.0 43.665158371040725,33.665158371040725 43.665158371040725,153.66515837104072 10.0,120.0\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"104\" y2=\"0\" style=\"stroke-width:2\" />\n", + " <line x1=\"11\" y1=\"1\" x2=\"105\" y2=\"1\" />\n", + " <line x1=\"13\" y1=\"3\" x2=\"107\" y2=\"3\" />\n", + " <line x1=\"14\" y1=\"4\" x2=\"108\" y2=\"4\" />\n", + " <line x1=\"16\" y1=\"6\" x2=\"110\" y2=\"6\" />\n", + " <line x1=\"18\" y1=\"8\" x2=\"112\" y2=\"8\" />\n", + " <line x1=\"19\" y1=\"9\" x2=\"113\" y2=\"9\" />\n", + " <line x1=\"21\" y1=\"11\" x2=\"116\" y2=\"11\" />\n", + " <line x1=\"24\" y1=\"14\" x2=\"118\" y2=\"14\" />\n", + " <line x1=\"25\" y1=\"15\" x2=\"119\" y2=\"15\" />\n", + " <line x1=\"27\" y1=\"17\" x2=\"121\" y2=\"17\" />\n", + " <line x1=\"28\" y1=\"18\" x2=\"122\" y2=\"18\" />\n", + " <line x1=\"30\" y1=\"20\" x2=\"124\" y2=\"20\" />\n", + " <line x1=\"32\" y1=\"22\" x2=\"126\" y2=\"22\" />\n", + " <line x1=\"33\" y1=\"23\" x2=\"128\" y2=\"23\" />\n", + " <line x1=\"36\" y1=\"26\" x2=\"130\" y2=\"26\" />\n", + " <line x1=\"38\" y1=\"28\" x2=\"132\" y2=\"28\" />\n", + " <line x1=\"39\" y1=\"29\" x2=\"133\" y2=\"29\" />\n", + " <line x1=\"41\" y1=\"31\" x2=\"135\" y2=\"31\" />\n", + " <line x1=\"43\" y1=\"33\" x2=\"137\" y2=\"33\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"43\" y2=\"33\" style=\"stroke-width:2\" />\n", + " <line x1=\"104\" y1=\"0\" x2=\"137\" y2=\"33\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"10.0,0.0 104.15384615384616,0.0 137.81900452488688,33.665158371040725 43.665158371040725,33.665158371040725\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"43\" y1=\"33\" x2=\"137\" y2=\"33\" style=\"stroke-width:2\" />\n", + " <line x1=\"43\" y1=\"153\" x2=\"137\" y2=\"153\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"43\" y1=\"33\" x2=\"43\" y2=\"153\" style=\"stroke-width:2\" />\n", + " <line x1=\"137\" y1=\"33\" x2=\"137\" y2=\"153\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"43.665158371040725,33.665158371040725 137.81900452488688,33.665158371040725 137.81900452488688,153.66515837104072 43.665158371040725,153.66515837104072\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Text -->\n", + " <text x=\"90.742081\" y=\"173.665158\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >51</text>\n", + " <text x=\"157.819005\" y=\"93.665158\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,157.819005,93.665158)\">65</text>\n", + " <text x=\"16.832579\" y=\"156.832579\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,16.832579,156.832579)\">31</text>\n", + "</svg>\n", + " </td>\n", + " </tr>\n", + "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>tot_prec</span></div><div class='xr-var-dims'>(time, lat, lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(1, 65, 51), meta=np.ndarray></div><input id='attrs-fe05282e-0aaf-4270-a27f-ea0059035504' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-fe05282e-0aaf-4270-a27f-ea0059035504' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-1aa43061-8148-489c-9c0d-dd586cb3b030' class='xr-var-data-in' type='checkbox'><label for='data-1aa43061-8148-489c-9c0d-dd586cb3b030' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>standard_name :</span></dt><dd>tot_prec</dd><dt><span>long_name :</span></dt><dd>total precip</dd><dt><span>units :</span></dt><dd>kg m-2</dd><dt><span>param :</span></dt><dd>52.1.0</dd></dl></div><div class='xr-var-data'><table>\n", + " <tr>\n", + " <td>\n", + " <table>\n", + " <thead>\n", + " <tr>\n", + " <td> </td>\n", + " <th> Array </th>\n", + " <th> Chunk </th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " \n", + " <tr>\n", + " <th> Bytes </th>\n", + " <td> 401.43 kiB </td>\n", + " <td> 12.95 kiB </td>\n", + " </tr>\n", + " \n", + " <tr>\n", + " <th> Shape </th>\n", + " <td> (31, 65, 51) </td>\n", + " <td> (1, 65, 51) </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Count </th>\n", + " <td> 173 Tasks </td>\n", + " <td> 31 Chunks </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Type </th>\n", + " <td> float32 </td>\n", + " <td> numpy.ndarray </td>\n", + " </tr>\n", + " </tbody>\n", + " </table>\n", + " </td>\n", + " <td>\n", + " <svg width=\"187\" height=\"203\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"43\" y2=\"33\" style=\"stroke-width:2\" />\n", + " <line x1=\"10\" y1=\"120\" x2=\"43\" y2=\"153\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"120\" style=\"stroke-width:2\" />\n", + " <line x1=\"11\" y1=\"1\" x2=\"11\" y2=\"121\" />\n", + " <line x1=\"13\" y1=\"3\" x2=\"13\" y2=\"123\" />\n", + " <line x1=\"14\" y1=\"4\" x2=\"14\" y2=\"124\" />\n", + " <line x1=\"16\" y1=\"6\" x2=\"16\" y2=\"126\" />\n", + " <line x1=\"18\" y1=\"8\" x2=\"18\" y2=\"128\" />\n", + " <line x1=\"19\" y1=\"9\" x2=\"19\" y2=\"129\" />\n", + " <line x1=\"21\" y1=\"11\" x2=\"21\" y2=\"131\" />\n", + " <line x1=\"24\" y1=\"14\" x2=\"24\" y2=\"134\" />\n", + " <line x1=\"25\" y1=\"15\" x2=\"25\" y2=\"135\" />\n", + " <line x1=\"27\" y1=\"17\" x2=\"27\" y2=\"137\" />\n", + " <line x1=\"28\" y1=\"18\" x2=\"28\" y2=\"138\" />\n", + " <line x1=\"30\" y1=\"20\" x2=\"30\" y2=\"140\" />\n", + " <line x1=\"32\" y1=\"22\" x2=\"32\" y2=\"142\" />\n", + " <line x1=\"33\" y1=\"23\" x2=\"33\" y2=\"143\" />\n", + " <line x1=\"36\" y1=\"26\" x2=\"36\" y2=\"146\" />\n", + " <line x1=\"38\" y1=\"28\" x2=\"38\" y2=\"148\" />\n", + " <line x1=\"39\" y1=\"29\" x2=\"39\" y2=\"149\" />\n", + " <line x1=\"41\" y1=\"31\" x2=\"41\" y2=\"151\" />\n", + " <line x1=\"43\" y1=\"33\" x2=\"43\" y2=\"153\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"10.0,0.0 43.665158371040725,33.665158371040725 43.665158371040725,153.66515837104072 10.0,120.0\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"104\" y2=\"0\" style=\"stroke-width:2\" />\n", + " <line x1=\"11\" y1=\"1\" x2=\"105\" y2=\"1\" />\n", + " <line x1=\"13\" y1=\"3\" x2=\"107\" y2=\"3\" />\n", + " <line x1=\"14\" y1=\"4\" x2=\"108\" y2=\"4\" />\n", + " <line x1=\"16\" y1=\"6\" x2=\"110\" y2=\"6\" />\n", + " <line x1=\"18\" y1=\"8\" x2=\"112\" y2=\"8\" />\n", + " <line x1=\"19\" y1=\"9\" x2=\"113\" y2=\"9\" />\n", + " <line x1=\"21\" y1=\"11\" x2=\"116\" y2=\"11\" />\n", + " <line x1=\"24\" y1=\"14\" x2=\"118\" y2=\"14\" />\n", + " <line x1=\"25\" y1=\"15\" x2=\"119\" y2=\"15\" />\n", + " <line x1=\"27\" y1=\"17\" x2=\"121\" y2=\"17\" />\n", + " <line x1=\"28\" y1=\"18\" x2=\"122\" y2=\"18\" />\n", + " <line x1=\"30\" y1=\"20\" x2=\"124\" y2=\"20\" />\n", + " <line x1=\"32\" y1=\"22\" x2=\"126\" y2=\"22\" />\n", + " <line x1=\"33\" y1=\"23\" x2=\"128\" y2=\"23\" />\n", + " <line x1=\"36\" y1=\"26\" x2=\"130\" y2=\"26\" />\n", + " <line x1=\"38\" y1=\"28\" x2=\"132\" y2=\"28\" />\n", + " <line x1=\"39\" y1=\"29\" x2=\"133\" y2=\"29\" />\n", + " <line x1=\"41\" y1=\"31\" x2=\"135\" y2=\"31\" />\n", + " <line x1=\"43\" y1=\"33\" x2=\"137\" y2=\"33\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"43\" y2=\"33\" style=\"stroke-width:2\" />\n", + " <line x1=\"104\" y1=\"0\" x2=\"137\" y2=\"33\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"10.0,0.0 104.15384615384616,0.0 137.81900452488688,33.665158371040725 43.665158371040725,33.665158371040725\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"43\" y1=\"33\" x2=\"137\" y2=\"33\" style=\"stroke-width:2\" />\n", + " <line x1=\"43\" y1=\"153\" x2=\"137\" y2=\"153\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"43\" y1=\"33\" x2=\"43\" y2=\"153\" style=\"stroke-width:2\" />\n", + " <line x1=\"137\" y1=\"33\" x2=\"137\" y2=\"153\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"43.665158371040725,33.665158371040725 137.81900452488688,33.665158371040725 137.81900452488688,153.66515837104072 43.665158371040725,153.66515837104072\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Text -->\n", + " <text x=\"90.742081\" y=\"173.665158\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >51</text>\n", + " <text x=\"157.819005\" y=\"93.665158\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,157.819005,93.665158)\">65</text>\n", + " <text x=\"16.832579\" y=\"156.832579\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,16.832579,156.832579)\">31</text>\n", + "</svg>\n", + " </td>\n", + " </tr>\n", + "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>qhfl_s</span></div><div class='xr-var-dims'>(time, lat, lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(1, 65, 51), meta=np.ndarray></div><input id='attrs-06ea8679-0c50-4e67-bbc7-cad143a00ff7' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-06ea8679-0c50-4e67-bbc7-cad143a00ff7' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-ba35f23b-3f7c-4845-b1e4-b5e4a72639b4' class='xr-var-data-in' type='checkbox'><label for='data-ba35f23b-3f7c-4845-b1e4-b5e4a72639b4' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>standard_name :</span></dt><dd>qhfl_s</dd><dt><span>long_name :</span></dt><dd>surface moisture flux</dd><dt><span>units :</span></dt><dd>Kg m-2 s-1</dd><dt><span>param :</span></dt><dd>6.0.2</dd></dl></div><div class='xr-var-data'><table>\n", + " <tr>\n", + " <td>\n", + " <table>\n", + " <thead>\n", + " <tr>\n", + " <td> </td>\n", + " <th> Array </th>\n", + " <th> Chunk </th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " \n", + " <tr>\n", + " <th> Bytes </th>\n", + " <td> 401.43 kiB </td>\n", + " <td> 12.95 kiB </td>\n", + " </tr>\n", + " \n", + " <tr>\n", + " <th> Shape </th>\n", + " <td> (31, 65, 51) </td>\n", + " <td> (1, 65, 51) </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Count </th>\n", + " <td> 173 Tasks </td>\n", + " <td> 31 Chunks </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Type </th>\n", + " <td> float32 </td>\n", + " <td> numpy.ndarray </td>\n", + " </tr>\n", + " </tbody>\n", + " </table>\n", + " </td>\n", + " <td>\n", + " <svg width=\"187\" height=\"203\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"43\" y2=\"33\" style=\"stroke-width:2\" />\n", + " <line x1=\"10\" y1=\"120\" x2=\"43\" y2=\"153\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"120\" style=\"stroke-width:2\" />\n", + " <line x1=\"11\" y1=\"1\" x2=\"11\" y2=\"121\" />\n", + " <line x1=\"13\" y1=\"3\" x2=\"13\" y2=\"123\" />\n", + " <line x1=\"14\" y1=\"4\" x2=\"14\" y2=\"124\" />\n", + " <line x1=\"16\" y1=\"6\" x2=\"16\" y2=\"126\" />\n", + " <line x1=\"18\" y1=\"8\" x2=\"18\" y2=\"128\" />\n", + " <line x1=\"19\" y1=\"9\" x2=\"19\" y2=\"129\" />\n", + " <line x1=\"21\" y1=\"11\" x2=\"21\" y2=\"131\" />\n", + " <line x1=\"24\" y1=\"14\" x2=\"24\" y2=\"134\" />\n", + " <line x1=\"25\" y1=\"15\" x2=\"25\" y2=\"135\" />\n", + " <line x1=\"27\" y1=\"17\" x2=\"27\" y2=\"137\" />\n", + " <line x1=\"28\" y1=\"18\" x2=\"28\" y2=\"138\" />\n", + " <line x1=\"30\" y1=\"20\" x2=\"30\" y2=\"140\" />\n", + " <line x1=\"32\" y1=\"22\" x2=\"32\" y2=\"142\" />\n", + " <line x1=\"33\" y1=\"23\" x2=\"33\" y2=\"143\" />\n", + " <line x1=\"36\" y1=\"26\" x2=\"36\" y2=\"146\" />\n", + " <line x1=\"38\" y1=\"28\" x2=\"38\" y2=\"148\" />\n", + " <line x1=\"39\" y1=\"29\" x2=\"39\" y2=\"149\" />\n", + " <line x1=\"41\" y1=\"31\" x2=\"41\" y2=\"151\" />\n", + " <line x1=\"43\" y1=\"33\" x2=\"43\" y2=\"153\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"10.0,0.0 43.665158371040725,33.665158371040725 43.665158371040725,153.66515837104072 10.0,120.0\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"104\" y2=\"0\" style=\"stroke-width:2\" />\n", + " <line x1=\"11\" y1=\"1\" x2=\"105\" y2=\"1\" />\n", + " <line x1=\"13\" y1=\"3\" x2=\"107\" y2=\"3\" />\n", + " <line x1=\"14\" y1=\"4\" x2=\"108\" y2=\"4\" />\n", + " <line x1=\"16\" y1=\"6\" x2=\"110\" y2=\"6\" />\n", + " <line x1=\"18\" y1=\"8\" x2=\"112\" y2=\"8\" />\n", + " <line x1=\"19\" y1=\"9\" x2=\"113\" y2=\"9\" />\n", + " <line x1=\"21\" y1=\"11\" x2=\"116\" y2=\"11\" />\n", + " <line x1=\"24\" y1=\"14\" x2=\"118\" y2=\"14\" />\n", + " <line x1=\"25\" y1=\"15\" x2=\"119\" y2=\"15\" />\n", + " <line x1=\"27\" y1=\"17\" x2=\"121\" y2=\"17\" />\n", + " <line x1=\"28\" y1=\"18\" x2=\"122\" y2=\"18\" />\n", + " <line x1=\"30\" y1=\"20\" x2=\"124\" y2=\"20\" />\n", + " <line x1=\"32\" y1=\"22\" x2=\"126\" y2=\"22\" />\n", + " <line x1=\"33\" y1=\"23\" x2=\"128\" y2=\"23\" />\n", + " <line x1=\"36\" y1=\"26\" x2=\"130\" y2=\"26\" />\n", + " <line x1=\"38\" y1=\"28\" x2=\"132\" y2=\"28\" />\n", + " <line x1=\"39\" y1=\"29\" x2=\"133\" y2=\"29\" />\n", + " <line x1=\"41\" y1=\"31\" x2=\"135\" y2=\"31\" />\n", + " <line x1=\"43\" y1=\"33\" x2=\"137\" y2=\"33\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"10\" y1=\"0\" x2=\"43\" y2=\"33\" style=\"stroke-width:2\" />\n", + " <line x1=\"104\" y1=\"0\" x2=\"137\" y2=\"33\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"10.0,0.0 104.15384615384616,0.0 137.81900452488688,33.665158371040725 43.665158371040725,33.665158371040725\" style=\"fill:#8B4903A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"43\" y1=\"33\" x2=\"137\" y2=\"33\" style=\"stroke-width:2\" />\n", + " <line x1=\"43\" y1=\"153\" x2=\"137\" y2=\"153\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"43\" y1=\"33\" x2=\"43\" y2=\"153\" style=\"stroke-width:2\" />\n", + " <line x1=\"137\" y1=\"33\" x2=\"137\" y2=\"153\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"43.665158371040725,33.665158371040725 137.81900452488688,33.665158371040725 137.81900452488688,153.66515837104072 43.665158371040725,153.66515837104072\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Text -->\n", + " <text x=\"90.742081\" y=\"173.665158\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >51</text>\n", + " <text x=\"157.819005\" y=\"93.665158\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,157.819005,93.665158)\">65</text>\n", + " <text x=\"16.832579\" y=\"156.832579\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,16.832579,156.832579)\">31</text>\n", + "</svg>\n", + " </td>\n", + " </tr>\n", + "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>t_2m</span></div><div class='xr-var-dims'>(time, height_2, lat, lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(1, 1, 65, 51), meta=np.ndarray></div><input id='attrs-50f63e7f-abc7-41c6-9b27-f5723e77eaa3' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-50f63e7f-abc7-41c6-9b27-f5723e77eaa3' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-e312a600-6674-41c8-bc70-a2000a18e8a7' class='xr-var-data-in' type='checkbox'><label for='data-e312a600-6674-41c8-bc70-a2000a18e8a7' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>standard_name :</span></dt><dd>t_2m</dd><dt><span>long_name :</span></dt><dd>temperature in 2m</dd><dt><span>units :</span></dt><dd>K</dd><dt><span>param :</span></dt><dd>0.0.0</dd></dl></div><div class='xr-var-data'><table>\n", + " <tr>\n", + " <td>\n", + " <table>\n", + " <thead>\n", + " <tr>\n", + " <td> </td>\n", + " <th> Array </th>\n", + " <th> Chunk </th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " \n", + " <tr>\n", + " <th> Bytes </th>\n", + " <td> 401.43 kiB </td>\n", + " <td> 12.95 kiB </td>\n", + " </tr>\n", + " \n", + " <tr>\n", + " <th> Shape </th>\n", + " <td> (31, 1, 65, 51) </td>\n", + " <td> (1, 1, 65, 51) </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Count </th>\n", + " <td> 173 Tasks </td>\n", + " <td> 31 Chunks </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Type </th>\n", + " <td> float32 </td>\n", + " <td> numpy.ndarray </td>\n", + " </tr>\n", + " </tbody>\n", + " </table>\n", + " </td>\n", + " <td>\n", + " <svg width=\"414\" height=\"186\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"0\" y1=\"0\" x2=\"57\" y2=\"0\" style=\"stroke-width:2\" />\n", + " <line x1=\"0\" y1=\"27\" x2=\"57\" y2=\"27\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"27\" style=\"stroke-width:2\" />\n", + " <line x1=\"1\" y1=\"0\" x2=\"1\" y2=\"27\" />\n", + " <line x1=\"3\" y1=\"0\" x2=\"3\" y2=\"27\" />\n", + " <line x1=\"5\" y1=\"0\" x2=\"5\" y2=\"27\" />\n", + " <line x1=\"7\" y1=\"0\" x2=\"7\" y2=\"27\" />\n", + " <line x1=\"9\" y1=\"0\" x2=\"9\" y2=\"27\" />\n", + " <line x1=\"11\" y1=\"0\" x2=\"11\" y2=\"27\" />\n", + " <line x1=\"12\" y1=\"0\" x2=\"12\" y2=\"27\" />\n", + " <line x1=\"14\" y1=\"0\" x2=\"14\" y2=\"27\" />\n", + " <line x1=\"16\" y1=\"0\" x2=\"16\" y2=\"27\" />\n", + " <line x1=\"18\" y1=\"0\" x2=\"18\" y2=\"27\" />\n", + " <line x1=\"20\" y1=\"0\" x2=\"20\" y2=\"27\" />\n", + " <line x1=\"22\" y1=\"0\" x2=\"22\" y2=\"27\" />\n", + " <line x1=\"24\" y1=\"0\" x2=\"24\" y2=\"27\" />\n", + " <line x1=\"25\" y1=\"0\" x2=\"25\" y2=\"27\" />\n", + " <line x1=\"27\" y1=\"0\" x2=\"27\" y2=\"27\" />\n", + " <line x1=\"29\" y1=\"0\" x2=\"29\" y2=\"27\" />\n", + " <line x1=\"31\" y1=\"0\" x2=\"31\" y2=\"27\" />\n", + " <line x1=\"33\" y1=\"0\" x2=\"33\" y2=\"27\" />\n", + " <line x1=\"35\" y1=\"0\" x2=\"35\" y2=\"27\" />\n", + " <line x1=\"36\" y1=\"0\" x2=\"36\" y2=\"27\" />\n", + " <line x1=\"38\" y1=\"0\" x2=\"38\" y2=\"27\" />\n", + " <line x1=\"40\" y1=\"0\" x2=\"40\" y2=\"27\" />\n", + " <line x1=\"42\" y1=\"0\" x2=\"42\" y2=\"27\" />\n", + " <line x1=\"44\" y1=\"0\" x2=\"44\" y2=\"27\" />\n", + " <line x1=\"46\" y1=\"0\" x2=\"46\" y2=\"27\" />\n", + " <line x1=\"48\" y1=\"0\" x2=\"48\" y2=\"27\" />\n", + " <line x1=\"49\" y1=\"0\" x2=\"49\" y2=\"27\" />\n", + " <line x1=\"51\" y1=\"0\" x2=\"51\" y2=\"27\" />\n", + " <line x1=\"53\" y1=\"0\" x2=\"53\" y2=\"27\" />\n", + " <line x1=\"55\" y1=\"0\" x2=\"55\" y2=\"27\" />\n", + " <line x1=\"57\" y1=\"0\" x2=\"57\" y2=\"27\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"0.0,0.0 57.23076923076923,0.0 57.23076923076923,27.592633883233734 0.0,27.592633883233734\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Text -->\n", + " <text x=\"28.615385\" y=\"47.592634\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >31</text>\n", + " <text x=\"77.230769\" y=\"13.796317\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,77.230769,13.796317)\">1</text>\n", + "\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"127\" y1=\"0\" x2=\"143\" y2=\"16\" style=\"stroke-width:2\" />\n", + " <line x1=\"127\" y1=\"120\" x2=\"143\" y2=\"136\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"127\" y1=\"0\" x2=\"127\" y2=\"120\" style=\"stroke-width:2\" />\n", + " <line x1=\"143\" y1=\"16\" x2=\"143\" y2=\"136\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"127.0,0.0 143.23096110778454,16.23096110778455 143.23096110778454,136.23096110778454 127.0,120.0\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"127\" y1=\"0\" x2=\"221\" y2=\"0\" style=\"stroke-width:2\" />\n", + " <line x1=\"143\" y1=\"16\" x2=\"237\" y2=\"16\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"127\" y1=\"0\" x2=\"143\" y2=\"16\" style=\"stroke-width:2\" />\n", + " <line x1=\"221\" y1=\"0\" x2=\"237\" y2=\"16\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"127.0,0.0 221.15384615384616,0.0 237.38480726163073,16.23096110778455 143.23096110778454,16.23096110778455\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"143\" y1=\"16\" x2=\"237\" y2=\"16\" style=\"stroke-width:2\" />\n", + " <line x1=\"143\" y1=\"136\" x2=\"237\" y2=\"136\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"143\" y1=\"16\" x2=\"143\" y2=\"136\" style=\"stroke-width:2\" />\n", + " <line x1=\"237\" y1=\"16\" x2=\"237\" y2=\"136\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"143.23096110778454,16.23096110778455 237.3848072616307,16.23096110778455 237.3848072616307,136.23096110778454 143.23096110778454,136.23096110778454\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Text -->\n", + " <text x=\"190.307884\" y=\"156.230961\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >51</text>\n", + " <text x=\"257.384807\" y=\"76.230961\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,257.384807,76.230961)\">65</text>\n", + " <text x=\"125.115481\" y=\"148.115481\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,125.115481,148.115481)\">1</text>\n", + "</svg>\n", + " </td>\n", + " </tr>\n", + "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>qv_2m</span></div><div class='xr-var-dims'>(time, height_2, lat, lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(1, 1, 65, 51), meta=np.ndarray></div><input id='attrs-15bde265-05a7-4787-9205-263af8859603' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-15bde265-05a7-4787-9205-263af8859603' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-d3ea6897-8186-4cb9-b6b3-d24382941b07' class='xr-var-data-in' type='checkbox'><label for='data-d3ea6897-8186-4cb9-b6b3-d24382941b07' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>standard_name :</span></dt><dd>qv_2m</dd><dt><span>long_name :</span></dt><dd>specific water vapor content in 2m</dd><dt><span>units :</span></dt><dd>kg kg-1</dd><dt><span>param :</span></dt><dd>0.1.0</dd></dl></div><div class='xr-var-data'><table>\n", + " <tr>\n", + " <td>\n", + " <table>\n", + " <thead>\n", + " <tr>\n", + " <td> </td>\n", + " <th> Array </th>\n", + " <th> Chunk </th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " \n", + " <tr>\n", + " <th> Bytes </th>\n", + " <td> 401.43 kiB </td>\n", + " <td> 12.95 kiB </td>\n", + " </tr>\n", + " \n", + " <tr>\n", + " <th> Shape </th>\n", + " <td> (31, 1, 65, 51) </td>\n", + " <td> (1, 1, 65, 51) </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Count </th>\n", + " <td> 173 Tasks </td>\n", + " <td> 31 Chunks </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Type </th>\n", + " <td> float32 </td>\n", + " <td> numpy.ndarray </td>\n", + " </tr>\n", + " </tbody>\n", + " </table>\n", + " </td>\n", + " <td>\n", + " <svg width=\"414\" height=\"186\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"0\" y1=\"0\" x2=\"57\" y2=\"0\" style=\"stroke-width:2\" />\n", + " <line x1=\"0\" y1=\"27\" x2=\"57\" y2=\"27\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"27\" style=\"stroke-width:2\" />\n", + " <line x1=\"1\" y1=\"0\" x2=\"1\" y2=\"27\" />\n", + " <line x1=\"3\" y1=\"0\" x2=\"3\" y2=\"27\" />\n", + " <line x1=\"5\" y1=\"0\" x2=\"5\" y2=\"27\" />\n", + " <line x1=\"7\" y1=\"0\" x2=\"7\" y2=\"27\" />\n", + " <line x1=\"9\" y1=\"0\" x2=\"9\" y2=\"27\" />\n", + " <line x1=\"11\" y1=\"0\" x2=\"11\" y2=\"27\" />\n", + " <line x1=\"12\" y1=\"0\" x2=\"12\" y2=\"27\" />\n", + " <line x1=\"14\" y1=\"0\" x2=\"14\" y2=\"27\" />\n", + " <line x1=\"16\" y1=\"0\" x2=\"16\" y2=\"27\" />\n", + " <line x1=\"18\" y1=\"0\" x2=\"18\" y2=\"27\" />\n", + " <line x1=\"20\" y1=\"0\" x2=\"20\" y2=\"27\" />\n", + " <line x1=\"22\" y1=\"0\" x2=\"22\" y2=\"27\" />\n", + " <line x1=\"24\" y1=\"0\" x2=\"24\" y2=\"27\" />\n", + " <line x1=\"25\" y1=\"0\" x2=\"25\" y2=\"27\" />\n", + " <line x1=\"27\" y1=\"0\" x2=\"27\" y2=\"27\" />\n", + " <line x1=\"29\" y1=\"0\" x2=\"29\" y2=\"27\" />\n", + " <line x1=\"31\" y1=\"0\" x2=\"31\" y2=\"27\" />\n", + " <line x1=\"33\" y1=\"0\" x2=\"33\" y2=\"27\" />\n", + " <line x1=\"35\" y1=\"0\" x2=\"35\" y2=\"27\" />\n", + " <line x1=\"36\" y1=\"0\" x2=\"36\" y2=\"27\" />\n", + " <line x1=\"38\" y1=\"0\" x2=\"38\" y2=\"27\" />\n", + " <line x1=\"40\" y1=\"0\" x2=\"40\" y2=\"27\" />\n", + " <line x1=\"42\" y1=\"0\" x2=\"42\" y2=\"27\" />\n", + " <line x1=\"44\" y1=\"0\" x2=\"44\" y2=\"27\" />\n", + " <line x1=\"46\" y1=\"0\" x2=\"46\" y2=\"27\" />\n", + " <line x1=\"48\" y1=\"0\" x2=\"48\" y2=\"27\" />\n", + " <line x1=\"49\" y1=\"0\" x2=\"49\" y2=\"27\" />\n", + " <line x1=\"51\" y1=\"0\" x2=\"51\" y2=\"27\" />\n", + " <line x1=\"53\" y1=\"0\" x2=\"53\" y2=\"27\" />\n", + " <line x1=\"55\" y1=\"0\" x2=\"55\" y2=\"27\" />\n", + " <line x1=\"57\" y1=\"0\" x2=\"57\" y2=\"27\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"0.0,0.0 57.23076923076923,0.0 57.23076923076923,27.592633883233734 0.0,27.592633883233734\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Text -->\n", + " <text x=\"28.615385\" y=\"47.592634\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >31</text>\n", + " <text x=\"77.230769\" y=\"13.796317\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,77.230769,13.796317)\">1</text>\n", + "\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"127\" y1=\"0\" x2=\"143\" y2=\"16\" style=\"stroke-width:2\" />\n", + " <line x1=\"127\" y1=\"120\" x2=\"143\" y2=\"136\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"127\" y1=\"0\" x2=\"127\" y2=\"120\" style=\"stroke-width:2\" />\n", + " <line x1=\"143\" y1=\"16\" x2=\"143\" y2=\"136\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"127.0,0.0 143.23096110778454,16.23096110778455 143.23096110778454,136.23096110778454 127.0,120.0\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"127\" y1=\"0\" x2=\"221\" y2=\"0\" style=\"stroke-width:2\" />\n", + " <line x1=\"143\" y1=\"16\" x2=\"237\" y2=\"16\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"127\" y1=\"0\" x2=\"143\" y2=\"16\" style=\"stroke-width:2\" />\n", + " <line x1=\"221\" y1=\"0\" x2=\"237\" y2=\"16\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"127.0,0.0 221.15384615384616,0.0 237.38480726163073,16.23096110778455 143.23096110778454,16.23096110778455\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"143\" y1=\"16\" x2=\"237\" y2=\"16\" style=\"stroke-width:2\" />\n", + " <line x1=\"143\" y1=\"136\" x2=\"237\" y2=\"136\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"143\" y1=\"16\" x2=\"143\" y2=\"136\" style=\"stroke-width:2\" />\n", + " <line x1=\"237\" y1=\"16\" x2=\"237\" y2=\"136\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"143.23096110778454,16.23096110778455 237.3848072616307,16.23096110778455 237.3848072616307,136.23096110778454 143.23096110778454,136.23096110778454\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Text -->\n", + " <text x=\"190.307884\" y=\"156.230961\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >51</text>\n", + " <text x=\"257.384807\" y=\"76.230961\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,257.384807,76.230961)\">65</text>\n", + " <text x=\"125.115481\" y=\"148.115481\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,125.115481,148.115481)\">1</text>\n", + "</svg>\n", + " </td>\n", + " </tr>\n", + "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>temp</span></div><div class='xr-var-dims'>(time, plev_3, lat, lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(1, 100, 65, 51), meta=np.ndarray></div><input id='attrs-3cecc47e-9181-4b6f-b35e-a5001b1e1a6b' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-3cecc47e-9181-4b6f-b35e-a5001b1e1a6b' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-62b3423c-e016-41b8-82c6-8abfdc2cadb7' class='xr-var-data-in' type='checkbox'><label for='data-62b3423c-e016-41b8-82c6-8abfdc2cadb7' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>standard_name :</span></dt><dd>air_temperature</dd><dt><span>long_name :</span></dt><dd>Temperature</dd><dt><span>units :</span></dt><dd>K</dd><dt><span>param :</span></dt><dd>0.0.0</dd></dl></div><div class='xr-var-data'><table>\n", + " <tr>\n", + " <td>\n", + " <table>\n", + " <thead>\n", + " <tr>\n", + " <td> </td>\n", + " <th> Array </th>\n", + " <th> Chunk </th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " \n", + " <tr>\n", + " <th> Bytes </th>\n", + " <td> 39.20 MiB </td>\n", + " <td> 1.26 MiB </td>\n", + " </tr>\n", + " \n", + " <tr>\n", + " <th> Shape </th>\n", + " <td> (31, 100, 65, 51) </td>\n", + " <td> (1, 100, 65, 51) </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Count </th>\n", + " <td> 173 Tasks </td>\n", + " <td> 31 Chunks </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Type </th>\n", + " <td> float32 </td>\n", + " <td> numpy.ndarray </td>\n", + " </tr>\n", + " </tbody>\n", + " </table>\n", + " </td>\n", + " <td>\n", + " <svg width=\"407\" height=\"198\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"0\" y1=\"0\" x2=\"43\" y2=\"0\" style=\"stroke-width:2\" />\n", + " <line x1=\"0\" y1=\"25\" x2=\"43\" y2=\"25\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"25\" style=\"stroke-width:2\" />\n", + " <line x1=\"1\" y1=\"0\" x2=\"1\" y2=\"25\" />\n", + " <line x1=\"2\" y1=\"0\" x2=\"2\" y2=\"25\" />\n", + " <line x1=\"4\" y1=\"0\" x2=\"4\" y2=\"25\" />\n", + " <line x1=\"5\" y1=\"0\" x2=\"5\" y2=\"25\" />\n", + " <line x1=\"7\" y1=\"0\" x2=\"7\" y2=\"25\" />\n", + " <line x1=\"8\" y1=\"0\" x2=\"8\" y2=\"25\" />\n", + " <line x1=\"9\" y1=\"0\" x2=\"9\" y2=\"25\" />\n", + " <line x1=\"11\" y1=\"0\" x2=\"11\" y2=\"25\" />\n", + " <line x1=\"12\" y1=\"0\" x2=\"12\" y2=\"25\" />\n", + " <line x1=\"14\" y1=\"0\" x2=\"14\" y2=\"25\" />\n", + " <line x1=\"15\" y1=\"0\" x2=\"15\" y2=\"25\" />\n", + " <line x1=\"16\" y1=\"0\" x2=\"16\" y2=\"25\" />\n", + " <line x1=\"18\" y1=\"0\" x2=\"18\" y2=\"25\" />\n", + " <line x1=\"19\" y1=\"0\" x2=\"19\" y2=\"25\" />\n", + " <line x1=\"21\" y1=\"0\" x2=\"21\" y2=\"25\" />\n", + " <line x1=\"22\" y1=\"0\" x2=\"22\" y2=\"25\" />\n", + " <line x1=\"23\" y1=\"0\" x2=\"23\" y2=\"25\" />\n", + " <line x1=\"25\" y1=\"0\" x2=\"25\" y2=\"25\" />\n", + " <line x1=\"26\" y1=\"0\" x2=\"26\" y2=\"25\" />\n", + " <line x1=\"28\" y1=\"0\" x2=\"28\" y2=\"25\" />\n", + " <line x1=\"29\" y1=\"0\" x2=\"29\" y2=\"25\" />\n", + " <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"25\" />\n", + " <line x1=\"32\" y1=\"0\" x2=\"32\" y2=\"25\" />\n", + " <line x1=\"33\" y1=\"0\" x2=\"33\" y2=\"25\" />\n", + " <line x1=\"35\" y1=\"0\" x2=\"35\" y2=\"25\" />\n", + " <line x1=\"36\" y1=\"0\" x2=\"36\" y2=\"25\" />\n", + " <line x1=\"38\" y1=\"0\" x2=\"38\" y2=\"25\" />\n", + " <line x1=\"39\" y1=\"0\" x2=\"39\" y2=\"25\" />\n", + " <line x1=\"40\" y1=\"0\" x2=\"40\" y2=\"25\" />\n", + " <line x1=\"42\" y1=\"0\" x2=\"42\" y2=\"25\" />\n", + " <line x1=\"43\" y1=\"0\" x2=\"43\" y2=\"25\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"0.0,0.0 43.65344710026747,0.0 43.65344710026747,25.412616514582485 0.0,25.412616514582485\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Text -->\n", + " <text x=\"21.826724\" y=\"45.412617\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >31</text>\n", + " <text x=\"63.653447\" y=\"12.706308\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,63.653447,12.706308)\">1</text>\n", + "\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"113\" y1=\"0\" x2=\"183\" y2=\"70\" style=\"stroke-width:2\" />\n", + " <line x1=\"113\" y1=\"78\" x2=\"183\" y2=\"148\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"113\" y1=\"0\" x2=\"113\" y2=\"78\" style=\"stroke-width:2\" />\n", + " <line x1=\"183\" y1=\"70\" x2=\"183\" y2=\"148\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"113.0,0.0 183.58823529411765,70.58823529411765 183.58823529411765,148.58823529411765 113.0,78.0\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"113\" y1=\"0\" x2=\"174\" y2=\"0\" style=\"stroke-width:2\" />\n", + " <line x1=\"183\" y1=\"70\" x2=\"244\" y2=\"70\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"113\" y1=\"0\" x2=\"183\" y2=\"70\" style=\"stroke-width:2\" />\n", + " <line x1=\"174\" y1=\"0\" x2=\"244\" y2=\"70\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"113.0,0.0 174.2,0.0 244.78823529411764,70.58823529411765 183.58823529411765,70.58823529411765\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"183\" y1=\"70\" x2=\"244\" y2=\"70\" style=\"stroke-width:2\" />\n", + " <line x1=\"183\" y1=\"148\" x2=\"244\" y2=\"148\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"183\" y1=\"70\" x2=\"183\" y2=\"148\" style=\"stroke-width:2\" />\n", + " <line x1=\"244\" y1=\"70\" x2=\"244\" y2=\"148\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"183.58823529411765,70.58823529411765 244.78823529411767,70.58823529411765 244.78823529411767,148.58823529411765 183.58823529411765,148.58823529411765\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Text -->\n", + " <text x=\"214.188235\" y=\"168.588235\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >51</text>\n", + " <text x=\"264.788235\" y=\"109.588235\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,264.788235,109.588235)\">65</text>\n", + " <text x=\"138.294118\" y=\"133.294118\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,138.294118,133.294118)\">100</text>\n", + "</svg>\n", + " </td>\n", + " </tr>\n", + "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>qv</span></div><div class='xr-var-dims'>(time, plev_3, lat, lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(1, 100, 65, 51), meta=np.ndarray></div><input id='attrs-4fff2836-5616-4d2e-90d2-e67135204845' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-4fff2836-5616-4d2e-90d2-e67135204845' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-8d38344b-7d47-44e9-babd-83dbfbd409e9' class='xr-var-data-in' type='checkbox'><label for='data-8d38344b-7d47-44e9-babd-83dbfbd409e9' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>standard_name :</span></dt><dd>specific_humidity</dd><dt><span>long_name :</span></dt><dd>Specific humidity</dd><dt><span>units :</span></dt><dd>kg kg-1</dd><dt><span>param :</span></dt><dd>0.1.0</dd></dl></div><div class='xr-var-data'><table>\n", + " <tr>\n", + " <td>\n", + " <table>\n", + " <thead>\n", + " <tr>\n", + " <td> </td>\n", + " <th> Array </th>\n", + " <th> Chunk </th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " \n", + " <tr>\n", + " <th> Bytes </th>\n", + " <td> 39.20 MiB </td>\n", + " <td> 1.26 MiB </td>\n", + " </tr>\n", + " \n", + " <tr>\n", + " <th> Shape </th>\n", + " <td> (31, 100, 65, 51) </td>\n", + " <td> (1, 100, 65, 51) </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Count </th>\n", + " <td> 173 Tasks </td>\n", + " <td> 31 Chunks </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Type </th>\n", + " <td> float32 </td>\n", + " <td> numpy.ndarray </td>\n", + " </tr>\n", + " </tbody>\n", + " </table>\n", + " </td>\n", + " <td>\n", + " <svg width=\"407\" height=\"198\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"0\" y1=\"0\" x2=\"43\" y2=\"0\" style=\"stroke-width:2\" />\n", + " <line x1=\"0\" y1=\"25\" x2=\"43\" y2=\"25\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"25\" style=\"stroke-width:2\" />\n", + " <line x1=\"1\" y1=\"0\" x2=\"1\" y2=\"25\" />\n", + " <line x1=\"2\" y1=\"0\" x2=\"2\" y2=\"25\" />\n", + " <line x1=\"4\" y1=\"0\" x2=\"4\" y2=\"25\" />\n", + " <line x1=\"5\" y1=\"0\" x2=\"5\" y2=\"25\" />\n", + " <line x1=\"7\" y1=\"0\" x2=\"7\" y2=\"25\" />\n", + " <line x1=\"8\" y1=\"0\" x2=\"8\" y2=\"25\" />\n", + " <line x1=\"9\" y1=\"0\" x2=\"9\" y2=\"25\" />\n", + " <line x1=\"11\" y1=\"0\" x2=\"11\" y2=\"25\" />\n", + " <line x1=\"12\" y1=\"0\" x2=\"12\" y2=\"25\" />\n", + " <line x1=\"14\" y1=\"0\" x2=\"14\" y2=\"25\" />\n", + " <line x1=\"15\" y1=\"0\" x2=\"15\" y2=\"25\" />\n", + " <line x1=\"16\" y1=\"0\" x2=\"16\" y2=\"25\" />\n", + " <line x1=\"18\" y1=\"0\" x2=\"18\" y2=\"25\" />\n", + " <line x1=\"19\" y1=\"0\" x2=\"19\" y2=\"25\" />\n", + " <line x1=\"21\" y1=\"0\" x2=\"21\" y2=\"25\" />\n", + " <line x1=\"22\" y1=\"0\" x2=\"22\" y2=\"25\" />\n", + " <line x1=\"23\" y1=\"0\" x2=\"23\" y2=\"25\" />\n", + " <line x1=\"25\" y1=\"0\" x2=\"25\" y2=\"25\" />\n", + " <line x1=\"26\" y1=\"0\" x2=\"26\" y2=\"25\" />\n", + " <line x1=\"28\" y1=\"0\" x2=\"28\" y2=\"25\" />\n", + " <line x1=\"29\" y1=\"0\" x2=\"29\" y2=\"25\" />\n", + " <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"25\" />\n", + " <line x1=\"32\" y1=\"0\" x2=\"32\" y2=\"25\" />\n", + " <line x1=\"33\" y1=\"0\" x2=\"33\" y2=\"25\" />\n", + " <line x1=\"35\" y1=\"0\" x2=\"35\" y2=\"25\" />\n", + " <line x1=\"36\" y1=\"0\" x2=\"36\" y2=\"25\" />\n", + " <line x1=\"38\" y1=\"0\" x2=\"38\" y2=\"25\" />\n", + " <line x1=\"39\" y1=\"0\" x2=\"39\" y2=\"25\" />\n", + " <line x1=\"40\" y1=\"0\" x2=\"40\" y2=\"25\" />\n", + " <line x1=\"42\" y1=\"0\" x2=\"42\" y2=\"25\" />\n", + " <line x1=\"43\" y1=\"0\" x2=\"43\" y2=\"25\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"0.0,0.0 43.65344710026747,0.0 43.65344710026747,25.412616514582485 0.0,25.412616514582485\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Text -->\n", + " <text x=\"21.826724\" y=\"45.412617\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >31</text>\n", + " <text x=\"63.653447\" y=\"12.706308\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,63.653447,12.706308)\">1</text>\n", + "\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"113\" y1=\"0\" x2=\"183\" y2=\"70\" style=\"stroke-width:2\" />\n", + " <line x1=\"113\" y1=\"78\" x2=\"183\" y2=\"148\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"113\" y1=\"0\" x2=\"113\" y2=\"78\" style=\"stroke-width:2\" />\n", + " <line x1=\"183\" y1=\"70\" x2=\"183\" y2=\"148\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"113.0,0.0 183.58823529411765,70.58823529411765 183.58823529411765,148.58823529411765 113.0,78.0\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"113\" y1=\"0\" x2=\"174\" y2=\"0\" style=\"stroke-width:2\" />\n", + " <line x1=\"183\" y1=\"70\" x2=\"244\" y2=\"70\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"113\" y1=\"0\" x2=\"183\" y2=\"70\" style=\"stroke-width:2\" />\n", + " <line x1=\"174\" y1=\"0\" x2=\"244\" y2=\"70\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"113.0,0.0 174.2,0.0 244.78823529411764,70.58823529411765 183.58823529411765,70.58823529411765\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"183\" y1=\"70\" x2=\"244\" y2=\"70\" style=\"stroke-width:2\" />\n", + " <line x1=\"183\" y1=\"148\" x2=\"244\" y2=\"148\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"183\" y1=\"70\" x2=\"183\" y2=\"148\" style=\"stroke-width:2\" />\n", + " <line x1=\"244\" y1=\"70\" x2=\"244\" y2=\"148\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"183.58823529411765,70.58823529411765 244.78823529411767,70.58823529411765 244.78823529411767,148.58823529411765 183.58823529411765,148.58823529411765\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Text -->\n", + " <text x=\"214.188235\" y=\"168.588235\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >51</text>\n", + " <text x=\"264.788235\" y=\"109.588235\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,264.788235,109.588235)\">65</text>\n", + " <text x=\"138.294118\" y=\"133.294118\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,138.294118,133.294118)\">100</text>\n", + "</svg>\n", + " </td>\n", + " </tr>\n", + "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>u</span></div><div class='xr-var-dims'>(time, plev_3, lat, lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(1, 100, 65, 51), meta=np.ndarray></div><input id='attrs-342fd960-df07-4e20-b4c8-05a920b39a42' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-342fd960-df07-4e20-b4c8-05a920b39a42' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-b7096ecf-1d7e-416f-ba48-dcb58171903f' class='xr-var-data-in' type='checkbox'><label for='data-b7096ecf-1d7e-416f-ba48-dcb58171903f' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>standard_name :</span></dt><dd>eastward_wind</dd><dt><span>long_name :</span></dt><dd>Zonal wind</dd><dt><span>units :</span></dt><dd>m s-1</dd><dt><span>param :</span></dt><dd>2.2.0</dd></dl></div><div class='xr-var-data'><table>\n", + " <tr>\n", + " <td>\n", + " <table>\n", + " <thead>\n", + " <tr>\n", + " <td> </td>\n", + " <th> Array </th>\n", + " <th> Chunk </th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " \n", + " <tr>\n", + " <th> Bytes </th>\n", + " <td> 39.20 MiB </td>\n", + " <td> 1.26 MiB </td>\n", + " </tr>\n", + " \n", + " <tr>\n", + " <th> Shape </th>\n", + " <td> (31, 100, 65, 51) </td>\n", + " <td> (1, 100, 65, 51) </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Count </th>\n", + " <td> 173 Tasks </td>\n", + " <td> 31 Chunks </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Type </th>\n", + " <td> float32 </td>\n", + " <td> numpy.ndarray </td>\n", + " </tr>\n", + " </tbody>\n", + " </table>\n", + " </td>\n", + " <td>\n", + " <svg width=\"407\" height=\"198\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"0\" y1=\"0\" x2=\"43\" y2=\"0\" style=\"stroke-width:2\" />\n", + " <line x1=\"0\" y1=\"25\" x2=\"43\" y2=\"25\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"25\" style=\"stroke-width:2\" />\n", + " <line x1=\"1\" y1=\"0\" x2=\"1\" y2=\"25\" />\n", + " <line x1=\"2\" y1=\"0\" x2=\"2\" y2=\"25\" />\n", + " <line x1=\"4\" y1=\"0\" x2=\"4\" y2=\"25\" />\n", + " <line x1=\"5\" y1=\"0\" x2=\"5\" y2=\"25\" />\n", + " <line x1=\"7\" y1=\"0\" x2=\"7\" y2=\"25\" />\n", + " <line x1=\"8\" y1=\"0\" x2=\"8\" y2=\"25\" />\n", + " <line x1=\"9\" y1=\"0\" x2=\"9\" y2=\"25\" />\n", + " <line x1=\"11\" y1=\"0\" x2=\"11\" y2=\"25\" />\n", + " <line x1=\"12\" y1=\"0\" x2=\"12\" y2=\"25\" />\n", + " <line x1=\"14\" y1=\"0\" x2=\"14\" y2=\"25\" />\n", + " <line x1=\"15\" y1=\"0\" x2=\"15\" y2=\"25\" />\n", + " <line x1=\"16\" y1=\"0\" x2=\"16\" y2=\"25\" />\n", + " <line x1=\"18\" y1=\"0\" x2=\"18\" y2=\"25\" />\n", + " <line x1=\"19\" y1=\"0\" x2=\"19\" y2=\"25\" />\n", + " <line x1=\"21\" y1=\"0\" x2=\"21\" y2=\"25\" />\n", + " <line x1=\"22\" y1=\"0\" x2=\"22\" y2=\"25\" />\n", + " <line x1=\"23\" y1=\"0\" x2=\"23\" y2=\"25\" />\n", + " <line x1=\"25\" y1=\"0\" x2=\"25\" y2=\"25\" />\n", + " <line x1=\"26\" y1=\"0\" x2=\"26\" y2=\"25\" />\n", + " <line x1=\"28\" y1=\"0\" x2=\"28\" y2=\"25\" />\n", + " <line x1=\"29\" y1=\"0\" x2=\"29\" y2=\"25\" />\n", + " <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"25\" />\n", + " <line x1=\"32\" y1=\"0\" x2=\"32\" y2=\"25\" />\n", + " <line x1=\"33\" y1=\"0\" x2=\"33\" y2=\"25\" />\n", + " <line x1=\"35\" y1=\"0\" x2=\"35\" y2=\"25\" />\n", + " <line x1=\"36\" y1=\"0\" x2=\"36\" y2=\"25\" />\n", + " <line x1=\"38\" y1=\"0\" x2=\"38\" y2=\"25\" />\n", + " <line x1=\"39\" y1=\"0\" x2=\"39\" y2=\"25\" />\n", + " <line x1=\"40\" y1=\"0\" x2=\"40\" y2=\"25\" />\n", + " <line x1=\"42\" y1=\"0\" x2=\"42\" y2=\"25\" />\n", + " <line x1=\"43\" y1=\"0\" x2=\"43\" y2=\"25\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"0.0,0.0 43.65344710026747,0.0 43.65344710026747,25.412616514582485 0.0,25.412616514582485\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Text -->\n", + " <text x=\"21.826724\" y=\"45.412617\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >31</text>\n", + " <text x=\"63.653447\" y=\"12.706308\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,63.653447,12.706308)\">1</text>\n", + "\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"113\" y1=\"0\" x2=\"183\" y2=\"70\" style=\"stroke-width:2\" />\n", + " <line x1=\"113\" y1=\"78\" x2=\"183\" y2=\"148\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"113\" y1=\"0\" x2=\"113\" y2=\"78\" style=\"stroke-width:2\" />\n", + " <line x1=\"183\" y1=\"70\" x2=\"183\" y2=\"148\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"113.0,0.0 183.58823529411765,70.58823529411765 183.58823529411765,148.58823529411765 113.0,78.0\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"113\" y1=\"0\" x2=\"174\" y2=\"0\" style=\"stroke-width:2\" />\n", + " <line x1=\"183\" y1=\"70\" x2=\"244\" y2=\"70\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"113\" y1=\"0\" x2=\"183\" y2=\"70\" style=\"stroke-width:2\" />\n", + " <line x1=\"174\" y1=\"0\" x2=\"244\" y2=\"70\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"113.0,0.0 174.2,0.0 244.78823529411764,70.58823529411765 183.58823529411765,70.58823529411765\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"183\" y1=\"70\" x2=\"244\" y2=\"70\" style=\"stroke-width:2\" />\n", + " <line x1=\"183\" y1=\"148\" x2=\"244\" y2=\"148\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"183\" y1=\"70\" x2=\"183\" y2=\"148\" style=\"stroke-width:2\" />\n", + " <line x1=\"244\" y1=\"70\" x2=\"244\" y2=\"148\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"183.58823529411765,70.58823529411765 244.78823529411767,70.58823529411765 244.78823529411767,148.58823529411765 183.58823529411765,148.58823529411765\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Text -->\n", + " <text x=\"214.188235\" y=\"168.588235\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >51</text>\n", + " <text x=\"264.788235\" y=\"109.588235\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,264.788235,109.588235)\">65</text>\n", + " <text x=\"138.294118\" y=\"133.294118\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,138.294118,133.294118)\">100</text>\n", + "</svg>\n", + " </td>\n", + " </tr>\n", + "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>v</span></div><div class='xr-var-dims'>(time, plev_3, lat, lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(1, 100, 65, 51), meta=np.ndarray></div><input id='attrs-1eeb692f-c65b-4881-a066-b8e29cc3a260' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-1eeb692f-c65b-4881-a066-b8e29cc3a260' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-24c41858-eea9-4c0f-ade8-7f91d084e37e' class='xr-var-data-in' type='checkbox'><label for='data-24c41858-eea9-4c0f-ade8-7f91d084e37e' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>standard_name :</span></dt><dd>northward_wind</dd><dt><span>long_name :</span></dt><dd>Meridional wind</dd><dt><span>units :</span></dt><dd>m s-1</dd><dt><span>param :</span></dt><dd>3.2.0</dd></dl></div><div class='xr-var-data'><table>\n", + " <tr>\n", + " <td>\n", + " <table>\n", + " <thead>\n", + " <tr>\n", + " <td> </td>\n", + " <th> Array </th>\n", + " <th> Chunk </th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " \n", + " <tr>\n", + " <th> Bytes </th>\n", + " <td> 39.20 MiB </td>\n", + " <td> 1.26 MiB </td>\n", + " </tr>\n", + " \n", + " <tr>\n", + " <th> Shape </th>\n", + " <td> (31, 100, 65, 51) </td>\n", + " <td> (1, 100, 65, 51) </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Count </th>\n", + " <td> 173 Tasks </td>\n", + " <td> 31 Chunks </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Type </th>\n", + " <td> float32 </td>\n", + " <td> numpy.ndarray </td>\n", + " </tr>\n", + " </tbody>\n", + " </table>\n", + " </td>\n", + " <td>\n", + " <svg width=\"407\" height=\"198\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"0\" y1=\"0\" x2=\"43\" y2=\"0\" style=\"stroke-width:2\" />\n", + " <line x1=\"0\" y1=\"25\" x2=\"43\" y2=\"25\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"25\" style=\"stroke-width:2\" />\n", + " <line x1=\"1\" y1=\"0\" x2=\"1\" y2=\"25\" />\n", + " <line x1=\"2\" y1=\"0\" x2=\"2\" y2=\"25\" />\n", + " <line x1=\"4\" y1=\"0\" x2=\"4\" y2=\"25\" />\n", + " <line x1=\"5\" y1=\"0\" x2=\"5\" y2=\"25\" />\n", + " <line x1=\"7\" y1=\"0\" x2=\"7\" y2=\"25\" />\n", + " <line x1=\"8\" y1=\"0\" x2=\"8\" y2=\"25\" />\n", + " <line x1=\"9\" y1=\"0\" x2=\"9\" y2=\"25\" />\n", + " <line x1=\"11\" y1=\"0\" x2=\"11\" y2=\"25\" />\n", + " <line x1=\"12\" y1=\"0\" x2=\"12\" y2=\"25\" />\n", + " <line x1=\"14\" y1=\"0\" x2=\"14\" y2=\"25\" />\n", + " <line x1=\"15\" y1=\"0\" x2=\"15\" y2=\"25\" />\n", + " <line x1=\"16\" y1=\"0\" x2=\"16\" y2=\"25\" />\n", + " <line x1=\"18\" y1=\"0\" x2=\"18\" y2=\"25\" />\n", + " <line x1=\"19\" y1=\"0\" x2=\"19\" y2=\"25\" />\n", + " <line x1=\"21\" y1=\"0\" x2=\"21\" y2=\"25\" />\n", + " <line x1=\"22\" y1=\"0\" x2=\"22\" y2=\"25\" />\n", + " <line x1=\"23\" y1=\"0\" x2=\"23\" y2=\"25\" />\n", + " <line x1=\"25\" y1=\"0\" x2=\"25\" y2=\"25\" />\n", + " <line x1=\"26\" y1=\"0\" x2=\"26\" y2=\"25\" />\n", + " <line x1=\"28\" y1=\"0\" x2=\"28\" y2=\"25\" />\n", + " <line x1=\"29\" y1=\"0\" x2=\"29\" y2=\"25\" />\n", + " <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"25\" />\n", + " <line x1=\"32\" y1=\"0\" x2=\"32\" y2=\"25\" />\n", + " <line x1=\"33\" y1=\"0\" x2=\"33\" y2=\"25\" />\n", + " <line x1=\"35\" y1=\"0\" x2=\"35\" y2=\"25\" />\n", + " <line x1=\"36\" y1=\"0\" x2=\"36\" y2=\"25\" />\n", + " <line x1=\"38\" y1=\"0\" x2=\"38\" y2=\"25\" />\n", + " <line x1=\"39\" y1=\"0\" x2=\"39\" y2=\"25\" />\n", + " <line x1=\"40\" y1=\"0\" x2=\"40\" y2=\"25\" />\n", + " <line x1=\"42\" y1=\"0\" x2=\"42\" y2=\"25\" />\n", + " <line x1=\"43\" y1=\"0\" x2=\"43\" y2=\"25\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"0.0,0.0 43.65344710026747,0.0 43.65344710026747,25.412616514582485 0.0,25.412616514582485\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Text -->\n", + " <text x=\"21.826724\" y=\"45.412617\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >31</text>\n", + " <text x=\"63.653447\" y=\"12.706308\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,63.653447,12.706308)\">1</text>\n", + "\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"113\" y1=\"0\" x2=\"183\" y2=\"70\" style=\"stroke-width:2\" />\n", + " <line x1=\"113\" y1=\"78\" x2=\"183\" y2=\"148\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"113\" y1=\"0\" x2=\"113\" y2=\"78\" style=\"stroke-width:2\" />\n", + " <line x1=\"183\" y1=\"70\" x2=\"183\" y2=\"148\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"113.0,0.0 183.58823529411765,70.58823529411765 183.58823529411765,148.58823529411765 113.0,78.0\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"113\" y1=\"0\" x2=\"174\" y2=\"0\" style=\"stroke-width:2\" />\n", + " <line x1=\"183\" y1=\"70\" x2=\"244\" y2=\"70\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"113\" y1=\"0\" x2=\"183\" y2=\"70\" style=\"stroke-width:2\" />\n", + " <line x1=\"174\" y1=\"0\" x2=\"244\" y2=\"70\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"113.0,0.0 174.2,0.0 244.78823529411764,70.58823529411765 183.58823529411765,70.58823529411765\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"183\" y1=\"70\" x2=\"244\" y2=\"70\" style=\"stroke-width:2\" />\n", + " <line x1=\"183\" y1=\"148\" x2=\"244\" y2=\"148\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"183\" y1=\"70\" x2=\"183\" y2=\"148\" style=\"stroke-width:2\" />\n", + " <line x1=\"244\" y1=\"70\" x2=\"244\" y2=\"148\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"183.58823529411765,70.58823529411765 244.78823529411767,70.58823529411765 244.78823529411767,148.58823529411765 183.58823529411765,148.58823529411765\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Text -->\n", + " <text x=\"214.188235\" y=\"168.588235\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >51</text>\n", + " <text x=\"264.788235\" y=\"109.588235\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,264.788235,109.588235)\">65</text>\n", + " <text x=\"138.294118\" y=\"133.294118\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,138.294118,133.294118)\">100</text>\n", + "</svg>\n", + " </td>\n", + " </tr>\n", + "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>omega</span></div><div class='xr-var-dims'>(time, plev_3, lat, lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(1, 100, 65, 51), meta=np.ndarray></div><input id='attrs-7f3885ae-72e1-4e75-9f6f-74b6afbdb344' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-7f3885ae-72e1-4e75-9f6f-74b6afbdb344' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-2a8c9cf7-be78-4afb-a3d0-b01ebb6a6e66' class='xr-var-data-in' type='checkbox'><label for='data-2a8c9cf7-be78-4afb-a3d0-b01ebb6a6e66' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>standard_name :</span></dt><dd>omega</dd><dt><span>long_name :</span></dt><dd>vertical velocity</dd><dt><span>units :</span></dt><dd>Pa s-1</dd><dt><span>param :</span></dt><dd>8.2.0</dd></dl></div><div class='xr-var-data'><table>\n", + " <tr>\n", + " <td>\n", + " <table>\n", + " <thead>\n", + " <tr>\n", + " <td> </td>\n", + " <th> Array </th>\n", + " <th> Chunk </th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " \n", + " <tr>\n", + " <th> Bytes </th>\n", + " <td> 39.20 MiB </td>\n", + " <td> 1.26 MiB </td>\n", + " </tr>\n", + " \n", + " <tr>\n", + " <th> Shape </th>\n", + " <td> (31, 100, 65, 51) </td>\n", + " <td> (1, 100, 65, 51) </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Count </th>\n", + " <td> 173 Tasks </td>\n", + " <td> 31 Chunks </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Type </th>\n", + " <td> float32 </td>\n", + " <td> numpy.ndarray </td>\n", + " </tr>\n", + " </tbody>\n", + " </table>\n", + " </td>\n", + " <td>\n", + " <svg width=\"407\" height=\"198\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"0\" y1=\"0\" x2=\"43\" y2=\"0\" style=\"stroke-width:2\" />\n", + " <line x1=\"0\" y1=\"25\" x2=\"43\" y2=\"25\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"25\" style=\"stroke-width:2\" />\n", + " <line x1=\"1\" y1=\"0\" x2=\"1\" y2=\"25\" />\n", + " <line x1=\"2\" y1=\"0\" x2=\"2\" y2=\"25\" />\n", + " <line x1=\"4\" y1=\"0\" x2=\"4\" y2=\"25\" />\n", + " <line x1=\"5\" y1=\"0\" x2=\"5\" y2=\"25\" />\n", + " <line x1=\"7\" y1=\"0\" x2=\"7\" y2=\"25\" />\n", + " <line x1=\"8\" y1=\"0\" x2=\"8\" y2=\"25\" />\n", + " <line x1=\"9\" y1=\"0\" x2=\"9\" y2=\"25\" />\n", + " <line x1=\"11\" y1=\"0\" x2=\"11\" y2=\"25\" />\n", + " <line x1=\"12\" y1=\"0\" x2=\"12\" y2=\"25\" />\n", + " <line x1=\"14\" y1=\"0\" x2=\"14\" y2=\"25\" />\n", + " <line x1=\"15\" y1=\"0\" x2=\"15\" y2=\"25\" />\n", + " <line x1=\"16\" y1=\"0\" x2=\"16\" y2=\"25\" />\n", + " <line x1=\"18\" y1=\"0\" x2=\"18\" y2=\"25\" />\n", + " <line x1=\"19\" y1=\"0\" x2=\"19\" y2=\"25\" />\n", + " <line x1=\"21\" y1=\"0\" x2=\"21\" y2=\"25\" />\n", + " <line x1=\"22\" y1=\"0\" x2=\"22\" y2=\"25\" />\n", + " <line x1=\"23\" y1=\"0\" x2=\"23\" y2=\"25\" />\n", + " <line x1=\"25\" y1=\"0\" x2=\"25\" y2=\"25\" />\n", + " <line x1=\"26\" y1=\"0\" x2=\"26\" y2=\"25\" />\n", + " <line x1=\"28\" y1=\"0\" x2=\"28\" y2=\"25\" />\n", + " <line x1=\"29\" y1=\"0\" x2=\"29\" y2=\"25\" />\n", + " <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"25\" />\n", + " <line x1=\"32\" y1=\"0\" x2=\"32\" y2=\"25\" />\n", + " <line x1=\"33\" y1=\"0\" x2=\"33\" y2=\"25\" />\n", + " <line x1=\"35\" y1=\"0\" x2=\"35\" y2=\"25\" />\n", + " <line x1=\"36\" y1=\"0\" x2=\"36\" y2=\"25\" />\n", + " <line x1=\"38\" y1=\"0\" x2=\"38\" y2=\"25\" />\n", + " <line x1=\"39\" y1=\"0\" x2=\"39\" y2=\"25\" />\n", + " <line x1=\"40\" y1=\"0\" x2=\"40\" y2=\"25\" />\n", + " <line x1=\"42\" y1=\"0\" x2=\"42\" y2=\"25\" />\n", + " <line x1=\"43\" y1=\"0\" x2=\"43\" y2=\"25\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"0.0,0.0 43.65344710026747,0.0 43.65344710026747,25.412616514582485 0.0,25.412616514582485\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Text -->\n", + " <text x=\"21.826724\" y=\"45.412617\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >31</text>\n", + " <text x=\"63.653447\" y=\"12.706308\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,63.653447,12.706308)\">1</text>\n", + "\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"113\" y1=\"0\" x2=\"183\" y2=\"70\" style=\"stroke-width:2\" />\n", + " <line x1=\"113\" y1=\"78\" x2=\"183\" y2=\"148\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"113\" y1=\"0\" x2=\"113\" y2=\"78\" style=\"stroke-width:2\" />\n", + " <line x1=\"183\" y1=\"70\" x2=\"183\" y2=\"148\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"113.0,0.0 183.58823529411765,70.58823529411765 183.58823529411765,148.58823529411765 113.0,78.0\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"113\" y1=\"0\" x2=\"174\" y2=\"0\" style=\"stroke-width:2\" />\n", + " <line x1=\"183\" y1=\"70\" x2=\"244\" y2=\"70\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"113\" y1=\"0\" x2=\"183\" y2=\"70\" style=\"stroke-width:2\" />\n", + " <line x1=\"174\" y1=\"0\" x2=\"244\" y2=\"70\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"113.0,0.0 174.2,0.0 244.78823529411764,70.58823529411765 183.58823529411765,70.58823529411765\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"183\" y1=\"70\" x2=\"244\" y2=\"70\" style=\"stroke-width:2\" />\n", + " <line x1=\"183\" y1=\"148\" x2=\"244\" y2=\"148\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"183\" y1=\"70\" x2=\"183\" y2=\"148\" style=\"stroke-width:2\" />\n", + " <line x1=\"244\" y1=\"70\" x2=\"244\" y2=\"148\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"183.58823529411765,70.58823529411765 244.78823529411767,70.58823529411765 244.78823529411767,148.58823529411765 183.58823529411765,148.58823529411765\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Text -->\n", + " <text x=\"214.188235\" y=\"168.588235\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >51</text>\n", + " <text x=\"264.788235\" y=\"109.588235\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,264.788235,109.588235)\">65</text>\n", + " <text x=\"138.294118\" y=\"133.294118\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,138.294118,133.294118)\">100</text>\n", + "</svg>\n", + " </td>\n", + " </tr>\n", + "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>geopot</span></div><div class='xr-var-dims'>(time, plev_3, lat, lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(1, 100, 65, 51), meta=np.ndarray></div><input id='attrs-e5b24a9d-fa5e-42c7-b09c-bcac79af437b' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-e5b24a9d-fa5e-42c7-b09c-bcac79af437b' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-eed4191d-cd7f-4763-b5bf-bc20c571b1c5' class='xr-var-data-in' type='checkbox'><label for='data-eed4191d-cd7f-4763-b5bf-bc20c571b1c5' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>standard_name :</span></dt><dd>geopotential</dd><dt><span>long_name :</span></dt><dd>geopotential at full level cell centre</dd><dt><span>units :</span></dt><dd>m2 s-2</dd><dt><span>param :</span></dt><dd>4.3.0</dd></dl></div><div class='xr-var-data'><table>\n", + " <tr>\n", + " <td>\n", + " <table>\n", + " <thead>\n", + " <tr>\n", + " <td> </td>\n", + " <th> Array </th>\n", + " <th> Chunk </th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " \n", + " <tr>\n", + " <th> Bytes </th>\n", + " <td> 39.20 MiB </td>\n", + " <td> 1.26 MiB </td>\n", + " </tr>\n", + " \n", + " <tr>\n", + " <th> Shape </th>\n", + " <td> (31, 100, 65, 51) </td>\n", + " <td> (1, 100, 65, 51) </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Count </th>\n", + " <td> 173 Tasks </td>\n", + " <td> 31 Chunks </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Type </th>\n", + " <td> float32 </td>\n", + " <td> numpy.ndarray </td>\n", + " </tr>\n", + " </tbody>\n", + " </table>\n", + " </td>\n", + " <td>\n", + " <svg width=\"407\" height=\"198\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"0\" y1=\"0\" x2=\"43\" y2=\"0\" style=\"stroke-width:2\" />\n", + " <line x1=\"0\" y1=\"25\" x2=\"43\" y2=\"25\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"25\" style=\"stroke-width:2\" />\n", + " <line x1=\"1\" y1=\"0\" x2=\"1\" y2=\"25\" />\n", + " <line x1=\"2\" y1=\"0\" x2=\"2\" y2=\"25\" />\n", + " <line x1=\"4\" y1=\"0\" x2=\"4\" y2=\"25\" />\n", + " <line x1=\"5\" y1=\"0\" x2=\"5\" y2=\"25\" />\n", + " <line x1=\"7\" y1=\"0\" x2=\"7\" y2=\"25\" />\n", + " <line x1=\"8\" y1=\"0\" x2=\"8\" y2=\"25\" />\n", + " <line x1=\"9\" y1=\"0\" x2=\"9\" y2=\"25\" />\n", + " <line x1=\"11\" y1=\"0\" x2=\"11\" y2=\"25\" />\n", + " <line x1=\"12\" y1=\"0\" x2=\"12\" y2=\"25\" />\n", + " <line x1=\"14\" y1=\"0\" x2=\"14\" y2=\"25\" />\n", + " <line x1=\"15\" y1=\"0\" x2=\"15\" y2=\"25\" />\n", + " <line x1=\"16\" y1=\"0\" x2=\"16\" y2=\"25\" />\n", + " <line x1=\"18\" y1=\"0\" x2=\"18\" y2=\"25\" />\n", + " <line x1=\"19\" y1=\"0\" x2=\"19\" y2=\"25\" />\n", + " <line x1=\"21\" y1=\"0\" x2=\"21\" y2=\"25\" />\n", + " <line x1=\"22\" y1=\"0\" x2=\"22\" y2=\"25\" />\n", + " <line x1=\"23\" y1=\"0\" x2=\"23\" y2=\"25\" />\n", + " <line x1=\"25\" y1=\"0\" x2=\"25\" y2=\"25\" />\n", + " <line x1=\"26\" y1=\"0\" x2=\"26\" y2=\"25\" />\n", + " <line x1=\"28\" y1=\"0\" x2=\"28\" y2=\"25\" />\n", + " <line x1=\"29\" y1=\"0\" x2=\"29\" y2=\"25\" />\n", + " <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"25\" />\n", + " <line x1=\"32\" y1=\"0\" x2=\"32\" y2=\"25\" />\n", + " <line x1=\"33\" y1=\"0\" x2=\"33\" y2=\"25\" />\n", + " <line x1=\"35\" y1=\"0\" x2=\"35\" y2=\"25\" />\n", + " <line x1=\"36\" y1=\"0\" x2=\"36\" y2=\"25\" />\n", + " <line x1=\"38\" y1=\"0\" x2=\"38\" y2=\"25\" />\n", + " <line x1=\"39\" y1=\"0\" x2=\"39\" y2=\"25\" />\n", + " <line x1=\"40\" y1=\"0\" x2=\"40\" y2=\"25\" />\n", + " <line x1=\"42\" y1=\"0\" x2=\"42\" y2=\"25\" />\n", + " <line x1=\"43\" y1=\"0\" x2=\"43\" y2=\"25\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"0.0,0.0 43.65344710026747,0.0 43.65344710026747,25.412616514582485 0.0,25.412616514582485\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Text -->\n", + " <text x=\"21.826724\" y=\"45.412617\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >31</text>\n", + " <text x=\"63.653447\" y=\"12.706308\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,63.653447,12.706308)\">1</text>\n", + "\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"113\" y1=\"0\" x2=\"183\" y2=\"70\" style=\"stroke-width:2\" />\n", + " <line x1=\"113\" y1=\"78\" x2=\"183\" y2=\"148\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"113\" y1=\"0\" x2=\"113\" y2=\"78\" style=\"stroke-width:2\" />\n", + " <line x1=\"183\" y1=\"70\" x2=\"183\" y2=\"148\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"113.0,0.0 183.58823529411765,70.58823529411765 183.58823529411765,148.58823529411765 113.0,78.0\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"113\" y1=\"0\" x2=\"174\" y2=\"0\" style=\"stroke-width:2\" />\n", + " <line x1=\"183\" y1=\"70\" x2=\"244\" y2=\"70\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"113\" y1=\"0\" x2=\"183\" y2=\"70\" style=\"stroke-width:2\" />\n", + " <line x1=\"174\" y1=\"0\" x2=\"244\" y2=\"70\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"113.0,0.0 174.2,0.0 244.78823529411764,70.58823529411765 183.58823529411765,70.58823529411765\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"183\" y1=\"70\" x2=\"244\" y2=\"70\" style=\"stroke-width:2\" />\n", + " <line x1=\"183\" y1=\"148\" x2=\"244\" y2=\"148\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"183\" y1=\"70\" x2=\"183\" y2=\"148\" style=\"stroke-width:2\" />\n", + " <line x1=\"244\" y1=\"70\" x2=\"244\" y2=\"148\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"183.58823529411765,70.58823529411765 244.78823529411767,70.58823529411765 244.78823529411767,148.58823529411765 183.58823529411765,148.58823529411765\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Text -->\n", + " <text x=\"214.188235\" y=\"168.588235\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >51</text>\n", + " <text x=\"264.788235\" y=\"109.588235\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,264.788235,109.588235)\">65</text>\n", + " <text x=\"138.294118\" y=\"133.294118\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,138.294118,133.294118)\">100</text>\n", + "</svg>\n", + " </td>\n", + " </tr>\n", + "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>vor</span></div><div class='xr-var-dims'>(time, plev_3, lat, lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(1, 100, 65, 51), meta=np.ndarray></div><input id='attrs-d1b51507-f543-4315-a080-717772912cf0' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-d1b51507-f543-4315-a080-717772912cf0' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-478c97b4-299c-4656-8534-c06ea333644b' class='xr-var-data-in' type='checkbox'><label for='data-478c97b4-299c-4656-8534-c06ea333644b' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>standard_name :</span></dt><dd>relative_vorticity_on_cells</dd><dt><span>long_name :</span></dt><dd>Vorticity</dd><dt><span>units :</span></dt><dd>s-1</dd><dt><span>param :</span></dt><dd>12.2.0</dd></dl></div><div class='xr-var-data'><table>\n", + " <tr>\n", + " <td>\n", + " <table>\n", + " <thead>\n", + " <tr>\n", + " <td> </td>\n", + " <th> Array </th>\n", + " <th> Chunk </th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " \n", + " <tr>\n", + " <th> Bytes </th>\n", + " <td> 39.20 MiB </td>\n", + " <td> 1.26 MiB </td>\n", + " </tr>\n", + " \n", + " <tr>\n", + " <th> Shape </th>\n", + " <td> (31, 100, 65, 51) </td>\n", + " <td> (1, 100, 65, 51) </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Count </th>\n", + " <td> 173 Tasks </td>\n", + " <td> 31 Chunks </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Type </th>\n", + " <td> float32 </td>\n", + " <td> numpy.ndarray </td>\n", + " </tr>\n", + " </tbody>\n", + " </table>\n", + " </td>\n", + " <td>\n", + " <svg width=\"407\" height=\"198\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"0\" y1=\"0\" x2=\"43\" y2=\"0\" style=\"stroke-width:2\" />\n", + " <line x1=\"0\" y1=\"25\" x2=\"43\" y2=\"25\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"25\" style=\"stroke-width:2\" />\n", + " <line x1=\"1\" y1=\"0\" x2=\"1\" y2=\"25\" />\n", + " <line x1=\"2\" y1=\"0\" x2=\"2\" y2=\"25\" />\n", + " <line x1=\"4\" y1=\"0\" x2=\"4\" y2=\"25\" />\n", + " <line x1=\"5\" y1=\"0\" x2=\"5\" y2=\"25\" />\n", + " <line x1=\"7\" y1=\"0\" x2=\"7\" y2=\"25\" />\n", + " <line x1=\"8\" y1=\"0\" x2=\"8\" y2=\"25\" />\n", + " <line x1=\"9\" y1=\"0\" x2=\"9\" y2=\"25\" />\n", + " <line x1=\"11\" y1=\"0\" x2=\"11\" y2=\"25\" />\n", + " <line x1=\"12\" y1=\"0\" x2=\"12\" y2=\"25\" />\n", + " <line x1=\"14\" y1=\"0\" x2=\"14\" y2=\"25\" />\n", + " <line x1=\"15\" y1=\"0\" x2=\"15\" y2=\"25\" />\n", + " <line x1=\"16\" y1=\"0\" x2=\"16\" y2=\"25\" />\n", + " <line x1=\"18\" y1=\"0\" x2=\"18\" y2=\"25\" />\n", + " <line x1=\"19\" y1=\"0\" x2=\"19\" y2=\"25\" />\n", + " <line x1=\"21\" y1=\"0\" x2=\"21\" y2=\"25\" />\n", + " <line x1=\"22\" y1=\"0\" x2=\"22\" y2=\"25\" />\n", + " <line x1=\"23\" y1=\"0\" x2=\"23\" y2=\"25\" />\n", + " <line x1=\"25\" y1=\"0\" x2=\"25\" y2=\"25\" />\n", + " <line x1=\"26\" y1=\"0\" x2=\"26\" y2=\"25\" />\n", + " <line x1=\"28\" y1=\"0\" x2=\"28\" y2=\"25\" />\n", + " <line x1=\"29\" y1=\"0\" x2=\"29\" y2=\"25\" />\n", + " <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"25\" />\n", + " <line x1=\"32\" y1=\"0\" x2=\"32\" y2=\"25\" />\n", + " <line x1=\"33\" y1=\"0\" x2=\"33\" y2=\"25\" />\n", + " <line x1=\"35\" y1=\"0\" x2=\"35\" y2=\"25\" />\n", + " <line x1=\"36\" y1=\"0\" x2=\"36\" y2=\"25\" />\n", + " <line x1=\"38\" y1=\"0\" x2=\"38\" y2=\"25\" />\n", + " <line x1=\"39\" y1=\"0\" x2=\"39\" y2=\"25\" />\n", + " <line x1=\"40\" y1=\"0\" x2=\"40\" y2=\"25\" />\n", + " <line x1=\"42\" y1=\"0\" x2=\"42\" y2=\"25\" />\n", + " <line x1=\"43\" y1=\"0\" x2=\"43\" y2=\"25\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"0.0,0.0 43.65344710026747,0.0 43.65344710026747,25.412616514582485 0.0,25.412616514582485\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Text -->\n", + " <text x=\"21.826724\" y=\"45.412617\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >31</text>\n", + " <text x=\"63.653447\" y=\"12.706308\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,63.653447,12.706308)\">1</text>\n", + "\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"113\" y1=\"0\" x2=\"183\" y2=\"70\" style=\"stroke-width:2\" />\n", + " <line x1=\"113\" y1=\"78\" x2=\"183\" y2=\"148\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"113\" y1=\"0\" x2=\"113\" y2=\"78\" style=\"stroke-width:2\" />\n", + " <line x1=\"183\" y1=\"70\" x2=\"183\" y2=\"148\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"113.0,0.0 183.58823529411765,70.58823529411765 183.58823529411765,148.58823529411765 113.0,78.0\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"113\" y1=\"0\" x2=\"174\" y2=\"0\" style=\"stroke-width:2\" />\n", + " <line x1=\"183\" y1=\"70\" x2=\"244\" y2=\"70\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"113\" y1=\"0\" x2=\"183\" y2=\"70\" style=\"stroke-width:2\" />\n", + " <line x1=\"174\" y1=\"0\" x2=\"244\" y2=\"70\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"113.0,0.0 174.2,0.0 244.78823529411764,70.58823529411765 183.58823529411765,70.58823529411765\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"183\" y1=\"70\" x2=\"244\" y2=\"70\" style=\"stroke-width:2\" />\n", + " <line x1=\"183\" y1=\"148\" x2=\"244\" y2=\"148\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"183\" y1=\"70\" x2=\"183\" y2=\"148\" style=\"stroke-width:2\" />\n", + " <line x1=\"244\" y1=\"70\" x2=\"244\" y2=\"148\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"183.58823529411765,70.58823529411765 244.78823529411767,70.58823529411765 244.78823529411767,148.58823529411765 183.58823529411765,148.58823529411765\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Text -->\n", + " <text x=\"214.188235\" y=\"168.588235\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >51</text>\n", + " <text x=\"264.788235\" y=\"109.588235\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,264.788235,109.588235)\">65</text>\n", + " <text x=\"138.294118\" y=\"133.294118\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,138.294118,133.294118)\">100</text>\n", + "</svg>\n", + " </td>\n", + " </tr>\n", + "</table></div></li><li class='xr-var-item'><div class='xr-var-name'><span>ddt_temp_totnwpphy</span></div><div class='xr-var-dims'>(time, plev, lat, lon)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>dask.array<chunksize=(1, 100, 65, 51), meta=np.ndarray></div><input id='attrs-c61bf9b4-f134-4a78-be62-8663c1134932' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-c61bf9b4-f134-4a78-be62-8663c1134932' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-34563855-18d7-43c9-9b7e-165f54446c28' class='xr-var-data-in' type='checkbox'><label for='data-34563855-18d7-43c9-9b7e-165f54446c28' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>standard_name :</span></dt><dd>ddt_temp_totnwpphy</dd><dt><span>long_name :</span></dt><dd>total temperature tendency from NWP physics</dd><dt><span>units :</span></dt><dd>K s-1</dd><dt><span>param :</span></dt><dd>0.0.0</dd></dl></div><div class='xr-var-data'><table>\n", + " <tr>\n", + " <td>\n", + " <table>\n", + " <thead>\n", + " <tr>\n", + " <td> </td>\n", + " <th> Array </th>\n", + " <th> Chunk </th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " \n", + " <tr>\n", + " <th> Bytes </th>\n", + " <td> 39.20 MiB </td>\n", + " <td> 1.26 MiB </td>\n", + " </tr>\n", + " \n", + " <tr>\n", + " <th> Shape </th>\n", + " <td> (31, 100, 65, 51) </td>\n", + " <td> (1, 100, 65, 51) </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Count </th>\n", + " <td> 173 Tasks </td>\n", + " <td> 31 Chunks </td>\n", + " </tr>\n", + " <tr>\n", + " <th> Type </th>\n", + " <td> float32 </td>\n", + " <td> numpy.ndarray </td>\n", + " </tr>\n", + " </tbody>\n", + " </table>\n", + " </td>\n", + " <td>\n", + " <svg width=\"407\" height=\"198\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"0\" y1=\"0\" x2=\"43\" y2=\"0\" style=\"stroke-width:2\" />\n", + " <line x1=\"0\" y1=\"25\" x2=\"43\" y2=\"25\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"25\" style=\"stroke-width:2\" />\n", + " <line x1=\"1\" y1=\"0\" x2=\"1\" y2=\"25\" />\n", + " <line x1=\"2\" y1=\"0\" x2=\"2\" y2=\"25\" />\n", + " <line x1=\"4\" y1=\"0\" x2=\"4\" y2=\"25\" />\n", + " <line x1=\"5\" y1=\"0\" x2=\"5\" y2=\"25\" />\n", + " <line x1=\"7\" y1=\"0\" x2=\"7\" y2=\"25\" />\n", + " <line x1=\"8\" y1=\"0\" x2=\"8\" y2=\"25\" />\n", + " <line x1=\"9\" y1=\"0\" x2=\"9\" y2=\"25\" />\n", + " <line x1=\"11\" y1=\"0\" x2=\"11\" y2=\"25\" />\n", + " <line x1=\"12\" y1=\"0\" x2=\"12\" y2=\"25\" />\n", + " <line x1=\"14\" y1=\"0\" x2=\"14\" y2=\"25\" />\n", + " <line x1=\"15\" y1=\"0\" x2=\"15\" y2=\"25\" />\n", + " <line x1=\"16\" y1=\"0\" x2=\"16\" y2=\"25\" />\n", + " <line x1=\"18\" y1=\"0\" x2=\"18\" y2=\"25\" />\n", + " <line x1=\"19\" y1=\"0\" x2=\"19\" y2=\"25\" />\n", + " <line x1=\"21\" y1=\"0\" x2=\"21\" y2=\"25\" />\n", + " <line x1=\"22\" y1=\"0\" x2=\"22\" y2=\"25\" />\n", + " <line x1=\"23\" y1=\"0\" x2=\"23\" y2=\"25\" />\n", + " <line x1=\"25\" y1=\"0\" x2=\"25\" y2=\"25\" />\n", + " <line x1=\"26\" y1=\"0\" x2=\"26\" y2=\"25\" />\n", + " <line x1=\"28\" y1=\"0\" x2=\"28\" y2=\"25\" />\n", + " <line x1=\"29\" y1=\"0\" x2=\"29\" y2=\"25\" />\n", + " <line x1=\"30\" y1=\"0\" x2=\"30\" y2=\"25\" />\n", + " <line x1=\"32\" y1=\"0\" x2=\"32\" y2=\"25\" />\n", + " <line x1=\"33\" y1=\"0\" x2=\"33\" y2=\"25\" />\n", + " <line x1=\"35\" y1=\"0\" x2=\"35\" y2=\"25\" />\n", + " <line x1=\"36\" y1=\"0\" x2=\"36\" y2=\"25\" />\n", + " <line x1=\"38\" y1=\"0\" x2=\"38\" y2=\"25\" />\n", + " <line x1=\"39\" y1=\"0\" x2=\"39\" y2=\"25\" />\n", + " <line x1=\"40\" y1=\"0\" x2=\"40\" y2=\"25\" />\n", + " <line x1=\"42\" y1=\"0\" x2=\"42\" y2=\"25\" />\n", + " <line x1=\"43\" y1=\"0\" x2=\"43\" y2=\"25\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"0.0,0.0 43.65344710026747,0.0 43.65344710026747,25.412616514582485 0.0,25.412616514582485\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Text -->\n", + " <text x=\"21.826724\" y=\"45.412617\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >31</text>\n", + " <text x=\"63.653447\" y=\"12.706308\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,63.653447,12.706308)\">1</text>\n", + "\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"113\" y1=\"0\" x2=\"183\" y2=\"70\" style=\"stroke-width:2\" />\n", + " <line x1=\"113\" y1=\"78\" x2=\"183\" y2=\"148\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"113\" y1=\"0\" x2=\"113\" y2=\"78\" style=\"stroke-width:2\" />\n", + " <line x1=\"183\" y1=\"70\" x2=\"183\" y2=\"148\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"113.0,0.0 183.58823529411765,70.58823529411765 183.58823529411765,148.58823529411765 113.0,78.0\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"113\" y1=\"0\" x2=\"174\" y2=\"0\" style=\"stroke-width:2\" />\n", + " <line x1=\"183\" y1=\"70\" x2=\"244\" y2=\"70\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"113\" y1=\"0\" x2=\"183\" y2=\"70\" style=\"stroke-width:2\" />\n", + " <line x1=\"174\" y1=\"0\" x2=\"244\" y2=\"70\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"113.0,0.0 174.2,0.0 244.78823529411764,70.58823529411765 183.58823529411765,70.58823529411765\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Horizontal lines -->\n", + " <line x1=\"183\" y1=\"70\" x2=\"244\" y2=\"70\" style=\"stroke-width:2\" />\n", + " <line x1=\"183\" y1=\"148\" x2=\"244\" y2=\"148\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Vertical lines -->\n", + " <line x1=\"183\" y1=\"70\" x2=\"183\" y2=\"148\" style=\"stroke-width:2\" />\n", + " <line x1=\"244\" y1=\"70\" x2=\"244\" y2=\"148\" style=\"stroke-width:2\" />\n", + "\n", + " <!-- Colored Rectangle -->\n", + " <polygon points=\"183.58823529411765,70.58823529411765 244.78823529411767,70.58823529411765 244.78823529411767,148.58823529411765 183.58823529411765,148.58823529411765\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n", + "\n", + " <!-- Text -->\n", + " <text x=\"214.188235\" y=\"168.588235\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >51</text>\n", + " <text x=\"264.788235\" y=\"109.588235\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(0,264.788235,109.588235)\">65</text>\n", + " <text x=\"138.294118\" y=\"133.294118\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,138.294118,133.294118)\">100</text>\n", + "</svg>\n", + " </td>\n", + " </tr>\n", + "</table></div></li></ul></div></li><li class='xr-section-item'><input id='section-c0ebf2af-3fd6-4c24-ac45-f4a0f3f965c3' class='xr-section-summary-in' type='checkbox' ><label for='section-c0ebf2af-3fd6-4c24-ac45-f4a0f3f965c3' class='xr-section-summary' >Attributes: <span>(10)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><dl class='xr-attrs'><dt><span>CDI :</span></dt><dd>Climate Data Interface version 2.0.5 (https://mpimet.mpg.de/cdi)</dd><dt><span>Conventions :</span></dt><dd>CF-1.6</dd><dt><span>source :</span></dt><dd>@</dd><dt><span>institution :</span></dt><dd>Max Planck Institute for Meteorology/Deutscher Wetterdienst</dd><dt><span>title :</span></dt><dd>ICON simulation</dd><dt><span>history :</span></dt><dd>Thu Jul 14 22:59:00 2022: cdo -P 32 remapcon,/work/bb1152/Module_A/A6_CyclEx/b380782_Christoph/icon-climxtreme/postprocessing_scripts/grid_info_1x1.txt icon-atm2d_ML_reg_20210101T000000Z.nc icon-atm2d_ML_reg_con_20210101T000000Z.nc\n", + "Thu Jul 14 22:58:54 2022: cdo -P 38 remap,/work/bb1152/Module_A/A6_CyclEx/b380782_Christoph/icon-climxtreme/postprocessing_scripts/grid_info_2km.txt,remapweights_2km.nc ../icon-atm2d_ML_20210101T000000Z.nc icon-atm2d_ML_reg_20210101T000000Z.nc\n", + "/home/b/b380906/icon-on-jet/bin/icon at 20220714 142305</dd><dt><span>references :</span></dt><dd>see MPIM/DWD publications</dd><dt><span>comment :</span></dt><dd>Nicole Knopf (b380906) on l40622 (Linux 4.18.0-305.25.1.el8_4.x86_64 x86_64)</dd><dt><span>cdo_openmp_thread_number :</span></dt><dd>32</dd><dt><span>CDO :</span></dt><dd>Climate Data Operators version 2.0.5 (https://mpimet.mpg.de/cdo)</dd></dl></div></li></ul></div></div>" + ], + "text/plain": [ + "<xarray.Dataset>\n", + "Dimensions: (time: 31, lat: 65, lon: 51, height_2: 1, plev_3: 100,\n", + " plev: 100)\n", + "Coordinates:\n", + " * time (time) float64 1.5 1.75 2.0 2.25 ... 8.25 8.5 8.75 9.0\n", + " * lon (lon) float64 12.5 13.5 14.5 15.5 ... 60.5 61.5 62.5\n", + " * lat (lat) float64 15.5 16.5 17.5 18.5 ... 77.5 78.5 79.5\n", + " * height_2 (height_2) float64 2.0\n", + " * plev_3 (plev_3) float64 1e+03 2e+03 3e+03 ... 9.9e+04 1e+05\n", + " * plev (plev) float64 1e+03 2e+03 3e+03 ... 9.9e+04 1e+05\n", + "Data variables: (12/14)\n", + " pres_sfc (time, lat, lon) float32 dask.array<chunksize=(1, 65, 51), meta=np.ndarray>\n", + " pres_msl (time, lat, lon) float32 dask.array<chunksize=(1, 65, 51), meta=np.ndarray>\n", + " tot_prec (time, lat, lon) float32 dask.array<chunksize=(1, 65, 51), meta=np.ndarray>\n", + " qhfl_s (time, lat, lon) float32 dask.array<chunksize=(1, 65, 51), meta=np.ndarray>\n", + " t_2m (time, height_2, lat, lon) float32 dask.array<chunksize=(1, 1, 65, 51), meta=np.ndarray>\n", + " qv_2m (time, height_2, lat, lon) float32 dask.array<chunksize=(1, 1, 65, 51), meta=np.ndarray>\n", + " ... ...\n", + " u (time, plev_3, lat, lon) float32 dask.array<chunksize=(1, 100, 65, 51), meta=np.ndarray>\n", + " v (time, plev_3, lat, lon) float32 dask.array<chunksize=(1, 100, 65, 51), meta=np.ndarray>\n", + " omega (time, plev_3, lat, lon) float32 dask.array<chunksize=(1, 100, 65, 51), meta=np.ndarray>\n", + " geopot (time, plev_3, lat, lon) float32 dask.array<chunksize=(1, 100, 65, 51), meta=np.ndarray>\n", + " vor (time, plev_3, lat, lon) float32 dask.array<chunksize=(1, 100, 65, 51), meta=np.ndarray>\n", + " ddt_temp_totnwpphy (time, plev, lat, lon) float32 dask.array<chunksize=(1, 100, 65, 51), meta=np.ndarray>\n", + "Attributes:\n", + " CDI: Climate Data Interface version 2.0.5 (https://...\n", + " Conventions: CF-1.6\n", + " source: @\n", + " institution: Max Planck Institute for Meteorology/Deutscher...\n", + " title: ICON simulation\n", + " history: Thu Jul 14 22:59:00 2022: cdo -P 32 remapcon,/...\n", + " references: see MPIM/DWD publications\n", + " comment: Nicole Knopf (b380906) on l40622 (Linux 4.18.0...\n", + " cdo_openmp_thread_number: 32\n", + " CDO: Climate Data Operators version 2.0.5 (https://..." + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Select subdomain without meridional boundaries\n", + "\n", + "latmin = 15 # idea: could use the minimum domain required in terms of lat here\n", + "latmax = 80\n", + "\n", + "# Do not cut the west-east sides of the domains as the cyclone\n", + "# moves periodically in the zonal direction! \n", + "ds = ds.sel(lat=slice(latmin,latmax))\n", + "ds" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(31, 65, 51)\n", + "(31,) (65,) (51,)\n", + "(31, 100, 65, 51)\n", + "(31, 65, 51)\n" + ] + } + ], + "source": [ + "# Read the data from model outputs\n", + "\n", + "lons = ds.variables['lon'][:].to_numpy()\n", + "lats = ds.variables['lat'][:].to_numpy()\n", + "time = ds.variables['time'][:].to_numpy()\n", + "level = ds.variables['plev_3'][:].to_numpy() # pressure [Pa]\n", + "t = ds.variables['temp'][:].to_numpy() # temperature [K]\n", + "shu = ds.variables['qv'][:].to_numpy() # specific humidity [kg/kg]\n", + "u = ds.variables['u'][:].to_numpy() # u wind [m/s]\n", + "v = ds.variables['v'][:].to_numpy() # v wind [m/s]\n", + "#w = ds.variables['w'][:].to_numpy() # vertical velocity [m/s];not required for PTE. Just for illustration.\n", + " \n", + "omega = ds.variables['omega'][:].to_numpy() # vertical velocity [Pa/s]\n", + "vor = ds.variables['vor'][:].to_numpy() # relative vorticity\n", + "geopot = ds.variables['geopot'][:].to_numpy() \n", + "p_sfc = ds.variables['pres_sfc'][:].to_numpy()\n", + "t_2m = ds.variables['t_2m'][:,0,:,:].to_numpy()\n", + "shu_2m = ds.variables['qv_2m'][:,0,:,:].to_numpy()\n", + "mslp = ds.variables['pres_msl'][:].to_numpy()\n", + "tot_precip = ds.variables['tot_prec'][:].to_numpy()\n", + "evapor_per_s = ds.variables['qhfl_s'][:].to_numpy() # surface moisture flux [Kg m-2 s-1]\n", + "\n", + "dTdt_nwp_phy = ds.variables['ddt_temp_totnwpphy'][:].to_numpy() # total temperature tendency from NWP physics [K/s]\n", + " # --> Diabatic heating \n", + " # Note the unit. According to first law of thermodynamis:\n", + " # dT/dt = dp/dt / ro / C_p + dQ/dt / C_p \n", + " # So this term should be the complete second term (dQ/dt)/(C_p),\n", + " # not just the dQ/dt. \n", + "print (p_sfc.shape)\n", + "print (time.shape,lats.shape,lons.shape)\n", + "print (omega.shape)\n", + "print (p_sfc.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(31, 100, 65, 51)\n", + "(51,)\n", + "(31, 100, 65, 51)\n", + "pressure at (lon0, lat0)= 100000.0\n", + "p_levs were set at: 14:58:11.623846\n" + ] + } + ], + "source": [ + "# Dimensions of time-lon-lat-plvl and time interval\n", + "ntimes = len(time)\n", + "nlevs = len(level)\n", + "nlons = len(lons)\n", + "nlats = len(lats)\n", + "\n", + "#print('level (Pa)=',level)\n", + "#print('temperature profile at (lon0, lat0)=', t[0,:,0,0])\n", + "p_levs = get_p_levs(level,ntimes,nlevs,nlats,nlons)\n", + "\n", + "print (p_levs.shape)\n", + "print (lons.shape)\n", + "print (u.shape)\n", + "print('pressure at (lon0, lat0)=', p_levs[0,nlevs-1,0,0])\n", + "print('p_levs were set at: ', datetime.datetime.now().time())" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "# Some constant values\n", + "rearth = 6.356766E+06 # earth's radius\n", + "R = 287.04 # gas constant\n", + "C_p = 1005.7 # specific heat capacity\n", + "g = 9.81 # gravitational acceleration\n", + "LV = 2.501E+06 # latent heat of vaporization at 0C\n", + "f = 1.0E-04 # Coriolis parameter" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(31, 65, 51)\n" + ] + } + ], + "source": [ + "# Derive other variables that are not directly output from the model:\n", + "\n", + "theta = get_theta(t,p_levs)\n", + "T_v = get_T_v(t,shu)\n", + "\n", + "T_v_sfc = get_T_v(t_2m,shu_2m)\n", + "ro_sfc = get_ro_sfc(T_v_sfc,p_sfc)\n", + "\n", + "print (ro_sfc.shape)\n", + "\n", + "# Convert precipitation and evaporation to the values over the 1-h/6-h intervals\n", + "# NOTE THAT THIS IS EXPLICITLY FOR ICON AS WE WANT ACCUMULATED PRECIP AND EVAPOR OVER THE 1-H INTERVALS\n", + "# In ICON output we have accumulated total precipitation since the start of the model run\n", + "\n", + "# Precipitation \n", + "precip = np.full(tot_precip.shape,np.nan,dtype=float)\n", + "\n", + "for ti in range(1,ntimes):\n", + " precip[ti,:,:] = tot_precip[ti,:,:]-tot_precip[ti-1,:,:]\n", + " \n", + "# Evaporation \n", + "h_in_sec = 3600 # 1 hour in seconds\n", + "evapor = dt * h_in_sec * evapor_per_s #--> evapor: [Kg m-2]" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/html": [ + "<div>\n", + "<style scoped>\n", + " .dataframe tbody tr th:only-of-type {\n", + " vertical-align: middle;\n", + " }\n", + "\n", + " .dataframe tbody tr th {\n", + " vertical-align: top;\n", + " }\n", + "\n", + " .dataframe thead th {\n", + " text-align: right;\n", + " }\n", + "</style>\n", + "<table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: right;\">\n", + " <th></th>\n", + " <th>Unnamed: 0</th>\n", + " <th>time</th>\n", + " <th>pmin</th>\n", + " <th>lon</th>\n", + " <th>lat</th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <th>0</th>\n", + " <td>0</td>\n", + " <td>0.00</td>\n", + " <td>1001.004700</td>\n", + " <td>50.5</td>\n", + " <td>23.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1</th>\n", + " <td>1</td>\n", + " <td>0.25</td>\n", + " <td>998.104858</td>\n", + " <td>61.5</td>\n", + " <td>23.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2</th>\n", + " <td>2</td>\n", + " <td>0.50</td>\n", + " <td>998.132507</td>\n", + " <td>20.5</td>\n", + " <td>42.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>3</th>\n", + " <td>3</td>\n", + " <td>0.75</td>\n", + " <td>997.117554</td>\n", + " <td>32.5</td>\n", + " <td>30.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>4</th>\n", + " <td>4</td>\n", + " <td>1.00</td>\n", + " <td>999.411377</td>\n", + " <td>28.5</td>\n", + " <td>41.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>5</th>\n", + " <td>5</td>\n", + " <td>1.25</td>\n", + " <td>998.095215</td>\n", + " <td>27.5</td>\n", + " <td>42.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>6</th>\n", + " <td>6</td>\n", + " <td>1.50</td>\n", + " <td>998.053772</td>\n", + " <td>32.5</td>\n", + " <td>44.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>7</th>\n", + " <td>7</td>\n", + " <td>1.75</td>\n", + " <td>997.184814</td>\n", + " <td>40.5</td>\n", + " <td>42.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>8</th>\n", + " <td>8</td>\n", + " <td>2.00</td>\n", + " <td>996.427368</td>\n", + " <td>44.5</td>\n", + " <td>43.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>9</th>\n", + " <td>9</td>\n", + " <td>2.25</td>\n", + " <td>994.831238</td>\n", + " <td>49.5</td>\n", + " <td>43.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>10</th>\n", + " <td>10</td>\n", + " <td>2.50</td>\n", + " <td>992.679626</td>\n", + " <td>51.5</td>\n", + " <td>44.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>11</th>\n", + " <td>11</td>\n", + " <td>2.75</td>\n", + " <td>988.646851</td>\n", + " <td>57.5</td>\n", + " <td>44.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>12</th>\n", + " <td>12</td>\n", + " <td>3.00</td>\n", + " <td>985.629089</td>\n", + " <td>61.5</td>\n", + " <td>45.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>13</th>\n", + " <td>13</td>\n", + " <td>3.25</td>\n", + " <td>982.510559</td>\n", + " <td>14.5</td>\n", + " <td>45.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>14</th>\n", + " <td>14</td>\n", + " <td>3.50</td>\n", + " <td>975.278809</td>\n", + " <td>19.5</td>\n", + " <td>46.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>15</th>\n", + " <td>15</td>\n", + " <td>3.75</td>\n", + " <td>968.148987</td>\n", + " <td>21.5</td>\n", + " <td>47.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>16</th>\n", + " <td>16</td>\n", + " <td>4.00</td>\n", + " <td>965.527405</td>\n", + " <td>22.5</td>\n", + " <td>47.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>17</th>\n", + " <td>17</td>\n", + " <td>4.25</td>\n", + " <td>964.638916</td>\n", + " <td>28.5</td>\n", + " <td>48.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>18</th>\n", + " <td>18</td>\n", + " <td>4.50</td>\n", + " <td>962.395630</td>\n", + " <td>32.5</td>\n", + " <td>49.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>19</th>\n", + " <td>19</td>\n", + " <td>4.75</td>\n", + " <td>961.085571</td>\n", + " <td>39.5</td>\n", + " <td>50.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>20</th>\n", + " <td>20</td>\n", + " <td>5.00</td>\n", + " <td>958.743530</td>\n", + " <td>40.5</td>\n", + " <td>50.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>21</th>\n", + " <td>21</td>\n", + " <td>5.25</td>\n", + " <td>957.222961</td>\n", + " <td>48.5</td>\n", + " <td>51.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>22</th>\n", + " <td>22</td>\n", + " <td>5.50</td>\n", + " <td>954.703369</td>\n", + " <td>50.5</td>\n", + " <td>51.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>23</th>\n", + " <td>23</td>\n", + " <td>5.75</td>\n", + " <td>953.403259</td>\n", + " <td>51.5</td>\n", + " <td>51.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>24</th>\n", + " <td>24</td>\n", + " <td>6.00</td>\n", + " <td>949.489502</td>\n", + " <td>60.5</td>\n", + " <td>52.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>25</th>\n", + " <td>25</td>\n", + " <td>6.25</td>\n", + " <td>945.711548</td>\n", + " <td>61.5</td>\n", + " <td>53.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>26</th>\n", + " <td>26</td>\n", + " <td>6.50</td>\n", + " <td>945.109070</td>\n", + " <td>18.5</td>\n", + " <td>54.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>27</th>\n", + " <td>27</td>\n", + " <td>6.75</td>\n", + " <td>943.688660</td>\n", + " <td>18.5</td>\n", + " <td>54.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>28</th>\n", + " <td>28</td>\n", + " <td>7.00</td>\n", + " <td>945.627197</td>\n", + " <td>20.5</td>\n", + " <td>54.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>29</th>\n", + " <td>29</td>\n", + " <td>7.25</td>\n", + " <td>944.231018</td>\n", + " <td>26.5</td>\n", + " <td>55.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>30</th>\n", + " <td>30</td>\n", + " <td>7.50</td>\n", + " <td>946.225342</td>\n", + " <td>27.5</td>\n", + " <td>56.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>31</th>\n", + " <td>31</td>\n", + " <td>7.75</td>\n", + " <td>946.942505</td>\n", + " <td>32.5</td>\n", + " <td>56.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>32</th>\n", + " <td>32</td>\n", + " <td>8.00</td>\n", + " <td>948.681274</td>\n", + " <td>37.5</td>\n", + " <td>56.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>33</th>\n", + " <td>33</td>\n", + " <td>8.25</td>\n", + " <td>948.078430</td>\n", + " <td>40.5</td>\n", + " <td>56.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>34</th>\n", + " <td>34</td>\n", + " <td>8.50</td>\n", + " <td>950.198120</td>\n", + " <td>40.5</td>\n", + " <td>56.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>35</th>\n", + " <td>35</td>\n", + " <td>8.75</td>\n", + " <td>951.640808</td>\n", + " <td>42.5</td>\n", + " <td>57.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>36</th>\n", + " <td>36</td>\n", + " <td>9.00</td>\n", + " <td>954.825317</td>\n", + " <td>49.5</td>\n", + " <td>55.5</td>\n", + " </tr>\n", + " </tbody>\n", + "</table>\n", + "</div>" + ], + "text/plain": [ + " Unnamed: 0 time pmin lon lat\n", + "0 0 0.00 1001.004700 50.5 23.5\n", + "1 1 0.25 998.104858 61.5 23.5\n", + "2 2 0.50 998.132507 20.5 42.5\n", + "3 3 0.75 997.117554 32.5 30.5\n", + "4 4 1.00 999.411377 28.5 41.5\n", + "5 5 1.25 998.095215 27.5 42.5\n", + "6 6 1.50 998.053772 32.5 44.5\n", + "7 7 1.75 997.184814 40.5 42.5\n", + "8 8 2.00 996.427368 44.5 43.5\n", + "9 9 2.25 994.831238 49.5 43.5\n", + "10 10 2.50 992.679626 51.5 44.5\n", + "11 11 2.75 988.646851 57.5 44.5\n", + "12 12 3.00 985.629089 61.5 45.5\n", + "13 13 3.25 982.510559 14.5 45.5\n", + "14 14 3.50 975.278809 19.5 46.5\n", + "15 15 3.75 968.148987 21.5 47.5\n", + "16 16 4.00 965.527405 22.5 47.5\n", + "17 17 4.25 964.638916 28.5 48.5\n", + "18 18 4.50 962.395630 32.5 49.5\n", + "19 19 4.75 961.085571 39.5 50.5\n", + "20 20 5.00 958.743530 40.5 50.5\n", + "21 21 5.25 957.222961 48.5 51.5\n", + "22 22 5.50 954.703369 50.5 51.5\n", + "23 23 5.75 953.403259 51.5 51.5\n", + "24 24 6.00 949.489502 60.5 52.5\n", + "25 25 6.25 945.711548 61.5 53.5\n", + "26 26 6.50 945.109070 18.5 54.5\n", + "27 27 6.75 943.688660 18.5 54.5\n", + "28 28 7.00 945.627197 20.5 54.5\n", + "29 29 7.25 944.231018 26.5 55.5\n", + "30 30 7.50 946.225342 27.5 56.5\n", + "31 31 7.75 946.942505 32.5 56.5\n", + "32 32 8.00 948.681274 37.5 56.5\n", + "33 33 8.25 948.078430 40.5 56.5\n", + "34 34 8.50 950.198120 40.5 56.5\n", + "35 35 8.75 951.640808 42.5 57.5\n", + "36 36 9.00 954.825317 49.5 55.5" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#####################################################\n", + "# Read in track data from file\n", + "#####################################################\n", + "#Cyclone Track\n", + "path_track = '/work/bb1152/Module_A/A6_CyclEx/b382037_TingChen/Task3/PTE/cyclone_tracks/'\n", + "\n", + "df_track = pd.read_csv(path_track+'Track_for_'+exp+'_'+str(dt)+'hrly_1x1latlon.csv')\n", + "\n", + "# get timesteps from map\n", + "#tmin = time.min()\n", + "#tmax = time.max()\n", + "\n", + "# select timesteps from track\n", + "#df_track = df_track.loc[(df_track['time']>=tmin) & (df_track['time']<=tmax)]\n", + "\n", + "# determine timesteps of track\n", + "ntrack = len(df_track['lat'])\n", + "\n", + "track_dur = df_track['time']\n", + "track_lon = df_track['lon']\n", + "track_lat = df_track['lat']\n", + " \n", + "df_track\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + " \n", + "# Below we start calculating the terms in the PTE equations \n" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "We choose an upper pressure lid (p2) at 50.0 (hPa)\n", + "Geopotential at upper integration level is: 206444.36 m**2/s**2\n" + ] + } + ], + "source": [ + "##########################################################################\n", + "# IMPORTANT: Set an upper integration level geopotential height (p2) #\n", + "##########################################################################\n", + "# --------------------------------------------\n", + "lev = 4 \n", + "#lev = 4: 50hPa in our intepolated input data\n", + "#lev = 9: 100hPa in our intepolated input data\n", + "# --------------------------------------------\n", + "\n", + "geopot_upper_int_lvl = geopot[:,lev,:,:]\n", + "\n", + "print('We choose an upper pressure lid (p2) at ',level[lev]/100,' (hPa)')\n", + "print('Geopotential at upper integration level is: '+str(geopot_upper_int_lvl[0,0,0])+' m**2/s**2')" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [], + "source": [ + "na_value = -1000.\n", + "\n", + "t[t<na_value] = np.nan\n", + "shu[shu<na_value] = np.nan \n", + "u[u<na_value] = np.nan\n", + "v[v<na_value] = np.nan\n", + "omega[omega<na_value] = np.nan" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "##################################\n", + " START CALCULATIONS ! \n", + "##################################\n", + "At: 14:58:12.119793\n" + ] + } + ], + "source": [ + "print('##################################')\n", + "print(' START CALCULATIONS ! ')\n", + "print('##################################')\n", + "print('At: ', datetime.datetime.now().time())" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "## [Eq. 1] dp_sfc / dt = ro_sfc * (dfi / dt) + ro_sfc * (vertical integratl of dT / dt) + g*(E-P) + res \n" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "########## dp_sfc / dt ##########\n", + "\n", + "The dp_dt was computed at: 14:58:12.125971\n" + ] + } + ], + "source": [ + "print('')\n", + "print('########## dp_sfc / dt ##########')\n", + "print('')\n", + "dp_sfc_dt = np.full((ntimes,nlats,nlons), np.nan, dtype=float)\n", + "for ti in range(1,ntimes):\n", + " dp_sfc_dt[ti,:,:] = (p_sfc[ti,:,:]-p_sfc[ti-1,:,:])\n", + " \n", + "print('The dp_dt was computed at: ', datetime.datetime.now().time()) " + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "########## ro_sfc*dfi / dt ##########\n", + "\n", + "The dfi_dt term was computed at: 14:58:12.131435\n" + ] + } + ], + "source": [ + "print('')\n", + "print('########## ro_sfc*dfi / dt ##########')\n", + "print('')\n", + "dfi_upl_dt = np.full((ntimes,nlats,nlons),np.nan,dtype=float)\n", + "for ti in range(1,ntimes):\n", + " dfi_upl_dt[ti,:,:] = ro_sfc[ti,:,:] * (geopot_upper_int_lvl[ti,:,:]-geopot_upper_int_lvl[ti-1,:,:]) \n", + " \n", + "print('The dfi_dt term was computed at: ', datetime.datetime.now().time()) " + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "########## ITT (vertically integrated virtual temperature tendency) Term ##########\n", + "\n", + "The ITT term was computed at: 14:58:14.005038\n" + ] + } + ], + "source": [ + "print('')\n", + "print('########## ITT (vertically integrated virtual temperature tendency) Term ##########')\n", + "print('')\n", + "\n", + "dTv_dt = np.full((ntimes,nlevs,nlats,nlons),np.nan,dtype=float)\n", + "\n", + "for ti in range(1,ntimes):\n", + " dTv_dt[ti,:,:,:] = (T_v[ti,:,:,:] - T_v[ti-1,:,:,:]) / (dt * h_in_sec) #unit K s-1\n", + "\n", + " \n", + "# Since the vertical integral is taken from the sfc to p2 (upper level), here I mask all levels above p2:\n", + "itt_data = np.ma.masked_where(p_levs<level[lev], dTv_dt)\n", + "#itt_data = np.ma.masked_where(p_levs>p_sfc, dTv_dt)\n", + "#itt_datanan0 = itt_data.filled(0.0)\n", + "itt_datanan0 = np.nan_to_num(itt_data.filled(0.0), copy=False, nan=0.0)\n", + "######### Set all nan values into zero! #########################\n", + "# This is important in case there're nan values in the middle layers between sfc and p2. \n", + "# Nan values with np.trapz may lead to a wrongly-calculated dp (infinitesimal step widths in the vertical integral) \n", + "# for the layers above/below the nan level. \n", + "# Instead, setting nan to zero means having zero contribution of that layer, and the next level can still be \n", + "# counted using the true, correspoinding dp. \n", + "\n", + "#################################################################\n", + "\n", + "# We calculate the vertical integral @ each timestep-lat-lon\n", + "ITT = logp_integral(itt_datanan0,np.log(level),ro_sfc,ntimes,nlats,nlons) \n", + "\n", + "print('The ITT term was computed at: ', datetime.datetime.now().time()) " + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "########## g * ( E - P ) ##########\n", + "\n", + "The E-P term was computed at: 14:58:14.009725\n" + ] + } + ], + "source": [ + "print('')\n", + "print('########## g * ( E - P ) ##########')\n", + "print('')\n", + "\n", + "emp = evapor - precip\n", + "emp = g * emp\n", + "\n", + "print('The E-P term was computed at: ', datetime.datetime.now().time()) " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## [Eq. 2] ITT = TADV + VMT + DIAB + RES " + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "We fist prepare the 3D data and will do the vertical integral later together...\n", + "\n", + "########## tadv (horizontal temperature gradient) ##########\n", + "\n", + "The tadv_data (not taken the vertical integral yet) was prepared at: 14:58:14.772154\n" + ] + } + ], + "source": [ + "print('')\n", + "print('We fist prepare the 3D data and will do the vertical integral later together...')\n", + "print('')\n", + "print('########## tadv (horizontal temperature gradient) ##########')\n", + "print('')\n", + "\n", + "# Virtual temperature T_v \n", + "T_v_adv= get_T_adv(T_v, u, v, lats, lons, ntimes, nlevs, nlats, nlons)\n", + "\n", + "# Only the levels below upper pressure level (p2) should be considered for the vertical integral later\n", + "tadv_data = np.ma.masked_where(p_levs<level[lev], T_v_adv)\n", + "\n", + "#tadv_data = T_v_adv\n", + "#tadv_data[abs(tadv_data)>0.01]=np.nan # To remove values along the boundaries\n", + "\n", + "print('The tadv_data (not taken the vertical integral yet) was prepared at: ', datetime.datetime.now().time()) " + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "########## vmt (vertical motion) ##########\n", + "\n", + "The vmt_data (not taken the vertical integral yet) was prepared at: 14:58:15.243874\n" + ] + } + ], + "source": [ + "print('')\n", + "print('########## vmt (vertical motion) ##########')\n", + "print('')\n", + " \n", + "# Vertical temperature gradient\n", + "dTv_dp = get_dT_dp(T_v, p_levs, ntimes, nlevs, nlats, nlons)\n", + "T_v_vmt = get_T_vmt_dry(T_v, dTv_dp, omega, p_levs) \n", + "vmt_data = np.ma.masked_where(p_levs<level[lev], T_v_vmt)\n", + "\n", + "#vmt_data=T_v_vmt\n", + "#vmt_data[abs(vmt_data)>0.01]=np.nan\n", + "\n", + "print('The vmt_data (not taken the vertical integral yet) was prepared at: ', datetime.datetime.now().time()) " + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "###################################\n", + "\n", + "The vertical integrals of TADV and VMT were computed at: 14:58:15.659259\n" + ] + } + ], + "source": [ + "# Taking the vertical integrals from sfc to p2:\n", + "\n", + "# Set all nan values into zero, just for the vertical integration!\n", + "tadv_datanan0 = np.nan_to_num(tadv_data.filled(0.0), copy=False, nan=0.0)\n", + "vmt_datanan0 = np.nan_to_num(vmt_data.filled(0.0), copy=False, nan=0.0)\n", + "#indvmt = np.logical_not(np.isnan(vmt_data))\n", + "\n", + "#TADV_3D = np.full((ntimes,nlevs,nlats,nlons), np.nan, dtype=float) # This is saved for debugging/closer examination purposes \n", + "TADV_3D = -1 * tadv_data * dt * h_in_sec\n", + " \n", + " \n", + "TADV = logp_integral(tadv_datanan0,np.log(level),ro_sfc,ntimes,nlats,nlons) \n", + "VMT = logp_integral(vmt_datanan0,np.log(level),ro_sfc,ntimes,nlats,nlons) \n", + "\n", + "print('')\n", + "print('###################################')\n", + "print('')\n", + "print('The vertical integrals of TADV and VMT were computed at: ', datetime.datetime.now().time())" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": { + "scrolled": true, + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The DIAB contribution to PTE is now explicitly computed\n", + "\n", + "###################################\n", + "\n", + "The vertical integrals of DIAB term (computed or residual) were derived at: 14:58:16.625104\n" + ] + } + ], + "source": [ + "# DIAB_res: DIAB is calculated as a residual following Fink et al.(2012)\n", + "# Should not be used if explictly-calculated diabatic heating rate is available. \n", + "# I kept it here to be compared with the DIAB. \n", + "\n", + "DIAB_res = np.full((ntimes,nlats,nlons), np.nan, dtype=float)\n", + "\n", + "for stp in range(ntimes):\n", + " DIAB_res[stp,:,:] = ITT[stp,:,:] - TADV[stp,:,:] - VMT[stp,:,:]\n", + "\n", + "\n", + "#-----------------------------------------------------------------------\n", + "\n", + "# DIABcomp: DIAB is calculated using the dQ/dt term explictly output from the model. \n", + " \n", + " \n", + "if compute_DIAB: \n", + " print(\"The DIAB contribution to PTE is now explicitly computed\")\n", + " \n", + " Tv_T = T_v / t\n", + " \n", + " # diab_data represents [(T_v/T) * (Q/C_p)] \n", + " diab_data0 = Tv_T * dTdt_nwp_phy \n", + " diab_data = np.ma.masked_where(p_levs<level[lev], diab_data0)\n", + " # Set all nan values into zero, just for the vertical integration!\n", + " #diab_datanan0 = np.nan_to_num(diab_data, copy=True, nan=0.0)\n", + " diab_datanan0 = np.nan_to_num(diab_data.filled(0.0), copy=False, nan=0.0)\n", + " DIABcomp = logp_integral(diab_datanan0,np.log(level),ro_sfc,ntimes,nlats,nlons) \n", + " \n", + " \n", + "else:\n", + " print(\"DIAB is not computed -- use only the DIABres term\")\n", + "\n", + "print('')\n", + "print('###################################')\n", + "print('')\n", + "print('The vertical integrals of DIAB term (computed or residual) were derived at: ', datetime.datetime.now().time()) \n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "###################################\n", + "\n", + "Data is finalized at: 14:58:16.701507\n" + ] + } + ], + "source": [ + "############################################### \n", + "# Final step for both Eq. 1&2 : Time averages #\n", + "###############################################\n", + "# Compute time averages: \n", + "# For PTE, instaneous temrs are computed as averages over t0-dt and t0.\n", + "# For Eq.1 ----------------------------------------------------------\n", + "EP_avg = np.full((ntimes,nlats,nlons),np.nan,dtype=float)\n", + "PTEeq1_RES = np.full((ntimes,nlats,nlons),np.nan,dtype=float)\n", + "# For Eq.2 ----------------------------------------------------------\n", + "TADV_avg = np.full((ntimes,nlats,nlons),np.nan,dtype=float)\n", + "TADV_3D_avg = np.full((ntimes,nlevs,nlats,nlons),np.nan,dtype=float)\n", + "VMT_avg = np.full((ntimes,nlats,nlons),np.nan,dtype=float)\n", + "if compute_DIAB:\n", + " DIABcomp_avg = np.full((ntimes,nlats,nlons),np.nan,dtype=float)\n", + "DIAB_res = np.full((ntimes,nlats,nlons), np.nan, dtype=float)\n", + "ITTeq2_RES = np.full((ntimes,nlats,nlons),np.nan,dtype=float)\n", + "\n", + "\n", + "for ti in range(1,ntimes):\n", + " EP_avg[ti,:,:] = (emp[ti-1,:,:] + emp[ti,:,:]) /2\n", + " TADV_avg[ti,:,:] = (TADV[ti-1,:,:] + TADV[ti,:,:]) /2\n", + " TADV_3D_avg[ti,:,:,:] = (TADV_3D[ti-1,:,:,:] + TADV_3D[ti,:,:,:]) /2\n", + " VMT_avg[ti,:,:] = (VMT[ti-1,:,:] + VMT[ti,:,:]) /2\n", + " if compute_DIAB:\n", + " DIABcomp_avg[ti,:,:] = (DIABcomp[ti-1,:,:] + DIABcomp[ti,:,:]) /2\n", + "\n", + "# =========== The residual terms ===========\n", + "\n", + "# For Eq.1 ----------------------------------------------------------\n", + "PTEeq1_RES = dp_sfc_dt- dfi_upl_dt- ITT- EP_avg\n", + "\n", + "# For Eq.2 ----------------------------------------------------------\n", + "if compute_DIAB:\n", + " ITTeq2_RES = ITT - TADV_avg - VMT_avg - DIABcomp_avg\n", + "\n", + "DIAB_res = ITT - TADV_avg - VMT_avg \n", + "# If DIAB is calculated via residual (DIAB_res), then thre's no extra \"res\" term (no ITTeq2_RES).\n", + "\n", + "print('')\n", + "print('###################################')\n", + "print('')\n", + "print('Data is finalized at: ', datetime.datetime.now().time()) " + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "We saved the output data at: 14:58:16.871478\n", + "####################\n", + " STATUS == FINISHED \n", + "####################\n" + ] + } + ], + "source": [ + "from netCDF4 import Dataset as nc\n", + "##########################\n", + "# Write out the PTE data \n", + "##########################\n", + "\n", + "### ONLY POSSIBLE IF FILE DOES NOT EXIST YET ###\n", + "\n", + "outpath = \"/work/bb1152/Module_A/A6_CyclEx/b382037_TingChen/Task3/PTE/maps/\"\n", + "outfile = \"PTE_map_for_\"+exp+\"_\"+data_dt+\"_\"+data_res+\"_upper\"+str(int(level[lev]/100))+\"hPa.nc\"\n", + "\n", + "#Creating a netcdf dataset\n", + "fout = nc(outpath+outfile, 'w', format='NETCDF4')\n", + "\n", + "#Specifying dimenstions\n", + "fout.createDimension('lon', nlons)\n", + "fout.createDimension('lat', nlats)\n", + "fout.createDimension('lev', nlevs)\n", + "fout.createDimension('time', None)\n", + "\n", + "#Building variables\n", + "lon_out = fout.createVariable('lon', 'f4', 'lon')\n", + "lat_out = fout.createVariable('lat', 'f4', 'lat') \n", + "lev_out = fout.createVariable('lev', 'f4', 'lev')\n", + "time_out = fout.createVariable('time', 'f4', 'time') \n", + "mslp_out = fout.createVariable('mslp', 'f4', ('time', 'lat', 'lon'))\n", + "# --------Eq.1--------\n", + "dp_out = fout.createVariable('dpsfc_dt', 'f4', ('time', 'lat', 'lon'))\n", + "dfi_out = fout.createVariable('dfi_dt', 'f4', ('time', 'lat', 'lon'))\n", + "ep_out = fout.createVariable('EP', 'f4', ('time', 'lat', 'lon'))\n", + "itt_out = fout.createVariable('ITT', 'f4', ('time', 'lat', 'lon'))\n", + "eq1res_out = fout.createVariable('Eq1res', 'f4', ('time', 'lat', 'lon'))\n", + "# --------Eq.2--------\n", + "tadv_out = fout.createVariable('TADV', 'f4', ('time', 'lat', 'lon'))\n", + "vmt_out = fout.createVariable('VMT', 'f4', ('time', 'lat', 'lon'))\n", + "if compute_DIAB: \n", + " diab_comp_out = fout.createVariable('DIABcomp', 'f4', ('time', 'lat', 'lon'))\n", + " eq2res_out = fout.createVariable('Eq2res', 'f4', ('time', 'lat', 'lon'))\n", + "diab_res_out = fout.createVariable('DIABres', 'f4', ('time', 'lat', 'lon'))\n", + "# --------Extra terms--------\n", + "tadv_3D_out = fout.createVariable('TADV_3D', 'f4', ('time', 'lev', 'lat', 'lon'))\n", + "\n", + "\n", + "#Passing data into variables\n", + "lon_out[:] = lons\n", + "lat_out[:] = lats\n", + "lev_out[:] = level\n", + "time_out[:] = time[0:ntimes]\n", + "mslp_out[:,:,:] = mslp[0:ntimes,:,:]\n", + "\n", + "# Eq.1:\n", + "dp_out[:,:,:] = dp_sfc_dt[0:ntimes,:,:]\n", + "dfi_out[:,:,:] = dfi_upl_dt[0:ntimes,:,:]\n", + "ep_out[:,:,:] = EP_avg[0:ntimes,:,:]\n", + "itt_out[:,:,:] = ITT[0:ntimes,:,:]\n", + "eq1res_out[:,:,:] = PTEeq1_RES[0:ntimes,:,:]\n", + "\n", + "# Eq.2:\n", + "tadv_out[:,:,:] = TADV_avg[0:ntimes,:,:]\n", + "vmt_out[:,:,:] = VMT_avg[0:ntimes,:,:] \n", + "if compute_DIAB:\n", + " diab_comp_out[:,:,:] = DIABcomp_avg[0:ntimes,:,:]\n", + " eq2res_out[:,:,:] = ITTeq2_RES[0:ntimes,:,:]\n", + "diab_res_out[:,:,:] = DIAB_res[0:ntimes,:,:]\n", + "\n", + "# Extra terms:\n", + "tadv_3D_out[:,:,:,:] = TADV_3D_avg[0:ntimes,:,:,:]\n", + "\n", + "#Add global attributes\n", + "fout.description = \"PTE data\"\n", + "\n", + "#Add local attributes to variable instances\n", + "lon_out.long_name = 'longitude'\n", + "lon_out.units = 'degrees east'\n", + "lat_out.long_name = 'latitude'\n", + "lat_out.units = 'degrees north'\n", + "lev_out.long_name = 'pressure level'\n", + "lev_out.units = 'Pa'\n", + "time_out.long_name= 'time'\n", + "#time_out.units = 'days since Jan 01, 0001'\n", + "mslp_out.long_name = 'mean sea level pressure'\n", + "# Eq.1:\n", + "dp_out.long_name = 'surface pressure tendency'\n", + "dp_out.units = 'Pa/'+str(dt)+'h'\n", + "dfi_out.long_name = 'contribution by change in geopotential at the upper boundary'\n", + "dfi_out.units = 'Pa/'+str(dt)+'h'\n", + "ep_out.long_name = 'mass change by precipitation/evaporation'\n", + "ep_out.units = 'Pa/'+str(dt)+'h'\n", + "itt_out.long_name = 'vertically integrated virtual temperature tendency'\n", + "itt_out.units = 'Pa/'+str(dt)+'h'\n", + "eq1res_out.long_name= 'residual of PTE eq1'\n", + "eq1res_out.units = 'Pa/'+str(dt)+'h'\n", + "\n", + "# Eq.2:\n", + "tadv_out.long_name= 'contribution by horizontal temperature advection'\n", + "tadv_out.units = 'Pa/'+str(dt)+'h'\n", + "vmt_out.long_name = 'contribution by vertical motion'\n", + "vmt_out.units = 'Pa/'+str(dt)+'h'\n", + "if compute_DIAB:\n", + " diab_comp_out.long_name = 'contribution by diabatic processes (computed)'\n", + " diab_comp_out.units = 'Pa/'+str(dt)+'h'\n", + " eq2res_out.long_name = 'Eq.2 residual (DIAB is calculated explicitly)'\n", + " eq2res_out.units = 'Pa/'+str(dt)+'h'\n", + "diab_res_out.long_name= 'Contribution by diabatic processes (residual)'\n", + "diab_res_out.units = 'Pa/'+str(dt)+'h'\n", + "\n", + "# Extra terms:\n", + "tadv_3D_out.long_name= 'Contribution by horizontal temperature advection for all single levels'\n", + "tadv_3D_out.units = 'Pa/'+str(dt)+'h'\n", + "\n", + "#Closing the dataset\n", + "fout.close()\n", + "\n", + "\n", + "print('We saved the output data at: ', datetime.datetime.now().time()) \n", + "print('####################')\n", + "print(' STATUS == FINISHED ')\n", + "print('####################')\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "tags": [] + }, + "source": [ + "# Some Test Plots" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Simulation on day 7.0\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtsAAAGRCAYAAAC0W38/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOydd3wUxRfAv5PeCyEBEkqA0HvvHQHpRXovgqKCPxXBgg3FAvYuIiAiTZoUFRAQkF6lQwIBkhDSSO+5+f2xm3CElEtISGG+n8997m52dnZ2b+/N2zdv3hNSShQKhUKhUCgUCkXBY1bUHVAoFAqFQqFQKEorStlWKBQKhUKhUCgKCaVsKxQKhUKhUCgUhYRSthUKhUKhUCgUikJCKdsKhUKhUCgUCkUhoZRthUKhUCgUCoWikFDKtkJRSAghOgshpP7qXEBtfqK3924e9lmq7+NfEH3I5hj++jGWFkBbE4yum7de9qT+/bcHbb+oKYz7Qm93vd7mlIJqszQihHhPv04Li7ovCoXi0UAp24pHGiMlMafXW0XdTwAhRCVgOpAMfFHE3XnY/AyEAEOEEC1N2UEIUVEIsUoIESKESBRCXBVCfFO43Swa9GsyCO0aLS/CfhSr/0w2fIH2H3pW/08VKUKIPUbXLU0IESOEuCKEWCGEaP8Q+zEhFzk4IZf9LYUQb+r/s2QhRIAQ4jMhhONDOgWFotiilG3Fo85J4LD+CjQqP2VUHvDwu5UlTwPWwHYpZUhRd+ZhIqVMAtbqX2eauNtqYDjgAlwBHIDeBd654sHz+vsa/Vo9cgghrEypJ6W8DexA+y89VaidyhvJwFHgDlAdGAXsFUK8+pCOH8pdmZf+umm0/VYu+/8EvAVUAa4CHmj/1c1CCKVrKB5p1B9A8UgjpRwkpWwtpWwN/Gi0ybi8lhDinBAiUgiRIoQIEkIsE0JUMG5LCPGUEOKGECJeCLEZ8Mq0vY2RlaiZUflQI6tWTpa2sfr75kztjhFCnBBCRAsh4oQQl3WLrnPmBoQQ/YUQ5/V6e4UQtYy29RJC7NMtwcl6e3uFEL0ytVFPCLFftxZfFEIMzKqzQghH3e3lmt7eLSHEd0IIF6M6QreGhegWveXAff3OdN5DhBB2OVyndOrr729IKRtIKT2Ax03YDyGEt9Fv9ZLuohEvhDgrhGgvhGgihDiiX8f9ma5jTSHEBiHEbSFEkn6/7BRC9MzheG8ZHa+rEOKUfn1PCyE65NJXO2Cw/jXzveEohPhICOGr9yVC70sZfbu5EOJF/f5O0n/zXUKIbkZtGLu9TBBCbNGvxTUhxGTjOkaHflNkcl3S7719QohYo3N7WgghjOrcZxkXdy2/e7Kot0BoblJRaA9XCCH+Z3SPR+vntiTTZUu/TmPJBSFEff33D9Pv42tCiIVCCIes+iiEeEZoM2Yx+rUqn9sxdG7pMqcyUA/4DxDAe0J3NxJC2AshNup9iNN/sytCiHeEEFb673lT78sHRv2z138zKYSYltXBpZRb02Wekey7pm++AGzP4Ro1BcboX2dKKWsDQ/TvnYCBJl4DhaJ0IqVUL/VSLylBs8pI/eVtVH4WiATOoA06Br3OEaM6vY32DQf8gFijss56vYv694VG+67Ty7bn0LfqRm01MSpvaNQfX7QBOkr/XlGvs1T/ngQkZjqHf43aegnNuuYHnABi9DopQCO9jg1ww6j8HBCvtyuBpXo9K+C40XFPG12P44ClXm+60XkFoc0iGF8349+hjFF5NxN+z+V63WCgRh7vBW+jYyWiWerS+3UbzQp4Sb9ema9j+nlH6J8D9O+v69s7Z3FfvGVUFgecBxL07zGARw597Wa0r6tRufFvIPXf7RKQln5d0R4w07f7AmH65zTg8Sz6m4ymgEUZ1asNNAUOGdUL0L9v0NsYY7Tttt5G+vf3jfqcXvaWUdkevWxPFvWS9Ot1BlgF9DPadh7t/owDUjNdsyZG9arncG3rcPd/EKu3mZb+mwNmmfqYrP9ul43aX5HLvZa+r38OfVyll5Xl7j19Es3ynF5ngV7ndf37LcBCLxumlyUALib+B1oZtT0hl7qvGdWtoJeZcfce/r4wZbd6qVdxfxV5B9RLvYrLi+yV7Ybpg6r+fUrmgRr4J33ABJz1suVG9TrrZa9wV/ERgKPRgDQqh771MWrLWKEaopddNhr4zfSB0k7/vtRo33562SdGZbZ6mbfxQAy4AtF6nXl62USj/QboZd2NypbqZeO4q5DX08uqAKl6+Wi97Lr+/TCacmgB7M7qd9Drp/dnei6/5TP6sUK4q8jX1bc9qZftzmF/b6M+/KX/Vsa/+yK93rwsrmO6ctbBqL2KQC39c+cs7ou3jMqm6GVNuftQ9HYu5yqBqEzl44zafMWovAbafVfNqP2v9G2O3FUUj2fR39/0a9HQqOwpo7bvU5Yz/c5H0R7YBLCSuwpqmez2J2dlO5S7D5XmwIt6+U6juhZAx0z9MX5w653DtV3G3QegKnrZU0b79svUxzSgsV62Xi8LzuVeTd/XP4tt6ff7Of27Ffp9bFQnXc7c1L+XQ3sIkUB/vWw1Rkq7ifIwvf8B6A/HOdT9zuiamBuVpz8M/GHqcdVLvUrjS7mRKBS50wg4qk9/S2CR0TZP/b2B/v6XlDJK/7wmi7Z+RlNwKgHt0KZXbdAshRty6IOL0ecYo8//ovl41gAihBBH9f6VkVLGZ2ojSkqZPn1+3qjcQ3+3ApbqLh1paJbZ9MVNmc8zCfgdQEq5U69rTCv93QI4q183fzSFCKC1EMIJqKx/3yilTJZSpqIN8tkRrb+7ZFdBCNEY+FI/VltgAVAB+Efflu4WczCH4xizVUqZ3v900q/jVaMyj0zb/hZCXBJCbASe4N41ATmxGkBKeQLN1xzuusRkhYv+HpOpPP03SEG7BujtXpFSxgDN0ZRegF/1bTHAFr2ssRAi/fdK5xf9WhjfP+VyOhkhhAd3f+cNUspEvY2Vepkl2n8sP6yTUgbofU9DezBKBrrpbh8H0BZEpmTaL9ros0sO7bfQ3/+VUl7XP/9qtL15pvpnpJSn9M/p18iD/JP++0j9PQ0YIzRXsST9f5XuvuEJIDWf9HV62SQhhA131yosM+mgQtQEBuhfP5FSZr5+2fXT1HKF4pHCoqg7oFAUZ4QWDWAZ2qARjjaAOqBNL8Nd5THL3TMXSCkDhRA7gR7ACKCqvmm1lDIhh7aijD47oinYSCmDhRD10HxPm6MpZZPQBtnBUkpjBT7S6HNqFv3cgqa0p6JNyyeiTWVbkfN5GreR+XsKmktKZm7noS1jnPT3yBzqdNfbiJBS+gohZqMpe8OBfWi/XzL3PjTlRLpilppFmTQqS+/3OLQHkc5ovrc90RSXLtxVYEzFFGUl/d54kKgPMvcqgH7dpZSpxq7WhXAc4/vNOYd6wfc0LuVZ/f8wCu3ebYS2sHiqEKK1lPKYXtXJaLdIE/qTp+ujk36/5EvhFEI0R7tXQXOHAZiDNjsG2mxBMNqsiRf3rsH6BhiJNiM2QW/nFjn4XWfiJb29SOAHE+rfMPrsAdwS2qJIN73s5v27KBSPDsqyrVDkTCvuDpYNpJQt0azTmTmrv/fQLbZwd4FQZpbq7yOAx/TPS3Lpx2Wjz97pH4QQnoC7lPIjKeUwKWVdNJ9rgK65tJmBEMINTdEGbUFhY71/mZWM9PO0RvOPRQjRFc3lxJgj+rsF8Ly8u+CqPfA2moU0mruDcH99gZcF2Sym0hf1pSuUl7Oqo5OufJYRQozUragT0SzT6crLR1LKazm08SB0QLPgPiWl7ADM18tN/T2GQoaF3kcvO5tt7bvXwkkIYfw7HNbfLYEX0guFENX1xX3p/twAo/VtjkBfveyUbi3OC+kPjPbpBVKLnJOujA0WQtjoiyJH6GUpaD79oLn9gLZGASGEDzlb9e9BCFFDO6R8R0o5CKiLtqbAHG2hXjpVjD7ndC8d1d/bCSHS9xlltP0YhYD+wGAsE77T31vr75ellN5oMzenyYSUcr9ebgGkxxP/xZTfU1/QOU7/+rWUMjbTdi+hLYy+KIQYpBf/aVQlXe71QZu1y7xdoXjkUMq2QpEz/xl9PiOEuADMyqLeR/q7N3BVCOGHZknNig1oFiM3NEXokpTyUE6dkFJe5m7orRZGm+oCp3XXj1NCiKvoikqmvudGBHdDHL4thDiDZpHOPDj/alRvnRDiLLCV+6fpV6KFTxTAAT0ixAU0RXgbdx8Y0q9beuSDa2gKRFakn3cScCCHc1nNXZePX4UQF9EW/3kb1XnSSHkqaJYDd3QXkpPAXL3c1N/jUyHEObRzFGj+wjnFBz+IZqmHe++NVdydVfhQCHFdvxaXgLJSSj+0cG0AzwghfNGufw00V6fXTeyvMRf19xlCiKNCiPQHjdf09+Zov81VNMsrwMdSynQ3pL/195FCiH/QFlnmZZzqBPgKLQLMCbQHz/TINcbXPz1We4CU0jeH9j5AWxhpD5zTf5ev9W0H0O79gqKCEOKQEOI62sxSfbSHodeklLv1OunnUFMIcQ3tIab1/U0Bd++Z9AefpSb2Yybaw3QiWcfztwRq6S9nACnlce66BX2u/9fTXVn2AxtNPLZCUSpRyrZCkQNSyh3AbLQFdrZoysTTWdTbAjyL5pdrjzbI31dPr5uI7pers9TE7qQnK+lvVHYVbZCLRFOSPNBcXeZwbyjDHNGtv0PQLHlpaJbA0WgL0DL3vTeaomFAuyaT0K6Pcb0kNDeKT9CUqxqAO9p0+LvctdR+DbyDFgXDBU25eo2sST/v9Vn4oxsfOxptRuJLtOvjjTalvwot8cttND/jzaJwEm78hKYsuaG5kYQCK7hryc2NPmgPFOZ6O310P9ws0f2sN+pf+xuVJ6P9BgvQrkMFtPvjH+66wUxDe3g8j7aOwBptgWoPKeUfJvbXmBl6n0FTrGvqffkFzYXmX7TZiQpoiuN0wDiO9AtoCmwsmovVh2jKmqmcRPP5T0Jz9XLUyybr/+V00q9TjgmApJQXgDZoD8hJ+vncBD4GekopDXnoW25YoT0EuKE99KwGOkkp5xvVmY/m1haJ5gqziuwfxFZwd5bnmJTyfDb1MtD/D+mxx5fKvMXzH4/2X76B9sAfhvYf7FPA10mhKHEIbYxVKBTFHd0Smz7lXTknBay0IYSwRhvEPYDWUsrDuexSohBaXOk3AaSUefbxFUK0RrNwh6DdG49kYhtTEEKU4274yppSyhu57FJiEUL8h7ao+RkpZanMnqpQlASUZVuhKCHo0RC+RrOAzSji7jxsxqEp2utLm6JdEOhuSBvQrtG4XKo/6sxA+w99XVoVbSHEp0KIfWiKdgimz54pFIpCQFm2FQqFooh5UMu2QmGM0DJ3VkRzD3pKSpnTGgeFQlHIKGVboVAoFAqFQqEoJJQbiUKhUCgUCoVCUUgoZVuhUJQYhBBLhRBSnyYvkRTGOQghvPU2pRBiQkG1q1AoFIoHRynbCoVCUYwRQrwohNglhAjUU3QHCCHWCiEaFHXf0hFCOOqL8gKEEMlCiKtCiLeEEJaZ6vkIIX4TQkQIIRKFECeEECOzaK+7EGK/ECJeCBEthPhLCNEsU53BQogdelvqQUOhUBRblLKtUCgUxZvn0FK9G9BilnsBTwAHhRDeRdctDT0t92bgebRoKFfRMjS+CSw2qlcBLc72ELQY4kFoKdV/FUJMNqrXEy3jYDu0ZEtJQA9gb6YHjI76655Y8AqFQlHcUMq2QqEoVgiNp4QQx3XLZqz+uW2mev2FEOeFEHFCiL1CiFpG23oJIfbpmTWTdevoXiFEL6M6xq4XLwohfhFCxOgW5NfzWk+v6yiE+EQIcU0/7i0hxHdCCJcHuCQ/AlWllJWklLWAF/Vye7QkPdldxwFCiBS93+/pZXv073v0cwnWLcNvCSHshBA/6Od2XQgxxcT+DeRuKvTBUsraaIo3wFghRFP98ytoyngMUEdKWY27WQY/EEJY6Z8XoCnjh9ASElVDe8iwA94zOu77aElrhqBQKBTFGKVsKxSK4sYXwLdAU7SU0f5omRhrGtWpAKxBS2duC3Tgbupx0FJdt0JT7M7q9TqgZY1slMUx3we66sfzBOYJIR7LSz1dWdwD/E/fdgFNGZwG/J3ZpcJUpJTvSin9jYr+MfqcZfIaIUQPtAyEFsA8KWXmrJytgTf0/V3RrNBH0RTnOKAy8L0QorYJXXxcf08Atumf1xlt75mp3kEpZXrG0fX6e1mgmRDCCy02NMDvUspUPUNmevbH7kIIcwAp5W09S6ZCoVAUa5SyrVAoig26W8Qz+tffAU8pZX005dpYybQChkop6wCf6WVthRC2+uffAA8pZXUpZVM05TEGTfl8IotDH0ezotYBUvSybnmsNwLtASEVaCqlbIT2kJCmlw/L8eRN5zn9PRxYm8X2jmjp262BN6SUb2RRxwxoBNQF0hVWd7QHmnZGdTqb0J9K6f0xSsttnN20cqZ6xinAM9erZPQ9q3q2aIq5QqFQlBiUsq1QKIoTLdCs0ACfSCkTAaSUd6SU14zqRUkpN+ufzxuVe+jvVsBS3Y0kDc3311Hf5pnFcVdLKZOllGHcVfLK5bFeK/3dAjgrhJBoVnlzvbx1lmdsIkIIKyHEz8B4IBoYKKXMyl95IppS+pWUcl42zZ2VUvpLKeO46/O8X0oZieZznU5W1+C+rplYZsq+2e2nEv0oFIoSi0VRd0ChUCjyQaTR51Sjz+lK2Raghr7tDJrbRxM0Jdyc+8mqvawUvJzqpb+nACey2Pd2FmUmIYQoi5aOvT1wC+gjpTyZTfVYwAEYLoT4Ukp5OYs60UafU43LpJRSiIxTN0XJTU95XlYIYaZbtz2Mtt80evfJtC1zvRvZbEv/nACEmdAnhUKhKDYoy7ZCoShOHAXS09o+L4SwBhBCOJsaeUMI4YamaIPmRtEYzcWjsNPlHtHfLYDnpZStpZSt0RTkt4Ff8tOoEKIOcFhv5xTQMgdFG+B1tAcMd2CHEKJSDnULgj/1dxugt/55SBbb09/bCCHSZxcG6+/hwDEpZSCajz1AfyGEhRDCEUj3n98ppUwr0N4rFApFIaOUbUWJRGiJQd41sW56NImHOpMjhOgghLj0MI9Z0tEXAn6tfx0IBAkh/kOz5nY2sZkIIED//LYQ4gyapbmwlbSVaMqwAA4IIc4JIS4AUWgLB73z2e4GtIgcoCnyvwkhDumvrCKGRKEtRryB5ge9Qwjhns9jm8JGYL/+eb1+zp/p33+VUqZb+T9As0o7AheEEFe5q5S/YrTY8WW0MIet0dxwrqJduwRgbvpBhRAzhBC+3F2UCfChEMJXCPFhQZ1cSUcI4S+E6K5/fksIka+HPqP2RgshtuewvbMQIiC77Xk4zgQhxP4ctv8hhBhv9P1dIUSYECL4QY+tUBQ0StkuBejCNEEPkRasK6IORd2vRx0p5T49VJsib8wApgMn0cK9VUOL7HHFlJ2llBJNiTuKpmCbA6Mp5HjMUsoktAeCT9CUxBpo1uVzwLvctdjmFRujz+lRVtJfFbPpSyDQC+3BoxbwpxDCKZ/HzxHd0twHLYpMKFAdTdGfB0zI1Kd2aBFIJJrv/ClgjJRykVG9P9As5AcAN7Tz3wl0klKeNjp0Gf1YxpZ7D73MFF9zRT6QUq6QUvZI/64bMnyKoB+PSymX6X2ohBYSs66UsnxuinpOCCG6CCF2CyGiRBZZXjONt7E5PXgoFOkIbVxSlGR0gTBFSrlTCFEe+AvYkkW4r1KDEGIpECClfN2Eut7ANcBSSpmaS3WFQqEoEQghLHKTaZnGh7cAHynlmALsgwRqSCl99e+dgV+klFk+COah3Qlo/W5vQt32wKr0Y+Zl3yzaaon2gGoLvCql9M603V9ve2de21Y8uijLdilDShmMpmw3Ti8TQrQWQhwQQkQKIU7rwjB92x59+u2A/pS+WQjhJoRYIbREIEeNfWWFEJ8LIW7q244LIToYbXtLaKmYVwstMcYJYRTTWLcIvCK0RCR3hBBLhBA2Rtv7CiFO6f08IIRoaLStid5ejBBiNfda++5BCGEuhFioTyleRbO6GW/3FEL8LrRkHr5CiCczncNacTdxyRkhRE293yH6uRtbdSYKIS7oda8KIaYZbbtnOlU//5eEEP/pVpPVxueveDQRd11C7nsVdd8AhBB9cujj3NxbUOT030+XE0KIV3WZ5S+EGJ1LW7OF5l4VJzS/9v5Cc1uK1GV6nXz08R8hxBD9c3uhWax769+7CyFO6Z8zrMZCiL367qf18WO4UXsv6jLzlhBiYg7HnaDLzhihJYManWn7Qn28uCaEeNyofI8QYorQXGR2AJ56H1YD36GtDYgVQkTm5TpIKY9IKZdzb1QeheKBUMp2KUMIURHNXzPdyuAFbEWbxi4DvASsE/f6cI4AxqKlga4OHASW6PUvoCW8SOcomiJfBvgVWJtJYRyAFvs3fftGcW8yj9FoSS6qo8X0fV3vZ1O0pCTT0KaOvwd+F0JYCy1ZyEZgud7uWnLOGvck0Bct+kRz7o+rvBLNp9dT3zZfCGEcU7mffixXNFeGv9D+K17AO3rf0gnRj+WEFnLtU3E3Y15WDEOb3q8KNMRoml3xyNIqh1dxwJ3s+1e9CPtV0sjpv18eLX64F1poxx+EUUbULBiJZkRwQXOzWomWtdMdzYd9s7ibkdNU/uHuuoiOaMpmJ6Pv/2TeQUrZUf/YSErpIKVcbXQ+zvr5TAa+FkK4Zt5fCGGP5n70uJTSEWiL5lqUTivgEtq1+QhYLIS4J0KObmF+HAjS+zAceAoteZKDlNJFP9Yc/WEky5dJV+guK4QQoUKI7SLrJFkKxT0oZbv0sFEIEYMWPiuEuwryGGCblHKblNIgpdwBHONu1ACAJVJKPyllFPAH4Cel3KlPT65FU1oBkFL+IqUM1zO7fYyWOMN4UDgupfxNSpmC5rtqw73xhb+SUt6UUkagpV4eqZc/CXwvpTwspUzTffGS9H1bA5bAZ1LKFCnlb2hKf3YM0+umH+f99A1C8+1rD8yWUiZKKU+hpcMea7T/PinlX0bn7w58oJ/TKsBb6Om3pZRb9WsnpZT/ANvRMhVmxxdSyiC9X5sxmoFQPJpIKUV2r6LuG4CUcmkOfZxQ1P0rQeT2358rpUzS5chWck6C9IUu3xKA4cBWKeUOXUYtRHOBaJvH/v3Dvcr1+0bfO5GFsp0DKcA7urzehhaOMruHBwNQXwhhK6W8JaU8Z7TtupRykb4uYBlacqt8+eNLKT+QUrpk98pDU6PRFuxWAXYDf6WPBwpFdihlu/QwULcMdAZqczfLWhVgaKYn+PZoQisd4/i/CVl8z1hsqU8NXtCnQiPRrBfGGd3SY+oitXi76Rbk+7YD1422VQFezNTPSvp2TyBQ3rvA4Ho21wG9fubjGG+LkFoKaOPtXkbfM59/mFG4sQT93QFACPG4Pp0eofe5NzlnuDNeKR+P0bVVKBSlmpz++3eklmAoHWPZmBXG8s0TIxmny92b3CvTTOEgUFMIUQ7tQeBnoJLQYry3BPbmsG9mwjP5kmcp6/RzTrdE3xJCbBVC1DaqEmxUN17/WKQyU0r5r5QyQUoZL6V8Hy32fk4GFoVCKdulDd0qshTNugGa0F2e6SneXkr5QV7bFpp/9mw0i4urbg2I4t7EF5WM6puhRUsIymo7Wliy9G03gfcy9dNOSrkSLeybV6bpw8pkz60sjpNOEFBGaLF7jbcH5tBelggtBvQ6tGtdTr8e21DZ7hQKRd5w1V0q0jGWjVlhbHgIQjNWAKDLyUrkUabpyuxxYCZahtFktIgwL6DNdhZKMiF9FvExNAPQRWBRLruY1GzmAt0nPja71wMeS8l8RY4oZbt08hnwmBCiMVoijX5CiJ5CWzhooy/Iyc9KcUe0bHOhgIUQ4g00X2VjmgkhBgstpvXzaK4gxgu9nhFCVBRClAFeBdJ9/BYBTwkhWgkNe6EtzHJEs7ikAjP0xUCD0Swt2bFGr1tR9xOck75BSnkTbQB5X78WDdF8Clfk43pYobnRhAKp+uKdHjnvolAoFFnythDCSjdq9EVzYTOFNUAfIUQ3fX3Mi2hy90A++vAP8Cx3XUb2ZPqeFbe5Gwc+Twghygltcac9Wp9jKZh4+LeBisZ+61LK+boPd5Yvoz6Z6euQLLWvwia9HSFEZSFEO/13shFCzEKbyfy3APqsKMUoZbsUIqUMRZsCnKsrlwPQFNtQNAvyLPL32/+F5tN9GW3aMpF7pzMBNqFNC95B84MerPsRpvMrml/zVf31rt7nY2h+21/p+/qiLyDSLSyD9e939PbX59DPRXpfT6MlM8lcdySaz10QWsKQN3Vf9jyhu6LMQBvs7gCjgN/z2o5CoXjkCUaTIUFoD/5PSSkvQoZF9o/sdpRSXkJbm/MlWtKgfkA/eTdJUF74B82osjeb71nxFrBMd//Lyc88K8zQHg6C0GLCd0KLsf+g7EKLbx8shMirRb4jmrvgNrQZhgS0MQu0a/Et2m+VHsv+cSlleAH0WVGKUXG2FQWGyCWGq1DxSRUKheIeRAHFpVYoFMUXZdlWKBQKhUKhUCgKCaVsKxQKhUKhUCgUhYRyI1EoFAqFQqFQKAoJZdlWKBQKhUKhUCgKCaVsKxQKhUKhUCgUhYRSthUKhUKhUCgUikLCJGVbCFFeCLFaCBEqhLgjhNglhGhktH2cEMJPCBEvhDgshGiWaf/ZQohbQoh9QgjjTFd7hBBSCNExU31fIcSEBzw3hULxCCGEEC2Ei9QTJj3SKJmtUChKAl1FWTlEVCj1iwctTKz3DVow91poGZ7eBbYIISoD7dCCvA9CC4A/E9gmhKghpYwWQvgAndEyTLUF5gHjjNoOBxYKIVpJE1dr9urVS4aFFUrmWIVCUcQcP378Lyllr7zu1wN3w2Hu0BCncFT6ZCWzFQrFQyG/MlsIUdkVS6wxQwghTJUnJRFTlW0f4CspZQSAEGIxWhZCN7Ssf+ullNv1bQvQ0rsOApahWc/NAHOjz8YsAsajZfX71ZTOhIWFcezYMRO7rlAoShJCiLL52MeyLFb0oxzbCUUIUVVKea0w+ldCUDJboVA8FPIjswFqYn+9OvZcJ576OBooxUYSU322FwBDhBBlhRA2wFRgv5QyDGgEHE+vqD+ZnNTLkVJeBg4CfsDbwNxMbccBbwDzhRDWD3AuCoXiEaU9ZZIrY4s9FrTABR/srhZ1n4oYJbMVCkWxRQjROI40KmFDc1w4SRSlWZ6Yqmz/i2blCEWbkhyMZh0BbaoyKlP9SMAp/YuU8i0pZTkpZdtsrE1LgBi06UyFQqEwGSGE03liaKyLnIrYkoSBR8EPMAeUzFYoFMUSIYSoiM3JVrggENhiTjXsaYNrYlH3rbDIVdkWQpgBO4HLgDNgB7wH7BNClEMTuM6ZdnMBok3thJQyDXgZeFUI4WbqfgqFQtEEp6h6OGJpJM5a4cohIhFClNppyexQMluhUBRneuNhsMUcd+4ashvgyCViEUK4FF3PCg9TfLbLAFWBL6WU6cL4RyHEh0Br4DTQNL2yPrg1BtbnpSNSyj+EEEfQpidzJXbFO3lpXlFKsBg8K9/7pq5fUCjtZtd+QbRZHMjpuhUED3KdhBBeZbFiEOXvKXfDCkfM6YV7qfYDzIZiJ7OlwUBiQkJemi8SisO9Xth9UBRfSsr49oAy29wdKx7D/Z5yS8xogBORpNyhFMrsXC3buo/fZWC6EMJeCGEhhJiENhV5Bm2xzGAhRDchhBXwImADbMhHf2ah+Ra651TJEHErH00rSgOp6xcU+GBUWpTiwqI4X59a2Ac0wxmzLGRzC1w4rvkBmroQvFRQHGW2wjSUov1oUxi/f3GT351wS/XEBscsbL01sSeIRIzDjZYWTB2EBqItuLkOWAK+wFAp5VXgqhBiOpoAr4AmzHsbWVRMRkp5WgixCpiQ130Vjxap6xfkWYgUttCxGDwrQ1gWNwH3oBifW0GTn98SQAjRwBNrqmCb5XZ7LKiIDbVxSKEUWkpyYSBKZueZ9PuwKJRepWgrgHyPISVhzBFC2JXBkv6ZZiLTMUPQHBd8ifOnlMlsURLDGjat5iX3zptW1N1QFCOKi6Aprcp2dhSUgmB8vWzt7I5LKZvntk9lYSub44IH2S9gT8bAJoKJIMVRShlbIJ1V5JlmTZvKf//9t6i78UAUxr1e0G0rSifFZTzJbnwzVWa3FK7SAkHDu2ux70Mi2UYIASQ2lVKefMAuFxseqelVRemloPzJHpTiIhQfFkVlCewrykkrzHJUtAGsMKMujiSQFkMps5QoHi6FNbujFG1FbpSG8U0I4VEWKwZmY9XOqIegFa7AnRNCCLPSkujG1NB/CkWJoTD8uvNLel+KS38KiwcdAPJyfYQQZkeJpCUuJtWvjQPXSUAIUSGf3VMoAO0+L0hlp7TLBUXBU5zumbyMbfVwvN0YJ8xNsHmUxQo7zHkcD8OD9rG4oJRthaIQeZQs3Q9L4e6CW1o5rHHC0qT65gia4kwdHIJMqS+EsBFCHBFCnBZCnBNCvK2XlxFC7BBCXNHfXU3qgKLU8aBRI4qTwqRQFDZCiJrhJFMNO5P3aY4Lx7TwreYmtF/sZbZSthWlkuKk5Ba0Naw0k5sSIoSw/Y9omt4XJjpnvLElkhSEEHVNqJ4EdJVSNkILiddLCNEamAP8LaWsAfytf1co8oVSuBX5oTiNJaaObVWxu9RST2BjKo5Y4IUNnXBLNaF6sZfZStlWlDqKkzBSFCytcImvgT025GrsuId0P8Aq2J7Lra7USF9Maam/JDAAWKaXL0OL+KFQKBQPhZI4tg0U5aVEUgGbPO/bGGfOEI0Qwj6neiVBZqsFkopSRUkURgrTCbZIYKFbNaxEfuwEDtyIiEUI8RowyGjDD1LKH4xr6lOXxwEf4Gsp5WEhRDkp5S0AKeUtIYRHfs9DoVAo8kJJHdvOEMNMtwpUs8w6RGtupMQmcTQ2LlYIcdyouMTJbKVsK0oFJVUQKfKGBSKfiraGi5kFwCYp5Xs51dPTkTfWUwdvEELUz/dBFQqF4gEoyePbVeK3OJtZ9M3v/i5mFlwmbrqU8tuc6hV3ma2UbUWJpyQLotJEafRBlVJGCiH2AL2A20KICrqFpAIQUrS9UxQFpfE+VxRf1PiWN4qrzFbKtkKRDzIPuI+yQCxtyocQwh1I0YW2LdAd+BD4HRgPfKC/byq6XiqKgtJ2ryuKN0UxrpTEsa0kyGylbCsUJpLTQPuoZY5Mp5QqHxWAZboPoBmwRkq5RQhxEFgjhJgM3ACGFmUnFQ+PUnqfKxRAqRjbir3MVsq2okTzsASAqYNt6voFxV0oFQilWfmQUv4HNMmiPBzo9vB7pChKSvO9rlCYSnFWukuCzFbKtqJE8zCU27wOtkUhlHLqY0H3QykfiqIit3tP3esKRd7Iz/hWHBXu4o5SthUlnsL68z/oQFscHwQUipKIus8VjyKFabh5kP+UUrjzjlK2FaWCghBKhTGgF9cHAYWipKDudcWjTnEc35TCnTdyVbaFEOeAKkZF5oAN0AxoCPwExBtt3yylHGm0/2zgecAXGCOlvK6X7wE6AZ2klHuN6vsC70opl+brjBSPNHkRSg9rEC9oofSgFgljlLAsnZQGuZ3X+9z4Xs5qX3WvK0o6xW18Uwq36eSqbEsp6xl/F0K8BwyUUp4QQjQErkopfbLaVwjhA3QGqgFtgXnAOKMq4cBCIUQrKaXM3ykoFPeTlVAqSgtZQQil/PQ//ZjZ7auU79JJSZfb+f2vmhJVAdR9rijZZB5PinpsU+ROntxIhBAWwCTgfRN3MdNf5kafjVmEFvtwJPBrXvqiUJhCcRIE+R3sC9KSbWp9pYyUHkqS3H5Y97q6zxUlneI0tilyJ68+2wMBZ+Bno7JKQohgIAX4F3hFSnkNQEp5WY9z6Ke/RmdqLw54A5gvhFgnpUzK+ykoFCWP4i4oi3v/FHliIEUst2Xk7WJ5TxXHPikUitJHZotFbkwDVkspI/Xve4EGgCfQAkgEdggh7NN3kFK+JaUsJ6Vsmy7MM7EEiAFm5rXzCoVCocgVJbcVCoWiCDFZ2RZCVEcLDv5depmU8qqU8rKU0iClDAaeRBPgrU1tV0qZBrwMvCqEcDO55wqFQqHIESW3FQqFoujJi2V7GnBaSnk4hzpSf4m8dEJK+QdwBG1qUqFQFCLKT/WR4pGV2xaDZ6l7XaFQFAtM8tkWQlgBE4C5mcr7AKeBQMAVbQFOGHAoH32Zpe+XnI99FQpFLhgrHrlFKVGUfB5lua3udYVCUZwwdYHkYMAWWJGpvDPaynRnIBptoc1jUsrYvHZESnlaCLEKbXBQKBQFjFI2HjkeWbmt7nWFQlGcMEnZllKuAlZlUT4LzbKRZ6SUnbMomwhMzE97CoVCobiLktsKhUJRPFDp2hUKhUKhKCKKS3IShUJReOQ19J9CoVAUGmpBm+JRIasFnOr+VyhKJ0rZVigUxQKlaCgeFdS9rlA8WihlW6FQFDlK+VA8Kqh7XaF49FDKtkKhUCgUDwGlaCsUjyZK2VYoFEWKUkAUCoVCUZpRyrZCoVAoFAqFQlFIKGVboVAoFIpCRs3gKBSPLkrZVigUCoVCoVAoCgmlbCsUCoVCUQxQSW0UitKJUrYVCoVCoShklCKtUDy6KGVboVAoFAqFQqEoJJSyrVAoFAqFQqFQFBIWRd2BkoKUkoTkFGISkohOSCI2MZnYhCTSDBKDNHoZJFYW5trL0hxrCwusLc2xt7bCwdYaB2srLC3Mi/p0FAqFQqEAIM1gIDYxmZiEJO2VmERCUso945pBSoQQWJlrY5uVhTa+2VhZ4GBjhYONNfbWlpiZKRueQpGZEqlsB4RH8e5vu3CwscLJ1hoHW2tc7W1xc7TLeNlbWyGEyLYNKSVR8YmERsdxOyqWkMhYgiNjuB0Vy+3IWMJj47kTm0BicmrGPnbWljjaWme87K2tsDA3w0wI7WUmEEBKmoHk1FSSUtJITk0jKSWV2KRk4hKTiU1MIjXNgJRam872Nrg72ePuZI+HswPe7q5ULeeKt4crbg52OZ6DQqFQKEoHaWlpvPvbLhJTUnG00Y0zNlY429lQxkEf2xzsKONoi5VFzkN3aloa4THxGeNb8J1YbkfFcDsylpCoWO7EJXAnNoE0gzYQmZkJHGyscLS1xkkf32ysLDE3E3fHNyEwSElyahopqWkk6WNbYkqqZnxKTCI+KQUpJVKCuZnAzdGOsvrY5unqiLdHGaqVc6WKuyu2VpYP47IqFMWCXJVtIcQ5oIpRkTlgAzSTUp4QQowD3gQqAGeA6VLK40b7zwaeB3yBMVLK63r5HqAT0ElKudeovi/wrpRyaXZ9crGzoVl1L2ITkolJTOLWnRguBIQQHhNPeGw84THxxCUm37OPuZkZtlaWxCUlY9AFjLO9DWUd7Sjv4oiHswPlXRyp6emOh7M9ZR3tcXWwLVSBIKUkOiGJ0Og4TShGxnAt5A77L/pzLSSCiJgELC3MqF7OjVpe7tTWX1U9XLEwV9ZxhUKRNcVRbityZvny5YS7+dDfPYWYBE15jU1M4sqtcO7EBWjjm/5KTUu7Z18rSwsszMyITUxCILAwN8tQdMs5O1DexYEq7q60rFEJdyd7yjjY4WpvU6jjSGpaGhGxCYRGxxESFUtQRAwnrgay7tAZ/EMjSUxOwdnOJmNcq+3lQW0vd9yd7JWRSVHqyFXZllLWM/4uhHgPGKgL7PbAt8Ag4B9gJrBNCFFDShkthPABOgPVgLbAPGCcUXPhwEIhRCsp0229ueNga83jTWqZWh3Q/vjxSSnY21hhXkymuYQQONvZ4Gxng095tyzrJKem4hccwcXAUM7eCOa3g2fwC47AwdaKFj4VaelTiVY1KuHh7PCQe69QKIorxVFuK7InOjqab7/9lh07dmC38/s87SulJCkllZQ0Aw42Oc/oPkwszM3xcHbAw9mBepXKZVnnTlwClwJDuRgYyrYTl/hk8z6CI2OpVq4MLX0q0rJGJZpU9VRWcEWJJ09uJEIIC2AS8L5e9CSwXkq5Xd++AHgWTYgvQ1uAaYZmVUn/bMwiYDwwEvg1f6dgGhbm5jjZlTxrsJWFBXUqelCnogdwd/yMiI3nqG8AR30DWLTzCGHR8dSo4Ebz6hVp7lORxt4VlIBSKBQlWm4/Krz/wQc8/fTTODk5kZp79XsQQmBjZYlNofSscHG1t6V1zcq0rlk5o0xKid/tCI5cucmaA//x6oq/EELQpGoFmlevSLPqXtQo76Z8wxUlirz6bA8EnIGf9e+NgKXpG6WUUghxUi9HSnlZCHEQ8NNfozO1Fwe8AcwXQqyTUibl9QQeVco42NGzcU16Nq4JgMFg4PKtcI75BbD639O8uuJPzMzMaF2jEh3qVKVNrco425VEcaxQKB6QgSi5XWw5e/YsR48e5b133y3qrhQLhBD4lHfDp7wbozo0BiAuMZlT/rc4fjWA937bjW9wOBVcHelQx5sOdarSyLu8cq1UFGvyqmxPA1ZLKSP1745AVKY6kYBT+hcp5VvAWzm0uQRtGnMm8FEe+6PQMTMzy/B9G9OxCQAxCUkcvnKTfReu8fHmfaSmGWhfpwq9m9ampU/FYuNOo1AoChUlt4sBFoNn3VdmMBh44cUX+XjhQmWpzQF7Gyva1a5Cu9p3lyHcCItk/wV/fvz7KKf9b1HB1ZHuDX3o3bQWVdxdi7C3CsX9mKxsCyGqA92ANkbFMWgWE2Nc0KwhJiGlTBNCvAysFEIsNnU/Re442lrTvaEP3Rv6AJryve+CP7/uO8X/lmyhsXcFejetTbcG1bG3sSri3ioUioJGye3izS+//EKjRo1o1KhRUXelxFG5rAujOjTOsH7fCItkx+krvLB0K2HRcXTTFe9m1byKjR+74tElL5btacBpKeVho7LTQNP0L0K7oxsD6/PSCSnlH0KII2hTk4pCwtHWmt5Na9G7aS0MBgMnrgWx7cQlPtr4D7W93BnRvhGd61VV03EKRelBye1iSnh4OF9//TU7duwo6q6UCiqXdWFytxZM7taCmIQkdp3144cdRzh74zaPN6nJ8HaNqOlZtqi7qXhEMUnZFkJYAROAuZk2LQL+FEIsA/YBM9DCS23IR19mAYeA5NwqKh4cMzMzbTFl9YrMfaIrx68Gsmr/aV779S9a1ajEkNb16VDHW01tKgoV46l1KSWnT58uwt6ULpTcLr5ER0fz3IwZvDx7Nk5OTrnvoMgTjrbWDGhRlwEt6pKQnMK2E5d4beVfhEXH83iTmjzRpgHVypUp6m4qHiFMtWwPBmyBFcaFUsr9QojpaMI7PV5rbylldF47IqU8LYRYhTY4KB4iQogMxTvNYODAxev8dugsc1b8Sc9GNRnZoRG1PN2LupuKUoqUkq1bt7Jg4UKaNm2a+w4KU1Fyu5iQ/lAZExPDt99+y2/r1jFt6lSGDB5cxD0r/dhaWTKkdX2GtK5PZFwC205c4sWlW0lISWF4u4YMalkPF3vbou6mopRjkrItpVwFrMpm28/cXeVuMlLKzlmUTQQm5rUtRcFhbmZGh7pV6VC3KonJKfx56jJzV+4gPDaeYW0a8ESbBrg52hV1NxUlHIvBszKU7I8WLKBhgwb8/PPPVKlcme+++66ou1cqUHK7eGAxeBYxMTF89913rP3tNyZOmMDef/7BxkZFh3rYuNjbZvh5B0VEs+bAfwz44GeqlivDyPaN6NagunKjVBQKJTJdu+LhYGNlycCW9RjYsh6hUbGsPXiGJxauoIKrI6M6NKZnoxpYWijBpMgbFoNncezYMea88gq1atbMULIVitKGGPACixcv5vsffmCCCUp26voFD7F3jzaeZZx4vm97ZvZpx2n/W/y67xRvrt5J1wbVGd2hcbaJeBSK/KCUbYVJuDs7ML1XG6b3asPZG8Gs2HeKd3/bRbcG1ZnWoxWVy7oUdRcVJYDwduN486mnCAwK4ovPP6du3bpF3SWFolA4XL4dr3brRseOHfl7504cHR2LukuKLBBC0LiqJ42repKcmsr20768t243wZExjOvUlOHtGqoEcYoHRinbijxTv3J53h/di9S0NLYcv8iUb9ZRuawLLw3oQG0vj6LunqIYEhmXwDfXYNtHA3j11Vfp16+fCselKJWcvRHMewduAkf5afFiqlevXtRdUpiIlYUFfZvVpm+z2oRGx7Fk1zG6vLmIoW0a8GT3FjipxHCKfKKUbUW+sTA3Z2DLegxoUZf9F/yZvfxPHGytmDOwMw2qlC/q7imKAWkGAz//c4IfDl/jqWnT2LdvH5aWykqkKH2ERsfx3rEwfP38ePvtt2nVsmVRd0nxALg72fPywE4817sty/85Qa93l9C3WW2eebyNysasyDNK2VY8MEKIjEWVR3xv8vrK7Xg42/PakK54e6hMXo8qBy/f4LVf/6JD/2Hs+vtHNY2uKJWkpqXx499HWX4ygJdnz+bLL79UszalCFsrS6Y+1ooJXZqxYt8per37EyPbN2Jq95bYKPcShYkoZVtRoLT0qcSmOePYdcaPSd/8RvNqXswa2Al3J/ui7priIRF8J4a5q7ZzJy6Rxeu2UqNGjaLukkJRKOw7f425q3bQc/g4dn+yHDs7FamptGJlYcHELs0Z0a4R320/TNe3fmR6r9aMbN8Ic5WPQpELStnOJ1JKohOSiElIIi4pmbjEZOKTUohPTsFgkEjkPfXNhNBeZtq7hZkZ9jZWONhY42irvdtbW5aaJDJdG1Snc72qrD98joEf/szgVvV5rncbrCzULVdakVKycv9pvvrjIG998hW9e/cu6i4pFIVCdHwir6/czq3IGFZs3UmVKlUeuM3iFIkkzWAgIjaBuMRkbXxLSiY+MYXElFSALMc3czOzjHHO0sIcR1srHG2ttTHOxgprS4tSYfG3tbLkf33bM6FLMz7ZvI9ub/3I28O706letaLumqIYozSfHIiIjccvOAK/4HCu3o7gZngUgRFRhMfEA+Bka4OzvQ321pbYWVthb22FrZVFxlNuulyRUlNEDPorzSBJTTMQl5RMbEISMYnJxCYmkZCUgkFqQsza0gI3RzvKOtpTqawzFd2cqeSmvVd0c8basvj/dGZmZjzRpgH9W9Thqz8O0uXNRbw8sBP9m9cpFUJXcZeA8CieX7KFCq6O/Pn6RMooRVtRStl++gpvrd7Js4+3Yewnv5RIWWYwGAiIiMYvOBzfW+FcC71DYHgUgRHRJCSnYCYEbo52ONhYY2dtib21FfY2VlhbmGecr/H4ZpASg+HuGJeUkkqsPq7FJiQTk5hEkq6oAzjZ2eDmYEc5F4e7Y1tZ7b2cs0OJMDq52tsyb0QPboRF8sqKP/l+xxHeGfEYPuXdirprimJI8dfYHgKpaWlcCgrj5LUgTl0L4vT1YOKTknGxt6V6uTL4VHCjoXcF+javjWcZJ9wc7ApdwCYkpxARE09IdBwB4VEEhEfx1+krBIRFcTM8iqSUVMo5O1Cjghs1KpSltpc79auUx7UYZsKysrDghX4dGNW+Me+t38332w8zb0QPmlX3KuquKR4Qg8HAkt3H+WnXMeaP6kmnetXuScGuUJQWwmPieWXFn8QlJbPh5TF4TXqnwNouTKt2dHwi/10P5uS1IE5eC+LKrTBAizPtU96N6uXd6NGwBl5uTni6OmFvY1VofYG7s8Jh0XEER8YSEB7F1ZAI9l3w50ZYJLcjYzEzE3i7u2aMb3UreVDby71YzoxWLuvCipkj2H/Bn2nfb6B5NS9mD+pEGQflUqS4S/G7cx8CKalpHPULYM/Zq+y9cI24xGRqepalSVVPBraqx5vDuuNoa12kfbS1ssTLzRkvN2eaVPW8b7uUkpCoWK7cCufyrTA2H7vA/PV7iIpPxNvDlYZVytPY25Nm1b2Kjb90eVdHvpzcn3M3bzN35XbcnR2YN+IxPJwdirprinwQFBHN9EUbqe3lwY43JmNnbaUUbUWpZMfpK7y5eiezB3ZiQMu6BXqfF7SiHR4Tz74L19h99ionrgZiY2VJoyrlaVLVi5f6d6CmZ9kizZIohMDZzgZnOxuqZ2MFTklNwz/0jja+BYWy66wfFwNDMROCupU8aFSlAk2qedKwcvlis0ixfR1vdsydxJoDZ+gzfymTuzZnYtfmyp9bATxCyvatO9H8fvQCO/7z5dadaJpXr0jX+tV5qmerEvkEKoSgnIsj5VwcaV/HO6PcYDDgHxrJf9dvcfDydb764wARsQnU9CxL8+petK/tTSPvCkU69VmvUjnWzRrDluMXGfjhciZ0acrkbi2UUCpBbDxyjo827uWDMb3oWLcqgFK0FaWOhOQU5q7czo2wKDbOHouHs0OxU7SllBy/GsjmYxfYe94fKwtzOtWtyoj2jVg4rneJzPJraWFOjQplqVGhLL2b1sooT0hO4UJACKev32L5Pyc5cz0YIQRNqlagefWKdGtQnXIuRRf1yMzMjBHtG9GveR0+2vQPPeb9xIdjetG8esUi65OieFCqle2QqFg2HTnPhiPnABjQoi4Lx/Uu1eHozMzMqFauDNXKlWFgy3qApoBfvhXOMb8Avth2gMtBYfRtXpthbRtSrVyZIumnEIJ+zevQtX51Fv6+l8feWcwHY3rR0qdSkfRHYRrR8YnMWv4HySmpbH1tQobbUkEoIMVpgZhC8d/1Wzz34++M7dSEBeN6I4QoMEX7Qe91KSWn/W+x7vBZ/v7Pj3qVPBjQsh4v9utQqhOv2FpZ0rSaF02reTGxi1YWl5jMKf9bHPW9ybgv12JnZcnQtg3o17xOkc1Q29tY8fbwx7gUFMrLP/9BZXcX3hrWHTfHkmfYUxQMpU7ZjoxLYOOR8/x28AypBgMDWtTlx6eH4FnGqai7VmSYmZlR28ud2l7ujOnYhNjEJLYcu8isn7cRERtP94Y+dKlfnRbVKz50K4i9jRVvDuvO5aAwXlnxJzZWFsx9oqvKRFkMOeobwPNLNvPc420Z3q5hxuzIgyogSslWFCcMBgNf/XmQjUfO88PTg6nl6V4g7RbEfX4xMJTV/55m++kr1KxQlsGt6/Pa4C7FxpWiKLC3saJd7Sq0q12F5/u251pIBGt1V47yLo70bFyDLvWrU9XD9aHP6NbydGfj7LFsOHyOfu8vo3+LOjzTq02Ru6kqHj6lQtlOSkll++krrP73P26GRTKwVT2+mzaIim7ORd21YomDjTUj2jdiRPtGRMYlsOuMH6v2n+alZdvwcnOiS71q9GxcM1t/usKgpmdZ1s0aw4FL13lx2Ta8yjjxyuDOVPUoGsu74i5SSr756xAbj5xnxcwRBTYzVFyVbCHET0BfIERKWV8vewt4EgjVq70qpdxWND1UFBYRsfE8/cNGqpUrw5+vTyywBXkPcq8H34nht0NnWHfoHB7O9oxo14iXB3bC9hFWsHOiqkcZXh7YiZcHduLKrTD+PuPLKyv+5EZYJM2qedG1fnW6N/R5aDMAQggGt65P3+a1Wbb7BI+9s5hJXZsx9bFWD+X4jwIlQWaXWGU7JiGJHaevsOX4RS4EhtCtgQ9zBnWifmWVJjwvuNjbMrh1fQa3rg/AtZAIdp/x4+XlfxAVn8jgVvUY0rr+Q/ODa1urClteGc+us35M+XY9DSqX47UhXYvNIs9Hjci4BJ75cRNerk5sfXV8sVA+HgJLga+AnzOVfyqlXPjwu6N4GBzzC2DmT5uZM6gz/ZrXKbB283OvXwuJYMuxi2w7cQmJ5InW9Vn70ijKOio5mBfS/b6f6tGalNQ0jl8NZNcZPz7dsp+qHmUY1q4hPRr5PJQoJ1YWFjz5WEtGd2zMMb/AQj/eI8ZSirnMNvkOE0J0B94F6gOJwBop5XQhxATgJyDeqPpmKeVIo31nA88DvsAYKeV1vXwP0AnoJKXca1TfF3hXSrk0q774BYfT7/1lPNbIh5l92tGwSvkSGes0nYe9sCwn4V/VowxVu5VhUrcWhEbFsuHIOcZ9uRZbKwtGd2jCgJZ1Cl0wCSHo1sCHrvWrs/HIefp/sIw3hnbj8Sa1ct9ZUWCcuhbEsz/+zksDOmT4/2dF6voFebqHi7mijZRyrxDCu6j78aAUJ5ldnJFS8t32w6w7dJZfZg4v0Nm0vNzrkXEJfLf9MH+cuERZJ3vNEvrc0BIfrelhjm85XW9LC3Na16xM65qVeWVwZ87cCGb1v//x7m+7aOlTkUldm9M4i8hfBY2dtVXGonJFwVASZLZJWpMQojPwGzAF2AwIoK5RlatSSp9s9vUBOgPVgLbAPGCcUZVwYKEQopWUUt7fwv1UdHNmzztTTalaJCSnphKTkEx0QiJRcYlExSdqiWsSkkio04mY2Fji4+LION1z8wAwNzenbNmyuHt44O7uTjn93dnZuUAfJkwRfqnrF+Du7MDUx1ox9bFWXAuJYNnuE3y8eR+DWtZlYtfmhT4ICCEY1Koe7et4M2Px7/xx4hLzR/fEwUb5uxU2K/ef5ocdR1j23NACdSd6UEXbsaIrXd8dlu/9V3+/AfadekIIsdSo+Acp5Q8m7P6sEGIccAx4UUp5J98dKWSKm8wuriQmpzB90SZcHWzZ+uqEXJOF5eXB0tR7Pc1gYNmeEyzaeYSnerRiy6sTiq1Pr5SShOQUYhKSiIpPIjI+gej4JC0pW71uxMTGEhsTQ1JS0t2d9PHNxtY2Y0xzd3fH3cODch4e2NgUnDuHqWObEIKGVSrQsEoF3jEY2HfenwW/7yU8Jp6p3VvSr3mdEhnFpbjS/o1+VHDN37q5G7uPw+Lf2wshJhsVlziZbaqJ8n3gOynlb0ZlJ0zc10x/mRt9NmYRMB4YCfxqSoNFmT0xOTWVayF38L2lZZUMjIjm1p1obt2JIS4pGdCmi5xsrXHyaYCriwtOzi44OTpiX84BR3NzvLy8sLezuy9LVkpKCuHh4Vy+dIn9+/cTEhJCSEgI0VFRSClxdnHB09MTLy8vqlSujLe3N97e3lSuXBlr64IVzpmFVtX1C3hreHdmD+rEbwfPMvrz1Tjb2TChSzN6N6lZqBm/3J3s+fX5ESzfe1Lzd+vSnAldmilhWEh8se1f9p73Z8sr401OcGEecB4AUbVRtnXktdOYt+xjQmtvmnTMB+A3KeVbedznWzSlU+rvHwOTCrhfBUmxktnFkZiEJEZ/vooBLeoyuVsLk/czReE2VdH+9+J15q7aTvva3myfO7nIlezIuAR8g8PxC47APySCoDsx3LoTw+3IGFINBgQCO2tLHG2tcanVBFcXFxydyuFYxgGH2Fgc7O0pX7481lZW9xmI4uLjCQ0N5dq1a4SGhnJbH9+Sk5IwMzPD3d0dT09PKlWqhLe3N1W8vfGuUoXy5ctnjC8Wlg/up24x/NV7vstrp+nZGnpOgtjEZC4GhtBh6jTa167C1MdaUdOz7AMfMzPWJsnBgiHpyNaHdqxCZL+UcnQe9ylWMjtXrVUIYQ+0BP4SQpwAKgNngZeklMf0apWEEMFACvAv8IqU8hqAlPKyEOIg4Ke/Ml+wOOANYL4QYp2UMoliwu3IGI5fDeLE1UBOXgvi1p0YrCzMqerhik8FN6qVc6OxdwXKuzpSafxcHBwKz9IrpSQqKoqgoCACAgK4fv06e/75h+s//8yNGzdISkzEu2pVmjVtSpMmTWjSpAllyxackEgfXByBiSNg7PoFXA4KY9HOI3y4YQ9TurdgRLtGhfYgJIRgXKemDGpZj6/+OECPeYv5aGxvWvio+KUFhZSSd3/bhX/oHVY+PyJfDzNTRgxm2+79eFTw5OSGZQBEREYx+vlXuB54iypeFfj18w9wddasHB9+t4Slv23CzNyMT1+fRY8ObQr0nAoKKeXt9M9CiEXAliLsTo48yjLbVMJj4hnx6Uqe6tGKIfp6lbxgrExbDJ6V5xmbwPAoXlu5naSUVH58eshDD8GaZjBwOSiM41cDOXE1kLM3bhOXlJyRaManvBu1K3rQtYEPnq6OeE54E8sCUHSz7U9aGiEhIQQGBnJTH98OHznCdX9/goOD6dK1K/Pfew+AKVOmsG3bNjw8PDh16hQAERERjBo1iuvXr1OlShVWrlyJq6u2kPvDDz9kyZIlmJub8+mnn9KjRw8Ajh8/zuTJk0lMTKRXr158+umnOApBc5vT7H93Gn+f8WPWz9uws7bk+b7taVWj4MPSPvnK22zbvR93N1dObV2jnUs28jL8TiQjZszm2JnzjBvUl8/fnJ3RzomzF5g85y0SE5Po1akdn7z+Uol2rS0IipvMNkUzckWzbDwJPA5cBF4CtgkhagJ7gQZovn0ewAfADiFEIyllHIBuRXorh2MsAWbqr4/ycyIPipSSq7cj2H3Wjz3nruF3OxwPJweaVvOkaTUvJnRphlcZpwILd5ZXhBC4uLjg4uJC3bp179supeTatWscP3GC3Xv28Mmnn3InIoLmzZvTuUsXOnfqVODKd13g02chLCyMb58fR+c3f2BY24ZM6toc50Ja6e1oa80rg7swtG1DZi3bxldT+uOlos48MAaDgZeX/0GaQbLoqcH5nqkYN7gf08cMZ+LLb2SUffTDUrq0acnL0ybw0fdL+eiHpbw/awbnfa+yZut2Tm1bQ9DtUB6fMJ1z29cX1CkVKEKIClLKW/rXQWjKa3HlkZDZ+eXWnWhGfrqKV4d0oUejGg/cXl4U7eTUVL758xDrDp3lzWHd6d4wS0+eAiclNY0jvgHsOefHvxevExWfSM0KZWlazYshrRvw9vDHMqzqRZGcytzcnAoVKlChQgWaN29+33Zjb6Xx48czffp0Jk26a6T86KOP6Nq1Ky+//DIfffQRH330Ee+//z7nz59n9erVnD59mqCgIHr16sX58+cxNzfn2Wef5dtvv6V169b069ePv/76i169eiGqNsKmYl36DIU+78CJEyf4+MVpvLV6J8/1bkuvxjUKbCY3L/LSxtqat2Y+zbkrvpy77HdPO8+++T7fznuNVo0b0H/KTP7ae4BendoVSB9LKsVNZpuibMfo70uklP8BCCHeB2YBbTOFUgkWQjwJRAGtgb9N6YSUMk0I8TKwUgix2OTePyDxSclsP32FHad9OXEtkCrurnStX425Q7tSs0LZ+54Mi3OGPCEE1apVo1q1agx94glAc0s5euwYe3bv5ocffiAhIYGOHTvSr18/WrZoUWACo2zZssz9ZRsvxsezbNkyen+5lMerl+Hpnq0LLYi/T3k3NsweWyhtP2qkpqUxfdEmvMo48cbQbg9kEenQoin+AUH3lG3++x92Ltfc68YO6kv3sVN5f9YMNu/8h2F9emBtZUXVSl5Ur1KJo/+de6BzKQiEECvRfJbLCiEC0PxaOgshGqNNSfoD04qqfyZQamX2g3ItJIKxn6/hw7GP0652lYd67L3nrzF35Xb6Nq/DzjenFLo75M2wSDYfu8Cus1e5dSeaFj4V6VKvOk/1uF8uF+exDbhHJnXo0AF/f/97tm/evJmdO3cCMHbsWLp3787777/P5s2bGT58ONbW1lStWpXq1atz5MgRvL29iYmJoU0bbSZtzJgxbNq0iV69et137KZNm7Ji91GuXr3K559/zkefb+G5NtUY2LLuA2c9zou8tLezpV3zxvjduHlP/VshYUTHxtG6SUMARg/qze879zxSynZJkNm5/tullFFCCH+0Dt+3OZsyibYgx2SklH8IIY6gTU8WGimpaew5d5W1B89w9sZtejWpybjOTfl8Ul8szO+fNi/uQignLC0tadumDW3btOHVV18lNjaW3bt3s+Snn3juuedo1bIlffv2pVOnTtja2j7w8ezs7Hj66aeZMmUKK1euZOC339K5SxdmPPcc7gd/KYAzUhQ0KalpTP5mHU2qefK/vu0L5RghYRFU8NBmVSp4lCU0XFujEnQ7hJaNG2TU8yrvQeDtkELpQ14wjsphRIlRKEubzC4o/ILDGfvFGr6dOpBG3hUe2nFDo2KZs+JPEpJTWT5zOJXLuhTascJi4th05Dy/HTyLhbkZg1rmnDW5JI9vxty+fZsKFbTftEKFCoSEaHIkMDCQVq3uxrP28vIiKCgIS0tLvLy8MsorVqxIUNC9Sm9mqlWrxueff05QUBCff/EFn3+yienTpzPEKqBA1w9lJy+zI+h2CBXLl8v4XrFcOYJuh+awR+mjJMhsUx+tvwFm6k8Pl4EX0EJJHRBC9AFOA4Fo05fvA2HAoXz0Z5a+X3I+9s0WKSX/XrrOr/tOceJqEB3qeDOlewtaVK+YrRWvtAghYxwcHOjXrx/9+vUjLS2Ng4cOsXnzZubNm4eTszOdO3Wic5cuNGvaFIsHCO9naWnJuHHjGDVqFOvWr2fY8OHUrVOHGQ2cCywbm+LBSU5NZeLXv9HSpxIz+zx8K0hWcSwedT/DAqREy+yC5nJQGBO+Wsv30wbRoMrDycUgpWTdobN8snk/rz/Rld5NCyd0aWxiEhuPnGftgTPEJSUzoEVdFk/POWtyaRzfsiKrYDlCiGzLTcHT05MPP/iA0NBQvvrqKzr+8QejRo1igntskSxwzTIgkJKjxQ5TNaqFaGvjdgE2wEngcd2C0hltdbozEI222OYxKWVsXjsjpTwthFgFTMjrvlnhH3KHlftPseX4RRp5V2BUh8Z8Nbl/ju4TBSmEpJRER0cTERFBXFwccfHxJMTHEx8fT2JSEuZmZpibm2NhYYGFhQWWlpY4OTnh7Oyc8V5Yi1LMzc1p364d7dtpSlZwcDB7/vmHpUuWMOO556hWvTqDBw/m8V698r3w08LCguHDhjFs6FB27drFrE8+wcnJiVkvvUSj67se+BzUiu78k5icwrgv19KlfjWe7tm6UI/lUbYMt0LCqOBRllshYbi7aVY2r/IeBNzKWMNCYHAInh7qYayAKJEyuzC4EBDC5G/W8ePTg6lbqVzuOxQAtyNj+N/SrbjY27DttQm42D/4zKExBoOB/Rev88vek5y/GcKAlnX4ckr/XK3mBTm+paWlER4eTmRkJPHx8cQnJBAfF0d8fDypaWlY6GNb+hhnY2uLs5MTTs7OODs54ejoWGCujOXKlePWrVtUqFCBW7du4eHhAWgW64CAgIx6gYGBVKhQgYoVKxIYeDexTEBAQIZl3FTc3d15++23efnll/lpyRJ6frGZvn36MLWK4YGSD2UnL7PDq3w5AoLvytGA27fx9Cj4CCqKB8MkZVuPpfoGWUwXSilnoVk38oyUsnMWZROBiflpD7RV1n+evMz3Ow4DMKp9Y7bPnZxrCLP8CKGUlBT8/f3x9fXF7+pVfH19uXb1KmFhYRgMBgAcnZxwc3PDwcEBO1tb7OztsbO1xcbGBoPBQGpqqvZKSyMpKYmY6GiioqOJjo4mKiqKlGTNYGRuYUFZNzfKurtTvnx5qlerRo0aNfDx8aF8+QdP6lO+fHlGDB/OiOHDATh37hzr16/ns08/pVLlygwePJg+vXtjb593ISKEoFu3bnTr1o0jR47w4UcfER8fzxtz59I04J8H6jeoFd15JT4pmTGfr6Zvs9pMykPIs/zSr2snlm/YwsvTJrB8wxb6desEQN9uHRn3wus8P2k0QbdD8fW/SYuG2SfPUZhOSZLZhcmZ68FM+34DS5594qHNqq058B+fbfmXt4d357ECWIBpzJ24BJbtPs6aA2doVt2LSV2b06pGpVzlVH7Gt+joaHx9ffH188NPH+Nu3LhBdFQUQgjMzM0pU6YMrq6u2NvZYWtnh70+vllYWJCWlnbP+BYfH58xrkVFRREbE4OUEikldvb2Wo6JsmWpWLEiPjVqUMPHBx8fH5OMPX379mX58uW8/PLLLF++nH79+mWUjx07lueff56goCB8fX1p2bIl5ubmODg4cOjQIVq1asUvv/zCM888k+drBGBvb89zzz7LtKlTWbVqFYO/+4627drxypw5OP/zU57by05eZkcFj7I42ttz+NQZWjaqz4oN25g+Nv+5CBSFQ4lN156ZmIQkVuw7yfJ/TtK2VhU+mdAXHxOScZgqhBISEjhz5gwnT57k1KlTnD13DkNaGt5Vq1K9WjV8fHwYOnQo1apWxcPDA/Ms/L8fhPQY3GFhYdy6dQs/Pz82btqEn68vwcHBWFlbU7dOHRo0bEjDBg2oX79+Ruij/FCvXj3q1avH3LlzOX/+POvWrePjhQtp07YtU598MsuIKKbQsmVL1qxezfnz53l59my8q1ThnXfewWlP/t2r1Ipu04lLTGbEpysZ1rYhYzs1KfD2x/zvVfYeOU7YnUiqdujNGzOmMmvqeEbNfIWlv22iUoXyrPziAwDq1ajOE7270+jxoZhbmPP5my8X+P9G8ehy4mogzy3+neUzhhVoYqbsiE9K5sVl20hNS+OP1ycWaESmy0FhfLf9EEeuBDC+c1O2vzHJpORepo5vt2/f5tSpU5w6dYoTJ09y7do1nJyc8Kleneo+PtSqXZs+ffpQpUoVnJycCtwIERcXR1h4OGGhody4eRNfX1927tiBr58fsTExuJUtS4MGDXj6qad45dVXOXToEGFhYXh7e/PGG2/w8ssvM3LkSJYsWUKlSpVYtWoVoI1jQ4cOpWHDhlhYWPDFF19kyJivvvqKKVOmkJCQQM+ePbNcHJkXrKysGDduHKNHj2btb7/xeO/ePPvMM4wdO5a0DVlnDM+LvASo0aUf0bFxJKek8PvOf9i65Cvq+lTjq7fnZBiKenZsW+rGrdKAKIkJwJpW85J752kLSy8EhLBsz3H2nvdnZPtGjO3UxOQpu5wEUVpaGidPnmTXrl3s2r2b2NhYGjdqROPGjWncuDH169cv0MxXD0pCQgLnz5/nzJkz/HfmDGfOnCE6KopmzZrRqXNnOnbokOdpssykpaWxY8cOFi1aRGxcHJMmTWLQwIFYWZmW+CQzUkrWrF3Lxx9/zIznnmP06NHZCqWsMHYj8Q8IYuC05zMs2/V6Dmbn8h8ypuK6j53Kub/uhpX7ef1mjp85n2HZvhUSxmNjp3H2r3UArNryJ3sPH+ebea8BpcONJD5JU7RHtW/MiPbZJ5/JDwXp0mNVs/lxKeX98b+AJlU95b53n8p329O+38Cv+041kFIW59B9pQ5jmf0wOO1/i+mLNvLr8yOo4p5/o4OpXAoKZdp3G5jYtRnjOjUtEGU0NS2Nv05d4addx0hNM/B0z9b0aORjsutFTuNbdHQ0+/bt4+9duzh44ABl3Nwy8jM0adwYb2/vQk1UlldCQkI4c+YMnl5eREREEBkZmREu0NPTEw93d8wfYJ1RZm4FBXHjxg2aNWuW7zaio6N5Z948zpw5wycff0y9evUywkSWNhdIxzFvZiuzhRCbL3/5Yt/8ZpBcuvs4zy3+fbqU8tsH6mQRUyIt22kGA0t2H+PXfadxtbdlfOemvDuyR5bRRLIjK0EUEhLCtm3b2Lp1K9dv3KBRo0Z069aNZUuXUq7cw/H1yy+2trY0a9bsHuGQkpLC8RMn2LN7N8uXLycsNJRGjRrRqVMnOnbsSMWKeUsIY25uTq9evejVqxfXr19n8eLFfPzxx0yaOJEJEybk+eFDCMHwYcPo1bMnb7/zDst/+YUvPv+cWrVqPXBab7Wi+16SUlIZ8/lqhrVtWOCKtkJRnDh/8zZP/7CRX2YOfyiK9vpDZ/l0y36+nTqQ+pUffPHllVthLP/nJNtPX6Fzvaq8O7IHdSp6mLx/VmOblJL//vuPLVu2sEMPkde+fXv69+vH+/PnF3gG4oLGw8ODbt263ZNBMikpieBbt/D39+fo0aOYmZlRvnx5KlSoQDkPjwfKNhkbG8uChQuJiYlhzuzZdOjQIc9tODk5sXDBAk6dOsWMmTNp2bIlb8ydq0X+0jPuKh4dSqSyfeVWOHdiE1j+3DDKuzrmeX9jYeTn58em339n27ZtCCHo3bs38+fPx8fHp8T761paWtK6VSta66GPUlNTOXnyJP/s3cv06dMJDQ2lWbNmPPbYY/Ts2TNPynIV3f3jpZde4vvvv6djp06MGzeOyZMm5TmMoLOzM598/DEnT55k0uTJjBk9mqee0vylH1TpNpXSvKI7JTWN8V+tpU+z2ozpWPCuI1A6LP+Kks/loDCmfLuepc8OLfSsjGkGA6+v3M710Ei2vDrhgd1GfIPDeWHpFizNzRnbqQmvDemS51jcxmNbWloa+/bt4/fNm9m/fz+1a9emb9++PPPMM7i4uDxQX4uK1JSUjM/mZmZ4eXllhPCLiori33//5ddff+XgwYPY2NjQoX17+vXrR+PGjfM0nletWpVVK1dy/vx5PvzoI96bP585s2fTqVOnPOsFjRs3Zsf27SxatIjujz3GV19+SZMmmhx+WOObougpkcp2ba+yvNAv70+aoAmj+Ph4Nm7cyLKff8bayoohQ4bw64oVGSuYCwIpJWFhYVy/fp2bAQFERUZqCx+jooiOiSEuNhYpJUKIjD+vubk59g4OODo44ODoiJOjI45OTpR1c8PN6JVftw0LCwtatGhBixYteOnFF0lOTubY8eNs3bqV9+bPp3GjRgwfPpxOnTqZHPrPycmJWbNm8fTTT/P9Dz/QqXNnJk2cyJQpU/IcPrBJkyb8vXMnc994g0GDBvHNN9/gqQ8eeRVKakW3RmpaGlO+XUf72lWY/BAWQyoURcW1kAgmfLWWH58eTE3Pwv3vxiYmMenrdTSt5smKmcMf2DCz5sB/fLntAF9NGfDAMcCv37jBz8uW8fvmzbRu1YoBAwbwwfvv53vcyIrU1FQCAwPx9/fnVnBwxrgWHRVFdHQ0SUlJABnjmxACSysrHB0ccHR0xEF/d3Fxwa1s2YwxzsXFJd/uK87OzvTu3ZvevXsDEB4ezj979/LJp5/ie+UKffv2ZdiwYdSoYfqi1bp167Js6VIuXbrERwsW8P4HHzDvnXdo2bJlnvpmZmbGtGnT6Nq1K9OeeorHe/XihRdewGLwLKVwPyKUSGU7j7kXMjhXvQdLnn+eAwcPMqB/fxYtWkTlSpUeqCdJSUlcvnyZc+fPc+7cOS5euEBgYCAGgwG3smWpUrkylSpVwtXVFQ93d3yqV8fZ2Rl7e/t74n1KKUlNTSUuLo6YmBhiY2OJiYkh1M+Po0ePEh4eTkR4OGHh4SQlJmJpZYW3tzfV9ayRNWvVonGjRnmyTltZWWUkvZn3zjscOnyYNatXM3vOHLp27cqkiROpXbu2SW05ODjw4gsv8NS0aSxcuJAuXbsy/7338jz9ZmNjw4KPPmLXrl0MGjSIOa+8wqCBA/MslNSKbi082PRFm6hfuTzPPt62qLujUBQaAeFRjPl8Nd88OaDQw/sFhkcx5os1TO/ZmqFtG+S+Qw7EJSYza/k2klJS2fbaxHzHaU5JTWObRU2W9e9PckoK48eNY+8//zxwsrKIiAjO62Pb+fPnuXT5MnciIrCwsMDTywtvb28qVKiAs5MTVapUyQjtZ6O7paRHGwFISk4mNiaGmNhYYqKjiYyK4vr164SFhxOuvyLv3CEtLQ1nFxeqVa1KterVqV69Og3q18/zbLObmxuDBw1i8KBBxMbGsnnLFmbPnk3EnTuMHDGCESNG4OzsbFJbtWrVYvGPP3Lx4kVmz55NuXLleOeddyhfPm9uQzVq1OCvP//kgw8+4PHevfnh++/xzqdByRRSUtMKNOGOIv+U+AWSuSGlZMd/vnx9PAg7W1umTp1K165d8xX1QErJjZs3OXToEPv37ePEiRMIMzNq1apF3bp1qVe3LnXq1qWil1eBR1X4/sSte76nJicRHhxIWMB1wgKvE3ztCoFXziPMzKlcuz5V6jXhlWE9qFq1ap6tLikpKfz555/89NNPxCckMGHCBAb074+dnemp169du8bsOXOwtrbmvffey9dDTUREBDOffx57Ozs+/vjjjLCDmReZGK/oLufmxhszptK/e2dGzXyFm7eCM1Z0l3HRBKvxim4XR8eMFd3Hz5y/Z0X3Z2+8nHHtSpqbRFJKKlO/W08tT3deHdKlUI8Vl5jM/PW7eWtY9wIR7DkttlELJEsmhblA8mJgKJO/+Y1PJ/alpc+DGU9y47T/LZ7+YSMfT+hDm5qVH6itCwEhPPX9BiZ3b8HYjk3yZR2Pjk9k2Z4TrDwTRPfu3Zk0cSI+Pj756k9KSgpnz55l/7//sn//fq5du4arq6sWmapuXerWq0etmjVxdXUtcBfLzONbfEw04YHXCQ28TthNfwJ9LxB60x+nsh5412tClbqNeHNkz3xF3AoNDWXFr7+yetUqGjVqxMRJk2jZooXJ5ySlZOvWrbz77rsMHzGCZ6ZPz9esweEjR3h+5kxmzJzJyBEjMsoLSulOTE7h8feWMm/kY7Sv7V0gbWaHWiCZO6VW2U5KSWXNgTP8uPMIjbwr8Pyni6lZs2aWdXNaSBETHU1AYCCBgYHExMTgYG+PR7lylC9fnrJly2apVBv7lZlKZmGTX5Li47h56Sz+Z09y/fwpwoJu4FGpKlUbNqdaw2Z4+dTF3MKCaU1Nm6q8fuMGy5YuZevWrTRu3JjJkyfTIg+CaefOnbz51ls81r07L774Io6OefOxl1KybNkyFv34Iz8uWkSdOnUytpk/xEUmJUnZjkvU4mj3blqLJx/L23RnXomMS2DEpysZ37kZIx9w4eW5m7d5f/0eNh09r5TtUkZhKdunrgUxfdEmfnpmCLW9Cs4NMCsOXLrOyz//wc8zhj2QP7iUkmV7TrBk1zG+mzYoT4sf0wkIj+Lbvw6x66wfYzo2YdLHy/IsW1NSUjhy9Cg7d+xg3/79xMfFUa9+fdq1bUv79u2pXr16gSnVBTW+RYbc4vr50/ifO8n186dJSUqkUu0GVGvYnGoNm1OmvOa/bcr4JqVk3759LF22jPPnzjF48GDGjRtnsrU6MTGRL774gg0bNjBnzhz69++f5+sVHR3NczNmZBiU0mciCkrhDoqIZuLXvzG0TX2mdC+8sUAp27lT6pTt1LQ0ftl7iu93HKZ/8zpM6d4Sdyf7HMMgGSvbBoOBwIAAbt68SUhICA4ODnh5eeHp5YWzk5NJi+ZMUbYLSvjkhpSS0Jv+XP3vGFf/O0bglfM4ublTo2lrajRtg1eNupjpDww5CSgpJfv37+fHxYu5evUqY8eMYcSIETg55f4HSk1NZcmSJSz68UemTZ3K+PHj8+zPffbsWaZNm8b06dMZPXo0oP1u8trpPLWTX0qKsh0Vn8jIT1cytlPTB1Z+cyMmIYkhC37hud5t6de8Tu47ZIOUkm//OsTag2f5duoAWsz+WinbpYzCULYPXb7Bi8u28svM4VT1KNzFkIev3OSlZVtZ8+Io8qs0AITHxDPjp99xd7Jn/qie2FnnzSJ6OzKGjzbt5cTVIJ59vA0DWtTRMjWaGE87JCSEjRs3smPnTm5cv07Lli3p1q0bnTp1eqC8DJl5WONbSlISNy+e0ce3o0SGBFOxVj1qNG1DjaatcfG4O6blNL7Fxsaydu1alv38M56enkyZPJnOnTub5D8eHBzMvHnz8Lt6lXfnzaN58yxFV7ZIKfnpp59YumwZi3/8McMoWJAW7hk/bcbO2pIFY3sXiluJUrZzp9Qo21JKfj96gYW/76V7Qx9m9ml3X7zt7ASShaUlUVFRzJs3j/Xr12Nubs748eN59ZVX+O/MGZ555hkSExOxsLDgyy+/pGXLlvj7+9OgQYOMP0arVq345ptvAE3Z9vX15eLFi/hdvYq/vz8RERFERUZyMTCUtBQtK2Tmp+DMv4WFlRXWtvbYOjhh6+CIjYMjtg5O2Du74uJRgTLlPXEt74WNXd7SqUcEB3LlxEF8Txwi4Mp5PCpVo2n3vtRp0xkr63t9vrMSUKGhofyyYgWrV62iY6dOvDJnjkmCOjo6mo8//pi/d+3ijblz6dGjR576HRsby4yZM7G0sODTTz/NcGtRC0w0wmPiGf7Jrzz3eFsGtMxf0iFTiU9KZtjHvzKxa3OGtK6f73ZComJ5+oeN1PQsy1vDumNtaaHcSEohBa1s7zl7lTdW72Dl8yPwcjPN7za/nPa/xTOLNrH6hZEPdKx/zl3llRV/8eqQLvRtZtpamHSi4hP5Yuu/bD99hRf7d2BAi7r3jR/ZjW/p+RGWLltGcHAwQ4cOpWePHvmyXEspiYiIwM/PD7+rV7nq50dgYCB3IiOJiorC91YYUs+enNP4JoTA0sYWG3sHbXyzd8TWwRFbRyccXMviWs6TMuW9cHYvh4Wl6Q8kaampBFw+x5UTh/A9cZCYO+HUbNaGJt37UqlWg/v6lNX4dvLkSRYvXszx48eZMXMmw4cNM0npPnfuHK+99hourq68/fbbVKmcNzej//77j6eeeooZM2dmZHKGghnfpJR8+ccBdpz2ZemzQ3FzNN0l1BSUsp07JV7ZllKy59xV5q/fQ/1K5Zg9sFO24QAzC6OkpCTWrl2Lu4cHgYGBfPbZZxw5fBgbW1v69OnDV199xYwZM5g5cya9evXijz/+YOHChfz999/4+/szcOBATp06dd9xUlNS+PiTT4iPi8PHx4cq3t7svG3ATleaLaxyXwQjpSQ1OZmk+FgS4mJIjI0hITaahNgYYiMjiAy5xZ3bQdy5HURSfByW1tZ412+KT5PWVG/UHBt706YUpZTc8rvEyb+3cO7gHipUq0nTbn2p1bJ9lkLOWDgZDAZWrVrFZ59/zoQJE3hyyhQsTYhteuPmTd58800SEhL48osvcHc3PY1yulvJj4sXs+iHHzLcSh51hTs0Oo5hH69gzqDO9GyctbtUQZGUksqoz1YxqFW9BwoluPM/X95YtYN5Ix+jW4O7fqZK2S59FKSyvf30Fd5fv5vVL4zCwzlvhoa8cjEwhElfr2PF8/m3nqempfHO2l2cuR7MN1MH5MkyHp+UzOK/j/Hr/lNMfawlYzs2yTafRObxLSAggMWLF7N12zbat2/PhPHjadiwocnHllJyMyCAY8eOZbyiIiNxK1sWn+rVtcWL1apxOMYaOycXbB2csLF3yJgpzQmDwUByYjxJ8XEkpI9tMdEkxEYTcyecO8GB3LkdRGRIMGmpKTi7l8OncSt8mraiYo16Jh0DtLVNF4/s5+TfW7h17Qr12nSmSfd+eFavdV/dzIp3REQE782fz8mTJ3nvvfdo07q1ScfcuXMnb775JiNHjWL600/nKbpKdHQ0zzz7LM5OTixYsKDA3Ur+OnWZeWt38cNTgwp0IbFStnOnhEYj0QTB9tNX+GTzfqq4u/Dd1IG5puRNXb8Ai8GzCA8P58cff+S3devo368fQ4cN448//qB9+/Y46H5vHTt2ZNOmTQghiI6OBrQ4np6enib178UXXgC06bQzQLk8rqURQmBpbY2ltTUOrrmnGk6Mj+Xq6WP4njzMjp+/Rkqo0bQ19dp1pXLthtlm1xJC4OlTG0+f2vSe+iI3L57hxM4tbP3hY+q160rbASNxLXf3nI2nB6c1rcCoUaMYMGAAn332GZ07d+a1117j8ccfz9FiUrlSJZb89BNbtmyhT9++vPXmmxnhmky5LhMmTKB58+ZMmTKFZ555hlGjRmUMNI+i0h2TkMTIT1cy94ludG1QvVCPlZqWxqRvfqNn4xr5VrSllHy29V92n/Vj05xxuDvZF3AvFaWVg5dvMH/dbtbNGlPg1rnMXL0dwaSv17Hk2SfyrWjfiUtg0le/0bZ2FdbNGm2y4hWbmMSinUdZc+A/hrdtyN9vTjHZ5eTUqVN8/sUX+Pv7M3XqVGbPnm1ylKrr16+ze/du/t61i4sXL1LRy4sWLVrQuVMnXnzhBdzc7h2Lvj9xi/wsSTUzM8PGzgEbOwecy+au9IXfCsDv1GH2rVtO4OXzuJbzpHarjtRt2wW3CtknZ7OwsqZ++27Ub9+N5MQEzh/cw58/fU5MRCht+o+kSdc+WOqRUzKPbWXKlOHjhQu5fPkyr776KrZ2dsx75x28vb1z7Gv37t1p3749b7/zDv0HDODbb7+lkokJ5JycnPh52TIWL15Mj549M9xKCipEYM/GNani7spT329gRPuGTHusVYnPJ1JSKJGWbZ/ybtLd2YFanmV5sX8HkwXh5aAwvr0Uz/Hjx5k8eTKjRo3C1tYWC0tLLly4wJAhQ9i3bx+2trb06NGDZs2a8dRTT9GnTx+klBgMBvbu3UuVKlXw9/enUaNG1KhRAycnJ9555x3at28P3PXZflh+a1mRGBfD5WMHOHdgNzcvnsG1vBc1m7elZrM2lPOukavQT01O4tSePzn4+2psHRxpO2AktVt2yNKikG4RCAwM5J133uHGzZt89OGHNGiQe1is0NBQnn3uOdzKlOHDDz/M0yKf2NhYnnr6aSpVqsS78+ZlLFYtSIU7MTmF/24EF3qUgwfh9ZXbqVauDJO65s1XMK9IKXlx2VYquDoya0DOoRRzamPOL38Sn5zCJ+P7ZOk/qCzbpY+CsGwnp6bS5c1FrH1xNJ5l8u83bQrhMfEM/PDnB4p7HRIVy/BPfuXF/h1NdhuJS0zmh51HWHPgP8Z2bMLErs2xtcp9ttBgMLDt5GW+OxGEk5MTM2bMoF3btrkqUgkJCezYsYM//viD4ydO4OXpSafOnenerRv16tXLdv+iHNsAwoNucu7ALi4e2UdkSDBV6jSkZvN2+DRthaNr7jHWo8Juc2DTKv7b+xe1mren7YCReFSummXd9PFt165dvPX227Rr145X5swxab3Svn37mDVrFjNmzGDkyJF5UmxPnz7NtGnTmD9/Pl27dgUK1o/7rTU78bsdwbdTB1LW8cEMHsqynTslUtl2c7STe96ZarKSHRgexfz1e7h6O4IX+rWn55vf3aNspi+Q/Omnn/j2229xcHCgTp062NrakpaWRseOHRk8eDBr167lxx9/5K+//iIpKYnY2Fjc3Nw4fvw4TzzxBKdPn8bJyYmvD9/AYDAQGXKL4GtXCA3wJzYijNjICOKi7hAbGUFyYkKu/dYs27ZY29phbWePla0d1ja22Dg44ly2nPZyL49zWQ/snFyy/SNLKQkPusGlo//ie/IQwf6+uHtVoVrjlvg0boln9do5TssF+V3iwMZf8T93kg5DxtG85wDMLbIeAKY1rcCpU6eYPWcOtWvVYu7cuZQtm7Pwk1Ly66+/8uWXX/L5F1/QKg8JAwwGA++++y5nz51jyU8/3Rce8EEJjY5j/Jdr6FS3Ki8N6Ih5PhMuFBaB4VGM+mwVu95+stD79tUfBzh3M4RvnhyQL2tImsHAjMWbcba34b2RPbJtQynbpY+CULZ/2HGYiNgE5gzqXCB9yo7E5BQGL/iFmX3a5dsl62ZYJKM+W8X8UT3pUDdrJS4zZ64HM/X79Vp0EROVbND81+et20WjKuV5/rMlVKtWLcf6MTEx/PnXX2zcuBE/X1+6P/YYffv2pVnTpia5AX5/4hYpSUmE3rxG8HVfIoICiIuKIDYyQh/jIjGkpebYRrrPtpWNLda29ljb2WFta4eVrT32Ti44u6ePb9oYl3ktkTFpqSlcP3+ay8cO4HfqMAmxMVSu05DqjVtSvXFLXNyzjy6SlprCuX93sX/DCqxsbHls3HSq1M1+YfmURh4sX76cr7/5hmefeYaxY8fmariKjo5m9uzZREVH8+0335gc2xvg9u3bjB4zhlEjRzJp0qSM8oIa3/44eYl5a3exYFxv2tWuku92lLKdOyVS2TZVcEfGJfDplv3sOXuV2YM683iTmggh7vNtyyr03+uvv46Xlxevv/46YWFhGQlo3NzciIiIuKeulJLOnTszY8YMLB1d+d9LL5OWmoJrOU/KefvgUakqjmXK4uBaBnvnMji4lMHKxjZHhSXdZzs5MZ7khASSEuJISognKSGOhJhoosNDiAy9TXTYbaJCbxMTGU6Z8hXxadIKnyat8PKpk60CLaUkLMAf31NH8Dt1hEDfC9Rs1pbmPQZQsVb9bPsVGxnBP2uWcO7AbtoOGEmr3k9kTMFlZmqT8vy2bh0LFyxg/IQJTH3yyVwjkFy/fp3xEyYwZvRoJk+enCeF7tdff2XxTz+xetWqDOW+oARSaloa76/fw1G/AH58ekih+4nmhWd/3MTjTWrRJ48LrvLKpiPnWbL7GGteHIVVHiPJgJZcYep366nl5c7sgTmnPFbKdunjQZXt2MQkur+9mJ1vTsbBJn+JX0zBYDAw6Zt1dKjjne+Mq37B4Yz7cg2fTexHCx/T3AdOXA3kucW/8/Nzw3J1h0znv+u3eGv1TlzsbXn9ia4Z4QizWyh57tw5vvzyS06fPk3v3r0ZOHAg9etnL+/TiY+P59ixY/z777+s332QO7eDsLC0wr2SN+W9a+DmWemesc3e2SVbY0w6hrQ0kpMSSElM1Ma2+HiSE+NJjI8jLuoOUaHBRIWFEBV6m6iwYFKSkqhUuz4+TVrj06RVjgp0anISNy6ewe/UEXxPHiYpIY4mXfvQtHs/HMtkb/i5ceE/tv/8NSlJSfQYN53qjbM3+oyobsf7H3zAoUOHeP/9903y516/YQMLFyzgxx9/pG5d0xewJyYmMnnKFGrVrMncuXMzfq+CGt8Cw6N48rv1dKlfjRf7dchXBk+lbOeOycq2EKI78C5QH0gE1kgpp+vbxgFvAhWAM8B0KeVxo31nA88DvsAYKeV1vXwP0AnoJKXca1TfF3hXSrk0q77kJrjTDAZ+2HGEn/85wdM9WzO6Q+P7rH7GAild2Q4JCcHDw4MbN27Qu3dv9u3bR8eOHfnqq6/o1KkTu3btYs6cORw5cgQ/Pz8tw2NoKH5+frz11lt8t2I1Fb192B8Yn60SWlho1uub+J48jO/JQwT5XqSMZ0VqNW9PrRbtca/kna1QTUtN4eKR/Rz7ayOhN6/RqHMvmvcceI+vtjHxMdHsX7+ck7u20rb/CNoOGJmtcB1b2zkjAskXn3+e6wKdhIQEZsyciYW5OZ9++mmeMmKmL0xZsWJFhl9dQbqU7Drjx+srt/PpxL60qlH0biWXgkKZ+dNm/nhtYqH63R2+cpM5v/zBxtnjcLYz/fdIJzUtjQlf/UbLGhWZ0btdrvWVsl0wlCSZnRsfbfwHJztrnuph2iK1/PLGqh0AvDPisXzt7xccztgv1vD9tEE0qGJavObDV27y4tKtrHh+OFXcc4/qdDsyhrmrdnA7Mpa3hnenSdV75bTx2CalZMeOHXz51VdYWljw3HPP0blz5xzlRUpKCvv372f7jh0cOnSIlJQUWrRoQUKFulSu2wjXcp75TqmeX9JSU7h58SxXTh7C9+RhYu+EU6VuI2q1aE+Npm2wc8reWhx7J5yTu7ZxYudmbOwdaN5jIA079cx2jA7yu8SOn78hJiKUPlNfpGqDZtm23cUhhlmzZuHt7c27776bqxvkhQsXmDx5Mi++9BJDBg827eTRIsq8NGsWSXps73TDVUEalN5Zu4uLgaH88NSg+yK55YZStnPHJGVbCNEZ2AhMATaj5UuvK6U8IYRoD/wFDAL+AWYCLwI1pJTRQggf4EtgMNAWGC+lHKe3uwdtILgKtJJ6Zx5EcF8MDGHG4s20r+PNrAEds52Ky0rZ7ty5MxF6KtqFCxfStWtX9u/fzwsvvEBqaioWurBydHTk1KlTrFq1ChsbGywtLZn0vzl07vE4ALv8wnK8nmmpKUSHh5KcmEBKUmLGKy01FUtrG6z06TVLG1us9XdLaxu+WH4q2zafH9/0nu/p1utLR//l0tH9hAfdpHKdhtRu1ZHarTpkGy4wMS6G03v+4tCWNZQp70Xn4ZOoVDtr3+uk+Dh2rfyR8wd28fiU56nTOnsh3sHmDs8+9xxdOndm9uzZOWbcklLyww8/sGr1an7++WeTF5cAHD9+nOnTp/PDDz/QqJE2HViQCvfNsEgmfv0bw9s2LPSEMbkx5vPVPN2z9QNN/+VGuvKw5sVRVMxH2DODwcC07zdQp6IHL/TrYNI+Stl+cEqSzM6NsJg4+r//M3veeTJfsyqmsvjvo+y/4M/i6UPypUwGhEcx/JNf+XbqQBpWMc3P+9+L15nzyx+s/N/IXP9fUkp+3Xear/88yNyhXenVuGa28tZs4IusWbuWL7/8kmZNm/LMM89Qq9b9ETjSiYmJYfuOHWzevJlz587Rrl07evXsSZs2bXB2ds6Tj3ZifCyxdyK0cS05kZSkJFKSEgGyHNusbWz58tezOT4AZB7fUlOSuX7+NJeO7ufK8QMA1GjahrptulC5bqNsf7/Qm9c4+ucGzuzfSZMuvWk7cBQOLlm7owb7+/L7Nx9gbWtPv6dfzkiYkxkpJQ4XdvHll1/y3nvv0b179xyvT1RUFFOefJIaNWow7513TM42LaVk4ccfc+TwYZYtW4adnV2BBwTYdPQ8Czbu5funBlEvD9FKlLKdO6Yq2weBf6SUc7LYtgwwk1KO1b8L4DowV0q5TAhRE01wDwHaoAnuMXrdPcBBYDzwkpTyV708z4LbYDDw9Z+HWH/4HJ9P6pujsAsIj2Leb7sYMvN1evfunXMGyZgYLl++zI0bN3Bzc8O7ShU8vbzucYm4EBZ/zz67/MIy/KRvXDxD4JULRNwKIDIkiJSkJMzMzXFy89CEjrWN/rLG3MKSlOQkUhITtJXTl25hSE1EpiYjU5MBLX4pEoSFFeZ2rhkvC0cPbMrVxMIh6zB6z41uyI0Lp7lw6B8uHN6Lo6sb9dt3p167bjiXvT+DmZSSa/8dZ8+an4iLiqTD4DE06Ngjy6gmd24HsW3RJ0SFhdD3qZeoXDtr63VaaiqJ//7Ghg0b+OLzz2nSJOdoFgcOHuR/zz/PN998Q7Nm2VsXMuPn58eYMWNYsGDB3UWrBbxocvqiTdT0LFvo/qPZsf+CP1/+cYDVL4wqtGPEJibR572lfDG5f74Xic1b+zdJqWm8O9L0mOpK2X5wSoLMNpXnl2ymfW1vnmiT+4Lr/LL/gj/zftvFptljsTHRV9qY2MQk+r3/M++P7klrE9O4n795mye/W8+6l8ZkG642ndCoWJ77aTMeTva8O7IHTjnMMO0648e7uy7QunVrXnrxRTw8ss5QaTAY2LNnD0uXLcPP15eePXvSr18/GjdufI/im5WinZqcRJDfJW5cPMNt/ytEBAcRHXYbKSXWdvY4uJTRxjUr64wxDshwHTlzIRBDahIyNQmZkoQ03JsIzszK4e7YZu+KpUtFrD1qYmaVtcV16qDqXDlxkHMHdnHz0lm86zWhQYfu1GjaNksLdnJSIsf/2siB31fh5VOHjkMnZBkOEODikX1sW/Qp1Rs1p/u46dg7uWRZLyoshKOL3sXd3Z0PPvggxwWUBoOB999/n5MnT7J06VIcHEx3TVy+fHlGngsXF5cCV7gvB4Ux8eu1fDm5P02rZf2AkRmlbOdOrsq2EMIeiAbmAf2BysBZNEF7TAhxClgqpfzMaJ9NgJ+U8gX9+1vA04AfMFpKeU0v3wPsBIKB14FaUsqkvAruG2GRPLNoE02qevLakC5YW2Zt/bgTl8Anm/ex77w/rwzuTO+3f8jyaTohIYGNmzaxfPlyzMzMGDduHP379cvWpeH7E7dITU7i6pnjXDl2gOsX/iM2MoKynpWoVLsBXjXq4uZVGVePCljZ5Dw989myEzluT8eQmkRa/B3tFXeHlOhbJN2+RGpcBJYuXtiUr41NhbpYulbO8hxTom8Tf/0obkkXkRJa9h5M4y69sba9P5xW+K0A9q/7mcvHD9LxifHZLpAMvHKBzd99hJObOwOefTVboXT7uh97v3mbnj178uILL+RoRfL392f0mDHMmT2bfv36mXRtAG7dusXQYcOY9847dOnSBShYhTvNYODpHzZSyc2Z15/o+lDDJyUmp9Dr3SUPFJIsN6SUjP9yLb2b1mJEPjNR/nbwDGsPnmHl8yNMshSmpqXx6ZZ/eWft30rZfgBKgsw2lWN+Aby1eiebXxlfaP+xoIhonli4gt9eyl+UE4PBwNgv19CvWR2T/yv+IXcY9dkqljz7BLU8c84zsPX4Rd5bt5s3h3XLccHmaX/Nh9vN0Y65Q7tSfdr8LOvdDAhg+c8/s2nTJlq2bMn48eNp1qxZjpFHYiLCuHTsX22Nz5ULgMSzem0q1W5Ahao1cS3viXPZcrnGvzZlfJNSYkiKzRjfUuMjSAm/TlLIFaQ0YO3ug3X52th61sfc9v7ZAGlII+n2JeKvH8UhwQ+vGnVo3XcY1Ro2zzLRzuVjB/hn7RIEgp6TnsvSWGRIS+P4jt/ZvWoxHQaPoXW/4VleLyklx7dv4symZXz2+ee0btUqx3NdvWYN33zzDb+uWIGXl2mKLcDmzZtZ+PHHbNywAVdX1wJXuK+HavfnJxNMc5lUynbumKJsVwRuAkHA48BF4CU0f76awHE0IbvEaJ9lQIqUckoube9BE9zvA6eA5VLKj0wV3KlpaXy/4wir9p/mw7GP07ZW1tPpUkrWHz7Hwt/3Mr1nG0Z1aJThw23sThIXF8d333/PqlWr6Ne3L+PGjcsxpubFixd5e+l6Lh3ZR0xEGFUbNqNW83ZUqds4x4UYmTFVwTYFKQ2k3Akk6fZFEoLOkBIZhE35OthVaY5NhboI8/uV5NTYMGIv7yHu2iGat29D677DqFyn4X3CJC7qDntWLeb8oX+yVbqllJze/Qfbl31Nj/HP0KhL1jG301JT2frDQmwjA1m0aFGOGSjv3LnDmLFjefzxx3n2mWdMvhYhISEMGjSIhR9/TJvWrQtcIKUZDLy64i+CI2P4+skBhbpwK53roXeY/M06JnRp9kAJZXLjsy37CYyIZsE40+KfZ+bE1UBeWLqVza+Mx9E29+uSmpbGk9+up17lcry9RinbD0Jxltl5YdOR8yzYtJelzw3Fx8RFg3klKSWV/h/8zNyhXWlf2ztfbbz72y5S0tJ4e7hpft7XQiIY8/lqvp4ygMZVs8/bEHwnhtm//IEQgoXje2cbni02MYm31/zNhYAQ3h3ZI6PNzAslr1y5wnvz5xMQEMDECRMYNGhQRhbezCQnJ/Pvv/+ycMUmfE8extrWlpot2muL72vUzTE6SGYKcnwzpCaRFOJLUvBFEgJPg5TYVm6KXeXmWLpWzFKZTgq+SMylv0mJuEHPYUNp0WswTm73P+DcvHiGP5d8CVJmq3Qnxcex7cdPueV3iaGz5uFe0TvLfkYEB7Lj49kMGTKE6U8/neOD4r8HDvDC//7HokWL8pR0aMuWLXz2+edsWL8eR0fHAh/fboZFMv6rtYzv3JTxnXOeWVbKdu6Yomw7A5HAe1LK1/UyAUQAo4H55GIlyaHtPcBOKeW7QojHgZVAdeAwuQjuzyb2ZdbyP+iqr6DNburv1p1o/rd0K672tswf3RPXLFK4JyQksOjHH1m+fDljx47lySlTMjI3Zeb6jRusXbuWjRs34unpiX29ttRq3h7X8qYlu0lJSiI0wJ+wwOv8/tc5DCkJyJRE7T0tGYQAYYYQ5mBmhhAWCAtLhLkVwsIKYW6FmaUt5rZOmNk6Y27rjJlF9sqMTEshMfgi8dePknjrPJYunthXa4dtpSaYWdzrNy2lgcSgc8Re+pvUmFCcGvbnlTem3WeVNFa6u458kqaP9btfMY+OZNNX80mIiWbIC29lu3r8v73bObH6O77++muaNm2aZR3QhP+zzz6Lg6MjCz76yGQ/t4CAAJ544gm+/fZbmjRpUihJb1btP823fx1i0dNDqOlp+kNWXvnr1GXeXvM3n08yPcpBfvjn3FU+3PgPm2aPyzIOdm7cuhPN4AW/sPL5kXh75L7gKzUtjSnfrqdB5fK82L+DciN5QIqrzDZV2U5JTeON1Tu4FnKH76YOzPNirbzw/JLN1PJ05+me+Vt4ue7QWdYc+M/k2RtTFG2DwcBPu46xZPdx3hzWnR6NamTb3q4zfsxdtZ2pj7VkXKemWaZw9/f3Z/78+Vzz9+e1V1+lU6esowEZDAYOHDzI6lWrOHT4MO3btyetWnN8GrfE2s60OMxxUXe4fd2PqNDbbNl5HpmaiCE5EUNqAhjStLHNzByEmf7ZAmFhjZk+tgkLK8ys7DC3dcHM1glzGyetfjakJUaTcOMk8TeOkhIVjG3FRthXb4eVW9X7ztGQHEec3wFiL+/GwtmTGW+9Rrkq9ycBM1a6+z39MuWr3n/9/c+dYv1nb9Oocy86D5+cpXtlanISV1Z/TlhYGN9+802Oiyd9fX0ZN24cb775Jj179szpEt/DmrVrWbZsGb+tXYutrW2Bj2/xSck8v2QL1pYWLBzXO1uvAaVs546pPtvXgF+klHP17+mCexQwQm9nnNE2f+ANKeWyXNrdgy649e/bgQtAH3IQ3B7ODrJORQ8+mdAn2yk4KSW/7D3Fd9sPMW9Ejywz6xkMBpbuPs6Px64zfPhwnpo2LSNOszFxcXGsXLmS1WvWYGVlxbChQxkwYACrr2YfK1tKyZ3bQVw/d4obF//LEEDpIZN8Q60ws7ZDWNhgZmmLsLRBWFiBlCANSGkAQxrSkIZMS87w25ZpyRhSEkhLiMaQEElaQlSGkm7pUhGrstWwdq+OVdlq9ynhUkqSI/yJ9ztA/M2TWLl5Y1+tLbZeDe6zeKfGhhJ1+neSQq7g1KAP9tXa8r+J94bCiou6wx+LP+e2/xUGzZiLp8/94ecuHd3P7998SMeh42nV+4ksr1VY4HX+Wjib8ePGMXny5Byv6UcffcTRo0dZtmxZlr9VVly7do0RI0awbNkyateuXSgK95nrwTz9w0ZeHtiJ/i3qFGjbUkrmr9/Ncb9Afnh68AMnIMiJgPAohn38KxteHkM5F9MTDKWTlJJKv/eXMfeJribFF04zGJj8zToaVimfsYBSKdsPTnGT2aYq26FRsYz/ai3dG/rwfJ92hRr14pe9J9lz9iqLnh6cLxeV0/63mPnTZpNnb9IV7W+eHJjtGohzN2/zvyVbaF2zMnMGdco2a2RUfCJzfvmTO3EJfDqhT5Yp4EOjYpl/IoKz587xypw5PPbYY1me59WrV1n800/s2LGDZk2bMnz4cDp06MCPp0OyPZe01BSC/C5x/fxpAi+f4/aNqyTFx2Hn5ExwghPm9m6YWdpmjG1mljZgZg7SAAYDUqZp74bUu+Na+ntSLGkJURgSokhLjAGZhrCwwapsVazLVsPK3QdLF0+EuPfekGkpJNw8RdzVf0mJDMS2cjPsq7XDqsy9bhBSShKDzhJ1agNm1g44NxnE7BeG3HeO18+fZuOX71GlbmN6TXoOG/t75WFqSjI7f/mei4f/YcScDyjv7ZPltTq+/XfObf6ZRYsW5RjyLzw8nFGjR/PEkCE8+eST2dbLzNKlS9m8eTOrVq3C0tKywMc3KSWLdh5h7cGz/DR9CJXKutxXRynbuWOqsj0LbcV6D+Ay8ALwP6A20AD4ExgA7ANmALPQV7bn0u4e7hXcjYBDQDIwMzvBXdndRZ779H/ZCsiE5BSe/XETdtZWvD+6Z5bT+37B4cz4aTNNq3ny6uL1WT51hoSE8N1337Fl61aGDh3K6FGj7knXbrxwxGAwEHj5HBeP7MP/3CkiggMoU86LynUbUqVuY8pXrYFz2XIIIQp0Wi0daUjV3EfCrpIc6ktS+DWEMMOuSgvsqrbG0unelcVSSpJCrhB39V8Sg85iW6kJjrW7Y+l0rwU6Nf4O0We2khBwCqe6PXGo1YX/Tbw3CkfAlfNs+HwelWo1oNfkGfdFOkmKj+O3T95EmJnzxAtvZem3npyUyKnF7+Hu7s778+fnOPitWLGCX1euZO2aNdlOg2bmwoULTJw4kQ0bNlChQoVCUbjvxCXw1PcbqFauDG8P715gkRM+/n0f10Pv8OnEvoWeuGbkpyt5umdrOpqYiCMzb6zaQVknO5NC/AHM+nkbZRxseWVwl4wypWw/OMVNZpuibCckpzDgg5+ZNaAjj+VgzS0IbkfGMOijX9jxxmTsbUxLg25MQnIKPef9xOLpQ6hRIffZrIjYeAZ+uJwvJvXL1qJ92v8WzyzaxHfTBlK/cvZhAy8EhPDkt+uZ0actQ9s0yFJWrj90loW/72P2oE4Mnv9TlnWOHDnCp599RkREBE899RS9H38ca6PFhMbjW1JCPFeOH+TKiYPcuPAfKUmJVKheiyp1G1OpVn3KVamGjb1joYxtoFmlk8L8SQ7zIynUl5TIICydy2NXtQ12lZtiZnnvmGJISST+xnHi/f4lLTEah5pdsK/e9r56ibcvEXVqA0gDzk2ewKZczXsinxgMBo5sW8fetUt5bNx0Gnftfd+1DPK9yK/zX6bLyCk0e6x/lv0PvnaFP//P3nmHOVF9b/wz6ZvtvQNL7733Lk3pvYMigiJdEEUQEFRUBEVRqiAiCtKLdAXpvfe+LNtrNn1+f4Qts0m2CX7FH+/z5BHv3JlMspNzzj33Pe+Z+w4ff/wxjRs3dvo5DQYDAwYOpHHjxowcMSLf38+8L7/k8qVLfPvttwiC8Ez825Fr9xi7fKvD2oEXwXbeyG+wLQDTgWGABjgNjBFF8cyT4wOAaWRptr4hZtNszeW6+8lmuJ+MLQMGAYMLY7ijk1LpP38tvRtWYVAze56R1Wrl29+PsubQOT4b2J5aJcPsuG03btxg3rx5nD5zhjeGD6dHjx4Operm/XGNq8cPcunwfu5fPU9oyXKUrdOYiEo18AkKdWjgnpUxcgSLPgXd3ePobh/BYkhFW7QWrhF1UXpKsyqixYTu7glSruwGBNzLtkBbtKYk220xpJF8YSvpd4/jUfkVu0x3plH6dQXtXh1DxYYtpO8hihzZspbDm36m/9TP8A+3D+ZEUWTDVx9R3MXKggULcqWKrFq1ip/XrmXtzz87pfzkxMGDB5ny3nts3rQJDw+PZ2KQrFYrC7YfZvOJy3w3vEtmo4nCYsX+k2w6fpmfx/ZGkU/qTGGx9/xNfjhwiuVvdi/U+Ueu3WPGr3vZPGlAvjKS3+06yslbkXw7rJPkt/Ii2P77eJ5sNth2RPrN/5kONcrmyQ99Gnjjuw20q16Gl2sWbhfqnZXbKRnkmy/5T5PZQpdPVzGiTV3aVnOseBGXouOVOSvybGqz6+x1pq/dw5KRXR3u6sYkpTJ2xVZcVEo+7t8Wb1cXO93tbdu2MX/BAnx9fRn99tvUdtKxd+amw1w6vJ9Lh/ejS0qgVI36lKnVkCLlKuPi5njX65/yb6IoYkq4T9rtI6TfO4nC1Rdt8Xpoi9S0Uywx6xJsNUk3D6EJLI1buVaofaX+xxh/l8QTPyMi4l2zFyqfopKgOy0pgS3ffkpC9CN6Tpxl14NCn5bCmjnv4ublQ6e33kWhsk/wJcfFsGnGm0yeNIl27ZzXwhiNRvr27UurVq0YNmxYvr+PcePH4+PtzXvvvfdMfBvYOiqP+H4DJYN8JQmlF8F23vhPdZDMkFKa1fslmla0b1mbkc2uUTyUd7s0lfC8FV0mkJKSwqyPPuLYsWO8M3EirVvbt5S2Wq0cOHCAZcuXc+T8FcrVbWLT9ixbKddKbFEUSU2M4+vvfseU/AhzSjRWow7RmI7VlI7VmI5o1mc748n7ymTIFOondJMn/1Vpkbv6onDzReHmh9zVD5lKm2s22GJIJf3uCdJu/YXVqMO1eH1ci9dHrvWSzDMlPSLlyh5bJrtCW9xKN0GQZWVoLelJJJ3diD7qEl5Vu+JStCZjBmU5x9TEeNZ+MgUP3wBeeXOyXSHNg2sXWTNnMq0GjKBK0zYOv6ffV3yFNuE+S5csyVWPe/ny5WzYsCFT7zw/WLd+PYsXL2b9unUot3+Vr3MKg5M3H/L20s283b4B3esXTrJs6d4TbDlxmR9H98p36+bCwmS20GL6YlaP7lUoPe00vZGXZixl1ds988XTPnjlDjN+2cumSQPseIAvgu3/HnILtvVGE32//Jm21Urzastnr11/4uYDZv66l98m9i8UfeSPS7f5YvNB1k/sl6/zJ/6wjRAfD0Z3aOjwuMVqpdunP/J66zq0qeZcbeS7XUfZcOwSP4zq4ZBK9tvRi3y68Q/e795cEtRnBNsXLlxg3PjxlC5VijFjxjhs656cnMwvv/zCylWrSJW7Ur5+M8rXbZpnTZLFbObzb37HlPQIc9IjzLp4Wy2SUYfVpEc06hCt2Vu42743Qf6Es63UPPFxGmQadxSufsjd/Gw+ztXXYWF/dhgT7qO7fQTd3eMoPIJxK9kIl7AqkvNE0Yr+4XlSLu3EajHiXaMn6gDpDooh+joJJ35GrnHHq0YPJoxqLzl+8+xx1s/70JblbtZWckwURf74dQVn9m6j/wdfONTlTktOZMnk4UwdM5KePXo4/TwGg4HevXvToUMHSZv23GCxWOg/YAANGzZkxBtvPLOAWxRFvt5xmA3HLrHo9c6UCPJ9EWznA/+ZYDuvFf/6Ixf4YstBPh/Uwa64TBRFfrNGMHfuXEa88QYDBthn5iIjI1m5ciXr16+nVq1aDBo0iBNCiFNjm/A4ktvnT3L7/EnuXbmA2WggTqdA6RmM0jMYhXsgMpUrgkqDTKl9YmzUtgLJ7LBaEc0Gm962SY/VbODj11simgxYTXpMqXFgNSNaLQgyGcjVtpdCjSBX2wpRANeALO1X0WzElByFOfkxgkzOpGWHcC1W20Emewvpd0/gXrEdbiUbSwpVzKlxJJ7+FXPyY3wbviYxSqIocnjTGo5sWUuvd2bbcbl1Kcms/mgCgUVL0n7YOIdZ0AO/LEd/9TirVq3KlSry/fffs3PnTn788UfJFmhuWLZsGVu3buWnn35C2DwvX+cUBsk6PWOWb0GlsBWXFGS7evHuY2w/fY0f3+5ZKN3fguLrHYdJTTfwTuemhTp/7PItVC4a7HA3KScexiXR/bPVrJvQ1yHX9EWw/d+Ds2A73Wii35c/075GWYY0d/gnf6qwWq28NHMZC4a+TNlQx/rTuSFZp6ftrGWsHduH0HwsSn86eJadZ66xbGQ3p75i6ppdaNVKp5r9ZouFyT/uJEmnZ8HQV+wWp3qjifE/bENnMPHZoPZ2IgBJOj1zzqVw5swZ5n76aWazrwyIosiRo0dZvmwZ586do3uPHvTt04cND60O78diNhN580qmf4u5fwdBEIgzuNp8m2ewLUB+wtmWqTQISi2C3J5WJ1rMiBm+zaRHNOv5+PXWWE16jCkxYDHb/JtotfknuRoUKgS5BuRZ9jTTv4kiFkMK5qQozGlxyLVevPfTBdT+0potY9wdEk6uBasFrxo97I6nPzxP4smf0QSXx7NaN8YOzSqg1aUk88vc91C7uNJ51Ht2xaN3Lpxm7dz36TzqPUpVty+8NejSWDplBCP7dc+Vm63X6+nZsyddu3ZlwIABTudJrm0w0KNHD3r06EHfvn2fWcANcPp2JG8t3sSbbevx2rfrXwTbeeDZteP6hyCKIt/+fpTNJy6zYVJ/uxW/xWplyuqd3I9LYsu7g+zaTV+LjGXciq2Urt+CHdu34+Mj3faPjIzk448/5vSZMwwdMoQ9e/ZkCtCfzMZpS09N4fKR/Vz8ax+RN6/g6RdI8Uo1qNzkJToMn4jaRVv4LTaVCxlh7sPj2zDobHzYPVs38eeerYiiSKOWHWjZrjOixcjebevZv2srMplApcpV6dpnCGmRerZvXsfBPduQyeT0GvImtVt3w2rUYYpfTeSZ9WiL1sKjQlvkLp7I1a541+iJR4V2JJ/fzKMNk/Gs2hltRF0EQUDh5otfo9fRP75GzN4vmX7vJB4V2zFmkE3LtH7H3hSvUoufPnqHGq1foVHXAZnORuvuwZBZ37Dt+89ZMXUU/d7/zK7xQJPugzi23Z06rdpzaPtGpw0CXnvtNcxmM/3692f1jz+izKVBUQYGDx5MUnIyw15/naVLlmD5bW7h/i55wEOrYfEbXfnxzzM0/eA7qhQNpmKRQOqXLUqN4qEO+deiKLJw5xH2X7zF6tG9nFZ/P03EJKex+s8z7P4gV9U3p9h7/ib345L4bGD7POcazWYGf/0rcwe2cxhov8D/HyTp9Axa8Asda5fP1yLtaWDNoXPUKB5SqEAbYPKPO3mrbf18Bdrn7j7iu11H2TJ5kNNAe+OxS1yNjOGn0b0cHk/S6Rm6cB21S4bxSX97GdV7sYkM+uoX+jaqypDmUh1pURT59fAFPt/yJ6OmfMjHc+bYJTb+/PNPZsycSUhICK8OHUqDBg2yrvEwy7/F3L/N+T93c+XYn6QmxhNSogwRlWrQeuBIAouVYv7KMxTqG1WoQZ3lsx8e34ZBbwAE9u77Q+rf2nZENBvYu/039u/ejkwQqFS1Gl37vkZa1C22b/w5078NGvshlWs1wqyLJ+nsb1h0SbiXb41r8foIMjkq32IEtp6IIeYmiSfXIsjkeNfpn0mxdAmthCa4PMkXdxC1+X0+jn+Vdyb0BGz+a8C0Lzm2fR0L3uxNz3c+IrxMxczPUKxiNV6fu5Tl779JvVd6UruttPhSrXXl1Tnf8f20t0lOSWHcWMcCQBqNhjVr1tC9Rw+USiW9e/fO8+tUq9WsXr2azl264OHhwctdJjyzgLtaRAjb3xvMO6u2P5Pr/9fwXAfbFquVd1ZuJ1Vv5LeJ/e0CE4PJzKvfrKNieCCz+7axM1Sbjl/m040H+HLIy1QvHooiW6CdkpLCF198wY4dO5g4cSLz5s2zO799gIVJ36zmwqE96FNTKFe3Cc16DSWkZLmnXkX/8Pg26f/fu82fe7YyefY3KBRKvpw1kUrV65IQF8PZM6eY+vlylEoVyQkxIFPy8OZ5jv2xkw9mfkJyuoXPZ02mXKUayORydHgR3HE2ult/8XjHLFyLN8CzSkcA5Bp3vGv1waNiexKOrSLt5iF8G7yaST/RBJYm+JUZJJz4iejfP+Ezw0jGvd4EgKBiJXnrq9Wsnz+Tn2ZPoufEmZm63DKZjA6vj+fwpjUsnjSMIbMW2mUIarftilKloWH7zhz9fYtTbvYbb7xBaloaY8aMYcGCBfna2h399ttMmDiRL+bNY+yYZ2eQBEGgX+Nq9KxfmeuPYjl7N4rl+04yaslmwv088XBRo5TLUSnkqJUKrkbGUCLQl1Wjev4jgTbAhqMXGdCkeqGoKkazmalrdrF2XJ98fe/zthzipaqlnWriv8B/E3djEnjtm3UoFXLUCgVKuYyDV+4yoWNjOtep8I/dxw8HTrHyLefb97nhyLV7RCWm0LNB3lrIJrOFt5duYdHrXZzuaMWl6JizYT/bpwx26C8exCXR78ufGd2hAZ1q239HVx7GMOTrXx1KgRrNZsat2IbBZGbblMF4u0ZJ3uPSpUu89957uGi1fLVgAaVLS+kroihy58Jpzh/czbXjB/HwC6RSo5b0fW+uw47DowdW/1t87QL5t7Nnsvxb/GOwWnh47QTH/9jJB7O/IFln4vMZE5n55Q/I5HJMnuUJrFuH5IvbST63Cd9GwzMz2Wr/EgS2mYw+6goxe7/EtWRDPCq0RZDJEWRyPCu1R1u0JrH7v2L6+GtPEkq2BkB12nWjeKUa/DB9DK0GjKBy46wuuZ5+AbzxxQpWfPA2upRkmvYYLPl8SrWaQTO+YuWHY1Cr1U77R7i4uLD25595+ZVXCAwMpHnz5nl+l66urqz9+WfatWtH6dKlsddhe3pwd1Gz8LVOrDxw+hm+y38Dz22wrTMYGbJwHVWLBfPpAPsK4TS9kf7zf6ZNtdIMayXt4iSKIp9u/IOj1++zefJAiY6rKIosWbKE777/nmGvvcYff/whac0uiiIHDhzg64ULSUpKIqBmc3pN/Mgpp00URRIfPyI28h71/B+wbccJzCnRWFJjsZr0Nimk7BBy/kPM/D+LSygyXxvH7NHDuxQvVR71E0506fJVOH3sT+7evEqbTn1QKm0G3sPbRqk5d+katRu/hFLria8skQA/X25dOU3JCraM0qPTuwmt1Q7XUo2xpMXZfQ65iyd+TUaiu3eKqO0z8araGW3x+giCgCBX4lNnALq7x4naOp2PU4bzznibQ1Oo1HQf9yF7V3/HknffYOD0+ZIulfVe6YXKRct3E19l6OxFaN2l2c5qLdpj1KfT8OVuHN72m1MO9/hx43jzzTf5/IsvnGYKcuKjWbNo36EDtWvVonAqu/mHUiGnfHgg5cMD6d2wCqIo8iAuCZ3RhMlswWCyYLRY8NJqKBdWuKxbYbHr3A0+7m/Pn88PFv1+jI61y+Wr896NqDi2n77K7+87l3fUG01Oj73A84sgL3fGvdLI9pybba8JnZrg7/HsZCxzIjEtHbPFir9n/ltjZ8BqtfL+ml189eor+VpULtx5hDZVS+Wqu//+mt+Z2LGJQx3xc3cfMXzRBuYN6UDtkvYd/E7fjmTk9xtZOrKrXZY+JjmNQV/Zur+OeKmu5H7j4uJ47733uHX7NjM+/NCuODI1NZXVq1ezYsUKypUvT9EKDWk9cKTDzsJgk7+LuX+H+KiH1HB7wK7dJzGnRmPRJSGaDdLJQs7/yaKwmtKSUBRvhaC0vU++/ZuPTWXr3OWb1GrUCqVSgY9GR4C/H7evnaNEOVvjL4WbLz51+mHRd3So260JKkvwKzNIPPULUds+xK/R8Mwst9IjkKD2U4k/upKY3Z/xuWkEY1+z8e/9wyN444sfWDblDVLiY2nQqU/mNVUaF4bM+pqVH47ld10arQaOlPwt5AoF/d7/jGVTRuLh7u6UKqLValn944907NiRpUuX5iofmAEvLy8WLVrE0FdfZeeOHah3LszznBd4tngug22TxULHj1cyqGkN+jauanc8TW+kx+er6de4Gr1ztM/VGYyM/H4jgV7udgoPj5ZP483N5ykWEcGe3bslcoA6nY41a9awZOlSKlaowHtTpmRy37JLJBkNeu5fOc+dC6e4feEUcZH38QkMxS+sKD5BoXTr3oLtx1ORu/rYihpzEezPiQfHtmb+OzQ8gg0/LSE1JQmlSs2FU0cpWqIMjyMfcOPyOTb8tBilUkX3AW9QrGRZEuJiKV66PILKDVRueAeEkBgbiTXRD8vj88j8yvLw+DZCa7VD4ebPrH7OGsxUR7QMxPD4GqLVgiaorE0f/Mkxq3EA+sjzKOMfUb1WVmGg0Pd1PHwDWDRuMENmLcTNO6vivkarV1BpXFg0fgivffwdbl5SKk+d9t3Q61Jp0rkPBzf97FClRBAE5s2bR7du3ShWrBhdu3TJ8/tUKpUsW7qULl26sP71lwqlK11YCILgUK/0n4bBZCYyPrlQbd9jklJZc+hsvugnoigybvlW5vRra9coZ+/4tQCkWi1MS7hb4Pt4gX8/1EpFoakbTwsHLt6mmYPC+fwgg36SV2t1sGXx1x25wK6p9ovKjGf9uD6Fa+kJdL1iYO8vFyVzrAOqM33tblaOcqxMcvzGA8Ys28Lq0b3sipEv3n/MsG/XM71nK1pWluo+75s5gnc2n2TSpEl07iRVALpz5w7fLlrE3r176dmzJ5s3b8bHx0fi28CmqJHh2+5ePIPJoCegaAl8g8PwCQ6j39DubDychNzFC0GhzncBqiiKkux2of2bxgdB44O3XyAJUXcQQ/2wJt3nwbGthNVuj1xjs/FO/dvAOljSkzBEXUHh6YfKOzyrjmpgHczJURjj7qJJ11GlYkYdlB/KT5eyasY4kmIf03bo6MzPLVcoGfDBPNZ8/C5bvv2UDsMnSL4ThVLFwBkL+Gzia7i6uTn1W4GBgSxfvpxBgwaxYcMGgoKcS0NmoFKlSrw+bBhvjRrFonZlClUM/AJPD89lsH3tXjRTvIsQvOkaezddo/ncrG3BdKOJ3vN+YkCT6nbbfZHxyQxYsJYBTaszoIn0x7b/wi3eXb2TD3q0oP2HWRxeq9XKypUr+errr+nWtSsbfvsNf3+pwU1PTeHioT2c2bedxOhHFC1flYhK1en05rv4hhSxe8grNSqcRFJY7faZBik4rChtOvbiixkT0GhcCCtWAplcjtVqQZeWwuSPFnLnxhUWfT6dj75eTfYsgg0yBLUnMs8iIJNjvr4VmXcED44YCavbKdf7EORKNCEVMKfGoLt3Ck1Q2UxaiUzlgkuR6ugjL3Li4F/UaFAv8/PXatMZdx8/vh03mMEzv8Y3JCtjU6lRK5RqDd9PfI1hc5fg6uElec8m3QdhSEtlxIgRfPPNNw63XZVKJStXrqR9hw6EhoZSt04duzk5ERoaypw5cxj6ySf8NrhJoTomPs84cu0e9coUyXuiA8z4dS8TOjbOF/3k50PniAj0pk6p8MyAIztEUWRhciRdXf2Yk3i/UPfzAi+QG3adu07/Js6SCM6RqjewYPtfbJsyOM+5oigybsU2PurzEmqlwuGzHm8x8WNqNB/6FLXzDbt1Cez5Yh2TvcO5O3cPd0Hi387cjmT0ss2sGdPbbrG+5eQVPv5tP8tGdpdk1M0WC7PX7+fYjQf8tmEnoaFZKhlxcXFMmzaNS5cvM3LkSGbOmCHZyX29ejAzNvzF2f3bOf/nbjRaVyIq16B0jfq06j8CrYc9d115seC+TRCEp+vfBAWCiw+CWyDW5Hvw+Cz3k+8T1uL1PINOuYsnLkVrYoy9SfqDs2hCKmSKByg8ghBUrugfnuO0MZ1q1W2qL0q1moHTv+S3+TP4+eN36T5+RmZXSZlcTq9Js/n18w8cBtwqtYYhs79h6vihuGq1tGnjeJexbNmyfPzxx/Tu04ctmzfnq6lb//79OXLkCEtjPRnqn6uE/gs8YzyXwXagXEVVddZWYIZBazSnK/2+/Jlu9SrZBdo3ouIYMH8tcwe2k/BFLVYrH/6yh7N3HrF+Qj+CvLOym+fPn2fM2LFUr16dPbt3S4r0TCYT69av55e1a3kcHU1gtca8/MZEh+1fHWH0wOp8sez4k3a2T6T/LLbCEATB1h1LEBBkSmQuHjblEkEgtFaWPmfDFu1p2MJWlPbb6u/x9vUn6sFdqtVpjCAIRJQqhyCTkZqchLevPwlxWR3BEuJj8PL2A0GG3L88Mt/SWOOvY76+jXsxlxD7/Iwgk7Pj12Xs2/IzogjNOvSkbffBzJ/2Fo/u3wZAl5KERq1kxpfLUXmHs/HHbzmwbS0ymZzeA1/DakijRuOmme9btnYjtB6eLHn3Dfq9N1eiVFK2diOsFjPfT3yV1+cus9NybTVwJJu/+Zh3Jk3i008+cfi9enh4sHr1arp27crPa9YQEZF3c5ZmzZpx8tQpPli7nY/65L9V7n8Bu87dsMuA5Qfn70Zx63E8Xw55Oc+5STo9sxZvZZZPhMPgA2BveiJaQUY9zYuiyRd4+hBFkZO3HjJvcIcCn/v55oO82qKWncqHI2w9dRXTlWiMUcfYyzGH9/FVUiSD3APxkEnd72Wjjv36JKb5FEWdrTtixm8mZExTRny/kR9H97QLtJftO8FvRy+yafJAyX0+iEvi1W/W0aJSSTa80x/50dXQZQKiKPLDDz/w9cKFjB8/nvnz50sCwKioKJYvX86WrVvRqz2p0qwtwz9fbkfzc4QM/rZoMWXJ2prSES2mrDbtGf5NqUHu4mnX7Riekn+TqVCEN0A0pmJ9fI57q0fi33AoYFt05enfkhPQqFV8tHgTco07G1d9w4FtaxEEGT179cZqbE2NurZryeRyuoz+gD2rFrF0yggGfbggs/BfJpPRbex01n4yhR1L59N26NuSz6rRujF0ziLeHjeEJW5uNGzoWCaySZMmDB0yhMFDhrDmp5/yVRv22Wef0a59eyq9VMEhJekF/hk8l8G2ysnKdNjIhQQIMgZMkGYvYlPSGLTgFxa93plKRbO2X0xmC4O//pXyYQGsn9Av88E1/PoxX91TsnnzZr5asICKFbMqjc1mM2vWrOGrr76iVevWzJkzh1KlStltt4HNsMY+vMu9y+eIf/SA+KiHJEQ9JDUxHlEUkcnlxCRZEVRP2tpmGBzRCqKIKFptBkufjNWYZlu8CzJkTT7GYrGQnJqOh08A8QkJnDr6J5NmfY0gyLhy/hRlKlTlceR9LGYTbh6eVKlZn8VfzqRlh+4kxccR/eghEdkCXUGmQO5XDplPaaxxV0m9+RfxZi37tvzMh9/+hkKh5OOJg6lWrymjpi3IPG/V1x+h1bpiNaRy6/gOjuzZwsfLd5AQF83ssQP4eOGPnNi3mzS/krh62rY8i5StzOAZC1j2/lsMnvkV/mHFMq9Xvl4zTAYDy6e+xbBPvs8sqARb9uPlN97hx5njWbx4Ma++6pi+EB4WxsKvv2bgoEHs3LEjX01vxo0dS4eXbS3Ra5Sw10f9r+Lo9ftM7Oi8o5kzzN92iHe7Nss1S5QRJPycGk0brQ9uTihTOquFjbo4PvYpXNfKF3iBvHA/LokwX88CN4ZK1RvYduoqB2c6b8iT8ZxbRZH3424xxdv5TtExQwo+coUkWQQ2X/FDymPe8gyRBNoZ0Fut9JqyhDWzhtpRvradusr6Ixf5ZVwfiUzo1cgYBn/1q12CKSoqipEjRxJepIgdXTI6OprPPv+cg3/+yfDhw9m6ZQuenp4O/ZvZaOD+tYs8unmVhKiHxD+OJCHqIYZ0HQCxSSab/J/KBZlSCzIFYGvXDiKi1Ypo1mNJT0I0GwGQyZXITR0xm80kp+rw9AkgLj7+7/s3lRvy8PqIxlRijq0l9VZl4q1u+fJvLho1hkeXiEkTObI3u3/rT8VqtThx8AhiUAlb/ZIg0LL/cA5tWM3KD8cwcPr8rAy3TEaPCTP5YdpoDm9aQ71XpAo0rh5eDJ39LQNHDGHPpnUUK1bM0SNEv379uHrtGp988gmTJk1yOCc7NBoNSxYvpl+HVuz+4NX/d7u3/xY8l8G2I5wxpHLTpGeqdxH2jl+bufVmMJkZMH8tH/RoIQm0zRYLQxb+Sr0yRRjZpl7meHyqjkFf/ULNEmH8vnNnZkGexWJh7dq1zJ8/n5atWrFlyxb8/LK26l6vHsw3Jx5y79JZbp07zu3zp4iNvIdfSBGKVqiGf3gEpWs2wCcoFDdvX0mQUhBKiWi1oA4qh9Wo49NZA0hLTUYuk9G7Vy+0pFC/fl1+WPIt08YORq5QMnjkJARBICQ8ghr1mvHBmMHIZXJ6v/q2wyY8gkxuy3S7B3Nn3yYiipewFakIAuWq1Ob4H7/zch+b4xFFkaP7tjJl3io0QcU4s2UjNWpURSETCAgOJzC0KHcfRhFRLIIPh/Rl+sq1ma3c/cMj6DvlU1ZMHcVrn3yPp19WO/kqTdsQ/+gBaz99n16TZku+K0EQ6DnxIz4f3Z+yZcs6zQDUrFmTvn36MOW99/j8s8/y/F4FQeCzuXMZ3rMjO98f8szbov8bYLZY0BtNeGjz1xAoAzHJaVx/FEe90llBhbOMtc5q4S99MnN9nXNlN+niaKP1waUA9Qsv8AIFwenbkVR30iY9N6z96zzd6lWUBOnOnvWjhhTKqLT4OGnAYhFF1qbG8K6DYPykIZVQhYoQBxlegO9THtFO60PkF/uJJItacu7uI2av38fGSQMkgfaNqDgGf/UrS0Z0lRRcH7x8h4nv1uejr76jZcuWmeOxsbF8MW8e+/bu5e3Ro/lo1ixJbczr1YP58s9rXD91hNvnT3LnwmlMBj1hpSsQWroCEZVrUj0wBO+gkEwbDwWnS1rNBlR+xVEY0vh05mDSUlNs/q13b7SCjvoNG/DD998U3r+p3FAUawIqN24f2m0rwtTYkjG5+TeX4DBOfPshterUR6lUPfFvxXiYaCbcx8D00e8x7ctZme/ToFMfdMmJ/DL3fXq+81GmD5PJ5fR571MWjRuMV2AI5epIEx2efgH0eucjXuram5MHdmXKDOfEB1On0uHll2ncpAn169VzOCc7IiIiaN93CIt2HeXNtvXz98d4gaeK/0SwnWgxsywlimneRZE9eaj3jl9Ls0+789aSTXSsVZ5WVbI6RVmsVoZ9+xvVi4dKAu37sYn0+/JnJnVpSttqZVA8CbTPnTvHiJEjady4MZs2bZJwtkVR5Njx4/z666/s378fbZEylKxWl1dGTsIv1J6T5wgFkU0SZHJbly2lhunfbyEt+l7WQYsRhUnHkKGvIZoNCHIVqN15khKnfdd+tO/az+F1RWMaKF1s23sAMhWhZWqyceMGoi/uw71IFc4cOUDxbHqiV84dx9PHj6AwW0YyOc1ARPFypN8/jSasCj7+QcTHPqZUxeq4V2jLtMH9mblyTWYr29BS5ej89vssmfwGwz9bJuH/Ne01lHWfT2P3ym9oNWCE5F6VajUDP5zPwBGvsnfLbxQt4jiTNGzYMLp3786OHTuc8uCyo2zZstTv0I0V+0/9Iw02/te4Ghmbr4KvnFh54BQDmlRj34Rf8py7XRdPSxdvlA6ydWD77R7Rp+QajL/AC/xdnL4VSd3SBatNEEWRlQdO8VayG3v/cBxgZ5+7Pi2WiV7Ot+n3pydSWe2Gb45gXBRF1qbFMN4rzOF5B9ITMYoiLVy8Msf2jl9LuSltGL5oAz+M6oGPW5ZayJ3oBAYuWMui1ztLAu31Ry7w9c4j/DaxH4HJp4GWiKLI4sWLWbJkCaNGjWL6tGkSznZaWhrbtm/n119/5fTVW5St3YiS1erSst8bDvnaOVFQSUCZQo1M7YpM7cr077dm82+2LLjClM6QwYMQRbOtUY4qi9aSu39LtYkDPIGgcie0RGU2rP+FuBsncA0pm6d/SzHKKBrgjT7qCpqgsk/8WzSlKrTBGHebD9+ZzdSPJ2ee37L/G2z46iM2f/MJr4x4J3NcpdYweMZXfDtuMB4+/oSWKie51yLlKtO42wBeGzaMH1etckgVUSgUfPfdd/To3p2dO3fi6Zn332Ls2LE0bdqUrnWTX/Q4+B/guU/fGUUrnyU9YJB7EN45jNgbbywk+dR9Xm+dVShntVoZ8f1GyoT4MSZb+9zzd6Po+flPfDaofWarW9O6T/jmm2948623WPz993w0a1ZmoB0bG8vUqVOpU7cu33//PS2aN+fQwYP0efcTarftgn9YsQJV/44eWPDCHZB2hkSuQtB4IbgFI/MqhqD1BbMea+JdxLQoRHO60+tYk+9jub4Nqy42cyw4rBgvdezNvM8/4+Nx/QkLD5dkCw7v3ky9FlmcXVEUkWvcUAeWQf/gDKLVnPkduJVogLZYbaYOHYzVYsk8p0SVWrw06E2WvDs8c/sRbJnmzm+/z50Lpzm1e7Pd/Xr5B9Fj/Axe6tqbtLQ0h59JEAQWLlzI1A8+4PHjx7l8i1mYPGkSi4/fIS5Fl/fk5xynbkVSrXjBsn27xv3M8nUHCdx6I8+5equVA/okWmudt2//JS2GLq5+KF5Uyr/AM8Tp25FUiwjO9/y949ey8O0VuD5MxctB58OcOGFIJUKhwd9JVtsoWtmsi6erq70U4BFDCiWULgTI7WVNb5nS2ZgWxxsewRJ/ordaeXnsQj4Z0JaS2RRL7scm0vfLNXz9akfJTu5X2/9i1R+n2TCxf6bqUvQP0+ndpw8XLlxg37599OnTJzPQPnbsGP3696dly5ZcvnSJD6ZO5drpY7R/fTzl6zXNV6CdgcL6Nsju32QICi2Ciy+CRxgyz6Kg0CLq4xGT7iKmx4PVsWyoKFqx3P8Ly/2/JHKEwUVK0LH/W8yd9R5z3u5JkYgSyLItNOz8G6D0CEZQKNE/ugiItr+JIODf/G10d45xas+WzPmCINBx5GRS4mPY8+MiyT25efsyYNqX/DhrAkmx0eREzZc6keTix5w5c5x+N0XCwxk3fjyjx4zJ5RvMgkaj4YMPPuC9n37P1/wXeLp4rjPboigyL+kh9TUeVMvBgftLn8xVk453vaS0krErthLm4yFpS33wyh0mr9ohkVpK1Rt47Zv1hPp48PvOnWg0tq12o9HIl/Pns+7XXxk1ahTvvvtu5jGwbbfl5LdZzCYSYx6TFB1FQnQkSTFRpCUnYUxPw5Cuw5iejiE9DYVBz/3IJBAtiKL1iQa38KTlrRaZ2hVBpWXkqXUovUJQeoWh9AzKrJTO2Rgg+/ckpkZhTbgJ6fHIgqrYjFU2yP3KIroFYXlwBFHjCWI/EGQ0bNGel3q/gWi1sHreu3i7q8FqxWK1cvzPncz8bmPmNXz8g4iLfoRc64U6uAKx9+fg6ZElZeRR/iWs+hSmvv4GM75flOk8KjRoji4liRVT32Lo7G8zedpyhYL+075g4dv98QstSpFy0qLXYhWrUb9jL14fPpyVP/zgcHETEBDAzBkzeOONN1i3bl2eCyB3d3cmTpzI9KXzmD/0lVznPu84ffsh3epVynNe9m3z08ZUyqu0+aJ8/J6eQDMXL4ccVIBoi5FrpnSGuuctY/UCL1BYiKJIdHJqvqQ9sz/rO3TxtNXmLYkpiiLr0mIZ4+m81mOHLoFGGg+7ugXrk3MnO8iIR1uMzE+K5B2vMLTZzsvwe220PhgXH4O5xWzzk1LpM28N8wa/TNUnlBlRFHnvp9+JTdHx89g+mXzdkzcf8taSTbw753M6deqUee279+4xefJkDHo97777LtWrV5fYTEf+Ta9LJfHxIxKiH5EUE0VS7GP0qSkY9OkY03UY03Wo03XcuR8HotXm26xWwAoyBTKlFplaa/NxKlfePL8VlXcYSq8w5K4+CILg1LcBiBYjYuIdm3+Ta5CH1ERQZ/2tBUGGvHgrxMRbmG9sRx6Y5Udq1a5H0w49sepTWb3gffx8bX9vi9ns2L/FRKH274wx9g6x92/g3c4WVwhyJQEtx/Pzwlm4uHlk0kNkMhm9Js1m2XtvcmTLL9Tt0D3zegFFIug86j2Wv/8mI+attOui/PLwiSyeNIyKFTfxyiuOfVH3bt3YuXMnP61ZQ+9ejruQZkfbtm1ZunQpBy/foWG5YnnOf4Gnh+c62N6bnoiHILcziDqrhTWp0XzkE4E8G60koVt50vRGvhiUVZF+OzqeiT9st22tPTHGqXoDPT/Pkg9UPAmmjx07xthx4+jYsSMHDhxArXbMr2sXYOHIkSMs3rSHu5fPYTWb8AoIxisgyPZf/2BCSpZD7aJFpdGi1tr+q1RrkCsUfL36XGbVNqIVq0mPaNRhNeqwGtOw6JMxJUaiu3scU1IkWK0ovcPwKlaHhOjHCDmq3AVBQHAPRuYejGjSYYk8gTX+JvKwuplNBAAEjRfyEi8hxl9HTH6A4B5CckoKAOmigtOnTzFl1jzSI89x7UEiIUVK4BuQlS2q0aAFX88YQ7seQ0hISCQmLp4Qd7Aas7LEntW6En9kOR+8OY4Pv/48c7xWm84kx0Wz7ovpdB8/I9PAa7RuDJw+n6VTRjDiy5V2koB12nXj18vnWbRoEcOHD3f492jdujXbd+xg2bJlDBkyxOGc7OjapQtLly7lzO3ITKf1b4Uz/mh+8GfcLab3bFWga58ypFJPnfcWpCiK7EtPZJZPMadzduoSeEXrm0n9eoEXcIa/85xHW4yEh3kV6NqiKHLbrKesMu/i6ltmPT5yBYEK+8w02ALqvemJzHbwW7hqSidcrnZILfk6KZLXPIIIzsHjPmpIQSuT0fwJrSSDMjlq6Wbe795C0k1y8e7jxKem8+2wLF3tYzfuM3bZVn4a04ui1uuArSbp20WL+HHVKmbPnk2TJk0cfhaz2Uwd2WPm/rKT2+dPEXX7OhpXN7wDQzJ9XFBEaVzc3FG7uKLSuKDW2v6rUKmQyRV8/ePZLP9mNT/xa1n+zZwWR/rD8yRf3I4lLQ5BrsIlqByuxesRc/uKXcJEkKsQfEvbFLVSo7Dc2YfgXRyZf/lMWqQgCAjeJRDcw7A8OIyoi0HQ+pOclIBrQBHik5I5c/Y873TojCkxkktXr+fq3xJNcqKjHxPiKYBokx2UqVwIaD2RZbNn8saM2URUsjWMkyuUDJj+Jd+OGYhPcCila2RxpktVr0v1li/z24KZ9Bg/Q/K5ZHI5/aZ+wdhRfalUqZJTZa3PP/uM1q1b07hRI4msozN88sknDHilNbumDi1wwfALFB7PbbAdbzGxWRfPRw4M2Lq0WNrnUD9IspqZu+kPtk8ZnPlj1RtNDPl6HV+9+kpmoG0wmen9xRoGN6uRmfWzWq1Mee89zp49y/JlyyhZUiqVlpSUxN59+/h9505OnjpFaEgIdevW5d2hvTgrH2fXhjwvjBlSJ4vnJsiRq11B7fwaotWCMe4OuttHEB6cRuUdht6iQvAIsw+8lVoURRtjTX6I+dYu5H7lEHxKZX4ngiAg+JYGVz+sKQ/49tO5pKWmotS4MGj0NLyLVMAYf5+DWxZQr3l7ybXDIkpTp1k7Jg5sg1wuZ9CYD3ENq0T6g3OYkhNQegQiCAI+dQcSe2Ahe1d/T/M+r2We37zPMH6a/Q4H16+kUdesblq+IeG0GTKK1bMmMnT2t3Ycto5vvsu8UX2pW7cuVatWdfgdzZwxg5YtW9KiZUunHO/M70gQ+OTjjxk9oLvkefm34O8EHhmwiCJGUeT4+xvznpwNN0zp9HfLuznJFVM6RRVqSUYuO8yiyHFDCr3cCs4Zf4H/H3gazznALZMej2v6Al0v2mIiUK7K129/T3oiLbPxqXPinDGN0koXh7tBB/VJNHKxX7zuSU8kVKGmgkpq902ilZ9TY5iao8hy+puL8a0aQOtstUknbj5g7eHzbJ40IPNznLv7iLHLtrJmbG/CfG1UkPsPHjB48GAa1K/P3r17JTu1ADdv3mTn77+z6/ffefToEZUqV6ZZnTpM7jOVP3SeDgsRc4PEv8mVyF08kbs4p6VYTXrSH54j+fwWhIT7WBTuCF4RNkpJjr+PzC0IoVR7rI/PYbmxHXlYPQSXrGScoFAjL2pbSIipkXw7dw5pKck2/zZmOn5l6pL+4CyHdqyVUEjAgX8bOxOlqw/6yAuIVotNXEDjQUCrCXzz3kTGfPENwcVLAzae9qAnPO3BMxbgH54VODfs0o8fpr3Nyd83UaO1NIOtdfegx4SZDH31VXZs3+6wg7KHhwdz5szhzTffZP369Xk+sxEREbTs1o+le0/Yddd+gWeH5zbY/i75EQPcA+yc+WOzkbPGNDsZsaXJUXQwekha405bu5se9StRvbhtNSiKImOWb6Fd9TKSQPuNdo0IrduKrVu2ZD7IBoOBbxctYuvWrRiNRpo3a8aAgQNZsGCBpMAkIz/gSDopNxS0aFLtXwK1fwm8avXBGHcHxa2/SLq6BZlPKWR+ZeyCbplHKIJrANaoU1hv7UJetDGCIsvICgotglsw4yeMR3ANRFC4ZPLnVD7hvDZuGpbU2Ewjk4FO/UfSqf9IyXtpgssTs7sLAW0mo9B6Iwgy/BoPZ9fmT/AKCKJ6S5tREwSBHuNn8M3YwfiHR1C2dqPMa1Rq1Ipb506wd/X3tOwnleFSqtX0e+9TRowYwc6dOyVSVhlwdXVl7mefMWLECDZv2pSnPmnFihWp3Kwdaw6ds+tC+r/C0wo+AB5ZjAQ7ycQ5g0m0YhbFfFFIdqcn0DIXrvYJQwpVVW5OCydf4P83nuazfsukp7iyYIo710zplM5HVtsoWrloTMuVCrUrPYFODrjaFlHkgjGNwTnOjbOY2OIkkbRNF089jYekPinZamZdWgyzLmdRKVPSDYxeuoWVb/fIVCmJTkrNLKjMDLRjE+nTvTuff/EF9erWzTz/9u3bzF+wgL8OHaJIkSK0atWKefPmUbSolH5YgYL7NiiYf5MpNbgWq41rsdpYzQbSH5xFd+svdDeOIQuqhsxdysUXZHLkwdUQ04theXDYxvEOqCRNKGn9EfWJTJgwAcE9BAR5pn9zCavC4MFDUXgE2t2LI/9mjLlF3KEF+Da0NcxRuPni1+xtVs0Yx7BPF2cqbXn4+tNnyif8MG00b8xbmalZLggCPd/5iK/e7ENo6fIEFZMm84qWr8Kt6k2Z+sEHzJk92+F31LRpUzZs3MiKFSsYNGhQnt/phAkTaFq9Il3qVsTPvWDJwBcoHPIMtgVBWA70BQzZhieKorjwyfFBwFIge0XZZlEUe2e7xjvAaOAG0E8UxbtPxvdji0ebiKL4R7b5N4CZoigud3RPqaKFIoKa6mr7oGpl6mP6uQVk0kfAtvVtEK3U03hk8rd3nb3O9UdxzO6bpVKxcOcR5DIZw58UVFqsVkZ+v5FwP0+mfvBB5o/19OnTvDVqFJ06dWLVypUEBOSd6XPEdcsLBa3kBtsPV+0XgdovAs9qXUm+uJ3E81uQ+5dH8CmZpTaCjWcmD62DNfkB5hs7kYfXReZqMwwjZ/0AYKOd3N6LLKAiMq9ikqY6KZd3obs7C/+W45HlEbj51BtE9O+fENjmXeQadwSZAv/mYzjwyxe4+/hTqrrN0CtUagbNmM+3YwfjHRgiaRLU4fXxLBw9kIiK1ShRtbbk+v7hEVR4ZQCj3n6bpUuWOFzdN6hfn4oVK/Ldd985pZxkx/vvvUfretVpX71MgeXxnjaeZvABTwIQRcE+0x2zgYh8BC3pVgs3TXre9NA6nbMrPYFBL7jazwT/RptdEDz1Z92sp+WTDrf5xTVTOjXUjmXXsuOYPoWaaneJv8mOZKuZxxYTJR381i6bdJRRaiXFwaIosij5EQPcA+0SSclWM/vSk/jY1z6R1NMtADeZPNO/jf9hG2+2rZepyW0wmRmwYC2z+rTOLKi8F5tIny/W8MXgDpmBttVqZfHixSxfvpypU6cyZ/Zsp3TJDLxe3Rbs/hP+TaZQZwbepsRIInfNwxp9HnlwdQStdEEjuHgjL9kGa+RJLLf3IC/SKLOXRYZ/sybdxfr4HPJizQhrkNWp02o2ErP7bbTF6uBetkWu9ySKIoJCTcKxH/GpY1NDUXmHoS/bi6XvjuCNL5ajcbXFKmGlytNywAh+mPY2r338faYGt0brRp8pn/LjzPG8uWA1ahep7WzScwiLJw2jyfbttG3b1uF9zJwxg1atWtGsefM8d2+1Wi3vfDSXD5d88Z+vTfq3IL9ppRWiKLpley3McfxWjuPZjXZJoClQHJgGzMhxbhwwVyjAXn2CxcwQD3tHfdWoQy9aJQ0DDKKVH1Ie85pH1up349jVfPDzbr7JxmM7cPEW205d5bOB7TLHxizbQrifJ+92aYblN1sL9y/mzWPc+PEsWbyY8ePG5SvQzsDr1YMzDVN+8XcquWVKDV5VOxPe43NEQzLma1uwptmrcsg8wlAUb2EzSrFXJMcEpRZ5idZY465ijb0qOeZerhXaorWI2fM5otVCbtAEl8erejeid32K9UlFuEzlgqXqG2xYMIuoO1nqFu7efvR9by4rp49Bl5LVYlauUNJ/6mes+2I6KfGxdu9Rs3VHbiWbWbVqldP7mPbBB6xcuZJbt27ler8A3t7eDG9dh082/pHn3GeJpx18ANw2pxc423fdlE7JfGT7DhtSqKdxd7qdGWsxobdaCXeiKfwCTwX/KpudH+wdv/aZPOuxFhP+MscqIc5wM5/P+p70RIkkX07sS0+kmcbT4W/hYHoSDXN0TD1sSMFVkFPdQaC/NjWGzq6+koLjs4ZUdKKVetkST78dvYjFYqVXth25CT9so3PtCjSraEtexCSl0vuLn/hicIdMjndycjKvdOzIjZs32bNnD23atMkz0M6Ogvo2+Hv+TekVQtHunxDU8m0sj05hvrMP0WKUzBEEGfLQWsh8SmG+uQNRnyg5LvMsiiy0DuZbe3jw509Z4woV/i3Ho7t9hNRrB3K9jwxqpFWfRNLZLFqeJqgcuuDmLH//LYkCV5UmL1GiSi02fi3NUoeUKEPDLv34Ze77du8hk8no8+4nTJs2jcjISIf34ebmxqdz5zJy5EhEUXQ4Jzu6dO7MnZgEztx2fL0XeLr4J/ZwZU9e8mz/zo7vgTCgN/mEh0xu1+oWbOoHnXNs1x3Vp1Azh7bpnvREBjWrToBnlkGb/dt+Fr7WEdWTlea5u4+ITEjh3S5ZXfIOHznCnj17+H3nTsqUKZPf27VDYQLuv2OU5Go3inScSljHGVjuH0HUJ9nNEVRutuLI5IdY46RBtSBXIY9oiTXxNvf3fC855l6uFWq/EiSeyltzWVukBm4lGxH/17LMMYXWG7HSEH766B3MxqxEXEiJMrTs/wZrP5kiMRxeAcG8POIdfpw1AavVavceXUdP5euvv+bRI8dZFhcXF+bMmcPkd9/N834BBs9bzf4Lt0hMcy6b+Dwi3mLGz4lMmTM8NhsJdSBPlhMnDCnUzaWI0iRa6f6Cq/1vxlO32f8riKKIDApcd6EXrU47nmbAKFpJspqdNqIBmyRgPY3j38IVUzrlc3CyN6XF0d/dPoFjEq2cN6bRSCPlNm/WxdHfPVDy+eZv+4vZfV/K/P/b0fHciIpjWKus3cAvt/3F2+0bZAba5vWfMm36dLp26cInH3+cr667jlDYgPvv+De1XwRFe83Dt2oHLHcP2NROckDmVRRF0SaY7xxANCRLj7kGoCjaCMvdA1gMWTKyMoUK/1bjSb68E0Pc7VzvQRBk+DYaTvrDs6Q/PJ857lq8HkUrVLWT/mvZ/w0SH0dy7sBOyXiddt0QZDKObV9v9x5uXj7UGzSWcePHO72Phg0aUKxoUTZszLsWRxAEpn21lM83H8xz7gv8feQ32O4qCEK8IAjXBEH4VBCEnMvucEEQogRBuC8IwhpBEDL3uURRvAYcBm4C04Gcy7Y0YCrwkSAI+VpGezoItE2ilRumdMoppdsve3NkHkRR5I/0JHrUz5L/OXvnEd6uLhT1z+KYfrH5IGNfbphpxExmCxMnTmTeF19IONmFxf/CKCnc/QlpNxlZ7GmCKjWyOy7I5MiLNcGacAdrwm0Hx5pieXQCU+JDyTHPal0wRF8j/eG5PO/BrWxLRLOB1OtZ2QKVb1GqtWjPtsVfSOZWbdYWF3cPjmyRZrvK1WlMSImy7F+z2O76aq0rdfqPYsLEiU7voVGjRoiiyMGDeRsZmUzGgKbVWL7vZJ5znwWeRaYPIF204iIUrLApwWrOU3NYFEUemA25Zq2DFWq7dtUv8NTxr7LZ/ysYEVEVsC7Amo+sINh2enLjdZtEK2lWi8OOkpFmA35ypYRCEmcxoRQEh/NPGVKppnaTKPckWEyk5tghumlKR/0wGf9siaTvdx9nWKvamb4sMS2dvedv0qVOhazr33rIpUuX8sX3zQuF8W3w97LcAG6lmuBZqiEu5mgJ3TEDgsYLRZGGtgy4UdqbQXDxQRZYhQe/TZHs0soUavybjCTuj2+wGnNPuAgyOX5N3yL+yArMuoTM8Suy+lw+coB7V7L8oyAI9Jw0mx3LFpDwWJpZ7jZmGn/+uoLH9+x3X8vVaYxarWbzZvveExl4//33+XjOHIxGo9M5GahduzaPk1K5F5uY59wX+HvIjxVaAJQF/IDO2Ph62dObfwCVgBCgFqAHdgmCkLlkF0VxmiiKgaIo1hdF0dEScRmQArxdqE8BnDGkUVUlNUZxFhNG0SqRTrps0lFEoZYUSn77+9FMnjbYMgGPElOoXyarGOSb34/wUlF3OyWS/wX+TtCt8i2GV42exOz+jJDqrQit1S7zBSDIFMgjmmONuYg1RZodFhQaFEUaEbPvSyyG1KzxTCPzg8TIAFgMqcTs/yoz2yAIAr6NhpF8YRvGhPuZ806nV+bhjStcO3FIcn6nt6bw14bVdoan/bCxXDi4hzsXz9h9xvL1bLsR27dvd/o9zJo5k/enTnWYHc+JPo2q8vNf5zBbcqfKPE/QiVZcChiEJFjNeDtY6GbHY4uJALnqhZzf/xbPhc3+J5BuLfhzniJacM9HEfAlo84uM50d103plHISjJ8wpFIrx4LzvDGNKk6u96c+icY5stoH9Ek0yaHi8bsugVYuWUmjNL2Rvedv0qFG2cyxxXuOM7hZjUzZN4vVysSV25nbrlKBdwCc4e8E3H8n6Pas1gWrUUfyhe12vg1A0PoiD62LxQHlROZVFME1gISjKyXjSq9QPCq9TNzBRXb0jLSbf5F6PYtmqNB641NvELH75mcG7YJMQe93P2btJ++h12X5TVcPL7q8/T4/ffSOhGai1rrSc9JsVs+cgMmQvezChor9xjJz5kxSnsjy5kRgYCCdO3fm20WLHB7PieGt6/Dt70fzNfcFCo88rZAoiidFUXwsiqJVFMWLwBigW0ZGQxTFW6IoXntyPAp4DZsRr5vLZXO+hwWYCLwrCIJvXvMd4U99Eg1zGJ596Yk0zcGn+12XIOloF5uSxqX7j2lcPqvoZP7WvxjVrkHm/yfr9Px08CxjOjTEvP7TwtyeQxTWIGWgsEZJW6QG2mJ1iP3jW4nxyDBMYXU7Io9ojiXymK0zVzYILj54VetO7N4vJRkAhdYbn7oDiN3/lWRcrnZD7uJB8rmslbhM6YJfkxHE/vENVrPN4AmCjZO24avZJMfFZM5Vu2jp+c5H/PTRRMymLOMoVyjp+95cfpn7voTXnYHK/cczbdo0UlNT7Y4BlCpViurVq/Pz2rwzx1593qNFpZJsPH45z7nPC/SFCLbTrBbc8siGXzLpKK9yXhj5As8ez4vN/ieQLlpxyUN5KCcSLHkvKiEj2Hb+rJ83plHRSfB8wmArrMw5v5KD+XqrlYdmIxHZiixFUeTP9CQJrURvtXLVlC4J2NcePkfXuhUzA2u90cSvhy/Qr0m1zDm/Hb1IrZJhlA19utSuv+PfCht0C4KAX6PX0d09hu5e1m5k9sA7vNlgZAEVbQF3jlojWWAVLOmJpFzdKxl3K2krrkzNMe4SXo3kC1swZtvtdQmpiDqoHElnfssc+3FPPE17DuGXT9+X+NyS1epQpHwV9v4k3aUNK1WeGq1fYdM39h0k3b39GDlyJB9Mm+b0e3jrrbdYtWoV8fHxTudk4OWaZdl34SYp6faB/Qs8PRSGs52RCnS2BBafvAq0RBZFcTtwDNv2ZIFgFK3cMxvsKr7/0ifTIBtfTme1cM9soJxSm7k9v+rAaQY0zeqSlZCWzslbD2lTNUuvdNUfp+nXuBpq5dNXSnwaAXdhjJJHxbbI1K4kX9jq8HhY/W6EdvgAIeYMoknaulxbrBbqoHIkHJMWIrqEVkYdUEpSJALgXasPunsnMURfzxxT+RTFrUQjEo+vzhxbtvUBHUdO5seZ4yUGKax0BSo3fokdS+dLrusbEk6Lfq/z62f2j4yHrz/Dhg3jIydSSQDvTp7MF198gcFB9iAnhreuw6L/0OrfIopOFRScQSRv7uslYxoVlC+C7X8Z/nU2+59Cumgp8KIyMR90KasokmDNve7hglHnMHhOt1rQiVa7RjY3TXqHRZkZgXn2395ts55AhUrCK//LkEw9jbtkV2nlgdMMalYj8//XHj5P59rlcVFlvfeiXccY1c7WaOVpJpPgf+PfBLkS/xZjSTz5M6Ykx7U74a1G4F2pDZb7hyS+RhAEfBu/QerVvegfS2uXfOoPIeXKLowJDzLHZCoX/BqPsCWZLFnt4r2qdSU98rzE5x2MKoJSreHoVml9U9uhb3Px0G4eXLsoGW/UdQAJjyO5cHCP3f3rKrTk8uXLnDrlWM1Fq9Uy+u23+fiTTxwezw5N90n0bliFH/88nefcFyg88rRCgiD0EgTB68m/SwGfAZtEUdQ/GWsvCEKYYIMP8DUQCxwpxP1MAIYBBVpiPzQbKaZQS4xRmtWCWpDhms0Y3THrKaPSSuaduxslaVsaGZ9M+bAAiQ5zmsFIqE9W0P5vM0hQOKPkXrYVxljnqhxKrxB86vRHmXydkJptJVtynlU7Y0p8SHqk1EB4Ve9u62yZnKV6IsgU+DZ6nfijKyWGzb1CGwwxNyUc8O2XXAgoWpyTv0sD9qa9hnL95GESoqT8tuotOmA0pHP7gr3RMVZpw4EDB5wWS/r6+tKubVt+27DB6XeQgTBfT/w8XDl/NyrPuc8L8lOxXlDEW834F7Dw8t8GQRDaCIJwVRCEG4IgTPpf309B8TzY7Jx4VrUJCgTMz+A514tWXPMI4lOsFodB+0OLzV9lh0G0ohYEhwvgG+Z0uwz6VVM6lXME8leNOqqosqgpZosFi8WKv0fWvBuP4qhdStoaPt1gItDz2dVQPC3/VhDINe64hFXFlOzcXntUaIurfxG8nvj2DP8mU6jxazaK+ENLMpWzwMbf9m3wGvGHl0psp8q3GNoiNUi5sjtzTJDJ8Ws4zM7ndX77ff74ZQWpCXFZ96pQ0m3sh2z+RhoYC4JAzwmz2LH0Syxmk92xj2bNYubMmU4/X69evdi/b59Tukl29GtcjdV/nn0mPuGfwr/dbudnyT8cuCUIQhrwOzaDPDjb8abYshupwEXAF2gliqLj/ftcIIriWWANkHc/6GyItBjsKsIdFWk9dKCm8CghRWJoDCYzKoV0q7xkkB/XH8XxLPE0DBIUzCiJZr2kkY0juIRVQeHub7d9JggCvg2HkXB0RSYVBGxGxqdOPxKO/iCZr/IKRekViu7OMck1vGv1IeH4T5K5bYeMZu/q79GnZRkJmUxG60Fvsn3pl3b32P61cWz77jM7QyGTyXj77beZ96X9ORkYMnQoS5YsyeUbsEHRZQKDm9Vg+f5/rlDyWQUgABpBht5B1X5uyE/as4WLl2SB+7xBEAQ5tuCzLVAe6C0IQvn/7V0VGP96m/1PwVUmJ1UsWK2Fq0yOLo9aDqOYe+FlqtXiNBiPflLXkHPM2SI10mwkJMf8+478m8VIaLZ+B9FJafh5SANyo9mMMod/C/Pz5EF8FhXvaSeTnhYKGnBbTXpkefg3n3qDSD63icDyUgaV0j0AtzLNSDr1q2Rc7V8ChXsgutvSdalHpfakXNkjKaJUeoWi9AqT+Dy1i5bWA0ey9bvPJOeHliqHq6e3Xc2Su48f5es15ehW6X0AVKtWDUEQnGa3ZTIZPXv14qeffnJ4PDt83LSUCfHj6PX7ec79N+J5sNv54Ww3FUXRRxRFV1EUI0RRHCuKYnK24xNEUQx5cjxYFMVuT6rZ88STa8/MMTZYFEWhIM0RHpmNBOfLGBkIzTGWnK7HM1vDEqPZYhdslwjy4WbUsw22nybya5SsZgMyZd5iAt61+5JyaSemlGjJuMLND9eSTUg6I5Up0gRXQJArSb9/RjLuVb07SWfWSXhymuByiKJFsmWn9fCkcfeB7Fz+leT88vWaEhd5X6LJDRBcvDRegSFcPrLf7t67dunCn3/8QXR0tN0xgCLh4Xh7e3PmzBmHx7OjeaUSHL56jzR93lXe/3a4yeSkFjDYzk8TmgYaT4kOcEGxLarA8d7TRm3gxhNesxFbINnxf3xPBcLzYLP/KbjJ5KTm0QMgJ1wEGbo8AvSMTLQzRJrtE0AZeGwxEiBXSp71GIvRLgDPQKzFZEdXceTfUq0W3LNxzSMTkgnxka6BHPq3QB9uPEfJpPz6N9FsQMjDv8lUWrzrDCDuz2/tkjXu5Vqjj7qCMf6uZNy7Vm8ST6/DatJnXUfpgnu5ViSdl6qEeNXI8HnmzLEqzdoS9+iBRJ0EoO2ro9m+ZJ7dfTTr/Rp/rl+JUW+vhjJp0iTmfPyx0883cMAAVqxYkWfGWtFlAoOb12Tp3hO5zvsX419vt/8TvZJzrujBSbBtls7LeACz00pMZovdyr94oA83H0sLDZ7F6v9pGSTIX8AtmgyZHbVyg0zpgk/9wcT9+Z3dj9ajQhv0D89jjJeuiL1r9yfhxGoJj03h6oNLWDVSr+2Tzq3Vh4TjqyXXrt2uG3cunObx3ZuZY4Ig0P61sWzPIREI0HboaHYsXWCnLiKXy3nrrbeYv2CB08836q23WPDVV06PZ0Dd7R061ynP+qMX85z7b4ebICetgEFIZfWza+u7LSo1X4G24BWIosuEQr9kRSuCrVjwRLbXsGxvEQpkf5gfPBl7gWeEZ7mDo0LAWMCtcVdBhi6PhWhekoKRFiMhTrrqHk/RcSvJFnxlPPPOMtuWJ/eek16SYrVIek3orPbc9Mj4FEK8pUWYRrMFlTzHzm2wLzei7JuEPW384/7NbECWD//mEloJhXsAqdf2S8YFmRzfBq8Sd3CxtOhf44F72ZaSAkgA97ItSL93QqLIpdB64xJenZQrWTvDgiDQedR7bJg/S+Kv/MOKEVyiLOf++F16f27u1GnXjT9+WWF377Vq1cJoMHDunGPZXV9fX6pVq8bu3bsdHs+OeqWLcOVhDAnPoKeEvO0bhbbZ8uovATTMxWbDc2C3/xPBtqPA+oHFQFiOsViLCb9sncSSdHo8XKTbTCaLFXmO6nU3jZpUvQGj2cyzxj9lkKxmA/qoS8jy0SUNbN2wlJ7BpN2QdlMUZHJ8GrxK/F9LJMGyws0XbUQ9ki/ukMz3rPIKyRd3SLhwKu9wlB7BpN/L2g6TyWR0emsKG7/6SHJ+8So1MRkNdlkBn6BQileuyendW+zuvXv37uzZvdtpZXaDBg24efOmU253dvRrXI1Vfzz7QpJnGYAAuMpkBd5ezw2VP5nq9NXswMZcX7X2/MYHF3dlvv4B/CqKYs1sr++yHXOUrnx+iYz/z1EYKTttPmgkBtGKMpdrO9ptzVhQpmDGDYVkPMZiIsCRHreDoD3NakGbI7B+6GBeVGIyQTmCbUf+rVSQHxfuSTsLPysqyT/l30wp0ZgSIxHy2SXXu1Zfki9sxaKXKlupfIuiDipjR6N0L9eK9IfnJLu9gkyBZ5XOJJ1eJ5nrWbkjKZd/l/i84OKlCS9bya426aVBb7L7h4V2SaOGnftyas8WifLWolM2fzVp8uRcCyHffPNNvspHMknZdSK9GlRm7aG8+2X8D3AwF5sNz4Hd/k8E21ZRRJnD+BhFEU2OMQEkldoapQJDjgC6RJAP1yLtV/l9Glblg5/zXh0+DTxLg2ROjSH+2CoebXwXmdIFt7It830tz2pdSLliXxmt9otArvWSVF4DeFRsR+r1/ZItNJnKFW2xWnacN8/KL5NyeafkfouWr4LFbCb24T3J3Jb9hnNg7XK7+2jaawiHNq62G1coFPTu04dff7XnvYHNIffv1481P//s8Hh2hA+dgUIu43Fi3kUn/2b4y5VEW0x5T3zGSDUXjMryD+ABkL2CLAx40c/4OYZCEDAWgDKlFmQY8pivFmS5ZszTRSuuTmQyTVhR5XC9NlqKvTvWi1a0Oa5jFK12vs0qiihyxBsalRKDSerfSgb5cDUyRjJWp1Q4Vx7GcOzG88fXze4vRFEkPfIC0bs+JfbA13hW64LCNX+qlDKVC26lm5J2y75G2KtqF1Iu/y7pTCnI5HhW6UTKhW2SudqIOhgeX8OarWmOTOVi83nZuNsAzfsM4/CmNZIxT79AipSrwpWj0qSWQqWmdtsudsE5QN06dXjw4AExMTF2xwDKli2L3mDgwYMHDo9nR+c6Fdh66kqe8/6F+Nfb7f9EsO0ISgRMOQymQNa2XPO5PRwaoyJ+XtyPS8SSY2X5Ztt63IyKZ9upLG7x0179K5TKzNfIOkVoXsLvb70y8FbfSqTdOcbjnXOI2bcAlW8EIZ3m4FW9G/ICUAMUWm8EmRxzqj2/z71CW1IuSbPYMoUabXh1OwPmXqalXdCu9ArFakwnKVaaYanVpjMndm6QjEVUqkHM/TukJEgXRV7+Qbi4uvPoVhb9NGP136N7d9b+4rylfJcuXVi/3r5FriO0rFySXedu5D3xX4wQuZpH5qevq7ps5zZemjyO1pPHsXSHTVby/JXLtOjZjWptWtG0Zzd+ObCXs3fvkmq28unX86nWvBE1WjRmwYolJDjQTP+HcRwoJQhChCAIKqAXsOl/fE8v8DcQJFcRZS5YnUV2X+EI7oKclFxoWFZEMvI6OSlSjjQWZQg4ejs5YM6RoFMKMkw5xlxlcjvqS7CXO48SpEmBemWKcuiKlIOsVMj5/o0ujFm2RUIheFb+7Wn4tuz+begrRUg6t5lHGyaRdv0AntW6EtxhOq4R+ZaNB8A1oh6624ftxmUqLerAMnY1SNqiNUmPvCApihQEGa4lG0ka3QC4lWqKb5p0R9TTLwCVi5boe9KeUQ279OPQbz/a3UfNlzpxYucGyQ5ypn/r0cNpMgmgZ48eufq/DIQPnUFKuoFU/XOnuf2vt9v/2WBbIQh2Bkkrk5OewyDJBEGyZSMIAjWKh9pV5QqCwDfDOjHz173cf45am965eIa5QztS0S8B79p9CX75Q9xKNEAopDybNqIeaQ4MkjqgNKbkKLsOku7lX7ILwhVuvsjVbhjj7kjGOw7oZxdYV2rcmnN//G73N6r3Sk+ObLanWtR7pSdHcuiYLjr1iKCgINzd3Lhxw3GQ7O3tTWhoKBcuXHB4PDtaVynFrrPX85z3b0awQkWk5ekWel59cI81+/ewYdpHbJv5CXvPnOJ21CPenPIuE0a+yYcffkjvLt05d/I00fGxnLl4gfVbNrNp9Vp+W/EjK1et4vzN/+33KoqiGXgT2AlcBtY+aQzzAs8pQuQFf9Z95Erirc53ftxzUTnZFpXKbZ2Jo/HpDusQbMG2NNwWcLznrRAEu6BfKQiYcoy5CjLSctxPiI+HXbBdu2QYR67fs6u9KervzTudmjLiuw3/iPxbOb+no8W/Y+l8lkweTouGJQlsNxW/JiNR+xUv1LUUbr6IotXOh4FjPybI5LiVamLH9XYr3ZTUawck36PSIxCr2WQnXVu7XVeOb5fSToKLl8ZoSLfb0XXz8sEnOJQHV6U+atGpR3Tv1u2pJZMal4/gwEVHTWP/vXge7PZ/Ith2lIVQOTBIWkFmVxTm7+FKTHKaZKxjrfJsPHbJ7n183bV8Nqg9r327HpPZdp1nwW2bP38+VatWpVeLeqz8biEAC+fOpmW1snRv2ZDuLRvy556sIorF8z+jfb2qvNywBof2SakuYaXKMX7JRjqOnMzE0R3/VitcANeIOnYUELAFwO5lW5KaI2OtcPNDrvWxo5i4lWsl0SUFqNaiA6f3bJUYKbWLliJlK3Hr7HHJ3BqtXuH0nq1YctCAytVtyrUThzAbpSvzRace0btPH1avtqeZZKB3r178tGaN0+MZqDzqU649in2m7dubz+3xzK4NEChX8vgp00huRD6kaslSuKjVKORyapctz8+Hj3D99i0iSpXB292TpvUbsm3X7/h4evPb9i00rF8fmVxGkbBwQkNDuH/3zlO9p8JAFMVtoiiWFkWxhCiKs/7X9/MCfw+FWVj6yRTEWZzX6MgFAWsO/5Izg+28g5Do5Jh9kKtAsM9sY0+LcZXZFzwHe7sTGZ+Dg6xQUDE8kJO3HpITr9QqR5ivJ9/sLIzcev7xNP1bs15DGf3trzTs3Jdxwxr97Xtzjajr0L+pvMMRrWa7JjluZZqTem2vhGIi17ij9ArFEJ21wzp6YHVqtunM8Z3SospKDVtx4a+9knbtAA069eXQBvvsdt0OPTm82Z7uGBAQgI+3N1evXrU7BuDl5UV4eLjTQsrsaFWlFLvOPX/JpH+73f5PBNtKQWYXWCux59S5yuR2q/9wPy/uxCRKxppUiODApdsOg6l6pYvQqnIpZvy61+7Y08CFCxdYunQpf/31FydPnuTkgV3cvWVT5Og3bAS/7D7IL7sP0qhFawBuXr3Cjo3r+W3/Ub5ZvY5Zk8dhyXbfCpUauUKaxf47AbfcxRNBocKcZk8lcS3RgLTbhyWGB2zc7eRLOyVjLqGV0UddydToHj2wOi5u7gQWLcH9K+clc2u37cqx7dJVuUrjQqma9bl0WKpsIlcoqFC/Oef+tC+0exxWk61btzrN3LRp04Zdu3blmdkRBIGaJcI4cdPeYT0vUAoyLKJoFzD8HZQJDefYlSskpKRwLTGNnadPEZ0QT5lSpTl24gRxSYls3L6FyKhHRMfHEfX4MVXKVeTS7ZvsOnYIlVqDRvF8N8R5gX8fQuQqHhaQMuUrVxKXS2YbbKFxRoCdM4Od26/KIY1EyGrzmR0KB0kjmSDYXV/lgEPu7epCfKq9skTH2hVYd8TxDt7M3q1Zd/Qip54E4087mZTTv/2xe8ff8m9qrZQG+XeTSdqIuuhuO+4U7F6+DSmXpX5FrnZFHVAa/UOpz3Iv29yuqLJq07acO7BTmvFWq4moVIMbp6UBfqVGLbly7E+7pFGpGvW4c/GMnQzgolOP6NO3b57JpPzUJTWYMI9j1/Pmd79AwfCfCLaD5SoeWqQPZZBCSWSOsaIKNbeyaWMCNCxbjL3npdQClUJB6yql+PWwY4M0pkMDzt+NYu/5mw6P/x1cuXKF2rVro9VqUSgUNG7cmD3bNzudv2/nVtp07IJKrSasSDGKFCvOhdN5N175ewG3F1ajzm5cplCj9AzGnCzlXasDy9hRRgSZHE1QWcnqH6Biw5Zc/EsaQBerVJ37V8/bBcE1Wr5sJ5MENp73yZ32hSQqtYZKlStz5KhjY6pWqylXrly+qCTVigVz6f7jPOf9m1FMqeG6qWAyT84UR9Q1qlHhlZdZs3oNVz1dSPbX8tm8L3hj3Nts3rCRsBIRKFVKGrVuyfwFC6hXvx4j3hxJbGI8FYqXolXtBnh7eHD30b+qpuUF/gOIUGq4adIXiB4RolDx0AnPOyO4NpohHce7Wy7I0DkMn0GDDH2OYx4yBYlW+0y6r0xJrJMdKEf0knSrJXNXTBAEQnw87HpEvFSlFAcu3nYo8aZWKvju9c6MWrKZlPSnz9vN6d/atmj21P3b3/FtCq03VpO9bwNbgzf9Y/viQZciNUiPlAbb6qByGGJuIIpi5v2ota54BQYT++COZG7FBi24nKMgUq5QUqp6PW6ckRZVymQyKjVqyYWD9mINkcHV2LFjh9PnvFWrVhzYv9/hsexQKpW4u6hJ1unznPsC+cd/ItgOV6h5kCNzUULhYhdYl1e5csmkk2zRv1S1FDvP2G+ZvNWuPl/vOGxXKAm2B/7b1zsx5aedXHnouFlKYVGhQgUOHjxIXFwcOp2O7du3Y4y3BXVrln5P1+b1mTpmJMmJNl5ZdNQjgkLCMs8PDAnhcVT+ApbCGiXRYnbK+Vb5lcCQowW8IAjIXbwwp0ml9zShldE/PC+5j9I163P95F+SeTKZDP+wYkTfl/LIwspU5MG1i3ZbcIFFS5CalEBakj33zq16S9audS6r17xZM/bszXvXokyPkVx7xo0gnjVqq905biicqso9nVnyykCRoGCaVKtFg8rVUSkUuGq0eHh40KJJUzq81JZKZcvh4e6OTCZD66Llxp3bBPvZOn0nJSahVDvWJn6B/y6eNWVKKcgIlqu4V4Dsdrhczf0n87Nnr7NnsL1QkojjQNgDBSlOjrmhIBVpYB0gVxLjIKiWCzZ2d86W82EKtV22vrTShWs5Fs8da5Vn43EpJVKpkDOsVW0W7rCvvQEoEeTLW+3q8+o36+wEBP4uHPm3x5G2LPrT9G+F9m1WCzhRkZEp1GC1SNS1ANQBJTFGSxN2giBD6RmCKVGaIS5TsyFXj0u7RBavUpNbZ+2byVSo35yLf9n7ouotX+bkLvsFikqtQRVSgmPHj9sdA3BxccHTy4vIyLy/v5JBvna9RV7g7+E/EWyHKdQ8yJGFKP4kmyEZU2i4nWPMQ6vB39OVGzlW//4erjQuH8H6I4459oFe7iwb2Z0hX69z2i61MChXrhzjx4+nTZs2tG/fnsqVK6NQKOg5cChbj5zhl90H8QsIZO709wAcrmJzFt/khsIYJdFqQpA5CbZ9i2GMsy+uUAeUxBAjNUia4AroH0m/X1dPbywWi6RVO0Cp6vW4flLqHGQyGUXKVubu5bN271e1WVvO7NtuN166Rn027tqH2YlmevMWLdi7x17eMCdKlixp98w8b6iicuWMMc3p8ZxBxrao1Mzg+tc9Oxj04TsMnD6RX/bYvueLVy7Tvnd3mnfqQN/hr3Lz/j1CAwK5dv0afiFB1GvUkIbNmrJmzRp0+nSKFy3KiRPHeRQTzb0H97lx5xYVy1f4hz79C/x/Qi1N7gvLnM/52TgTl/WOCxwz4IWSBCcBtTtKknFsYxwF234yx8E2QJBCRZTFgX8z2yeTLufIyrarXkaioJWBPo2qsOXkFRKdNDDp2aAyLSuVpNfnP5GW5txGFBSO/Ju/m+aZ+LdC+TaLMVfxAKVXKKZEKX1QrvHAYkiVNL4B0IRUQv9QuktaplZDu5bsGq0bMrkcXXKSZLxE1VrcPH3M7jsILFqC1MR4h8mkGq1eYepXy5zef7Nmzdi3b5/T4xkoGez7zLuK/n/DfyTYVtlltjOqybM/qHJBwE0mJzpJakCdFUS+3b4BPu7Om76UDfVn9ehejOjbnYMHD/7NT5GFIUOGcPz4cfbt24ePjw8lS5akYbliyOVyZDIZXfsN5PyTrbTA4BCiIrNWz48jIwkIKphOd0GNkmg2ITjh1tqC7Tt242r/UhhzBNtytSuIIumpUidYslodbpyWUj1KVa/LjVP2hSsV6jfj0iH71X+1Fu05vce+wY1coaBEldpMWOy4Mjs8LIyYmBj0+ty30EJCQniU8D+Xqftb0MrkuAlyoh0Uj+UWZNx6eJ8th/bx7aQPWfLebA6fP82tu3cYP3UKHTt25P3336dUmTIcP3wElULBg4eR+Pn5MeGdiXz91dfMnj0HHw8vvL286diuA+16dKHzwL7079uPamXKP8uP/AL/T1FD7cZJg/0z7axzqRwbL9qaC/vaC4XTzLYnilyCbTmpOegnzjLbAGFyRzu3Gm7myGKXU7pwMQe9z9ddi6taZaegpVIomN2nDelG57z011rVpmeDynTq3JnExESn8woKR/7N1z/gmfi3grR3h9x3bcG5f1N5h9kF4S6hlezoJf7hxYh9eM+usL9k1drcPCuljCiUKvzDi/H4jr2CltNkUs36XD99hIXHHGumt2jePH87t52G/iNdRf8/4T8RbAfK7Vf+YMsWxOYocimv1HLw8h3JWLvqZdhy8rLdCjLA040WlUrm+t7FArz5dXxfJk2ezLp8SuvkhehoGzXl3r17bNiwgV69ekm6G+7dtoVSZcsB0PSlduzYuB6jwcCDe3e4e/smFavVKPB75tcoiVYLlvREBLnj7X65ixfW9CS7cUeZbYCGrZvbKY2UqVmfayekVJLAYiV5fO+m3d+oTK2GXM0xF2ya2zKZnITH9ltm1Vt24NTuLZkapTlRt149jhzJvSJfEAQUMlmmKs2zQPO5PRBFMc8GG38HtdRulJrzvoR/7TXtXfp8+5HDV6lGtajUsiFfL1xIpRYNKde0LnO/+AKVlzujxo5h/OgxdOzwMjOnTaf5S63wCA6gYeOGfDb3M3r16EGjuvUI8Q9Ao7Z1d508agxn9h3k5J4/GDXoVbzc3PO44xf4r8IkWnPVtv478HzS2jwhW0Cb24ISwD2XgBlyz2xrkDnlc7uhICXHdT1lChIccLbBtnObkwJTXOlit3PrLVeSYrWgzxFAd6xVjvVH7Xdom1YsTrC3h8P3zECvhlUY9dZbvNKxI3fu3Ml1bn7hyL95mbJ8xv/Sv1nS4hFyafGu8imKMf6e/bh/SQwx0houhUcQ3ooUO9naDPpjdpSsXs8uwQRQvn4zOxEAsCWTzuzdajcuVygpXqkmN884rkuqWrUq58/b1z/lxH9h5/bfBkXeU/79yMhYx1lM+GZbldZQu3FEn8LL2bpINXLxZNUfp+lSt2LmmI+blrKhAew+d4NWVUoV+P2DvN3ZsnkzI0aOZPv27VSvXh1PDw/c3d3x8PDA1dUVs8WC0WDAaDRiMBhITUvj9q1b3Lh5k9TUVH7OJjnXo0cP4uPjUSgUzJ8/H29vbwYOHMixU2dsRS/hRZj6yTwASpYpR+uXO9GpSW3kCgXvfvQZcrljzll+kGGQ5q2wp8aIokj8kRVoi9ZE5qQNriAI4KATmkzjgVUvdW6jB1bn2PbbxDyUNlkILlGGPau/t7uuu5cvuuREXD29M8dt1egiZpMRhVK6AChXrylXjx+ibofukvFiFarx62cfODU4tWvX5sTJkzRt2tTh8Qz4ebgSm5KWp8MqDCLjk/n5r3OsiLuFXrTS1dWP5i5ehWo/nRsau3gSaTFQRKHmncXfsOvMKbzdPVg+9WMAktNSmfb9AqLiYgjy9Wdl5WW4a924fOcWX3y7kLUb1mM0m3jz9eGULF2aaxcvEx0VxYiJ40hJS2VX6+1MHjOe5JRk1v26jjnTZzD0le5UKVUWgNXD332qn+cFni+Iosjxmw/4JimSyyYdGkHGmx4hFMlnm+2CoKWLFzt0CfR2D8jX/ABUPMaAF44znVrk6LBgRURmp5stoH5yXIvUHvui4jiJkjGZIKASBHRWC1qZdH55lZbfkxLogX/mmNuTOQkWE97ZfF6PDnX47dglejeskjnWvX5lWs9YwuutaqNRFVzt5+WXXyYoKIhevXrRsWNH/P39cffwwMPdHXcPD9QqFQajEdMT32Y0GomNjeXGzZtcv36dFs2bM3z48Kx7/B/7N0e+DcCiTyH2j6/xbfi60/MFpQbRAfdfofXGnCLt4DhmUA2+OedPWlI87t5ZTXhCSpTh8d2bFC1fRTK27yepzwMoWq4Kv6/42m7cyz8Io16PXpeKRusmOVb+id9bVLOBXTdqmUxGaEgIDx8+JCwsDGew7dw+312S/234TwTbYAusTxlSaaXNCsQaaDz5OPG+JNgOU6gxW9O5GRVHiaCs8YmdGvP6t7/RsnLJQgU0Xl5e/LhqFXv27OHRo0ckJCZy7949kpKTSUtNRaFUolarUT35r9bVlXLlyvHyyy9TvLhUhH+/g4rhFStWAHA51r5SetjoCQwbPaHA95wbHBml5PNbEE3peNUbXODr5fxOM4J6L/8gHt2UcgrdvHxJS7QvzvANCScu8r4k2AbwDytGzP07BBcvLRkvVaMe+35abBdsy+RyfELCiIu8BzVC7N6napUqbNu2zW48JwI83YhOenrBtiiKrD96kVUHTqM3menRoBIf+hRDDixJieK4IZURnsF4yJ7ez9ZdpkAhUxBrNdG1URNaN2rJR8u/zTz+445N1Chbgb5tXuHHHZv4avF3vDduAgqzyM8b1zNn1iwMej3vTn2fPRu3cvnOTSZOnsTYUaNw8XBn1fIVHD52lFb1G6BSKknp1o8p337Oiqkf4+rydBpbvMDzh/hUHUv2HGfjscuUDw+gnsaDYR7B3DcbmJ8cSRONJ+21Psie4uKysYsn4+Ju0cXNjz2PHStOZEcwGq6QShncHB4XEPBFRTwm/LDf6QtBTSR6SiKVp1Mjw4KIGWmL9VJKF26Y9FTO0dXXV65EL1pJs1pwzRaIN9B48Jc+mfbZ/NvgZjUY/PWvkmDb3UVNt7qVWL7/JMNbF6yrYgZq1arFjh072LV7N8lJSURGRnI1OZmk5GSMBgMqtRq1Wo1apUKlUuHj40OL5s15fdgwu6Duf+3fHCWUrGYD0bs+xatmb9T+JZyfLIoOk0mC0gVrNg59dv+WFPNYEmz7BIcReUOqauLm7UuqA5/nF1aUmBzqJRnIKKwsX69pjvFa7F71jdOPULVqVc6ePZtrsO3p6Umy7rnrIvmvRp5eWxCE5UBfIPs3P1EUxYXZ5gwAPgCCgfPACFEUT2Y7/g4wGrgB9BNF8e6T8f1AE6CJKIp/ZJt/A5gpiuLy/H6Qmmp3VqU8lgTbXnIFKkHgsdlIoMJmDJvP7UHK8Uss2XuCj/q8lDk3IsCHksG+7Dp3g9YFzG4rukzIuG9atmxZoHOzw2zKu8nI3ptPn0eVmhhP5M0rRN64QuTNK0TdvoE1W0OH6HgdyBTI1W4EtJ6Yj8VI7ltU2bfzPP2DSIyRSuhlXN9qtSKTZRk235AixEbeo0i5ypL5gcVK8vjODbtgO6REWSJvXkEURbt7LlWtLtdPHYGX7Z1P6dKluXE9b1H/oNotiE6KynNefvHL4fNsOHaJzwa1p3igDwB7t9qUXd70DOWoPpn34+8w0D2I6mrHAUBhUFSh4apJR3CR0hArzc4cOneKL8dOAaBNvUaM/+Yz3hs3gXPnz9K3Szea1qjD5Ts3CQ8N48aNGxQPDQVRpHXjZpy6eolur3Tm9317aNmkKQBlikYQ6hfI/egoyhYtXKe3F8gd/3abLYoiwxdtoEWlEmx/bzDuLmr2jrcpBBVTavjIpxirUqL5MOEeb3mGSHYr/w6Ugoy6ag+O6JPJT57JDxWx5N4MJxg1j9A7CbY1XCfNLtgG8EdFDAaCycrgl1FquWbS2QXbAFVVrpw1plFfk7Wwb6Dx4JPEB5JgO9TXE39PV87cjqRqRFYi4fXWtWn14RIGNq2BSyGy22BLKHXv1q1Q58L/xr9ZrVbiIu9l+rbIG1eIj3oo8QfR8elYTXo8K7+CNrxa7hcURXDg/2RKDdYnHHqpfwskMTqKsNJZhd++weGcz9EHQhAEBEHAarEgy5a5VyhViFar3TjYiv2vnThkF2y7uLkjiuITkQF7fnuVJ8F2+/btnX7Mp72D+gL5z2yvEEXxVUcHBEFoCHwDdAYOAG8D2wRBKCWKYrIgCCWBpkBxoD4wAxiQ7RJxwFxBEOqIf6NPbKhcRZTFhEm0osy28myk8eRPfRLd3LK24NpXL8Ps9ftJN5okhmdCx8a89s16WhUyu/1P4PXqwU65xgVBfNRDTu/ZwrkDv6PSaAgpVZ6QEmVo3G0ggUVLolRn8dZEUcRiNrHgx3MIDlb1BUFO3pynfyBJMfYBq4dfAMlx0Xj5B2WO+YaEExtpz5cLiijFw+uXqZpjXCaTERBenMd3bxJUTMq9L1mtLntXf+fwHuVyORoXF1JSUnB3d84h9vf3J+bW09Faj0lOY96WQ2ybMggvV8dFuXU0HpRWuvBVciSXjGn0cw98Ku/tKpNhFkXMDnSBE5KT8H2yk+Dr6U1cvI3H9+DRI2pXq47OoOdRbAzFwotwP/IhSoWC4MAgrt27Q7GgUNQWkcioKKyirXFHZEw0D6KjCPHL31b+CxQa/1qb/evhCwR4uvJ66zoOj6sEGUM8gjhrSGVGwj1e8wiigso+AC0Mmrl4MTP2Pu3J+7cjR0CNzCEVJANBaDhBIpUcHAtAzSEcy6cFoeaxXbDtwkG9fb0L2JJJO9MTJMG2t1yJUhCIthgJyFZD81qL2izec5yvXu2YOeamUdO9XiWW7T3BiDb1cvvYzz2sViu3z5/k9O4t3Dx3nIDwCIJLlCWsdAVqt+2KT3CYxL9brVa+XH4818LIbFd3qIYiKDWIJr2df/PyDyIpVppM8g0JI/6RfdMYz4AgEmOi8AkKzTG/CHGR9/APj5CMF69ck+1LvnR4l8Ur1+TWuRPQqLTdsWpVq7L6R/vulDmhkNtqkpSKwtN2XiALT2M/+jVgvSiKvwMIgvApth71nYEV2IowZYA827+z43tgINAbcN7+KBvSHRSMCYJAeZWWC0Yd1bJl/epqPJgaf4eurn6ZPzCFXE6n2uVZc+gsg5vVzJwbEeBDmRB/oks0pIifV35uxfbeyrx/pPlZ1T9rJMU+5vTebZw7sBOlSk21Fu15fe5StB6euZ4nCAIKpYoxg2o65btJ4MT9Bvq52q3QNVo3u25YAD5BNoOUM9i+esJe9SWwWElO7XbcGKFU9brcOH3ULtgOLlGGR7euOTwHoErlypw9d46GDRo4nRMQEMDDM09HFmviD9t4t2szSaCdke3LDm+5kve8ivB50kO2psVJslp/B2qrnKRcisFy4nF8HJdu38T34jkqlSzDFpmMhOQkjl06T0JyEhq1mvCgYB49fIDJbObAqaMIgsAH333J2L5D8HB9epn5Fygw/nGbnYGYpFQ+3/In26fkTUWronZjqkLNhwn3GOcVRnguhWv5RbBChRWRFMy458P9BTmhgmQgQ5HE1oJdGoTJEXBB7vC9gtDwJ3FUJcv2BsiVPLYYMYpWVDmSGiWVLnydHIlFFJFnCxQbaTw5kJ5E92zJpCYVIpj68y5iktPw98i672GtbNntN6dMR1kA3nNe/u1p+rbCJpNEUeTupbOc3ruV6yf+oki5ylRv2YHOb7+PXJH731kmkzFmiG3hl5d/E60WkNknnGQKNaXC7Glxnn6BdtK0Gld3DDp7v+EbHE5c5D27YDuwWAke371pF2yrta4olEp0yUl2PrxktbpPulL2sXufokWLcv++Y7WS7PDzcCUuRUeQ94ui9aeB/KYpuwqCEC8IwjVBED4VBCG7p6wCZG4/Psl0nH4yjiiK14DDwE1gOvB+jmunAVOBjwRByJc1jXdStW0rgJFmEtxkckoqXTiRQ/bp9dZ1+G7XMbvK7Sldm3H6dqTDZjbPI/RpKRzd9ivfjBnID9NGo1AoGTzjK974YgV1O/TIM9DOibwquq2mdASFY6USURTttsKcQaXR2LWqdffxIzXBPlPk6etPaoLjyumgiFLE5GiGAzYD6+blQ0xMjIOzIKJ4ce7dvevwWAbcXF3RGXLfZs4PNh6/hCAIdKhRVjLurNmHIAi85RnCeWMaa1NjCtQZzxk8UZKMiZwrJW8PT+Ke6LnGJSXg62ML7mtUqIiXi5am1Wvj7+XNo6goKpctzyvNWqJPT6d8sRIIQGTUY4qGhdGsRh2aVq/N4imzaFD577VUfoF84V9lszMwbsU23u/WwunuTU74yJWM9Qrls8QHXHPQtbYwKI87F8lf8VdxtNzA+YJaQMAfFVE45rdGoOUW9vftjgI9VkxIlSoaaDzZk55oN18uCFRTuXHEIJUbbexi27nNrlgkCAJvtq3HZ5ukXQndNGqGNq/JuTtPj/r2v0bM/dtsX/Ilc4e8wsH1Kyldoz5jv19Pr0mzKV2zQZ6Bdk7k5d/MKdEo3Ox35bq3CEPrbu9LrVYLMpm9z3O0c+7u40+KAz/m4RvgcBxsmtuxD+39VHiZijy8ftnhObbkmRJTHosk95KVSXsK/u0FbMhPsL0AKAv4Yct8NMGW2ciAO5Bz7ysRyNzvEkVxmiiKgaIo1hdF0T7ygWVACrbtzDyhAC45aMZRXOlCqmjhcY4GN11d/ViXFisJSrxdXehRvzLf7ZZqW4b4eFA8wIfzd20GacGKn6javgdV2vVg/nJbEufD+Yso1rAtNV/pQ81X+rBtma1a+M6dO7i7u1OjRg1q1KjBiBEj8vNxnjrMJiMXDu5hxQej+HpUP5Jjo+kxcRZvffUTDbv0w93HL++L5ILcDJIp8SFKL/vCi7cHOObCWa1Wh4ZHEGR2QaSrp7dDIX+11g19mmMZL59gx1t2YMtuX7pkr68Otmrsh3l02tJoNBiL18x1Tl6ITUljzm/7+XRAuwKdpxJkTPAKJ9piZElKFNa/GXDLEHBFQVqO7HaDytXZcfhPAHYc/pPapcpz/c/jlPEIZO0vv3Jx71/88dtWrl27iluSkeQrd1FYBTasWM21P46xYsVyKgUU4fqfx7n+53FWD39X8nqBZ4J/nc0G+O3oRTQqBe2ql8nvKQAUUWh41zucb5MfccaBVnZBsC0qlQi03CddEug6gw8q9FidyvgBlMSVmw4CarAF67ecBOuhaHiIVL6vndaHnboEhxKI7bQ+bMuRTFILMppqvPhdlyBZnHerW5Gj1x9wJ1pqLwc1q8GjxBQS09Lz5du277ftJP5Tvi0/We2U+FgO/LKcL9/owW8LZhEQHsGohT/T7/3PqFC/GQrV39sBydW/JTxA6W3v35LiovF0QI0zpOueKGZJ4ShB4urphS4p0W5c6+GJLtl+HJz7N3cfP6cBOkBwUBBRjx87PQ42//a0O4j+f0aey77sRTPARUEQxgD7BUEYJIqiAZvBzbmk88KWFckXRFG0CIIwEfhJEIQlec33kilYlxZLeQc8vgyDNNgji34QqFARolDBIKk+5/DWdWg+7Xv6N6mOd7ZMS4XwQLaeuoI+JZEla3/jr19/QKVU0GHoKNo2bQjAqMF9GDu0v937lyhRgpMnT9qNP2tk8NRO/r6R2xdOUbZWQ1r0fZ3QUuWfCf/cmYSSMeE+Sq9Qu/H01BRc3O1VO4x6HSoX+7+jTCaT6JMCqDQumAz2zWZy+3yefoEkOuCEAwQXL8OFixdp0qSJ3bHQ0FAOHTrk4KwsaDSaJ81vCr/NNvGH7Uzu3Axf94Irc8gFgZEeIaxKjebLpIe85RmKohB/64x26wsXf8epa5dJTU2l26Q3GfxyN/q89DLTvl/A1kP7CfTxY/qwUQBEhNiy1QOnT0QulzO61yDkT7ZXx/YZzJwVizAYjdSpUIU6Fas4fe8XePr4N9psk8XCJxsPsPXdQQ6PN5/bwyFtKgMBchUf+BTlo4R7pFotNHQp2I5cdsgQKI0bV0mlInkrCZXEleukUdnJ3BA0HCbBoQSgBjka5CRispMQDMeFm6RRjKzfvptMTlW1Kwf1STRx8ZLMD1SocBXk3DKlU1yZ5a/aaL2ZFH8bvdGUKe0nk8l4r1szZv66l8UjumbOVcjl1C0dzprdh54b3wag16Vy/o9dnNy1CWO6jmot2jPko4USlY+nidz8m2eVTnbjybHRePjZ1wEYdGmo86m65OrhxaPb9tRGVw8vHl5znBTyCQojPspxMsnV04u4uDh8fe2phiFP5P/Cc1Ek0ajVmBr2hrt5N8F5gbxRGM52RgSUYVXOAplLQcEW+VQFCtThRRTF7YIgHMO2PZkr1IIMEbhj0lMshx5rXbUHa1Nj0FutaLJxq7q7+vHpxj9oXrFEZnDmolIyql0D5qzfz8f922bOlckE6pQOZ/6P66lTpRJaF9t7NKpdnY278m51+iyRc+Uf+/Aux7at48KhvYSXqUiN1q/Qbez0fNM1/g4cSSgZHl3GvVwru7nJsY/x8HWw8tfpUGvtjZEgkyE+BSqPXKFwep3g4qW5+Ncmh8dCQ0OJzCOzrVarMej1KLpMwLz+0wLf26bjtm2+V2qVK/C5GRAEgf7ugWxMi+WzxAdM8AortFzatFff4iHp+KDCJVtB2BdjHGeg+7frRP92nezGyxYtnqnTnRsekE4omny3X36BQuN/brMfxCaxaHgXfNwKL/foKVPwgXdR5iTeR8TWM6GwKIsbm4miPO52AXJOlETLdqKdBtsyhExudxj29JhSuHKDNGriJRkPfFJA2TZQmmx4RevLR4n3aazxtEskdND6slkXz9ueWQkNrUxOQ40nKw+c5rVWtTPHm1cswcIdRzh24z61S4Znjvu5u5IYF0vZ0qXy5dvE22dBKPx3XVhYrVaunzzMsW2/8vjuTSo1bkW3sdPwCy36j7x/zoBbtJqx6pORa73s5m1dtJeIyva7nAZdGp7++Stkt+3cJtqNa91zy2yHcvu84wVQcPEyXLx4kcaNG9sdy5d/02jQGwyF9m8vIEWeNBJBEHoJguD15N+lgM+ATaIoZqQYvwe6CILQQhAEFTAO0AC/FeJ+JgDDIJt6vxN0dfXjp9Rou3G5INBY48nudOn2WbBCTRE/L34/K5V061m/EmfuPMqkjWQgwMONCqVKsPfICeISEtGl69lx4BAPHtm2Xr5ZtZbqL/fitcnTSUjK4tHdvn2bmjVr0rx586fawj070pIS+GvjT3z1Vh9++ewDAouVZPSiX+k9eQ6la9T/RwLt7MgIuq1mA4aYG6j8itsdT3gciaeDlb8+LQW1g8w2ON5qcwa5QmnH8c6AWuv6RAZJiqCIUly+csXBGU+22aJy5zaq1erMtu4Z8o/5hc5gZPZv+/hkQNu8J+cDHV39CJAr+TnVMQc9v/BBRVwecmdPdF0rzgABAABJREFUC1dJJeYfeq//T/g32myVUl5g+ogjaGVyJnmFsyEtlhsm+8Lq/EKNjBA03HZC/8gODXLcUBDjhJcNWdlvRyiKC3fQIeaoh5Aj4IWSuzmapPjIlZRQaPgrBz8boJJKy32zgbgcrd3ba31Yuu8EqfqsawmCwKw+LzH5x512nW7bNajJ4ZNnuB8V86/ybQCPbl1ly6K5zB38Mmf3b6dx90GMW7KRlwa99Y8F2hnI3nlS//ACKv+SdscBEqIfSYr5M6BPS7FrOuMMLu6epKfYq9G4uHuiczAO4B0U6rBLMtiSSc5oksHBwZKu1I6QkUx6gaeD/GS2hwMLnxTCRGMzyNMyDoqieFAQhBHYDHiGZms7URTtLUUeEEXxrCAIa4BBec2toHLld10Cf6Yn2WU42ml9mBR/m6YuXpmdtgCm92xJ109/pH6Zori72HhdMpmM+UNfZtg369k2ZTCumqzivm7N6nHkdBtaD3wDTzc3KpcthUIh5/U+3Zgy8lWbusK8b5g45wsWr2lEcHAwt27dwtfXl5MnT9KtWzfOnj2Lh8ffa3oSFRXF4SNHOHz4MMeOHeNxmpHKjV+i73tz8Q60b8ryv8DogdWZOnwU7uVfQnjynWfnvt25eFrSMSsDUbevExRR0m48NSnBrnlNbpArlVjMZod8PaVKjdloJKeggNpFy4N4x4VSKpUqzyp7o9GISuW4GDQvrDtykU61yuPn/nQkzQAGuAfySeJ9dukSJHrzeSEnd3oH0VTFgyA0Ts54OiiLO5dIIYC/rzLxAhL862x2qM/Ty4xqZXImeIUzJ/E+k7zCCXJSkJ0XquLJNh5TDC3yPLLb5XDjEqk0cfKsBqHmLxIwYEGdQyZQiQx/1Dx0kPkugSv79YkMUkoDtb7uAbwff4dKKldJEytBEOjp6s+qlGjezkbXc5XJeb1VHT5cu4dPstV/lA31p121Msxat49pPbN6QFQuU5IxQ/vTasAbBPt55+rbvp/9wTPzbVarlUuXLnH48GEOHznCgeNn8AsJp3qrV2g96E1U6mdrg/KLN7qX4f3eEwlonZVUye7fHt26RmAx+2Y4UbevU7td/rTJzUaDQ/+leOLbHEGp1mA2OU5YuHv7ERt7x+ExDw8PHj58mOv9ZPdvL7Lbfx/54Ww3zcecH4AfCvrmjq4tiuJgIF8tCl/zCGZK/G0qqLT4ZNPIdJHJ6fgk8/2aR5aoe7C3B8NfqsOHv+yRFKSVCfFnaMtaTFy5na9fy9ImVcplTB85mANNm9C2Whk+/PJbwoICCPTL4kAN7dGZTq+PRrx9FnVEFdRP9Klr1KhB8eLFuXbtGjVr1iQpKYmx48aRmppKWloaBoMBTw8PvH188Pb2xsfbGxetlsSEBGJjY4mNiyM2NpakpCT8/PyoV7curVu14r0pU/jpxtORm3uauHH6KCHaZF6f8yVf/nDarsjk5pljNOpizwN8cPUCxSrVsBtPjovG0wHtxBkccbwzIMjsiy2fBvR6PS7ZKDAFMUgr9p9k1aieec7Li8uaHXJBYKxXGB/G38VbpqCmpnBc8rp4c4A4XiHwmVI8QlBzhAT0WNA40TF+gYLj32yznxaCFCre8gzhk8T7fOBTFM98dFXdFiUtrtQipziuXCTFKUUkA6FoOEqiw2AabKokpXHlqhNud0XcOUGiXbBdFBd2GR7T300q6echU9DHLYBvkh4x0UuqC11T7cY2XTxXjTrKqLLsz8Cm1en08UoOX7tHvdJFMsfHdGhAl09Xsf/CLZpWzNp1HD2wFy2aNkVnNLF50yanvg1sWU5nvg1g9+7drFy1irTUVFLTbP4pw69l+DiA2NhY4mJjiYuLIzYujvT0dMqWLUu9unUZ9dZb1DT6FlhB5J/AxoVz6DpsOIdj/e18W2JMFG7evsgV9hKJsZH38Q0Jl4wZdGkoHSwi0lOTcXGzf3YEmRyr1XGBriA4p1u6uLnz50nHWW+tVotOl/uuTrpOh4tL/lSDXiBv/Pue6gLATSZnkHsQC5MjmeJVRGKQmmo82aVL4K5JT9FsvO7+jas5NEj9G1dj3/mbrDtygT61szorGdN1VC4SxLo/TrDh9738uXYZj6JjCQ6wFWZs3LWPCqVsK9qYmBh8fHyQy+XcunXL1lHvSSt2V1dXxo4Zg5ubG66urqjVapKSkkhISCAxMZH4+HjS0tIoXaoUfn5++Pn54evri7u7u4MCwH9XsK3XpfLb/Jm8OmcRgiDYGSOTwYBBl4abt32hxv1rF2nYdYDdeHJsDO6+0uKX3AJmWW4GKZdAPOO6hSki1el0uGgKnnk5deshId4ez0S/VC3ImOQdzrT4u3jI5JRWFZwj64USP1TcQEcpJ/rCTwMCAmVx4wqpEr3hF/j/iYIsLAFKKF3o7x7I7IT7TPMuKqnRyS8q485vRFEa11wXfALCE+61jgpOCqJLP+GBV8LdbpHqiwoDVjvNbTkClVSunDak2i2O62g8OGJI4U99Mo2z7d4KgsBQjyAWJD1ktk9EZo2GIAjMG9KBgQt+4ff3h0iKJb8d1pkun65i4zv9ySiJi46Lp2LRINbsPcov23dzZN2KQvk2gCpVqlCkSBFcXV1xc3PDarVm+rWEhATiExIQRZFqVatm+jY/P7/MAD4DVcmfIsk/ictH/yA5Npra7bpSx4GfuHn6GCWr1rYbT0tKwNXDnnefHBftkFKZnpLsUERAJpdhtTj2bTKZgOig7wiAi5sH6amON6u0rq6k5RVs6/WSYPtFdvvv4bkOtgGqqd04pE/iL0MyDTRZBkn2xCAtToniQ++imQ98hkEaMH8tu6YOzTRItvGXaT9rOS+/NjqTZtLzzYnEJSZhsoqMHf4a3p4eDBr/PmevXEMQBIqGBrPwQ1s76z///JPp06cjl8uRy+V8/fXX+PjY2m4rFAoqVKiQ/dZxd3cnLJdq4OcFG7+aTZMeg51SWu5eOkPR8lXtxkVRJDnWsWSS1WJGoZRuD5sMeocZAQBBLkd0YpAEnBskpVrDV0fu8Fa9CIfHc0N6errdyj8/BmnxnuO82rJWgd8vv3CXKXjHO5yPEu4zwSuM0EI0A6mOJ9uIpgTaPAvI/g5K4comoqiMxzN9nxf4b6Ka2o0Eq5m5SfeZ7FVEkh3ODxTIqIQH50mhVo4CxpwohSs7iHYabKtzoYuATd/7EinUQUrxauHixS+psQ53ol51D2Jy/G1qqN1wzUaJDFOoKavUsic9UUIZiwjwoWeDyny84QAf9MiijQR5uzO9Z0uGf7eBzS172OgoT3ybQiGnf9++oFAyecanDn3bH+tW8uE3Kxz6NrB10/X3l9L2vb29iYgouF39N0GXnMTmhR8z/PPlThMyN84cpXbbLnbjD65dkrRpz0ByXAwevvYlDk4z27lkrxEErFbHSSgXNw/0qY5pkloXF9LzCLZ1DjLbLwLuwuO5D7YB+roF8GHCPWqq3VFn67xVUulCsFzFAX0STV282Dt+Lc3n9iAiwIfeDasw/Zc9zO7bJnO+p1bDvCEdOHDpNq2rlEKlkLPvp8UAWEWRXWevc+VhDMvnznB4H126dKFLF/sf3dPG02rZ7gyiKJKemkJy7GOSMl4xjxFFEZ/gMHyCQvEJDsPDN4DDm9aQmhBHrTadnV7v6rE/KVm9rt14wuNIvALsi0osZhOCgyxVWlKCw8YBYJNZyFmAlHVQACdZcY2rm1ODBLlnvXU6nYRGkoHcDFKSTs/5u1F8na2Vcl4oaMYPbFJpb3vamoF86FNMUruQH7ggJwQNN0ijNH+/2+Mh4qmOp0TlBECFjCA03CWdCAqvVPEC/3/R3MWLGIuRZSlRvJqNNphflMKV33hEJdxzzW67PCmUjMbgtM6gghO6CNga3JwmiWp4osqmTVBc6UKs1USixYyXXOqSXWVy2mt9+DUthoHuUlvZ082fyfG3qaV2l5w3vHUd2s1abqdC0qpKKfZdvMXZO4+oGhGS6dsAEtPS2X/xNvOmv+uw4VCXl1rQdfhYp9/N8wSrxUJKQhxJsVEkx0aTGPOYlPgYXNw9M32bT1AYMrmMVTPG0mrACIfBMdg453cvnqHrmA/sjt27fJaw0hXtxhOiHzlUKElLSsQn2F42VxAEp7u6uSWS1K5u6NNSWHTqEa9Xl/4utFotuvTcC4x1aWkvaCRPEf+JYNtbrqSlixdrUqPtDNJA90CmxN+hnFJLYLZCmuGt69Bv/lrWHblA17pZP4iaJcLYcHgTracd5eexvSWGp47RxOgFW5DLBD4b2B4XlZSjpQgr/4w+4bOHQZfG9VNHuHL0D26dP4mLmwdeAUF4+gXi6ReAf3gEgiAQ/+gBdy+eJu7RA5JjowktVZ7+0+Y5DUjNJiMX/tpL60Fv2R27eGgv5eraa1w/uHaJ0JL2cniRN68SVLy0w/fRpSQ5DcSN6WkOtbyh8BQSgJjYWAL88xTOkWDj8Ut0ql3hmWif50SEUkNPN38+TrzPVO8iKIWCbbNXw4MtPCYCLcp8N5t1DH9UnCPZLquX8T47iKEILnkWqr3ACzhCD1d/5iU9ZHNaHC+72tPVcoMcgap4coIkGuKT69yqeHCCJNriuJ7ED1s7+FiM+CHdmZMjUB53zpKcmUVvF2RbyHbQ+rBBF8sgd/vkQ0sXb96Pv8N1Uzqlsulra2VyBroHsiD5Ie95FclMJsllMr4b3pneX6zht4n9CPTKyph/2LMlw6ZNoWyoPxM7ZdleF6DYg2heen8Sb7dvIPGJGfin/NuzSCbFRz3k8pEDXDn6B7GR9/AOCMbDLwBPvyC8/AMJL1MRXUoykTevcuHgbuIfPSAtOZGWfYdTrUV7p9e9duIQxSpWs9uFBbh85ABDZi20G7936SyVGtvL40bevEKFBs3sxnMTCzCk65zreIuiLdHkAPnxP3Hx8Q41ul9ktwuH/0SwDdBW68MHCXftikZcZXLe8Ajmy6SHzPAplmmQbDy2Trw8ewXF/L2pUSJrRdmpdgXkMhnd5v7I2nF9MrVhXVRKvh3WiWV7T9Bh9gqWvNGVYgFZPwLz+k8LLAH3v4IoikTeuMKVY39w9dhB9Lo0SlWvS5Vmbek0aopD41EYnN2/gwr1m6NU22eCLhzcTa9Js+3Gb509TkRl+6LJ+1cvEF7G3gmALVvhqEAFQK9L+z/2zjo8iuv7w+/sbrJxdxII7u7uENzdrWhxKO4uRVqgOMUdirtbcXeJu7vP749NQsLObjZA+4N+eZ9nn5K5M3dmt7v3nnvuOZ+DgUQVr/TrZFoScrQNSgEBARQvJj0BaRqQ9l5/zB8DNe8CfG0qG5gRmprMiggfRpvnTIPbADmFMeEJkZTLZos9OwpgzCH8KS2RDGmMgtwY8pJojVv0P/jf4HN2cSCtRLm5E3PCPLGR61HVIGcqGfkx4hlRhJGEJdLjCIAtSmRAAAnYa/Bul8OC+0TQSEINsSgmHMKfYphgnGn6rWFgzuGQECKNk7Ooj4Aq8XmIuRPLI3yYb+WaZdFcTmnK/YRojsWG0sLYOmN+y2Nrybyujen1+z4Oje+R4RhSyOWsH9yWwesOM2f/BSa3q5sxxhV1tuPYxF4MWf8Xt994MadLI/QU32ficmJ8HO8e3ubl7au8e3gbUysbilSuRYvBv2Dr4vrVnB1XD2yj+cAxascjQ4IQZHLJPCX3Zw9pNnCs2vFAz/fY5VZXNInSEHYCEB8TjYGx9M5jakoycrn03JaamoosmxyHlORk9PQ0/xZ+kDO+zF31DSETBIaYObEu0o/ET7ZVCusbUUZpoqZBbGZkwNbhHfl54xHe+WctbdqiQlHGtKxJu8U7CI76mJAoCAJ961dkUfcmdF+xh9FbjnH/vc8/onahjU+3hXQhKjSYu2f+YvvsMSzq3YwLO9dhamVDt6lLGb3+IC0Gj6dguSpfzdAGuH54J9Vbd1U7HhsVSXxsjGSc9/vHd8knUSDA+7W0sa0t+RFATE3VqD2ekpyMXC7/LE9KQEAA9va6FSwA8AoORwScrf/dZMAmRlbYyfXZGq29PK8UxTDlA3FqZdxzigyB4pjyBOmQnTKY8ZwoEnUoof29IwiCxkQNQRBa/JvP8l9CT5Ax3sKFgzHBvEhUj0dN9yJLISBQBUtuEabxnHTKY8E9wjW2O6AkiVRCJTTkZQhUwJw7n1wvFwSaG1nxV4x0iW1nhZIaBqqCbZ/Sy9SeK/ERuCdl1USuUyIfXWuWoe+q/aRkGiPlMhlrfmqNb1gkM/aeyzJ3mRkZsG14RxwtTak7fT0rT1wnMCKrisu3SGpqKr5vX3Jh53rWjOrFb8O68PrudYpWqc3wNXsZuGQTtTv0xi533q9maAf7eJIYH4tjPnX9+GfXz1OiRn214/ExUcjkMjVvdHxMFHpKpaQSS2RIoGZjOzYKA2NpB0VKSrJGB1R2xnZqaqrWz+l7cSp+Lb7GmP1dGtthqdITv6NCnzqGFuyWGJDaGdvwIimWxwnRWTwneWwt+WNga3r9tk9tUGlStjCT29Wl/eIdBH3SVj5/Li7P/omm5Yqw8sQN6kxbx28nbhAQkHOD5p8iJjKcx5dPc2DZDJb2a8W2maMI8/ehdofejNt8jB7Tl1GpSTvJBMWvgderp5hYWEka1C9uXqJYVfUQElEUCfb1lCxeEOrng5Wj+nc+JiIUYwvt27+aSE1JRqZh9Z8d2Rnbnw5Ie288oWO1kp91ry+lh4kdYSnJHNMwmWtCjkB5CePgcyiIMR7EkoB6IqseMrqY2RBl/PmFSr4jzguC4PrpQUEQ+gLL//Wn+Q9hnFb0Zm2kH97JmovQSGGPEn0EvND+HbRBHwUy/NFc8KMc5txDuhDJIHtblPpQ1DrruFPb0IJHiTG811Csp4WRNU8TY3n3SbueIGO4eS5WRvgQm5qSZX7rWbscZfM6MXrL8SxGtVwm4/d+LQmPiWfSztNZ2gRBYGTzGhyd1AsjfT26Lt9Np193cmhSXxIT/50iVNk5k0RRJMDzPdcO7WDL1J9Z3Kc557b/gbG5JV0mLWTMhsO0GjaJIpVq/mNa3dcP76BGm+6SbU+unqVkzQZqx92fPcS1eDm14z5vXpCroHoyJUBkaDCmVhqM7egozZ7t5JQMJ9OnzqTsjOmwsDAsrT5vTv2P8sVj9ncZRhIvpnIxLpy6hhZqbc2MrJga5s7zxBiK6X8MHZALAqPNczEzzJPxcr2M7TaAUnkcmdu1EZ1+3cW+sV2zFBppUKoACpmMNou2s6hnE6oV/mgEymUyGpQqQINSBQiLiWP/jSf06t2byIgIRFFErlBgY22NtY0NhgYGKA0MMDAwwECpxNjEBBcXF1zz5MHV1RUbG5svXnHHx0Tx/vFd3j74m/eP7yKTySlQrgqlarvRcshEyVCOf5LLezdTs526tjbA/XNHaT5IfXXs9/419rnzq30W4YF+mFpJf0bhAX4aFwzZeb2TkxI1rv6z260IDQmRjGnT1Ndfd55zZIK6zOG/QeZtdguZgho5KHWdB0OeEaV161wX5Gne7UdEUiktdjuztzFFFJka6v7Z/X9HjALOCoLQVBTFNwCCIEwEugLqK9Af5AhruR6jzXOxJNybqZa5sZbrvhVeCUvOEIQjBii05A+Ux5wbhNJcgxa9IwbcIyJL7Hbm73pvU3s2R/kzM5NSlkIQGGOei4Xh3ky2dMFW/knMtyAwNC2cZK6VaxYxABeFklbG1iyL8GGCRVZd53GtajF6y3Fm7D3HjI4NMu4nk8lY3qc5v2w7Sf81B1jQzQ1b84/PaGlsSP8GlejfoBLPvQLYfvUhS+vXzyiwYmhkhI2NDZYWFhikz29KJQYGBlhaWuLq6oqrqyt58uTBSCKRPCeIokionzdvH/zN24d/4/P6ObYurhQsV5Um/Udilzvfv5IHk05cdBSv7lyn+UD1OSw6LITo8DBJh9GbezfJV1p91/bD0wfkLirtiAkP8MMxr4ZcpUjNuUpJiQkoNBRdS0xMRKGl0nRgYCB2dtqdcP9jsdtfPGZ/l8a2g1yfs7FhmAhyKn4ilyQTBEaa52JOmCczLPNgmWmgtZTrMdI8F4vSBrPM1C6ejyntU2m3aDu7RnXByepjzF+dEvn48+cO/LL9FFsu3mNOl0bYmWddTVoaGzKgYSUG8NGjmZycrBLxTxPvj09IICE+noSEBKKio3F3d+fypUu4e3gQEhyMTC6nUKFClChRgpIlSlCiRAkcHVUr/KSkJGJjY4mNjSUyMhIvLy8Unp78dfs5YYF+BHm5I5PLyFuyAgXKVqZRr6Eat5f+DXzfvSIiOIACZdVVSPw/vCE5OQlHiWTHOycPUK6h+q7Mg/PHKV27seS93j+5h2vxspJtoX7eGiUJRVFUhZFIbN3pEhakS9xb+oD04IMv+e2tJDP9deFzY1kzoyfI+MXChWlhHjgp9MmXlmzV1MFEreBHZgQEamDFOYJpib3WZMlEUrlFGDWxkjRCCmPCEQIkY2PlgsBsK1faBkiXGP6vIIriCUEQEoCTgiC0BvoDFYFaoihmH8fwg2zJrWfAADMHloR7M8sqj87JwaYoKIQxdwmnikQybzrW6GOBHm+0qPVUxZJrhNISe5o5ZB2L8+sZYi3T40FiDOWUH693VCgZbObI/DDpYj3OCiWNDC1ZE+HLCPNcWQzM2oYWhKQkszLCB2HMHhosVRXNEgSBpb2aMm7bScb8eZwlPZtmjFuCILCwRxOO3HlBq4Xb6F23HP3qV0T+ybhWzMWeeV0bZ9mti42NJSg4mLDQUBISEzPmtvj4eEJCQvj777/Zs3cvHh4exMXGYmpmljG3FS9RguLFimVocsfHxxMbG0tcfDxBgYF4enpy6eYzwgJ8CfP3IdjHE0uHXBQoU4la7XqSq2AxjaGB/wYXdq6jZtvuknPHlQNbqd5GPXQyNSWFF7cu49Z3hFrbkytn+GnxBrXjAB7PH9C4j7rAAKTFeedRj/MGCPbxwNopt2Sbj48PuXKpK5+kExQUpCbl+L/M1xizv0tjWwAmWrowM8wTI5mM4vpZk99s5fr0M3XgcEwIfcyyZne76hlkDGaKUTtot6xbRlv9kgUwVurTYekOVg9oTWnXj1tZ+R2s2TemKyfuv6LNom10q1mGnxpW0ro6VCgUODg44OCgnmEuRVJSEq9fv+bJ06dcuXqV1atXExAQgCAI6OnrY2RkhKGBAaZmZri4uODi7IxryfKUc3DCytFFc1by/wPH1y2l2YAxkt6G8zvXUb/bT2rHk5MSeXnnmqTH++HFkwxcsknyXm/v36LlkF8k2/w/vJE06kHlgTC1spFsCw4OxtpGug10M8Yzs+PqQ7rVkl4Q/JsYyeQZ3rNZVnnUkrE0YY4eRTHhLuFU1aLYoI+MVEQ+EEs+iYI4MgSqYcl1Qllln0+tPac6yd8roiieFwShN3AJuAHUF0VRc1zC/xBfY2EJUFzfmBoGZqyL9GeouWrBnd3CElTVHo8TmO1OTiUsOYI/eTCUrCppjT52KHlBNM0kEn87mdiyLMKbsvrGWcbJwvpG9DS1Z26aw8joE9nOhoYWvE2K46/YEFobZx2j2prYsCMqgHWRfghj9lA/zeCWyWQs6dmU2fsv0GfVfn7v3yqjloQgCLSqVIwGpQqw5MgVGszcyPxujalSSN1QyywCYGRkRJ7cucmTW9qg+5Tw8HCePX/O0ydP2L5tG0+fPSMhPh5BEFAaGGTMbzY2Nri4uNCsZB4eFiyGpb0TVg65/l+N68xEBAfy4tZlRq07qNYWHxvN06vnGL3hkFrby9tXyF+2ktoOs9/715ha20gqjsTHRCGKIoYm0o4zvw9vKFXHTbJNlXCpPsYCuHt4kCePuuc9naDgYGx02LX9X/Juf+mY/V0a26Aq3DHRwoXZYZ4MN3fK8NKlU0ppQkl9aQWKwvpG9DF1YG64F4rRO2n168dVaJVCudkyrAM//XGILjVKMaBBpSwFcZqVL0K9kvlZdvQa9WdsoHutsrStUgJr04+G7ueqkujp6VG8eHFV8ZtO2Zfyhm+v2hbA+0d3kSsUuJZQNy7D/H0J9nanYLmqam3PblykaOVaamEdfu9fYWZti5GZ+nZZamqqKsbb2VXyWfw+vNYoFxjg8Q77TINRZj1SDw8PrZNIZGQkpma6KR6kpKZy7YU7i3o00en8fxpHhZLupnYsDfdmmmUe5IKgkxFSFBOOESApa5aZylhynABcMJT0gtuhxBxFhv79/xqCIEQBIiq/gRKoDwQKqoFGFEUxZ1IaP9BIUyMrVkb4cjo2lMZGqkWirjs5FwmmJQ4a5SiVyCiNGXe0SAZWwJy/8Cc8xVZNQ9tBoU8ehQG3E6Ko/Il6ShmlCTFiCvPDvZhqmRv9TJ55QRD4ycyR2WEeOMmVVPpkd7eriR0bovzZGh1AvUzSpoIgMK1DfXZde0TTuZtZNaAVpfJ8dCgZG+gzvWMDuvmH8Mu2kxgp9ehRuxz1SuTL4lT63PnNwsKC6tWqUb1aNZ2vifkG57czW36nYc8hkl7tm3/tplKz9pIiA7eO7aOxhATuvbNHqNCoteS9NIkFpBPs7Y6ts7TRHODxjirNO0q2eXh4UKZlS439hgQHY6PF2ZSZp57+Op33PfM1xuzvMkEyHWu5Hr9YOLMiwoeAZPXEDW0xXCWVxnQ2sWVemBfhMVkTTgo62nBycm9e+QbTfeUewj5pN9TXY1K7uuwb242E5GTaL9lOtxW7OXbvJYlp8Wz/K6u9TxFFkePrl9LsJ3U5JICLezZSp3N/yf831w5uo2oL9UXG3TNHqNC4tWR/fu9e4ZS/iMb/1/4f3uCYt6BkW4DHO41bcO4eHri6ukq2AYSEhOg8GMlbj2HD4HZqW7M5JT3H4GtQQWlKcX1jtmVSKNGm1gAfjZBrhJKqqYAQquIfRTHlgYYEMVB5BQ/FBBOdKl3187+MKIqmoiiapf1XXxRF40x//zC0vyKCIDDI3JHzceG8lFAo0YQFeuTGkCdIl7tOpyDGhJFIsITyCKgSfytgweYoaYOkg4kt+2OCSZXYKatuYE5NAzN+DfdWa1cIAmMtnNkdHaimQiIIAv1MHYhITWHQ4FVq/XapUZqNQ9ozYtMx1p39W22XroCDNfvHdmNU8xqcffSGGlPWMnnnaZ55fRwr/lfntyBvd3zfvaSUREhjcmICd04dkpzDQv19iA4LIVfBrPUjUlNTeX7jIsWr1ZO839sHf0uGYoKq+BuCoDHnSJtn28PdnTxa5rfgHBjbWy/d1+m875mvMWZ/t57tdBwVSoaYObE0wptZlq4Y5MCgqaA0JUUUqTdsBYcXDyK3jUVGm4G+Hkt7NeOvO89pNncL87s1pnbxrF9cO3MThjWpxrAm1Xjq6c/Oa4+Ye+ACuW0sqF4kD9Xf+VB+1BIUWnScPwdFJu3LoZVz8yJY90lEigvvgr/0kQAID/Ln6v6t2Lq4Yi9hxEaFBvP+0R1aD5uk1ub+7CGGJmbYumQt75uclMjzmxdx6zNc8p6v7lyjoER1ynQC3N+q9ZmO37tXlKnXVLLt/bt35M0nPVABBAYFYavjYKRQKCiZR7dQon+T9sY2LAz34nxsGPWNNMenZsYSfZxQ8oQoSqN5jCmaFpsdSiJWEl5wJTLaGduyOcqfn801xw7+4AdfilKQMc7CmblhXky0cMFeoa/TTk6ZNK90Xoww16C9LSBQLW0B2gJ7ZBJe8CEOdswL8+RhQjRllFkXtLZyPQrpGXI1PoLaErs8jYys8ElOZF9MEJ1MsiasmcoUjLFwZrFEQqVMEBhq5sSqSF/Gbz3BvG6Ns3inCzmpHEqTd52hy/LdrOzbIksekiAIlMuXi3L5cpGYnMyZR2+Zd/Ai7oFhlM3rRPUirlQLmkS+n+Z+9cTEzPNbvfy6jbHa+BrzmyiKuD+9z9E1i2g6YJTke/77xAFK1W4sGc55cfcGanfqq3b8zb2b5C5WSqN4wdsHf9Oo11DJtgD3d9hpmNtSU1KIi4rUGH7i7e2Nk6NmxZfAoCBsdIzZ/jvo31Go+d757o1tUIWFNDWyYkmEFxMtcmfEfZZaNC3ba0sBHVOSeaaXgmkhFxwssn45O1ZqRrP+I7j5ypPeS+Yws1MD8tiqGyYlcjswr6uD6kcZFMb1lx5svHCH4ZsKYZO/GOXKlaN06dKULVOGvHnzZptYpwsrV65k06ZNxCel0LZbL3r8NASAnRvXsmvzOhRyBTUbNGL01Nn4eHnQulYlXPOrvLylylVg6qLlOt8rOjyUuOhITCysMTA2yRhsEhPieXr1LLdPHCApMZGKbq1p3EA6mePMn7/ToPsgydi7U5tW0GLQeLXj984eoWSNBhoHo0eXTmlMLAkP8sfIzEJyS08URd4/uUfr4ZMlr71z5w4dO2r2JHt4eJBbS8zb94BMEBht4czsME9MZHIqG5jpZISUx4Ij+OOMAdYawklkCNTCisuEaNyKr2lgxo34SP6Oj1TbRv/B/zZfK247HVu5PsPMnVgQ7sV0yzxqIR1SyBGoiRWXCKE59hrDSazRxwUD7hNBBYniTyf8oxlk68isME/m6Bli8kkMdmcTW6aEulNRaaoWnw3Q09SeBeFeXIgLp94nBnkuhZIhaTlIkz9RXpELAj+bOfHQwpQOS3aycWi7jAJt8NGhdPbRG1ov3Ean6qUY1KgySr2sn42+QkHz8kVoXr4IicnJPHT34/pLD8ZuPYH3sl0UqVSTMmXKULZMGUqXLq2zQlN2/FvzW2pqKmH+PsjkckwsrLPMNWEBvtw9fZhHl07hmK8QTQeMpkDZymp9JMbHcf3QDn5etVutLTzQD49nj2gzfKpa24Vd62nzs/Qc5O/+FjNrO41CBy9vX6FQxeqSbR4vHuFSRFrdJCIiAkMjI61OQM9swijT8fX1xcJSN0fN/zr/CWMboI6hBUEpSayN9GOwmWOOVtvmcgUNS+fl0tP3FHC0prBT1hWdsVKfBqUKkFS7HL1/30etYnkZ06ImZkbq+p2CIJDXzoq8dlZ0T0uIC4yI5olTNR4+fMj+/fv58P49FpaWVKpUiSqVK1O5cmWdt2zSefr0KZs2beLGjRu8i0xmcNe21GrQmAA/Hy6ePs6B8zfQVyoJCf6oOe6cJy/7zl3Ltu9Qfx/cnz3A9+1LfN48JyIoAGMLS4zNLIkODyE+JjrjvaYkJ1OiRn3ajZqu0YMMqgIAXq+e0maE+gLo/aO7KA2N1bbYRFHk+qGdDFi0TrJP/w9vNCaWALz8+4pkOXhQJaXY5c6r0RDPLoHEw92d/AUKaGz/lK+VSPK1jRClIGOChQvTQt2xl+vjqpe9Jq0cgTpYczHNkNYkkWaFPgUw5jbhVJVQdhAEgSHmjkwNdaeIvpGa8sIPfvA1KaBnSC9TexZHeDHDUreFsi1KcmPIfSIySqxLUQZzjhGgManSSq5HBxMb1kb6McYia60AU5mCZkbW7IkOUkvoB5XRPMbcmRlhHljJFGre8UL6RvQ3c2BumCcTP/FwC4LAmJY1KepsR6sFW1k/uB1FcmWd3xqWLkjNoq6sPn2LejPWM65VLVpVLCY5h+orFFQq4EKlAi6Mal6DlNRU3vgF88TWidNnzrBo8WLCQkPJlz8/VapUoXLlypQtUwZlDmVn/6n5LSU5GZ83z/F69RSfty/we/eSxPh4rBxyIYoi0eEhJKdpiacnJlZ0a8uw33diYKQ5zO7qga1UbNJW0pN8ZutqGvQYpOZg8333CoVCDwcNYY73zvxFhUatNN7zxd9X6DFtmWTb02vqRXXSc5Lu3LlDxYoVNfYL4O/vn6GEpo3Lly9Tp04dLly4kO25/+vkaHYTBEEGXAOqAi6iKHqnZWduAjLHMhwVRbFLput+AUYCb4Huoih6pB2/hEqjsLYoilcynf8WmCOK4pacPF97YxvWRPpxICaY9iYfB5TNp0+w+9J5RKBz7Xr0dWvGcw93Jm9ZT0JSEgqZnD8WT6Nx2WJcf+HByk3bOX/pMnK5jGVTxtGopiqZr17J/NQunpdtlx/QeM4m+tevSNeaZTJK4WrCztyE+jGPafzLR8WMkJAQbt++za1bt/jt998JDwujdOnSNGnShAYNGmBioj1+9uXLl1SqVAkjIyNKGkGFKjU4f/Iozx89oN+wUeinDW7WNrptBaUkJ7Fn0WS8Xz3Dwt6RvCXKkbdkeWq07Y65jb3kwJuuYa2Ll/7UphU06TdS8txTm1bQZoT6qv/947vY5c6LqaX0QuTemb+o0FDzYPT85iWaDhgt2fb02jlK1FAvOgDw4cMH8ubVXmnsw4cP1K+vXiHse8REJme0hXOGTJouWKJPIYy5TRjVtKiTlMCUkwTiTRzOZE1iPuEfTVMHE7qb2LMqwpeJFi7/qlbu/wLf+pitja+9sARV4qFXcgLrI/0ZbO/IyYCYbK8pjRnHCcCfBBw0qJPI0hagZwmmBfboS6RDVTcw5+/4KK7FRajp3DcwtGBSqDueSfHklljwGshUi+KZYR5YyBRqi+Ji+sYMNHNkbpgXYy2ccVZkfc6m5QqT186Sfqv3M6ltXZqVL5K1f309RreoSY9aZZl78CLrzt5mSvt6VC2UW+tvUi6TUSSXHUXwosuCBYDKSH379i1///0327dtY8zo0SgNDKhVsybNmjWjfPny2c4Zmec3RWzsF89vHs8fcWrTCiKCA3EuVIzcRUtTsXFrHPMX1mhEa5KF/ZTYyAjunTkiqU4S4ueN79sXdBgzS63t2sFt1NBQhyI1NZVn1y/QUEMISXxMFIlxcRorS76+c01j+Mnt27epXFndO5+OKIqIoqjTvH7h4kUGDRxI9jEEP8hpLMMosg7Q6bwXRdEk0yvzoF0AqAPkA2YAsz+5NgRYIuRglk3UkJwlCAIDzRx5mRTLpbhwAF55e7L70nkOz5jHiTmLuPDwPh/8/Zi/ZwcjWrfnxJxFjGrXkYmLV6KQybBVily6doO5s2bx5/JFDJ+xgJSUj0lccpmM3nXLc2ZqP4IjY6g3Yz2/bDvJS5/AbJ87s2fT2tqaJk2aMHPmTE6dPMm1a9fo268fDx8+xK1JE1q3bs2GDRtwd3cnOVm9Ymbx4sW5du0aISEhxMbGcvXCGQJ8ffB4/457f9+ka9N69GnTlKcP72Vc4+PpQceGNejTpin3bt3I0p9coUftDn0Ys/Evflq0gYY9h1C8Wl0sbB00DrYymUynH6Tv25dEhgRRqIL6ltfrezcwtbKRlOe7un8rtdr3kuwzNTWVZzcuUqy6dGJJUkICIb5ekrHjAC9uXdLo9f47m8EIsk+g/N5wVijpYWrH4nBvUrQkP2amOKaEk4S3lop7AgK1seYWYcRLVI4EqGhgiplMzoW03+wPvirfxJj9LdHcyIokRE7G6SZprjKkbbhOKIloLpJlhh4lMeUGoWpt6aFZP5k5sj8mmJCUpKz3EAT6mTnwR6QfiaL0PSzkCsZaOLM8wofgT64HVThlejGfN5mqTKYvWIo623FkQi92XnvIwLWHCI1W/1rYmpuwvE8LlvZqxqbzd6k7fT1rz/ytJiIgRfr8JggCBQsWpHv37vz+++9cv36dgwcOUKZMGdatX0/lKlUYOnQoJ06cICQkRFJGNfP8lseIL57frB2d6TB2NuO3HKPrpEXUaNONvCXLa/VW62Jog0rKtlaH3pKhjme2/E6jXkPV5tDYqEg8XzymcMUakn26P7mPc+ESGqtfvvz7KkUq15RsC/J2x8zaTqMU8O3bt6mkxbMdGBiok8a2KIo8fPiQMmXKZHvuD3JgbAuCUAgYAoz9jHvIAHmmf2dmPeAMdEFHApITeZ4o7ZFI33I7FRtGUEoSb319KFOgIIZKJQq5nEpFinH63m0EIDpONYBExcbiaKf6ch09d5merZvSsEwhguJTsLa15daDJ2r3MTVU8kubOlydPVBVEGfXWZrO3czBW0+JT1QfCNPRFEqgUCioXKkSM2bM4NrVqyxfvpyExETGjR9P7Tp1qFKlCseOHcs4v2jRoowdOxY3NzeaNWtG4WIlkMsVJCcnExURzo7j5xk9bTZjf+qNKIrY2jlw5u4z9p69xrgZc5kwtD/RUVkz7XMVLKrzAKMroihy+Pd5NB80Vm3AEUWRU5tW0lgi+THYx5PIkEByFy0l2e+bezfIXbSUxsHoxa1LFCpfVXKhEOrvg0JfibGZhVrb2vt+XL92jSpVNCddgmpnwiqH5Ww/Ry5Liq+pSpKZ8kpTyipN8DSMQtTB4M5sSMdpMKQBjFFQDguuEqrWb7oR0tfUgWOxofjmsMT2DzTzLY3Z3xKCIDDEzJGrcRHZlmZPxxQFJTDlusR3ODMFMSYJkfeS6xvVLlIfU3tWRviQ8omRWVDPkFqG5swO89So0pNLoWSgmSPzwzwJT1F3wuTWM2CihQtrIny5n6Cee2FtasSOEZ1pUrYQzeZt4a870gWkijrbsWFIOw6M605SSgot5v/JsA1/8eCDr9YaA5rmNwsLC1q3bs36deu4dfMmXbt149r16/To2ZOqVatStWrVLKXgv/b8ZmJpjZXD10/EDvbx4M29G1R0a6PWFuj5gSBvd4pWqaPWduOvXVRq2k6js+rmsT1UdGut8b4PLpygZM2Gkm2PLp6iZC3ptqSkJHz9/HB2dpZsB3j77h35tIgDpPPs2TMKFiyI/BvRP//W0cnYTtuK3ASMA8IlTnERBMFfEAQvQRB2C4KQEbwriuJr4CbwDpgJfBovEANMA+YJgqBTYJejQp/NUQFci5OWFjOUyZls6cL7pHhsHR25/fIlYVFRxCUkcOnRA/xCQpjWrRfzd2+n2sghzNu9jWH1VFULfQMCcXa0x8zIALcyhXC2t+PorYf4hUVJ3kshl9O0XGH2j+3G6gGteeThR70ZG+i/+gAn7r8iIUl9QNQldtfV1ZWhQ4awb+9erl+7xq1bt2jWrFmWc/r27cudO3e4ePEi+ZzsyJ0vH/aOTtRv2gJBEChZVrVdFxYSgr5SiUWacVisdFlc8uTF493bbJ/jS7l94gD2efKRu4i60fzo0ikc8xbCLrd6rPeJ9b9KGuGgMtLP/Lmael3VC+Okc3nfFqq36S7Zdv3QDqq27CzZlpKczK2//6ZypUoa+/bx8cHeXjq05nunjZE1cgHua5Hty4wxCiphyQWCtcoB5sMIJTJeoG4AnPCPxkgmZ5i5E79G+Hz2s//gI9/amP25/FMLSz1BxgRLF14qIgnRINv3KYXSijS9lPgOpyOkJQbfJ5woso796QvL0koTCusZsTs6SO16NyMrmhlZMT3UncAU6ecqqm9ED1N75oRLG9z2Cn1mWOVhf3QQp2PVvewArSsV59jE3hy7+4IeK/cQGCH9nqxNjRjWpBpXZg+kbeUSrDx+nRpT/mDm3nM88fCXNLyzm9/kcjnVq1Vj3ty5nDh+nFu3bnHjxg30Pykt/q3Pb6Iosm/JNNoMnyLppDq6ZiHNf1J3MsVEhnP/3FGqtpCeg4J9PAjx8dQo+Rfs40l0eCjOhYqrtaWmpHD//DHK1msmcSVcvHiRmjWlPeLp3L59O9uYboAdO3fSSYuIwA+yoqtnewTgL4qielASXAFKAk6oylfGo6ohn1FRRhTFGaIo2ouiWE0UxQ8SfWwGotLuky0KBGZa5uF8XDgHY4Ilf/CmMgXllCaIttZ0a9qMHovm0GvJPIrmzoNCLmf7hbNM6daLG8tXM6VrLyZs+CPtWT/2IQgC5sYGlMrjyDPvALos26U1XMTVzpKZnRpyfe4gBjeuwvWX7tSZvo6f/jjIX3eeEx3/0Wv3Oclyn/5oAwNVz+Lp6cnhw4cZ2a8nXdu34f39mwC4v3tLUlISltbWhAYHZ4TDeHt8wPPDO5zzuOb4GXJCVGgwl/dtodlAdcdaclIi57atwa2fukHt9fIJsZHhFNaQaf367g0s7R0ljXSAD0/vY2ppg00u9WzqxIR4nt+6pLH0+7uHf1OjenWtmdp/375N1Ww83/80/5QRIggCA0wdCSFJq1GRmdwYYoeSe9kY6NWw5CXRGo2b/HqGDE+r9PeDL+abGrO/RcxlCiZb5sZcx9SldJ35l0QThOYdGCVyamDFBYLVQrLSDe5OJra8TIrllYT2dxUDM34yc2RemBfvkqQ972WUJnQ3sdNocJvJFEy3ysPLxDhWhPtwYrS6Soa1qRHrB7ejW82ytFm0jQWHLhEVJ/2+BEGgXsn8bB7WgbPT+lHG1YnFf12h5pS1zNx7jjtvvTNyeD4HKcfFtz6/3Tl1EFtnV/KWLK/W9u7RHQSZjHyl1QvSnNu2hjqd+mpU2Drz5yoaSoSepHN57ybqdOoj2fbsxgUKlK2M0ki6oN/cddtp3769prcEwK1bt6haVb3oXGaSk5M5d+4cTZp8G4XavgeyHWXS4vfGAJJljERRfJ/pT39BEAYAEUAV4LwuDyGKYoogCOOBXYIgbNTlGiOZnMmWuVkT6cvaSD8GmDmqlXrWEwTKKU2gahVa1aqDrVyPxft24WBpxeJ9u5jevTcAzSpVYeLGtfjcekcuBzu8/T6K9/v4B5LP2ZEqJQugaFad0VuOk9vGgknt6mbR5c6MIAiUz5+L8vlVGc533/lw8sErlh29hpWJIU3KFqZJucK46vJGtdCxY0dCQ0NRKBSsXLkSS0tL+vTpQ//+/enSoBp6enps27IZQRC4d+s6qxfPQ65QIJPJmLJwGeaWOQuDyCkHV8ym2YDRknFx1w5up1TtxpLJj8fWLqHFYHUZQFDFap/atIKukxZqvO/Fnetp0GOwZNuDc8coXaeJxkIADy6cYOZQ6YEsnVu3buHWWNpY/zeITUgkIjYeMVN1uK+JXBBYaJ+HnwPeY4ECB7JXKCmPOacIxJM4cn+SCJmOAhl1seYCIbTEPkt1yfRkydyK7O/1A+18q2N2ThFFkeDIGCrMasndaUf+iVtgI9dDocVw/hQ9ZNTDhrME0QJ7yTLtAA4YkBtD7hJO5U+UeNK/60PMHFkS7s0C67zoCVn9XoX1jZhg4cKicC+6mthRwUBd5SJdlWROuCdTLHKryRkqBRkjLHJxPjaMyaEfyOsdSFFnO7V+3MoWol7JfPx58T4NZ22kZ+2y9KtfUU0CMB0jpT6tKhWjVaVixMQncu7JWzaev8PPG/0ony8XTcoVpl7CXMy6SEva6cq3PL9FhQVzafcmhq9WX8SkpqZy7I9FdJ20SK0tzN+Xdw/vSMrcgkphK8TXmyKVpL3PMRFhfHhyX1LVC1TzavvRMyTbkpMS8Xr1ROuurSiKGQIB2jh37hw1a9ZU2434gWZ0WdLXAGyBp2kTe/qo8FgQhCmiKK7+5HyRj2UtdUYUxZOCINwG3RNbFYLAMDMndkYHsibSl6FmTmrGh54gkCchhffE4x8SzKm7tzk4bTZ/nj3F3y+fU6VocW48f4qrg0pyqXn9WvQcPYWRfbvhGxDEW3cvKpZSbddULZSb45N6c/bxW3r9tpeK+Z35uWk1XDQY3aAyvCsWcKZiAWemdaiPR1AYJx+8Yuj6v4jcdoXGjRrRvHlzSpcunWPD6dKlS2rH9PX12bp1q9rxor270LC5ZuWOr82zGxcRxVSKSyQwRgQHcufUIUb8sU+t7eXtq5hYWktukQE8OH8M58LFNcoMBnp+IC4mSjLWWxRFbhzZTb95aySvTUlOxv3ZA6pVW6/trXHnzh2mTP6yiURXouIS2HfzCa98gnjtG0xARDSGSj3MDZX4K6OR+UeRX8+AvApDiukbYSPXroyjK0pBRn1sOE0gTbDDOJuhQoZAXWw4TgCW6GGq4XxL9CmeFvtah6wLrXQj5AdfzDc7ZmvjpU8gJx+85rVvMG/8golLTMLG1Jj4pGT8ggNwUuiTT2FAPj1DiusboRR0TjnSii7a8pkxR48KWHCREBpji6DhYyuDGScJxIs4XDQo8dQwNGd/dDBdTNWNYIe0cJC5YZ7IBYGySvXfRnYGN0B9I0sK6hnSdcpGxvR1y5CkzYy+QsGAhpXoWrMMq0/fUu3INqxE5+qltaptGRvo06piMVpVLEZKaip33npz/P5LFh66RK4DD2jWrBlNmjTBwSHnRb2+5fnt8Mq5NOk/UlID++/j+3AtUU5yjjqx4Vfc+g6XrDUBcGTNQloMGqfRFrh2aDvV23STjPX2d3+LIJNpnBtf371OoQrVtYoafPjwAVdX12xtkW3btzN2jHSV6B9Io4uxvRc4l+lvZ1TxfI2Al4IgNAMeAT6AJTAfCAZufcbzjEu7TueSRIIg0NXEjg1R/myJCqC3qXos7c+/LSMsOookmcDYbj0xNzZhft+BzNqxheSUFJR6+szro4r/tQiB9k0bULpJB+QKOSumj8+SACAIAo1KF6RByfwcufuCfqsPkNvGgrGtaqnpl0qRx9aSQY2qMKhRFSJi47lgUITlK1bw7Nkz6tSpQ6uWLalateo/knRQ1EaVnfylFSezIzYqkuPrljJo6WbJ9iOrF9Ck30i15MbUlBROrF9Gr5krJK+Lj4ni/I51DFmuPtimc37HWup27i/Z9v7RHWycXDTKJb26c5UCZStnfPaZK5mlk5CQwPjx47H6zMIN8krSsXQJt49n+Ts1NZWd1x6x6tRNOlcvTYsKRSnkZIOtmXGW7/fBUTt5nxzH+6R4ToSHYifXo7WxNfn0pL3LOaGTgwVR/smcJZhm2GXxREthiJxaWHOeYJpjr1F/uzDG+BDPK6IpTFYDIidGzw808k2P2Z8SEhXL/IMXeeIZQN96FahXIj8FHKwxNvjoNUtJTWXH6B28T4rnYUI0W6L8qWFgjpuRJWb/D/rsrhgRQAIPiKCcBv1tIU3F5DgBWEgsQE/4R9PS3prJoe5USoojv8Rv1iwt1GVmqAdKQaCYvnp4QLrBPSvMg3EWLjgq1L2NufUMmGuVl8PPP3Dp6XsW9miCtam6WoWxgT7jWtWiX/0KrDt7m7rT19OxWkkGNKiEqaH28Hy5TEaVQrmpUkgVvudeqg3Hjh+nZ69epKam0qJFC1q1bPmPqTgVtTH6x+c2UGlYJyclSSYoRoeHcnX/Voav2aPW5p1Ws0KTCtbzmxdRGhrhWkJ9MQQQHxvNo4unJCUGAS7v3UzNdj01Pve9M0eoqUHdK52LFy9Svbp0+GY6vr6+eHl5/VAhySHZjlKiKMaSSTpKEIT0a/xFUYwWBKEOqux0cyASuA40FEUxx7OmKIqPBEHYDfTOyXWCINDPVCWbtC06kB4mdlkMkn1TZgKQIoo8SYzhTVIcFQoV4eisBZL9TRzcj4mD+2m9p0wmo3Wl4rSqWIyrL9wZt/UElsaGjG9dixK5dVvFmxsZ0KFtezq0b09iYiIXL15k165djBo9mooVKtCqVSvq1KmjVhAgOUmz2okufK3y7Jo4sGwGDXsMljRqX9+9TmJcrJrgPqg8AgXLV8XayUWy36NrFlOnUx9MLKS3B/0/vCHYx1PjYHbmz1W01lCtC+D6oZ1sXam+9de/f39OnDiBnZ0du3ftwtXVldDQULp27YpHWvGbXbt2YWlpSUhICJ06deLu3bv07NmTlStXZvRz7949+vXsRnx8Am61q/PrFPXkGYBrL92ZvuccVQq6cHJyHyyMNRvOFnIF5eSmlFOa0s7YhudJseyODiJOTKWlkTXllSbIviDUxAkDimHCeYJphK1kOerM2KGkEMZcI0TNc51OehLZsTQjRKoIyA8+n+9hzAZITE5m/bk77LjykFHNa7C4Z1ONHjW5TIazQomzQkktQ3MSxFQux4UzI9SDgnqGtDS2Jpfi879HOfVuA1TEQqPnOh0j5NTEmnME0fyT0ClIq/Jo7oRXcoKksQ0qg3uSZW7mhnkywMyRovrqRnIZpQmmMjkLw73ob+ZACQmj3EAmY92gthy+/Yzm87cwpkVN2lUpIfmZW5kYMaFNHUY0q86fl+7RaPZGWlcsxsBGlbWOR5kpUKAAI0eMYOSIEQQEBHD8+HFGjBhBaFgYTdzcaNWqFcWKqRfP+ZL5raC5Hmvv+3329dkRFRbMifW/anT4HF2ziEa9h6mFToqiyF+/z6PVsEmSn3dcdBTH/ljCoF+3aLz3xV0bqN6mm2Ssd1iAL75vX9Jx3ByNzx3k7cG87m5a3h3s2buXzZs2aT1n4cKFjBk9+j8pEPBPkmOXgCiK7mTabhRFcRwq70aOEUWxjsSxPoD2oFkJZILAIDNHVkf6siM6kG4mdjwery4kjyiyLjoQ7+QERprnwlCiPK5NDpLPBEGgVrG81CqWl5uvPZmx9zzxiUn0q1+R5uWLoKfQ7KHOLAWnr69P48aNady4MSkpKdy8dYsjR44wc+ZMDAwNKV26NOXLlaNs2bIULlxYawLf/xcJsTGc37kORJGy9dU9uEkJCRxZvZB+8/9Qa4uPjebqgW2SMXAAb+7fIizAh/ZjZmq8/7F1S2g+cIzkIPDhyT0MjE0l9bwBQny9sNFLoVixYmptvXr1YsiQIfTt25e3795Rv149Zs6aRb169Rg/fjyLFi1i0aJFzJ8/HwMDA2bMmMGzZ8949uxZln6GDRvGmg2bqWxvSMv+Izh95QZutT96EaLjExiy7i+SU1NZN7AN+R2y955nLvwhCALF9Y0prm+Mb3ICR2JD2BcTxFAzJ/LoUBlSE4UwIZoUrhFKTaw0bpunUxQTAkjgBVEURbrUsB4yGmDLqbQwFZP/TjHbb45vccy++86bUZuP0aJCUc7P6J9tYbBPUQoyGhlZ0cDQkvuJ0ayJ9COXXJ/epvaSY/o/gQyBelo81+k4oKQoplwihAbYZPn9pIeTZLdQsJbrMTnN4B5o5khhCYM7v54h0yxzszjcm7qGFjQykq6s27pScZVc7c4z7LnxmF97NdMYCmmor8egRlXoU7cC2688oPm8Pymbz4kBDSpSKk/2FQbTsbe3p2/fvvTt25eIiAhOnjrF3HnzePPmDS7OzpQtW5ZyafObk9O3mSQd4PGOvYun0mzgWEws1cfmd4/uEBUaROk66gbt02vnsHJwxrmg+vwCqt3eul36a9x1jQwJ4tn1C4xad0Cy/fz2tdTv9pNGA/jWsX38MnSAVgP53bt3GCiV5MqlWSLR3d2dx0+esHz5co3n/ECa/9QMJxMEhpg58XukL7uig+gqEQcnEwR6mNpzKS6c6WnbbrY6xrmGRsdiZSItFA+qmO79Y7vhHhjGpgt3WXj4Ms3LF6FP3fLksjbXeN2nyOVyalSvTo207ZzIyEgePXrE/QcPWLxkCW/evEHMlPktCAJyhQJHR0dy5cqFs7MzuXLlws7WFqWBAfp6eiiVSpRKJQaGhnRwNWb32+iMJEFRFIkKDSbI6wOBXh8I8vpARHAgSfFxJMTHkRQfR1JCPGbWdpSu24SSNRtmKUubGB/HtYPbuXv6MFVadKRRzyGS7+v8znWUb9QKS3v1wfTCjnVUb9NNMgYuIS6Wv36fR795f2gcLN4/votMkElmhgOc3vI7LYdM0PCJw/XDO+jfXzr8pGbNmri7u5OSkoK+vj6GRkYcPXqUc+dUO/U9evSgQYMGzJ8/H2NjY2rUqMG7d++y9OHn50dUVBRVq1ZF/PCIbm2acuTcpQxjOzklhb6rDtC6UjG61iyj8Tl1xUmhZJCZE+5J8ayK9KWKgRmtjKzVkoh1pSxmXCWUR0RSBu3f5XTVhmMEYIM+tho816YoqIkV53QMU/nBf4N3/iEM33iUXaM6k8dW2iCUQqqipEwQqKA0pby+CefjwpkU6s4AMwfJcIt/AsM0z3V2oVNFMCGMRO4TQXktZd+1YS3XY6JlbuaFeTLYzJFCEga3lVyPGVZ5+D3CF8/kePqYOmT5zV8Yu5d6SzpiaWzIqgGtuPzsPV2W7aZLzdIMaFARfQ1OHKWegn71K9KnbnkuP//AgkOXCY6MoW+9CrSuVAyDHCyWzM3N6dypE507dUIURby8vXlw/z537txh7dq1BAerdl4FQchQGjMxNSVXrlyq+S3tv+bm5ugrlSj19TPmN0NDQ+JjY9A3MMqITU5JTiLE15sgb3eCvD4Q5OVObFQ4ifHxJMbHkhgfT0pSInmKlaFs/WbkK1UhS0x1kLc7pzf/RnigH037jyR/GfUEw+SkRA7/NpdeM1eqzVEpyUmc3vwbAxZJ5wK9vnudiOAAKjRurfEzO7Pldxr0GCyZ2B8e5I/nyye0HTVd8trUlBQ8b5ym0xztJdV37NhBt+7ScrnprFu/nuHDh//wan8G36WxHZyaRIooShoOMkFgaJrB/WeUPz1NpPWQ6xha4CDXZ26YJ31NHSil1D44x8Qn0m7xdmoUdWV0i5pYatlKc7WzZFbnhkxqW4fDt5/Tf81BDPUVdKtVlmblCmOgr4eyUjMEiZhgKaysralbrx5160lXSwSIjYnBz88PL29vfHx88Pb25sGDByQkJJCYkEBiUhIJCQnExcURExPD+4AwUpJV23WiKGJqZYOdS15sXfJSuGINzG3s0Tc0Qt/AEH0DQ/SUBgR7u/PgwgnWjOqJmY0dZes1IyYijFtH91LRrQ0j1+5H30D6cwny+sCLm5cYvlo9li080I8Xty4zcq30qv3EhmVUbdkZSwdpj4cq+3sxnX6ZJ9nu/vQB+gaGOOUvLNmemBBP4OObtFqzRLI947zERAoWLAhAQEAAjo4qz46jo2OGTJUmfHx8sngMnO3t8Q1Q6eyKwPhtJ6lYwPmrGNqZcdUzYK6VK3ujg5gW6s4w81ySMZ2aSN9eFxCojhUnCcQKfY2KI+lkVm1ojj0GWlQbimDCZUKo/4nX7wf/PYKjYuj9+z7WDmyTI0M7OwRBoIGRJSX1jfk90pf8elF0NbFDX0MSZalF6jmdFrHqEnq60ptE4knFUUK5Z+egSQBUxpLTBPGeWPKh2WmjDVu5HhMtXZgfpgoXKS6xqFAKMkab52JfTDBzwjwZYZ5LMnESoHbxfJyd3o/fTtyg7vT1jGpeg7aVi2tMopPJZNQtkZ+6JfLjExLB5ov3qDtjPdUK56FbzTKUzasSKcjJ/JYvXz7y5ctHOy2SdKEhIRnzmo+PD48ePSIyKorEhAQSEhJISExUzW+xsUTHxOAeGJZhqAsyGdZOLtg6u2LrkpcKbq0xMbdEz8AQfQMj9A0MEAQZ7x7+zb0zf3Fg+UwKlq1C0ap1eHTxJIGe72nc52cKVaiu0ci8tGczpWo1kpSbvfHXbopXr4+5jb1aW0JsDH+tWsCAhes09u3v/hbfdy9pN3qGZPv5HSqvtqb/Z89vXqRWrVoYG2u2cVJTUzl2/Djjxmne8EpISODs2bPMnCH9HD/QzndpbCsQmBHmwWjzXFhKeKXlgsDPZk5sivJnVaQvg82cJA3zIvpGTLXMzYoIHx4nRtPZxA6Fhi+8sYE+56b3Z+fVRzSdu5k+dcvTt14FFFoSGQ309ehcozSda5TmrX8IO68+ZPmxa5ye2verR6nq6+uTJ08e8uTJo9P5nxPXZuuSl0a9htKo11D83d/y4Pxx9JQGjFizV6OuJ6h+yNrF/xfh1m+kZNu7R3fwe/eKVkMnauz/zsmDuBQpqbE0++ktv0lqfadj/OIirVu1Qk/L5JCSkkJSUhK5c6sPprogWXUt7bv22N2PxOQUxrbUXmzgc9ETZHQztedVYiyLw72ob2hBUyOrHHsn5AjUx4YTBGKMHGu0G+3m6FERC84TjBt2yLPx+t0hnEp8PQPsB98WUXEJdF22m2kd6lMyT87VKXTBXqHPTMs8HI8NZULIB4aZO2lNFh6/fg0XHt7H2syM9VNVcqKRMdHMWP8b/iFBOFjbMnPAcEyNjYmIjmLauhW88niPW5VajOzSO6OfQA9vZv/5B0lJSVQrUYbhHXuq/b4yh50YI8/IVTjhH82Ereq5ItqoKabyICEGRz0DyZ3Zx+Nn0dHElnsJUUwPc6ePqUNGIuWnGOrrMb51bfrUq8Ciw5dZe/Y287o2pmIBzVUGAXJZmzOlfT0mtq3DpWfv+e3EDWzNjFnUs2mO3osumJmZYWZmRtGiRXU6/3Pmt0IVqlOoQnVSkpN4ffcGz65foGStRhSrWkfrWBno+YFHl04yYs1etbaYiDBuHtkt2Qaqua9G2+5Y2EmH5IiiyKGVczTGeocH+ePx7CFthn9ad+oj707vZkU2YR9nz56lcqVKGBpq/q0cOHCAZk2bap0nf6CZ73Lf1kKmoL2xDTPDPHmmoWy7LC1p0laux5Jwb5JEacF9a7ke0y3zoBRkTA11JyA5UW2rMh25TEaP2mU5N60/AeHR1J+xgWP3XmotX5tOAQdrpnWoz+VZP2Gk/GikrFy5kjJlylC6dGlWrFCpcHTt2pXy5ctTvnx5ChQoQPnyqtAId3d3TE1NM9qGDJEO1/g3cHAtQJN+I2jQfaBWQxvgyr4tOBcuLpll/frudRLj4yhera5aW0pyEodXzqHzhPkaV+0xkeFc3rsZt77StTXeP7qLvoGRxli55MQE1q5dy+DB0rrc6bx79w59ff0MpRJ7e3v8/FQDup+fH3Z26iFLmXF2dsbH52N1RO+AAJzsbHjmFUBodCwr+rb47K05XQvcFNY3YqF1Xj4kx/N7pK/G34Q2DJHTABsuEkwk2Scy5cEIFwy5SojWMtdVsCSKZJ4QqfGcH3y/pKam0mXZLgY2qkzD0gX/0XvJBIEWxtaMtXBmVYQv1+M1F1tqV7M2W8apFvK5jVSL/R2njlC+SHF2zv6V8kWKs+O0SuNbX0+Pfi07MLhdV7V+ft25mQnd+7No1hw8Av34+9kjyfspkdEQW64SQpjE72fz6RM0njiGRhPHsOmUSqHouac7bWdOwW3SWPr9upCouFiUggz7yFiq/9SHRpPH0XTKeCZvVg9TKK80ZbplHg7FBPNnlL/W37ytmTGLezblt34tWXDoEv1W7+etf4jG89ORy2TUL1mAzcM6sOCTBLzvcX6TK/QoWqU27UfPoHi1ulrH5ZTkJHYvmECHsbNQ6Kk7H46uWUTDnkMk50j3pw8I9vGgSnPN4/eDC8exsnciT7HSku3ntq6hQfdBGufHotFvsLGxydiRlUIURRYtXszo0aO1nrNq9WoGDRqk8ZwfaOe7NLZBVfJ2qmVudkQFaqwiKQgCnUzsKKk0Zk6YJ3GpKZJ9yQWBDia29Da1Z364F1c0lIFPx9hAn6kd6rNjZGfOPnpDg1kbOfPojU5Gd+YfxdOnT9m0aRM3btzg3r17nDhxgjdv3rBz507u3bvHvXv3aNOmDW3atMm4Jn/+/Bltq1d/Kpf77eH58jGPLp2kaf9Ram3JiaqEybaaBPoP7aB4jQZYOWhO2Di+bin1uw3MEkOejiiKnNy0HLe+0mXfAeQPT9GmTRusrDQXQEhJTubDhw9ZVGGaN2/Otm3bANi2bRstWrTQeD2oQk1MTEy4desWuJZix6ETlC1TBt+wKGoVy4tci/bp10RPkDHUzIm8CgNmhHlIVp/LDnP0qI01ZwkmDunfVGZKYoocgYdaDOl0mbRIPn8r/wffLh8Cw+hcozTtqpT4on5yUjnVSaFklpUrF+PC2RkVSKrE+Fy5SDEsjLN6fK8/vo9bVdUuk1vVmlx7dA8AQ6UBpQoURv+TuNmQiDBi4+Moka8QzoIhFatU5vKjuxqfyxQF9bHhPEFZfj+vvD3Zfek8h2fM48ScRVx4eJ8P/n5M3LiW8Z26cmreEhqXr8S640cBVQ0JVzt7Fkybzprps5nbZ4Dk/azSHEqmMgVTQt3ZMXKb1s+tSC5b9o/tRo9a5Ri6/i+GrD+MR1CY1mvS+V+b306sX0axavXIXUS9rsP7x3cJD/KnTD11T39qaipHVi+g9fApGo35+Nhozm1dQ/NB0qEdIX7eeL95RslajSTbRVFk1uzZTJ0yRet7OHPmDIUKFtRayObUqVOUK1v2s/TSf6DiuzW2QeWVnmXlSnBKEqsj/UjRYOw2NbKivqEls8KkS9umU1jfiLlWrtxLiKLbit34hWn3sjlbm7Oibws2Dm7Hob+f4TZnM5eevtfJ6AZ4+fIllSpVwsjICIVCQa1atfjrr78y2kVRZP/+/XTq1Emn/r414qKj2LtoCt2mLEGhrx44c2Hneso1aC4Zix0dHsrfx/dTr4t00iKA54vHBHt7UK6htKH75t4NzKztNCqQJMTFsmnzZoYOHar1fbRu04bp06fz+vVrXF1d2bRpE+PHj+fcuXMULVqUc+fOMX78x4pgBQoUYNy4cWzduhVXV1eeP38OwO+//86gQYMoUqQIDg52OLnmp26JfF/F0M6JESIIAs2NrelgbMuMMA/eaygJnY5UoRlblFTGgjMEkYR2D3l6vLc/CbxDeicKVGEq1flnq5r+4P8HGzNjyWIq/zTGMjkTLXKTRCoLw700OlwyExYZgbW5KpzJ2tySsCjtzpeg8DBs06oVypFRyMIBn/BgkrX8LizRpyIWXErb8fGMTeatrw9lChTEUKlEIZdTqUgxTt+7zXs/PyoXVoVP1ChRklN3/87oRwDK6JsQnprM26Q4NE09MkGgrbEN/c0cWRzuzYrj10lO0fxZCIJAnRL5ODWlD60qFqPv6gOM3HwUnxDtn0XG9XlL/+fntxe3LuP77iX1uqovclKSkzj821zajZouaUzfO/MXzoVL4OBaQGP/pzaupGb7nhibS4fWndnyO416DdNorLv4P6BQwYLZerUXLlqUZf6SYtny5YwcOVLrOT/QzndtbIOqiuQAUwcsZQpWRPhoNLhrGZrTyURlXLzVYlwYy+SMsnCm7NsY2i/Zwabzd0hN1W5MuNpZsuan1vzevyU7rj7Abc5mjt97me11xYsX59q1a4SEhBAbG8vJkyfx8vLKaL927Rp2dnZZfiwfPnygQoUK1KtXj2vXrmnt//8TURTZs2gS9bsNxCaXehx5sI8HT6+fp3ZHacWwkxuW06DHII0Jl6kpKRxaOZu2I6dJDjapqamc3Lgctz4/a3zGhJuH6NGjB6am0vJ0oPJq9+3bFy8vL+Li4nB3d6dv375YW1tz5swZXrx4wZkzZ7J4xt++fUtgYCDh4eG4u7tnyAlWqFCBhw8f8uTxY5q1akvt4vlQ/EsebSnKKE0Yb+HM7xG+3IrPefiGM4YUx5SzBJGiJUQEVPGq9bHhMZEE5KA89g/+G5gbfb705KfkZGEJqp3LXqYOVDUwY2qYB8EpX1an4FM+da4oEFAix5t4UrX8LvJghCV6PErb8Smcy4XbL18SFhVFXEIClx49wC8khELOLpy9r/KUn7h9C7/Qj6EdXkFBtJj6C/OWLObRq1c8SowmWYuzp6CeIQut8xIdn0Cj2Zt4+MFX63sTBIHGZQpxblo/6pcsQI/f9jJ0/V+88cu+VsN/eX6LCA7g6B+L6Tp5kWQIx+W9WyhevR62zq5qbQmxMVzctQG3Ppp3XH3fvcLzxSMqN+sg2e73/rXWmhKpqanMX7CAiZMmaX0fZ86coXChQlq92jdu3sTOzo78+aVzon6gG9+9sQ1pVSRN7XBVGLA43EtjXFoZpQm/WLjwR6QfF+LCtfZZTmnKman9eOMfQosFW3mnQ+xaQUcb1g9ux9qBbTj3+C31Z27g5INXGj3dRYsWZezYsbi5udGsWTNKlSqVRT979+7ddO7cOeNvR0dH3r9/z927d1m8eDE9evQgMvLbjHH9+/h+DI1NJfW2RVFk/9LptP55sqSUkd/7V/i7v6VsPelqi6AqW5uvdCWNnoG/j+0lT7GyGkvXRoUGs3/fPgZokPtL58XLl+TPn//rJYWIIlevXaN0HgdMDHRXBdGFnBohoNpqn23lytHYkGx/E1IUwJhcGHAlm5hsAP00be2rhBChQ7z3t4ggCB0EQXgmCEKqIAgVMh13FQQhThCEh2kvdTH5H/y/UsfQgn6mDswN8yRWgyMkt5ECSzNzQiJUYRMhEWFYmmqXurSztCIoLDTj76DwUOwtrLBED99sDO6KWOBJHLEko2/pwKDmLemxaA69lsyjaO48KORyFvUfxLbzZ2gxbQIx8XHopSmL2FpYcn3ZKo7PWciUrj1ZumEdJokp3E2IwidZ84JWT5BR9WYwqwe0YsKOU0zfc5b4RO2/R0EQVJro0/vTpnJxRmw6yk9/HORDYKjGa/6r81tqaio7546nzfDJmFqqF+4K8fXi/rmj1O/6k+T153espVrrrhiZSX+vUlNS2P/rdNqOnCZpyKempnJwxSxaDZ2g0at95+RBqlevjouz5iRXURRZsHBhtl7tRQsXftel2b+VMfs/YWyn09bEhpL6xswP9yJBg8HtqNBnjqUqVGRtpJ/WhBFjA33md3NjRscG9Ft9gAWHLhGXzaAEKk/3sj7N2fpzR47dfUnj2Zs4cf+VpKe7b9++3Llzh4sXL2JlZUWBAirjMTk5mcOHD9Ohw8eVrVKpxDqtTHj58uXJly8fr1+/ztKfriEs/yTBPp5cO7iN1sOlY8XunT2ClZML+UpVkGw/snohLYf8onEgCfbx5PaJAzTW4LUOD/Ln2qEdNOk/UuMzPt+1nKlTp2JgoNnjFhIcTK+ePXHNk4fkpKSv8po7dy4nT57EyeMmCbePZ7z+PzGWyZlmmYcb8ZEcjMl5ddFSmKFExh3Csz3XFAV1seEcwcTqEO/9DfIUaAtckWh7J4pimbTXj0yif5DPWVgCFNU3Yrh5Lh4mRhOpIaSkeqlynLp5FYBTN69SvVQ5rX1am1tiaGDIs/eqvJ3Tt65So1R5zNHDEDlXCdW4EE1X+AkggWRS6VS7HsdmL2Tv5JlYmJjgau9AfqdcbBs/maOzFtCiSnVy26sk5JR6elim7cqVzJuP3Hb2xAYFU1zfmMXh3vydzW5VkVx2HJ/UG3tzExrMVOUdZYcgCDQoVYDjk3rTqXopBqw5qNXT/TXnt29hbgO4sv9PchUsSsFyVdXaRFHkwLIZtBk+RTJ0Ml3mtmoLzaEzV/b/Sb5SFXAuVFyy/dbRPTjlL0Luoupx4qBSQHl6bDuTs/FqHzx0iNKlS2v1al+5cgUTU9PvvTT7NzFm/6eMbYBmxtZUU5qleS+kB1MDmYyx5s7Yy/WYEZr9tmLFAs6cndYPU0MlDWZu4MidFzr98F1sLFg1oBVrB7Xh3OM31J2+np1XH5KUrHou8cOjDH1mT09PDh8+nLHSP3/+PIULF8Y508o0KCiIlLQ4u/fv3/P27Vvy5cuX0S6KIvXq16dVq1YsWrSIK1euEB4enu1zfk1SU1LYNf8X2o+ZhdJQXUs2JjKcCzvW0XygdNLHy9tXMTQx05h9nZ793W7UdPSV6oayKIrs/3U6LYdMkLw/wOt7N4iKiqJ58+Za38uyZcsYOHAgRkafp4n7KSdPnuTa9evMmT37q/T3NVEKMiZYuOCVlMDmSH/JZDJNCAhUxZJIknlKVLbnW6NPFSw5QxCJ2cR7f2uIovhCFMVX/9/P8YPPJ6+eAWX1TXiWGMOgVctpO2sq7/39qDpiMHsuX6Br4xbcffGUrlNHc/fFU7q5tcy4ttOkEazav4NTt67QfsIw3H29ARjdtQ+Lt2+g69TR5LKxp3IJ1fhljR4KBO6iOdbZGAX2KPEhnof+KqPVJziYU3dv07JqdYIjVdempqby+5GDdKvbEICQyEhS0hw4noEBuAf4kdvOHlOZnNlWeTgdG8b2qACNoZWgUhIZ4laVPaO7sPvaIzr9upP3AZq91ekIgkD9kgU4O60frSsVY9TmY/RYuYf771WKS+IHlRrL15zfrl27RuXKlek/YACbNm3i8ePHJH1BaffPwe/9a+6fPSqZ8A8q9RAzazvJwjcAx9f/qlHmFlThI/fPHaVxb82OpOuHd9J0gGblkLf7fmf8+PGYmZlpPCcpKYklixczcYLmQm+iKDJz1ixmTJculvO98K2M2d+lzra2bTmABkaWKAUZM8I8mGjhIqnFLQgCrY1tKKhnyJwwTzqa2FLNQPOXU08hZ6hbVTpULcn0PefYfOEuC3q4UdhJurxqZvLaWfFr7+YERkSz5vQtak1by7bNlSnoaEPHjh0JDQ1FoVCwcuVKLC1VyRB79uxRSxy5evUqM2fORC6XI5fLWbVqVZZYYUEQuHjhAt7e3ty4eZO/jhxh9pw5REZEkDdfPsqULk3JkiUpXLgwKclKjT/4zyU1NZVDK2dTsFxVXIuXkTzn6OqFNOw5BCNT9c86NSWFE+uX0Xv2bxrvcXzdUopUqqWxUuTDCycwMrWgcMXqku3JiQnc3LyU3XvUi+tkxs/PjzNnznDlitRiOOe8ffuWmTNncvz4cRQKxT+muSFVZU9XFILAcHMn/owOYGWED8PMc2XozqcXt9GEgEBdbDhFIEbIyId2OchcGBCfFu+tTYP7U4Jikz5LQzedVyGxAO0FQdiS6fA6URTXfXanH8krCMIDIBKYIori1a/Q5w/+AQxlMsorTZH168dMPSX28o8hXZ6xySwbJe0V3DNvheTxInnysWXaQokW1UL0PME8JYoSSOeHGKHAlFQmrltEcmwsCrmcWT37Ym5swubTJ9h67gwAbhUq0aFWHQBuv3rBsoN7kctkyGUy5vQegIWJKpnZVKZgsmVuDsQEMzXUnRHmubDXUswql7U5m4a259pLd/qt3k+d4vkY27IWxtmEugmCQMPSBWlYuiC333qx+K8rxCQksnFDDXLxiI59Rny1+a1mzZpcv36dp0+fcv3GDVasXMnLFy+QyeWUKF6c0qVLU7x4cQoVKoQoil+9ymFEcAA7546jy8SFkl7r2KhIzm1dw9Dfdkhe7/36GRFBARSrWkeyPT42ml3zxtNt6lL0lOr9f3Qk/aLRkfT+8V18fHxo17at1veyZcsWmjZtir29eqGddI4fP06xokUzdiO+hO1PAzH3/7z/Hzc9IwBqCILQL9Ph727MFr6VrZmcoBBk4myrPJLVszLzOCGGzVH+jLNwxkmhuYxMdGoKqyN9MRRk9Dd1wFD2sVCNpu3KO2+9mbTzNKXzOPBLmzrYmuleHjgyNp6AfDV46x+Cg4UJxavW1roK1YVkLSv81NRUPnz4wMNHj3j65AmvXr/Gw92dwJhErJ1cMLWyJSkhnsT4OJIS40lKSEBPqcTBtSAOrgVwyFsQuzz5JT3J6aQkJ7Fr/gTMbR1oPnCs5ED37uFtzu9cx4CF6yXbbx3bS5CXOy0GS8eQPbl6llvH9tFv/h+SsWwxEWGsGt6dYb/t1BgPd2bL71TPa8PoUdKeiXSGDx9O3Xr1aNO6tdbzdCE2NpZGjRuzetUqSpVSbf0lH1z8xf1q4nON7cwcignmeWIs4y2c0UurwqfN2E4nkVSOE0BlLHGSqKb3Kc+Jwpt4GmCDLM3gXovHPVEUJWOMXAqXEMduOpKTt5KFHXPHcefkwZKiKD7VdI4gCOcAKY2ryaIo/pV2ziVgrCiKd9P+VgImoiiGCIJQHjgMFBdF8dsLOv1/oFy+XOKV2QO/er+f+11PryCZLIo8TIzBUa5PrjRj1PMLKklKsXPQJFIQOUUghTGhgMRCtOsf8wCRQBJJIJVKhibofYGx+Hj8rIx/v0qM5Y9IP1oZW1PH0CLjuKa5LTklhU0X7rL54j0GN65Ct5plcqSY9NIniOiidQmOiqGQow0Fq9T54pwXbfNbXFwcT58+5dGjR7x4+ZLXr1/z3N0HpaEhti55UegrSUqIJyk+XvXfxATMbeywz5jfCmDl6KJRqxpUCf1bpv5MmxFTyV+6ouQ5exdPIV/pilRo1EqtTRRF1ozqRcuhEyRrPoiiyJ/Th1OyRkPKN2qp1g7w4PxxXvx9ha6TpBZ1qmT+XWO7sWXzZq3JjDExMdSpW5fz585ptTsaNGzIxo0byZNNIbfHjx9TuUoVjWO2IAhHZx6+0VyqgqYu3Dy6hz0LJw0RRXGNpnO+hzH7u/Rsm6Pg91A/6pmY087YBpmGQamU0pgRslwsCvdmqLkTBTVUEjORyRln7syFuHAmh7pnW3UMVKElZ6b25eDfz2i9cCtdapRmYMPK6Ck0V5RMx8zIADP/u+RLTeXk+ddMHT8G8wIlGTlyJFUqV/7qK3KZTEb+/PnJnz9/lhXv6ttehPp7Ex0Wgl5aSXZ9fQP0DAxIiI0hwOMt/h/e8vreDQLc32FkZk6rYZPUkhJTkpPZNnM0zoVL0KC79ISanJjA4d/m0nvOKsn3FxMZzpV9f/Lzqt2S1wd5feDUppUMWbFNclAURZF9S6bh1ne4RkM7yNudgAdX+HnpBY2fFcDft2/z6vXrjCIMX8rEiRPp3atXhqH9PdDG2AYDIZR5YV5MsHRBqaHs9afoI6MRtpwkkDrYYJNNlclimBJPKpcJoQ7W30S5dlEUG3zGNQmgklkRRfGeIAjvgEKAZsHlH/y/kdkYFcVURoR7UV7fhGbGqphhXRaWOUGOQCNsOUEgCgRcJcu1C9ihJJpk7iREUUzPSGOZ9ZyQLmm7LtKPBwnRDDRzxEgm58LYvZIGt0Iu56eGlelYrRRLj16lwcyNzOnSiOpFdKtOXCSXLUQ+JTQ6lj+P3mffiF9o2qQJAwcOxNFRulLil2BoaEjFihWpWPGjEbz2vh8JsTEEebuTkpyMntIAPaUSfQNDFHr6hAf64+/+Bs8Xj7h9Yj+BXh8oWaMBDXoMVitAE+T1gc1Tf6brpIUa46g/PLlHiJ83HcZKhwg+ungSK4dcGourXd63BWMzS42GdkRwAGe3rmbYbzs1fg4JNw7QuFGjbFVDZs6aRf9+/bJ18O3csSPbYm1hYWH89JN0Iui/yfcwZn+XxrYMgWbYEyrGMifck5HmuTCTSb8VVz0DJlq4sCDci96m9pTWULJWEATqG1lSRN+IlRE+lFea0tZYPdP402vaVSlB03KFWXn8OvVnbmBah/o0KKXbtotcJqN5+SI0L1+Eh7nr8vuqVYwdO5bOnTvTpXNnbGy03/9LWHvfD7lCga2zq6Q8kYmFFdZOLhSr+rGyo8fzR+xZOIncxUrj1mc4hiampCQns332GFyKlKB+N82eq3Pb11K2fnOsHaWzo//6fR6Neg2VLE4THxvN1pmj6DppEcZmFpLX3zq6B0NTM0rVbpzl+MByqsE9JSWFJhN7s3zZMq1eloiICEYMH86ePXu+yqJn/4EDBIeE0K9fv+xP/kp8SShJZpoYWaEUZMwO82SShUu2oSTpGKOgIbacJYj62GCZjcFdDnNuE8ZVQqn5nepsC4JgC4SKopgiCEI+oCDw/v/5sX6gA0pBxkQLF5aEe5MgirQ1sdH5u54T9JDhhh0nCUSGQG4+OnR2DsoathJFMnP1wqhkYEprI+svHouMZHJGWjhzKS6cSaHu9DW1p5SGuTAdC2NDZnduxDv/ECbtPM2Gc7eZ3aURztba1VnSsTIxYlTzGoz4YwT79u2jW/fuWFtZ0bt3bxo3bpxFmeSfQGlkrNE4Nja3JFfBj6XfU1NSuHl0DysGd6R+94GUa6Cq6Bvs48nmqT/TbfLiLOdnJjkpkYMrZtNr5gqNjqQzW1czdOV2yevf3L/JkytnGLzsT8n21JQUdswZR5sRU9QcSenz24sXLxh46BDnzp6V7COdU6dO8fbNGxYuWKD1PCBbQ1sURQYNHszEiRPp3KVLtv19a/zbY/Z3myApQ8AmxpimhlZMC/XgQ1K8xnPtFfpMt8zDjuhALmUjb5ZLoWSuVV5kwMTQD6wfIf0DyIyhvh6/tKnDzpGd2XXtIe0Wb+eZV0CO3k+FChXYsnkzR48cQSGX06ZtW7r36MHp06eJj9f83v5N8hQrzc+rduOUvzC/De3MrWP72DlvPI75Cmk1tAM83/Pi1mWNmtqv7lwjNiqC0nWbqLWJosjOueOp06mvxsHO990rbh7dQ5vhUxhYzjHLK52Vv/1GtapVqVBBWgEl/V4/Dx/OmLFjyZNHNy+ONt69e8fSJUtYvUram/89UM/QgiZGqoJQUanJkgVupDBHj/rYcp5gnWT+KmKBHjJuoFuluv8vBEFoIwiCN1AVOC4Iwum0plrAY0EQHgH7gUGiKGafafaDL+JzVUk+RU+QMd7CBffkeHZEBSKKos7f9ZygRIYbttwjHG8013swRcEsqzyEpiSzQIu6Vk6pY2jBFMvcHIkNYVWELxGx2c8t+R2s2TO6K91qlaXb8t3M3HuOSB2uS0dfX59u3bpx4fx5ZsyYwaXLl6larRrTpk3j6dOn34TKiEwup3rrrgz9bQcfHt9j1fBuPLt+gc1ThtJl4gKNcw/AxV0bKFW7sWQ9CYC/fp9Po55DJB1Fof4+HFo5l54zVkiWewc4s3U1rsXLULBcVcn5LTk5mSFDh/L7b7+hr6/ZseHn58e06dP5448/vsp8tGr1apydnWnVSj1s5lviWxmzc2RsC4IgEwThhiAIoiAIzpmO9xQE4Z0gCLGCIPydFv+S+bpfBEHwEwThqiAIeTIdv5TWV61Pzn8rCEJvXZ6pgoEp4y2cWRHho7VYjYVcwcw0ebMdGkr3pqMQBNqb2DLCPBcbI/110iEFVUXJjUPaM6ltXcZvO8nQ9X9lW4XyU6ysrBg8eDBXLl9m9KhRnDt/nnr16tG6dWtWrV7Nmze6lYX/p5DJZFRu2p7hq3cT6PmeXAWK0qiX5gqMKclJ7J4/gfajZ0gmZCbExXJk9ULaj54pOQBc2LkOKwdnyjdUba99Oth0K2TKueWT+WvHFn6ulk/telCt+g8dOsSkbKSQtm7dirGRER3at9d6ni7Ex8fTt18/Vq1ahbm5bp6gb5XqBqpwrZlpFVh1NUIs0aMuNpwliKhsUkIFBKpggRVfSc/8H0IUxUOiKDqLoqgURdFeFMXGaccPiKJYXBTF0qIolhNF8ej/97PCtzlmf6vIBYER5rkIT01mc1TAP2ZwGyDHDTv+JpxQEjWedzYgln5mDpRXmjIvzFNngzsqVftvzUaux2SL3BTXN6LGkF85+UA3oYYGpQpwfkZ/ctta0HjOJjacu52hrKUrxYsXZ/GiRVy7epVSpUuzYOFCKlWuzODBgzl46NBXUc/6kgRqYzML2o+ZSZvhU7lz+hCdxs/FpXAJjed7v3nO0+sXNFY6fnXnOrGR4ZKOpOSkRLbNHEnHsbMxt1F5kT+d34pGvyH+3UMO/DY/i/MoM0uWLMGtcWOtYYqpqan8NHAgC+bPz9ZjrQt3797lwIEDzJs794v7+qf5VsbsnHq2RwGxmQ8IglADWAMMBiyBA8AJQRDM0toLAHWAfMAM4NOgphBgifCZS60T/tE4KZRMtHDh9whfXiXGajzXUCbnFwsXEsVUlkZ4Zzt4OacV/Ii89JaGszZy5fkHnZ6pfP5cHJvYi6blCtNx6U7m7L9AeIz2ktifIggC5cqVY/GiRdy4cYMVK1ag1Ndn8pQpVKlShXHjx3P58mWSk3OezPMlg1E6BsamtBzyi2Sp2syc3LiCEjXq41KkpHT7huVUa9UFC1v13Abfty95eu0cLQarZAKlBpuRo0YxePBgihQpItm/rqv+V69esW7dOpYsWaL1/ejKhIkT6dypE+XKadfo/V6oaGBKDxM75oR7EpEDD7c1+tTCmjMEEaODwV1Ug1rDDz6bb27M/paRCwJDzBxJRmRjlP8/ZnAbIqceNlwkhAQt8pcn/KNpZGRJbUML5oR5ZltuPlUUWRDulW2BKkEQqGNowUxLV3Zfe0Sf3/cREJ69bKdCLqdP3QqcndaPgIho6s/cwF93nmdbLflTlEol7du1Y/u2bdy8cYNevXvz7OlTWrdpQ6PGjVm2fDlv377NUZ9fk1wFi9J71m8ataxB5Sjas2AiXScvkizOBqBvYED70TMkHUlnt66mZM2GuJYoq7YTCyrZxHHjxrFxwwaNITePHj3izNmzjMmm6Myy5cspU6YM9erV03qeLoSHhzNs2DA2bdyIUkI15QfS6GxsC4JQCBgCjP2kaQBwUBTFM2kB54tRBZ23yXQPGSDP9O/MrAecgc8O+jnhH429Qp/JlqrqkE8TYzSeKxcE+pg5UFrfhOmhHoRmo7EtFwRaGFuzY2Rnfjt5g2Eb/tJp600QBJqVL8KFGQNwsjKjydzNLDx0KUfbb5nJkycP/fv3Z++ePVy5coVGDRty8OBBqlarxvhffuHRo0ef1e8/yYtbl/F69ZS6XaQN8rcP/sb37Quqtuys1paYEM/uhZPoOG4OQyrlljS0169fj1wmo3v37hqfYeasWTRt0kTrqj8mJoZ+/fuzevVqjI01q8rExcUxYsSIbHcWdu7cSVBQEIMG/TMa+UGRMdx67cnDD7689g3GOySC0OhYklM+TsRfa3s9M6WVJnQ3sWNOmCeRaQa3LoaIHUqqYclpgoj/PgvZfJd8y2O2LoiiyCvfIP5+48VTT3/e+YfgHxZFZGz8P7q7JwgCA0wdSEZky2d6uBNIzbaiqiV6lMWcCwRne249QwsaGloyO8yTaC0Gt0wQmGqRh9vxkWyLCshWL99CrqCXB3SsXoo2i7az48pDnT5bEwMlk9vVY8/oLlx5/oH6Mzdy/N7Lz/r/olAoqFK5MlOnTuXSxYts/fNPLC0sGD9+PHXq1mX1mjUEB+e82NY/iaoK8jSqt+mGfW7pHVWAvCXLY2GnPnd9eHqftw/+pk6nfpJzW1JSEr379GHu3Lk4OTlJ9h0dHc2QoUNZvWqV1vj3a9evc/LkSaZNnarDO9NOSkoK/fr1Y8KECVqL4fxAHZ0yFARBkAGbgHGgViauNLAl/Q9RFMU03cLSaX+/FgThJvAu7dXtk+tjgGnAPEEQDqQN/jkmPZmlGtYsD/WlAhYMctCsgd3IyBJHuT6zwjwZaOZIUX3thUveLjjD3sVd2XP9MU3mbGZGpwY0Kl0w2+fSU8jpW68C3WqWYeul+zSavYmO1UoysGHlbDVMNaFUKmnYsCENGzYkKSmJs2fPsnDRIjw9PenQoQOdO3XSqp/5bxDi68XRPxYzZNmfkuoh0WEhHFw+i5+WbJRsP/zbXMYM7MNP7etI9n/16lV279nD8WPHND7D0aNHefb0Kfv379d4jiiKDB4yhMGDBlG6tHQhnXRWrlxJvvz5tca7vXjxgtVr1nD61KmvFqf90ieQG688M4wOC2NDCjvZkJicQmxCEjEJicQmJBEcFUNBBxtaViyq03fzcyijNCEVkTlhnky1zI2phsTkT3HEgApYcJogmmCH/vebLvJd8D2M2Z+SkJTM7Tde3Hrjxd9vvPAOiaCgozV25ibExCdmfNdjEhKJiI2nTvF8tKhQlNqL2nN5vObf+OcgCAI/mTryR6QfW6MD6Glin6OkycdEIgPKY6H1vHwYEUQCd4mgooZzP95TjjPGjAp8jxt2tHOQDk8zkKniz3dEBzI/3Ivh5k7Z/k6VOx5xalYfpu4+y6Hbz1jRpzm5dEiEdLQ0Y2mvZngFh7P4ryssO3aNX1rXpkGpAhnjX/LBxSjaShcxk8LBwYHevXvTu3dvgoKC2LtvH+3at8fe3p7u3brh5uamdZfy3+D64Z3IFXpUaZ5zp0ZsZASXVs/m+N695MktLRgw/pdfaNCgAQ0aSItspM9bw4YN07irC+Dj48OY0aM5ePDgF8svAixevJhSpUrR+itI4v6voWs68AjAXxTFg4IguH7SZgpq5bHCgQxdGVEUZ6DajtTE5rR7jAAW6fhMkhijoCl2nCaIlf6pDHfQbHSWVBozSeHC8nAfyilNaKtFRhDg4rh9dF7Skbol8jH6z+McuPWUuV0bYWOavca2Uk/BgIaV6F67LJsu3KX+zA10qFqSAQ0qYmaUvR6xJvT09GjatClNmzYlNDSUffv20blLF6wsLenWvTtNmzRRK0k+sJyj1lASTbFhoFsISmJCPFtnjqLzL/MwsbRWa09NTeXqb1NYtXgebo3LqrUfOHgQeyGOAQOkPeIeHh6MHTuWQ4cOaSy3/ubNG+bOncuJEye06qcuW74ca2trunX71J7IypMnTzh2/Djnz53TeE5SUhKDhwxhTTYecl35+40Xc/ZfwNhAnzrF8zK4UWVK5LZHIZeWlxRFkaeeARy9+4LfT96E0AhqGZpT3cAsQyv7a1BOaUoqMDvN4NbVCMmNIUmkcoYg3LBF8cPg/if5bsbspOQUtl2+z/rzd6hWOA9VC+Wmc/VSOFuba1ywxicmcenZB3ZceciozcdwiUiigaEFhbJxmuQEmSAwyMyR1ZG+bIsOpIeJnc7f9fJpHusnRFIS7RJrFdMWoe7EapAE/IgrRigQOEEgNZINNRaqkQkCPUztuRkfydRQD50cSmZGBqzo24LLz97T8ded9G9QkV61y2kdP9NxsbFgZb+WfAgMZeGhyyz+6wqjWtTArUyhL3I62NraMnTIEIYOGcLTp0/ZvmMHs+fMoVatWnTt0oVy5cpl6V+hp0e9/NpVvIraSH8OL4LVQ1AvvFP3qLs/fcC9M4cZslxaXQQ0z6GiKNKl62gmTJigUb968+bNhIeH8+vSpRr7/33VKqytrOjSWX1XOJ34+Hh69urF0l9/JVeuXBrP05UHDx5w+swZzp4588V9/S+S7a8oLX5vDDBMwylRwKdLYAtUFXl0QhTFFGA8MEkQBHXrLIcYIKcpdrwmmr9itG8/2cn1mWXlSpyYyswwD8KyCSu5MHYv9hambB/eiaZlC9Ny/la2XX6gc8yaob4eQ92qcnHmAIwN9Gg8ZxNz9l8g4M+ZOr8/TVhZWTFw4EAuXrjA3LlzefDgAbVq11Ydu3gxoxSuNrQZ2rqg0rueSpVm7TXGu0Vf2kXxEiVwc3NTa3N3d2fxokUaFTzi4uLo2asXv/32m9bttT59+7J27dosFcg+5dy5c5w9e5ZFC6WLBGTub9CgQaxft06rR2XhwoU0a9qUkiWl49N15bGHHx2W7mD5sWss7O7G7lFdGNSoCmXyOmk0tEHljSuZx4FJ7epyadZPbJrfD+/kBMaGvOdgTDAx2cR75oQKSlM6GNtmbGvrus2eH2MKYMQ5gknJZuv8B5/H9zJmp6SmsuvaI+pMX4dfeBSnpvRlaa9mtK9aEhcbC61GmoG+Hm5lC7FqQCuuzx1EDQNzDsaEMCXUnTvxUdmGT+iKTBAYYuZERGoyO6J1VymRpVVU9Sael2g3zmUI1MOae0QQpoNyjzOG1MSKicHuWlW4AKoamDHJ0oXtUQHsiw7SWro9XS60dvF8nJ7alzd+ITSdt4Wnnv7ZPlM6ee2s+GNgG9YOasOpB6+pN2M9B2891WnuyY4SJUqwYP58bt64QYP69VmxciXVqlVj3rx5hIZmFZHYvn4NbepUoU3tymxbtxqAl08f079VQ8qXL0/lypW5fft2xvkLFy6kTY1ytKhRnusXNTtUokKD2btkKj2mL5es8gjZOKvWrsXBwUGjZ/jv27fZum2bVgWrq1evcuTIERYtUq1xFXp66i+FggcPH/LHH39Qp04d6XNy8BJkMnz9/PhjzZp/XLLxv4ourqUagC3wVBCEYOB+2vHHgiAMAR4BGVlgaUkzZdKO64woiieB26i2J7UST0q2MW56yGiMHe+T4tkc6Z+t+kgPU3vaGNswI8yD+wnaB8cLY/ciCAKtKhXj1JQ+PPPyp/n8P3meA7k/Q309BjWqwuVZP+FiY07LBX/yy4QJfPigWxJmdhQpUoTZs2Zx6+ZNevbqxaFDh6hStSojR45k1+7dhPh6qcXXfamhDXD90A5kMjlVWnSSbC8R/4EzZ84wY/p0tbakpCT69uvHipUrsbCwUGsXRZFhP/9Mr549qVSpkmT/6dqfQwYP1hoW8v79e6ZMmcLWP//MdnstuyRMUGVnX7p8mVHZVKbURlBENL1/38f03ef4pXVtdo3qQjGXzw8HymdvRXdTexZY5UUfgcmh7myO9CckmwWlrlQ0MKWdsQ1z0xK3dDW4i2CKEwZcIpjUHwb3P8E3N2Z/ytXnH6g3fT1PPf35a0JPJrerh/ln7vAp5HJG/taHCZYuDDVz5F5iFGND3nM2Nozkr2B0ywSBoWZOhKQksy8b501m5Ag0xIY3xPAezXlEAErk1MGa8wRpVShJxw4lDbFlRYQPjxO0953uUEoQU5kVpj1PKd3gNjFQMq9rY5b0bMqYP08wcccpouN1jxbKa2fFir4t2DGiM7ffelOjZCE2bdpEbKxmAQNdUSgUNGnShK1//smZM2dwdXXNMpel+L/nwI4/2XniAvvOX+fKuVN4vH/HuoUzmTp1Kvfu3WPGjBlMnDgRgOfPn7Nnzx4ePXrEmp0HmDtxjOTiICU5iW0zR9Fq6ASsHNQ9xVJJjpl59OgRO3ftYsH8+ZLtAQEBDP/5Z7Zs2YKhoXRRPR8fH8aOHcufW7Zodfy8ePECASiqZc7KCffu3aNAgQIULlz4q/T3v4guxvZeID+qwbgM0DTteCNgK6pkmbaCINQXBEEflUfFADj0Gc8zDvgJ1UShkSRELhFCspYsblANdoXiVQ6cVZG+Wlf1oIpHnWnpytGYEP6MCtBpoDYzMmBB9ybM7+bGiM3HmLn3HHE6yASmo69Q0KtOeS7P+omK+DNw0CC6duuWZdX9JchkMqpXq8bKlSu5fu0a7du3x8fHh/tbFrG4d3O2zRrNrWN7CfH10qk/bYPJhyf3uHf2iEYZv075DBk9ahQbN26UNHCnTZ9O8+bNqazBkN64cSN6CgV9+/bV+AwrVq7E1taWrl27ajwnMjKSnr16sWbNGmxttX7V+PNPlc66tiTMyMhIhg8f/kWr/tMPX9Nq4TY6Vy/NoV96UCG/dCxfTqm3pCOGMjnNja1Zap2PAnqGzAnz5Fxs2FdJMqtsYEYTIysWhHuRmAMt4FKYYYYe1wjNduH8gxzzzY3Z6SQmJzN9z1kWH7nCzpGdmdu1sU5heLriqFAyyMyJGVZ5CExJZFLoBzyy8f7qgkwQGGbuxIekeI7HhOi8sFQgozG2PCYKLy262qBS7klXKHmbjXEOKi37Gsk2bIsO4E68diURuSDQ3dSetsY2zMzGoZS5IFaJ3A6cnNybQk42NJq1SWeZwHScrMxY0N2Ng+N7EBQURO06dZg1axaBgYE56kcTpqamdO3aFWvrj5srL1++pFT5ChgaGaFQKKhQpQZPr5xGEAQiI1WbNxERERk7o0ePHqVTp04olUqcc7uS2zUfTx/cw8nMgHr5bTJeBZL8WLHsVwZ3bp3lePpLm2dYBAYPHsyG9eslQx9TUlLo268f8+fP1xhekpCQQK/evVm6dKnkrm7//v1xcnKiePHivP/wgarVqhEaFoabmxtFixbFzc2NsDBVHYOQkBAaNGiAhYUFw4cPz9LPvXv3KFOmDEWKFGHkyJF4e3sTGhpKsWLS1S9/oBvZGtuiKMaKouid/gLS95T8RVGMFkXxGqqM9/Wo4gA7Ak0/p768KIqPgN2gPcjNFAX2KDlKAJHZbLsJCNjFGmMr12N5hE+2BrSFXJGW+CVnaqg7/snSXoZPK/SVdnXk1JQ+2Jmb0GDmhhwPSgq5nNaVinPm9GlGjhjBsuXLadS4MceOHcuxrJIm9PX1qVGjBmPHjGH//v2M3XSEul36Excdxd1NC6hcuTJDhgxhz969GvVONcVsR4UGs2/pdHpq2F77qawDw0eMYPwvv5DbxUWt/fTp07x6+ZKRI0ZI9v/w4UO2/Pkny5Yt0/j+Lly4wMmTJ7WGhSQnJ9OrVy9Gjx5N2bLq8eKZefz4Mes3bGDF8uVazwsLD2fatGkUKKBb5dDkg4sz/h0Tn8jIzUfZfPEef/3SA7eyhXTq43OQCwI1Dc2ZZ+XKm6Q45oZ7ZavGowu1DM2pamDG0nBvGtvrbjhVwBw5AnfU8vd+8CV8i2M2wAvvQNzmbMbG1JjD43volICXEzIr8JjJFHQztWeImROrIn05GB2crbMlO+SCwGiLXNxNiOZSXLjOBrd+msF9h3D80e4dtkKfFtjznliuE5ptqJURcqZb5uFATDDX4z8Nw1endJpD6VhsCJsj/UnSsEDOPL/JZDL61K3AofHdOXDzKV2W7cIzODzbe2XG1syYMQVlXL92jbx589KmbVuGDRvG69evc9SPLhQvXpynd24RHhpKXGwsVy+cwcvLi6VLl2aoaPzyyy/MmTMHUHmLnZ0/OjfsnZwI8PfN+Hv7+jW0rF6eoX17ceHiBUAVktKtWX06NKhB58a1iXr/FFCFQZqamlK+fHnKly/PkCFDQBS5ceMGP//8M4UKSY/vc+fOpVrVqlql+caMGUO7tm2pUaOGZHuvXr3YvXs3cXFx1KtXD7lczqJFi6hXrx4vXrygXr16GaEnBgYGzJgxg4USc+WwYcNYs2YNL168yJDErV279ndbmO1bIccZSqIououiKKQN4unHtoqimE8URUNRFCuJonhPx77qiKI455NjfdL636Lt2mKYUh0rzhCUrcdAQKCziR359QyYE+aZbeyqTBBoa2xDH1N7FoZ7cSVOehD71OCWy2QMblyFA2O7s//mk88alAAqVarErp07+WPNGs6dP0/16tVZt27dV9mCy8zgis44FyxG3c79OHjwINeuXaNnr168f/cONzc3nUNaUpKTM7bXLB2k46h3796NUqmkXdu2am2+vr5MmzaNtWvXSibjREZGMnjwYDZt3Khxe83Dw4OJEydmGxYycdIkKleuTNs2bTSek37PQYMGsXHDhmyTHfPkzi0Zf54dd9564zZnE2XzOrFrZGdszb++ni+oywAayuQMNneiqZEVs8I8uabh+50T3IysKKhnyO8RvrjpaHALCFTDkmhSeKR7uPAPcsi3MGYHRkQzZP1hfuvXkp+bVtMp6e5r4KpnwNy0nJypoe74Jn+ZcIqeIOMXCxdOx4bxd3ykzga3IXIaYcs1QrINE9FHRkNsMEbOCQKIzUYu80pgHNMsc3M6Noy/YoKz3bGykCuYYpEbK7mCKaHu+Gn4TD6d3+wtTNkwpB2DG1eh+4o9LD1ylcQc1nnQ19enR48eXLt6lebNmzNq9GjatWvH5cuXv5qcY9GiRRk7dizDu7VhcNd2VC5XBoVCwdq1a1myZAkfPnxgyZIl/PTTTwCS9xVQGZZvXj5n/7ZNTJk2jUOXb3Pl3Gk83r9j2expDBo9gX3nrjF0/OSMkBSA/Pnzc+/ePe7du8fq1at58/YtgiDQRUNJ83PnznHn7l0mTJig8T1t3LiRhMRErXKylSpV4tXLlxgZGWXMk0ePHqVHjx4A9OjRgyNHjgBgbGxMjRo11Lzsfn5+REVFUbVqVURRpHTp0nh6emqcd3+gO9+1HIAdSpphz0MieY72bbQT/tG0NrahsZEl00LdCdDgsc5MIX0j5lq5cichihURPsTqmGDmYGnKxiHtGdSoMt1X7GHJkSs6VaCErF7PfPnysXzZMo4fP05EZCS169RhxowZ+Pl9eVGadDLHmenp6VGlcmUmTpzI6tWr6dy5M8+fP8+2j+PrllCgXBUKV5RecTe2SmDFihUslSgYk5KSwoCffmLRokWSIR3pEkcjR43S6BWIiYnJSJrUJnm4fft2/P39+eWXX7S+n/S475GjRv1jMWpbLt5j0s7T/PlzR3rVKf//4jUopzRhTtr3+9dwb+K/cAelvYktFnI5m6L8aZIDg7s21vjpkEj2g+8XETg1pS/FvyAHQRek9OX1BBndTO3oY+bAknBvzseGfdE9DGQyJlvmZl9MMI8TYnQ2uE1Q0ABbLhCs045sGcwphzknCCAim/MvBcYx1TI3nskJrI30y9aLLxMEWhnbMMDMkcXh3lyIC9fZ2K1VLC/npvcDoMHMjVx48k6n6zIjCAJubm4cP3aM6dOns237dmrXqcOuXbtITMx+bs6Ovn37cufOHbYcPomVlRUFChRg27ZttElzsrRv3547d+4A4OzsjLd3xjqUAF9f7BxUc+K7l89xcXamRNXaKA0NqVClBudPHkUQBGKiVQ4CMzFeY7J+REQEz58/p2rVqpLtvr6+TJ48mQ3r1yPXkPx+89Yttu/YwcoVKzTOE6IocvnSJYoVL54llDEgIABHR9V7cXR0zDZ8x8fHJ0O55NmzZxQqVCgj9OQHX8Z3bWyDymPQBDs8iOOZDgZ3VQMzBpk7MT/cS2u1yXSMZHJGm+eitL4xk0LduZeQ9R6frv4zU7t4Ps5N74eeXE69GRvYfe3RZ4WEWFlZMW7sWK5fu0bhwoXp2KkTw4cPx8PDI8d96Uq5cuXYunUrffr0yRiUpHh0+TQBHu9p0GOwZHtyYkJG0qOZmfpO86JFi6hcqRK1a9eWvD4mJoZq1arRqaO0nqkoivw0cCAD+vfXmDQJcOfOHdatX88fa9Zka9j+umwZjo6OdOzQQet5n0NqaipTd5/h4tN3HJnQk3z2mtVSviaaityYyOSMsnCmgtKUxGxyIHShp4k9iaLI7uggnY0QOQINsOEN0Xzg6+7e/ODbwN7cBKXe/6+KQUE9Q+ZZ5eVRYgyrInxzlGPwKSYyOZMtXNgS5c+bpDidv+sW6FEba84SnG1FVYBcGFIXG84SRHg2BreeIGOYmRM2cj3mhnnq5BwqoGfIHCtXXibGMjfck2Adw8r0FQrGtKzJ9hGd2Hb5Pu0Wb+eZDgIBmZ1J6ZQqVYoN69eze9cuXrx4QY2aNVmzZg1xcTmrupyZdKPSODaYw4cP07lzZ5ycnLhy5QoAFy9ezAj7a968uSpB0icMb093PD68o0TZ8iCK6KUm8fbdOxKTUzNCUgJ8fRg/awG/zppG04rFs4SkAHz48IEKFSpQt25d1qxZQ80aNSR3W5OTk+nXvz9LlizR6CTy8vZm5IgRbNu6Vat3+e7du9ja2X2xxF/6gis2NpZ3796RP5u6Ej/Qne/e2AZQINAIWzyJ44UOBndBPUMmW7og1/FLlF7adnraVt0fkb7ZlnpPR1+hYESz6hyd2IsHH3xxm7OZ++99dLpWrS99fbp06cKVy5dxc3Ojd58+DBs2DK9Mq/KvSeHChdm7dy/jxo8H1OO1g7zdObPld7pNXqxxWzjo1BZatmwpmfR47fp1Ll2+zKRJkzQ+g4mJCUOHDNHYvmjRInLlyqU1gdHX15dhw4axbevWbENCLl68yJkzZzRmjH8J0dHRdKpdAbkgY/PQ9hjqf3mRga9FLUNzzHQsUKMNQRAYaOaId0oCR3OYSNYIO50Sw37wA21oq55qIJMxyjwXrgqlThWEtWEp12OCpQurInzxSk7Q+btui5KqWHKGIJJ0WOCmJ06eI0irh/uEfzSCINDexJb6RhZMC/PQyXg2kskZYu5ECyNr5oR5Zon91uZMAshtY8HmYR2Y1LYuY/88wZg/jxMa/XkLZicnJ2bNmsW5s2eJjomhdp06rF27loSEnIf+dOzYMaP4ysqVK7G0tGTNmjWMGzeOcuXKMWXKFNasWQOoYrw7dOhA69qVGNy1HZPmLUUulxMbFUHeAgUZMGIsP3VqxeCu7ShcrARyuYK9WzeyYtlStZAUR0dH3r9/z927d+nVqxe///47Cg1hjXPnzqVWzZrUrFlTsj02NpYePXqwYuXKLDHln/Lu3TsiIiIoU6aMWpu9vX3GTrifnx92dnZaPzdnZ2d8fHy4e/cu5cqVw8/PL8Mz/oMv4z9hbEO6zJIt74nltQ7b0bZyfQro5SwOyVKux0QLF1wVBkwK+ZCtxmlmrE2NWNijCSv7tfisOO7MCIJA06ZNuXD+PG5ubnTp0oXRY8Z81fCSdPLkyUNSYqLa1l5YgC9bpv5Ml4kLMDJTT3QaWM6Rqoogrl67xs/D1OV+Q0NDGTN6NBs2bPhsBY/jx49z/fp15s2dq/GcuLg4evTsydKlS8mTJ4/W/ry9vfllwgS2bN78VaptZcbTy4umzZrRulJxZnRq8K/FrGbmnyjhLoVcEBhpnosHOUwkUyKjoW6iFj/4wWcjCALNjK3pYmLHrDBP3iR9vgfVTq7PGAtnloZ7E5iie/iDEwYUw5RrhGZ/MqrEyXQPd5QWj3h6wZ3qBub0M3VgdpgHL3XYwQVV8uQcK1eux0eyMsKHuBzo8pfPn4sTk3tTuaALzef9ycbzd0j+TG1tMzMzxo0dy7mzZwkNDaVmrVps3ryZpCTdF0aXLl3i8ePH3L9/PyPpsEaNGty+fZv79+9z48YNypcvn3H+xIkTOXHrEUev3aNm/YYE+3iQEBeDa/GytO3ak71nr7Ll8EnMLCzJnS8fx/btkgxJUSqVWFtb4+HhgbOzM4ULF5ZMAr1w4QJ37t5lfJoj61PSwyd79+pFlcqVNb7Pu3fv8uzZM40JjM2bN2fbtm0AbNu2jRYtWmj93BwdHTEwMODhw4e4ODuzfft2WrZsqfWaH+jGf8bYho8e7ldEa/WQ6VpyVwpBEHAzsmKkhTNr0rLcz47Zo/P1RXLZ0bpScZSVmml86So0r6evT+s2bbh58ybVqlWjXbt2/DJhwleTVUqnRIkSPHnyJCO+u5WTwJHZP7N93Spmd26QcTzzKzk5meEjRvDbypWSsWgjRo5k4sSJuGhZsWvj5cuXzJkzhy1btmg01kVRZMjQoXTr2lVjBnc6iYmJ9O7Th19//fWrr+TfvHlDh/btWdCsNJ2qSxf6+a+hJ6hKRp+ODeNuNrJkP/jB10aXhWUppTETLFxYG+n3Rd9RF4WSIWaOLAjzorqd7lrhhVEtQl/pmKtgjT61sOYMQUTrYHAX1TdiimVuNkX5c1bHOHUTmZxx5s6USAubfKGjoQ6qubFjtVKcntoXv7Ao6s1QqXJ9buKjmZkZEydO5PSpU3h4eFCzZk127NhBcg6TMnWlqI0RRW2MMIoOJNL7Pa4uLhS3N8U6NZqiNkYYxwZz7cxxRvbrqTEkJSgoiOjoaO7fv49zrly8ffuWfPnyZbmPv78/EydO1BqnvWz5ciwtLendu7fG5/X19WXo0KHUq1sXPT09unfvTs2aNXn16hWurq5s2rSJ8ePHc+7cOYoWLcq5c+eyGPcFChRg3LhxbN26FVdXV54/f44oinTv3p3169dTpGhR8uXLl23yf7ox/wPt/KeMbfhYzOYZUbz7hwxuUA2wqiz3FKaFuvM+QDcPxaf89ucuyjTrSOmmHVm5ZSegEr+vUaMGZcqUoXXr1hnaoKCqdFWkSBGKFy/OmbSyqYIg0L5dO65evUqZMmVo1aoVU6dNIyQk5IveYzrly5fn3j2VWEFwcDDtO3Rg4cKFWlfcK3/7jYYNGkhqcx46fBiFQqGxilZ2hIeH07dvXzZs2KC1QuTSX3/F0tJSqy53Or9MmEDLli2pUb36Zz2TJry9venRowcbN26kUgF1ycN/m3/Luw2qLftJli7sjgkij9WPuL8ffHs4KPSZbpmb/THB3Iz/fEWcQvpG9DS1Z16YJ3XsdN8xrYEVz4jSqZANqEQBqmPJaR0Nblu5PrOtXHmcGMPaSD+dakcIgkA9QwsmWLiwMzqQabvPkpCku4FraqhkSvt67B7VhSN3XtBq4Vbe+OleDOhTLC0tmTFjBseOHeP5ixfUqlWLPXv3SuY/JSclfdHr7JkzdO/RI8vclpOQlKtXrlC6dGmmTZtGj549WbVqVZY5Kl0QYP78+Tg4OEi+3zNnznD27FkWp8n0SZF5x9bE1BRQCQB4eXkRFxeHu7s7ffv2xdramjNnzvDixQvOnDmT5Vnevn1LYGAg4eHhuLu7U6xYMd68fk316tV58uQJr169YuXKlVpjtvfs3cu+ffs0tv/gI/85YxtU0klN0gzuf8rDDelZ7vb0NLWn12972Xj+To5W8U9fv2Xj3kPc2L+Ve0d2cuLiNd64ezKwd0/mzZvHw4cPadWqFUuXLgWyVro6duwYP//8c5ZKV3K5nC6dO3P16lUKFSxI06ZNmTxlCgEBule2lKJ8+fLcv3+fsLAw2rVvz4zp0zXGmYEqhuzgwYOMGzdOrS04OJgF8+dLKpPogiiKDBgwgPHjx1O8eHGN5508eZJLly5lW4odYPeePQQGBkqGu3wJISEhdOrcmWXLl1Pk9cmv2vf3gqlMwUQLFzZE+lPU+keZ3x/8e+i6sDSVqWorHI0J4eoXyGCWUZrQ0tiaBeFeJOtYqEkPGXWx5hIhOsVvAzhgkGFw6xJSohRkjDbPhZ1cj5lhHkSk6mY42yv0mWmZh4jLb2g8exNPPHQv2w6qgjZrfmrN3C6NMfoK+Sk2NjbMnTOHQ4cOce/ePWrUqMHOnTu/qqe7WLFi7N+3D3Pzj6GROQlJKVO2LJs3b+bJkyfcuXOH5s2bZ+l/8eLFVChfXqOetoeHB1OnTtUqYSuKIkOHDcvYsf3SBUb6KzgoiM5dupA/Xz6N52Tm9OnTrFu3jp07d3725/2/xH929ks3uE8TRDIiRcgaN9r1j3kZ/85t9GUfQylgWMW83HnnzfWEJKoXyYNBpsz7hNvHJa97+c6dyqVLYmSo2nqsWakcf529yOsPHhnGbIMGDWjWrBkzZ87MUukqb9685M+fn9u3b6vJCikUCnr06EGXLl3Yt28fbdu2pVLlyowaNUqyoEx2lCxZkkePHtG6TRvGjxtHgwYNNJ6bkJDAgJ9+YvmyZRh9mowoijx7/pxDhw5hp0WiTxPJSUksX7GCvPnyafWKP3r0iNmzZ/8fe2cdFkX3xfHPLN0pStjdhf3ahdjdjd2F3d3dBXaLYutrd3cHBiIhDZI7vz8QXsRd2F0WBH98nodHmbn3zl2dvXPm3HPOF3d3999CTJImq3h7e2NsbMyOHTvUGqcd4O9P23btmDplClUqVybm0BW1ja1uSi1QWm1baSpJpTyMCuVm36mYkHESQ7PIAsBAosEks1zMCYxT0q2up5rgTjVdE0KlsdwXAigZaYaElHd0zNCmBEZcwZ/aWCTUeE6OHOhSHXNO40N9ssn9Tp34FopjDkMEQaClgSW5NXWZ5v+R4Sa25NZKOeQlvkTggH61GLDhCO2rlaRf/UpKVagomTvOg6tTsXHcgS/PEfKWVrh/Umzt7FiyZAlfPT1ZsXIl1apVo0+fPnTp0kWmOqMyJFc6NiXCwsJ4/OgRjRwdZZ6/cOECly5fxv1nreukREVF0bNXrwQVZHnMnz8fExMThXZslWH2nDkMHTJEZtWwpNy4eZMZM2dy9MgRdM+sVes8/lb+Ss92PFpIcCAbHwjnqRzRjHnbNlB2UB8ajh+VcCwwNJQu82dRe8wwusyfRVDYfx7wNe6HqTV6KHWch3Pp8cOE449fvGLgyDH0GzqCdiMm8+V7YIrzK14wP1fuPuB7QCDhPyI4dekaX7y8KV4oP+7u7gAcOHCAz5/jHgBJla5sbW35+vWrzLEhzuju2LEjV65coVbNmnTr1o3uPXrg5uZGWJjiVR+0tbXZsGEDE8aPp3HjxnLbiaLIsGHDaNumDfb29gnHV6xYESf/WrQo7u7u5MqdW26ojEwFrp9cu36d48ePM2vmTLlz+PzlC3379mX79u2/SPgmJl7WtmTJkty4fp26desSEhKitKxt3bp1KV68eMJc42PlY2Nj6dS5M/369aNBgwYyy139SeR5/Jw3rsVewe/ClaePaTplHA4TRtN0yjiuP3+a0OfJh/c4TBhNrdFDmbZ9K6Iooi+RUFLbgFua/sluf2eRxZ9CX6LBBNOcnAr3V0iNUR4N9c0ppKXHW90gRAU93IUwRAJK1Zq3QichaVLRMJRyOoaMMrVjeZBnihLviSlia8XJiT3w8AmkzaKdfAtQPcZ9petuypQpQ+nSpVm+fDmgfOgkgJWVFbNmzuTUqVP4+vpSvUYNJk+Zwt27d9UikKOMVzgqMpLWrVtjZGSEhkTy2/mPHh6MGzeOrVu2yM0xGjd+PC1atEg2PHPnzp3cu3ePRQvV+0x5+PAh9+7do1OnTim2ffr0KSOGD2ff3r1yn7FZ/E6mNLaDiVa4JnBcSbFsfCWSB/y+gDaqUp2FQ37NCF57zI1qxUpwYeFyqhUrwdpjRwB44/kF95vXOT13Ma5jJjBl2xZif8aN9R09jbUzJ/Lm/BFiwkPY5n6WW28+E5NMXe2iBfIypk83GvUcRJPeQyhVpCCamhpsmDOFtUsWULFiRUJDQ9HW1gbkKF0p4GGQSCQ0b96cC+fPM3TIEB48eEC9evVo36EDu3fv/mVhk0fJkiVp2LBhsm0WL1mCjo7OLypXT58+ZcuWLZw6eZI5c+bw/Plz3rx5Q79+/WSGysDvClwQF6M2YsQItm7dmvDvkZSgoCA6derE8hUryJ8/v9x5du/enYMHDxIWFkbNmjUxMDBQSdYWwNXVNWGuVlZWIIpcunSJJo0by60NnlFpXb0mLmPG/3JM3nfB3NCITSOcOTVnEYv6DmTk+lUJfSa5bmJOz75cWLgcD+9vCS+lRhIN+hlbc0vzOz9SUMXLIgt1oGyOgr5Eg4lmuTgW5s/tVCRNtjbMhpmGFtcJUNjgroY5bwjjKSEK97FAm7o/hXJ85UjBJw2XtNPUYbp5btzDv3NYAcXJeHS1tZjXxYFBDlVouXA7R++8UKhfYhJCJ69f5969e5w4cSLZ50FKoZMQF9M9fvx4Ll28iH358qxZu5aKlSoxavRorly5opK2hbKsWLmSMmXKyNSLiI6OpkfPnixevFhunPbBQ4f4+vVrsqGMFy9eZNPmzbi4uMhNrFSF79+/079/fzbIUXBOzKfPn+nduzfbt2/H1tY2wzmSMjKZ0tjWQQN3vFMs8h9PvGhGINHcSLL4lS5YFCN9Q6ITrTdn79+ldfW4L03r6jU5c+/Oz+N3aFq5KjpaWuTMZkVuq+w8evcWn8AAQn/8oHLZUgiCQLdWTfj87jXGejqcuPcq2Vi3nm1bcNttJ+d3bcTMxIQCuXNRJH8eTmxdze3bt2nfvn1CNnNSpStPT0+lKmcIgkD58uWZPn06N27cYPq0aXz8+JEGDRoopBSZHIcOH+bK5cssXrz4lxeAly9fUrFiRe7eu0eNGjWoWbMmR44c4fXr17+Eyhw+fFju2OJPA3bWzJlyq5dERUXRpWtXRo4cmaxnAKBK5cq8ePECPT09zH4mjCgrayuPl69eoaurS79+/QDZIg4ZAVlGSKUixTA1+DXcSt53oXievGQ3i/u3K2Sbk8ioaCKjoxO+C+UKFkIQBFpVq8GZ+/+JIhXV1qeLUXZO40ukGkR0sshC3cQb3PvCfHkWpXrd926GVtjqaXJXhpNHFlpIcCQ7fkRyie/EKmhwm6FFA7JxGX88kV2ONqnBbSTRZIpZbr7FRLEi+CvRSgj81CmZn2Pje7D/xmMGbTxCyA/F62DHh07qeb9BU1OTGjVqJPs8kBc6KQt9fX2aN2/Ols2buXb1Kg4NG7Jl61a69+iRKoGclHj06BFubm5MmTxZ5vlJkyfTqFEjuRWx3rx5w6KFC1m/bp1c59mzZ88YN24ce3bvTlErQhliYmLo2bMnU6dOTaioIg+pVErfvn1ZsnQpBQsWVNsc/l/IpMa2hFpY8C9+fFRQcU6CQC0skADn8ZPpOfgUHre97RcchJWpGQBWpmZ8/+n5/RYQgLW5ZUJ7a3MLvgX4883fH2uz/7J87bJnx8vbl6J2VtQolofhLsdY4HaJ6JjfvXk+3+OqmHz6+g23M+dp36RhwrHYdw+YM2dOQsH8eKWryMhIPnz4wNu3b5NVTUyJIkWKMG7cOFxcXOjduzfnzp1TaZy7d++yZMkStm3b9tsWWfHixTl37hzGxsbo6+tz8uRJPn/+TPHixWWGysB/Clx16tTh6tWrPHzwgGzZstGgQQOZ148PX6lfvz4tU6hwIkqlXLhwgfz58/8So62srG08Tk5OlC9fntmzZxMcFMSrny8XfwvyvguJOXnnFsVz50FHS+u370IOc3O8/X8tO1ZWx5AeplacwYeYLIM7izRGlQo8hj9DSjYGf+OdinW44wWeDHRFHssJY0yKJgI1scASHY7hrZDKJIAxWjTCijsEKiwMpSkIDDCxoYCmLlP9P/JdCYEfCyN9tg1pR5XCuXCYtYVLz94r1O+X0Mnw8BSfB8qGTsajra1N/fr12bplC7Vq1qRps2b4+voq/PkUJSwsjIGDBrF+3TqZO65ubm58+PCBEcOHy+wfHh5Or969Wbdu3S9JmYnx8fGhV69euLq6piqmXBZTp02jSpUqNGrUKMW2K1etwt7enmpVqwIZ15GUUcmUxjbEbZ81xoqnhPAQxWLjBAQqYYYVOnzhB1IFPQfxyAvjkHntn2+opgZ6nJrYE0EQaDBzM3fe/qr22H6wM6UataVlvxGsmDoWMxNj9h47TbEGrSjh0AYbG5uEWpvxSlelSpWiSZMmrJBTw1pZihQpwtGjR5k6dSovX75Uqq+vry+DBg1i544dMhcLbS0tWrdqxahRo2jcuDGlSpVCU1OTjRs3snbt2t9CZRIrcC1cuJBOnTrxwcODcuXKyZ2Di4sLMbGxKVYTEUWRGzdvYpU9e4oCN4qwbds2Hj58yMWLF7l69SqzZs+mStWqCS8cGX0xUkcZwNdfPjN/3y5m9+wDIOe78PuhqrrGtDaOe2FW9nuYRRbpgbmGFmNNc7Iy6KtShmhi4gSe7NBAznNCBgICJTCiAqacxAcfOeEhSdFHA0eseEUoz2QoKcurvtXYwIJORlbMCPjIczmefFlKkoIg0KVGWfaO7MSqUzcYuNEtRfXIxKGTjevWSvF5oGroZGJ69+7N6FGj6N6jx28hKCmRXPncmJgYevToweDBgylcuPBv51+/fs38+fPZsH69zDmLosiQoUPp3asXpUvLThiNjY2lV+/ezJo1S+Y1ko6nDCdPnuTlixeMHTs2xbYfPnxg3969TJ40SalrZPEfmdbYBtBFAwesCCaGmwQqvJiVxBhjtPjMD6RJPGufwmOwNDbBJzDOG+cTGIDFz+xca3NzvPz/qxfq5f+d7KZmWJtb4BXwX53tL97e2Fj95wHX0tRgTPMabBzQmpkH/mW063Gifnq5L+zexOOT+7nnvps6VeM8okO6d+T5mUM8P3OI2X3a//JFHT9+PK9eveLZs2cpFptXhmzZsrFu3Tr69O2r8JZb/EIwc+ZMmcar19evvHj5krlz53Lnzh0uXLiAubk5BQoUoEiRIpw8efK3UJl4BS6AQgULYmZmRo4cOeQusPfv32eriwvLly1LcRFesXIlsbGxlC71u7CMsrK2EOdlATAyMqJOnTp4eHgo1C8zIe+7AHH3f7/li1ncdyC5s8fFIib9Lnzz9ye7mZnMsevpx734XsFf4e9uFlmogqovltaa2vQxzsGCwM9EKhFqkRhNQWBMDmuFqowkxgZdGpCNK/jjJSc8JCnaSHDACk8iuK+gEwqghLYBk81ysy3Eh+Nh35Uy3OwsTNg3shP1SxWk8RwX9l1/nGz/xKGTKT0PUhs6GY+DgwNVq1Rh3rx5Cvd58+YNzZo1k6lcKYoio0aNwt7eno4dOvx2PjQ0lJ69erFhwwZMTU1ljr923Tr0dHWTFa6ZMWMGVatUoX79+snONSIigjZt2iQk9qfEt2/fmDptGuvWrUsxTlsURUaMGMH8BQvQ0dEBMr4jKSOSqY1tiIvHro450Ui5Q6DC/UzQwgJtPhFBbBKDu15Zew5euQTAwSuXqF/OPuG4+83rREZH89nXBw/vb5TOXwArUzMMdXU5tuMkoiiy8/AJmtb9PVGiQA4LjoztRpm8Npy4/0ph2XbxwyOFP1dqKFmyJN26dmXcuHEKtZ8xYwYV7O1lhnc8e/aMW7dvU7duXfx/LgCfPn3Czc2NDh06JIRpSKXSX0JlfH19iY2NJSY6mt179uDv70+RIkVkXt/f35+BAweydcsW9PX1k53r0aNHOXv2LNWqVUvYdUiMsrK2MTEx+PnFvXiFhoZy5MgRaiVKjsksi1FKRoi870JwWBi9Fs/DuV1H7Av99/8T/1148PY1oihy6Npl6perIHf8Cdlt0ERQOK41iyxURVWDu7i2AXX1TFkV9FUtVS6UwRgtHMjGdQLwVtDDHZ+jFCwjRyk5bQlLDS1mmOfmQ0wEK4K+KvVyIQgCLSsV5+TEnlx94UGbRTvlPt8Sh04e3rcn2eeBOkMnx48fz9Vr17hyJeUyrPHG8po1a2SWhF2ydCnR0dEy5dbjpdYHDxpEyZIlZY5/7fp1Dh48+EthgKScOHGCR48epfg8lkql9O3Xj0aNGmEmx7GRtH2/fv2YO2dOsiUG4zlw8CA5cuRQu+Db/xsKGduCIMwWBOGDIAjBgiD4CIJwQBCEXD/P9RAEQSoIQmiin91J+o8VBMFLEIQrgiDkTnT8oiAIoiAINZK0fysIQg9FP4Tw0+AOI5Z7ShjchmiyZdMmBi6YxqdvXrQZN5jj1y7StG5jrj57Qu0xw7j67AkDmrQAoJBdThpXqkKD8aPovnAOM7r1QuPnW+HM7k6M27yeovVakC+XLQ41Zd+Y8Vtv9kFPGDtyOJ269eDL2b1E3j6e7E/E3jnJlh6SSqXcuXNH5jWVwcnJCV8/P9zc3JJtd/DQIZ49e8YkGdtKnp6e9OrVi9q1aqGnpydTgWvPnj0UK1aMEiVK/BIqc+XKFcqVLUvxEiVYtWoVa9eulakSKZVKcXJyYuLEiclWHgG4d+8e8xcsYMf27UgkErXI2kZGRuLo6EjZsmUpU6YMhQoVol+iKiyZCdvKcf9+Q9csp9WMybz/5kWVYQPYe+k8A5o0l/ldcD13io/e3qw8chDHSc44TnLGLzjOYI7/LtQaM4xcVtmpVaqM3GsLgkBVzAgimqcytr6zUI2Mvmb/KVQ1uBvom2Mk0cAtXHVVXscchik3koEBmjQkG1fxl1txJCmSn7Hfmgicxe+X3IjkDG5tQcJgE1uKaOsxyd+DTzH/edRlhZIkxdRAjxW9mzGiyT90XraHdWdu/lYNJGnopGngJ7nPA3WGTmpoaLBp40ZGjx6dbHiIVCqlT9++DB48WGZ4x959+7h65QrLly+XuZu6dt06LMzN6dixo8zxvby8GDFiBK4uLgme4qR8+PCBGTNmsHnz5hQ9zzNnzsTGxgYnJ6dk28Wzfv16ihQtSt26dVNsGxgYyIIFC5g9e7ZCY2chH0GRN3VBEIoAXqIoBgmCoA/MAiqLolj15wI7SRRFmamsgiAUAFYCrYCqQHdRFLv9PHcRKAG8ByqJPycjCMJbYJYoii6yxswm6Iit+X0rSYrIBfywQJsyJC9KkFjUJgopnkRghTYGP3V+VBW6iTdcEiNP1Abg+L2XzD54gWGNq9G+2u/hDUnRbPW7KiPElb1z6tMHfX195s2dq9JWWzwBAQE0dHDA/ehRmQkZjx8/ZsCAAZw4ceK3OO2QkBAaN2nC3LlzZZZBUoRnz54RFBhI1SRv0okVrObNm0doWFiyNbchru52m9at2bt3L3ny5PlN1Ca1eHt78+jhwzjvfqKFN2LvnGR6ZSzixSY8b75L82s9dp4h87j7txBO4UMRDDmH3z1RFO1ltctZuIQ4eotsUQhF2Dl7DHdOHiopiuLTlFtnXjLaml0un614eWY/NX5C1VHEaJRFjCgyNcCDdgbZKK2jmuEMqisXhxDDaXyojSUWyC5/KosXhPCaMBqQDT3iDFVFDH+P6AhWBX+ljp4pjfTM4mTclXhZ+REVzbzDF7n15jPLezWlVIseybZXVugmqaKhori5uXHYzQ2XrVtlGstz584lOCSEuXN+X8OvXLnCpMmTOebujtFPmfTE3L59m7HjxnHq5EmZhnRUVBRNmjZl4oQJcp+PERERNHRwYPGiRb/oVchix44duB87xu5du1I0yiFO3blbt26cO3cOPT29FNsPHz6cChUq0Llz54RjsnZtjbpMlbtmC4LgPt3tehMTS9WSO2+472Xv/AkDRVHM1Oo5Cnm2RVF8KYpi/D6vAEiB5KP1f72GBNBI9PfEbATsANmvgUogQaA2lvgQJTNBRB7aSMiFLr5EEfKznGB8ZRJlUdZgaVy+CCcn9eTfJ28ZsMGN8EjFxAmSYmJiwv59++jYoQMtW7bE1dVV5S1PMzMzFi5YQLNmzbhx8+Yv5z5++kSfPn1wcXH5zdAWRZG+/foxaNCghIxlZfnm5YWHhweVKleW2+bSpUtcunyZaVOnJjtWSEhIQt3tPHnyqDSf5BBFkdu3b1O5SpVfDO30CvtRN7JeFNMLDQTqk43XClZSyCJ5Msua/SdQ1butKQiMNrFja4g33jGqrdOpwQhN6pONC/gpXPYWoChGlMOEk/goJSiVR0uXOeZ5+BITybzAz4RKY5V6UdHT1mJ6+/rM6+xAn7WHeOed/K5Aeq2bLVq0wNbWlnbt2+Pv7//LuZ07d3L37l2ZTpwvX74wevRodu/aJdPQ/vjpE4OHDMFl61a5HmtnZ2ccHR2TdUSNHj2azp06pWhoX716lU2bN7N1yxaFDO3Y2Fj6DxjAsmXLFDK0nz17xouXLxUSuskiZRR23wqC0AlYCxgDMcDIRKdzCoLwDYgGrgHjRVH8ACCK4mtBEG4A737+dOZXwoApwBxBEA6Koqh40U4ZSBCoiyWn8UETgcLIfoPf1X/Cb8eikHIaHwpiyMgcOZQISPmVxyi3oJvo67K+X0u2XbqP42wX1vVrQRFb2Yl2MYcWyvVuQ1wiSLVq1ZgydSo7GjZk0MCBNGnSRK5qlTxq1qzJvv376d27Nw4ODowcMQJ/f386dezIypUrZdbZ3LBhA9mtrBLEXJT1PMR7oQ8fPowolcoUBPLy8sLZ2ZnDhw8n+5mkUim9nZwYOHDgL3W3VfWGyMLNzY2Lly7RyMHhl3FjktnJyIgk3nmxlKju+UsNjjkMOfEtFAeysYFP6X79v5HMsmb/CeLXZ2XvdTMNLQaZ2LAw6AuzzPKgq4CRk5T4e10VTNCiNpacw5cGZMNYjkx7UnKihxYCp37KuyuKtiChr7E1NyKCmeTvQX9ja+ooOecyeW04PqEHw5xHo6+jxcJujuhpy563pl0xhcd9/fo10dHRFC9eXMkZwZzZszl69CiNGjVi+YoVVK5UiVOnTrHVxYWjR478FqoSExODU58+LF68GBsbm9/GCwwMpFOnTqxetUpupStXV1cCAgNZmkSJODG7d+8mOCSEPn36JDv/j58+MWrUKA4dOpRivlI8S5cto0b16lSoID+HJjGzZs9m2rRpSld/yUI2CltgoijuAnYJgpAD6A08+XnqMlASeAtYAfOAs4IglBZFMexn32nAtGSG3woM+/mzQLmP8DvxXrIzxNXVlGdwJ0UbCY2w4hx+7Av1pa2BZbrdaIIg0L1WeSrkt6PfusP0qV+RLjXKqjSWkZERS5cs4f3796zfsIE5c+fStm1bevbogaWlZcoD/CR3rlycPHGCqdOm0bp1a4JDQpg6darMBJVHjx6xc9cuzpw+rdKcIyIi6N69O0uXLZO5mMHPAvy9erFgwQK5beJZsnQpefPmlZkprg6kUimLlyxh965daTJ+PKIo8vSTNy88fXjl6curr3589A1AKooICGQzNsDG3Bhbc2MK2VhSt1QBzAxS9lokR51F7f6owZ2FeshMazZAWEQUDz585dVXX156+vLqqy9+weFIBAEtTQnWZnH3uY25MRXy21G5UE40U1n6VJV7vaCWHo31zVkR7MkYEzuVnhGpudct0KYmFpxR0uDOgW6CvHu5KB0KaytmpAFU0TUmn6Yuy4M8edx/NavXDEjIV1IEIz0dNg9sjcvFezSatZV1/VpSxPZ3oz8lZ1JiwsPDmTlzJuE/ftC/Xz8aN26slFOpWbNmlC5dml69e1O+fHmuXbvG0SNHZBqvc+bMoVbNmjKFaaKioujcpQvjxo6Va8jevXuXTZs3c/rUKbn3y/Pnz1m1ahWnkmkDcc/KHj16sGLlyoSKWCnx5MkTjh07xtlEcvfJ8fjxY8LDwqiSzA5zFsqhUMz2b50EwYq4mL1coij6JzmnBQQBTUVR/DeFcS4C50RRnCUIQiNgN5AfuIUKMdtJiUbKaXwphAGFFDS4IS72+4t+CNGiyABjGzRVNLhV3a4Mi4hipOtxRFFkSY/GGOr+viWl6IIEcYX3d+/ezVYXF6pUqcKM6dMVfhuO5/Tp00RERNC8efPfzoWEhNCwYUNcXV1VUpYSRZGBAwdSpkyZBOVFWUyaPBkjQ8MU64JeunSJufPm4X70qMxMcnVw2M2Ny5cvs3TJkt/OqaMSSWR0DPuuP2Hzv3fIY2VGqdw5KGJrRWEbS/JYmaEhkSCVSvELCcfTPxhP/2CefvrG6YdvMNLTpkn5IjQuVwRbi+RzF5LjTxjcAM2/PcuK2VYzf3rNTi5m2/N7EOvO3uLc47dUK5ybonZWFLbJRmHbbGQzjlPLi4qJwSsgBE//YL58D+Lay4/cfP2JsnltaGJflLol88v1liqCKvf65uBvGEs0aGso21NcasGUFMdQNVwRIIJYvIjADj3291e8/nEIMdzW/E4bw2xU0TVOuUMiYkWRPaG++OQxYl3fFiqtL08/fWPABjcGNKxMp+plfjuvzLMN4uKQ12/YwKWLF3EeO5bWrVop1T8qKooVK1fSrl07cuXM+dv5CxcusHjJEo64uf3m8RZFEac+fShXrhyDBg6UOb6vry9NmjRhz5495M2bV2ab0NBQGjZsyMaNGylWLHnv/pAhQyhevDj9FUzIj4yMpF79+mxYv56iRYsq1Kd9hw6MGDFCphpzVsy2aqiWBRjXzwCwAfyTnBN//ihloYqieFIQhNvEbU+qBS0kNCQbp396uBU1uCUI9DOy5mj4d2YFfMLZ1A59ifIelCvPP3D07gtmdWyAjpbi/9QGutqs79eSnZcf0mjWVhb3aEzFAr8vAgqPZ2CAk5MTvXv3ZsuWLdRv0ID169ZRokQJhcdo2LChzOOiKDJ02DCGDBmisoTrli1biImNTSj3JIvjx4/z7OlTDh48mOxYnp6eODs74+bmlmaGtlQqZfHixezds0ftYweG/WD9mVscvv2cZvZF2TeqE1Ymsu9biUSClYkhViaGcUZH+SKMa1mLz36BHL//kv4b3BAEmN6+PmXzJr8TIIs/5eHOIk3IcGv2k4/fWHb8Kh99A+nfoBJT2tRFS1P2OqutqUnubGbkzhZX2qxd1VJxFZjeeXLs3gvmHLzAP0VyM751bZV2dlS513sYZWdGwEfyR+pSTuf3GN54nDeu5fzD+1gYG3N6blypt8DQUAavXoanny8WZpZM7zMUIwMDgkJDmLJhOa8+vsehcg2Gd+yRMM6wxbP4HhyIzs91bdHQcVgbG/KFH4QQg5GCj3MjNJlunoeFgZ/xiY2iuYHiu50agkBnIyueeYXRdvEuJrSuTZPyskuzyqNErhycnNSTkS7H+ffJWxZ2c8TcUDnnT2Ly58/PgvnzCQwMZOiwYZw+dYply5Yp7FDS1tZm9KhRMs95e3szbtw43GQY2gBTpk7F0tJSrqEdvxs7c+ZMuYa2KIoMGjyYQYMGpWho79ixg5DQ0GSdUkmZNXs2bdq0UdjQfvToERE/fihsaGehGCnuAwmCIBEEYfBPzwiCINgBqwEP4KUgCI0FQbAT4jD/ec4PuCl3UPmMAfqCEkFlKRBvcL8ilPdKJF8JgkBzA0sa6JsxNUA5Kdt4ojbfJo+VGS0XbOd7iGKy8onpXKMM24a2Y9rec8zc/69MuXdlEAQhzuDevJnevXvz/PnzVI0HcWWEdHV0ZJY5evfuHRMmTky2/9WrV9mxcycr5JRRAvDw8GDGjBls2rQp2USQ2NhYnPr0YdGiRamqxpIS7u7u2NvbK7yFpygXn77HYdZWspkYcnF6Hya0ri3X0E6OnJam9G9QGffx3ZnX2YFxO04x5+AFle4fdahMZpG+ZPQ1WyqVMnnPGSbuPk2vOhU4O6U3baqUlGtoy0MikVCpYE5mdmjA1Vn9KJfPlsazXbjwVLWqOsre6xqCwEhTO7aF+CT7fGhdvSYuY8b/cmztMTeqFSvBhYXLqVuyJDtPx+3WaGtp0btZWwa0lp2UNqnXQDZPmsvmSXMxMzZBFw2s0eUMvgpLu0OcHP0ks1x4REeyKdiLWCV3uItrG3BsQndcLtxjgdslpZPxDXV12NC/FU3ti9J4jgvnn6S+EpKpqSmuLi5UqFCBTp06ERWVuiTW6OhouvfowVw51b02btzIx48fZVYticd57Fhq1qghU4sing0bNmBkaJhiIuLLly9Zu3Ytq1auVDh06fz589y7dy9FdeXEzJs/n/ETfs9pyyJ1KBp05Qg8FQQhjLjtwnCgniiKMUAt4DYQCjwDLID6oigqHZAmiuIjYA9xCT1qQwsJDbDiMSF8Inl1RMcchr+URaqqa0wvoxzMDPjEx2jFVLziEQSBQQ5VGNa4Gi0XbFdYxCYxea3McR/fHX0dbRrN3srrr35Kb7MlpXDhwmzbto2ePXvy/v17lce5ePEi+/bvZ+nSpb+d8/Pzo2vXrrRr21Zu/w8fPjBy1Ch27tghNzs6IiKCHj17smrVqgRlSXnMnz+falWrUr16deU+iBKIosjSZcsYOXJkyo2VYM/VR8w6eJ6j47rRq449uqnYEk9MsZzZOT6hO1qaGjSavZVXX32VHiPL4M6UZMg1OzI6ht5rDiIRBI6M7Ua1IrnVkhcjkUjo8E9pDo7pzKqTNxiz7YRKlZ2UvddNJJr0NsrBsiBPuQZrpSLFMDX49aX57P27tK4eV5GidfWa3Hx8DwA9HV1KFSiMtqbi339dNKiCGafx5QfJv1Anfr5pCRKGmtigJ2iwMPCL0gqZD6cdY+/IjnwNCGb41mPEKCmFDtCiYnEOj+nK6lM3cN52gh9RqUtgFwSBPn360LBhQ3r07ElMjGphOvEKkQ0aNKBOnd9TQk+cOMHBQ4fYuGGDXAfQxo0bCQwMZPTo0XKvc/fuXXbv2cOiRYuSnU9ERAR9+vZl3bp1GBoq5oDx8PBg/PjxClcrgTiDPjg4WKZXO4vUkeL/gCiKUlEUHUVRtBJF0UAURVtRFDuLovju5/kxoija/DxnLYpiG1EUXytycVEUa4miOCvJsZ6iKAryYv8ATDSVzwDXQYID2bhHIJ4ypG+TGtmJKaqtz2hTO5YFefI4UvnSZA3LFGJJj8Z0WLKbJx+/Kd1fQyJhVLPqLO7emD5rD7Jhw4ZUK5kVLlyYDRs20KlTJz4nksNVlBMnTjB5yhR27dyJrq7uL+d+/PhBx06dmDZtGmXKlJHZPzg4mC5du7J2zZpkkx1Hjx5N+3btUsygvnb9OpevXFFY/VJVzp07R5HChWXG9oHy22yiKLL46BUO3nrKkbHdVPJkp4SmhgZjmtdgcffG9F17CNeL95QeQ1WD2zc2iigVZa6zUI2MuGZDXIhU64U7qFo4N9Pb10+T5HNrM2MOjO5MUdtsOMxKn5fLkjoGFNXS50CY4tfyCw7CyjQuJMbK1IzvwcHk0tdM+JHHPNf19J41Htfjh395BtigSwVMOY0vkfz+fZP3fBN+hoWU0zFkhv9HgqXKGacaEglLezTBzsKYLiv2qfSCk8PMiAOjO1PQ2pKGM7fw6FHqSwAOGDCAsmXKMGDgwN9EdVIiNjaWgQMHoqunx4jhw387f//+fWbPns2unTvllvi7ePEie/ftY83q1cne51HR0WzdsuW3Z2hSxo0fT5fOneUqUiYlPDyc7j16sGrVKplaGfJYuGgRY5J5OchCdTKlXLu/NAaH7AbJGsiy0EWDhlhxkwC+EZHQX5Ex7DR1mGqWm52h3lz6EajwNePjAO3z27FtaDsGbHDj0jPVvMml81hz7u4Tnj17Rrfu3QkJSZ3iXunSpVm0aBHDhw1Tqt/efftYsnQpR48cIUeOHL+ck0qlOPXpQ8cOHeRunUVFRdGlSxdGjhxJ+fLl5V5n27ZthIWHp5gIEhgYyKiRI9m4caPC2einTp3i/PnzCrVNzKLFi5P1VChDrFTKSJfjePgGsHt4Bwx0FReqUIXSeaw5PbkXx++9Yv2ZW0r3V8XgvhsZimuIt9L9svi7iIqJpcX87fRvWJk+9VWT21YUQRDoVbcC6/u1pOeqA7z09FF6DGXv9faG2XgSFc6zKPXUibfQ0cBQS/KL4T2p10Bcpsxn5egpPH77ktO3rv7SJyd6lMGYU/gQhVSp51sDfTNaGVoyzf+j0jXEBUFgTPOaNC5XhFYLd6gUMikIAn3qV2TroeMMHjKErVu3ptqhNGbMGHR1dDiQQp5PYqKioujeowe5cuVi/rx5vxnKHz99YsCAAezYsUOmsjHEVRUZN24cO7ZvT9GIrlqlitxY7nhOnDjB169fk81pSkx8DHivnj0VLvMHcTvNHz9+VFmMLovkyZTGtojIoqAvCR4zZQxufTSYny0PjzWDeBudfEhJUkw1NJlmlpvLEUEcDPVVejEokMOCQ85dmHHgPAdvqlYMQU9Pj+XLl9O4cWMaNmzIixcvVBonnn/++YcfERG8efNGofYbNmxgx44duB0+jJmZ2W/nZ8yYQb58+ejVq5fM/lKplH79+9OgYcNks8YfPHjAxk2bUoxPE0WRYcOHM8bZmZx2dgp9hrdv3zJ9+nSZUrzJcfXaNbJnz06BAjKF95QiOiaWLsv3Ym1mxIpeTVNdwkxRdLW12D60HReevWfNqRtK96+zqJ1ShoiDnhm+sdHcighW+lpZ/D289/ZnQbdGSifTpYaidlZsHdyGXqsP8uKLaga3ove6hiAwzMSWDcFeCnmHLY1N8AkMAMAnMAALY/lROPEGdzazOONOX1ePehWq8vLD73HOA3NY0cUkG/e0/ZUOCymvY8RAExvmBn5W+NmYOKm0a82yjGxaXeWQSYjbcT196hQ3b96kT9++REQoF7qZFOexY1m3bp1Cz+qwsDDat29PlSpVGD9+/G/PndDQULp06cKqVavkGsifv3yhZ8+euLq6/uaIUgVvb2+mT5+eooc8MavXrMHYyIju3bsrda0cOXKwaePGrLraaUSmNLYtJFqU1DZgTsBnIqSKG9zxb/mWGlqMN83JqqCv+MQq9xavJ9FggmkuPGOjcAnxVtrgtjIxxM25K64X77H53ztK9U1Mh/bt2bx5Mz169ODVq1cqjwMwetQoZs2enWwbqVTKhIkTuXzlCvv37ZMZN7Zjxw6ev3jB9GnT5I4zddo0rK2tGTxokNw2fn5+DBgwAJetWzEwMEh2Xjt37kRHW1vhck+RkZH0dnJi7dq1KcaAJ2Xjxo1KJZokx+bzdyhimw3nFjXTfXHT0dJk25C2XHj2nt1XVduyVdQQEQSBwSY27A71xV+FJOMs/g4KWlukqqKSqhS2yYbL4LY4rT2osgGo6L2eTUOLjoZWrA3ySvG5UK+sPQevXALg4JVL1C+XvFpgTGwsgaEhP/8ew40nD8hr+6tzIf4ZWF3PhOq6JiwL9ESqrENIS4/xpjlZHfSVpyp46RuULsji7nEhk8qG8MTnIunr67N+/XrKlytH165diU6FEFlOOzsKFijAqVOnkm339etXGjdpQrt27WRWFomJiaFbt24MGTJErrc4MDCQjh07snzFCgoXVlSsVT5SqZS+ffsye/ZshfUx7ty5w6FDh1i4UPmqIXp6emmitJxFHJnS2AZopG9OLT0TZgZ+JFwal5iRnMGd9Fx2TW0GGFuzIPALoVLlEjs0BIHBxjZIgRVBX4lRckEz0tNh38hOnH/6joVHlM/kjqdo0aK4uLjQrVu3VCU61qlTh8CAAO7dkx3LGx4eTqfOndHW0mKbq6vMrbHz58+z1cUFl61b5SZjbNq0CQ8PD5lSuPHExsbSs1cvpk2bRv78ycuHv3nzhjVr1rBERq1reUycNIn27dvLjSWXR0hICK9fvUpRQlcRvoeE43rxPmOa10j1WKqiramJy6C2uFy4x9lHiu1qyEIRQ8RYokkPo+ysCvqa6q3hLDInygigqJtCNpYs79WULsv3qhTiEI8i93plXWP0JRIuRAQlHBu6ZjmtZkzm/TcvqgwbwN5L5xnQpDlXnz2h9phhXH32hAFNWiS0/2fkYGbt2sbBKxepMmwAbzy/kENbZOKq+fScOY7esyZgaWpOk3/+S9xL+nxroG9GDk1ttocqH8KVXVObyWa5cA3x5oYKO1IVCtixeWBreq46wL13ngr3S5rvMmDAAGrUrJmqREeAyZMnM2vWLLljPH78mJYtWzJr5kyZVbVEUWTYsGFUrVZNbsJ/VFQUXbp2Zczo0WpLLlyxciXFS5SgXr16CrUPDg5m6NChbN60CW3ttA1JzEJ5VK2znSGopWeKtiBhesBHJpvlxlCi8ZsyV3IGeGFtfdoYWDIv8DNTzHKhLSj+QJAIAr2MsnM4/DtzAz8xxiSnUtK9utpauA5uy7Atxxi/8zRzOjVQOGM4MUWLFmX9+vV06NiRmTNmyK2HnRKzZs3CeexYThw//oun1dvbm06dO9Oje3e6du0qs++TJ0+YOHEiR+Sob0FcjPT+Awc44uaW7OecOm0aVSpXxsHBIdn5RkVF0advX1avXq1wdvaZM2f48P49CxcoL3jn5uZGixYt1OKFnnPoAiObVEdf588uiAa62uwc3p5WC3ZgZqiHfX7FwnBkkdgIkVWvuIyOIXcjQzge7k8TA+V2FLLIIrXY57djcps6dFq2h0NjuqQqPyIlqXcnoxxM8Pegr1SKvkTCioGyc2J2jpss8/jVJatkHnefMQ/4VQgnPsQkUEb7roZWLA3yxD3sO02V/M6Za2gxzSw38wI/EyiNoZG+7PhkeRS1s2L3iA50Wb6XmR0aUKtEPqX6xzNk8GCio6Np3qIFGzdsSFE5WBZ2dnbUq1cPV1dXevfu/cu506dPM336dHbu3Ck3PHDhwoVoamoySk4FKlEUGThoEA4ODjJF31Th/v37HDlyhNMpeOQTM3LUKIYNH55iDHgWf4ZM69mOp6quMc0MLFgR9N+WmTKJIZV1jamua8ySwC9K1xoVBIFWBpb8o2vC9AD5mdzyFmVNDQ1WOTVDS1NC/w1uKtfRLlOmDMfc3Vm/fj1jx40jMjJS6TFKlixJ7ly5OHHiRMKxFy9e0Lx5cyZPmiTX0P7y5QtOTk5s27YNKysrmW0ePHjAzJkz2b1rV7IJI4cOH+bVy5cKVRSZMnUqLVu2pGxZxSTt/fz8mDR5MmvWrFHJYN6zdy8dZHg9lOX5Z2+effamTRXFBYXSEksjA3YMa8/Qze68+/ZdLWPK8/51M8rOxYggpUtoZpGFOqhfuiDda5Wj15oDKpWpS4o8T7eeRIP+xtY8jQojLTZyFKlaAnEOoaEmNtyNDOHKj6Bk28rCQKLBZLNcPI4MY0+oj9K7UrmzmXFwTBdmHPiXI3dU13QYOWIEY0aPpmXLlr88n5Rh1KhRrN+wgdDQ/xxxGzduZPGSJRw9elSuob17925u377N4sWL5T43Zs2ahZmZWbKhkcoQGhrK4MGD2bhhg8Ie6gMHDxIdHU2H9u3VMocs1E+m9mzHU03XhNdRPzgU5kcbOdK5ydFQ35wAaQwbgr3ob2yttDFWW88UE4kG0/w/MsEsF5YaitdIFQSBmR0asOzYVTot34Pr4LbJejxjDi2UWWfbysqKAwcOsHrNGho6OLB1yxal33AnT55Mu3btKF++PK9evWLcuHG4uLhQpIjspKbAwEA6durEsuXL5apH+vj4MGDAAHbt2iU3exviDPLFixdz4vjxFD38586d4+WLF8xJIc48HlEUGTxkCFMmT1aqDFI8X758ITY2lty5cindNykTd51hbmeHDJWEksvSlHX9WtB95X7cxnXF0ij5OHlFkKXIpy1IGGJsw8rgr8w1z4OWEjtJWWShDjpVL4OnfzBjtp1kac8mahlT1r1eWFuffSMn4IZIB0PZToj0QEuQMNY0J9MCPmIi0aCUjnKlRbUFCaNN7dgY4sW6YC/6GVsjUWLtsjIx5LBzVzov28P34DB61VW8OkZiatWqxfHjxxkwYAD/nj/PvLlzlVIINjY2plfPnkybPp05s2czddo0vn79ytEjR+Q6gC5evMjGTZtwP3pUbpWrQ4cP8+jRI/bu3avS55LFyJEjGTRokMKJ+J6enixcsCDFuPQs/ix/zdOum1F2HkSG8iJKtZi89gbZiEXkaLhq3r1yOkb0MbZmXuBnpWPAAYY3+YfmFYrRadkelQv7SyQShgwezOJFi+jQoQMPHjxQqr+trS0TJ06kdZs2TJk6FTc3N7mG9tevX2nWvDljnZ2pUrmyzDaRkZF06dqVOXPmkC+f/G1EHx8f+vfvz/Zt2zAxMUl2jgEBAUyYOJF169YpHHZz7NgxDAwMaNJEtYfrli1b6CbHs68MPkGhRMfGqiSdntaUym2Nc4uajN1+Um1jyvL65dbSpZKOESfCkyqGZ5FF+jC6WXX8Q8M5fu+l2saUda+3NrDkXmSo0qX01I3+z6T+LSHefIlRftdTQxDoZ2SNriBhe6jyVV1M9HU5MLozZx6/ZePZ20r3j8fS0pJ9+/ZhY2NDu3btCAtTLoGzd+/eGOjrU7JUKSQSCS5bt8o1tI8ePcqkyZPZvWsXJqamaGpp/fYTFBSEjo4O+/bvR0dXV2YbZX+OHDlC+I8fKapJJsZ57NgE73oWGZe/xtjWEASGmdqyPthLJWNXEAT6G9twLzJU5TJlRbX1aW1gycLAz0SrIOTRpUZZWlUuQZfle4lIhZJW+fLl2bNnDwMGDFA6pMTR0ZGrV65w8cIFuV7gFy9e0KpVK+bOnSvXgI2v9dm6VSuZClzxxEvizp49O1mDPJ5Ro0czduxYhcsqhYeHM2vWLIW94EmJjIzE/dgxWrdurVD75NQ9r7/6yD9F86g0j/SgWYWixMRKOfkgddVtEiPLCGlmYMGFH0FKC2hkkYU6EASBRd0cmXXwPEHh6gtpSnqvawgCXQytcFUhSVHdmGpoMsLElsWBX1T63gmCQHej7PjERnFahRfl+Byl04/esPXCXaX7J57HqJEjqVuvHnPmzlWqr5aWFtOnT+fF8+fMnjVL7u7ihg0bWLd+Pcfc3X95Bjo5OWFjY0OZMmUIDw/nypUrlClThmbNmlG0aFEcHBwICAhIaD9//nyKFClC8eLFOXPmTMLxunXrUrx4ccqXL0/58uXx8Yl7gYn48YPZc+awbOlSpeTYpVIp9evXV+rfIov0568xtgGsNLRpa2jJmmDVqh5oCgLOpjnZG+rLGyVrcMdTRdeYcjqGrA3+r/yTMnWJu9UsR+Nyhem2cj9RqcjAzps3L23atmX1mjVK9xUEQe6X/erVq/Ts2RMXFxeqVa0qd4wlS5diaGBAv379kr3WuPHjqVu3rkIZ10ePHiUmJkbhMn8AixYtonuPHiqFjwAcPHiQJo0by1UKU4ZrLz9StXDuVI+Tlizs5sjM/WlrhOgIEloZWLInVHl1vyyyUAfZTAwZ5liNybvPpNxYCZLe66V1DIkSRZV3XNVJbi1duhpZMS/gs9I1uCEuBnyYiS2XfwRxP1J5QTUdLU12DG2H+50X7Lis3K5rUgb078+VK1f48OGD0n3l7YiKosjkKVO4cvUqhw8dwtTU9Jfz3bt359ixY4iiyPnz56lUuTJr166lTp06vHjxgjp16rDgZ/L98+fP2bt3L48ePeLYsWMMGTKE2ER5Aq6urty7d4979+7F5TqJItdv3GDK5MkKl/mLiopi8uTJzJ8/X+l/gyzSn7/K2Ia4+G1DQYOzSqg8JsZQosE4s7g6o6psuQE007dAV5CwP8xPpf696lagbsn8dF+5X+WkSYDBgwaxb+/ehDfn1HLw0CEmTJzIoUOH5IaXQFzYxsWLF1Os9blz5068vb3lZnknxtfXl9mzZ7NUiTJ/796949y//9K3Tx+F+yRGFEU2btqEk5OTSv2TcuftF+zz26plrLTCysSQIY5VmbLnrFrHTWqEVNc15kN0hMrfsSyySC3tq5Xia0AIl58rb7AlR9J7vYdRdlxDvJWueZ0WlNMxoq6eKQsDPytdshbiYrjHmuVkR4gPH1RIdNbV1mLn8A7su/6YPSrW+AfQ0NBg5owZTJw0SeUxEhMVFUVvJyeio6NxdXGR6VypXr065mZmhIeHU7BgQaytrXF3d08oHtC1a1eOHj0KgLu7O+3bt0dHR4e8efOSP39+bt+WH0Lz/sMHNDU1lQp1XLFyJS1atiRXzvSvX5+F8vx1xjZAb+McvI/+oXJNXysNbUaa2LIo8AvfVRDiEASB3kY5eBP9g4sqGv39GlSiWpHc9F13SOXPoauryxhnZ+bMmaNS/8SsWbsWVxcXjrm7J1t+6fHjx8ydO5dtrq7JJrA8ePCAtevWsX7dOoW2zIaPGMGUKVOUEqJxdnZm3rx5Cku4J+X2nTvY2dlha5t6Azkg7Afamhp/vNyfInSoVoov34O4+tJDreMmNkIEQaCHUXa2BH9T6zWyyEJRBEFgWc8mTNh5OlVhe7JIfK/baepQQEuXixHKVwRJC+rqm1Fc24CVQZ4qPVuMJZqMNrVjeZCnSs9HPW0tdg/vyPbLDzh6R3UF5Jo1axITE8P1G8or4SYmJCSENm3aUK5cOebNnZtsLtDz588RBCFBtMbb2xtra2sArK2tExxbnp6e2CVSNLa1teXr168Jvzs5OVG+fHlmz55NWFgYjx89Uqo+t6enJ4cOHsTZ2VktseKK/EDyYZJZJM9faWzrCBL6m9ikquJDLi1dnIxzsCTwi0oeAA1BYJSJHcfC/XnyUTWDYnCjqpgb6eN68b5K/QFatmjBnTuqK1WKosikyZO5desWBw4cwDgZWeEPHz7Qp08fXF1dk03WCAkJYdCgQbi6uKSoEAlxZY309fVp3LixwvO+dv06unp6VK1SReE+SVmyZAlDhwxRuX9ivPyDyZ3NVC1jpTWCIDC6eQ32X3+i9rETGyGFtfXRESS8ygBb7Fn8f2JnYULlQjm58/aL2sdOfK93MLTiaNh3pcvLysM7JoqrKpTzi6elgSV6goRjKiYq22jq0Mc4B5stIlXafTXQ1WbX8A7MO3wRz+//fY6kwjYp0bJFC+7eVT0G3Nvbm6bNmtGla9cUS/e9fvWKgMBA9PT0UhxX1ktMvD2ybds2Hj58yMWLF7l69SozZ86kQoUKaCsRqjh//nzGjRuHhoaGwn2y+LP8lca2uiihbUA5HUN2qJjgoiuRMNzElgEb3FSOgZ3Rvj6bzt3Bwycg5cYykEgkSKXKx+dBXPKiU58+xMTEsHXLlmRrfn779o1OnTqxbt26FEsWjRw1iiFDhqSoEAlxi+HCBQuUFqKZM2cOkyZOVKpPYl68eEFYWJhcaV5liYqJRVtFD/ufoGweax55eKXJ2ImNkFaGlhxWMdwqiyzUQcWCObn19nOajB1/rxtKNCipbcDNSNWS75NiqqHJwTA/fFXwLMfT2zgHVyKCVH7ZLa5tQKOyhZm8R7W4dxN9XeZ2bsiQzUdV3r3V1tFRSVcC4O3bt7Ro0YJpU6fKVYaM56OHB+/ev6dy5cq/OPGyZ8+Ol1fcOunl5ZWgNWFnZ8eXL/+9wHl6eiZ4wON3So2MjKhTpw7v3r3D1k5xQbGPnz7x6PFjmjZtmnAscfJmPP7+/jg4OPyWvHnu3DkqVqxImTJlqFixIhcuXEjoc+/ePcqUKUORIkUYPnx4luKvGskytlOgpYElX2KiVK5Q0m1ZV0Y0/YfBm46odOMa6GqzqLsjgzcdSTCa5b39xxxa+NuPqsRvrZUuXTrFrbWgoCDad+jAvHnzUhSZ2bN3L7GxsTJlcZMiiiJDhg5l+vTpvyWrJMeVK1ewsLCgaNGiCvdJyqLFixkzerRKfWVttUXGxKKjlXm8ELraWmhqSAj5kTYx1fFGSEEtPcJEKZ5ZsdtZ/CEqFsjJ7Tfq92zHE3+vNzMw52jYd7UYMDqChB5G2dmYKBFfWbQECaNM7Fgb7KVyZaChjlXx8A1UORykZvF85M9hwdbzyXunZT3bYg4tRFtLi+go5Usr3rlzh86dO7N+/Xpq1aqVbFsvLy8eP3lC3bp1f/MkN2nShO3btwOwffv2BAO4SZMm7N27l8jISD58+MDbt2+pWLEiMTEx+PnFORcCAwM5cuQItWvXVmruCxcswHnMmF+M/vjkzcQsWLBAZvKmhYUFbm5uPHz4kC1bttCjR4+EPoMHD2bt2rW8ePGCt2/fcvr0aaXmloV8FDK2BUGYLQjCB0EQggVB8BEE4YAgCLkSne8mCMI7QRDCBUG4JQhC+ST9xwqC4CUIwhVBEHInOn5REARREIQaSdq/FQShRyo/m1qIy8C2YXeor8r1UltXLoGlkQEbVKwxWrlQLsrls2XtmVsJxxQ1rGMOLVQ6nMbLy4umzZrRuUuXFMMoIiIi6NCxIyOGD6dmzZrJtv3w4QPLly1j2dKlCs3D1dUVq2zZUpRuT8qcuXOZMH68Un0S8/HTJz58+ECNGjVSbqwgUdExmcqzDWCf35Z77zzTbPx4I6S5gQVHwtSjXplFHP/Pa7ay5M5myie/wDT34mXT0CaHhjbPotUTNlVaxxADQYObKlQGiSe7pjYdDbP9osCsDIIgsLZvC+a7XeSDj2ohKdPb12PrhXsJ/ZVxGmlraxOlpLF94sQJhg8fzr79+ylVqlSybR88eMCtW7eoV7cuvXr1onr16rx69Yo8efKwZcsWnJ2dOXfuHEWLFuXcuXM4OzsDULx4cdq2bUupUqVo0qQJK1asQENDg8jISBwdHSlbtizlypWjWLFiKVbsSszHjx959vw5jo6OvxyvXr36b6Jx8pI3y5Ytm5B3Vbx4cSIiIoiMjMTLy4uQkBCqVKmCIAh06dKFI0eOKDy3LJJHUc/2dqCMKIrGQB7gE7AHQBCEf4C1wADADDgInBAEwfjn+QJALSAfMA2YmWTs78AiISNJ6iXBSKLJAGNrlgSpFr8NMLdzQ/Zef8zDD19TbiyDia1rs//6E954Kb/lrsxD5OzZszRv0YIZ06enuLUWGxtL9x49aNumDS1atEi2bUxMDE59+rBixYpk477j8fDwYP369cybN0/huQNcvnyZ7NmzJ1stJSVWr17N0CFD1KryGBUbi5Zm5tpIqlggJ7fTaHs9MeW1DXkX/YPA2Ixfd1sQhJmCIDwWBOGhIAhnBEGwSXRu/E+j85UgCA3/5Dz5P1+zlUEQBPJamfFBxVA9RYh/sWxpoN6wqZ7G2dkT6kO4CtoS8VTSNcZWQwc3FQXdzAz0WN6rKX3WHlIpfltfR5vFPRozeJPy4SSat92IUDCMJCYmhkmTJ7Nu3TqOHj2aoiLwu3fv6N+/P3Xr1kVPX58dO3bw+fNnfvz4gYeHB7169cLCwoIzZ87w4sULzpw584vBO378eF69esWzZ88SHEYGBgbcvn2bHTt2sGfPHjZs2KBU3PX8+fN/82rLQ17yZmIOHTpEmTJl0NHRwdPT85diAHZ2dr8kdcaT2ZIkM8qardDTXxTFl6IoxmcxCIAUKPzz9z7AIVEUz4iiGAksBCKBlomuIQE0Ev09MRsBOyDluII/SGFtfUprG6pU0B/ituVX9W7GhF2nVfKg6GhpMqlNHVafUj7z2sLS8pf4MVnExsYya9Yslq9YwTF39xS9utHR0fTt148ypUvTq1evFOewavVqateqpXAM9Nhx45g/fz6GhsrJC69YsYLRo0Yp1Scply9dUlltUh6FrC1VTpT9U1iZGuIfmrbJi3UWtUMQBGrpmXJDTfGsacxCURRLiaJYBjgGTAEQBKEY0AEoDjgAawRB+GNxQ1lrtnJkT4d7HSCPli7hUilBahJ0MpZo4qBvnuqdoa5G2bn6I0ipGPDEuRf2+e2oWSwv2y+plsxfsUBObM2NufH6k1L9ithm4+HDhym28/LyoknTphgbGeHm5pZiVav3798nhJkYGRkpNaeU+PHjB2/evKF8+fIpN06Er68vj588UXqnVx7Pnj1jwoQJrPmpxZFcUmcmJ0Os2Qq72gRB6CQIQhAQCgwjzuMBUBq4F99OjPsfe/DzOKIovgZuAO+A6cDkJEOHEffh5wiCkHrlkDSklYElZ34EEKLgQpm03mqxnNnJnc2MUw9fq3T9OiXyceftF4KVTLZ0dHTkxIkTcs/7+fnRqlUrYmNjOeLmlpDkIY/w8HA6dOhA8eLFGa9guEaN6tUZM0axN+JLly4hkUiUDuPw8PAgNCyMEiVKKNUvMb6+vpiZm6tcLjCepG//OS1NCY2ISpcHurqIiZGikUysvrqos6gdlXWNuKliXkR6Iopi4kkaAPFPqObAHlEUI0VR/AC8BSqm9/wSk7VmK050jBTNNL7X6yxqR51F7aiga8SdCNVDP5JST8+UW5EhqVJk1RQEOhtZsT1EdbXLYY2rseHcHcIiVAu3dKpXgU3nlKucZdtrBlFRUXz/Lv9l4/LlyzRv0YJxY8fi7OycbP4RwKNHj+jYsSPr16+nTJkyxERHq/Vn2NChxMbEIEqlv51LDhdXV3p0766wASwveRPgy5cvtG3bli1btiQUKrCzs8PT0/OXNvGe8cxMRlmzFV5dRFHcJYqiCWBN3KIdXxfMCEhagygQME7Ud5ooitlFUaz680MlZSsQQtwDIcOiK5HQ0sCSi6kouTSxdW3mHbpIrAoVQiQSCe2rlWLvtcdK9Wvs6Mjx48d/Oy6KIqdOnaJx48b079+fqVOnprilFRAQQIuWLWnRogUjR4xQeA7lypVTSIUxNjaWSZMnM1eF2uAbN22ij4oCNvHcvn2bimqqQJKURmULc+K++qTQ05oYqRStdCot1X5pF36IUoVfZP8kP+OhPwOd+eklAWyBxDE3X34e+2NkrdmKEyOVoqWZPvf6iKnt1bqLoyVIaG5gwcHQ1IWnlNcxIlQaq1B1ElmqyMb6unSvVY41p1Wre10hvx0ffALwCQpVqp9Dw4a/yKHHExYWxsyZM5k1ezaHDx1KMRES4pLr+/fvz+7duyldurRS81CEhw8f4vHxI82aNVOqX0xMDPv376dDhw4K95GXvBkYGEizZs2YNWsW1apVS2hvbW2NoaEhN2/eRBRFduzYIXeemTCU5I+v2Uq770RR/CYIwkbg/c+EmxDAJEkzU+K8IoqOGSsIgjOwWxCEzcrOKT2pqZv0o8pGnkS7nYUJNYrnZffVR3SpkXzlDll0rl6WNot20Ke+Yi9gmq3GkBv47u9PSEhIwpbY3bt3mTJ1Kra2thw8ePCXAvzy+Pr1K+07dGDc2LFK1bxWBhcXF2rVqkWePHmU6vfjxw/OnDnDtKlTU3X9m7duUaVy5VSNEY9mqzG/JPc0r1iM8TtPqfT//ieIjo1FUyP94szbt6jKnTMvk23j4x/OMlfV6877vv0O0EYQBJdEhzeIorgh/hdBEM4BOWR0nyiK4hFRFCcCEwVBGA8MBqYSF6qRlAxRN+v/fc1WhJjY2HTZxQHIn8MCqY0x4WGx6EvUY+DX0DXhWNh3vsdGY6EhX0wsJXoa52BN0FfmmOdRKYSgVx176kzbSM869lgapayhkBhBEOhasyw7Lj9gZNPqCvdr3Lgxc+bOTahwFRMTw7Zt21i3fj3du3fn+LFjyQqsxXP06FEWLV7MoUOH0sSjK4oi48aPZ8H8+Ur/2544cYIaNWrIDavs0qULly5dws/Pjzx58jBlyhScnZ3p2LEjW7duJWfOnOzZsweANWvW8O7dO2bPns3s2bMBOHnyJFZWVqxatQonJyd+/PhBw4YN1RaysnHfEzQNVEu2D3n5CeAfQRB6Jzqc6dZsVffKNYlzx9sAj4By8Sd+Js2UAQ4pM6AoiicFQbjNf28dClNqgdJdVOKx8wy1xDCNbFodx9lbaVulJDpayv0XWBjpk9PClCcfv1Eyt6x7Szb169Vj+44dNG3alAkTJhAaEsL8efMoWbKkQv3fvXtH586dWbR4Mf8kehtWJ8HBwazfsIF/z51Tuu+BAwdo2aKFQotqcty+fZthQ4emagx5FMhhgW9QGN9DwrEw0k+Ta6iT6BhpuhrbTe2LMv29Z6IAhzTjgCiK0+SdFEWxnoLj7AKOE7dwfwES6ybbAaplQ6cNGWrNzmik973eoExBomytaFL5v5C386P3qTyehiDQ1jAb+8N86W8sX+E3JXJq6pBXS5crEcHU0JPtWJLnSIK43KLhjf9h0ZHLzOvSSOnrt65cgmZzXZUytosVK8bbN2/4+PEjr169Yvr06dSrV4+zZ85gYqKYc2zbtm3s2r2bo0eOKFVmVhmOHDlCgfz5U6yAIouNmzaxZPFiued37Ngh87gsj/+ECROYMGGCzPb29vYKxcDD786kNOaqKIqd5Z3MDGt2iquLIAgSQRAGC4Jg9fN3O2A14AG8JC5ZppUgCHUFQdAGRgG6wGEV5jMG6AtkS66RcU7zZL/wf5qU5mZmoEf1Inm49vKjSuNXL5qHu++Vqws7ZMgQbt++Tds2bejRvTuHDx9W2NB+/PgxnTp1YsOGDWlmaANsdXGha9euKiWkuLm5KbXFJo/goCAsLS1TPY48RjatztAtqos4pCevvXzJl9085YZqoohtNjx8064ihDoQBKFgol+bEbcGAhwFOgiCoCMIQl6gIKBarc9UkhHX7IzOR98A7MxTrpKkLuqVKsiFZ+9/ORYf0x3/oywVdYx4oQY1Vkd9c66nQlq+deXiXHz2QSUxNRN9XbS1NJWK+xYEgWXLl9OpUydct21j3759TJ8+XWFDe9ny5Rw5coTDhw6lmaEtiiJLly1TOMcpMf7+/oSGhlKwYMHfzqk7njy5n8xKRlmzFXWrOgJTBEEwIC627yJQTxTFGOCqIAgDiVvArYmLC3RMEpSuEKIoPhIEYQ/QQ5H28QuSTsX8dO49mvMP72NhbMzpuXFvgIGhoQxevQxPP19sLbOxevBwTAwMCQgJYeCqJTx+/47W1Wsxo9t/1TQ6zJmOT2AAuj/VErc5T8TSOHWhI7JoUKYQZx69pk7JlFUUk5I3uzmXn8sKo/yVxHFV5ubmuGzdqvS1rl67xpjRo9m1a5dCio+qEh0dzc6dO1Xyav/48QMvLy/y5cuXBjNLHUnf/ptVKMrFZ+/Y/O8dnOr90fy5FLn95gttKiv2QqYuahbLy9NPqidppQPzBEEoTFx1j49AfwBRFJ8JgrAPeA7EAINEUVS9HlvqyZBrdkYkPDIKPR0tdLVTtyumDGXzWjPK5fc8msTEP08U9XhLBAFziRZ+sdFYpiKUxFZDm6+xUUhFEcnPnVxlnm0SiYRSuXPw0MOLcvmUD4HNa2WGh28AxXNmT7Zd4udblcqVuXbtmlLXEUWRKVOn4unpyZ49e1K9K5ocV65coWDBgr+U1lOUs+fO0aB+/TSYVepJZ++2qmSINTtFY1sURSlxC3dybbYB25S9uCiKtWQc6wn0VHas/v070e1dQ0atX51wbO0xN6oVK8GApi1Y6+7G2mNHGNe+MzraWoxs1Z7Xnp959eX3OsLL+g+hVL7kDcvUetb/KZKbaXuVNywhbjFyvZj2e+0nTpxg7rx5HDx4MKEIflpx8NAhGjRooJJX+9KlS9RUIPklJaKiotBMgwU36YI0p1NDGs3eSuVCuSiRS/FQoPREFEU++QWSO5tpul53XpdGrD51M12vqQyiKLZO5txsYHY6TkfePDLFmp1R0NfR5viEHul6TW1NTfR1tAgKj8BEXzfZtsoY3UW09XgVHY6lhmIOIlkIgkDFCoXI0fQfldenBqULcvbRG5WN7ffe/ska26lN0IuNjWXIkCHoGxiwaePGFCuUpJZly5Yxffp0lfqePHmS4cP+ijzkP0JGWbMzl6RdMlSvUA4P66+w/r9jZ+/fZc+EuIS51tVr0mHOdMa174y+ji4VChfho0/ydY9tK/9qcFuqMXRFV1uLHGZGfPDxJ6+Vclv1uSxN+eyX/DZfahejnTt34uLqytEjRzAzM0vVWCkhiiJr1qxhz+7dKvU/efIkrVvL/T4pTEBAAOZp/Fkh7v9+Xb+WOK05iNvYbhkyfvu9tz/5spv/LXVWs/jDeAeFIopihr2f0is5MjFl8ljz2MOL6sXyKtS+zqJ2KRrchbX0uRsZQjUFEvmTcxh9vHCXKy88VDa265TMz/qztxnbspbSffNamausRqkIERER9OzVizKlS+Ps7KzUPfn+/XsCAgKUqpH9/PlzYmJiFA7bTExMTAzPnj1Lk8oo6iLO1khdYYL/BzKXpJ0CaOprJxjJfsFBWJnGGU9WpmZ8D5a/S2pbOT+2lfOjY6zLhF2baT5nMrNXb0rT2NoGpQtw7tFbpftpaWoQHZs2ux2ampo8e/4caxsbzp45QzYrKzS1tNT+k5jLly9TuHBhlb3nN27epEqVKqn+7AEBAZikUcxe0pefwjbZmNy2Lp2W7SEw7EeaXDM1XHz2niqFkldYyyILRYmMimGB26VMkauQXpTOY8NDDy+l+qS0o1pIS4830b+vJ0njwVMap0bRvFx54aHU3BJjbqiPACrpCuSxMsMjGTXP1DiS/Pz8aNmqFXVq12bs2LFKGdqxsbEMGjyYGCWfvStXrmSYip7p23fuULFChQz7kpqF4vw1nu2k2FbOj0RDgm3l/HjefPfbOQCzr88xDPf7xYPtumgWtjmsCAkNo/0QZ3a4HadrS/WqCcaTy9KMOyrIYaeUeKLqYhQeHs69+/fR09Ojfr16COnk7dm5cyc9e6q2C+3v74+ZmZla4u1y5MghU55WXSQNJ2lQuiBRMbE0n7cN1yHtyGOV9l51RfAJCmXzv3c5NqH7n55KFn8JOS1N8PQPZtgWdxZ3b5xuNa0zMpbG+rz3Vl75MamhnNjbrS/RQMfGlDqzU7cLm9fKjM9+gakaw87CBN/gMMwNldu58wsJV7qPIjx9+hQnJyemT59Ow4bKK3MvWrSIShUrUqmi4rk2ERER3L9/P0GlUVkeP3qEvb29Sn2zyFj8dZ7txFhZmuPlE2dMS/KZkD27xW+hIUmxzRGnsmRkaECHpg7cffwszeanpSkhRoWM7fc+AXJDT1Q1tL98+ULjJk2wtbWlcuXK9OnbFxsbG8qUKZPQxt/fHwcHB4oWLYqDgwMBAf95H+bPn0+RIkUoXrz4L+WG6tatS/HixSlfvjzly5fHx8fnl+tGRUXx4OFDKleqpNK83759S8ECBVTqmxRTU1NCQ0KITaNdA/j9/6dJ+SIs69WUTsv2cOuN8i9e6kYURYZtcWda+3pp8sDL4v8TQRBY3qsp+XNY0Hbxzgy5m5PeCIKAVA2e/qQea3U4QSUSCamdmqaGhNhY5Z9vjz28KJVbdp1rVZ9vR48epW/fvri6uqpkaN+4eZNz//7LpEmTlOp35swZ6tWvr7Jn+s3btzKrkGSR+fhrPdsATevUZPvhYzj368H2w8doWrdmsu1jYmIIDA7F0tyU6OgYjl+4Qt2qaVcxQlMiIVrFxah0HvUl1t28dYthQ4eydNkyChUqBED37t0ZOHAgvXr9V6llwYIF1KlTB2dnZxYsWMCCBQuYO3cuz58/Z+/evTx69IivX7/i4ODA8+fPE9QoXV1d5b6dnzt3jjp16qicoPLu3Tvyq8nYBihcpAgvX76kePHiahszJcrmtWHfqE50XbGPfvUr0r5aqT+2bbjn2mMsjQ1oUDprgc9CvQiCwLDG1chrZU7zedvYNLA1Ba0VL7OpUzFthLSSEnk7+Soh6kIiCKk2aNMSA11tQn5EYqSXsvKvLDQ1VHu+PfroRecaZX4fTwVDWxRF5s+fz40bNzh+/LhK+UcBAQEMHzaMffv3o6mpnMl08NChVCU3vnv7Nk2rgGWRfvw1xnaXERO4fPsefgGB5K3uyJShfRnTtzudho3H5cARclrnYPeKeQntC9ZuSnBoGFHR0Rw9d4njW1eR28aaxr0HEx0TQ2yslLpVK9K7Xcs0m7OmhoZKb/6PPnpRtXDu38dTcjGSSqWsXrOGAwcOsP/AAXLl/K++e/Xq1fHw8Pilvbu7O+d+lubr2rUr9erVY+7cubi7u9O+fXt0dHTImzcv+fPn5/bt2wrFUR88dIh+ffsqNe/EvHnzhnLlyqXcUEHKlSvH/fv309TYllUuyc7ChKPjujF+5yn0dLRoNyj95HDjjYsv34NYdfI6pyb1SqFHFlmoTrMKRcllaUL/DW6Uz2uDc8uaCqsN9hk/nRMXrpLNwoyHx+PCJ/wDg+g8fDwfPb3IbWvNruXzMDMx5ty1m0xctIqo6Gi0tbSY5zyM2lUqAFCvS1+8fP3Q04mrBHJi6yqsLNKvpjzEGdvq8GynFXYWxnwNCKawnmol1LU0NIhR4fn2yS+QXJamvxxTxdD28fFh8JAh5M6dm4MHDyptKEOcsT5w0CDGjR9P7lzK5bCEh4fz6uXLX3aHleXbt2/kyJExK1ZloRx/jbG9Y+kcmcdPb1sr8/ibC+6//C6xivsi3bl2We411OVZiTduJBJBpTCSRx5eDGjwq6S4souRl5cXPXv1okKFCpw+dQpd3eTLTwF4e3snyNhaW1snhIR4enpSKVEYiK2t7S+xz05OTmhoaNCqVSsmTJiQ4LWNioriyZMnVKhQQam5J+bd+/e0bdtW5f5JKV++PHv37KFr165qG1MWsgxuIz0dVjk1/+VYehkXnt+D6LP2EPO7NFLZk5VFFopSJq8NZyf34tCtZzSft40WFYszsGFlDHS1k+3XrVVTBnZpT0/n/0QrF2xwoXaVijj368GC9S4s2ODC3DFDsTAz5fC6pdhkz8bT129p0msIHldPJvTbtmgW5UsWS7PPmBIiYpoY2+oaMoepEV/9gylso5qxLRGUf775hYRhZqCX6p29kydPMnXaNKZNnYqjY7JVMJNl69atWFpY0LJFC6X7njlzhgYNGqj8WaKjo9HQ1MxKjvxL+CuMbXVs+6XXFmVi3np9J6+SSXHhkVF8Dwknh9l/9aiVNbSfPHmCk5MTCxcupEaNGkr1lYWsCgPxC8S2bduwtbUlJCSEdu3asWPHjgRD9tWrV5QsWTJVi4koignhKuqgUsWKDB8+nMjISHR00tboVEQQID2Mi+2XHrDh7C0mt63LP0XzqO3zZZFFPILp7zWTJRIJbaqUpKl9Ubacv0vd6ZtoUbEYzSsUo4htNpnrQvUK5fD48msSs/u/lzi3fQMAXVs2oV7XvswdM5SyxYoktCleMD8RUVFERkWho528QZ9e3H7zmTJ5ZMcmq0pUTIxaYrYBvANDsTIxVLn/22/KP9/+ffyOmklKISr7fFu9Zg3Hjh3j5IkTWFhYKNU3MZ6enqxfv57z58+r1P/O3bvUqpl86GpypHXt7yzSl6z/zST0GT8d28r1KdP4v2xu/8AgGvUYSLH6LWnUYyABQXElBL8HBFK/az/MylRn2PT5v4xz/+kLyjZpT9F6LRgxc6FMg/TO289UKJDzt+PJceL+KxzKFlLhk8Vx+vRp+vXrx44dO5Q2tLNnz46XV1ypKi8vL6ys4pJJ7ezs+PLlP/l4T0/PBA94vGKWkZERHTp04M6dOwntnj59SokSJVT+LADGRkYEJ1PSUVm0tLRo7OjIkaNH1TZmaqheoRxmJr/KSLv/eymhQk7Xlk04eu4iAGWLFcEme5wXKrFxkRKNyxfm4oy+GSJO+2MGl2vPQv3oaGkyoGFlzk3tTb7s5sw6eJ4ak9czfd85Hn74mmK5QB8/f6yt4mK/ra0s8f3++z106PS/lCla+BdD22n8dOybdUrzEq/yOPPoDfXV/J17/PGb3ORCZXnt5UdBa9WM1ViplO8h4Uob6wduPqFFpf9C+JQxtGNiYhgxciQPHz7kiJtbqgxtURQZPnw4s2fPxsBAsRCnpDx98iRV4YgaGhqIKux8p4QoisTExKh93CySJ8vYTkK3Vk05tnnlL8fiPYnPzx6mdpWKLNjgAoCujg7Thg1g/tjfEyAGT53L2pkTeX72MG89PnP68vXf2jzy8KJ0buXisfZce0y7qqUSfld0MQoLC2PS5MksW74cd3d3lTKcmzRpwvbt2wHYvn07TZs2TTi+d+9eIiMj+fDhA2/fvqVixYrExMTg5+cHxG2JnThx4pfF5+mzZ5RIZWy0sYkJISEhqRojKT179mSrCtL2qqBSLKKajQtzQ/0/IuqRFKlUSudle//0NLJII1K61w11dWhXtRQ7h3Xg1KRelMljw8qT1zl0K3UVoZ69ecfEhStZPXNCwjHXRbN4cGwvF3Zt5NrdB+xwS5+kyHjuvfPEzsIkRfVIZbn95jMVC9qlepzI6BgE4pQuVeGVpy9FbJULP/ELCcM/9IdKYSsvXrygSdOm5MienQ3r16Odyt2LTZs2YWtrS7169VQe49u3bwlOp4zE+vXrE57jWaQff/4Jm8FQxpNooK9HNfsy6CYJN/Dy8SM4NIzKZeOqSnRu6ZjQJ56QH5Foamqgq614fWjf4DACwn4kZPArYqiJoshhNzfq1KlD7ly5OOburtAbf5cuXahevTqvXr0iT548bNmyBWdnZ86dO0fRokU5d+4czs7OABQvXpy2bdtSqlQpmjRpwooVK9DQ0CAyMhJHR0fKli2Lvb09NjY2ODk5JVzj6ZMnavFsBwUlr6apLHny5EFPV5dHjx6pdVx5pFbtMykZ0bhQhHNP3lGhQOoNhSwyPwa62jSvWIzNA9vQunLya0R8iVeIW3uzWfwXuvDlmzdtB41hy4Lp5M/1372VniVeZbH+7C36NVCt3Gly3HrzmUoFUy9G9eqrL4WVNJYTc/vtF6W/y4dvPqOVkl7t0NBQJkycyKDBg5k9a5bSQjWyePHiBS6ursydO1flMfz9/TE1M8uQ8dYtWrRg85YtKep1ZKFesoxtBVDEk5iYr94+2OX4L0bRLnt2vnr7/tLm9tvPlMurnGLiifsvaVyusMLtP378SMuWLTlz+jTHjh2jT58+Csc379ixg8+fP/Pjxw88PDzo1asXFhYWnDlzhhcvXnDmzBnMzf9LsBs/fjyvXr3i2bNnODg4AGBgYMDt27d58OABjx49YunSpb9c39vbO9WZ1sYmJr/U+1YXo8eMYebMmRlS8S4zGhcpIZVKWXH8Gv0apF2pzSz+POp+sYT/SrwCv5R4DQwOoXmf4cwaNYiq5csktI+JicHPPxAgocRr8ULpV17tk18gb7z8qCajolRqkEqlvPT0pZCKoR+Juffek1JK7rom5vqrj9jnV87YdrvznBYV4nJKFLlP3N3dqVu3LgXy5+fc2bNKSajLIyYmhn79+7Nu7Vr09PRUHuf58+cUK5b65FstbW1+/FBvTfocOXJQvlw5Dh46pNZxs0ieLGM7DZBpoCV5w1135hZdapRVatyyeW24+TpO+CS5xej169c4jx1Lx44dGT1mDGvXriVbNsW8FDHR0enyI4oigiCk+s2/apUqXLh4MVVjyBs3Z65cLF22TO1jy0IZIySzGReKsNj9CmXy2lDE1upPTyWLDEyXEROo0b4nrz98JG91R7bud2NM3+78e+0Wxeq35N9rt3Du2wOANTv28u7TZ+as3ox9s07YN+uEz3d/IqOiadx7MOWadsC+eSdss1ulaYnXxPyIiqbn6gPM69JI7V7PUw/f8E/RPKlOrBNFkW0XH9Cqkmq7jt6BIbzy9KV8PuWcSWXyWHMzBWGv2NhYTp48SYsWLdh/4ADHjh2jV69eaksm3LNnDzVq1KBkyZKpGuebtzc2Nsp9fllUrVqVCxcupHqcpEydOpUlixfz8uVLtY+dhWz+imokaU28J9HayvI3T6IsbHNk58s374Tfv3h7Y2P1n3jD7befERAorWQmeqnc1kRER/OhZAuSRlxHRUVx1N2dzZs3o6WpiZOTE3Nmz1aptmh6EBYWhoGh6pnu8ZQuXZpXL18SERGhUPlCZVgwfz7NW7SgZIkS1K9fX61jy0JWdRJl6scnNi7mrN4MxJX4M9DTS9f68cpy9tEbrr74yMExnf/0VLJIBxSpwiMPZUq8ThjoxISBTjJaw63DO1S6fmp55OFF1xplqVRQucR4RVh7+iZLezZJ9TgXnr6niG02bMyNU24sg8VHrzDEsarSBvCAhpXpsWo/7ea7/Hbu27dvbNu2jQMHD1KtWjVmz56tdi2EqKgoVq1axfHjqQ+xCwwIwMzUNNXjtGjRgk2bNqWqfKEszM3N2bRpE7169eLEiROYqmGuWSRPipaYIAjzgSZATiAUOA6MFUXR/+f5HsAWIDxRN3dRFDsmGmMsMBx4C3QRRfHjz+MXgZpATVEULydq/xaYJYqii+ofTX0oq0RpbWWJkYEBtx4+oWLpEuw8fIKBXeOqm4jA9H3/srBrI5XmMsihCn379aNokSIEh4QQGhJCcEgIQUFBODg4sHrVKvLly6fS2OlJQGCgWhYjQRCoW68e586do0mT1D9oEqOlpYWriwtNmzYlb968FFCjUqU8khoimd24SIkPPv5M23cOt7Hd0FRjCcf/ZzLDmp0agzszU7lQLioXSn1MdVIefPiKvo4WBXKkPoRk+fFrzFfx+fTBx597H74yr4uD0n3tLEzIU64q/fr1QwSCg4MJDQ0lODgYiURCj+7duXD+vMrVQVLC1dWVpk2bpqqKSTyBQUHkzp36MKEK9vYMGTKE6OhotLQUz+9ShOLFizN27Fh69uzJgQMH1FpCN4vfUcTtGQt0AZ4CpsA2YCuQWH3jvSiKMi0RQRAKALWAfEBVYCbQLVGT78AiQRAqiRkgQFYdSpTFCuRj1fRx9B43jYiISBrWqIpDzWoAfP6pjlUs5+91ZxXBcfoGst25g5aWFkZGRhgaGmJsbIyeXuqFANKToMBATNT0Nt2yRQvWb9igdmMbIFu2bKxfv57uPXpw8sQJjI1V8/Yog2arMfDleZpf508THhlFr9UHWdm7GdmM0+YB+n9KplizlTW400tGPTOy8MhlRjdLvWbCgw9f0dXWVLqSSDwz9v3L5NZ1VA7rWLZ0Kc9fvMDo53PN0NAQIyOjVFcXSYkfP36wcdMmzp09q5bxAgMDKVO6dKrHkUgkVK9enUuXLqWqMoo8mjdvzpMnT5g6bRqzZs5U+/hZ/EeKxrYoihMS/eorCMIqYJcS15D8/NFI9PfEbAS6Ax2VHDdNSK0SZTzlSxZLUPyLJ1Yq5eEHLya1rq3y/ARBoGLFzJ9EFhQcjJGRUcoNFcDe3p5BgwcTEhKitjETU7p0aYYPH063bt3Yvn17mlwjKbF2xf5qz59fSBj91h2mVx17yuWz/dPT+avITGv2/6uHW53cffeF8MioVFfyEUWR2QcvMLpZdZX63377maDwCGqVUG1nVbPVGEyJy5dJb1xdXWnXrp3anCnBQUEYqWmsli1bsnXr1jQxtgEmTJhAh44dWb9+PX379s1UTrvMhCoBvXWBx0mO5RQE4RsQDVwDxoui+AFAFMXXgiDcAN79/EkamBkGTAHmCIJwUBTFSBXmJBdRFImKiUVHK/mPmh5ekyl7zmJlYkDDRlVV6p8Wmfx/Cgtzc/z9/dUyliAIDBo4kKnTprFk8WK1jJmUtm3aIJVKadiwIatWraJcuXJpcp3E/K2GyMkHr5ix/18mtKpNU/uif3o6/w9k6DU7o9zn6akirK7njW9QKEM3u7NzePtUjzXv8EUK2ViqFOYSFhHFKJfjuA5pl3LjDMiBgwfZvm2b2sYzNzfH//t3tYxVrWpV5s2bx42bN6lSubJaxkyMRCLBZetWRo4cSY+ePVm5YkW67OD+v6HUXo8gCK2BPkBiFZfLQEnABqgARABnBUFI2BcWRXGaKIrZRVGsGr+gJ2ErEJJkXLWw8dxtlh67qu5hlebay4889PjKwIaqfVn+JkMbIGfOnHz69Elt43Xr1o3Xr19z89YttY2ZlPbt2rF9+3ZGjR7NipUrM2RZwIxMcHgEgzYeYfulBxwd2y3L0E4HMuOanYViRMfE0nP1AWZ2rE9eK/OUOyTDoZtPuf/hKzM7qJYIPnnPGXrXrUC+7KrN408+3549e4apiYlaBWhy5crFx48f1TKWIAisXLGC0aNGERmpVl9kAvr6+qxbtw5HR0caNmzIvXv30uQ6/88obGwLgtCWuO3DZqIo3o8/Lorie1EUX4uiKBVF8RtxC7sNoLBVKYpiLOAMTBAEIfXZCT+5+tKDAzeeMrxxNXUNqRLB4RE4bz/BaqfmaitRlNkxMDDgR3h4yg0VRBAEVixfzqiRI9NsQQLInz8/p0+dwtPTkzZt2uDr65typyy49Ow9DrO28k/RPOwc1p5sSso4Z6E8mWnNzkjOhD7jp2NbuT5lGv/npfUPDKJRj4EUq9+SRj0GEhAUDMC5azep1LILZZu0p1LLLly4cSehz/2nLyjbpD1F67VgxMyFan85n7DrNHVLFaBuydQlbj/88JUVJ66zeUBrlZRkzzx6g6d/MN1rqbbb96f/7zdt3kzv3r3VOmbu3Ln59Dn5MobKkDdvXtq2a8eCBQvUNqYs2rdrx86dOxk9ZgzLV6zIEr5RIwp9swRB6AmsB5qKophS0Ufx549SgT+iKJ4EbhO3PZlqvnwPwnnbSVwGt1VKpTEtGLvjFEMdq5HT0lSl/n96MUortHV0iIqKUtt4+fLlo03btmm+IGlrazN/3jz69OlD4yZN2LN3b5aXWw6+wWH0XXeINadvsm9UJzr+UzorJjAdyIxrdkahW6umHNu88pdjCza4ULtKRZ6fPUztKhVZsMEFAAszUw6vW8qDY3vZPH8aPcf8908xeOpc1s6cyPOzh3nr8ZnTl6+rbY47Lj/ANzgs1Y4k36BQBm48wpZBbTBWQTr+e0g4U/eeZWXvZpnyex0WFsa1a9do0KCBWsfNnTu32jzb8QweNIjzFy7w7FnaCpLly5eP06dO4eXlRdNmzbJqcauJFI1tQRCGAouAhqIoXpNxvrEgCHZCHObAasAPuKnCfMYAfQHVdWKJM7S7rtjL4h6NVa4Vqi72XX9MeGQU7aqqViT/Txvafn5+uLvLTgJNLbly5eLdu3dqHXPI4MGcv3AhTcNJ4nFwcODUyZPcvHGDhg4OXLx4Ue1G95/+/1eVyOgY1p6+SfN522hqX5S9IzthZ2Hyp6f1f0FmXLMzEtUrlMPM5Nfnhvu/l+jaMq7aUdeWTTh67iIAZYsVwSZ73EcvXjA/EVFRREZF4eXjR3BoGJXLlkIQBDq3dEzok1qO3XvJ5n/vstqpeaoM3NCISLqt3M+sjg1UCv+IlUoZsMGNia3rYKXiTtWfXt/27t1Lq5Yt1V72LmfOnHx4/16tY2pqarJi+XIGDhpEWFiYWsdOira2NvPmzmXa1KkMHDSI4SNG8OXLlzS95t+OIp7t5YAxcEEQhND4n0TnaxHn3QgFngEWQH1RFEN/GykFRFF8BOz5eT2VOPvoDe0W72J2p4ZUSYN6pspw+fkH1p+9zSoVF8U/vRABrFixgsDAwDQZu3nz5uzevVutY2pqauLq6sqwoUN5+vSpWseWhbm5OcuWLWPF8uVs276dBg0bcvr06f/b7bfg8Ag2nbtN7akbCYuM4uyU3lmx2elPplqzMwM+fv5Y/xQms7ayxPd7wG9tDp3+lzJFC6Ojrc1Xbx/scipEs08AADA8SURBVPxX3tUue3a+eqcu5Cw6JpZJu8/gevEeB8d0xkBX9XJ4weERtFu8i1517KlTUnk1WVEUGbPtBOXy2dCkfBGV5vCnn2/R0dFs2LCBPn36qH1sHR0dbG1t1e6FLlmyJP379aNjx45pGi4ZT4UKFTh39iy1atakU+fODB48mPdqfon4fyFFY1sURUEURS1RFA0T/yQ6P0YURRtRFA1EUbQWRbGNKIqvFbm4KIq1RFGcleRYz5/XdFHmg8RKpcw6cJ7Vp25wZGxXqhZOfUH51PDsszcTdp5m17D2GOnpKN3/Ty9EAN+/f+fMmTN07Ngx5cYq0LxZM06eOqXWUBKAXDlzsmPHDnr37s2rV6/UOrY8ihQpwpbNm1m3di3Hjx+natWqLFq8GB8fn3S5/p9EFEXuvvvCoI1HcJztQlhkNMcmdGd0sxqpMgiyUI3MsmYnJSOseary7M07Ji5cyeqZcVUXZe5wpcIL/dU/mObzt2FmoMfeER0xN9RXeazAsB+0WbSTvvUr0lbFHdcl7leJjpUytkXyAm/yyAj/13v27KFBgwZqEbGRRe/evdm0ebPax+3YsSOOjo506949XQxuiURCixYtuHTxIo6OjgwZOpRmzZrh5uZGdHR0ml//b+GvyNbzDQql9cIdCAIcHNMlVclXUqmU809SF9rw2S+QPmsPsXVwG7KbKl+TOSMsRAArV65k4MCBaSb5rq2tjYODA0fTIEylYMGCbN26lW7duvHgwQO1jy+P/Pnzs2LFCs6ePYupiQlt2ralS9euXLhwgdjY2HSbR3rgGxzGujM3qTNtI6tP3qB9tVJcmdWPYY2rpcoYyCKLjIaVpTlePn4AePn4kc3CLOHcl2/etB00hi0LppM/V1yta9sc2fnyzfu/Nt7e2Pz0jCvLxafvab1oB+Nb1mJUs+qpSrL3DQqlzaKdDG1cjRYVVZM733XlIbfefGZpj8aZdsc2JiaG1atXM3To0DS7Rv369bl27VqahHz079+fWjVr0r59+zQPKYlHEAQcHR05fuwYixcv5tbt21StVo1p06aly/UzO5na2BZFkR2XH9Bs/jYGN6rKxNZ1VMqmjic8Mooeqw5w7slblWNvA8J+0HXFPpb1akJBa+UX14ywEAH4+/tz6tSpNPNqx9OrZ0+2bNmSJmMXK1aMPXv2MHDgQK5e+y10NU0xMjLCycmJSxcvMnzYMA4ePEjlKlUY4+zMnTt3Mm1CZWR0DEfuPKfD0t20X7ILUYR9ozqzdXBbahTLmymTpLLIIiWa1qnJ9sPHANh++BhN68Z5dAODQ2jeZzizRg2iavkyCe2trSwxMjDg1sMniKLIzsMnEvooSkDYD4ZvdWfZ8ascHtOV6sXypuozPPn4jRYLtjOhVW2VQz/+ffIWlwv32DqoDZoqxDlnlOfb3r17qd+gAZaWqr0AKYKGhgZtWrdm//79aTL+gAEDaNeuHS1btUqzUE95FCxYkLlz5nD1yhWKFVftpe3/jbRxWaYxoihy8sErlh27RuncOTg1qRcmKmRSJ+ajbwC91hykV217Otcoo9IYEVHRdF2+lzHNa1CxQE6l+2eUhQhg06ZN9O3bFy2ttK3kkjdvXnS0tbl1+zaV0kAZM2/evBw6dIi27doxfPhw2rRurfZrJIcgCNjb22Nvb09UVBTnz59n7bp1PHv6lKrVqlG1alWqVK6MnV3q1N/Sih9R0Tzy8OLuuy/ce+fJ8y8+NChTkClt6lAsZ/aUB8giC8Dbx4eLFy9ib2+PoWHGLvvYZcQELt++h19AIHmrOzJlaF/G9O1Op2HjcTlwhJzWOdi9Yh4Aa3bs5d2nz8xZvZk5q+NCBk5sXYWVhTmrpo+j97hpRERE0rBGVRxqKlY5JCg8gq3n77L3+mNGNPmHpT2apPol1u32M5a4X8VlcFuVnEAAjz96MXXPOQ6P7ap0eFhGerYBrF23DrfDh9P8Ot26daNVq1Z06NABXd3U2Siy6NSpE0ZGRjRr3pxtrq7kyZNH7ddIDh0dHdq1bUv37t3T9bqZESEzetj0dbTFLjXKMNChCgVypD7e6t8nb5m8+ywrejfFPr9qRk90TCxdVuzFoWwheta2V6pvRluIABo5OuLq4oKVlVWaX8vDw4P27dtz9OhRsmdPGwMuODiYPn37kitXLmbNnImOjvJx9OokIiKCmzdvJvx89fKicOHCVKhQgbw+j8hrZU7ubKbopVPZyliplE9+gbz09OWVpy+vvvrx0tMHUYTSeayxz2+HfX5bCtlYpmr3SBGMuky9J4qizC+RTrZ8ok1L1Us7+l5cRdibSyVFUUz77NksEsiXL5/o6OjI3bt3kUqllC9fntKlSpH7y23yZjfHxswo3TQIwiOjeOP1nVdf/7vXbcyMWL5qdbpcH2QrSAaHRzDf7RIXnr6ne61ydKlRNtU5DzGxsUzde4533v6s79dSZafUq6++9Fx1gO1D25FfyWduRnu+ffv2jd5OThw/dixdrrdx40bu3LnD+vXr02zn7+7duwwePJipU6fSqFGjNLlGcujp68tdswVBcLfrtL6JpoFqgkchL//l+5V1A0VRXJuqSf5hMqVnu0AOC5b0aJLqcaRSKYvdr3DlhQdHxnZVOdY7Viql77pD/FMkj9KGdkYkJiaGAH//dDG0AfLkycPcuXPp1r077kePoq2t/qQ6Y2Nj9uzezYqVK6lbrx7Lli7F3v7P/V/p6upSq1Yt/vG/A4WqIZVKee3lx713N7nr/Z3915/g4RtAVHQsejpaWBjpY2Goj4WRPuaGepgZ6mGsp4uhrjZGejoY6emgq6WJVBTjfqRxf0bHxBIeFc2PqGjCIuL+DAz7wdeAYLwCQvjqH0xgWASCADktTSlsY0lhm2zULJ6PwjaW6OtkJThmkXpMiWReFSuo4kh4ZBT333/l2c1jHPfx54NPAF4BIUilImaGepgb6v28z+PudxN93bh7XFcHQ724+11TIiH25z0uiiKxUimR0bGER0b9cr/7BofG3ecBwXwNCCEiKhodLU0KWltS2MaScvls6Vi9DPmszNQmoa4Kl569Z/zO0wxoWJkZHeqr5YXWJygUp7UHqV40L7uGtVf5ZeajbwA9Vx1g88DWmd7QBrh58yaVK1VKt+s5OTnx4MED1q1bx4ABA9LkGvb29hw7dowBAwdy5MgR5s2bh6mpaZpcKwvVyJTGtqZG6hci/9Bw+q47TBHbbBwa00Wl+DOIC2kZtsWdgtaWDHGsqnT/jLgYPXnyhBIlVctSV5U6derw6PFjxo0fz5LFi9PkGoIgMGzoUBo5ODB4yBAqVqzIpIkT02R7Tx4xhxbKPC6RSChia0UR299fcMIjo/geEo5/6A++h4TzPSScgLBw3gf7E/IjktCISIJ/RBIRFYNEIqAhEZAIAhKJBE2JBH0drbgfbS30dLQw1tPlnyJ5sDE3xtrMCDMDvaxY6yzSDX0dbf4pmod/iub55bgoigSGR+AfEs730PBE9/oPPvsFEvwjktCIKEJ+RBIrlSIRBDQkEiQSAUEQ0NXSRE877l6P/9PG3Bj7/HZYmxlhY26cbjtFihIWEcWUvWfx8Alg/6hO2KqpFv31Vx8Z5XqcWR0bpEph0isgmM7L9rLKqRlF7dLH+ZLW3Lh5k3p166bb9QRBYOnSpTg2bkyp0qWpVlV5O0ERLC0t2bd3L/v276dBw4ZMmzoVR0fHNLlWFsqTKY3t1HL/vSdDNh9lfCoSRSDu4TB+52mM9HQY36qW0v0zoqENsGPnTpo1bZru1x0+bBidu3Rh3/79tGvbNs2uU6hQIU6eOMG69eupW7cuixYvpkplhZWqlUKeca0M+jra6Otoq6xAmpmI+csqtmShOIIgYGagh5mBHvlJm3JsGYlrLz8ydvtJetezZ1E3R7W88IqiyMqT1zl+7xX7R3VOlZCUX0gYHZfuYX7XRpTLZ6t0/4z4fIuKiuLChQtMnZK+oqc6Ojq4uLjQpnVrjhw5Qo4cOdLkOoIg0L5dO2rXqsWIkSPZf+AAixYuTLPyhup4vv2/8H9lbEfFxLDixHVO3H/F9qHtVVLNSsz+G08ICPvBur4t/hrP4KVLl7h54wYL5s9P92sLgsC6tWtp1KgR+fPlo3z58ml2LQ0NDQYNHEgjBweGDhtGjhw5mDB+PPny5VPbNbIWIsX54OPPxnN3ePLx25+eShZZpBmiKHLh6XvWnbmFiMjO4e3Jnc0s5Y4K8NkvkJGux8mbzQz38d3QTmXJ1gEb3JjUpg7ViiivWZERDe3Y2FgmT5lC82bN0NdP/9KkOe3smDdvHl27deOIm1uazsHKyoqdO3Zw2M2NRo6OdOrUib59+qjtmlnPNuXJ1KX/FEUURU7cf0XdaZsAODWpZ6oNbYCnn7xpW6Vkpq01mhipVMr8+fOZO28e+/fvV7t8raIYGxuza9cuBg4cyPPnz9P8evny5cP96FE6tG+PU58+DBgwgI+fPqV63KzFKGVEUeT8k3e0W7yLIZuOUqlATg47d/nT08oiC7UT8iOSDWdvUWPyeg7ffsaUtnXYP6qzWgztsIgo5h2+SKdlexjsUIUF3RxTbWgDePmHUK+U8iEoGe3ZBnFJkc2aN8fYyIhx48b9sXnUrl2bbl270rlzZ7WLucmiZYsWXDh/HlEUqVW7NmvWriUiIiLNr5vF7/z1nu377z2ZsucsOS1N2TOio9pi4gC+BYZgbaa8aE1Gw8/Pjz59+lCiZEmOubunmYiNouTOnZtt27bRrVs3du/erVZvsywEQaBevXrUrVuXU6dO0a1bN0qVLMnAgQMpWjRLalzdvP32nX3XHnP8/kvK5rVhSts6lMiVNtuqWWTxp4iVSrn07AN7rz/mycdvtKtakiPjuqlN8CkmNpbtlx+w4extetQqz/lpfdDSVI+TRCqVpkbwMkNx5coVRo0ezdw5c6ibjrHa8ujatSvBISH06NmTba6uaf68NTAwYMTw4Tj17s26deuoUbMmPXr0oHu3bpiomESpUbFxkiNTUz3Pv52/1tj+6BvA9H3/Ehj2g3ldHNLkYf4tMITsphm7ZmxyREdHc9jNjcWLFjFt2rQ/UjJIHoULF2b9+vV06tSJ/QcOkDMd6lALgkCjRo1wcHDg5MmTTJw4kZDQUHr26EHLli3R09NL8zn8rXwLCOHw7WccvPkUE31d2lcrxZnJvbPk3LP4qxBFkQcfvrLv+hMuPntP1cK56Fm7PJUK5lRbqKEoipx++Ia5hy5Qu0R+tehMJOV76A8sjFR7KYg5tDBDeLe9vb1ZtXo1t2/f5vChQ9jaKh93nlYMGjiQ0JAQBg4cyLp169Kl7KWRkRFjxoyhb9++uLi6/qJo7OTkxIkTJ7CysuLhw4dAnLBdp06d+PjxI7lz52b37t2YmZnx/ft32nftx90nz+nWsgnLp45N87n/Dfx1xrZ3YAiLjl7h3ntPJrWuQ52S+dPsWv4hP7DIhLLU379/Z8uWLew/cIAGDRpw+PBhbGxs/vS0fqNMmTIsW76cdm3bsn///nQTfomXpXV0dOTT589sc3WlRs2aVK9endatW1O5UqU/FmaTWYiVSrnz9gtnHr3hwtN3GOho08S+CLuHd1C5xGYWWWREgsIjuPD0HacfvuHBh6+UyJmd1lVKMKNDPbWEcyTm+quPzDpwnlyWpuwc3iFVCZDJ4RUQTHbTzLlr+/DhQ1avWcPLly/p4+TElMmT01ycTRWcnZ2ZOnUqgwcPZtWqVelWZ97ExIRhSWTqu3fvzsCBA+nVq1fCsQULFlCnTh2cnZ1ZsGABCxYsYO7cuejq6jJt2ACevXnLs9fv0mXOfwN/jbH9Iyqa5cevcfzeS0Y2rc78Lg5pfvP6h4bz9JM3JXNnji3whw8fsn79eh49ekTPnj25cP48BgYGf3payVK5UiWWLF1Ku3btOHr0aJrK68oiV86cTJo0iXHjxvHvv/+ya+dOhg0bRqlSpaj/M/QkveqRZ3Q++Phz4el7Lj59z2svP+zz29KgdCGGN66GsZo9b1lk8aeIjonl3ntPLj57z6VnH4iKjaVOiXz0rFOeVfmapYno07tv3xm/8zTamhos6dGEIrbZ1H6NxPgEhfHVP5jg8IhM8d2N36XdvHkzxsbGDBk8mOrVq2fowgWCIDB9+nQmT5nC6DFj0qzkrSJUr14dDw+PX465u7tz7tw5IC70pV69esydOxd9n7dUsy/Du0+f/8BMMy+Z3tiOionB7fZzlh+/RqfqZdQat5YSB0Z3ZoTLcSoXysm4lrUyXA1XiMvAPn78OGvWrsXIyIhBAweyZs2aDL0IJaVK5cpMmTKFzl26cPTIkT+i/qipqUnDhg1p2LAhUqmUhw8fcu7cObp1705gQAAlS5WiUsWKVK5cmYIvj6e5ymJG4Mv3IK6/+siVFx7ce+eJnYUJtUvkY0LrWhS2yZap7rEsspBHTGwsTz95c/3VRy4++8CX70GUz29L7eL56F23AtmM085h4RUQzNrTt7jywoPZnRpQtbDylUFUoW7J/HwLDMFh1lYmtamDY7nC6XJdZfH392fzli3s27ePBg0asGHDBnLnyvWnp6UwgiAwc8YM+vbrx5q1axmYRqI3quDt7Y21tTUA1tbW+Pj4/OEZZW4yrbH99tt3XC7c49zjtzQsU5DDzl2xSuft6WI5s3NiYg82nbtD/embmd2pATWLp20yn6J8+fKFw25u7Nyxg3+qV2fN6tVpnmiYljg4OPDhwwcGDhrEpo0b/6ghJ5FIKFeuHOXKlcPZ2Zno6GiePHnCrVu3WLR4MS9uXsJYT5cyea0pm9eGMnlsKJDDPN22CdOC8MgoXn314/57T268+sSzL97YmBlTuVAuOlUvw5LujdPtJTeLLNIKURTxDQ7j+Wcfbr35xI3Xn/ANDqN4zuxUKZyLeV0c1FLJKjmkUin/PnnH1gv38A0Oo0et8kxtVzddX+AFQaBLjbI0LF2QsTtOsefqIxZ2a5QhQktiY2N5+PAhrq6u3L17l549e3LxwoUMv0srD0EQWL1qFc1btCBvnjwZKncqKeKHR396CpmWFI1tQRDmA02AnEAocBwYK4qif6I23YhLR7UGngADRVG8l+j8WGA48BboIorix5/HLwI1gZqiKF5O1P4tMEsURRdZc3rj5ccY1xP0qF2eqW3r/tGHvIZEQr8GlWhcvgijXI+z/dIDmlUoRpXCudLU45EUX19fLl+5wqWLF7lz5w6W2bLh4ODA6dOnMTFJm7i+9GbAgAGMGj2aefPmMX78+D89nQS0tLQSjO8+2UOhaTG+h4TzyMOLBx++4n73Be+9/dHR0qSQtSVFbLNR1M6KQjaW2Jobqz2uU1ViYmP5GhDCJ99APvoG8vabH8+/+PDZLwhdbU2K2GajdG5rhjWuRrGcVv8X3vvMSEZcs2NipYiimGF2O8Iiovj8Pe4+/+gbwKuvfjz/7ENQeATZjA0oamdFhQJ2dK1ZDhtz43SZU3B4BBvO3ebQzWdULpST8S1r/fEQxWwmhmwZ1IbTD1/TcsEOWlQsRvVieSmX1wYdrfRZt0RR5MWLF1y8dIlLly7x4cMHSpYsSds2bVi2bFmmdmLEo62tzY7t22natCk2NjaULl36T0+J7Nmz4+XlhbW1NV5eXlnhkqlEkW9LLNAFeAqYAtuArUBzAEEQ/gHWAi2BS8Aw4IQgCAVFUQwWBKEAUAvIB1QFZgLdEo3/HVgkCEIlURRFRSady9KUw2O7KtI03bCzMGHPiI5cfeHBpecfWH/2FkFhEZTOY03VwrmpX7qAWj3v4eHhXL9+nX/Pn+fKlSvo6+tTq2ZN2nfowKJFi9DW/jurPCyYP5+OnToxc+ZMJkyYkKESFRPX1rYw0qdOyfy/JOiGR0bxxus7L774cOPVJ1wv3uerfzDRsbHoaGliZ26CrYUxtubG2JqbYGMe93crE4NUG+QRUdF4BYbw1T8Er4BgvAJC+PrzT6+AEMIiotCQCNiYG5M7mym5LE2pWDAnPWqXJ6eFyV/xQPs/IsOt2R/9Aqg+aT0iImYGethZmPy8z42xMTfBxjxOTt3cQC9V91q85LuXf7DM+90nKJToGCl6OlrktjQlVzZTclqa0LpyCSa1scLMIP0rDkXFxLDl/F1cL96nV217zk7JeFV6GpYpRLUiuTl29yV7rz1i3PaT6GprUblQTmoUy8s/RfKo1fj29PTkwoULnL9wgSdPnlCoUCFq16rF7FmzyJ8/f4Z5aVMnFhYWbN++nY6dOrFwwQJq1qz5R+fTpEkTtm/fjrOzM9u3b6dJjUp/dD6ZnRS/HaIoTkj0q68gCKuAXYmO9QEOiaJ4BkAQhIXAYOIWclfihHMkgEaivydmI9Ad6JhkXLmk1xu1sgiCQPViealeLC8Ql0jz6KMXV1540GPVfmKlIi0rFaNVpRIoW/vD39+fu3fvcufOHa7fuEFgYCDVqlWjbp06TJwwAUPD/48KDxoaGuzetYt58+bRpGlTNm/alCErqchCX0eb0nmsKZ3H+rdzP6Ki8fQP5otfEF8Dgnn77TuXn39IMBBiYqUAJDZtBCHud00NCVqaGmhKJEhF8b8fqUhMbCxSUURHSxNrMyNszIwT/iyVOwfWZsbYmBthqJv+cfBZpA0Zcc3On92CyzP7IYoiAWE/+PI9CE//YL76B3P77We++gfj6R9MUHgEie13UeSXes+aGhpoa2ogCCCV/nevi6JIVEwsAgImBrrYmBmR4+d9XtgmG7VK5MPa1IgcpkYZKtzp5utPjNl2gibli3B2Su8M/T001NWhwz+l6fBPnNfVPzScW28+c+bhGybvPkthG0vaVClJ/dIFlIpPFUWRd+/ecefOHW7fucPt27cxMzOjdu3aDB0yhFKlSv3fvOznz5+fw4cO0advX65cucL48ePTxaHUpUsXLl26hJ+fH3ny5GHKlCk4OzvTsWNHtm7dSk5LM3avmJfQvmDtpgSHhhEVHc3Rc5fSfH5/A6pYrXWBx4l+Lw24xP8iiqIoCMKDn8cRRfG1IAg3gHc/fzonGS8MmALMEQThoCiKkSrMKUOipamBfX477PPbMaLJP/gEhXLo1lO6rtgHO69hZWWFsZERRsbGGBsZoaevT3RUFJGRkURFRxMZGYm/vz+vXr7EyNgYe3t7KlSoQM+ePTONgZkWaGhoMHHiRC5dukTLli2ZO3cuderU+dPTShV62loUyGFBgRwWSveNlUqJioklJlaKRBCQSIS4PwUBDYmQaR5UkdEx3H3n+aen8TeSYdZsQRAwN9TH3FCfUrl/f+lMDlEUiYmVEhkTA5Bwj0skAgICmhqSTOPx/BYQwoqT13ns4cX2oe3JY6Ueyfb0xNxQn0ZlC9OobGFEUeShhxf7bzxh5oHz2O26hbGJyS/PN01NTSIjI4mMf8ZFRuLh4cFXLy/y5s1LhQoVaNmiBbNnzfojcuoZBVtbW9yPHmX27Nk0b9GCzZs2kT179jS95o4dO2QeP3PmDPB7rPabC+6//K5dyD5tJvYXoZSxLQhCa+K8Ion3N4yAoCRNA4GEQDdRFKcB05IZeitxW5nDgAXKzCkzYWViSP8GlenfoDIhtZ0IDAwkODiYkNBQQoKDCQsPR1tLCx0dHXR0dNDW0cHE2JjChQv/cVXHjEjNmjU5cuQIvZ2cuHbtGs7Ozn+kUsmfRkMiQU87cxjUsnjv7c/WC3c5++gtTe2L/Onp/FX8TWu2IAhoaWpkKM+0MkilUi4++8Dm83fwCYpLfJzVoX6meRlODkEQKJvXhrJ5bZBKpfhV7UpoaCghISGEhIQQHBxMdEwMOtravzzf7Gxt000/ITOhoaHBlClTOHfuHE2bNWPeX+BQ+n9HYQtOEIS2wHqgmSiK9xOdCgGSZuCZEucRUQhRFGMFQXAGdguCsFnRfpkZMzMzzMwynzcjo5EjRw6OHjnCkqVL+ad6derXr0/vXr3Inz/txIyySD1B4RGcfviaXVceIorQs055Jrepg7amJvMOZ21LqoOsNTtj8O7bdw7ffsbhW8+wz2+Hc/OaMkPJ/ha024xVOkwyC9nUq1ePYsWKMXbcOKbPmEG3rl1p37692sJGY6KjFWt3+7harvf/jELGtiAIPYHFQFNRFK8lOf0IKJeorQCUAQ4pMxFRFE8KgnCbuO3JLLJQGA0NDcaMHs3wYcNwP3aMYcOHA9CrVy+aNmmSIdXD/h/xCgjmxP1XHLv7ksDwCBqWKcii7o1VCp3JInmy1uw/R7xk+7F7Lzn3+C3ZTQ1pal+UU5N6YaT3/7fzlsX/2rv36CjrM4Hj32dyJ1dyBxIDISIWxFuI2yqUNQg0giCg29bdWlp7tnKqtVbXlmr3dFvEFmvXU/f0bKstpbvoVmyL3epKRfHWargpCvWSkAC5Z3JPCElm5tk/ZmhDCCEJmcwlz+ec92Tm/c37vr/n5M0zT97L7z0/U6dO5Vdbt1JfX8/WX/2K4uJirrrqKm677TbmzZs3Ln2IXH3vaQMAmJEbztB/d+IdImqpqu4Z5CM/A/5PRH4JvAbcCcQCvx1Ff+4F3gR6R7FsyIhcfW+guxCWoqKiWH3jjay+8UbKy8t54uc/56GHHuK2L36RW2+9dUJeYhIMSsuO84PfvcqJnl6WXzmbf//CcvIy7KyOv1jODoxel4ttr73D4y/uYfa0DFYUXszdK64J6pseTejIysri3nvu4et3381LL73Ed7/3Pbq7u9mwYQOf+PjHA909cw7DuVjsUbzX8r0sIp2nplONqvo6sB5vAm8DbgZKVLV9pJ1R1XeAp+h37WA4sv8Q/W/mzJk8uHEjf9y5E6fTycKFC3niiSfo7Z3wNcG4ef39SlZ9fyuP/uENHlh7Lc99ax3rl33cCm3/s5w9jnr6XDz+YimLvv0zqpvbePabn+Px9WtYWfQxK7TNmHM4HCxevJinf/1rHtq0iR//+MfccMMNvFVaGuiumSEMZ+i/c97erapb8Y7lOiKqumiQeeuAdSNdlzGDSU5OZsOGDaxfv57HHnuMBQsWsGTpUkpKSiiaP39Mh1Wa6KfaVJXKxhZKP6pi6yv7yUyK58HPLuVjuf69k96cznK2//W6XLx7tJ5XDh/h6T+/y41Fc3j+/nUkT4oNdNcCzvWbzXb2dpzMnTuXJ7dt4+DBg2x88EHa29tZecMNfKqkZMwfWz/Rv9/Olw1xYSaElJQU7r//fu666y527drFL7ds4Y477uDyyy9n2bJlzJ0zh7y8PGJjz+/LciIlpK6TvRyoqKG07DilZVVUNrSQl5FCUUEuP/r8cmZNTQ90F40ZE7Ut7ZSWVVH60XH2lldzoqeXS/Ky+btZF7DzgS/atdgmoObNm8f/PPUUR48e5bnnnuOOr3yFpuZmFhcXU1xcTH5+PlOnTg2LkW9ClRXbAWL//QdGQkICK1euZOXKlXg8Hvbu3cvOnTvZsWMHlZWV9Pb0EJ+QwMz8fK5bsoRlS5eSmJgY6G4HnKryUW0Te8qq2FN+nLcranE4hCtmTGV+QS6bbpnD9IzJITPOsTFnc7K3jwOVtewpO86esirK6prITk6ksGAai+bkc8/KhQF50qQx55KXl8ftt9/O7bffTkdHB7t27WLHs89SWVFBbW0tHo+HrKws5sydy4oVK7iqqGhEBfhEOpg01qzYNhOWw+GgqKiIoqKi0+Z3dHTwwQcf8Pzzz7N582ZuvvlmvnrnncMe1SScElLXyV627N7Hf716gJlZaRRdmMM/XH0pm25ZRlz0xB3lRUTuATYDGarqFJHpwF+AD3wfeVNVvxyo/pmRK69r4tE/vMGe8iqKCnIpKsjlgbXFFGSn2hHBEbKDSYGXmJjIqlWrWLVq1V/nqSr19fXs37+fLb/4Bffccw8PbdrEggULhr3eUP1+C3TOtmLbmAESExMpLCyksLCQ++67j0ceeYRri4v54cMPn1GYh6vjzlb++7W3+V3pYT5zzaV2qrwfEckFrgOODWgqV9XLxr9HZrTcHg97y6v5yQtvUtfawV3XX8OjX1hhZ2hMWBIRsrOzKSkpoaSkhKPHjvG1u+5i27ZtbNy4kdTU1EB30S+CIWdbsW3MEKKjo/nGN77B6tWr2bBhAy2trdx8002sWbOG9PTwuSa5oa2TVw9X8MrhCvaVVzNlciLLC2ez+ztfIjaYjmCrBnZ5rx8B/wLsGIuVmfHj8Xj4S3Ujrxw6wiuHKzjmbGVe3hS+tLiIq2fnBbp7xoyrvAsu4JlnnuHp7du5/vrrmXXRRXzm05+muLh4zJ5PIUm5y88r76pnLLoR8JxtxbYxwzBr1iy2b99OXV0dT2/fzpq1a8lIT2fN2rXMmDGD9LQ00tPTSU5ODvqjYn0uN+8dr2dPmfdmr8PHG0iJj2Xhx2Zwy4LLeOTW64P2kdh9fW6O7/4ljviMES+r7l5cVe8CLBKRLf2afqqqPx3OOkTkBqBaVd8Z5Pc8Q0QOAO3A/ar62og7acZUS1c3+8qr2VtexZ6yKmpa2pk9NYOFc2aw6ZZlzMi0+wzMxCYi3HzTTdy0di379+/nyaee4oFvf5uFCxey5LrryMzMJD0jg/S0NOLiRn6vgsRnUvPKE0Rkzh3xsqqKu3wnwBQR2duvKeRytujYHOkZV1fkT9NXv/vPge7GmLDr2kLX+++/z+9//3uqq6tpdDppamqiva0NVSWys4lpqUnkpCWTk5bE1MlJJMbFMCkmmoTYaCbFRBEVEUFz5wka2rpobO+isb2TzpO9pCdOIjslkayURLJSEkhNiMPt9tDrctPrdtPrcgMwOT6OyfFxZxTGqkpLVzcNbV3UtrRTUd/MkYYWKhqaOe5sA2BObhbzZ05jfkEuF+dkEDmGQyCer8R//Nd9qlo4WJuIzJGE7PciZi4bcZHkrtmHxCTiOvb6kAuKyItA9iBN3wI2AEtUtU1EKoFC3/V/MUCCqjaJyJXA74A5oxm7OhzNyc3SH61bTmN7F872LhravMN+Z6UkkpWcQHZKItkpCcRGR+Hy7eO9Ljd9bjfRkZGkJsSRFBdzxrXTfS43zo4uGtq6OOZspaKhmYr6Fo7UN+Ps6CIxLoYr86cxvyCH+TNzmJY28Cn1xl/suy10uVwuXnrpJV57/XWcjY04nU4anU56Tp5EVUnqa/d9tyWTk5rEV3/xv0Pl7DhiJ5+ILPgUEjmySxE97cfxtFTiaf4o5HO2Hdk2ZpRmz57N7NmzB23rfOpBalo6qGpqo6qpjSMNzXSd7PVOPX109fTS63KTljiJjKR4MpPjycuYTHxMNM6OLioaWnjzw2PUt3XS0tVNVEQEUZERREU4iI6MQBVau7pp7uym1+VmamoSqQlxfFTbRE+fi9SEODKTE8ienEh+5mSunTuTGVmF5KYlB1VhPVKqesiRdhHadgxJGf5pf+3tRDtq8DQ4z3luVFUXDzZfRC4BZgCnjpDkAPtFpEhV64Ae3/L7RKQcmAXsHWxdE01dawe/fesQGUnxpCfFc0neFFSVhrZO3q6sob61k7rWTnr6XERFRhDt29ejIiLocblo6eymteskEQ6hYEoa3b0ujja2EOFw+P5+EshNSyY/K5WrLryA/KxU0hMn2VFrY0YhMjKSJUuWsGTJkjPa+p75AW0nTvq+29qpamodcl2q2h2ZtwBP/TtETBv+PU+qHjy1b6PdznMOGB4KOduKbWPG0Km7tGOjo8jPSiU/y/83nKgq1c3tNHeeoCA7jUkx0X7fZiBp84fT3N3OaknORWR4o0S4aw/gyL4M15E/uka9XdV3gcxT7wccJckAmlXVLSL5wIXAkdFuK9zkZUxm8+dKzns9vS4X5XXNxERFkpeRQoSNEmLMuHH9ZjMiQkp8HCnxccy9wHsw+Wtb/jDkcu5jr0fKpAyX9nQgMcMbSleby5DEKXhONB4fbX+DKWdbsW3MGAjkUEgi8tdTehOBqtZEZF+Gp+kDItIvPvfnu5uh7wTuihf9WZktBP5NRFyAG/iyqjb7cXsTUnRkJBfnZJ77g8aYMXO+32+q6o4sWIq7dj+R0z957s+7+3A3HoaTLSnnteGhjWvOtmI7gOyatvAQimOOhjpP/TtJxE5ud0wuQCKGvjLEXbMX7awp1DG+QUVVp/d7/QzwzFiu3xhjAmksv9tcZS+IIylHPSecOCYNPZKXp/EQjrRZuKvebBuzDhDYnG3FtjHDFKiiOlQfIuBPqtoRkfsJPA3vEjHlirN+ztNeDZExqOq+ceyeGSXb140JjPH4u9OO6ks96nlHZi496/0U2teNp+0odDeH1YMd7II3Y4YhkIV2/5/mbzxVf47S9iq0t2vQdlUPnrr9aMuR6ePbMzNSkavvtX3dmAAZr+83VT1IdDzaXnXWz3jqDhCRdSmq2jsunRonVmwbE6Ss6Biaqroc2ZfhrjsweHtzOZKQjaoeHeeumRGw/dyYiUOby3I9dQfQQR5Woydb0ZOtuCtfDrvaNOwCMmasjfdR7f5H+QbON6dzV+xy0NvhvQmyH/W4cDcewtPwXng+fzhM2D4dnuz3GjrG+/tNVaskaRra9NEZbe6afWhX/dVjfX9NMLBiO0AsGZnB2H4xMqqq2ll3lbv29EuyPY2HcaReiKq2BKhr5hxsXzdmYvLUH0x2O/+Cuvv+Nq+zDkRQ1T8FsGt+Y8W2MUOwm7WCn6qW4ojC01Hjfe86iae1Ak9NaWyAu2bOwgptYwIvUN9vqtruSJuFp/G9U+/x1O5D245eFJAOjQMrto0JElaAjJ62Vsz01O73Ju26t4nIvARV7Ql0v8yZbD8Pb/b7NcPhqX4r2tN2DO07gbZWIHGpqOqHge6Xv0goXhpTWFioe/faU5CNCUcisk9VC0e6XETmXMURiXbWol0NjnC87i9UWc42JnyNNmdHzrhWPe3HvffcdDdnqmqjP/oXDGycbWNMWPA0HkojIqYJd88nrdA2xpjg5q582SHxWR5HynTcJ5rCttCGED2yLSJ2iMSY8OVU1WWB7oQZO5azjQlrlrPPISSLbWOMMcYYY0KB3SBpjDHGGGOMn1ixbYwxxhhjjJ9YsW2MMcYYY4yfWLFtjDHGGGOMn1ixbYwxxhhjjJ+EVLEtIp8WkddEpF1EXAPaPi8iHhHp7Dc9OeAz94lIrW8def3m7xaRngHLdorIJX6I4fsicsgXQ42I/ExEUkMtDt/2NopIhS+WBhHZLiIXhFocvm06RORPIqIikhNKMYjIFhHpG7Cd9f3aQyIOE37CIWf7thcWedtydnDEYDl7AlLVkJmApcBngC8ArgFtnwfKhli2AHgeiAOKga392nYD949TDA8ClwNRQIavTztCLQ7f9mYDyb7Xk4BHgD+FWhy+bX4deBFQICeUYgC2AI8P0R4ScdgUflM45Gzf9sIib1vODo4YLGdPvCmkniCpqi8AiMiiUSzu8E0R/V6PO1Xd0O9to4g8BmwbwSqCIg4AVX2/31sBPMBFw1w8aOIQkVnAemANcGAEiwZNDOcpXOIwQSYccjaET962nB08MZyncIljwgipYnsYckWkDugD3gC+qaoVAKr6oYj8GSj3TbcErpunKQYODpgXMnGIyGeBnwBJgAu4u19z0MchIg7g58C9QOsgHwn6GHzWiMhqwAnsAL6jqp392kMlDjOxhOp+GbJ523J24GPwsZw9kQT60PpoJmARZ56SzAdm4f0PLxvvaZoyIH4Y69sNdOP9w/3rNA5xrAE6gCtCOQ7ftrOBbwGLQikO4GvAdt/r6Zx+SjJUYrgSyPL1cw5QCjwZ6vuUTeEzhUvO9m07LPK25eyAxmA5e4JNAe/AqDo9SOIe5DNRwAmgeBjr2834X292E9AM/H0oxzFg+5lAJ5AaCnHgve6tCsj2vT8tcYdCDGfZ9tV4j4bEhHIcNoXPFA4527fdsMrblrOD5vdgOTvMp3C+zkd9kwS6IwOJyDrgP4EVqvryOT4etHEMIhKIB6YO0haMcVyD92an90TECez3zT/Y/87wfoIxhsF4fD/P1s9QicNMLEG9X4Zp3racHRwsZ4e5kCq2RSRCRGKBaN/7WN8kInK9iOT4XqcC/4H3Wqg3A9nngUTkTuBhYKmqvjFIe6jE4RCRr4hIpu99Dt6+VgLvh0gcvwZmApf5phLf/CXA1hCJ4dTwaim+1xcCPwSeVdWTvnkhEYcJP+GQsyE88rbl7OBhOXviCaliG/gnvNcivYD3Ltxu35SH9zRlKd5TYoeANOA6Pf2Gg6E8IGeOS7l8rAMAHsV7Y8rL/bfVr30RoREHeBPdeyLSBbyF9zTXYlV1EQJxqOoJVa06NQF1vqY6Xz+DPgafLwNHfL+HnXgT8rp+7YsIjThM+AmHnA3hk7ctZwc4Bh/L2ROMqPcaH2OMMcYYY8wYC7Uj28YYY4wxxoQMK7aNMcYYY4zxEyu2jTHGGGOM8RMrto0xxhhjjPETK7aNMcYYY4zxEyu2jTHGGGOM8RMrto0xxhhjjPETK7aNMcYYY4zxk/8HpOzlx0gUL+oAAAAASUVORK5CYII=\n", + "text/plain": [ + "<Figure size 864x432 with 4 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Check the PTE results!\n", + "\n", + "plt.rcParams['savefig.facecolor']='white'\n", + "lonmin=lons.min()\n", + "lonmax=lons.max()\n", + "\n", + "# Showing Dp/dt term at a given time step\n", + "stp = 22\n", + "print('Simulation on day ',time[stp])\n", + "\n", + "tfact = (6/dt) # This is for an easier comparison between the 6-h vs 1-h results (converting to the same unit)\n", + "clevs_mslp=np.arange(900,1060,5)\n", + "TADV_avg_roll=np.roll(TADV_avg,15, axis=2)\n", + "mslp_roll=np.roll(mslp,15,axis=2)\n", + "shu_roll=np.roll(shu,15,axis=3)\n", + "\n", + "fig1 = plt.figure(figsize=(12, 6))\n", + "ax1 = plt.subplot(1,2,1,projection=ccrs.PlateCarree())\n", + "ax1.set_extent([lonmin, lonmax, latmin, latmax]) \n", + "#ax1.coastlines('50m', linewidth=1.5,color='k')\n", + "clevs= np.arange(-11.,12,1)\n", + "cd = plt.contourf(lons,lats,tfact*TADV_avg[stp,:,:]/100,cmap='RdBu_r',extend='both',transform=ccrs.PlateCarree())\n", + "cs = plt.contour(lons,lats,mslp[stp,:,:]/100,clevs_mslp,colors='k',linewidths=0.8,transform=ccrs.PlateCarree())\n", + "#cs = plt.contourf(lons,lats,shu[stp,95,:,:],transform=ccrs.PlateCarree())\n", + "clabels = plt.clabel(cs, inline=True,fmt='%1.f', fontsize=10)\n", + "[txt.set_bbox(dict(facecolor='white', edgecolor='none', alpha=0.6, pad=0.5)) for txt in clabels]\n", + "for l in clabels:\n", + " l.set_rotation(0)\n", + "gl = ax1.gridlines(linewidth=0)\n", + "gl.xlabels_bottom = gl.ylabels_left = True\n", + "gl.xformatter =LONGITUDE_FORMATTER\n", + "gl.yformatter =LATITUDE_FORMATTER\n", + "gl.xlocator = mticker.FixedLocator(np.arange(-180,180,5))\n", + "gl.ylocator = mticker.FixedLocator(np.arange(10,90,5))\n", + "gl.xlabel_style = {'size': 13, 'color': 'k'}\n", + "gl.ylabel_style = {'size': 13, 'color': 'k'}\n", + "plt.colorbar(cd,label='K',pad=0.025)\n", + "plt.title('Remapped domain')\n", + "\n", + "ax1 = plt.subplot(1,2,2,projection=ccrs.PlateCarree())\n", + "ax1.set_extent([lonmin, lonmax, latmin, latmax]) \n", + "#ax1.coastlines('50m', linewidth=1.5,color='k')\n", + "clevs= np.arange(-11.,12,1)\n", + "cd = plt.contourf(lons,lats,tfact*TADV_avg_roll[stp,:,:]/100,cmap='RdBu_r',extend='both',transform=ccrs.PlateCarree())\n", + "cs = plt.contour(lons,lats,mslp_roll[stp,:,:]/100,clevs_mslp,colors='k',linewidths=0.8,transform=ccrs.PlateCarree())\n", + "#cs = plt.contourf(lons,lats,shu_roll[stp,95,:,:],transform=ccrs.PlateCarree())\n", + "\n", + "clabels = plt.clabel(cs, inline=True,fmt='%1.f', fontsize=10)\n", + "[txt.set_bbox(dict(facecolor='white', edgecolor='none', alpha=0.6, pad=0.5)) for txt in clabels]\n", + "for l in clabels:\n", + " l.set_rotation(0)\n", + "gl = ax1.gridlines(linewidth=0)\n", + "gl.xlabels_bottom = gl.ylabels_left = True\n", + "gl.xformatter =LONGITUDE_FORMATTER\n", + "gl.yformatter =LATITUDE_FORMATTER\n", + "gl.xlocator = mticker.FixedLocator(np.arange(-180,180,5))\n", + "gl.ylocator = mticker.FixedLocator(np.arange(10,90,5))\n", + "gl.xlabel_style = {'size': 13, 'color': 'k'}\n", + "gl.ylabel_style = {'size': 13, 'color': 'k'}\n", + "plt.colorbar(cd,label='K',pad=0.025)\n", + "fig1.suptitle('Tadv (shaded) & mslp (contours) on Day '+str(time[stp])+'\\n'+exp+'',fontsize=14, weight='bold')\n", + "plt.title('np.roll with shift=15')\n", + "plt.savefig('Tadv_nocentraldifferencing_along_longboundaries.png', bbox_inches='tight',dpi=100)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "12.5\n", + "62.5\n", + "Simulation on day 7.0\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsgAAAGRCAYAAAB4wkXUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAABoNUlEQVR4nO3debwkZXn3/8+3+5wzM8zComjEQRBRo4nB4AIhqJPHHY1xSyLREEgkCz+jMQpEHyEQUIySPJq4xBAFXAIal8QF4xYHEVkMKChKCJuiMCrIDLOdrfv6/VHVTPXdfbqqztpn5vt+vfp1TnXdVXVX9an73F111XUrIjAzMzMzs0xjqStgZmZmZjZM3EE2MzMzMytwB9nMzMzMrMAdZDMzMzOzAneQzczMzMwK3EE2MzMzMytwB9nM9giSVkn6kaSWpEfVWC7y1xkLVK8NhW1smIf1bczXtbHw3uX5e8+f6/rNzPYE7iCbWalCpysk3ShJhXmrJd1bmH9BYd5aSedIuknSTkmb8+X/TdIj+qz/9gF1uL2wjZA0JekHki6S9MsVduPPgYcCn4mIm2Z1IJavt+c/31r87JZKn8/xXknXSXqHpEMWsR4XJHVJXweXLP9gSR+Q9FNJE5K+J+nVi1R9M1tA7iCbWV2PBp5dmD4O2GeGsh8E/go4FLgN+DGwHngpcOAst78VuAq4MV/Hy4ArJB000wKSmsCr8skPzXK7y9nngHuBXwKescR1Kbob+DYwDfwK8BrgOknPWqTt30L2t1R8bcnnjZMds74krQYuBU4A1gA/AB4DvFPS3yxgnc1sEbiDbGZ1TOU/i1fJOh3P6WJBSXsBL8gnXxkRj42IXwL2Bp5O1jmZjWsj4siIeBzZVWHIOigvGrDMBrLO9DTw+UIdV0t6t6QfShqXdI+kqyT9ZZ91jEn6e0l351cM3ylppLCut0u6Ib9KPiXpTkkXSnpIcSWS/jTf3g5JnyG7qt1D0pMkfVbSz/Ork9+RdEJSZr2kz+VX538g6Y/7rSsipoAv5JO/P+A4ddb7AkmXSdqWH5frJP1Zcuegc5X1byW9Kz92PcelxOci4kkRsT/wfLLO6RrgYkn75tt5gqSvSLorPw7bJX1T0ivy+b9YqMtzCvX7P4X3f3GG43JW/rd0ZEQcSfbFr7OPF0TEln7L5f6E7MtiAEdGxKOAv8/n/ZWkB1c8BmY2hNxBNrM6vgP8D/AcSY+U9AzgscCX2HXlrUPs6my8WNIzJe0XEa2I+K+IuGMe6lM1XGBD/vN7EbGj8P7fACcBDwa+B2wGDgeO6bOOvwD+gOzK4v5kXxKKHdbnknV27wBuBn6B7Or6f9xfWekY4L1knfWdZMfufT07JR0FfB14HtmXkpuBXwY+IOl1haKfyOu6AtgO/D/giTMcg6vzn78xw/zOtl+R1/nofJ13kV3dfQ/wlj6LvBY4Nt+ffselkoj4HHBmPrkv8Lv57w8n+/wmgBvyn08EPiTpeRFxI/CVvOwfFVb50vznVXmZKv4MWAe0gXNLyj43//m/EXF9/vsn8p+jwP+puE0zG0LuIJtZHQG8i6xj+ip2XUn+h56CEdvJQiwg6+h9EbhH0rclvbbGVcbU4ZKulHR9YbvbgE8NWKZzBfH25P3Ow3pnR8ThEfEI4AHAG/qsYxNwCFm4yJ35e08vzP89YL+IeFxEPAboXM19knbFW5+a//wBcEi+vX71PhsYA74GrM+vvL8pn/fXklZK+g3gyfl7r42IxwJPIOss9/OD/Of6/Or+TN6c//xv4KB8ny/O33udpP2S8j9i8HGp42uF3x+X/7wcOCAiDo6Iw4EDyL4wQBZeA/Du/OcLJD1QUoNddxQuqLJhSSvY9ff88Ygou8PRCRH6aeG9nxR+f1iV7ZrZcHIH2czquoDsavEfkXV8bwEumaHsH5JdTfwS0LlyexjZrei3znL7a4EjyK6+/gj4KPBrEfGDAcvsk//cmrz/mfzn3+RhD18GTgF+1mcdn46ILRExThZPDdmV547DgG/mYQkBnFeYd0D+s9Pp+0Lh9v3H+mzriPznU4HJfH1n5++tJYslflyh/McA8iul19PffYXf9+lXQNKD2NWx+1REjEdEABfl742S7WdR2XGpo/g/KfKfbeDv8pCVabIr1Yfm8zrH9dNkV+7HgFcAv052BX+C7O+jit8HOuEwb6tQvt/diyV/ANLM5sdsr+CY2R4qIrZJOp8s5ADg3RHRVp/kCBHRJutQX5BfMT4KuBA4GPgt4PWzqMKlEbGh5jKdzujapH7/LOlGsljpx5FdgX06cIKkR+VXwTs2F37vxFsLQNLRZPsl4B6ycI01ZA9tATQH1G1Qp+pOso5fqj2L9a0r/L55wPIdUV6kZ11dx2UWnlb4/Yb854fJHiwM4PtkX3IeS/ZZNgEioiXpn4GzyL64HZwv+x8RMeODdh15bHXnb/HLEXFNhbr+kOwOxIMK7xV/n48QIjNbIr6CbGaz8Y9knbRtwAf6FZA0lj+w9UsAETFNFlfb6Tjc138xrUxe8/FFvpPW7eBkY08GboiI10fEs9l1W/4AdoVlVHEEuzqFj4uIJ7MrvKTou/nPZ0nqdFhf0qfcN/OfdwJPLzxE9pvAOyLiW4V1Afx2vj+PpvvKclEny8ePkzjs+0XET8k6fpDFja/MO4+dUIYp4LoZ1j8nynI0n55PbmbXld8j85/n5aEmx5D93aXOAybJYrVfmb93YcXNv5DsgTuAv+1TtxcpS094o6TOQ5X/mf98pKRfyX/vfJbT7IqLNrNlyB1kM6stIm4FHkgWHzvTk/4NspjO7+aZHb5NlubtKfn8f+2zzMPIbqEXX2/qU66uS/Ofj03ib18NbJJ0m6RrgM/m72+nXpaNYljDdyR9Hzi5T7nOrfuDgVsl3cKuh9GK3kTWGX0icJekb0n6IVkcdCc05atkccIA75B0A3At0Jqhjp145a+W7Mv/zX8+kSxm+1ayh/AA/i4ifl6yfB3PyzNS/JQs3GUtWef3dwvb6RzbV+b7eAuwMl1RRPyEXQ/JrSY7Vl9Iy82g81ldGxFf7jN/b7IO9KPJwkwge7jyf8m+GF0p6X+ATvaTt+X1MbNlyh1kM5uViLi3JA3WJFk87xfIrhY/miz29btkHZK/n3HJ+fcVsquxI3RnqPgcWed5BdmV1yngy8BzI2Jz1ZVHxJfIHsC7E1hFlqP5z/qU+yzZw40/JuvE3TJDua+TfZH4LNnVyMcW6ntaXiaAF5NdyZwk68S9CbgyXZ+kUXblrh6YBzoiPkwW/nI5WYf1IWSd1JOANw5adhYeCPwqWezwd8nuTBwWEV8slDmerFM/DuxFFtozU5z1uwu/fzgiZvqycD9JTwF+LZ+sEnsMZKFGZCEhF5J9oXo4WYaX1zI/X+rMbAkpa2PNzHZvkv4KOIfsobLfWur6LCZJLwI+SRYb/cuxmzb8kvYnu3LcAH4pIr63xFUys2XKV5DNbE/xTrIrt8/PY3X3JJ0H0P5qd+wc56ndPgJcRvZ/7XPuHJvZXPgKspmZLWuSDiZLMTdOlkv5OMcAm9lcuINsZmZmZlbgEAszMzMzswJ3kM1sWZJ0gaSQdPtS12W2FmIfJB2crzMkHT9f6zUz25O4g2xmtkxIep2k/5L0Y0kTkn4k6d8kzTQ4yKKTtFbS/8vrNinpVkln5KnmiuUOlfRxST+XNC7pWknH9lnfMyR9XdIOSfdJ+oKkJyRlXizpS/m6/OXAzObMHWQzs+Xjz4HfIBvF8HbgocBLgSvyB9WWlKQG2YAff0E27PKtZCP4/TXw/kK5h5DlWX4J2XDRd5LlQ/5XSX9UKPdssjzPvw78HJgAngV8LflS8NT89bMF2jUz28O4g2xmQ0uZP5V0TX4FcVv++1FJuRdI+p6k7ZK+VkzjJuk5ki6T9NP8iuZ9eZnnFMoUwxJeJ+nDkrbmV2rfVLdcXnatpL/PR+mblHSXpH+StM8cDsm/AA+PiAMj4tHA6/L3V7NrmOx+x/G3JE3l9X5z/t7GfHpjvi+b8iuwZ0jaS9I/5/v2A0mvnGndiReSDZ4B8OKI+EWyzjLA70s6PP/9DWQd6K3AYyLiEHaNgvdWSWP5728n60BfSTb64CFkXwz2At5c2O45ZIOa9Bu228ysNneQzWyY/QPwXuBwshRetwO/BDyqUOYhwMfIhvxdRTYC3QcK838ZOIKsM/bdvNxTgM9IOqzPNs8B/k++vQOAsyQ9s065vIO3kWxUtQOA75N14P4E+EoablBVRJwdEbcX3rq08PtEv2UkPQv4KNkogmdFxP9NihwJnJ4vvy/Z1d5vknV2t5MN//0+Sb9YoYrPzX/uBC7Jf/9EYf6zk3JXRMSd+e+fzH8+EHiCpIeSjW4I2eAu0xGxFfhS/t4zJDUhG2Y6IiYr1M/MrBJ3kM1sKOUhA/9fPvlp4ICI+GWyDnGxYzgG/HZEPAZ4R/7eUZJW5b9/HHhQRDwiIg4n6/BtJeswvrTPpq8hu1r5GLKhpwGeXrPcy8g69dPA4RFxGFnHvpW//zsDd766P89/3gP8W5/5TwX+nWwo7dMj4vQ+ZRrAYWTDWXc6mfuTfQn59UKZDRXqc2CnPhHRzn8v5iN+WFLup4V5abkDC9P9yq0i60ybmc07d5DNbFg9iexqL8DfR8Q4QETcGxG3FcptiYjP5L8XR097UP5zDLggD7FokcWyrs3nHdBnux+NiMmIuJtdHbMH1yx3RP5zBPiupCC7+t3M3z+y7x5XJGlM0geBPwDuA14YEf3ib08g60i+KyLOmmF1342I2yNiO7tieL8eEZvJYog7+h2DnqpVfK/KsjMtV3V9ZmazNrLUFTAzm6PNhd+nC793OlKfBR6Zz/sOWUjEr5J1nJv06re+fp2yQeU6P6eAa/ssO+tR3iQ9EPgUcDRwF/C8iPjWDMW3AWuA35X0jxFxU58y9xV+ny6+FxEh3b/rVTqmP8x/PlBSI7+K/KDC/DsKPw9N5qXlfjjDvM7vO4G7K9TJzKw2X0E2s2H1TaAz1OdfSFoBIGnvqhkbJD2ArHMMWYjB48nCHxZ6CNGr858jwF9ExJERcSRZp/ZM4MOzWamkxwBX5ev5NvDkAZ1jgDeRfSnYH/iSpAMHlJ0P/5n/XAkck//+kj7zOz9/TVLnKv6L85/3AP8dET8mixkHeIGkEUlrgU48+JcjojWvtTczy7mDbGZDKX8Y7d355AuBOyVdT3bVdEPF1fwc+FH++5mSvkN2RXehO1YXkXVgBXxD0g2Svg9sIXt47eBZrvdTZJkcIOt8f1zSlfmrX6aJLWQPxP2QLK73S5L2n+W2q/h34Ov575/M9/kd+fS/RkTnavpbya7+rgW+L+lWdnWk31B44O4UspR2R5KFqNxKdux2Aqd1Nirp1ZJuZteDgQB/K+lmSX87XztnZnsOd5DNbJi9GjgJ+BZZaq9DyDJC/G+VhSMiyDpe3yTrFDeBl7PA+XIjYoKsE//3ZB27R5Jdxb0BOJtdV0brWln4vZOdo/NaP0Ndfgw8h+zLwqOB/5S0bpbbHyi/ovs8suwjPwMeQdY5Pws4PqnTr5NlrgiyWPBvA6+IiPMK5T5PdiX6G8ADyPb/y8DTIuK6wqb3y7dVvEL+oPy9KrHTZmZdlP3/MDMzM1veJL0ROCQiqubuHgqSLgB+FBFvkrQB+HBE9P3SW3F9DyN7aHnvmUKR8oeHHxkRN89hOwcDtwGjETHdZ37X5yHpRWRfoPcFnlISIrak/JCemdmQkHTlTPPyGOYlJel5FEIbEp8bkCnDdmOSXg68r8+s1cBfR8TfLFZdIuIti7WtYRYRPyR7QBfIBgYi63T/yyLXI/08zgVeFRH/0Rl4iRk614Pko3G+D3giWerPhxdzxOdfOH6PXakrYcCXhX7cQTYzGx5HlBdZUvszcx1vXMyK2PCIiI8AHym+l8fEnw2c13ehPYykph8qBbKh52+Yh/W0yR72PYcsBKuft0XEm2aYV8oxyGZmQyIiNNNrqesGEBEXDKjj8UtdPxsOkn4V+H/AyyLirvy9AyR9Oh/O/GZJJxbKr5D0Dkl35q93FLLWbJD0I0mn5LnM75L0QknHSLopX98bC+s6Q9KH8987Q8P/gaQfSrpbUjqSZLHeF0h6t6TP5cOsXyXpEYX5kT8Qemu+rrdL6tuPytf1XkmXSNoO/Iakx+RDu2/OH9x9wSyO7ZmS/jH/fVTSdklvy6dXSRqXtG9h30eUDS//FOBdkrZJeldhlc+Q9L+S7s33vW9bI+nJkv5b0n2SfiLp75MiL+93jDufR/4ZbyN7DuQ6SbcAX8uLbc7r9WtVj0M+euZ7yJ4vWRDuIJuZmdm8kLQP2eiVZ0fExsKsi8gyyhxANoLlWyR1Rp78v2SZSh5PNqrjk8lSFHb8AtkDmg8lGxb9POAVwBPIOn6nSzqEmR1N9oDq0/OyjxlQ9liyVIz7AjcDb07mv4jstv7hwG8BfzhgXb+XL7+WLD3jZ4Avkj1A+ufARyQ9esDy/VzKriw+TwI2AU/Lp38N+J+IuLe4QD68/GVkoQ1rIuJVhdnPz9dzGNkIn8+mv3cC74yIdWQPv34smT/wGEfERER0Qj4Oi4hHkI30CbBPXq8rJB2df4GY6XX0wKPT7aT8C9Q1kl5SXrybO8hmZmY2Z/nVxwvJsrS8rfD+gWQdqFMjYjwivg38C/D7eZGXA38TET/NR4Q8szAPsgF33hwRU8DFZEOMvzMitkbEDWS37H9lQNXOjIideeaT68g6gzP5ZERcncfEfoSs0170txHx8zzG9x1kHeqZ/EdEXJ4PmPN4spjgt+YjcP4X2SBGg5bv5wrgkcpyvD8VeD/wUElryDrKl9Zc31sjYnO+P1+ld387poBDJT0wIrZFRPq8RJ1jPKOI+HpE7DPg9fXytQDZg4CPJPsychrZaKq/Xqcu7iCbmZnZfDiVLP3gH0R3iqwDgJ9HxNbCez8guyLcmf+DZF5xGPh7CvG7O/OfxdEod1J4IK2PTYXfd8yx7B2F39N6poplDwDuyDvLxeUfSg0RsRP4b7LO8FPJOsTfIEubOJsOctVj80fAo4AbJX1T0vNnuZ5FERHXRsQ9ETEdEZeQfdl5cdlyRe4gm5mZ2ZwoS032f4GXRsTmZPadwH7KRkLseBjw48L8g5J5dy5IReeumGu7rJ7FLwl3AgcmMcvFY1DHpcD/AX6VLAb3UrLQiCezK653UF1qi4j/jYhjya7I/i3ZIEWr57LOfnWS9JQ8Hnmm11PmsK1az3K4g2xmZmazpizl1sVkw6r35LWNiDvIrnKeI2mlpF8huyLZyXxxEfAmSftLeiBZnPGshmNfBCfnD8EdCLwG+GjF5a4CtgOn5A/XbQB+k+y41XUpcBzwvXzUyY3AK4Hb8hCVfn7CrlE4a5P0Ckn751fAN+dvzzUrx8/IslHcX6+IuCyPR57pdVmhTiuBFfnkiny6M++lktZIakh6FlnM+qfrVM4dZDMzM5uLE8lGLHxnnyt+/5SXOZZsmPA7yYZM/+uI+FI+72yysIHrgc5w8Gcv5g7U8B/ANWQjP36OLAb4/iufMy2Ud2RfQDb0+93Ae4DjImI26RG/Aaxi19Xi7wHjzHz1GLKH7F6aZ6v4h1ls8znADfk+vpMsQ8n4LNZzv4jYQfYQ4+X5A3h1c73vBDrH/EZ2hd9A9uXlx2Sd+bcDJyYPjZbySHpmZmZmJTQPI8/Z8uEryGZmZmZmBe4gm5mZmZkVOMTCzMzMzKzAV5DNzMzMzArcQTYzMzMzKxhZ6gqYmZnZ8nLwrz8kdt47UVouaozNULVsncjQduV11qlnNXVGpai6zlrHs+JK66xzvredmf/tV7X9fzd9ISKe02+eO8hmZmZWy857J/i9f31WabnpdrPyOifa1bokVcsBTFbc/mSddbaqrXOk0S4vlGtX7KBX3R+A6Xa1IIGq5QBaUa1s1f0BaFXcfp0vMVVd9Zy3PnCmeQ6xMDMzMzMrcAfZzMzMzKzAHWQzMzMzswJ3kM3MzJYBSc+QdKWkbZLulvSe/P3jJbXz9zuvi5JlT5V0l6TLJB1UeH+jpJD01KT8zZKOX5QdMxtCfkjPzMxsyEnaAHwceCXwGbJH/x9bKHJrRBw6w7KHAhuAQ4CjgLOA4wpF7gHOlXREePQwM8BXkM3MzJaDc4B/ioiPR8RERIxHxLUVl23kr2bh96LzgPXAsfNWW7Nlzh1kMzOzISZpNfBkYFzStXl4xUZJTywUO1DSJkl3SLpY0sM7MyLiJuAK4BbgTOC0ZBPbgdOBt0hasbB7Y7Y8uINsZmY23PYl+399InA8cADwReASSfsAXwMel7//JGAc+FLesQYgIs6IiAdHxFERcVufbZwPbAVes4D7YbZsOAbZzMxsuG3Nf54fEdcDSDoHOBk4KiIuKZTdJOlEYAtwJPCVKhuIiJakU4CLJL2/tDyqNGBHnYFCdrZGK5WrNahHxe2Pt5Z2oJCq66w6UAfAVMV1Trfmf6CQOuusOgBIq11nFMG5DyriK8hmZmZDLCK2ALfTf0Timd4Lao7hGxGfB64mC7cw26O5g2xmZjb83gOcIOmxkkbIrh6PA9+Q9DxJ65XZD3g3cDdw5Sy2czLwx8D+81Vxs+XIHWQzM7Phdy7wAeC/yDq/zwWem19d3kB25XcbcAPwAOCZEbGt7kYi4jrgYmDd/FTbbHlyDLKZmdmQy/MTn06f8IeIOJnsyu9s1ruhz3snACfMZn1muwtfQTYzMzMzK3AH2czMzMyswB1kMzMzM7MCd5DNzMzMzArcQTYzMzMzK3AH2czMzMyswGnezMzMrJZAlYaRrjp8NFQfQrrOsNBVy05M11jndLV9atYYarrysNDtGkNNTy/AUNMVy1YtBxAVh5CuWi4rXL3oTHwF2czMzMyswB1kMzMzM7MCd5DNzMzMzArcQTYzMzMzK3AH2czMzMyswB1kMzMzM7MCd5DNzMzMzArcQTYzMzMzK3AH2czMzMyswCPpmZmZWS3tUKVR8qqOjgfVR73bUXEkO4CdFctO1hhJb6LiCHWqMfDbQox6Nz1VbZ3t6Rqj3lXcfkxX33m1KpatWg6g+iCGM/IVZDMzMzOzAneQzczMzMwK3EE2MzMzMytwB9nMzMzMrMAdZDMzMzOzAneQzczMzMwK3EE2MzMzMytwB9nMzMzMrMAdZDMzMzOzAneQzczMzMwKPNS0mZmZ1RJUG0a66vDRdcpO1FjnxFTFddYYanp8strw1VJUXmflYaGnagwLXXGdTNUYFnqy2vYbdYaanq5WrtY6W5WLzry9ua/CzMzMzGz34Q6ymZmZmVmBO8hmZmZmZgXuIJuZmZmZFbiDbGZmZmZW4A6ymZmZmVmBO8hmZmZmZgXuIJuZmZmZFbiDbGZmZmZW4JH0zMzMrJYIMdkuH6mtSpmOqqPZjU9VG8mu1jorjo4HMD1RbZ8iqo/8FtMVr1dOVL+uqYplG5PV69kcr1a2MVV5lZXL1lln1dH5Bm5v7qswMzMzM9t9uINsZmZmZlbgDrKZmZmZWYE7yGZmZmZmBe4gm5mZmZkVuINsZma2DEh6hqQrJW2TdLek9xTmHSfpFkk7JF0l6QnJsqdKukvSZZIOKry/UVJIempS/mZJxy/4TpkNKXeQzczMhpykDcDHgXOBBwDrgX/J5x0NvBf4M2Bf4BPAJZLW5fMPBTYAhwBnAGclq78HOFdS9XxfZrs5d5DNzMyG3znAP0XExyNiIiLGI+LafN6JwCcj4osRMQG8HZgAXpTPb+SvZuH3ovPIOtzHLvROmC0X7iCbmZkNMUmrgScD45KuzcMrNkp6Yl7kMOCaTvmICOBb+ftExE3AFcAtwJnAackmtgOnA2+RtGJBd8ZsmXAH2czMbLjtS/b/+kTgeOAA4ItkYRT7AGuBLckym4F1nYmIOCMiHhwRR0XEbX22cT6wFXjNfFfebDnyUNNmZmbDbWv+8/yIuB5A0jnAycBR+fy9k2X2IbtiXElEtCSdAlwk6f1l5duIyVb5kMvjFYd6BphoVStbZbv3l52qts7pyerrbE9UW2e0K68STVYcFnq8+nXNkZ0Vh4WeqLxKRnZWK9ecrL7OZsXtN6ai8jobHmrazMxs9xYRW4DbgX49hACuAw7vvJE/bPf4/P062/k8cDVZuIXZHs0dZJtXki6QdHbFsgfn6YUW9U6GpKdI+p/F3KZZkaTbJT0j//0MSR+e4/peLumLA+ZvkPSjuWwjX8/xkr4+YP7nJf1BYfrsPF5201y3bbwHOEHSY/M282RgHPgG2UN2L5b0dEljwOuAlcCnZrGdk4E/Bvafn2qbLU/uIC+g/J/gzjxn5aa887hmqeu1p4uIyyLi0UtdD7P5EhEfiYhndabzL56HLkE9nhsRF+Z1OJCso/bYiPiFss71IJJ+Q9JXJW2RdHuf+cW2dtugLwvL2LnAB4D/Au4Gngs8NyK2RMTXgZPIOspbgN8BjomI++puJCKuAy6mEL9stidyB3nh/WZErCG73fWrwBuWtjpmtpAW+47IEDsIuCcifjoP69pO1jk8eUCZ34yINfnrWQPKLUuROT0ifiEi9omI34iIbxfmfzAiDomIVRHx5Ii4ZsDqiuvdEBFnJ++dEBGKiAvmdy/Mlg93kBdJRGwCvkDWUQZA0pGSviFps6Tr8kTwnXkb89uT38iviHxG0gMkfUTSfZK+KengQvl3Srojn3eNpKcU5p0h6eOSPippa54m6LDC/NslvUHS9yTdK+l8SSsL858v6dt5Pb8h6VcK8341X99WSR8lu63Xl6SmpHPzW663As9L5h8g6dOSfp6P4nRisg//JunD+ba+I+lReb1/mu978QraCZK+n5e9VdKfFOZ13W7O9//1kq7Pr1B9tLj/tnsa9Ll3/kYkvTH/e71d0stL1nWqpOuB7ZJGJL1A0g35ebNR0mNmUcdLJb0k//3o/MrwMfn0MyR9O//9/quzkr6WL35d3nb8bmF9r8vPl7sknTBgu8fn581WSbel+56fx/fm855beH+jpFcqCx/5EnBAXoePAv8E/Fo+vbnOcYiIqyPiQ8CtdZYzM5std5AXiaT1ZLfEbs6nHwp8Djgb2A94PfAJScW4r5cBvw88FHgEWR7L8/Py3wf+ulD2m2Sd7/2AfwX+Lenk/Rbwb4X5/y5ptDD/5cCz8+08CnhTXs/Dya7c/AnZ6E3vAz4taYWyWLd/Bz6Ur/ffgJcMOAwnAs8nu5L+ROClyfyLgB+RpTB6KVlOzqcX5v9mvq19yXJ8foHsb/ihwN/kdev4ab6tdcAJwP/L92UmvwM8B3g48CtkqZRs9zfoc/8F4IFkf19/APyzpEGhOceSfenbh2zEsouAvyCL5bwE+Ex+ztRxKdkIaABPJesgPq0wfWm6QER0hgw+LL+a+tHC/uyd788fAe+WtG+6vLKcu/9Advt+LVmWhG8XihwB/A/ZsXkb8H6pewS2iPgyWXt3Z16H3wX+FLgin94n39Zf5V8g+r4qHaFdPiLpZ5K+qMIFADOz2XAHeeH9u6StwB1knbZOp/YVwCURcUlEtCPiS8B/A8cUlj0/Im7Jn2D+PHBLRHw5IqbJOqO/2ikYER+OiHsiYjoi/g5YART/mV+Tj8A0Bfw92ZXeIwvz3xURd0TEz4E3s2tEpROB90XEVRHRyuMLJ/JljwRGgXdExFREfJysoz6T38nLdrZzTmeGsnjFo4FT8xGivk02jOrvF5a/LCK+UNj//YG35vt0MXCwspygRMTn8mMXEXEpWc7QpzCzf4iIO/N6fYbClX7brZV97qflo5ZdSvaF9ndK1nVHROwEfhf4XER8Kf/7PBdYRdbZrONSujvE5xSmn0afDvIAU8Df5OfqJcA2utuIojbwy5JWRcRdEXFDYd4PIuK8iGgBFwIPAR5cox73i4i35uECfV81VvVy4GCysI6vAl/otAVmZrPhDvLCe2F+FWYD8ItkV10ga8h/O7lacjTZP5uOnxR+39ln+v4H/vJbp9/PbxVvJrtS9MBC+Ts6v0REm11XanvmAz8ozDsIeF1SzwPz+QcAP85HbSouO5MD+mynOO/nEbE1mf/QwnS6/3fn/6Q705AfE0nPlXSlsnCNzWRfPIrHI1V8yn4HhWNru7VBn/u9EbG9MF08L/op/m0fQOHvOz/n7qD777mKK4BHSXowWef9g8CBkh5INrLa1wYsm7on/3LZ0ffvPN/nzhXfuyR9TtIvFopsKpTdkf+6pOdLRFweETsjYkdEnEM2SMagL8RmZgO5g7xI8itQF5BdSYLsn+WHkismqyPirXXXrSze+FSyq1v75ldetgDF254HFso3gPXAnf3mAw8rzLsDeHNSz70i4iLgLuChye3Vhw2o6l19ttNxJ7CfpLXJ/B8PWF9fyoZK/QTZsX5wfjwuoft4mJXZNw836CieF/0UvyjeSfblErg/L+2B1Px7zjug15CNbvbdiJgkS+v1l2R3lO6us74a2/1CRDyT7Av7jWTZEea82vSNPMZ720yvOW7L57uZzZqftl5c7wBul/R44MPANyU9G/gyWajCkcDNEVE3X+laYBr4GTAi6a/oTdHzBEkvBj4NvJosTOLKwvz/T9Jnya4qvRHoxC2eB3xK0pfJEsjvRXY1/GtkV7emgVdLejfwArKrWl+doZ4fy8t+luyp9L/qzIiIOyR9AzhH0uvJ4qD/iCwUpa4xshCTnwHT+UNEzwK+O4t12Z7tTElvJIu7fT7dcf+DfAz4qzyG/mtkHdwJss5tXZcCrwLenk9vJAu1+NCAZX5CFgd9c92N5VerjwC+QnZnZhvQGrhQNT8B1ksayzv6RMRbgLdUqFOD7LwezSa1EmhHxKSkh5F9+fgm2UWfPye7W3T5PNTZZhIwHeXX2FoVynRMt6qVnZquPurd9HS1dbanqq+TiYqj3k1X/47WmKhWdmRH9XU2K456V3V0vGz71cqN7qw+6t1IxbLNyepDEzYmq29/xnXMeQ1WWUT8jOwW6WkRcQfZg3NvJOvI3UGWwmg2n8kXyGKUbyK7rTtO9+1egP8gu216L1lc74vz2MiOfyWL0701f52d1/m/yeKQ35UvezP5g0z5P7kX59P35uv/5IB6npfX9Trg2j5ljyWLI7yTLMH9X+ex2bXkYRqvJuuk3Av8HtkXA7M6NpH9/dwJfAT404i4Ee6/8vn5mRaMiP8h+3L3j2Q5a3+TLA1ZjQFY73cp2Zfgr80w3c8ZwIV5WNSguOl+GmT5i+8Efk4W63xSzXX081/ADcAmSXWvfD+VrLN+CdmV/J1k7RVkx+K9ZJ/Vj8keunxuRNwzD3U2sz2UusNHbXck6Qzg0IjoezVWWeL9V+ZPnpvt8ZSlXPxwRKxf4qqYDaW9H/3gOPKfjy0tt3N6tLTM/WUnq5XdMVk9GczERLUb5dPj1evJjmpXm+UryBW3v3RXkC/9z1OviYgn9l1H5a2ZmZmZme0B3EE2MzMzMyvwQ3p7gIg4o2T+wYtTE7PlISI2kmV6MTOzPZCvIJuZmZmZFbiDbGZmZmZWsCxDLB7x6w+OHZtnky1peJQ/h9r9BGbdjPfS4Cc4e9cXA+aly84t88mwZe+fy95Eyd70rrtu+WR+9F/+zu9t+UJEPKdk8SXxy0/ZN7bdOz3Hv5q5H+vZHtv5WPdyMsxtU5XtzaV9Wqy26Qc3bBva89XMMsuyg7xj8yR/eNFvLOg2WiUX15tUTzfST6Pkn0RT3etvJI1+Or93/d3zm8nyg+b3zkvqUlb3kmNTVvfFNiiRfdnfQTvpVKXl28m6WyX/gsvK98zPp//6cZ8ZNIz2ktp27zRv+uTjSwcMWOhjXWd+Wtd2UrZn/oDO9UJYyPZpmNum/vPnr31arLbpxEd/fWjPVzPLlHaQJd1AYchUoAmsBJ4QEddKOo5sdKmHAN8BToqIawrLnwr8BdkAE6+IiB/k728kS0D/tIj4WqH8zcDZEXHBTHUKxESM0qj5T6A9jxEl09QYdaePRgxu1Keie/1l/wR6/mml/8CT+T0ZH4vzezoH3dPpce/5h6PGwPllHaWF/ie1lB3i2XaA759f0lGD4TtnY4Z6DtuxLp5zZR3gtC7Tyfm6lG0TzK19Guq2CRa0fVrqtsnMhkdpBzkifqk4LenNwAvzf7RHk41g9CKy0Z1eA1wi6ZERcZ+kQ8mGJT4EOAo4CziusLp7gHMlHREescRsXvicNbOFFlS7czLVqv5lbapdrWzVIakB2hWHmo6pGoN6VCxbdfAPgOZ4tbJVB/8AGN1erdzY1upNedWyo9uqj04/sn2qvBDQ3DldeZ2arF52JrUuW0gaAf4QeF/+1onAJyPiixExAbwdmCD759tZf4PsClbn96LzyFIplQ/HY2a1+Zw1MzOrr+59vRcCewMfzKcPA+6/NZtfUfpW/j4RcRNwBXALcCZwWrK+7cDpwFskrahZFzMr90J8zpqZmdVS9yG9PwE+GhGb8+m1wJakzGZgXWciH6TijAHrPJ/sNu9rgLdVqUQETLUbNFT2wNPgmMOisoen5lvZgye9cXxJ+ZI4wTTubrTRfbsjjbUrxtaNqrtsWrc0BrDn0MXgmL/UQscoz+XhsKWMg4X6sbB9DMU526+uZbdn53qsS49lsnzx9m5ZXdN1p/Pns23K6rN47dMwt02wuO3TsD0/YWaLp/IVZEmPAJ4O/FPh7a1kV6eK9gHuq7reiGgBpwBvlPSAqsuZ2WA+Z83MzGanTojFnwDXRcRVhfeuAw7vTEgS8Pj8/coi4vPA1WS3bs1sfvicNTMzm4VKHWRJY8DxdF+JguyBnRdLenpe5nVk6aQ+NYu6nAz8MbD/LJY1swKfs2ZmZrNXNQb5xcAq4CPFNyPi65JOIvun28mpekxEVL5dW1jXdZIuJvunPrgsymIAk2wjZXF9vTlkZ47rK4sJrKsnTi6RxvGN9MTZpXF8g+MERxvd02mqnd44vl3ra6V5QstiANNY0DnmJU3VjQMsUycWdinjYKvUNV1/wVCdsy0a8x5z3BsHPDiHdFnccHF+nbJ9LWDb1G/5uRrUPg1T2wQL2z4tddtkZsOjUgc5Ii4GLp5h3gfZ9YR8ZRGxoc97JwAn1F2XmXXzOWtmZjZ7/rprZmZmZlZQN82bmZmZWaWR9KJCmY5WxRHy2gswkp4qloPqI+k1a4ykNzJerdzojsqrZHRbtVHvVmypnp5wbHO1EepGN1cf8q9xX8WyOyseJICpaqPzDbIsO8iBmGz3Vj2N30xP3umenLKNGcum0hjBVCMNOiyRxtWV5Rod6Zmfxt0lcX3RSuZ3T09p5ri/dpLDtSxP6Wij+4RpJ8dilERZXtKe8vN7o2M+Y44XMg52NuWHUSDaodKczXM91mXx3un86fRYtxszl22nn0saBzv4/J9L29SvfGo+26dhbptggdunJW6bzGx4+Ow2MzMzMytwB9nMzMzMrMAdZDMzMzOzgmUZg9wOsbM12hvH105jDAfH8U0XYg7TGL7SmL8aDx5Av7i+ZDqJixtpDI77G2ukuUK7y6dxgSNJ+RVJXN50Ie6v3eye12on8ZZJ7s/02KUxg6nSvKRpTtayOMCaBsXCDlMcbN/yJbGwwyrLg1wvh3TdHNNpnG9ZPPegY5l+LhOt7qYyfQYiPb/ms22CxW2fhrltgoVtn5a6bTKz4bE8/ruamZmZmS0Sd5DNzMzMzAoqd5AlPUPSlZK2Sbpb0nvy94+X1M7f77wuSpY9VdJdki6TdFDh/Y2SQtJTk/I3Szp+jvtmtsfy+WpmZjZ7lWKQJW0APg68EvgMWbbIxxaK3BoRh86w7KHABuAQ4CjgLOC4QpF7gHMlHRERlZJ1tkPsmB7ribObTOP8kti0dLo1IA9yGtdWluy8LOYvjdNTSUxyM4nzS3N9pnGAadxf2fzpRvexKsYBTiTxlWlM4IqSGMCWBk+X5SWtHQdY06BY12GKg4X6sbAwfOdroL75mpf6WKd/58XptC1Jj/NkKz1/Buc5nkvb1G99C9k+DXPbBAvbPi1122Rmw6PqFeRzgH+KiI9HxEREjEfEtTW20QCahd+LzgPWA8dWXJ+ZDebz1czMbA5KryBLWg08GfiCpGuBhwHfBV4fEf+dFztQ0iZgCrgceENE3AYQETdJugK4JX+9PNnEduB04C2SPhERE/OwX2Z7JJ+vZjZM6mRUqVq23a6RpaXq9gcnX+pSkqjpfo0aox03JquVa9YYbXl0R7URNEe3Vd/5qkNIN366ufI62z+/t1K5mKo2zPV8qXIFed+83InA8cABwBeBSyTtA3wNeFz+/pOAceBL+T9qACLijIh4cEQc1flHnDgf2Aq8Zva7Ymb4fDUzM5uzKjHIW/Of50fE9QCSzgFOBo6KiEsKZTdJOhHYAhwJfKVKJSKiJekU4CJJ7y8rn8Ugj/bEAfbknE3mT7dmjvNL56Uxfa3kG2tZzF8qjetTsnhPnF+zO5atN+4vySXabCXzu6fHkvkrkzi9YhzgWDONw0tzAXcfqzQGsN1I4vSUxu0NzkvaG+c3OA6wmcxPY1nLFGNdhykOFurHwjKE52uQHcfSvMdp3G36d1fzWKfHMj32O1ujXdOTA2KQx9PY754Y5PbA+XNpm/rNX8j2aZjbpqz8wrVPw9Y2mdnSKb2CHBFbgNuBftfqZ3ovoF5LEBGfB64mu31rZrPg89XMzGzuqj6k9x7gBEmPlTRCdjVqHPiGpOdJWq/MfsC7gbuBK2dRn5OBPwb2n8WyZpbx+WpmZjYHVTvI5wIfAP6L7J/pc4Hn5lerNpBdSdoG3AA8AHhmRGyrW5mIuA64GFhXd1kzu5/PVzMzszmolAc5z3d6On1up0bEyWRXkmqLiA193jsBOGHQcq0Q2yZX9MbxJfkup6ZL4vwK0600xi+N6Uufmk1uVpfF/KUxyOkNbTVi4HRzZHDc30gSFzg6MjjOb2Kk+/HaFSO74vRW9uRs7Z5e2exeNo0l7ZmumZc0jftrJ7lFy+IAywyKhR2mONhsul4sLAzf+QrZMR/mmGPoPrbpcZ6YTspOd68rPR/ns23qN72g7dMQt02wsO3TUrdNM5F0AVlGmWLWmFMi4v4BgMi+FO8ozP9MRBxbWMepwF8ANwOviIgf5O9vBJ4GPC0ivlYofzNwdkRcMC87YbbMVOogm5mZ2ZK6MCJeOWD+og4AZLa7qzzUtJmZmS1LHgDIrCZ3kM3MzIbfSyT9XNJNkt4uaU0y/0BJmyTdIeliSQ/vzIiIm4DOAEBnAqclyxYHAFqxkDthtlwsyxCLdjTYPjlWGsc3PdU9vz2dxPEVysd0d+yYWkkgXjrdHXpWOlpPlMQgJ2FxRBLX12omyyfTzdEkDnC0O1YuzUU6Ptr90a8a3RW3N5nEAE6OJMc5zdHaHBxLmmoleUjLvqal62ukMYRpHKDSDydZ34BY2GGKg+03XRYLO4wixFS7t6mZ67FOj+1cj/WOwrHcmRzXyen0c+jeVpo7eD7bJljk9mmI2yZY2PZpqdumAf4ROBX4GfAYssF6zmPXFd/OAEA3Aw8C3ko2ANBhEbEdsgGAgDMGbON8ssF/XgO8bbYVTaV5tOdFnTzfFUfdU53R+SqWbdQY+K1q2cZU9ePZnKhWtrmzekUbO6oN+Rfbd5QXyrV3Vhudb7H5CrKZmdkQi4hrIuInEdGOiBuA1wIv7VztjYhbI+KmfP4mspE0DyAbAKjqNlrAKcAbJT1gAXbDbFlxB9nMzGx56VyKnulSpgcAMpsjd5DNzMyGmKSXSdon//2RwN8Bn46I8fw9DwBkNs+WaQyy2Dkx2hvHN5XE7SXzmUri+CZ3lW+kMX5JSE7P/O6wuf6D+HYtMHg6jfNrjyb7Mtq9gSTcklYS59caS+LyxloDp4sxk5PJslPt7pi/NKfr9EiaZ7R751rN7ulVpHlKk9yhSRxgmnt0tJEc/JL8umWKcYTDFAcL9WNhh1GgnuPWT4s0VrR7uiy+O51fO767MD0xVRL7Pdn9uaR5zuezbYJFbp+GuG2ChW2fhq1tKvhT4D15SMVPgU/RHU+8gSwmeW/gPuBy5jAAkKSLgeNnW1mz3cGy7CCbmZntKfoN0pPMX5IBgMx2Zw6xMDMzMzMrqNxBlvQMSVdK2ibpbknvKcw7TtItknZIukrSE5JlT5V0l6TLJB1UeH+jpJD01KT8zfnQmWY2Cz5fzczMZq9SiIWkDcDHgVcCnyGLUntsPu9o4L3Ai4BLyXIoXiLpkRFx30IMcRltMblzlEhyhzLRPa1kujHZHT/WHN813egOPSudTmMAe9IcJ9M9aRvTOL80jelYEieXTLeT9LftFcn8FUnc3Yokjm/lzHF/rTRnazLdGhsc05dK8w73zE9zj/bMT7afxBimcYDNJNdonbi/YYqDhfqxsDCE5yv9/0Z6jnUaG5rGfybTU8nnOpl8FmXTPcdyanTmeclxnp7oXlckdZvPtgkWuX0a4rYJFrd9Wui2ycyGV9WewznAP0XExyNiIiLGI+LafN6JwCcj4osRMQG8HZgg+wfc2YaHuDRbPD5fzczM5qC0gyxpNfBkYFzStfnt2o2SnpgXOQy4plM+v6r0rfx9D3Fptoh8vpqZmc1dlRCLfck60icCzwVuBF5Pdlv2UcBaYEuyzGZgXWdiqYa4NNsD+Xw1s2Wp8rDUCzF89QLoSbc4qGzF6Js0k+DgstWOU63In3bFdTarpyBtjI1VKhetGjtf1YBRtqt0kLfmP8+PiOsBJJ1DllLmqHz+3sky+5BdgaokIlqSTgEukvT+0gXa0B5v9uYKHe+eHtmZxPFNkMzf9XszGV68mZRNxz9Px03vGUe9LDxTScximms0+WSmVyZxfyu757eSOL/pVSXlk5jH1qpdFZhoJTGDybjzPfGWpTF+JYM5lf4Vpgd7cOnS7SWKsbDDFAfbd35JLCzDeL7SG28M/Y7l4JzSaaxoWQ7qyVb39HiaQzqJ9y6Wn0xiv6cnk7pMdM+P5B/MfLZNsMjt0xC3TbDI7dMSt01mtnRKQywiYgtwO/1TzQdwHXB45w1JAh6fv1+Zh7g0mzufr2ZmZnNX9SG99wAnSHqspBGyq1HjwDfIHtp5saSnSxoDXgesJBvppy4PcWk2dz5fzczM5qDqSHrnksUu/hfZP9NvAc/Nr1Z9XdJJZP94HwJ8BzgmIu6rWxkPcWk2L3y+mpmZzUGlDnL+pPvpzHA7NSI+CHyw7sZnPcRlWzR2NmlMdMdzjexIcokmcXxpXN/Ijl2/j+6MpGz3dHOyO8iwMdk9X0kwvEpikKMkzi9Gk/yao0kc317d86eSuL7p1d3rm17VPT2VxEhOT+9avp3E+E3OMcYvlT6I0Sh5QqDnwY20eBojmSRyLXvwoxgXOExxsFA/FhaG73wNRDvUk1M61RP/nXyO6eeaTk+nn00ynebDTvPnTk3vOrbTSR7j9lQS653mMZ5O/ubmsW2CxW2fhrltgoVtnxa7bTKz4eWhps3MzMzMCtxBNjMzMzMrcAfZzMzMzKyg6kN6wyWgMS6a44Pj+ka3d0+PbY0Zp0e3dSegHtk+lay7O9+lJpP8l+0k+Kws8XYziZNLkmrHaDI9lsS67tX90Y2uTmJXkxjJyTXd20sTmKsQxzfdTmM3u7fVfWRAadxeoz14fs3pZjLdVhrH1/1ZjKZf+5IktYNiYYcpDhbqx8IOqzaNnpzSpcvUzEldNj2VxHdPpfHjhc+inRz3mEpijNPpJOZ4PtsmWOT2aYjbJljY9mnR2yYzG1rLs4NsZmZmS0bASKN8CLZmhTL3r7PiCHmNRvWR9FoVy9b6/l55nfP/UGadelYtmz6IO7Bs8oV4Jlq5ovI6VXWEvImJ8jIdFUf8GzSSnr/PmpmZmZkVuINsZmZmZlawLEMs1IbmhBgZ735/NM0duq37EvuKLd23esY277q2Prq5O0iwcV8SNLgz2dhUEumWXM6PGHxbSer+bqKR5LbF6Gj39KqV3fVb0337ojnRPd2Y7P5oG0lsq9ppctOuyiWVTWL+GkksZ3K7Sel0srrRZhJPmdyCG9Hg6fT2WpqbuJXmeE3rX+Me1VLGwUL9WNhhFNH/mPceq7I8yY2B02XrT/PhttJjPSAGWcl0etybad7jeWybYHHbp6Fum7IKJtPz1z4tettkZkPLV5DNzMzMzArcQTYzMzMzKyjtIEu6QNKUpG2F10mF+cdLaifzL0rWcaqkuyRdJumgwvsbJYWkpyblb5Z0/Dzsn9kex+esmZnZ3FSNQb4wIl45YP6tEXFovxmSDgU2AIcARwFnAccVitwDnCvpiIiKAVoBjSloTHa/3eyJ+xucS7QY19f46eauee2f39u9yakBuUD61rGdTMbA+WkcXSNJkdJYs7p7enJV9+LTSW7PVndcYLnC9pMQvzRVTZoXtdXs3rep5uDcoTsb3TGMzSSOb6yRxAEmcbqjyfw0V3FjDvl2hykOFurHwhYM1znbR/p3UZaVp6HBcf3psS6b3zNdzLebrivNzZtMN5KQ3/lsm2CR26dhbptgQdunYWubzGzpLEaIRSN/NQu/F50HrAeOXYS6mFk5n7NmZrZHq9pBfomkn0u6SdLbJa1J5h8oaZOkOyRdLOnhnRkRcRNwBXALcCZwWrLsduB04C2SqmeWNrNBfM6amZnNUpUQi38ETgV+BjwGOJ/sClLn6tHXgMcBNwMPAt4KfEnSYRGxHSAizgDOGLCN84HX5K+3lVVIAY3p7FXUmEqGAZ1IppPhWBs7dt0Hje3deZjaO5M0SqWVSm6FNzRwOnpSGSW3PJNbppGkcUpv1KWpmZrJbceRkWT7yXS7MLxsO52X/JVEOhRtklap3XNLs3vfJka6Vzg20n1bcjwZVSe9rZmmRhtJ7nenQ0k30vvhieIt1qG6zQ+1b/Xnhu6craLn2JaEr5R9Fr3lSz7c4rFOPod0uON0fk9bNI9tEyxu+zTMbRMsbPu02G2TmQ2v0g5yRFxTmLxB0muBjZKOj4iJiLi1MH+TpBOBLcCRwFeqVCIiWpJOAS6S9P4a9TezhM9ZM1tw6s0D3U+doaZHmtXKprmsB6patll9ndEYfCFk17Yrr7LycM+1hoVuVqtne7Ta8NEAMVbt0TWtqv6sgdr1LnbMq/GZZ83m62xnT2Y68pG/aj2NEBGfB64mu3VrZvPH56yZmVkNVdK8vUzSPvnvjwT+Dvh0RIzn7z1P0npl9gPeDdwNXDmL+pwM/DGw/yyWNTN8zpqZmc1VlWvlfwq8J38Y56fAp+iOTdxAFt+4N3AfcDnwzIjYVrcyEXGdpIuB48vKqpUNOV3USFMvtZIhRdOr+IWAUyWpgRpjY911aw2OYy2L8Sufn8QEJvUhnU5Ndscsamf3RzuS3EKJ0WQI1LFd063ksavWWBLz131oaCfzWxNJmqXR7gM/ldRlMhlqdjLZ1+mR7rpOl6VaqxmbWjRUcbBQOxY2N5TnbLNs3xPpsSpbvvTYlpWvuXzXomls+Dy2TbC47dMwt02wsO3TMLdNZra4qsQgbyiZfzLZVaTa+q07Ik4ATpjN+szM56yZmdlc+ZFaMzMzM7MCd5DNzMzMzAqqDjU9dPqlm03f65lO03uO7YonUzJ8qtKYvomJ7uk0Ye4c4/Z65yeVTec30vnJdFJ/TSZ5VieTIVUn24Xfu7fVTIbRbaXD6ibDHbeT6UiGR06HV05zh7aSD2q6ncb1Jdurl3yhVizscoqDHXYNSuIvkzjZ0TSHbJo/N4nnHGkMnk7TTSk51o1COqhWkhqqp73pmT/4b3AubRMscvs0xG1TNr1w7dNSt01mNjx8BdnMzMzMrMAdZDMzMzOzgmUbYmFmZmZLo0Ew1ixJLwiMlqUgLEjDomYsV2G7HdNlaQhzrZEaI+mNViubDpM+uGzFcqPV19laUa1sa0X1a6XNlaPlhQBNVf+MNFVxnWn41ny4d+ZZy7eD3OgTt5dOJ3+c6XCKxSET02ER5zz0YaMkBnkkOfRlcXuNkjjAkhhIIsmrOp3EY07vmt+YTmIzp5N96Q4Z7J1upTF/SQxyklu0J+6vleQaLcstWtPAWNghioOF+rGww0jKYrd74rmTz6FFGjfbPTmV/A2PJMmFR5JzNv1s0mOfDmvbNXxtelyTYWh7hpota4vm0DbBIrdPQ9w2wcK2T0vdNpnZ8PDZbGZmZmZW4A6ymZmZmVlBaQdZ0gWSpiRtK7xOSsocJ+kWSTskXSXpCcn8UyXdJekySQcV3t8oKSQ9NSl/s6Tj57hvZnskn7NmZmZzUzUG+cKIeGW/GZKOBt4LvAi4FHgNcImkR0bEfZIOBTYAhwBHAWcBxxVWcQ9wrqQjIqJSQGUoC2hPg9rT4PU0QD0NRC8Gm6cB5WnQ+JyDw9M4vLJcoiW5R9MYxp71p4cynd9TfobfgTRkV+l0Wfk05i+JGZxO4vwizSXaL+l1DWnu4kGxsEMVBwv1Y2F3GZpzVgQjavXEc6caDJ6/ojH472I6iYUdS86h9GGhnnjxwoM/6YM96QM86UM66cM489k2wSK3T8PcNvWbnsf2abHbJjMbXvMRYnEi8MmI+GJETABvBybI/vl2ttEAmoXfi84D1gPHzkNdzKycz1mzZcR3hcwWX9UO8ksk/VzSTZLeLmlNYd5hwDWdifyK0rfy94mIm4ArgFuAM4HTknVvB04H3iJpBWY2H3zOmu1eLoyINYXXezozCneF/gzYF/gE2V2hdfn84l2hM8juChV17gr5krhZrkoH+R+BXwQeSHaF6WlkV5A61gJbkmU2A+s6ExFxRkQ8OCKOiojb+mzjfGAr2a1eM5sbn7NmexbfFTKbZ6UxyBFxTWHyBkmvBTZKOj4/EbcCeyeL7UN29amSiGhJOgW4SNL7SxcQxAi0k9zSrbHu6ekkzq+5MsnHO1XIgzzVvXAzycXJdPWk10B5nF0at9eTazTNs1ozzq/kQkDP8sXputcQ0l0tiRmM9uA4vlbJ/LK4v0aamziJfR0UCztMcbBQPxYWhvOcbdKmmXwujZ5g0hLJKdJz7JNjNdnubt7SQQ1G0+mRXdNTo911bafTI93bjqQlnc+2CRa5fRrmtgkWtH1a7LapppdIejFwN/AfwJkRsS2fdxhwQadgRISkrrtCkjp3hW4BXp6su3hX6BN5O2G2R5tNDHLnDO+0BNcBh3dm5rdoHp+/X1lEfB64muwkNbP543PWbHnzXSGzRVZ6BVnSy4D/jIjNkh4J/B3w6YgYz4ucB/ynpAuBy4BXAyuBT82iPicDVwKTs1jWzPA5a7a7Gca7QlIw1ii/c1FlOOqO9K7OjOVGqq8zvRs0k/Qu0cCyI9VuY6R3lgZvv1q59G7UIOmdqpmkd7AGbn+q2k6ld70Gbj+9IzaTunfK5qjKUflT4FZJ24Evkv0zPKEzMyK+DpxE9k93C/A7wDERcV/dykTEdcDFFL71mlltPmfNdm++K2S2wKrEIG+oUOaDwAfrbrzfuiPiBAr/zPtS9m0rDedqTaXTSYziVPf3gUZrV8yippO8okmsqCYHx92V5vpMJeV74u5K4vp64gJnzofbV7q+Yt7WNKdrz9eodFNzfO45zS1aJs1jnMayDspzDMwtFnYR42ChfiwsDN85K4LRRosVje4TtFly3JvRHjjdG//Z/eFM9XwW3dPjzemu6WK8+GTyObRGkxjhse7p9OrPfLZNsMjt0xC3Tdn04rVPC902VeW7QmaLz0NNm5mZDTffFTJbZDUiZMzMzGyxDdtdIbM9ga8gm5mZmZkVLMsryCForYzslwKt7C7X88BjO43DK34/6D4UMbKqa7oxkcT8lT10mcT4qZ3kr+3JDZos3hPXl8bdJfPT9ZV89Unj+IqxrO00p2sSAxjpdFr3shjAmjGBZXF7aW7RNM/xaPKkdZ1Y2KWMg4X6sbDDSGSfSc/nMiAfNcBodM8fL3kkvJ380a+K7hDK6eSzmUzifKcKn006r9VKYo6nk89h5eCTYm5tEyxm+zTMbVM2nZZP65dM12mfFrltMrPhNfz/Xc3MzMzMFpE7yGZmZmZmBe4gm5mZmZkVLMsYZBrQHmv3xOmplcT9lQ7Osmv5NK4uje1sTHUHtvUMINRK8l22Bscgl0nj9npCEsvml+QeTcu3CiPutEeTmL9kQJw0BjCN+aOZ7GsjORZprlCl83vr210+yWNcsr6y2NdBcYFLGQfbb35ZLOwwaihY0Zhipbpjv8viMVtKzsE0HrxO/mp648MnR7o/y+JnM50c93S6tSKNBU8am3lsm2C42qelbJtgYdunxW6bzGx4Lc8OspmZmS2ZBsHK5lRpufTB5EHSh5Znkj7MPHD7FYelTh+AHli24sPRVYePhipfmvNtlx/yQtlqT52mAxUNkg5iNJN0cKOBZVvVPqOeAZEGSQcsmoXhv/xkZmZmZraIanWQJTUkfUNSSFqfv3e8pLakbYXXRclyp0q6S9Jlkg4qvL8xX9dTk/I3Szp+Dvtltsfz+WpmZjY7dUMsXgvs6PP+rRFxaL8FJB0KbAAOAY4CzgKOKxS5BzhX0hERUS1AS0GsbJPekWj1BsMNnCzmw0zj2lpJXFtPjN90EluW3BlSGvOXlK8bitabu3NwnF9aPt1emru0NabC791lW8mdkvS2UYwkOZ7TuiQxf82kfLOZ5Aptdt9uGSmJ60tjUdPY1jTvcZ1Y2KWMg4X6sbCJoThfRTCqFisbNWOQk2Mxpu6TrNnTAgxefqqZTCe3VNuFBmK6ncQYJ3mK28n0jpXdJ8V8tk2wuO3TMLdN2XR3+flsnxa7bTKz4VX5CrKkR5GN9f76WWyjATQLvxedB6wHjq25XjObgc9XMzOz2avUQZbUAD4AnAxs7lPkQEmbJN0h6WJJD+/MiIibgCuAW4AzgdOSZbcDpwNvkbSi/i6YWZHPVzMzs7mpegX5NcCmiPhkn3lfAx4HHAA8CRgHviRpdadARJwREQ+OiKMi4rY+6zgf2Jpvx8zmxuermZnZHJTGIOcxia8DnthvfkTcWpjcJOlEYAtwJPCVKpWIiJakU4CLJL2/dIEGNFa0emLZWj3BcIkBsXFp7sx2EvfW6E5nSyNJn9IT89dK5ydVqZkXuUxZHGAac9geSeL6inmQ07yi6XTNmD+lcX1J2p3RdDpJ4jrS6I7zS+P+ViSpgcpiXevEwi5lHCzUj4UdxvNVBCs1xYok9nssOe5pDtk0XruVfJ9v1I7/To5dsv7idO9xH/w5ja/oPknms22CxW2fhrltgoVtnxa7bTKz4VXlCvLRwP7AdyXdDVybv3+9pJP6lI/8VSNhHUTE54GryW7fmtns+Hw1MzOboypZLD4GfLkwvZ4sRvFZwI2SngdcB/wY2Bc4B7gbuHIW9Tk5X26yrKCZ9eXz1czMbI5KO8gRsYNCqihJnWU2RcQ2SRvInmzfG7gPuBx4ZkRsq1uZiLhO0sXA8XWXNTOfr2a2OKRgVbP8u3GaunKQyYqjtE3VGJ2v6jpbrer1bE9XK9taWb2evbFI/Wll9VVOV80q2K5xA7Hy51k9i3CMrKpUrjFRPU1i1ZEJB6k91HRE3E7hdmxEnEx2Jam2iNjQ570TgBMGLScFoyunmU5yTvbkHk1y2EY63dz1R9FIjkQk572SOLY0lKwxXRJznHyuSmNH05SyyWRZbtLSEMdke5Gct8Xcomme0d6YvySvaJpndCzJFTyaxO0lcX1jSW7RNNfoWCPNa9x9cNPY1rK8x4NiYYcpDhbqx8KmhuF8bSjYqzHRE3+Zfi49kl2bSv5om0n8Z7OkRWyNVP8nkP5T7/ncksptXdn9NzmfbRMsbvs0zG1Tv+n5bJ8Wu20ys+HloabNzMzMzArcQTYzMzMzK3AH2czMzMysoHYM8jBoNIJVKyaZSALvJpNYt3aye+3060Ahzi/NvRnJdJL+lvTZhHYyvzwGOZ3WwPk1Q117pPXpietb0f/3fmV7YvySmD6NJrlBkxjksXR6JMkVmuYObXbH7a0emeia3iv5MPZqpNPd5WvFwi5hHCzUj4UdRk3arO4TgzxK999B6bFLjsV4dJ//jRi8fKMkWLYYX96qeVy3rOh+cmY+2yZY3PZpmNumvtPz2D4tdttkZsPLV5DNzMzMzArcQTYzMzMzK3AH2czMzMysYHnGIKvNmhWTNBuDg9+mkri/VqM7frTd2PX9QI0kD2lyZBqTg3N1pjHGabrLnhjk0pjkZDrd1ZK4v7R8mtt7UC7RdpJTNUZj4DRpXtGxJHdoEte3MonrWzWSxAQncX6rkji/NI5vTXO8a3p1EnOcTg+KhR2mONhsevhjjMs0iCwGOQmUHU2mm8kfdbrv6bFJP6tmcuybPdmHu6Xx3INaw56yiTUruv8m57NtgsVtn4a5bYKFbZ8Wu20ys+HlK8hmZmZmZgXL8gqymZmZLZ2mgjUj5Vk50tFBB5kcqdYlqTN89XTFoaarlgNorag41PTY4LtYXSruk1rV7yrOx3DLvarVMx0NdJDWWLV1Nqaqf0aN6qNSz7yOOoUlNSR9Q1JIWl94/zhJt0jaIekqSU9IljtV0l2SLpN0UOH9jfm6npqUv1nS8bPcJzPD56uZmdls1b2C/FpgR/ENSUcD7wVeBFwKvAa4RNIjI+I+SYcCG4BDgKOAs4DjCqu4BzhX0hERUSmjZrMRrFsx3pODNrUzCXabTKaLcX/tke55mkxi/ppleUjT+d11qR2DXFK+NM4vXV/yVag9ILdoT8xfkleUFd0rb6xIcoeOdcfp7TXWfZVh1WgSp9czncTtJblF9x7Z2T0/ietL8x73xCAPiIUd5jjYvuUHG4rztaFgL00ylvwRjybT6bFPtdS972lO6p68yiXtwyDt5uD806l1K7r/ZuezbYLFbZ+GuW2ChW2fFrttMrPhVfkKsqRHAScBr09mnQh8MiK+GBETwNuBCbJ/wJ1tNIBm4fei84D1wLG1a29mffl8NTMzm71KHWRJDeADwMnA5mT2YcA1nYn8qtK38veJiJuAK4BbgDOB05LltwOnA2+RlFwrMLO6fL6amZnNTdUryK8BNkXEJ/vMWwtsSd7bDKzrTETEGRHx4Ig4KiJu67OO84Gt+XbMbG58vpqZmc1BaQxyHpP4OuCJMxTZCuydvLcP2RWoSiKiJekU4CJJ7y8r31SbdaMTNEqC3ZTE9aXTU4VcpdNJzF80k9yaSUxiK4n5S58sjal0flK3VhojmMwvyz1aMk2S57Qn1+iAuL72yu6VpdONNI/oiiQ36Iruja8a655eN9Ydh7cmieNb0+yO+0vj+tLcomsb3dPrGt3l91L3+gbFwg5THCzUj4UdxvO1QZvVjUlG03jt5FiXHvskHjxdXyMNiU4P/QImtVw32v03PJ9tEyxu+zTMbRMsbPu02G2TmQ2vKg/pHQ3sD3xXWeeg05xdL+lNwHXA4Z3Cygo9Huh39WpGEfF5SVeT3b41s9nx+WpmZjZHVTrIHwO+XJheTxaj+CzgRuB64D8lXQhcBrwaWAl8ahb1ORm4EihPrmhm/fh8NTMzm6PSDnJE7KCQKkpSZ5lNEbEN+Lqkk8iebn8I8B3gmIi4r25lIuI6SRcDxw8q11SwdnScRnqLNblNmd7mTKfHC7cxJ5Jbmq0kIXUrHTp2JEmzlNyyLLvF2XPbMh06dnpwiEZ6BzcdvrWR3olPptPhWlsrdq2gvSK5/Vtyy3JlEkKRpnVbm9x+XpNMr01SJ60rvW3ZPX9tc3BIxepk+NdBt/qX821+GM7ztQGsVIvR5I90tCwfWKJdkoKvmdy77wlvmcNnkab3S6V/w/PZNsHitk/D3DbBwrZPi902mdnwqj2SXkTcTtKkRcQHgQ/OYl0b+rx3AnBC3XWZWS+fr2a2EBoEqxrlHf6pZvVvolOj1cq2029VA0y3K456166+znbFsjtWjpYX6qyzYrlWjVEEe759zrEYQNVU/O3ROiPpVStXayS96XoXYPquY85rMDMzMzPbjbiDbGZmZmZWUDvEYhg0aLN2ZLw0lVIqTaXULMTtNZJ4xclG96GZSod+TdNvNZM0TEnMH9NJTGDy1SRNhZRkD+sz/Gv3+htJ6qT6cX2FCqxMUpUlQ7Wu6BmqtXvja9NUSclwrWtH0ri+7uk0ddI+za7RklmXxv0pGf41ue23siet2+xjYZcyDjbb3vL7TiuClWqT3nEbrXNfj95D16qZJo70dvCAzyI9zmW3NdO/6flsm2Bx26ehbptgQdunxW6bzGx4Lb//tmZmZmZmC8gdZDMzMzOzAneQzczMlglJDUnfkBSS1ufvHS+pLWlb4XVRstypku6SdJmkgwrvb8zX9dSk/M2Sjl+UnTIbQssyBrmpNnuP7KSZJtisqZibtHfoV5LpwUO/tpKvGu0k2WfZ0LBMpxtMKpvE/UUaP5kunsQB9gzfmsT5RSHOr5nkFV1RMnT0mp7hWZPhWEe74/bSuL61Sdze3klcXzpca5prNI3rW50kcu2JOZ5DLOxixsFm668XCzuMGhIrJUaTk6rRE7+d/M2WHMup9CToaQ8GJ05qNbr/TtqFdFCtxkRafKA0NnU+2yZY3PZpmNsmWNj2abHbpll6LYVc5wW3RsSh/RbIh6DfABwCHAWcBRxXKHIPcK6kIyLSZO5me6bl99/WzMxsDyTpUcBJwOtrLtrIX83C70XnkY26eexc62i2u3AH2czMbMhJagAfIBvifXOfIgdK2iTpDkkXS3p4Z0ZE3EQ25PwtwJnAacmy24HTgbdISq7pm+2ZKnWQJb1Z0m2S7pP0U0kfl/SwfJ5jn8yGjM9Zs93Oa8iGjP9kn3lfAx4HHAA8CRgHviRpdadARJwREQ+OiKMi4rY+6zgf2Jpvx2yPVzUG+UPA2yJii6S9gLOBi8limWCRY5+aCtY06+dBTuP6itOD5gE007yjzTQvaRoDmOQhTean0yRxf9FMYgRb3dNpKFs7Gf9RSW7R9sru+rZXdU83CrlFx1Z0r3xVEuO3OonpW5dM7z2WxByPdsfprWkmMYFJnN9eSfxnOr1ag/Mcr0g+u7EkYHNQLOwwxcFm8+vFwhYMzTkrYIUajCbfx5tpIG0iHaS1lWwqXb7Zc6wHT7dITqJiHuQ0Tlbp+dw9nf4Nz2fbVGV6PtunYW6bYGHbp8Vum6rKz8nXAU/sNz8ibi1MbpJ0IrAFOBL4SpVtRERL0inARZLeX1a+oXZPjHY/6ec/uGzFoaZrPItRfajp6uusOtT1+IqKYyhTfQjnVo3jWVlJW1xU9dC3azzh1h6rtv06acQbaa73Wai0qxFxY0RsySdF9p/m0TW24dgns0Xkc9Zst3I0sD/wXUl3A9fm718v6aQ+5SN/1eolRMTngavJwi3M9miV+/iSfg94L7AOmAb+sjD7QEmbgCngcuANnVs4EXGTpE7s0y3Ay5NVF2OfPhERs75kZma7+Jw12218DPhyYXo9WUzxs4AbJT0PuA74MbAvcA5wN3DlLLZ1cr6ch/2zPVrlewoR8a8RsTfwEOAM4Dv5LMc+mQ0hn7Nmu4eI2BERP+q8gE35rE0RsY0sJOpqYBtwA/AA4Jn5vLrbuo4sHGvdvFTebJmqnQc5IjZJOg+4VdLDliT2iTZrG+M9OWerxgX1XWdpjF93XNx4EkjXm6e0+9C2kri+nryk00nuzyRGMI3zI8ljmgYG9aw/yS3aWJnkCi5Mr+yJ6eu+kJDG9K0ZSeLwSuL40ri1NJfo6iSub10yf2US5LhS3Z9NGnO8IokfrRMLu5RxsFA/FrafpT5nRXbMR9WdMDfNg1wmPSfb6bFNwzt7Vt9dfmUy3Y5d8aJpLGnZcU//huezbYLFbZ+GuW2ChW2fFrttmq2IuJ3CX3hEnEx25Xc269rQ570TgBNmWT2z3cJs07yNAKvJrkClHPtkNnx8zpqZmVVU2kHOh7V8laQH5dPrgXcDt5PHPklar8x++by5xD79MdnDCGY2Cz5nzczM5qbqFeRjyJ6e3Q5cRTbM5TMiYhrHPpkNI5+zZmZms1QagxwRbbJ/tjPNX/TYp4aiJ/8kQKt2TOOu+LA0b2lpHtKe8mnMX/e2pqa74y+V5iVN4jPb6a4kK4z0u013WB6xojv/Jkmu0TSub9WKXXF8a1Z0H9u1o0nMXjK9eiSN6SuLQe7OQ5rG9a1sdO/MSnVPjyZxfaPJsUrzHKcxx3OJhV3MOFioHwsLw3fOCtGUeo5zUzUjvNKc0z2fa1q+ezLNaZ1OF3PWpm1J+jeYxhT3a4+6tzX7tgkWt30a5rYJFrZ9Wuy2ycyGl4eaNjMzMzMrqJ3FwszMzPZsDfrfyU21Rpb2qvl05dH5aoz4V/GO0Nbkbsgg0xVHWRw8Nmu39I7jTKLG3bx0JM2ZNGr0LqNixu10FM6B258qL1O6jrmvwszMzMxs97EsryA3iJ5YMIBW0t9Px2tvpdMVvwnNhzRGsOzQt9JY1zT2NA0EHEu+V67sjvNL4/pWjHVP7zW263iuTfOIjnZ/vVvdTGIC05i+ke6Y472SAdR7p5M4v564vmRf0hywDI45TnMVzykWdhHjYLP59WJhh1WDRs9xbtT9ft5zbAd/Fmkcbm/O6jRud5fRNFa80X2+tNuNZP7gyxXD3DZB2j4Nb9sEC9s+LXbbZGbDy2ermZmZmVmBO8hmZmZmZgXuIJuZmZmZFSzfGGRN9XTv2z1xft3xX3VykaYxgvOtzhOzANEeXB+t6o7bK4vrW53mFi3E9a0Z6Z63drQ7Zq8sr2gax9eTSzTJ7ZvG9aXTaaxob+zo4GOZxrrOKRZ2EeNgoX4s7O6s53NKPos0h3Tv8umxn/mz6P2bS/Pbdn8O6d/sQrZN2fIL97kPc9sEC9s+LXbbZGbDa8/572pmZmZmVoE7yGZmZmZmBe4gm5mZmZkVLMsYZBGMabonrm8qyUmZ5iadiu7dbTd2LZ/G3bWTPKRpvtl0dJ7pRjLdTGIOk+XT7UWaL7fVvXwa6toY697XkRXJvie5Q1eOJnF+A3KJ7jWS5hUdHNOXHufyXKHd02M987t3tjeH9GALGfe3mHGw/acHx8IOqzZtWmlsazJZFgverjWGVLl0a8Xp8s+he3os+Rzms22CxW2fhrltgoVtn5Zz22Rm82tZdpDNzMxs6TTVZm1zvLRc3S8RVaQD7wwuu3RfSrasWFm57ETFcZQna+xOu2IXr9az3hUHMWrXGGI8Kpatcz2oWXH46kEcYmFmZmZmVuAOspmZmZlZwbIMsfjf745f85xDvr/U1TAbJncvdQVm8q3rJ69Zc8APl7oaZsNkaM9XM8ssyw5yRDxxqetgZtX4fDUzs+XGIRZmZmZmZgXuIJuZmZmZFbiDbGZmZmZW4A6ymZmZmVmBO8hmZmZmZgXLooMs6WWSLpN0n9Q9loqk4yW1JW0rvC5Kypwq6a58HQcV3t8oaSJZdpukx1Ws199KuiGv152SzpO03zDUrbCeN0u6La/jTyV9XNLDhqV++boakr4hKSStH4a6SbpA0lSy/EmF+UNx7IbRsJ6v+TqG+pz1+erzdblo0mZtY2fpa3VjovJrbWO80mvvkR2VX+tGxiu91tZ4rRur9lqzYrLya6+V1V5jK6Yrv5qrqr1Y1ar8aq9sV3xF5df0XtVerZVUfk2vqvYaZFl0kIF7gfcAfzHD/FsjYk3hdWxnhqRDgQ3AIcAZwFnJsmcly66JiO9UrFcLeAXwAOAwYD1w/pDUreNDwOMjYh1wMPBD4OIhqh/Aa4Edfd5f6rpdmCz/niGr37Aa1vMVhv+c9fnq89XMhsCyyIMcEV8AkLRhFos38lez8Pt81euNhcmfSXoX8K/DULeOiLixMCmgDTy64uILXj9JjwJOAl4CfKvGogtetzka9votmGE9X2H4z1mfr0tm2OtnZotsWXSQKzhQ0iZgCrgceENE3AYQETdJugK4JX+9fAHr8XTg+mGrm6TfA94LrAOmgb8chvpJagAfAE4GNvcpstTH7iWSXkw26tV/AGdGxLYhqt9yNUzHbejOWZ+vs+bz1czmjSJiqetQWX5F6ssRMVJ47xCyjv7NwIOAtwJHA4dFxPaS9W0EjgAmiu9HxD6zqNtLgAuAp0XEtcNUt8I6fwH4I+DyiNi41PWT9Frg1yPipZIOBm4DDoyIHw1B3Z4A/Aj4GfAYstvwt3Ruyy51/ZaDYT5f8/UN9Tnr89Xn6zA79HF7xdv+vfzmxtZ2SaBnsWxrZbVy7WrlALZM71Wp3OapGvWcrrb92+/br7xQbufUaKVyO8bHKq9zarLaNdDWRLPyOpmodnNFk9Vvwmhalco1JquVA2hMVSv3v2/6y2tihtFel/1tpIi4NSJuioh2RGwCTgQOAI6suIo3R8Q+xVfdOkj6beA84AWdf7TDUreivA7nAZ+VtN9S1i+P+Xsd8KoZ6rqkxy4iromIn+Tbv4Es7vKlklYMQ/2Wq2E5bsvhnPX5Wp3PVzObb8u+g9xH5K/qXzXmQNIJwPuA34yIr5YUX9S6zWAEWE32zyG1mPU7Gtgf+K6ku4FOJ+X64tPnS1S3ftr5z5m2v9T1W64W/bgts3PW5+vs+Hw1szlZFh1kSU1JK4GxfHpl/pKk50lan/++H/Bushi0KxehXq8GzgWeHRGX95m/ZHXLt9+Q9CpJD8qn1+d1uB24cYnr9zHgEcDj89cx+fvPAj44BMfuZZL2yX9/JPB3wKcjYjx/b0nrN8yG9XzN6zK056zP19nz+Wpm821ZdJCB3wd2Al8ge8p4Z/46iCw1z9XANuAGsvRNz4zuhzMGOU29+S2fX3HZd5I9SPPV4vKF+UtZt45jyK76bAeuIkvP9IyImF7K+kXEjoj4UecFbMpnbcq3v2R1y/0pcGt+3L5I9o/0hML8pa7fMBvW8xWG/5z1+erz1cyGwLJ6SM/MzMyWnh/SK+eH9KrxQ3pmZmZmZsvA7pIH2czMzBZJg2B1Y6K84BJrN6tdB2zH/D+vuW7FeOWyzUa7vFBNO1UtQmCyYjmAVqPa1eb2SPV1Vr3aHM3qn1GMzP3z9BVkMzMzM7MCd5DNzMzMzArcQTYzMzMzK3AH2czMzMyswB1kMzOzZSIfUOYbkiIfTKbz/nGSbpG0Q9JVkp6QLHeqpLskXSbpoML7G/N1PTUpf7Ok4xd8h8yGlDvIZmZmy8dryQaQuZ+ko4H3An8G7At8ArhE0rp8/qFkg6UcApwBnJWs8x7gXEkeetss5w6ymZnZMiDpUcBJwOuTWScCn4yIL0bEBPB2YAJ4UT6/kb+ahd+LzgPWA8cuUNXNlh13kM3MzIacpAbwAeBkYHMy+zDgms5EZEPkfit/n4i4CbgCuAU4EzgtWX47cDrwFkkrFqD6ZsuOO8hmZmbD7zXApoj4ZJ95a4EtyXubgXWdiYg4IyIeHBFHRcRtfdZxPrA1347ZHs8j6ZmZmQ2xPIb4dcATZyiyFdg7eW8fsivGlURES9IpwEWS3l9WvqFgL02Wr3gPvgy3brT6SIMNqo88V5UqjpBXtRzAVKNa2emKI+4BRLPaOqPiqIgArRqj7s3EHWQzM7PhdjSwP/Dd/Dm6Tk/heklvAq4DDu8Uzh+2ezzQ72rzjCLi85KuJgu3MNujuYNsZmY23D4GfLkwvZ4spvhZwI3A9cB/SroQuAx4NbAS+NQstnUycCVQ4fKw2e7LHWQzM7MhFhE7KKR2k9T5370pIrYBX5d0Elk2iocA3wGOiYj7ZrGt6yRdDBw/54qbLWPuIJuZmS0jEXE7oOS9DwIfnMW6NvR57wTghFlWz2y3sAeHz5uZmZmZ9XIH2czMzMyswB1kMzMzM7MCd5DNzMzMzArcQTYzMzMzK3AH2czMzMyswGnezMzMrJYGbVY3Kowl0q610iXTWoCNrx0dr1y2oWoHqlFjWOiqw1fXGeZ6vOJQ0xMVywG0pqoNS92qsU5G5v55+gqymZmZmVmBO8hmZmZmZgXuIJuZmZmZFbiDbGZmZmZW4A6ymZmZmVmBO8hmZmZmZgXuIJuZmZmZFbiDbGZmZmZW4A6ymZmZmVmBR9IzMzOzWhrASrUqFKww2l5H1VH3alzaqzpCXisWYCS9kRoj6dUYzW6+qcbofM2Ko9k1GtWHUJxsVOuKTjWqjbgH0G56JD0zMzMzs3nlDrKZmZmZWYE7yGZmZmZmBe4gm5mZmZkVuINsZmZmZlbgDrKZmZmZWYE7yGZmZmZmBe4gm5mZmZkVuINsZmZmZlbgDrKZmZmZWYGHmjYzM7NaRLBS1YcTrqLVmK5Urt2ufm2v1ZiYbXXmbO+RnZXLNmsM97yUGhXrWWf4aqlquerrnK4xLPVMfAXZzMzMzKzAHWQzMzMzswJ3kM3MzMzMCtxBNjMzMzMrcAfZzMzMzKzAHWQzMzMzswJ3kM3MzMzMCtxBNjMzMzMrcAfZzMzMzKzAI+mZmZlZLRKMVhoBrfpoey2qjaRX59Jeq11tmLaWqq+03ahWdk1zvPI6GyzdSHpVR8erU3Yh1tlsVO+yTjXnPsqjryCbmZmZmRW4g2xmZmZmVuAOspmZmZlZgTvIZmZmZmYF7iCbmZmZmRW4g2xmZmZmVuAOspmZmZlZgTvIZmZmZmYF7iCbmZmZmRW4g2xmZmZmVqCIpRve0MzMzJYfSf+91HUwmwd3R8Rz+s1wB9nMzMzMrMAhFmZmZmZmBe4gm5mZmZkVuINsZmZmZlbgDrKZmZmZWYE7yGZmZmZmBe4gm5mZ2W5B0t9KukHSfZLulHSepP0K84+X1Ja0rfC6KFnHqZLuknSZpIMK72+UNJEsu03S4xZ4n94s6bZ8n34q6eOSHlaYf5ykWyTtkHSVpCcM8/6U7dOwfEbuIJuZmdnuogW8AngAcBiwHjg/KXNrRKwpvI7tzJB0KLABOAQ4AzgrWfasZNk1EfGdBdqXjg8Bj4+IdcDBwA+Bi/P6Hg28F/gzYF/gE8AlktYN8f7AgH3KLfln5A6ymZmZ7RYi4o0R8a2ImIqInwHvIutMVdXIX83C70sqIm6MiC35pIA28Oh8+kTgkxHxxYiYAN4OTAAvyucP3f5A6T6VWZR9GlmIlZqZmZkNgacD1yfvHShpEzAFXA68ISJuA4iImyRdAdySv16+mJWdiaTfI7tSvA6YBv4yn3UYcEGnXESEpG/l7w/t/sDAfYIh+Iw8kp6ZmZntdiS9hKzz+LSIuDZ/7xCyi4M3Aw8C3gocDRwWEdtL1rcROILsCu39ImKfea76oDr8AvBHwOURsVHSLcDZEXF+ocyFwFREvLJkXRtZ4v3J65Hu01B8RkNxqd3MzMxsvkj6beA84AWdzjFARNwaETdFRDsiNpGFKBwAHFlx1W+OiH2Kr3mv/AB5nc8DPps/fLgV2Dsptg9wX8VVLun+QO8+Dctn5A6ymZmZ7TYknQC8D/jNiPhqSfHIX1rwis2fEWA1WafxOuDwzgxJAh6fv7+cFPcptSSfkTvIZmZmtluQ9GrgXODZEXF5n/nPk7Remf2AdwN3A1cuclUrkdSQ9CpJD8qn15PV+XbgRrIrry+W9HRJY8DrgJXAp5aoyqXK9mlYPiN3kM3MzGx38U6yh76+WsyDW5i/Abga2AbcQJYO7pkRsa1nTf2d1ifH7vPncwf6OAb4rqTtwFXADuAZETEdEV8HTiLrKG8Bfgc4JiKqhlgsxf7AgH1iSD4jP6RnZmZmZlbgK8hmZmZmZgXuIJuZmZmZFbiDbGZmZmZW4A6ymZmZmVmBO8hmZmZmZgXuIJuZmZmZFbiDbGZmZmZW4A6ymZmZmVnB/w9AjAeMmQ3zuAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "<Figure size 864x432 with 3 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Check the PTE results!\n", + "\n", + "plt.rcParams['savefig.facecolor']='white'\n", + "lonmin=lons.min()\n", + "lonmax=lons.max()\n", + "print(lonmin)\n", + "print(lonmax)\n", + "latmin=30\n", + "latmax=70\n", + "# Showing Dp/dt term at a given time step\n", + "stp = 22\n", + "print('Simulation on day ',time[stp])\n", + "\n", + "tfact = (6/dt) # This is for an easier comparison between the 6-h vs 1-h results (converting to the same unit)\n", + "clevs_mslp=np.arange(900,1060,5)\n", + "TADV_avg_roll=np.roll(TADV_avg,15)\n", + "mslp_roll=np.roll(mslp,15)\n", + "\n", + "fig1 = plt.figure(figsize=(12, 6))\n", + "ax1 = plt.subplot(1,3,1,projection=ccrs.PlateCarree())\n", + "ax1.set_extent([lonmin, lonmax, latmin, latmax]) \n", + "#ax1.coastlines('50m', linewidth=1.5,color='k')\n", + "clevs= np.arange(-11.,12,1)\n", + "cd = plt.pcolormesh(lons,lats,mslp[stp,:,:]/100,transform=ccrs.PlateCarree())\n", + "#cs = plt.pcolormesh(lons,lats,mslp[stp,:,:]/100,clevs_mslp,colors='k',linewidths=0.8,transform=ccrs.PlateCarree())\n", + "clabels = plt.clabel(cs, inline=True,fmt='%1.f', fontsize=10)\n", + "[txt.set_bbox(dict(facecolor='white', edgecolor='none', alpha=0.6, pad=0.5)) for txt in clabels]\n", + "for l in clabels:\n", + " l.set_rotation(0)\n", + "gl = ax1.gridlines(linewidth=0)\n", + "gl.xlabels_bottom = gl.ylabels_left = True\n", + "gl.xformatter =LONGITUDE_FORMATTER\n", + "gl.yformatter =LATITUDE_FORMATTER\n", + "gl.xlocator = mticker.FixedLocator(np.arange(-180,180,5))\n", + "gl.ylocator = mticker.FixedLocator(np.arange(10,90,5))\n", + "gl.xlabel_style = {'size': 13, 'color': 'k'}\n", + "gl.ylabel_style = {'size': 13, 'color': 'k'}\n", + "#plt.colorbar(cd,label='hPa/6h',pad=0.025)\n", + "plt.title('Remapped domain')\n", + "\n", + "ax1 = plt.subplot(1,3,2,projection=ccrs.PlateCarree())\n", + "ax1.set_extent([lonmin, lonmax, latmin, latmax]) \n", + "#ax1.coastlines('50m', linewidth=1.5,color='k')\n", + "clevs= np.arange(-11.,12,1)\n", + "cd = plt.pcolormesh(lons,lats,mslp_roll[stp,:,:]/100,transform=ccrs.PlateCarree())\n", + "#cs = plt.contour(lons,lats,mslp_roll[stp,:,:]/100,clevs_mslp,colors='k',linewidths=0.8,transform=ccrs.PlateCarree())\n", + "clabels = plt.clabel(cs, inline=True,fmt='%1.f', fontsize=10)\n", + "[txt.set_bbox(dict(facecolor='white', edgecolor='none', alpha=0.6, pad=0.5)) for txt in clabels]\n", + "for l in clabels:\n", + " l.set_rotation(0)\n", + "gl = ax1.gridlines(linewidth=0)\n", + "gl.xlabels_bottom = gl.ylabels_left = True\n", + "gl.xformatter =LONGITUDE_FORMATTER\n", + "gl.yformatter =LATITUDE_FORMATTER\n", + "gl.xlocator = mticker.FixedLocator(np.arange(-180,180,5))\n", + "gl.ylocator = mticker.FixedLocator(np.arange(10,90,5))\n", + "gl.xlabel_style = {'size': 13, 'color': 'k'}\n", + "gl.ylabel_style = {'size': 13, 'color': 'k'}\n", + "#plt.colorbar(cd,label='hPa/6h',pad=0.025, shrink=0.8)\n", + "fig1.suptitle('MSLP (shaded) on Day '+str(time[stp])+'\\n'+exp+'',fontsize=14, weight='bold')\n", + "plt.title('np.roll with shift=15')\n", + "\n", + "ax1 = plt.subplot(1,3,3,projection=ccrs.PlateCarree())\n", + "ax1.set_extent([20, 37, 35, 66]) \n", + "#ax1.coastlines('50m', linewidth=1.5,color='k')\n", + "clevs= np.arange(-11.,12,1)\n", + "cd = plt.pcolormesh(lons,lats,mslp_roll[stp,:,:]/100,transform=ccrs.PlateCarree())\n", + "#cs = plt.contour(lons,lats,mslp_roll[stp,:,:]/100,clevs_mslp,colors='k',linewidths=0.8,transform=ccrs.PlateCarree())\n", + "clabels = plt.clabel(cs, inline=True,fmt='%1.f', fontsize=10)\n", + "[txt.set_bbox(dict(facecolor='white', edgecolor='none', alpha=0.6, pad=0.5)) for txt in clabels]\n", + "for l in clabels:\n", + " l.set_rotation(0)\n", + "gl = ax1.gridlines(linewidth=0)\n", + "gl.xlabels_bottom = gl.ylabels_left = True\n", + "gl.xformatter =LONGITUDE_FORMATTER\n", + "gl.yformatter =LATITUDE_FORMATTER\n", + "gl.xlocator = mticker.FixedLocator(np.arange(-180,180,5))\n", + "gl.ylocator = mticker.FixedLocator(np.arange(10,90,5))\n", + "gl.xlabel_style = {'size': 13, 'color': 'k'}\n", + "gl.ylabel_style = {'size': 13, 'color': 'k'}\n", + "#plt.colorbar(cd,label='hPa/6h',pad=0.025, shrink=0.8)\n", + "fig1.suptitle('MSLP (shaded) on Day '+str(time[stp])+'\\n'+exp+'',fontsize=14, weight='bold')\n", + "plt.title('Zoomin np.roll with shift=15')\n", + "plt.savefig('MSLP_pmesh.png', bbox_inches='tight',dpi=100)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Simulation on day 7.0\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+YAAAIxCAYAAADALKIEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOy9ZXhbx7q/fY/AlixZZmZInDjgMDMzQ9M2ZW53YfM57zl77/PfzFhmTMptkoaZGRpmdswg2ZZJmveDbMdsyZYpWfd15Wq9tNasET2a3zwkpJQoKCgoKCgoKCgoKCgoKCi0D6r2noCCgoKCgoKCgoKCgoKCwt2MIswVFBQUFBQUFBQUFBQUFNoRRZgrKCgoKCgoKCgoKCgoKLQjijBXUFBQUFBQUFBQUFBQUGhHFGGuoKCgoKCgoKCgoKCgoNCOKMJcQUHhjkcI4ZcifKQQQrF5CgoKdzxCCH1vYZJCCM/2nouCgoJCayOE0FSs87zbey4tQVmkKigo3PH0xpRzAytjCbC191wUFBQUWptB+BbdpJih+BW391wUFBQUWptR+JfdwEo/fMztPZeWoAhzBQWFOxohRGwaxcwghGOYEULo23tOCgoKCq2FECLoIoXMIpRzFCCE8G3vOSkoKCi0FkII4wkszCSEa1gRQkS095yai6a9J6CgoKDQmiRiuNwVA3rUdMWIRBYBor3npaCgoNAa9MQ7IwRPPFHRCxO5lOWi2DwFBYU7lAH4WDxRo0NNf3y4ivUGndTmKR5zBQWFO5b5IkwWYyMKh5O8J95coBAhRGA7T01BQUHB7QghEjMpJQEvALpg4BbFCCFi2nlqCgoKCm5HCBF6BSvdMQIQgx4zZQgherbz1JqF4jFXUFC4IxFCiAh0DMWv6pgaQQo+ZFCSSSfdTVVQUFBoiHi8zvfAG1Fh3lQIBuDLeQqvoNg8BQWFO4zuGG9FokddYd4EgsH4cYj843RCm6d4zBU6BEKI94QQv3HjeFeEEBPcNZ5C52MqwXYDagLwqHE8ES8yKUUIkdhOU1NQqGHzhBBPCyHShRAFQoiAiv/GuzjeQ0KIna0zW4XOwBwRJm1IwtHVOB6FHis25osw2U5TU1CoQcUa7RcVtq5ACFEshLBV+/tytf+3CiHs1f4uaO/5K3QMhBDd8ygjjpqlg4LxRItghgjpdDZPEeYKHQohxJhqBtgihDgrhHi4hWP+SgjxkbvmqNDxEUJoDpLHQHzrPoZgEL7E43W+7WemoFATIYQW+BswSUpplFJmV/z3UgvHlcrm092DEELsJ5fB9dg8gMH4sY88hBCdzoOkcMeyu8LWGYGngD2Vf0sp46o9NhVIrfaYsX2nrdBRiEF/ahB+VRFC1RmELwccNq9Tad1ONVmFu4bUCsNrAn4GvCmESG7nOSl0IkbhXxaBDmMD2Trh6LAhmat4kBTanxBAB5xs74kodF4mEWT3RYtfrQihSgLxwICaqQTb23hqCgoKCm5nlgiVKgSheNb7uAktIXh2uja5ijBXaBeEEH2FEIcrvOKfQq3YO0A6+AbIBRoV5kKIpUKIq0KIbCHE/1ft+BTgv4HFFV74Y+59JgodDSGE4QQW+uDT6HmD8WUfuYoHSaFNaMDmxQNnK07JE0Jsrji3SW93Rcj7CiGEWQixH0io9tj2iv89VmH3Frv/GSl0FIQQ2sPkM6ABb3klA/HloMODpG6bmSkoKCi4HyGE6gB5DUYIVdIPH753tMmtozE6KoowV2hzhBAewDfAh4A/8Dkwv57zVEKIuYAvcLyR8ZKBV4GlQDgQAEQCSCnXAr8DPq0IgUpx53NR6HgMwKegO0Y8mzBvfnjgi5ZJBCkeJIVWpRGbdwnoUXGar5RynAvDvgwUA2HAIxX/AJBSjqr435QKu/dpi56AQodmOP6lMejxonG9bURDBDpG41/eRlNTUFBQcDvjCbQF4oEP2kbP06GmCwYG42tto6m1GEWYK7QHQwAt8A8pZZmU8gvgQLXHw4UQeUAW8EtgqZTybN1hqlgArJJSbpdSlgD/Cyhi6y5ECBHiaJvh7dT5A/DlMPmVeb4KCq1FUzbPJSo8nvOBX0gpC6WUJ4D33TNVhc6EEMJ0GgspmJw6vw8+HMeCEMLQylNTUFBQcDtCCM+j5NOviajISnpg6lRtcpV2aQrtQThwU0pZPb/3arX/T5VSRro43vXKP6SUhUKI7BbOUaFzMi5ZZcBf7Vykpg8qgsq1ZMnSbjQSlaGg0EKasnmuEoTj9/t6tWMtGU+h8zI0QeVFoNrZ5ZyKWJueHHvZAGBba05MQUFBoRXoFS48CdU4709JshnYbc8bBXzVetNyD4rHXKE9uAVE1MrtjW7heFGVfwghvHCEs1eiFPi6i1C52LZS3fnaXCp0Ptxt8zKBcqrZvRaOp9CJcTVhvGLhpxg+BQWFTonKxdJAFeu8TmHzFGGu0B7swbGofF4IoRFCzAMGtWC8L4AZQogRFbmc/4+an+10ILaztUxQUFC4Y3CrzZNS2nDs/P9KCOFVUWfjwVqnpeMoLqegoKCgoKDQCVCEikKbI6UsBeYBD+GouL6YFoSXSClPAs8Cn+DwTOUCN6qd8nnFf7OFEIebex8FBQWF5uBum1fBc4ARSAPeA96t9fivgPeFEHlCiEUtvJeCgoKC25BSxkopN1b7+z0p5YgGzt3qYnqjgkKnRckxV2gXpJQHgb4NPOyyAZZSvk/N4ke/rfZYNlCvwVdQUFBoC5qweaLWuU2G3EkpM4EZjTz+GvCaK3NUUFBQUFBQaD8Uj7mCgoKCgoKCgoKCgoKCQjuiCHOFToEQ4j4hREE9/06299wUFBQUWgMhxMkG7N597T03BQUFBQUFBfeihLIrdAqklB8DH7f3PBQUFBTaCillj/aeg4KCgoKCgkLboHjMFRQUFBQUFBQUFBQUFBTakU7pMZ88YqDMzjW32vjShab1Ch0LUV7W3lNoEllW0t5T6HAIrafT5x46dW6dlHJKK06nwzFpYC+ZnW9p72m0Oa58LhTalta2Y7KstFXH70gIrUejjx8+f/Wus3mjxk2QuTk57T0NBTei6UCuQJW0u20sewfpxFvuvqcEtO/7dfTIkbvO5lXSKYV5dq6ZfZ++4vZxpV+428dUaB9Ebmp7T6FJytOutfcUOgya0Gjnz+01IbAVp9Ihyc63sPuVX7b3NNocVz4XCu1Ha9uy0tSrrTp+e+ERHuPUebqJj9x1Ni83J4dvN25r72nUIKOwbTb+gw13rnPIX6du7ynUQG8vdss4VpXOLeM0l5xim1vHa+/3yc/bcNfZvEo6pTB3N40JciklhUVFZOfmkZOXj8VSiLmgALOlgIKiIqSUCOHobCNqdrxBIqv+XyVUeOl1GA1eeBsNGA0GjAYv/HxMBPr7odG4562weYe4ZRxnUFvS2+xeriL9wju8OK8UHXe7QHe3+ArwUJOga9wDVR3vIhXcPc65JpFSUlRcSo6lkFxLAfmFVixFVsxFxRRYi5F2CZU2T1S/ruY4KpVA7+GBUe+JUa/D20uHUe+Jj8GLIF9vtG6yeQrtjyY0ulXtWG0BeycIdWdFuTP4atUk6J23eYetalACt2pQbLWSm5tDfm4uFrOZAosZS4GFwoIC8q1lCCGq1nqVyFpGTwiBp06H3suAl9GIwWBEbzBiNJnw8w9E6+Hce+TsBkBnFPCVArK9hV8llYK6pQK98vr2FujuoqO9T7UxaVQkeDlv884Wq8E9ezCtTqdcGWXm5vHm56uq/q60jSqVwN/HmwBfH4L8ffExGjDodRj0OrTa20+1rKycTKknIzubzKwc0jMPUmi11nsvgcDgpSfAzxdfHxPBQQEkxsVg8jbgpdejUjkX62Gz2bAWF2MpKMJSWIiloJDMrBzOXbxMVk4eNnvd3S5PDw/ioiKJi4kkIjSk6l5tKb4bo/o8OqJIr9xw6SwCHe4+ka54RJ0jM7+At77bWuOYlA6b52c0EOBjJNBkxNfbgEHniUHnUUP4lttsZOUXkJlnJiPPTGaeBUuhtaayroZB54m/twE/bwNBPt7Ehwdj8tJh0Hm6YPPsWEtLKbCWUFBUjMVaTFZ+ARduZpCVb6HcZq+6faUN99CoiQ4JJD48iMhAf0i7pnxGOgltudFYXdR2RpHuTlF+p5KTncWyD96tcazSEWIy+eAfGIi/fwAmX1+8vLzQexnwqCZ8bTYbuTk5ZGdlkp2VSVZmBgWWhtOBdDodfn7++Pj54evvT2RMDMUqHXqD0WmbZ7fbKSm2Yi0spLCwgKKCAsx5udy8doW8nGzKy+oKbrVGQ2hEJBHRsYSER7rkpGlKwHdk4V7dw9sRxJ8i0Osnp9jWId6fu4kmLUBFO6rqvyJqQAf0l1IeFkI8APwSCAOOA89IKQ9Vu/5nwIvABeB+KeXViuNbgdHAaCnl9mrnXwB+I6V8r6E5Bfn58vjCGXWO22w2cs0FZOXmk5WXz8XrqRRZiym0FlNebkMafBxPWq0hKMCP4MAAEmKjGdI/BaPB0NRL0SLUanWFl9xAGEFNnm/zDqG4uJir165x7PIVVu8+dnt3VkqCg4NI7t6NhPh4p380WpNKkd5RBXpHF+eVKF709qdD2jwfI49NH1PnuN1uJ6+giKx8C1n5BVxNz6KwuJTC4hLKym8vfDRqFYE+3gT5ehMbGsSgbvEY9bo6HiB3olarMOp1GPU68Pdx6prSsnKupmdx9totNh46id0uUZv8AQjwNZGcGENSbFSHsHkK9dPa3vPaeITHdCpx3hFFeUe0ef4BgSx54OE6x+12OxZzPjnZ2eTmZJN64zpFRUVYi4oorVaXQKVS4ecfQEBgEGHhEfRK6YPR2+SUzasUvK6uClUqFXovA3ovA/5BwU5dU15WRlrqDW5cucyh3Tuw2W7bbW+TD7FdkohN7NqsqMrWCL1vDbHfkUR6bUHdXKF+Jwn0ju49v9No8pteu12LEOK3wJwKYz0CeBWYC2wDXgBWCyG6SCnNQohEYAwQDwwDfg08UG24bOAvQojBsnZMUGNz0mjrDT9XAQGBEAAkOTtYB6K2J1yn05HUtStJXbvWOC6lJDMrixMnT7F1244qwR4fH8fA/v3x8TG12Zxr01EFemfxnldyNwj0juoJ7Yg2ryFUKhX+JiP+JiNdo1o6WvvjodXQJTKULpGhVccqPydZufmcvHCFHQePY68o3BMTHsrg3t3wb0ebp1CXu8F+3Ul0Npvn4+uHj68fcQmJLR2uzfLGG0Kj1RIZE0dkTFydx8z5eVw+d4ZVn32M3WZDIgkOi6Bn3wH4BbRPCm7116s1RXpHEYHVhXVzRHr1a1pTpPvr1G7PM6+N4j1vG1zaghNCaIBHgN9XHHoc+EpKub7i8T8Dz+Ew4O/j0MoqHLuvlf9fnTeBB4ElwCfNewqdH1dD04UQBAcFMW7MaMaNGQ04xPrFS5dYvW4dFrMjXMvD05M+vXvRI7k7Wm3bhjQpAt093KkL3I4qymuj2LyOQ6CfD6MHpjB6YArgsHlXbqaxYfchcitsnlajoXdSPClJCXi0sc1TqEtbec87i9e8I3rLa3M32Lz2FuPOYvLxJWXgEFIGDqk6lp56k8N7d5Gfkw2ASq0mISmZrj164alrW+9sa4r0juRFr6Sl4e56e/Ed4UFXaF1cjY2ZA/gAH1T8nQK8V/mglFIKIY5UHEdKeU4IsQe4WPHvvlrjFQK/AH4nhPhSSnnXlCNxd564EILEhAQSExKqjhUXF3Ps+HE++HgZ5WWO4iXJyd0Z2L8fnp5t04aovufZEcR6ZwpvhztXoHcC5qDYvHahqc0bIQRxkWHERYZVHSstK+P7c5f4aOVGSkodYa1JcdEMTUlGr1Narym0H51BlFcwB8XmdVhCwiMICY+o+ru8rIxL586wfsWXlJY4BGNkTDy9+g/Ey2Bss3m1hUi/EwR6a4rz1vSad5TX/m7AVWH+JPCplDKv4m9vIL/WOXlAVVyhlPJXwK8aGfNdHKFRLwB/cnE+nYq2Ltqm0+kYPHAggwcOBBy5WadOn+Hj5Z9RWlqCRqNl1IhhdO3SpU3n1VGKxnU2cQ5tn7/ZGnQWb3kFis1rB5r7GfHQahnQI4kBPRzJTFJKzl6+zqdrtmAtKUGlUjGsTw96dolr1fx6BYXqdCJRDne4zess3nJn0Wi1dO3Ri649egEOm3fj6mW2rFmJtagQIQQ9+vQnqWdKm9m81hLpHVGg3+nivKO81ncTTgtzIUQCMB4YWu2wBcfOanV8ceyaOoWU0iaE+CmwTAjxtrPXdRY6SgV1cORm9eyRTM8eyQCUlpayY9duNm3ZCkDPHj0YNmQwanXbfRHbW6R3ttB26NzivDOJ8uo2TwjxAo6QznBgFo6FZiW+KDbPLbj78yGEoFt8NN3iKyJOym3sPnqSV5evQEpJUlwUowek1OjaodA8yuupoN9Z7ZQ76UyiXLF5nR8hBFGx8UTFxgOOosinjh7myw8dL3tEVCz9ho5os7D32hsh7hDqHUmgN9d73prF4dwlzjvC69vWVLN7AnhTSvmPtp6DK6uRJ4FjUsp91Y4dA/pV/iEc23F9gK9cmYSUco0QYj+OcKdOT0cS443h4eHB+LFjGD92DFJKTpw8xVvvvIfNbmPYkCGk9O7Vpl6l9hTpnc173hnFeWcS5RU8icPGFeIw1IOA14CJFYWPzis2zz201WdDo1EzakBvRg3oXeVNf+frNZSWlTOwZxKDe3dvts2r7/vY1PNy5jvc0b831Z9DZ7NJrU1nEuUV3NE2707zljuDWq2mV/+B9OrviJy8cfUya776lNKSYrok9yJl4JA27XJR33vQXLF+Jwn02uO0lMrXpLkCvSO8pm2NEKInt+1eKbBWCPGdlPJ8W87DKWEuhPAAHgL+t9ZDb+KY+PvADuB5HC02vm7GXH4C7MXxYnRKOosgrw8hBL169qBXzx7Y7Xb27NvPq2+8iVqlZsTwYfRI7t6m82mP4nGdzXvemcS5u8SFuaDQLeM0RS2b1x3YK6UsEkK8ASwGfiKEeI673OY1l44gNqt706WUHDhxlleWfQvAkJRk+iV3cVqkN/Q9rM+L3Nj5jY3dEV6z2jj7PBRPevMptLZNSrZi8+4OKivASym5cPokX330jiN6qGcKvfoNbJcUn5Z61e8EgV6Ju8PcXfWed4TXsKSk3cpQVNk9ACHENhxFLts0/cZZj/k8QA98XP2glHKnEOIZHAK9sr/lNCml2dWJSCmPCSGW4/hh6HR0RlHe4JdfBf2Gj6Hf8DHYbDZ27dzBhtffQa/3Ysq0qQQH336uzTU+zlL7dW0Lod6ZvOedQZy7Q1CYCwpZvnoLKlXTiwZfLy3RvnqnxzaWa6CUBUKI6qGah7lt86KA3wohAiqOX8OxUF3KXWzzmktHFJhCCAb16sagXt0cG5PHTvHyJ9/godUybdRgIkODGr2+oe9hQ8/1ThGqjRWl7Ijvc1vSUm95UXEJn27ZR1l504tqH72GaH/nbZ4pWwMlzBBC/KXa4Tva5t2N3vLGEELQJbknXZJ7IqXkzPGjfPH+m6jVGoaMGU94VPtFe1S+V51doHckcQ6Ne887wmtWUlLC119+gdliafJco6drNs83VwvFTBBC/Fe1w29IKd+o9vcJbts9KzANOOj0TdyEcENbyTanf0pPuW/15+09DaBjCfLWbsNQWFjI2jWrycrMJCw8nEmTp6CrJ0+ptcU6tJ0nvbMI9I66sG/p4ry6IL9n2jiMXno0vSYcklIOqO98IcSSR/3DP1ngG+z0Pf6WcY0NBTm9pZTHGzpHCPEo8CxQAJwCrFLKl1x8Os2mf9dYufuVX7bV7VqFzijUiktKWb19Lzczsgn292XG6CEYvJxfDDSHhr7LnfH1q4/WtFUdpWVaS0R5UXEJn23dT2lZOQvHDMLP24Bu4iON2bzJi32D1z7kH+70Pd7MvslX+ZljpZRbGzqnvW1erz795Lcbt7ltPEWYO0dZaSl7t2/m1vWrePv4MnLCVIwmU9MXthItzUnvCIKzuWvi1lrTd7R+5CUlJXz91ZeYzWbmzptHUFAwft6GxmzegKneAQeeD4py+h7Lc9N5P/fWAinll42d1952D1yvyq5QjfYS5e3VB9FgMDB/wUIAbt68ybJPPqa0pIS+/fozcNCgqhCo2vNrDaHeVvnonSW8vSN6zlsiJMrKyvnku02UlpWxZPo4vA1ebpyZ60gp3wbeBhBC/A640a4T6mR0VlGp8/Rg3sRRAKRn5bJ8zRaKikvo1TWOUf17t0puptIasfPSEkFut9v5fOt+ci2FLBo7GH9T27W6qg/F5t2daD08GDlhCgD5eblsW7eKwgIL0fFdGDhiNGkNbHBEmFpnXdpc73kltb3E7SFIm7smbq3q7R1FlEspWbniW26lpjJvwQKCgpx3qLTinNrd7inCvJm0tShvLzHeEBERETz8yKNIKTly+DBvvv4aHh6ezJw1i4DAwBrnVp97a4r0u12gdyRx3hIhtnnfEY6duciS6eMIDfR346yajxAiWEqZIYSIxpHaM7SpaxQcdFZRXpuQQD8enT8NgO/PXuLV5StQq1XMHjecsKAAt9+vPoHe3O93R3kPWts+eYTHtJvXvCWifM/JC+w5eZ4FYwYRHez+z1JzuJNsnuItbx4+vn5MX3gvN83F3Lx8gXfffhOAAaMmEBQeWePcm+biVhPn0HKBXklHEurOrIdbs7Vae/L9saNs3rSJGTNnMWv2nKrjrdWH3Vk6gt3rlMJclJchclOrxFJb0paCvDN8GYUQ9Ovfn379+1NUVMTKFd+Sm5PDtOkziI6pu1BpTW+6zTuk1UPcO7pA7wjivLki4NjZi2zYfZDRA1N46cEFbp5Vi/myIu+oDHhWSpnb3hPqDHQUQehueifF0zspnpLSUr7dvIvUjGymjhxMUpzzoXXOUvmdbsn3uqkCcrXHbo33rTmF4prznNtDnDdXlJ+7fovv9h5jQFIcP1w01c2zajGKzbuLuWmuuTaLiEskIi4RW3k5B7auZ+/G7+g1eASxST3qXNMZBHol7SnUnc1Dv5PE+bWrV1m54lu6de/Oiz/8UY3H2luUV9Dudq9TCvNKqoujthDpbSXKO+sX0MvLi8X3LMFms7F61SpWrVzBxEmT6dK1a4PXuNub3lbV3DuyQG8vcd7cxXxqRhbLVm+mV9d4fvTQonapCtsUUsqR7T0HhY6Hp4cHi6aMRUrJ6h37WL19H+OH9KN3Urxb79PSyu4NjdEQrVEJ3hm75K77tZY4d1f7s6x8C59s3ENCeDAvLpis2DyFNqW26HYFtUbDkAnTkFJyfN8OVn7wOkl9BtK1d1Xn5Fb3noNDoLtLnFenrQvIOSPOO6smqE5+fj7LP/mYkNBQnnrmWdTqmq9vBxHlHcLudWphXp3W9qC3tii/E754lajVambOno3dbmfd2rWsX7eW2XPnERkZ2eh17hTpbSnQO6o4h9YLHXXHArqktJSPVm7EQ6vhhfvno9F0jLwnBfdwp3rL60MIwfRRQ5g2UrJxz2H++t5nzBk/goSo1vtNctfr25iNaKjdW3Npy/x5d4pzdwnycpuN5Zv3Ulpm48mZY/H0cL+wUKhLsEHbKcLZWyKYa1NdGLtz3EqEEPQeMoreQ0Zx6tA+vn33VfqNHEdUYlLVPVtbnLcmbVkgrSFxfifoArvdztdffUleXh5LH3wIL6+69YI6iijvKNwxwry1UAR581GpVEydNg2bzcY3X3/F6qwsFi5ajJ9/03nDLe0FWUlb5Z93RHEO7vGet4bAWrfrAGcuXeO+GRMI9PNx+/gKCu2BEIKJw/ozfkhfvt28i++27WXxlLGEBPq199SaTVuEuVe/lzvHrxTULRHo7hLl24+d5dC5y9wzbghhAb5uGVOhc9IaQrk97lFJcv/BdO83iMM7NnF091aGTppBYGhEm92/tWhL7/mdqAUOHTzIrp07mDN3Xr2praCI8vpQhHkjtJYovxO/gI2hVquZv2AhVquVLz77DCkli5cswdPTs8lr3eVFb22B3tFD22vTlovt6qRl5fD+N+uYPGIgk4cPbJN7KrQ9d5O3vD5UKhVzJ4yktKyMT9dsodBazNKZE1u91Vpb4A7b0diGobvFOTTfe+4OUZ5jLuC9tTsY1rMLLy2c0uLxFJpHW3nN21IQdySEEPQfNYE+w8eyZ/0qzLnrGD1jPl0jO05L4ebSkfqjdwYsFgsfvv8ePXv14vkXG+40pojy+lGEeQPUFuVSSrJzcrh+/QY3bt4kPSMTabc7HhQCIQTVe8LXlzNWJuqGrUkkAlHj7+oYDAYCAgIIDAwkMjIK/4CADpmP5gx6vZ6lDz5Ibk4Ob7/5Bg8/+hh6vfMLVXd40dtCoHdEcV6bthZOUkq+2rCDPEsBP3pokRK23knIMRdwPSOHG5k5pOXmY7c5bJ5Q1bRBUkJ1s6Q2NRwVU/vcSrMphOP/vfSeBPj6EOTvQ3RoMEH+vp3W5nlotSydNQlLYRHvfr2W+2ZMwM/Hu72n5VaqC2xX7Epb18KoLrKbEunu8pKv2XeMq2lZPDtnghK23gFwRpwXmM2k3bxO+q2bZGekU15eDjg22yrXeJXrvbziMqdsk5Sy6rzq68RKPDx1mPz8MfkFEBAShk9AUKu0YmwL1Go1I6bOpqTYytZvP8N/9mwCg0Pbe1puQRHoTbN921ZOnTzJQ488Wm/YeiWKKG8YRZjXwmazcSbdwrHjOzHnm2s85u/vT3R0JAP69yM4KKhO8YKGaK6HXEpJYWEhOdnZZGZmsmvXTrKzswEQiCoRHxIcQmKXLsTGxeHh4VF1vTs/+O40RH7+/jzz3A+afb07vOitKdA7izhvK66nZfDxqo3MHT+yVapWK7QMu93OpdRMjl68Sq65sMZjvt4GooMD6NMlhhA/ExonbF5LN32KrMVk5eWTkZPH7qMnyczJA24LeIkk2N+XrrFRJEaH41nN5nVUvA1ePHff3PaeRr24UyC76u2u795tsWnoLuHdEOm5+Xy4bhcTB/Rk6uCUVr2XgvNUinIpJbduXOPsiWPk5eRUHQMwepsIjYwisVsPBo8ci0Zbd0PF3V7xEqsVS34O5pwcLpw4Rl52Rg0BL6XE29eP8NgEwqLj8NR1/MgbT52eyYsfpKQV79FaBeCaQhHodcnLzeXDD95n8JChPPXMs42eq4jyxrnrhfnNW+ns2HeQPLMFIRw7oYk9+zF5wgR8fVue+9qSsHUhBEajEaPRSHRMDP0HDKhzjpSS9PQ0Dp88y5adeygrK616LDwyih69UggKaXkoUWNfpPY0Ti31ordWizVFnDs+m5+u2UJZeTk/feSeNvMA6P088Yk2OX2+tkgLBa04oQ5Gem4+O74/S06FCBdAfEQwY/smE2Aytmhsd4gqL72OaL2O6LAQBvRIqvO4lJLMnDzOXrnBsu82U1JWVrWIjQgJom+3RCJCAjutl709cGdRNlcrut9paQ/f7jxElrmAFxZMQqtpmyWWp8kTnxjnbZ5HWSbkt+KEOhi5Odls2LKNnMxMxwEhCIuMJmXgUPwDg1waqzVC1T31ejz1EQSGRhCf3Kvec8y5OaReucjudSsoLamQu1LiFxRCbFIPgsIjO6zNa4s2au1BWxaI68hs3LCeK1eu8PiTT6HTtc177OGtdcnm6WQedJKGj3edMDdbCti+9wDXU9MACA8JYvKYEfhViHB35ZW3dh55daHs4RvMkOHBDBl+u8q/lJKb169x+OB+MtMdz1UIQUxcPL379sPk49sqc6lNW1a1hOYJ9Nbynt/N4jwzJ4+3v1rNgkmjSYzu/EVgOjOF1hJ2Hj/L5VuZCCEI8jUxOqUbQb7O/6g1RlsLKyEEwQF+BAf4MbL/7UWslJIb6ZkcOX2eVdv2VIn12IgwBvZMUooMOoG7BXpLPhvt0fKxJeQVFPHWqq1MGdyb2SP6t/d07mpKios5uG8Ply6cRwiBj58fPfsNbnFIdXvmjztC3f3p1rdmbZbczHQunznBkZ2bq2xeYGg4ib364hvg2qZDa9MaAr29vOaV3M3ivLCwkPfeeZshQ4cxYeKk9p7OHcNdIcxzcvNYs3k7eWYLPt7ejBo6gBkTx9Y5ryOLcldDP4QQREbHEBl9O2RPSsnVy5fYumkD5rw87HY7/QYOpkfvlFbbaa0+78aMl97TXYbVMY5GOu5bXlzk9JWt4T2/G8X5+t0HuXQ9lR89uAit9q4wMR0Oc6GVNfuOkW0uwKDzZGRKEpMH9XbL2B3VwymEICo0mKjQ4KpjUkqupqazZd8RsvLysdns9O+RxJCU7u3uXRLh3VplXJl6psVjuCu8vTX6oXdEdh4/x9HzV3lu3kR0Si55u1BUWMi2TRvIzEhHp9MzYMhQho0agxDCLUXfOmpRN7+gEPyCbq9dpZRkp6dy5vB+8rIzsdvtRHfpRnL/IU1GrV3Nszp93xhf18Pp+4bX3Bw1eLhH0F7OKWp3cQ53V2j7kcOH2bVzBw898ihGY8si7RRqcseumnPz8lmzeTu5+Wb8fExMGz+6yiteHx1NlLdGDoYQgtj4BGLjEwCHAT+0fx8fvPU6Go2GQcNGkNg1qV1FempqKvPmzOH06dNk5+ai0Wj421//ysqVK4mOjuatt99Gq9WyYN48duzYwSfLlzN+/HgAtmzZwq9+8Qs8dTreeffdJvum10dreM/vFnFeZC3mjc9XMbh3Mk8tntXe07nrsBRZWbv/OJl5ZkwGPZMH9nKbVxw6p7gSQhAbEUpshMNTJqXk0KlzvLLsW1QqwdA+PUhJSmhXkZ56K41Z9z7EqbPnMV87i0aj4S//fpUVa9YTHRXBu//5O1qtljn3PcL23Xv57N3XmTDGER21efsu/ve3f0Sn8+T9V/5JZIT7+qa3Z3h7Z/GWl5aV8/Z32+geG85z8ya293TuOqxFRWzbtIGM9DT0ei9Gj59IcOidUWisPpwWzjp/wgaOI6ziz9SLZ1j32QcgJYk9+5DYs0+VzXNFjDc0F1dFevqtWzx+7wLOnzvD8avpaDQa3vj3P9i49jsiIqN4+Y230Gq1PHjPQvbs2sFbH3zCqLHjANi5bSu//3+/xFOn4z9vvE14hOvrvNbibvCe22w2PvrgA0LDwnju+Rfaezp3JHeUMC8pKWXtlu1cT03D12Ri2vhR+Pv5ttn93SHK27IoghCCAYOHMGDwEMrLy9m/Zxf7du0AICAwiCEjRuLnH9Aq925IpPv7+7Nm3ToWLVwIQGZmJtu2bWPL1q385c9/ZsW33zJ/wQL+/fLLvPXmmzXG/P3vfseq1as5ffo0f/7Tn/jnv/6FVaXrUOHtdyqnL11l5ZY9PH3PLLwNDVfiVHAvZeXlbDx0ksu3MjHoPJk6OIVgP/eJceicgrwhhBAM6JHEgB5J2Gw29hw7xWufrgDA38fEmIF92rznuL+fLxu+Xs78Bx4DIDMrmy07d7N99df86Z8v883qdSycPYNX//p73nj/oxrX/vav/2DtF59w6uw5/vCPl/nPn3/r9vm5uzhc5ZiNPd4ZuJKWxWdb9vHo9NEtrs2g4Dw2m429O7dz4dxZdDo9YyZOIiQ0rMHzO6u3vLmCuT7CE7oRntANKSXXzxzn4PtvI6VEZzCS2HcIPkEt28yonKuzAt3Xz48Pv17F0w8sASA7K5O9u7bz2XcbeP1ff+Obb75h2ux5/OpP/+CLj96tce3f/vR7Pv1mFefOnOZff/0Lf/jbP4Db73N7es6hc3jPq6+JXdEtaWm3+OjDD7l/6VJCG/nONYW/Tq0UgGuETi/My8rK2XH4OKcuXMHDN4jJY0cwe8qENp9HS0R5R/iAajQaho0czbCRowHIyshg17at5OU6KpYOGzWG+MQurXLvnGIbgWrHR1Gn09UoHnHwwAFGjRoFwLjx4/l0+XLmL1hAWFhNo1BUVIRer8fb25tBgwbxP//f/1f1WEvzz90hzu9kr/nXG3dQWlbOTx5Z3O7hwXcDNpudPacu8P3Fa2jUasb379FqlZ/vJFFeG7VazYh+vRjRz5Gnnp2Xz7YDx0jPzkVKGNGvF72T4lt9HrVt3v7DRxkzfCgA40ePZNmX37Bw9gzCQmtGdRUVWdHpdHh7Gxk8oB///evft9oc3d3arDMJ8PpYt/970nPN/OSeaYrNawPsdjvfHznE90cOI4RgyIhRDB9dNx2xM+NOId4QQgiiu/cmursjrclqMXPx6D5O7NyItNuJTu5DVLdezf5MX82zOiXOPXU6PKvZvO8PH2LwMEcU0LBRY1n55WdMmz2P4NBQymx2issdbTqLiorQ6fQYvb3pN3AQv/nV/9YZWxHojVN7HVz779papvLxbTt2cu7cef77xWcdHansxS3SPYo4bxinhbkQYgLwG6AnUAx8JqV8RgjxEPAOUD2Zd6WUckm1a38GvAhcAO6XUl6tOL4VGA2MllJur3b+BeA3Usr36puLzW7nm007Sc3IRqNWM3JAL8YO6gP+7VNkqiOL8ubuFgcHBzNj7nwAysvL2bNjGzu2bHJqh7ollJQ7ipdUdgrJy8vDZHJ4AH1MJnJz6y+rmJubi8n7dn9gm63u69pcge4u73lnFuf1LaStJaW8tmIz4/sl07tnArb06w1e3xkFXkeyeXYpWb33KNfSs1GpVAxJTuDp2eNbVRR0xvesJQT4+jBvomMT0G63s+PQcV7+5Bu0Gg2TRwwkJtw96U5NkZefj3eFLfMxeZObV3/57Ny8vFo2z96q82rrvuMdkbLyct5YuYUBSfFuq9nQkehINk9KOzu2bOLKpYsIIejdtx/3P/J4m/f3bk1veVuI8cbQe5voOdKRgiGl5OrJI+z66kNUajVdBwwnMDLW5TGdFefVMVezed4mE/n5eXXOKSy1kZaZjd5wOzrFXs86r5Lqa9/2zj/vKOLcmbVv7XNsNhvvvP8hiQnxPP7ow/We29rFru82nBLmQogxwBfAY8BKHB12kqudcklKmdjAtYnAGCAeGAb8Gnig2inZwF+EEINl9caNjZBrtjCgRxKR42tWnHTqYjfT3A9kawhyd4RsNTRW0qBRJA0aRXGxla1bNpBx6xZRcfEMGT2+xg+lOw1gSbnE4O1DaqpDzJotFnx9fes918/PD7PFUvV3Yz/eLQlvv5vEeWOL8As30vlqx0GemjUOk6HpH+HqY3UGwdfRbF6OuZDuMRFMG9LHpefRHDrD+9PaqFQqRg9MYfTAFEpKS1m/6yArtuwmOjSY6aOHoNG03kLL18eH1FuOThpmSwG+PvWnJvj5+tayea3vuXVn3nln43pGDh9v2MVjM8YQ6OPd9AWdjI5m83JzcoiMjmbk2PGuPZFOQHsL8voQQhDbsx+xPfthKy/j/KHdnN67DW//QHqOnIhG6+H0WK6Kc5OPD2m3HOuiAosFk6n+elA+Pr4UFFgoLHWsn4WTmzTt7UXvqN7zpsjIzOSd9z7ggfvvJTysYWdccwW64jWvH2c95r8HXpNSflHt2GEnr1VV/FNX+//qvAk8CCwBPnFmwEBfHyJDO1YbCHB4WXKys7mVdovcnBwKLAWYLWas1ttGWCAoLL/t2ZBS1vF61f7dUqlU+Pr6ERwaSmh4BEHBIWi1WrcKcWfR6fSMneoo7HXt0gW+eP9NdHovRkyYgn9gUJ05tdQQ9us/gLfeeJ3nXvwRmzdtYtCgQfWe5+XlhdVqpaCggNOnT9O9e/dGx21P73lHF+dNLbp3nzjPuRtpzQ7j7CSVmjuWzfMxEhfW+jbP1fdESklOvpmb6dlk55spKCzCXFBEobXm90qI21EwlX/XHIc65/uZvAkLDiAyJIiwIH88tO2zqPL08GDm2GEAXLmZxuufrUSr0TBjzBDCgwPdfr+BfVN49Z33+cnzz7Bp2w4GD+hX73leXnqKi4spKCjk1NlzdO/a1e1zaYi7zXt+9MJV9p68wE+XTG9zj20b0qFsnn9AIHEJrZM+1xKklBSY88jNSMecl0NxYQFFhQUUFxXWOE8IUWMtJ4Qgu6is+kDUugCdwRufwGB8gkLxCQxG4+HZmk+lQdQaLd0Gj6bb4NHkZ6Wzb9VnAHQfOhb/UOciU10R57369uOjd97kyedfYte2LfQZMLDe8/ReXhRbrRQWFHDh3BniuyRViXRnuJsFuqtr3XPnz7Nm3QZ+/NILaDStl/WsiPO6NPlqCyEMwCBgnRDiMBANnAB+LKU8WHFalBAiDSgDdgH/JaW8DCClPCeE2ANcrPh3X61bFAK/AH4nhPhSSlnS3CcjclORfu6rSlsfOTm5nL94gQsXL5FnrSlCVUJFQEAAoWFhRERE4m3yxmj0Rq/XVwmY5nwA7XY752+kk5Wexv4j35OVkY6tvLxK1EspUavVBIeGEx4dQ2RsvCMHpJWJjk8kOj6RosICdm1aT05WJt16pdB7wOCq5+uqUC8rK2P+nJkcP/49c2dN55e/+jXDRoxk8vixREZF8cQzPwDghy+9xOrVq/lu1SouP/EEjz32GD/7+c+ZPnUqnjodb739tlPPoSUC/U4T584stDccPEGhtYSHpox0y/06ojjvTDbPnTT0XuSZCzh/7Qbnr9zEUlSz/aBAEOBrIiw4gIjgQExGL7y99HjpdS0Ks7fb7eSaLaRmZHP60lU27ztMWZkNWS0uSiUE4SGBxEWE0SU6ot7WfM35Paj+vax9fYxfOM/07IfVWszald9wIz2L5IQYxg/p1+znW1ZWxvRFSzl24jRTF9zHb/7nZ4waOphR0+YSFRnOC085isK98PP/5bv1m1i5dgNPXL2fJx68n/966Xkmz1+CTufJuy//o1n3by53izjfdeIcV9OyeWr2nee5reRutXkNUVhg4caVS1y7dJHrGVlVxyu/40aTD/7BYfgFBuMVm4DOYESn92rUBjTlJZdSYi0wY85KJ+vGFS4e3YetrKzK5gkcY3sHBBEQFkVQdJxLXuzm4hMYwvC591NeWsKZ/Ts4sWMDgRHRdBsyxqn2a/WJ87KyMh5ZPJfTJ0/w0MLZ/Ph/fsWgYcNZNH0i4RGRPPzUswD833/9mC3r17Jp7WqWPPQoSx58hGd/+FMeXDALD09P/vLyG4Dr/dE7Qu/zSjqiF/3ose85ePgIzz/7tEu/a/pm5p1XvgaKQHcgmooqEkJEAteBVGAqcAb4MY5coq6APw6BfwEIBv4AjABSpJSF9QxZfeytwEYcO7VHgQ+llH9qKvdoQI8kue/TV+ods7nCvL52aWnp6Rw6fIQbN25WfTj9/f3pkphAeGJ3l3r3NfcD56xXvLy8nMy0W6Reu8KNq5ercqwNRiNJPXsTHd+lTXb6Tx07zLED+4iMiWX4+MlO3zM5uGVVbT019RsPa4nzUQXNCW9vaWh7RxHnziywV+4+gqdWw6SBvdx6b2fFud1u54v127j3J789JKUcUN85QoglPxnU45NHetUbcVkv/739MF+fv95bSnm8YowOZ/P6d42Vu1/5pdPPyVUq34Os3HwOnDjL1dS0qsf8TN4kRkfQJSYCk9HQanNwFZvNRmpmNpeu3+LCtZuUV9g8fUAofXp0J7lrQptsUB4/fY5NO/cQFRbK7Cnj6/Uu1Pc9F3H9oKSozvGW4o4+5s3hThTplRuRc0b2b5f7SylZufsIi371n8Zs3uQnUrqsfWlAcn0P18sf953gvRMXx0opt1aM0eFsXq8+/eS3G7c5/Zwao7F1lDk/jzPfH+HGlctVxwze3kTFJRAVm4BZtNxr7a7QdbvdjiUnk+zU62Reu4TNVg6AxsOT8IRuhMUnoW5F72Ylmdcvc3rvNoy+/vQePblBz35tUV67j7m7OJJ6uw6Hs+K8kvYuEldJWwh0Z9a4u/fu48rVq9y7eFGz7uGOfPNvVq/j4cXzGrN5AxYlxRz4vxF9nB7z9aPn+Meh0wuklF+2eIKtjDPf4MoktnellN8DCCF+D/wEGCalXF3t3DQhxONAPjAE2OTMJKSUNiHET4FlQgjnXJ0N0BKveVp6Ott27CQvNw+AkJBg+vfrx7Qpk+vsGrny4WuOKHc1TF2j0RAWGUVYZBT9h932ZhZazJw98T2bt24DKfHUe5HcfwjBEVF1xnDVoNVHcko/klP6cf3KJT579w38AgIYN202Wo/Gd3ZPZRQA7jGSzTVwzfGe3wmec2cW1J9u3kt4oB8jeye1yv2bEudHz1xg/a6DLJg0yu33r4dOZfOqU9/r2Nj7m5VvYeeVLDK2HEEIR5rQgJ5JTBkxsMNXm1ar1USFBhMVGsyoSVOrjhcWFXHkxGneXvYFdrtE5+nB8IH9SIyLaZXn1Kt7V3p178q1m6m8+v4yTN5GFs6cgpf+9qK0vt8kmZdW51h12tsuuMqd5kFfseswOg9tu4nyc9dv8e2uw8wc2rctbtdpbZ6rmPPzOLxnJ1kZaQgh8Db50r13HwaOGFOvffCmZQXg3JlPrlKp8AkMwScwhPjetzVLWUkxqRdOs3/1F9ht5Wi0HsT07EtITGKr2LygqDiCouIwZ2eyd9VnaDw86DNuOjqvxh0s1QV0R6G9w9sr6Qh56Bs3b6GgoKDZohya7zUHuHb1Kl99+QVjx41r9v3vBJoU5lLKfCHEFeqvrdbQMQm4ZA2klGuEEPtxhDu1CVJK9h4+xuHvT4LeREhwMBPHjcPfv/E+ts5+6NpCkNdHzR8RD0J6DGByD4cRtxYVcvrQXg7v2ISUksj4LnTvNxiNVuvSj09TIj4qNp57Hn2K7Ix0vln2Pnq9FxNmzUOnazznyB1GsqUGzlWB3tK88/YU584spN9ds53e8VH0T4pr1XnUJyrzLQW8/+16usRE8tNH72m1+1fnTrN51V/XsltXOXrhGvtOXQAgOCaWMQP7EBzQtr273UFDG7AGLy9GDOrPiEEOQVVktbL7wBE27tiDlJKEmCjGDBuMp6d7w0CjI8L5waNLycnN44PPv0WjVrN49jS8mxllUPv5dQahfqeI89bciGyKQmsJH6zbSXigLz9e3Dbt2O40m1eb3Gvn2bxtO1JKvH186TdkOEEhrdNZpjW4lFF/UEJ8sMO2aD11xPToS0wPxyZOeWkJV04e4dLR/djtdnyDw0gaOAKtp3urZ5sCghgxbynFhRaObFyFtNvoM246XiZflyuzu4ub5uJmOZk6kkBvLXHeWOHjVavX4OHhwZxZM1vl3o1RUlLCso8/xtvkzfMvvnQn1/FwCmdjXl4BXhBCLAPOAT/E0UpjtxBiOnAMuAn44QhXygL2NmM+P6m4rrQZ11bRmNdcSsnJsxfYvvcAdrudIf378MxD9yKEqDecvbm0tSh3VlTrvQz0G+nIlZNScvPyBTZ/sxybzYZfYDC9Bg3H0EBFTGfvV90oBgSHsPDBx8nPzWH158tQazRMmDEHg3f9lYYrcZdAb4mBc7V6e0u85+0hzp1ZQL+9ehtDuifQIy6yTeZTKSKllKzcspubGVk8vmA6el2bF8HpVDYPGk8JOHflBpv3HcZms9M3uQtPzhqHNiympbdsNdxZK8RLr2fCqGFMGOUo4Hbh8lU+/OJbSsvKCArwY+zwIQQ2sRnrCv5+vjz1wD2YLQUs/+Y7bHY7C2dOIcDPt0Xjdhah3tnF+bJNe0gID2ZQ94RGz2uNCvUbDp7g3PVbPDB5BN5ebS5sOpTN06ga31xvao11/eoVdmzdTFlpKV27JzPn3oeandoSYdI1y2vuDm95Q6K8qcdUEb0Y1ncIADlpNzm8cSVlJcV4efvQpf8wvP3dV7hSZ/Bm6Kx7KC22cmTTKkqLrZhmz8UvMNht96hOQ8K78j1yNee8Ou2dfw5t32JtxarvMJlMjBnV8tpB4JrXfNfOnRw9cph777sfP39/t9y/s+OsMP8LjoiezYAOOAJMrdhlHYOj4qYPYMZRFGSilLLA1clIKY8JIZYDD7l6bW1qi/OrN26yZvMOysvL6ZnUhSeXLm6WkXbmw9aWorwlIVZCCCLjuxAZ76h8mpORxqEdmyiymJFARGw8SX0G4tmEl7uxOVUaRh8/f+YtfYRCi5nNa1ZSbC1i7NSZBAaHNjpWS3tRukOcg2ve884kzhtCSslbq7YyrGeXNhHllZSnXSM9N5+Pdp1g+ughzBo3vM3uXYtOZ/Nqk5qRxXfb9lJSWkaX2EgenTet3gJpHYXWLtxZSWJcDIlxjk2JjKxsNu3YQ05ePlJK4qMjGTG4P0ZDy3PpTd5GHr9/EUVWK19+t57cPDOzp4wjJtK5qsZNUf316ih2o5LO2lbt4w276RoVysBu8XUea2jjyx0bEbmWQt5ds51RKd14du7EFo3VAjqVzav+u1655srOymLT2tVYrUVExcQw/5778PR0bOq2dRebloryxkS3y2OofAkaOI34YANF5jzOH96DJcdR1M43OIyEPoPRG1veAtBDp2fw9IWUl5Zwcv9WcrMz6D9yPOGxjW9ytRYt8Z7fLeL8629X4Ofn5zZRXklT4rygoIAP3nuXlD59efYHz7v13p0dp1ZpFX0nf0E94UdSyp/g2AF1GSnlmHqOPQw8XPds1ykoLGTVhq1kZucQExnOI/fMw6OBXGd3ecvrE+XFVis52VmY8/OxWosoKiqi2GrFWlRETmExarUGtUaDWq1GrdGg1Xpg9PbG4G3CaDJhNPng6Xm7ynFLxHhj+AeHMmr6PMAhzFKvXGTX2hWUWIvwMnrTb+Q4vH1d29GqPdcIk4mZi+6jrLSUrWtXkZOVyfDxk4iMaTpMurle9JxiGwf27MZWmM+0GTNcurYSV7zn7uh33to0tpCUUvLat5sZ1y+ZpOi2C/eTUvLNzkPkWAp5YeoING1QuKuRuXQqm1cpGopLSvlu215SM7MJDwrg/pkT2yPagOKSUjJz88gzF1BoLaaouMTxz2qlrMyGRqNGrVKh9glCo1Hj6eGBtzETH5MRH29vfH280etaVtndGYIDA1g8e1rV35euXuer1RuwFBRi8NIzZexIQoNb1qbOS69n6YLZlJeXs3L9Fr5es5GJo4bRI8l9raDqE+kHT57l4rVUFk2pP3e2LehM3vP31u4gJSGavl3aNpJk3f7vuZKWxbNzJuDp0X5ioLPZvEpKS0vZu3E9Zy5dwT8wkOlz5mGopzBvsKH5LWadWXOVlZVizsmmID+Pq1l5lBVbKa34ZysvQ6jUqNVqVGoNKrUatVaLzsuIzuiN3uCNzuCNR0Vld3eI8vpwjKvFO3kUlTLcknmLrWtXU1JoQaP1JLrvcIwBIVVh8s1B4+FJ1LDJRNjtHNu7lUM7NtGj/1Dik91bOLY21y+c5eLJY4yaueCuD4d2hs+//Jrw8DCGDx3SKuPXXjNXCvWdO7Zz4vhxHnz4EQxu2AS/0+i47pMWcObSNdbvPojRS8+MOXMJCnBPeER9uz9SSm7dusXlSxe5cvkyuUWOLiDVF0Kenp74BwRi8vHBy8uAn38AXl4GCqQWtUaN3Waj3GbDVl5OeXkZpSUlFFos5GRmcO3SBQosZkqKi8krLqtzb5VKRVB4FOEx8QSEhjcYBdCs3Vu/CBLGOLw7VouZjRs2UGTOQ2f0pvuQMRh8HOGfruQSVf+BSx4zDbvdzuUD29ixYQ0jJ05tNYE+cOgwzp46ye/++GeeffJxfHx9nb62OTRXnLe311xKyctfb2Tq4N4kRLgvtaMp0nPz+WDdTmYO7Uu3mNsio5P0PG93Lt+4xXfb9uLpoWX66Nbpr12JlJL07FzOX73JpeuplJQ6vo/Ve5V7emgJ8vfF12TEoNcR4GvCoNfhpdOh1agpN4VQXl5Ouc1GebmN4pISzAUFZGblcOHyVfLNBRQVWxGIGi3SpJSohIqo8FC6xMcSExnu1h6r8TFRxMc4CmNaCgpZt3UH6ZnZGLz0TB03ipCg5r+uGo2GudMmIqVkw7ZdrN+2i0mjh7tVoMNtGzKgRxI+RgN/eGsZj86b2m51BDqDOH/ru60MSU6kZxtGB+VaCnln9XbG9Utm8qDebXbfO4XU1FS+W7USlUrFxImTGDJhapPXNFecSykx5+Zw69ol0q5dobSkuE6fco3WA5OfP0aTLxqtB17evnjodGh1etQaLdJuw26zYbPZsNvKKS8tpaSogMK8XLJvXqO40MLNjLwG52D0D8Y3PAbv4AjUGvdt4HgHhZEU5HBYlJcUc+3Ybi7t38ypaiK9PpwR7iqViuRh45BScunYfnbu+A/DR44iIblln/eGPOFRiUnojUa+fvs/jJ45n5SuzffUdwSveWuy7LPPiY+LZfDA+nvGtwY2cxZvv/cBAwf056lnnm2z+3Y27hhhLqVkw55DnLl0ja6xkTx37xxUKhXSz305CzabjQvnz3Ps2FEsFkuV+A4NDSMhIYH4Xv2rwqaaIqOwDGcbhDW2W2srLycr7SapVy5ybM827HY7ORX91f2CwwlP7IYpMKTFHhO9t4l+E2cBDpF+as9mCvPziO7eG9mjb53xnRXrKpWK+MFjiRs0ht3rVqDZsZUZC+/Fw4nX0VWBnpTcg9iERN58903GjxpJ3379nLqukrYKa29tcd7QItlut/PvrzYwe0R/YkNbT9jVZsf3Zzl9NZWXFk5p0EveEQS6EMIXeAvoiaPw0SNSyj3tNR8pJTuPn+N4hoW4iFCevmeW29uD2e12LlxL5cjp8+RZCqoWomGBASTGRDCgxxinPPLuDFO32+1cT73F+UtX2bp7P+UVLYOkhMiwEHonJxEVHtZsm1f5vfU2GlgwYwrgiL76buM2MrKy6dWtK6OHDWr2+EIIJo0ZwcTRw1m5fjNbd+/nocVzMXh5NWu8+qh8vbsAP3l4MW9+sYqeXeIZ2b91PVYN0VFD26WUvLlqK6N6J9XYEGxtDp69zJ6T53lubvt6yZuio9k8gEMHD7Jv7x7CIyJ48KGHa0RBOpNG2JQ4l1KSev0qZ098T152lsMhIgQ+fgGExsQxZMJ0dA18VysdIM1JVrmUUUhDW2fSbqcwN5O81Cuknj6MvbzS5kkMfoEExCZhCo5o8TpP46kjfpCjInZ5STFXj+zk4t6N+IbHEp0yFFHNC13bq9+YUBdCkNBnMAl9BnNm/3Z279zJvCX3N1lryBUq18mBoRHMffQ5jqz9kuK0awweNdZt9+jsVK5dP/xkGcndutG/X5t0fADg5KnTrNuwkScfq/CSV1tHu6PFmrvoCDav0wvzPHMB327eRX5BIeOH9GPSsJpt71rSPk1KyfkLF9i1Zx+WUhtqtZquXbsyecpUfHxqFkhzNq/c1d3apkKo1BoNIZExhETG1PCKSynJTbvJ9TPHyc/aiJQSjYcHsT36EhLbpUUGXO9tov+kOUgpuX76e3Z++QF6o4leoybh6eUwztXn4oxIF0IwfMpsLHk5vP3Gqwzq379G27fGcEWge3p68shTz7Fp3RrOnjnN4iX3uvxauBrWDi3vd97aSCn515frmT96EFHBbVOAw263886a7cSHBfPETOd+PNt5Yf9PYK2UcoEQwgNwn5JygQJrMSt3HyEr38Lwnl15/n735qRevnGL7Qe/p9BajEol6BITycRh/fH3cW0R1Vo54yqVipjIiDq52lJKbt5K5/vTZ1m9aTt2ux2tRsOgfr3p1a1rndDGxtKXaj9mJL0q5P3YqTP8552PMBq8mDt1Ir4uvi6VCCGYNXk8loJC3ln2JYmx0UwdP7pZYzWE9AtHDTx9z2w27T3Mm5+v4tH509otzLOjec/fXLWVMX260TWqZSk7zj4vKSUfb9yNv7eBH8yb1KJ7thEdwuZZrVbWrllNeloaffv15+lnn6v3d9tfp25WjZ/01Jsc2rODosICVEJFeHQsfQcPwy8g0OnUwZbklDcVui5UKowBIXW811JKivKyyLpyjutHdyPtdoRKRXBCDwLjklCpm7/E13jqSBgyAYDcm5c5vnY5aq0n8YPGovepu0ao/hwaE+ndBo0iIWUQ337xKd5+gcyYPadZ69HG8sdVKhWz7lnKsYP7+Py9N5h738NotG2/AdZQjnhzPqPu4sNPltEzOZm+fVLa7J5ffPUNAD984Qf1Pq7vWCK93W1epxTmEsmW/Uc5fu4SPkYDc8YPx8fbWf9z41gsFjZu3kJGRiYACQnx3LNwPhhaHgboiih3JY+8vh8EIQT+YZH4h90OzSsrKeHqqSNc+vYTAFRqNVHdehOW0K1qoeZsblN8sAEhBNHJKUQnp1BkzuPwxpXYbeX0nTATL+/bGxeuiHRvX39mPfgU544d4pV//p177r0P/yDnKnu6ItDHT57KtSuX+ftf/8L9DzxAcLBrYdut7T1vy5B2KSX/+drhKW8rUQ7w1Y6DTBnUm8igjl+JUwhhAkZRUbBISlmKGyqpu8Kekxc4ePYSRr2OmcP6EujT8mI9AEXWYjbuOcSN9CyEgJjwUOZPGoWxBVWh26qQW3WEEESGhxIZfrugZGlpKfuPHufNjz/DpjWiUqvp1yeFPim9cSW2oLpQT0mGlORumC0FfLV6PQWFRSyaNZXgwIBmzdvbaOAHjy7l2Kkz/Pnlt1g8ZxrREbdfv/o2EFzd6JN+4YybGk7SrXT++PaH3DdjPNFhbZeqUp2OIs7fXr2NEb26tliUg/Mbht/tOcrQ5MQ2TRNqLh3B5h07eoS9e/bg6alj6vRphIQ0XiwWnBPnPmobazZu5tYNx/sWFBLGqInTMJpqbrJ1BFHeGEIIDH5BGPxu18Gw28rJuHiK05u/QdrtIASBMV0JSkh2OgT+fLql5gFNIPr+M4n11XBp70aKLfkkDJ3YYJh7U950raeO4XPvJ+PaJd59+R/0Hj2ZAb2SnZqbK6QMGExMfCIfv/Efxk6dSXR8otvv0RCNFW6rr3ChK9c3B729mGWffU63pK5tKso3bNpCt6Su9Ozh3PvrSickd9MRbB6AqJ4j01mIDguW3/znN6QkOZc/0tQi8VZ6Juv2H6ewsBCj0ciEcWMJDalpcBrbxXFm98tZUd5SQe4MlUbTVl5GxoWTZF89h5QStVZLZM9BmEKan2cX4S04uvk7yktL6DNuelUeen00JdJt5eVs/mY5ASFhzJw+3aV5OBveXl5ezmcfvU/v7l0ZNXqMS/cA142Iqwtqd4vz+haQr69wFHrrEtn0oqcjoJv4yCEp5YD6HhNCLPnJoB6fPNLL+R/g/95+mK/PX+8tpTze0DlCiD7AG8ApIAU4BLwgpWydKj21iAoOkMt+8QwDkuJqeBeaG9qfmZPH+l0HyS8oxEvnyfih/YgKdV9rm/YQ5vVRW9SWl5dz5Ngxjh47jt1mQ6PVMmrEMLokNn/BVp51nc9WriEv38zCmVNaVCzObrfz0ZcrMHp5MXfaxFYp2ma32/ng828IDgxg2vjR7VrTor0E+gfrdpKSEE1Komvfn/q+b23xHJqweZOfSOmy9qUBzgubP+47wXsnLo6VUm5t6Jz2tnmRkVHyjbffYeiwYS5/D+pbk+Xn5bJ9yybyc3PRaj3oOmAYEdGxjY7jzHqsvUR5deoI6WpIux3LzQuYr53BbitHpVLjE98L7/C6nQecxW4rR3VpL0V52cQPHo93kPObW7VFupSSo5tXY7eV02/iLGL93OegrPSoSynZsOIrNFot46bNcupad+WXOyOwa39eW6Ma++ovPyUsLJRhQwa7fezWQOcT0JjNG7AoKebA/43o4/R4rx89xz8OnV4gpfyyoXPa2+ZVzaMzCvMBPZLkvk9fcema2gvFkpJSVm/axs20dMJDghk/Yy7Geip5VtISYZ5eUEpuVibZmRkUWMwUWMwUWsxYi4qQUiKEqFPYzcPDE53BiN5gRO9lwMvbhLevP9l2D9QuFDtyxfCXl5Zw4/u9mDNuovHUE9t/FF6+zfMCRfmoObL5O8qKrfSfNBudoXHvXmMi/cLJY5w8sIdJi5aSGOrafJw1rvt27ST18jkeevgRl/N0W1Oct7Ywf3v1NoYmJ5Ic654WTm1BU8L8fyYO/uSp4c7vCP/wm618dvTc/wOq7/68IaV8o9q4A3D03h0updwnhPgnYJZS/m/znoVr9O8aK3e/8ssax1wV5eXlNtbuOsCVG7cI8vdl8vCB+JrcE2lUG7tvGFk5udxKz8RssZBvKSDfbKGgms2rpLLAm6eHB94GA95GA0ajAR9vIwF+vvj7+qB1MQzR2S4bpaWlbNu+kwuXLuLh4cnkieOJjGjed6G0tJQvv/mW3NxcFi9cQECtnqyufO9Pnj3Pdxu28th9C/FvYf/zhth/5Hv2HjrGUw8srsrTbQ+R3tbifNmmPXSJDGVAUtOFRjsKTQnz50b0WfvzCYOcHu//rdvDG3uO/xUYU+1wx7J5ffvITTt2N/v6nGIbdrudXdu2cOnCeXx8fRk1biL+AbfXEE05TJoS5rXTB4vMeZizMrAWWigutFBcYKGkqBCJROCweZmWkqrCcWqNFq3egEfFP62XAZ3RF523Tx3vdmPi2xXstnLyLn5PQeolhFpDQPdBeAU2byPVbitHfeUAhTkZJA6fgsHP+do0tQV6duo1jm7+joFTF2AKCHKpqHBjVA93v3DmFHu3bWLBA4+i0ze8AeDuom+uiPPWEOXfrVxJkEnP6JEj3D52a9GUML+vf7cDf5w5yunx/r39CH/cfOA1oHq1uw5l8yrpnKHsZSXNvvbUuQts2bUPjUbNtPGjmRtekZ8pC7E5XY6tnjlJSWZ6OufOnOLa1StV5YnNJTZHWHlgEP6Bwfj6+xMRE4vR24Tey0Cqpe5zkVJSVlqCtaAAa1EB1sICzl1LpejEKQrNuUib3XFetWrFnnoDgZExBEbEkF5Sf0u4ptB4eBI7wJHjWGot4urh7Vjzc9D7+BM3cCwaD+fbLl3PtxHYfwplxUUcWv8tBh8/eo+Z2mBuY2Ph7ok9UoiK78r6Lz7keu/+dE3p73RvSmcraw4ePoLMxC78/W9/ZekDDzgVMtfZqL0A/nD9LgZ0jetUorwV+UJK+ctGHr8B3JBS7qs8H/h560+rLq4K8ovXU1m38wBCwOThA5kx2n2tUTJz8jh+/jIXr93EXn2T1+BLoJ8foSFB+Pn6EBsViY/JG6PBq17vl5SSkpJSLIWFWAoKsRQWkpObx/lLV8jOza8q8Fb9fC+9noTYaBJjo6vCyF1te+nh4cHECeOYyDisVivrNmxkxarv8PX1Zdb0aY1u1tY31pJFCykpKeGjZZ+i03lyz8IFVRt9rtSb6JHUhcTYGN765HOSuyYwdrj729kM6tubxNho/vraOyyZO5PYqIh26Y3elqHtX247QExIYKcS5a3IKinljxt5vN1tXn2b3s7koN64cYP169ZiKS5j2KgxjBw73m1zsuTncv38WY6fOeMowlbNnhlMvpgCQ9AbTfiFhKM3euOhN6BSqaqcJNUtlK2slFJrIWXWQkqtRZQUmDGn3cBqzsVeYfMyqm0OqLSeeAWG4xUUgYcpoFkRNSq1Bv+u/fDv2g97eRnZp/eTdWI3ap2B4JSRaPXO2zyVWoNMGIoutpzrx3Zgt5WTNGomaic2Uitfj0qBHhAezZh7HufAmi/wCQyFoWOqzm2JSK+ei57YLZnwqGg+f+9NRk6cSmxi12aP625aq2f5+nVr8dVrOpUob0U2SimfbuTxdrd50EmFOThEhrMLVCkl67fu5NT5i/RM6sLTDy5pcfGbrMxM9uzeTUZmBtZyx4I0MDiErt26M3TkaNRqdbN3Y4UQeHjq8PDU4RMQyNU8KwmhjYftFxcVcOz4Wc5s2UKJJd8xjkpNQEwXguK6odY2Ldbr7MgmDkcPlORnsX3FZwToVUSlDMU/0vkQKK3Oi7Dhc8lPv8HW5W/Rpd9Qoro1Xhm4PpHuqdczc+kTHNuznfWff8j4efeiVqudEujOivOgkBAefOZFln/wLn17dmfESOd241wpBgeu5Zu3Rq65lJJ31+wgJSHK5VDOuxUpZZoQ4roQIklKeRYYjyPcqU1xxeZtO3iMo6cvkBgTyRMLZ6DRtOyHPzffws4jJ7iZnlm1IAzy86FHYhyj+veuMb6roexCCHQ6T3Q6T6fbWxYUFnLp6g127jtEekFFyzaViuTu3eib0hsvF6uc6/V65syaCUBWdjafffk1RUVFjBw+jJTezlcz9/T05NGHHuBmair/evlVBg0cUKNPbPXNg8bsgKenB88+fB879x3k329/yJNLF9eoQO0O/P18+fkPnuS9T78iLDiIKeNu27za72FrCvW2EOfLNu0hMsifYT3d257uTqWj2Lza6O3FDYrzgwcOsH/fXqKiorl/6QN4eHg0GtHYVIX2ogILZ44cIOPmtaqK5N4+vkQldmPglHlN5mxfyiiEwoZD3dVaD/RaD/Smuil/leuxqGrHbKUlWLNukn/lFCX52Y6DQmAIicYU3Q2NzjWbp9JoCeo1HICyIgsZR7dTXlyAT2wPfGKTnRb+KrUGuo8lRlfG8bXLCYhOJCplqFPXVhfoao2GITPv4frZE2xd/hbD5tyHh07vcjHh2lQX514GI/c/9TzrV3zJlQtnGTNlZtV5rdUeLafY1mrCuzG+W7kST50nE8Y571m+m+koNq9ThrJXD+tsbKFaUlrK1xt3kpaVw8RhA0geOKzRcRvztpy8fJM9u3dhLXYIsICAAIYOG4aHb8N5mQ0ZfHcWFGksVN1WXkbOtQtkXj6DvdwxFy+/IKz+CXh4u17MTtrtZJ89SFH6ddSeeoL7jKqzu9olpPGQ9evf74Psy/QZPwOfQOe8W7UNcW5WBpu/WsbYOYvxD3Z4tp0R6K4Y3V3bt2JOv8m99y91+septULa3bUgLk+7VtWnfPKgXm7PKS9NverS+R7hMS7fY8uR00z96Z9bI5S90RzzirH74Gij4QFcAh6WUuY6P/vm079rrNz/1dtNnldebuPbzbu4npbByP696d+j+R6Ba7fS2XbgGIVWx+fa19vI8H49ncpFb6sc89o222azcfrMWQ4fPUpxxbyDggIZMngQYaGuf96llGzfuYuTp06h13sxc/pUAgNcS6fZs28/e/ftZ86smcTF1v3MO2MHcvPyef3D5SyePZ246Nbptb3n0FGOnjjNk0sXN3vjuqW2qjXEuZSSt77bxsBucfRJdN3mtDf7Tl1k9Au/bY1Q9kZzzCvG7kN72by+feTubZsbPceq0mG321m3di2XL12kX/8BDBlaVxA2Js6rr9My029xaPcOCgss5FnL8DJ6k9RnIMERUTXWAY2tzVqaN+5qyLq02ynMuIb56hnKS4oA8DD44BvfC51fTVudk1lzbv5BdaunSynJv3wS87WzqDQagnoNx9PH+RD1LiHeZF46zfXv9xI7YLRLjpxK4oMNlBQVsuubj0keNpbQ2Lqbac0R6LXXiedOHufw3l0sePAxNBpNq/Ytb2th/unyZcTExDJ2cNu1RHMX3x8/waARo1sjlL3RHPOKsfvQTjavkk7rMa+kvv7GJaWlLF+9hUJrMXMnjCAsqGIh1UTrNLUlvWqhl59vZtuOHaTeugVAZEISc+cvqOOFacjgt0SUt1SQV6LWaAmK706e4fZCrjAvk7xzhyktdHjVPQw++HXpi6epaS+VUKkI7D4Iug+izFpAxrEdlFsL8I3rgSmmO0KIGj8q9Yn0qN6Dsdv6s3vrWsqsRXQdNYNuMY0XS6p8PSoNsV9gMHMefY5NX31CWHQcvQaPqHpdGxPorlRtHz5qDJcvXuBf//g7Tz3zrNP96V3BWc+5u7zmNpudf365jvmjBxIT4p4+5a6K8caubUyol5SW8dZ3W0lpx4W1lPIoUO8PRWsjtI1//srLbXy+bitZeWZmjxvG/Emu75AXFFnZdvAYV286PpPR4SHMGT8Cb4PzXpj2EuSVqNVqevZIrlEBNj0jgz1795GW7nhevr6+jBw+jIjwpucqhGD0yBGMHjmCwsJCVq5eQ05ODr169mTEsKFObdoNHTyIwQMH8PW3K1mzbh33Ll6Mr+/trhXOhLj7+frws+ee4MMvvuX0+YtMc3NbNYCh/fsQGRbCn15+k+ceuR+joeGWRw3Rlt0knEFKySvfbGRC/54kRbe8+npbUm6z8e7q7cSGNb+YYEtpT5vXFHa7nTXffMaVWxlMmjyFqdOmNXhuQ5Xai61Wzu7fzfEz5wAIDA5l+LjJeFe0w3WlGG9LaW4OuVCpMIbGYgyNBRziu7zITOrJ45TmO7oLqT31GKN74ulXc3OytlCvwjsOY4847GWlXD+8h7LCPPSBUcQMGl6jl3mDz8MQSd/ZD3Hl4DauHdlF11HT8PJxfkPzUkYh8cEGxi55nKObV5N+5QIpY6bWOKf2utAZardY69qjF0GhYXz46j+Y/8BjgC/Qep7ztuLD99+nV+/e9Onbt0a/8Maorn/aC7vdzoefLMPfr+VdsJpLR7B5nd5jXh0RFMGXG7aTnp3HPVPHEuTvW+/1DS0ebTYbGw6e4dyF85hMJsaOHlVVCKih0ClnhLm1qJCbV69w5vI1Cs35FBU6DHDla1+5uMspqibmay34hEpgLvfAw8uIp8EbDy9vdEYTOpNfjcWhq8a91JJLzvmjlFpyQII+KJyAbgOd7n8ppST/yknMV8+gNfoQ0ndsnWsb8qKXWgs5u20VnkYTiUMnoVKrG+1/WUl1Q3zy4B5uXDzHhAX31yja1pQH3VnDqy4p4M3XX2Ppgw86lXfenFYPzojzli52i29e5u+fr+X+icMJC/B16VpNt7qRJrailhWiKdm7qtHHq4v0M1dTWbnnCI9NH4Oft6G1ir816TFvTxoqeCmlZOWW3Vy6cYtFU8YQHuzahktlyPvxc5cxeukYO6gvsRHN8CzXsqlWazGXrl3n5q108swW8s2WGjUxKqksiFT9scpicCqhwsdkxMfbGx+T458pIoGgwMAWpSLl5OSyc/fu25uuERFMHD/Opc23o8e+Z9eePZhMJhbNn+f0tVarlY+Xf4aHh5YlixY2WNSuMZuw/8j37Dl0lKcfuMftoe0ARVYr/377Q+6ZM71Or3hnaYm9cpfX3G63868v1zNrRD/iw1zrOFCfzWsp5WecL2R2JS2LTzfv5aGpIwnx82mt4m9Neszbk4Y85lJKNmzazKnTZ5g9cwZxsTFO9z7OKbYhpeTIwf0cO3wIvZcXg4eNwCskut5NtoaEeX3Ok7KSEnJuXefM+SsUF5opLSxA2qutD6sXvKwo/pZZu8aQEKg9vdDqjWi8jGj0RrR6Ix7efgiVY33ToJhuBFtxIZZrJyjNc9gVrdEPU+JA1B7O94y2ZlzFcvkoQuuJf88xBEU4J7Tt5WXcOrAeabcxcsYCl2oVVa4Hb108y5n92xk+9348dHWFuKve89rrw7LSUj577w2Gj5tEbGLXVhPmre01l1Ly9ltvMmz4cJKTezi9HlVb0lH5Nvy7L7XOvb6irO73wp6X5tS1NwolH3z0CUsWLyI6KrK1ir816THvCHR6jzk4Pozr9h/n7PV1LJg3i5jwxnd9RC3P+dUbN1mzeQc2m41xI4Yw8akn61zTWF5TJUWFhZw4dpQjJ05RfcNDp9fjGRRBRFwiBpMPeoOxxsKyKQ/5pYxC7DYbJmshpYVmSgotFOVmknP9AsWWPNLza17vFRSBb3wvp4yuh7cfHlGDqFzeFWfd4Ny6L5A2G/qQWLxjelX9IDSIMY7oMT0pzsvi2pbP8Y5IJKD77cKHDXnRPfQGek1ZjCUrjWOrPiK8R3+gZ9XjDYn06julPQYMJTw2gW/e/g/j5t6DX5Djva+9M1obZ/PObZ5GXvrRj3nz9dcYOmwYKX3aJyyoJZ6oktJS/rJ8NY/NGNPs3tepaenMfvhpTp27QM6RbWg0Gv761oes2rSN6PBQ3vrDr9BqNSxbsYbXPvkcPx8fPvjrrzEZjUxc+mRVJe7/fuYxxg4d2OT9SlOvIqXksz3H0QWG8OPF01qldVRnZvO+Ixw5fZ6ZY4Yxa9xwl65Nzchi1da9lJaVMXJAb35w39xmzcFaXMLhm3mcPLOzhrjWeXoSHxNFl/hY/HxMmLyNLotpm82GpaCQbJsn+fn53DKbObVvP5lZ2Y7+vBVIKYmJiWbYkMF4ezf9+fb392PWjNsF+K9cvcaHnyyntLSExIQExo4e1WQV+D4pvemT0pus7GzefOc94mJjmDZlcpOfUb1ez2MPP0h6RgavvvEWffukMHJ4PRtfjfQuryza9rfX322V0HYvvZ6fPvs4b338OclJiQwf2M/lMdrbc26z2fn752u5Z/wQIoOcq1lQmyqbd/4C+WcOo9Fo+Mtrb7Ni/SZiIsJ552+/R6vV8snXK3nl/Y/x9/Xho3//FZO3kXELl1bZvP958VnGuVC875sdhygoLuanS6YrNq8We/cfYPeevUwcP45JE24XdKsUII2t0bIyM1mzejVZ5gL69B/AQ088XfX6OtvOFqCstIRrp46Reqlm8TeN1oMSfRCmkEiCjD6Oom+NdHg5n26h9jdX2u2UlxRRXlRAeXEBpZY8itKvk3srrYbNA4mHKQhjdE80ThRrU+sM+Ha93Sar1JxFzvEt2MtK8PQNwZTYH5Wm8U0+fXAM+uAYyosLyTqyjvzzfvh1H4FQqeoNia9EpdESMXQ6ZUVmtn71MYaQaIaOndDknKsTlpCEf1gkO7/8gB7DxxMSW7O95dU8q8uec7gt0LUeHtz7+LOs/fozMm7dZNDIsZ3Oay6l5PVXX2HipMn0jI90yVNeSeqtW8xasIRTZ85iTr/usHn/+BcrvltDdFQU777+MhovE58sW8arr76Kn58fH7/zBiaTiXFTZt62eT//CePGOC+a127ezvXUNH722D0OB5uLbYXvNDq1x7xSkJ+5lsrEAT3pEecwc84USJJSsvNCGoe+P0lsZDjTxo+uWow1FM5R2+jfvHmTdZu3UlhQADgEeM+Uvpgi4uu03HJl57WSpsLV6/OOSykpyrhO3qUT2Moc9zQER+OX0Ju8POd/fACs6VewXD2OlHZ8uwzC09+5UECN9QbZZw4Q1HtEVXhVberzol89sgtLxk26j59bo6hKY170SmNss9nY+OXHRMQm0HNQTZHiDu+5v07Nim+/wWq1smjxPQ0umJrjMYfW85rbbDb+9M6nPD62H77G5vUH1XQbRnFxCQW5WSx67iesefdlcs0WHv3Zr1jx5j/5yxvvExcVwawJY5j84NOs/+BVvl6/mWup6fzosaVMXPoka959GU21Nn9NecytpWW8tmEfM/t3r9Miz/Tg/921HnMpJVv2H+XYmYuMHNCLAT2SXBrn4Mmz7Dx0nIjgQGaOHYbO0zWPa1pWDlv3HyXP4rB5nn7B9OnZnZ5JXWq8vy3B1XA6KSVXrl5j9969FFTMKz4ujhHDh6LXu+ZJOX/hAlu2bqesvIzxY8fQLcm51/f0mTOsWbeBcWNG0yelt9P3275zF8dPnODRhx5Ep3PeewWgMqc5+pEH+DO1FULbAVZv2kZ6ZhYPLJzjchtJaL7nvCVecyklf/tsLfdPGkaIn0/TF9RDpc2zFhcz//HnWL/sXXLzzTz80s9Z9cEb/OmVN4mPjmL25PFMWPwQmz57n69Wr+da6i1+/NSjjFu4lPXL3q3xnajtMa+9TikrK+dfr7/L2L7d6Z1Q87G73WO+Z99+9u0/wID+/RgxrOmiYtXXaqdOnWTbli0EBgUxbfoMDAZDvZGO9Ynzm+ZizLk5nDiwC0tuDuAQ4J7hCYQlJKGpVVTX2fxyZyMbG/OOl+ZnYLl6Alux4xwPnyC8Y1NQezZu88xZRTX+LjOnU3jtGNJWgj68J7qgmh0LTIH1rxuKc1LJO70LY1QyxugeQP0567XJv3KK3AvHGD3vfjwaaVlWSfX1X2XPc7VaTe8xU+o9v6Xe80O7d3D14nlm3bOUcF/39VSH1vWYv/Haq0yZOo2kKOd/P6uvO1W+oRQXF2O1FjN/yVLWr/qa3Nw8HnryGb776jP+9Ld/Ehcbw5yZ05kwbTab1qzgy29WcP3GDX784vOMmzKT9au+rrMOaMxjbrfbee2D5fTr1YMh/Wuu2bSRyYrHvLOxZt8xzl67xeRBvZgyuOZCqL6880rKyspZuXU3125lMHTUGF547IE65zSUa5GdlcWuXTvJyMgAIDwsnPGTp+Jtuv3j35Bxr4+GRHlzBHkluVlFoApAn+hYqEkpKc66zvlN3yJtNoRGizEqGV1gVNPenZBY9CGxSLuN/PMHyDu3D0+/UHy6DGzUi16uj8TUJ4KMc/vIPrWP0IGT8KxVbK72c+gS4k1M3+FY83M4uvID4geNwy8irsbrUZ9Ar+49n7zoAU4c2M2mr5Yxbu5t8ewO73lOsY1Zs+dw+dIl/vqXP/Pww48QEFg3bNjVCu2VuFKp3RXe+WoND4zo1WxRDo6wdS3g52OqOnbg+5OMGtQfgHHDBrF81Vq6J8bRo2sCGo2GcUMH8cwvfgeASqiY+vCzhAQG8K9f/gx/38YXy7mFVt7ceICnJg3GpHd/bn9nRCLZtPcwx85eZOygPrz04AKnr7XZbKzesZ+L127SL7krLyyd77QnLs9cwPaDx7iZkQVASIAfk4YPwC+2W7OeR4NzbEFumxCCuNiYqsJqUkouXb7C8s+/pLSkBI1Wy+CBA+iR3L3J590lMZEuiYnY7XY2bdnGpi1biQgPZ9qUyY2GjXfv1o3u3bqxcfMW/vHvl5k/dw5RToSBjxoxnJRevXjl9TddFvV2Uyj3P/oUBw4d4uV3P3ZLt5HaTBs/mpu30vnTy2/y4KJ5hDtR+K86lZFpbek9/2TjHuaNGtBsUV5JZZeASvYf/Z7RQx3id/yIoSz7ZhXduyTQq1tXNBoN40cO5amf/QIAlUrFpCUPExoUxH9++4sme9EXFln5+wdf8vT9iwiosI9t3d+9w2EvZ+/mNew/fIzB/fvwo4cWOG0ndDYrGzdt4ftzF+menMxTzzzb5He/skJ7YYGFo/v3kHbzOuCImus5cDg+Abd/752pA1QfrqQaNibKHeLaiDZ8CJUrlzJzBqn7NyHLS0Co0AUn4hkUhxCN2wStKQTfnpOQUmK9eZLcY6vQePliiBuESuNRR8hXCnWdfzihwxdiuXqctF2f49t9ODk4vu+NCXSf2GQMYXFs/+YTfGKTGTi08bSRynxzcNj6vuOnc+viWbZ9+jYj5j9QpzJ+S73n/YeNJD6pOx+9/i8mzppP3+4dv4vDqhUrmDBiSLNFeSU6na7GBvH+Q4cZU9FmbfzY0Sz77AuSuyXRs0cyGo2GCWPH8OQPXgQqbN6MuYSEBPPy3/+Cv3/jeeIlJaX8/Y13eWDhXJd/V+50OqUwT881ExcaxNTBjXvFqrdUKy+38emaLeSaLcwaN4x5Ex07LU3FC9xMTWXDpi1YrUUYA0IYOWpUjVzjxqp91sZms1GQn4c5N5vz11MpzMvFWmjBbrs9RpalpCoMXq3RovHUofHUkV4oUXvqUHt6ofHUo/bQodZ5odZ6NmrAhRDog6LRBzleB3tZKQXXT2G5fAxw9MXEGIfWN7zRHy5VQG/0Ab0pzb/F9a1fg1qDd+Jw1J6GendUhRD4Jg3Bbivn6p5NICFx/ExUDbQXuf2DpaXfnEe4uHcjaee+p9vomVXFRpwR6D0HDiMgJIxv332V6UsfQ1uxo91UcThnxXlcfDwvvPgS7779Fr16pzB0WN0fleaK86ZwNTw0IzsXD622RQvU0tSreEbXbRWVb7ZgMjreB5O3kbx8C3nmgqpjPhXHAJb96w/4+/qwfOVafv/qO/z5v15q8H6Z5kLe33aYF6cPx6OF7b3uJNKzc/H38eaHDy50+hq73c5XG3aQmpnNtFGDmTnGufY1Gdm5rN15AEthEb7eRkYPTKkKlXe1uJvdbicnL5/M7Byyc3LJzM4l32KhrMzRo9euc2z2VIbAaTQavPR6vLz06PV6jEYDBi8DBoMBo9GAt9HYpGdZCEFCfBwJ8Y6NvdLSUvYfPMSbb78LgIenJ4MG9Kd7t6QGbZ5KpWLi+LFMHD+W6zdu8t4HHwEwb+7sRquyTxg3lrGjR/HZl19RYCng/nvvadJr7+Nj4ocv/IA169Zz8PARHlp6n0vRBwP79yc8LIzfv/EJLz04Hy8XowSaIiIshJ8++zjvLPuSuOhIJoxyPf/aVYHe3PZpliIrhcUlxLVCwTSHzXOEDft4e5OXbybPbMHb+/ax3HwzAJ+99k/8/XxZ9vVKfvuvV/nrL/+rzniV65N8SwH/+eQbfvjgArz0tz/bzrZGvFNJz8xCpVLx0pMPVx2rLibqE+lSSr5bs5ZLl684vr8TxtUb3l67GFxebg7bNm3gRkY2Xl4G+g0ZwfBxk6oer+1cifHV1yvO44MNXEyzUFJoxmrOw2rOodiSR0mhBXt5WY2e5FU1htQa1B6eqLU61B46Cq2g0upQe+hReehReeiq0hJri+TqaE3B+JjGOca22yhOP0/+yfUgHa1zPYMT8QyMaVCoCyHwiuyJV2RPygtzMZ/ZAnYbxoQhaAy300Eq51C57vOO6YUxuie5p3ZivnCQgJQJ5GTWer1rCXWNp56YcYvJPnOQTZ++R+TwmSRFNmxXq4tzcIS2ewcEsfnjNxgxbyl6b1ON810V51DTgeMXEMiDz/6Q1V8u5+KZUyyYO9ulserD3d7yyjVmaWkp6dcvs3DGpCauuI2zTqC8/Pyq9DAfk4ncvDzy8vMxmSqO+ZjIy3MUkv7so/fw9/fjk8++4Ld/+gt//cNvGxy3yGrlH2+8zzMP3Yuvj6nB8+5WOqUwDzbq6Bbj3AKx7NZV1p65yaUbt1g4eXSd4ki1880B8vLNfL38SwqllrDQUBbOm4OhokKtM0VGCsxmLp49xbXLFykrLSWv2OFFV6nUePv6YfILwOgbQEhsF/RGb1RqDUIILmUUUv2nxlZeRnlJMedvZqH3LMZWaqXcWkBJXia2Eiv5mTlVbdBuI7GpfNGHJaPyaMAwmbqiMznaKNnLiilOO0fRzeMgQeVpwBg7oMFrPXzC8Ogdhr3UiuXCLqStDFvicNT621+u6kJdpdYQ2HcyZQV5nFm9HH1QDHFDGw8/uZBRAPFDiFQVcOjrd+g1ZTGehtuh77WNdHWu5lmJiY5jwoJ7+fbdV5i65BEM1Yx2Y95zZ6q2O37MVTzx1NNs2byJd995mwcefKhZYZ6tzfI1W3hsdJ9WGdvH5M3NdMevr6WgEB+TN74mI+YCx+aJuaAQH5NjwVrpIZ89cQwffN1wCPvNHDOf7znOf//mD014N/6v0bnp/E2Y4pyvwKxtQTRBWxEa4O/0zr2Ukg17DnHi/GXmTRjpVDG3giIrX23YgaWwiCB/H+aMH161yQJNC/KCwkKOnznPuYuXKS65XdBIrVLj7+tDoL8fgQF+JCXG4+NtRPhF1OvdLSsrw2q1UmS1UlhYRFFREZaCAm6lpVNYWIDZYqGkuGbBJCkl4eFhjBg2rEa180o8PDwYMWxoVQhscXExBw4d5q133kNKicFoYNrkyfg14NWMiozgicceobi4mM+/+hqLxcLc2bMabL+mVqtZsmghubl5vPP+B8RERzN96pQmPXZTJ08iPSODv/7jXzzy0AME1ROR0xAR4eE89/ST/O3V13j0oQcJDgpyawSOWq3m8fsXsevAYf7zzkc8uXRxk3n49eHK5mLVproLAn35pr0sGe98Prcr+Ji8uZnmeE3NBQUVNs8bS0X6hNlSgK/J8VtT6SGfM2Ui73/+dYNjpp09ybvbj/Ffv/i/Fv2GePoaXbJ5Hj6uV9xva0KCAhnav0+Dj1d+visF+s7dezhw8BDTp05mxrTbFbwbyj/Xy1KWf/k1ebm5+Pr5MXr8RHz9/OuNeoww6eqI81BP2H/kGBnXLlFaclukZxeU4WkwoTf5oTP54hsWg6fBm4tZViLrsXl2Wzn20hJsZSXk3MpB5VGMvdRKWWEu9tJibCVFFOXV8rRLUHv54BXeo8baqxKhUqMP64Y+zBHZJG1lFGdcJP/kBpCS4sICdGE9UHk2XJNDFdgDaS+n6OZJbEV5GOMHozXd9mxW3yQwBXrh32MkthIr2cc2oPHywS95ZJVTpaE2bQHdBmCK7sqVTcspHTwFnV9wg8WCa6/7jL7+jF3yGNs+e5d+E2fhF9LyjiDV14dCCKYvWMLZE8f4xz/+wbylj6DT6ds197w+h8+nX3zJogXznB7Dld8FXx8fUlMdRVLNFgu+Pj74+vhgNjs+j2azBZ+KDgaVHvK5M6fz/kefNDim2VLAf975iJ/99/+g1TZfgnp4e7lk8zxPXGj2vdoap18VIcQE4Dc4qnMVA59JKZ+peOwB4JdAGHAceEZKeajatT8DXgQuAPdLKa9WHN8KjAZGSym3Vzv/AvAbKeV7Dc2nequlhtos7Tx+jgNnLjFtcApTJw5E00DF4kpxfuHyVVZv2o6PycjCmVPQhzrXfzE97RYH9+4hLzcHc0k5BqM3id17Mnn2Ajw8PesY9Kt5Vmr/LNYXvn4p23Fd7R6SOZmFqIDAapVD/mtGd0qtFV6oMiu2wjyk3fG3ykOPxssPGgw/H8wvPz2GOe0G9pICMg5/hywvQWMIxCOkW71h66bQSHySJ2AvL6Xgwi5sJUV4Jw5FY/CvY7ABtEZfQofOozD1PCe/fgf/nmPxrOgB31DYU5rdSJ+ZSzm+ZjnR/YYTEHW74EfT3nNPZj/0NCs/eIMxsxZW9TsH94W2jx03nlu3bvGPv/2Nhx95BP9qnrTW8po7y5WbaYRoJR4tMHyNtUIb0CuZ1z/5gh8//gCbdu9ncEpPusTGcOr8JWw2G5t372dQisPTbi4owGQ0svvwMeKj6i9UdTUzj5WHTvP81GEIISgvL+ehn/yCjKwc+vdK5vc/fZ4Xf/1nTp5rO+Pa0WyeMxw8eZZtB44xfki/Rr3rlUL7euotVqzbjM7Tk/lz59XYvW4smigjK5td+w+TnpWNlBKjwYte3buyaOZU9PrGNy8bC0fVarVotVpMpqZ30TW62xsqBYWFpKVnkJnn8FgaDF6EhoTi4VH3e2zUeTF2/ISqomt5efl8t3Yt+fn5REVGMmnC+HqrrOt0Opbeu4TS0lK+XrGSzMwsZk6fRkx0VL3z8/Pz5dmnnuTM2bP89R//YvbM6XRJTKz33EpCgoP50YvP88bb7zB44ED693O+2KTRaOQnL73Iv15+lTmzZhIfFwu4thBriuED+5GUEMdfX3uHBxfNIyzEdc+0q5E/1T3HjYn0zDwzHloN3l7ujRioZGBKL177YBk/efoxNu3cw5B+fegaH8uJs+ex2Wxs2rmHwf0cUXxmSwEmbyO7Dh4mIaZ+z3daTj4frt/JSwunoFarKS8vZ+lTz5ORmcmAvin88Vf/w/M/+x9OnD7TKs+nPjqjzTt9YCfrtmxn+KABvPT8cw2eV1nANz09jZUrVqBSqZg1azYq75rFAStD2mtjycvhzJGD5GQ4hIqHToc2NJ5eoyfjWStXur71nFCV1DkGDueFSq/BXEC9dXzMWUV4VPxs/t/i21GipQV52Kz5YHfMVag9UOl8EA121OnOT9/YCoDOt5iStJPYSwpQ60x4hvVAqOum6giVBkxxqLzt5J7bj1ZjxxA7AA/fmiK4uhc9eNAsSnJukbb7C3wS++MVmlBn3Eqh7h9kQOtlIm7S/dzYtQJjWBzncTzH+gR6bXGu8fBk7L1PsOvrj0jsO4Sw+K5VjzXHa14fST1TiIyJ47N3Xmf8jDkQHQu41lKtJd7yxtaRBQUFWIusBAe1TkvFgf368uqbb/OTl55n05ZtDB44gK5dEjl56rSjrtOWrQwZ5EgDN5vNmEwmdu3dR0JcXL3j5eWbefX9T/jhkw+j1WocNu/RJ8nIyGRA/7788Tf/x/M/+hknTp5qlefTWXBq1S6EGAN8ATwGrAQEkFzx2AjgVWAusA14AVgthOgipTQLIRKBMUA8MAz4NVA9sTsb+IsQYrBsZiW6SgFRKdCz8i18sG4nw3p24aWFtwtEVA9tr86OQ8c5dGUjCTFRPPvwvbd3rhvINbfZbOzbu5eTJ08ghMA7MJQhI0ZV5Ry7UuGzIerLRWooZN2cVUSptRxbeTkv//qH5OdmEd+tN8MnzuKDf/0apJ3MWzeYMG02k2bM579feBTfAIcofvAH/0NETALmtBsAqDyNeMU6PA7lBZlYL+9GSju68N6ovW7njFSeD4BvF1T2copufI+9tBhTt7GOEHnq7qoawrvgFZpAzvHNFFwV+PcaW8NI1+ZybinGIfPIPr8Tc9oN4gaOqfF4Y97z1CI7cx55ltUfv03fEWOJiLu9KHaXOA8LC+P5F1/k7TffYMjQYY6+kRW0hjh3dlH79cadPDux+a0Ya4vysrJyZj7+PN+fOc/0R3/Ar3/4LCMH9GXskseICg/l+QeXoNVqeGThHMbd9zi+JhMf/PU3AEx+4Bn0Ok88PT146w912xym5phZcfAUz0253Rf62w1b6d2tCz998mFe/PWf2b7/EKVlZWz48HU8k5qu6t5SOrrNq02+pYB3vlpLSrcEfvTQogbPqxTkB44eZ9eBw0SHh/HE/Yua9H7a7XYOHD3O4eOOH8yQwACGDexLaLBzC4LW6o9aXl7OAw89THpGBgP692fJPYv54Y9/gs1m48qVq9y7ZAlL77+fOfPmOVpfCvjPv/5JcvfuVR40T38d8+59EIBr167x9rIvKC0pYebEsVXh8NXx8PBg8YL52Gw2vlmxiu/WrOG+e+7Bp4GQvG5JSSR17cpX36xgx649PHDfkkZD1TUaDc88+QQrv1vN5a+usmDeHKdfD41Gw0vPP8ebb7/LwAH96dsnxak+6a4Q6O/HT555jDc//pye3bowoqLWRFvQmEj/fOt+Hp3mviJ4ZWVlTH/gCb4/fZap9z/Gb372EiMHD2DUvHuJDg/jhUcfQKvV8ti9Cxk9/z78fHz46N9/AWDi4gcr8jU9eeevv68zdra5gA/X7+SHC6eiVquQRQV8vWErKT2S+flLz/H8z/6Hbbv2UFpWxuYVX6AOcG/l/frobDavyGrl7U++ICE2mh8+9Yjjt6ORUPcTJ0+xees2/EIjWPrAgzU232qnJAYbtKQXlHLu5HFOHjmIXdrx9QsgvnsKA8fWDBlubr55depb2zUUtl5ckM9rf/gvzHnZxHXtydBx0/j41T+ClGSl32TCtDlMmjGP/37+UXwDHa9B5TqvEpVWhz7K8b21WfOxXjuILC/FM6QbGlPdSCAhVOgi+yClnbxLR7EVbiJ4wOw63vrbc/YhbMQi8s7upeD6KQL7Tqk3jbH62i9q5ByyTu/n5p7VhA+Zyvl0S4PiHG47ZVQqFSPnP8CBNV9hLTAT37tlLairO9Iq14gGbxNLn36B1V8s4+bVywwaOdapCMvWZtlnX3DPIufrzTT1G1BWVsb0uYs4duIEU2cv4De/+h9GDR/GqIlTiYqM5IVnn0Kr1fLoww8wetI0fH19+fidNwGYMH0Oep0OT50n777+cp2xCwoLeeW9T/jx049U1Wv5esUqUnr15Oc/fonnf/Qztu3YRWlpKZvXrkRtbF43jTsBZ91pvwdek1J+Ue3Y4Yr/Pg58JaVcDyCE+DPwHA4D/j6gqvinrvb/1XkTeBBYAjQc/+AEpalXWXP0HBl2Lc/NnVivt7C6ON9//Aw7Dn3PqAG9eXH+hEbDNcvLy9m8dRsXL13CptExaPBgHnv8CYQQTueZ2+128rIyuHr+EjlpqVgteSAEWeaSGj0uM2p52IsKSqv+38MnGJ8uDmFS23Af2LGeyJgEnv757/ng5d9hKynmv/70FgB//+UP6D96JmrvELxNvvz0F79HSolKo63Za7MaGmMQGmMQ0m6jJPV7im8cwSMwAa1/3QgFodKATyKUWUnf9wWG4Gi8E4fV8LZX31UNSJlASW4aaTs/xb/nGDz9wxoV6KLLCLKvnKJgzXJ6Tl5UFSIFjXvPr5tLmH7/Y2z+ejlFBRa69LotnN2Vd+6v0/LUM8+yasUK0tLSmDJ1aqPXtDZHz1ygm79XswtB1ecp12o1rH2vZh/tQSk9+fETD9Y4dt+cadw3ZxoAZZYiyixFbH//tRrnlFmKMF92eB3yrSV8ePAUzwzvg+WKo3qnb48iLly4QnJiHGWWInrGxrJlxz6SY+qPjGklOoXNA9i09zCnL17lqcUz0evqenrhtiA/fvocG7btZFDf3rzw2AONhlfb7Xa27dnPqXMXUalUDEjpyZNLF7v0uSozBJGRmcn1c4e4du0GOTmOysa40AYqJDioRnuz6nzz7bf07t2bn//0J7zw4ksIIdi8YT0Ac+cv5NGHHyIhIZ6AgAD+/fIr2O12tDpPikptQN05REdH8/Ajj2Kz2Vi3di3frttESp++DB02DC9Z0+OlVquZP3c2RUVFfLzsU/ReehYvmF/vJocQgvlzZ3MrLY2//fPfzJw+le7dGi+gN3P6NE6cPMU///MKzz71hNN550IInnjsET794kvMFgujK4r3uEugi9xUNMDTM0ex7tglvli1lgUz6q+Q3JpUF+nnjhwkxM8Hz3oiJJqLVqtl/bJ3axwb3DeFnz7zeI1j98+fzf3za+ag7lvdcOFfa0kpb6zcwo8XO0R5JZfOn6dXb0fxv5RePdi2aw+9k7u39Gm4QqexebsPHmH/ke95dMkCvI31b8xXfs7PpFv4bs06evZI5gfPPIUQAquqpp2szDmXUnJo315OHj+GSqUiNDGZ2fc+WCPNoKl8cyklwR7FnDh1EUvWLaz5DpuXUbtnOTXXdpVYC0pRexrw7jKizmNl1kIO7dpEdHwSM5c8xgcv/w6B4L//4vic3l7nheHt61e1zhMqDdJ222FkvnURAFNYAmq9D15xw5BSUpp+mpK0U2h8wvEIrluDQwgVuvDeSFsZmUfXARA8cHa9rdbMWUWoAnqj9TKTse8bvOP6YAivPx0rJ7MQ/yADgd0HUZRxgysbPiZ67ELOp9fvOYe6TpmBU+dxYscGTu/ZSvehY4CWe81ri/TpC+/l6P49fPfFMqYvWAI433rX3aRnZKDTeToVXQbO2X2tVsv6VTVTbwYPHMBPf/hCjWNLlyxm6byZtw+UFLF/Y0Waomfd1MCysjL+9daHvPTEQzWKqF6+cpVePR0V/VOSu7Jt6xZ6d+sCJQ3XUrgbaPKXXghhAAYB64QQh4Fo4ATwYynlQSAFeK/yfCmlFEIcqTiOlPKcEGIPcLHi3321blEI/AL4nRDiSyll/fE+TZBfVMy7Ww4xpkc8U2PDIPMmpdQf5n720AFW7D7CoCGDa3iX6ss3v3L8AGu37EDqvJkwbmxV78zq+Uq1C4kEG7RcyzZz8fRJLp49TXl5OXnWUlRqNb4BwWi9A0kaNAK90VSVW16d2t5yZ3ZTy6yF3Lp6gaiKUJ6Y+G5cOH2M6IQkSqxF5OdkExLhWMgUFhbw+1/8mLDIWJY8/Cya4htkH/4SodKi9otDeNSTc6s2IY3elGZew375AMLThNo/Hp/wmqGZKq0eQ+JobEU5pO38GI1POEEpNXtW3p67idCR95BzfAsF10/i33u8Y6OjAYHuE5tMsU8g6z98lfH3PIrGs6agbsh7fi2/mMRxc7ixdz0l1qI67dSayjt3TpyrmTFrFlu3bGb1qlVMmzEDaPuQdikl63cd5IfTXS/Q5C7KLM4Z1XKbnff2n+Sp4SmoVDUXAF1io9h56ChTRgxl+6EjdI+PZefhozy5qHn9tl2hs9i8Imsxb3y+ikG9u/NcI33IpV8411Nv8cXKtfRI6sJLTz7cqCC/nnqL1Zu2UVZWzuihg3j2YedydktKSjl+5hzHT5+lROVYDAmViuCgQKIiIxkzeiT+fn5u7c186fJlevXsSblQ07NPX3bvO0CPlL4UFhaSlp5ObJeu2ACLxcIzzzxNt27d+O3vfseNG9dZ+d1q9Do94ydOJDy8pt1Xq9VMm+7YDDh65Aivv/oKoWFhzJg5q0ogV36vvby8ePzRh0lLT+e1N98mLjamwZzysNBQfvLDF/l25Sp2793PQ0vvazS3uGePZEJDQ/jL3//JM08+7vQiDGDxgvl8t2Yta9atZ+pk5wsDNUX138hJY8LZc+goy7/5jnvm1L95UklrVmb/9shFXpgyuOkT2xkpJf/5egM/mDcRba2NlqT4OLZt2870SePZumM3PbolsW33Xp557KFWn1dHtHmivKzOZ6aktJS3vlhNt/hoXlowEdmAKAdH8bhl33xHXFQEP3xwPvZqnuDaeefp6Wms+W41JSXFdOs3iAcee7LG97d6FGTlWuGmuZjysjKuXzzLlbMnKS0uJqe4HIHA4OtPREg45qB+6Ey3bZ4zkZANecodUYqJZNy64dw6r6CAP/7qZ4RHx7PogSfR5N1yrPOEGpVvNCqdT5VAv40neMdQZsmi4MaXCI0edWAXfCK61jhLqLV4xQ3FXlJI+t7PHeHwEX3wCaub1qPWm/BKmo756iGyz35P5MhZjXvPgyOJGjmXKxuXETVyDudxXpz3HDmRc4d2c2zLalLGOhwE7gppr6TPoKEYjN6sWP4hs+5ZCjS9TqxcI7qTZZ9+zrNPPeHUuW6JlnJWLNc6T+Sm8vL7X/Dkgw9UpbmJ3FTQm+gaG8X2bVuZPnZEm9u8jowzW/B+OHY/HwemAmeAH+MIY+oKeAP5ta7JA6pWEFLKXwG/auQe7+IIjXoB+JNTM6/G1pOXOHUzg6cmDkbnUfMpVQ9zz7UU8tGGXUQHB/DC/En1en5Ebirl5Ta+2XeK1PQM4qIjeXLpYjQaTY3QqMp8pUqMKhubd+7l3BlHqKdO70VIfDemzluM1qNmZXCoGf4UH2yoIc67hHg32lajIcMdFhnLme8P0mfwKE4f209ETCKlRWYO7d5Cjz4DKC1y5F/+9LcvY/Q28d3n77Nt02omzFiINqwPsrwUW+5lZFkRKr0vKt+aFTyFEKhN4ahN4diteZSnHiEn5yJq/4QaP2KmsATUXv4Yuo6jLPc6qdveQx8zGL/Yurv/lmwr2vAhlJkzSNv5KUEDZqDRO4qG1SfQdX7BRI9ZwKZlbzJy7r14+dSs5NlYaHvkkEmkHdrKqUP7SO5fcxHXUnFeyZix49ixfRuffbqchYsWu1WEVNJQOLuUkleXr2D+pFFAebPGrs9b3lTP8UoqveDO8t6Bk9zbvxue9VRfnzZyGFv3H2L60y8RExZKsL8fyQlxTH3yhXpGcjsd3ubtPnqSvcdO8fiC6XgbGi5eZ/Hw4YP3PiHAz5fnH3ugQRFot9v5buNWrly/SWRYKA8tmodnEz3Oy8vLOXDsBMdOnkFKic7Tg+R+Q1i09BGXe3K7QqXd1Qs1iV27sW3HTiZPn8G2rVtJTk4GYN3atUycdFuMbt66FX9/f/74hz/w8Ucf8exzz/HEk09htVrZsH4dt1JTiYqKZuLkyXU83n369qVP377cuHGDt954nZDQUGbOmo1VU/M5+oTF8NhzL3L19DH+8vd/cs+ihfW2TBNCMGfWTG6lpfHnv/2DRx56oNEcwcCAAF78wbP8+5XXGhyzIaZPncKGTVtYv3FT1aayuxnavw8qIXjnrbd4ZN7UVrF5DSGl5KOVG5gwtB8e4bFuazFWu+e4u3h79TYWjhmMsZ46DDMmjmXzrj1MnLOYmOhIgoMD6dk9ifGzne/E0AI6vM07cvo8G3Yf4rEF0/CvSBup73fQqg/g/c+/xkuv59mH7q36PtcuFielZOf61Zy7cB7fkAgW3XMPXl63bWltZwtAmqWEsyeOcfr7o0hpR6v1wDsinmGTZ+Gpc4i/2qHtTa3t/IMMNcS5KdCr0errtdd5oeGRTa/zNn53e51nL8eWexVbziWEhxG1f5wj4rEaKkMgKkMgsrSQ8rTj5GSdQx3YtSoC0hTmCItXeRowJI6mvCCLwrMbsBX2RWMMwhRaN/XCENMfW7GFaxuX4500moC4+msvVHrP4ybdz7UtnxHUawTniW5UnMPtiMmu/Ydx+fghvt+6tqrXefW2uu6gS3JPhErFZ+++zvwHHkOtVjslzitpqUj/ZsVKBvTv51QBTmdFeUP9xlu6ofrJqk1MGj6AQIogt+bneuaUiWzevrO9bF6HxRlhXmlF3pVSfg8ghPg98BMcuUQWoHYpXF8cu6ZOIaW0CSF+CiwTQrzd1Pm2kjLMl2+RWVDE50fPMX5YL56Z1LhX59vVG7iRnc8Ti2fXCHer3vPcbrfzzaadXE/LZN7EkUTOmFxjjNr9zQszb7Ji/RYKi4rQarQMHDyIgUMfa3SntVKcN9RuozlU7qT2HTKGk0f38bsfPURgcBiGigX7kb3bmDL39ga2saJKed8ho9m44lPsZaWUFVb85no5dpVtxfmUXd0PAlSmKISHsdZdBdqIflUCXehMVQK9+i6sKSwBjU841qv7yMi6gGdEH4QQdQy31hSM2jCVm7tWEdRjIF5ht/OhKg11JRqdF7GT7mfXqs8J7DmUvik123k1Ftoe2n8M1/es5/zxIzXC2qFl4rz6jujIUaM5c+Y0//rH33niqadBr2/Sa97SHc18SwGvLF/BkmnjiI0IbfMeuK6K8hUnLjIsNpygBiqiq9Vq/vrTFwF47rd/ZvyQgUSEBPNfjz+EcYD78kgboMPZvEpy8y28+81a+iV3abJ12qa9hzmZmssjS+Zj8Kr/dZZSsnrTNs5dusLMiWOZOWlco2Pm5ZtZvWkb+ZYC1GoVA/v04on7F6FSqVotj7yS+jpiTJ8xgy1btjBl8mRiYmIIDnHM4dtvv+VHP/pR1Xn+/o58tdmzZ/Ovf/2r6rher2fW7DkAXLt6lQ/efw+bzcaECROJT6hZtCgyMpKnnnm2jkCvHWIe0z2FZ5J68dmny9HaS7l38aJ6N4HDQkP58Usv8Na775HSuzdDBw9q8LnrdLoaReH69mm8VWh1Jo4fy6rVa9i2YyejR47A5h3i1oJwAEPiggjR9uWPby/j2SVzGt0schdF1mJeWf4t00cPoXu8IzKuuW3W2oI1+46RHBNBbGj9RWjVajX//PX/AvDU//f/mDRmFJER4fzvT15qixzzDmvzCoqsvPPVGrrGRvLTR+9p9NzKDctH5k7F12RE1iNcVOY01h88zYmTp5g0YTwTJ9y2edVXZJW/59ez8tmyYR15uTmoVCp69E5h9pIHGgxvr722q8/xwv/P3ltGx3Fv6d6/qiZ1S2oxk2VmjhNTzBQnhtgBxw45cRjP0J2ZM+/AHbhnICdMDjM6iQNmjCFmx0ySLcuyxdxqNVW9H0oN1VUttQyJc+Y8a2kt+1/Q1VC79rPh2XRupnkowv08e6Ji2zry8/wQRCPGFMW2Sa5mvJVHQPJhSMxHtKkTHYI5FlP24ABBF4wWDKk9tT5eXCqxvabgKtuPu+oUsjQCQTRo/DxDTDxJw+bSeGQdnvrz2PIG6o7b9ft8BZMWcH7797ib6jjJoIjkHNR+X+GAYZzYs40j2zfQd+SEwD4Xmz3X8wu79+5LYnIy7738R25etJiEEEX/aKosofME3e128+rSNxkzaiRDhwyOuN/laFe6HNi4az+pyQn0695Fd7vBYOD5PyhaRA8+/de/tM27atEhMZdluUEQhDPoi/TKwM/AUP+CoLDSwcCyzlyILMsrBEHYiVLu1P6+wLIDJ3F5fSwZORCTKAaIQbh8fmVDMx9u2c+k/t2ZMbgnVJ+HsPJ2WZb5etk3nGn2MHvi6MCMc3RK21srTvPtlv1UVVeRkpLC/JlTsdvtKqcxPNIaSs5dTifnS4ooKz5FaVUNQkifY1WTC0EQkGWZqpB+JEeTu+1dCzib/esCINPaWAcI+Bz9QTRx251LEAxm3nv5P+k7eARer5fzpWfIyS1A8rjxejzIyJhMZk4e3kdqiFp5KISYBAwxCciyhNxwFqm+BDEhF8ESfDYrZF6AxG5Irka8Z7ZiSinEYA9mdAK9TIWj8DZV4ji+hpi8YTS2BedCDbdoMJE0eBZ1RT9Rd6aInJHBjFd49lw0GCmYdDvnf/qBHU11XDtGO4ItUvY8b+RUdq74EpPFQpeefVXbLhc57927D9nZObz04gvcetvt9MpNj3jcpeLA8WLW/rSHp++aT0wHWc720J4Ke3voLCnffbacWLOJvpmR55aer6xi8e//FVEUuGPmNLLSUpn+wJOqnswrhavT5sksW7OZytp6Hrl9drvfc11DE299tYJR10/g8Rk3Rnpt1mzayuHjJ5kxaRwzJ4+PeL7WVhcrN/xIWXkFCfHxzJw8jqSQsWS++AzaU9lobW3l5Kkijp84SV1dXcT+8vBMq3+2uUcI3nNyyFcyY9o0rFYr//hP/4TdbuexRx9l8uTJeDwejh87xsBBCnl1u93IsozFYmHb9u107ao/bSO/oID77l8S6C9f8cP3jJ84kX79+qv2CyXor73yMn379WPCRHU2WhRFbl9wB6WlpfzHsy8x/8Zp9OqpLgcFRaztoSX3s3rtOt778CPuvGNBu7PVH1pyP18s+5qq6upOZcBvvGEGXyz7mp927uK6EVdGPLEwN4snF83jxY++5qbxI+nd9crN4T5Zco6v1m7hkQWziQtTYb8ayfnB4lKanS5mXBs5oFJ2oYI7n/hLRFHkznmzyc7KZOKs+RgiTlO5fLgabR7AD5t3UFx6nsU3z9B8z6FobnHy5pc/MLBXN1XAMpRgyEnZbN6+iz0HDjFhzHVMu2e+JpjoD6A3eEXWrV1L6dkSYmNjmTF9OoZ49fMqUtIFIDvWwN5DR6ksKaa5vkbREmpyq+7t9v08f+958OtobazD29wPwWDitjvvb/Pz/ivg5104V0JeodLDHernnTp2gNT0THUCJhTxBciyjKfhPHLFMYS4DESbUsFjilXsvJqgHwi0MoYmYuxZ3YjJHYKvtRHHifVYMvvQGPIyfl9PEEQS+k2hpewQ9YdWIvedQkK6lnD7yXnOqBupPLiFiv2bYPC4dsk5BP2+nsNGcXT7Rk7s2UbPYcHWvsuZPU9Nz2TRg0/wxXtvMvS60fTqr2hEXIm+83NlZXz48acsWXxvYDRZOC6FkF/uVqOi0vOcPneBe+dG1lwqO3+BOx96HFEQWXTb/F/U5l3NiFb87WXgSUEQPgZOAL9DGaWxDSWSulIQhHeBH4EngBgg8vDOyPgr4CdAq4gRgqrmFq7JyyQvSXuDhpKE1cfO0Gw18/j0URhDHPrQ8vZdx4rZcvAEN40cwo25GRgz1cTe33e+9+ARtuzYQ3ycjRsmjSO1a+SeTn/PeVNjAwf27+Pg0RMgyyAIxFitWDPyGTJmAmPsCarIamhUNTSaGlrmFFri1Fh+DluqYuDFmEQqzp7gjef+DQEYOXYCCRY4vHM9vfsODBzT4mjiuX//P8TEWLHFxnHfE38f8X2AYkSFxC7IsozcWIrUcA4xPgvBqlZMFCx2DOkD8DZX4KnZgpjUDXNi8LP0G2/Z3hVPdTHeurPE5A4JqLuHEvT4btfhqi3lzOoPyZ94i0pYJJSgC4JAzsiZVB3aztY1K0gfOEZjtCNlz0fMmMe2rz/EEmMlK1+tvHy5ytrtdjt/8Zd/xfvvvsu5vEwmTRgf1XGdweptu2lscnSYPe0IvxQpr2xq4UhFLXddow6INJUGHyi2ZieptjiWP/P/AmveFhcrX38O4JfImMNVZvPKq2vp172Qmwv1R3P5sXb7Hk6WnOPRRx6JWIp+8OgJVm34kWkTxjJ1vFZgyI8jJ06xdvN2rDEWpk8cy5wZkzX7hDu2zc3N7N3/M8dPnESWJARBwBJjoUf37kwYfz0pydEpreplx0MhyzJGAYqLi3nwtgeQJIkbb7qJ5uZm1q1dy3UjR/p9XOrq6ph9003ExsWRlJjI2+++2+65/f3lsiyzYf06Nm3YwIhrr2P4NWpCm5uby6OPP8H+fft49pn/4eZ588kPEyjMy8vj6b/4S5Z/8zXb9h3inlvn6hLvqZMnUXz6DP/1zLM8+tADxMZG7p2df/McNm7+kc++WNap+bXzb57DBx9/gs1qZUiXyzdeJ9Shs8ZY+Mt7b+Xj79dzqvQ8N467/DPFf9xzkDNlF/irxZFbhS5mBvqVQn1zC+v3HuHJ+dPa3S8nK4P1n78fXGhtYf1yRYftF8oeXVU270J1LdnpKdxwfWTtAG/5WbYdOsmeE6d54J6FxEYg76fOlvHVW58yfsQgnn7w3sB6eBVkUVExK9eswWwyM2bydGbccIPqPHpJl1ZnC8cPH+T0iWPUOlpBEDCZLWTmdSFu8DXEJiQHfqft6Qm112veWH4Oa4qMwZZMbcU5XvnD3wX8vESbgcO7N9KrzwAkj/KRNtfXdtLPExDsOWDPQWoux1d5GMGWgrstOAoKSVcI+hCklhq8ZbsxJHdDtCk2XZVF7z2F1guH8NSWYC0ciSCIGl/PltMfc0I2tXuXIfWfQZJO8sJPztMHjKH+9GHKtn0Ho26MipwD9Bk5ngObVnH64F4KBwxV7RNt9ry96T0AJrOZBfc/zMaV31J6ppjJN84BiCp7Hm3v+b79P7Nn337+6ndPRRRfvZpIubPVxRerNnVY4ZKTnRWwcX78wjbvqoQQzeSKtujoPwMPoBjjfcDTsizvb9t+F0pvkX++5cOh8y3bOe9GYK0sy/8asvY2cA9wb6T5lgOz0+QVD0Z2SHySxLu7jjA8L4OB2YoDEp5Jb3V7eXfTXrpnpjBjmrZ805iZrwhpbdvN0aISBvfpzvVT1P1z4U5pVYuXzRs3Una+jFYfxMXHM3DIUAoKu1HtDBr0SL3m0DE5D+898hu7/3xgfKC3CAgYaGQJ2euENkVOwRgDRq2hefTf3lP9X26tB4td1WMOikMsN19AdtYgxmUj2LRZT1mWkGuLQAAhqRuCIAYir4Hrc1Rh8jmwdb8ewRA0XKEE3edyUH/gB5IG30RiltahDy1vrzm+B5/LqUvO/Qgn57Iss/GTN7j59kXYk7Tnb88gt2ds9Qzt1i1bOHloH0sW36urrtwZo+o3onuPnKTobBm3TB+v2Sdah/RiCTl0npTLssxLW/azMD8TYzvK3hl3PtzueZLHT98jy7LuTBRBEBb8621TPnrihujF7x5e+g0fbtk/UJblgyHnuaps3rB+PeWdn74S8byyLPPmlz/QqzCfscMG6E6Y8Hg8vPPpV2SkpTBrmn62VZZlfvxpN/sOH6VP965MGTc6IvnxxWfgdDrZ9OMWzpSUIAoitlgbw4YMpmePHu2KmkVCR4Q8FFaL/j3o8Xipqa6ivr4eWYbU1FRS09I0iXqnSz3W8tTJk+QXFKhUY/34aft2du/ayYhrr2PEtVqiIEkSy778AkezgwULF+qeo7ioiG++/or7H3gwov1oaWnhuZde5qH77ycpKTHCO1ewY9cuSkpKO0XOAV55fSlzxo0gN1u/WupioOfY7Tp0jK17D/HQbbMuqZInFCfOnFMCHHOjV4H/tcn5M5+t4JE5k4lpRzHe2FvfXgk2pYXMkJLbns2b9hc3jln5j7dEX0Hxdx+v4sWVP02QZXljyHmuKps3tGcXefvL2vGaofh43XZSE+KZMry/Zpu/PfH95Wuwxpi5Zdr4gC0Lt4879v7M9j37Kew9gBnTpgZsl549utDQwq7tWyk+dRJRFPGIZnr1H0SXHr0wGo0a1fb2fDyILgkDiq/3nw+MB1D5egCSpxXZ6wKvC5DBaEEwWgmfPKHx81yNYLJpeswB5JZqpOZyBGsKYrx2vrrRZsdXW4TsdmBM76c7Pz02IRlnyU5s3cYgmtX+l9/Xk30e6vYtx95nIskF+voZfl+vqayIxpKj5ERBzv3omh7Lju8/p3DAMNLztdVSl4Oc+1F0/Cjb1q9m3l33YYsNtn921l8MRU1pEd/9sIKHltzf7n4XS8wvhZRHsq0vfbWGO6eOwR4b+bONZPMC2/N6t2fzht87fuiu5+69SW+zLv772x/5ly/Wz5dlOfLIjKsEURHzqw390xLlL2aP16zH52XQ4vbwxk8HuW1IbzLi9fvcTkgS246XcNe4oSTGKjdcqHq7JEl89eMeyt0weeQwVX9EuEE/VdPK+o2b8HjcmOMSGTtuPLm5isEJja6GzzaPhpxHmzWHdoh5GGSvE7zKawtGa4Ck6xlsqfEcCAJiQgGCSf1Zqgi6PR8hJrz9DGRPC1LtKcSEfISYRAAVQZe9LrzlP5PQZzLGOHUGx2+0JY+Luv3LSRx4A0k5+lkev9GuOboLyechrf+oqMm5z+tl/YevsWjJI8To9OFeTnLeVFHKW++8x4LbbqUgX535jNao+o3o/mOn2H3oOPfP11dCjsYZ/SVJeVNpBT8Ul9E3JYEuCeF6BZ1Dnze/ueLE/GrD8H695B2fvqy7zeV289z7y5g/9Xq65in2KdxOHTx6gpXrN3P3bXNJT9ULpsl8t2YDRSWljL12OMMG9ot4LefOl7Nq5yFaW51YLDGMGzuGroVdLv7NtaEzpBwiE3MVZKiuqaa6qgpZlklJTSU9LR0ELTEvLS1l1coVSJLE9OkzNNlvgO3btrF7104mTJpE//4DNNtrqqv58IP3GT9hAgMHDdZsdzqdvPH6a0yeOpWhvfRL6t1uN398/kXuuWsRGentt8Bs37GT8+cvMG/u7Hb3C4UkSTzzh39jycJbSe6A/EeLSM5dfWMzr362nLmTxtKrg2qPjnCy5BwrftzJ4wv1qw7aw69Fzlfs+JnM5ESG9Oj8qMfQcXDGAZOvODG/2jCsZxd5WwRi7vX5eOWbdUwa2o++XfTJXFFZBV9u3s0dk0eSm5as+jz9WH3gNEdOFnHN4AGMGh7UnAlPupRUN7BuzRqaHQ7MJjP9rhlJYbfugd9hqH8XTszh8pDzUGIOtO/v+VzIHicgg8ES8N80fp6nBanhLMgSYnyOrh8ntVQjN19AiM1EjNX6YLLPjVRzElNKFwx2bUBYlnwYW85jTinUjNoNkHPJR93+b4nvPgqTPV2379zv5zWWnqTp3ElyRirVDNEQ9MI0G5s/e4shk27CnqpvUzsi6NGSc2eLgy/ff4sRY8bTs5/yjLhYYn7+/Hk+//QT/vrxhzocU3oxxPxiSHlHtnTLwRNIksz1g3p1+tyhiJmy+M/E/LeESMS8wuHk65Ol3NW/K1ajkfg8tXF1e318uOcoXVMSuWmKfp/dYQes33uEeeOuoUtmqq4xd1pT+G7tBi5UVFGYn8vEmXOxWCwYY2x4heBN5vIGP1unV0KSZFoczTiaGqlvagq0D7m8EgCvL1sBQFVja6DXPHSmuX/mpTNk9qXSY65kwltbWhAs8QiWeLxhEdVwyLKM7KhEdtaAICpG2aI1cLLkQ244g+xtRUws1CfojaXIrkbExC4akThZlpHrTwMyQmJXVVmUf7uv6iiC0UpSP22prD0zF9nnoXbfNyT0nYzRltiu0a4+/BMyMmn9RkZNzt2tTjZ9+iZ3P/wEJrN6vunlJOYAFm8L73/0MakpKcycoc76dGRY/UZ039GT7Dt6isU3R+7d6ch4/lKk3F+iXtbUwu7yGmb3uDTnHDom5v/xwK0fPX1L9Bm1Jf/1Ju+v3vqbJObVdQ289tm3PLpgDon24L3nJ+Y+n4+3P1lGempyxCz5kROn+G71BmZNn0Tv7vpksTUmmRWrVlN67hw52dlMnTwJm82GMaZ9kS9JlmludtDY2Ehzs0PVIw6waf06ANyCEQFBtV0OKaPUg81mIzc3l9zcPHLz8jrM0MuyzL69e9m9ayeCKDJu3Hh69tI6D16vl++/+5ZzpaXMnntzINAaep6NG9Zz+NAhZtwwk27du2vO8cP331NbU80di+7Udai+WvYlRoORW2/SL2/2+Xw8+8JLzL95riaIF44t27ZTVVXF3Nmz2t1Pdf6aUv7r5Td5csldxLVTNt8ZRHLyZFnm0xUbMIgi86eNuyjV9hNnzrF66y4evWPORR1/pYi5nn/gx/mjh/hm616W3Dj+ks/bETH/q9tnrvy/982L+vx/8+onPPfl6t8kMW90OHn567UsvmEc6Una8YGyLPPh2m1YTCbmj7tG83sxZuZTXHqeL1ZvZuro4Qzu3V23wshtS2Xt+g0UFReTlprGuOk3Eh8fHwgIhvt3oa9f29BES3MTTkczsiwHfDyI3s8Dta8H4HI4EK2JGGxJOBrrVRWNuv3jgOysRWquAGTEuEyI0Y6sVPlxCfkIFu3nKjWXI7dUIcbnIli1Pc5SUxmyqwkxpSfmOO12b20x1rhEYvKHa17fnpmLLMvUH/iB2PxBmJNydf08UHy9xrPHaL5wmuxrFR8oGnLeJSWGDR+/zshZC7DZE3X3uVzkHGDTqu9pbmrkhnm3kxEXuWIokq947tw5ln3xOY898WTgGdKeiPDFVF12Fh3Z0UaHk/dWbeGxm6dc1PlD0RExv2/muF0vPXV31Of7w0ff8Y9vL/szMb9S0CPmR6rr2VdZy4I+hYg6D+4meyxf/HyCu67pR6I1SL78Je61zU4+2rKfPjnpEUvbjxSVsP6nvVjMJm6YNYfsTCXy5o+uGmNseL1e7rxnMRWVlQwcOJAHHn6UzZs28s5bbyJJMn/9979nxMgxfPX113zw1lISE5P44+tvIVhsrD1VHXi9zmbNJY8TX0s9zecOI7ub8bbNEhQEUSlJt6XqlitBG/luOo/sbkIwWBAS8lXl5YF96k8j+9yISV2VkvjQ7bKkEHBJQkjupi2BdzUoAnIpPVXH+gm6r/E8Uks1yYO1jpc9M7ctorqc+B5jMMWntWu0qw5tQzAYSe0zImpy7mxuYutX73PPw09iCCs1v5zk3G9Y9+7bz+YtW3nw/sVYrcrDoD3DGlq+fuB4UYelnJeTmNc0tZAYG4MhRGQxGvhJuSTLLP35JEsG9dC9NzuLPxNzBceKz/LDjzt4/I65mEzq36yclE1ldQ1vfvQ5994+j8x0baajqdnBu599RX5OFjdNnahLeE5UtbB67VoMooFpU6doSKLf5t11z71UVFYyaOAgHn/sUdZv2MCbb76FJMv84z/8ntGjR7F8+Xe8+vprJCcl88F772C32/G2tnQ6U+5Hc3MzZefOce5cKaVnS5Fkxfk1iAa6de/GkKHDIvZqe71eNm/ayKmTJ4mLi+PGWbM1M8K9Xi/Lv/maivJy5tw8j6wsdTmnLMt8u/wbampqWHTnXZrRNaWlpXz2yScsvHMRmZnaUtCDBw+w9ccfeWLJPbpBBVmWefm115kyaSI9e/Ro97PY9OMWGhoamHVj+7PEQ+GqPMMfX3uHv3hoMTExlo4PiALtOXxHikr4buN2HrrtJuztzJ8Ox7His6zfsY+Hb591SaPYOkPO65ocxFktmlnjfrRHyEH57v7w5sc8NWMkxk62dOid+38jMR9amC1v+mdlTrO/orGkopqPv1nFI1Ov04zGBah3tPLG+l3cOnIA+amJqkpIAKfLzQert5Jkj+XWW27WBM3kpGxKz1/guzUbkWWZSTfMonvIdAanGIPVYsLr9XLv3XdTXlHJwEGDePjRx1i3bh3vva3YvL/+29/Tf/gIVv/wPR+8/QaJiUn864uvExdv1/XzIDpfr+FcMT5nHb6WOnyOGpz1lYDSI+7DqPh5Bn0SqCRjKpCdtQiiESGhAMFo0e7TcBbZ3aRUSoYlaxQCf07ZntJT41PKHidS7QnExK4IlnhtC6OzDl9NEcnD5mmO9ZPzxiNrsaR3IyZNCRJHSsQ0lBylpaKUrBGKSHA05Lwg2cz6D19n7C13E2PTr9y7nOS87OwZ1ny7jPvvu5/klMhit+G+YmlpKV8v+5JHH38iYqY8nKR3tuoyHI3NDkxGI1adZ0G0tvPZz1dy7zXdsbbTthMt7Hf/8/9aYh6t+NtVBZ/LR11xXeD/PxtdtPp8LOyrn+3ZXV5D8bEz3N2rALG6HkIy6Y2nL/Dd4WJaYy3cP/EaYsxGlTgcwMlz5Xz/+Ur6DxnMIwtmI4oiclKwHMYvIOLxeFn65ptkZGbx9//wD/zPf/0X1dU1rF61itXrN+GWFafC4/Hw2Xtv8cm3q1j57dd8/M5b3PHgY7rXHjr3MnzeZShEkxUxwYqhRTHiclv0VJYlaG1AritGkiVFzC0uQ6WuLogGhATF4Za9rcj1xUiSTzHMbX1BgmhASO6OLHmR604jyT7E5B6BuZaCICIkdUN2O5AqDynZ85Coq2BJQEzrh1RzXOlZilO+A3+U12TPRjDHUrv7U4zZQ0nICSoY+8v1k4bMof7Ad9h7T6Sx7dkWbrRrqxyk9R9F5cEt1J7Yy0mG6hrscMV2a1w81954G+8vfYW7H3pM5QBerBicnrCHU4zBKrUydMhgenTvxgcffaJ87rJMl9Q4xo0agc2q/2DYtOtnzpSVd6q/Ug+dzZZ/tGU/j00feVGkHGD5qVJmdc+LSMpD7+U/Izqs37GPc+VVPH3XfG32Iymb3T8fYsfen/mrR+7X1TT4Yd0mzpSWcc9tc3UzpiXnyvhy3U90LezCA/ctjpiN9np9vPHm22RmZvL7v/89//Xf/01VZSWrVq3ix00bAsd5PB6WvvkGG9etZdlXX/H60jf4y7/43UWTcoC4uDh69e5Nr969VetVDjdniov46PMvcba0IBoMDL92JD169Q75rAQGj57A4NETaGyo5+PPl4G7hWnTZ9ClUBGDNBqN3DxvPh6Ph6+/WkZdbS13LLqTuDjFoRMEgVmz51BdVcXLL77A5KlTVQrueXl5PPW73/H+u+9S0KVAo9w+YMBA0tLS+PdnX+LRxx4n2aL+HgVB4JEHH+DNd94jPj6erMzIPeHjxo5h/cZNrFi1mhnTpkbcLxQ2q5XHFi/i2aXv8NePLumwVDIa+DOPes5f324FFOZk8uF3a/H6lDav7LQUJlw7JOJ4td2Hj7P70PFLJuXQObX2D9Zs5ZHZ2gqujgi5H1+t/ZE5E8cQk9M5hfhoz/+/De7zJew8dY5DpeU8PVNf9+JYWRVrDpzk8ekjsbQFKkOfdVsrWjh8+hyLpo4mMc6GVHkOieBnfqGqhs/e/5Kc9FTuv2N+INAWOnHCKrUi+Qy889ZbZGRm8Td/9/c889//TUVFOevWrGb5mqDNq3e08nGIn7f8o/ci+nnRIiG3K43l5zC2JYO8flFdWUaqK0VuKEWSlLJ60ZYG1qDwnCAICHGZEJeJ7PMgN5Qg+VxtJeyJwX0SC4LTeBrOIiZ3DxB4QRAQEvKU8vXqYwixGarydsFkRUwfiFxXhNxahwfls/UTdNGahJDRn9rdn5E0ZC6iKejr+P28hH5TaDy+EdFsxZyQRWN1i66fhy0fa5qP8j3ryBw2KeAnt0fQS2rdjL/9PjZ+8iYTFz6Awaj13ToShWvPHwxHTn4Xnn76d3zz+ae4XAqRTklNY9T147AnJOoec/ToEdavXctjTzx5yTYvHO0FTt9fvob75qnFDjvTErnuYBEjMu2XhZT/b8dvkpj7Icsy35dXkG+1cm1igsrBT+qqlNJsLq3AK0nc2rtLYFtTaQXxeRl4fBJv7TjE+O659EpP1kRgzx09zFdHyyjISOXJ+dMQBCHgvPjV2iura1i1cQsNHoFpM2ZSW1vLpEkT6d27N6PGjGHvnt2Iosi8OTeRnp7Bvz/zPKVnS+jdtz9Go5HR4ybw9797nDsivEfJ50OWfICA0AnHyRSbgMfRoGSurUmB0iNZ8iE3lyM1ng/pHw8aIcEYg5DSqy0DXoJU34KYWBAoURdEI0JKD2SvC6n6CEJcZmC0BihjNcT0AW2GuR4xIehoCKIBQ1pfpMZSpPoziInB78TjaFBUPzMG4C3bQwMygmjEHjLPvKmijKRB6p4SfzQ51HDXVjlIHzCGCztX01RWxEm6RUXO45NS6Dd6Il9/8Rlzb7lNte/lUmoPRXx8PEvuCyrElhzazWfLV+ByuxEFUVXW66qrYlCvbtw9p31l38uNekcrcS4vTWfKo9o/lJAD1DhdSLJMVlzwN/ZnIn5p+GzlBhLt8dw1W5+Abd6+i/Kqah69d6Fmm8/n45V3P+baoYO4YZJW3b6uvoEPl31Lam5XHnv4QV1CXldXz8o1a2hoaGDKtBlUVVcxaeJE+vbpxdgxo9mzdy+iKDLzptlkZKTz8osvcKakhAH9FJs3aeJEHnzksba2H0lzfl8baQu1t9GittWHwWCgW4+edOuhBPc8Hg+7d2xnx9YfEQSBSdNvICs72JdqT0jkloV34vP5WLvyBz7/ejkTp06jsJs/Sy0yadZ8HM3NvPrGm/QfOIQRo0YHjk9NS+PJp3/HN19/xYnjx5l7czBzaTAYuGfxYrb8uJlPP/mY225foLrezMwsHnr4EV58/jkeeuRRjR0RBIH7740uKzBx/DiWf/d9p0aiJdjjWThvFm99/CX3L7y0yQ6hkJOydZ1Aa4xFpYtRWl7J1+u24HC2Ymj7rv1FfG6Ph+4FOTx0W/Ql+h0hGnLu9nixxViw5HS5qNdocrRQUVMXGLsaTrbDX//PZLxjrNh3HEmWWTxBN4HGnuIyjpyr5PEZWm0RWZZ5d9NeemSm8sB1PTHHqUleXfFxPtl5jPhYG4/cPlupPmquCgSZDE0V1MlWVq9dT3VNNROn3kB5RSWTJk2kf7++jBw9hn179yGKInfcPJu09HT+8OwLlJ8toVeffu36ef4Z55LPR7dUG6cqmxFEUZWEsafaNEJwftizutF4oUghzJaEQMJFliVkRxVy9TFARrTnqbLfgsGkJFpkGbmpDKnxHGJ8dmDaTmAaj+RFqjmhJFZCxuAKBjOG9P5IDaVItScRkrqrAwDJ3ZEcVUjVxxFSegYTMLEJCKYYjDnDqNv3NcbMASTkq4X7GsvPYe81Xr2m4+cBSHGFmFxOao7tIqW3YvNOVjS1S85LG3zkjJnDtq8/Yux8fdt6Ocm5yWRi/h2LAv+vLC9nw5pVNDc1IRoM2IxB8u3xeMjJzuGRxx7vNCn3xWdctACcv20sVKSzM6Tc5fFytKySx6aPvKjX/zPU+M0Sc58s81lpGSNTkumiE22vK65jY1U1sQYD1+jM/Dt78iyfHD3DkskjSLIpN5g/I2jNS+fDLfsxGQ3ce90A4kKUHL3lZzFm5rPn8Am27P2StLxCZk+bhD0+DiGtkAH9+rFl8yZm3HADmzZupG/fvlSUl/P9qjW8/eYbvP/2Gwwdfg3xdsVwxNsTaKivJ06nLAugeOd6yi5UKerqshzWf6TMwGxtbMBgS8YQl4rclhWPBEE0KGMxyFGy3w1nkbxOpQTKlh5iXEWEpMJAj7jcdB4huXvg3ILRgiF9AFLjOXxVRxBTeoVkz9sMc0s1vqrDiKl9VNck2vOQHJVINSfbztlWSdBmvI1Zg/CW7cGYPYTGC0Uqct5Yfk6l3B5YD4uq1lY5yBoxlZINn2GKTeAk+pHUcHKent+VypIiio4coFvImDnonDEOXEc7WfNwdC3Io2uBfj9pZ3qCLmc/5cqNexnTVV9cJxzhpBzg26Jz3NEnOI6uPVLu8klsqalhkk7ZtR+/xdabywVZlnnts28ZMaAPQ/vqlzav3LITt8XOrbO0+gONTc289PYH3H3rzYE2HD8kSeKDL5fj8Xi5b8F8zOlasarDR46yfuMmEhMTmDl9OsnJSRhjbAzs35/NP/7IzBtmsHHTJvr27cuF8nLWr1nN0jfe5PWlbzBiRNDmxSYmU1dfH/F9rl61iqrKSsX2yLKm7xxAFERycnMoLOxKfkEBzVLkcmGTycTIMdczcsz1uN1u1q38gZUXvqFX336MHHN9wP4YDAamzbxJmcbxw3ds27yJ+QsWYYlR7vnYuDgWP/QYO7Zu4a1XX+T2O+/FFhsbEPmcPWcuR48e4fln/8gDDz1MTEzQVowZez0HDx5g6euvcf+SB1ROV1xcHI8/+RQvPv8c992/hOzE9vv228OsG2fyxtvvkpaaSreuhe3u63fk8rKz6NYlj83bd3H9yMs34zwSOQ9FXmY6d86KLsOvh0i2rj2y294oNWNmPlt27WfsuOsv+preX74mYtAs/Np8Ph8ff7+OBTOjF2773wKfy0ND8Xk+33+CLskJjCjI1K3a+unMBSqaHMwe0F2z3ZSTyiurdzB3RD8K0xU/0E8mTFn5fL5xJ/XNLSyYdB1JXbV6EyeLz7Byw4/E2mzMmHsL6Wlpis0bOIAfN29mxg03sPXHTfTsHfTzXl+6NODnJSUqRLkjP+/cwR00V5dT0egMRKaUueYAcpuvJ2CMTSYmMQtni0fTbuhPxgCBykjiMhSS3ngOqfGsQt7jc9Qk2p6LHJ+D3HQOqblcqYRsO7cgGpVkiqMKX+VBxOSeqvJ3MSEP2dWEVHlQ8fNCrkmMTUM2mpGqDiOm9UUQxGACRjRizBmG9/xeGmSJhAK1rxWtnwcgpPTFdWYrTWWniM9R9D46Iucx8YkYs3pxZPsG+o6coLvP5SDnegmb9MxMZs8PJn6iGZd2OdCeLT544jQDeqp5TkcIrUb5dNsBbh81MOK+ofelLMt8eeAk8wf1jLj//3b8Jom5JMu8X1LKTVmZpEQYw7KusopUs5lBbYbRTwiSuiZxsq6RrecquX9QD4w1DTTVNASE4s7WNfLN5n08OHccqXaFsLnPl2DOLsDj9fLd9v2cb93F0L49eWLRzZCsJi033jiT9Rs2MH3aNAoKCkhISOC6UaMwGAyMGz+eP/7xj4yfNIWmRqXsprmpEXuCVgnTj+4jpyB30HskSz7qTh/E11yNr+I4sqw4ipLHo0RArUm6ZF0QjQhJys0otVQpGXCTTek98hNwQUBI6qr0DlUdbitdCjr1oj03kD0X47IQbKnBbbZUZHMcUsVBxNReqt5yMTYd2WBGqjrSZrSDjqrX1Yoxeyje83sxZg3WJeeAruEORW2Vg/xx8zm9+gPyx8/nZEV05Lz/2Cls/uxt0nPyiE/QBnX0cLFZ86sVfkNa2dwScbpBKPRI+dGaBrolxmE2iFFlyb8vL2dKByrUK8ovflbnbxmSLPNfb33KrdPH0yVHv6T5u00/YTYZuWmqViOjuKSUL75dyVNL7sFqVTsTFyqqeOfTL7lz/hxyszNVisQ+n49Va9ZSVHyavn1689jDD2oi+X6bN2XaDLp0KSDBbmd0m82bMH48zzz7LFOnTqGhqRmvYKCxsZbEdmxe+OxgPfh8PsrKyjhzupi1m7bg8bgRBAGTyUyvfv3o3be/7sgys9nMjFlzADh66CDvvP4KySkpzJg1N7C/IAhMm3kTjQ31fPjOG/TpP5CRY4JE7drRY+g/aDCfvP82AwcPY/h1SpagttVHRmEv7lmcy4svPM/CRXeq+tIHDBhIQkIiz/3xGR59/AlVT3pMTAxPPPU0Lzz3HHfdczdpaentCv20h/vuuYtnnnuBe+5aFPXc+Amjr+O19z+hW5d8crIyOj4gSkRDzi8GHTmO/u3REPRwHC0qYdzwQRd1XcWl50lPTiQuwjztcHz43Tomjxza7j7L1my+qGv5rUMG3vjpIOO759EjTf85vPX0eRpbXcweoBVgLG908NnmvSy+tj9xDvW9VNPcwtuvf8jcEf3oM0EZf+hPusiyzJrtezhaVEL3fgN55J47MBgM+OKDAePZM2ewIcTPs9vtAT9v8sQJnfbz8gcrmf6+RO41b6hqxuuoxVNfDo0VtNQp/eVG0YDLI+kqpkMbSW+rXJRbG5CqjyKIJoSkwkCft0LQ85B9HiUDbolHtAeTBGJsGrI1ScmexyQgxodkzy3xiGl9FV8usVCdmbckICaZFR8wvR+CaFRlz405w/CW7aVe9iFa7FElYfRg6TKa2kM/YIpNJCZR8UE7IucZPQZwbOO3pOWeIS2vS1Svc7lxuUn5xWbNf/r5CPe2tUh2lpRXNjQjCkKAL0H7AsHfHznN0Nz2nzEbT5V2eA1/yrj0prJfATVOF9PleIzlrTSUNGr+fjhylmSzKUDKQ7FiVxF7j13gngHdMYWUSTaVVrDy6Bl2lJTz2NjBmGsaAz8uWZb5dsVaXvlmPcN6FfLolGsYO2yAYsxCnA7B48RgMPDcs39k7cofMBgM3DBzJqeOHwPgwIEDdC0spFv3Hhw/epgYA2zdtIHBw0Zc0uchiAaMsalYMnqTPGQ2pqxBmLIGtWW8fci1J/FVH0WqOYHs0lfuFG1pGNL6IdjSkKqPItUVK/3p/tcwWTGkDwDJh6/ykDIz07+tLXuujEcrUmU1BWMMYsYAZd1Zq77umETEpEKkyoNt5fpBeFtbkBN74L2wH9nrpvFCEY1t/VR++Al64P865V51NU4KJt7K2Y2fI0s+1UMvFOHjS0bNXchn776FJKlLbfVGofgRPhKvswgf0XIxuNRseePpC6rffTTQI+WyLLPlXCVjctKjIuVnHC2kmM3Em4y693RDSSP7T1RAnf4YwD91VFTXsmT+zIikfNXWXRhEkamjtKWeP/60m43bdvJXj96vIeVrNm3luzUb+OtHl2jmWm/c/CMvvPwqvXr04PFHHmLShPG65XV+m7dm1QoMooEbZ97AsWOKzfv5wM906dKFrj17c/jwYXw+H+vXrdOdBd4ZGAwG4tJz6H/tWG5ddBcL772fO+65j1nzbwVZ5uvPPuGDt5by8Xtvc+LYUd3fcp/+A7j3wUcYNXY8H7/7Fss+/QiXK2jX7AmJLH7oMWJiYnjthWeprqoKbPNnz11uF5++/67KTnjNsfzuL/6S775dzp7du1WvmZ+fz11338Nzf3wGh0Ntc8xmM08+/TTvvfMutTU1F91/LwgCTzz6MK+98Zbq/XSEJQtv5b3Pv8Ltvrz3mJ7i9aWgMzbOW372omzixfZ2Llv7IzdPGRvVvufKqxBFgez01Ij7FJeep6U1+u/wTwkVDc1MSk4gs9Wt+4zZWVJOvbOVMXHawPHPZVWsPHaGx8YMIa4teeN/tm07XsIX2w/xxIxRdMtIVpGMLevX818vvE5OeipP3jmPmUN7BNp5QgmPwWDghT/+DytXrcJgMDB71o2cOBb08/ILukT088KzsOFCtJGQkBaHKS4VW25/EvpOInP0AmzdxmItGIEgGPBVHYfGM/iqjyG31OjaPCEmAUNaX4SEfKTak4pP6Av6LYLBpGw32vBVHEB2Nwe3tWXPEY34qo6o/UPRqLQwNl9AalKTMsFkVYh7mN/ocTTgbWnCmDMMX/VJJFezro8XjZ8HENd3Oud/+gFva3D7yYqmiD4fQK9xN3Jg00pcTv1zho+5C0d7/uBvCV6fD5PJeFFjdj/bfpDbRg0M3F/tkfK6llbqna10TVG4WVNpheav+HgJJ4vLLu0N/cbxmyTmSQYTVlE/0rSzpYFY0UDXBlHl1AOsrajELIpMzVDIgp8wtHp9vHXwFMkuN9NTElQP5cN7T/DcD9vISbLz0Mhe5KcryoqhP+BQcl5WVsbEKVOZPG06140cSV5eHmOvv54ZUybx4Xvvsvj+JZhMJhbevZjZ0yax7JOPuOOexco53S6a62upqzhPc00FjroqWuprcDfV4XE2d7qMVxCNiLHpiCm9MKT2UTLfrmZ8VUfxVR1BaqnWHmOOUwh6bAZS9TENQRfjsxBTeyPVFWkMsJiQj2BLbSPa3uA5BRFDej/k1nplNnro65lsiCm9lGN8amIriAbkxO54L+wLbLsYct7Q4CNn1E2c3aiIMbZnqP0wmsxcc8M8Pnv/Hc22zhrj0Hn2flyK6FUkXA5SHooTVXURMxV+6DlMABtLK5hYkEn96foOX7f+TANrTpUxyGEK3KvhcEsSu52NjI5N7PB8VwKCIMQIgrBTEISfBUE4LAjCP/+Sr5+RmkRSgn70f+Ou/bg9XmaM1Qb4vl+7kWaHg8UL5qnsmsfj4fk33icuLpYli24NOJ+++AwulJfzP88+j81m5anHH6VbN31RTT9Cbd7IkdeRl5fH9WPHMn7SZN55933ue+BBTCYTixcvZtKECXzwwQfcv2QJoMzsrq2pobS0lLKyMi5cuEBlZQXVVVU01Nfr2rzaVp/uPQVgsVgYOGQYty66i0WLlzDv9oXUVFfxwVtLee+N19j903bNMWkZGdy95CGunziFT99/hy8/+RCPJ2iLhgwfweKHHmX1D9+yce1q1bGjrx/P2AkTeeXZ/6GpMRj0rHfLzLvrfirKy/n2m29UxySnpPDIY4/zyssvUVtTo9pmNBp54qmneOutN2mor79oO2EymXjkgSU8/9Ir7T43QoOBoijy4J238+p7n17Ua15pXCzJ9h8bDS5U1ZCZGl2VQTg27fqZscMGRq2L8MmK9Sy4QVvd4ofP5+PTlRtZeKNWhO6XwK9t81KsFtJswd9/qPO+be8xik+XcX18rGbbmh2HOFl0jnlZqYhi0OZJksz7u47QcK6KBd3zMBuDPuSFE0d59vOVuD0+fnfrDHrFBb/DUP/OT879Nm/61CkBP2/cuKCf98ADD0T28zweWhrrqas4T33lBRqqK2ipr8HZUEtrcyPd04JEPTmtY9IuiEYSe4zEmNEPU9YgxJSebb3hx/BVHUVqOq+xAYLRoviECQWKL1dzQu2z2VIQ0/sjN11Aqj+jOlaMzUBMLESqONA2K73tGEFATOkJsoRUq/bTBIMJMX0AUs1xZLc6IOltacSYPRRf1TFkt0Pj40F0fp4gitgH3hhIwoQiks8nCAK5189j61cf6G6PBpH8wY4qKK9UCbtegqe9qqXmFidxNutFkfIDJeX0yUnHWVrZ4bFNpRV8uGkvM1ITA/dqOGRZZtmJs8zvpW2l+yXwa9u8wHX8Fns2e1ps8vO52n6gc+5WTrmdjNeZobinpRGjIDDIGk9CQVAtvNnr5fNzZTw4ph+xIWqCcbnpfHu4GI9P4uaB3UnoGoz6m7MLkCQJURRV5XBCoVKSJoeIqXkFA8jQ7GimqqYOZ0sLbl+Q6IbOt3z5q9XE2OIwWWK4UNei9AZJEudrHUheN97WFp0ZlzJGWxJunwlDbAqCaAgYtkhzLSFkdEZLjWKE4/QzcbK7GamuKDD+IhRS0wVkV4MyNiOkVF72eZTS9qTuAVX34DHnwedWCb8ByoOk8hBi+oBAr3ro+YSGYoy5wwOv8+o/3qfax2RVv47Zqu3SEH0teJ0OrKnZPL+pSLfMKTx6fWjLWlJz8rl2iLq0sbMj1NobnRaKaEam6SFax7M9RfZwYv7pvuPM6t8Nq0m/4yUSKQd4bfMhbs2N3JseSsAPOJuwigZ6WCKXzK9qrGFkbAJ2g5EZxft/8XFpgsJqY2VZbhYEwQRsAZ6UZfmnqF/oEhBpjvm58ipWbd0VUFMNzU5u2bmHhsYmZk4erzrG6Wzlj6+/w4N33U5KUmJg3RefwXc/rKCyqpq7F92hEX7z27xQtDfHvLHFRV1dLS0tLUiS/nPmxy1biLfbsVqtSJKMJElIPh+SJOH2uGlsDP5OHJ42WynLpKSm0a1nL/K7FOqWrEfCz3t3s3vHT/Ts3Ycx4/VHxFVXVvL5R+8zecZMevTqrTl+784dLFy8RPW6LpeLd15/hak33EhhN3VZbdGBPRSdOsntd6jF+DweD8/98RkeeuTRgNJ76Pmef/aPPPn07wKvE2/ufBy9sbGJ8spKenbvpsokhSLc5mzevguT2cTIYYM7/Xrt4XKUtF9q8LEjobWv1v7IqMH9yUiNroUpFC98+BWPL5wb1b77j52ipr6RSddFLmP/bOUGrhvUl/ysjF9lXNqvbfP62OPlr27V9t7Xtbr5vugci/ppA4ZHaxoorm9iZjd1CbRHknjrwCkWjRtKpl39jN/taKGoopa7xw3FbDSoRqyJ6bkBm+e3rWJipsrHgzY/D3A6nVRU1eBsaUGSJDwhds/v632yYj222DgafAZkZGRJQpIkyutakHxe3C3NVDQECW9LsxtZljHa7FhT83GRhNjWyx1KWCP5fbKzFqnpPILFjmDP07V5steljDkLa0cMHl+m9JCHjDiTZQmp6ihifFZANE51jKNS0R4KeT1ZlpV+9JRemlFtRls83nO7MWYPCfSqX4yfJ7ldSI4qYrMKeX6TmuRHKm2vKj5KguCg97VaQVS4uBFqV4KYR9PepOdDtmd7N+7aT6rUSu+CyJVNkfzGV1bvYGGP9m2q30881+TgSE0DU7tEfp1NpRVkxVrpmWzvaCzuFRmX9mvbPD9+kz3mLp/E2Vp1iYlHlljnqmOaJZmzbmVbfrJyMxW7nDRJvgBh95MCY46Nz8+VsTA/D/e5ZtwoPegtHi9Lv9/C5C7ZDBykiCw1nr6AvTBLGcmxYhvTJo6lf2FuoC8pFLLLQXWjk5raOmRZwieIxMXGkZ6SjCFbEd5whhByh1uJ7t2yID1QOtOHYHm1r50ec1mW8bXU4Szah7v6FEg+PA1VCAYLsjEOzHG6hjh0dIbUUoWv8hBCTBJCfLZqf8EcFxx/0VKNkNglsF2Mz0KOSVD6h1J6IJgUJ12Jjg4MjkYL6X0S47ORmsuVmeaJwQegIBrb+pTayHkI0RcMJuT4PFwlPxHTRenFcrc0YrDYePX//S2N9TUU9uzPnU/8A2//8Z8oLT5OenYej/7jf2EwGHj85vEkpSq9y/c9/jRdY5XAjF4PUni/eb/Rk9jw0euMGDww6hFqfypweX26pLw9Qg6w/eez9IrTnxGqlxE/5XJyc2Lk3nKH5KPK4abe66GeS2sXuFjISgTTX9dnavv7VaOaXq+P95av5v/cryh9h5LyU6dLOH7qNPfdMV91TGuri2dee5snl9ylGpPmcrl54e0XmTRhPDfeoBaOKz59hm+//4FRI6/lmmHDdK9FkmVqa+uoqakJlHVbYuNITkomKzs7YhYxv7D9bDxoK05kWaamupqiE8fZu3MHHo/iuNpiYxl6zbUUFHaNWIo8aOhwBg0dzvEjh3n7tZcoKOzGhCnTVNeXmp7OQ0/+jpXffsOBfXuYe+uCwPZBQ4fTpWs33njpeW66eT55BV2U92qx8MBjT/Llxx9SUX6B60YHy5m7DRyG2Wzi888+5ZZbg6I/JpOJRx9/gpdeeJ7Hn3wKiyXoqFosFpY88CAvv/gCTz79OwRBwCsY8Hq9LL77LioqKxk+bBh/+I9/58mnnubg4cN0LSzktVdexmAw0Lf/QDKzlGDr3//t35KclEhirL5zGd6XeP3Ia/ifV95kxOABEcfkXQyuVL95Z6D3vA5FRU3dRZHyotLzFOZqZ9VHwoYd+3nqrshE2uV2U1lTT/5l7PfvLK4GmxfeBiXLMu+VlHJHfq5mW5XLxeaqam7NzaGuuC4wmccrSbx54CS39S4ktqGZpoZm4vMy8EkS7+w8wuCcNG7rmhvIoLvPl1BpiuerH3czuHsBE6ZOAYKTeEBpW5RlmVqHi+rqGnw+Hz5BxBoTQ0pyCobMrMCUgXBfb9Lc4LMutFQ6NqSdzqzj83kcDbRWl9JU4q8ulGl1ODAnd8HQThucYE3GYE1W+surjiCYYxES8tU+ll/Mt6EUufo4QkqPoM6QNRnRHK/0kCfkh4xWUyohpbpiZI9D1ZMuWJMRBQNy7QmElGASTRAExPT+SBUHENP6qcTivC1NGLOH4D2/T5WE8fm8nfbz7n38ryi0aUl4pL7ztK59KN34Kd0GX4fJYtFsvxhcLt2hi9UaiRZHfz7A4hmRxS4jkfLqRgcp7egPhfuJ60rKWRQ20jr0HvbJModLKxmYn0td/a8zuedqsHnwGyXmetjkqmecJVHlkJ2tddIgedntaWKSRf2wbZV8LDtUzLyEdJylzZjbsuhFxypYfr6ch67vh9VoDIxWa2x18/qHqxjYvyuPTR+JIASdRW/5WUjNYeNHSzla3oDJZGTYwP70v/b6gMCPvySxpiWY8fb3JF9Kn4ogKEqdlnTF+DVeKMJky0b2uvBVnUJuKgNkBKMNwZ6ryUZD27xLW5oS5aw8qDK+/tcQkrsrpeiVB5UMeZuQm2CyKT3k/pEa8VmBYwypvZHqzyA1eRDjg6RBjMtEajyH1HRetS4YzIjJPdtUPPurAwQmG2JcNq7SPVjyFHKwY/135HftxU0L7ue9l/6dgzs24vN6+P9e+JjvPnmDHetWM2rqDOxJyfzL658pJ5LBWX0aySshGk0dknNBEBhw/VR2rFvBdZM7FqUCfYOsp87+S6Oz88v1qE1HpLyuuI4DDY3ckqONiuqR8sOtzfSJUUfBw4NuG111jDRHFs4Jhxif2KkRRKI1DmC+IAhvhyy/Lsvy66H7CYJgAPYA3YGXZFneEfWLXAG8uewH7rv5BoSUXNWTo66+gW9WruV3Dy1W7e92u3nmtbd5bPEiFSmvb2jkxY+/4eElS0gM0eVoaWnhrXffJy83h8cfeUhDriVJYsO6tRw8dAiDaGDQoIEMGTQQi8WiKsF2eXyopwFHh0jl6oIgkJqWRmpaGteOHhNYdzQ3s2/3TrZu2oAsyyQlpzBx6nSsNq3z0KtvP3r17cfpopMsfel5xoybQL+Bg1SvMWPWHMpKz/Lqc89w8+13kJml/KYTEpN4+Km/4MtPPuLUieNMmDItcMz8Oxaxad0a1q78gcnTg/Yir/dAyuua+eG777jhxhsD61arlSUPPMiLzz/PU7/7nYoIJyYlMWfuzbzz9lvcu1jJHH3z9df0HziI9/7mb/iLJ59g0+Yfcbs9rF+zmmf++Czff/8Ds2bdRGpaKuvXBMvuDxw6jCkrnVidmfWgJecL5t7ER199x53zZ+vuf7G4VHLemVnkkdAROb8YrPxxJw/ddlPHOwKHT52hT7f8dvvYP/5+PQtmRi5zD4cYZ+/UexKU4PSNgiD8d8jyVW/zVlZUMjkjTaUPBOD0+fj+QgV3hUw1qSuuwyfLfHi2lBuzMuG8A7oq1SeVp8t471Ax90wYTmrbKM/G0xeIyUvn3U17SY6z8vDs6RgNBvXvpbaMbXt+Zs+BQwiCwMA+PRk8eiJWq3KOgN2TJapDNGci6c8UJFoD5Nw/Og2UzK6//No/Os0Um4ApNgE5NkhuGs4V4649g7vqFJ6GSgSjBWNSV7wubW+0EJOAISZBqYKsOowQm44Yqyb0YkKeohVUeVBVJekvRZfrTytjcEMqHsWkrkqypa4YMamr6vWQPErFZVJQ1E0QRIWc61RIeltbMGb0w3thP6bsobhbGtm/e3uHft7wsVPUfh7grCjB42jCFBuskIV2yPnwGexeuYyRsxdotnWEziZqovUFO0vKOyv85i0/C7KMwaANnHfkL3639xgzstoX6/XjQrOTdFsMBlGIqDm0obKK8e3obYRDtMZ1zs+LTwSYLAjC34YsX5U27zfZYx6O/e4muhmtWAX1j90lS2x1NzDBnAgoDv/ZWienahwsa6ji5oQ0LG0GvqGkkXMtTlaWV7IoP4/Ws8GI5ba9x/h03zHuuqYv19mDGWj3+RJ2Hz/NK1+v4/W3PyAnI5XH507kwTtvZ/ig/sS0qsXOQP+GDL2h9Upm2lOWBG3/DSgRUNGeiyG1t9JLZEtBrj2l9JY3l+sLg1iTFePb2oCv6qiq5wjaxNrS+yPVn1ZK0v3rgoghtTcga3qLxMQuIPmQGtQqi6I9F3xuJIe6N0UwWRETuiBVH9O5viQw2XBdOAJAVcV5snKUkrWCrr05+vNucvKVEUFduvfh5OG9uJ1emhvr+f2S+bz6b/8Ht7uV2MwunNuyPHBevf6jUDG4tLxCis6ew+lo1ux3KbhcfeYX0xvUEVxeH6YwYx0NKW/0eIg3GjVOZ6Te8eOtLfSJiQ3cm+GkvFHyYhFELO2MALxM+EKW5eEhf6+H7yDLsk+W5cFALjBCEIT+mrNcIchGkyojvnb7HnoU5JLeo59qP7fbzcvvfMTj992p6Sl/5rW3efjuBSTYg/bk3PlyXnv/E373xOMqUn74yFFeXfomdy+6g9k33agi5YcOH+GV15ey9M23SbDbefiBJTy45D6uG3GNhpRfDNrrIW8PsXFxjBk/kYX33s+ixUsYMXI03y77gneXvsrWzRsD89FDUditBw8+/hTVVZW8/epLqj5xgJy8fB584mk2r1vL+tUrAuuCIDB/wULsCYl8/N7bKns6btIU4uLj+eGbr1TnumbkKFox8O2qtar1hMREFt11Jy+/+ILGLncpLGTgwEGBPvXTp08zYMAAAPoPHsKmzZsZMED5GQ4aNIjtOxQfoq62jvGTJvPwI4/R2tpKn149WfrWO1F/ltmZ6Xi9Xiqrazre+RfGlZr7fbFtfc5WF0ajIerqgtVbdzNtdOSxdI3NDtweLyk64rWXGd9dzTbP5/KpdIJ+On4BsdZNXKVHtV53poF3DxYxQ46n6WxT4FkjyTIfnz3HzMxMktvaQeqK6zh9rJJ3DxVxZ7+uWOoaA8+10zUN/PdHq5iamcq8a/sjVZwLPDeP7t7Ji6+9zSufLMfYUsOjs8fzyD13MOba4cR5g8+2UCIV6uuFBuovZ6WdYDRjSe+JrdsYTFmDMCQW4Ks5qfh5jaUqfaDAMeY4RchXltuEfNXkTzDZlCpJRyVS/enguiAgJnVFMMdrxN/EuEwwxyPVnFSfy5YKplikBrWPIohGxNQ+SFWHNdcomGMxJBbgrVT8vAtni8jrqozWiuTnATTVh/h5rlZi0vI4serzqO/rmDg7MXHx1Jy/OhTBLycp1xPg9PuNep9OR/6iT5Jo9XixRhj/F+4rrjlznuGSNSIpd0sSNW4PWTFXvAp17dVs8/z4TWbMXZJMkUPJPJ+VnHiQiRctFLmC2WhZlvlJamCYaEeMCRnFJcuscdUyyZJMZb2yf36yleOtLRQXObkhPhljm2BIbVEtG3xNpFpjuD0vg5i2st7G0xeotJr5fu8xhnfN5aHZSq+i32EILXkyNFXgi8/AKrUGHNZYwcuxM+eoKC/nXFUtLQ4HF2ob8LhdCIJATYsbAYGqJlfAua5ocCIIAo4ml6KOGROLy23ClJiFLMsdqsgK5jiE1F6KkXLWhozM6KqKWAqCgJBYgOxzt2XB7QqJDmwXMaT2QWoux1d1VBmD1kaaxPhs5NZ6fJWHAnMrQYnCSk3nkerPqCOtiV2Qak8ii0ZVj5JgiVey6jUnEVPU85rF+Gyk2iKk1iYys/M5fmgfA4eP4ujPO8kp6M6xA7uZPGsBh/dux9GkPDD/8cXPSM5I5cu3XmTNVx8x8/bFxGUXUntyP8k9BgMdj9a4ZsY81n/9KTMXBnuefivl7NGQ8vD+8mMVtfTOUL6Tjgg5BEuSNlVVMzFsDnlkUu4g0W3QkPFQ7PI0Mb4tsHa1QJblekEQNgLTgUO/6GsnZbP750PU+ozcElZyDvDCm+/z8N0LVP3PPp+PZ157myWLbgvM1QU4fPwk67f8xO/+5u9VxPvTL77EbDLxuycfV537bOk5ln39Df369OGhJfd3Srna4/Fw4cIFyi9coKGhHofDQYvDgatNAdxvw/x95IIgBNZkWcZoMBJvt2NPTKRLYVeycnI7FNlKy8jg1kV3AXDy+DE+eudNTGYzc+bfRoxVHQAdN2kKI0aO5stPPiQtI5OpN9wYeH81rRLj5y7g6IF9PPfc8zz88EOBz3fYiGtJS0/ntef/yL0PPRooR79u9Fj27d7JV599zNxbgxmY8ZOnsmL516zbsp0hw0cEnPeMjExmzZ7Dm28s5f4lD6iubdjw4VSUl1NVWUXPnj0D85M3bdxI37592fzjjzzy8ENs2LiR+rp6ADZtWEdycjL/8Yf/ZOkbb/L4Y48ydvQoVqxazYxp+jO2w7Pmi+bN4sW3PuDpB+9t93PuLK7WkvYzZeURpx60h2/Wb2X2xNFR7XvizDm6F+S0ny3/Yf2vJvgWCb+mzQMocbdS6mllanyKZtt3jdVMjU8hJsSPqT/TwLKGKsbFJSrTe2glocDOeaeTDVXV3Jabi6u0CVtbuftXP+6nxevl0fHDEAQh0LpYUd/M5ys/oWfvXjxw0wS1rpCOnwcEfD2v10tLdTnHz5TS2NBAi8NBeW1DYOpBfWswi17bEvx3dZuOUGWzB2OMDZMtHreQhDkxA6EDmyeYrBgz+iE7GpBdjUg1JwAlqy0Y1FocYlwmsi0Nue4UsmhCSCxUzzdP7obsrMNXcRAxLdhfLthSEE1WpYUxrW+gHF2MTUMWDfiqj6l6yyNWSBotiMnd20bm9gvsr8w6T0F2O5BdzWRm53PswG4GX3t9u37eP738GXH2RL79+NWAn5fUZzRFG36g+8SZqvceyd8bNOEGNn68lIkLH2z3c44WF1POHi0hv5ixaOGob24hIaTFKdoEztqDRVyXpB84DPcXK1tasTR5Mdr0bV5DSSNrmmq4zpYQ0Vf8NfBr2rzfJDH3wyn7qJE9DDHYNdtOyC30FmMxC2KAxAPs9TVyQ1wSMSEZuL1VjRzxOljUNnO2oaQRe348n54rY2xqCv17Kga3qbQCS1Yqn+0/TnaXLJ6YMUoxYG0GJfRhL9Sdx2vP4MiJInadWIur1YUginhEE2aTibjUTNIzMhmRm0uLYMFqtVHZGowc+sub/Jlbf89RbZUDyevB53LgO1+Fq+o0zvPBLLW3sRoxIRfRqt8nJwgC2FIw2FKQva3K7PLYTM0MTMFgxpDWF6mlGl/VEUX4I8SZEOMykS32tnKk/sF+pJhERINFsx6pt1xM7oGv+iiiaFLPv7QmKcGBhrOICWoHSkzuhuxxMGDwMI4e2M1//8MTpKZnYU9KIbdLd/7jrxaT06U7CUlKWUycPRG308u1E6bx7UdvKCdJ6kXToe+x5/bAaNUv7wwtabdYbaRl51J2+hQ5hdqZqX9qOFZZy+z+3TreEXWfkEeWiTUGzUp7hnZ7XQMTLfq/U4AWyYdNEDnT8uv0lYdCEIQ0wNNmrK3AZOAPv/R1OFpa2LJzD08t0YqerNm0lUnXjyI5RNAN4N3PvmbRvNkqobeKqmrW/ridJ++/C1+Is7f0zbcZPWokffsERc98Ph8ffvIpJpOJJx59uF1C7MDMyWPH2LtnNy1OZ2Bfk9FIZlYWmVlZZGVnExcbiy02FrPZjCAIHWbIPR4PTY2NNNTXcfL4MTatX4ssBUn8sGtH0rN3n4iEp0ev3vTo1ZvGhno+evdN+g4YpOoDB7DabCxavISf9h3k2Wef5bZ7H8QYMmu8z8AhZOd34dk/PsPCBx7HZDaTHmsiv0shd9yzmKUvPseSx54MkPMhw0dgMBr5+vNPmHPL7YHzzJg1hy8/+RCbLZZeffsFyHlBly5ce911LPvyC26ep9YGuOHGGzlTdIpJkyar5ienZ2TQp19/Jk2dRv++fUnPUEoLk9vml8+ZNYvnnn8BgGFDh7D0rXeorKoiPU1/5nEoOTeZTAzp35cde3/m2qEXN9f7SuFKlLTvPXKSscMGdPo89U3NUSu5r966i0cWRG4P8Aeqop2DfiXxa9s8v5aQV5ZZ66plekyKJohb7HXSJT6GFKOa/Gx21HOtzU6qMUhGz5+u4/vGau4f2D1gJ+qK69jka6JrYjwD05JoPldJfF4Gsizz+faDtHq8PDTlWmx5hRGvU5ZlTp0uYfvRjTiaHcq5BQHZZCUjM4OsrCzSMzKxxcZis8VS7xUDr+9vYwztNff7fL29Ho6VVOBtaUKuOU/13n3IskRrG3GPyeiBLJsj2jzBYsdgsYfMJlcnWUCZfCOk9EJ2NSnl62l9VQJvgjUJ0Ryn+HMhPeFKVr2fdt2ajCiISDXH26ooFYj2XKWt0VGJGBssfxZMNsSEfOTakwgpPQPrHkcDpsR8kDwMHHoNRw/s5v/99f2kZmS36+cBDB05mZXLlK60mNQ8HGUnuHCiiKyean9Gj5yfqXbSc/hoju/aQq9rxnC1orOkPFIgdP+pEgZ377wC+snjZxl5TV/Nul4S57s9RUorSRhCK1taJIlEw69PR39tm+fHr/9JXAIOSE0MF7VRG48s0Sx76SWqCdcFyUWSYKTcGex5zLcZ2eVpZLolmbO1zoBg3HsHi5naI4csa0xASORwdT37zpZz6+CeFPbXihZJksTeIyfZdegYkiQhxCXRr1cPFkwdgzld+fGHlnn6nVF//1GOOXK/ub/nyN9vJBoTMSeZMSflIFmDojOeshNIDaV46kvwuV2KymaMfmRLMMYogh9N5/FVHlZ6xw3qB5xoS0U2WtuMdj91dt1kUyKe4eTcZEVM7qEl53GZSuY8jGyLKb2VvvKkrgEBOWX/DKT604roXJhSqBCTCM56br/3MUSTmfde+gO9+g4gM38ucxY9zLL3XmbA0OvwtglDmcwWDu3aSWZO0AjZek7i3NbldJmsZLQ6ypqnDx7Lzq/eZk6XbqoHq17W/GKFP8KzVqG4mEzTxWTLAdxeHzEmY1Tl6374ZFnVGxOJlJ+tdeKUfcS000lT5HBzUGqipxCr3+z+yyMLeLet/0gEPpNl+btf+iLe+vhL7g8TdAPwer0cPnGKp8apCfvxotPY42PJCRGR8vl8vPnRF/z1o/er9n3znfcYM3okfXoHHaqjx47x/YpVLLjtFnKyteVwsixz5OgxNu3ci8/nQxAEevbsyaw5cyP2M18MTCYTySkpJKekaFTPfT4fO7dv5b03XsNgMHDNyNERSbp/NvnuHT+x9KXnuXXhnSQkBoNDlQ4PXXv2Jjk1jfdffY7bFj+ELTYoZJiQmMTNd97Hh6+/wMIHHqcSpUzVnpDIXfc/wBsvPc+Sx54MZNQHDh6Kz+tl+bLPmXXzLYHzzLt9Ie+/+brS/94l6PQPGDCQ8gsX2LZ1K6NGq7OwvXr35tDBAzzzzB8RRIFHHn6YyZMnk5uby9///vf827/8M9OnTcXtVmyexWJh2/btdO0WPP89dy7k2Rde4i+ffjKqiofxo6/lv19+k2sGD4h6DFhHuFzZ8stNzqvq6klP6bzwW7RwezyYTMZ2P8fvNv7EjeNGXrFr6CSuCpu3zd3AaB2NEVmWOel1Ms1p5awzSGzrJA8XPC4KLTGcRVnPS4rhu4Zq5iak0djWpphQYGd1RSW5VisDewS/9yOHi1lf28hN/boyYKQ2UOO5UEJxq8iWvQdxezwQm0T3LvnMuX44sdlq8qfn72Wg7TnX6zU3GE2Y4xIwxyVgS89FTFXalhTRX4nW8uO0FP0ECJhTCiNWTvpnk8st1fgqDiAm90AIU5UXLPHKGNzKQ0oSJkQxXTCYENP6tWn/hJBw0RjsFQ9dj0lElCWkmhPK+LQ2BCskTUpbYuC17Upfe+M5VeDA42hQBIkdldyx5GkQBD547RkGDBtJclpmRD/v+ME9pGUEtQaSB0ygfMunZHYv1FQc6Pl8ub36s+mzt+g2eARGU/QTPy4XnGLMZRV807O3frt5qqyCsQO0E64iob0Z5Xq+oiTLeGVZowkR6hvuczYx2Np+u+4viKvC5v0miblPhkMeB8lYaJZkwrskjtBEN2JpkIIZaB8yJ2hhnEn94F3WVEN/MQ6hrdz9bK2TUyYnQ63x2CrdUKAY1p0XqqlxuljUNYf4WGug1KmhpZXNm3ZR3aAY+yEjruG+m2/AaDSo+jr8+aDQkvbkGAO1rT7SY01Bcm6PoayxNWCoQwVBooEgGjAkdUFyNCDKkjKHsqkMwWRFSOiia7jF+GxkW5oSVbUma0anCebYNqN9UGu0TTZdEq6Q8+5BgY+Aknu2UtbUWIZoV8ZpCYKgKLKHlUYBiImFSsbeZFORdhCpd7Ty5r8/jmAwMWriDBKTU/nXp+9CFEX6Dx9Ntz4Dqa+6wP/8/jFibDZi4xN49B+eCZzBYI5BTO5OzdFdpPRRev7CDXW4ENzw6yezZ/Naho+bEvV34oeeANzlNsKdRXuGtj3o9QqVtLRQ0Ca01R4pB/jZ08wgk1q5PbSyRZZlXLIU0ID4tSHL8gFgyK95DT/t+Zl+vbqrhNv8+OTrH7h9tlqcUJIkvl6xhr9+dIlq/c2Pv2DxgnkYjcZA+eXy775n0ID+KlK+Z+8+Dh89yl889YTKbjQ3N7Nuw0YulJfjFkz07duXRXfeFRC67Cwupp88FAaDgZFjrmfkmOsDJP3dpa+SnJLCDbNvxmjUPuaGX3sdAwYP4YuP3ievoItmTE5icgoL7n+ET958hVm33UlyWjDLY09IZN6d9/PBa89ryPmixfez9MXneODxpwKfx5DhI/B5faz6/lumzQwKhC1avITXX3yOWxfeSVJySuCzGHb9ZD59/12ys7PpUhgk1aIoYIuNZeyY0cTGxbFw0SKys7OZMnkyBoOBCRMmMOzakdSUn+fGWXOIjYslKTGJ9955K3AOk8nEzBnT+ebb75gzS1+sLDw4eMus6Xy2fAW3z5mpu3+0uBLl65eTnHemNcOP8uraqLPlKzbvZMbYEe3uc76qhpyM6AWQriSuBpt33uciTjAQL2rv4X2eZgaHPUNkWWaHu5GpFvV38nlFBd0NVsrrXYHky4ajZcQI0DcjPZB8OVXXyM4LNdzVpwv25GAlZsOZU2wtb6a0UtEN6jVgAAtvnEyMRSFuAV8vpKQd9P09IODz+f09UJPzjiAIItasPniEeGRZwlNzBmNLGa7mBgxpvTDFJmjGpgm2VERrMnLtKWSDRVW5CG3iuxkDFZ8tsVBdwWgw6ZNw0Rgk7en9g+Xu1uTAPHMxORisEJN7KP6cwawapSvGZSrq7s5aVVuj5HXT4JRY+m8PIRrNjBw/ncSUdP79L+9FFA30HXJtRD/P7fS2XaNI8sCJnFy3nNTBUzqcDV9c6WDY1DnsXvUV192oTNEoqXd2ODItEi5GDPhy+YUd2VxZ0hd+C0eon+h0e4kxqq89UgJnw94zDAnTygj3DUs9LobZgvdae62NVxpXg82DKIi5IAjvAAsBV8jyX8uy/HLb9nuAt4DQIanfyrK8IOQcfwM8BZwCFsmyXNK2vhEYB4yTZXlzyP6ngH+VZfkdvWuSkanHwwC0JewOvBgRsIRl407QTC/iaPAEyXqdwUWWYCFGMFDkcNMt1sxxTws+j0x+vGJMG0oaKbZL1FV6mHddT9U5f9h7nAv1TcybOYX0JOVaIgnT6PUggT45v1wQBBHBngPkKKVKVYcRYhIR4rU9bv6oqtR0XhlzltxTrYpuMCOmDwhmts3BB2KkDHkgo151SKWyrpQ1lSA1VyDGZQSuNVAalTFQNcpDTO2tkPb0fqoyq6TUbP7iH/4DRCOCMQZRFPnrf3tR9b4SklL5l5c+Uc2/9BtsgLi8vlTs+AZ7QW9MbeM12sucS6n5VPz0I65WJ5YYxVBfrb3mnRV888MnSQiCENHYRhLwON7UzBCnmYbG9kk5QIssEdtWfRFKyP0ol91kCdqxJaH375XCVWnzJJltu/ZolNZBUVV3traSGdbb/8nX33Pb7Jmq+/inPT/TJTdHte+evfuQZZnhw4aq1o4eP85dC+9QnXPt+g2cOHmSObNuIikncnnnr4VQkl5+4TzvvfEqOXkFTJkxU5OptFgsLLz3ftZu3srn7y5l7sJ7VSQ+xmrjzoef4rO3X2PUhCkUdAvqXcQnJHDL3Q9oMucJiUksvPe+ADn3n2/4dSP5ccM6Nq9fy/UTlf5hQRBY/NCjvPr8Myx55AlV3/uti+7i9Ree5Y577yM+3h5w4rp3784XXy5DlmWyspVKqTVr1WJyKZnZ7NqxPeJn1LdPb37auYvzFy6QndXxiK+C3BxWbviR+oZGEhO0z9xocCV7yv3P3Esh6Bd77K6Dx7imf++OdwTOllcye1LkXvRII9f0hJsuN65Gm+fyyWxwNHCtmECRR/2M8MgSp6RWEgwWlEG3Ck5KDhIFC6d9QV/KGiNjQiStrcf6bK2TCz4XzTESk+KTaShpJKHAzt6D59hX38B9Y4OCmo2nL3DY42FPcRnzZk7mhusGB7YZLdFlUztDzsMRqs4eCYIgYk7tijm1K96zB/GWH0Qw2ZCt6So/yr+vkNITuaVG0QJK7ROmMSQqfl7NMURfOoIt2NMfMUPuz6j7/b9AL3oqsuTTagul9mlL8vRW9b2LSV2Vyk2jVZXRT0hM5q/+5VnweRBi7Hhbm/nLf3kOcwiZS0hK5T/e+lbz2TRWt2BPtWFJzKDZYKS1poxaclTkXM/fi0tMxmg001BdQULqrzeysLO43HZWL3Fz8EI1A7IV/6G9isq64jpOORzcmpsTWAsn5fU+DwltJey/JiG/2hBtOupdWZbjQv5eDtteHLY91Fh3B8YDXYF/Av5v2LE1wH8LnQhXtyLRG/05yadooTvqiFgDHsyIWAkaICc+zvvcxPmChmF3s4NqyUNfU2zgR3LA2Uy9x6MStKpraeWlLfvJT03kvonDA6Q8HJ29SfxRNT/J80fo/Blbv/EIj/jZM9V9Q7rXYonHkN4fwRSLVHUIqblcdz8xPhshPgep4gCy16U+h2hQjHbDWWSnWnE+lJyHqmwKJhtiYmGb+mawskFMLABPM3JLdcj5jW2ZefW+giC2zTg/olHYFMxx4HWC7EMKe3i7W4JGwONUVx00Vgf9i7ShMzi5+kvdzwPQVCx0G3cTG5d/HnH/S4WvnZmk0eJiS9gBimsa6JrSeUXg2koHVp1xfKA2uhd8LjJF5b7TI+UA5+VWstuIeYNHCvz9griqbF51XR333q4/9/iDL5ezaN4s1dr58krcHg9d8oIPxcamZnbs+5mp45XeOV98BucvXGDXnj3Mvik4wmvP3n0cO3GCRQuCfdGNjY08+8JL2O3x3PvwE1clKQ9HZlY2ix96jF59+vL2ay+zZeN6zT6VDg8Dh41g0sw5fPDqc9RUqh0Ng8HA7fc9zM+7d3Bo7y7Vtji7PUDO3S5XILCamJTMbXfewxsvPa9Sgh87YRIul4td27cF1kwmE/c++AhvvvKial9BELjngYd5b+lr+HyKSr3LK7e9r0waGxtpcYRyJDW8QuRsDMDdi+7g/Q8/jlqx+K75c3jv82+i2jccv5TQ26WotVfUNZAieDtN0Msqq6PKcF+oqiGrg8z6yh93Mj1ErV1Oyv5FSHkIriqb50SinxinSSIAHJGb6SeqfcBW2Uez7CNNCPp0Xllio6OBBLc58KxxSD4Oehx0dweD6QdOVrK/voGbc7IDgeeq0+d546eDeH0Sj00fSUE733Pob1yvFa0jtfZIPl9nIZhsmLKHINqzkKqOKL6a3gQeW4rir1UdQnarp80oo277ILvqVdN3IIScVx1um6Xetm4wKT5a5SFkKWjHxLgMMJiQGs+pzq9k2Y+o9gUQ0/og1RzXrMsYQJZUPmmofwdaH88Pv6+X3H88dUd+RJZ8gdnwfoQHP4orHQyZfBN71wTJfrTVDHrQS7p1VCkWabqJ3u9LqDvfaTvrdLkxm4KB6GgTOSeqaslsdXXY5ujweokNmVShV0X5k6ORXJdZQ8oj+YX/W/BLlLKLbX+GkH+HYilwN7AA+CiaExoQMOnEFFrwEYcBMawp9SxO+qOOiBXhoG/bWoNHIsEkclJq4RqPHdoSdadqHJwxOrkzPfhwlGSZ93cf4aFRg0jNvzyRtNAoqh+RStpDe839aKxuwZ6ZS2P5OexZ3ZRZ5jqlTKCIeRisSUhNZUiNpYj2PO0+5rhgZDS1t7p0XRAwpPVVBNsMZp3Mefc24Y8+6vMl5CPXnUJIDmadxKRubWXqsYEIqWCMQUwsQK4rRggpgRIMJsTEQuS6IoTk7jz6b+8FtsmST8nKpw9EEARMsWpSac8Knic0iOGPpoomM3EFA6g9uY/kHkoVS3tZc2u8HZPZgqOxgVh7ZAJ7sX3mvwTaK2E/W9dEnk+COG3pVqRseUNJI5FcrnCje8LrZKw5IaLxlWUZlwSNOm0qvxFcfpsniipFdT+aHQ5ibVasVvVDfNkPq3n4bvU81k+++Z4HFt6qWvvyq2949KGgCrjX62XLtu08+dgjqv1efPM9Hnrk0cC83suFSy1jjwZdunbjvocfY8/OHXz/9TJmzrkZUDtLyalp3PnwU3y89CVm3HwbKelB2y4IArNuW8T3X3xMnD2BLt2DlVNxdjvz71rCl++/yYL7Hwme05rAzbfdwSfvvc3Ce4O9/FNmzOTzD98nKyeH3HyllDQuLp75dyzisw/fY8FdQQV0S0wMty68i0/ff4c77rmPaofilCbHGMgt6ML//M9/8/Tv/qLdMV2RyiENBgOzb5rJdz+s4KaZN2i2h5ezW60xZGWkcu58ObnZ0SuX/9Lq6xdb2n76QhVd27JAnZlzHi3PXLllJ7dNn9DhuYxtJaK/MCG/HLjsNg9k4oUQIdG2wKwPGQcyLgRcBIO1R2imJ3GqFsZSg4OBYnzgeypyuCkxOphoSUIQBM7WOslLimFXSyP39VBrV3x89DT3TryGnD764lid+Z2Eo73MeTQ+HwT9PgiOzPX7f6LFTkzhaCRHFZ6aUwhh022gTRU9fSBS9RFEe76qdB0U/0yqP4PUUo0YovETJOdHVG2KgsGsZMOrj2FID1YdiPE5bWXqdYHeckE0KPvWHMeQFhQREwRRdQ6VnyfLCPUnMWYPUVVOhvp3EDlRJQgCKQMnUXtoEykDJ1Jb5Wg3c24wGsnq2oPyMyfJ7KL9/C4HOippvxLw28dzVbXktxNsiuQjOmsbMWZopyP44fcRd9TWMTJFCUZGam2sdLjoa7Gp1v63k3KIPmM+TxCEWkEQTgiC8F+CIISnq/MEQSgXBKFUEIRPBEEIpFNkWT4BbAeKgH8G/iHsWAfw/wH/Lgg6tas6MEe47LM4yUftOHqQMCEihJB1HzIigorAn/UownChD9o9nibGx6l70lcUlzG7f3fMbQ9Qc3bQaIcbaVWPeQdZUP/NqTfvMjSK2jU9lh4Z8fTIiA8YFXuq8sP2GyS/oTLFJmhIqh9ifA5IPlXGOhRKdrw/UvVRVWQ0cHxKb6S6Is02wWRDiEnSRlotdjBYNK8npvZGqj2hzrJb7CCIyK31YeeIB4MJuUU9W1cQDYiJXZHrFHV6vYCEH+Ez3/3R1Ljc3pQf/jmg9ByO8Kx57ohJ/LT2h8D/I5WiheOXICKXimaXmzid+ZSRSLkfei6qfnmSzOkISusNHokSr5tk9AMaTn6xz++qsnlJEUqIf1i3mZmTx6vWPB4PBoN6rrIkSbjdngCB98VnUFlVRVpaqqrEe/l3PzB3tjr7/s2ajUyeOvU3ScpDMWzEtcTGxbFj6xbdDIbBYGDBkkf57vOPaKjX/tZvmHc7W9ev1myLT0hg6HWj+XHNCvUB8Skk53Zl5bqNVDo8gb/rZ9/Gx598SlmdI7AmxKeSmZXNgf17VadIy8igS7fuqix7bauPerfMnXfdxbvvvN3ue25vpnzvXr04faYkML4pHOHPrNnTJrF8tbbqoD38VghmU0sr8SFK6N7ys1ERfCFKZcpWlxubNfJ3UVFdR15Wuu42p/MX0yC5qmyeCVG3Wuo8reSg/ixlZCRkjGHfR73Ph9sbXHPLEvVuH8YQP2+fs5lhNjUp3V1ew7X9uhIfo1+ubszMV/l70fzO2+sZ1sucFyRaNT4foPL7Qn2/UP/P7wOKsWkYE7KQGvVncwuCgJjaF6mhBNmjrcARE7sgO6o02wTRiJigJFBU60YLQlwGUoP69cSkrkhN59RZdqMFwZqM1HRBe47YdFWW3X+tcnwB3vIDqvXGC0Xq/4f5eBD088wJacpEI1fkaiM/iisd9BpxPSd3B21ve1nzjnzAy92qGopo7WyoTWtqacVu61wLZlNpRcRgZF1xncpHrPd4SDabdUn52Vonp2oc2MIqu/ykPNpKrj9VREPMXwB6A6nAXJReoaUh2zcDA4Bs4BqgFVgjCEIgFCXL8j/Jspwhy/IoWZZP67zG20AT8ORFvYs2eNtIeChKcFIQRtZLaNGsncVJN0ExckUONz5ZxilL2EMk/OtaXXjjbBQk27EXBnvB9Ix0e6S8PWcJtOQ8xx4TMNSgLm1PToslOS02YKT9BjrUOEck54ldkFqqNKVMfgTIedVhFXGGEINerS0vF+MykV2NGmMuJuQjNZcj+9wh5xGVkqq2eZuB9cQuShlWeKlTQgFS83lkyave3xIPYpC0h5LzaAw3QFLfsRRtWhn4v155kx8WWyxuVys+b/A6oiXn0eBylLNHQkeCb9XlNdh0BLMiwW94w02pHimXZJlql5aQhTpfSZjIQv8eCW1HuYK46mxepPm1VTW1pKeqo9drNm9j6jh1L+v6LT8xccx1+OIzAr+tb779ntk3BgW9ZFnmXFkZ+XnBjENVi5fTxcUMGDAwmsu86jF+8lSOnCzizKkTutsNBgMLH3iMZe+/SWur+vcrCAK33vMAy95/E69XbX969R9EU2MD50rUX/WwUWM5ffIYtdVVqvPMXXQvyz5Qk+p+oyayfuNmSqrqVeujxo7j8MGfNQEBU0IaaXmFbNu6td333N7zZsFtt/DRp5HbckLtkNlsxmQ04mjp2Kn9NXExWUyFmGs/p0sVlosWGalJ3DReUWMPd7LDq2GuEK4+mxch6NGAh8SwwG0FLjJQ8/0qXKSiEGv/s+WE7FAmfYSgxO2k0Bz0B2MLEjhQVce1BUEfrzMJmGif3ckxhohl7e21M4b6faAl6H74/T9DQg4GkzYp4kegtLz2pMo380NM7Y1Uc1Lrc8UkgGjQJEpEWyp4W5Fdav9JyYQfVbc0xmUit9Yhe9W+kxibBh6HNiBgtCAZ7fjq1D+vzpDzlIGTqfl5nWa7HgRBwGZPoLk+2Lp5KSXtnUVHXCFa6AUaG1uc2NtmmHdGj0iPNLdXSRkOv19oFkRGmIMJh9BM+cUIcf4poUNiLsvyHlmWK2RZlmRZPgw8Dcz3Rz1lWS6WZflE2/ZyYAmK8b4u2ouQZdkH/DXwd4IgRK6RaAdNeInTqcxvxadx5h34iA3Z14OEAYEmb/AHt19H8XP5qXPcOjhYxhhqrEG/J6wzpDzcSEebPQcuOnuuZL6LdbPiENr3fUjb320wKeVONcd1ztsTqeaEhtCLqb2Rqo+pe8hNNgSLXdX3LggCYkqvCOdWzqFZT2wj7W3vpT1yHgq/wbYkZeJ11ONzBx8S7QmvZA29nl0bVkXcHi0ul/GNBtGqsBtEtWHsyPC6JAlziDGNJOSx3dFMuqCfhbhssNoD92JUfxZ1kO63YvPq6htItGvbLYrOnKVbF7XzePRkEb2GBcm6x+PB5/OqsuBr121g8kR1ue0nH3/EwjvvupjLaxdXOlsemqEO/7th/gK2bVhDfW2N7rFGk4nbFj/EJ2+8rOr7BjCZzcxdeC+fv6NwllAbPePm21j73Ve4XWptjtkL7mb5J+8hhVTj2BMSGTDsGrZtWKPad+7Ce/jy/bcC1+rHgrsX8/G7b2ts8Ojrx7Nz38/UVOs73X5EsjFpqalKD3tt+9UwfsybOZVlP6zpeMffGJpanMRHIMCRyHm0WZ2S8xXkZ19hAamYuE7ZPGLU5PS3YvP81Y7hqMYdIOF+lOMiM4Ss13t8tMoS1jaxX4AzXicJbrV/+F1RKXO6Ky1+l5KAiRaR/L7wpIzf54PIBB202XMAY2oPBG9z5CSMICCm9dft+w5MzdHR+BETu6h8rsAxyd2R6otV51Ky7PnI9WpS7ffzNP5lcg8lIBD+mrFpeJuqcdeV6b4XPyIlYAwWK4aYWNwNVZptesmYgeOmc3CT2s/7Jcl5ODr7O4tkv5pbWrE0VkdNyjsjBlxWXItYr/5NnK11RvQLL6Z8XbbYOmfzrp6RbB3iYmYR+b2LSCENf2Nop0IesiyvAHailDt1GudwkhuWBdcj6w14sIetnaaFrgT7HGRZpk7ykCwGna4al5tUqwWz0aAx1qCNcncmchqK8H6T9gw1oClt92fPQUvOQZs9DxpdbVY8sI8xRhFwq9GSYcEcp5QjNahvfkEQA+Rcte4vgapXl0CJ8dnIzlqVuIdgtCDYUjVlWILBhBCboSl1AgL9SX5EIueRStqTB03m1LrlmvP6EZo1T8rIprpcXbIfnjW/kuVLVwIdCXqEIjQaWu/zkNSm0tqe8a2Q3WSEVTL+wqJuF4Or0uatWL+ZGyapx3zV1NWTHNaLXlVTS3JOF9XaDytXMWPaNNXakWPH6NsnqDBd0ezGYrYQF6cvtHmxuJKkPJzQ6kEQBG6990G++vBtXK36VS622Dhm3XYnn771qsYxTExO4Zox4/hp1ddAkJwLgsC8RfdpMuFGo5Eb5t3Ot59+oFrvO2go1RXlVIbYEKstllETprDu+29U78disTB5xkxWLP9ac60L7l7MK0vfpMbp1WwLRSRyvvD2W/no088iHhf6HEtOSqSuvlEVZPhTgNvrw2KOrAei59w2tziJj+24vWPbvkOMHtz/kq7vV8BVafNKcZIX5ud52xIroRl2DxLGsLUyWkmWgs+eIoebU14n3Y1B388tSTi9Pgp6Bgl4eAIG9P29aBCpnF0ve95ReTtoBYH1sucBcp45EMFR1k4Spq3vuypCEiaxELn2pOY4vUx4pMSKEJMIgNwa9MsCrYi1p9T7CiJicjfNOrSR9toi3M1BUqiXfIno5/UfR+3hTZr99WCyxCBJPrxudcD11yTnetArZ49Eyt3nS6g7f464mKi6SgKQZFmVzdYj5Q0ljRxxtah6x9vzCfVI+W/AJ7yi6JCYC4JwuyAIiW3/7gH8D7BcluXWtrWZgiDkCgqSgZeAauCni7ievwIeANI62jEcEmj6i87pGPEyWjVrHmRiQrLqDXjJNKh/sN70GOaMHhT4vzm7oF1SrodLyYxGyp6H9yEBnS5tF0Sj0kvUHDmbKljiEWxpGgIOIMamg8+D7FKXrQgmG4I5TtsTHpMAMprorZjSCynM8Iux6chuh26pk+xq1EZqRWNgVrof0ZJzAGNMLAgCVeeC0dT2StrjuvTh1OGfNee5GtFRttxPyi+mu6dFlrCKYocRUUmWMYQY9qvRAP9WbF5js0MjCLd64xYVWffFZ7DipwPMnK4m4RUVlRTkB4UfGxoaychQ97hWVlRw0yx1v/ml4kqT8mhhNBqZfftdbF79Q8R9ktPSGT1xKmuWL9Ns6967L1arjSMH1f2O8QkJ9B08lL3bt6jW07NySE5N4/RJdXDzxlsXsvob9USIrj1743a1UnE+mBGqdHiw53TlfE09tTVqe2oymbhx7jxWLP/6opR+Y2JiSE1NoaKyMuJxoc+0KeNGsX7LxfzUfzl0upw9iux3uJPb5GghLtYWYe8gGpodJNovb3DrcuO3YvMc+IgPS6xcwKXpOdfz8xrwkhKSVZdlGVNYyWyd282UthL2SAmYiyXl0cBP0EM1h9JjTYGkjF4GPZrsuT2rmyIumDUUsaUdP89oQUzqrkvABUs8mOM1E30E0Yhoz0MOT6AYY5SkjUMd7BcSC5We9lAib4kHg1mrK2SOU8rldZTjxZQeyLVFHVZG6vl5gmggJiUXR6V+730oiisd9B87hcNbteXv4eT8YtoZfy3dIa9PwhRhhnkkX9HjkzC3tdVFIuUAVV436cbgeEI9RCLkV6NP+Esjmoz5Q0CxIAgOYDWKIb43ZPt4lAhoM3AYSAGmyLKsXzPTDmRZ/hn4BHQGlHcAvbCtjKLgHo7wUqjwPbzIxIQZ7N4pCcSYOu67vRKk3A+97DnQYfZcj6DrlrZ3MGJHtKUie1qQPdobTUjqilR/Rlt2ZM9FairTRmCTCpHqz6jXRANCTAKyU33Di23RUc31JHfXiI+AMgpEbq1TvWao8a49tCpQYhVqtP3R1KS+Y6k7qu7bjFTS3qX/UI7v26W7LRKudgG48PuhPQPsh00QKWnQfyipeodCz3H1GuDfhs3TMXoNTc0Bsu63RS0tTuLj1WVc4T3rra5WYm1qktG9Rw8Sk9Til1cjosmSR4LJ3H5bRUG3HkiSj/Ol2nK/QddP5ccN6zjfoLaHA4eN4OjB/Xg96msaM3k62zaoZ46LosiAYSP4efcO1frU2fNZ8602IDB9zi0s/1Kb3c7vUkhF+QXcbreufVm1ciUtbb3hes+iOTfdyPLvIgcpIPh76tOjG0dPRm4N+i3CaDTg8bZfcRCO+Fgbze2MrPPjN9Iv+duweTprTXg1ZL0FH7FhLYzhxyrJHLUd7N03i/QoqiD8uBhS3p4IXCj0CDpELnGP5PsBAd8PUQSdyTWhEMyxilBv2EhcADE+C7mlWttvbk1Cdjdp1sW4TGRHpTabbs9DDhd3S8jXHe8mJHbR+IqgJH5k2adJzvjJuaviOJJbSaLo+XkJPa7h7M4fNefV8/USUjNoqI4cuPwtIsEWQ0OL9reoR8r9SRuzQcQtSR36hAIEph6E489Z8o4RTY/5eFmWk2VZjpVluVCW5d/JstwYsv2vZFnObtueJcvy/DaFzg7Rdu5/DVu7V5ZlQZbld6J9E/5SpssFH3LE84VGUaPF5e4hvhQjrdd7DiBLXtUIikgQU3oqIiHhxlMQlKx7WP8QtCl7NpwJ21/UJeFCfC5SU5jBFg0IMYka8RLBYAZB0MxbBxATuiA36PfOiHEZtJbpZ7kbq1swWuPxtTZTU9mxzyEIAg7BjNMR3PdKlrNfKZXj0BJ2URDwdrJU1SYaaJW1hEBjgNtuq6vZCP8WbF57/a0X00bjdnswd0BSLxWXMyAV2jN+sWhtdWK1dTwveNqcW1i9/Evd8u3rb7qFFcs+1axPn3MLq75Wi6oJgqBLwgcNv5aDe3aqvlODwcDga67TZN7NFgum+GTOl2mzQLPm3cq3y5TXDP+sR4wYwVdffhHxPcbExOD1ejSidpGQkZZKeaW2R/O3iqS4WOqbOydqF2ez0tzScTlrtMrtvyZ+CzavPeh9xhHF40LGrhkFgfzkyzttIhrokXOr1Kr68yM0i+73/UKz6O1VToI6ex6flgttLZrtkXMxsQCp8Zym3xz8+kE6Je3JPZB0ys7F+FzkcJ/OmoTsalBP4xEEpQc9PPMuiAiWBE02HdpGutUV6U7iMacU0loanHIRTs4F0YBoMFFVpq81EoriSgdpeYVUlWr9285kza+m1sbE2BjqHZ3L8AuCQEvYDHhoX+QtFH/OkkeHi+kxv+rQiFfTNx4t/L1IoZBkJdP+axjszqCzBB3QZM+hzUBLXoiCmAuCqBhPHdIrWOwgeTRl54LFjuxp1Sh+6pJwQVD6x8PKpUR7DlLTeZ3Me1ekOm32RrDEI3scqgeL33iLlnhaKosCDwW9Uqf4LgNpOq0m76GR1NBy9gFjp7Bz/UouBXrBmyupzB6K8L7yeLOJJrfyAIkmWw5QU++mNUyjIJKgx5+N8KWjvLKarHSdStAYnSRU2D2jR+rdbjfGECX+yx1MvFyk/FLJeCicLS3E2DouRRYEgRlzb9Ml4CnpGZjNZi6UntWsS7KsUmMHJZseTsIBxkyaypZ1aoGh/kOv0c28T5w5m8+/0GbTU1JTcbW20tys2KnQzzwpOZkWp5PWtp56ve93xrRpfL8iOjt205QJfLt6Q1T7/hZGpiXE2aIi5qHl7IIgRFMB3yn8Fj6rXwuXOwEjIevO+IjPC5lEoNNffrkQiYhH2m6VWnVJup7vF0l3SPa6saUGW5jaJedtSZhwCAYzgjlWm1QxmBEMZo0au2BNQm5Vk3BA6VkPS+QIMYnI7mZtRt6eqzvyTTCYEESDpoqz8UIRgtEMohHJrX9fN1a3kNR3DPVHt1AbRjb1suamgiEc18mw6+FyTuiJ9lks1J3XrLXXlan7igABAABJREFU0pNgi6EuLLDYXrY8EvT8wVqdZ/Sfs+TR40+CmNfhISlsfIYTH5awt+dC0sxAb8GHLcw8+yOplwOX4uCGGmG9Pz+iJeh64nD+0najyRwVMYc2AQ+fW7+kPbmHrjEXk7troqkRSXhsOnJLla4CqCbzLhoRDBZktzaKp8w2V5e6+8m5IbkbdYdWB9bDo6m2zG44K4o1BlsPNnsiZ8v/dLJHdouJBpenw7nlfpytdSIKAqEmNhIpd/r+d8+nvFw4cuIkfXp0U605LUma0myv14shbPRdXV09SYmJqjWPx33FMuaXk5RfTrS2OLBaOybmABnZORhNJsrOntFsmzJrHmu+XaaxVzPm3qrJmgOMnjiFretXq9a6dO/FuTPFmoz19Dm3sPIrdem6wWAgt6ALxae0dnbW/FtZ/kVw/9DP/uab56my5uHPpi4F+Zwt1VcyDofVGoPL7f6TEIEzZuaT2qUrjeZ4jfL2n3H1oE5nTJocpSKKhKyh9Hk2kyYp82vD0FQR8Q/QJel6InGRdIdik5IQDOZ2BYH9EIwxSrm4Tkm7YM9DaizVKTsvRNKtmixEDm9dNMcie13a8vdIvqItDcmh9bOExK5I9cWarHnjhSJi8oZGzJoDtLQY8TqbkCWpQ3IuGgzUtmhF4EBfCO5ykvMrgcRYqypjHs3EnnCf8FIz5X+GPv4kiLkLSSXeBkrfUXgWvRkvcWH7uZA0BN6AgKfN4CQUdLoN6pIRTryj3S+Skido+8/9pe3xGTm4Kk9gEjyY7OnaF4kAZRyG1gALgqhrQAWDCcFo1Qq+xaZrxOEApQcpPJtusSN7nNqZ6kmKmIjmWkxWZMmrX44VkxBxdIgfluRsXLUXVAY7UtY8u3tvSk4cDfy/o3L2q6XPXC8amhxjpq41QrZbxxBHiz8b4iAEQcgRBGGUIAjX+/86c3xxyTnNSLRzZefJyVZn3CoqK8kIy6zXNzSQGCYaZzKZaW3VOhxXCy5rO4gsc3DPLnZu2UhaZvStSVNnzWPz6hWadVEUGT1pGjs2qzPIRpOJwh69KTp+VLVe2KM3paeLNU7t5JvmsuEH9USIlPQM3C4XrU511mfM5Ol894M2ux0XF4/RaKKpKXif+m1NSmoqjY1qRfVwcj50yGD27N2nOa8err/uGrbs2BPVvr8GOkOw05ISqaoLOvZ+gn45SHq05PFPHZdq8xrwaoi5G1mTbPHqtCJ6kDHp+Xn8en5eOPzku73tofv4s+yRsueAipwbW8vwXNhNYuEAVcUkRCbnYkI+UpM2EysIAmJSV50WRQEhLksrEGeORfa2arPmOjpBgsGMIBq1gr9xmcgO7WckiAbFt/RoM+Oi0QLIqj70cHIuJvel8bRi8zpKxHQZPo6jP0Wn5g765FzvWfZr+IMpcTZqmpTPLBIpD/UP/0zKLw4XY/curv77NwARASnsgWhCwBm2ZsVAHeobJU0wU+q7ukYhtAc/Offf3OmxJiodHnLsMZQ1tlKQaKWk3knX9FiKKx30yIjnmLuV4s2r8LY0Ep/VC3e6Mp+98YJ+v044BEEEQUSWJeXfodtiM5Cqj0CsmhAIiQVI1ccwpPVVr1sTkZ11CNag0JQQk6j7QBDjs5GbLiDYc1TXIohGZJ8HwaB+cIsJisiIkBgsSfM4GjDFJiDGplJ/6icSuyujWBvLzwV68BurW7B3H0713hWkJ9/U4edROGAY27//goKefTrc92pHbnwsy3edokvmxZXStzeT8i9f/R8S0c/M9hh7TYfnPvnjLl57aOFFXdfVAkEQ/gDcBhwB/E9kGdjcmfOIYQJuBoMBKSwIFWuLxREmUJWWmsKOXWrBwq6FXVi3fgMw4aKrfK6Uc3G5SLnb5WLTqu+pqapkwNDh3Pv4X3bqeEEQiLfbaXE0Y4tVq2x369WHXVs2cd24iar1a6+fwKdvvUa3Xmq7MHjEdRzYvYNB1wTHQKdlZFFXo80IXT/tBrauX8OkmbNV15KcmkZ1ZSWp6eqA6rQbb2Ltiu+Ze+sCzbnGXH8927ZuYczYoG/gFGMCTv6o667l1aVvMGzokI4+Dgb06ckr737M9SM7vm+vdmSnp7Dixx262/zk3Ft+VkPUoyHd4266FSFCSbRgSwz+x/An645dNpsXDhHtd2BAqXoMhRkBN2oyUO700WJULqWhpFGXnLvPl6jK2YW68796u4GfnPviM0LIeQy1rT6V7wfg9Xg4cHQLLUVnyCzsTfzcxdRVtyj+TZuvA4rfZ4pN0PX9BHMssqcFwWQLW4/TTYiIsWn4Kg9DXKZ63Z6r+GIJwXtIMJiRJC9y2BguIaEAuf4MQkoP9WtaEpBdjUrbZOh6Qr6i0G6yqYIMjReKiM3qh6v8CDE5g9CDJTmPup+/J6HbMEAh5/7Wz5MVTYHABkBcSgYHd25ggA61Kql3BgIiVxq++IwOAzmgPy7NP7fcZjHR6on8bO3M6NxwLH7hP8lqm2w1yKP2C/JHR/e8eK1fz4t+/asFF2v3/mSfBAYIREP9MCNqjLMNA2Woo1pGQVAd2/Xpv8Bst2COs2KKV4yTwabcrIItDiFkXp9gUt+YVsGA0xW9Y1nb6osqW66H5BiDLjn3Q5Zlzh75mT07dmA0x1Bw3TianQqRbaxuUYhpVreoybkYl6UhydAWNTVakT1O1ecRIPNhQnNCXDZS9VEMIcQclNEdsrcVwRh8D0HCHvaaCQXIDWcQksMMuTlOd8QbKA8Kb3nkUWfNdW5kSUKW5YjGurjSQdf0WAxGEz5f51R9wxHqIP+aiDUZafVpSVa0EVI9hEZIvT4f//b2y9Q2NtC7oCsPz7uDZz95l/I3nyM/J5cFd9yBx+djz+7drFm7FtFo4LFHHiEuNhZjs746/m8Mc4BesixfdIpaFEV8Ph8GQ9BWxMRYcLnUp7Tb42lqVleGxMfH09yszgwo/bJygJRbLZFnOuvB5ZVJjQ3e09WOqyf7fvLIIfbv3IbRZGbM5GmkZXRewNOPUROmsG3DWibfOEezLa+wK6Wni8grDGaiBEEgISmJ+toaEpNTAut9Bg7h07deUxFzgKzcfM6XlpCdFyQDqemZ1FSqM1CgEPYvv/yUBx9YolpPSEyiob5eteZ/rvTr15/XX31FRcwhaHsEQcAgGvB6vSrNAT9CHUJBEK56xfFQUt0eRFHssF/8UrLnXq+XOx96gsqqKoYPGcQf/un3PPE3v+fQ8VMUFhZy++0LcHvc7N2zl1WrVyHJ8NSTTxAXF8ek8eM6foGrH3O4VJunk2wREQh/UnVGCC7UG/T7eUBEXw+I6O95WzsnHnipMDRVBHRolNL2oJ+08+dD7Nq6mSa3xHVjJzFw3LRAhd/JtnvWT85D/T49ci7E5+qSZADBlorkqEIMT8KY45BdTcoYNP+axa7fJ25NAWcN2FKDawYTkqT1mwV7jn5yRzQiyT5d/RSDLZnW8wdVa6FJGADRZMHncmKwaIl1ODkHKKpopltGdCMQyxpbVX74bxEXky33+nz87tUXqG1soE+Xrjw+/w7+8NG7lC/t2M8b2rv/FX0/vyDmcBF270+ilF0PisHumJgbdIw9KNn11pCSP6/Xx91/+89MvfMh/vY/nwcgue9wJs6az8TpN1Fbq/xwP/r4Y8aMG8+sOTfT2Ni5st/LkXHSG7FRW13FnhVfsOLjt8mIMzPnniX0mzKPft3yNKJwQGCcWkcQYhKQXfoEXhl9oRNNTeyi7TUShEDGW7Vuz0du0Bf80AjJGS3IXreuYRZMsZqydY+joc2pFGg4H+zVDC9zis3phaPsuO57DEeMLY5j54IjNa6kOvvVimjKln7cv5tuufk897vf4/J42H/iKF6fly/f+YCs7CwOHz7MiD79+XbF9yx94SUmjh/PySPHyMvIZu2OrZrzh0OyxAeUyaP5k02/TJQ7BMVA55hvGEwmIx6POhBkMVtwudSfvyiK+n3AYfeJU4whNiWdmurg5AOv18udCxcydcoU/u7//B8A0lNTmTJ5MlMmT6a2Vuk9/Pijj5gyYRy33jyn0zavI1zsPdNQX8d3n33IZ2+/RnNTI/PvXsLchfdcEikHZba5XlYb4Lpxk9i+ca1mfcKMm9i48jvNemJyMvW16jaekeMn89NG7bzctMwsKsvVFUQxMdaISuq9+/Xn6KGDmnX/cf7RaXqYOGEc6zZsjLg9VJQyJzOdc+e1QYNQ6IkS/dJoj1R3RNo7QnsTEvz46vuVDOrXl3XffI7T2cqmrdtxezxsWLeWzKwsjhw5zLTJk1j21Vd8/NGHTJ0ymbMlJfTs0YNTRdqRoOGQzLGds3nmjqcRXGZcss0TQYeYa9eigf+ZlCqa2FMV9GG8Xh/3/fN/MOPBJ9V+3i13MnHWfGrrFD/vw08/Z8ykaRfl511OhJa3e+or+fSTj/n87ddw1Vbw0IMPsnjJg6Rl5wb6zgFNO2OkST1+CAYTsg5JBhBs6cgt2jFiQkKePgk3x2vF4WLTkRw654hJ1ArMCSKCYND0pUNbqXtzuW6vuWiORXJFbl2M7TKc8r1BYbf2+s1TCnpQU3JS1crYWVxNvmBnBd+8dS7cYS0JegmatXt20iMvn5f/UvHz9h6P3s8r0wlEh0M22Tpl8yRzdIGUy4yLsnt/ssTcoEPMlYhrdOhrimWvM2hwv9uylQE9u/H9y8/gdLn4+cgx+vfuyfrlX7D+m09JTk7C4/Hw2tI32LhuLYsWLuDVN96K+npDSfnlIOhCSwNff/4J773xGqf2bmfKTXNZ8tAj9Bw4lC5JNo0oHFwcOVcy4NrrFUQjyLK2H9wYowh+hIuG2PO0YzIiPBAUwq51piL2INlzkRr1RY0MCXlI9erXDSXnPktegJh31GveY/goTu7Zpvs6erha+szDEa0Su54xjsZJvVBdSbccxVHukVfA/hNH6JajKMXm5+dz8tQpikvO0Kt7DxocTQwZOIi9P+/H4/Vgj/tVjOtlgSAILwiC8DzQAuwXBOE1QRCe9/915lxmk0kzd9liMePSEaaJcDE4xZjAH8DkyVNYsyYoSvbN118zYOBAVq9Zg7O1lQM//0y//v1Zs3Yta9auJTk5GY/Hw+uvL2XFmnXcdsdC3n5zaWfexmWFo6mRNcuX8fk7r7N9wxomzLiJW+99kCHXjrqsmV1bbByOJu39YDAYsMRYaXGoHcAYqw2Px61RV79+6g1sXqPuWTeaTPgknyaYMmrCVLauUwvGAYyeOJWNa7Xr144aw87t+kGsaTOms2qltlfe/zvo3q0bxae1+iF6mDD6OtZv/SmqfX9tXAlRt4S4WBqb23fQBQGKz5QwoJ/SzjBoQD82bd3OwIFKaW1BQQEnTp7kxImT9O3bh6qqaoYNG8aOHTtxu91YYiyX/bp/KVxOm2fQ8d8udRRdb6ONo95gkOrr1Zvo372QFa89h6OpmQPHTih+3ufvs375FyQnJeFpbuD1N95m46rvWXTbPF5f+sYlXUNnINSdV/05Wlr48rtVvPLc//DtFx8za/J4nnpwMbNnTMVgMAT6zgFdcg5av0/3dU02XYFdpToyRiMErLQXGnSSLfqTePT8SKVXXUsahcQC5HodTSFrMnKr4ruEk3NLVn9aLxzSfW8ARlsi3paGwIxziEzOM3oOpPz4/ojn0kM0QnCR/MGLraJsr4w9FNH4bKFINpio9Qa/Vz0/0IDAiYpyurf5eT3zCth1PHo/z2y6pBjer45LtXt/EsRcRMCr6ScXNaXsgG5sVW8tWTRR4Q1mn0rOl9O/TQV5UO+e/LRnP8dOFjFu5s387T//O7Isc+LkKQb064/RaGTSxIns3KHfs3al4HA4+PqrZbz+6iusXr2Km2+8gbvuf5Ab586jIC0R0IrCQWQjDe2P0wAQYzOQW/QzSP6eIs16XIYmyiqYrBqxD2iLmobNrxSMFk3GHECwpegriIoGkCWNAfI4GhBtyUitdTRe0I5cA3+5pn7wIRwJqRk01VapFDqvdmXOiLiIWeZ20UBzWGGhnshHbkYm+9uE8vYdP4LRaGT/iWMAHDp8mKqaahoaGxENBgQErDYbZ8pKOVNexvVDftP9rLuBPcBy4P8C29r+7/+LGrE2K01hhMBisegKuMk632OrrDX9CYmJ1NcFgzKnT59mwIABAAwcNIgdO3Zw/NgxJk6YwO//7u+QZZnDR0/Qt18/jEYjEyZMZNfOnZ15G5cMV2srm1Z9z+fvvM7Gld8xfPT13HLPA0yfeyux8VdG0GnE2PHs3qY/Nmf8jJv4cY2W9I6eOJXtm9SZcKstFler1qkZNPw6Du5Rf46Wtjnj4cjOK6CsVOuACYKAyWzWtDYAZGRkUlWpzVBBkJxbrTaczo7bVOLjYmlx/nZsXHuibjarhSZH58qRczPTKO1gIofFbKZrQQGbt20HYOOP2zBbY9m0RQmcHDx4kAvl5dQ31CMjIIoiVquV4ydOcOTYMQoLrtzIrl8Al83mGXX6xCMhkp8X3o9+tsWLBxlZlnE3uympKKdf10IABvbswU/7Dip+3s0Lg35eUTH9+/XFaDQyecJ4dlwGm9dev3AoEQdwezx8v/knXvzwKz77+GNGDh/CY4sXcdctc0gzKX6RX7Ud0CXnnU3KCPZcZB3NH2hrI9TLjicUIDeqbZMgiG0Jm7CkmV1n1nlbRaMmiWOMQfbpB6AFgxnZq93WXF2mux4Kg9WO16km9HpicAajqdNk9mpFZkI8FxrV7zE8Wx6aqGkoaSTVaKZS51kUCo8PcjIy2dvm5+3ppJ+XmRq9EPVVikuye38SxDwZE3WoiZpFp2w9EiyItGo6lSDHZOHgScWB6Z6Xy5Y9+wHYtGM3dQ0NHNu8io3ffUldQwPf/rCS+oYG4u1KL0pCQgJ1YX1+kaAXKYs2m9ra2sr3337L66+9ytfLvmTkqFE88NDD3Hb7AhKTkjSq7aAdqwH65DxS9FSFNkOru8kSr6uUiTVZU6IE/hL1sAhrbEYEJU7tvv7rCc/SQ+RsOoAgKGX0oeQ8NGsu23JpadvWUdZcFC9OH+BqwwC7nQMNnSvRc7sEauX2DbYZkWsGDsHl8fD0H/8dk9FIUnwChTm5zL/nTiSfREJCAqfLy3A6nZiMRtwuFwU5ufTKL+STNd9fytv6VSHL8rvhf8B3If+OGn17dufwcfW4LFEUdUl4OJxiDHl5+ZScOaPZNmTosEBAsWfPnvy4WdEo2bRxI3V1dRw6coR169dTV1/P1998S0NDPfF2hQDbExKoj9LmRYNI5X4et5ttG9bw+btLWfX15/QeMJhb7nmAmbfcQVJKqu4xlxMmk1kjsudHQmISjiatDkJ2XgGVF8o062kZmdRUqu1Sj779OXXssO6+1TolfrIlVqXC7sf4SVPYvF5bWg+QnJJCdVVkQjlm1HVs2RY5Ex5azi6KV3efeSSEk/QJI4aw7qe9HRylRu/CfI6f1pKSUCTExTJ61HU4na1MmXMbFpuN9PQ0+vftw8QpUxGAxIREfj54GKfTidlsxuPx0LNHD4YNGcyBQ5EzfVc7LqfNS8asEept97XDSHgKZqrRBvT7GG3sdir3bPecHLb+fBB3s5PNe/ZRU1XD4VVfsvHLD6irqebblWuob2jEblN8qIQEO/W12mTA5YSclI3X62Pt9j289NHXvPPVKvoU5vPYwrksvnkGORavql0kdLRaJHLuR9RJGcEAEfxpQTTq+lwKgdapeIxJgrAWSMEch6wzb1yISdTsC/72RJ0Mvj0vkAwKz5q7XR68zcFWrfC2RVveQJznDqqy5qDv8wltwquXUs5+NWCQNYZtp4O/nWgE37JMZi54lCBHJBV2iyAybOBgXB4Pjz3z7xgMnfPzis5pM/u/JVyq3fuTIOaJmKI22CJaxc48YihF+wO7xmpnd4vi8EwfdS1Ol4uZDz+NxWwmzR5HclIigiAw+4ZpHD5ylMSEBJoalRu3sbGRpISOMzbtEfBI22RZZvu2bbz2yst8+vHHDBoyhAcefIiFd95FRkamZv/2yDmgS84hOOe83ay57INOktFwFffAug4JF0SDvtGPy0DW6UsSYzOQm3WMS0ySbjbd42hATOqCr+5MxOuNSe+O4/yJiNs7g456i8IVsUMd4MuN9oxw11jb/8/eW8e3dd/7/8/PEVuSZXbsxIkhzAwNc9pAk7ahpkmaMmxrx/fubne792672x20o3YrM2OaQpo2DTScpmEmB00xyJbFOr8/ZNmCc2TJdrt0399rDz/WHJZ0zvu84fV+vTnTVD1KlMaejo4sEX8Wth4JvwQPLlnJQ9/9CZIkMaLvAG6dfQNvPPM8GWlp3Dz/Rm6Yfi2l50oRQnDg4EGGDhyMXqfH4fx6BXY6EkKI3wghspr+e7gQ4jSwQwhRKoRISuGpsKAzZ8+3BHrx7hNbmo2amtqIZZMmT2bjhg0x244aPZpdO4OB+ew5c3C6XMyaORODwUBObi4ZGRl4/HDt7LkcPnwYmy2N+qYeS7vdjs2WQPtLAoh+TmRZ5vC+Pbz29D9Y8/pLdC3uzsKVdzJvyXJy8zurHOWrgcfjRqdPnl6sRLsdMnoce7ZHUs7VaPdDRo3ly+2xrTIjxk3kw49jA/D8LgVcvqjcwjNj5iw+Xhs7bi2EkuJiTp9uvbcZgp/rX2GeeefcLC5VxI7ujIesdBvXDOkXdxub1Yyj0cWff/tL1n34HhpJw4ypk/nZv/+I9es+JjMzk3vuuoM7b7uVs2fPIEmCffv2MWrUSIwGIx7P1dOPmiw60uYlU2yxoqWeyFafXPRUhAXmITZXvsbA/tp6ZBlmjBiBo97J/O/9GwadjpyMdDLSbAScDcybOY2D+/eTZkvFXh9sV7Hb67HZbAhvYiKoSohXLT9w5Dh/feoFHn9jDZ1zs7j/5vnctWgOxQWxyvDJBuet+X0QFpzL/qbgvP0Q5mxF3y2ZbYU1H7lBYYyb1hBRTQ8PzqW0rtQdj2Q6hQfnWpMNv7P1YsSJ8np0RhOeJl8kPDhXmmfeXrR1SkoisBr1NCRpX/RCYkRK/NhGhyAgCX6wdCV/eDB5P09JN+WbhPbavX+JwFyPFENlV0M2hpisqQENboX9hRDk6ww0+HxoNBr+9767ef/Rh5A0EpPHjMDfpFy9dcduiosK6dmjO4cOHsDv9/Pp+vWMGjmy3Z8tPDivranhheee5bG/P4rJZOLue+9j5apVdOnSJc4RglALzsPnXTZv2yQMEkK84FyW/aqBdtLQW5E9sdUmRSq53orsUTCiCtT34DGU+5gAJIMF2Rs0rkpVcyFpcDW0GPt4sy71JhPuRkfCdPartc88+H0lt48kBOawl7cSjV2LoLzmCg/84Zc8+NCv6F/cgyxbOg/84Zcsum0FQkg4CbDr6EFunDefb3//e7z/8Uf06NeXY6WnmT9xens/2j8Ts2VZDqXsfwcslmW5OzAd+EMyB9JoNASUmCEaTcxLbfTIkTHj0QwGg2o/+pChw6iqrEKj0fDQww/z0dq1ICTGTphEozt47O3btlFUXEz3Hj04cvgwfr+fDZ+tZ0QH2LzwoNxRb+eDN1/h9Wcew+fzsfDWu1iw7Fa6dCtq93ku2l1x/9TgcbvR69UTUBqtVtGxEE1K+uGwpaVjr4tlD1msqdjraiO3Tc9Q3DY7N4+qinLFpJ/ZYlGspqemptLQoC6GlIziekF+Jy5cbl2s55sASUo+yZCXnRl3vUaj4eLlMqZcv5hp113PmNEjyc/LY8qsuUybOQsEVFRVs/aT9dy8dCm333kX7767mq7dCvliz5f07d2rPR/pn40Os3lq0CkE7LkYKCfSvgkEctP/otFXZ6bK70Wj0fDru+/inT/+BgIyk0YOa/Hzdu2hpFtXepYUc+joMfx+P598toHRI4cDrc8hV4LSPo1OJy+/vYa/PPk8V6pruH/VMu659176FLfe0tDe4Dzk98UE5wF/kB2pdl4pVpA3uFxB1FfSIssKukRNSu4JbavRIatMwRG6FEWmZqilse7SyYjlEZVzEUudV4KtU1fqwnq4v+rg/KuEUavB6fUpFmqU9IYAMrTKPeAh8V8BVNXUcO/v2+bnFea3HtNc5WiX3fuXHZcGwVFoDnyYwz5mBjqO0kAukRWP0JzLOi/YdC0GaGRKKmUuN65KJ3f/8rdodFqW3ziXWrudxXMWkmIyUVxcxC/+7ftodDpuX7WCiVOmkp6WzgvPPdPuz+Dz+Vj90XounzmBzWbj+gU3YLVaW99RAeHj1MIRPuccWug6QSPdJYbyE4GAH7TqGb2QMEj0GLngOLXI2ZhqjmBQ+bMSETYXU3XbOM6kZO2MXH8JYSuIWO511CE0saPZIo6r0eP3uNDoI9dHj07L7lJE5YWzdOkZv4pytSLcEBeYTJxrbCQ6JaNGX0oMgsz0dP70/Z9GLP3T938aM8f8mgFDuHv5rRHLTtRdnYmMBKETQmhlWfYBJlmWdwHIsnxcCNFmhafwanmvnj04dvwE/fq2zM3uWtCFtR+vi9kvr1Mely5dIj8/svpyzdixnD5xDLfHzcoVKxGSxNKbl1FbU8uyxYswm80UFhXxk5/9JxqNhpWrbmPWtCmkpaXxxDPPtfVjAMGgPBAIsHfnNk4eOYjJbGHizNmk2tLaddwQktF8CG0bPerG63GjN6jbvIKiEi6cPUVh98iAqrB7T0pPnaC4Z++I5XJTz2W47Ro6Zhx7tn3OpFlzErpWIZQDyikzZvHZxx8x78ZFMaM4O3fuwvnz5ykoKIjZDyArK4vyigpyc+L3+3Uv6saJ02fp2vmfO9+5IzCif292HjjK6EF9W984CeTmd2b9R+9FLFv/0XsIfeRs6DnXzuRH3/9eh577n4yvxOaFIwsdVXjIp+WZDFbXYwOsEB0+g5bE2imHhxKzgXq/n9LSyzz4j7+i1WlYPGMqtfZ6xixYjsVipqigM7/4/rfReN3cvnwpE6fNIi0jgxefahG8DB9h1hrCg3JZltmxZz+79u7HZDQyb+YUcrLiJ3zUED5rPXQ9oXFqoVnnELRvocJMKLAMVc5DdO7mMWomMx6HesVcmNKRnTUIS27U8kxk55UI361pDbIciCjqCEun4MhbQ7R/K2LsIzSxKaNG70JTP3zNaURmcA6211HXXFiSzFnIjVXYLwvFVk19Wme8tRexiy4RxanwcbkA1dpMdJcPkl3UO+YYSriax6VdU5TP1jOXGGlK7nGM9gOjfcCs9HQe/l7b/Lx/AbTL7v3LBOZKOa4s9FTiiQjMlWZhAhRgohQnPYgcIyIJgVmrIdVm5b0//S5ivuWuD98CaJ5vCbB86WJuWXFr87/bQshodDjYsfVzLpwrRZIkRo+bwLhJU9o831wJ4XPOQwY6lOnrkWvlBC2V4VDfkeJ8c28j6NUTBcKYjuyqiQ3MU4IGUtgiRXiCAbIboQ27d41pyFeOQZRxD/WZC01k9k4YrDEzNEPLlUZ4AAQMmVB9Fm1Ob+yXT8UYbVN+XxrOHcTWfbjqZwXIKijk2M7P4wbmFQ5v88vxasbgNBtvHjrLdakd17f70j0/4RD19KNtyaV/FoQQs4A/ARrgCVmWf9OGw/wN+EAI8RvgIyHEw8BbwFRgb7IHk+VYRdVBA/rz7pr3IwJzIURzdT2cFjd56lTefP11Vtx6a8yxremZCK2W99dGBvSbt8UKWi65eRlLbl6W7OVHVHjdLhf7dm3j3JkgY2XwiDEsvPWuDlVTb6sQY/R+h0+Vkp6Voxq4l/Tqw+6tmyMC84t2F6ndenNs67qYwLxz1yIunS+lc9fC5mXZuXlcqYytYOR0yqfi8kVy8iLp+70HDObogb1Ig4ZG2Jb0jMwIQb9wTJ0+nVdffpmVq1Yprp84YRzrP9vIwhsXKK4PobCgMxu37Yq7zTcFQ/p059FXVndoYB5w2tmw9j165SzpsGN+HbgabZ4g2IqoCaNz2dBxmYaIwBxaxN7CW0g6YeAwDRGBeQhZWh0eWypv//pXAOhTDegtJra8+ETLTHNN0Adbvvgmli++CQwpMcdJJDjX1Jfj8XjYtnsvh46fRJZlRg0dxLduu6VDbJ5ScA4txZnw4BxotSgTcDeAJk48YUyD6pMQFZhjtMGVE7G+W5NQr4iZXa7ANDKmg6sGTBmRy5vGo4nUyOqqkLQxxwkF51JqZ3xl+5HM2RF+XmiuuTGvN/XHN6FPj1+x1ZlTcTdEMpFOVziav8fSWmdEL//ViNCYtK7pqby/4xAj+xXH3V6ppTGE6KD8rft/yjZvHX2wtHtywteNq8Hu/csE5mY0NODDEvaRLGg5SyylJUVhWxManPgVg/ZORiNnGxrpldH+/snamhrqGxrwejy4PW5KL1dx7uwZPN6mG1uW0RuMjLpmLJOnz4zYN1Tt7qgAPRSch6M4xxxBy0nNSokRwwhBdtaAHEDEm4kqaYL9SdHQGkFJJVNvBU8DhAXmqi8qgw3cdkiJzCwLUyayo1wh80qTOJxC9lVrQG6MvZ6QwdbZOlF3aF9zYB6eQQ2vmpssqbgcsXT8i3ZXh2VN9x07xebd+/H5/ZiMBm6/4TqoihWWai/0koRXlvHLMpoODJB0CLwE0H1DOmmEEBqChnY6cAHYJYRYLcvy4WSOI8vyX4QQB4F7gJ4E7W9P4B3gl3F3lrQRzp6mvpz+vbqz79wVBvRvcXqsViv1CuJjJcUlHDl6lMK+g5uXmc1mXG4Xbrcbg6Hleat2+cnN7cSRQwfJyMxq92u1vt5OfV0dHo+Hcnsj9ro6Lpw9jcfdMjZRp9czeMRoRoyb1KHBeEej4uJ5ys+fZfA1LW1i4YF751QjBqMRb1ObQPg6Y0oKZTX2mIC+S2ERF8+djQjMQVlIsrBHL0pPn4wJzLv37se61W/Sd9DQmH2MRhNulwuD0Ri13Ig3Sl03fDRPZkZGQmJ+Wq0WfwJTK9qDo6fPsX7Hl/j8foQQ3LVwNoY47QRthSRJaLUanC43pnaOKQsFRgC5WVlcKqsgv9M3Q234qrB5CsjFQBluOocF4WrFllz0lOEmL2pbDeAmgCHq/ZOq0XDa7SWP1ru45MaGYEHG3agYnDdePk2t3Y5Tm4rH66HOXs+p06dpbNJtkTz1SEJizPDB3LtyaUI2T07Pj6Cqt4bw4ByCz7ZTMkYwJ0M2SK0oA2BOz6b24h70+UPwNSoHZ0JIiq1VQkiKv43QpwZV3lOik/6x34MwpiE3XEJEBeborepK8VpjDAMyvHIeglJwrkaRj66aV9bH+osdGZyfPXOGTz/9JDhm0+PkzttuxWwOHrstbRPxYNFrqXV7SDO02FQ1GnuiCGl/KSXBrlZcLXbvXyYw74yR0zTSi8g5x5qmUWrasAe+GykcpSGmaleIibM0kh61/MxDf+CEyU+pRmLcsD6kFuUBoM8P9vyEVF1DRjAmWxpWpTpz5gxVVZXo9Xr0egPpmZkMGjosxmmKh2hKYjJQorO3pWouexwEGi6hyU6Esq1gbCUNAaXeIV1KkPpE6zQuYbAGM6ZRgTlNRllxH5XsawhKQTvEp8iH40xlSxIjUcOcyO9ZUXWF9z7+DKfLxcAumdy39HokSaLiSg2/f+ZVFgzpQUnnjheKG52SyvbGOsaa01S3UaKxK/WXhxDq/+vC1Z1RDsNI4KQsy6cBhBCvANcDSRlrIcQYYIMsy5+194L81lxGTJrJ08+9wID+kc9gWloa1dU1ZGSkNy+bOnkif378Ge4OC8wBbrjhRt5643WWLrslYnmVw01Vg4t31nzA+MlT23WtF8+d4/KlizTKGvR6A5ZUG1PnzMdo/Pp+/44YW1hfV8OWtauZv+q+uOdxNjqpdflbPWdofXanPPbvTmy0Zqf8LuzduS1mucFoxONRbicZMmIke3bvZMy4CTHrtBotXq8XnU6nOC9Xrd+yox1DJdTU1bP6s63UOxrpWVTA3YvmoNFoqLU38OcX3mbWuBEM6Bm/ytMW3Dh9Am+t28yyudPafIzwgAhg7MihbNi6g4Vzr23v5X1duOpsHgQFRi/REBGYQ7AIU48Pa5hLm42BA9gjAnOA7pg5gYO+UX7eoZ/+ijKvm89TYUpONunF6VgLgu/UaJ8PiBi5F/17Xywr50zpefR6HQa9HkunQubPndMcWEHbnqFkg/Pwc0X7peGFmWhKOwSLMgFPJmVb1qLNH9yxCVONXnXkmeK2CkWceNfTXE1PK4xY3tK22MLKjA7OQ+6qvaoxgs7eHiRamKmvr+f9Ne9hr6uja7dCVqy8lVSNH4fDwRNPP8s1Y0YxYtiwDrmmcMwozGfNqQss6l2ouD66Wq7UzhixvTdADgZO4vhGBeZcJXav1cBcCPEMsAwilDR+JMvyI2HbrAB+DuQBB4D7ZFn+Imz9j4EHgZPALbIslzYt3wBMBCbKsrwpbPuTwC9lWX4m0Q+iNre8CybO46SIlgcsRIOKpkSlouMsTgIKzsjIvCwe33eCawLtm184ZGhkRaOt4l/R1XOTIXFqdJam5Wc3GyIpTRCsmu/atZcLX+yioS4YaLocXlz2Grx1lfjdTgj4kBIJymWZpFTEdCaoT9CJbuoLj0Zcg52ShVxzKjb7CgSEPtgnlZKhmEmFBI11O2dcOiVjhJNcr7Hy5Et/54E7V5JiCr5AQy/nnMx0fnz7Ul58+XV2HzvDosmjOvQFmqszsD0sS96aQU4EqWi5gIurVd5DweZpgPA5SheAFUKIO0jO5q0EPhZCWID/Bf4sy3JZ0/ZJ2zytVotfIbt/7YwZfLB2LTcvXtS8TJIkUlLM1NfXR2hUZGVnU9/QgMvlwtiUHAwl7/r0H8ATj/yF0eMmoNO1vfWid7/+ZBR2vIBVUUbiTlOOJbb6+eWlyLaci2dOcvTLXc3zwqOfo8b6euYub51eLwcCzeN0EsEVj8CjMG9cahKLC9FnIcgs8KoE4Gro3rMXO7ZsVgzMhw4bypd79jBy1CjV/dWSldHbdCS8Xh+PvPIu3162gFRLJCMrLdXCD29bzNufbOaLQ8dZcf0MpCS+79aQlW6jxh7LOkkU0UEaQHZmBlXVte24qq8W3xSbp0aLLcDEMRpigm0TGhrxk0LYM4SEIFg1j9Y/7qQzsM9Tj6EguVar0Ps49Nv37l5M7+5RSaNAA/6wVslQoJxMgC6ldQJT69N+mq8Lmiv6QmfC5GqMqJpfOl/Kl9s+p8LuoNrppao+aFscdheNDR4cVdWYe0xGaPXBXnOzLbadsQ1Q1QjS6JH9HoRG3+q2cY+vSyGgUpwJ6KwI+0U0GS2/T7i/JyQtAb8XSaOL8ffCq+ayLEewJduLQCDAPx59hNvvuJP0jDD/NODHbDbzwLfu4+NPPuXxJ5/mjhtmoNXGD9+0nbriCxOoi4fc4s54jp8jIMtISX7f0YWZUFFGi4iZgPUNQGcgvN/1AqD+clTHSuBvQojjwEfARyG7lwgSrZg/K8vyHUorhBDjgEeBBcBG4AGC3PoesizbhRDdgUlAMXANwWHrK8IOcQX4vRBilNzOt7sGYqrjVrSUKtDZuzX1lBcT6dwVkcIJuZEexDpy1xbn887Bk9xa0vLiDc+a/jPQTEky6PD5fKxauZLyigqGDxvGr3/zG3Kyshg0eDAAr772GhkZGQwb1J9OnYIZ4D88/Ge69egVUzVPScskf/S1SBot1ZUO7FWN2MsukIJKr7kqZEjiQVelRCn0k7fJYEvKatYAwpxDoP4yUopyNV3Sm/G7HdB0z6jR2RNBMn3mTz/3PPevuqU5KI+5biFYMmU0Jy6U8btXPuC++VMTylFaC3ITmluZrdVR7vWQq+uYzOdX3XPkFdqkRoz4g07bTUKIp5sWFQLbZVkeDyCEWAiE95X0JGjTZpOEzZNl+R4hRG9gEEEneKgQwgZ8BhiJl8FS6L0D5ep4WpqNurrI59MpGZk7bx7vv7c6ph/8xhtv4u0334ipmgPMX7iEN195kSXtEGdpbURge+Dz+bj/jlVUVlYweOgw/vN/fk2PLrn0HzgIgKdeeIX0jAymjRpCTm7QEf6v3z1Ej159Yo6Vmp7BhLk3omvnfS4HAknP9q51xX5HWbmdqCova/c4uHh2sv+AgTzz9FNMHDFIcX1hYTfOnC2luKiweVmylb62VPmefXctd940OyYoD8eCaeM5d7mc3zzxMvcsnktGAuNJE8XAXiXsPXqSwb27J7WfUlAewlfZouFL0ub5gjZvjhDi902LCrnabJ4KrGiw4yWVlvenRoXOXkgKxxUC9u6YOY4Dg9faLPZ7rtpJ1wwTszvl8ubxUpb3ixUHC4ev7FyM/xdNH4+GUuU62QDdp9GzfNUdVFRWMnzIIH77i5+SXtiHIQODhZI3nn2cjPR0+oycQF5T68RfH/4jfQYOiTlWUadMMufdSFVTbFVa6+R0hYMT5fVUVzrIhmbf72uB3gLu+pj2xHhQTxwqhxNCb8FbdZ6AIVNx2pAPE56qUoy5yT37IbSVzr7+vTdZtHhJRFAezWKaMW0q5RUV/P7Rv7Ni4YIObY0ZmZfFzstVjM7PjqCxx+stTwTROg8dBZ/QJGXzvEIHME0I8e9hix+TZfmxsH8nfiPFgSzL9wA02b5rgWfC7N5HwBZZadxAEzoizXwn8JYsyx/LsuwmKA3vJhioh84hEYybQ/8djseBLsDSRE+oZIAB8jFyidgsmQ6pKTvaAgtaGhSk2axoscs+/Ao5gi5WM15/gEvVyd2oShTBjobbJ/PGW+8wYOBAPl63DqfLxf59++jXvz/rPvmEdZ98QkbTA5+Vlc37a9fx/tp19O4T66ACmGwZ9MpvcfZTs1Kaq8ZJoaMqKXpzsPc8QYgm1c9k1glJi8+lXikxZhfjrmx9tm9471GiY9PUsPuLPfTs3oNUq6XVbXt06cS3Fkzjb29/gs/fcXOFR6SksiuB+Z7JQIKrLZv6hizLw2VZHg6sAY6FrbsAhEtXXwccaIfN+zugA54DpgCfAxbgP9Uuzu1WrpJOnTyJTz/bELM8NyeXS5cvRyxLS0+npqYmRr07MyuLBoeDxsbYBGZWdjapqTbOnDqhdmmqqHB4v9KgHOCD996l34CBvPX+WlxOJ4cO7KdP3368/cHHvP3Bx6RnZODw+MnIyuKl1R/x0uqPFINyAGtaRruDcgC/v20jJKPtQ16Xrlw6X5rw/marFZNfWQ8kxWzGoTAeTZKkuOPBhgwexN59+5v//XVQ2I+dOU96qpWczPRWt+2al8sPVy3m0VdW406SSRAP44b25/MvDnTY8QBsVgs1te2vNnYg1lzNNk/t/ZCPkYsKfl6wpzXyHtA2BezRx9IhNfWax/rGZq2WQpuFg5Vt67FtLQml9gz5rbnNf/Hw9uo1DOrXl0/ffR2n08W+g4cZ0Lc361e/wfrVb5CRHnxusrMym5f17dO7edZ6uD9qS0vHYDTG0KyjZ5sDiirmIchyxwRfQm9BTsbP01tU/UKhVR6bFo7wAlNoVK7Wlk/tmb0ty1U0lpJFPP/v8qWL+LxeunZrfSRebk4OP7r/Tp57/W0cCu/stqJnRionatrn50W3MFqbWkyuInwSsnlNf49FrY+2e12A5HtHmiDL8lFZlh+SZXkWLXZvIRC3dy1R7+FGIUS1EOK4EOJ3TbSkEAYBzXSmpqr3l03LkWX5OLANOAX8F/CzqGM7CBrnXyc6PiN6ZmUINnTUEusIFpHCKWJnT+dh4AKx1Nw+kpmdXuUb9KZBPXjx870x1L14WdKvC2fPnKF33/64fTIDBw1ix44dHDt6lCmTJ/PTn/yk+Zpraqq5dvpUHvjWfbhckcJFIUTPNQ9HvLnm0ZC9DUHj2U4ISUdw8kDUcrWXgdYACnM1AdCnBNXklc/U/F/RM811qTl47RUdZqjDodTS4Ha72fT5FqZPm5LwcVKMBlZdO4GHP9iCy9MxBlHXJJjnVUhmJD4mLRKdMSo+e1cRmm0ecCPQUwhRJITQA32Bj0MbtsPm/YYgdeogUNu0rSLqVKi12VlZlJXHOnpzrpvFO6uD45nCs8ozZ13L+++9F7P9okWLeeXllxTPce28+Xz03mrF2dxK+DoC8hBKz56hT7/+APQfOIjdO3dw4tgxrp85lV/+/KfNNq+uppolc2bwH9/7Nm7XV5sorbp8kay85KrcoYpPuPNmSjHjcsY+IyHado5ZF/HXvWtnqiorFI9fVNKdc2fPqJ5bjayWnZXFlStXgPhBeUdVg/1+P+98+jk3TB+f8D46nZZv3Tyf3z/9GvWOjrHNkiRhMhqSOl5rPsCMSeNYu+Hz9l7aV4mryuap+XmhtsXoeeSdMXJeIWAvxqzo/4Wq5iF0zWipbI7vksv2y1U4vf+coCJekH7mbCkDmliQgwb0Y9uuLzhy/AQTZ9/Av//Xr5uf5eqaWibNuZF7vvfjCD8vBDVdm3DfL4Twooyi7+dpCBZP2gtJB0n4eUKXguxT9iOEKQ3ZVau8TmgUizP2y6eCrMyAT5UlEC6MBy1K9m2FLMu889orLF56c8L7SJLEd+5YwZ+feI4rNbXtOn840o0Gqpzx34/JtDPmY1BMol3F2AX0CLN7S4DV7T2oECIHyCZo937XlAxVRSKB+V+A3kAWwezoRIJV7hCsQHQauBZo5pXJsvwLWZZzZVm+RpZlJe/gaaCeID0qIagZbYtChkbf9DG9UftkY+BKk4kPwaaTsAgtARmqfbHOpUaSuGn0AF7dmng2PRm6RXvQo0cPPv98MwCffbaByis1HDx8mE/Xr6emtpZ33n0Pt0/mo08+48N1n1LQtRvPPPUEJm3kbRBOvYmmZyddNXc3BOlJUZDlQHIZViEUCSXRL+dmaPSgIi4i9FbVrKwQGlVVTqHRIUepD4cb6fYa6HA4JSNPP/c8q1YsB2IFBeM5gTnpqdw1bSR/+nALdmeCAiutYIzZxtYE2xfiCb+FkIruasukhiPa5k0ASoG1wBGgkcjqEiRn83oDPyaYjd0JnCHYt6kKrV6vGIAD9O/Xl/0HDkYs0+v1WK1WqpqCqhCKS0q4cOF8jFCYLS2NtLQ0zpyOZYQIIVh483LeePmFeJf4T0H3Hj3ZtiVo87Zs2khdbS1bvzzAOx99Ql1tLR9/+D4Ar76/jlfWfEzngq68/NxTX+k1XTh9nC7FPdq8fyg4lyRJ0XmUZVmxDSYtLV11NFqXgm5cOK/cb9g1J4PyCuWAHoIK0q1VyjuKqvj86nUsnzc96UDfZrXwvZUL+fMLb1FV0zFV6ZtmTOCNjzcmvH1rldLM9LQOdaI7GFedzdMgqFMotECwan6ZyHebQGBBE/NeSUGDFznG/9Mika/RUy4rvyMX9y7kxS+OqF7f19XGGP3u79mjO5s+3wKGFDZs3kptbR3Hdm1mw5o3qamr472PgiMuN33wFhvWvEm3Ll14/KlngZbkWnjVPNyWKNGuw3us1armsqsWYUxr2wcMh4qfhyQhK7VzxfHz0FnAE5uQAcCQCq6gnVBuy4y0P0rFGKHRElDxFZPB+++8xay58yK0ROIh9BummEz84N7befLF17lwKeH25WaEBA3DMb1bHh+fuaywdWIItYWEoEW62piRcdE0d/xbtNi912RZPtTW4wkh5gkhThC0dxub/v+D1vZrtcc8XNwDOCSE+C6wQQhxaxOlqR6ITqGlEcycJgRZlv1CiB8BLwshnmxtewMSp3DQR2EWcjdMHKGe/i3vCwBKmrKmvRWU2M8o9JqP1qfyaUM1dwxqcbBCCp1FOel8We3i1MVyev2Te8zDce3sOWzc8Blzr5tJ166F5OTkYE5Nx+OHa2fPZd++fVw3Z24zpX3uvHn87S9/Tvj40aPTEhECkZGRlGidPhfokk1YJP6AB5U3PShyMHRmaKxS3tGYhre6FH22Gm0rsWsI7zNSQ7w+8y/37KG4qIj09LSEzhct9JFV0pMHrtXwl4+2cuukYWSnti+bnaXVU+2rpVA2IIRg/EPBQscgr0KlP0EWfS0ebOianfqX7vlJxHoXfowk9rLqSKjZPMAiy7JbCLGX9tm8qUB/gnSmLOAGghRPVaSlpfH2u6u59647Y9ZNmjCev/39MQYO6B+xfOENC3jshVe58667I5bfuHAhb77+WkxP+YIbbuShP/yelfd/NyYwysrJITsnl0P799FvoHI/8j8DM66dzeYNn3HT3Gsp6NqNrJyc5h69WbPnsufLLxk37VrS0oPLZsyey1OP/vUrvSZnowOTOTYZeaqiljpvZHsLKDvDF+0udJJQpJkbjEacjY2YUiLfWbb0dMoOKweHWTk5OGuUbV6/vn05eOgwnXJjq3Oa+vIOEXZLpM/82JnzWFJM5OdEj1BKDCajgR/fvpQ/Pvs6S66bTNe89k2psFktNDS6mgX4RH7vVvcRCqOzwnHdgoV4jOkYw0axBWpbnOqq6hqywvQivi5cjTZPj0QpTgYS+47MQs9+7DGzywtJ4RD1DIjy/3qoKLEXSyns8NcyWo59Xq16HX1zM9l+9jIzivIiFNm/bvituc0B2dzrZrF+wyamz55Pt24F5ORkNdPXr79uJnv3H2LetTOal82fPYuH//646rHjISPbHFMhhljfT/Y6YuaJtx0K9kbTNF5XHxWyaAzgU2btqU3+geB0Hrn+IsKk9qy1bvM0Wj0BrwdJE3lNrfl94Si7fAmX00lRSdsSuTqdjh/cdzt/eeoFZk0eT++M9o14NGg1CAFuvx+DRkPxd7+PpyHy++3mjvxOo33AaP+vAR8GpIjxuOG+nhM/pn+Cn6cGWZY/IIHgOUH8DzCaIIV+iBBiMgm0bbelxzz0tYc8t31As9S4CHp0g5uWJwxZlj8kmElV7TlqPgcCP0Ght2hoEEhNc5LDYUBq2idyuQ0dDnwxyzVCMNBoZWe1cgVi8eRRvLFxF36/P6J62Vp/0FcJjUbD7/74MO99sBaNRmLi5Mn4/cGHZvu2bRQVF+PxeIJzi7WiaVlkAJoMnT0xqBg4byPokhlFIRT71YWkVc6kag3qFXONTnkfmmZmhtGfounsbUGyfeZut5tNGzcwY1r7xlQZ9Vq+O3scL32+N2ldBCUMMFk44W/5LBU11az4n/9gwn234mu6z15Yu4Zv/e6/+J8n/4avKZu8bscW7vu/X/Bvf/sdDmcwsbPn6CH+7be/4tt//CUVNVdiTwacVKAf/pPQ0TYvIMvyFYL0zp0Ee4/ivlElITAaTdQq9KgKIcjISI+pjsspaZiMRmqqqyOW5+Tk4nK7Y6qrQgjmzJ3H2jXKzK2pM69ly6YNcangXxeFPQSNRsOvf/8Qb7z3IRqNhvETJzXbvF3bt9G1sKjZ5gF8sWM73Yo6fsRWOOSwYLq01tn8Z6+uIjUrVqyntNapGPxWOLwRxwrBlp5BTU11zPK0tHTqapXfV0IIVdHLosJunC1NTL1XDUIoJxEShd/v5+1PN3PjjFjl+GSg1Wr4wapFvPPpFk6eu9iuYwHMnjCK9zdub/73pctlDJ88i5T8kubWjt//5VEmXLeAW+7+Fl5v8P5/8dXXGTd1JnNvWoLdHrS96zds4pZbb2fytXO5cFH52l5994N2fY8diH+6zYNgtduhwqyyosUeVVGXEKSgidEP0iOhRSgeq69kYYdK6+I1Rfmc8Hg6jHnWHjSLxGk0/PkPv2Xd+++gkTRMnTa92eZt3bGb4qJuETZvy85dlBQqJxXC6exKfebhiGZLRlDaVQTYogV7W4eyn6fqz0la5EDy7xyhNSCrtDqq+XzhRanqSgeSTk9AJSmQCMobPLz96sssWByM09o6oUmSJL5z+3I2b9/NvmMJ10NjECo8zizMZ6do8fP0Fj1lNdVc95Mf0WPlzc2+3pMfvsctv/45//nE35pt4UcKvt6xo0e5/7e/4AEVX+8Mjd+oqnqS8DbZPUkIITWNTxvc2k6tBuZCiCVCiLSm/+4B/AFYLctyyDt7HLhBCDG1iZP/fYJqm2+34UP8ELiLIBc/LkpI4bSK415MCmcUlNhLSOGkwvKeWCJ6jUrMQQGgXsYUzjgcOP0tD0yI/iGE4Lbli3nqrQ9bu1RVJPMghvo24/VvXrp4kdkzpzPn2pmMGj2G2ppaJo27hlnTpnDx4gXmL7iB2poaZkyewNQpU/j4w/e5I6qapoS20tllbyNCq6xIGVwXG5irVmeEQDmTaghW3xWXJ/8yjRe0hyPaSHcEQvfD8889y8pbV3XIMbUaiW/PuoYXP9+LK6pfLhFF9nB0N6RwLuy7tlks/PV7P6FfcVC9tKbezhfHDvPXH/6cki5d2bz3C3x+H+9u/pQ/f/9nzBg1jtWb1wPw7Adv88cH/o3lC27ixY+UA0ElMZ+vA1+DzXM26XRsAvzA/STAXlp4w3xef/MtxXXz587h7Xdje8dvuGkhb7zxeszyJUtv5uWXXoxZ3rNXL65UVVJTrZwsWbJ8JS8/97Tiun8GLl+6yILrZnDjnFkMHzWautpaZk0ax/Uzp3Lx4gWunbcAe20NC2dNYcmcGaxf+yHLVsWyDjoKzkYHeqOpORgPR11lOamZyiq61Y3emO2FJFHliLVhtrR0aqtjA3NTSoqigB+o95NCE2VeIRhMRujNaDDgUhj5Fo547TcvvPcJK+bN6JBedUmS+PayBby1bnOrPeK+snOqfwDFBfmcuVjW/F7KSE9j3duvMHp4UOG6suoKn32+lU0fvM3Avn1457338Xq9PPbE02xY+z63LFnEY089A8Cvfvt7Pn7vLb5z/7385vcPK17PNSOGsHX3l+3+DpLF1WrzikjhtILPBkF25DkFnRK1fbpjVkz2DrYE/ZBKnwdbt1hl/9smD+Ppz3ZHLGuNxh6PHdKe4o2sM3Hx0iWmzJrLtOuuZ8zokdTU1jJq+lwmzr6B8xcvcdO82dTU1jF21vVMmnMjaz76hHtvW9l8DCU6ezSiq75qdHad2RZst1F7br0OUPDzVKHi54k2jMZNBkrMz9aYQpJOT8Db9oTNZx++lxSFHdRtshCCO5YtZMPOvVS2cyxjhslAjcsTMTY6zWzhpZ/8J0O6Byv71XY7O48c4oWf/Bfdu3Rl494v8Pl8vL0x1td77oN3+MUD3+fuBUsUfb2CppHW/6KoDbN7Lwoh/gSt93AmUjG/BzgthHAQFP/YDjRHDbIsfw7cR9Bw1wGLgOtkWU66RCfL8j7gFSDWOkbBhAY/smIG1IgGD4GYqrmxaWp59D4GJFLQUBnWsxQSApmbl8f7jTWKD2ledib9exTz0GPPcP6Scl9GvP7yeM5SOJQCcaUAPb9zZ95fu441H65l2fIVDBw0iM3bdvDRJ+v5++NPotFoyMnNZfvOnXy6fj1vvPVW80zjaEq12oiH6Bne8UTgAjWnVOlNslrF3OtQFIuLnm0ZASWqvKQB9WkEraKtszrb22deX1+P0WAgLT095t5Jps88HJIkuHv6KB7fdgB/O6sxXbVGTjWJrRh0elLNLS/ww2dOMbRnUPF6WO/+HD5zgvPlZRTnF6DVaJqWncTlcWPQ6UkxmuhT1J2zl5WrR2rqu18Dvmqb9yLBns3vErR3u6F1LpfFYiHVlsqpU7F94CkpKWg0GqqbGD6heyclJYXs7GxOnohUVTeZTPQfMIDPN2+KWF7t8rNw2QpeeuYpxcpdqi2NkWPG8vjf/szZ023PzncU8vI78/YHH/Pmmo9Ysmw5/QcOYt3mbby79lP+8o8nSDXpycrJZfVnW3hlzcf844VXsVitrR+4jXjjxefoPGKy4rqKc6fI7lIUs9zZUI/eFLSF4cG5s6Eek9kSw7IJyLKiM9eak6q0vtk5b6eD6w/40UhtoyN6vF4aXa42U9iVIITgO7fcwJ9feAuPt30sjskjh7B2yy4AjEYj6Wlpzet27tnLpLFjAJg6cTw7tm/n+OGD9O/XF61Wy7TJk9i+czeNjY0YTUasVitjR4/iwKHDiuca3K8Pe/ZHrvuaWHhXpc3TILCipUohQSshMChUxyUE6egi/LnQ8nyMiuNzR+lS+aS+Gl+YzQtVEE16HfNmTOah1z/i8Nn2szDaO9kgv1sJ6z96j08+eJdbb7mZwQMHsHvLBjZ+8hHPPPIwGo2G3Jxsdn/2ERvWvMk7Lz6FNYGpLmoIZ0uGijLhwbnUcAHJplyRl53VinRxWQ4o2yu/J9g3roQ2TLpoMyRts/+oxpQMJiTaZvMCgQBV5ZfbTGFXw/1L5/PY62twNLYv0J3arROfVba0Phn1etIsLffQgTMnGdm7LwAj+/Tn4JkTnKsoo6RzAWZdrK+XbjRTXFSk6OtdhcrtHYl5tNi9jwi2/sxtbadEeswnJbDNc7TSL5TosWVZXkXYCyEeemFhL3aGkBojPhOqgveL6inqgZl92BkctU8hKezDToEcya5K0WqY0q0T75++yNKunWKuYczgvoyYMJk31qylwrGTpYsWNfcFhwdWsizT0NCAw9GAo8FBY6ODhgYHdrcfW3o6aWnp2NLSMBiD+/h8Pmqrq6muvsLpi+VUll3CUR8M+iZdO5eMrCCpIBScZ5nb11uihuIcM6crglnm6H6j1LySCNpPOAJ155Es+QhJ7RZToT41XkGYFapK3kYwKzgoqoZchRLVvDZxR9R++VQS1P0WqM2zvGh3NdPGovvM16x+l7nzrk/6XK0h1WRg4eCePLn9IHeOGYAQIuE55uGYlpPJ45cuNM8OTdW1vJjqnY2Ym2atm00m6hsbaWh0hC1Lob7RQb2jZZkVLZ6AcgJFQqBpakvRtanrpm34qmyeEGIUkE6w2jQDuF2W5WeBZxM9xqIbb+D//vAQP/juAzHB2bIli3j8qWf41r2RLJjr5y/goT/8nge/9/1mRW+A8RMm8tg//k7v3n3Iys5uZmzo9XoWLFrC6y8+z+LlK4lG3wED6d2vP+s+fJ/PPv6IuTcuIis7OyZRKMsyzkYHTkfQ3jkdDpzORgJ+P6lp6VhtNlLT0jEag/eC3+/HXltDbXUVtdXVVJWXYa+rQSAYO3Vmm+d5m/XB78nhaXuiLhGs37CRzj36YDQrB/5+rwedIdZOXzp5mM49+8Ysr64sJz071uY12OuwliTe75poAlgNIdX2eIG/x+NFr0+GstqCNRu2MXfSNW29PFUYDXruW3I9Dz/3Jj+8bbHi9UdrcyhhYK9iPt2+h5mBQMTzA1BbV9ec3LalWqmpraO2zk5qStC+22yp1NbWUVNbS2rTdgX5eTQqqO1D8LvOTLdRVV1DerfWe9o7ClezzSskhb3UkY6uqbTSghJS2I+dwVHt7wWY2EsdGegj9snGwFEaqMdHl7DRiJIQXJeaxVuXLrOoS6yd6dU1j54FnVi78wCfHLvAopkmunSKJXbKskyj00W93kbD2XM0NDbS4GjE7/OTZkslI81GRroNvUVubv+orqnhypUrVFZdoaysvHkKwtQpk+hekqTfYUgBd/smE3RLCzJ+Qr5LqNgQrTGUmldC7YltCL0ZfVqsbwzgtUvobLE2zFN1FgxpCjs0ggLLMm5hJg7aKkopNPqgRlFUT7u9qrG5OBXwuNHo2+Z37966ieFjJya9X7jWQDREzSW0Wg0PLr+Rh59/kx/fnvAE6hh0sZqp9njwyTJaBbtpb2zx9XKtFuodjdTH8fVMaKjGq9qmE2pLSVXQk/gmosnuPQaUAAdosXsJodXA/GqGhKCEFE7RSHciqTd6JAxIMT+2hKAbJs7ipChK8G2MNpU9ATt9owRFStKsnKltYP+lSsZFKRnK6flogMXXX0eDNpWXX3sDAKMtg5qoHk6LxYLFYsViMWM2W0jPSEdyB6irreV86Vlqa6qb+4K0Gi1pGRmIFBsZWdn07DsAS6o6keBwRYOqkFg0wh21tva1pHbqop5J9LmQvQ4kW4Hy+oAfoZJplH1OJJ1Ctd7vBm0s+0AOeBWPJYT4SrpWXPa2zTZNBLIsU1dXhy2sIpMMWnMyO6WamdKjK698eYylQxNz+mzdUqkrjSyKDNZZqQr4yI7qHbOaUqhs6n1tdDmxmFKwpJhxNDmhoWVWc8sygWhymJV/rcKmtpSetH/k3lWAvwE/IEhrmgc8BMxM5gBCCJYvW8pzL77MqhWR4m0Gg4Ee3UvYdfgE/fsPiNhn4eIlvPbqKyyJGsmy6rbb+dPDD7HqW9+LCFzyuxTQpVs3dm7dwshrxsZchyRJzJw9F4/Hw3tvvU5lnYP0zExqqqoiqq9miwVTihmT2UxKihlrqg1JEtjr6rh84Rz22prmnnWNRkNqWhppGVmkZ2ZS0rsvqba05mNFV47D/x3dHxkPieg8JIpQhdvV2MDF44eYsEg5pyzLMlX1nuYkZwjFOWYqSk8zakDs9JSaygoKe/WLWV5vr8Ma510QjkSD8nhBt8loxOVyYzLF/47bSiu9WHFFMcjpCKTbrCy5bjKPvPwu9988X3GbcFqymv1cOnsKp85foke3SAZYms3GpctB8TZ7fQNptlTSbKnY64NTP+z2emw2G+lpadibEutCEkiShM/nR6uN/X3mLVrGS6++zh2rvr7A/CtEu20eQB8siqK+EoJOGLiMi7wov60XFo7RECP41gszX2InX9Yhhd2zNo2WflYrW6quMKc4tsorhGDO9XPw+fy88fFGrtTa6ZKbTdmVyLYSi8mEJbczFnMKKaYUbFYrGo1Erb2eC5fLqK6po9HlJGBIRaPRkJ5mIzMzk6zMTPr07kVmk3ilEnyuYGDc6pSEKCq9nJ4PzuB7PMTASGZaUKgoEwxKg76f7PeiCzjwZySv2SEFnARMCokNrxNhULBtfg9oE7N5bUE081No9E096Oo0fPsVOzm6YGB+orw+puUzHs4cP8bIcZPacqmtwpxi4q6Fc3j4+Td4YNboNtvlazvlcr7RSZE59jtITUmhosnXczidWFJSsMb19YJFFrVr6YqJwzTQ/18kMKeddu8bHZhDULytDDcN+LBEfZySpip4dDY1Az1luGPUAHVCYqLZxheeerpiiug3WjB+MI9v20+fgd3J69Un5jr81lxMwG0rl1NW78bv85GRmdnq9bcWGCcjphRP5TsZdE41xjivPXKtqpnTcMiyTODKcaSc/orrAeTGKkRKcrRFWZYjXqLh6Kg+o8QgmmhYUkT2tCPwxY7tjBo9psOOp4Tu2WnUudx8cPgM1/WNpdUmglyNHrccIBD1m/QpLObNDZ+wfNZcdh85SN+i7hTkduLMpfP4A4HmZUa9AbfXQ6PLRenlixTndaEB5efAhAY3AWTkhLPfjT45qYST2/+1CY9Isiyva/rv14UQ/96Wg+Tn5ZGeZuPY8eP06tkzYt34GbP588MP0a9f/4jnoqAgmCQ7f/58839DUNV1+rwbefOVl7hp6bKIY42dMImXnn2KgsJC8lSq1Xq9nvFzF9HoaMDtcpGWkfmVPI+tBdPhLJTWoGTfEkF0D3g4tq9+hWvmL1Ncd7rCQfX5U6R3jn3eTlc4kOUAUhj7IcSuaWywk2KJdfacDgdmBdX3cCRbJY9u1Qp3/FOMRhpdrlYD87bg8KlSehd9tZNNuublMmH4QF54bx23zJ0ed1u13uFOWRkcdfrw+XxotS1+xoghg3j0qWf54Xfu49ONmxk1fCg9S4o5dPQY/sZ6PvlsA6NHDiclJQWX00VDQwOHjx5j8MABnD1/ke4Knz0lJQWPx92sBp8IXEnaPNc3zOYZ0JCGjgrc5ERpxnXCyD7qyMWAFPaOMKHBhIYaPKTTUm0VCHpjYV+gniGaoI8Xal3sZ0vlw7JyztTWM7BAuYVAq9Ww5LopOF1uaiQLnXKy2mzz2tqmEK9yColNQQhHjlmn6GuGV83DGZOpnbpw+fMXMRVdg6QP+kDR7ElzejbeQLGiSozs96BPzYptGfQ1gkWJGelWpbi3Z1SjGhNIaIMV8xDsZRditJVkvxehjfW3W5vIU1F2iaxcZYZBNJySMUYLoLXfHiA7I40F08bzxJp13DlXubWqNVi0WiQB7kAg4hu2GDT0Lyrh5fXruP26eWw7fID+xd3pmtOJ002+3r5jsb7ehcsXyM9TnpAoIZAIinNrE2RHuv3J2Tyn72sV1WyX3fsamza+OvTArCj2IRB0xsgFBWGBUDY1hND8vc4aAz5kLnhiHbdbR/bnyfW78fri90PYbLaEgnJoP80wGu1RRU60zzwa4dlGua4UydYVEacfSHbVgFGp7+jqUmZU6jMPUZyiEU7xr2hjRe7Avi/p1rfjRlFFj3cJCRcOK8jFqNOw/Wzb51Vma3SUeZzc9rtfcvJCKQ/+6bdcqqpkcM/e3PXb/+LkhVLGDx6OVqNlzrjJfPv3/83a7ZuZNyGoNL/82vl8/0//y9/ffpnls+bhQd1o5mKgPKpf8BuKNCHEDaE/hX8njOvnzuH9D9fGLBdCMHvOXNasjhVZWbR4Ca+/+krEc1bt8lPQrRBbWhoH9+2N2WfJ8lt565WXcKlQb0P2JsVsIT2z7Q6qGi7aXQkH0ckE28lU2CF+UH505yaKBg5Hb4y1l6EKefmJA+T2GBCzPh7CncbwzybLMlVOZYfErJM6/J1iTjFFUK9FzaXYv8baiH8nivXb9zB19JAOvV4lDOhZTLf8Tny4eWebj1FckM/RM+eYsWAJ+w4e4dqblnGm9BwTxoxiwnUL2HvwEPOvm4lOp+P25UuZOPsGnnvpFe667VYA/v1H32PmvBv495/9F//xo+/jdLtiuq1CgdrMadNYu+6TNl/rVYQOs3ldMHEJF7ICu0pN2K2wiR0ZiNonBQ0ZQse5QOxzPSs3h0/PlVEXpcQenbQx5hWRl5utavOin5GORmtBfaIaNEqI9v3Cq8GpWSk4Lx8ltVt/0rq2JIZT80oi/rxVp9BnlcQsj9cWKAf8yu2PAa9673kbISQtqAj9NtZWqKu2Nxel1CvAISj50J+v+4jx02bFLO9ou11SkM+wXkW8tWl36xuroIvJxEWnC6/Px9Jf/TeHS0u55Te/5EJlBcN79uaWX/+co+fOMnHwcLRaLdePm8w9//fffLA11td77O1XWDBrNvHYkWf/dUTg2mX3vvEVcwhmWzLRU4aLTlF0pmwMHMBONgYMYXkIDYICTJzCQUkUDf6m3Bzeqqsk05VKJ2PL8XQaiTumjuD/nniZ2xbOpeBrmGGulsn8OuD3+yk99CXlp45RaXc1B5yNDR6cDR5c9hq0gLOukoDHHawk6y0IY5rqMWVZBtmvbNDcdco0prhQfsjjKoWC4ss9Hpr7zCUJ2e8jUcZNovPMjT4HqbZYIT2ljGlHYEqPrry85ygpeh1FtuRp4gYhIWs1PPGD/6AhLBPZv7g7K2bNjZhlOXP0eGaOHh+x//A+/Rnep4VV4cBHFR6yiH355mBgL3Uxz/Y3EBuJFP7YCMwhOJJIBpQl1xUghGDi+HF8/MmnzWP1QtTE7j168PnmzZSVXaZTp5YMtSRJ3HDjTbz0wvMsW74iIts8/drZvPDU46SYzRR37xGxz6133cvT/3iEOQtupKBbYfO6ttqljqSSKx072aA7HIFAgDNHD3L68AFkOUB1o/pnlDQaZDlASmo6vUfGjvkKp617nA60htjrctRU0iCU7YOSUnrwGtWrBPGSm9Hrwu1KPAdTp9Pi8cT/raNPm0gg4vZ40KVlITK7qFrjjgxoxg8bwKsffsaXR04wpE/yoksGvR6NpGHNq89H9NOPGj6UHz1wf8S2yxffxPLFNwV7fpswbfIkpk2e1Pzvyis1XC6voJPC7VpSUszq9z9g1ozpMX3t3zB0mM2Dltam4iifzYwWAdThxRb2chYIemFposm2BJc2nYQNExU6J+d8LrrSEkAJIVjRr5in1+9i9sh+DGtKaPvKzkUE56LmUnPwm8h9Gr59COGVz2Sr5+0VkTMFXDglI7Isc/zIYTZv24Hf76fWFXzWw21fZb2bCrsLIWlobPCi1erQFYwG1Nsa/c5aJEMs4yfgdTUH39Hz0NUgywFVxmQ8Xy6unyckUBkhKYQmgek8MtWVjphRwuEI1xaC4PvF7/ehV9Aa+SowtGchl6/UsuXgccb279n6DlHQCIFWEvglwcv/0TLJusHtZ1BJD+6YHdRDsjfNMr92zHiuHRP09UI+YLiv5yFAvQo7MgUNjfjxI8doSXwD0S679y8RmAN0xsh+7GShj6FC9MXaJBASKfiWiZ56fFTgxoapeUyaEIIbbNl8WFHFpOws0gmOlrIW5JJhMfG9OeN4bsseBnskxg5p6jOvL282rCGDlygyjJo293p3NKoqyti9ZRMXKquRhMBc2JdRcxZxtsrZTGWvrnQ0Zw3tZRfwXT6Fp74aIftbFeiQG8qQzMo0nkBDGVJmrPGQAz6EquKv2pgOp6KISMtebXzwZZn6ysukFSTv2KkJwAF8uvZDps26rm3X1EYsGdKLv3y4FWv3LmQlQVMN0f5yJD3lAQ95OkOzYW4rzGi4iEsxMIdgteQCTrqQGIvjakSTsCVCCCNwI1BIiw1Omi4ybOgQ/v74E9TU1GLMjHymlq9cycN//CPf/X6k4FthURGlpWd5/5PPGDMuMphctuoOXnrmSfx+Pz16tfS3mi0W7nnge7z58oucO3uGHsPHJXupwFcbkCudJ9EAva76Cge2b6beXosAivsMYMqCJVyojz+qz+/z4nY2kmKNTaiFB+VVZ4+R2U3ZXpzft43iUVNjj+33R9Dbw6Fmu5yNjZiM6p+5rWyGQEBZBb69+GjzLq4dGt9ZTJaS2xoWXzuZR195l/RUK4WdE6OThqNHt84cO3Oefj3a1gYUjuzMdA4cPkan/Jb7J9yPuH7uHN5ZvYYb5s9r97n+Wehom5fW1LrowIc5yn3t3tQ7PojUCMc+BQ3Z6DlLI4XRukJ6G9s8dRxzNdLL2LJOr9Fw24DurC+7QvmeY1xHkIEW0iAIBejJ3ptKwXkIoUA7kQA90aBc6Vya+nIqvXo+27iJi1dqEUJQ0L0PK1csp6bJ5IVsaIgpFLJnxy7V4Hc1Ut8YtAdqLY1+RzWaFOVeeU/FUTTphc3/Tiw4VwnKW2FZxvXzZLlZ6d3rqItkfspyDOsznM6u9LkT6TPfu3Mbg0cqC11Wu/wdXjUHmD1mMM9/vIUMq5mSNnS6djGaON5op1ghsZws9Eg04FNtTeyBmVM4vvGaQu21e/8ygTlAbywcpSFGIESDoLBptmV0dbyQFE5LDdTKWgjvQxKCJQWdee3CJSz2VLqmtuynkSTunjeFdbsO8szZC9y8fDk6nS4mOA8hkSA9XnD+VVbNU/CybtMWTp84DoDelsnYKTOxi2BGL5zCGa/PXG/NSCzz6axGyokVNAqujDWGALKjEpGiIBTicyE0yplH2edEKInIhda3WRquxZgDHdZnbq+rw5YWS++PRiL9RYkiWBko4fH9x1nRr4QUXeLmYPN3fw7ANk8dfbVmqpyxmec6b3I9PRnouIKHTIXgPAs9+7CT/82vmgO8A9QCe6B5HlybbshVK5bzp8ee5tsPPBixXKPRsHjpUl564XluWRGprD5g9ATefu1ljh0+RK++Lc+iEIJlq+7g5eeexu/z0btf/4h1E65fzN6d23jrhaeZfdPS5gkSieDrCsqjz6kUnPu8Xg7s2cWeffuRgdS0dAZdMwFrWosjGY+6HoJGq4sJyqPF3QAuHtrNwOtujlkOwUp6726xUyh2frmPrt1jxb88bjdavXLyqrKinJQM5Tnp7UEgEECSgk5URwbJ58squH7q2K9EpDMe7lk8j9899Sp33HQdGbbEGVrypaNogCNbNmGo7k5JQXyqcLjglhoc5aV8ft7DuFGx4n/FRYV8uHYtLtc/ZWRkR+MdOsjm9VSZrCMQTSJxkdVxCLZDncZBOW5yw3rUTzk8jDHb2FFrJ5Am06eUZm0hIQTzB3Rn38VKHvl4O3cu7oTZFNw3unqeDOIF5xA/QG/ru9/n87Fr30H2HjyCLMuk21KZOGsuuTk5zf5ptcsPTcyYkA5HuEL76QoHvfLTOVGuhcZIOxfdf12zfz+GPGWdIb/TjjBHapbozDY8NZcQCiN04wbfAW/cYlB8Py8eq1LGUXWRtPTWf2OlqrkaU/LU0UMsvPWuVo8ZQnvYkuFClstnjOXhZ15lwYh+5KUnLlJ3+qE/APBldTUHqjx0b2IAnauOfT+eckQmstX8v1q81OKNSZJBUBfCh4w7TmvjNwzv0Aa79y8VmOuRSG/KqHaKEghJR0cVHmrxkhbFQx4sWdkZqKNnwIA1rL9FCMGiLvl8eKGca/KzGViQi/3M5eZe3ekj+lOGiaeefBKv3sLEMSMZ0CfWoCYapHdE5bw18bdAIMDBg4f5YtduPF4PBr2BPsNGcc34ic0VlQqHF/tX4EjLngaEXoW26W1UDaRldx3CElvdkBuvIFJUevm9TjCpq5u2GbK6CFm4gU5GpfPyhfPkd2kR5EomcxpdUUpk/E84NJJgZf8SnjlwijsH9SC9OJ2a04krz4/UpbLeXcN0c0aMYU4WXTBygHrFwBxonsDwL4AusizHNpnFgdr8+YDJxjVjx7H+00+YMnVa5Em6dCEzK5u9X37J4CHBPt6QfVmwaCnPPv53rDYb+Z0jnaqlK1bx+ovP4/f76TcwqHkQSgwOHjmGrsXd+eDNV/B63AwYNpLeAwbHrcb+M4LycMiyzNmTxziwZzdulxOdTk9Oz4HMXLyyw3rilQJyAFd9HQazVfE8nsYG9CZle3j+6AGGL1oSseyi3YX97BFKmsRHo8U+KysqyM5JjA6bjMMXCKjMHG4HquvspKcG7WNrgUpHV82FEDy44kb+78lX+cGqRRgNyfWuLpg2jj8++zo/WLW43dcycshAHnrsmYjAPDzBv3TRIl569fV2n+cqQNI2Ty2okpoKLUqUdhMaMtBxCVdMErcYM0epR4+ELco/HKVP5bTPRcAlcw2p1JyuIb04nfrz5QwqyKV/Thovvf0BjR4vI4YPYUy/7nHfs60F7a3d89A+qrosy5w8U8rW3V/S4GhEq9UwYvBA7l6+uJlB5bfGJvGUikDRwTlEqrRHV48DPjdC0mBr0rgJp7kHe8iVWzMkXz2a7O74PFF+hKcBoVepoLbCjIwLObLIElk1l0GImFG54VVzZ0OsvxPP7/O4XejaOF6tI3DPtFE89P7n3DltJKmm2OuINzp3VEYGj58/QYnehBCCrhkmxeA8EaSh4xzOuFXzcP2vbziStnvwDQ3MnfhVf9TOmNiHnSx0MZT27qSwFzv9sTbPRQ6Jvi22ZvORu5pphsiqpRCCm/sU8crRsxhzM+mZE1zvuVSKPr8bnXByz+J5BAIBNhy9wJ+feB6rJYVeg0eQlZFJVlYWqaktjllrNHe14LytVXNZljl7+hS7t2/D7XYhhGD4oAEsXbYMfVPlRel80RnTiGtMYp55OAL280iZvZSv034RkVaouq/izHNPPcKq8nLzOSFOxTxRhBtr++VT6JoMthr8XjeSLtLotTbPfPvGT5l9U9tnTrYXJq2Wxb0LefbgKW4b0D2pfTVCkKcxcN7vIlpL0qaTkqqaCwRp6GJUdEOwoMXzryEOslUIMUCW5QOJ7lBRWRmh0hxuQ4YNH85j//g7w4YNjxm1d+111/HIX/9CYWEhAVNkdXD57Xfxjz8/xNKVq0hLj0xiLVy2nDdfeRG/30enngMj1mVkZbNg2a3Issz+L3by+jOPYTSlUNijF+kZmdgyMrGm2rhU/88T7Ku4eJ7Du7fhcjaSZtJR1L0XM6+/qbnKHy9ZkEi1PAS1gLx5/Y5P6T5W+b18bt82CgYpT2HweT1cagzQLeoxOHn0MDPm3ai4T2V5GYVjxnY4JTI4fSGOmGcbRDvf37ideZMTn13e0cG5XqfjO7cs4KHn3uDHty9Jqo9bkiTGDhnApt37mTB8YOs7tILRwwazdfeXXDO8RQQvFJxnZKR/03vMQ0ja5jkJqPabpqOjHJcipT0fI4eox4Y2Zl0vLMHkr6zBKiLXTbKks7mhli9rahmSnhaxTlNRy8pJQ5Flmb1nL/Pou6XoNBr6FnUm22Yly2YlzZLS/FuFB+1qQXrofm6PSFs4Ll4uZ8PWHdgbgjapR1E3Fs6dRYpJ2Q8K3WMhnzTke4Z8TbXpFSHmpFpw3nB6J5biUc3/Du9B91SeQJ/VHZ8j1m7KPhdCZ0LX5LeFGJiyswphUVbzDhZ02sZYlOWAOtVdlgnR5+MF5yG01msOsGfzesZPnhZ3m0SglrBpzUZKkuD+mWP404db+O7scegVRjXGw6gUGzsa7Yw2x7ZuJYsCTJzDSTeFqrkOKWJa1jccSds9+IYG5gYkDtNAP5QzU32axD4GRlHaBYL+WDmAnUHYyNC1/PgaIZhuSGenVE9+wIg5rKdZCMHSPkV8UnaFfZcqWdk1F60m8mUpSRJT+nZl8tjR1Dc4OH3uPKXnG/niy73U2e1N2blIFUev0BGQg9UIvU5HQdeudOtWSOcuXbD7Yg1GeHUkPEgPXy7LMufOnuGLndtpbDJ+XQuLmHvDTRibDHRHOm3x5pmHQ/a5EUKjTFWXZWS/B0kTW+2X/R5llU4AWb2SExQLUXZoZL8HoXCuRCD7fSBpFI0zgMdeg96alvjxZBmf1xNXDKQ9AnD6/G54LpW2ul2GycCMwnxeO1bKDH2k4VWaZR6eMe2nTWGtu5oS2aIq0JIoCjCyFztp6FSzqZ9TrbDn1Q8hxAGCNCYtsEoIcRpw0yQIIsuyqpeflZnJXx75O3d953uK9/yKlbfyyF//wne//4OY9XfcdTf/+7vfc8e938aU0vIilCSJ2+/7No/95WGWrryNzKzIEYY3LlnGa2++xY4v9nLdjUvQRVGohRAMGj6KQcNH4XI2cuHsGcovX+TYwf2cr6gCYsfRCCGaAzmNVkd2Xj45nbuS1akzWp36MxkdLEer3VZeusCRL3fSWB+8T7PzuzBq+mxMKUFnKdF+80SD8tYCcgCf24XP60ZvUnYcG6rKMKfHtuj4PG4kSaOo6OtqdKi2EFypqiRdZQayz+eLH1yrMDIgOJ/bojDLNgSH04UlJbkkaF29A5u1pQqWSAWxo5FqMXPr/Jn89aV3+M4tSQmEM2ZwX/7wzGuMHNBbseKezGcZM2wwv/vbE4weOkgxCF+66Cbu+dZ3krq+qwXtsXkmJEVtoBB6YmFv03opan0fLOyljn6kRoj+hnzAw4F6+kqWmOB8vCWNXWV23mxsZLbfT16PrGZ9oRBbckhRPkOKwOXxcV42cOlKLftPn6e2oRE5IIc+eMz1alIz0GgkunTKprhLHt3yc9HrdBHBVDL3zcXL5Xy+8wuqa4MBbH5uNnOmT8aWmjhVuTWoUdrVIAf8+Btr0aakKa731V3CkNub1CbXPFTQUUruhQoirkonklbFfnsawBxrQxNF9LuyuRDj90AYuzM6OA9dr1IrY6hqHirIhIox1RVl5OQpjx39umDUa7lz6kj++tE2vjt7bFL7dtMb2eusxxHwR8RHbUF6U9W8i0rirTjO/PhvAtpj9+AbGphLCDph4BgN9FIQCdAj0Rkjp3HEUJ10SM1icBPktIhAQi8kbrLl8GZdBdelZhGdF5qWbqUxzcofXv6YiSP7MpoWQZBwMRBrej6D+kb2B8YT9HBKRtxuN+fPnePkyRNs+Owz6t3e5kC+a7dCuhYW4fN5cTY6cTqduFxOHA0NXKmqjDRqskyXrt2YOXseZkvsd9PWoLw1g9waAjWnFIXdAOSGy0hWlYxoXSkiNTbjLHscbc+UumoRCuPaEtw7VhQkzDhXXSgjNYFe8RAO79tD30FD23gtySO1KA/7mZYxadaC3GYKU0GqmZ5ON1vPVXNNZuJtAEIIxuht7BcN5Psif5O2VM27YqIUp2IPkv6bPeFxTlt31Gm1zJ19HU8+8Th33Bnbo2Y0Gpm/4IZmxfVwNAQ03Hb3/Tzx6F+4+9vfbWbKQHAO+T0PfI8n/vZn5i9aQqe8FsewwuFl0qy51NVU88ZzT1LSuw8jx01SvD6jKYXufYL96hftLvok8Jm8Xg9Vly9SfuEch3Ztw+cLSzbmFyBn5BPw+/G6XXhcTjxuFx5nIw01VWwLyGSkBAN5WZbJ6pTPsAnTMFuVe4bD+82/Lmr9sU3v03P8bMV1FacOk13UW7EP8fDWz+gzZlLMcke98lzzEGRZVq2unjl9mqJidcGyeFVve0NDXGe/srqWrIzEqygnSi9Q0jXWQU2E0h7arqOQl53JpBGDeWPtRm6aOTGpfW+/4Toef+N9vr1sgeJ1JoOF867ltdUfsmR+8H4J9xcMX5OC81eENts8gaAnZvZTz0CsMcG5hKAXZo4oFGkkBIOwsZc6BpLazJAMrRsp2dgdsNNdSiGkLXSu2knXDBMjUlLR5qaw+nIZPQ0+JoXNMw+9O1OL8jDqtfTAT4+cFMiJfFdFjyoNwevzcVk2cuZiGZ/vOYDH26L83aVTNr2LuhIIBHDoU3E63ThdThyNTsorr+APm8YgyzKdsrOYNuEaMqOq+xHfYdSzkui92RpDM1xvKBz1J7di6R7JhAkVbnwNlWgskcnfULBbc+QzNLbYQocc8KExqFeiZdmPpFK4kX0uhFpAHwdeRx3C3YBkK1DdJuB1Ns9vTwS1VypJTU9shHJbkahdzLCYmD+iLy9u3su8guQEMGdZM3nPXsVNae3XMumJmeM00EehwNqe2fRXCdps9+AbGphDUFHdi6wYfIfW1+NTHKFmRMNwrZVdgTpGSja6W1pefHpJYmFaLu/WVTK+QU8Pi6W53wgg15rCvWMHccDt4U8fbGH5DWl0yrDFBOdqYzGUAnRTwAUGI9179KB7jxb13mqXn0AgwPnSs5w5dRK9wYDRaMRisZCVnU1KipnM7Ox/GtUtmsKkpq4pexwIrUG18i07a1QF4WS/F0kb65jI9guIDOV5mLLPHb8i7qqDdGUntb2z1H2OWvRdgkmZ8H4jNTGQw3u/4KaVd8Ys/6oUOlvDkNwMjp6q4KyjkcI4VbJo2CQtZqHhiuwhU7Rv3mgmei7jwksgwqH6pkOW5dapC3GQ370Po10+Xn7xBZYuuyVmfXFJCRcvXuCz9Z8yecrUiBYVs8XCyjvu5vG//om7v/NdtNqWZ1Gr1XLXtx/khaceZ8DgIQwZPjLCKbOlZ7D0jns5vG8PL/z9z0ybewOdOsc6UckGvDqdnryuReR1jXwWZVlm79GTVJ0/g0arRWc0oTelYEnLQG9MwZKeiaRRrijHQ2vXlwyFvTW4GoKVe6NFOVFw6fBuFtx2j+K6uisVDOpZHLP8i43ruO465ckNHo8nLuPgyJHDjLkmcep4OFrrL6+sqSMrLfHA/JNtX3DnTW33Wzo6QB/Yq5izFy+z+9AxhvdTbrVSQlqqhT7FXdl18Cgj+veOuLZkUVjQmU83b6PySjUZhYmktb4ZaK/NM6OlEJMqQ9KMlmz0nKGRoqhErgbBQFLZ38SQ1BLJ3BkupbJfbsDihd664Ls5FJz7LjayqFtnTtU6eLzmBNPtDgb2D6MzhwXoSgix1KIDdJ1WS1d8dC3MQju6JSEvyzIXyis5duY8Go0Gk8FOSk4Bmek2UkwmcrMzI2x2a1B7NqKr8+F6Bu1FwOfG76pHZ1EOQN2XD5HSPXasJIBeK/Ar6AX5a0rRpHfDryC91JqvJjtr4o7ujbuvHIgzCQjqzh3DENUaFo/O/sXGTxg76/o2XUs41GjsydrC4twMSqtq2XLmEmOLgjYrvEgDKOoNGSSJAUYzXzrryWxn+GhCgxaJenxYv7mhqCLaa/e+0V5vJwzokTin0ndaSArVeKkndh6hRWjpLZn5ImCPecC1QnBjWg6XnC4+raiMWBe6cQcY9Nw3YzQffbKRv729ju2HT+K93PJbiJpLig+L2oOlRFXOMGqQJIluRcVMmDKN0WPHM3jYCHr17Ue3omKyc3O/Ef1ngdqziDTlQDjQWKkq4CY3XlGtbMuyXz3Qd5QjVEaytbYvPheirWIigK+xrlUqeygACAQC1HtbqL6Jagh01ItUDUvG9OLzqis4fK3N8YzEEJ2Faq075nkK6Tgkg15Y/pUEQNqNQBNLo3//ARSXdGf1u+8objd+wkQqKyvZ9mVsS1OqLY3Fy2/lyUf+QiCKuixJEivuuJtz5dU8/cyzisfuO2goN9/1LQ58sZPXnv4He7Z93nycjqpCl9Y6OVfnIiOvC71Gjqf70DF06zuY/JLeZHUpJDUrp3mMWEcG0h2N45vfp+cE5SC69nIpvXr3VAx4q8su0rNIudrWYI+d3BCyGfv3fMGgIcNUr6eyspLsbOUqh8vlwmBse1W2qqaO7CQq5rIMWpX+xmQczI6kvs+bMpZtew9TcSVx4UuAaWOGsXHXPnw+f7uvZ8XC63nuvfXtOsa/ImzomhmSSsjBgADKidW00CHRn1T2U4c/SkxOCMEgycpll4+N7trm5aEWrbpSOyUWMzdZsjhRY+eRj7by4bYDEUKc9jOXm/+U4LlU2vwXDV/ZueZedCEEBZ1ymDZmGJNHDmb0oL4MyrPSo7iQznm5HRKUx0PI/2xPMaD+2CZSe0YG3qFqud9lRzJYFFsZA24Hkj6F1LySCLo4gOy2IxltEaPMmuGuQxji2B1PPRiUE6OtBfV+T+y7JVxHKeBuQNsUmKuNjIu4FI8bY0pyDM/2KLIngsn9ijlbXcf5mljmQzz0Mpo563HiUZkBnwy6k8Ip2s7E/VfF1R/VtYIumPAjU6FglCHYa3QSB54w+f1QoGATOoqlFDZ4ahUf1InZWYzLDAaNSkrVzvMV3DxuEHeM7IFOo+HRdz/l0cefpfRSS/CtFpwrBehqwXlHQe1YyZxDTXEy2qCGILvqEAarokEGkBsqkBQU1yE411xRjd1ZHZeKLnsbVdXfW4PsrkMY2y5uEfC60egTo0+dPXqIot7KI0W+TlgLIgN9IQQLu3TmjQuXCDQ9F6ERMuEIzTMP32+YzspROdbQJhuc65BIbRqfliwaPH4qHN6E/1y+b9ZojlGjR2OxWNi0cYPi+mnXL2TLxvVcqaqKWZeVnc28mxbx5KN/jQnOKxxexkyayrS56v22kiQxfd4NLFp1N6lp6bz5/JM8+djfuVx6ul2fCf65gXZHnrvhSjkGcyo6g3KCr+HYDvqMmay47tCWTxk2IVYgqKrsIj0K1ZWejx2JHH2XDE6eOk2P7smJPoajKomK+dmLZXTr3HGJRTk9v8MC9HsXz+OJNz/A600uIbnsllt4fv2udp9fp9MxYvgwPt+6Lel9Hd7kbF5jkqMs/9nIRI8NLWdVpnIUksIVPIpFGAMSfbCyD3tMcA7QVTJxjV45gKsrtSOEYETAxPJ+JeRbTDy+bgd/X7uNYxWRWieJBOlKCAXoSirvagUeNXRkm0cy8LsdyMhojC3tk+HaQ64LezF2Gay4r+vClxg6D2r+d8iXDFLRWxKG0cG57KhExOkvl+WAqt+Jz9nmVkgIBuaSMbFRi856u2qLVTha88M7qloejpuH9uadAydxNtm8aF8wHOE+4AxrJls98ccjJ+LzCQQFmChtw7QdpzeQlM1r8LZv4tXXiX8J/kARKRzEjhlNjAqnQDCAVPZRxyBsZOoib/4RFjMVfh0fu6uZYogN9gxRIm+5y+8FQG8JOl06a/DhHg6Mut6KPxDgQmU1R5r8PINeTydZhznFBE0zAAO1ZQCKNCIl1faOGKP2dUOWA8j2C8iuWqScAcrbOKtVqUayux6hNytWlQINl5Gy+qqcV4Y4mTy5tSyfuw7MypUl2eNAMkS+eEICcKE+c1mWEx6bdvLQXqYuaL8ae2tqnNECcNF95kowaCRmdcrhjYuXWNQlccGSbE2wxaRe9sUI6ySLrpj4kjrS0CkKhPy/jClTp/HCc89y+tQpiktakmIhO7Hijnv4x58fYsWdd2ONcgry8jsz94ab+MefH2LlnffQEKWAHy0uVpSh7MAUjR3BNSOGIssBrpSX4XSUI0RQ1C0tKxtTSsuz8uWl2Jd4RwTD4VMOoo+ZLNW9vQj4/Vw4sJ2Kk4cYuuA2xW3SArXUZysznRpqq+mSlY5GoTr2xcZPWLZ8ZczyEPx+vyp7SpbluBWi/QcPMnuWsnK80+nCoDI3vXkbtxtTghX3zV/sZ/7UcXG3aYsQXEfQ27VaDXctnMPDz7/JD1YtSmhEnJyeTycgxWTixOmz9CgubPP5/dZcxo7J5U9/fYShgweRkmSF7V8dnTByEgdX8CiO1OyDhX3Y6YUlRtXZhKZpfVAQLromda7RR4m55ZjdfvZvWAzBY+gtLcvHpBoYAyDLVDS6uOTxoTXo0EoSWRYTVoO+Wfetds2LQCTdXY3iHoLafPS2KriHgv22zlwHVNXZISgaWV96gNoje0gfMr95eXhQHnA3ILR6RZZiwOcG5Jh2xdS8Eqr3rkaTGVnwCW+XlANe1f7ypqtTX9NYhVAZpxuylZHj06Ku291Ao70emwptPxwn9+5gzEjl6RvtRXsTMUIIVo3qx+Pb9nP/uMFoEmTgmiUNmZKOcz4XXdvQxx+OUOuiGz+Gfx019nbhG18xD6EfVo5HVcZD0DYF58ckO34FByVHo2ecPo2P3TXU+NTpxEpVc299ZKZHI0l0y82iT14WfUsK6ZKTRVVtHYdPneXI4SMcOXGKz7Zsp6ZJSTPZynmW2dDmP5NBh8nQNjXycPhcjbiqzuN11MUEurKzGn/lYQJXjiOM6WhyB6o6OIH6i6rjzgJ15xA2BdE3nwuhMag7Tc4rCJO6sZQbq5BSstTXByKzrOGG2V9/GV2GuoASxO/HjBbPC/j9ik64EuKN2ItGe17CIaQXp5NrNDIyPZ01l8uS2vd6SwYHAw0JUdpLaSQQ5wXaGwtH/39KuyKWLV/BB++voaqyMmadVqvljvu+zTOPPdo8nSEcnfLyWXnnPfztb3+j7GLrUxWU4PAEkwBCSGR1yqegpCddinuSndcZh72O86eOc+F08G/v1o3Ya4IVptJaZ9JB+bTuWap/PbLMzX/Ry4fk2xiSH7+am8i1eFxOKs6dpr7mCicvR04oqLl4lgMfvsKhj1/Hmt2Z4TfdhaSJfK6Lc8wU55jZv+FDBkyYqXiOvZ+u4ZpZ82KWuxobEZKkqsZ+7uwZunRVf+ZPnTxJSYkyownAbrdjsylXdHbvO8iwgS2sHqXAIBmhnoZGJ9YEtCva6nC2t4KelW5j0axJPPLyu0ntt3DuLN764GO83tbbkT7e8DludyQTKDxBf9vK5Tz5zHNJnf//FXTHzGVcNChUxkVTT/kRGnATW8gwoWEQNo5QT6k3lmF5yhH5mzS4g8fwhM2r9tib9hOCHLOJ7ulWClOMdNJrqatr4ERlDccrgn/rT5yjsqFRsYquRm+HlmBa5PeO+ZNMqXH/wrcNr8CrVePjwabxU3rqBNWVFfij2trs5Rc4v+ltKne9h9ZkJXPk4uYxsdFTepzndmMqUG6zcZ3bjbHr8JjlcsCP7PcqirfpzLZmP1ANwfXqPpPscajPRnfVtt6brtIOGT5GOAR7VTmZucHkzNclPJoMLAY9Nw/tw+PbDiDLckTVPKStpYTZudkc9TUmRGm/2KQZpIY+WDny//t5zfiXqJhDS2V8f1NlPLrClq3TYpVT2RGoZYRkQyekiAypWdJwV15n3rNX0d9oprshhbpSuyKF1+fzc/sP/5Mqex3D+vbm5hvn8INf/xGAc5fL+fZtK3jgjpW8+OLLPPr8K6Snp/HiP/5Kaqo1OD6ovpKPN26h1m4P9ttpNPQbPprBAwc2KyarVc6D5/dx5223UllRwZBhw/ifX/0v6z/9hD/+/nfIgQC//N/fMmToUIYN6k+nTkGD8IeH/8ygAcpV5nioq77CoW3bqKsso6o++IK64hYY0rKpOXuWhqoruOqCDre3tgJZGJCy+rRabQg0lCPMOcrzyd12hF65H0muLVUVfQMIOCqQstTFc2TnFURmb+V1PjdCq14dkj0ONKb2z3AEOFlei05/9avtFppTqPV62X6lmtHdMuKOTQtBEoLrLOlsdtjpLyLZAtEq7VnoOU4DvVVGH5rQYEVLBW5yuPq/r68TQgjuue9+Hn7oj9x3/7diKmwGo5E77v02Tzz6F2698x6sqZH3borZzIr7HuSdl56lpHdfBg4bqXoun8/H/XesorKygsFDh3Ht/IX88j9+BMDFC+e59a77WHXP/bz7+qs8/9RjpKWl89BjT2G1piIj06nSyaFdWzl7uRzk4GSDTsU96dKzP7oEVad9Ph8/+dZdXKmqoP+goXz3Z//Nto2f8eRf/4gcCPD9n/+KvgMHM2/ccLJzg87FL3//MD16qdsDpaC80V5L6aG91FQ0Oa6yjM5gIi0nj317D+BusBNoUkiW/X5seQX0m7Gwufc9HOGCj5dPHye3W3fF7eqrqyjIzUJviHUmt3/yPjfceJPqZ/h8w3puunm56vqtW7aweGkkMyc0gtHlcqFXsEN+ay6a+nKOnDzFHTcvVD02gBwnsRaOQEB9vKUS2jNCTW2/RAL+bvm5jBncjzc/3sSNM5TFqqLPIYTgtqU38dQrb3L38iWK24e+0+GD+vP4i6/xrdtuaV4eDqvVyrChQ/hs4yYmT1Q///+r6IeVvdjpizViFBqE1NhT2YedPgqVc03T+hM4kAMBCiV1Vo3P7+f+P/+ZKnsdQ3r15IaJE/jZE08CcKGignsWLuDehQt4fd16nnjnPdKtVh772Y9JNZvRmU14stPZfb6cqgYnMiB2HWbQwBKGFnUmpalA4rlUqlg995WdQ5ffG5/Px/J7vkNFZSXDhwzit7/4Kes+28RvH/4rATnA7/77Pxk2eCB9Rk4gr1OQ6ffX//s1fXvHTsBRq8ZDMDm3+YvPOXv2bHObg15vICU7j7Mnj3P2UjmBgJ/qRi8VdU4sWbl0HjuX2upgoiLUZx0dlPsbq5GMVkUx3oA3aHslXexv4L58EE1mrABmCJL7CoE4quly/SWEVZnpJ8sy8XKJsrNKVRMpHErjckMIZ0omavM6UvBXKRETjfBkUZbFxIxe3Xhj3wkWDlaenqSECYY0NrlrmWbMoMSsj0luhfy9HPQcpp5BMbOugtA0UdrP0qg4jef/NSQVmItgpPQ5MAYokGX5ghDiVuApiGgSeE+W5aVh+/0YeBA4CdwSUqwTQmwAJgITZVneFLb9SeCXsiw/k9yHEfRtnlPeMvsyVKkzCg3DJRu7AnXcZI2tmmqEYL4tm80NtZT7PIw1p8Vs47G7+WDPDvp3L+LHd6/i+//3MP5GN+ue/wcAN977fWZPnYTX6+Ufz7/CZ689y1ufbuKxZ1/gB9++FyEEvdL19Ly+RRjI6/Wy/8hxXnj5VbweDzIyQwYPov+IsTH0RINWsOadd+k/YCDf/+GP+OH3HuTA/v08/eQTvLvmAzRhTl9WVjbvr12XzFfIlaoq1n+2kZorldQ6vaRmZNK5Rz/6XjOFM5XBnzg0JkNkONBWNbaMw7h8SlGVPRqyLCM3VqBRobgH6s4hZcf2S8pyIP54DDkQMys+diN1QynXX1Q15okgXASkNTp76aE99BoczBSHj3IKx9epzB6tyBmOwWk2LjiTq3BmSDr0SFTKHrLjqLSb0WJEQxUeshToiRCktO+jjnR0X7tK+1Vv87Ra7rn3Ph7521/57ve+H7PelJLCXfc/wBOP/IXFy28lK7ulJ6/C4UUIwYJlt7Jl/cd8/O6bTJ93g+Lz8cF779JvwEC+8/0f8sPvPYgQgpdWfwTA3bcsZvKMWXi9Xl569gleeW8tH733Di8/8xR3fftBBIJOBYW4rbmEQpmA30/ZmePs+WQ1Pk9QMDC/pDfd+g1RZZGs/3ANvfr15/Zvf4///Y8fcuzQAd544Wn+8co7EXYvPTOLJ998v9XvLhSUN9prOb1vF3VVwfvfZLVR2G8IvUdPjPguTlc4KFH3BWMQPYXh6I5NTFpyu+K257avY/rCWKV9WZZpqKuNEX0LITtFi9frjRiBB5G2w+1xq47c2rj5cyaOV6eWBwLqI9iSxcETZ+nfo3WHNxwdPd9cseKvEKwP7duDVIu6g6h0nOzMDLoXdmXbF3sZM2yw4n5+ay42ay59h1ayYf8pxo9VVsq/ZvQoHn3scQYPHEh6nHFYXwWudpsXqozvUynCaBAMblJjL8Eco/gcHMNm4aLfyX7qGSAszc/5KYenuWDzyZ5dlHTuyt++cyP/+cyTCCF4+9e/AmDlL3/FlAFD8Pp8PL36fd7/0+9ZvelznnnvA76zZCFehxNbfSPjLClY+wTv+UBA5mRVLW/vOkSj20sgINMrP4uxPj/mrrFBqNzYwNvrNjCoX1/+7bvf4js//in7Dh7msWdfYO1bL0fYvOysTNavfiNiXyWEgnN7g4PP9xyktC4YWJuz8hg8ahyTJk9BkqTmlqiQuGT3pkpvaa2zmfkX9ANbmAfRQTkEe8tTekxSvBbX+S8wdh2huM7fWENaj0kRgmvhkP0e9KnZqv6m7HMrTvOBJhp7XNakuo+ZLPYfOU1qZk5Ey1W4v1fh8JJjbj+LtSNQnJXWbOvD/cFwdXZbt9SI4oxRSJRoTRz2OuirU9Z1CgbnkI+RUhrpphJ4Z6KnAjcOfDEtyf+vIdk37ndBsUv/tCzLlrC/cGPdHZgEFAO/AP4nat8rwO9FEqn0eBl6IxqKSWmmRUTTZ/VCYqSUxmfuWuwBZZGX8ZY0Omn1vFZbTunpKzHrSy+V0a+4CE+Dk4E9e7Bj/yG89Y3BeZNVVyjKzeD46bMM6N0TrVbL1JFD2L5jZ8Qxwp0BnU7HsIH9uPOGGdx95+3cdfttaDVa9m7bFH1qAM6cOcOQQcGgdsDAQWzfthVJkrhx/lzuun0Vjibqak1NNddOn8oD37oPl0udQlNRUc5Lzz7FS88+xY4tmxk8YjQ3Lr+dWUtu5ZoZc0nLyUuq0tEa5PqLSFblbKPsqkUYbMqVdPt5pNQ4WdKGy0gW5fEl0Prs82DFXJn+JAf86kIiTfB7GpH08ftaQy+18tJTdC6KFVz6upTZ1ca8hCOcxtTFFPxciYjAhXCtNZ3TgUZ8rVDaC0nhAs6rlep0Vdg8j0ddBM9isbB8xQr+/sjfFHuJDUYjd3/nu7z5yotcPB/MpEffZ2OnzKBnvwE8+8hDVFy+GHOM0rNn6NOvPw6Pn779B/Llrh0ANDocVFaUU1hcwplTJ+jVpx9arZaxEyez94sWmxddmZY0GvK792HU7IWMXXALYxfcgtFs4fQ+dRGtC6Vn6dE0K71XvwHs3bUDSZK4b9lN/OTbd9HYGHy27LU1rFpwLf/9owdxu1w0eGLt/NHz5Wx792W2vfsyR3dupkuv/s3XMXTaXDLyujTboNMVjpg2lHgI0dbDcfbgHrr1G6xo1+oqy0hNz0Sni01MHdq9jcmTJqme6+D+vfQfNER1vd1ux2pRpmw6JSNnzp6lRGW+uc+iorURFpT6/X6kBG/jnQeOMGrA1TcKLER/j6bBd1eYtR7aXg1Tx1/Djj37qG+IvF+i7fXE8ePYf+AAtbXqiezbVq7gqWf/KZT2q8LmKQm1haBB0K8p+FbyB0OV87M0UoPyO7UzJroJI9sDddTILduEqn4XKsrpVRCsMPftVsj2fYcAcLhcVNTWUJSfx5GjZ+jVpSuBRh+Thg1h9+GjMeepP19O/flyJEnQMyeduZ1zWVzchbumjSAv3cqGw2dUae2nT5xgQL/gMzNoQD+27tiFJElct2g5K+75Dg5H8Geqrqll0pwbued7P47w9cIp8y6Pl8fXbODRJ57jvc+20bekG/esWMI9K5Zw8+JFFBUXxyTh2hM0+uxlaKw5ykrsnkYQGsXg2Vt7Ea1N3T8JuOqQmtTYdeZYxfZQgUYNsrMKYVIPzNsCNWX2i4d2UTJkdIeeKwQ19o9StVzt/opGYUZignYhdM0wUaQ1URnwUh+I1GkIh00nkY0BB34cCm0oIQSn8TgSZmH9qyLhwFwI0RO4D/hBG84hAZqw/w7H40AXIGEVLBcB7CrGFiAVHUVaIxc0yg9LL4uBWYYMdnjsVPiVHd4SQwo32HLY6qjjs4rKCIe3e0EXtuwLjiPa9MWX1NYHK8hrN21lxvigyEOtvR6rNegQ2axWaursMVlMNcV2SZIYNnQIY8eMVuw379mzJ5s3bcKgFWzZvBG73U55WRlvvvMeI0eN5uknHwfgo08+48N1n1LQtRsvPPOk6veVk5PLt+6+k5tX3sZ11y8gQ2WsTkdADviDwbdJuQIUsJ9HpMYG7bIsBwXhDMqUZwDZGb83SI7T0y77vTFzK8MNfqChHEnBUQ3PEntrLmHMTKziLidJ62wv1MRmvmpcb8lkb8Aeszw6OO/bSuCtRyIHPedVRiN+FbiabF5dXR2HDx9SXZ+b24npM2byyvPPKK7XarXc9a0H+HTthxw9dFBxm8LuPVl+zwPs2rKJte++EWnzevRk06ZgonD755uoq6sFYOOnHzNhSlBF3F5Xh6VJaM6aaqOuNriNUmAcDSEE+d370GNYi0hOdDBcWNKdL7ZtAWDX1s9pqLdTWV7OIy++weDho3jj+acBeOadj3j67Q/J71LAGy8Ev4/wxEBprROTNZUx1y9lzPVLGTotmHxUQjIBuRoCfj+n9+2ieGBsLyXAue2fMGb6bMV1V04foWc/ZWYRwO5tWxk6Qr0FYd3Ha5kyLVblHYJMLa+kzmY5eeoU3VWU4EPBaemlcgryEntfuNwedLrkKyFft9J0dKCuFrir4a5bFvGP515pdSTTHatu5fGnnlbdzmAwMHP6NN5Z/V6bPkdbcDXZPC8B1Wk7EFRb74GZA9QrOvICQX+slONWHKUGgE/DaMlGmezmQKC+eQqJ3eunMC+fXceO0OD2s+3wIeocDjwNHtZ/8QWThwZnkNsbHFhTgolpY0BLTU3suy6EaEZa/dkyeuVnM31gMEGvFDz1Ki5i48ag3d2weSt19nrKyiv44LXnGTNyOI89+wIAmz54iw1r3qRbly489sRTMcfxXCrFqNdx55xJ3DlnEotH9KSws/pI2fZClmVcl/Zj6KQ8KSJe37mn4hj67CCdWmnaj7/mDFJapF0KBeg6s62p8JMXs1xntqFNSUWjM6qzJlvpXYdgUkGtgAORfeZuRz0mS9BnvZrGe7Ym/huNeL3mAOP0NjZ76uLaPJtOoncrgbeEoDspnPh/fIRaQoF5E7XpKeCHQK3CJgVCiDIhxHkhxCtCiOYUvCzLx4FtwCngv4CfRe3rAP4T+LUQIqFmQxMaLuBSNNo2nYRNJ9FJGEhHy+GAsrMvCcE0QzrHfI2c8ik/MFohuC41i0JzCs+fO0+lO3i+Kf0H43J7mP+9f0MrBDkZwZv27Q8/Yf6M4BicVL1EfX3w3Pb6BtJSgw5rIsF5zOeNCs5nz5mD0+Vi1syZGAwGMtNtjB17DSkGLRMnTeLY0WMAZGQEVSfnzpvHoUPqTn00vkpqTaD6BFJGD+V1jgpESrZKtfwCkkLA3rzeWRN3zJksB5ADPsVeJwC5rhRhUw9eA44KhDlHlVoF4L5yFlOuel9UCJdPHaNTUY8ONdTRDmNbBOCURmW0ZpBDUKuamyUNnYWRk4HYJFnoWYVg4J2HIe7YjE4YcSiI+nwVSNLmHRJCHBFC7BVCfAw00ME2Lzs7m/379vH5ZmUWDUBWt+4MHT5SNTgXQrDijrvZtXc/u7ZsVNxGo9Ew+6al9B8ynOceeZiL584CMHbqLFwuJ7csmI3eYCCrKXn38fvvMXPO9QCk2mw01Acd04Z6O6m2tusxhALi8MB44oxrcbmc3LloHnq9Hos1lSEjR6PRaBg5dgJnThwHwJYevGenXDuHU8eONO+frOhcW4Ly6Eo5wBcfv8uwGdcrbq+pvkCnroWK9P3DX+xgwFD1oLv80kVyOqmzmWRZpqK8nJwcZXbNhx+8z8xZ16oef8PGzUwco0w1DWHngaOMHKCs2RGO82UVdM5te5XqnzUGqi1IMZm4btpEXlv9YdztDAYD8+Zcx+tvvq26Tf9+ffH5/t+0eUY0NODjXJxkrAUt3TBxME5w3hsLjfhVR60JIegjWSgUJnYG6qiSg8WayYOH4fJ4WPV//4NepyW7yZ69v3krs8cEE4ipFjP1jcHrq29sxGY247G7W0TiohAdnCuJwoVjzvTJuFwups27CYNGItWo55phg5DcTqaMH8uR4ycAyGiyeddPncChYycUj9UakpmbHWpnBOVqsfviPoydBynaJn9jDZI+RVHPx1t3CW1qJ3Wb5nUhJF1MESUcUsCDPqOroqJ6oO48GlsXxUo7BFmZocKQmiK7t7oUXUah6vlDOHzmEnqTMlspXAQunL0WPn0pGcHfZNEaY1KtrRGUWZMaIRilT2VLKyPUJAQ9MXMsThEmFR3Gq1CdXQjxP0KI/SGbJ4TouB6rKCRaMX8AKJNl+S2FdZuAAUA+MAJwAeuEEM0eiizLv5BlOVeW5WtkWT6jcIyngfqm8ySEvlgjjHa4kx9CvmQkLSw4LzHrI6gWQgjGG9JolP0c1TWqZnuKzGaWdS1gd00tZxyNBCTBbx+4j3f++Bs0koapo0fg9fk4dqaUgU2iGz0Ku3HwyFH8fj+ffr6NUUMHKR4bYp2O1pTaNRoNDz38MB+tXYtGo+G62bM5djRIoTpycD8lxYWIgBf8Hgxawe6d2ykuLlY93tcF2VWL0JoiZlM2r5Nl5IZyxZnmshwICsLFqYYHWukPl+vOISmovDef2+9WvK7QemhdxEP2+2ioDTOyCgqdAKf27qB48Ki4x1JCRxvqROjsSlAyzPEwzmrFTYBqWZnlEnpuszHgJKA4izaEXrRtPn0bkIzN2wvogLHAGuA/vwqbt2TpzTidTt59J9aRD73Qe/Xtx5BhI1SD8wqHl5nzFyIJibdeeBq/X9np79y1kBX3PciRfV9y+vhRAgE/v/jNH3jh7feRJIlxk6fi9Xo5dfwYffoHK7pFJT04fuQwfr+fLRs/Y3AcMbl4iA6IQ//WaDT8+69+x+OvrUaj0TBx+izOnAgmIY8eOkDnrt3wejx4mhKoe3fuoEu3xHuaQ5T1ZKnrISgF5TXllxCSwJYda9e6pZn4YuMninPLZVmm/Ph+BgxTD4x3r/+AmXNiVdxD2PDZeiZOVp6XDnDxwgUKCtRbg3x+H1KGejIUoLa+gQwVRfdwfLhpJ9dNSN7mheObFJz37dkdo0HPngOH47Yd9erZE41Gw+EjsRToEG66Yf5XcIWKuOpsXjFmtIi4jrwNHV3jBOcQHKlrQsMBhVnmITFSq9AySrJRI3uplD3U+gP89JZVPP2jnxGQBRMGDMLr83Hy0kV6ZAd9jZL8fI6VluL3+9m0bx9De/VqPm7N6RrFST6tITyg1mg0/Ol/fsa6V55Bo5GYM30yR0+cBmDvF19QmJeLu7YaV9PEi62791DcrSv+xvq4xw0hmWcqOqmp5t8E3A0EPA1oVe5714U9GAuGKq7zlB1BnxvZ7hJeNfdVHUOT1St6t2b465WZjc3X1ngFydySIIwO0GW/V7V4A2C/fAq/owqNOVOxpz4clQc+p2jExA5hXUFsO4wSeycR0bfWEC8oj4dMSUempMNvUPffbDoJC1pS0KqzWAjqCl2F+J0sywNlWR5Mk837qk7UamDe1Dv0feBbSutlWT4ty/JxWZYDsiyXAXcSNN4JN1bIsuwHfgT8RAjR+mDAJgzRWbFpJM5r1G/8UHB+RaceiA7QWRhotPBqbQX1/tibqq7UjkYIru2US5cUI3suXGL6t77HvO/+mJH9+tA5N4eNu/YwcUSLsdHptNy2cD4TFyzhuTfe4a5li5vXJfLwxAvOL168yPRp05g5Ywajx4yhoKCA8RMmMHXKFJ577jnuvOsuampqmDh+PFOnTOGDNWu4+557VI+nBiVBsrZClmXVEWgAsv0ckorKplx7BimtUP3YjVcQpvS4laN44zGUetMjaOz18XvXk0HA70NIUkwvl9oYjY6cX58InV2pap4o1KrmAHMt6RwPOFRHa4SC816YOYFDtb8wmdFMbUUbbN6ttNg8M/EGqLYco002b/qMmRQUdOWpJ59QTSSqBefhmflh14xn/PRZPP/ow1RXVigeRwjBtLkLyCoo4tCeXdw4YyLLrr+WoSNHk5ffmW2bNzJ6/MTm7XU6HYtXrGLxnBm89cpL3Hyr8izveIjnxJRfvsTtN87mjoVzGTR8JJ06d2HYmLGsWnAt7776IguX34a9rpblc6ezasG1bFz3IYtvVRZbiz5nRzlP4ZBlmT3rVjN0emy1vFuaiYO7ttJn2ChFu3Vm5wbGTVUeqwZwofQM+Z27oI0zbvHokSP07atMJT2wfx8DBg5U3ffEyZN0L4nVwGgLZFnG7fW2Og/9Xw3Xz5rGpu27qK6OH5zdMH8eH679mMZGdbbQV42r2eblYyQbPfuxq47WTCQ4z8VAD8zsw66a/BVC0EMykyn0nKmuZMn//oKVv/1vBnfvidWSxtZDB7mmX3B8oKfBg06rZdnMGVz/7//Oa+vXs2JW7DMbHZy3VjWHliD64uVypixczrTFKxkzbAgF+XlMGD2CSTfewjOvvcXdtyyhps7OuPlLmHjtfNas+4y7bpobcexkacvhSFTzBlpUyp2lOzAVKrv/3przaFPzFfvOPZUn0WWVqPtxHgdCo0No1G1ewH4RKVW5QBNw1am2QurMNrQ6LdqmueRq1fIQEmlD9DkdGMzJFTGi8VVWzaMR0kJIFuF+Xx+dmct+N/Vy/Pa1rpgox407jq7Q1QZZlsP7VBKyeW1FIg1f44Bs4GDTzRh6ovYLIX4qy/IjUdvLTX9JedCyLH8ohNhJAlkIjQCbNngZXSUTlbKHfYF6BknKD914ayqnfU52euyM1KuLV92Yls0aexV9DWZ6GZUrczohMaqgC2/98leUyV4MGg2u+kamjRnJtDEj8dY3orMGBcaWzb+OZfOD6uualMhrC6ljer0+nnnnI8YPG0ivYa3nMrSyn86dO7Puk08iln/ngQf4zgORiejtOyMF50L4Kqrl8SjeAHLNaaT0YmWaut+L7HEgKVDJ5YAP2edB0iv/HrIsE6i/hCZXvQ9Tbrjc3HOkuN5VE6ECH22UA44KtJ3UGQ/2sguYLEa0lgzVbULK7Of2bmXgCHUVZEhcqbNGNnFo1+ecPFOKOyQO5qhtXq/X6eiTYaJ/URdMhrY7xeGqnCFEq3OGoDQ+DYIvspusWbxZX8VISVncLxSc9/FaOEID/VVGqLWGOpcvqXmhjV4/wE1CiKebFmUCuSRn87TAy0AFoF6mDN8pCZsXjqHDhpGRkcFjf3+Uu++9TzF506spIHvl+WdYsvxWxeNk5+Zxyz0PsPrl5yjs0Yuho8fGbHPR7iLHYmPwqLG8+v46Lp87i0arJRDwM2HKtOb+8hAWLFrKgkXx20hlWWbH+6/Rrc9gOhX3TMjJsTt95Oblx6itL7/rfpbfdX/Eslc/Vqf7h6Mjg3GlavnBzz+h37ipEUm4kDKvz+vl9OH9zFsZmzD1+3xcKD3D+OlxaOYfreHBBx9UXX9o/z669e6vun7rli3cdc+96sff9Dm3Ll+muh7ArrNhSWm9srFj/xFGDewY0bfGi6fYV1bPidNncTaJXIXnp7QaDX17dWdQ316Yo8YH/jNw38ql/P6pp/nh9x5UVbcXQnDX7at47MmnefDbkfdyoo55vTs5m9ek+zBHCPH7pkVXtc3LQI8Bif1RE3fCEQzO4SD19MequI0RDUNI5RgOUtA0V+bqvIEIxqUE9MzI4dEf/AyXFAwy/LLMsN4DmDhocPN2ngYPCydPZmEcZgoEg/ON/np6pKfSN9NG/fnyiCS4/czlGAabv7Geznm5rH/9+YjlD955Kw/eeWvEsl0fvhWxX+iY0VAbz5YoTlc4Imjs0dD6qtFllijO+JblAO7yo1h6T29eFgrmZVmm7NinmHtNVTxual4JV3a/jjZP3Q8LuOoQxlTV94m/5gzaTurJSH/NWTSZPeKPzJUD0IoIMICj/BwpObGFpnB1djVET+NxuVwcOHSI4ydO4qopb7oOOTgxw1mHRpLoVdSVwb1LvrZBY2r+H8B4fRovuSsZKdnQqPh5dd4A/bCyHzuDVZ7n1tDoTc7m2V0+gGlCiH8PW/yYLMuPJXoMIcSvgBVAHQnavLYgkcD8NSA8CuxCsJdoBnBUCDEb2AdcBNKB/wWqgO1tuJ4fNu2nLkGsgGyhxyfLHA400FeKrIqGqOvFWhPCB1vcdVyjV354dUJigS2HnY11rLVfYZo1I+bGOv3QH5r/O704nTKHkzdKL5OWnc68/iWk6HWqFGElg6jTaVk5fyabdu9n/SOPEjClMmLwAEYMHoCmvlyRBqeV/fhEx/dgZBg1HVqhDUH2NACyasU62HeuXJ2Rq08hpav3bQd7z+MLrsnOaqQcZSdVdtcjdC3XpajwSSsj2ADnpSOYC4IvDXtVI6lZyiay9lIpWdeqO9yJwOv18srrb+B2exjbv4Ql18/GaAzS8MOpaW6Ph/07dvD6hp3UNjQyrFchw9P1EZ8ltSivXRn1ZGAQEt2lFA7LDvoJ5XsBoJNOhzdg4ILfSZevj9L0hizLPwcQQqQA4VmWkM2rBr4lhPgRwZYdH0F7NwG4DPQDvk2w6vTzBM/bJptXWFTExMmT+fsTT7PolhWK24SC8+effIwZi29VvIe1Wi03LL+N3Vs38dbzTzFvyXK0umBSKPTS+/JSWN+YKZfaK5U896e/IWk0XDNzHmZr/KpANAVSCMGIWTdy9uAetrz9Asgy+T36EsjuqTjjOwS700eqSRuzDIhZ3hq+igp5OBpqq2mormLA+BYnNNwh27jmTSbMuVFx30Mb3mfa3AWqx967cxv9hwyPO8Zs+5bN3HbP/YrrrlRVYUtLi8sw8no96HTxk4Nbd+1h9KC+cbcB2L7vMA8sV/6sicLv9/PGx5uorrMzdsgAFs6ZhckUG7R6vV4OnzjFG+t3UF1dQ/9+fZk8cULEZ1Vio31V0Ov1LFu6mKefe4Hbb1V+TiE4u3zyxAm8s/o95s8LVjy/hmrZGlmWfwDfDJtnRksJ5riBdyg43089A7AiKWwT6jsvw80B7PTBihYREZy/df9Pm7cvMetxBPx84a0ngMz8nBxSFaq2rbV4jZcsnA8EePnIWWRkSi5VMnl4X7Qa9ec4FGRHF3Za2z4aSoF/e6BEYw94nLivlKLPVZ4S4brwJcYuLevC54A7zuwkc+A0XG7lIqS39iKSKT1ub7n/yim0+YMV18l+D0Jo4k7Wkf2euEE5QKAhqGwV8u7sZRdi5plnZJsp/ewDuk68oXnZ6QqHYvI2BKVijCzLrFm9msqLZxk7Zgzz587BbDZH2C9Rcwmfz8+xs+dZs2E7ZaVn6NmlEzNG9O+wMZfJQhKCQZKVLwN2hmvUmQcaBMVNQm89UfcHOxifyLKsmpEWQnwCKKki/ocsy+/KsvwfwH80BffJ2Lyk0Ko3I8tyI2GjM4QQoX3KZFluEEJMIqi4aQPswBZguizLSc82kmV5nxDiFYI0qaSQJxkIBGSOBhroLVkUZfuLtCZMQsM6dw1TDOlohVCk345MsVHp8/BmXQUjU1IpjDMCq5PZxLK+xQSy0nhr/wmEENzSKQOrqXV9k1DVXK/TMW3MMKaNGUYgLY9dew/w9+deIRAI0K9nd8ZMu66ZsuhztdDd2vriTjbU6ZZmarNQmSzLBGpOI6nMLJddtQidGaGJ/b1kbyNIGvXeb58b2VOvSoEHCNRfQij0rTevrzuHlN1Hlbrkrz6DJr1Qdf/m7Zx2NKb4L+aKU4fJKlLvj0oE6z5Zz+GjR1m88EY65ebGdTINej1DenRjSI9gQmjX0dM8tuM4edoA1w3ppeoQKM007/3znygK2ngaYn2rfkCDWznBMx4473GjRWAWmggHKBwFkpGD1OMXfjJEVICQOLuuTYhj8yY1zfT9HbCMoM37PWE2TwjxEvA+CRrs9ti8nMKeDGhw88bLL3LTUuXqZq++/XBpTDz3yMMsvu1ujCblhNHwayZQ0qsvrzz1d4aNGUdqoXqFMy0zm5mLV+JsdLD1o9X4vB6umTWPajlxe6TRaikZPJKSwSM5Vd5A5dljlH/yJnIggC2vgM79RqIJCwxf+TJ2hFs04jk+4ejooDz6vLIss2PNa6ozy6vKLqLT6UjLzI5Z57DX4XI6yc5VdqJdzkYO7f2CZXcpMo4BOLhvL7379VcNvN96602Wr1jZ/G+nZIxgUW3Ztp0xo1r6wf1WZTtz/PRZZg1WrnCFcPLcRYo6t2/c5sZd+9h96BgLZ06ka15TotpVjWyK7bHU6XQM6tub/qOCLRYHDh7ir4/+g9ycHObPm4Ner49Idsezn1Ja+1WrZZ2JwmyYZ06lvLqOzvl5Ee/wcAwaOIDTZ87w5d59DBmsXhn8KvBNsXlWtHTFxCEa6IdFNTjvgcRe7PTDikGlY7MTBtLRcZh6stGTh7L9Cs02n2BIwysH+LCyCpNJw3hzGunaFhsVXkFUCtIlIejWAIP7BnUvTtbYeeXLo/gCMp1tFsZ7feT0bPFl3NvXxBwjXrU7vIf860q2h6P20Mek9Z9Fw5XKmHUBtwPZ60RryYoJZAM+N976SizFo9ATOw9dDvhxlx0ivd8MVWZmwFnbVC1X/q39lcfRZPVUvfaAowoppfXuikB9GRlDb4i7jbvuCroUa9wkQmv4Yvdutny+mdlz5lJy/fVxWa5arYZ+3Qvp170QX9k5jp+/zKPvfkqaxcwNE4YnxJYM9/dyl8fGrR67m2gZ4HDfr1uUvzceuOzx4iOATWhV/TwbOurwcQkX+SrP39cJWZaVR5jEIimblyySnl0iy/JZwmjqsiz/kGAGNGnIsjxJYdkqYFVbjtdZMnIh4KJW5waUb8ZOGj1WYWOtu5plueov3mytnoW2HLY32jmZ4mduwII+TgbKZjJwy/C+1Ls8vPD+FiSbhZmDe1CY3XI7K9GIQsF5CFLtZUYOGcjIIQORZZkjJ07xzGN/w6+zoNXp6NO7F4MG9MdsNmMKuJIOzr9O0TdZlglUHUFKV+4bCvWdqwXtgZrTSNnqFZlA9XGkLPUAQpZlZOcVNGpJAU8DQp+C3qKuPC677UiZsSM7wuF31qE1p8XdBuDiwV0MuX5lq9sp4djRo3z04QdMmTqVB6ZNSXg/baeuzZoGI3oXM6J3MSf37+PJ9bvJsZmZP6JvUlXzsitXWP4/v+T4+fOceu1V9BY9f375dT7+YhddsrL5wz33o9NqeeCvv2f74cM8dP93uaZp3NP2wwf501uvYtDpuPfW2+meEb+fvZ+wsDNQxyDJivErYIgkitZsnhCihyzLJ5r+OQ9QVXLqCJsXzmrp038AgUCAN195kRuXKAfneV0KWHjrnbzy5KNcd9NScjopi4mmZ2Yxeemd7N26kYtbtjJ1wVKMcejAphQzU29YitvpZPXbb+B2NtJrxDhyurY+mQBaAmQhBNlFvckuCqp7114u5eiGdwn4/UgaDemdi8gq6o3eFD/wbq0q8VVUyZWC8p0fvEH/8dPRaJUrzps/eIfrb1VO2m947w1WrFLvzV/9yvNcv0S98gqw7fNN3Hn/dxTXVV+5gjklBaNR/b2xd99+vnXv3XHPYa9vwGoxI6fnxxWQWv3ZVh5sY7X8zIXLvPHxJsYNHcD3b12U1L4httmA/v0Y0L8fl8vKePrZ57GmWlmy8KbmalI8YTahC6awL126xPULbuTwkSPUVVehk738/uE/s/r9D+laUMDT//gbOp2O+YuXsenzLbz2wjNMmzwJWWdi/Wcb+NnPf47RaORnP/0pqVYrJp26H7Hg+nk88o/HSO/cjdw4/slXjavN5oXDhg4ZOEwDfVWC8xQ0DCSVg9gpIgUbys+iAYmBpHIZF/ux08trISfOSD+dkBijt5GXamBzQy31AT8DjBaKDZHlDiWab3Sw3j09le4EE+Hna+p5+8BJpPNlaCRBSW4mg7rlkWaOfE5DwXfIj1QSdGtLUK7GzkwU9Se3kJLfD0lnILVTl5jg2lm6nZSSCTFBOYD92EZSe01SPXZ4z3pqXolicO6vPoU2X1lQTvZ7kWW/aoEHwF93Hm3eYNX1EEwQIKRWk4xlez6lYEL84B2CjLRoHafyssusfvN1+g8azHce/G6rx1BCz4I8ehbkUVVXzwvrtiI11LJ07KC4zIxo/H/snXd4VOeZ9n9nep9RFwIVJNFF7703g2kGGxvccMHdidM2yW42m0022c1uEsdx7wUwHUzvvWN6BwGiCKGuUZk+5/tjNNJIOmdmBNixk+++rrls5rynSDrnOe/9Ps9z37eKS3j457/i/NVr5C5aiEqp5M1ly9hw4CCtEhN4/dVX0Zg0PPof/8mBs2d4+9Uf0b1toEIvOM9TKlX8YM6zaGIbunEExRaDSEPPWSoxocQi85x+F9CcmHe3aL6p6HccQ80WLnprOOKupIdGuvzHqFDyTIuWfFVRRC+DhTSN9CRFEATGdUzF7vGw5EY+ORYzXWyBzKqcjZRZp2FWzw4Y0pLYePwia4+eJyspjlGds1A2s7REEAQ6ts2mY9tsfOYkPB4P585fYNnKr3DUWnQItcf0KOpvaJvNRsuWrUhp2ZLk5OSwAkHh4PV6uXXtCiW3b3GjuILrt8vwup3cKrGj1OpRJnWBWluD0IApiiKi/QaiqwKFNQ1Brj+8VtRNkrQ7ShF0NtkVUH9lPoIxSbKXqe4YFXmSfet1xyjPQysjUgLgrylFobfJbg/CdesU1j5Two6JcdxC1zqyrZAULl64wL69e3nlBz8M/K5CFlcaZ7MiTZQB0uJtzB3dh4u3ivnT6t08OqR7k7VKqay5xqLF5jaz+Lf/yZP/9XsAiisq2HfmNMt+/Vve+moFGw4fYmK//vzXnGf5eOOGBvu/s2oZH/zoF1zKv8HKDeuJmfkIflFEIfOiEwSBngorB/3l9FPYZMd9B/AHQRDaAX4gD2jaOHwPINdm0qlLV/yin+WLFjTp7w6K9xiMJh574Ycs/fxDOvfoTfvO3ZocJ1i63m3AUNp168WWZfNJzW5Ll35Dwl5XgQv63Dcdv9/PhcO7OXdgJzFJKXQcMFyWnIYjybYW6dhaBJ5bv89HWf4VrhzahscRkmlsdC9oDSZM8cnYi5Lo3C6jwXmbQ8j9Ph+VxbeoLrmNx+nA43LgdTnxeVyoNFrSug1Ebw1U/IaSclEUuXB4D7dyz9G+7xCS0hsu5gXL2I/s2kK3AUMlywxv37hGZmpLdDrpmqbTx74mPastJot8Zc6endvpP0j+77V06ZIG2fIgglnzWwUFJCU2VTVuHGdWb9rG/WPCLxBeu3Wb1i2T76ik8npBIau27+NHT8yQ780uy4/KVxygRXIyc595irxr1/njn/7Cww89SFpqeMX5IGJjY9m4fi0PPBgQcC0sr2Lbrn3s2L6dP/73H1ixag0zpk3hrTff5L0PPkRUahFrSf3vfv971q9ZzZmzZ/n8i/nYrDay01uGXRiZ+/RT/Nef/8ZLr7wadtzfGd9KzJODrZacn6WKjjJaJCoEumLhPFXU4JPNiAO0QEcCWs5TRYFHSWeVMSwBu1XmYkRsLKIoctJZxcqKImKUKvoZrWgi9CCXXS5rMn9MjTHzcExgfmBKTyb3dgmbTlykoiYQk4PXUn9JhzHptLSKtZASa6GFzYw2zIJCOPj9fq7n3+Jq2WVKa9w4HA4KyytxuVw4/QrSug8gNlF6kagy7xSlF05iaJmDLlE6geEuvow6Jg1ry6YOGV5HBYKgRKmTLmX22gtQqA0odfUxr7G3uaf0Gj5jonxvefEFYnLGodAEFpkbE3vR60JQaiISbl/ZVZQx4fvzvY5K1AYzijACdXK4cL2AbSsW8vQLL6MM09IVinDzvXirmWcmDuP6mdO8vnYPk3p3pE1ydJqLMWYzK/70B2b9/D+AwDxvz8lTfPXff+CNpUtZt/8AkwYN5L/mPMu8LZsAMGmVVLl8DeZ5i9ev4fGHZ+ES/WjDPBftMdVVuGiiNgv71vGtxbzvJTH3yagRB8vX26gMXPDW8LW7kp4S5DxYvj7NlsjWylKKvR56hOnhsajVPJLWiqPl5cy7dp2h8fHENCnsaAiVUsF9PQJly5cKSnh/yyHUSiUTxphIS2z4cDTOmktNOJSVtyEkAyAFh0KHKIqUl5VxM/8mp0+dYuvmzXh93rqgo/bX1gGLIggC7tqKteD2andg8m93+VCpVKhjk4hLSsFrSUJMBLVOj6LEiddRydW926kqKcPt8qBN7hjIgNtvBsTULK3ClpiLXieiz41C23SSGTyObF+4z4PoLEcZJpsu+n2InmpZNXfRXYXKFBe258hXfi2s2EjwWkW/F0WY1ViA/DOH6Tw+vCiWFIqLilixei0/+eGrd1UOGgpNSjru/DzatIjn1fsG8sWuo5idHka3iywKo9No0IWoKx+9cJGB3QKCKoNyOrNy724m9utPUkwMmpAVWofLhVatwajX0zWrDX9esoAMtZYv1TWkeeWznCpBoKvCwpEI/Up/T4iieHcNtFGgqjq8YnPnrt0RI2TOFQoFMx5/hm3rvqLwVj5Dxtwnezy9wciE2U9z6dQxVnz0Fj0GjyCtTdOFpdAWF4VCQfs+Q2jfZwilt26w76svEQSBdr0HEd8qo25cc4iyQqkkLjWbuFR5hXBRFHHXVFJVcpuy65dZd2I/sYbAxKbY7qqfzdbGPIkD1P2voFBiTmiBKT4Zc2JL1FodKq0epVqDx1FN3pFdOCrLSW0RT02/YRgsNnKPHeD6uZO06TmAYTOflr1OZ00Nt65dpcdg6fLv/ZvX8txL0plut8vF0QN7mT33Zdnj+3w+zp46ydMvSI8pKy1Fr9OFJXur16zj0VmR41RpeQVxMTZAfnK4ducBnpomf4/JwV5VzbzVm/npnJkRSX1zyDlAeloqP3ntB8z7ciF6nZ4Hpk6OGFd1jX5nBw8dZuiQwQCMGD2GBV8uZPpDD9OiRcMFlZqaGvQ6PWazmb59+vCLf/03OnZoz19f/0sTkbcgHAodKOCZuc/xzltv8uoPX7tncf9e4tuIeZ4Iis0xqAGR01TKZs4D/eRmruHgEtVkYZAVmlIh0Akzpbg56K8gTdDTQhF4rwfL2ZscXxDoojfTRW+mxOthU2UpPlGkq95EuqZpFj2YNQ8l542F4KryCkgCxibXZxql+sPtDhf5pXYuFZSw6+xV3F4frpKmPtLBsKe7GmgHUlqvgCiitMYhIiIYY0hNSaZVu84kpsdh0OtxKXVodTqul9hZs3YdZcWFVKHGkN0b0FB14xxV105hSu1EbPemrhN15/b7ULhLie0xRXJ75fmd2DqPa/BdMOMuin6c+ScwthstuW/gZxNxF10gpkN9BXIo8TYnpuKouVlHyqFp1t1XcgllhKpICOgR2XLGhB1TfnYvmUPHNflerpIrmDV3Oh0sn/cxP/rxT6Im5dHAnZ9Hks3EaxMHsezgaQ5dusHMAV2oyisIu59Oq0ER0u9/9MJFBuQE5uNDunZl2Y6dTBo0kKSYhjyo8Tzvj4vmkyBoOOK3009G9BcCz2nnOjE4q6Q2xN8b30bMC+J7Scw9iFz215CpCDxsUgGzrcpArtfBXlcFA7T1E/rGPeUjzLGcql3xvM8ShzqEqDUuPepus9HVamVXcQlHTuUyKTuVGF3k/o3s5Diyk+Nwe31sOniYr9wKUuJjmNi/GxqZVU45ch6u3ChYpi7ExhITG0tOTmfJ7aFoXAofzMoFM23BLJq33EGZECw9daE2WIjrOhJ1cQ3leWdx3TyBt+QagiYmohgb1Aq+xUsTa7EyH4U5RfYh9pdcQBHGyxJALLuEIkY+2AqOQpRhSLfodSMoVBEnRZ6yPNQx0hZwQXidNag0umZPsGqqq/nys4957tVvbnKmUip4YlhPTuQV8NbOo8zs3p7Y2vI5uax5aK+5vboKc60ys8VgoKK6IekKlm3aa6ox6eufPZ/fj0ZQkK7UUalwY3LLP0dGQUmqQicp7vjPArfLzYbVX4X1re7SvSdqtYYvPnqfWU8+TVGNtGXJ8PGTOHfyGAs+eIups59Ep9PLqptm53Qjq1NXju7eyvF9Oxg0fgoxCUkRNSdiW7Ri0LRH8Xm9nD+0izP7tmOKicPUbgAq7b3NAgqCgNZoQWu0EJfWpsG2e1kMrDGYaDMoINyYrPdydt92qstLyejcMywhD2LL8gWMmPKQ5LYLx78mO6erLBH9auHn3P/Q7LDHX7NiKfdNlheNW7p0CY/Mkj9GhVeBz++TJe7BrPnFy1fJTJdfdAVwezyIooi6mVk8l9vNG/OW86MnHow6095ccq5QKHj0kYe5cPEi//vn13lk5oO0TIl+/4qKciy1VQtWi5Xy8nLJcWVlZVgs9Qv+Pp8PjUbN6JEjWLRkGQ9OD5S7SrWjWa1WJk2ewueffspjTzwR9bX9I0EELlJFNkZZMh2DBgUCJ2vF3uTGpaGnDDfHsdMxQlYuFg2tlTry/A4O+MpprzBibaxzAlwrdTSYT8ap1EywxOMXRY47qjjmKMKoUDLQaEVf228cSs6bg2B5eihBt+i1WFom0L5lQv2Y1vJzr+C+mpT0ukRQ6HMTnFs6FLq6eaBOb6Df6AkAnM8vYseGDeRdvwmmNJIHTA+ct7jponEduS47j6WDtHi1q/Q6amuSrG+4I+8g+vQ+Yec+rlun0LZomKgKzajXXN2PLrVn0+urJeeiKNaKvoV/J4nu6rrWlgbHqS3Nt8QbEP1+fG4HKl2Al7RJkk72NVZm9/l8fPnBWzz45FxKXSKJtSEzVJ09VAdETvMjHARB4IG+OVwrLufPa3YzJiWR9Njo78OG8zwjFVXSEmI+r6PBPM8v+lEAHRRGTohVdBXkE6AqFLTDxGkq6czd2cx93/GdrRkIB52gQIuCa6pqMgzyPQlZKj1pKi3bXGWIoijrs5yjMzHcFMOy8iLyPQHSIRc8FYLA0IR4Hu6Qwaar+ay4eA2PPzovPo1KyYQe7Xlp2mh6t8/k43U7eWflFnJvRv+QRfNA6v3Ouk/od3Jj7xYKrRl9Rl/UKT0Q9PKWYUH47TcRjMmS4hii3xsQhJMR4vBX3kIwxocvYXdXgaCSDbaB3nJj2Gy5t/gcyvg2stuD8BRfRh2b0eC7xorst49sJau//KqvFK6XVPLhO3/jqedfuuNWhCBCqzHk0CU9maf7dWb5yUuczC+O+tgWo4nKGgcak4ZKhwOLRE+ySavEYjBS5QjJrta+bDNVeryiiFIb/hlKErQYUXLZ//fz+v17wmKzkZqewYdv/w2Xq6kIXxAdcjozaNgIPnz7b/jDxKX2nbsxaeajLPn0A/Z9fSzsuQVBoMfgkdz3yFMc37uDhZ9/jCfMNYRCqVLRsf9whsx4AnVqF87tWMWJdQsovR7eXvG7jMxEIwazlZ5jJjPkwSdJ6yBvwQOBMvZzxw6RmtUGvbHpwpLP6+XskYN06tVfcv/zp07QMq01Vpt8lVZpSQk1NTWktJQuzy4pLkav02EIoxmwbOkSxk2ZHvZn8ZmTWLNlB+OGD27wfWNivHzzbiaPaGq/Fw5er48/fbqEFx+egu4u7B2DiPSubNumDa+9+jJr129k7/4DUR/XarVhtwd6iO2VdqxW6UqemJgY7PZ6lezgQkOnjh2w2azs3L0nrEZMZlYWHTp2ZOWK5VFf2z8SNChIQMtx7GGz51bUZGHgGHZ8YayFY9CQg5lzVBHQ1g6PdIWePgor+aKLoz47TlH6Gq6VOhp8bpQ56W4wM9maQB+DhR1V5aysKCLXJf/uitY/Wqp//G69ykMhdz/mlTvQGUy0GTiO9OEPYs4IJH2kSHkQWrUPpc6CSt/0+RBFkeorBzFm9JbcV6dTIig1KMO0Evq9Lnw1pags0kKZfq8LfB5Zq11Liyx8pbkoY5qW2DeGt/giMRGy5RWXDpMWwQq3yTX6/Sx4/00mPfQoRtOd2cM2B2nxNl6bOIiD1wrYmXsj8g61CM7zACodNVhN0r9Tq9HUYJ6nro15NkFNLGpyI8zfjKhIQcd5mq0d/g+F7yUx1yoEhpgt9FSb2eAqpcIvb2bfSqkjR2XkkLJKtgQewKJU8aAtkXPOao7owwftmMwYNEolD7bPYGDLRL48e4WVJy/h9dUH7kiBMjUxlrmTRvD0xGFcvHGb19/+kC/XbqW6pv6mlusdac5qWWOC/k0hko95EKKnJqCkbmyqSAwRrNNEP6KjBIUxvEiJv+wKQhiLNX95Hsq4MKWxXicCirBiIQCesuuobK3Cruj6vR58bhdaY/RB1+N2M//9v/Hk3BfQS0yk74WNjpS6a3ybVjzVL4e8Mjsbzl0FaFBiV7evpf730q1NNvtOnwJg34UzdG8jrXyaYDHg8ripdjo5cfkSWSn1BKKnxkyez4FNL0hWvwSRrtCHnXj9o6Nj5y7MeGQ2H771BjeuNRX9CSIjM4v+4ybz+duv4/XIS9gbTWaGP/wM+Vdz2bFqCWKY+AgBkt166P10GTqOA6sXcnj9crye6B2PjDHx5IyZQeexD1FdWsjxNfM4v2MV7prvz0s4WuX3INJteqrs5Vw6eUy2V3/nmqUMmRjInjauXBBFkUO7t9N/WHj182UL5zPtoUeafB/MfC1dspgHZsgLqDkcDux2O0lJyWHjS+7lK7RObSmZzRZjUhBjUvD7/RQUl5KSGC9xBGn4fD7+75NFPDN9AjbLvauKifSuVCqVPDPnCex2O4uXhifAYm02tnevnuzctRuALVu20q9vH8nxBoMBh9NBVVUVBw8domP7eqHSMaNGknujgHPnzoY9Z+8+feqy8/+MsKGmE2ZOU0lZGDsOIyo6YOI4FWFJvKpW7M2Jn7NUIkZ4nwiCQAeFiY4KEwfcdna7ynGHEPRrpdKVQ8HvLUoV4yxxTLLE4/D7WVlRxOpbBdg9HsoulzXYpznkPPTzbaFZWh0eF9V5RzBnSWv4VOXuxZTVX3buVHV5P4m97g97DsfV/XWicFJwXv9aMlsehOj3odWoI+oIGWMSMcSnNkkGNRayc5bcwJgcvUe8KIqs+eJ9xkx+gNiEproe3xQEQWBGt7aoFAoWHj0f8b0PDed5O48dp0c76YpVvVaL1+dpMM+zqAMJuFSFDi8iNcrwtjpxaLB+P4u57xm+l8Q8CItCxThtLEc9lVz1ypPPBKWGEaYYlpQX4pFZ9YTADTvCHEuawcDnedcpd0f2ZUow6Hi0Uxa905L55OBp1py5jN8f/kYPVdJUKZWM69uFF6eOZkTf7ixcv5035i1nx6HjYTNe36YX672CKPrxl1xEESdN3kRnOYJKL2+PVnY5rKc5BLLxCrO8PY/osiNoTOGz5UXnUSZEtjVzF11AkxA+q3772HaSug+NeKy66xNFvvzwbR547GlMd7iC2pyyTilM7JRJgsnApwdPN7mXPV4vU1/7F85cvcrMf/8112/fpl+nTkz62b9w+soV7h8ayJL96tOPWLprB79f8EWdOMirUx/g6f/9HX9aPJ+nJzTsSxuisXHQbcch+sgyamQJehtF84jRPxosVhvP/+BH7N25g0P79kqOKaz2kJDUgimznuDzd17H6ZBepQ6SwH6jJ9CuWy+WffAGpYXyvWfB8nWDxcagBx6jXZ/B7Fu5gCObvsLnDR8rQyd1gkJBatf+dJ0wi/QeQ8g9sIXja+Zx7dhe/D5pgbvvI9JtekRRZMPCzxj7kLSSesntWwiCgpgE6cXGHRvWhNUCADh6+CCdunRFo5F+Zm7fLsBitYbtLV+6eBEzwhD3INasW899D4TvQV979BLjJoafVDfGmwtW8tjkMcTH3JmORCTBy0gYN2Y0Hdq3469vvo3XW7/Q7xWUOLx+Ro+fwMkTJxg3cRKX8q4zcPBghgwfwfETJ5g8KdBe8oMfvsYXX8zj57/4Je9/8CEAP//Zzxh73wR+/st/5ac/+VHdcR0KHQ89/AhbNm2iqKgw7LUNHxF+UeYfHWoUdMVCCW6uI99Co0NJZyycxI4rQn96GnrS0HMUO/ZGhN8qoZqvFRQM1drorjazx13BPndF2LkkNCTtgiCQozcx2ZrA8IR49paUsujGTbZdK2hQcRktOb9bBJ1amvvcXLwt7ZPeGOUn12HLadprDeBzVuFzVqKxSc9Taq6fwNCyc9iEh9degNIQI6vt4/c4QBQb9JY3hvPmMXStumNpkdVEUA6o+9554wi61IaK76Gk3BJvoPLaaUyp8ppHUti05Av6jBiHxygvyCYn+HovMKB1Cn3Sknlrz3Fc3obn8Xi9zPi3f+PMlSuS87zxtXaaUvO8lyZPk53ntVMYKRBdoAr/cyV/B6zT/p743i9LKASBYdoYDrjt+LwiWaqm5erBEvb7LHEsKS/kPks8VhnVRGu6BSuQZtCzpuA2FpWK4QnxEXt8U6wmnu7fmWtldj48cJIWFhMPpiU1y6IgMS6GOdMCPYzHz+fy9pdfATBs9Bg6tm2a4b1bi4u7QWlR09VTT3VT4ZFQ+EsuoIhrI0mKI1mniV4X+H0IavlAGyyDVyRKi+NB0Ldcfrvorg4odMr0PQURTbZc9Ptx28vQWqPPHG1etZyhYydgsdqi3ieanqNQ27Ro0KNVIslmA3/bfZQ5fetF+NQqFcv/9AeAul7zHu3a8fIDIboYavjN43P4zeMNbZ8Gd+7C4M5dJD3OBUFglDaGja4yxmljUQpNs+e51dFnZ/+RIQgCD85+jA1rVrF7+1YGDatXxw5qQwBYbTHMfOp5SZu0xpnZ5NQMpsx5kV2rl6JQKhl039S6rKhcP7k5Np7B0x+novg2e5bPw2SLpcuwcajUDf9u4TItOrOVDsMDL+/SG5c5vWkJot9Hiw49iM9o950SvmpOtjzYQ7hz9VIGjpuEWiM9gdy1Zjn3P97QmixUEKjw1k2GjZsoex6fz8eh/ft49qVXZccsX7qUOU8/I7vdbrfj8XqJia1vQ2rsbQ6Qm3uZjPQ0FAqFbMwRRZELl68yYdSwulxkpMn/mp37Gdg9hxYJ0SkGNxfRvidzOnUkOTmJP/75Lzz+zAuktAgsjKrVatatX99gbJ8+ffjxT+pdYr3AX/78J/7y5z81GDdq5AhGjWyoXh+sSBAEgbnPv8Bf/vR/vPjyK+j10q12/x8BcahsjFzHwVVqyEB6HhAg8VZORrBJg0CWvTsWcqkhHxdtMcqKTgXfRUaFkuHaGCr9Xna5K9ALCnqqzbJK7EFyHtpGaVSpGJccuB+rbBqWnM/D6/fTJSGGLgkxdeRcqlrt20TouyQUUnO/UFTm7seY1hWFRvp+tp/dgrXzeMltot+Hs/hKnaCclPWaKIo4809ibCdvOe289jW6dOkyeQgICPudlSgN9e1BUuTc57SjUOsbZMulLN+qb54nub+0RZrUe+PM4f2kZGSR1Kpphr2w2kOisel9KxWT7wShVRat46w81qsj72zaz7S26SQaArFJrVKx8vX/aaAn1GSeR/TzvCyjpm7+1k1h5oC/gu4qC075Yud/anzviXkQfTUWvnZXct5TQ7sQ8hYaEM1KFTNsSayyF9FFZyJL2zC4h/aVqxUKpqS04FpNDZ9fu86YpESSdTpJm7TQAJoWY+GZ/l24UV7Je1sOEmcyMK1PJ9SqyEqLoersXdtl0bVdFj6fj21nr7N970EUCgVmo4F+PbuRmZ6KIAh3TM6DkyqfOSmiH3okoado4K8qQNBaZIl10NpMVvCtLFc20143pvSSbBk8gL+6CEEfi8Zkkx3jLb6AKjl8zyiAu/AChrbh7YIqLhwgKUe6b1QK1y5fwu/3kZYp/zPcSwTV2UMR6mmeYjXxTP8uvL/vBK+N8qFppBbaWAguWgRtNRpDLSgYqrGyxVXGaG1Mk3uhjqiXhz9+mcPTrHu2yv39zNKOnXA/2zZtYNvG9QwfM05yIqU3GHnshR+yYt4nZHfMoUtP6bJbCJT1Dpv8IEX5N1j58Vv0HTmelIzIarXW+CSGzHgCe3Eh+7/6Eo3eQPeR96PWhm8FaYzYVpnEtspE9Pu5de4YJ9d/iSAoUOv0JLXpjC1F2lrx20BzS9gBrpw7hd5oIjk1Q3L7sb07yOk7UFaFd93ShYyfNlP2+IXVHnatWsTk6fKZ7tyLF7Alt5LNpgMsXrSQh2Y2zYI3ngiuXreel1+od4iRIue7D3zNoD4Ny0cbV/CEEvWbt4u5VVjChCHyJanfJowJLXnxtZ/x5ht/5ZVXXsFolF8Ibgyv0PDvqBKbxpXAmPoMqUqlYu7zL/DW3/7GD3/0ozuylgOwu7zNinn27+mMOBU9+TjJpZospJ9JZZ1NWjWVeGmF/IJHkPDX4OMEdjqojEBkfQOzQsUIbQxVfi/73BUICPTRWNCFIehSGkemYjcPd2iNKIqcKCpj/tkrCAjoVApySu1kx5ixpkUnYRku2x6J5N/JHFKqv9xdfgvR60QbL9237bh1Dm1CaxSq+t9xkHhbkltReWEnlrYN9Ssak3NX/nF0LbvK26PVlCGotGGdchzXv0afJl/mHoTz+hEMWeH7xh23r6JPSCc2of5+lBN+A6ixl3Pl/GkmzHoq4vm/DZh1Gp7p0pbPz1xmWGoS92o5SG6eJwgCvRQWDvoraI8F5R0qsFe6fM2KeeXOyBXQ3xX8wxBzCPSqHvdUccZTTUe1dNBWCQJTrYnsqiqnwOtmoNEGyIu9pRkMzE5Lpcbnk/Uul0Irm5kXurfldnkV7289RLLVzOTeHZrtZa5UKhmVk8HIwQMAsFdWceDIcTbtDJSxCgLExdho370v2VlZqNXhM71/D4g+N6KjBKVMplr0OhG9ThQ66TJG0VmBoDaGF3xzlCKow5TB+32I1QUoZTLyECDuCp1NUpQuFO6SK6jjwpME0e9D4SrCmCi/qhsKR3UV679ayYuvvhbV+G8LerWKFwZ246+//w9GxFppaW46UW3cKxdERZ497LGl+vNMChVd1SZ2uSsYorXd0TX/M2H46LHs2bGNRUuXy2ZWFQoF0x6dw95tm1i3bCGdR04Ke+8mpLRiypwXqam0N+vFZ4lPZNADj1FdUcaB1QvRmy1YcobJepnLQVAoSOnYg5SOgfJBt6OGwksnuXnqUN0YrdFMbGo2tpQMlN9CzLtcWN0scu5yOjixbxeTn3xecruzpoably8yYba0mntxYQF6gwGzjLAYwK3r11AqlSQly4gf+f1sWruaua/8UPYYV69cISYmBpNJuq87SM7PnjtH2zbZTYhjKDkXRZGDR4/zo+fDTziDRN19+yqfrtzAz56SX3z4NhFcnFar1bzygx/y3jtvM2LkKNrK9FPeGZqWP5vNZh6eNYt3336L51986R6e6x8TKegowMlFqmiD9H0bsEkzcRMnZ6mkvYydWhAGlAxVx+CUWEwJB5NCxVBtDA7RxwG3HRUCfTTmBu4+kRC0TuuaGEvXxEDVitPr42RRGYvP5yGeu4ouxoJRq6ZdQgxZ8TZ0IW4Hkcrfv63Mu+j3UXVpLzE9pTPHos+L49a5BtZpoYS7/NoF8HpQGZsKCAfJud9Vid9Vjcos3ZMtiiKOa4fCZtN9TnugzF0bvlXQV1OGQmcOmy23xBso2HOIpAHhRTOD8Pt8nFm/iEky7wUphKqzf1NQKgQe75TJovN5VP/593SKtwHyc7sgmjPHC82aqwQF3RUWTlBJO7+8m8I/K/6hiDlAV7WJU55qTniqmJgkLTAGMNhk45KrhuUVhczOCd+3rBAETHeojJ1kM/HCmH5cKy7n3c0HiTHqmdq7UxRrstKwmE2MHjqQUI3v4tIyTl4vYd+BQ3jcgRvfYrXQv29f0tNS5VcWI6ySylkoNRf+kvMo4jvIby+9FH67/RqKBGlPc6jtXbffkC2DD5zjIorYNqiNMuRfFPGVXUXdSr78KTjOU5wbNvADlJ3ZTcvu0jYhUsdct+BjnnnhpXuWEZTzFr4TqJQKnh/YlXc27KdvSjxtYqITI7KmW8IG7rRYvSQ5T1JqcIg+Drvt9NL88wofRYuBQ4ezYesONq9azqj75e2yBgwfzdVLF1j58duMf+RJtLowmSRBoNh/Z1HKaI1h0AOPYS8pYuuqxai0etoMHItaF332MRQavYFWnfvSqnPfuu+cVXZKr1/i/M5V+GoF7tQ6A8ntumBNTvu7l8BvXjKPUdOl/eQBtq74khFT5Qnppq+WMeOJZ2W3+/1+Nny1hB//+CeyY75auohJD8xAEATJyZ0oiixftpRXfxh5MXD9xs2y3ttBcr5x+27GDBssOaYxRFHkjWVbeGHm5Hvq23s3CK0cUygUzH3+Bb747DMqKyvp2avXN3rulJQUho8cybzPP2PWow31CL7JPtPvK5LRocTFOapoL0POAVqiw4KKo9jJiWCTBqAT7uxe1AtKhmptVPl97HFXoECgt8aMvvZ4co5AQQQJUDD5o1Mp6d0int4t6tvgqtweLuUXcaqgBJfXFxDtqqyma2IsmVbT3z3mVZzZjKXjSNnrqDi3VdY6DcBx7RBJfeUJrjmpJWVHlocVfHPln0CX0jmshpAz7xCGNsNkt9eNu3E04riq62cwtupAXGL9PRiaLW+8mLt3xTwmPPAIavWdMoAA7sQyLYjQqshQCILAQ+0zWJ17g2qPlzaOu4/Ljed4oeRcLyhprzAGql/8/5w2uHL4hyPmADlqI6V6L7uqyhkcpmw5W2sgu3Uc867dYExSIi308uXcjbPlSY8GVrw0JvmAqw7JLrYBfjgRnG4vV4vK+PLzt3ho8jisUZbKhfNqjY+NYXhsDEMG1dvTlJdXsP/gQTZs3IQgCAgKBdlZmXTr0oWYGFuD/e+Fyrcc/BXXUJhbyma7/VUFCIYE2Sy1v6oAwZgUXvm8+ByKuLbygm+1onIaq/xChK/4PMoI3ugA/vKraFrKi3xY4g34vW48VWXo46IrQdu8dD6DJ0xDF4Yo3QtE22cuFbgFQWB2p0yWX7hGldtL96T6Ve2YzJiIK6tyCE5YGhP0DJUeh8fPKU81OTLVL/8fARRWe+jedwCnjhxizeL5TJjRVJ07iIzstox96DHWzvuQPiPG0bJ19G0To7Kj10oAIDueUV3a4PO4qbh9gz99sYjsAWPQmW3NO44EdCYLKR16kNKhXpTH7ajm9oUTXD++Hwhk3q1JrYhv3R69JfpqJzlEmzW/dGQfhrR2GM3Si0pXzp0iOTVd0joNwHEzl4ystmFtElcvmse4KfJe3/k3ruP3+0lpVe833picr1u7lnH33RexfHr7wWP07dM7bAz2GBM4czGXscOjI+YLlq9m/MihWNOzEbl78bZvAoIg8Ojjj7Ns6RKqqioZOiy6hdY7Rfv2HbBX2Fm1ciX3T54ceYd/ciSgRYHAaSrpGCYjbkZFF8ycpoqW6IhvRlpk2pu/BahTlpaD3VO/eDIQMKgUFPndvP/yT+ihjl7ENZg9l4JJo6ZbYizdQr5zJNg4UVjGwVvFiCIoBEgxGegQZyXBoPvWsuXO25dQm+NRGWyS290Vt1BqDJLWaQDe6hIUWjMKtXz5eeXF3Rhb98bllml3dFXjd1WiatlV9hiuwouo4zMjVkV67bdQmhPDEnxznJ7be0+TPHBG2GMFcWrXJvr27YstTj5heDdojoZQOEzMasW2awXsLi5nULy87kekbHk0sApqWilELviraBtmge2fDd9LYu6OIO+fFqsnDbjgqmGtvZjx5jjJSUWwfP2x9FTW3y7kQlUVQxOaTj7lAqXX6+OZn/8HhaWl9OzYnt+8PJdn/v2/uHG7ELVKxbzX/0B8rI2csQ/QotY65q///jM6ZGcS3zeHZTsP43C5mdC/G+lJge2hfeZ3A5vNyrgx9Xl1n89H7uXLbN66jfLy8sCXgoDZbCKjXSeystvgrhXOkxP9gIaqnOE8LCGgkI4oynqbi34fYk0xykTpbLgoiog1ReHLz+3XEQzx8p7loh9/xTW0reX7hER3Dfi8KHThs7Oi6MdfU4baGl71vOz0TmJzhoUdE8SxvTtomZFFQouWYcc1nlQ37v+80xVUqT5zOZhTk5gKbLySz+4bhQxqFdniI1LWPAip7HkHtZGj7koueWvIVt1ZtvUfBdVVkS3Fcnr0xmAys/Cjd5nxxDOShOum3YneaGLKnBfZt3EVuWdOMPi+qVFnW7xeL7946VlKigvJ6dqDV3/5a375ynPczr+BSqXmv9/+iJi4OCYN6kVMrQXMa//xR1q3aUf7YZO4tG8jrupK0rsPxJaS0azfAQTij1z/nkZvJLVrf1K79ufi7UpEv5/Sklu4Th/GWVkOogiCgFqnx5aSQUxKBhrDvZ0MXD5xmIriQnqOmUxeuaNOBC4In8/Hsb07mDpHOvssiiL7d2xh1tyXZc9x9MBeklu2IlnGs1wURVYuWSRZwh6MI5WVldy4fo37JkwI+/OIosiB/fv42SvhSy9Xr13HxGkPRRWH9hw6gs1qaSBoercVPuGcKO5WIHXaA9PZtHEDa1atYsL9zVObby769O3Lls2b2LplMyNGjvqnzpaHsz0LIg4NagSOY6cLFlnxNlWtsvtVaijGTTuMUZfPGhTwo7dfp8ReQU7rLF6b/jD/8v5bFJSVgKDgt8+8jM1s5sF/+zFxtaKt//HYU2S3bMVgjY0jnkoulTvobjCTISOIFopw5Lwx9CoVfVMS6JsSIHuiKJJf5eBYYSnVOi0UlCAIoFOpyPH5aNsinnttzOUsuoyz+DK2TtI+36IoBkrcezQscW/QN37jGIa28gtfzqLLCEo12thUtI32DcJxdV/YDLfo8+Atv4axbWSXA9etM000hBorsdsvH8OS2V22tzx0ETc/9xwxGsjO6Rbx3N8FDE9LZmvRFTYU3GZs8t3Fz3BZc4BEQYNb6eeKr4bWMqKO/2z4XhJzHyJ7XRX011iaTChDS4baag2YFEqWVhQx1ZqAMmRsaE+5IAiMT07iUlUVX+RdZ2rLFhhrsxXhAuTq3Xvo3DaLHz/57/zof/7CnqMn0KhUbHjvryxct4kFq9bx8uMPkxAbw6bP322wr1mv5cnxQ/D6fKzZd4yv9hyhe5sMBubI22+Fy5pDePVZpVJJ2zZtaNum4fHtdjsnc6+zetVXFJVXIigUVLp8CIJAmSPw8JTUBP5bbHdRVOVGH5+Cz5BGOLc9f3keKJQobPK+jsHycjkEBOEy5Le7KsHjRGFJlR9TloumZbfw1htFZ1G16Ca7PQhf8cWw/ucAfp8Xr6MKdZhKjSAqigooKchn5LTw9kPfNYxpncKuG7fZdq2A4VEI09wNOe+uMbPfXYHW6yRVZvHlnwMi8z/5kIcefSJs6W9m2/aYzGY+f/t1Hn76BTQyAmyCIDBg7CRu5V1m+Yd/Y/T0WZht9Qtocr3lW9etpl2nHJ56+TV+/8ufcOTAXtRqNR8tW8uaZYtYu3wRs55+npi4eN6Y/1WDfVVaHe2HTcLv83Ht6G6ufr2LuLRsWnXpF9XCQHBRMBw5Dx0nKBQYEloiJrQkJ2S821FDxa08rn69M+ChLggIgtDQzzX0/wUBc0IKSdmduIy8ENz5g7twOx30HCOf7dy1ZhlDJkj3YALcPL6fPoOHy/4+Sgpvc+XCOaY9GlDClVLw3bD6K8ZOnBQ2Ez7/i8+Z/djjstuD2LRxA6PGSE+4g/D7/VzNu8akiQGSH3wHSRH00rJyjp48w0tzZjfZFny3fRez56PHjGXvnj0BP/jp0WXI7hQjR41m1cqV7N+3j7bd5cUa/xlwEjsdMYcViLKgph0mjlFBZyyow8xLMjBQhZej2GmHEWPtFFjKIi2IzUcO0S41nWcnTuG3X3zM1xfOgULJ3370r6w/sIcNB/fw0Mhx2Exm3v7xvwauqTbDrhIConCpVh3HHFUcdRTSpthD/7hYFGFiXnPIeSgEQaCl2UD7jg3F1xxuL7fVKjafvET1uXwQBJSW2nhvtOHTmkEUcSsCsaTG40cfl0yHzt1AK5+wcOSfwVNZJEvKAapy92PKlI/x7pKrqGPTZLPTPlc1jhsnieleH1ebCMIVnEWT0CasDpEj7yD69Mgik+7iyxE1hABqCnJJHvBA2DEALkcN5w/u5onn5RdbvwmES7jIlbMHUXa5jO4xNs5VVrL6VgETWzSc591ttrwxOW+l0OGhhhs+R1ixxn8WfC+JuV5Q0FZlYJ2rlKEaG0aFfB9PilrLSFMMi8sLmWZLkLW1AMg2mUjV61l28xZdbVY6WsKXIN0oLiGnTUC1uEvbNuz6+ljdw1xeWUVcfCCwllbYGTnrWdplZfCnX/4IXchkWaVUMnlQQB3y8PkrvLFsExlt2zJhaD+0YZR05dBclXaLxUKPnj3p0bNn3ep8MGMe7DEPTtIvF1Zz4VY5NcX53DiyC2e1F2zZTcqC/OV5oNSgMEuLEkGwvFwnL9bmdQUE4WQEOkSfB3/5lbB95aKjDKXeElbkw1d+HYU5OWJpk99VCX7prHroSmrpiS3E5jT0LZdaRfV5vRxat4wnXvxB2PP+vRApcA9ulcT+/CI2XslnTOuUiOXszSHn0LC0vZ/Gym5XOUpBIEXZPKXvfxQYTWZGjZvA23/5P2Y++gTxifJ5j8QWLZk2ew5fvPsGM596DoNMyTRAi/RMJj3+HJuWfEF6mw507BV+4nIj7yptOgREHNt16szhvbvrYl5lRQXWmMBkz15exquP3E+r1m145Vf/hVZbv6iiUCrJ6BV4RkryLnJizTwMtjha9x6OSiu9+NLYP1eOnMv57IaO1+gNJGR2ICFTXtciFKLfT2VRPle/3onP4yZ1+swmivPnDu7E7/PReUj9BLVxtrzkduB5ikuSjosuh4MrF8/Td4h05sjjdrNq0Rc8+vwPZK/1xrU8qqqqyMyWX/Dcvu8gWdnZGI3hy/JLiou5evUqY8aOwwGyVj3LVnzF/ROaeq03JuiiKPL+vEX88Nknwp63udnzcIvV9xIDBg7k0MGDfDl/HjMfkdcPuBe4f/JkFi9aiBMlXbpHVo/+R4QaBW0wchw7bTBiDjNd1Yd4mHfEjA7597kJFd2wcI4qzKhIjUAEbhTepl1qoIqxQ1o6B8+dIcjZqmqqsdTGV3tNFc/98TdkJLfk3x99Am1tH3HwndbdYKY7ZioMKhbfuIlFrWZIfFxdEuheovL67QZl7HqNii7pyXRJT0aTEkiWBCszxZiUumc12NZY4vBy8uJVDu3dyfWCIrKGNq0Ucdw6i7emDEu7oU22BeFzVuJzVqCJaVgRGCTVot+Hu/gSpnajJG3IRNFP+cm1xHSfEv4c1UVok4fIjvFW3kZQ61Fow8c8v9eFp/RK2Ky6Jd5AxcVDWDK7RaXEvnfFPAZMlm8va2n57iYc2psDQoYrbuYzOaXFHesYyOkJhaK1wsBxXxX5OEn5J/cxvzNvju8A4pVqRmtj2OeuwGUUw4prxKjU3G+NZ2l5ITV+n6wCO4BWqeThtFZUeDysdZbh8sqXkrXJSGX318cA2Pn1UVRKJS6Phx7TH+WDJSuZMiZQCrNt/vtsmfce6Skt+GDhctnj9WrXmlceGEP3JAufrNjA3+Yt5/Slqw3GRDNhUVbervs0Z1s0EBRKjImpJPQcjzGjJzWXtuO6fb5uu78iD5Tq8KS81rNcsIbLpl+QzaaLooi/+CyK+A7yfeV+L4KzCFW8vMWa6HXhrylGaQlfRi6KfnyFZ1EmdpT0ugzCW1MOCKhNMQ0CthT2r/qSvhMf/EaFj6KdsAZf1NEg9GXfLyWBeIOWNblNy8qigU8UyXNLT/YbP8+DtDYuemu47fvn9TJPTE7muVdfY+1Xyzm0L+DKINd2YrZaeeSZF1j40TuUl5YA8mKOKrWa8Q8/iV/0s+rz93DUyPvUZmRl8/W+PQAc2rsbpUqF2+1mypA+LPrsI0aOD0zgPlmxno+XryM9I51VCz6TPV5cehu6TpxNy5w+nN+5huNr5lF0+WyDMeHIdjTj7haCQoElqRXth01i5KQp7Fs5nzP7ttVl2C8c3oPP46Fj/3pC3ZiUQ8CzfHCYbPmW5QvodZ+8+NGSzz5g6uw5sjHD4/Hw1dLFPDBTfhLocjo5sHcPPQaHL+cURZFPP/mYJ+fUK6xLaZFUVNgpKSmhdYZ8DAlO+j9bvIIHJ90X1rqt7vwxKQ0+4baHw92WsTdG7z596NipE5998skd7S+KIqdPn4pq7MhJ07l04TynTxy/o3P9I0CHku5YuImD64Sf2Ac9zM9SRTXh7eAUCHSsFYM7p7DLqrFb1EoyWqRw6HwgJh04ewalUono8/HQr37Csh1bGN49IBj77k//nXd+8iuS4+JZtH2L7LmtRV4eSm3FgLhYthUVs+jGTU5W2BtW7BBZETsSKq/fjqjYHkTj+aAgCCS3bEXO8IkMmzSDQ+uWcmnfprprvH3yCJ7KYszZA6UOV4eKs1uxdKiPNfaCGw0y3Y6r+zFk9JXaNbD/qQ1Y249EoWzqvGFJboUo+nFc2Yu+tfx1iH4fzpvH0bXqHvZaARy5uzFkNrVrC1008HvcOEtuYEiWnwsGEzDHt6+jfZ8htE2JXp+lcQXUN6HIHi7p0hhZJiPdY2wsvpmPKIp3lC2/4m767NbZ34agq9qEEx8F3Bvh6e8rvrfEHCArzsiclJYUez3sq64IO9aoUPKANZFNikpuOyP/0e/rncX9WanMO3uFo7dLpccMHoDD5WLC8z9Eq1ZjNZuwmIwcWfI5v3j2Cf784ecAxNoCgheTRg/j9MXciOdOTYxl7oP388LDk7lVVMIb85bz6YoNXLsVCJ7NySaEEvE7JeNyUBlsGNuOpKaiGM+NQ/hLLoBChcIcfrIkll9BYWst71leeSsg+CaTxRZLL6KwZSAo1aiNVsmPYL+KKlleBATAe/sUqiT5jHvDcZ0irha6b+wjtkt4b3OAC1/vJbl1G3Iy5Uvwvyk0R7/A0lp+cSWIHklxpFmMLL9wLWLpXeMFMaUgcM5ZLRm0oVYrovYDMERj47RXnjT+M0ClUvHY03NxOh18Mf/LsGN1egOPPvcqqxfP59rlSxGPndN7AKMfmM3WZQuwn/9acszQMePxeVw88+AkNBoNZosVs9nCip0Hef5H/8Kn77wBgDUmcC+MGD+RyxfOSh4rFAZbHJ1GP0CX+x7B43JwfM08zmxZxvHT5yLuGw3Clb5Hi8xEIwazlSEPPklMYgrb5r/HoXXLcDtq6DSwfvIpRcoP79hEt4FDZUn1pdPHSUnPRG80SS6gbF69gt4Dh2K1NX3GgoszCz79iJmPPRk2Tn35+SfMfDRyCfvCLxcw7YHpEe03v1iwgEdnRW7FOXj0BAlxsbROk+6Lj4RIRP1eIFoR1C5du9G7bx/ef+/dJmQqEgRB4Py5cxw6eDDsuGD12rSHHuHMyRPNOsc/GgLWZ2ZUCJwjvNaGEoFuWLhCDSVEXsRtq9bTU2HhjL+aS35pzZzh3XridLt58n/+E41ahcVgwGwwsO73f+Lp+6exZMs6LGolqTYrFrWSCb37cunm9YjntqrVTGyRzIyWKSgFgSU381mRf4u8mppm31fhECTnzSFjoSj0KBn0wGPEZ7Tl6qZ5lBzfjMde2MRvPEi6g5/ik9vxq6xUFd1uQsgBvJWFKDQGFFqzZLa86uphtPGtUZmkNYoAKD2PPr1P2IpHx9X96DMit0s5bx5Hk9QeIcRjXeq6Sk5sJq7LyIjZ8ttXL+H3+WiRJS8q/PfIlt/JfZBuMDAoLpYF12/iv4N787bHTak+/GJZEJkYqeKfV1sDmknMBUFQCIKwVxAEURCEViHfPyYIQq4gCDWCIBwQBKFno/1+JgjCLUEQdgmCkB7y/fbaYw1pNP6SIAhPyF2HVqlokFHrb7RiUCjYXVUe9voTWtuYnZbKnpJSztrlsytBgmHRqpnTORunz8enp3Kp9tTfWBqTHqVSyf/99AesefvPKJQKzAY9MZYA+YizWamoqsLt9uCqtTDbd+Q4WanRTUy8BddQKBSM6t+Tl2dNZdrowRw/l8tbC1by1oKVbN65F6fTFdWx5HCviLrSnIxoa4NgSkZhjpB9dgU8JAW5EnW/F9FRisIoXarrr7qNypKIJjZV1vrMW3IJpS2tQYBtDF/ZVRSWlgjK8GVkPnt+wNtcY5TMlgcDt6PgAoYW2SiUqrDZ8ori2xTfuEpWN/lV4u86Giu9dk6IoWO8lYXnrjb7WGMtcZxxVnNDJnMeRFqsnvQ4A4/LeDZ/U/iuxDyv309htafu067PEFJS01i3bGHY61ep1cx69iV27N7DmcP7I/68OoOBCbOfRqPTsW3BBzgqG66OW/Vafv2H/2PBirUolUqMJhOWWpcHW2wsVZV2PG43blcgNh07eICW6a0bn0YWgiCQ0qEHXSfMQtF2MNW3r3Ftx1Ku7VxG0al9+BrdJ6F9598mWmS1Y/gjz9K6cw9yBteLbEqR8rKi25QWFpDRrpPksbweD6cO7KHbwGGS2y+dPY1KpSK7g/T+ALu3b6Vj567Exsmr6B4+sJ827Ttgtsh7owOcOnUSk9FERuumf7dQ8nru/HnSUlMxGMIL9pSVlbP3VC73jZQvef0mcK+z5aHo0KEjI0eO4p233mw2iZr2wHRyL13kxPFjUY2fMevRO7jCO8d3JeY1Rgt0JKDhDJWIyP/OBQRysFCGJ2yWPdhXrhIU9FBaMAtK9vvKqa7NngczekqFgn+d/SQf//TfUCoUGHV6rLVtICk2K5WOGtxeL+5a28ajF8+TmhD+3gvNOgqCQEeLmRmtWnJfchJFThfL8m+x9GY+Kw9cpNrdsCqq7HJZxE84RCv2GorLhdUUKWJpPWY2xlYdsLRrWDbemHT73TV4ym+gSZDW5BFFP86bx9C27CZ9jRUF+J2V6Fu0l70mx61zqEzxxGTKJ1c8FfkodGaUEYR9vVXFiF4Xalv9/FWKlOvUVSjUOlQG+eNlJhpxOx2c3rOFbiPCi2t+n5Ci1zM6KYElFYX4mhnz+hmtVPl8XPI2XPySypoDZPPP7cTT3OaWHwINfrOCIAwC3gamAjuAV4G1giC0EUXRLghCNjAMyAQGAP8JhBp1lgD/KwhCX/Eulgm76s2cdFSxs6qMISb5zJ1CEJjWMoXtRcWUFLub2AFIZf36pyTQJSGGpefzyLSZ69So8wuLmPOvv0WhEHhkwlgeHDeKx3/xG8Y9+yp+0c8H//MflNntTHrmVUwGAzaLmU/++Js7+vnMRgP3Dx8ABMrhLl27ybxlq3C53VjNJsYOH0x87J1ZAgX9W2N1ygYqsC0tOm7anaTb9LJiUEEIghBWJCRw3f7avvAusmP8JRdQxEmXn4s+DwpvFcok+fJ0f01poBfcKG9JIXoc+J0VqFtkhL9ejxN/1W3UKeFLoETRjyP/NEljmvYdhq6k+n0+Dq1fyohZc8Me7+8BOXX2SL3mQbSLtaIUBDbdLmW0Rn7iL9Vrfp85jq/sxagEgeQwdilAVD1OpVVuLhdGn1mvdMq7EPAdjnk5PXqjVKlYvWgeEx+U73kVBIERUx7iyK6t7Fm/koHjIlsxtevaC2VyNgfXLsYan8R9E+/HpFFRcCuf1+bOQVAomPrQI4yaPJ2fPT+Hpx6YgN/v5zd/fgt7RTkvzJqOwWjEYrXxX397r9nr3xdvV6LU6Ejo1L/uu5rifAq+3oLP7USpNRDfoQ9aa9y3QsqlBN8EQSC+VUbY/fx+P1uXf8mUp16SHbNt5SKGT3mowXc37U5aWnR43G72bd/Mo8+/Krt/4a2bnMu9ytNPzZEdU1NdzfEjh3nq+frrkPI2r6mpYevmzbzyg6aK7kE4FDp0Pger167nRz94RXYc1PaVf/RxwAPddXelud8k7sQyNDMriwkT7+edt97kuRdebFb/5cxHZvHZJ5+g1mjo0KGh/eadKLGXVXuaFfPKHd/PmBeHptYirYpOYSzSIDC5z8fJeapo20iFXUrsLUnQEq/QcEqsRCMqyBQD86nbZaX89N03UAgKJg0czIR+A/nxO6/z+B/+A78o8runnsNeXcXcP/0Bg06HxWDkf56Vf97DQaNQ0Cs2hl4Ezl3odLEp7xbVHi/+Mhe9Y2wk6SLfq3cqHgfh77/SomrcYsPjNibloihSc3k3xjZhVNavH0GX2hNBEJoQYFH0U3lxNxljH6WyRHre6XPYcRZeIqbrRKCeRIdei+j34rp1GlP70ZLHqB/nw3njCMZ29eOkSDlA6akdJPWfFjFbvmf5PAZOnY0gCJKLtSCdLW9cxt4cRGOHe6dVE0FoClyMNsWytKKQ6dbEsAKGjTHIZGM7ZVypcdBaVf87aSwEZ1UrqPBEdmSwO5sX80qrwsa87xSiJuaCILQFXgAeAI6GbHoGWCaK4sbacX8EXiIQwD8lkJVXAMqQ/w/F+8DjwMPA/Dv6KWrRWW/irLOaLZWljDQ3LH9pXEY7LCGekxX2qEUNjGoVj+Vkcbq4nA9PXOTnXh8piQmsf+/1BuPm/U898Q76mB9Y/oXkMd35eWH7e+Ws0wRBoE16K7K7BRRbyyvsrN+2i+LSMnLatWHYwIbZWIVNXjlbUAceEL0QmKDFK1XEG7U4vIEHI9Gk5Wh++DaBaOEvOosirp18CXtVAYIuBkGinwjAX3IObZq8Sq3odeErzUXVspf8GFHEW3ASVcvwgjqBcSfqxoXLllde3EOLPuGDP8CtPcvpO/FBFN9QX7nX6+X0hUtUVlah1+sxGvQY3RUY9TpiLOY6leZo/czDwZya1KR/LTvGgl+EVWducH+KfGa7MTkXBIFJlniWVRQx3BRDrOrOX073Et+HmNehS3dUKjXLvviYqbOekHy2gqXRPQaP4Mq5U6z54gPGPfxkRH2D7CQb6qmzUZRcZ8VHb9LpJ6+R3CKF+V+tbzDu/95v2kO+cOPOBv+2O6IrYwP57LchPgVDfKCM2eusofjMftz2UgwJrYjv1FC07pWh9c+rVd/8++nLozfr/j8a73I5bFk2n6GTpsv+rnPPnMAWl4A1tmmm+6bdyd5lnzFppnzG1OV0snbZQh4LIwgniiKff/ges+c8E/ZaRVHkvXfe5ulnIy8crti4nfFjx0R8b3706ec8OP0BNBoNPs2dWTqGg9/v58yFXMrKKzAY9Bj0OowGPdqENGJ8vqg0PO6ElAeRlp7O+Psm8N47b/Psc883i5w/9sQTvP/eu+h1esnqhL8Hvg8xL6ZWd/0klXTGHJacp6CjHA/HsdMZC0qEsArsSkGgq2ChXPSwwVVKH7+fpJhYPv2Xf28w7i8vvtZk36X/8Ycm34XTPqrIs4fVOwJI1GlJRAtKcCb6OFBaxs7iEhK12ibWvpk//FGDf2ss9YvcGlPgOoJzUqXBjFBrFSloA98Jaj24IxOiUEjZljmvHUbXsqvsPM5bWQiAyihd3WM/s4WW/ccHSHt8w2oce3ENot9H+akNxPaY0mTfUEJ9a9fnGFoPiPgz1OTuxNB6oOQiQSiE6lxMqR0jCgUf2fQV7fsOQWuQf29ES8ql+stFUeTCxYsUX72AwaDH6KnEqNdh0Gkx+3yovkHdIghodo00xbKsoohp1oRmkfNhphi+rCxAIyho+U8q5BsNoiLmQsDH4CPgJ0B5o81dgU+C/xBFURQE4Wjt94iieEEQhH1Abu2ncWqnGvgV8F+CICwVRfGu6rM76IyoBYH19hLGWQIPvlzw62y1EK/R8FnedR5olUJqW/ksaxCd4m306JxNXqkdg0ZNK9u99cFtjHC+5kH7NJvVwswpgZIZl0u6r8rr9fLoU3MpLCyiV8/u/P43/87jzzzP9fxbqFVqPps3j/j4eBZ9uYD3330Hiy2G/33nQ8xmS5NseWlRdUQP88bwl+ehMCXJ+417HIjOMpTx0krJ/vI8FOaWCErp0hdRFPHeOo6qZY+wkyPf7VMoEztEDK7egpMoEwNBOJzgm89dg99VjdYW3h0078husnN6YI6NXgQkEux2O/sOHOTq1TwEQUChVNI5I4nYGBs1DieFRSVU19RQU3SOwtJy/H4/7TPTGNqra5QOrs1H21gLYseWrD6b38RiIxRS5HyqNYHF5YWMt8RhidBi8E3j+xTz2nTMQaPVsujj93jwyWfr7n+pXuXW7XOwxSey/MM3GD39UUlCGIp0mx5sbUnJyKK4IB+VSkVSq4aLiSaNiip39MT7XkClM5DcI6Dn4PdIxzyf18vrv3yZsuIi2nfpznM//RW//fELFN66iUql5tevv48tNo6NKxez/POPMNts/Puf38Novvt+dIAT+3eSkpFFfLJ0e091pZ3Th/Yy6fHnZPdv26lLndJ9Y4iiyOJP3mPGY0+jUCgkrdMAVi1bzKjxEzCamr6rQrPmCxfM5/5JkzFJjAuFy+XiyuVcpo6Vz4gB7N67j6zM1mSk17+/GpeXN5eoV9fUsO/wMS5dDSwsKhQCHbKziI+LobrGQVFxKVcEHdXnrlNUVIRf9JPZujXDhgxGK2MdeLfIaN2a0WPG8v677/DM3OeaRc6ffuZZ3nzjr0ybPoOUlJS/q2/59ynmWVHTOgr/cgAbajpg4jh22mLESmTxwZ4mI37RQIXopcIHiQr1HStSh0M05DwInVJZR8bdfmkC7fX5ePFPf6KovJxu2W34zcvP8Px//ZH80lLUKhXzXv8D8bE25i9fxduff0lMjI15n3yIxdLwGgqrPdy0O8krd8hmJaVIubvkCoJGj0qmjUT0eXDePFaXnW5MhB0F51GZ4tBYpefilngDeVsWYu00Wpb4A1RdOUhM2/7okqRL6YPX7rx5DE18NrZ0+T5wCGTVa26cI3ngjLCtijr7NTR6Ay0yA1WdUtnyaPvKg3HZ6XRy+NBBrpwNiEYKgkCbNtm0TIijusZBcVkFefm3cTidFFy9gs/np1ViLENSzOg1kReloxUIhPp5W5xKzTCT7Y7I+QCtlR2uMtQIJNbO56Wy5nx/Etz3HNHOfl8FCkRRXCYIQkajbWagcUq1HKh70kVR/DXw6zDH/7j2HK8C/xPlNckiW2tAIyhYWVHE/ZbwRKiFXsfM1FYsz89nUIyKzgmRy380KiWJB9dypqCEzy5dZ3rXtiSam/bZRSOeBeB0e9CqVfck8Gu1Ei8dVw3LV66ma+cc/uXHP+SVH/2MXXv2odGo2bZ5E/MXLODLBQuY+9xzfPTB+6zbtIXFS5ey4JOPePblHwBIBmd7wQ3styKL2YmOUhB9CAbpv4UoioESdhkhNtFlB78HTbx8VsFbcKKWSMvf0r7y6wg6W1j7NKjtKzfGo9DKT1ADiqAiFSfXY+tS30ckFbQdFaVUFuWTOm5s3XeNA3ZzREAqKytZsngROsHP8KFDGDNqZN29IzXRDRULPHs5j4+Wr8NdWky7tBYM716vbN/ccnaprDkEytr97WH1ueaRc4Ug8IAtkcXlt5lsTcAQYfHkG8b3KualZ7VBo9Ux7903GPLgHJRhLHhi4hOZ8uSLbFryBWlt2tOpV3/ZsUEolUoKlfHkX83lwMdfMGj8FBJSGk6qIrW7hMLncaNQqhDCeG1HC4VaeqK9b8s6sjvk8OjzP+DPv/4Xjh/ah1qt4W8LVrFx5WI2rVzC1NlzWDn/U974chU71q9i5YJPeOTZu/ebvX3jGkW38hk5dabkdlEU2bjoMybMflpye2lhAQXX8+jSTz5bvnbJAoaOm4jRXD+pbkzOjx85jMFoIquNfPtPqdPHrdyzJCYlkZUtPZENxccffsDDj8zCodDJWqhVVlZy7PgJXno+fPY9lKiHI+kOh5MFK9bg8XoYMbAfIwf3b/K+lOspz829zOfzv8TjcZPZujWjR46oqx66m2x5KDKzshgpjub9997lmWfnRv0uFwSBF156mdf//Cfun/lYWI2AbwHfq5hnRkVbTByrJeeqMORcW6vufo4q3H4vrRXyugjBvleFIHDhx7+j1O/hoNtOd7WZJJnEgBxCM+Ye0Y8CAWWje6M55DwIjUzcXLtvP50yWvPKjOn84t332HfiFGq1mlV/+m+W79rNglXreO6RGbz7+ZdsX72UpavW8t5Hn/Cjn/ws7Pku3q6ktKh+DihFyn1OO56yaxiz5bUkanJ3YsgaLJmd9jmrcBZcIH3UQzJ7Q+npnSR07IVXbZMd4yq9jt/jkiXlEJi/eey3EWxxmLMiv//c13ZKCvuGlrH7PG7OH9rN8IflK5Pk5nlSC6put5tlSxZTWVXFkCFDGdn/ibq4BaHxslPdHM9bkAFA3u1iFm/dhcPtpWWshfHd26KM8l0brRtAvErD0GaS86Bl2hCNjS2uMnoKZmIU340Kye8SIv6lanuHfkSgbEkKlUDjplIbELWmviiKPuCnwC8EQbgnb6Y0jY4BRiurhAo8MquLQWiVCp4f2plSp5tlF/KiVh3smBzHs/27sP3SdZYcu4Avwnmk4M7Po6C0gr8u3cja/cfwSxwjXNlxJIX24PYrV/PonBMQD+raJYcdu+r9h8vLK4iNjeXihQt07NQJlUrFkGEjOPZ1Q+XYxsE5CE8YRXzR58ZfmY8iJlN+TMkFFLHZCBIe86Lfh7/8CkJMmKx16WUUpsSwRNrvrEB0VqC0RVZCV1pSUFoCJbPhsuVVl/ZibN0bhUxfdJskM6IocmbrcjqMnBrxvJHgcDj4/NNPWbJ4EdNnPMicxx+ldUZ6sxZ0OmSmM/fB+3l+ykgSbGb+tnwTS3YcxOO9txnPDnFWerZrwZpbBWHHNZ6QqASBadZEVlQUyWYFvml8X2Nei1ap9Bj3AMs/+hsuR3iSXGeR5vOxYeGn+KL8+6dkZDH5yRc4d/QQm5fOx+upX9aW66WTgrOqguNr5pG7fzN+X32W8F72i5ffvkFW+0D/bpuOORw7sKfuWamy27HExHD9Si6Z7TqgUqnoNXAoZ441VKO/kzJ2l9PBnvUrGTFFfoK5a+1y+o4cj0bCt93n87FtxUJGTpO3Pft67y4SU1qSmtE0rgYFAosLCzn29WFGjWvqMd4YLbI6MGLkqIjjNm5YT+8+fbHFhF/A/vCTz5jzePNEy3zmpLpPEG63my+WfMXHC5cxZdxI5j46kzaZGQ1iXuN9GiMrK5Onn3yc5599htYZ6bz5znssWLQYZxTuLM1BVnY2w4eP4IP332uWIJxCoWDW3JdZ8OlHVFZGHULuKb6vMc+AkhzMnKACF+HfFwICHTCjRcFhXwVeib+RlBhVrELNWG0sN30udrjK8Ih39l5y+v18ZS9ie1VZk3PfiQWVFPJuF9AhIwOAnNat2X3sRJ3nenllFXE2Kxev5tG5fVtUKhWjhg5m/8HDUR9frlJS9PtwXNmHIWuw5HYAZ/4JNAltUaj1En3lIhWnNpA6TH6eVH3zAoJChaFFVpMS9yB8rmqqrx7G3GZQxJ9FbUmKipQLVbloY1PQmMPfsrf3r6LvxAfr/h1t8qUxKff5fGxfs5yPP/yAEaNG8cyzc+nWNqMBKY+E9KR4nn54KnNH96FzWjLvbT7EvF3HqHHf2zR0Qi05X15RFDHmhfqYC4LACG0MB912Kv2BuYecENw/I6L5Sw8CEoBTgiAUA0dqvz8hCMILwHGgR3CwEHhjdqv9PmqIorgOOEig3CksaqIMjAkqDVNSWvDFtetURzHxHJqaRL+UBN4/fpFSh3SlVWNFapVSwYPd2zGgdQrv7j3BifyiqK4tFBnJ8bw6fSxtWiXz5orNLN5+EFczHiApci6U5Tf4vm12Fjt3bAdg+87dqFQqXC43OV268e577zNl6lTKKyow15Y0WaxWKsrLJc9nL66JKlse6jcuB3/VbdCaEDTSE2B/yTkUce3l+9JrShF9bpThfNN9XnxF51EmyasaNweW5Fa4SgKLJdrYVNmXBEDu/s207j2cNim2Oz6fKIqsXbmczz/7lIn338+Tc57CLFNuG60SsSo5jc6Zqbw8bQx9O2Tz/urtfLxuJ5Uy970cGj8PoegYbyPLZGTj7cKwx2hMzrUKBVOsCSytKJScPH0L+M7FvKrKyIT1pt2JNTaOibOfZdXn71JZLm3zGIrOfQfRd9R9rPj4LUoKorNhVCgUDJ4wld7Dx7Jm3oecPRLe+kkKxpgEut3/KAmZHTi5bgHnd67G44o+4x4JVr2a1NbZHDsQ8Hs/sn83SqUKt9vF7DH9WTHvY4aOnUilvQKjKfAsGc0WKivK7+q8oiiybv7HjH9Y3rbsyrlTaHV6UjKkF/22LJvPiKkzZfujC27e4EbeFXoPlM9Meb1ePvzoQ2Y9KZ2Rl0KkMupreXkU3r5Nz171Gh5SGedNm7cycEC/iGrt4eAzJ/HV7qO8s3gtIyZMZu7LP8Sa1q4BeY9EyKXQtk0bXn7hOUYMG8qnn8/j448+pLzs3onStWnblqFDhzXL57zU6UOlUvH0Cy/zyXtv44ywqPYN4TsX89wRiHYQmlr/8jNURvQvB0hR6MhRmDjsr6BMjG6eJQgCPTRmeqst7HCVc9YTWXSqcX+5WaliqjWRzjoTa+zFbKwsodpf/8w1h5zLjc1u2ZJ9pwIlz3tOnkTwirjdHvo+9gwfLFnJlDEjKLdXYTYHkhhWi5ny8kBixSsExH8bl7FHs1hak7sLQ+ZAyeQKgLeqCNHjRB0jnRipvLADU/YAFDJOOp7qcqqunyGmg3zPuCj6KT+5FluXCfes7UCvc+O4fRlLZkAAWK6M/da5YyRltMFgDqxd3WlF5J4d2/j0/bfp3acvc59/gcRE6fgmV10k1faanmDj+TF9Gd+9HctOXOSTg6cprgrEmOaUscshQaVhsMnGSntx8xYkBYFR2lh2uStwiP/c9miNEQ0xXwRkEQjC3YDg8vsY4DMCoh7TBEEYKQiChsCqqw5YfgfX8xPgWQIviLBYZy+JeBNY0y1Y1GoeSU1l0Y2b2D3SQThUvTLFZOCpLtmsv5LPwVvFUV94itXEC4O6UVrj5IP9J6lyuZutgNimVTIvTxvDwJw2fLJ+F++v3k6pPeDbGUmsK1Lm/P5xo3E4nIwefz9arQab1YrVYuHUiWP86t9+yZ//9CdsViuV9kDAr7TbsVitd9U76i85jyImW96P3OtCdJTIWqz57TcQDAkIKumMtOhz4yu9jDJevj8o0Ht+DFWLrvcsWPvdDqrzvsaUHV5YpPzWNXxuJ7Gt5KsF5BBcRS0rLeHdv/6Zdh078ezc54iJre83jbYMM5Lvb2piLC9MGcW0Ib1YePIa205fbjImXFtGOHLev2sayVotO4rCP0vWdEsDgm5QKJlgiWdpeeEd+WbeJb5zMU+pVLLksw/w+Zq+wG7anQ36yXUGQ22p+jzKiiK/eG1xCUx96iW2bN7E0d3bor5wa2wck594DtHv56tP36HKXh52vFT22ZLYkq4TZ5PWdQDnd6zm2s5luOyRFxTCIVheOHDkWFxOJ6/OnopGo8VksWIyW/hi4z6efPWnLPjgTcwWK9VVgYlnTVUlphArsTvJlu9cvZQ+I8aiN0pX77gcDk7s20XfkeMlt589cpDk1HRiZOyWPG4361cs4v6HZoe9jqWffciUR56g1NW8Z0eOnLvdbhYtWsgjs8NnwfNv3eLqtWv07hleXDMc7HY7f3r9DVqmpPDic3NJSgyv33EnSEpM5LG5L/LgQzNZtmwp69etazKm1OmT/ERC23bt6NGzB18uCK9x1vh4Wp2OOXNf5IO33sAjM1f5BvGdi3kKBE5gxxfGGi2IoH/5JWqwR9GcqhOU9FVYyRddXPAHSHY0GTuDQskoXSx6QcEGZwl2v/z8KDRDGIo4lZrJ1gQGGKzsripnZUURRd7InutBBEl5RZ697hPEmN69cbrdTP/Xf0OjVmMxGrGYjBz47H1+8ewT/PnDz7FZTFRWBuaV9spKrNbw9olA2DJ2583jaOKzZCsWRb8voMKe1hto2lfuLLqCoNIRny29UCn6fRR9vZbE3vc3+L5xQqTizGYs7YbJkvvmwBJvwByrpejrtST0mig5JviecVbZ8RVcoE1P6ex7OFIenOc5HQ4+fudNdHoDc557idTUyJWdzUWsSc/sXh2Z2b0dmy/ksfr05SYcKtoy9sZIVGnobbCwrrJEcrvcs6AUBEZrY9jqKsMt+v9/1rwWEYm5KIo1oijeCH6AYG1qgSiKVaIo7iag4vk+gR6kB4H7RFFsdm2OKIrHgS8J6VuSgkFQ0ENvZmF5YYMVx1CETvK1SgWz01JZdvMWZe7IAVClUPBIx0A/87wzl+tK4cMRkCCGZafySI/2LD52gQ3nrka1gtS4rzclPoa5k0bwyMj+rNl/nDeXb+LKrciZ+CA5lyLpSqWSv/73b9m0YiFKhRKT2URsrf9wXFw8drudNm3bcvbMGapcHnZu30q3nvIK6EHIlbH7K/MRav2/pRDoKz+PIk6aVIvuKvDUyPqZBwj3iYiE21d0DmVspiy5DwepMnZRFCk/uQ5b5/Fhz9vapiZ33ybaDmka1KMt+d2zYxtrVixjzvMvhe0RvVewGg28MGUUBq2av63fR5Uz+slCOAztkYFeqWR/SWTCFfrcWpQqRppjWBFFmdS9xHcx5ukNBkaMn8Tnb/+F8lLpl18oVGo1k598gR2rllJccDPi+Ot2F30nPojRYmX15+/jdkVf5tuxVz/GzXyCvRtWcXTLGtm/VThrE701lpwxM2jVfyKl5w6Tt3UR1beb7xwQ2vOnVCr54a//wOtfLEehUGAwmrBYA4uwtphYqivtpLbO4sqFs/h8Pg7v2UHHbndOKPNOH6VGZZDNhANsXPwZYx56THKbvayUq+dP06VfQ4/g0IWXZV98zLTZc8KWNW5fv5quvfsSExfQ9AiWtkcLKQL64fvv8dRTT0ueN7hA6PV6+eyL+c0uYQ/F3v0H+PSL+Tz/7NN06ypvq3m3CF6z0WhkzlNP07JlCn/9y5+jyp7LEfbQT+cuXWndOpOvVq6Q3V8KRpOJWU8+xQdv/lWyre2bwncx5qkQaIeR49ijyoQLCHTBTB4OyqMg54Ig0ElhIkZQc8BXjrMZJeoZKj2jtLGc9FSzz10hu3gsR0gATEoVYy1xTLDEc85Zw/LyQo5dCL+QKpcpr8iz465yo1Qq+a+5z7Lkt/+JUqHApNdjq62ui7NZqaiqok1GOqfOX8Tn87F5z0H69ZF3sYkET0U+ot8rmwkHqLm8pzab3rSv3O92UHP9GC37Nu3fDqL4yAbiu41FkKggssQbsMQbqL52DI2tJWpzZAHnSAgS/qKv1xHfvf68UhZpot/PqQ0LGTBV3q5UDkFSfur4MT778D2mz3qUnn36RtirKSIl5RpDp1Yxs0d7OiTF8sGJixQ7mtfSI6eH0FKtpb3WyJbKpvO8cO4EakHBSG0sm1xl+ETx/5NzosuYN4AoildFURRqg3fwu89EUcwURVEvimIfURS/DneMkP2GiaL420bfPVl7/E/C7Zuk1jDNmsA6ewl57obBT+rGUSsC5HxdwW2u1USnKN6nRTzjW7fkoxOXuFEZvV+eQe7XZrEAAQAASURBVKPmyb45tI618pe1e7hUEHkiLQWjXsujYwby3KSRnLx8ndc/X8r+42fC7iP3kN7Mv8WISdMZNflB+vfrwyMPTufs+QuMGD2GX//mNzw7dy5qtZrHn5zD5LEjWTR/Ho88EfDFDZYzRavGLroqwV2FwiQv/CWWX0VhTZPMpouiH39pLkJsm7rv1MaGq7q+4gsBwh1GmdNnz0dQ61EYpFWN7wSC/QqmzD4o1E1XQUMD98n1C+k87iEEQYiYeWu8oup01PDRO39Dpzcwe84zaDTfTKCSU/vvm53Kk8N78umOI+y7UE+O7jRrDjC2VyZuv5+jMu0RoQjNnserNPQzWlkjsxL7bSCamAcMEAThvCAIpwVBkBU2upuYF5uQyOy5r7Bx5RLOngg4GUkprwehVCqZ9MRzHNy6gavnT8uOCxVta9ulB8OnPMSaeR9y4/LFcJfTABqtjjEzHiWtQ2e2zX+PW7nno943FO1axdGizxjShk2npugmeVsXUXrhSFQLM439ZIsKbvHyI5N4ddYUcnr0YdSkB7iae4GXH5nEh3/5A1NnzUGlVjPxocd46aGJrFv2JZMfeQJofra8sqyEa+dO0rH/cFkRvKO7t9GhR1/0EjY6oiiyafHnjJ4unwlfuWoVOT16YbHaZMdcOH0y4L7QuVuTbc0h51CfPV+7Zg39+g9oUK3TGA6Fjvc/+pg5TzwWlUVZY7jdbt5+731cLhcvv/Acen30egX3Ap27dGXu8y+wePEitm3dctfq6KVOH2269UbQmVi2el2zMu4xsXFMm/kIH7/71re6IBmK70LMUwr1om15OMgnMoEQEMjBzC2cFBBdW1aCoKGHwsIuVznXvNGTFKUgMFBrpb3KwCZXGVe90s99OHIOAV2VwSYbU6wJlPu9fHLiElvP3mjyt4+m1P3atVtM/cUveeCX/0qvDu2ZNnQoF/Kuc/+rP+G3737E3EdmoFarePqRGQydMI3P5n/Js3OekD1euDJ2v8eBu+AM+lT5xUx3cS4qSxIKrUnSiqz81HpsneU1MCqvngj0d1vk+7udJTdRK6pJ7tq7jqgHP81B6D72y8fQxafWnVeuhP3sthWMmjoDVYgAaWjiJVxfuc/nY8FnH1N4+xbPvvQqZnPYdap7jqx4G092zmZrXgFb8+7O3zyITK2eFLWW3VXlTbaFI+c6QcFQjY2NrlL832FyLgjCy9HEvLs+z98r8N8N2moN4l9b1Wdat1WVYVOq6K43R1S3FEWRNQW3SdXr6WqzNihjD7fPykvXSWiRwLgOGc26VnNGMisPn6XYXs2swd3C2heE8zQP4lBBFQdOnCGjZTL3D+sf1SRISGnf8AttfcASa33MvbU+5i6vWOdhXu32UeX28t7evAbEPLS/vHHGXPR78RedRpHYRTajLLrsiNVFKGKlM0u+4nMorOl1HuvQkJj7q4vwO8pRxbeR2j0wxlWJr+wK6uQ7y7pIZcs9ZdfRahWYMutXNUODfzB4F5/eT3ZGKxIyA731jSf54fqPbl67ytY1K5n73FxMpoZEQ8rTUkoVOZIyeyjkWiSCVRw7z17h7I0i5gzviVqljNieEalnaU3uDWIq/XSwNM+S6tiF21xyOxhtjmX85WNfi6IoucwvCMLDAx59bX73yY9Hfewtb/4b57Z91UUUxZPNuqj6cw4HfglMEEXRJQhCoiiK4Rvrm4kOXbqJH6/aWvfvnRvXIigUZPYZFtX+u9etxGS10W1Aw77kxiQyeG+Kosi+javw+/wMHD856jaQvHIHoihydv92SvKv03v8NHS1frnhMuahaDwZtF+/QNnFY2itcSR2HYJCwue+MSmf2V26PSYaWPQqNl+Kvo3J5/Wydd67jJg1t4EafuhzXlZcyOHtG2WJ97aVC+nUawCJLaUzT7dv5HHm6/0Mn/yQ7GSvvLSEdcsW8fDTz0e8ZikVYClcyb3Isa8P89Rj4UvnD+zfj8fjZtDgIbJK7XLIv3WLz76Yz7NPzSE2NvL7+G4RqQXo8KFDbN+zl1lPPI1Wd/eq7ZvXr8VsttB3YGRBqlBcvZzLnh3bmPXk02QlWMLFvLE9pj61vv+sV6I+9u5P/5fjqz4fLori9mZdVP05v/GYl6zQio+rWlLhCcxHruPAhZ9sols0u0oNItCa+ne0nId5kAgc91RR5ffRX2NplgUUwFlPNTd9LvprrBglEg7hiElj5LmdHHVUYlEoua9DGs4bVRH36fTbXwKgMTUkNUE/c41J39THXGtoMAe8WeGksNrD3mtlDRIyUC/8Zi8ILBpUn9uIse0I2eSI312DI+8gxjbDJEl55aW9aGJaktBOWoPIU1lK2bk9TUrYQ+Fz1VB4aBXJAx+M+I6SSyo1JvDuiiIqLh4kodcESUIefNeUXLuI3lFEzuDRDbaHI+ahLYrzPv6Qh2Y/TkJS06RG47leaExtPL9rPLcLndM1rsZtPH8LztfOlVSw+2Yh43Q2jGEcXUIRbqHoaE0lXkR6G5rysXALVeV+L4fcdkZpY3iu4kK4mNer4+gHDg2fG1Gqog6Hl37AgQVvTBdFcWnUOzU85zce84K4e6+a7wCGm2JQxes4b468Gi0IAhNbJFPl9bKtMDqhNkEQmNImjbQYM2/uPlYnnBANKq8WMKV3R6b368xnO46y9MAp/P47Xwzp360jP3hsOl3bZfHWl1/x+Vcbccp4l3/TkCpjD4q9yZLyOpV16b5rf1UBgtbagJQ32N/rxld+LSwpF30efIVnUcnYr90J/K4q3MWXGpByyXEeN/rqgjpS3hjhythPHTnE13t3Mfu5V5qQ8rtFpD5zOQzp0Jrp/XL4y9o9FJRXRrQAjJQ5n5DViny9yJXq6CtQALq1TaJdaixH9Hdlf/tN4XngD0Fv3m8qWIdiyJj70On1HNy6Pqrxg8ZPRqlUsmPVEiBAoMPZmwmCwICxk8js2JnlH/4tamG44L4d+w+nz33TObLpKw5vWI7Pe+c9s5bUtqSPeBBbVhdu7P6KG3tX4w0RimtMyu8GFn20DqL12LdyPv3uf0jWos7n87F12QJGTH1YcnvumROYrTGypNzjdrF73UqGTQoo/kpVSXg9HpbP+5gZj0cn9hZN9ryqqpKNa1YzZcbMsNlen8/Hgf37GDQ4UIIfjvg6FLoGn4OnL7Doq3W8/JOffydIOUCv3r2ZMesxPnrnTa7nXb3rc44adx+FhQWcOBpVIWEdMjKz6NG7L8sWhu9V/zvhW4t5QTKdih4TKi4S3bsjAwMGlJyhEjGKPnWArmoTHdQGNrhKKfQ1b17VQW1kqNbGUU8lu13lTdTbr5U6ImbPg0jX6JhiTaCHwcySM1dZay+Wbdu8F/AKSlxesU74LRIcV/ejS+spS8pFUaTm8m4MmQMlSbm77Cai3ydLykW/j6Kj60noKZ9NF/1+Cg+sJKnvlKgWjhtn06Wy6n6vm+Ljm2g7dnpYUi6KInlf76LToIZOFtGQ8iu5l1g8/wvmvvLDqEj5t4H2cVZmd8xkRf4trlZHV1EcDt0NZnyiyAlH04qLcAtUNoWKrmoTO93ld30N3wC+tZjX/FnIdwBKrbJJZnwQsKe4hEOlZfSO4gU/MD6Om2b48uwVHmqfEfHBNqcm0RFokxDDwqPnSLGaGNFGuhRYCjajjrmj+3CtuJw31u+lX5s0+rZpOBFz5+dFzJp7C66hSk6jdasWvDxrKoUlZXy4dC0Wk4EHxw1DK1H27DmysUHZcihJC6raBicsoaqc0DSj5vfIB21/+VUU5pYIYbw+A33l0irroteJ6ChDmSATrEURb8FxVC26Nfj+rz+ZETII/DWFKAwzQUYhNBI0Bgs/fW97yHn91FzeQ4shkbOw+QfX0390/QpvtCWx29evRqFQMGnmnfdnBuEzJ4X1BG4u4swGXps4iA+3HqZ76xTaRfAXl/M3D2J6u3S+OH0ZrUNBSjNKVjtbLRwqjdwDWlzlbJbtlt3hBZguCMLHIV+/J4rie1Eeoi0wWBCE3wFO4MeiKB6K+gLuECmd+1J6cA8Ht22gz/CxEcd37juIA8dO8Nl7bzL4gcdRRFFtE7RH27FqCQaTmX6j5CdKjWOFVm9gwORHsBcXsmvJpwjxmaR2idxD1ybJLPn369wuE9pl4qyyc2nPekSlijaDpUXUvjwaua++MeSeVZejBq1euizy3MGdtGqXgzk2vsm2vHIH6TY921YslFVZr6mq5PShvUx6/DnZ69qw8DPGPfR4g5iZaGqomZF3IZfXfvRjbKbmlW/qVfUxsri6ftFLFEU+/+A9nnj2+QbnLXX6mkwcly5ZzLTpMxp8F3yf6P1OWTK8ZfMmysrKmPv8C4F9kPdFv1s016/cbLbw3KuvsXje59y8cZ1+A+VtoKLB/VOns3je5+j0Btq2l3cpaYwOOZ1xOCJPlMuq3c2KeeXVboCJgiD8b8jX39mYZ1UrqPD4SUaLArhEdVSZ8yS06FFwHDudw7S051a767LmsQo147SxHPJUctnnoK/aEnXFkFpQMEhro8rvY4ernESlhs4q4x0Lz9qUaiZa4qnx+9hZVY4PkWGmGMmM/Ol//V3d/4fOj4NVoebUpLqFdU1KOqrkNMSYFHzmJBwKXYOFN1eYe85dnItSb0NlbBrzgnBe/xpdq+6SxN3v81B1eT8xPabJ7l/X3x3yc/58YsPnxlGYh3bcL1Bo7ryq5ferzzb4d+HBVbQbPxNBQksjdAH46uEdDBo7rsHfNRrtoEP79nL1ci7PvPjKPRMjvlM0nqPpVEoeSW3FpsIi8p1OBsSFbwG1plvCZs37Ga3sqCrjvLOadrqGz2parF52kSpRqYnKkcFe42lWzCupcgGMEgTh5yFffydj3j9ExjyIgfFx1Ph8HC0rj2p8TkIMg1sl8cGJizi90a1GqpUKZvfqSIxex3t7T+CIQrU8tHwkLd7Gq/cNxOvz8/raPdwqa3hjNS49iYTEuBhefGQKYwf25v3Fa1iwZgseT+CavAXX6spaQstbohWLkMqo2c9vl+x781cVgKBA0Ms/zP6aokA2XEKILWCtdh5FGIX1QF95Vti+ctFZiqCz3TEpl4Lj8h70Gf0QlA3XsRqXsTvLi1CoNOjMtqiP3cKkYclnH5DYIoUhYyL7Dd9ryPWZN14gUioUPDuqD4UVVWwrvnt7oVkdW7PfV01pFGKMoYhm0e0OsUQUxV4hnwbBWhCEzYIgnJL4TCawwBkD9COgOLxI+Bbeui0tOnL6DESr03Nk15ao9knOaEP3kfez5Yt3cFY3falJPfNKpZIRUx6iRVprln/0JtXN9Fq2xCcybObTaAxGjqz4GPvtGxH3aZNkbvIJQmeykDP2QTL7jeLctq84u20lPs+dVw1lJhrDLqAd3fwVXonjXz93khp7BRk5PST2CuDmlUsYzGZJlXVRFNmw8FPGPiS/4Pf1zs20794bo0VeObng+lXiklJQa7RUu5uXVQu2LTXG0i/nc9/kqeglLM9Cs+flZWVUV1fTqlXTrBhIE2JRFPnis0/R6XRMn/FgxPF3i+YeM/izCYLAg7Mfw+N2s3zRgrvu954x61H27tzOjWvNe8f36N18Qagosfr7FPOsagVWtYJEtJhQcjnKzLkFNR0wcU5hpyZKWyZBEOijsZCp1LPOVUpVGPV1KZhq1dvjFGo2uEq55atf9Io2ax4Kg0LJOEscw00x7KgqY729BOc3mEE/vWcLrur6OB8sAy+9cAhv5W20yfKLS76aMkS/F5VJWoit4uR6rDnjZIlp5dUT6OJahfUNd5cXojJY74qUN0bp6V2k9hqA2hC+AsvjcqBxFJOcUV+1GckeLdGo5qtli6murmLGrEe/NVIeLtEnVd0YmxXLmKREjEolK/Jv3XXMG2qK4arbSZ676YJrWqxeNnveSnnv3wO12Px9iHn/UMQcYGhCPGUeDycrpNXCgwiuIrY0G3ikQ2s+PZXLrWaUqHdvlcgjPdvz6aHTd+RdPrB9Oi+O7c+OM1d4f8uhBgrYkci5VF9wYlwML82aytDeXXnrg0/5cuESfL7mqbpKlSo2Fn7zeAQqrh5rUMbur74NXgcKq3wFgej3IVYWoLBI936KZZdQxGTK+mD6a0pAEGSF3MpLi/jNDx7n+cem4a+9rdcvn8cffv487//p13hrfez379jA7382l7/+9ic4agIv9v/55Uv8zy9f5H9++RJnTzQsN3QVnEVlbYlSH9lSpODwJlr0Hi27vXHw9njcfPb2Xxgyejwdu8pP7sPhm5jIhsOEHu1JT4jhk4OnwwbtSCXtgiDwRE42m5zlVHnv3JLv24IoiqNEUcyR+KwEbgDLxAAOAn5APp1wj9G1f6CE+Pi+nWHHBUm3JS6BYTOfYu+K+RRdvxL1edLbdmDCrKfYvnJRE+/ycGXxQSRl59B90uMU5p7hxNr5OKuaLejcADqThc7jHiKjx2BOb17K+Z2r8TXTZiqaipYWme0ouHyhwXf5l85y6/J5eoyS73/0+/0c2LKO/qOl7XYObF5LzyGj0OqkJyeFN69jLyshO6eb5Pbbt24xYUhfhvftga7Wnu29N/7CpDEjeOGpJ+ost5YuXMDEUcOYPWNanR3m1PvGMGX8aKbeN4ZNW7Y2OO7hA/tJTEoivXV4m8dSp48F8+fx8CPRKxL7fD7eeP0v9B8wkIGDpLPQ9yqmBcvl7xaDh4+kc7cefPTOm5J2hc3B4888x5qVyykuav6c4dvGdzXmWdUKktGhQ8kVoiu7TVSr6auwcdpfRaEYfTtUolLDWG0shz2VnInCu7wxWiq1jNXGUuj3sNlZWmevdifkHAIE/T5LPINNNjZXlbGxsgSX319XJh88brhMZjRaRqntOnP08OEGNmnu8lu4Ci9iaB3OS1zEce0Q+nRpR5/qa8fQJbdFqZWOu56qchyFeVgyu0luLy0q4EcPj+Wx8QNQ6AIxb8Vn7/DLp6bxl399BW9ty9TOdcv5xZyp/NcPnqCm1g7zV88+yL89O4NfPfsgJw/taXDcmoJcBAHMLbMlzxu6MHx++yp6jZPP9jeGKIp8+v47tG3XgWGjxoQd+/coY5dCV5uVvjExfH7tOu67dIcYa4njmKOS2zKL583RXvim8V2Jef9wxBxgRGICt5wuTldIB6fGgm9GjZpnurZhx/UCjtyOXv3ZpNXw3MCuFFU5+PzQGTzNJMIqpYKZA7swc0AXFuw5zsK9J/DVPgR3Qs69BddI9Nfw4tTR9OmQxVsrN7N81+E625VIXuhRXXNMGv6q+hIYf00xuKpQ2FqH3c9fehFFnHRfuOiqAEGJoJVeqRR9HnylV1DFy1uGGXQ6Xvvlb8lsmwNAZUUZ504e4V9+/zatMrI5dmAnXq+XHetX8NP/epN+w8ayY8OKuv1/9JvX+env/kbXfsPrvvNWFeNzVqCJz5TskwpFWe4JrBmdZD3bG8Pn87Hq03eZNnsOiS0aLlZEK8zUXDS3z1zuBd4towWTR/RiZ274cuFI5FypEJjTOZtV1aW47nLC+3fGCmAEgCAIbQENEL162D1Aj8EjcTudnDq4J/JgQK3VMfyRZ7l66ijnD+2O+jwarY4Js5/G5/Wwdv5HuF3OqEh5EIJCQfaAMXQcOY3cfRs5u3VFs8l0Y+itsXQZ/zCtOvfj1MZFXNi9Dr8v8mJPtG0mKdkduXmpvuSx4OpF8s4cp89908Pud33vegbfN1UyO1JWdJvqSjtpbdpL7BlYtNu1ZlldX7kU9Dotf3z9Tbr3CkyCS4qL2L9nJ19t3EqHnBzWrf4Kj8fDZx99wIr1m5k+82E++/iDuv2XrFrH8rUbGTR0WF3mvLCggLOnTjBkxCjJc4bi/JnTJKa2RhelQJooirz95t94cOZMsrKlJ8BB3C2hvtP95fros9u2Y/IDD7Jt04a7uSwEQeCp519i4eefUNnMypPvGFbwd4x5VrWCDmoDagTyIpDzYI+6UhDorbRSKnq46G9KsnOrpYmDUhAYpo1BJyjY5Cxtlq0aBP7mXdUmhmljOOWpZqerHHczj9EYRoWSiZZ4Ul1avrxdwD53RZOe9lA0fhdLlbEHWxjzyh3Y1XHUFAXe7/biGjz2QkpObsGQFb6lw5V/Al1KZ8kEi89Zhbs8H32yjEWu30/RkbVh+8oNBhP/8p9/pG3nQCKjoqyEU4f38bsPl5Ge3Z6D2zfg9XrYuPQL/vO9xQy9bxobl82r2//Xby3gN+8tonPvgXXfeR1V2C8fI2voOMlzhpJye1E+qSkJ6EM0gCJly5d98REjxoyjfaecBt/H6pRNPt80GmsESc3RgvyohV7H1JQUdhXfvSPOJEs8O6vLKPdJv+vDZc+/Q1jBtxTz/iGJOcCYpERuOp0RM+dBKASBmR1aU+X2sjo3cqllKEa2TWN8h9a8u/c4F4uky3zDqVmb9VqeGdmbQe0zeGvDfjaduNSsEpLQkvUg0hLjeHnaGLpmp/GXTxaxfNfhqDLokUSBlDoz3uqAT6HoKAVHmay6ehCisxxBpUNQSZc1+svzEMIQe3/JOVQtwqir+/2oRCem+Pqe/SsXz9KutsS0Q5de5J4/ze38a7RMz0KpVNGxS28u11pIKRQC//erH/Du//6KKnvgfhF9bpw3jqBPly4jDC1jF/0+Kq6cIia7a4MgLjfxF0WRNV+8z8OzHw1rffRtQa6cPRzSE2zcP7p3xHGRyLlGqeTxTpksryrBnBG5KuE7io+ATEEQThHw531c/JbsLkInAb2Hj6GmuooT+8NnzoMQBIHe46ehVCrZv3phXcyJhmjn9BnI0IkPMP+j97hxQd6KTQ4qrY5Oo6eT3nMwJ9d/yeWDW++6bM4YE0/XCbNI6dCDk+sXcmH3OlnRuebYoam12rpS+eIbV7l0ZD/9J80Mu0/Z7Xz8fj8JKU0X9ERRZPtXixk2WZ50b1z0OWMelC959Pt9lBTk06F7vVXRiSNf03fAYKrdPoYMG8HXhw6Se+ki7TvmoFKpGDJsBEcOBSodFAoFMybdx9wnHqWsNBDP88trWDTvMx554qnwv5Dgz7B5I8NGj43aWuyjDz9g4v2TSE4OLyAZxLddDRTp54hPTGTUuLtvN1KpVDz9wst88u5buJzfTE/9t4BvPOZpFZGrRDupjViUSq7KkHMpFfb2ChNGlBzx2WX9x4PIrXbXfUSXklZeA7td5eTKWKOFg0oQGKC10kttZo+7gqUFt/Hd4a8smB03KpQM18bQSWVkl7uCfe4Kckuan9lvDEGhAFEMkPKqEoqPrcOQPTRsCbbfVY3fWYnKIv18V5zZjLWTfEVh8dENxHcdLelXDoAo4q8oID6zXtT30ulj5PTsB0CXvoO4cPIo+XmXad2uI0qVii59BnPh5NG6n+k/XniEP/38RSorygOH9PspOrSK9vdJx/PGwqJlJ7bTdXh9DIjUV75m8XxGDBlManpGg+/vhoQHdaGkcC+Sb6Ewq1WMTJT3ho/kghWEIAhMsyayzl4SVsTwO07Qv7V53j8sMYcAOS9yuRv0nEeyRxuSmkT7WAu7bzRPcC/epOfFQd04X1jG0uMX72iS2TLWwsvjB9DCZub1tXs5tG9/2PFShDwU7vw8WokOXhrXn04WFW+t3My8+YvweLxh+8yDq6aNUWeT5vch1pQg1hTJZsGDEP0+/BXXEKzy5VPhVNwjCcqJoojfUYLCEAchh6iprqzrj9QbTdRUV1JTXYWu1kNYbzRSU9tj+9xPf8dPf/c3eg4azcr57yKKUH1xO4asIVH1ApWe2kFyz8gZpiA2LvqMPiPGEZ8o7/N+twgXvJuDaMreIiESOTdq1MzskMHHJ3OxtrZFZWH4XYIoim5RFGfXljz1EEVxa+S9vhn0GT4Wj9vNkV1NL0FuEpHdoz9tegzg1O7NYcc1htFiZfjDz2Avvs3+1QvrKnOaA4M1jm73P0psq0yOffUZBeePN/sYjWGKS6LrhFm07NiT0xsXc277Krzu+vLV5nqUQyDOFFy5wJl92xk4Nbx1mN/n4+sNKxgy8QHZMeNmPiFrdXl09zayOnXBbJPX67iRe5HU7LYIIUHPXlGB2RyYSFosVirKy7FXlGOutSa0WK2Ul5cD8MFn81m+diNj75vAX/74BwAWffIeYx58jBJn5L/j5vVrGTnuvrr4GInUfjl/Hn379SOjdfjKqnuBb5vQF1Z7mnwiQavT8cTcF/jgrTfq2qy+T/i2Yl40fsYZCj02pZICpaOuDz34kUOKQkdbhYHzojSJDZLxxtAIClr7TLhFP9tcZXdErA21ZDpTpWdFRRHHJJSrw0GqDN6iUDFCG0OOyshudwUb7CXcvnLnWjAXb1dS4/DjKr1O0derMLQZ3mAuZL+V2+AjiiI1V/agb91P9pi2nLEoZPSBKq+dRmNNRGOVJ4GOouvo4lMRQhZsqivt6GvbeGxxsTiqK/G4ajCYzGh1agwmM9WVgWTLj//7HX7z3iJ6Dx3Nkg//CkDR12vIHD4RhbrpfdaYlN88dYjMrr1R1ArDSb0nQxfKt679irTMNrTr2En2Z/qu4puYgykFgQesiXxVURSxPP67SM6/zXnePzQxh0BZe6XXy8HSsqhvtuwYC4NaJdb9OxKxCEIQBCZ2yqRHq8Rm26qFIictiR9MGEixvYa/Lt1IUXn0JW/u/Ly6TygyEmJ4edoYBndpx7uLVvHp5oPYKwPemHITmcb95UEoYrMRHSUo4uSF2oLwF59FEddOluAKgiBvueEIZHLCCcr5is8jaC1NxN4MRjOOmsA1O2uqMRhNGIwmnLV95Y6amrqAbjJb0Bgs9Bo4kptXL+G130Kf1guFOvB7CVfG7nVUotP40MUkyo6B+iC+/avFtOvWi+TUjLDjvy+IZJ8WRKRnKEanZWJWKz4/fRlRFL935Py7hJ5DRqFUqaK2UgOIS0ml8+DRUZNyqM+sdxwwgvZ9hrB13juUF8pXBoUjxLaUDLpPfhy/z8vRlZ9SVXL3rgLG2ES63PcI6d0HcnbrCgoPriZZf2ckqPf4B8g9dpDB0x+PuFi3f9WX9B4/rW4C1xiCINTFnsYouH6V8pJC2neTr0Y5tG0jtoREVI0mkxarlcrKwCS/sLQcq9WKxWqj0h74rtJux2oNVKXExAZi6vj7J3PuzBnyLl9iwPDR2GIDgkvhCKajpoYb1/LIbtsw/stZqn21cgWZWdnk5DTfvrK5feL3uoQ9EuR+R9EQdLPZwsOPz+HDt/92R4ta/yyIhpynK/QYUXLGH9nvOwiToKKDwlR3jmjOE0QHtZFeajMb78BWLYg4hZrefjN6QcmS8kIKPOF736OxWzMrVAzXxjDQaGWfxsHym/mUOgLHtbRuEdVC++XCwBwprusoaq6fCHiVh8yv7LdyG4y3tMjCee0gupbdEBTyRk8KjfS7xVNZiqPgMtbsnpLbAexXjqHSm1BoGgoHG80W3G4HWp2amqpKjBYLRou1rq/c53NiNAeyuuba6sQ+w8ZxPfc8rtJbGFPaoY9tmiBpTMr9Pi++wkukd+wme42hpHzfts2YzGZGDpHvx79T3K3jTjTl7N8UNAoFk60JLK0oxPvtFBV+L/G9JOauZvZyD0mIR59kZNu1gm/oihqidZyVuQO6svbsFXZcal5ZfChGds5iTu9s1uw/zheb9kQsRY9G0T0lPiASN2HUMFas38zb773Pwi8XUFIcfauEoNKiiJPv9w7CX5obyHZLqLBHguhz46/MR2HLkD9+VSEo1JLHz8juwIXTgRKmM8cPk9m2E0kpady8dhm/z8fZ44fq+tF9YuAxuHD6KPEJ8Sh1FpQyInNQX8YeKINaTUo/acumxti/eS3JqRlktPvuraCGK2eP9DK/V+S8hUnP0NQkFp0P3Mf/n5zXw+Fo3iJf1/5DMFls7Fm/ssH34Yh3c0h5Y9gSWzBi1nOcP7SbU7s23fFxUjr2pOvE2dw8fZgzm5fddf85BHrQJz82h67D7uPsvu3sXvY5B9ctxV4cfVWURqdn4NTZEUn5qV2baNmmI9aE5lfDuJwO9m5YFbavPP9qLo6aKiwS2fTO3XtwcG9AL2DPjm306N2HrOw2nD97Gp/Px87tW+nRO9CPHhSBO7R/HwmJiZjMFjKym8b0xgRTFEU++/A9pj8iXzUQSnK3bN6E2WymT9+7UxaPhnDfCSkP588eCdFkxiNl0WPj4pj0wAw+fe9t2Sq7aM7zjwhXSM90NKS5lUJHDGpO+puXgZY6drjzBbeZFSrGaWO56nNy0G2/41YcfY3ANGsCF1w1rLYX45JYpGmuWJxJqWJKyxTGJSdx4FYxnxw8zWc7jnC9sFTyXR/aXx6EQqkipusEWUHeIFy3z6PQ2VCZwycnpCD6av3Ke8m3iLjtxbhK8lGbG8Y8rU5Nx+69OHVoHwDH9u+ifZeetEzPJO/SOXw+H8f27aJD914AdWT93PFDJCQmodHrSO3Wvcn5GpNygFt7VtBr3NS6f4d7Vx47uA+328XEcdJCb80tYw9nIRmtw9I3iWjL2YMIChguqyiM2Eryz4rvJTF3+v3saYYgQUxmDENSkzColKy/0nx/2zuBWqngsd4dMWnVUduqSUGjUvLEuMGM6N6RvyzZwNfnpVWUo7VZCwbluBgbj82YwvPPPsO4ceNZvWkLn77/DscPhS+fjxb+ynxQ6xH0zSdXAeu0cyjiA8JIamPT3mPR68RXcQNVXKC/3ev18n+/epUbVy/x51+/RnFhPm07deMPP3+e61cu0r3vEAyWWEZMfIj/+beX2b9zE6OnzkZjsPD7nz7Fb197nNUL3mPSQ3NQhCiGhsuWFx9ZR1zXkSjVTRcGGmcHL506hkqlon33yH3Z3ySaKwAXLe4VOc+wmuiaEMOKi4EWjZjMmP9P0AGv283WtV81a5+OvfqRkJLKtpULG3zfeFKRbtM3m5RLtbooFAr6TphBbItWbJ33Lo6qphPkaMrIFUol7YZMoHWf4ZxYN5/8s0eadW2Nzxc8p95kpueYyQya9ihdho7l6qkj7Fr6WbPE78Ih7/RRRCC9U2Cy1xxRPID1X37KuJlPyJJ/l8PBgS3rGHxfYILo8Xh4dNpEzp4+xRMzJnPjWh59BgzkwQmjOXvqBOMnTkKtVjPr8TlMHjuSRfPn8diTTwPwwP3jmTx2JH/+n9/zzPPPE5cQflIdJIcrFn/J6PETMJvDT8ZKnT4unD9PaWkpw0eMbNbvQQ7B7Lncp7m4U0J+p5Aj2C1SWjJ8zDgWfPrRt3o933WIwD53RbMIbwuFlmRBy1FfdEQ5GgIeDkFbtXSl7o5s1YK4UeZkiCmG4aYY1lYWc6SmPnY2l5SHlgHrlUrGZ7bkiT6dmNG/M8cv5fHm/BWs/vqCpH95c6E36PG7KtEmRa6ebAxLvIGiw6tJ6HGfrGiu3+el5Ngm4nsEhNm8Xg+/eWkWVy+d5d/mPsztm9fI6dWPnz46iSvnTtNv5DhUajVjH5jFzx6bwpaVixg/41G0OjW/fn4m//r0A6z85E2mPzpHsspRipRfPrCFjM49Mdnk7duC2fLCWzfJy73I0LETmv37kEI4Ut4Yzekvj3a+9k3BqlQxwhTDioqiu9aW+UeEfN3JdxhWtQqLWsWym/lMSWmBIkwWI3RS3zclgRNFZSw+n8f0tmlR9Q/fbZlHz9Qk2iXG8Mmh04xSK+iZKW0XFg7u/DxSUtL50UPj2XT4FG8s28jjYwdjMerrtt8NrDYb908NKAwvX7WGCxtX0bJP9D3TjSE6ysDjiCgKJ7t/6SUUttayZVGiKOK9dQJVy3qLMZVKxY9+83qDcZltOzF+WoB8BzFw1P0MbGRx9Js3F+JzVYLXjdIoH3yhPltecekwuoR0NNb64C4V1AE8LienD+9n8hPP1X3XWLkziG9Kkf1uoUlJv+v7LAhzahKV1+XLsdrHWXF4fay/cpNxrQPPS/A5Lrt89x7q30eYrVZapbfmyw/fYfpjT6FSR3eftO3SA53ewNr5HzFu5hNh++OiRSTCmZLdgYTU1uxbuYBW7XLI7NpwMSoz0VhXLhkOeksM3Sc9Tv6ZIxxd+SkdRkxGZ7ZFdY2RFgB0BhNdhgUme5eO7OPQumX0GietoB4NSvKvk3/pHP0nP3xH++/buJpuA4ZiMEnHEID1X37SgLir1Wo+X7a6wZhuPXsz95XXANBoApPdGQ8/woyHH2kwbuOOPVRWlFNWUkJaZnRxetP2XcTExpGZHV5XBAKLBouXr+QXP/tJVMf+NnEvCPmdZrGD+zWO8xmZWTgdDpZ+OY8HZs5qMv6fETpBQWulno2uUkZoY8gyamSV00ORIGhQKwQO+e30UljCzg8jofE55ch6klLDWEUsu9zlJCg0dFI3X8cCAmrrU62JnHfW8H7+DfpprFgbzYMa/w7CLSCEzn/1GjUTB3RHlZzG/itFvP/hx8x6+jnZfSGgK9Tg3yFl7MaYBJzXv8bYZnjj3aJCxcVDGFpkozbZZMcUHV5DfM/7EBQKtDo1WtT87oNFDca069KD6U+91OC7EZNmMGLSjAbfvb54Iz5nDc6y2xhbRKd1UXTlHAkmFant6hXV5VTY/X4/a5ct5LHnf3BP5nFSpPxuy9jlEGlOFgnWdEtYiz4pxKs09DNaWWMvYaL1W3OX/V7ge0nMATpbrSTrdHyWd50ZrVIwqup/lHAZti4JMZg1aj49fZnHOmXeVdCOFiathucHdmXbxescyr3BY0N6YNDe2YM7ulcOA3Pa8On63aRo/IzvVl9+GKr8ficrYoXVHgaOGMPO/Qc5tG4ZcT3HNhkT6l8uBdHrxF+ZjzLxzsq1/dWFgUy7jHUagK/wNMqEdnXE/ZU/LpYcZ2kR3YTTW1WEu/AChsyBkQcDztJ8PFVlxHeTVxgNxfnNyxg9PXqv378XVMlpd6XqaWndIqz7QCgivQi6J8WyL7+IHddvMzRkcSwmMwa2hT92TZW7gf9qJLic34/Jb9tOnUlskcIX7/6VqbOexBoj324RirQ27TGYzaz85G3uf/TZqEm9FKLNAqu1OoY8+CS5xw6yY9FH9J0wA50xsmOBFGFP6diDpDadObd9JVqjhaz+o2UJ9J0Iu2X36E/B1YvsWzmfAVOa/5w6a6o4tnUNI2bNbfa+AFcvnEFEJL1tB9kxe9avpPug4XW96UfzI7uNyC3+ARQXFrB51QpmPvUcV0oje0EXFxZw6dxpHnj0KQqrPREnnksWfMGDsx+nzNWwLPfv6dP7bWfIw0Hqd9i+Uw5Op4O1K5dz3+SpzSLljprmxTyn4/sR85KVGqwKG5tcZQzQWOtIaCSCbhPUdFKYOOCvoJfCgjpCOfa9QNBW7YrXwQZnKQM1VkxR2qdCIDOeFqvnWqkDPQKjtLHsd9tRCtBHLb/AkFvtDkvOpZJLfXt0JS69HW/97Q1mPv2C5H6hukKNIfq9OK7sw9g+/BxIruLQXVEAVaVY28hXEPpun6BFpy7YMgJVfn/dkSs7Nhp4auzc2P0VGaNnIVxoeqzGiRVXtR3HlaP0nfl0VMffuHIJYydNJ9ks37oZbfxrTqb8TtGc+Vo0uBNynqLW4tL72VRZwmhz+KRYYzid3mbFPEcUi3rfFXxviTlAglbLw6ktWXjjJg/2bksLU3RZoNZWEwaVkg9PXOSJztmoZUR6AGwT7x2hmgq4vX4ul5RzaeEH3DeyV9T7hmYrVcBTfbI5ff02f1mzh8m9O9I6sfnlvnLK3Vkdu3A5vzBQQhobyI7UKbJL4M1fPlb7fyKio7RWrC36BY8Xf/dZYG9PDWJNCcqE+glq4zJ2X8V1BK0FhU7eWitaQg7gd9fgvHEMY7umFQJSLxW/z0vZqR0kDw7Ya8QmhCcCN86fomVGVthM2PcFUllzbb+JDf6d0A88lZEn+gA2wC0hkHj787cB6J+SwJa8W3xdUELP5OYF7X9U2GLjmD33FRZ/+j4DR4whLTO8H/T/Y++sw+NKrrz9VrPUYrJsWWZmZmb2jO0BDzMlk0yySXaTL5tMNrCbbLKbnUkmGWZ7eMbMzMzMINkWU4sa6vuj1XJLahbb9T5PPzO+t+69dVt9z61fnVPnuEhITmHSvIUsef8NZj32HEaTd1vZv5X3Z6t/q2iKgliWM6nTDOz2qWRevcgX2zbSY8QEn+3dhbW7SNfq9fScvIC8G1c49N37tBs0lrjUjh6PC4Xkdp0psxRxavcWug8b67f9pE7OGX4JpJ/LZPq//9xjlvUIg+dXrEtYWwryObprK3Me9+65On/iCHqD0WvNc2+kFZR6FOclxRaWf/Epj774SkDncTgcQbW/dOE80dExxCfU9IK4xHFDC/S6FOUJZiPmECfWveGaHGnVrR/Xs/JYunINw8b6flbuFsKElmnGOLaU59FJG0aqzhSQ99wstAzQRLHPkc9ATTTGauK8upgd/b+/8Xge35W7Pbd3SMktRzmf/+DnDNBHBByJ4x62rhWCkcZochxW1pXl0l0XjrUssAmG6ut+PSV+a9+uLRMmTWLV0u8YNOn2e9yV8Lc6v3tkAOCMUhTWInQRSQitbwmhD7ttl3/9ubPihsNaRtG5HbSd6j1PhdGeRX5xAYm9hvs8f6A4bFaubvmG9pMf9vi3qC7KpZQcX/sl9z5ZdbLVm7c889YNbFYrLVO95+qprSivL295IHT40b8E1b68qOqzaYgw1Nh34pe/B6C9Icy5PNmSx0hzTO06eofQLNeYa43ayrWnyZ0TeHlcH1ZevE6GJfC1OC3MYSzo2o53jpyj1Ob5pe0+03gjM4uRDz9D/IjJleVN/vrRYiY//X2e+uVvsVZs+3zVOiY+9RILXvk3Coqcxm3zvoNMePJFpj//QzKzs+jWIo4wvY4/frKaS8cvhjxr1TO1BT+cMYJDl9L5+xcbKLXeHjCHek5XAhBdm36cOnqEW5fTfc6cAtjtdt763//gz7/6AV9/+QUgWPzua/z516/wwRt/xGF3fr97tq3jv/7f93n9P39OSXFVwy+lA0f2WTQJ3tcqOcoKkCV5aGM8G7+olh2DEuXSYaP4/FbMXcYH/OLMOrDSGVoVQHuH3c7Z/TvoN3JcwH1qCOp6nXn6rUyG3vsIUb1HYrPZ0EeG13g2Ci3FzHzxR0x59mUWvPJvFFqcv6mdp04x7eUfM+eVn5GWkVnj3BPbtuRaoYUzOf49hHcLOr2eB59+kT1bN3L9iuecE56IjIljxsNPs+yjNysT4fji1o0bzBk/ku4p8ZU2763X/8pT907n5997FmtFYrYV33zBY7On8P3HHqCo0Dljvmf7Fh6dPZmnF8wi69ZNktt3JiapJRs++Sf5mYEl4XStD3f/xLRsy/znvo+pJIP0bV+TElF7Ue6ibc/+5GfdJPdWYAl1bDYbrzz+AL/82Y957Q/OQf1//r+f8vT8mfzqR98jTOu0EUu+/JwF0yfyzMIFFBbe9ig4HA5Wf/4h0xc+6fUa+TnZnDm0jyETpoV0T2kFVQd5drudz979Bw889YLXcm3VWfHVYqbPe7BKe2/eXCkla5YvZfqce3yeszZJ15oCN2+kM3n0cNomxlQ+G3//v/9hzpQJvPT0E1itVooKC1kwezr3TJvEI/fNo6giY/72LZuZOXEs82ZOJT2tZnLYIaPGUVJcxLED+xr0npoyGiEYb4zlqr2MNLszy3gga8CNQsMQTTQHHQUUS3vlcd6OzcjNYf6v/41+zz6KrWLc8u6qZTzyh1/z0zdfrxznLdu1nYd+9++8+Nc/UlTifJftPnmchb/7d57443+QkZtDS62RFK2R1WU5ZIaYuR0gTqNnqimOImlnvz2fUhnYc+MpclSX3KbK+7979x7kWMrYe+Q4V/JKvC4xcjll7HYbb/7x5/z3f/ycz99zlhz76O9/4A8/eZK3//LvlWO9nRuW8x+vPMKffvZ0ZVlacNqHvGMrSR0/3+sYKipSkHF0Gy0He06eFixSSq5s/Jw2Y+eh0dWcUPO0BPH8rrWMmToDncG799udNd9+ybR5D3iNJKoPUV7Xid+qR1ZU//3czM5m8is/ou38BZXPxt+/+YY5//pvvPSXv2C12SgqLmbBL/+d+3/3a576nz9SrrFhiDCw/chRZv70Z8z7f/+PG9k184N1N5kxCg2Hiv2PS+4GAhLmQojfCyEuCSEKhBAZQoivhBBtKvY9IYRwCCGK3D6Lqx3/r0KIG0KIbUKItm7bNwshpBBiTLX254UQTwR8E0LwZO9OLDl/naySwENAYk0GHuvZgfeOnSe31LfhjI2KZPk//pfBvXoAkJmbx9b9h1j37t/o1akjyzZvw2qz8c7XS1jz1ms8OGMK733jTNb0x3c+ZMnf/sJ/vPw8f/7gU8C59vzpob1YdeoSK05eJP9iekhiWgjBpKQ4ZvfqyCf7T7H1QnBZ4H0lzWk9+h4yD6zwm5zh0N5ttE5N5V9+9UesVitnThzGZrPyk9/8lVap7Tl6cBc2m40ta5fx0//4P4aNmczWdcuqnMOV7M09A6i7t1w6bNgzTqNt0YvqBCvIwWmsLWc3Ed5pjM8SH+4IywVMiW08JqPzxIG1Sxg4ZW5Q/fJGKB6mUGqZ+8rODp4ztMfFRLH6gzcY2s/5t8nMyWXb4aNVng29Tsu7v/0la99+nZljR/LJslXA7Wfjt6+8yF8XfV7j3AD3dG7D/pvZpAXoia8LmrrNE0Kw4PFn2b5+DZnpgT/zYeYI5jz+AqsWv09Ohm+BHBMby8ffLqf/QGe4YXZWJrt3bOWLFevo1bs3m1avcK4l/uh93vt2JbPmP8BXH38AwFt//W/+ufgbfviLV3n39f8FnGvPxy98ljP7d3Bg7ZKQSkR1SDIjhKDXqEkMmj6Pvau+5vj29XWWQGbIjPs4sOY77AHUll7x5SI6d+vB+9+uorS0hP27tmO1Wnn36xX06NGTjWtWYbVaWfThO3y2bA333P8giz+4neBrwzeLGTt7Pnovgz+7zcb6rz5h2oNP1Oqe3MX5Vx++w+wHHiEsPLDJjDPHjxITG0eLVjVzo3gS52uWL2XqrNkBT3Q2hDivj2vExMbx5dKVlVnus7Iy2bF1K0vXbqR7r16sWr4UnV7P399+j+9Wr2fazFl89unHAPzPn/6Tz79bzi9f/S2v/eXPHs8/fvocLl84y6Vzp+u8795o6jYPYKQxmgu2EtLdxLm/Umc6oWGoJpp0XTE+VncAEB0RwXs/+yV9OzojkXIKCth76gSf/OI3dG3dhg2H9mO12fh80zo++vmrzBk+ms83bwDgn8u+4Z1/+QU/WrCQt1c4q2Ekaw1MM8ZxyV7KjrL8WmWh7qE3008TySmHhdOOolrZPPfEb5PnzGPvxtVYyzyPnd0jJQ/uWE/rtu35xV8+pLy8lNNH92G3WvnFn9+nddtOHNqzBZvNyqZVX/Pq379k9NR72bDk9s+k8Ow2ItoPRmsM93gtKSVXN39Fm3H3hZzvozppO5bSov949OGBZQ/Pu3GVRLOOFu2qRqN585bv3baJgSNGo9N5Hkc2lKfc39jNE8EseY2JjOTL3/2WAV2dzrOs/Hx2HDvO0j/+F93btWPV7j3odDr+/uMf8d1//SfThg7ls43OUt//88XnfP6bV/nlY4/x96Xfejz/oPAoChw2zpQGHp5+pxKox/xjoJ+UMgpoB1wFPnPbf1FKGeH2qcyAI4ToBIwDOgCvAr+tdu5s4M+ilk+hRgie6t2Jb85eJbfUdz1Id8wGPc/27czXZ69wtcD7D8JkNBIbdXtm7cCJU4we2A+A8UMHsu/YSc5duUbPTh3Q6XSMHzKQvcdOUlxaSpjRSKQ5nMG9enD64uXKcxh0Wh4Z1IMuibH8ffth0vOLKLh0IyiB7mobE2bkmeG9iQkz8vfth7mWW1jlPO6CqrrH1NvARaPVEd97AoVntvjsQ9aNa7Ru3RahCye1XUfOnjxC67YdAEht15GLZ06SceMaKW3ao9Vq6d5nIBfPnaw83pF/DRGeiNB5f2va0g+ja9m3hrEOVpC7KLm0E1Pr/mgMnl8Q1cPYHeUlFKefI6p9v4DO7/IKhlI2qblhMhqJjb790tt39ARjhgxEHxle+WyYjEaSE5zh6DqtFq1WU+PZOHvNu8B8qHt7Vl1Kq6zJ2gA0eZsnhOCBp55n17rlZN8MfPbcYDRx79PfZ9e6FVz1MfA3mkxEx9yeNT968ABDRzgDO0eMGc/pwwfIvHaJHj17otPpGDZ6HEcP7qOkuBiTKQxzRCR9Bgzigts1NFotQ6bPp12vAWxa9CaZ1y4Hf+MVmMIjGD3/MRJS2rBp0VvculK7NYhQkVl+9gPsWfGFz3ZlJcVcuXCOPoOHAdC1Z2/279xOl+7O3Brde/fm0P69XLpwjq7dnd/PyLHjOXxgLwAn9u8iObUtCcnek4Gu/fJjJs1/GK2XAV8wpBWUsnjxIgaOGE1CUmA2qbysjH07tjB6svdykO7iPD8vl5zsLNp39J8czh2X97w5edBNJhMxsbefjUP79zNitPPZGDNuAgf27cVkMtEi2Tnw1ep0aLVaiiuejYjISAYMHsLZM6e8XmP2/Q+zd9sWbqU3TCUZmoHNAxhjjOGsrZhb9ppJ0NxFuvu/O0cYmWKM45StmEs275GVRr2B6Io8DgDHLp1nSDenM2Z4z94cuXCOy7du0KV1G3RaLcN79ubohXOUlJVh1Bswh4XRt2NnLrhNlroyt/fUm1lbllPp8Q+WC5ZydEJDf20ULYSRvY58bknf54pMbeFXfAkhmPrA4+xa+pnPdjhsZKZfIbWTcwK+bYdunDqyn9QOXdCHmenQvS+Xzp0kKyuD1A5d0ep09Bo0kvMnnWVrSzMuoNEbMcR6r3RTcn4zLQdPRhugp9ofGUe2EdGqI+GJVe1s5xaRlZ8qt2i3c2HXOvpXSxDsjdKSYi6dO0v3Pv09essDEeVhjtImE77uy2tuMhiIibj9bBw6e44RvZy/hTF9+3LgzBlMBgMt4py5b7RaDVqNhuKyMkwGIxHh4Qzo2pVzHqKEXIyNiOVieSnXy+t/jX1TJiBhLqU8LaV0xZIKwAEEWh9BU/HRuv2/O28DrYHQ0tm6odU4xfnnpy+TXxZ46JBeo+Hp3p3YnZ7JsczAsj7nFxYRaXZ6HaIizOQVFJJfWERUxbboCDN5hYXkFRRWtgOwe/ASdU6M5aWR/dh5OZ0lx84jpQxInFdvU3jtFu3tDl4c0ZdDaRl8sv8k5V7C9KvjLTTRGJsMGi3W3GseE79JWxktkhI4e+4sAGdOOMuCnT3pXE90+tghLJZCii1FhFWsNwoLj6C4qMh5Ans52MvQmBOrnNfdK23LPI02rn2VeuWheMldlKYfRRfdCl2E50yQntaW551YS8LAqrU2va0v75Bk5sC6pXXmLW9oQvGau5NfUEhUhPO7iWuRQIFbDe6i4mLe/3YZ90+b5PHZMHjJEyGE4IleHfn89OUA76J2NBebJ4Tg+e/9gG0rvyM3iLrcGo2GmQ8/zeUzJzixf1dAxxTk5xMZ6RzIREZFkZ+fR0F+PhGRUUQYdCQnxFGQn0dBfh5mt5wKrvBGd+JbpTLh4RdIP3+Sfau+qZX3J7l9F8Y/9BwZVy6w/euPKC8NrrxQdSJj44lOaMHFI55DicuKLWRdv0zPgUM5sGsHAPt2bkdvMHBg9w4iDDp2bdtCfl5u5fcDEBkVTX5eHmUlxVy/cJbeQ0d57cP+Levo2LMv0fF1k6326O6txMQnENaqA2kFpTVC3D2x9POPmfPgowFf4+vPPmX+Qu/rRgPBXaTXhVhvKLFfkJ9XWUIuquLv7MJSVMQn77/LvPseID8vt/IZAs/Phjv3PfEsa77znNy0rmkuNg9grCGGEzYLWV5CxD150IUQjDHGkOuwcdxaFNB1CoqLMYc530kRYeEUWCwUFhcTUW1bQbGlcht4HufFaHRMM8WT5bCytSyvVt5zjU3LUG0Mlorw9pKK8Hb3UmnuGFq19fleD4+IpFWnblw+uM3jfumw4SjOoWW7bpw/43SqnDqyF51Oz+mj+wE4cXAXlsICigsLCK+Y3Ag3R1JUWIC0WylJP0lEh6Fe+1Bw6QhhccmExddNKa+8S8cByeDhw6sIcW/VcwBOb17KlPn313AAefOWr/hqMbPuC/0n7SvJmy9RXp/1y/2FtLsosBQRGe78XqLCzeQX3X6mLCUlfLJmLfPGjCG/6HY78PxsuDMtMo59xcElkbvTCHiNuRDiISFEPlAE/BDnrKiLVCHETSHENSHEZ0KIyloEUsqzwC7gAvAb4N+rndoC/Ar4gxCi1tNkOo2Gp3p35tOTlyi2Bp6kSAjB/d3acbXAwt4bWX7LpEVHRlBocXrYCy3FREdGEB0ZQUHFtoKKbTFRkZXtADResoNqNIIFfbvQMzmBN3YcwVJm9SnOPYlyF5a0DOb06sjMHh34x9rdHLxU8yH2FObsPlhzJQApyCqGqPYUpp3EkXOhygBaOmw4sk7Rd/hkrOXl/M9vfoxOpycyOpaU1Pb8+dUfUVpSTFR0LOHmCEpKnN9DabHFabilHWktQsR6F9j2whugNaAJv538K1RBDlCecxmkxBDvuVyGJ1FuuXqYhG790Bq8e/Tdjf3l4wdp33sgmgDXcDYGtV1n7kucR0dFVuZXKCyyEB0ViT4yHCklL/7HH/nVS88SExnp9dnw9uzpNBoe69mhVv0OhuZi8zQaDbMff56N335GYX5w5eTGzJpPcWEhB7dt9Ns2Kjqawop1skWFhURFRRMVHV25rryosIDYmBhaJSZgcVvDrvGSXFMIQd/xM+jYfygbPvkHxQV5QfW9+rl6j5nCoGn3smvpYq+iOlB6jpxIeVkJe5Z/USXk3m6zsvXLD0ju0JVxU6Zjt5bxwgNzMYeZaJWcTI8ePXlo7nSKCgtJSEyq8f1ERkWRfuUik+/zLnivnT9DqcVClz4DvLYJhmvnz5CXlUmfYVUiiX0K9OMH99GmfUeiomP8nj/DYuXcmdO079AJo7FuPF3uhCrUG9IDHxUdU5k/oLCwgOho58SylJJXvvc8P//Vb4iOiSE6JrbyGQIQPhLPgvPZefDpF+uv49VoLjZPCMF4QwwHrUXkB1k7fIAhEi2Cg+X+17NGhYdjqZhYtpSUEBUeTmR4OEUV24pKSogMDycq3Fy5DfBZ7aevPoK++ghWl+UE3Hf3RHf51tv2qIMmnL6aSHaVF3DS6nyXRreN8iqmZGyrKmHsGRZrZV4hTUpvbhXD6RWLyc8orCyVJqXElnYQTXg8fQePory8lP/62TPo9AaiYuNp3a4Tv/3BQxRbioiOTSA8Mopii1OklRQXYTZHUp5zjZjezsgbV8lZd8pyb6KzZhPfLfCEyL4oyb5BWMF1Rk4JvJ549tVztGmZEHCUY8aNNKKiYzFHRoXkLQ9VlNc3gZZNizJHUFjs/M0XlhQTXeGMkVLyymuv8/NHHiE6IoLoiNvtwPezAc5ne050os82dzoBC3Mp5SIpZTTQEqexPlaxayvQG2gFDAZKgXVCCLPbsa9KKVtIKUdIKT1lK3ofKMT5Iqg1Bq2GJ3p15IPjFygJYK2gOzM7tsYWZWbjOd9lowb06Mb2g06v8KY9+xncuwed26Zy8sIl7HY7m/buZ0ivHoSbTJSUlVFUXMz+46fo1sG3t7FTYgxPDenFx/tPcvJmdg0B7inU3duDFBtu4oczRpJfXMrfvlnH1ivZfj1T3hKA6OI7IcwJODKOIe3lzmRtGSfQJPZEo9Wx8Okf8ONf/w8ajYaefQcz677H+cmr/4s5MoreA4eR1DKV9GuXcdjtnDp2gPZduiFL8xCmWK9riWS5BUfRLXRxt8VYdVEupQzY22YvyceacwVTSt8a+6KSW3sU5faSAqx56USkei9lVB2XMPeGrzJGtaWkpITy8oYpC+FNnA/q3YNt+w4CsGHnXob2dYY7/faf7zGsb2/GDXYKDl/PRmRqC48C3WxouDrvzcnmtYk1M+eJF1jz+YdYCoJLlDd4/BR0eh2716/02a53/wHs3bkdgB1bNtFv0GDad+zM2VMnsdvtzm0DhxAWHo61rJRiSxHHDh2gQxff2cTjklMY9+Az7F/zHVdOHg6q79UxmSMZe/9TIARbv3ifU7u3hLSWHaDbkDF0GTyKjZ/8k6K8bBwOB5s/e5eR9z5MdJiR6DAjr/7XX/jk2xVoNBpGjZ/Iyz/9OYuWrCI2No7xU6ZV+X62b95I2zZtadulu9fJCktBPod2bGLUjHt89i1Qm1dUkMfB7ZsYM2t+wPddUmzh2MF9DBkdeH3iFatWM25yzfKa9UF1oX4jv5gb+cV16mn3RYmt5u+p38CB7NrufDa2bt5Yufb8T7/7D4YMHc6oseMACA8Pp7S0BEtREQf376NLV//vFUM9THZ4oznZPCEEk4yx7CrPpyBIcd5dbyZKo2V3uW9b2at9R/ZVLDfYdfIYfTp2pl2LlpxLu4bd4WDXyWP07diZMKORMms5ltJSjl48T8dW3sO1AaI1OqYZ4zhsLeKM1XvulAuWcq+i3PX/eqFhgjGWcKHlu/xMtmZmYXM4/DqXPBHXuR+xPcaQc/Ab7MW5TlGefghtUg/QaNFotTz2vV/wb396B41GQ++Bw7nnkRf599cWERkdQ//h42mZ2p7rl87isNs5tn8H7du3xRDfxmsGd3t5KTnHNpEyYpbH/S4CsXmdW0TSLkZH+amt9Jy8IOD7tlutFJzeTe+xNW1YdW+5i02rljN+xpyAr+HCV+g6+BflIjedcquVkiCW7NYWQ1RNG9Svcyd2nTgOwNbDRyrXnv/p00UM6d6dUX37ABBuNFJaXoalpISDZ8/StZ1vDQTOigR3M0EvXpNS3hRCvA1cFEK0kVJedNt9UwjxLJAPDAM2BHhOuxDiZ8BiIcS7wfbJE+F6HU/06sj7xy7wZO+OhAW4Ti8ytQVTgR0X0/jm6DmeqrAVVpuNe3/wM46fO8/cl3/Kq997lpH9+zL56e/TOjmJ7z10H3qdjifvmcWUZ18mJjKS937vnDT+2VOPMud7/4LRYOCt3/zCbx/CDDpeGNmXlScvcSYjl3ukJLpDK48e9EBmt8b37MDUVm05mW/j9U+/JaZlKnPvfxhNkHUDhTEaTWIPHFlnwF6KJrEnQqsnNzuTd1/7PUJoGD52CtGx8fz516+g0Wjo1nsAHTo712iNmjiTP/3qh4SbI3jm+ZcQplg8lVXTm6ORDju2W8fRtb5d59KTp7z06n4MSV3QhvlOyCYddkou78LcrWqmT291Nl3kn1xHbL+axtdbGPuN04d8ivK65Mzp0xzbv4tSt4SHpjATdrsDa4U4F2UFSOlcbjF1/GjiY2MCOncwNc2tVhuzn/0BR0+fY+bTL/PbH3+P0YP6M37hM6S2SuYHjy8k/VYm//vRIob27sWyTduYP2U8zy64x++z4a/eeUPQXGxeu/go5j7xIks++AfTFz6FOTKwZDcAfYaN4eyRA6z/ehH9X3Z66KxWK089cC+nThznifvm8pNfvsqQESO5f+ZkWqW05skXvoder+eBx57kgVlTiI6O4a9vOZObfe/HP+OlhfMwGI385n/f8Ht9nd7AmPue4NSuzexZ/gWDZyzwKl4DoUOfQXToM4iMqxfZ8c3HGMLC6TN2GmFBli2MbdGK8Q89y64liynIyeT+R58ivmLd8M0b6fz4+acQGg33PvAQLZJb8tCcaWi0WkaMGUe/iqR5ru/HoNPxt/c/QeOltrHD4WD1Zx8w5wnvpdMA9mxYRZtOXWnZ1nf0iMPhYM1nH/o9X/Wyat8t+oi5Cx/zcURVLp49TftOXcksdoojfzXOa8OVSxc5uG8PJcW3xYzBYAQhKK+WvMoUFsaY8ZNISEqqs+tnWKy0N+qxWq08NH8uJ48f48F7Z/OLX/2GYSNHMmfKBFJap/LcSy9z80Y6f/vrXxg0dBgrly9l7rwFPPHMc7zyk3/l/rkzMZpMvPbPt+usb3VJc7F5GiGYYoxjTZmzbnhUgIlcATrpwjHZS9lYlss4QwzgHOc9/7//xZlrV3n2L3/glfkPMqhLNx75w69pGRfPo1NmoNfpuG/sBB79w6+JMkfw38+/DMBzs+7lmT//HqNezx+81Aav3vexxhjOWIvZUpbLaENMFW9i9XJw7qLcHVfY/piKkrmWCD2fn75MRGYeD0wbFvD34UIfEUPcwPnc2vUl9uJctHHt0Ridoem52Zm8+6sfIoSGUZNnExOfxH/+7Bk0Gg29Bo6gU89+AEyY9SCvfv8Bwo0Gvv/q/1Um2K3uLZdSkrFnCUlD7/GZ7C379D704VFEtam5ssI9WlFKybFVn9FnxkNBJY/L2LucobNqhrB7IiXKxK30NOKTWqDT6YLylvurT+5JlF9NS2f7ngMUWiyIYudEkkGvQ6vRUlpWjuT2hIWuuICJA3vSOjHO732A78jb6ohwLQv+5RecvHSJB3/9Kr949BGG9ezJnH/9N1ISE3luzmxuZmfzt2++YVC3bqzcvZu5o0bxxIzpvHLffdz/q19jNOh57ZVXqpRPU9REhLK2TwjRCkgDekspj1fbp8NpsOdKKdf7Oc9mYL2U8ncV/14LnAJmAr+TUn7g6bheiTHyq7njAuqrxWrjw+MXeKp3J0w6/6HF7rOMJ29mEzf7EbomxVHXEzh5yz8NqN2FrDxWn77MY4N6EGm6/WP2J1Zc9+FK/OFaYyRjW5GTm8eXG3ajj4hm4pwFCCGqhDRdzLBUCWV31TB3X2MuHXZExQDzdh3zwJCluQhDJFQYa1cdcxd6czTWtIPokroj9LdnK6sLc2vOFeylBZha9fZ7Tcu5zYS1GYjGGOlXjLsovLAbQ3RLErvV9GpUF+aul8OhpR8yv9pL2dv6JE/4K7chpWTjhvWcPXOGrt26MWHYQMLCPM/owm1Dn5Obx9otO8jOzSPMZGLi6GG0M/v+UQcizHXdRmAPssSFvzrn3p4N12+++7tLDkgpPca8CSEWtp78zKLkkfcF3J9L3/2Z7MPr+kgpj3lr09g2r3uffvL9Zf7DzdMKSrGWl7Hkg3/w9HMvEREVVWWfP25cvUSPOANtO3XzG2YbDEXlNtafzwqobc7NNA6uXcKwOQ8SERPYAMMfpZZCjmxeDVIGJfrdn12rtRy93mmDfdV698T1S+eIT0omzFxhJ9JreurWfPERg8ZOJr6F9zWW1y+e4/LpE3496gDrvvqUfiPHkdjSe4I5d1KiTOzdvhlTWDh9Bg4J6BiAxe+8wYNPv+hxUFsXIl1KyZ6d2zl17ChtO3Rg2MgxhJs9T4y6U1hYwLaNG8jOykSn1zN81BjadQhtGZR7Dpb2cZ4ThtYGVx1zbwxvF+/L5k1NHvXA6taTngr4etfWvMmtXd+Ml1Ju9tamsW1eW51J/r/IdgHdj0PKkMQ5QK7Dyq7yAn7/xut+w2yDZduPfh1Qu3yHjR3l+YwwRBOj0QUsyqP1mkph3iYurEoYu65FPBuzcig1RvDck4+g1+u8hrJvOptVpX65a9yXn3a2cpz32k/vw+Ahs7l7rXJ3rPk30Boj0JicNu8vG87VaJN1eB0RrbtjSmjt1dlRknOT7FP7GD/vIY/73Tm7bSUJ7bsR1zrwJW/arHOUFBXQbciYGvs8ectTokx89u4/WfD4Mx6FeV2J8t0HjrD74GHaprRi4ujhREVG+Fxbbrt5FUtJGRsOniAtMxedVsOoPl3ooLN6nXAIVJi3eNQ5WV9eUHde+kOv+H42pl887MvmDUoYOGNfu9mBB9/c2LqYtI0fLJBSfh1cTxsevxZMOOtXvQR8IaXMEEK0Bl4HLgOnhRAzgSM4DXgs8J9AFrA7hP78tOK4OovFNet1PN6rI+8dO+9XnFcP/emRHI8hNooTN521x3V1OFANlI4JMTw1tBef7j9F71YJDG3b0qcoz72YS2yHWAqv3fIayhQXG8MzTz7OiUtp/OOvf2Hag09WGcC74xLl1RFevD7+kGX5CL25UpRXR2+OxpZ1Dm10a5+i3FFuoTz7IubO/sMtS9OPo49vR0zbwMPRrUXZOMqKMCb4D7txifL0Uwdp2a1/wNcIBpvNxrfffE1WZibjJkxg4qTJQODrlOJiY3jwHud6q5KSUjZs38XXx48wdeRgenX2vN4+ULThkUGJc31kuF9x7olQQvNCoTnbPOekj4kXX/4Rn771Ovc/8Vyl57z6hJAnod6yTXtSEkxcOnOCNp27ofNQ9zUUIgyBD5bjklOcXuqln5HYuh1dh4yu9fVN5kiGzryPvIwbbPz0nwyd9QCRsTUjhryFLQKVojxYbl2/QlRMXKUo98ThHZtp06mbT1FeUmxh3+a13POkf2+cK+t7oKIcnFnVr1w4x32PPxvwMRfPnqZ9525eB36ekooGKtYdDgdrVywjPe0aQ4aP4skXvhdwvwAiI6OYMfdeAMrKytizYxvrV69kyIiR9OkX+Pp9b4lR7ySas82D257ztWU5jDJE0zMhkqs5gSWBjNXoGW+M4Zq9jFZaA3oveYDqE1do+87yfIrKJZ01t0WqN1HuC9e7cuHIvuSHx/KXD7/goYcfplUbz+vL3SnIuv1uDnWcZyvKQuhMlaLcEFbT/hdeOY7eHONTlDtsVm7sXcOUR/3bvIzzJ9CbwoMS5a2jNOzYsJ/xC58J+JibaddJaJHs1VvuiUBFuZSSlRu2cO7SFYYO6Msrzz5e2SaQhG/mMCNzRjptm9VmY/uxc6w8eJiBHVIY0dX/WNYfhihjnYnz6LZR5F+5u5O8eSPQ0dIM4FcV64nygM3AJCmlTQgxDmfGzWigANgBTJZSBpb20g0p5REhxGfAE8Ee6wuzXsfjPTvw/rHzPNO3M3oPAtvboL987efElJXz+93HeWxwD2LD6299sDfC9DqeGd6bHZfSeW/Pcea2iMMQRGKx6muBXYnfOnTsyNMvvcz//s//MPb+p7hVfntwVZn4rQJPGdldVPd4e8ORfxW0RjQRnr9rvTnamexNCDQRt8MPa64rd1B8YTvmrhP9XjMs3IAMMxDd3XsG5OpIu42CUxuJGzjPY6ISby+RjPMn6Dc78CzG1fFm5EtzbvHep5/w8COP0rJl4BlL7ZEtPIZGhYWZmDV5PGJQV5Zs2MHeY6d5fO4UtCEkq7Od3glAefqVoI8NpixgMJRarFV+u/6wel6P2qxtnsFo5KFnv8+it//GwmdewhQWuJfveFYp5aYk3vv9fzFuzn0+xWIwtI0JqzEI9IZWp2fUvEe5cuIQmz97h+FzH8IYxD14IyapJeMXPsemRW8x4t6HCY+87fn2Jcqr48nj7Ymju7fhcDjoN2IslHg+5uq50xTk5TBm5Div55FSsvqzD5j+4JN+wy3zs7O4fuEsUx943Gc7dxwOBx++8xYvvPxKwMcA7N22mQeeej6oYwIR67k52Xz6/rvMXXA/02bXvrqF0WhkzIRJjJkwiS0b1vHp++9w/yOPo9d7H1h7E+T+vNuNQXmJLSibV17icU12k7J5Rm1wArl9fDjPyDC+yLtFO0d4ZYbyQAR6mNBy6Sd/4O2yXAboI0jUNnyorUYIRhlj2GUtYo89j76aSMpsgXnwXd5yd1zRkokxUfzr0wv5y+crefDxlkS3DFyguY+9fvnJQc9tqkUgltw8i82SQ2THYcBVr8neSjOvkjhoRo197lzb+i2po+/1G71VXlxE+qkD9JvtPXqzQ1LVcZuUsvI94Alv3vIvvl7B/Mc8C3lP3vJARXlhkYW/vfcx986YwsxJ46q08ecp94Rep2Nki3BGTh/BjtNXeGPtbp4cN5CwEPL03Pr4HzW25V4MLtFsXWMtDc7mlRY3nwlWv5ZPSumQUs6QUiZJKc1SyhQp5cNSygsV+38qpWxVsa+llHJBRYZOv0gpx7nCm9y2PSmlFN7Cm0LFbNDzYPf2vHf0PHbH7fB9b0mm3IkwGnhpVD8+O3SGq7mNN8Mzsn0rpsRH89GJi5zN8dwPVxhT9XuqXiqjROOcYDAajSx85kWWffwmtvKyyjD2usZhuQVIr6IcwFFWgKMoA118J5/nKrm0i7C2QyrXLVXHlcgtMjGZgrNbieoWeBIjgLxjq4jpNZXopMDXo946f5ykjj2Cuk4gnD19iqXffcuP/+UnQYnyQJk7cSRTRw7mv9//nEvXqwplf2XT3PFXQq05cafYPKPJxANPvcCit9+gvKzqLLe/sHZXrfPd61Zw7fyZuuxWULTt2Z/hcxaya8kirlaUYKwtWp2OcQufYcc3H1NW7AzdDEaUB8rlMyfIz85yinIv5Odkc2TXFsbMnOfzXNtXfseQ8VMxhfuenHA4HKz/ZhGT5nsebHpj/defMnbOgqASjV27dIGUtu2CWsvpjQyLtVIIX7tymS8+/Zjnf/AjUtu2q/W5qzN24mSmzb6Hd994nfNnG++33ZRoqjavTVxYwB9wJo2aH5PEkvxMShzBJQDUCsEUYyynbMVc9lHrvD65YCknSRgYqInihKOIdIKr51w9G7vrvSyE4JXnnuCjTxaRm5Pj8VhXGHswVBfl5fk3KMu+XCHKPWdgt5dayDm+mYSBziztXh0dR7YR26kPPTr4jvqRUnJszef0mnK/x/0dksw1RDnAwXVL6DlqEqbwCA9H1SQlykR2xi2i4+JDcmJ4wiXKb9zK5O/vf8Irzz5Bt06Be/wDzQM0sltbHh7Vj7fX7+PwZe8OkWCiEr1l/lfUnoaP2akDtHp9QIK6OrEmA/O7tuG9Y+cxpyQFdbxeq+GFEX3YeuE6R9Iyg+1ynVB47RbRRgPP9OnM1QILn+445TNTpWvG1BuuzLVh4WZmPPQ0mz97F4e95ky6L295IMjSfCjNRxPtXbzpTGHYM06jS+5TZXt1b3lZxjm0EQlow28bBZcQr55ZPf/EWqJ7Tg5q4Fh4fhdhrXqgDQs8cRbAjVOHaNWjbpO+7du1k+NHDvHCS9+rVSIsf6S0SOBfn17IzkMnWLY5sJrWdYG/36ei9oSbI7jv8WdZ9PbfsFmdwieQteZQUev8kWe4cPIoJw/sqZP+hCKAjeFmxj34DMWFeexasthv7edA0OkNjHvwGbZ++T4tw+o+A2z2zXROHtjD6Jn3em1jLS9j3VcfM+Ohp32e68LJoxjDw0lp73vCEmDz0i8ZM3Me2gCTnYIzjL51hy4kJAce9g6wfcNaRk6Y4r9hEGzbs58Vq9fy3Pd/6NObXVviExJ4/gc/4tzpU6z47psq+9wnCRTND4PQMC86iW/zMykLsiKDq9Z5tsPGCWvwQrU2uK8r1wkNnRxOx8BxCrBTc5znvr7cF67cQlqtlh/94Pu8+87blaX93HMKAUF5IKtjLymg6MIeons4l9l5EuXSYefW3iW0GHavz3GZ5eYV7OUlRLXxXdED4PyutbQfPB6dsWo0qzdBDnDp2AHCo2Jp0dZzzglv76mNq5YyYbozGXBt82e4RPmpcxf4YtkqfvrSM4SF1YzI9eYt9yfKq0cxRoeb+MGMEdzMK+TT7YdD63Q1lDivH5qlMM9zKxPgEuiBiuz2XdqycEx/3t59LOCSMy6EEDwyqAfX8grZcv56UMfWNQMdJvrHxvDa5qPklwW2VMtT7WrXOiNzZBRDZt7Hue2rKvd5W18eDNJagqPgGiKus8f9enM0uvBIbOmH0LXqX8VYVxfl9uIc7EUZGJNuZ+b0lsitOO0EhrhUdH6ytbtTmulMPJvUo7fHl4o3sq+eIy419Nrqnli/eiWFhfnMe8B/wpNQcf89CCF4ePYkoszhfLNua+X2+vaaK3EeGPm5OUHbKxeR0dHc+/CTfPLW61zNDX6wOW7OfRQXFbB34+qQrl9XdBs6lp6jJrHx0zcpzAkskZwv9EYTC596ni3LvqqD3t3GUljAluVfM+3BJ7y2cTgcLP/4baY9+IRPEV2Qm8PpQ/sYMt5/KbKLp44TFRNLop9STe6kX75AbtYtegwcCgQ+aXMz7TpJLVvV6YTh3u2buXbpIvMeeZLMYludiWOX0K7+EUIwfc49pLZtyzefL1KCvImR77CFbPNMGg33RCfyTX4GVhn8Gu2Bhki0wN7yhomQrJ7szUUrTHTGzBEKKMRzSThXtIALb2Nhe2QLbMZIHn7u+3z00ccBP+uB4LCVkXd8DbF9ZyGE8CzKpeTWniUk9p+GRu+MzPHkLbeVFpNxbDvJgyZXybjuibwbV5B2e4115d4EOUB+5k1uXDhN92GeI5m8hbDn5+USHm5Gb/A8GeKvbrk7LlG+Y99B9h46yg+fecyjFz5UUe6Laf26MLB9Cu9u3O/x+Qra4anEeZ3TLIW5Uavlg70navyo3EW6tw9AyygzM7q35909x0My/LN6dkCrESw5dr5W93GjwEJRgKLaPeGba21HS5OJhamtWbz7DCez8jwe52l9uSuM3Z0reSVk2cMpLcwn+1ZhQDOn0u6779Jhx5F9Bk1iD4+zo3pztLNOZtpBdMl9EFrvM5DSbqXkyj7C2g+v3OZNlNtLiyjLukR4a//Z2iuPKSlA5p0lZZjvdeuesrFfO7Kb1L7DvRwRPN99+RkxsXFMmDLdZzt/a5dCYezgviTGxfLVmi11fm5vKHHuH1O4mcXvvIHNFly9XhfRsXEMmr6ApR/+M6S63oPGTiY6PoEN334W8mAZnKHbcZSEHDoeFZ/I+Iee4+iW1Vw6diDkfrgwR0Zhs1qxWgOzwyWWIp/3b7fbWb34fWY9+qxP0br6sw8YPfNeIqJifJ5r3ZcfM/V+/1UvykpKOLZnO4PGBe7BLrEUsWfDKsbN8RwC6osta1YwdurMoI/zxubVy0BKJs2uGmHgLqQDpboA99cuuUsfEtp2ZsWXi0Luv6LuCRdavsjLoDwEYQ0QrtEyOyqBtWW52EOwWd30ZlpqDGwqy62VzSuRdvJ81Fn3JMrdE74Z0dKfKNIo5TrOEPtofVXb4ml9ubeJcqPJhMFoosQSWHoAh60M6eNvIKUk78gKpyjX6rw6NbIOriam82D0kd4rbUgpubrla9qMXUCXZN9Ri3ablQu71tN5VNVxki9RbisvY9+qbxg2Z6HH/b7eSxuWf8fECvtUF0nf1mzaRnZOLo/fXzOqSuSmB5TszRv+cv50S0lkdLd2fLz/lMf9Spw3Ls1SmIfpdUzu0pZ/7jyKPYRBJkBqbCTjOqby5eGAlknVYFSHFNrHR7P44OmQjgeICTPy7u7j5Bb7Fli+srDrNRoeSG3NudxCTlSIc3/ry+F2GHsN2g8i7/QO3x0HZEkOjpzzXl9YUkocmSfQJHRHeMhyqjc7Pdm2m8fQJnSukoEdanrLi89vJbzjaITQ1AhZr37dvOOrie7l38PkIjI+jNJLm0gcUrNeuT9KCnIJj4mvk3WWAKeOHyMmNo5BQ4OvP1pXjB7Ym4S4aFZsdSbcDcZrHipKnPvGaDQy7d77+eTN1ypr1AdDWkEpsQlJjJp+D2u/CCxZY3W69h1Et36DWLX4/ZAHqubIKNZ99Sk5GTdDOh6ca8RH3vsIhTlZXDi812Mbf8K/bUxYZZsRU2azY+V3fq9748pF1nz+kddQeiklKxe9y4R5CzEYvScJ3bLsK3oNHuE3dHztFx8xcf5D6AII6V7zxYdMuT+4xJOrP/+QGQ89HbTtKi0pxhQWhi6IcHlfpF29jM1mZ8ho37lAvHm+AxXivujWux/tu3Rjw4olIR2vqHv0QjAzKp6v8jIoDXGcF6HVMcYQzcYQxXWqzkQffQTrynJxhGjzjGjYV15Aph9Hhi8Egm5EIIFsrefxoidx5O3dPWnWPWxdcXsJR/Vkv+B0fNiLcyk+txmqrdd3H4Pln1hLRKcRaAzebW7uye2EJbXDlJBauc2Ttzxt1wqSB06kW2qC13O5OLHuK3pMmldpv3yFrrvYuWQxI+592OOkqbd3RkqUCbvdjsNhx2Sqm1wkGVnZ3MjIZM5U/wmMq1Mbb7k7XVolMKxtSz4/VDd5NkIR59UnlBROmqUwB0iJiWBen878Y8cRrPbQjHanxBhSYyPZcDa0H3qfVokMSm3BO7uP4XAEb7TD9DpeGtWPTw+c5kaB5xBTf/XKXcztnMrpnHzO5DjXg1cXOr7C2N0JT0ihvCAbh837S8RRmIYszUPrxRMO4Mg+jSa2A0JXNZmQ3hx9W5RnnUUTkYTGdDvcPKplxxqivOTaAQzJPdAYwv3WIC88t53IjsPR+PC+g3P9k+uTfWQ9cb3Ho9EGP9C8fGAr7QZ5T+4UDFJKtm7awNiJkwNq7ynyoa4YN7gfdpud7Qe9lvb2SG2SwClx7pu4hERnSPqbr1FWGni0hPszntgyhc59BrBz7bKQ+pDSvhODxk5myfv/wB6C916n13PPU99jx+olGApCF+cAfcZOpSA7kysnDlXZ7hpgucS3p4870fEJlJeXYSn0HrZ66uBeTh7Yw9wnX/Qaer556Rf0Hzme2IQkj/sBDm7bSELLFNp09r12cv+WdXTs2ZeY+ESf7Vxtew0eSVi4/9reLnatXc7A0RMxhtUcaPoLcd2xcR0jJ9bd2vJNq5YxYUbwk6J1TY++A4iMjmbP1k2N3RVFBRFaHfdWhKRbgkzm5iJSo6O33szOEMPS4zV6hhmiWF2WE1JYvEYIJhljOWkr5rq96rPlLYTdG6mE4QCuOEroaDYEFMbuqXZ5njRQ5NBx7MwVr8l+SzMuQNE1Wo57sko0o/sYrPD8DkyJHTBEJzv3efCWF14+itDpiUi9Xa7WkyjPOXuQsLhkwhNqjlWrk3Z8H/FtOhMWFRuQIAc4vXcrbXv0rVKJw4W/idz9O7YyaETNOuehsujb5Tw8b3adnS9UuiTF0ikhhpUnL9XYF0p5WuU5rxuarTAHaBEZzkMDuvPG9sOU2UIz2sPbtaLMZmf/1dAGiZ0TY5nRvT1v7DhCeQh90Gs1vDSyLytOXOSil3B0d3yVKJjfpS2nsvPZesG5/t1bmbTquCcAycm0YEgZRsa+JRTcuFAj8Zsj5wIg0MR6zxzpyL2IJjwJYaia7dIlyAHsedcQWgPayOTKbdUFOUB5zmWE1oA+uqVfUV6Wcw0hBIbYmp4odyHu/vIovnkRrdGMMTa5xjHV8fQysZZYMIQFPiD2xYY1q5g4dXqded8DwdOEjYs5E0Zy8doNjp292GAZ2m8a6y/hU30hhOgrhNglhDgmhFgmhKi3aeDomFjuf/J5Pn3rb5QU+18v7klkdezRh/CIKI7s2urhCP8kpaQy/p4H+Pa9v1FWEnz2Yo1Gw6xHn+PYnu2knTsZUh9c9J84k9xb6Rzfvh4IPbv62FkLqniQ3Nm9fiWWgjwmzlvo9dncv2Udyantad3Bcy4NgPPHD1NeWkLPQb6XvVy7cJaSoiK69PFfazvzRhoFuTl06BH4sp1b169QXlbqd3LAGzmZt0hI8m8vA+Hgru30HzK8XpNbBsOQUeMothRy/OC+Brvm5fOhRe01Jg1p88I0WhZEOzOtF3pIThsIyVojLbR6DpeHVnEmSqNjvDGGtWW5lMjgx3lCCMZW1Eq/4Cfju6+65dF6DZ004ViR7CsvQEoZVBi7O/0nzaqSU8gdy5WDWPNvENtnRpUoRfcxWPH1Y2j0YZhaOG2eJ1FeknGZsrxbxHQZWrnN0ziqJPsmxZnXie82yO+68pKCXHKuXWD0+LEBCXKAguxMcm+k0bZn/xr7AnlnXL14jnadugR0LX8c3bWJnl06eU1uWZsQ9lAYmNqCML2O7RfT6uR8sR1i/Qr0y5bb0RnRbaOahee8IW1e03gb1oI4s4nHh/Tkw70nQj7HjB7tuZidz5kMz2Uk/NEqOoJHBnXnjR1HAl4z7o5GI3h6WC92Xr7B8Ru3kxoF6i1359EJgwnX63hj7W7Kyq0ey6R5DWOvwJmRXCKttwf1UjqwZ55AhMWiifQu5hyFaaAzIcLjq2x3F+UOSxayvAhtbLvKbZ5Eub20AGvOFUytevsV5Q5bOZZLe4noNPL2OT0I8SrHWMvJP7+f2O4jfJ4bPL9MLLeu1qgJGuiLojrRWjvXrlymU5eu/hsHgbfJmEB5bO4Utuw7wrWbGXXUI99sP3OZ0rjAy9Q1Ed4B/k1K2Rv4FvhpfV7MHBHJQ8++xJcfvO0zPNOX57PfiLFYCvM5d+yQ1za+iI6LZ9Yjz7Hs4zcpzAvebgohmHLfo9huXebi0f0h9cFFvwkz6d6xPYe/+5DS4tCyChvDwoiMiiHr5u3BiZSSNV98RFxSss+126cP78PhcNB9wBCvbW5dv8Kl08cZNtn3umxLYQEHt25g1Ix7/PbZbrOxddlXjJtzn9+27sdsX7WEMbPmB3yMOzmZGcQG4MUPBJvNxunjR+jZf1CdnK+uGD99DhfPneHqxdrlkAmUk0cOkn7N95rQJkiD2jyDRsN9MUksL8gKer24y6vcSReOVgjOWEOzEWFCyxRjLJvK8nyuGffFcEM0+Q4bJ62WoL3l7kyNjCFVa+TL/AwKrTavYezeJt6v5JVwJaec4rBEim5U9ZYWnN6E0OqJ7DzK6/XLsi5js+RgbuucPPQ0xiovzKbgwkES+jkjAOMSzR7HUfbyMm7sW0vKiNl+RbmUkhu7ljLrYf95N9yP2bvyS4bMrGonPUVPeaLYUoQpiGgkf33ZsHUXk8eO9N/YA3UVxl6d8Z1TybaUcCy99klVXfgS51eKi7lQVNWx4BLoTVikN5jNa/bCHJxrtUd1SGHFyYshn+P+/l3ZfjGd9PzAEmJ46sPzI/rw7u7jZBUF70VyZnzvzrnMPHZdTg9JlLuYMLY/C0f25bVv1nLm0rWAw9jdCWszGFumMzGEdNhw3DqGJqY9IsxH4o7ibLCV1RDu7qJcWkuw511Fl3Q7rMmTKJd2KyUXdxLeYZRfUQ6Qf3w10b2mEZ1o9inG3ck8sJLEQf4TGHmrs5l9Zj+pfYZ63Bcs33yxmHkPeE5I4ov6DGd38dLCuXy6fD15RYEPaEL1mj82ZgAfbT1EZLu68cg1EF0Bl/t5HRCa6gkCU1g4E2bOZeXXn9XYl1ZQGlDG3RFTZnP13GnSLoUmQEzh4dzz5PdY//UiMm+ENts+ZtZ8LPm5nNpdM9lgoN7vtjFhdOjeiyn3P8qaLz7i0unjIfVl+NTZ7Fi9DCklVms5373/Bv1GjPXpuU6/fIG0Sxd8Zk0vsRSxc+1yv7XF7TYbO775iKeff5HW0f7vff03i5gwb2FQ3uaN333GhHsf9BuV4+33s33j2joLY1+/7Jsayd6aCrPvf5gdG9eRnRH6ezhQps97gLVLvw45sWMj0eA2Ty80TI2MZ1Vhdsjn6K2PIF/auGJz/r6rh4IH0odpxjj2lRdwK8Q14wMMkaSXWjnjqF05tiGJMTzeuyMrb97i0K0cn9nY3cPY3Z/thF4juLpnC1JKpMNO7uGlGBM7+kycay3KojjtBFFdnUv4PI21HLZysg6uIWnoXMD7GEpKyZVNX9Bm3AK/NqlDkpncw+voP3EWWl3gkXUH1y2pOEbndTmTL7avX8OoiYHnLPLFshUrmT11Qp2cq66Z27sTh9IyuJp7e8lHKOHs7ngT52MTE9iVnUOZl2XITVScN5jNuyOEOUCP5HgcDsm5TO+h3v54ckhPvjl6jsLS0AxumF7H90b1Y9HBUyF5zgHu7dOJjOsZ7Eyr6aH0Fsbu+vG7P0QtOnfjJw/MYO+xU2zfeyDgMPaCrGIKbl5HaPVoo1KwZxzHkXHcmVld713sOoozkSU5NULcq4hyhx3bzaPoWvYFPK8nB6extpzfQnjnsUQHIvAKzhLXpTexKYF7coqunyYsqS06k++ZUG8vFIfdRlKEMaR16dWRUmK32YiOaZz1Ob7C2cEZevyjxxbw/tYj9d4XnVbD3ME9WHbgNFHtWzaXdefHAdci2fuAVB9t64zWbdsTG5/AySMHgcAFuTsT7n2Qg9s2kJ8T2mBXp9cz98mX2Ll6acjnmDV7Dlq9nuPb1gFVPRneBlKetoeFm5n7xAvcuHKRwzuDryqg1WoZOGYiyz9+i2/efp1J8x+iRWvv9ufa+TMc2b2NCfc84LWNw+Fg5afvMuOhp/wOPNd88RFzH3wMo8k52ZYS5X3S7fzxwyS1SvW5nr06aZfOExUbH9Qx7kgpKbFYglrL7ouiwgKSkv2vJ20MhBDc/+RzrPhqca0ycgd6rVn3PcTaJXVbtq+eaRSbF6fT005v4khJaCHpAEMMUVyyl5DjsHI1J4SlOBVrxk/YLOQ4gk82eMFSTntNOBFoOemo6gjyF8YOVKldbtBoeGFsL/LLyll96nLAYewXM5yTAkIIYnuM5taub8je9yWRnUdjjPe+bK08/yaFZ7cT02e6VweIlJJbu78lacgc4ltEeR1DAaTtXEbLQZPQmcJ9ess7JJm5deUCeoOR+FaBL6vLy7hBfJieAT26hrTMKSXKRE5WJrHx/pPRBcKNGzfp2rF9nZyrPnh0UHeWHr9QJal2fYnzua1asupm7fLMNDANZvPuGGEOzjJma89codQa2syzRiN4Zlhv3ttzPORs7zqthmeHOz3nNrfZoMJrtwLyghdeu8WEti0pttrZk55Zud3X2nJ33IWMvmVbHp0zhctX07hw8VJAYewuCm5cQBORhDapF9rkfj5LmTkK0qDcgib+9vpK9yRv4DTWtvRD6JL7IjRaj4LcRenV/Zha9iIm1ft6TRfhEZKSzCtEtukZ0H2Bc4Kg8PJRojrUXG/kwlvYlYvMYztoO6hukoGkX7tClI813IH+zeoTo8HAhKH9Wbsv8GRwoXrNOyfHcz0nn9Jy53McrEAvK8yn4Ob1gD/WEgvAAiHEfrfPc+7nFEKsF0Ic9/CZCzwFfE8IcQCIBEKPUQySEeMnc2Tfbp+Jy3whhGDGQ0+z/qtPsJaXhXQO55rxZ1n75UeUlQY/0AXoMnAEhrBwso56rwgRqLdjxNQ5lJeWcPFU8J7z1h06M/ux53ngpX8hMtr7RNnJA3u4eOoY0x98wqfgXvP5h4y/5wGMfrL57t24mi59BxKXeFs0e5tkKSst4cT+3fQf5TuLuTtSSvZuWsOQCdMCPqY6B3ZtY+Bw7+GtwZCfl0uUj++3KaDVahk3bRabVoWWKDEYEpKSKSstpTA/339jD5QVFQRl88oshQCzmqPN6xUWwTVrGXn20GvOjzHEsLu8gNIQS7EJIRhniGFPeUFQa87dw9dTNCai0XHaEXyUZnVP/+yRfYk0Gdh26jJwO4zdk7f8Sp7TRruSvhljk0keMZ+EoQ+iM3t/JrXlacjcU7SdvJDoxAiv7bIOraH9yCkktfEt6LJP7SM8sTV9enTxK8rtNhvHt62jzzjfJWRduN4Tl7avZtSM0KNyzp44Rpcevaps81QqLZAa5mVlZRiMRr/t6oJQx15CCBb07cLXR87VcY9qEqnXYdRqySoLbdxRXmwJzuYV5gNMag42744S5kIIHh3Ug0+81OYLBJNex0MDu/FeiDXOwek5f2RQd/6+ZhcFV29WEeS+xLn7vkntWpJfZmXfjcDWfLjPark/lDK2FQ/Pn83S5Ssqt1U30O4U3Lwe0PVcOHIvghBoYtoBNQW5C3vGSbRxHYhu09OnKC/PuoDGEE5cF//rDqMSwsk6sJLEAYEZaxc5xzYT37vmoNYlxn0JchelubeISgzN21N9wH10/x56Dxwc0rkCobbrzF0M7NmF82m3KLAELr5CfUE8OKIvn+2s6qGvZ+/5V1LKQW6ft9x3SiknSSl7efgskVKellJOkVIOBBYDF+qzo9W595En+eaT0EuYaXU6pi18kuWfvBNSjXPXOWY98izLP3475HNMnjQJrVbHoe21z4o9ZMI0ju7aWi/ezn2b1lJcVMDY2Qt8ttu1djld+w4izk+itEunj2OzWenUs2/lNl+RD+u/XsSk+Q8F2ec1DB43pVaJJS+cPkWn7oFPgPri6L7d9B3ceCUhA6VNh04UFRaQk1n/OTamz7uf1d9+Xu/XcWN5c7V50yPjWV2QE3AJs+pC1uX13hhijfOq58gL6Bye1pSnaEyY0XHGYfHpLXfh7i2PbhtVxRs5fcJADl9Oxx5ElaKcTO/h9FVy9OSfpiwnncRBM33aEEfGMRI7dCQ8yffyw+KM65TmZTB0tO+KNq6cPftWfcWQGb7D3atP3B7bs50eg4ah1foXzZ5IiTJxaM9O+g8LbT149RrmBw4dZtAA784gaPjEb55IjjJj0Gm5khPaZH8wTE5KYt2tTP8N6471zcHm3VHCHCDKZGBAags2nbsW8jkSI8KZ0LkNi0KsUV547RaGnALGt0nmaw+l2Kp7z71506e0b0VWSRlbDl72ei13w+wuXNyTvjmikhkxfCg7d9T0RlUPYwent9yFJ5ENoAuPgoLL6GNSMCZ39yrIAex5VxDGKGI6+haf9uJcdLKExP7+1/NEJYSTf24fke36otEb/LZ3YbXk47CVY4i+HfYeqBh3UXj9HN179Qm4vT9KLBbMEc0j4dmzTzzM+6uCy+YdijiPiwhDp9GQWa2MYFMMbRdCJFX8VwP8EvhnQ17fZAqj89Bx7Fq3PORzmCOjGD3jnlrVKA8zRzBu9gJWf/ZB0Me6BlP9Ro7D4bCHnDHenYFjJ3Fgy7pan8eFlJJNSz4nMiaWQWN9lzQ8fXgfeqPRb7b0wrwcju/byYgpgZXOOXVwL207d8McGfgavJJiC1k3031mjPfHjWtXSU7xn+sjUDJuptOile867k2FGfMfZMVXi+v9OqawcOISW5B29XK9X6u2NLbN0wrB+IhYNhSFlrAXwCA0jDZEs74sJ2SbpxcaxhqiWe+lTvoFS3nlxxupGhN2u+AS3nO4uMLYoeYkg7tT5v7ZU/n2yMVKb7kLd2eM+5jPHW+Va3KOb0YiievlXUTHJZrRl9/AWlJEXOd+XtsB2EqLsZ3fydi53pcAwW1Rnn7hNBGxCUTGeQ4n9xRFZbWWc+n08YAqW3giJcpEfm4OUTExdVYl58TJU/Ts0d1/wybA3F4dWXbiQr0v49FpBO3N4ZwrCi23V0PSkDbvjhPmAANaJ5FeUOS1NnggdEyIoXfLBJYcCy4xkrvAbh8dQceYSDZcueG1rb/w9mGEc7OsjOP5gc1eVfeWu+gzdDTbdu/lZmFoYSNw2xuuC4vAlnYAbWw7NBG+1ys6irMxhUcS232cz3bSbsWRc5roXv4TC0UlhGMrLqAs9ybmlMBKWLjEd8mFrXSeNDco73h1cs4dolXPusskPGdh4BlGG5swk5EBXdqx7eiZoI4LRZzfP6IPn+88GvRxjcBCIcRZ4DSQDrzf0B1I7dQVu9VG+uXQJ3ETklPoO3wMG7+tmVAuUOKTW9Fj4FC2rfjWa5sreSUeo3VcDBwzCWtZKcf2bA+5HwCpHbtw49rlkEP03XE4HKz45B069x5At/6+Jxgz0q5x7fwZv+LdbrOx5ouPmP7gk5XbfOUJKCm2cP7EYXoNCc6Ds3nJF4z3sQ4+ELZvXMPIOkqABDB34eN1dq76RqfTMWzsRLZvWFPv1xo/fTabVi6t9+vUAY1u81roDURqdJwvCywpqadEb5EaHYMNUWwqzwu5HxEaHf31EWwvdy5DCESMu5NvdZCCCT2Cyz7EuS9vuWvCOjUpjrzCIgorMl4Hs3yxOlJKMvevwBjbiuiOAz22cY2hygpyyDlzkJaDJvk8Z6ekCCz7l9FnxkM+Ba9LlNus5ZzevYVeo2qe19eypi1Lv2Ls7MCrVbjjyu2xefVyxk2bVWVfqGHsAE8+9kiDloUMZMzlzdEhhGBWz44sPV7/gTBD42LZne15YquJ0WA2744U5gAP9u9aK685QJ9WicSFm9h5KbDwEk8iu3+LOOwOyckAapRXx7WufEqLJM4UFZFTXtXQe0r6BlW95e6zpv0HDeH8qRMeZ05dSd/cveUu3L3h0m7FlnYAXYueaEyePeQuHGVF6B0Wwtr6HshGJbfGkXGUmN7Ompk+21bM5GYeXE3CAN/rJauL78K0C0Qkt0MTREbP6pQV5NAmpWWd1hrX6ZwJ5DIsoa2Za4jM7O6M7tOVYxeDf7aCFecGnZZOyfGcSW/QUKegkVL+n5SyS8Xn32QjvWFGzbiHE/t31+ocrTt0JrVjF/bXwtPcrmtPImPjOHlgT4197oLclzgfNG4K2TfTyUirnQ3vP3I8pw/Vria1tbyMJe+/wfAps/x6nQvzctixZqnfDOwA6776hEnzH0bnpZ5tddZ//SmT5z8SUFsXmTfSiI6Lr1XCNkthAUajqdJO1QV1ea6GoHOPXqQ3gCdbo9HQZ/Awjh1ouDrqodBUbN4wczRnAxTm3hK9xWn0dNWFs6889NDdwlJwlGtYW5gX8jlaE4YDSU61pauBestd79d5k0azZvM2j9fw5i2vjnTYubXrayLb9/Po/HAfV9lKi0nbsZTUsfO8nq9zi0g6t4jk9OaldBk1Db3Re84N95Kze1d8ydBZ99do4yvPSEFuDhqtlui4eK9twCnAPX0ArOXlWK3ldZboEpqfzWsXF0V2cXDJZL3hq3SaEIJRCXHsygk9cXdD0JA2744V5lqNhocGdqv1eUZ3bM2FrDxuFfo2/r4831Pat2LvjSzyQ8zUDjC3ZTLLb9ysnFWq/kOvno3T3VvumjU1m82Ul4X+oElrsTOBW6v+CL3vZEYR8S3Rld4ivJPvNURRya0punyAsFY90Bq9G0H38Kq8M7uJ7jjQp8D25AnPPrWX+B61K28mz++i4zDPnrBQa5g3BfxlZndHl9wGo0GPzR78THyw4nxKn86sP9agyxebHS4PqxCCyQv8C0J/dOk7kKL8PG5cveS/sRf6jRjLtfOnyc2saherZ1v3xZjZC9i28tuQ16yDs6RbbTzmxUWFLPngH0y571HiW/heRlFaXMyaLz5i9qPP+Z24O7l/NyntOxETYE3w4/t20rFHX0zh/stAurN7/QqGTvJfEtIX65d/x8RZ99TqHHcCkdExWIpCzwYeKH0GDuH4of31fp07hRlRvjNmX80p8Zt9PUVrRIvgmi3w8VF1z3hrjYkS7OTKwCfYq68rb084VyjBjnOc5y7KXXjzloPz3WxO6UCxMHlN+gbeq80AOKxl3Nj+OfF9JmKKT6ls7ynK0GGzcnXTF7Sd+KDXCjWuxG6ZF09hiogmqoXnJTEdksxVxlDXzxwntkUK5mpJIv29N3asXsKo6XNrbPckwL2xcdVSJkyf47NNfRDMOKwhSI2JJD2/qNaZ2f3R3mzmanHg5XjvdO5YYV6XPDSwG18cOlMly3rQ5+jRns9OXQ44XKN6FnadRsPohHg2Z1ZNBheotxyg0C64kWep9JaD7+Qf7jhK87HdOomu9SCfGdqjWnYkMjGV4vNbMXeZ4NUDHpXcmqjk1liLsrBbcjC18O6Jcl/vZLXkUV6QRbiPBHKeXjqF188RmdIpZE935xaRpJolOqMJbYAerjuZPgMGcuJSaLWrgxHnGo2gRXQEN/Pqf0Dc3AilPFqgjJ29gF1rl9dqIm/SgkfY8O1i7NXqMwdatkaj0TB29ny2Lgu9jJROb8BmDS0SJTfzFqsWv8+cx1/AHOU7OshqLWfZx28y+9Hn/XrAC/NyuHz2JL2HBpbhvMRSxOXTJ+gxMLhJxVvXr5KYnBJy8qO0glJKS0uw2azNJgdGfdKj74DK0oT1TZsOHblyof4zI9/pBFMObYAhktO24qCyrFenp4jgjMOCLdRs7wi6EcFpqq657Wg2+PWWu8Z+Br2e8vKqNs9XdJI7tuICbu78mm4zH6ZF+9Y+l/tJh53L6xeTOnYeWoNnoesS5eUlxVw/tpf2g8d5bFfdqWErL+PsgZ10H161vb93R35ONmHhZgxGz57wQLDb7eRlZ1epkAGew9ibOrUJZwfnsuCD152JL+urbJqLnlGRnAhwye6djhLmAaDVaFg4oBufHPCc7T2QMmgGrZaZHVP4rhbh9e3NZix2O2UtqhqZQLzlUDFItd322rvKZbiSvnnDUZSBPfcKupSBRLfqXFl/3NNHOuxYzm4kvMt4hMbzDGpUsnPGVDrsFJzeRFSPiZ7bVUtCIqUky0cIu6+XSPbp/cR1C35duCsEC+D8zjV0GuF/DfzdwIAenTh0/krIxwcjzucM6s7SWlRauNOoT0HuQgjBtAefCCmRmwutVsuk+Q+z7qtPQj5HQnIKBpOJtEvB5fpwodcbsFmDj1RKu3Se7auXcO/T38dg9D2oczgcLPvwTaY9+ATGMM8DR9fgsFWkkd3LPmPyfY/U2OdtELnuq0+YvCC4EHaAvZtWM7gW5dEANq5YwsSZ99TqHHcKbTp04trFhoneGT5uErs2b2iQa92JBOIl98Q4YwxbyvL8OlC8rR8XQtBfE8Uhh/+JZG9Z2MPQEomOYq1TXAeyttyFjG0FMa0ocYgq3nK4XbvcRXUveJi2EMuZDfS490l0Jt+ROVJKrmz6klbDZqAPr5qI0jVmci+BdmLtl/SaWnPNd3UvuYtdyz5n2OyqeTECmdA9sWUl993/QFBCvDrb1q1izOSqlX6aoyivC+LNYeTWUTg7+BbnvaOjOVaghDk0U2GuNTb8Q5IQEUbP5Hi2nK9aTiwQUe6idaSZ+DAjRzJ8ZxL1VbN8RnILlp6/hpQyKG95hsVKdpmDtNyiynVGnqgutA2yGKPJQPyAe4lu1clnv6V0YDm7gfCOo9HoatZrdHnJXeSf3EB094keverugtxF7vEtxHYf6TFkyldoVsG1s0S27hyQt9z9peL+YrGVlYKU6P28sOqLhqhlHkwYldFgwB4eeGZoTwQqzg06LUadjoKS2ifxaq6U22WDCHJ3wiMi6TNsNLvXrfDf2Asx8Ym06dydo7s9r3kMhOFTZrNnw6oanvdA0OkNWMuDE+ZHdm3lzJEDzHrkWb/JeqSUrPj0HcbOXuC17rn7IHHtkq+YOPMe2sVHBeTJObhtAz0Hj/Aq+L1x89plklqlhuwtB2dyuusZ2cT4WavpwvX7dP/cSdRlXhF/aDQaYhMSyM4IfHyhcBKKIHehFxoG6iPZbfUuEPwldTMKDW00Js45Qk8+3IYwrslSrBWe90C85a5M7KXaMCzlnkPYvZF74ShZJ3bTbvLDXkPS3bm+fQlJvUdhiknwOmZycXHvJlr3GVpj7ORt6d+Fw3tp2b4z4ZG3o5T8ifKUKBNh5YWYIyJrVStcSsnNtOu0TL09lr5bRbkn6iKk3Zc4bx0WxrXi0J/fO4VmKczBOVPY0KWTBrdJ5nJOfq1mkMaktuDQrRzKvazP9SXKAeI7xjGtfQo7KmpJB+otBzBHRlOcn1f5b19h7NJuxXJ2I9qwaMJSPWfkrNJeSorPbyWszWA01daKVxfkAKUZF9BFxKMzx1VtW81L7qK8MBuHrQxTQmqV7YFkVs89d4i4rp7vwd9LxcWl/ZvpOMx7xtHmvL48VASiymRQKBhatQ1IoN87tCfLlNe8wWnXtSelxRayb4ZeX7XHwKGkXTpPcYjrc4UQjL/nAbav+i7oY3UGA6Ulga1ds9tsrFr8PgajiQn3PBCQEFv/9SIGjp7od/05wLVLF9BqdaS26xBQfyyFBWSkXaNjj+BLMx7Ysp7B42uXRf3Y3h0MGDU+IIHtrc2dJtJFA2ZVHj9tNlvWrmyw6ymcJGoNGNFwwx76RHALYaQEBxYvYfGB1Czvq4kkU3/7ufHkLXcPYXenel6O6t5yF9Lh4PqOpTjKy0gdfU9ANu/GvrX0HjCIvr27+xwzAVhyMigtzCOxfdV8T97GS9ayMq6fOUanAcOBwHKRuCY3N65cwqRZ9/rtvy9OHztMr/7OsWKSWV/nolxb2DQn2oLRUvUpzkfEx7EnJ/QSiHcKzStNoAdcP6iCS55LktU1D/Tvyif7T/HM8N5Becvdmds5leUXrjOvS1VB4k+Uu2gTZWZXWobXuuX2yBZVMnW7Zk4zrFrSbuXgLoU9hbHbLTmUXN3n9Hwb/HuIpXRQfG4zxpa90Ia7vTiSPSf5kA47xdePEjegqhH1JMhd5BzbRIuht9sHWuasNDcDY0xilReOv5eJJ8qKCgiLjvO4z5coD3Q9bX1jj2xR5y+FBnQgERVmxBJg8sTSwmzsHqoLeKO8RK1f98XoWfNZ8cnbzHn8hZDPMW7u/Wxd9hVTHwitTFZsQhJF+c4Q02A8l1qtFkcASQpzszLY8M0iJs9/hOh438mkwDkRufaLj+jabxCt2nnPd+HefuPKpTz20itVtvsSrFuWfcXEeQv9nrs6loJ8wiMja12a59b1K/QdPqZW53DHda+1CTNtbBrSa24wGrHbA4sSKbPkIYOxeZb8ULvVpKmNt9yd/voI1pTl0FIbuve1p4jgkKOAQdqq+SkCEeWupG82JCmxJqLb3o5O8ySMXN5ylzOmoMzm11tuLS7g2tZvaTlkKmFxyVX2eRsjndq0hM6dOpLYIbB63Ge2rqDf7KrlYH2Nl/av+ZbBMxYEPG5y2ZKy0lI0QlMrbznA2RPHeOLxx9AHmEco0FJpzRlPJi8ytUXI+scXmoqLBZKLy1qc77GKlNf2hc1H8Ddbj3ljYdLraB0TyZEg65u7E2syYnVICt0SdAQiyt3Lo3VJjOXU9Qyv3nLwHP6s0ek5fT3Lo7c8Krk1ZTdPUZZxBnO3KYGJcocNy5n1mFIHootMqvSOexPlgHNdedeq2dp9iXJL+jnCW3RAVIRlBlN7POPYdpL6jAbw6xUPFm/ro+42aus1h8DC2mPMYeQUqTCnhkar1dKhe2/OHTsU8jnCws2Yws3kZmWEfI5uA4aEVPrMHBVNYb53+3rq4F72rF/JvU+/HJAot9vtLPvoTfqNHEe7rj39tk8rKGX9sm+ZMHNupbDz50W+ceUicUnJGE3BT+zt3rCKYbXMxA5AkJMggXKneM8bgpat25B+LfRcHncTdSXKwTkB00Nn5qS15jjJfc23L7RCECV05ASRpR1ui/KOZgOTE+LZV+wMq4/tEFspyt295Z6WoCWnpHotNdm5RSQFV0+TvnsV7SY9RFhcst/IQSklR1ctJqlDD1p26xfQfVw+sJXUPsPQVIzb/I2XoqwFJMdE0D012Wsbd9wn+LauXcnYqaHbPJd3PFwrAxblvghz1I+NC3asVZ5ef7ajvjK1d42M5ExRkf+GdzCiGRR1r4EQQtUSUSjuXrKklB6zWgkhFurbjV6kT/G//MJF2bm12DNO9pFSHquzHtYxyuYpFHc1vmzeVF3rwasNbUcGfLLyS1uxpR8cL6XcXFcdrGuUzVMo7mp82bxBuha99hk6eV9eWh3rtb1Yr+5cIKX8us56WE80y1B2KWXw6bUVCoWimaJsnkKhuJtQNk+hUNyNqFB2hUKhUCgUCoVCoVAoGhElzBUKhUKhUCgUCoVCoWhElDBXKBQKhUKhUCgUCoWiEVHCXKFQKBQKhUKhUCgUikZECXOFQqFQKBQKhUKhUCgakWYnzIUQDwohtgkhCoQQtmr7nhBCOIQQRW6fxdXa/KsQ4kbFOdq6bd8shCirdmyREKJ3Pd3HH4UQJyruI10I8bYQIq453ovbdX8vhLhUcU8ZQoivhBBtmuv9VFxbI4TYKYSQQojWze1ehBAfCCGs1a71ktv+ZnMvdyvK5jW9e3G7rrJ5TexelM1r/twpNq/imneU3VM2r+ndi7J5dxbNTpgDucAbwCte9l+UUka4fRa6dgghOgHjgA7Aq8Bvqx3722rHRtRjbWM78AgQD/QFWgPvN9N7cfEx0E9KGQW0A64Cn7ntb273A/AjoNjD9uZ0Lx9Wu9Ybzfhe/FEirZ7+XN6paF9SL72pG5TNa3r34kLZPJrkvdxdNq9c2TzXjib497vT7J6yeTTJe7m7bJ41OPPVDGxeJc2ujrmUcg2AEGJcCIdrKj5at/9vFKSUv3D7Z6YQ4m/AoiBO0WTuxYWU8rTbPwXgALoGeHiTux8hRBfgJWA+cCiIQ5vcvdSC5nYvK205lyCmM0If5rexw5KJtNuQUp5vgL6FhLJ5lTSZe3GhbF4lTe5eakFzu5ftjqIMynOuI4yRfhvL0jwcxbkAe+u9ZyFyp9g8uPPsnrJ5lTS5e6kFze1eTjqsJZRnXkSEx/ttLMst2POuAayt957VAc1OmAdAqhDiJmAFdgA/l1JeApBSnhVC7AIuVHwebrxu1mAicLTatmZ3L0KIh4B/AFGADfix2+5mcz9CCA3wHvBTIM9Dk2ZzL8B8IcQ8IAtYAvxGSlnktr853YtPpJTluvYTcNw8jDZ1uL+2OG7sRxbdbO4hWc3176dsXhO6H2Xzmuy9+ERK6dB1mob9xgF07cb5bW+/cQBpuTVKSinrv3f1RnP++zV7u6dsXtO7F+4umyeFEAPs7D+o7TAFIYTP9vabh9Ak98N2cb3NZ8MmgmiutrliJnW9lFLntq0DzsmG80AS8F/AKKCvlNLi53ybgaFAmft2KWVMHXbb27XnAx8AY6WUByu2Nct7cetDMvA0sENKubm53Y8Q4kfASCnlAiFEO+ASkCqlvN6c7kUIMRC4DmQC3XGG0F1whTE1p3sJFCGEEOYWDm3qSIQp2ms7R/4VHPnXcGSf9W3VmwjK5vk832aUzasVyuY1vXsJBk10qtS06IfGnOi1jaPoJo7MEzjyriib50ZD/f3uNLunbJ7X825G2bx6RxPXSWpiO6KJSvHaRpbkYE/bgyy6qWkuk5F3lDD30EYP5AOzpZQb/Jxvc8X5fleH3fSLEOI+4E1gvpRyk492Tf5ePPQjCbgItJFS5lTb12Tvp2K9zWZgkJTyZnWD7aF9k70XD9cfifPeIqSUZR72N5t78YUQYqSIbrNd136ix/1SOrCdXQ4l2SlSyvQG7l5IKJvn85ybaQK/RWXzPJ57M8rm1TtCiF4iIvmYtuM0jx4kKSX286uQlltdpZRnG6GLQXOn2LyKa9+Rdk/ZPI/n3oyyefWOEKKtCE+4rO08E2fwQ01sF9YiC9OGSCn3NXD3QqapryOoLbLi0yRnh4UQT+I01LN9GeoKmvS9eEEHmIFWHvY15fsZBSQCx4UQWcDBiu1HhVumSzea8r1Ux1HxX299bU734hUp5Q5weog84cg+iyaqNc1FlAdBk/77KZvXZO9H2bzmcS9ekVIexxCJLLjqeX/eZURYLM1FlAdBk//73eF2T9m8psfdYvOuiIhkZM4Fj/sdhemgNdCcRDk0Q2EuhNAKIUyAoeLfpoqPEELMFEK0rvj/OODvONdb7G7MPntCCPED4M/AVJeIqLa/2dwLONfqCCG+XzF7inCWnPg7cBk43czu5wugI9Cv4jOjYvsU4KPmdC/CWXYmpuL/OwN/AZZKKUsrtjWbewkWmX+1m+PGQapHBUm7FUfWaRy3jkQ1UteCQtm8pncvoGweTfRe7mqbl3MuxX7zCFI6qm532LFnHMWRdTqpkboWFHeKzYM7y+4pm9c07+VutnmOjOOx9syTSEfV5eNSShw3DiLzLnVopK6FTLMT5sCjOFPer8GZQbCk4tMWZ7r/vUARcAJneYrJsmoCBF/8u6hZq29WXd9ABf+HM3HGJvfrue0fR/O5FxczcM4+WoA9OMtPTJJS2mhG9yOlLJZSXnd9AJfb9WZFf8fRTO4FeAG4WPE3WYvTED/ptn8czedegkJKeUaExSLzLlfZ7sg4hiahG1LKwsbpWdAomxcYyuaFiLJ5TfZegkJKma6Jao0ju6pT3JF1Gk1MO6SUmY3UtWC5U2we3Hl2T9m8wFA2rwGQUuZp4jvhyDhRdXvuBYQ5CVmR4K450WzXmCsUCoU/hBBJhMXd0nWehdBokdZibBfXQ0m2QUppbez+KRQKRV0ihIjEFFug6zwTodUjbWXYzq+C0lyzlDK4gucKhULRxBFCGAiLK9N1mILQhyEdNmxnV0BpTnz1vAfNgeboMVcoFIqAkFJmaKLb4ch2ll613ziINrkvSpQrFIo7ESlloSahG46MYwA4Mo6iTeyJEuUKheJOREpZrk3qg+PWYQAcmSfRxHWgOYpyUB5zhUJxhyOECMcUa9G2Ho7j5sFmVTZDoVAogkUIoScsvlzbehiOtD3I4iydlNLe2P1SKBSK+kAIIYS5hUPTaiD2a7uhNCfMtca+uaE85gqF4o5GSlmsTeyB/eJaZNHNoUqUKxSKOxkppVWb3Bf7hTVokgegRLlCobiTkVJKabk12n5hLdoWvWiuohyUx1yhUNwFCCG02o5Tbbbzq5t1eRCFQqEIBCGE0Hac6lA2T6FQ3C3oOk2T9gtrtLJ6aYpmhBLmCoVCoVAoFAqFQqFQNCIqlF2hUCgUCoVCoVAoFIpGRAlzhUKhUCgUCoVCoVAoGhElzBUKhUKhUCgUCoVCoWhElDBXKBQKhUKhUCgUCoWiEVHCXKFQKBQKhUKhUCgUikZECXOFQqFQKBQKhUKhUCgaESXMFQqFQqFQKBQKhUKhaESUMFcoFAqFQqFQKBQKhaIRUcJcoVAoFAqFQqFQKBSKRkQJc4VCoVAoFAqFQqFQKBoRJcwVCoVCoVAoFAqFQqFoRJQwVygUCoVCoVAoFAqFohFRwlyhUCgUCoVCoVAoFIpGRAlzhUKhUCgUCoVCoVAoGhElzBUKhUKhUCgUCoVCoWhElDBXKBQKhUKhUCgUCoWiEVHCXKFQKBQKhUKhUCgUikZECXOFQqFQKBQKhUKhUCgaESXMFQqFQqFQKBQKhUKhaESUMFcoFAqFQqFQKBQKhaIRUcJcoVAoFAqFQqFQKBSKRkQJc4VCoVAoFAqFQqFQKBoRJcwVCoVCoVAoFAqFQqFoRJQwVygUCoVCoVAoFAqFohFRwlyhUCgUCoVCoVAoFIpGRAlzhUKhUCgUCoVCoVAoGhElzBUKhUKhUCgUCoVCoWhElDBXKBQKhUKhUCgUCoWiEVHCXKFQKBQKhUKhUCgUikZECXOFQqFQKBQKhUKhUCgaESXMFQqFQqFQKBQKhUKhaESUMFcoFAqFQqFQKBQKhaIRUcJcoVAoFAqFQqFQKBSKRkQJc4VCoVAoFAqFQqFQKBoRJcwVCoVCoVAoFAqFQqFoRJQwVygUCoVCoVAoFAqFohFRwlyhUNzxCCF6Rwu9FELENnZfFAqFor4RQrSNctq8Vo3dF4VCoVAEhq6xO6BQKBT1TSqmo1Ho0SFyANHY/VEoFIr6pBPmy0Y02JFpKJunUCgUzQLlMVcoFHc0s0QLaUDDCGK5QSlCiLaN3SeFQqGoL+aLlrIUOyOJpQArQohejd0nhUKhUPhHSCkbuw8KhUJRLwghNEkY7BNJIAo91yjhHBbOyiLlQVIoFHccQgiRgskxjFgSMJBBGQfI54osVjZPoVAomjjKY65QKO5YxhNvb4GRKPQAtMZECXbmi5ZqRlKhUNxxTCfJYUZLAgYAkjCiRzBbtFA2T6FQKJo4SpgrFIo7EiFE2FEKGED07W0IhhLLHvIQQigPkkKhuGMQQuj2k8dgYqpsH0IMe502T435FAqFogmjjLSiySGEuCyEKBFCFLl9/ualrRRCWCrapAkh/kcIoW3oPiuaHkOJKe6MGRNVfw4JGDCjZTpJjkbqmuIOpJrduimE+EAIEVGx7wMhRHk1m3bE7dinhRCnhRCFQohbQogVQojIWvZHCiE61fa+FM2HMcRZUzARUS2vbxR6WmBkPPH2RuqaQqFQKAJACXNFU2W2lDLC7fN9H237SikjgInAQ8CzDdNFRVNFCBF/Hgs9ifK4fzAx7Hd6kFRlCkVdMrvCFvUD+gM/d9v3p2o2rS+AEGIs8AdgoZQyEugOfNHA/VY0c4QQ5uMU0s8tQsidAURzlAKEEKYG7ppCoVAoAkQJc8Udg5TyNLANUBlo73J6EZnVlyh0XqoERaAjBRNjibM2cNcUdwFSypvAGpwC3R+DgV1SykMVx+ZIKT+UUhb6OqjCC/9PIcS6Ck/7FlfFASHE1opmRyq88w9UbJ8lhDgshMgTQuwUQvQJ9R4VTYtBRBd1JwKjl2GdCS2dMDOUmJIG7ppCoVAoAkQJc8UdgxCiBzAaONTYfVE0HkKIjpmU0wmzz3b9iOYYhQghfDdUKIJECNEamA6cD6D5HmCqEOI3QoiRQghjEJd6GPgtkAAcBj4FkFKOqdjft8I7/7kQYgDwHvA8EA+8CSwN8nqKJogQosVlSuiO79UPvYjiPBaEEPEN1DWFQqFQBIES5oqmyncVXh3Xx1d4+kEhRC6wDHgHeL9huqhoinQg/PxgYhBevOUujGjoRgSDiC5qoK4p7ny+E0IUAteADODXbvt+Us2mfQggpdwGzAMGACuA7CByZayQUm6VUpYB/w8YLoRI9dL2WeBNKeUeKaVdSvkhUAYMC+lOFU2GHkTc7E8UWj82T4egL1H0JjKrgbqmUCgUiiBQwlzRVLlHShnj9nlbCHHCLXHSaLe2A6SUsVLKjlLKX0opVVKvuxQhxAAbkhQCW0bZg0guU4IQIq6eu6a4O7inYp34OKAbTk+2iz9Xs2mPu3ZIKVdJKWcDccBc4AngmQCud83tHEVADtDKS9u2wL+4Tw4AqT7aK5oBQoiOOVhpT3hA7Tth5hZlCCHa1HPXFAqFQhEkKvGRotkgpezZ2H1QNHm6dtCEEa0NfM4x2WYgS5an4BQ1CkWtkVJuEUJ8APwZuCeI4xzABiHERgLLlVHpHa/IAB8HpHtpew34vZTy94H2R9Es6NROYyJGG3gxkjZ2ExmO8g7A1frrlkKhUCiCRXnMFQqFQqGoe/4KTBZC9PPVSAgxVwjxoBAiVjgZAowFdgdwjRlCiFFCCAPOteZ7pJQuL/otoINb27eBF4QQQyuuYxZCzKxtWTaFQqFQKBR1gxLmiqbKsmo1f79t7A4pFApFoEgpM4GPgH+v2PSzajbNtc43F+f673NAAfAJ8N9Syk8DuMwinOvYc4CBOJPBuXgV+LAibP1+KeX+iuv8reKa53GGzCsUCoVCoWgCqFB2RZNDStkuiLa+s90oFApFA+DJbkkpX3T75xNejtsKTAzxsllSyhe8nPefwD+rbVsNrA7xWgqFQqFQKOoR5TFXKBQKhUKhUCgUCoWiEVEec4VCoVAomiBCiBM4s6lX5/mG7otCoVAoFIr6RQlzhUKhUCiaIH4qUQSyBl2hUCgUCkUzQYWyKxQKhUKhUCgUCoVC0Yg0S4/5pMmTZXZ2dmN3Q6FQNAKHDx1aI6Wc1tj9aEjqw+ZppKNOz6fwjUOoeXB3murvryn+ne5Gm6dQKBR3I81SmGdnZ7Np6/bG7oZCoWgEYiPNCY3dh4amLm1emKO0Ts6jCJ0Sjamxu9CkaCq/yab6d7kbbZ5CoVDcjTRLYa5QKBTeiDdo6WgyBNw+slgD5fXYoTpAIx1NRrwoao/rb9lUhWBDE8z3UF/PQXP+W8TotXQMC9zmHSzRQlk9dkihUCgUIdEshbndZsdms6HT1U/3i4qKyLh1i5ycHHJyssnNzcVisQAgRM2y2QL/pbQlsko7iQRAIzTEx8eTkJhIYmIiCYmJREVFebyOQqG4O7HZ69fmWSwWbmVkkp2TTW5uHtk5ORQVFjl3erJ5fuyTlLJGe9c2jUZDXGwMiYmJJCUmkJiQSExM9F1p88Icpc1aEN4pqL+BQqFQKJoCzVKYFxQWsPjTT7HZbUDVQaBrcCcQSCRGg4Fws5nw8HDMZjMgyM7OIic7p1IcV8dsNpOUlER8fDzde/QkLi6O8PDwehk42u12cnNyyMzKJC3tOocPH6KgoKDynoQQCAQprVPo2q07rVu3RqNpemvgFApF/VFYWMjHiz7DZrPd3iilR9FsNBowh5sxm8MJCwtDq9WSnZ1NVnYODofndb3h4WG0SEoiIT6erl26EBcbQ0RERL3YPIfDQU5uLpmZmdy4eYujx06Qm5dX435SWrWkW9eutGvb5o62ecp7HhwlGlOdes3V965QKBSKpoJfYe6hjqoWMAEDpZQHhRCPAb8GWgLHgJeklAfcjv9X4BXgPPCIlPJKxfbNwFhgrJRyq1v788DvpJQfeOtTbGwsjz7+uN+bk1JSVlZGscWCpbiYYosFh3TQtWtXYuPi0Gq1fs9R32i1WhIqPOXdu/fw2MZut5OWlsbZM6fZsH5dFdHepUsX+vUfUDHpoFAoakuTtHkxMTz52CN++y6lpLy8HIul2Gnzii3Y7Q66dO5EfBOxeRqNhoT4eBLi4+nezXMbh8NB+o0bnD5zlk1btuKw2yv3dezYgUED+hMVFdVAPW4YlEBvWNT3rFAoFIqmhl9hXr2OqhDi98A9FQPUUcA/gHuBLcAPgZVCiM5SygIhRCdgHNABGAH8FnjM7XTZwJ+FEENl9djHOkAIgclkwmQyERcfX9enbzC0Wi1t2rShTZs2VbY7HA7OnDnN0u++pbikBICoqCgGDBhIh44d78rQUIWitjR3m2c0GjEajcTFxdb16RsMjUZD65QUWqekVNkupeT8hQssX7W6MtTeHGFmYP9+dOnc+Y7wrAfqDb6bhWVtveZ383enUCgUiqZLUKHsQggd8BTwnxWbngW+kVKurdj/38D3cQ5aP8RZJ12D0+Pk+n933gYeBxYCi0K7hbsXjUZD9+49qnja8/PyOHToIFu2bK70rKempjJ06DCiY2IaqacKRfNE2bymhRCCzp060blTp8pthYWFHDx8hG07diErQvVbtWrJ8GFDiY+La6yu1jt3+/r0UMT53fx9KRQKhaLpE+wa83uAaOCjin/3BT5w7ZRSSiHEoYrtSCnPCiF2ARcqPg9XO58F+BXwByHE11JKlSe0lkTHxDBu/ATGjZ8AOD1M165eZe3aNZVr11NSWjNixAgl1BUK/9yDsnlNmsjISMaOHsXY0aMqt11PS2Pjpi3k5uYC0KJFEqNGjrjjhPrdHv7u6b7dxfrd+r0oFAqFonkSrDB/HvhcSplX8e9IIL9amzygcvGflPJV4FUf53wfZzjoD4E/BdkfhR+EELRp25Y2bW8vmb127Rpr1qwmPz8fnU7H8BEj6Nq1mwp9Vyhq8jzwOfC4EOJZoAswpFqbPJTNa1K0Tknhvvn3Vv77xs2bbNy0hazsLLQaLcOGDqF3r553jM27273n7twp30Njl0cUQvwQZ4SQAN6WUv61UTukUCgUdwEBC3MhREdgIjDcbXMhTm+SOzE4PUUBIaW0CyF+BiwWQrwb6HGK0ElNTSX1gQcBsFqt7Nq5g61btoCU9O3XnyFDh94xA1aFIlTcbN7DwP/DKch3AgMr1pSfq2gag7J5TZqWycmVQt1ms7F77z7++fY7SCnp0b07Y0aNbPbr0+927/mdQmMLcgAhRC+conwIUA6sFkKscLN5CoVCoagHgvGYPw8ckVLucdt2BBjg+odwqrl+wDfBdEJKuUoIsRdniKeiAdHr9YwZO44xY8chpeTwoUO8/eY/0Wi1jB07js5dujR2FxWKxuJ5nDbOBuyWUhYLIY4AfXCuKf+TsnnND51Ox6gRwxk1wjnHfOz4Cd58xzk/MnrkSHr26N6sJyaV97z50RTEeDW6U2HzAIQQW6iweY3aK4VCobjDCUiYCyEMwBPAv1fb9TbOmdQPgW3AD3CWFfo2hL78FNiNc3ZW0QgIIeg/YAD9BwzAZrOxdctmNm3aiE6nY9KkyVXC4RWKhkZKybq1axrkWtVs3nHg90KIeJxrzdcClyvaKJvXzOndqye9e/XEbrezbcdO/vn2O2iEhgnjx1ZJMqdQNDRSSjZv3dYYl3a3eSXADGB/Y3REoVAo7iYC9ZjPA8KAT903Sim3CyFewinQXTV9Z0gpC4LtiJTyiBDiM5yDYUUjo9PpmDBxEhMmTqK8vJz169axauUKYmJjmT5j5h1XQ1jRdJFSsn7dWs6eOcOkyVP8to8J19MmJizg80fYdFDOAiHE+26bD1Jh86SURUKIPwLrgCKcZdLG48yvoWzeHYJWq2XcmNGMGzMam83Gxs1bWLdhI5GRkcycNq1Zl59TNF08ectdgvzoseNVkhp6IzpMR5u4wG1eVLYOypglhPiz2+a3pJRvVVz/VDWb54ocUigUCkU9IuqhlG6903/AALlp6/bG7sZdSU52NqtXraSwsJDOXbowdtx4tFptY3dLcQcipWTD+nWcOX2aCZMmVZYFjI00H5BSDvJ0jBBi4dNxrRYtiEkK+Dr/k3GVdUU5faSUxwJpL4T4A3BdSvlGwBepJQP795M7t2xsqMsp3MjPL2DF6tXk5eXRrm1bJk+cgF6vb+xueUWFsTcfPInyLdu2c+jwEcaOHkX/fn0BMEXH+7J5Ux+ISVr9RFyrgK/7dnYa3+RnjpdSbg6kfWPYPIVCobgbCTYru+IuJy4+noceeRSAM6dP89677wAwZsxYunbr1phdU9xBnDhxnHVr1jBl2rSAvOT1jRAiSUqZIYRogzOCaLi/YxR3BtHRUTz0wP0AXLx0mfc//Bib3cbI4cPp26d30OfzJpxru85YCfLmzfkLF/hu6XLGjRnNKy9/r7G7o2yeQqFQNAJKmCtCpmu3bnTt1g273e5cj75xA8ktWzJj5iwMBkNjd0/RDMnNyeGzxYvo2KkTP/zRj5tSEq6vK9ZbWoHvSSlzG7tDioanQ/t2PPfMUzgcDnbs2s3//vNd4uLjmT1nLmFhgYcSe8JfTW5f7XzhS/AHes1Qr63wjut7Liws5ONFi2nVsiX/8soPlM1TKBSKuxglzBW1RqvVMn7CRMZPmEh6ejofvP8ekRER3DNvfq0Hq4q7g8LCQr784nP0Oj1PPv0MJlPTEgBSytGN3QdF00Gj0TB65AhGjxxBRmYmX370HnqDgdn3LSQiIqLOrlNbIezPC189g3uw7RWhEeYopaSkhM++/Bqb1crjjzyM2Wxu7G5VQdk8hUKhaHiUMFfUKa1ateK5518gJzubTz/5GKPByIL771cCXeERKSVLvvuWzMxMHlz4EJGRkY3dJYUiKJISE3n+2afJzy/gy88/RUrJg/fN9/hbbmhRG8z1AgmlV6K89pjsJaxYvYZLl6/w8IMPEBsb09hdUigUCkUTQQlzRb0QFx/PM88+R15uLh9/9CExMTHMm78AnU795BRODh86xNYtm5k9Zy7tO3Ro7O4oFLUiOjqKZ558nKKiIhZ//iVGk5EH71tQZVmPS/w2R4HbHPvc1Lh88jArV69l+tQpzJw+rbG7o1AoFIomhlJJinolJjaW555/gbS0NN765z9o36Ej06ZPb0rr6BQNTHZWFp8tXkSPnj35wSs/auzuKBR1SkREBM8+/SQZmZm89e77tGrZknvmzEKj0VS2aW4h4c2pr02R/Px8vvrkA9q3a8uPf/iyev8pFAqFwiNKmNcBNpsNi8WCxWKh2GLBYinCZrMDzlBdF0IINBoNGo3zv0KjwaA3EBEZSUREBBEREVUGb3cSKSkpvPT9lzlz+jSv/99fGT1mLP0HDGjsbikamJXLl3Mr4xbPPv+CShDYSLhEVm2ygNvtdiwWC0UWC8XFxRQVWbDarEBVmweg1Wgr7J7zo9friIiIIDIikogI8x1bbjEpMZHvv/g8ly5f4bW//4PBgwYycviwyv3NwXvemH1rbpMX3ti4YT1Xz53i6SceU0u6FAqFQuETJcz9IKXk5s2bXLxwnsuXLlFutVbZB6DX6Qk3hxMebiYiwkx4uBm93vnVVs6MCwFS4nA4sNsdWK02HA4HeeW5XLhwgaKiQootxTikw2tf9DodrVJSaN06lZTWrZtcsphAcGVy37xpIyUlJWqgcpdw69ZNFn/6KZOmTGHGrFmN3R2FD6SU3MrI4PyFi1y6fJnS0jL3nQBodTrM5nAizGbCw8Mxm8Mx6J0TLS6bJ4RAVtg8h8OB1WbF4ZCUl5dz8dJlCouKKCqy4HA4qhxXKeylRKfXk9KqJamtU2idktIscxC0b9eWV17+Hjt27SY3N6/GmuKmKkAD7VP1CZ66TFjXVL+bQMjNyeHjjz5kxMhRvPjcs43dHYVCoVA0A5QwdyM3J4fDhw9x6dIl4PZAsUWLZDp27MigwUMwGo2N1r/y8nJupKdz/fo1Dh06SHFxceU+KSVJiUl06tKZTp06N/m13OPGT2jsLigaACkl3337DUWFRXz/Bz9skN9lWKyR6DZRAbfXF+uhqB471MRwFz55efkcOnKE8xcuIh2OSpuXlJRI506dGNi/X6NOnlmtVtJv3OR6WhpHjh2nsNDtDyUl8fHxdOnciS6dOzX5CAx3b3l1moL3PNRrl2hMIfff/bfoOra5CnF3Vq1cSVradZ5/8SXnmKGWNer9YYwyEt02cJtnsGZCfj12SKFQKBQh0bTVWz0ipeTC+fPs3rWT0rIyhBDExsbSr19/xo2f0CTXgBkMBtq2a0fbdu1q7JNSkpmZwbmzZ9mzazd2hzOU3qDX0617D3r17t3kSlAp7mwyMm7xyUcfMWfuPXTq3Lmxu6MALl2+wvadOym2FCOEICo6iv59+zB29KgmuYxGr9fTtk0qbduketyflZ3NmbPn+GTx59htNsDpze/erSt9e/ciPDy8Ibtba5qrhzhU73r1fc3x3t3Jy83lg/ffY9KUKUyfMaNyu/vkhUKhUCgU3rirhHl+Xh4bNqwnNzcXKSWdOnVi/n13RikvIQRJSS1ISmrByFG3y4+WlZVx6uRJvv7yC0rLnCGpZrOZAQMG0rlLlyYzARFm1NfLeUvKrP4bKeqcdWvXkHY9jR+88qMmH71xJ1NYWMj6jZvIyMgEoF27ttw7Z3ad1tpuTBLi40kYHl/FG221Wjl1+gxff7eEkuISAMLCwxjQrx/du3VtMhMQOpPnSQNvwfo2Edha/KZk84IVo81ZnG/ftpWTJ07w4ve+36iRdQqFQqFovtzxI+aCggLWrV1DdnY2UVFRTJ48hfiEhMbuVoNhNBrp178//fr3r9xWUFDA4UMH2bx5ExqNhrFjx9G5S5dG7OVt0tPTmXfPPZw6dYrs3Fx0Oh3/85e/sGzZMtq0acM7776LXq9nwbx5bNu2jUWffcbEiRMB2LRpE6/+6lcYTSbee/99Wrdu3ch3c/dhsVj44L13GT5iJJOnTG3s7tyVWCwW1qzbwM1bNzGbzUyZNJGWycmN3a0GQ6/X06d3L/r07lW5zWKxcPDwEd58510ARo8cSa+ePRqri1VIT09n7r3zOXnqFPk5Weh0Ov78l/9h6fLltG3ThvfeeRu9Xs998+axdds2Pl+8iHGTJgNN2+bdLR7isrIyPnjvXXr17sNzL7zY2N1RKBQKRTPmjhTmxcXFrFm9isyMDCIiIpgydRoJiYmN3a0mQ1RUFGPGjmPM2HHYbDa2bN7Epo0b0On1DBk6lJ49ezWaJz0uLo5Va9Zw/333AZCZmcmWLVvYtHkzf/7v/2bpkiXMX7CA1//+d955++0qx/7nH/7A8pUrOXXqFP/9pz/xf6+91hi3cNdy+NAhtm/byhNPPX3HeGSbC6WlpaxZt5609HTCwsKZOnkirVq2bOxuNRnMZjOjR45g9MgROBwOtu3YyRtvvoVWo2XwoIH069un0TzpcXFxrF29kvn3PwA4bd7mLVvZumkjf/rzn1mydCkL5s/njb+9xlsVEwsu7kSb15y85qdPn2L1ypU88eRTxMTGNnZ3FAqFQtHMuWOEud1uZ+uWzZw7e5awsHCmTJtKixZ3j5coVHQ6HRMnTWbipMlYrVb279vHe+++g5SSiIgIRo0e06BeGJPJVGUt/P59+xgzZgwAEyZO5PPPPmP+ggW0rCY6iouLCQsLIzIykiFDhvDL//f/GqzPdztSSj5fvIjomFi+/4MfNnZ37hocDgc7du3m6LFjGI0mxk6dyZS5re8aT2WoaDQaxo4exdjRo7Db7ew/eJB33/8Qh8NBWHgYo0aMoEP7dg3Wn+o2b+++/Ywd41yONHHCBBZ/9jkL5s+vtHl24ZxAuJNtXnMQ50u++xaHw8EPf/TjJrMkTKFQKBTNm2YtzG02G7t27uDUqVMIIRgzZizjJ0xs7G41W/R6PcNHjGD4iBGAM+R9x/btrFyxHIPewMTJk0lN9ZyEqb7Iy8sjKsqZbTY6Korc3FyP7XJzc4lyK6Vkt9sbpH93O/n5+bz79lvcc+88OnTs2NjdueOx2+3s3ruPo8eOATBy+HBeev45hBBNXsg0RbRaLUMHD2bo4MGAM+R9x67drFm3Dp1Wx4RxY+nYsUOD9ik/393mRZOXlwc415g7uC0A73Sb11TFeXFxMe+89SYTJ0+mZ89e/g/g7gnrVygUCkXtCFiYCyEmAb8DegGlwBdSypeEEE8A7wHFbs2XSSkXuh37r8ArwHngESnllYrtm4GxwFgp5Va39ueB30kpP/DUl/y8fN5+6020Wi0jRo5k1Ogxasa6HoiKiqrMLFtWVsaGdetYtWI5UVFRTJ02ndi4uHrvQ0xMDOnp6QAUFBYSExPjsV1sbCwFhYWV/24qCZ7uZI4dPcKWzZt56fsv35EZ/5uUzSso4B9vvY1GaBg2dAgvPPuMsnn1gGtNPkzEarWycfMW1qxfT3i4mRnTppBUB0uiXGIzrFoyN4nAJrRExsRxLf0mNqElt8hCVEysx8Rvd4PNa2ri/NzZs6xYvoynn32OyEhvafoUCoVCoQiNgIS5EGIc8BXwDLAMEIB75pyLUspOXo7tBIwDOgAjgN8Cj7k1yQb+LIQYKqWUgfQnLDycZ597PpCmTRa73U5RURFlZTVn0vU6PTGxsU1q4G00Gpkxaxbg9JKuWrmC3JwcRo0ZQ+/efertugMHDeLNN9/kX37yEzZu2MCQIUM8tgsPD6ekpISioiJOnTpF9+7d661PCvj2m6/R6/R3bOh6U7N5JpOJF597NribaGLY7XYsFgslpTVtnk6nIzYmpl7FZaUgDtB7qdfrmTp5EuD0pC9ftZqMjEyGDR3M4IEDfV6jNtwpNq+uSoQ1FXG+auVKiooKVei6QqFQKOqNQD3m/wn8U0r5ldu2gwEeq6n4aN3+3523gceBhcCiQE5oMNRPaa1QcDgcZGVlcvPGDW7cuEnGrVvY7M56ugKBRFb+17UNnN4Nc4QZk9FU4yVfVl5Gfl5+5THVSYhPoGWrVrRKSSE5ObnBPSXR0dE8uPAhpJRs27qFf/z9b8QnJDBt+ozKEMxQsVqtzJk9m2NHjzJr5kz+47e/ZdSoUYwfN47U1FRe/sEPAPjxj37EypUrWbF8OZeee45nnnmGf/23f2Pm9OkYTSbeefddP1dShIKUknffeZuhw4bV64RME6BJ2TyjweC3TUOFy0opycrO5saNm9y4eZMbN29htTpLdAkh8DTXIIRw2jxzOGGmmjavvNxKXn4+DofD4zXj4+Jo1aolKa1a0aplMlptYKXDoKZYDlagg9OT/sCC+Ugp2b13H6+/8U9iYqKZNX06pvja5TKpjc37xb/+jJnTp2EymXj/nbfRSXuTEbJ1SWPf06JPPqZT5y5VapMHigpjVygUCkWgCH8OGyGEGSjA6fWZA7QBjgM/kVLurwjrfBPIBazADuDnUspLbud4FXgRuAA87NpXEda5HrgJ/BLoKqUs8xfW2X/AALlp6/bQ7jhEiouLOXb0KBfOn6usBw7OAWdiQiLJLVvSslUrkpKS0Ovrb+LA4XCQnZ3FjfR0rl9PI+PWLRyy6mC2TZs29OvXv0Ez0WdnZbFyxQpKSoqZOXsOKSkpQR2v6pg3fRwOB//4+9+YMXMW7Ts07Lpbd2IjzQeklIM87RNCLPx+x/aLHmoTeC6E3506w8qbt/pIKY9VnKPJ2byB/fvJnVs2BnxPdUFpaSlHjx/n7LnzlfXAARCChHinUG6Z3JLkFkkYApg4CBUpJdk5OaSn3yAtPZ30GzdxuK2nllKSmtqa/v36ktyihcdzeBN1tRFNNwtKWbliOXl5eUyfMZN27dsHdfzdYvPqSpg2hjB3TUQOHzEi4PXknqjtd2CKjvdl86Y+1iZ19QsdA//9vXb+Ap9dSxsvpdxcq44pFAqFok4JxGMei9Pj8ywwHTgN/ARYKYToAmwFeuNcS5kE/BewTgjRV0ppAZBSvgq86uMa7wM/rPj8KZQbqUvsdjsnjh/j6JEjlJWXAxAeFkavPn24d/4CwsLCGq1vGo2GxMQkEhOT6NO3X439UkquXL7Mtm1bycnJAZyTBz169GTgoEH1NmkQn5DAo48/jtVqZfmypdxIT2f8xIl07940agUraofVauVvr/0fDyx8iFatWjVKH65eucI3X3/lt11YfDixHQIvXWS8bnDK5NvcdTbP4XBw8tRpDh4+TGmJU0QYTUZ69+zJvLlzCA8Pb7S+CSFIiI8nIT6+Sm1yF1JKrl67zu49e8nIyKzc3rVrF4YNGYzRaKwURt685xCYeHJvHx1jYuHDj2C321mzahUrli9j5KjR9OvfP+h7vJOpq5D2hqYhJiL9RW/cuHmTxZ9/6fc8plhTUDbPlGmCawE3VygUCkUDEYgwd2WXeV9KeRRACPGfwE+BEVLKlW5tbwohngXygWHAhkA6IaW0CyF+BiwWQjRKDPLlS5fYuWM7luJitFotvXr1ZsH9DzS7pFZCCNq1b1/Fe+NwODhx/BiffvwxVpsVg97AoCGD6dGjZ52vldPr9dw7zxnyuWnjBjauX8/gIUMZMnSoz+OampdHcZuSkhL+/vprPPX0M8TFxzf49cvKylj06SdERkbyg1d+xG9+/av6vuRdYfOuXU9j6/btFBUWIYSge/duLLj3nkYV4aEghKBtm1TaukVJSCk5dfoMn372BeXlZWi1OgYN6E/fPr0p03m+v1A9slqtlhmzZiGlZOeO7fz99dfo07ev36Skd5PNqwtx3pDh7Farldf/7688+NDDdTIR6a/f1ffbbDY+X7wIjUbDsy//iF/86tVa90GhUCgUTR+/wlxKmS+EuAweFzx72yaBoBSflHKVEGIvUO+j7orrceLEcXbu2AFA+/btmXvvPMxmc0NcvkHRaDT07tOX3n36AlBeXs6+vXt45+23kFLSrVs3ho8YWafedCEEEyZOYsLESezetYu/vfZ/9O3XT2XQb2ZYLBbe+NvrvPDS9xolC/GmjRs4dfIkCx96uEGqAEDTtHkOoakxeA9F6Jw5e5bNW7YhkaS2bs3sGdNrnReiKSKEoEf3bvTo3g1wCq39Bw/x1rvvIaWkdceujB4zFqPRWKfXHDlqNCNHjebI4UP8/fXX6NqtG5MmT1E2j+bjOS8rK+P1//tro01E7tq5k/379nL/gw/SokXt8hcoFAqFonkRaPK3N4AfCiEWA2eBH+MsH7RTCDETOAKk4QwB/U8gC9gdQn9+WnFceQjHBsTZM2fYvn0bNquVnr168cyzz92RZWZ8YTAYKgeQUkrOnjnDJx9/hM1mIzY2lpGjRtOyZcs6u96w4cMZNnw4hw8d4o2/vU6Hjp2YOm3aXfe9NzeKior4x9//xvde/kGDe1Gzs7L45OOPGD1mLC99/+UGvXYFTd7mBSp0Ll66zMbNWygvL6NL5848/eTj6HQBV8q8I9Dr9QwfOoThQ50Zzi9cuMhnixZRbi0nMjKSkaNGk5oaeF4CX4Q5Sunbrz99+/Xn1KmTvPG310lt04YZM2fddd97dar/ZoNdSlDfuET5s889T7SX0pz1RX5+Ph9/+AEDBg7i5R++0qDXVigUCkXTINBRwp+BSPj/7L11WFxrlrd978IluIVAAgRIQhJC3AUJEndXCMTtnNMzPT39vu980zPdPdN9zom7u7sgcXdXiCckBHetqv39QeBQVBUUBJKQU/d11ZWw97OlbNWznrXWb3EKMARuAyGfIku9KFYZNqdYMOki0FsUxeyq3owoincFQdgBTKrqsRWRkpzM8WNHycnJwbNJE8ZPmFirAm11CUEQaNK0KU2aFkeW0lJTuXjhAh8SPiAIAg72DnTv2RNzc/PPvpZP69b4tG7Ni+fPWbViOTa2tgwYOKhWhaNKyMzM/C4jg7VFZmYmq1Ys/ypO+bGjR0lI+MD0mbO+yGdDDXXa5qWnZ3Dk+HEyMjJwc3Vl/JhRNRodrus0buxG48bFdcMfswu5eOECkceLKxRsbW3p0aNnlaKl5Z3Kkr+bNfOiWTMv3r17x7o1qzEzM2Pg4CFfRKckMzOTevXqfXPRenVp3ZXVW9d2GntJyU741Gk18ntXFU6fOklcbCxh4RFfVcNGixYtWrR8XSpVZf8W0USVvaioiBMxMbx5/Qora2uCQ/p8sVRcmUxGcnISSUlJpCQnk5SURFZWcdmqUEm2a/m2aoIgYGJqgrm5OdbWNtjY2GBtY/PFUu7fv3/PuTOnyczKwtLSksDAoBqLJCQkfODwoUMYGRoyeOiwWn1O9+/f49SJE4wbPwFrG5tau873QHpaGmtWr2LWnLlfVGMhKSmRrZs3ExAYSIsWLdWOq0yV/Q8dmm8LbamyxbhK/nTuFvvj3paqsn+LqLN5ZZ0YmUzGqdNniXv+DDMzM/qFhGBh8WUcDJlMRnJKCsnJKSQmJZGcnEJ6RobCmIocRFEUFfabmppgYW6OtbUVNtY22FhbYWpq+kWczI+JiZw6c5a0tDTMzc0JDuyN9WeWUZQ4lakpKRw4sB+JIGHw0KG16gDGxcZy5PAhRo0ZW6MZUF+KL1lT/rVKdjLS09m0cQOdu3SlXfv2asdVYvOCIlp5RM5vp7nQ6v9cfcCGB8+1quxatGjR8o3x3eXVpaWmcvDAAQqLCgkKCq5W39GqXOvevbu8evkKuSgv7d+rI9HB1tYWaxsbnJ0b0rpN22pHLuRyOdnZ2aSnp5OakkJs7FOSL10kLy9PoV+wIAg4OjbA3d0dF1fXKvX5rQhHR0dGjRkLfMo8OH6MzMxM7OzsCOnT97OicA4O9QmPmEpGejo7d2zHxMSEYcNH1Ni9l6VlS2+aNGnKxg3r8fLyomu37jV+je+BlORk1q9fx5x5879otDomOop3794xc/YcbTZLFcnKymLfwUPk5OTg79uL3gF+tXatjIxM7t6/z7PnL5BJpaXbBYkEWxtrbG1tcXZqQOtWrTA3N6uWzRNFsdjmZWSSkpLCs+cvuHLtGtnZOVBuIdnRsT4e7o1xc3WtsTRxezs7Ro8YDhRnHkSdOEFqaiqWlpYM6NunWhkkJQsoDSxNmDl5HNnZ2ezetxtBEBgyZkKtfOY9PD2ZM28+WzZtooFTAwJ6B9b4NWqTL+WUZ2VlsXL5si+eHXTxwnkePnhA+NRpdU5kVosWLVq01A7fTcQ8LjaWkydiMDc3Z8CgwTUefc3Ly+Pqlcu8ePGi1CG2sLDA27sVrm5uX712UC6X8/79e57FxfLq5Stk8uI+v/p6+nh4euLTunWN/vh/+PCB48eOIpVKCQwMqnIPX1W8e/eOvbt30cvXl1Y+tddy6OyZ07x48YIJEyfVyiJAXSU5KYlNGzcwZ978L/Z5LioqYu3qVbRt1572HTpodMzXipgLgmABrAFaUCz2FiqK4mWNL/QZqLJ5r1+9IvL4McyN9BkycADm5jVbqlFQUMCVa9eJjY0rtXn1zOrh490S98aNv/oCiiiKfEhIIDbuGc9fvCztbS7R0cHTw522rX1q1NFKSk7m0JFj5OfnEeDnSxNPz88+Z2JSElu376Rjh/Z06aTYuaImHdNrV69y+9ZNQqeEf/X37VuipGTnS2YHyWQyNm5Yj7u7Oz169tLomK8VMf+aNk+LFi1afo/Uace8oKCAqMjjvI+Pp7G7O/4BvWtMUEwmk3Hv7l3u3LmNTCbD0MCATp270Njd/Zur2auIwsJCnj59wt3btykoLPzUFsmL1m3a1MhERCqVEh0VxZvXr3Br3JjegUGf/fqcOnmCp0+eMGbc+FpL9fzw4QNbt2xm3PjxODjUvTTPmiYtNZW1a9cwb/4PX8wpf/fuHTu2byM0NKxK9bxf0THfCJwXRXGNIAj6gLEoiukaX+gzKLF5ZUt0nJ0bEhgcTD2JtPITaIBcLufBw0dcv3kLaVERevr6dOrQnqZNPOuUUKNUKiU27hk3bt0iLzevWEejiSft27apEUddLpdz8tQZnsbF0dDZib4hwZ+9wHf+4iVu3rrN2NEjsdWg1KY6TntqSgrr1q1lxIiRNGzUqDq3WWdQ17e+LNnZ2axYtvSznPKqptsnJSWyccMGxo4bX6Xygq/omH81m6dFixYtv0fqpGPetFkzcXJoGHr6+gQFh9CgQYMaOW9mZianT50kKSkJHR0dvL1b0crH56tHw2sSuVzOo0cPuX3zFgWFBUCxQFG79u0/Wxwq9ulTYqKjcHV1I7hPn8+azOfl5bFt6xacnJwJCg7+rPtSh0wmY/PGjTjUr09wSEitXKMukJGRwepVK5k7b/4XjaZduXyZDh07Vvlz8jUcc0EQzChWYncTv4LRbOblJU4ODUOQSOjdO1AhQ+Vz1Kxzc3M5efoM8e/fIxEktGjRnHZtWn9N0b0aRy6XExsXx7UbN8nLzQPAw8Odzh07fLbQ1stXrzl89BiO9eszaMDnqa4XFhaydccuzM3MGDywf5UWODV1DuVyObt2bMfI2JiBgwZX91a/eSpzzEuE3mbMml3txRpV37vK3odrV6/Spm3bKn9OvoZj/rVtnhYtWrT8HqmTjrmHh4d49ebtGonipKelEXn8GNk5OZiamODr7/+76h0ql8t58uQxN65dp6CwAEMDQ3oHBX5WFPlZXBxRkcdp1MiFPv36fdb7dPfObc6dPcuk0LBaE+W5fesWly9dJCw84nenXF3SEm3OvPl15rlX5pj/uXfHbdO6ttL4fD8cOMOuO7H/CfQts3mVKIqrypzXB1gFPAJaATeBuaIo5lTjKVSZxu7u4rWbt9VGZqvinGdlZXHkeCQZGRkYGRnh79sLpxpa3KwLiKJIbFwcV65dJz8vHx1dXQID/Gno7FTtc75+85ZDR45ib2fHkEEDPstBf/L0KYePHid00oRqic5p4qQ/fvyI6MhIpkRM/WJCot8KJS3Rps2YiampabXPU9F3rqbr4ytzzGd184n8Y4BmpUAA/xl1mVWX7/8M9Cqz+ZuyeVq0aNHye6ROhoJN69X7LGdPLpdz8cJ5Hj96hJm5OX369a+VVlr5+fm8e/uW169fEf8uHqlMWhoFKVFdFxGVlNpLlNnLoyPRwdLSEitra6xtrLG1scXK2vqzUsclEgleXs3x8moOFEfQYqKj+JiQgLmFBUFBwVhYWlbpnO4eHrh7ePDyxQuWLl6Ed6tW9OzlW637a+XTGs8mTdm4fh2t27SlY6dO1TpPRbRu0wZXV1eWLFrEsOHDaeTiUuPX+BbJy8sr7VNeV5zyWmSPKIr/r4L9ukAbYLYoilcFQVgI/BH4P1/i5szMzCpMl66sp7koily5dp1bt29Tr149+oWEYGVVte+1JhQWFvL27Ttevn7N23fxSD8JxJW1UeUV2Eu2qUIikWBlaYG1tTU21tbY2Fhja2PzWTZPEASaeHqW1ogXFBQQfeIkR44dw9TUlJCgQI3SycvSqKEzs2dM4+27eJatXI2He2OCA3tX6z6bNmmCm6sr6zZuwtPDA79ePat0vCbtxpo188LZuSGrV64guE8fmjZtVuX7rIsUFRUV9ymfOq3WnPKy+7+UgF01OSKK4k8V7P+qNk+LFi1afo/UyYi5Ju3SVJGclMSRw4cpLCqka7duNG/eokbuJyM9nUePHvEsLo4iaRFQPPnT19PDuWFDGjVywbFBg89OE5ZKpaSnpZGSkkJKSgpJSYmkpKSU7hcEAQN9fVq2akWzZl6fnYKfnpZGZORxMtLT8WzShJ69fKu1IHLzxg3OnzvL4CFDP8vpPXvmNLGxsUycNLlWUm1FUWTHtq1YWdvUWvr8t0J+fj6LFy5g+sxZnzVB/RrUUsS8slR2B+CKKIoun/7uDvxRFMW+6o6pSTSxeaqchfT0DPYfOkxubg6dOnSgTWufGtHIyMzM5PHTpzx5GkthQWHxRkFAT08PZ6cGuDRqhLNTg8/+nspkMtLS00lJSSE5JZWkpCSSkj/ZvE+/XXr6+ni3aE7LFs0/28ZmZmZyPDqGpKRk3FxdCAzwr5YdffDwEZHRMfTvG/JZInGXrlzlxs1bhIdOqtH+1iUOoyiK7N+3Fx0dne86tR2Kfz8X/vork0NDq6RpUZ6qlo7UhHNeSxHzylLZv6rN06JFi5bfI78Lx/z5s2fEREdhaWXFgIGDPmuCI5fLiYuN5fatm2Tn5CAIAhYWFjTz8sLd3eOr12bm5eVx7+5dHj96VKrMbm9nT/uOHT4rRf/x40ecP3sWfX0DAoODcXR0rNLxcrmc/fv2kpaWxugxY6udPpmaksKG9esYPGQorm5u1TpHZdy8cYPr164SFh7xXSoYZ6Sns3rVSiKmTa+VTJHa5ms45p/OfR6YIoriU0EQ/gMwEUXxD1W59+pSVZuX+CquNAI8dNDAz1p8EUWR5y9ecO3GTbIysxAEgXpm9WjerBmeHu5fvdVTQUEB9x484P6DR0iLihdGbWxs6NihHQ2qaKfK8vz5C6JPnkQiSAgK7I1Lo4ZVOl4URY4cO86bt28ZN3p0tVXzMzMzWb1uA8GBvWnuVbOR7RKn8cGD+5w6cYLwqdNqdAHgWyEnJ4flS5cwOTQM6ypmQ5SnOpoOn+ucfw3H/NO5v5rN06JFi5bfI3UylV0TRFHkyuXL3L51E7fG7kRMm16taK8oijx69JDrV68hlUmRSCR4enrSb8DnTXZrCyMjIzp26qSQ8p2Q8IFrV66SmJQIgLGREe3ad8Ddw0Pj6FmzZl40a+ZFXl4eJ6KjOfw+HkfHBgSFhGi0GCGRSBg6bDiZmZls3bIZGxsbBg0eUuX3xMramvk//sTO7dt4+vRprYi2tW3XDldXVxb++guhYVM+K7ryrZGclMTGDRu+eJ/ymiAvL4/1a9d8zVuYDWz9pE78Apj8NW9GFSV6Cc7ODZkQMRNdXd0qOxKiKBL37BkXL1+lsKAAiUSCm5srfYODa7wlW01gYGBA+7Ztad+2bem2xKQkrl2/wdFjkcVjDIvHVEVhvnFjN6Y3dqOwsJCYk6c4evw4drZ29O8botFihCAI9O/bh9zcXLZu34mRsRGjhg+rcgTezMyMH+fNYe/+gzx+8pRhQwZV6fiKKPlstGjRkkaNXFi6ZHGVFcO/dTIzM1mxbCkzZ8/5avX0Zb+DVXHSi4qK2LhhfW3ckqZ88zZPixYtWr4nvsuI+c0bN7h08QJdunajbTuVi8wVkpeXR1TkcZKTk4Fip7RDx47fTfQ0JyeHG9ev8ezZM0RRxNjIiE6du+Dq5lalNNe3b98SFXkcURQJDAyqUpr6m9evOXhgPz6tW9O9R9VqKEu4fesWVy5fInRKeK3USBcVFbFqxXL8AgJo1kxzxdtvlQ8fPrBj21Zmz51X5zoNPHz4gJMxMUwKDaNRg/pfJWL+NanM5pVEPNu2a0+Xrl0VvseaOOYFBQVExZzgw4cEoFi1vEunjl89Gl5T5OXlcf3mLZ4+jUUul2NgaEjnju3xrMLiJEDCx48cPnqcoqJCAvx88fTw0PjYDwkJ7Nqzj6ZNPAkM8Nf4umUduZcP73A8Kppp4WG14mTmoM/aNatp1649rdu0qfHzf2lK2kDOmj2nRj/Ln9MJoTzqHPUXz59zYP8+Jk6ajLtro68SMdeiRYsWLV+W78oxj336lKjI47Rp25au3bpX6ZyiKHL3zh2uXrmMoaERwX1CPludPT0tjRcvXvD8+TOysrIAVE7GBAQFwbey4kjlReLKjtOR6FDfsT7ODRvi5ORc7Qh+Tk4OV69c5sWLF8hlMryaN6dzl64a9+Yt6WX+4vkz/Hv3rpITe/PGDS5eOE9QcAhNmjat8r1npKezds1qhgwdptBCqibZtXMH1tbW+Af0rpXzfwnevHnDwf37mDl7TpWzFIwMan5BKq+gSKNxoiiyc/s2TE3r0W/AAODrpbJ/TdTZvNevXnH40EG8mjfH10+1s1eRE/Hw0WPOnj+Pnp4+wYG9cXb6PHX2jIxMnr94wfMXL0nPyFDYJwiCWpE3RBFU2cZyx0gkEhzrO+Ds5ERDZ6dql2Lk5eVx9foNYmPjkMlluDd2x7dnd40XrEp6mT968oTuXbvQprWPxtd+8PAR0SdO4terJz6tvNXfoxqHLTs7m7WrVxEUEkJrz9qxeQcOHUYQBAb271fhvXzLJCZ+ZMumTcyeO6/Ki+qV2TxdUVbl+5Hm56rdV/b1FUWRA/v3IZPJGDpsOIIgfLVUdi1atGjR8mX5Lhzzt2/fcujAfhq7exAUHFylCEhmZiaHDx4gOzsb71Y+dOrcucriSKIo8vbNG27evEFaWhpAae25m5sbLq5umJubV+mcmiCVSnn//j3v3r7l7ds35ObmIooicrkcOzs7unTpio2tbZWfy6NHD7l86RJyuZzWrdvQrn17jV4TURRLHfThI0ZqfG1RFDl+9CgfEj4wYeKkKk+iSkTbLK2sa60f+cUL53n+7DnjJ06sEfGsL8nLFy+IPH6MaTNmVuvejQz0eP/+PUMGDeLx48ekpKWhq6vLLz//zOHDh2nYsCFr1q5FT0+P7du2sXLFCiytrNi4aRNmZmb0DggoXWz607//O76+vho55inJyWxYv57hI0bQsFGj0u1axxw+fkxg/969ODZoQL/+AypdbCnrnOfm5rL/0GHS09Np1rQpvXp0r/JijSiKxL9/z/UbN0lKSi7+XAkC5mZmNHZzxc3VFUtLiyqdUxNkMhnvPyTw9t073rx9S1ZWNnyyeVZWVnTr2pn6DlVfUI2Ni+PsuQsUSYto0bw5XTt30nhh8tSZs9y7/4DhQwdXqaY95uRpYuNiCZs0USGaq4kTXCLaJpFIGDR4iMK+morm3rh5i+s3bxIRFlr6WtQVB/3Dhw/s3L6N2XPnafw+lkUTm7dhzSr09PTYtn07y1asxMrSii2bNmBmZoZf78BSm/fnP/0JP99eFTrmUPzaZmZmsm7Navr07Ydnkyal+7SOuRYtWrT8PqjTjvnLFy84dvQIDZyc6Ne/ar1j3717x7GjRzAyNGLAoEFVcpxFUeRZXBxXLl+moLAAQRBo2LAhbdu2+2bqkRMTP3LxwgVSUlIQRRE3Nze6dutepXS+kiyCa1evYGxsTP8BAzG3sKj0uMLCQnbv3IFMJmfk6NEap5knJyWxedNG+vTtV63o+a2bN7ly+RJTIqbWSv3061ev2LN7N2PHj/usPu9fkoSED+zdvZsZs2ZXe0HByECP/Px88vLyGDF8OMcjI0lLS2NKWBgHDx3in//4B66urgwYOJCgwECiY2LYv28fb9++5Ycff6R3QADHIyMVvp+VOeYPHtzn/NmzTImYqrRQ83t2zOPj4zl88ABW1tYMGjxE48+5kTyfj4mJHDh4GImODoMH9semCrZKFEVevnrNhUuXyM3NRSJIaNDAkXZt22BvZ1fdp1WjJKekcOHiJT5+LNbScHJqQK8e3auU8i2KIg8fPeb8xYvo6ekzsH9fjVqnSaVSdu/bT3ZWNmNGjdD4mhkZmazbuIlePbrT2qf4M1sV5/fRo4dER0YSPnVahdesrrP+/sMHNm/dzsjhwxTE775lBz09LY3169Yyd/4P1W6rqqnNGzKgHwFBwZyMjmLf/v28efOWn378Ab/egUQfP6Zg8ypzzJ89f87uw5FMmzFT6Xda65hr0aJFy++DulVo+omCggKWLl5Eo0YuTJ85q0o/vjeuX+f6tas4NmjA5NAwjaOzqSkpnDgRQ0ZGBoIg4O7uzrARI75ZBVs7O3sGDxla+vfzZ8/YvXMnBYXFYk4+Pq1p5eNTYTRBEAR8WrfGp3VrMjMzOXLoIBkZGXTs1JnWbdqodfT09fUZO35CsYL6urU4OTnTp1+/Sh1DG1tb5v3wIwcP7OfmjeuMGjO2Su9tm7ZtcXNzY9GCX2tFtK2RiwvzfviBzRs34uLqQi9fvxo9f22we+dOZs6e89lRfkNDQ4XJ4o3r1+nRowcAfv7+7Nyxg2bNmtGiRQt0dXXx8/dn5vTpQHH6cUhwMA729ixcvBgrK6sKr3X1yhVevXrJ9JmzPuuevyeKCotYvnQJ9g4OTImYWqVFyPv373H17Cns7GyZNGGcxgtl6ekZRJ84WZoF5OLSiKGDBn41Aa3KsLG2ZtCA/qV/v3r9hj37D5CXl4dEkODt3ZK2rX0qtPmCINCiuRctmnuRm5vLwSNHSUlJxaeVN107d1L7PdLV1WX0iGJxyy3bdmBpacmwIYMqtV/m5mbMnzOL41HRrF63gckTxkEV1hS9vJrTqJELK5YtY8y4cWpF2yrrc68Ox/r1+Zcf57N1x04ePnpE35Bvv43ktq1bqlWyUx5NbV7zFi3R1dXF38+PaTNmAsU2LzCkDw729ixZtLBSm3f33n2u3bjJH+fOIF/n21300KJFixYttUuddMzz8vKYNmNmlVLUSsSROnTspPGE/+PHBE7GxJCdk4OlpSWBgUFYWFpW+X5zcnJ4FhfL2zdvSU1NRSaXKdRNlp/sVVRjXvJ/HYkO9czqYWdnj6OjIw7161e4SNDY3Z3G7u5AcXTn7p07bNq4AblcjkQioUWLlvi0bq120mpmZsaYceMRRZFrV6+ybMliGrt7EBgUpHYCZGVtzdTpM4iLjWXRgl/x8/enpXfFkUxBEBg0eAhv377l159/ZvTYsVVqzWZhacnc+T+wcvkygoJD8PiMHsKq0NHRYVJoKJcvXWLViuVMDpvyzYoC3r51C5/WrT97gqqK9PT00vpeczMz0tLSSM/IwKxeveJt5uakpacDsH3HDqysrNixfTt//9vf+N9//EPtec+dPUNaWhojR42u8Xuuy2RnZxM+dVqVHPK42FiOHztKKx8fZk2fqtHiTHJKClExJ8jMzMTMzIzAAH+NIsblycvLI+7Zc16/eUNySmppG7NSyt9LuRrzktrysvcskUgwNTHB3t6OBo71caxfH2NjY7X34NKoIS6NxgLFNeH37j9g09btyKRSBEHAy6sZ7dq0VrtQYWxszOgRwwG4dfsOi5etwNmpAQP69VX722NmZsbU8DBevX7DgsVL6dK5E506tFd7jyWEBAXyOjmD/1m0vMqtIE1MTJj/44+sWb2KTp064d3KR+W4kih3VR10QRAYN3oUt27fYeGSZUydEgrG36bz+PzZMxo2bFQrGVMV2TypoIOJhRWp6RlIBR12bd+GlZUV23fs4L//9nd+/sf/qj3vtRs3iI17RnjoJKD6Cu5atGjRoqXuUycdcwsLC42d8jdv3nDowH6aeXkxe+68SienUqmUyGPHiI9/h0P9+vQfOIh6n5yNyiipNb969QqZmZlA8aTG2MgID88mdOjUESsr6xpRxJZKpWRnZZHwMYHXr19hoKdDklQGn+ThDPT1sXdwUD1xNdCjW9fOdOvaufi+5SJXr19n25YtFBTk06CBEwGBgSonrIIglLZji4uNZcWypTg5O9O3X3+174mHpydzPX/g5IkYli1ZzIiRoyqtP3d2dmb+jz+yYf06vLya06lzZ41fGz09PWbOnsO2LZvJyMigXfvKJ8ZVpXOXLnh6erJowQJGjBqFs7NzjV/jc7lw/hyz586rlXNbWFjw/v17ADKzsrCwsMDC3JzMTyKHmZmZWHwqDymJFg0cNIjNmzerPWdMdBQymZxRI0d81r0ZWplh5qp5qYGeqXrn7lvB0spSY7uRkPCBfXv24OLiWmrz8lHvkMnlcqJPnOTZ8xfY2trQNzgYCwvNS3vexcdz+co1BX0NA0MDPD08aNe2DTbW1jWyeCWTycjKyuZj4kfevotHx9AYaVIqiCKiCPr6ejg42GOqJqLfrmMn2nUsbiMpiiJ3bt5g287d5ObmYG9nT5/gQLWOfpvWPrRp7cOr129YvmoNtrY2DBk4QO3zcmnUkB/mzubchYv8umgJI4YNUVt/XuJ82dkZMv/Hn9i+dQuvXr3E188f+O19q8hJk0gkREydxt49u0lPT6dHz15qx5Y9T1Wc9DatfXBv7MbiZSsIGjCkwkXPr+VcHjt6hJmz59TKuatj8wYNHMjGTVvUnvPchYt8/JjIpMmhKvdrNvMAAwvTKtk8ffNvM+tFixYtWn7vaOwhCoIQAPwX0ALIB3aJojjj074JwP8D6gP3gRmiKN4sc+y/AvOAZ8A4URRff9p+BugJ9BRF8VyZ8c+A/xJFcUN1n1hGRgY7t2/D1s6O6TNnVerIZ2ZmcnD/fnJzcwgO6VOqAF0RoigS+/Qp169dJb+gAICGDRvSu3dgtSLrVUFXVxcLS0ssLC1p2rQZRgZ6SKVSJk+cyMfERHx8fPDz9eMv//UXABISEpg1cxbzf/yBls2b4/Ap5XHRokU08/KilU9rWvm0BorF9LZt3UJRYSEtvVvRsVMnlVFXD09PPDw9ef3qFatWLMehfn0GDhqsNkLrH9Cb7j16smPbNkzrmTJ4yNAKF0okEgmhYVM4ERPNjm1bGTl6jMYp2YIgMHb8BA4fPMjJEzG1oqhubWPD/B9/ZPPGjbi6uVY4Gf7SnDt7ptpt6DShbbt2rFy5kh9/+olTJ0/SoUMHPDw9efjwITKZrHhbx44ApdHXS5cu4aYmEhh5/DgGBvr0Dix2Rsp+ltu1bctf//535s+bx4MHD2rtOZWnrtm8nJwc9m3diF49C8KnTqvUGc7NzWXvgYNkZGQSGOBHcKBm35HnL15y8fJl8vPyEUURR8f6+PbqUaWa9eqgo6ODhYU5FhbmNPH0RNfQGKlUyoRJk/mYmEhrHx8C/P35j//8TxCL25PNnjmTn36cj1cLbxzqF4vCLVm0EK9mzWjZojktWzQHisfu2L2XvLxcmjVtSs/u3VT+Zrg0asis6VN5/+EDq9etx8LCghFDh6hdNOnRrStdOnVkx+49iKLI2FEjFexjeadVEATGjBvPxQvn2bp2JaETx8On8Uby/Eqd3KHDhnMiJpojhw5p9BumidNc1sk2MzPjp/lz2b5rN/HPnxASFKjx8bXtoN+5fRvvVq1qJUMIqmbzUrNysKpnwsVLl2msxuadOXeezMxMhg8dDKDwWW7Xti3/87e/MnfefO4/fFgrz0eLFi1atHx7aOSYC4LQC9gDTAEOAwLg9WlfN2A5MBg4C8wFjgmC4CGKYqYgCO5AL8AN6AL8BZhQ5vQpwD8FQego1pASXUx0FK9evWL8xEmV1oAnJHzg0IEDGBkZayQCJ5PJuHrlCg8fFjsInp6eDBsxssZ6pJaoqldHSfbggQO09PZm87/+K/PnzcOxgSMXL10CYPCgQbRu05onj59gYmLK5s1bsLOzQ6KjPIlxdnZmcmgYoihy/95dVq1YjoWlJQMHDVb5ejZyKa71f/P6NUsXL6Jd+w507tJF5T3q6+szYdIknj97xq8//5PhIyuPNgf0DuT5s2cs/PUXIqZNrzB9tTz9Bw7k3Nkz7N+3V6HmvqaQSCRMnDyZ8+fOsnH9esZPnFhrE0NNKRHtq8loeVFREQP69+f+vXv069uX//zLX+jWrRu+vXrh7OzM7Dlz0NPTIzQ0FH9fXywsLdm4aRMAwYGBGBoZYWhoyOo1a5TOferkCXR0JKURQlD+LJ87d47CwkJiTpzAsBbSVMtT12ze+XNneXrvNpPGj0XXvOJslJTUVHbv3YeOji5DBg3AupL6V7lczo1bt7h9+y4iIm6urjVaa/45Nu/AwYN4e3vzx3/5A3Pnzad+fQeuXCxWrx84eAjt2rXl0eOnmJiYsGnDBhwc7NFVcZ36Dg7FTjDw6PETVqxeg6mpKUMHDVTZhtKxfn1mTI3gQ0ICS1esorlXMwL8fFXeo66uLuNGj+Ltu3j++etCQgYNw72C/udG8nwCurTnbUNH/vHLAqaFT8Hc3Kx0X2UObkDvQK5dvcrWzZsYO35ChWM1oXwKvCAIjBk5gms3brBs5SoiwkI1yubQ5N4/h3NnzzBn3vwaO19N2DwjAwPWrVmldO5LV66SlpbG4IG/LZ6U/yyfPXeewsIiTsVEo2vwbWrZaNGiRYuWmkUjVXZBEC4DZ0VR/KOKfRsBiSiK4z/9LQCvgf8jiuJGQRA8gcXAUKAzMFEUxXGfxp4BLgMTgZ9EUdz2aXuF0SN1PX0zMjLYsG4tPXv54tO6dYXPKSMjg107d2BmZsaQocMqjC6JosjNGze4dfMGOrq6dOjYkRYtWmocvRVFkVcvXxIbG8vHhARk8op7oEoECXJRrnKfs7MzAb2VoxRGBnr88x//oHnz5oT06cP69euRFhURHhFBTk4OwYGBnL94EQAfb28sLCxo4OTEH/7wL1hYWGBkWq/CnsDJSUkcOnQQmUxG3379K6z7vnrlCteuXiEoOESh5Ut55HI5u3buQEdHh2HDR1T6emZnZ7Ni+TLGjhuvVuRIHXdu3+bunTtMmDSp1tqdvX37lr27d1W7RU9NcfDAflq29MatceMaOV9t9jG/c/s2r169VGj5pOqzHP/uHTY2NkybPh1Dff0KVdn/a2TvbXP6qF4YUsX01QfZeuGOgir7t2bz2rb2ES+dPaXk2OTk5LBh3VratmuPb8dim6fO+RGzU9m6Yxd6enqMGj600sXEe/cfcPHyZSSChHZt29CmtU+VbN6bt+948vQp8e8/IJMp2rzy5xEEAblctc2zt7NlQL++Stt1DY3533/+k+ZezenbJ4R16zdQVFTE1IhwcnJyCAgK5vKF8wC0bNUaCwsLnJyc+Jc//ISZmRn1DPWxslKf2ZSensG+g4fIz88jJCgIV5dGasfevnOX02fP4e/bi1beLVWOyZMYlvaozs3JYdSYsSrtRNkIdX5+PkuWr2TIoIG4ubqUnkcTnj55wpnTp4iYNr1GbV7Z+0tMSmL9xs3MnzNL47ru2nDOT508gbW1dWnW1+dSkzavpOd5iSp7bFwcV65dZ8LYMb+NUfFZfhcfj421NTOmT0PXwKhCVfYf+3WL/H/D/VXtVsmftkexJPKKVpVdixYtWr4xKl3mFgTBBOgARAmCcAtoCDygeFJ5A2gFbCgZL4qiKAjC7U/bEUUx9tMk9/mnx9hyl8gB/i/wV0EQ9oqiWFCdJ3Lh/DkePnjA1OkzKpxwlrTyKiwqYszYcRVGfVKSkzl29Ci5uTm0bdee8KnTNJrgfPjwgevXrpKcnFy6zcXFheYtWhDQu3etOW2enp6cP3eOkD59OHvmDF5eXgBERUbSO/A3Z/7UmTNYWVnxP3//OxcvXiA0NIwdO3eSmZWFpaUlffr2U3pdbGxtCQ2bQmFhIUePHOZ9fDyBQcEq6ww7dupEh44diTx+nJMnYhg9ZqzK1H6JRMKo0WN49fIlv/78T8aMq7gNmampKfN/+JE1q1bSrUcPmjdvofFr49O6NcbGxqxeuULj97GqODs7M2rMGBYt+JU58+Z/Fec8MzOTxMTEGnPKofLWZtUlIeED165eIWLadKV9qj7L58+dY9p05bE1zbds88qmBd+4fp0rly8xKTQMU1NT8lBdMyyVSjm6dwfp6emMHjGiNPqqivT0DA4fO0ZWVhYtmjdnWvgUjb4riUlJXLl6jYSEj6XjGzZ0pmmTJvj79qoRXQ1VNPHw5Nz58/TtE8KZs2dLbV5kVBRBZWze2dMnsbKy4m//879cuHCB8ClT2LN7J+np6ZiamtK/Tx+l18XCwpzQieORSqUci4zi0JGj+PbsgXdLZbvT2qcVPq28OXn6DAsWL2X0yOEq28gJgsDgIUN5//49C3/9haHDhtPIxUVhjEINuCH8OG8OazdsIjklmZYdumn+2jRtirGJCUsWLawRlXJV91fP3pmIsFB+WbiY+XNmaaT4X9Op7QUFBTx+9KhGa8tr2uaVPOe0tHSOHo9i3uyZSmNUfZbPnT/PjOnTavRetGjRokXLt4smsyVLQAKEAyHAE+AnilM3PSnWJ8kod0w6UDrLEUXxP4D/qOAa6ylOB50LqJcvVUFGRgZbN2+ilU9rpk6fUeHY06dO8uTxY4aPGFmh+NjDhw84d+YMNra2DB46VGUqY1lyc3O5dPECL1++BKC+Q306d+mCre2X7e/bt18/Tp8+TXBQEI0aNcLO3h6AgwcP8uOPP5aOKxXjGjiQRYsWYWRsxKgxxb5DclISe3cXCyK179CRNm3bKkzM9fX1GTxkKKIoEhUZSVTkcZXq54IgENKnD/n5+WzdspkGDZwIDglRed8urq7Mnf8DGzesp0mTpnTtpn7yqaOjw9TpM9i1cwdJiYlValnm2aQJOjo6rFu7hrAp4RofVxUcHOozdvx4fv35n0wJj6h1rYGyfPyYwKYNG5gxa/YXu2Z1ycvLY8vmzcz/4UeV+1V9lr2aNyewd81rBajgm7Z5OTk5bNq6Gmf3psyaM1dhX3ln5/KlS9y7fpnhQwerFR+D4h7Kx6NisLS0YEDfvhU671Acyb105SqxcXEA2NrY0rlTBxyrmMnyufTr15dTp0/TOygEF5dGpc7wgYOH+OnHH0rHlYpxDRjAwkWLMTQ0YNTwYUDxYsTBI0fIysqilbdyWzRdXV0G9OuLKIqljrdfr55KDrogCAT4+dKzezc2b9uBuZkZQwYNULmw4ejoyPwff2Lbls08exanVgOj5P0cGzaVI4cO8e7YMUL69NH49XF2dmbIsOEsX7qEGbNm18qCpKG1A5OmzuSXRYsJnThB4772NeGgp6WmsnbtGsLCplT7HF+CPIkhUqmUJWs38q9zVGcwqPosN2/eHP/AoK9wx1q0aNGi5WtQaSq7IAjmFE86/1sUxT9/2iYAqRRHgv4KbBBFcUGZYw4Cz0VR/EHphIrnPgOcEEXxvwRBCAG2A42Bq1SSyn7q7HmOHTnCh4QPjB03vsJa8rTUVDZv2kiXrt0qVOiOffqUmOgomnl54evnX+EkJjMzk6jI46SlpmJsbEzXbt2r1OKmPAUFBeRkZ5Odk0NBfj4SiQRdXV0kOjro6Oigp6eLgYEhRkZGKtPuy6fezZg+nT/9+79jb29P965duXLtGlCcMSCKIgYGBqxbt47UlBR++sMflCIEoihy4/p1bt28gbmFBYMGD1GZiVDioD+Li62wPdmDB/c5ER3NqDFjKoyKnzl9ijev3zBuwoRKIzynT50kJSWFYcOrpuL96NFDbt24wbgJE6t0XFUoKChg9coV9PT1pWVL71q7TgmXL13i4cMHTA4N+6pp9JogiiILfvmZsPAIleUT6j7LTk5OALWeyv4t2rySVPaYk6d5GhvLxHFjSrtFqHJssrKy2LxxA+1aNqNnd/ULXS9fvebQkaM0dnOlT7D61odQvAB5PCqGj4kfMTQ0omvnjnh6eFTb2SssLCQ7O4es7GwKCoptnkSig66uLjo6xfbPyFC9zdM1VNSamDZ9Jn/+93/D3t6eLt16cP3q5dLrlNi8tevWk5Kawr/89FNpanFZ7ty9x6UrVzA2NmH4kEEqM6pKHPQHDx/h79urVECuPM+eP2f/wcMMHzoEl0YN1TqgVy5f5t69u4SGTak0s+DK5cvExcYybsKEKr3ur16+JDo6ioiptRd9lclkrF2zmk4+zelYjU4YVXXQ7965zcULF5gSMbVW2qPVNKo6kpQsTqj7LJfYPG0quxYtWrT8Pqg0Yi6KYoYgCK8AVR68CNwF2pRs+DSB9QH2VeVGRFE8LgjCNYpTPCuksKCQBb/8THCfPvTt37/Cscc/tT6bOn2G2jS7F8+fc/zYUdw9PCuMKhQUFHAyJoZ3795iampKYFBwpW2/yh4b+/QJsbGxZGZmlvYxL7mWgb4+JqammJqaYmBggFwuRyqVIpPJkEplSIuKyC/IJz8vv7ReUyzzlgT4+vLx40f+7d/+iK6uHuMnjMfJyYmY6Gh6+f4mSpSWlsbA/v0xMTXF0sKC9Rs3qrxfQRBo36ED7Tt0IDkpic2bNmJoYMiQYcMUJquCIBAcEoIYHMyxI0c4feoko8aMVXK4WrRoSbNmXuzcvg0DQ0OGDB2m8nXu5etX2sM8bMqUCiPOvn7+3L9/j5XLlxE+dZrGqZpeXs0pyC9g184djBg5SqNjqoqBgQGz5szlwP59vHrxkv4DB9bKdURRZOvmTdR3dGRKeEStXKOm2bJpE4OHDK1Q0yA+Pp5Jn4T0xo4bh6OjI70DAr7IosO3aPOKiqT8vGARvXp0Z9b0qQr7ykcez5w+xYvH95k+abxaocS37+LZf/AQDZ2dmD1D/XenqKiIU2fO8vzFC4yMjAkODKC+g4NGz6+wsJDYuGc8jY0jNTX1tx2fvvf6+nqYmphSr95vNk8mk5U+ioqKyMvPJz+/AKlUClDa21wURXr5B5D48SP/+m9/Qk9Xl/Hjx+Lk5ERUdAy9ev3WkSAtLY1+AwZhYmqCpYUlmzasU3vPPq288WnlTXp6Btt27gZgxNAhChkEJZFxf99exJw8xemz5xg7eqSSiJ5748b8OG8Ou/bu49yFCwwdOwmJRKJUbtCpc2fcGrux4JefmTBpEnZ29mrvr1PnztjY2LBk0UKmzZipcRs6F1dXevbsxcb165k4ebJGx1QVHR0dIqZOIyoyku27djNquGobrw5NI+iiKLJ3z26MDI3qRHYQwL69e+jRq5fSfCFPYlj6vOPj4xk/aTISiYTxY8fi6OiIX+9AdCTf9kKrFi1atGipOTQVf/sDxSmXgUAs8AMwH2gKtAQigYHAeWAO8AfAQxTFzErOe4ZP0aNPf7cCrgCFwFx10aNGLi7i7XsPKnTEsrOzWbNqJQGBgbRooVqMp7CwkE0bN2BnZ0e//gPUni85KYmDBw8A0Lt3IA0bqRcBgmJRsxfPn3Pr1k2yPvU4NdDXp0nTZnh6emJuYVHh8dWhNMooFj/3lJRk8vLyQQABAXt7eyws1V9Xk5q6jPR09u4tbvszZMhQLFWoOefm5rJ921bsbO3oN0B1GueL58/Zv28fUyIi1KrgFxYWsnL5MkL69K1QwRjg/fv37Ny+rcp13ZcuXiQ9PZ0+fZWFpWqSe3fvcP7cOaZETNWoBrMqrFi2lOCQPri4utboeWuLy5cuUVhYQM9eqhWsoXLhpS8k/vZt2byGDcVHd25UGFEtKChg8ZqN9OjYhg7tVL48yGQyNm3djpGRIcMGD1J7vvT0DPYeOEhRUSH+vr3wcHev6GkhiiIvX73mxs1bpKenA6Crp0fTJp408fSoVPm9OpREGUURcnJzSElJJSenOAouCGBra4u1lRXqfENVEfPyZGdns3vfAfLz8xg8cAAO9spOc0FBAVt37MLExJjhQ1S3i3wXH8/mbduZMnkStjY2CvtKHFGZTMba1avo1Lkz3q18KryvlORk1q9by5x586sULb539w6xsbFVzjKqKrFPn3L82FFmT5lYLfX+ipzzDevW0alLZ5o2bfY5t/jFuH//Hm9eva4wiGBkoFcqEqcKbcRcixYtWn4faKrI80+K6ypPAYbAbSBEFMUM4IIgCDOA1fzW07dPZRNUVYiieFcQhB3ApIrGWVlZVeiUx8fHs2PbNqbPnKk2YnT3zm3OnjnD+AkTVTqYAM+fPSM6KhIra2vGjhtfoahcRno6Z86cJjExEUEQ8PDwICg4pNL2azWOAKb1TDGt91tdvFwukvgxgcePPiAIAnb2dlhZWhU3gFJDVGQkNjY2CjXm5hYWhIZNITc3l317dlNQWMiIkaNKU2oBjI2NCZsSTlxsLAt//YW+/forpbe7NW7MzNmzWbNqpdpUb319fWbNmcuG9evIy8ulpXcrtffq6OjImHHjWLJoIbPnztM4ct6la1eOHTnClcuX6dS5s0bHVAfvVj40auTC0sWLGDhoMI0rcXI0ZfvWLfTo1avOOOVZWVncvnWzrkS5vimbZ2NtVaFTnpSczJr1G5gREaG2PvzJ06ccPnqc8WNHq3QwAV6/ecvR48cxNTVl5LAhFeprZGdnc/rsOd7FxyMIAo1d3Qjw861Q6bw2EAQwNTHBtIwDKIoiHxOTePzkCVDspNtYW6t10gFOnTmLnp4e3bp0LrV5pqamTJ4wjoKCgk893zMYOWyYwnM0MDAgdOJ4Xr95y6+LlhDg56ukzO7UoAF/mD+Ppes249O6TWm/67Lo6OgQMW06O3dsJy8vn46dOqm9V2sbG6aER7Bo4QLmzpuvceTcu5UPaWlpnDp5Aj//AI2OqQ6eTZrQwMmJJatX0cevh9p0f1VU5JQfOniA5i1a1BmnvKCggFMnTjB3foUVLgBIBZ0KnXMtWrRo0fL9o1HE/FtDXbs0KG6/dOPGdULDpqh00Eqi5A0bNiQwKFjlOV69fMmRw4dw9/AkMEh93WWJant+QT5mZmb08vXF3l6zNM8SRFEkJyeH7OwssrOyycrKIi8vT2mcRCLBxMQYExNTTExNMDY2wcTEpMpKuzKZjCuXL/Pw4QMEQaBXL1+VdeGiKHL92jVu37qJja0tAwcNVnIMsrOz2bNrF7q6OgwdPkKpzl8URQ4dPEBebi4jR49RGT0/dPAAUqmUIUOHqb3nHdu24tbYXeVktiwfPnxg984dzJozt0qvy/atW2jZqpXazIqaQhRF9uzehYGBAQMGDvqsc+3csZ3Gjd0r1Ez41li6eBGTw6ZUqQ+9KizrmVQYMf9bxIht84er/m6rIvwfa9kcfVEhYv6tUVJjroonT58SFXOSmdMiVDrvJVFyC3MzBg3or/J7GP/+PXv2HaBRQ2f69QmpMJJ++NgxcnJyMDExoVePHjg7NajScxFFkdzcXLKys8nOziYzM4tcdTbP2PiT3St2vI2NjatcziCXy7l+8ya3bt8BoHvXrrRo7qVy7O07d7l05QoWFhYMGzxIKcMlLy+PnXv2UVRUxKjhQxUWJUs4HhXN+w8JTBqv3A4tT2JITHQUSYmJjB47Tm2q96GDBz79plQsbpmaksL6deuYO39+lZTvD+zfR4MGTrTv0EHjY6rL4YMHyc3LZeLwQZWmtlfklB85dAhzC3O69+ipdsy3xupVKxk+fESVRUDLlzsYmltXGDH/w6i+kX8JG6rx+f91xQ4W7o3WRsy1aNGi5Rvju3LMoyIjycvLVeiJXJYnTx4TeewYEydNVhklz8vLY9vWLVhaWjJo8BCVzp1cLufc2TM8ffIEK2trQvr0LY0qqU3BFSE7J4e01FRyc3MpW7oqIKCjq4uevh5PnsZialoPQyNDpQmMVColLzeP3NwccrJzyMnNITcnV6nfuYCAi2txa7bKVOGlUilnz5zm+bNnGBoaERgcpFKYLT4+nsMHD+BQvz79BwxUmmympaayZ89urKysGDxkqNLr9vrVK/bs3s2ESRNV3tOjRw+JiYqqsNXdwQP7sbS0pEfPXhU+p/j4ePbv3cPM2XOqVN+4ZvUq/Pz8a7TNmDpKnm/olHCVE/vK2LFtK55NmtKmbdtauLva4fSpk5ia1qsRR0DrmP/GmXPneRcfz9hRI1V+3l++es3uvfuYMG6Myih5UVHRp97muowaPkyl0yuKIhcvX+HuvXuYmZkpqLaXF60qS05uLikpxTZP/O1kIAjo6uqgr6dP7OOH1DM1xdjYWCmaLZPJyc3LJScnt3jxMieHnJxclf3OGzV0pkVzL+o7OFT4vZfL5Zy/eIlHjx+jp6dPYIA/DZ2dlMYlJiWxZ99+LCwsGD5ksFJEOisrix2792JoaMCYkSOUXrf3Hz6weet2xowaqbBwUeJ4vnr5kn179xA+dZpaGxAdFYlMJq9UhT0lOZmNG9YzZ17VnPPtW7fQwtv7i4hTvnzxgv379jI5NAxHC+MqC70dOngAa2trunbrXkt3WPNcu3qVnJxsfP00TzFXRyU2T+uYa9GiRct3wnfhmIuiyJZNm2js7k6Xrl1VHnPk0CEKCgvUio6diIkmLjaWMWPHqawBz8rKYt+ePRQU5NO9Z0+aNVOOuBgZ6CGVSpk0cSLx8fE0adKEefPnc/nyZTau34COjoR//PNn2rRtw/Zt21i5YgWWVlZs3LQJMzOzGumdKpfLefXyJY8ePiQxKREofn3qO9SnW48eagW3cnNziYmO4sP793h4euLr56/kYL9584ajhw/h7NyQPv36Ke9//Zo9u3cxeMhQJYV6qVTKpo0baNy4scr64szMTFatWM6kyaFqBfWiIiMRRVFt27Wy93n44IEqtQcSRZHlS5cwcPAQGjSoWgSwOuTm5rJ+7RpaenvTrn0HjaPI27ZspplXc1q3aVP54Bri+rVrtGnbttrCayULN+ERUysfrAFax7yYnXv2YmVhSe8A1VHVmBOneJ/wgQljVWernD1/gdt37jJm1AjsVHzncnNz2b1vP9nZ2XTp1InWPsrlJLqGxkilUsZPmkx8/HuaNGnCD/PmcunyZdZv2IiOjoSf//G/tGvblm3bt7NsxUqsLK3YsmkDZmZmGtV5V4ZcLuf1m7c8fPSIDx8SSrfb2FjTq0cPLNVoaxQUFBB94iSv37zFpVFDggN7Kzm2HxIS2HfgILY2tgwZNEDl/i3bdtA3JBivZk2V7mvztu3Y2tjQJ7i45VVZhzQvL49lS5YwcvToUvXt8pw/d5bk5GQGD6nY6UpKSmTLpk1V1tlYu2Y1vXr51lh5TUUUFhayYd1aXN3c6NS5i8aLkgcP7MfGxrbCNpo1zZ3bt2narFmF5WsVkZOTw4Z1a2ust7rWMdeiRYuW3wd13jEvLCxk+dIl9Os/QOXkQhRFVq9aSYcOHfFp3Vppf0Z6OuvWrsE/IECl4E5BQQG7d+6gsKiI4SNGqp1MZGdnk5eVyYGDB3j39i1/+Jd/5b//678IDQvlb3/9K1u2bSudMBUVFREUGEh0TAz79+3j7du3/PDjjzXimKvj3bt3XDh/jqysLPR09ejStSueTZqoHBv79CmnT53E0sqKgYMGK6Vzvnr5kkMHD+Dr56dU+y2KIvv27gFQuQhy5fJl7t+/R9iUcCXHXiqVsnzpEvoPGKi2bvr8ubN4t/KptHb/9atXREdHVckZlMvl/Przz0ydPr3S3vU1xYMH93lw7x45ucWRQAd7B7p264aZuTk6Ojqlr19ubi6bNqync5cutPJR/hzXJsuXLmH6zFnVPn7JooWET51WY8J3v3fHXCaTsWzlanr16K62dnf9pi14erjTtbNynXJOTg4r16yjc6eOdO6onMEglUrZtXcfmZmZjBg6VG3NeF5eHmnZeezbt5+3797yh59+4r//+lemhIXy33/9G9u3blGweQFBwZyMjmLf/v28efOWn378oUYcc3V8SEjg7PkLpKWloSPRoXOnjrRo7qVakPLlKyKjozExMWH4kMFKC2Xv4uPZs+8AnTp2oFMHxfIRURQ5fPQYaenpKhdBbt+5y7kLF5kxNbw08l7ioMvlctasWkm3Hj3w8lL9Xt64fh0nZ6cK20wCfPyYwO6dO6uULSSKIksWLWTsuPFYWVtrdMzn8vTJE+7cuU12djZyuRwbGxu6de+OhYUlurq6pfdeWFjIls2baNbMi85dNBdzrAlWLFvKtBkzq338yuXLGDt+Qo39jmgdcy1atGj5faB53ts3SEZ6OqtXrWRKeITKGi6ZTMayJYsZOGiwSiX158+eceTwIWbMmq3kNMjlco4cPsT7+HiGjxiJdTklXYD8/HyOHjlMSkoKJsbGjBk9msLCQnz9/LC1s6VVax8uX76MRCJhQP/+2NnZsWTpUl6/ekWLFi3Q1dXFz9+fmdOnq32Op0+dJDsrG4lEgpm5Gebm5pibW2Bubk49MzONoyNOTk6MGj0GKJ7wXLp4gdOnTmJtY0Pffv0V6sM9mzTBs0kTEhM/smnjBiwtLRkydFipI+3i6sqcefOJiozk+vXrjBs/oVQZWBAEhg4bztMnT1i04FemRExVUOXt1LkzjVxcWPDLz8ycPUfhddfV1WXWnLmsXrWSnj170aSpYgQK0Li+sJGLC506dWLvnt0MHTZco2MkEgnTZsxg1YrlzPvhx2r3Z64KLVq0VKhtf//+PWfOnCYnOwepTFq6XUBgzLjxFbYYqw1evXz5WdG0Wzdv4t2qlcZOeUntshbV5ObmsmjpciZNGKcyNV0URZavWo1vzx40U/H9efsunq3bdzBr+lQlp0EURY5HRfPs+QuGDRmEY31lR7CoqIgjx47zMTERAwNDRo0eQ2FRAX6+vjjY29Hax4dLl4ptXt/+A7G3t2PZksW8ev2als2LbZ6/n1+FTs+5CxdJTU1FIpFQr149LMzNMTc3//Sv5javvoMDo4YXa1dIpVIuX73G0hWrsLAwZ1D/fgrP383VhRlTI0hNTWPr9p0YGhkyesTw0gi5U4MGzJs9k9Nnz7F0xUpCJ04otZmCIDCgX19evX7D//78KxFhoQpR+tY+rWjY0JmfFywqfd3L1hBHTJvO5o0bKSwoVLl4rKmOhL29AyF9+rJl0ybGT5yo0TGCIDBtxkwWLviVH378qcqaJdWhSdOmCrY9KSmRSxcvkpmRqWDzRFFk0KDBX2zBoIS01FSN26CqIi42lgYNnDR2yrU2T4sWLVq0lFBnHfN3796xa8d2Zs+dp3LSX1hYyOKFCxk3YbxKQbZzZ8/w7u1b5sybr+SAPYuL4/ChgwweMlSlSNeHDx84cvgQOjo69Ovfv7TvrJGBHp6enpw/d46QPn04e+YMXl5efEhIIObECdauWcOa1atp36EDZp8i7+bm5qR9ai+kitat2xT3MpdJyczIJDMzk+fPn5GRkUFmRiYyuay0ry+Ag70DLVu1wsnJSa1jqa+vTy9fP3r5+pGUlMjO7dspLCokKCiYRi4upePs7OwJj5jKmzdvWLTgVwKDgxWiOkHBwaSmpLBi2VKl6HmTpk1xcnZm1YrlDBw0WKF2u379+oSFR7B44QLCp05TiH4LgkDE1GlsXL+ewsKCCtXYK6OldyuSkpI4d/ZMpbXpJZiYmNCv/wB279pZaz3OK8LR0bFCIbwvzcUL5xlUSRqtOkRR5Py5sxopEkNxCcLVK5cZPmKk2jEZFXxXvncSk5JYu2Ejc2ZMVzmRl8vlLFyyjEED+uPqorwQefX6de7evc+//DhfuQzl7Tt27t5Dvz7BpWnXZUlKTubAoSPIZFL6hoSU1k3rGhrTxMOTc+fP07dPCGfOni21eadiolm9Zi2rVq+hQ4f21DPTzOZ5t2iBVCZFKpWSnZ1NenoGL16+JCMjk/SMDOQyReVqW1sbvFu2xNWlkVqbp6urS/euXejetQupqWns2rufvLxcAvx8aVJG/NLKypLwsMkkfPzIoqXL6dm9G23b/OYs+/bsQdvWPqxcs04peu7SqCHzZs9k+ao1+Pv2UshmsLayYs7M6SxaupywyRMVWqYZyfOJGD+S7bt2Q34WnTt2qHINdgmN3d1JSkri+LFjldaml6Cnp8eo0WPYtGEDk0JDq3Xdz8HW1o6BgwZ/8euq4+zZM/Ts1avaxx89clhjm5eSnMyRw4cr7C2vSgxWixYtWrR8n9RJxzwvN4/jx44y74cfVa7wS6VSFi9cSGhYmJLImyiK7Ny+DXsHB8aMG6+078D+fcjlcpUR09u3bnH50kUm7Jo1AAEAAElEQVTqOzoycdJklf1j+/brx+nTpwkOCqJRo0aYm5vTpUsXdHR06NWrF7/++iu9e/cm81N/88zMTCwqSMsumwlQmeK7KIokJCRw984doqMiS7c5Ozekc5cuKqOttrZ2TAoNRSqVEh0VxZHDh+jRq5eCIFDDhg2ZO/8HIo8f5+KFC4wdN7401dPK2po58+YTefw4N2/cZPzEiaURLRMTE+b98CPbtmwmPv6dQrTb3Nyc2XPnsXTxIkaPHUf9ctG5iZMns2PbVqRS2WfVU/v5B7Bzx3YePXqoNlW0PB6ensTFxXHr5s06JbBWG+Tm5VU7mnP40EH6Dxio0VhRFNm3Zzdz5s2vcMz6dWurdS91nbyCIrbt2MUf5s9TKfAll8tZsHgpo0YMUxnp3nfgEHp6ukRMUXa8jkVGkZSczI/z5ijZ04ePHnP67Dmsra0YN3qkUucFgH79+nLq9Gl6B4Xg4tIIczMzun6yeb69evHLggUEBvYmK1NDm2dRZp+atm4liKJIYlISd+/d5+Sp04iiiCiKODrWp1uXLirry62sLAmdOB65XM6JU6eJjD5B504dFHq/O9jb88Pc2Zw4dbo4Q2H82FL7aWZmxrzZMzl15izLV61myuRJpSnqBgYGzJs9k5179vL23TuFRQ5jY2N+mj+XRUuXM2hAf9xcXRTua/SI4ew/eIhzFy7So1vXajvnnTp35sihQ1y/dk1jsUUnJyfcGrtx/tzZOqV6XhskJydXKpyqjtOnTuLr56dxttX2bVuZOn1GhWPWr11TrXvRokWLFi11j9rPW6sF8vPzCI+YqtIpl8lkLFrwKxMnTVJyyouKiliyaCFt2rZTUkrNyMhgwS8/4+XVnKHDhiv8sCYlJbJ44QKysjKZPnMWg4cMVemUQ3Ev2l8XLCAyKgodHR369O3L00+9dO/evYuLiwsenp48fPgQmUzGqZMnK20DpimCIFC/fn2CQ0IImxJe+mjWrBnHjhxm9aqVrF+3lkePHlJeW0BXV5c+ffsyY9ZsUlNSWLp4EXfv3FY4d0ifPowcNZpNG9Zz7uwZheODQ0IICgnh119+JjUlReG4seMnIJPJ2LZls8J1DQwMmPfDjxzYt5e42Fil5zNqzFiePnnMvbt3Put1GTlqNOfOnCEh4YPGx/Tp25drV6+QnJT0WdeuyxQWFqKnq1l/5PLk5OSQkJCgscp95PHjBIWEVJhKe/DAfoI1jAJ+b2RnZxMx5weK9JXTY0VRZPGyFQwfOkTJKZfL5SxbuQpXl0b076v42uXm5vLroiU42NszcdxYhdc+PT2DRUuX8/bdO2ZOi2D0iOEqnXIotnkLF/xKTNRxdCQ69OvbhyclNu9esc3z9PDgwaNim3fy1Ck61lCbLkEQsLezIzDAn/CwyURMCWVqeBitfVoRGRPDitVrWLVmHXfu3lOyeRKJhMAAf+bOmkFRkZSFS5Zx+eo1hTEBfr5MmTyRbTt3cTwqWmGfX6+ejBg2lJ8XLOL9B0XbMnLYUCwsLFi9dr2Ciryuri7z58zi5KnT3L5zV+n5DB44gOTkFC5evqLUMqsq9BswgIcPHvDyxQuNj+nRsxcvnr/g7du31b5uXedzNHeKiop49PChxhogFy9coH2HjhX2oD8RE02Hjur72WvRokWLlu+LOi/+Vp7lS5cwZNgwpeiyTCZjwS+/MGnyZKV68YcPH3Dm1CnCwiMUVFhLhMxysnMYPXZshT+gUJzKHh8fz6SJE5FIJIwdN44JEyawaOFCDh48iLGxMRs3bcLKyoqtW7awcsUK6tUzY+GiRRgaGXL23Hmys7KRyqQKCwM6Eh309fWwtrHBzs4OG1s7bGxsqiWmVVhYyLWrV3j8+DESiYRBgwarrJ8XRZGLF85z+9YtlWJsV69c4fatm0wOm6JwH0VFRaxZtZKu3bopienFxcYSefwYM2bNVqgTFUWRzRs30rptG5WtezZv3EiHjh1V1pxrikwm49dffmbW7DkaK+1KpVIW/vorP/z00xepN//WuHjhPJZWVhpnGpRl4/r1DB46VKOa+IKCAtavXVNh3XF8fDznzpxm9NhxX0X8TRAEQ+AcYEBxptEeURT/n8YX+UzU2TwjeT6r164nwN9PKX1dFEUWLF7KiGFDaODoqLDv+YuX7DtwkGnhYUqCloePHuPDhwTGjx2t1hkvQdfQmPj4eMZPmoxEImH82LFMnDCeBQsXceDQIYyNjNmyaQNWVlZs3rKNFStXUq9ePRYvWoiRkSEXzp4lKzsbaVERZful6ejooKeni62NTfHD1hY7W5tqqWRLpVKu37zF3XvFzvmgAf2p76A6++jKtetcunyFkKDeSjX6d+7e49SZs0ydEqqQRSKTyVi7fiMtW7ZQEtN78/YdO3btZu6sGUr2esfuPTRq2FClAN/OPXtxd3OjbZvW1Y6ci6LIwl9/YXLYlErFMksoEcCc98MP1e7C8KUpWcCo7utUlkePHpKWmlYtBfgd27fh5+9fWtpWETKZjOVLlzBrzly1Y9JSU9m3by9hU8K/ivjb17Z5WrRo0fJ75LtyzI8dOYKTs5NKdfUVy5YyaMgQJWXb27du8eTxI0aPHaewPTHxI1s2bWLgoMFK4ldZWVmkJCcrOauq+pjL5XJSU1JJTU1FFOXAb5NPQ0MDjIyM0dPXQ09Pn6zsHEzr1VNIVRVFEblcTkFBASkpKSQlJpKUlERyUiIFhYUK16pf35EmTZrg6uamkSOZn5/Pgf37yMzIoP/AQUrp5CXX371rJ7q6ugweMlThvOlpaaxds4ahw4YpvRYH9u/DwMBQqc4xMfEjmzduYu585Z67a9esxs/PX6nVWkkrs2EjRijU81eVwsIi4mKf0rxFC40V8J8+ecLzZ8/o069fla9X11m3dg2TJodWWRCqqKiIjRvWMyU8QqPxO7Zvwz8goML00aWLFzF1+gx0dXW/lmMuACaiKGYLgqAHXADmiqJ4ReMLfQbqbN7ZM6cx0RHp3lVZtXrthk349uyhlDL9+MkTzl+4RHjYZIXvc1paOms3bCQwwB/vli0UjsnLyyP+/Xvcy2VAqOpjLhdF0lLTSE5JUeo5bmBgiLGxEfqfbF5eZjr16pkqLHqWpKMXFhaSlJxCUlISiZ8eBfkFCuezt7ejaRNP3Bs31uhzWlRUxL6Dh0hKSqZfnxBcGjVUGiOKIgcPHyEzK4txo0cpnDc7O5uVa9YREhSo1B7tWGQUOTm5DB+qWC+dnp7B8tWrmT97ltLCwpbtO2jVsqVKdf1Va9bRM6hvqXBpdWyeTCrj4cOHeHt7k1eomc2Lj4/nwvlzjBw1usrXq+ts37qFgYOHaNy+sgRRFFm1YnmlaeklHDl0iBYtW6rtPgKwasVyxk+chJGR0ddyzL+qzdOiRYuW3yN1ssZcFa9fvSIjI12lA7Vn9y669eih5JTfu3tHpVN+985trl69ypx5is5jdnY2e3btAmDocNVK36K8uM47IzMDxOJ0SSsrK9zd3ZHoVDxx1NFTTo8XBAEdHR2MjY0xNjbG2dlZ9XU/1Zc/efyI06eL2yrp6uji09qHFi29VUY/DA2LVZWLioo4dPAASYmJ9B84SKGPtyAIjBg5imdxcfz68z+ZMHFSqWKthaUlP/z0Ezu2beXJkycK/cUHDR7CtatX2bBuHRMn/+YA2NnZM3HSJJYsWsiceYoiVKFhU1i2ZDFDhw9XeK8EQWDq9Bn8+svPzJg5q3TSJJVKmTxxIh8TE2nXti1//fvfmT9vHg8ePMDV1ZXlK1ago6NDy+bNcfi06PCf//mfvH3zFptK6vVLaNK0KWfPniE7O/uLtVD7VhBFsVoqzVHHjxMYpJljXFRUREZ6eoVO+dMnT3Br7K6ytvpLIRavYGZ/+lPv0+Orrmp+/JhAXFxc8QJIubTnI8eO49WsqZJTHvfsGecvXFKqNY+Ni+NYZDSzZyi2tcvPz2fnnr3k5+UzfOgQlfchiiIfE5NIS0sr3iAIWFla4t7YrdKoq5Gu8gKiIAgIgoChoSHOTg1KheZUXzeRx0+ecvbcheLPq44Orbxb4OPtrTLDSU9Pj5HDhiKTyTh89BiHjhylX58QhddJEAQGDejPm7fv+McvCxg7eiROn2yiqakpP86bw559B3j0+AnDhgwqPa5PcBB3791nyfKVzJj6WztICwtzZk6NYMHipfw0f67C53jc6FGsWrMOY2NjGrv95qTlSQwZFz6dBb/8TGjYFMwtLIDq2by//vVvvHj5gvoNVP92lKdBgwYU5BeQkpysMpvqeyY3L6/KTjkUt/Hs2r27RmPlcjlv3rym34ABasfEx8djaWVVacZKbfIt2jwtWrRo+d6pkzXm5SkqKmLP7t2MGjNWad+5s2ewsrJSaEkFxenrd+/cVXLKz545zbNnz4iYOk1hAnXp4kU2b9zA4KFDmRQaqpD+KZfLuXTxIgsXLmLJsmV8SEykoYsbjdwa4+ziiomZOQVSGXkFRRU+PoeS+nJfP//S2vLRY8dSWFgcvVy5fBmnTp5AVk7RGIonq0OHDSd86jQunD/Hlk0bKSpSvB93Dw9mz53HoUMHOXXyhMJ1R48dh52dHSuWLUUq/a3dTYeOHenRsyfLly5RiJzZ2NoybMRIVq1YrlDTJwgC02fOYtuWLaSXTPI/oaOjw7TpM1i2dEnpczh44AAtvb2JjokhLz+fc+fOUVhYSMyJE3h5eXHs6NHS68WcOEHMiRN07tKlOPoXH6/xaztm7Di2bd2i8fjvheqm779795aGDZUjkao4eGA/AwdXrMgcHRWpsOhTGZJ6Fug6NNT4ITEyBRgmCMKNMg+lcL8gCDqCINwBEoEYURSvanxTNYxcLmfzxo1MmlzsYJdN471+8yYymUwpRfr5i5fEnDxFeJiiAvSVa9e5dOWaUrr1zVu3WbZyNX1DgpkaHqbQz1wURa7duMGihQtYumQx7169wL2REx4uzng0csLazASxqABpfm6Fj89BEAQc7O3x7dmjtL580vix6Eh02LhlG8tWruJYZJSSLYNiezJoQH9mz5jG7Tt3Wb1uAwUFitH4hs5O/OGHeZw8fYZDR44q7Bs2ZBBezZryy8LFCse18m7J4IH9+WXhYgVbaGZmRtjkiSxcskypjjk8bDL7jkXzMjGNPIlh6XspCAIzZ89h9aqVFH7KjqqOzWv/STlelY6HOkaNGcOO7ds0Hv9759HDh0pzDHVERUZWunB5cP8+BlehG4bE1KxKNk8wMQPoV5dsnhYtWrT8HqjzjrkoiixbspjJoaFKjsSTJ495Hx+Pn3+AwvanT55w9coVpV6vBw/sRyaTKfS9lkqlrF2zmsLCAqbPnKVQq5eRns6a1atYs3oV9eqZEj51GlPCI2jWzOubqEnW19enfYcOhIZNYer0GTRo4MT6dWtZtXIF9+/fUxqvo6PDyFGjCQwOZsWypVy9opixpqenR2jYFMzMzFm2ZDH5+b9F6dq0bcuw4SNY8MvPZGRklG53a9yYAYMGs3jhAoVFAScnJ/z8A9i8caPCNSQSCbPmzGXN6lXk5ipO3E1NTRk3fjxrVq0E4OXLl7RsWTwZ8m7VinNnzyr8XXL/aamp+Pv5MXPGDPLz8/Hw9GT7tq0qFylUYWpqimN9x1IRv98D6WlpGtelluXpkyd4lGk/VRFSqZTkpCSlTJay3Lh+nTZt236J79MeURTblXmsKj9AFEWZKIo+gBPQQRCEFkpn+UKsXrmC0WPHKSwe5kkMefX6Dbdv32Vgf8XModdv3nIsMorpEeEKr+XxqGgSExOZNH5s6Xa5XM6GzVtJ+PiRH+bOxqZMH+ns7GzWrN/IitXFStHTI8KZFj4Fn1be34TN09XVpU1rH6ZMnsiMqRE08fRk/cbNLFu5ius3byKKIjpZH0sfutmJjAjoxMjeXVi1dCFnjx9QOJ9EIiF0YACNbevx6//8lbyEF6XHtnSyJGJYCAv+8XeSkpNLj2ng6MjE8WP5568LSx1qAFsbG4YPHcKylasQRbHUCc/XMSpdkCzfDlBfX58p4RGsWLYUxOrbPDdXNw4fOqhwPxWhr69PS29vbt64UdW3oM5SXbHL9+/fY69Gs6A8oijy4vkz3D081I6JffoUF1e3L5EhdKQu2TwtWrRo+T1Q52vMN6xbh6+fn0L/bShuybNx/TpmzZmrMGF89+4dx44cJnzqNIXtO7ZtxbNJU4X2WKkpKaxbu4bxEycqiMnJZDJ27dhOQUEhI0aN0ij1TS6Xk5CQwPv4eOLj35GamqqwX0BALJMlVv5vURSVJr6iKKIj0cGtsRtNmjbF1tZOo8lxcYT/Ardu3sQvIEDtSv/FCxe4c/sWEyeHKqVxZ2RksGbVKsaOH6fgWBUUFLB86RKGjxylkBJfUrNfvjzg9q1bvHjxXGExBIpVvZcvXcLc+T8opaTeu3sHeztb7t29y5XLl/nr3//OpIkT8fLy4u6dO2zdvp3/+3/+DykpKSxdtozU1FSsrKz4n7//HVNTU2bOmsXzl685GROjtDijjhIhpbnzf/gmHJDa5uyZ0zRo4FThBFIVq1auYEp4hEYp8Af276Nd+w44OTmpHbNk0UIlgaTKasz/58eIbT9OGqHxPYf9+R9sPBhVYY25iuv8PyBHFMV/anyhz6Cszdu1cwctvb1p1sxLYUxBQQFLFi0qFSssEcVKTklh89btzJs9U+Gzu3f/QWxsrOnZ/Tehq+zsbJYsX8nokSNo1PC31GdRFNm9dz+paamMGTlCI1E/URRJ+PiR+Pj3vIuPJylZsVtD+bEl20p/k0RRQRCu7LGuLo1o1rQJ9R0cNPo+iqLIjbMxXLp+k64d2tKxTSuV467dvse5y9cJHT0Uq3Kt1nLz8li2fhtD+gbi1ui310YqlbJ43Rb6BfTCrdVvHTbU1ZY/jY3l7NXbSransLCQRQt+ZebsOUopzM+fPcNQX49Hjx5W2+a9//CR3bt3ETF1WqWvVwkl91NXhOA+h3t371BQUKhxi7kS1q9by5ix4zQSYz118gT1HR2VvrtlWbZkMdNnzlL4XFdWY/6vU0ZH/vfcMI3v+ad/rGDBpj0V1piruM4XtXlatGjR8nukTteY37l9mwZODZSccigWlAqdohgdEkWRXTu2K/UoPxETTSMXV2WnfN1aJcfw4cMHREdGMnL0GBzLKR2XJTs7m1s3bxAXF1c66XR0bICTUwO6deuOlbV1jTh4UqmUVy9fcu3KVRKTEpHL5ejq6KpcrChBIpHQrXsPunXvQeTx41y+dInxEyYqCRN17daN1m3asGzpEsaOG68gDmdubs78H39k8cIFjBg1unSfgYEBc+bNZ8mihQwbMbL0NbKzs2fCxEksXriAOfPml070WrdpQ25uDseOHqVP376l5zcxMWHS5FBWrVjOzNlzFO7Lu5UPHz/E07lLF4We8Xb29ng1b05g7940b94cO7viumWrT23zBg4cyKJFiwBwdHTEwsKCx48fVThJKkEQBIJCQoiKrFpadV3lxYsX1epnrKOjo3Fd+seEhAqd8mdxcTRt1qzK91AbCIJgCxSJopguCIIREAD8z5e+j2dxcejr66v8zO7cvp3QsLBSu1KSEr1+42Ylp/zi5SvUq2eq4JRnZWWxZMVK5s2aqeAYPn/+gr0HDjJsyGClmvWy5ObmcvP2HZ48eVrqXDs42OPUoAFdOnfC1samRmyeTCbj1es33Lp9hw8fEpDL5QiCQK+e3fFUs5AkCAKd2raiU9tWnDx/iYVrNhE2eiimZdTVATq09saneVMWrdms5IAbGxnx4/RQlqzbQh//njR2KS7X0NXVZV74RJZsP0SQqS2NGxeLV5bUlv+6eAk/zp1T2mKziacnOTm5HN61jRHDytTt6xsydfoMVixbqvQb1djdndSkRNq371Btm2dpZYWHhwfXrl7VuEXn4KHD2L9vL8OGa77QVVd5cP8+g6qQPl6CXC7XuENKXGysUgZfWT5+TMChfv1vYvH3W7F5WrRo0fJ7os465kVFRZw9c5q5839Q2vfq5UtsbW0VWtoA7Nu7hyFDhyk4Dm9evyYpMZGAsYGl23Jycli3do2CUy6KItu2bMbSylpp0gTFk8VbN29y795dRFHE1MSEtu3a071Hz1r9kdXV1cXdw0MhsllQUMDpU6eIiopEX0+/Qic9OCSEjPR01q5eRes2benStavCfmNjY+b/8CMrly/DLyCApk1/c5QkEgmz585TcsJL0tGXLFrI8JGjSp12G1tbxowbx9LFi5g1Z27p+9C1W3eioyI5f+6sgjNoY2uLr78/u3buYMTIUQr35eLiwoP7D/if//0H+vp6zJg+nYCAAJycnPj3P/+Zv/znfxIUHExhYSGiKGJgYMCly5dxK6P43m/AABb88jPu7h6VtsIDaNbMi3NnzpCXl/dVRXm+BNURfsvNzcVIw3ZWL54/x8XVrcIxp0+fIjRsSpXuoRapD2wUBEGH4hKgXaIoHvmSNyCXyzl86CDzfvhRaV9SUiI6OhIsPzlkJRw/doyeQX0UPt+JSUk8ePCQqeG/RdgKCwtZvHwl82crOuU79+xFR6LDH36Yp2TH5HI5d+7e48bNW8hFOcbGxrRr04awyROrJRqoKTo6OjR2c1UQSysqKuLMuQucOHUaPV09evbopuSky+oVd3Tw796FTm19WLd9L03d3ejdU9Hm6Vg7M+9f/o016zbQtqg4Nb4s0+f+yPJVqwkyti51wqE4rX/ZylUEC4Gl92ZmZsa0KVP4ddESfpw3pzRbqE1rH7JzcjgWGUWf4CCguO2XkYkeY4YMYPv61YRNmlB67jyJIQ2cGvD40WP+9re/Y2hkWC2b5+vnz5JFC2nRsqVGmV7Ozs6ciIkmPS0NC0vLSsfXZfLy86ss/CaXyzX+rCcnJVUqpnf86DFGjv5m1PC/us3TokWLlt8blf6iCIKwQRCEIkEQsss8ZpTZP0kQBHm5/dvLneNfBUH4IAjCeUEQGpXZfkYQBFEQhB7lxj8TBGFSRfe1ZfMmxo4br3LfoYMHGDhIUVAqIeEDebm5Cu1JpFIpe3bvUhCNk8vlrFi2jOkzZyk45WtWr6JDx0706dtXYYJ66uQJVq9aycYN69HT02NyaBhTwiMYNWYsHp6eX2Xl28DAgOCQECKmTmP02LE8fPiQJYsWqhX/MbewKI1Kr1i2VEksSUdHhxmzZnPrxg2uXL6ssK/ECd+7e5eCoFrJ9p3bt/HxY0Lpdnt7B4YMG87K5YoiSIFBwbx//16p9t3Lqzk2NjacP3dW6b7NzMzo1aM7QYGBdOrcGUdHR3oHBBAcFIS+vj4dOnQgLS2Nnt274+/nx7EjR5g67bc0TkEQGDdhAls2b6rsJS1l1Jixv0shOE24e+cO3j4+Go09deok/gHqI0eFhYVIJJKvkkKryuYB3URRbC2KojfwT+A/vrTN271rJ0OHj1BpU3bv3MnwcotXGenpvH37hpYtvUuj56Iosn7jZsIm/5ZGLYoiS1esYnr4FAWnfOOWrTTx8GDYkEEK1zx/8RIrVq9h9dr1FBYVETZ5ItPCpzBh7Bi8mjWtVadcHXp6evT292XG1AgmTRjHq9dv+HXREu4/eKg0VlbPHkN7V2bM+wkLczN+WbGObF0zZPXsS513QRAID5vMi5evOHHqtMLxgiAwPSKc6JMnefb8ucL2GVMjOBYZxavXb0q3W1palAq/lRXB7NGtK1KplMtXrymc36VRQ7yaNeV4VHTpNiN5PrqiDAtTY/x8exHUu3o2D2Di5FA2rl+n8Ws7esxYtm/bqvH43xNxsbF4aFjuc/zYMUL69FW7XxRFCgryv5lFX1EU75XYPFEUW4ii+J9f+560aNGi5XtH0xnURlEUTcs8lpXb/6Lc/tIlX0EQ3IFegBvwH8Bfyh2bAvxTqIIHm5+fj421TWnbrrJcuXyZ9h06Kk0Od2zbpqTavmnjBsZPnKgw6Vy/bi0jRo0qjbaLosjqVSvx9fVTELVKS01l4a+/YG1tTXjEVELDpuDTuvVXmZRWhIGBAX369mXm7DnExcWxdPEi3r17p3Jsl65dGTFyFAt//YX3798r7R8zbjypKSkcP3ZMYbtEImHm7DkqnfPZc+exbcsWkpOSSrc7OTkRGBTMhnKTw5GjRnP50iXevn2rsN3PP4A3r1/zLC5OYXvDRg2JjIpm2bJlTJgwAYlEQsyJE0RGRfGvf/wjAPb29ly5do2Tp06xZ98+BTV9AFtbOxwc6nP/3l11L6EC5ubmWFhY8Ob1a43G10WqEvkuy9MnTzQqC5DJZMUlFxWIG0VroFxcy3xTNq8kCqpK7f7Ro4e4e3iUpkqXsHnTRsZP+M0Bz5MYsnXHTkYMG6rw2m/buYs+wYFYlqmp3rhlKz7e3vi08i7dlpWVxcIly4o7JIRPYWp4GJ06tP/m6o/19PQIDPBn3uyZJHxMZMHipTx/8VLl2DbdA5g8dSaLl61QOaakHdruvfsVtguCwLTwKcScPKXknM+aPpWDh4/w9t1vttDG2pqRw4eydMUqhQXJAf368jQ2jqflFk07d+xAbm4ed+4qLlQ6Oztx+mQMSxYtqLbNq1evHi29vbl44YK6l1ABQ0ND3Bq78/DhA43G10WqEvkuy+3bt2jl07rScaIokpubo5TFV5YL589p3HJNixYtWrR8n3wJL1Ly6aFT5v9lWU2x4qfG+VsZ6Rkqe4CKosi1q1fo3KWLwvYTMdH4BwQoTEZv3riBq6urQv/k6KhIWrb0VugVvnH9evz8/BVSxa9cvszevXuYNmOmRj/K3wKCINCnb1+mzZjJ1SuXWbVyhUI7nxKsrK354ac/EBV5XCk6DtCnXz/Mzc3Zs3uXwvaykfOyEXIdHR1mz53Hxg0bFNTaG7u70659e3buUAg0MiU8gj27dpKZmamwfcy48Rw9clhJtdjM3Ax9fQOSk5KpLiF9+nDq5EmVbZVUMXjIUA4e2F/5wDrKo4cP8WrevMrHyeQyjZy0s2dO06uXb4Vj4uPfKXwP6xg1bvPS0tKUyjlKOBkTQ+/AIIVtVy5fpnWbtgrRtydPHqNvaomrS2kAn/MXL2FV35mGTX+Lqm/ftRsfb29aef8mCnn7zl02bN7KlMkT6dJJs/rkr40gCPT292XOzOk8ePiQxctWKHSSKMHMzIw//DCPS1eucPL0GaX9AX6+NHZzZf0mxUyZEuc8+sRJXr56rbB99oxp7N67j4+JiaUq7o3MdOnXrQ3rVywp3QYwcdwYIqNPkFhm8RJg6OCBXLpyhY+JiQrbTYyNMTc3J/F9PLqiZp0lytOtew/u3L5FTk4O8CmN/tNDFYFBQZyIjla573vg5YsXuJbJptOUnJwcpYUPVdy9c6fSuUJVWq5p0aJFi5bvE00d86GCIKQKghArCMI/BEEwLbffWRCEBEEQ3gqCsEMQhNJfOFEUY4HLwHPg/wP+T7ljc4D/C/xVEASNFFTqmdVTmc754MF92rVXVlR9/uwZLb0VVXhvXL+Gr59/6d+iKPL82TMFUZy3b99iaWWp4JRnZGTw4MF9poRHaCz48i2ho6PD0GHDGTxkCKtXrlA5RiKRMDk0jPfv47lx/brS/i5du+Lg4KDQz7zkuJmz57B50yaFVmS6urrMnD2btasVo0UtW3pjY2OjsAAgkUiYNmMm69euUTi3IAhMnT6DdWvXFLcaKtP/3cbegY2bNpGQmFxpr3h1PeNHjx3Lnl07NXoNJRIJzby8iH36VKPxdY3Ejx9xqK++hZk6NA0Av3z5Es8mTdTuz83NVeoCUMIX7CLxTdk8Y2NjlRG9N2/e0NjdQ+m1v3vnNl27dVPYdvb0afoNGFDapitPYsiN+4/p5etXOiY+LYc8maDglOfn53P+4iVmz5hWYcTvW0UikTCwfz8mjhvD4mUrVH6GBEFg/JjRFBQUcObceaX9bVr74N2iOQcOHVY6bnpEOLv27FXoZy6RSJgzczrrNm5SSF93d21E86YeRF59qJA2P3NaBOs3bla6t6lTwtiwaQtyuVyh/7udpRkH9u4h/s0ryMsqfVTF5o2fOKl0YbRkUabkX1WvT5eu3bh29ftsY/2xlm3ezZs3KhTck8vl6Gqgc6JFixYtWr5vNHHMFwNNARtgMNCT4ohPCeeAloAj0B7IB2IEQSidwYmi+B+iKNqLothFFEVVOYXrgSxgrop9SqgTaLly+TKdOndW2PbmzRucnRXTPxMTPyqlwZ87e4buPRVVqI8dOUzffv0Vtm3bspkxY8dpcpvfNLa2dvj6+7Nj+za1Y4YMHUbs0ycqUxi7de9BUlIST548Vtiuo6PD2HHj2bRxg8J2Q0NDBgwcxO5yzq9/QG/u3b2jkOpuZGSEn78/x44cUTpH33792b9vr9L9hE4JZ92a1dV23Ozs7CkoKFSKyKvDzz9AaWHieyErOwtT08qjQOWpKT2FpMREunZTndKZmpKicnsN883ZPHVRudMnlWv101JTlYS6srKyMDExKW2jZiTP5/69u7RoqRih279/HwMHD1Fw0DZv3c74Md+MIFW1MTMzY/jQIaxZt0HtmD7BQaSmpnFVxYJk2zbFpUrXb95U2C4IAhFhoaxau15hu66uLhPGjmH1vujS+nVZPXs6+gbz7v17Xr95qzB22JDB7Ni9R+EcOjo6jB09ko1blO106KQJrN+4WcHxryjqXR4zMzOMjY358OEDoN4pL6F9hw7cvKH8unwPZNeyzatMTDM1JYWOnTqp3JeXl1fl+9KiRYsWLXWTSh1zURRviqL4URRFuSiKD4H5wLCSSI8oii9EUYz9tD8BCKd4wqr6V0b1NWTAvwB/EgTBujpPRBRFlT9+J2KiCQgMVNh27MhR+vTtp7CtfBpZakoKZmZmCunvd27fxrNJkyort36rNG3ajAYNGnDyRIzaMWPGjefi+fNKdd9QXBN+IjpayVmqX78+bm5uSjWM7h4eGBka8eCBYrvo0CnhbFi/TmGC2dK7FampKUr18J5NmiCTyXj+7JnC9hKnfd9exYltVRgxahQ7d+7QaKxEIsHCwuJLOYpflLzcvCp/xjVdEMnOzsakknM3cnFREGksS2WqxjVBXbF5AAWFBUqZO8ePHVUSmYo5vI+hfQIVnLaLFy4oLIDk5OQgCILCex/37BnW1tYK9ed1GZdGDfHx8VaKfJdlyKABPH4Sq1T3DcU14bdu3SG+nAaHpaUFnTq2VxBsA2jg6IhLo4ZcuqIYaZ44bgw7du2msLCwdFtjN1d0dXSVruvUoAF2tjbcvqOog6Grq8vY0aNUOu2aOufDho9g357dGo0FcHJy5s2bN5UPrGNkZWVRT02WzucilUorLfGxsbVVm8b+rYjBadGiRYuW2qc6NeYl3pO6pWLx06NK4TNRFI8D1yhO8awyN65fp1279uXPibSoSEEUSRRFCgsLFH7s3rx+rRRVP3Bgv1JP0wvnz+Ef0Ls6t/fN0r1HT9LS0pTU0MsyJWIqe3btJD0tTWlfSXp5+frsnr18efToIUlJivWR/QcO5PTJk2RnZ5du09XVZfTYcWzZpKiOPmbceHZs36Z07mHDR3Bg/36FSS0UO+0SiUQpiq8pxsbG2NnZ8frVK43GDxg0mIMHD1TrWt86VY1+Z2ZmYmZmVum469eu0r5DLdcoG5khWjpq/jCodOL7Tdq8Z3FxNG7cWGl7VlYWZmZmCnXDaWnpWFn9FkVPSU3FzsJU4X0+uH8fgwf/1lc7T2LIschoBg9UzBqq67Rv2xZdXV0lZ7ksE8eNISrmJB8SEpT2hYdNZsu2HeTm5iqdNzEpSUGRHYpr1O/cvUtymUU8iURCeOhk1m7YqDB22JBBHD56XOncfUOCOXPufGlNeAnOTg1wrO/AtRs3lO5TE+dcV1eXps2aVWj/yxLSty+Rx45qNLYukZOdg0kVHXO5XI6gwVf+4YP7tV87bmhaJZuHYd0rSdGiRYuW3wOatEsbJQiCxaf/ewA/A4dEUcz/tK2vIAhOQjFWwFIgGbhSjfv5AxABKMutV8LtWzdp3aaNwrYrly8rpYdduniBLuVqLyMjjxPcp0/p3yWpY2Wd91s3b9K2nOP/vTBs+AguXbigINpWlpLa8dWrVirUUUKxAnJo2BSV9eqTQ8PYuGGDUjQ1LDyCtatXKWxr0KABdvb23L51S+G6kyeHqqw3nzR5Mhs3KKaOAgwaPITIY8dUijxpwoCBgzikobNtbGyMVCpVWiCo64hUvRwg8eNH7OzsKh334sUL3FQ4k98SdcXmnTt3lh49eylse/rkCS08XBWcsvsPHtKiuaJa/oFDRxjU/7esIZlMRmZmpkIf9OfPnuHh3virtHysbfr1CeHxk6cKom1lKan73rRlG1lZWQr7JBIJM6dFsGT5SiXbNmHsGHbu3qOwmJgnMWTclOms2LCNXMGgtL7fyKY+LZo35+z53zKLigXlwpTS4gHCQyexZv1Gpe1BvQO4cvU6GRmZSvs0SW338w/g9MmTFY4pQVdXF0NDI6XXpK4jlUkr7BKhirTUVKysrSodd/fOXVpp2EZSixYtWrT8vtEkYj4NeCEIQg4QTfHkc3KZ/b0ojvpkAw8Ba6C3KIrZVBFRFO8CO4DKQ2/l0NXTU5pAPn78CO9WPgrbYmNjlVavdXV1FX6U49+9w7NMazQAFxcXtTVg3wPBIX14+EB9Oxx9fX0ipk5T6QxbWVvTpWs3YqKjFLbr6uoydOgwJUfX2NiYrt26c/GCoshScEgI58+dVZjsWtvY4O7hwd07txXGWtvY4GDvwMsXLxS2FzvtoezeqV7IrfziQlkkEgmN3T149VJ1e6XyBIf0IToyUqOx3zMyuQyJpHJFdolEUhccvTph86B4YawsV69coUe3rgrbrt24Sfeuip0q5HI5JiYmpY5bQdpHHBs0AH5z5pytzejt78f3yrDBg7h+46ba/To6OsyZOZ21GzYp7TM1NWXwwP7s3X9QYbsgCEyaMI5Nuw+UOuBQ/D71HzCAyOPHFca36+7HjfuPFTpkmJqa0qVzR85duKh0zZYtmiultEOx07591y6l7SVI8jLUOuiCINCufQclG6uO/gMGcPSI+lKAukpV9Ulkchk6Gtg8qUyq1MpQixYtWrRoUYUmNea9RFG0EkXRRBRFV1EUfxBFMbPM/j+Iouj4aX99URSHfVIlrpRP5/6vctsmi6IoiKK4ocrPRgXVcQIKiwrR1VWc8FpZW39zPcprkpzcHIyNK05vM7ewoEmTJiqVeX1at+bly5dKbc5c3dxISkpS2t6ufXtu3rihNBkK6dOX40cVUyX9/AM4feqU0ti+/furnCBaWFoik8nUCrnt27OblGT17dUCg4KILrfIoA5nZ2fi41X3ha+raJKeWR4zM/PvJopWl22eVCZFZqjo48vl8kprXAsLCzHRERWcN3NzMyXH/3tBJ+sj+YmvqScpLG1bpgojIyO6dO5IzIlTSvs83N3Jys4ubXNW4oibOTREFEWlMh7PJk14+eK5UpvKwUOHsXX/EQXxtQ7t2nHr9h2lMh7fnj1UqsYbGRlhbm6uMvUe4FhkFK/fvFUobyj7Xnfu0oXLly6pfR3KYmllRWaZ1pffA8ZGRlUWWSu2ecpZClq0aNGiRUt1+S48zbTUVCzLqRCro7xzJ4qikvNeVFj4u1vhzs3JxcSkcsGvnr18uX7tqlKtI8C48RPYtmWz0vbRY8ayY9tWpe2qnHAPT09evXqpNCEdOGiwUu9wiURC02bNlMTkoFjIbZea9meDhgxlnwpl9xJ0dXXR09PTeKLWsJGLxhH2uoCBgX6VSwHq1atHZmblk/XqOP1aFDGS56NbkIWRRMMInwaRwMLCou/e5pX0Di9xxHNyczExrlxYq0O7djx/+YLUVGWNjXGjR7J++x4lRfMRo0aza4eykOTgocPYW05srX79+mRmZpKTk6NwntEjh7N9l+JYQRDo2qUT5y8qO9HDhwxmz74DKp/DgH59OXREuTa8xEEXBAELCwvSUlNVHl+elt6tNI6w1wXMLSxJ17AjRwkGBgbkaWAn60CGkBYtWrRo+Ub4Lhzz58+f4+bmprBNLpcjERSfnqpUtfS0NCwsLBS2FRVJ0dP/PiNF6sjVIGJewsTJoWxSkdJubGxMMy8vbpYTIjIxMaFBAyelvt/qnPChw4ezd7diWqarmxvJyclKkXf/gN6cOqHctszY2BgzMzMSEj4o7TMyMsLQwFClmF0JAwYMVFoIUEfvwEBiYqIrH1hHKJ6kqn9tVGFqakpuTm6l46pTv67lN0qinK/fvKFRQ2e16ckVtb6SyWRKEfSiosLvOjquKiqem5+PkaFmiteTJ4xn9ZYdCj3g8ySGSA3q0bVbd86cVoyo6+np4d2qFTfKtV0r64SXZcTIUez61BGi5Nz2dnaIosjHRMXIe4d27bhx85bS75muri4ujRoSV65jBRSn5dvb2fH2XbzK52ckz2dE/2AOHjig0evRqXNnrly+rNHYuoCFhQUZGelVOqYqrdK0aNGiRYsWTfguHPMnjx/RpGkzhW1v37zBuaGzwrb379/j6NhAcduH99Sv76iwrbCwEH297zt6VJ7s7ByMTTRzzE1NTWneooXKlPaevXy5eOG8krPdp18/jh09ojRJGTJMOYJkb+9ATm6uUmr0mLHj2L51i8I2QRDo0LGTyknikKHD2LdHdfu0ocOHs7eC1mrWNjakp6UptHBTh66uLoIgKD3nuoq5uXmVo0eCIGid7iogCEIDQRC6CILQo+RR2TFlnfB79x/i3bKFwvaM9HQFZfw8iSHZ2dkYl8uE+ZiYiL2dotbc9xgxV+eQl5Cd81vEvKJxAHIjc7p176GytWTbdu14/OiRkpJ69x49uXTxgpINKeuEl2BmZoaBvr5C+nuexJDBoyewaZfyAmFQ7wCiYpQXJPv1CeHIMdWaF0MGDeDg4SNqn6OJiQlCUS46+ZWnZxe31TP5bspXzC3MSU9L/9q38V1THZunRYsWLb83vgvHvLCoCENDxQhRcnIytraKk8+MjHSl6LhMRY9RGxsblZHW75Hnz56xYtlSkpOSNFLVLqFHz17cvqVaOGnYiJEcO6o4ARQEgR49eyk50A4O9clIT0cmkymeY/gIDqsQjTMzMyOjXH1jp86duXVTuV2Qnp4etnZ2JH+qAS1/LlEUK3Smu3brpnHdZc+evbhw/pxGY791HBwcSPhQ9c+/JpEhf19fjAz0VD7qGRlU+jAyqPtRXUEQ/ge4CPyZYlX2PwA/VeUcKamp2Jbr6Z6SkoJNuW2JOUWYl2tjJ5UqR8xtbKxJSKjYOf1eeP0uniXrtvDwaRwero0qHV+SfdCmbVuexcWpHDNm7DgOqCiP6dd/ANFRinoV5ubmyOVypXKRocNHcPjQIYVtenp6ODdsyPMExRRzr2ZNiXv2XOl6giDQxNOD5y+US2t0dXUxNTVVaFVZnj7BwUTFnNCo1VpQSLDKhYq6iIO9Q7V+8zWxeQF+n2fz6hkZVOcpfVPUhM3TokWLlt8D34VjriqlTN9An4ICxTZW9eqZKdXB1nd05GM5wRwPT0/i1EzAvgekUinRUZEsX7qEuLg4wqdOY8KkSZUKRJXHwtJSZTq4o6MjH96/V9repm1b7ty+pbTdzz+AUycVoz/m5uYqJ5AhffpyXEUfXRcXV5X9x/v07cexo8rjAfz9Azh9Sn2boBYtvXmoon5dFe4eHjxTkUJaF2nYqBFvyvVi1gRNUzulUinjx44lsHdv/vTHPwIwf948/Pz8CAsLIyYmhqNHj/KXv/yFbt260bVrV3bt3s2x48dJrkC0rw4xCGgiimIfURT7f3oMqOygsinUgiAgiqKC8reBoaGSzTMzMyOjXPmHg70dCR8V06PtbG2/l9e2FFk9+9L/y+VyTp6/xILVG7l17xFTx48kYtxIDA0rd3rKOqnOzg15+/at0hhzCwsyMzOVouNujRvz6uULpfF9P2UQlcXAwABpUZGSsxcUHEJ0ZKRSeYJPK2/u3FXuPx4Y4E+MmvZnfUOCOBqpXtiyobMTb98Vi1lW5pzb2dmTpGLRsy5iZW1NWgWlTZ/L59i86rb+/MYYRDVsnhYtWrT83vguHHNVq9YG+gYUFiq2xTI3N1eqUba2tiElJUVhmyAIChMsdavdmj6+FZ4/e8bqVSvZsH4djRu7M33mLIJDQqrskJcQFBRMVJTqtEnvVj7cua0sDtTAyUlpYuvh6clzFU5tk6ZNefz4kcI2C0tLlWrrgcGq78XExIS8vFyVnxFXN7cKRdsEQUBf30CjidH3JPCjp6eHVCatfGA1OXjgAC29vYmOiSEvP59z585RWFjIqVOncKhfn4ePHhEYGMj+/fvZvmMHgYGBvHn9Gk8PD3Zs315r9/UFeQF8lmGQ6xqSLSqewkBfn8JyrQCNjY3JyFd8L/X19VVmipQtRdA1NP6sx7fC63fxrNi0g+Ubt+NgZ8u88IkM7tO72vX0fgEBKjUtAHr06sXZM6eVtjfz8uLhQ8VWlA4O9Un8qJyh0KlzZy5dVGyTZmhoSEFBfulCTAndunTmoooSnpLWn+XV3wFsbZR/78pjYWFB2qe07sqc8/K/lXWZ2rThn2Pznj1Xzoyog3y2zdOiRYuW3wPfhWOuCgMDA6V+1aampuRkK4ruSCQS5KLyxMLe3p4PZdJ5Va1429nY0DsggN4BAaR+UrPdvm0bvXr0YPCgQUqLAF+D9LQ0du7YzqoVy3nx4jmhYVOYEh5BY3f3zz63OicZitvvXLmsnAauLuLdoIGyw969R0/On1NOD3d1c+NFuclKRUrqHTp24uqVKyrvs169emqfA0DvoCBiojRtndaQN69fazT298zLly9p2bIlAN6tWnHu7NnSv10aNSIuLo7Y2FiaeXmRlJhIm7ZtuXr1KoWFhVhZWVV6frlBPWT17DV+iHqaCYB9LoIgLBYEYRGQC9wRBGGlIAiLSh5VOZeevh6FhYrRcX0DAwrKLUaWOBtKYnAqFqqaeHry+MmT0r+lUiljxo3HPzCIf/23PwFgZWuPX+9A/HoHltq8bdu3061nLwYMGvJN2LysrCx27dnH0hUruf0igdBRQ5g5eSzNm3hU+5wlDmqJk6wKL6/mPHn8WGl7j569OH/2rPL45s2VHHbvVj4qs3TatG3HrZvFpUMl76UgCJibm6tUi+/t70/0CdVRc8f69XkXr1oEDqBPUBDHytg8Ve3VSu/XuxX37yn3Vf+9IBEkGixMCJ9l8wwNKs/qkOubVM3m6WumJ/O51KTN06JFi5bfA9+tY65vYKCU1qnOCVcVTfUP6M3JMkrb5Ve87929S/MWLYg5cYKYEyewsrKiqKiI1atXc+LUKcaMGcOa1atr/olpQFZWFvv27mHVyhVERUUSFBRMxLTp9A4MqnZ0XB1W1tYqe4ILgoCllZXSPj09PfT19JWEkoJCQoguF/GWSCRIJBKlyI+ffwCnVKSg9+3XjyOHDylt92ndWm1rn5A+fYmMPK76yQENGjTgwwfltHxVdO/Rg/PnlCfgvxf0dHWVFsNU4enpWbrgcvbMGfT19Uv/vnfvHgkfPhSLz4kiEokEIyMjYmNjefz4MYMGD67Np1Db3ABuAoeAvwCXPv1d8tAYPT09pai3gYGBUsS8LArOebnoYJ7EkHbd/Th56Xqx2rigw96Dh2nh3YqT0VHk5+Vx9949WrRozqmYaE7FRJfavJWr13Dm5AnGjR3NqtVrqvI0aozc3Fz2HzzE8lWr2X/oML16dmfmtKn079sHHWvnyk+gASWOaSMXV7WZNg0bNlIqqREEAQtLS1LLRaq7de/BxfPKPcmNjY2VVNvbtW/PjevXSv8ueS8H9e/HARWCbo3dXHmporQHIDiwN5HRqqP+ABYWypllJZR30tu2a8fNm1X66H5X2NjYkJxccTq/RCLg7uFRbZvn4uJSy8+iVqkxm6dFixYtvwe+C8fc0tJSyQEs7smqnLJXXmQMVKf8mZqakpGRUeq0l1/xvnr1Kk+fPMHP15c//+lPiKJIXGwsLVq0QFdXFz9/f5Wq5bVFfn4+x44cYdWK5Rw6sJ/uPXoQMXUaI0eNxkLDHu/VoW3bdtxTEzHp268/MdHK0ebA4GBOl6uB1NfXVxl56Na9O5cvKaZ26urqqhxrZ2evsg+vIAiYmJiorFmvKOpfgomJicq+7arG5WvgmNYFTE1NK31dyuPcsCFv31Rcm66rq0tgYBB5+fkEBwVhYGCAnb09Xs2b4+/vX9pP+f79++Tl5ZWmXXt4eNCmTRt+/eWXz3hWXxdRFDeWfwBHyvxfY2xsbEgq10ZLX19f5eevrM0rcejkMhlyuVyhRl1XVxeZVFrq8Je1ea1ateLKlas8efKUnn7+/Nu//xlRFImNi6Nl82Kb5+/nx9Vr1/hSFBYWEhkdw7KVq9ixey8d2rdjekQ4E8aOwa6c8GfZenNVVLa/LB07duSmCrFJKF5gVL1o2J+ocguAEokEiY6O0sJw76AgJVE1QRCQ6Ogo2L08iSE6ZjZkFSr/pgHY2doptVqD4qh/+TKv8jjY25OgItW+LEbyfHRU3H9dxcGhvkr9gIpo2Kghr19VnCVlZGSMr69vtW3evfua6Zx8i9SkzdOiRYuW3wPfhWPevHkLpVpkIyMjjZ0kDw8PpR7bAAG9A0sVdctH+dLS0njw6BEnT50iLT2do0eOkJ6RgVm9ekBxPXtaFR2bqlJUVERMdBSrVixn5/bttGzViohp0xk7fgK2tporrH/uPejrq061MzU1JVdFarmjoyMJHxOUt9d3VCgfAGjSpClPVbw3qsaCekG6wOBgpYh8CQ716/NehVhdCV27defSxQtq95dFIvkuvlL4+vlxulxv5spo0rQpr16pr9mH4u9FTk4Ovy5YQGRUFDo6OgQEBPDvf/4zJ0+exNramoiICMLCwnj16hUSiYS7d+/SsWNHDAwNv4lU6eoiCMLfBUGw+fT/doIgvACuCoLwWhCEnlU5l1fz5jx+pGjzSgThVFF2e57EEO8OXTh3Q1k4rN+AgRz61A2hxOZJBR1OnT1HWno6Tx7e58zJE6SnpXPkyFHS09OpZ/blbJ5MJuPUmbMsX7WajVu24dG4MTOmRhA6cTwNHB0rPrZMKu/nUCQtwkCNzVO3aFivXj1yymUJATRr5qX022Vv70CiCofay6u50lgojtI/fZeoVK4QEtSb41GqVdObNW3Kw0fKafcl9OzenXPnL6rdX4KRPP+70dfo0bMn51RoBFSEu4cnb99WvBhpbm5OTnZ2tW1eUbmSlbpETdo8LVq0aPk98F14Ea5ubrxU0R5GFebm5kqOW7fuPbhwQTmlsEnTpsTFPgWxOE26/Iq3lZUVgiAwYMAAHj58iIW5OZmf+rpmZmZiYW7++U9OBXGxsaxasZxNGzfQuLE7EdOmM3HyZJydayZlsyoUFORjUEENXFWiKV27dVNqOaZu0te1WzcuqnjP1DmUdnb2KtumAfQODOJEdLTKfQAurq68rkLt+PcQQbK1tauySreDQ30CegdWOMbM3JzY2Kf0DgggKDCQTp074+joWKzV0Ls3CALJyclEx8QwZswYpkyZwqGDB2nUqBG3bt4kYurUz3laX5u+oiiWvKj/AEaKougO9AZ+rsqJbGxsSaokhbYEFxcXJe2DVj4+3L17R2mso6MjSYmJyOWiks2zsXcoY/P68+DRIywsLMjKrH2b9+r1G1asXsPqdeup72DP9IhwwkMn0bixW7XOV77mtirk5xegb6C+57s6m6Vqe/sOHbhx7bpG123Xvj03rytH6ss6lGWdc1NTU3JzVWf69OjWlfMX1TveVlaWxanVGmCiK2hUwvKtY2JiQl4VFdCNjY0ZMnRYhWNMTU15/ux5tW1es2bNPudpfW1qzOZp0aJFy+8B3a99AzWBOhVpiSBBJlPs2duxU2euXr1KUHCw4vEq0tkB/Hv3Jj7+HQ2cnPh1wQIAZkyfjq+vb+m5L126RIsWLfDw9OThw4fFUZ2TJ+nQsWONPceCggKOHztKwocPNHZ3Jyw8osbrxatDfn4BhkaGavdLJMrvgbrtFpaWSj3KobhUITUlBStr69+2WVmpnDhW5FCW1Lxbl+v1XJxdUTMtaexs7UhKSsTO7vOict8CJfX9JSrPNYG+vh5WVlbElFO2jjlxAt1y2QZ9+/Thp58UW91K67YCtJ4gCLqiKEoBI1EUrwOIohgrCEKVmhWrc/5KSjZMTU1Lt7Xv0JGoyOM0KlOrWnK8KIpK5+o3YCBvXr/CxdVVyeYVyMFAApcuX6Zli+Z4enjw4FGxzTt56hQdO3SoytOokKKiIiKjY3j95i2NGjoTNmlitdXUa4ISp7ewoABDQ/U2r6RG3MREUWDLyNCQ3NxcjI1/U63X19ensEg5Iuri4sKrly9xcXUt3WZgYKByrLGxsYJDmScxLK0Bd3Vx4cXLV7i5uigco/MpLV7V+1+WyvbDp3r2ly9o2lTRgSy5ByXhwW8YYyMjle/d5yBIBOzs7att8+o4NWbztGjRouX3wHcRMVeHu4e7UhsuZ2dnlalnDRs2Uino06yZF+np6cS/i1dY8U5PS6Nr5874+fry7t07hgwdip6eHqGhofj7+rJlyxamhId/1v3L5XIuX7rEqhXL2bplMx06dmLajJm1IuJWXQoLC9SmdQK4urry8oVyH19PT0/i4mJVHlM+4ty9Rw/On1dWZ1eHjo6OyoWWoOAQpTrPEtzc3FS2bCvB3s6ehATl1PnyNPZw51nc99HPvEPHjmrV7LVUi6XAMUEQ/IBIQRAWCILQQxCE/w+4UxMXaOntzYNyNanm5uZkfcrkKUurVj7cvaN8WScnJ3Jzc3n39p1Km9fDL4A37+IZOHQ4gr4hU0JD6ennz6bNW4kIn/JZ9y+KIjdu3mLZylWs27CJFs2bM2t6sYjb13TKy1JQWKC2fAfAy8uLRw8fKm1v1bp16eudmi8rfeTLBSV71blLV5XlMyULmuUxNjJS0NAocYYD/Hw5efqMyvts364t126orpUHaNLEkycqyojK4+HemLexxSn2qhTcK2u59i3Ro5cvZ09XLZ1dS4XUus3TokWLlu+J78Yxl8vlSrV93q18uFVOpEcQBGRSqZLz5+vnR0yM6nRmxwYNEBGJOXGCqOhoJkyYQCsfH65cu8ap06dZu25dqaM8dtw4zpw7x4GDBzGvYlqnVCrlxfPnHDp4gDWrV7F2zWpMTIwJnzqN0LApOFZSQ/k1eHD/Pvb26qPDbo3deflS2TFv3ryFysmrk5Mz8eVa+djZ2auMgjvYO/BRRa26j09r7t9Trp81MzNTWecJ0MvXj3MVKKp3696dixcqrzN3cXHldSV11jWBKIrcuX1bZT/qmqJ58xY13gopr6CI6BMnySsoUnpk5RVU+sgrqL3nWxGCIAQLgvBUEIRngiD8sTrnEEVxMfA3YCowEPAH/gjEA6FVPZ+erp5SCrGnZxMePVL+XsnlciWHrn2HDkrCiiU0bNQIqbRII5s3atx4zpw7z+GD+6ts82QyGS9fvebw0WOsXL2WlWvWIpPLmB4RztTwMFxdGlXpfF+Cm9dv4Nywodr96mxe06bNuP3wMan5iu9Dk2bNuXL7vsJ2dWnVTZo0JTZW2Vnu0rUbV68o9jTPkxh+ygZT/Z1p16YNt++o/3537tiBq9crF862t7PjY2JSrTvgoihy/95d8quYbl4VnJycePOmZlte5hUUceLUKXI+2a+q2rysvK9TJvAt2jwtWrRo+d75LlLZobif6r27d/Fp3bp0m5mZmUqxqLbt2nPj+nXal0m7NDAwwEDfgIz0dMwtLBTGW1pa8j4+ngaODRAknyd0c+b0KV5+iswLCArt23QkOjRs1JCOnTphb+/wWdf5Euzft5cOHTspvV5lUZcGWc/MjOwsZZV054bOxL97h5OTU6XncW1crC1Q/rVq0rQphw8eoHWbNkrHGBkakpeXh5GRYu9qXV1dlZGoEiytrFSm2ZenuM9x7Yn1vH71ihMnYpBJpTRv0YLFCxcwYOAg3D2q36NZHYIgYGZmRlpqKpYa9A/XFMf6jrx///6bXGhShSAIOhRHfnoD74DrgiAcEkVRWYmr4vN0Bs6I4v/P3n+HRZV2e/r4vSlyzogoKgpmzDlnjJgjiGRz6n7Dec+cmTPfOeE387Y5C5hzzlnMuc1iVkwoKhIUycX+/VEWDdTeFQBt7a77uupS9rNTpVXPetZanyVWSEiubTtVVLVL125F28zMzCiQWKzp0qUr8ceP0aNnr6JtJiYmuLm7S74Xtra2vHzxAmWBEoWpftk5BYJqP1Ox5Pfo3IWL3L2n6o8uCAJisQVUE4WCqlW8qNu0Ff37uvA9Y1WYw8HDR6jhUwMvLy/Z/eRsXkY+ksJwXlWrknDrJvUa+hc5586WCsnz+NSsyfVr16hbt16J7dWqV+dkKeEytaPs6uLK+5QU3EqV8AiCgID875m5ublewmOCIJBv8vWyGZKSkjh6+DB5ebnUq1+f5UuX0KVbNxo29P8q1/OsXJlXEr9B5aFOnbrcu3eX+vUbVNg5vybfq80zYsSIkT86fxjHvGmzZqxetbKEYw7g5u7O27fJJZy3Zs2bs3zpkhKOOcCQYcPYtHED4RElU9Czc/Mxt7Jh3YYNDB02vFz32alzFzp36Vquc3xLRFEsqjMuPlE8eSIeBwcHSee3xPGFhZJK5QqFAmWhpiNc2bMypx6e1Oveqlevwd49u2ndpk2J7TY2NpJq8KDSGLhy+RIdO3XWGDMzNSMvLw9zc3lhp9+LE/HHefjgAd7VqjM2ZFxRWm/bdu3ZuWM7169fY+iw4RWukBw4aDDbtmwhJDS0ws7ZqnVrTp8+xaDBQyrsnF+ZlsBjURSfAgiCsAlV9MegSSoQAiwSBOEhcAg4JIqiZsqHntSsVYsTJ+JLOOYAtXx9efTwIb5+fiW2HTt6pIRjDjBw0GDiYpYTPWFiie3Zufk4OLkQt2IlwSEhBt9b8WWvtq1b0a5Na9l91WnX2Xw/ac8FBQUoFCWd44uXr5CXl0fvdi1BS/10oYzNk8PN3YOUUirspaPqaipVks4SMjExkRWd7NihHWfOnmfwwAEaY/YO9qSnZ+DoWHbRPn1qyK0KcwyuNT9/7hx3bt/C07MyI0ePLqrrb9+hIwf27ePm9euMDgqu8E4Yffr2Y9XKFURGVZzQZNNmzdi2ZfMP45jzndo8I0aMGPmjo9MxFwRhFTAGKJ5P9VdRFBcX22cs8L8AT+A2MFEUxavFxv8GTAceA0GiKD7/sv0k0AnoJIri6WL7Pwb+QxTFVfo+EYVCIRnx7NGzF7t2bCdo7G+TS0EQJIXAbGxsMDczJz0tTaP3d5UqVUhPT5eMqBvC12otY2VRvohF6RThM6dP8fChqgbczNRMw4muUqWKxiRfCkMnqY5OTqRJtDsDTSEiGxsbsmUccDlq+fpy6tRJSce8abOmXLt6VcPR13YPkvtQsarsT588ITU1VcN5AtXnafCQoSQ+fcqcWb8QNHZshQrP2djYkJubo9fz1hcXV1dSJfrNfy9I2DwFcK3YLq+AsYIgRGCAzRNFcfwXmzcCeA+MFATBATgBjAX+TRTFleW9/46dOrN61coSjjmAdzVNQTFTU1Nc3dxISkrSiAI7OTujUJhoLGzqQ3EBsq9l80wtrWXHCgSFRuReY5+ckmUtFy5d5vbtO6pzm5lp/J54uLsR2L9fiW3FFxKKesQbaPPkFikLTMw1snvK8lp6uLvz7r1m+zWA9m3bcu7CBfr2DpAcNzWTX6ws7miLoljiPS8vb98m8/TJY6LGT5Ac79OvH0lJScyZNYsRo0ZVaHTbzMwMExMT8vPzK0zXwNLSUu/2rd8JXkDxpu6vAIPVbEVRHA8gCEIdoDewqpjNOwScE0UdX1QjRowY+ROh7+xhtSiKtsUexZ3y9sASYALgBGxHJfZh/2W8FtAZ8AH+Hfg/pc79AfhFqIDZm4uLi0ZLLFXLGM264n79B7Bv716N7UOGDWP79m2S5x8TFMy6tWvKe5tfjYKCAoLHjKFnjx784++qkjB3V1dVW5bu3YucoYb16xdtK90LWU2Hjp0Ij4gkPCKSsePGERoWXuKhj1MOhk9S5T4Grq6ufJCoM9enb7M+5weo36AhCQl3ZMerVKnCq1evZMe/BqIosnPHDp0teWr4+DB1+gx27dwp2eu4PLRo2YrLly5V6Dm/JvmCKdkmlno/lCgAhgqC8KsgCL8C/YCLanuHymku3vTZD5VNK4/Na4VqotoVOAvYAv/T0OcqJVqoLsso/R3o2asXR44c1jhH4MBB7P3Su7w0IcMHsWnDBkNvC6Do9TX0GEMoKChgdFAw3Xr24m//8g8AnN086NG9O1169CqyefUa+NO1R0+69ujJ3XvS/bvbtGpJVEQYURFhhIUEExk2rsRjQL++Wu9FLXpmUZBdIVFcr6pVSXiiWe+srR2joa0aq1bx4tWrJNnxenVrF5UhFOdrK61vXL+ekaPHaN3Hy8uLGT/9xInjx7mqRcSuLHTr1p3jpVTUy8vX7PdeYKDNK1DZvH5qm/flEVX8diUuU+YVZ1EU74uiOEcUxQB+s3nDgB/nh8WIESNGvgEVkQMWCewQRfGIKIq5qHpV5gKDil3DBFXUSf3/4sQAVYBR+l5QytEGVR3lsWNHNbZXr1GDRw9LKoBbW1uTm5erIZ5kbW2NlaWlZM9rKysrmjRtJtk/+3tg965dNPT358jRo2Tn5HDr5k3qN2jA0WPHOHrsGM5f6oRd3dyKttWtV0/HWctHTm6OrIKxIZNIL68qJCVpOsVykx1LCwvZ3rrWVlaSkXZt6aAADf0bSYrKfU22bd3CkKFD9ZrUmZqaEhU9nhPHj/Py5Uud++tL4yZNuH5NtwiUITg5Ocn2lf+d2CaKYnNRFJsD+4DiCluvgKrF/u4D3K4AmxcNuAF3gHTgf8vdnJSqOkC79h04c1qzY0GTJk01nBVTU1MszC00dDdMTU2p5OnJ82fPNM5jampK1+7dOXRQupuBPuhy0IsreRsacd21ezf+/v4cP3KYnOxsrt26I2PzXIk/eoT4o0eo95X7Qufk5mBbAUVinpW9eJP0SiOtXc4WeLh78O7dW0CzJKCShwdv30lHzbXZFv8GDbhdSqRT23tZEQ77wQMH6N6zp15tGk1MTAgOCeHmzRs81ENBXl+q16jBMwkBv3Kds3p1nj55UqHnLCf71Dbvy2N5sbHSNq8K8Lq8FxQEwZ3fbN4/v9hbI0aMGDHyBX0d8yGCIKQKgvBQEIR/CoJgW2ysEVA0axdVns31L9sRRfEhcAF4gmri+W+lzv0ZVaTov/Tta1m8LUxxnJydSUtN1XCuuvfoyVGJSNGQIUPZtmWzxvahw0ewedNGyWu0bdeO27duSYrK/d4kJibSsGFDAPwbNeLSpUs8uH+frl268D/+8Y+i1yUtNZVuXbsyaeLEr6pwC/D40SNq+dYq93nMzc0oKNDMeJMTL3JydiEtTTpd2rtaNV7JOK7aJqkeHh68l5nc6nNPhvLy5UuUBQUlUo/1YcKkyRzYt5cH9zUjXWVBEAScXVx4L5MOWxbkvpPfEUU2DxgC+AmCUEMQBHOgHlDUwqEMNq8qKqd9MXAKSESVEi+LXMmGhYUFeXm5korrpVW6AYYOH86WzZs0tg8IHMiunTs0r2tiScOG/rxNTi73+/81oqxPExNp2EBVt9uoUSOuXLwgY/PS6NytOxMmTv7qNu/ho8f41qqp4Rw7WyqwMZP+yVXbHWdLRdHDzc4KS0GJs6V+4nsurq58+PAB0Hyta/r4kPhMWm3cRKYMDFSL0TnZmun6cvev3qf4foZkTnxISSE5+Q0NGjTUa381oWHhXDh/nhvXrxt0nDa8q1WXbPVZVjp07MTpU/KdP74zrgC+xWzeSGBPWU8mCMIAQRAeobJ1apt3oELu1IgRI0b+QOjjmC8A6gCuqCJCnVBFfNTYAaXlqtMBe/Ufoij+uyiKHqIothVFUaqX1ErgEzBNn5u2sLCQ7Tmt6v9asgWQiYmJZJ9yF1dX8vMLNJxsc3NzGjdpItvDOSQ0jNUrV+hzq98UPz+/oujZqZMnSUtL487duxyPjyctPZ39+/YBEH/yJMfj4/H29iYuNvar3lNKSgpubu4a23NycrAwRGRNECQVjeXquZ2cnEhPT5cc8/auJtsSR6ocQo2JiUkJFf2viSiKbNm0ieEj9U4kKUIQBKInTOTK5Utcu1oxke4BgQPZs3t3hZwLVB0T5KLA3wGlbV5H4DlwGFVKexYlI+pgmM3rBjRAFWVfAnQHtHqL1tbWsu9lz14BHD50SGN7Q39/bt28UWKbjY0NtjY2GgJiJiYmdO7ShWMyLSPHBAezbs0ag1Olvza1ff04fUaVwXTy1CnS0tO5n3Cb4/HxZKSlsW/ffgBOnTjOyePH8K7mTUxs3Fe9pydPE6np4wOUjFyrXzspR9vG1ERju4mJCYWF+pfqODk5kZ6WXvR3cWfYu2pVnr94IXmumj41eJoo9bNckrKUJRh6zLq1awgKHmvQMaCyeSGhoTx+/KjCMtp6BQRw5LDm96qsmJubk5f/9Tp2VCSiKBYAk/nN5m0RRVGzD6P+/B+gNfBQFMUaqGze+XLfqBEjRoz8wdDpmIuieFUUxbeiKBZ+McwzUNVjqqPbn4DSkq6OgN4h5S/iH38F/iEIgs6eOfb2DrI/mI2bNNGYjIJKLObggf0a24eNGCEZQWrXvgNXLl+S7BNtZWVFh46dKvRHuyLo268f2Tk5BPTqhYWFBe4eHjg7OyMIAgMGDCDhS0qiOr0zMDCwaNvXQm4i/zY5mUqeWoOEJVBNUqWdYslJqrMTaanSInKVvbx4nSSdlVevXv1y12hXhPibOoW9PLWqQWNDeP78GWe09GfXF7UisjraaGVhVu5HYOAARGV+0d+lqahFBUORsXntgIaiKNZEJYpUHptXKIrie+AN8A/gFqA1W8jW1la253j1GjV4/kzTserQsZNkmvuQYcPZvnWrxvZGjZvw+NEjPn/+rDFmampK/wGBklF1ffkaiuv9+vUlJzubHr16Y2FhgYe7O87OzphRyIAB/bnzRUNDbfMGDhhAQkLFajCUpqCUaJj6eX/69Ak7OzvV/RSLjMtFxOVKa+zs7Pgo0brRydmJ9FLCmWrH2MHBno8fpRfCGtSvxx0tr0meidlXrykHVQp71+7dyyW4NnTYcD5+/CS5UGUoCoUCOzs7Mr4s8FaEzRs+dAi52Z9LbCvO72XzpBBF8YAoin6iKNYURfE/y3m6fFEUPwAmgiCYfGmf1rj8d2nEiBEjfyzKMutXe0fq3LWbQFHPrC8ibo2/bNcbURQPApfRQwBJEMDdw4M3b95IjlepUlWjxtbExATPypU1ttvY2ODs7MyL55oR1FGjx7Bx/XrJazRu0oRXr15VaHpveVEoFMyZO5dDhw+jUCjo0qVLUYri+fPn8fHxIS8vr6j2+vyFC/h8iex8DbRF15IryDG3t7eXnqRqUXc3NTWlQFkgOeZTsyZPn1RsbaGhlDWFXYpBg4eQlZXN6VMny32u/gMGsKeYSNjr169p3bIlDnZ2FBSoXs/Zs2bRpXNnQsaOLVrU2rhhA507dmTQwIFF2SknTpxgbFAQvXr0kBXUu3btqtbe8t+QirZ52V/Kgfaj6hJ2DD2ElXz9/GTraOvVr8+dO7dLbBMEgTp163L3bsnFNzMzM2rW8pUUOgwaG8J6GYHLWr6+5ObmStrK3wuFQsG8uXM4evggChMFXbt0/s3mXbhATZ8amjavZvm/V2XhbXIyngbZPOksIWdnZ8muBo6OTpLlO0WRaxl77ObqSkrKB8kxfR1yM1PTIhtQFtQp7BXRm7x3nz7Y2Fhz8ED5M6UHDBzErp07i/4ur80bMWIE/fr2lbV5CXfuyGro/OCkf7F5p4H1giDMA8r+gTFixIiRPyg6HXNBEEYKguD45f++wCxgjyiK6vBHDDBYEIRuX2qRfgIsgZ1S59PBX4AoVOIgWhkQOJAd2zSjPgABffpwYJ+m4nq//gPYLRHxGThoMNu3bdVwJF1cXbF3sJedDAePDWH1ypXfzQ9pUlISPbp3p1fPnrRu04b0tDTatWlD1y5dePXqFYOHDCEtLY1OHTrQrWtXDuzbR/T48V/tfq5dvSrbt/XVq5d4VfbS2J6fn4+pQn/lJEdHRzIkHHMHB0fSZWrMQX7RwNTUVLJ1kSGUN9135/ZtZUphl6NXQAAvX7yQLf/QF3d3Dz6kpBQ5Ps7Ozhw8fJiWrVRddN6/f8+pU6c4cfIkDRs2ZM/u3eTn5xMTE8Ox+HhGjx5NbIyqCua//+u/2H/wIFOmTuWf/+//SV6vY8dOnDwRX657LgvfwOatR5UOPwNYBNQHNFNzStGjZy8OHZR2Njp26sypEyc0tnft1p2jhzVr+Xv26sXhgwc1Fj5sbW3xqVlTNnI3fMRIdm1eT37697EgmZSURNcePeneK4A2bVqTlp5O67bt6dS1G69evWLI4MGkpaXRvmNnOnfrzr79B5gQXXH9qUvz+MkTvLwqa2y3Kszh1auXVJaweaIoypfISNgSR0cnSZunSpWW/xjlK8y/WuTbzNxcVmxTHzZv2limFHY52nfoSE5ONrdvGRQf0MDW1pa8/LyiTKFy27wDB5g6dSr//L/SNq9Hr54cPlR2ocXvmAH8ZvMOodLf6P+73pERI0aMfIfoEzEfDzwVBOEzKsGji0CoelAUxbPARFST1QxgONBHFEWD1dFEUbwJbKJYraYcZmZm+DdqpFFPrh6r5OmpIdxiampK02bNOXf2bIntJiYm9B8QyHYJRz9w4CAO7N8nmd5pZmZGZPR41q9by9Ytm8sVMdAHURR58eKFbG2ul5cXR48d4/CRI4wdO5ZGjRtz8fJl4k+cIG7FChQKBR4eHly8fJnj8fFs27GjKLWyosnNzeXc2TOyPcHT09M1esUD3L9/D7/atTW2f0hJwbVYz3k12VnZWFtr9jM2NzeXFItTo03k7Wu2tdFF4tOn+NWuUyHtloozOiiYgwf2F6k2l5UBAwcVfU8sLS1xKvYe/nrlCh07dgSga7duXL58mUcPH9KgQQOVune3bly+dImsrCysrKyws7OjY6dOskr3frVra3RT+EZ8FZsnCEIroDnwd+Ac4CeK4n+gctR1fhEFQaBjp86SJTSCIFC3Xj0NR0QQBElVdUEQGDl6DOvWaEbHu/foyaWLF0iTiMrakMfkCdFs3raDrWtXoMj5+iKYSa9fk1asdro4Xl5exB89wrHDhwgZG0zjRo24cukCp+KPszIutsjmXbl0gZPHj7Fz+1a9bJ7i01vJhzaUSiXbd+6mT4B0K8mnT59KZsEkJSXh6aly5our06ekpOAiZfOysyRtHmgXnlSPFW+b9dtgyeOKj+tjD/NypXud68P79+9wc3evsJ7hagYNHsKlS5fKneExbNhwtmxSlbtVhM3r0aMnNyXK7QAqVfIkWSYT8EdEEIRWgiDcBN7xm81bLYri/C+p7UaMGDFipBg6Q5OiKHbWY581gMENvqXOLYpiKMUmwdro0LETixcuoKG/v8Zkq/+AQBbMm8u0GTNLbG/brh2LFsynSdOmJSY3tXxVqZ337t2lbt3fWogJgkBk9Hhili1l2oyZGpMUBwcHIqOief36NcuWLKZmLV96BQQU7SeKIq9fv+bRwwckJycXqSurJ0kiYtH/7eztcHJywsLCgtQPqaSmphZFUtQpjVWrVqVDx076vDy/K2vXrGZsyDiDj7tz6xYDBg7S2P7mzRv8GzXW2J6RkY69Q+lyX9X7JleT/rUpj2N/7NhRwsIjKvBuVAiCwIRJk5kzexbR4yeUeUHGy8uLjx8/kp+Xj5l5yYl0eno69vaqNTUHe3vS0tJIz8jA/su1HBwcSEtPJy0trWhbJY9KZGfL1x57eVXh5cuXVK1aVXafiuYr2rxFqMTkTqOKIM0Behli8xo3acKKuFhS3r/H1a1kYlHXbt2ZN2c2DRr6l/gMNmzoz6WLF0lPSyuxGFa5cmW8qnhx5fJlWrRsWeJc4ZFRzJ83l5k//Vy0SKSulbaxsSEybBzvU1JYHrcSr8qeBPbvR66pyp6Kosjbt8k8eviQ169fk52VXaS7YC4WlMgosbe3w9nRCUsrS1JTU/mQmlYUxRcLCxFFES+vynTq0F6fl6fc6HK+tbF2wyaCRo+U/P5nm1giiqLk2K0bN2jSrJlGDX5a0guq+mm2s8xIz6CWr2+Z77P0fQHka6kjNxFMUCqVKBTy6vBKpbLMjvX+vfsYPnJkmY7VRXhEJPPnziF4bAjOLjrlayRxdHLC1FRBTnYOllYlX6Oy2DwnZydyc+VF4Oo3aMCdO7cNVqb/TlkE/Ewpm/e73pERI0aMfMdUQLfV35dxYeGsjItl0pSpJbabmJjQqXMXTsQfp0vXbiXGgkPGsW7NaqLGTyixPXDgIObNmU316jWwsrIq2m5jY0Pffv3ZumUzw0dITyAqV67MpClTuX//HosXLsDqi9MvCAKVK3vh6+tLi5atsLa2lpycFRYW8unTJ9LT0sjJyaF27TpfJgT6vUXZuTozYb8ZVy5fpmbNmpIRcVC1a3N0dJQcy8rOxsbGRmN7ZmampDOZl58vGan5PaPeZSUnJweFQqF1AlweFAoFkyZPYdGC+UybMbPME+mRo0bz5Mlj6pTqB+3o6Mjr1ypRvY+fPuHo6IijgwMfv2R4fPz4EUcHB5ycnIq2IYDCVEFebh5IRPsC+vRh1coVREZ9vfTjb4iJKIpHv/x/qyAI/1KWkwSPDSl6D0t/zvv1H8C+PXvoHxiocUzMsqVMnlqy8UX3Hj1Zsmghfn5+OBT7TpqbmzNq9BjWrl5NSGiopHCbm6srkydE8+RpIgsWL8W6mM10ruyNr68vTZs1L2HzSquUf/r0idS0dLKzs/DzrYWLs7PeNq8gp2JLiMrjlN+9dx8Hezu8KmumsWebWJKbm4uFubS+35vkN/SuVAnEkqngb94m06F9Ww3xgY8fM7C311yMBO3Ck9rGtEXaraytyM7OxtbWVnafsqJUKsnLy5XNACgvgiAwcfIU5s2dw8RJk8t8nWEjRvL06RPq1a9fYnuZbB5gambK589Z2Nho3k+Hjp1YtmTxH8UxrxCbZ8SIESN/Fio2X/Z3wNramuYtWkqmtDdu0oS7CQnk5ZVcnba3t6eWr69kHWVYRCQrYmM0tvv6+WFv78CVy5e13k+dOnWZNGUqYeERhIVHEBoWTq+AAHxq1sTGxkbWYTQxMcHBwYFq1atTu04dXN3c9J6gfk9kZWVx+dJFjcWQ4pw/d442bdsZdF4BoUKd7bL2GjdVmEoq9VcEB/bvo2+/fl/l3GqsrKwIj4hk0YL5Za6Ft7W1xdTUtER/Y4BmzZtz5kvrqvjjx2nZsiW+fn4kJCSgVCpV21qpFqeys7PJzMzkypUrNGrUmOfPn0ley8zMDBMTE4PqV7MKRFJzlHo/cpXfrAWYoyAIg9UPib/1wszMjF69e0sqT9esVYs3yW/IzMwssd3CwoJWrdtw6qRmHXpYRCQr4mI1Pg9eXl7UrFWTC/Ha+83X9KnBtMkTiQwPLXoM6d0N/1reuFopsBZzJR17QRCwt7enejVv6tapg4e7++9m88rjlOfn57P/4CEGDtAsmVVHoa/++ivNWjSXPYe1qPn5zs3Nw9LSskR6u1VhDgVZn3Ay/y3t/WtjbWVNdvbX0VGJP36Mrt26f5VzqzEzM2P8hIksXrSwzOVmZmZm2NjYkPmp5PeqrDavcePGvJRpX6f+XmTItPuUIsdAm5fzg9k8I0aMGPmz8MM75gCtWrfm6q9XJFOXR44aLams3rVbd86eOV2UWq7Gzs6Odu07sH+vpnhcQO/e3Lp1k8ePHlXczf9gfPr0iYcPHnDj+nVS3r8vMZlXKpUsXbyIseO0Z+UmvU6iskRkKT8/H4WJdLRYLtqjzbksa/RI2zktrSx1iv2V1eF99/YtHh6VynSsITg5OzN46DBWrVxR5nPUqOHDw4cP6B0QwO1bt+jXty/Pnj2jffv2dOncmZs3bzIgMBAzMzPCwsLo1qUL69atIyIyEoC//f3v9O3dm3/9xz/429//RkFBgWzpQd9+/di3d0+Z7/U74hQqwSP14xTQ78v/DVqRqVu3Hk+fPNZYdAQYPSaIDevWamxv0bIl9+/d0xAOs7CwoF//AWzetFHjmB7tWvL6zRtu3rqtMWYo38KJLAu6nPLPWVk8fPqMX2/eIeVpQonvtyiKLFq6nHFjgzQWDounht+9m0CdOiUzTNTHy9oLLduLX0uqV7r0YWWzh1bWVmR91mHzytgi8umTJxWWlq8NW1tbQsaNI2bZ0jKfw9u7Gk8eP64Qm/eXv/4VAKVS2ub1GxDInt27y3yv3xEVZvOMGDFi5M/AjxeSlWHQkKFs2bSRkaPHlNju4uqKm5sbt27e0KhRDg2PYNmSxRopoY2bNCEl5T1HDh+iZ6+AEseEhUewZfMmnj59ojH2RyI/P5/Lly5y7949TExMil4fW1tbPD09sbKy5vz5c3z48Jt+y6ePHxkdFKS1fjkrK0s2hfrC+XO0adtWcsyQHuYAnz9/LlGOUBqtIklaIvMVLcqm5snjx9SsVeurnFsKb29v6tdvwP69e+nb33BxXIWpAls7O7Zu246t7W+lBy1btuTnv/ylxL5jgoIYExRUYlu3bt3o1u23rIpPHz+xf+9ejRRsUAkivX/3TpUObKG13fd3zZdacgRBsASGANX5zQYb7NmMHDWatWtWEx4RWWK7ra0tderW5fy5c7RtVzIzJSQ0jEULFjDjp59KfJZ9/fx49+4du3ftJLCUxkPQqJHs3L2Hp4mJDAocYOht/jAUFBRw+cZtbt19gCD8ZgdsrKyoXMkdWxsbziUk8u7kFZXTLAh8+vSJQYEDcCsl0lbcKVcqlRQWFkrajju3b9G0np/k/Rhq83QtCGoVvNRiDyvS5qXmfOnoYKkoEn37Vri5udOhUyc2b9rIiDJ0vRBMBFxcXdm4cROOTo5F28tq83Kyc3iW+JTKVatpXMve3p78gnwyMjJwkNBQ+VGoaJtnxIgRI390/jCOeZUqVTAzNyfx6VNqlOrN3adfP+bPnUPNWr4l6pft7Ozo138AG9evY3RQcIljuvfoSfzxYxzYv58+ffsWbRcEgREjR3Hl8mWWL1tKWHjED5lyLsWL5885e+Y0WdnZmJma0bJ1K8IjImUndM2ay6dmyrFv7x7695ee3D948EBS2O7t22Tc3TQncNomou/evqVSJfnoc1kjPHIT7OKUJeX+xIl4xoWGlemeykrLVq04fOgQ586epV17w8W1alSvQUJCAg0aSrfEMwQ7eztevHgu+/oOHzGSLZs2ERwSUu5rfQfsAtKBa4A63GnwB9LZxQUvryrcvnWThv6NSox17NSZ5UuXULduXZycnYu2W1paMmrMGFbExRIRGVXimHbt23PxwgV2bN/G4CFDS0RiBwUO4PadBOYvWkJ0RNgPvUBSnFdJSZw6c5bPKW9QKExo2cSfqKDhst/xpnYeOs9ZWkTt8KFD9OwprXd1+fJlJoSM1tj++fNnrKzlFxalyEhPl9XuKA+FhYUIumyegaVBqTlKDh88yKAhQ8tzawbToEFD0tPSJBfd9aFKlSrcuXO7hGNeViytLMnLyyMvT1rRfsTIUWxYv+6Poq+xiwqweUaMGDHyR+eP4VF+YfCQocyZ9QvTZ/6kMbFS145PmTa9xPZavr68ffuWQwcPEtC7d4mxrt26c+rkCfbt2UO/ASWdyRYtW1K9RnXmz51Dq9ataduu/Q8nOJaZmcnZM2d49eoloIqiBg4aLCm+VhGIokjqhw8aatLqMZB2ai9dvCjZdi3x6VNqSLQfAnj79i3uHron0Yaij2NuKKIoUqhU/i4LPL0CAti0cQMJCXdke85LoRYbTH73jtQz5zRUvctC7z59Obh/v2QEX62onPrhD9Fhp4ooihWSbhPQuzdzZ8+iTt16Gpko48LCWTh/HjN++rnE96py5co0b96C7du2MmTosBLHtG7ThiuXL7Nl8yZChg0sMdawQX2qVqnCgsVLaeTvT9fOHb+aUOHXIjs7m7PnLvAk8SkCApUre9K/T2+chGydxyp1OOVyquYvnj8rsbhbHEVBjuRreOXqNVpJ1KSnpqZpON/q6759+xaPr2TzdP226bPQqY6Wq3mfkfnVfmu00b5DR/bu3i3ZjUAbapuXlZPL/gMHK6Q23srWjp07tktG8G1sbHB2dubly5flvs53QIXZPCNGjBj5I/ND1pjLCUEJgsCwESPZIlEraWtrS8dOnTiwb5/GWLv27SksLOTC+fMaY506d8HJ2Yndu3ZqjLm5uTPz579gb29PzLKlxMXGfNc/onl5eZw/d4642BhiY5azd/cu6tWvT0RkFBGRUfTsFfBVJ0qXLl6kVWvpvua3b93Ev1TUT8379+9xd9eccN68eYPGjZtIHvP2bTKVvkK9tiiKWh3zstSXqyaIrcpzW+Vi5KjRnD19mqSkJIOPbde+A+fPnS1zXX1xfGrWJDHxqWwK77ARI9i6ZXO5r/MdcF4QBIMkl0trYRQneGwIa9es1thubm5O4MBBkq9Z4yZNcHV15djRIxpjLVq2pL6PN+s2btIYc3R04OcZ06ji5cnyuBUsjYnlyZOnhjyVcqFPP/HifccLCgq4dOUKy2NXsCwmjs3bduBTozrjIyOIjgynf98+2Nvb63S6taHRE7wY9+/fw9dPOlX9xfPneMu0AXz48BF+ErXXN27dokljf8lj3r5N/ioaFYWF2m1eWXjy6CE+tXyLxMi+Nf0DA7l3926Z9GIa+jfi3t27FSIC6uFRibTUVNlzDRw0mN07d5T7Ot8BBts8I0aMGPkz8kNGzNPT08lITy/R3kdN1apVUZiaSqa0N2rchAcPHvDg/n1q16lTYqxP375s2rAeO3s7jTYl7dp34ML582zauIERI0dpRA8a+jeioX8j8vLyOHr4MAf378PsS2qapYUFrm5uuLm5Y2dnh4WlJZYWFqp/LS0xNTX9apF2pVJJwp3bXLt6jQJlAeZm5jRr0ZzQsPCvViutjevXrjJh0mTJsUuXLsn275Zz+j58+CDbmzY1NbVECq8+59OHQqVS6/v18eNHg3uE37h+jcjo8WW+p4ogMno8c2fPIiw8QrbNnRz9BwSyZ/cujdrkstAroDeHDh6UjDBaWlri5VWl3Nf4vRAE4Taq9E1TIFQQhKdALqo+caIoitIeF5D56ZOs4+Xi6oqnZ2XJlPaatWrx4MEDlSp4qdKTTp27sGf3ri8LZq1LjDVv1hRTU1NiV64mLCRYw17UrVOHunXqUFBQwLH4Exw+dgwzM5XNs7Awx83VFTdXVxwdHbCwsMTCwhxLCwssLS0xMzMrk80r7pCr/1/aoRYy3nD7wWMuX79FXn4+pgoFTdp0JDw0RGd0X2nnIev0yznucg65mhPHjxM9YaLk2Nnjhxk9YpjkmFzP8ydPntK5YwfJY5KTk2ncpKnW+5FDW8RbqVRq/b0oLCw0OJX9wplTjBz7m0hoao4SZ8tvm30RHKJqOzjMfoTBCxpDhw9n25bNjBoTpHtnHQQOGsyunTsYNnyExphCoaChv6xZ+O4pj80zYsSIkT8jP6Rj7ubmzvJlS5k0ZapkX9Khw4YzZ9YvTJw8BUvLkhOnYcNHsHzpEqysrPCuVlJ0ZeToMaxfu4a83DyaNmtWYqxN27a4uLgwd/Ys+vTtp+HYgypCVToNNzs7mw8fPvD+3TuSkl6Rm5tLbk4uObk55ObkkFdspVztMFau7EX9Bg2oUqWK3hPYwsJC3r9/x/Nnz7mbkICyUDWZatCgIWOCg8vcs7qiuHs3QTZylJ2djYmJieTE+cnjx1SrpimOo07/lkOpxYF+8+YNlSp56nnnJcnNy9NaX5vy/j3uBgga5ebmYmZu/ruXQZiYmDB56jTmz53D9Jk/GZRW71OzJqdPneLdu7eSmQ2G4Ovnx9Ejh8nOzpYU7yuLUN13RJlViF3d3Fm3Zi0RkZGSC5K9+/Rh/tw5VKteA3t7+xJjffr2Zc2qVdjY2mgogw8IHMiO7ds4e+Y07Tt0BH5T+W7cyB9HR0dmz1tAty6dadJYM6PF1NSUgJ49SmzLzc3lfUoK79+n8PJVEnl5eeTk5JCTm6uyf7lflOSLLZBVquRB/Xr1qF7NW+9FQ1EUeff+Pc9fvOD2nbsoM1MRBKjvV4ugIQOwsFAtFJQnGl6e41+8eEElT0/J52OWlyn7GX/77h1OMotj+QX5sq9PRkaGxnuv5vPnz1hZyi8iaFusTEv9gLPMIidAelqazprr4lHxwsJCCgsLNWzMt3bOBUFgwqTJzJk9i0mTp2gVCy2Nh0clBBMTnj97RrXq1ct1H56ennz8+FE22NCpc5dynf93xqi8bsSIESMG8EM65iYmqh/UxQsXMG3GTA2nUxAEwiOjWLp4kYbiuiAIRI2fwML58xg2YoSGgzYmeCzbt20lOzuLdu1LRib8atfG18+Pg/v3c/JEPKODgnVGR62srKhSpQpVqugX6SssLCQpKYm7CQkcPfJb/2BBEBAQiiIbxf+v/tvd3Z2q1bwJGjv2uxOkO370KJOnTpMc27VjO4MGSbc0jY8/LhlJv37tGk2aNpM4QndE/N7dBOrVq6fjjuXR5kSnpKTIRvGlOHKobCJEXwNzc3PGhYYRu3wZ4ydOMujYoLFjWTBvLtNn/lTuRYYxQcGsX7dWQ5wMyias970giuLzsh4rCDB56lTmz50juyAZGT2eRQsXMGPmTxqLXGPHjWP5sqVYWlhSvZQuw+AhQzmwfz9HDh8isEfnEmPVq3nz84xpHD0Wz/xFSwgePQonHU6YhYUFVby8qOLlpddzE0WRN8nJJCTc43j8iRJ6E2rRMVEUMcn9qHGsi1cNqnl7EzRqBFa5aXpdryKxKsyRjZrv2bVTI0NIveixc/8B+vftI3ncvgOHGDVcUxTtydNEfGQ0NXShyhLTbNemDzoXI1NScC2lSq+Ni+fO0KqddNT/WzvnCoWC6PETWL50CVOnzzDIvowYOYrZv/yi0eGgLIwJCmZFbAwTJ08p13m+N8pj84wYMWLkz8j35b0ZgK2tLeERkSycP49pM2Zq/DA6ODgQOHAQ69as0VByFgSBiZOnMH/uHELGhWo4UkOGDuP4saOsWbWKoLFjS5xbEAT69OtHZmYmGzesp5JHJfr061dhIkgmJiZUrVqVqjK1hz8iF86fp1XrNpKTnoKCAj5+/CjpzBYUFABIvra/Xrksm/794vlzqmuJYrx48YIuXbtJjimVSkyEsk+yPqSkUK26ZoRfjtevk+jvpdki7PfC1c2N1m3aSgoeasPU1JRevVVp6L37SDsc+uLg6Ii7uzsPHzzAr3btcp3rj4SFhYXWBUkrKyuCgoOJi1lO1PgJGsdHRkWzeOECBg0ZSuXKlUuM9enbl3Nnz7I0JpaI0HEaC3s9unelQ/u2rNu4GTs7WwYHDqiwLBxBEKjs6UllT+1ZLFJp5iWi2dLSI+VG8emt1qi5VH/2Owl38a9dE1shHwpL1g+LosiLl68kW8+JokhOTrbkwkv8iZOMG6uZOm1VmMPr9CzZKDvAg/v3GFABpSZSfPjwARcDHPNH9+/RNlKz+4aab+2c29nZ0advP7Zs3mRQGzVBEBg2fDjbt22VTEM3BEtLS+rVr8+1q1c1svWMGDFixMifhx9S/E2Nk7MzI0ePYeniRZJR0ho+PtSsVYsjhw9pjCkUCiZPncaKFXF8/KgZienWvQddu3dny2ZNASRQLQxERkXToGFDVsTFsnzZUu7fv1f+J/UHQxRFfr1ymZatpMXN9u3dQ1+Z9mlHDh+mR4+eGtvz8/MxUShkoxsXLpyXFZlT35NchOPF8+cGOdal+fDhAy4u+k1Ss7KysLW1LfO1vhaNmzShQFnA7Vs3DTquXr36vHr1UvL7ZCj9BwSyf9/eChGV+yNha2tLWHgEC+fPkxTJq1TJk9Zt2rBLQjBKnbq7ZdNG3r9/h1VhTolH97bNGTwwkDXrNcUzQeU8RISG0LZ1a1auXsviZcu5cfPW7/oe6RKC+704cuw4PbtLL/4dO36C7l2l05PPnr9A21L1/qCyWfkF+bKLIaqe9fItD7Oys2WFPdNSU7W2WdMVRf6QkoKLnllCSqVSrwWdby0I5+vnh4uLi6QArDa8q1UjJzuHd+/K/zns3KUrZ06fKlqQNmLEiBEjfz5+aMccVPVZvQJ6s3njBsnxtu3akZmZya2bNzTGzMzMmDxlKsuXLiEtNVVjvEqVKowcpdljtjg1fHyIjIomPCKSt8nJLFuymLWrV/Pk8WOjU8EX57qXdA9fURR58/q1ZJq/KIo8S3yqkXYLcCL+OF26dJW9ZmZmpsECbGoePHiAr590lFYfkaMCZYHekcQL57VPpn9PBg4azOlTpwxuTzYmKJj1a9eU+/qCIDAgcCB7du8y+NjMPCXvPufr/cgpkFaB/15xdnFhxKjRrFq5QnLcv1FjrKysJZ0MG/L4y+RoNq2K401yssa4u5sbYSHBWq9ftYoXURFhTIiKJPPzZxYvW07cqjXcf/DAaPOAcxcu0qZ1K1mH9u79+9SvJ51WfuPmLcla/itXr9KiuXwk9fWb1xpZEPry8OFDWf0Pq8IczJR5Wo9PTU3F2VneMS/uZCfcvkl9me4b2o77FnTv0ZO7dxNISkqSzIKQY+To0WzaID3/MJThI0dJdpXRxed8w2xeVv6PZfOMGDFi5M/CD++Yg0p52N3Dg5Mn4iXHBw8ZytWrV3n44IHGmKWlJVOnz2DtmtU8uH9f57WsLMwkH7bWlgT06sn06dMIDR2Hs6M9L5495XniE149TyT78ycszUyxsihf+qfc9Q15fG1EUeTc2bMsW7KYnJxsDcEpNQf375etrz5z+hTt2ks7rY8ePqRmrVqSY3l5eVrr/T59+qRVBOnlyxeyE9zHjx7hU9NHcqwsPH0qvfDwvRA1fgIr4mLJzMzU+xhra2v8GzXm3Nkzeu2vzZGrWasWHzM+kpz8Ru/r/1moXLky9es3kGz/CKr+9C9ePOfG9esaY6ampvw0fSo7d+/h+g3dWRGmltaSDzMrGzp37ca06TMIj4jE2d2Tx89f8ejZSx4/TyI9MxsTcytMLTXTsg3FTCFg4lhJ8mFqaa1z/GsjiiKXf/2VRUuX8fzFC9q0ku6PfeLUadq3lc7muXHzlqzDfuHiZZo3lVZcLyws1Po9Kigo0GoT795NkLTRVoU5vH33DldX7dFwZaFSb02TOzeuU9+/sV77At+8nVpoWDhbNm3kg8RCvRxmZmZ07tKFQwcP6rW/tvfK09MTC0tLnj55ovf1jRgxYsTIH4c/hGMO0LVbd1JSUiQj4wDjQsM4eSKexKeaPXfNzc2ZMm06169fI/74MZ3XKigoIHjMGHr26ME//v53bt64QY/u3enRvTu1/fxYumQxlb28uH7tGuOjovjLX/5C6odUHj18yIP791kRF8umDeu5c+d2mXqhlr4+wLFjx+jVsyc9unfn2rVrADSsX7/ovu7dvWvwdaSue+/eXbZt3cKKuFjWrl7NgX37uHTxIk8eP+bxo0fExcYQs2wp9vZ2RE+YKNtCq6CggOfPn0k62KIocuvmTRpJ9Ci/ffuW1vYxx44epXv3HrLjZ06fpqMOlVu5SNe1q7/StFlzybGyIAjCdy1mZmZmxqQpU1m6eJFB6ZXt2rcnISGB9DTdYlwb16/jQ0qK7PjooCA2rFtnjMRK0Kp1awQTE9n02xEjR3Hn9i3u3LmtMaZQKJgYHcWz58/Zu/+AzmsVFBQwOiiYbj178bd/+Qc3bt6ka4+edO3Rk1p+dVi0eDGVPStx/fo1IqOj+evf/krGxwwePnrEvfsPWB67gjXrN3D9xk3y8rRHYDXu9Uu6ekFBAaNCwunWewB/+x//C4Cj8Sfo3iuArgH9uXr9BgB1m7Ska0B/ugb05+493Yut2lAqldx//JSt23cSE7eSFavXsnvvPs5fvMSjx495mviM2JWrWbxsOQATo6MYPWK45LlEUeTGzVs0a6pp1wBOnj5Dl04dNbY/e/6Cat5VZW3F+YuXaNNGvnTn8qVLtGgpvVAAqtdVLsvn0uUrtGrZQvZYMKz9pJQa+/eEujvForg15OToHzX3b9SYd2/f8uaN7kXEXTt38PLlS9nxwUOGsnvXTmNKuxEjRoz8Cfl+fyHLwNBhw4lZvgxHJ2e8vb1LjAmCQGT0eGJjltO2XTvq12+gMT5y1GjOnjnN2tWrCRo7VnYitHvXLhr6+7P2b39jxvTpCILA0WMqh37o4MH06dOH/Px8YmJiOBYfz84dO9izZzczf/oJAO8aNcnMzCThzh02rFtHgbIAURSpUqUqLVq00CmkU/r6t27eJC4mhgMHD5YQSnN1cyu6L0MRRZHEp0+5dPECWdnZCIKAqcKUmrVq0aNHTxwcHcnPz+fDhxRSUlJ49eolSqWS4LEhmH/p4a6NnTu2M3DwEMmxE/HH6dJNuj7z3Jkzsn2BAV69einZA1vN69dJsuOPHz2iZs2assd+rsCa8A8pKVpbEH0vWFlZMXbcONatWcO4sDC9jwsZF8qSRQs1uiKUZtiIkSyYN5cZP/0suZ9CoWDwkKFs3bKZ4SNGluk5/JHp3acPG9atxdnZWbKFY9DYENavXUNOdg7NW7Qg28SyRJruoMABXLl6lWUxcUSGh8pGVnft3o2/vz9//+tfmPZFvTr+6BHVOYYMo+8Xm7csJpaTx4+xY+dOdu7cxc8/zQTAt3pVsrOzuXP3Lus3bSH/i3Pu4eFO61Yt8ZBpMVi8hnznnn00atiAv/88g6k//Y2bt++wPG4Vhw/sx7TwN2ffzdWF+EN7i/7W121UfHrL81dJnL10lU+fsxAEMBFM8K1Rja5dOuHi7ExBQQEfUlNJSfnAq6TX5OXlMWbkcL1abe0/eIi+vaXLeq5cvUrzZk0lvwMHDh0iKlz+u3fr9m3GjZdX8757N4HwiEjJsffv32lVVE9OfqsS5dOiPq8vOdnZWFiU7RzfUhDOzMyMqPETWLUizqDuFGOCg5k7e7ZOlfbAgYOYM2sW02fOlBQ2FQSBMcHBrF+7lpDQUIkzGDFixIiRPyoGOeaCIJgAZ4E2QFVRFF8JgjAOWAFkFdt1ryiKo4od9zdgOvAYCFK30BAE4STQCegkiuLpYvs/Bv5DFMVVhj6hiMgo5s2ZzbjQMBxLqdQKgkBkVDQb1q0l63OWZBShfYeOeHlVYc6sXwgNC8dJwnlKTEykYcOGAPg3asSlS5fwb9SIz58/8/btW2rWqsXdhAQaNGiAqakpXbt1Y9KEkirJtra2tGrdmlbFhH5evXrF6dOnSPkSQWzXvj316tXXef0LFy5gYmLCgP79cXd3Z+GiRdjY2JCWmkq3rl2pU6cOs2bP1ujprqawsJB3797yOuk1D+7f43OW6q308fGhf+BAWWfUzMyMSpU8De4Jnp2dTXp6Op4SKsyiKHI3IYGu3bprjKlFiuQcvYyMDOy11JaLoqg1unPu7FlGjtauKaANQyJHZ86cpkNHzejY94i7uwdjx40z6BgLCwsC+vRh757dDAgcKLufmZlZUS/tIUOHSe5TvUYNrl79lSePH8uWMHwtfgSbN2pMEEsWLcTB0UHyuzgmeCw7tm/j8+dMyZ7ILZo1o7KnJ/9v1hxCQ4IlneSniYk0bKBazGzUqBEXL16ikb8/nz9/JvltMrVq1STh7l0a1lfZvG5du2o4NVZWVrRo1owWxVSn3yQnc+HiJZLfvkUURVq1aEHTJo0BTWG3xGfPadhAZQ8b+Tfg/IVLmJiY0Ld/IB5uLiyZNwsbGxtSU9Po3LMvdWr7Mfef/42FmabTXFhYyPuUFJKSXnP/4UM+ffyEkPuJalUq069HFxzsS9oRpZ3qd8DU1BQPd3c83N2pj/7txwoKCnjyNJF+fXpLjp+/cIlpkzUXHLOysjAzNZONMufm5mJmZq518UsURdnx+OPHCQiQvqeK5uqVSzSXELbTl2/pnDs4OGh0NtDWGg9Ui4jDRoxg88YNjBqjqZ6vxsTEhFFjxrBh3TqNjjFq3N09qOTpya2bN/Bv1LhMz8GIESNGjPx4GJrKPoOSk1E1T0VRtC32KD5BrQV0BnyAfwf+T6ljPwC/CAbk9H769El2TN0KLTZmObm50v1zRgcFk5T0SrYmvYaPD5OmTGX79m2SdWN+fn6cOa2aU586eZK0Lym7hw8dokdPlYp4ejEn0cHBgbT0dJ3Pq0qVKgwaPITIqGgiIqPwlHF4S18/IyODN8nJ7Nm7lzZt2hAbEwNA/MmTHI+Px9vbm7jYWNnrpn74wPVr11EoTOgfOJCIyCgiIqPo2q37V1EN37p5M8OGSad7Hjl8mB49paNKe/fsod8A+dZihw4eoJeWSeatmzdopGWSk5cv3683IyNDp6Dcu3dvcXeTjvyVJiUlBTc99/0eKEuf3jp16vI5M5MXL15o3a+Wry+FhYVa6yoHDxnKrp2/S3rnd2HzMjIyZMcEQSB6wkTWrV0raxsHDxlKTk4uB/bvlxz3qlyZn2dMY//Bw+zYtUdjkam2rx+nz6h0A06eOlVkzw4dPkwvtc1LT8fO3jCb51mpEgMH9Gd8ZATjIyOoVk2V6SSltu7nW4vTZ8+p7uH0WTI+fiQ5+S379+6mTauWLF+xCoDTRw9y8sh+qnlXJWbFasnrZmZmcvnKr4iiSN+AAKIjw5kQMoo+3TpJOOXyrdL0ZdvOXQwZJG27zl+8JJsuvnvffgIH9JM9rzb1d1B1maha1Vt2/OPHjzjIKLIXFBSg0JF2npOTg8WXDCld9eCJjx9R3ad8C2vfst5cbfPUXQtK/18Kb29vbGxtdXZoqVy5Mi6urrKld6DSiTh54oRBKfVGjBgxYuTHRu/ZtiAIfsBE4OcyXMMEUBT7f3FigCqA3g1ERVFk7+7dsuPm5uZERo9nwby5svWMAwcNRqlUsnvXTslxCwsLIiKj8PKqzNzZs3j//l3RWN9+/cjOySGgVy8sLCxw91BN3Hbv3s3AgQMBcHRw4OOXSfLHjx9xdHDQ9+kBqsm2VLRe6voODg60bdsWhUJB586duf9FxE6dKh0YGEhCQoLstVzd3Ojdpw+NGjf56u27Xr16hbmFuUY2A6gmgo8ePpBMyc3KyiI3L1f2/kRRJOX9e9nXDFT91Js1l64Rf/7sGV6VvWSPPXv6NO3ad5AdB7h39y516uqOohUUFHzXteUVyYhRo9m6ebNOLYWhw4aza+cO2e+rIAgEh4xl5Yq4r3Gbctf8bmyewkTBZi1qzQqFgkmTp7B08SI+f/4suU+vgAAcHBxYt1G6BaSpqSlhIcE0qF+Xf86ey8tXSUVj/fr1JSc7mx69emNhYVEUVd+1ew+DBqocTkdHRz59LJ/Nc9Hy/e3fJ4Ds7Bx69B2IhYU5Dvb2tGvbGtPCPLp26sC9Bw8BcHZW2ZaB/fty5660g2Rvb0//vn1o1rQJDg72Wtuulbcl24fUVD59yqSKl6Z9EUWRi5cu01rCMc/Pz+f9+xTc3dxkz/3kaSLVvKvKjh87dpTOXaQ1NT6kpGBvby85ZlWYo1owaKFdU+PB/Xv41S5pr6UcdFEUUSqVfwq7139AIIcOHJD9Hqrp07cvp06e1LrfuLBw4mKWV/QtGjFixIiR7xS9HPMv6ZwrgL8A6RK7VBUEIVkQhJeCIGwSBKFIaloUxYfABeAJ8L+Bfyt17GfgfwL/JQiCdLiyFPb29lT28mLlijjZ9GEHBwcio6KZP3eO7GS/W/ceeHtXI2b5MpRK6ZX4hv6NmDRlKgf27WfXzh2IomoSPGfuXA4dPoxCoaB79+7k5+fz4P59/BupWsH4+vmRkJCAUqkk/vhx2T7eZaH09fv07VukKH/z5k2qV69OXl5eUcbA+QsX8PGpODXxsiKKItu01Arv3LGdQUOGSo5t2bRJa43xoYMHtUbLUz98wMHBQbKmD+Dw4UP0DJBWiAdISnqFl8TEujhPnjzBR0uNuhpd7d7+SJiYmBAaFkbs8mVa9xMEgdCwcFbGyWd2uLt74K9nq6XyYqDNSxAE4Z4gCDcEQTgCZFLBNs/WzpaG/v4sW7JYsn85qFLFJ02ZyuKFC2Qn++3at6d+s1bMW7hY1i76+fry84xpnDx9mg2bt1AoiigUCubNncPRwwdRmCjo0b0b+fn53L//gEZfxBj9fH25c1dl847Hx9NKi+CYNuQcYYVCwfxZ/5ej+3ehMFHQr0+vImf8xq3b1KhWrYTdO3fxEj6+vmW6h4pkzboNhARJl8gcOHSYPgE9Jce2bN/BsCHS4pkAZ86dp33bNrLp1VlZWQiCIFvCtHfPHvrLZCBlm1iScPeurEq8mps3bhb95pWmuIN+89qvNK4g4cxv3Uat9Ourq9ZerWcTs2ypzvKmsIhIrY63vb09nWQWVn5PBEH4P4Ig3FLbPEEQytarz4gRI0aMlEDfiPk0IFkUxR0SY6eBhkBloAWQAxwVBMFGvYMoiv8uiqKHKIptRVFMlDjHSuDTl+voRbPmzencuQsL5s2VjcY5ODrqdM6bNG3KgMBA5syexdu3mn19QVUHGxIair9/I+4m3OHatWv06N6dXj170rpNG6pUqcLJEydKRCbMzMwICwujW5curFu3johIafGdspCUlFTi+lWrVqVDx45069qVNWvWEBkVRVpaGp06dKBb164c2LeP6PHjK+z6ZeXg/v0E9OkjmRadmZlJenq6pPP7ISUFMzNTHGQicKo06MfU0jIJ37VrJ4GDBkuOZWVlYW5mLlvHmZWVhaWlbnEnkFd0L07i06d6OfB/FJxdXGjdpq1sGrUaJ2dnGjVuorUzQqty1KgaiCE27wZgBrQD9gH/82vYvHr16jPgi3BUdna25D7W1tY6nfM6deoSPHoUcxcs4tlz6TIDExMTgkePokO7dty9e4/LV36la/eedO8VQJs2ralSpQrxJ07SuXOnomPMzMyICAujU9durFm7nqjICH2fml4kvX5N14D+dO8TSJvWLalapQqd2relc8++rFq3gejwUNLS0mnXtRede/Zl38HDTIiO1nlefSLiZY2anzh1mrZtWkkKYubn5/M08Rl1atfWGMvMzOTTp094VqokeV5RFLl67TrNm0m3UAPYs2sngTL6DgUFBeTl52FtLd1KTqlUojS1LLJncs5ofkF+UfmPtvrvG1d/xb+JfB/2Pxo2Njb06duPbVu36Nyva/fu7Nm9S3afBg0aVvDdVQj/FEXRXxTFxnyxeb/z/RgxYsTIHwKd4m9f6iV/AiSXu0VRLN5/LFkQhEggA2gNHNfnJkRRVAqC8FdgoyAIeueq1vDxISh4LPPmzCZ6wkTJGuDizvnU6TMkJ0geHpWYMfMnVq9aiZ+fH+07SIty+dSsiZWFGakfPjBnzlw8PDxwc1elGfbo2bOovlzNmKAgxgTJi8CUFS8vLw219anTpjF1Wsk5/sXLlyv82mUlPS2NN8lv6NNPul5y08YNjBgpndm7besWxoWFy557757d9OkrX4eZnZ2NKIqyk9C9e3bTf8AA2eOPHz1K957SUS01SqVSrzrs9LQ07A1M8dWXnJwcEhOf4uDgiKen53eVNtqkaVMebd7EwwcP8JNwRNS0btOGVStW8Pr1a9l+8l+bMti8cfxm82zQQwi8rDbP09OTqPHjWbRgPmHhETi7aPaYVjvnixbMZ+LkKdjY2GjsY+XqyeSf/87WtSu4/8CdgJ7SLQarVvHC1NKa9PQM5s2dg6urK56VVKU7vXr2oFep44LGjCZoTNkFFLU5wF6VK5dQWweYPnki00uJpv167iQAooTo27ckKyuLOwl3mTJRelF045atDB8qvVi4cfNW2bZrAMfiT0q2VlOjVCrJyMiQ/HwAHDl0iF695DOELpw/R9t27cqtxA6Qm5ODhaXlV7FHeXl5JD59ipW1NVWryreUKy/qbgaGvB5+tWvz+PFjrl+7RhOZHvSgcrzvJiT8LuKWZUUUxY/F/tTL5hkxYsSIEd3oo8reHnAD7nz50VN7H7cEQfgfoiguLrW/+OVh0C+kKIoHBUG4jIErr84uLkWT0CnTpkuKd+njnCsUCsLCIzhz+hQr4mIJGRcqm/bs7OKCs4sLycnJJNy5g7v7bw66oeTn57NyRRxmZma0bdsOv9q1vyuHqqJYt3YNkdHSE9TEp09xcXGRrHd8/uwZlTw9ZUXZsrOzSX7zRrZfOsBuLZEjURRJ/fBBa4u6N8lvdDqJ9+/fo04d3fXlB/bvo29/+UUAfRFFkWNHj5Toh2thbk71Gj4kPk3k0MHfelM7OzvTpUtXWZGnb8Ww4SOYN2c2lb28tGoZBIeEMGf2LGbM/En2O6iNjJwCkj7qL5iUla8EGCoIwsovm1wADwyzeabARuAdoFfuaVltnp2dHdNmzGTenNmMnzhJ8rXUxzkXBIHhY8O5ffksC5csIyo8VLbVoaOjA46ODrx7n8LtOwm4urpSycODspgqURSJXbEKURRp3aolDRvUr3Cbp69TbkgkXG5fOXG41evWy6awq1XopRTw371/j4WlhWz9d0FBAQl379Jjinwrr0MHDhDQu4/s+IsXz2UXSQHu3btHZJT2bIPXr19rCJSqo+bF081PHD1Mlx7Sgp6GcuHsaRIfPwLA2swEM1MzavjUICsri2NHjxSljjs6OtK5cxedrUfVQm76ONxlWaTo07cvSxcvolq1arKLJKCyjXNm/cKkKVNlf+u08SnXMJuXmVcA0E8QhF+KbV4uiqLeBe2CIPwnMBbVouT3l29vxIgRIz8g+jjmW4Di4dkqqOonewL3BUHoC9wEkgAn4L+BFOBiGe7nL1+Ok847l8HKyorIqGgWzJ/HtOkzMDMz09inyDmfN5eIiEhJ8TGADh074Ve7NnNnz2bQ4MEaKcfZub+lzTs4uWDv6MzlS5f4dc0a6jdoQKfOXQyaZJqZmREVPZ78/HwunD/HqVMnMTExoVmz5jRu0kTjXMWv/6Nw6uQJWrRsJTnhEEWRXTt3MH3mT5LH7tm9i0lTpsqee8P6dbKRdlC1E0pPS8NVRkDpzOlTtGvfXvb49LQ0rS3Y1Px6+QojRmnX8lIqlaSnp8um5OvLnTu3OX70KD0DAmQV7IuT8v49e/fsJisri959+1G1qrxYlBxWFprfqbLwl7/8zN2Eu/j7+4Mg/XlWKBQEjx1LXGwMUTKLOV+BbaIo/i8AQRCsgeIqZGqblwpM/hLpzgEKUNm7jsAboD4wBZgM/C89r1smm2dmZsbEyVNYtGA+k6dOk+yjXZTWvmghwWPH4uEhnRbdsGV7avnUZN7CxfTtHUC9uiXFvApyfhOld7azxtmuBtdv3GTDurX4+dYioGcPg2yeIAhEhodSUFDAxctXWBoTiyAINKlVhdZNG0lmnhSmS5cZSaG08wCllJD+t+PK1avU8qkp61xv3LxVNpK+acs2xkfKZwht2LylqPZcylksLCzk2bNE+vbvL3n8rZs3qP+l9Z0UOTk5mJnq/r6fPXOaHj20ZxKJosirly8I6C/fTUMfEp884ujBA7Ru34HR41SvjbbU+bTUVA4fPkR6Who9ewVIlg5pU1eHirN506ZN5c7t21Su5IFgIkjaPEEQCI+IZPnSJUyeOu1bLc7vE0VRVthSEIRjgJTR+FdRFHeLovivwL8KgvAvGGbzjBgxYsSIDDpzb0VRzBJF8ZX6AahnSMmiKGaiagt0GZXgUQKqaFOPL2MGIYriTWATID2b0YKDoyPh4RHMmztHa8351GnTWbtmNY8fPZI9l4dHJWb+/DM3blxn7erVWls0CYJAq9atmTRlKi6urixeuICjRw4b1NMaVBPtjp06ExU9nrDwCJRKJbExy1m+bClnz5z+PdpEVQipHz7w8OFD2dpgdd251ETk4oULNG/RUjZF/PbtW3h5VZFdZAHYvnULQ2VaswHcunlTa5/YvXv26Ixwi6JITk62rMjSb+faTb9yRMvfvXvLogXzSX7zhqnTZ1C3bj29jnN1cyNobAhhEZFcv3aVxQsXcP3atTLdw+vXr2ndsiUOdnZFn8nZs2bRpXNnQsaOLfruDR08GA83N44f/62a5cSJE3Tr0oUZ06dz9uxZrdfx8KhEs2bNObBvX5nuszxosXmdRVGsB2xFZaNqAL9Q0uZtAIYYcK0y2zxra2smTJrMogXztdacz5j5E7t37uT27VuS+1gV5uDs7MTPM6bxNDGR5bErZFtNqmnSuBHTJk/Ep0Z1Fixeyp59+2VF6eQwNTWlfds2TIiKJDoiHCtLC5at3cziVRs4euqcrC5IRVFetXW583z+/Jlz5y/So7u0wOOpM2dp07qVpKZFwt17+NaqqZG5oHbAnzxNxNzcHC8tGTyq0hx5R/jM6dOy5VoA+/buoU+/vrLjatLT0rR2wQA4c+I47TuVPZiakZ7GymWLefTgAZGTpuLf+LeUcG0icE7OzowcNZrI6PE8ePCAJYsWcuH8+RK/y/pGwMtr87p06sTMGTM4ffqU1us4ODrSs1cAW7ds1uu+vjaiKHYXRbGBxKN0SxyDbJ4RI0aMGJFHn4h5CURRfEaxNHVRFP+CKupjMKIodpbYFgqEluV8Ts7OhIWFM3/uXKbNmCE58TE3N2fy1Gls2rCe5OQ3shMUQRAYPGQob98ms2jBfDp36UKjxk20Xr9hQ38aNvTn/v17LF+6BBsbG/oPCDQ4hdjExITmLVrQvEULRFHk3r27rF2zumji6+zsTKNGjanh4/Ndp70/fvSIHdu3yUbDP378yKukV5IplYWFhVy+dJGp02dIHpufn8/xo0dlz60+f05urmy0/NzZM1onqIWFhWRlfdbZv/zmjRs6PxsFBQW8ef0abxkBOl3s2L6NnOxsosZPkMwI0QdTU1MGBA5UtWi6cIE5s35hTHAw7u7692l2dnbm4OHDDB82DID3799z6tQpTpw8yS///Cd7du9myNChLFi0iNiYmBLH/vd//Rf7Dhzg3r17LF+6FD8/P+wc5RdVmjVvzp7du7hx/TqNm2h/fb8mumyeIAi+oiiqV/oGAPe1nKuzxLYy2zxbW1uiJ0wsipxLLQ4pFAqixk9g547tvHn9mp4ytcWCINCvT2/S0tJZGhNHyxbNadNKu7J6bT8/avv58eRpIktjYjE3t2DggH64aknblcI08x1NGtSjSQPVYtPDp89Ys3U3BV+6ZTjY2dLUvz6+Napp1XLQt+d4RTnlpXn+4iVr1m9ghkyaeW5uLjdu3mJaqbp4NYeOHGXmtCmSY4WFhWzbsZO//iRtE9XnT37zBu+B1STHb9++Rf0GDbT+bqS8f6/TJjxLTMS7WnWt+4iiyMP79+jYtbvW/eQ4dugA79+9ZXRIGBYyi56pOUqtkXOFQkHvPqqU/mtXrzJn1i8MHzmKKlWq6H0fFWXzYpYvp1YtX5zdNMsX1NSuU4ekpFecO3tGZ3vO3xNDbJ4RI0aMGNEfgx3z7x1nFxdCxo0rqieXcs4FQWDUmCBOxB9n65bNDBs+QvZ8Hh6VmDZjJkePHGbZksWMHD1GZypynTp1qVOnLh8/fmT/3j1kZGTQpm1bnc6bFIIgUK9eferVq1+0LfXDB27cuM6pUycRipXyi6X0VwQE3Nzcimp6LSwsMLcwx8LcAjNzc6ytrSUnuXl5eTxLTOTx48eySvUFBQW4urrSvUdPDcf1WWIi+/ftpYZPTX7+699kJ9Ib1q1l7Dhpf2Tf3j1ao8sb1q1jTHCw7DjAls2bGDV6jOz4jevXtabJnzwRr1ermsuXLsrWz6s5dvSo1nZu2ti3Zw9Vq3rTooztp0ojCAJt2ralRcuWrF2zmkqVPIsmr7qwtLQs4fz9euUKHTuqFje6duvG5k2bGDJ0KJ6eJWtPs7KysLKyws7OjpYtW/I//vVfSU39wOecHCqVqlMtzoDAgSxfuoRKnpW07vc78/8TBKE2UAg8B75pCwQ7Ozuixk9g4fx5sjobAIMGD+HC+fOsWbWK4JAQBEGQTOd1cnJk2uSJnDpzlvmLljBm1Ait/cUBavrUYGJ0FFlZWezet5+UlA+0aN6MVi2al2nx0M+nOn4+1Yv+Ts/4yPU7dzl94UoJOycglPi70MIeN1cXvLwq42Bvj5mZORYW5lhYWGBhbo6VlRXmWSka18vPzyfxZRKPE5+T9Oathi0FKChQ4mBnS9/unXF0KJngkPT6NTt27aGypyf/+OvPstoIa9ZtYKyMON7xEyfp2rmTZvnSl8ju2u17GD50iNbXc9uWzVozhE6fPMnEydKOP8D1a9f0+p06duwoITK2W83Vy5do2badznNJcebEcaysrRk1Vvd6lTpyrs1BB2jarBmNmzRh88YNWFlbEzhwkF5R84q0ednZWTxLTKR6jRrI0bVbd9auXk3lyl7U+A7anMrwu9o8I0aMGPmj8kM65qmpqVrHXd3cCA4JYd6cOUyeKi+m0qVrN+7du8vC+fOIiIrWmorco2cvPn/+zJbNm7AwN2fo8BGyQklq7O3tGTUmCFEUuXD+fFEUvXefvlqFYHTh7OJC1266oxCFhYWkpLznddJr3r5NJjc3l9zcPPLzVb1+c7JzUBaWTAcURRFzMzNq+PjQtFlTPDwqyU4E3717y97du8j8/JlKlSpRt249jh45TJWqVZkwabLWyNbNG9fx9fOTVErPycnhdVISA2QE2x7cv4+zszNuWiIPSUlJ2NvbS4peAZw/d47WbdrKHg/w8MEDna9zXl4epmZmOp2PZ4lPCehtuGN+/tw5TM3MKswpL46pqSmhYeHcunmDeXNmMy40zODsjvT09KI6Wgd7e9LS0iT3SytVq69UKqlduw7/8Z//ybQZM7VmAYRHRhUJI0nVUv/eiKL41dM4P6R8QBRF2c+Zvb09kdHjmT93jqzYG0Cbtm3x9PRk7uxZTIkIAS3ZIJ06tKd1yxZs3LINpVLJ6BHDdL7+1tbWjBo+DFEU+fXaNebHrMLCwpKBAV2p5KF/ZkZpHB3s6dKuNV3aaW+XV2DrTsqHD7x6lcSb5Lfk5eWTl6eye7l5ueSmvZO0eWamZtTw9sK/bm0CunSQtV0f0tLZd/Qk6R8/4ubiTDP/+hyMP427qwsToiJkWy4CPH7yBBcXF5ycHDXGlEolt+8kMF0m0v7y5UsKlUoq+dQGmdrotNRUCgqUsoJnCQl3qFO3rlZbdfHCecZPlBeVA9XvSqFSqTNz587N64yLmqB1H8n7vHWTjPR0+g0y7GulK3oOqmy0UWOCePjgAXNnzyJo7FitvyNSlMfm1arly3/9938TPWGibJcQgKCxqm4zYRGRsjoFvyffwuYZMWLEyJ+RH9Ixt7a2Zv7cOURGj5edKLq5uRMRGcn8uXOYMGmyrAp03br1qFzZiyWLFtK7b1+tyto2NjaEhoWT8v49cTHLqeFTk14BATqdMkEQaNuuHW3btePTp08cPLCf1A8f8G/UmDZt2361dHQTExPc3T0MSlU2BHd3D0YHqaLWb9684fatm0SNn6B1cgqq6NSJ+HjZNPRNGzYwfMRI2WMP7N+nNYUdVLXl2qLh167+yuSp8i2knzx+rDNVE+Dggf2yqcFqniUm4u0tnVqqjTt3bvP8WSKjxlR8y73i+DdqTO06dVmzehW+vr507iJdGyuFo6Mjr1+/BuDjp084yjj2Tk5OfPz0qehvExMTBBOB0LBwli1ZzKQpU2W/B+pU7MULFzLjJ+3v+x8VOzs75sz6hYioaNmJuoODAxMnT2HJooWER0TK1v9Wr1GD6AkTiYtZQsf27WjapLHsdS0sLBgXPIb09AxWrV1HJQ8PBg7or5fNa9CiHQ1atCMrK4tDBw+QlpxE3Tq1NaLChqSVK+08tKqjC4CbqytuMs5peVPYXZwcCRqqyuR5l/KBKzduEx2sWqRVarF7hYWFbN+5WzYNfcv2HQwZNFD22C2bNhV99tWtu0qzaeMGQsPle8efOH5cq018+zYZF1dXne/tyRPxdOjUSes+yk8fdNafS/Hs6RNuXL3CmFD556ENfZxzULUy86lZk/Vr1+Lu4aF3xhCUz+YhQERUNEsXL2LGTz/LvtaCIDB+4iQWzp/HtBkz9b43I0aMGDHyY6O78fJ3iKWlJePCwlmyaCGJT5/K7ufg6MikKVNZungRaVqi7A4ODkyf+RP37t5l65bNOoXbXN3cmDBpMt7VvJk/d45BQlp2dnYMHzGS8RMnYW1tzfKlS1izahXv37/T+xzfI56envTsFaDTKQdYs3oVQcFjJceeP3uGrZ2tbEbBlk0bGRMcrHXyqFJa7yCbTnr2zGmd9XsHD+zXGeFWKpW8TkrSWa946OABehkYLX/44AFXLl/+6k65GgsLCyKjojE3t2Dt6tV6ixc2a96cM2fOABB//DgtZSL71tbWZGdnk5mZyZUrV6hbV7UA5uLqSveePdm0Yb3W69jb2zM6KIglixYa8Kz+OJhbmDNh0mRWrYjj7t0E2f1sbGyYOn0GK1fEkZz8RnY/a2trpk+ZxJvkZFatXa9TuM3R0YEJUZH4N2jAnPkLOXdB/6Yb1tbWDB4ylMkToqnk4cGS5THErFhF0hfnxhC0Oda6nO6Krit3d3Whb/fOOjOnANZt3MSoEcMl7da79+/JycmlahUvyWMP7dzKkKFDS0Txs00sS6Rh37h+nTp168pmfd2+dZMGDRtqtZs7t29noA4NDFEUuXf3rk7hyV07dxLQzzAl9tevXnLiyKEi1fWykpqj1CoMp8bU1JSQ0FAqVapEzPJleosXytk8U1GJCSIKsRBTUSlr8+zs7Bg6fAQr4mK1XsfS0pLwiEgWzp+n130ZMWLEiJEfnx/SMQfVRH3GTz9z8cJ5jhw+JLuftbU102bMZNXKFUWr3FIIgsCgwUNo0qQpc2b9otWRV1OvXn2mzZjJ58+ZLJg3lzt3bhv0HBo3aUL0hIkMGTaM06dOsXzpEo4cPvTDKrDrw7mzZ/Dz85MUZBNFkZ07tjN4yFDJY1Pev6ewUNSaAZCbm8utmzdp1ry55Lgoity4fp0mTZtKjgPcvZtA7Tp1tKbiA+zft5e+/aRbEql59+4tzi4uBvXjfpaYyMkT8YwLDdP7mIqibbt2dOjYkbmzZ0kqfefn59M7IIDbt27Rr29fnj17Rvv27enSuTM3b95kQKBqMj5zxgzWr1/Pv/7LvxAbq5qA/u3vf6dv79786z/+wc9/+U0vsk6dunhXq8bRI4e13punp6fW3sx/dKysrJg6fQYP7t9n966dsvuZm5szfeZPbN+6VevCZbaJJX17B9C1cyf+36w5JL/V7bjWrOnDzGlTMDVVMHfBIi7/+qvsuUvc+5cIb/16dZkYHUXw6JFcvvIri5YuY/ehYz+MArsc2kTnrt+4ibOTE95VpRfwNmzaQtAoaZ2TzMxM3qe8p241eX2FwsJCTp08QZeu3WT3OXniBJ06y+tlvHz5EncPD52LDProbnz69AlzM3NZwTYp3iUns3/3TsZFT8TFyhRnS0XRo6zo45wDNGnalH79BzB71i98/PhRY7y4zevfpw8vE5/QsX1bunbuxO2bNxg8oB+mopLpM2aybt16/uUf/0pMbBymopJ//O2vkjbP29ubpk2baf0eg0rQdriWdqBGjBgxYuSPhWBoW6/vgSZNm4onTv/WbunypUs8fHCfoLEhsscUFhayZNFCAnr3oWatWlrPn5eXx+pVK6lWrZrONGU1oihy8kQ8CXfu0KNnL2rXqaP7IAkSnz4lPv44SqWSVq1a4d+o8XetvG4I79+/Y/euXURERkmOHzp4kKreValfX7rH7uKFC4iIitY6eVy9ciX9BwyQjbgfP3YUj0qVaNCgoew5Fsybq7OXrFKpZNmSxVqFlABili9jbMg4WZ2D0mRmZhK7fBnTZsz8Xd/3T58+sWzpEkaPCaJy5coV1tO3NMV7+u7csR0fHx+d4lNOdjZXRVGUXHkRBGFU8Mx/2xA4Tn8tokX/NoMTu7f4i6Jo2MraN6S0zbt96yYXLlwgMipa9nMiiiIr4mJp2aoVDRv6S+6jdpgLCgpYvW4Dzk6OeqWqqzl7/gJXfr1Kl04dadzot2vIOealUXx6y4uk1xw6cYa8vHyaN2pIq6b+Zf7sSznIX9spl7suqDpDrFi9VrZ2/My58ygUCtq2biU5viwmjtEjhxcJbEqJlW3ZvIm27drLZu78euUKubm5tGvfXvb+Fy9cQPSEiVoXEEVRLFL/18aaVasIHDQIBwcHvZzjvLw8YhfNJ3rqDNxs5G27vo52afR17nNycli6eBGBAwdRw8enhM0zFct27eIUCKr7KG7zDh86hJ2dHW3baRfJ02Hzeg0Kn3xozLR/0fteVv/yv9m7ZnkXURRP6n2QESNGjBj56vywEfPitGzViibNmhEXGyObgmtiYsLEyVO4eOE8p06e0Ho+c3NzIqOii0SStKWEqhEEgS5duzFpylSePXvGogXzuX3rpsHPpYaPD+ERkURGRZOdnUPMsqWsXBHHs8REg3ujf08UFhayetUq2ShwZmYmL54/k3XK79y5ja+fn1an/MXz51jbWMs65YWFhdxNSNDqlF/99VeaNmum0zHQpRoPqkm5hbmF3k45wMq4WCKjx//uizF2dnbM/OlnDuzfx1WZqGhFM2jwEC5dukRSUtI3ud6PTEP/RvTo0ZPFCxfIpuAKgkB4RCSPHj7k0MGDkvuoHT1TU1PCx42lXt06/HP2XJ49f6HXfbRv24bpUyaRmpbGvIWLuXj5it5OuRpvr8pEBY1gUugYFAoTFq/awNI1m7j/+Gm5bd63cMrlEEWRZbEriI6Qtnl5eXlcvXZd1ilPfPYcZ2fnEl0vSr+WKe/fk52VLeuUi6LI+XNntTrljx4+pHoNH51ZPSfij9O5q3b9idzcXHJyc3R2LinOpjUrmRQdqdUpB/0d7NLo69BbWloybcZMzp87y7mzZ8p0LW1IOfe9AgJ4+uQxjx89kjjCiBEjRoz82fhDOOYA9es3oFOnzixbslh2MicIAmOCxyIIgl51tA39GzFl2nSOHz2qta6z9DV6BQQwcfIU0tLSWDBvLjeuXzf4+QiCQOs2bYgaP4HRY4J49OghK+JiiYuNYdWKFVy5fPmrp39WJBvWrWXkqNGyNejr164pEpIrjSiKHD96lO49esqeXxRFtm3dwpChw2T32b5tK4FaaihFUdSr/rygoICkV6/wrqZd0G3Htm0MHKx/3/ID+/fToWMnWUXtb42JiQkRkVG8ePGco8eOk52bX+GP0kRERrF54wYyMjLKfN9p2fk8T8/W+5GZV/5o2O9BDR8fAgcNZsG8uSiV8s9h8JChuLi4ELN8mdb9QNWX/OcZ07h4+TK/XtVPO0MQBLp27sS0yRMRRZGF8+dx8cIFnceVdpoFQaBF44ZMCh1D+KghJL1JZtnazSxZvZFlazdx9vJVcnJydZ5Tfd5v5ZTLRcu37djFgH59ZAVK16zfSNBoaZFLgJ279zBkkPY67Q3r1zFqjHxLyEMHD9KjVy+t5ziwf59O8TNRFEm4c0froibArp07CBw4sOhvXc70hbOn8atbT2+huK/tnKvnCB8/fmLX7r0qG5X9iYKcrAp5kP1J45pjgsdy8MD+cunMfMwtMMjmfcz545bLGTFixMiPzA+pyi5HLV9fzM3NWbRgPhMnT5GtEe7YqTPPqz1jzqxfiBo/QVaxHVSK0GNkhMq0IQgCHTt1pmOnzpw5fYqF8+fRuWtXnRMbKSwsLOjR87fJVUFBAQl3brN540byC1TOjSiKeFbypF79+lSrXv13j7gW5/btWzg7u8hGdW5cv04tX1/Z9+HokcP06NVL63Pat2cPffr1k33P37x5Q35eHt7e3rLn2LN7l86acVClXA8crL1bTHpaGiYmJnq3uklIuENOTjaNmxje6/5rM2jwEA4dPMiB/fvp07fvV72WOrNlwby5TJ0+w6Bsgz8jVapUYeTo0cybM5sp06bLtrBq0bIlVb2rMmfWL1oV20H1HowcJq3zoIvGbTrSuE1HLl+6xIJ5c2nTth0dmhlu88zMzOjWoS3dOqhaGiqVSu4+fMKm3fvJ/bIgKYrg4epC/Tq+1KruXeK7/3tGygGeJj6jQFlAbT8/yfHHT57g5OiIq0x2z4VLl2nVsoVWnYv448do2669bBZReloaSUmvtDrdx48dpVPnLjp/Lw4eOKBT3yE7O5uMjAw8PCpp3U/Ny+fPePnsGeMjdPcqrwj0VWwH6N2nD6dPnWT7tq0MGTpMZ9aHIVgV5pTIKhEEgQmTJjN39izGT5ykdT5ixIgRI0b+2PxhIuZqvKtVY/DQYcyfO0drdKha9eqMnziJ2OXLvnoaWYeOnZg0ZSop79+zaMF8zp09W64UTVNTUxo1bkJwSAhh4RFFjybNmvH48SPiYmOIjVnO6pUruX7t2u8qJpeTk0P8sWP06ddPcrygoIBTJ0/QrXsPyfH8/HwePXxIvXr1Za/x+vVr0tPTZVvdiaLI5o0bGDFqtOw50tPSSElJoZavr5Zno5p8pqWlUblyZa37bdmymWEjpAWdSpOWmsrJ+HhZ0bvvgYDevXFwsGfL5k1f/VqWlpZERY9n4fz5eisl/5nx8KjEuNAw5s2dQ26ufES5UiVPpk6fwcYN67l9+1bRdqm65bJQ/DwtW7ViyrTp5OfnM2/hYo4eP1HC5hnqOCsUChrW9WPciMFEB4/88hhB2xZNeJn0muXrtrBk9UaWr9vMxas3v1k2kVS0XKlUsnX7DtnFDVEU2bl7L4MHSpfCiKLI+QsXaddGvmd7Wmoqjx89onmLFrL7rF2zmmAtuitZWVk8fPBA52JgQUEBzxKf4iuzyKBm6+bNDB+uafOknOGsz5/Zt3M7w8ZIZ0lpozyCcIbQsVNnfHxqsnrlSrIEiyIl/NKPslDa0Tc1NS1qdZifr5lJZMSIESNG/hz8oSLmaipXrsyY4GDmzJ7FpMlTZFMJ1Yrt27Zu4fbtWwwcNFjvSHNZxLB6B/Sid0AvUlJSWLxwAT41a9ErIECn+rc+CIKAp6cnnp6/qffm5+dz6+ZN1q1ZQ6FYiCiK2FhbU79BA2rXqatXm5/yIIoiy5cu0aournKY5VVnt2/dwpBh8unp+fn5bFi/jpk//Sy7z8H9++nVu7fWGsoN69cRFhEpO65my6ZNkpPP4rx58wZHR0fZz11xlEolcbExTJ0u3d/4e6Jd+w7cunmDuNgYwsIjvmpWhoOjI6ODgli6eBETJk3+rjJAvkecXVyIjIxi/tw5RE+YKJupYW5uzsTJU9i7ezd3bt1i5Ogxer+2ppbWWsetBM3vV9cunejZuT2paeksWLyUqlW86N+3DxXhWgmCgIebKx5urkWR9YKCAm7de8jabXsoUKoWJC0tLGhQx48GtX2xsKg4myeXwr48bgVjg0bLvq47du1hUKC8wN7uvfsI7C+fmWJRkEVcXCxTp02X3ef0qZO0at1Ga8bJhvXrZMuHStzv9m06M4QyMjIQRRFHJyfJcWdLRVE6uSiKrI5ZSkjkt9fSMCRqDirFdltbW5YsWsj4iZMkf6vl+srronTk3Nrauqg92rQZMytkXmDEiBEjRn4sfkjHPOV9CkqlUquj5ebmTvT4CSxaMF9r6qYgCAwbPoIH9+8zd/YsQsPCZScXpSkoKCA0JIS3797RvFkz/uO//ouw0FBevXqFmZkZa9etw9XVlYb161Ppi8M8f/586tarx6QpU3n86BHLly7BwcGB/oEDKzyFzczMjGbNm5doHZaZmUnCnTts2rChaOIKKrEvPz8/HB2dyMrOIic7h+zsbLKzs7C0tKJOnTq4uLrqfW21Cn7/AYE4ODpK7vPy5UtMzcyoVEm6FVBGRgZZ2dmy4wArYmMIDQ2TncSkfvhA8ttk2Yg9qFSL6zdoINsDWE16WhqCIOj8fOzdvYvQ8Ait+6iJi40hOCTkqy+SVBT+jRpja2uns1ykIvD09KRnrwBWr1zJuLBv3zrue+L9u3fk5eVp/Zw4ODoyZdp0Fi1YwJjgIK3fm/6BgTx/9oxZv/yTsSEhuLt76OVcFBQUMHZcaJHN++///A/GhYXz4lWSrM1bNH8u9erWZeqkCTx7/oLlC+dibWXFkL49cXTQr9RDX0xNTWnasB5NG/7WZzs7O4fb9x+yYede8opFI22srKldqwauzk5k5+SQnZOrsnk5uZibmVHH1wd3Vxe9nUdRFFkeu4IO7drhWUk6nTvlwwdS09KoVbOm5HhOTg4vXyUxcIB8Sc2qtesZMXKU7Gfh8+fPJNy5w4RJk2XP8fDBAyp5VNIp0paVlUV6errODKEd27cxfIR8vXxxtq5fS9+Bg7G2sflm0e/y4Ovnh42tLfPmzGby1GmS5SJqB9tQB720c+7s4sLwkaOMC5JGjBgx8iflh3TMHRwdmDN7FkHBwVonn3Z2dkydPoNFC+YzbMRI2RpngNp16lC9Rg1WrYijUeMmtG7TRud97N61i4b+/qz929+YMX06Z8+exdzcnGPHj7NxwwY2bdzI5ClTcHVz4+ixYxrH1/L1pZavL+lpaezYto2c3Bz69O2n9T7Li62tLa1at6ZV65JpkhkZGTx6+JDHjx9hZWWNlZUVzi7OWFl6kZWdxdmzZ/jw4QOgmoB6eVWhV0CA5MShoKCABfPmMnL0mBIR/OKIosi2LZuZNmOm7L1u2rBeawu8w4cO0bRZc60LBmvXrNY6QS0oKOD8ubN6Raw3bljPuLBwrfu8fZuMvYODbK1vcc6cPkWDBg31rsn8XvCpWbOoXGTKtOkG9Wg3lFq+vmRlfWbzpo2M+BP383VydmbBvHkMGz5cq+igpaUl02fOZOniRfQK6K21NKNa9epMnzGTNatXUaNGDfp01t6yCWDX7t34+/vz97/+hWnTZ3Dm7DmdNq+4GnX1at5MCQ/mU+Zndhw4QsbHTPp270TN6vLaD7pQR67l0uOtrCxp2cSflk1Ktoz7lPmZh0+f8ejpM6wsLbGyssTJ0QEvKytycnO58OsN3qakFO3v5uzMwN7dMTEx0YiWi6LIgsVL6denNz41qsve69r1G5k0XrpdJMD6TVsYPXK47PiZc+ep5l2VqlWryu6zZtVKgkPGyY6Losj+fXuZPvMn2X3UbNywXmeGUEZGBgKCTtFKZ0sFJy9ewc3DA+/qNXRe+2thaNQcVFl4IeNCmTd3DlOmTpPNRCiLg17aOffy8qJHz16sWrmCUB2/N0aMGDFi5I/FD+mYm5mZMWPmT6xetZLatWtrVdE2Nzdn2oyZxCxbSpeu3fCrXVt2XwsLC6InTOTkiXjiYmMYGzJOq4OVmJhIw4YqYSP/Ro04fepUkaOakZGB85cofVpqKt26dqVOnTrMmj1bIzLr6OTE2HHjKCgoYP++vezfu4e69erRvkPHb5bO5uDgoLVesW7deiX+fvjgAfPmzKZ7z54lBO2USiUL5s0laOxY3NzcZc936OBBempJ47954zo+NWvKTvYe3L9PenoavQLk+8zv3rWTHr16aY0ybli3TmsqvZpTJ0/QuElTnenpWzdvJnrCRJ3ne/s2mYcPHxKuR/r890jlypUZHRTE3NmzmTpdXnSsIvBv1JicnFx2bN/2Xdfhf01MTU2Z+fPPrF+7Bo9KlUqIQZZGoVAwcfIUVq9cSWZmptYaYlNTU8LCI7h44QILlywjfNxYrZ/xp4mJNGygamnYqFEjTp0+jSiovsNyNm/erH8W2Ty182xna0PI8EEolUoOHD/F/mOnqF2zOt07tv2qCz3FsbO1oZm/vHZFXd+SUe1nL5OYvXQlHVo3p3mn3zpEqJ3ygQP6411VflH19NlztGrZQtYePXnyFAd7e1xksrtevHzFg4ePiAgNIVvmGsePHaV5i5Zas6+2bd3CoMFDdEZjr/76K97e3jozhDZtWK91IUBNRno6v148T9h41UJpeaLl6mPL2tu8TNcsVi4yacpUrK21l3YYQmnn3NfPj9y8XNavXVMm8VkjRowYMfJj8sMWMSkUCsLCI1AqlaxcEadVJMrExISo8RO4dPGiXj2ZO3fpSmDgQBYvXKC11Zmfnx9nTp8G4NTJk5iampKbm0ujhg1ZvmwZAwcNAiD+5EmOx8fj7e1NXGys7PlMTU0JHDiI6AkTcXF1JXb5MlauiOP169c67/lb41e7NtNmzOR1UhKLFy4gLTWVwsJCFsyby+igIK1OeUZGBi9fvpDtWV5QUMCJ+HhZ5yMjI4PDhw5qTZ18/OgRubm5WkXjEhLu4OrqqjNi/e7dW548eUKbtm217nfl8mWaNG2q00lVKpWsXbNGa+39j4C7uwdh4eHMmzObnBzDayyVSiU7tm/Ta9+WrVpRqZIne3bvMvg6fxQEQSBobAgODo4sW7JYq0iUIAiMCwvj0aOHnD1zWue5u7RqQvDoUSyPW8m5Cxdl96vt68fpM6oezydPndLL5sXExsmeT6FQ0L9nV6ZGBFPdu0pRe7RnL/XvZf+tFNirV/Xi54nhZGfnMP+X/x/Jb9+q2sMtWcaAfn21OuU5OTlcv3FTtme5KIps37Vbtj1adnY2GzdvISxEvib89evXvHr5ihYtW8ru8/zZMwoLC6leQ3vEOiMjg0sXL2hdAAK4f/8eVb2r6XRSRVFkRVwsUyaMBypOwO1rt08rjYOjIxMmTWbRgvl8+qTZ+kyNnCicKIps3rZdr2s1aNCQBg0bsmnjhjLdqxEjRowY+fEwyDEXBMFEEITzgiCIgiBUKbZ9rCAITwRByBIE4ZIgCM1KHfc3QRDeCIJwRhCEasW2n/xyro6l9n8sCMI4fe6pY6fO9OwVoFOFXRAEgkNCeJ2UxMEDB3Se19XNjWkzZvL+/TuWL1tKdrZmjKJvv35k5+QQ0KsXFhYWODo64uDgwM3bt/kf//ZvzJk9G6AoihQYGEhCgn790OvXb0DU+AmMGj2GK5cvsXzZUtauXs2Tx4/LpehekQiCQM9eAYRFRLJ71y7++z//gxGjRut0dNeuXkWQlijAxvXrGR0UJDlWWFhIzLKlRI2fIBvxycnJYc/uXQzTkoKZl5fH0cOHtdaeq6+3dvUaxuqICCmVSi6cP6ezBzrAmtWrCAoO/maRwa+Jk7MzUeMnsHD+PD5//mzQsQqFgmrVqrNt6xa99m/brh1Oeuo/VBTfo81r2aoVQ4YOY96c2VpV2AGGDR9Bdna2XgsgDg72TJs8EaVSyfxFSyQdj379+pKTnU2PXr1VNs/BQQ+bd1efp0XtmjWYOG40EaOHcvveAxatXE/s+q3cfajb5n3L9mid27ViclgQR44d53//53/TJ6AX1atpT8VfuWYtY8fId4XYun0nQwcPkrRpoiiyaOlyJkZHYmJiIun0FRQUsGH9OoJD5Et/CgsL2bZ1q85acFEUWRkXq1MMUxRFDh04oLMHOsCWzZsYOGgwFhYWFV5X/q2dc1tbWyZPncayJYvJSE836FhBEGhYvz4r16zTGJNKf2/UuAm+vtrV8I0YMWLEyB8HQyPmM4Cs4hsEQWgPLAEmAE7AduCAIAj2X8ZrAZ0BH+Dfgf9T6pwfgF+EcqiceHl5MTooiHlzZutsDdY/MBBnZ2dWrVihl4Pbo2cvRowYSVzMci5euFBiTKFQMGfuXA4dPoxCocDW1rbIcXBxdeXjx4/k5eUVTZ7PX7iAj4+PQc/N0tKSwIGDiIoez9Dhw3n+/BmxMcuJWb6MQwcPkpWVpfskXxlLS0vGhYXxr//2P2VrytUcOXyItu3ay0ZYnj55go2tDe7u0orHmzasZ+ToMVqF2uJilhMRFa01VXPtmtU6nW2AjevXMXzkSExNtVd97Ni+jcFD5dXj1Zw7e4aaNWtq1Ub40bC3ty9q9ZOZmWnQsc2aN8fLq4rekfAOHTuV4Q7LxXdp81zd3IiMHs+CeXN1Ziv06NkLX19fli5epHXxUk3H9u0IHzeWNes3cPzEyRJjCoWCeXPncPTwQRQmCqzt7LXavEvnz+FT07B6YjMzM/r37Mqk0DGMHRbI+5RUlq7ZxJLVG9l18BifMg1bAPoamJmZETqgG//+P/5BTR/tz+/MufPUrVMHJydHyfE3yclkZWfL1qbv3L2Xfn0CsLOzk73GqpUrCBk3Tmvpk7oDhq6P3a6dO+jdp69OMcyDBw4Q0KePzvPduH4dOzt7ahj422cI31pEzsrKiqnTZxAbE0PqF+0VfalXtw5NGvmzftNmvfYvLt5qxIgRI0b+2OjtmAuC4AdMBEr3pYoEdoiieEQUxVzgn0AuMKjYNUwARbH/FycGqAKUS9nJ3d2DkHGhzJ0zW2cP21atW9O5Sxfmzp6lVwqug6Mjk6dOo6Agn4Xz5xWtkiclJdGje3d69exJ6zZtGDlqFA/u36dH9+78f//7fxMVHU1aWhqdOnSgW9euHNi3j+jx48v8HK2srOjarTuRUdFERkVTr149dmzbSszyZWzbukVrat33QFJSEslvkmnarJnkeGFhIbt27mCQTGuehw8eYGVtrVUcb//evbTv0EG2XRTAtatX8fb2xtnFRev9Xr92DWcXV61CS6BSa/+c+VmnaN/bt8ncu3ePjp06a93vR8Ta2ppJU6ayZNFCgyPnbdq2xdHRkUMHD1bIvaRm5vH03We9H59ypFPCv3eb5+DgQPSEiSyYN1fna97QvxGBgwYzZ/YsjcUTqUidjY0Nk8ZHY2dny+x5C3j3/j2g+g537dGT7r0CaNOmtU6bt2//ASZER5f5OZqbm9OpbUsmhIxiQsgoWjRuyM6DR1m8agPrtu0hPeNjmc/9LfiQmsrtO3fo3FE6k0YURdau30jQKOnsnldJSXz89Ik6WrRRTp08Qd269bSWDz188AALS0udNurhgwcolUpq16mjdb+srCxevnhOnTp1te6XkZ7OubNn6NNXvv3b70l5atTNzc2ZOn06K1bEkZ6WZtCxjRv541urJlu37yyxvSxt1wDSPucbZPPSs4290o0YMWLke0Qv8TdBEEyAFcBfgPRSw42AVeo/RFEUBUG4/mU7oig+FAThAvDky2NMqeM/A/8T+C9BELZ/meiWCRdXVyIiIpk/dw4TJ0/RWvdWvUYNwr70DB07bpxshLY47Tt0pHmLlqxZvYqhgwfhVaWKhtr6xs2aq+AXL182/MnogXe1akWq5R9SUtizayeVPD3p1r1Hif3K0nO9ONm55f8Rz83NZeOG9Vr7ja9dvZoRo6T7/+bk5OhUEr59+xZ5+Xk0aiwvdpX64QOXLl7QqtQOkPL+PRcvnNe5H8DmTRsJ0VEvnpeXx9o1a5ihhxJyWcjIyODqr1dITEzUiJqZmZpSt159mjZr9lXb71hZWTFx8hQWL1xgsDhSx06dOXL4EKdOnqBT5y5f7R715UexeXZ2dkWvedT4CVrbX3l6ejJx0mSWLFrEsBEj8PbWrYTesnlzmjRqxOp1Gwjo05dq3t7EHz1SNF4gKLTavOKK7BWBl6cHY4cNBCA94yP7jp7Ewd6W/j27ltjPxLF8nQ4K05PLdTyoylti4lby0/Spsvts2rqNQYH9JTNyCgoKWLdhE3/9Sb5jxNMnT3j18qVWgbDMzEwO7N+ntQMGwKdPnzh4YL9eHSo2bdzAyNGlP9YlKSwsJCZmudZ+6+UhMzOTa1d/5dGjR0U273O+SmvGVGGKTy1fmrRoqbNkqCwq7WrMzMyYOm068+fOITIqukRrUF0K7S2bNycnJ5d9Bw7Sr0/vou2lheCMGDFixMifB31V2acByaIo7hAEoXqpMTsgo9S2dKAoZCmK4r+jSumUY+WXa0wD/p+e9ySJo5MT4ydOKpqoaoucOjg4MOOnn1kRF0u9evVp1769zvNbWloSFT2ez58yuHPrNr5+flhYSrdO+Za4uLpqnZzp23N944YNLFu6FCdnZ1avWaP19TOE2OXLiIyMkk21vHjhAlW9q+Ll5SU5viI2hrCISFnHMuX9e86ePq3VkS4sLGTFijidE8WCggJWrVyhcyILKgE572rVdaZ9rl61krCw8AqrKxdFkSOHD/Pq1UtA5aC1aNGSLl27abxGeXl53L51i9iY5YiiSN26dWnTtp3O9PyyYGNjw8TJU1i0YL7BznnPXgHs2b2LSxcvarTz+x34YWyejY0NU6fPYMH8eYwbF4qrm5vsvtbW1sz8+WfWrFqFVxUvuvfoKbuvGjMzMyJCQ/iUncet27fx9a2FtY7uBN8CRwd7goYOQGnngRLNOvOCggKCw6N59+49zZs14b//v/9FSOQEXn3pub5hVSyuri6s37yVJctjcXJyYv2K5RVn81asIiR4jKwY5O07CVhaWOBbq5bk+MrVawkNCS5hM4s7bB8/fmTP7l1a7ZQoijo1OUBlG5cvXcrEybp7Z794/hw7OzudPdA3rl/HqNFjtHbFMARRFDl5Ip6nT58CYGNtTbPmLejQsVPRPasj4Pn5+Ty8d5eNq1Ula9Vq+NC6fUfZeymPc25ubs6UadNZMG8ukdHjNV4XbQ56x/btOHz0GMfiT9C9628Lkkbn3IgRI0b+nOhMZf9SL/kTIOfxfAJK/0I7AnrnGIqiqAT+CvxDEATt+cV6oBZniVm2jLdvtUc+FAoFkVHRFBTkExcbo1cNJoCNnQNVqtcgdsUKtmzZRlZOHtm5+Xo/ivPk8WNevHhR5uerD+qe60eOHiU7J6dEz/WxY8eyaeNG8vPziYmJ4Vh8PKNHjyY2JqZCrr1r5w46delSIppQnA8pKdy6eYOu3bpLjh86eJDWbdrKTgTz8/NZtWolkdHaywRWrVzBmKBgnRPFWzdvMi40TKe6elZWFseOHCGgd2+t+125fJlatWrpTJ3XB1EUiT9+jEUL5lOzZk3CIyIJj4hk+IiR1PDxkZxUm5ub06x586ISCDd3d9asXsWyJYt5lphY7nsqjY2NTZFysZRoojYGBA4kMfEpt27eqPD70pcf0eZZWFgwfcZM1q9by/Nnz7TuKwgCIaGh2NnZE7dons7SHzV2VubU9qnGhnXrWL9uLXlZmdptXPYnCnKyih7FeZH0modPtd9nedm5Zx+NGjbg+ME9ZGfncObcBczNzThxeB8hwaPZsHkr+fn5LI9dycnD+wkaOZzlK1bpff7SvcyLc/joMRo2bIBnJenIfWZmJsfiTzAocIDk+Omz5/D1rYWHu3R6ukoEcxnREyZqdaQ3b9zAgMCBOnuM379/j+EjR+psB5mfn8/WLVsYOky+1zrAvXt3sbO3l11oNZTz586xaMF83Nzdi2zeyNFj8PXzK/H81c61mZkZ9f0bERQWSXB4FFWrVWf7pvWsXLaYxw8fVMg9FcfCwoIp06azfOkSPn6UNgPZJpaSznavHt359OmTRjcEq8KcMqe2GzFixIiRHxN9aszbA27AHUEQUoBrX7bfEgRhInATaKre+YugUeMv2/VGFMWDwGVUKZ7lxtLSkukzZ7JtyxYeP3qkc/9OnbvQr39/5syeRVKSfq16LCwsCAuPoHadOsydPYsnjx+X6V6r16jBjevXWLxwgV73Whb06bn+6OFDGjRogKmpKV27dePypUvlvu6tmzdQmChK9DovTmFhIStXriA0PEJy/MWLF6S8fydblw6qaHxoaJjWCPDxY0epV6++TnE6gKbNmmmNOqqJi1lOeGSU1onx58+fuXzpIl26dtN5Pl2cP3eOhfPn4ebuzuSp06jl62vwOQRBoE6duoSFRxARFc3dhAQWL1ygVxtBQ7C1tWX8xEksWjDf4FZqI0eN5urVqzx8UPETaD35IW2eqakpU6fP4MiRw9y+fUvn/q1at2b0iOHMmb+QJ0/1W6AxNTVlXPAYWrVowex5C0hIuCO5ny6HoopnJR4+SWTO8lXcvvdQr2sbSuKz5zRsoGqX2Mi/AafOnP3N5qVn4OzizMNHj2lQvx6mpqZ079KZi5fL/z14/OQJ71NStLZGWxoTR3SEdPnLiw8fuXH/Ma06lyxJKu7UrV61kpGjR2t1pC9euICbuzs1ZSLyxalXr75OLQ2AlSviCA0L02rz8vPzOXTgAP0HSLd+M4Tr166xYN5czM3NmTx1muzviC5q1KzFqLGhjIuaQNLLF6xcuojL589VaIcTtXO+bMlig1upDQocwPMXL7h2/YbGmNE5N2LEiJE/D/o45luAmqgmno0BdW+UnsAaVEJGgwVB6CYIgjmqSJMlsFPjTLr5CxCFalIsy/t37/SK8igUCiZOnsK5s2e5dvWqzv09PCox86efOX70KMePHdX3nvGrXZvpM3/izp3bxMXGGOyIKBQKBgQOZPzESTx+/JglixZy7uzZCp006NNzPT0jA/svyr8ODg6kGdgKpjSpHz5w7uxZ+gfKT9A2rFvLiJGjJKPT+fn5bN28mdFB8r179+7eTdt27XBxdZXd5+mTJ7x7+5bWbdoY9gS0sHf3brp064atra3W/VavXKGz/lwXH1JSmDPrF8zMzJgybToNG/qX63xqFAoFffr1Y+LkKeTn53/53J2pkHODKr0+avwEFi6Yr7XnthTjQsOIP37sq2eSyPDd2bx3b9/qlX0gCAKRUdHcu3uXc2fPat3XqjAHZ2cn/vrTDC5ducKeffv1vunq1bz5afpUXr18xfKlS0qIz+njSJiYmNCvRxemR4bw9n0K82LXcOz0eYNtXvGodekItp9vLU6fPQfAydNnv9i8POo3bcXS2BUMHtBPZfPs1TbPnvT00hUKhpGZmcmuPfsYM1K+VeO2Hbvo27uXZJnHZ8xZs2o1oWHhwG9R1uLO3In44/j51dYajX7z5g137yZo6I2Uh/jjx2jUqLHOzJ81q1cxNmRcufQsMjIyvogaZjJl2nSat2ih97HaUtIFQaBTtx6Ejp+EpbUVq5Yt5nS8SiemPEJwaiwtLZk8dRpLFy/S+n2Vip6PHjGc6zdvcf/3W5A0YsSIESO/Mzodc1EUs0RRfKV+AOrc8GRRFDNFUTyLSrk4BlXd5XCgjyiKBsvliqJ4E9hEsVpNKZycnZk/by7JyW90nlOdtvnkyWONdmdSmJiYMHbcOOzs7Fm6eJHOPsHFrxM4cBBDhgwlLmZ5mRwcExMTAnr3ZsKkydjY2LB08SL27dmjswWcPujTc93RwYGPX1b6P378iKOOGkJtKJVKVqyIIyJKXpH5xvXruLq5y0ZqVsbFMi40VLYu/f79ezrF3jIzM9mze5dOoSJDeHD/Pnn5eTqjN+oUfF3Ouzbijx9j584dTJ46jRYtW5b5PLpo3aYNEyZNxtTUjEUL5hvc9kwOe3t7QkPDWLRgPoWFhXofJwgC0RMmsnP7Nt6/f1ch96Iv36PNc3F1ZcmihTrT1NUMHzGS9LQ0TsQf17mvIAiMHjGcat7ezJmvv6p+jsKKXgEBjA4KZt2a1RwrJgqnL4Ig0L1jW6ZFjMXTw40FcevYsueg3un12ujfJ4Ds7Bx69B2IhYW5que6vT0J1y7xP//xN2bNW6iyeR/VNu+TzrppNVJp7KIosmR5LBOj5bUwHj1+TKFYSF0Z1fP1a9cyYtQo2eyfly9f8vLFS616KLm5uWxYt45x5VwQLH3dVy9f6dR+OHvmNL6+vloXSnVx/tw5Nq5fR0RUNO07dCzzeXTh37gpoeMn4eziyrIFc/mYkV4h57WysirKFtK1IFnaOQ8LCSb+5Cmev3hZIfdixIgRI0Z+LAztY44ois9EURS+TFjV29aIougjiqKVKIotRVHUHZ5WHddZFMX/KLUt9Mv5V8kdZ2pqyoyZP7Fv7169nG2AYcNHkJz8htOnTuq1f8tWrRg5arTB6eWOTk5MmjIVU1Mz5s+do7PGXY7GTZowYdJk/Bs1YkVsDBvWrS2Xs6RPz3VfPz8SEhJQKpXEHz9Oy1bSqZj6sGrlCoKCg2XrtD9//szpUydl67NPnoinQUN/2Qne58+fOXTgAIOHDJW9B1EUWb50iU7hI0PIzMzk0EHt1wVVlD49LVVrCr42Pn/+zKIF87GzsyciMkpnvXtF0ap1a0JCw1izaqXe3y1duLi6MnzkKJYsWmhQRFQQBCZPncaaVavJyChfJLM86GPzgLaCIDwQBCFBEARZMbey2jwzE4F/zJjM2TOnOXkiXq/77tu/P3l5+Xq3oWvk35Co8FCWxa7g1m3pFHU1xR0KW1tboidMxN3dnbmzZ2l1KrTVZdev7cvUiGDat2xG7IZtxG3YVq52aAqFgvmz/i9H9+9CYaLA1s4W5y+9xF1dXMj4+BE/31ok3L2HUqnk2ImTtG5Z9p7R6zZuYvDAQFnBw/z8fHbu3svwIYMlx89cvU0lz0qSLc2sCnPIy8tj86aNBI2VF/kEiFm2lIjISK09zQ1B3+smJ7/h4cOHZW4HmZuby/KlS1AqCxg/cZLOenc5DI18N2jUmHFRE9i1dTN7jxwvcXxqjrLoYQh2dnaEhUewYN5cnQuSxb9LgiAwISqS7Tt3FbUo/F4RBGGKPjbPiBEjRozoT8X8cv8OKBQKIiKj+PTpIxvXr9Nrwj9w0GDy8vLYvm2rXtdwdHJi+syfuHHjOjt3bDfIqWjVujUTJ0/h2JEjbFy/Tm9RudJ4V6tG1PgJ9Onbj+1bt7J82VK9a+CLo0/PdTMzM8LCwujWpQvr1q0jIjKyTPesrueuVEm+nntlXCxhEdLnT05+w9OnT2nbrp3s8bHLlxERFa3V4V63Zg1Dhw03SBlcG6Io6nXdnJwcdu3cwYhRo8t0nWtXr7IyLpaQ0LCvGiWXw9bWlomTp5Cbm8OyJYsNLs2QonLlyvTu05cVcbEGHadQKJg8dSoxy5YaLCT3rRAEoQsQCPiLolgf+OUrXYeIMcOxUYisWrFCrwyEXgEB2NnZsX7tmhL2Sy7d3MbGhpnTppD47BnrNm4yyOb5N2rM1OkzuHDpEnGr1pQ56l25kjsTx41m+IDe7Dp0jAVxa0l88Upy39JK7MVJev2argH96d4nkDatWzJqTDD3Hj2hS59A/v0//psJkeGYmZkRHjqWTj37sGbDJqLCxpXpns9fvEQldw9q+tSQ3Sdu1WrCxo2VtB3p6RlcuXyJHj17aYyp36u1MUsICwvX6nBv37aVbj16yAptloW4mOWEh0dova5SqWT92nWEjAst0zXu3k1g6eJFDB8xkg4dO5X1Vsucjm5hYcHYiGgsLa2IW7KQlykZ5U5td3ZxYeToMSxeuEDn96i0cz5t8kRWrl5LRjkWpr4m38rmGTFixMifDaEi65i/FU2aNhVPnP6tfvLxo0ccPXKY8RMn6RUZvXXzBhcvXiRCS/uu0ty/f49DBw4QMi4UJ2dng+73zZs3bN28iZatWpe7zjk/P5/9+/by5vVr2rVvj3+jxjqP+ZZ9zJ8lJnLu7BmtrduOHjmMs7MLzZprRqcKCwuZPesXZsz8Sba12K6dO/CrXZt69erLXuNE/HHMzMwqNBVyy+ZNNG7cBL/atbXut2rFCgIHDjT4cwKwZ/cuzMzM6d2nj+6dvwEZ6enExcYQOHCQXiJSukhIuMPN69e16gZIkZmZydLFi5g2Yybuzo5XRVGUDG0KgjCqbfDMDU0CQ/Q+9/FF/8b9E3v8RVG8bdBN/XbNLcByURSPleV4fWjWpLF4/tRvkfKXr5LYvHUb46f/rFcLvkcPH3L40EGiJ0zEzMxMrzrwp4nP2Lp9ByHBY6jk8VukW1cbJ6vCHFI+fGDdhk00bFCfbl06a+yjzaEujVKpZP+xkyS+TKJlE3/aNGtccrxYFF593tJ9zEUzzeirkC+/0KOrj3nxaya/fcvuPfuIjgyX3f/chYvk5eXRpZOmPRJFkf83aw7R037CwqJk6031+3ToyFGcnBxp1aKF7Ot/6eJF0tLSdHaJMIQD+/bhWbkyTZo21brf5k0b6dCxE5UrVzb4GkePHObTp086s5B0URE14gBZnz+zflUcHTp3pU79BoD2unVdJD59yrFjR4nUUtYFmotlubm5zJ6/gOmTJ+FUqYo2m9er6aDwQ23GTNX7ns6u/oWbe9d2EUXxpN4HlbzmV7d5RowYMfJn5IeNmBenlq8vffv11ztV1r9RY/r1H8CcWbP0jsLVqVOXCZMms337Nr1TQ9V4enoydfoMAObPnVMu5XUzMzMGDhrM+ImTyMjIYPHCBRWWclxesrOz2bF9m1an68Xz5yS/SZZ0ykEV5R49JkjW2bh37y6AVqf84YMHvH37tkKd8iuXL2Nv76DTKU9KSsLaxtpgp1wURVbExVKlStXvxikHcHB0ZMZPP3Pl8iWOHD5U7vPVr98Av9p12Llju0HH2draEhYewcL588p9D18BP6CDIAiXBEE4JQiC/kpVZaRqFS+CRo9kyZx/Yp7/WdLRVrdbsirMwb+WN6GjhrJw1v8lL02/mn2fGtX5afpUDh4+yo5de/Syrer7cHVxYfqUSTg7OTFr7nxu30kosZ+2lPbSKBQKBvTqxrSIsQgIzI1ZTfzZC3pH86Wccm3bDaGgoIBVa9YRoSXS/u79e27dvi3plANs2rqNwQMHaDjlap49f0Hy23e0+iKAJtVG6+XLl9y5c7tCnfK7dxPIzsnW6ZSnpaaSk51jsFMuiiIb1q3F2tr6u3HKAaxtbIicNJXEJ485tHd3uc9Xw8eHtu3asX7tGq37lV5wsbCwYMqE8cxduKjc9/AV+OY2z4gRI0b+DPwhIuZqXjx/zoH9+3T2dlWjjsKFhIbi5ibdL1aKmzeuc+rkSf7/7b11WFVbu7B/T9oEC7s7sMVWVBDs7kbFxth7v+c99fudPt93jt2EiIjdndgd2+4OEEUapdf4/gB8kb1irsUSgT3u61qXMucYY44xF/NhPuMpzylTjU7sJYTg0IEDhIWFMmrMWEpkZkHPDTeuX+fqlcu0a99Bp8JrLh4+fKBVKRZCsHzpEiZNnkLJktrzWAkhWLJoIfN/+VXr93Pt6lXi4+N0ZhL+8uUL/r4+zJ2/4Lvj2T0CUpJTePr0SUZitlyElWf3Evj06SN79+zBy0CddIAVy5Yyc/YcVVbMb9dKTGTNqpUMHTacatWrmzTfvODqlSs8eHCfiZM8cx2/euH8Ob58+Yq7h4dR/T58+ECjenX0WszrDZq5uYar+jCC+xv/i7Arh/8N6JPtsK8QwjfbuCcBbUWp/xH4T+AUMBdoA2wDagkzCtecFvMsPn76RPDmrcz3nq3qO0lOTmb5qjWMHD6MqlXU15h+/OQJBw4dYezkaThk5qbQhrYNAiEEx0+G8OTpM8aOGknp0hn9jbGa5+T2g0ecvnCFVk2b0LFn32/Hc45paANAzRzuP35GkwZ/K02YfcxVa30YPnQI5fQkO1u4ZBnz5szSmtDtwcNHPHn6jMEDM+qZZ1fOsuLKlyxfyV9+mf+dzLSyK0qakiFj0tLSePjgAU5Nm5GbVBrZZV5sbCwb1gd821DWx5pVK/GcMlXnxoI2UlJS8FmzGnePXgY3O9VgTsU8Ow/v3eX+9UtM8ZqmtxynGm7euMHbt28YNHiI3nY5n6GoqGgq1dQr89xr9hx3tO4A/Rb57DzZtYI3p7YtAlyyHc5XMk8ikUj+jBQKi3kW1apXp6e7B36+PqqsKcWLF2fegl/YuX27qrq/WTRr3oIpXtMIDFinqgxbdhRFoW///owZN56tWzaze9dOo7JVa6N1mzbMmuNNcnIyK5cv4+6d27kaTx/Xr17TmiXe38+Xfv0H6FTKAXbu2M6QocO0x1hGR/P7zRt6y/sE+PsxeaqX1nNhYWG0c3ambJnS1K1XHxRYvGgR3VxcmDB+/LfsuFs2b8alSxcGDRxIXFxG/J6bqyuuPXrg5urK6dOnvxs3LS2NoMBAPHXUWc/O5UuXcG7bziil/MOHD6xauQKv6TPytVIOGXkT3Hq6s2TRItWZu3XRqXMXhBBGVy9QU4feRHYKIVpn+/hmPymEcBVCNNHy2Qe8B3aLDK4BGsD0tNRGUN7RkZHDh7J81RpVMs/W1jbDCn70GFeuXVd9nQb16zN1zny2b9vKpYsXtbbR5R6vKArubq54TZ7E7n372bR1GyLa+DwZ2WneuCHev/4V2zKVWLJ8JZevXgMylObsH3Nw9+FjYuP+WJd6Q/AmOnfsqFcpP3TkKO5urlqVuq9fv3L0+IlvSnl2su6l//pApnpO0iozP4W+o52zM6UdHKhbtx6KmWReRi4NX7ymz9BzVzK4f/8ederWNUopj4qMZNmSxYwdN94sSjlkuJob81FLpzYtGDx0KEuXLCY2l+VDW7VuTZkyZXR6HmnzhAC+bWT9AA4WRJknkUgkhZlCpZgD1KpdGxeXbgSuD1DV3srKihmzZvP82TMOHzyo+jpFixZltvdcPn+OIGCdv9F1mosVK8ZUr2m0bt2GVSuWc/7cWaP6a6NDx47MmuNNTEwMK5cv48ED/ZmVTaFBw4bf3MmzCAwIoEuXrtSqXVtnv7CwMFKSk6leo4bW8xsC1zNJj/K7f99euru66vRQKF26NMtXrKBNmzZYWloQERHB2bNnOX3mDE5OTuzft4/U1FT8/Pw4eeoUo0ePxt/P71v/o8eOceLkSbp16/bduAHr/JkwaZJBa0l6ejo3b1w3WE4oO29ev2bPrp0s+OXXXJVUy0uqVq3K9JkzWbNqJZGfP+dqLI9evQgPD+fW77+baXY/jb1AdwBFUeoBNkDubo4RVK5UicEDB7ByjboNSQsLC7ymeBIVFcW2nepDCmxtbfGaPgONJt2kpIB2dnZMmTSB7i5dWREQzNFT54yuW55FltLdulVL5nvPBmDpilXcuKn+d0mtxb5l08b8fu/Bd9fdvG07TRo1oqlTE539oqNjeP8+FKcm2sNu1gUG4TX5+2Rp2ZWzEydP0bJFC52KWenSpVm1ajWtW7fB2sbabDIvOCiIYSNGYGenP5eAEIKQEydwdeupt112Pn4MZ0PgeuYt+MWkHBzmwpDCnv1nR8fyzPGeS8A6f5MSr2anS1cX0tLSuXjhe48/NTkf8hl7+YkyTyKRSAorhU4xB6hXvz7ObduyYf161X0GDR5C+QoV8PVZa1QG9Z7uHvTr358Vy5by9MkTo+darXp15sydR9GixVi2ZDGPHz8yeozsKIpCl64uzJrjTfiHD6xcvsykeenCqWlT7t/9m3fBpo1BtHZuQ30ddXkh4wVu25bNOmuJHz92lG7du+u0ujx7+pTk5GQaN9b9Evzp4ydq1aqNRaa1+sb163TpkhHT2b1HD65du8azp09p0qQJVlZWGceuXgUyFJVeHh6MGzOGqKio7+bVokVLVWEOO7ZvY8iw4QbbZfHxYzj79+1lxix1Lsj5iWLFijFvwS+8e5f7WrtDhg7j3t27Zv0d/QkEALUURblPRk3yCXnt0lmtahX69PJgtY+vamW3t4c7jRs2ZOmKVQYzqGd3se7UuQsjR43Gd+2ab945xigWFStUYL7XRCpXrMDitQH8fu+h4U7Z0GYJb9/WmXlzZvHl61eWLF/Jnbsm5fHTSr1aNXj68vW36+7YtYeaNWrQqmULvf02BG9i4vixWs9duHSZZk2ddIYyvQ8N5e3797Rz1h26GxkVTdXKFbG0Mp/Mu3jhAlWrVaVatWp61wZw6MABevfpq7oUZWxMDJs2bsR73vw8K/9oLLos6ra2tsydv4DwDx+MHjN7rocimiSG9OrB59DX3L51S6eVvADw02WeRCKRFEYKlkZgBI0bN6FNW2cC1vmrflFt1bo1/QcMYMniRUa5rZUr58j8X37l4cMHbA7eaJJreqvWrfGeN5/Xr16zeuWKXO/MK4pCD1c3Zs3x5uXLl2azoBctWpSvmQnztm/bSuMmThnx3Ho4cugQ7r16aXXxTk9PJ/LzZ53Z5RMTEzl4YD9D9Si9MdExaDTplC33N0+6mJiYb2719iVLEh0dTUxsLCUzX4Tt7e2JzvyOt2zdyomTJ+nTty//57//G4AXz58TFRWlqlxZVGQkKckpqt2sY2NiCA7ayMzZc8xWXz2vsbKyonkL/YqJWsZNmMCpkJO8f6+9JFZ+RwiRIoQYm+nm2VIIoa7QuJmpVbMGvT08WLF6rWqZ16RxI8aPGc3Cpcv5+El7UjhtWcDtHRzwnjefDx/CCQwI0BreoossS7VTw3r8MmMy0TExLPFZz8s3hjd6DLmnd+3ciXlzZvE5MlKvBd2Y+HYLCws0NhlyY9+Bg5Qv70j7tvrlwplz52nr3EbrZqMQgucvXtKlk/ZykGlpaQRv3sokHUo9QHx8AglfvlCp4t9CgHMr88LCwnj69Aku3brrXRtk5PsICwulbr16BttChtu+n68Ps73nGhXqk5+wsLAwOoeLLqV75LChPLx1nae5SAT7M8kvMk8ikUgKG4VWMYeMzN2dOnVWHXMOUKFCReZ4z+WZkX8wFUVh4KDBdO7qwpJFi/j0yfjERoqi4NGrF17TZ3Dp4gUC1vnnunZz1pjZLeg3b9zI1ZhFixTBZ81qatSoaVA5e/fuHZGRkTqzqFtaWjJqjO4XUH9fHyZP9dKpwCYkJPD+3Ttq1Py+frCDg8O3eMq4+HgcHBxwsLcnLj4jVjQuLg4He3sgwyUUYMDAgTx48IDkpGQOHtjPiJGj9K4ti21btzBilLq2X79+xddnLbO9vQvsC6q5URQFr+kz2LVjO58jIn72dAo0NWtUZ2D/fixdsUq150/p0qX4y4J5vHz1+g/nDJVGc/fwYHBvVxYtXc7bd6ZtrPTo3IG5Uydw+/4jVq3fRHyC9vwFamPGFUWhRzcX5s2ZRWJSEstWrubchYsmu80DlC1blpVrfChevLhOhTqLiM+fefjokU7lXVEUJo7T7j0E4LsuAM+J43V60qSkpPDi5Svq5ShfmBuZl5qaxuZN6uuQb9m8SacHVE5SU1NZvWol02fOwsbGRlWfPwOeE8Zx/OQp3r3P3Sa8RCKRSAoPhVoxhwy3dnd3D1avXKHakm1ra0vrNqZV/6hatSpz58/n8MFDnDxx3KQxrKysGDZ8BEOGDCUocD2HDx7M1Usl/M2CPtt7LsnJyaxasZy9e3YTH//HpEaGGDFqND1c3XBu21Zvu69fv7J961bGjDOuZnUWe3bvooebm94s7/6+PjRo1PAP51q1bs358xmJxU6FhODs7EzdevV48OAB6enpGccy55/1Mnvp0iVq1KjJ48ePVFuz79y+pTr5UWpqKqtXrmDGrNlGJUv6M2BhYcGsOd4EBq4nNjb2Z0+nQFOtahVGDh/K4mUrVFuyraysDFqBdVHe0ZHfFszj7Pnz7DugP0+HLku1hYUFg/v0ZOKIQQTv2s+OA0f+IK9NyeLeuWMH5s6eSdEiRVi+ag3bdu4iJsb4369BA/rR07W71prs2UlNTf2WsM0Ujhw7TssWLXAsV05nGx//ABo2qP+HDOymyryaNWvy6MEDZs2eoyqs5sXz55QpU0Zvos8sNBoNK5YtZfLkKQUmj0ZeoSgKM6dNZfvOXUTkMl+HRCKRSAoHBVIxj4qMMkpRrV6jBgMHD2HFsqVGxY+bipWVFRM9PSlVqjQrly8zOYO1vYMD02bMpHadOixdvIhnT5+aZX5ZSeLatW/PgX178fVZy7atW4iKjFTV38LCgjp16+pto9FoWLNqFdNmzDAphvrevbtYWlrqrVe+c8d2+vTth5WVFampqfTy8ODe3bv07dOH169f06lTJ7q5uHDnzh36DxiAtbU1np6e9OjWjeDgYKZMnQqAR8+edO/WjUX/+78MGjSQRo0aq4qBjIqM5OKFC7j1dDfYVgjByuXL8JQvqDqxsrJi9hxvfNeuybWnSGEjIjLSqBCZihUqMGnCOBYuWUZycvIPm1eWq66FhQXjRo+idq1aLFyyzCTlF6BY0aLMmDCKVk2bsGhNAHcePjbLPFu3asnc2TPp7tKVQ0ePsmr9JoJ27OVjhDqFSFEU6hmQeUIIVq7xwWuyp0kx1C9evuJzZKTeuPKDh4/QoV1bbG1tSE1Nxa1Xn1zKvIUMHjyYeg3qU6SI4bruCQkJHNi/j4GDBqtak8+a1YwcPeanJnrLz1hYWDB39kwCAoOIjY372dORSCQSyU+mQNYxb9iokRg5ajTTZsw0mDk2OxERnwgK3MCsOXOM6pcbEhISCAxYR4eOnWjZqpXJ4wgh2L9vLxEREYwdN97s84+JjubEieNER0czZapXrhOS+fqspW+//lSqVMnovrGxsWzcEMhs77k629y5fYvQ96H07tv3uzrmJiPg4YMH1KhVk6JFi35X01cbaWlpLF28iLnzF6h6Cd++bSvOzm3/4HIv+SMJCQmsXb0K73nztbq+lipR7EfUMW8qhDBfxjAz49S4sRg+dDAzvKboTBimjdjYOFb5+DJnxjSj+mVhyJVdWwxtUlISARuCaOrkRKcO7b87Z6zV+3DIWV68fsukkYMpXqyY2UqgWcZ/JC4+geNnL/AuLJzZk8bofY7VXDdw4yY6dWhHHT3VKXSRmJjIitVr+W3BPJ2eOs+eP+f6zd8ZPWI4VnZFAb7VMjeVp4+fULFSJUqULGFQ5gkhWLJoIdNnzqJo0aIGxz588CBVq1fDyalpruZYkFGb2C05OZnFy1cwd9ZMrffWzr7Mj6hj3k0IcUZ1J4lEIpH8cAqkxdzOzo5Jk6ewaoVxSdLKlXNk6rRprFy+LNc1SdVSvHhxZnvPJTLyMwHr/A1mP9ZFdLKGzh79GTp0GOv8fM1SXi07DqVKMWz4CPr268+SRYv4+vWryWPt2b2Ltm3bmqSUZ9XQneKl+yUjJjqaC+fP07tvX5PnmJPnz59RqUplVS+ckFFTffzEiaqU8pcvXqAoilTKVVK8eHEmT5nKimXL8sTDpSBgY2PNnJnT8fEP4MWLl6r72duXZP6cWaz28dOZ3M3c2NnZMXOaF+np6axa6/PN+8EUV/TePboyaeRgArbs5kiIeWVeyRLFGdrXg3FDB/A/q/y11ipXy5Fjx6lTu5ZJSjnAGl9/pk+drFMp//r1K3v3H2TU8GHfjuVWKX/96jWly5ahREl1GzYbN2xg6LDhqmRkePgHIiIipFKuEltbW7xnzmDZqtUmvyNIJBKJpOBTIC3mLVq2FKfPXUCj0bA+YB3NmjU3KiY8JSWFlcuXMXrsWCpU0J9J2yzW2EySk5J59uwp5ctXoLi9g+p+UUl/VE6e37nB1SuXGTV6DGX1xCOaQpbFcsGvv6mynGe/RxGfIkhKSqJqtaqqr5fdUhMctIFOnbvoVGI1Gg2LFy1kjvdcs8VpHz1yBHt7e9p36KCq/YnjxyhVqrSq37ksK9P8X34tsBnY9WHO5yOLrN+H8PAP7Ny+nVlzvL+7d4Ys5lXcpmyu0HGYttNaebV3IZG3T+Rri3mrFs3FpbOnEEKwcfMWqlWtikuXzqr7p6ens3zVGgb270fNGtX1ts2yxoJ+5c9KGN40SUlJ5emzZ5QuXZqKVrkLT7j94BHHLt9h5PChVKlc2eRxtG0QJCensHDNOv4ya4rWzbacFvPs9ygqOobo6Ghq11K/8ZaW9LeNzx279tCwQX2aNG6kta0QgkVLlzNtiud3Xg+GvBn0cf7cWVJSUujh6qaq/aWLF0lJSVaVsR1g6eJFzJk7r1AmuFQr89Q8H1lk/T5ER8fgF7CeX+fP/e5vryGLeYVOI45WcfVUfb13x3z4eHm3tJhLJBJJPqNAWsyzsLCwYPKUqXwMD+fE8WOq+9nY2DB3/gJ2bt/O61evVPUJCwujnbMz9iVKfEuotHjRIrq5uDBh/HhSUzOUiS2bN+PSpQuDBg78lmDn9OnTdO3cmX79+uJQqhRpaRlJwLLOGyKrtmr2j3PbtkyfOYujRw6zbesWs1oWixcvzohRo9m0caOq9mlpaYwbMwbXHj34p3/8B6pWq8r8efNwc3XFa+rUb3PTdm+yc/HCBSpXqaLXshy4PoCRo0abTSm/eeMGqSkpqpXysLAwwkLDVG8E7d2zm8FDhhZKpTwLNc9GfHw8Hu7u9OjenUEDB35LOpj1bPR0c/tDubQKFSrSu09fAtcH5Pma8iuKojB+zGjS0tLYu/+A6n6WlpbMmzOLYydO8PCRurhtfd/rpPHjvsm8zVu20KmrC/0HDv72XJ86fYaOXbrSq29fHOxLYmlpyeK1AXyOijZyxX/DqZ0L871nc+7CRdYHBX+7vjHostrb2towbfxIfIO3/+GcLjf2tLQ0Ro4eQ+8+ffH18wNg7rz5dHfryRSvad/knrb7k8Xvt25jY2OtUykH2LxtO/379jabUv7o0UNCQ0NVK+XRUVHcu3tHtVJ+/NhReri5FUqlPAu1Ms/NvRcuPVzpP3DwN5mX9Wz06On+B5lXqpQDY0aNYNVa31wnfJVIJBJJwaNAK+ZZ9OnXj/R0DadPhajuY2lpyaw53pw4cZyHDx8YbF+6dGmOHDv2LattREQEZ8+e5fSZMzg5ObF/3z5SU1Px8/Pj5KlTjB49Gv/Ml7X//q//4uDhw/zHf/4n//s//0PFSpWY6DmZbVu3cOzoUdMWDVhbWzN2/AQ6de7CqhXL+f3mTZPHyknVqlUpX6E8N65fN9h23969NHFqyuLFiylStCjnzp0jJSWFEydP0qhRIw4fOqTz3mQRGhrK06dP6Na9h87rnAo5Sf369alSpUqu1wfw9s0b7ty5Tb8BA1S112g0bNm0ibHjx6tqH/n5M3GxcYXehV3Ns2Ftbc36wEBCTp2ib79+bAwKAv74bOSkVu3atGzZkp07/qgw/Zlx7d4NBwcHDhw6rLqPoihMnzqF6zdvcl2FrND/vTZh3/79pKam4uPnz5mQk4wdMwpfP38A/vO//5ujhw7yX//x7/zf/1lIecdyzPYcy57DJ9h18JhRSkd6ifLflGNLS0tGjxhOn17urFzjw/mLl1SPY8iVvmzpUjRrVJ+Q8+rG3LN3H+XLV+DCubMkJSZy9tx5UlJSOXXiOI0aNuTQocM67w9AZFQUFy9fYUA/3SE5V65dp0zp0gYTz6nl06ePnA4JYeQodTkYhBCsD1jHpMlTVLVPSEjg9atXhd6FXa3MCwoM4EzISfr368uGoIyN7pzPRk4qV6pET9fuBG7clKdrkkgkEsnPR5VirijKfyqK8kpRlDhFUT4pirJTUZRqmecmKoqiURQlIdtnS47+f6coygdFUc4rilI92/EziqIIRVG65Gj/XFGUicYsxKNXLxK/JhoVe60oClO9pnH39m0uXjivt62dnR2lSpX69vON69fp0iVj2t179ODatWs8e/qUJk2aYGVllXHs6lW+fv1KkSJFKFGiBM7Ozjx69AiAokWLMtVrGhUrVmDpYtPqnmdRuXJlvOfNJz4+jtUrV6jOrm6Inu4eXLt6xWA8/qtXryjlYE/devVo1rw5586excnJCYCmzZpx9coVrfcmi9TUVLZs3qS3hu6rly/5EBZGx07q3Xf1ERsTw66dO5jkOVl1n83BGxk5erRqS9CWzZsYNUZdrd+CjJpnw87OjooVM8JGrKyssLS01Pls5KRZ8xaUL1+e48dM38QyloIg81y6dKZIkSIcOWZcWcYJY8fw7l0ox0/q38jU9r26dO6ElUinR/fuXLl6jafPnuHUOOO57tG9O1evXcv4Xu0yvte2zs48fJzxvdrY2DB17HAaN6jL/6zy421omN7rZ1fIc+JYrhzzvWdnWOKXreBDeLjesdTGt3dq25rnr9/y4WPEtzno4tr1G3Tu1BErK0uaNWvG2XPncHJqAkCzZs24fPWq1vsDGZt8/gGBTJ+qW/58CA/nzp27ePT83rKtz1quL67569evBG3YwLQZM3W2ycme3bvoP2Cg6vrjm4M3MnqsaeUxCxK5knlano2c1K9XjyaNG7Jrz74fvxiJRCKR5BvUWsw3As2FECWBGsBbYGu28y+FEMWzfUZlnVAUpQ7gAtQC/gX49xxjRwILFTP4+vbu25fo6GguXbxoVL+Ro8fw5csX9u/bq7pPTEzMtzqu9iVLEh0dTUxsLCUz3Q3t7e2JjsmIPSyZzQUxp8t502bNme09l6OHj7B7185cua91denG5KleHNi/32zu7ZOnerEhcL3eNqUcSvHo0WOKFCnC2TNnsLGx4fy5cwCcOX2a6JgYrfcmiwB/Pzw9J+uMZ//69St7du8y2wtfamoqfr4+qmuVAzx+/IiS9vZUVhnbeuniRVq1bqP6hbYwoe3ZyCIhIYEAf39GjBxp8NnITucuXUlNSeXyJfUW0lxSIGSea/duWFpaGlSyczJ4YH9sbW3ZvE29J0J8TFS279WemJgYYmJiviUP+07mlfzj95ql5DaoU4vfZk7h3OUbbNy5T2sZOLXZ1zu0a4v3rBmcCDlF4MZNJrm352TK6GEE7dijVxa/Dw2jUaOGXL9xA4AzZ89iY2PDucw64qfPnCEmWvv9AVgfFMyYUSN0Jo9MTU1lw8ZNTPGcqHreWUq5NuU8q3zl9BkzVW8svnv3jpTkZIOlMbO4d/cONWrW/FOWgzQk8/zWrWPUyBE6nw1ttGnVCnv7kpw4eerHTVwikUgk+QpVirkQ4rEQIqswrQJogPpGXMMCsMz2/+z4AVWAUZiB/gMGEh7+QZULdnZ6untQuXIVggIDVbV3cHD4Fi8YFx+Pg4MDDvb2xGXGkcXFxeFgb0+pUqW+HQO0Kp9WVlaMnziRZs2as2jh/+bK4m1ra8uESZPo2KkzK5Yt5f793OWzsrW1pauLC4EBAVpfoK9dvUr3Hj1AAQ93d2xtbXEsX55GjRvT082N+Ph4HB0dtd4bgLdv3tK6jTOly5TRen0hBD5rVuM1fYZZ4rSFEKxdvQrPyVNUx6mnpqZy5NAh+vVX5/KelpbG7zdvqI5bL2xoezYg495PmzqVf/m3f8PBwUHVs5GdPv368fLF8x827+wUJJnX07UHqampnD57zqh+XTt3opmTE2t8/QxuCFqJdOzts3+vcdjb2+Pg4EB8nBaZF6f/e7WwsGDs0P50bd+G/7vS9zsLtbEl0aysrBg/ZjS93N1YsXot1zKV5SyMzQZvaWnJwF5uLN+071v8cHbu3X9AUlIS48eOISkxETf3Xtja2lLe0ZHGjRvTo6c78XFxOJZ31Hp/3oeGUatmDb0J7Nb6rWPq5Elmi9P29/Nl1JgxqpVmjUbDjm1bGT5S3a+oEIJTISH0dPfIzTQLLPpk3hSvafz7v/7r32SegWcjO67du30nIyUSiURSuFEdY64oymhFUWKBBGAuGZagLKoqihKuKMo7RVG2KoryLahWCPEUuAy8AP4V+OccQ38B/j/gvxRFMUtGr8FDhvL0yWOjldJWrVvj3K4tvmvXGHxRbdW6NeczrSOnQkJwdnambr16PHjwgPT09Ixjbdtm1MROTCQhIYHr16/TsGFDnWPWrlMH77nz2LF9G9czXR5NpUqVKsxb8Avv3r5jnb+f6kRz2mjWvAWuPXuyeNFCPkdEfDv++PEjnj19Qs1aNVmydClHjx3D0tISV1dX/vGf/onjJ05QunRpevXurfXefAz/iKIotGqtNdksAFs2BTNg4CCzWWG2bArGo1dvnRsB2tgYtIFx4yeo3hjYu2c3Q4YNN3WKBR5tzwbAv/7Lv9C+Qwe6desGYNSzkUVeuskWJJnXp5cHUVHRXLlm3IZk40YN6eXuztIVq7Ra76xEOgoZsrBN61acO38BgJCQU7Rr60y9unW5/zDjuQ45dYq2zs4Z32tSxvd67fp1GjXQ/b1Wq1yJv8yayv7jIZy5eFVnOzWUd3Rkwdw5xMXFs3KND1FR0SaVaAOoX7smw4cOZuGSZbzPVpLz9Zu3XLx8mTq1a2FpacmypUs4cewIlhaWuLn24J//8R8IOX6M0mXK0LuXxx/uj1MTJ5KTk+nWtYvOa+/eu58unTpSpnRpk+aek717dhtdvnL71i0MHT5CVVUOyKhs0at3H1OnWODJKfPaO2f8Tfv///Xf6NC+Pd27uQAY9WxkMWSQug1hiUQikRR8VCvmQojNQgh7oCIZL6hZWu85wAmoBLQBkoATiqIUy9b3X4QQ5YUQHYQQ2tKgrwfiyXj5NQujx47j5vUbPHhw36h+DRo0xN2jFyuWLf3OWpKamkovDw/u3b1L3z59eP36NZ06daKbiwt37tyh/4ABWFtb4+npSY9u3QgODmbK1KkA/N1f/0qfXr34x3/4B3797Te917exsWHajJnExsYQHLRBq5XaGHr17s3QYcPZv3cPvmvX8PzZM5PGqVKlCnPnzWfPnt1cuniR9+/fc/b0acaMG09oaChurq649+xJu/btqVSpEm6urni4u2NjY4Ozs/Mf7s3w4SOIi4vVW1bt4oXzVKhYkVp6agPHx8cTE60u0/PFC+epWKkSdevVU73u27duUaVKFdUl6VJTU4n8/PlbbGFekZSUxP3799izexf79u7h+rVrhIaG5kkdcDXPRlhYGIsWLmTfvn24ubri6+MDGPdsAHma3b6gybwhgwbw+s2bP1iMDVGjejVGjRjGoqXLSU5O/nY8NTWVnh69uXv3Hr369OPV69d07tyRLt26c+fuXQb074+1tTVTPD3p2r0HQRs34TU1I0nY3//d3+Heuw9//4//xF9++0Xv9S0tLZk2biSaYqXx8Vun1UptDK7duzFp/FiO7tvBcv+N3Hv01KRxHMuV4y+/zOfYiRBOhJwm4vNndu3Zy7QpGXHhoaGhdHfriau7B+3bt6NSpUp0d+uJm3svbGxsaJsp97Luz/rADXh4uOstq/b7rdtYWlrQrKmTzjbJyclERPyxJn1W7Hn2GPTbt25hbWVNs+YtVK/72dOn2NrZUa1aNVXthRC8fPGcevXVOpSYh5SUFB49esi+vXvYs3sXV69c4d27d7n+/VGDIZk3oH9/wsLC+N+Fi9i7fz/d3Xqy1scXMO7ZkEgkEsmfC5PqmCuK4gi8BKoJIaJynLMGYoF+Qgi9gY+KopwBTgoh/kNRlF7AFqA2cBX4DyFEoLZ+WXXM1RAYEIBzu7Y0atRYVfssPkdEELg+gL/+9a9YW1sZ1VcN2Wt36+Ldu3ds37qViZMmUaZs2VxfU6PREHLyBC+eP6d2nTq4uvU0SdE5c/oUDx88YPrMWVhYWBhdyzopMYkXL57TuHETULTfi/fv33Pi+DG9ydmEECxdvIjpM2dRpEgRvdcMCwvj6JHDeKrMLgyQmJiIv68Pc+bOU91nx/ZtdO7ShQoVfqxiHvn5MwcPHCBdk6F429rYULtOXerXr48QgtDQ94SGhvHp40fS0tNIT0/HwcGBHj1cjfIWMMSPrGOui59Rx/xny7ysOuZq2LpjJ7Vr1aRNq1aq2mcRGxvHal9ffvvL32FnpnKE2UlL+qrVgp3ddf3jp0+s37CRcWNGUdkIC682LOM/IoTg9MUr3H/8nOpVKtLXrZtq9/Ds87p05SoXL11mvvdsrKysvqtjroaUlFQePX5MU6cmKIryXR3zLD5HRrJ1+05mz5imd6xlK1czYrwn9pnu0rqIjopiy+ZNzJw9R/U809LSWL50CfN/+VX134Yjhw9Tt25d1bHophIbG8uBfXtJycwjYG1lTe06dahfvz6Wlpa8D31PWGgoH8MzZF5aWholihenu6srjo7GhUfow5DMM6Z+eRbafh+yI+uYSyQSyZ8DUzVOK6AYGRajqBznRObHKI1PCHFEUZRrZLh4mo2Jnp4EBgSgKAoNG+quFZuTsuXKMWuON48ePqRO3ToULWrci5g5qFq1Kt7z5rE+YB1OTk1zHbNsYWGBW0933Hq68/TJExYvXMjY8eMoX76CUeO4dOuuuqZtTlJT03j69AlNnJrq/A1JSkpi65bNLPjlV71jbdu6hf4DBhpUylNTU9kcvJEFvxq2yGYnKHA9Eyapf9lJSUkhKjLyhyrlz54+JeTkCRxKlWLYiBE6fy9LlymDU9Nm3x2LjooiJOQk0dHR2Nna4d7Lw6wvrIWcAiPzRg4byuZt21FQaN2qpep+9vYl+XXeXJ4+fUaN6tW/S1L1o8gZT17e0ZHfFsxjfVAw1atVw61HN5PGzdoAUBSF7p3a071Te169fc/CNesYObAP1auoS+KYRYd2benQrq1Jc0lPT+fBo0c0bdJYp7KblpaGX8B6fp2n34Fi34GDdO3cyaBSrtFoWLfOH28jNhUBgoOCGDdBfdiORqPh1csX9Ord26jrGMOb1685euQwxYoVY8Cgwd/Vc8+OQ6lSNGnyvadBbGwsp0+F8OnTJ2ysbXBzd1edwNNYTFHIJRKJRCLJjkHFXFEUC2AmsF0I8UlRlCrACuA18FhRlD7AHSAUKAX8N/AZuGLCfH7L7JdiQl+dTPT0JGCdP5YWlka52xUpUoTa9erj67OWTl26ZFh48xhra2u8pk3n3Nkz+KxZzYRJntjZ6S6Xo5Z69eszd/58AtcH0KpVa1q0VP8CnxM11n/IePlcungRM2fPITlVu7thVnK2qV7T9MY3/n7zJvb2DtSuU8fgddf5+eI5eYrqeEnIcHtv4uT0LdOuGvbu2c3AwYNVtzeGhw8fcOrkSerVr4/X9BlGrSWLUqVLMzQz9j0xMZF9e/eQlprKqDFjTU4ypfa7L0gUBpk3esRwNm3dhqWlJS2aNzPY/pv7s60dDevUZF1gEE2dGuOsJ/+DKaSXKI9l/Ee9Cd4sLS2ZMmkCV65dZ+mKVUyZNMEsOSZqVqvCbzOnELRjL7WrV6NzO/1r0zdPQxbOLDQaDQuXLMNrsiciNZk0HY+Lj/86PCeM15mlHeDxkyckJSfTvFlT0CTpLZu2ccMGRo0eY1RViNu3blGxUiXKlXNU3efY0aO4e/RS3d4YXr54wZHDh6hRoyaTp3phZWW8HcHe3p6BgzJkcnJyMocOHiAmJoZx4yfovdf6yCnzsrLg/ygHen3fs0QikUgKF2rf7nsD9xVF+UKGy+VXwFUIkUZGWaBrZCRIegCUAdyEEAnGTkYIcYeMkkTqtSGVTPKczOlTIbx988aofhYWFkybMZN7d+8arHX+I+nS1YWRo0bjs2Z1rjOtZ2FlZcWUqV48uH+Phw8fmGVMXQghWLNqJRMneer1PtgcvJG+/fpjn5m1XRtRkZFcu3pFlZUm5OQJWrZqbZT7dmhoKI8fPzaqZnpaWhpRkZFGex+o4cTxYzx5/JhZc7zp6e5hklKekyJFijBy1Gi6u7qxbMli3rx+nfuJ5hOSvqQS9/mr6k9qklZLV4GXeWNGjuDWnbs8evzYYNvspbYURWHKpAmEhoZx9PgJc09Lddb1ds5tmOo5kXWBQUbFzetL+GZhYcHEEYP58CmCq7/fMcs89eHjv45RI4bj/BvINwAAJmBJREFU4KBbnu3as4+O7dtT3lG3QpyQkMChI8cYPsTwxt/VK1eoWq2qUZbhqMhILl28gLuH+qzqQghevXyhanPUWC5eOM/VK5eZOXsOffr1M0kpz4mtrS2DhwxlwICBrFqxnCcqnouCQkpimlEyLyXxx8fhSyQSicR4DL7hCyE0QojeQghHIUQxIURlIcQYIcSLzPO/CSEqZZ6rKIQYmpmV2CBCCBchxH/kODZJCKHoirU0FUVR8Jo+g3179xAWFmZ0/5GjRvPlyxcO7t9vzmkZhb2DA3PnL+DNq9ds3LDBbIm9xo6fwKWLF3nx/MeVotq4YQN9+vbTm0TtVMhJqteooTdWUaPREBCwjslTvQxe88OHD7x7+w7ntupdUJOTk9myeZPe2HZtHDywnz79+hvVRw3btm7Bzs6OQYOH/JDEZ5UqVWL+L79y9eoVdu/aabAawZ+BwiLzADwnjOPs+Qu8ePHSYNuc9a8HDeiPnZ2dUbXOzU2xYsWYO3smsTFx+PitM0udcoDh/Xvx5MUrbj94pPW8OZTybTt30aFdO6rqcZu/dOUqRYrYZVjBdSCEYK3fOqZPnfydDCiiSfr2ySImOppbv9+kew9X1fNMT08nYJ0/U6dNV90H4PSpEFy6mxbSpI+D+/eTkPCFUWPG/hCZV6ZsWebOX8CTJ4/Zsik41wlWfzTa6tJLJBKJpHCSe9PbT8BU3UFRFGbN8Wbbls18+mR8GZ2e7h6Ur1CBDevX/1QFpk+/fvRwc2PJ4kWEh38wy5iTp0zl+LGjfPwYbpbxsnNw/34aNmqkN7v6w4cPiIyMpFNn3WWEADYErmfU6DEG3RDT09PZFLyRcRMmGDVXP5+1Bt3oc6LRaPgQFkbVqrozzBuLRqPBd+0aGjVuTOcuXc02rjYURWH4iJE0a9ac5UuX5ElWY4lx5EbeTJsymcPHjvPm7Tuj+7p06YxT48as9vH9qQqMm2t3Bg8awOJlK3j12jivJ12MHzaQq7/f4eWb7++LOZTyk6dOU7ZMGb3Z1V+9fsPDR4/p7eGud6wt23fQv29vihUrprNNEU0SdumJbPRfyyQjElwCrPP3Y/zEiUa7dj96+NDopKr6EEIQFBiIY/nyRlnuTUFRFPoPGEjnri4sXrSQpCSp/EokEonk51MgFfNPH8P58uWLSX0tLCzwnjef4KAgoqNy5nAyTBtnZzp26sSqFct/qgJTqVIl5i/4hcOHDpnFxV5RFKZ4TWPf3r25n1w2Ll+6hJW1NW0ya1lr4/3795w/e5Zhw0foHev0qRDq1aunykVz08aNjDYydnrnju249uyp141eG8eOHqWnu/leJFNSUli2ZDG9+vTFyUm3Jc3c1K5ThzFjx7FsiVTO8xvhnz4RExNrUl9FUZg9Yxq79+4j1ARvIacmjenXpw8Llyz7rpxaXlOubFn+8st8zl24wLETJ80yptfYERw4cRrIUMjNoZTfvnOX6OgYenRz0dnmc2Qku/fuY/LE8XrHunr9OqVLlaKeioznO3btYdCAftgakVH/8KFDtGrV2ugkkBcvXKB9h45G9dFHeno6q1euoH2HDkZ5OOWWKlWq4DVtOiuWLZXKuUQikUh+OgVSMS9XzpE1q1ZqreWqBktLS+bMncc6fz8SEowOC6VO3bqMGDWKpUsWk5iYaNIcICO5ze1bt0zub2lpiefkKaSnp7N18yaTx8nC2toaWxtbYmPVKQCXLl7Ua8l78/o1T588waOX7uRAMdHR7Ni21aAb5etXrwh9/15V3Ped27co5+hIJSPKLd28cYPixUvQoEFD1X3+NreXZouzFEKwfNlSJnlONqsFXi1ly5Vj4qRJLF+6JE9qoEvUUd7REb+A9bx9996k/oqiMHf2TDZv3U6kCRuSVatUxmuyJ4uWrSAuLs6kOQB8CA/nwqXLJvdXFIUJY8dgb2+P37rcey4pioJjmdK8/6JunCvXrut1pw//+JGLly8zbMggnW2+fv2KX8B65s6eqddVO/zjR27dvoNHTzeD83r+4gUaoaGuEXLo8eNHJCZ+pZUJCf7u3L5FSyPL8elj1YrlDB0+nLr16pltTLWULFmS6TNnsXL5z914kkgkEomkQCrmFpYWzFvwC8FBQSbFi0OGEjprjjdr16w2SQEpV86RadNnsHL5MpNfVGvVrs3Tp0+4eEFdTXZddOnqQuMmTdgcvDFX4wAMHT6cbVu36G0jhGBz8EaE0Oh8sYyOimLvnt2MnzhR5zjJycn4+fowa463Xtfxr1+/snvXTsaM029dgowkSefOnjWqfE9sTAzXr13Vu4Ggi0ePHtKosfncOQ/s38fgwUNwKFXKbGMaS5myZRkzbhxrVq2UMef5BAtF4Zd53uzdf0BVvLjWMSwsmDdnFr7rAkxSQBwc7FngPZtVPr5EfP5s0hwqVqhAZGQkx0/qLfdukHbObejm0gVf/4BcjQMwtK8723fuNthu5+69xMbG6nT5TkhIIDAomOlTdbuSp6ens3zVGrxnztCb0Cw1NZXAoGCmek4yOK+UlBT27DvAiKFDDLbNIjExkWNHjjB4yFDVfbIIDQ2lihk3DU+fCqGri8sPSZyplhIlSjDVaxqrVixXHbKRM75fIpFIJJLcUiAVc8jIKD53/gJ27dhudKb1LIoUKcL4CRNYu3qVSQpIiRIlmDN3Hn4+PibHZg8fMZLYmBiOHztqUv8snJo2o36DhgaVakMUK1aMUqVK8f69dstcWloaq1euoHUbZ53W66SkJNb5+zFz9hydirsQgtUrV+A1bbrekj5CCHzWrMZr+gxViYAC/P3wnDLVYLvs4wes8zc6LjOLC+fPmy0G/MuXL4SHh+uNxc8rypevQO8+fdmwfv3PnookEwsLC+bMnM7xkBBVmda1YW1tzUwvL5avWmNSzLidnR2/zZ9HUPBmk2O9B/Tri4WFBbv35i6RZp3atenSuSP+6zd8J7+NdUe3tramTu1aOu+pRqNhja8ftWvVxN1Ne1K1tLQ0VqxZi/esGTrDZ4QQrFrry8TxY/XGiwOs9VvH1MmTVIXi+AWsZ8qkiUYlSsuSk6YkVztx7JjZQndSU1N5+OABzZq3MMt4ucHewYFRY8bis2Y1dun6PeGkQi6RSCSSH0GBVcwh40V1tvdcDh08YLJy7uhYnp7uHgQFBprU387OjnkLFrBj2zaTs5r37tsXGxsb9u4xbLXRR6vWrWnQoAErli3l61d1dXa1MXjIUPbu3vWH4/Hx8SxdspgRI0fprAev0WgyFO7pM/QmE1rn78fQ4SOwd3DQO5dtWzbTf8BAVXWMD+7fT7cePQy+9GZn39499O7T16i4zCyyPC3MUb4MYOuWzYwcNdosY5mDWrVr07xFC3bt3JFn1zx88GCeXctcKIrSTFGUy4qi3FMU5YCiKGYvfZbtWszwmsrFy1dNVs7t7Usycvgw1vj6mdTfysqKBXPncOzECe7eu2/SGK7du1GpUkWCNm02qX8WDRs0oEuzuixaujxXLva9Pdw5fPT4H44nJSWxcMky+vburbMevBCClWt8mDJpot5SkMFbttLTtTsVyuvfONizbz+dO3agTOnSBucdcvoMLZo3p1QpB4Ntszh54jjt2negRIkSqvtkIYQgOTkJOzvz1NbesW0rw0bozy2SVxTRJFGrfCn69OjChuDNWrPe/wgr+YFDh806Xl6QlzJPIpFI/kwUaMUcMl5Up8+cxY7t201O3lK3Xj2aODmxR4syqgZLS0tmzfHm/LlzJseMu3TrTuXKVdi0Mcik/lk0a96CiZ6T8fNZy4MHpr00W1pa0rBRI+7du/vtWGhoKH4+a5k1e47ekmd+PmsZOXoMJUvq/ju9e9dOnJ2dDcZQX7p4kXKOjqrit9+8fk18fJxRydLevH5NUlIS9Rs0UN0nOxfOn6NTZ/W1zvXx9u1bHBwc9N63n0HzFi0oW7Ysp0LMk2zLEEWLFeXKZdNjkH8S/sBfhRBOwB7gtx99wSmTJnDk2AmTldGqVSrT3aUrG4JNy02hKArTp07h/sOHJseMt3NuQ4tmzVjr52+Sx5Jl/Ecs4z/SsG5tvMcMZIP/Wq7fvAkYbzVXFIXOnTpw/uKlb8ciPn9myYqVTJ86WW/Js8CNm+jb24NyZcvqbHPk2HFq1axJAx0bmlncun0HIdBbPi2Lj58+8fLlKzq0+1uytEQL/Qrzp08fefv2rUlx5QD3792liZkSUkZ+/kx6usboxHPmIrvinV3Zrl+vHg0b1GPfgYN/aPsjKF/eMdehHT+BPJd5EolE8megwCvmkPFSNXXaNPx9fUweo1Xr1jg4OBBy8oTJc5jo6cmLF89NzpLextmZFq1a4bNmda5ie0uUKMHc+Qt4+fyFydbO7j1cOXbkCBERn7h//x6HDh5g3oJfKFKkiM4+WzdvolOXLnqTrl29coWiRYvRtFlzvdd/9fIlz589o4er4cRHaWlp7Nyxg5Gjxxhsm4VGo2Hnjh2MGDlKdZ+cPH70iIYNG5ncPzsH9+9j0GD1MaJ5SVeXbsTFxXH3zu0ffi2Xbt259ftN4uPjf/i1zEh94Fzm/08AefJFzpw2lbV+60yWFQ0bNKB+ve8VEGMZPWI4MTExJmdJd2rSmJ6urixZvtKoXB+W8d+XuyxSxI55UycQ/e4FG/3XmHRPnFu35tr1G4SGhfH8xQuCN2/lt/nz9G6W7d1/gEYN61NHT/jJvfsPSEj4Qsf27fRe/0N4OJevXmXwwP4G5yqEIDAomEkTxhlsm71PcFAQ4ydMVN0nJ5cvXaJ9hw4m98/Ozh3bGTHKdPlrLLoUcW20bdMGW1tbLl6+8sPn5dy6NW/evuNTRMQPv5YZ+SkyTyKRSAo7hUIxh4zMql1dXDh04IDJY3Tr3oOYmBju3b1j8hhDhg4jLCzM5DEaNWpMr959zJJ4q9+AAdRv0AB/P1+j+yqKwmzvuYScPMmTx4/xmjZdp8u2EILAgADq1qtP48ZNdI759s0bHjy4bzDJWkJCAnt271Jdgzw4KIhxE8YbFS+5a+cOho8caVKMJUBUZKRBN3y1pKWlUaxYcbO5xP8IBg4azOlTp0hJSfnh1xo3YSJbt5ju4pwcH0tc+HvVn9TELwBDFUW5ke3jZcQl7wNZ2tQwIE/S6dvZ2TFk4AC2bDc91KCdcxusra25dOWqyWP07d2L1NRUk8eoVbMGo0cOZ8nylbmuld6rR1c6tmnJ8oX/x6SxvGfN4NLlq1y8fIV5c2bpTdC2edt2SpUqRds2bXS2+RQRwemz5/RmaYeMBG4bNm5i2pTJqua5dcdOhg0ZrHd+OTl65Ai9+vQxqk92vn79io2NrVnklBACK2trvflFzIkp1m6Pnm7cun3HpMotxjJh7Gi2bt9pcv/khDijZF7yl3iAvgVN5kkkEklhJ/9qAibg1LQZcXGxvHn92uQxhgwdxsULFwgP/2DyGMOGj+DypUuEhoaa1L9a9er06t0H37WmWX6y06SJE23btjXJFdnOzo6Ro0YzZOgwnW3S0tJYuXwZnbt00eseGR8fz47t25nkqf/FMyPZ2xqmz5ylSmm+d+8ujo6ORrlDRkVG8iXhS67KkR3Yv59+/QeY3D87d+/coVnz5mYZ60cybvwEgnMZaqGG4sWLU6pUKd69e/fDr5WNnUKI1tk+3+1mKYpyUlGU+1o+AwBPYJaiKDeBEsCP373IpHbtWhSxs+P+g4cmj9Hbw51Hj5/w4uUrk8fo27sXT58955mJeTYqlC/P6JHDWbpilSqFWl/N8bq1ajDAw5Xdh/8YM24Ia2trhg0ZxISxY3TKH41Gw2ofX5waN6Zr5046x0pOTmZd4AZmTjOcjHK1jx/TpkxWlezt5avXQMaGhlq+fPnCu7dvcuXhc2D/Pvr1N2zNV8PrV6+oWbOmWcb6kUwaP5bAjbkvRWoIGxsb6tSuxcNHpuWNMJGDBVHmSSQSSWGmUCnmACNHj2Hnjh16a80aYuq06QRv3Jgrd9opXtPYtmWzyTGgNWvVooerG/5+vrlWzp2aNuPRw4e5uifa+PLlC0sXL2Lk6NF648DT09PxWbOambNnG1S2N27YwNBhw/QmUcoiJSWFkBMn6N23r1Hz3rplM6PGqHd7z0laWhrJyUlGJZnTx727d2ni5GSWsX4kpcuUoUL5Cjx8+OCHX2vQ4CFaExD+LIQQrkKIJlo++4QQj4UQPYUQrYAtwIu8nNugAf05duJkrhI+ek4Yx979B/gcGWnyGBPGjubQkWMml1KrVLEiw4YMZvkq9RuSupTz2jWqEf7pM18T9WfX1jeGNlJSUr4lg3NqortMohCCFavXMtPLy6CFetvOXbj16K4qgZtGo2Hn7j2MHKa9zJkuy/DmTcGMGjPW4Pi6EEIQHRVFGT1x9MZw9eoV2ji3NdzQDOQmNrxYsWI0adyIy1evmXFG2unl3pMjx4zfTPpR5GeZJ5FIJIWVQqeYK4rCxEmTCFxven1bS0tLZs2ew9rVq0yq9wsZmbpnzp6Dz5rVJivEderWpUuXrqwPWGdS/+wMHT6cXTu253qcLD5HRLBm1UpmzJpNuXKOetuu8/NlzLjxeuPTAc6cPkXNWjWpXqOGqjlsDNpgdLzkrd9/p1HjxiZlYc/i+NGjuHsYX/NcF+UrVDDZvTSv6dWnD8eOHDEqHtgULC0tad6iBTdv3Pih1zEHiqI4Zv5rAfwTsDav5+A1eRK+60wvbacoCt6zZuAXsN5k111FUZg9Yxr+6wNJVKEQa6NqlcoMGtCfFavX5lo5Hzd0ABt37jOprzZiY+NYuHQ5Uz0nUa1qFb1tAzduYtCA/tjb60/mePX6dUoUL07jRg1VzSF4y1ZGjRhuVAjO82fPKF++vElZ2LO4dPECHTp2NLl/TuztHXI1n7zEpUtnrl67bnJyWbUoikKPbi6cCDn9Q69jDvKDzJNIJJLCSKFTzAHKlC1Lw4YNuXD+nOHGOihSpAhe02ewcvlyk+Me7ezs8Jw8xeQ66QD1GzSgXfv2uc7WXr58BZKTU4iNjc3VOJCRzXzzpmDmLfjFoNV4757dtG3XjooVK+pt9/rVK96/e6e6Jvit33+nevXqlC5TRvW8NRoN586ewaVbd9V9tPHmzWvVmwdqMBRzn59QFIWRo8ewLRcx4Grp3KUrF86fy3XccR4wSlGUp8BjIAzI8+LvJUqUoEunjhw+eszkMaytrZk3exbLV681OZeAlZUVs6dPY8XqtSZ/b9WrVaVv7174+qvfXNWmYNuXLEHxokX58FF7Ui1jlPIP4eGs9fPnl7lzDFq2j504SZ3atahdS7+r9ofwcH6/dZveHu6q5vD02TOKFS2mN0O8Ng4eyH3Yzd07dwwm7DSGXr17m22svGDiuLEEBf94mde8WVMePnqUJ7k8cslPl3kSiURSGCmUijlAp85dTE7slYW9vT2jxowxucY5ZGwS9HT3yFUt6EaNGlOpcmWuX8udO12z5s159fJlrsa4e+c2J04cZ87ceQatvKdPhVC8eHGaNW+ht11KSgq7du5kzLjxquaQlJTE+XNncXXrqXreAEcPH6Zvv9zFSP5+86bB9RR2KlasSJKJniTG4tGrt8mVEvIKIcQyIUS9zM9fRW5jT0ykZYvmubZCFilShGlTPHNlfS9RogQjhw/LVWxurZo1aNGimSrrYVbZNG10aNOSB0+emTwPyFCIt+/cza/z5xr0tLl89Rpfv36lc0f9mcs1Gg2BG4Pxmuypag7p6ens3X9QVcb27Fw4f46uLt1y9bfw+bNn1KhZy+T+PxNzlThzcLA3yzhqGDZkEPsOHMqz65lCfpF5EolEUtgotIo5QMdOua8xXalSJWrVrmVyCTTIsHoXLVKUO7dNq3EOGRnjr165zJcvX0wew9rG2mTXfIDz587y5MkTpkz1Mviid/3aNWJjY1Upz4HrA5jk6an65TFoQyATJk5S1TYLjUbD69evVNVE18flSxfN6tJZUClatGielDSr36ABz54+/eHXKSwYUgjVUKZ0ado6t85VvGu1qlWoUb0a5y5cNHkM59atefHyBVFR0Trb6FLIs7CxtiZZi/VRrbX82o0bXLh0Be9ZMwwmZrv/4CHPnj9n0ADDyvOG4M2MGz1KVbI3gKBNWxg3ZpRBGZm9jrkQgtu3btGiZUtV19DFiePHcPfwyNUYhYFKlSry3sSErkZdp2JFPoSH5zq3jEQikUgKHoVaMTcXXbq68OTJk1xlau/dty8Xzp8nNibG5DEmTPIkKNB0S5aNtQ2pqaa5yB3Yt4/ExESGDR9hsO2jRw95+uQxAwcNNtj23NkzNG7cRLVL+o3r16lTp47RpcoOHzxIr959jOqTk0ePHlK/QYNcjVFYaNWqNbd+v5kn12rZqjU3rl/Pk2tJMmjTqhWfIyNzlam9u0tXHj16TPhH/cqzPiaNH8f6oI1azxlSygFsbKxJSTEtx8fxkyG8fx+G54RxBhXiV6/fcOHSJcaPGW1w3Bs3f6dCeUeqVFbnkv7o8WMc7EtSsUIFVe2zOH/uLF26qgsN0sX79++pWKlSvi7lmFc4t2nNtet5I/PcenTjRMipPLmWRCKRSPIP8q+tSiZMnETwxo2kpaWZPMYUr2n4+/mZvBNeokQJmrdoaXLsvI2NjdGxa0IINm0MonyFCvR0N2w1efv2LefPnlXllv45IoInT57QsZPukkPZSUhI4OqVy3Tv4aqqfRbp6em8efOamrVy5455OiSEHq5uuRqjsFC7Th2em1gay1jatW/PtatX8uRakr8xdtRIdu3Zm6ukV1M8JxIYFGxyskBbW1vcenTn4OEj3x1Xo5QD2NrYkGJC8s3tO3djZWWlynX846dP7Nm3X1UN8ri4OC5cukwvd3VhOCkpKRw6coyB/fsZbJvTWm6OuPBDB/bnOvynsOBYrhyfTaw4YCwNGzTg8RPpKSSRSCR/NqRirhJLS0vGT5iQq2zvtra2DBk6lK2bTY+9bN+hAw/u3zcpiZu1jY1R1qP4+HiWLVlMG+e2OLc1XNrmc0QEu3fuYOq06QbbCiHYEBjIxEnqYiwBAgPWMdFAHXRtHD54MNcvl+/fv6dS5cq5zltQWLCwsMjTpGw1a9XmRR5tBORHNIrFd4pXXqAoCtOmTGatn+lVISwtLZk4fizr1m8weYymTk0I//iJj58+ZYypUimHDFf2nIq5Pjf2xMRElq5YRb26dejuYtjaHBcXx/oNG/GeNUOVbPALCGTaFPUyL2BDEJ4Txhvlwg5w9sxpunbrpvo62oiOiqJEiRIFpmJEXpCX7uUtWzTnxs3f8+x6EolEIvn5SMXcCBwdy1O9enXu3btr8hg1atbE0sqKsLAwk8cYN2Eie3YZX+O5XLlyfPig7roPHz5g/Tp/ps2YSb369Q22j4mOJnB9ALO956p6Qd29ayeDhwzB2tpa1XyuXL5My1atja4dLoTg3bu3uc6iHnLiBL37GFcvvbCjNj7WHLh7eHD6tHTtzGvl3N6+JG2d23Dh0mWTx6hQvjwVK1bg6TPTk7BNHDeG3Xv3GaWUA9ja2hCfoC4vx4uXr1ixei2eE8bRvFlTg+2/fPnCyrW+zJszS5XyevT4CXp0czFYNjKLh48eU61qVUqXLqWqfXYePXyIk5PhNegjJOSklHk5sMhDmdexfTuu38wb13mJRCKR5A/kVriRuLr1ZPnSJTRp4mSy9XTwkKH4rl3DzNlzTOpftGhRUlKSSU9PN0o5sra2VuWKv3/fXtLS0vCeN1/VuB8+fGBzcLCqTO0AERGfSIhPUO1artFouHb1iur5ZOf6tWs4t21ndL+cpKWnYWNjk+txChMKeec9YGFhodpalRQfSfqHF6rHTkn88UnszIG5MkwbS/u2zixZvpL2bZ1N3ozp27tXpiW6rkn9rayssLKyJikpGTs7/ZnRs6Moyne/N7qs5cdOnORTRAS/LZinSq5HRUXjs24dc2fNwM7O8GZJXFwcL1+9wqOn4VCYRAs77NITOXLsOAvmGv4bkXOz5umTJ9StV89gP0PExsbiUMr4TYHCTF56TCmKgoWizjMp+UsMwhiZ9yX3ZVMlEolEYn6kxdxIFEWhp4cHx44eNXkMKysrataqzZPHj00eo3sPV5PKSJUtW5aIiE9azyUmJrJy+TJq1qzJ4CFDVY334vlzdu3YzrwFCwyWEoIMC3ZwUBCjx45VPed9e/eoSiSnjd9v3qBV69Ym9ZXkL+rUqfOnzdBuIX5uLfchgwaya88+k/srikLrVi25moskfgO7tmbfsRCj+9WrVYOnL19rPZeamspqH1/s7e0ZN9pw1nOA96Gh+K8P5Nd5c1V78ARs2MjEcYZlXpaSffxkCO5uriYpgmdOnzI6D4ckf+LcpjXXbkiruUQikfxZUApiSQ5FUW787DlIJJKfxmchhNZMhIqijLKu0XmzdeVWqgdLfnac9E8Pmwoh7plthmZGyjyJ5E+NPpnnblWlzVGb6urLeKa8Okda2O/dhBBnzDVBiUQikeSeAunKLoSQJlCJRPKnQco8iUQikUgkksKNdGWXSCQSiUQikUgkEonkJyIVc4lEIpFIJBKJRCKRSH4iUjGXSCQSiUQikUgkEonkJyIVc4lEIpFIJBKJRCKRSH4iBU4xVxRlpKIo5xVFiVMUJS3HuYmKomgURUnI9tmSo83fKYryIXOM6tmOn1EUJTlH3wRFUZx+0Dr+r6IoDzLXEaYoip+iKKUL4lqyXfc/FUV5lbmmT4qi7FQUpVpBXU/mtS0URbmkKIpQFKVKQVuLoiiBiqKk5rjWzGznC8xa/qxImZf/1pLtulLm5bO1SJknkUgkkoJKgVPMgWhgNTBPx/mXQoji2T6jsk4oilIHcAFqAf8C/HuOvv+eo2/xH1hCKR0YC5QBmgFVgPUFdC1ZbASaCyFKAjWAt8DWbOcL2noA5gNftRwvSGvZkONaqwvwWv6MSJmX/9aShZR55Mu1SJknkUgkkgJHgSuXJoQ4BqAoiosJ3S0yP5bZ/v9TEEL8Q7YfIxRFWQlsNmKIfLOWLIQQj7P9qAAaoL7K7vluPYqi1ANmAkOAW0Z0zXdryQUFbS1v0mLegUMdVY2F0KCJ/wTw8YfOKhdImfeNfLOWLKTM+0a+W0suKGhreZseG0rql1hVjYUQpMeGAbz/obOSSCQSidEUOMVcBVUVRQkHUoGLwN8LIV4BCCGeKopyGXiR+Rnz86b5B3oAd3McK3BrURRlNLAGKAmkAQuynS4w61EUxQIIAH4DYrQ0KTBrAYYoijIY+AzsA/5VCJGQ7XxBWotehBCXLOyrovkSgUWxcobbR71AKVEBzdeIT3kwvR9FQf3+pMzLR+uRMi/frkUvQohHFqVro4kLxaJkZcPt496CbQlEwofneTA9iUQikRiBIoT42XMwiUzr0UkhhFW2Y7XI2Gx4DjgC/wfoBDQTQnwxMN4ZoC2QnP24EMLBjNPWde0hQCDQVQjxe+axArmWbHOoAEwGLgohzhS09SiKMh/oKIQYqihKDeAVUFUI8b4grUVRlFZkWEYigIZkuA6/yHLdLEhrUYuiKE2U4hXuWdb2QFEUne2EJo20pwchKbqUECIm72ZoGlLm6R3vDFLm5Qop8/LfWtSiKEp1pWjZ15Z1+5Cxv6IdITQZMi8xsrIQIiwPpyiRSCQSFRQqxVxLG2sgFugnhAgxMN6ZzPH+w4zTNIiiKMMAH2CIEOK0nnb5fi1a5uEIvASqCSGicpzLt+vJjDE8A7QWQoTnfEnV0j7frkXL9TuSsbbiQohkLecLzFr0YVGmnrCwr4aFfTWdbdLD74CFFemhV3Vr7/kIKfP0jnmGfPC7KGWe1rHPIGXeD8eyvJNQbB2wKFNXZ5v0z48h9Svp4bcLhMyTSCSSPxv5PXYqt4jMT778I6QoyiQyXlD76XtBzSRfr0UHVkAxoJKWc/l5PZ2AcsB9RVE+A79nHr+rZMvum438vJacaDL/1TXXgrQWnYioZ5U14bcRQqP9fGoimtjXaMKu2ebx1H40+fr7kzIv365HyryCsRadaD7dL5Ue8QChSdN6XqSnovn8GM3HOyXzeGoSiUQiUUmBU8wVRbFUFMUOsMn82S7zoyiK0kdRlCqZ/y8NrCIjxuzKz5yzNhRF8QYWAu5CiItazheYtcC3EjuzMy1GKBlldlYBr4HHBWw924HaQPPMT+/M4z2BoIK0FiWj1JZD5v/rAouA/UKIpMxjBWYtxiCECFNKVkET+VTrec3H21g6NkUIkZLHUzMaKfPy31pAyjzy6Vr+xDIvxqJ0XTSfHmg9r/l0D4uyDRBCxOfx1CQSiUSikgKnmAPjgETgGBlZUxMzP9XJKHFyDUgAHpBRlsctR9IXffyz8sf6pH3NvYBMlpGRLOh09utlO+9CwVlLFr3JsLh8Aa6SUXLHVQiRRgFajxDiqxDifdYHCM88FZ45XxcKyFqA6cDLzO/kOBkvn5OynXeh4KzFKDQf75TUfH6MSE/97rhIikUkRpH+5kxBkX9S5qlDyjwTkTIv367FKDRh12w1sa8RqYnfHRepXxFx79G8v2z9k6YmkUgkEhUU2BhziUQiMYRl1Q6C1K9YVmz57VjaqxBE7NsuQojzP3FqEolEYnasargI8eUjllXafzuW9vYCFvZVSXsZUqDd9SUSiaSwU1AsRhKJRGI0mveXbTRx7xGpXzN+TvgIAqRSLpFICiPpb85aiMQoRFJGXXORGA0p8aS/OiXf9yQSiSSfIwW1RCIptAghUi3LNyP9wy2EEGg+3ETEvW3ws+clkUgkPwIhhBBfPnVJ/3ADgPQPNxAJ4W2FdI+USCSSfI90ZZdIJIUaRVEUpXgFjVKsAqQlkf75kXTnlEgkhRoL++pCKVoGkRSDJvqllHkSiURSAJCKuUQiKfQoitIWC+sraFIrCCE+/uz5SCQSyY9EUZT6WFg9RpNWWwjx8mfPRyKRSCSGkYq5RCKRSCQSiUQikUgkPxEZYy6RSCQSiUQikUgkEslPRCrmEolEIpFIJBKJRCKR/ESkYi6RSCQSiUQikUgkEslPRCrmEolEIpFIJBKJRCKR/ESkYi6RSCQSiUQikUgkEslPRCrmEolEIpFIJBKJRCKR/ET+HxcQ+rQPK5ezAAAAAElFTkSuQmCC\n", + "text/plain": [ + "<Figure size 1080x576 with 10 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Showing all terms in Eq.1 \n", + "\n", + "tfact = (6/dt) # This is for an easier comparison between the 6-h vs 1-h results...\n", + "print('Simulation on day ',time[stp])\n", + "\n", + "fig1 = plt.figure(figsize=(15, 8))\n", + "ax1 = plt.subplot(2,3,1,projection=ccrs.PlateCarree())\n", + "ax1.set_extent([lonmin, lonmax, latmin, latmax])\n", + "\n", + "#ax1.coastlines('50m', linewidth=1.5,color='k')\n", + "clevs= np.arange(-11.,12,1)\n", + "cd = plt.contourf(lons,lats,tfact*dp_sfc_dt[stp,:,:]/100,clevs,cmap='RdBu_r',extend='both',transform=ccrs.PlateCarree())\n", + "cs = plt.contour(lons,lats,mslp[stp,:,:]/100,clevs_mslp,colors='k',linewidths=0.4,transform=ccrs.PlateCarree())\n", + "clabels = plt.clabel(cs, inline=True,fmt='%1.f', fontsize=8)\n", + "[txt.set_bbox(dict(facecolor='white', edgecolor='none', alpha=0.6, pad=0.5)) for txt in clabels]\n", + "for l in clabels:\n", + " l.set_rotation(0)\n", + "gl = ax1.gridlines(linewidth=0)\n", + "gl.xlabels_bottom = gl.ylabels_left = True\n", + "gl.xformatter =LONGITUDE_FORMATTER\n", + "gl.yformatter =LATITUDE_FORMATTER\n", + "gl.xlocator = mticker.FixedLocator(np.arange(-180,180,5))\n", + "gl.ylocator = mticker.FixedLocator(np.arange(10,90,5))\n", + "gl.xlabel_style = {'size': 13, 'color': 'k'}\n", + "gl.ylabel_style = {'size': 13, 'color': 'k'}\n", + "plt.colorbar(cd,label='hPa/6h',pad=0.025)\n", + "plt.title('dP_dt')\n", + "\n", + "\n", + "ax1 = plt.subplot(2,3,2,projection=ccrs.PlateCarree())\n", + "ax1.set_extent([lonmin, lonmax, latmin, latmax]) \n", + "#ax1.coastlines('50m', linewidth=1.5,color='k')\n", + "clevs= np.arange(-11.,12,1)\n", + "cd = plt.contourf(lons,lats,tfact*dfi_upl_dt[stp,:,:]/100,clevs,cmap='RdBu_r',extend='both',transform=ccrs.PlateCarree())\n", + "cs = plt.contour(lons,lats,mslp[stp,:,:]/100,clevs_mslp,colors='k',linewidths=0.4,transform=ccrs.PlateCarree())\n", + "clabels = plt.clabel(cs, inline=True,fmt='%1.f', fontsize=8)\n", + "[txt.set_bbox(dict(facecolor='white', edgecolor='none', alpha=0.6, pad=0.5)) for txt in clabels]\n", + "for l in clabels:\n", + " l.set_rotation(0)\n", + "gl = ax1.gridlines(linewidth=0)\n", + "gl.xlabels_bottom = gl.ylabels_left = True\n", + "gl.xformatter =LONGITUDE_FORMATTER\n", + "gl.yformatter =LATITUDE_FORMATTER\n", + "gl.xlocator = mticker.FixedLocator(np.arange(-180,180,5))\n", + "gl.ylocator = mticker.FixedLocator(np.arange(10,90,5))\n", + "gl.xlabel_style = {'size': 13, 'color': 'k'}\n", + "gl.ylabel_style = {'size': 13, 'color': 'k'}\n", + "plt.colorbar(cd,label='hPa/6h',pad=0.025)\n", + "plt.title('dfi_dt')\n", + "\n", + "ax1 = plt.subplot(2,3,3,projection=ccrs.PlateCarree())\n", + "ax1.set_extent([lonmin, lonmax, latmin, latmax]) \n", + "#ax1.coastlines('50m', linewidth=1.5,color='k')\n", + "clevs= np.arange(-11.,12,1)\n", + "cd = plt.contourf(lons,lats,tfact*ITT[stp,:,:]/100,clevs,cmap='RdBu_r',extend='both',transform=ccrs.PlateCarree())\n", + "cs = plt.contour(lons,lats,mslp[stp,:,:]/100,clevs_mslp,colors='k',linewidths=0.4,transform=ccrs.PlateCarree())\n", + "clabels = plt.clabel(cs, inline=True,fmt='%1.f', fontsize=8)\n", + "[txt.set_bbox(dict(facecolor='white', edgecolor='none', alpha=0.6, pad=0.5)) for txt in clabels]\n", + "for l in clabels:\n", + " l.set_rotation(0)\n", + "gl = ax1.gridlines(linewidth=0)\n", + "gl.xlabels_bottom = gl.ylabels_left = True\n", + "gl.xformatter =LONGITUDE_FORMATTER\n", + "gl.yformatter =LATITUDE_FORMATTER\n", + "gl.xlocator = mticker.FixedLocator(np.arange(-180,180,5))\n", + "gl.ylocator = mticker.FixedLocator(np.arange(10,90,5))\n", + "gl.xlabel_style = {'size': 13, 'color': 'k'}\n", + "gl.ylabel_style = {'size': 13, 'color': 'k'}\n", + "plt.colorbar(cd,label='hPa/6h',pad=0.025)\n", + "plt.title('ITT')\n", + "\n", + "ax1 = plt.subplot(2,3,4,projection=ccrs.PlateCarree())\n", + "ax1.set_extent([lonmin, lonmax, latmin, latmax]) \n", + "#ax1.coastlines('50m', linewidth=1.5,color='k')\n", + "#clevs= np.arange(-2.,2.4,0.4)\n", + "cd = plt.contourf(lons,lats,tfact*EP_avg[stp,:,:]/100,clevs,cmap='RdBu_r',extend='both',transform=ccrs.PlateCarree())\n", + "#cd = plt.contourf(lons,lats,tfact*evapor[stp,:,:],[-1,-0.8,-0.6,-0.4,-0.2,0],cmap='RdBu_r',extend='both',transform=ccrs.PlateCarree())\n", + "cs = plt.contour(lons,lats,mslp[stp,:,:]/100,clevs_mslp,colors='k',linewidths=0.4,transform=ccrs.PlateCarree())\n", + "clabels = plt.clabel(cs, inline=True,fmt='%1.f', fontsize=8)\n", + "[txt.set_bbox(dict(facecolor='white', edgecolor='none', alpha=0.6, pad=0.5)) for txt in clabels]\n", + "for l in clabels:\n", + " l.set_rotation(0)\n", + "gl = ax1.gridlines(linewidth=0)\n", + "gl.xlabels_bottom = gl.ylabels_left = True\n", + "gl.xformatter =LONGITUDE_FORMATTER\n", + "gl.yformatter =LATITUDE_FORMATTER\n", + "gl.xlocator = mticker.FixedLocator(np.arange(-180,180,5))\n", + "gl.ylocator = mticker.FixedLocator(np.arange(10,90,5))\n", + "gl.xlabel_style = {'size': 13, 'color': 'k'}\n", + "gl.ylabel_style = {'size': 13, 'color': 'k'}\n", + "plt.colorbar(cd,label='hPa/6h',pad=0.025)\n", + "plt.title('E-P')\n", + "\n", + "ax1 = plt.subplot(2,3,5,projection=ccrs.PlateCarree())\n", + "ax1.set_extent([lonmin, lonmax, latmin, latmax]) \n", + "#ax1.coastlines('50m', linewidth=1.5,color='k')\n", + "clevs= np.arange(-11.,12,1)\n", + "cd = plt.contourf(lons,lats,tfact*(PTEeq1_RES[stp,:,:])/100,clevs,cmap='RdBu_r',extend='both',transform=ccrs.PlateCarree())\n", + "cs = plt.contour(lons,lats,mslp[stp,:,:]/100,clevs_mslp,colors='k',linewidths=0.4,transform=ccrs.PlateCarree())\n", + "clabels = plt.clabel(cs, inline=True,fmt='%1.f', fontsize=8)\n", + "[txt.set_bbox(dict(facecolor='white', edgecolor='none', alpha=0.6, pad=0.5)) for txt in clabels]\n", + "for l in clabels:\n", + " l.set_rotation(0)\n", + "gl = ax1.gridlines(linewidth=0)\n", + "gl.xlabels_bottom = gl.ylabels_left = True\n", + "gl.xformatter =LONGITUDE_FORMATTER\n", + "gl.yformatter =LATITUDE_FORMATTER\n", + "gl.xlocator = mticker.FixedLocator(np.arange(-180,180,5))\n", + "gl.ylocator = mticker.FixedLocator(np.arange(10,90,5))\n", + "gl.xlabel_style = {'size': 13, 'color': 'k'}\n", + "gl.ylabel_style = {'size': 13, 'color': 'k'}\n", + "plt.colorbar(cd,label='hPa/6h',pad=0.025)\n", + "plt.title('RES_pte')\n", + "\n", + "\n", + "plt.subplots_adjust(bottom=0.05, right=1,wspace = 0.02, hspace = 0.15,top=1)\n", + "#plt.savefig('PTE_'+exp+'_'+data_dt+'_Eq1ori_upper'+str(int(level[lev]/100))+'hPa.png',\n", + "# bbox_inches='tight',dpi=100)\n", + "plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Simulation on day 7.0\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABSsAAAEgCAYAAABcuib1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOyddZhU1RvHP2e2u5PdZdlduru7kUbF7i4MBOunmBgogoqCqNjdDSolId3duWx3z5zfH7ODs7PTO1t4Ps+zD8yde889c+O953zvG0JKiUKhUCgUCoVCoVAoFAqFQqFQ1Dea+u6AQqFQKBQKhUKhUCgUCoVCoVCAEisVCoVCoVAoFAqFQqFQKBQKRQNBiZUKhUKhUCgUCoVCoVAoFAqFokGgxEqFQqFQKBQKhUKhUCgUCoVC0SBQYqVCoVAoFAqFQqFQKBQKhUKhaBAosVKhUCgUCoVCoVAoFAqFQqFQNAiUWKlQKBoFQgivIOEhh4pwWd99USgUivqigwiUzYSvsoMKheI/ywQRLb2FmxRChNV3XxQKhaI+EEL4BAh3OVxEXLBjQiHlBfvbFArFBUQfESoLqeA0JWRS7iOlLKnvPikUCkVdIoRIjsLrkA8aOhDI9zJV1HefFAqFoi4RQohovHSxeFOOjh0yT9lBhULxn6OXCJEl6DhFMZmUe0kpy+q7T67Gvb47oFAoFLYQQoSE4sFEovEhnxQoBtTgVKFQ/KdIwvdQWwLwxY2VZCKEEFK9dVYoFP8hhhKuS6WUbgTxHakIIZKllIfru18KhUJRVwghwsPwYCIxeCJoiaaUC3BurMLAFQpFg6cDgVkdCMQDDe0I5BCFqNAfhULxX2KSiJEVSGLxJhgPQvFgGOG6+u6XQqFQ1BVCCK9t5NKVIASCHgSThO+h+u6XQqFQ1CXtCEjvSBDuCNoTyD4KEEIE13e/XI0SKxUKRYNGCJGYSgnN8QPAHUEHAmlPQEY9d02hUCjqBCGE+IdsehF8fllXgtlKLkIIz/rrmUKhUNQdvQkpScIPH9wAaIIPFUgmiRjlYa5QKP4TCCFS0iglBV8APNDQnkA6EZhdz11zOUqsVCgUDZoU/I52IxiNkWd7c/w4RylCiKR67JpCoVDUCSOI0AXhQQj/6pK+uJGEL30IKa3HrikUCkWdIIQI3k8B7QmosrwnwWwgGyHEBRcCqVAoFKYk4XuwByEIo7lxC/w4TQlCiIR67JrLUTkrFQpFg2WKiJElaInHp8pygaA7weyj4DAXYH4OhUKhMCCE8AjHk1FEVPuuPYGGnG3BUsqcuu+dQqFQ1A0dCcwOxgMPE1+bUDwJxIP2BOpQY0KFQnEBY0gJ1ATvKss1CLoRzCEKj3MB2UHlWalQKBok+rDHHHoRYvb7OHwoRzJZhf4oFIoLmH6EljXFBz8z75f1oT8BF2Toj0KhUBgQQjQ9SwktKlMCmdKNIDbr02J41HHXFAqFok4wpATqaZQSyJh4vClGixCic932rPZQYqVCoWiQjCZS54cbYVhOx9aTYP5RoT8KheICRQgRsId8OhJocZ0W+F+QoT8KhUJhoDl+x0xTAhnjhzsJ+NCf0LI67ppCoVDUCYaUQKEW5sYCQU9CiMN7y4UyN1Zh4AqFosEhhHCPwJMRZsIejVGhPwqF4kKmC0F5frhVC3s0xhD6c/gCC/1RKBQK0KcEKjaTEsiUjgTyvT4tRoCUMr+OuqdQKBS1jrWUQMaE44kPbowm8oKYGyvPSoVC0eAYQGh5E7zxt+N9ilHoj3r5olAoLhiEEE1OUEwr/G2uG483RfrQn0613zOFQqGoG2ylBDLGEw1tCKALQXl10DWFQqGoM/oRWpZgISWQKd0JZhM5CCHc6qBrtYoSKxUKRYNCCOG3i3w6EWTX+kahP+W13DWFQqGoM1rid6orQRbDHo0xCv3ZeqGE/igUCoU9KYGMaYU/JyhGCBFby11TKBSKOkEIEbiHfDpZSQlkTADuNMGbgYRV1HLXah0lVioUigZFX0IKWuKPlwPmqSOB7EZF/CgUigsDIUR8LhU0tRH2aEw4nga72bPWOqZQKBR1yFZy6W6hmIQ53BB0JpAOBJ6uvV4pFApF3dGLkNzW+FtNCWRKJ4LYReN3MldhkwqFokGxhuynLnGPfjxU44jnuhue5cqZSKFQXDCEhAkPAtwci+CJ1HpyWBZZT2ikUCgUjYRUSrdEu3t2cWSbGOnFMm3G+7XVJ4VCoahL1pP9/BRN1EP+GvvFSn80uFU0/rmx8qxUKBQKhUKhUCgUCoVCoVAoFA0CJVYqFAqFQqFQKBQKhUKhUCgUigaBEisVCoVCoVAoFAqFQqFQKBQKRYNAiZUKhUKhUCgUCoVCoVAoFAqFokGgxEqFQqFQKBQKhUKhUCgUCoVC0SBQYqVCoVAoFAqFQqFQKBQKhUKhaBAosVKhUCgUCoVCoVAoFAqFQqFQNAjc67sDiv8mQohjwLvAjMpF7oAHUFz5OR2IqPy/G+AFFBm2l1L610lHFRcUQohpwM2AAN6WUr5avz1SNAaEEAVGH32BUkBb+flWKeXHQohBwHJgppTyRaNtE4GjQGHlokJgIzBPSrlMCOENpAKTpZR/mex3LhAvpbzY5T9K0eDxcRNEeTk2TPMr00B5LXVIoahECPE78I+U8nGT5ROAhcAfwJXABCnlD0bfvwpMA64HYoFHKr8yHQMel1K2rc3foGg8OGoHdTrtv1eSQqFQXACEeLgR5e6YLfTQiVrqTd2hPCsV9claKaV/pfB4G7DO8FlK2czou9HAGaPvlFCpcBghRDv0QmUPoCMwVgjRvH57pWgMmNieE8A4o2UfV652LZBV+a85giu37wgsA74VQlwnpSwBPgeuMV5ZCOEGXA68Xws/SaFQKGrCEuBqIYTpTOhq4GOgAjiAkT0UQrgDlwCHAaSUz1kZAyqhUqFQNAqEEMeEEMVCiHwhRI4QYq0Q4jYhhKby+yVCiGdMtvETQhQIIX6x0l6BECJbCPGzECK+rn6PQtGQUGKlQqH4r9AaWC+lLJJSVgArgUn13CfFBYAQwhe4GLgTaC6E6GZpXSllqpRyHjALeKFyMPs+MKWyHQMj0T+jf7Wx74eEEIcrB8l7hBCTKpd7VQ6a2xmtG1E5AI6s/DxDCHFWCHFGCHGTEEIKIVKcOggKheK/xHdAKNDfsEAIEQKMBT6oXPQj0LdyOcAoYAd6T/IaIYSYJ4Q4KYTIE0JsFkL0r1weW2njQo3W7SyEyBBCeAgh3IQQL1d+PiqEuKvS7qlIM4VCURPGSSkDgKbA88BM4B0r61+MPkpnhBAixkJ7/kAMcA54zdEOVb70VigaNUqsVCgU/xV2AQOEEGGVotAYQL2pVLiCKUAB8CXwOyZekhb4BogEWkop1wJngclG318NfFIprFvjMHrBIAh4EvhICBEjpSyt3MflRuteCqyUUqYJIUYB9wPDgBRgoB19VigUCqSUxcAXVLV1lwL7pJTbKz+XAD8Al1V+voZ/hcyashHohF4w/QT4UgjhLaU8A6xDb5MNXAF8JaUsRx9dMbpy2y7ARBf1R6FQKJBS5lamvpgKXGv8wtiEa4G30L/AudJKeyXAV0AbW/uu9OB8UwjxixCiEBhc+QLnayFEeuULmnuM1u8hhNhU+dLnnBDiFQd+qkJRJyixUqFQNDiaeLvTwt/ToT8vjUAIcUvlg9fwd4uhTSnlXuAF9CG4vwHb0YeqKRQ15VrgcymlFv3E+XIhhIeNbc5U/mvwAPqAyom/ECIQmIAdIeBSyi+llGeklDop5efAQfSpDjD0xWj1KyqXgV5YeE9KuVtKWYRe6FQoFAp7eR+4RAjhU/n5GqrbrA+Aa4QQQehfiHznih1LKT+SUmZKKSuklC+jz2vesvLr83avMkz9MqravXlSylNSymz0HlAKhULhUqSUG4BTGHmfGxBCJACD0KfM+BgrL7grnSumAuvt3PUVwLNAALAWvYf7dqAJMBS4VwgxsnLdeejtYSCQjP4FlELRoFBipUKhuGCQUi6SUnYz+ltk8v07UsouUsoB6PMLHqyfniouFCrzCA1GP+AE+B7wBi6ysWmTyn+zKv/9AP1b8Cbow4MOSSm32rH/a4QQ2ypDvnOAdkB45dd/AT5CiJ5CiKbovYm+rfwuFjhp1JTx/xUKhcIqUsq/0RdDnCCESAK6868oaLxOBPAY8FOlR2aNEUI8IITYK4TIrbR7Qfxr974CegshYoEBgARWV36n7J5CoagrzvDvC2ljrgF2SCn3AJ8CbYUQnU3W+a7StuUBw4GX7Nzn91LKNVJKHdAeiJBSPiWlLJNSHgHe5l9v93IgRQgRLqUskFLaK4gqFHWGEisVCsV/BqNcfQnoQ24/rd8eKS4Arkb/LP1RCJEKHEEvVtoKBZ8EpAH7AaSUJ9BPqK+sbNNmuGSlAPk2cBcQJqUMRp/uQFS2qUP/pvxy9G/bf5JS5ldufhaIM2pOpURQKBSOYvAIvxpYKqU8Z2adj4AHcFEIeGV+ypnovSRDKu1eLv/avRxgaeX3VwCfSill5ebK7ikUirqiCf++kDbmGipfcFemrlhJ9eKMEyttmxf6Md5KIUS0Hfs0fgHTFIg1vMyuFD8fAaIqv78RaAHsE0JsFEKMtetXKRR1iEoorVAo/kt8LYQIQ/828c7KMDCFoiZcgz6E+i2jZT3Q51ALM11ZCBGFviLuE8C0SkHRwPvA00A0+km2LfzQew2lV7Z9PXrPSmM+QR96mQk8arT8C+BdIcSHwHHgcTv2p1AoFMZ8gN5rsgNwn4V15qN/EbPKRfsMQJ/CJR1wF0I8BASarPMJekEzAX3oo4EvgGlCiJ+Bwsp1FAqFwqUIIbqjFyv/BnoaLe8DNAceFkI8ULk4AL135XTTPOWV6YW+EUIsBPqh9xy3hjT6/0ngqJSyudkVpTyIPm2RBr0Dx1dCiDApZaG9v1OhqG2UWKlQKP4zSCmr5Y5RKJxFCNELSATekFKmG331gxDiEHqPxp8ql+VU5k8rBDYBl0gpfzNp8ivgdeBPKeVZW/uXUu4RQryMvqCEDr1wsMZknX8qE63HYlRZXEr5qxBiPrC8ctun0XtHldrz2xW1j6+bhiY+jg3TAnUa/asYhaIOkFIeE0KsBTqiL6Zjbp0s4E8X7vZ39LbsAHp7Opfq4dw/AIuBE0YFf0Dvid4CfVGLPPRC6iBA68L+KVyMo3ZQW1EBLkk4oFA4RmXO8QHo80F+JKXcqR/6neda9LnzjaNvfNDbpNHoc0watyeA8UAIsNfB7mwA8oQQM9HbujKgNeAjpdwohLgK+F1KmV7pdQnKFjZYwrzcaOLpmC30KBG2V2rgKLFSUS9IKRNNPi8BllhYdwVVw3YUCoWiXjC2XZX5fbwtrNfW6KNdo4XKt9kBDvbnUap6TJpbJ8XC8tnAbAAhRGv0oqVNkVShUCgMSCkHmVl2nZX1+5lZtgQLY0Az62rRhy/eaLT4RZN1ijFjSyu9lu6r/EMIMRo4YxQmrlAoFM7woxCiAv04ag/wClUjbhBCeKNPT3GNlDLV5LsP0QuZBrHyRyGEFr2n5HHgWinlbkc6JKXUCiHGAS8DR9GHlO9H7w0PMAp4pbKIz3Hgssrq4wpFg0GJlQqFQqFQ/AcRQkwCfkYfTv4C8KNpCJJCoVBcKFRWLh+MPqdlFPp0HN9a3UihUCisYOqAY+b764w+hlhY5w5727NzP4ZlZ9BH+Zhb/ypn9qNQ1CWqwI5CoVAoFA0UIUSCEKLAwl9CDZu/FX3et8PoQ39ur3GHFQqFooYIIfpbsns1bRp9juFsYCv6sEqVr1ehUCgUigaI8qxUKBQKhaKBUlkl3L+W2h5VG+0qFApFTZBSrqYW7J6Usgjo7up2FQqFoi4QQuxGX+XblFullB/XdX8UitpGeVYqFAqFQqFQ/EcQQsQLIZYLIfYKIXYLIaaZfD9dCCGFEOH11UeFQqGoTZQdVDRGpJRtpZT+Zv6UUKlwmMZgB5VnpUKhUCgUCsV/hwrgASnlFiFEALBZCLGssrp8PDAcOFG/XVQoFIpaRdlBhULxX6fB28FGKVYOGDJMZmdl1Xc3FA7g1gB8eN2kzmVtaUX9/iCt635KvZ2b7Vu3/q7CUJ1nxLBhMjMrs767oVAoHEBnUhh+Wz3YQSnlWSqrvksp84UQe4Em6CuYzgVmAN/XZZ+cpf+QYTI7s2Z20E0jrH5v42s0/FtI2vT8OoquAdWk1hp1xvQYaR3sqK1j7AimTRkff0s4c17MtqvTWlxf6P6tTSY1DkyvNG7Vd2Ojvw3pOnEES9fN7h3blB2sISOHDJQZWdmub9iJ69PpXdlxL9cpVu73esHMuTDFkXPjyPE2bdfcrWzp/rbX/ltazeXXha3zanycHbkGDNvZ2Mb4WQFVnxdbtu+sU1vYGOxgoxQrs7Oy+GbpyvruxnlSC8rsWi/a39Ohdmyt3xgJ87FtaGsbf12RS9op0Pi6pB1HySx23cOzPs9HWKCfCq2pAZlZmaxduby+u6FQKBygRONV5XOwv2+92kEhRCLQGfhHCDEeOC2l3C5E7UxGXU1edha/r/i71tr397T+Ns9bV1rls+n5dZSCMvNvIvPLtAR41t7z2t9TY3Hftsgvs29M4qr+m54T03NgCWfPjWn7muIcs+tpiv5drvMNdmgfOp/q61vqr7PnqSFgeq0Yrom4UH9lB2tIRlY265f+4NI2Hbku4d9r05bdtIW997QrMfwuZ/ZtySbYi84n2O42zJ0TcMy+OXt8ze3D1B5Zusftxdy1Ux/Xgzlqep7Pt2P0rICqzwvPqGb1Zgsbqh1slGJlXVFWWkp2dha52dnk5+dRkJ9HQX4+Bfn5pGbloK2oQCclUqdDp9OBlLh7euLh4YG7hyeenp54ennh4+uPr58/Pn5++Pr54x8YSHBoOO4eHlb37yoRtCFhENrqUyQziIw1FS0N29eXaOkKMou1DUJANiUs2Ism/o4dV4/CBuC+ewGi1WrJzskhOyub7Jwc8gsKyM/PJy8/n/y8fEpKS5BSoqu0gzqdxN3dTW//PDzx9NLbQn8/P/1fgD8B/v4EBAQSER6Gn59fff9EhaJB4uXhRmigYwKLT4UbFDNSCPGE0eJFUspFpusKIfyBr4F70YcCPQqMcL7HFx4FZTr8PTVIKcnPzyc7O5vs7Czy8/LJz88jv3JMWFhYeN4GGuyhEAJPT088PDzx8vLEw9MTXx9f/Pz98PcPqLSFAYSGhhIUHExRheV+1KZQafidzhLg6WaXYFnbgqslaiogm2JJWHBUoLSFt67U5X2vb5w9/47awdwyHeTQQgixyWixsoMOYFEUKykhOzuL7Kxs8vLy9HbQYA8LCvRz4/PjQb099PTU2z8vT/140MvbGz8/PwIq7aC/fwBBwUGEhYXj4eFBicarzgQq03vMmX0bHytnBS1Lx9vVuFKohOovumpq4w3P3AsZnW8wmqIch58ZAb4ehPo6Zgvd8wRCiFuAW4wWV7OFDdkO2hQrzVSdcgO8ga6V8e3XAE8AMcBO4A4p5Waj7Wei/+GHgKuklMcrl68ABgIDpZSrjNY/BDwjpVxiqU+nT57gsQfuOf/Z29ub4NBQQkLDCA6p/Dc0FD8/P3x8/fD19cXH1w8hBLk52WRmZJCVkU5mRjoZ6WmknztHdlYmUlZ1M/b09CQoJITg4BACgoLwDwgEnyAiI5uQ2CEAd3d3hEaDRqNBVIYFayvKKSsro7yslPLycspKiikuKiQnO5Ozp45TVFhAQV4uOdlZaMvLq+wvOCyCJk0TiY1vSmxCM8KjotFobN+w1kTNhipkKtHSecJ83FzqXdkQzkVjoKHZwjNnznLntHsBkBLc3dwIDgkmPDSMsLBQwsPCCA0NJTAwAF9fX/x8/fDz88XT05PCwkLS0jNIT08nPSOdc2npnDuXxrlz5yivqKhsUyKEQKMRBAcHExYaSlBQEEGBgQQGBBAdFUVAgD9enl5o3NzQaDRoNAIhBFqtjrKyUkpLSykrK6ektISiwiIKCgtJTUujsKCA3Lw8MjOzKCz69/6TUuLv50dSs0SaJSaSlNSMpgkJeHldWBM2haKW+V1KeZe1FYQQHugHph9LKb8RQrQHmgGGt+hxwBYhRA8pZarRdg3KDubm5DDj3rsM6yKEwM8/gNCwMEJDwwgJDSU0LIygoGB8/fTjQV9fP7x9fCgvLyczI6NyLJhORkY66efOkZ52jvz8fITQ21YhwEMj8A/QC4vBwcEEBgUREBBAXFw8AYEB+Pn64ebmBkJU2kINOp2O8rIyysrKKC0rpay0jOLiYgoK8jl9+hSFBQUUFBSQlZVFembW+TGolODh4U6T+ASaNk0kIbEZiUlJBAYGWTul9YphgmpLtDR8X5MJrelk1pK44Cqhz1z7BmHBZZ42xTlmxQpXCpY18Z5tpByQUl5nbYULxQ4CHD91httmzjr/2dfHh5CQEMLDQgkLCyMsLIzQkBD8/fzw9fPFz9cXPz8/3EpyycrOIS0jk/SMTNIyMkhLz+Bsdj6ZmZlI+e94EMDL05PAsAhCQkIJCtbbwbDwcBKbJeLvH4CHh8f5ubFhDmtsB8vLyiguLqGwsICMjAyOHz9GfkEBOdnZZGVmUmEYgyJxRxIZEUFSUjOaJTYlqVkzYmNizvfFEpbuGUe8sJ0V9VxtG+zFHltRWwKwwR67yr7Ya+MbM65+uWWNSmGy2osaA87awbrCplgppWxr/FkI8SwwsdIY9wPeBCYBK4FpwC9CiOZSyjwhRAowCEgC+gBPA9cYNZcJzBFC9JSmSqEVmsQn8MzL8w39o6S4mNycbLKyMsnOzCQrM4Mjhw5QVFhIcVEhRUVFFBcVIaUkKDiEsPBwwsIjCIuIIDE5hcjIaIJDQ/UDTSvY6+noDFJKsjLSOHPiOGdOHGPL+r/JSD2LRKLRuNEkIZHE5i1p1aEzoeGRdrdbG312pQBqLLrVl1hmKjI6K142dk9LJVpap6HZwtjYGN6Y9+r5z+Xl5eTk5pKZmUlGZiaZmVls37mT/Px8CguLKCoqpKiomLLycvz9/IiICCciIoLI8HA6tGtH1NBIoiIj610YzM/P5+ixYxw5eoyff/2No0ePUV5RgZSSqMhIWrdqSccO7WnZooVdL3MUCkVVhH70+Q6wV0r5CoCUcicQabTOMaCblDLDeNuGZgdDQoJZsGDB+c86nY6zmTlkZ2WRlZlJdlYmx48eJTcnp9IGFlFUWEhJSTHu7u6EhUcQERlJWHgEcfHxdOnajcioaPz8/atNiF3p7WFrUldeXs6pkyc4cewY27Zs4ruvviAvLw8AX19fmrdsSavWbWnXsRM+Pj4u61dNqW8vy7r2RKwvYcJRDNeuqwRLW+e4PjxoHeVCsoMATRPiWTD/VUP/KC4uJis7m8zMLDIyM0lPT2ffvn0UFhVVjgmLKCouQqfTERISQlSQP5ER4USGh9EyJZmoxOaEhYZaHGfVxb0mpSQ39SRHjh7lyJFjLF+xirOpqUgpcXPTkJyUROuWLenatQuRERE223NE9KqpQOZIaHdtU1Ohz95z7coXIg1NsLR2Lk3Dug3UpSDpLDWxg3WFQ2HgQgh34AZgduWim4FvpJRLK79/CbgLvYF+H9BU/rkZ/d+Yt4FrgcuBT5z5AUIIfHx98fH1JTq2iTNNVKM2RUlLCCEIi4giLCKK9l17VPmuoqKCsyePc/TAPr58byHZGem4ubmR1LINbTt3I7lVWzw8686D0vj4XGjCJVQVG50RLi8E0VIJltZpCLbQNNm1h4cHEeHhRIQ37lSgAQEBdGjfng7t21dZLqXkXFoae/bu47ely5j3+gJ0Oh0J8fH07N6Nbl27EhISXD+dVigaF32Bq4GdQohtlcsekVL+4kgjDcEOmqLRaGgSEUqTiFAgxew61iZT+WVapL7vZrdzVrB0dALn4eFBs6RkmiUlA0OrfFdYUMChgwfYs2sn3339BSUlpfj7+9O5Wze6dOtBfEJThBBV+lqXHnV1IViam8jWJubaN544u0KYqC3vStNrtqaCgr3nFhq8aHnB2kEhRKUXuS9xTeyfGxtfw/URlmx6nQshCI5JoE9UFH169aryXUVFBUePHmP33r3Mf/0N0jMycXNzo1W7DvTo2ZM2bdvhaWZu3BAFS0v3fk1xhbhnzfaYO3eu9LJ05JlbH9euJZHS9PsGLlq6xA7WJo7mrJwIBAEfVH7uCCwxfCmllEKIrZXLkVIeEEKsAw5X/l1p0l4h8DjwnBDiayllvfr41odIaQ/u7u7EN0smvlkyA0ZeBOiN9JH9e9izbRM/ffERFRUV+AcE0Kp9Z9p07kZMXIJNN3lXYDhmrg43byhefjUJFffXFTVKwbK+j3kjYSIXsC1siAghiI6KIjoqiiGDBgJ6AfPkqVP8s2Ejz780h5zcXNzd3Wjfti3du3WjY4f2uLur1MwKhTFSyr/BeslQKWWiHU1N5AK1g5aENOMJmLVJVG2Kg37+/nTs3IWOnbug1zQgLy+X7Vu28M0Xn3HyxAkAkps1pVv37nTr3gONt3+t9ccc9e1hWReYFuRwhZelPYJlYwrnbsjn90K0g/aI2tYELEdEd1ekKKiJaOju7k7z5ik0b57CxPHjAL1H+ua9B9n4zz+8/957lFeUExgYRNeu3ejesycJCQnV2rMmlrpC7GtIHpaO4GhIuen14Co7ZSxY1pd3ZY1fRDmRn7KucKEdrDUcncXdCnwupcyp/BwA5JqskwMEGj5IKWcBs6y0+R56F/lpwIsO9sdlNFSh0hLu7u60aNuBFm07nF9WkJ/Hvh1bWfrdF6SeOom7hwetO3ahc8++xMQ3rVXxsrYqmTd20bK2BEtX5600tKmwmwvWFjYmhBAkxMeTEB/PJVMmA/rB6q7de9iwcSOL31uCVqulRfMUBvTrR+dOHfGwUdhMoVDYzQVtB215h5nz+jAVM+tKVAoMDKL/oMH0HzQY0L/IOXXyBFs3beTJJ5+iID+fkLAwevXpS4/efRDe/naJSPaG+9pbEdzSPhqqoGULcxNnVxTbsIUjXrOm12ldC52N+fzaSYOxg64S1xzZX00ES0e2tUeo8vDwoFeHNnTq1Pn8spzsbLZu3cInH33IyZMn8PTwpHf3Lgzo14/EpglVtq8tIcyaYOkqL0Bzx9JZcc+e82K8jqXrwNrz0Vks/aba8Ka0Zb8NhXJs0VCFysaC3WKlEMIQi9LbaHE++rdJxgSjf1NkF1JKrRBiBvCpEOIde7dTVMc/IJBufQfSra/e66istJS9O7aw7PuvOHXsCEGhofQeNIKOPXrbrEReU1wdKt6YRcvaCgs3HIuaipb1fUwbG8oWNmw8PDzo3KkjnTt1BPST9gMHD7Jq9d+8s+R9AAb068uoESMICwutz64qFI2WxmoHbU2WzHkEWhMtLbVnnCPQkf07gnE/TfsmhCA+oSnxCU0ZP/liADIz0lmxajWzn3ma3JwcmrdqzZCRY2iW0tzpl9k1ESkbO/aIAHWR09KesEtXXnf2es0ac6EKlo3VDrqSuqxab6/4Ztyn4JAQBg8ZyuAhlek0inLZuHkzH3/6GUeOHiU8LIzRo0bSt3evWn2ZbSpYulJcs3b868IbsTZzWpqLYKiL39QYvWEvVBzxrLwV2C6l/Mdo2Xagi+FDZZLOTsA3jnRCSvmrEGIDerf3OqexeVXai6eXFx2796Zjd/0zNCcrk/Ur/uDlx6cjEPQYMITeQ0bg5eVdq/1wpddlQ8tr2VBES2cFSyVUOkWDsIUa7M67/p9GCEHLFi1o2aIFN98IZWVlrPp7Dc+/NIes7Gw6tm/PJRdPJiY6ur67qlA0JhqEHdRJ20KMozm0LIkxrhBcasvDzZpwacAzMJQRYycwYuwEpJQc3LeXP379kSMHDxIWEcHo8ZNo27FznaQQMqUxiVnOTJLrIhTU1RV5raEEy/M0CDtY3zRUwdKwfpXl3t7079uX/n37ApCWns5vS5fx6edf4ObmxohhQ7loQI9qxSZdIS662vuvNo55bZ9HV0UcmKbhcCWO2Gp7vSsVzmOXWCmE8ASuA/5n8tXbwG9CiPeB1cA9gDfwrRN9eRBYD1yYymEDIDg0jFGTpzJq8lRKS0vYsPIvXp01Ey8vHwaMvIgO3XvXSX43c+KwMwJmQygEU6DxdSo03LSNmlIbYeGK6ihb2HiwNNjwBkb07syI3p2RUrJ1xy7mz32Z9Mwshgzoy7iRwwgKDDS7rSupqwTgisaLh687ATGO5Rr0LPfUBxzWIo3NDrpaFLQluNhbEKAm4pI1ociccGm6vhCCFq3bENmsBQAZaaks++FbFr/1BonNWzL0oonEJyadXz/Y2/bYMKekospne7Yx7Xdti1k1KZLkSH49c9vVVLC0VxCqK9GyLgVLR+2gX6GAUw7vxiEamx2sCYbr1tq4pSEKllC1X+a2iYyI4LrJY7hu8hhKSkr59c/l3D3zcfx8fZg0dhR9e3bHzc3NrmNgjKPrO4Kjx7k+K2mb7rdE42W3YGmPrXYkz6ip/TV3bpyx0dYES0dCwG1dK76hPgSEOGYLNeece941JOwdSUwGfICPjRdKKf8WQtyB3jDHADuBMVLKPEc7IqXcLoT4DL3hrzMuVK9KW3h5edN/xBj6jxhDfm4Oq5f9wu/ffoFfQCDDxk+hdYe6fbvubNh4QwgPr0kRHsN2dS1Y1tfx0mq1fP3lF5RXlNfL/l3ABWsLGys1mfwJIejSsT1dOranoqKC5X+vZdbzr1BQWMTIoQMZO2IY3t61M/i21m8lZF6YGA+qt23dwpdffFGPvakR/2k76EwuS2vUZm5Lc2KSqagIEB4ZzeU33Q7A0YP7WPr915w6dpiU1u0YOfFiiHTc89ywH0dES0fELGeER2eFSnuwJCAYCwWuECzt3XddiJbWcpaankdz62RlZvD2m6/XTudqn/+0HTSHJW/G2sBZwdLqet5eTLpoFJMuGkVWdg7f//I7H3z+NSFBQVw2eTxdOra3KkKau7ddWem7pvlBbR2vuhKbwb7nnjM23powbcv+1sQ218TDsqKigk++/h7h5ef0/i9khJSNL5Swfacu8pulK13S1n9VrLRETmYGf/70LXu2byYxpSUjJl5CVGxcvfTF2XDx+hQunRUswbXh4eZEy/o8Llqtlm+++pLff/2VSRdfzJiLxhIe5L9ZStnNdF0hxJNPxyU/3tPfNOWPde44upeDJUV1H79WT3Tt0lmuXbm8vrtRp9RVDpmysjJ+/2slP/3+Bz7e3lw6aRy9u3etl/BIY5SI2XgxDKC3b9/GwjcXkJycws233kZCbLQlO9hhTGTk9keat3BoP++cOM57J0+Ol1L+6JqeN2w6d+kiV6xeY/Y7Z0UaR73FHPEUszTxcrSvNckVaU6sNIeUkoN7dvH791+Rk5lBzwFDGDBiNN4+jo9VHPWydNbDsjbFSGsTfUerMNfGyyprfaiL0HBbIr4xBpEyOyuLm2+/i4E9u5i1gwBCiM1/9+3Xxdx3ljhcWMi127a+L6W8zpHtGjMNeUxYmyKYqzwGrd2TaekZfP7tj2zatp22rVpy+ZQJxDeJtbvthiBWGlOXorK582O8X1d5WNq7b2vUdZ7KiooKPv3me377YwWXT5nA6AlT8AkKtTQmnP1Km7YP9QgJcWgfN2zbyv6CgkY9N679mF9FoyI4LJwp197MFG7m6IF9fPfxe2SknqVLnwEMHDUWXz/H3I9rQmpBmdPh4QbqWqAzFhzrs3J4fYfHG5BS8v233/DTDz8wYfJkFr37HhpN43dJV9QN9ZXg2tPTk3GjhjNu1HAys7L58vufWPT+x6QkNeOqSyaTmFA/L3Bqu5qkonYo0Xixd88eXn9tHs2aJfH8i3MIrINUA/91nMkP6YwIaLqNNbGmJmHIrsBeoRIgvaic4MSWTJ32KBXl5Wxbt4q5Tz6Ch6cnXYeNpU2XnhZf4ET6VR27Ge/XHuHS2XBhw3l21TG2Z7Jr74TfHg/LmthyawJEXXpZWiM/L4+3XnuVzMwMbrrtTlJatKy1/igaDrUpjrkqd6G1YliREeHcfcv1AOzcs4833/2Qs+fOMXRgPyaNGYWfn/W5myu8K1157OrSg9IW9npYGq9vL45cG/bMN1xVME1Kyeff/siPvy1j6qRxfLRwvv5ZWpJbo3YvVP7TYqXyqrROsxatuPXB/6HVatm8ZiXPP/EIGo2GHsPH0bpb72qD1MRgH5f3wXCOnPWyNPUwrEsRz1R4tEe8dKVgWd/s2L6N116dy/CRo6qIlPaEqgfEBBAa5VilZvez/2lzdkHQEKvvhYWGcNv1V3Pb9Vez7+Bh3vnoU06ePsPgfn24ePxFNgepdYGrJ70K15GaW8Scl2bh7u7Oc8+/SFCQYx7jCtdQm6HWptgSL+tLsHREqDTF3cODbgOG0m3AUApyc1j92/f8/sWHxDZNYsjES4mMja+yflphWTXB0t5+OOqFaY6aipauFClNtzEWLMFy6KgxjthzayGvtu4DR7wjHUGn0/HFJx+xZvVK7px2P63atHVp+wrQIcye97rIVWjvi1Tjvpj2tab3rCtFS2tj0fZtWtG+TSsqKir4c9UaHvjfU3h4eHDpxLH069XD4gscV4aDN3ZMbZQjz2dr61m6dmxdG47OPWqSzmPL9p28suBtxo0a/q9IqbCKmt0rbHIyv4zIDr25oUNvivLzWL/0B1Z8+zHteg2gz+jJuHt4AHAspxhomKKlgfoUL+2lsQuWZ86c4bVXXyEwMIi5r72Bv/+/3riqCJDClIYoUFqiVfNknn7kQbRaLX+tXsO9j8wiOiqCu266jqjIiPruXhWMj6saINc9paWlLPrgEzZv3swD0x+keQvHwrkVdY+zodW2CsuYK3hT14Klo0JlWqHll/n+QcGMnnoto6dey6mjh/j10/fJy8li5CVX06JD52ptWBItrfU12Nu93qpH15ZQabyt8T6MRUtLz0NHi3U4I1hau/5rIvav/XsVH733DuMmTWH+W4vV5LyOqc+qyc4UmXGVaAnO/2abuQ2LcvAERvfqyOheHckq1/D5tz+wcMnHjBw6kMsmjcervFDfllGBFXsEy4YydnPWm9FZXOH9bevaqcm9YHou7BUsDdudPrSHOa+/RVhoKAtfeb5BODo0FpRYqTiPQWy0hm9AIEOmXMXgyVeyY+0K3p51P807dmPAhKl4enmfb6c2BEtwnWhpoC5Dxu2tHN5Yhcq8vDzmv/oK+Xn53HXPNOITEs5/p0RKhTkak1BpjJubG8MHDWD4oAEcPHKU5+a+hpenJ3ffcoNDeYzqCuV5WXdIKfniq6/54delXHPtddx862313SWFnThT3Rj04qSxGGitsIyxAFcXgqUz3pSWhMqMourLvaMSuOj2GRQXFrDym4/4+oO3GTf1KtoaRd9Y87K01m+DYGkvpsJmbR1bR4VKc+fZXLELWyGGjthsW300Jz7aSl/gKHv37OKt1+bRoVNnXnljId7e3g63oag5telZWdOCUdawdM3Zuq/t/b2uqtat8w0mGLj1uqu45dor+WXZX9xw93QG9OnJNVOnYHon2hIsLR1TV1Rbt+WVaOn7uhQuTds316ea9sGZ6uim581eUTk3N5eXXplLcXEJ90+fQXxcXKOd+9QX/2mxMtrfs9GEgtsjJIJtr0Z727GFEIKOfQfToc8g9m5ax+Inp9O6Wx8GjL8UN3f3WhUsa4u6qCxuq3J4YxQqdTodX3z2Kcv/+pN773+A1ibhPUqoVBi4EB/QzZOaMW/2Uxw/eYpX31yMm5uG6XfdRmREeH13zSpKwHQ927bvYM78Nxg1egyL31uiPIgaAHUV+u1s6LKr+2ePOGlNPDQVKs0JlObw8fPnqlvvobSkmGVff8LvX37EuKtuPu9pWRPBsq6xNZF1RjSwJFgat2mgJna4IeSiy8nJ5rWXX8LTy5NnX3wF/4CAKt/XZUqG/xIaZK0Jk9aEPXMiu6PXsKuuB1u/395q3bbGqsbeksYIIbhoxFDGDB/CX6vWcNO0GQwd0JerLp2Mu7v9tszS8XNWsLT3+DqSP7KmgqG9v6UuvDrtFd2teb5X87zU6fjg409YuWo1Mx64j9atWlXZn8J+/tNiZUPCVSKiq9qxFyEEbbr3oXW33uxYs5w3H7ubniPG023wqDrthyvJLNbWmZdlYxQnjdmyeTMLXpvP+EmTeOvtd6pNzpVQ+d/lQhQmrdE0Po6Xn3mcw8eOM+uFV4iNiWbarTcQ4F93RclqSkMJP2psZGRmMvuFl/ANCuHV116vkvqiJrh7u+MX5dgzwjPTwyX7bszUZOLrrHdlQ8CSUGnOU9J4mSUR0V6hMtz33+29vH0Ye+WNDJt0OT99vJjfv/qISdffTlyzlDoVLGt7gmvvRNvea9HeXIOm69VlVV9baLVaPv1wCZs2/MM99z9IUkrzKt8bnxNHQz4dtYM+uY3zHm6IGI8LrHkFutLz1xqWPNJrko/QWIw1XV9TVPmdBYHSHEIIhg7sx5ABffl56Z9cc/u9XDZ5PONGDUcIUaf5K2vrxYCri5mBfTavtnBV8RyAfzZs5PUFb3LJxVN4d9FbLntx7R3i5bAtdPNo/EVt//NiZV15V9a1iFjXCCHo2G8I7XsPZN1v37HgkTsZdum1jBw8qL675hR16WXZGCkoKOD5Z58mKCiY+QvexNe3+m9RQuV/k/+aSGlKcmJTFsx5jq07dnH3zP/Ro0snbrn2SofeqjcEXBUidSEjpeSTzz7nrxUrmf7wYzRLSqrvLv3n0Mm6855sKJiKqY6IlPau54xQaYy3ry8X33wPeTlZfPvOAkpLS7j0lmlAhFXB0jSkHmrfw9LZcHxHvZwc3Y89bTcEkRL0Id/z57zIxZddwasLFlX73tLvVl6WjY+aCG21db2aE7mcGYtaEiqN/++oaDl25DBGDxvMx19+y9W3TePOm66ld/euDh9Hw/qO2B1L95Yr8wHba9dsjSktic2OegvX9BpzNrWBpjiHnHINTz07m/DwMN5+a4FKfeEiGtfsqR6oKC/n7KkTnDtzivSzZ0g7e5qMtFS0FRVmlfKCcr1hkFJabFNKWWVbw7revr4EBIfiHxxKQHAowRFRhEXHEhwWicat4RWCMYfGzY2+F02hx/Cx/P7JO6z99TvuuPdBomKb1HfXnKIuRMvGxsoVy/lgyXtMnzGzWsi3ASVUXlhIKUk9d46jx45x+vQZTp0+zenTZygsKqpiyzTasvP2zZoNNLRpzg56eHgQFhpCeGgI4WFhRIaHER8XS3xsLN7eDWNiZg+dO7RjyRtzWbp8JVffPo1brrmSwf371He3HKYmVWkvZE6dPs2sp59l6OBBvL6oule54sLAWDgL9nansCCfE8eOcvb0KVLPnCb1zGlysrOqbGO4FizZQA+Nsd0Dw6VjvLoQEBwSSmhoGKFhYYSFhxPTJI4mcXEIb//z+zAV9uzNN2lJZHQ1gcGhXPvAY+w7fIQP580mIaUlYy6/niYh1b2PrQmStSVYGibztSFYOiLCOZufrya4QigsKyvjrddeJSc7mznzF+Bnxqvc9DeYqwSsaJgYnv+mQp02L52jaXkcP3ny/HjwbOpZKiq06IRbtbGdLZtYrpNYGjL6+fkRGhZW+RdOVHQMLZISiIqKRqPROCRUGouPBiyJj+bWNSx3RLAEfZ7zay67mMtG9mfu4o/45KvveOjeO2kSY9+Y6vx5cECwNL63XREtYNqGsdjprJelrXPnzHjTFd7mzgiWS5ev5P0vvufRh2fSqmVLm+vXZuGrCw0lVlZSXlbGkQN7ObBrO0cP7qe4qAAANzd3ouMSiGkST1xiEl369CcsIup8BWwDNfWclFJSWlxEQW42+TlZ5GdncuboQXauW0luRho6na6yP25ExDUlpmkSMU2TiWiSUK0vDQEPTy/GXncH2empLHx9Lk0iwrj85rvw9Q+wvbEdpBaUuazIjj0o0RJyc3J47pmniU+IZ+Hidxudp5jCNlJKjh0/wdZt29i+Yyfn0tLOfxcVGUmzZonEx8XRoX07msTGVgt3dYVXZVlZGZnZOWRkZpGZlU1qWjpbduzk1OmzlJSWnh/4RkdF0iI5iZYpSbRISWqw4dYjBg9kUN/eLHr/Yz768hsevPt2WjVPdqotRwbatYUrij80ZqSUvLPkfTZt3sKzT80iKDq+vrukqAVyc7LZvWMbW7Zs5fSJ42i1elEwJCiQhKbNiImLo1O3HsTExhEcGuqQWG2PR4tWqyUvN4fsrCyyMjPJyEjnn7V/c/rUKTKzs89P+t29/YhvlkzTpBQSklOQfub74og4aa9XpWFdW21nFJURHhPH5Q8/z5mdG5n78N1cNGESg0aNq9JXcx6ixhXFbQmWNfUWMhYsnSnA4Og+DJ9trW8Pzgp+NREst2/dwoJ5r3DDrbfTs3dfi+uZ/mZTEUF5VjZcysrK2LV3P1u272TvgUMUFOorXHt4eNA0Po6E5Ba0aJ7C4IEDiImOxsPCfNQRYc0YKSVFhYVkZWWSlZlJZkYGB/btZc3yZaSn6efGGqnF3d2NZomJtGieQsvmLUiKCjLbF8N4yZIQacDW986gKcrB28uLh++8kRM5xTz/6htEhIdx7/3TraaOqebtWfnZu3LMZenYGqdaMJfexFF7adqGue2tvfRxRJS19NnedqCqCOiMcGlvWHhWdg6zXniZ5BZtWPLO27g54FymhEr7+M+qDRlpaaxbvYK/162jtKQEd3d3mrVoTct2HRk6dpJDoporQryFEHj7+uHt60d4TJzF9SrKy0k/fYKzxw+zZdUy0k8dR1tRgcbdnSbNmtO0VVsSWrTFx69hTNxDIqK5ZsbTnDiwh1eemEGnnn0Zc/EVaDSN801qXeSzbIj89ccyPv34I2Y+8hgpzZvb3qCBIoQIBhYD7QAJ3CClXFevnapHSkpKWLNuPStXr+bcOb0w2TQhgS6dOnLrzTcSEx1d5x5jnp6exERFEhMVaXEdKSVnz6Vx4NARNm/fyadff09+gf4FU3xcEzq1a0On9m1pElP3/TeHp6cnd918Pdk5ucx5fSHl5WU8fN/dhAQH2d2Gtbf85mgIIuaFJmCePHWKx554kkkTxvPW6/MbTAimomZIKdm7Zzd/r1jOgf37KNNqCQwMpk2HjvQbNoq4ps2qvBSui6Ivbm5uhISGERIaViX3n/FkMaekgsL8PE4cPcyJI4fYvP5vTp4+A4CffwDNWrUlqXV74pql4Gbny0VHhEpz2xgLl+ba6tCzL+2692brsu+Zde9tXHnLXbRo295su8ZeoqYeo5bOgWEC7aynj6lgCc5NKK0JcLUhztUkf5yjgmVZWRnz5ryATqfl1TffxsfH+WKaSqh0Ibqae8+lnjvH8hUr+WfDRopLSvD09KBdSiJdOrRn6uTx1V4KOyIcOfO8FELg5++Pn78/8QlNgarXuOHeLCsr4+ixYxw4eIifvv+aI8dOUFFRgYeHB61bpNCpfVs6tG19vv/Wxke2hEprnpjmvjPXXlxsDK+98DRbd+zizmn3MWzIEK68fGq1ubE1ocxeL0vj42XNw9Kee9EgThrasUfwdPWLH3udIoyvTVPh0pH+WPOy/GXZX3z69fc8/sQskpOa2d2maZ8U1vnPiJVlpaWsX7OKdatXkp2VSVh4BL37D+S2GY/j4+vndLt1nYvS3cODmMRkYhKreuZUlJdz5uhBju/fzaa/fqW4sAA3dw8SmrcmuV1n4lJa1asHZkKLNlz52MtsXv4bT917C1fceg8t2naoUZt17V1p4L/kZVlcXMzsZ54iIjKStxa/69AbowbKPOA3KeXFQghPoPEmDnUCKSU7d+1i2Z9/sW//Aby9vejdsye33XwTsTEx9d09uxFCEBsdRWx0FIP69T6/XErJiVOn2bZzD+989Bmnz6QCkJSYQPfOHenWuQNBgYH11W1CgoN49rEZHDh8hPsencWQ/voqkdZe3jj7ht90u7oWL+HCKtjzxVdfs+zPv5jzwmwiwsOVUNnIOXr6LBtX/smmDevRVmhp2boN/QYO4qbb76Swomo8orkcisbUR8VqA34BgbTu0JnWRlW3AQrycjm2fzeHN6/lz8+XUFhahn9gEM3bd6ZFh85ExtaOR7A9YqdGo6HryEkMGjWWD96cx2/ffcn1dz1AQFBQld9gDkORHmteloaJtEG0rIlgCbZFS2eFGHuwN3zTIBgYCw6O/G57BcszRw/y3DNPc9sdd9Krd+9q31tqw9x5UEJl/VNSUsLKZb+yfP0WMrOyiIqMYPCgQTz39JNVctFbq4JswNYz3hX3iaVr2tPTk5YtWtCyRQs0Q/5Nt1NWVsaeA4fYvnM3X//wCwWFRXh6etCxXRu6de5I+9Ytq0SJOTPeMpfX0l46d2jHksWL+Pb7H7j2xpuZ8cB9tG/Xzm5BzpGwcHOipbPe6MZelvUhWNqDpRyZzvTDVLAskJ488dQzxMfF8d577zVaB6zGwgUtVpaVlbFu9QqWL/2VsrJy+vQfyM133ktoeDhAjQvrNKSiOe4eHiS0aENCizbAJQCUl5Vy8uBeDu7YzLIvluDt40eP4RfRvGN3izfWofQCu/eZEuGY96YQgm5DRtO+90B+eO8NvL//kmvvmk5AoP3eRabUl2AJF76X5c4d23llzkvc98B0OnTsVN/dqTFCiEBgAHAdgJSyDKj96lr1jJSS3Xv28NU333Hi5Ek6tG/HRaNHcf+0e+rF67C2Rav4FiHEt2jHuCn6z1JKjhw5ysbNm3li9svkFxYydEA/JowegZ9f/WjVLZKTeO/1V/j259+45vZ7efCe2+jYtk219VwZimStrboQMhurcJmbm8ujT8yic6dOLFrwOkIIlwkT6s16zdHqrOfGNZBfpiUrI4OlP3/P1o0bCI+IYOCwkcx8+kXCAkztgGMeSpYK3LhaxLRHuDIUr4n0iyApZhAMGnT+u9zsLPZs38qf335O6sljxCe3ZOBFk4iI1UfzOONVWRN8fP249YFHOHboAM8+Op1OfQYyePwlNp9LxmKmPWHhzgqWBhwNDbfk5eiIOOdojjljgdZWPyxhSbD099QgpeTdxW+zZ/du5r+xgEALL/2siZ7G50EJlbWDPUVbysrK+PPXH/ll2V9otVqGDOjHjNuvJzSuZgXi7Mlv7axg6Uj1b2M8PT31kTbt/h1flZaWsn3XHtb+s5E3Fi8h0N+fiydcRN+2yf8mELYDV43PhBBMnjiBEcOG8uIrc/n0ow94+L677H6xbkuwNM7haLg/zYWFO4ozgqVxf0xxNI2UvWNaVxWLNGy/Zes25sx9lYdnTKd9u3Y1alNhHxecWKnValn/9yqW/fojZSWl9BkwiOn/ewp/k7DuxixUOiIoEplCsyEpNBtyMUV52WxbvZQV335KYEgYHfsOoXmnbhzPLa9xPxwRLr18fLn4jgc5e+wwzz02k6Yt2zDk4qvx9Pq3alZisPNhJXXJhShY6nQ63nzjNVLPnuWNtxaZrfTdSEkC0oH3hBAdgc3ANCllYf12q3Y4cPAgn33xFceOH6dd2zZcd83VJDZNqNV9mguXqG9hSghBcnISyclJXHbpJZSXl/PnX8uZ/vSL6HSSQQP6M2TwICIqX2IZqO2q5kIIJo8dzYjBA3hx/pu8+9Fn3H/HLTSNt5wGpLao61yYjaXS+Jp161jw1iKe/N9jpKQ4l2fUFCVQuh5rE6Xc3By+/uYbtvyznqCQEEZcNJ5Lr76+ygtbWxMtcxWq7aG2q1g72q+gkFB6DxpK70FDAdi4bQe/ffkhGalnSGrZlmbd+tG+bdtqYqEtEfNsbkm1ZTFBtqugGkRH35hE7nv+ddb8/iNzHrydERdfScde/S1uZ8iTadje0jE2PTbO5nU0Fv3sDQ23Z1/mBMaaCgjG2xt7WzojWBq2yUhP57FHH2HUqNG8/Oo8u9ow7NcUJVLWDxUVFSxfuYqfvv+WsrIyhg7szwuzHsHfzyiy0IrQaW/+PmMsCafmRDVrQrmr8fLyokfXzvToqvdGz8jM4usff2Hxu0uIDA9jzJD+9O7cAS8v844wtZHPEiDQrYJnHrybPfsPMu3hJ+jWqQM3X3MFXl62xV1LgqWxnTJ8ZyxYWsOely3mRE9b9sYZL0tHj7m5yu01HXfqdDpemTefrKws3l30lqr0XYdcEGKllJK9u3bw4zdfkpmRTq9+A5j+6Cz8A+ov3M9VOCRM2sA3MISuF00FplKQncG+zWtY9uO3VJSXEZGQTLPOvYlObu2Ut5Whn46IljGJydz61Fz2bVnP4ien07pbb/qPuxR3D4/zYrA9oqVBeK5PD0toeGHh/rqiKp8LNLZFx6zMTJ58eDpTJk3gzrunOb3vMB+3GlUE948NJKRZhEPbuG1wRwhxC3CL0eJFUspFlf93B7oAd0sp/xFCzAMeAv7ndEcbGOfS0vjyq2/YvHUrzVNSuPLyyxzOo1JTGroA5eHhwaiRIxg1cgSlpaWsWv03c+fNJz0jk4jwMAYPHEjfPr3xNRHraku89Pfz46mHp3P6bCqvvLEId3c37rvjFqIjHbv+XY3x4LC2hMuGKlrqdDrmzn+NvLx8lixeZLFogCM4I1K6+3riH+NY5IHnyf/WANqtsrK2sfBTWlrKX8t+59dff8Hb24eR4yYy5fKrrYZquaJaqimuFipN84UZ78MZMbV7pw5079SBcwWlHNu/h61rV7L808V4eHrSunN3OvYeQGhE1Pk8lLZES1sCpbVCPEII+o0aT88hI1n65cf88c2nXHTFDbTq1M3mvk1FYeNjYfjOGU9FR4pHGK9j77rmxAJz59gUa+fa+DgY/wZ7vSxNBYm1a9aweNFCnn7uOZo0cexFmrV9OSpaOmoH66jYfYPD+FkqpWTrtu18+fXXZKalMqhfb57730yrxQjt8cysLRwVJl0VWhweFsqt113F7ZeOJTU9g6Wr1vLFj79RVl5Bm+ZJDO3bkw6tW7gsEsl0PGV6zNu0bM6SN+ay4u913HjPgwwd0Jerp06xWtTUkihsbpmxYGkOS+fBlV7R5s6d8W+o5vRgZ2EkUyyJlo5e4+kZGcx4+FGumHopw4cNdWhbV+Id6uewLdR4NCxtwhnsHkkJIYYBz6AvTFECfCGlvEMIcR3wLmCsjPwopbzcaNuZwL3AIeAqKeXxyuUrgIHAQCnlKqP1DwHPSCmXWOqPTqdj1/at/PHrz5w9c4pWbdtz3a13EhXdePKuWcKVAqUl/EPC6TBsAh2GTUBKScaJwxzesoZ/vn2fwIgY2g26iMhExwupHEovcDg8vFWXXrTs3JOd61aw8PFpdO4/nN6jJyKEcEq0hPoRLhuSaGkqVFpaZsw/Gzcxf8FbzH5qFgnxcVC5vj0ipzlqKlg6Q6UwucjC16eAU1LKfyo/f4VerLSbhmYHAU6dPs1PP//Cpi1bCQ0J4dKLp3Dn7bc2iMIyDR0vLy+GDxt6fvCRlp7OipWrmP7QI2g0gvEXXcSQwYNwd3e3OpByBU1ionn5mcc5cuwEz8yZR2hIMNOvn0pwoP3F3mqL2hYuG5I3bmZmFjMeeZQpEycwZvQol7R5IXpTNiRbGODpxrnsPNas/Is1K/6kvLycgUNH8Pjsl/Gy4P1gEHxqw/OxtnNYWhMtwXHhMsrfC9GqLc1atQWgrLSEfVs38eMHb5OVcY42nXvQZ8RYwoNDgOrCoTWR0pEq5AC5FYKek66i06jJ/PnF+3z/yfuMvOpm4lJamV3fOIelJYwFS1veRKbVbqF6aLXBw9I4vNIczoSfG7AWpmnNo9ZUuDX9zdZES2MRQqfTMf/VeeTm5LBw8TvVXtjY+u22qEkV8oZEQ7KDaNzQ6XRs2ryFH3/5hTMnjtGpXVvuu/maenn5ae05XtPrx9Z+q1WVNiNaVdvON5joCLhmyniumTJen+P9RBp/rFzNK29/SNO4GC6fMJrWKc6Fy1st6mNmTDmoX28G9u3Fbz//xLW33MnEkYO5dOxIpF+IzX1ZG3MYC5bG2GuvnL13HbGHljx5q4iODgiXpsWPHBEs165fz5tvLWL2s08T16SJ3ftUuA67RlRCiEHoJ/Y3AT8CAjBOsHVESpliYdsUYBD6EMw+wNPANUarZAJzhBA9pZR2JR86e/oUD997B+06duaya64nNq52EoVbojZCwOtCoLSEEIKIpilENNWfwpzU0+xa8TNrPn+bqKSWdBw+Cb/gULvbc0awFELQoc9g2vcexD/LfmTRE/dx6d0PERIRDVQ95g3d27IhiZb2IKVk/oKFnEtL472FC/D0rHrM/GsoWjYUpJSpQoiTQoiWUsr9wFBgj73bNzQ7eC4tjRtvvZ0mTWIZN2YMt9x0Y6NO8lwXBUtsiUaRERFcevEULr14CgUFBfzw08/cdtc9hAQHc+Xll9Gpo74omOkgx5XiZVJiAq+/+Ay79x3gjkef4cbLJjO0b0+XtV9TLmSPyw0bNzH/jQU8+9QsmibUbsqExkxDsoUF+fk8cNft4O5Bv8FDmfHEs/j6WS+aaOp5BzUXGO3d3pliBrbasuU1aBD0rFHlez9PPHv1o0Ovfuh0OvZu+YdPF7xMcWEB3QcOI7nXEIvVxR0VJ40xFkG9fHwZc+3tFBXk8dM7r+EXGMyoq281u197fp8znqcGzImWUP2ZZSns2dnJvbN55UyvaVteoqZ9y87O4slHH+LiKZMZNXqM1X2ZPlMdeY43dsGyIdlBgJMnT3HLHXfRvWsXbr/qEuJinXPecYV3ZW1XCTdgj3eluQI4tsYuhu/btQ6hXeuWaIpyOHLiFJ9+/yv7Di+mc9tWXDNlHOGhtoVDZ8ZJxn2+aEh/Rg/qy2c//MYN0x9n9kPTiGxq9rIC7Hs5ak4sNhUSTStoG2N879oKBbd0j9tz7pxJP2AJc4Kl8T5MkVIy7/U3yMrO5t23F1qMsLE3NYjCeewdnc0G3pJSfmW0bIud22oq/9yM/m/M28C1wOXAJ/Y0GBEVzQvz37Jz93WPlJKSokKK8vMoys+lpKiwyl956b/5fdIK9Be3h5c3fsFh+AWF4hcSjl9QCG4e9RPHEBzdhH6X3YKUktTDe1n1yQKkTkvnkRcT07ytXW04I1iCXrTsNWI8rbr04vP5z9F5wHB6DLuoyjqNJUS8vkRLWx6UxhQVFXH/zEcYPWI40+68zWa7jgqW9eFdaYO7gY8rK4EfAa53YNsGZQdDQ0J4Z+Gbdu6+figtLSU7J4fc3Fzy8vIpKCwkq7CEwsJCigoL0emqDmLc3d0JCw8nIiKSiIgIIiIj8fPzc5mXqL2DYm9dKf7+/lxx2VSuuGwqaenpfPDRx8yd/xrjLhrDhHFjqwxczA12ajq4atuqBR/MfZaXFr7PstXrmXXfbXjbkbuoLrF34O90+3UoWr797nscOXKEdxe9Ve2FTU24QAewDcYWevv48MKrr+Hubl+or70eaY5gazutVkt+Xi55uTnIkiIKCvIpLCigsKCAgoICtNqqfRJCEBQUTFhEBOHhEYRHRBAcEmrxZZSpaGnseWfI62iPoGeM8bqabr1p26035WWlbFi+jI+ffZCwhBQGTLqcAKMX2TURKi2Rq/Wk/3UPkL1/E28/fi+T73iQNi0cj/oxYI84bWsdRz0mayLI2StIm8P4mrYkWJqyZ/cu5s95gceeepZWyYlm27XltWUOS8/e2shJWIc0GDsIEBMTw+K3Fugbt7eatIVnuLlnrzlvRXPPfmviT0FBAdk5OeTl5ZFfUEBBfsH5cWFpSfXct75+fkRE6G1gREQEcaGBeHp6Oi5wFmT++3//MIu/29pYJikhjkfvvhkpJVt27eWpVxcCcMNlk+jUpqV+H/5hdrdnCXMeg5qibK4Y1pNBHZKZ8excpowZxriJk/T7qMH4yJKHq+l97IyobO3ljQFrBYGMMZsP3ze4+rEyPs/GVJ4Xc9esuXulsLCIaY8/x4RxF3HR6NHm2zTBkfmFwjFsjsyEEH5AD+B3IcQWIAHYBUyXUm6qXC1eCJEKlANrgIellEcBpJQHhBDrgMOVf1ea7KIQeBx4TgjxtZTS5lm0lrehtsnLyebQzj2cO3GUrHNnyc44R3mpvsuGCbUQAk8fH/wCgvD1D8Tbzw9vX3+8fX0JCovAw8uLU9l6wc3gUFxWWkxRThanU3dQmJNFYU4m2ory8+0JjQb/kAiCImMJjmpCcHQTAsOj0bjVnhAmhCAmpQ0xKW0oystm6+9fs/6b94lt2Y5Owyfj5WddjHRWsAQIDo/klifnsuLbT1n4+L0Mv+x6ktp0rLKOEi1rRk5OLnfdP52Hp99P2zat7drGWcESaBCipZRyG9DN0e0aoh10RR49ZykpKeHI0aMcPHSY48dPcDb1LDm5edVERTcvH4KCgggKDiYwIAA/P3/8A/yJjW2Cn58vwmTyXV5WTmZmBvv372PN36tJS0ujsFDvdS4QSCQhIaHExcXRNDGRhISmJDRt6vIiUKaDjsiICKbfdy8VFRX89Muv3H73NCLCw7jh2mtp3tz8G25XhI27u7vz8J03smnHbm6Y/jijBvXlyokX4VaLdt8Z6jJM3NXCpZSS2S/OISIinNnPPG3XNvaGsF2Ig9KGZgvd3d3tHhPa8q6zJliaC73V6XQUZ6ay+8ghTh47SlpqKpkZaedfwhjsoUbjRlhIMIFBQQQEBODnH4C/vz+hYWHEJTStYst9PARSpyM1I4fUs2fZvWMHGRnp5GRnodPJ88Vqvb19iIltQnxCAvFNE4lPSCAkNIyCcp3F/jqLQbhMA/qOHEvfkWM5um83y5a8Tl5BAV0Gj2LwsJEu2ZcxxoV72vToR9NW7fl+0StsCvBn4vW3E2gklBpXCLeFcdi4tfB5ax6KppPu2vYQNPVecub82gqD37B+LZ99+AFzFyzCx8f8uNpZm1ZTD7qGRkOzgwDu7vpz68pID1telgbxJzMrm4OHj3Lw6FFOpedw9mwqZeXlGJxChRAIAX6+fgQHBxMUGIh/gD8B/vq/6OgovDy9KHOrOkcrKiwiPT2dU4cPkJaeQUZGBuUV+uteSom7uxtRkVE0TUigadMEEpsm0CQ29rzyaytU2BFPS8O6Qgi6tm9D1/ZtyMjK5p3Pv2Xum4vp0b4V11xxGQH+1j37HcZIgIuNDOf9uc+w8OMvueHuB7j7lhvo2KOvw02aitH2emPWxT1sqUCQTS9LS0Klg2Rl53DXjMf434P30rKj9emiM8fDljCsqI49I7wQ9G98bgZGA/uA6cAvQogWwCqgPfqcG5HA88AyIURHQ5VdKeUsYJaVfbwHTKv8e9GZH+Io0f6eViuCV5SXc3j/Hvbt2MrhfbspL9evGxgUgk9UAlHxiTTv2I3giKgqVazt4VB6ATHhttczRqetoCArg5y0M+SknuLE7s3kZ5xDW1GOEIKQ2KbENm9LTPM2+AQEO9a4HfgGhtD3kpuQUnJ633aWLnoev5Bwuo+7goCwSJfvD/QPhMGTr6D3qAn8+tEi1v36LZNuuR9fk8JJx3KK7a4enlpQpgrxoM/NN236TJ578gmaJTatk30afvexc1ns27O7TvbpQi5IO2gLKSXHjp9g85YtbN6yhazsHIQQeHl6kpyURPOUZIYNHUxsTCxeIRFOe0DaO9GTUpKTk82ZU6c4cfwYv/y2lJMnj1NcVIyUktCwMDp26kyv7l1pmpjoeo9MTy9GTbyYiePHcebsWRYtfpezqanceN219OhueVDjbCiLYYDcrUNbPp7/PN8vXc5V0x7h4TtvpEPrFk7+mtqlLoRLVwmWOp2ORx9/gq5dunDx5EkOb1+TQaaUkt+XLnN6+5oghHgXGAukSSnbGS2/G7gLqAB+llLOMLN5o7SFNRXucnOy2b19Kxs3beLMieMAeHu4ER0bR2JSMu06diZyVCxh4RG4ubnZHe7taMETA8VFRZw9c5qTJ06wc/tWfv7hO7KzstDpdGg8PGnVth1NW3cgqUVrPFzkKXxetCwso1mrttzyyDOUlZaw+pfvmfPg7XTtP4T+oyc6vT/TQj6muTD9AoO4YvqTlKQe550XnqBT7wEMGnexw3be2MvUnuvCloeiNVwpaJrzoDX0r6Ys/2MZy377mRfnvY67u7vZ67Im9s7apH7nzh1Ot1sT/ot20BRHntE6n2AqctPYtXc/m7btYMfuvZSX651qQkNDaJHUjORmTenXswdRic1rXC3ZnjDhiooKUs+d4/iJExw/foK/16zlzNkzVBQXIQQ0j4+ma/s2dEmMIiTIcv5vZ6NEwkNDmHn7DUgpWfv3Ku5/+iVioyK54+qpREWE2W7ADNU8Bg3empWemwK45ZZbuCw/n7lvLuazr7/jkcceJyDAdn7zat6xDo6njAXLmuSuNGxvC0uFeM6LrcbHyt+5423M2XNp3PfoLF6c9SgJcU2w9utcIdwa/7acnFz27Ntb4zadoYa2sNaxR6zMr/z3PSnlDgAhxGzgQaCPlPIXo3VThRA3A7lAL+BPezohpdQKIWYAnwoh3rG79y6kuKiQHRvXs3ntKvJysnH38KBZi9a07tCZUVMuw8tEkKyNvJXW0Li5ExgRTWBENAltu1T5Tup0ZJ05ztmDe1j92SKK83Lw9PGlabtuJHbqiW+g7Zwa9iKEIK51J+JadyLz9DHWfLEYKXV0H3cl4fFVqw4761VpirevH5NuuY8zRw+xZPYjdB92Ed2HVHXLdlSwhAu3eniBxtdqKPiJk6eY8ej/mPvibGKiox1u3xnvStBPzr/8/DP+XLaUG+6e7vD29cx/wg7qdDq279jJXytWsP/AQYQQNE1IoFuXzjxw372Eh/07GHDmQV3TyZoQgpCQUEJCQmnbvkO17zMz0tmxbRsff/oZJ47rBYX2HTvSf+BgklKa2zWptXcAFdokkYeeeIr8/Hw+ee9tFixcxNSLpzBq5AiL+3FGtDSugjhx5BCG9evFs6+/zVe/LOPhO2/Ep4YTgtrE1KvBVeKlK8LDKyoquP/BmYwdM5oRw4e5pF/2smv3bl6Y8woTxo2t0/0asQR4HfjAsEAIMRiYAHSQUpYKISy9hWx0ttAeMcfUozL1zGnWrVrBts0bqCivICAoiHYdOzNx0hSaNkuyeI+7SqQ0Xs+c3fTx9SUppTlJKdVDoouLi9m0bTu7t2/hu08+oLyslKjYOLr3G0jbTl2riYm2wthNj1+kn+d5T0ZPL2+GTprK4AmXsGX1X7z2v/tIbt2e4Zdcha+N6Btj8dMY43Byc1XA45Kac+9z81n96/fMfeguLr/zQWISEq3uy7i9cF9Ph8PirXnd2vtcc1WORnNeloY+GmOuv+bE1h+++Yrt27byzIuvWEw1YI9QackuWxor5Obm8tILz+PlwrQbDrKE/5AddIaCwkJWrdrAilWrycrOxksjade6Jd06deCaqRfj7W1hHChLoLjEJSHKltAU5+AJJIT6kRDamv6dqkaI6XQ6Du/ewZZde3l2+d9kZ6TjHxTMwF7dGNS7O6HB1asqWxMtzYYdVyKEoG//gfTtP5D9h4/x3Otvo9FouPPay0hJTKjWji3MVr+uFOMM3wUGBPDEjPvYs/8gd955J5dedhljx1jOMWtp3FkTwdKAM7mY7RUtrVUO1xTnmD9WFrB27I8eP8nDT89m/uyniIwI/7d9M8fGlR6mOp2Ojz/9nD+XL+eRmQ+6rF0HWYLztrDWsSlWSilzhRDHAHMJfi0tk+gTDduNlPJXIcQG9G7vdcKxg/tZtfRnTh07grevLx279eKKW+4mOMxBt0cHcFUhnX1n887/v1VMIGFxzQiLa0a7wfr8jqVFhRzfuZG/P3+bkvxc/EMjaNFrME1atK8WeuksYU0SGXX7IxRkZ7Dh+48oys2i+7griUpq6ZL2TYltlsJtz8xn9Q9f8PaTDzDltumERv2bQNoRwRIufNHSHPsPHuLJZ2ezYN4rhIa4TsS2xd49u5k75yVGjbmItxa/2+gqVV/IdjArK5vvf/qJDRs3odVq6di+PWNGjeT+afdUO0+OPKCdnZQ5kpvLdIAUFh7B4GHDGTxsOKDPFbdz+zZ+/flHjh46hJe3F/0HDWHg4KEWi3CY67e1wVRAQAC33nM/ZWVlfPXlF1x5wy1MGX8RE8ePsxiu7UyIuGGQ5Q/MnjmNzTv3cMP0J7jp8oZVgMcarva6dNbLsrS0lLvuvZ/rrrmKvr1717gf9pKXl8fzL81B4+bGgvmvEhAQwFXX3VBn+zcgpVwlhEg0WXw78Lwh3FBKmWZh20ZlCy0JlaZCTnl5OetXr2T18j/Iz80lKjaWPv0HMXXqVMqE9aGys552ljCdDDoqcvn4+NCpa3c6de0O6I/B2VMn2bR2Fb99+wUVFRW0at+R/sNG0zLJdmSFOTHMVGjUaDR0GziMbgOHsW/bJt5+7jFi4psy5oob8A+sKgqYioSmn43FS0vCpRCCAWMm0rnPQD59Yw5hUTFMuPZW3K2kRzFs76xgaYqtc2LuXLtSsATLFeHt5eP33yM97RyPPfmMxXGZI0KlPUgp+fyzT/lz2TKmz5hJy1ateHnOS3Zv7yr+S3YQ7Pce3LV3Pz/8upTDx47j7+dL3wGDmX6//mW1o9Ehrs477cj+NRoNLZMTaZmcyOUT9A4uefkFrNqwhedeX0xOXj4xkRGMHz6Iru1bVxHqLeXjtIeWyYnMe/Ihzqal8/r7n5GVncud115Gu5Yp59sGx0RLa31q07I5H7z5Ku989Bm33nk3Tzz2CLEx/86NLVVGN27fWcHSEXtmqVCZ8faWno+WitiYelmCZdHS2vHes/8gz8yZx1svP09wUKDF9Yz7YglzOY0t2dCdu3bx4stzmTh+HO+9vbDe5sY1sYV1gb1PtgXANCHEp8AB4H6gBFgrhLgI2A6cRu8WPxvIANY70Z8HK7ezmnzGTWNZ4LGVF+/MqZP88v037Nu9k5SWrRk8Zjxxicl1coHUVKg0FigtLW8Vo7/JvHz9aNFzEC16DgIgL+McB9b/xeafP8fLx4+UHgNo2r47Hg6GsJvDPyScIdfdS3F+Lht/+Jj1377PxKuuh4jONW7bFI1Gw7XXXU9m+hjeeuEphlw0gZjO/c9/76hgCfUbGg76a9bVgqU578p9Bw7y7Asvsej1efj718zr1V7vyqKiIl5+6QW0Wi1zXp1PYKD1h0ADp0HZwZpQWFjIz7/+xrI//yIwIIAJ48dx1eWX2ax2ZwtHBy01xZ52OnXpSqcuXQF96OSqFX/xzBOPUlpSSvdevRk6YiQRkVFW27BnMOXp6ckVV17F1Msu54fvvuPqm25jxKhRXDl5vNX8os6GiHdt34YPX32WVxZ/yPK1G5l13231ms/ZUVxVnMfRQXZpaSm33z2Nu++4nc6dOtrewAVIKfnmu+/5/sefeOjBB2jT2r4cwXVMC6C/EOJZ9HZtupRyo4V1G4UtNCdUGgs6Op2ObZs28NuP31GQl0fvAYO484GZBAXrX+QZJlXG1s/Y5tSGSGn8/5oIlsbed8He7gSnNKN1SjNyLr1SX+F7x1Z+/eID3jt9mqZJyQwZOZoWrdtaHQtbEy2NiezbhwF9+/DP5q28//LTBIWGM/aqmwgOC7dLHDS3TlphmdkCPgHBIdzy6LPs3LCWVx66ixtnzCLM6CU2VBU5z+aWEBPk7ZRgafCutCcU3HC+zVXUdWUV7JoU4Png3bcpKS7h3gcfqrLc+Fp1Rqg0tsmmY4eDBw7wwuznGHPRWBa90yBfXDdqO2huHGEq3pgTvY6dOMWX3//E7n37aduqJZdOGkdyYlOEEFWer+YKndhDteIoDoqXFr0CHXwBGhjgz9ihAxg7dAAAJ8+k8uMfK3nzw88JCvBn1KB+DOzVFW8vL7PHyZp3pSkxkRE8++DdZGbn8Pr7nzHv3Y+49cpL6Nah7fm+OxSGb2VdjUbDzddcwUWp53j48VlcMfVSRvbtWn09O66F2sDYPlmzn7a8Lc3lezQdQ5sKvKbLTNm1dz8vzFvA4nkv4etrXT9wZC5k7ZlfWFjIcy+8iMbNjTdfq/mcvJZwxBbWKvbObOYAAcBfgDewFRhd+WZpEPqqZUFAHvokwsOllA4rc1LK7UKIz4DrHN3WgLHoYxAuszIz+enbL9mxdTOxTeIZM2EyN96h9xqylrfSGonBPg6FgteWUGn/ej74d72ICWMvp6Qgj0MbV7N00fNUlJYS2qQpzTr1IrZFOzRuzk92fQKCGHDlHZQWFXJg1Xcs/fRdeo+aSMd+Q1w2IDEIkWERUTz84mt8/s4CNqxewfDrp53PZelI4R0DF6JgaczuPXt54ZVXeWv+XPwseJQ5ii3Bct3aNSx6603uvf8BOnZyvXBdDzQaO2iO8vJyfl+2jJ9++Q0PD3fGjBzJG/PmWq18bM+D2Z5Jl6vESWeosm93L/oMG02fYaOpqKhgyz/reOP118hMTycwOJgeffrRvXdfAgKDbA6mwPyAys3NjUlTpjBx8mR++/UXbrzjHjp06sRt115pdUBir2hpPFh2d3dnxm3Xs3rDFq6+99EGncvSEq4QLe0VLIuLi7njnnuZdteddOpYPY1AbXAuLY3Hn3yaXj178P47bzv0LHT39sQnwjEPeHdfb4CRQognjBYvklIusrUp+kl1L6A78IUQIkkaKiRUpVHaQoPYtm/3Tn786nMyMzLo1K07t9/7ICFhVfNdWbr/7REorU1SHMn7Z1rIydH8h8Z9Nc1z2LdXT/r20ntkHz18iBVLf+WTt9/Ezd2dzl270W/gIBKaJlbb3rgNsB5i37NrZ3p27cyxQwf4+p15CCG45LpbiE9Mstl3U4xDz83Rvkcf4pNb8P4rz9C+ex8GT7iEzOJyu9o2tGuPaFmTqvHGuFKwBPPn2hrvLnoTnU7HLXfe7bI+WKOiooIFr7/GqVOnePnVeQQFVQ/BtYajdtBLJwFaCCE2GS1WdtCI9IxMPvvmBzZv30HT+DgumTCWB+++zZW7sIgrc0/XhPjYaO64ZioA2bl5/Lr8b+5/6iVKSstokdSUIX160qlHrxq9CA4LCeaJe28jL7+AhR9/xfx3P+GKSWMYOaCPq37GeWKjo3hn4Zu8Mm8+y377hSdm3keAnUJYbXlXmrNHjub+tYRxiLi5MbStceX23Xt4+fVFLHzleZtCpatYufpvFi1+h5nT76dD+/YObesVFOCwLdS4uyOEuAW4xWixq21hrSLqYZ81plOXLvKvlX9bXae8vJxlS3/nu+9/xM/fn3GTL6FDl25mJwrOCJbWhEqdTkdRfi55WZkU5GZTWlzE8bRsyktLKC8pQltRgcbNHY2bm/5P44a7pxdefgF4+wXg5eePt18gPgGBHEiznHvQFUgpKTh3knN7N5F9dA8IDTHtezNwxMgae11qy8vYufxnzu1aR5eBI+gxbCxuNfT8MSdArtu2i28XvULfMVPo2G+IxfXsoT4FS1eKlcZeldu27+DVN95kwasvu7xqsjEG4bKwsJAXnnuGwKBg7rn3PotiWFig32YpZbWqJEKIJxdPGPD44GZNHNr/+E9+Y9e5rAb3mr626Nqls1y7crnN9bbv2Mmnn39BRmYmo0YMZ+yY0TYTn9dUpDQMTooKC8nKSCcrM5OiogKKi4ooLiqipLiYkpJiSrR6wc3NzQ03d3fcPTzx8w8gIDAQ/8BA/AICCQgKxtvb8fvZ0QllTnYWG9b+zaZ1a8jNyaFdp86MuGg8UTGxQM1Eig3//MP7S94lLi6ee265kbCwULPrGWOP94LxW/LComKemrcQfz8fZt52A56e9Vct3hU4K15aGmwXFhZy+93TmDn9ftq2aeN8x+xESslnX3zJsj//4qkn/kdcE/P2zDswxJId7HBppxbbX5k4yKH9vrx8E3NXbhkvpfzR2nqVIT8/GZKpCyF+Qx/ys6Ly82Ggl5Qy3aEO1DEdO3eRv/y1+vxncxOjnJIKtPnZ/PTtl+zatoVWbdszbsqlREbHVFvX2QmUtbCv8vJy0jP0lWxzcvMoLiqiKCedouJiiotL0Ll76+2fuzvubm64u7sT4O9PYFAgQYGBBAYGEhwUhGew40XMHBXEysrK2Lp5I3+vXMGJ48eIio5hzLgJdOzcBSGETSHMmniZkZbKF+8tIi8nm8lX3UCPrp0dLg5jq+q3lJLVv3zH5r//4qq7ZyKCq6fZMuehaYyxaGm6P8N3wd7uVq8VU+9ES8/U2q4ibu58fbzwdXz9fLnmhpvNbuOoZyWYCAQmNnjrvsO8MPs5rr3+egYPGWp2+2B/X7N2EEAIsfnUrFu6mPvOEnvPZTH8za/el1JeZ229C8UOwr9jQmvelWVl5fy0dgs///4ngQH+XD5lAl07dbCZZ7tae47k3a5sQ6fTkZ2dQ0ZmBplZWRQWFlFcXExhYSFFxcVUlJcb2UF33N3d8PHxITBQbweDvSAoIICQ4KDz4qG9npX2ekMakFKy72wWy1evZcv2Xbi5aRg1dDAjBg/AT5Y41JYppaVlfPL9L/zx93rGjR3LlHGjq6UMMvcS1x6vVuPztW/bRp59eT7XXXEJwwcNsNm+6fb2YrBtjgqWYPl5a29OZ2PM2Sprx2vzth28vngJb86ZbTn3KlWPibO5Kr11peTn5/PUs7OJiAjn9nunE+Bm/nhZGRPO/viqMQ8NTIlzaN+jF37DjjPpNgcODdkWXnBi5blzqSx55x2OHTvKyFGj6TF4FF42JubOiJXbD5/g7LFDnDt5nNQTRynIzQb0eXSEEPgGBBIYEoZfUDA55W54ePvg4eWDh7c3Gjd3pE6HTluBTqtFq62gorSE0sICSoryKS3Mp6SwgNS0DHRaLfpniAAk7t5+BETFExCdgH9UPD4hkS4No6goKyF153pSd65FSohp35uYTv1wc68+8TWEnNtC6nTsX/cnu1f9Rv9ho+g9emKN+mwqRB7LKUan1fLHF++TevIoM/73FN4+zolyF5pYuWnLVt5ctJg3Xn25xpX57GHNuvW8/tYiHp5+P0kde1hdV4mVNcOaWFlWVsZX33zLr78vpXOnjlx26SVVcthYwp5cLMYUFRZy+NBBjh4+xNEjhzl+8iQ6ne78/e3j60doWBghoWEILz+8fXzw9vXF29sXTy8vQFJRUYFWq0VbUUFZaSmFBfkU5OdRmJ9HQV4e+Xk5lJVWHYS4ubvTJCGR+GbJxCcm0SQh0WUVbwGCvNzYtW0LS3/+gbTUVNp16szoCZMJj9BPfJ0torFn924WL1pIcEgw9z3wIBE2PHnsnRAYD8TXbt7G/Hc/4Yn7bqN1iuMeTA0NZ0RL0wF3Xl4ed95zL4898hAtW9S+52laejqPPj6LAf36cdUVl1l93jUgsfI2IFZK+XhlNds/gYT6eIvuCLbEym2bN/L1Jx/g4+vHuMmX0K5Tl/Pnwxlh0twkSqvVcvTIEQ4fPsThw4c5efggpWX6caWoKMXDw52w0FAiwkIJCgrEz9cXXx9v/Hx98fH2Rmg0evvn5kOFtoLy8goKCgrIzc0jLy+P3Lw8cnNzycvP/3ef6PsRExtLckoKKSkpJCWn2PRYszShtDQ5PHPmNF9+/S07tm0lMiqa8ZOm0L5jp/PfWxMvLQmRoiSfT5cs5viRI9xwxz1EJFYvEmQNSwKi8Xc5mRl8OG82iR2603vM5PPf2xIq7cFYsDTF+JqyZ8Jt6Xw4m27AVltvvfoScTExXH71tef7aNoHZ8RKqO6ZpdPpmDv/NVJTzzHjf7OsVituQGJlo7SDUHVMaDp2OHsujYVLPuLEqdNcNGIoY0cMxcvL+njPlnBlbnySmpbOgUOHOXTkGAePHiMrX+/Yo58bQ0hwMOHh4YSGhuLn66u3gZX/uru7o9VqqaioOG8HS4qLyc3T28G8zDRycvX2UKs1sjvlpQSFhZPSLJHmyUmkJCUSGx1V7bnriGBpOu4oKirm9+UrWfrXSgDG9O/B6EH9avRSuNwrgO9++Z1vf/qNcaOGc+nEsQghLBYmtCf6xjQfular5fW3l3Di1GmeeXQGPj7W54HOeruazh1MbYq154Q5++aMWAn2C5brN25h8UefsuClZ/H09LQqBLtCrFy9ahXvvL2IGQ89TJu2ba32twGJlQ3GFl4wYuWO7dv4YMkSPDzcufaGG2nV6t+cULbyWIJ1wTIz/Rx7tm3m4O4dpKWepaCsgqDQcGKbNScqoRlR8c0ICDbvluts+LelcO6yonwKUk+Sf+4k+edOUJyVBkg0Hp4ENUkmOL45QfEpeHjX3IOuoqyE1B3rOLNtNT4hkSQNHI9feKzF9W2Jl1JKdq/4hQP/LOfKux6gSTPHBqgGzImVBk4e3Muy91/nhmkzSWzuXKGf+hAsXR0C7q8rYv2Gjbz7/oe8PneO1VBfV6DT6Xh53msUFBby2MwHq+XoMxcursTKmmFOrEzPyGDxu0s4cPAgl0yexKiRIyxW9zTGHpGyuLiY7Vs3s3PbNg4d3I9Wq8PH14f4pOY0TUqmabNkomObVHlD7KjXDNj2nAEoLyvl3KkTnD52hDPHj5B68hgV5eUgBDHxTWnWqi3NWrWjVWK8w/s3RUrJ6f07+fGbLykuKmTspEvo3qefQ4KH6cBr7549zHnxBcaOG8/EyZPxkZZ/s0MJ5SsHuQWFRcx47hX6dO3EVZPrreK0y6iJl2Vubi53TruPJ//3GMnJtS/erl6zhkVvv8PsZ5+26E1pTH2IlZU51gYB4cA54AngQ+BdoBP63GjTpZR/ObTzesBUrATIKixh2c8/8Nfvv9CuUxemXH4VASZFXpzNN6nT6di3dy9bt25h544dFBYWoBEakpKTaZ2cSEpyEslRIVUmhY5WKbVWgMtUDDpz9iwHDx3m0KFDHDp8hJzcXIQQhIeF0r5dOzp2aE/zlBTc3NxqXMH04LFTfP/1l+zcsY3+AwczYfLF+JhEa1jybDVgLPAV5Ofx5tyX0Ao3rr3zPnx8/czmkAz2dq/2LLGWa9LwDJFS8s0nH3Dq0F5um/kEXk546FuiNgVL02Nob35Ma23nlVbwxpznaZ6SzMVTLze7naV8cY4IlgbS0tOZ8fCjXHnZVIYP03tTWrv+6kOsvJDsIJgXK7ds38k7H32Gj7c3N197BS1Tks1u64xIdTY1lY2bNrN123bOnjyOEBAVGUHL5skkt2pPSnIyoaH6ubE9tsf0OjNXnMfSeCg7J5dDR45y8MgxDh45ypmzqUgJPj5etG3Vkg5tWtO+TSv8/Hyt2mN7xhpFRcX8+udyfl76JwlxTbjhyqkkxFl+1tsq+CKl5JOvv2PpXyv53x3X0yKpKRRk6lfyD7NbrDQ9h8brbd+9h9lzX+fJhx6weA3Yas8erImWjgiWzoqV5vDWlVY5Fn+v38BHX3zDay88fX6uau3Y1kSs1Gq1zH15DmVlZcx46OFq6QQailjZ0G1hoxYri4qK+OmH7/nzj2W0btOGa669nlCTvEMGHBEsiwry2bHpH7asW01udhahEZG07dyNlu06ER4VzfFc+1zAXS1UWqOirIS800fJOXmQnBMHqCgtwic4kshWXQhNbldj8bIg7TRHVn1PSU4G8d2HEt2hj1VvEWvCZUlhPqs+eRMPTy+uufM+vJzwgjQWLI3FysRgH4oKC3jz+Vm06dSNUZOnOuzF6axYaUtwtHYNutqrctOWrSx65z3eePVlq8U9XEFmVhYPPvw/Lp48gTEjR9hc3yBcWhMrP7l10uMj2tn3QDUw5MUP2X4i9T8nVkopWbt+PZ9/8RVCCG664Trat2tnVxvWHrxarZadO7az9M/lHNq/H28fbzp37U77jp1IadGSYp35Q21LoLRHjHQWnU5H6sljHN23h6P7dpGZloq3jy+tu/Sgbdee1QovGGNPvrLCgnz+/uVbNq5bQ8eu3Zl82ZX4+f/rLeKIcCml5NNPPmbF8uXMfOhhklNSrE4KHRUtpZS898V3bNu9n9kPTcPPFfl4DANoY/zNP3NdjTOCZX5BAbfe9xBPP/MszRJtVz2uCQYvory8fP73yEN257iqL8/KCwVjsfL0qZN8/vGHHDt6hEGjxjJk5Jhq4XVg/T41N0k6efIkq1auYOM//1BeUU6H1i3p1rULHdq1q+YtZrhPq01Qzd07VXasv48cKrhgZTKZnpHBjp272LllA/sPHkbn5knH9u3p17c3ye06VzkutsQo4+dEQZkOnU7H5rUr+fqrLwkODuH6G24kOSXFKW+a/DIte3ftYMGrr9B9xDh6DhmFEMKsGGjvyy/TZ8zRfbv5YuGr3D3jERJTWppdx1ksiZaOCJb2TOhrMpkvKNPx6kvPExnXlCsuNy9UWsNRsfLvtWtZuGgxzz/3DE1iqzs4mBM04kL968Wz8kLCMCYsLCzkm+9+4K8/fqdD29bccOVlhARb9ri2V5TKz89nzdp1rFi1msysLKKjo+jdowedOnUkJjra4lzLEYHH+Fqz9KLGkbFQUVExe/YfYMfuvWzfvYfComLiYmMY1LUdPTu1Pz8ucvaF6MEjR3n3489Jz8jk0oljGT5ogNnjYE6wNN1ndk4uz77wEoGeGh6YOJiAJgn6L+wQLO0J188vKGDGE8/Sv3dPLrv6OrPtOIql/Zo+M873wQ77Zs42WUulYQ+G62rDqr9Y8ukXvP7iM+fHaOZ+g6Uq9rb6YHz9nsrM4+GZM7jsiisYOmy4zfUN+/WMalYvnpUNmUYpVrZs2UoOGjKEoqIixo4bz5Bhw80OSE2xJhadOHaU7374gYN7duHnH0D7bj3p2rs/wWHhVdazp6hOXYqU1ijKOkf6/q1kHt5FRUkRXoGhRLXuRmlQMm6e/05c46KrJt89lWq5/7ryMnTH13F251riuw+jSZeBCDs8t8yJl2cP7mbNl4vpPPJiRo4a6cAv02OuyJFBxJRS8ts3n7Nj0zpunzmLQAuer+aoLbESLF+DrhQrj2zfwLw33uTN+daLp7iCzVu38fK813j+6SdJiHfMgHoFRyixsgZ0aN9OTr3kYnbu2k2fXj2ZesklBFsZkJpi7qGbm5vLH0uXsmrlCkrKtbTr0IG+/QfSvGWr8wMwS4MNSxNJZyeFxhVca4KfLGfv1g3s3bKBjHNn8fTyolWnbrTv0ZfwaMue4gbMiZhSSnZu2chvX3xEQrNmXHnDLQ57bhkGZNlZWbzw/GzCw8O59/4HcHd3tzg5dHRgqSnKYdf+Qzw9byHTb72O7h3b2t7IFFsiiwGDaFnLgqa9k4qiomJuuW8mT8y8j+ZJzWo1mX9OTi7TH3qYyRPGM2b0KIe2VWJlzWjfsZO8c9r9/LnsdyKjorn08itJadHSrJ2yNz+WVqtl/bp1/PbrL2RkZBAfH0//AQMZ0L2TzdDJamKlvffP+c7Yd684OrnWarXs2L2Xv9dvZNfefVQId9q1bcPA/v3p0L6dXR74UP25cfr0Kd55exHZWdncdsedNEmqnmbBlqdgfpmWrKIyPvlgCXu3buSqex+mdTP9RN0ZsdKAceGcwoJ83nrpGRJTWjD5qhtIL6pafMf0eeNIuLjxM8K4v/YKlobJvCN53RwRG+e/Ohe/oFCmXnm1w9uC/WJlsfDk7ddeJT0zgycefcTiCxslVtYOrVq2lEMHD6K4pIRJ48cxdMhgPMrybW5n7dl4+PARfvzlF3bu2k1QYCB9+/Rm4ID+hFtwDDJNBWAtV6ul69BwvVnLg1oTke3k6TOsWvcPGzZvpbComKiICAb160Wf7t3w83POsae4uITPv/2BZStWM3XSOMaNGm4zDN1YgDR+bmxcv4aXF37ILVddzJCenauIlbawdZy03kEs+fAjNm7azHNPPXl+zuDs8bR27TgiWDr7MsaenL+GtvZs/oe33l7Mm88/gYeHh11pDpwVKzds3MTcN97imdmzadLE8txYiZX20SjFyiZxcXL56jWEh0c4vK2xWHTowH5++uYLzpw+RXzTRIaOuoiQpi2teuLZEivrQ6i0Ji4aU5afRd6RbeQd24W2vASf8DjCOwzGO9R2LjtTpE6L7vh6zmxbRVy3IcR1HeyUaKnTaln39bsU5mYz+Jp7aB0XbmFL+zH2ujxz8jgLX3yKS2+4nbadzY6DquCKEHBHRUtXCpX79u3l9TnP89b8ubWeo/KjTz9n6/YdPPfk4zYncOZQYmXNiGvSRH7zxWd07OBYNTmo+sDNyc7mm6+/YuPGjfj7+zN8xAi69B5g9vpxRKi0JVI6K0aeteHZHhNk/bovKynh0I5N7Nu8jpy0c/gGBNJl8Ch69e5j14TdVLzcv2s7X76/mGaJiVx9060EBgVX28YeT67Vq1bx7uK3eezxJ0hOSQEcTxhuDk1RDqWlZTz+ygJioyK45/or7Pc2d1RosYWLREtbA/eSklJuvX8mM6fdSZuWVdONuFq03H/gAE8+8xzPPDmLpGaJDm+vxMqakZiUJP/31HMMHTHK4SgC4wlRRUUFf/35B7/98gulZaX07NmLUaPHEBkV5XCREUeEyoqMVADcw6NNOleze8VWsYkK70B27d3Pig3b2bl7N0IIBg3oz9gxo/G3s3qs8XMkMyODNxe8QXpaGrfefgcJzVtb2bIqhudKTkkF+4+d4rP5z9J/2GiGjBlfI7HSHMt//YE1fy3jivsfx7/yBVNNhEpjnBEtnfGqtNSWORa++SYeHu7ccJP5Yjr2YM/1X1xczL0zH2XU0EFMmjDe6rrmRAwlVtac+Lg4uf7vleeFRHvGCuaeh3v27uXzL7/m1OnTJDVrxvixY2jXtq1d4wZ7xUpb2HPN1dQr0MDZc2msXLOetRs2UlRcQsuUZC6dOJam8XEWC9EYY+ztWFFRwWff/sAvS//i4gkXMXHMyCrjSluFczRFOVCQSUWFlpfe+5zcUh2z7rsNz5Aou3+PPWOcw4eP8PhTT3P/tHvo2qUzmuIcm0V37PXmNMXc/W5Pqoua5Pw1bWfXrp28Pn8+i+a/UiMnHnuu50+XLGb//gM88uQzNvelxEr7aJRiZdfOneS6FX8A5nPhWeNkRh6//vAt61avICmlBeMvnkpcwr/hYbaK7VgTKw+m5VOcl0POudPkpJ4i59xp8tJTKS8rqTTyhmtFnv9/TlFZ5ed/kVKfjNjTLxBP/yC8AoLxqvw3VxeEh3+IS4rqFJ07Rsb25ZRmp+If35qw9gPwDLBdpbZKX3VaOLWRU5uWkzRoElFtbAuCUF20PHtoD39/toh+U28mpnlbUiLsGyxbwliwLC8rY/ErzxEWFc0l191q8di5MlelvYKlK4XKw4cOMefZWSx87dVarfqt0+l49oU5hIWFcsctNzndjhIra4a91cDNUYQHf69ezTdffYm7uztTLrmUnr16odFUT7ZvwBGh8mRGDudOnyTtzCnOnTpB+plTZGZnn/9eCIGUstq9WFhatS0pJV6+fvgGBuMbFIJfYAi+QSEEhkcRHBVrtvCXNcwJmQU52Wz+61cObt9ISEQ03YePJb5Fm/N9szZxNZ6cHtyzi8/fW0hyy9bcdOvtZoUTW6JlTk4OTz3xOB06duTa629ACOFSL8tvf/uTn/5cxZzHHiAkyEaBNFcLlabUkhhTVlbGbQ88zD233kinduarfrtKsFy+chUff/oZr8550W6BxxQlVtYMczkrbWE8CTp29CgfffgBJ06cYNjw4Yy5aGyVc+logRH4d0JakZPG6bQMjp4+y/HT5zh6OpX0rGy0Wh26kn/HkqZDEuHlc95GGvD08CA0OJDw4EDCQ4IIDQ4kKiyEpLgYAky9gUzuLZ1vcFWvHjP50Erd/fhr+Qp+/OUXdDrJRaNHMnzo0CqTLWueToZJXHZWFm+9uYD0tDQefOghAsJMRFgL5Jdpzz9LpJR8+9F7HN6/hztmPk6TiFCXCJUGTp84xtxnZzHphjto3q6TWbEy0s/TqagARwVLRz2OjLE1mX//vXcpLCrijjvvst5pG9i6B9LS07n/wZnMeOA+OrS3/vLUUk47JVbWHNMxob2FWAAKCgr48ptvWblqNa1atuCKy6aSEO9Yzm9z9qFE44WUkqzMTI4fP8bxY8c5ceI4p0+fpqSkGEFV42cYd7mhrZwL65cbTKFGIwgOCiIsLIywsDDCQ0OJ8PciMSGOyIhwl8yNd2/ZyOc//s6ps6n07NyBi8cMIyIs1Grl7GoejFotX37/Mz/8upTbrr+KAX16md2XqRBo+qJr05FUXnprCQ89eB8d25ofz1hr1xyGe1AU5/H4k0+TGBPOXZdPOH/sLOVPrgnWvCxdkZPX2rYH9u/npRee57UFb+Lt7e1UDl6wLVTqdDqee/opYps0sfvlUEPJWdnQafRipTHWhMt9e/ew5N13KS0tYfCYifTuP9CiF401wdIgVuZnZ3Hy4F5OHd7PmWOH0JaXk1dSjk9QCCFRcQRFNSEkugmBETF4eFWdINvjRanTaSkvKqA0P4eyglzOnEylvDCH0uxzlBVkVVpuiYdfCP5xLfGPb4VXkOOepqAfGBac3EfGjuVUlBQQ1rY/IS17IDT2C2k6bQXFu34l7/QR2oy/Ab9w+701DcJleWkJKz58Dd/AYHpPuQGNUWi/s+KlsWi56vefWfPnb9z16NMEmHg/ubqojqsL5tji2NGjPP3kEyyeN4eAgJoJvdYoKSnhvhkPM+6i0Xblp7SGEitrhjNiZXZ2Dgvf/4jdu3bRr39/Jk25mMDAf0UrR4TKnJIKSktKOHJgL0f27+XwgX2kZ+kFSS9vH6Ji44iMS8AzLJrwmHh8AwKrDCRteUiC3jadSM2iJD+HkrwcivNzKMnPpjAzjbz0M8jKipBunp6EJbQgukUHQuKSqtiOmGD7PYy9SrLZuOxHju/bSXL7LvQeMxnfgKrh3ebES+MJ6ua1q/nm4/cYP/VqRo4wn6cGrL9J/vbrr1m69HeeevoZIiL1FchrKloaBsFHTpzi4efnWQ8Lr22h0hxOiJemk4eysjLumvE/br7mcrp36WR92xoOwpd8+BEHDx7kqScetysNjSWsiZVX9G6//Y3rHCuQ9PyPq3nhp7+VWGkGw/2l1Wr5+acf+fmnn4iPi+PKq6+hWVLV4kuOTGiklBw+fITd2zayZ+d2Tp05hywvwd3NjSZR4STGRpMYF01ibDRRYSGQk35+W11OGgCa4Eir+6gICCUrN49zR4+QmVdAZm4+57JyOXLmHAXFeluqERqSmkTSu1cPurVtgV+kyaSm8r6u4s1pEmKo8wmmqKiIX377nd+X/UF4WCjXXXM1reMjqwiepjnUDBgmdKdPn+Kl558nsVkzbr/zLovRF6aeNsai5PHDB1n0ymyuv/k2Ujr1sHp8zGGu+I1hH2Wlpbzy3JP4RcTQeuRlxFaOFQ1CpQFn05iYEy2tTcodLapjwNJE/pOPP+Jcair3PTD9/LKa5H2zdD/s3bePZ2a/wJwXZhMTbVuYdlaszF74sENi5e7TafR76h0lVppger/u2r2bd957n7LyMi6ePJmB/fvZnRLCFE1xDukZmezcs49dh0+y/+ABSir05zc8PIKmTZuS0LQpTZsmEtukCT4+1vNom7vmtFotOTm5ZGZlkpGZSWZmFukZGRw/foJzaXpbKqUkMjKC7u1a0rNrZ2KiIi16NBr6ff43GNk4KSXr1/zNl7+vIK+gkCkTxjJs5Gjc3NzsDksvKyvj9cVLOHj4KI/cfzfxTaqmHjIneJqGixcVF/P4/HeIjork3ttusvv82AphNhzfrz/7iD/++IM5915PUIC/2RyZjmIu56MlwdIenBEs/T01HD50iGefforXFryJn59fle8dFS2t2c6ioiJmTL+fSZOnWMxPaQ5Hxcqvp019aEgbxwpFDnr2PbYdP9uo58YXlFgJVQVLKSWrV63ks08+plmzJK6/6abzoePW8leaipU6nY5Txw6zau16juzZTmlxEQHBoSS0aEN8SiuimyZxPLfcQmt6aiPMW0pJeWEOBaf2U3BiL2V5GSAEPpEJBDZth19sczQOeh7pysvI3LWKnAMb8QqLJaLTUHzC7Vfxw31K2fPDu3gFhtBy1JW4e9lf1MEgWh7evIbty75l+M0zCAirOoB3RrSsEhZ+4hgLX3qaK2+bRou2HYDaqf5dl2Ll9m1beWP+PN58+XmCbHlL1YDMrCymTZ/JjPum0aG9fQVcLJGVnU1MsxZKrKwBjoiVx46fYOHbb5OdX8R1N95Ip06dq61jj1CZlZHB9i2b2LDhH9LPpeLp6UlKq7Ykt2pDQFzy+bA6A6YeK5YEyrM59hUts0R5aTGZxw6QemAH2aeOIKUOn6AwYlp2JLplJ7wDqufytCZiSik5uXcb25Z9D8CA0eNo2aVXFREULAuXFRUVfPvxe+zfuZ1r77qf+MQkm1VjjfH31HD69CmeeOwxrr7mWgYOHnz+u5qEhhsGwaWlZTz60mukJMZz65WXVPVGqA+h0hgnPS7zpAd3TH+Uu2++zqZQacCZgbiUkqefe57oqEhuuelGh7c3oCnOITMrm5jWXZRYWQPsFSv9PTUUFRXxyUcfsn7dOsZcNJbxEyeazatnq9BVcXEJ23btZsPmbew6dAyA5gmxtG/TivZNo4mPjUYUZlXb1iASGjAIldYwJ2Ja2k6r1XHobDqbTmWz9cAxitHgGxBE1xZN6dulHQneAiFEFYHUIFiCeQHy1OnTfPDeOxw+cICh3doycWhfAv39bE5oDRO7dWvXsuitN7n0sssYNXqMWc8nc4KlwV6Wl5fz1tyXqBAarrnjPrMvBoxzUxqwJFQa2jds9+v337Bx9XJueOgp4sJDzrdjXIG8LgRL4+ess5XqDbw2fx5lFZIH7r8XMH89G86PtdyB1vDWlbJi1erznuWmQoA5zE32C8p0FBcV0TwuUomVNcSaWGl8j0op+XP5Cj79/AtSkpO5+cbrLeagtIZOp+PgoUNs2LiZLRvXUVRUQnh4KB3btqFt5240T0lB5x1guyErOOMFJ6XkXFoaW9atZsOWbaSeS0ejLaN18yR69+1Hp/ZtcQ/S29USjVeVatFmPdCB4pJSvl61haXrNpOS1Iypl19FcvK/opGtMdjZc2k898prxEZHce9tN+Hjox9/2iNWgt42//bnCj79+jtenPUoUZGWnZM0RTnofINthuMbfremKIeDR4/z2OxXePTWq+jQtfv57Q3bOZoKpUrfXSRYgnl7Z6mdAzu38NaCBbz86rwqhfCMbZ4j15clsTIjPZ0HH7ifB2c+RJu2juWFN91/VlY2sYlJSqw04YITK0H/5uWj737lt19+pm//AUy9/Aqzb3CsCZa7jpxg098r2bn5H7QVFcQnpdCmYxd8Elrh7Vv9oWwpV2Vd5KI0Rup0FKefIP/4bgpOH0BqK9C5BeDbpA2+sW3QeNonHgZH+lGccYqMbX9RnHmKkJY9CWvXH427bWEvLtqfrKN7OfD7J0S160linzF25bM00ComkILsDJYueoFOwyeR1KVPtXUcES2NxUqA0tIS3nj2f3Tp3Z9Bo8fXilgJdSNYbvhnPR8seY+XX51PmIftivfOkp6Rwd33P8hLzz1DfFwTp9vJzy/gkVlP0a93L6656VYlVtaArp06yPVLf6i23HhgsG37DhYufofQkGBuvfkmIpumWGzP3AO/uKiIFatXs3blcnKyswkNDyelfWfadOpKpFFxGtPJnD0ipTWB8lR2kcXv7KUkN5OswzvJOryD8sJ83Dy9SW7fmSZtu+MfZjn/j6mIWVyQx57VSzmybT3h8UmMvvRKQiKqbm9JtMzJyuSDBa+icXPj6tunERQc4pBo6eMmefmlF5FSMn3GzPMT9Zp4WRoPhD/65ie27NrL8w/di6dn5Yut+hYrwWHBMicvn9sfeYZZ991Oy+REh4uP2CtaSil5+LHH6d2rJxPG2ScimjsnUkre+/hztu3azVvvfaTEyhpgj1iZlZnBh4vf4vTpU1xx5dX07dfPYriguXtLp9Oxc9M6/lixmn0HD+Hj7U2XDu3o3qUTbVo2P39fGvKNQXVh8nxbJkJjaVq62fUMeFmZlFrCIHC6h0dTWFTM5j0HWf33Og6fPgflJbRrGkO/tsl0SIzFPTT633yZZrwsDZNZbW4ayzds49s/VqMRGq4aP5wevfvqxU8bXjharZYlH37EyjXruWvaNDp06Gh2PWsh0WtXLefbzz5m5pPPER6h/33WQsPtFSsziso4e+wQ3771MrfOnEVUk3inxUrDc8/4eWCPYOlo+Lcphom3lJKnnn6G+ISmXHrFVVUm9sbXdU2q6hpYtvR3lv7+O8+/+BJubm52TfrN7fefzduY//KL/PzDd0qsrCHmxErje1Kr1fL5l1/x6+9LGTxoIFdMvdTh3Panz5zhz+UrWLf+H7RaLS1bNKd7t2507dyJAM2/TjvGYeA1xdmwXWPxT6vVsvfQUdZu3saWfUcoL68gJr4pffv0pk+vnvj5+VXJ2whUHwtV2sf9hw7z6Q9LOXrsGKNHjmDCuLH46GwX3wXYsHkr8xe9x+jhg7l88oTzXpLGeSsNfYbq0SNnUs8xc9Zz3HT15Qzsaz603IA9YiVw/ncXZ5zh/hcWMGr4UMZNnFRFrDRe3xbWclta8qwG6/l8TbGUSsPA9g1r+ezTj3l57rwqqUzM7c/a77J1/aadO8f0++/j+ZdeIjbWsbmx8X5zc3N55PEnGDJoEFdee70SK024oMRKKSU//7aUT7/4kosnTmDohEtsuksbC5anT57gm88/5tSJ4/iGRNC93yDademBp1H4iqWcldbESl1FBeXFBZQV5lFWlI+2tBip0yGlTp+TSKdDaNxw9/YhM1+i8fTGzdMbNy8/NJ7eVnNw5KQVWv19AOUFmRSd3k3Rmb360CS/MPzi2+MT28Yuz0up01JwbAt5B9fi7htEcLsRRJkULTC7nZRk7VlD0f7VDuWzBL1gqdNq+fvzRUipo/9lt1XzanLUy9JYtJRS8vk7CygpLuKaOx9Ao9E0ulDwVStX8N03X/PCnFcIcbPu2WvALe9stWXaQOsh+9k5Odwx7X5efv45YmOinW5nw6bNzH3tDR5/5CFat2yhwsBriDWx8uDBQ7wy/zUS4uO549abCQr617PQWnVGgKLCQn76/lvWr/kbjacX3Xr3oU//wYSEhdlVSMeSUKnT6ThxNpPSwjxKC/MpKyogLbfwvA2UUgcI3Dy9cPPywd3LBzdPb/JLNLh5+zqUlgIgLKTqS4qK0mKyj+wiY/8WSnLScfP0JjSlIxGtupLc1Lr3uEHAPHfsIFt++5rigjzaDxpDv8FDqj1jzAmXxanH+fDNeSS3asvF19yIh6enQ6Ll5jUr+ejDD3hm9myiovT3oLOCpelb+/Vbd/Dae58wb9ZMwkNDGoZYacAO0TI9M4u7/jebFx65j8Q4kxArF4qWUkr+9+RT9OrRnbFjxlhtx9o5yMzK5qEnZzN0YD8umzzeWjJ1JVbagTWxsrCggHcWLuDUyRPcfPtddG5vPeeX8T0lpWTV32v45svPKS4poWPbNgwb1J9WzZMtV3m1IlQaREopJTmnz5JbVEJOUQm5RaWUVVSgk5LCjFx0UiIleLm74evpQVhsOH5eHvh5eRLo44Wne3UbYU7QNBYsjftUnpnK7hNn+Xv3YXYcOwNAx2ZNGNynJ+27ddX/NiNPS2MB1kBWbh4f/rCMjTv30b9vb66YMAa/yH8napbuo/z8fF567U2yMjO5/8EHrU7uzE1AD588zYuzHuWSK6+lZ78BgHOCpfE2BsHSu7yIhc8+wqip1zB4wIAq39uD8XPPklhpq1+mOCJYSil57snH6dCxE+MmTTm/3NyE3NIYwF5Bc+WKFfz04w+88NIcs3Msa56cBnQ6HfPmv86Z06eY8dgTNG9ifjwISqy0F0vRNlJKfvz5F7746msuvXgKY8eMdijU++ix43z48SecOHmSmJhohg0ZQu+ePWwWD7El9JSXl5Obk0Nubi45OdkUFhah02nR6XTodDq0Wi0eHh74+vrh6+dLqLcHvn6+BAUG4uvra3VubMtLEeBkdhF/r1nLuvX/UFRcTJPYWAb37Ezv7l3w0RrN9QsyzXqfV1RU8OvvS/n+x5+IjorkxssmkZzYFFtIKfnmp1/5+odfquSztJYD05iKigqem/s6nh4ezLjndovn0t4wcONjJaXkxXc/p0LjwYwH7kcIUSPB0hXFlqD688Bg18w9J1b+9Sd//fYTL8x52WzkhDWB1BEK089y9333M3fOi0RFRjr8+wzHct0///D6greY9dijNG+eosLAzXDBiJVr1q3nrcXvMnTQQK66fOr5C9RWAZ7S0lI+/+Z7Vv65lMioGCZfdiVJKXohzlzuSkti5a5jZzl7aA9Zp4+TdeY4JQV6j8qconI0bu54+Prj6RuAh18A7p4+euFNCITGDSEE6ZkF6MpK0JaVoCsvQVtajLa0CF3Zv95HsrIQT3m5wCMgAo+ASDyDovCOSES42R/uXZ6fQeHJnRSd3o3QaAhI7olffEeEm+0BVHleOlk7fkGWlxLe4xLCm9kOEddVlHPunx8pOHOQbpfcTEB0gs1tjAvwHN22nq2/f82Im2fgH1p1UF4TwRJg3fJlrPz9J6Y9/hw+vn51XmTHWZb+9ht//fkHzz7/AkHCvoeHOYHRHMaiY35+Abfdcy8vPHg7TU2EAHvRarW8+Oa7FBQW8fi9t+MeoX+YK7GyZpgTK8+knmPOa2/h6RfAfdPuISI8vNp25h6o+aVatm7exDdffkZpSSljJ0yiY+/+1ULuTCeGphO51LxCTh/ez9kjBzl86DB5GeeQUlJcpgWNwNPbDy//QIqEFx4+/mjc3M/bwYLCciQSXVlppS0sRltWgra0CG1JEeVllYJ85SNLCIFHQBieQZF4BkYQ1rwN7r72hxxpS4sh4wBpezdQlp9DaEpHYrsMwtM/iLgQy8+NmGBvykqK2bn8Zw5tXkPvydfQs3fvauuZEy1P7djAtx8vYfj4yQwYoRe87BUtC7LO8djDD3P1tdcxcNAgwHWC5amz55j+zMs8ds8ttGuZ0rAES7AoWp45l8a9s15k7hMzaBJtPuefqwTLZ59/kRbNU7hkymSL29o67stXr2Xxh5/y7GMzSUzQPzuVWFkzzImVZWVlfPz+u2zdvIkbb72Djp31Ooe1iYnhXjpz9iwffvwJ+3bvpH+vHlw6aRyBAdXtSrVJsJFQKaXk+LkMtm/fyZHUDI6mZuoFyZISBAJvT3eCfLzwrdAR6O2Jl7sbGiHQaAQV+UVogFLt/9l77/Aoqvb//zVbs+m9kBB6771ItyCKimLhUQTpvXeU3pt0pAqKvSMqIii9995bIKT3TbbP/P7Y7GZrEtDn8+j35/u6cik7Z2Znd2fOnPM69/2+RQpMZkxqFTqTiXyjiVy9EbMo2otNSIBCoybET0OF8rGUDQ+melwUFaLDkHuoHuspfdxiETl/9yF7zl/nclI25WMi6PZKZ2pWKme974rpCyRJYv/J83z44x+0bFyPXr16eZwc2t+/8N66lZTG0sWLCY+IYOToMfboruJgmW2CabFYWL54AQqFgh6DR9qfUZ6gZWkridueYxazmY+XzaVGtWq82O1tp23eVFwlcU+g0vXcXM/rURaxbLJYLMx4dyJt2nfgqY6d3LZ7u+5LAg8eIyGPHuWzT7by/vIVpfLq9eSTmZycxNT33uO5l16xn++/npV/Xp5g5f6Dh9iwcRPPPP00b3Z7vdT+ynq9nm3bf2Lnrt2UjYujx1tvOqU9l7h/4W+enZ3NubNnuX3rJrdv3yYnJ9veRqlQEhQcRHBwCEFBQfj5+SOXy5HJZMjkMmQyGWaTmfyCfAry8ykoKECfl0NeXh75BUXZNzaOofHxoWzZOOIjQ6hYLp76FWI8FjoEz5YX9x88YN/unRw6ehyVSsVL7VvSoWUTe59WXOGZu/cSWL9xI6YCLRNHDiEivOSFVoPBwNrNn3DxyjUmjRpK+Rp1S9zHUbt+/4PPvviSRVPGERnhPtZ/FJsbV8uAn375hZ937GTJgnnI/EPs2/5bxWk8Hb+4KExv2vnLTxw9dJAFC+YXC+S9wc/SypCVyuDhI1kwdzZxsUWLbo/yOc1mMwsWv4/JZGLyhHF2+P8vrHTXPx5WHj95inUbP6R2rVoM6tfba0i7K7R8+PAhH25cT3JSEs91foGGrZ9y69S8wUpRFEm4fpmb509x/+ZVLGYTBpmamMq1CIurQGiZsmgCgkudAl7adG9bFKVoNmDKS8eUm4oxOwl96m0k0YI6pAy+cXXQRFUuFXjMTkpCNOnRJ57HkHIFmUKFpnxzVGEV7G2CYzxHyxlzUkg//jWqoGhCG76ITKEiOLJ4zxqzLo97Oz/EL7oCjV76T4lV2xyBpTYzzZoW3rErFRu4g4E/Ay3v3rzOh8vm03f0JJrWfTS/iZL03wCWu3b+yv59e3l/1pRSVb4rLaR0lU6vp+/YqUwbPZiqFcs/1jHSM7MYOW0+77z+Mk+1dk5ZUMTX/RdW/gk5wsrk1DRWrPsQbb6WMUMGUK5sXKmqAer1er768gt+/2MPDRo1puvr3QgJtQ6yXFPTPIHK9OSHXD59nJsXz5KRlYVcoSS2UlV8oioQFluOgLBIUnKL+lHH9O6MLPeFn4LcRyhqIVowaTMx5qRizEmlIOkmFn0eck0A/vF18I+vjcLHvV/wDXQfTEiiSO7dC+TfOIKpQEtkrWaUadTeHnnuDV6Ga+Dwdx+TlXSftm8NJCQq1q3iuCu0FEWRw9s+5+aViwwaP5WAwqjX0kxSNXKJRYWDsDHjxhebFl4cOPMUbVCg0zF65mI6PNGU19uVPgr+/1QO0DIlLYNhU+exatZkIsNDS9z1z0DLZStXERwczDtvd/fYtiRIKYoi85etRkJiwvDBTkDnX1j55+QIK41GI99++TkH9v7Bmz3eoVXb9m7tPU1K1BY9h44cYeunnxMSHEyPrp2pXaOax/fzBCnzC3Ts33eQE1duci85HUGAskEa6laIpXJMODGCiFpp/c3zkzzDP12atTiZNinH+Xxj3P12ATQR1gmkJEmYgvy4n5FDskXgUkISd5IzUPn60bh6Jdo2qEmFmAgnr8ridCc5g29P3eDKvURq1axGry6diAoPKXYfSZLYceA4H/+8l95vvMxTz7oDM5sc00NPnzrJ8qVLGT1uHM3q1PBaTdhRtknm/j1/8NXnnzBm2hx7WjgUDyWLkyOU/O2bT0m/d5OuQ8aj9ineOslbRCUUDyuL06MAS0mSmDJxLB07daZ1O/frHTxf86WFDo7f/9mzZ1j3wQesWLXaKwQqSQf27+fjLZuZNGMukVFFQP1fWPnn5Qgrjxw7xoZNm2lQrx79+/b2WuDKVfcfPGDdxk2kpqbx0gvP0/Hpp4tdgHCUxWLhxKVrnDh2jMuXLmEymwgKCqZe/fpUqVKFChUqEhxi7UtK8kotLvrN27VbUFBA4q0r3E98yK2rVzh3+Rpmi4WqFcvRtlljGtWpUSrwKNNlk5uXx/adu9lz4DCBagVvvfkfGtWv63Ufm27dvsPihfOpWrkiQ/u+4/F7d035zsjMYsrcRTRo0ozePXvY53U2P83ilPjwIRPfnULf3r1o37ioloCnz1QSvHRtc+nyZeYuWMTMqVOoVKmiV/9KT1GUjioO4D3Ogok3aPnbjp85efwYc2bPKnFuXFxRnpJkyctk4JBhTJ86hUoVK3hsUxK0zE15wJjxE+nT6x3atWnttO1fWOmufySsbFy3lrR0xkTWf/IVdWpUpe+gYfj7lw5WHTp/jY+3bEaj0dC7b38qVioCIp48LJO1RiRJ4sHd25w+coBrF86SozdSrmotqtRvTNnK1VEoVR7TwEsDK0sDKotL9c5OsoIoSZKw5KViSL2GKfMuIKAMq4A6qjrhVeo4tfUm0ZBPwd0jmDLvoY6qjk98EzePSld4WfDwCplnfsK/YmOCqrdFEGQlQsuMi/vJvHSIZj1G4BtSfAVMR2ApWiwc+GItMrmCVm/0d+uM/kzxnfy8PNYvmU3FqtXp38/92I+rvxpWXrl8iY3r1/HB4rmlSuN4XFBpNpvpN24aowf0pE71qo91jOu37zJ10SoWTx1LXIx7lch/YeWfU6P6daXvt25k+dqN6PR6hvXvTeUK5Z3aeBs83E/PYfOHm7h58yZvdOtG09Yd3K55T7AyJzuLM0cPcfjgAfLzcgmLiqFW4+aEVqqFX2CQkzeloydlcZDSE6DU/omCOxZdLlLODfISLmDR5+MTGktAhfr4xlTxmkruCDAli4XMq0fRXj+MJiyacq1exDes6Pr1BC4DJC17P12L2teP1q/3xcc/oERo+fDebb5ZvYiX3uxBkyfaAqWfpJ48tJdPt25l4eIlhIRaQd1fASwlSeLDL7/n1IXLzB/Ww1pIo5RyqjD8X5bFYuGtyYtZOm0cMY/g6feowBJg09bP0RsMDOn7ziPvC9boiRGTpvHScx3p9JQ7TPgXVv451WvQUPrh19/56rNPOHLoAF1f/w/tn3ra6zPccTJiMpnY9v33/PbLdlo0a0rPrs/jX0yhENs9YzSaOH70EHuPn+PmzVv4a3xoWacqTeJCiI8Isb+3ox+lI6S0gUlH2SBlfoqzX69flPcobxvItIFLvxgrzFdHRmAwmTl1I4F9F29yOymdsEA/WteuTOtalVBr87we07Y/wOVMAx/t2EeB3kD3V1+kVcPaxY6NTCYzG7bv5fjZC4waPpQ6Navbt9mKPoAziJTys5k1dx4hfj6MGdIfldE6JvbU1lFao0hyUhKzpkyiV7+BVGvQxL7tcYElFEHL21cu8PX6Fbw+YCQVqteyg0dHqPm4UZWu7+Wo4ooEeXoWrFq2hGrVa/D0s87WFHlGi1N7T/6VxXnLOUovU3Pzxg0WzJvLqg/Wlhp8uerjj7Zw5/ZtRk6c4hbh9y+s/PNq1LCBtHDeHDZt/ogG9erRp1fPUhU+Ajh56jSbP/6YAP8A+vftQ0WXsaQnSZLEjZs32X3gCGfOnEYURerWrU+zFs2pVau2R6DtCRKVxquwNMDdk+ejJElcv32PvUdPcPL8JeQyOU3r16b9U09TrmxRZqCna992vIzMLD7+8hvOnL/EU+1a89qLz6MOLX6cc3jPb3zw4VZe7PQMr3fpbO83PVUgt+mrH37ilz0HmTtrBsEx7hmI3sCe2WxmzvyF+Pv7MXrEcARBKHbs9ygRl9nZOUyZMYMG9evTq8fbHvt/b4Wc4PFApSewWhK0vHThPJ9t3cLsBUsIUDv3LZ6iu1339yRP15zcoKXfoCFMHDeG6tU8L2gWd84Ad6+cZ/a8BSycN4cyHgLC/oWV7vpHwsqwkGBp4tC+DHz7dXxdCud48807cOgwmz7aSu2aNejd821UYZ69cmzAUhRFzp06wQ/btpGZnkZ8xco0bNGaarXr8SDf80DIG7CURBFjQR6GvCwMedmYdFoki4W0DC2SxYwkWqydi9IHmVJt9aws/G9+noRMqUGmVDulepcEHiXRgjHjDsaUq5jz0xHkKlRhFVFFVkXhV3wUiiSJGFOuoUs4gaD0xa9KOxT+7iHmNnApSRK51w+Rd/MIYY1eQhNdBLe8gUtjXib3dqwnpFpT6nd8sdjzcQSWAFcP7+bWyYN0HDgJhcq5M/iz1cJ/3/4dJw/vY8bseQQGBT/ysRz1V4JKf9E6gek7aChL5s8tddXvx4GVkiQxbvYSXnqmPa2bNXrk/QHOX7nOwjWbWDt/Gv5+nidb/8LKP6eY6Cjp5ec7MnJgPyqUK+u1neNDP/HhQ5YuX4nFYuHtPv2dKtd5K26QeD+BH7dt48blCwSHhtGgWUtiaze2V/62TdhKApWSJJGWkoUpPxuTNhttRiaS2YQkWtDl6UC0ABKCQoWgUCNTqDHojcjkKgSlD4JCbf2Tq7xOmH2Dg53+LUkSppwkCu6fR592CyQRdVg5NGVqoQ4vjyCT4++hKrgNXurSHpBy4heM2iwqtX6OiBpNnN7bFVxm3r/FlZ8/onzdJjTs+AoyubxYaGkxm/l+8xrM+bn0Hz0RH431eKWZpGYmP2DK5ElMnT6DSpWthZMeJS3cE6y06dqtu0xdsJTxfbrRqFbpFiu8FRT5b8DLj37YSUigPy92eML6wiMU5HkUYLlr7372Hz7GrMnjHvEMrSoo0DFo7CRGDuxLg7q1Pbb5F1b+OVWoVFmqV78Br7/5Nm3auy+6eJJSMrF50yZOnzrJi1268PKzT1nTD4uZ4BWkPWTHnoPsPngUzHqa1a1Jq8qxVIiJQMpxLpLjCVI6AsqsxCyyDEayDCayjUayMwqwSBJmUcIiSWiz9SgFgZBQX9RyOWqZDB+ZDI1cjkYux1cmQy2XIxcEO8z0jwmyQ0soApf298zXcfBaAoduJJCnMxAV5M8TVeNpWimWAB/PkyobtNQq/fli92EOXbhOy9pV6NGpLRq1O4yz3eu52nwWbv0RnUHP5CF9CQsJtrfxVoxn786f2bj1c2aN7EelWvWc2hQ34c3KNzBrymQaNG7Cy6++7lRR/HHkCBANeh0fL51DXIUq9OjdF0EQSg0rwTuwLCm1vKSq5rbnQUpyMssWzWPekuVubVxhJXj2rywpKgrgYZaWUSOGs+qDtU5VdR9Fa1avQpIkevYf4nH7v7DyzyssNFSaNH4cfXu/47GorCft3X+ALR9vpV7dOvTq0YPgYOu4zlsUnSiKHD1+nO0//UxSehbVqlWjdZs21G/QEIVCUWx6res2URTJzsokMyODjIx08nJzMZvNmE0mTIX/lSsU+Pj4oNH4ovHVEBboh6+vH37+/vj7+eHr50egoohjeAKWjjIaTRy9eoc/Dhwm4UEifr4amrZoRasnWlI2zrOtmf0eEUV2HTnDN9//QFhoCAP79yO+rPexN/mZfPXDT/z82++MGtSX+s2LIui8PWsSk5KZNPd9Or3QhZdefhkofRT0dz9sY9/+AyyaPxeVSlVyxscjQMvPvviSg4ePMH/2TFTBEaXqQ0qKLizNeLUkz0vbNTViUD/mLlpqvS4eIaX7UYClJElMHD+Orq++Rpsm9b3uU9znPnfuLB8sX8rq5Uu9LiT8CyvdVWpYKQjCU8BsoDagB76SJGlw4bYewDQgBrgADJYk6ZTDvhOAkcBNoLskSfcKX98LtAXaSpK036H9TWC2JElbPJ1Lg9o1pJM7vir2fG3Q8tLlKyxduZo6tWszsG8vpxVBT36WZ06f5pPPPicnJ5t6DRvz9HMvYPF1T4Fx9a6UJIkzV26Reu8G6Qm3yEi8i2g2k11gQpDJUPkFovIPwicgBKWvPxm5JmQyBYJcjiBXIIkioslQ+KdHm5GLaDYgGnWIJquPpWSxDr6MhV4dglyJ3C8MVXhFlKHliy1AIZqNmDJuY0i9jqUgE0GmRB1VDZ8ydREUKnITr7vtExhbFUtBFtrrvyOZjfhX7YAi0H3iaYOWoslAxqnvMRdkE970dZT+7lDUEV5KkkTqiV/IT75N+U4DiC/rHaK6AsukG5c4/M0mnhs6FU1AsNO2P+tj+eDubTYsmcMbfYfQoYRqa970V4BKG6C06eDhI5w8fZaRQweVav/HjapctnErkWGhvPny84+1//GzF1iz5XM+mD8VTTGVBouDld9OHTi1UxPPk3tvajlyAWduJvxXO+S/Uz9Yv1Z16dTPX5QKvmQaBJatXEV2djZjRo2gbFxcsX4wdxKT+P6LT7l57Splypal+ZPPUbVWnWInazZYee9hOhkJN7l9/Sp5SXcx6bQYDBYQQK7SgMIfhW8gck0gBr2EIFNY+y6ZHEN+PpLFhGQ2IJmNSBYjhpxUJIv1/yWzESwuEz1BhqD2xy+2DurIqsjU3iMJJEnElJ2IlHcfQ/odK7wMjce/SiuUhcDLFV76BqoRTUZSTu0k59ZZIho8SZWW7lDEBi4lSeLuyX0kHP2V5l26U76O9RIvDlrevnKBHzetZNCEqZQtbx2IlCbKUtRrGTt6FL379KV5oW/mo0RYFgcs9QYD785ZRPnYaIa+2aVYCOQNVLrqrwCXeoORvlMWsXXBZOdzesQK4iXdN+cvXWHl+s2sW1q895E35eTmMnjsu7w7Zjg1q1Xx+l0rKjTwCiu7d2hybv2w/zzS+87+4lfmfvnbfx1W/l36wlp16ko79x0uFaQURZFt333Db7/8RL9+/WjT1hrR7C3SzGg08v3PO/njj99Rq1Q8264VT9Wvgo9aZb/mbanVrlW9cx6kcTM9m0u3HnAzK5f7qTmFnwXQiwQrFQQrlQQqlJBjRC4IKBCQCwIyAcyShEEUMUjWP70ooi/8b5behAERUQIflQylr3UhOyxIQ9XYcJrGRhAf6IcgCE4A01HJufkcu5fEifspFBhNhPlp6Nq6Pg3Lx7h9lzZoKUkSBy/d4qP956ldMY5+Lz5JgK87FLHd5zfuPWD+lu9oVKcm/d/s6paC6Tq5zUtJYML0uTzZthVdu1ktF0rjASZJEmtWryJXW8DQUWPRmqzPsscBlp5A4oEd27h6/ADD351FQFCQ12egJ59iV2BZHKhMLzAWG53p+EwIUMmZPnkCfQYOpmx8yUU9wHN0ZUnKNkoMHtCfmXPmEucF5hQnSZJYsmghERERdH3rHa/tSoKVBd+//0iw8uK9hzQdufi/Div/Lv0gQIN69aSjB/eV6rzPX7jAspWradSgAf369HIrluNaVOXEyVN8+fU3ZOfk0KhZC57v/IJTGr836CNJEkmJiVy9cpmb169x5/ZNTCazNUBHJhAUHEJYWDhh4eH4BwSgVCpRKJSYkKFQKrFYLOh1OjDp0el06HUFFOQXkJ+vpaCggIJ8LZLF6mcul6zn4KvRUC4mnJZNGtGgrucIT5vy8ws4fOE6Bw8dJvHhQ9RqFe3btuW5ZzsWWyk94f59Vn+wDoPBwNBBA6lc2XNwhUyXTZ6o5P3lK8nMzGTi+LFERUYWCxIlSWLtp99y89Zt5sycXmIhI0edPHWaFavXsHLpEkJUJfOdRwGWN27c5L1Zcxk1Zgz1GzQsVR/yqMDS0/fi6Rwdj7tz9x9cv3aVXv0G2l8rLbB8FFi57P0llCtXnpe7di1mD+86dvQoWz/cwOrlS4uNTi8OVv44bcDEp+oXH9HpqpZj3ufMrfv/78NKQRDaAT8AfYHtgADUlCTptCAIrYCdwMvAPmAEMAaoIklSriAIlYGVwCtAS6CnJEk9Co+7F2sHfxtoJhWeTEkdcuO6taRjP39R7Dnff5jMwjWbCAkOYuSYCcVGouVIanb88jPbt/1Anbp16fjKm4SGOU98XP0rRVHk0KmzXDtznHvXLiFazIRGlUEZWZ7w+EqExZZDrrR2MJ7SwYtL//aW9u0aTSmajVjy08m9cRiLNgUkCzJNCPKgssgCohEEGYGxRVExjkBSEs1Ysu5hzryFIMiQh1dFHlTW64BfNBZgengapVKJX9X2KIM9D1qCY2Iw5aaRduxL1KFxhDZ4wSNEdYSW2sTrJO77gvLPDUQdHElctGfY6Aoss1MS2bVhIc8MmEhQRFFE7Z+NrgQwGgxsWDKHmLLleLl7bwRBeKTiO48LK10BpU2SJNGz30DWr1pe7APUpscFld/+/Bs37iQwcWjfx9r/wLFTbP32R1bNfg+VqnhPo38arPz79YM1pWM/fub2uiOEsRl4X7hylREjR1GrZlE1XE+w8srli3yyeRMWZLz6Vg+q1azttaiObZKWnZ7C8UOHSLh8hqysbFQaf2QR5QmIsf7lGqwTLMd0b8c074LsbLfPUJCR6Okjo8tKcXvNJygc0ZCHJfchpsy7SGY9MqUGRUgF6yKOsuh+8XWJqJckCVNWAgV3jyGz6NDE1SGgUgtkKmt/4AouJYsZ7e1DZF05SlidNoTXaUN4mDMctUFLi8nIuZ8+wZSdzFPvjMA/xPpM8QYt8/Ny2bpwKk927sITHZ6xby8pytJkMjF3ykTadejA851fsH4nfxGwRJvBt7/t59eDx3l/wmACvERJlxZWOupxweWyj7+hUa1qtG5Ux3ODR4SW4A4uHzxMYvy0OWxasRiNpuT+1lVZ2TkMGTWOOeOHUamYqGf4Z8LKv1NfWLteA+mb36wT9OIKkRzYu4fPPt7Mcy+8ROcurzilirnCysysbDZ8/BlXL1+ma6cn6dS+lXXCq81wg5RgBZX5BiOHTl7lWEIyD7LzwGiickgglUMDiTEJ+Oda7OOrvCTn8V9mKb16E3We4VusRkFIgAoifLijK+CyRceDfB0KmUDtkCDa1SpHXKD7Io4jyEzNK2D7pduce5hKxbBgXq5TmXKh1jGXY3q5TaeS8lj/424qxEQy6OVnCAlwP77tHt956ARbtu9h6Dv/4YnG9QHvwFIoyGLF5i9ITU9jwpQZpfbLA/j+2285dOQoU2bNpaAwOeBRgaW31OwH9+6wZsFMeg0dQ1C5onF1SdGVtv29HdvTcUpTTfzenVt8/8kWpsyaW8yncZen6EpvEkWRASNG03/gIOrUebTiH2B9vs6ZOYNyVarz8quvF9v2nwgr/079IHivBu6oewkJLF66jIjwCEYOG0Kw0gprPEXFmc1mft6+nZ+2/0i9Bg1488233ObG4Ax8LBYL165e4fiRQ1w8fx7RYqFMXBzVa9aiarXqlK9YCZVK5WYzZOu7XV93VXF9vO3atuRlci8hgUNHjnLm7DnMZjPVysfR7onmNKxXB6GYMYIxK4Wdf+zj5z0H8VGreeXlLrRq2cLrgmVKaiqrPlhLZmYmQ3r+h5oNm3k99t17CcxftJg6tWox+O1XSyx2dOzSLZYvW8qime8R62ClVRJgvH3nLu9OncbiBfMoW0yxyNIez1HZRokZ06ZSrVo1evbqjUYqPkr8UWClawX34nxFbdIJKvr2eodFq9a5Qd3SAMvSFO3xV8n4+qsvSU5OZtjwESW296T9+/ax7ZsvWLZ4UYl+v//CSneVFlYeAfZJkjTRw7aPAJkkSW8X/lsA7gFTJEn6SBCEqlg75K5AC6wdcvfCtnuBI0BPYKwkSZ8Vvv7YsNJisbDiw0+5eecek4f3JzbauSKiY5p4fn4+Wz75jGMnTvLUcy/ywktd7BeRJ//KO6lZnDiwlxMH92A0GKhYrQYR1RsQX7UWCoeLzzUd/FFgpSdQ6S3l2zUaUpIkJH02luyEQngpIfePQh5SDsEn2CuIlMwGzOnXseQ8QKYJQRlTD0HpOYVAMukxPjwNpgJCm76J3EsHEhwTg/beGbIv7iKieTfUYZ4rgNugpSk/hzvbVxPV9DmCKtYHKBW0LMjN4pdVM2nz5iAiyxcNIB8HWII7tNz947ecPX6Yoe/OsqdolgQt/0xUpTdY+dOOnWRkZNCz+5slHuNxQeXhk2f56sdfWTpjwmN5dh4/e4GNn33DmrlTSjXB+AfCyr9ZP+gZVtq079w11nz4MYN796B1C+sAytOAVJIkft+9i8+/+JKKlSrT/Z3eqAKLopwdJ3up+UZEUeTGxbPs++0XslKTUQSGU75OI1SxNVD7BdrTvh29KW2g0huk9AQnPYFJm8x6rcfiOTZJJh1i3kMsuYnI5TJkmmCU4VVQBMV6XDzxDYtFEkUMKVfQ3bcGPoQ3fAF1eJF5tiO4lEQLWVcOor11lJiWLxFUsR5hIc59hw1a5qUlcfTzldRr1YG67Z+331uO0NI2ORVFkW83rsRXIdBzyGj7ALkkYClJEisXzaVMmTK807sP8BcBy8JKwNfu3Gfqys1MH9qTGhXdo3geB1Y6qrTgMlebz8h5q/lwzvjiGz4GsLQp2yKn/6gJrFowm/Cwkgv3OEpWkE2eNp9+E2awYNJIysWVKXGffyis/Nv0hY6w0lG2eyQ1JYUFs2dQq04dur/Tx2lC4whuZLpsbt65y9oPt6I3GOj3Wmca1CryXPQEKm9evcmOczc4eeUeGqWChmUjqefvS2yAL4IgOPlQOgJKVzjpDUI6KsVQ1EZrdig+obB+hii1gliNglAH/111lC9XtHmcys4h2aAnMMCHJuEhNIkIJaZckbWPa/TlrfRsvj56kfu5WjrVq0qnGuWRy2QeoeWlDD3Lv95Bo2oV6PtCB5Qenv2K8GiMJhMLNn5Bnkli2siBaMKLxuKeJqK7Dx1ny4ebmL9wEeERxfvSOvZ1vx04yieffMqcxUsxy62/teszDB4tRdvWVq/XsXLOVGrVb0TjZ19xa+caGVlaOVqp2J4LJUVpLp0yhuHj36N87KMt+jxKdOWUGTNp3rodTz71tNs2bz5wjlowby5lK1TmxVde9bjdEUzViA76J8LKv00/CMXDSrPZzPJVq0lIuM/E8WOJiY72mm6bXmDi44+2cObUKZ7v/AKdX3zR65heaxTJ12rZ+8duDuz9A6PBSI1atWnaoiW16tR1268kGPlnFKCSe7y+pUJvzb379nP67DkkSaJxo4Y82b69kzen6/eRlZXN9z/+yMFDh6lWtQr9evcmNNQ9Ul2myyYzK5vl6zaRk5PL+EmTiY6Kcmtn0687f+PTT7YyZdxIqlcp3u4qNS2d0e/NZGCv7rRq3tTp/FzleD/mpSYycsw4pkyeSM1493NxBYKlAZaOx//8s085ffIkM+fMJUTtHQqWJjLecbHQdSzqKQPG8Vy/3/YjeUYLr7/RrdRep64qCViePXaIHb/8zOy58x5rbnz0yBE+//QT1ixdVCKghn9hpSeVCCsFQfADcoFZwItAPHARawd6UhCEs8AWSZKWOeyzDbglSdLown9PBwYBt4C3JEm6U/j6XmA3kAy8B1STJMnwuLDy+u27TFu8mnfe6ELHtk94/Uwmk4n13+/m6PET9OvVk5bNm1kHlh7SwhMztez6ZTtHDuxDqVJRq1kbmrRuh8a3aBXZNSUcrMBSkiTyMlLJSX3IlWs3yc9IQZeZgmgxkW8bnDp8/QadyekYRp0OQa60erTZfNzUAcg1QehysxBU/lCMf5skiYh5KViy7yHqshCUvijCKiELLIMgyDDkZQKgDiiakFny0zAlnUMQZCij6yHz8zzpEw25GBOOI1P5EdrkDWRKz9EnokmP8fbvKHyDCWv8stdU9eBIPySLhYTdW1AFhhHTogtQOmBp0uv4edUMGnZ6nfha1vHM48JKR9nA5e1rV/ho1WJGzVhIcGGl5OKA5V8dVWkymejZbyAfb1xXIgR8XFB5934iUxevYtPimXZgL6UmeGwrRLqD5xt37jF72To2LJrhMaLS07GUjTv/Y2Dl37Mf9AwrC3Q6pr3/ASFBgYweOdxttdHxQf/HkZNs2rCetu3a8XzXbvbUBMcBZbbejCRJ7D94iIM7f6QgL4+YqrWp3+ZpDBpr32HzqHQFlTZImZOSgSk3BXNeGvmpCVjyM5BMeswG58UZs8G9LxUtJgRBBjIFCAqQKxDkalBqEBS+oNSAwsfaxkU2oCnqcxBz7iNqU0AQkAXGIQ8uj2+E56g3H/8gtDf2Ys5JQlOuCaG12jgd3wYuRbORtBM/Ys59SGzbN/CNjPcILSVJ4tq+7SReOsFLg8YTEGqdfHuLsjx14HdO7vqJMTMX4Otn/QylSQv/YssGsrKyGDveuuBQWmBZUnQlgLZAx6j5q3mz81O0b1rfvvnPgkpXFQcup63aQten21C3Wik8ex4DWFosFvqMm8Z7w/tTsWbJkUSu35vJZKL3uGlMHTGAKhVKl5r5T4OVf7e+0BusBPh9+7fs/X0349+dRplYd59y20QmM/EuSxYuwEfjw7B+vYhzAH626992nSfcvMZne09x9VYCcaGBdKpXhSpKFTKZ4ORLqU3KsRfLsYHK1Bw9qRYj1/R6skQz2ZIZreQMKgss7mNyAetQ0SxJKBBQIrP/1xcZviiIkCuoqFZTzgFyOYJLgHzRwg0fM6dystGaLdSKDqFdmQiqV3b3etcm5WAWRY7otOy6/ZA6kSF0b92AQB+VR2j5+9lrbNl9jNdaN+CFpkWFeGTB1iKKtvv6/LXbzP3wawa9/Tptmzf2OlnWy9QkJj7g3YkTGTthArVrO0dSewNtepmaixcvsHDBQuYvXYFQ+AywAUtHGOkJWLrCStc2kiSx7fOPuXMvgTeHjXcbfz8qsPTk+expIctRGbcucWTv74web2VkxUWbuaq0sPLDjz4G4M1e/Txut+3rDUasX/sBMpWGbt17uG3zBKz+abDy79YPghVWHv31e7fXr9xPZeacefTp9Q4d2rW1v+4K54xGIxs2bebYmXP06duPZs2922AVFBTw9Xc/cHj/PtQ+atp2eIo27Tqg8fUeyWf73SVJIiXpIQ8f3Ofhg/skJd4nKTERs9mEIAiUJojKx0cDSjUaX198NH6EhodTPi6W8nFliIyOJibMc4COj2jAbDZz6vQZdv+xh9t37hAdFckLT7amWaMGTjDJsU86fvEqWzetx0ftQ78+vahapYrbdwhw7/4D5q/eSFxsHMOHDEIeEOrxPstLSWDGgqXElolm5MC+xUIss9nMlHmLqVQunr49igJWSvKItORlMnTkaIb07EbTRg3srzuOW0oTveh6fFsl9wsXzrNk4UKWLl9BTLB3+6XSRFe6RlU6yptlj06moc+AQXz84UaMCo393Bz1Z9PB7965zcrF81n9wdpHivK36drVqyx9fwkbVi4tMaLSpn9hpbtKAyvjgPvAQ6ATcBUYi9VnoypwCmvnudlhn48AkyRJxeaSOnTI84CzwFZJkhaW2CHXrCId27rM/m9Jklj7zS9cunWPOUN7EuTv5xGoSJLEd7/s4pufd9Gr28s806alW0EeG7A8d/YMX37+GVqtljYdO9Oq3ZNOF5prWjjA6Wu3uX3pLHeunCcnI41cnYnAiGiCo2IJiixDOgH4hkbZ08M9RVc6RlZKkkT2gwTEQq82yaxH1OehfXgVyZiPZNQimQ2AhKAOQB4YizwgBkGhxpCX6QQhAfSZD5ByHyDmpyAICoSgsggBZTxO8iVTAWLGdSRDLrKwqmhiarq1AbBoUzA9OIU8KJbQRl09HgvAkHKV/Jv7ie3QB3WolxTywijL1FO/UpByj3LP9kWQyUsFLEWLmV8/mEPV5k9SuXEr++t/Blo6RlmmJj1k5ex3GTNzEcFh1oiEvzrC0husXL56LXVq16RD2zbF7v+4oFKn19Nr1HusmTeFEGPOI++fnadl0JxVrJ8ynMAK1b1CTkfdT06jYude/yRY+bfrBxvXqiYd+3KN02snbiWzaO1mJg/rR/2aRQ8014f9pXvJLFm2gtq1avLOgCF2awHbA9s2qExPS+WLzz7lxuWLlK/dkDbPdcGgKhqU2CZYSdl6O6hMTc4k78E1sm5eQp+RCJKIBTWqoGgsMl/kfmEYDUb7AoenCEqz3rlvlCQRLCYQzSCakSwGMOmQTAVgLkAy60Eq9L/0i7T+qTzf+5JoRmbIwpKdABYjsoAY5GFVEBRqNCFRbm0F7UN0iedQR1bDr1Ir/MKco3z8g30wF+SScuRr5HKRsk/1QOlr7ZscwWVciC/5makc+XQF9Vq1p277Ik9YT5PT+7eu8+3aJYyaNpeIKOtzqjTA8rcfv+PcubNMnznrrwGW2qIqxhaLhZHzVvPSk0/wVAtr8a2/GlY6yhFc3rj3gLVfbmfJ+NJ59gKPDCxnLl9Hi4b1eLr143kVj529hFc6PUnLRvW9N3L4PhOSUqj4zFv/NFj5t+oLPcHK7KxMlsyeRr1GTXin5zve7W30WtYuf5+MjAzGDepFfFys+32gzaAg6QE/HT7NL/uOEBnsz1vtm1CxMI3ctYCOLZoyNzmf2wX5nHuQwS2jjlyDCb1FIkxQESJTIJoFAlHgh7zU0Rq5ZgtmpMI/ESMSBVgK/8wYBRGlXEAG1FBrqKr0paxcjdzh+DaAKUkSt4w6Tst0JOkNRKvVdKkRT3iB87nYCvhcyMzm59R0/FUKBnZoQkygn3P18dQ0LKLIl0cv8vvl2wx9qhnNmxYBf0doaTKZWbzlK7J0ZmaOGYyPWu0VWmYZRMaNGcXLr3T1GOEHztBNL1OjNYrcu3uHudOnMHnuEkLDrWO2klLCS6rO7agfvv+OGxfP0WOU1TvXNR0cPINGV7n6PrsuYLkeSxRFlowfzKz3V+Gj8bU/Ex4XWNrk+B2eOHmKr7/9jpkLFpf6mI764/fd7Nt/kHHvTnXb5glU5uXm0LRq/D8NVv6t+kFwh5WiKLJm00fcvH2X6TNnERjobocm02UjSRJf7djDtu0/0fudnrR0sKFxlCRJnD1zmq2ffEZBQQHPvfASbdp3KBHiPHzwgCMnTnDp3BnS06xR6TFl4giJjiU6tixRsXFERpdBpVZ7HON4Og+DXk9yVi66ggJ0Bflkpaehy04nNTmJnPRUcnJykAsiZcvG06JlSxo1buKxOJSPaCApOZmfd/zKseMn8FPJeOHZp2nfsTMymcwNtGU9vMeGTZtJuH+fXj3f5okWLdzGU6ImmJOnTrNyzQc80bY93Xv0xBfnYCSb/vh1O5s//YrpE0dTpWIFj21s2rT1c27fu8+syWPtWTclAUaTycTIseN47bmn6dCmKIirNKnWroVzXGElQEJCAtMnT2Dl0vcJK0Umijdw6QlYluQrvmjlWpq1akOrli2dzs1Rf6bYTkF+PuOGDWTF6jUEBQWV+jg2ZWZkMGrEcNasW0+YpnTX9YPERKrUrPMvrHRRaTBxXuF/N0uSdB6sXxgwDqvPRh7g+isGY10pKpUkSbIIgjAe+FwQhE2l3Q/g9oNkpq/7hC7tWjDotaLJnyswOXf9Nou++IXnOrTh01UL7De6DfBYAmMwm818/9WH7N6zlxr1GjJyzFgiI4smr46p4dH+KrTaPHb+vodThw+gzc0hMiaWsMq1efr1dwiOsO7nmBJeAeeU8Lho/2K9KwVBQFCokCtUYLu/g8Bgdr/m9BkJmPJSMSZfRrIYEVQB6AvKgibMPhAWlL4IYVWRhVW1FrHIuYcl4SCCKgBZaGUEdVFHLih9kUfXRxLNiBnXyb/4PbKwasj8rZNHGwiV+0chq9YJS+Yt0n5fhqpcC2S+YU5emQDqqOooQ8uTdOAz1NHViWnmXgE8OzWf4Eg/Ihs9S86tM9z8djEVXxrOg2TPEZa277J6TCAyuYJOg6fw69q5KJQqytdrav/+/4ooy8iYMoyYOpf3p42n94gJlK9SjWStsVhg6Xi9PG605Q8//sT9Bw8YMWRgse0eF1RKksT42UuY+FbnxwKVZrOFEQvXMXfYOwT4+ZYKVM7/8CvKRD5+mub/SH/rflCnNzB/4+eYzGY+nj0GnzDnRRhZQTaibzDZObnMXmz1PV00by4hIcEeBw/nT5/iy60f4ucfwJMvvUb3AcPsEzmDSyRIYkY+abcvc+3ofvLTEjELKgLKViewSlMim8WSn2sdpNnSvgsyEpEpfdwgpSugdJQgyEChxtYRenvqShYjUn4aYsYNJJPWCi8D4hACYhBk1sedIFMgaSKQaSKQJAkxPwXLnf0IcgWW8KrIAsrY+0xNSBQExuMTUBZzxi0yj2wivxBaCnIlvsHBhantKmKf7IMh8yHXv15GZP02hNdta48wDQvRWGGu4M+TQ2dxadc3fL10Fi8PmYBCpXKapNoic8pWqso7E+ewYNpkBo4YS+UateyTbccBvWvV12defAW1j5pZM6YxZdoM9DK1e0VPTbD7ANs32DOw9A+zAza5XM7yyUMZt3gdSWkZvP2i50nNXyUbCL39MJXJaz9n/bxJj3YAbUapgeX2XXvxUaseG1Su+/Rr6taoYgWVDkDSm46eu8ymb395rPf6H+tv1RdaJMkJQu3b+TP7d2xj5KQplC1XAa1J9Gib8PnWjzh17DBjhw2iTu3aHgF+6r2bLF3/MUkZ2TxXrxKrBr2GSmm99xwL6thA5fWbyRxNzeBMovX3j7MoqKL2pa7kS7pFBEVhOrcFEKzp3PlIOKXYFMqW3u0oGQIqBKyjDg9jCgkwg69cwGKxcMykZZeQiQhUUWqItmgIckg5j9UoeAp/wB+jAF+fuEmS2Uh9TQCt/YLwkcnJS9ISEONPRVRMrF6Zh/k6Vuw6hlImY9CTVmhpk1wm482WdXm5cQ3e33GYbaevMqVXF3zVKsTsVGTBkZjTkxGAcS934GK6ll4jJjBn8lgqxhf2QS7RXiFqGetXLGXqnAUk3LtHrz7unMfxGWabcJYrX4EZ8xYxffJYpixcRmBQMME+isfysPQELFs+0xm5QsGyaeN5Y+QUVB68xEvys3Td7g1U2toGKSS2LJlFh5des9sS2eSp+rc32b4jx4m87TtMS01l6eq1rN2wsVTHctXNGzf4+quvWLB8jds2b6By6pjhj/Ve/2P9rfpBAMSi7/fG7TvMXLiM1156nqH9eiFqPNdtOHXtHu8vWUznF1/i4w83WgGdSxuTycQXn3/G73/soW69BowYO56wcO/WDHm5uRw+uJ/DB/aTl5tr9ays14i3+w0iPMK6aPGo96HrtZ0naCiv0RQdp2p1N3DvpxS4f/8+x44eYdaM6eTm5lK+fHk6Pf88devWQxAE9DI1IWXK0b3PALr3GYApJ53vf9zOOwOHUqlSJd7s/jZlHSp+h5Qpx/gp0xG1WWza/BEbNm2mX59edmhpA3uNGzVk7Ycf8eO2bfTr3Yvpk8ZTpUplt8/V4dkXaNSiDRPencKzbVvwSudOXr+DPm//h937DjBg1ESWz5uBr6/Gayq/TUqlkpVL32fEmLEoA0NpXb+Gta0HEGg7f9dnoe11m/WDY78RHx/PwnlzGDZqNNOnvGuPOPUmb/YRepkan8L3Lk3R0K+3/URGZiatWrb0uN0VUnrq84rbR5Ik3ps6iYmT330sUGkymRg/dgyz583Hz88PPcVHskuSxJz5C6lc6dEqff//RaX1rLwDfCJJ0pTCfwtAJvAm0K3wOD0ctt0FpkqS9FEJx90L7JYkaXbhv38DrgDPU0Jk5cHNi1n2yQ/cT0lj2oC3CAv23BEbjCbmb/4KvcHIe/3+g1+hWb5j5KXFYuGr7b+ybc9Rur32Kp07dbRPVl1Tw7MyM/n8m+85dfwIfv7+NH+iDc1btUGncA6Bdk0Nd4SWV5NysZhNmPUF1j+DjuSUXJDJEAQZedlGBEGGIFeSl5GFIFeBXGk/J1evSls6t6MkQx5i7n2kggxrKnlgnPcoSn0OYuZNJFM+spAK1sm9y0q/DVpKBWlO0BKKwKVkNmC8dxhB6YsyrjGCTO4GLSVJouDGXsz5GQTW7UJInHsapi3CsiD1Hvd3f0SFzoNRBYZ7jbC0qXpMIKLFws8rp9Pg2VeJq17PafujQEtX70qbdAX5rJr9Hk1at6ddpyLgWpriOyUBS8fISpPJxPQ584iMiGT44AFeIy8eG1IWQsUPvv6ZIH9f3uzU/rGOM3H5hzzfuimtG5YuCnLepi+JjQqnR+cn/1Fp4PD36wdtkZW7Dp9i07c/M6bX6zSp7eCx5gJptu/ex+c//87U8SOpWqmi08DGNng4duosm9auIa5iJd7s3R8/P3+39Ln0AiMWs5mDe/7gyuHdaAsMKGOqEFmzKXql9T1dPSodQSUURVNKkoi5INspahJBAAQQZNb/F2QgyK1p4DK51+htT5IsRqS8RKS8JCTJgswvCiEoHkHhPimULEbErNtI+SkImnBUsQ0R5EXR9JqQKCRJwpxxC8OD0/iWrY9fpdYIcgW+wUXfpV+Qmoxzv6FNuESZdj0IjitKP3WMtFRl3uX0D5vpMmQCIdHWaHNPaeEGvY71c97l+ZdeoXnbDvZtxflY2gzB7929y9jxE4DSeViWJroSrP34xm9+5uqd+8x6+wU7wCmNbNCitPr58Gm+33+CxUO7E+zv/JwtdZGeEoDltVt3Wbx+C+vnT3ssT6I/Dh9n9x97mDuydIXJjpy9zIff/cKaKSPRNHz2HxVZCX+vvrBG3frS5u1/kJz4gA3vz6Nu42a88EZ3Ql3AkO3+uHf3DovmzqJT5xd549VXPPplZWRls+yDDaSnpDDitU5U9HfvcwypaeQnZXA9NYuvj13kflo2sb4a6iv9qREQgC7ZmiWTmWuwe1LafCcdPScBpMJoSRMSJkTMhfBSAPzkMmQI6CwicgQUhSngMkDwumzj7GUpShL3RD0nDXnkY8FXklMRX8oW9oNRauv9G6uxtr1oyueYIQ8fQeAZTSg1QqwL2QEx1jGUX5QvD/N1fPEwCaVMxpCnmhIV4J7+ectkYumvR+jVpgFPt2nitM3WB2Rr85mw8Tu6PPkEL7xgLRDmOlm1PavWffQp9+7d5b2p070WvHCNjrmfcI95M6YybfFKfP2s/Yc3UOKtAE5x6eJnzp5l+4creW3YJCJiPXuze1K4r8pjNKY3pSc94OsVc+n09kAaN25sP6eS/IxtcpyIe4s+MpvNDOzXl1lz5xITU7Lfrquys7IYMWwoC5avwd8liq04UDn6vek806z+PyqyEv5e/SBAo/p1pX3bv+b9NRtIS89gyriRhAQXgRanMZ9ez7yFixElkcnjx6HRWMcmjiDJYrHw9Vdf8tuvv/LSa93o8HRHp+ejv0pmv5ayMjP4+ccfOHn8GP4BATzRui0tW7chKCjY42/v7R70FSzk5+dTkK8lX6vFRyYhk8uQy+QoFAoCfJSYBCUaXw1mmQodCvs5Od4LtvvAFU7duX2bHTt+4fy5cwQGBtLmyY480aYtSqXSre3Zi1f4+ovPSElOokvX12nb4UmnwmyAHVqeOnOG/n1709Ihdd72XWZnZTFn9izKlYlixNAhHtOBJUli9QfrSEpOYvqU91CbPRfaBbh45Rpz3l/BsjnTiYr0DI1dwaXZbGbw8JEM7NeXxtXLez22N7lGV9pke37m5eUxduJknu/0LC92ft51dzcVF2EJ3v3VjUYjU+ctpmxsGQb36YnkW+QhWly6+aNGXH6wejXR0dGPXfl78sQJvNTlZScrBW+wUpIkZs9bQJXKlej2+mv/poF7UGlh5TislcyeAa4Do4FRQHWgDvAr8BJwABiOdWWpiiRJ7pVlnI+7F+cOuR5wFDACI7x1yNXKx0l1Kpdn8OudaeOtIihw9MJVln/6AyPe6kLzOtXdtkuSxA+nrvPNz7vo+txTvNzpKWQymVtquE6n49ude/nj9934+vrxYpcuNG/RkiyD83fnmhp+LSmThOuXeHjnJg/v3iQ5Nd32wZErlGhFJQq1BoWPL4JcTna2DkkSKcjVg2hBspgQzUb0uVlIFhMU/lbGAlsEnIAogeATguAbDqoAjxMtyWJEyrmPqH2IIFMiBJVD8I9ym/RLkoiUeQsxLxFZcHlrO0/QMv0qkj4beXR9p1RLG7S0ZN/HlHQWZVxT5AHWCFNXaGnMuIP26i4C679KeOVabudsA5ZGbRZ3flxFXIe38IuuWCpgaTGb2L5sCs1feYfois6/e2mBpTdYCdbr5ust68jJyKDXyAn2FIg/mxZug5VJycmMmzyFgX1706plC49t/yykBDh87grb9h5hwYjej3Wszdt+wyKK9H352VK1n7vxC8pGR/B25yeBf5ZnJfz9+sG6lctJzWpWpmrZGAa/8gw+Ue6ebABpBoGpS9ZQp3oVBnZ/DfyLUjVsA5AzV2+xZvVKImPi6DNwMIGBQfYBpm1QmaI1cP38aXb99D35OTmUqdOUkFqtUWl8nbwqXUFlflYm5pwk8h9cxKJNxZibDJKLF6VMCXKlFUoiFfZ1Ekhi4Z/FGjUgWv0zXefogkwB6iAE33Brf+jBG1eSRKT8VKTsu0gWE7KAGCu4lLvft2J+KmLGNQRVILKIGij9ir4zO7RMv4nhwSkCaz2LT4y1D3OElub8THJOf4lfbDXCGnTCrxBEOgLLcIWJg1sW0fTpzlRr3s7+umtauCiKfLZyIRXKxfPyW+/Yt3kanNvkr5Lx0eYPyS8oYPCQoYD7YOlx08FtOn7hKu+v38qCwW8RG1F8CpBj9WRPcgWYZouF2R99R4BGw6g3nvMKJ+DxK4sD5OFDn3HT2LRoBgH+3n2XPEqbwe37D5n5wcdsmjWuRPN0c3oyRy5e56Md+1g5qhdKhQKf9t3/ibDyb9MXVq9TX+rY5TXu3bpB/9ETCY0ouo4c7w9fOWxev5bbt24w7t2plI2ypgY7To7yku+zfPNnPLyfwNAX2lK9XKzH6/bW1Vt8e+Iy527cp6KfD89XiSck3+zmUekKKlPMRjIwkY2JHEw4Tp+sHpQCqkIYCdhjLkUkRMBSCDUthX+ukgEBKAhHRTgqfJA7RWjaIGkOJm5RQBYmQlBSCV9iFUUTPRu8zBXNHDRnI5dLPOMTSt3C6uCO0DLbT8HaU1eJD/LjnXpVCYp2XhgwW0S2XLpFYmYu73ZpQ2Q59wVqISiCZV/9Qo5FYPr4UU5ppa7p4b/sOcB3337DoiVL0Wg0parmevP6NZYtXsD0xStRF0ZAusISV1Dp6D3pCisdF+4A8nNz+HzJdJo/24XaLdriquLSu6HkiMsLh/dy9Ncf+M/oafgHh7idV2mAZXGw0qa5M6by5DMdadbiiUdKnwQr2Bo0oD+T35tCeBlnaOsKq7L1ZmQGLdPGjmD0e9MpW67CP86zEv5e/SBAtcqVpDq1qjOsXy9aNvX4VSJqgjl05Ahr1q5n9IjhNGrYwGm7XqZGFEW2ff8923/cxstdu9KuY2ePc0uZWc+On39m52+78A8IoHOXl2nctLnTs9oTqCzIz+fEmbPcu3WDuzevo83NsX1u/DU++Pr54efvT0hgAAqFAovFgkKQEC0WzGYzBoOB3Hwdep0OrU6HobBfU8kF+3GiIyOoWasOzRo3pHyFCnZLHMd04ZycbH7c/hPHDu4nIDCQl7p0oWnzlm5jDaPRyLdffs7BfXt44eWuvPLSC05tfEQDBQUFrN2wkZu3bjN5wjjCy7pHyB3Zs4sNmz5kwtgx1KvrmV0cPnqUD9auZ/7c2cSWcV4wcByvJaWkMmbie0wdOYCaLkV6vKV2GwwGBgwZxrjRI6lToXSLEbasLNuxHIGgayVvi08QS1esJC9Py3uTJriNh1zTysEzYPQ2Tn3wMInx0+YwvH9vmjcp6g68gVRHlQQrHT14Dx44wB+/72Lq9Jlej1ecNm/aiNrHhzff6u7xPRxlA5VVq1Tmjdeshcj+hZXuKi2sFIAZQH/ABzgDjJIk6Wzh9h7AdCAGuAAMkiTpVCmOuxeHDrnwtc3AO0Avbx1ymcgw6ca2TahdCnmYku4CVp+OBV/txGS2MOGNjqiVSpQx5Z3a3klMZuqarTz7RGO6dWyDIsbZK8ISGENqWhrrNlq9KV56oTPPPNkeo0+wUztbqq8kSdy6fo19h49w/dJ5DHo9ah8fQstXp0zFKsSUq4h/UEixlcIdU8IdvStdq4HbIislScKQ9RBJl4mky0AyWI8lqPyRBZUDDxXAJbMBKeceojYZQemLLLQKgo9ziLMkiUjZdxFzEpAFxCKEVnIHm6YCxORzoPJDFlHLDQ6ofAMw3juEoA5EWaaB/TwcoaXFoCX39Jf4Ve1AZG33UG4bsLSYDNz+YRkxLbrgH1etRGAJUDlMzbYlk+jQa7Q9aslpewnQsjhYadPZY4fY9tkWhrw7i/DIosny4xbf8RcLSEtPZ9jocSxbNN9rNbm/AlQW6PX0mb6Mj2eP9Vi901W2e8umS/cesuXABZaNG+C2zVXKmPIsW7eZQF8Nbz9VtMrk+8LQfxqs/Fv1g9FhwdKBNTOIjwp322aDN78fPc3m73YwZ/JYp8rEtsFHgeDDvIWLsVjMDBk1jpDQUHffyjwdu3/6nj9+20mNBk2o2a4TWpn13nT0qrSlPOckpZD/4DJZty5hyLGmSkpKPxT+URgtAoLKH4vB+6rx40iymJD02Ui6DNBlIUkW68JMYGEKuKeFmbwkpJwEa8RlcIXCyHOX/rIgA0v6VQSFD7KImghKjVMVcp+gcAwJx7DkpRDa9C3khau8jtAy78YhjMnniHt6AAGRRUDPBi1jg3w4/cNmBLmc53sW2T148rHc8eVHyI06ug8sSpsrCViuXLGciIgIuv3nzT/nX+kltfnhjWuMXfUJPZ9ry5ONvN+zJcFK+3sHRyJJEqNWfMyLrRrRoZhjOupxgeXoBWvo99rzHquclySTyczbE+eydtpoggOdnymevDwv3bnP0i9/4YOxfez97j8UVv5t+sIyZeOlCXOX0qyN5+yAYB8FaakpzJ86iW7/eYsOT1utCxwrgQNs//Yrvv3+e8b3eIW61SpiTk92u2ZPXL/H5l1HCZDBCxXjqBkdhi4ty2MxneQcHbfMek4X5JNgti7cKCUZ4agIRkkQSuTFREY+jixI5GEmHSNpGDFgQUAgCjXl0eDjIXU8EyO3KCAPM9GoqYwfKmROkNNfJXDIlI1JZuFJnxCahAU7AUuAU+mZfJOYzJu1K9EizgqMHauMJ8lg9g/7GdWpBfXiHTJzCiODZMGRHL6bysZvfmb1fOeFA1dgeeryDd5fvIh5S1fZoyU9yfYba40ily9eYO2a1cxcssI+iS4OWD4KrATrvOPnD1ciSdC591Bkhe/hrXCOTd58LW3HPrtvFzfPn+KVIePtgKQkWAmenwU2eYKVB/ft4cK5cwwaPtLrfsXt/8HShTRt2oy27ds7bfcEKo0GA7PGDGHClOnElSsP/PMK7MDfqx8EiI2Jlq6f2O9WVNEmi8XCrOXrkcvljBs90mO7y3ceMGfWTJ57vjNPv/Cy/Zqz/Y4BKjmpKSl8tnk9SUkPefGlLrTv8CRGL65yuQYzN69d5dzpE1w+fw6DQY9G40u56rWpULkq8ZWqEBgUbG/vbTzj7Tp0XFS37SuKIhnpady7eokL587w8P5dJEmicrl4nuvSldiKVe2fydYHSAW57PrlR04fO0pkdDRd33ybchWcIaBGJvHj99/y+84dtH/qGbq/2c2+sGJ7jjxMSmLugoWUq1SVgYPdoyhFbRbTZs6mcqWK9Og/2CMEzk15wJjxExk5bKgbTHYcr+nSkxj87hxG9u1Og1rOgTnegGVBQQH9Bw9l7qwZxJct6zWCEbxXDLdBQVdYadv+x959bPl4K4vmzyUqMtKpjev5FAcYHY+fnJLCqFEjWTl/FpERznOex4GV4LnYmFarZeDQ4WzZuB6zquTFa9dCY+fPn+OLzz5j7vwFXj+Lo5auWEl0VBT/eeN1+3GC/X3/hZUuKhWs/LupYZV46dDSCR63FeiNjFr3FV1bNeSZRu5FYURRZMOOg1xKyWX2kB5u6eNCZDzXb99lzZYvkJAY+PYbVG3kXFnclhqu1Wo5sH8fv/62m/x8LZWrVqdBk2aEV6xh95MpLh0cnGEllA5YOqaBe04Bz0XMvoukz7aCy+Dy4BPiPhE3aq3ebsY8ZIFx1khKB+goSZK1IE/WLWRB8QjBFdyOIWqTEdOvIAuv4ZQabpNcn4Y56y7qiu0QHFbubdBSEi3knPwMTXxjohp0cNsfrNBSNJu49d0SYlp1xb9MlVIBy3L+Ej8tn0rnETPQBAS7bf8rgGVGWgqr506lY5fXadb2Sfvr3oBlcbAyLy+PMUP6s2jubGLLuFfntOlxYKWrl+TsDZ/TsWUjmtSq6mUPd0Bpk9FkpveSj1g7ojv+muKrvAH8fPwC528/YFI3Zy+W/2tYKQiCD7Afq/GhAvhGkqRpj/QmfyM1qlZROrxultftH/5xkntJKcwc+o51cuaQCiv6BnPi9FmWrFnPqFFjaNK4kZtBdVJGFl9/8hHnzp3lyc4vU6VZO2QyGekFRqfCOvcztGTfu8Kd4/sxZKWAKgBFaFV8IitjNFl/joKMRHvqd3HelH+lJLPB2n9pk6y2GoGFBcVcFlYk0YyUdccaee4TYvXvVTqnNEr6HMS0S6DwQRZRC6VLWrFa44vu5u/I/SIIafgqQuEA3wYtjdlJZJ/6jOgnuuEbXQnfwiIXNmAZF+LLtf0/kZV4ly4Dx9j7WU/AcudXW1FYDPyn72D7tuKApZ9SYMq7k3n6mY60bdfu8dPBvcBKc3oyFovIgk+3YbaITO7RBYWHCMPSwkqA+V/volpsJF2f81xQw5seFVievXqT73YdYOawXo+0n02zPthKu6b1ad2oTomFhlIycxi94iM2TByAr49DdEIxsPLtZ1uf2zBhwKOd05ZvmfPR9/9VWPl3UuXa9aT3v9rp9JojXEq5fZW1Sxcxec5CKsY5R5P4q2TkpyUxdeZM6levzIBXCyN4tRn239OcmcyOU1f49uAZ6lWMo9fTzVFr85wK69hg5a37mZwoyOVCXh5yQSBcVBMv90E0CuR7qPL9fyERiWQM3KUAAyJRqKmALxoXcCkhkYSBm+QjQ6AafkQUegTbwGWQSsYRUzYFMjNvRERTt5wVNNqApUkU+fxWAgl5BQyqWYlyFSKdgKXeZGbRkfNUjwmnZ+v69n5OHRlhj6y+W2DhveWbWD1lBGFxRdFJrhPmc9fvsHjhApavWo3owdbDVXlGC4f37+Hwvj2MnVIUMeMILL2lgYPzNeUKNR11+dhBDm7/kteGv0tI4SJ2SZGVUNS/Ox7v1oXTHPrpG96eOMf+XT0OqATvsDLPaLH6qw3uy8I1G1EqlY9UrAfg/NkzbP/hO96d7jwe8QQqJUli4btjeek/b1O9Tn37ZygJVur3fPJosPL2fRr3mfRfhZV/N3mrBg6Qa1Ewcux4/vPG6zzZvp3bdlEU+WDdBi7fuMWUadMJDglxAzw3r19jy6b1yAQZgwYOoErVovmDY9vkzGyOHNjHkf17KcjPp0r1GjRo0owatevi4+gz6UWlAZauoLKkY0iSRErCbb757nsuX7lKeJmytH/uRSpVq+E0rw32UZCYcI9vP/+ExPsJtHu6I0926uwEdv0UArt37uD7r7/klZdf5qWXX3aLxty/bx8fbtzAwMFDaN7CPUPu66++5NCBA8yeNx9/f+e5qI9owGg0MmzUGN76TzfatHIojOMwVpMVZKM3GBgwcRZj+vegbo2i38OT76Ot78zIyGToyFF8sHIFwQ42AcWBS8f9vUVXOuphUhITJr9Hz7e781SH4m3GSqoWbshKZdCwEby/aIHXIB5PvsWlkSsEnz1zBi926ULduvW87FEk189uMBjo0W8QH6zfgK+vr8c2jtr2zRdcT0hi3OhRzsctJrJy+8IJE59u4j2j2JNa9H+P09fv/Asr/6/lDVYmZeYwdv03TP5PJ2qVcw9xvpuczvSt23mlVUNebFF0IdqiLpPTs5i98XNCY2IZ3KMbMVHOXhCWwBiMRiM/79jJtt/+wMdHQ5t27WjXvgMmZRGBd00HtwFLs8lIWuJ9Lly7haFAi1FXgEGXT2JKBqLZ2tnmOuxrMIBMqUam1KDT6hCUauQ+QRTkZILCx97BegKWNkmGPMSce0i6DAR1ILKQSghqZ0ArSaJ1Up99F0EdZI0gcvBqkyTJGo2Zfce6f2BZp85dkkTElPMgWZBF1XeHAfocpPSLqOKbI/dz/k4DY6siiSK5Z79GFVkNTVx9gmPcQZ0VWBq59e0SyrR5Hb+YSqUCljFyLbs2LuLFUbNRadxXSf4KYCmKIp+tX0l+Xi69R0ygbKj3Y3qDlbm5uYwaPpTJ702lXsXiw/MfBVZ6KnhzLymVJR9/y4oJnqvqlhQpOfuzn3myfnVa1KxUbDuAq/eTWf7976wZ9qYb6P4fwEoB8JMkSSsIghI4iDWl5ugjvdHfRA0rl5UOLR7t9roUEM7UjV9RKS6K3s+3dwY4/mHoDQbmrNyIpFQzedQwVA4VsPUyNdkFRrZsWMe58+d5o2dvytWsDzhHkyTl6Hl44xIHf/qWrKxsgstXRx3fEJ/QGApyDU5ela4+lSZdHpgKkIx5YDGCxYQkmkAs9K10kwzkCgSZsjBlXGHt/5R+oNSUysNSspiQcu8j5j1EkMkRgsoj+Ee7L+DoMhEzb4BoRhZR2z3qXJeFJe2StS8Nr4HSr2girgmJwph2A2PiaUKb90ThVwQ0fYODEc0Gck5+iia6EuH1O3oElreP7yHx0gleHf6uPTLHk4/lL59vwVcu8XqvIpBVHLDUyCVGDBtCn779aNCw0eOngxcDLAH2n73Chh9/Z3b/bpSLdln9LiWsnPfVb5QND6F7B88edyWptMBSkiTenjCXtdNH4+9bcj/vqmOHDvP9/hPM7vdGiW0N6Un0Wf4pC3p1ISbU+fnr+/Lof2Hln1BxsPLwnl0c2f0L785eiI9G43Zf7Pl1O9u/+4YZU6dQKSqo6JovhJUHzl1l7dc/0alxTV5r1QClwrq/za9Sl5bFvTupfHfpHtcycohUqKgm+VBJoSFJb51Ie/OpBDAgkosJHSKmwj9joW+l68hcABTIUCIUpozLUCHgX1hRXEHJ/aCIRAoG7hSCyzL4UAFfVC776rBwnXzSMFAZP8qhQUDAXyEjSq1AJ1k4K+ViUEh0DY6kWrzz4k2KwcDau3d5sWoczzawFpVwhJbfnL3OucwcZr3aAT+1yglWKsKjuZ+cypiFH7Bs4hDKVCyKInFNR7xy+TJLlyxmxeo1+Pj4eJ2kOkKzH7/5kpSkh/Qb5jxBdPVmdpXtmvK03RVY5mSk8dWy2TR95kXqtX7SrX1pdPPcSQ78+CVvT5pLdKDz2NURnP5Zz8o8o4WtG9dSsUpVnmjrHDBQErTMM1ow6PW8O3wAyz7YYPc99AQpbfpsw2p8w2Po8vIrTm1alA/7F1b+STVq2EA6vG+P2+sPEhMZP+ldpr47ierV3KOybt26zfTZc/jP66/R4fmX7K/brpPkpCSWLZpHWHgE7/TtT4U49zlaRp6OXTt+5o9dvyFX+9CiTTtatmmHn7+zd6knsGgyGklMuEtq8kMKtHnka7UU5GsR9fmYTdb2thRvALWPD35+fshUGiSVBo2vH+GRUUSWiSUwyD2j0PEesb1/YsJd9uzYzs0rF4mvWIWOXV4lNr68035mk4mDv+9k328/U6FyNfoMGIifX9H8zk8h8NMP37F7x090e/NNnn7G2dMzU6tn5fuLUMkFxo6f4BZlefXKFebOnsW7U6ZSrbo1MtJxbGY2mxk7YRIdn36KTs92tL/uCix1ej39J85k/OiR1KruPQAFioDjnbv3mDp9BuvWrLKDNddje9sXSgcsLRYLi95fik6n571J7p/f07FclZ2dzchhQ5k7fQoVK5Qvdt9HgZQ2OfaLd27fZt3aD5i/cFGx+3j7vFNnzuKF556jSeNGJb7vpVNH+eDDj1m9aI6T7yb8Cys96f8ZWHn+zgMWfrmT2c81JzLQHUp9e/IKR5KymNXzRcJc07UsFtb/fIBLqbm8168b8dHWQZNjEZ5rt+6w5attpOQU8PyzHXnu2WeKTQk/c/UmF08d4+qFc+gKtGgNFuRKJRGx8YRFxZBlUaLW+KH29Ufl68fdTOvFLyGRVBhRKZlNZCdnIhp1iGYDeSmJWHQ5WAqyMGQXAitJQhQlq0+bJsSa+i3zHI4v6XOsBSSMuQi+EchCKroVmpAK0rGkXUHwCUIWXsMFWhZ5Wsqj6iJonD3KxPwUxLTLyGMaIqhdJvmiGTHxBMrwSigjncPVA2OrIkkSeRe2oQiIxrdCc4/AEiAwRMnN7xYT2/Y/+EVbU/dLgpbh5nT2f/YBL46ag8JD2sNfASwBLp4+wdeb1zJ56nS39AFHuQLL3JwcRg4fyntTp1OxkvN+jkV3bCotrPRWmbv/rBXMGvw2UWEhbttKApUnrt/lp6PnmdHDvZp7wV3nffN0BkZ8tpMV3Z/FX+3+vYcPW/w/SwMXBMEXK6wcJEnSsUd6o7+JPMFKrc7A6A3f8Vbnp2jfsMgL1gZwrt25z9QPPmVM/540rV/bLVrljyMnWb/2A954uxet27V3SpNJzTeizc3hl++/5sLJY5SpUosyTZ8lQ7T2IZ78KrWpD8m9fQxzVgKm3FREiwkQEJS+CGp/kKtBprT2M3IlCAprUR3H55IkWr0qRXMh0DSB2YBkzAezDgkJJKtPET7B9r7QUxEdcLXC0FgXYFz6MsmsR0y9CBYjssjabgs8Yn4aYvplq01GSCWUmqIBudrXn4Jrv6KKqEZw7aIBpi3K0nB3PwUpt4h9qi/+Ida+x9HHUrp/gZuHd9Km7yTiwq3H9RRhuf2TjQT7qun6dh+g5II7BoOBYYMHMXrsOKrXqFEisHwcWAmQkZPHhA8+o3PLhnRxKKpREqyUJIm5X/1Gxagw/tPOs98WlB5aOsoTwPxyxx5EUeQ/z5cOJjh+Rp3BSN95a9k0eSA+Hp4prp910pYf6dK8Ls08GNv/Cyv/nLzByq+3rCcnK4vREyY5Rb0EqOTodDpmT3uXOjVrMLh3D2QymVOBnaQ715mxdB0Vy0Qy+MmGbgWkCpJT+OXgOX48fRW1SeQpv1Ci86welTYl6sx2UJljtpCBkWQMZGOyg0gVAoEo0SBH5QAgFcjc0KPNs9IKNa3elQYs5GNBi8XJw9IfOWGoCEVJAAqPhXhEJB6i5w4FiEA5NMSjQebQVkTiBvncR0dV/CmLDwGFwDZKrcBfDX9YcpCQeCskGo3DQrVftB9fPExEq5QY36ERaoXcCVheSclk6d5TzO3+LFVrWivIyoIj7fdqWmY2Q2evYN6ovlSsYZ2cuT6vAE5evs7K5ctZsWo1arXabcLqCs4CVHK2bFyHSRLo1rOP07bSAMvioi9d08J/+3QDeVkZdBk4BqWq5CwUm26cPcGhn76h+8TZbqDSdh5Q+qhKmxwLoth072EKS2ZPY86y1V73sx3Tk//g0rkzePq5F6hd350luoKp4wf3cujgQd4aNt7ts/wLK/+8PMHK02fOsnT5CpYuWUR4mHuhuU8//4LDR48ye/p0QkKcPQlNJhMrV63h5o1rjBw3iTKxVl90R8Bz7epVPv1kK8kpaTzz3PM0bfe0VyiVpTPx8P49zp88xtXzZ9HrdUiShFKppEx8eaJiYvHzD8A3IAA/P398/f1RqlQEqRXYWIWvQobBoCc9J4+UrFx0hcV4MlKTSUl6iDY3hwKjtUSZf0Ag5arWoHzVGjSoXcvuV+uquzev89uP3/Iw4S61GjTmmRe7EhTiPCa8dPYU33y8kcrVa9G7b380hYAvQCXHbDbz9eefcvzQfsaMG09cJWcgfOzIIT7ZtJ5pM2ZSvoKz5ZxWq+W9SRNp/+RTvNSli9u4TBRFpkyfQb26dXn9VWuxF09AsaBAx4DRE5k8ehg1qjpXHfeWzn3p8mUWL13OutUrnSJHPR3ftWBPabwmbTp05AgfrNvArOnTqFC+9HY7yTkFjBg2lJlz5lKunPf9HgdSOsp2PQ8e2J9Zs+cSFu5urWWTt894+OhRfv9jL1MmTyzx/bKyshkydDAfrliCr6/G7bv9F1a66x8JK+vHR0u/j3/b/u9fL9xi58VbzO3aHo2Lj6XRbGHWj/upEBFCr1b17KsevuXLA3Dk8i3WbN9Hz6db8FTDGm7elkfOX2H9T/uoWK4s77zehfjYGKcCPLaU8Ht377Lz1x2cPncB0WIhNj6eCrUbU6NeA3z9A0pMBwfP/pWlSQWXzHr0abeR9Fmgz0YSLQhylTXl0T/aDV5KkoRUkI6UdQskCVlYFWuBHgeJ+amI6VcRNGHIwqs7p4dbTIjJZ0CuQhZZx2WbEfHhCQTfSITQyi4RmBJi2mUQzWgqt3Nb/QqMrUrelV+RKdT4VbGGjXuClgEhCm59u5i4Dt3xjbR2YCUByyDtfY7/+CkvjJyJTO4+wPurgGVebg6bF80gKDiYmrXrUrt+A8pXdP4eHGFldlYWY0aNYMq0GW4PMZtcgWVpYKU3ULnnxDnOXb/DyLe6OL1eEqQsuHsXndHEkK07+KDHc6hLqP4rihIjPvuVUR2bUzHCHYrC/wZWCoIgB04BlYHVkiR59pP4B6hBuRhpz7u97J5fD9KzmLj5R6a+2YmqsVag4wh2fjxznV8PnmDJ+EEERFmLHNgGL0l5RmbPm09suYoMHjrM7j9km5zcSkhk45oV6HUF1H/6RfzK1UYQBDfPyry0THJvnSLrxjmMBXnIlBoknxAsgi+o/P5yr0pHSaIFDDlIuiwkfSaS2QCCgMwvEiEg1i21G0Ay5iNm3ULSZyELLIsQXN4pUlMyFSCmXrJGjUfWdiooJkkSUtZt6+JNTEOUgUVAzCc4EkPCcSzaVMJavINMaR0k24ClkH+P1GPfU7bTEAILPUcdgaUi7SYXf/2SdgOmUDYq2P66DVragOW2LWuJCAmiy5s9gZKBZX5+PsMGD2LqjJlUj3fuW0sVXVkKWAnW7+aD73dx6tptmtWsTN3K5WhYtQKKfM9ZAJIkMfuLnVSNjeCNNiWvSsPjQUub8nV6Bi7eyMfvDXms6t/vrf+Cru2a0aBqUZ/tDcZ+uucEOqOJtxtU8bg9ZMC8f2Hln5ArrDSbTHyzaj5Vatam0ytvuN0TGYnW6tAjxk6gacN6TgV2xNx0Vn/8JZcvX2LKwB5EKyxOv6vJbOHjP46z5+RF2sZF0yEyBHOaluSz1jY2WHm/wMQ9Uc/pwurbFgnCUBGNmhCUTkDwr5aEhBYLmViL+eRhRkQiBCVl0RCK0g1emhG5i4576AhBSQ38ndLELUhcR0siemrgTywae5RlrEZBro/I51kpdAwIo6GvcyRVor/EFxnJjG5TnyqFUcU2aJmjM/DuL4cY2KkFbVo0cIKVADl5WgbNXMa7A7pTq761X/AELI9duMIHq1ezYtVqJ+88T6DSplVLFxMWE0fnV16zv1balHAofVr47Utn+fXjtZSvUZeyVWpQoXYD/B08+myypYpfO3WUo7/+QPcJs4kKdH5muXpnljaq0iZPsHLiuDH07D/Y7h35KDp59DDHDh1gyBjnYZSn6LmLN27x6YoFDJ+z3GMhspdqxfwLK/+kXGHltu0/sfuPP1g8fx5qtTNcMhgMvDdtBtWrV6N3zx7256ANQh06eJAN69bSrUcvWrUtSuO1gZ0jhw/z8ab1VKxanTe7dycowpoRZlvgtl2bCXdvs3fXTi5evIgkSZQpG0/dRs2sc2O/krPjHOUpQtImTwWy8nNzeHDzKok3r/Lwzg0Es5HAkFDatX+S+k1buMFLSZI4cPgIe7d/C8Azr75pXygB6/137uQxfvh0MzXqNuCdPv1QqVRFMD83lyXz5xAWHs7AYSPRS9bvKkAlJzs7iwUz3qNV6za80c3ZhzrPYOHDNcsBGD/c6mPp6O8oSRLzFy0hIiKcvr3e8Rr9mJ9fQP9RE5g2YRRVK1V0yhQA7FZQom+wvf88cfIUm7Z8xOrlS70WxLGdh6tKSt92VFZmJu+9O4nw8Aga1alJowYNqFjR3VrOpoyMTIaPHsO0OfOJj4/32OZxIKWj96qjju7bzZ3bt+k3YKCn3QDvoDI/P5/+g4eyecM6r36xNomiSL9+fZk6bhQVCovN/QsrS9Y/Hlau23uKPL2RMR2bu130BUYTY77YRZ/W9WnsUvlKkiSW/nYMiygyse9rqF1Wgm4bFCz66Buql49j8Bud8fXxcYq0NAdEc/rsOX765VduPUgiPr4czz73PGWq1LLf8N7SwW36s8V2ivOulMx6pLyHSNokJElC5h9tnYi7gkuzATHjunWyHlrFLTXS7kkZWQeZK9As3CYv08R9Ep9503rMMo3d0jTF7LtI+aloqnX0CCy11/9AEOT4VbFWVfQELEWTnrR9q6nQeQiqQGsHXBKw9Em9yu0zh+nwzkiP2/8qYBntryIzPZ0rly5w4exp7ty6ga+fH9ExsShVKkL8fFCpVBiNRo4ePszUGTOJL2bVCB4NWHoDlQD9Zi5nzeQhTkV1SgMqARb+cpinalWgYTnvfpo2fXzoPCF+PrxQ33tKQnGwctuyaVOfa9XE025e1bT7CM5cvTUAq9m5TeslSVrv4T2Cge+BYZIkXXykN/qbyAYrAc7eS2LlrmMs6vYMMS6FQmTBkaz+dic6o5EJQ/sW3XOFA5e9Z6+y4ePPmT1nDmXj4py8K5Mzs9n8wSoSk5LpPnAYyrAy9slYUo6epGw92owUzuzfRfLV88jVPviWbYAQVBWZSmNPA/+/9qu0SRIt1grgeQ+QTDqrzUVoZQQX42xJEpFy7iNm30Hwj7a2cegrJWM+lpSz1sWbsGrOizAmHZaHJ5AFV0AWVNapAI9SAbqbfxDWojeKworiNmBpyk0l68RWynYcRJCDR60NWvrkPODMj1voMGgGcRFFAMAVWH75wfvUqV2bds92BkoGltnZ2YwYOoQP1m8g1Mf74BRKH13pza9RZzBy+e4Dzly/y6kLlzFbRCpEh+GjVKBWKlAq5KgUCvaev84rT9Snc9NHW6CAx4OWn/52kMiQIB510Adw7uY9vvttL9Pe7FRi25tXb7L450Ms697J66D8fwUrBUEYBfTFWnD6AtbCDfri9vk7yhFWFmjz+GDmBN7s1Y96jZsBzvfD5Qvn2LpuFXMWvU9QUDD+Kpl9ApJx/xajJ77LO6914elCsGy7ri1ZKWw7ep5vD52jx5NNaV0mlILkTHRpWaScTSIvSUtSjo4LxnwumLRkm0XKyXwIs6gRLI9WVfm/IQmJbEzcR08GRlTIqIQfUajcwGUGRi6ThwIZdQjA3wH+WZC4RB45mGhKCGEKhR1YipLET7oM9JJIV98I5IXXe2igGnmkhrXJCbSNieS5hs5RP4rQIGbtP8Vz9aryXPtmTungAAU6Pf2nLWHKoB5UK/Q49AQsD50+z6dbt7Jk2XLyTZLHKEDHvlCSJN6bPJHnXupK3YZFCySlTQd3lCdQ4ihRFEl7cI+E65e5deEU+Tk5BIdH4hsYRIFFQK5QIlcqyUy0jt26j5iAXKFwK77zZ2Glq/Jyc5k1YxpT5i1+pP2y9WbMZjPTRwxg+rK1KLxE0oH1u5EkifcnDKH/5DkEBIc4FS+y6X8FK/9f6QehCFZKksSylausacSjRro9e7RaLUNGjGL4kMFuBVwKULJg3lyUSiXDR45yK5yTePs6y5e9T42atRjapyeCX7D1mIXgKEdv4sjxE5zY+xvJiYmULVee9h07Ua1mbScYVpxvpev95Gp7UBpQ6SrbYkBuZjoJZ49w+eRRlIJE45atad/pRbLNzt9RbnYmv339KfdvX+eZrm9Sq3GR72Skn4qTh/fz/adbGDJyDDXr1HO693b/sYcvt25mwvQ5RMVY2YPNN/P7zz/mxo0bTJ85C7lcbv/e/FUyvv/2Wy6eOcHsGdOR660V0h37uGUrVxEYGEjvnj28Akttfj59R4xj5ZQxREUURtJ6gJWOx979xx6OHjvOe5PcYzc8FcWxqSRY6Vp8BiAtNZWLFy9w6uRJ7t68ToC/P2XKxKBWqVGplChVKowGA4ePHGXu7JlOcxJ4NEDp6Rlgk2tfOWHEIJavXG0vmOTts3jSjGlTeLlzJ+o2cS8U7CiZLpsPPvyYsrFl6NzxKadtjt/v/wJW/t37wX8krKwTFSZ91+1pFh06R9WwYHq90IqcW4lObXL1Rt79/QTDm9emSlhRSnJQpVgKjCYmffMHz9WtTMfaRWm3vuXLk5aTx8KvdqJWKhg/qLdTAR4hMp6s7Fw+/PI7zt5IoHHDBnTu9Czly8XbIyyhKB0cIDFHR3pKMsmJCVy4dpP0hw/IzkhFtFgKz9PkdN7ZhZ2sJEGBztohG3QmBLkCudofk6RC4R+Jwj8CmW8weQ9v2vf15l1prXybaPWkVPgiC6uKoHZe/ZZEsxVaFmQgj2ngDB9Fs7XytyAgi6rnHElp1mNJPI4spCKyQOeq26I2GTHzBvK4Fm6QVMxNRMpJQBbXDJ9AZwgaGFuVvMs7kPuG4FveWj3aE7A052eRceRDKr86Drmq0PetBGCZcfArwstWolpzz4a/fxZYeiusk5+vJSMtDT+5BaPBgNFowmKx0LBRI4+rzK76K2Cl0WRi+MK1rH13mP210oLKxKxclu86zsLXn/La1nYPpufrWHjoHAufae61rSRJVF7+xV8OK09fuVnq1SNBEKYB+ZIkPdpI/W+iemUipH3T+7Hzwk12nLvBgjeetke82qItJUli/te7iC4TS5/O1mveHrniH8aGz77lVsIDZk59F1mA9T7Uy9RYLBbWbdjIyePHeKvfYMpUsaaU2waFqXk69uzcweUDvyELCMevWnNCKtQkM8fglApekJ0NQH76A3Rp95AMeZi1qUhGLRi11mhIx19MAregI4dHlCAAchUofBHUAdb0bJW/V+sLV0n6bGs/ZzFa079dFmckSULSJiFmXEMWWsW9T8u+i5hzD3lMI7cFGjH1gtXrMro+Sk3Rc0Pt50/Bpe2ENO6GMtiaRmUDlmqFjvs71xD3VD+Cy5a172MDlsqM21z67WvaDZhKbFgRYHUElpIksW7WJLr+5y179FFJFcIvXbzIlg83sXLxfKdtf1UquCeJ2alYLCIPMrIxmswYzRYMZjMmk4XKZSII85Du+KgqLbgcvHgTS4f3QK3yPsl2lC26TpIkei/7lJUDX/NaXMyQmmZvO+Sjn5nxSnsiHD6brTCLrU3ZGRv+z2GlIAixWG0wakqSpBME4SvgF29VZv/OssHKjJQkNs6fSo+Rk4kpV8Ftgnvq2BG+/Wwri5Yux6cwosYWJXTj/Cnmz5/H4plTKBvkY7/GzenJHL10g9Vf/MizjWrwRpuGyGQyJ8/KM1cf8NXlu+RrjVTDhzoqf3wEGYmF4zdXz0ozInlYyMNs/zPw6BEiSgR8kBGIkkAUBKFA7aHatycZCj0pUzEQiw+V8EPpknieh5lz5OKLnHoEOlUuz8HECbKpij81FX5EqYv6m9sWHUdM2XRWRVDTz/o9hwaq8Y/2Y2NCAvERAbxSIQ7/mKJxuTosmAWHz9GqUU1eftZ9jKHV6Rm47GMWjBlAuTJR4B/msULtT9t/5OqVKwwcOc76GYoBlnlG61hswtD+TF2wlJDQorTPkgqAeFJx0ZWelJORhr4gn+QsLWajEYvZhCYgkPA4a7S2J+sPmx43DdxVO376EaMk0KHjc6Xex/bdfP3RBuIrVKZZG/extCs8+mPbVyhVamq09bzAE6ZR0qV2mf9zWPn/Uj8IVlh54I/dTHpvKo0aNuCN1151a5OZmcWwUaOZ9t5kqlZxjvZPLzAxfuxoXun6Kk89/Yz9da1RJC01hRXvL8LPz5+xo0cRHBLitD0rK5PPt37EhYsXqdegMe07dqJMXFm8yWKxkJL0kMT7Cfa/tJRk9IUelTqTBUmSEAQBjdJ5kcFxzKZQKgkIDMIvogzRZcsTE1+esKgYu/WH673oeC+FqmUc3fc7v2z7nvDoMnR8rTsRZZzHfAZdATu//oS716/wnyFjiYixjuEi/VTodQVsWraQ4AB/+g0f7RRVl5GWxsz3JvL8q91o2rq9/V4NUMk5tH8v3339FXMWvW9/FoH1ebTz1x3s/e1XFi+Y53FuOGf+QqpWqcxrXV/xCiyTUlIZO2kKHy6egcbHp0RYCTB/0WIa1q/PM097n+O5qrSVvItrb8pJJy09A5PJiKFwbiyKIo0bNXSyb3HdtzT+xMXJsZ/U6XTMmzqJ95evQGsUPVaet8n1c925e4/VK5bx/pySa7U+TE5hxoL3Wbd0gcfttihaTVDo/yms/Cf0g6Wb4f3NJEkSk3cf58Xq5XkiPtoNVObojbz7+3HGt6pPfJAzfLpy9jpz959hePM6NHEAlQA7ft3HJ0cuMGdQN8pHh4MuEwph5eXbCWxYvA6Twodeb7zCmAHvOKWD+4sFaGW+JD54wInjxzhw5Bh5OTnIFQr8w6OIjo2nTrXKmBu3JDg8EnkhvS9tdGVWUjYWvRZTXhpZd65gTLuBRZcNkmhNt/QNQ5T7ImhC3Sbutkq4ssCy1oI7GdeQzDpkIZWRBVg/gyBTII+oiWTSISafBXWAtdCOILNuK9MIMT8Vy739yKKKoiwFhQ/y+NaIKeew6LKsqZKFDxKZfzSCXIUl4QDyuJZO1cBlgbGIMjmW+4fRx7XAJ6io8E5u4nWkwIpImVfQPTiLJq4+2UlJbsBS4RdC2ad6cnvbCip3HYsgk/MgWVsssAxt+SpXPp9PZPkqhETHuW2/maYtEVg+jvz8/PHz8y+2GvijyBIY88hVwY+cu0LLejWBkiElOHtQLtl5lPGdnFeNXO87m5YeucDIFt4704QcLV9dvFXyCf/FEgQhAjBJkpQtCIIGeArw/NT4h2jd9gMk5RYwq30TzOk5qGOsgxFDaprVA3DXCeqUK8NrrYr8K83pyRAcwaTpc6lZsybzJ45AVChAl42oCSYz8S7j35vOq6+/To/e/ZwqLmpzstn9/RdcuXCOeq2f4uWxc0jVWrfb0sF9A9XkpWWRf/8C+uRr6NLuYzYWIFP5IUpy5D6BiD7BoPIHQf5IabiSJILFZPWqNOQi5j4AYx6SKAISgsoPQROO4BuOoHRfWBB8gpHHNrVaWWTdQsy4VhhJWcVaeEcQ7PYZYvpVzPcPIY9uYE8hlwVbC/NYkk45RVkKgoA8qi5iXhKWhAMQ29xeMVym8sOvzitknfmGoFqdUEcWRRsbzBrinxtOwi8rEdu/Q2h5ZysIU1hFqrV9gYObF9C690TKhFrPwxYlYItQ6TNxJuumjWbQuPeIKeucMpNntLhNYGvVrk39hg1Zv/Vz+r/tnJLkKNE32B1Y+od5BZZej1MI++RyGeUiQ0to/fgqTREfi0XEqNOiLMgClTvcLO4Y245e4Ml61ZxApQ1OuuqnM9dpXjkO33w9+fnuC9SiKDHux30lnu9/UQpAIwiCCfAFHv4vT+ZxZRYlzp4/z0+bVjJ8+nwCQ6z3XWq+0Q51dv/xBwd/3c7MJSvw8XGe9Py0/Uf+2LmDjRs24ocBCrLBPwxzdiozN1vTAdcN64ZPIdg2pKaRm5jG7usJ/HL5DvEaNYMaVkOdbSYvSWtPBY/VKEgoMGFWmLloLCBVMGKURBTICEBBAAoiUVEJX9TIPPpKepNU6FmpLyzQk46R24VFc8AKMsNREYmaIA+elWrk1CEQCYlE9BwiEx/k1HaIpAxAQStCSULPH6RTmwBisE6sg1DSgXAukscOcxrtpVB8BGsf44eSFoTyjT6Vp6VQ4uVFk/FuqjB+y8llw9Xb9JWsKYD+MUHIZAITn6jHsuOXKNAb+U+7xk4LD/4aH1YOfYvBc5axcsY4ogEZhf1T4XPLRzTQ+YUXSUhI4NuvvqDr690IUMndJq+O/1ap1YydOoslMyazdPU68s3WlTFP0VulVWlAJUBQWARBYRFElbX2565yrCBuO6YrtHRMt7XJW5qjJ+3Zs4fR7zpPsovzp7R9JzlZmVw9f5a2r/YsMV0+NyuD4wf30Wf6+17bfPXRhhLP9b+o/yf6QQDRZGLAgP70eKe3UwVpm2xVoOfPmUU5l9Ta6w9SmDJ5Eu9OmUpVlyI8e3bv4psvP2PS1BnEuYwvLl+6xIZNmxAtFrp178ng4aPcrh1JkkhKfMCZk8c4f/oU2txcFEoFUTGxxJaNJy6+HM1btSE8MgqFQuEU3ewpktlRRoOBvJxsLt+6Q1LCHS6fOkZGykNESUIukxFfzKLoYAABAABJREFUpTpVatenfLWaqH2cx4SZBpGqzdtTtXl7ku7d4efPNpObncmTL79BrUbWYAu1xpcXe/QnOz2Nz1YvIq5CZZ5/szep+RDp58uQSdM5d+Io4wf3pf8Ia5Rltt6MPCCEqe+v4cPli7h17Qrd+gwiRKMkz2ihbvPWKP2DGD54ANMWvE9gULD9vuv4bCeCfJQMGzWG5UsW2f0/bbBu9KT3mD1lEv5+fvaiO67QMjZAxeShfRk2dT7r509F5u/uVWrbzwYsx48ZTZ8Bg6hQsy5VYkte9H2UFHCbPEVaBgQEEBAQ4G0Xp30d9/NkafEochwXHz9ymJZPtLJvc4x2LUkL589l9rvjS2wHMGPB+0yb4F4U1aZbl87w6Q+/lupY/wX9rfvBf2RkZaBKKW1o0ZgmDd09/vIMJibvPsbE1g2IdYnUOJOUzkdnrzOtXSNCHCYbvuWjWfjLYTQqJSOebopcJrN7Wt5NTmfh9kOUi4mk78vPEh0e4pQObvKP4six42z76RdSsnIpWzaeJk2bUqF2Q4KCrStPj5IOXppUcHBOB8+5fwWxIANRm4wp6z6SxYyg8kUIiEPwi/BYLdcaSXkDqSC1MP07xjn9O++hNbooojYyhwrekmhGTDoDKj9rAR7HfbLvIuUlIott5pJCqcWSeAJ5rHO6OIBYkIaYfhV52SfcIiwlSYLUc6jL1MYn2grZPEVYCnnXybp2nPLPOUegeIOWxvxcrn2xmC7j5qNUuxsuP250pbeoSpv+DKgsbaGd4lLA3121haHdXiTclOu1jU2OoPLorQccv53I8KebeQWUNh28l8T1jBx6N7QWUcq66TyRN4siU85eYlLt6nT4bd//aWSlIAh1gY8AOda5zleSJM18pDf5GykqwFca3a4R3RvXdNvmFxPGvB/3U71MBN2ea2N/XRYcSWaullErPmZQj9do1bCO02rrTzt389VPvzFz3kIio6LsD+20HC2rVywjLfkhrV/6D1Xq1LdXBQdIytZz7fpNHp7+g7Tb10Hui19sNYTAihgtKgRBcKsK/lenhEuSBKZ8qx9vQTqSWYcgKBACYqwAUu5+f9ojKTNvWIuOhVV1T/9OPoPgG+6W/i1m30HMTUQe29Tp2JIhD8vDk8hjGqAMti6IaEKikEQLxrv78YmqgSa+kT26EkCjsXDv5xVUeqEfmjDryr2jh6XlzmkSL52gRfeRlCl83TXyRpuTzcbZE5g0bxkBQUElRlcCTBg3lp7dXqNhg/r2bX91KjiUvhK4o7xBQJts0cOPqpM3Ejh5I4GBz7UqubGD9EYTfRZtYWOfl5DJigdLyXeSmLB9P6u6PumxrS4tiw2nr1EtLIg+Px34X6WBjwDmADrgN0mS3nqkN/qbKLpcRalyvcZ0Hz8blY+zRQLAw0un2PnDN4ydtZAwP+u4z5aSt2Hl+wiCwMSRQ518whKuX2bS7IUMeOMFWlWIdrp+f9h1mM/3naZj9fI8X7Mi5swctEk55KdYn9EpiTn8np7BJVM+AgJBkpJ4mQ9lZGrSCyfxniqD/5UyIJKOgTSM5BR6VkagIh4NgXiOJs7DzHlyEYA6BBLgkv59nlzysdCYIHwcIjhzMHGcbOoTSARqp31OCdlECSo6aEKI1ViPFxqo5qRSzxVzAaPrVkNeCCw1ESH4xYTx/t4zlI8MdSuyJQuOJCUzh5HLt7Bu7iRCgwLtEZaO0ZXW9O5JtHumEy2eaF1ipE2ASs4fu37j4vmz9Bo2xv76o8JKG7QrLax0lCdY6SjHvh6s13dx0ZU2eer3bc90SZIYNmgA81Z84HGf4ip6r5g9hTavvEWZchU9vq/jd/Dpwik881Y/ImKL5k2OIPbBzWvs/+Ezfv9yy/8qDfz/iX4QICQ4SNq7/RtqVrNGTDpGzmVn5zB4+AgWzptDXGGhHJv2HD3F5k0bWbh4iVPEpMFgYN6c2QQHB9Nr0HCnSL87t2+xcskiylWowFs9exEe4Qy4snVGTh8/yu4dP5GbnU1s2XgaNGlKy+bNCAx0LsDqKMfF8UeR7f5zhJtmk4lb165w9cJZrl++gL6gAL+wKBq1eZKqdRt6jFw06Ar47dvPuHHhDE93fYs6TZ2DNM4c2suu7z7n5V6DqFK7vv099boC1i2eS1z5CrzSvTeCINjP6eCvP3LrzFGGvzfb7pMZ7KMgMeEeC2e8x6RZ86lS3np/2MZmZ48cYMvWT1i8wj01WZIkxo8dw6svPk/b1q28jtl+23+EfcdOMmfcMFxli66EouskIyOToWPGs3bDRtRqtdfUZ0+g0jUisbi0aU/HKU17T/s5AsvSRlXaZOvr5k9/l1GjxxAWHu4RgLpCS9u57t1/gAunjjNiYB+3fVz1y64/uHf/AYN69/C43Wg00nPIKNYumUdElXr/izTwv3U/+I+ElVUCA6Qv2rqnmOotFmacu8yQapWI83M2pt6fksaxtExG1axCRNUo++v3c7QsPHiWng2q8WTr+vbXjWYLa0/dIC07j4ndniUiKMBefEeIjOf42Qt8sW0H2Tm5NGvVlhef70RkRITXdHBHYGmDlaLFgr4gnyv3U7CYTMhkcgSZwK30AgRBhtLXn+TMog7bm3clFPlX2lLBJaPWmvqdnwYIyALKIASXcwOXkmhBzLyBpE1BFlYFWUAZh21mxJQLgIgsqr5T+rd1ov6wcKLuUDFcl4kl5RzyMk2dfOEkswHLgyPIo+pZq5Y7SMxPRcy4jrxsSwRBhjqgKPJGkiSkpJP4VmiOKtwaCesJWBofHMKizyem5ctOr3sDltkJ18k6uYNOQ6Z43F4csPy7wEpwB5bFwco+M5axtn+XEt/LEVSKokT/j35ibst6qBXFn3/KtRSmnr3I7Aa1Ucg8r0htvH6bBmEhNAoLofFPu/+naeD/dFUJDZJ2vFlUbdqx0uqqA2cpHx/FG82tHoA2sPMwM4dxH/3C/EFvUal2oT+gfxhGo4l3l60nOiqSYSPHIJPJ0MuslVV/37WTzz/9hF4DhxFfsx5gHRimFxjJTk9h57dfknr3JoqQaAJqtsLoW8YKJ3MN9qrgtnRwT8BSkiSQLGAxgmgGhMJ878L/CnKQqx6rEIpkMVl9e/MeIlmMCJoQ6+KMh0rhojbZGmnpG44szLmomJiTgJh1G3mZxs7p34ZcK5iMru9UUVyymLAkHkMWXB5VpBXca0KikCQJy8OTyDTB+FdpZweW/sE+WPT53Pt5GZW7DMYnxJqq7wgs9VcOkpV4hyavDSAm2Hr+rsAy5UEC36xZxJTFq1AolV6BpW3wZTAYGNC3D2uWLiY0tOj6eRxg+WdgZUlgsjQqLbyc99VvdGvTiArRnqMNXGU7t6W/HuGJKmVpWsk9Ih+c07vn7jrGK3WrUD3Kek3o0rKc2l5MzeKXm/cZ37IuVVZ/7RVW9nyp47lNs8eV6jxtmrHmI2Z9sHU14DhIcvLuFQQhBPgWeAPIBr4GvpEk6ZNHerO/gaLKV5HmfPkbMpeJZ7ivihsXzvLr11sZPHUBMUG+9vvBTyEw693xtG3Xjs4vvOg0Ufrh68/ZseNXFo7oSVhwkP26vnP9KjO3bKNpxVheqRSHvPAZp0vLwmgR2XbqOgfvpaCWyWmAhnImFQqHPss1LRzcoaUFCSMipsIISaEwJlIAZAiokT1WcR4JiTSMJKAjDzM+yKiCP+G4j1m0hdBSAuoTiJ8DtMzBxEmyqYI/8RT1TWYkjpFFGCqq4zx2uinTkieZeUUTgUwQiNUoCA1Uc16Xx15LHtNb1CU0LsT+/PKNDmXe9gPUrVGJrk/Udzu/BwYZkz74jE0Lp+Dvq3EClrZJrNlsZuDAgQwbNZZKVap6ncQ69onLFy+gXoNGNGrtnNZcWmjyZ2AlPBqwtMH4SD9VsbAS3Pt922T8zIVL7N31K6/2Her1OeH4vdm+hzs3rvLdV1/w9sjJ9m3ePvPNcye5dvoYDV/xPJk3G418M38cr4ybx8wXGhQLK80Xdj8SrLxw/TYNuvY/Ak4X+f+z/SBA3Vo1pFN7dri9rs3Pp9/I8cybMony8XFOEHPb9p/Ye/gYs+bMdYJid27fZvrUKQwdPoImTZtaj2MUMRgMrFq6mNycHEaOm0BIqPNz9NTxY/z4/bfk5ubQpFkLnn2+M6Fh3qsre1K2zkhBvpaH6dmYzSZkggxBJkMmlyGTyfAPDMLHx/M8rCQlJz7gyN7dXDp7CqMIDZ5oT/OnOrmBS6NBz65vP+fq2RO88XYv4uoUzUcMeh1fr1uOTC7n9QEjUSiVdki6c9s3HDl0kD7jp6PWFPGA21cu8M3GVfSbOItq5YvGENmZGSyfPoFh4yZTr1YNoGh8dvjQIb764nPeX77CKSUarGn0o0YMo3/Pt60p0w5jNsfx2qYvvsNssTDgrdec9vcEKwGOnrvEF59/zvyFiwDP0ZCuco1EfFzw+GeB5ePCyvHDB7JmbVFpg5KApY9owGKx0LNPP7Ysn19iUR293kCfwcP5ZPlchADP487pC96nY4e2tGjSCFVUBa+w8pd18yc+09JjN+lVTV8fxOkrN7zWc/gn9IP/yDRwweR5VXrllZv0rlzeDVRezMrhaFoG42pZI2Ns0V7Xc/PYcvMu819sRZCPyh419lCjYvGvRxjQrhFNm1XHN8gaomxKusupdD1rv15CvaoVmDysH+GFEzxLoHWiZEsHB9BnJLH/2EkSE+6RlPiAjJw8bHBYaxIRZDJ8fP3Q+PqTbZSs3pIWC2m5ekTRjEmXT26O1p7CY9CZkKv9UIXGoQ6NQ29SInMpFGH/jlT+CGHVkIVVsxaZyL1vTeEOKIMQUsk+ERdkcuTh1ZFCqyCmX8WSk4AsphGCXGlN/45pgJifgiVhv1MhHVlwBQSfECwJB50iJgVNKPK4FlYwGdPI6ikHCAo18vhW1vYxjZw8M2V+kSBaEB+eQh7bBENeph1YCoIAMY3Iv7EXmSYEhV+ox5RwVdwT5J79kpzb5wiqWM/+ure08OD4qqReO8PNkwep3PjRImzuZutKXWzHpkcFld7gpKMeJQ08V1tAgFD8oNsRUtq0//o92lcvXyyotN1P2x88pEt8rFdQmVSgI8dkolGY5+rg/+rR5OPym9iAyJHsPAQBOjsUQjKkpmEKCGTcxh9YNqArUdHhmNOTUYRHU5CWyMA5axjc8w2aPtEGDLmImmBMOenMmDmXuPIVWbdpCwWF44BsvZmstFR++mgdOfn5tH35LeQR/UkqBJMPsgrIyNLhG2gdTOSmZoE2Ae3DW1gKMjHmJIMkYTbqAAHRYkIQFCBXgkwBSFbTXiSrX6VoRhKdJ0OCIANVIIJPMIJPECj9PMJMQa5ECIqHoHhr36vLREw6DXKV1ebCoUK4zD8amX90YSr3/sKFFWs/JAuKR/CLtPrzBpdHFmRdBRfUgcjLtcHy4BiyoLJFr8uVyMs+gZh0CqPFiCqmLrqsFDQhUShim2BJPk/+7cP4NrR6hWmz9fgH+xH/3HBu/rCC6t3Go9D4k5GlKyq4U6MV6pwMru3/Gdo8T0ywj1OECkBUXDyvvN2b9UvmMniidw8d2yq4Wq1m2oyZzJm/gCUL53tt7zEd3EWK8GiPwPL/AlR6O44ngHkvNbNYUOnpOHqTmRvJGYx61mqy7wgmXZWUm4/OZKacTHCDlGBdgNt49hrv1ayKNinH63H+pHZKkjS0mO1PAXckSUoDEAThO6Al8LcZnJZWCrWaFK0JMDndC3eTUvl+yweMmrfSbrtjS5tdMn8OHZ991u7LppdZo0hWrFqDRZ/HxoXTrf2JNgNJkvhox36Onb3ArFc7EObva//9TRaR7xKSOXD1Li9UjWd6bBTGNGs/mJdkjRy3pYVH+8g5lZ9PssxItmQm2WxEFKzjQVNhzIAcASWCvV64tReUkCgCma6jX3/khKAkGCVBKJ28JW0SEIhETWRh5KMOC1fQcoFcahBAtENEpD8KWhKKFjMnyCYGH6riZ40SLUz/PkcuSehpTDByBBQIPEEoV8njCFk0I9gOVevLArkr6vhMl8J/NFF2aFs3MIDwgABmHbnA9CfqAtYFN0EQmPRCa977+ncig/xpXdu5IE98VDhTe7/KsGkL2bRgCjJtht1t06cQWCoUCpYtW8aA/v15f9VaAvz9S5zIDhs9jmH9e1OjYVN8/YrG1TaQ97hp4YBbP+1JMUE+xQJL2zZH+w/beRUHLB3THR0n4aePH6FR8+ILQnjS1k0beGuYNe2xODCblKPnl8+30GXMHK9tjv34Kc1eeguVxtdrmz+p6yVEVv4/0w8C9pRhV02aOZ8pY0dSPt55oe3w0aMcPHSYuQsWO42fLp86xvJVq1mxeg1BQUVRkJcvXmDFkoX0HzKcho2dgwlOHD3C1i2bqFuvgUeIaZMkSTxMfMD5s2d4kJDAg/sJFBRY5zu2U7Ag4Ofnj8zHD6VSiShaEEUJSRQxW8zk5+ViNBicjhkQFEz5SlUoV6kq5StXJSDIc/RmdGwcL7/1Di+/9Q6JWXkc3/Mb708YQoMn2tGuc1d7sSiV2ofn3+zFM6++yfZPNrHjp228PWIyPr6+qH00dB8xkUunjvL+xKH0GjsVCr0sGzz1IqHlqrL83ZH0Hj+d8GhrAFDFGnXoP2k26+ZM5p2xU4mKLWtdbAgNY/z85SyaNJIx782geqUK9vFZyyeeQK/XMXvmdEZPng4UQTO5XM7i95cxqH8/Fs6eTmyZMh49LPt0e4WJ85dz+NRZWjaqDziDSnBOB6/foCEHDhxg/759tGnbtlTp3qVJly6NbO9VGmjpmBb+Z1LCszIzCHtEmK6Xqdnz648892zHEkElwKZPPmdg99eQy+Ue3alv3rmLTqejRZNGHrb+NSoEk27FZgv1t+8H/5GwEiDzpnMxmT25mURZICzVRGZq0bZko4GP0h8yNqYcWbeyCK1snXzezNXy8c17TKtXE/FBDllASOUIvrp4i2vp2cx+oh4xFa2dT8Hdu1w2Cqz/eT81ysWwetIQ/DQ+YM4DrOBFlvOQ03fTOXjkKJcuX8EgyShTJpYGDRtRod2TxMTF4e8f4DHC0qbSpINnJKRgyLyPIfMBefevIhmsnbxZUCEPikWS5G7Rk4JMbq0EHlQOKS8RS8JBBD/nlEdBJkceWQtJn43l/kFkETWR+VkjUGV+UQjqoMKJejlkQdZqw4JPMPKyLbEkHkUWXt3eXlD4IC/7BJb7h5wiLAWZwto+4RDyuGbOoCAgBtGUjyXtMvKImi7AUoYspjG5Z78muFkvZAqVR2AZUPdVUvaswDe6AkrfogIX3oBl5Q5dOfvRLMrXbYqiFB3O/4VKAykfRycPH6JBpXiv2z2BSoDvT11lUqMaHrc5pnibRZFTGVm8Eu+cXuJ4n65LTuCt8Bi3e/dfPZ4sJgvapBynQgUp+Tq+OXGZVd2sEZe2SbVPVAgjVn7G1DefIyLIHzE7FVlwJNqHCQxa/gkT+71Jrfp1oSAb0TeYK2eOM2vpGia8N41q1aujNYoEyOFuYjLrVq8gP19Lxzf7ERNf3p4OHhPsQ1K2Hl12GgXXTpN09RyiUY+ICnlwBQLL1cYkqZGpA9BlWu1QHjclXBLNYMjj/2PvLMPctrYu/EpmD3mYk0kyYWZo0jQppszc3mLKzMzMTZlv+ba9ZUoxbRgbxglnmDzkMUrfD41tSZYHkhS/u/roaeYILNnS1jnrrL227HMj1ZUg+1sACcGSgJCQjZCQpVF8Q9vEhzMdk3OC4ndZuRIQELMGatSSYlIugjMDqWIZWBLbvHuFqD9v9WpFHZk7IurpWzgBqWolIa8bMWtwxMdSzB2JVLEcf8UarDkDI4SlKWcIgR3zqV09i/RB+wFhwjKJ/KnnsuGDx+l/2k2IZouGsEwdeyRbP3ma1LwickcpHRu9f2Vu/+GkLFvMvJ+/Z8KUAyMDWSPvSoAePXuSnJ7JkqXLGDVSEa9IDldc8/a/E/TEoyzLyF5flwnSz5au55Ae+e2SlGFi8oW5KzhjcLHhNs3lDfxSXsXopGTsnSis9jtiBzBOEAQnStrP/sCSP/OE9gbCz4Isy/zniXs46qLrseje7R+/9zYpGVmMm3yAJnXtiedfIcFuY/qlFyO3uhE8bjytXq569l327d+DZy8+EVDuKWuWize/XcDsLaUcP7QPjx84NjLYbxaVlHCvJLHa28zaYAtlrV5EBLqZbfS22Qj6HaRYzHucFi4j00yIegLswssamggiY0EkGxu52DTVvMNwYGIEKQSQWEcza2iiHwnkq9SSiZiZTDqbaOFX6hiLCzsmBASGkUJFm5flOFIjKeP9SKIcLz9Ty0TSsLXRiEWiA7Ms8Lm/mqOsygRCXaOPPGwcnJXFYys3cFfumMgzlJCbzl3HTeXKD34ky5VE34Jszfn37ZbHsfuO4YGX3+WWC04HHWGpXEAit912Gw/eeyf3PPiooX+lGqIoctHlV/HyM09wxQ23xqxvj7RU+zZmOK3tViNuDx0RlurjdEbBGS/2N/lDrF+zmn2PUAqwhK/JZTe3m/7d4FZ+nyRX+xPO5Q1etq1aQn7fwVisxmSHt7mJ8s3r2ef4syMTnX8C/pFxUI23PvgvI4cOjqSGh7F5y1ZeeuU1XnnhOYJtscsu+Vi5ahUznnuel557BpvNRviXef3VVygpKeGJZ1/E4YyO3ZYuXsSbr73MwEFDeOjxpzXrQHnnrlqxnEUL5rFh3TokSSK/oIChw0cweer+5BcUkpCoHZ/tTir45tJKmsu3sbVkAz9/+wWN7noEQaB3/4EMGzOBXv0GRNST4efVYrXRd9LB9Jl4EKvm/cxD119K76GjOPqUM7C2WYRZrDaOPeditm9az9O3Xsl+J59Lz0FKBfXs/iO44JZiXnv4TiZNO5pRk5XiNN179+PC2x7gpftu5Ygzz6fvEKVf5crI5JK7HuW5O6/j/JvuBbLISrDicCZwx0OPc/s1l/Pw409qUurHTJpKydYdvPX6K1x0gVoYB1arlYceeZRrrr6K1194Bkdbv01PRt5128386+Kr6DdkBK6UZDrChRddzIXn/Isp40bGeGZ2BuHJv85A70Wp/qyOjqEnLMPoisJy1YoV9B88LPJ3Z9LAAT747EteePJRJJvy+fH6yz6fj4VLl3PZqUfHPYfHn32JO9vxsvwD8JePg39bslKNcr+PZS1NXJ2jJWNaQiFeri7lypxuWNoIvLqSOnb6vLxdW85VOd1p2dqArTgNWZZ5+OuFuKwWbjtAGQQ2bC5FyMvgrs9+pXt6MvceOpasvn3AXQGOImRZZvnsWXw4dwVlFZUMH9SfSQdM48LzzsFsNhumhOckWiOEZZHLEUNYdgSTPRFnXn+cef0R0pU0TlmScG+aR6hhF7RUEwz4FAVlSjeN/5ogCAjJBYjJBUjNFYR2zEZMK0ZMjlZsE+wuTN32RapcSaixDDFnqDIgjwzU12gH6mab0l66ECkUiFTPFUxWRWG5cz6mwvGRtEulfRyhXQuUtG910Z20YkIVy5EatkcI0ch5WRwImYNpXPYfUkafjiAIMYSlIJpwjTqV7d+8SK9jr9XMFBoRlqLJTPbEY1jwyb+ZeNL5XfodjNSVFc3+DlPB46GrJGVXi+ssK9nBQSNjvQ3jkZSgVABPTXDgsHQcJr4ureDQ/FzqN8cqiQC2+lpJNplJN3eu+u7/0HmE1VmO7GQemruSmycOxVfrVtraUutuf/tbTh43iCKrUsnWlpVJa3UZl7z8OVedOI2BxUVKWm9iOrN/+oE3Pv2WV154DqfTiRdIsAg8+/wLrFi5knMuvgJXnvJ8hjt9zmATP331OZtWLCMhLRN7z+EMP/kSGluVuBtOCbejpIQ70/Px1JbiSM2mtb4Ssz2xS4SlIJrBkRpjKSH7W5BbKpHKlypp3/ZUxNSeGksKaFNEFoxD9jcjVa0Gs0MpDhZWnJssmPLHIjXsVFSWbdW/BUHAlDVYUZtv/yUyGaMU2BmKVL8VqWwJYt6oKGGZMwypbBGhhmRMKdFYmzzsONyL36be6iS1T1ualdtLYmoOWWOOZuN/Z9D3xKs0cUwQBPY58xp+mHErCelZFPdQjqcnLPc/5Tyeu+Vy+g0aCplZhoNWNVFz+ZVXcdkF5/HvV1829HEyxG4U2vmzsbO2gcL0jjvroFVPfrtkHU8ds59mvZFqssbjxRsMUZicYKiaDMkyX+8o5742z6Gwz+EfDVmWFwqC8BGwDAgCvxF/1v0vjUBQa2VU3uBl7cz3GTppKhl50eetqsXPzhUL2bxpA9fdfk+kvdkv8eZrLyMAZ06/GNoGSFWtElfc9TS3nHsC/domCyR3Fcu2lTHju4WcPH4wzwyP+ti2VtfjC4X4uayKORXVBFtD9JdtTEtOJzPNGlFYAmBR0sKjVbSDu0VYCgiRYj3qtOwAEpX4WEczzQSxIdKLBLKwaortWBAZQjJBZNbTxCZaGIkrQj4KCPQhkVzszKWOPiRS2PY5OdhJwcJ86ikmIfL5udhJwMSvbYRlYhuNWCDY8UsS3wZqmeZJp8Bpoa7RRzE2WqwJPPLTMq7fX+l7t5TXkpCbzoPHTObyd7/lienHkuXSFmGYNn44a977gv9+8gXHHXOEhrAMF9zp178/A/v15avPP+WwI4/u8PscNGQo77/3HltLNtGjuHeH23cVe5OwDCPDaY1biCQeCen2BmnytMak0upVmnqy6IN33mL/Y05q99zCWPLVBxx55V1xiciF/3mZvgef+mcSlf+oOGiEjZu3MG/hEp579P5Im+RwUV/v5rY77+L5GU9hNpsxt8W8tevW8diTT/PiszOwtZEwtpCX2+57iMLCQu574MEImeN213P/nbfRo2cxDzz6pEaNLMsyq1eu4ItPP6aqsoLBQ4cxYeK+nH3+hZ3vX3QBVS1+klypJLlSye0/nCPbnoVQKETJujX8tnAeH735CrIsM2DcZEZNPgCb3REh/AVBYMg+Uxk8YQobls7n4esvY+JRJzFoXNTvPSG/J2fc/hhfvPIUaxb8yrSzLsZsthCwJ3PF/U/z6evPs375Ek659DpMJhPJqelccf9TvPzArbS2NDNsvHKsxOQUpt9yPy/eexOX3PUokEJWghXZnsQt9z3MDddcxZPPPA/J0X7KqWeexSP338N3M7/loIMP0Vx7RmYm11x/PdfcfDuPPflUhLBUw2KxcPfN13LzPQ/y7CP3tWupZJd82E0w/bxzefaFF7nysvYSNLqG8Hmp087bQ2dITyOFZUcTUxBNAV+5fBmHHaXYx3WWqNy2dSt5ubnIjuRIf0F/TeFrffM//+XMk4+Ltnu0ZPJvq9aQl5tDVmZGh9lLvxf+DnFw72h3/2AEAhKlVR5KqzyUVDYxY+cOjhDSKKtujbTvqGzhoe1bOUxMo7HWH2kv9Xt5s6acK3O6YW9LV63aVMu9c1dSnJTICUWF1JdUU19SzW/lNVz68qec2buQyw8cS6LNimfbNpo8Xu5/+kXOuv4efl68nAsPncgbT97PFeedwYiijIjvh5qAUqcBqwktNeG1u1WoBVHElJiFNX8E9j4HYyqcAKKF0K6FhHbOR2oqU6roqiAm5mDqPhnZ30xwxxxkf7PqeCZMucMRkvIIbf8F2aeoPJWB+iCE5AJCO+Ygh8KBXkTMH4fcVIbk3hY9jtmOKX80oV3zkUOBaLvFgSlvlNIuaTtDYvZQ5MZSZE9NxH8zDFNCBpI9neZ1MyNt7vJyjX+nNSUbS8YAqpbE+raoFaphZPYZRkNVKQ1Vv1/hq45SwH9vojJQvo0Nuyrpkx9VJ3i2bWuXqAR4c95KjtYpGsLQqyrnV9fSvzH+C/C/dZUcn6bMFoafxf9hzyDp7DAe+Wkph2ZnkuGMDoZaq+t5e8laitJSGJkSHew1l1dw2QsfcsnBYxhS3D2SvvvhR//ls+9+5uV7byRRUJ7vlupyLr7wAjKzsnni6Wcp6tkLl92MLMvM//4r3r7nWr5960WGDB/O6bc9yvjTr2T4hMlY7Akaz8XENp/FsE+js62QjCNVucfM9t2Lf2oI1gTE1J6YCsZh7r4vYnI+Us1agtt/VQqKhXTp5NZETAXjEJJyCe34FalJGwfElEJM+WMJVfyG5N4abU/IViZjyhYjeWqi7ak9EJJykEoXRGKuIAiIeaMJVK5Faq6MqElb68pwjTqVlpLZuLesjByj2e0lIb8vyT2GsWvWewDU1kcntcqbg0w65wbmvP4wu6qNi2WJosgpV97CjAfuiFiPGCHcOXM4HBx38qm8/uZbkXX6zpd+tv6PREt57W4vavy2vYJh3XPjfIr2s8JYXV5D/+w0TKJIa3V9ZNGjubyBl+eu5sS83Ljp3V/tKGO/pDR81d4/jagMQ5blO2RZ7ifL8iBZls+QZbnzhlF/MagJj60rF7N923ZG7X+YZpvSbZv58qN3OecaRTUXHsy899a/8bR4OOP8iyLbllS4ufSGW3nklqsZ1LsH5owcJEniyU9/5tOl63nh7CM4eHBxZNC3qbqeexau4a5ffsOc4uDaIf24vriYI3oX0rNQyRBJS9aqR8IFZ34PWBApwMFoXEwhg+GkUI2Pn6llKW4aCGi2NyMwiGTGkspyGlhOAyGicSMJM1PIoA4/86mPrHNgYgrpVOFjFY1tCeuQjIUJpDKHOprkaB+vp+gkV7QyK1AfSQcHmJieTlbIxAu/row8Wy3ltSTardx39CSueeUTvH7tOQNcc/LhzFy4kuWLFisNzbWIHndkoGiXfJx7/nR+/u4bynbt0qgLjVTmTf4QF151Lc8/8XDcuKlPuTaqhq0u8NQR8WiEjghN9bFrPIp/dHtVud3eYIR4dHuD+H2+uOmL4W31RGVFk5eStSsjRUUgtjp5GDvXrSCnZ1+scXwFPe5aWt21ZBQpVad31f95sfCfFAfVqHc3cNv9j/DQnTdryKlAIMAV11zLfXffpUnx3rhpEw8+8hjPz3gKe1sRGL/fzxVXX8uEkcP419nnAAp5s2jBPG66+gouvepaLrr8yghR2dTYyFOPPsSVF09nwdw5nHXeBTz53Euce8HFDBg0uF2iMtEqRoihzlSybw9VLcrzUOsNkdqjH1NOOpvzbn+Es266H7PFwkv338pTd97A+qXzkaRoP1oQBPqNmsD59zxFxbbNvHHv9dRXRa1talplxp92Oel9RzDjxsuoLlVqBNR5gxx77iUMGTeJGbdehadFGWvmpyZy+4OPs2buT2yY92PkOK70DM669naev/sGfK3Rez8rJ5erbrmDG6++HK9XGzfuuP02vvriC1avXhVzvYMHD2HyflN49pkZeEUbksMV038r7lHE2JHDeeejTzr1HU6eNJFNJSWUlil94vZIQ7vkiyxh6NWSGk/NLmTtdEbRqf7srt5DW7dsoahHzy6lkf/7jdc5s+158Io2w3OUHC4CgQC/zF3A/vvGt5p7+sVXueKCc/40ojKMv3oc/FsrKyVZ5s2WSk5wZpIgam/Mj1ur2c/mIltVpbVeCvDerirOTsihrkb5HbIy7TxRvoPDXBkMbDFTV1JHWnEa723ZQa3Pz2OHjsdqMtGwuZSkHnm8PX8V8zd/zZWnHsF1JyiplpacTOSqHZEq4abGckLJyoDIW72TDaU1lJWVUbprF1t3ltHY6CYUDOEJRJn/Jl8QQRBoaA1AW4fP3TbrI8vQ0hrAZLEhWdKwpXfDlq54sBn6tAkiQkohYkohcsiP7N5GaPsviK6eiK7umu1MGf2RA61IFb+BLSWS8gggJmYjOFKV9O+U7ohtqiAxMQfB4mzzqxwbURaJeaORKn5DkkKIaUoxHMGaiClnBKFd8zAVTowql2xJmLKHEto5D1O3iZHUdUEQEPPHEtoxG1P+GHxNaArumNOL8e1YgKVsFfa8aEUstcoypf9+lP/wHMk9huDIMC6GoMbk0y/lp9ef4Mir43vr/F7Y296UegTKtwHKs2IytancOiApAUKSxJbtFfTo1yNmnb7C9w/lVYwXnIb3YmmVh5JAK66giYZaPw3snvn8/2CMMOHxZXMN3RKdjMtKjxAlibkpLCytYltZDbceqczqtpTX4sxJ47r3vuNf+wxheK+CSEr486+9Q6Mk8thVZyOYzUjAsnm/8MRL/+a2ex+gW7dukVnLeQsX8fJzzzB+ygFcdu8TmEymmHTwglQnu+o9pKc6CPm9+NxVSHWlNFWUE2ypxeeuRg4FCPqUwmFBn0LIhSc2IkNFGdQ2bAIiWBxtfpUusCXHWF9EtnWkYXKkKX7AzRWEShchWBIQswdrVOdiQpaS+l29jqB7K6bcURHVt2JrMRGpZh2hssWIuaO0aeGlC5ECLRE1uJhciCSYFd/egvFKPBZETAXj8O+cg7XbeFqhTVVaQerYM6mb/yqixU5yYZ/IObn67UPFvA+oWT2bjEGTNOngdbKD4Uedzdw3H2ffc2/U+FeG1ZXp2blMPugwPnrzFU741/kdpoNPO/QwLrpgOscceSTp6Wkx6zuDeL6Vu4v20q535xiL1mxh+vghXTruu/NXcvGoAXEJyjAa/AEaAgG6JUYzKtSEZFCS+HV7JXf26dvVS/gfOoFytxdTQynLZn7M0VdHlZM1Hj9OycfbTz3I3Y8/oxkw/+eDD9hVXs51198IKOT92k0lPPnIg7z4+IOkJCeDx01jxQ4uefBFTpgyjiuPnhKxEfAlObjvgx9xWMxcN3UU9pbopEKzWbk3Wio9JOUm0lTeTEqSlZpggC2NLdRJAWrlIA1ykFqCtAoyfhVBFg558aYaBMCGSAoWUtsWaxz9gQMTg1CUOm4CbKSFFoIMJ4UUVXVwByYmkU5ZW4r3EJLJbvOzFBEYSgpV+PiJGiaQSgJmBARG4WITzcynnvGkIiCQgJmJpDFLqmVfMY0UQfmcvJCTVrGZBYEGxhElS6blZvNJYzUfr9/GsShZAS3lteTmpnPFlBHc8PpnPDk9qlABpb/46KWnc/6DLzIjI5WsnsUxCkuH7Oeee+/jphuu5/HnX+lQdZPiSmXcxMl89+VnHHzE0XG3A2OisiN0Rl0JnVNYho+nh5HKEqJKyc0b1tKrb2ymjRHC17hy4RyGjt+3g60VLP7yfQ679Na4qsnfPv83w48+G/hzicp/KgKBAJfdcBsP3XELyUnRSWrJ4eLWm2/l4gum06MoOhbcuWsXd9/3AC888zROpxOx1a0U37vudi6afj5jRo+KpIPPeOpJGtxunn7x1UiKsCRJvP3GqyxbspjpF1/GgEHK2MxIlRYmhWprqikrLaWuspSy0lIqystxu920tk1KBGVFoal9VJVoGJ5IEAQBWZaRzFZyCrpT2KsPhcV9ScvMNhyPWKxWxk49hF7jpuJpamDJj1/zzXv/ZtgBR9Jv/FTNtgOnnUK32iref+5xcnr0YexRp0WO2WPIaHJ69OE/zz/I5EOPYvCE/ajx+Bkydh/Ss3N4+pYruenehyAhF1EUufL2+3j+4Xvweb0MmapMomXnF3LShVfx3N03cNndj5PnSsDtDdK9Ry/OuuRKbr7mSh55+llMJlPke3zwkUe5aPr5PPr4E2Rkav24jzrmGB68/z5++vEHpu5/AHbJF2Pnc+bJx3PRNTexz5jR9OheSEe45cYbuO/Bh3j2qSfjbqMnMTtTkKer6EpaOAAq6wl9rDfq+8ZTmhrdv4FAgIqKCrp312Z/GhUKeu/jzznluKPiHv/XeQsYMWQwKeLu+yH/f8Hfkqz0ShIbm/0sCrnpLjhxt4JbRYJUSD4aJAlBMrPRFyb8ZL4IVXN+cg4OQVUBcNt2xtmSGeiMqnqeXbiWgtwUTulZTMvWOqzFmWypa+Spr+dy4r7Def7MQ3EWxT7o/rItrKrxMn/pclat20jIbCcjI51uhYWkF/Rg7LhxHHVMLiFbciTIG3lYGnlX7ixvQgr48NaVU7NpI/UrZ+Kp3oksSZhTcpGsaYj2WENhwWRFSO+DkNYbuXYjwR1zMOWO0PhFChaH4rnWsB1p13zE/LGqdEhrpFCEJEsRslOwJSv+kzvnKxXBw6mQuSMIlf+GVL8FMbWnsq09BVPmQGXw3lbxG1Aq86b3iRTWiZyPaMKUP4ZQ6WJM3Sdp/CsBLIVjaVz/LeaUfMwJ0XY1YZk18Uw2f/E8A/91m6aqr1E6+C6vlawefdjy23x6Dh8f8x12BXuSCv57odHTSrKjczP1YSxZtJaBWbGEhZ6oBPh5s+IJq0dYPTnX38CJzs5V6v0fuo4dHg8lVQ1c2bOXpr2+tJ53V2/msQPH0lpdH0kJf/XreezbtzujekT9Rb+fNZvyWjd3X3dJpG3R3F95+YMvee3lF7FYLHgBT0sLTzzyIILZyiMznqe17RVS1RI1/C9zt2L31rBy8SIqN63C3dCIyWqHhEysKZmkFPbAmjwab8CGYLLS2tBgWCU8HmRZgoAH2etGatwFvkZkWVJiXUp3xa9S1zkQBBEhKQ8xKQ/JU0No+2zFZzcpV7ONKWsgsq9JmUTJUxUIEwRMmQOQmsqQShcqMVIQEEQTYsF4pPIlSDKR+Cgm5YIgKvE0TFiKJkwFE/Bvn4O1x3601rcRlu4qUsecSf2C1xFtZ5OYldfmX2kne/wJ7PjySRJyeuLI0PrB+tOKyCjqy/pZX5B7tFLpUU9YDph0EP9+4GZ2bt2Mq78xSaZOB7/u+ht48JFHeeRBJW2sQ+/KPUwFb887cm8QlXrUerxkJHZcHE1NTLb4g6Q7VJUn46gmv95ZzkFJ6XEVk3Pr65icnhG5N8MFWP6HvQMpFGLmq09yyo0PYDKZNaTQx68+y0kXXkVCojJwd3uDtFSXMe/Xn7nnsRkRAr++vo6HHrif5196mSS7CVrdNDQ2ceG9z3LPldMpcpqQ3FVYMzN47+tfmbmyhJuPnERmOIXbaY/cO4m5KZRvr2EVHpbsqKbK5yfUGiDLbCXDaiXP7GCoyQIeiVpBotof6lIquIyMF4kGAtThZzMt+JEQEMjHTnccWAzISxcWRuPCS4jFuEnGzGCSNVXG87CTjY0F1NNEkGKiKZ5Z2JhIGnOoixCWAL1JxEErc6lnnzbC0oGJA8UMvpdqmCymkywo206wuPjRX8fyYBP5RK08Tu/dnWe3bmdhaTX7ZUbbBxdmM6HFxysz53P+IRMQXVFPN6fdxn0XnsL1z73D64/cHp1sb1OqSA4XmVlZHH/iibz+8guce8HFHapujj7pVK696Fz23f+gGA++ziKedyV0nrA03FdHAOa2ZSx0VsGZlWBl45pV9B00pN3t9ETsivmzOepMrWee0fXVVZSR4Eqnzqd8x2oysiDVib/Vg9/TTJM1jab/EZW/C5584VXOO+OUmII6S+fOwuVyMW7smEibLMvcesddPPHowyQmJiK2upFlmRvveoArzj2dYaOVysO2kJe7H36coh49uOyKKwGl77Bx/TqefORBjj3xZC6+8ALD8wkEAqxetZKFCxaydu1qJEkiIyOTwsJC8gsKGDt+PLk5ubhSU7FYLDHVndvzrpRlmZ01DVTs2s7OzRv59j9vUlddiRQM0q13P/Y5+HCyVHYg4XvWmZRC7ynH0GvyUSz+4j0+eewWDjj7SpLSomOVpPQsjr7qbtb8OpMvZ9zNoRffjMlsodztJdeVwrHX3s+3Lz1MTaOHKYccSo3HT35RLy66/UGeuOtmrr7zATKychAEgYuuv42XHrsfk9nEwH2VVO5uxX059OSzePHem7jj4ScjFb/7DRzMcSedzCP338ONt90ZOR+Hw8F9Dz7IzTfewPMvKZY96jTo62+8iQvPP49+/fvTM0cpGhNWWIqtbgRB4P7bbuSKm+7g3889EVNhXI+83Fx69ujB7LlzmbTPPjH+kmFSLl56d1e8KzuD3TleeHLKKObX19XiSu1awdfVq1YycmT7hXDC5/nj3EW8/uQDcbd796NPeeye2+F/Ip4O8bckKwHq5AD1cpAxJpemXZZlFkoNTDNpqzutlprpJTip9EhUtt0Ya0LN5Nps9DI7IsTKInMzqSYzk/zRAc3LP/5GuUni3v1HUzBAqzTbXlnLd9/M5rdddYiiwNA+PdlnvylceMaJmM3miMIS6NDDMozizEQNYQltg2WrnYScHgREpaPmLi9HlmWCDaW413yP7GtATMhEdmRrCkaE9xcy+iIECgmVL0N0ZiokpmpQL6Z0RworJgvHI7SpUiOFIsqXIiEjuoqUdrMdU+F4DWEJKB5tFcuQ3Nuj5KYzAzG1F1LZYsS8MSr1Zg6Sr5FQzXpMGf2i52txKkRmxQpMucNjKoTbek6mbv7rZE69UkNGhglLkz0R18D92TLzPXpNO13zXRgRlqOPOJVPHrqe7oNHYTJbKKlu3u20fD1qW0NxU8GbRWe76squqCrlqh2G7au2ljK4R77hOj0aNiuk0YrKOoZma6v5GRGVO1s85FismFT3kTrFu1kKIYJmgmBj8/8C896AFAjRUNbEq02lXNdLKegRJkoSsp18vHUXh2dn4a1sIjE3hdbqehpsVpbsqOCxEcqz5quqpsZk4Z2fF/Pq7VdGKoSv3lDCS+98xPNPPYYl2IJkcbF69SoefeghLr7qOgYMGkyTP0RrWycyQfLyw08/sXLBHNyNTdgzcuk2YATj9j+IOr/ymgkPWmrrW/E0+rCipDyH08I762GpVAJPVGJccrQzLgdalQmX2g0IZntc4lJ0ZiAUTUaqWk2oYTtiznCNd65gS8LUbR9Cu+YrhcZURLuYlIcESKUL2ghLsS0+jkIqW4IkEFVYJmYjyVIbuTlOicEmi0JYbvkZW/GBkYI73qZ6UoafgHvx2wjjzyUhLT1CWBYcOJ3NXzxF/9NvprYeTWp9/6lH88tL97J2zSAGDDQuhHXhdbfx8C3XcOdTL5KeoFxnvM5bz169sCUms2LlKoYOGRyzvjNVwfcGdpeoNFI/hmHPcHV5f7fXj8uuvAfjkZThZ+630lqO6NPHcBuAOXV1XJSQ8z+S8nfCyq/fpf/Uo6nzm8lV8Us1ZTupa2igqO+AiLefLMs89dC93Hjn/ZH40OgLcvetN3HTXffhdDpB8uHz+bjojke497pL6ZXuJFhTgdeewpWPvsjEAb1448Zz8FdHbSBCksTSnZX8tGknZQ3NOGWZ4TnpnD1lCEnNimJIT2Y3lTfjbPQhCgJd8a4Mk4EOTOQQJb5CyOyilQVt6doFOCjCgVlHXNrbVJS7aOVHahhOChlEJ1pNCEwglRU0spJGBpMU8bt0YDIkLAtwIAPzqGdCG2EZDAkcYFIIy6liOolthOVUSypf+WtY7W9h3zb1Zkulhwu6F3Lv2o3kJjroW1wY8a88ul83bvtyLss272TUyCzNtRTlZHLEPiOY8c4nXH76sTHflV3ycci0Q/nhqivZUrKJnh34UYqiyNkXXsprz8/gkmtuMNwmTOapK3MbobMKyb0B/WSVEapa/KxatYoRBx5puC4eKqsqCTpT2iVgAX7+7/sMP+gYjLSru+o9bJ/zBa4hkzu+mP9ht7ChZDPlFZXsN1ErvJBlmadefI2XnnhI0/76m29x5OGHkZmRESGd3vrPfxk+ZBAjhg6OVC9+csYzdC8q4qSTT4ns++5rL7Jt2zaeefZZklUeiwDbtm3jh+9msnLZEkwmE8OGDGbqPmO57PyzCLSJZWKJJwkvsd6DLrs5LmFZ7Qlgdzop6tOfoj7RPpAsy2xdv4bvPnyH6vJd9Og3iAGTp5GWrYzJw/erKIqMPeo03FXlzHz5UXoMGc2IQ47T9BsH7nswyRnZfPzITRx5xZ3kupSxoSAIHDL9ema+9DA/SRJTDz1cefbSMjjrxvt4/M6buObOB0nPUpSe06+5mWcfvAuL1UafcVMA6Dt0JK0tzTz74F1cetOdkc/cZ9/92LK5hP+88xYnnXZGZEI5P7+Ak089lccffYTrbrhR8z16RRv33v8AN91wPW++/Lxh2n1aqouTjz2S5179N5eef3akXV0RXI1LL7qQc6ZfyPixYzGbzRHC0og0NDpGeFv1xLd+G6MiO7sL9XHU95Ea4fY1q1YyaMjQLh1/6ZIljBo9usPt1m/YQO/i4gghrLdRqq6pxelwkJDgRML5p6eB/9XRoWelIAhvCIIQEAShWbVcrFp/liAIkm79e7pj3CAIQrkgCLMFQeiuap8lCIIsCMK+uu1LBEE4q73zmh2qY19TKnX+kGb5LdBMpmSjOSBH2kr9fjaEPOSEoh06txxgu9xKbsARIU9W+ZspbWxlsF8JpHUldby3ZQchSeaygm4k2aw0bC7FGwhy9wvvMf2Jt3jzhwUM7VHAC7dcyou3Xs7FJx7O8EH9I76VanTkYakv2NIZCIKAxVWArWgfbH2mYUotQqpeS2jXQuRALAkmWJyYu00Es43QjtnIQW0nSnRmYsodTmjH3LYKu9HPEXNHIrfWarzbIoRlafTzlKISI5RCFyoPOKXKbiZSldZzQ0zvA/5mpCYtMScm5YJoUtRToPGwFCxOLHnDqZn/Zsw1hj0sE4tGEGisoXLd+pht9P6Vm6pbGXHoiSz+4t2YbbsKPfncEdQkdlchV+2ILPGwYvMuhvZqPx2+YXNphKgEWFtVz8AsZcYp7OFqhA9XbuHAlCipqfeinO9vYLxVUfxubPZ3nqhMyUTI6ta1xfz7Klr/irHwq8YaJpqSSNTFm/LSRlbXNzA+W5m0CRMtD3w9l+umRl+0kiRz00sf8cDZRyE0KYPumvoG7nlsBs/cc1NEAb5y1SqeefxRXnj5lUiKD8CSn7/lnmsu4YVH78Nlt3DGVTdzw8MzOO3Sa5k0dSo2Z2JE+VGQqtzn6akOnMk2nMk2jY/lnnpYChYHpox+ildl1mDk1lpC239Faq6M3VYQMWUPQczsT2jXPKSWKu16kxVT4UTk2k1IDTs165TiZUVIuxbqfClHITdXarYXk3IRkguRypdEU5fMNkz5YwhsnaXx7DUnZZFQvC8Ny/8baWt2ezHZE8jZ5yRKPn0B0PpXlrpbmXDm1Sx871l2VrqBaCc8PKhsNTs47IRT+c9rL8T97tR+PVdefQ2PPvFku16Xvyc6IirVvpH6pT1s21ZOhkns0v4L1+2kj9VuSFS2VHoixNPG5mZ6JybQXNFCU3lzzLJ5Zx0JPiKF/joNi01Rr3Zlse7++6Qz+CvGwYaKnTRU7KDbsH2AqPqsvMHLV68/y2Fna4sEfPfZR4zYZz/SMqKT2u++/goT9z+YgkLFzkeWZa6/8z6uuug8enUvhMR0fM4ULnzkFa46/ThOnzpamTjNymRXCK5651uufPsbSlq9nHPIOF66+DjuO3YKx08YQs+e+STmppCYm0L2sFwSsp2RJWdYFmnJNvIdZrJtZhLNe2Ylb0KgO04mkc4k0rEg8Au1rKVJ40MZRgEO9iOdElpYqfKdBCKVv+2ILMCNpFoXJiznUU8z0ThWiINCHMynPnKsUEhgfzGDn6RaWmWFxhIEgUOtGczzNbDF1xoh8c2iyB37juDh+Stp8mr7C3effhiPf/wT9U0t6HHcMUewo7yKpWs2RtrU/pUAt95xJ4/cfw+hUCyVpk8XHDx8JPW1NZTu2K5p70qF4vawOwSmUVq1vk0d/+MtPp8Xm8MZ8fYLL/FQ1dSKKMYSH+UN3sgCSjpwzc4thFKUd7lRinfN+qVk9G1fmWSIrsbB39lj+a8YB5Fl7nnkKe644aqYVf/94mumHTgFp9MReSbKKyqYN38Bxx59VKStZOs2FixZxhknKZYLYqubr775Bq/Xx1knHRfxB5zx1JNYLBbuf/ChCFHZ2trKg/ffx0UXTOejd95k7LDBPD/jKZ6f8RQXnH8eQwYPjqgB9WSX2Ko8q3rvwTD0XrEdQRAEevYfxOlX3MiVD8yg29CxfPfOy7z/xN001ET7e+Hnx5WVy3HXP4jV4eS/D99Ia1P0nZ+bYmfM+HFMOeMSPn70ZppqqzSfc/D069mx9jd+/OoLQHn2XOkZnHXDvTx2xw3U1VRHtr3kxjtYNPtndq1cFLFrGDZhMsX9BvD+q89H4kuTP8QZZ5/HxvXrWDh/rubapu5/AJIkMffHmZp2u+SjW6aLc888jQcfeUyzTk0QHnbQ/mzcvIVNW7bSEWw2G2eediqvvPa65nPC6Ir/ZGcL6+xNqO8jtS9qolVk09pVDBocX2Fu5GO5ZvVqBgwc1OHnvv3ue5x+6slxr/mtD/7L6SdGJ9Ykp6tzvvD25K7HQtPfVpcYQWd7Rf+WZTlRtTynW79Ftz4y9SIIQjGwH9ATuBO4R7dvLfCoEC+p3wDNcoh8yUmrzm87hMwmWuijSlkBWIyb0bgQEKjzh6jxB/kuUMsUU1pk9mR+UzPfe9wc5VA6r6VVHj6uq8JX28pJPaIS8hUVtVz85tfsP6AHL111Breddhhj+vVAqooOUNXEkV4Z11nCMqzq65ervAT0SkAjCIKAKSETU/4YxKyBSJUrCJUtRQ4azIC4ipSU7V3zkVq0RJSS4j2eUNki5NboAC5CQrbWxRbSKRivEKRt5KfQ5mEpu7dqiAAxtaeSHllXoj2f3BFIdZsixXwi7VmDkeq3RAoAqQlLU0oBgmjCW7E25vrChGXmPqdRveB96isacVfFdnDV6Dl8PNXbNtFcr5A2enXrniCspN0b6AxBqca6neX0K8iJu15NUobhC4XwbKuLS1ICVG+qpTLgJ6/NH0RPVMqyzOagl15m+z9JTfmXiYUBWWar38u4hJQIKRLGO7t2cXJ6rkbFM3PzLobnpJPSZo3RUl7LM98v5MSxg8huq7TqDwS57M5HeOz6i3A6HIgeN8tXr+WJp5/hhWeexm63k2gVqa+r5d4brqS2uopHn3mBa+56iMkHH0ZRm3VAWNWRm2JXFpeyFKQ6KUh1RtSBe5uwDEOwODBlDsDUbR9kTzXB7bORW+tit7OlYOq2L3LDdkLVazUEXTjFW/ZUI9Vu1OwnJuUiuIwIy9HITaVIjdFnSkwuQHCkI1WuiB7bmoiQOZDA1ll46pRY5aktxZbdD0tSNtWLP4ts2+z24szphSOriJ1zvga0hGWVV2Dkseey4L0Zcb+PcZOnUlm6i99Wre7wu0tMTOSIww7l/Q8+BDpRaCdRq8DWQ52yqUZ7KeBG6Awh2R7W1tTTvxPqyubyhsiyur6BQalaexU1SQmKMu6LbaVMlBL0h4rg+6Y6DlJZmdQ1+iLL3xR/mTjoD0ksfP9Zxp4cW7V0x5pl2NLzSEnPjJD3m3aWseCXHzn46BMiA8ON69aytWQjBx1+VGTfGc8+z4RJ+zFymDKYafG0Mv3Ox7n18vPoX5Sv3NfJGbzw03JmfP4r908/npeuPYuLTjiY3v2LsWVlkpCbHlkyhhTjyEzFkZlK5pCiCHmZmJtCUm5iDGG5p6QlRInLqWSQhJmfqGETLRpCEpSCPONIJQkzv1CLD+0gTakCbudXagnqCMtJpDGfelpUhGU3HORhZyHuyGclCCb2E9P5QarF1xYzRUHgrMQc3qoupzoY7SMIdR6uGzeEmz75mZAkRSYw7FYL95xxONc9+7YmVpszlP7NvZefwyOvvU9jU2zfzS75cLlcnHTambzy/LOadfE8LC+66nqee+LhON+ucRp0VoI1QkKo34NG+L0Ul/rjqklFKRTCH+r8RFSNx0/F9s3kFvXSHMfo3JfNn0dq8TDAmKhsLN1MUm4RQgfpp38j/GXiIEB1bR0nH3uk4rWrgtfr4+MvvuGUY6PxTWx1c/edd3DX7bdGxsGBQIDb7n+EB26/MdK2et0GvvjqG2687prIvo8/9TSpiQ4uOvuMCPG4fP5sLp1+LkdPO4jXn5/BrTfdwOhRI7H4myJEZHuL+rzUZJhaFddVwjKM2tYA3foO5OSrb2f/E8/i/Wcf44fXn2RbqTI2DROWgiAweL9DmXrGpXz6xG2UbVqjeXYHD+zPEZfdzlfP3kf1js2RdkEQOOi8a9m5bgU/ff1l9HwzMjnj+rt59Pbraaivi2x7xW338e2nH7J2xbJIvJh27EkEAwG+//zjyP5N/hA33XE3b7/xGms3bdFc063XXsmbb78TKYCjxtT9JiNJEr/MnqNpV/fl7rn5Ou566AnDiRs9Dj7oQJYs+42aWu1Ecvh3Ez3uiDLQiLxUqx3jkXd7M11cDzVJqUbJpk0MGdA1D/FAMIDVatUUFdKT74FAgPKKSroVGvuCyrLMbyvXMGKocfbS/xCLP+KNIbYtJtW/1XgZKABOoZMIINOTWPXAeprpT6LGe6cUL6lYSFJlvK+ikf4k0RqAOn+IkCzza7Ceg0wZlLQoDOg8XwNNzX6OTM2krkQJMq//tJwftpTy3JmHMrxbfPJHj71FWIbhylIGRWF/RoDk/Gj6mS0pra3K7XjEtF6EyhYhubWzw9BW/KbbvgqhWL9Zu66teESoapVmkB8hLD01EcUjtJEDBWMJ7YxW+BYEQfFzq1mP7I3OUomZA5Fb6zWKp3ABilDZUm3lcEFQ/CvLFkdIATVhaSkcQ+OamYR8xsSiyeokdcgh1C5TBv9qwlKvrlxf3sikUy9izvsvRdp2l7D8vdSVnSUoIVpcJxiSsFqMX/KGRGUwBB2cf11JHSs8TQxPSIq7zfaQj8SQmU0t2lmFsOL5/yH2aiysCQY40qL1FW0qb2bLzjr8kkRRm9dWS6UHXyjE56u3ckKbjUVrdT0l1W5Ky2s4cFCvCHF0/1ufcOlxh1CQkwnNtewqr+SxZ17kxYfvjlSILNm0iZuvvYpLrryGk848B0EQNJ1I/UANooM1tcoyPdURUVl2RFjuNmkpmjFlDcJUMBapYXtbHJF125gw5Y1GsDiRdkWreAMRH15ZDhGqWqPZL0JYli3RbC/mj0Vu2KGZBBJTeyJYHIRqoipvwZEGyd0I7loYafPUlpLQezKBpkrqNy6OtDe7vaQPO5iWXWvxVG4DtISlL7U7yVn5zP3uGyBWXVnV4mf6tTfz2lOPRqpf6gfo6lnkI044ha+/nRlTkbIzCBMHu4N4qsrdJSnVxOOqbZV0k0xx14cXNSo8XnKdyr1pRFI2lTcTkmWaQyFSzdFCJWoysrbBy1aPhwSv8HcnKPcW9mocDDQ30HPMVOxJWlK53O1l4efvMuG4f2naP3zxKaZfHa2QW98a4OlHH+KqW+6IbLNo4UKq3I2ccJyifJCcLi6/40FuueoSBvTqjjkjh1BI4vyHXqJ7TgZP33ARafndEV1ZmsWWlalZ4pGX2cNyYwhLYK8QlqAoJAtxcAAZiMAP1OAxSNTtgZPhpPALtTShVRAW4GAwyfxCjUahaW9TWM6lHp/qmEU4ycLKMpRnqjkokSyYmSC6eLe1AqktDlsFkbMTc3ipthSvauDc3ZXIcf2KePTnaHz1VVXTIyedw4cX8/SHSqxTxxu7zcrdN1zNzQ8/rTl39QD68GkHUbprJ1tKNnX4vaVnZtJv4GAWzvkViKoq9SrEeKnRauyOR6V6H7WCUk8EGiou45CKa9ZvIrOge0Rl2R7C67etX01iYeygvtzt1Syb539H8YSD4xbN2TjrS5IGHUBtfavm/fX/FHt9bOxpbeXwgw9QDt5GIIkeNy+/+S4Xn3umxqPw+1m/MmzwQApTnZHn4/HnXubS884i1Swhetz4/X7uefRJnrzrpki8fOOtt0lKSuK8s8+KHOulV17lux9+5PWXX2TY0KhSrSuqOzXhBQp5pa7sHCYt9YRlvGJSaqj7opn53TjyyrsYvN+hzH7tYZb88j0QvZcB0vIKOf7GR9gw63MW//CV5li9iwq4+N4nmPXO81Rui8aQigYfg4+/hO2rlzL7p58iz056Vg6nXX07D996LV6vcs+bTCauu+cRPnj9RUp3bIsc4/QLL6dk9W8sXxrt+5nNZu59+DHuu+NWPJ7oc2UymXjkwfu58ZbbCAZj1d43XX8tr7z6GvX1bsPvJCU5mX+dcjzPvvLvSFt7v9dN11/HI489EXc9EPP77Qma/ZJmMfw83fl2pXK4XfIhyZKmgFG884j8u7mZFKcj7rWFjzv3h2856ID9I+16gnbhkt+YMGbk/1K/u4DO9oSOEwShThCEjYIgPCIIgn7kWCgIQoUgCDsFQXhfEISIsaMsyxuB+cBm4C7gNt2+LcDtwP2CIHTKtMCBsf9fJT7y0XYISmihH9HTlZCpJaDZblmgif6mBKxtKVrrm3ysDDSzvy1qvFrR6mVdQyPXTBiC3YD4seQWxT1ftW+lETpLWBbkJEYUlmrCMkxaJuf3iZCWEX9Hu0tJZ2wqQ/JEvZXCEESTogZqdccQmoJoVoroVK5ADkQ7FuGUcEXxqEoVtzgx5QzVDd7bSMjyZVoSM28kUs1a5JBqNt1kxZQ7XLM/KMSpmDFAqVjehjBhKQgi1qKJ1C2Inw6eUDgYv7ucYEvsgFdPWLqy80GWI+rKvYm9oa4MV5zvCGGiEkAUo+R9ZyqBl6wtJdNu/CjWldRFyPvfWpoYlZBMaZUnRlUJMKulgV46EjZMUm7kb+vb9peJhXZBJFmMjUW/NLuZImpJ5F/LqzmkIKfNF03Be8vWM318tGPZ6PFSVVnJ2AHFkbYZb7zH3Tddi73tfrCFvDz0wP3MeOYZunUvijvrrSYs9eoSfVo4dKywhN1XWUJbbMkZjuDMQqpcabiN6CpCSO2BVLowhtA0ZfQHKWCQEp6LYHch1Wln2cX8MUjVqzWqdjG9L/gaNXFYTMoD0ULztmjn1FNbSsqwY2ne8D3Nlbs0x80/4Dy2fPUqoYByXPWAb/AhJ1MybybeFuXZ0g9SExKTmHLokfznfU0mmiEEQeDM00/jvTjqyj8SnSEqjUhHPfHo9gVItVnjrjdCyBvEU9Vq6DMYxhZ/K71tjrhqyUopQL7J+HH+rsnd4Tn8RfGXiYOyLGHrt08MQdJQuYu0vG5YrLbIs7Czug6/34cpLUpwrVi8gBHj9iEhIXoJr772Olddc23k7/mLlzKkfx8G9O4VURK/+tNiTjpqGkcdeWhcgr498hKIEJeOzFQSsp2/K2EJCmnZiwQmkMpc6ggSOwhMwcK+bWpJPaGZjpUhJGtSvEHpk4/DFdPekwQEBHYSjVPpgpWJNhc/BaKTzt1cTk5x5fDM2pLIs9Zc3sC4gixsgRA/b9LG3SPHDqaizs2S9dpJdoA+PbvTp2cRM3+ZF7MuPMi87dZbePbJxyPt7RXcOeG0f/HpB+9p0r/1E3J6f8h4KdXhTAM14qkU47WH73MjwlJNuOjbwsvO0kokW1LcdPEw1P/esX0nruy8mOPqEfB5qfbHfpdhcjLQ7MaanB7T3lpXFbPP3wR/mTgIkJWREUP6Afy2bCn7DtH6KX/46VecfepJkb+DwSAbSjYzaXDUz/Xjjz7ijBOPi6SOBwIBfp71C+efE/U63LJ1G+vWb+D2W27CalWeA71asjOIlwarJpLUhKW+v9neAtG+aIbTSm6KnewefTj91kdoWjef6i3rYj7XYrVxyjV3sm3tClbM+VGzzuZwcsGdj/Dzm8/gadBmHx503rUsm/lfNm7ZEXmGMnPzOeLsS3jh4XtVx7dyzV0P89xDd+MgiMtuJtVh4Zpb7+LfLzxDS3MToEwqp6S4uOK6G7nl1ls155GVmcm5Z58Vk/INCsl5x623cO8DD2q/Z1Vf7sD99mXN+g3U1EZjcbzfrlfPHrS2tlJbG5uhFDm2we9nlPJvBD3RGFZDxlNF7g1YOq1ZVlBRXk5BQcf1H2b9OpsDpirV5Y2+z+9/mc20A6Yafl/vfPRJ107q/wk6cwfMAPoBGcAxwGSUGZ8wfgUGA3nAaMALfC8IQiQnSpblO2VZzpZleYIsy0YmCa8DTcAVnTlpM7F3WCMBkjBHDMABfIQwIWgqIu7CS4GO0NxGKxnBaNt6qYVR1mSNwe6LGzZz/cHRCmrOoqLIv/VEpZpQikdU6ouqxCMsi1wOijMTKc5MpF9usoa0dGUlxCUtQSEsbUlp0cFz1epIOrXmfAUBMXcEcnNFjG+kIJox5Y9VPCmlkGYfveIRFLWQYE/VDt5NVmMSM3dELDFpdyE40pDqtZJ3MTEbBLMmvTJMWIr2FAR7CnVrfoi5tjBhmTH6eGoWfxSzXo/15Y2MPPxkln71n0hbPHVluHr7XwmB8m0aonJ3UOvzk26Lna0Mk5RhuENBWusCMduFvSnr5ABpqNRGbURlKyFq/57Vz/5SsTCpzUNKT45s87dSZLVrCJU5FTVMzMmIEDS+YAh3q5ec5Gjq6ts/LeKMKdEYV9fQSGNTM70yo8Tne//5gEOmHYrL5dLMeodhRFhCbDqcXmEJ7ROWe0NlCW3VukVTTHyJrE/MQUgqQCpfGrsueyhSw3aNNQaAkNYbuaUC2euOtokmTLmjYpScYu5IpKpVWmuOtD6EqtbiqdoWaWqtr1QK7iz7ILJ/s9uLyeogZ+LJbP9GfdspKG3wMur46XzxypOadrW6csq0I5j/8w9U1Ct2G/HSHwEmHnAIP/08y9C7ck9TVbqaAh4PnSUdAVqDIZzm9qsAh9WTehWlGvoCOYvcDRSE4qs71gZaGGCJEvOlrcHIsjr0t5y0+UvFQWtSaqSvtqveEyFxSubOJGfE/pptl/74NfscfISm7bvPPuKgo46PkFHrN28lLT2dhIQEvKINyeHi1fc/4eyzz4rc9+UeieUlOzn00EMj5KU5I8dwUUNtiaAmLUGpHm5EWO4NH0s9EjAzghTm6sjFMOyqAjr6lPBMbORgYzVNmvZkLHTDEdM+jGQ20qxJE+9tUp6HelM0Dva0Ocg0W5hbp+1nnD+iL/9duYltOsLyznNO4PH3v6KxOdbe55IzT+KNDz/D02rcR0tNS6Nv/wHMnzvbcL0aXsFCWk4+20o2aNqNMghAS1TGUy4aqSzbS7EOE4PxFIsxx4pDJu6q9+BvbcHTVtDIiAzVk5blDV6a6qpJTM1o97ibNm9FStBmeqgVlIGWBizO5Jh9ATbP/6lT1/UXw18qDgI4bbGT1xs2b6N3j7aif21EZk1tHYkJzsgkNMA3P/zMtInawiHfzJrDYROGR8jPD959k5OPPCRCwMiyzL0PPMjtV11kmNK9p1D7V8ZTWXYmNVxPXoYJS0EQOOHqO1j26Ws01yqZfur7WxAEjrv0RlbPm8Wm5Ys1x7TZHfzrujv48pl7CQUDkT6taDJx6EU38c0LD1Fa1xJ5lnr2H0x+9yJ+/Cpq8ZOUksJFl13JEw/cHWmzWq1cet3NPH7fXZrPGzBwED17FfPZp59q2vfbdxKyLDPr19hYVlzci+zsLObMi524CeO6yy/ikRnPx7Qbpemfd85ZvPrGG5FtwsSnmmhWk6GdVVd2triO/nhdnURv73w6Q4hWVlaSnWVsa6RGXX096elpcZ+F7Tt3UdQtto5ERVU1q9dtMNjjf+jw15Fleaksy5WyLEuyLK8BrgKOD8/0yLK8RZbljW3rK4DzUYLzuM6ehCzLIeB64GZBENo3wIqDzXgo1qWGb8ZDL13bVjz0ULXV4icNSyR1XJZlNsotjLBEB8Srk0IMSk0hw2knpVeUVbfkFu0WURkPRoQlGKss2yMtIVZlKYgmReFYukijZoyctyAg5o9Gqi+J8XYTLE7FA1M38FYUj/2QKpZrt0/vg9RcoUn9FhxpCA4diWlLQXBmxPhXCul9kJrKYohVMXswUl2JpnBQmLC05I8kWL6Chh3aVM0wrCnZiBY73pqO06gzu/XCXbGLoD8a2Pamf+XvhfZISs+2bZ1SVdaXVFPr85Fui7481GrKMPyShN8bS3SEvSlDsowJAUEQYtK+d9JKIV0vJvVn468cC8OEZWnAR67FFhm8N5U3U+P34wwKWFQpQN9tKWVa/8gkP5Iks2jjdsb0VTq1wZoKnn//cy48/YTINo0VO/juhx859VjtYB9+f8ISYlWWu0taipkDkVuqDAvvAIgphQj2FELV2lgiCIISQyuXawqTKUrxMYTKf9MUzBFsSYhJ+Ujq1G8DElMQRMyFEwjsmKv1YUvMxJ7Tn5qlX2jOw5lTjJiQRc3KX2LOPa2gJzZnEjvWKip0fTp4tSfASedcwPtxiu2oU14EQWDKfpP58edZhttq0IFvZWfQ1QrgHZGUeuLR3xqgtU0lGW9RQ5LlyOSnuliOGnWNPnYFvRTqlJNqQnKV14MtYIn8HUarHML2hzjx7F38leOgGvW7tpBW2EtTbGf90vnkDlIG5FUtfpoaGhAEgUSVx9sHb73O6WedE3kW1q5bR2FBAc4MJRZJThf3PPUid1x1UfTD9Ib2KrRHWIYRVlcaEZbAXvWxDCMdKz1wsgTj58iJibG4mENtTGGeYhLwImkUk6AoKZsJUo1KUY7AOFJZQH0k9RtgqiWNX3xucEav6eiUTH6ormb7DmVCqLm8AVEQuGZEP+79Tqt4t1kt3HXuCVz/6IuxSniTiesvOpv7Xnw75rrCA9ZLLr6QN199OWKLYYQwgX3s6WfzydtvxKxvLwW1oxTrzqSFq8nBzhKVeoQJ/PD+FTX1WB1OzXMRzzsz3B7wean1xopE1Met3bSc9N7DlH8bpHk3bFlBSk/jyrtNu2KLYP7V8XeJgx98NZMTDz9I2/af/3DKoVM1CswvvvyKow+aGvl78Yo1DB/YL1pRurmOb3+YxbQDpkS2+eyj95kybiTpadEsxI4gOVyRpavoiLTs7KImLC1WGydcfRdzXn8Ef2vsMyaKIidffQe/fPIuZVuVtO+wQrNPzyIOO/0cZr78KBDt0yamZjBy2vH88p62n7XvcWcyf9YPkdRvl93MoGEj6N2rJ7O++jRyPb369KW4bz++/vS/mv3POu8Cvvn6K0pLd2nab7r+Wl597XWqa2IzAq+87FKef/FlfL5oTFZ/98U9FA/ZjZuNJ/Aj30Orm2HFhazfsBG/Pxrb1Mfand/UiKg08oPsiPjsiPCMITolCUHQtndEWFZVVpKdnd3uNs3NzSQ4nXGJSq/Xh91mfK7f/vAzh6qer/8hit3p+YTf7PEEtHLb0iWBrSzL3wCLUGTvXUY9AVLRdhzK8ZFD9KbwEMKiU1quozmSJl7nD7FVbqVIcCAKAvlZTmRZ5tvSCs6eEn3JqlWVYYQrEofRVaIyjHSHKUJa5iRa46osIbb4Tpi0jKeyFMx2THkjCel82SLXIIhKoZzKlbFEoTMTISELqUZbzEZMzAFRq3hUVJejNanfAEJaH6TmcmRfk6qtN3JLlVaVJAiY8kYRKlui848TlePqSFNfUx2CIGIpGI1/5yIaS7XFMMLqyvRRx1K7RBv8wdi7ctCUw1n185ea9r1BWP5eqeDxiMr6TSWInq51cmt8fjLsyn2nJylBKaQzp7yOHuZoZ1tf6btc9pEr2Ay9KcvxkUvHHfW/Af7UWOiXtAO0ukYfvzbXMznBpWn/rrqKgzIzNW2/7qhgv+Ko+fOPa7dwwLB+EZLT4/VRsqOUoSrz6RffeJsrL7tUozg3StGBvU9YGqksYfdIy4jSvHa9JhapIab1BimEVK8VOwiiGVPeaKWYmDo2mSyYsofEKMXF1B7gb0RWpX4rJGYeUm10BlVCxJRaRPO67yJtntpSnD3G46/Zgt+tmKg3tw0wM0cdSd26BXjrKmLOfcTRZ/Pje68RCsaqngEy+wyhYtdONu9QYnZ76spTTjwhbqGd9rAnvpWdQTyisiNVZFdQWtqAwyfHEJRh1DX6kGVFlxa2V9ATkrIsIyFjMqiRsCnkIUv6XxyMh87GwVAwti+zds0aUgt6atrqynaSnpOv8W376IP3Oejo6IRMhbuJ6spK0vKUd2yzX+K5V97gnAsvAZRnYP2mzWTk5JHbs09EURKTwqgjLfUqS73C0ghqwlKvstxbpGU3HDgxsSGOLUsKFoaQzBzqYhSYo0ihhBbcaOPMaFJZTqNGkZmAmT4kskiOPreFTguXZBfySl1ZhMQUBYGznVnM2LaVhoqoYjIn0cEh/Yt4eZZW8d5/+HAmjhzMG59+qzSovvPhA/shy7B8dWwBRrvkw2azcfxxx/Hxh0oWjT4VXJ32nZ6VTTAYiBTJ6Aid8bCEWMJSn7Idxp4QlWrU1rcS9HpwB0yaz4NY0lL971bdO0JNUoZRtnY5pBXH9aJs3LqS5B6xBSVC/lZEc8e+g38D/OXGxrIsU7J1Z0RZGcbC5asYM0ypaCx63JRv2UiaKwWbKqPqjQ8/5ewTj478/dVPszl00hjM3sbIsf/7+deRquEdwYigNOpTdKafYURadmXRE5bF3fM47PyrWPLWw0gq39zwM2Aymznjxvv49tWnEJqVGBDu144bN57+g4ew8PN3NefYa8R4ZFlmzqyfI/FAEAQuv/UennvobpxCKHI+l1x0IbN//p5dO3dE4tDJ/zqXeb/+zLYtmyN9NEEQuOfe+7jj1lvxqLLWzGYz9997NzfcfGvMxI095OGKc8/g8Ucfiqt8vf6yi3jkaeMJbD1OOOxA/vufdzRtu0s+xyMq9zaMKs+31paR4EyIWW9EWIYnLisrK0nNiVVEqhWoi+fMYuzQAXHPZeHS3xgzcrjhunmLljJ+9MiOL+j/ITrs8QiCcLIgCK62f/cGHgM+l2XZ29Z2mCAIBYKCNOBZoAZYsBvncx0wHTDuvcVBE0GS0UrBmwmSpGi7Im1b8dBLVSlcQiaIpPHA3CC1MEjl97bL76NXUiImXfU6taJST1J2lqjUp4KrYURa5iRaO0wNh9gCPBrC0paC6CpC1qkZI9cimtsUmIs1ad/QVsk76I1RJIlZg5VK3qrURsFkxZQ9WFsBVxCUgX7FMpWqSKmgG6r4TTv4N9sR03sjVWu9RASLE9HVE6lWOxPra6rDlJQDIT9SqzuGsAQw2RKwZxfTsNXYs06NniMmsHX5gpjArycs20sF72qRnb0Nz7ZteANB7NbOFdcJV/5u8AdItljiEpUA24JeepoUcsmo0vfGoIekOKmRMorq8u+Gv2IsVBMjANs8rRRYtQOgjTUN9E5IiBA427ZWkem0E6iLDhy/Wr6R4ycOi/w9c+EKjj1gEjRH1W4bSjZHzNPjvdz3hLAEDAnLMPQqyz3xs4xMzKh8cPUQswYjt1Qie7SKP8GaiJjZH6l8mbbdmQ625Fhfy9yRhCpXaeKbmNoTWus0k0KyMwfJ10RLqXZwnTLiRCrnvKlVtQsCPQ6/kO0zX6OmLvoe2VXvwWSxMujgEyKdZ726EuBfF1/FOy9HK+LGIywdDgeFBQWUlMR6w/0R6Ephnd0lKNWqSc0SCkasFtRQ+1LWSkHSTbGqyci2cpA0waJpq/QFqfQFWe1voZvw9yMr/4pxUE+QVKyYTc+x0RTwcreXNbNn0nOfQ4Dos1CyejlDRkatLxbM+oH9px0W+dvv9+MP+EnPyIgMrN7/4jtO/9c5GoVQZOkEaRmGXmGpV1dClLAENCpLNWnZ0dIRBpJEGd6YdO8wMrHRAye/0ahpFxCYSBqLcWu8L80IjMHFYtya7QtxEJQlKuXouyPNbOHgghy+aYrG2FSzhaOyc3ivTT0UnpiY1r8HG8tr2bRWWxjn9CMOZOGKdeysiPU9vOnKS3j82ZeQZdlwkH7k0Ufz6w8zDQtU6HHUKf/i8/ffimnXqys7S1TqYZReDbtHVOrJRLXSsbGhCdFq02yj8bnUk5a68zIiQGvrW5ECfky2aMaMp9GnWYJeD2ZH7Hu6cdsaUnoMiWn/q+OvGAf1KNm2g37FPTRtm7fvpE/P7ppJ54++/p5TjpoW+dvvDxAMhkhNiSrOv/h+FicfqcRP0eNm7W9LGDF0UGTyR13QR++Z2R6RpSe69M9pewq7zvgZxvM+VBOWAEOHDKTfuClsmvO14bOYn+7iglvv59UHbyfNqnx34Wd/wmHHEXBXsnPt8sj25W4vfQ89m9mfvMfWsppIXEhOcTH9kst58anHIuenkJD38/gD95BgEUiymki2mbnn/gd57uF7caq6IZlZWZxw0km8+ZK28HxhQQFHHn4Yr/07Wr8h/F2OGz2Cmpo6duwqNfyO01Jd9O9bzMIl8fvDYUw7YArf/fRLh+n+HdkC/FFEpR7h82lt9WJ3RPtf7RGW4b/r6mpJ1amI9de3dMUqRo8wVpADzFu0hH3GjgK09364f282717F+386OjM9eyGwRRCEFuA7lEB7tmr9fiizPs3AGiAdOFCW5S7L0GRZXgG8Dxgbm8RBPVpvPIA6AmRgi9kuXbWdF4kEYm8MsyqIp5rNNAWUmWN1CngYnS14Eg/tEZYQJS31xGVn/SzDKksNYWlxGiorI9dktitp3yqiMQwxexhS9VqtYlIQMOUMiylcITgzIBTQDMgFsw0xMQ+5MTqgF0wWxLQ+SDVarwYxKR+5tTYmbV1MKURuqdZUDQ/DUjCaQKky+64mLMPqytSBB1A675u41x7Ghoom8voMomzjqg633VvobEXwriDBZqXFZ6ywige7SdRU5QxDXUSnVQ7hFEVDorLOH6KRICkGz5YPCVucAll/A/ylY6EsyxE7izAkWcYsCJqO6ebGZvpluGL2tVujsbGhpZXMNJdmoG21aGNsZxCPsAxDrSwJF9wJE5YAiS67oq50KeerVlnCnvlZCiYrGJBRkfWCgJg3SlGa6yduErIU78sW7QBZzOinWGmo46NoRkzvg1SrnUARDWKmpWAswdIlkY6Lp7YU0erEnjuQlm1a1WYgZCe5x2DcG7VeSgAFg8ZQsmo5AZ+20x3uMJvScmhpaqSs1h2zrzoV3CvaOOvM03nj7dh0yj31rewI8YhKI1Vle0RlmHwMeAKGpGQ82EURX9t7Ml7xnFY5RDAYf+KlSvKTLVojBGWlL3pfhJCxCO13wWSzNUa919EiW353AvQvHQcBPDVlpOQUatpqS7eTURAduMuyjGg2U+2Jvh/Ld+2ke49ekb99Xi+OhOhHe0UbOdlZuN1uzbHDAy+1h1c86AnLcOGdMNSEpTolXK2yhChpabSo0RnC0t7B9GE3HPiRNOndABZEhpHMUl0qeQoWnJio0G0/RnSxVNJuOzE9nU2CD1OmnaTcRJJyExnhclEnhij3tJKYG63yfu1h+/DM7Gi/NFijKMtvvfAMHn3tP+iRkOBkwpiR/DLXmB8SBIHDjziSH2YqfcJ4k20AfQYOpmT92nbTxvcW9KnbRlAXqNPvq4aeyDfZnNRV1Ufaw58TrzgPACpP2LjHDmdltJGTasiyRCgOH+ytLUNwdqzE72oclOxJHR5zD/GXj4PrV69kUJ9emrbVG0oYPrC/pm3jlm2a7SqqayjM09lXiCIWVR8wJzOdercygbGnVY31hE9H3pedJS3jEZnxCmolZWQRapu4UCuOQek7paRlcNhp5/DckwrRqPanPfqCq5nz0WsE21Kkc112RJOJQ866hGUfv6r5nKEjRlFXW0NFebRGRHpGBuPHj+fHH76PXE9ycgrHnngy77+tLSB71EFTWbh4Cc3N2lvpqCMO59fZcyJVw9Uk8NWXTOfpF1+L/K0nkM89/WTe/E/HdR1EUWTwgH4sX7223d8o8i6MQ1Trick9ISo7SgFXrw+fT0JmPs1N2u/P6J5S30NOp5NWjzae6q+vsamZ1JQU9AiT+Du3baVHN6Vvor7Pa2rryMrMaPc6AGR7Qtf7hO2Mc/4u6Ixn5X6yLKfJspwgy3IPWZavlmW5UbX+OlmW89rW58qyfHxblbMO0Xbse3VtZ8uyLMiy/EZnL6KRAMk6srIeP6m6thAyZtUltxDE2QFx0q1vFs2Bjmdd9zYSJU9kCUNNXHaFtAQ0hKXF7kQwqCKshpigzPrrB+OCaELMGoRUqSXxBLsLBCHG71LMHoJUpds2rRdS/Wat0ii5jZgMagfXpqxBSFWxPpSmzAFIOk85X1Mdoi1RIRHaUhX0hKVodSBaHVRv0aqf9KngAEMPOIqVP3wW094VdeWeYnftBMIwm0RCunRhiK+qBEg0mynfpiUK9NW+/cjsaDFQErUptGSIIc5AUUEn/U3Jyr96LGyQQ7h0L6XqoJ8sXYrV9qYWerra78gHgsEYctJms+L1Rp/Pzqgr40FflEBfITw91YGzTVGkSQlvh7QMY08K8OghiOa2eLc8Zp2YNQSpak2MVYWYOTAmNglJeYpKUzXBIlicYHZoYqZgtiK6uuOvWK3Z39ljAo0bfkGWQpFUcIDs0dOoXDKTmtrYIhMDDjiOpd/E73yOOfhoZn76USTdMZ66snu3bpSXV2g8j7oKI58+NbrqV9lZaMlIwbBYUDz4moPUef0xBGUYpa1BSr1BLHFonkpfkG0BL0Lw7xnv4uGvGAfVExxtOyGaTLomSdPWUFeLK01rA1ddWUF2W0ZKkz9EIODHYrVqCPzuvfuzqUTJTPGKtshAqF3C0sDHUk9a2rIySchVtgsTlkCEsARiVJbxYERatocgkmHhSjVGkcJyGgnq0sEz20QBNbqieUNIZjWNSKrtrYJInmBnY1Abr07Ky+c/ZYrVRZikvWrycN7YoagrHZmKmiUnJZHURCdrtmsLQRbkZJLgdLB+pVYZJHrcnHXKibz+rkJkqgfX4ffX4UceyTdffh5pb+/9NXLCJH78+WeqWvyaRQ39uy2MeL6QvyeMUrLNjiSC3ubI+o5Iy/YQ89zFQaCpFktSegyJ6Wn00VyxC6urfR+4vyL+inFQj5IdZfTK0vKbazdtYUBvrUVGMBiKEpHNtZRtKyHP1b54IiMtldrK8j0mKttDR+q8eKRle4rL9tSV/tZWLPboPW1EWA4cOQ6ft5V5ixZH2kCpHn7Emecz+4NXIvvnuuzk9OxLKBTEW7Fdcx7nX3YVzz71mObdcsa/zuKdt94i1CYWSbSKHH3EYfy2eAGBZrfm3C+58AKefeFFzTEFQeDiC6bz3IsvRdrC6r3C/DxCooWd9R5DAjElORmrxUJVdazvpR5nnnQ8b72v9C07Q1jGw++hpFR/n2roCUuHw4HXoE/bnj9mcnIyjU2NMeSo+jq9Xi8Ou3bCWP2MyLIcsVJQY9uOnRQVdlxp/P8r/n7u7gZoMFBxNRikhuvRQoiELhInRn6Ve4owIWlEUOrbw0tXSEu1yjI5vw9yKIAloWNDZDF7qDIYl7SklJiQCVIgpiqumD2kLd1Rla5ocYLJph2QCyJianFMKrope2hssR5HGgQ9yAFtp0twZiD7W2LITVCK7YTVlRBLWKYOPpj6ld/irtJ2mPWE5fZmESkUwtfS8UToX7EyeDzoiUo95BovLSplpZ6oBKjyxw7Sjfwp9VDIyn+OzF0QhHxBECYIgrBvePmzzqUi5CfbpCMmAz666dLCtzd7KHJFCT1ZVUgkDH8giNWi/Z16FRWxZatRwco9g5F/JRgTlkCEsATi+lnuTcJSTMgEBOOJm8z+SFWrddtngd+jVZQLAiYDElPMGkhIt78poy+ByrXIweggWBBNWPOG0bRJW/HR2xIiY/Akalb8HHPe+QNHsWPtb5GZ/jDCnetBo8fz2wKlqI+esNSrK4864nC++Orr9jufe6HIThh7Q1WpV006RBFvnIwCtXIyvNgFkVaD7dUp334kLDo/SrWCsl4O4jKId5IsE5Sh2cBv8Z+G3ztGmjqhHMxOtiLoVKxr168nv6hY0+ZpbiIxKTq49/sDGjURQK/evVm3eVunK5hGYPB8xCMs1SnhsHuEJRAhLDtSV0oYTy5qzhWRoSSzTJfeDTCCFH6jQUNMmhEoJoH1Oj/MwUISi4ONmmI7fRITqfH7aU1R+uOJuSl0K8qlX0E2y5qU5ztM5F5x1H48/Xm0uFhYXXnt2Sfy+L8/jDk3u93G6OFDmT1/oeF1Wa1Winr0ZMO6qP2GunCHGkOnHMbsrz81PE57CJMd7flCqu1Q4qkm9wbMjkSCrVqvZiPSUr20+IKdSkfXk5Gg+Cy7d2zDnpYX2Uatvgy2NmPai+/rvyr+8L5icy1bdpbRsyBXY+ezfVcZ3fNzNdsR9Cr/b9uurKqGvKx0zX56CAY+zLuDzlYPN6pOHcbukF5GkxIBrweLTUvARzxkVYTlKZdcw39feQa/LnOl99DRCN4mhProGCs3xc7h51zKBy8+GRkbu71B8goKcTiclGyMZhSazWaOPf54Pnnv7Qhp5pD93HLNlTzy8EOaax01cgRbt22ntlYrEBo/uDeb1q2lrk7bh5IcLi675GJmPPu8pk2N844/jFfeei/+l9aGrMwMWjweWlqUmLAnFeA7UzynPXTlPayeXNQjnv2AGknJyTQ2NLZ7rFavF4cqvTwema+3S9i2cxdF3QsNt/2nYXdi4T+CrAwgaYrmgKLsUie2+JFiyBVPJ8lKh8tJsBOpH3uigtMTlKbG8rhLePtEyUN3my8uaQnEpobn5uJwZYLJgi0prd1zEkRTjO9kGGLOcEKVK7TEpMmqKCTdWkJDzBoUMyAXkguUYju66rmYbUieGt3+g2MIAQBTdqzCU1FXKqoxKU7xjFafiUBTFVLQF0NY6pE8dAqrfv4ipr2zxXZ+D99KuSq2orm+Kn08GBGValUlQILJRIsUn3jc2OwnpPOdVBOVRs9aGP8kslIQhIeAucCtKJ5C1wHX/tHnESZOdgV9FOiqEu/weynUpYV6giESVSnfOzeXkpao7aAFbY4YZWWf4p6UrI3v97q73pVq6AlLQENYGqksIdbPEjomLBWStnOITtzo0sETcyDQguzTzpSKOUMJVWjjpuDMQA5oJ1gEkxXBmYHUVBZtEwTsPfeldcuvmv0dhSNp2bYUORTQqCvTB0+mdu08JIOCOiMOPo5lM2OLitV4/AiCQL+xk1j4q5boNCIsDz3kYL7+dmbMcf5IdFT9Ww2jqt1iQGZXQ6shMWkEURAIv97U1b3VCMqypu+hTvMGCCEZpnpXhQIdZnX8E/BnxEhfYx2WBG0aVkNVGSlZ2v5Z+bbN5PfUkpWgHYQHAn6sVm2cysvLo7ysTL+bITpjlaBWWapTwtWEpbpKuN7HsjMqy72FrDYVpVE6eF8SWYu2z9UdB5X48BKNmyZBYLA5kfm6mDl9WG/eKS0jMTcloqQ8e+wg3lqyjkAoGotSE530yc9kwcJFmv3TUpLpVZjHgt+07yjR4+bc00/h1bffV/42GFifcfa5vPWGNlXTiLB0JCRgdzhx13asPmoP7VXg/r1hdiQS9ER/JzVxGCYtjRSZXVGlg0JSht9TfncZkjVT895SY28RX39V/Fl9xVafD3u4aE4b8ShJklLhu42crGtoxJWszbQpraolPytDs58RBEHYq7YIXVFp6knL3SW91OrKBFOI7IzYFF5AQ1g2hkT2O/lc3nr+qZjtjpp+JZ+/8iQ5ybbIRLwzKYXBY/ZhwY9aC7KLLr+S559+UnMNxx92MN/P/AZ/fWXkGvsWZJBkt7JxhdYK6MrLLuGJGTNizuHqS6bzxGOPxLQXde+G1+ulorIyZh3A4H69Kdm4od0smjDJdtK0KXzwaXRs3BnCsqP0/q5CTxbGU1V2tF/4nIzIcPV9lZycTGOjth8ak1EhSRofVzVq692kpWrvr/A223fuonthbPGefxp2Nxb+I8hKvSrICB5CMYMDPxJW3VcgAX0StZ3T4bnpfFeya4/Ps7MIE5LtrVdvE09pqVZZAmS7RFo3/0Coeg3JPUaRnN+nY8Iy7DsZ0JKpgsmCmNINuWGbtj21F1LDDl2lXCuCPVVbEVcQENP7xfq4ZQ1GqtEV1bElgxyMVVfaUpR2nbrS11SHJX8EgfLlkTZ9wR1T5iAaN8wB0BCWenVlRu9hrFkW6wlnhM6qK9urCP57+FZKXehk1pXUkWwy09hmMKRXVcbzqFSjhSCJcQhJo+fwb4yjgb6yLB8qy/IRbcuRf9bJVIT85OiUlUZp4PpxQZMvQKJdu43DZqOpRfvbDxs8kG++/0kzaNlbaRz6qqhhqAvuxFNZGqWGt0dYyrKM1FhKaMcchMS8Tp2fIJoQM/oi1W2KWSfmjCCkt7qwOBFsSZqYB222Fnp1ZXpfJJ3K3Jyci+z3IKliniAIJPebQuOGXzTbtjb5yRp5EOt//hLQ+or1GjGebSuXxB1oTj7sGL78VCEz1dVv9QhaE8jLy6W0kyRNR4hXAbmrMFJVGhGVAMmCmQYp/jXqUdoapCUkGRbOCUNCKe2q96OMIrZv0hyU/mlxsD0czR8cI1uqdpGYrVUouKvKcWVrn3V3dQXpWe175dnt9hhfMFEUCQQD1NbEElb6gUsMwgV3dIV3gHYJSyBu4R3onMrSCA0EmE891i4UvBtBCquJnQjuhoNq/ARUxXYEBIaTwkpdcZ7BpkR+8zdH4lJCtpM+xTmYHTaa7LaIutRVkMlpU0Ywc5d2cH3RYZN4Zeb8mHO47LRjeOW9j2PaHQ47A/r2YcWa2MrgABmZiledfiBqhMmHH8ecb2PtgTTHU03E/VmkZLyq3JbEVALN9RGSMkwg6hWP6v3NDifB1vYn9oOBaD9QT0oGm2sxt93vahLz/xGO5o+Mg20Eo8kkxrTrieHSypooMdmGxuYWkhMTNPuFDAQMo4YM5Msffolph84Rj2pSKLx9vCI97R3DyN5BDzXpFE4TD09ItDQ18uU7r/LbrO80vsZ671g1Ydlr8Aia6mtpdmsVjM6kFAZNmMLyX7+PtGU4rex/zMnM+fZzDbmbmppGt6IiVq+O9h9N3gbOOe0k3n77Lc13cMPFZ/PsC9H0boB+ffvidrupq6vXfA/9+xTjbmigsWJHDDl46UUX8tIrrxEPxx16IJ99EhtD9ZgyfjSzFyzqcLvfC13ObDDYv70JGKP7Ki0tnbq62MKzYWgKRRncvzvLKynIibW8ED1uKiqryc3O2q2q6n8zHM1uxMJ/BFnZGVgQCOi8dpyY8KANwImYWNqkHQBNsSQya1sZ22vceLZti/sZHZGMext6pSWgKcRT5FIG+o7mcnZ++SLL33uSooEDGHjWnWQUDwSIEJbtkZZCak8k9/bYdlcRUoNW5ScIgkJiqgroAEplb91AX0jIQvZoVX2CaEYw2WLIUWVAH2v3IqT1RqqLrVQbCISQfc1xCwnZsvtTv9E4LUhNWAqCgC3RhacxNi3RSF25p+ngHRVciodA+ba462xmE95AsFOqSoBsi5WqgN8w/TsMKyJ+jAO9klJmjHheljHHcKYSSs7t0iKbul4AZg+xBfjDPzQeTIIQ84uYBYGQrlX/7RcV51PdqB2IjB82gHnLtaRaTlYmkyaM5Y23YoutdAXx1JXtpYOHYaSyhFjSEmIJSznoI1S9ltD2XyHgwVQ4HjFVWymzPQiJuci6VHBQioYJosU4ZukmYwRbCrLfo1FoCqJJqTCuexdZ84bgL9eSoM5uw/DsXBnTyUrtMxr3Jm11coCKBh/dBo1g0QLjAhMWqw1nYhLuOmVw0146+CEHHch3P/yo2f/3LrLTHrpCVALkmKxUSsZKd7VyMl5lbz0qfUG8QZmKQPwCZvpnLZz23Zm0238I/vAYKZhMoHo+cl12zGYLUiikmRRJd6Xg9cQnYJKsJjKzsqmpqorxP7v51tu5+aYbO6UqavcZMSAtoWuEZWfSwtXVwyVktuPhZ2rYSAuDSWI87U9aq2FGxI5IK7HkRV8S2YT2O3VhwUMoQmJm28wUOC2MSU5hozMUuR6AE4b24avt2gmRAwb2Yta6rdiyMiPfidNmJS8vl82lWhLT6bCTnupiV3m0Pfz9n3bCMbz33/gk4+FHHcPXnxuvD6srsxKs9Bo4hC3rYjN94iHeRJwenfWJDMMoLbszqdpmZzKtOoJFTyDqCUtnWi6euop2jxsWjeiJSI/bTaDVQ2uT9r6IbPf/Igz+gXFQpYSMEfIkpseQlUkJTpp1RUNyMtKoqKnT7JeemkpVjZaoOeeko/lk5k/sLIu9N7raN1BvHy4MYoR4ZKaRGk5fQVxsdWv+3lmynifvuY0XH7qTUSNHcsuTL9G3V3dNH9TIkiFMWI4+8AiW/vxtzPoxBx7O0p8UFWW4jyuKIvvtfyALf/lJs+2pZ57F22++qSFZ95s4njmLfotcL0BiQgJJNjPVukmy804+ljdffznmHE4/8Vje+++nkesOL8XFvdi6bVvcd9chkyfw3fzYvqQeoiiSkpREQ2Os/2I86Cu/7wn2hlDCZBIJBtuZjFZ7UYo2CrsVsnNHbGajmji122z44sTKUCiERW2vpXpWQ6EQZpN5rypP/6LYrVj4jyUr9e8/hVzRPpxOTLToOlzdRQdbpWjgriupQxAEbtl3BHd/Pht/ULu9UUruHw19ani6w0RzUyO/fvoeb919FSVzvuPEcy7gjJsfZNLkyRTmJkVSwgFNpXAjCM7MGFIRFO9Jwe6KKaojuIpiyE3BbAdZRg76VPsLiuJSX5QntRdS/Rbt/o40ZG9DDPkoONKRW2sMZ0hMrkJC7ihpqlZXCqKIaE8m0BYs2ksHzx40ljk//hB3fUf4PVLBO4KaVO+ensL2GneH+9SVKL9DkmiioiW246xWVToEEQ+hdnwqjXugMp1Pvf2rQhCEGYIgPA14gOWCILwoCMLT4eXPOi8TxBQ/sAgigTiEfXgAnGCz4vErhEu4EMqQPj1ZsT6q9gt3mE4/4VhWLlvMmrVRhcrvYZLdHmGphhFpCVGVpd2VSahhB1LZIqSKZQjOdEzd90VM791hkTE9BEFAMDtiSElAqfZds0G7vdkGgimWxHR1R27QxkcxrReh6vWAimRN7Q56n0xBxJ7TG2+F9rNamwM4MgvZuV5RpasHrYP3m8aqn7+Kq/CZNO0ofvjyk7jXHca4MWNYuGjxbnc2Oyqy0x46kwLeXmVvgGyTlYqQEsO6Qkyqlen6qt52TJoUVz0CskxzUIosYfwT4mB7+CNjZEjn+ymYzCRbtd+uyWIlwRTdLsNpxZmYREtzk2byBIRIcYMwkhOdNDVplYQFBQUcc+yxPDtj74Z7tYcl0CnC0qhauNEiWiR+E9zMFerwIzGJdEbjipsF0R564GQrsXEwFxtleJF176FiEtgparffL9HFD9XVkWtyZKYyMDeDlTsqsWZmRMjJhNxsCvKy2FWjEGzhCurnHj6V1778WfudJabzr+OP4N8ffY4e+bk5VFXXxB2cjp+4L/PnzjZcp4YoilisVnzezk9Md5awNEI8hSR0jpzUQ01WdUbhWFvfiiM9B09N18QYHrcbj9vd9peMIAi6tn8+/vC+Yij+u0h1Tpq/XUmJNDRrxz95WRmUV2vTv/cbP4qf5mkFHqIo8sgtV3PDA08QaGfSrrNoj6SEWLWanrQ0SjPWp/Y2Ve7gtRef44Kzz2TmF59wxRWX8cTTz7LvPhPITrSR4bSSm2LvlIds72GjKVkRm3lntljJLOhOq0pEkpVg5cAjjuX7L7SqxR4FubR6PDQ1NUXOURAE+vTszvrNWzXXfcpxR/Hhu29prmnE0MEsX7U2hnwcN2oE8xcvixkbi61uJo0aytz58w2JMYvFQmpKCpVVsWN+iJLKktPF1H334cdf5xput7dhdK7xxh6dSQe3Sz66d+vG9u07Yvq08UjVrKxsqqtiBQtqpKWlUltv3F+VJBkxbAsUJirD9gy+1lgl9D8IexoL/7HfTIzCCCFmIJ+AOUZZmRC0sFOO7Ryk2K2c0acbD36lPJjtKdn+DJgay5HrdvLDz7O46apLefr+OxjUtxczXniFf112LSP79YrxsQwTlupK4UaEpSAICBYnsj+W0DNUDwkigj0llsRMK0aq16ogRYM2wZmO3FoXG2STC5AbtIpNQRDayNTYAGJO70OwJjZtMwxn9zFULv4y8ne8dPDMvsOp2vAb68s7N4P0Vyu20zMrlc3V7ph2I1UlKN+p/vnRp387MFEZp3MiE3+yXFn3tx+mLwGWAp8D9wDz2v4OL38KTIJASJY1ajKLIBDQPUeWONVKNccymZRU8ObYZ/7+W2/kvgcfpqUldl1nfCv1MFJXGkGdEh7zuTo/S5PURMOKT/Bt+AaLWSR56LHYig9ETMjeI38sZSJmW2y73YXsb4r1tMzoi1SrIzGTC5AatbYilpR8ZF+D1gNYEDAn5xJo0A4Sk/tNpXF9bEGd7FGHULlkpqZQAkCj7MTX6okptBNGnyEjWLM8/m0b7vgFrUpaWGcHJXriRQ91Kni4eEZnoVdVGhGVei/KdNFMbahzqskwEgUT23z+uGneDmKL8BiRk3q0FyP/IfjTYqRoMiO12ZiEB5y5aYmR+z8cbxKSkmnRpf3m5mRRWxN9LyZaRQ48+GC++zZWPXPItEOpra1l0ULjDI09vo42cl9PWIZ9LMNVsyGWtAwvlgQTi2jmVW8FJbRwRGIaZzlzGW5O7rD6d3vIxkYlsQNFAYE87JTp1uVjZ4fs1VqIiCYSzCZqvNFtE3LTGT2omGWbtfHxlP1G8d6C9ZoJj+45GdR6A3hatYTbgN692LBZUQ7piY/9J0+MO7gWRZGc3DxKd+00XB9GVoKVgaPGs3rxvHa32xPoSch4PpLhbdWpqh1BUU0KhhP8RupKAEdaFt762D52+Jw8jT5k5GhKuY6QVD4rer+F1/8/SAf/y/UVI797m6I7KcFBU7P23snLSqe0UqvgmzJuND/N1ab9Sk4XaQU9uPD8c7n7+Tc17Xsb7aWFxyMtwwRXqKGa77/5mkuvupZb77yHvgVZ/Pvph7j50vPomZMRSQlX+1eGCUs1aalGeYMXURRJdKXRUBs7ljrm1H8x80MlCyk8IWa12cgr7E7dTq0Y57QTj+P9Dz/SXM8Zxx7OWx9/qWkb07c7i3+LrSFx0NR9mfmTNh1fEARGDB3EshWrYrY/7sjD+OTDDwyvC+CkY47gw8++jLs+/PtOmTSBWXN+vzgYhtpTsj3EqwAfD8W9elGyWcs/tDcZL4oiUhzxByjnl57qorbebbhekiTFhkvvA9tms2Ay/aOtgfYoFv5jyUo9jAiSREw0ox2AmBAwIdIqh2LSYIfnZpCe6OCrRbEPf2T/3zkVXK7aoVlCFduYPfNrrr7zIS644S6qtm7ggavO48XHH2TSvpPJTLCQ0+bBaVR4x5WlDEA7IizFeIN0A8UkxCEx2xSa+mrhcsBrqJikVftACyndkXSKJFCUmLJOiQngb20GZOSQ8SDd7CogUL8Td3n0NzMiLM1WO1LQj7wXjaTb863sKjoizntlprJ2ffvbhFWV0DmfSocg4sX4+2hPNST9AxRFsiz/W78AX6r+/YcgKEWfo9LWoOGEjJqsDA9sRUGIKRgm2mM7ZNP2HcvXP8cqTRISnNx60w3cfNsdu33uWjWTFvHSwSHWw1JNXPrqK2he8znl3z9F85YFpA89hLR9ppM69EgEsw1HajZme+IeVQoXnBkxPpRhiK6iGMWkYHch+7QkpiCICNYkZK+WKBGT87HI0WfPmZ6Ps+cEPFu1nUGTLQHBZCHQ4ta0h8RkAi1upKA/hrDMHrwPGxbOMlRXCoJAQbce7Nyq7bQ1Gaimx48by3xdYQsNOqgIvjvqSr2qsjNEpeFnCwItIeOYpVZMqhchJMb0EdSwIeJri4MdEZRqdNYO4++KPzpGqokc0WQhpCs2ZbbaCAS077GEpGTMOh/s3Lx8KstKNRMtk/ebwi+/aCcHwoqOm2+9jeeemUF9Oz5WewIjwhKIqRSuJi1NmXbmmTzMaC7jA38txTku7hgygOm5BfRLTSLfYY6khe8uBATsmGgxeDZ6k8AmXQXwJLOJboJCWEbachM5tn93ZtbVRVSjACdOGsH7v0QLSYiuLAYOHsL6HWWRvmO4KNFJ06by/jdtv40q9uw/cSw/zo2NU0dPO5hPv4olnsM45vgT+eQj40G8esLtwAMPZPm8Xw23C0NfQK69ibh4KeB6grI90rIzCBOQim+l8T1rRCA6XJm0uqOETHvnYaiclOVYs+z/B/ir9BWBuO9mk8kUo8orzMlkZ4WWgLPZrJhMJjytyu+uJiQnjhtDgtPJNwtW/OFEpX678LaSJDH7px+45oabufDme6kp28mDl53JszdeyORxozB7G5Xt21LD4xGWQLuE5cip0yIp36A89xlOK2mZ2fi9rSRI2ufpmNPO4j9vva5pm7TPBObM1fbzuhfkUVZRpVH6C4LAkOIiVi9dpLnW4484jI8+/yrm/M48fH/eefc9Teq86HGT6krB6/PR2mocd0YOG8KS5fGLaYaRmJCApzU6CbW3U5jjKWXV2JPMruJePSnZrHAHeytFPS01lVq3sbJSRkZUZVoFa6Lp4pIkY2rtfBHJvxv2NBb+I8hKfcpJvHb93xbVQEONgWICHzdqX+RhFdpFU0bx4bezIykpsHdTwdsjO8OfI8syS9Zu4qanX+ecO59g3dZd3HzqYbxyw/mccfyRpCQnYWos1/hYdpWwjIEjHdnrNlwlpHRDbtL6IQpmO7IUjFEKCTYX6CvnJuUiN2s9HsTUHrGp5KKpjdzUFfsx25BlCTkUq/gxpxcTrI0OwjWp4IKAOSmbYFN1h4RlUk53mqt2dVpdqcefkQoeRo9MF1vqtOcdT1UZhgmBYDvmw3JQNByogPJc6S0XwjAjxhBqfzcIgvCgIAgZbf8eJQjCFmChIAjbBUGY/GedV4popl5XQMRlMuN1aVWNeUlOdrV5VIYHvxnJCZTVaV+UB4wfwVc/GqfFDSrKZdiwobz7/n+APU8FN6oMrka8NBxfQw31K79k59eP0bj+R1L6jKX3CTfQ/YAzsLpyY3wsw9hdwlIQBBCMZz+F5AJNVe8wxKQ85Batt5qY2jMy8RI+F1NaMf5KbXExc2IGIU+sX25S332pXxs7WE7rP5669YrSS01Ydh8xieVzFK8kI8Jy6JRp/DJT6ey2V2hn9D6TWbBwoaZT92f6VsaDUYXv0tYgAmhsEeIXxlGQgpkGOf56T0jG35bqbYR4kU6ZWOiY2JRN1kgnurOLbN79lNO9hT8zRvbolofHXRNVVabYSXSl0lhXrYkzmXkFlG7fqtm338AhrPxN69dls9lwOhMoK1P6OOpYZ7Vaueve+7j1lpuQZTluHOzwGVERCfEUyfEIy8TcFLyhEAuCTTxWupWXqnaRnZnInROGcMv4wUzsk0tyToJGfTk4O2GPCcssrNQT2+eyICIS9UoOf0Y/IZHNsod8hznis9knJYnNbm3fJMuVREOLFyElUzO5MXzoIDa4vZrvZ/9xw5mzNFY8cPyhB/LxN7HWPQkJTkRRxFOj/S3Dipx+AwZSsnFDzH56pLhSkX275y++N7AnhCWAM7c3tRvjiy7CCJObTQEbjTU17ZKUIclMc7WxV5tgtiEFYr0sAQLtxF81uhwH7UkdH/R3xp/dVwwZCCyMvAr126UmJ1FZG0tmH3/Ygbz18ZeG8ezaSy/g3Y8+obyy/TTZrqIrFcJlWWbR8tXceNf9nHfFdZRs28FtV1zAq3dczmlHHBAtGqRStoUJS0BTdMeIsNSTlrkpdnoOHMauTesiJGUYWQlWDjjkUBbNmaXZJz0rm6aGBhItYiTuCIJAr5492bZDqyifOHo485dpScMTDj+IT2ZGfS9Fjxu73UZ6qovqGq3AJyMtFU+rF69Bde9DD5zK1z/8FNMuOV0IgkD3wgJ2lnZcULGoWyE7dsXWQ9hT7C7xGS6e1B7Ccb9P796sXb+u3W31EAysYtTIz81mV7lxHExwOGhq0cbPMGHpsNto9XasNJesiV2OhYh/vmJzT2PhP4KsNPKNMiqeYzUgJx0Gs8OFooMy2RcZ1KhVZ01by7jrmMnc8vqnNO8wTjH+vdSV69wB7nj+Lc6+43HmrVjLZaccyRt3X8P5xx5Cukup+K0mTveEsIxVV8px0ycFZzqypza23ZYMfm1HVEjKQ2ouj2mTm3RtFidyMLYzKCQXIutSKAHE5NiiPgBBcxIhHempJixtOQPwVRpXiAxjV0UzSTndaaqMJaWNiuz81WBpk5b72wJsR0QlQLYYvxhFnT+ECzPuOGRlImaa4/i4GamZ/4Y4TJblsLzuEeAkWZaLgQOBx/6okzCL2uex0GSjNKTtlBRbnWzSpXKPzM1gabn2eT187GA+X6AdvFgtFsYMG8QvC5ZghLPOOJ058+azfkPHgzuITQVvT10ZhtGMdpLVT/mCL9jw/gOUzf2Y5O6D6HPSTXQ/+BzSe0UnW9Rp4WGE/SBh9wnLeII4QTB+nQoJmbFqTFsysk9LDgtmG3JQlYZXq3QATc7UGMLSnlWMp1xbQRwgrd846tfFpqWaLFZMZivbSqPPfo0n+nwX9urDtpLYAmZhhFPBu3Xvzo6d7adJqtFRKvieojPp30Ak9buXyUlJSOkstkdShpEuWKkl+j2pU7w7q6I0ghIH9566/i+IPy1G2hKSCegK5zgTk5F92kFCXvee7NymzcgYNGw4q5fHFhe46JJLee6ZZwDFTF9tqN+9e3cOPPBgXnz++b11CZrnJp4aORiSmFffxG2zlvLkpi2IgsANQ/txy/AB7JOTgUWMxqOwGjn8vNQ1+vZYYRlCjqsOTsOC1xSMHDvbZqbQbsVsMGZKtdmo92gHaQO757JqpTbdcd8+hcxatFzTphR5SMDdqI0DCU5Fgd9aUx5Ddhx+8AF88e0PkcGwnrB0uVKpr2/z77bGH+QJgkCmc+/XTOlsOnc84jBeuzqtO6nHMDw7Y9NJw9CngwuiSLypl3BFcasrn2Cj8SDdnJRJqMU4I+Efjj+1r5iU4KRR1/9LT3NRrSMiExx2TZEdQRBIS0mmus6t2W7qhDHMXrSMoDt2DCGKIg/ecTPX33Ef/jiWM5FtjRRzOvVfVyqCr95Qwq2PPMPZ19zGouWruOLC83htxmOcfc45pLlStIXMVP8Oe2RKDpdmoqk92yJQSMowiRkMBEhsizdZCdbI4rKbGTt6FNvXr8ZlN2uW/G7d2bVTO56cOmUyP8+eGzkvgAMmjuPHudr+XFFBHtsra6Pn3rbttAOm8u1PszTbSk4Xh0w7hG9+nqO5XoCDp07mO13quJqEPmDyRH78ZU673wNAn1492bRFmfTbW8VzukpU7q5YwmazEQgE2y2yo/+Moh492K4rtKz+/L7FvdiwJTYDFKBHmoNtpdoYGX7XF+TmsLOsskvk/N8MexQL/xFkpQsLbt0MbwZWatAGzBwDnx3FKFz7Yq/zhxgqJjHb12BYETkzKYELxw3gwqfewb1VGajr1ZW7Q1ga7dPq9fLWR59z5hU38enMHzn7qIN44+5ruPyUo8jLNJb17ylhCcQSlrIUX1FktiOHYoOF4MxE1nVQFGJT1xaPmBQtMWpJISETyagib3K+oapJEESkkIS33niGyJLWnUBdbGDRF9xJyulGU4UySN8ddWX4e/8joK9Y37C5lNH5WSwuNSYp1WR8GHkmK2Uhn2EKOIANUzvqydgK1GEkYo4pavU3hEUQhHBvxiHL8mIAWZY3ArGGin8Qck1WyoLa36ub1c5Wj/bZGpKVxjpdZc5RxYUsK4kloc49+Rhe+8+nQOwMtyAIPHz/vdz/0COsXBUlOuP5VnaE9rwrZVlGLF/PirceYv1nL5Nb3Jc+J95Aj0Onk1TYVzORok4N1xTf0VUJhz0gLONAMFljLDGwJiPr1OSCICAIJmSdElZ0uAjpOmq27P54K9ZpSFdBEBEtVkL+6LvLmWxDtFgRzRaCXu3vu6veQ8+x+7Nl0U+Uu70RdWWYsBQEgZDJgreDohFms5mQQSq1RmnRQSr4nsCoArgaRkSlGn1NTjaGWjpFVDYHJYSQQJ0UbJecNCFEKh3rYY6zzmEwmfoPwx8aI8P2EGEFdjiLJhxHwrFFrSpSnkEh0uaymxFFEVdqmsa3EhRC0ufzUVFh3K87+thjkXwtPP/iS3HPsSvqSj3U6eA76xp4evEarvnsFxq9fm6cMJR7p4ziiJG9sf2BnlchZEPfy0SzSKHJjtcUJNumEKJhpJhFEhItJOUmRlLXxxZkMm9btH/mq6pm6tA+/LR8I5K7Csmt9PeG9OrGbytiq3AfOGEU381bHOMDdsSBk/nih1mANj30gMkT+fFXZRBuRFjus+9k5v6qHcQbIS0jk/qa6k5NuoGxoh26XgVcjzA52W5qti4utnoE5KA/xn5JDXWFcE+jj1BApsWtjb/q41pT8wnGGfeYEzMJNu1dxd3fBH9qX7Ffj25s2Kbt1w0f2I/f1mzQPC9jh/Rn4UpFYRasqSBYU8HhI/vz2U9af1dBEDj92MN56+MvDD8vNzuLy6efzQVX34hHRX6qyScjImp3CBpPaytvfPgZZ155C1/++AvTTz2ONx6/l0vPOoXc7OgEj6Zoj46k7Agx6koVSQnKeyXZLGO12iJxIExIAvQsyMNdU02S1aTpC48bM4blS7UigDGjRkV+gzC6GxCTktOFw27XfL8A+4wdxZz5sdYXh0zdj69nL4q5XpvNht1ui1vNe+zI4Sxc+lt7Xw8AvXv1YNPmrZ0iKo1I6q6sbw+7S1iOGzuG+XF8p41Szvv268e6dfEFTpkZ6VTXGFtsJDodtLRGfzf1pGRhXjY74ygy/yHYo1j4/4qszMZGBdqOQRZWqg2MwrsLdjYGPZqUsbAirWFzKUMLs7nhpEMUwrLJWF3XFcJSv+3KdRu57t5Hufy2B8jMSOONJ+7j5sum02PY6E4dr6uEJaApuhNGhLCUQiC2f7voDbsNick29VGMR6VJqyoCEBKzkVu0D68giEoBGN0gXxBEBNEccwxQimLI7u34mqIBJKyuFEQTyHToR9kguWiuir701YTl3lRXNovG6a57iv165DFra1mHqsowOZ9nslFq4PUZv/p35/APUVY+C3wtCMJU4FtBEJ4UBGFfQRDuApb/WSflFE0xxT7MQmw6v81swhvUFYIRRdIzMqjWpeQ57HZGDO7PnMWxnRax1U1iYiIvPfcMTz/7fKcKTXRVXdnirmPrj+/z/VM3UbezhAPOvZYhp15Leu+hZKQnkJ7qiCxq6Ivw6NPBfy/CUnCkInu1Ksi4ivSELMSAtsqwJb0XwRqtYtKWWYy/JlZFmdxjOE1bY3+X9EGTqF0dm76fP3AUZWuUDrIRYdl/xBh+na0M4sOp4Ea+lWHsrVn03UVnvSrVBXUcggkvknFxCQPVZGeKgbkw0xAnpiVjptFgnUhsEbN/GP7UGOlKTsTXqiXscwu7U7kzOjGZlWClZ59+bN2kVYYfceQRzPw61v/rkksvi6gr9bBLPq6+4nJMJhMPP/a44f0FxAw6YwbNcdLB/YEgXyxczfSn3+Pfi9ZzwtiBvHLJ8RwzpJiM/GihqrCPpRodEfzAbqkrQyhEvf442TYzA2xOmsVATEXy7mY7Fars3MTcFEbnZbJgm7b/O7BbDqt3RNskdxViW//TV6mdeJ46djizFrWpBJtrIyTMgRPH8f3sBZptRY8bW6CFFLuF2rq26uI6wvKAKZM7VRW8sEcvdrT5/HaWsOwIu1PduyPoicow7NnFeCtj3yvhit36IjjW1Fx87go8jb7Iol1fEFMMLgxzYibBZuO+p8maQEg3ufYPwp8aB/v2KGTD1liycvna9Zq2sUXZzJ67QOOhN2FQH+YvbyNlVMTmwftO4Me5Cwk1GP+eo0cM45pLLmD6VTfQ2BTt38Qjorqa5r187QauufdRrrzzYfJzsnnj8Xu48eJz6Zaf2+6+hvHWAGrvSjX0JGV4AizFJJGSqPQ/w/uEyclEq4jVHI2R4fahI0awdqW272a1WgkEApF3R/hckxISYgjF8aNHMn/x0pj9gRhVq91uw2azxhxDcrg4atrBfPb1d4bfg9VqJRgMGdoGqNG7ZxEbt3ecLq4nrDvyovyjMO3gg/h2Zux3EK+oz9C+xWxetxq75Iss6u3Ck6DxEM9drTAvh51l/2iyco9i4T+CrEzFTL1uQGCUZmVU/VsxChdp1bcLAkVSAnPaUvWM1GfdQl7uPesopt/6EOU1dbvtXWlqLEeWZdZsKOGBZ17mX1fczMxZc7jqvDN5+ZG7OGS/iZGOWlfQFcKyX66SRq4mLDX+lVIwrrISFHUkei9JkxVZivU0EhxpoK8UnpiLrE8PT4z1smy3PV4RoIRspDbPOCPC0pLWnUB9++pK0WJF0lXB/b0Iy98DaQ4b9V5f3EFUzPaimTrdb6cnKk0GBV3UkAzWJWKm6U8kKwVBOEQQhA2CIJQIgnDj7hxDluUZwAPABcBRwP7AjUApcM5eO9ndQux3bhVFfG0djvBgNs1pp6ZZmeELe6Edvs9IPp+jK8rWXMv5pxzLK+/9FzDuWNrtdp6f8RTvvv0WP/7w/R6dfYbTSlN9LfO++i9fP3ELv7z7AoUDhnPgFQ8w6OATsSXE96HSk5ZhwtIoHRxiCctOk5btPEOCIx25NfZdIVgSkP3aAZmQlIfUoB1IBGQrwQatzYVgtiIHY+NoUo/hNG6JJStTeg2lYfOKGAK3rNGHLSkFjzs68FATlsPG7cuK+R0P0l0pydTHqXYYQSc8+PRQVwRXF9zoLNpL/1YjSbJQpZvIbC+lW8A4loVhNFkaRjyy8q+AvREL4+GPjJEmA6Ito7AnNTuV1LTwoLJn/8FsXqcowMPk0pBRY1mxaL5mYDpqzDgWL5wfc8yiHj3wtLRQWRnte6gHKwDTzzuXwoICbrvr7nZ9rfQwIix9fj+zNpVy1dP/5tLHXyNgdTLjohO458zDKc7WqjDVz4sRYQmdJ/c7iyBSJA080SxGiMp8h5leTiuSRYipTj4yJYW1zdoJmiSrhWaf8vy0tNmTBGpqMfkD+ALRZ0dyVzG0uDsrN2/XkCp2mxV/IKD9vptrsfgaSU5MoKYu1vP32GkH8OnHH0f+VhOWSUlJ+Fujfdl42QHdevRix5Yo2RdO/zRCPFXl7wk1oahGmFxMKBpFy7bF2n10xXE0hKUjB/e2WHIzDJMzNisgDNGRgqRbF34fm5My8Df+earLf0ocNEL/nt1Yt0U7Lu3VvZDNKrVlsKaCbtkZ7KjQCktMJpHkRCf1DdrnVRAETj36MN759Ou4nzuof1/uuukaLrj6Riqr4gskYvqT+irJKATl6g0l3DfjZc66+jZ+nLOQ6y44i5ceuoMDJ43brbFxVxBWVwKGvpRebyvJTgcuu1mjoAxnGKWnZ+BtqNV4KaampkWsJtQYOKA/q9dpJ8/23Wccv8zVTrrsN3E8s+bGvqMmjh/DnAWLY9qPPvQQPv5+ttbHEJh0wCH8vCB+IeYhA/uzYk37no7OjHxaPLs3yaKv2t6V/YywO+rK3JwcyisqNWNjIyI13FbUvRvbtrfP9ZhMIgEdX6C+t43G4d3yctnxJ5KVv2cchD2Phf8IstJm4FkZVkToyRQ7phiypC+JrEEbkAF6CA42BFvxtjOz0D07nccvOIHrn3yVD7+fzdYdu6hzN0RuVFNjeWSRZZlAIEBVdTXzFizk32+/y21338sF19/Jedfezjc/z+bog/fn30/dz3UXnUNejrFXkZDVreMvpQ16AjVMWII2NVlNWKqRnN8Ha6KLUMUyRFeP+B9ktoNBKrhRBUDBoFiP4Iwd5AtmO3IwVt0nJGQjt8S+AIWEbMNKvYIgKMRpm1JQTVgCWDOL8dds1hTZMUKLQeGJ3S24o0dNTTUvPv8cF59zBouWxH957AlG5GaypFbbcTci4UH5ztyB9gdbGVgMVcmgeFbVGQzgjSYG/igIgmBCmd2ZBgwAThEEYcBuHGc8MEuW5ZNkWR4uy/JgWZYPlWX5JVmWjVmLPwgpoplanXXCsORklugGIYf0K+Kz1drqz/sM7sOs39bEzKQ6HQ5GDh7AT/PiV4G2WCw8/tTTLFm8mHvvupMtJZuorqqktbXV8MUsSRItzU1sWrua1b98y4cvPcVzd17H07dexbdvvYgrI5uzbn2IQy++mcL+Q8nTEW/twYiw1FyPqtiOmrCEjlWWUl0JgqMdIs1sB30aOCBYE5H9WrLAkpSFHIymhDhSs3Gm5xmSoaItgZBf2yE02ZyGRcUE0YTJZifoje1AFo2YxM4VStXJcPpheCAddKbQ6O64qnFhQSG7SmN9g3en0E6YKA/DHwwxc/02rvnsF95aWdLpyZWuoK+QwFop+lt05D2ZhkXjW6lHBlaq4sTB9DiZG6CkiMez0vi9sbdiYTvH/1NjZGH/YWxfrX2P9hs+mtWLtBVX+w0exqpl2rhmMpnILyhkg0Gq16WXX8FTTzzR7mefctKJ7D9uJGdfeg2Lly1nV1k5Tc3NhgoVWZbx+Xxs3radbxasYMbr73LlnQ9x/j0zuPKBZ6moqePuay7mpRumc/yUcdgsCqmqL7YDu0fwA5o07c6ikQC1+EnGrPGlDBfPSUu2YXNaIkV9knKVuFpckEqlzxdJAQ/DaTXjC4Y019MnN53N5dr+3PA+RazcrPRpw+mqAP16dqNkR6y6Z9r4ofwwZ0FM+z6jhrFoxSoNWRIekNolHzk5OXjqo33MMAGh9p3LKSiksqxzhSXaqwRuBFmWce/YQPkPL7P5sxkEPdrxiVrdGG8xgtqL0pKUSaCxCjmk9GvVRGXYL1ndbs/qhbdyUyQ9XJ0mDm0ZBLJsGLMFQYybvZTSrReeyq2G635v/NPjYGaai/IqLQEoiiIhnwe/jkxJTUqgrEY7PjjjyIN44YPYlO/Dpk7iu1/n4fXGJ4d6FXXn8Xvv4Jrb7uHjL79h245d1NW7I/6A6mcvPDaurKlnzuLfeOPDz7j54aeZfsNdnHf9nXz36zyOP/RA/v3EvVwz/UxyMjPavW6jSXU9UafZ3sAOQq+uNCoCGQwGefXJhzn48KM07WorpIzMTOrq6jTrEq0ipraiJ2qCbeiQIazZqo0pI4cOZqVOCZuXkx1TTAdgnzGjNanb4euddMAhzF9g4GVuMpGYkECTZDH8XvYZO4qFS2I9nNXHB+PsIbWv856gsqqap154lTMvupJlK6J2U/FIzo4IS6P1o0eOYN6C2PeEHmKrG5PJFENE6s9jSP8+itWCAfoUFbB2c6w4Kjcrg9LySoM9fn/83nGw7TP2KBZ2vZfyF4UdE62EcBCdBS3Ezk5a6UG0Y9SfRNbTzGhckbY0rKyiCR8hbKr9BUHgQHsqn9RXcUp6fHVIdmoyL194HJ+t2cl/3nufhmYPTZJIMBhLylgsZpIyciju2ZPexb2YdvCB5FgD7cqG9xZMjeWEkhWpfLrDRG2rcn5FLgfb3NFBc0FOeMCeS31ZGf6tvyKm9mp/kA7ErTyh38riRNKld2N2IAeMZp8NBqsWJ3IgNm1E+Q4FZFmKKXYhJOYgN1cipBQCCmFpS0qjsXQjSbm9aNk0y/Bc3VUtGi/P9lBS3axJq+8IPp+P72Z+y3fffkNycjLHHn8il551Cvc9/Cg//jyL6666ArN57z2ix/Qv4sbP5jA6Q188SYHenzUZM41ykGTBbJj+nYudzXjIJbYjnoedUrxkoH3BC23/yX9OEuQYoESW5S0AgiC8jzLD036FpVj8C3hWEISNwLfAt7Is/6n6/XyHcp8MsyayItBMb6L34YS0NGZs3cpBFETaRhRk8ebKTdqBRWMNR00cxSe/Lua4/cZGFXHNtVxw2gmcdc2t7DduVNxzEEWRG266maVLFjPz669obmqksamRZo9CWKpjXFAWsNkd5BV2o7BHMZOmHU1mbj4ms1lT+AUDVVpBqrPL6XKJLrtmYOVMz9cMyNQIE5ZBr5ZclJpKkb31mPI6sOIwCoMmi6JO131GGHrSVP99mRMzadpVgqvnEO1HiSbkUBDBpI0TyUVDqC1ZQfag8Zr2nD5DmfvmY/SdfASgEJa5LjvlDV5lQC0IVDR5yUmy4/YGDY3mXVm5VFUrJILkcHVqVtyckaNRQ+mvdcWOCj5cuIaa2gam9u7GfYfuw3fL1nP9j4u5uGcRmY691PH1BUkUzISQaZVDONrJFggjty2WZcax1bG349/bnkdvVjsk5x+AvRUL4+FPjZG5xf2Z/+lbmjZnQiKBYACXORrzTCYT3Xv1ZuO6NfTpPzDSfu6FF/PAXbcz8rnnNMco6tEDs9nM5pISehUXG3622Opm/8kTGdCvD59+9S219W4aGxtpbvEgSZLmuRYEAavFQm5ONsU9i5i03xTOzXHhdDg0SoxgjdLfEV1ZEQ/HMBJy0yOKREdmKq3V9STmptBcri3glZSbGFFXpiXbIkV2SluDbYRlsFNFo7yEWICbyaST0lYxpzOEZ1JuIpIsE2wbyIcVoI7MVHKSEqhsakHdM+nVqxvbKmsZ0C3a9+6Rl8W3C7WFYYI1FfTv1Z11W7bTt0ehZt0+wwZy4+Mvc/KR0zTtYTVWKBTC5HFrJlrEVjcjBw9g/fIl7HvwYYBSYCzJatLYYnTPzcbTUIfLbo7YZuwOcl32yMRRKh4Wf/cpDTs2klLYm+IDTyUU8LH8P0+SM/YwXMUjdvtzjJDUex+aSuaR3HdfTbv6/ehMz28jLEW8buPBdJjQNCdmEmquxpwUK7QwOZIJeeoxOVM1WQ4J+f0o++n1vXE5u4N/dBwUBAFXciL1DU2kQkS1fcD4kXw/fykHDyiKbHv2Yfvx+lezuOVfx0TaRgzozXPvfUpDUzMpqmwJQRC46IyTeO61f3P1xdPjfn52UR9ee+01/vv+O7z/8Wc0NjXT1NxMyGAi1WI2k5KcRO8e3ejTszuHTZ1ERlrqHzI2BuW5DxfaURNt4T5QVYt2wlKWZWbcextHnHQ6PXv3IR5kSYqr/tQTZ/l5uSxfoY1v+bk5lBl4GRpNChR1K2D7TmUiWU0+mkwmZFlGMjiX8ePGMn/hIg6YOkWzj9jqZmC/Prz+7gea7ePZ/+wuORk+nrof6fP5+PK7H/nmh59JTUnh5GOP5IKzTufuR57k+1mzufbSCzC1+TOHfzc19L+hut0IZ5x2KtfccBP7jB8fOad4/Vqx1U12ajJV2zeRo5tsD2PfsSP5+qc5jBk2KNqYmA7Ntew3ZhizFi1nYHGRZp1Swsx4sucPwO8dB2EPY2GHPQxBEN4ATgNNr/p6WZafU21zJnAHkAusAi6WZXmpav0NwJVACXC6LMvb29pnAZOBybIs/6ravgS4V5blNzp7IWFiso9qkN4NB3Op15CVKVhoJkgIWeO3M5gkVtKkITEBepkdLPE3Ux8MYEzxKDCZRE46WFt9vSMFZJg4DHcPu+JxKWR163Taufx/7J13fFP1//2f92aPtmnTSVtWy94bAVkCiuDee+EeiKgoThBxi3tvPx8/inuLi6EMGcreoxRKd5uupM26vz/SpLm5N2mKOH/f83jkId6VmzT3Pc77vM4pK5Tdi9XvDHkjWqVGVq7bwOrf1lO0dydVdU4cTjdOt4jHDc7KEiy5ffHqUhSKRPmbSOoqSpQTb9RKxqP5ugmignyM1XkFk8kFi7wREayZ+Ms2QVKu4py64j0gBQahjuJimWdnOEStnsIDVbTPjfVLCKDA4aKjLboazOfzce3VV3DSqafy6IInMRgCDavB72TuXXew9KflXHT5Vcy5azbdUuNXlcWCSaclzWjgYIOTHEvr3pi5opED/kZ6adQJ2ECJo/qCSAo6NqGuOk1GR3WU8/5gZAPhdbcHgWHxnqzSFnYj0IaeLQhCErCYALt+Nn9RW5ivNbHSL1dhmDQatCYNLq8v1DoKgsDo7h1Ytn0/YwQhpNQ5dcxQLpr3HKeMlhNyenctJx87nvc+X8Q5J02OqaLr1ncQ3foOCv2/mu9h5OQufCCYataHCMusJGNI+Rc+qWsN9mSTatiA2WZTlLqZkjNwVh5CanTgd1YgNVQg+ZrfR9AEFCGCiORtRJM7MvYbSxKqbKWog2ZbhdaISsGQgNRUj2BsKXnXWNPw1ZfhdDhCE716RyOG5CyaqosxpsrbtaT8/lT88rGMrAyGj3jdUYIeahpJympPceE+xI55oZLGOrePBL2Gercfq14kLT2dsiL1tEMZmgdniq8ignB57vs1NHq8TD/uKCwNLfc2sXM2/TPs3P/jWsZlpXNMdobiWrGgVgIeRB8xgS1SPd190W0FgkhGx2aVyotw6BBx40evUqyiQ8SDH13EvkyM7OAvsw857LYwnjEhsIJAyuNJwFHAFUKg415MYKA6ApjOH9QOCoKA3mCk0dkAYYqY8RMmsnLJ94xpJqEATjzrAt596Slm3/cgEPi9JyenkJ6RydYtW+jZq5fs2jfOuIm777qDZ557QfG+4ROcrIx0rr70QsUxrRH8IVVQ2PMTi+wHOWEZC0GFY11xvSphKUkeSn0B1WQlnlAVkkjAZ1WLgAMPI0nBEPF7Di6YxYIoBBYqI0vVsxItOPQt5xvS0+jY4Gb51pa0dtGWToYkUVZdE2o/gsFD3VIsvPv9Ck4+ZpT8ezGbcEZRf/Xt3pUN23YysHcPxAjCcmD3Tnzw9Y9MmjiBRtGAVS+GCEsI/EZ0Oh1eFXuOcET2ZUGolYVXHdzLmoXPk33MueRNPEc2zu129mwOLn0Xx651pA47G1Hbdo/MepW+09JxMCXfPakgK8MRTloKGh0NleUIGvUUdH16V5rKd6mSlYbMnkh1BzC3a6nQClq0+FWFCn8K/tXtIAQCqL5buZYzjxsXak9OGHsUtzz6ooys7N4hmz1FpXi8XnRhIolrzz2ZZ975hDtmTpddd+TY8bzx8TdUVlVjT5ELWcLJI61WyzmntSgP/6y048hnOtox0FIVEk5Y1jY2sW39Rn7bsJGt27ZR5wz8RnUGIzq9HkdlOcdMmsyAYSNivocaQQigUVngbJeVxaFDxbI+QqPRqKryg+FwoijKvm+/Rq9KKPbt3ZuNmzbTv598wXv00aN44eVXmDB+nPy+TTZ0JmjyC636kwtaPV6vN6a4JrLfi3ZNr9fLxdfdxNmnnMRzj9wf8uIEmH/XLH5ctpwLr76ReXfcSqcOgXFvPIRlLMWl1Wol1Z7CgYMHyc3JUb3fcIwaPoTlv6zhtBOOV93fI78zC155W7nDamfA4GG8tPAL1fPyO7Znd8Hh2Qn+TvyuuXE8kCTpKgBBELoTUHC+ETZv/gZYLklS1LLLeMvA35QkyRr2CicqRwHPA1cDycCHBEw0E5v35wNjgc7AvcB9EdeuBB4VfufySRZGiiNUCtpmR53INM5AAricLEtBjxOfopwc4PzULN4ob91ANhKtkYmR5KQvMStEYMaDwykH93q9/LBkKbfOvIk5N1/HUw/Pp3DfbkYNH8bZ0+9g6vS5DLrwNjpOvoK8KRfTfvJ1mDsOj+cd1DeLckURNKuBYqQQyqC3gFtNRSki+ZV/KzFB6X0JwZJy+e8jnHz1uOpDJefRysF11mTc9Ur/o8PBJ/95lTPPPocTTjwpRFSGl+iPOXokzy54jCcfe5R3Plaa/R8upuRk8XVRYNITXgIeqarcWe8mWzBSJDVGDdUJqiTV/Nxi7QsEXcVWFDUKRupFc5te/kD40hWCIKwNe4Uv+6q1MW1dxgpvCy2SJJ0uSdJxwHigCriVQPbAX9IWioKABgF38/MVnJwenZnGzyWBsrZgueBpQ3rywZot8vNFkZNHD+HDJasVk+Mzpkziq8U/UeWQK3YOB20N2olETrI5RL5FQ7AcXK0UHECnFXHu+oH6jR8iFa9B465G0JnRthuIvvMx6DqNR9fhaPQdR6HPHYYmd0Qcq/xRyEqNFlHUKIhKrdEaKsMLHWpKxueStzPRAgqMaR1wlQeIQ1kyqzWZprqWa4R/Vwmp7agN68/CCeD23Xqxfn1LGZGaYig9PZ2y8thBXfFiT3E5BRXVzDx+BOmJLQp2V3ng3tMsRu4b1JvKxiYeXL8Nbytm77EQngCejp4yqSkuhbfYrASPdWwGBkqjtGmZGBRjE4gvbMwniDSKhja9vAG16LEx2kH4/W1hvGNCG4HyojwCE/afgWnA7RzhdjCyPeg84Ci2rWlJs0236DlqXICslB2X246mRhf1dfLFtcuuuoann3lW8T4pdjv9+w/g64gQnngUxsEJVazJX6sT7LBk8HAES6jjKQcP9gspiQYa/D52CfUsbCrhW38Fe4WAFjgPM6NJYQx2RpLCUGz0I5HxpGKNKP+OF5Hl38F77dgxi0PV8gWBDukp7C+TL5BLNeVITS2LUEHSsn26nf0l5aqEbofsDPZtV6aIjz1qCEtWtvi7hSeGd+7QPhS8FF4aGkRkum94fxZPXxaZKpyRoGPNwhcYd9U99O43QNHPCBoNuePPw977aAo+fYTGqrbNR9SISgiMo/W2dtTsV/rShdulQDNpabDhroxesq1P7YS7Yq9iu9lmw5Y/GFfJdpWzQGNovXqpre1gk6AH6Pr/WzsYibFD+rUEUDXDYjbh8/sURP4JIwfyxXJ52e+AHl3YV1qNo1a5YHf7jOu496HHZdviCt4LBmGpLGbGdW6cUCNGo4X8eL1evluyjBunX8+V117Pg/PvZ9+ePYwYPpy75s5nzqNPcc/DT3DxzDs544rpTJs1lwlTTw5dI5q3rRpZafQ3odfpaGpqCWcRXQ4SNd6Y/o/hn6ddVibFpWWK71sURVW/5HFjR/PdTysU29tlZVFUWh56biKh02kVoT3haBQN2FNTqaiIf0yo9hsJbnv65de57PyzOen4STKiMojxo0fy9EP38dCTz/LBwvdC2w+nJDwc551zNu+8+55sm6plgNPBqD5dWLlC+V0GEXxk1UhmjUaDpNW37AtTLI8Y1J/la9fHvE+PqGtzW+hH+DPmxnFBkqTtkiQtCJs3/wycAcRMaD0SnpWXAx9JkvStJElNwCMEVpqCWnKx+aUJ+3c4XgZygHPifUOfyneoaZ5QRO7rqEJMtsfEfpyKyUdAXalUg6Xr9PTKsfNTaeyH0VNcoNjWVsISWkjLthCXseD3+/np183cNOdhrrn6KoqLS3jgzlt56tnnmX3fg1x2ySV069MfvTEQttMj20b73BS0JiuaZnVPYnbXlmRwVURTFGlDiiLF4REQRFGZ8q1PQHKrqFoMiaC2XZ+I1KSu6BM0upBvZRBBwlK0pOHYrTQshpagHb01GU8rZGU8QTsHC/ezY/s2Jh13XMzjbLYknnvgLrbt3ss3S36Oepwuq2Or7xlER6uFwgYn/jik5npBbNVTLZo3JQS83CpUvN6ibT8SaPa/GBz2eils90EgXIKWA7R9FSICgiCkA2nAcOAzSZK6/hltYWMUwr+PycpGl/x3OCIjlZ8jDNQtBj02s5EDVS3ko99Rximjh/DpT2vwRgx4hIYq7rnxKu59/Pl4bu93Qc0fSA2tEZbhsNqMuGuKadzzA1UrXsZ1YB2Gdv2x9j0NS++TMHYaibXjYARdgOQUBAFB1CBo9Ag6EzqT0tNXgSgKc60xCfzy37wpOQPRkIC/KdCOme3ZmO3ZmDLz0Wnkk0WtNRVvfeDvF64M9eszaKxQ72P05gTcDcq2MLv3kFAqeCSM7fIpbJ7Yh6tdw9Wx6enplJW1PRAhPGhHtKXj9/u573/fcMeJ0VU9EPg7nJnXnuNys3imYN8RKZMRBAGbFH87FCtEByALA8WoEwLtMHJIZV9wQecPwqIY7SD8QW1hM9TGhB4CKqTNwKvAKo5QO+hpqFX9TeQPGsGWVctk24xGE6Io0hBBTJ54+tl88t7/ZNuSk1PIzMpi8+ZNROLSaZfzwcKF1NREX7gJJ7/UENekvpWgqmiEJbSUWVsyzAqSsMHrZYXGyeNlhXzprSJDo2N6UjYXmrMYoUmmr9ZKErrQ71NEQIeIEY1CIQwtqsqUKAtD4fegbW7bw0nVrOQEih11ss+UZDFR26xmUit/DyKYFB78DUQSluOGDmDJmvWK83p1zWPrLiWxJjodzddT97ILJy11YSSEmmVGawgSlr989g7dxkxFbw6QyNH6NU1SJzpMnUHholeoKY6vDQ4nKsOTvoOvxO5jce6LPvEOhza5I/X7Vke1UBG1htCiv9lmC70ARJ0BydMY+jsFVZUAlpwjao8Wjp3/v7SDAE2RoR6AyWjA7fEobMmO69+dL1fIA/qmjhzIpz8Hxgbh7c11F5/DU6+/E/r/4IJK547t6dyxPd8tkbez0aDaHraFtAwedxgkpyI0xenA5/OxZNVabpr7CFdPn0lZRSXz7riVlx+9j8fnz+WySy6iT7/+GIyB36ooiuSkJGJNTCLBFp9HsM/nQwhrJ0JtidVCfX2DkmTzNCqUglqtNpS+HvwOO3XIZW+BssKlY4f2FKhs79SzHzu2b1Mls8xmC/X1gTlDJGnZs3t3tm1X918MHhdtTBhJfkbzDA1i16EqCgoPMGHM0YrzwpGSbOPF+2bx6+btLP5uUWh7NMIykrRU87vs2aMHW7dtjzm+DH73tsQEHDW1oT4+8uU32+ie11m1fwHo3a0LGw9Wyfp3gCH9erFmg3Jh7Ujgr5gbx0LYvHkz8IgkSdE9xoifrDxNEIQqQRB2CoLwiCAI4fKQfkCozFEK/KV/a96OJEk7gZXAHmAOcFfEtRuAu4H5giDEZXoQLaBDjZjMwUghLhkxKSKQhZEDEROIFPS4kVTTis/smMs3RSVUu6Iz9W0hjeJFa8RlLHXlxl37mP30G1w25wl27D/I7Osv59XH7uP8c84iKSkw8babWvfsilYWLYO7IVDerfgAnoC6UnHjKtcQdRCpltSawKMs5xR0ZiS17c2+lWqIltTbVFeFYLThd7VMPNTUlRqDCb/bxcGS+Er3wn1Ag5AkiQUPzGX2XXfHdQ2AOTOv5fufVvHhl98CbVPUquGoNDvLy5RBRGqwC/qY4RIdMCmeudb2aRDoRevll38A1gBdBEHoJAiCnkC59mdtvEZ4W/hRc1nOPmApcBqBsh7gj28LnZIPrwpheZQ5kZ8aHLJteo1ImsnA3gj1ylXHDOHpRfIFLVEUueC40bz2xWLFxC+/Y3vyO7Xny29/CBzbxhS/cPxedWU8sCeb8NQ7cGz6ioJPHqF2+xIsHYeQc/wtJPaeSkL7vopzTMkZitLsIFoL4JE8DQg6pUpE8rlBo/b5BEVzJWqN+COCxQSNStsIaC3RF1AS2nWivvSAYnta5x5U7FMffFqSUmiorZH5hoarK+vdfqwJCdTXK9XubcXLi1Zy6sj+2Czx2Vz0t9sYbLOxYO9evEeAsOyKhe1xlmF3wsyeKO0cgAUt9fhU1ZdmNDij7OtHHAT4H4Pf2xbGNSYUBOFEYCeQSUA9tI+AwuiItYOS30flzt8UPrYGsxWf14szIn166pnn8dF/5B55A4cOZ8Ova3BFqFquuOZ6HnvsccUERhRF7r39Vu6eExBDHW47GBdh2QZEKwVvKHXi8fv5ubKSh3bv4vn9BSTrdNyQlstVqTmMtKcgNi+ytEUpGe1YSZLUcsKwZiWpjs4CozblHlEUQkrSILQajWIhze8oQxTUpzN9unQKJCJHEByiKIY+sxp0Oq1MoaSm0hEEdUVVeF/W2sJb5aFCyvfvpuOg6Is24VUCGoOZjlOuoXTJC1QfOBg18AaiKyrD4fEb8DmrVcMsw+GqLsXt9uJrqECSJJyVRaqkpSm9Axq/ipAA0Ns70FRRICMqARLzBqke/yfgX9MOApRVOUL/DgZQeStKmNS/G58tXi47dvJR/fls+VpZ26bTahnaI58f122Wjf369+xGaXkFB1UCQG644lLeeOd9HDW1h9+eRZA2rR4X7/FhCN6bJEms37yV2x58kstnzWHv/gPcecMVvPrIHM47/RQSE47s3KT40CEyM5ULTXV19VityrGiICjLrk1GI01uORGdmZ5GablyHpeVmUVpuZI4FAQhqndmnz592LZVbk8YJBo7d+rEvoIC1fOCsCYk4Gw4vETwIPx+P/fOu597Z82Ub49SjSAIAvffch2fL1nFZ19/2/b3U/mtjhs7hu9/+DGu8zu3z2H7nugq8+OnTuGTRerXOnHiWD7+5gfFdqPBwJXnnRHX+x9hHIm5cVwQBOFEQRB20TJv3gd81dp58ZCVTwPdgVQCCqExBFZ8gkgAIpeXHdAyCpck6V5JkjIkSRohSZLaX/d1oI6Ad0dcaFAhFIOKyXCICM3b5cRRN6zsoF4xgRhEEmtxKAengsC13fN5ePmG0D5zx47x3u4RQTyEZWFJGY+88QEX3fUY3638lWvOnMrrc25i2inHYfcGBhDRvDHVPBYjw2WiqSslv1fVxybadnUIREouBa0BSS1lXGNQTx8nqNBUTuwFow3JpT6xFw0JSO56aot2Rr87rV5BIrQV7771GseecDJ2e+w0O9m9iSKP3DmTbbv38fJ/P/hd7w8wsV0G3x6KL3Wst2hlF9GJicRmD1i1ibgVbdRJup0jT0y1BkmSvMB1wCJgG7BQkqQtsc+SIbItPA7YQGD1vhOBlahIFsjBH9QWWgQNa711Mq+wlEQDRlFDoqilIVk+kbx8ZB/e3LhLti07ORGLUc+2Ay0DU7+jjGOH9WPN9j2UVkU07fWVXHfR2bz3/geqaYR/BGIlqUYL2vE2uTj4y7f8+vo8Dix+h4Tc7nQ46WY6HnsJBruc7I8sdwsiGmkZi7CUGqsRjEnK7Z4GBH1LWxq8ruRzI2gi5iGCCK3YZATVlYJGhydsAS28FNxrSMFVGWjrw78nvcmCR8XgXg1q6kqtVktjHEEcsbCvuIxNBUWcOKyPQh0G0UtZR6XYOSY1lYd378L9O0rCIRCMIyKojiUikYSOmijtXBCxVOaBMB1l32Ej3r7xyOJ3toVtGRPeR0BxXgO8D0wAVhzJdlBvTWL/z8rEWoCRJ5zBDx+/K9vWs99A9u3agcsZ6NccjV5qmnycP+0q/vOq3IcyITGR446dxEcfKPvdLl3y6dG9G599Eb9Nixqp+XsIy6ay6NU+9cU1+CWJFbuKeWLvHh7dswe3JHFjp87cnJfP0ORkktvJJ+bhfUmwzPtw4PB5sagMlTw+P5rmCXPQ6gGgvtGNxaCL+ZmCpKXNaqK6XrkQDKiqK22JVmrq1BclbEmJUW1NMtLTKK5TH++Fqytl14uiroxGWPr9fn54/UkmXDpDsS9SXRlOWOoTU+l88gzKl7+Bu/qg7LhoxCUgC7aRbe80goZ96pVFkZB0CTgPqqt/zDZbILRn13LV/QldRtJ0QPk+GkP8FRJHEv+mdhACYS5llco5zomjBvHRVy32F96KErQaDeMH9ua7NRtlx047YTyvf7lEMQe+84YruPfp1xQ2FYLVzr33zuGOh56Iel8hwil4rtUuf7UFbTg+/F73Fxby8GOPc/H021j803KuvfpKXnt0LpeedQoptqRW7TfUEK36pN7dMjZpcjeFrL7C4fZ4MBgMcr9Jkw1JGzg2vK8QfW5ZSbHodGBPTqaquuWYIOwpyVRXK38DRn8TGlETSmMPR4+evdi6Rf2Zzs5uR1GRusguuIBjNBhpavx9vrPPv/gy550yhWSbcvwchOy7MtsQEuw8Nu9uft24mTf/9z7QNjuWSJx9xun8b+H7cd3v+adO5e2P1L0nAbrl57HroLrPdKfcbPYfPKSq4uw9aGhc738kcQTmxm1BsC0MzpsnEPD2jYlWRyOSJK2TJKlUkiR/883PAE4PW+mpAyJ/XTaIkq6h/h4+Al5vswVBaLUlMqFRNbwXEUhT8Y7Kx8JuGmQTDQ0CeZgVRIwJDVkY2Ck56WqVDzDamU0MzLLzgyO22f4fCTXCsspRw8vf/sLFdz/Gyx9+w3GjBvPmfTOZeeFp5GREJ8XCPRIzrcrBVEsqeACJ2eqJZ0csvSqQxiPfpjWCV4WU1EYnK9FZQCUtHKMNmhzqb22wIjXJ/67h6kpHWQOiVo+/FUP1aCipd3OwcD9bN21k0vEnxHVOOKksCAJ3Tr8Sj9fLQ8++etjfeXJ+GjpRJC/Byu44CIsEQYsLn6r1QhB29FRGmaRnxuFP+WdCkqSvmsu08yRJur+N50a2hfuBEwGNEEiAKgc6RZxm4w9qCw2CyB5fS0l/eAnemfnt+aQk0FEGy+/sJgMWnZaCqlpZueANk4ax4JPFiuvffcnpzH39A4W6UhRF5t96A3fMe/ivSq4DlESl3+uldNNKNrz9EFsWPoXObKX/BbfR+YRrSGjfI+QjE1R1hE/cohGW0EJahhOXUQnLxppAOxMGrdEK7iiKS28TQnNYQkilIigXbZqPjnqPajAkZ1JxoKVEPPz7Ck8dzLKpk8HR1JUNHvl9RA4gZVCZWPj9fu555X3mnDdFsS8e9EtK4ox27Xi8vJAGlUWpeBBMPe5FAlvjVFe2i+I9GUQeFvZEWdjpjIW9MRZ9/gocblvYxjGhR5KkSgJBZLWSJC0G+sfxHvGPCQWRhKyOOPYr/fDy+gxkx4Zf8fv9sonlKeddwifvvCk7tkPP/uzft5fqykrZxPPMs85m0Tdf4wibAAYnaVdMu4yPPvmUMhWFS7TJr1oJ2pFAUFXpKq9mV2UNz27ZxT3rNrPP6eSS3Pbc3qUL41NTMWhar6b5vdjvaaS9TjlBr3A2kmpWtjcVhyqwGltfwBRt6dgTLFTVKZ8li+inIUqYTggR6so+3fLZtF2+gBf8u2VnZkSdpEdCzb8ynkqBxR+8Rd/xUzAn2lT3xyIstaYE8k69mcq1H9BYukvtdFWoEZaGzB40lW6L2Z8H+z9Naje8FTtwVasveOuTsvDUlqpeS2dNxVNXpfCsj+Yr/WfgX9MOAun2ZJ5555PQmM3vKMPvKEOr0dCrUw5rV66SjefOmzSK/3zxPb7q0pDNgl6nZerIgXywWF5xk5WexqD+ffhiUQvpGez78/I607d3bz765NOo96YgLP9g+M02KiqrePGN/3DRDbN47Y23mHr8ZF5/+UVmXH052VmZsmN/D9S8vevd/rjHx62VR4uiqLDuSklOprJKSUompyRTFaawDUduVgbFKlWD3Xv0YNs2pW8tQLusdhwqjt0OGowGGpvUycp4UsL37NnLjp07OX7i+FaPjfyuBEHg3lk3UVNbx4LnX45+YhwwGo3kde7MlgiVaei9w34nHXPacfBQqao/aBC9undl847dqvuG9u/D6vVygvjPejbU8Hvmxm1EsC0UBUEQ420LD2fpNNjLBOsnNgADgzubzYD7N2+PG5IkfQ2sJiB7jwkNAk34aVIpBw8qJsMhIpCjUvbdCTOFuBQBPN2wss1fj1NlInR6z84s3lYQ8tcJIlYJeCzfysPxpfQlZuHxePh00Y9Mu/lu5j7+PD26dOb15xZw37UX0ic/+r2oIbIUPD/NSvcseXlazFJwdy2C4UhI51Um6RoD+JSNoKAxKAJzQvv0ViS3cgIqiFpVxWXgenokNW/NMIg6PX7P4SkrJUniiQfvY8btgZ93pevwJtnXXHQ2HXKyuP+VFrWImldqazilfTY/SC2/4ez06CvbPTQWDqCuZICAEX+0SXonzOyNUT75D0fwR/Yz8F9AD4TkyX9GW9hXa+WXCO/WhCwr7YxGqjxuRHtzeFOzf9lV44fwyiq5B1uyxUSfDu1YEqa69DvKyE23071DNt+tlq+8A7TPzmLUUUN558NPFPsiVSfRjMfh8EvBw4k3R+EONi98ivVvP4jHWUuvM2+g3wWzyOgzAjEsnVBtQhQvYRlEa4Sl5PciiEp1jeRuUVbK1JqST3m8ICgXbVQQ7l2ppqIx2NJoiuLzZral4nSoK2NFjQZ/2AAsmnognkFoJLSpmbzy+Y+cPm4Y9kQleauGyORggC4WKxemZPFk+QEaD5OwhICysR6vYgyghs4xyEiAhFZKwRvxqwaO/QsQa0zoaC6NFIARgiA8CXFIWWlbO9hp7GnsW/JR6P+DoVGCINB1+Bh+/UlejtVn0BB2btlIY6O8Xzvriht48anHZNsEQWDW7bN58IH5gLwcWBRF5s25h9nzHlKdmMaafEQjLGW+bmHkWqw08IbiSirqXby0YiMzv/uFHwuKOaVTDvcN7sPJmVkk6eQK3kgPy0i0pRRcDVsaG+hpVD7fpQ0uMiwtZGVQXdng9qB1qpRZ6wPdabh/nj0jk6o65ZgiOcFMVW0cCw9h32nv7l3YsnOP6mHtOuZzKGJiH/63t+pFBEEI/d1bIywj1ZXlBws5tHcX3Y9qfYKuBnOiAY3eSN6pM3Fs+RZXafSqIMW5EYSlIAgYs3rTVNwyeY7mSynozOBrCo2l1Y4zpnakqaJAsd1qM2LN7UV9YYto568kKo8w/vJ20KjXc+jgQWobnDKPV7+jjEunjOP1L5fIjtc2VDGiZ2eWbNoVOg7gjHHD+ezntbgiyP/LLzyX/334KfUNDQpybdqll/D5l1+xv1xJoEXijyRl3G4PH/y4ksun38oDC56h14DBvPbSC8y5+0469+p/2NeNx5O2LiKM9NeNW+jWrfthv2cQohhI/g5vu+wpNlWyMiVZXVkJ0KF9LoX7lX6WCQkJNDTI285gW5ecbFNVcIYfZzQaaYyxUBRrrOj3+5lz/3zm3B3pghAbkb+/G668lFR7Cg89+Zz6CXHiimmX8vKrr7d+IDBh1DC+//472d8l/Ld9+olTeW/RUtVzTz9+Iu9/2VK+/lcSlX8ygm3hMuC/8baFrZKVgiCcLQiCrfnfXYDHCIRIBGdHLwOnCoJwTHOt+0zACHx8GB/iFuAKAqabMdGLBDaqqCsNiGgRFL6TXZpJzPDJgoBAPxL5LaKKXUBglCaZj13y1fLk/DQEQeDuk0Yz97u11DREJ3D+CEiSxNpff2PWnfdw5V2P4PV6efb+O3li7m0cPWwQoijG7WcYrRRcDa2VgvtrDiBY26ncr18tayKwPc5gAUHUIKmV+2n00ZWVeiuokJXNV1TdGp4MHq0UXNDoDrsMfNHHC5kweSop9rZ7rUTi7JOOx2o2RW0E40GSXodB1FAWB/naRTRT0IpfmxOf6kTciAYP/pjKzH8KVNpCHwFfjxuAb4BvAfOf2RZOstpY01RLYkJgIhRMeQU4Li2dz/fLJxIZCWYMWg27SuRE1ZWTR/LyNytojPDFufqUibz59VKq9iuNoi8481SW/LSSTZsDE5y2JO/9Xriqy9j97f9Y9/I9VGxbS/6x5zHwkjvJGXYsWkPrHoiRnllBHA5hGSQtpaY6BK38uqF93sbAwkskIgiOlolf689LcMIZrTRZ1Orx+zxUVrf0U0GSNyU3j6oDykl6VpKRxGQ7tdVKpVi4esDjD7yn2iA01qCrpKKK33YVcOIodS/tcMVva2inM3BecgYvVBa1GhgWngQeia5Y2RGH6tGAiAQxQ8eilXsDZGOkKEoIzz8JbRkTEvDxvRpwEShp3APEV1oQQFztoM5sxZhkp6JA2XcPmTCFpV9+pCATTzrnIj5861XZttyOnTEajWzZuF62PS8/n7S0NJYtVfa57VMsjD96JE+9+FpUJU2kAX9o+2EoLMNJCJfbw6frtjPzkyU88/NvDLRZeXTCUM5rl0U7c3xesEGoheMcTim4X5IodDeSqTNQVywfhxXXu8hQ8aitaWzCamghVIOl4OFfZ5CwTLZaqK5XjkdsFhOVh5QevQBmoxGnS/ns9cjvxPbdLdW3wbbLb7KRlZXJoUOxFUU6vT6U6Ku4n1YIy89eeZIR510f8/oQXV0ZhKjR0fmkG3Cs/xxvvdKTPRoiCUtzx2E4966IT12Z3BF/9T6ZujL8etYuI6nb9ZPqNWw9RuHYpr7vn4S/YzsIcMWJE3j6vx8ptidLLjSiyKEKOZF10THDeO3bVaEy42Bg1fWnH8eDz7wSOs5vtiGKIrfOmsWcsJDFUPq6xsjd8+Zz5+23U1av/kzErML4HZAkiV9+28TN8x7jqnseRhAEnn1kHo889jgjhg9HEATZWCVc5dnW+wgu3gYrT8IXcyFAWAZJy++++Yqho8YqruF2u9FqlYv4LpcLg14vLwFv7i9Cz2UzMZYoeKhvUAb02Gw2qqKQle3b51KyX31xJlrofDxh9FadSFMUZWVreOPt/3Dm6adij+72FBVBlWXw73nBmaeh0Yh8/GnrdovRCNS01FREUeRQcbG6bUvY7+XUyRP46Dv1cCm/yUbH9jkUHizCa1R6k6enplBdU4vH4/n/iaiEQDWik4AS/RvibAvjGYlcBewVBKGBwGR8FXBJcKckST8D1xBomGuAM4HjJUmKu/Qx7FobgHehddd5O3p8SJSrlGWpEZAaBLphVZSPp2FAg0BRmHIsRa8hVdCTpdGzw6B8ANMTLdx+9mRueekDnvl0Mf44JrjREIs09Pl8bNq8hRdffZ1rbpzJFdfewKrVa5hx/TW8/NzTnHzORRgMSiXS7wlgCfet7J6VKCsFt2VlhUrBg4Sl1FQHTTWIFmUfKrmqwKjiPdboUJRKAgHyMWJCL0mSKuEZ8HVTH1QJgkZRZtKyT4y6Tw3hpeCSz4Ooib26lp+moraSJFYv+4Fjp54U9/u2hunnnsTqzTtZulapeosXF+R14N3K6GqNIHSCiAEN9TEWPwLKZXXyvlMM5eU/DMG20EUgwWwggQS1rpIkvSlJ0o38yW2hKAhMNKWw0KEsyRrVNYuN1TXURSRE3nD0AB784if8/pbnR6/TMvO08cx95+vQtmD50L2XncEtz/5XMVjSuGp4/P67+XDhu8y4+VYOFqkrMY4EaitK2bTkK35+4xF+fO4e9v7wPqndBzJw2r3kH3sexqTDXwRQTNqaU7ljIdLLUmOw4Cv+FTG9d2ibXHkpIQiC4jw1otHfWI+oVyszFxQJq2oI961UW5w5WO3ElJhCY536gNZosdLYEHhe1QbkwYF4uC9TvL57r374FdeddiyAIjgjHkQqwjroTYyy2HizWt6PFrniEq0AgfLuUppikpBBdMHCzhhtWT4WdkYpK/8XtoOxxoSPEjBNdxBQBF0rSdKLkiQ91VwCFBfaMibsctwFrP3wZXwR7Z1Ob6D34KNYu/R7yhrcod9y/6FHcaiwgKLCAvmHu/EWXn7qcRrq5X/H6TNu4s3XX6OgTE4I+U02zj39ZDLS0zj/yhtYunyV4t4OR2GphnpXI4s37uSBhd9y5dPvcvvC79FpNcyfejT3HjeCXmnJCIKgqkYOR0NpC9kXvsAFct9KaJ2wjDz+89oKxlmTVa+9obSSPukti91Bb9qdZdV0SZWPFZvKyvE3Be4zGBQC0Oj2YLGnI9paXgA6rQaPV11lbdDrcXvC2oTmPsxoCCQlqyEhIZHqhkZFcq4MXg96vXo1gFppaBCH9u0iLbs9ebnK4I14EF4ODgHCMm30NMp+egVfU3xtTLgyHwKL8fqMbjQe2hhVVQmBvk+0dcJXLV/ADL+ezpqKz+nA72v5boMLhFpTApLPi6+x4Z+uqvxbtoMDu3Wi1iuweb+SaJ9x9hQe+o+8VNug03LW6IG8vCjgJRp8nob2zEcymPlpnbwSp19eDrk5Oaol31lZ7Zgx82ZuvXkmz73wEm63nMg7UvYXPp+PDVt38PzbC7nq9vuYduu9rNu0lVuvuoRXnnyEU6YcF/W5PJyKkHDVdLzVP3v37OZQ0UGGDeoPyFOp1/32G/36KsMdt69fQ6/8DrJtfrONmto6bIkJMo9Pt96KLkIxD6DT6vBGsSszGoxR2zuBFpV4pPCgNcLS7XZj0UY/JpqQQZIklixdxpTJk2NePx4EScuZ117Jsp9+ZvnK2B68scQVM6ZfzyMPPRD9vZr7c4vZhMVkoqSiZUwQJJeDv/WxI4/ix5+Wh4jx8LHA1GNG88kipQXXvxGCIAwTBGEDUAYsp2XeHFdb2KquWZKksXEc8xbwVhz32+q1JUm6hLAGPxYGk8RiKhlPKpqwSZkFLQloKaGRTFro+mAATy0eEsOM7QeQxI9UkIIeEy2N0jiDjQ9cleQZTUTGynTPzeSlGRewbNNOLr3ncaaOGcZZk0YjCAIVjlp27D/IjoKDFBSVUi9paWxqkpWMCIKATqfFlpSILSMXSZKorKqkqtoRWOFqPq5H926MGD6MSy88X7VhigYhvf0RLT+3pVtwlAUGQYnZXakt2onemoyzYAmanKNUz5HqSxATlJN+yVmJYFKSC5LfjyBGrDb5o6WJC9FDKGKVUWp04HMHvDDbiNryWszWtp+3df06evQbFNcKVTyQygoRBIGHb7yUK+Y9Tcp5J9M9vopKGdKMBuxaHTtcDXQzxb5AT6xso54h2FT3d8bCMirpgLK8LBcTi6mgK7GTlP/uCLZXgiCsBW4nIGM/EVgAHNt8zJ/WFurFwO+ph87MDo+LXU1OBjZ/x0FS55KunXj74CFubd/iXZtkMnDakF68/tNvXDYmUKXUVFbOwLxclm/ZyxerNzN1aIB08zvKyM/JZPLw/jzx4pvMuOpi2T0kWK3Mvf1mCqsaeGzBk1iSkrlu+o1ozYm4nE727tnNnl072bZzFzWOahpdYb6Jzc+oxy+QkJhIoi0Zg9HIobIKaqurqG9Wwvh8XrQJdjr0HsiQM67EYAmM16OF6xwpqBGW4ZO4IPHoqi7FV7IBXUZPJK1RUR7ubwzYZEQSlX5Po0KJCeBzOdBa1IPM1BBUqdc7GqMqRiNhsCRQU6LeP+iNJtzN5bGRpYuORi82ozakrITA4N/ob8JvsqlPRqx2qK/E5/OxY98BZp02Ia57NKUly0I4omGwOZFqn4evnVVMNsX/vQUhINCfRNZTw1DUg32CyMTAVurohVW1OsDYPH5oxBf6dxA6RIxoqMNLQutDLwC8PjkpHA/cvj9WxR7PmBCY2vwKtpGXA62mw/2eMWHHrFT0x5/Duo9fZeiZV8n2TTjtXB679Rr6jxiNTm8IEZZX3HwHC+69jXsWvBDqn40mE9ffegf33n0njzz+ROj7t+q1zH/oIWbPmsWLr7yKVZQTY2efeiKnTDmWF9/4L2+++z4zrr6cPj274/P5KDhwkJ2797Jj9x5KSsuob3CGlEzhSjarxUKyLQmbUUu900lFaQn1zSmrHmcDZqOeIT3yOGfMIDqkp+Bu9soM+lXG+8xEIiHLSl1xPSmJBqqaFzsyDNqYiuRIpCQaOOhu5KCniZOS0kJEpSXDHCJPHVvdpJgMoXsNohaJDl1yZNdzuT3ovN6QkjRIojjqG8jLlreloi0drSUJyWJTvTdRFPC3skgdrqoEMJtNOBtiE39+yR81YTcWfvrkXSadd3ncx+ckm6P2d+ZEA87aJmxZGfhHXEjZkhfJmHA9YtzBli2w5B1N+Y9PYOl3hmwsHuwLg/2fIGoQjDb0zQSFs7JI0V9a80dQv3sFid3GKN4npd9EKjd+T8KEM+O+t7a2g87fGQLXGv6u7SDA3ZecxuXznua1G89Dr2vpa3LT7WSkJLF6626G9sxvucmhvbn2uYUcKK+mQ9gi4l1XXcCFdz1Or34DsIWRLNdefSVXXXcDfXr1okuXfBkB2LNXL1546WVWLv6Oy664ihNPmMppp5yMprGGsopKdu7Zy45deyjYu5v6+gaa3J5Q2xtsC/U6Hcm2xEDwjd9PeVU11Y5a/P4WH8je3bswYlA/pp19imxuHP5XF12OqAupUccrEbDqxTb/9swaeHT+fTz19NOqpNjPi3/glKnHKd7/t42bGdCnl+J4r6BFE+Y17DfbqKmsIikxMBYO/5wajajwUQy+jyiKsqCecFgTEvDWVpJwGGnoLpcLs8nU5uqqn1esYNSIo0IJ6EeCzJbMyTzy4HyuvPZ6UpKT6dG97WX4HexWUpKTWb95K/1794x57GUXnMurn//IHdd3Ud1/xklTuXH2vUwYc3RoW7CvmXLiSVx2w82cdmb87aDLI7X59+j/Y4eE8eJZ4GZU5s3x4PcZ0/zF0CLSj0TW4VBMMvqSyI9UkI4BMWxSMQQby6liPKmhyYaIwHCSWUk142gh0QRB4Mq0bB4p3k9Xb4bqNOaYSZMYP3EiH/6wnEvuWYApKZlUk4auHXLond+RE0YPw9apO3q9TkFWud0eqmtqqax24E9IJy3VTrLNJmuUWoMvMSuqOjOSsGyL4jI/zcru8vqQd+XBkoDKwJaVhaO4mMTsrlSs/h+G7P5ok7NkZdRBSI0OSFM2vJKrCtHWMb4b8bkDJd8KRAuhaGWfRh8XWVlbtDOkInUUF2PLykLyNiFqA4PugyX1igCiaFj08XtcfvOdcR0bjlh/WwCNRsMzs65m2pwnuO/sieSmt32iflpKBgtK9nObsWPM45LQUYcXP5LseQrdCwIWNIqFAAg8X3b0lNNEGv/olfQgREmSvmv+9/uCINz+V95MSqKB8/2ZLKgropc/lZQwNUteohUqK9lVVUuXlJZF+THpKczeuIsDVTXkpgR+001l5Vw79WiuePpd+nfOISfVFjr+5NFDuPOld1m2eBmjx40OKFPCwlNysrNZ8OjD/LZ9D3ffORuPD4wmI53z8mnXKZ+TzzwHW3IKRpNJMbmrcrqpr6ul1lFNo8tFb72FxOQUarwtv7PimhaFe7GKP2M0hJdAyxWHcgSVipFqE8Vx9myF6kSvE3E3OtBn9Vc9x19XhKldb8V2X20xWpVFI7/LgZjaWbFdG0UpoAZnbVNM1YrebMXtVFcAGkzmEFmphmpXy8p8vduPVS+GCMsg/Gab3HsP+GrZLxw/epj6e6anxUw2bg0TE+y80VDEyqZajjK0Kj5RwI6e7dS3SiQKCGRgoBQ3mVHasu5Y2UkDfVVEMD2wso26VknRfwH+kjayXY+B7P/1Z0p3byZrcIvVgEajYeq5l/LZWy9z2rTrQtuTbMmMnjSFzxf+lxPPOj9UupvXtRs9+vTlnf/9j3PPOQcI/NYtyelcOu1yHph3H/ffPVvx/gaDgRuuvJSa2loWPP8KT734Gnq9jvY52XTrksex48eSlZGO1WJGq5X/ziRJwul0UeVwUFNykASrhVS9H6vZhCAIMs9Kf4QXrSXLHiIsDxfhhCUE1MlBwtKqFUOhVGpISTTgkyTeri7hhrRcErKsoQWzIFFZ1+TBqtfJSEpLlj1q2XFpTT2ZNitNZeUY0tMC5am2dGoanCRZlYuigUm6+j0GJunq7xP+/uHEhsVsxulq3epJjcyIpaq04sVZX0ty+uGpKoOwJ5tk/RuAPimT5AEnUb70ZdLHXUUg908JtX4u2K8ZcgbRdGAtxg6BtjqchAz2f6bkDKSmnjQV/Yq5+3Gy84N9qaX9AEq+f0qVrLRkd6d6/RfNAoXDT53/B+AvaQctJiPXnTCahz/8njvPDvx9gmT/jLOmcPmDL/LWXdfKzrnn3Mnc/sZnvHZPVwRBCNguWO3Mn3UDt9z/OC8980RoDqtprOGRB+7nymuv55UXnkOToOwLx40ZzZijR/Hhx58wbdplGA0G0lLtdM3vTL+8XE4eO4xEqzX23NjhQBRF0lKSsSUmxDU3Fp2OuMtqWyPIjP4mGRFrM2pjPtsQUGE+99QCLr30EjITWyoVw99n1959dOkcmcUJm7Zt57wzTlW/14jP5KitxZbUQiwGCUuNRiNrB2Ul5THIypQEC46amsMmK9PSWnUoUODdhe/z4Lz7Yh4Ti3COBq1Wy1OPP8oV11zHww/cT3Y7pU1drPcDmHntFVx365288ewC1eOCY9xeXfN4+PnX8ftbFq7Cf4Nms4mUFBsHig6Rmy2/D61WS/cu+Wzaup0+PX+/t+nfHL+rLfzH9xLpGJCAqgifKA0CXbGwPaIky4iGjpgVITxWtHTCrCgTN4kaLk5tx6Nbdih8sYKhOoIgcPqEUbz14pO8+PC93D/nLi669BKGj59IRve+GAz6gKqyrDD0AtDrdWSk2enZNY8e3bqSare3iaj8M5GTaQ15V9qysvDUFKPTCGhTApNqQ0KK7KW32tDoDBgT7bLtAJLfgxDvqm80slIQYnCVcZCVhwG/twlR3zZlZU11FaKoISExdlnW4cJkNPD0bddw22sfq/o4tQajKNLHZGW9s/WE+1yMHIzhudaDBLZFKYHsjlXxLP6DYRME4dTgS+X//3ToRZGzs7N5L6IU25qVxNWDevDCOmXS503D+zLvk6Wy7Z6KSuZfdAJ3vvV5aMATnBjfc+npvPDJdxSVtvgZRpY89OjZk6eeeY5HnnyG+x58lEsuv4oRo8fRLicXs8WiqkIRRZHEJBs5HTqR370n9owsdPrWSe1IL69IRE7k4kFrJdYgLxOX/D5cu34gsU90iwfRXYvWlqvY7qs9hCZROYjyuWrQmOTtRWv31FZUerQ0Nag/83qjiSYVsjKoRmtqasRoNCnM5CF2OfjH3//MKRNGHdb9qpW1hpeYVtU2cYLJzh6Pi6X1bXZdAAL2MRtp/dwuWNgVoy1Lw0A5Taol/knoaMD3r/DwbQV/WRs55IwrWf/ZW/j9ftkiR89BwygtKqSytGUBsKzBzbjJJ7Bx7S+Ul8oXBk8/90JWr/iJfXvlHl/9ho4gJTWV/338RWhb5O8+KTGRe2fdxMtPPsyzj9zPrOnXcPLxx9Kjaz62pEQFUQmBcaTFYiY3ux19e3SlU242CRazgqgMhyG97RPEuuL60CsS4c9UsLw73rCdD2vKOC7RTmZ2koKoBNjkbOSobi0ljkF/2oPVteQkK4n9kpoGMpMC9xNcyPA7ynDUO7GpkZWiGFU9KQpCaJIe+i6jhCIEYTKZcDmPvHp/2VcfM+xYZX+R1YoqPlZ/F1yYstqMGNPzsOaPoGLlf1WPjSQqnZVFsgU4XVoXvNX7kXzqpEyw7zNn5uF3NyD55ccFry+IGgz2DjSW71Mo/gVBICl/II7dvwJKH85/Ef6ydnB49040NLrZVSRf2DAZ9JwxfjhvfSP3DU23JTBp5FDe+W65LNCqU242kyZN5MU3/iM73qbzc9fs27j5ttkYVEJQG0UDoihyxmmn8sazC3jh8Qe5b/YtXDT1GIb2702aPSU0N45EaG7cJY/ueZ2wJ7dNxNMaYpWCh7yFI0jMWEGR4di2dTM1leUcN2Zk4Hou+bU8Hg9ajQZBEBRexi5XEyZTy7MS8mPUGRV9TE1NLbZEebspuhxoNJoAceZSfgaNp0EWnhgOW1IStaUH4/qMkXA2Kysj7yUWEVxaVobJaDoscjQeWCwWnnjsEW65bTY1NTWtn4Cc2LVaLAzu35efVv4iO0bNd3XciCEsXrlGfq2wxfrLzj+bV//zLmq49LyzeP2/78V1f/9w/K628B9PVgLNJVy1islBB8yU0kRDhNdeZ8yU0EQNcu+GTpipx8d+v3yi1t5g5JjMDO5b+ivusAe9tRTmcHIysiQ78v81tcVtCr0JR6yS7raoKZsaXRTs3smW1T/z8xcfsO2LN1n0wnxKf3ybghVfUbtvIyZ9A25HMXWbPiWh78kh9WEk/LXFaKwZiu16S6Jq5yT5ferbveqlkjERwyBcEHVIPnXPjlYv62nCWa+89vbi6BPcRR+/x7GnBiTeJfUtJGlkAns0xFOun5KUwPxLTuamFxZG9WyKhUlJdr5yVMpIq65WOUGcote06rmWgBYXPlXvNyMaBATFs/gPxVIChsDB11ICpT4nNP/3T0dClpXeCYlUiF7KIoIEEgw6RuZm8NlOeZuTajUxsXceb/60XrY9yd3IxROGc89/v5T9JnRaLY9dfwEzHnqWfQfV26ojGbITWYLcFhwOURmEJPnRiW4EVzHO/Wuo2/4tjl8XUvPb+9TvXEzjoU14aooxJqTg3PYVhvZDEXRGRZk3gDEpFcnvli3OhMhOTz0aS6rseLM9G7/HhaiTD/wkSYoapBOO8FTwgJI0cE7k96E1mvE0Bp7lSKWq3mDE0xh9UaLR6UQIW7QJqoqCE4Bw8/ogCopKyEq3Y4hDHdqWkJ1wCILAuZZ01nprqfC3fUHKihYBqCV2/2BoLu92Eb2tzcFEYRQP37wYvpb/IvxlbaRWb2DQ+OPY8H2LyX7Qe3Xixdfz6uMPUN7QFNpW7vRw1S138OwD98rK5wRB4NZ75nHfPXdxsEweOHXh5dewatVK3v/im9C2cLP/aK8/EsHnJly5GAk1glINQXVlogEO+hrZ43eyR6xnDQ5WUMV2sY5d/gYO+hqp9/v4qd6B0+9ndOcsBVFpSkvGlJbMsj0HOapjluxeDelprN17iAEdleOcwkoH2WEkZpCwrK6oUFVWRlMMQYt6MkhUxkpWD0Kj0cBhjhUjEe5zt2n1cnoMGXlErqsGq82IpX1/dEkZ1Gz9PrTd6XC0WjkQhCF3EE0H1rQQkxGLeMHt+oyeuFUSxIPvk9RzAjVbWxJvw5HWfzxlv6rv+xfhLx0rzjx1PA9/8L1iofrEUYNZtuY3Sh3yBcuzJ4xg6Za9FBSVyCpnzpo4it17C1j+i5yQ6dmjB8cfdyyzZt+Jpkk9TfpI+VQGEU8ojlqIWbSxaTztssbXxK4d21mxbDFfffguX7/xLJ88eR/vPf846xZ9zIY1qyg5VER54V4WPPQAs++8S/be4Vj+y1qG9e6qqDxxulwYNcoxntPpDI2bwvuRsopKUlJU2vqG6DYg0VTsRn8T1gRrKLCntb9Z5H5ngxOLxay6P9q13v7vO1x4/rkx3+f3Ii01lfvuvYcZt8zC62373PPy0ybz0pvvhL630Ng2grA8Y8ok3v3sa8X5wb9xl86dKDxYhNOpHBNmpKfh8XopDS7I/cHjhL8Qv6st/FeQlQY0tMekanw/jGRWUS2b6AkIHEUKq3HgiSBWhmFjm7+Bff7AimpRWeC/ozJSGW9JYuY3qzhU3dLAhxOWschJNagdEyQt4yUu4zlWSG+vIC01tcVIksSBbet5/pmnuXvG1bz28L38svR7jE11pGXnMnTCFMZdNJ3+E0/BYs/C7HdQtu4bqjd+Q4cTbkHUBSasaoSlp2wr2vQeiu0+xwEEq3JgKrkqEMypKturENR8yLyNUUu5Jb8HQc3nMrAX9cQe8HnknVl4KrijuBiv04HW3DaF5I7NG+jeZwAAmWEEYKUrPlIxnt+Bp7iADhl2rpwymlmvfhgzzVENelFkmDWRNe7Y6kotIjZ0qqFWQfQkga2oXycQfBWf6qnW7aPS1bbXH2xRFIIkSZc0+wddDXwP7Ab2AwXNr78MV/fM5+ktu0K/gfriwIriKd06sKqojMJq+fd/+tBe7C6tYs1euSJzbN8uDMzL5Z7/yAnLNFsiL95zE3Oee5Ovl/wc9T6s+paupbUV6WDpZSxkJR1GVGAb4HPVUrtjGaWLn6f0h2ep3bEUt6MYU3Iati7DSOw1BWuP49DbO+H3NtFYtIHaDR+R1HMSOruyZBsCnpaesh3o0rqFtoUUmc2qFUta+xB5abZnB77riOfXbLPhrStHl9C6ikrpWRnFJ1dS8QeWnRbdX7eqopxke+Be1MJ21PDOlz9w/gnxeVWGQ414iQzZgRZyRRQETtan8bW7knop8B23xXevP0lxtVG9SWRTjOPysbCLBlWCORcjh2hUjD3+Tfir28jeYyazd/0q6ipbVEUVTjfJaRn0Gn40yz6RqxxS0zM5/vRzeO6xh2TbExKTuPXe+7nn5ukUlrTYFAiCwIMPP0JBQQH3zJ0X90ToryAx44Ulw4zb72enycurlYd4vbGEz12V1Gk8JOlEMgQDQzSJDMZGJ8FEqk5LncbD565Kav1ergvzwLNmJYVISoD6JjcNbg92i0mxGLF8fynHjBqkuJ9fC4pVSUyPz4dWo5GpvwAqaupIt7WQm+GEZL3TRYLFHDondG59ZUjhBEo1kCAIbVqAa62vO7BnJ7mdu5BmaVF2/VF9m63XJDw1JVRt/SkmSRne/wShs+dBUzX+5rAeNaLTbM9Gl94NT9n2qKGVGlMiotZAU0QAmjnRgEZvJCG3O45d6w7vA/4D8Fe2g6ItndREK2P7duH9dXJ1uCAIzLv2Ima/822I5Bdt6QiCwKO3XsWsx15SWCA8fMvV/Pf9jxUBYidMOZ5TTz6JSy+/kqqiwEeKRlTKCLr6yuivPwFq6eBBSJLElu07eeLpZ7j6yiu447ZZLP7+O5pqHXTN68yEE07hxtvv4oxzzievYweqDxXy4Ttv887bb/L8Cy9gN0Uf07770aecdcJxiu3f/7SKY0YOUxCta9b9yqCBA2XH+k02Nm7ZRt9eyjl2eWUVaWmpqv1KfX09VqvSvqxRNOD3+xFMSap9UuRwMHJ/aVlZm8rAJUli85at9O3TJ67jfw/hnde5ExdfeAG333l3q3PjyM9lSMnkmNEj+ezr72T3EXk/ptQsOmS3Y8PWHVGvPe2Cc3jl7f+p7rvpmit45OkXYn+Qfzh+b1v4ryArAfIwU0yjQrllRkMXrGyImFgYEBmMjZ+pwh82oRAROFZjZ5ffySa3fKWod3ISc8YP5q53vuGbRS1x9a0pLGMhFqkZi4g8XCWmo6aWj776jhvums/l11zPl19/w9FjxvDM8y8y5+EFTJ9+I8eccCrHjhtLRm5HerbPICm9HUePHUPHkcdz1HnX0O3069AYrdiyWgaS4YSl392AIGoRtEqpva9qL0JijmK7VF+KYFGmw0qNNaDmQeZxgi5K6YjPE8XnkkAoTxQfH0DhvRlOWHqdDjQmWyhoKOjjGQ0H9+ygU5fuRyxYpzUM79GZMX278fgiZRppaxifmMJaTx2eVkzoe5GgsEoIRzoGqvGoTsQT0GJApJLDK8P/G+ITAqtCHqA+7PWXIdVo4Kj0VL480NI21BfXIAgCs0b0Y96XP+MN87NpKK7knlPH8uKPaymscIS2N5WVc+rI/gzu2oE73vxc1sknJyXw2rxbWb9lB/OeeimmoiWIeEtooPW0xfByObXSuHhUlZLPi+vQVipWvUPJ909Rte4jNKZE0o6+lMwJ12MfcgZJPcZjad8fg70D1oxsEjJz0ds7Ym4/mISex2Ebch76CG9JU3JG6AXgLt2CPiNg0B0+GWwq3Y4xU2Uxp74cbYKyHWws24MhTZ0UDSLecB0Av89Hg0f5dyuuaWz2EQu0WUH1WTiqKsqwp6kneaupKyVJYseBMnp07qB6TrxoLeE4iDyzgRP1aXzSVI67lfYsEmY0JDWH88VCMjoa8UdVV2oQyI5imyEg0LcVsvNfhE/4C9pIQRCYeOkMvn1tgWKCMuzYkyjcsZnigt2y7UNHjUVrTuDzDxfKtmfntue2uQ9w7y3TqShvIT8FQeD6G6Zz9DGTuOzKqykrP3zP1chJUkg5ZFVXGYthIRhtKQWPTOeWJIkDLhcfFh/ijp/X88TevZS73ZyalMbM9A6ca8lggimZSQk2+hktWAUtKVotPY1mjklIYoIpmWuzcpmSmBooYw8L0wnHhxt2cUZ/+aK2IT0Nj9eHx+fDbNBjSE+TfZY6VxOJJvkY0u3xolcpoQcoqXSQabep7mtscmM0ROlXPIFnNJIkCJ+QRiMs1UK2QH0BLt2iZ9mXHzNm6mnq99EKIgN2Ivs5NY9i+/BzcRWuw11ZENd7hBOXCb2mULvly5jHW1Jz0Wf1xX1oY9RjkvudSNkvH6vuyxx2AiW/fElF5b9eaf4Jf0E7KNrSOf/k4/luzUZKqhyyfe1SkzltzFCe/3F9qD3RpmaSkpTIXVdfwPR7H5IpzbVaLc/eM5MPP/+SH5bKF6qHDxvKow8/yG133MWan34MvHcsgqk1QrIV4jJSlRgvYi08VDtq+OCzL7n+rge47JZ7+OaHxUwYP47XnnuKx598iiuuvZ4TTz2dcaOPplfXfMwWK93zOjJ0xCguuOACbpt9B3fOmUdSUqD9CxFbzSXeAAcPFZOUmIA5TWn/8+1PK5k0eoTi861ctpgRRw1XHL+3YD+dOygrJ0tKy8jMDCzGKErHmyRMNvU+xeWVVO1J4kFlVSWp9pbrypSHKqTpho2b6N9PmYYeC7+HsBw9aiRDhwzmsSeebPXYyPu94KzTePfjT0PJ9tHu4/qLz+HpN9TJSIARQwezbsNGXC7lmLBTh1z0ej3bdu4+4krkvyE+4TDawn8NWSkgMJRkVuNQqBnaY6IRP2URirBkdHTDyspI5aUgMFFjZ7OngfXNarOq3QESK8Vk4JFJw1lfWMzFc5/jnR9X42x04ykuOGzSsjUVZjgx2VaS0uPxsHzNb8xd8DyXzbyLuQueR6fTcf+s6bz+0B3cfOMNDO+VjyAIodLkoAKwoy1ABuanBQa4wbAdQOZfGURidlcSs7uiaTiErd8JCsWlJElIPg+CCpEoNdWCQW0yKqmahEseF0I0stLvDqR+q0GSYpKVsdBUV4uoVb9usBR8d3nLM7fy64+ZcOLhDUwPFycd1Y8kk4H/rtzUpvNEQWCiIZlvG2MnieoRSUZHaQx1ZSzvyn4kKhYO/sHIkSTpbEmSHpYk6bHm1+N/1ptLUouiLByTczNZXVZFuavlb1RfXIPNqOfc3vk89s0K2fE6jYZHz5nE3R8upirC9/TEYX04unc+tzz7HxkpKYoit197GcMG9OWS627i/sefovDAAdm54epKiE1YRlNXhpeC/x4FiiRJCE3llK/7kv2fL6Dw62cQmspI6jWRzAk3kDbqYizt+yOqLLCEQ807Ui01HMBXV4bGbEcQNYpjGos2YGynHKw1le3EkN6SKhh8v6byPRjT8lQ/l4SkSlQGrDVa/gbhk1vJ50UQW77z8FJwv+RHjNJGljW4qSyXk5WtqSvXbdrKwD5KYvZIIJJ8CSJJ1DJBn8LH7jKF13Rr6E0im6lrtey+bysel12xspN61eukYaAe37/FFiMW/vg2MsrfNzE1g879hvHLok8V+06//nY+efFxPO5AGxn0Yz37sqvYsHEj3373HY5GbyhMIbNdNnfc/zCzb55BWWmprG0bdfTRPDBvLnPvn8+NM29hxapVba5ugNjlX5EqQpATlmqIRu7X+bwsb3DwfMVBHti9ix8rKuhlTeC2/C7cmp/PcenpJKuMc7JNWjIMgVfQzzLY/0Q+h+GKaEmSWF1YwtD2ys+wfOteRvWUt2uG9DRqXI0KohJgS2EJvbu1tI/h30ut00WCWT4mDKorJUmKvWjcTIpEkiCCt6UPjSQ6Ghsb0RuU9xjs5yL7NL/fT9mhA2TkBAiGtticREsCbw2CIJI18Vrqtn6Dt15JpgfLu9X6NV1SO5D8eGpjl8wn9ZyAp3wHkl994UZrTUHQaGlylCr2iVodqf3HUfbr9ypn/qvwp4wVJSRFWyEIAnOnncndLy9EkgL7g8dMHTmIA6UVrN9VIDuvd5dOnH3iZG578ElZW6bRaHhi/hy+WPQ9i35cKnufjPR0XnvpBVasXMW0aZfxzgefyIiZ0LPVVuVkxPGHQ1SqLTy43W6Wr1zJffMf5PKrr+X+x57CbDLx4O038tqjc5l57ZX07tVLtd1I0GtCz3f4uNaqF2XthGwBxOnglbf/x2UXnKO4ntfrpbHJjSWs/QqeW1B4kE4dlQu9koSqB3xxWRmZ6S19Q7iCv6a2loQE9QBCr9eL32CmUTQoXq3B75cUnqKx+rOFH3zAmacr58atVRkEF5EOh9A747RT0ev0/Pd/6t6R0e5Do9Fw1cUX8Nxrb8U8JyEzl87tc/h18zb5PUd4V77+jro/5S3XX8Vjz77Y6r39C3BYbeE/kqyMNsA3oyEHE7tUysGHYGMDtTRFKCHaYSQLg6L0SxAEzjans8Pr4ue6FgKnenc5GlHkos45PH3+cSQ0NjBjwRvMeGEhSzbsYNdva6neuwP3oX0hAjMeIjOesvF4SEq/38+6jVt59IXXuWzmXVx/53y2797LBaedwKuP3cfj987ihIljSbBaWr1WNARTsNUIS8nvw1tXGhjoEKG4rCtGk6AcsAY7w8hOQfK5o5dze12gjWI47vOAqD4QlPBHTUgMIpa6MojW1JV+v5+qshIys5XBGr8XrfmQThszkIIKBz9s3afYV707uvqji85Mud9NjT/2BLoXCWyJoa7MxEAFbrwq6ko9IhkYOBDFz+0fhhWCIMRXx/AHoNzvpl7FBF8QBK7v1UVWDh7EsOw0BEFg2Z4WI+2G4kpsFhP3n3kMN7/zLU53wKcr6BE2eXBPjh3aj5uefluRtjrx6OG8+dwTnDr1eF565VUuveIq3l/4Hrt27qSqshJzBAfZFoVlLEQLIwgn5Joc5ZSuXcTuDxew6/1HqNi0DHNmHu2n3ECHqTeSOuC4uEqrIxFv2E3jwbUY2g9REJWS5A/4UhqUbbC7ch/65rLy8PfxOh1oLcqSaH9TA8Yk9fvxuV1oDOoLOn6/DzGKYX1VfZMsoTVSXVlVXkZKWnrUVMxIdeV7ny/ibJWyp1hozbdSrRQ8EpmigcHaRJb6q9pEHmkR6IRZdRwRDhs63PhxxlBXZmGkKEJdadWKWLUiozQ2tgitB5v9w/GHt5FNtVVU7PhVdV//iSexZdUyaioiQiYsViZfcBVvLZgv2y4IAtfMupsfvvyUHZs3AC3JzumZWdz/yOPceetNHDokt81Iye7IM08s4J4772DTps1ccvmVPPToY2zYuIlDxcUhVUZrE8A/oiRcsOtZWVXFs/v2MX/XTt51lKJB4MKULGZ36cpFubl0T0hAjKMCJNsUnaiM9kyu2HeIEZ3aBZSXYV6VAN9s2sfxx4xWEK+/VdQzNE9egWNIT+O3PQcY0E2ZogsBwYIaseCtKMHf6MJbUaLqVRk6J4ywVPO8AzlhWVZWRkZGQEEfuTAXRDhhuXHtL/QYOFT1uCBaC9mJF+GLV6JGR/KwC6n5dSG+MF/ByH5MjbRM6D2VuijqyuCxgiCQ0HUc7kMbot5P+rBTKFsdUFdGKkDtvUZRvWN1ax/pn44/ZawYHn4Yjuy0FEb1685Ha7eHtgVJy/tnXc/D//2Mmjr5XOaYkcMY1KcHj70kJ2m0jbU8Nu9uvl/yE19+Lffp02q13H7tZby04CGSbUnMuONeZsy+l6XLV1Fw8BD1DU6Zf2y0Z1KBwygNjyQ1/X4/6379jceeeJIbrrqc22dOZ+ue/Vxw3rm8/PyzPHrfXRw/cbycMAwPXFFZfI8kKtXOC6Kpyc2Bgn10zVNWyCz/aRkjeucrtvt8PkRRQNMoD4ipLtpHSrL6YlRpWXlIWRmJyjoniUlRyEqfD10UMY4PTVykZSTU+jNvsz9juzDe4HBwOKTl9ddezZatW/lh8RLFvsh+ObwcfszI4WzdvouKyirFeeG47qKzefbN6GTo6BHDWbX2N5qalGKfZFsS/Xr1ZMnPK+P7MP9cHFZbeHia378YWgQ2UktflA9dPmaWUkkGBpJoefA0CAwnmZ+oYix2tGE8bWcsbKWODdTQj5YGYFeDhzMtaXxeVcnORidn+3zkdGuZ3GpEkWN6duKYnp2obnCxuKSa1TsKqKytp74xetmIIEBux450bJdJx3YZdMrOICs1BcIIy3iDcfx+P5u272LZqrVs3BYg1fr17Mbx40cz88qLWy1B1tQW40vMwup3Ui+asZs0VLp8ZFr1lNS76WgzUeBwkZ9mZXd5Pd2zEmMGyrj2r8bUXuk/BOAt344udxg6fWCSHiQFJWeFqi9loDRcnUyQmmoRE9WJQMnrQtRGaQh9HhCj/OzD5rNNdVWh9PJwOIqLZeRsNGxfu5JuA4a1elwsHG7gEsDtU0Zxy8LvSbYYUeqx1JGdbmZqcSqfuCq4yKLe2QHoEElDz0Fc5KBOhvQkgU3UMQBlh9odKzv+wQETgiBsIvBr0QKXCIKwF2giYBAoSZLUtvqGw0SyqOOZioPclNaeuuJ6ErKsNJQ6sWSYSTMZOCrDzscFRZzaKTDpqy+uwZqVxDWDenD74jWkWc30yGj5jWcnJ3LL1JFMf/srFpw3GauxhfCfOLQvWq2GS+Y/z93TL6d7Z3n71KNrPvPm3IvX6+WHHxfzzTdfU1VZSXVVFe5mgjOyLXL7/CTZkslp34Gc9h1IzMghMzsXnV5PukUfUjulmvWq5ciRcFWXUfbbaur2b8bnbsKQaMfWZTBp/cchals+SyB4JgCrzSgLpYkXZptN5uFltmfLElX9TXVo9Uas7borzm0q3oohXenzK/n9zYFietmk0e91q3pIWm1GGg7tx5CkDPYB8DY40Fltsm2V1S7sySa8rga0BnVywdPkQqePrtqqKi8jOVXeLte5fSToNdS7/bJBu8fjoaLOSUaaPTTh0KZmqk5QDOlpIYL8SCFPY6ZI8LBaqmGYYIv7vM6Y+ZEK2mPCSHSCvS+J/EYNI1HxVQa6YeVHKmiHEREBq7blu0kUdKQKOv6NweB/ZhtpSEyhcPmX5GZnYs+VT/gEQWDUBdNZ+NR8Lrv3cZkSpWPPvjgKd/Hlf19jynmXhraLosjMOQ8xf9YNnDPtGrr17hfal5aewQOPPcFds2/lhBNP4qRTTgm1a42igeRkG1dePo0rL5/Glq1bWfbTz5RXVFJZWYmrOfwuWDocPE+SJCwGHR06tKdjhw507NCBvEwbiQm2w1IROd0elh8oZXVRGYcqajFqNAxMTebchBySdYExcbxBO9EQTVEZruYMEpMffr2cBedPxqyXT4RdTW6q6xtITQqkwYq2dPyOAKm8eONOZpwyHoMtQdYm/LrnAOedNFl2nWB74osVsBPjIYuWIO5yNYaCLUSXIzRxNfqbaBQNlJeVRvVpS9BrQopzm1GLo9HLD19+wrQZt8lqUoJ9W1aSUZZcHw41VWVbA+Ss6e3wDzobx+q3SDlqGpbU6O17eN+mMVjRp3TEdXA9ppz+smPCjzXm9MdZ8AuSt7fqNfWJaQiilsaKA5gTlc9o9ugzqdiwuE2f6Z+AP3usaDToefadT7hykrJs+JLzzuCyOx9heL+edGjXMmYwGQ3Mv/Varpv3FK/cd7MsBO/sEyfzzBv/46nX3+GGS1rCUERR5OE5dzD3kSdYu2oFt15/tSxgRavVMnnCOCZPGEdlVTVfffE5q1aUU15yiAaXC6k5wE8Q5MJ4URTIad+eTtmZdMzJpFN2Jllp9sOy0vL7/azfvJVly1exZfsOJAn6DRzE1OMnc9P0G2TXDC/ZDm1zOkJ2HMFn3qoXVStIoi1WhOPtj77grBPVF20/WLSUe6+7KDBGCrP+WPXTUgb3V/5Eflq1mmGDByq2Q6A8/PSzlVZrAOXl5aSmKrMhACqra0BvUozhoEVQFCTzIlXmbVkM/nHxEsaNGRP38a0hvG1uDYIgMG/OvVw7fQb2lBT69+urIGEbRYPs8/lNNkSXg1k3XsN9jz7Bkw/MlR0ffG/R5cCakUOvrnksWbWWscMHq97DtAvO5tlX3+Sma65Q7Lvy4vN4690P4vos/zT83rbwH0lWBtM4d1BPN+SDpWB4zjIqGYsdXRgpmYCWASTxE1WMxo4mzG+mJwnsIJB2OElKCTVkgiBwoimVxgR4oqSQiVYfkySJlC7p1OwJTE6T8rJJtpg4Nc8EeUqSx9yxo+z/fT4/hyodFJRWsvvAIb5b9SvFFVVIEhj0Onp2bk+f/A6YTUYaTck4XY24GhtxulwUlZRxoKgEV1haa8+ueYw5agjXXHS2QooNStVmWxLC2wLJ56GpeAu2oy5T7PO760GSEPUtaqIgGeg8uAoxs7/ynNpCNO3UV6Ilb2PUMnDJXQ969fJA3HXR98WAmroyFlZ//wVnXn97m98nHsSjwhVFgfmnjeOat7/mwTPGo/BS5LQAAQAASURBVC9zAJCcnxZTXZmq0dFeY2CNu5Ykoq/y9yKBH6ggE2Nzhq4cmRjYTQO1eEhEPknRINCTBH4i9irV3xh/SeJ3JHSCwBm2dJ6pOMj0tBbiPkhYTs7N4pEN29lcVUPvlJZJpEYUmDtmELd9/wuzjhtBZ3sSDcWVWLLs9GiXxq1TRnHDW1/x+HnHEk6DjRvYiwFdO/LQB19j0Ou4bfq1WC1ywkur1XLspImMOU7+FakN8CRJ4kBpBUWFBRws3M/WTV+xr6AAr9eLIAgkZebQsWtPUtIzKa+tx93owt3USFlVLQ2OKooOHKCxLrDi3OD2YkhIwd5tAF1GTqcmRtWcOdEgIyyPFMIJS++h30joqT4wde5bQfLwSxTbm0q2YsjooVC3NBSsw9KhZQEoXDVTv38TiflDVN+nsaIQc7q8fMieHGgz60v2Y81U7weqS4rw9VZfcAKoq60lITG2f2RwwLfox6UcO35s843blSVdYQRFNJjSknGVR7enSMiyUldcT0qigSqVv2s30cIvfge7/Q3ki4H+x6oVqY+RyCUgMAQbv+BgDNFVnknoMCJSShMZKJUHGgS6YWUb9fQiQbG/r5jId/7oqhGPXwqRHvHC7ftbsJ9/XhspCEy+7m4WP3cvw8+7gcR0uZI5MTWDoyafwhevPs2Jl08PbU8165lw6jl8/PrzfP/xu5x7/oWhfXqDgdkPPcXDd8zkhLPOZ8zRo0L77KlpvPza6/zvnf9y5bTLuPnWWXTtFgjRCp/M9erZk149e8alSJEaHOwvLGTfvgJWrFzJO7t3UltXB94mUlOS6dsxizybGb/kx9noptHtxtnopqbByYHCQg4eKsPv9+NxNmHQauiTZOXc3vlkWk2hkDUI9A2gJBnDVZENpU7ZMxUPws8PLwFftr2AgR2zFEQlwNuL13DepKNl20RbOq7yQ1TVO8mwBZ6X4CJGfbOtiUnFe7KgpJz2GeqTcI/XiyaMpA4vd/X7/VF9JwsOHKRDe/VJv9HfREVFBfawiX80IgOg0eXE3dREki3w3QQX4sIRJCyzbEaZLUdOsvmwysAjF+K0FjsJvabi+PVdGHIBlmT11PjIIB1L13FULX8JfWoeGqOyDQsSlgm9jsdVuAYy1JWvmaPO5sDXz2Kw34olwtIlIbeb6jnhaGs76FTxZP4L8KeOFVNtSTS4Glm4agvnTj0Gb0WJ7Pf+6K1XcfX9z/H6Y3Mx+1p+U/nts7np4jO4Zu6TvPjoPJl34XUXn8Mr//uI+59+mdnXTQsFUvnNNu65dQa/bdzMFTNmceoJkzl16mQ0LrkKMM0ocNHpJ8r6/mhqSp/Pz8HyKg64vOwqOMi3y9dSUlGJJIFRr6dnr5707tYFs8nYPC9uwuVy0eBq5FBpOQcOFeMKEwr16tOHMaOGc93lF4cWqiKJLTWiMrSveZvfZAsRlrEQzRPT6XKx9Je1vPHis4p9Bw6VoNfrsNuax1TB78lqZ+Hni7jvlutC9xm896+/+1FBmgVRWedSTQlvFA0UFx+iXTt126LykiKyouxTu1YQbbU8+eTzL3jkgfuj7g+Sg21B8Ph4SEtRFFnwyENcesVVPLXgMVLtdtnnUfsb+k028jpC17zOfP7Nd5xw3MSo73f9xedwwY13MGJgP/R6nSK5fvSI4bz38ecUHiyifY78+9br9Uy78FyuueWOqPfv8vra3Bb6DsOW5g/A72oL/5FkJQQUDWtwUICTjsgnzIHwnCR+blZRhg9G7OjpSQI/U8XRpCCG7euGlb04+dRTzmRdKgZBZGe9m65WPcZauL1dR34oqeLO0nIure/E4AGBTjmctFSDs6AAaCEtNRqR3PQUctOb1RiD89FlBfa5GpvYuu8Am3cX4GpyYzYaMKe1w2Qykp5qp3+vHuS2y8Bibr0MDtSJLekwFJyRyMm0KkqgG3YvxZw/WrZiFST5PId+Q5etXAmSfB5ErRYhItlb8nkCKlQV70nJ55H5rSkPiO5PFPAuis/9IFxdKfm9oJG/p6OsAVu6hYMl9aHSeABXQz2SJGGO4g2iBqv/8DyJYsGg0zLvtHHM/mAxD4zsh04T3+cea7DxUkMxwyUdJkFdVSQ2h0RsoIZB2FSPGUQSq6hWPIP/dEiStP+vvocgkps0TEpI4YXKImZldQv97oOE5Y19unLn2s3c1LsrGWZjSF1p1GqYN3YQd/2whrsmDSfbZg0Rll0y7cw5fRw3/ucbZl8wlT4dW8zAUzvm8cjNeWzYsYcrb5/LSZPGcdoZZwYGsCrqkyDUJnKCINA+M43klBR69w+0DcGSy6BivGDXNrb9uhq3RofeYERvNGGwJJCclUvvsZOp8ZsQBEExmbMb4lefHCl1JQQIS29dKW5BQGtVqm7cFXsxZ3XBYpfvczoceEo2knb0pYpzGvavJX3sVaF7DUdjRSHpw9V9cb21BzHnqSdw15fsJ6PvSNV9tRUlJKZFV1a7PN7QwN/R6I2Z5v7pd0t5et6d+I2GwzbFPxxkm7QUuQK/pQyDlqGNSXzrryBF0pEixOcVl4iONPSqY4xw9COJxVRwDKmy8UQQ7TGxhAqcmLH+M5132ow/s43Ua0R0BhNjrriDxc/PZfS028EmH4v1PmoMRXt2sPrbzxk66QTZvlMuuZr/PfsoP3z5KcdMOanlugYDtz34BE/Pu4uKA/s49ZzzQ/ucXjjpzPMYe+wUnnr0YfQGPbNuvTWUtNrWkjnBYqN7NxPdu7WQNqIrUI5cVlHFpvXr+HX/QQRXAyaDDrPBgMmgJy05kbH5maR43Wg1Ig3FLYRAkOC3ZiWFCEtLhjlEWAb/PxLBY4KEZSSqapviIjElSeKNZet5/hLlHMXr87F8VxFXnnWyYt+XmwuZOlSu0DOkp/Hx0nWcOExZPeatKGHpb1sZ3V/dF3dPUSl52erq88LiMtq3U9+3/8BBOrZvWQSMVPDUlJfQPl+pnA8iXF25dvEiRk86XvU4tcqBSMIyHrS2ABdcBPOmdaFh549Yhin7DbXUcEEQSep/OrUbPyZ56IWh6wT7onpHY2ibs2AVHkcRSR17Ka6jNVpJ6jKUqs2LsYycrNj/b8RfMVa85dKzuOPJV/ly2SqmjJYrLFOyO3HH9ZczY84jvPDAXbJ50oAhdi4VjNxwz4M8c99smQp92jmn8v4X33L93Q/w0O0zsJhNIcJyQN/evP3Ck/z3P//hkiuvY/b10+iep05YBxGtukKjEemQmUoHYOyQ/rJ9TlcjW/fuZ3NBIU1uNyajAbPRhNFoICPNzoDe3WnfLhOzSS5iiSSL2kyEhRGWEHtRIvSeEYTbM2++yzVXXK46L33mzXe57tyTFdtrSwrxS35siQkyQy2HowaDJRGjUdkGO2pqsSUpF5KD/VG4d2+QlAvfJ4piVFVlNDQ0NGC0xjfXdThq0Go0WCyxbegOh7CE+FWWRqORh+bPY+att/Hqi89j1CoVlWq4+tILueiaGYweMYyEDDl3ErxnTVIa1118DgtefZtbZt6kep27b7mRO+9/hJeffDjuz/ZPx+9tC//RI+fBJFFEI4dUEjeT0ZOHhbXUKPZlYKALFlZEBOtAoPyrD4l85SuntPmHu7M+MJA4VO5iQpKdqyyZfFNUwvQPlvDesk00NZf31Owpkr0i4SwoCL0iEfS1NBkNDOqRz0UnTOCq04/nwqnHcPqwHkzp24nxI4fRPb/T7yIq/yj43S481QfUyxu9TUgeF6JJudrjrdiBNrWrouRaqtmPYFNPj5Ua1JPDIeAHF4uojAbJ26Qa/BPa73EhNisyHcWxy7M3Ll/MgNETYx7TGqKVgLf1b5qVZOWy0f15dIW6n1BKvrJ8URAETjalslmMHYSTgYFG/NTiUd1vQkMWRvb9O/wp/7bobbIy2JTAC/v3y37jDaVOdKLIbf268+imHbi8co9Bq17HPUf1Ye63Kymrk5N9uSlJPHfJVN74fhWvLFqheHb6dcvjP08+gNvt4aJrZvDoMy9wqERuoB/Z8Vv1yoFQJILElyiK9OvZjaMmHM+U8y7l6BPPYtixJzFgzCS6DB5FdtfeWJJSYpYHBVWEaoj0zWpLkrbsOir+lXVbviahl/rEtHH/CpJ6H6vYrjcICFo9ok5+H77GOkStkUR7guIeJb8PBDHqd9BUXYrBpj4RbygvwpImVw0FJ8d+nx9NxMJM+GQ6WjsaudrrdDox6PXyQXVziVO42iNasrGab2VrieDhJErQWw8Cbdo40c7P/mqamss+w0uyo6EHVnbTgFvFfzcIbbN6cmsMa4vB2NggKMci/4cjB4MlkaMvu43Vbz2Eq17Zd00673J2rV/N3i3rFfvOvmYm2zb+xorF38m2a7VaZtz7ABqtljmzZlBfJ/cYTUqycdd98znh5NOYedNMbr75FtatXXNYATtqBKffbCM9NYVjhg/kqrNO5MqLz+HciaM4efQQjh3Wj5F9upGbloxWZSEyXOEoK8/OMIde0RDcHy3ASg2Rz+Znv+7g2L75GHTKxYyPVmzg9LHDEAQh5J0XfH29aj1TjlGWCf64YSfj+ynHlwBrtu1haA91w5utBUX0arZCiQwf2b6vkO6d1O2ECgoP0DFXXVkJUFFRoSipjBYqt/KnJRw7aVJoe7pFPtYMhu2Eh8iF+1fmJMc35o+EWr9m7nQU3oZKqnfKfSLViMogtNbUwOJbffTxp9lmI7H3CdRu/kLx+w8uBib3Gkvt7jV4nf96r96/BhoNgiBw//TL+GbZan7+NSxos7nv7dujK1MnjOH+p19WnD5ycH9OnTyBm+9/XPE3PGPqJK6+4CwuvfnukOVYkMjTNtZy0ekn8tTc23jrfwu57Mbb+ODDj2isLI6Z6h0LkWSm2WRkcK9uXDx5FFeedwYXnnYip0+ZyNRjRjN+xFC653VSEJXh9xgLsmNU7ld0BvwRWyOzIuE326hogh37ixk2eIBiX2W1g7r6ejrlKK3F3vt6MWccM1xxfx99+imnnnKy6vst+3Uzo0aOUN3ndrvR6wLtTPjnMPqbAgpzQVAdn5eXlUUtHYeWdjCeBbqvvvmGE0/4Y8XG8XpZ5ubkcOnFFzHn/oBvdWt/W7/JhiiK3DHzBuY9+lTMY0eMGUdhWTWFB5U8EEBGehpDBvbji0X/+mCxI4Z/NFkZKPlOZgf1OFQIk/aYMCGyU2US0Q4j7TEpksAhkBI+0p/CJn8963w1SJIUIiyLypxYNBrO0aZwZ98eGEQNt3/6M7M/+ZlfDpaFiEugVeJSDbHCeOIlqqSywjaRWq15IwZTwWOhfsd3WLvLCbqQqrJ4PbqsfopzJEnCV1WAppmUNCSkhEhLf10xglXdG1KqL4m6j6Y60EdZ5fHGSBB314Eh+sBc8rhwN8anftzx2y90H6T0jAlHMHm9LThc8nl4Xg65iVY+3hYI3EnObz1UJEOjJ0nUcMAfe3V/IEmsU1kQCKIbFva2Mtn/P/x+DLMk0cls5qMS+bPcUOok2aDnqh55PLh+uyIZ2WbUM+/4kdz51XLK6pwyZY5Zr+OxaaeSaDZy9aOvUBORFC4IAuefOpW3nn+CieNG89SLrzJt2mW8u/B9KpuNqNUGAG1JCQ/icFPBYxGWivuyGQ+LtAwnLN2VBWjMKWiMyjZIK9WjtaSg0SsnnjWbviGpl3KBo273StIHjFN9X2fJbsyZSlP2ECRkQTnh8Pu8iFrtYafMxkJQdbB41dqoA+c/GxkGLXpBZJSYwmJ/ZWgi1hphKSAwgCR+jdHGQWCsUUETrihhO1a0pAg6Cvz/t3DzR8KSnMqxl9/C50/Nwe+T/y0EQeCsGXfx3TuvItWUK/ZdM+tuVi39gZVLflBc9+Qzz+HCy69h5vVXs3mjcuGvZ+8+PPbM81w3YyY/rVjFFZddyuOPPsKe3btbJS5bU+kAMh+ztiCSsIxG9gf3RR4TD2GpRnp6fH4+XbedM4YqFXb6tFS+XL2FE0YqrSY27thLly756LRa2SJGqaMOe6IFvV057pMkiSaPB4NKqTnAln0H6NExp4WotNpDr+17C+nWqX3L9jAUFB6QKStBrsqqrKykXbKyLDqyfwvammi1WpkKPZKwDKIt/VsQsVSV4X1asK9K6n8q9Tt+pO5QYEwYi6gMXaf7RBybF+H3umXXlP07PYukLsOp2/Wz6jUEQSBr9Hns+eq1Vt/v/3CYsNoRElJZcNu1vPLBl+w5cEjx2z5hwhgsZhMLv1ikOH3CqOGMHTaIWQ88gT/CB7ZX1zxef2wury/8hJfe+SCgxgtL+baJbubfOI3n77kRnVbL9fc/xYwHn+WndZtwe9RFDbEQNYCnjQRoLMJSQVSq/Tt4bDNhGY9HZRCPP/cyN12r9CcEeP7thVx9wVmKv4/f72fx6vWMGdxPcR/LV6xk1IijVK/38/KVjBohH3MFScTdu3bRPa9TaEweTupVHNhLdrb6wsz+/fvpEGFlF46qygrsdrvsvaJh5S+/RL33SPzesLlYhGVw35ijR5Gemsb7H34U9z1175JHQkoaq9esVd0fxB0zb+D+x6KTmtMuOIf/ffgpDQ1Hfgz+b8Q/mqyEQDnqSFJYjYNGlYlCLxKowkOhirqrPabmEq1KBZmiRWSC1o5F0PCFrxyHpGxoa/c6GJOZxl39enJF185s3XmIOz9bzqxvV7Fg5UaWF5bQ0Jysq0ZaRlNZQnTSMkhEtoW4ijeRPBKZ1tjlcpLfT0PhBop/eA5B1KKzBRq72qKdIaJS8jbhd1ajsSoVPr6qPWhSOilTwBsdCHqLarm2JElIHmd0v0pnGYJZfWAvNZQjmNRXiKRGB4LBFv2zuhtkfptqCAYPNTobMJoPP239j8B5ffPZWlbN8sLYyXvZ6S0Tj+OMdtb6a3BHMaCHoHoy4E+pBgGBQSSxBsdh3ff/IX4cl55OeZObNRETj4ZSJ3mJVia3z+LxTTsUk+c0q5n7p4zknm9WsKVYmSZ55tEDueXcE7ju8df44otvFPtFp4N+vXry4D2zeWnBQ9iSknjk8QVccc113HTLLD5b+I4iPbctg714EEt5Yk82qZKWkerKIA6HtNTiombDx9RvW4S1h5J0NNtsVK//HFtfpeLS53biqSvDYJcryS1JBjxlW7Dk9lR9z5pdq0nMU/eW1Os8iHr1z+DzNCGK6gRxk7MevTFwnlrgQ/C3o+a5FollS5cydszo0AAuVI6loq4MR7i6Mohw0iWIcJIknFCJpq7MMAQIw26ChZ/81XGr3+zo0SJQrFLBEY5B2FiNI2qYxwAhkU1SXUjZ+X/4Y5CSlcvg48/k21ceVfyNtTo9594yh1cfugdHZUtbl27RI4oiN949n41rV/Hh268qrtu5S1fmPfkCH3+wkCcffYjGMN/wOnfARyo1LZ1pV13Lghde5egJx/LJxx9x7dVXcv21V/PSC8+zadNGfM0kar3bryAq41GnqD03as9MEJHPTiQxqUZghm9vi8Kyzu3hnXXbufHjxVw2diCiqFR9f/bLJo4d1ENWZhrEc//7hKvPPiH0GYOE5WvfruS8ceqBBZv2FNKjQ3SvtcLSCnLS1AOwthWW0qWnuq9/VXUNyTbldxOc6FY7arCp7I/Evq0b6d1vQKvHqeFIpYOHw2yzIYhabEPOxbH2HepL1dU/kbCkpJIy4BQqV78X87iErqNpKFiLNwpBZLTnoLMk49j9W1tv/f/QBmht6Twx725uf+pNqmuUSvMbLzufX9Zv4ttlLenDfrMNv9nG1JNPYfwx47ny9rnUR5ApZpOJBffcii0xgctuuYf9Bw8pCDW9TsdJx4zk5bk3c8eV57NjXyHT5z/DZXc+wpzn3uTbRd/T4Irf5iBqYvhhKDbD0RZrmrYc6/P5+G7Veq695Q6SEhPo0VW5qOyoqaXg4CH6dO+i2Pfx9z9z4rgRirnxlnWryMvNQtuk/HtKkkRpWRl2u3pbt3bNagYO7K+6b/WatQztpx6OtW3bVrp2i253UVxcTEZY+ni0PkySJBobmzAaj3ybFg3xEJbXXXMVK1auYtnPy+O6pt9k4+YZ03ni6WdwOqMTjZnpaQzq35ePvvha/f1FkVnTr2HuIwviet//3/GP9awMhx6REc1J3+Mikr4FBIZhYwXViKBIL87BRAJallLJUGyyBPEqt4/ueiu5gokVvmrWO+o4PzGNojJniNSp2l1FSn4KSXodJ7fP5uT2gUFTiauR3/aW8d2egyGPr/yURHodKKVXejI5PVs8PSI9LcPhKS4I+VlG4nCUdrGuF0wETzGKbNy5j+1bNvPbps1odTq8xkQSk+04MOFwNHFw3RLKC/ejTetB+tEXU1cZUJ5EBtF4itape1VKEt6y7Ri6KyfvQs0+xFR1/yFcVarJ4UH4G8rQZKurGqW6Q4jt1Ae8krMCMUu97BxAaqxBTGw9Bby6+ADpOdGvc7iI9reOh4Cu2VOEIAjcdnR/7vxxLXaTge5hQTsp+SlU7VaG3WgFgVFiMkt9VUzUppKi11ClYuzbDStLqSQDAwkqTUoyehLQsh8nHWJ4v/0ffh/qiuu5okMHHtq9m2SdjvwIX5jh6XaafD7mf7+W2RMGhwZCrvJq0tKSWXDyWOYsWskhyc/Jg+TPXyeLyBt3XMOrX/zIxbMf5OZLzqL3AOWigFar5fjRQznu2EDJW11dHat+Wc2bL71AUVk5kiTRrl02ffv1o/+AgdjS2yEIgmp6KhA1FTxaGEEsBAnLcC/L1sJ2fI31NFUW0FRRgN/jQmNMQmNKRGtKRDQm0FiyA2fRZnSJGdj7H4c+KUvpY2mz0Vi+D405GW2EfxKAY8MX2Pq2lMYEidKa3WtI7Dwo6qKNu7oEQ7KyTTInGqjYuJLkLnIiM/j5K7avI7V7YF8kyXtw+yayu0cP5auprCDJLl/wieZbWV5eRnqUtNxIRAvasWTZZWrf34sMgxaazDT6/ayVahkiJLUatgMwgCR+pIIU9BiirPEmoCULAztpUAT/AYiCwAjRxs/+ao7RHJ5S7v/QOoodjXTuP4zaihJWfPgmI0+/ONBWNCvWEmwpXD57Hi/cdxvX3PswibaW8YQoilx58x18/dF7LJgzm+tuvxedXh/6jRtNJu6aez9rf1nFTddeyXFTTmDslJNVrRh69OxNj56BCaDX62Xr5k0sW7qU5557Ab/fj8VioVefvvTp15+BfXvJQi3C4Tc3p4KHBVRF83w70s9LEB6/nz1NTjbV1FHh95AmGUjSaGnn8JJl9FHZ5Gbpjt2IgsDJg3pw9oBuqkSl1+fng5/X88aM8xX7Nu3cS2aaPRQ0EfyMjcYk9pVU0rdf/9Cx4YTtwhUbuWqyuoLb2diEUa9Hl6ZsJ91uD5IkodfrQK9UNom+2AsyQY+31oI3fl66mPFTT1Zsj2fBJ1rfZk82KfoxiK6wjPRlDigsbRjHXk7J0ldJGXE5gqb16aAxI5+GA79Rtmk16X0C4ZeRfs+CIJA64kIqVrxFxjHXh56NekdjqG/LOOp0Cj55GGt2F7Smtgde/h/ig0108/AdN3HdXfN57ZG5GMLCqQRB4JHZNzH9nofQ63WMHi/3t540bgztc3K47JZ7eGj2DDrmtJPtP3PqsYweNogHnnmFJKOWWy49iwSLcnyfmpzEtNOnMO30KQDs2byZ5Zu2c8dL7+FsbEKjEenRIZv+XTrSv0sHElWuASjCgkIIC6RpK0Jta5zH+oxJFBTsZ92W7Wzasg2dTo89NZWcrHRSU1MxixIff/oZhQcOMHbMaB548CGsVquirkx0OXj8uZeYMe2Clo3N9++rKePD75bxn4dmy7aLTgcvvvEf5tw2U/X+1vy6niGDlIvXwfZpzZrVXHrumS2fJ0wFuHjpUh598AHV62747TfOPOvsqN/L/v37GTtWvfonHDt37aJbVyUxGw2RRGN4OvvvRfhnFwSBRx96gKuuu4FUewo9e0ThHsJgNBqZdfNM5sybz0Pz50W958svPJfLbriZ4YMH0i5TKdjq26sHi3608/3Sn5gw5mjF/v9DC9pEVgqBWdPPwFFAriRJBwVBuBh4DQinmD+XJOmcsPNmATcCu4Hzg0abgiAsAcYAYyRJWhZ2/G5gniRJb8R7b1a0DGwO1RkTEeghIDCCZFZQjRdJYZafhI7R2FlOFd2wkB1GaFa5faToNUzUplLud/NfZyl5WhNjSiXaZwTIgCDRE+7/l2kyMjkni6CNdEJnO3ur69hSVsV3ew5Sv/RXkuxJDOiQyZBO2XROs+EsKFAlLH8P1MiscMJSKiukxmBj6fKN/LxiJeU19QiCQEpmNt179uGYqafg83nZtv8QddWVlBQWUFZeTYcRk7EdlYyjLKioU5bJ+d1O/O4G9Falv6SvYhcae55iIi55XIAUVTnpd+xFTFOWFkHArxJJQlBRDUmSH0nyqgb2QCBAJ9o+AH9jDdp05epSMGQniL2/rSS9a0uHUeBwhcroS+rdIbVqpct3WKXgrSGaUhdAI4rcM3YgtyxaxZzxQ+KKvEkT9dgkHTv9DXQV1dWigQWBZFZQxbgoIRN9SOBHKkjHgIkj/7n/TPyd20FRELipc2fm797FtR07kW6QT6LGZKXjl2D+8g3cNqIfmrAJpVGnZf6UUby8chMPHarglimjaCorD6l2NBqRK06awHkGK4+8vhDnR19z2/RrSU9NiTqQSEhIYOKEY5g44RgAXIKe4uJDbFi/nrfffIOiooN4/QLduvegx8Ah9OzdF72hdXXR70HkRC8IyefFWbyLuv2baKoqAkHALxgx2Dtizu6NqDfjc9Xia6zBXVOCr2QnxvTOZPa4QdaOqflYVq//jPQxlyu2+xrr8dSVY0zrpFBzVm9dRvvjr1f9DA1F27HkyAdV4UpRx571dJpypeq5pZtX0eMk9bKkwq2/0W/8Car7KpxuKosKyYyxGFPn9pGg11BYXEZKir1V0/JopEswAVgN0QJDwgNBoiWDB9FDtLLSX81ev5POYusLKJrmdPDVVHN0jHTwLlhYRhWZGGQLnwD1Xj92rZ5kQStLJv+n4u/cDhY7Guk/4SSW/u8lNi/9mt5j5IEe9vRMLps1h+fnzGLa7feR3klulj/51LNo3ymP+2Zey4x7HyA5jKCvc/sYPGw4A4cM5b2FC7n56su48IprGDV8WNT70Wq19O0/gL79WxR2dbW1bN2yiRU/LeM/r72Iz+cjMyOTUUMHMXTIENLMKqS4CmEZjeg/XEiSRGFtA6uLyllXUEJTgwetKJDl0ZCu0dNLZ0Fr0lDj81Lt8VBUUY09NYFZI/pi1etUVdBBvLtqE+eMGYSm2WMznHx46j8f8fBMeZulTc3kvTff5ZwpxyiOh4CCqaSiko49eqm2I8vWb2NMlOCdpb+sY8xw9cXrnfv207Vzx6ifoy0o2LuX9h07xzwmMmAnHrR18U0tSE6XmE7a0NOp3fIJaUdfhiAIqiXh4X1aysBTKfnuCQxpnVTTwQF0VjuWjoOp2bIIW+/jFPsFUUPW2Asp+OYV8k+5sZVP+vfH37kt7JjTjpsuv5Dp9z7Ec/ffIVM0i6LI4w/PZ8Yd99Lg1zB5gpx06t4ljxceuIvp9zzEtHNOZfQwORmWmZbKk3NuY8O61Vx735OMHtyXS045Do1GfYzvrSgJBOhkjuLciaMA8Hi97CgsZv2uAj79aQ11zkYsJgODunXmqN5d6NwuI0R4RyUs4XeRltFQXVPLz6t/ZdnqX6luaELQG2nXviO9+/ThpNPOwOvxUFFRToOjkg3r1+N11nPh+efRuVPHmNc9VFJKtaOGXl2VPrsLl6zj9EmjFcrz0vJK9DoddpWkb4D3P/2SmbfOUt3ndrvRIqkuiHk8HjweLyaTCVQWXprcsdWQ+wsKYpaJB/Hj4iWMGyP3Io43RCdIKEcSy/GQl/GE7mg0Gp549GEuv/pannligWqaeiT69e3Dj0uWsOjb7zh20kTVzyIIAg/cdRu33ns/rz/zuGo1wU3XXM6FV9/IoH59SbYl/e7y938r2qqsnIG84Q1iryRJquZZgiDkA2OBzsAI4D7gwrBDKoFHBUEYJh2OK3kY7OjJx8JqHAxD/mMLEpZrqaEJv0L5YEBkLHbW4qAMN31JRNNMugQJyzRRzxhSaRLdvNRwiKMcyYxLSMbc3DAHVZZqqNtbSRpwSo9OnNIjoKp0erxsKq3i8/U72VVaSZLJyIRenZg4YRQGXctEJ5YaMhYiicqGxiYOVTooqnBQsm4Pm3YXUFVTR1J6JqPGTuDmG6/HmBbw6Kl0tSjoSurd+JIDitGk8noszeXONc1p4MHAGYWq8uBq9DlDFPclSX68FTsxdJ+ivOeSTWgz+6CxptBUV6U4T/K4EHTqk0upoQzRoq7kkZzlCOYo+2KkiwcTwSVfE0kdoiuOgongh3Zuov+kU6IeFw9a8xBtCyKtB4xaLbNHD2TuknU8Mmk49fsCHXw0dWVXqx6pLpHPfeW0Ewyk6LWq6koTGrpgZRO19ENZGiUgMJRkfqFasZjwD8Tfuh00aDTc1DmPR/bs5rb8Lli12lA6OMC4dumk+Zq4e+k67hk9EH1YOIMgCFwxoi8rKh1c/cbnzDltPB2ayUq/owzRlo6lqZ55N1zKvoPF3P3Ys9hTbFx21il07G4LXSfaAMEkuWnXLpt27bKZfHzg+a9xedi1YztrV//CR/97G5/Px+BhI+h/9DEk21OjqisjoVAJRvFj9Pu8mKVaSgoP4K4px1VRhKuiCJ8PLFldsHUfgSElW6YICUKXqB7sFQvOos0Y0zrJvCqDxOShJQvJHnUapsiU76pD6BNSEbXqVhzVW5eSNSow54ksZ5f8fvzuJjT6lgWf4MRW8vvxNjrRmdXVLIcK9zM2K3qoRMmB/WRkt4+6P4jly5YyOmxgqkh3DCNdgmiNdDGlJYcSjtuC8GTwcAwXbCzyV2CTtOjjGArZ0GFHzx4ayCP6ws1wbCyjKmo6+AAhka/85bSTjJiFf/TCzd+iHXT7oqtiR599OV89Px9rShpZo0bJ9qVlZXPVXQ/w4rzZTL/9bnIjCKVeAwZz3R3teOzuWZxy3sUcM75lIh9UgU899QwmTJ7KWy8/x8f/eYNTzzyLEUePiRn8FURCYiLDjhrJsKNGhmwxqooK+GX1Gh5+7HEqSg/RLT+PqcdOoFf3rmhczQvCKs8OtBD88aorJUmiutFNSb2LkgYnxXVOtlXU4PX7aZ9kpa/RxKx+3XGXB9q/uuL60AJAit4QKg23ZJijemE2FFeGgrIaPV4Wb9vH2ycfozju16276JidSXKSnPySJImlW/bw+vFjVEmKpWs3MmaI0g89iO/WbOTOi5Wp1wBfL/mZO69XLiABrPp1I8MH9o26CNfY2IhBH9smCcDZ0IDRZIz5e4jsz9TsN2IhkrRsK2FpzOiC21FEzaavsfU9XnWxLRyCqME+/DzKV7xFxrhron62hPwRlC55EXd1Efrm+UO4utKYko0lsxMVm5aR2md03J/3b4q/RVsYDYP69KR0UiX3PP489918bWi732xDAzwxfw533v8I1Y4azj39ZNm5yUmJvPboHO567FlWr9/MjZedpyC9+nXL480HbuOrn37h/FnzmXDUIM6aPA6ruWUMEq2UW6fV0rtzLr0753L+sQF1WYOrkbU79vL+4l/YdaCYlEQrxw7rx+h+PSAWYQmHRVo2OF0cLC7l4L5dHCqrYMOOvThcHpISrYweOohbZ87AnpKM32QLkXlBC4/O+V1C7Xe8ATyPPfMiN1+nXEz2er18/v0S/vPkAxBBbL3y7kchdWokPB4P1TU1ZFp1qukAa39ewojh6hWHK1b9wsgoPpIOh4OEhNhJ3y6XU5buHe07WL9xE1dMuyz0/20lKqPtO1JqS4vFwgPz5jLjllt59cXno1Y6hGP6dddy8bQrGNyjM2mp6r+3jPQ0Tj9xCs++8ibXX3GJYr9Go2Hu7Ju5Y95DPPfo/N/9Of6tiJusFAShK3ANcBrQFrMRsfmlCft3OF4GLgLOAd6J54IufEhIqoRHDiYa8LGJWvogf8iEZnXERmrZSC19I/aLzYTKIRr5kQoGkoQd5YCkj95Kb52FHQ1OFlQXYDPrOS7JTp7RrCB8IsnLYOltcn4aZp2WYTnpDAOSJg3D4Wzk+637uOHR1xEtFjpm2MlNSyEnzUZuSQUde/fD75eod7locDXR4GrE2dhslisKCAiIooDb46WwuIxtmzdTWF6FpzaQvGcx6OjQqT3t7DZyU21Mvvh0Um1JCOnt8TWXOEfLM+1oM1HgiD8cwN/cEIkqhIW3fAfatK5Kr0rJj7+hAn3uUNVrSvXFiAnRS7Gl2gPRVZc1B6KWlkvOCgRz9LQzNTiKi7Flye9F8vtxNDSh0erYXV5PftofW97SVg/SILISzFzYrysP/byea9rlKP4O2elmispaxl2CIDBOk8JiXxVTNdHLOttjoohGKnCTqvLcBMokjeyiga4qZZLhcDR6Kalvm9rAE2PSeqTwd2oHK30enH4fassjSTodV3fsxKN79jC7Sxf0EQOf4TnpWPRabv9xDXPHDIowx4CJvfPonZPOfR8vYWTXvVx80njF76RTThYvPHAX+w4U8frCTygse52px07gxOMmotVqoxKWkWVzGo2G7j170b1nL0469yI8Hg+/rV7F2y88haOygvSsdphTM0nLyiYtK4fUzHbU+kWSxCYOlDnQuhooLq/B7/chBNOxBQED4KyuwFG8n6KCPfi9Af9gQaPFmGTHq7dhSEolte9YjPZAObraJE9tghcvJMlPzeZFZBzTopAMTta8zho8DdWY0jsqzqv49SvSh5yk2G5ONOD3ehD8TSRmqhOndQe2k5Cr7jHkKNyBrUO3KPcamA/FmliXFhXSvb9SjRRZCr5q5XJm3z1XcVxbyq6CUCNfjoS6UhAExot2FvnLGUEKhjgU3z2wsoRKMjFgiTJ8MqChJwmsp5aBags3gsDRYgrL/FUcK8bud9w+f8gSIV40tlLSfiTwd2oH3XXVbF7/K737y+1mih0Bm4jjrpzFx4/eQYfsDNp1kpehJaWkct3cx3h53m2cf9UNdO3VR7Y/PbMd9z7xAu+8/CzLvvuaW2bfiTVi8mY0mZh586001Nfz6Ucf8O5/36Znrz6cff4FJKe0TeXTLiuLU046kVNOOhHR5WDH7j18seh7Hn/uJWwmPZ3a55CblUFuson2mRmkJqdRd+gAtdW1OBvdVBeX4fZ6EQWBxopaRCHweysrqaSwpp59jjpqmgL9qgDYjAYyrSYyLSb6Z9o5o2fn0OJV8Plqu+ZPjiBh+fLidUwbOwhBEGThOQDP/Pdjnrj9WsW5y3/bzFH9e6mWcQN89N0y7p8emABHEhh+v5+aBhdpnZTqJUmSqHbUkBLFc3Ldxq2cOTVgZaI2IS48cID2YeE70UrBV69aydCjRshsTsJxOIrKaAivGIhVFq7WnyV2G0v5irdxHtyIOSf6onwQ+qRMTJndqdu5lMRuY6MelzriAg598wQ5U25VLTPPHH4iO997gMQO6uP2cLS1HaxtUg87O9L4O7WFpeVKwQH1lWC1c/y4oykuLeeF/yzkiivklRWiKHL/nbfy6DMv8uwrb3DttItl+7VaLQ/Mms73P6/ighvvYPZ101q8FpvJQUEQmDJ6OJNHDWXJmg3c/PDzmE1GLj75OHra22b/ZDEZGdO/J2P6B/y6q2rrWfTLBqY/+QYAHTPT6JDXmdzMdNpnpZOdkYrP56fB1UiDq5F6pwtX0w4wJSGKzWNCcyLuJjf7Dxaxc/deDhQdagna02vIzswgJ9lMp5wsjh89DHtOy+KV32yLqniL5r8e3h6EE3i7du1Gp9PSITcHIsZC//3kK8456XiFAs/j8bBz7356d8sHlfbouyWxy4i/WfQtt958k+q+r79ZxE033iC71+C9/7puLYMHKwVHbUUwZEyj0cRNUkLbfEJjXicOdSVAh/btmXbpxdw9Zy7z75sb+h6iEbCiKPLA7JuYfd9DvPTEQ1HHziccN5Gb7pjD1t/W0nOAcvyc17EDg/r14b2PP+eMcy9QuUIL6t1tHxP+CVPjPxxxkZXNEvfXgFtANSkjVxCEEsADLAdulyRpH4AkSTsFQVgJ7Gl+nRdxbgNwNzBfEIQPJUlqdWlCRGAV1QwjWVW50A0rG6hlK3X0RFmm0JdEdlLPSqoZhk1xjXYYSUPPr9SwDycDSAqpKwF21rvpatXTXWehu86CJUXHoppK3q8qpafJytEJNpK1AWVkNLVl9e5yWSpzzZ4ibHnZnD64B6cP7oHH56PaksTBCgcHK6r5Zfs+ij7+Aa01CavZiMVoxGI2YTLoEQQBv9+PRGCAptNqaaf3c/bYIdgbamXeQbIyc1c1NA/WNLXFIcJSDW0hKiVJwl24AkPnscp9fi++yj2qqkpv6Ra0aeoTaQB/1R40OeorQJLfG1V1GVBkOhGiBORIdQcRU9VDLALX9kEcSsCy7b9iz1cO9P7sUvB4MLBdKtt2HuI/ewu5IK91j80EQUs30cIafw35Ks9UEENIYjGVjMWOTsXbrWtzmWQaf2yp7x+Bv1s7mChqebm+mOutuaSqKPCyjUbOyc7m4d27uTU/X6EF65OewrWDe3Lbj2u4/+SxZCS0PDsNxZVkZdl55qIpfLx2G9OefId7zp1Mx4hJJvWVdMrNZu7Ma/F4PHy8dDXTpt9CbnY7TjtxCv169Qi0TxEDhfABkVUvyoImdDodQ0ceTddBRwUmlRXllBYXsXNvARtWLqO8uIia+gYMJjNuQY/BZMYl6RBEMTD4lKTQf83JqeT0HkqvCadR4lT22Grl4GoITvCiBe9EIzNrtn6PNX9ESCEZfn7JivfJGK5U/bjrKvF7GtEnBfqHSOVk2bpFpPUbG/Vey3/7jvYTLgr9f3i40MFfFtHlOPXBUOmuTaR2kpOc4V5/AKVFB0jNih5mAYGBtbOhAYs1sCDRllLwcHWlWin4kVBXZhi0lDYF/q0XREaLKfzkr2aUZEfbSjsfaXmhiXJ8NkaKcFFCI5m0fH/1Xj9WrUiioKWzYOY3SWmU/3fH360d1FttFCz9hKbaKgaNnqDYr9FoOfGGe/jsqbs5+YoZZHaUk1dmawJ3PPI0j90zi/HHn8TwMeNl+7U6HRdecyOVhXu455YbOemMcxh9TEuIVkLzuNBitXLuhRdz7oUXs2nDeh59YB5er5eJxx3P6HHHoI9DiRcOv8lGt/w8uuUH7reuvp6Du3dwoLiEDftK+XzxSiqqazBIXiwmA2bJi8WkR3S6kIAmRz1+ScIvSRg9XjonJzChczuSjep97+E+W/HgQFUNe8qquPn8qYp9y9ZupHfXTiRa5T2UJEm8tPALnrv7RtVrFpVWoBFFkhLUFz6//nk1449WHy8uXrmGEYP6q+7z+/3UNTRgNqlbEQFs3LSZ3j1bxozRPCu/W/QVN99+p4KojOVXGfRjBmSezOGVA9GqBqJZnERCjbBMHX4upT8+i8aYhCE19pjQ6XCgzRqI45c3Mabno09WV+Nr9GasPSZSufpdUo9S+pQKgkCn469k7+fPtXrPf0f83dpCrVbDrAeeYP6t17eUYocpDC87+1QefOV/vPHOQi4O8y9s/izccv1VvP7f97jz/keYe/tMRFGULTBOGDWc4QP6MvfJF0m0Wrj1qksUsgRRFBk/bADjhw2gtKKa1z7+moe3bmdkn26cPHoIabbYSj01pCRaOWfiSM6ZOBKP18vB8ioONUocLCln5YYtFJVUoNGImE1GLCYjVrMJk8GAYLTil/xIkoRPa0Sn1dI+N5vzzjiF3Ox2IVIwPNE8hGaStzXUu/0hwjJaOxAcA0mSxLwHH+KpeXdGXKQSV2MT3y5bEVBVRuDV9z7m3JOV+Q5BvPfxZ7zw2IOq+xoaGqh2OEi1Kz9LU1MT5RUVUb3Ff/j+e26coU5yArhcLvS61vu1HxcvYfTQ/m0iKg8X4XONw3m/o0eOZO++AhY8/wpXXxtYQIs2hhVdDnKz23HsMWN4/rW3uOayixTHBHHf7Fu4bPrNvPZUL8xmZd9y6flnc+WM2+g/JL609P/fEK+ycvr/Y++8w5wo1/f/mfRks7vZXumw9N47KKCIothQEUGqdBCQIr33XqQXxS6KHQXpvSO9l4XtvWeTzO+P3SwpM9nF4zkHf99zX1cu3czMO5OQeeZ97vd+nhuIFUVxuyAIZV227QdqUtBzIxiYA/wuCEJtURSzAERRnAJM8TD+psJzDAPmFXcxWhSUwcA+kmiBvyQpUhsfj4RlFEaiyWEvSTTDD52LqkKNgsb4EUcef5BIVYz4iV5FzLmdsATISs6na3AoNlHkSm4WXyXHkWqxUE3vRQtvE0j0tAR3wtLp/EolwbmZlK0hWUEgfUxhqbij4i77TobTPn9XX8zoWDkNJlgSLqP0KytJHObHnEMdVttdVWnNx5p6D23lRwFZ6/2oFNyWFY+g95PtK2lLvoHCX/q7EtPuovCVLl0scBfPkSUyAWyZcSiNIaQ/uIZPRJTsftEnd1PrNXd1QEmQqTBgtBVMQK0+YX9rKbgUUm4k8FxkGB/fvMvP0TE8FxnmsRT8WqaZKIUX+yzJZKnMeFmkH1AqFDTAl6Myvd3s7Riuy7iHP+F4ouKgWhB41xjKitj79AgKp5xWT0ZMppNza2WjkdfCw5l34wZTg2s5qWaMYb6U9/Nmcqu6TNyxl/6t61O/lHMTaEEQeLlhNdq1qM/UT38mqsIt3nupnaQuVq1W83q75rzauRN370ez/cdfWPrRekpHRvBq505Uq9e4ROWRdtiNdvyDgvEPCiagwiP1haMixZ7YFWe0E1k4j5RL9IqDJ4dw+zbHBNCSlUxuzFVC2w1xOz43+QGIIroA9yQv6eQ3lO3wNjoJt3KbJZ+0m2eJevNDyevIS0tEUKhQG01u2/KzM7Gac9H5Sk/Abx7dRZ0X3ilSpLlCFEVEm60oCYrPMhPs5R4H9uz6jafadZA8hxNkDEOkysH/qrqyJPAV1DRS+HLQmkQrAiQXQB1hQEkNvDkp0W7GEfUx8QeJmFA7zS/shGWUwovTNvdez/8APFFxEEGg9tsf8PD3LVzYmUyNZwqScMffcJlQf3pOmMvmGWPoOewDKOc8V9DqdIydvZh1i2Zz+/oV3ug9wClWmXQqTFGVmbdyHds2ruWPnT/Rb+hIKsv0NaxZuw41a9chKzOT3b/9yvhRI9Bo1LR75jlatG4jS1x6IvZ9FRZ8oyo49znLTCq6b+z3jJ3gd7xfXElIe/x3hSNh6Xh/2eHvEpPsrUU8wRDqz8jNPzL9FRcSODAUm83G6s93sHmWe6+13w6fpFnd6k6lpEXkQWYSi7d+zYger8me94uf97B++ijJbZ/t+Jklk6X7ux07+ydN6nlWFx47foIPx0ofb194y8nOxpxnRuX16HsuqSJGjrC0w05cFvcsK85AzhGCQklw6/7E7l5OUPMeqL3dcxPHfpaCIOBb/w0Sj24l9OkhKDTS5K5fpYYkp98n6+4pvMo49zzMTs/D4BNAWNPOJJ7bU6LrfMLwRMVC/4AAOrRqSv9x01k2dQwGF7LNZjDxwdABzFu2WpKwBHi3W1d+27OPPsNGs3D6pII+eg6EpdHLwLzxIzh08izvjPiQft1e5ala7uplgJBAP8b1fQubzcbBfQdZ8OkPJKZl0KxmZV5s2YBAX3nhgxzUKhWVataiRFYtDp+/ROXCMi02wLM6z5Gw9IQtn2yjc/vW+Ekoupdv+5ZBPd5wmyNnZmVz+OQ5+neTjnX7Dx+lYd3a6PU6yevc8vE2enR35cELsP27HbzyknsFDxQs2iQlJREULN/66PSpU9R1MPWRI/R2fPsNC6ZNlB1HDvZ/MymFpdS/p+u/j1v7oRKix9vdmLVoGdu//pqXX3212P1f7dyJsdNmc/TEaZo0dDcUBvDyMjB+xBAmzJzHopmT3bYLgsCC6RP44uc/Hvt6/y+g2LursK/GSGCw1HZRFG+JonhNFEWbKIqxQF8gHJBukCA9hhX4ABgvCEKJ6mbC0VEHX/aSRDbScv/a+JCPyCUyJLdHoqchJg6QTCzSD/QQtDxFIGlY+Do/noc26YT4QXw2CkGgmt5Iv+BIRoWVoZxWz5fJccx7eIcvk2I5e/EhSdedA6G9LBzc+wuCZ8MUV+TH3HEhKh/9v9TYj4sbCc4J4CNznUcQ87OxptxBFeReci3m52DLSkBpKuW2Lf/hGdThdWXJDFviZRQB0qWNomhDzIxFMEorQ21p9xDkyMoSlIBb0x+i8An3vE9eNqIoonZwNnT9vv5O/NUScHD+zb1dvjRX0jI4l5zqtI/d7d4VLZV+nLKly95zUOD+HYSGazJNBdQoJBcQnmQ8qXHQR6HiPe9wvk1L4HR2QZxzJWrshOXkw+cl+7sFGnTMb9eYnVfusObw+aLSGMdkN8jXyIoBr1O/cnn6zl3L+q1fYLHI/wbKlIpkxIC+bFqxiJ5vvs5ve/bRt28fxoyfwJ59+8nPz5ec2NhVSlJwJMYCDY+nUiopXFWMjwtHQjLx6KcENHlLcr+4w18R2vxRomDw0RacOzcOpVqLzs/dORAg7uSvBDd4RjZOxhzZQVizl4r+dlRV3jv8E6WbSfc8Em02ctKS8fKTj4XJcQ8JDpfvZ2nHb7/8TPuO7uexTyRL1BS9UMFrN3dyhCcDD1c4kisRevm12WBBS0W8OCVhFCeFUHToUXLLw6KLEoEm+HGEFEScW47Z3cfrKaTLUJ9UPKlxUFAoaPzGIASFkqOfrSDE51F8sCuDdQYvek6Yy2crFxB9+4bbGHYn8PBSZZgxajBpqe4qQ6VSyTt9BzDqg3FsW7uSmVMmkpyUKHtdXkYjnV9+lQXLVjJ+8nTS0lL5cPT7jB42mO1ffUFKikTZ5mPCY/82D3AlIu1wvb/shKTjItjjYPvJy7SqXIbIimUBnErAv/x1L12e74jW33nuZrPZ2PzDHnq/83YBgWB/FSI6NgGLxULZCOnPfuLCFWpVLo9G7bK4bQzgbvRDAvz88JJQtwBs/2U3XZ5x76vpiLT0dEwyJeR2/PLTD7R+Rjre2uHpOeaoaA8z6Zxedrj2aQbnmA/yzzSpxTeFWktI634kHNyELd8515Ey3lGodQQ0fpOEQ5uL5g1S8Kv3EulX96NRSsdL3/LyfUefVDypsbBt+2cYMvA9eo2aTEJSodjDYHJ67n4wdADxiUls/vRLyTE6tG3NxFHDGTh6PCdOny0awxHNG9Rhy6IZXL5+ix7j5nDy4lXZa1IoFLRq24q5A7uxbkw/KpcOY94nO+g9+yMWf/ET1+49LMlHA/56vPtXUJJyZMfqICnExcdz4OAhXu3cyW3MhORUbtx7IKn2XrLhE4b17iY55xNFkXVbP6NPd+l5psVi4ejx4zRvKq3W+7XQHEYKx44epYlMn0s7jh87SuPG0vsoclJR5KSSmpaOWq3CS8blvSRw/O25/pahYG4pRyR72uYJI0aO4ujRI5w6eaJEvUinjR3J8nWbSEiU7xddq3pVKleqwJff/Si53cfbm75dpcnj/+sofikAWgBBwAVBEBKB04XvnxcEYaDE/mLh67EcNERR/AU4ToHsvUTwQ01z/DlEMplIr1gWR1h6o+IpArlLNudId0sqoCDpqI43rfDnsiWbnyzxJIpmrrn01HPs86cQBKobCojL0WFlaGT05VBmKvNj7jLn8HlOJ6VgsRUEt7+TsJQ6xnXMvzKeHVdi5MvWfCKiyLtzGE2Z5pKB1Xz/GJrIRm7HGAPDseWkoJQgBLXe/tjSoxG8QuSdvNPuo/AtLR3Mc5IRdH5uruOPjr2DwlRW9jMB5Kc9RGHwPE9I/HM/ugoFDwRP35EnZBa60ianpHDw8n02ffEtY2Yuov8HU1iw5Wt2HztLUurjje1bwblk0/G3BgWrOUOrVuSLO/eJzym+L59CEGinDOAwydgk7hU7KmMkhjxSyX+s632C8cTGQY2gYHhQKc7kZHAgMxWQJyynn7lYRFg6JqsapYIRdaIo6+/D+9/tIyVb+rfQsnYVtk4YRJDJm+5jZ/HtrgNuSYrrxK5cmVKMHNSfjcsX8sGAd4mOfsDg4e8zcOhwvvnqK9LS0mRXpR37IBYHKTWgFBwTPNfE7u+A0aTDEncG37JVUBcm2I6JYcadc+gCS6EyFCS7jslk9N7PiWjzhuS4ltxs0m//iamStIOtJTeb/IwU9IEF97zjZxNtNlJuX8SvfA3JY+Ou/0lolGc10Y1zJwmrWsfjPilJSRgMBo/ukU5wICBck5Bccz4X7j7kp+sPmP/TQcbvOsacXcf58eIt7qZlekyOi0OI1v13VUXlhRYFN0uo+q6JN/fJ9RjjvFFRBj0XJeYfmf+B3pJ/BYIg1BEE4aggCGcFQTgpCILjQ/uJjIP2e7p6+1eoXr8hP62Yjs1mcyJ8ACID/Rg8daETYemqDm79TCd6D/+AeR+O5OKZk24xyFujJCw8nGlz5vNm9x7MmT6FJfPnkJkhPce0w+jtTZdXX2f+0hXMmLeQgIBAlsybw/CB/Vi0eCm3b90C5EsJ/5OwE5ZyxjklJS5TsnP59fx13mxa021bVnYO3+85zGudClXYDqTkZ7uP8+pz7VC7ko2FmLP+U0b3ko6TAOu//om+MmYUaz/7hn5vSZvu2Gw2EpNTCAlynu85PtOysrJlS8QdCYvdu3bRvM0jNenj9hmDAsIyxFtDSmw0147v5/A3m/lh2VROfTyf6EPfE3/zEmHG4p+Rj7MIp9T7ENDoDeIPbChRjNX6l0IfUYO0C7/K7iMICoJavMuDXesL2yo9QkmVn/9pFBMH4QmNhQA1q1VhwezpDJwyn/suhk128qY4wrJcmVJsWbmYb378hWVrNiKKohtRpNVqGNTjDVbOmcpvh07Sb/JCrt6+L3tdqsBQFAoFLWpVYd6gt1k/tj/tG9bi2/0n6D37Iz5c8zkHz1/B+qQ02XNQWSqyC8g3T8RVptkmS1pOmT6TKRM/lMxTZ675hDF93nRTdcYnJhMdE0f9mtJtyn7cuYunWjZD59Law64m/HbH93R5sbPkOU+eOk3dOrVlndt/+H4Hz7/QWXKbHTduXKdCRc/Vn1/t+JHXXnRv/yEHRXZq0csRNoOJhFyRw8dPsmnbF4ydOosBI8exYO1W/ti7j+Tkv7eFiV40M2PWbFYuX05sXFyx+2s0GuZN/ZCRE6eTr/GWJUn79ejGrr0HuHXn3t96vf9OlCAW/ttRkkzwS2CXw9+RwBGgA3BFEIROwDngAeAHzAYSgaN/4XpGFx5X4q7TBpS0xJ/9JNMSf/QSTfLtJeEXyKCGhKJLWdiH6g7Z7CWJJvhJjqNGQV180SvhuDWNTKxEp3vzlM+jHhx2wtJRmSYIAmW1espqCyY4KZZ8jt1O4MfoGFSCQNOgADqW8UOvLvjnSLv5wI1k+qvl245EpdS4AGL8PYTgAuWh0ZZNpsJAgF5JUo5V0uQkOjZTUlWZG3MJQ2glbDr3Ca41Mw4UKhSGglJ4x3LqzMs78a//GtkZ7kScaLNiS76Oskxrt21QsLJkS72Dsox0c2Fb0jUUoXVkj/XkLm7fB8SiYC9XCp524zSVXpcuC3KFVN9KURTZ/vVX7Pr5eyIjIqhcqSJVK5Sjc4e2+Pn6cP3UMc5cucGCrd+QlJaB1ppLn2dbUq2MfJ/RkkKlUDC6emXmXrjCMO9wtIV9XFyNduwwCiqqFZZBNpIpgxQQaIof+0iiLQGoSrQu8kTjiY6DqRlmevmHsT75IV4KJfUM3pIl4W/565h25iIf1qmKXsLt7pkqZakWEsD4nw7Sp0lNWoVJlPILAp2a1eP5Ts/w+c97eHvYONq3bEq3l54rSi7tEw3XFdCgwAB6vNyR7t3eJDc3l337DzBz+jQyMjKoVqsOHZ9/Ea8A+bITR2dwO1xL5qD4kvB/J6y5WaRc3EvZLmPcFklEq4WEUz9R7qUPAOckMv3OBQzBpVEbpHs6Pdj3BRGtX5dVVcYe+5HQxtIJevylYwRXky/Dv3H0d+q96O5U6Iibf56hy3sjPe7zw/YvefEV+dJMO5yMdlzKwc+dOMHCz37Cx0tPBX8voiKD6dqkJpF+Pty7Gc2FmCR+uXGf++lZ5Gbm0SY8mNZh8sZfxRntOKIm3hwkGV/UkiZhjnCMcXI9egHK48Vhkkkgz61X7xNKWM4Dpoqi+IsgCM8V/t2mcNsTFwftrS2gUIHWqDWCQsmhrYt5beh4t9+83suLwVMXsmLySLq+N4Lg2u5EWnipMkxZ/BGbl8zm+vlTvNN3gJvpAUD5ChWZt2QFF86fY/L4MQSHBNOr3wCCgkOKFmCkkletVkvrp56m9VNPI4oily9e4MsvPuf27dtEhIfz8vMdqVe3TvHfkMO949o+Qc4VXE5R6QrHknDHNguPgyXHLjDuhZboQoKLrhEK7vOpyzbyQW/3ssfcvDx++mM/25ZJ92A7dewIwQF+RIRIq8Bv3n+Iv6+PZC/LnNxcYuISKF9aWiF++NS5YkvAT5w5R/160qV+dly9dYegkJAiR1lPRGWgQSNptJOdmc7Pm1aRnpJIUERpwspWoEKrtth8QxFtNuJuXeXhjUsc/OM7LOZcFP6RlG31EmqDNJEsZbojZx6nDSiNsWwDUk5/i3/9lyVVlUCRc7hPVEsSDm4mJ/Ya+lDpVkmm8FAUtdsTe+gLwlpKK8GeMHiKg/AExkJHhIeGsGLuDAaPmcDqBbMxhZd12m7Tmxg1ZhzzFi5i7eff0efdnoBznz+NRsOcSeP47ued9B3+AfOmfIi/n8nNKM/oZWB8v24kpaaxeOs3xCUm0+fVTjSu5V5h59jyRRCEIidwgNjkVH4+coatv+xHI1poX7cK7epE4RUiX9FhH+tfUVwWfR6ZEnA5OPaidawKssd8+zPg119+pmb16pQJcL83j5+9gL/Jhwql3MU68z7axOj3ekqe22w289k3O/j4o6WS24XsFL7/8Sc2r18ruX3LJ58wbZI0/221WklJSSFQppelfR94ZMjoSOLaf0OiKLL/8DF6vy2/sASelas2m43Ptu/gl9/3UCoynCoVK1A1qhIvPvcM3iGluHHzJmfPnWfB4sUkp6TiZTDQr08vKkfJt2wrKTQaDYvmzGDUmHGs/2hVsYvwEWGh9Hi3F7Pmzmfi+LEF119IWBZ9JwY/5sydx6Bhw9mwZjU6ne4/0svzX0RxsfDfjmLJSlEUs4GiWYogCPZjYkVRzBQEoQ0FrmW+QDoFTYTbi6L42DWwoiieEwThc6Dn4xynQ0lz/DhQDGF5hQxZUx2AshgIQMMRUiiFnooYJB3Hc/KhtcYfs2jjjC2dNZmZtNb6UlllKLpxHUke15JaP5WaZ02B+Ff0J9dq5Uh8EpN+OIzSW0vTUiG0LRsu4SH6SBFZHGlp3+/vKP0uKWx5WWTfOohf0z5kxDiXWImijfz7J9BGPQM4E5WWjDhE0YbKJxQkyMr8ByfRlmqEVU4ZmR6NwjtMUjkpmjMBAUElHWDEjAcovD2Xd4tZcQgG+YANkHbrLMZSlREU8iWsjiY7rjhx/DhrV6+kY6fn2bp+jdPk3d67snLDpkSViaDrMwWk7cMrf7L+l4Ms2b6LN9o2pG3tyo/VD9AVfloNr2kDWB53jxGhZVC6jGXvW2lHDY0XiWYzt8iivJt1SwE0KKiHL4dJoSX+kvfSPwVPYhw025xVD4Ig0Ns/nNVJD1AIUEfvTliWNqvoWaksE09e4IPaVSDGWT2Tk5BCqSA/lnZpy7IDZ9h1P5YPOrUoolhsqfFFCadSqaTbC+14643X+WXvQXqOnEirxvXp+eqLaLUFRI8caQmg0+l4pkN7Wj/7PDabjUPHTrJp3UfExjykbKUqtHvuBcqWr1DUu9IVckkeSPf5ckSkn+Ev9650Vam4KkMe7NlEWOvukjEp7th2gho8j6BUOY0j2mw8PLidqK5jJc+ZFXMTW34uxnDpVWxLbhbZsbeJbO3eg0oURe4f+YW6PZ2butvVaJa8XPIy0zGY5NXjVouFnMx09Eb59g15ubn8eeYU3fu8J7uPJ8QnpTBn/Wd46XUsGfYOPl4GJ/IlLz6BspVKEWQ00LZSKXISUsi32vju1DU+PPEn1TRedAwORq9UyvatlDPascNbpaSpxZ+9JNIYP7yLmSJpCnv0HikmxjXCjz0k0hx/DCVwHf8vQwTsjLkvUFSj9yTGQSlUatACc3YW21fN5+WBoyUJyyHTFrF21ofkd+5C07buxjxBPgZGT5rOnt9+ZfTAPgwaOZba1d2Tb4AatWqzcPkqbt28wZL5c9Dp9PQZMJhKZYtvmyAIAtVq1KRRvYJS2OjoaHbu2M7qVSsI9Pfj+Wfa0bxxw79tuU+qF6VcawX7+5kxaSXqT+mInVfuUCnUn/LBBQvUjuXfF2/cIdecT50Gjd2OW7bpUwb3fFNyPpOfn8/8jZ+zccYHsudduOlLpgySMDowBrBu06e8+/pLssd+tuNnZn4wVHY7wPe//Mb494d43GfzRyt4d4DnfRzh+CyzWizs/+4zbl04Q8d33iO8vHPSbV+YK1WtDqWq1aF04XPuzzOnuPjNCtQ6L0z1nkfnL03euJKWjqp/R+LSWL4xyae/Jf3aAVTB7oQ+FJSG2wnLwKbdiN21DLVPb1QyrT58ytcj6+FVUq8dxRT1qHz0CVVXysZB+GfEwqDAAObNm8/AsRNYuXQJfn4mt30+GPk+6zZsZMKUqUydOAEkDEpeeu4ZalevxvDxU3jh2Xa82rmTG2GJMYAAYMbQXmRkZfPRFz+w6rMd9Hm1Ey3rS/9+XBGsMNOrU1t6dWpLVk4uvx0/zwef7MRqs9GmbnVe6NTBKTe2E5X2//+rhKXHMm8Jox2dLQ80BfeRnbDMMFsl2xglJSay/YvPCkjDPOcc12KxsHj9x2ycMqzgDYfzXLp+E5VKRYUy7m3TAOYt/4jBfXuiVColezN+9/NOnnuqhaRy8vadu3hrVZK/ByggV9u1ky4Pt+PA/n00bdbc4z679x+kRZOGkgt9jnD7LRXiyIlTrFi3mS7PP8vHHy11eibYScDKUVFUjoqi62sFvSXj4uNZt2ETd+/d4+0unWjToqmkyWdJERoSwqgRwxkxegwrly52+ixS3/vTjWpx5vhhfvr2Kzp1ec1pXztMJl9GDh/GmPETWLJwvhuh+QTCYyz8T6DkNXaFEEXxDg4ydlEUR1Ow6vPYEEWxjcR77wKeJR4S8EJFM/w4WEhYuhrmAFTBm4fksqfQmEcrMf3zRkVbArhOFntIoiEm2YRFIyhorDSRL9qItmazNy+Nemoj9TTeqBxuKld1mp28tDuFtw0Lpm1YMF7l/DkWHc/io3+Sue801SpGUrtUCLVLh+Dv9YjokiIt/5XSbruq8q9CtFpIP/sNPrW7IEgEJUvMeVTBVfEtXd1tW8alX/GtU1CS4xMRRfqDa0XbbFlJiOZsVKZSqKDIbKfovKINW8oNWdWlLeESimD3cxZtT7mNspRn5y0x9Tb6SvL9i0RRJP7Yj1R8VX7yLIfYhw9YuWgeFcuVYdmqj9Dr9WRBkdGOJwT5ejPujY7kmvP5bM8Jei7YzItVSvNsTedG146EtWsJuCOSbyRTTqfnaZ8ANiQ8oG9QRLHkZ0282U8yfmjwQ7pcKwANkeg4Rzp1JCn4fyae1DioEATeC4hgVWI0CgRq6Y1uhGVYrpLxdasx9+xl3qlUlsYSpX4alZJRbRtw22pl6Naf6dmpJe3rSveMFQSB59q2pGObFuw+dIy+Y6ZSLao8vV7vQnBgYaKaneqxV6FCoaBu/QbUrd8AURQ5ff4CP3/3DXdv3SQwOJhy1WpTpWZtIkqXLfF34VgW/q8qLT2V0TmaGCT/+Qf64HKSxjl5qXGY0+IJbeZOKCac3U1grVYoJJwVRauV+7s/odLr8jHmwf6viGj1qBG4Ywl44tXT+FeshdJhbMdS+OuHfqVS82eK/pYqp794bD/Vm7SSPT/AZ1s20PWdXpJxw24c4ji5s09QzeZ8ln/6E9euXWFsn7coFxnmlIR4glqpoGOpMJ6NDOV0UgqLr9wkXKfjrQjn7/9x1JUqBFrgzwGSaYU/2mLIRT80hKPjIhnUQFoVqyo0FivORfwJwXBgpyAICyhoFdRMbscnIQ469uF1NIeq3uoZok+o+O6jhbz03kgEQSAx21zUJ1BnMDB42kI+X7WQu7du0LVXf8nfbtsOz9KgSVPWLprLvoAA3hsyXNYgp3yFisycv5h7d++watkibDYbb3R7h5q16wDyCa0jKoYHEdWzK/TsSkJiEj/u3MXWL75Bq9FQp2Z16tWqQY2qldFqtU4Jni01vshcxxV20tHRPMd1mxxcCcusuOwi4tK1TNy+74PUTHbefsDqni+gDQ5yIipFUWTW2m2slnD5jktI4tbdaD54T/qffMHarQx4tzsGvfQC9Jm7CYQFBRAc4PKZjAHk5uVx8txFhr4rrepLSEpGpVRi8pFfkMnNzSMzK5vAAH/kNNF3bt/CoNMS5hCDXBfcpCoEAg0a9u3ZzYHvPqf586/S9tXustchBb+yVfErW5XspFhu791ORnISpZ562yNp6UoSuhKXfnVfIuHgJtSiGm2I9PPfUXUZ1PxdEg5sJLT9MLfF+8zUXIwmHaHN3+Dej0vQ+oWhD/LsOv5fxnBKGAfhyYiFUigTYGT2jGkMGjacVcuWSvZa7du7F3/s3UffAYNYsmAePoXVgo4ES7kysGXVYrZ+/jV9ho1m6tiRlJYRYHh7GRjdqyvZObms+/on1nzxPV3ataRz22YIadI9ft1M9fQ6urRuRJfWjcgz53PgVgyTlm8iMzuXisG+1KtcnrqVyuLvI9OSwujeykFqDurqBF6cUtPVwMZbo3RSWBadXqPAbDYz5cOxTJ8ySZKwW/Xxl/R87UX0ge6imfkfbWbxZOk53/mLl8nMzKRZI5mWQBYLX333I5+sWfZovuUw91qxdDGjhw6QNQ366bvtLFm1RnJsO3Z8+y3TZs6S3GbTmxCyU9i07Us2rVjocZyiYxz+be5FP2DWouVUKFeWDcsWuJW5y0GRk0qYt4ZJw/uTk5PLtq+2s3HbF7z16ks880KXEo1hh2M7ljq1a/Hyi52ZNG06M6Y4m+NIEZYjB/Wn7/APqFKrPhUqlJccv17dOty4eZOVq9cweOBfW+D/D2I4jxEL/x14bLLySYYRFU0LFZZySUY4Oowo2UcSjTHhK0GyCAhEYaQUek6Qij9qquEt6xKqFhS00/nTVhQ5m5/JpqwYAhVqWmlNBEj0WXwQn+1GWAJk3U6mZcUwWpYJwyaKJPt4ce5+HMt+P05KVg4ASqUCvVqNQaNCpz6Cl1ZDqK8X4SZvwk3ehPoaUSkVj62qTElN5+r1GBKTkkjJtZGVlUViehaJGdnUqt8YbanKbseINisxR74lN/YSXhVbozK6KxBt5iysmbEEN3RP0PPir6H2DUehdX/YiKIN873DaCs9SqK13s5u6vlxFxD9KsioKrNAtKELKCBi3YjOvAwEtR5BIX8LiNZ8RNEmq8wEyH5wCe+yNVCoNUSGun+OGwmZVAxyf//CzbusmzOJ8dPnEBIahl7/19Q2Oo2ad59pxmuVwthw4Ayjv/idiZ1b4aMveY8iRwfwul7eJFnMbE+J5xV/Z5MPV3VlgEZFM7Mfe0tQBnmaVO6STRn+epPlfzcEQZgOvAjYgHigpyiK//EVpMfBgxxLkXFIcnoe/j5alILAwMDIQsISakgQlv5aDdMb1GThn1eJzs7hlYbu9zdAjchg1vXpzMYTV/jh2AUmvvksIQ6JJ1C08iwIAu1aNKFdiyacu3SVWSvWkWfO5+2Xn6dZ/dqSk0Wp/myCIFC/dk2iqhb06UlOTOTSn2fZ9eO3PLh7B1EUyRcF1FodVqUajU5PnqjCy+SPb1AYPkEh+AaGotE/+q2VlLi0WcyQE0P6w4fY8nOx5eehUlpJyc9F5x+GX1RDSULRmnqLh4e/QxtQjqBGL7ltF0WRmH0fE9GuD+BMflrz80i+fJTKb01wOw7gwYGvCG38AkqNXrLHZm5qIkpLJqWrSfejvHfge+r0HF/0t6spw/3zR2k/VHrSacfpPTt5c9QU2e2W/HwunT9Lz/6DPI7jCpvNxtDJc+ja+VlGvuVewi7lDO4Ku1KsfqA/VSrpuJCRzrRrV+lRqhShEi1+i1NXQkG1RpPCuURJyMWKeHGUFGLJJRTp54UXKmrhwxFSaI5fiZTmORabG6lRHLLyrQDPCILgOKteK4piUT2YIAi7AKls7EPgaWCEKIrfCILwOrABcJce/gMQ2fBpRJuNHWsX82K/EW5kpEKh4K3Bozmz63sWTx3HkPHTUEsQkeGB/kyZNZdjRw4xtH9v+g0aSr0GDWXPW7pMWabPWUBSYgJffPoJa1Yuo3Grp+jYuQugcyMs7eWCrv3QggIDeLdbV97t1pXc3Dz+vHSZE2fOsfmzr8jLM6OwmtEIVnSiFZ2Yj8aSj69eS7ifNxF+PoT7eaNNzy763HLEpFdhuw972bjNJhKbkcWd5HSyzPlkm/NJS0knNTkTrUJBq1wlZcs5Pwf0QX4kZGaz5vB5rBo1M159Gn1osBNRCfDxzgN0eboFPkYvN9XS3I82MWZgL8lrvHjtJokpKbRu0kC6XNMYwNINi1k+bRwY3as91n+2nV5vyCesm77awbtdPSe0P+z8nReelb8VjBoFm9Z+xKDhI2VJDDtcCcsDv+zgwc1r9Jm+BJVKevHXE+zVAoaAUKq/MpDY6Fju/LwOn7LVCW7wLIIgFD0/klIK8gmp0nBHCIJAUPMexP2xEoXWG7XJvY2UI8wWBb41OpB0/HMCm7g7ENsJy8hnBnD3h4WU7jgElUzbE1c8bhxMzskHiBIE4aTD2/8n42CZ0qWZNd1OWC7B19edsHyqTWtKR0bSf9AQZk2fRrmyzkSynZTp8eZrPPN0G6bOXUSdqHL0e+sV2b6HBr2OYd1fIT/fwg97D9N38gLK+HvTq1NbIoIe5XOenvGqwFBUwLPhpXi2RSPM8Q+5+SCO09duM2/b90UGZyqlAi8fE15+/hh0WrxMAYQHBxEZHkJkaAhhwYGo5BSULkSlI1LSMrh+I4bElBSys3PJtCnIyhcxm/Np2LI1FarWcrvX8/Pz2frpp+zbu5fB/XtTpnRpN0LrQWw8F6/ekFw82XXwKPVrVpNcOLFYLMxesoL1S+YXvec69uZPv6THm685EaT2fe7ej0atVhEeKm3ieP36DcqULi27IAeQnp6OIAh4e8sv7Ow5cJinWjbzOI4U7j94yNips1k0czKhEgaLdrgSra7fgV6vo887b9Hr7TdYsW4zO4cPY+r0GR6v2Q7HvMS+0N6+3dM8jI1l9Zq1DOjfz+PxgiCwcPpE+r8/lvXr1mMwSOe9r7/6CtNmzub3Xbtp3+7pErmXp+bmP3YstNhsCILQD3C88H9ULPxHkpX5smuaBYRlE/zYTzItZErCfVDTmgAOkUwUXkQivTqkR0krArhHDrtJJAovSqOXTDKuZZqJMmqor/GmvsabWKuZ3XkpZNis1NUYqaU2uqkt5RyXoUAhFZiRzdMmb542Pbq5jOXCyM23kGO2kJtvITPPTFxaFjfik9l/7R5xaZlkp2YigKT9iea4F6IoYgzww5xvBb0Xgs6Ir683FarWIigwEG9vEyGhoUQqtKSYRU4fPsCpdatR+ARhqNoCURVC2uW9ZNw6jiqkFn5N+8iq8Mx3DxPQ6G2390XRRtb1vfg1kV4ozH9wGlVoTQSVdKATrflYU+6iq/xc0bnthKTW25+8W+fRlXskUdd6+zsRlrakaygCpAmaonOk3UPh63nlN/3KPiq9LNVL2x32UvDszAyWTf+QOQuW4B/o2Ym8pFAoBPq2rsf1uGRGfPYbPZrXplXl4hWzjkSlHe18A/gkMYbjmWlEyCgm7VCjoAEmDpNCKw9lkHXxZR9JeKPCv5hecP9FzBdFcSKAIAhDKWho/sQueeWIVtkG+HbCcmViNDZEaumdH9B2dczY2lX4+MZdlh+/yMAG1VAq3P/9lAoFg19ozd34ZCZ98hMVy5Vh0MvPOGvIXJLO2tUqs2TKGNLSM9j23c+s/vgLGtWpSdeuXQkKLJGpZRH8AwNp0bYdNZq2KXovLjOPfHMeD5PTyc/LJTohhazUZNIT4oi5cYm0xFjycx1ISXt8EkWyCyeVWXkWBIWCPLMNm6XAJEWhVqPzDweNHwqNDu+AABQaHUqNluz4e9zcsQxBUOJfrSmmSvXJjrvDw0PbMQSVpmKX4Si1esnEL+3qYYyla6D2MrmpNB8e/IbwFi9LxtDs+HvkpSVSu4u8oOL6rx9T6Vn3GAsFqkpT+eoo1QXndCUq467/SXCF6pKKeDuy0tNQazRodfJmRAd376Rth45u72eabbLmSQBTFq/mxWfa0rZpw8fuF+XYU88OrxADNYAJlbxYf+8evmoVLyhMKAXBSV1ZEsLSu5BcPEoKzUpALjbExB4S8UEtW+odjJZ0LFwgg5oyKsy/CTtFUZR0qQUQRVF2oikIwlagsC6Nr4D1f/O1/a2w5GRy+0Ec5SIKki9HdSVAqcbtsdmsRQpLR3WlHc+8+CqRpcsyfeQghk+eRfnIR72gHYnFxk2bU7tufdasWMoX27YyaPhISpcpK3ttAYFBDBw6grTcfA7u2c3UMe/j5+/PG291o1p16cUFuWRF4xdC/eYh1G/epmgfRXYq+SlxpD+4R1bCQ9IexpKancvD1EyO3YzmQUoGKZkFxBQCWAqN0+yPDbXh0fekVSvJMVuw5OQhAGE+XpT288FHpyHQS0+kyRtlSA6Z5nw+v/WA5Jt3qBsawDMVItEHmFi66zhpuXkMf7EV5YP93RSVAElpGew9fYktC9372l6+cQudVkO5Uu6EmNVqZcaytaydI+MxYgzg9wNHaVSnJt4SRGVuXh7Hzv7J4J5vSh5utVq5cOWGrKLTjl937+WjhbNlt2dmZpKdnU1wiDsRINXOxE5YXjp1jKvnTtF7zNSi54Bci5OSQu3lS8VXR5Jw9g/ufbeQaq8MhMJcJ8BPX0RYgud+loJCSXDrfjz4ZSF+jXtIiguc4BWJUnuTzFvHMJZ3L/MvIizb9eP+ztWU7TwSQflvS0WviaLYU27j/09xECA7W74qq2yZ0kyfMpmBQ4ezfPEi/P3dFy4qVqzAqmVLGT5qNL3f7UmrFs5lvnYyJTQ4iNULZ/PzD9/z9rDx9HitM8+0aib7hFSrVbzcvhWd60Zx9d5Dln/9KykZWXRuUZ92UWGoVY9irGOrIVdYEmNRKBRUKhVGBW8lr9V/1BbHarVhNpgwe5nIycsjQ9TyMC6BqzfvsOvgUWLjE7FabUX3V9Hc2cH13pqbjU6jxpxvwSaKKHR6TD7eVCodQVB4KXy8jYT6B6HX61F6mdi57yCrVqwgLKIUz3d5majKVfn2qy/Yv/s33njrLT7ZsEY2N56yfAPT3h/g9r7VamXD59+yZdEMyeMWrf+Yfu90k3XXzk54yMGDh9iyeIYkB7BszUZGDOxb9Lcr6bdxyxYGDfCc9uz47ltefMnzws4XP/7GQhllqBzS0tMZPXkGK+fNJEDi9ymF4sg9hULB0P69uHztBu8NHkr/vn1o1aJ5EQnpCk8Gdz3e7saU6TPZvWcvT7dtU/S+FMno6+PDhJHDGPPhBJYtWij5O1DkpDJpeIEKs0yZ0kRVquTxs/wrKCQmpRuY8uTHwn8kWWnGxmUyqIJRMoHwdigJb4ofRomPqUVBGwI4Qxqx5FEPX1nlZGn0RKLjKpn8QSK18QWzBn8P5TyhSg2vG4LJF22czc9kS1Ys3golrbUmQpQFE2U7Yemorky5kYBfRfnVhMzbBT0MAx2McqqEPSK8ilNU+laIQBRFVJGR6MLLo1Ipi8rArT4FE3S7K7XdYKdC5Wo07JLDyQtX2fvTDh5eu4QusiERz40iLdbdJctezm1JuYMhrDJKL3+3fXLuHkdfqp6bw7dPRBSp148i5qahipSWuAOYo0+gjqjvFADsykubORNsVhQuRj92wlK05iNashG0nldYbBnRGKq/6HZ9AKawMCzZaWiNOlQ66Z6NUsg3m1k0+QP6vD8Os+7vT1YrhfizpkcnVu4+wW8XbzKwajm8NI+/Sv9WQCiLY+/REh8ilI+Ct6u6EsAPNaXQcZ4Massk4AICzfFnL0lPbN82URQddVheSPP9TxS+McfTmSDKFSbfdnUlFBCWgwIjWZf0gGybjSYx7i6ugiDwTqWyHIlLZNSuY4xtXpsQ3BU4efEJlAkOYvWgrpx4mM5789fToVEt3nnzlUertxK9fXx9vBn4TlcGdH+dE+cuMmfJSjKzsnjl9TecHvZScF2tdkz2BEFAo9Vh9C04d67WRGBkuRJ/b3Z15b3EdJKSs1C4LIpkp+e5kYqGkLIE1myFNS+H5MtHuPntErT+oZTvPNgpBrgmftbcLFIuHaDaOxPdSEFzRjK5SQ8p1dZ9dV20Wond+zF1u0v3sQRIvXsVld4LQ4C00dbdA99T552C412JSoDLf3xHk27Div6WKgE/+uu3NOrg2RVy328/MXfJSo/72GGf2K3Z/AmlwkLp2KZFiY6zQ844xBE6pZLB5cpxMjWVeXfu8pZfKGU0uhKVgxtViiLjm2C0pJLvscTbDmWh4U5xpd4V8eLEk600fwi0BvYCTwHX/6tXUwwUag1ntszGp/tgAkpJ93Qt0/RZNNq9fL5oGl2HuyuY47PMVK/bgMEfhrNk2oe82f0dmrZsIzmWTqdj2KgxJMTHsWrpYlRqNYNHjMTX1yS5f4bZikKhoNXT7Wn1dHviY2P4/usvWLV0EY2bNuPl197A6O/jbFDg0uvXtVTP8W91ZhK+RgPeFh/88vPIikmiUrA/XrVLnvjYbCK5Fgt6tQpBEDzeXzkJKdQPC0QbYOLk/TjWX7pNrsVC78Y1qV2roA2NFFEJMG3TN0zo6b4wI4oi81Zvki17XLJhG+++/pI7EVn4vDGb81n/9Q9sXbUEm1rt1v9s05c7PPaq/Gn3fjq29RyHoh/GEBTg7+ZQ7pjcfv3lF7zR9VEVkadnmB3ZMbfZ+fUnDJ2+2Ol78dSTWQ6uvZgFQaDqU8+Tk9KIi1+vIKRmMyIbFfSic1VZgnRpOIBCrcO3XldSTnyCf9M+suRidtIDDAERaMq2IuPMp6hN4Wj93XvuFfTG9CaoYWeid60jssMTuSb8j4qDAEkpqWz9/GveeeNVye3ly5Vl9oxpDB4+ggVzZxMe5j5v8PMzsWHNambOmcehw0f4YOQIWeXk80+34plWTdn45Xf0GDGBUd1folZl6bJXOyqXDmfOgLfINZv5/rc9DFp1gBCTN706NKVcqPP80bEU21H16KrEzItPQBschJdeh6+/qSguVK1TX74fpcviqCUxFlEUycvPR61UoSw0biu6hsIxHWNyjerVyVVouXPnDl989TWrli6mU+eX2LB5C3pR/t796bfd1KlZnTAJ5eDWb37gjc7PopHI2y5dv0lsfCJtW0pX4SqyU5mzaiMj+72DIAgILtVM9x88RBAEIsOl54sZGRkkp6QSGREBtjxJ4k4URfbv3cua9RtkP19MbCxeBgNGr5Lnxnl5eQwZM4mZE8b8bUSlI6pGVWTz+rUsWLyUX379ldETpoCM4tETJo4fS7+BgykdGUmlSp6d0GtUrUzLBnVYvWYdA99zVmMWLTgqFCyZNYU+w0azct5MAgPc+ZInAP/1WPiPtOj1QoUCgYMky6osvVDREn+OkEIq+ZL7KBCoj4lwdOwmkQzkHfsUCFTFm1YEcJtsDpFMhui8/7VMs9vrdpaFhhofehvDeFrrx6G8NNZlPuR4Xjr5ovS1e+otaIcUKVnS0m9BENCq1ahUj0cYmUIiqNLxbaK6jsenUjPJ8ms7jEERkH4Xr0pPuW2zmbPJi7mIrlR9t22iKCImXEBTVn7iaMtJAUseSm/pniL50SdRyxCdWm9/bElXilVV2jLjUPuV9vgZk8/9RGgTz0m8I6wWCwsnjeaVHn0pXd45kUjKkS8XelyolAqGdWhM54hgxvx+jOi0x+7njUIQGBRSih05iSRZpe8foIiwL48XVmzcRn5lV42CZvhxiGTMHtTR/00IgjBTEIT7QDcKlJVPLPSCkpZqE1/kxfHQ8ijBSE7PKyJklIJA/4AIruZls8ulFYKju2vTkEA+bFGH+YfP88edR5XvUklr42oV2TJhIAadlrfHzOLg6T8fbcxMklTICYJAozo1WDhjEotnTiH6wQPe7dufpYsXERsbI/sZi+vvZldIhfk6k2xhvjq391wRnZKNQqlyIyrBc49KpVZPUJ2nqPTaaEo/3V12scLgo8XgoyXu0FbKd+olqV6899sWSrd7x+39AD89aWd/pEyLF2TdXUWbrVBVKd3bLOHKKfzKV0epkf4eUh/eQevljc4oT8JZzGZunj9FxdryC0fXL12gTPmKj1Xu8/GX35CekUnvPr1LfIwnOPbOczQCaWAyMaFGFXakJXA4K9XpGHv7BChQV8ohCiNmRG6SVex12Eu9D5OM6GGtowG+3COHWJ5IY4m+wEJBEM4Bs3AuHXrioFBpqNdrIn/+/BlX9/8ESLd6qNf2WWq3fJqts8cTK/NMDA4NZ/Li1Rw7fpwlc6aTny//7AsKDmHyzDm8/mY3Jo4ZxdaN6zCbnRNUqTLg4NAw+gwezvI1G6gYVZmpE8Yy9oPRnDp9RlIpL2cMoMhJlU3E7WXdcnCN6wqFgEGjLiLLPB2vD/JDH+SHQiHQqEwok59tyuznW1IxyOQ0riuh8OOhU1SKDKV8uAOJWUgA7PhtDy0b1cPk443NYHJKsG/cucf9hzF0aNXU7Tg7lm7bzns9uxcRiY7H5+TmcvjU2QL1tgRsNhufff8rr3XybCix9KMNDOjlHqvtsFqtHNi/n1atpXuoSyH67m02Ll3A5LmLUar+Hu2IfVEqwO9R2xC9XzD1ek3CkpvNhS+XYbMU5C6ORGVxUBkD8a7SgdST2xBdcpfspAdkJz3KPwRBwFjrVZKOf47Fg3mJMbIqxtI1iT3waYmv4z+If1QcBCgVEY7NZmPE+Cnk5Ei3uyldqhRLFy1g9Njx3Lx5S3IflUrF5AnjadyoIT379ON+dDQgTQ6p1Wr6d3uNlTPG89XOvbw/dxUxCcVXSeg0Gl5tUZe1Q9+kz7PN2LzrGP2Wfca3h8+RZ5aPu1LQupJ+hXNQj8Y5RvcYJwgCOo2miKgsKcqWLcugYe+zfM0Gnu30AoIgyCr0kpJT+Hz79/Tv6V4Nk5SSyr6jJ+ncvo3bNpvNxoxla5k2Ur7VzuUbt8gzm6ldTTq/XbxqHcMH9HEe1+H5smrNWvr1LmjDIXf9B/bvp1Hjxk4l5q4KxdVr1/Fe3z4lNrXJz89n4OgPGTGwLxXK/vv62KrVasZ9MIo3u77OkP59iC78XT8OlEolSxfOZ8qMmTyMkc9d7Hjj5c4kJiXxy687i95zvY+8jUYWTp/E4DETSLc+kRrC/3os/EeSlQCVMVINb/aSJEtG6lDShgBOkUqCh6QgHB0t8ecUqcUmJGoUNMRU0HvKmsoeSxJZomeiyU5cBijVvGwI4l2vMNSCwMdZcXwUF83NXHeCp6SEpePr74QjeXYnNYcbCSUnvERRJO3M1/jUekkyQc+4+CPe1TtJGzHcO4k2vBaCSjpQiqKI+d4RNKWbSG635aaDKLqpKouOt+ShsOSg8JIuM7BDSL+NOrSW03uOLuY2cw6WjAQMwe6BtUqYe/Jvs9n4eN5E6j7zMlVr1fN4bruy9V9F5UATM59uxKIj5znxwHPfNynoFAreMYTyeXY8mbZHv4coozMpYScs6+JLNDke7zUvVDTCxCUyPJ47LtPMndScx3qZrSKCIPQTBOGkw8spqAqCsEsQhAsSrxcBRFH8UBTFUsA2QLaM8klBiELL69oQfs5J5oiL06CdsBQEgR7+YaRZLXz5UD5OBBp0zGvXiDupmUzfeZTcfOnFG1tqPIIg8HLrRqwZ/g4nL1yl5/g5HP/zyqOdPJT0Ggx6enZ/m83r1/JUu3asWLaMQQP6s3fnj5LkQHGEpR12gtKRpJQiLP+q2Y49+XN9eUL86V0YwyuiD3JXl6ReP40+KBKtgwLJPmZeRgrp0TcJru5eRmfH3YM/ENmoPSqt+zWIosi9A99TpuWLEkcW4Mz3W6nzwqPkW0pVeXrnN7R4oatHs61vPt7Iy91LTjp+8+133Lpzj9FDHk9N45aQULw5CIBBpWJIYCTR+Xl8nhIn2zrBE+riQxx5PKD45D4YLZHoOYNEw8xCCAg0w79EBOh/GqIoHhRFsb4oirVFUWwsiuKp//Y1FQeVVk/rfhPIz83m4Kb5WPPNbvd5TFou1Rq1oHWXt9g0bTS5LiWT9j5QSqWSnoPep17Lp/lgUF8uXrtOhtkq23+wUuUqLF29jtJlyjF8QF++2PYxFov8wrcdgiDQtHlLVq1axajRH3D4yFHe7dufZWs2Epdt9WhI5gklJSqLUyfLjZOTkCL5coSr0U90QhJf7z3GwJc7uBlXZGZl89VPv9HzNedYZf/8s1duYOKw/u4XUkg23H8Yy60792jdXHpOuGbb1/R761XZGPbtr7vp3L4NKg9kYXRMHDabjTKl5N3df/zhBzo9/4LbeVyfXyZdwXliH0Szet50xsxaiE5vINjLeV4lpaq0O4EX/S3zLJNS0QuCQNlWLxJWrzVH10wh9oF7VVRx0ASWR1+qHmlnvkYURTeSEij6W6HSEtyyN/H712OzSM8JM1Nz8avaArWxZEqq/yT+iXEQhZKeb71Oj7dep9fQkdy8c1eSMAoKDGT18qVMmTGT83/+6T5OIZ5q05pF8+cyZfpMdnz9ufOpXIhAb6MX08ePZki3Lsxas43xS9aTkOy8jyMcFzPKBPsz9e3nWDnwdZRKBUMWb2Ls6k85f7WATHXtJakwuffC/UtwICzlDHWKzi0xp7UTepnmAvLe/oyw/+1K+ImiyOjJM5jx4WhJw53pS9cwcZi00du2b3/ilY7tMMqUf4uiyKwV65kwpK/k9pt37qLRamRVlSkpqdy8dZv69epKbref4+Mtm+neo2fRe65EZVpaGvHxCVSsWIGSwGq1MmTMRPq90426NQsMcf+qc7cnOI5Zq2ZNli1ayLQJ4zh29Ohjj2U0GlmycD6jxowjNTXNo8LTpjcxYdwYfvj5F86d/1N238jwMKaMGcmGzVse+3r+3XgSYuE/lqyEAqfh1oWl3DFIP7TVKGhDIBfJ4KHMPlBAbLYmgDxs7CeJHDwTkGU0WjqoAqmt9OGANZl9lmSyS0BaAqgEgboab3oZw3g9IIRTWRlMPHOBj2/eJd5hNawkhOV/Eldi0omOzSQ13nOClX1jL7qwGpKGO+ak2wgqPSof9weDzWIm98E59GUaOhGDjrAmXUfpWxpBLU0S5EefkFVVAuQ/OIU6oh5ab/+ilx32v1W2bBTGEKcSdcfrMYWFkXLhN0w1Hpn/SJnrOOLbNYto8FRHKtdt5HG/vxu+Og3zOjRh960HfHv38QntyqHevGEIZmt2LHkOq+muhCU8SsDPke5RpeyL+t/mDC6K4lpRFBs4vNa6bG8nimINidcOl6E+BV75t1zk3wSLrYB00QoKnlUGkmGzsD07wYmMcSx5fcUUjCLDwoZ7dyUJm8yYNBSCQK86UTwbGcywb/dw6r7nhEav1TD8nVdZMWEYe4+fpdeH8zh75UbhgMWvrtesWYsZs2azaMkyrBYrY4YPYcr4MZw5dfIvkUpSKE5hWRIUR0pKISchmrRb5whp5G4cY7OYiT32A2HNu0gSn9d+2kxUp56yY+dlpJJ84xyhdaQduhMuHiOgcj0nB3BHJN65ipdfEHrfgvgnRVRazGbunD9J1UbN3bbZ8eDeHbx9fPCRKYF1RK5Cy9Fjxzl2/ASTRg8vdn9PkCJS5NSVUJCov24KoaxGx/rMR7HMUV3pCQICTfDjOlkkUnxpZjkMKBG44YGMVBa2xvgf/h4IgkCNDq8R1aoTu5ZPIC8rXZKwLFe9Np16DWbBuGFkpDqTbI6N62vVb8T70xeycdUytm1Yi9VqlSUtBUGgzdPtWLl+M/4BAQzt35vPPv8cq1V6TuhKYAUGBTFk0AA2rVtD88YNmLNkJX2HfcDXO/eRm+s+by1SVTrEWIUpWJLQd4SdoLQTjI9LWLqSkp7OkRefgC01HovVyrjVnzFvYDc0wQ6ut4VEwcwV6xg7sDcKhcKNoP3txJ/UrV6FAD/n9x0xfekaJsrEk8ysbM5dukrLRtILxBaLha9/3kXXF56R3G7H4i1fMey9Rwsyrsm0KIr8sOM7Or/0ksdx7MjNyWbZjAl8MHMhXt4lawfkSlQWBynCEoCAKMp07MPN7YvJjrvjttmxqsAo8VzQhddEbYok89KvxV6DOV9BQINXid+/3k2NaUdmai6B9Z4rdqz/oWSw6U3UatiM1QtmM2PBUo4eOy65n4+PD+tWr2TZytUcOnJEdrygwEA2Lp5FbFw8Q8ZMJCk5xaNisVyVGiyfMJQeLz7DpOWbmLR8EylpGZLmNa5Qq5R0blyTtWP6Mez1jvx68DjvjJ3N0i9/JiapIPY4kpx20tL+ciIcJeafdtW2k3pbQmHpCk/X7kpUuhKWRefWm1i2ZiMvPfeM5KLHoZNnCQ4MoEIZibYJWdn8duAIL3eU9zT54tsf6NimBb4upjz2f6slq9cz4j15VeWS5SsYPqRAtSmnqty/bx+NGjdGpyuIC1I9H9dt3ETfXiU3rZ80eyFvvPwijRvUdbqmfwdh6YiAAH82rFnNz999w7ZPPpbdT+ozQsF9MXPaVIYMGSyrYrZ/BoVCwZKp45g/by4PYuR/S1UqVWDY4Mczqfy/gn80WQmgQUFrArhBFtEyqgclQpFRjidFl4BANbypiy9HSeEqmR5LuQD8BTXPqoKorjSyz5rMXksymaI8UePa789fpeb1gBCGG8NoHOTP53fuM/nsRX68/5DE3DxSbiQ8caSlHakSEuj8lHtYMhLQl5Yo8bZZybzyO95VpSeGWVd+x6tyu6JVJVfCUrSasSReQxVSXfJ4W3YyKNUoZHpRivnZ2MyZKI3OK3KupGV+zHknVaX7deSTE3cDQ3gVyfO44vLJIyiVKmo0cScWYh1+D1Kl4PY+ov8KVAoFY1vWRSHAkkvXsDqQQPZeqZ4QoFTzoi6QrVmxTsc6wq6uVCLQAn+OkvLElnrLQRAEx9r8zsAVuX2fNAiCQAe9P+FKLV94ICyf8QmgstHIvJs3yLFanUrBHVEj2I9lLz/F/pvRTPhqN+k58mpZS2IsRoOeD3q/wZJxg/hx71F6T5jP0XOXSnz9Wq2WF7t0Ye26tQweMZLTJ48zbEBflsyfw9XLl7DZHu+3FGjQFL3gXyMsiyMqpbbb8s3c3bmBcs+/J7lK/mDfl1Tt+BZBge6xKu3+dVQ6A15B8s6r137aROUXekuOLdps3Dv8E6WbuZOkdpz78RNqP19QhiRFVEKBqrLes694VFV+tXkdr71bsoqQjIwMlq9azYypkz2O+bgoibrSjiZevnTU+7Mm46FbewtPpeBQ0AqmBQGcJY10mWoOR9TCmzjyiPWwSPo//H2w9+oLrlCNpm8PY8/qaeSkp0iqz8LLVeK1YeNZMnk0d687h/n4LHMRaent68vwaQswhUUyemAfrl0uiGlyKktBEGj/7HOsWLcJjUbD6IF9+PbzbR7LyV2Pr9u0FQtnTGLl/BmoVCqGj/qA4SNHs2fffnJycjyWf4O0AhmciUo77ISlJ9KyOKWm41iu5wKYvf5T+nR+imA/9wXK85evIQgCNau499e0WCxs+ORz+vbt47bNjp37DlOrapSsa+zyzZ8x8J03ZI/f9t3PvPViR0mVkx33H8Zis9koHSkfj/fv20ez5s09qjMdsWnxbHoNHY2vyTl2uaor7ZAiKktSIeBKWNrLvnV+IVR6/QMe7P+a5MuPryzyKt8Mc04GeQ/OFLuvVWVCHVKTpOOfF7vv//D3wSe0NB99tIaPP/2UvfsPSO6j0+n4aMUyvv/hJzZtlSZsFDmpCILAgF7v8P7AfowaN5FPv/vZ82KyMYDK5UqxevIIXn+2DWMXr2XS+i+JS04DPLt/2xEW4Mf7L7Zhy+yxtKpTlWVf/ULv2R/x6d6TReM8DqSU6o9DWDodpzeRq9C6EZX2frSOhKWd+Dtx8hQx8fF07tjBbbz8/HyWbdzGyL7SbSbmr9nMyH49JOdNNr2J9IwMfv79D9580d3kEODC5auYfH0IkYmTsXFxJKckU61qVdnP7KqqlDSnyc3l4qXLHtWZjti17wC+Pt60adG06LP8O+DqGm5/qdVq5s6agS03i8kTJzx2nlEhxJcPhg1g6NhJsguT9nPqdFqWzp7KyInTyMySXsT+dxO0/2T848lKsCcR/twjhzsyPfMUhcoIFQKHSMbqgYT0RkUbAlAi8AdJHlVidgQKGjqqgqil9OawNZXdliRZ0tKVsISCSWpgfD5Dq1ZiUu1qBOm0fHHnPlPPXWTm+cus23WG46dvkW/1fDPZyU2p178bNkseGZd+wae2tEtY1vU9GMo3d3L4Tn9wjfQH17Bmp2DNTUMTUNbpGEei0HzvKOrIRtIJuihivncUTaR0XyIA8/3jaCLkVZcA1rRoFN4hbsY/jki9tAffKm0wBRffPDgrNYndX2/lhV7//YriF0tH0CI4kNnnL2Mu5nfkigiVllZaE59nxxdNUqTUlVCgUm6EiQPF3GdPIOYUloSfBzrwyP3siYWri3ETrQ+VVHo+yYrDJkNY1s7T0jU8gpnXr/EgR76sVatSMqJNfV6JKsPwT37h+92PVt9dJ5uWxFgsibH4GL2Y8N7bLB0/mCNnL9FjyGiOnD73WJ8pMCiY3v0Hsuyj9bzw0svs2fU7E0cO4cPhg9i4bAGnDh8gO/PRopOjs68jQfl34K8oKgHu/raJyDZvSvazzEm4j9KSiX/FWm7bRFHkxs5tVJRx9wZIvnEejbefLJl59+D3RDRqj0ImcX5w8ST+pSui9fKWJSrzzXncOX+SCvWaSm4HSIqPxWq1EBwaLruPHaIoMnH8OCaOH/tYvS0fF47qSjnU8vfhXWMo27LiiLVKqySNKumpkQqBlgRwlNRiqy/sasxLZJJWAnLzf/j74BMcQYt3R7Nv7QyyUhKciB078RMQGkGvyQv5adsGDu380W0MR9Ky+VMdGDlzETu+/JSVC+ZgNps9loZnWUQ6PP8iCz/aiF9AIOOGvsdX27a4kZZGjfTvzKY3ofINpvPznfhoxTImT/iQ6OgHjBv7AX2HfcDIGQv4+pvtRMcmkJ/gvmjsSli6EpWZMcUn+9rgoGKVmsVh94GTCEDrOtWcNxgDsNlszFm1gfGDCshIVzJh/cef8e5br7sZ2tiRnZPDpi+/47233Z3FAW4nZRIdE0vD2tKL29k5Ofy2/zDPt/PcY3Lx+o+dVJVS2PbxVt7sJh+zHfHbT98THlmKilWlr8uOv+s5JqewDA7xp3HfCeTHXiH+9K7HGjM76QG6ss2wZsSRn3hDcrsj9BG1sAk60i7+Ljle5l9szfI/eIbWksWyRQvZ8f0P7PxN+rtXqVTMnVXgPP3BuA+d+u66lqxWCPJm86LpiKJIz/cncu9B8T37alQqx5opI3m7Qwtmf/wd4z/6jLhUz22gHGFNiqNuVDlmv/cWaz7oS7DJm+XbvqHf3LUMXLCBdd/v5sKt+4i+ge4Hl6C6xzHuyJWCg7y6Uu4Z4Ph+QpaZJctXMHnKNMl9l278lP5vv4ZW637P34l+SFp6BnUc+lC6LlbNXLiMMcMGyubGc5euYtRg51YajsTYgkVLGDF0KCCvqty3dw+NmzRBp9PJqg23fPwJ3bs9Mov0VB4dG5/A5k+/YuSgfm7XI3WNfwU2vcmNqHSE/e++vd6lQ5uWjBw+rMQLi/Zja1evxpuvvMj46XOKcmPH8zqeMygwgCljRjJkzMQStYr5Hx7hiezk+VcgFDpxHicVCyIVkSaSojDiRx5/kCjrFG4fryJeRKDjBKn4oqIGPrIOn3b4C2o6qAJJFfM5ZE1Fi4IGSh+MwqPzyJE8QJEzeOOgABoHFaz2WGw2rqZncCIxha92RKPy1oIgEOFtoHKgibqhAShjPPeUlHIYz4+5gzqsrOwxsRKkqidknP8O7+rPSxJ9lqxkLOlxGCs/krGnP7hW9P/JJz7Dv+GbkuP6RESRcnkvKJRuqsii8eMvofQvJ1sebs2MA4UKhUFeSSiKIvkxZ9FGPet0bqdrCfLn4ZnzRHQcWfSeYwm4Y79KqyWfQ5vm8db7kx67eXqmwoDRJm9W81fRINAfL5WK6ecvMbZmFbyKua4H8Y+uobLaQLpo4YfcJDrr3ScG/holyYUPaF/U1MCbwyTTAn+EYu6bJwGiKD7RZd/F4UGOhQi9ivpabzSCwOasWHp4haKUmMCUNRgYW7ESS2/f4jmdjRahBfEhMyatiPDJSUhBH+RHVLAf63p3Zt2eUwxa9SXju3YgIsAkeQ2WxFhUgaEYDXpG9HiV7JxcVm3fxbpPv6Fft1dp1Fy6bFkOFSpFUaFSFBlmK6Iocun6Tc6dOMrOX34iJ7tgddLbx4Rf6QqUq16bgGrV/jbV3l8lKlOunURt8MEY6d7KQhRF4vZto+ZbIyWOhLjzBwmsXA+1jGmP1ZzLzV1fUL/PFMntOSnxpNy6SN2eHzq9b09Yrfn5/PnrF7QfOkuWqAQ4tmMbjTq/SbhJ/jvYvmEFvQcMld3uiNWrVtK6TVuqVPZsbPY4cHQF1wf5uZWoeoUYZJXD3goVfYxhbMyKpaHgS6Sy5MpbbaFR2EGSaUMAag9rvnal+T6SaI4/Bh7P1C7PYntsR+Ds/L/PrO2fhuiU7KLfujEghFZ9xrN//Sya9xhFmKmc2/5anZ7XRs/gyDdb+HjpbN4aNNrtWR2fZSbYS4OX0Zu+Y6Zw+89TfDCwD2+925dGzVuSYbYWlXW7Jq6CINCm/TO0bteBA3/sYszgfrR6qj1du3ZFo9GQabYVEZa5Cq1sEujnZ6J7tzfp8XJHFNmppKSlc+TQQdZ9/RMPo6MRRRGtWk3l0uHUCvWhXsVS6AqJxrz4hKJ7xX6flITUd+07+bhIy8ll87FLbBrRDXAnAtZs+5puXZ6X7MGWlp7OsVNneO9dafMwgGlL1zJ2UG8UPu5zEVEUmTxnIQvHDpE9fvbKjYzq39Pj8+L67buoDEaPqso9f+ymcZMm6PXysdLuCn79ymUO/PE70xYsIy2v5PepvTLAUWFpj9+uCkvXuB6TmlvkEu76TBMEgapd3uP8d5t5cPAbIloUTIHkXMHtMAREkJ30AH3lDmRf2IGgNqDy9bxoZYx6iuwrP5N5+wTGcs6iAqlyc1c8bhxMzf2/vUBkJ0nU5gwWzpvD+ImTycnN5aXOL0ju/+473Tl+4iS9+73H3NkzJZ3CoeA3061LJ9q3bMqkhSupUrEcg97p6ryoIEESRpUOZ8mwHtx8EMfMj7/Bz2hg4PMtCTFJV8LZoQoMLSIKVUolHdq0pEOblgCY8y2cu3GXvVfusvbXQ1isVgQByoSHUrNSOZrUrkYQgDEAhYszdtH35MmEx+U6PMGuqrTDsdXHzEkfMnH8WPQ2d3HA7fsPuBv9kFH9e0iOO3fVRqaMGCB73sN7fsPXx4fqVaKw4f55Nny7ky7PP4uvj3O7CUVOKja9ieMnTmIymShfrqzsOWw2G1s3b+ajdetl98nKyuLIseO81+0VhGJcus1mM+9/OJVFMyfLOs0XnVtveizX7+LGgkf3hiOR2fzpZ9D6+DFowHssXroMr2KczB2v66lWzYlPTGLBijWMHvJe0Xcrdf1VKlWgT/c3GTVxOotnTSl6/pSUmE3Lszx2LLS3DPsn4/8bshIKCMZGmDhFGlfJpDLSfQSD0NICfw6TTBW8iUD+QalHSSsCeEguf5BIFYyUovgk1iSoaWjzI418jpCKCDRQ+uIvyCv27Ei+UeDaay/RVSkUVDf5Ut30aIJpE0Vic3KJAVb9cYZksxlN4X61/Xwp5WVAUXgTSBGVJUGoUVNiwjL34Z8oDf6oTe6TOlEUyfjze3zqvCx5rDUzDkFtQGmQLuez5eciJl9DU1raIdxmzsKaes+JZHQ+v438+8dltxddR9INlH7lEBTyt0Xy2Z/wr9MJvxDPPSoB/ti0hHav98Q/+F8v5f47UdXkQ99K5Zl+7hL9vEIwqYr/TdrRUOPD7twU9uWm0lpnIsqocVIKOxKWIWjJxcoJUmnEk9dA/f8XxOVZ3EpYa2qMqAUFGzNjeNcYhkoQSE7Pw7+wH1VGTCbeYUbGVazE1uj7XE7NoFflcpLEJoBSoeC9pxuSqFQz+8vfKBcSwOAXWqMPck9Q7IQlgEGvY1T/HmRkZrH+8+2s+GQ7b736Eu07vVjgvGjLc1vJNWoUbv1+oGCSHFG6LBGly9Lg2UexJCM1hXs3rnD12D72fb4BURQpVSGKqnUbUq5KdZAhiBwTuMdxRfWE/Ox04k78QuU3x0tuz76yh9A6LdF4SZhwWSzcP7qTBn2nyo4fvXMzzV/vi1ninhVFkcvfrqHay48mtq6qmrM/bqVWxzdQyqiVAHIy04m7fY0Wr/WSv47bN9BodIRGyBtO2LFv716SExMZOGgwyJAxfyeMYb5uyjHvMCMZLgt6BoWS/sYwVqbFUBcbFZUlNzYzoqIBvhwoJCwVHhZjNChojj+HSKY1AWj+/yhoeWJgtTjHCkfC0mAKoE3/SexdOwPrW0OoWtV9AUEQBDq/04/zxw6xZPxQeo+ZhilAQqVTiLoNG1O9dl22bVjDD9u/ZOD7Y6CY+0AQBFo93Z6WT7Vj/+7feX/we9SpW583u/fA6F+ynoWOCY+fMp/nWjWmQ7VHBn+5ZjPX7sVw5vodvti0g1yzhWBfI02rlqNOgJEAF8ISHrVQKGmpt9SigBS8wgIYvX0fk9/qiCYgzC3RfxgXz9mLVxjQ/XXJ4xeuXMuowfIGXHuPnsTLoKNOtcqSzWY++Wo7zzzVhoBS5Yu2OybxF6/dxJyfT93qnlv5LFizhemTJzi955hU2mw2Pt6yhTXrNxS9J/XsAkhLTWHlgtnMWrq6xAtqgQaNU2LqibSUg+t2e7sEOwRBoHaXd7n423bu7txI6Q7vSl6fwWQiOzXV5VgFhmovkPXndvSVnkbpJf87MphM6Bu/Sfz+tSh13ujDStZG6X94fLgpyBQKZs+YxpTpM8nJyeHNrtL3XaOGDVgwbw6jxoyjf9/etKpbTXI/gOBAfz6aPZFdB4/SffiH9H3rFZ5u3rhYNWOFiBCWvfcq1x7EM/er31EIAgM7taR8mHzMlYNGraJpy+Y0bfnoPZvNxt2Hcfx57RYLN39FYkoqOq2GRg0b0LRebcpVremx7YMriiMpPcGoUfDb99upHFWpYKHW5d9FFEWmLFrNokmjJI8/fvYCpSPCCAmSvq/S0tNZuWELW1ctKXrPZjAVEbMPY+M4cuI065bOkzzelpHI0hUr2bBmtcfPsePbb3mu0/NoNBrJBTVFTiorl61kaK9uJYpt46fPZfh7vWXbd7hd518gLD2Rf47bHPOPBg0b4e3tw+AB77Fw8RL8Azw/Fx2v642XO7NszUa2fv4177zxqhth6YjmjRuSmJTCjIXLmDhq2P/Kv0uA/6/ISiggLBtg4jzpnCWN2vhIqrr0KGlLIGdI4yG51MPXo2oyHB2haLlEBvcV2bQQ/TBJEI/JLivrvqhprwokU7Rw0ppONlZUFn/Kq4onPO0qSykoBIFwg55wEepXLej3k2u1cik1nT2xCURnZSMCBpWSOnkZVAkyUd7P599ia5KfFkPO3eOYmkg31c2NPoMmqCJK3aNJuV1VKYoi+dGn0FaSbhwsiiLpZ77Cu2Zn1D6hTmpMO8x3D6Ep21w2SFpizqMKruaxtFsUbVgSrqCtIt/nzdvfl9jz9whs8IgokVNVnvv9OypXrkRUHfmy9L8L2XfuSL7vWyFC1iW+tNHAyOqVmXnsT/oFRRCqcZf+O6oqHfG0zo9vsxM4Y86grsbzqmgZDORg4zzp1KJkSdn/UDJYJErsH+Q8Wt31RkNNwYc1mQ951ysUg0LpRFhCQRzpWao058lmwok/GVYjiooeokSgNZ8VA17n0KVb9F6yjbefashzT7dxvzYHwhIKnCJH9OlOrsrAZ9/s4J13e/Ncx2d59eUuoJUuOykpvE1+VG/QlOoNCvve2GxE37rOpdPH2PvDN+Sb88gXBQwhZQirWAXRVAq9r79TvLArTuyk5eOqKgP89CTEp3FrxwrKduyDoHAnSI2qPO5cPkm9XpMkx7h7YAdlWrwgeSzAw1N/4B0YSnAF6QTi+uGdBFSui84UKFn6lx4XTWZiHOFd3PsJO+LQVxtp8Vovj30+d2z+iO4jpAlZR9y/d5dtn3zM6jVri933X8XjqisB1IKCVzTB/GhOJFu0ElKChUg7/NBQDSOHSaE5fh7V44ai1hhJtCYQ1T9Aaf5PgSjaSErJcbpnHQlLnbcvTw2YzN410/Hp1peIqBrEpOU6/b4Ts83Uatyc8DLl2DBnEm07v0q9lk9Jni8114JJp+HdAUOIj4tl9aJ5hIaH07P/YLQ6z8SRIAi0bteB1u06cOX0cSaMGUlkqdIMfK8/QcHBsupKe0LkSQWk02ioVbEMtSqWoUfHgtLmh7dvcOTybVYeOE9CQgGJEKhSUSM0kMrBfpSy2vCN/NdKvaWwfu8p6laIJKpadclkf8qi1Ux5X1otdPd+NJmZWVSvUkAsu37mmPgE1n/2DZsXTpdUSsXFJ7DnwGE2LFvg9L59XyErhVkr1rF65gS3Yx1x8vxFSpcrT2CAfDXOVz/8ynOdnpctVbfDarUya8JYRk2chqEYxY4rXAlLKCAtH9dwJ8ykc1JZuiK0YUeSLh7i1o5llH/hUdsio0knWaZtV1cKShWG6p3JuvAtXtVeQKF1X8g3mExAwe8/uEVv4v5YiUJjQBtQukSqyv+hZLDZbLKkjiAITJn4IQuXLGX5ytUMGSR9/4UEB7Nx7UfMnreAfbt/Z9zwQahUKtnY065FE1o3rs+qj7/ki+07+LD/25QJD3Hax7GE2t5CKCoimEV9X+ZBUiof/XSQpIws+jzbjHoV3A1m5CAVWxQKBeUiwygXGUbnpwrMAbNzcjl+4Qpf/7yL2x9tRkTE22ikdtUoalWNIirIiJdBLzsmUNC6QiLe2GHSqdzUlZcuXmTHDz+ybvVKyWM+/+0g7Vo0ljQQE0WRZZu2sXaO9HxRFEVGT5rJ9PGj3eKPzWBCFEUmzV7A9PGjASSVpas3fkzPd7oXGeZIIT8/n+93fCfrUq3ISSU1LZ1bd+7RYHht2XHs2PDxZ9SsVoVG9Z37WjqSe1KQ2vavKi6lSt4rV6nC9FmzGTFsKDPnzCUyMlK24sEVQ/v34sMZ8/h1916elciL7LDpTbzwyuvEpW9m5dYvGdC/ZH3f/y/jH0lWpmMhlXxMyE8QauHDdbI4SiqNMUkqHxQI1MdEbKFqshEmfD2MqUCgBj7olHDImoIaBU2UvugEpRtJ6QqjoKKNyp9c0cbV/Cx+z02hjtpIZ1GPysNKhCfC0hU6pZJ6AX7UC3ikYlOXNnElIZWzMUlsv3Qby+krCIBvUAC+XnryVHpylVry8szY1HqMRiPlq9YktFwUFaMqQzFqE3PyHbKu7sa34dsIgvtqlc2cQ+7905iaSqt0rMm3UPpGIiilS+Ozb+xDG1IFtYR7OIAl8TpKYwgKrTQRZjNnYc2MRRdex+PnsMRdLCA0JT4DFDiAJ574Bv/anYrtVRl78zIx1y/yyuTZHvf7q8iPufO3jKOMzuL90NIsjb1H98BwSmtLPml8SR/IJ9lxeAsqoox6WXUlQBWMnCPdo9r5f3h8ZGHlii2TKgqjpLoSoJRSh96mYF1mDO8YQ/BTPIpvdnUlQC0MVK5dhcV/XqWDmE/His5KoayYJCf1TfNq5WlSuSwbfj9C76lLGNH9FWqUL36SqdFo6PHma3Tr2Zsff/6FfgMHUzmqEm/36kdg0N+TNCsUCkpXrEzpio9KjuPSs4m5c5M/z50l4fQREuIKJszZ+Ta0vgHYLPlYzblY8/NAhGiFAq/gUniHl8U7rBx6/xCPK8b5OVlc/2oeEW3eROfvrqQO8NNzbtsKqnTuKzlOfnYmybcuUK6tdCeCzNh7xF04yvPDpktuz81I5c6JvbQbOkv2Ok98tYZm3UcA8mqc9MQ4cjLSCCnnrkCzI/r2DXz8A/AxeX4u5eXlMXPyBFasWFFsqU9JoQ0OcipPdSwFd4SUulIOCkHgBU0gu/OTibdZqKnwvADjiFB05GDjFGk0wORxX1/U1Ma3kLD0rMb8H0oOS24mt75fia1jXxRqTRFp6UhYagxGnh48neNb51Gj1TNUathScqzA0HCGz1nOjs0fcf7YId4aMhqNVldUCu6K4JBQJs9dxP5Dhxk1+D1aP9OJp59/qegeNOnkp9gNmzSlYZOmXL18ifnz5mK1WHjn3XdpXNPZ5OBfScjCy1XklXIV6VJIEOTGxfMwNYMT527w06XbxJjN2ApLxAK9DSgVAjlmCzn5+VitIiIiAUolUYXtQMr5yy9k6YP8EEWRdeevYwr0p/drnSX3+3HfUerWqEp4iHRLn3nLVhe5e7sSJBaLhVEzFrJw4ihUKpWkanLynIVMHTtSNg5u+WE3L3Z+AR9v+bmIzWBi2cdfs3LeTNl9RFHk+x3fsXbDRtl97Fi+aD4vvv4GkWXKetzP0Y3eEfb+la4qSznC0nWhyb6fI2EJzirLAD89VG+OyuDN9W8WUvHlEeRme+5tbicsFWodXlWfJ/vSj3jV7IKgekQC2IlKOwSliuA27xH3xwoCm3YHU2mP5/gfSo47d+5w4/YdKrqU9NqJIEEQGDViOB9v+4yxU2YwacpUFAqFGxmjVquZ8v4ADhw5xjsDhjPjww+oGCwvNlCr1Qzr1Y24OzeYtfYTfL2NjHr3dXyMxRPzEQEmpr/zPCmZ2Wz6/SjLv99H57bNebFlA1R/07zBoNfRpmEd2rR9uui99IxMzl2+xpFT59h67SpZObkIAnjp9fh6e5Gdm0dubh555vwCctMUQNXqNahcsy5VKldG518Qv+wtHhzhrVFy+exJNq1dzYoli1AoFG5xPCU1jZ9/383W+ZMlr/m7nX/QoVVTDDLtJVas20zH9m3d/q3t+OaHn2nRuCFhIcFF8dGRsHwQE8vFK1cZNGyEx+9u6+ZNdO/RQ/J3YseqDVsY1Fe6jN0RJ8+c48r1m8yf5nmhqKQoqeJSrg+nHCIjI1mybDkjhg1l4uQpVPeQ27hew/TxoxgyZiIBfiYa1qvjkYDt825P5i1cxOdffsUbr7/2l671/wr+kWSlN0rOkU4EOtnelACV8EKPggOFffPklJOh6PBDwzFSCEFLFF6eVRKCkvaqQBJsZn6zJlFK0FEKQ4mSj1reOmqhwyaKnM3PZH7MHSrpDHT0DcTrbwrMjjBq1DSICKJBRAER4FuhoEzbGhxKek4uvqUrYoisgFarweYbTlpaOqev3+P0n5fY+eMOHsTGEVq5NqVbveg2tjnpNlk39mNq1ANBKf1Tyrj4I8bqnSRJQNGajyX+Etoqndx6QwKYE29hyUzEt26bovd8IqKK1JU2czaWxGtoKz8n+/nNdw+jKd1Mdrt9HGvafbRRzk5qjtdkzc0gL/k+FTs9cmtzVFUWnS83mwOfrWHk3OUez/mkwKhU8X5YGZbE3qOrfwjldSUrhRQEgTcNIWzKikEnKMDlt+9KWNbGhxOkcossynu4Z/+HksOIinSblT1iEi0V8mX2gQoNzwiBbM2Mo6tXMKTjVg4O4K/VMK1+Db66Hc20hwmMalpTUmeWF5+ANjgIpVJBv2eb07VlPRZ9u5vNKBnb/SUCfYsnexQKBZ2f70Tn5zvx54ULLJg1HZtSTd9+/akUFeVUCi7XwPxxoFSpiKxYGWVQQdmkvc/XvYR08jKSUag0KDValGotgkKBzZJPZnw0GQ9vce/QT+Qkx6LSGYh6rgdaH2eSLj8ni7NbZlHrtffIUz8qZXJUeiVcPokhMAwvibJ5KHD3rtRR2gnSkpvN5e8+otOwGbIN1A9/soRGbwySTdBvHdtNaOXa6H39ZYlKURTZvWUZbd8eJKuqDDRoWLn5I7oNHSu53REL58yk36ChmPxK2ALCGFCihvie4KlMVaoU3A5BEGinCeDHnCTO2NKpq/DBqFKQaSneiKwcBnKwcoF0ahSjHg9EQ2WMHPoH9fJ90qHUehNcrz1XP59F2Y59SSJCkrBUqjW8OGIav29YSFZ6CmEvO5dCJmabCTRoUCqVvNx7EDcunmPx2CG8NXg0pSq4z08cVTS16jeiRt0G7PrhWyYN6cubfQdSrXa9QhWm52l25arVmDRrPuaMFLZs3sTKZct469UudGjfzqlcsaS91VxhVzLlxScUtNLw88FUuQwvtalXtI8oiiRmFFTj6NQq9BoVaqWywPDr6j2uJaSw/2Y0m49fJD09i241K1I31L1EbuWpy5QN8uOd5wpa9riqlDKzc9j2w+9sW7VI8lr3Hz5K2dKlZMsDJy9eTd9ePQkuU1GSqPzqx9+oX6cWpSKk42xCYhJ/HDjEphWLsBXGSsfj7Yn8l9/9SOtmTfBy6afpmHh+/t1PPNOxo9NCjFQJ+LEjh7BYLDRr1Vbymh4HUmXhroSlJ0U8PCIs5eBbrhYKlZbrXy8gov0gFGptkbrSTjw6loMXEZY6b/SVnibr4vd41ZA22bRDodYWEpYr8fIbhMb78dyY/wdplCkVybylq+nwVCte7SxfJfZa9574/f4b7w8byvxFi0Etrehu2bQxNapWYezUWbRtWJu3XpLPtchMIiTQj6Xjh3D+6i0Gz1hGm0Z16PnSMyW6dj+jgfe7PIXFauWnC/fpPXsNDauUp8dzrfE2/LX+4VLXaHf+9vE20rJRPVo2quc078jIyiY9MxuDTotBr0XjF4ogCKSmZ3DpfgIXr17l2x3fE5OQRL3GTXmze0+30xw/epjvvvyUNSuXy6qup89fwoRRwxC9/BBcYntmVjZf/vgb25ZJC14OHD9N7IN7DOknXc0YExfPjzt3sWmFdJx1PL8nRWNsbAwnT56kV5++ktsVOakkJCZx5140tavLtwwAyMjMZMHKNWxZudjjfo+Lv7OnpSP8/P1Zvmo1w4cM5sPRIzw6pTteg0KhYPHMyfQZ9gHjRgymcm3Ppr6j3x/BxKnT+PHnn2n3vOe4+X8Z/8jmSQICrfAnDxuHSZYsh7QjEj3VMLKXJPIlu9sUQIuClhQkoftJJrsYp0+AIIWGF5RBGAUlu0kkhpKXZSgEgXoab8aFl6O63siGhAcsi73HhezMIkcpO+w9LP8K5JzAvQ06IgJM+PkY0abHFSW5vr4+NGzUiFff6s67o6cwYeFqgiJKs33uaOKvnC46Pv7CkQKisuHbskSlOek2gkqH2tdZaWQnG833j6Eu1UiSyLTmpJF5bbeks7hPRFSB+/ftfWjKtZIv/068jtIrCIVOPoEsGqdsS6dxHIlKU1gYCce+JLCRtOskPCoB37V+Aa3fHoRGJ/1wLevBsOK/Bb1CyfuhZfg6OZ6rOQWmJXIl4I5QCQLveIXyY24iPiX4WA3wJR4zd/j7jYP+r6Ia3lRTGPnFlsCVXPm+i96CiudVQXydncAdS66TO7gjBEHg9fKleKN6ecbuPsGBc9cl93NUt/l66Zn69nMM6NKecR99yqrtv2GxOsRPCQLKcXJRs0YNliycz/ujRvHVl1/Qr09vPv/sU3Ky/57fiT25syd1jomaQqVC7xeM1tuESqtHKCQHFCo1PuHliGjwNFU69+aFETNp/nIPLm1fzc1dX2ArdPLLz83i7NbZVHt5AMbgUgT46Ytedljz87iz71sqPP2G5PUl37yAUmvAJ9zdAEQURW59t4LW3YeiMUgrgS7t2k5kjUb4hkj3zctJS+bm0V1Ua+fZP+rUL19Tvm5TqkaVl93n/LFDRJSriCkg0Elp5kjIeGuU/PbLT/j7B1CvwV9rg+FIcihM0gqsksIrxH0BxrEVgiOe1wcgACdsqYC8K7grquGNFZEreDa6g4KWMuUwcJgURA9zl/+h5FD4lKHSq6OI3vMpief3OfWgdVSPxaWb6dBnFBmJcWzfvM5tHEciqGL12gyZsZifP9vM91vXYnWIaa7lflCQpHR48RU+nL+MI3t3s2DSByTFx5Gaa5Hc3xFGjQL/gABGjBzF8lWrSUhMole/95g1dz73HzwE3N2ypWBLjXd75cUnkBefQFZMUtELcFIkC4JAkI8XwT5e+Oi1qAsJOEEQCPc10qZiKfo2rcWkxjWY0bYBR6LjmbzvNAlZj2Lpsv2nC4jKzvKk3IyPPmFc325OJKzNYMJmMJGTk8uqjVsZ7uC8bd9mM5j4bOcBQsIjadWsifNnLtx++/4DfjtwmD7dpY0aRVFkwsx5TBs3yqNK/vbd++zae4Ceb0n39YMCM4kfvt/Bq6/J7wOQlJjAlvVrGT66+MUdQFK9WxzCfHVOL1d4KheXcwr3LlWZyNZdebBzOVptQd7kWK5tMJmcFJOGgAIRhNIYhK5sc7Iu7kC0FfzmXftc2qHUehHcpj/RO1eTn1l8H9T/oXgo1RrWLJ5DXHwCH0yeQV6e9DxPZ8vj+adb0+vtNxk2oB82D9+/n8mXjxbNIdumoP/EucRlW4vuOScYHxHOtSqXZ8vssQT4+tDtg5kcueDevksOmoAwurRuxJYJA6lXuTxjV3/KsCWbOXLhmltubEmMlXXpdroux1cx0OekE6K04OfrjVajeaSS9/GmScN6vPtOd6bOmc/aDRsJC4+gf++enD5+tCjGnzl5nC8/3caiJcuciEpHQvDQsRMEBwVSqbz7nM9mMDFt9RbGDeot2VszOiaOtZ9+zfSRgyQXsKxWK2OmzGLO5PGPzFsK/60cF2Ma169LZHiYbP9Gm83GpA8/ZMq0aR7j5axFyxk7fJDsdiiIvWOmzGLKmJFoPbR9+qukY3E9H0taxu0Kb29v1q1YwryFizlz9lyx12C/Do1Gw+oFs5ixYCk3b932eJwgCEyfPIk/Dh5l1++//aXr/L+AxyIrBUFQCIJwWBAEURCESIf33xEE4aYgCNmCIBwTBKG+y3FjBEGIEQThgCAIZRze31s4ViuX/W8IgtDT47UgUB1vKuHFHhI9kotBaKmPL3tJIgv5SaOAQGWM1MeXo6RwjUy3ZMJf46x+FASBSgovXlGHEEcee0kkjXzZ/V3xID6bqnovhoaWpldQOLfycpgTc4cvk+KIMf99ZgR2wlKuh6En1G7eli6j55Jy5zI3ty8i49YJsq7vwdSgm1N/tfQH14peafcvk3pmO6KpgtP7dqLSmhkHiCiNIW6qStFqIe30F/jW6yrbv02ZcQdVYBQKrbSKy666VIV57qGR//C02ziu15ObcBuFSkNI5UfvS6kqz/3+HeFRNQguW0nyXFJEZagHZ/h/FY/zb61VKBgRVpofUxP5M7v4hLvoOEFBD69QtuckkCo6uy+63SsINMbEQ3K5x99jaPLfwJMUBwG8rGo6KII4ZkvlaE46cXkWtxeATlDSzxjG7znJnDe7/xs79vaLCvBlQfvGHHsYz/SdR8nKy5cst3VEOS8F68b0p1KpMHpMX8l3O35ym1x6QmhoGOMnTGT1mrUYfPyZMGYUk8d9wJkTx5yIgv807AmdT0gkdXt+iHd4OU6tn0zsuYOc2zqHqi/1xytY3mDj+i+fUPGZt1Co3Bd1bJZ8bv7+GZU6SrveJuz/krL1W+EfKU0gJt29TtLdq0S1lFY8iKLIkW1LafLWUARBkFVVxt+9QcyNSzzb5VXZz2G1WPj1iy10ekveeAcg+v49fvr+O/oNGlLkdPzfgJTjsV1F7IgIvfO/yzN6f/QoOWJLQRTFEhOWtfElCws3yCp230j0lELPUVJLNPaTiCctDqr0Riq+OgpzehJ3ft1AYvKjeOZIWMam5VHxme6otTq2Lp7NA5f+fYnZ5iLS0uBlpP+EWUSUq8DYwX25c+Nqsd+LTm+g97DRdOs3hHWL57B5xUJyc7KLJSzt0Gq1vNa9J5vXr+XllzqzauNWeg0Zydff/0R6RmHcLibpthOUjiRlTkKK26u4mC75+VRKBjaoynv1qrD0+AXWn7nK6pOXCfX2omuTGk77OhIJpy5eQ61SUqu+9ALG7CUrGDWov6QS6dzFSxw4coxBfXpKHms2mxm3YDVzpk+VTay//O5Hmjas79HZOz8/nw9nzGXO5HEeE/SFS5YxdMQIJzLBVVVps9mYOmEcE6bOJMfmPJan30JxhKW9JPzfDa+w8pRq153rX81Hoy6Y2xlNOjfS0hUq33C0pRqSuP8jRFvBdyJHWKr0vpR6diD3d67626//P4knKRYKgsCgPj157cXn6Tn4feITEmXJnEYNGzD6/eH0GziYuPgCBbYiJ9WNNBIEgV5vv8HY4YMYPXkGn2//vti5nSAIvPh0czbNHMPB81cYsGA9Nx/EeTzGFc1qRrFyZG+m9H6Ns9fv0HPmapZ8+TN3Yp0FOJKEpQs56bjwURIUjSlT7ZFpttGoTXvmLl/DoUOHmDPufQ78/gtff7KF2QuXkGtTuJX02vQmcpUGVqzfzPsDH6kVHa/t+Kkz6LRaakmYweXm5TF65iIWFbbBkML85R/RvevLbup0++eOjU/gl11/eFyMAVi2ZDGvv/EGISHyBkOnzp7HZPKlfFnPrRw2fvI5zZs0pEqlCh73+1fgSBZK/d7/CmGps+VhMBhYs3I5Kz9aw9Fjx0t0HQBeXgZWrlzJpKnTuHf/vsdjBEFgxqzZ7Pz1V/bt2fPY1/l/AY+bSYwAZ1mUIAgtgNXAAMAP+Ab4WRAEn8LtFYE2QHlgCuDadCsJWCCU1B7PBUFoaY4/B0n2SESaUBc6gKeQiGeHayMq2lIQ5PaQRKaHce1QCQJPafx5Vh3ILUUWZxSp6EpuslxwXqWKzn5BjAsvR30vb3alJzP/4R0+iotm59nb5Lok7Mk3kj2+/g7cSS0glZRqDZWf7Uap9j3JS452U1S6Gt+Y7x9FHV5X0lnb7s6tKdXEbRtA+p/fYazS3smQx2nsxJvYzNmoAqQDnyiKmO/sd1NLusKaEYeYl+E0jitR6RsaSuKJrwloKK9KqhLmQ8LdG0RfOUvt9l2oGPTv7cuoDitb7D5/hZRWCwqGh5bmx7h4LuYXn3DboReU9DSEclJIJUP0fK8ICDTFD+0/U9RtxxMXB/Ot8IwikDtiDjdt8orEhFwbvY1hXM3P5ou4GADJ0tjMmDQ0SgWDGlSjc5lQRn2/j/03o532cVRXOqJ9w5psnTiYhNQM3hk7m5MXHyX4JSllVCqVPNW+AwuXr2LwiJFcvXSBSSOHMnHkEH766lMS44tZSf+bEOlnkFSeBFdrRP0+U8lNTaDyC70xhsj3s0m+dRGbJQ+/ctUlt1//9RPKt3sdpdo5AY30M8CDC1jycinfSNrow5yTzYmv1tC0u3zPoeuHfiWsSl28g8Jkicp8cx67tyzjnZGe+wgd//5TOrzaDbVGPlnOz89n5uQJTJk5x00V4DhZ/FfcD7Uuk/CSOhm7Qk5dCfC03g8/1Bx8TMKyHr4kY+Z2CdTjpdFTgZI7kD+BeKLiYHZ6XoESsMXL+JSuxu0fVpKY9Og5Fp2S7URaRjR7gbK1GvLtwg+5G5vspkBzJC3rt3yaQVPm89nWzWxZuRhLvvPCnBTCIksxdvZiGrZow6wxw/npq09JynJPmDwR+lUqV2b2xLF8tHA2Wo2GiQtW8O7IicxdvZFzV2+iDHhkZOGoooQC5WTi+RsknL9Dwvk7Jerhqg0OcnrBo/vL3l7BPk6Yt4EZbRtQM9ifqNKhvF63svSgFBhczNvwOeP6vuX0vj2BPnvhEhaLlQZ13ReX0zMymL14BfOnTpCdz02Zu5jh7/XGzyTdUzMmLp6df+ylx5vy1TEAs+bOZ2Dvd/CXMLywx6ybt26TlpZGnTp13fZxxOrlS3jxldcIj/TsFP9XEGjQlIi0fFwTHlcYgktT9rm+XP96AWrlo7EcSUs7YWlXVwKo/UqjCa9N4sG1iKLnVhpqoz+R7fv/S9f5BOCJiYX232nDenVYOH0SQ8ZOJCZWfs5UtUoV5s+ZxcgPxnLp9DGPY5cpFcmmFYswm830GTaaB7HxzjtILKLotBrGDe3H1N6vsXbHLj7c8gNJ6dL5hVwVhZ+3FwO6dGDzhwNoXacqW3/ZT585axizahu/Hz9PTp5ZkrB0JSiLyCwZ4rJYlaYLUnMtZItKug8YRu/ho0mMvsPkeYudFlxcCcvps+cwbNgINBLzKLPZzKLV6xg7TFqp+OH85Yx+rydBDqZfjnPq/YePkmc2075NK4mjC3LjD2fMZeaEMR5z4xPHj5Oamkq79h1k97HZbCxatY7Rg9+T3Qfg/MXL/HnpCt1e/c+UOHuaW5aUsNTZ8pz21Wq1rF6+lK3bPmXv/gMlugab3oSPjw/LFy9izPgJHu/BXIUWhULB3PkLMHropfx/GSVmDARBiAIGAqNcNvUFtoui+JsoinnAfCAPsP8yFYUvpcP/O2IdEAlI126UAAaUtMSfQ6SQ4YFYtDuAXyKj2FJUAYEojDTBj1OkcYF0TOrivy6DoORpVQB1lT7ssSZzxJqKuZiHtVTJbQWdge6BYYwOL8tbgaFk2qwsuniNqWcv8vHJa9y4UvwKlSfCUs5BWgo3EjK5EpNOdGwm2TlaVBFNnJy1XYlKS+p9BBQofaUnafnRJ1GF1UZQqt3Iwby4Kyi0RjQB7vJ4AFteJplXd+NdszM+EVGSvS4tCVdQ+kR6Lv+2mjFHH0dTtkXRe1JjpV/dj3e5hgQ4OGa6qirzc3PY98lK2vcZLfsAKImqMkD/9/csfVwoBYG3DSGcMWc8FmFpUCjpbgjhKClkORCWUspiAYEQ/plNhJ/kOCgIAm0U/kSLuVyzOf/b2dWVADG5Vl7zCkYjKFiX9ACrwwq5lHNyVIAvK155istxyQxbt4PEDPnYae+PplQqeLdTGz6aPIJfD5xgwOgJXL9997E/U1BwCG/06M3MJSuZOHshYZGl+XLjGlZPHMbnqxZy6/IFjyv8nkrAPUGuPM7+vkKlomzrLnh7WDjIz83i5u+fUaWzc78fOwlqyIpFa8uhdsOmRe/ZX+acLC7+9hUNXpXuFSSKIkc+WUyjrgNQa6V7MGQlx5Nw8Shtu3SVJSoBdm1czCt9h6AzyPeSTU9O5M7VS9Rp1lp2H4AV82fRq98A/PxLTiCWVOnwr0CqFNwRrupKgNZ6E6GClgOPQVgKCDQsNO0riXo8+H9x8G+PgwD+1ZriV7kxt75fTmJSpmxZuLFiA1q+3ptv5o8lPTFOktwpUlkavek9Zio16zdi8vD+XDxzskTXUr1OfaYuXYO3r4nJQ/ux9/edj6U4h4Kysheebc/i+XPYuGAandu3Yc/Za/SaMI8Ry7bw69Gz5OUXxHg7SZmTkEJmTBpZcdlFr8yYNKeXo7rSdRFACnai0pH4bBwRxPPV5VtHWBJjmbBsI+P7d8Ogd49DFouFuUtX8uH7QySPnzJnEZMnT0EvcSzAD7/+TnBQgJu7rB328m+pBN0x0d996BhqlYoWTRrJfhaA2fPmM27MaI/7HD96mMyMdJ5u/8zf0nNZDnbSsqTk5V+Bzj+M8p0HcWP7YtSqPAwOizweCcuA8qiDK5N4aAOiKMqqKzNTc9H4BEpu+yfgSYyFdsImPDSEZbOn8f7oMTx4+FB2/7DQUDYsmsXytRv5ZZdnZZcgCLzzxqvM+PADJi9axZptX2GzFd/bOdjPl7kDu/Ful46M3/IDi7/9g6zcR4RQSdq9CIJA3ahyTHr3FdaP7c/obp1Jzshk9MpP6Dt3DRu++Zn4pBQ35247eZSr0Dop8IrgqMAsbJ8B8urKTLPN7b4OCgnj3QFDJElIO2G56489eBuNNGoo3cdw4cq1DO7TE4PNfe7w675DRPp5U6+s+/ekyC7oHbl2y6eycRTg4y++4elWLQgPDXH7HuzXmJaWxsrlyxg/YaLTsa5E36dbN9Hl+WcxeOgnmpmVxewlK5g1sWRtMP4TcCUiS7pNrVazfPFCvvruB34/eIxchdbpJQd/fz+WLlrA+6PHkJjkuZJBoVBQ/y+2Tvr/HSUy2BEKmgpuBEaDW91SbWCz/Q9RFEVBEM4Uvo8oitcEQTgC3Cx8dXM5PguYBMwSBOGbwqD+2NCjpBX+HCDZo6u3CoGW+HOGdFJJozY+ns10UNKaAO6SzffWeFoq/QgQip8U+AtqOqmCeGjL5TdrIkGChtc9PJAfxGcTESydUPkoVbT18actYBVFLudk8XVyHGkWC/W9fGjmbUIn0dsCHs9N/K/Alai0mTOxxJxDW0W6LNGaGY9ozkJlKu1GDtryMsm6sZ9yL09wK/9OjYlBtFlJO/0FPnVecdruOE7qjWNYU++irSTf1FkURfJu7UVbphmCQiVJUgLYLHlk3zxOxHOuc5BHqBzqzY9LJ9Gq2wA0eulk/6+Ufxtt2YiiyJ2797h86jAajRqDTochLw2DTkugJQdfL+mHxF9RVTpCIQi8ZQjhk+w4BKCaumSGON4KFd28QliTFkNHVSA64a+Trw/TcjAmlLwcHSDP8u8tFX7S42CmxYZRpaCVwo9DthQsNpFqikfEuqtjeGudiQfqfBYm3GOgLYKwSJPzeDFpRaW05qQ0+jerxb2UdMZ/uYtna1WkS4OqRWY7jrClxhdNPL0Meia89zZxiSks+eI7srJyGDZkEOXKFO8c7gqNRkO9pi2o17RggSH67m1+/vEHvtu8mtIVq9DmhVcIDH1krODYf+5xIEdUPg5EUeTCF0up+mI/FCq127jWfDPHv1jNUwOknSCPfLKERl0HopDpB3zxt68IrVwb/1LO6nI7KWm1Wvhm5VI6vud5Bf3PPT9TpmwZylSp6fHz7Nq6itf7Dy/6W6pf5S87tuPnH0DDJk09jvVXkK7y4sTJ05gtVrx0GgxaDaqsTEwGHWGmkrt3g7PRjr+Ptqh/a4RexYMc58XOFnpfDuSkcdCWQguFX4lMdwQEmuDHQZJRIxCGZ8MLT8jOtz62OiqjhOXGfxVPehy0w69yQwSlkhvbl1ChyzCSUnKcjHeg4J60+kbSuMdYfvloDs1ffReq1PJoUhJZsyEDptfk63XL+fmH7xkyeiw6veeYIQgCrTo8R7O27dn3w9eMGtCbbm+/Q6u20qppR7gaCAiCQNWK5alasTxkJpF05xa/7jnA0N/3Y8DGc+UiqKpVkxWb7jZWVly2JHEvR1hqg4NkFfSOzwdHuD4TvvzjCBVKhVO7snQlzOwlK+nf4203MxuA73YfokyFKCpHRTl1nLd/H1dv3GTHL7+xbsk8ybGhwKm2Y7u2hMm4jwM8iI1n4xffsmXRDNl9AH77fRf169bBKGOUBvDwwQO2rF/LktXuPVHtMOlUxZaCSzmDW/LzuX3lIskJcegMBrQ6PTp9wX+DI0q5GfDIwdFkJ9LPUHQ/BPjpnYh9O7S+QZR/YSA3ty+m4svvY/DxJlum77XdcAdAExQFVgtJR7cS2LQH2ampkqXjJcHjxsGEjL+vjZYc/gmxMCQ4iBWzJjFk7HhmTptKubJl3PZR5KSi1+tYvXA2Mxct5/rN2wzp967HuUOEt4b186bww+976T58PFNGDKBSuTLFGuVFlQ5nzZA3OHblDsPWfEPtchH06/qipJljcQj09abr083o+nQzLFYrJ6KTmfvxd6SkptOhQwee7/IqOp2uiEzKNNtAU2Am5BRXH8PYr2Asm8f7N8NsxVujJNNsK1LO34xJYOsn29i0bg3gHtdPnjlHWnp6wWKJSwVSfGIyH3/zA1unvy95vvz8fEaOm8TcaZNly8OvXL/J4TMXWLl0cZG5mCN0tjyyUTNuzGgmTp4iSbrakZ6ezu979rN19RLZfWw2GyPGT2XyB+97JDRdYf9OPCkkRVHk9p27XL5yGY1ag8HLgNLLFy+DF2WC/fDx8Wx0KIWSqC7z1QbmLVzEyOHDUCgUNG/RothjAIKDglgwdzZDR4zkoxXL/tL12ZGcZX7sWJhv/ef3Ri+pG/gwIFYUxe2CIJR12eYNuNaXpMIjW0xRFKdQIHOXw6bCcwwD5GcdxUBXSCzuJ4l6+OKP9M0mIFAPX26SxQGSaYIfmmJEpnU13lQVvThgTcZbUNFI4YuiBOr8cIWOcIWOaFsuW7JiKafS0UZrQi1hKuOJsLRDKQjUMBipYTBiEUVOZaWzOu4+GkFBGx8/qum9ZB8wKTcS8KtY/Op5SeFKVIo2K+Zbe9FUaCvt/m0xY75/DF3Us+7bRJG0M18T2WGAZJ9KU1gY935diaFCS1Re0qodm8WMLe4sgc37otBIB8f0B9fIf3AKlV85TJU8J9WW6MMENOji8YF96ucvqFC/BcFlCwhP1xLwkhrq2FWV586e4eCB/UWKsbJlylC7fBiZmVnEJySRGf+Q7Jxc7ty8SXp2Dg0rl6NdhB+hvn+vdFxRqLD8JDsOBVClhIRlfLaNtip/frUm8pwyCI2gcHMG/wfjiY+DdiKlDibOimkct6VRDW83VdiDHAsRehUR+Wq6+4WyNPE+ffzUVPTyckpoXRPS0n4+LOrYjO9uP2DI1p+Z+FJrQihelRMS6MfsMcOIiU9g0aat5OdbGPb+SErJlMg5uoF7a5RFq9iOSV5kmXL0GzSU+Cwzd65d5qdPN5GSEEfd5m1o8vSzlPzx9gh/B1EJcPP3zwmp2QxjaGnJcY9+upx6L/aUNM25svd7givWwC/CXV0eZtJx+9xxMhJjaNptmNP7jvhjy3IadHod7wD5BD321lVunj3Ke5Pnevwsd69ewOjjS0ikfF+i+3dvc3j/HhYvW+lxrJIiJiGJn3/dx+mrt8k15+Prpad+6SC0GhUPk9LIzjOTnphMUmYO0SnplPL34enIUGqEBTg5ghvDfItUYF4hBknlsCOkCMuWel/256RxyJZC88cgLJvjz36SUCEQ9A9VUMrgiY2DrgSKqWI9FGodN75eSMWXR5CUgpP5ld0tXO/rT/P+Uzn7+VLibl+j3rOvEO7w7LY7hduh0ep4a/Bobl3+kw+HDeD5br2o3qBpsf0GVWo1r7zVnRde7covX3/K4H696N2rF61ae1Yse4Kv0cBrLevSuXIkSZnZfLbrBBtuRlPJ34f2Jn8cI4wjUWkM80Uf5PfY55MjPF3bMdhS47mcksf+s5dZPXNc4Umde8jtOXAYgDYt3Odi96If8P1321m3br3bNpveREbcPSbPWci6JfNk52hHT5zm/sMY2V6XNoOJvLw8Rs1YyOK5M1F4EBTk5+ez5ZNtbNmwDpUtT1JNY7PZmDn5Q6bNmS/rAlwS2InKfHMepw/u5crZk6QlJ6JSqShXtQYBwWGkpySTl5NNbk42udlZPLx7G41GS72WT1GnWSvSrQpJt3A77M+MmNRcWcLS8V7Brwxip/7c2L6Iiq+MBBdBiMFkKlJPOhGWodVQ6/RkXPwF7+odJQnLzBJWPDyBeCJjoWvPyaDAAD6aN42Bo8YzYeJEqlSuLGlmolAomDhqGJ9v/54hYyYyZ/I4jF7Sc3+7cvGF9m1o2bg+kxaspGypcIb16kZJZAqNq5SlcZWyHLp0iwGzVtCkTk3e7dQGreav3TcqpZKW9WvSsnUb8tRe7PxjH8NHfYBBr+el19+kYaNGTi03FDmpBcpqB6JSFRjqVJtZZPRXGLfsBNrjqqXz8vKYMG4cyxbMQVloXub4/aelpzs5Zdu/W0V2KjabjdEzFzFv/PsofaXnc+PmLmNAvz5EhEn3l8zMymLKguWsXbXCYz67ZNFCXuj8IhUqVnTblqt45Bi/YMlSRo2WrySEgkWiF55t95f7VLq6lJ86fYZ9Bw5w5WoB71C+XFmqV6tGRmYm0YkpZGddIzs7m3v37pGZmUmzhvV4odNzhIaESI6vc4nhjp/PE5RKJQsWL+H94UNRKBQ0bdasRMdFhIczffIkBg0bwdpVK9Drnzyz3ScZxWZzhX01RgJy/usZgOvyqomClaISQRRFqyAIHwCfCYKwoaTHSUGDgjYEcIBkqmIk1IOqoQJeBKBhH0nUwUc2obCXsuoEBe1Vgdyx5bDDGk9ThYlQD/JfR0QqdDxl9OFKfjYbs2Ipq9TRRmdC60LqlYSwtEMlCDQ2+tLY6Eu61cK+9BR+TE0kUqPlKR9/wjSPnyBlKgwk5ViJzTRz5/+xd9ZxTlz9939Pkk12s5Z1wd1diluhxSltKVCguLvr4guLu2uhVGkpDsWlQIHiFHdZd5dkfn8s2Y1MZGmfPvD9Pef1mlfbzJ3JzDZz595zz+ecuFSjEvC4iNzSUlOiEiDj2VkcAqsgU5q/3ERRJP3JqWw1o0T5d/KDE3hVaIzSTbozjrt9DJeAosh8pVWQoiiScPUnXMu1tkhUAihlWaB2xa1CK4ttAJQkkJ6VgZNfcTS+ufdjWAKeGP6CiMd3aTV0OmA/USmlqrx65Qrr166mTNmyfNKsEaUH5ibByRNCc+8z4jkAmaFP0el0XLr/lHWHzxAen0z1IoF0+kDaG880Ed4eT1M9Ybk9JTw7fMrBvt+lRnCgntwjh7BUCMJ7T1i+b/0gQGXcuUUiV4invqixOLAIcFAx2qcQWx6/oKS3O+38/SUnpKmRsTj5eCAIAu2L5qdJ2aJM/+UE9UoW4ss6FXC0olzJ+S5fH+ZNn8yLV69ZunI1Wq2WwQMHUEwiFdESTFUpvs5KKFmGwqMmo83K4uq5U2yYG4SDUkX5hs0pUcV6WZ8e9hKVhhM7KUTdu0JmSgKBVTtLnvfRhaO4ePvjW9z8WY199YSw+zdo2Hey0ef6iWVs2EsuH/yJz8aGIJNLTwlun/kNJxc3ilb+wOI1piTEceKbVQwOXmZ1wOkqZHF02xqGBy+z2Ear1bJ07iyC5i60ei57EBkTx6KtP5GalsbnHzeiQ+NaqB2z32P60iw9DBVfz6Pi2HX6Gpv+uImvi5oviuYjn5vlBRZL6kpLaODkzqnUOM7p4qgj09hFWMoQqI8XJ4mmKjI8LFR7vE94F/tBbZbOjOzQl6emJKSj8CiGZ9W23P9xXjZhiTRhKXdQUq3bWMIuHmL3kqk07z+eIoG55JUpYQlQtEwFRs9fzS+bV3Hh2CE6DRpNEX/rJa1xaVloHJW0+7IHn3fqws87vmb711vp9OWXNPmw6d96hrxc1PT8oDydiubjQXQ831+5T1hsCtU1GpqXzl0YkiIq81IObghLhGd8cirBX+9m44T+ZvekU2sIj4hk0zff8/XqJWbHZmZmMnFmCMvmSgfmaLVaRkyazpwpE3B1kV6oDYuIZMWGLWxdtdjitetTakcPH4Kvj/X/bzPnzGXIoAEWlUsAm9au5tOOnfHyzv0bGi62GcKSujIiOQNtVhYn9vzEtXOnqd2sFe2+6ofG2/b/l5TkJK6ePcHGuUHodDoqN21DqWq1CbPSv+lVlqaEpRQcPfwp3LI/D39eROBHQ1A4Wl4kNyQsnYvVI+neUZLun8ClZONcUvMtVZbvAt7FvhCMSTC9zYFOrUHj7saGpfMZNHYSg3t3t2ibANDp07ZULFeGPsPHMnHkECqVK2v1OzVuriyfOYHDp87RdfgkJg7uTcUCFkQlJu/xumWLUqdMEU7dfEi/+RuoUboovVo3znnv24scYpHskt3WHzel5SefEx0dw7e/7GbjhvWUKlWKLp+3p3ChgmZEpdR5bAWZRSRn2FygApgxbSpDhw/Hx9u8jxFFkbFTg5k1aaxZUrZOrWHJ0uV80eZj8vlLj683fvcLZctXoHaNapL7tY7ujBo7lamTJ+Jioa8EOHjoMDJtBi1aWp8b/37+PAAVypcHC+nddx884uHjpwzp29PquezBpct/smrtOipXqkjL5h8zYugQyZR0Q+JRq9Vy6eJFFq9aR3R4KLVrfUCXTh1tEoTWCEvD8ysUChYvXc6oEcNwFLKo/YHxWNtSqnmxYkWZMHY0g4ePZO3K5VbVq/+DMeyRntQDfIBbbwYN+l/JDUEQpgDXgar6xm/MgCsDv+TlQkRRPCgIwkWyZe9/CwpkNMCL88SSho7CVkzsNTjQGG8uEUsY6ZTH1agsXMpzr7DMiUBBxXltHH/pkqgr9zAjHS2htIOa0g5qHmSmsD05DD+5kg9VHqgtpF7bCze5gjYePrTx8OF5ehpH4qMJzcygtJOaBnczKVZaenUBQPC1nuRliLjQUMnPMyPuIKjckLtJJy1mhd9E7haITO1lRlRmxDxDmxyNW3HTKohspIY9IC3iEf6N+1m8huQHJ1D5lsRBYznpMSsxktRnf6D5oLvFNgCuHq6EHt1GvhbSknsAnU7L84ObcohKU9hLVD64e4dvN66icJGiLFi8FBcXF1ysBKQYQiaT8UHpolRwlCGKImcfvGDsD0co5KXh8wJ+eKnfvvww5zsEgW5qP7a9KQkvaYWwvJ+UW37kLSipKXPnsDaSFnIfu1TI7zjeu34QoDyuPCKZk7oYGso8zUrBAWIS0vF0UzHQOz8XFamEPHzIkCJF0FM9hupKPWEJ4J6Wweoerdl95S59Nu1mTMu6VK6cPajVl4JnRYUZD/7eoEC+QBaEzOF1aCir1qwlPiGBwQP6U6RsbsCCJXUlSBOWEckZyBUKqjf4kOoNPiQpPo7D+3ZzZs8PKFy9qNikNaJnIaPJr36C9k8pKlNjInh2ejdVe0/NOb8hEsJf8vTPUzQZNNPs2KyMdP74fjVNBk03ukY9UZmZnsah9fP5ZOQsi0Rl5PNH3PvjJO1HB1u8Rq02i+Pr5/LVmKmoHC0P3rzVStYHz6DjgJE4qnPvw3Rw/vW6VbTv+CUaj7ezG5GlxBGfkMiSTd8Q/voVI7t3oGThbGLF0PBepvE1mugYlqgW9NbQp3Z2KfvLuES2XrxNbFwSncsXpVyAh6S60pCwNISUuhKgtMyFO7okzotx1BHsU1jKEWiAJyeJphYeuL6F2vcdw3vRD+rJyxxPPb+i+NXrxoOdCynadjDR+EgSlgD+NZtToGwldi2aRIOOfaleM9dDSoqwVDg48EX/Ebx4dJ+1Myfw4cctaNb2U7tIR0dHR7r07k+PXr34/tsd9OnZg/affUbLVq2N2pmWDFqCYbp3CS93hpcvSZZOx8XIGJbeuo9OFPm4XGGaeUjbcLwtYWkKnU7H2E2/MqtvJ0nSQavVMnZaMPNnTM5RGhkiePEKBvTsireXJ5gobACCQ+bTtcOnFlNoMzMzGRM0i4WzgqwqHNd/vYPqVStRtZJ1G4wDR47j7uZmNik1xP27d3jx/Bl9Bw0x22eJsDRFWGIavx/ey/mjB2jc5nNGL1idJ/Ja7exC3Y/bUPfjNqSnpnB890+s3/UdVRp+RGD1xsgt2IpIEZaW4OjpT+GW/Xi4ezmFWg0Hu3R04FKqKQm39pHy5ALqItnhmpZ8LN8TvHt9oS73N2boxypLiUOn1uDsrGbD0vmMnDyDqJhYWjazbENRtlQJtqxYzJTg+RQvWpgBPbtJ/hZ1ak3Od33csA51q1cmeOUGvstIZXL/rrjYUQIsCAKNKpagSYO6nL1xl6FLtlC6UCD92zXFTcIeIi/w8vJkaN+epPUfwL27d9m6bTvPnzykdsUydGhUHY021XyMKkFS6tWO+jGplE2DIfSl4Fu+3k6pUqWoWq06SBBh67Z+w4cN61FCYsH+j8tXiYqNpVWTryS/48LVG9x9/pr5M6TDEXVOGpavXEXzj5pRupTlALQHDx6ya89e1q5cjsyCahwgOjqGNes2WCxlh2wP4hnzF7NucYjF77MHN/+6y/J1mylRpiyrli3B2YLCVwpyuZxatWtTq3btbH/3E0cYMmIUxYoWpX+f3ni9CSgyVVfmBQqFgtWLFzBkxChkgowPataw+Y6WpcZRrmxZBvbry/DRY1m5dLHk++9/MIc9I+cfgaMG/50fOA98BNwFbgCHBEH4GjgDDAMcgV1vcT1jgQtgPa47mSx0iMiseE3KEaiLB5eJJxUtZbDsa6VAoDaePCGFk0RTGw8cbbyAlYKMhgpPInUZHNRGUlrmTCnBcgl2SROSqoSDmhIOap5lpfFDagTOgpwmKg3ecqXd6krDYB7D9gVVjnzlE4goitxNS+H76HCyrkXh7aiirjyTJoHeuDnZ94DqVZXWoE2ORBv/ClXxDy3sj0KXFImq+IfmPpWZqSTdOUzhTyZKHpuVmkD0n7sI/Dg38VYTEGBEWKZHPkSXGodLScsvXl1mGgk3fkFTo5tkiboe7v7+hB5Zjm+97kYhQqa4d3AHlT/+DEeX7IoOQ1WlPaXfKcnJLA2ZhdrZmZmz56DxyCaA7CUqHQIKkxn6FAB14cKkPH1K/ZIFqV+yIHdeR7J8/znkMoH+1cvg55K3l30+X7XRb0tPWH6dHIaDIFBEYX5/hkSlHv4yFRVx5TdtNB/Lvd53deU72Q8mk4WzjW68GM44inJ+00XRVJY7CNOXghuiZpYTpQu4Mv/hQzqmBPJBiexBnCXCMiUshk+qlaFJ2aIs2P87u249ZXyHpqhVJiuGFlaoAwMCCJ45g6joaFavXc+zFav5omNnGjRsaNaX2iIsTeHirqFh+840bN+ZOw+ecPPEfp7e34jSSY1v8QoElqmCq28+M0LRtKTa3lAebWYGt35aTsUvRyPI5Gbn1WZmcu6bZTTqHyT5nrjw7XKqte+F0snZ7BpEUeTQunk07joIJ1fpxNv0lCSObl3Gp2PmWJ3gXvx+NfXbdcQ7wHJKrbdaycl9P1OoRGkKl8pVVZgSlRFP7hMeFkqvQcMsnssaRFHk6517OHXhMiN6d7WoxrAHzgFeJIdGk1/jypSPahH2Ipzvbj9iy7X7tPH3pZq3ZTLVVF0pRVj6qRSQ7sJfukQu6uKoKdPYdV0ObxZPTxNNHTxsPq/vON65fjArJY6Yv87iGFg+5zO9YispLi2HsFR5BBDYdCBP9q6m4Ec9gYIWCctMlwA+n7CAo1uWEvvwBk0797JJGhUoVpJR81dxcu9Opo8YQJ8R4yhQxL4SuEzBge49e9Gl21f88vNO+vbqSeP6dSTVIIbkgD1QyGTU8fOmjp83cm9nzkTHE3T8EtrUdEr5elCjoD/FFHIUJmqVv0NYLvzlOO3rVKJYPoNFcn0ppVrD/CUr6fpFewL9zRfRj/92CKWDA/VrSxODe/cfwNlZzYcNLfuFTQ1ZxOA+3a36VP7+xyWePH9ByFTpsaceL1+H8sOuPWzatNlim8zMTBbPm8PC5autnssaHt27w5ol86ndtCVjFqyRVA/lBSonNS06deejDl05cnAv+xdNxLdUZWq07phDWuq9WUPj0+wiLPUl4o6eAeRr3IPnB5bjVX8QMgfp+YShuhLAtVwrEq7tJPWlI075K/+t+3sH8M71ha/DwhEToyUJED1hqVQqWTFvFtNCFhEZFU33zh0sns/JyZFFs6eyc89++o0Yz/wZk/HQSI8/9HBxVjN3/HBu3LlPv2mL+KJ5Iz750D5vP11cBHUKelJv4gCu3HvCuNU78NG40bfthxT0+/shTJVKFqHKmMEIybGc//0Ms5etJy42hnyBgdSr8wF1q5TDzT93AcRS+J/huNOauvLGtatcv3aFJYuN1d16Uuvarb948OgJi2ab89Bx8QksXbcxuzQ8y/x5jIiKYfnmHWxes0Lyu3VOGk6dOUtsbBzDh0ini0O2/+S0WbNZt2pFTp8jReLpdDrGTZpM8MzpVheA5i9fw4Ae3XBzzZuXuB5JyckEBS9Ao3FnwcwpaNzd0FnIg7AHgiBQp8lHNGnUkJu3bjF99mycHJ0YPXI4fr7m7wd7y8EddemgULBiySIGDRqIk5BJ5fLWFch61KhejeSUFMZOmMSi+X+P1P3/BTbfhqIopoii+FK/AXqpQ5goikmiKJ4lOwltA9n+HF8ALUVRNHf3tv1d14HvMfD0kIISGceJIhXrxIc+mTMLkRvYvpwiqKmOhrPE8Jo0SVWlKXxkStrJfUkXdezXRhInZkq2kyJzAAopHOnpHEATlYbj6XFsSQ7lSVaqZEK4IUz3v4pIydn0EASBMk7ODPTLz7TK5ehYuABpWVnMO3COod8cZNLmXRw8e4mk5BS0bgE5xxmWgOthqQRczEwj4/kFVEXNyQUAUZtJxvPzKIs0MN8niiRc3YlbhXbIFOadvSjqCD+1Cb8GPXNCKvTQBGRfrzYllpQHJ3Gt0M7i30oUdcRf+R7XCu2QKa2obAMCiLm6F5ciNVBqskkaqRLwqAc3cBXSKFa1rsVzSUGvqrx+5TIThg/ks87dGDEhKIeo/KdQJtCHGU2q07daGRb+foPvTt3Mc/qoKeSCwFfO/hxJi+WV1n6f7wIyJ0rI1JzUxvzta/hv4l3sB9XIuUAsr7FNpuXDkaoyNw7roniZZt4XGRI1brFZTC1ZkrMxMaz7M1uNYw3JodG4OamY9XkTPqldkf4rvue3K3dsXpMhvL28mDp5Isvnz+XRwwf06dmDnT/+SGamdH8qBWvlOBrfAOp37EO3oIXU7joCV29/7p3ex/HV0zi5bhZ3Tuwm0UDFZwtSSsy/fl5FieZdUbl6SO6/tHMdlVt3zVng0CNA40j0jZPkL1SYilWrSCZ3/3lwJ/nLVMK/aGnJ69HpdOxbFUzTniNQSfhg6vH4zD403n6Url7HYhtvtZIXj+7z1+ULfNShq8V2KclJrF4UwvDx2av6ribvS0N/KFPIUuOIjollwKgJCAJsXjiTimWkLT7eFv4F/BhQrQzBTapzNyOdJTfvkZqlNbI3cA3I/Vt5uhkPzqUSwv1UCsrKXFEi45ouwa6EcAAVMuriyTliSbcxbnmX8S72gzKVCxlRj0m4tQ9RzFa9pMTF5ai2kuLScpSWDs4a8jUfwYuj20h6/cgsTMSQpHFQqmjRfzwyjR+bZ4wmMTZbdRiVkpGzmUIQBBq37UD38bP46esNfL1qCRnp9r8vFQoFX3TsxMYtWylQtCRDR44mOGQ+kVFRdp/DGpwcFHzk78W8j2oxr0196hXNz43XUUw7dYUJxy6x4co9br6OQqvTWQzWsYWjtx6hE0VaVJeeuF24dIXklFQ+amzu0xkWEcnWn3YzfvggyWMfP3nKnn37GTXc8uLItzt/pVD+fBbLIgGePn/Juq07mD3Jeqp3ZmYm46fPYeHMIKvkYfCsmQwdOhQXKxN0V6XcrI/UOCrQ6XR8v2kte77bxrBZS6jfot3fJioNIZfLad76E/rNXk6JEsXZt3ACQtxroxApa4FSptAT/CrPQPzrf0nM7+sRtdnvaamybsOEcEEQcKv8OWmht0gPv/uWd/Ru4F3sC12dnekxOoiomFir55PJZMyaNJaYuDhWb/ra5vd/3rYVk0YNZfDYyZy7eNmua65YwItv5k0iMiaOPkELeBERbVYCbgm6uAiqlirC2rF96dmqMWt2/cbgRZu49uCpWVuFt7+Zt6QtCIJAncrlWDikGxuDhtO/XVOSU1KZvv4Heo+dxriFazh44TpJyclGxxkSeJbeAXrExsSwfMkigmbOITnTfAydkpJKyNKVzJ48zmyfKIqMmxbM7MnjUCqVZqSpVqtlzOxFzA+eKVlKrHPS8PzFC7Z8vY2gSZaTuLVaLSPGjGPm1CBcTfouU8Ju7bJFtG/XhkIFjdXshqr30+cukJaeTsO6tSx+pzVcuHSFviPG0bd7F6aNG4nG/e2DaEyRJlNRoXx5VixZzJBBA5g4ZSo/7/rVYlt74eDgwKr5wSxauY77jx7bfVyjBvVp0rgh02ZZD3X7H7IhvI8Ego+gEpvjwzliqYgbfnaY1/9FImloqYK71fRvAB0iV4hHLZdRR6axu4Q1WdRyVhuLqyCnpkyDQuI4U4WlKVJ0Wk6mx/FCm05LXx9qOruZfb8tIhMwU2bqE8E9ivvgXix78JDs4cXvL+I4e/cZiRki/gWL8ln3fmSoXC36VcaFhuaQlaIokn7/EMqCtZFZSO5Kf3wKhW9p5C5+5j6Vj84iyBUE1m4veWzUpZ9ReRfGtYj0oFOXlcnrw0vwb9yPpHjzBEM9Em78itK3JI7+0oNnPfGZ8vouiY8u4Fe/R/bnEkRlemIcV7Yv4Ktpi5G/IVDtUVX6uyjJzMxk/YrFpKelM2T0eJRv/En04Tpgrqw09KuEXM9KIEdZCZDy9KlRO30iuCiKbDt5g+sxcQwpXRyPN4o3W56Vln5j6aKOzcmhdHDywVtu/Fu2RMgD/KVNIo5M6sg9ctSV63j2pyiKZn4/giDM6DRjzdSSHzSyeo2m2DDkM14/uP3e15vbCx9BJbbHn8vE4YicCiYWFlJIl2dxXhdHU5kXhd6U5xmSMnrCRk/iXIiN5VhiNCPLl8LHSWUUtmPoVWYYrqDw8mL94d+58TKGKT0+pUjZcmbBCjn/LtFvpMlU6HQ6Duzfx+5duyhbsQqdun6F65sEPUN1pamy0rQ0Rz+YNAwZMFVKajMzCLt3nZc3/0CbFI3KyZnKTduSv3RFyfaG0JMbz3/fj6jTUqh+W8CczHx16xKv71yhRof+gLF6Myb0BSe+WW1RERn2+C6X9/9E66FBFq/j1Hfr8StcnNK1LavLk57c5M8TB+k00nI1mbdaSVpKCsunjGDorCU4GZTeGJLBoigyf/IYevcfSPFS2QSqLbLScPB79MButn3/M7Mnj6OotwG5auAhlSVBHlvzrQTjMlggJ2gH4E5UHCvO3qBL8UJU8tLklIObloKb+ldKlYSHp2fxhy4ONxSUkbnYLAfXI5EsLhBLI7xweLNWbKUfrFjl40+vfzZ2rl3n1uPY1ys4sX1lW1EU9+bpwPcUSq8iol/LaaS+uk7qs0toqn+ZsyhpSJ64GDxzKieyfffqtKdwpapG5zN8dvXPaVxEKIc3LODjDl0oU8PyIqVpiXjonav8uGUd7Tp/Rc16jXI+1zjm9rmGz40Uwf/o1lXWb9yMg4MDA7p1oGSxornKyqRosqLC0MVFkB4RSXJodM5vXm99YBgqpSfqpTwrUyJieInA2SevuJ+Q/Uw0qFqOz8sVIiUshtTIWJJC4438jPXn0ff/z6PimHfkEuuHdkImkyHTZCtXFN7+4OJFnFZOv5Hj2bZ6qdkkW6fT0WPwKEKmTTRSXOrfEenp6fTqN4CVS5fg4SFdFn/15m22fvsDS+dIe10CJCQm0m/keNYuCnmj2tHk7DM956RZ82j98YfUatjU6HPDyezePbt59uwZQ4YOyykRtQX9Oyzs9SsWzZ5Gg5afUL9pc5ulpX8XUSkZpCQlsGv1AvwKFqXJF91ziFH9OzI0Ls1mKbie5E9JSCf59T2irhzCs06fnHBMW+Xdok5H7B9bcSnZBKVXYQBeftNTsh8EEAThz9lH71WV2mcJYY/vsbJf269FUeyRl+PeZ1SrXFH8actaxk+Zzuh+3alRydgXW0opuGbzNpKSUxgzxNxb1hSZmZnMXrQcJ0dHxg4dgFwul1Z5m3hBvrp/j9lf/0IhjRNDWjdA6WC7ukDfd+gRm5jMhj3HuPPgEZ1aNKFZjQrIZDJJj0mdWpPzXJsST466dMlwHcMxalhyFifOnufcxUskp6RSMH8+Bg8dgZOXH6FJmcSlZfHXGzGPt1qZMzbS9+tarZaJwwYwYuJUShUtnH16pSxnDCRLjWNM0Cy+6vQ5FcuVMbv3dVu/wUOj4YtPcu1ADP/Oc1ZupMYHtSyqy1NT0+g1ciLLFy/KKXmWwuSp02jWtCmNGtS32CZNpuLSmeMcOXacmVOlx6Cy1DjCIyIZNWUmX69eYtXXVwqZmZnMXboKnU7HpJFDjN4N1lLBTa/THuj/H4iiyPpt33Llzz+ZPnMWHp6eku2kvkNqX2JiIgMGDmD+9MkUyBdo9RoM72nHd9/zKjKGYSMMqkdd1JbGhHO7h2yaUKK6fUplPVYP/JRX92+913Pjf2757l+GMwqa4M1jkvmLRJvty+KKBgd+JxYt1glaGQLV0VBAcGSPNoJ40XKpodE1CXI+VnhTQHBirzaCpzpzAu1+UoZVUkctk9PSyYvezgG8iE1h2pOHfPP8FWm67EGQPUSlvfBxd6VDs/osnzWJjWtW8vkXHZk2bgSRYdK+lKbIfHkRhU8pi0RlVswTBAcnSaIyM/41mbHPLRKVyS9vo8tMtUhUAkSc2YpXtfYo1Bo0AQFmG0DKkwvIHd0liUrDdlmpCcRc3YNvnWzfTEOiUg9RFLn2/VI+HTYph6i0B/4uSp49ecSYQX2pUasuoyZNlSQqbcGQqLQXgiDQtkAgfUoUYdHt+5wMs29l05INgUqQ0V3tzw8pkcTrjJ8La0R8WbkLjsj5UxuPp1Jul2r5f7ANGQI18cAFOaeJIRPrkyWVVkF9mQdHdFHE6LLVEFJkjJ7AqeXhwQD/giy9dZ8zYZE5E2AwJoIMIZfLGNiyPjP6dGD+jj0s3PJDnhSSkL3y37pNWzZs3kLVGjWZGTSJ4OlBvHr5wqid4aT/bSF3UJKvfA0+6DyEz8bOpVmvEVw7spu7F07YdXz88/vEPbtrkahMS0rg1m8/Ue3T3oAxUanNyuS3DQtp0X+85EQhPSWJE9+s5uN+lhVA9y+eRqfNtEpUOqREcWLndjoMnWT1XkRRZPOC6XQaNNoiUQmw94dvqF2nTg5RaS/S0tKYMDmIm3/d5evVSyhc0HIp+j8BQ0KmjLeG4BoVOBcexarbD8h48041VFdKwZLCsqbgTpSYwWNdit0KS1cUVMed08TYHIf8D3mDU75KuFVoS+yFLWTGvrDaNj0VSnw+log/f+PeqUNG+wyJGv1ChcY3gA4TFnDt0kW2L5tHVpZ0f2aqtgkoU4UZy9bz6O4dQiaOJDI8NM99VrHyVVi2eCGjRgxjx0+76DN8LKcuXJasVJAiKhNDk3L68+TwFJLDU0gKjTfrv9W+npT09WDoJw1Z8VUrlnRpASnJTPh6Pzqd+XcZLlwBpGVmMWP/Oeb3sqwMnDx7PtPHj5ZUAy1atZ4uHaRLwwGmzZzNyGFD8fDQAOaT2KjoGOYvX828aZMtki76YJ7Zk8fh5l/Q7Bw6p1yS49cDh/H18TIjKg3x7NkzDh7Yz+AhQy22kYKrUs6JfbtYPi+YCTPmUr9pc8B6dcA/AW+1ErWLG13GzcI7sAAbp44gKvSlWTtbHs56daXaTYVzYCk8yzci7tL2nN+kreAcQSbDo2Y3Eu8cJjPevvnG/2AfCuQL5OvFs/lu9wE2/5BbcW6ppHlgr68omD8fo6fMtDlOc3BwYMaE0dSoUokeg0fx+tE980YmRGVWVBh+nu4s69mKGiUK0mvpDs7cepjn+/JwdWZMq1qsHtyRsFcv6D57NZv3nyAt3Xg+bXifhgRWUoaOpAxd9mK4kya7nYtX7mYAf2cFHdu3YdncmWxctoAO7VozePgIHr+w77e6dulC2nXoRGB+aW/gfYePUjB/Pkmi8vrtv7j34JERUWl4X8fPXSRLq7VIVIqiyPgZwYwf0hcftcyij+KWbdspUqSIVaISID7sBes3bGLqJMt2GTqdjrHTglkwc0qeicr7jx7z1aARfNigLtPHj3orojIv0P8mBEGge89ejBwzlrGjR7F73wGbx1orD3d1dWXF8pWMmTqLiEj7KyG6dO6EUqni6y2WbUb+h/eYrIRsX8raeCIAV4iz2b4ozpTAmZNE2VWKVUjmxEdyb85oY7ilTbS7jLWAzJG2cl8ixHQOZEmXhlsjLCE76buOyp3+zoH4yZXMe/qYlU+fkaCzjzh9G1KzeIkSzJi3hBWzJxP+4onZfkOfyKzYp6DTovAsKnkuXUYKWRG3cchf3YyoFLMySLy1F7dKn0oem5USR+yNA/jU6mzxWmOuH8DRtyhO/iUstlEJSQjpEQQ26GyRzAQQdVrCT27Ar0FPPAI0ZkSlXlX54uIRqtZrjLtP7rHWVJX+Lkr8XZRcOv87KxaGMHvRMmrWyduKyNtAr6o0RIDaiZlVyhGaksbSv+6TKdpWAFgiLNUyOV2d/fgmOZxknfFzZI2wrCp3Ix0dt7XWPVD/h7yjKM5UxJWTRJNhg7B0FxxoJvPm17RInmmzF1T0hKWhqkw/wfVSKplQoChPEpJZdOMeES9yB6P6Ca+pog3A31PDipE9qV6+FN1GTObQqd/t6kNNBwTVatRkwbKVdOvZm83r1zJ1zDBu37hm8zxvC5XahVZDpvD89lWuH7MuTvN2yOLF0R181Ne8lAeyB47nty+hVpdhyCTCDY5vW0ntT79C7aaRPPbg2nk07TkCB5V0mV7UyyfcPHmAhl8ONNsX4O5IgLsjniqRH5cF8+XYmcitDCS91UoO/biNslVrUrC4ZTP2mKhIblz+g7afd8z5zJ4S8KjoaPoOGMQXn3/G6MH938pY3FRtYeqrZ6jw1cOQsPTI58HAssVpEODD3OePCEvLJqOslYNbgr+jA/VkHjwRU3ghptpNWHqgpAKunCUGnQ3CMjUji9C4tDxtSVZ8XP+vQ+Hqi0edPiTeOURGlHFJlmlieFqKjqKfDCMt+jXXd20x6ptMCcvQuDRkcjmNugykeLW6rJgwlBs3bxMan2ak2tbDkLBUKBR07jOQXsPHsmnpfDatWkZ6Wu4x9gSvpMlUBAYEMGPCaJbNmcFfDx7TdfhEvj9wnIzo0BxVJZgTlTnf84a0TAxNIjk8hfBroWaEpZFCXi6jQ81yNCpegHE/HyNTm/1eMbRRMFRVzjx4ntGffoinq7S/2I/7DlO+TClKlzD38Tx/6U/iExL5uIl5aTjAz7t+pUD+/FSvJi2uy8zMZOTkGcyfPhlHKynCsxctp9OXXSlatrLFNgD3X0Wz79gZho4YbbbPkACZNzeYWbOtewSbQhRFFoUEExUVSfDSVXj5+BgR2P8GYemtVtK0eUuGTJ3D4c3LuXb6qFkpeF4IS9fClXAtXInEaz/mhlrZIizlDnh80J2E67vISjYfP5gir/1gVOJ/VqX6TuKNstXBw5fFU8eSkZnJ/LVbbB7WsX0bOnzSmt7DxhKfYLtK/cOG9Vg6eThBC1fy477DFsd1ptUR9csXZ/OILlx+8Jwha37keYTlCi/TKgr9f6scFHRrUpNtQYMp6OfNwJlLmLlmG9FxuQvpOidNznOqJyn10BOWKc5+2QpMCySuIUpVqs6ShfMJGj+al8+e5nxuqKTXP8Onjv6GQiGnbiPpDIfwp/f5afc+hvTtYbYvOTmFuUukS8MBwiKj2PzDLiaOG2PxWldu2EqdmjWM/BNlqXFG28XTx7l78zr9On1i9LkpsrKyGDthEvPmBlslIXfs3EXbFs0sLjRZwokz5whZuZE1q9dQu1Ezo8WivBCVeQ3JSZOpco4pXLgw6zdt5tGDB0yfGmSTsLdGWHp6erBo0WKGTZxq13Okx4BBgwgLC+PXX2xnb8UkZeS5L9S/u99nvNdkpR5lcMUFBX/aQVj6oaImHpwmhgRsq33UgpxWch9EYL82kiQ7VZZyQaCmXENDuQeXtfGcyIomzYQgskVYQjb7X9bBmT4ugdRUufFrahQ/pkSYqdr+KXh6ezN+7jJ2rl5AXNgroxJwPXTpCWSF/4VDQWlfClEUyXh8EmWRhrjnN1feJNzYhWvZlngWNE8/y/Wp7JVTUmKK5Bc3yUyMRFNO+mUAkJUcS/Sfu/Crb9sYP/LCd+Sv1wafYoXN9umJyqz0VF5dPU35xq3N2khB70/560/fcfTQfkKWrcHVzbox9X8aMkGgc9GCfBjgx/zXz4jOfPvBnLtMQUe1L1+nhJn9rq0RlrVlGiLEdB7aGST0P9gPD5TURMMpG4RlUpYOR0FOc5kP59ITuJ5lrEw3LYOF7N/OZ+6+tC0UyPQ/b3PyhvlihiU0qlGZb5bN4dnL1/QYFcStO7mr8fYk3OpRsFBhgmYGM31WMOdOHWfC0AFc+/OSxYmeNT8hKRgqHgVBoFmvkcRFhHLv9D7J9qJOx9kt86nTdTgKpYr8HmqzCd7t334if8UPcPfLb/YdDy6dQemoplB5afX4pf0/UKTyB/gUkF4QSktK5MjmJbQeMiVHyaQnKPUTT1EU+X7RDNr2GYGLu8bivXurldy9dpmw509p1OZzo32mk+etKxcxYqxlHyQpPL93i+GjxjA3eBZVq1S22V6qBPyfRAVPDZOrlGXD82dcjDVXCNvjXwnZhGVjmRd/6ZIIF9PtJix9UVEcNeex7i32P+QdMoUKjw96knT/BKlh9622FQSB/I074+jpz83vl6DLsjyu0g/8VQXK88mo2Vzc9z1nftiITquVJC31/Y++tNfXP5CQJSuoUuMDJg4fyP5dO80m+bbKiHVO2Ym+A7t9wbYlwaiUDvRe+i3f/H7daEJiWPodk5Bu1qfrSUwphaUpGhTLz6elCzPt1BWLbX64+YSKhfNRpZi0Uvrh81ccPXOBft27mO2LjYtn+frNTB07XPJ+Hz1+wuEjRxk0oJ/kfoDJs+cxqPdXVsvvfjp0EjcvX5o2aWyxDUBSUhJTZ85iYYg5CWk4KT565DcqV66Cl7f9wR+pqalMGDWMylWr0avfQNxUuf1KXhW3vs5Ksy2vcNN4Mmz2EsKePeTXdYvRabVG7yhbhKUeajcVgTUaofLKT9g5+wlLmYMjmg++Iv7P7/N87f+DbQzo+gXeHhpCNn5ns23tGtWYNn4k/UaO5+lzc7WtIWQpcfh4ebJ54UxSUtPoO34GEVExFm1cDIlHpYOCke2bMLljc5btOcm0bw6QkGLdd13K61KMj6Rp9QpsCR7Pp03rE7TmWyYuXm+kajPtT/ULQ/rPU5z9clWWEvdoCHf/AsxftpJFwdMJf/3KzPID4NXzZxzc/Qt9h46SvA+tVsu4acHMmz5ZUn0+aXYIQWNGoJZIUNdqtYyeu4L5wTMtLvQeO3WWqJgYOn3aVnI/ZIcwrdy4leAp5oSoKWk5I3gOfXv3JNBA3GOKhIQEjpw4w2dtWlpsI4XNO/fx29k/WLdqBW5uxt6U/wlFpTXIZDL6DR7Kx81bMKBvHyLCw9/6XIEBAcyePYdBYyaTkmLZns4Qjrp0xk2YyOXLlzh+7KjtA/4/xP8JshKgJC64ouAq8TbbuqKgAV5cIo5wbJufC4JABbkrDeWeHNfG5IlocRYUNFV4U0Huym/aKG6YKDTtISz1yCdX8ZWzP41UGnanRrEzJZLE/wBp6ezqSsW2PThz5KDZPl1WOhmPT6Eq1shiqnZW2A0UPiWRqczNxlOf/4nCxRcHD2l5fPSln3Ev0wgHC0bJGfHhxN36Dd86loMfdFmZhJ3cgF/DPmbBPKZIeHgBmdIZ92JVzPbpiUqAuwe20bzbAKPBqzVVpU6nY2nILBLi45kw3fqqlCGSZHlL7paC3pPUEip4uDPILz9rI15xLzXZaltrqfTecgfaO3nzdXIYWSaTrpIuSknSUhAEGsk9Uf/f6XreKbjjQE00nCbaakl4UpYOuSDQWObJ88x0TmbE8DIld/FGP7k19fMr4e7KnBoVuBIVy5I/bpGp1VlVV+qhSIunf5cOrJw1kR9+/JHx04OJjbPdV0veo7uGvkNHMTVkEX9eOMfEYQO5d+u63ccHaBwlN1MIgkDDzv14dVvaUP7yzxsoVrspbn7SE/SE8JdEPbtPibrNc75Xj8SYSK7+9iv1O/aRPDb00V0inj6kUhPpxRGdVsu+lbP4qM+YnEAdqZCEg9vWUqFOI/JbUUoCxEVFsmf7BrqNMC4TN50A37lxFT9vb/IXKmz1fIY4fuwo8xctYd2qFeTPZ71vsgV7DfpNYaiu1JevuisdmFOvMjcSEvjx9Stc/K0nTloiLAMcHfhQ5s1lXTwxYobdhGU+nCjJ26dc/g+WIcgVeNTqTvytQ6RFPMr53FRdmfKmn/Ou2AjXMg24unU2mSnZfZ41377YTAVVvxyNf9FS7AwZR1xEdtWJLcISoGrNWixam13yNXZQH+7evmn3fRlOJOWpcbSpXIKto7ri4+bM8F+Os/veM7Qm72JPN5VdamEpVbIedSoUR+OoJDbdfLz655PXXH30gu5NpdO7ZZ6+TFu5lfmTR5mRf/ogieDJ4809LJ00pKenEzR9BvPnBFtcdN744x7KlCxhNVDn6s3bnDx9mmGDpYN7jK5n0hSmTp5oNoE2JCozMjL4Zts2evXpm/OZLaI5PCyMkYP60b13Pz78qLnVtv8pdaXUeQVBoHm3AZSsXJNfFk4iLdn4nS+1CGcJXhU/ROagIupKbkmlLcJSrnJBU/1Lu87/P9hGjjLtDQHXq2N7vD09WLJmQ85+S2RQscKFWLsohCnB87l81faYShAEenRox/SRAxk9eyGHf79k93UGeLqxqM+nfFG/CiPW7eTbk5fR6d5OAVa+RBFWB0+hZ5cvmLlgKdNmziY2xly16aqU46KUSVZ+WFJYGv6t3N019BgwhHMnjpi1S05KZMHMICbMnGPRBmPt+o106dAef5OKEJ2Thm/3HqFCmdKUKy0dNBiybBU9v/zC7Fg9qfro6TN27NzF1LEjJI+HbC/L0UEzWTx7qqQVhyF+3vUrfj6+1K9rPUh24fx5jB06wG51uVarZfLs+WQlxxM8c8ZbVdj8J+CilFG7Th3mzJvHpLGjuHb9xlufq2iRwkycNIlBE2fYZYGVJlMhCAIzZwejsdFf/v+K/1OMQUlcUCGzK/lbhYxGePOIZO5iX1mqq6CgjdyHGDGDY1nRdpXS6uEtKGkj90ElyNitjeC5hJ+lvfCVK/nK2Z+6Kjd+To1kV0qkUTmungC1VgquLlxY8nN9Erhv4RLEv8wd5MeFhiJmZRB1ajXKQnUQHKQHL7r0RLRJ4Si8ipvty0qOJu31TdQlGkkem+1TmYZLYQuBOplphJ/Zgn/j/hZVl6IoEn56E17VP8XBxbKxMEB67GuSHv9BsRbmq/2GSIp4iYuQSUDxXFm9IVFpitSUZCaNHEz1WnX4qo/9nfi/CQ+FA2MDCnEkPobj8dbDdqwhQK6imaMH21PCJFOjLRGWgTL70yf/h7zBHQeqvSEss2wQloIgUFOmQa6V80tGBE8l1IiGhGVyeAoKmYx+ZYrRoKA/o4/8wZM4Y2WmtRRZVxdngscOpVfXTowOmsmazdvQJuQtdVa/Oq52dqb34OFMmTOfq2ePM3vsUB7euS15TF7STg2ViQDOKgd0WuNSzWt7t6PWeFOkeiPJc4iiyB/fr6JW5yHZ5zQgKnU6HYfWzaN5/3HIJAZq6anJnPxmNR/1MS9B1OP49pVUbvYJXoEFLd7ftVNHEHVaqja2PjH2UMrYNG8avcfPQOGQu7hjOrHV6XR8u34VvQYZJ/FaKwHfsG4tF8+eZv3qlbi4ZPeZ9qhpjUzz/4OQCQJ9ChXCw0HJ4sePcTQocZUieCwRlgpBoJnMm991cSTYWX0B4GNHOOD/8HYQZAp8Gw8k9vpe0qOf5XwuRVimJKTjVqgcfo26cvXrOSS+Ca+zFTTiUqIG1buO5tjWZdw6lb24K1UWbnZtgkCr9p8zY+EyDu/bTdCEMW+t5hAEgY8rFGfV5x/i5KBg6s07/J6ZgJOvk5G9gWuAi9GWV1Tw9eCv2OyxtT5Y53ZoFBtP/sm8nu0sHrdh536++KQNbv7mC9Qbt39H00b1KVpYOmF2+qzZjBo+DI1Guirl/B9/cO/efbr36Z9DwhhuAOERkcxfvppFU6V9gQ2xZt0GmjRqSOlS1hd31q1ZTe++/exehL514zozJo9n1ryFlC1fIedzUwuAf6Mc3NJ5y35Qjy8GjGDXwkkoU8wXhewlLH1rtCMzKZbM0FziyiZhqfawuv9/eDvoy5x7de2Eo0rFms3bbB7joXFn0/IF7PhpFzt27pJsY0rs5Q/wY+uMEdy495jxi9eT9DrXX9/SAqNM44tM40u5QgFsGtEFlYOCHku+4fydJzn7TduaHm+Kkn4aVs6fTacvPmdq0GRWLpxLVkpCDkGpH5s46tJzNkv3Zep9mZShIzFDi3/R0ty8YUxkpaWmMHXMcEZMmobGw3jeqX/Gnz17xp17d2n+YSOz63785CknT5+hdzdp67OTZ8+j1epo0sCYONQTlckRr5g8bRZLgqdZJP9EUWTM1FlMGDEYX59cNbhUv3n33j2OHj/B4IH9Jc+lx/0HD8jMzKBCWfu8yxOTkug7YhxNG9ajX/cuFsvP8wJrJeCW/j9bg5+fPxvXrmbz1q8tpoXbg7JlytCvdy+GT51jRMJbU43KZDKqVpPMGPv/Hv+nyErIDtKRAbftCN2RI1AHT0REzksE78RIeAkJb8q7y8tc2KeN5JXO9sDU8NhSMmday30JFdPZnxVBtGg9cMcaAuQqejgHUF3pyg8pEWyOD+dGov3X4xBQGMG3IFq3AJJkaqJTc+9XrnBA1GmJi0jOJiq1WUSeXoNDgZrI1NIr8KIokvH0LMpC5isxoiiSeONX3Kp8LjlgzEpNIPb6fos+laIoEnZyIz61vkTuaHmgHXN1D+p85XDyMydLDaHLTCPi7DZKfj5M8noMVZV/7d1CAwNPOFOi0lBVmZGezoqpo+kzaDj1TDxLvJzkZts/BUvkM2QnwJvCs7gnSpmMwX75icrKZE9s3ggjQxRVOPGB0o0fUiIkvWssqSyt4WVsCndDE/K0pWXa9v76/wUeOFDZjiAPfYpxSZkzdRw0fJ8ezq3k7IUUqXJwQ5TCgeDG1dl24wFb/rhlFsJgTQVXJtCLzSsWUaJYEboPGsm+X3602xPYFM4urgwYMZaps+dy8tA+Vk4dzfOHEsbvNmBKUur/3btAEeJeP835/NbhH5HJ5ZRr9pnFc909uYfC1Rvi6KoxU21e2vc95Ro0x807199H/93+birObF1Mp6FjKeTnIUlC3jx5ALWrO8Wr1TG6TkO8fHiP62eP0bLHYKv37K1W8u2qBXz8RVe8fHMJQqkJ7eFff6JV23Y4qe2btK5dvRqFQsH0IOmSp38bUupKyPbga+bjQwtfX0IePkBpg7CUgp9KgVKQ0VTmxSldNDL5+xueIwhCB0EQbguCoBMEobrJvoqCIJx/s/+mIAjv9KqTTO6AX+OBxFz+mYzY3NJGU8ISsklLJ698FG4/hoeHvyHs+lnANmHp5O5J7b7TSE1MYPfSqaQmxttFWAI4O7swJWga/QcPY/G8YJYtnEdErPnY1XCyZVqeKNP4ovL1wSXQm3YflGfJR7VQadRMvHiDP7IScfF3NiInnf3UOZtpmrfK18eiD2wFX08eZOVex72IGDZcvcuSri0spvu+jIzmz9v3afeReen146fPuXbzNh3btzH6XD+Z27NvP4EBgRZ9Kl+9fs3qteuZPWOa5H5Zahzp6emMnDyDxbOn4eiosjoxPnfhAq9ev+LzT81DHw0nxGFhoTx4cJ/6DRpYPJch7vx1i41rVzFr6RocNd4kZmhzNin8pwhLe87lV7AI7UcHc3TLUuTxL83eXbYIS/Wb/tK//pckv7yDLuav3H3vmWLofe4HpQiRgb2+Ik2Us2nr1xbb6KFSqVgcPI3ExCQmzZpHloQ9hilhKZfLGdurIx2bN6b3nLX8ee+x2TF6mBKRgiDwWd3KrB/amQtPIxm4fjePXplbweiPkyIqDVGmdGlWrFpDqzZtmDxxPEvnBZMZHyVJXFnrE6T+RipHRzINLLQy0tMImTiSroNHUbiouR8vZM9fg2fNZHrQlOzvNOjDdTod02bOYu6smZJz0YjIKDZu/45JI4cYX/ebc+h0OkbMmM+sMUPwUFgWJyxcv42mH7egQvU6Zgs6hkhKSmJm8FwWzLWsZtff07yQuUwYMcRiG0OkpqYxcPQkJowYTOP6dYzv5S0JS1tE5dvC0dGRZYsX8vDRo5znRf99efHHrPVBTdq1bs2kkKWIovivl7f/U3gX+sL//gziP4DyuKFF5JYdhCVke14WwYmTRJFqI3gnJkNLTIYWhywF9XRePNSlcDorxqz0xhoUgsAHcg2N5V5c1yZyLCva7uAcKaSmyaiHF8UFNUe1UZzTxnLzDWn5tunhd0MTSNM6oE1PQdRpiTy9GofAqsidzYkvPbIi7yLXFESmNC9tS3l0Bsf8VZCrzIlGURQJP7UJ3/o9ECRCKACiL/+CS5HqOHoXlNwPkPT0T7TpybiXsp5ulv19mynaqhcKE+Izv7+LEVEZdvMCZSpWRu2ePdG1pqjUarUsnjaO3oOGmaXk/pPEJEDmG+WHJdgqBddDEAS+8PJDJ4r8HPP2Ph1lHZwp4aBmd5rlUuC3IS3/h7eHF0oq4sYpOxSWALJMOZ+qfDmYEcWZpOy+U6oc3NAPzVXlwLQGVQl0d2H4rhO8jDFXted4F5mkRMpS4mjasD7b1y4jLj6B7r37cvlPy75otuDmrqHPyPGMnjKDU/t/4ccFUwh9ajt10pSkNEW+UhWIeJSt2Lxz/Fcy0lKo2NJy2VpybBSvb1+mfst2ZpO92LCXhD66S9m6uQmzht/9+96fKFq+CoFFSkjuD310lyfX/qD2p90tXndSXCx7Ny2j0+hpNpVE548ewNXdg/I16lhtl5yUyIVTx/m4zSdGn1tSVf7w/XdkZKQzsGc3o/1/dxXdHlgrZ7VGWJZ1daVTvnyEPHiAg2/uApS9/pUAToKcRjIvjumiUb4b1U1vg1vAp8Bpww8FQVAA3wADRFEsBzQCO4y//8uQKVT4NR5I9MUfSI/JTQm3RFjKVU4UaDOShJcPub9/K6Io2iQsBUEgf7121PuiD3uWTefBpTN2E5YA+QsUJGTxchp92IxxI4fyzfZtaN+oufWTLnufHWdfT1qVKMDytvXRuaqY9ewhl7RJqH2djMJxTGFIUkqRlsWL5uNVYjIuAe48jUtk2akrLOvWEkcLRKUoikzb+BMzh/bM+SxnkqzTMS1kEbMmjTU6Rj+Ze/b8OXv27WfIoAGS505LS2PcxMksXjAPBwdpqx9RFBk3PZjRg/sR4GdAjkioecIjIlizdn0OmWANC0JCGDfB2C7DUgn4s6dPWLl4IZPnLkapsn+S+08QltY8m62d09HFlfajZnNyxxrCHt+1apViCYIgkK9pH2LvnEFIzlU1qzWa94m0/D/VD+qcNAwfMpi4uDg2btma85klCILAgJ7daNG0Eb2GjiE6xj5/5aplS7Bp0gB2nbpI8Ne7yMyyLSLQKyfVvvkY3bk1wf07sWHPcSau/Zbo+ESztnpYq8Bw1KVTo1wpNq1aTvP6HzBq1EgWzQ8hOfKl1VAZU+hVlYZQqhxJT00hMyOD1dPH8WXfIRQpYVlduPP7b/n44+Z4e3mZLTat3bKdzu1a4OGhMTsuO2V7NvOmTzJScRueI2T1Zj5t0ZRSbzIXZClxZt+x7/BRMjMzadfGeuaCKIqMnTiZaVMm5VTCWMLBQ4epW7M6HhZU74bIyspiyPgpjBs2kJLFpD3YTWGNFLRFGkoRlXklLwVBYPyY0SQlJbFm3fo8h/jo0azph1SpXJmQ1e912vd/vS98L8lKhQCeNmYCFXEDRLtKwgH8caQWHpwlhmhyX/J6daWepDSEHIEKOne8dSr2vFFJ5gVqQU4ThRdV5W5sSQhnT2oUGXkoLb+fZKzK9JepaK3wpYig5qg2ml9TIknS5V1t9jAym5hwKVCGiOsniDy9Fgf/Cshdc5VA6YkxpCfmlg/rMpLRxj5F4VvW7HxZSVFkxjzDqYD0CnnMld24laiN0k16tSz55S10mam4FZcO9NH4OqMkmtTnFyjRprdZmrcpYq/tR52/HM7+xgE/hiQlgDYrk6jLB6nWqiOWoFdViqLIytlT+PiTDpSrWNmozT9NVL4NLKkr9fjE0xdHmZwfo98+2KK60hVPmYIjadbLyv9HWv578EZJpTeEpTUPSz2SMkQ6qvy5q03mWGr24NSSfyXkJs828HJn2se1mbvnND9f+susXe4B5mS2XC7nq06fs27+TI6fPMmAIcN4/Sjvykg93D086TZ8Il2GjuPCwV/ZOns8z+/dNiP2LJF9+rRUfZvAEmWJfXCV+2cPkhQdTtV2PSx+tyiKXN+5irYDxpgRhTqdjiObl/BRr5GS3//q0X2e/HWduq2NA270bTXyTE7uWE2LgRMJ1JgbsANkZWawY8FUOg6fgspRuo3+HlNDn3L51FHadTcu9ZGayG5bvZRBw0faZWlx6OAB7t29w7ARI222/SdgSqr8HZRwduGrAgWY+/ABijwSln5vwjJcBQV1ZR4c0UVZVTW/qxBF8Y4oilIP4EfADVEUr79pFy2K4jstZ0+JiwNApnTCr8kQYi7vJD0qNxwsKS5NsixckMnwqtMRt/zFuLZtLlnpaTYJS4AMtS8dJi4k/Ml9DqyZS0aadcLSlOyvVKUqK9ZtwtPTk769evLb4UPSB0r0o5BL1Dv5eODi58knpQqxrG09slyUBN28y6mkBJz83HAJcDdTVdqCIAiIItyPjmf5tfvMb9sAtdKyJ/j3p/6kUZWy+Ht7ZpejGhAja77ZyedtW+FpMEHX78/IyGDy1OnMC55tsb+ZOmMWo4YPw8dKuM3ydZupVb0a1SpXlNyvJysyMjIYM24C8+YGSxKfhpPUy5cuEhAYSP780j7FhogID2fO9CAmhyzG0clyX2wP8hqkoycq8xoyB9nvGqWTmvajgznz4yZePzB+n9urrhQEGQWaDyLy0h7kWcZVFu8DYfl/qR80xOgRw0lJTmHNuvWA7TCT+rU/YPbksQweN5nbd40Dy6R8HrOiwnBUKpndrxP1K5Wm55JveBSaW7llSxUJ4O3uSsjAL+nVqjFTNvzA/B17SMuw/7dsSELKUuOoWqkCW0Km0LhaeUZPmMKckPnExMZZPF4KiRla4tKyRUUlylfm2vkzrJ01gZade1KyXAWLx4WHvubS+TN8+Wkb4+tKiePhk6f8de8BrT9uKnnswpXr6PRpO/IF+Bsdp8ex3/9Aq9PSqollgc6tO/fYc/AI48dYthXSY/mq1TRt0phSJaV9M/VIT09nx47t9OxieW6sh06nY9SUGfTq0pGK5cpYbGf4t9H3uXpS0nSzBmukpH6faUK8fp+U8nb4kMFkyRxYtXKFXdcuhQ6ffYqHRsP6jZustntX8S70he8lWWkvyuOGAwJXiEe0Y9LgjILGeHGLRJ6SgqdSbpMUBSirdKalwodL2niuaRPyXM7oITjQQuGDa6brRAOLAACrpklEQVSSTcmhXMqwfg5TktIUATIVrRQ+VFdme1puinhFWGoaHsV9cC+Wz6hk2LAEXO9XqYfCvzqpzy+h8CmN3C1XqWdIUqYnxiDqtG/SvxuYG6jrtNnl35U+lbzW5Je3yUpNwLWYNBGZlRxL7I2DkuXhGl9nNL7OZCTG8OLIFoq2HYrwptzQEmGZ8PAC2rRECjWwnVz28NhOqrXqhOyN2tNa+ffmpSFUq9uAFk2b2Dzvu4pWGm9c5Ap+in57hWUDlYYsUeRs+tuFp/wP/zy8UFL1TUp4ugXCUq+uBIjK0NJS6U1ipo4dyeFGqnE9YWmortTD28WJeR/VIiE1nRHrfrac8Ggw0TYceDk7qxk3ehSzpk9l1Zq1zJk9i+TkZDMzdNMJviW4e3rTfuAYvhg+iRu/H2fT9NEkPr6Bv5vKopJSKuFR5eRMQPGyxL58TPXPzRNpDZUnT479QOlajY1KvPU49/NWKn3YlmIFA8y+PzUpkd0blvDF8MmS1yWKIj8sncWXwyZQ0Fdjsc13i2bw0Zd98PS3nIrrrVYSHRHGd6sW0neiZUJAjxdPHpGRnk6psuWNPpdSVZ77/XeOHTlC0LQZf6sM5z8Ja+pKgCJqNT0LFGTew4ekGXgN5YWw9BQcqC5z57wQg+49JCwtoCQgCoJwWBCEK4IgmMeJvsOQOajwazKY2Kt7SA03nnSbkpb64B2HgtUp1rQTV7fMIjXGvnAnmVxOvS96U7lpOzZOH8nTe5YXb6RKgQVBoGWr1mzYvIWXL17Qu/9AHj58ZNzIQgBh1I2HpEbG5mwACpmMT0oVYlGzD5AJMPrIH+y884Q0A8WTvYR/7yqlmH/+BiGt6+OiUlo89q/nYZx7FEqPLh3MrvXO3bvcu/+ANp99kfOZIWEybeYshg0ehJeXtOf4Tz//QoGixSlXvZbFyeuu3XtITkmh82eWvTQheyI9cuw4RgwbajXxVt929cqVDB5q7NkrpaqMj48jaPxoZs9fhKubbeWRvYhIziAiOcMmYal/j0m9z+xBgLsjDipHPhk1m99/3kLoo7vZn79RV+oJSy8PaRJW7aZC7abCxcOFAi2HEnZ6Bw4m4ad6leV7praE97AfNCUkhw0ZhFwuZ9HSZXapCwvmz8emZQtZtnYTB4+esNrWUO3YoHIZVg36gsW7TrD9+EUE97wtLBZzlbOqT1saVC5Dn7nr2HP2cs7c2Jqq0vB+DQOHalYuz/qVS2ndpg1TguczJXgBr0KNBRp6n09raNCqPYd+/o4PP+lIyYq54axxaVlGW0ZGBotnTmHezGnI04x//5mZmUyds5DZk6V/PifOnCM1LY0WTY0tNPTX9jo8gq0/7WbSYOmQRshO/g5evJylc6bbHOf9vOtX0tPT+az9J1bbAaxctoQhfXrYDMcRRZGgOQtp0bQJdT+oYfO8ehgSh1KbNdhDZkr5l1o7X9/+A1AplaxZtUqyjT3l3f369CY2Lo4fftpptZ2toLZ3DP9aX/hekpWZbzore4jEMrjiioJLxNlFWCqQ8YmDD6nyLC5o43I6RlvfpRJkNFf4oETGfm0kKW9BLueTOdLfOZB0UWR9ciivtOYPUF78LfMrVHR39qeFxpudT18y+vB5lh+9yKPXkTl+ldYgyOR41u2PQiOd3A1vfCqfnMIhsIpk+XfSncOoi9VDpjLepwkIeENEHsC3jnTAjajTEnZqE34NehsF6uhJSgBtRipP9q6kSNuhyJXGAydTwjLl9V2yIm9RvG1vs+8yVVXGPb+PQ1I4RSplJ1xaK//+cfMaAgsW4fNPrA+M7YGLQdK8PCH0b53L3lJwQ7TUeOMkk/GLwcTMWiK4FFo4eRGhzeDPDPtsGP6Ht0MGOrv6NMj2sKzxJnQnzYLVhSFhGZ6eRQ0HdwqKatYlveZFnH12EoIg0LNBFQa2qsegVT/w+/k/AINScAkYEpay1Dh8vL1ZND+EVm3aMHzIYH7ZuRNnB+OBlr2EJYDa1Z3WvYbSZdxMXj64w+YZo/l+yUzu/XnBKDjHdGJnqK6s3b4bnwwYTaCHk8UU8XsXTpKWnEi5+h+ZXUPowzskRkfQ6KOPzfbpichPB45F5ST9rB3/cSvlajXEv5DlEpo9G5dRoXYjipSrZLGNt1pJSnISG+cG0W/yHBxN/CdNJ8HpaWmsWTCb4WNsj0Fu3LjON9u/Zu78BZIDY6lJkWm50j8Fe9ViIE1YFlar6V6gAKuTQsmwQlhKQU9Y+gkqystcuSjE2v2cmiI5XcvL2JQ8bQlpmQAfC4Jw2WAzYtkFQTgqCMItic3aS0wB1AO6vPlne0EQPrTS/l+BmJmKLtNyYKFeXQkgUyjxazKI+NtHSHllHsYlRVhmqgOo2GUst3eu5OYV62m3hv1BtepVGReygqO7vmf31rXodLocZY4hpAjLpAwdcrmcXn36smDuHDZtWEvQnAWkRL42a6uLiyA9IpLk0GiSQuMtbnKZQIviBVjy0Qf4qB0JufwXY3afYufF28S/8Sk2VT3piUj981SxVCE2tq6Pu5Pl5yAiLpG5v5xkcdAoBFfvHFVlmkxFeno6s+aE5PhMmvqm/bjzZwoVLEjNGtIhA/cfPODoqbP06WesBjecoF744yInT51m/CTbJd0z5i+hTcuWVKtaxWbbxQsX8GXXrjgZqCSlJpapKSlMHDWcKTOD8fH1y9O7Sg/D34meoDRMlLcEaySm4Xn054pKybCovgxwd8RBqeKTUbM5++NGwp/cl2xnibDUw9XbnQIth/Lq2EZUirezpQLy3A+GJ6QClPz/pR8ESEmxP7i1X5/e+Pr4MmP+ErsENs7OatYunsvlazdYunaj+TEGixIKb/8cMtEjXyFWTxyM0tWDAQs2mpV1W4Kh53mtciXYFjSYmIRkes1dy8MEk9/sm+82DcXR9wumCekVy5Vh9cI5dO/8OSs3bqXnkFEsXr2eR09zLQusEVAKBwcGL1hP2WofWGzjrpKzaPpERo4cYaQA11/DnA3fMqj3V2jc3Yy+U+ek4VVoGFu+/ZEpo4eZnhbILqseM3sRCyePtkgYJiYlMWrKDJbPnYlabf0ZPXvuHOfOX2DsKNvVMNcunCEsPMIu8nHhynWUL1PKjHCVQl78HPMammPp+Lyco0+//shkMjasW/vW3ztu9Chu3rrFgYMWKibsQFRSep77wozsMNV+73Nf+F6SlalouaXN7vDsISxL4IwPKs4Ra5fKQRAE6so90AgKDmujyHpTmi31XaaflZW70EDuyRFtFI90eX8xP0zOpJ7Kna+c/TibHs+ulMic0vC3CeLJ56smUKliSJniLPyoFh+VK8qPpy/TY+oifjlwxOJxL8PsS0iXJTxG5haI3M1cyaNNCEXMSkflZ+7lkU1EbjQjIg0R+ccPeJRvlpPqbUhS6s/xePdyCjTtjtJVehVe314liyXp3mEKtx5sNpE2JSrTk+J5eXQHzfpanqDrVZV/nDpGRno6Pbt/JdkuLyXgLnb+Xmz5Vf5dtPbInqAciovK+SyvhGV7J2/uZaZwOzP5H722/yEXIiK/E0uWnUSIOw7UxoMzxJCMfR65ReVOfK72YWNSKH+9CX4wVVfqS8ENUSq/H5tHdOHI1bvM2vozmaYG7RbKGA3xQYUybNi8hYzMDPr37UPky6dG+/M6CXRUO9Pki+70nr6YVj0GE/HqGVuDx/PLmgVoHGyXN1tD6KO7/PX7URp3Mw+0yUhL5cJP6+k6fILksUe/30L52paJyMe3rhIV+ooaTVtZ/P4ze37A1d2Dyg2bme3Tl7V7q5VkZWayduZ4uo2YiMbLcgklZJOoK+ZMpfugEWYJl6Z/+6zkeBYvWMDipctRKBT/iKpSSjlhqYRMSt2VF8LS6DgDhWWX/PlZmxJm0ZPakn+lnrDMLzhSVFDzh52Lpf8gDouiWN1gW2+4UxTFpqIolpfYdls550vglCiKUaIopgAHAGlvl38TMgWx5zeTlWhfRYAgd8Cv0QASH54l6emfZvulvCyTslRU7RXEi/OHuHBIOiHXkKjUK6cd1Wr6TJhJYOFizBg5kIjQVzmqG0NYC1zx9PRg3vTJfN6uFf0mzGDvkZOS7VIjY0kOT7G46ftpQRBoWCiAeW0asKxPOzRqR2Z8e5AB637laVikXWWaIP18paZnMObrAyyZOgpn3/xGRCXArLkhjBg6RNIP7e69e5w6c4b+faWVQikpKUyfFczsuSGSiyFpMhWPHj1mzfoNLJw316aSaN3WbyiYL5DmH5svLpni0MEDyGQymjbLbWtJATNr6iSGjh5LgYKFcj6z911l+Nuwl6C0BGuqSmskpSEMCcuT364l5vULM3UlZBOW1khLN18vCnw8iBeH16BNs29u8Q/h/v83/SAQFRXFzl+y+ydD8seSerL7py0oV7okE2YYJxZbgkwmI2jMcAL9/RkxaRrp6SbveRMVtf4dLggCnZvVZeJXnzBi+dccvXzT6vdIhTPKZDJ6tGzIkmFfsWHnfmas/pq0dPPfsP6+9aW+etJSKlCmRNEizA2awOYVi2jWqAHf7vyVnkNGsefgb4C0X6XhM6l/hkyfU42jgm2rl9Ks6YfUrlze7O9/5uYDtFot9WrVNLpmyFZcjps5n4Uzp1gkIqcvWcvAbh3x85Ee42RlZTF0fBAzJ47Bx9v6OOjuvXts3rqNeXNsV9lEv3jEwpXrmBM03mo7gL2HjiCXy2yq2/8OLI0z39Zf0tZ5+g8cSGZKIju++/6tzicIArOmT+O3o8c4ffb3nM//jSokURTXv8994XtJVroJCtLRcSIrGp0o2kVYFkFNYdScJtrq5N7wXKVlLlSWubFXG0mSmGW239r1tZX7EiVmcDQrbz6UkE1KOglyOqp9qax0YUn8Kw4mxJm10/toSqWWG93TG29CQRAoHeDNxE4t2DJjFI+fv2TBkmVmK2R3Qy37fBqWgMvTo0Gnw8FHgozMyiDj1WVcy0sb+kZe+A6PCs1ziEhTJD39E0GuwLlgJTOSUo+nB9fjW605at9CEmfIhVqdwfPDmyjabnhOSbcepkSlTqfl8S8raNZ3LA6q7EGZpfLvhLhYDu/6gS/7S69+5QW2iEox4vlbnddQXSnlW2kJn3r6EpGZwdnEXFPtvBCWgiDQSe3LpYwEHmXZv9r7P9gPFXJK4cwJouwmH11QUA9PzhFLrIQPsqm6EiAzQ0ZflwB2pURxNcW+VfH0iEiUDgqmftmCxlXL0TN4DTcvmxADFsrBDQd2giDQqfOXzJu/gDWrV7Fu2UIyLHgXSamWLE3YXD28qN+2I72mLqTBhx+zbPJwkhKyJ/OGvmCG6kpLSIyO4NS3a2k9ZIpR6rXek/L8tyto3XMISkfzczy88SdxkWFU/1CaiEyKi+Xwjg18NtjywsntP84Q/uwJTb7onnPNhpseoiiyad40WnbuSaAEMWqqytn1zRbKVa7GB9WrWfxuPWZMm8q0GTNxlLhH+HdVlYawRFgaloKDsboScgnL4s7OtPHzZ2NqODp9lYWdgTt6wrKoTE1+mYqrvPfWGIeBioIgqN8YqzcErBjU/jsQ5A541OpJws09pL2WngSnxMUZbYJMjm+DvqSF3iH+znGL59arKwFiE7Oo0HkU6YmxHN26zEiVbQh9X2H47NVo1IzhU2axdkEwv+3+GVEUjcoF9bBEWAJUKleWb5bN5XVEJH3GTedFWO6EXq+qTAxN4tm9aBJDk3I2Q5guLCkVclo1qcXivp8yb1AXpm74kYt/PbRKWJo+Ozlw82bM9kNMHNKLwKKlzIjKkyeO4+LsLKma1CfQWvOpnBQ0jckTxuHq6iq5PyY6minTZ7BiyaIc70lLibd7Dv5GRFQ0PfsNtHifejx88IC9e3YzYlSu55slovLA3t2ULluOMiaWGWCbsDRVU74trKkr7SEpTd8b+pLwdsNncHjjAhKjc393pv6VetLSdANwD/Qn34d9iP59PbqM93pM+E72gwAFCxQgNDSMaTNn5wR0WYL+nfx521Y0bVSfQWMmmZOPFvDFJ63p9sVn9BwymtAk63kahirLwv4+bJ00iGsPnjJx7bckp5ovDEkRlYbwLlyMReMG0rxeTXpMCuHotQdmbdJkqpwFIP2zaqqyNIQgCFQoW5qgMcPZvGIRd+4/ZOmKlTlzY0O/SrDuBatxVHBi3y7UKgc6tG5uNvaJT0hg5catTB41VPL4GcFzGDigH94Fi0vu33voCBo3V+rXlOaERFFkbPBi+nXvYjPMJiw8nFlzQli+eKFRgI8pZKlx6BKjGDVlJgtmTkFlEhZmGuoTGRXNzj37GTHAfOHJMIlcKpXcMPzIdJPCv2k35KhLZ9TwYdx78ID9Bw/m6Vj9708QBBbND2HHd9/z55Wr/4nL/Dfxr/WF7yVZCVBN7k4xmZq92khSRa1dJGI+HKmAGyeJsujdZgp/mYpmci+OaqN5qTPuWK19p/Am8buSzI0D2kge51FlqfelzEyT007uS4yYycGsXNLUlKC0RViaElWCIDBmQE+KFy1KSPBsAJ7GpeaE69iCmBpDVuxTHArUNN8niqQ/Po6qUF0EuYRh+avryByccC4gbUrs6JBE6tNzFG/Z3aL3ZPjlg6j9iuBe1HLJI4A2I40ne1ZQpM1gFI7Wg3cA/tqzmcrNP8Pd17Lnmx4bFgXTZ/RkAt2kJ+j2qiqliMq8loCnPH2ap/b2oJt3ADdTkriVkvubyAthKRMEuqr9OZ4Wy6usd9O/7n2HDyrq4cl5YgnHvr+xE3Ia4cVV4iWPkSIsY9NF+rsEcCk+np1xEZJlQ3qPNFPUq1ia1WN6s3n/CYKXriMj02Bwa4Gw1EM/EPHw9GT+wkXUqVuPUQP7cPHCOcA+xYolwlI/KStduTpdh01g5dTRuAp5C7LLyshg/6pgWg+ZgoPKMYeg1BMWFw7uwidfQQqWKmd2bEJMFEe/20z7gWMkz63T6fhu8Qw6DJuEwkH6HiJfPefCwV18+obMtKam+WndUirWqkfpytIlloa4fe1PXj5/SotPzQ3UTf/mJw7tpULFihQpmj0wfuvBox1qW8ibuhLsV1iaEpZ6VHRzo66nJ9tjc60MpAhLax6WpWUuaGQKbtkZ+PffhCAI7QVBeAnUBvYLgnAYQBTFWGAxcAm4BlwRRXH/f+1CDSBTqvGo3ZuMqMck/nXQZlljSlwcqfEJqMu0RpeRTMwVY7WkVDk4QExcGsWadsKzeEX2LplEWpL9/z+z1BqCFq0iMyOd4LFDiQh9lbPPXsJSJpPRv0sHZo8dQvCmnaz6+TDJoeE5qkp9GFpMQrpRMFpiaJKRz7BUsI6HqzMbJ/Tn64On+MOAsLTXz3L+t3tp16IplarVNCMqnz17xo7t2yXLDEVRZPzkKQRNmmAxgXbz19uoVrUqxcpLl2trtVrGjx3DvDmzcXNzM9tvOBm+dOUaR06eYcroYTb9+mLTdcyaMZ2Q+QuNFqKkEBMdxcF9e+jW07KHnCX8U0SlHqaEpb1KSmvvD0cXV9oMncq+VbPxVOX+RvN7qG2G7uih0vgR2LAb4SfXImqz37UuGkdc8pA0/m/hfewHEWDo4IE0atiAPgMGEZ9gX//UrFED+vfoSt8R40lMsm8OWL1KJRbOCmLUhCn8cdVgkcjFK3czgJ60lMtljOnchs5N69Jv3nqO/XkLyCYpbRGVhvigYhm+mTeZm3cfMHhKMBFRMTl9TlKGLmchSE9Y2lJZ6iEIAuOHDyIwIIAF80Lsvh7IJiqf3rnJlT/OMXboQLP+RavVMnLyDGZNGmsU5qVv9+uevfh6+1CnlnSGw6Onz/j1wGFG9e1m8RrWf7uT6hXLUaem9XFeUlISo8aOZ/GCeTaTvyHbMmNAz65GYT+WEDRnAbMnj8vpM6VISSnY6o//CcLSHgJU6vyG3zEjaApHjh7nj4vWbWHA2I5A/0+5XM7yxQtZsXoN9+5L22u8S3gX+sL3lqwEKChzoqHcg0NZUSSIWXYF4nihpOYb77ZUE+82S8e6CArayH25r0vmijYBDweZXeQogI9MSVu5L9FvyMbkt/CylAkCNeTu1JV7cFoby2VtvM1ydqm0ZdNwHYD27dogqNT8uu+AzevQqypFbQZi9B1URRtJroJnPD2Dwqc0mhLmHW5WYgSpL6/iVV06cEeXlc6zA2sp3HpQTliOKZJePyD59SP8qje3er2iTseTvSvI36QbSjfzkkdTVWXE3Sv4uDnm+FSCZVXlpbMnKVCkGFXLlJD87n+TqPxPQRAE+vnmZ29cJGEZuR11Pl+1GWmp/8z0c4Ug8JWzP7vToojW5o0I+h/sgxNyGuPNQ5J5gn2LIg7IaIgXd0niJfapHGSCwOfOPgQ6KJl98w4pWq1k0I4e6RHZCZC6uAjcnNUsGNyVepVK023kNM5fs774ZmkQUbtOHdZt3MS1i+eZNGYEUZH2DW4N1SKmyhEAv/wFGTR6Aqvnzcz5zB515W+bFlG/Yx9cPLzN9t+9fI5n927TpEN3s+O0WVl8v3gGHUcGWSQi921aQe2Wn+IdIJ08m5mexs6VIXQaNQ2ZTGZ1only704c1c7UbiodLGY4uU1OSuTbDasYMGYyGkfLq+0ASYmJ/PrLL/ToZe4DbA3/hqrSFiwqxN5Ar64EqO3hSYCnM0cNKguk/CstqSwBKsrcyEDkEe+2NYYoirtEUcwviqJKFEU/URQ/Ntj3jSiK5d6UB71TwRKCIMOtYjvkzt7EX/4W0c6KFlWh+ijUHkSd/8aI5LREWEbHpuJb7gNKt+3LwRVTiX5mruyxhMiUTGq0/JyB44LYvHwhP329waYCyhB6vzN/H2/Wzg2iZIEABuw4zF9pGTj7qY1+k4b/7hogPRnVE5F6YlLpoGDJsO4s//EAcUn2/06PPwxHVKlp3aqVGVEZFxvL1MmTWLBoMZkOarPSujXrNtCoQQPKlDav0AG4dPlP7t69R4duPSx+//yQuXTp1g3fQtJqJD2evXjJ8vVbWDQrKGfsam3SOnd6EGPGjzdSc1pSVS6aN4cxE6fYLKU0hWlFgD1p33mFvUE7tghNFw9vmvYYzr6Vs/FzMz6nPaSl2k2Fo3cBAut9SsyFzTi7//P3+k/hfe0HARo3bMC0UYPpP2oCr8Pss8eoUrE8QWOH02/keKKiY2wfAAT6+/H14tn8sO8wm77/JfvDpOjczQoqFi/E10GDufnoOcOWbCEqIZsklWl8LS5ImlrDKBRyRnZqybiv2jNx3jLWr16BQ2b2mFTjqEDjqDBaXM1LeMkXn3+GTCbjzMncQCHDhYTQeHNVqDYlgXXLF7MweIZ52KwoMnHmXL7q+DnFixQ2O/b+jT/57eB+hvfqLNknJSenMHn2PBbPnmpx4eTitVs8ePKcLu1bWR1jabVaRowZx9TJE/HztW37cezUWVycne3yqTx49ASVypelQL5swU9evCj/DgzJRGvkpVT4krVzSp1LEAQWhMxh5Zq1vHj50u5zGJ5LpVKxculiZgbP5dVrcy/qdwnvQl9oF1kpCEKwIAhPBEFIEAQhQhCEnYIgFHyzr4cgCDpBEJIMtu9Mjh8vCEKoIAhnBEEoZPD5SUEQREEQGpi0fygIQg97rk0jOPCxwpujWdF2l2q74UCdN95tidhHcsoFgSYKL5QIHNFG5/hY2gM92VhH7sFxbTQ3tIl5TgyH7PLylgofPAQHjhFFmA0llSUVnD5cR58E3nvQMI7s2UlspHEIRlxoKAmvsln/HKJSFNG+uoiqcD1J1WTGqyvI1F4oPAqb7dNlpZNwYxcFWwyTHNCJokjsxe3kb9IVB7X56jhAVmoir05+R+EW5qm8pnh+ZAveFRrj7F/EbJ+UT+WjEz9Tv1N/s7amSE9PY98P2/n0q76S+/8OUWkPHAIK56m9tVJwvUWAJcgFgSF+BdgQ+YpUnfGkyhJBaQqVIOMrtT/fp0SQpMs7Wf9vQhCEoYIg3BME4bYgCPMl9r+TfaEcgTp4EEY6z+wkLOUI1MeT56Ty2OQYKXXlq9Tsf9Zx1vCZuy9zHtznRWo20WlYXpgcaj5I1a+Y161Qis2TBnL8jyuMnr+GhKRkm4Na08GCSqVi1JixDBw2kjnTp/LtFvMJv6UJn6VJm6+zkuKly1K0ZBl+2/2zxWsxJCSvHduDd/7C5CtVwYyofPXoPuf2/0KHoRMl+7rdG5bQsH0XShQuaFa27a1W8viPkyiUSsrXamB2rB4/rZhLqx6DcXZztzoZvX35PI/+ukmbbtL9lenfanXIDPqNmohSZU7GmaoqVy+Zz5hx462qjuxavbZTVZlzzn9IXWlvOTjAp/4BPFdkcSctl8TxdFPZVFnq1ZUA9eUaIki3e4HgXcW71A/KTHy91IVq4JivEvGXv7N7nKXwr4yjf0kiT29ENHhHWSMsnX0CqdJzKhf27ODB74cIfdNWP4m1RvxonT3oNWUezr75mT68Pw/v/iVpYyEFwxCJFi0/YsOwzvz+5BUh1+4Qr83K+U26BrjkbJD9W5ZSD+ufJT0RoHRQMLNvR8av/tamgl7l68PLqFi+PXmZSaOG5hCVeqSnpzN65AhmzZmLxiP3WdOrTU7+cYXnYRF0+Ex68ToiMpIlq9YyZdYci3+Pw4cOolQqadS4icU2stQ44hMSGD9jDstDZqJUmveXpv3UvgMHKFigABUqVLR4Xj0unDtLQGA+ChU2H2u+DQytSKRgj5+l6fF5ISyt/XZ9ChajQsMWnNi+yixkDsxLw6XgHFgKj9L1eHV8y1vNhd4VvEv9oCmKFi7I8rkzGTl5OuFvFo5toUTRIiyYMYXB4ybz8rVt0YQsJQ6l0oHFQWOQy+WMnDKTdAs2PWAetKiQyxnxRUtGtKzFhC17+PbkZbSx2eSqnrS0x0O3UKAfmxbMoGD+fHTv3Zd7N/7EVSl/q3ArQ4wcPYbvd2wzWhSXejZ8nZW4KWXMmDyB6bNmS9rhLF27kSoVK9CoXm2zfYlJSUyft4iFBosohhBFkbHTZjNl9HDcJZTjAFExsSzZuJ3gsdLl5YYImj6DLp07UbpUKZttI6Oi2PrdT4wZYnlurH8npaSk8s2Pv9Cvu3Rori3YUl++LbmY1++xBw4ODixZOJ/xk6YQnZplpKC0dG2mcHFxYemiBYydMIm0N6G2+pTy/8EY9v5VtgOVRVF0AwoDzwFDh9HHoii6GGyd9TsEQSgONAKKAtOBWSbnjgYWCnldjjSAWpDzscKb37KiSTYgLK0RkM4oaOfgw1VZHGF5kBCXl7tSUebKXm0ksWLelGLugoLWch8UCOzVRhKXx+P18MhS0RhvXpPGWWLMFKKGsEVGQXZp0eBJM/luyWx0Wi0vw5KIi8idkBn6VOoibiBzL4TMyVyVkhX1AJWzK15V2+OWr6TRPlEUSbi2E9dyrZGrpMux058cx61QWZwDiknuz1ZKrqJQ877ILKiR9Ai/uB+Vhx+akrZLHkVR5MZPq2g/aIKZp6Uh9KrKHWuX0bHPYPJr8hY6o4eLLsUiUSmlqnxbv0pLyIt3JYCrXEF370BWh79864Gli0xOJ7Uv21LCSM+jh+u/BUEQGgPtgIqiKJYDFko0e2f7QgGBWmh4RRov7FVLIlAbD2LJMCtRNSQsDRGTkE4BpSMTi5dg+8sXHH+Vu3JvWgqebjBI1hOWKqUD4z9rSp/PWzJw5lL2nbqQez0WvCulXvQFChZi8aq1BOYvyJiBvbl99bLtGzaB6aTwky+7c+OPM8SHPrN4TIC7I6/u3+LlX9ep0bqTGVEZGxnOno1L6TJ+lhmR4q1W8ujCcXy9vKhbX5qIfP3sMReOHaTbgGEW/SevHfqZshUqUbVKFauT0NfPHvPbzh30GC09CDbF0b27KFmuIoWKlbCpqrxx7SpKBwfKlC2b85k9A8X/tKryP1UOLggCgwsXZn9GLNFZxu9uWypLPWEpCAIf4MEjUoi007bhHcU71Q+qNRqj/3YMLI8qoDzxV36w+50l8yiJS/HahB9biS4zl6S0RljGp4hU7DKW0LBwzm1fwsvI7D7UkLC0RvxUb/AhfaYu4NCuH9m0dD4ZFjzjTCdWhoSl2jcfEzs2o1+d8nydGsExElH7W7a80ZeAq3x9LBIBxfL50bR6BTYePm/xPJAdqDPxm8MsmTAIwdUr5zrTZCp0Oh3jRo9i6IgRFCxY0OzYyIgINqxby+SgqTkTPcNyuSSdnFETphAcEiJJLgI8ffqUX37+mZGjpa00IPs9kpmZybAJU5kzZQIeGunn2xBh4eH8vGs3gwfas3idzpb1a+k3yDpJIFXeb4ugtoe0tHW8IewlLA0hpSArWbMBjs6u3DqV7dv2NoSlW7FqqP2KEn5+Z56v6R3CO9UPmsLXx5tlc2cybOJUYl4+tuuY/IEBrJofzNhps7lx+47Fdqbv8R4t6tGlTVN6TJrH01dh0gdZQGE/LzYM64xcJtB3+Xc8C4syayMVuGeEpGha163KpsVzOHH4ILMmjyM2Jm+LoHroleGpWoFRQbOYHTSRsMS0nL5c6pnYtGwBnTp+QemCAYDx+PWn3fvIytJKhs2Iosi4acFMHz8aF2fpfnvVxq00rl+H8mVKSY6ftFoto2YuZP6kkahU1p/xtes3UKpUKRo3bGDU70qRbaIoMiloGrODgy2G/eihU2uYu3QlY4YOsNnWEFIqUlu+lu8KvL28mDxhHBPHj80ZZ9giLU3h4+3NnFkzGTpiJKmp7/ci9n8SdpGVoijeFUVRL50RAB1gm5LP/Q4ZIDf4d0NsAPIDnfkbcBbkfKTw4nBWNCkGpdZ60lJqcxLktJb7cEWXwMM8qNz8ZSqay725oI3Ls0pSEATKyl1oKvfigjaei9q4HOP+vECBQFXcqYgrfxDLLRItnscecipB4UrR+q3Zu32DxTa6+OeAgFN+c59IR5UCWVYCLmWlywxTHp9F6VUMB00+6f2v75IW8xqfKuZptnq8Ov093hUb4+gZYPVe4h5cJi02FP+a2eE++f1dzDZDvLh4hPLVaqDxN7420xJwgKcP75OSnETZStLmxrZUldZIyv9W+bc9hHZBlSN1XNz5Mca+khIpeMkdaOfkzbbkMLLezdX0gUCIKIrpAKIomtUYv+t9ofCGfHxGqt3qLQGBamhQIOMCsVYtJvTqSgBdZBoTi5cgIi2dedfvkpyRu09KXQnG5ukl3FRsD5nI89fhDBgzmYgo66VHloiwRs0+Zu6yNfxx5iQLp44jNtp8oCsFqUmgh5MD46bNZllItkG9VJuEmCgu/7KF5v3HE6gxTkBNTU7i+8Uz6DJ2JirH7H2GZGPYi2dcOHaIdt2lJ8Gpycl8syyEPhNmSpKL3molCc/u8fjubZq272T1/hLiYti+dC79g0KQWzBPN7y/6Ihwzp04QttO0n5IhioFrVbL6mWLGTXWetWHvZ5AlmBtgmJvarEhpAjLvJSDK2QyhhcpyubkcBz9jCfkUipLKbgp5NTDkxskEC8RcvU+4F3sB00JS6f8lVD5lCDh2k77x2jO+XEq2YxXBxeRlZy78JIUl5ZDWqYkpJv5WBZt0gHXcvU4snwyt29lW1wYTmj1pKUUcenk7MyQidOpWb8x44f04+rli3Zdqk6tMfKFK1W8AHPqVcZbpWT6vXvcSrTuV2f4/OifM8PnrUOTWtx69po7t+7lfGa4GCWKIuM272bKsD545TcPcpgzexat27alcmVzn0mtVsukCeOZPXeukXcb5Pp6Bc+aSc/efQgIkPYPT0tLY9qUycybv8BI2W04UZSlxmV7Yk6fw4Ce3Sha2Jw0NYS+fdD0mQTPnG7XAs/6VcvpPWCQRULVEuxV0oL10vB/g7CUQp3PuvPwynnCn2RXX5mqLO0hLD3LN0amcCD6+pF/5Jr+bbyL/aAp/H19WDx7GoPHTSYmRtpX3BTeXp5sXr6IFeu3cOTkafMLNyXM3lRGVC9XiqUDOzFr2Qa+3XfMqImpqlIP/ZhQEAQ6NqjG3B5tWfDtHlb/8htabd6FDU5OjkyZOJ4BAwcRPHUS27dslLTa0I9NTO/FlBTz9Q/gw9btOfjdVkCaqLx47ABqtTOtmpgvQJ+9cJELl65YVCau3bKdxvXrUrqEtEjn7IWLhIZH0qGddFgtwJxVG+n2WRsKBFondA8d/o2IyCi6d+1iF6G247sfaNywAQXyS1sRGeLmX3fJ0mqpUsHcn10KefGM/DfwNl6WAMXKV+HDD5uxauWKt/7uwoUKMm7MKMaNGEpWlv3vhf+fYLfeVBCELwVBiAeSgOFkrwTpUUAQhDBBEF4IgvC9IAg5tRCiKN4HzgOPgBlAkMmpk4GpwBxBEP5W3ryLoKCpwovDWVGk2aneUggyWsi9eaVL44bWvqRbACdBTnO5NwJwSBuVZ7WYWpDTXOGNt6BkjzYip4TdFkyDdNxwoBHeuKFgtzaCCAsTer1fpWEJOEB0qpawpOzBTvHq9chITiDsj71mg3sxJRpdwgtkvuahOM4ePiQ/OIF7lS8kB3fpkQ/Jig9FXUTaNDgrOZbEOwco+JFl37P4R1fRZWXiUfoDi20AUsKfEnX9BHW6DZMkJk2RGhdF6I1zVP5IugxJj8IaJ0RR5Js1S+gxdCz+Ep6gb0tU/jeQ13JwgNquGjJFkUtJb59qm0+uopFKw95U+wilfxklgfqCIPwhCMIpQRAkDVre9b5QeFMS/pgUwjAfWFlCaVzIjyNniEFrQljqS8HNvksQaOPizedF8jP++EX+iowza5NupQRJJpMxqHM7JvXvwqhZCzj2+x8W1ZVgTFgalks4OjnRa9gYvuw7mBXBU9n/07f4qM1tKsCyWkWvJHRz19Cha3cWTBlDclL2O0E/wUtPS+XbBdPoOGoqBXyMy3F0Oh3fLphG+wFjcPP0NlNDpiQlsnXRLHqPN/czAn1a91Q6Dx6D2kU68TY5MYGf1i+nx+gpkvv1yMzIYP3syfQaNx21s3QfaPg3EEWRVSEzGDg+W4FpS1X57bYtfPVVN9TqvKnLJVWVVkrALU1wbMHeUBA98lIO7qlU0ilfPlY/fWpUZpuz34CwtFQOnm3B4MVF4vJ0ne8S3vV+EMCpYDUcPAqSeHO33cc4uAeiqdGV0GOrSXhhbH5vTWXpUaQcpb8cz82D33P0px2Ioig5sTUkLvXkZURyBhWq1WDeyvX8fuIYSxeE5MnLUg+XAHc+LlOAOfUqcT0zmeWPH5NiMPkxVFXqYWlBQBcXwaSPajJj10kuXTUPAVh+5gbN6takQtUaRuXfaTIVO77ZTv78+Wn20cdmxwHMnjmDrl91t0hE/rJzJ76+ftStV8/ivU6fGsTIMWOMysulsHzdZj6oXpXaNapZbafHN99+T+OGDQgMsL4oDvDyxXPCwkKpWauOXee2BWv97t8hLE2RF8JSyqsZst/9LQdO5Pj2laQm5o4JTVWWQE4iOGT7VhrCt+YnpEVb9317l/Eu9oOm46Z8Af7Mnz6ZoSNHkZho3zzXycmRdUtCOHb6d777Obf/tFUZ4eXuytqxfUiOjmTwrKUkpeRNLebj7sLyXq0pEuBDzzlrCI+Jt62qlECZwvlYu34DhQvkY0T/Xjx/cMesxNbWvehTwEvVbsLLV684s/t7s7lx5IObnDt1gtGjRuSe983f/+nzl2zc/h3zpk+SHPOdPneBZy9f8cUn0kTkq9Aw1m3dwYwJoyxe4+FT55DL5DSrbz6/Nry/W7dvs3vffqZMHA9YXvzXk5gvXr7k1JkzdO74BWC9BFsUReYvX8OkkUMstjG6Lgky8L9FXFoiJ/NCWrZr35642FhOncj1N82LuhKgQvnydOvyJYsXLsjTcf+/wG6yUhTFb0VRdAcCyO6M9fFfp4EKQCBQA0gDjgiC4Gxw7PQ3ppx1RFF8InH6LUAi2R3934KboKCRwpND2kgy7CQQBUGgocKTFLRc1tpPxAiCQAW5KzXl7hzQRhL6FimoRWVqmsq9OKaN4YkNMsta4ndBnGgl9+G2LonrsjhidbYVG0ky84lmhU8HIFc5E3p0FbrM7JeMmJ6ANuIW8ny1JEyDdSRc+xm3Kl8gyMzJuqzEcFIensKt8mcAaEwGgKI2k7CTGynSejAyhTS5kJEQTfilAxRo0tXq/fi4aIn6/Vvq9Z1gMZzH+NpFbvy4gk8HTzC7LylV5dULZylbuTourtKeIZZgrewbrAfq2FsCbhqcZAuxD+3zsDHFl17+nEyI5VWG/SSYKUo4qGnjZB54ZIio2DRehiXlacvI1CEIQj9BEC4bbEbmpoIgHBUE4ZbE1g5QAB5ALWAs8KNUCc770BfKEKiLJ3dIIgr7JzL5caIMLpwimkzsX4Ap5ubC9PKl+fnuEzYev4QoikbqSqlycMglowoGZBu1n/vzGrOWr3uriTpAYIFCBC1ahYNSxYyRAwi/ex0ftUMOQWmJpDSdJNau34hOvQcSPG4Yj+9kp1VmZWWyfe4k2vYdjoePn9l5jny7kWpNWlC+TGmzyWBWZiZrZ02g+8jJuLhJlyHu2rKGag0+pECxkpL7s8nMaXw1YhJKleX0VFEU2bJgBm2/6odPgLSS3fTvsPfHHdRu1BQfP+kJuqGqMjU1lYsXzvPRx8YBZ2+dAv43YE1d+Z/0ryzr6koJZ2d+Dcvuu01JS1uEpYtChhIZTbDeD6ZnZBEdm5qnLSX131Frvmv9YEpcnOTn6sIfIFd7kvjXIXtPhdzJHY9aPYm/9gvxT29Z/s4E49+8wlFNw76TUKhU7F4ylbTkJEnC0hCGakulSsXEyVOoVuMDBvTtQ3i4ZbJelhJH1tPb6OIiSA6NJjUyNsc72FEup1+ZYnxRrjALXz7hRHocDr7Zv0/D8m9TEkDfH+viIkiPiMQhIYVFzevy3ZW7fHP5Do7eGpx8PNj58AVuakc+/7RNdnsDovLunTtcuXyZz7v2lLzuDevWUrRYMRo2aiS5/+bNG5w5fYoBgwZZvPeffvyBkiVLSqo2DbHv5AWSUpLp2L6N1XZ6PHvxkrPnzuVM0G1h7cplDBlhuQT934Tex9KUuPwn0sUD3B0lt0J+Hnw1Ooh9q7ItpHLavyEsDdWVXh5OOaSl2k2VswEENvrK5jXktR+MS/h33kfvVD+o01okWAoVyM+MsUMZPHwkadH2VXHJZDLmBk3g2YuXrP96h13HADj4BNC3eyeGdGlP7ykLuHb3od3H6tGidhVCBn7J+I07OXHxWu4Ow7Rxw8RxFy8jeww9WdSiZSuWr1rNjm+2M2v6NGJfP7P4NzLsx0zDeOp0G05iJnw/fwrP3oxt08Kf89PW9cydv9AosAsgMzOTSbNCWDx7GgqJypY79x+y9bufmD1prOS1pKenM2bqLBbPnmp0vOE9vgwNZ8eu/UwY1Ev6ft60jYiMYu78hSyeH2KkQpfyeHTUpaPT6ZgybYaRutwacXfk5Gka1a2Fq0SquNRxUsTnf6PM++8SpIaE5MTJU9ix4xuePpF6jO1Dg3p1GTFqtNU2CUnpee4Ls95Cofyuwbp8QgKiKIYJgrABeCwIQkFRFA2NMMIEQegLxJM94T8meRLzc2oFQRgHfCcIwqa8XpMpPAQH6ss9OKCNpKXcB6VgHydbS67hqjaBM1kx1JN72J3q5yUoaSP34ZQ2lhdiKjVk7nlKBMxOG/fhvC6OF1lp1JN7IDM53hpRqYdSkNFY4YWrSuR3IZEzKWl0UntSzc4SqLuhCbwMS8Ih8AOUiSriLm4Dt8JoX19BXrCuJBmZ8fw8bsUbIHc0VwJp0xJJuPErmprdJY8FCD+7Dc+qbVC6Siv7RK2Wp/vXvEkHNz+HXjmp02m5tHEmlToOQ6FyMmsnhcenfqVG449x9bJdTiiKIvt+/IYJIcvzpKq0paaUIiqjYmK58+Axf125zN2nL0hKScNR6UA+Xy/y+XqT38+bok4iAZ62vZfyAs/insQ8tF6KKxMEBvkVYFHYM0b7F8JZwpskn6+aVxHW71vx9jY8ViGK4npgvZX9TS3tEwRhIPCLmL10elEQBB3gDUgyu+96XyhHoAFenCKairjhjX1qCl9UVEbgJNE0F71xEuRGqjDI9q00LXl1lMsJql+F/Q9eMGb3KaZ8VAtCo+32CpSnxhE0rD/Hz12kx+BRzJs+iUB/P2SpcUYDGUddutVVS0EQ+KjdZ9Rp3Iz9O7/jp6838EGDxjRt3R6VifG5NSVL4eIlmbp4NWvmzeLe9T959uAujT7rSmBRczLx8a2rJMRE0aWf+cqynmRs2bknAYWkAxiunTtFemqKxbRugL3bN1CjYVOL59Djt5++oUSFypSsaH0ir8frF8+4ffUyE0OW2tV+x9eb6dJdmogwxN8dCCa+es79F6HcffaKO89eER4Tj0wQ8PVwJ5+PJ/l9PCnk70NJd0WeE3j1v0lTuwInHw8z31Wj4/zUJIdn920t/fxY9eQJ1+PjqeSe3Re7BriQGJqdaqp/PmIS0snnpMixUPBTKQhPz8JFIbPoC/s+4b/dD+q0WotEpR7OxRuQdP84iXd+w7XMR/ZcAjKlGs/avYi9+DUOShnqwGxv1qS4NFwk1GN6vIxNoVSD1sQVL8+uRZOo16E3lMm2zrGkUjNFi48+pErFskyeMIFe3b6kSaOGxteWEgdJ0TmkoiUUc3Nhbs2K/JmRyvTzNyma35d+BQLIr/G1SFRC9uKSngB18vFgVsu67LrxkPF7z/BBoQAilA5M7f2pEUGQJlORkpLC3ODZzF++Jvtv9WbCr1c0HTywn6ioKCZOllaGx8bEsHDePNas32Dxmb539y7nzp5l8bLllv+AwKPHT9i1Zy/rV69EJwg2+yOdTsfkkKUsmh+S893W3jPPnz1FpVQRECitDjWFq1Ju5FupcVSYlYJLlYZrtVpCXz7n6cP73PrrDmEvnqLTarOD1fwC8PILwMs/kMIly+RYj9giKG2lfnurlTbb5LQNLMBHn3Xmj+9XUbvLMLP9+T3UvIzNHQ96eTgRHZurtjNVWr6v+G/3g/agZLGiTBjSlwGjJ7JucQhOTrb7I0EQmDBiMGs2byNk/kImDu5t9X1r2K+UKVqIrXPGM3nZJgp7uDCwfTOjYw0XrqUQ6O3B1jkTmLNhB79fucXEkUMwm3G8ISxN1d2GcHV1JXhuCE/v3GDJwgWkpKbyVcfPqV22iOS9JGXoclSVEckZ3AxNIDQuDf8azVEFluL4qmm06dyV47/9wvzlq1EqlWak34z5SxnaryeeHhqz84dHRDJj/mI2LVsoSWQCTJgxl7FDBuDjbT5+1qk1aOMjGTdnMcumWw841Gq1jJk6m/lz5+DkJD03Nr32dRs28vmn7fH1yV7wtdZ3iqLItu9/ZvMKKYt/y9A5afI8RoyMiuLuvXvcvXuPe/cfkJIQi6NKRWCAP/kC/ckfEEDpEsXws7BQbTiP+KeVnHK5nPkLFzFs8CBWr1uPiwRxawtpMhV5dBP5/wZ5JisNjnMme8XIlN0Q32x5mj2IonhQEISLZMve/za8BCX13hCWreQ+ONhJWFaRu/FAl8xhbRRN5d52kyoKQcaHCi8e6JLZq43kQ7knzoL9f16ZIFBX7sEzXSp7tBF8KPfC9c3x9hCVhgiQq+jv64GykBvHI2L54dFLPklO5XML6runcak8jEwyvh83Pzxq9SL64nfI83+AIM9+glQGpGJW7FMEQY7K13zyLmZlEP/nd7hX+QKZQ/YL0VRVGXf7GCrP/ARWslye8+LYNvxqtaVoCeteQ3f2baVQnRY4e9lXLpAU8Qox4jFlO3c322eqqiysceLP309TsfoHkgm5/wRRGR0bx7pvfuTew6cE+vtSpngRqpQuRufmDXF1VpOWnsHryBheRUTxMiKKQ1evExoTT6kCfrStVYlSBSzfd/yjV0b/bU1VaQ9h6SyX09snkFXhLxgTUMiMWAf7CMt3EL8CTYCTgiCUBJSArXr1d7ov1BOWp4mmEm542UlYeqKkNh4c1UVRT+aJn4VXRWJoEq4BLiSHp+DspyYpNJ5WJQpQ0c+TSfvP8lWNsjR9QwylR0TmqN10cREWVXFN6tSkbImijJkxl24dP6VZI8uJ2Nbg4uZGx1790el0/HHqOPMnjyawQCG6DhiGytHRZqkzgKOjEyOnzWHXLz9T68PmVK5V22wSl5wQz+EdG5iwYLXkOXZuWE6FmnUoXVk67Cv81QtO7PmJYcHLLF7HnauXiI2MoO1X/Sy2AXhw8xovHj+gz4SZFtsYqip1Oh1rFwQzekZIzmemfxdTVeX1q1foM2Cw1euQgj0l4FlZWnYdPcPek+dxV8ooWSCAUgUDaVC5DP6eGnQ6kYi4eF5FxvAqMoaDF66y8MlLPFQyWlQvS72yxXBQ2G/u7hzgZZWw1KsrDdPuDRWW/cXCzL5/H39HR/zevBsMCUvIJi1NCUs9XBQy+L9hUfRO94MALiWbkHTvOIl3f8O1tH2EpaBQ4lGrF0m3d5OVFI1byfoW20bHphqVu2oCC9NhwkKOfb2cJ9f/oN4XfQiNT7ObsPT3D2Ddxk0smz+X38+dZ/LQPigUihyiMisqLIdUtAa3QA0tfYrQoW19nmWKLD/4B0mpp5kwuCdFC5gTban3b5McGk3kjadv+vV4fCoWpn3F4lQK9OZUWBRB/bvlkBL6MAqAaUFTGDx6PM4mE7WkDB3Xr15h/4GDrFgh7e2l1WoZP24sM4PnWLSXSEpKYs7sWaxau84qYZKSkkLQ9BmsWbEsp51+omppkrpq20907PAZPt6W1c6Gaqt1q5YzbJR1z96/g3u3rvPrt9vQarMILFiIIsVLUbPxRwQUKIxMLic5MYHo8FCiw17z9O5tjv3yHVqtlvI1alO9QVNcNdbL4y1BXxVgWB1gi7gsXb0Orx7d49n5QxSqna24D9A4EvrGNkGvsNSTlvrnxJC0/D+Cd74fLF+mFGOHDqD/qAl2E5YAA3t9xe5ffmbY1BAWBY1BqTSohHPxsmjn4uSoYvH4Qez8ZS99QtYRMvBLfDTm1Wn6RRcp5ffUgV9x9NoDuo+awoLJowgwIaP0RKWtNOayBf1YOCuI+IQEtn3/M6vXb6Bjm+a0atvOhOjMfs4jkrOtOkIN7D888hWha9BCHh7awZiZ83F2dslejNHl9i0Hj57A3c1V0noiOTmFEZOns3TODJydpfu5Tdu/o0qlClStZG67pkfQ8s0M6dEZHy/rFl6zFi6jV5eOFPBQ21Ur9eDBQ+7eu8/A/tbHmnocPn6KJvXr5NmzF3IJS2uqysioKDZs2sLDR48IDAygdMlSVK1ShS7tPsbF2Zm0tHReh4Xz8vVrXr4O49Dxk4SFR1C2VEnatmhGqeK5XqD/JEEp9VvTaDRMDprK+LGjWbl67T/2Xf+DHWSlIAgyYBDwoyiKEYIg5AdWAE+Bu4IgtAKuA6/ILqGcS/YE/4L0Ga1i7Jvj/n7dAuBtQFi2zANhWULmjAsK9mkj+FierSyyFyVkzvgLKo5qoykvc6WYRKm1NRSSOeEtKDmmjaa0zBnvLPteJHqUdFGSzzf7O10cFHQvUxLXIoF8e/clo7cdZO7MIJzcAkiSqY38KqWQGPYEZcFaRmngeugykskKv42qVAuzfaJOS9yf3+JarhVydfaAyZSoTA1/RGrEQwIaW05bjLlzHrnKiXK1rfsBhd44hyCT419e2hPT7Np1Wp4d2EjLIfa9+0VRZP/OHUwIsb6Sr0deSMr7j5+y5uvvydJq6dulA5OGZhO/puXfjiolRfP7UzS/P5mhT/m8UmEA7r0IY++FGyzc+Rsl3Zzo3aAKjg5vuwaRDXsIy3xKRxq7efBtdBhdvW17O70n2AxsFgThFtl9UHfRwKDmfe0LFW9JWLqg4COZD8d0UThqobDcPsUyQAE3Z1Z82oRlp69w7slrJnVshkIuMyIs9ciKCjNT+fj7eLNl5SLmL1/Dqd//YMroYSg9ckuvbakrDSGTyajduCm1Gzflzo2rzB0ziEGjJ6ApU9b2wW9Q9+PcMkL9JC4qJQNRFPlh6Sz6jJ6Cg8Rg7diuH3B0UlPnI2lPovS0VLYunMmgafMtJijGx0Sx95uNjApZafUaE+Ji2LVlNSNDLBt9m5Z//7B5LS3af4G7h23PWoAdWzfTtUcvM++nv4uEpGQ2/XyQK3/d59Nm9dkwsjtyufl3yOUCAV4eBHh5UL107iA0Oj6RA8dPM3TtT7g4qhjerhEFfDxQ+fpYVZ6BtMrSVGHpEuBuRFjq4e7vzGSPcsy4cJOgkqVQvVE42CIs9erK9xHvaz8I4FKqCUn3jpJ49whyn7KovYxtEvQhPYZKTUEmx6deT2Kv7ibmz5/xqGrd3xqySZn8HmoiU3R83HcM9y+eZmfIWJr3Gwfk9mO2iEu5XM6k8WM5ceo03QeNZM7oARTxcCQrKsxIlWRYAm50vwHuRj6VpTW+zC9XnkQHZyYu2UDdquXp1vajHFWlKVGZ8xu+8RSfioWpUKEY1T+shYNPgFnZ5fZvv6dYqbKULVfe7DqePnnM+tUrWLxyLcmZes7GGIvnzeWTDp3xCigg+bcQRZGgSROZOHmKVdWKKIpMnDKViePG4O5uXn0iNTG+d/8+Dx89Mkr/tvZ+iXr1DDdnNcUKZpO9piWj9kK/MKRXVOp0On4//hvH9u2iWKmyDBg3Bfc3pKOpWtLFzR0XN3cKlSid81lmRga3/7zAD2sWk5yYQKO2n1OpljHBbol4tOZjaQ9x2eSLHuyYH0RgkRI4+Gf3zYaEJfzfIi3f536wQtnSjBnSnwGjJ7B2kX2EpSwljvbNPyTQz5deY6eyctYkNG7S3tpS+KRBDaqVLsqoFdvo0bIRH1Yz7ycswsWLpvW8KF+qOGODF/NF649p0zRbbW6LqNSrBg2JKnc3N4b26wlftmP1th8YNXkGM2bNRu7qaaSqjErJ4MqzOK4/jsbLwynn91vQV0PVASMp4qU2WsyFbJ/J73/ZzZaVi82uJTMzkyHjpzB17Ej8Laj/Lv55lbsPHrFgpmVf8l37D+Hv60Ot+o3QYdl7c++hI7i6ONOoXm2jv4ElcjArK4sZwXNYtWxJzme2VJXf/PgLW1YustjGFixdy73791m3YROiKNKnVw/KlTUer+uvy9FRRdHCBY3C00RR5M79h+zad4j7jx5TuXw5BvTs+laEal5RqnRpWrdpy5JFC5k0ylxp/j+8HeydcbQEbgmCkAz8AaQATUVRzAIaARfJNhe+DXgBzURRTLJwLosQRfE68D2QN1NAK6jj6sKXLr6cFWIo4qygpIuSkhJlvKYIkKloLPfkYFYUcWLePKBcBQVt5L6Eiemc18blKS0cspPN28h9CM/K5AzRpOfBO04Pw8AUmUygX8v6DOjQin7jppOcnCx5zMuwJOIipPepXD1zVJWiTkvG4xMoizZEMCGARVEk4frPqIvUwUGTD01AgBlRmZUcS/Tln/Grb7mUMC0mlOibp6jZQdqLQ4+U2AieXzhMmZbWPW9KB7jlbNFnfqTyR5/i5Go+kJXyqrxy/gwVqmWrKk1LwG2F6phCT1RmZWUxYc4Svv5pN+MG9WbF7MlULCNNVBoiM/Sp0X+XKuDPmA4fsax9A6oWCmDQtgPcePH2id162BO4U8Ml++93NVk6dVRPmr8vEEUxQxTFrqIolhdFsaooisclmr2XfaGesLxGPLF5SCBWCTI+lvlwLSuRm1l5u43MmHhGN65O7cKBDNy6l/hUY+82WyVAcrmciSOH0K5FM3oOHcXNW9LecaaDRWuoXbMGc5atYfPq5dy+cQ1XpTxPxxvCW63k3M6t1G38EQEFC5vtv3L2BK+ePqRNt76Sx4uiyMa5QXzRf4RFFYxWq2XTvGn0GjsNhUlqrum5Ns+bTs8xU3FQSg/aTYnKe7duEP76FbUbW3RGMEJaWhrXr13hg9p17WpvL3YdPcOwOSuoU6Uc2+dNon3T+pJEpTV4ubvSrX0r1g7pxKhPmxDy0xG2HLmQp3evqV2BLQ9LPTQqJX0rlmBzpLGC3ZKPpd7D0tRa4T3De9kPAriUagqiiC7mgd3HCIKAZ9VPcHDzJ/LMJkSd/dUuoXFpuJasScuBEzm4bh4v797I3WfDz1I/0W7csAHLQ2YSsmoTG7f9gDY23KhUWwqmRKUeCm9/PNxdWTNtJClp6Sza+qPRcfrz6YlKQ9LdUPVkiL9u3+b82dOS9hAx0VHMmR5EyKJlqCQqUwD27d6Fk5OaBo2bANnknykBuGXTRmrXrUvpMmUkz6HHtzu+oVq1qlQobx8ZkpqayozZc5gx1XpoGWSXs7soZaxauYLBQ4fadX5DWHvXhL54ztShfUmMj2Py/BV0Gzg8h6i0Fw5KJZVrN6DPxFkMmr6Ap/f+Yt3sSaQk5YaqSJGSeQncMQ2O00MQBL4YPoX9W1ehUeQuxEgF7uT3UJv5Wb6neG/7wYrlyjBqcD8Gj5tMZqb1MaEhGfZBlQrMHD2Y/hNm8uL1G+sIKyF5hijg68XWSYM4f+s+y348YN/72cCX0t/Hm68Xz+bpi1cMnxZCvE6RZ6JSfz+ylDhkMhlDenSmZ5eODBgyjNTUVKPy79D4NF7GppCSkO0T+DI2hQCNI97qXP9zw4XbjIwMxk6dzYIZU8xKs0VRZNy0YPp+9SVlShaXvN5XoWEsW7eZ4CmWFdsPnzzlwG/Hs8nWN9CpNUYLRwBPopPYtf8QowbZp5AECFmwiD69ekou8kjhtxOn+X/tnXd0FFUbh5/ZbDa9Fwih9967AgIiCorYRRQQFUVAmjRD71UEBBTBXrDgp9gQQYrSe++9hIQ0SN9kd74/kt1smdkSAiR4n3PmQGbu3LmTzL5772/e0v7+VngERhRZzsmcnBxGx4zj65XfMWrEcObPnW0nVDpDkiRq16jG6CED+HjRPBrUrU2vN4dw8Mgxt8dTGG/MR7p0JTMzk83/bnH5HHcL8vzXcLoikGXZKMtyF1mWI2VZ9pNlOVqW5Z6yLJ/JPz5CluUy+ceiZFl+Or/KmVNkWX5AluWpNvtelmVZkmX5U7XzvDUah6Kj6ZjpeLTWi87eoXyeHofBjcVLkOTJI9pwNhqSuOZm8QBTWHcwWtYbkjC6KVhKkkQdAqhHIJtJ5KqTqr6hCpMg24rPtSuXZ9yQN3hzyHCys63v53hsgeCUEmudR9Ey9FuWZfTn/8EzqhEanT+B0dYh4Okn1uEZUhGvyOp2IiWAMVfPtQ3LKP3Aa2i0OoIj/ezb5Oi5sOYjKj02wGGhHKPRwMFvF9Hg+cGK7SwFShOndm1GNhio0sR+wa0kVFYM9uGPVd/Q5ZkXVMfhKiahMj0jg1ffHs+jD7Zj2qjBRJVyrXKtrVBpS6uqZVn80iOs2nOM99buuOWkuq4Ilj3CSvNHSiLJuXemqMPdpDjaQncwCZa7SeGmE8HSX6vJC1EFPCSJx3URxBv1/JuT4vQ6th4+rSuVYWjL+gz+/A+uJrtWidKSZo0bsmLBXL78eiXzFy7CYDAoh2AoFMpROubr58fkuQv49IP3OXlcefJimztMqTDP/m2bSU1J5r7O9l6T544fYcvaX3lx8BjV+/rho4U0aduRSjXrWBUAstz++HQxHR5/lvDSjvOi/frVClp0fJiIMmXtjikVFkpJSuTzpe/Rf6R1AVJHofHfff0Fz/d8yeE43OX9r/7HsbMX+WTaKFrUzxMhClsB3ESZ0CAWv/ks/t5e9Fv4DcmeXi5XB3dFsDRtltQOCaSMrzc7cu2f73tNsCzpdhAgoNZDGLNuknFum9X+jJQUxfyXpn0B1e4joGprLvwyH4PePW8w/5Bwnho5kz1rfuDEjk1AnmelaeEb7K0lQOdhXvxa5hHTZKYQ4S3x4dgBeOs8eW3Op1w8fdnO+9f0XCoJlRrLPJX+YUiSxOvPPoa3TsdHq/NS6HlFRuATEYJ/VJD5uQ2I8sc/Ksj82dCGlzZ7VRp9grmanMasGdOZOG2WXWh2ZmYmMSOGMXH6bAIClXWWg/v3sfWfTbwxSL2GyL69ezh16hTPPve8w9/xqZMn2b1zJy+90MNhOxOyLDM6Zhyj3h5OoMX4HC0cL1++jFarpXRp9yNKUlVSOp04fJCls6cwcvo8ujz1vKKXvrt46nQ83vt1ur7wMu+PH86R3QXPuklwVBMeXcG2j3BfHWVCA3l5yGi+Xzid0oFeZs9hJcESrAvwlDTuBTvYoE5t3ujzIoNGjVMsamgS9WypXL4sS6bFMGrKLA7u2eX0Opbf6R4eGsb2fpLIkCDGfrseAvPSLnhFRti9VLEqoGMak0bDoJdfoN9rr9Lv7XFs2rlP8Zrexmyris5mgVLhfurVrsnoEcMZ8tYg9PoC59WoIG/KhvhSrkIwYSE+NKsUSlSQt5W9NiHLMqMmTmdo/1eJjLBPJTFn0Qfc36o5rZsrpwPKyMjk7fFTeG/6RFUPwMzMLMZOm83cKWMdpsHIzc0lZuIU5kyybmf0CVYVFX/9/Xe8vHQ80LbAE9uZUPfldz/y0nNPuVU52xGpqam81n8ATzzejUnjx1Iq0nk9CVdod19LViyYyxffrmLeYvcLeCrdm7OCkqPGvMPS5Z+QkOiakC9wTNHGct0FLIVJRwJmRa03bb2C+CIjzi3h0Efy4FGPSPYZb3LGSXivErU8/Kmm8eV3w3VyXKxODgV5KoPxpAPhxJLFTpIxKITPmFC696Aq0VaVomtVq8zQgW8yfMhb5ObmKuarVEOWZfTnNuERWAaPIPsqs5kXdyPLBnwrNlcUKmVZJm7jcsKbP4PWT/2N8YU1HxHd7nkqVnI8GTz++xdUavMY3oHWopqtQGki6eoFjmz6nTY93nDYr4mKwT4c2bebqrXq4uXlrVhYxxa1EHCTUBmfkMgrw8czasCr3N+8sV07Na9KR0JlxvmCYz46TyZ1f4DGFUrzxue/KYpDtiK2I5wJlh6SxGuR0SyLv+K2IC+4NQrjD+iJhraEsYMU0hSS5VmKlJZIkkRHXSjeaFiZHu/237pCaCBzX+hMzPfrOF4Iz19fXx9mTZ9KnVq16PNqPy5duqQaemcpTKoJmDovL95d8D7vzZnJhfPn3Pau3L1pHTvWr6HHQPtKjgnXrvLD8kW8HjNNNfH51rW/4uGhpVu3xxWFUIDtm/5GkuChTp0cjuXssUPEXb6oWJxHqe/c3FzenTiGt2KmWBUcciRU5uTksGPbVlq3aafaxh2MRiPvTJ2Fv68P7/Tr6XaBHFd4pk0jJr7YhXc+Xc2aPUfNiyHbRZEtzgRLE7bCZY8q5dkQG8+NAMkqr6Xg9qLx8DCHb7tDQN3HyLlxlcyLu906z6dMbQLrd+fCL/PJSVMvxmRZVMSE1lPHY29N5OKRvZze9LPqubZCpSXPNq3KmG5tiflpI3/ss6+y64pQafnvgBe6c9Oo4eu//gXynn+fiBD8SvlSumEkfqV88clPqaAJjrQSKs/FJTJ08FtMnzULXz/rF89Go5GxI4czaPhIykTbzxcBrsXG8sGi95igIHSaSEpMZMH8+UycPEX1dwR51XOnTp7EpKnTXLYnH360nFYtW9CgvnpuOFs+WLKY/gMKCqkVNgTcxL8b1vHrN58wdu77BAYF31JfSpStXI1hsxZzeNc2vlgwA6Px9hb1KlupKg0aN2Prb6sA7mnB8l6geZNGvPB0d4bGTLR6NlRzTOdvYZ4GVkwZwaKvfmTdtj1uX7dHp/t4sFl93py3Ar1vMJrgSPOmJlSaMPoGU6t6VT756EPWr/uLiZMmW3mHmoRKh/diQ53atXnpldeZPHqYlZgVFext9gQ2vVyyfbHkmZPB26PG0KHtfTRr3NCqX01GCiu//hovcnmmY2tFwdRoNDI0ZiIxw95SLKgD+S9WJk9nzNCBBKm8+DExffEKXu/5DGGh6utsS4HxxMmTrP71d94eOsRhv5b8s20HLZo0LLLQ6thr13h9wCBiRo2kRfNmTtu768np5+fLnMljqVe7Jr36D+HqNffWIUqCrCPBUqvVMmnqNN6OmeB2dK3AnhIpVqbKhcv1VM3Tl+a6AL7OiHPr4dFKEg97hHPZmMUBg3LIqyMqaHxorgnmN8N1MmXnir5tQR0PJJoQTHl8+JsERZHBRHSkr6LA5BlVESmyPIbAKKo2aknn7s+yeLF9DjRbr0oTsmwk+/R6PEIqog23L6iTff00+oQz+NfsrDq2hB3f4lexMd6RlQEUvSrj96zBt3QlajaxF/Ks+jp9CEN2JqXqNDfvUxMpAfSZ6az/+F0e7h+j6IWp5FUJ8PPXn9JNoQgPuB8CfurcBQaNnc78iaOoVa2y1TE5/mKhhEo12taowKxnOjL2xw1cvWkf2l+UgmWEp452gSGsSnIc1isoWtIw4OVRIDAqiYxKeKGhDaFsJZkMDE7Pt/T+auoZSG1PX1akxaJ3YdFj6fkTHuDL+727Muvr39h27JzKTSm/hTRNTB7q9CCz3l3AtCmTWf/Xnw6v7Uh8C9B54Ovnx8z5C5k9Tb0YjSUm4W/z7z9xZM8O+sVMs8szmZ56kxWzJvD62OnovJQXZycO7uXUnq28PmiI6rViL13kz5+/p/eAYQ7HlJ2ZwffLFvLSEHsPTjURdNm86XR/oTelyigLCJaYRNyffviOJ55+VlUEcPaW2WrM2XrejJlGu2YN6PPEwy6f5wq2IarRYcGsGNKTLUfO8tO2A1bH3BUs1URLyBOIAsoEM6xeDRYcPkWu0WglWDryrhTcGoasVPTJl/ENDnZLtPQLCaF0u75kXz9N5pUDTttbelzqQspSrvMbXPpzKRkW39uu5N7TaDT0GjoGfWYGG75cSoSvp52XjrmthVeQZVGdkOwcJtWtybErycxat5tcC1tsKVRaLf7BqnKu5c8jX3mebYdPcTlbg1dkBH5RYVZivF9UmLkfk1B5/MJVRo8Ywbz57xEdbe/RPXPKRLo98ZRiDkuAtNRUJowZweSZc1TDww0GA6NHjWTytOlWbZTszfSpUxg8dKiVh6Qj/t26lUuXL/P8s8+41B7genw8WZmZlC/vuOCjq/xv5Vfs3Povk+YsUCzeWFRoPT15rv8w2rRpy7JpMW57FrlLh+7PcuXYfrLi8j4bQrC8MyQmqb88cUTb1i15tPODjJwwDVmW7cU9k0hpg4+3Fx9MGMpf2/bwxeq1bl+3Y5O6vNG9E6/NWkZKWt46xVaoNIU4W26Q7yXoHcBbI2Nocl87Xunbl6tX81Kx2HpTukrDxk14qOvj/Pjlx1b7o4K9zc+ubfh3Tk4Og4YO59GuXej6hLUt0WSksGHbLvYePsaQV15Uve7kOe/xeJfO1K1VQ7XNii++oWmjBjSo4zgkevOOPciyTLuW1h6cauLezZs3mThlGvNmzXDrpfHHX31L356OPd1d5cTJk7w9agzz586mWjXlEHklChN6/lD7dsyfNoFhYydxJdb9KB4lwVJt/lu+fHm6dO3Kgg8/VjwucJ0SKVbKwI8Z1wulVtf29KOepz9/G5LcOl+SJNppQ8lF5l9DstvXjtToaO8RxprcBG44EFsdVf4ujTf3E8pOUriE40mxMzGqddsHOHFoP4bcvLE4ylcpG3LIPrUWz1K10IZUNO83hYDnpiWQcXoTgQ2fRpIkRa/K5INr8PAJJLBqXhEcJaEy7cpJ0q6colQzew8hS3Iy0zi59htqP/6qeZ+aSAl5b6T+/HAmD/R6C28/+4TQauHfp48dJrp8RXz91JO5u4LHzVj2HDzKlPc+YPncyXZh3+7kqLTF0qvSljB/X+Y934np/+zjym0WLFv6B5FiyOF4pvIzJCh6vNCwxphAhgsvQGzxxoPOHmFsl5JceoFiSX2dP518Qpl3/SKpBtdfHKXHJuLnpeP9Xl35/t99rN5xyHzMndDf0LAwlnzwIcePHmHO9CkYjUa3PCMt2wYGBtGgYWP27i4IZbINAbdk68/fkBZ/mbfHTrSb2BkMBpZNj6HX0BgCg5U/L5nXLrD+208YOkF9YpiVlcmiGRMYMn662TNTTXj84r0ZPPfGULy8rXN+qbVf98v/CI8sReOW1mkwHAm7RqORDevW0vEh14VFpRxRAGnpGbwycgL9ej5N5/vs357fagg42AuWkiQx+aWu7D1zmR+37Lc65szL0haTaKkmXJarGMEzlcry0fGzAKqCpavk6o1k3Mx2a8vJvr1CRHHDw8uPpN2ryLicZ09cES1NxyVJIqpDPwwJJ8m6dlSxbUZiQS5SS8HS0z+UCo8N5fyaz7l5XjmfrhIm4ea5l1+nZvXqLJgy1iwe+es0dnnWLBfbxpR4c57KzPhMunkE09DTn7f/2klCRhY+ESGENqipWFHXVqi0FCwlSWLEG71Zlh8ODtbPuldkREH4t08we4+dZsqkiSxcvITwCPvPz1effUJUhUq069BR8Xeg1+sZPXwwo8ZOIDxCOdTPX6dhzqyZ9HjhBafi4N/r1xEcHEzjJsohlrZcuXqVDz9awaTx45w3tuDDpUt4vf+b5p9vxaty+fvvkZaWyrCYiaoe+EWBZVqR5m3a06Xb43w5e1yReVgqpS+RJIk+b4/nq4WzCPTIu46lYKkmWjrCXTuYZVOQ6L+AwWBgytwFhVobP9S+He3ua8m4SVMKzlcRKS3x8PBg1rB+JN1IZebyr92+dsNqFZn86rMMWPgVcQbreYhtHkY1mrZszeSZc5gwdizbNvwFKHhTWniFOqJNhwc5tHun2Sabn1sbr0qAjIwMBr7Znz4vvUj7dm3t+jp9/iKfff8zs8YMsZvvmca3ZMVnlI8uQ5dOHVTHtGvvfk6cPstLzz7lcOwpN1NZ+sV3vDPgFYftTN8tsizz9tvDmTJhPAEBrhdL2rP/ILWqV8PX17Vcs45CxHfu2s2sue+ybMn7RRb27YzIiHDenzWV4eMmc/mqsoOWI9wJee/2eHcuXrzA9oPK8wt3yU7PcdsWGg0l37OzRIqVgZKWKlofvs5wPxwRoIHOnyjJix1G++qJzmjiEUS45Om22AkQJGl5WBvO34ZEEmX7L1JHQqUJHzxoTxiXyORivmCplK8S7EPAben0+DNsXv2tVb5KSwKjq2PUp5N9cg2e0U3wCIy2OgZ5VcFv7l9FUJPnkTQeikJl6tld5KQlEtpAXYTMSb/BlU0rqfjI65Qt7XhRd+C796n7xOt4aPMKTjgSKgF2//oNVRrfR0T5KnbH1DwqAX77/msef6GPw75dIScnhzlLP2b5nMkE+NuLtLeTED8fpnVszvTN+0jKdC/vqi3OBMve4WX4ISmOTDeKDwgKjycSD2hCWW9MIC3/BYgr3pUmL0o/ScsDmjDWGRPJddGWmbzBGocG0Te0DAsTLpGod29RoPXQMO/VJ9h35jKf/firajulN+KmXGIajYYBg4fRuFlzpox7xyVbrFZM54VeffhsxTKrfbaVV41GIx/MmYosy/QZMAxJkqwWZxG+nnz+7lQ6dn/ertiOqY02I4UP501n5LR5qsVyZFlm0dRx9BkwzK64gq0AuW3d75QqW56KNWo7bGfi0rkz7NqyiWf6uJ5wHWDrP5to275jkYRqz1r6CW+/3ofGdR0XybhVlATLST27sPvURdbvP2HXXkm0tPWutMVSzLEULx+oXwnvAG/2JuR5uSgJlsK7sujw8NRS5am3STu7g7RzBS8d1ARL2/2SpCGiTV/0V/aQk3LZvn1+xXAlEdRD50OFx4YSv/cvkk/scrtQSMeuj9PmwYeZMGKwVa40d2gYFMQ79zdgyvbDZPr7WHlTqnpUKlA2O4GkK5e5cCrP690vKsy8WYZ//77hHxa/v5BFS5YqFmL4Z+MGTp4+zdMv9FLM0SjLMhPGjKBvv/5UrlpNdTy///YrXl5etFcRPE1cj4/nqy++4K0hQx22M2EwGBgdM455s2ei1br++cvJyeFq7FWqVbePLHKXg3v3kJ2dzUuvupaSyPb76FZo2rot7R5+lO8WTifC1/p7yFZ0vBV8/fx58pUBfLO4oFJwVJD3LYuWAnUiI8KpX7sWIydMK5QY/djDnahTrQoLP/na7XMHv/QUlaKjGDN/uVvX1oaXplq9+iweN5jhs5dw+uIV5ycpEB4RyQcfLeeXX39j/aZ/C9UH5Kc8erQ7G1f/YN2/TVGd5KsXGPT6q4waMpDmzQpekpi8/RKTkomZvYgFE0fZReBAni3+6fc/Sb5xg74vqnsoxl9PYP7S5UyNsU85ZIksy4yaPp+pIwbi6aAYoyWLln3CY507UT06zDps3kkOys+//YHXet16HYfs7GwWvL+YDxcvws/P9bWxaXy3kiczPCyUxbOn8fb4KSQlF74fEyYPSyUvy/ETJzF/7lwyMtxPJSjIo0SKlZAnODbS+fN5RpzLC21Lanv4IwPHjG4XZqOmxp/KGh/+MCS4fW0fyYOuHhFsMaQQ62bRHhMSEq0I4SKZXMkXLKv761SrL1uGgKdpfEnMNHAtTU/phvexe+sWcrKUP0A5N65ivLqTsPteJaR6gSeOSaiUDTnc2P0NgQ2fQqPzUxQqM6+dIvXsTiJaFRg2W69K2Wjg3C+LqdjlDcqXcyyInd/6O6GVahMYVcFh2LeJuLMnSLx8ntpt7b2CHAmV+uxsMtJSCQ7LS5TsSr5KNT744jte6/k0Op1rXyAmChP+rUSQt46x7Roz4e9dZOQULoWCCUeCpU6j4cXwKD6+ftW8r6RVBC9JaDUSAZKWjppwNhgTuSHn5exxJFjaHguUtDTXBLHBmGgn+JXy0lqFgNsKK6U8dYysXYP5Z89wOdO9YhOSJDHhhUdITs1g4fd/qLYzCZamSYntRKBjp860vO9+Zk6ZiL+nRlGMdFbx2z8ggMZNm7FlY4FXkeVCLSsrkxmjh9CweWue6NlHsY+VKz6gYcOGPNihveKCLzMjnbkTRjFs4gyHnto/fvkx9Zu2oHod5Rxqpv6ux15h+/o/ePTFVxWP25Kj1/PB3GkMemeynejoyKsS4PdffqZrt+4O27jCmQuXSM/IoGFt9VCnosQyB5YmOBJJkpja61FWbdnP3jOXFM9REiydiZYmLAXLN5rUYtXVWFLz82gp5bA0CZaCW0fSeFDpsQHkJp0k9VRBBU5Xw8IljQeRbfuRfvwPdJ5GszBpOt9RP34hflTpPpjsywe5vKMgNYVtaGtsSl6RRMsK4PHpepq0bsPzvfoyeMAbxCXddFjcRRMcaZVTMiDKH79SvkT6+TCnd1dGrNpAcqpNdIMzoTItEf3pg2THX2dw51a8t8a66JDZqxJYtvIn/v1nM4sWL8XX1/6ZPnrkMD+t+p4Jk6bYHTMxf/YMHujYicZN1fOSXbtwht9+/YUhw4artoG8BfrYmHeYPM0+JYcas+fNp2+f3kQqeIRmabxUf//r/lrLgw8+5NI1HCHLMp8tW0zf/gXVxNW8+ePT9bcsVCqd3/z+B6hVryFffrDQoTipVvjNcjON0XQdy+tVq9sQX39/ju6wFo9MgiUI0bKoebzLQ3Rq34bBYyaQm+v+fL/nE11JTUvn57Ub8myHg9yRtjz3SHvaNq3PwKkLybFYa5hfmihgiqYIDwli2aThTHz/U/bv3gG4FsZtCsf212nwk3J5d+Io/vfbGjbvsMij6cCb0pTWwvS5T8nKJbxRWzauX8eFuGRib2SZn1eTV+WRw4d5e9QY3p0zi9q17F+8ZmVl89bo8cwdO5ygQGWPxR279/H35n95Z+ggxeOQl1982NjJzJ0yTjVVhonPvvmeti2aUKVCOYftTHPpfQcPcyU2lse7PGR1zJkAmJmZRVZWNiHBrlUMd8SSD5fx+muvqoqrlqJkUQiUtoSFhjB7YgyDRo0jM9NxEWNLnIWfWwqX3sZsgnUSMSOGMmnqdMX2ohK4c0qsWAl5Id336QL5LP2aW1W+TbTUBHHZmMUFo3sLbYBKGl8aaQL5zXCdbDcK5wDoJA1dPCLYZ7xpvrYrXpWWSEi0JoQ4TTa7DTfMQkNo1VCXw3slSaLlk705+af9W7TsuOOkHVtLcIs+ePjkGaXA6OoFQqVs5Mbeb/Gr2Qmtv33lMwD9jWsk7v2J0g/0My+QlcK/L637jFLNHsEr2LELeGrcJa6f2M8jz/Z0KlIC5Oqz2fz1Ujq+bP/G3ZFQCbB94zpadbj1iWlCYiL7jxyn4/0tFY87CgEvSqICfBncqh7j/t5FjkWVcHdCwU2EVg1VFS0revkQ7enFv6kp5n1CsLx9lPLSUsnbi06acDYbk0lRESwd5aSs7+1HU10A+zQ3zAKlbZViS6HSUmQJ1ekYU7UaKy5e5Giy6/l8s+OvA/DW4w8Q5O/LxI+/L3QS6s5dHqVBo8aMHDKImzdvmMVJZyKlJS/0epkfvv7CLpdX0vV4pgwfwPOv9KdlO+UwnfW//Yw+O4vO3ZVznxkMBuaMHcFrQ0cRHqk+aT+4ZydXL11U7cdEmLcH3y6YzstvT7ASHh15wny8cA49XumPv00+N2dCZUZ6Orm5uaqVfN1hxuIVjHESnnQ70QRHog0tzYIRb7Dojx2cib2u2E4pLNwd0RLA00PDkBZ1WXL2QkEf+YKlUv5KQeHRaCR8A72QJInoDn2RM2LJvrTVfNxSaLT8v3+wt3kD0Hh6Edn2NeI3L8eQna54jhrhYX7UfmoAmSnXSfh3lUs5+BIyCkSdsjXr88aQEQwf1J+kxESyNF7mBZGtyGh6Pv2jgvAr5WsuqFMmJICZfbrx5tzlHIzPL6znQKg05cHUnz5I0oHjJBw8TZg+Fz8vHceuFnw2NMGRGH1DiHnvIwDGT5xMhoIGcvXKFRbNm83U2fPMYc229nfll58TEhpK5y6Pqv5e0lJTmTJpIjNmzVFPlZEvKn6wZAmPdeummDNTie07dpKdna0YsulswfjH77/xSNeuLl3HEb/++D0PPvIoPgpiryVF6U2pRKduT6Lz8ubX774qsj6VxvzkKwPZ/PNK0lKs8ylaCpaCouWh9u14tvujDBw5tlD5SWMGvcb6f3fw7678SttuiJZd2ragd/fOvDp+LmkZ7q2tA/39WD5lBIu+/B//bNpo3q8mWJpeXlvaGY1Gw8KxQ/jfmvUs+/oHl+aVWRov0vRGLt3M5uj1NK7dzKbVk73Y9uPngLVX5aa/17N0yfss/2CJYtiy0Whk8JjxjBzcn+iqNe2P+wZzMi6FxSs+Y96U8Q4jVsbPmEf/vi9RpnQph+M/fuoMu/cfpOcTrtmnjIxMZi1cwqTRb7vU3pJf/lzHo50fdPs8W+Li4zlx8hRt77dOSXQ7RElHlC8bzeghAxg4aqxTcd9RNXVn1K9Xj6io0vz+xxqr/UKodI0SLVZCXtGc+7wC+Skzwe1zJUmio0cYh4ypxBXCyzFK40UbjxB+z71OuptFf0xFe04a0zlhLFyePw0SD2rDqObjxTeG69yw+KCZQsA9oyranXctTW+uAn7DvxwJV2O5fvaSubhOxtmtZMceIbh5LzRa5Q9S6qFf8I5ugC60AoCdV6UhK424zZ8S1aE/Gq0nwZF+ikJlwqFNaH0CCKrSyGH4tyE3hwu/LeeZt95xORxxw+cLue+51/DMz+dWNcLfvDlj64a1tG5/62LlzLnzGTPotVvupyioGhrEC/WqMm3z3iKpTqYmWD4eEsGW1BQScwomrtGRvubNFdJTskiJT3drM+Te3iqXxZkK3l709CnFP8YkcvJfnqgVzrEUJE2iZE2tH5GSjs059gna1UJVTaKLn1bL1Psa8MO5S2yPc5wPSInej7SjcfVKDJ25OG9ibfMWXG2ianqjDtDlscd5c/BQRg4eyJ6dO9weg6enJ12feJrV36807zt/+gRzJ4xi6ITpVKmhHLZ8YNd2DuzaRq83h6j2vXjmJB595gUqVbOfuJq4HhfLD59+RP8RY52O9YsPFvDocz2pXr6MSyF7+3ZsReupo25j5xUWbVnz+6907vqY1T7L37urrPt3O/VqViMizLHn/J3AS+fJoqF9mPDtehJRXjCr5bJ0JlpaeldWCg6gbkQIG1IL0s0oCZaCosEkWJZp9yKZ104jZRQIxc7yWJpES61vMOGtexG/8QOMuXo7QVPpmiYkSaL98/3wDghi21cLkV0MhTQJPJWrVWfY+KkMGjTIXCjCSrC0EAtMz6Bt5e+K1Wvy8Tv9+fq39Sz4YhWyLDv0qDQV7Mm8nkzc/liuHzzPK/WrsWhtng31iowgxz+E18dMpk2r5rz6cp+C0/VG83Y1IZlJMaOYNuddfHzy5lu2QuXmDX9z9sxpXn5NPfTZaDQyddwoYsaNd1oo58CB/Vy6dJFHH+vmsJ2J1NRUFi1Zyjuj8sIpTYKnI29KEykpKeg8deZ7Kyzp6WlsWvcnD3d7oqBvBa9KZ0JlQobeSuwuLM/1fZ1L58+yzSKqoKhJzjbw9MBRfL9out280zIsXFC0tGnVgqcf78r0+daFVF0pOCNJEu+Of5sVK3/k8InTbl+7Rf1avNOvJ6+Om8P1pLzrueJdCeDtpePDicP4fs1Gfv3tN/N80NG4beckWq2W+RNGEhTgz2vDxpB0Q/lFusmrEiBVbyA+Xc/eCynEpmRRrlYDkmIv4WfIi74M9tay+pvP2bv9X5YtnK9qC8ZPnsKTzzxnLoRjWxwoMSmZmKmzeH/2FIfh2t+s+pmyZUpzXwvH87bs7GwmzX6XGeNHO2wHBV6VE2bOY8zQgXh7OxfKbAW6tRs20blDO6fnOWPGrDmMHvG2eVzuCpQmr1vLrbDUq12T3s8/zaiJ9jYKbk2ktOStAW/y7Q+riIsXxWjdpcSLlQA1Pf3wlTTs1ae6fa4mXzTcZkwhRc6hupvhvqGSJ520YazNLQjDdOfaD3qEcSE3i2O4P3ZTrspmukB6RUSxLD2O/flfDJbYhoDbEv3AC8T/8ylGfTqph39Fzs0msOFTilWzAdJPbcLDNwTvMvUIjoqyEyplo4FrGz+iVJs+eHj7K4qUkFdQ58aZ/UTd/7RDobJmVCBx67+gxRO98PZ3zcPn7L5t+AQE07Z1C5cFShOpKcn4+Pi6XZ3R32gdTn/s+Al8fLypWrFoKkcWBU3KRNCqXCk+2FWQ7Lcw3pUmlARLSZJ4LTKa5devKhp+d0RLgTo6jWQlJPpIHnT1DmeXlKJ6jq3HpCVNPAMxyrA3t2BiZytUqnmC6Tw0jG1Um23xCfx12f0iKd3ub0r3B++n34R3yVbJ3eZsIlOpchUWfriCv/78g6UL33NbkO/4cFe2bPqbc6eOs3f7Fr5YupBxc99X9YY8f/oEP339KW+Nnar6AmX1yi+oVK0GjVvdr3rdrKxM3pscw5AJ01VzWZo4tGcXWRkZNL//AZfuKT31Jqs+X0FvBTHVmVclwOYN62nX3nHOOGfIsszyb37kzZeevaV+lDCmFG7SF+jny9yBLzF0wWfk+IbY5bg0oVZ8x5FoaSlYPlu7Ev9eiiPVv+DvKgTLosXD4mWMb6AXvoFelGnfh7jtP+KtU7YlauKjf7A3oRUqEt3uOZK3f4xsETVjKVxanm/KU2nypqz5QDeiajZk84oZdoKlKRRciZSsXKKiyzJj3nuMGjmKg6fO27XRhpc2P6tqhZ4Cosszd8QbVKpSjT6jppCccsNuoaXJSCE34RqZJ4+QcPA0cftjSY1N49r+ePSnYqkR5M9XWw6SIHvRd+ICBrzxOg92edzsgWRJVlYW77w9lDETJhMaphxlc/7cWX78fiWjx01UvX+AhfNm81i3x6leoyBVhG1IHeQVtpg/dy7jJjjuz5IJk6cydswodDqdU3HSNvfYz//7kcefeNLla6nx2YdLeLn/IIcv3B0JlbYipennWxEuX387hk1//sqpo4cJ9tY63Wxx9KLMNK6aVavQ7L62HFz7E+G+OvNmQgiWRYTG+gXBg+3aoPP05I91G/IOm9LqqIg7lvu0Wi2Lp77DtEUfcelq/pzOxrtSsSBevhdmjXoNmTcphgFTF3D5Wp6ntiPB0hKt1oMF7wxk+4GjfPbTnw4FS9PnVClX4HPtmxHz+ou8Ofk9tmz+12q8luHfaXojKVm5HIq9yeXkDA6cTSQ2JYu2Pfrx/cIZ+BqyWDhrGrJsZNzESaoFsRYv/ZBqVavSqaNyFE5ubi5DYyYxZ9JYAh0UtNm1dz879+yjf99eBeNVEcwmzX6P4W/2I8Df8XzCNH9es34jZaJKOa0qbovRJ5j46wkEBwai091aPtuDhw4REhJCxQrl3fagdCRM3opw2bZ1S1o2a8z8pR9Z7S+MSKkWtq7RaJg+ZRIx4yciy7LwqnSDe0KsBHjYO5Q9+lQSDa4JhpaipFbS0NkjnA25SRxKdT1vgQn//MI563Pdq6ybpDeQnGOkKcHkIHO0EIKl6T5KeXoxpVEdNmfcZN0Z+yTxlpi8Ko/H3uTytTS8Q0oR1qQ7WSf/QBscjV/19ornybJM6tE1yMYcots8p5ijEiB+65cE1e5AZPUqqkJlTloKVzatpFLX/pSLUjfaNaMCuXhkLxoPLeVqN3J4XyYqBHlycv2PvPSGei4QRxxeu4qHn3zOYZswH+fhpat/+51ePXuoHr9TIeC2dK5ajvScXA7FJZn3FbVgGar1pJFvAFvS3C9iJXAPS0ExSuNFWY0XlzUZVsKkUmi3Eu08g7kh5ZCm1bssVJrQSBJD6lbnUPINtl92X0S6v1JpBvbszhuT5qPXu2bHbd+o63Q6Ro+bSPmKFZn4zigrwdJfp1H1CkzVG5AkiZhpc/j7t9Vs37Sed2YvxMdX2X4d2rOLT99/lxFT56oWadi7fQsXzp7msWd7qo5flmUWTB7LywOHExru+DOYlZnByo+X8srgkQ7bWfLZ4vn0HTzCqQiqRMLl85SJjra7P3cr4J48c5aGjRq5nPTdHdRERlcoEx7CoGceYc43v5j7UurPUcVwNdHSJCJJksSwlnVZsucY/lH2OZ6EYFk02Ba28Q8NoGzHV7i8bjl+QdZ2S02otMS3dFVCarUhdtOXZgHUtJnbBHqpFtSp2KQtTTs8wqFVi805+VzNzRcaFs68RUuZNWM6p0+fAfLFxfNH0J8+SObJI0CBd6XJq9Lq2fUP49HuTzBh5DDeGDme2GsFi3RT+Lcjof/l5nXwCwtm9IofmTt2OPXrKHuWp6QkM2zA6/QfNISKlSortrl58wYzJo1n8sw5Dqte//Hrary8vOn88COqbUyLuxnTpjJ85EhF7yYl0WLLtm1ERZWmVs2abi8QZVlm86ZN3He/+gsnV7ly8QJ16jc0/2zrVXkrod+FFSxDfXVMnD6br5fOJyfH+feummCpJFpaipLtuj7JwR3/kJ7qeroYgZsoFLccMegNvv3faq6dO2l3zFLUURJ4fH18eH/KGN6eOo+09HxnDAvB0pn4GF06kqWzJjNs9hJupKa5dI4JSZKY+lZf4pNS+PQP65ynlgJSlsbL/JnXZFoIVfkCZ6WyUXwx8x1Wbt7Lmu37Fa9lCv/edS6JxORMMm5mczk5g7Ay5Xm6z2ssnTGO5s2a8kY/5Sg5WZaZMXsuGo3Ey091VRXgxk6bzWu9elC+bLTicYBr8deZv3Q5syY6jyLctGU7Af5+NG3UwGE7E5mZWXy+8gfe6tfXpfa2Qt3yb3+i1/NPu3SuLZa/k59/+Y2+z3YrlFDpTlt3hctnHn+U+IREDh45BhROqLTFto/oMmVo2aI5a/5ce8t9/5e4Z8RKSZJ4zjeS7zMLVyHcR/KgnTaUtYaEQp/fQRvKny4W3bHNUVmfQPQYOY5rBX8sK4BHR/oSWjUUrUbD+HaN2RCXRFZYhGphHVtS4tPxjqxMmU6D8ClrLwgGR0URVCqS7JO/E1i2KmUfeEl1XMmH/yIouhxlm7ZWbSMbDJz7dTEVu/Z3WFCnZlQg+qwMdv70BW2ed1zB1jLE+48vl/FQj754uFHp0US5AB2njx+hRr2Gbp9ry+kzZ6laWXkCX1Q4qvbuiIEt6rBs91Gr/JVFzYNBoWy8WRCWLChatJqCiUy0j9YsLjbVBnLOmMl1o15VpDS1t93K+nrSwy+S9VnJxBvybEVooJedUKkmskiSxOC61fnxxHlOJbm/KGlUqxpv9nic/iPHubRwAuWw5K7dulOnXn3+/uMXhyKlLZJvIK8MGcmbo8arFmzY9OdvrPnpO8bOeV+1WM6Vi+f55dsv6D9ynMPrfffJMpq0bkPVWnWcju2j+bN4eeBwPF18q33mRN6Eq3J1+/BzV7wqv/z0Y17s7VqOSVsBwHKC9u+2nbRp1dylfu40LWpXJSMzm0NnCl4cuetlCcqVw02CZSk/H0r7+3DA4uWQUsEdwa1hKxwGlytHULVmJOz5zWk4txKBVZrgFxFJ3G7rHFMm0dJZ5e+qTVoTXq4y23/60mq/yYvM0rPMFl8/P95b9D4Tp07j3LFD5J4/QubJI+ZcvyZshUpteGlz1W6A8jXqMm/2TKZMn2l1nsnDKD02b0Fv6e3rHxVEYHQEPbo9wuczxxBVubpVAQoTVy5fYuTggbwzcQp16tVXvI/c3FxiRgzjnYlTCAxUL8hw6sRxNqxbyxuDBtsdM13X9O/mTZsIDg6mnsI1lYTK3NxclnywjLcGvKl6fTW8jdls37aNFi1bOhRaXSE5KZEgB6kIXBEqHT0zjlDr2/Q94O3jwwt9+/HxkgUu9af2/eHIy1KSJJ7oO4AfP17s0jUERYNGo2H2yAGMnD5fMX+lM0EnLCSYScPf5K0JMwvOd5S/0iaNT1hIMDNiRlgV3TEJltrw0uZNjRF9n+PKtXi++t9vVt6QlukbzF5sNkKlCU9PLQtjBvH9lv2kGHVW/cSm5RCfrrcqfOYb6EXZEF+igrxp1awp0+YvptPDXRTHl5uby7ARo6hZozoDeqlHjyz77CtqVqtKm1YtVNvo9XqGj53Mu9Mm2Hkv2nrppaal8cGnXzBiUEFaDduQc1vmLv6QYW++5nIxMsvr5eTkcOLkKdUXV672p8lM4dL5M1Qop55n+FbDum+lv3HDBzPzvcXoPQv/ItnkBasmdvZ56UW+/GYlHtnuF3j+r3LPiJUAgRotbb2C+TXLtbxptiHfoZInDTQBrDfYV8Z1hWDJkxaaYNYZEhyer1ZMpyFBZGDgpIuCpe34Q6pGIEkSQzq3YO73jlV7k1elGqbw7uCoKIw52Vz9axEBVVoQVKON6jlS+hmkrGuUbvGYahuAC2tXUK/Lc1SpUUm1jamAzsYv3qdNjzfw8FSeBNmGeCfEXiY5/hrVG7qfn61isA9b//7TLldlYSqB5+bmotVqXc6veTsJqmL/Fs9bq+XFBtVZvufYbbuuRpJ4NDiC1cnKhSwEt46tkGgSHF8LLM2f+kSrFyeWoqQjPCSJPn6l+SY9Ho2f9aQmIMrfTqi0FV48JImJbRuzaOcRrqe776nerG5NXnumKwPGTne5mqVJkLTc+vR6kZ9+XEV2drZdW0tS8+2xWkVWS1Z9sYLTx4/y9uTZqt6KaTdvsnjGRIZPmq3qdQmwZ+s/JCde58FHuzu97p6t/xAYFOySqAn5FWcXz6f3wGF2x1wRKtPT07iRkkKZsq4VrnDE7v0HadJAubq5La56XRQlMb2fYNaXP5NrsZBzJFg68rK0xSRY9m1QnU8OnMSvdEEaE1cEy1y9gbSULLc2vQvP8b2KrYAY3eJBDGmxZMSdc7sv30Avolo9Tkb8RZJP7rK6hjOh0uRB2eThp8i4mULcgX+t8vMpiU62n8sIPx1LZ03knQlT2ffTbyQcPG0WF004EipNC6UyUVFUKF+OHbv3mb0qATvhU/EFlH+YolB59PAhpk0Yy6z3FlG2nHqamxmTJ/BCrz5UqKg81/PXaTBkpjJv5jQmTpvlsKAO5OWd/GTFcgYPtbZrtmHblnz40Qr6vPQiXl7Oc1Mq8c3XX9Kj54tun2fLpn+30KRlwUt8V75vlHAkWN5KOHizVveRlJjImZMnXGrvSLBUEy0rVq9FVkY6cVcuuT0+d+1gxs3bW6CoJFE6IpyXnnyMeR99Xqjza1apxItPPsqoGRbpddwQLKtUKMebr/Ri+Oyl5vNd/q73D+Odga9y8ko8K39bT0KuSuVoFaHShCRJjHzleWZ/8AmAVfh3QobeYYqOAJ2Hed5oaWfS0tLo9+ZAnnn6SZ56yL5ol4kN/2zl/MXL9HnBcSqcmKmzeatfX0o7eDFqYsKMeYx7e4jDOaYlZ85fIDk5RdUL05mgt/rX3+j26K0XGNPr9ejUqn/bjKGoclJa9ucMn/AyvPzKqyxasvSWr6eGVqvl5d69WPHJpw6/u5TITM9x2xYab6NT0p3inhIrIa9CuEGWOZmT4byxAuU1PlTQ+PCPwb7QhCtEabyoovHlX2OK1f4kvcG8OaIxQdwkl9O4VnTH5FVpIqhKNPWbNwbgxPmCcHCTV6UpBNxESrz1dWxzUOZm3ODqn+8R1uRJ/MrZLzhNhXO8tTeI2/krFTo7LiaTe3YzpSuUJ6J6Q9U2JqHy3P7t+AYEU6pyDbs2anko/7dsPk/0s6/+7Sqb1/xKu4cdi62uhIAfOHSYBvVdW6DfKoX1rmxRNpLEzGzOFMIDzlUa+gVwLjvTqviToOixFS19NR485R/ONjnZJYHSlrLBvrxVujxLEi6TkR9apCRSqgkuvp5axrVpxJR/9pHhYkg3FHj8tGxQm15Pd2PQ+Jl23gCufrFrNBpee/0Nln3gfNLhbOFoNBr5cO40tFpPXhk8AkmSFPN5BXhKLJw8mlHjJ1E2Ut1rPPbyJX757kteGzbG6djS01L56evP6Pm662kt1v78A/d37Iyfv3qKDUes/n4lTz+vnsLCHXJyc5VzHLlYXfR24+fjzcuPtuf9VX9a7VcLCwfHBXhs8YkIwcdTS/sKUfxx+rJiOLjg9lHh4Ve5vn0lxhzXX5xYhns36TGI9JPbkJLOOBUpLTGJky8MHM7BLX9z/tghwF5sUhJ2/HUaNJkphGRdZ173+xj/w98c3HGe6wfP2wmWZs8kBaHSxJC+PVm09APk1ARyE66phoD7lfLFJyIEr8gItOGlFb1z/tm4gRUfLuXdxR8SEpJn41IV5rVffvoxVatVp9V99i+4TS+UjEYjo0a8zdSpU4kMcW6rpk6exOh3YqwW6I6+D67FxXHw8GE6PVi4vLuXr1whICCQAIX8cq6kw0jVG8zbnu1bady8lWK72135WwklsXHQiDEsnmf/neuoD7WclmqC5TOvDeb7D98r1JgF7mMSaDq3a03KzVS27ztYqH46tG5Oy0b1mf7+8oKdbnyHt2rcgAfa3s+sFd+4ftH8/iVJYuz4iew6fJzPv/2e2LSCOaW3MVtRqFTKp1mnYROyDBKnYpNJ0xvNRXUsvSoh74VUVLA34b46gr21ipE5cfHx9HtzIKPeHsb9DdSLJ546e47Pv/2BKe84rrz96dffUat6VVo0dZ7ubO2GTZQrW4baNao5bQt5L6+nzVtIzPC3zPvUhEA1Qe+X337nsa7K3qXusOfAIZo2tPeKL0pPSkc4uo7pe7Nj+we4ePESZ86ctT63CCuVP9ihPbv27CU5Oa8vdwTL/yL3nFgJ8JhPOOuyk82LbHeprvEjSNKyx1C4fHvVNH7IBtiuv+GSQGlLE4JIRM9lMhWPh+o8FL0qLRkz8FUW/m+9OQRcCVuh0hb9zXhi1y+lVLtX8A63fntuWd07NzOV838so3K3t5BU3MvLlvbHX3+VpDNHqNL+KdVrmoTK7PQ09vz+La2fsc+toVYs5/COf6hQoy6BocpJ3i2pGOxjt509cYyyFSsXKr+bLdt27KR1i+IZ+mjJ4Jb1WLrryG29xgthUXyT6H7RFYFjNJ72nzVL0bKqpw9+koaDehdTS+Sfazo/TOtJ79AoPky/hk9p69yNjrzCTGJMhJ83g5rXYdzvWzAarT3NHYXUmri/WSOe6/YwY2YtdGn8SrS+7z6OHDlCZqayLVVaZNuSm5PDvPEjqdOoKY/36KVaaECWZeZNGc/TPV6iQqUqgP1iDkCfnc2i6eMZOmGGS+E4y+ZO55UhI1x+g56Zkc6Wv/+iUzf7ghCueFUajUZ2b99Ki1b3uXQ9R1yJvUZ01J33lnSXjk3qcu5qPFcT7F9SOsqL6Y5g+Vj18qw9e4VsCyFAhIMXPbaCoofOm/IP9iJ+i33+SV+FPLyW+8JCfJA0Gur1GM65DT/gn5VA2RBfxc2EbV5KSZLoMXwCf365DCnVtagf0wJcf/ogOacvMzS6IrMOHufs3lgrwdL8bOYLlWqhZz4+3nRp34ZfN23HmBJPdvx1O9FT6Vm09ar88Ycf2Lj+L2a/twhv77z7NNlQS1v6z8YNXDh/jh4v9bbr03LhP3f2LJ597jkqVqpkPqYmAq5f9xflypenRs0CYcDZAm/WnHnEjM7L8VsYr8rlH3/Ky31dS4VhiUmgtOTGjRRCQvPE3cJ6VZpw17vSVjhU+x7wDwjksaee43/fflXosTkTLIPDI4iuVJWtW/61OyYoOpS80SYO6c97y78kNc01Zxhbnu7aifDQYJZ/82PBTjcEyycfeRAv/2C+W7PBeWOLfo2+wSQadPQYNJpNW7ax6o91ZsHSLBzlC5W5CdfMQqWVYJlvI0eMHsP8xR+QqjdwMjHDyquybIgvYSE+5hDwSD8dARYp10z25uy58wx9eyTzZs+kVrmC+YHt7zsxKZlx0+ewYMYkq7meZZiw0SeY3cfPc+jocfq++LzTX0vKjZt89o3reSchr6hOq2ZNCAu1L8jmCvsPHKRO7Vrocm49bHnbrj20at7Uat+dEirdud6EsTHMnDsvr72CQFkUguXot4cz5913zT8LwVKde1Ks1EoST/iE83NmgsN2JxXyN5po4BHIDTmXK0bX38Zbek/WIYB49CTi/htTCYlmBHOcNLJRX0wreVWavOxCgwIwWlSitPSqdBYCDpAVf5b4fz6jTKeBeAYUiH+WIiWAQZ/FmZ/eo2KX/mh9lEXEsqX9yc3O5Oivn1L/OeVKiDWjAs1CJcCGzxfS7sWBaDysJ1VqQqUsy2z+eSUdnlIO17EVJpX435cr6P6i9RdAYULAAVJSbhAWVjw8h0A5FBwgwMsTf50nGTm3NnlWKrJjoozOCwMySbmue9gJXEMpLBsKhMcXS5VhmyEVX3+tlRBpKUwq5aQ0UbN8GI9GluKzSwU5/dwRWKqFBvJwrUp8uO2gavVkR4UeHmjZlNIRYaxZv7HQya7Lli1L6k1172GlhaNpwZWRnsa0kYN4+InnuL9jZ4di3/L351O7fkOaK3gSWfb70bsz6NlvIEEh6p8ZEzs2b6BUdFkqVrX3Lldj1Rcf89zL/QqdguLvP3/nkS5dbzmFhdEnmOSUG4TnL9CVvLSUuB2h4Ja5sdTyZHVr05TN+5XTYjjzsrRF6Vn3iwzlqVoVWX3iovCuLEJ0HvbTWNtQbb+oyngGhHDjzAG7tmripeX5Gq2Wh98cx/avFpKbrT4nNAmVttWNo4IDGDhuGitmTyRHrz4nNIUbajLzCupkx1/HJyKEQE9PXo2M5pvsgjmtyfvRUqgEdVGubvkILp4+DUDCwdPm/T4RIfhHBeEfFURE/YqENqiJrmp9jJFVrPpaungxp86dZ+zkaQ5fshzYt5fV/1vltPL3v//8g8FgoEPHB8371ITKGzdu8PWXX9L/zQEO+7Tk1KnT+Pn7Ub5cOadCpV2Fc40XN2/e5HJcPFWruea9ZEmAzsNK5ACsfme23yOOcj2qUdj8lc5eWLV78CH27dpRqL5dpUuPPvzz87e39Rr/ZdTEGJ3Ok7Fv9WPKwmWF7vv1ns9w9NQZ9hw6WrAzvwK4Gpbf/UNeeZGN+45z9MwFl65n9A0mw6+UuQjiUwNG8ce3n0FWeoFXZVqilUhph8XYAiKjycjWm8O/915IsWrarFIoD9WKpHW5YGqF++Cv01iF6u7dt5+JU6aydNECokqrz1XS0zMYNGoccyaNxT+ynNWLJEsPvfTrl5k3bw7Tx41y6fcxfsYcJo4e5nLeSVmW+fK7H3nZSQi6JVaelpkpLPtgCa+/oO5k5A55c0Jr0dTVueHtxHZ9ERwchI9WQp8cd9uuWa1aVdLS0klILHhxKARLZe5JsRIgysMLP40HpxTCwU+m6R0KlSbaeYSy03iDDBcqfNt6T0pItCSYvdxAj/v5AjT5guVOUqz2u+JVaSqsY9T5mgvruEP6xQMk7f+FMp0HE1a+lFmgtK3sbTTkcvan9yjX4SW8Q0op9lW2dJ6QcvCHJdTp9gpanX2Ce0uREuDM3i0EhpcionwVq/1qQiXAwS0bqNO8jdkr0hVx0pKrF8/j6x/gkoDgCtn6bLy8dHjcjFVtI0Wq53q6k9QrFcrBa4m3VBHcGd1E7srbikm0tBUuPSSJ54JL8U1KwReus6relv0BNA4ORqfRsE9OdypU2oowPhEhdKpRgbRsPVtOXlQ5yzGDBg7gi29XkZTkemoOy8mlTqdDr1CsR82r0rSYM6QmM2f0YAYNG0mb+1o5XOR99+Wn+Pr68+iTzzgc1+b1f1EqIpz7WqonWTeRdvMmv373Fc/1fcNpWxMZ6WmcO3mcOo2aOm+sgCzL/PHzjzzW3d4rszDo9Xq8vBwsqu9AKLgj8dNSuGxWszK7j59x2NetCpadGtdky6U4jLJcbAVLSZLmSJJ0XJKkg5Ik/U+SpGCb4+UlSUqTJMlxXNsdxNa70YSlaBnd9llit/2EMdf53M/WO7NsiC9efgE0eepVtn1lXYTEqtq3RV5KsK6GHBQaTreXXuPrRbMdXtu0ALd8ieNXypfaFcKpGBHIQW8NflFhec+ihVBpWXDCVpzTZKSg8/QkOzWFpAPHiduf56FpwiciBJ+IECuhMsMvb05nNBqJGTsOb/9ABgweRoCX8iI5QOfBmVMnWf7BYqbNeVd1MZ2mN3IpLoEVHy1jxKjR5n2WgqGteDh18iTGxIx1eYEOsHDJEreK6thec8nHn/PKq8ppjVwJAYcC0TJA5+H05Y+jXI/u4EqaAUdoNBqQKVTefhPOvCu9vH2ILFueS6duX870W6Uk2kHJmOvUa6xujar4eHux64CDiKq0RNXcjwDTR73F7KWfkHzD5iWwSbTM/163LPRi+leSJObEDGfSh9+QlqEc8WLlVekTTGxajvmlcr2oYN6JGce7MybnebflC5VKWH73WwpiOUZZMfw7r/9Aqof5EuWft5a0FI/+Wreejz7+hI+WLiYoyP7723QNvV7PgJExjB85lHLRZRyGD78zZRYTRg7Dy8v5vPz3v/6mWuXKVKusXu/BltV//MUjndq7HJljwvQcnTh9hojwMIKDAh2f4CJqc0K1okBKbVxp66wfZ2gyU2hUrw77Dh1W7sNN5wnLZ8Bye+OlZ1m2dHGReGreLoqDLbxnxUqAR7xD+Ss72VxkwlWR0oSHJNHBI7TQBXe0aGhGMNtIRsb984PwJBQdZ7EXXNW8Kj2jKpr35Upau1yVx2MLvlwsRUhzSHfsDvRxB6j1wihCy6i7jMtGI+d+WUypFo/hW6qi1bGypf3NG8ClXesJjKpIUNkqdv3YCpWZqTfY/+cqWj7Zx2q/I6FSlmX2rf0fPXu+6LI4acsPn33E072tK44X1qsSIDtbj06lKFBxo3FUOPti8zw2bkWwdORdWc7Lm8TcHDJczIUkKDy2omVlLx8kJE5nO8/jq+ap2a9xddZcukas2uQSe6HSkqHtmrBi017ib7offuTh4cHESZMZN2mS1X6TIKm0Wbbx8vKy8mZytNA0LbIunj/LlDHDGTNlJpWrVXc4vrW/reb6tWv0fKWfw3bX4+P4ZdW39H3zLatrqbF09mReGzbarQX6qs9X8ORLrocH2bLtn400b32/2xNbUPboytbr8bLIV6k4SVQQLJ1VCHUVd/oIrVCZNBfM060IlpIk0b5iFBvOq7/EKgb8BdSVZbk+cBKwTaw6H/jjjo/KBZQES8gTHyPCA6jV5UUub1hZ6D4jKtWkUo1aXNu1xixQmlATKS2p2bApweERbFv3u9X+YG+tnVelCb+oMPyjgvAr5ctr99dj9amLpPv4mnNKWoZqO7JtHmkpZKTc5PrB81w4kci1/dYe7X5RYegatie3QhOzUJmUlsWgQYNo2fp+nunRUzF3m8mD8OqVK8yZPoWZ8xYo56jNR5Zlpo6LYeT4yWQZ1cO+Tft//+1XKleu4paH48lTpwgJCSEyIsKt8G/TNTMzMzl27BiNGjdx+VxneGqsxUpnBWpcERltnzFnQqXSNW09QAHKlC3H1cv2RXAsxVcl71FXScjQ0/7pXmxc9WWhzr9DlFg76IwxA17h3Y8+J0fhJa4VKoKlt5cXM0YPZviUuaprY0eCkJ+vDxOGvsHIuR9anW8rOuaGVSQh19Mu+qVBnVrUqFSB339Z7Xj8tmPKF5j0Btkc/n05uWBe3LhCME2iAojy97SbS371zUo2bt7M4gXzHQqLRqORwWMmMOCV3tSsZr/mteTrH36icf26iu1sReeExCS+WfUzA161T63haCzf/fQLzz/Rzf6YK4JdRgpLVnzGwFf7uHxNZzhbG9sKkkUhTtr27wyTcNiiaWO2795r30cho7yUqFurBucuXCQjI7PI8mHeBu66LbynxUpPScODXiGscbE6uBJBkie1NP5sN6rnr3SUkzIYT6Lx5qiLFb5tqY0/58ggE4OqV6VtiK8UWR5DYJRbAqtsNJJ29GeyUuKo2OUNJI36JESWZS6uXUForZYEVsirTmsrUJpIT4gl9uAWqrS39tSxDfs2sf7jeXToMxRN/gJdrZCOiYrBPsTu+4fmbTsUOtdkUkI8RoOBiNIFhYVuRagEFzyKipjCFtkBqBgcwPmUVPPPt0uwfCQ4jDU3Cv9ZFFij8dSYi9woeTxaCo/PB5fi+5R4DAo2Qc0rEwqK6GgkieH1a/DeoZPkGO0Xl868xLQeGqY+3ZGY79dhUDhfDdPEokrlSjSsX58ff/oZcC9UwlOns6sIroRpIbdr2xYWzprGlHcXEWlhE5TY/u8mdm/fypvDHYfwGI1GZk+MYcSEqXmeKxbXVFpA/v37aqrUrEP5ylWdjttEeloq50+fpE7Dwi+wf/5uJd2ffaHQ59uSJXk5FC6ccaerg/t4eaH3C3Z6XUd5LJ3xVKv6/Hoqz8u4OHpXyrK8VpZl0+pwO2AuCS9JUnfgLHB7Ex3fAmpelgChVeriSTa6rDjVYjmW+5X6adrlGS4d2Uf8hbxQaiVvSkd069WPnRvWEnc57xkwFVfx12nwTY9DE3/GLjWGKVTbLzKUKa88waTV260qdVt6Jpr+tRLp0hLxzEwh+XI81/bHszcli0Nx6VbelQGtO5IbVtHc37nLsQwd8Do9XupD+wc7WY3HVrTMTUth4jsjmT53Pn7+6vM1gK8++5h2HTpSrnwFh+0Azl2O5acff+T1/v2dtrVk4eI8r0olodLZd0ea3shnX3zJC0VQAdwZjgrUgGvelq6GgzsSKm1Fx4ZNm7F/z06rdmrCZGGFS//gEHRe3iRdu+rWeXeKkm4HHeHt5UW/nk+z4OOv7Q868Ki0pHL5snTr9AALPrbPb6omCFnur12tCq0a1uaT/60B7IVKo2+ebbONgDEVvBnY+1lWrv6DuDOnMKbEmzc7bF6GpumNZOhzib2RxYGziVyyCAOvHeFPuDYnz7s9XziS0xKZMW0yidcuM23yJKv5G1gLV7IsM2byDJ7q1oVmjRsq/g5MnDl/gU1btilWCDcJlaa8o1J6MjETJzN92Ot213fEz3+spetDHdHp0wpVUfvKtXg8MZq9TIsCfU4OOl3R9ecOqs+lTXi+ido1qnH85GnFtkVJ7+ef5rOV3xd5v0VFcbCF97RYCVDd05cbRgM7UwuXUBigqsaXbNlIrMIkx5XiOVXxI4UcUnA/Z5+ERAuCOawp8Ii09aoEzF6VJqEyTeNLRnYusanZil6VluSk3+DU9zPxi6pC2XY9nIarXP3ne8pWr0m9dh0VBUoTstHIoR+W0OC5wVZ9KomUAMf+XUuZ6vUIiSrnVKQEzB6U61av4qHurufjsOW3776ie8+XgTyR8laFSsjzBsvOvvMVHh2hlrdSkiQ0Nn/z2yFY1vbx50RW+i2FFwnUcSRaRkQH0r1CNOulVCtxUkmgtOzPkhAvHT2qVmDF8YIKeaZcZ0r4RFh7ZpcJCeD5lvX4YP1ud27LPDl4te/L/O/n1WRkOPcQtcTf35/k5LwQciUvHtMi0Wg08uGCuWzbvJGZiz4kINCxkHTs8EF+WfUdoyZOc2ozv1zxIV26P01kKWURzHKheiM5ic1rf+OJnn1cuLsC/vflJzzVy/1iECbOnT5FhcpV8PK2T9VRWDw8NOhtcvS56l1porCCZWHOq1e9MkfOnHfpfCXB0hXvSk8PDXUjQjgc73pag7tIX/LfmEuS5AeMAiY5PKOYoFT8BqDGY69w8rdPkWXZHCZuuVmeb4nJk1KSJDq/PpK/P1tEpF+BAKTmTWmLJEm8MnIiX7w3w/xdGKDzMId/5yZcIzv+Otnx1mlTfCJC8IsKo3KNWtSvX58/9p0xC4tgXdTF0s5pE8+jP32Qm9sPkpCURtLNbNJyjcRl55Iel2dLw9u1xRhZhYRcT9L0Rrb+u5mJ74xi7KRpNHTiXZiZkUHMiGFMmDaT0DDHxQ3PnjnNsSOH6fbk005/TwCzp01h4pQpigt0NdHx9OkzhIaG4h9RxuVzbNm5fRuNW7VxOdzbFXJzcl0S9JRERWeipdKzZ9nelcJqltSu34jjh/Oq17sjQlq2deWaHZ7tzcYfi7V3pYkSawfVaN+qGecvX+FyrEVOPiWh0oF42b1zB65ci+fgsZOF8oB7qdtD7DlygrOXLATr/NQWGX6lrMK/TXMkk63UZt1k6psvMu2jr61spZJgaemBnqo3kKHPYefZROIv3iAt37vyoVqR1Ar3QZOZgjbxPABx8dd5eeBwWjRpxJA3XnXq9TZ74VKaNGzAg+3U85YDGAwGxk+fy6yJMS7lBv/u1z9p27wJFcqWcVlwlGWZVat/p0dn67G4I1ouX/kj/V98xu3zHOHpqSUrq2jyMrrzrDlqq+bR6I4w7Ahnz02bVi3YunNPSVkb3xVbeM+LlQC1jAHsKGRlbxOtPYLZYUyxe5hCXfwib0wQB1Av8uAIf7RIQGlf6z+XklelJdVq1ebMccdid+rFo5z9eSEVHn6NkBrWedQsvSXLlvYnupQfN3f/QFh4IBVaP+J03Gf/WU3ZZh3x8i9Y9KsJlbn6bI7+s4anX+ztVKSEAqHy6IG91KzfqFBhiyauXDhHi4Z1XRIpw3yU/97+RmsBpWP7dvy5bl2hx+QuGefP39L5t1pMwxY1wbKmtx+nspyLTenJyaTExrq1GZyFtPxHUBMtm4eEcDQ1lUwHofiOPDUB7q9bgQxPDSl+2kJ5hXWsU5mjV+JJTnPyDCiIV5Ik0fulF/n+x/+5dc12D7Tn7/XWn0Xbt/UpyUmMeas/teo24K1RMU7tyb5dO/j0g8WMmz7XaZj2lUsXOXvqBO0fetjpWIO9taz8YAFDRr5DiI/rb58NBgOnjh2hdoPGDvt2xK7tW2jV9gGXr+kKzZo0Yes++5w/hREsXRUfbyWEXKv1sKpcf7sEyydb1OXPM5edjidXrycjJcWtLScrC6CzJEm7LTarHAWSJK2TJOmwwva4RZsYIBcwuc5MAubLsnzrJUGLEE+tZFeB2xZL4bJSmQiq1G/K9WO7HLYzYRvuDVCxdBidnn6BTf/L80xyt9hJ5TKRtO/0EMf+XWstQqUlYkyJt6/UHRWGX1SYuahO7969+XrVT6TpjYqVp02ej5rMFPT7N3Bl3TaCvHVkeOTlLK7ip6NxsDd+pXwJbVATTe37yPArhdFoZMnC+WzZtJEFHywnqoy94GdJSkoywwa+weC3RxFdtpzDtrIs8+6s6YyIGe/09+Ov07Bv+7/UrVOLMmXs57iORMcVn35K79eU8/wqeVraCpLJSYlERESa50RKgqW/TqMYEu8IraeWzMzMQodOg2v5J93JfalUyR1MdtB9odayH1cqnkdElycpLtalRbq7djAr9SZA9f+KHSwMo/r3Zd6yzwp2KBXKcZJXevzg15m9/GuX/oZ2Ypd/GOP792buJ99Z55f0CSZNb1R8hkypMgDKekGOwUByunp6IkvS9Ea2XkohyTOcyydOEFk+iFoNStO3dUXaVQgy2xWjbzBbduxi2NjJzJwwxkp8VKoKLcsyU+YuICwkmGe7P+p0HMs++4qezzyhmgfScn6UnpHJL+s28eKTzvu1ZOvO3dzfqI7q/NQV4fHS1WtUq+TcA94d2re5j7UbNxdJX66Kp7cSQn4rgqWrYd2SJNGofh0OHT3utG12WprbttBoMCBJUr+SbAvvebHyZJoef0mLFxoS5cJ7uukkDVUlX47L9h6argiWPngQiJY43H+jEKrzoIEmgH+yb5i9Ki0935S8KhMzDdS7ryO//voLp6/bP0fRpfyI3fo/Eo/8Q7VnR+MVFGEnTloiG40c/G4R/hFlqNrB+VvxzOTrJJ4+SNkmD5j3qQmVAKfWruTJPq65uFvmpPzjh6955KkeTs9RorS/jkhfLb46bZGLdR0faMffRWSQ7xa3o+DOfQHBbEm7tRcHgjw8PD3Mno1KHo5KouNTUWVYFRur2M5R8RzL/t9sWoulexwnxrf1qrQUawY91JL5P21QPE8tIbqJDg+0Y/3fyueqUaFCBS5dumTlgWTJ4f17mTRyKG+NiqFtx05KXVixef1frP7hW6bOfx9vH8f5cWVZZuGsaQwaEePSWE8dP4anzpOKlfNyGKmFiduyZf2f3N+xs+pxV/o4evAAdeo1cGmcah5HtmKAl5cXGo1EZqZ9Int3BUtQr+qtVuHbXXJzDWhtJvdFFYpu+RkoE+TP9VwD3uHBRdK3An/KstzUYrMq/yrL8oOyLNdV2H4GkCSpN/Ao0FMuWIW2AGZLknQeGAK8I0nSwNt1A+5iVejGZrOlVocnuL7jd6KDfRwKlLbnWoZ8123VjnNH9uOtUMRRDUshqXP3Z1j3y0/4awsW4CavyszryXaCJWAuqqMLKUVUVGmOnVIvCOVtzMZ4dAsnvlhDWmzed265IH88W0XRumEparctR8XOTdA1bI/RJ5iU5GSGD+pP1WrVGREz3uELmzS9kWuxsYwaMoiYSVOpUau203tf+eXnPPRwF4KD1XOhm0RAg8HAx8s/4rV+rzvt12pcaWkk3EglOrqsahtnOSz37t5F42bNrcbkbLxKmy3tOjzIpr/zXprdSr5HNSFSTaR0ZvuVCs3l5uSa//5qhehs+1BrZ0pzoEZ0lRpcOXPS6TUKycn/mh10huX3brkypfH09OTMBZv8pDaFchzhFxlNhzat+WXNX6ptHHnllapYlaiIMPYePWXOw2uJ5fNj6YFu8vh8qUNzvj90TvXaJq/KhFxP/jyTyCcbzuBTqRlJR7cSFuJDt4ZlaBIVYBYqZVlmwQcr+P2vDXy6+F3KlLYvHmsSoDSZKRgMBkaMn0rtGtV4tZfzFDqXrlzlwOGjdOnUwWE7k5fqvM++Z8grL5rXqK4Kb199vZKX3BQ4LcnNzcWjiDwLLXnogbb8teHOrI2LMtelCUfFkmzbOTye/5kwbU+0b8Xq1auLxHtVCVmWl5VkWyiVELdTKyRJci+OUCAQFEcSZFm2czeTJGlSaNuB473L1HOrs+t/TkOfdKFoVedijLCDAsE9gZodrO9b+f4Doa3dC+2/ceAnUg/93E2W5V8KMxhJkh4G3gXaybJ8XaXNRCBNluW5hblGUSLsoEBwT6BoBwEkSdpT9sVP1MMGFMhJvkTcb+M/k2W5T2EGU9LsIAhbKBDcI6jNCWeEdxg+2rtMXbc6i/t9IvrE84VeGxcHW1j42Nm7iCzLTe/2GAQCgeBuIuygQCC4DbwPeAF/5XtzbJdlWTmuthgg7KBAILgNlCg7CMIWCgSC28Jdt4UlUqwUCAQCgUAgEBQtsiw7LUEvy/LEOzAUgUAguCsIOygQCATFwxbe8zkrBQKBQCAQCAQCgUAgEAgEAkHJQIiVAoFAIBAIBAKBQCAQCAQCgaBYIMRKgUAgEAgEAoFAIBAIBAKBQFAsKFFipSRJz0uS9I8kSTclScq1OdZHkiSjJElpFts3Nm1GSZIUm99HBYv9GyVJyrY5N02SJPfKETsf/yxJko7kj/+qJEkfSZIUWsLuYZokSefy7yFekqQfJEkqX1LGb3E9jSRJWyVJkiVJKltSxi9J0qeSJOXYXONNi+PF/h4Et4awg8XiHoQdFHZQcBcRdvDu30P+tYQtvEvjF3ZQAMIWFpN7EHZQzAkFt4mSVmAnGVgC+ADLFI6fVUsEKklSVeABoDLQGpgC9LJoMkWW5alFOlp7DMCLwGEgGPgc+AR43KJNcb+HL4DZsizfkCTJF5gKrMwfDxT/8ZsYCmQo7C8J4/9MluVXHRwvCfdQ7JAkqQHwAeAPnAd6yrJ8864OShlhB+/+PQg7ePfHf8/bwdzsdDISr7h1Tk5mcTRZtwVhB+/+PYCwhQ9wd8d/z9tBwG07mJsaf5tGUiwRtvDu34Owg3d//Pe8Lcy+mYDRyz1baMzNuU2juXOUKLFSluU/ASRJeqAQp2vyNw+L/99RZFl+x+LH65IkvQ987UYXxeEejlv8KAFGoIaLp9/18QNIklQdeBN4CtjnxqnFYvy3yL1wD7eL5cDbsixvkiSpLzACGHeXx2SHsIPF4h6EHSzZNuReuIf/NMIO3v17AGELKQbjvwVK+vgFCFtI8bgHYQdLth25F+7hnqVEiZUuUE6SpGtADrAFGCPL8jkAWZZPSpK0DTiTv/W8e8M00xE4aLOv2N+DJEkvAEuBQCAXGGZxuFiPX5IkDfAxeUJUikKTYj3+fJ6SJOlJIAH4GZgky3KaxfGScA/FkRrA5vz//wX8STEUK12gpP39hR28wwg7WGzuQXD7KGl//xJpB0HYQu7u30DYQYEzStozUCJtobCDd/0ZErbwHkWSZfluj8Ft8t8erZNlWWuxrzJ54utpIBKYCdwPNJBlOd1JfxuBFkC25X5ZloOLcNi213wK+BRoJ8vy3vx9Je0eSgOvAFtkWd5YEsYvSdJQ4D5Zlp+WJKkicA4oJ8vy5RIy/ibAZeA6UIu8UIkzsiz3yD9e7O/BGZIkTQptO3C8dxn30oFc/3Ma+qQL0i1cdyswS5blnyVJGkbeF11AYfu73Qg7qNjfRoQddGXMwg7e5XtwhiRJ9XXRjQ7413/KrfMyTq0n6/SGbrIs/3KbhlasEHZQsb+N3IVnWNjCOzv+/4IdzB/LntBHpjZ255zc1Gvc/Pf9z2RZ7nObhlXsELZQsb+NiDmhK2MusXYw/zr3vC2UJGlGQNPeoz0jqrl13o0tS8i9caXQa+PiwD3j5irL8llZlk/KsmyUZfka8BpQBmjpYhfTZFkOttxu11glSXoG+AjoZjLGULLuASB/jB8Bv0qSFFrcxy/l5aQYDgxUOl7cx58/xj2yLMflj/EIeflFnpYkyauk3IMrZCRe4eaVk25thpwsJEnqJ0nSboutn2W/kiStkyTpsML2ONAXGCBJ0h4gANDfjXu/FUrS31/YQVWEHXTCf8UOCgpHSfr73yt2EIQtVOC2jl/YQYEzStIzcK/YQmEH7RBzQsEtca+FgVsi52/FSk2WJOllYB7wmCzLW5w0L5b3YIMW8CPvQ59kc6y4jf9+IAI4LEkSFIj1ByVJGivL8hKb9sVt/EoY8/9VG2NJuIciQ5blZSgnGDcdf9BJFw+BOXdL1yIc2t2iWP79hR28qwg7KPivUSz//vegHQRhC+8mwg4KnFEsn4F70BYKO3h3EbbwHqJEeVZKkuQhSZI3oMv/2Tt/kyRJ6ipJUtn8/4cCi8nLW7D9bo7ZEkmS3gLmAp2VjHFxvwdJkjSSJA2UJCky/+ey5I3xPHC8uI8f+A6oAjTM37rk738I+LwEjB9Jkp6XJCk4///VyPtyXy3Lclb+vmJ/D8UVi+daA4wlrzJ4sUPYwbuLsIN3H2EHBcIO3n2ELby7CDsoAGEL7zbCDt59hC28tylRYiXwEpBJXuELj/z/ZwIVyCs5vxNIA44AYUAn2Tq5qiPGSZKUZrM9WsTjX0Be4t0NltexOP4Axf8eupD39iUd2AFkAA/Kspxb3Mcvy3KGLMuXTRtwLf/QtfwxFuvx5/MGcDb/97+WPEP7ssXxByj+91Bc6SFJ0kngOHCVvJwnxRFhBx0j7KADhB10if+yHSwpCDvomDv1DAtbeJfGj7CDgjyELXSMmBM64B6wgyBs4T1NiSywIxAI7l0kSZrkXeeJ8drQym6dl7HvCwypccKlXyAQlHgkSarvEVHrgK6Ks8wV1uRc2kHulZ3/mQI7AoHg3kaSpD0+LQe5VWDHmJFA9sFv/lMFdgQCwb2LJEkzdDUfH+0RXN6t87IOrcSYFl+i18YlzbNSIBAIBAKBQCAQCAQCgUAgENyjCLFSIBAIBAKBQCAQCAQCgUAgEBQLhFgpEAgEAoFAIBAIBAKBQCAQCIoFQqwUCAQCgUAgEAgEAoFAIBAIBMUCIVYKBAKBQCAQCAQCgUAgEAgEgmKBECsFAoFAIBAIBAKBQCAQCAQCQbFAiJUCgUAgEAgEAoFAIBAIBAKBoFigvdsDEAgEAks00S3G65MvY/AMdvkc2ZCDMVd/+wYlEAgEd5ZkY0YSOZmpSJLk8kmG9OsA12/bqAQCgeAOIvmVapxz8xqSzt/lc4w3r6GJqNMb6HPbBiYQCAR3CE2ZZqNzU68he4e6fI6cm41sMNzGUd0ZhGelQCAoVhiv7PA3Jp1GNrguPhrjD6EJr3UbRyUQCAR3DlmWL+EViHzzkuvnZCSCIRtgx20bmEAgENxBNKXqYYjd53J7WTZiiDuI8fqR6Ns4LIFAILhjGK/uCjImnkQ25Lh+TvwhPCJK/tpYiJUCgaBYIctyukdEbYxxh1xrn5OBfPMyxsvbPG/z0AQCgeCOISedKmu8th9ZNjpvK8sYYncjp15tJMuyfAeGJxAIBLcdw9l1GnIzkDOTXGpvTDyJJrAssixfvc1DEwgEgjuCLMs3NeE1MMYfdq29Pg05LRbDpS0lPopaiJUCgaDYYbi0RSunXUXWpzlvG7sXTemGyLKceweGJhAIBHcEWZavSIFlMSaedN429QpofZBlef/tH5lAIBDcGWRZluXUq00MV3c7b2vIwZhwHGPcgcA7MDSBQCC4Yxgvb9cZb15Czslw2jZvbdwIWZZLfBy4ECsFAkGxQ5Zlg6Z0Q6ehP3JmMuhTMZxbL2yZQCC45zDGHQg0Jhx3GPojy0aM1/YhJ58pfweHJhAIBHcEWZb3ovXGePOKw3Z5KYFqIsty6h0amkAgENwRZFnO8SjVwPnaOCMRcjMxnP3rnlgb3xM3IRAI7j0MZ9dpyHEc+mOI3Y2cdq2FCHsUCAT3IrIspzoL/ZGTTiP5R+XluRQIBIJ7EDn5TEXjtb2qaTHknAyMeSmBdHd4aAKBQHBHMJz/W0P2zTxnHQUsUgI1vlfWxkKsFAgExRJZlmU57WpTtdAfY+pV0Hgiy/LOOzw0gUAguGM4Cv2RDTkYrh/FGH8o+M6PTCAQCO4MsixfkPxLIyedUTxuiN2LR+kGyLLsegUKgUAgKEHIsizL6ddaGWL3KB8vSAnkelWyYo4QKwUCQbFFluU9aL3sQn9kWcYYuxc55VyVuzQ0gUAguCOYQ3+u2c89jdePoAmrjizLN+7C0AQCgeCOYYw/HGK4fgTZaJ2ivCAl0N9iXSsQCO5pZFnejsYDY2qszX5zSqAKd2lotwVh1AUCQbFGTj5rF/ojJ59F8otEluWzd3FoAoFAcEdQCv2RczIx3riA8coOr7s4NIFAILgjyLKcogmthvH6Eav9IiWQQCD4LyGnnK9qjN2DpcmzSAl08S4OrcgRYqVAICjWyLJ8QfIrCP2RjbkY4g9jvH4k/C4PTSAQCO4IeWkxrEN/jNf241GqPrIs6+/i0AQCgeCOYby609uYch45JzPv59SroNGKlEACgeA/gyzLZyTfcOSUPJ8di5RAIXd5aEWOECsFAkGxx3j9cKgp9Md4/Ria0MrIspx4t8clEAgEdwrL0B85KwU5KxnD+Y1iHicQCP4zyLKc7RFZD2PcfouUQOdFSiCBQPCfwphwLMIQdzh/bXwETVg1ZFlOudvjKmok4TEvEAhKAh7RLWRy0vNydGQl+ciynHW3xyQQCAR3EkmSqki+EafR+iDfvHi/LMtb7vaYBAKB4E4iSZIk+UUaJf8oMOZgiD8i3e0xCQQCwZ3Go0xTGUN2nod5ZpLXvRhpI8RKgUBQIpAkyQtdQJZH6UbkXtgkJqYCgeA/iUdkHVnWp2FMuSDsoEAg+E8iSVIbPHSbMejDRaSNQCD4LyJJkg+e/hke0U3JPbfhnpwTCrFSIBAIBAKBQCAQCAQCgUAgEBQLRK4jgUAgEAgEAoFAIBAIBAKBQFAsEGKlQCAQCAQCgUAgEAgEAoFAICgWCLFSIBAIBAKBQCAQCAQCgUAgEBQLhFgpEAgEAoFAIBAIBAKBQCAQCIoFQqwUCAQCgUAgEAgEAoFAIBAIBMUCIVYKBAKBQCAQCAQCgUAgEAgEgmLB/wF7IDKJY6mttgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "<Figure size 1440x288 with 8 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "## Showing all terms in Eq.2 ( DIAB calculated as residual )\n", + "\n", + "tfact = (6/dt) # This is for an easier comparison between the 6-h vs 1-h results...\n", + "print('Simulation on day ',time[stp])\n", + "\n", + "fig1 = plt.figure(figsize=(20, 4))\n", + "\n", + "ax1 = plt.subplot(1,4,1,projection=ccrs.PlateCarree())\n", + "ax1.set_extent([lonmin, lonmax, latmin, latmax]) \n", + "#ax1.coastlines('50m', linewidth=1.5,color='k')\n", + "clevs= np.arange(-10.,10.1,1)\n", + "cd = plt.contourf(lons,lats,tfact*ITT[stp,:,:]/100,clevs,cmap='RdBu_r',extend='both',transform=ccrs.PlateCarree())\n", + "cs = plt.contour(lons,lats,mslp[stp,:,:]/100,clevs_mslp,colors='k',linewidths=0.6,transform=ccrs.PlateCarree())\n", + "#clabels = plt.clabel(cs, inline=True,fmt='%1.f', fontsize=8)\n", + "#[txt.set_bbox(dict(facecolor='white', edgecolor='none', pad=0)) for txt in clabels]\n", + "#for l in clabels:\n", + "# l.set_rotation(0)\n", + "gl = ax1.gridlines(linewidth=0)\n", + "gl.xlabels_bottom = gl.ylabels_left = True\n", + "gl.xformatter =LONGITUDE_FORMATTER\n", + "gl.yformatter =LATITUDE_FORMATTER\n", + "gl.xlocator = mticker.FixedLocator(np.arange(-180,180,5))\n", + "gl.ylocator = mticker.FixedLocator(np.arange(10,90,5))\n", + "gl.xlabel_style = {'size': 13, 'color': 'k'}\n", + "gl.ylabel_style = {'size': 13, 'color': 'k'}\n", + "plt.colorbar(cd,label='hPa/6h',pad=0.025)\n", + "plt.title('ITT')\n", + "\n", + "ax1 = plt.subplot(1,4,2,projection=ccrs.PlateCarree())\n", + "ax1.set_extent([lonmin, lonmax, latmin, latmax]) \n", + "#ax1.coastlines('50m', linewidth=1.5,color='k')\n", + "clevs= np.arange(-30.,32,2)\n", + "cd = plt.contourf(lons,lats,tfact*(TADV_avg[stp,:,:])/100,clevs,cmap='RdBu_r',extend='both',transform=ccrs.PlateCarree())\n", + "cs = plt.contour(lons,lats,mslp[stp,:,:]/100,clevs_mslp,colors='k',linewidths=0.6,transform=ccrs.PlateCarree())\n", + "#clabels = plt.clabel(cs, inline=True,fmt='%1.f', fontsize=8)\n", + "#[txt.set_bbox(dict(facecolor='white', edgecolor='none', pad=0)) for txt in clabels]\n", + "#for l in clabels:\n", + "# l.set_rotation(0)\n", + "gl = ax1.gridlines(linewidth=0)\n", + "gl.xlabels_bottom = gl.ylabels_left = True\n", + "gl.xformatter =LONGITUDE_FORMATTER\n", + "gl.yformatter =LATITUDE_FORMATTER\n", + "gl.xlocator = mticker.FixedLocator(np.arange(-180,180,5))\n", + "gl.ylocator = mticker.FixedLocator(np.arange(10,90,5))\n", + "gl.xlabel_style = {'size': 13, 'color': 'k'}\n", + "gl.ylabel_style = {'size': 13, 'color': 'k'}\n", + "plt.colorbar(cd,label='hPa/6h',pad=0.025)\n", + "plt.title('TADV_avg')\n", + "\n", + "ax1 = plt.subplot(1,4,3,projection=ccrs.PlateCarree())\n", + "ax1.set_extent([lonmin, lonmax, latmin, latmax]) \n", + "#ax1.coastlines('50m', linewidth=1.5,color='k')\n", + "clevs= np.arange(-30.,32,2)\n", + "cd = plt.contourf(lons,lats,tfact*(VMT_avg[stp,:,:])/100,clevs,cmap='RdBu_r',extend='both',transform=ccrs.PlateCarree())\n", + "cs = plt.contour(lons,lats,mslp[stp,:,:]/100,clevs_mslp,colors='k',linewidths=0.6,transform=ccrs.PlateCarree())\n", + "#clabels = plt.clabel(cs, inline=True,fmt='%1.f', fontsize=8)\n", + "#[txt.set_bbox(dict(facecolor='white', edgecolor='none', pad=0)) for txt in clabels]\n", + "#for l in clabels:\n", + "# l.set_rotation(0)\n", + "gl = ax1.gridlines(linewidth=0)\n", + "gl.xlabels_bottom = gl.ylabels_left = True\n", + "gl.xformatter =LONGITUDE_FORMATTER\n", + "gl.yformatter =LATITUDE_FORMATTER\n", + "gl.xlocator = mticker.FixedLocator(np.arange(-180,180,5))\n", + "gl.ylocator = mticker.FixedLocator(np.arange(10,90,5))\n", + "gl.xlabel_style = {'size': 13, 'color': 'k'}\n", + "gl.ylabel_style = {'size': 13, 'color': 'k'}\n", + "plt.colorbar(cd,label='hPa/6h',pad=0.025)\n", + "plt.title('VMT_avg')\n", + "\n", + "\n", + "ax1 = plt.subplot(1,4,4,projection=ccrs.PlateCarree())\n", + "ax1.set_extent([lonmin, lonmax, latmin, latmax]) \n", + "#ax1.coastlines('50m', linewidth=1.5,color='k')\n", + "clevs= np.arange(-30.,32,2)\n", + "cd = plt.contourf(lons,lats,tfact*(DIAB_res[stp,:,:])/100,clevs,cmap='RdBu_r',extend='both',transform=ccrs.PlateCarree())\n", + "cs = plt.contour(lons,lats,mslp[stp,:,:]/100,clevs_mslp,colors='k',linewidths=0.6,transform=ccrs.PlateCarree())\n", + "#clabels = plt.clabel(cs, inline=True,fmt='%1.f', fontsize=8)\n", + "#[txt.set_bbox(dict(facecolor='white', edgecolor='none', pad=0)) for txt in clabels]\n", + "#for l in clabels:\n", + "# l.set_rotation(0)\n", + "gl = ax1.gridlines(linewidth=0)\n", + "gl.xlabels_bottom = gl.ylabels_left = True\n", + "gl.xformatter =LONGITUDE_FORMATTER\n", + "gl.yformatter =LATITUDE_FORMATTER\n", + "gl.xlocator = mticker.FixedLocator(np.arange(-180,180,5))\n", + "gl.ylocator = mticker.FixedLocator(np.arange(10,90,5))\n", + "gl.xlabel_style = {'size': 13, 'color': 'k'}\n", + "gl.ylabel_style = {'size': 13, 'color': 'k'}\n", + "plt.colorbar(cd,label='hPa/6h',pad=0.025)\n", + "plt.title('DIAB_res')\n", + "\n", + "plt.subplots_adjust(bottom=0.05, right=1,wspace = 0.1, hspace = 0.25,top=1)\n", + "#plt.savefig('PTE_'+exp+'_'+data_dt+'_Eq2ori_DIABres_upper'+str(int(level[lev]/100))+'hPa.png',\n", + "# bbox_inches='tight',dpi=100)\n", + "plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Simulation on day 7.0\n", + "50.0\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABmcAAAEgCAYAAABB3qfaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOyddXgcR7a33xoQk2XZlmSSmZmZ2Y4dO5w4zLxw9969sHcvfBd372J2w4kdhx2HDDHEmDi2EzPFzGzJshhmpr4/elrqafWQNCK73ufxY810d3V1z8zpU/Wrc46QUqJQKBQKhUKhUCgUCoVCoVAoFAqFQqGoG2z13QGFQqFQKBQKhUKhUCgUCoVCoVAoFIqbCSXOKBQKhUKhUCgUCoVCoVAoFAqFQqFQ1CFKnFEoFAqFQqFQKBQKhUKhUCgUCoVCoahDlDijUCgUCoVCoVAoFAqFQqFQKBQKhUJRhyhxRqFQKBQKhUKhUCgUCoVCoVAoFAqFog5R4oxCoVAoFAqFQqFQKBQKhUKhUCgUCkUdosQZhULR4BFCpEcLm5wrMmR990WhUCjqmrkiQ0YLmxRCtKjvvigUCkVdM06kyRThlEIIZ333RaFQKOqaviJZthVxahysUChuStqKONlXJN/QNtBR3x1QKBSKYHQj4UIcdrZyDSGEkFLe0IZZoVAodIQQIpNoepFEMe6LgKjvPikUCkVdIYSIS8VJG2JJwlmGsoEKheImQgiR1Zwo4nEwS6TLL+VFZQMVCsVNwyzRQjoQnKcEIURbKeWp+u5TbaAiZxQKRYNGCNEtl3IGkEwiDqbQzFPffVIoFIq6YgrNPEk4GUAyOZQjhOha331SKBSKumIQKYVdSGAQKRwkHyFEUn33SaFQKOqKjsSdGEgKQ0jhe3IRQqg5PIVCcVMghLBtI5chpDCQFDoRf7K++1RbKMOuUCgaNG2JPTCYFASCQaSwnesIIVTUn0KhuOERQji3c52BJCMQDCGFLGIP1ne/FAqFoi4QQjQ/TiE9SMSJjZ4k0o+k6/XdL4VCoagL5okMWYqH1sSSjJNmRDGepu767pdCoVDUBeNo6m5BNEk4aU0MxbiZd4OWOlDijEKhaLDcItKlDUE6MQDE46ANsYwitbyeu6ZQKBS1zkhSy9oQS7w3C61uC2eL9BvSKVUoFAojPUi81Jdk7N5MZl1I4IyW1qJVPXdNoVAoahUhhNhKLkNoUvHeAJLZTR5CiJh67JpCoVDUOkKImD3k0Z9k7TWCITRhmxZBeMOld1TijEKhaJAYQxiN9CGJ/Vpai8T66ZlCoVDUPkKIxAPk0wffDD43slOqUCgUOkKIztmU0YG4ivdsCAaSTBfiz9Rj1xQKhaLWmUozTzx2mhJV8V4MdjoSz1BSiuuxawqFQlHrDCGluCPxxGCveC+NKOKwM43mN1ypAyXOKBSKBskE0txpRJGM0+f9KGx0J5H+JOfVU9cUCoWi1ulPcl4PEokyuWopOEnFyUTSbjinVKFQKHTaEXdokDetrZE2xFKAGyFE73rqmkKhUNQqQgjHdq4zyLRIEaAniRyhECFEat33TKFQKGofIUTToxTSk6plBgeSwg/aQkW7xaGNFiXOKBSKBocQInoX1xngDWE005UETlOMECKzjrumUCgUtY4QIvM0xXQlwXL7QFLYqdXfiq7jrikUCkWtM0ekS4kkk6qZe/T6W62J2V0PXVMoFIpaZzSp5S2JIYGqZVYd2OhNEr1IzK6HrikUCkWt04vEq31IwkHVRBGJOGhJDGNIddVD12oNJc4oFIoGxzCalHQgnlisxXA7gv4k05WEc3XcNYVCoah1upJwbgDJ2CwcUoBY7LQnnuE0KanjrikUCkWtotdZGGyos2CmGdFEY2OmaKHqbykUihsKIUT8PvLp62eRIkAn4rlEKUKIdnXYNYVCoah1hBAdLlFKR+L97tOXZPZqpQ7879TIUOKMQqFoUAghmhymgF4ELimTRSx5lCOE6FFHXVMoFIpaRwjRM49y2hIbcL9eJHKIAoQQKXXTM4VCoah9JpHmScVJE1NaWzODacL3WloLNZ5VKBQ3DANJLuhGAtEBpuoEgkGk0IG443XYNYVCoah12hN3dLBFWlsj0djoSgKDSC6ow67VKsqZVSgUDYreJOX0IglHEPMkEAymCW2I3VdHXVMoFIpapw2xe4fQJKBDCuDERk+S6EPStTrqmkKhUNQqQoioneQxwKLOgplEHKQTwziaumu/ZwqFQlH7CCHST1JMtyCLFAFaEUs5krkiQ0UQKhSKG4JbRYZ0IWkZZJEiQHcSOaGVOmhRB12rdZQ4o1AoGgxCiKyLlNApQAijkRZE40AwS6Qrp1ShUDR6ZooW0omgOaGVkulMPBcoQQjRtpa7plAoFLXOCJqUZhFLnJ+0tmb6k8Qe8hBCBB/FKxQKRQOnGwkX+pGMPcgCHZ0hpLCVawghQjtAoVAoGihCCLGNawwJYYEOaKUO+pFEdxIu1m7P6gYlzigUigZDdxJO9A9QZ8GKwd7C2AqFQtHY2Ukeg0N0SAFs3vpbPUg8WWudUigUijriAAX0Jink/aOx05F4RpFaVIvdUigUilpHCJGRQzntQlgxrpNKFAk4AEbVWscUCoWibhidgINUokI+oB1xXKUMIUR6LfarTnDUdwcUCoVC5wAFH41yNrkjVYS2YhIgFTsflJVsr8VuKRQKRZ1wnpIdabao/uEc00xG8ZW88mFt9UmhUCjqCgeCeFvoPiBAU+lkubzyq1rqkkKhUNQVKSk4iLaFt346VTpBklZLfVIoFIq6Ii1VOIkKKxBQkOJxcpmyFKBRR9CoyBmFQqFQKBQKhUKhUCgUCoVCoVAoFIo6RIkzCoVCoVAoFAqFQqFQKBQKhUKhUCgUdYgSZxQKhUKhUCgUCoVCoVAoFAqFQqFQKOoQVXNGoVAoFAqFooGQ4Ahv3UyZtEF54H2EEK2BhUA64AFelVL+QQjRF3gZiAFcwNNSym3h91qhUChqjl2EbwNjPTbNegVA2UCFQtEYcNhE2DYw2i3AHXgfZQMVCkVjINomSLCHZwMdLqFZtQA0BhuoxBmFQqFQKBSKGxsX8DMp5Q4hRCKwXQixGvgf4F+klCuEENO9r8fWYz8VCoWiNlA2UKFQ3MwoG6hQKG5mGrwNVOKMQqFQKBQKxQ2MlPICcMH7d74Q4iDQEpBAkne3ZOB8/fRQoVAoag9lAxUKxc2MsoEKheJmpjHYQCXOKBQKhUKhUNwkCCGygH7AVuBFYKUQ4jdodQiH11/PFAqFovZRNlChUNzMKBuoUChuZhqqDQwvmZtCoVA0UoQQLwgh9gkh9gshXqzv/igUCoUV8XZbWP9ibQKggxDiB8O/x63aFkIkAJ8AL0op84CngJ9IKVsDPwHeqKvrVCgUCjM2RNg2MFqzgQOVDVRECiFEdyHED3VwHimE6Oj9+2UhxD+FcMwKIcQDAba/LYT490j280ZBCJHlvecO7+slQoip9d0vIw4Rvh/oFAJgkrKBkUMIca8QYlWA7euFEI9G4DxjhRBng+zzvhBiTk3PFWmEEE8JIS4JIQqEEE3ruz+hEqnPriEjhBglhDgUYHsb7+dmj/B5o4UQPwohmle3DacI3w90CADuaOw2UIkzijpHCHFSCPErr0EoEEKUCCHchtcnDH8XCyE8htcF9d1/ReNDCNETeAwYDPQBZgohOtVvrxQNHaPd8dqhYsPre737jPUO9H5hOlYfAOr7XxJCLBVCTPJujxFC5Aohxluc93dCiMV1c5WKG4RjUsqBhn+vmncQQjjRnNF3pZRLvG8/AOh/f4xmIxWKKgghVgoh/tXi/dlCiItCiEVem3eLafvvve8/KIT4+wC+3/66uxrFDcgPygZGHu+YrVgIke/1WTYLIZ4UQtgM+1QRA4QQ8d7f9fIAbRYIIa4JIZYJrVBvQ+LfgN/U5QmllE9KKf8thP2mSSkXAHjt6je137uGgRDi10KIRRFs8r+A/xfB9uqT1coGRg4p5btSysn13Q8hRG+0uYvP6+BcvxFCHPHa+x+FEPcH2NcJ/B8wWUqZIKXMjsD5TwohJgbxFdU8YQhIKTdJKbvor/V7a9h+2vu5uSN83lLgTeBvI9luiHzU2G2gEmcU9cVmr0FIAJ4EvtNfSynbGbZNA84btiXUb7cVjZRuwBYpZZGU0gVsAG6t5z4pGjgmu3MamGV4713vbg8AOd7/rUjxHt8HWA18KoR4UEpZAnwI+Di+3hUsdwMLauGSFDcpQgiBthLooJTy/wybzgNjvH+PB47Udd8UjYa3gfne75KR+cC7aIU2D2OwhUJbnXw7cAxASvkfAXy/HnVwDYqbFGUDa8QsKWUi0BZtMvtvCb6y9DagFJgshMjw02YCkAFcAv4Uwf7WCG9/xwGf1XNXFLWMlHIbkCSEGFjffaltbkYb6PVBGjtPoE0kyzo4VyEwC63uxgPAH4QQ/lI8tQBigLAX1ggNv/PQQXxFNU/Y8HkPeEAIEV3fHTHSGGygEmcUCsXNwD5gtBCiqRAiDpgONLRVeopGhve7dBvwDNAp0OBOSnlRSvkH4NfAf3ud0gXAPG87OlPQns0rgpz774QQx7yrmw4IIW71vh/tXd3a07BvM+/qoube178QQlwQQpwXQjwqDGk1FDcsI9Am0ccLIXZ5/01Hiyj8rRBiN/AfgGUIuEKBNlGZCozS3xBCNAFmAgu9b30JjPC+DzAV2ANcrOnJhRB/EEKcEULkCSG2CyFGed/P9Nq3VMO+/YQQV4UQTiGEXQjxW+/rE0KIZ4UhrY3ipkHZwBoipbwupfwCuBNt4qVngN0fAF5G+/3fG6DNEmAx0D3Y+YUQM4QQO7024IwQ4teGbV8JIZ417b9bCDHX+/dkIcQhIcR1IcRfhBAbhP+0NpOAHd6+6W1lCiE+EUJc8dqR573vpwohzgohZnlfJwghjgrvinOhRRW9LIRY7fXXNggh2vq5Pp8IJKFFJe7yXu8x4U2/JbwpeYQQ3dDu8TChrRrPtWhzn94372un1xb29dMHf+fMFEJ8IYTI8V7fY4Zjfi2E+Fho0ZP5Qoi9QojOQohfCiEuez+ryYb91wsh/lMIsc37eXyu229hkeJJVK6mnwr8PXCn93p3e7cnCyHe8Pq154QQ/y68qXq89v833ms+DsywuOz1ft6/0bgpbKD3+/K3Qog9QKEQwiGEGCq0qL9cr10Ya9j/QSHEce9394SozIzgE5UmhJgktGiS60KIPwPCsM0noktUTZ/3kBDioPccx4UQT4RxSdPQFpX6u16bqBwTZgshPhK+/tB8IcQp77Z/EKYICiNSyn+WUv4opfRIKbcCm4BhFufsDOgps3KFEGu97w8XQnzvvUffC4Ow4/3d/z8hxLdAEdA+jHtQIwJ9dt7tD3s/n2tCixJva9jWQ2j2O0doWTD+3vt+tNAiw897//1eeMUI3Y4JLQLoqvee32to822hPYdWeG3Zt0KIdG8b17x97WfYv5v3/uUKLT3/LYZt04U2D5DvtX8/N/bB+/c7QBvgS+/5fmHxHQ1m4z8SQiz0nme/CDzncRa4Bgyt1gdWezR4G6jEGYVC0aBoF+ekc0JUWP+ANBEgx6SU8iDw32iRC18Bu9FW+SoUNWEeUIAWArsSUxSMH5YAzYEuUsrNwAVgrmH7fOA9b4RXII6hTZImA/8CLBJCZHjDiZegRd/o3AFskFJeFtrg9qfARKAjlStFFA2EBIctrH/xjuCunJTyGymlkFL2llL29f5b7n1/gJSyj5RyiJRyex1coqIRIqUsBj7C187dAfwopdztfV0CfAHc5X19P5XCTU35HuiLJhC9B3wshIiRUp4HvkOzxzr3AIullOVog65p3mP7A3Mi1B9FLWAT4dvAGJuygXWJN9rgLAah1ogQog0wFi2i7l0C+EZCW5xyJ7AlhFMXettKQZtMf0pU1mF4D4PfI4Tojhbps0wIkYYmAP0SaIo2qRio4G8vKiceEdpimi/Rxg4tgQnAi0KIKVLKHOBh4DWhLYD5HbBLSmm0e/eipUlLA3ah3ZOACCEGo9nOv/Fe72jgpHEf79jGuKo8xaKphcB9htfTgQtSyl1hnvN9tM88E21R0n8IISYYDp8FvAM0AXai+cQ2tPv1r8ArptPdj3bfMtHGY3+06LsPUsqv0CbOPvRebx/vpgXeNjqiFXieDOjC22NoCwj6AQO9fTdzEC26vUHgECJsG+ituxWQm8wG3o1mI1LQIjyWAf+O5j/8HPhEaAvX4tG+e9O80YHD0X6jPnhtyCfAP6L9jo+hTfSGymW072ES8BDwOyFE/2AHefvXDoM9suB5NL9mDNrv6Rrwkvf47sBf0caWmWj2r1UoHRZCxAKDsIiMkVIeBvRo5xQp5XivILQM7X42RUt5tkz41qKZjzbxnQicCqUfNSXYZ+d9hvw92li8GZog9b53WyKwBm3uKBPNxnztPfQf0MSHvmj2Y7D3HDrp3vO1RFus8KoQooth+x2GPpWi+bE7vK8Xo90/PQ3Xl8AqtPmD54B3DW29ATzh/f72BNaa74GUcj6+GUD+x+JWBbPxtwAfoP2mvgD+bNGGkWrb1Whb+DbQWSWovyqNwQYqcUahUNwIXJVBckxKKd+QUvaXUo5GS0N1w4RtK+qNB9AGiW68EwNeJyoQ573/66uaFuKduBBCJAGzCSGlmZTyYynlee/qpg/Rvs96jlSfSQq0icr3vH/fAbwlpdwvpSxCE3YUCoUiFBYAt3sH7aDZLrO9WgjcL4RIRpss+CwSJ5ZSLpJSZkspXVLK3wLRgD44rbB5QgiBJg4Zbd4fpJRnpZTX0NIyKRSKmnGeSj/GzP3AHinlAbQJnx7GVcBePhNapEceWqTK/wY7oZRyvZRyr9fv2eNtW19g8inQ17Di+V5giXfBynRgv5RyiXfhyx8JHM2XAuQbXg8Cmkkp/1VKWSalPA68hleEllKuQluk8zXahLB5VfwyKeVGb1/+AS3SJVj0/iPAm1LK1d7rPSel/DHIMVYsAqZ7/UvQJkffCeec3r6OBP5WSlniFXZe97als0lKudJ7fz9Gm+T8L69A/gGQJYRIMez/jpRyn5SyEPgntELOYRemFkK0QBPfX5RSFkopL6MJZPoCgTuA30spz3iFtP+0aCYf7TNX3Dj80fuZF6OJk8u9k7AeKeVq4Ac0uwDgAXoKIWKllBeklFZpuqYDB6SU+qKP3xNGRLCUcpmU8pjU2IA20W4pbptI8f6fH2CfJ4B/8Po4pWgZGm7zRkTcBiw12J9/QrveUHgZTZBeGeL+M4AjUsp3vH7a+8CPaMKtztve8afLex/rgmCf3RPAf0opD3rt139Q+SyZCVyUUv7Wa/vypRZRBNoz5l+llJellFfQxtNGmwjwT1LKUu9nvgzNHul8KqXcLrUIzU+BEinlQu+cwodogjJoAlACmj0tk1KuBZZSOc4vB7oLIZKklNeklDvCvUEh2vhvvL8hN9ozJJjwouxqNVDijEKhuCkQlSmd2qCtjni/fnukaMx4HZlxVK6A/Bwt926w1Agtvf/neP9fCIwTQrREc6KPSil3hnD++73huLneCY6eaKttQFs1EyuEGOJ1LvuiOX6grYg5Y2jK+LdCoVD4RUr5DXAFmC2EaI82afmexT7N0FYELvVOjtQYIcTPhJZ24rrX5iVTafMWo014ZqKt9pZoqx9B2TyFojZoSaUfY+Z+vL6R1CLbNlC1Lt8cqUV6RAPPAhuEEOmBTuj1adYJLbXYdbSokTTvefLRJr/0Sfm7qPTPfGyAlFKirRD2xzW0ld06bYFM3d/y2p+/R1uRr/Mqmh/2lqxaGNt47gK0+5YZ6FrRUi8fC7JPULz3/1u0FLopaEKGv8gdf+fMBHK891jnFJX+LGh1g3SK0RbNuQ2vQZtg1DHa4VOAk0p7Hg5tvcdeMHw2r6CtMNf7bj6XmUQgtxrnVjRcjJ95W7RFJcbf70ggwysO3olmSy4IIZYJIbpatGdlQ0L2JYQQ04QQW7wpo3LRBINQvu+53v8TA+zTFq2eqX5tBwE3mn0y97sQMNsnq/7+L5o9u8N7raGQSdXfl9lO1If/Feyza4tWW0e/fzloac9aEtgOm6/3FL52/Zr3fvvbbraZ5te6vcwEzkgpjaKa8b7OQ/s+nRJa2swqaehCIBQbbxS0ioAYETg9sLKr1UCJMwqF4mbhEyHEAbTQ0Ge8K2gViuoyH+0Z+qUQ4iJwHE2cCZba7Fa08PZDAFLK02iTiPd62wyaAsgruLyGNqHR1DvBsQ9vDl2vA/cR2qqae9AmSHWH6wK+Ie2q9pJCoQgHPdpvPrBKSnnJYp9FwM+IUEozodWX+Vu0VYdNvDbvOpU2LxdtJeodaDbvfcOEgrJ5CkUEEUIMQpu0+cZi23CgE/BLIcRFr380BC2yuMpEjpTSLaVcgjaZODLIqd9DS6fSWkqZjLay25jL5H3veYYBscA67/s+NsAbXRcotc8eoLPh9RnghJQyxfAvUUo53dueHU0QWIiWas1cw6/C5gghEtAijs4TmDNAhyD7gCZEB2MBWvTA7Wgp0M6Fec7zQKo3xY9OG8BfO6FgtMNt0FZ/X0VLXVdRh9F7b5sZ9jVf7xm0lEBphs8mSUqpp1y6YHEuM93QIgQUNw7G78kZtEgt4+83Xkr5XwDeiK9JQAZapMdrFu35fI+8NsT4vfL53qKltNL3jUZLq/UboIXXf1mOqe6J5UVok/vH8LVHZs6gpWUzXl+M93du7nccWsoxvwgh/gVNxJ0spcwL1kcD59GEDiNmOxGq0BNJgn12Z9DSghnvX6zUUo8HssPm622Dr11v4k1L5297qJwHWnvTaxrbOgcgpfxeSjkbTZD+DG38b0Wge18bNl7Z1WqgxBmFQnFTIKUcJaXsLrV8kl8HP0KhCMj9aCHMfQ3/5gEzTPl1AS31gtCK1f4z8EvTCpgFaELLCELIRQ7EozlZV7xtP4S2wsnIe2irwe7Fd2X7R8BDQisuGAf8KoTzKeqQZKctrH8JIdScUSgiyEK0mlWP4T8F4x/RUhVtjNA5E9FqClwBHEKIX6HlbjfyHppdnkdVm/eCEKKld+X430aoT4pawC7Ct4HxjuC5xhU1RwiRJISYiZamapGUcq/Fbg+g1XfsTqVv1BNt4nKaRZtCCDEbrVbJwSBdSERb3VsitPoo95i2L0ebLPtXtJSzup+1DOglhJjjFYiewTB5asFqoL8QIsb7ehuQJ7Qi47FCKzLf0ytSgRZFA1oNld8AC00puqYLIUYKIaLQas9slVIGW0H+BpqvNkFoBb9b+lnRfwlo5W3bH5+h1dt6gcCCueU5vX3dDPynECJGCNEbLQVaKP6qP+4TQnT3+qH/ilYjzA0cRluRPUNoaYL/ES26SucSWoo0G4CU8gKaMP9b7/fTJoToIITQ0919BDwvhGglhGgC/J1FX8YAK2pwLRHFaRNh28AYu7KBAVgEzBJCTPH+dmOEViy9lXdsdot3Er0UrY6o26KNZWjpGed6bcjz+NqQXcBoIUQboaV0/aVhWxTad/gK4BJCTEOrixQqywlcH/Rl4P95F+4htFo6s73bFgMzDfbnXwkw/yuE+CWaXZ1kEQEYSj87CyHuEUI4hBB3oj0HlobZTqQJ9tm9jLaYoAeAECJZCHG7d9tSIF0I8aIQIloIkSiEGOLd9j7wj977nYY2nl5kOve/CCGivAuMZqKlfAyXrWji3y+EEE4hxFi0VHEfeNu+VwiR7E3Zlof19xc029neakOkbbzQsoGkElotuSrE2MO3gc4Q6m41BtSIXqFQKBSKMBBCDAWygJeklBcN/74AjuJb7yVXCFEI7EULO75dSvmmqcnFaBMTX3sHmgGRWh7336IVD7yEVrz2W9M+ujOXiWHQKaVcgTZxus7b1++8m0pDuHSFQnGTI6U8iTaIi0dbxW61T46U8usw0mEEYyWaHTuMlmqhhKrpMb5AW7F/SUppXK33Gtrk3R60QtXL0YQefwNYhULhy5dCiHy039w/oBUqfsi8k1fMuAP4k8k3OoGWo/4BU5sFaJNJ/w94QFrXejDyNPCv3r78CtMKYanVVFiCJh6/Z3j/KlrUyP+gpfTpjlZzwtLv8UYDrkWrAYhXNJiFJjSdQIvweB1IFkIMAH4K3O/d77/RFs8YRYD30Bbm5AAD0BbNBERKuQ1v4XC0KMENVF2Vjref+4GLQoirftoqRlu53w7t/lTnnHej+b3n0dLk/rPUandUl3eAt9FS5cSgTZgipbyO9jm/jrZquxDfFHT65Ga2EEKvrXA/2gT4AbSUdIvRoiBAs/8r0VZw78B0/V6BrdB77YobEO/E82w0EfUKmh37G7R5UBtalO95tN/nGLTvn7kN3Yb8F5oN6YRh3OX9LXyI5mdsxyBIeDMXPI9mr66hiR+WvpMfXgXu9UZ8WPEHb3urvLZxC1q0Il6b+gyaDbrgPX/F78k7sW+0u/+BFjFxRAhR4P3394SAV8yZiXY/s4FfADO9967eCOGz+xTNbn8ghMhDy0QxzbstH22h0Sw0W3UELaU5wL+jPUf2oI3xd3jf07mIdr/Po4kcT8pq1A2TUpYBt3j7dBX4C9rzRm9rPnDS2/cn0aIkrfhPNDEpVwjxc4vtkbTx9wALvM9kRRiIyI2bFAqFomYIIT78r+T2d7SwB1oAVpWHcn7cLqUcWEvdUihuWIQQ3dAc0WipFUJU1CNCiO1vpXbtH84xF91l/PL68Q+llHcF31uhuLnxrlp9WUppNdGpqGeyHDHy18ntwjpmR1k+fyo49ysp5b/VUrcUNxDeqIuzwL1SynV+9umOFhk4uCYisxDibeCslPIfq9tGJPBGG3aWUvqbuKvLvqxHi7x6vQH05RPgDSnl8vruC2g++dCopANPJAQrSeTL0uKrfFJ8dZ43RaDiBkMI8R7wkZTyswi0dRJ4VEq5pqZtKazxRrcsklIGSp95QyK0NH67gdFSysvVOH7evNi0xTNjwytB9krBebaU5XWrjgDWkAhUxEehUCgUCsUNhhDiVrQw73i01UJfKmFGoVDciAghYtFWOq5CK5D7z2irAhUKxU2CEGIKWnqYYrRV84IAKVe8EcqD/G1vTAghUtFS1Myv7740NKSU8+q7DwpFMKSU5hSOCkWDxBstY5WCUxECSpxRKBQKhaKBIYRog5aiwYruUsrTNWj+CbR0Em60tBVVQvgV9Ue4NWTig9cUVSgaPN6c3JZ5/6WUCTVpGq0+2IdoE7PLULW2Giw2IcK2gTFuZQNvFLwpdqyi2p6QUtakxskwtNQ+evqrOd50Xzc0QojHgN+jFUSPVA0wRS3irIYNjLpB6i0oFApFlC18G3ijlB5U4oxCoVAoFA0Mr/hSkwnJQG1PrY12FQqForpIKTdRCzZPSlnEDbICXqG40ZFS9qildn8N/Lo22g5y3gfr+pym87+GVnelwSClHFvffVAoblaklFn13YcbHSnleuCmS2mmqDnhSVIKhUKhUCgUCoVCoVAoFAqFQqFQKBSKGqHEGYVCoVAoFAqFQqFQKBQKhUKhUCgUijqkUaY1Gz1+oryWk1Pf3ajC3l07Kv4eO3Ysa9asYeXKlezfv59f/OIXbN++nffee4/f/va3APz6179m5MiRTJw4kaKiIm677TaWL18OwLhx47h67Xq9XEdtYW8AUqBdeiLSjlvU38W4I3MJ9fZ57N65c6VKq1QzJk+aKLOzG54N3L5Ds4GRsH/r1q1jQP/+9XYtCkUkkYa/dyobWCPGTpgks7Ozq3Wsv5TEQlj/bfWYNLehf7Y7dkTWB1y3bh29+1baQBHhfMpCgPR2vuJ/i+szIv2875ESm6mDoXY32HWZP4+Kl7o/58cf89dXHbMr5dO23r7RZ5S+LQrDNmnuQ6CLMu7r/Vtv2cq9k8EuJAD+jg12z83HhfPdMx5rdXoB7N2tbGBNmDJutLyac62+u1GF7bv3VvwdMT+wT696uRaFojbZsWefsoE1YNIkXz8wQlMjvs8vg19UcZ4gD+T9u3dW/B0pG9inn+9YuCY+gRX68706Pqa/qaRIfR465muWMriPF4q/H+hcFX6Z9w39ff212+KDsAdpXPeTffxawwvz0dX1+yM9XggX/XvhrxsSNRb2R6MUZ67l5LBk1Yb67gYXC8qC7pObm0tSUhIAycnJXLtm7Uxfu3atYj8At9vNX5asrnidnhBVw942DJrG2uu7CwAkeIpq3EaBLS4CPQmf7GJ3xNqqj8+jaVJ8WqDtLZrG0DIqJrxGG55OUatkZ+eweVP928Bg1MT+AY3iGhWKUCgXle5WYnxcQBsYGxWeXY4WDeO5WlfkZGezbG3k6xpH2bVhhLGwrv6eGad0Ab6fqxU1tYFL/Vynv36FQ5RNUOapHFyWuUMf8Ze6Qts3OkiFzlCvQ/9Mouyi4t4LVynSEW25v7/PJdA1GvtiPIfWYInvay+2cs2X9Dh9/UF//ao8QaWPo++r99ncR+NnVB2srjnYfQ/nuxCMUpes8j1o2zTRrw20ifBtYJS7Aaz+qkOu5lxjy8rP6rsbIVFTG9hYrlOhCIeojI5+baDdLsK2gc6Sm8sGXsnOZu2GbyLerv68NT4DdX+nus/FmtrAles3Vfavlp7N4fqURj/ZfHwk+2jl/+jtl7pkxd9W/ffnf4bq/5j9XP39EpcmPRWVhz8fF+f0/V3HeIve630y9zkSvj5U/bx0zPfX337B+mT8zK18aSO6rxtoLOy028K2gfYQ+t4YCCrOCCH2A20Nb9mBGGCAlHKHEOJ+4J+BDGAv8LSUcrvh+L8FXgSOAvdJKU95318PjAHGSCk3GvY/Cvy7lPJtf30qKizg8MEDJCQmEp+QQHxCIg5H9XUmKSXXc69x9fJlLl+6yLWcbPLz8vC35iu2aTpDxkwIqe2UlBTOnTsHQF5eHikpKZb7NWnShLy8vIrXNpvvQzYUIQgavoijCwv1LdLowkpNRBr92PoSaSJBdrG73j+Lhk5DtIGFhYUcPPgjiUmJJCYkkJCQgN1e/c/R4/Fw9Wo2ly5f4uKlS2RnZ5OfX+B3/z69ezF4UPD6ypGyfwqFov5oaDawvLyMA7t3kJCYSEJCIgkJCcTFx1vajVAHiS6Xi0sXrnDt6mWuXL5ETk4O5SXFADgqloB5HX8pGTlqNJ07dw7abkO2gTWZ9NcHkMFEGquJ+ZpSLhw4pavWhBkj+jkEQHlJ5WuvSGMWZUKmvKRCoNFFJqd0US4cRNlFRCc3zO1FarAfKpH+/OuDhmYDS0pK2blnHwkJCSQmxJOYEE9cbCyiBstlS0tLuXQlm0tXrnDx8hVyruVSVlZudS8AmD1tEs3SmgZttyHbQIVCERoNzQYWFxWxd89uzQdMTCAxMYno6Oga2cCioiLOXbzIpYsXuXrlCldzcnC7tHkrl8FfcnkkQghuvWt+SPOPkbKBkRZm9P+jHZqPEI5voPuP+mR+TftWXX/UX5+r63f4E2b0c5W5JTEOGyUuT4XQUh2RRqfE5SHGYau4/7XhM4N2f83CSzj3PNh3w9/2YAvYFFUJeseklD2Mr4UQ/w+Y4zXEI4G/ArcCG4AXgOVCiE5SyjwhREdgLNAeGA78G3C/obls4DdCiCFShh6kZ7PZyc/P48L5sxQWFFBYUIDbXVWZ8/bYeDV+90lOSSGteQsyW7WiZ5++JCQmVVsgMTJo0CD+8pe/8Itf/II1a9YwdOhQy/3i4uIoLi6moKCAAwcO0L1797DPVd0+1oegY4z+qE9xQIk0DUcwa6g0RBsobILsnBxOnjpJfn4B+QUFmA8PozlsNhtpTZvSokVzOnbowNDBg0lISKiRkwt1b/+sMK90DpWgK58VipuEhmYDbTYbNpudyxcvcrzgKAUFBRQW+tpAIQRSSh8bpr92e3xTFADYHXbS0prRrHkLunbvQZPUVOLi4gKuDjTib2DaEGxgbRLtECEJNPq+NUUfwOoCjU6wAWB1hBkj0hFdOZqwEGlqSm0INBWTJh4ZVnv+9vP3Od8I4kswGpwNtNtwezycPX+B/IIC8vILKC4uqbKf2YcL1HxUlJMWzZrRonkaA/r0ommTFKKja+4H3eg2UKG4GWhoNlDY7BSWlHLpajYF+fkU5OdTWub7PDb7gPp7Dj9j29jYWFKbt6B58+a079CB5JQmSJvmW1g9/0Jd9BAJGxjs+W3Vv1CfzUaBBsJbwGEWaYzo7QTre02jg42Ecs1WQpRVpJQVlcdpc8S6SBOKQGOOmtGpjkBj9O9CxSjQ1ESYCRQNo6g5Yd1JIYQDeBj4T+9bjwFLpJSrvNv/F3gWzTgvQPvm2tDUdf1vI68BDwB3A++F2o+Y2FgGDLY2bJGkOkJHeXk506ZNY/fu3UyZMoX/+I//YPTo0YwcOZI2bdrw4osvAvD888+zdOlSvvjiC5588kkef/xx/uEf/oFJkyYRExPDggULOGX67kspWfrhO2S2zqJbn37EJSRG4CrrX9BpCEKNlbASrmBj3L8xCjVKpAlOQ7GBcbFxjBwxvPoXUktE0v5ZkZeXx0eLP6Fnj+7069u3YuIgUhNkRpSoo1BUpSHYQKfTwcD+/ULuc6C0CGAd3VExqDStNgs2yKxtG3j2zGm+3bie/v3606VbN8tVm+Z0ZXq/Q1n5Vh1BwJ9AYz5nTVYEWq36q4kgoxNotZ95AOoTRQMBRZpAKdcqT1Lik95Mb8PpCP3a/PXfJzWf9/tQE8En0GSFcVuwlByRXPlbXzQEGxjldDKwb++aXUgtUds2cOfe/Rw4dIRB/frQqX1WjRcRKRSK8GgINjA6Opqe/QYG3S+UZ6QRK98JrP0cv/5DhG2g+bn57cYN5F7Lod/AQWS2bOX3+RyOz2XcN5Do5G+blY9m3M/fs7+mEdw1XfwTjk9ifY7Qomj8CTM6ZoHG2D/zZ2D278D/fQw3IsqMfqyVIGMkWKrnmvbjZkKEs7paCHEbsBDIlFLmCiF2AW9LKX9v2Odz4JiU8qfe178GngKOAfdKKU94318PrAEuAv8IdJFSloaS0qdX3/6ytmrOVEeo0BnVPnh4dzhsOl614K3H4+HsyWMc3L2T4iIt7VBMbDxdevahbcfO9RIGXluRNw1FJKhuVE1tCTSRrDljRW3f96ZJ8dullJYelRDiw7fad78j3Jozk3/c4bfNSNJQbOCA/v1lQ6zHEh0fGcFYp7Qw3+e1cJXicrnYt/8AO3fvobSsDCEETVJSGDigH+3atm2wA3Ul2tzcmGrOBLKB21d17d/faps/zpWV8NDxAx9KKe+qYTeD0hBsYN/+/WW4ucb9DbjBf2SHcSARSh7m1MTIP/NP51RNL1lSUsKhfbv58eABPN6c5M1bpDNk8CDS0zMq9rPKnV6btUaMEwTmdoznNd7ncAZrodQCsjq33/aqOVB0SleVWjQ6RpEmZJvv9PV3jDVo9GsJVBso0MC94pgQJ0Cs7l2wfPvm84eSwz4jJcGvDewUEyf/0q5bSP3V+TY/l385d/xXUsp/C+vAatAQbOCAPr1kQ6zF4kzvEPE2yy8eq/JeXn4+3+/cw9ETJ5FSYhM22rVtzcC+vWmSkhzxPigUkSYqo6OlDRRCdBuf1OTA32W2C6u9969e5K2r5+dJKZdErJN+aAg2sHff/tJfTb5ABPPrQlnME4hOzSM7DgZrP/DqlSvs2v49Z85q6dJsNjsdOnehZ+++xMb5+qJWokIkI2H93dNgdWgC+eX+2q/tBR7m+xLofph9I70WTU0w1qCx8qUCjUUC3c9Q/N1A0U9mcca8IMns7xrHvP7qHvobCwsh5j2Ulrn47rT0oH028p/nT7Au71o3KeWPYR3YwAg3BukJ4EMpZa73dSJw3bRPLlBRzUpK+Wvg1wHafAst/PEF4H/C7E/EqIkoU5fYbDbatO9Em/adKt4rLirk0L7dLP3wHTweN1JCm/Yd6dFvIDGxtR/BYbx3tRFRU98iTYEtrloCTYKnqFYEmqax9loRaOr7PjcSblgb2BCxil5xOBz07dObvn0qV43mXLvG99t3sPrrddpA3WajT6+e9O/bB6fTWZdd9ksokThKwFE0Am5YG2gWaYwrvYyDnppMfkeCmJgY+gwcwqAhlRHkFy9cYMvWbVy5fAkpJc6oKPoPGEiXbt0xpvc1R1wEGuiGOkj1VzQ1ULtW97gm1HVERpUoGvCJpIkU+opTc4qyQARawQr+73l176G/CKkbeKXkDWsDGwtJiYlMGD2CCaNHAFpmieOnTrNy3Uau5+UhpSQ+Lp4RQwbQrk3rBrtoR6FopNwQNjDYs1In0nXgIkFas2ZMnDod0J65brebY4cPseLLTykpLkZKSUqTVAYNG0HrlhlVjo9UOtIqkTVWtU2CCDNB054FSbUaqWuxEqz8ncO4r7EWjU4khBqryKcqtX4CjD2qu/ipLmhov6eGRMjijBCiAzABGGZ4Ox8wL1FJQVPFQ0JK6RZC/AJ4XwjxRqjHNUSsIl3qgti4ePoOHk7fwVqaIyklZ04cZe2yzygt0Vb1dezWk+59B9SoaHgo1IZQ0xBEmurWpmkMAo0SZUJD2cDgmCNdwqEmqclSmzRhysQJFa/dbjd79u5jwbvv43K5sNvtDBs8iB7duzXoQXqge6CEm8bLjZKLt7HawGCr88zpKoyDMav0Uf7yNufk+/oHNRVs/EUxWKWeSM/IYPqsWyr3Ky3l+++/56033tAEa0cUQ0eOpnXbLJ92gq0CNZ873P6GQrXynNfTwM4q1VmF3TZGwJRXrf8RCXxS7AX4funf0UCpLkJF/574m6Cy+txuVIGmsdrAusIqyqUuEELQIastHbLaVryXX1DAd9/vYNU6bXV9YkICk8aOonlaZLNcKBQ3E43ZBlouSgjyrDQeW+YO7jcduVz9cbCZUEWHaIegFDudu3Wnc7fKOjU52dns2vYt6766jMMGzZq3YMy48SQk1iy6J5jPVnFPaxAtEwyzzx7oXkVCXDOOC6w+f/M5dKEmHJHGKO4YsYqAieSCsFCEGXOqX6PvGyhqBhqmuNmQCWfG4Algt5Ryq+G93UBF+g2hzXr1BcIKqZRSrhBCbAN+Fc5xkaKxRM2EihDCJ7pGSsmRA3v58oMFeDySZi0yGDhyDLFx8bXaD/N9ralY01hFGn3fSIs0kRBolDATFjesDawPaqNOjI7dbqdf3z7069sHAJfLxXdbt/Hy628ipaRrl86MGj6swUTVhIK/+6VEG0Ud0uhsYE0GMIEiPEJpN9SJ9Or0S8dKqAEQjigGDxtBn0Haop2S4mI2bdzA2tWrEAJ69OlPjz79wk6FG6n0EpYrAqsh0tQVgfJtm22wcJVqQk01BBore+7vngebUPK3rToDZaNAY+5HMG4wgabR2cCblcSEBCaPG13xOvd6Hqs3bOJqdg4Ou4ORQwfRtVOHBr1gR6FogDRKGxgwFarpWekvKiFUgSZShFMzRt/P2K+MFmlkzJoNaH2/dPEiy5d+SWFBPrGxcYwaO46WrVpV7B9qsfhQnudV6jUGSRcXDv4iXCIVQRPuuXWs74utRlE05usKN1VZMIIJM0b/zUqgCfk8SqAJmZDEGSFEFPAg8E+mTa8BXwkhFgCbgOeBGODTavTlb4AtwI2llDQAhBB07tGbzj20NECXzp9j3fLPKS4sJKN1GwaPGo+jDiYpIyXWNHaRxtxGTaiJQKOEmdBRNjAy1KYg45fyEhzAqMH9GTW4P1JKDh09xtsLFlBWVk6fnt0ZPmRQZOp1OcOrlRQJqlXjQNGgiU4K73OMKgnu+AshWqPlCE8HPMCrUso/CCFuR0s10Q0YLKX8wc/xDcYGShn5NGL+BtvmKJpwi8tabQ+17+bBTKD+6X202lbmltiiYhgzcQqg1S7cv2cni956DSkl/YcMp1O3nhXH+Vu9p7dlhV7MNBz8Dab9pt0KMQVJJAlWBNUKn5RnNYigcUqX5QpEHXO6s7oklIF2dSdLbHZb2DbQ6Q4+hrmRbKAifFKSk7j9lhmAVrD7m60/sHbTZqKcTiaNG0VW61ZBWlAo6ga70x62DbQXBB/T30g2UIjQF4tUu7adxQKIYAJNODXvgtWPg/Cfo1b90tttkZ7OHXffQ5RNUFhYyIb161i9fCnxCfFMnTadpk3TtP2r4VdYHROJyF0jwQSxQPcqmM8SKbHNeP7KBS2VAk1RuZs4Z9XfaiD/2Z+fH2xBU7BxR6j+dDgLbAJlighHoLHHVMMGXql9G1gXhBo5MxeIBd41viml/EYI8TSaUc4A9gLTpZR54XZESrlbCPEBmtGvM260qJlQaJHZkum33QPA+dMnWfbxIlwuN62z2tN/+GgcjrpJwVJTsaahiDTVqUcDkYuoqY5AU1/3rKys0f7eblgbWBfUqigT5uSXEIKunTrStVNHpJTs2XeAl99cCMCAvr0ZPKBf9VdSVmciLoKCTrACfYr6Jz8/cikPwsQF/ExKuUMIkQhsF0KsBvah2bdXghx/Q9jAmgwKI5WmKZQUGqFi7E+giQLzyr1OPfvRsktvPB4Pu7dtZsvrL2Oz2+k3dCTdu4VXjF1HP0c4Ik24Ak1Dw99A1CldWtoHiLhAo2OMYrGcGIlwJJJ5Za5Vu+Z9rH43ly5ejEh/qoGygQoAnE4n40YOY9zIYZSVlbFy3UaWr15LTHQ0k8eNplVm1RoNCkWkOHH6TH2d+oa1gdWJ6gyp3TAFmlD7YZnyy09URLhpuwLu6/UV4uPjmT5jJqCNS1Z9tYKcnBySkpKYMnUaKU2aBBVpLAvIRyidqpFw0+/WVgSNv8/H3/mM348YhybQWAkz/s7lT6wzn8PK1zN/NubPpboLnczRM9Xl6PETNW6jmtTUBtY6Ic3CSyk/AD7ws20hmgIVFlLKsRbvPQQ8FG5biuqT2SaL2fdot/z08SN88f4CpMdD36Ej6NCle5CjI0t169XUt0hT3Xo0kUS/9kAiTX2KWOXl5Xy25BOuXbtWb32oCcoGBqdOomIinMdfCEGfXj3o06sHUkp+2LmLv7z+Nk6ngykTxtG2LlZSBrqmGgo34XwmSsipHfSJ1fz8fD7++KN664eU8gJwwft3vhDiINBSSrkaCCpINiQbKIT1wKKmKcyqs0+g/M+1HeWhD8j8TcL7GwgXlVf6CTabjX5DR9Jv6EhcLhc7t3zDwm/WE5eQwPDxU8hs0dzv+Y3tABWDTqsomkBCQSCBxnxMJAaX/vphJtgANNAKQX0AG65AY5XD218/9PMbJ2aMkynVFWWCrUY2CzBWn53Ve2fPX+SrL5aQ6l2dW9fcSDZQETmioqKYNWUiAMXFJaz4ej2fLV9Fs7SmzJw8nvi4yNcNVdycHDp6nBVr1tG5Y/t6Of+NZgNrI01SKOm4wL8P4W/xQrh9Nfs/gUSHsNKMWkQgJyYmMu/2OwAoyr/OiuXLyc3NpVWbLMZPnEhUmNl1/Ak0gaKF/NVYrA5m38Tf/Qm1/VAinPwRrA864frNOlZ1KKPswm9tTCtCERTN6c3A1zcNtbbq91u38v33Wxk0aEhI+0eamtrAuuDGqFKriAh6nRp9JeUnC14jOjaWEeOn0CStWZ325WJBWbUjaaB+hIjqRtEkeIoiVo+moaUqKy8v5/NPl5Cdnc3sW28lPT2DX/7i5/XdLUUEaIxiTCCEEAzq349B/ftRVlbGV1+vY+lXq0ltksLMqZNITEios75UYHX9tZQ6zerzVIJNzSgXDh9R5vbb7yAxMZEXnnuuXvslhMgC+gFbg+zaqKitGi9mgg3ozIJNuKsLdWoymDcea4yaMQsqRhwOB90Gj6Tb4JEUFRbw/aY1XM/JoUXLVgwdMxFnlLVPVlDmIiHK4ZOuwV8Ujb+C8sEmHvylOYPwRJpQB9U1EWb0/vqsMAyzBk0o6SqNUTXmzzxSq1cDpaEIdXXq5UuXWPbZElJSU7n/4UeJiorimcceDrkPtcGNagMVNSM2Noa5M6cCcPlqNh99tpTComJ6duvM6GFDIpP+VnHTcfjYCZavXkunDu144YmHG8QEYGO3gTIM9yjcSNyw0nmZFjOY01oZ96uOmGSOjo5EVEgg3yklJYW779Gy6xw/fpz333kbl8vNwCFD6dW7j89319IvC3KNflNw1UJNkpqkKvPXl+qmnjOnN7PCX3rgYH2xqkujCzSWx9kCf4b+MItFoQoyANu2bWPzd98xcNBgnn72+ZCPq00aqg28qcWZmzGlWSgYV1IWFxWy+euVXMu+SvOMlmT0G4EzqupAMSslNuL90D+f6tSmMUeQ1JVo4U9kCSbaRFKgaQhIKVmzaiVHjxzh1ttuIz099BQBKW1TSI0P8178GGYHFdWm1kSZOhRighEVFcUt07T6DFezc1jyxTIKCovo2rkjY0cOx26vtCdWK51rFX/3qRZEm0gINoG+Lzey+FPiESz++APy8/O44867SEpKCvlYZ3x4q9QcwgXQQQhhzJH7qpTyVfO+QogE4BPgxeqknGgshJMzuzoDuHAHkXVZK6U6wgxoIotOXHwCw6bOAeDSuTMs+eAd3K5yuvYdSKcefapMLvkca0jbYDy/cdDpO0C1hSTQmLGKWvJ3nyMRKQOhD0Z9BBqH1w7qNtpow41228/7geywWaDxOX8IvwHzPbe6T6GsqrRaJVxSXMzH779LfHw89z70CFF+xD0zwibCtoH2IjvAQGUDFZGieVpTHrpHW02+9+AhXn57ETabjYljRtKxXVb9dk7RKLiancO7iz+jfVabsEQZ4bCFbwO15+4kIcTfG96+KWxgoCjO2sLsa5ijVa2EmkgJNBCZaw1Wx699+/a0b/84Uko2b97MW6+9QkxsDNOmTqNFerrlMfo11jR9b6RqwAQj3MUq4eyrt21ObwZVUw3r+POZrTCKJf6ihcx9DiTMmL+f/r4fllHtfnz048eP88XnnzN4yJCwRBm70x62DbRp136HEOIWw9uNzgbe1OKMIjixcfFMmDWXk7nFZF88z6YvP8ZVVkafkeNp0TqrYr+TucVAwxNpdOpLrAmHG0WgOXz4EF8tX8aEiZOYNGVqxfvh1sVRNDwiLszUkiATyX42S47nwTvmALD/0GFefeNNHHYHc2ZMoXla05DOaRQhQulbtUQL872sowgbf30N5TpDWR3eGNm45Xu2bd3KvNtuo1WrOisyfExKeVegHYQQTjRn9F0p5ZK66VbkseF/kBTuwLe6aQ1AH0T5Dp6MgyTwzQcN4RXgrCnBhJk4pz2gYKNvS2yeybh59yGl5NDuH1i84DXiExIZMmkGsXHxPu35E2nM/an6vi3sNFyhpHyIVKQMhCbM+AxsrQQa8I2i8fcM1N/3Y8eNiwL0vhv7Z65HE45A449Q76WUkrVfLePsmdPMvuNukpNTQjouAvwgpZwdaIcbxQYq6pZe3brQq1sXXC4XazZ8y1dfbyAjvTm3TJmIM8yUP4obH5fLxXtLvsDtcvHUQ/eFLExHgNVSyqcC7XCj2EBJVf+ttkUafxPbxsUQ4CvUWE3QVwdz9E+krjWYQKP7F2OHD2Hs8CEUFRWxfMVXnLt0hR5dOzFh3Dgf0bFcOEIWoQJN/AfDX4RSOG2EQ7jCjP6/uU6N/lqvQROIYNt18cZf7cma1MnUfcZA349A97mgoIAP3nuX5s2b89RzL9RltOBHUsp/DbRDQ7eBSpxRWKKLLUaapmcyft59eNxudm5aw44Nq+g5ZBStO3XzOa42BBqIjEijU9diTagpzxqzQHPu7Fk+/2wJWe3a89wLP/ExxEqYadzUSrRMLQgztZ1qrUeXzvTo0pni4hKWLPuKnGu5zJ42mTatMiPar1AFkIDUk1gTqXYao1izc99Bvv76awYNHswLL75Y393xQWgG+Q3goJTy/+q7P40dfdBUdfBUKdYYo0GMaQZCEWhqmuIh2KDOLJzooopZrCkq922nTY8BtOkxgMK8XNZ+uQSP283QKbfQrGlqRVozY5ozf+cznivOafcRugINus0EGnzWRQozI4E+L12ggQBRNLVIuKtYq7vq9duNG9i7ezfjJ09mqrfYcENB2UBFTXE4HEydMAYYw5lz53llwXskJyVx+y3TiYlpfD6LIrJ4PB4+W76Ks+cvcPvsGWQEqNlWH9zMNrA6k9ShLqYJlFbU3wR9OBESOlbX4G9xhb+IiXCe61a+UVxcHLfNmwvAvn37+eOfXyKrbVtmzpjuk1VCP2dtphiOFGZ/OdTPw0j1Frn4iyb3JZT+BPpuVFegCZcyj6S0tJRPP/4IV1kpd959D4mJibV+3nBoDDZQiTM3IVbCSzjY7HYGjJ2ClJJ9Wzayb8tGegwZRZvO3Svary2BprbILnY3CIGmMQozxcXFfPDeuyQmJvLEU89UeTgrYabx0lgiZeqa2NgY7r1tDi6Xi89WrGLJ0hXcOmMqbVu3rJXzRaQeTB3Wr4kEjSmq5urVbN754CM6d+7M8y/U6QqhcBgBzAf2CiF2ed/7eyAa+BPQDFgmhNglpZxSP10MDQ/BV8YFKuJqPDbQasZA59BXvfkbNAUaCIU6WA0k0JjftxrYhRIVA9bCjFmUMROflMK4ufdSWlzEjq+XUlZawqjpcyApxUegMZ7PLNBYR9ZUv6ZDdfNo+9SGscCYOiwUjPncLYuoWok0IeDPDgbqWzCRz28auTAnVE6dPMHSzz9jxKjRPPlcw8gnbsENYwMV9U/rlpk8++gDXLmazdsffExMdDR33XqLEmluUn7YtYf1327h1hlTKuoWNUBuGBsoCD9qJNRJar+RAqZne6B99PNZ9cFMTSbmA6UlDbfeoX58qAtWuvTqQ5defThx4gR//OurtGzZktlz5uCShj4Fqn9nvJ8eGbJvDtYLd/yl9DVivp9W+1kJZ6FEagfC6nqMbUXZ7TWO+AlXoDG/V50o/4rzuD2sXbOaY0eOMO/OO2naNE1rM8QFaXVIg7eBN7U4k54Q1eDqztRUOKlLhBD0GjaGnkNHs2/LRla88woDx0+jWcs2jVaggdqNotHFF6NI0xgFGdBSV3y1YjmnT57krnvuJTklpco+SphpnERElKljIaa2o2ascDgc3DZrOm63m0+WfsWXK9dw99xbaJrapNbPHZFaLnUUXVNThKu0QQo0LpeL9z/8kBKXh8cef5zo6Mj0MSo+vOjQUFIySSm/QRvPWvFpWCdswIQyqRxKuolQBkmhCjORWL2m9y+QKGMWY4wpxnSMgokVwUQZnTinzft/AhNuvYvSkmI2LfsUKSWjZ84lOiY2pPOZCSfFmT4pYZU3OxChfg5GuxOuQBOIinacgUWhkNsJk0A1ZML9jhYVFvLhe4tIa9aMp557oUrBdHOql1AQdhG+DcwPfi9uFhuoqFuapTXlyQfvIzvnGm+8+yFpTVO5bda0KgvVFDcml65c5b1PPqNPj+78/JnHI9Km3WEL2wbao4J/35QNDH2SPeDimBCeZeZjI1FDxdxnvz6Qzb9PZK5Hp/8dijDjz+do164dzz73HCdPnuQPf/wj3bp1Z9yEiUQbfORA98xqm1WarkCEIsxUB70tqxRioRDoexSRukFhCjpmsSQSUTUHDh3iq2VLGTdhEhMmTbY8p5lggo09yh62DbSF8MxtDDbwphZn6pPGJMIEQxdpegwZxQ9rV7Bjw2qGTZsDKXWWaz+i1FUUTWPmyJHDLF/6JVOmTWfa9BmW+yhhpvFRY4HjBomMCRe73c4ds2dQUlLK+0s+x+Vyc89ts4mPq5/febUjbYLUOahPGppAs/m7LWzdto15d95FRkbgtHaKyCJl+Cv7rfA3aAopV7bFCjSr92sTfdBoFQWjY04tZtyeEOXwiZoJV5gxthvnTGDivHsoyMtl7acfkJCUwvApsyrOEw7VqUFjnmDwh/45BRuQ6jY0VIGmol3jqlnvINjfucrckjLsdfqdMRJIpAmGlJKVy5dx/txZ7rj7XhJMqSvMn0ckCgQrFA2ZpqlNeOaR+zl99jx/eu1tunTqwNTxYxpqJK2ihrjdbt5d/BkAzz7ygKo9VMcIEbq/FczP84lgsAm/NUPCPYdOTYQZfxHaVsJMKH6Q8ZrME+TVEWZ0ytySzNZteea5F9i3dw9//dMfGDlqJAMHDqo4V0UdkwD3yjeapKpA4y8CBKx9Yh2r1LpW+DvW+DkE8vcrvjsB/B1/olq4lLp8axuF/Hvw+H7+1Y3YKSwsZOHCBaRnZPKMqZxBqH1QVOWmF2fCjZ4pLSnmysULXL10gcKCfIoLCykpLsLj8SClRAhBdnG5zzFSVv0CRsfEEhMXT0x8AjFx8cQnpZCY0oTYhKQqK88aCzabjcETZ+AqL2Pzik/ZuUFyzz334qy7QngRwygs1LZQ05hwu9188N4iEhOTeP7Fn/o1xEqYaVyEI8rk5xdw9vx5Ll68RH5BAYWFhRQV5CGlrLCB/tD3sdlsxMfFkZAQT2JCAokJ8TRJSSGtaSqJCQlhD2brI2rGipiYaB665w6u5+Wz4IPFpDdvzq0zpjSIwXlYgk0DFWkagkBTWFjIm2+/Te9evXn2xZ/Wa18UvlgNMMJdHWnMBW41IHba4HruNY6fP0/21csUFhZSXFRIcVExWola6/PpTdltmh202+3Ex8eTkJBIdFwC8QkJtGiWRmrTpsT5EXUDDUCNoou/dGbGGi/GY8zthCOmGAe8cU47JKUw7e6HyL54nmXvvk6HHn0YNGykZZvG+2sdARSmQBPmwNTfMWZbGW4EjdXA3XJyKISCq/6ozqDe32SBuZ/+Bur6flcuX+LD995l4uQplnVlLFfi2m/64eYNg8fj4WrONc6eu8CV7GwKi4opLCqmpETzG6z8HatxsMNh13zAeM0HTEiIJy21CU2bNGnUqcHatMrkxScfYd+Ph/nfP7/C9Enj6dm1c313SxFBDh09zucrVjH/jrkNrq7MzYIQodc0CadAfZRdVIgU/orbu91uLl+6xOkzZ8nNvUZRYSFFhYWUlZVV9A2g0rXSfEO3dwxc7tb+j4qOJi5e8//i4hOIT0wkpUlTUpqk4nA6LdPBWqUxsxJl/Akt+jWBta9iNc4K5PNY3df+ffvQv28fvtu4nj/97rfMu/Mu0loEX8Rmvh4jpS7ps7jGTCiLlcwiC1SmKDYfqx+v10+srI0Yeqoz/ftp/A5FO0TA6wyGOfUb+Io0wY718fcC+J7BfjNbvtvMzu3buXP+A1UW5/jrr96uIjDKWzbh8Xi4cvECZ08e48LZ07hdLjSjCiCIio6heXomaekZtMpqT2xcAtGxsZwtKA/UrA9SSspKiikuLKCkqJCSokJyLl3g9KH9FObnAbLSkfX+74yOIS2jFelt25GS1qJBTPb5w+GMYvQtd5KXc5VPF71Bq6z2DBs3OWJ9vlhQRnpC3Qk+dZHurDFw8MB+Vq38ijvvvof09Ay/+ylhpvFgNWHvcrk4deYMR48d58zZc3g8mjOi/34T4uNp1TKTVq0ySUxIICE+njinLSxR2ePxUFhURH5BAfkFhRQUFHD85Cm+37GTvPwCn311W5iUmEDb1q3p3LFDlbRh0hHdYAQagOSkRJ5++H6OHD/J//31dUYOGciQAf2q3Z6tvDINoscZuWgc/Z4FFWmsqCfhJiLp3KrJho2b2LN3Dw898ADRiSm1ei6Ff6QMfaVXdUL2y0pLOXf6JKdPHOPKpYs4vccLIXDYBEnJKWRktqR123bExycQFx9PTGxsQB/HPKB2uVwUFhRQUFDAtev5FBUWcODgQfKu5VBUVOi9Tonbq1m4PJKE5CY0y2xD2w4dEdGaHQgUKVP5nscn2sU44Nf3N0bNhCvQWBHbNJ2J9zzO2QM7WfzGSwwdP5WuXboEXL2o98X3mkIXaIJ91mVuWWUiRz8mWN2ZkM7vsRBlLAa/VqtHQ/memlNRmM8VCQKtwpRSsvTzT8nLy+PJZ5/H4VBDyBuVwqIijhw/ydETJ8nOuYag0gYKIUhrmkqrzHS6dOpAQlwcCfHxREdHhTXOKy8vJ7+gUPtXWEhhYSG79x/kas41ykq1SU7d/9TP3bxZGu2z2tCpXVaDF3B6du1Mjy6dWL5mHWvWb+LuebNp0SytvrulqAHl5eW889ESUpKT+Ztnn2jQczEKX8JN55mbm8vBYyc4dvQYuXn5ALi841GHw0FqWnPSM1vSpVt34uLiiI2LJyqq0gYGqomiT/KXlZZSVFhAYUEBRYX5FFy/ztlTJ8nNyfbOP2o4bOCwCWw2Oy1bZpDVrj0dO7QHe82itUIRc0JpwyoKySldjB41kuHDhvL+4k/JzcvnzrvvwRlrPYb1J1hU8Z/8+P66yBLntFNU7rZM62sldgVLgWYUaMBa4AlGqMKM1XtmnzWYzxdulFa4i4Py8/N5d+ECevXpwyNPPxvWuaB+sgw0Nm5qz1pKyQ/7fuTwvt3k5+UCmvPXLD2T1u060Hvg0JCiPsJNUSaEIDo2jmg/BsqK0uJirl48y/H9u7l+9bLPtqbpLWnbpQcpzVqE1Y/aJik1jcFzH+Tc8cN88Nqf6T9sFF169a3vblWbukh31hApLy9n0cIFtEhPDxgt09ARQqQArwM90RTXh6WU39Vrp+oJfYLb5XJx8MdD7N67j8IiTQBwOBy0bdOaLp06MXHc2NDyZoeZzsxms3kjZhJCPuZ6Xh6nTp9l3cZvyMnNrXhfCEHH9u3o26sHTSzqHoVDpAWeTu2z+NnTj7Hpu238319f59YZU2jXpnVYbRiFGavXOjURbYzXXe16NVDvkTZBxaZqcv36dd5asJDBgwbx3DPPRKz2hD+ik8JbfBBF6ItDbkYCCTklJSX8uH8f+/btp7y8DJdHIhxRtGrbju69+5HWIh0hRJWBmDnaQNM2QheCHA4HySkpJKek0LJV1X4aJxJKXdqCnStXczh24jgbV68gNy+vYt9yaaNNx86079KduLh4wJzOrOog0rjdKMyEIsoESn+mb9MHtJ37DKBT7/7s3riavZvXM3nO7SQ3SfXbH31AXVDmqmgjzmknxlFVpPGX6sJfCrEq75kiaPTftTPMn3cwobAivVmQlB7BIlaqDNJt1pMigQhnpbGRc2fP8slHHzB91i107BQ4CsCczk2/r1ap36wQNhG2DXRcv6mHszUiv6CAnXv2c+jocTxS+/3GxcbRqX1bxg4fStPUJrXi9zudTlKbpJDaJCWk/T0eD5euXOX4ydN89PlSSkoq/ZY4p6BXt8706NyRqKiqE5aRXNQSDkIIZkwaT9mYMj749EvKysq597Y5xMY2rKhkRXB27z/I6vWbuP/OeTRPa1qr57I5beHbwJibb36iOliJNDnZVzm4dzenT57AYbNhF5KUlCZ06NiBCVOmkZSUVLGv1QKPavclOpqo6GhSUv1/n3TfU1/Uk3v1IiePH2fnti2Uu8pxeG1zUlISPXv3pmPHTsRGOcIapxiFmeqMnwKJPA6Hg7vuvpur167zwXvvkpiSwtRb5mKz+fp0gQSCcAQaI1YCDfhPFWdetGTlDxujaMxt6D5plD2wvxeOGFKd6JpwMac5A+t+b1i/jh8PHuT+hx7GERNaXfFwUgMaccTYw7aBNouxTmPkpvNmL54/x9bNmyjI11TwpIy2DBo1jqSUJkGOtKauasdEx8bSsl0nWrbr5PO+lJLsi+c4tm8n17OvVKwyT22RQfsefUlu2qxO+heIlu0707J9Z/Zt3cTu7//KlFvvtBych0NdR8/o3GwCzZEjh1n6xefc/+BDNG3a6Fd8/QH4Skp5mxAiCmjchX/CRLhKkVJy+OgxNn+3hZLSUux2Oz26dWXOrBkkhCGUVMEZU+v1ZpKTkujdszu9e3b3ed/tdnP0xEnWrNvItevXK1KrdWiXxcB+fUg2ONXBMDqlkRRqRg0bzIghA/lk6QrWrP+G+XfMDWnVpz8hJtR9qzMhUS2hRsf8HajH6JpICTSbv9vC9h3beeKxR4mNja11YUZRu7jdbg7s3cPunTtwu91Ex0TTo2dvZt92J1HR0VVWNur4S2dgJhLFNa3aL/dASmoqPZJS6NGnP1A5gLxWUMSZ40f4dvVySoo1O2Cz2WjTsQsdu/ci2juI8hdVUxPMx1eN5NGidoZPnEaUdLPy0w+JiYtjwsy5FJVXPc5fSjYN6ygafysFLfOBW4gTVcQCbwoufytJrVKbBRMcQsm1Dr7XokdbhZqOJdQBsLEYcCisWPolBdev8dOf/qxKhKy/NowCTSj7K+qOsrIytm7fxf5Dh5FSkhCfwIA+PRkxZGCDLWJvKy/CBrRMTaBlandG9ff1A4uKi9lz8DCLlnxJebn2u42KctKnexd6de2Ek9qJPg6VqKgo7r9zHtdyr/P6og/o3KEdU8aPqfN+KMLH7Xaz8MNPSGuays+feby+u6MwEW4tsyib4FpePls2f8vxEycBaJqWxoAB/Rk7fgLR9koxJNjEup6yykyZWxLtEH59E2MqrZD67D1HfIyT+FatadmqdZUIjOu5uezdu4ctmzdXlFpITkygX//+dO7c2W92i2ARM1ZjnupE2SQlJfHIY49z/NRp3vzrnxg+ajR9+/X3uYZARNmEdz9v1FEAf8comhgX/FilKLPCLNKEQ6DIlSi7CHqtNRk/GL+P1Rmj+IuiKS4u5u03XmfgoME89MRTYferugLNzcoNP8sgpeTg/r1s36otkM/IbMX4ydNITEoOq9aMFXUlzARCCEFaRivSMlpVvCel5Nrlixze9T3Xs68AWjqMvqMmEuNdVRmIo1cKgu7TsVn4E7k9h4yivGwwSz5dTKu0FCbMnFuj+jr1KdDAjZ3mTErJJx9/hN1u58Wf/jzkVXMNNaWZECIJGA08CCClLANqZgAaCW63m+++2cieffux2Wx07tSRu26fR2xsaKseIk6EJ+ztTujSrQdduvWoeE9KydFDP7Ji9ddcz8vH4/HQulVLJo8bQ1SINbAiLdTYbDZuv2UGudfzeHXhe3Tt1IHJ40b73z8MYSbcNkKdnKiRUAO+Yk0dCzU1FWjKy8t548236Ny5M88984z2nhJmGgShuvj6IKmstJRvN6zlzOlTOBwO+vTpw13zH/BJyxRqKoBgA+oYhy3g4CfUQq3h9KtJQhxNevehd+8+Fe+5XC5OHT3EtlVLuV5QgJQesjp3p13vgTWua+hvNWIwyoSdWXfdz6XzZ/ngtT8zYPhoWnbpWbHdWjxyVwymm8dHEyjNmfFehSNWgO/KwYrj7FVTnZntSpV82qaJG59zhFkwuDpFhMNdkelvUivKJsi7fp2333qDCRMn0aPnLWG3YR7oK2Gm/sjLz2fF1xu4mp1DdFQUQwb244kH7m1QkfA18XniYmMZ2r8PQ/tX2sCSklJ2HfiRBR9/jsvtxuORjBjUj97dOiOEqOIHmc9fGyJOk5RknnvsQXbtO8D//vkVbrtletjR1Iq64/TZ87z3yWfMv2MuLTPS67s7imoSZRNcvnyJ1atWUlhQSEJiAoOGjWDC5Ck+z2UhhN+FBf7aBevUU8EEmmAYI2aqnNfiveSUFEaOGs3IUZXjyvz8fHbt3MGGjZu0GjcOG+MnTCQrKwsIX2SpaepXgFatW/P08y+ycf06Xnnpz9x3771EpYa+YDvBacNKoNHvSeU9ryrQ6FilN4Oqopk/kSZQ9AxovpsxlbGxf/7wtz0U8cx8bDCRJhyBZs/uXaxbv575Dz4csLZMMKzqeyqsuSFnGqSUHDqwn+3bvsPj8dC1Ry/ufegxnwHpjSDMBBRRbIk06T0aPR6oMDebrau/pLS4mGaZregxZBRR0ZWTZaEIMv7OHY5Q44yKZtzce7l64Sx/+ePv6DpgKBNHjQjr3A2FGzWK5sqVyyxauIA5t86jXfv29d2dSNEeuAK8JYToA2wHXpBSFtZvt2oHj8fDd1u2smfXDmw2GyOGDuHpxx+tn4F4PURPCCHo1LUbnbp2q3jv+MmTvP3hEsrKyujVowcjhg2pmjPfT/RPJIWalOQknn/8IXbu3c///vkVZk+bTOcO7Xz2iYQwE4jqiDYRE2rq8PtQXYHm8OEjfP7llzz0wAOkedNX1FSYicSgRlGJ1eDHSH5RKZs3ruP0yRNERUUxYsx4RkyYCmiDBDeBHeBwVzbq6IO1SEXQVIc4px2cdjp07UGHrppoLaVkz57drFu8kDIPdOk9gBYdu/s8E/T0Z/6iaYwD3ILSyr8TokP/bRSUuYhPS+eWh55mx7cb2PbdKwyZOpuUIFHeReVuLheWkhDlIDXWWXUwaigUG2UXJEbbwhIq9OOsomiC/Xb9rTYMJZWZeeImUgPWUIu8GvtoPGbrlu/YtWMHjz/5NDExgW12MIFGUT/kFxSwct1GLl+5SkJ8PFMnjK31dEzVobb8nZiYaB/BxuPxsGnbDl56+32inE7GjRhMp3Zta9Sv6go4fXt2p3f3rnz8xXJWrdvIvbfNISE++OJJRd3x+YrVXM/L4xfPPVnjBQ2K+uF69hW+Xr2a/Px8mjVrxm1z55LonWDWa9BZLYoJtw6H1SKE6go0/mqZBPJ3rSjzSBITExk1egyjRmtRemVlZWxct4avVqwgKT6WKeNGkZGeHnScZLVIJRBW7Znv88Tx4xk1YoSW6iw+jnm33YbT6QwpVWuUxzf9VpRdVNyfKLtW1yW/1INRoAmGft+N918fA+h1bMDXDw5UQ1H/zH3qTQbwy3RCGSsa779PGl571YhufyJNMIHG7Xbz4buLSGvWjKeeeyFon0LBnA5aYc0NJc6cP3uGjWtXU1ZWRtfuPbnr/ocbbIh2uIQrnpiJT2lK/PCZAORePMfnH32Aq7wMu8NBq259ada2U7UnbvW+hSPSpGW0YuaDT3No5zb+8sff0XPoaNp09g1Tz0oJvrJfF9nqI4IGGq5Ak+CpHFQU2EIfPHz7zSZ+PHiQ5174SbWKvTaNtdc4eiapbSpNUsJW59OEED8YXr8qpXzV8NoB9Aeek1JuFUL8Afg74J9q1NkGxv79B9i4aRNCCIYP6s9Tjz1Sd4JMPdcbCUb7rCwef/hBpJQcOPgjby5chMfjIT4ujlEjhpPVto3vNQQRamoq0vTr1YO+PbuzdNXXLF+9lltnTKVt65Y1arOmGCcjak2oqQeRJhw+WfIpLpeLn//0JxH57VRHlHHGh3dPHa6bs+aMWaCRUvLDti3s2rGTqOhoho8ey9iJU/wOSvTjQxk4W0V1+Ft5B9VPTWAewOr9q2xPa18vfGrVN6u+CiHo06cvffr0Ja+kjEO7d7BpyTsAJKY0oeegEeBNXRpUpAkizBjzdFe2VXWlYtfBI+nQbzCbv/qCooJ8Rk6fQ2JyZYrhQCnXUmN960r4Cmk28ks9FcVXA4oHflby+Qg1fgQan2MtJnNCESaCff8CC4TWEw963y2LywZJM+Z2u1n49lu079CBJ55+xqfNQO2EUsg2VITdFr4NjKlZYeQbhfLyctZs/JbjJ0+TEB/H1AljG2QR+tpegGJ5TpuNMUMHMmboQMrKyln33TbWbNKyarRKb8GYYYNISgwvK4R+HdURaWw2G3fOmUlefj7vLf6c6Ogo7pwzK6SUt4rao7CoiL++tYjJ40bTu3vXeumDzWEP2wbawi2WdoNSXlzEqq9WcOXKFdLS0pg+cxZJSUkB05xapiYzPUODpYsKhNGP0483izBWURjGfgVbkGTGcsFIVBTTp8/Q2svPZfWar7l8+TJSSjp37szwYUOJiYkJuBitOsIMGArBG/oVHR3NY48+wsULF3jt1VfJzMzkltmzA4qhoRaUT4wObZGU8Z6b/W99W7CFWoHqBRo/t0B+WXXHDMZaq3rKXf06fBbfGL6/wc51+dIl3l34NnfdO5+MzMxq9SsQofyGbE5H+DbQj7DZ2Gj0lvzK5UtsWruGgvw8Mlq2Zu6d9xIVXbuOTV1EzdRUjAlESnpL+k29DQB3eRlnf9zN9mUf4PF4aJLRmg79h2Ozh//VOHqlIOx0Z136DaZz30Hs37qJ5Qtfpt/oSWRkdQAq73NDF2kaepozo1BjRBdtEjxFeDwe3ljwDh3bt+eFR+4DyiiopnmIhEBTDa5KKQcG2H4WOCul3Op9vRhNnGn0HDt+nLXr1lNWWkqPHj144qH5DV6UjnTB9nDp3rsvPbprUTUFBQVs2vwdX61eg9vtpn/fPgwdPAhhFg9MYk2gawhVuBFCMGvKRNxuN0uWfcUXX63m9tkzyGxS/ysoa12oqceUZ1YUFRXx8quvMXniRHr27BH8gBBQ0TK1g3FYUVLu4eD+vezYtgWPx8OAwUOZ/+iTFcKacRBgrBtjFGh0whl0hyPMhLvi0UqgASxFGp1wcmMnxUTRrd9AuvXTHpnXr2Wzd9tmcrOvaoP0/kNp3bFLFZEmIcqh5e02CTJWRVOhUpixQu+v0xnFoKlzKSsp5puvPsftKmfYtFuJjff1Jc1t6RMZ+mda9for969unRcrgUY6on0mLowCRLirbc3nNE/eQODJAavvs1Xf/fXJLJ5cuXKZhW+/zb3z55OenlHxfqhpVYIJNiqKpnZwu91s3rad3fsP4nDYmThmJNMmjK3vbllSH6KMFVFRTqaMqczacOb8Rb5cvZ7r+QU4HQ6mjhtJ68zQ01jZyouqHUWTlJjI4w/cQ3bONd5870OSk5K4Y/YMnE4lONY1Bw8fZemqr3nqoftUJFMjQH+mlJSUsGXjBk4cP0Z8QgKTpkyhRQvt9xsoxax5AjsUAtXP8JfeLJTjAwkzVc5jfN5b+B3+FlMY349OTOHWObMBbWHT4cNHWPTRYkpLSoiPT2Da9OmkpqaGNY4xjwGDZRzQ+5OekcHTzzzDqVOnePnPf6RTxw5MmzoVly00G+jPx9bbT8Ie0A803hd/n48xesaIv9RmQEC/zOf8pnS64H/86G9+QX/f6aCKQANUEWmM567or0fy3bffcOjgAZ7/6c+rzCVZfZfDQUXLhEbIs69CiInAvwM9gRLgIynl00KIB4E3AaPH9aWU8m7DsX8LvAgcBe6TUp7yvr8eGAOMkVJuNOx/FPh3KeXbVn0pLS3hg4VvUl5eTlqz5kyeMYuExNCLPjdEalOMCYTdGUXbXoNo22sQANlnT7Bjxcd43G4yOvWgVbe+Ya0ero5AI4Sg59DR9Bgyip0bV7Nn83rGzb2HKG8R2+qINFD3Qk1DEWn8iTH+9rty9SpvvL2Q+ffcTcvMjCrbw4m80akngcYvUsqLQogzQoguUspDwATgQDhtNCQbWFRUxMuvvIrH46FDh/bcf9+9xDQwPaY6AkxNUkeFOxGu9y8+JZqp07WoQiklO3bu5K9vLMCGhzGjRtKtS2fvCQKLNVZt6wQTa+x2O7ffMoOysjI+/GwZnrIiHrg98OqhuqQ6Qg2E8R2oZ6Hm8OEjfLF0KU889mhFyoOaciMKMw3FBkokO7d+y759+wDo1rM3dz/wSEBR2ji5bU49FmzAYB6QGYWZcAbU4WDVLyuRpswtiXHYwi5cqgsqBWUukps0ZeSUWYA20bt322aWv/cmzqho+o8cR9P0zCoCjbmdQEJMIPR2o2JiGTPnLq5cu8baLz4mPSOTAWOnWB5jlT/c/FqP1Emi6nfCeB91zGJdtENUGVgbU0YEmpyxXLEawvfManWtP4yRSMbvs2XfLUQa8wTB1u82c2j/Pl74yU99oqb1Nqzsmfl5HSxlRbiTYA2RhmIDPR4PS1d9zemz57DZbAwbNIBnHrm/QdWQMdJQRBl/tM5M5965mh9YUlLKyg3f8vnKtSQnJjBj4hhSU5KDtmF1jUZ/KViUTdPUJjz98P1cuHSZP7+xgKED+jNsUP/qXI6iGny6bCWlZWX8/JnHG+zvqL5pKPYPwOVy8/mSxWRfvUpcTAyjx4xl8tSpPvtY+WN6dIG+3Z9AYxU1Ewi/9dss0psFesYHOpdPFIafCIgou/B5XlvVJDFuA0BA+67dad9Vy2Bz/fp1vlqxgmvXrtGyRTOmTplMXFxcwLGsPt6zGscH82f0/nZs05IXnnuWH/fv5Tf/+z/MuXUuWZ27BTzWJ21YCAtJ/KVNC7RIxoi/xUj+MPtlVn0z1zyMsguf+xjOeFK4SqsINHrb5nMZ8Xg8fLBwAZlt2vLgo4+HdW2KyBLSN0wIMRZtpfmjwJdoCxeNOaiOSyk7+jm2IzAWrebDcODfgPsNu2QDvxFCDJFShvQpl5WV1UmETF1QX6KMP5q2akfTVu2QUnLhyH62fb6I6Lh4uo2YTHR8aKJLdQQa0ESa/mMmU1yQz9cfL6TbwOFkdetVsd0YsdSQo2nqU6QJVZjR2bLte3bs2s3PX3zebxqz6oo0DU2gAZ4D3hVCRAHHgYdCPbCh2UCP9PDYo5WTkZEoWF9dwhVhaquoeiSEHSEEA/r3Z0D//rjdbjZs3MSa9W+QkZHBLVMnEhVlsCXVEGuCfU5RUVHMv+NWzp8+zn//5Q3umTODtq0iH1JcE8JJ41EtsSbCac+C1Z35cukyCosK+dlPXgw4IDcO6IJxgwozY2kgNrCkuJgmqak88vgTlFk8YswDBn9RB8YJ7XCxWikX6RozwdozDiKtcmKHMoisuo+DvsNG0XfYKHILCtn5zTq2rFlOy3Yd6ThwZIVgbBZlAuXe9pd2TRdmjGJLbHwiA2beTe7pwyxb8FfGzr2H+ETridFggpS+3Zy2Qp8gqRpVZfPZxziY9hE29Po2YdZZCSXaxJzGzur7WXn/fK/fSqAxnteqX1JK3n9nIS1bt+bRx5+w7K8/e+bvffNkkL8aN42NhmQDC4uK6dmtCzMnTwj/QuqIhi7I+CMmJprZU8YDkHs9j2VfbyT7Wi5DB/RhcN9eQY72xeoemN8z+1IZLZrzkycfZe2mzbz89iIevucOX99TEVFKS0v5y1vvMG7kcPr27B78gJuUhmT/AAoLCxgxajRpzZoHjRwB3+eVlT9vnrw2t6Ufb570tjrGjFGgAXMUtLeNEFNbWQk0+qIQXZixqkkSzhg5OTmZO++6C6d0ceHiRT746GOKC/KYMmkCnTp08HtcOOew8i/0fndr34auzz7B4qVf8cOOHcy78x6EEBV1gsIl0H01R92YX+sLoKpTg9LYhlX7flPpGt4D7b5W8bf8zTk4YyoEGqBiUZGVL6uTk53NW2++wV333EvLllp6dXNf9OOtaukoIkuov6L/BF6WUi42vLcjxGNt3n92w99GXgMeAO4G3gulwcTEpHoXZqSUFBXkce3yRXKvXOLalUuUl5XqG8E0ySOEQH/e6BNAl/Mt9jc9k5zRMSSmtSCxaQuSmrUgKqZ6YdPhIoQgs3NPMjv3pKQgjwPfrKSsuIhW3fqS2bln0FUl1RVoAGITEpk2/wl2bfqaNR+9zfBpc4kzRUaFG02j0p1VZdlXq5BS8vTjj4a0f4KnqFELNFLKXUCg1GeBaFA2MCE+AbvdXm+ijHREI6Xk6tVsLlw8zIULF7hw8RLl5d7aF16b5hGGSxWi0r4Z7IfbA/58cSklycnJZGRmkpGRSUZmJtEBbL/f4nZBnF6zQ+mULux2O+PHjWX8uLGcO3+eNxd9AMD4cWPp3K5N1UasxASLVGihfGatMtL526cf4d0lS5FSctfs6URFNawUF9XJtW7MjRuUWo6mkVLy9sJ36NmjO4MGhmYWQhFobkRhxkuDsYFxcXF06abPCQROS2YcUOmT2eaIg3CIc9orjnG73eRfu8qlC+e5fPEiV69cxuNxV/H3nF7bY/cOiqSUVXwoKxuo75eamkp6Rqb3XwZRDofPQF9D69PlwlKfSfuEKEdA4cRMUbm7UrBJiGfc1JkUlbs5e/wIGz5+GxEVS9+R46FZC+KctpDaDvX8ei2bghIXKW06M7xNBzYv/5iMli0ZOGaSTyRhQZmrShRPoGuq7EPV9GjGv82CndVqx0hiJcJYreAMNjlgFKKMAo3ettXzz+Vy8cpLf+KWOXNp3batZb8qFi74eW5Z2XKznTRPZFUn9VsDocHYwMSEeLJatwrx1LVHeXk5Fy5d4cKlS5y/eJmcK5cqbJnRzpltoj8bqL9ntIdCCFo0a0pmi+a0TG9Oi2ZN6yyqOCU5iXvnzkRKyXfbd/PHNxaRmpLMrEljSU6KTJStv8jk8aM0seDPbyxkcL8+jBw6KCLnU1SSl5/Pn19fyDOP3B+xz/MGpsHYP4CkpGQfYSZSdf7CXUBwvbCIy5cucvHCBS5eOM/169crbJzRpnmk7xC43C3xTdILRn8WBLp7KoWdtObNaZGRSXpGS5qkphLjXRhj+Xw3jJ8EvvVIwiUjPZ2HH3wAT2kRq75ey8rVX9MqM5OpkycSE6ONzaqke62Gz1ThY3j7LoTg9lnTOH7uIn/47f8ydcYs2nf2rQHlExkS4PO38jnMNXzMvphVJLO/1GY6Rh/NPLawSqWsn8d4XqPYVq1aNOUlFQKN0T/zt+DnzOnTfLpkMc+/+BOfVJrG34FZmDH/HQgl4oRP0F+pECIeGAysFELsANoA+4CfSyn1AtythRAXgXLgW+CXUsoTAFLKw0KI74Bj3n/3mk5RCPwK+A8hxCdSyvpbAm5BWWkpxw7t5/Sxo5QUFwKQXaRNQMYlJdOkWQuat2pL576DKtJwBUOPlmkdyvlLisi/eom87MucP7SH8tISpNd4CwSO6GhatO9KszYdsDtqZ/IuJiGJflPmIaXk7MFdbP10AUnNMug6fEK1atOESt9REygtLmLzik+Jioll2NQ5VRzyk7nFDTqKBvARJxqKUPPxkk9p3qw5Y0aNCL5zDdGvuaGINOFys9vA/PwCdu/dy9FTZykr86YN9IovaU2bkpmZQbdu3Rg5bmLA1X2hOGtmh1hKSX5eHhfOn+PwsWNs3LSJ0rJSnwF8cnIy/fv2o32HDpT5KZAcyvmNDpDZgW2ZmckTjz+Gy+Vi7bp1rFi5ku7duzNh3LjKyQeryStdVDA4yqFG0dhsNubfdguXr2bz8jsf0rFdW6aPHxXwmEgiyr1CijOwkBJsFahl2+GINFDhbFYXs5MqpeSvL7/ChPHj6aKnrQsR4+o5q/cjgTM+vGt1lJVH7NxWNAYbGIp9sRIJ/BVh1SfEAXKv5XBo3x7OnzmFDW3w5bAJbDY7ac2a0zw9nZ59+9Eyo4Xf1Go+Oa0DTE5b2cCcnGwunr/AoYMH2LDua9xuNy7D9aY1a0bXXv1IbZFJ8/hoLhdqty9cYQYq75GPSAN07tKVVu07UVpczPaNq8m+dIEBQ0fSsUfvsNo3nqMSUw0bb02bhKgYJt35IBdPn+DLBa/QY9AwevcbULFfKMJMqOKNGf2z91eEN9Dkjb8VuOFinhwwf0+DRQ4FSoFSUlLCKy/9iXsfeJC0tGa+/Q8SMWMkWGSiFW534H4LmwjbBtqja9e3bww2sLaQUnLuwkX2HPiRc+cv+ggnTqeD9BbNadk0idEDetC0yYiICydut5sr2dc4e+ES3+/ex6Ur2Xg8Hh8/sG3rTAb06k6zpqkRPbeOEILhA/syfGBfcnKv89nKtVzPy2fmxLG0bxs5kcws1KQ2SeGnTz3Kth27+N8/v8K8WdNo39ZicZAibK5czeaNdz/kp089SkxM3S74DWYDbQ5b+DYwzHRL4XAj2D/L6IMQkVJy7Ngx9u0/wIUrVxFC4PIuLIyOiSatRQYZGRl06daN5OQUvwuYjX5qsMlto99RXl7OlcuXuHj+PDu2fkNuTg5SSuw2zTYJIejSqRMD+/ejaWKcNl6q4bjJjN1uZ9rkSQCcPXeeBe++D8DcebeTlhZdJV2ckVD884rFi3rfAZwxtOvYhRd+1p1VK1fy1apVzL3rHlJTm1YcF4oo41OfxxTFFAhjKjqrBTL6wp9A0flGrIQkcySKZUpYb5ozve5hwPkDZ6VgZoVRbDp8+BDr167luRd+UuU7axZmqkOgexzMBtqjHGHbQJujYcyx1pRQLHkTNIX7MWAa8CPwc2C5EKIzsBHohZZDsjnwX8BqIUQfKWUhgJTy18CvA5zjLeAF77//qc6FhEt6QpRPfRLQjOzp40c5sGs7pSWag+SMiqZDl+6MnjKD2DitOJwxvVZtExUTV5FqzIqykiIuHT/E7tWf4nG7kVISm5hMVp8hJDRJi2hfhBC07t6P1t37cf3yeX5Y+gFRsfF0Hz2l1iJ6omPjGDf3Xq5eOMeyt/9CvzGTaNWhi88+oQo0UL8iDdR+NE2BLS5oarMFi96je7euDBoQfi7j6kTP6IiiXD54/91qHVvPNEgbWBtRM263m91797Fz30Fc5eUIIYhPiKdPr97cNWSYT9RKoBU4oRZLDOX4mIQk2nVOop0p76zu3OTmXmPv7l2s37gB6dEcpPSMTIaNGElScvA84RUTaX4cIjBcq9PBuMnTGDd5Gj/u3cWfXnqJVi1bccusmTgC1ZkJU6TRBQ5beRHN05ry/CP3sXPfQf77pTeYP28WmenNg15XTdCFGfPfEJ5YE0yoCSvtWYTSnbndbv7wpz8zb+6ttG1T/UmO6gzyTpw8yeJPllT7nPVIg7SBgQg1BUGVyBlXGd9v+4Gjh39ESonLI0lpkkr7br0YMWo0DkfV/N2BBiChiDI+BUNNqzaFEDRtmkbTpmn06NWrYj8jly5eZOeOHVxcs5Jyt4fCMjedOnWmz8Ah4EecCRQxVOLyVBFpCspcxDntxDkTGD7lFmIdNvZ+v5nPFrxK205d6TtsVEh5+o3RLmaRJs4ZVZHqzEh6m3a0f+gpdn+3kY/efJmZd95HXIA0u/5Ei4Qoh08UjdV+voNtm296Lo91bnojemoR4zE1IVCKDfP9s/pMrQSawoICXv3rSzz6xFMkJiVV9NtISPbNz+RPIN9g544dbNq4PnjbDY9GZwOrS0FhIZu3befE6TMV72Wmt6Bvz+5MHT/GR3ypi9Rldrud9OZppDdPA3pU2S6l5OSZc2zc8gNXcq4B2uLFPj26MLB3D78pm6tLakoyD9w+G7fbzdI1G/hi9TpGDxlA/16RTYllvLdDe3VmSM9OfLB8Heu/+Y75d8z1WeWsCI+z5y/wwadf8vNnHo/49yMYK9du4PCxE3V6zgjQKO2feTFVqJEj2dlX2bp5MzlXLmvt2AXt2rVn4NDhNGveHAs3JaRnvXFi3Kr2nY6+TfclouxRxLdpTVYb62Xdbreb08ePsmL5corycsHjwul0MHjAALr37lsRnxNu9IxR0DKKAq1aZvLEIw9RXFzMJ0tXcC3nGtOnT6N1+05Br1vHXFtFFx6gMp5Ij8gRwJSpUxk+eizvLXqH5NRUZtwyJ6DPaRZmrAQac3+sCCSaBMLoX/oTaYz9Mi8EMqasq8C7IN7pqBpzZSRQ/R+dXTt3snfPbh574smQxER/WEX3BBoTeTwevliy2G/GFEVo4ky+9/+3pJR7AIQQ/wn8DTBcSrncsO9FIcRjwHVgKPB1KJ2QUrqFEL8A3hdCvBFy7yNA9pVL7PzuG/Ku5wLQtn0nxk6bVSHEWJGVElttgSbSNWaiYuIqBBOdouvXOLlnG4W52SAlyS1a0q7PEJwhRvaEQnLzTAbPvo/i/Ovs/fpLJJKeY6YTk6AN9Kqb0swfaRktmfnQM+zYsIoft3/H6Nl3ERVdOSgMR6CBhiHS1HUUjZSSl19/kzEjR9C9W9fgB0QIj8fDp58spqCggEcee4J/+vtf1tm5I0TDs4Gy+rlPzRw/eZJvvv2OwqIi7M5oevfuxX333F0lCqZcOLBanx+uEBOpFDEVYcaJKQwZOZYhI8dWbDt/7izLly+nuCAPgC5duzFo6DDLwaxVP/0JNkYHpGuvvnTt1ZezZ8/y19ffoklSPLfNnesT5g2RE2n69exGr66dWLRkKU6Hg7vnTK+V1B5mMSbY9kBiTbhRNcZ74FeoqeZqMOEqpdQj+P0f/8QD8+fTokXtClxGSkpKeGfRuyQnJ/Ozn7zIP/3zr+vs3BGi4dnAAPgTZqwmr6WUHD64nz07vgePG4fDSd8Bg7jjvgd9omDCGYCY9/NXIN7qPX/FaY39MNMiPZ2p06dXDPJLXR4OHTrEV58vpqy0BCFs9OjTny49e2Oz2YKmctO3WwkAukgD0HvwCHoPHsGJwwf5bMGrtGjVhqHjp1jaJWMUjvFvY3tmzEJNn2Gj6dJnIKuXfEBm23YMGj3BtL+V2OLbhi7QBMIo0ETZ7b5FfMMQZgLVegmXqt+1ynscTi70a9dyWPDG6zz57PPExlb1mc3FhHWqrNbUn2HlJRVpUwKeNyeH999bRLfuPXj+xZ/yL7/6p5D73EBoVDYwHFwuFz/s2sPu/QeRUhIXF8eIwQOYNNa/4NqQ6skIIWjXphXt2lRGsLjdbnbtP8SbH3yKy+0mOsrJyMH96dLBeqFjdbDb7cyeMh4pJRu3buf3r79Dv57dGD1kQK0UlBdCcPeM8Vy6ks0fXn2LsSOGMrBv+JGLNztHjp9kxZp1/PSpR+ssPR7AyTNnWfzFciaMHsGU8WP42a/+vc7OHQEatP0z+1PhLp5yl5Ww6dvNHD1yBCEESU2aMGTYCNq0zLRs3zf9mLcPIUbMmoUBY3SG/tr6nKbad4bzxDoddOnSlV7dtUWMTumivCifLTv28OprryOlJCExgbFjxtDKW1MkVJHGn0ADEBsby713343b7Wb5iq9YumwZE8aNp0eP7lXaCCTQmPvjr05OdHQ0Dz3yKEeOHOZPv/sts+fOo22Wr0033qMq/oxef8WPQFMdfNPmUqX2ozGyxsr3Nt4DK4HGErujsqaMF3NGikCf75bvNnP2zBnmP/Cg5XZ/32Hzd9Wqf4GEmb27dvLtxvXMvHUerVq34cUnQyurcLMR9JcppbwuhDiJlSXy/55VIsVg51khhNiGFtYYELvNOvIg1LRJVy9fZv2alVzKzadp8xYMHj2epJQm4XS3WtRUmPnxQl7A7V0zNGEkLrkJ3UdNqXj/2sWz7NuwnPLSEmLiE+k4cBRxyZG53tjEZAbMuJOykiL2b1hBeWkJPUZPgwiLM+At1j12Ck1FKUs/fIcBI8YQ1bJSpQ9XoIH6q0cDtRdFYxU9I6XkT399hZnTp9I+K6tG7YcTPbNn9y7Wr1vLrXNvo3UNVqnXJw3RBtaUYydOsGbtelwuFx07tGfubbcTH28tSFs94K0eyFYPc3+ORai5SsNFdwoyW7Zi7h13Ad7J1x8P8s6CBbhcLlqkpzN63ATiE6xtlGVRvgBiTatWrXjyqae4cuUKbyxcRExMLPNuu42UOM1BClekqbIvmqhhKy/C4XDw4B1zOHX2PP/10uvcf9sttMpID3hPRHlp0GgX477hYjwm1KiaGqc+q4ZAU1JSwu/+9BJPPvU0KSkpYR1bE9asXcuBAweYf++9NGlS+35GbdCYbGAowoyUkh/37WHn91sB6NKjJ7fffR9RUVFVBhbGiXkdq8FHsIG0v/2qTCKYUsVWZ2JfCEHXrl3p2rUrJS4PLpeLg3t28smiN3EIQZt27Rk8fBROrwDvPy1EYJFGp13nbvTq2Ysjx47xxaI3SG3WnBGTZmB36OnJ/A81zNv017poU6XofVwck+56iPOH9/Pxa39ixj0PERefUGU/XZSp7Ke1OOQPfcAdas5v42dtLhwM1fscrVKDGFOd6e+FWjfp6pUrfLhoAc++UDW3uH4+YzHhQAK5j5BOZV57s7/g8XhY8sknXLuexyOPPRGwZlxDpjHZwFDweDxs2rKNfQcP43Q4GNS/D4/NvzukyeqGJMz4w263M6B3dwb01iYJS0pK2bRtB2s2bQFgQO/uDO7bKyKT80IIxgwdyJihA9m+5wC/f/0dunfuwOTRw2tFpGnRrCm/ePw+Vm3ewV/eXMjj999T59EfjZUDh46wacs2nnvswVr5bKwoLS3lnY8+JTExoc4FoUjRWOyfP1HGKmKktLSUNWtWc+b0GWLjYhk0ZDhjxmqpqq2Kofur2WEm3Jo1UDnpXSVixo8PqS/iCYQzLpFRI0cwaqSWvj4vL4916zfw5ZdLsdvtjBwxgm7duuKyhReBZxRodB/Bbrcza+YMpJSsWbuWNWvXMnLEcAb01zK06Pc/5IgVPyUT9OM7derMT3/6Mz5e/DE/bNvG3NvvINpeNT2xuWae00FYAk1V3087R1V/0/d1QZnL5z1jnUsdo98WzM8MdI+MwplOIGFmw/r1XM+7zj1332XZdqjpzPTtVlHmZq7nXuOj9xbRpVt3nnz+JwHbVYQWOQPwF+AFIcT7wGHgp0AJsFkIMQPYDZxDC3v8T+AqsKUa/fkb73FlwXa0wjzJbRRrruVks271VxQWFJDaNI1ps28lPj6hSmqz2qK2hZnA+yQR23sS/TKSKM6/zrEfvqE4Pxdhs9E8qzMtu/aucb2aqJg4+k2Zh6uslAMbv+LSD6X0HTWB5q3a1qhdI5XCSyx3P/4cG1YupejHA3QZN6vC2dEjmsKNoqkvgQZqP4rG4/Hwx7+8wpxZM8iKUK7iYAJNSUkJixYuICsri+df/GlEzlnPNAobGIjTZ86y6uu1lJaW0i6rLQ/NvxdnnP8CmKGIMqEIMv6EmEgWWTauOrEiq1M3sjppK4ouXjjP559+SnFxEQ6Hk979+tO1hzZItyr+bBZrfFYuGfZNTk3j8SeeJDc3lw8/eB+Px8PsObeSmaZNyIcq0uj7+hNoANq2yuTvnnmUtz78lBbN0pg5cYzldevCSTCBpjqiTKB2Ii3S+BVoICSRpri4mN//+S8888TjJNaRMJOTk8PbC99h9KiRPP/ss2Ed64wPb5GBs7RO/JgGZQPDWfWmD4JOHfmRbd99g9vtpnuvPtz1oDZRotsPK9El1OgYqDqQthRignTZPIi1GuiHVyDUBo4oBg0ewqDBQwA4e+IoX378Lm63m5iYWIYOG0q7Dh19JquMAkDV2r3WdOrQgU4dnuLS+XMs++BtmiQlM3b6LeAVQwLVvzEPbo0CilWkS8cevWndoROfvfsWnfsMoEufgd59Kwe/BWUuCkpdPu0Z2wom0lTuawspP7nV512Rg70aEzZW7YeaK91IqUuSl3OFj95dyBPPvRhyOqTq1JMxcuLECT5ZvJjbbr+drKyskH+vwmYL2wY6YurEh29QNjBcpJR89/0Odu7dj80mGDl0MM88cn9IxzZkQSaQ/6L7IjEx0UwaPYxJo4chpWT7ngO8/M5HCAEpSYmMGTooIulidUFo36Ej/OGNRbTOaMHsKeNrRTyZPLw/fXp04zcvvcptt0ynY7usiJ/jRmLfj4f5btt2nnjAXO6k9vhh1x42freNB++6jdQmKSEfZ3M4wraB9qhaT3PX4OxfMIHCjMvlYtXqNZw8eRKHw8GUyZOYMWMm4H/RYaDU14H6FTDK1sJ/DRQxY34/mFBkVV8nKSmJ2bfM0raXl/Pt5u/YsHEjNpuNtIxMRo4cRWpqqmVdFHN7/uqeCCGYNGECkyZMYNM33/LHP/+5oj5rODJdoKwVOjabjTvvuJMDhw7x8h9/x333P0DTpmlV9veXAl7/jKzuZZXod7sIeVGpUZixEmh0/EXTBDuP31RnfuqhGlm/bh0FhQXccsts3/b8CGZWEV1W1xCItatXcvb0aeY//FhFZpFQsEc5w7aBN1PNGYDfAInAWiAG2AlM8yrpY4HXgGQgD60I2CQpZdhqhJRytxDiA+DBcI+1Isnh4fMVqzhz8gTJTZowadpMEpOC1yCoTaTHg5QSYbOFtGojFFEmVLS2BI6uo0j09uX82aPsXfw+LRKc2OwO2vcfTkqLltU+hyMqmt4TZ+Nxu9m2dR2ODavoPngkbTp1C35wEMyRMWOmzOTyhfN8uOCvDBw3lYysDtVuu74FmtrC4/Hwuz//hdtvnUOb1pErWglUROeYRZofvv+erVs2c9/8B0iuwxXqtUyjtIGFhYUs+2oVl69coXXLlsy/+06io6MDTriYH+yhRMkEE2SM2/UicDabjdKICTShr0RLbZ7BrDu0wVl5eTn7du3gg4VvIqUkPiGB0eMnk9pUKzZoFmsCRdWAdp1xicnc9+AjeMpL+XTJEnJzc5k5axbtW2UAfiJk/ETSBBJobDYbj9w9jz0HD/M/f3mTB26fTYtmTX32rwtBJljbkUh7VpMomsLCQv7w0ss899QTJCYmQA0nHENh+YoVnD17jmeffqpKesBGTIO0geYwe2NKLoCSvFyWr1xGWXEhHTp35a77H/ZJV2ZsRycc8cOc19pnQCytB4ZutxshhN8VtBXpCuyVxVUrBswBJiOMg01jXnPzAKtb185069oZgOKiInb9sJUtm9YDkNasGSPGTqyILPQVaUC3tVbFUUEbjLbIbMk9Dz9J/vVcVn32MU6bYNKsW4lJ0+yTVVFVI+Z6N8Z9jAPc6JhY7nzkabZsWs+yRa8zcd69YPhtJ0Q5Ko6Pc1a913pUjVmkMUYF6QQsOmusGWSa0PDZz8+ETViTPqaJBOP31t+gPvfKRZZ89D7P/+Snlt/9UDGvmDU+v3Sb6pQuSqWND95/H6fTyc9+/vM6W6FeBzRIGxiM02fPs+LrdZSXuxg2sD9PPzw/6GdSm2KMlBK3243NZotIFEGokcE6QggG9unBwD5a/ZpruXls3PoD51ddRkpo16YlE0YMJaoGk909u3SiZ5dOnDl/kb8u/JCUpERunzkl4oXnWyTH8sunHmDx0lV8++233H/bLdjt9pAWvtxM7Np3gB279/LY/XfXyflKSkp5870P6dS+HT996oZJ3dPg7J9RPAFrUQJg1/4f+eabTdhsNkaOGc/EyZXZZYItOjSfI1h//G4znEe3gXa7vUbPR/PEujlNmN9IIqeTsWNGM2LseAAuXrjA2q+/5kp2DgC9evdm+NAhPvbZWBsGgqcy1aN29u3bz59eeomWbdt5hbCqNt/o11iNsQOlT+/YqTOdnn2e9xa9Q1qzZkyfMZMyNxX1bJyOyoUm5cLht61gfn9itC2or2b0U43pzvzVWQwXKx+vohYi9oDXsHrVKlxuFzNnzqrW4ljzubVz2Qx/+5KTfZUPFy1k5NjxjJ80pcr28BaZ3VyIxliQp2///nLthm/8bj954gSrV63EbrfTb8RY2mS1D9hedaJn9AiNstISrpw7zcXTJ7iefcVy3yv5peA1vkKAEDY83sLV6PdfiMq/AYnk4vWSyiJesfHEJDcloUVrYlOaIWohLNZdXsrFfVspyr6EzekkvccQ4tMyquynp08LBSklJ3Z+h+fqKTr07Ecn7+rG6mIVEXPiWhHff72c4oJ8Rt1yB+1T/dcLCkR9ijORjJzRRRO3283v/vQS99x5B5lBUh9FguLiYt5Y8A5tu/Zi3PgJfvdrmhS/XUpp+UUQQnz49YMz78hK8R/RYUWH37/vt80bkQH9+srv1q/xu33nrt18u2UrcXGxzJg6hRbNtRWBNRFl/AkyhQUFnDh+jKNHj5F7LQchBC5TQWspJeVuWTkhKQQed+WEXKnLvDJaP77y4Z2YnEJai3RaZ3UgpWlaFYe2uk6PcdVKft51Nq1dTW5ODsnJiYyZMMVHqDETyup5m3Sz9MsvOXv2LJOnTKFHp6rPoyoTuAaRxt+qH+PkicvlYsHHn5OW2oTZU8Zb7l/RXi2KMsEIdRIl0MRCwAGBSaTJzy/gT399hReeebJK2r7aEGiuXs3m7YULmTRxAn16+88FH5OQFMgGbj/9Dw/3D+e8J3KuM+avn3wopbwrzC43Svr06y9Xrt9UZXWX/lpKyZZN6zl2+BApqalMnjqNhERfvyXU33PFNj+D8yi7ICcnh1NHD3H8yGHyCwo02+SurNAl3C4fe2W32/AIBx7pAbuzos+6rdSRwmvThEDaHaSmptKyZUs6duwUMDWfz2DdkKLA74pMw7VdvHiBVatWU1RUSJNmLRg7XhNqLAeFpmeEUXQxDlJLiotYv/xzCgsKmDxzNolNfVeo+xNn9G1WYokx/RlAdu51vl7yPq269qZz30Gm9qr6y+E8LxKiHMQ57cQ4fFM3mAU9s1AX7sIG/R4HW0HrD6vVjufPnmHll0t4/JnnifFzzea0ZhA4aqbimWSIXtT3PXbsGB99+gV33nUXrVv7Fi82XmsgP7BXRppc/shsq01+WXnoFI8t/vpXUsp/C+vARsqAPr3klpWf+d1eXl7Olyu/5vzFS7RplcnU8WNCWihQHVFGSsmlK9kcOXGK46fPUmoRyWn21+x2bRxsnIIwz0for3W76HQ6aJbahDatMumY1Zr4uNoRII6ePM3ab7ZS7nLRIas1E0YMCTnazB9Xc66xeNkq7DY7d82eRmJC9capgTh/8TILF3/BrdMm+NTWudmFmh927eHAoSPcf+e8Ojnf1u072fz9dh6+506Sk/yPZaMyOlraQCFEt1t7djjwh9nWEfH++PO3u/mf9dvnSSmXhN/rxofuB5qfuzplBdf59PPPuZ57nS49ejFq9GhcMvAzNVhNOX/7eTwezp87x4njRzlz6jSl5VV9FvNalphoBx6328fumd1MKSWOivlDQVxMNM2aNaNtVhbt2rWrSBMaLNLELNIEyowhpWTP7l18v20bdiHp07cfgwcPDklID1Tr58ipsyxftozkJqnMmTuvwqZG2QVR5YU+4om/bBU+/bUQcQ4e2M/Kr1Zw7/z7adaseUX75mv010YolLklpS7p05bZ99WjZ8x+pu5LGtHnIMwR/P5qu1hF+hvT4Fn5jcuXL8PpcDJp8uTg6co80tKXDIdNa1Zw8cIF7rh3vqXfofcxIyXBnw2c94uxAxY/O6JPWOd9/rP1fLb/eDcp5Y/V6ngD4YZJUiql5LvN37Jn1y7aZGXx8KOPVawQC1aLJj0hKqhA4/F4OHfqBIf37+HUxUoRxhEVRfNWbenQoy/Jac2rOKBHrxRQnURSP17Io6P3bykl5cWFlFzPJvfMES7s/tYnM0Z0QjIprTuR0LxVjUQbuzOalv1GA5VCzbkdG4hJbkrL/qOxeyfWrKJ5/Ak2Qgja9x8ODOf0vu1895c/MPvOe0hu2qxafbSqKyOEYPDEGeRcusCm916myV330yQt/PZvpOiZ8vJyfvenl3jgvnsqJuZrkx8PH+HLZct5/OGHSE5OAj9RNYraw+12s+yrVZw8dYq+vXvxzBOP+dgjfxMtoYoyLpeLI4d+ZPfuPRQWFmrnlBAXH0/brPYMHTma+OTUiuP8raoOhtVEnMfjoTDvOlcvX2Tbls1cv5Zd6dBKSVp6Ju279iAtPZPE6NAH0cZCfaDl6B0/cy4A5UX5bFy7muyrV2jbrgPjJkz0WXVsFVUDVHEqPcLO9FvmIKVk9VfLWPv118y///6KmjRgkfLMGVMx8eUvfFwfcOu1aB65ex67DxziNy+/xTMP3k1sGOHDdUU4ac8CRdEEqoWgCzS5udf5y6uv85PnnrYsfF3TlD1mvvl2M/v27eOF556t8USOIjSMaZ5KXRJPWQkrl33O1avZDBk5hmGjx1WrVkzFNtOg0FNeyr59e9m/fz+uck18sUsPKSkpdMpqzYyJY0iOrfQhgk10epxxld9Bq+gvw/e5HDs5Odc4e+4s61Z9xfXr1ysX9QhB+/bt6N2zF82apeG0WUdtWF6j6frbtMzk/vu1VEdnzl9g5ZefkZuXR5/+A+g/cLDPM8UcleOvRk1KYgJz7rwX4XHx5ZKPcLklE2ffjsPhqBjIGqNXzFE5CVEOv1Eu+rbY+ARmzn+MbZvWs27Ju4yZczcJ0Q6fKBwjgQQhM77PpMqBtFFMMUc2WabHNKWpsxJmQsUyF72h7VKX5Mypk6xbuZQnnn2BaIetyjGBJiYC2caKZ5L3u6nv++lnn1NaVsrf/exFhBCU+21BUVvkXMtlydKvKCsvY+bkibRplRn0mHAEmfyCQnbuP8ihoycrFhkKIWjRrCkdslpzR58pteZ7lJWVczXnGqfOXeDTFV9TWFRcsc3hsNO5fRa9u3UOOCEeCh2z2tAxSxu5Hzlxijc/+JSy8nImjhpGN4vFNaGQltqEJ+ffSX5BIQsXf0HrzHRmTRob0aiyzPTm/O0zj/DB58s5cPgYt06bCISXRvZGY8sPOzh28nSdCDMej4c33/2Itq1b8hNV6LrOqIgc8C5AOXPmDMuXLcUZFcXts2f5LgYJMDEdbKJe356dfZW9u3dz6uQJMGTCycxsSaus9vQfMgJPgNRSRkKJ2DY+tz3lpVy5coVTJ0+ybetWyssr5y7tUdF07dqdbt27g3fMY4yi8XtdpntSLqFP33706dsPKSUH9+7mtVdfwW63M33GDDIzW/ocFyj9mfH9rKwsHn3yaS5dusgrf32JwUOGMnL4MKLKC7U6dmhR42X4+mLhRC51696DTp278NYbr9OzVy+GDR8RuKaMH8HN6nz6dqtagOaIfX8pcyMRQaN/zwP5jMY+fvHF5yQmJDJu/PiKexHOPQ2HkuJiFr35KsPHjGPUxGlEhZmCV6HR6CNnioqKWLFsKVcuX2bo8BH07dfP8phgAg34RtB4PB6OHNjLj3t24PFIbDZBy7bt6dS9F9dEaDnwqltnJtxUZiV517h+5ggFl896JywlcaktaNalH85Y66LX4VCce5VzOzci3S4yeg8nobn/9FjBomrcrnL2fP0FdoeTObffia0aKRbM4owexQTQKsHJF+8voGO3HvQeODTstmsqzhgjYEL5zpmPiQQxZXn83x//zMMPzCetadPgB9SQz75YSmlZGXfMuzXgQEMXaoJFzmz71SN3tG/WJKw+pD33m5s2ciY7J4fPly6jqKiY6VMn0z4rq8r+VhMtwWrKFJSUsv37bRw6eAAAYXfQsXMXuvfsjSMm3vKYYOlqwFp8MROKiKMjpST70nlOHjpA9qULICVOm6BV+0507zeQqGjfiYJQikGbHaeLp47z7fqvcUY5mTBtFhktKp39UCZ8jU5QaVEBi955h/bt2zNl6tQqjqyPEGOqReMvigYqB+D5BYW89Pb7zJk6ga4d2/nsU5OoGVlWaWdFVHh5YAO2G0So8TehEGjyMC8/n5feWMhPn382aAHqmgo0Ho+HN99eQLt2WVpe5SAIVynRKc0CRs5c/O9nw4qcOX41l+H/uyhg5IwQ4k1gJnBZStnTtO3nwP8CzaSUV8M5d32gr5gEzf6cO3uGr5Yvx263M3n6LTRtVnVxhvl3GkrUW2FhId9/9y2nTp0EICYmlp69etK9ew+io6Mri6d7C6Trv8EKEdLwmzEjomKRzmhfgca43SqVn5/0fR6Ph+MnT7J3736uZGdXROH06def/v36IQOk/fM3kIbKFBNSSnbt2M7277eRlJzCnNmziYqr+gwwRzCVuDw+qwL1z+D46fN8+vEHdB84jDbdelNU7qZ5vHadeoSKfjxYPw/Moosxz3f2xfN8s3Qx0+64j1YZGRXb/bUVCvr5jFE0OsZrM0bQGLfrGFeF6iswrbCKnvFXHNiI3v6xEydZ9sUXPPHMs0Trn4F3VaU5sipgar4QKC4u5uVXX2PihPH07tqpyvfZ+H3Sz+lvxSRAn1bN5arn7wyrDyv2H+ehhcsDRs7cSDbQHDmz78fDrNu0meTkJObOmEJCfPDIjFBEmZzc66z7diuXruZgswkS4+Pp26MrXTpkNagi9OXl5Rw6fpK9Bw+Tl1+IROJ0OBjSvzc9OnessQji8XhYvek7Dh09QauMFsycOLZGac/2HzrK0jUbuG3GZDpktQ5+QJjsPnCINZu+4+kH7vIRy24mgWbbjl0cP3WGu26dVevnunI1m9cXfcj9d86lZYiZKgJFzszr1/nAS3dNDqsPf1j7A/+5ckvAyJkbyQb27ttfrtqg+YFSSnZs/Y5dO3aQ1bYN02fMqLJIKpRIVivOnzvHt5s2UliQD0DTtDR69elL26x2PnbF6AeFkjbKHAER6kIhf/tdLyjix4MH+fHgAUpKSvB4PMTHxzNm9Cjatm1bZf9g98N8ztLSUr5cuowL58/TuWtXxowdVyWaxtg3ox9h9imjbIJtm79h944fmD93Js2S4zW/wRuFW+ixB04hbhERbvaP1q39mlMnT3L/gw/hoqpfVl3Mi2us/F6jX2omwVSDMdzIGTPm70NitK3C1/vyyy9ITkpm9JgxPv5XxbF+RKhQImfMY6qDPx5m9fIvuffhx0hIqLpAwvw9j7IJv/OBQoh5v5wydPEL48Ob1nv6/VUs2XU4YORMY7CBjVOc6ddf/vb3f2Tb1i3ExsYybcaMivA1f4QyUb7v+Gm+37SekuIihIBO3XvTpVdfHwfUKAQEoq6EGX8UZl/k6qGdlJcUAZLYlGY069KPqPjQU5KdvVh5Da3SE/C4XVzcu4X8S6fJ6D2CpIyqxt6MP7Hm+pUL7Fu/jHZ9hzF6+JCQ+6RjFGiMn4n+/g/fbuDMiWPMunM+jjBWMVdXnAlFYPH3HYykOBPnKuD//vhn7r/3bppbTFBFkrKyMv7y6huMGz2SPr17hXxckIlJJc6EwIB+feW//fM/8uOhw6Q2acKs6dO0ehoWhCLM6A/iY0eP8u03mygpK8PhdDJg4CDad+le4YD6cxas0tlAcCEm0ESZsbBzuMQ6BOdPHuPHXT/gKitFSkl6m3b0HzSEmLjgkxZmAUd3okpKitm8egVXr1xixtw7fEQaCD4BbHSEDu3fy+rVq5l32220bdvWv0gThkAD2oSLlJIPv1iBlJK7Zk+v+PzCEWcCTSxX9MUk0tREwAkk0oST5qywsIg/vvwaP3nmCa34YICJaX9thMq1a9d45bXXue/ee2jV0n+tNvNnVk/izGigAFhodEiFEK2B14GuwIDGMCjv06+//GLlGtas/Iqz586TkZnJ+MlTkbaqz/pAKxPNAxM9ncMP33+PwwaxsXGMGTGU9u18RU4dXZjR/7YXXatsy/tbkIXWPp3w+mJGkUYnUC2mUL+rbreb3fv2s2P3XtzeaI+evfsyaOCAsCK7zBPr13JyWPrlF5SWlnLf/Q9gi6qaVsM4WLVKwaBPXqz++mt27d7FuDl30rxp0wqBxih8WAk05rRnOsbnTYwNvvxgIR07dmLIqLE+qSa043yfL1apz6yIc9p9BtfGVGfRDmE5UWAlzgQb/IYizlhN0pS5JefOneOTxYt56Klnq0TMBEq5Fq44Uy4cnDl+hMWfLOHJxx8jKSnJMiKxAYkzN4wNHNCnl1y1+B0+X7GG63l5dO/SibEjhgZNPRNMkHG5XHzz/U4OHD6GENAkOYlxw4dUqWfXGCgtLWPrrj0cOHxMS4vmcDCwT096d+tco1o3p89dYOmaDcTHxfLA7eGl3zMipeSTZavJvpbLg3fMITo6spkb8gsKefmdD5k8ZgR9unepeP9mEGh27N7HwSNHufe2ObV+rm07dvHDrj08fv89YQmW9STO3DA2sHff/nLRR4tZ9dVySktKGD5sGH36Vi7Qtlq4UPF3AFGmuLiYTevXcf7cWQBapGcwaMQokkw1q83PdfMkPQQumK77DqGmMfWXvs2I+bmen5/P1u82c/r0aexCEhsbx9Bhw2id1b5GgvWeffvYuH49We3aMXnadJ/+GftoLFJvXJhSkX6r8BrvLFpEfLRTE1HjUirSmxUYfLRQo37NC1BOnjnLR++/y5w77iarTWu/+4WL8fxWopyVQGNM9WtMb+YvXW6o4owZ/Tu1cc1KUuJjGTtunI/vZY548id6GTHXrTTz9coV5OXlMW3O7X6/V1YLmOpJnGnwNrBRijOtWrWWr7+9gEGDh4RlXMyT41JKjh0+xPdbvsXlctE8PYNOA0YQZ6H46QQTZ+pblDEKKkZKr18h78ReXMWa8h+Tmk5yh37YHNVzBtNTHTiiwgtdtxJqjny/kbzLF+g3dR6d01Oq1RczukCTm32VLz98h4m3zCOjVfDkcpFIaRZMaDF/ByMpzEgpee2Pv+Hu2+eRkV77NWbcbjcFBYVaGrMwUOJMzWndqpVc+smHdOvaJeB+wYQZj8fDlm0/sGvnDgDat2/PoBGjLPPYBhNm/E2S+RNgAokvoUTXBMMosEgpuXTmJEd2fU9pSTFRdkGbTt3o2m+Q5SDdKk+scZvH48FVXk5SfKUAYXaYAwk1umPi8Xj4bPFHREdHM+dWLfLMODFW3Sga0CZhjpw4xeJlq3jyvjtpkuKdDA5BoAlFmAmVSIk0wSYUpCOa4uJifv+XV3nhqceJizOct5YEmoKCAqKioqrk1A322dSHOONtOwtYanJIFwP/BnwODGwMg/JOnbvIR596mklTppGWHjxtT6AJ7vLycr79ZhNHDh9GCEH/fn0ZNGgQdrs96CS1OWpGlJf6/Hb8CTM+bRhEmmBUV8AEzdbsOXScH/YeoLy8HLvdzuAB/enVb0DIfrTx2VFSUgJ2Z4X99Jeqy2riocwtyS/1UOLycO5aHl99vIguXbszcvRYgCqRMxB+xItuw3f/sJUDu3cy/a4HKMXmV5xJi3OGdA7js8EcRWM10WKcUDEPkIMJM8Z2jG2ZMe5z5vwFPnz/PZ59/sWwJqD9rXgNRLlwUJBzhZSUlMoFAEHEGf17Uh/iDNw4NrBj+yz5d88/xawpE0ltkhJ0/0CiTGFREas3fsf5S1ew22yMGNwvItEmDY2ysnK+372PfT8ewSM9REdFMXbYYNq39Z8NIhDFJSURSeF2LTeP195bzPQJo+jZpVON2zPzxap15F7PY/5tt1R8pjeyQLP34CF27P7/7P11lBxXlvUN/yKZillSlUpSiZmZmZmZwezuds/zzLtmHphv5puZbtvdZpAsWZYsy2LLYmbJYmaGUknFyRDx/pGVWZFUIMlu2a/3Wl5WBdyAjDhx79l373OOqeNG/SLHy8svqNA7GIx/BDlT0n4mv4EYmFE9U/p//vf/oXe/Aej1+gorI8Il9vPyctm9YwdFhQVotTo6d+1GevXqFVYsRCJnfPD1ZeQTT+RtyCd2lIXKqD/CkQ8Wi4VjRw5z8+ZNAEwmE9179qRaGLVXRZRGNpstwDa6LIWPfGKKRilgUiv86vPbN66xcs16Jk2aRGJGrYDty7rmcL+l31q25FiiKLJy+VKSklPo37+/n5hRS24/aVRRRCKFwqlo5LkReU4jknIGyiYU5QhH+snbObZ/F0pBok+fPn6723A27P6/Zfcs0nGDayLKUZCfhz6q7Lzdy6KcKWk/k5c4Br48muRKICUpgTZtK29ZlaBXkmvzUFiQz47NP2IuLqJ2vQaMmjDFP5OwvNozZUFOzIgeD8W5jynOe4LDYsZhKcZhNXuLYMs6vNmFNr9nuFKtRaUzoNYZUOmNaE0xaEyxqPXGgE5yJAKmLGhjkkhqVloo2p73kJyT25DcLgwpmUTXaIKgqDhRkJ3nBsxUS624bZqPgJKTNLVbd8Gc/5RD3y+ioEs/4qtkkJX0fFZsvro0sQmJTJr/JptXf8udxGTadesVcZ8XVWsm1+Ypk3DxrStvu8pCkiQWffgeo4YN/UWIGQClUllpYuZ3vBgkJyWWS8yEgy9J8uDBfTZv2oTd6aZV6zbMmDUbhUIRdjYIhCdmwiXO5B2QIqudp9kPKMh9Qn5BETZLMXaLBVH04PQEdixKQiBqnR7UerQGI1qDCWNMHMaYODR6A4IgYLaHTxqZdKGfMrOjpEaB1rvOlJpO837pJceTyL9zjY3fLkYUJWo3bUlmvcaVS0YoVEEdpMAOVvBME/lsldLZQwpGjBnH1atXeO/dd5k6bRoJJVaEaskdWIvGRzDIatH414WBqDZQu0Z13p49lU+Wfken1i1o1bRhuZf1IomZ4PYqkoAWXI6wSejyfNOdliLe//hLXg0mZiCgdkfE44azkSoHJpMpYN9fGwRBGAI8kCTpzK8pEWcwGpk6w+vpXt7AKpLlweXLl9i3Zw8qlYpOXbrQp1dP/zq15AZZYXQ5yqzFEUTM2OwO7mTn8LSgiCKzlUKzheLCQr/tmA+CWoskSSh1BowGHSajgSijgRiTkcS4GBLjYtHrtFDGu6nUlL438npU4H2nlEDL6gk0qz8ESaXFLag4cuwnPvn4I1QaHT26dyMrKyugTbkyCLUOtTzMypKSvloq4RDRR10pAAriTEbGT5/LlZNH+Xbhp4yYOA2d6dkTh8HEetNWbcnMqsOKLz+iQ/9hRCVXCaua8Q2YK0MCyWdEeo8bmniR++EDIYPkYAQPfOXqo0jwtZeb+5Tl3yzl9Tfffi5lQEWhltzExQUOyCMRMy8rfq0xMCYqqsLJ53DEjCRJHD5xhuNnzmMyGujTtUPYBN3zoths4c6Dh+TmF1JUVEyR2YLVZg+Jgb5zUioVmIwGTEYjUSYDMQkpJMbHkRAX658EUZkaOXJoNGo6tm5Ox9be2fV2u4Ndh46xadc+DHod/bt3Ji2l4o4DL6q2TlxsNO8smMHazTs4cfYik0cOfqHv75A+3bl55z7/+dFC5k0eQ2xMdJl1/X7NuHztBkd+OsnsKeN/sWM+CzHzMuHXGgPj4uMZMrzitYSCE+tut5u9u3Zy6+YN4hMS6dG7N3FxpXVTK2MlBeFq8HljWmF+Po8e3KO4qJDioiLMxUU4HN5+larkPfd1WxQCqJQqTFEmjKYooqKiiImNJSEhgdi4eFCpKkTQROozGI1GuvfsRfeS7q7dUsyO7dvZmJNDXFwcg/v1JibGqxAKV/slGOHqefq3l/Vd5BMz5OtRqtDgIDMjnT+8/RZLVqwiIeUK/cOoccJeZxCp4Pt3IFkiMG7SVE7+dIwvPvmI2bPnYNQpEdyOkBo3ZVl+laW2kt9vh1vy92/l9Rfl+ZFINWeC79mz4NjBfVisdvoOGOi97xVoJ1LuR45wpIwPsXHxla6b+DLhZYuBL3evuQyYxMDOWXmFxyVJ4uCB/Vw4fx6lIYq+g4ZgigpNLKeaNBUmaCRJojD3CfdvXOHJg7s8LrIhUDJ7TCEQlZBCVEIyxqrV0RlNaA0mFErvLfcRFbVkbXlcDtx2K267FZfNguXpI/JuXcJlM5Nf5PBmMEsgKBRo41IxJFdHE51YofOVQxdfhdQ23hmn1se3yT66ESSRmFrNMaRkVrgdH1H0PCSNKS6RjmNnc2HPJh5ePYfUtdSG51mJGh9BIwgCA0ZN4MKp46xa/DnDJk6vlM3Zz4UXTcx8+flnDBnQl4z0Z5sB9jt+ewhOkrjdbjZu3cy9u/eoUrUKYydOCajHUR4xE04tI0kSN2/f5tbVS9y775WAC4KAw+1BpVITlZRGTEISVWumIGoM6AxGFEqlnziRo9jmwuWw4bRacNgs2Cxm8m7ewFqUT1FRse+q/NsrVRpiUquRkJ5FcXSsf3lUEFFjtrvDkjeatJq0y6yDJEncOn+KH5cvQqFU0bhTD9KrPa8HeHiiJhJJU6dOXWrUqMnSJYupWzuL7j16+JNaPpLGnyRW6wJUNAHrgiCqDWiBN2dN5odtu/lm9U0mjhiEwh3+G/eiiZny2o9E1vhrdkQgaYKTCi6Xi3c/WciCGZOJ1qkhzOxteZK5LMjvZaRE/M9NxqgMlUv6KHVagFqCIByXLf5ckqTPI+0jCIIB+GegctMzfyUIpzhw2a38uHEjubm51K1blwXz5wUkwSKq1mQIXu52u7l9+QIXLl7m6ZMcRLvN33/RaTVUT00iMS6GjPgoYkwGDJI7bOJN0BsRRRGL3YHFI1BssVFQXMi5e/d4WlCEzeLta8nV7ka9jlpVU2jcoB5RSSkIeN8ZOSkjOW2IliJEuwWFzoiyZBv0cXRq3ZxOHdrjlBTs3rOHbdt3YDSZGDJoIPFRBgRbYSkp6jaAzBNcblchH0xGKlQfDk6P5B+kNm/bgdr1G/Ld4s/p0r0n9RpW3CrVh3h9+L6dLjGBSfPfZO2KpRjjk6navKNs9qICg1oZMliuKEkTrPK0u0NnQlZk4AtlD36h7CKuhQUFLF60iNfffAulUlmpmaHBiZxIRX2fB5VKNCgUlY+B3vofrX6PgaUIR2I8zctn/dZdWG122rdsxmszJj63QsbhcHLl5m0uXLlGUbHF354kSUSZjFSvVoWUxARq1a5LTHQUBr0+4jE9Hg9mi5Vis5miYjOFRcXcuXef3Lx8XC63v13f/+PiYsjKrE6DurXLrS8XfD90Oi0DenQGvOqhLbsP8PDxE1ISExjcp9sLI18qiuH9e3H3wSP+8+OFTB45+IWSZTWrV+Ot2VP4ZOl3dGnbkhaNG5Q74eXXhhu377Br/0HmT5/8jz6V54agVFY6Biq8syd6C4LwP2WL/z8RAyujrrhx6zb7d25DkiS69uhJzz59Q/ep4PfKp0pw2SxcuHiJS5cuY7HZAuJbTGwcaVXTSU6tQs069YiKikaj1SIIgWoZn3rG5XJhNhdjLjbjtJopKMjn5vXr5Ofl4RE9AX1AgKSkZOrWzqJ2nboB334AlIHf/+A+RHR0NGNHeK0Z83IesXHDegrycqmZlUX3/kP8lrgVqc0Trv2K3EdJpUUAFCotk6bN4OyZM7z/3ntMmjaD6OjKTwAOp0p2uCVatG5DnTpZfPLB+0weNYyM1EQEQKM2lk6ekZMjFbxmKOv5K59kl9dm9J1DZeHb/+TRwxQW5NN74FA/MSNXdEPlbPFeFMrr24aDQq2qdAwUVEqAMSVkiw+/uhj4qyVnguEja4JJGqfTyY8/bOBxdjadunRh7vwFQMWLtctx+eFTbpw/RfYdrxxQEARiEpKollUPTfUmpJdT3L4s6zJBEFBpdF6rsOj4gHX3s80Ed9FEjxtH/mPM96/gLDrkawRDSibGKrVRVsJyzJCSiSElE0kUKbxxkoLrJ9BExRNXvwPKcoo1Axz8px48fPiQQYMGcfHiRcxmMyqViv/+7/9m/fr1VK9encWLF6NWq1m2bBkfffQR8fHx/GH5cqKjo9m1axf//M//jE6nY+nSpVSrVo13Vh1BHxUboEaqLFHjI2gAGjZvRbXMmnz7xYf0GTaalCpeEuNFKWb+URBFkc8+/ohefftSq8bvxMzvCEVxcTGr167DbLPTr/8ABg0aHPIBrigxU5CXx9Ejh3jy+BEu0TsjJbVqOlWy6tO4Yw9sAWoa7799ySuzw43VLYHbHaKAKfb/rQGDBo0hDk0CiDYXWiCcWNbttFOc85DLxw/gMHtjq1KlJr56HTLrNkCpKk3U+dqPRNwk12lCcp0muJ0OLh3ezandW0hOz6R+m84oVSrK+1T2r5fyTDFweZgYOG7pUkwGPbn5BWi1Wn+irDwVTVkEjcJlZXCf7ly/fZf//GghCyYMJyaoRtHPTcyEg++YZZE05aloLFYrf/vsK+ZOnUCsTMkXUQlTARVNcBu/Etwoz9YsCLWAGoBvplA14KQgCG0kScr+OU7wl0A4Uubx42y2bNyAUqViyJChJCaGTmhRR1DKAAHE3oOHjzh89Ci5efngcaEWJLLSU+nSujkJilDSU7RbAJBsFkBEdNgJa+ho9z7TJp0BkwpSU+OAuJL9fG0FJheLrXZu5RWzeuMWLG4JQa0lKjaOVs2bUjc9BcFmRrRb8OQ/8Z6DzoJot6BMSEOJ9/2RAI1aR5/evenTuzdFRUX8sH4dBU+yaV03k/aNayMIgl+ZI7oNoI/xv1e++6Y1Rr2wGPin+TP4YvlSBo+eEDGJ6/uuyK3FyrKEEASBPiMncPjIEbZ+u4heoycTY9D7/b99g1uDWimzPgscJ4Sb7RiZxIlsVQHle3gHX0dZA+rs7Ecs/+YbXnvjTYw6b5/WZxeiVoFaEej5XpHiwnLFy7MSNf8A1cxxSZIqUwTkNxkDIZSIuHrzNlt2HyAhLpZxQ/tjNDxbQl6SJK7fvsuRE2ew2Lzfb61GQ91aNRjQowsx0YG24JVN/CuVSmKio0LaiYS8/AKu3bzF8tXrcbpcXsImNpY2LZqSmV4tIH4EKwrlMBoMjBzozc1k5zxl6aofcLpc9OjYlgZ1aoVsH/bc0xu/gBj4r+h0Oqa99g4/bFvL4N7dKnTsikCr1fgn6ly6dpMJwwciCMJvQkVz9uJlDh79ifnTJ//m7Pgqie2SJM2vxPa/2RgYnFw/evQYJ48fo1p6BqMnTUOtVlfYRkoOJSIXzl3kwplTOJ1OFAoFap2emnXq0X/IcJTayHbX5R3H6ZHQqNXExcUTFxcfVhkihyRJPMnJ4fq1qxw9cgRB8qCURNKSE2nbuiXJVdL9ypCAeiMyay9fnzchysDkYf0AuHbzNl99+iFo9PTs05+YlCoh1xNOWSJaCun1LPEvJjE0F1g1lW279tKqdeuA40S8p2Jo7ZfgfVITE/mnP7zF1wu/oFpKAr1790at0uJEiVMMJHUqYzNX/rbe/mCk/mKwTVmw/V1FcGjvLszFRfQZNCxgue9eVKSf+ax4yVQzKyVJ+j+V2P6li4G/GXLGB5NoxawwUFhQwPp1a3E6nQwcPIS0tLSA7XwWZ+HgU88UFxVy6vABcp88RqEQMEtqajZsRoPWHUM+/sURas08Ty2ZsuzLFEoV+sSq6BNLixBLogfr49s8PbsHsWTmsSY6gejqjVCbYinIsURqDoDYZCOxtVsRW7sVzuI8np7egeh0YEqvhym9fpkdnvj4eHbu3Mnw4cMBePLkCbt37+bAgQP853/+J+vWrWPYsGF8+umn7Nu3j9WrV/PZZ5/xpz/9if/7f/8v27Zt4+LFi/zHf/wHH330EWd3bqBq3SZUq9/MfwwfUfOsapqYuHgmznuDH1Z8Tc069Wncqu0ztVMeXrRlWSS43W4+/Pv7jB0/kdopMeXv8BLgh01b/tGn8NuAJIbUIAlOON9/8IAfftiITq9n8PCRfqlyMMoiZp7kPObA3r0UFxciCAKGqFiatGpD6+6lM42Ci92FI2WAAEKmWPbvQpsr7HmZ7eGXl0KJOjGd5MRSlYvH5aTg7lUObvweyeNGq1ISnZpOUlZjNAYThTYXMRFmV/varNG2Fyadiif3b7NrzTI8bjfNOnQjNdM3QA//2XzRMfC99//G8BEjqVu7VoVUNGXZnPkImqzMDN6cNZkPvlrG8J6dqV3DW4vrH0HMyFEWSVOWiqY49zEffLWct2ZPxmjQhk16h6uBUBmC5pkR/H7iJdOXrvj+5z1uBSFJ0jkg2fe3IAi3+ZV4jcsh99UOHiBdvnSRPbt2kZSczJSp0yLOrI5IzLjs3Lh1mwOHj2J3OBAEgbTUFLp3aEtCfJy/1gyWAn99GR8Z44OPXBHt1pAaNG5r6HunKrHk89WigdDaNb51UQYdTQw6mlRLQqEzIOiNWEUFx28+YM+evYhOO4LbRYMqiTSvEotOU+TfVwmBhEuJKiZGLTF5WD8Uljx+OnSQj75ajkqpZEj/XlStlo4CvO9ZyfZQGnteZAwcOnUeSz95j7GTZxATFzhhyeryhPh2VwQmjYqmLVsTlZrOtqWfMmLSdDAkBXh/l1XAV3587/9DtzVpVLIB+Iu3FgsmV27cus2PG9az4M230XhnDYYowHy/T0BipQKJBx+CSZbnUdXY7Xa+XrTwmfd/kfitxEA55MSDJEkcOHaSk+cuklWjOq9On1BpuyxJkjh3+RpHT57FI3oQEKiVmcHw/r0wGSMn9H+pZH98XCxtWzanbcvm/mVPc/P46fRZtu7aC4BapaJFk0Y0blAPlUoVkaTxLU+umsGs6VMRRZHdBw6z8+tVROlUDO/Xs1zS6EXGwCn9O/PeF1+zYMo4tNoXN5FwcJ/uXL15m798+hWvz5iEVqv5Vatojp08zZXrt341ipmnuXl88/3af/RpAL/NGAil41qPx8PObVu5cfMmTVu0ZOa8VwK3KyMh7auZ53a7OX3yOJfOnwdAo1ZSr34DRo8dV1qfVVZHriJJ7kgTNnzuCuXVBPFBEASSU1KolpaKpntXP9ly/8FDDh0+yuMnG0GhQqE30rRlazJq1gbK//bXrplJVsOmFIsqfty8hVt31pOUksKAgQPRRVAUahQChhc8Ds7Py2XZ0iVMmDSlQqRrRe69QqFg+qRxHDp4kC+/XsaMOfP9+0YidV4E5IRLJPLF1/8MVtOU1+6uLT+i1WkZNNR730Pt571tRSJofi7FTCTcunmD44cP/qLHjISXMQb+5sgZs9nM8pWLETVGRowa7feED4dwBM3lC+c5+dMRCu1ujFFRtGjXicSUUmLndsHPm8R6lnoyPhQ+tYMyFW1Gqc7GZc7l4amjeOzewb3KEIuhWiNU+lCpYCB5o0VbvRuSJFGcfZWciytQao1EZbUnIT3Uk1en0wUE7GPHjtGtWzcAevXqxfLly2nQoAGNGzdGpVLRq1cv5syZg9VqRa/XExUVRdu2bfmnf/onANoOm8K1Y3s5tXU1zfqMCAjK15+YK0zQ+H4vn4JGoVAwdMI0Du/exs6Na+k5yBvIfm0KGofDwYd//xvTZswgISERxPI9mJVFj/z/9kSnlbFl+ahsW2azmc8WLaZHl87PddzfUQZKEs7Zjx+zcvVa0lJTmDVzhr+eVnlUB3gH4scOH+TyxYt4JEhMTqFTj17ExMYFFLeDQDsXebIqEinjI2TkZIycgCmOUE8GwFbGOh/0OhWgQFO1HslV6/mvx/rkAWf3b0fl8fqcRyWnk1inqV9lEY6wKba7iUqsRuO+YxE9Hh6cP8rpg7uJTkyhdfc+qDW+JG/pJ/RFx8C3/vBHVixfxtUrVxg8yOu/K1fRPIvNmfc8tfxx3nSWrFjFg8dP6NauJYJGXyGCpqwC5/Jk8rNCctoqbHX2NC+fz5d9z5/mTfcnLiLNAI1I0MCLJWnCEDI+PMzO5uvlK5kwpuIe2S8SgiB8C3QDEgVBuA/8qyRJL0eW9DkRPIC6fu0q27dspl6Dhsxd8EqIfYQcwcSMy+Vi27at3L13H0EQqFE9g9HDhmDUBA6UFLZ8v22YVGIb5oOckIHS98ZHxrgsge+a21r63KgM3nXqMMSNfxsiv28GhUj3ti3o1igLT34OHo/I+as3+O7AGRxu77U2rlOLtm1boYuKQTBGB5I0gNKaj1iQQ6sGtWnVoDYOp4sf9h3l4ZPN1G/UmF7du3gt1EqO6b2zUS80Bv45qwZVX3mDbxd/SbOWranfzFsY1OfhHTwD0ft9Kn8wa1ArSU1OZuLc19n87SKadeyOqUmphZq8eGvwcQL/LcraVIQliXznFJxsCS7MWlahVfk+wc/wxStX2LNzB3NffQ1BkNmnKQPVlnJyJbgNuT1dRVERska+je96z54/z45tW5kyfSb/+j//XOHjvSj8lmMgBJINh0+c4dDxU3Rp14o3ZlUuaW2xWvlxxz5yCwoQBIFGdWszbcxQf18yEp43sV+Zem8+hOvrJCbE079nN//fTqeTU+cu8NXy7/GIHlRKFS2bNaZpw/plklUKhYKeXTrSs0tHCouKWbt5G0X5ubRr2ZTWTRuFTRa+yBjY6p/mkZWZzrtfLGHMoH7Uynxeu91S1KmZyZyJo/nr54uZOW4kKUneWoe/NhXN/sPHeJTzhMljhv+jT6VC2HPwMJeuXueVmVN453//xy9+/N9qDAwmLSRJYvuWzdy8cYO+AwbQp/+ASiWg83KfsnPrFqxWKyqVimYtWzFx2oyAeCHILEvlVlryCUMVqRlXGZRV20+ugqmWHE+1Ab29K9U6zA43+46d5Mj+fUiShN6gp03bdjSoWweNb8yo1iG/Q5JKi1ZQMWLYUMwukexHj/hu+Te4XS669exF/Tp1Qs7jRY+Du/buS/a9u7z3178wfcZM4uLjwxa299dxLa8+nygBSoz6GDp060mVOo/597++z8SZ89AbDJX+rcLVFITA50F+vj7CJdxxnB6pQoRM8ASiLRvWkJCUTMdO4fNrvjZ/TgImXL0l+TofJEliw9o1uFxuRk2YzOuvLPjZzikSfg0x8DdDzjidTr5btQarzcaEMaOJKrFsKY/qSNAruZWdy44tP2IuLqZeg0aMmzKDHGvlZ4ZJkoStqIC8h3fIe3gXl91GdqFsgC0IpZWvZZ6RElBQVAH7FEFAY4pDE5uM3WVCqYsql0lWmxKIqdvJ/7fLnIvl7mk8tiIQFBgzmqGNq1LGIQUMaXUxpNXFYzdTfP0QhRftxNTvRkJGSsT9CgoK/F6RMTEx5Ofnh12Wn58f4Cnp8ZQOfmu36Up+9n0OrPiMVoPGoY+K9a+rrIpGbnEG0L57H65fOs/Krz5lxORZZJt/PQSN1Wrl4w8/YM7ceVSJUleYmHleyX23bt38RTz/5V/+hR49euC5dy6AqAmHn86c58Cxk8yf/xqGZ7RS+B3lo7CoiOVrlhEdFcX82TNRq9VIqorVV8p+9IhtWzZhsztp074DY6fO8iZ7QmZfBCI4WVXscFH4NIe7t27w8M4d3C4HjpJ9bS4RJAlHyT7yNp1OD4Ig+L10PRGOJygUaKIS0cQmo41NRqUzlrZRQuBogqzLFNGpxDf1EtY6rRLrkwdcO7Qdj8OKwWAgrWlHzDEJmHSR71XVph2o2rQDRU8fs2fdChRKNS37DIUoY8R9njcGuiQYOX4i50+d5G9/+zszZs8hyqB7Zpszn3oGvHF92vjR7Ni9j2/WbWLi0P4Rr8OHsoiZcOuflaypiNVZ9pOnfLVmM3+aNz0kYVQWQaNOrfVCY2Cnlk28jZdBygBs3r6LB48e8ac3XkFZjv0pgNoYuchm2O0N5X8DJEkqs0KuJEmZlTroS4hHDx+yYe0aMmvUYN6rryMIgr+PFG6QLCdmrly7zs7de1BIHvr06MbAPr386+QIrufiI2Z8hIzHI3L3/gNuPHrCnXsPcNgcCAJ4HKVEtOh04eu6uWxeKzTfeqVWjSSBSl/aH5GftUqpoEb1NDKrJpOeno6hxMZKtFtR4K1dIyeLBJedRslRNOrhJTdEUeT8vccsWb0RpyQQnxDPoB6diU1JQ6nxXquY/zjgmrUaNaN6efuRl27d46MvvyatShWGDR2CQqEg0pDveWKgRimQEKVjzoJX2LV9Kz+sXMaIcROhjMFruNmGwd8un+LG6lIweMpc9v24BkvuY7p09/7ewTVkwiGYmAluW07UBM9cDD2n0sF6eSSN7xl2ihIXz5/n+E9HmTl3vv9bHVDfpoSgCSZSTAZ92Bj492eMgW3atQ9QdkIoMSNJEt99uxyN3sCrb75d3u1FUAiVjoFKXfn9999yDPTFpQtXrrN5937atWjKH+ZOq/D+kiRx9NRZjp06h8loYHDvbiQlxJe/I6GkjNPp5Pa9B9y4fYcHD7MRRdEfi0VF6bsh7/P5zkFer0a+nRx6nY70alVJr1qFalXS0GjK/u3VKi1t2rajTdt2gJeAP37qDF8uXYHL7Sa9ahp9unVBp4tMDsVERzFl7EjvBKajR3j/y6U0qV+Hnp3alXns5+0HxsZE80+vzOLrVRu4dP0mg3p1LfN4lUFMdBR/XjCTj5esoFObFjRvVB/gV6Oi2bH3ABarjTFDB1Zqvyei/oWOg13ZN8o9psPh4IulK2jasH6FFD4KlbLSMVChKX+891uOgT4cPniAUyeO06tvP/qUFJYHWSI/QpLa4/FwYO9ubl6/Tlx8PAOGDMNYxgTvcBbgPtisVu7fvc3dWzcpzHsSENu8kE9vKYUkSaiVCpQl3QUlofEPwGQyUSOzOunp6aSnJKJSqLx91XBjEZcdk1ZH/+6d6dK1G+DNIx07eoSDe3cjihKN69elc6eOqHyT/dS6wEkdCoHUtDSmzpiFx+Nhz66dbNu8iR7du9O4SdOI9+hF5AJT0zOY8+rrLFn4BS1bt6FFq9alSqIwv6W8nx/cpypV2atQq6BK9ZpMnTWXzz75iJFjJ5BWtap/HznZVhaCicFIxExwO/J+nsMtBZB6kRDcn922biUZmTVp0zbQCcjXVnB/2OmRqJ38fBbE4WLg3bzyhQWFBfksW7yIAYMGUaduvXK3V2jUlY+BqvLH17+GGPirJ2fcbjfrftjIo+zHjB01guSkQFVHpFo0AD8dO8bJ4z8RHRND7/6DiIoutf3xWZuVhbycR9w8f5rC3Cc8MTtAEDDGxBNXJYN6HXpys8BDRZxqw9WUCYf8x8V4rIUUPcnBXXwTt60YX3BXRyVhqNoApTZyshB8ZE0XACSPG/PdM1hun0RQqjDVaIk6KlQV44NSZyK2YS9Et4PCi7spvqEmpl74jmJsbCwPHjwAoKioiNjYWGJjYykqKgpYFhcX518GhMxiikutRodRMzj+4wqq1mtKtXqBH4HnUdFk1W9EQlIKyz79G8MnzQDiXhhB83NZm1mtVj7+4O/Me+VVUg0VkzzKyZPnkdwD7Ny5E5WqYmFDkiQWr1xHcmICb82eAu5CKCqs5BX/jvJgtdpYsXodHtHDlNEjMMaWDqjlioHgRI0oiuzasZ1rN26QkprKsDET/DNeIs2AkKtmLE432fduc/HMKazFRTg8Ik6PRHRiMvrEajTqNgCbqPQrZXwqmWK7G5vdjc8cwilTxTgdgYkxV9DfkujBZc7DnJtD/q0reBxWlEoBBNAlpmOqVh+no3SArdEGPqtOuxs0iSQ093qLux1W7p0/jqMoF7XeRI1WXdCaIlsECqYEGvcdi7Uonz2rvyEtvToNOvYMu+2LioGNmregVq1afPzh3xk+YhR1smoGFGx+FpszH3p3asul67d4b+EyXpk8Bo0Q3uqzPGKmrH1eNEnz8PETlq3bzDuzJqJEDJsYLiu58CJjoPPp/TKvweFw8OkXC+nYthX9e0+s1PX/joojN/cp61Z9T1x8AjPnzgv4RkUqoq6W3DidTjasW8PjnCfUqZHB3CnjA8gz+bsTTMqIliJclmIu3b7PyfOXsTmciC4nKqWCalFaqscYadeqPjicAcoYZ1Epkeay2HBZ7CX/9h5LbSyJ18bS2YfyAYrD7SFPErl96wHHrt3DLigRRQmlQkHz+lk0r10dNQTUqpFDoVDQpHoaTap7Fa+5bgVrf9xGsctDWmoqAzq1wlBGIez6NdKpXyOd2/lm/v7Bh7Rp1YIOHTuF3fZ5YqD8N+vXrx83bt3myw/+yujJM4iNi8dHagQPVitiS1ZK0HjoMnAEF44fZuPKb+gyZExI/A1Vz4S2XxFrNXtAPbbAOKtTBaprfPYmkXDuzBkunDvLlOkzSwbzYYrZeiRQBtaN8T7P+hcaA80yhVcwEeT0SOTn5bFo4ZcMGTmK6pk1yr1Pv6Ny8MWlm3fus27rTupl1eQPc6dVuO5GUbGZNZt3YLZYad2sEa/NmFjhfUW1AYfDwdlTZzh38TKuEmWeVqMhM6MajerVoW/3LhEnWpSJMhStVquVe3ducePWbfYdPOyvNaNRa2jTshkN6tUt8xrUajXt27SifRsvYX3n3n2++X4tDqeTrBrV6dmlY8RxjiAItG3Xnrbt2nPi9Dn+6/NvGNKjI/Wywj/bL6IfKAgCU0cP5acz53n/y6XMnzz2hdmcKZVKXpsxkVUbt3H/YTaD+3QvPYeXWEWzZedeJCSG9u9d6X1/yXEwwI3bd1i1YROzJ48nPi620uf7OyqGM6dPcWDvHtp37MSC19+MuF1wEjzn8WO2bdqIx+OhU9dudO3Rq1LHzSss5sKZ09y8fhVR9H7n9QYDaek1aNqqDQmJSWiDkuS+73u4sbZvnUYphO27apQChYWFPLh/n8vnTrN7y33cbjeS20mUyUTHVk2pkeFV2fnViC47AmBUeeuYYjDQrXsPNL2849eLFy7wxZcL8Xg8tGzaiLYdwvfpwBszevbuQ49evTm4eycfffA3Ro4eQ0bV0Inezxv//L+TUs3UOQvYtX0rK75ZytiJk8qM8b7fOFw/yumRMCOiUShxiiJqvZEFb/6BZYsX0bBxE1q0bhPwuwRP7IpkMec713C/qUYphJxLWaRPRVQuP3y/nIYNG9GgSTP/MrmCpSyy5+eIgeHUM75rPvnTMU6fPM7M+a8SZfiZLcV/A/hVkjOCx4WYe5fvdx8n58kThg4aSEZ62cXQfSRNoaRl65bN3L19m5atWjN3gdd/MlL9GTme5mRzZPcezIUFAMSnpJHVuAWxSSkBhev9KCg/oVURGzOf3ZggKFAZ41AZ4yCtrnfdI2/i3WHJpfjkdiSXd6AUl9UcfWptBEXgoNG3vR+6KihSqyB5XDy9dAyPNQ9VdBW0qfUQhMCPSWxJ3R6FSktck364Lfnknd4IhMqJW7duzccff8w777zDjh07aNeuHXXq1OH8+fN4PB7/MoPBgM1mw2w2c/HiRRo0aAB4a/XUSyvxRldr/DZnp7etpWnvYc9scwaBKpq4xCQmzHmNH75bSvVatf2zZV9GiKLIJx99yPxXXyNFX7HBU7Cq5Vklp+D9WPbq1YvU1FQ+/vhj4uMjz6qz2x28/+VSxg7pR42Mst/N3/FsMJstrFy7AbfHzehhg4mLjfWuKKeehs1mY/26dTzJzaNHr1506eUlKoI7FsGqGYvTzYM7tzh+7DA2iwWXKBFXpTpNOnRD0pkwO9wBFmbZFhcghpAyUErI+MiYYBLGZQ+Nx46SdrS6eLRJ8WiTSmdeSJKEaH3Ek9O7EF0OBIUSQ9V66JKq++OYWkbU+I6r0Wow1OpArE6Fy1bMlcN7wGkmrlYT0uuVWt2EQBNFw/4TcTy5y7ZvPuOdbn8J2eR5Y6C8joY+OoY33y61ORs0sH+F6tAEQ66e8aF+Vg3SkhP5YMl39OnQnMZBxW/LI2ZEuwWFLvKkgBdF0gAUOzx8vWYj78yd6u+8l1WTJlxy4UXGwLK+Ok+zH/LF0hXMnz6JuNgYKIMk+x3Phic5j9mwdg1R0TFMnDo9ohe2D75BVnFuDmvXb8DtsDF00ADSEmJDtvW9T3JSxmO3cPbMWX66cBWnzYrC46ZBZhWGtWmAUacNsC9zWWy484tCyJjSf9txWRw4iryTgJwW7/81Ru//tdHy56UwgLRJM+qpnhCDyqBDbdSjMugRdSbO3LrPkq0HcLs96DRqOtbNIDNKgyAIIfVtfOcSY9QzoWUtBGM0jy1Olm3Yhs3hpH/X9tTOqEokZMaZeHvqKA6dvcq7H3zEn/9/74Zs8zwxMHjgWqtGJq++8SaLvvyCFq3aUL9py5I14Uma8mDSqDBpVJidblq378TjB/f4/osP6DlsjN/K2Lfeh2BiRq6aKV0WnqiREzLh1Dk+ggZKVTThEgvXb9zk9KkTTJ42I2Tmrn92aBAh6SdmSr4LLzIGanSRE+9Xrlxm+9YtzH3tjXLVDb+jchAkEYXLyrVbd9i4Yy810qvyxsxJFVJmAtx98Igftu9Br9MyamAfoqPKH0OJaoNXdXL6HGcvXkIURXRaLU0bNmDS6OEBv3GFLcqewVbUYDBQt35D6tZvGLDcXlzATydP88WSb/B4PMTFxtCtew9SUyK4PJS8D9XTqzFz+lQArt64yWfffI9akBjSvzepyZEnLLZs1pgWTRuxcdtOtuw/xh/+JbTP+Lz9wIC2mjaidmYG733x9QsfW40a1IcTZy/y7udLmD1hFFEmb5/uZSRoDh07gdvjZlCf8BOjysMvNQ4G2HfoKDfv3OWd1+ZVmPT8HZXDyeM/cfjwYRo1acasV94IIUIi4fLFCxzct4ek5BTGTJxc4W+UzWrl8OHD3LpxHQCjyUTjpi1o2bZ92PhbVqK9LDsoCP2W+/pFidFGEhvUpVmdTH8cE9wOis1mDh49wbbd+xBFkSqpqXTp0pnYkpqzgtuBBgdqH0lTcn4NGjakQcOGSJLE2RPH+PsnnxMTE8PgIUOIjo4OtGUtISUEQaBTj1507tqNVSu/w+Ny8PprrwWc//PGP/m90aoEevTuy727d3jvL//NzNlziPHlPWTQKLwK4khWsr6/5csUCgWTZ8xi764dfPPVQsZNnopKpQrph0WylYuUP/H9ZnLCLfhcgxFJRSPv4+74cT31GzSgQZNm/jZ9x6gIQfNLxEDf+fy4YR1ajYYZc395C7NfK36V5ExeQSGffP0dowb2oUpqe+/Cokdl1r6wWq2sXL0Wi9VK135DGDBwUMD6cPVnEnUKtu3ey61rV1AoFCQkpdC/Tx/yhWeYBRQG9x4VI3ncSKIHhVKNECaoB9aBkS0PIllUxgRURq9nrCSJmPPvk39jlbdwuEKFJr46qtiqIYSLD4JSjT69BQCuwodYru1BUKrRVWuOUmsKOWZsWhoqYxwJLYd593G56N+/P2fOnKFv3778+7//O126dKFTp05kZGTw5ptvolarmT17Np07dyYuLo7ly5cD8M///M/07t0bnU7HkiVL/MeQEzTgtTnLe3iHQ6sW0m7YFJTq0g/psxA04FXRqDUaRkyeyZmfDvPxJ58we9ascr2Vy8OLVs2YRCtr1m9gysjBz0zMhENFJacAq1at8ksb/+3f/o133w1NxgCYLVbe/3Ipr8+YWKEB3++oPJ7m5rJi5feMHT6I6KgSDYq8roaMoPGpZ54+zWX1mjWgUjN4yFBi4hOB0NkfcthtNvbu3kn2w/u4REiomkGnPoMQ1Tp/osrsdIcQM4U2V0RSRk7ISJLoTUpKIoJShdNZ2vlw2cMTDMHL1b4OhjKJqDremTuSx4X10VWKbv0IgEKtw1ClHuqYNARBQK1T+s9BrVXhdLjRaPXEN+6JWquk6NZ5Tm74BkNMHCnNulBs1xOlC/1cxiRl0GTwNG9bLzgGBheH9Nmcnf7pKAsXfcWM6d7ZsRFtzsqwOPNBUmsRXA5io6P445zJrNm6i3NXbjB+UO8KDSR91knBRdDDkTUvol7NN6s38NqEYd7rCZqNK7gcEQkaiGzR8Twx8P//P0steuT3+P7DR3y7ZgPvvDa3UjMsf0fF4Ha7WPjZJ8TExjF5+sywg+oAFUHJAPf2rVvs2LqZhNgoxo0ZjUmrCiEyg9UyBYVFbNmxh7zcpwhuJw3TU5jYsQkqj5dEkSxF4HHgelIAeEkPt9WOs8gaoIzxritt21HkxGlxYjc78UgSoiShUShwWbxx05JjQW2U90NKJ/JEpZlQG7WojV5yRhNtQGXQUU8FjRtnePd3ODl86Sqb7ucAEGfU0y6rGmkxgd9k7znaUFttJBv0TOvcBEmtY/vx82zac4iMlEQGdmyJKoxdgAJoXyuVdo2yvG39DP1AHzQKAY1Oy7wFr7B54w8c3LGJHv0G+n9rnUoRUhetMkipms7o2a+xbdVykqum06W7N/EnV9lUBFaXx0/QlEXIRGpPrqIJR9Bs3riBOa+8HjHhE2xvVhEP9eeJgf/P//63sMf46cRJzpw+zZxX3yj3+L+j8rA7nbz3xddkZWbwxsxJZdZOkePE2YscOHaC9CqpzJk4KuJYR/69fPQ4h22792G12VCr1LRs1pjZk8eHPWa5pEwQGSNJEqIo4ipRv+h0uoC+R7j2IvVndFGxdO7ajc4l1j25eXns23+Q7JwcBEGgapUqdOrQrnQik/xcSr4DdWrVpE6tmtjtdn7YvI3snCc0blifrh3be63Zgo4tCAKD+/bC4SitWfbiYmCo00BsTDR/fmUmXy5fTeP6tWnXIrKlUGXRskkD6teuwadLV9KjY1uaNfROgJJP6PlHEzVut5ufTp3hjbkzXlibP8c4GGDzzj14PB6mjR/9ws71d5TCZrXy6Ycf0LxlS155LfI3UQ5Jkti7exdXL18mq14DZsxdgCB4v7VlKVZv3bjOof37sDtd6PUGWrRpS6uO3QJilbIcJUSkb7EkSXg8Hqx2Jzq1EknSoJNN/Iik/g5pR6UlygT9epY62tx/+IjN23dRWFQESjW1s2rRrnUrjEbQUJIzkClsBUGgaau2NG3Vlvz8fNavW4fZbKZTp040buK1cQ5O+GvUGqZOmUxBQcHP2gf0EQ7JVTKY/crrLPr0IwYOHU5WrZqB9zpMTiP4nCNZyHbt0YunT57w6d/fY+TYCcSneHMK8n5V8G9RlmKmoghHKIXC28ctyMvFajGT1bBZwLlFbFtZvkX9zxUDVy5bSt36DWjdulUZ1/U7gvGrzBqYjAZenzkpZLkvGS0nadxuN9+vWUdBYSHjR48iNrbEska0hlidJeiVZBfZOXJgL7dv3kCpVNKqbQeat+sUEIBjKE3u+5CVZOL6EzOix0N+9j2e3r2JJe9J+JozQH6R1wZNUCgRFEo/SeMzIreVUYPGWliIQheFUh+LypSMIsjKTBAUaOIz0MR7B+mSx4Uz7w7WG/tLat4oUMdXRx2XETYBp46pgjqmCqLbif3eSUSXFX215igNcf5tfESNT02jVqvZsWNHQDtt27blz38OLPo5efJkJk8O9Fvt1asXvXqFV6wEEzTxVarTot9oDn6/kNaDJ6CPKrUgqixBA4Eqmqat21O9Zm3ef+9deg8dRbO6FTGl+/lgktWScTqdPHj4iBFDh1Ro34oQM1BxySngZ8eHDx/O4sWLw7ZXUFjEh4u/5e05UzDon43E1FethqFK5NlqvwPiYmKYPSXUNlMIQ9BYLBaWr1yCWmdg2tQp/sR5pI6s1WJh987tPM3JQVCpadu5G6279wW8CabghFMwMZNXZCH7zk0e37mBy1KIyy3hdot4SvbzuEU8vhnIgoDb441ZbocNqUQSLroC45+nRD3hL0AtCGiiU1HoY1FFp6DwFT7Wy95/UwYaU0ZJe3YsT27jun7Cu79Kgy61HlGp1XHZPah1ygCiRl+lPvoq9XFZCrlzcDMAGe37oNabKLa7wxI1P0cMDCZoAJq1bktSUjJ/ffdd3nj9ddRqdYDNWekJhSdowqlnfBjRtwdXrlzlP79YxrxxQ4mNjkIwRlfa1kxO1pSlqvGhIvVqHuU8JcpowKD3JlQkpy3ELiUSQQNEvObniYHhkkQ379xlw+bt/GHB7IDkVaTjh4PKUNl6C//fkom73R7GTJ6OVuv9rcsblD99ksPaVd+TkZ7OvPnz0Qol8Sc40Vbyd25ePlu3baPIbCHGoKVv++YkaBT+2jKi3RqikvH+20vKWJ0urjzI4eqjXPKemv01Y9zOkhjoKKkrZXOhEARwiAiAS5KQSqKcgBDwbx8kJHS3dGh1KlKjDVRPj6dOlUQ0ylKPek20AQXQMTWBjqneSTu5FhvHrt7lcZEFCYiNNtKpdjppsV5yX07SqAx6+jTNog9wr9DKZ99vJC4+npHd26GV+dr73nPfU/4iY6DZagvvJ64QGDpkCD8dO8Z3S79izKRpgBBC0DwLFAoF/cZM4sLJY6xa/DlDJ0xDXUL8lRIuoe37CBmz041JoypXJRNokxaJ9Cm19fDNvDz50zGat2wVtt8uTzIED9ZdgtdfPdLw/Xn7gcG/009Hj3Lz5g3GTZkWcE4VhaBQVD4GaitfTP7XDEmUKkXKXL99l/Vbd9GicQPemBVa8yI46X73/kN27N2P3eEgJTmJkYP7YzKWoZANIlEKCgu5fPU6V6/fwOF0Iqi871FwLRlJklAqFahL6iPaSt6H4Noz4WrR6PU6qqRVoVrVqmRl1Qq5F/HJaQwbOcr/9/0HD9i6ax8FBQUAJCcn061jW+Lj4kJII51ax+gxY8Bl5+z5i/z9sy+pmVmdgX16hb3nGp998AuMgZ5750KO47sXsyeOYsO23WzYtpshMiuy54VBr+ftOVNZv3UX5y9fY+KIQQHx5h9dj2bVD5sZObj8GomVwYseBwOs27QNk9FA/57dnumcBJWq8jHwOSeV/togKATmvVqq1ChvIsLJ4z9x5NBBuvXoRbcePcv9Jl29fImjhw7i8XjIrFmTIWMm+icChdtX/t2VJIncJ0+4fOUyd2/dRBQ9/vdIKYTWm5EEJSqVCqUATqcDVQkBoJSFGv/+eEvvKUQP0dHRVElOICM9neppSRAUh6tmZDI+IxPUOiRJ4ur1G6xZ/wMWq/c9zqyeQeeu3QPqAfsUNcmxUcyYPAFJkti3/wCffPA+LVu0pE3HzmHvdWxs7AsfB0dUFik1TF/wJmtXfM3TJ09o165t6DZBkJMUkdrVKAUSk5JY8OYfWLl8KQnJaXTp0TtgHC4nfyrarwlH/GkUQoUmz/j2926rYMv61QwfPyXsNs+K542BwcfWKGHpoi9p1bYd9Rs2eqZzUqrVlY6B4UQOv0ZUmJwRBKEX8G9AI8AOrJQkaUHJuinAvwJpwDlggSRJJ2T7/hl4E7gOTJIk6U7J8j1AV6CrJEn7ZNtfB/5NkqTF4c5FU84HSFn0CEmS+HHnPq48zGf0iGFUrRKqqpHXo8nPy2P9urW43W6ad+xG5+6BASK4/kxmrJ5b+VaePrrPtdPHsZqLEASBXJub2NR0qtRphCk+iSvZxWHPsSw7s4IcC+FSLT5CpGDHHNxuN5MmTeLx4yO0bt2aCRMm8OabbwJw584d3njjDd58803q1q1LWgmB8vGSj2nQoAGmzm/jfHwLz40jCAgo46qj0MeFOSKgiUdSxeB8ch2PvRBd1WaoTIkh5/RzIpig0UfF0HH0TA6vXkyTnkOITiqt2PMsBI0csQmJTJz3BptXf8vdG9do06UHQKVq0TyPakZOyMixcvVaxowMtY8Lh4oSM1BxySl4g3N0dDQHDx6kVq1Q4upJbh5fLF/Fn+ZNR5PZlImTJvH48WNat27Nf/3Xf/Haa69x7lz4wcavAS9TDFQphLDJXlFt8CcYXShZ+f1yCi02JowZTUxMtHcAHaZIMMCD+/fYvnkTSrWWjj36kJSSGjATOdjexex0U2x3cfvqFR5cOYvZbMXmFnFJCpRxVTBUbwIq77vodLj91mUuu8dvUeay21EDbpvZ/zFyWgtRlizzX2/J/912Cyqdkfxt/1sWAw9WPAZ+6o2B6VMWY398GfPNn1DpjBiqt8SYkBxA1ACotUaiG/ZBiYtbB7ahEDwkNesOiaUx8OdC8OxpueVN1cwaTJ4yjf/+y195/bVXMZlMAQqaSDVowhE0PvWMD3Xr1uHNKsl88u06urZuRouGdZ/rOipL1EB4smbl5l0smDAicLswdWnKImjC4UXGwEtXr7Nr/yHemjEOkmuUPJ+/x8CS9S8sBmq0Oj8xUxYsZjOrVq5Ap9UxdeZsTDotCoXgVRTLr6vkvTh78TJ79+4lKSGeQb26EmfQIjltSJaiEGLGb13mETl94x6nrj/AI0qIThcaUSJDq6W1xoSgL+2vOkreM6fbG/9sksc7Ri/ZxByBWCgMIgRiihRMunaOSZMmsebxY1rXrF6x+PexN/49/q/XKLQ5OHj1Lg8LzcTqdfSpn0m0XovbakdlKCVpqqlgXr8OPM4vYuHqzRiiohjTqwMGWfHsYOXci0DwoDd4ENu6TRsSEhL46pMPmTp3ASgVAQVQK6uekSte2rbrQL269Vi16CN6DBlDSpWq/u+fQa3wEzRWl+i3NgsmaKB8YibH4vRvWzYU3kLkRw4x77U3K3xNFVXPvMgYeGD/PnKfPmX+nFmyb/TvMbBk/QuLgXqdtkLEzOMnuXy7fhOZ1arw1uwpYffxJdolSWLf4aOcOX+J6unVGD9iKHp92cS/pNJis9k4fuwIF69cRZIkFAoFsTHR1KvfkNGjR6MvZ6JWWWqbcH1VH3QadcDzVZkY6LAUk/34MZt37qYgv4CqVavSr28fdMHDN7WOJs1b0KR5C67duMGHC7+mapU0hg4aiCp4QswvjCF9unPwp1Ms+X49U0cPfaFtD+3bg+u37/KfHy1kwdRxIS4I/wi7M5vNTl5+PtXC5HOeBy8y/gF8t24jVVNT6D5s3G8uBr4s8Q9AV4alphzXr11l2+ZNNGvRMqAWTTjLJ6vDzf4dm7l/7y71GjRi/JRpfnsrH8Il5M3FRZw+foxH924DlLjtJJNRsw7NW7cLq1CMZDkVbFMVDia1ArUC9FrNs8fAgifcvnGNlcuWYnW6qNegEV27dCbYmVUQBLp26UzXLp356fhxPv77+zRs2ICe3bvjVvy8hKC87xJMAAiCwIjxU9n64wa2bdtGnz59wrcRQelSVg0YhULB8HFTOH38GIs++4QpM2dj1KlD6/qVcd4VIW4CJlXKFEyRVDQP798jJTkJbcmEPLtbDKlZWNb56CJY/r3IGKhRwleff0K3nr3p1qb5by4G/hKoEDkjCEI3YBUwC/gB7wSsBiXrOgGf4C08shd4A9gkCEJtSZKKBEHIAroBNYEOwP8F5JRfLvAXQRDaSvIpMc+Bi1dv8MP2PQzu3Y1BvUrkfWFUNQBXr9/ghx37iImNZfTYcRhLZgYFW5ylmjRkm52Yi4v4af9uCvJyEQQQYlJo2rkHxhIFR3DtmXpp0Vx+FJhoKo+YCVkWhgBZu3YtTZs25X/8j//Ba6+9hiAI7NmzB4ChQ4cyaJDXti0pKcm/3AdBUKCMroIyugqSJOLJv4M77xaCSosqsQ6CMjDYCgolLkUMkjGKohtH0ei06Ku3QanzEiZVx38esH1sWhoucy6FF3cTldUObXx4X9zY5MiJumqpgR1B3z2U16HpOGYWxzZ8Q83mHUiqnhWxrfIgtzgDb1AeOHoiZ346zLplixg8bqqfnKsMSVNZRCJmzGYzFquVlOTk5z7G80hOe/TogV6vR6fThcwYyiso5MtvV/PO/BmoVCrWBD2fe/fuxel0smfPnl+l7+6vJQb6Bkz7Dh3l+JlzjB09kiqpqSEWZ1D6sT55/Cd+OnqU1KrVGD3Z+/vJOxVyYsbq8vDwUTbHD+ym2GwGBKJSM8lo2xurqMJsd/ltzHwWZsGkjM+WzEe+OK2l1g2+ZW5Zss9lC4yXvr+fJwbaC5+gia+JOr4motuJ5e5Ziq4UoIlJxpjZGl3JDHQ/WYNAXJM+iC4nOWf2k+1yULV9f2x2PXqdigGfHvKraUw6b/x0Pb7FrZP7adN/JKa4REw6lddGiVKrHF9iz6BWypbJe8ahRSR9nTBjbByvvPY6H370ITOnTyMpOblSBE1Z0Gm1vDVtLGu37eXmvYeM6tc9hDCJlJCVFyIX9IEx/lmIGoBrly+THh+NymlFKpknIVfXBKtoyiJoXmwM9N5Xn/f/3n2HeW3qOIDfY+DPHAPLKqQqSRJbNm4g5/Fjxo0fT1SJNF8+4PHV4JCcNrbt2c+V6zdpXLs6r8/0FhoVXA4kpw1P7qMQUubG4zz2nLmGw+4Ah4uGKQkMz0oHu9NfR8Zp8f3bgdNcQsaUKGfkJEww8RK83uIR/ct8yfZ4jfK54p+zyEpMtIEBjbwDq3yrnY0nLlPscJFp1NGtfg20MUYvSWPUQ4nl2dx+7Slwiny9fhsmvY6xPdqiKpmp5tjxlfe+6o0odEYEYzS7j57k/PW7zJg0BqPBgKg2eL8/YepMSEEe6HKEG3RqlAL16mQRP3E8n/39XWbMexWNWhc+cSIjTCqKtOQkpr/yNuu+/ZqUjBrUbtEOg1pZQsIoylXQlAerS8Tsr7VW/rkdPLCL9l2ercYClKpn4OfrBx46eICnefkMGOqdSBT8jP4eA3+5sbDb7ebrVRtQKZUsmDIOjSayfZnT6WTd5u1kP86hc/s2vD5neplti0oNZ85d4OiJk0iShF6no3WLZsyeOgmFtuIJ+2clZXx4nhjoElQkpFZl9HivC0f2vdssXbYch91O+/btaNG8ecjxsuo24PVatbh77z4fffYltWrWYGC/Pv5n2fn0fuD1SRJrNvxIcWE+U8aODKhHURklbVno2Lo5sdFRfLBoGa9MC28196zIyszgjVmT+Gjxt/Tv3pmGdQPH2b80QbNi7QbGDa+Ye0RZ+LniH8DK9T+SmV6Vti29z89vKQb+muIfeCfnLF+6hGrpGcx/7Q3//fZZSMlhLi5iyw/rsVot9O3fn74DB4dt09e/cLvdnD5+lIsXzqNRKTFFRdOsVRs6duvpr3kj74vIFb26MOvDIZLNmrfvK2JSK9jyHDFQYS+iZtUUao4bjqTScvH6bb74ciGSJNGnT29q1fTahcnHjG2aNaZNs8acO3+B999/jw5t29C2Qyd/vM4rDoxrgujmm2+WkpCQwODBQ8p85iMppX3rIqld+g4cwonD+1m9ahUjR40Ku39wH7IifUyABs1bk5pRg0/+/i7jJk2lWpXUiL9befWD5HVgfKoZf81UlRZ1ycTZkHOVjVt2bFrPxJnz8RCqEi+PoJHj54qBkiTx1eef0qvfADKqZwK/rRj4S6Gio5X/AD6VJGmVbNnJkv/PBtZIkrQNQBCE/wZexRugl+DNLinwKvF8/5bjC2AqMB5Y/gzX4Ifb7WbxynUkxsfxzoIZYX90n6rg4mMLm7Zso26dLN6a4y0uLLc5k9egyXmczf5dO7DbbXjUelp36k5cYqntktzizGdvJke9tGjO3niINTcba142OQ9yEN0lGSbZN8hW7F0mqDQoVFoEtQ6HWxOgVPHh5s2bNCnxf2zWrBmHDx+madOmWCwWsrOzycrydqLy8vLo0qUL9evX529/+1tIwVxBUKCKrwHUQHLZcedcQpI8qBKyUGijQrdNrI1H9FBwcQeIIvHNhvjl6j74yCRltQ44cm9jfXCR2IY9ERSBdLyPiApH0tzPNocQNBCoohEUCtoOm8LpbWuxW4pJb+DtDD2rekb+O2bG6mnauj1VMzL55pP3GT19LgajiWyzs0yC5llVM5GIGYDlK1cxfvSoiOvlKE818zyS0+PHj4dt02qz8cnX3/GnedP99RWCn889e/b4//6V4uWKgZIUoHbwodjp4YvlX9OySQPenj/LuykE1KAB72yNA8dOcPDQIdq2bc/cV17F6ZECOhbyD//DO7f46dA+bA4nMQnJNOvaF7dKh9nuDqgxE46Ycdk92G1ORHsx9twHOPIf4DLnIonexJTPwsz3f4/LAQoVKFRIkoCgj0dQh86Qep4Y6LaZvWodnw1adDX0qQ3xWPLIP7MJQaUmum4XlFojDrsLrU7tJ2qMtbuiwMn9Qz+iNsaQ1qpHSGwDMKXUIKtPOmcPbCIuLo56HXuH+SFVJYm+0FneBrUyZFZMsM2ZUqvjjbfe5tOPP2TY0KHUqFGjwgRNWfZmgkaP5LQxvE9Xzl29wfuLV/LqiN7lFhuWEzPBfz8PUbNhzxHenDgssG1LUQhB4zt3iEzQvMgY6LMdeZD9mE079wXYrf4eA3++GChKUoCSzAeHW6Lg6WNWr1hG7/4D6T94aNhBmVrhHURs2raD61ev0q9nN/p3bu3fRnA5EPMf+9UyHpuFUxcuc+TCTTwOJ5mJsYxsXAvB6iitKyMjZiw5Fj8pY3N6MLtFREnivtNFvuQi2+3CIYl4kPAZXMiTBQLgEUGFgCAJpKBFLbtleU7Pc8U/a06+34oNQLDYGZDq7WdezSvis93HSYoxMbBpbaLjo1EZvN8OFV5b39l92vEwt4APv99Eg4wq9GxeD6zFCMZoFIAIYLfQrVEWrRvVY+E339G8YT06d2yPiMzQQ63zJ2jDETPy3y7EtrEEVZMTmD9/AR9//AGTZs5BZ4zB93jJJxY8C0GjUCgYMXEa+/fu5sDG1XQaNNK/rlQxU6qeKQ++OG91iWQX2/12oF5EPjePx8PFCxfo2K1Xmb74cgTP8Ay4ly8wBvqSMadOnuT+w4cMG1laX+H3GPiPGQtfuHKdH3fuY8qoIaQmR1b5OlCzctU6CgqLGD6wL1VSUyJu6/F42PfTaS5evoogQNNGDZk1ZWJgnyAM6SqH2+3mwZM87t27z8OHDzFbLLhdLr+dN4AoKEAQUCqVaLR6DEYjBoOBLl27hYzpX9Q4GCA1PZOpM2cjSRIHDx7k/Y8+pWatmvTp0xelUumPP5JKS3qNWrz+xhtcunSZv/79Q3p07UKLZk1Drl9w2Rk5dBCPsh/z10+/YlCvrjSoW9t7nWX0vyqLhnWziI4y8ZdPF/PW7MnPXTNVDr1Oxx/nTee7DZu59yibft06vbC2K4P8gkI8HpH4uNjnbuvnGAcDbNy2k9SkRD8xA7+5GPhSxz9/Il+UOLR/H+fPnWPilKkYTaaQbXwEjcVsZu333yGiYMDQ4URFx4S06xsXF1tsHNq7i+yHD1AoFTRs0YbRU2ahD5aaBEE+lnY6HNy//ZDsh/d5mpON22FHKlFyS5KEUii1L9NrNegNBvR6PVGxCTRr1SaIGBCfOwb6bQqBBlmZNKhfD7egYvOWrWzavJmWTRrRoV3bkEl9jevWonHdWuw/dIT33nuXYcNHUK1GKXnr728o1UyfPoPLly7x7l//yqRJk0hJTSUcKkosQOlv4rsfLdt35uqFM3y1cCHTZnjzv5GIGTnhUxEYYuKZ9erbrPx6Ea3atKFFi1Di3gc5QVPe9cj7tL6Js8EEjdNTWuPm8qWL1K1TB4PWp+TyEjS+PIF/+wrcx58rBq79dgndevb2EzPwm4uBvwjKHakIgmAE2gBbBUE4CWQA54E/SpJ0HGgKLPZtL0mSJAjCqZLlSJJ0VRCEw8CNkv8mBh3CAvwL8O+CIKyWJKncab2S24mUczdg2bW7D1iz8yDThvQmtX7kAnnZOU9ZsWEzNTOq8ear8wM6eyZZHRqXy8Wx3du4e+cOhrgk+g0ZhtFYGuDlNmeZsXp/Yt9mLsZ99zyP7tzkcVFJsggBrdGEWxFDbHptkuu3QqnS8CAnsGNWkGNBkiQkjxPR5aDgwT0U6vBEQN26ddm7dy8DBw5k9+7dNGzYEIDNmzfTr18//3YHDhwgPj6ef//3f+fzzz/n9ddfx3rrEApjMujiQgksUzUk0YMj5yqS04pgSkafEmhrIyiUqFMaIbns5J5ai6DSE990EELQjB1BEBBNNRCVhdzf/TXJzXqiTcgIuZZIJE1FCBqAZn2Gc+nANm6cPEitFh2B57c389WiSUxJY+zM+Xz35cdegsYUVSZBk2vzPJetWTDu3rtPdFQU0dFR5W5bGTuzFwVJkvjbwm94c9Yk/8w8Kedu2Odz7969vPLKK7/4OT4vXsYYiCSGJKMPnTjDsTMXmDN5LEaDAUpmtfnVMiUEzdVLF9i4dQct2rTj7bfewumR/IlBecfCZrWwbfNGCvPySKiaQbehY3ChCqgzE46YsTx9SsHtS1ifPsTjEkvqzbhBoUZpiEcwJKLUxIFCicdhRUmQOsblAMkDohvB4/ISNWHwPDHQfHUPmuQ6uO3ejrhKZ/STNcqUhqjUWgrO70QQRHTVmkFyZsCx1ToN0Q37IdryuLH1W6Kq1iKlSfuw55nRaQjup/fYtfwz2vYfiSneS+ybtKqSxGHp9QXXLagIQeMRFCx49XW+WvglnTq0p1HjxuUSND74EgTB1mZyNK5Ti8TYGN79bhNvjx0QkaAJJmbKWl8Zomb/yfO0bVwvfPHhIIIGAlU0ka7pRcJqs7H0u7X8ed5UFO7SfsHzxMBwNXfK3N5gL3+j58BLGQNLIB9g7du2ibzcp8x97c0yicTDR45y+NABBvTowqAenQOSZHJi5kl2Nhv2HsVqd9KsWgIzu7XEY7P7a8v4iRnwEzPmx2bu55m5VFBEjtNJgdM78HaKEiZBhVZUkCJo0aJAQelA3CyzWhMlCTfe/6x4UISpFvI88e+LveeIMmjokJRIvLa0L+O0OEkERiSkUKyWWHbgDIJGxZCmdaiSluBX0qiANJ2C13q35uydR7z7zXo618ukdYOaeEreSYXOgAgYdUZeG9aTA5du8bfPvmLW2GEYY+O8KhpK66D4VB1yawc5fORNMEnjElRERUXxyhtv8emHf2fgqAkkp6QSmvt5drTs0IVz586yZeU3dBleWutNbm8GRCTa5fBt61dRalUBpFE4Rc7O9Wvo3H9YSZLHe13lETT+wX1JAVunRwKlip+jMsvDhw859tMxps+e6z1myTv5zDFQoax0DET7bDUOK4qXOQb6IIoiS75fT2x0FH+aPz3irFRJkti4Yy/X7j5izLBBZZIyt+/dZ/PuA4iiRNeO7Zg/c2pou0GkhCiK3Lh1i1Onz1JQXPJtLyFcqlZJI71aOg0b1MdoNPpr5snh9Ei4XC5sNhuFZgtWqwWXRMBkRo1CeK4Y+PEnn5KUlESPXr2JigocX7Vp35E27Tty88YNvvj8cwwGAyNGjsQkS/KqJTf169ejfv167Nq9h/c+/pxhA/pSI7N6yH1JS03hj68vYP2PWzhy/CRTxo5EpVL5VScvgqRJr5LKrAkj+a9PvuKt2ZOfueZnJIwd0p9t+w75XUl+aSxduYY5Uyb84setKE6cPofL5aZLh8DaF88aAwWVuvIxUPPz1d162eOfL4Fts9lYuHAhTZo1Y86CyPfY4nCydtX3FBWbGT56LBpDYAyQT1S8dOEchw8cQK1R07lHb7r3HRD+HGRJcbfbzc0rlzl39gw2mxW36O3rqTUaUtKqUj0jg+YtWqDTG7xEdEldOXlbLpcLt82KxWrF5nQFrNeqvMqL54mBn3y1lBpVkunVqR0qGZ+rVCoZNNB7jSeOHeGDTz4jLTGe4YMH+CfggpdQ6NyhHR07d2HdDxvZtGkzI8dNICEhIeTe1Ktfn6zatVm27BtiY2MZMmRohVUTFSEbtCqBxk2bERUVxccffsD8V16FMJMmoXy713CWZEqlkvHTZ/Pj6m9RItK0RcsyzwXCq/v9xI1C8JIwlCpnILJiVJIktmzexPw33kbeRQxnUxZu4tovgZ1bNlGvQSNqZtUOWP7M/UCNtvJjYdWLm5jwj0RFppHF4R0NzAb6A5eBP+KVK9YBooDCoH0KAP8dlSTpfwH/q4xjfIVXAvkG8F8VOvMSiKLIsk27UatUvDNttLfAYBBxA2CPTubr7zdg0Ot4Zeo478yS4mwg0Orsyc1LbNm+A5dSR89evek/YKB/ndzqzGdzZiku5uSR/eTmeNuyCjqq129EnWZtUCiVISoaucVZtVRTgMVZbLKRghwLgkqLQqUlMathxJougwcPZufOnfTs2ZPMzExSUryd67Vr1/LOO+/4t5MXbnrvvfcAUCTUQbLkID29hKBQI8RkIMjk5YJCiRBbw3t/zdlYb+xDMKagMHqTitoob5uCWoemSnNEexG5x5ahis9CYUwgumqdgHNV6mMw1e9L3vWTcP0saW0Hhb2mghxLpQgaKLU5q9+pD1eP7ubmqcPUbO5Nkj4PQeOzOAPQ6Q2Mm/0KK778mMHjJhOfmFwuQeNDRYkas8IQop4pLjazdPkK/sef3i53/4oQM5GKS4Z7XyqKz1dvZnznlhjMT5Fkj3q457NRo0Z07979mY/1D8RLHQOtRQUsXLWRejWr8+aMksFLiWpAISNonhRaWPb9amrUzOKtN15HEARcYdq7eO4MRw4dQqXV0aZ7X1RRsd7juDy4ghJHhTYXTx9nc+fsMayFBXjcEmii0CbWJDqpsVc9Y7fjtpn99mWizexVx1BKyoiypLYgCCB4lTOoIs/EfJ4YSEwmjqe3Edw2UOtQxFRHY4rz17Rx28yoUhsiSSL2x9ex3DiMsVZ7XNGpqHU6v5pGrY8noeUwXHm3ufbjEtJa98MZnYBGF/RpNaVSu+9Ezuz/gbgqNWjQOpDI8ZIxYphlFSNoXBLMmDWbpUsWo1Qqqd+gQXiCpgRhl5VB0KQlJzJ1eH/+e8lqXp8wBMNzFqCvKFHzqMjG8YvXeGvS8MhtlUPQBLR9M/KMn8rUqfHfJ0niwy+/5rWpY/3kkY80/T0G/nwxUJICZyMW5OWy6ftldOjag179B+KWvNMzIXAm2a2bN9i1+Ufat27JH15/1UtWyt4DweXAk5fNzoNHuXTtJnE6NaM6t8QoerdxW214IICYcVkc3DdbOXD1IVabC4/dTaxbQXW0JKHDrBC91mRCqV2ZXZSwE/i+y32xFYKABgENoJLCkwzPE/+6W/VYzR725NylwO0mTaOllTG6pFAtaKO1aI1qBsclIRiVbD99FctpGNaslKTxobZBS+3Ozdh7+Q4frN/D5M7NicU7E1MBeGwWBL2RDjWSaZ6ZxsdLvmVgr240aNjAO4HA7bU6E0omD2hwlDlQDZfIdYoSGo2GV954iw/ef4/h46YQn5iIXEETDnK7Tt//DRFmwdao2wBBEPhx2UK6jpyCIgz5J4/h5alpfIRMJDWPT5Fz+8oFkCSS06oErK+oggYCVVlmqy3ydhFmkpZlCWKz2fh22Te88tYfQtb9HgN/uX7gjdv3WLlxC5NHDqZaWviZyQBHT53lwLGT9O/bl4EDwicZPR4PG7bs4MGjbNKrV2fm5Anh1Rgl5IMkSVy4eImjx0/g8kgolEpq1axJrz59iYuL828e9n0u+X/wsycpVehMUehMgUlTeVHm54mBU2bN4UnOY9atW4fVXEzTZs1o2659QMKwZq1a1KxVi6LCQpYt/xaVSsWIUaOJizYFXEvnHr3o1rULq9esZdeBw0yZNBGVShUwMUYAhg0fTvb9u/z3xwuZNnEcqSnJfhVzRVAeiRMfG8Obsybx7udf86d509Fqw49RnxV9unRgx/4jrNywhTFD+v1ilmbbdu+jfp0sdLoXQz64sm+8kHZ8eJj9mKMnT7FgRmiR7t9QDHxp45+v73T8p584fOgAU6fPDIkbPjhFiZ3btnLj+nWGjhhJXFJK2CS6zWply8Z15OcXUqdBQybMmIMuTN/AF4+8NmcnuXj+LJIkoVZryKpbj4FDhqHSRX5P5PVlfP/2XY/JoEWtV+JKiJMl3CX/MU1qxXPFwHmzZ3Hz9h0WrduGy+WmW7du1G/c1D92BGjVojmtWjTnwcNHfLroa5KTEhgxeCBqSvtUCo+TEUOHYPfA4uUrSI6LZdjQQAszl6BCpVIxdeo0Ll+6xPvvvcfcefMwGCoWQypKpGTWrMXgYSP5+MMPeOW11ytlmyVXXkU61rgJE1n7/XdYrVbad+pcZnuRSBq/LR0KUEd2jfBdlyRJLF2ymAGDBpdcT8UUP5H6cxceFYUloJ6HzDl/5hRut4sGzVqFrPsNxcBfDBUhZ3wV7b+SJOksgCAI/wH8Ca9vZDFepwM5YvEy4xWCJEkeQRDeAb4VBGFhRfc7e+0WWw4eZ3y/bqSnJkXc7sDpC/x0fi0zhvUhxmRECOpkKosecffBI1btOkb19GrMmTHNP+tSTq34Eu0nLlzh8P69iKKIKSqKes3ak5RaSvCUZXMWXIMmmKCpKJRKJR988AEAc+bMoU+fPrhcLi5dukTTpl7lkNPpRJIktFptQOEmQVAgmFLBlIrkcSEV3kX0OBB0cQim1IBgpijZTjRn48k5j2BMQZ6+00bFo9BFo67WBk/udTxF9ykUPQgKZQBJIwgC+oyWuAoecH/3EoxZ3YhLl80wKoGcoMk+tpG4Om24T2gNGh/kJE2dtt25dGAbd8+fIKORl9X23fvnUdEAaHV6Js1/k/XLF1OvcTMaNGtZoTo0PqKmsmqaS5ev8OPWbbz12oKIHsLPo5R5HkLGhx/3H6Nx7Uyqp4XWwgn3fFarVo1/+Zd/+TV6TL50MVASPUiWInYdO83Za7eZNqQXcalVAtQ0PlsnwWlh7Y6DPHmay/wZU9EYo8HjDPH7vn7pAjt37qBeo2ZMnDkXh0fy28JYXR6vR77TTbHdxbVzZ7hx/hR2lwj6aBIbtMWjNGAutPtrzJgL7CHEjNtmxm23hCVlKovnioEKJUJMuvdeumx4nl7GmuNBGZOOy5CAWm/yEzXok1DHVcd89yyC6zC6qk3RJXu9eH0kDYZ0Elqm8/TCHgS1htSWvXDa3UEkjYrqXYbz8PwxDm1YQftBY4gyaGR1B7zb+GZfS5LE6kUfM3rSDIwlMzvLImicosTkqdP48vPP0Op01CzxCwYZGVMJezOftZkPKYnxvDpuMB+u+IFRvTqTmVi+mq8i8BE1wSTN3pMXuHL3Ia8O71WuBVplCJpIkBNT4YiacMTVFyvWMrZvV4xqIeBewe8xkF+gHyhJEtt/WIu5uIjR0+cRZSglDeXJa4/Hw8rlyzAYDbz+xhto8IDbgeB2+J99weVg1/6DnPjpOD0aZzGvXwdvnSUZMeOy2HBb7XhEkX1X73ItJx8BgXinQGdjLArcOD0ubJKHBzY3ZreXmJHXi4kE+fryBonwfPHvdK4Nk0pBbbUOk0rBI6uT1QWPkICWWhMZZj0akxpttBa1UU1PU5yfpLGehqElJI0cHTNSaFUjjSU7f6JBZhq9Wzf0q2iwW1HoDOiAt4d3Z9W+E1y9dp3hA/uW2qBROuT0vR3FdhtfLVrEgldeCamFFu6+KZVKXn3jTf7+3ruMnToLnSnGP7OwPEVLRZBcow7NtCZ++OpDeo6egikmLuK24YiacAR8WdizaQNalYL2A0eGXR+JoAlO8vjuUXnPYCREGuRLksSnH3/InHnzw/ZTf4+BP38MdDpdfL1qPdEmE//0yqyI99VitbLw2zU0rJvFH+ZOC5tYF0WRdZu2cf/hI4YN6MuwoZHre9g9sHXrJh4+eoRCoaBBoyZMnjI1hMQJR8hEep6Cn8+I25Usf54YCJCUnMLYiV4r0rOnT/PJJx+j1ekYOGQo8fGl8U0XFc3E6TMpKixk5YpSksZoNPrfNY9Sw7DRY3mcnc3fPviQXj170DTIukVwO0itlsGf/vgHvlz8NY3q1KJjuzYh28hx4/YdDh49zuQxI8Lei2AYDQZemz6Bv36+mD/Nm/5CLc4AenVux9lLV3n38yXMnzUDrfbnU2t4PB6+/GYF9WtnhShSXhbYbHaWrFjNn1+fF3b9bygGvpTxT6MQvOTp0q+p37Ahr73xln9dcDzJefyY75Z/Q49efejZp29IfHF6JBx2O5vXr8Zus9J/6Ehi4uIjHru4qJDd27ZQVFSISqWicbMWjJsyI2LOJpLllI+Y8dUhAa8yzzfm0OBALavJJ9/uuWKgWkfN2nWpWbsuHoWaPXv3sf2Tz4mNjWXU0EEBxEnVKmm8OmcGDx494pOFS0iOj2HU4P6oKFV96JQwd/pUrly5yn//9V3GjR1DRnq6/3p851+vfn3SMzL47NNPGTR4MLVrByotgnHkyBGKCgvp07dvRAJB/lumVqlCv0FD+PzTT5kzbx5OsQLEi2xylF9pXIJgdcrYcePYv3c3q5cvZcT4SRHf42DLZTl8BI1GFAKOHQyr1coXn31CvwEDqVOn7jP34cKd14tS1jx4+IhTx48xeebcsOt/QzHwF0O55IwkSYWCINwmPFUnAWeAFr4FgvdONwPWVOZEJEnaLAjCMbyyxjIhiiIfffcDNaqm8s600RG3K7ZYWbhuGy3rZwXMvPUlpoXkDB5kP2bVxm1USUnmjQmDIC6weL1PzXA9p5DtW7dis9moVasWc2dOp8gd+ML6kvU+1cXtAhuiKBLrLuD46fMU5jxEkkQEBLILAxM5+cWlSUpbUWnnzFoYOBHBXvAYmMODBw+YOHEiCoWCKVOmUK1aNbZu3UqPHj1K28zPp3///phMJuLi4vjmm29C7pGgVCPEewO1ZM1FfHIBQRuDEF2tDJLmHIqYTARtFI7iPP822sTaSC4brocnUUZXw0dByUkadWxVlMZ4zFd34rG1QhWVRGxaKbEFpQRNSqsBZB/9gaiM+tynTkSCBkqtzup36sO53Rt5ePU8Veo08q+vjIpGrpqRQ6lUMmLyTA7v3sa29d/Te8goBEEotw5NZbF+4ybsdjt/eP3VMusmVRYvgpDx4czVm9gcTto3qR92ffDzWaVKFbp161ZuzYqXES9jDHS5XPz3om/p3Lq5vxaHr2C7YIz2J6Yf3rvH1+u3MqRPd4YN6ANISLL6M2rJzeWr19i8dSt1GjRiziuv4/T4OjqBl5t99xYnDu7B7nQRn1mfpv3H8bDAFlBnxn9+do+fmHGY83Dm3cdVcB/JacHjdCCKofUDBASkkmP6/i3I7HykoPN5YTFQrUdIqIskSYjmR3gK7uA2JqOKqYbLZi4lamKrI0kStpxr2B+exZDZHk1sCi67HbVOB6gx1OqGaMvh1talJDbtRnRaRghJE53VHMFSnV3LPqPDsPHoS5RJ4WzOhkyayYolnzNoxFhSqlQFyidoZs6ew6cffcjIkSOoVq1aaK2GZ7Q3AzAZ9Pxp6ii+3riT67FGerUu3zdWtEee7amQzSjzkTSiKLJ45zEy05KYMyy0To+PqAkmaSIRNMGoCGFTnh2a5LSxae9hGtasRvWqqf7jy/F7DPz5YqAoSVy+cpl92zbRrd9gqmXWRF2iMANFwKDjyqWL7N2xldHjJpBeJc37TQ26igOHjnDs5Gk610nnzWE9EO3WkN9TkiRO3c3m0Jnr4HLTRK9nfJ1Mih+ZcVlcATVmfMTMY4cbp+i1JyvCRT4uHEGKmfAXCCpBwF3GDLnniX/3bC40CgGTSoFR6e3HNlJF45EkfrKY2Wcrop01iiyzISxJs/XUFdxnlYxsUANTTGm/ShttYEabBpzNyee/vt3C1B6tKZnIGUDUjGxdj7P3n/DXDz7hlekT0JlivIRoidLTd9UJOh3jJ0zg3b/+hZlzF/jth8oaoKpUqhKC5j0mzZ6PWmcMGFwHkzTyOjAVqR0Tl5TKwKnz2f7dYhq07kj1ug0D1vvUOD6EU0VCoLImeL3TYWf7d4tp3L4rGbXrh2m39BkPJmiCiZlgVCQ5UVEsXbKYkaPGoC2xfPYlNHyJiN9j4M/bDzx0/DRHTp5hyqghJMZHJgp3HzrG2YtXmDl+JCZjeFJm47ad3LpzjyH9ezNiUL+QyTvgTZbvPXqCS5evoNVq6durJ0OGhapaw6nbzGYz169d49rVK5jNZgRBIJgulSSJ4MfT5ZGbH4L89s8YP+qZY2BwYrZe46Y0adYMq9XKxnVrKS4uYvCwEcQmlk4+i46J8ZM0y5Z9Q0JcHMNHjvInYzVKgZTUVF5/+49s2bKZ/Ye/YOaUSehLLMZ891Shgjlz57Fj2xa++nYV0yZP9JMyvm18f9fKrI7L5eZvny3i1VlT0UjlT2iKiY5izsTRXgXN/OkRk8XPiib161Ctek3e/WQhk8cMp1qVtPJ3qiSe5ubx+dffMm38qDJt9/6RkCSJDxcu4dVZUyLe499KDHwZ4x/Aph838vDBA6bNnOV/z8K0ycb1aykqKmL+a28EWHP54HQ6Wb9mFZbiYvoPHUlckDWXz3bMbrezZ8c2Hj18SFRUFL369sMQHZnAkcNalM/569e4feM6DocdlUJAEARUSgGVIKBUgFISEUQ3eEo0hW7v/yWlCkGlQVKo8Mji4cgRI545BspjvEdQ0blHLzr36EVubi5Llq9Ao1QwZtRIovWl+a2qaWm8PnMSDx5l8+GXS2hYrw69evXy26YLbgd169bhj7XfYsXKlUiSxPixXmcBOUFjNBp58623+H7lSq5du8oAmUtRMNq1a8eB/ftZ8c0SJk2Y4O3Dy+xvNUoBp8KroPbF9YzqmXTu1p0lXy1i2oyZFSNlItTo8/0tVzd17tqdu7dv89nf32XSjDmYZNaY8j6YU5QC+mpyyP8O1/+6cf06G9avZfbc+cTHRAXUn5GfW2UQbJ8X6XwiQW59D+Cw21mzYikL3vhDxH1+KzHwl4QgSeX/GIIg/AmvzLAPcBV4G3gLqAc0BrYAQ4H9wOt4mfTakiQVhW2wtN09wA5Jkv6t5O+mwBHACbwhSdLicPulpyZJZ1d+TFSYTqbr0W0ADl+8wcnrd5nepyMxNeqEbud289X67ZgMOsZMCJVse6LTkCSJXXv3ceHiJapWSaNzv6EhEjy5hZUkSZy6fJ1LZ05SXJgPQL5DJCG1CmmZWRQoYwLqssgVNECAgsZXhwUIsDYrenCV4n1/CXdbKgxN8xllrpfsZzrGoQABAABJREFUBYhFDxA0Rq/lmRDY6ZAkCangFpLHiSK+dkgxbG1UPO7820j2QlSpjf37y0kaSZKw3T6CUh+LNrV+CEEjtzd7enY3amMsMbWal0nQ+FAvLZpTW1ZRrUFzkjJqhawvj6SJRM7IcefGNQ7u2MzwyTPRG0rPtSySpjz1jEm0sujrpTRr0sRbXDIM/hHEjO+dAlCnZVJotrBo3bYQqyHfduq0TFQtI39oBUE4IUlSqPbRu+67c5/965haVSIr4cLBMPjViG2+CLxsMbB6WpJ0ccXfUAd1Mn0Ja8EYzfod+8m32pkyfKA/CS6qDf4OWZHNxaJlK6hVpx7devXBJZXMHHJ7Ozh2t0iRzcGOLRt59OAB8dVqkNm8HU8snpBaM4UFdpwON06bA/PDu5gfXMFlM+M0FyC6XUgqPaKgRRRUL2SmhPPUoufav7wYKFoeI1meIOjjEUxpKEuUFGq9N3Yo1Vo8Ty8jqLSYandBbfCSAuoSuy+NVoXl5gEEhZKkZt3RaFV+gkavUxGlU6FXwe3dq6nXqgMpNeti0oXWIDCoFYiiyM6VS+jYtQeZWXUwqJX+ZKNcEi//W4XEB397jxnTp5OQkOAnaAJmZZYQNPJlchWBD3KCQ56w3nf0OBdu3mPWkF4olYqwNWfKImaCodAZEEWRd1duYUyPtmQkJ4SoaUL3Cb++0l7dwfuXEDjhyB2Aa7fv8dO5S4zv0S5knY880nQcE7n9smPgCesPH7YIty4Srj/Mocnc//OdJEnjKrNfZfAyxcCMmlnS7D/+P3TtOyggnvgsqXQqBSpBYtXypaQkJ9K7/0C0KoV/xqFaciPYCnlw9zYrvl9Nl6Z1aVs7HdFuwZP/JOA5tzqcrDlynoKCYhrEmmgSF43tSQEuiyMsMXPH6uKGy8Ydt50ijzfprkIgBhUxqNHzYgYkn0q3n3nfeUJmwN9+G42SuKJXCNwTbBThooXOREOjyU/SGJONaKM1WFUC66/dpWZsFN3relXQaqP3vdFEGxA1apYeOkujmlXpVLdUJa0y6P01aQrd8NmG3UwfN5wq1UqUjGqtf1a/pNIi6WMosrt4/29/Z8K06SQkeAuch/PVls+OLCy28PnHHzBjwZug9PbvfVZ4PkLGpwr1LvOSMwa1EpNG5X+WfOpRgKdWVwBJcmr3ZjQCtO0z2L88UAkZWlMGwlue+Qgah83K5m8+p8+4GRiiov3by88rOP5D6DdAPoiXJybKsy4LlyQITmxoFAJ79+xGpVLRsVPnUmVOSf8BoHZy2crKsmJg86wM6dD7fw63KiI2HD7DuH//4l8kSfq/ldqxEniZYmCt6unSF3/5P3RtF7nba7Pb+eyb72nTrDEdWjXzL5erZs5cuMS23fsYNqAvtWtmAoQQM09z81jzw4+4JYFunTvRoH69sNv5Em9Wq5VTp05x4eIlRNH7XOuMJrLq1KFWrSyioku/z+Gex3BJonDbNUx79u/8tZziMm0BnU4nmzasI/fpE3r3HxhQ4Bi878u9u3fZsHY1nbt2p1VQkWiNUqCgoIBFCxcyYMAA6tUPnMjm65PdvnOH71Z+z2tzZmA0GkMmzvj6Z0+e5vLlN9/xx1kTKmxX9ujxE1Zs2Mybsya/8BnKotrbX1u0bCW1a2XStUNoX+hZce/BQ75bt5E35rx45c+LxDffr6V96xbUktcZkkGdGpp/kCNSDBQEof64bq0vLvrD1Eqdz3+t3Mr/WvrDSEmSKkWIVBQvU/wDSE/PkL5bvYZ69RuEbdcpSjx9+oRlSxYzcMhQsmqX5qDkEwkO7dvDxQvnGTB8NIlJyQGWuTqVdyLE4wd32LllM3q9ls49elO1pL8SCYUF+Zw5dZI7t27hFiUEQSAmNo569epSo2YtdCVEklwxo5bc3vfdZfe/974xmX/srtYhlaho1JIbrfHZHQwiWZz6yAhbYR6rvl+Jy+Vi1PChJEaX5BdkY8ZTZ8+z4+AxRg0dRGatUAXMnUc5LFv+LTOmTSMlJTmskvLkyROcOHKYeXPn4FGGxjZfrLx8+Qo7d+1iwfx5IZZpvt9TTtAAXDh3liuXLjJu/HjCwdffCSZjfO348iFyckbez7TZbHzx2af06N2POvXqRex/BU9cCUawrd2J48e5fPkiEyZORiubXBTu3CIh3HPsO1Z5CD7PcPs43BKLPv2QYeMmEx8bE3a7jPiy861lxMCR/2vy4FXvjOlb7rnKMf0vi/lu7/H6kiRdrtSOLxkqYmsG8Be8fpK7AB1wCugvSVIhcEAQhAXAF0AacA4YUF4wDgdJks4IgrACmFbWdklRenRFObgiHGHl3uPEmgy8MsTrZydPLgNcLBbZfvgk04b2JjE2BvK9dg5CsrdYvcvlYv3yJdzPfky3PgPpuaBUrhpsQCZYC/hh6w4K8vMQBAFTcjVadezql0LKLc6SoEyLs4oguJ7L80IS3UjmbISoKn4SRdDFotTFIjnNiE8ulZA01f3BUBAEhLiaSG4H4tPLCPo4FFGlftiO4jxQRaOOT8R17xjqtCYIagNFD676r0EQBAw12mN/dAHb/dMAAQSNj5yKTTaS2KQ7uef3U3jrLNCkXILm8qMimvUdydG1S9Cbov0FuH0oT0Vzu8BWLkFTvVZtktOqsO6bRbTp2pNadb2dg+dR0axet54mjRpFJGaeFc9KzAS/N75ln6/ZwbxBXcOu921T0cDyS0EQBB2wD9DijXurJEn610o08VLFwMQoIyqXA0mWRBf0Rm9iWKPn44XL6NCsPkN7dUZQKgNr0AA7D/3ExWs3mTNrFiqDd0aGvNiq1WJm4/q1FBYV07xrb1p07++3NSNovmP+o4c8vXgMp9WKxwOSLgVNlWao3G6U1sIAKzPhOWzMfi5ITguSy4xgSPbHOIUxBYwpSLY8xCcXkPQJKKLS/HZsAKqURnhsBRSe3YCxeivUsXLVpQ5Trc7Yn9ziwd7vSOswHAiaTKBTUav3OG4f2UxhsZk6TVti0qnC2pz1GjuNXd9/jVKpIL1GVsnukRU0bgQWvPo6f3vvXd5+603Q6SpVf6Yi6NS0PrWqpvLf36xjysBupBmfz97CY7PwyQ97GdezHdWSvN/PsmrTgJcIiWRzBs9O0kQiZSRLEW63h9UbtwaoduW2ay8CijI8qsNuXwn7tufASxMDDUYT3foNDkiUyxPgNquV5V9+zLAx48msHjqIliSJ79eux2G18Md501DYikKUMjmFZtYdPY9SITC8XWOiFQK2J/lYHuUC4Chy4rK4sBfauVlg5pTVjNUj4vJI6DwqMkVjyMzwlxXZogMBAafTmwjTKAQSVToyFHru2h2csGfT2RlD3RL7eKfFicaoYURCCjfcNj7cc5IB1auQnhyL2lhCUEcbmNqqPofuPWbhtqNMat8YbZQBt9Xm7R/oDMRGGfnz9NH8bdUWhvfuQs2atRBcDq/VWUkCWXA7iNZp+dMf/8B//+WvzJg5C2NsXMAsR8CvHPRBbzAwbuosFn/2EbNffROX6I2ZdreIQa3E6vL4n5lgNY3vuQquP+MlVWS1JvoO5v71y/z49af0HDUZt0rrVUCWxHCTVuVvT/58Bqt0fMSMx+1my7Iv6D9pDlq9wX/MyhIzkSAnT4L3rcgMTN/3JScvj4uXLjFz7vywiYfKzuYMhqBQPEMM/PnslWR4aWJgXEx0mcRMds5TFq5Yw2vTJxAdVTre8b1XLpeLxd+uIi01mT+9WmpHIidcbty6zaZtO4mPi2XypEkBM9PldaFEUeTUqZOcPHECSZLQ6A00a9acyVOn4RFCichIz0fwsxm8nTzZ9LxwekqTbgCnfjpKWrV0Un21nRRq+g8bjcfjYceWH/nxhx/oP3gYaVWr+ftaKVXTmf3qmxzau4sPP/yQcRMnkRgX62/fEBXDW2+/zepVq7h67SpDhgz1H9+XpMysXp1XF8zn/Q8+5JVZ04ktSXIF288mJSawYMZk/vr5Qv44dzoaTfmkRVpKEgN7duGr79YyY1zFbNEqCoXLCmoDsyaPY8/Bw3y2ZBkzJ44Nq0qoDAqLilm2ah3vvDbvhSt+XiQuX7uBTqeNSMw8N5TKSsfAX6AY9ksT/wDiExOpWTe8e4dTlLh88QJ7d+9mwetvhpB8GqVAbn4hy7/+iqYt2zJr/qv+eOPrJwCcP3OSM8cOU6NGJrPmzkWpVIa3V3U6+enIYa5duYwgCMTGxdG0eQs6d+tRIWLU6ZFAWVIgXq3z5iTLGZe5BBUv8qu3e9cumrdoQWxsLGrJjcagZebUydhsNlatWoXZYmHcyGHEm0q/A82bNKJJs+Z8v24DOw8cYfL4sWg03hyYpNJSPS2Zd954hS+WLKNx48a06Rhap6Vt86akpybz1/fe583XX0OtVvvjo9z5oV69umi0Gj76+BNeWTA/7H3VKAS/YsXpkWjYuAlFhYVs3bqV7r36hNbPEyW/jVlZdW0gPLGi1OiY99qbbFy3hiuXLjBo2Ai0KkVpu5WwIfM9V3dv3+bkqZNMnTkbQQi0WHsWYkbefkWtzOQKmUhkzpF9O2nZph3xsTFl2us+KwSVutIxUK6o+jWjQsqZlw0tamdIB98LnVXl8Yh8+uNeOjeuTZMa1ULWu9welmw/TFpCDAPbNAa8s/xL9/ewcvt+8kU1Q/t2Dyiq6IkuJQ7uP3jI+h37cLlcxMfH07V7dzCUSsp99mY+yAkagGuPi3DabThtFhxWC1fv5SCJ3sFhTm7JtoKApVhEodahUOsozi0ApRpBEPwkBxBgKxYMSXQjFT1AclkQFCqE6HQEdWgSR7IXIhY/QBCUCHE1EIKYa8lRjFh4B0EXgxBVLSQgipYnSJbHKBLqIigDP4CSJKIovosyKg1ldKA6xkc0OXKu4rEVYKjeJkRBA6Uqmqfn9qKJiic6s3GFFDR1ko0c/P5LWg+egC7M7IIXoaAB2LPlB5wOu9/m7FnUMz9sWE9sbCz9O7Uu81iVVc5UlpiJRLj4sOX4BZJiTLSs/ewd0rJULj+XcqZEYm2UJMksCIIaOIB3Rs6RSh3oJUFwDPR9wCw2Bx9t3MvkAV2pVjKzRzBG+5UAhXYXX6zcQLu27WjXumXALBynR6LQYmXF8uW4RejcbyhKgymk5kx2oZ3b165w7eQR7C43Lm08xvQmeFDjcrgDas1Ycx/4iRl5fRlJEsEn3RZdSKIrVCwvgKBQez0gFCpQqEFQVGoGoOR2IBXfR3I7EFRabwwMjm+ShGR9imR9gqDUIsRmhqgBJetTRHM2gjEFhTEJhUrjV9GodEbEwruI9iKi6vVGUChQ6U1+FY1KcFF4YbPf5gxAo1P5FTQmnZpbR7aTkJhIg9YdADDpVP7Enjcpp0CSJHauXEzXnn2pWr1GuQoajUKguLiYRV98yltvvY1KpQpV0ASpZ+S1Z3zqmUjKGR8h4fGIfLVxF9XTkujVOCvkN6iIekaSJL7YfIAujWtTL730uxuuYxZJTRNJRfOi8eXaLQxo05jUhNiA5ZVRDpUTA0/Yty+qnHLm/mMaTf8fP6ty5mVC7UZNpb+v2hawzJe8fvo4mx+/X8aMeQswGk0hievCnId8t+wbRg4ZQJ0qiShcVgSXAzH/MaLdwpPsbL7duo94rZJhbRqiK0mCua02PzljeVzA4SsPOfcgD4/DQxJq0gUdFrfkrzOT5yybmhGRcCHiLPm/O8S40Vt9V4UCNQJqBFQoUFK5AY8FN/ew40bEhIp09CFtSEjcx04BLqJQUR09AoLf+sygEChQO8lXuOicEE/NxBjUxtK+nkeS2PY4B6New7CWWaiNugAVzYOCYlafu8H0Tk2JM+rRJ8X71TPKuGQwRPHx8jV0b9uShg28yRafgkY+W9TqlvjLX99l1uw5xMTGhsyS9EE+iL5/9w67t2/x+2H7tre7xQBVjNXlCSBj5GSKnAT0fQsDjmezsmvVUuq37khmvUYh1mZyRKoz43a52LT0U7oPn0hUXHwAefMs5Ew45Uw4cia4DXk7kQb/n/79PabPXeCvNxGOlPHdXwgkp3z3uFVGXMQY2KJOpnT448rMnYENB08y5n99+LMqZ14mtGrSUDr644qw685eusqeQ8d4Zdp4lEplSH2ZMxcusX3PfqaNG0ViQqklj49wuXn7Dus3bSGrZg0G9O6JMthCVKXF4/GwZecebt++hUKhoGGT5jRv0cKfUA+XlAqp8eB0YjEXU1xcTH5BMQ57aV/D94qJghK90YjeYMBgMKIzGEMIgOCaAHLY3SK3r1/lxJGDWO0OatSpR4dOXUIS/06Hg307tvAk+xH1GzelWZv2AevVgsS2jesozH3CwGGjSEjyjlF8743dZuPbpUto3LgRHTp1DlGgnT1zmgP79zF/3ryQOi1qyY3D4eC9v/3dO8M8vmRSiUxF4+uj5RcU8tmirypVT+bwiTM8epzDiAGhNrHPC9+z9fjJUxYtW8mk0cNIr1qlnL3Co6CwiI8XLeUPC2b9rLVsnhcul4t3P/mSd16b91yKJE1aVmTlTM92Fxf/05xKtfefyzfyr1+t+dmUMy8bmjZvIW3dsz/sun17dvMkJ4eRY8aGXb9/724uXrzM+MlTEUpsvuXx6dzpE5w8ephmLVrSsWMHv/IaShPkdpuNHVs3k/v0KWq1itbtOpBVp26FnwlJknA4HDhtZhxmM2ZzMQqXDcHjArcTweNEcNtRG6IxRsdiNBgwxSZgiIkLqzDxQT7Ok1RanCi96pTjx1GIHtq1a0uzpk1DzrOwsJANGzdSWFBIr66dqF+vrndFSRyyWm18t2Y9osvB+JFDMBpKFc4AT4ssLF66jAEDB1O/RF0pt2vcvmMHdx8+ZvKUKf5j+9VCQG5eHp99tZS33ngdna60fmQwrl+/zvYdO5k3dw5uhTcGRqpH6Fu+ZeMGEpOTadWmVOFXVn+pLKVLJLLi2pXL7NiyiUnTZ5EQF1PaXtC5lUV63L19i+1bNjFj7gIEQQhR9ESaABOOjPH1v+SOApVRzwRDfi55ebmsWbWaKTNnl7ttWSru6glREZUz/3v6iFV/njCoUuc49T8+57tdR371ypnfDDljtjn4cMNupvZuT0xRfsA6Q2Ym1x48Zv2hM0zr04HEmNCk/Ok8J/tOnGNMny6kp3o7XT4lDXg/xj8evcidu3epmpbGgH59cOlLCRm5vRnAo2IHj+7f5eqFs9y8/whkQfCJ2YlGb0CjN6LVG9EYjNzN83ZKJSDnqRVJEinKKUR02RFddsxPspF8HpT4as8IIChwo0LQxYUQI3JIHhdS0X0ktw1BpStJUqpDtym4CRIIcTVD19sLEIvuIxiTURiTQ/YVc6+gMKUiGBJDji8W3UOlUqNKrh/yQYiuWgdn7m1cBfcx1uoUlqABL0nz9MwutLEpRFX3+nyXR9JkJeg4tGoh7UdMQ60LJVteFEFz79YN9m75gdmzZxMTG9n7ORw5s2H9OhISEujYqXRGga/WUThUhKCJRMrczc4hIzU57LryiJknhcWsO3Sa2f1DZz6UB+vt0rYTX/vLP9TWTBAEA15yZr4kSUcrdaCXBC1qVZMO/PsrAcqAh7kFLNt7kleH98YU7x1wy23ODp29ysnzl5g5eSzaqPgQifSmzVu4cu0aw8ZOQGeM8Vub5VgcWF0e8ovMHNqxmYfZORhTqxNTuyXZRQ5/vRmnw4210IHD7sJlt2N5eg/n0zs48+7gsRcjekoTVoIgeMkWhdpLOitU4Jth6f8mSUii20vilBA5khSa8BQUagRdLOhiQ0gVOSS3HanwHpLoQtCYEKKqhpIwLhtiwS0vkRNbI8TSUTRnI1mfoohJR2n0PqNqvclL0DiKcedcwlS7KypjfABBo9GqMF/bgy42gZjarf02Z3KC5u7JfRi1amq26lKyLDxBs33FV/ToO4Aq6dUjEjRyefTTp09Y8c1S3nzrLbSCtwMXTM7Il5VlbRasLpArRg6fu8KJc5eYPag7GrVKtk34WOZvyxDFZ5v20aNpPepUC+8tXhmSxrt95HVlxcBwkF/j2Wu3ufP4KYM7eUNNMCETfK3B98sH47j/+Ts58xyIRM5cv3Sei8ePMHnmHJRKZYC/skYpsHnjDzjMRUydMBal6EKwFfrJGdfTh6z4cTuW4mImdG6GVq0O+P3cVhv3bz9kw6Fz5D4qoLakpUqhhN0lYi4ZGBW6vHVmzG4RpyjhQSIPJ/m4QurHKAA1CtQo0JQQLwKBHLWEhEtG3riQEMNYvmtREI+GGH8r4VGMm3vY8CCRgIY0tAF1vQAKcXEHGzGoyCghaeI1SoxKBVV0Si6LVgq1Ij2j40kJsiy4h5OjRYVMaVuP+LgoP0EDgEHLkiPnaVsjjbbN6qIy6FEmpCLojSgTvH2+Ras20qReFq1LLILkBI2k9w52LS6R9997lxmz5xEdExNC0IQbTN+5foWfjh1j1ITJQHiCJpicAe8zFY5okVuhyXFiz1asxUV0GjQKi6tiuimTRuUlZr7+hO4jJ5OSVOp17zsfuc2afIANZatmgpNJAHaXyKMH9/02cuEgH7gH389dWzeTWrUqDRqV1hsLJmUg0Dou+HoButRK/J2ceQ5EIme27TtEbl4+44d5rYXlxIwoiiz+9nuSkxIZ1KdnyL5Wl8jS71YRHxvLyKEllpHqwCTZrQfZbN26DUmS6NqrDxk1Aq2bgkkZm83GyZMnuXnjOi6ndwzrT8yp1RijotAZTF4iXa/HLeLvAzo8Ei6Xk4KiYmxWC3arFZvVgsfjfbY0JfWyJEkiKSWVrHoNSauWHlZx4Xseb1y5yJljh5EkiSat2pJVv1HImPTCqeOcO3GUJq3a0aBZS6D0XVSKbjatX43NamHM+El+eyLwvjeHD+zn5tVLTJo2A7VaHZCYKiwoYNHCLxgzdjw1wig6BZed9//+AWPHjCajJA8Rro+Wm5fPl0u+5k/zpldYqbLzwBGcLhf9u0cev/kn5KgrR4z4njFRFPn6u9WkJCfRv2e3SrWRX1DIJ19984sQM1arDYvVSlJiQvkbh8EXX3/L0AF9SH7G/X34nZx5PkQiZ1Z9t4KU1BQ6d+0ess5ut7Nk4Ze0atOGxi28k2Hl37j8vFxWrVhO3QaNaNe5W1g7q9Nnz3H44H5UGi09+w4gOSVw3BKcUC8qKuTsyZPcvXMLscTizAetVovRZCIuNobYqChMei1qQQSXA9xOJLcDp9OJ2eHGbHdhtVox250Ed3PcIqSlZ9CgYSOqpaWGJPbBS4SIosjhI0c5c+YMarWanj17ULNGDf82gtuBJEls2b6Dy5cuMrBvb+rUqhnQTnH+U1as+QGj0cC44YNRaEu+MWodolLDmrXrcLqcjB8x1H+tPgLn+t0HrFz5HXPnziM6OjrAyg28dusffvo5r772mr/GoPzcfG1dvXqNPXv3Mn3OvID+h88eDsAiKgP6PmtWrqBOvfo0ahLoThNsRVYRGzIIT3DY7Xa++epLWrdtT9MWLSPuGw53bt1k57YtTJ9TqgqKpCYtT0UarAYPzhU8zckhKjoabUmOojyyJvhZ+vD9d5mz4FU0Gk3ZqqMybHJ/J2ci41dJzjTLSJV2vjPZ//fD/GK+O3aBud1bYggj9d16/gaFNgejW5USA4bMTAByi8ws23WURplV6dGsXoCSBiC/yMz3h88jSiL9unUio1GgssGsKO2U7D92kgtnz+B2uyhyeEitmk7dxk2JS0jiTmGgj6zc3gwC689UtPYMeNUxjie3kOz53kRmCRSGJNDHh2XwvUnKu0iiC4UpDUEfWMxM8jgR828iCAovSaMI7PyJxQ+R7AXeejNBBI5YeBfcdoT42iHHluyFiEX30NfoGJIUja5aB1fhQ5yPr2Co3c0rC42gonlyage6xGpEpXuZ+fIImpqxSo6sWULHMbNQqsPPNiiLpKkoQeN0ONi9eimpVarSpHlLUqtUDbkHweTM+rVrSEpOpkPHTmHbDEfSlEfORCJmcguKWLfnMDOHBXo4lkfKWG/fRpIk/r79GAt6tkL9nEW8/lHkjCAISuAEkAV8JElS5UzNXyL4yBkfztx+yOHLd5g7vDcKmSWIoDciaA0s+WEHVTPS6du9KxCY9Lr5IJtV63+kc88+1G3UJKTuzPlrN9i7bROCWkfdDj2wKIz+mjOPCmx+csZusZF75SyWx7dxWcy4XTZQR+HyKJAqOdu7MpA8LiR7PtgLvIocJK8K0JSKoA1vayU5ihGLH4AkoohOR9AGdgIll7WEpNF7lTQyksZbc+s2iC6E+CyUal1pLRqtAc/TKwgaPVE1O6AqWa7W6dDq1DhyLuEpfkxC8z5odeoAggag6PpJlC4rdTr0iUjQ6FUK1i75jD4Dh5JaNT2k0xWu9sCDBw/4cf1aXnn1VTQlZksvUj3jQ15ODl9s3EPzrOo0zcogOS46LDnja0OSJD7beoSeTWpTu0ogqR/OkiyYpCmvJk0wzl67zcOn+fRr37z8jYNgLyzggzXb+eO4AQHLyyNk3GF8nWNm/N/fyZnnQDhy5uKRfRQV5DNk5JhQdYHHydJFX9C5cxdaNm+GUeFBcDv85MzxEyfZfeAIo9o3Jj1GH/CbSpYizt15xO5TVzDaHHSMi8ZxpxDzI7O/zozZLVLoEsl1ubnitvKwRCWoAOLREI8aNT+fRYsdD3m4KMSFhJfg0SBQBR3GMCajEhJ5uHiEHSUCNTCgC6qFk4+Lu9iIR001dGgVClK0KqrqVeiUAgddRcQolbTTRfv7ORqTGkxqtlrzaVY1gQ4NMwECSJqttx9iNOkZ2r01gjEaZVwSCp3R/75/u3E71VKT6dKhXVj1DIDZ6eH9995lwSuvojWYMPvqtbilkIGiLx6ePXWSa9euM2iE144wkoKmLPiIBbnaJpigefLgLoe3rqdu8zakZ9VH1JZty+B2Odm34kt6jJockOyLRMxA5FpjwZDbaviud+OGH6hVpy41s0L94SPBt+/TJzns3vojoydND1gvTxSEI2WCZ3ACDKif+js58xwIJmckSeKb1T9QNS2FHh3bAoHETH5BIZ8uXhZR2bB5zyGuXr/BlPGjiY0pnfWLWockSezdf5BzFy6QWTOLvn16g0Yf4PPvQ27uU44cPEj24xzAm3xs3Kw5NbNqh026y5NPkZRX5UGvUvD0cTbXLl/g0f173j6aJBKfmEzrDl1QlTgnyJ9JURS5ePIYl86dISo2jrY9B6CVES0GtZILJ45y5exJGrfpQPPmLQOeX7fNzOrlX9O4WUtatPWqbHzvobUoj+VLvmLYiBHUqFkrIEEliiKLFy2keYuWtG0dmrwTRZHPP/6Afn36UKdG6QTR4H5abvZ9Fn67hj/Nn17hwso/bN9DlMlIt/ahDg3yyTjBqAhZI3/Wjp8+y/4jx+jcrg0N69ZBr488Cx4gL7+ATxcv44+vzPZbIv2c+HzJcsYOH0xMdOXrdZw6e55HOU8Y0Cs08V9Z/E7OPB+CyRm3283Czz6lY7ce1KkXaHemUQrcuX2L9WtWM33WHKKiowMS8B6Ph41rv8duszN8zHhQaQKIGRUSW3/8gQcPHlCvYSNad+iEK0x+XKMUeHD/PkcPH6K4qBCAqOgYmrVoQWq16mWSqfL6MxqXJaD2THAfyGf75atBIooiN2/f4fKF8zzOzgZAgUj92ll07NQJvV7vbVMGp9PJ9l17uHnrFhnp6Qzs18d7fiWxRhRFfty2gxu3bjOkf19qllj4+c7p/sNHLF+9nsGDBlKvQaPS8wRu3LjBmtWrmDF1MokJCQHnbbfb+fCDD5gwZiSZVVL81+nbxuaWeP/Dj5kzdx7xJRNN5RZvvu3OXb7GoUMHmTRtpj/2ypU4kkobQtAsW7yIth06klWnbsi9D7g3FSBnysLu7VvIeXifNu07UKt2nbAqR/kxr1y9xp4d25k2Zx5y0X1lrD3L+l4G9yG//vTvzJj/WsBEhvKsyXzfsR83/kCNGjXIqt8w4vHk2wdD3l9IizX9Ts6Ewa+enDl9N5sTtx8xvVMzFEEPgiRJLD10jkZVk2iRGZro33flDjee5DNr7EC0QS+OOy6NZZt3IwgC4/t1xZhRWuvFZ3Fmt9vZvW8/V+5mIwgCTZo2I71eE/9LWJ69WWUJGjk5A0S0N5MkEen/Ze+9o6S4si7fX0T6zMryFld4Cu8ECO9BIAnvBMLIYISQ7f6+npn1Zt7MmzdvjWkrb5EXCGEECCNAwgsEEt7bwhRVlDfpTcT7IzIjMzKzDJK6W+rurRVLVLiMjIx7496zz97HWYbsqVRUMEarYkcWmyUuy8iOEmR3hVr4OppMkANepKorCOZURHtz7bGqUiYPwarNHpF9DqTKq4hZXeLVNwEPUvkFLG2Hxm1Lbt6RgKMMz53T2DqMVK8lEUnjvbkfe8sCrDmtgcYJGp+zFsfxrxg084l69/k5CJrcJCMlxXc4f+YUxUW3kSSJJLudtu07YjSayEo2YzQY0ev1bN3yJb1696b/gIYLKcYSNA2RMw3ZmL25diuLJo3FFEVgNoWYAdh2+gptMlMpyItXRd0rGiNnzm94a1b7lvcmizfc99ANoDxq1VuyLL9Vz2ekAhuAZ2RZPnNPH/QLQe/WzeS9//eTAOw4dRmHx8esEcotDQe5RLOVQDDIX77YzcwJo2jTPFe1OAsHvVZv2gY6IzNmzSaoM2qKzd0qLmfD56uxZ2TRd9QEqryKrZmSwRPgdpWbysoqLh3Zj7uqAkkS0aW1A1seAa9PsTRzO3BX3dVYmv0toNTSuovsrQVkBHNqXP8Gob6y5hayr67+vqzqOqK9Wfw2vwup8jJiWnt0IVvLsIomUFuM7CgmuetEDDYl0BEmaCRnCbVXj5A3eDomi1ElaADsZj3Om+eQ68rpNOSBBgmate++ytQ582mWo6hAGiNorl65wg9HDvPo/Plae7OYST/Eq2eaSs4ASC4H1+6UcuraLcqq6wj6vGSlJNE6NxOjXodRr8fgdxMISmw8cpYpA7rRLrfxDMRosuZelTRhvLxmKytmTmiS7UCsKubtL/cwfdh9pBrjg+yNETJ+p/bvRvrAH7wHPrsncubyrWK6PfL8Pw05065rT/mVdQo5I8syu774jNb5rel9/5A4srKutoZPV77FwicXk5WRjlEUVHIm6HHy9ltv0im/OWP690B21hKsUoKKksdFYUk5G/Z8R7dWuQzKS8d9twpXaRWVVypwFDuoqfRQ5PNxxu+kOhBEkiApYMAs6+IUKX9reAlShAcXQUAgByOZGOOuy4/EdVx4kWiNFXsMmVOBj5u46YCNdNFAjklPkl4kxSBSFPBywu9glDkVi6AjSS9iMeqwN0vimLcOp0VkRvd2ah0aUIiaH8qrKJMk5o0egC4jV7E2i8L6rw+SlZfH8MED6yVo6rwB/vLnP/H0cy+C3hDnw53IvuHQgf24vT4GDx8FoCYgAA0SNImsyMJqG+VY7YRZCga5U3iFm5fO4aqrxRuUSM9tTkpmNj5JRGcwoNMb8DhqufDdXkbPmE9OVqZqZRZNzET/fa/kTDTC9+Xt119jweKnmrw/RAICH77xEnOfXB4XYKqvZk99wQKrQdcwOdOprXx45f9s9BqjsXHfUWb9p9//U5IzgUCAl1Z+woSRQ+ncQclyjg6WF966zdpNW3l28aK44LfT5eK1lR8xdvRoenaPCbYYzBw7cZLd+/YzathQet3XH4gPDBZev8bB/fvw+3ykpqXR9/4h5OTm0hQkImcaa5P1WQOGEW4vN2/f5tjhA9TV1BAURHoOGELz1m3j2m1dVSVHv9mKLEl0GzGRnKzM0HmU9nbmyEFuXTzDAzMfJScjXUPS/HD4IFcunGX6o4+TZFburVEnYNTBhs8/Iyszg9Fjxynro2IUGzesJyU1lREjR8W1X1mWefeN1xg7ZjQdWkcpbGLGamV3bvHx+s28uGRhk62UPl63mb49uqrPSRg/lZwB7TPn9Xo5e+EyZy5ewuVSxpMd27UlLTUFo9GA0WDEaDBQeOsWx0+dZfnj8/8mxIzb7eHTdV/wxKP3PlQKBoP86Y13+e3T90aa1IeGyJlHxg059/5/eeaezve/PtzAf3lr9T8lOVNXW8ubr7/O3IWPkZkVn9x5/PujXLl4jrnzI20l3N/cLS5m1ccfMXnmnDhFqVEH3+79hisXzjF1yhRat26t9nvhc8iyzLkzpzl29AgiEs2at+D+QYNJSU1NeN0N1QoJEzThMWq0cq4hciaRetiogzs3r3P88Lf4HNXYrFbGDR9MXst4W/rCGzfZsv0rkq1mZkx+SFNfTJIkvvhyG2UVFTw2bw4mMfJZsiyzftvX+CSYPWOaRmkZcDt48933GHT/APr06qm6dADoJT9vvPkWwwb2p1vHtloSCvCj4w9/eZklS5eRlpaWkJzxC3rOnjnDyZMnWThXsa+L3S9s2R6+R7Is8/rLLzH9kUdJTUtv1M61vuSB2GPC54ne3+Go4+K5s1y9dBE56EcURToWFGBLsmM1GzEajRgMRs6cOklVZSXTHnkUQRA049hEiS8/BtFjyKuXLlByp4iRo8fE7RdL0MSSM9VVVWxYv47HnnjyR18LRAiahsiZ/2fJnLW/WzD1ns678L+9xOqdB/9Fzvw90D0nQ944dzz7CosJpiUxpY+ioKi5WqTuI8syH5y4xLD8PNqG/FtT2jVXt63+7izN05IZ1knJTAkraYJBifUHj1Fe62T+7OmkJUcC9kJ2KyWD6PD3nLxegs1qZfiwIWS37aK5vmiLszBBE/D7OX7pGmVFt6itrsDrclFSHRX8EQRKaiIBnKoaj2KFJst4PAI6UxI6sx23V0A02e+t9ozPgVR7G2QZMaUlgjGehJBdFUh1dxCTm8cpaSRnaVRNGe3gSaq+AXIwZAEURexIAaTSs4gZHRBi/I7loB+p7CxiVlfMqfE2NlZ7Mt7SS9jaD1PXxRI0sizjvrSNzF6jMdqV622MoKm5fZUkdwldh01IuP3nsDhLVG/GUVdL4bWrWIUgPr8Pn8+H3+fn/oEDSY7OUKsHPxc58/rnW3hq5oPq300lZjz+AO8fOMmykQ1LNGuuFuENBNlx9TYPd6q/Jk27P6/6a5AzTbY1C33O/w04ZVn+/T190C8EYYJ6zRGlHxvcoaWanay3Kv/3Giy8tHkfTz40gqzcXI3FWUAw8PIn6xg9ahRdu3VXB31OSUeN08Wa1auQ0PHAlJlIOoNqbebyS9S4POzfuZ3SO0VIRiv6/N5IxmQcNR783gB+TxBHdR0BtwOfqwZP1V38bgdBnwt8TmSfA4JepdZM1PsnNmgoI0fW6QygM4LejGC0I+ibNlkEpa/AU43kKFZqb6Xkxx2vENXFyO4KxNQ2cX2kVHML2e9U1IJRJLcsy8iVl8BoR7Q3U2vR6M02JJ+TwN0zJHd7SO2jwgSN7Kuk9uI+cgfNwGQxxRE0dddOYgh6aNd/ZL0EjRGJz995hQXLniEtSfltYz1lY+Xae3btIDklhaEDQkReI+qZRNZmECEjEpEziay+SqvruF1ehc8fwFtXiy8QRJJlRnZrh0F/b0q8WEVNUwsGBoJB3tu6j8UPNz3jMaygKKqoZt+pSzwyUglONUTGFFfVcebabUYUtI7ZJzLJyv3dK/8iZ34C2nXtKf/v1dsIBoNs/fRdBg4fTat2HTXBbLNexFFVwWcfvcdTzz6HyWTSZCa6y4t57fXXefyR6TRP0iP73MjOWiSPk/K7d1m1fR95GSlM6tEGURRxl1XiKqnE73RTfLGEbRdvUV7pxCbpaK+z4AsIqr3ZXW8gcc0FJBwEqCOADymkc2kajIiYELGiIxn9PSlxZGTu4qUMH2Z0tMYSd7yETCEuHATpRBKmqO0yMpdxIiLQDisZRj22kKWQX5Y4LtdSoLPRTGcixSCSZTVgTDJQlixwzFHHgp7tMCUpk/ZwPZqLPh8Xyqp5YvoD6NLigylr9nxPu5Z59O9/n5pQELSkaQIUpdV1vLtyJUufeR6/1LByJjxpXvPxBwwZMUoNwoQJmvoIhvoCwQ2RM4nOU1lSRF1VBXVON4GAn6Dfj85goF2vAQiCQJJJr/btYcSqZ5pabyYRfEGZotu3OHXyNKPGJx4DR+8bRjg4cOLoYTyBID3ui08mig2gn/j+CLbkFNJatI3bV/leIjN6NP8XOfMTECZnHE4Xf3n3Y5bMm0FWqH5MdJD8/KUrfLP/W5Y/Pj8ugH/jVhGr1m9kxbKl2Gza9+j1orts2PwlvXv0YOTwoXFBwcrKSjZu/AKX20ubNm0YOnyEqoyprwiyLMvU1FRzs/AGd4puU11TiydUZ0ZpSjIgEAyNC/1BGW8giCAIiKJIUnIKSckpZObkkdeyFSZTw4qM6Oey1uXh1OH9FN+8TkpOc3oOHoUuhmT0ut0c2bmZQMDP0Idnog85LVgNIl6Pm6/Xr6Jdh070HjRM0y9UV5SzafWHTJszj+zcZpp2+sOh/ZTeLWHWbCV4GE3Q7Ni+HYBxDzyQkKB589WXmDJ5coMWZ1cunuPAkWM8Pmdag/ci+ry/f+M9nlowh6SY37w+guZebM5i6xtFf+7la4XU1tXh9frw+f34fD4y0tO4r1ePhMf8NfDVN3vp0K4NbfNbNb5zDD5dt5Gh9/drUk2d9V9uZ+yIIdiT6o8r/Iuc+WkIkzPFd+6wZtUnLH36mYS1Svbu3UdFeRkPTVHaiFEXKbJ+6vgxjn1/lPmPP4lOp9ME1y+dOcF3B/cxfORoevfsoQne+ySZa4U3+Pqr7QQkmR49utOn3wDVTrc+yLJMeVkpt27epPjOHWpq6/B6lXYXCvmh1wmYdAI6WYKgX+239SYLqSkpJKWm06JlS1q1aqUmSsTV8woVpI8meZxOF9t2fk1xeSU9u3dj6OBBce+EispK1qzbQFZmBtMfHK/ZXlFZxfuffsaYIQPo1S0S95T1Ji5eucrmr75m6bKnSAo98+E+as26DWRk5zJq5Aj1/QGKyuWD91bSvaA993UrUN8xYYLHKwn84U9/ZsXyp+IszqLPs3/fPvxuB+PHjdN8bjQZ5AvKqsK6zuXl3Vf/wtLnfqMqRxKpRhqzFGushos3IGvWB4NBrly6iNvlwufzIgf9+Hx+WuXnk9+uY9yxDdnF3iuiyZnPP36PKbPmYYgiwxONKWPXG0WBN197lYWPP9FgTaAwVn/6CbMfmVtv4oBPkv9FztSDppmV/gKx6UIhGVYzw1LsGlIGQJJl3j12gYkdWtE8OZJNGw4ev3/iIuPataBXp8jL2VVYyK3KGjZeKeGREf1omZ0OznIIkTNuj5cNH3xAuV9k2P338dzch1UFDZJLtTeTZZmiWzc58cNRaqqrqPMpWYs6vZ7svOak5eSR37kbJrMVvcHQqHpGlmUkv4fK22UE3bX4is4jeeoA0CHjqbqLYErCkJSj+vnGQjAmocssULPEpZqbcZnkgjUDnTUDqeYWkqNEY1km2rKRLelIFZdCKprIwERMzVdq0ZSdQczsogYuBVGPmNNdIWFSWiGYIiSEoDMgZndDKj2DR5Ywp2mJF1ddLZaMNriuH8LaRpGLVxcXawgaQRCwdBjP3aObaDZkBjqjWVUb1UfSpLRox62jhWReu0hO205x26+UORolaBpCImIGIMmeTLeevRPWm/kxCCbnNanuTDQqqmtJjyIam0rMAKw5co7Z/bUEZGybC2Pt2Ws81AAxU+P52yoowhAEIQvwy7JcLQiCBRgD/K+/y8X8DJAlide+OszQDi3pHFId+J1uDDYLAZcbn07Hy+u/Yfn08aSm2JHdTiSUWhyV1bW8seZLlix8hMz0NKSAFzk0GDp76jh79u5j5rz5WO2p1HklPAGJJKOeuuoqDm7bTKXDSbt+wykYNIbbVW4cHj91ngA+j/I6kWUJ2V2Op+g8QVctQWc1BHwQCCDrzIrVmN4Eoh5RaDzAKMtyqOaMV7FkrCtCCmqfI8FoR7BmIOjjBwyCIIAlDZ0lTbFAq7mBFPQi2nLU+liCICDYmyEn5SJXXUOWZYT0dqqdmZjSMqT6O4eYFFHRCIKAkNEJyVGCVHEJOT1iFaM327C0HULt6c0kdxmPMVXJJPV6/JjM6aR0GUXJgTW0HDkHX2jObTHrqfMEsLftSfWFI9w4/i35vQep50wyhWsg6MEgMnn+k3y+8g3mLn2WJFOkMGL0JMKoE9SB+ogx41j51hu0a9uWZllaEj4aksGK6HchG0wNZlSKZpuGoKmvBkt2qp3sVHuI1Php6rswMRImaeqraRNL2hw5f43+ndsl3Leh88jOWtbsPMgzDw6Oq0ESjbA65tN9x3h61H0aMiYMX62Ly+XV9V7Dv9A0SLJMVa2Tb1a/w6hpj5CWqSgvwoXHXf4gZSXFfLXhM5Y88wImk1ale/XqVTZvWMcLzz+HRfYi+11KvRdnLV8dPsGNW0U8MWGwWncm4HITcHm4U+tg+5mrCP4gg/Oy0BuTI9ZmQiRAH5R1FAY83Ah68MkRU0cDAnb0ZGDEhIgeoUkKGylUb8aHhJMA13HF1bBJxUAWxoSkjYBALmZyMeMmyGWcSMi0wkIyoXEeAm2xEUDiIk5s6MgP1ZwREOhIEjX4OUEtHXyKigYgSS/SlWTO+xwUiV76kQwuP0m+IFmYGWhO4q3jl3i8Z3uMUfY73fMyMOt1vLlhB8vmTI6bwM0c0JkPvzmC2WSkR88eCICOKoKkKb+V3kRaWhrTp01j9Yfv88hCrdVWGLET7Blz5/POy39kyYpnFcKfiCIleuIbS8pEZ8s3dYIcHRxOz21Oeq6SIObwxqsBIuvCBKOofk74WjwBKa74efT3a4yg2bd3L+Mfmhy33qQXEhaaDQcEJEnihyOHeXjRU/Wqi8LXGvD7Ofn9dzy4YJnyvaL2D3+P7/btbvA6/4WmoaS0nJWfreeFxfOxWuKTx06cOccPJ07x9BML4rYdOnqM0+cu8Ltnn9JkO8uyzKefr8dgtvL8008himIkaAacO3uW3bt3k5aWxqxZs7HZEitWPR4PJ08c5/y5c8p4KtS+k1JSaNkqn95978OenIzFYtHYA8U+h+FnMBAI4KirpbS8gvK7xZw78T1+n49wla4AOtp06kybTl0wGJXrjW6nPnQU3D+CgvtHUHr7Bt+s+xidXs99oyaQnJaB1SBiNdgYP30OtVWV7Fi1kvY9+tKxVz9cfgmr2cLEuY9z6eQPrH7nVR6ePR+bXRmD6O2pTHliBVs++5BuPXrRtfd9of5CpO/AoZw7fZJ33nqL+Y8/CVHtd9wDD7B3z242b9rIw5OUdhluw4IgsGT5M7zy5z/y6Ny55GakKL+TXzuuaN+pC2UVVWzeuYeHx45I+FtEQxAEli+cwyvvreLflz+uTaq8x1oziSD6XQkJGkEQ6NiuTYIj/ra4fvMW40cNv+fjamrrcDicTSJmysorqKqubpCYWbNxyz1fw7+ghSDAlfNn2b1nD8+88JuEtaZ2f70Lv8+nEjMQ6Vu+2rIZSZJYtHipus2kF/D5fHzy/krad+jI8mefV44JEc6yLLPvwAFOnDhB8xYtmbfocYIhS9iADDoi86662lqO/fA9hdeugiAo80VBIDMzi5at8hkwcCBGqx2TyaRph9FJRGGXA1Dq7dXU1FBVVUXh9evs27cXKRgM2TjKWK027uvZnYKCTtj0OoWk8EYS75JMOmY+NA5Zb+LEuUu88sZbpKakMG3yw2o/npGezlOLn+Dq9ev8/tW3ePjBiRR07AB+DxnpafxmxTK2btvGkR9OsOiRGararVP7drTMb8Orb73N1CmTade2LbLehBDwMmv6VL7avY8NX2zkoanTNb/PovnzWLVqFV6vj0EDInaLst6EEXj+2Wf4019e4sXnn1MJgWhiBmDU0EGsW7+BY8eP06d3xLI6dr8wKWc0Gpky6xE+/+RDZs9fBMQTKT+21ks0YgkbnU5Hp87aWFoitU7ssb6gjFkv3tNnxyK6pmLAH8BmMWk+MzpuEHsvwrh48QIt8/PjiJlE485TJ0+Sm52FKWa8Gv2Z69Z89qO/zz86fpXkTFmtkw4ZKXTOSovbJoeImYc75ZObpB0glDvdrD5zlQU9O5JsNqoB5pR2zdl2+gpVTjfL+3dDdNUCSuCqtvASq3+4iizLTB01iJyC+AyP6uoavtq1npIaF4Ig0LJlSwYPH0lqmnKOaHuzWGuzxiAIAjqjBUNSBoakDPKy2mjszWxA9bVjSI4SgrWl6jGCLQdMKZoOXxBEhFQlcC67K5HKziGYkxXLs9B+YkpLRdlSeRnBlIyY3EI5VtSjy+qC5CwlWHoWMbMgQsSYUxH1FqTS04q6xmBRP0/M6oZccQk56FPq4ISvRdQjZndXCBpA0Jsw2SPBQrfLjTk5F/fN77G0UkjVOIJG1GHr+ADFB9fRfPgc9XpulzjqJWha9hvNtW/Xk5KdhzkpcT2K+lBY7W6yvVksfi5ipiE0pJr55uhJRvXvBdwbMVNS48CoF0mzWeolZMK4WllLps1MijkxSSXLMqtOX2nwHH9F5AEfhOrOiMAaWZa//HtdzE/F3RonD7RpTm5IJRMdCPb4A7yx/wTLxw3ALvuRPC5EsxXZ7eRs4W12fH+W3z42D1OSVQ3vSV4XH370CZk5eTz9zHOqBNioE6iqqOLzz1ZhsCUxZOIUZINFtTdLsSgBurK7JVScPIi71kUwKKO355HSaQhehxODq4aA20HA48TvdtyzxZkgCCHljEFRtFi1wX1ZlsFXh1x3RyVtBEGHYM+LU8AIOgNCentlMOu8i1R6BsGWjWjLDh0nKtv9LmWbvRlimMDRm9Fld0equYlcUYmQ3j7SbyblIhtsSKWnISt68GXD0mEkzmsHEDsOB7IwhAc2umRSezzAzW9W0Wr0XA1BA5Ba0J+K0we4ffZ7WnSNJJaEFTQuv4TVZGXwxKls/PR95j22WBO8Cw+wYjPJn1y8mD/+4ff87sXn0YcGz+FJf3gwrbm/IYJGMFo06pm/FhLVaAkjrAoDrXolUX2aWLLl5MWrLJk4tF4SJhrR5z5y+Sa9WmQhe7zEhiVj7cp2HL/I0Pw8ZI8PX2385zhqHHx15mqjn/8vNAy/P8D2T95i/NwnMVltccoFf20VW9auYsVzL6KPUWYd2L+P2zcK+e2LLyAGfch+wO/C4/Xyxtrt9Gudw7iHRmiek2ullWzcf4IWaXbmD+gOHi9VV8rwGQ04ih3ggOKAl2NBBzLglWXSdEb6Csl4oiwwfixEBEwImBCxoyfWMEhCphq/StrIgAmR5pixxNSSsaCjC3YkZG7gphA3rbCQGiJp9Ih0xU4VPk5QSzusKoGTgoFeJHMRJxWSj3ysVIYMsnOwUCn42BqsYIghlWSDDio9WIw6JmSn88aRC8zr2IawgaGv1kWHVDu2ZBuvrd3GsoeGxxE0C0b1563tBzEbDXTs3BkBEAxe5b0VChi3adOGbt17sHXzJsZMfLjRe2kx6ljwxJN8+O5bLFiyQp2wR5MeiYqpNoam1Kxp9Bwa0iZC0oTP3dB1RKxMtJmO0c+e2+XCYNYG0xsrBAuw5Yt19B+reH/XR0yF2+CeDWvoM35qwvvh8AWoqSjj9s0bjX7mv9Aw3F4vqzZu5XfLn9DUHAkHxs9cuMSxk6cT2jd9vmkLVouFJQvnaogXpdD8x8yYOYN2bdog603qGPHo99/z7aHDdO7Wg+VPP40ghAKHoeChLMscP3GCI0eOIuv0mExmevfuzROPR2qiJMruBsV+J7w9/nlU2qUHPalp6aSmpdOxQwfNc+jwBfD7vFy/dJ7dm9fhdCuDKVtGDl36DSYQ9R2TjHqyW+QzdvYifB43J/dsw1lXy6DxD5OakYXVoMOancWMJ5Zz7PBBtn30JkMnzYIUJd7QoktvstsWsOGzT+jepx8dukeCgSNnzOf0ga+5sXEdEydPVwNi7bv0IMmezJsv/5knlz+DNZxII8kMHDaCw98eZOOG9UyeOk0zXhNFkaefe4G//OH/sOTJJ0i3WxOO1QYOGsymzZs5fOwk9/fRFrtOBJvVytQJo/l0wxbmTbs3T/9/Vnz8+QYee2Rmk/b96PMNPPPkwnq3Hz99FmsjdXj+hcbhrHNw+tQpnn56BRCv2Nu3ZzfBQIBxE5Q6keH+R5IkPn7vXXr06k2vvtqk/cJrV/nyi/XMW/S4am8ISv+2bftXXLl8mfvuH8QTyyI1X4Ohd28gEODwgW8pvHIRURRJTUmmz333MWzEyLixTTTqs9ECMIgRksFohKysLLKysujYMaK0CNdZcTgcnDj2A+8f2IPs9yHJEp3at2Nw/76Yhah6W0CvLh3p1bMHlVVVfPL5BkSdjtkzZ5CUlIQQ8NKuTRt++/yzbNy8hT379rPo0bmYQ/30g2NHUV5RyZ9ffYOZ06fSplVLZL0Jq9XKb595ig9Wr+X27SKGD4soLseNHcvBo8f44IP3mTNvgRq0l/UmHnnkEdatXcuBQ98xZFiEOPULevRWO8tWPMsfXnqFF178jaZ2SzRxNX3aVN58620yMjLIbxWvioslEPKat6BV6zYcPrCP+4cMS3jv/xZoyCotdr/YJKLG1N2J9nG5nHGKyejPiCVootdt37qFZ59/sdEkoGAwyK5du3jxN79J+N18QZmtW76kW5fOCY7+F+BXamvWIdkurx4eL62XZZlPr99kVG42eVZtEL3Q4eRAaTlPjemDPopdd/sDfHzqMgNb5jB4YHfNMfvKnVy9U8q8UQPI6hAJuAnZraiuqWXb7v2UeyAlOZnxY0eTmZGhKmggsb0ZNFx7Jlo5A4lrz4C2/kysvZksBZGdpcjeauV6DTYEe/O4mjOAonqpvY1gSkZIbqnNonGVK1ZnGZ00NkBywItUfgExvZ0m+CnLkrLelq1mpIchVV0HvTG+do0UVEidrC4IOqOGoAEwGUD2uzE3VwacierP+B0V+IuP0mywlpGvj6AJ+n1UfruOIbMWIyTItPgx9mb1qWbC+CnkTKytWRix6pnGLM2eHNJw8S7QEjMAr359lDmtcjVtJhEqL5fywdUbLGyXX+8gZMedEjom25mx59Df3dbs146u2eny5nkPANpiy1hNvP7tKZYM70N6ZiqgBLQFWzIHL93i5t0KHp00Vi3ALBgtlFQ7eGfNZuY+Op+WbdqpHq1uf4BVqz/D6fIwfups/IJOtXIpdfooKiri1ME9lFXVIlhTSerQD6dHxOcN4PcGcFR78Hs8qr3ZTyFo7hVy0K/YlPmdSt0tcypCUm7CZ1Ny3EV2lSHYshBtWptFqbYI2Vuj9IHRdmbeOqTq6wpJHWX1KAf9iromrR06a7pqcaYz2wjcOY6lRU+M6a1UezODWUfAVUv16a9oNWougk6nWpzZQyTN3R++plmr1uR27K6xOAtb4FgNOq6cPUXlnZs8NGV6wroEsfZm1eWlrF+/nmeWLa7X2gyaVnumPuVMLAkSawUWRkNkTGPQW5tOlr/51SGWjh8YR+Q0dF2SJPPyV4d4bsKgOCImsp9y31w+Px/sO8ET/SP9bOwx7x+/yMP5efT/cEuDtmb+77+8N1uzm0V0mba0QVszQRA6AdGpSm2B/yLL8p/v5bN+Cchp3V7+zx9vR6fXayYmVoNIXXUle9Z/ysKnniPZYlKtB0x6ga+//AK73c4D48dFCof6PVw4d5Yvt25j2fTxJIsSksdJsKoMV1UFH+w8TKpBz8SOrRAEAV+tC7/Tjd/p4czlEr67U4arxkN2UE8HwYI3NNmq8UcszgAcAeknkzT3Ak+o5owH5TqyMZJFfGa0HCJpagnQEgtpGDTbruIiiExHbBqVz128lOKlK3bEqPVOAtzUuRhmSCPToFdtzrDq2OyvZmq7ljTPtmPNTsFgs2DNTaew1smBq0UsHqcd1wu2ZASThVe+3MuUYQNo07U7gtFC0JqGbEnReIpv2bqV5JQUevcf2OAkOxz8PXfmNNevXWXMRCVj/V4zI6OtPn8MMZNIPRONWBtLq0FHts2ksdJIhNj+Ppxo4XD7WPPpRzw8Z2G9dhyJvM7LKqvZvG41o2ZG1BeJbNwcvgCVJUVcPfk9nUc8GLcdlKDYnk/fZPicxfzHMZ3rtzXr3F4+8vFf6r85CbBxzyFm/PZ/NGhr9o/UB3bu2F4+uXd7wjHNxSvX2HPwEEsXztOsl2WZN97/mIH9+tKrWxcNMbP/28OcPneBJ594HKPRqG4rL6/gk1Wr6N6tG0NHjdEExGRZ5odjxzh69HsAevXqxYD+/RJmsMdmMWuydqP6xdhgVX2KrlhyBtDYDDp8ASrv3uHSD4eorXOg0+tp1+t+WrdrF2V/GbJm9Ps49vVWaqurGDr+YdKzc9Tz+X1etq9dRUZuc3oNHa35zNMHvkbyOBk0Yarmdyi9dp7TRw4yY8FiUqxmjc3m6g9XsmzFM1isVk07/vbAfhw11Tz08CRAG6CTvS7++Oe/KPY+5lD/nGC89u77HzJq8ADatdbWzagPW7/ZT3pqcpMInXtFffZmf09cv3mLC5evMmH0iHs67tLV65y7eJkpE8c1uu+Bw0cRRZFB/RPbgDtdLt768FNeWPZkw7ZmE0ac+/C///aervN/rlzDf37twwZtzf6R+sBOnQrkQ98fS7jt4IH91NTUMPFBhXwM9zF1Lg9vv/oSM+bMI7eZEmcIt7UvN36Bx+Nh+qzZmvZceP0aX278gpGjx9K1e3dNXxQIBNi/bz9XL19Ep9PR7/7BdCjo3KDdaLS1YXTtmnBfF/0OTwr1UbH9YlhVEx7DRltSh+drktfFpdul7D96nEAggDXJzrjhg8lu3kpjISbrTdTW1rJm7TpkWWb2zBkkJ0fmSdXld3nvo08Y2r8P/fr0Rgh4FWcFWeb99dvIy8lm7Nix6vkAdu3eQ3FZBfMeeUS9l35Bz8WLF/nqqx2sWPE0oihGvgOK/Vmrli0YMGiIun8YFRUVvLdyJS+8+CI6nU5bNzUESWfk93/8E0uefIKUlJSE75zweCh8rz/98D1GjBoTV2so9rgwwu+ecJ8enlvUNyZrqL5QLGLn6dG1hMJjs+h3X6lT+e5Wg67euohhhK1xv9uzk4KCAlrmt06okq4vfrD76100y8mmb+9ecZ8TPSYA+HT1aoYNHUqL5kq8N/Z3uHXrFl/v3s3cefPJSLbVa2v235cvWPsfHp+V+GbVg/n/1/9h9fa9Ddqa/Rr6wF+lcsYgJm4E24tKGJydGUfMlHm8fFtawbw2rai7VqGur/T62O6sZmGvjiQZDaoyQM7L4MODJxnZuQ1PT1L86f3FhRjyWlNWVcOaz17FntuCh8YMJyMtFYBgspIPmBRlcZZuFjlfWETx7VsU3b7F7dJyQJE1lrvCGd4CsixTVhfpYEpq3CHnXaiqDa0XBNwOP8aUPEzpLTQy8VgIopI1jl0hMmSfQ7EkE/UIqa1VuzJQgpY6cyqyp0YhSdLaqoSLYM1ENKchVVxU/h3OLtebEHN6KOst6Zqsc11WF6Sqa0rxK3uESBHT2iiWaXXFmvWCqAspaE4jZnfHW1epIWi8fjACvvKrGDPbxalnAAxJGQRTO1F+ei+Z3SOse30KGp3BiLXrcM7u3Ua3kfGTyJ9qb/ZzoD5C5sdCqq2/JhHEkzIAheXVtMlKa5CYqbpSBsChsgqGZGfW+0xW+3y4AkFaJzVetPtfaByCLON3ejDYzGoA2GCz8M7uH1g4uAcWWdbYnJ2+XsSdSifzxikZIpLHiQicu1LIru+O87ul8xHsmRDwYtArBWQ//WwNk2bMJiOnuToocPgClNwq5OCu7dgychgw7mEqvCI1bj/F1W6MUdqCpFQzdZVBAg43suMugaoigp468HuR/V7kYDCU4x36TgiavxN+b1GnKAJNKQ3WnRF0BoQUJXtGrTlTdg7BYEVIzVftygDEpBxIykFy3iVYehoxvaN6bjG5OXIgU7FnTG2tWLIBgsmOmNUFqeycdr3OgJjdA6n8vGLFFgVD8z6475xGEPUYctvi9Sg2lAZrMindxnJr3+e0HKH4krs9yrF2s56cvqO5cWAj1tQM7K1a4fDEZ1e379qD09XlHD3yHf36D8CsFxu0N8vOyaFbt24cOvwdA+8f8HdRzzSFlIkmNzQkZAPnSETYODxe7KFMxXshib76/hxjO7ZSr6M+qzKAz49fZEaP9nGEjN+pHHOhooZ8qxnL3yE7C0CW5YtAL4CQgrAI2PB3uZifCIPJgjsIBLWTD4c3wI41HzH5seV4JND7g+pkY9f2reTk5DBw0GD1GFlvYt/+gxQVXuHflz+OGPAhVd0F4PiNu+w9/D2P3t8NqyxrfvtTJRUcvVNGG6uF6e1bIbkDOIodqsVZNAKyjiK/F4c+QGnQj0uSCPyEpCgDIqnoScXQYN0ZMzraobxvZWRK8HKKWtIw0AKzSrQICLTGqpI0RXjoTBK6kJ1Ze2zUEeA4tXQhCXNIiZODiWT0nKCGLtjV9Tb0dJXs7PNXMZhUwAAuP1nAFFsaG6/dZrrYkhY2U+j95KFDXib+oMSn+44zd1hvzfcQBIEVDw3n9+t2siI7G3tWDjogCGBJwaAHdHoenDiRd1e+S4uWrcjKax4X1A1PosP/7tKtO+fPnKak+A65eZFkkPDz0lSSRlG2NGlXDZJMeg1Bo+3XYxFWS4afLVHjmx9GbH8fjfNnTlHQNaL8T7RPLFz+INs2rmP05FnIaEmZWELK4Q1weOcWhsxYVO/3OX9gB+0HjcP900VGPwr/SH2g1WJJON6uczjYsvMbXlj2RNy2dz/+jHEjh9GutdZ6+PMNm0hNTWH5k4vAEEk2+WrHDm7evMVTS5co9jVRKpmdu3Zx4dw5BvTry7LHF0QIGckPEhrix+12c+VmEbdu3uRO8R2CgQABKTL/DYTms+Fk0WBU0/MHJQRBIBBF4FiT02jTviMZzfPxCUq/EyZKAVXZbUzNptvoyTg8AYJ+H1ePfcu5b7+mW7+BdOkR6WcMBiMjH55OwO/nux2b8QYlRj6sJPsZjCZGz1zAtXMn2fjBGwybNh9vqK9r0284pTev8cV7rzFi1iK19l922870S8vm/df+zPTHnyI1yUa2zURSWgaLlj7Nm6++wvLnnldS4VHa7aAhQ9nzzdfs27uHYcNHaNqnYLLy3DMr+MvLr/C751ckJL8AHl84n9//5RVWPPYINmvj5MjEUUP58zsf0atLAWbzT7c0i0Z99mZ/T3x75AcmPRBfBLsxfPXNXlY0oIQJQ5Zljp44yQvL6i+W/dGa9Sye/8g9X8PPhX+kPtBSjwKg8Pp1btwoZO68+Zr1sizz9qsvMf+JxaSkpAJK25NlmXfffJ2Bg4fStXt3zf5rP1uNoNOzeMXzSnJOMKKS2brpC8rLShkyfBQjRymxwvoSQ+pqa7l18yYlRbe4W1KCJEkYdAIBSRnLyLJMUFKs2gBEAfRRfWJ0X6/XCbTIyaZTu3za5OergdxwMh0oiXSCINCpZQ4F7ZS6HQ6niy37vqO48hseHDeKNu0UuzIBSLGaWLxgLnV1Dj759BPatM5n/BiFjE5LTeXFZ55m29atvP/JahbOnIwYuqaFc2Zw4PBR3v3oUx5/9BE1TWfMyBFcuHSZ1197laeWR5SW3Tq2w26fxmuvvsrzTy9DiLIonzV9Kh+sXktKehbtOkeS3HxBGXtqOrPmzuOdt99i6bKnEt5jQRB4dsXT/OkvL/HCv/2OekLFQMTKddojC/jg9b+w5JkX4t6niYiV8PiwsSSZMBKN034MImPXyPsuuiZhLOpLGCouusXY8Q9o1kWPdcPuG7Hjw8sXLzI+TMA1AKfTiaPOoRIzibBh/XpWPPMMYkM/0F8Rv4Y+8FdJzgS8QSqvaIPN1zwu/H4vyR4TlUQCS24pyIbKUmZn5FJ1tYr09krgv9rnY+OtIua3zcd/sxraK5Zb398p49yJS8zp1o7sFtlq0NqVlsnnX35AitXCkzOnYjIawF8LpAKKisFlSufYiZOcOXcel6Q0mty8PJJzWjBkxCiSU1K564zUhYlW0NSnnolWzlQV1+CrKcFVfAFXccgWQJbRG6z4JBHRlNimSzAmocvqrCheqq4qU+60NpqMb8Gcgmjqjlx1FTlcNFsQEESdQrjU3lYInvQOqm+mLrMAqeamkkGeGvGSFdPaIlXfUGrXJEUMOMSUlkhV15FcZTEWZzrEzM5KoDO7WxxB48OCruo2Oms6OmtaQoLGnNWGmou3sJXdwpIVYcDrI2hsmc1w3jqFu64aiz014X2rD4nszUocvnrVM01VzdwLIXMvNWcqqmvJsNdPiiQiZgB2nb3G1GbxhXohQsqAMqi4VudkULZWLRXdRr+oLGViamZcu/0XfhxkSXmZhgO/BpuZHWeu0iszFWvYozsUTCz1+vn29BWenjRcsTgDBIuN85cus+/UZZ5dOAf0eqX2DLB5yzZqXW5+85vf4pcjA5RbN26w9cvNpOW1ZOrCJXiCygDAV6N8jsPjJ+BxUnnjNHV3bhAMSPi9ErIpFUNyNoa0VgT83p+koJGlAHhrY+rOyAh6K0JSTuM1Z3wOpPILCDqTQlRHqWFEWw6yJTNCOof6LkFvQswO9Y2easQQ6RO2ZpQrLyP7XZH9BUHpzyouKCSPJdL/WNsOxnl5N4LeiCWzRYSgsaWS2vF+ig9vpdnABzGa9RqCptPo6ZzY+B6WaQtIT1EKI8bWKOg+eBRbP3mHgk4FkJISZ28WDV9QZsjQofzlz3+m3319o3LltQjXnmkIsXVnfg4kUqnUp1yJJW0SkSzHLt2kW276PRNCl4vKGNGmmSYwH2tX5ne6cfsDeN1erEFJbZPafbzsv36HhQV/f8/1EEYDV2VZ/lX6C0lR5IbDG1BrMR39cg0jJs9CH2V94AlInD5xHJ/PT9/7B0WytHV69u/bh8PhYu6c2cgBr1Iby2rnvS++Is+i4/nZDyI7a3GXVaK3mjl2+Sb7zl6nZ7MsnuhTgN/pwe/04hV9mJKV4FZNTYALPhfFPi9eSUaHgEXUkScaaSWa8Uk/TUXjQ4qzMANIRk8OJoz11JzJw0weZirwcZo6ktGrNWXC+7TGiocgp6mlFRbSUcY0dvT0JJlz1JGFidyQAseCjp6kcIZaWmFVVTd6QaS7lMzRQA0DSCGaoHnYlsqayzd5IsWMwab013qrmS4tsqlwuNhx4hLjemmLowqCwIqZE3n543X87sm56OxECBq9CYMlBXR6Hlv0GH/4w+95+rkXMOmV4r71WUQATJk5mzdeeZknn34ubp+GSJpYa68ko14zGQ73zWH1S32IJmiSzHoNoeHwBJR1Uf18qdOrKmgScznxpDwo74BzZ88yZtIM9TuFJ+DRiFXNSJKEx+NGNjZSeN0boOLOTdJym+PySUD8PQv6fdSUFdN5yDjqGiSi/mb4VfeBiaAoYz5hxRML4wJNm7bvpHuXTnHEzJoNG2ndqhX9+4bICr8HryTw2suvMWzIILXIcvj8u775hnPnzjN29GjGjR2LEPBq7M8Abt2+zeHD31FZqYz3DRYbbdq0oWOnTowYORJZjLSL+lQz0UHO2Ofyzt1Sbl67zKEj3ykWZrIMgkB264607dqTpFDNmWjyU2cw0nHACGRZ5uaZ7zmz8nU6du9F+579QnXKlHN3Gvkwpbdv8N6rf6LvhBmkZChzIGvLTvRIzWPbJ2/TY/gEMlso9zG7VVtyc3LYt/odRk6bR3K6Mg9KTstg7OzHWLfydWY+qdguKdnLZuY9vpg3XnmZp597Hp1Op7bZEaNGs2ntGs6eOU3XblonD73VzvxH5/H2B5+wZPGTahA0fJeEgFepJ7PkCd587wNeXNI4mQCwcMZkPly7iSWPNs2y69cMp9PVYB2YRKiorCItNaXexMNo7Np7gDHDh9a7/W5ZOUk2G0n11Gn6O+BX3QeKxNfs8Pl8rF+3lhd+E686+nDlO8ycPUclZkDp09574zUeeuhhcltG7LAqKyv46L2VPDRtJi1bRfrMYDDIts0buXOnmPEPTyG/pTYIbdIrhMrNa5c59v33uF1OZFkmyZ5M+7Zt6NGzFznjcrBEBdTVa4/qC8PqiUTjF1mWKbtzi0vnz7LvwLcEfR5kWUaPTN+e3ejVMR+9McoCOlRLypZqYtakBwjozGzatZdNO/cwbuRwOneKjLfsZj3LFs7l++Mn+NPLr7H4sQUkhdrMhLGjuHHrNv/71XdYPG8mGemK1ePgIUNo1vImv3/1LVYsW4IlVP+soGMHzCYTr77yMiuWLVEIeL2J/LwcJo0bwTtvv8WSxxdpvtv8eXN56ZVXmZOWRnquVtnUqnkz+vXvz+bNm3j44UkY5IAmCQCU+ejMR+bxyccfM39BfK218PnC99xs0DFq3AR279jOqPETEu4fi1hiJpGlbEOIfrfF1pYJJ1EmQphQSjbp4moPRqMhJXcgyrIe4se3iWoanjz2A7369El4XUadgF/Qq+qZNWvXMWvmDM0+BjmgqmeOHj1Cn759600w+DvgF9kH/irJmVi4pSDfO+uYlRFjSSPLbKgsZWp6NrrQi7XySiV1wQCbq8qYlRGxa6q6UsbekjLszVJYEJoY1lwtwtY6j1XfnUEvijw2bTxmowEqiiCvNQB1hRfZfrqQ0opKLGYTvQcO5/EFj6LT6RJanOUmGTUWZ2G0z0pSCZqCvGSVoGmRm6QSNGl5KVTr9JjSW5DcfqBqbSZ5nXgu7iNYcY2g14mgtyAkt0AQtT+voDehyyxQLH+qryELOoS0tmoWuSAISr0FT3WofkxHNdgpJrdQApt3TypWPuH1Ka0U+7PyiwgZHSM1GFLzkaquIrvKNRZnYlobpIrLyKIBwZyquTYxtTVSxUV0mQVxBE3Akovr+iGSOo1B0BvV7x5N0iR3HErRd+to+8BcRH0kOFMfQWPuNoqTuzZy/9SmDWL/mvhrETMARw4epE+HeA/O+kgZUOqW6HRio3ZmAEcrquiXmV4v8VLq95Gi12P85XTGv3rIQRm/M0JCFztclFTWMrJvgSa47PT6+OTIOZ4bO4CAy40eJWxyveguX5+8xFPTxiM7axGNFgRZZuUnn9Gte3cmDZiATy8iBGWcDgeffPgBqdnNWLB4OZ6gjMMXQPQHcfhA8NRybf833K2oQtJbSG1RQFrHvvi9QXzeAK4aL16PH7/Hg+h2aL7HvRI0gqgHSzqCRWt/KPtdyHXFSEGPYmNmsiPYm2kUMhAmqrsg+90KeWJMVvrKUL+lktGOEoJl55Q+UNRH+kZXOcHSM4iZnRWFoiAgZHREqr2FVHMDMUUZxAuCgJhRQLDsLD5RD0TeTbYOI6m7sANBPxZzqqI69HuCGOy5mDJrKD25n+yeQzGGbM3CgawuDzzCoQ0fMXT2YkAJ5oURDiyMmfEoqz58l8UrXgBoUD0DMGv2LFavWcOjc+c2qp6J+y1syfWqUGLR1P3qI2B+yjEGm4WLd8qZP7RXk44PEzE3KmtpmWZPSMZo//aw8eINxuXnqcH6WBy6fpfuVju+On/ctr8T5gCr/t4X8VMQDmSHA9ill06RkdsMS3qkrTl8AWpL73D2xDEWPLFE0wYOH/qW0rJyZkyfBn4nMuBD5M/vf86MIb1plZ5EsEpJQqjwB/h07zG656Tz9Nj++Ou0z0CRw8U3NeV43H7sgkAHg4UBlmRVReMITYBq/JL670pf4todjcGISDYmsqMsymRkaglQiAt/iLDJwkg2Ro0VGUAGRjIwUoOfk9SSh5mcqHOZ0dGTZK7jogyfamemQ6A7ydzEzQXq6ESSur5HqA6ND0k9lygI9BFSOByoYbw+HRBx+4JYgBm52bx36grL7WZsRNrc0ILWbDh6jmNXb9OnnVLvMFwzzWo28ci4oby1ZhPL5kwBQgSNNQ3cNQpBY9CzYMECVn38IbPnP6YpdJ8IOp2O+wYM5LuD++l9/5Am3X+XP6jae4ZRn3omTBw2hMYImthzZduMlDq9UdZMkQSDyEQ7vgiry+PBaDI1uG94Xfi77f1mJ13vH5b4umMIqbMHv2bItAW4/HJC8uXc7i9pPXD8L4WYgX+APjAWazdv5cGxo7DE1LP47ofjyDIMCBMwIazftIUWzZpFiBmguqaG1955j6efWk5KSjKExgFnLl7lq507GTtmNGNHR+y9ZL0JWZY5e/YcB7/9FkmSyM9vxcgRI8jMzKjXziwRKZOIkIH45zI1PQN9Ugq5nSPX7fAGuH31It9u3YDf58UnyXTocz/20Fw9DEEQyO/ej/zu/ai8fpbN771K92EPqGQLACk53DftcQ5s+oyk9Cw6DhhJklmPxZ7MyLlLObbjC+7euELXwaMVi1l7BrMWP8OXH73NwHEPkZStBGyt9mRGzVjAuvfe4MGFT0FoGmo125k6ey5vvf4ay55eoQn8T5oxi/fefJ209AyaNWumCfhlN29Fz549+HLLVh56cGLCMZvNamX4/f34ctdeHhqjOEmotrSGeHVMWmoyqcl2Cm8V0bpl/dnOPwa/RPXMvWLjth3MmtJ4XR5Zljlz4SJjR9RPzqz54kuWLZpX7/a/A/5h+sBwO3lr5bsseuxxTZvySTJbN2+iR6/etGzVSu1bDCJ88PabjJ8wkVb5+eq+NwsL2bxxA8uffV5DJH+7fx+nTp5k/EOTGftQS01gXZIkfjhymDOnTmHUi7Tv2JEHH56ELURsRFuZhS3JVOjixwjh7xNrGRVGi+wMWmQPg7BZjN+Dz+fj+KkzvLPmSyS/G4NezwMjh9CsVVvNsYLexOSJDyDLMjt27GTHzl08OnMqmRmReXW/7p3p3LEjb69cyaD+/dR3RH7LFrzw9FLeXvk+9/XqzoD7BwLQpn1Hlj3ZjD+9/BpPL12svDuA1vmtGDt6FO999DGPL5ivzivbt22L0+Hkk9VrmDcnYl0lBn2sWP4U//v3f+C5Z1ZgiLGh7tOnL7du3eL48WP07t1HvT/R75lWrVqRmpbK6VOn6N4jvk54LDoUdObQgb24nE6sTSBOm0rCaOzr6lHPRFvZhfeLJRyjER7TGnUC6RZDnMVnIoTHipIkAfWfuz7C57vDh1n81PJ4pbaorUnjdrvxejykpqYmPI8syxw8cJDnX3ih3uf674BfZB/4qyRn/H6JolIlYCLLMls8lYwxp6nrwtjlqaSv0U5ludIZNM+24gwG2VRVxqyMHPSCoAaUD5o8tLBa6C0ZqbpSRlr7LO7UOflizS5mdW1Lux7tke4U4QLMrVqxceNmbrnBZjExYXA/8h4er35uMCQ7i7Y4y7Do4gia1qmWuPozPwaiyYY+ox0AUl2lEqisuookBUO1FvI0LypBZ0DI6ITscyKVnkWw56lFr0GxOhONdkUpY05VbcgEY5JiQVZ+DjG5FYI5RVlvzQRRj1R+XglahgmatHZI5RdBNKj7AogZHZTAp6jX1KwRTHaEQAZSdSFiamvNdxQEASmpFY5L35DUebz6GdEqGkEQSOsxnsJv1tN23GzN8YkIGp3BSFZ+e+5cPkuzDo3XY/lr4ee2MIuGv7iQ63fLGd27QLO+IWIGYNupKwxNTpxhFK2aAbhUW8dEyV7vufbVVTE1LbtpF/wvNBneWiUaJFt1rL9wnSe7ttNk7QclibcPXOapMf0QRUENKheVVrH19DVWzJyotqOA28FLn3zBQw+MoV3Hzsgog8JTZ87y9e7dLFj0BEG9BV9QRgxI+H0+dn+1kZKyCgxJKfQdNZ4qv4Eatx+Hx0+dJ4A77DNrbvgl/HPUoBEMVoS0iCpB9tQgVVwEWVZsFy0Z2j7QYEGX1RXZXakQ0altEEyRZ1hMykU2pylqvuQWKhkkWDOVvrH0tJakTm6JVFeMVHUdMXQdgiAgZnUlUHoaYup9JXUag+PC1whdHwDSMJkN+D1BzDmdcFw7Qt3Nc9hbKXXOLCESxouetoPGc2bnOrqP02amhAdfRpOZIaMfYNvmL5g4aWqceiZ24JeX1wxvQKa0tIyc9MTKS/We/hWszaKRiGRJZCPWGPRWbWDK73Tj83iRPV4aokZi1TE7TlxiXp+Cem3KwnDUunA4PdiiCNNw2wRljHK2upbZuXn4nE17zmPr4jS6v6UGoJ0gCN9HrX5LluW34vYVBCMwCfiP9/QhvyAEJSUAbA8FsyVnJZfPnGD8I4+r+7j8QfC62LFuDYufeVEtNu0Lyvxw9DvuFt1myvSZ+IIyBr0Jp8PBy29+zFPzZpFhVAhF2exk5/HzXL1SyPJR96ETRQIuD8ZkK+Wl1Ww6cxVPIEiu0cCsXm3xlbrxO/14a734HH4sRh1uX5AkvYgjIJFiiEx+HOLPV4NGQCAFAykh5YqMTBk+zlKHgEALzOq2MFIw0IsUivBwilo6YlOtyQQE2kbZmXXChi00XWiFhToCnKCW7iSjD9mfFZDEFZyIAjRHaYPuoEwvXTJfeSqZQIb62UZHgGnZubxx8CxPD+mOwRYZA03t14WVB06SlZJEq5h20Co3k25tW/LlN/uZOKgPotkWR9C0bJZHm1atOHP8e7r1brwMXa/7+rPyjVfo1neApthsGGa9qAkOxxIzYcSpZ0LKl6agIYIm+lzqPkY9Ln+QbJtJvZZYksYT0F57fQiraBLV8Si6fpWuA0eo66wGMWG9maq7d0jOyK6XmPF7XPjdLmypmdS4GyeoBVF3732gyQpw3z9LHxiLE2fOIQgCXTp10Ky/fvMWp85eYPECrZXSxm07yczIYNCAfuq623eK+XTNOn6z4ilMScr9l2WZ1Z+vw2Qy8psVy5R1of2L7txhy5atBINBunTpwpNPPI4uNP/1C/q4920sMZNIKZOIlIH4IsjRz6rLLyGKIq06dKZVB6XIsBQM8sOhfZz8di8Gk4X8vsNIStOq+9PbdEWf25Gzh3biPrCXrqMmozdGCIwOI6dx9+o5dq9+h8GTHyE9TVFQ9B0/lZvnT/LDl6uYMFtJ7tPp9cxZ/DRr33+LXoNHkNZCCYjaU9MY/OA0dqxeyfhHnlDbrTU1izEPPMj7777DY08u1ozNFi9dxp/+8HuWPrVcVUqH0WfAINavW8fJU6fo2aNHQoKmd9/7OPnRxxSV3KV5biRZQfB7ExI0Mx4axx/efJ9/e+rxuG0/Fb8UgiYQUBIO7wWSJOFye5qkdNl36DuGD4yvhRzG1cIbtGiWl/AdkwiC3nDPfSDKsztWEIT/FLX2n6YP/Gr7dvr26U16RoZm/dHvDqPT6ejdVxkPhNvZxyvfYeTo0XTq0E7d99TJE3x35AjLn43YmPn9fj55fyXtOnXhsWUrNOe+dOECB/ftQRAE7r//fpYsW4apgedMUysmBINe6S/Dio7GiJn6EueMRiMD7uvDgPuUkpVeRy3b9hyk6OvDpKel8uD4MSTbo+a5QR8PjB7OmPt78fH6zVjMJmZPmqCqGpJMVl5YvJCv9h3irfc/4vFHH0Gv12M0Gnl62RK27NjF+k1bmDZdsYC025P4zXMr+ONLr7D48UVkZmSA30NBm5a4aqv47LPVzJ42Rf38nj2643A62bh5C5MfjpQY0Ol0PLviaV565VX+/be/Ua8nTMBMnjyF1197jWZ5zcjJjbjzROPhhyfxpz/+kfYdOmCxWBq1Fntk3qOsX7OKBU8sbjChJ2yPG7tPrHrGGGPZ1Zi9WbTDRWPXqnXCUO5NfQRNdBLPzetXadk6QtRFv18TETO+oIyrtork1FSUXLIoZVeswkenZ+369cyYPj3uPGF88/XXjB49OmG9oIQwmu59HKgk5s8SBGFS1OpfXR/4qyRnovGNt5qBxmTMMRnSR7y1dNRbSRMjL8Jrdx3KJNGcTmmZEmBplmXhi6oyetvs5HtlwvPHrd9e4K7Hw7KRPREFgZqrRaS0a863V25x7OujTJswnInNlICzITMNufQmQraiTtDVFhNMVgiDJMlFjWzi7t27FN2+zdVbxTgctXg9Hmq9SmMqd/nUwGFpuPaMLFNSq1xjVY0HQdShtyYTEDMxpuYhJGDawxAMVoSMTspp3JVI5eeV7O+0dhobH8FoQ5fTHam2iGDpWcSMDqrVmZJB3lnJIC+/oBTEDtmciVndkCuvIAfcESsfcyqioFNqM2R1jWSiZ3RUApyiHsEYGeAoNmZnENPaIxgi8kvRloVU40JyluEFjXpG0BsJGtNxX/8Wa9uIb3w0QaMz2zFl5FNz7SQpbRsvctiuz2AOfv4Oee06I/wVlB0NWZo1hZS5F5WMkN0KufSm+re/uBAIK/6V36MxUiaMsjoXWS1z4tbHEjPHK6po6xQhQV3uolIXxUEvlqBASeDnD+b+M0OWZHxOH3qrgfdOXmFOm5aIgoDf6cVgM+F3evj08k2mdWyF3uMn4PKgt5q5WVTKpjPXeG7KCGSvG1kQcHl9/OXdz3hi7nRym+Ui+10E9SZWffY5SSlpvPD88zj8Er6grHiN7/iSWzdv0Xfsw5hS0nH5JUrqPNjrzYg149F7kD3luKvu4KspI+Csxu+pQ/J7we9D9nuQg9rBRWw9GgQRDGYEUyoYkxq0GRDMKejMKciyjOwsRS47h2C0qXaN6n6WdERzGnL1dWTHnZBtY0hJqDehy+mBVH0d2VurEsZqza0wcRNSAIr2PCRnKVLlFcT09sq+goCY3Y1AySkQtFmr1nbDqTu7DaH7w4AdU6jQa1Lb/lSd2oYxORNjbjONvZlgz8KY1ZLCYwfoPmhEwvozmfntuHT2JLcLr9OidRvC9Qk0g7+QesYXlHlk7lzeeu0Vnn/2mYQT/aZYm90rYu3F6lOv/Lhzxx8r+wNqG6jv3NEKGW8gCP4Astsbuj7tMdHqmB03SxiVnqkhZACViDlYXsEAewp+519dNXNVluU5TdhvAnBMluW7f+0L+mshGC7u6glglLwc2fw54+cvU7e7/BJmHXz58bvMX/K02ua9AZkzJ49zs7CQqTNnq5OgmopKPnr/PZ5f8RRWg4jgqsJfU8XrW/bRq1k6iycOJuBy43e6kU0GVh84SUCSmNa7EwZ/IKKYsiWwNg2JBb2yRGXQzx18lMoBSgU/dQnsnxqCHgErOtIwYA1VhUkEAUFV1wSRuY2bG7jJxEgztORlc8zkYuIiDkyItMWqnteOnl4kcwEHqRjUY+3o6YqdU9TQGTuWEKnTHhu3cHFTdtNKUAYFRkFkgC6FrzwVKkFjcfgxAhMzs1h57AJPDeuluaZFg3rwl51HeDonB1tMLYRBPQr4bOdBzl67Sde2raDqbhxB88D4cfz5L3+hY6cCTNakhNaO0ZgyYw6bPl/F9LmKDUZ0ZmTsRDl2EhxNijh8SgZ/IsVLY2gKQRN9zly7WbU5C5M19cHr8WAwxgdlw4gmZsLB77tFt0jJaVbvMdE4u38HPSbMoc4TSEi+XPh6E20HjtMkb/yV8L0sy5ObsN+vvg+MRuGt23z3w3GWLtRm5dc5HHy+cQv/tmKpZv3WXbuxJ9kYNniguu78xUt8vfcAv312uRIM83uoravjzQ8+Zcqkh+jQLhLAdFRV8NGq1aRlZvHYooVxAedYtQwo7aiuro4bt29TfOcOZeUVOJ0OfCGyLxCy6hUEAX+YxAlKas2FcCBIMJrJzGlGi3Yd0Sel1ntPRJ2Ozv2H0rn/UCqrazm+bxe15aW07TOInDYd1WfV4fFj6zwEg7OWfes/xpTTlta9BkROlN6aNiNacPCLT+k2eBRtOipz61ade5Kbm8uW919j6qIlWA02kox6ZixawrY1H9Ha7yO7jZIUl56dR8/Bo9iz4VNGTptHqdNLts1Eal4r+vS7n9WffsKcufPUwKwoijz19AreeO1Vnn/xN5gN2nnktOnTeeXll8lq1pJmmWkJx20L5s3lf//5Jf7D008SfXQigkYURcYMHchXew8yfvhgfm78Egiac5euUNCh/T0d883+bxk9rGn34/ipszyfoM5TGJu37+LZJY/d0+f/SOyUZTlxUQ4tfvV9YPQb/bvvvsPn9zFwoNKnhd/bNwoLuXjhPI8u1N77NR9/yKAhQ+haoLRngxzgm/3fcvfuXRYvXqL2N0W3b7FhzWqmz3tMQ/rcLSlm+8a1tO/YiSXLliEIQlxAPhYGEeoqSrlzs5CiWzeprqnG6Q0gSZJSTkAQCCKgC819hZi6peFa08l2O63zW1HQsSPJySGyxRBvPWpKMzNlqlJvpryigi+27aCqspzpkx6iZbYSWxP9LkyCxBPTH+RGUTF/fO1dxg8fSI+CDqqmdvywgdwt68DvX3qNx+fPJTtLIbkfHDeGY2cv8vrb77LsSUWtZDKZ+O3zz/Knl19l/syp5IXI4T49e+CsqWbL1q08NE5RXsrA4Pt68dXeg+zavYcxI0eo126z2RQbx3feZemSxepvBMr7ZcnSpfzh9/+H5194UamHlgBPLl7Mu++8w4pnnkm4PXpMaLLbycrO5tqVy7Rt3yEhQRNdtzD8/8aIHF8wNNduQiJWrIom+jyxCCebmfSCuj2cPATaOjThMeqF0ycZMGxko6RMNLZv+ZIHJk2Nu8a46/H5qK5zkZmptJGw3WkYsixz4expHhj9TOOkzE/HGlmW/58m7PeL7QN/leSMR5K45PBxQ3KjQ0dFQKaCSGDEIQe4KflJ1Zm5FLX+ut7BOHM6higiZ/XtYjrprbROVyaSlVcqOVBXTV7LVKa0ak7N1XLS2mdR4/Hx8ddHua9NM1aM7oe1WbwSQC69iduexdGTZzl/+SpBUzKiKKLT6UjJbUnz5s0ZOWQAAUMSJrMZQRBUi7NE9Weia8/cLKom4Kyh7MoVXMXnQZJw1dSAIGDK6azuZ7Kn462L2EsJlnR0lnTkgEcpiJ2Ui2jT1hERk5sjJ+WEilsnyCA3JmlIF8XKpwNSzQ2kujuIdmUCJ5jsijVZzL5iVpc4m7RwVrl09xRidjeNBZuYkk+w7ByyyR5nbyZaUvFUFaIru4IpKzLQirY5s7XsTvmxTdiatUdvjhBCidQzF4pr6Tp0Auf2b6fr8Ilxv2l9aGrdmQp3sF6CxiFaf1bVTDQxE40mWOVqcPPsdawJApixxAzAsat3mZoe3xbCKrazfiejTWn3dgH/QqNQbM38bCu5y7j0DGx6vSY4fLq8mrY2C9k2ixr4liSZz46c4zeThxN0e5SBoCzz6uZ9LJs+kTSL0gZlWebtd99jyJDBFPTqhx8lC+TWjRus/XwNQ8c9zNBxD2kGArl2MyUoz4zHUcutC8coL7qBNyDjD0hIkohoScOemY6ck09ANuCuqcbvrm1yDRpZCkLAjeypgbo7SOEBrKhDSG5Zb70ZISkHknKQvTUhlUxrhKj6XIIgIKS1VfrIu6cU9V/UoEJMbYPkKkeqvIyY3iF0jIguu5tCXEOEoLFlIwliDEEjKgRN8XFo1ldzfZY2Q6k9u42MfjMj9WfMOrL6PkjJgc8wjJyDOUnpZ8JKgdyCPlzas5HbN27QIl/rHx/Oah44YSobV77KkyteIFEdgujBnsFgoEfvvhw5epT+/frd08ApbG0WrjsjWGzI7p9WfyYReRJrLXYvcPr82IyGhOeuz7Ls2J0y+uRlakiZaEJGVa3JMpW1bmzmFHwJnl2/08/NGif9Lcmh4/7qg9Km4BF+gTLue0WN20+KxcChzasZPHUhLr+MGKUsOLzzS0Y+PA2T2aIGnl1OF0cPHeSxZSvUgL3D7WXluyv53b//GxbJA+4a/IKOP3y2hccfHEs6XoIVJQCcKavmm5OXmNO/K+l6nfL8GLWBSVOykaLSOo65aiircxPwBwh6g5gEkQydgWYGIy11ZiqR8OjkJtubycgEkHERpAwfLiLHmRBpiSVhvRkdAvkogbG7eDlBDQUkqSqZ8D5dsFMdsjrrTjK6UOhDDG0rxMUt3LQMZWIYEelFCieppYAklaBpKVspEtwagkaWBHrrk9nrr2KyIQO3L4gRA+lGI6PTc/j87DVmdWsXfdksGdGbNzbs5MU5DxKL2WMH88dPN5Ofm01KhpKYI4aSCpRApZ5Fjz/JO++8w+NPraiXmAlPNNMzM9EbDJTdLSErJ3EmZvT7rj6EJ8RxxEoTCZpEqI/IKMGjWCqFPjO2KGz0tZ4/e5qW7QvUIrKJiJzY73b02/0MfmBS3H6x8LpdGC02nH7UYHcYSWYDUjCAFAzgE834/rrEzL3gH6IPBCW7/7MNm/n3Z5bFbfvws/Vx9Weu37xFVXUN82ZMUdNfyisq+eqbPTz/1BJ1v5raWl57+z1eeHop5qi6nDu+/oZLl6/w2Px52Gw2QIKYQIxe8nO9sJDvjhyhqtahzPdEEZstiey8ZrRv04beffpitdmQBF2caibWxiz8bDp9ATwuJ7du3eLY4YM4qitBEJAlicy8FnQdMAS9IT5QZ7RY6Tp8IrIsc3L/15z87iAdR07BE6oNW+cJgM5Ks+Ezqbx8gnO71tNi8MPqfasD8kbM5tS3X1Ln8tC2oCtJZj3puc0ZM2shmz54gzlPPq0mDY2YNo+daz/BJwm0aNcJhy+APa8VuR3q+HrT54yeNFMlaJq170xdXS27d+1g5Bilvo9PkrFarcye8wifffoRCxcuivtOy556ij/96Y/8hxefj/TkUQSNGPAyf/okPl63mYVTIgWgEylnAHp368xf3vmIEff3w2RKHOz8NePU2fNMmTiu8R2jcLXwBmOGN253ef7SFboWdKx3e/HdUpo3y/0l1VmAf6A+sK6ujh++/57lTz+trgsHxjd+sZ6lzzyv2f/QwQO0bdeOggIldmaQA5w7d56y4iJmzH5EDahfuXadnVu38MJv/w2/pIwXJEli+8a1+H0+Hl+6HL1eH5coaNQJSJLExQsXOHz0KB63B0OIdM1ISaZFbhadO3UgPS0VW0o6oigi600qqR2tmImdj0mSRG1tHdcLC9my/SvqHEr/GgwG6dalM4PuH6CeLxoZOc2Yv3ARktfFqlWrEASBuVMmIhJxRchvnse/LV3Auu3fUHj7Dg9PiLSXnKxM/u25p/nTq28yb9b0COnStRMZ6em89NqbPLt8KYIgYDAY+M3yxfzxlTdYOHe2SuYMGzSAbV/vYfeBQ4wcMlAN4I8fPpg1m7Zx6vQZenTvpn5m82bN6NWrJ1/t2KGpfWaQA6DTs3jJUt588y2WLn9ave/RsNvt9Ovfnz27dzNo2IjED08UHnhoEm+89CeWPfuCer7wOymamImeS4dVNNFJPPXZnjWmngmjsWSiREhEslhjSP262hpSUpsejzPqBKSAj9TkeGecWJJm17ZtjJ/4kFp/Jvb5O3jgAKNGjgBokm363wi/2D7wV0nOAPhkibuyj/66lLht5yQHfUXt+puSG51Px81A1MTAFCBDNJCjM6rB5NtWP0mijnbVQEgBve3QBSqtOmZ2bUt2W60nayAY5OCuXZyrVII4STnNua9HV5bMm4mcqt23oRo0iSzOomvPiDo9xuQMbC3M2FoonZdQXIwc9OMtOY/vznkEQYcuTRusC0PQmxWVTF1YJdMRQRcJKqjFrauuxGWlC8YkJUBZdgYxq1vEtiwlH6n6BlJdsdb6LCVfsT7L7BIhaLK7KYHPrK7q5wqCqBA3ZecQs7trPlPMLEC6exoxp0ccQaNPa01d4Q/ok3PRmRJbbyn2ZhtoP/FRzfpEBE1qbnOu/LAfj7MOs61+e65fMuojZirrnKTGFMyuDzVXiwA4dbeCHjnamh6JiJkanx+7Ttv5R1sLemUJA6Lmd72UyJj9X7hnSJJMsdeD7A2SYzarWfpGmxFPjZejpRU83kWxOTPYzPidbjacucrkrm0Iuj2IoWdi7f4fmNC7EylJSt8k+9y8t2YjQwcNoaBTRwh4Mehh1efr8AUlnnruRfySdoDh9bi5cPgAt24UUucLYkmyU9C5B7r7h1PrCURszjwBfJ6AWodG0Bnwe+y4KorUczVE0AiiTumbjNr2Kwd9yLW3kQIexbKxPqLGlKL0cdXXkR0lCOntNTVpBL1Z2V5TiJCmDRSK1kxkQKq4jJgRsQ3RZRbEEzTWTCRZQqq6hpjWNnTtesTMzvEEjSUJU253qk9/RVqPB1SCBiDrvgcpOrCBliMUP16LWa8GtjoMn8SJL94ladaTRMvWwgE6QRAYN2UWX65dxaRZ8xJLlqPUM0OHDeOlP/6e+/r2VSb69ahn/hrWZtGqmcbIkx+Dc3cr6Zhsa/Bc0dfgd3q4cKec6Z3yQ3/HkzKgKGPO1dbRwWStVxVz2+OmhdmsIWV8jr9f3RlBEKzAWGBpY/v+GnDx2GFy2nfDI+s1pl0VNbWUl5djz26OwxdQ28W6Tz9k+rxFKkHpDch88t47zH/iScWORwJJZ+SPb33Ik4/MINNuJlhRjGRO4t09x2mTauN3jzygqmjCSiy3QcfumyWUVNYiCJCu03F/h1yS/aLaN0c/I3V3HCSJforcgSbbmwkIGBBIQYyzKHMR5Dou/EhY0NVL1ORgIhMjF3FgRkcbLBr1TSoGCkjiFm5ao810bo2VGzEEjYhAT5LjCJo2gpWrspPbspsClASZZEFPd10Se7zVPGzIUO9Jts1GK4vE3sI7jOka6XdtJiMP9i3g830/MGf8MGS3Qv6GsWzaON7Y+A3/tjxiZykEvIolp95Eqt3GwAEDOLx/D/cPHdHo/X1w6kw+fud1Fi17RjMh19xnfxCXX8JqaDjI1mQ7sxgrtHtBLAGUiHAJkzHnz51lxINT4/ar77Nd/iAOp4ugzqSxMYvd3+ENcPyb7eT3HZ5QA+bw+LlzYj/pBYoS4ZdAzPyj9YGr1m9iztRJcQHCazdukpOdidUaVRhalvlsw2Z+92wksV6SJN754GN+80xkndvt5tW3Vyr2ZiYT+D04vAHeXPk+I4cNZdzoUXHXUXL7Brv37qfG4UIURVq3zueBceNIS9MGg6JVNb6grIxDQkGriF2MYrOnVaUFsBn1CEISHQs607Ggs+a8hdevs3/z5wT8frKbt6LrgCHE1l5yeINkdh+MvW0dF3auJbNtZ5La9MAe1V7t3e+jLiubyqunSG8fcV+o8wRoPughCg9tARnadlassJNMFkbOfIzV77zKI4tXqN9v8ORH2LXmA3Q6PXmt2+HwBWjZqStej4sf9nzF0LETcPgCWA06evYbyM7N6zl35jS9evbAKCrZ0G3yW1LYshUHDx5k8OCIgsMgBzDoYP6cWXzw0cc8Pk9r4x1G8/y2mL8/wcVbxXRs2zrhPtF4dPrDfLx+M088Ur81zY/B31s1A+B0uZpkT/ZjsPvAt3GqtWhs2fENj86cWu/2vzX+UfrA8Kjpww8+YNFjj8XVHzm4dzfDho/U2IxVO5ycPnmSFStWqO93h8PB9h07ePH551QrxuLiYrZ+uZmloZpQRh0UFxWxfs0qJk2fSbs2rTXXYhQFrl29yneHDuD1eNDpdHQq6MzsmTOxWpXnP87Oye+BBIRddIH1cJA7fIwoiqSmptC7V09694r0T5LOyKnTp3nr/Y8JBoP07NmTgSGiJhqiycqjjz7KzetX+T+vvMnk0UPo0rGdhrSd/sAo9h8/y+XrN2jXMdLP6uUALy5dxB9ff4d5c2arBE1+XhaTH5oYIWgCXnQ6HS88vZTfv/QaixfNJyNdeQ9MGD2CtZu3cvT4Sfr1jlz/rEkTeOnt98nJySa7WUt1/YD+/fnw40+4XlhIm9bae56WlsaAAf3ZteMrxowbTyIMGDCA1197jW49e5OckqKqWBIRJYIgMHz0WHbu2MHw0QoZFDsGNOoiCqn6iJbY9Y2N7xONN5tK0Gjt1LS/dfS83xOIqFCjEba1jUWYYEzkUJLouu4U3ab55HjRcrgtnj99kuVPRRJI/t4EzS+9D2yUxhcE4X1BEPyCIDiiluVR2xcJgiDFbF8Vc47fCYJQLAjCfkEQ8qPW7xEEQRYEYVjM/lcEQVjU0HWdlOroJUYC6ZW+IJW+IJd9boxBPTV+SV1X6gtwLeAhKRDJBnHLQY66nBi8BjVgfCPgobjaTZZTGRBWXqlk/10lKD3RlopJr6yXJJkvDh7njS17eX/HIexWM0/NfJDlsx5iwfDedO3UXlHMxFhSRaskotUUYbVFWInRPisx4ZAIgs6AuXkPjM16o8/pguQsJ1h6GtlVkXB/0d4cMaMjUsUlJKc24C4IAmJ6h4SNUTDaEFPbIpWd0TRwMTUfgj4kR0lkX5MdMbmFUvNBPbeSPS6VnUWWI9M4QWdETG2NXHk55lpExPT2yBWXADRqIABDbg+qjm2I62zCChpRb8LavAu3jx6gulSbyX27RFuU/EJxLT3HTOHkzi/UdWH1Un2IVc2EUXKP5EM0YReLpliayaU36yVmAE5fL6JHmxYNnqPmapFKzADcrHbQKkV5BquulCUkZgC2nipkYJStQGzNpxM+B72jAulNJWaEjGYI2a3uaflr4hfZB8oyX925yxCDHb/Trwb+fE4fe++WMSQ1HW+tD7/Ti9/pocThIiBJ5Oj0BFwe/E43567eQvB56NQyF9ntRPI4+XL3t3Rp34aubZqpL86V739A965deGTOHNVewef18uXnq9jw8UoOf7WJdu07MPnRx5k2/wmGPjiNlq1bk2wxkGIxkGQ2YDfrsZj1GM16jCY91hQTJrMBg9mMNaM51ozm6M02DJYkRP29Ze0JOiNiWlt0WV0QUvKR6+4QLD2D7K1L9FsiprVFSG6BVHo6bh9B1CHGEDPqNmsmgiUNqULbV4kZnZAcxYqiJ7zOlg0GK1L1jcjxehNienuCpWc0x+vtWQimFGqvHAbA6/Hj9wSRdVaSWnWl8vy3+ELkFihBAqc3QMHo6ZzavgZQAnUObyBUD0GxqLFmZCMazRRejVxvIl/3MKbOnM2atWsTfvefE7GWZpH12poviVQtP2a5eKeMVmZTI/t51AXA7/Uju/2aGjJhYsbn9OFz+vA7/Zwsq6KTTiFfEi2H7lbQI6Qe8Dn8TSZmBKPl3pYElgaJIMuyS5blDFmWaxrfO+p6foF9YMDrpvzaeextlYKfdZ6A2g6+27aBwRO1AabTx46S36EzVqsSoPEFZQ7s+ZouPfqQlqYkI8h6E+9+9Ckzp00lM+RlLRvM/GXzPqaNHMT4wfch2JLRWy14LBY+OnqOj09fZV9RGUP7dOKpCQNZ9sBApgzoRvsurUlrn0V6+wzseUmkt0/Dlm3Dlm0jvUMaWVYDzS16ckz6Ru0wGoMVHZ1IohvJ5GHmGk7OUIuH+IB9WCWThoET1OKN2ceMLo6YCSMfKzJwk0gbDhM053Gon+eTZNoJNtxIFEmRdp0pGsnCxEFPjaYt9LDbqa51cbrwDr5al/qO6tQ8G5PRwPFzl+KuJSk1nQlD+rF2++7ItfhdCAEvQsCLQQ7Qb8AALl+8QE1NddzxsZl/VpOB7r37cvzod+q6cD/ZFNWM1aDDahBJMuoTqmTClmX3gjCZEW0VFk1wxPf7iZYgTpcbo8mMwxfQLLFQyCeFgBIEIW5/hzdm8QSoLK9AMidrVDN1noC6VNy5TVJ283sjZgTxnvtAmjhu+EfqA2/evoMkyeQnKOS+YctXTHvwAc26zzdtZebkBzVzvA9XrWHe7BmqNZksy7zy1kqeWfqkQswADoeTl195leWLn6BPOCDo91B49TKvv/EGr7/9Lt8d+Z6J48fx1BMLWfrYfMaPHEa63aq2x+h2GV6MOoEkg6iSEeHsZKNOwKwXG7VciUbrNm14cPZ8xs5eRG5+W/Zs+JQftq7F54lX4ppsdro9+CgIAje+WYNFr6i8wkte63bkd+sbd1ydJ4C993gunDrO1XNn1PYXNFoYMWMRq95+hVqXRyU0R89cwIXv9lJeXKQmCLTv2Q9R1HHuB6WfCZOlD06ZzqED+ygr1TqsjBw1inNnz1BZcke9b2G0ys2ieU4m3x2NKrMUMxaY+fB41m/dRTDYuEIzIy0Vs8lEUckvzuXlbw6fz4dB3zjJ7vf7VYeURJAkCZ/fh9mcWLFUL0TdvY8DdU2rZ/OP1AceOnSIHj16hFR8EQQCAU6fPk2v3lo76TUff8jChQvVvw1ygLffXcmykHUWQNDn4dOPP2LJ8oglbtHt22zduI7nXvyNhpg5ffIk77/zFu++/RaF168xa9ZslixdxhNPLmbIkCEqMZMQobYarTIIjzn8gl5DZMt6k7rE/i3rTQiCQM8ePVi6ZDFPLVuKzWbl1ddfZ936DXFtX9abaNWmHf/2wnOcL7zD++u3EdRHkfgGE0P699EQM2HodDpefOpJPln9GcW3I7Gn1s2ymfTgBF559TU1LqfX6/nNM0/x5nsfUOeIxNRmPDyRU2fPc+V6oSZAv3zJk6z84CO8Xq96DwDmz5vLms/X4knQl/fv35/i4mKKbt+ulyxZ9NhjfPLh+wm3xaJLt+5cv3IZb8xnhd9L0e+qWOLGF5Q140qfJCckZuojXXxBWV1i0ZQ5QvR7M/zuVN+rOgFDPYqe+uoSXr96hdZt26v2aeElFiV37pAbKi3hC8rq7xb+f2VlJSmp8UKKWHVNLASd4d7HgWLifjjus39kH/i3QlNHPh/IspwUtbwWs/1azHa18qAgCO2BEUBb4L8C/z3m2Arg90IiRqAeeGQJU1CHwy+rBAwotg9KVp92cHIRB51QgsSVviAVvgDf+mvoI0asbY7VuTjgrKOfUVlXVOrisKMGT4mT+7MiPpPnjl/ipV1HKDCLLHtwOE9OGEKPNi0IlESCcNHB8qYSNLEIEzQFedpiSKnZ9Wd+CKIefUY7pSZM0KuQNN74507QGdBld4WAB6nyakI2NeH5wwRNaQKCJuBGckQGdIIpRbH4qbyiuT4xsyBE0ETVkzAlgykZqfZ23OdhSkaqU+6hxq5N1KHPLqDy+Ia46wwTNNa8Tviq7hD0OBolaAwmM6m5LSgt1AZefw6EVVI/B8JkTGOkTBhX7pTSPoEFXxjRpEw0BEGol5QBhbh0S0FsoQFpLDEDUCcHSBb1XHL4/hEUM7+oPrAuEGCgLglRENRAsN/px1Hn5Va1kzwhMkj3OTysP3mFh9tE/OOdtU42HT7DpB7tkZ2KOu/k5ULctdXc3y2iDHl35Ur633cf3bp3V9ddOnuSz95/i7ETJjLvscU8OHMeHdq3jwtO5aaYyUs10yLNQvM0K3mpFrJTzaSkmlWCJinVjMFsRm9JwprRHHNazo8iaMIIEzViVhdkdznB0rPI/ngyQDBYEbN7IDtKkGoTt4GE57dmIljSNQSNIAiIGQVIdUXI3ogVpZiUC6JOc37BYEWwZuO5dYyAx0nA7cDnqsGU3YGAowrnnRAZHSJojJnt8NbV4i6/rSFoAALGJKzNO3Dm8L56r3fkxMns2f4lTq8/4YAvujBvy5YtqatzUFkXassJJg4/N8KKlVhiJnp7eIk/1tOkxef2gcfX4D7K+bzqAhFCJhEp43f6qa12o/NJ+Op8KvESvTjrvAS9QYLOAD6HH7cvqC6/Uvxi+kBJlrm0eyMdR04BtMHr6tJiMJoJGi1qcLrK4eLI4W/pP2S4OhEpLyvl+vXr9O6nZPX7gjLbv/qKrgWd1GCnpDPyh8+2sGjWZPKaN0M0WxHNVnZdvM2a7y+waMpYnnpoKHNH96dN+1ZYstKwZKVhzU3HmpuOLS+D1PbNSWmTizU7hbT2WSTl2RWy5mcmaMKwoqMAOwXYKcTNOerwJ9A1pGGgB8lcxEk5TX8/twqpZhIRNOdw4A19lk+S6SDYqJD9lEqR87fUmUkSdRz3KMR4WFk0sV0LDt0upcwRraRzM6lHG/aeukiNM36M0bVdPsGgxIWrhQj+qCw8v9KmjTqBxx57nLWffNik7zZw0GBOfP+dJpihLUouqUQIoNZ7ibUUqw+JCJroYxOROuFnO1EtF9ASNNFLSZ2HkjoPpU6fUthVJV4iSzRU6z+/hMflVDNpY8mY6OXW9WuYM5vHETNhuKtKMadm/iIUMz8TfjF9IMDqDZuYNyM+W/Xgd98z8L4+mqzpu2XlOJ1O2rWOuCscP3mazMwMWjaPjA1XfryKGVMexp6kzEHrHA5efvMdnl++BIteUBS1Pjer1m7g0JHvWfrYAp5aNI8pE8aQalNUNg0tgrtGJWqMfmdCkibaR9+sF9V21hRYDSJt2rZlzKxF9B05nm83f8axnRuRgvH1kHIL+tB+2EOc3vwBoqOClFBCUXRSUSJk9Z/IpTMnVYIGwGpPZvj0BWz98A0CfuVzbEYdE+c9wbFdm6mtLFeP73D/CG7fvMHF8+dw+AJqH7PwyaV8/MH7eL1aEmvp44t474MPNP1SOKg5fsxojnz/A1XV1ZprVIO4RhsLZ07mw7WbmnT/5kyewKovtjZp318LJEmqtz5bfThz/hLduxQ0ut+OPfsZN3JYvdv3HDzM8MH339Nn/8Lxi+kDJUnm+6NHGTpsmIa0NMgB1n7+OTNmztAE0U8cP0779u2x2+3qus1fbmHkiOHYjEosQ5ZlXnv1VZYsewpzKCH79q1bbN6wnqVPP6P2qT6fj/ffeYuyslKWLFnKE4uX8MD4cVgsFk3bbSpiFYWJ1odR35wsTOgERANde/Vl2Yrn6Hlff/7y2pts/monPrQxR8FoYcrkSQwePJj/9dLrVHuCSAarutQHnU7Hb5Yv5tN1GzUETZvmOUwYO4o3Vn6gxvgMBgMvLF/Ky2++g8cTGaM9Pm82m7bvoqw8kkiu1+tZvmQxL0cRPH5BsY1buvhJ3nz7HXXf6Hs7b/4CVq/6lEAgkHCea7FYGDJ0CN/s2lnvd4rGlFmPsGFNhFOMJWbCiP07jFibs2jUZ3nWFNzLHCE62cGkF6i8e4ecvOb1JjxEj3PD13jh9HH69u3T6Gd9s3M7Y8ZP0BBR0c/tts0bmfTQQ02+9n+h6eTMT/0MEdBF/TsabwMtULzfmgQ/Mi0SVCC/jYeWMTYNVfixocMU9bHXcdEaq6qukWWZk1IdfcVkNYh81u/EIAj0tSVTeUUhBb789jxHikp5dkx/WmXEs4BNRSKCJlY9E4tYK66GIAgCor2ZQtJ4qgnGqFXCEFNaIlgzlQzyBNsTnttoQ0xri1R2Vnuu1DbgdyK7IgNQwZKukCua7HEzYkp+nFJGTMqFoA/ZXaVdb89D9tYghwpSRxM0ojkFwWCl6uL+uOtUa9B0G0f1WaVDjiVoonGhuJaOA0Zw5Wgk0NmYeqY+JFLPNETQNKSe+bHwFxcCShBLp0vczOsjZlzljkaJmeseN21M9dullQR9BHxiHCnTVH/9fzD87H1gUIZmepMmG99b62VXRRljkhX5sM+pBJb33yljUFYaktuH3+nGV+ti1dFzLBzSU80KqiwvZ++R48wYo/grC34vqz5bw4C+vele0F4dCH2+ehVlpXd5YvmzZGWkqxNnUIJMYYIm22ZUSZoksx67Wa+Z8IYJGoNJryFojNYUDUHzo0kaQURMbYOYWYBcVxSndlH2ERSLMlGPVH6x6SS1NUMhaCqvas+V2Rmp5pbaVwGIyS1ACiA5SyP7WtKQ9RYCldcAVILGkt8P181jeKojbc/vCWLvNJzSE3sI+r0qQRMOduUW9Kbk1g1KiksSqmec/iCjp87my7WRgWZDBQznPLqAT1etTrgtPFgPB+0EY9PsEu8FscRMLGIJlfoQTbQEfYmDmtH7RBMypeVOrMGQbD1EyESTMmEy9GB5JX0Eq0YBEE3AHHLU0l1n1RAyjoCEo54spX9w/Kx9YMDrITmvFUardlxU5wnw/a4t9BqlnQh8s2ktE2fMVf/2BCQ2rfmU6XOVDEpfUOby5UvU1tYxcLDSB0oGK3/5aC2PzZ5Gbqt8RLMNzFZe2rSHjLzmLJ8+AYs9BV1GrrqYWrbBkJWDtXVrLFnp2PObqWRNSrvmGrImEUGTbmxa1ldToEeggCTaY+MSTm4QT27oEOhBMnUEuJ5ge30IEzS3owgaXYigOUMtgSgyqK1s45bspkryq89+O9FKnRTkXKky3gurPOe0b8knR8/iqKrTELZLHxzGm5t2q320GKolKNiSmTVxFJt27cXrVcYaseoZs9nMwCFDObB7l3q+hvrACZOn89Wm+KSfRLZhDSGWaAkHcX+MgiZMfISDy7Fkh9r3ewOU1HgoqfGoBEqdx483KKtKmmjEEjVh8unC2VNktCmII2TqYpYbJw6RVtAvITEDUHbmEPaOAzRJBf/E+Fn7wOqaWiZPGJewjsV3x04wqL9W+bFq3Ubmz5qm/u33+9m9dy8PjR+rrvt6734KOrSnTb6iRg8EAhFixqK0eafTxf/608sMuK8Pj8yY2qQ6GnH2JdFkTQxJk4iggQgRGuujXx+sBpGklDRGzFxIXpd+7F/3EaWXTsbtl52VybA5Syk58y1VV09hjxqvhpOKEpE0mf0mcPH0CQovX1Tamy+AbE5i5LRH2f7J2wqRhTI2fHjhUg5uXIU+dB+SjHrGTZ3Fqe8OUFVehssfxBeU0ev1PLFkGe+++bpmPKrT6Vi0cAHvrnxP7dui7+PSBY/w7rsr6x3D5uVkkZps5/zla43eN51Ox8C+vTh49Hij+/5acON2UUJ1WUM4de48PZpAzhTevE3b/PrdG85fukLXTvXXo/knw8/aB1ZWVrBg4cI4EsTpdOKsqaJZs8hvbhDh2/17GTUm0t9VlBRRXlFB766R33nNpx8xfcYM7HbFmcdRVcmWL9ax4plnMOt1GEWBsjtFvPPay8ycMZMHomqhAHHXci9ETXRAP1pBEauiiUVD2/Pz83nm2Wdpnd+av/z5z5y/WghEETwGM21b5/Pc00/x1idruXytMO4cot+lWUCxV3vxqSf5ZO0XVNyNJKG3b9uGkcOG8P4nn6nrLBYLK5Y8wZ/ffBdJUsYggiDw7OJFvP3RanyhBFH8HlJSkpk6ZTLvfbxK8/1TU1MZPmwomzasj78+UWTBokV89MH79d6jvn3v49q1a9REkdj1ESU5WRnYk6xUlRYnVIpEKz+BuHdVGA3VlwmftyFrtIbGqfUhlpQJ4+qFM3QPJdk2RZFq0gs4HQ7sycma8yZSDXm9PszmiCgi9js5HQ61PYXR2DP9z46mkjPTBUGoFAThkiAI/0cQhFimoKUgCCWCINwSBGG1IAiqCbQsy5eAQ8BV4L8B/znmWCfwX4D/TxCEJqXoJvLSBqjBTwbaYF4RbvKjiBwZGSdB0qI8u0/5nXQSbYihQKUkyxQFvfS1RVQr5R4v7hQjUzu3QUzAXhryWjfl0htEbpKR3CQjrVMttE610D4rifZZSRTkJVOQl0yL3CRa5CaRmm1Tlrw8UkNSsuTmHUlurgwATPZ0TPZ0JWCYko+Y1g6p7FzCgZtgTlFseUrP3BtBY2+OVHVds15Ma4vkuIscNRAXbdmAjOyOUr2YksFo0wQs1eNrbyNL2peYYsN2Wb0+b12lStLo09sSrLqhFAuPQXVxMaLegDmnA+4SJSM9mqCJVc9cLKmjeUEPii9riadEiK0P9EtCmJgBNESlq7AwfucY3L14F2M9k63KK5UqUXnW7aCbNYmiUldC1cw+Ry35gjZ4+ysnZn5RfWCSqIvLwJdlGYfTR7LeoKlvcL28lo6pkb7M5fNj0ImkWiMv0y++PcGiB4YieZT2UV1bh8/vp3vHtuo+p0/8QPO8XB544AFNYbwwQRM9eY5V0TRG0IQtzsIETdji7KeoaCBkU5beXiGho8iUaIhJOQhJuRobxkbPa80AvRnJGaUWFATErM6avgoUZaHsKkcORIKNYlIOAWclvprIoNbnqsHWYSS1Z7bhc7vV+jOCIJDWYwJFB75Q9w0TNA6Pn44jp3Bud/1ZkRlZOeh0em7fKY4b/IPWD9dsNpOSmkJ5TdOJaSHqPdkYoi3NEpEvDSERIRNLsEQTLer1CUKD+8QqZIrdbrLQa2qFhNtTuHaMz+GnVgqQrjPUq4ipDPrJ0hlVQiYcmJaaSAL+AvGL6QOlgJ+Ujvdp1tW4/fjcLsxJybj8ckRN4PHjcLvR2ZLVIHThlUu0KeiKXq9X28GOHTuYMlPx7pf1Jk6du0D3go7kZCrKacGWzBffX+ThUUMY0KcngsWWcNGlZSGaregychFsyRiycrBkpYeWKGVNdgr2vCTszZJUgsamE0k36n42FQ0o4+Wu2BERKCJxm2uDFRMihfdI0DgIUEdkvKZDoDvJnEXbf/QRkzkZrMMcmtAl6UWGWVP5wVlHXW2kXetFkbnd2/PpMaUvDvcRJoOB6cPuY9WOAyoxE4YgCDwxazLvr/tSXRedWWrUCfTv25crly7h8yltuiEv79xmzamsKEeSJDwBSX1mot9p4ZozjRE2SaaIxVl0HZpogibaXiy8PkyERCtSHB4tyRxNkoSPiSVQble5uVlShVcwUlLnSWh/FkaYmAG4c+smprRclVCK/pwat19d3L4ALr+s7hOGO1xjzudX39/hdQDeOm0S1q8Iv5g+EKBT+7Zx685cuETfnt006+6WlZOXm4M+yqZp6649zHh4ooY4OXv+IoPv76/+/eX2ncybNUMlZgA+WLWGFY/Po12L3DjLslhEr69335DKLUymJiJowjYt8WPMxhalveY1b8bwWY/hK79NzZ3C+OsURTqMnEZtWTFFF09ptiVS0YSf47bDJnFi3y4qq2spqQl9D1sy/UZPZO9mxSLWatBhNxuZ+fgy9q77kCyrAatB+S7THn2cHes+RZZlPAEJb0AmOSWFUWPHsX7DF5rryM3JoaB9W/buP6i5bwBGo5EJY0fx5ZebNevDkAxWpjwwmq3f1K+yjsbgfr354VTj8+BfC8rKK8jJzrqnY/z+gGrrVx+CwWCD1meSJNW7/dzFn9+l42+EX0wfqDcYyEyOd5PZ/tUOJk+epCFFDh06xIgRI9TAskEOsHnzl8ybMUU9zuuowe1y0yG/hRp8/mLDehYvfUoloWVZZu3nn/Hs8y+Slp4e99mxAedwEDrWoiz63z81SB1NANW3dC/owG+fW8G2zRuprKzUErwoc7/fLF3Etl27uXn7DoCGjEkEURR5funjvP3RapV0ASjo0J72bVvzzb4D6rpku51HZ07lvU/XqOv0ej1PPfYo73z8mea87dq2JTc3l6NHjqjr/IKeXj17UufxcvVaPMmclZVNs2bNOXvmtMYeLHqZN38Baz5brRlf12dR9vDU6WzfslndJxFia8UkIkViryGM6Foxic6fKEEhFk0hb8LnLy8vo3mz3HtS7jQmYDPqBErv3KZtyOYvfF+jP6O4+A65LSPkdXRbOHbshyZfyz8bmkLOvAwUAJnAVGA4Crsdxj6gO9AM6Ad4gJ2CIKg9pizL/1WW5RxZlgfJsqyN6Ct4D6gDnmvKResSyFN9KMXHoxFERgj9F0YZPrLR9vlV+MkUIgHAbXXV9DBE3jfp7dPZWlTM1M6RwqPWqMJUscRMdA2MYHJeo98n1t6svho0YYuzsIqmKSQNhNQqyS2QqyIWY5rrDdVCCNuN+Y6vxHX0LaZ1cjE49TrPj83Ed3wlW/73IwxJK2RQyjUOf/J/ESjczXu/Hc19lguMa15K+d4/Eyz6DqniYoztWWvF8icYmVyK9ubIzjLNOkCxPSu/oL0+QUTM6ICcIPsdQJ/TlcrjXyTcBmBr0Q3n7TNNyoxv1e0+bpyJ+Pf+WPXM3wvRxMyPQaXPR4YpPhgeJmXCkICSsvhAT9jCLIiMLqpjDxMzsf72vxL84vrA8KMcDgj7HH6ued20NVvUALLf6edmRS25Fq3N445LNxnfJTKpD0oSLo8Pe6hwrOysZc2Wncx8KFRgz+8h6HGyb+8+xo0ZrZk4Q4SgATT2E/dC0ETXoAlbnOnNNk0dmp9E0ljSwGBBqqvHxs+stWFsSh/43Zr/j8ClLZo+sGLfSwSLf0Cq0NZIUPq1GHVOShu8RSfwux0E3I7QrXZgye+P82pkUOv3BNGZbdjzu1F54TC+mCxkUacnvVNfTh/am1A94/AFGDZxCl9tWqcek2hQFx44Tp08mfVfbFRW3oO1mZrNHiraLZqbpgiMzpBvKhoiWGKXgDvQ4HbQKmTu1rhINxk1pIzyGV6NUs0XkDSETDQJ4whIeCVZJWRq/JK6nPY2HgCXDaZ7XH5822giflF9oNFmV2piePzqAnD20G5yewzS7Hv2yAF6DBii/u3yBzm8fw/9h4xQpfwlpeXYU9LwS6Fn3WDmm2+PMHLkSILWNLClUuXyUenw0LFHb8S0HHQZeeoimm3qAqhETdgGLUxg6qOKcxtsFgw2E7ZsG8YkA0l6UVXQJOnFn5WgAWiJBSdBquqxMGuGGRFBVcO8IRfyiv8K1bPv5+KINiT/2yzekAuZvuNtLo1sy4XhrfnD9zv4RL7N0I//B6cGNuP2g934c80ZmmGiEJdK/AqCwAB9Cgf91aQYRCxGHcYkAw+lZrKp7K6q8vQ7vSRJMh1TbOw+pfTFYUK3XfMcrGYjpy4rj074ngpGCxlpqWRmZXLx6nWNHUc44Aswe/YsvlwXCQwkQrgPHDBiDF/v2K7ZFq0MjUbYRixcqyVRLZf6atCU1HkS2obFEjONIZqQiSZPHB4/FZXVBPWWOPuzMMIkTXidwxugrtaB0WJLSMqAQhRV19QSEA3q54OWgAn6PIiG+PeG2xPgzslDDX8hQbjnPhB90+ot/AT8ovrA1JTESREHDh9hyIB+mnVbd37DQ+NGadbdKrqjqgmEgJcfvj/Kfd07R8gTv4ebNwppnZelrjt75jSt8rJUy7NYNEbWJNoXaBJBE50IFLYSbMzqTFV1h8afXUZN5uax/XhqI+Rg9HOdf/94ym5cUe2t//eDBdxZ9f9y7c0XyT+3lq3LBvFCOyfCpv+Ka/V/4t+76zi55mXuD1xm5397nC3/7wrmdUnnt5OHYLOncOdShOAwW6wMGzuB73d+qV6XTq9n+INT2LxOCU6GA3htO3XGE5C4ckU7Zx8+dDDnLlyg9I7WAhyga+cCiu4UU11To95Lzf0WBEYM7M/XBw43eM/CaNe6FZcSZNH/GDQU4P1boLbOgT2pfkv4H4tT5y40aH12+vxFunXulHDb3m8b+R1E3b2PA+upe/Mz4hfVB6alKA42sf3O3eIi8kI1A0EhL84c/4H7enZTyQpJkvB73RoCbtOWbUyaMFbth3xuJ0aDjmRbZNy2Y/t2xo4bn1AxGKt0qY+oATT1Y6KPjUZ0kLs+5U3sd69vAaUPeObp5bz15htKokpUvysEvMr2xYv4fP16KkqUPkbO68y8f/sfjFnwLP/x5Y/QtezOntPXGD93MWPnPMH5Uif/5X/+gXU79zNi0iymLVqGx5jM6EkzuHLtOsVR9ataNMujdauWHDh8NPIbpqbQvXMn9u8LEcchNeXEsaM48cNRamq0pRnmzpnDuvUbcIYSS6Lv2/gJE9i1c0e99bUsFgs5OTncKCxMOL6OJmpsZiNGowFnVK0cnySrNVX8gl6T2FhfPZZY1KeIiVWlNETMNKTICV9L+JwqpKBaVy46ZhONaGuzpqp2jn53iMEDByYkZgC+PfgtgwcPSdgeosm3RJB1994HNrXmzC8djZIzsiz/IMvyXVmWJVmWzwIvADPCrLYsy9dkWb4U2l4CLEbpmJtssinLchD4d+A/CYKQ0dj+iXATt2q1EMatBOvu4iU7Sl1Tg59k9JG6NbJMlewnVxfZ52h5JX3S09CLIintomSSea01xExscfKGiJloazNQCJpokiaaoGlIRQOROjSxJA1EqWjMqWC0x9V1Ua/dYEVMyVezxzds2EDPnj3ZvXs3brebkydP8uabb7Jz50727NlD37598fv9vPHGG+zbt4/58+fz5ptvAqFM8Sotsy1mdkYqP68lbTI7IZVf0Naf0RmULPbaW3HXhzFJk6keVs+IRhuIeqqvxDf0sL2ZvW1/HNe+i9sei4slddgzsqktj3zOr4Gg8RcX1kvMuAoLm6SaqbpSRrnHG0fOxBEzskxNXXyAJ9rCLCeU9BJdEwrAncD7/peOX2ofGA78hgPEJ6tr6WZR+oQwQXOoopJBWZnqMX6nh7LqOpIlWS26/NWRM4ztGyn85/Z4Cfq82KMsdlatWcv8R2apf9dH0MROnptC0BjN+oQEjbrEqGh+LEkj2ptBwKtR8UVDsKQrfWSN4qH7U/pAwZSi1sqCEMGc3h45irQRBAFdRkcCd08DqASNPikTUW/GeeeSqp4BsDXvhKeqAk+Vtlirw+Mns20XKm9fx+dWlE+xBI1HFsht1ZYzZ88kVM9Ew5iUQsDvV7PMoxFrbfZzItrSLBbRqplYZUyYYFHPE0W0eB1eAr6gZl2iRTmvQsaU1rmx+4XQub3qEiZl3L4gd9xeUkV9nComTMBU+oJkYVL/DsMRkHD9Cm3Nfml9YDBBkU0AT20ltlCNi3AwuvDqJdJatFWJSr/PhyQImgK+O7Zs5oGHJuGTlInX9aIS8vPbgDUVWW9CMlh5/4vtLJwzPTIJsKVGClHaktUllqQBVIJGsCWjt1ow2CwYk60YbGZMyUaS8pJISTeTZTWQYhDJMUVszn5OkqYjSdzCg6ueJIlWWPAiUYbSxn5sH5iFCR8SNUT6L4ugo7vJysWgE2OSMkm06nR0FMwcKCpV2yFAv+bZXCmvpsKh7ROmDB/AzkPHcLrjCd2pE8awYdvXkQzO6MxynUBWVjZIQZyhwGzsRNoXVLLXPQGJlq3bcqswPm6UyFYpYg2WmJhRj41S0UQjkW2Ysj4xMVNf7ZlY8sTh8VPnCVBdU4NfZ9K0iUQ1agCVIAKtEib2vAC3z5/C3KIzdSFCxu0J4AstAH5XLWkdEvuVW9IbT1r7peGX1gfWczySJMUVJ3e63NiiClPfvH2HFs20v8G3R37QWKF9ve8go4YN1px7+9d7eGjc6Hu9rAbRVIIG4pXagIaoiV0Azfgz2WJg4NT5XNi1jqBf6W/Cz3T4GW83bBLnjx6krrzkJ40B+40cx6kjBxG8bvV6Ohd0JjPZRvWNS+r15bbIx2gycebMGSBSr2Dy9Jl8/sVm/KH6NeH7tPjR2bz38SpNpnoYCx+ZxfufflYvMda3RxdOnrtYb/AyGhNGDmH77gON7vdrQJ3DWS+h+FNw/NSZOJVaNAL+APf16p5wW8+uXX726/lr4xfXB8pS3LNeU1NLSnKyhphwuVxYrFaNEmD31zsZNWJ49OdScvcuuTk5gNLeNq77nGnTpgNK3+NzO7lxo5AuXbvVa/GUyJosVjkRTd74hYh6O1Hx+ESWaHEEeLiWl7smca2vqGOMgsSyxU/w0suvqEQIRFQyuoCbFxYv4O1P1+J0uX5SH/jE/Lm8v3otQTGSODF62GBOn79AaVStmWGDBnDmwkWNPZoQ8LLsiUWsfPdddV24/szCJxbz7jvvJJy/zpg1h88/S2zNDfDQpMls3vQFoK3hYhQFdQlj8tSp7Phyo+b4MEET+9lNVaTEkh5hUid2+bG1aWKJmejvVF9SbWOIq7MTtThra0lNS6tXAdSiZUsyMuKbsSzL9OjZ656+2z8TfkzNmfCIoL4nRw4t9/RkybK8DTiCImm8Z3gIYokpdlVHADtRRbZC6ppoJU00gVPpC3Jb9tJCiGSay7LMpdo6hvZrr66LVs2EEU3KQNMUM4kQTdKEbc6gcZImrKIB4ggaUEgata6Lq4JEEEzJCFYlkHvt2jV69OgBQK9evTh48CCiKDJhwgTmz5+P0+nk0qVLdO/eHb1ez5gxYzh8+HDoPCkg6jWfI4h6xJRWyDWFMetaIldH1gGI1kzwuzS1GwDE5ObIrgqNbZpqb5ZVQKD8IjW3E1sTmdJb4KspRQpoJ7ax1mYABQNHc/HbXZp190rQ/LXqzsQ+Z1C/WsZVWIivIvFvXR8qvD4yQ5kk0TZmYRSVuvi+pJpmUeRlWC0TjRaiOaGNWSp/9ezGvwV+cX2gyxtARibgjAziPDUevJ4AeAJqVvLlylo6xNTLunq3kg7Nc9S/1319kBkPjACUAZunrgaX201ebq7GZxXiX/ZAvXVo6iNoslPNCQkaozVFsTgLETQ/B0mjWC8Wx/Ut6vakyH34KX2gUiurGtkfUZcJRluIYI7YOcqiEQkD3tIIaeNz1WDM6Yyn6CRSINKu/N4AGb3GUn5iF1IwPoDWbcw0Dn35uRpci8X9I8bw7e5deAJSXPZO7KRg0qSH+WLrjnruYgThujP3Ym0GjVuaRW+vj5ipT/kSDZ8kYUqQ4RYmYqKXMNwuHzj8GguzaGIG4KLfRUsxMk6IJWF0gkC6bIxT0wC00v38tXr+Dvi79oGSpLVaAqisqMBoTdIEr92OOiwxz+Y3O7YxcOR49e9AIIDL7UFnsqqTrk1bv+KhyVNUFc3V2yXkt+uIPjWHoCUtsljT6iVq6lOShQkavdWMwWZR7c2S8pIwJhlUi7MkvYhNJ6oqmp+LpOmGnQvUaerCRKMdNspC6pqf0gd2wMY1XARlWf0e3c02XKJEqT/STjtbbJT7/ZR4POp7yu/0MLNjPh/sPYYsy8hhT3Jg2cwHeePzLXHXLQgCM6ZNYc1G7bboYO+sOY+w7rPVcZPIRJP8/E5dOHEivu7CvdS9iD0uFrE2ZKAlWZqKRKRMmDSpra3FLxqpcSvri6s9GpJGvZaof3sCQc21xJ63zhPAcfcmYkqzOFIGwOcJYE7NxpwWeZ9GI6Vt4oDlrwy/uHHgsZNn6NtTe29PnDlHz66dNeu2fb2b/5+99w6T4zyvfH9fhc6T8wyAQU5EBkHkDJAEATCJOYhKlCjKXtsbvN71ru/1eoOvw9qWLEpUsEhJzGIEMwkCjCAJJpAAQeScgcnTubvuH9VVXal7ejBDAqR0nqcfYL6urq7urnrr+97znvNetmKJ+ffJ02eoq62xJS+3fbaTyZaq/5c2vs6qFUt0+1ZHD4KBKiOsah3jby+CxsvmzHktWm3NnGq3SEChMhJk4qXXs/XZ++iOJfPnczyvOJu++ia2b3x6QPEP4PrbvsMzD/yKYO5Yq4Mqq9ZczntvbERKJ8yYsOCStby98SXaOrvMuVlKg5tv+wa//Ldf5T9cKo6iKNx47dX85sFHXNXxIVVixgXj2LT5g4Lf9bVrLuGRp1/o8zeRJImK8jLaOjr73LYUnEv1THdvL2XhwVfOpNJpfL7C65CZ0yYXfN7ZE+pLivMuBj734kussvTRAnj26adYvXKp7VrZsXMXEyy9gN7Z9BZzLsorDlOpFLGeLuoqIiY58rvfPcLXb72loA2VAa/kfaHnChEzXu/hZQkpYp2IdCJPrsTazYf5eR2kTVU4wNdWr+Tf7nvIFb9FKoGqZfjTr1/HP//itwOKgXIgzG233My//fq3QN6B4fZbb+Tf7nvIVph9+6035u3RLFZrqy9ewZNPPpH/yEKhurqaydOms2G9PU8H0NLSgqZpHDni7ZIhSRIzL5zF5nf0Ym2vubUxVlVVTWdnp4sIT2Y1TyKtEEFhwIuY8erlUlAxY3lPL2WLFzFjQPbYDgr3n/FyGvJagwjhPl4roTh79mz92B3nvRCCuXPner73H1ACOSOEuEEIUZn7/xjgH4GnNE2L58ZWCyGGCB3VwI+B00Bp2lk7/hPwXaBf5qApD0uzJFn8jrGDxBju6D8DAsly3zihJWi2JF0OJOOMLdcbGTlVM+CtlimVmHGqZ6wYKEljqGicNmdS1ciC1j6QI0aAcePG8eqrrwKwYcMGOjs7OXbsGM899xzz5s3j7rvvpqOjg/Jcs6iKigra2/NScamylWzPUVsvGBGohGwGLdljH0NDi9sngKJ6jGkxZDu+mnFk2+yWQYnuNoQQKDWjybTtoeuI/XlDPVMxYQldO/r23N11Oo6QZdJJe0WGk6A5n/vOGEoZ/Rx3o3OP/Rxo3603Ie9IJqn0qS5SBjB7y+xLxxmh6NeRk5QBt1rmy47zMQZmcjdOI+G7P51gtKr/JkYieVcixriwvVps8/HTzB2aT5gcbe9maE2FLfnV2dNLbVWl+ffTL63nyktX2CaFxqLZ+P9ACZqgRUGjBmT8AZVgVW2+B41FRTNQkkaqnVCw/wyAVKHH8wHHwJpxZNvsVoxSeQta70l7X61wA8m2g6R62kz1DEBk3HK6P1tPIp4iFdevJyFJ1M+6jOPvPGtrstwTTxFDpbJpGCf36/HPqZ7pTWWYPHsBm9+0x0CvhUJLczPHTxzXB1W7LV4xOPtBWGHtN5MfK93SzEnMAC5Cxkm4dHcnUFKaJxFjVcVYHwaspAzkiZmedJZT6RTlkmIjZbyIGAO9mazt8WXD+RYDNU0zz38jqX3s400Mnb7Q3KY7nuaj115m5Owltuug7dRxGppbzH4hb7y2kflL8tXg0WQKSVHJ5rzANcXPCxvfYM3ay/VrwfLQghVkglVk1ZCpqLESloaKxsvqL6+e0e3NfGFdQVPWHCHok2kJKqbNmdXqzPqo9smmuqZUAkdCMIlyPqO34DYT0O8bA4mBAsFEythGt/5czs7ssvp61ne12RZ/y3zlPHfouK0fkypLrJ08msc3f2o7tnAwwIo501m34U3zuzaUfCNbh9Hd3WNa+zhRHg7S3NjI4UO6Mtu6SDX6yxiPabPns+XdwvZb1qRwn6qZXBLWStBY7cusD/250skZL/LEqmSJ9kRJaCo98RRH2qMmSWOQ+FaSxkrsO4/FaV2WSmdJJTImKZNMpM0H4LLfNOAkcr4sON9ioBfe2/IxF82YZhvbtPl95s+29+fKZrO2pPEzL67nylX5xta79+1n/JhRttfs2rufySOHFEyyD0byvS+CxoB1ngl2QsYKK0FjnXvW1VTTOHMZO9943jyfDYIG9HnWjCu+PuA5oD8QZOmqtbz2/FMEFMlMvN3yzW/z3MO/oTqoUh/2E/EpXHXrt3nsvnvM1yYzGmVVNYweP5F3N+dtgACGDWmhpiLCJ9vdxYiL583hrc3v2xKK1t9maHMjp9s6SCS87S2tuGb1Sh5/zp0A/bIhEU8QCAy+2lv0j3P40uO8i4Fa1qUS6Wg7TY2jF8zpM22mIgagu7uHitw1a7zugy2fcNHUC8xtnn9pPasvvcRc96pamkQ8bl7rfcFI4Dsf5vNFCBwDVsWMq09XTvVikCsi5VbLWYkX6+tFOsHI1mGMGtLAux/pzg0ilbDtIxwK8r3rLh9wDGwa2sqI4a28+36+0EVRFG64+nIefHxd/rOqKrdceyX3PZBXvYh0ggsumEhvZwfHj1n6s2Y0Lpo9h3379tHe5s5VXXfDjTz+6COFvlbmzpvPu+/aT0kvcsQnCS655GIbCeTVP8YJL5LFUEQaryvFAs0KLzKor/PHejzO/zvtQp3o7e0hXERt6JMFiWgPlbn8uAHrOWv8vy+3jj/AjVKUM3cAe4UQvcCL6EH2m5bnl6Az3D3ANqAGWKlpWr+9oDRN2wI8CPSrDLeTtKsiv40U1diTdkmyBCz8YZwsIcdX4OxnUykrVHv04PiiYJA0NUHZJGkaI76SSBpwq2j8ZdUg9/151q5dSywWY/ny5fj9fioqKliwYAGyLLNs2TK2b99OZWUlXV16Urerq4vKykrbPqTqMS57M1E1kqxDKSMqR5DtPGC3NxMSoqyJbM9x+7aSjAjWko2eso0nutuQQjVk451omuYiaACUYDmZRC+agwX3Us+Mm7OMHW+/4v3lfEE4W/WVFf2dPPplmbhH8tAgZgDSmoZfSAWJma8gzvsYeDiToNWRRN8fjzEmbFdkSQgkS3Xk/jMdjGm0S059qj2Wjh01Er8lBhbyvi11suEkaADKAopJ0ITLAyZBY+1B0xdJUyqEkEDuW8E10BgohIRU1ky2+6htv15xUa4dT+pE3p88Ge0km8miSQFS3fZYh1pGVpNIejRVHjFzIXvef8ulnjES0y1jL+DTbVs91TNW6M0Xp7Hl40/MsVL6zhgwktFWWPttFEMh1YwBp42Zvp1d/aJvl0DqTdPdU5yEgTwRk+xJkUlkbEoZ4wF5MjSe0Vx2ZU4UImO8tnUiq4b691A+dzXOeRUDnY0qu+NpUvFe/BG7KjAR6yVUZh+TZMWWSD92+BBDh+f7CXb3xghGymwWFBMnTUHyh0yfcE3xk1TDprLGsD4DXAQNYBI0Rh8aq3rGsDeLNJVR1hRBDauUNes2ZxFFokLVVScGSWN9hGVdXWOQNxFFKskKzYdUdPJvzBsGGgP9SASRac9a7M0qAixsqGWLFsNf7sdf7idYEeDSIY1sbD+DGvajhvV72YjaSk519RJP2q/tqWNHsufAEZK9OvFjTSrcdM0VPPz4U/bPY+k9s3rt5bz8wnP5Y7RU41uTu0IIIuUVdHd5Ez0GuVcKTNuwZJ4E6XaQ687+SaXAqrCxkidWZFHp7e7mZEfcphA43B7Lq2gstmqH22P5eOdBzBjI5OKYlZABXeFpEjWOY7ESOcWgCan/MVAe/OSrA+dVDPSCQLhioyRJtv4IPb1ui6d0OkPQ0puwrb2DxoZ62zaTC/TOGGx4ETQGrIVAfcHZB9FaHFQWUGgY0oqc1ucawdw81Hp9KKpvQPEvmpsftI4czfETJ4hF82uoSKSMpiFDObJ/N+V+XVHTUlPJzBkz+PRDOxGzeMkS3nxrk6uSec3Fy3lp4+uen/3Kyy7m6RfXA96k2dWrVvDUixv6/A7DoRDRWLykfq2l4FypZ4LBANFY/4op+2qGDXj2HRksaELudwzUpL7XNQPEeR8DZVl2WXo5bR537NrFxDEj7Nanvtx3lxtra2ujuanR9ropE+0KRC/Lsf7Ayy7KGO9rvwYxA3gSM8VgrOWGtI6gq1sv0jHtei2obWwc+Do4nWDF0iW88fY7tjgyfOgQurq76bb0dBna0gxCcOzwQds94KYbrucJj36BN958C488/JBrXJZlJkyYyGfb84U9TnJj6rTpfPLxlvzzBQiEMWPGcnCvdzFnKQSbFWdrVeZ8z2J/W8eMz+xlwealRi33y3nyxh8gkShePNnV1UlFZX595UUmmgUWfaiCvKBJav9joHAr1L+MKKXnzBJN06o1TQtrmjZC07R/r2lal+X5/6RpWnPu+SZN067RNM2dGS+87//pGPumpmlC07R7Sv0QnaSoQHGNVVL8R4qSIURxe4KR4xsYVZafyHpZmhk4m2R6IfVMJBst2pemFJLGS0UDoBapbjYgyzI/+tGPWL9+PbIss3btWrZv3w7ARx99xIgRIxg7dixbt24lk8nw8ssvM2eO3VZUKAE0LYOWySfThJAQgUpb3wchBFL5ELRuez8cKVSHFj3lmhhKZU1oDtLGgFI9kkyuKt5K0BjqmfCwqRx5v49mpMCRZICetlOu8S+TeqYQCqlmACKKwpHdp23PW4kZ0NU4v0fEzHkbA63J4biWJeRohJbUsvidzdEc98Xjnb00VtorH5yYesEEKisqPJ/zagJn/b812eXVTBmw9Z8xCBrVoqBRAwGTpLFZnTlImrPtRVMIgxIDQ7VoMXuVuMhNjK32jEJWkQLlZHrsMSc0fDa9e/V4lYpnSOWSWrVTl3PiA72ax5rkE0IQbhjGqYP5yaSzoruuqZl9Bw7YCJpkRnNN5BbMn8frb9sTBZDvOzOYMPrNlGJnZr6mt3Dlp0G++CSJpJa/TqwkjPVhRSqjuQgZZ18Z6x3JSrYUU8d4KWq+LDgfY6CRUDNQypQ/EY/hD9hJ7EwmY1u8p1JJc6FuXAuLFi7IP+/R2BKwETSQt/wzYFXRGARNsK4aJRQg3FRDqL4KNew3CRp/ud8kaFqCiknSFEJYzj9XbLv+YDBi4GhCfJqxz5tGhcLsj8XIaBpqWCVcH2bsyFqiAmKylFMT6eTVtXMm8dCbW8jG9RiRjevJhOsvW8bDz9kLaKRUlHAohEKWru5uW/LFgKqqCCFIJNwxxUnQLLz4Ml5/8RnP/ix9ocdBQDhfV2Y5fyOBvpNqhbaxkjlOYsYXUFCCZcQ7OknmFAInO+Ic64iZSprD7THz0ZedmvOasyKVSJv3J+P/BkFjPhxEzpcJ52MMLAXOAq1de/czdtQI25hzjZVMplxFOovmzf5c7v1eMAmaXHW4ValdCgxixq2syRE0AYWICkG/z3VOWwmagcQ/I1ZEUxkuu+p6nnn8YVuSbOWqNax//llAnzOX+SUWLV7Eh+++hSL0eYLxmZcvW8rLGzbavyMhmHvhDN585z3X5x81vJW9+w9Cwjsn3txYz9ETJz2fc2Lx3Fls3OSeB36ZUFVZQfsg2bNZMVik1ZcF53sMTKVSKLL9eu5qO0VZ0G8jbHbt+Iwxo0Y639+yozipdBpF0fdlJJoXLVxgEjJeCoH+JJ5NdYZTrdEXMWNRzED/iRkDmuInmswSKq80E9uAvbk6A5wDWr7zS5cv5fmXN9iK/G762hXc/6je08X4PDddfTkPPPZU/vXoc7ahQ4ayd6+9qDEYDFJVVcXRo/YCSIBlK1byyvqXC1qQzV+wkDdft5PbhYiWpqYmTh/Xc4j9JVisShXj7/6qZpww1uzFYCVoklmNtJdNmYWkKfPb1wyqqpJIpl37siIWixMM6OscL2LGsNUbKIn5+4jPj/b/ApFwKGIAMmgofXy8XjKE+yBwAKpG90tZ3m8YJIxByFhJGeuY8fBS03iRNF5WZzYFTREcOXKEJUuWsGzZMubNm8fQoUNZvHgxixYt4le/+hV33HEHqqpy++23s3DhQu69916+973vufYjVY0i225nnUVZi8taTQSr0RJddrsfQCofitZlJ20ApEiTqyI90d2GFKwiG+swb7ROgiZQ20rizAE6TtotPbzUMzVDRtqSnAZKJWi8+s6caziJGSeyJ6L0WqzonMQMwMmEm4T5qhIzxSCEaBFCzBNCLDIe5+I4Sk34JjMZVEelV1csQXnQ3++eIeA9SSnkZWq1cylmb2YQNJGKgEnQRCoDNhVNIZKmPwRNKYqyQYuBFcPQOg/Y379qpCsuytWjSJ3aQSrand9OkhDBWrqP2ZtTpzMCOVRN25FDrvcbPnMhuze7KyoN9cy0hSt446V85bgXQQOQllRC4TA9Pd4LfGeV1ReBQqoZ+zb2XjGGEsZJwoBdGWM8BNCVyrjIFGdfGefzhezKnNt5LRS+avi8Y2MpBatlAcV1nR87uI/qllbz72gqY6uQTaQ1kskUquqzkZXW5q1WGLZnTus/67Vh9KBxqmikQAi5ppFgXTXBuip85SEbQROuD5sETdAn21Q0hWAlaAYDZxsDrXaqQgjqJT8H03aiZGl1Da/3duT67ZQRqq/gpvlTeGKPPt/zlevJgupIiHQmQ1c0hhbLz9sawz66enqJxtwEzHVXrsmrZzwImktXr+WFZ/KWGoUasEbKymnr6HQl4bxUMzbLMsMmrEhfly8KSrCMdFyP4QZJYpA0eg+amEu5k0hliip4nAqYlFU5E8+YNpw2Fc2XlJQ5W3zR88NMJuOq5O/u6SHsUE/v3LOPsY7EpFMlkEyl8pXk5wjWZtfOXofgtjbrCzZ7Xb9CQKRR/EEbSWrAIGgGOgc04kRZRQWSJNPRZi9KnDrjQrZ9uJkyv2R+nrVXX8O6xx+1fd4pkyezddt2V++DubNm8M4HH3mSBKtWLOXZV7yVNQDTJ0/g/Y8/Lfi8+d4TxvLJ9pLy6yXhXKhnqioq6Ojq7nvDfiCdTqMo/e899vuEzz0GCvu1f2DfXoa3NNgsvHbs2s2EsWNs23mpB13IpGxx0WYrdpZwFjM6E9aFEv/WWGgQM04bspJhseXtTaYJVdWbhImVpDEwkBho/c4mjh/Hjt27yWTyc6eySIRwKMTxk3pRopSKoigKs2dMY9Nbb9k+8+Vr1/D0unWu7+mqr13DE4/9zvUxU5quWty1U7d+dK5vhRDUVFfR3WG3RfNSmaxds5oXnnvWsxjV6zVOOAma/rzWul0xt4tirwGdZDO+e6c9spWkccJ4Py81TiwaJRgKedvvWebdVpLm9w1nGwO/EvqfUk7VDJqLqomSoQW3n/7YyBdvY+ZUychdxwpsCRGrQidoBNL8Me/viDG6zn7jOXy8J2d11kRvZQMZdIIm0e32awS9qdbGjRttY3/2Z3/Gn/3Zn9nGbr31Vm699daCxypkFSGpaKkoIhf0hRCISCPZ7mNIZfnPIlWNJtu2G7l2fP71gUqyXYfRtBbdjsgYD9WSPfkJWqTJnlzpbkOtHkGmfR9Ktb4A6Tqy0ySlOo4dw1fZTKL9CB20mPZvXkg1TWLfe09TN2xUwW0M7O+IMbyyb2uZM7GMqX5yokcKFe1DBKCdPOgaU5uGkzq2v8/39iJmrKoZgLAk05spTLT8PilmikEI8f8B1wOfAsYXoAF9NzUaBDjv59kSKrgOdkdpLXef76XI981t0wk0xY+qpc1EpU8SRRPOIVU2F6nW/wNE/MVuQQGz2rY/SMV6yKYHTowOWgz0l5PtOoSWzSBySiYhKQgliJboRvh15ZIQArVuLOlTO1Fb881Cg0OnE93xImVNI8ykl+pXqLlgISfeeYzqllvMbTtjKSqCKtUtrZw6tI/IaPuiBCCJRFZWON3RSW1lhWdyI5nR8MmCy9es5qlnnuOm66/1THL2BSkQMive+8JAVTNWUsZALJkxlTB9wSBQRFboSjQh28gY63bJrGaWthRSybiO+feAlIFzExuzmbSLsUnGeimzqJ57kmn27drFhfMXOl9uQyqVRC3S5BfyCxWvxXRWDeWrGn1BtGT+vDYJGvROulqsF7mmEThO0FIDpF8LeqWvGlbpOdajG4VYUIiUD8sSvZlsn3G5FJxtDNxLlFHk7zWjpSCfpLqYSV6l2VId4YOuOBm/QkV9lUnGjGquZU80xuTG6px6Jsj1C6bxwMb3uOPqSwBdPSMFwty0diX3PfoUt99yHSKVQFP9SKmonnhJp+jp6SUScd/zGhobOXXyBJqmmfe//MJUP4+iqQw9yTQTps3ks4/eZ8L0C83x/sJG0DjULRVBtU/FSl/ojhe+R8r+EJl4ntQyiBKfXyEZT+OzJKe9EtV9wVTL5O5NiXgKf0A1/zagWu71vqL3/S8/zkUM3HvgEMOHDbGN7di9lwljRtvGOju7qKwoXozjpZwxYI1vnzeM+aZIJ0BVzORYsQSVcz4TUCTi6axNERfxKahakoryiKlI87LuG8gccP+2j4hMv9BUzC1f+zXWPfhrvvW97wN6vFm2ZCF3/+ifWb5gDkIIkpLGuBGtvLHhZdrb22ioyVsOr119Keuee4ErVq+yvc+lyxbz3PqNXLZiqW18Qmsjz7/4oi3GWbHwopn88Je/ZeaUia7nnKirqeLUmTbqaooXdZYKKRX9wlRYABUVZbS3908505cqJhaPEwi480d/gI5zEQM/3bGLWdP15vVG7Nixaw9Xr12dP650AtIpM4msKX66ursp85gnkIr3q+dmKXASMyUnrB3EzGCgNxqlrq5Wt+bNjYl0wrw2pVR0QDHw+MlTNNbrE1tN8XPNFWv53ZPruP7qK83v//or1/DTX/wbf/KdW833XDBnFv9418+ZPXMakj93LJLE5Alj2frJJ0yaPNl8D0VRGDFyFDt37mDsWN1605j3rrjkUu7+8b/SOmqsuX0yq5mExJVXXcVDDz7At779HU9SxkDEJ0M2TSaTwSfL+j5yz5ukRUZzFxB4zMELETTFFDkD7dOSzGiUl5fT1dVJQ02N7b2SGc2mSvXJwkUCJdIafkW4jjMWjxO0xEAXMWPNGagBnaBR8HQe+CpiIDHwK6GcKSW1qFuY2U+ILJqrx8z5kD4pRswYzxvbWNU0gEtFA5gqmkwiRvLQG4SqqktW0JwNst324/fqMyOF6mzWZqDb/Qgh2WzQAKTK4WidblJCqhjmraoJ1ZCNufsxGEgHmundrzcnsyponOoZIUmc7EmS9SArnOqZ8xVaP87ott1tRGSZ7pxyxqma+QMxY8OVwDhN0y7TNG1t7nH5uToYybH48lqQHY/GaYzYCUSv8yObzboseQqhkJ2ZZxWyh3rGCquCxtxPQMHnt9ucOa3ODCVNKQoaLR0nc/qzQZ9wu94naVfmSZUj0Vy9tlrJdtnjmhypJxNrNxeG6VgPQgh8NcPpOrLb3C6VSJNKZfFVtnDm4D5bM1uAsRctZse77vu/4YO+4OI1vPTMU0RTmYL2ZgA1NTW0dw081p2NMsuJYqoZZw8ZwCRkrOe41aLM+TCRFRxPpT1VMsZ2xh69+sn8PhMzOVzJFxwb4+0nCVXrDV8rgnr86DhxlKrGZnObiE+ht6uDskr7nMeZhPH5/Lb+AGBfgDm9qa3qGatlg6GeEb6g+TAgwuW2PjRyTSNKKEiwropQjpQI1VfgL/fhC/uINEXwRVSXguZs7Mu6SLGVLqr4/CrjY2TI5K6SiCIhhGCsGmJ7Qo+LalilrCnCtbMm8PKpNkKNur2bEgqwauZ43thvn0NGAn58ikxnb9Smnqkoi5DVsgXVM48+9XTBY7xozjzee6dvi9uxk6eza9tHRFOZgsSMl12nk4TpC84kcX/htDQzICQJTcuSTKTp7YoT7UyQyv0/mUjT0xmnsyNuNkU33r+v5GTa8l1YiRnjX+P/hpIm9fulnLmSLzgG7tyzl3Gj7YqYfQcP0Tq0xTZWSjFOIODzvKYMfJGJdcPizKqesVrEWFFIRWO1NwM4vmsbn254mmGjx5r3CycKXU+lYvcW3QrMIHn9gQAVVVWcOXUq34xZEly8YgVvbnzF5s1/800388zjj5kWRyKdYPTIkRw4esJ1XU4cN4Zde/bZxg3ybPmCObzy5juexyeEoKGuhpOnz/T5Wa64ZBnrXtp4lt/EuUddTWmfsz/IZLKuXiZ/gA1X8gXGQJFOcPLUaZobG2zjsXicUK7fpZf6RaQTdJ45TWXE0Z9VSKRSKde2hdAXydIfW8azhaGmcT7MYqFcLNWSMdZvfJXN771PfdMQm/rb6KkIA4/zjzz5TP7Y0gmG1ldz6nSbTT2jqiotjQ0cPmZvVXD9lWt47Jnnba9fuWIFGzbovbKsVnCXrrqM9S++6P4+hKChZQjHjhzxtAILh8Mkkynb8Thh/K6LFy/hnTd1JWKh37IYidKXHVqh/jXWMaeKpS8k0pr5KKus4fQpd6sGZ98jA04SydiPNUeQyWQw3NC8FDM2WGxKje90oKTTlwBXcpYx8PeDvgJUBCnsSRMlN6ZaOCqjn8a5UM/0F3LXMbPPTSQbtalojvckTSXHiUP76Hr3BTIxjaoJc6kPlZukRNeRnS4FjW/6t2zvkzn1KVLthJIr7LVYG1gUMUJICElGy6YRUv6UE4FytEQXwp9P3ImKVrTOg4jqfLWX8EXIOmyBAIS/gmyXWw2S6G5DDlSSjXUgBSvNz2kQUkJIRLt70DJphKzQcbLXVNAcPt7DkMZ8tW31iAvYtOlt5i+Y3+fn9lLPHO9J0vg5n0vFVDMCgaZpdO11e3I6VTMA1YrK5t4uTzszA8+lT5FOp7nllls4ceIEs2bN4u/+7u/44z/+Yz755BNGjhzJz3/+c2RZ5r777uPHP/4x1dXV3H///ZSXl3N3H+dRJlJ3Vv2bvmDsBVRgcEpYzhKdqSwVucRQLJkh6MspMzy+46AiE3MklwTC1ai9LxWOl3qmEIyqRSus6hmbFYxlMWxU8BoL5LOptDUUNJqmocXOoPWeQCgBpOrRtjjkBa8YKNf1XWEIoGUzZDsPItflm0cKNUg2E7eRZnpcVBCShBrMxxx/4zjSbQfwhytRcuPBIVPo/OQZylvsVbBV4y7i1PvPUDPM7iEvJImMUGnv6qWqPExPMm37ruVwOb09XXjBNmGSFaqqq2jv6KAqHMhXsVrfy6EOKAYlFCQdLb1PVzHVjNPODPKqGatSRiAKqgy8lDFVQqU9m8Kf9V5492ayPJk8+bnGQGuSvxRo8nk1X/nCY6MQEljiVllAQQ756Y516faJuXPfryo5axj9t7VWU4O+IGlpauDlUycL9tMayILC1YeGfA8VES43J+SGiiRUD2o4Ts+xbiJNEXqO9eBDJdiTIpLMFDyvI4pEWM5yIpEmmdXQ0DhCnHZSlKEwkTKkPsqa7hDDzf9raGyjh0kW5UsxjCDEfot6JqJIjPWH2CC6mR9W8YV9qGE/FTUVxI+eRA3bv5fmuio6M1kajaRKuJyvLZ/Hk298wG1XXoJk6Zt41aqLefKlV7nx8kts+6goL6O7x06SWzFp6jTu+fndzJozzzau/96WBurJtF40VKAC3YqITzEr5SP9VKFYyXWDILEqWXriKZPAMZQ2xazHrMikNZf1WCEEAwr+skoS3R2kfIV/7wNP/9AdA+9yxMAfecfAZDJJ3X8pcsBCOosYeF4tZ7/wGChLMs6pmyIrZBxWWKWs42ZOncwTz77kInvOJYyq24iq0JNbyxvJKi9Sxhmr5Wyal154jkOHDlE3agJXfvNOTvQkONYR9yRGgwGFy376lnkNKskejm59l+nL1xQ9zrKAbtc7bPxk9n+2lYmTp5jPrbzscl568iG+8a1vm2OTp0zh53f9K0uXLDaTVjUhFaFlkNIJhCXpu3TRQja+8RZLF9rXo7OmT+XDj7cxY+ok2/iUCWP50b/dx/IF9j5gBtasWMIjT7/AN6+/quhnCgWDxBPnn013qairqeZMW+GCzbNBeVmE679951nPAU+fPl38DSS53zGQPtY1XzA+/xioZW3rEa/YVspYfW0NG9+0k3dTJ0/ko0+2Mmv23PzbFfk9zrUawGsNpvV26Za6gJxK0JVI88Tz62nvTbBk8SL+4k/uBFUFo8eXBzKHPjH//+bmDwkG/MyYXNpauKK8jPaOTqosTeNXLZ3Piy+9ZFP6XbZqFfc9+BC333yNSQgNaW7ixEn7NSJlkgwf0syRI4dpadFVovp8TVBVXU17WxtV1dXm3D2Z1Vi1ahWPPHg/19/6TZMQt87pFy9ezOuvvca8RUs8P0NKKKhamnHjx/PKxldd2znvM1Z1ibUor5R1Q3/72Tjf01C4gF1d6lcEw0eOZPf2bVwwfrzrtWeLqspKpkydcpYxMFhCDFTOIgaeV5qTs46B59Wn+DzhQyLpIGfCyESxL1IqhUqbpi94ln7yDn8fruHbHx3jp+oQav7o72m8+b+y6h8eYcV/+Hu6RsxFHjqZB1/7mIXXf4+rb/4GceHDV1H7hX0up4oGoCYoUy5SvPfik7z/5G85fmAfN3zzdi674VZGjNQrSfvTg0aEaiFWetWJ8JehJeyJP510cfRd8Oo9o/hdyhkAEahyKW0AhBpyVakDyFXDybTvL3iM/sYJnPjoFc/nrAqaqtZxtB/YUXA/g4m+LM3OBo0VEY539l353rZb/25lIWjzqEJ3qmYef/xxpk6dyoYNG4jFYrz66qskk0k2btzIBRdcwNNPP00qleKnP/0pr732Grfeeit333334HyocwghxI+EED8EosBHQoi7hRA/NB7n+viKIaIqdDsqgRS/z105HoqQyC3EtKYJ3Pqnf8kl197Kf/tff4evopa6YaO4ZPVaLlm9lmQ8RnVZiPVPP8HVq1Zy59dvoCGgMabentRxJkH1MUtPmiL9ZwzbFUNBA6AGZJeSxlDQhGpaCFQ14A+XoXXsJXt6O2QzSLUTkapG9UnMeEHIPrQSPYeFJIMQrv5ZIlSHFrVPRkT5ULIdelxUcglHpWIImiPeCiGQfCEyCXusS6U0MmmN3t64rZFtdzzNmFmL+Oj19QWPs6FlGEcP6e9tVc84sWzJUja8+ppNbeRVUVVIHSMF3Ns6k7G2z9TrXiQYqhkvYsZpZ+a0MItnsmiaZvaMsT6sMFQvvqzEMYctXm8maz4M/L7GwEL4ImOjI99IWTiAo58liupDJU9KhlSJYDiCSMZcqj0nRC4mVpeFCPhUvvOtb7J29WX8j//3/6G6LMSIIU1cvfYyrl57Gcl4DH+4jEeefoEll1/HVd/5E3orWpGHTi76Hrb3y/WgEeFyU0HjKw+hhoOo4QCRpjJTQeMv95sqmrqQSktQKfioCgr2y718JnoIIzOZcoYT6pOYcR0fAp2iKW0hF0ahlwyq5W2EEJTJMh3JFP5yH2o4gK88xKThTXx6qgMlFDQfa+ZN4YVP9yPC5cg1jUiBEBXhEN2pLCJnc2HEm/raak63tZtKJbOxreJnwrgxbN/h3S9BCIHP5yORKB7XIz6F1jHjOH1gd9HtbK8pUExgLUAwEsFWSzOnasaqZNFf7yZjiiltkuZz+u9WjJQxEIunoayeU0fd/cycONsYeN999/W57y8jzuX8UFUVUmn7+eH3u8/vUpqYl0UidPfoPTrUxlGI2lZu/dO/5OIbv8Nf/t+7URtHUT1pActv/WOW3/rHdIZbkIdO5uH1b7P46lu56jt/QixUh9rYtyV0ybBU3RoJNq9eUc7m2vt2fMp9v7ybxx/6LdNnzOS2797JhXPmEfbJRPzuOacTxvWV9kXobDtDZyxV0IbQIGYifoUx02fz2QdvA/kipEAwSCKR1O1xcp9B1dKUhQJ0t522JZqXLVzAqxvs87fJky5g66efud537qwZbHp7E1Iq6rKcC4eC9PR6ry0j4RC9JRbLBAN+orHSC2vOJwghSjrvrQgGA/RGC6/JJUka0BzwDzFwENDP39RI9DrPhUDATyKRtF1/UyddwIfb9NyPr6IWKVzJbd++nUvXXM5//+u/wR8uo755iG0tHAkFee6px1lzyQq+c/P1hESGxorC1vmlQDiIk6wacvX7tBIzWm8XWm8XmTPHyMZ7SZ8+ymuvrOeHv/wNjz7+JGsWz+Hf3XYtU4Y35PftIGas34N1rTd35lTe/uDjko/96jWX8tjTz9nGRo8Yzt79dseIQMBPPAMZxb4ubBkylENH7IXFa1ZfxgtPr8OJq668ghefe8Ye/yVBeShIIh5HlXARMwATJk5k+/btrv1ZSYuUUPpl/+4kPErpSeNUsHgVhxVSjFphKFycGDakhaNHj9iOpxRiptg21dXVf4iBHhiMGPh7Q85ICNeyMpRbQFpRnvZxIKsHOudJt2XLFiZPnszGjRvZuHEj1dXV503yRe46hug4wkdvrOdXP/4nNj7zGHMXLuEHP/gBV6xZjSTLjK6LmBZnQxojNoKmvGVsQYJGhOrI9rpVFoUgyoeQddiNCSWA5mgIa1S7apqjsstfhpaw+8OKSBPZHrfdmygfSrbLvYhM9naiadmCEzKlrJ50T/4zWe3NIE/Q6JYQGp8d864yd2J/R9+T1zOxz9cKLLp/v/n/kXWV7DnlrhjyUs0Ugped2d69e5kyRa8ImzZtGhs3brT9vWnTJnbu3MnkyZNRFIUVK1bw9ttv9/OTnJd4D3gfeAr4G+Ct3N/G47yB89wv96l0J/KLSiUUoKYsyOnu/LkvBcIsmzuTl996FxhYDOzL2qzQWCkEjWqxOjNIGjUQIFBeQer0LpKH3yfbfZjwiLmERi5AqRzar8mVE6J8KFq320KxEKTK4W4bs1AdWtR+3cnBSiTLPUgJRvSeXLLq6psTGTmH7t1uG56q8bM5ueVN05bGIGhEWS3dZ04WbEI9Y/4SNr/+Sp89FKobmzlxuv9VhyJoX5T019rMUM2UQswUQk86S5kkcySZso0VszVThUQazZOQMV4Pv9cxsBDOWWyUZIVMRu+3ZCTIKsrCyDmC1CCCq6sq6emyzy1U2Z7o80mCYcNaTeJyIDHQuYj2PHaLCsRK0CihgCdBE64PE2mKUNactzoL+mQqqgNUVAfwVap8qER5K9NJXEmzMljFxYFqGqR+VqA5UIefU5RePT1EBDieKxirUCWCPpllzQ281d2BGvabBO3iKWN5c/s+QI8RIlxOWU0dUU0yiV3D/m3pzAvYsHmLGUsMJdKYsaPZsWef6xiWLJjHxjfeKlgVumTFSja+nLfDcFo5GEUFF82ex/YP3/MsMshvq59jfRF/fSEWT5sPA06CxngUg0HMJBNpmwVZwvI6g6xJ5frQGK8JVDUQbz/peWzWPnBnGwNrLL00vmI4ZzHQp6okk/ZzIuD3k0j2fc16rZNURSWZe+35tBYW6YSrAtr5b9vp0zz24H38+uc/ob3tDLd957tcd+u3aMpVWxvXaMSXLwoyEMzNOb3gC0VoO+NdqGjcd8zjFILyqho6zuTnfD5ZsGjpMl7dYC8MXHPZpTz93PPm5xPpBBeMHcn2z9yFgUOam2wJSykVRU7HCBUgE9asWMzTL2/0PGaAMSNbPWOnE4vnzGLjpvf63K4UfJG2eGeLIc2NHD56vOg2A5kD/iEGfr4oRMQUgnAUBSuKQjqdv+9+0THQiAOlwiBlsvFesvFe9u07wM8efpq7HnyKkAx3Xjaf2y5ZQKUWh94O0+7MeB/rwwmzB00uH6Zpms02rRAi4TCxeML2PQK0Dm1h30F73m7OzOm88/6H+c+j+Fm1chnPvWK35/ZL+u+ZjdtzdmVlZXR3d5u/t0F4+GTBzBkz+OyTLQVJDV8gSNQjdjoVMUOGDuXQQXeLBS8UIkCsx+UkZcBuLeZF0PT1fk4Yc1rjtzPUPJ4WahalTyKtIYRENpstuO+q6uo/xEBvDDgG/t6QM16IINODPWjICNMr23nSbdq0ie3bt7Nw4UL+4i/+Ak3TvvDki3byoO2RPXGAdze8zL/+6n5+8uuHKCfGH93xXb5/63WMHdZITVB29aEZ36QvbK0EDVCQoNGTmlrpN7mcXY+Wcfh1Bqpd6heprBmtxz4BEmUtZLvsbLkQAiG5q9eFJEMBEkYut++n64i9glJSArQdzE9KnQSNAX+kknhXe8kEjRPHPciNwUIxSzOA1poKPttefBtDNQOl9ZkBGDduHK+++ioAGzZswOfzmX+/8sortLe309HRQXm5fq5VVFTQ3j64svJzAU3T7nU+gKct///CYE0oJ0qogCjzKXQnU6jhoGmb01JdweHTerLSSKaPHNrM/kP6dfN5xUAjyeWlnrGiEEFjPFS/gqII4sc+pnf7C0R3v0qwfgSVUy+nfOxS1LLqPvvQlAKh+EtWzujbB9DSCVtc0mOY6u6p5S+zETS+UAWB5imkTjvilS9EJhlzkdlSqJZE+wmSuYSelaCRQhWcOK4TNIbdjgHV5yOdSrtip9VX1jopy+bkCl59NWzHExhYpVipsBIzXqoZ4/oIZ1VOZVOe/WCsBIz1kbBMUguROL+vMbAQvsjYqGmaLXktKQpZxwJQVX2kHYnJSFkFJPR7nBGDAoEgcUdF8MoVy9iQS6B9nvNAK2FpJTNFuJxgXbUnQWP0obGRNI1B3kn38Fymk3ekGPNGNHLLuOGsaKpjfGWAlqDCqLBvQL7n9fg4WaI63ycJGoWfEyQIy/kYX14eIK0KlJAeN5RQAEkSKMEwKV8uARAIIQVCTJ1yAR8fPpVTFemPyRMnsO3QCf07sljErVgwh5dff9uV9DN6AhTyFG8ZMpSjR9zWuGDvU6GoKqlU/+ZxhdQz4Fa79MRTngoYK0njVNF47acQZH+ITDyvoPYiaKzwRSpI9nS4jsWJs42BV199dUnH/WXDuZwf+nwqKUcM9Pt8LnJGUWRXsswLSxfO5ZXX9WKQ82YtnCNZfalek6Apy0km4z2dPPm7B/n1L37KW69v5OLVa/n67d9nzoJFSJJkJsKc/WeMeWcx9YyBxinzOPbxW+b8yoD1NcZ1H/EpXLhsFe+st1eOjxozlgN7dtv6yVRHgrSdPpWvYs89ykMBOs+ctDVYXn3JCp559lnXsV1+8VLPvjD1tTWcOlN43rF8/mw25IqximFk6xD2H/KOlV9FNDc2cvT4iaLbDGQO+IcYOHAILWtTismy5LrXCyHMtYt1zIBTbWYlJ4YOGcKBHIkwkBjY33lXv0iZZMwkZQ4fPsQvH32Of/31I3y85RNunjWGOy6dx+S6CFqsl0z7SbLxXp3IScagtwM52u6puCuEWdMmsfm9D+zHW4SoWX3xMp55aYNt7NJli3nhlVdtYzOmTuL9LVttPW/8kQqSyWR+jZqLi2svXckz65509fmZeeGFbHnvHVQtbT4AFsybywebvXtvAay85BJeeuF5z+esvWAWLlrMa69tBEr7Ta3rZy8ixgqnWsaq/jHGwF1AVOj9+trW9rqs5tkXtbqmlrYzp237tqpyQor4Qwz0wGDEwK8EOeOVlixlTEUi6bFlrfBxMB13nXTt7e3s2rWL1157jfb2dtatWzfoyRfDoswL2sk8Y7ttzwF+8sgz3PXw02SyWe68bD4/+MaNTJ80AaVbJzusNmdG35OzJmjUEGT6kZwsH4rmtCyLNJLttVfjiUAlWtyhkhHep6WobEXzUMlIkUYXwQOQ0hQyPYUnV/7mSSSObaPjWP47txI0hnqmbuw0zuwuXcpZinrmi4JfVYin7ZOV/qhmCmHt2rXEYjGWL1+O3++noaGBSZMmsXTpUrq6umhoaKCyspKuLp3Q6urqorKycsDve64hhPhbIURt7v8XCiH2Au8IIQ4IIRafq+PKlmA3E1YUYo579djGGraf6nJZT4VDQdo6OgclBroWw/1Qz1hhEDS+gIKmaXQf2MaZ95+mbcvzBKvraZh7BQ2z1xBpGGqzOTP6tgyUoKFAXCq4ebAanArAiqFoOVWhcSxy9QhSp+2WOXKwgmy82zbmD6iEmicQPeKuplTLa0h22S3TeuIpaibN45M3C1ubjRo/kX078zYZhSpkRo8Zzd79+23WZrbP5eil4YT1/LL2OFJC3vtzwqma8SJmrLCSKHWSyoms/d7lpYixIp51kzFOfK4xUA3083Hue86cq9hYFlCoqChHycRttjI1lRXEentMAjikytQ1t5iKGANjJ1zAtk+22Mb8fj/RnBXMFzEPdKpnDATrqgnWVRFqrCbcVEOovopQfQWRpjKkiMJ7vV083dvGq4luprfWc/O4Edw4YzStrdU28sawP2vwK2dN0AhEv+3QIpJMWtOIKBK+iB7PJzfX8NnpDrNAQAkFWTp1LG/sPGRTyiyYOp63P9tv+25EuJy66kraOuyFMrIsI0mCbCw/biQ4Fs6dzeub3slbIjmq7kPhELEi9jUGwgE/2WyWkCqbjz4/fx+90pz2SAYBkoynLZZkbpKmL1hVMwDBxtF0HXDbIblel1PPxJNZksm0p4oHMPvXnG0M/Id/+IfiByJE/2PgedB361zOD2trqjl+4qRr7OQpu9JjaEsz+w/ZVcAVFeWcPmMvnBs9Yjg7du8BvpgYWAy2ZGWOqFC1NKl4lKeffJwHfvUzXnnxORYvv5ivf+cO1lx1DZGywkrdkCoT8SmEVMmce3rNOcscqhp/pIJUPGr2qDG2Acz7TsSX73FWGQmZ1o7GPNgnC8rKy+jttRcDDm1p4ohlLSrSCVatXM5LRhLTIKZ8PrN63ZpQraup5nRbh+fnbaqv49gJ73WfoiglF17K55eff79QX1fLkWPuPEEhDGtpdlkqOTGQOWCfMVCSzyIGnvueM+ciBhrXQW1NNcccMbCuvpFTDmt3SRJkop226yeTzUDCvt3KZUt49gVdWTsYMdCYczhJBStKIWas1mZn2jv57TOvcNejz/P2B59ww7LZfH/tElZfOAG/qqD16udeNp7/rAZB40QpBM1FE8ewZftOnRSyPMzjt5A0UirKiGFDOXbihPm3lIriJ+WKOUIIFH8gT67l1ppTJ09i26d227GW5iZOnHTHs/mzZrB5s1vdJ4RAkqSCRQmNjU2cOtV3XiwcDpOI9699SF+kDJRO3jn7X/YbmuZZqGQlhgz4FUHLsGGcOLTf9hmchM/nGgNlpf8xUOp7Xv55YzBi4Jf3TmuB4Ybd11ghOLdrFQFe6+3yPOmqq6sRQnDllVeydevWQU1AFyNmAPZE4e7fPcuPH1rHqfZOvnv1pfzg+rXMmTxe91TNqWms+zobggY8etBo2X4lJ4Ua9LAx038VL7gCtRpCc9wohOxzqXFAT4JqcfdCQAhBOhlHy+aDkVU9IwfKySa6Xa+z4vDxHgKVtcQ79QWOVT2z+1TfvVzOFxjfbynETEBIxDTvStO2XGW6LMv86Ec/Yv369ciyzMUXX8xf/dVfsWHDBmpqali9ejVjx45l69atZDIZXn75ZebM8W5K+SXDak3TjCz43wPXa5o2GlgJ/OO5OqhSbtO+SMBl0VtVU0lX1G35ct3qlTz09Iufawzsr3pG0zS6D+3kyBuPc/r9p/GFAgxb+jWa5l5BxdBRNqszax8ayPdzGQhBI/rbpyFU6+4xk1PU2MYkBSzXWzKaI3SEcKlkAvWjiJ3caxvz+RWqxs2mfUe++tFI4KmBEMlYlJ542lTPRC29VlovmM62DzcTTWWIFyEiRo6dwK59djl3KX1nnNZmxeDVh8awNCsEKzFjqGashEpnKosqJHpzlXNOUqYvizPzfXKVRdYKo9/jGFgI5yw2SpKMc24hKwpyTpFmxJqa+kbOnMwnaAKKxPhJU/jUQc4ArF6jN34eaAzUVL/nwyA0vdQzhr2ZE5lslk2HTnD/roM8deg4I+sruH7EUK5qbaG1oRx/uR7bEl1Jkr1JUr0pG5EZUSQiHs2zBwM+SVDtk6n2yUQUiQa/wnAlQMaXJuiT9V45YR9T6qvZcjyfME5HY4xurmfX/kNmAkGL9eo2DI5KTK23i5XzZ/HyW5tdCYGl82az4a3NrirYyWNH8um2bfaeFRaCZv78+Wx+x24X6Vz4hlSZhuYhRM+ccI0XI2qslpI9BUiVYvZkXiQN2FU0TvLEScykEmn81S0k2/VEoz+XWE7EU+YjFc+QSqRt9maZtGZ7b/N4EmlTbXO2MbCz01608BXCOYuBI4YN5YBD2TB6RCu79+63jV00YyrvvP+RbeySpYt4YYPdPgbggvF6T9Ivei3sBSNpmUgkeOqZ5/jJXT/m0d/9jnlz5/LdO+7g+htvorKqcO9UA4Z6Jn/tSrZ5pzHfdCpoIgFdWRPIXeuGhab+XJ6YAX1OaxYFRMro7bavM+fOnc+mt96yjS1eMI/X3rSrjepqazjdZifNRDrB1Asm8vGnn7nmYEObGznkYcW1atkCntvwesHvpKWxgcMlEBdn07vFiXNlabZ80TzWv/5W3xvmYPQhKYaBzAH/EAMHH5MmjOPTHbtsY1MmT+KjD3QnISOGTBs/ki2f2p0JZk2dzLsffWIbCwQCBAM6SfB5xsBilmJWGIqSru5uHnzyWf71vsd46Z0tXL5qBX9089e4+uLFhKuqzfmj8TDUyPn5ZVh/zhcszXo3N6cSqQSZTAbZIz/kRdIYr5WyKRfxM6S5iYOH8+SnpviZPmUSH23fZSsCnD3rQt59P+cEZSTggUhFJT099hxcWlKRfH5SqRQpoZASejxOZjTmLFjEKxtfNZUwTtsxWZYLKqytMFRXxezBDJRCoJRCzHgRJ9b9F7JIsyKZ0Zhx4UW8v/ldT5WM9X2M/UwYN5ZD+3bjV4T5MLYztvlDDPTEgGPgV4KcCSETdfaOQaHLYVkW9rAxq8fn8tFuT2WpFT7XSbd8+XLz4n3zzTcZNWpUwZOuL6KlVCQSSR5Z9wI//OVv2bn3AN+68mJ+cP1allw4xbRscKIUggawETSArQeNC9kMiALvF+9A64PkMCAkn8vWR/jLIGl/vSighhGS7Gq0nXvCRsIYkMqaiB/bZhuz25u57dqc9mZHTnjbnYE3QTO8sngV+ReJzj1HuKCumq0nvavYrJZmBpplP0czSZelWZvFMujIkSMsWbKEZcuWMW/ePJqbm1myZAnLly/H5/Mxe/ZsVFXl9ttvZ+HChdx7771873vfG9wPd26gCiGMVVtQ07TNAJqm7QQGZuo/QDjPY0kI0rkxI2knhCCbGzOS4ZXhIO3d9nM8FAzg8w0sBoJ3kqsQCqlnktFu9r3xNAc2/A5VStM87wpaFlxF2dBxelNni90ZYCNoAFM9MxgETSFku4+6e2fJqneswsMHWciu+CWH60i1HUQN5CeqQgjPJpiyL0DWQ1LeE08hV9Rz5OBBF0ETTWVQfT56i1QCGdZmLS0tHDqcT/x4WZtZ1TOlWJt5kTGlwKvPTCFixhjzIxF3/D7FSBhJE/RkMwXl3vB7HQML4QuLjUIIgrkEmlHFbFwWRpIspOo97bxijnXMnyMrnNfk8OHDAffioz8xsFgiyknQGNeM095MCQU5nUzzmw8+475te6ivLue2aWO5YeIIRjdV4y/3mfG9FIRlaUD2Zl7wSYJOJUGDXzEfEUVilBrklJbEF1FRwyr+ch+qJJHOaiS7oqSNwoBoNyT1/1sJmnAwQFebvfK/xidxJqecsSYDJrQ2s3OnnpgxKjSNhICqKKSi3Z4EzYiRozi8f2+fC+kxY8ZyaN+eknvKFCJmDFLFqprpSw1jJWmsahYnKeNFzACkEzlLygKJ1UQ8RU9H3CRpjD41BlFjPnIEjoGzjYF33nlnH9/elxbnbH5oeMrbxvwhMo6iuvKyMnocqo3KinI6u9yV1MsXzQcGFgMHCzt27+Wuu3/OvQ88zNQJY7jzu9/h21+/mWEtzWayqJiNiy25lCNo9PuErqKJ+O2EjEHGGA8DQZ9s621mJWY+e3ujrdgIYMykqRz4zJ70HT5iBPv22YtsKisq6CgxWTV75jTeee9D1/gli+fzwsY3zL+zaoisGiJYUUtvsnDxzeI5F/JqCf1kmhoKK3DOd5RFIi61Ul/oi4gayBzwDzFw8GDMs4a1NNsS/gDDW4dxwKIUlFJRpk0cx0fb7GqMmVMm8v7HnwJ29cp1X7sKGFgMtCbODdVMqYSMAU3TePf9D/nhL3/LE8++yLKly/j+7d/mhq9dTmVNnTmHlALhnBVsyEbKWO1hCxEzXvNVKzEDEO/pwu/T55tGnxsrnn15gzkvM15TX1PNCYeCc9Hc2by2SbcaM9aTMy68iA8+2mKOaYofNVRGKuNYcyp+li1dyosb3QUFS5ctNy3TrCTMuHHj2bnD7jphJVamTpvORx+6Y6oXEkVcFwwY88ui2xR4vhTCx0nQlIKxF0xm2yfFXYCsBE0gGCSRsJ+fzvf7Qwz0xIBj4LnXQA4CqlDpIEXY8nFq8HGUOBXkJ1UN+DlKnIhluzp8bKOHesf3NUIEOXLkCDfffDOSJPH1r3+d9vZ2rrrqKsLhMCNHjuSv//qvkWXZPOmqqqq4//77z+ozOMmcHXv28fLrb6PIMmtXLqG5sR6wW5sVg3byIKJ+GHLXMTLlTUSyUXqkEDVBGdAD6/6OGKPrIuZrDh/vobI+DOgKmq4jO0l068l7TcsUtBtDCaJ1H9FJFgsEeuW39XUi0oDWcxxRMcwy1ojWvg/ht1SQKn6yHjZqOmlzAlHeYhuXyofox2DZL4DwV5DtOkKiu83Trk0uayDTfRJo9v5sHvjsWJeN1Bos9Eghk0g7W0T373eNTW2s5sFP9jCku3hVgNFvZqisXwu7KVzR2dLSwsaNG21jzr8Bbr31Vm699dbiB/3lwo+BZ4UQfws8L4T4Z+AxYDnw0bk6qApJoSObIWSJbUN8fg7FYkxqyF/jY2sq2HWqg+lN+UZsF8+cyAubP+HG1cvNMS0Z44Y1Fw9aDAwokk2ZEfEp9CTThFTZsyF92C+zY8sH7PnkQ7JqkHHzVpCUAiV77IPupW8lNgyk472owQipWA/ZdOl9BIoqMYUM8U4IVvW5H+EvR8rEQfWjGsqeihYynYdRwxXmdmr1cBKH3yfcMt72erW8Fi3eBv5623ikaRjRk4cIDhsB6Am/soDCkKnz2P7qU5TX3+g4Ev1cUVQfyUSCUJFEsiRJ+ey3GjAtNrJqyFURJcLlnpL5YvCVh0h2FY99hqWZAa8+M4UwWg6xLd3DeEn/vg1iphDxMopwnzqp3+MYWAjnLDZWBFUCiiDstxMxoUCAVDKB6tPvaRGfgs8fIB6PEQjkycHpM6az/ZOPmDZ9hmvfA42BhQgac9HrC6IlY/riGt1yQgTDaJksL7/zATv2HKA+HODG2ZNQUrnke+5aSfW6VY+FVDOfB3ySIKJIhGWJHilOXUDC55gn7k0KUzVjQJYEyUwGH5Dq1RfyNWUhTh47Sn1Ts0nQzB07jLc++YyLZ0+zEb6yrFtUKIqif3c5ksvv9xHv7iQYCJiJBykV5ZIFF/LSq2+weuUyNECk4qjBipwNjP14/YowfbWt962mIUPZ/Ka+6DcIGmcfLy8UUswUgy+guFQrkFfFGAUJnts4iBkD/uohJNsO4a+xz5FTcfc5BFA5aaVrH/r2+Xh7tjGwoqLCtc1XBOd0fmjtpeBMZpnbFEgGlpeV0dHZRWWFZR2W298XuRa2Ih5P8PRL6zl2/CRjR43gjm/cjCzLts+jammQFZJZzUwcWX3xwW7FYr2+DZJen4Pme884YR0LKLLNPtMoBAipMp0njriKAWrHjuOFR37LgkV5NxPr72SFoUyxPt/S3MShI0cZ1pCfsyuKotsw5WDcY3xqiFja+54zonUou46cYkxLnfvzlZfR1eMuNHRi7MhWdu47YOYj+otzpZoxEAwEiEZjhEKlFQZ96+brij4/kDngqFGjSjqGLyHOWQyUZdmzv4ymaba45yNLJpW09Ugxrjjn9RcK6efsYMRAKzFTKjo7u3jy6WfobG/jopnT+aPvfgvJUuCcVUNIluMHfUZj/RbMwp+cGvtsiRktGSORTOH3qbY1nvX/B4+eMLcVviAilWD2pHG8+9EnrF25xNyuotxRJKAGkIEski2+AwhJ7yUkW8brW4Zx/Bm9n5eVzBjSOoJnn3uepR4Eh9/vJx6PE/DIC0ydNo1f3/MrZl54oes5Kyprajlz+hS1dfUFSRQrMWP8a11rWkkZK9lh3V8xgsb8PJZ7mddzTljP62RW8zyOZMY+/vVvfAOlCAH0hxjoiQHHwK8EOVOGwlHiWNP1QWTi2IO015gwDdA0m22NEMLzpPvgA3sjLCicfDGIkb5gEDMHDh/lpdfeIp5IMmZkK3fcep1LHSPqhw2YoAFMBY0XQQOYFmdWgqbghFLxk814JDkDlRDvgGCeFBG+CNlOe98YISlkvSrMPWKO8JeT7ToC2MkZfb/e34uQFLRs2kbQdB3ZqffXqR1N7OBmOsobbLZuHSd7c0SVjnZHksNK0Ow+1WP7Dp2wqpXOBWRJItMPKbrk8Tu3lZAAPd8hhLgU+BdABn6hadrf9ncfmqb9SAixFbgDGIseQ8cCTwD/c/COtm9Y7WmaZB9HMgmaLSTzKH+I96K9TCK/GJs+spmn9xxmumU/NeUR2rrcC7NwKEjZAGNgqQipEr3JDEf37mT3R+8SS6SoGTGBRdfcRk8iQ2csRTKeoiygeBI0wYBCLJ42k1o+v0IqUDgpZiVogH6RNF4QwSq0zkMIBzkjhK70E1L+VivC9WS7DyEH8gmqrBIm23GIdKzHtGLTVYLu6y7SOo2u3W9RO/1iUy0EUDV2JsfefpqaHDljIJYRZNIpV38DHQojJk3nvc1vM2+BkTzIn1elVuVoql/3Gs4lmkFfEGTj/atUBFDDAc+ksxVexEwh1QxAmVDo0ezqmkLEDNDv3hqDDefipE+U2G9hMGJgIXyRsVGScNnOhCtr6O1oo6yxwUyWDR87nv27PmPMBVPNhPqEKTPY9tEHzF+w0Hzt9JmzeOCeX3iSMwOZB2qK31yIO3/TLPqVZr1uMpkMm3cd4r2PtyGlUyyZNoGVMyai9XaRjsZI9cZMtYlVeZbqzVn+5IgZK5I9KReBGVEketLZotdAXzCImQa/QoUqEZTDnBJpRjv6T/mDftSwPeE5rbGGj46eYkFVvqBn/ohmXtu2l6+V5+JfuJzhVWFe2vwJzJ5GNt5rJhnmjB/BWx9uZdGsaUBeQXPZkvk89+pbXH3JsnxCQfUzYtgQnln/GrAMkU7ov0usE58aQFX8tDTU03H6JJW1hRfcXrYXRpHB2aInnrLdz4z7GBQmaMCblIE8MWOFQaaEWi6gY9vLNnImFY+Tzt0DlWDEg6jxnvclilixDQqEO0HTJ2R3Ut1z11+RGFjg/V3fWygYpLc3Sjisr/00xU91TR0nO3qor8yvWwxrs+uvXOPa70DXwl5wFnUYhR6JRJJX33mPnXv2E/D7WLVsIU1DL7NtK9IJnWQlH1d9kvAkaJwVxsmMZklcOfoh+t12ZgYMa12fIjyJmYhPoTwSQckkCQRDZlzQFU35uYmR/Kqqqub06TPUWX6DC8aPY9v2z5g0cYL5ORfNms6zL2/gpq9dYTue2ppqTp4+Q31tjW18wtjRfLpjFxPHjbGNr1g0n3se+B2jbrupYG+JbDarF+IUwIihQ3hz84csmTur4DbnM5YumMcrb7zFmouX970xOgl2rqCdRQzUpNKO9ysdA4sU0UmpaH5ekOvbZM1rTbtgPFs+fJ9pM9wJ+oHGwP4QM93dPazfsJGjx49TXlbG5asvozJsJ9ut+ylE0BiwWeeehZUZ5OdYsUQCXwFHCAAtEUPr7dKL9HIEzZCmBta9krdVNIggTdPIyj5EzqpMU/z4AwGi0SihUMi0Jbtg6jTe/2Qb0x3z83QW4qmMK2aFwyHau7oJR+x5uYXLVrD+5ZdYvWat67hLsTVLZjVGjR7N7l27KK92k9zgIGYKEB7Wbb3+9pqDGvc3Yztjm2IEjReahrZyYP8+Wofn8wRevWzMY3bEwMFW3ReDJin9j4EltN/4POMfDE4M/EqQMxLCcwlRKEhn0JAtYayZAIeIM4zBt6MyiBcrSZNMJtm7/wC79+zl6LFjiFgHmqYxtLmJm69eY3pcDvZxGMdQE5Q5E8vYCBoDQxr1YGa19lJ9PjIFepAUg/CXoUVP642xbU94XNweY0LRLdCEM/FUiCSSZJdSB+xqGy+CRsv0vbgWskImnUJW8gvAwVLQZLNZ3nj9NbZ+8jEXz7+IaVOnDHifToypqWDHyW7GVeSTIV6WZgaclmZW3CGGs4demgkQ5Nw33yoFQggZnc1eCRwGNgshntI07dN+7mcusFHTtA2fw2GeNRokH5tSnViXTGFZJuqIgQFFoTfhTqwMra9h9+HjjB7SqE/ychOrwYRRhRxSZdq6ujlxYB+7du2ks+0MyUyWZEajecQY5l9+A7FcuLFWHUcCKj05ggbcVjBOgkbNERfORJJBflgJGsPmrBBJo0VPu+OQBUL2kc16JKx8YUhFwaIKlP1hMl3ZvGoml3BM+fI9cvI7dk80ZF/A8zglWfG0PAMoq22m98wJqGlwPTdk1Fg2PnYfLFjs8UrrsQhXsrnQQqOQeqbQeDKd4YUdB9h74gyXjRlGXQHLzlLQmcq6xnozWXwYvbQGPrm8QwxnG91MJNLvXkTnCoMVA4vs/5zGxpbxU9m/9QMaG1eZY6MmTObFxx5g+vSZ5tjEiRN58N/utpEzkiQhKwrR3l58ZYULLc4GhRYXHZ1d7N63nz27dtDV2aknCjJpZo4eyg9uuhotEUWL9doauQIoIX1+aKhn1LD+t0HQeCHok4klM1SokqedXyk4QJQqVJtaJqJItAQVgj6ZYE2Qw/E4ZRX57y/RlUCK568PNexHDQcYG/Tx+O7DLLDsv7Y8TEev/Z4jhNAr5WP6fDSLTvpOGtXKzx59ziRnDDRXl3G8QO8En6qixbsRgTKToCEVRwAL5szinfc3c/Eqd2LaSHPE01mEEAXVnqAXGUQd8cfoZVFIQWMUHKTjvZz4+A2i7e00XnSp7V7gRboUg5fiRcgK2UzKTBRbiRizz1k/MPrOx2j7cB1lE1baxq1kjxVqIJDrBXfu5oxf5RioKX5GjBrFzj17GTtqpDm+aP5cXnn9DdZeerE5tmLpIp569gW+fuN15j28rraGY8dPuBKWn9vxahqnzrSxa99B9uw/SDyRJJPN4FNVFs6eycWL5pnblhKxzKRSH4SzNbGlv0a3NzOu6UiBAiCAD59/hImzdKs3JzEDUFFVRXdnJ4FgyGZ/KIRk2q4Zxzlp8mQ+3b6dxRaiY8bUKTz57PMmOQO65Vxvr5tMmXvhDDZ/uIXVK5fZxhfPm82v7n/ERc74fD6yuWvfS/E8engrew4cYsyI1gLfHPh8Kum0PfYZidZSmon3hROnTvPMi+vJZLLcdsPX8PkGt7CxdWgLTz734qDtL3V8Dz+957fc8Y1b+p1E7I96YjDxVYyB1nNPkWXi8QSBAOY9fkRLI3t2bred2/NmTOHVdz5gyZz83HDuzKn8yy9/60nODASFiJlsNsvRY8fZvWcv+w8cIJVOk8lkKItEWLp4Ec1NjfYdpfL3bK/1l7VIzgrX36mEi6Dxun5Fyn28v33qBb67dplrW/M1jnuHQdBIQjLfV0pFyaoh6huaONPWTm1j0Lx+Lpg4ga07d9uImClTpvLwQw/ZxpIZjREjRnDo4EFacxbERuyfu2gpb73xOisvza8FAIYMHcrLLzyXJzkcRIOqqqYi2wnjNUOGDuPjT7YyY3b+OWchwECwd+9eXnjxJSorK7n6mmtt32cxgqbQcTgJoGXLlnH/r+/hG9/5btHjMPZfiFRStTQinaDzeAcPP/o4t91yk3l+esU24/zKqqF8rFQHP9fdFz7v+Jd7jwHHwK8EOQOGjE+zVbxWotJOiiqLtdkwghwgxkjyEr5qfByii6EEbImW/+ofBf409VUBFk7Rq82qRutsacUoXbkRygUFtWm4+TpRb7cN2PDWu+zaewDQJ6RKeS0jhg9n+tQprL70YpTuvhvxWXE26hkDVvWMFYbyw9rwHiBSP5S293+HVDux+DF5JagkFbwSll6vF24LNHxlkOiGkL0ySLdLcy8gRFBvwC3CDsm1rwzNorZxEjTGUrHj2LGC6hk1XMH+PYcZNc5elW6gL/WM52t27WLjhlfQNI35Cxbw53d+h3XPPs/7H23hG7fcVLCn0NlgzpB67tr+gY2cscKwNPOCl2qmiQDHiDOS0ht+n2NcBOzWNG0vgBDiQeAKoL8B+Tbgx0KIncDzwPOapvXvAv4cIAnhWsD6y/34OyXimQx+8km8sfVVfHbsNJNHDzW3XT1nKj967CX+9NarbfvI7n2P3z7xLEsXzqe5sd51Y9UUv63pntGjxAqfLHhm3ZO0nzlNKqNXK0m+AC2tI5g8ay7lVTXEcgnDaCpLTzJNRLF79lcEVZfyw1rhaCymrZXH5vcQsFfUOhNRVgWNpPhcxIeW6CYbPYVcO4F+Q1Ihkz9ugwSScxNjg5hRghFPE0EhKyR7uvBF7CRwxlB/JNI29YwSKiPV24VqqZSKBFTU8dM5vOVNRs3XJ6vW5EPEp5BMZ8xKz0A/G4Z7LfRtnyEYNpOrVmiaxgcHjvHuzoOosszClnqWtNTx2Kf7CGoaS+trSz6GUhLO46UwH6S7mSTKBqQYMFCJQgdp2/ziPMdgxcBCOKexsby2gf2bN9iSYoqqkk45etwJQTAcpqe7i0hZ/jq57Mqv8fijj/DNb3zTHOuJ6mTBXT/+Md/+znfw+/3eC23HosQrUfOr3z5I2lIIUl4WYcywIVy2bBEV5WX6wjVHiGu9XTZaXYTLzcl6qjdmEjTG31b4wj6SvUmbWiXZkyLo03y6VHIAAQAASURBVOcTLUGFIzH9OEpVzxzPac6bsC+mKiz9FTQN1IBivm+qN6Xfg1CQgoqtL06gLIzwq7bPYYVR6SkFQjbCWYv1mvc5jbydhrUyVD8W9/xwysSxbPl0BzMmTySrhvK/FdBcW8XpY0f7UApKqLleFUA+mVuieibicb8K+ST2friJrqP7ycgB6qfMR/YH2fPKY5QNGUuo5YI+9+uElZixWpABRFqn07P/A3xNU80xg0TpD0FjEDtCVtAyKYRFteIqMCBPzJwH+OrEwFyxhBUL587mtw8/aiNnWocO4ZkXXrZtV1lRQWeX3oPJWuy2culCXnjlNS5dni/USB3fg6Zp/N+f/IL/cOftfR5WoaKNru5uHn7imXwfj3SCupoqRo9o5Zo1FxMKnl1xpEgnUBXMeagVhXz5neqakCqbJEtPIu2p0N7+xos0jBxP7ZBWIn43MQO5uONIZoVUGZ/HnKq5uZltW+yV9+FwiN5o1J109Si6aWlq5NmX3LkfWZZt9xnbsYRCdPf0UOF3H8/0SePZ8Oa7RckZJ/pjU1Zo23g8wXPrN3Lk2HHq62q5/qq1xOMJ/umnv+SKVRczfszgWt+MHD6M3fv2M3rE8EHbZ79Vfmf5mkHCVycGemDxrCm88ebrrFi+wizCWLZwHr/6zW8ZO0QnO7RkjKkTxvLDXz1gI2ckSWLEyFHs3refUWPGmePJztPEM/CLX/4bP7jz+4B3vCkEFT1OHTh4iBfXv2J7rqmxkTGjRzFvzkV9k5EWS2koTtD0BS+Cxvm8Ez954HFuXL2Sqka9yK+QfbVzPlYILc1NHD12nNrGfFuBluGjeOP1121EjN/vJ5nUj8eaXxg3YSJbP/6Y1uHDbfPYIUOH8vxzz/VpDea0Ghszdiy7d+1k/ISJrueN91aDYXp7eoqqVQzLMOf7O0mhZEZXenZ2dvLsM89wpr2D4cNH8PVvfJNDBw/yf//h77n1ttuor2+wkSVeBA2UpqLx+XxIskw0GoVQyDxOr7lvofmwQcwABINB4o6+NF7n5bm2tLTg845/MAgxsM/oIoS4B7gZsH7Tf65p2l2Wbb4O/D/ozUo+Ae7UNO19y/P/GfhTYDdwi6ZpB3LjG4HFwGJN016zbL8b+J+apt1T6gepx89JEjRaFo/NBNhOjy15UobCftyJpGEF1DNj1RBvxrqZr2medk8GUsf2mwSNkxBZOu8ils67yLa9VUlj/N/Zd6YQ5KGTSTdN4JZbbuHEiRPMmjWLv/u7v6OiooLp03XDoscee4zq6mrGjRtHU45wuOuuu5g4cSJ0R031jKZpJA7t4N2PPubomS6Od+mBP96VQOtK0HP8IGrLTISkmPZmJUNSoEhDbNviWc1VmPvyCzvhK0PrPYFwkDP4IpDsAUePG4LVaGd2gIOc8aoCsxI0IpeQLdYkXI1Uk+ppB7zJGSv2d8QYXll8oXHfb+6lsbGJb3zr23mWPhtl7WWXcvTYcf7+n/6FG669hlFVg7OgFUJQ5VNpTySp8g+8GimETKykerbzBi2A1U/vMDC7wLY2FIiB64Aq4B4hRAVwCpiZG/vCY2BEkShPy3Rm0lTI+bA+t6aaN0+e5ooho82xhaOHcs97223kDMk4I5vr2XXoGGOGNtnUMzesuZgf3vMgf/b9bxd8/74mQSsvu9z8f9wkYnI2U0V6zwC2hbKhnnnoGxeRTqcLxkAVWGeJgUMcMbDuir8HdPWMlk0jJTvJxtrIWNRCWiajqy8zKaT6SUU/XyEISdHVf+SJGTUYIdVhJ2Zy7+iKi0KNkO45jS9STiKewh9QScUzOpmdzSIccu7KUdNo2/URDdMW2cgrf6ScZG+36/h64ml6/GlSWf33iPiU3O/jXrwr/iDxeJxgP6qDrNZmUiBkqgCUUJD/+9grzBpSz7fnTUEIQbIrSqo3xjUXjGTroRP8YtsermxspEw9uxhoEDa9ueaNPiGRyX3Hg4F6/OzNqQm+JBjsGGibBwJvoVcjXQHMBb4r9JN5A/oEdR7wJ3yO80BwJ7LGjZ/I3h3bGTlugmlfs2rN5bz87DquvP5mc7vy8grS6TQ9PT1ELHYIPllw3fXX89CDD/L1225zv2GRajETaoBv3nKDa9h8jaP/DOSuHXKFRxb1jBoOkuqNUfPv/8ke/35mnQMK+xxwlD3+3VMzwUbQ9GQznCJBJ+75mgbICMYTcalmIopE0Cfji6hkyWKf0unXRXnaTzokm6oZNRzEVx6ybKfPlZRQEE1zL+wlWSKTySJy37NEjvC1JA+sJM2Y4UPZuXMX48aNte1n5uSJ3PPwk8yYPNFWxWf+Btm02b/CiURaX7wquUW1k6BxwpqwNWAtNigLKGQzaV6972c0zFhG4wWzbcngoYuv5eTWd+l863Gqpl5KJtP/ikyDmLEpR0MNRHdvtpEzTiSjnSSjnfhCffeF8dWMIHl6H/6GsZ7PGz3fDGLmXKpmcvhKx0A9ieVW1YZDdmszgEWzZ/D6pndZNC//8S8YN5YXN7zGJcsW2echQrBswVxefvUNVixewNmgvKyM79yaj4GDobSQwpVnvQ4+3pkvGImnId3dwWeb32Xv/oN0J/RrJ57KABqpWIwho8cybuoMIn6F+rDPRcyA2xbM2X/G9n2Ul9Pd5Z6TiRKcHCC/rjWq0K1QFYVkMulK9s6/aCZvvfs+qxa6bclqq6to6yidoB0MYuZMWzt3/eo3fPPGa7lq9SXmeDgU4s//+A4eeepZ3vvoY26+5spBU3OtWr6En95zH6O/PXxQ9ldRVU17RwdVlZWDsr8vAF/pGDh25HBefv1tLs5dFyKdwE+KdDpjW19pyRiN9bUcPXGK5oa8RdWai5fzw5/9ij+xkDOa4sevQFNTE3v27mXYKPv9zqsg0YCZyE7FaR02lNu/6TGH7A8cBI2obT3rGJjd+57++XIkzaEDB3jvk085eaYdSQizLkYION3WweplC2gdPtycoxpztf70GLWqZ1rqqvh4x16m5HzWU0KhpqaGM2dO6x9VSxclwZqbm3nphedd48XyEfVNLew7cJCWIfn8h0/WCY9xF0zmxeefY+Q4dyGmsU8hBOkiBU2FiI5CRVAfffwJb772KtfecBOVVXlb9JGjRvEnf/bv+c299zByeCsrL77YtV/DxtNJ0Fg/F9gVNwBrrriSZ9c9xTXX32Ajkpz7NwrR+oJpEWg5NwsVaZxDUtrAWce/UqFp2h0AQojxwCryeUIjBr6pacXtqEotkb1X07SI5WElZhYAPwG+j56YfBS9EU557vnRwBJgJPD/An/j2PcZ4B/EAO+8NaiccdQeS4hcNxn7RVGJShv2CWwVPjpIeVqhLSyr5MVck6tSoZ08WFTdIncdc5ExmfKmknrUADz++ONMnTqVDRs2EIvF2LJlC5MnT2bjxo1s3LiR6mqdeKirqzPHJk7U2WBr0/nGiI9MNstFK9Zw/Te+zeobb2PUkqtovGgNVVMupXzyWiqGFlfNFIIQwrtvjOwHR48a4YugJRwTVSWAlnb3HhCBSrR4h/f7FbCyE7KKlvFW8SSSadIdhwFdPWOFYe+mRqpy5IwdVqXR7lN9N1QE2L3jMyoqq1i+8mKTmLH+Js1Njfz5v/9TXn/zLda9WFwVZ1Vs9YVFjXW8duIUYLc0c6pmrJZm56LXTFQE6ZFC/XoAtUKI9ywPp2bTK770J0vrjIH/j6Zp/6Rp2qXAXwIXA5uB7ZyjGDjFF+ajRA++SD5ZXOf3cypuv0FKkiDsV+mO2cdXz5nKMxs3mX8bEy45m2Lm5Am8ufnDgRxeybAueK3VxkZT1kgu0TOQGGhACYRRfEFQfCj1EwkMu4jAsIuQ6yaiNE5GbZyC3DD57BeGsooQmo2YAZAM5YylyljyRdCSdoWJEqkjceaAWalsJNrUinqip/RYZbW88VfUEu88bf4dsVYrOz6DkQzsSaQR/hCn2zroSaaJpjImgWZFfX09J0+dKvhRi1ZhBe0Kuxc+3MGiCcO5cESz67tN9cYZV13BreOH88zhY2xp63Dtz3qOW+FlaWagJ51lCAH2aYNj16cike5XCCkdKaH0+wGM+oJjYKF5YCW6bHwU+gL9DeA7wH9hkGNgxFGN3zx6Agd2bMs/71OYNns+WzZvsm1XUVlFd1enSeQY1WZXfe1aHn7kYdu2yYxGeVUNqqpy6JC9X14hYsb2tyHd70PCb71+ClUeKrlGxmo4OLA5YI5YMUgWSUAYhfFEmEiZ7XEBZYzHrYawqmZAF7hkHUoNX9hHebmfpCqZxIwByafaiBknpICe0GupCHPoyFHzfpSN63ZvkhCko/Y5o9bbxbzpk3jrw09c+1NV1dZEGyy+6ukEZFJ6Fb6WNn3DfZIw7YgKVeGXiog/16cid0/btv4JJqy8jpZRehLI2euicvQMaqct58Smx0i0HenXe3kSMzko4RpiZ47ax4IRFxljkDTpWI9pVeaEWjWMZPsh93ggUJSYUf3F6wI1+h8D07rq/sLftxjoRCQcptvR3P3SFct4/uV8xbZIJ5g2aSIfbXUXi16ydDHPv/Kqa3z6lEls+2wn0Wjh+2d/Ei+DUUk7GHNAv6Kr4aLRXoaOHs+q67/O4qtvYuZl1zHlkmuZcsl1zLzyNkZfqNtg6nZmbmIGQMtqSEIylTigE7lyoZ+0xJ/aaGruNe6Fi2ZO590PtrjGR7YOY/++PSW9J+i/kfOhyT7Xb1eMaCv2O9/z4O/4z398B0Oa3XkPIQTXXbGaeRfN5G//5SecaXOvv88GsiwjyxKp1MD7ZmmKn7kXzWLTu+/3vXF/943U7xiY0WPgyt/3GGhASkXNc3PKmOF8smO3za77ihWLeWq9zgMZ8y9JkhgxahS79uxz7e+qK6/g0ccet12LxYgAKzED6P+m3DmtovDa3jKXHIwYKFIJRCpBbzTG/JlTueOmr/HdG6/mezfpj+/eeDX/9QffYuoEnZQSvqD5AH2+Wqpaxng/gMb6Ok6ctK8pjZ/eSQwIkSchklndpSOlQVrTbMSDsU11TQ1nTrvXqxfNm8+7m94ikdbMeX8yozt+lJWX09PdZduX8TBQan8X45iMY/V6Lp1O89KLL3D7939gI2YMKIrC9757O5VVlfz4X/4JLaGfy1bSxfq3Fa5tLIrO6uoaOtrzOUAv4sg4d42HFc6/h7cOY/+BXL7bcm5qir/wnKAES7OM6H8M1HRa47oiMXCg8a9kaJr2mSVPuAw9Bl4LvNPXa/vnX+KN24HHNE17UdO0BPD36Kz6VZb3kNAb7xj/t+LnwBDgxlLf0ItAETkixolafJx2EDFDCHAYd8AbSpCDuCeeTT4/yWyWk7F+BlXo037MSy1TCkmzd+9epkzRe5NMmzaNTZs2sX37dhYuXMhf/MVfmDePtrY2Fi1axPe+9z3ijmafNUEZIQQTp85gXJO9L8yQxgiV9WGbzZehNPH8nAXObc9xNWRWipow1DAWFLw/qyG0lHejaaMBt2s83IDWayfYDCWQFKql+0BeXu4kaPTD08mZw8dLI2AKIZPJ8Nb6Zz0bklkhSRLfWLOYUCjIy6+/bY47LfP6g7CiEM1VjwwGVATJ80c9c1rTtAstj585nj8MWKQiDAGOMkAIIeqBO4FngH+nadpMvoAY6IUySaErd+77y/M3xKqyAJ0JewxcPXUMT73/mW1MkiRGNdez4+BRU+1gJMQWz57Ju+99QLK7vWCFuJelWTGYTVgti9yQJeEX6SOBM9AYaBAjQvHhrxmOGspPLlUraVJEUWeg0DUl+UKmrZm9x4xA9usTW1+oAl+oAn/1MKRs0pYkk4KVZKL6otTaI0ApayF++oDtvfJNor3jZqSmkZ5T7lO+J56mesQ4tm/dQjSVtzdLZjTbRLSuvo6TJ0/qfxSZWFkn7IDZxNtAFyr7TrQxrbX4Pc4vy9wwYhiHeqPs9/BcL4ZCNmc1wke7p4Hc2aNYA9IvGHvORQzMwWsemEKvstwK/BJ4m0GKgZmEd4Jw6ISp7P7YniiRZZlsJkPAsYC5cM58Nr/1um2svKKCbDZLV5e7EvD6G27goQcf1CvECsRAazIAMK0fC3ksG+PWBJbLHzwYRgqEXIvfgcS/oE+mJaiYBE29qlKJarMFLgSD0HEi47AV9oV9+Mt9lEeCJJV8Yt5XHipoZxYur6A3njCJmWw8Smu5nz37crbAFoJmWHUZB0+cJhvvNe9XAMFsknjCrR4AkIREJpMxkxGQ/83qKss5dWivSdCEpUyepJH1RyQUJJuM4cvZmxWrjC+G04f2UVlZSWPOU94gGZ0EjSaHqJl1NW2fbiLWXlpy0krMpOJx1yPUOpPYoeKFFgYhk471uEgaK1EjJAlyfSwMQka19Mw8B1Zm7/2+xMCeAvfEpYsW8Mqr9rjWUF/H8VwSzBq7GhvqOeLo0TRx3Bg+27WbbNZ9D/3mTdfyqwceKeXwPneIdGLAc0AzgSULRo8cSeuwYea6MxJQXNejYWdmEDTOhyI0Qv78OW+1iPXJfRO71t/Gei+pranm5Okz7u0zSd0m2LGenjR+LJ/u2OXevo+ctzGXMYiYgaCvfby08XUWze3bymlk6zD+4w9u5+577yeR8L7v9hcrlyzkxY2v971hERj37tahQzh4+PBgHNZg4aXfmxgYzZ/3xj1dpBKMHdbMDge5snDWdF5/137f8/t9ZDMZkkn7mmDNJSt5+gW9N5E1uSyEYO1VX+Pxxx4D+iZmrLAluUslaaykTgEMJAY6+8pOGD2ChlqHU00BaKpft1CzzFdFuBx83nM7r3WSqqqeFoyyZVvjezQ+RzEbXuvvMWP2At54/Q2ThDEe/lA5HZ35+b2TpElncREy1m0B0lk3aeN1HEWPNavx0AP3cf2NNxXcxrhfzLtwBl+/5Wb+9a6foORaRRQjaJzPmeOWv0eMHMW+vXmi3pq/sdqWGShE1ADMvegiNr3zbn6gwDrnC8TDRWLg5xn/PJHLE9ahx8C/1zStz6ZWpZIzXxNCtAkhdgoh/l4IYS2jmwqYq2FNv4I+zI2jadpOYBOwB/hr4L879t0L/BXwv4UQJf2CiQIJ4Vr8nMB+4jTg55hjTCAII9PtsHCoQqWTNBmPILJ6SBPPHDk2aIntUmCQNF5kzbhx43j1Vb26acOGDbS3t7Nr1y5ee+012tvbWbduHQBvvPEGr732Gq2trfzsZ/nz06mescKryX15i7dtARROTPbnuxKSYi7y+txWiMJNmP3lLpIHAF8EzWM80d2GkGTQNLqO7Cz4npLqI1ui3Bx0azMvPP7Q/Vx/480lV+IvXzCHWDzOs68MbCJpYHJVBR+397/5qxeGEOSQB5l5nmIzMEYIMUII4QNuAJ7qx+udMfA6IcQuYB+wFp2IeRa+mBgYR0/AWKuXgz6ZiJDpTOvnqRpW8YV9rBjayHN79cpbIzFWGQrQm0gSs0xKs/Eoq+dOY90rb7neT0vG+Pb1V/Lz+39X9LhKqSou1NOkv4mugcRAgwBx+uMrFiJBDUbySpe+CJpUL0L16L+USSLkAq91xABJ8aM5+t0ISTJVNgYS8RRKuJpUb4dn42dJlj1jVc3ICZze/5lrHKCmaShtxw4TTWWJpjI29YzRSygSKfNsTNsfSIEQ97z4Ft9Ylp+bFErUGlg9pIktnZ3s6O0/MW5YmhlkTTKrEUAmyuAoAqtQaRtksudzxGDHQM95oBDicmAn0IheHbkPvYJy0GKgpmXpPLKXHocyQFYUspkMmYz99529eDmvv2y3P5gweSpbt3zoqoK85robePD++1zvKUkS11yxhkd+96g+0Mfi2qiYdC1o+tEE00lsWjHQOSDo9w+DoPFq/GmFYWlmfZ2BZE+KI+291OcsUw1iBqAnlSbi6ztJL8LlhIN+euP2GNjY3MzJTve131RTybGj3lbAkiRciQeA0UMa2bvHXTmeVUOMHD6MvYeL20KHIxGiUZ0IshI0RrIW8gUGXpX1ANlMhu1vvsiEhZfYxq0ETTCg4Aso+PwKvoBK49wr6dj6EtFTx0nFM7aHFc6/vZBJZyGbRssW3zYd79UfDpIGsBE0SjCMLLnn7lZipj+qmc8ZX5kYGI8n6Op222INaW7i4GF3rmHk8Fa279xlS5RcddnFPLruOde2V6y6mEefdo+Xl5UxYexoNm3+wPUcUDB5UwgDJQAGIwZa56z6dSyZhUFWgiYSUApe0wY629sor6gE8vNc3Q7Rmxgpdayxvo4Tp067xivKI3T3uAsVhRAF15iKrJBOe69lyyMROhPF1+HF1q5WhU0xdHZ1s3PPPmZNL2yvaIWqqvzg21/nH+/6hUsVdjYYNbyV3Xv3n/XrncnGbHbw7HK/AHxlYmBvNGYjkbVkDC0ZY+mcmazf+IaNsJEkCZ8EXZbrRUvGuGbVCh5Y94Ktx4okSUydNp33PrCTOSmhMHr0aKLRKPsOuBWjBpIZzdOOy3belDIPVAP5h9dzDE4M7A8MUgZyzd1zBI2zqMhAofFCULW0d1yUVU+1m3VbayyvqauzqUOsyGhuVYxBvEhS32lx63v2pyDVit27dhIOR2hsLFykaN13dXU1V191Jf/8wx+RyWQ839fL9qwQlixfwfoXXziLI3ejoqKc9o4O+6AHQXMeWJrBwONfyRBCXG7JE76a+/fZUl5bCjnzI2A8UIuegFyMzm4bKAOc2d4OwMzwa5r2/2qa1qBp2jxN09xaQfgV0I3uQ1kSUh4ETQM+TnoQMRUodDgSKCMIsdej98wYwuxEv/mPtZAWshCsbGrgqR0HqBilN5YPDR9e6uEOCqwEzdq1a4nFYixfvhy/309DQwPV1dUIIbjyyivZunUrgClpvOqqq8yxYuhvU3ug/4nJbArkz6eiThQgYfqrkrWqZwxrs4Fi7+5dhMJh/FUN/Xrd2pVLCAb8PLJuYIG0anQdk6oq2NoPX+Fi0PvOFF7gD3aF+kCgaVoa+CPgBXTrsYc1TdtW/FUmvGLg3cAc9MnnYfQKISur0cHnGAMz5MlPa5JscV0tb6ft539IVVD8KgnFPlm8ds4kHnrjI5tfrBCClRdewHObPrRVIwNUlEWYPGEsb7y92fOYiiX3ztYKphgGEgOtNi5eBI3xgDxJU4yg0eIdiEClezwZBTXkUM0AaGTijvuPhy2j89jMRsySTCaRv76s1mYiXE0iZ21mTV4HK2qId3hPVhWfn7Rl4uulnpFVP72J1IAmWC+/v425E0cRyCVrrTZHBtSwfVInhOCK5iYOxeN81DXw2DWSEPs87v1ngyaP4g8rvuIxsNA88G/QY2Mn8AiwAnhrMGOgPxjh+FZvZfjUBUv58PX1trEhw0dy6MA+M2bG01ni6SwLl61k/Usv2rYNhcMMGTqUz7bnLX+M+DVmzBhS8Sj79ttVa4Vgs7Q4CzhjsBUDiX++iErQZyfDvdQw/cHxVIIGXz42JLp0kuV0NE6tg4BNR/XvJNVr6fHV26X3dbRUXkqBEOWhAN0eqvUKn0R7d+HvR9M0tGTMlqCZPG40W3d62/q0NDZw9Jg3OWPc28KhIIlEwmZx1l+C5v0XHmPqir57KNgImlCAxgXX0LVrE4k2e5V2IaLGH1BtKhbbvofNIHawNCseK0njhBoIEBo2k94D3sl6gExP3pLtHBMzX6kYWFVVwSNPrPN8bvTIEezcs9c2dumKpbz4ykbbmKqqDB82hJ2OKvORrcNoa++g3WOtsGzhPN794CN6egdnXeSVzC9VuTFY62DD2sxAxKe4CBrj72JFRJqmEfIpNmKmmB1iqQn96qpK2jyUc1WVFf3qEwMwaswYdh622/0Y33fTkKEcOdY/C3fr60vFL+97iG/ffH2/3qOivIw/u+Pb/Osvfs0pDxVRf3HB+LF8sn3HgPcDMG3yBWz5xDuMRKMx9h8snMj/ovFVioHlZRGe3/im3sckGUPr7ULr7ULOpvBJOnljfu5kjOtXL+fBx58xtwOoKw8SSyRcJOeyxYvY+ObbZDIZq3UwANfccBMPPfgA2Wy2YALcIGg0xW8qqIuSLWcDNTCgGFgqcWIQMprqdxGwBkFjkDSarLhsz7z2AzmyypILtKqNnER/bU0V7QXIFi/4i/RGlWWloK2hJAlXcZdzn06bSifBYx3zQiaT4YWnn+KKq672fN5qhWacRymh0DJ8FNffdAt//w//aFeAWnIvhQgap72aLMuEwxG6Ojtd+zDPWy94rGc0xU95WRmdFkUSYJ7nR44do9PqRjBY5/9ZYIDxr78wYuBOTdNGkIuBpbywz9WYpmnva5p2QtO0bO4D/BlwjYXV7gYqHC+rBEruEJVrjPPnwH8VQvSpqfMjsccjuSIQBJHpdShihnnYlUkIqlA547A8CyKjItGuuS/cIeEQAth7yj1J6k/vDytK7THj3F6WZX70ox+xfv16ZFlm+fLlZkB58803GTVqFMlk0pQBG2Ngt1KrCeYnmoWa2PdlbVYoMUk6pluYOZFNg/Q5LdK8LNMGCx4TaS+VkRPHe5JkMhlefOYpVl1+VZ/be2HpvIsYPqyFf3vwsQFX6LSEghxL6ufFyu3vc/En6/lha5A7evdxy4lP+N+JPVT9zzt4bVYT3TfN50fJXfxU28/C3/4vPp7bzOHVk/i7zo/5qbaf/7H+d2yZ08SOJSP4b4fesL3PaRKmwuN8gKZpz2qaNlbTtFGapv2vfrzOKwZWAD3oMbQbOAZMs7ysks8xBgaExBGRv0kaTZkrKoOktSwiKJvVy2rYz5qxrTz1aX6xroaDVIWDCARtPfnrJRuPMmXUML0pam5iayVvlsydxYefbHNVbHotPItNjozFq5e1mdffVhiEw0BioHncFoLGSYQALpKmEEGjJXt0a0YLJMWHlupF+ApXvwNmNTJCmDGm0PEY8OolYCBQ3UjszHFbg2l998LmeGatCLUimuvb4lTPSD4fsbj9Puply1QIXRnBzkPHuGjc8D63NWBU3wOsqKmlN5Ph7Z6BETRyTneZzhV4/FTbz18deYt3p1dzj/84/5razU+1/Yz6ux+wdf6QojHwbu0A/2P9IwVj4BFiZ2V7Zq3qKuWRKrF6a5BjYKF5YErTtDOAAnRpmrYBe2ws9B6lx0AB4ZoGek/rFeKdsfz1EG4YyvFDOnlikIwAMxYs480NL9l2M3T0ePbu2uGqJF512Wqef+5ZstmsGduMheNN11/Lw48+5mn7A+5rwSRorIsax+LEakvjVHxosV6yDiI31RsblPjnJGT6Us8UQzqRIdWdJNWbItmbn1enNQ1yaphUb4xkl/5ZshbVZjp3r5EkQTabRQTDZp8qIQT4gi5f8+pImLauXrSYPakiwuXUVFbQ1uG+/dbXVnPqTIdtzPi9ahqaON3ZbVuUGv1nDAT8fuIxb7VwKQTNiQN78AXDlNd6F+g47c3sChofDXOvJHrkU2LH3ZZFheBF0CiROtK9Z9A0jXSsh03/cwkNO35K9wv/nWOP/hntL/41f7W2ganZt7l86DHa1v8f2l/8a/75umZaD9zD9O6n+OSf17D7rqv5t6+3MrJnE0O3/4iN//Uidt91tU01073/I/04LMSMr4SeM/2NgQWcLN37/orEQFnS+2bEPM7HS5Yv4cX1G21jQghGjRjOrj37bOf42ktWsO6Fl137uO36a7j3QbtS2njdd269gV/85sG+Pk6/UKrqworBiIFWWHvFOAka/fnCKZOAImGEU8MG0TzOARrI11ZXcaa9wzVeXVGYnCm0Tpw0fhxbP9vh+X23NDW6bO5K3W+pePnVN1gw+0ICgf4X+QSDAf7TH32Xex961FMd1h8sXzSfDa/reTK1cRSnskFmX3YtZcMvQNS2ojaO4p9/8xhLr7mNb/yHv4KaYaiNo3h4/dssufw6rv7GHcR95fhqh5ANVvAnf/nXXHLtrZyMg692iO2Yn3tpfaHDKIiM1r/4l8xoZH7PYmDQ72fnzl2uc1Lr7eLqixfz6NPPm2oagAhpNE2jx7G2vXnVEn77pFspeOMN1/PrB/I9CI3vWZIkrrjmOu5/4AF9vESCphT0t/htMGKglTTxeoCdgDVUEMbDeC4jq3p/Z699WHJ+ZuzJZr1VMlk7SaNqaaqra2hrc5Mzfp/f06oSQCkwnx0+ajQHHb23jHxFY0MDXW2nCxaU6ttpbhLEg6AphEceKM1BxyBUTJu0jEZFTR3f+e73+Ncf/oun/XKh/Xhh7ZVXse7Jx/FJguqyEPHuDhYtmE9tdRWyP4ivopZ/+dmvWLb6Sr55558gQhX4aofwyNMvsGTV5Vx98zeICx/+cBkjxk3k8utv5pIrr+VkdxxfRa3+JmqAYCDAM8Ycox/ETCbb/3lgtoT709nGv7OAEQMlIYRUagyEs+s5Y4R/46zaAswwnsw18pqWGy8ZmqY9B7yLLmksCoEgTdbTfmwEIfY7iBiBoAyFTkcV61ACHPJInowixGfZXs9JyNpxrTz5wQ4yBRbmXxSOHDnCkiVLWLZsGfPmzaO9vZ1Zs2axcOFCDh06xDXXXEN7eztz585l0aJFrFu3jjvvvNO2D6u1mReMvjMGClmbacluV2ISQEtFEV4T7UwKpNKUMwXtywptLyS0AvZoQkieVg5G7xmgqLXZQPDEww9w5XU3lqzg8epFNGvqJObOnMYvHh+YgmZhQx2fBPPXQnV1NevXr2fOnDkAnDp1ig0bNvDGG28wZcoUnnjiCVKpFD/96U957bXXuPXWW7n77rsB+Ju/+RtefPFF/vZv/5b/83/+j+19hhHy7OH0FYBxgkWA19AVMt8DnRX+ImKgD8HhTIKIIpnEjIHFzfW87qgsK/OrZLJZeh3eutcvmMoDr7n952+7ZCH3PL3Bs3L7O7fcwC9/cz+Qnzh9EbAmYGFgMVANBEzyw9rjpRAh4iRoXCSNpnlf2+kEaqTGtg/b07ZqZL3pazFSBvLqmXQ6VzFtUc0k42kCVY10Hterq7vjabv1U4F5i7O/j1fvGb8/QG80XnSxYUzkvSqy/m3der512WLzb68m4F5KGivmV1UTFBKvnRpY5aRTOft5xcBGAhwvoqz5EqPYPLAjZ3UhgHlCiH8BSgoS/YmBzdMXceSD18y/rWTksDHj2Ldzu2374aPHsn/3Tte8btmaq3ji0UdsiyohBFd/7VqeekxPThoxTqR1e4ybHYt2A4USizav8bOE1ttlkhgwOHNAsFtjloJCCpv+pOwMggbs6hlJCNviyuy34xFag36VXovFjfVe1drSyP6jepLRRXZ5HKmm5Ko+ixQN+SSBPxAwkxxO9YwVXtX12UyGDze+wJQlqwBc5LkBr/4zVouz+lmrSHYcJXqs76pvgyTxImj89WOJHf4Y+PzinxqQUUIVkMr/Tn0RM18inPMYeM0Va3n0qWdc45IkURYJ26tVgctWLufZl/QkiZEEFEIw98IZLkV0IOBnxpRJpoWZsb2m+AmHQsy5cDovv2ovRviiMdAY6JOEp2e/lVg1CRpbb8T89R1QJAKKRDTaSyAQNPfjV3TVTDHVuHPOWCgxW1lR7qpKllJRqnMktNd9JxgMEo2611+1NdWcafPuX9XS2MjR4ycLHi+AosgFbdH6QmdXNzt27+WiGdPO6vX6+yv8hztv5/FnnufQkbMnaIQQ1NXWmHZxn1cMNH7jQtX4X3Kc8xi4cNZ0XnvrbbTeLrP/XDbeS5UKbadP6Qpai1Lm+ksW8fCLeZt4rbeLSDhERdDH4QN2RXRd81BkWWbfgUOuZvRDhw0jEPCz/bMdtnEnbARNX5/bEmOtj2IYaAzU1OL7N4gU1/FYFEDG+Jbdh5h4wSRP4leTfS6CJxaLEwo6eixabTEt8+Wa6mraPciZyqoqOh2WWtaY61UkOmbcBHZud4slfLKgqbmFY0ePmH87iXbIkz6FCJpCfwPs2b2L8kiY5uZmz+P1grOfb3l5OX/07/6En/3kLnoHoGCNlJWRiMfNeP55xcDq+iZPFe55YnP2ecKIga8B9/UnBva5KhNC3CCEqMz9fwzwj8BTmqYZV83PgauFEMtz/m3/AQgAj/f7Y8B/Ar6L3jinKEYSZg/uk9KoinXang0nyH6H2kYgaCXoSeaMlUJsTnbTUp8PLlWj6xBCcOOcSfx66wGzcrIv1Yx28mBfH6ffaGlpYePGjbzyyit84xvfYNq0aXzwwQe8/vrr3HvvvciyTENDAx988AGvvfYaTz75JGVlZQX311ffGat6xgpNy4LmzX6T6vVUzmhaRu/z4hz3WjQXWPKfVRNmfzkkCjPNzqSN1dpsIDhx9Ag+n4/Gpua+N+4DE8aMZMrYETy5cZPn86VY7clCEFIUunJ9KQKBAFVVVebz7777LkuWLAFgxYoVvP322+zcuZPJkyejKIo5Fo1GCQaDlJWVMXv2bD799FPb+/iRCvaH+jKhUAwE2tErh+4HRgJ//4XGQDnA9mQ+BvrL/ahhlcZAgFNaGl+Zihr2o4YDqOEg18yZxBPb7FYXAZ/KqMYaPtqW70WSjUcJB/2Ma6rh3W16ha7W22VaxISVLIsvmsmjv/PuPzNQC7Ni1YlWomEwYqCVoHGqaKwPsBM0kO9Do2WSrniWJ2900sZFzDhijame8Yxr9jEj0VaoQET2Bcim7IpQ43uTFIWMRc7tVM04YVXPoPiIxhOuCWexCZZR6f76R58yd/I4085sIJgaLiOLxq5k/xSS1oVTEJkEWbK57/bzioE1qJx2qHO/jOjPPBD4GvB9IIZuUbEHvS9XqSgpBkqygr+sip4z+UrfnlzCe9SM+Xz41quu10ybt4RXXnrB7KsUTWWob2wmEY9x5pTd6mVYayvxeJwjR9zNfofUV1NZUcE77xW2czIaOhuPwSBoIE9mDOYc0Eq4nI165lAqTn0hq9oCcUojb29mG9f0Xju2fjseikUhRMF54NDGeg4dzdvzePWfcSYlisUxs8Gqz90XzHjeam9mwJrk3fzSU8xZdXW/LXaDuRhtEDSqX6F22jLiJ3aT6nb3oXDCi6BJx3qQIw0kT+vzgc8r/gGUj5pF507dgvDLTMycjzGwtqaazq5uzyT8VWsv49Fn7IVckiQxcngrn+3aDeTP+XkXzeSdDz4imbSf24vmzebt9z+gN2mfx2uKn9lz5rJr7z72Hzp3zdAHKwYa13dAkczr1zoPdRavGLCSspte3cCcefMBXFZm1rWlEV81TUPzKPL0KgqVZZmMhyyisqLM1tzaiqEtjRwq0JOrUNFjMBiwVaF7QVVVEsmzm9P85uHH+NZN153Va60QQvDHt3+D+373BL3R/s0Drbh69SU8uk5vAfB5xsBF8+bw2ltvn/Vxni8472KgpjFz/Ajefe9DMrEetFheSZuN97L8omm88PJG20vKFEjFo7Sfts/3rlu1jPufet68/ozYeOU11/HQgw+gaXbyJZnRuGTtVTz/9FOcOpMnDfoiaArNM4rNP4q9bjBioJVMcT7M97ZaslkL8yxjb2z+iAtnzbIda1YN0ZnIEsoV41k/S0c0QXl5ueuzaZrmmidXVFbQ0dHhmp+WV1TQ0eEmm62x10nQ1NXW0NXZYW5nJdEbm5o47pH7s+Y1hHDHeCuKqWeef+Zpm51ZqfkSJ/kXCAT4/h/9MXf/5C5d4V9g3u7srePEmtVreGbdU+Y+P68Y2NTSwhGL69TvATEDcDkQRc8TPk8/YmApJXN3AHuFEL3Ai8DbwDeNJzVNewO4Ez0odwLXAZdpmlaypY9lX1uAB7H0aiiEEHoyrNuDhBpNmJ0O4kYgaCTAYQcRU4WPBFnbfqp9MjXChwYcSLgnvY0VEVZfNJkfPbmBDVv6rl4T9cMKPuelkDCQyWT4ZOs2s1Lvi4Kz74xTPeMvqzbtzbS2PUgVwz33o2XTiBLty/qzLRRX1BR6TihBtHSBiaeQoYDiBgbWd+atV15g+rLVZ/16J2ZPGockJN74sO8eQoVwSXMDL3d6+3d2dHRQXq5fghUVFbS3t3uOtbe3m2PgXRmkN8z+0icnrTHwVWAMunfkm8BYTdP+G3A7+kT1C4mBshBMD0Y4oCXIhCT85fkbnS/sY2F9La8ctntHVwT9lAf87D3Vbib40tEYl84Yzyuf7KbnTD7Rk41HWXnhJN7ZtotTJ9w2BzOnTWbE8GH84w//lS0ff9zfj1ky0qkkx3Z/mjt+1awqHgwYySorAWNV0VhRjKDJntmJqBppbmtV1ch9VCVZkU30IPm9VDMCNRAwH+aoJcylEmlb3xmAWC5Rba3Q9kXKSfSWdlo61TM9sQSSqn82L/WMWRHl8Zk/3LmPOZPyykurPZF5bOV2Il8N+x1/53/7ecEK9iTjHPdIlJaKkYTY7VHgAYMXAwUCFUHyy09SlzIP/Af0Zocd6BWPP9A07W5N036Yk3aXhP7MA4fNXsme159xJbSEELSOHsfez7bRk0yb5/HIcRM4enA/vQ5bxiuvv4WHf3uPy6rslltv5b7f/paoc7GlBrhyzSo6u7r4p7vuZv8x+0If7Cqa/ja+tlpJ9sYSbDuQrxDuS11WCvzlfrPvjEHMhGWp331ngj6ZjKaxKdbFhYH8gt+w1JRDvtwx25UbSkT/DIqlF006GuPkkaPUBGQy7SfJtJ+0WZZJgZDtAYXnegG/j4RDJWrA+hoj+WDEsayQTH9vq8+8sbDV0il8vv4vKrPZLL2dHVTWN5pjZUWIcS97Myeqpq6ic/sGMvH+Nci2qjXVmhEkTu12bTMY8U8N6Gs02R8ik4zaE9R9FAWcpzgvY+CtN1xjKpmtKK/Wc5qnz9jn+WsuWcm6Z18wY52RJPnmjdfys18/4NrP7bfeyE/+7V7P9779W9/knfc/4se//LVnZexgoa29g10DaODuBadixki2Wa3NoLjFroGuzg5OHT/CmNEjzUSfsd9jR4/S0NDoes+TRw7aqqedsFWZexA2WTWET1VJpb3jXMDvJ1mgr0J/CWIrUqkUPrX/8/COzi7KyyIEg4PTb0CSJP749m/wL3f/6qyVPH6/n4py70tsMNfBF0wYz9ZPP3ONfwlxXsbAK5bO5eGX3a0cLhjVyqd7D5BO23+TW1ct5ldPv2Ibk2WZy1cs5nfrnrWta2RZ5pprr+P+3/7aHDPmA0IIvn3HD3j2qSf49b33FCQ2fbKwqa+9UGjcwJGjRzl43D3PHAj6Us3YVDIUV/Ts2LWbhrpafD6f67O8/d6HzJ45HbD3ktm2fTsTJ4yzbe+lzAGIxeIEg+65r8/nI53yvv4lWSpow6jKkouYAYhEIvT0lDansqojjYcxZsBKimz9+GOmTZ8xoPhrJWnC4TA33HQzP7/7pwWty4rBJwmGDB3qSUbB4MbA1ZdewrpndevArzoxI4SYLYTYApwknye8tz8xsM9Zh6ZpS0rY5tfAr/varpR9a5r2TSzBvhjGEOZDuphOuW3B5UPCj0QXKcrJTyIa8PMJXTTgR7XwUuNy+5lGOZJlP7P95bzZ00Wd4sPZaWV4Yy1/ctVyPulM84+/fpSlF01lxvjRAHT1RNlx4DA7DxyhJxpDKrfbZlovTE3T8Fc1kEgmbYkBLWeTM3H8OGTZXpWd7MwnUYuRO07FTjGSyAuGeubwcT1QVTY12dQkqqSRkNUiPRX6EYBSUe/+NIMJ2QfxjgLPqTm7NZmuIzsLWriB/n0MaSxuPWQglaswUvo5mc2UN3n+tsZvunbxbH7z9HoqyyKMK97SwhN+WaZB9e6fUVlZyZEjuqyzq6uLyspKKisrTX9LY6yqqsrmeSlJ7sROCwG20k01hZupn++wxikhxHvAf0GXKV4O/BNwybmKgZeGq3m24zQ3VQ6zJa/HNlexecd+oqm0aQCc7IqyZnwrP37zY/7diovMbdPRGLevnM3PX3qHP1270JY4/96q+fzjoy/yX757C1IuYSgA1BAzpk5h+sxZvPz6W/zLP/8zqy+/ksaheoxpO3OaPbt2smvXHlKpJOlsfjJrxLaU6dGawR8I0h2NkshNopMZjXgqTUqTqG4dR1lAsZEM19/zLlDYGgZ0ciKZez6ZSJv2X6l4Bn9AdfVtUYIR0rEeT4ImGe30tBtLt+1DrhiK5HPHLsXnJy0rJqFjvF7Tssj+oPl+BrLxTtTq4a79yH3EjlQ8YybCAPMzO9ETT+ELRkhEewhVuq2cC80Xoyn9N+npiRIIBPKTQFlBVUCk4rotUIHFxaHjpxhSV7yFiBIK2Kro1XCAVG/hCk5fROUSrYpHOk+xSKpALlJn0lOgGUEYhVSByvvBjIEjCLOXKOMp7Z4BhT2CCyE1QB/4vlDKPBBYk3sYsfF2wFte18e+S42BZSE/I+ddyp43nmXmxVfanpswexHP3HMXI8ZNRAhhEjSrr7uZpx64l+u+9X1zW1VVufSqa3nwvvu46dZb8zuRBF//5nf4+c9+xp0/+IF+vlvO84uXLWH54oU8vu5Z1p08xY3XXEVteQhN0zh6/AQ79+xj34GDZDJZNFmfbltjIIDIpBGZJAG/j1hvL2SSaIk4WipBVtMIyXDRqBZEuByFfH+WE3/3xyS7oqR6Y6R646R6EyS6krZ+LwZSve4knUno90CF5RrpSetVeH2dg0GfHnNejrazIlxFeUsZali19Tr77EwnE1p072mDVPKVhzjUG2dUc61rn/FUGrmzjaxPNQmYQpACIYRlDmNV2kiSRDZXbGMQXYbVot7aS3MRM+aTRRCLRc3GulYkMxrxdNaMlaAneaOpDCFV4t03XmfczLlF910IznufVX1SPeNKzrz/GDUzr0ZS3Pc0K1IeiSN/3Wg6Pn7KNT6Y8U/1K5QNn0L3/i34x19YwieGrNb/GJg+i+REf3C+xsDysjKmTb6A197cxKL59nPs5uuv46c/+xl/csft5pgQghuuuYr7H3mMW66/Rn8vxU91VSUzpkzi5VffYMXiBeb24YpqLlu5jEcef4prr7rctn9Zlrnumq8R7+7kwcefQtM0brz6CoLBAJlMhoNHjrJj116X/ZQzBoLeb0pRVRJx+zwik81QWVHBwjmz7N+P4id5OqfasSQPU0LRK4Wz3tXCpgpOErb/JzN6H4F42k7IGD34DBjPWVUzTzzwa779vTts+zfwzqY3Wbxsuauy+aOPtjBjxnT791JgDhWPJwh4WBPiC5MqkMaRJKlgX7SBIJ3OoJ4FOfPkcy9y1epLBvVYwqEQt996A//ys1/x77//nbNKet5wlXch82DGQIDmxgaOHDtGSwEXEiey9D8GZn5P54Gjhzbz9gcfs+/YKUY02YU2N1y6hPuf38jX1yw3xwJ+HxdNHM2r733M4gunAPr8YPyE8Xx44CSf7dzFuImTAP16HtbaSlNTMx+8s4kZs+fik4UZWwLBIDd+/Zu0t53hvnt/RW1dHVdfdTWyLCOyafbu3cu+nZ9x/PhxhJafH3jFQFmSEKrfpWDMZjI0NTWxcMF812e35gO9IGKdunI7lTAVxKbtdCnFgyX0CEmn0zz15JP8x393py2GGb0U9+7ZxcXzZiByf2fVECKd4MC+vaxcttS1P02y28ClhMKZ9k4qKioBbPNTSZJsZIA1zvpkmWw2W/Ca9LKdDASDxOPuonx9f8LznlKsvy5g3ls2vfk637nDbS1cCoz3NY43mdXwSYLaxibmLV7Cw/ffx3U33ex5zF6wfk8333yT5zaDGQP9fr+uPksmUUskZzKat1Vg0df0a+vPDT8G/iOOPGF/dvClLF8yIBCMIcwuehnrSHyMIsQWupiGPdE2ngjb6WGKhYwXCHP8Auxyv8ur6nii/STf19wLSYAZ40czY/xo1r/zET9+aB1qZR1lWpyxrUO4fPFsysKhPkmRWDyOXDPMRcKcLzCIiI6Tvaa9Weeh7aTbdhMYchHJHrekUEtFEYqb5dayGYRwX7iFth9UyCpkvCuthaSgZVMI7DeijmPHClq6OeFUHAG8+coLzF9+af+PtQTcumY5//rgOsIThzCkTpciRvfvL/n18yLeKoFZs2Zx11138ed//ue8/PLLzJkzh7Fjx7J161YymYw5FgqFiMVi9PT08OmnnzJx4kSyr9rfX68cl0iSxXdWLa7OO0iaphldpR8RQvyXc3kwQUlmXCDMB12dzA7X4gvnk1XXTBrJE7sOctusieaYEIKrZ47n0fe3c+2siWbCLJDNsnTyKNZt/pS1syYiwuVk41HUQIhbl8/mZw8/xR03XGnuR0pFTS3AykXzWbZkCQ8+vo4TLzyPkCTKq2oYNXoMa666Bn8g4DmhMeyyepNpEvEYKUklljaa0Wf1ivdE2rQqMhAJqPY+Kh6IFSFtrDCUKEbiyiBQ7L1gdEWNYT1mkCqSJNDinfibp5GyViMb+2g/gK92tG2/AJmeU8iRevd4vBu/v7D1pBcS8ZSt+XIykS5qHeMLl3GmrZ2q5lZAt4Hqy9os/14xFH/QNUlEDZgS9KwasjU3B3j69Xf55qULKAQ1HLT1nXD+rR+3z5V0FkJwWbCaJ6KnWeyrwhAOFSJjvDAWb2Z7MGOgH4kUWTS0fvdQ+5LhnMTGsvoWTu76mI5jBykbMdL23PQll7Dh+aeZs+IyQE+YB4Ihxk6aypbNm5g7b4GZZGsZ2srezz7l/fc/YObMGfpCLKsRqapmxqzZPPvsM1yxyj2/lmWZa65cSzwe54HfPWFWMjc1NjBuzGgWzL6waB8pkU6QzWZJ9rQTkgWk4qZ/et6iw23dYlWdGEh06deIFxlTDFbFTG9GKkxo5jpbG9vvT8Upk2Rah1aZxEykSY9hajjAp/uOcN2FE1Bl2VTGKaEAH+84wIIxQ137N3JLqVMnUOsa+iRoCkESgmxWsymQtGQM4QsSDASIZjS8Ug6yh3raeu+Kx+IEQ6GCi/RCOLJnJ5fc9G2TICwFzvucoZ6xku/+SIDqaWto++AJamZ9reC+zD5llvuUcT/zN012bT+Q+OeFUOMoTr/3JHDhl1U1UyrOSQxcOG8OP/zpL5g2ZRLlFssav9/PhLFj+OjjrUybMskcH9rSjCRJHDh0mNahevNyTfEzd948fv7LX3Fs/EmaGurNBNmEcWPZuXuPaz8GAmUVfPOm62hr7+Deh36HJCQkSWLYkGYmjB3NxUsXFkyQGchkMiSTqbNWVnhV45ZynapamiRy3tosox9nqdfqm6+8wKIlSwgEAp6JsM6ODhpq8sUppqLm2DGaa5eV9B4dXV1UVrjnhrJcmID5vMiZs4GmaXT39NrOzcFCXW0NV62+hJ//+gG+e5t3krEYCuVdBjsGrl11Mb+670G+982v9/sYv2Q4JzHwxosX8Le/fIj//K3rbLPsptpq0ukMp9o7qavK5zzmTRnPjx57mVmzZhJGV5Fk1RDXXnsd//DPP6R15GgCgQApoeCTBctWrOQXP7ubESNHUlXX4Hr/quoavv2973Pi8CF+8bO7CQV8KKrKmOGtXHjhTJpqKvskD1OplG5R5eEsYKKQwiYV9+4DqvjJotskCfIWr4ZqppCq22U1ViShfs+99/L1G69DyuXXnGtAsBelW5+3jhtKZUPBDMb8S6Ozs4OhQ/O5VINckCSZbK6XtJMALxYDFcm7H5gkudU2VjLI6zXWsUL3mzPtnUQiZQghTGLFuY9Cr7WOG0QP5MnbceMn0NnRwfPPPM2lq9d47sP5eazv61VwBAOPgc6izTWrLuXpF1/hqiuvAPK/91cQA46BX/pvpgyFo0CUjGl1BnpSuDlnYzaEfNJfRaIGlePEabQsz0LIVKJwlDjVloRNQJJYVFbFusPHuG1MPRWjWvL7svSaWT57GivW2quKnLAqWayETTAQIHOWxEwhhYXxHmfb72Z0XYTdp3oY31TOZ8f0BW5lfdi091ISJ4lMu5LeM8dMizMrUqdOojSOQzgCf/zETghUubYnFfMcH8xklpAUsloBXtVQzhSApmnEut3EzmfHulz9eaw4ffwY9Zf23WumRwoRyfbfO/fO61bz//3rL/j2qgVURfqXyDBuiqlUilWrVrFlyxYuueQS/vf//t8sWrSIBQsWMGzYMP70T/8UVVW5/fbbWbhwIVVVVdx/v26j8Jd/+ZesXLmSQCDAvffey//+ybOu9xlBiH1EGdePyvHzGJVCiKsL/a1p2mNf1IEEfTK+iMrM8giPtp1gblAP5/5ynaCJ+FRqKyIc7OxhlMUKpznoJ5PNcrS9m2byFc0X1FfxyYHj7D/ZxogR+XO6pbaKCcNbeHHT+1yywl3lAvqE5tprvkZPrsowaapiCnudGhBCEAiGSBdYDEcCioug6Q+cdl9eKETSGLAqagwVTc++NwkMn0MmGTcJGStEuhcp5I6N6c4j+BrtCzhfqIKUlkU4EhhejZwLIZVIo+aImXSB5KovFKH7xJGS92kgmsrQ2d2L7AuQSGv5iaShnkHvIWGdiAlfkGRvN5qm4VPPfqrhL/eZSWcnZCFY4qvixXgb8+UqZMtEv9fDo90JQ0H7ecfAZgIcJUGLZ0r4K4NzFhunL1/Le4//iqEjvktP7noPqT6ah49iy6bXiEV7CYbCprJh2kXzePAXP2b6jJkEIvn53vJLL+OXd/2QcWPHEMklknyyYNL0GTz92O/Y8umO/5+9vw6z4k73veFPLbd2F7pxdw0uQQMECxY8SEI8I3vv85zzvu95zn6uc96zZ2bPTDwQYiQkJCSBJDjBJRCCu3sD7bJc6vljda2uWlWru5EQmDPf61oXdPmSuuv3u7/393vToXW1DYOMlISwX/Oc6VPu6vp1Oh02qzVc3VjHtoZq7+5oArM2eCtq7ku5BaZcPSOhKlCdnAyEaq1a84sh9rsrmdOyEUa7kbgsR6THGYSfKyG9HlMUMWO0WylxukmRjVek9xL0+fA73WGCtvBW+L3a4iKCFsFqV1idRUNSfep0OoIy73kAffW6xHgHJa4AWclmRcW9FqKfXW63C2tUTNZSzThMBqp8AWxGPVevXVMlc+70mRZLPeP3BtCb7SS0HsTtn1eR2F49Ma+NmAEQdab7Gv8AhZIzcs3xqXjLCzFZsjRt2v5B8JvFwHkzp/HhZ1/wwnxlofnQQQP48+tv06FdG0UibMqEsfz59bf54ysvKJY/M3smf/r7W/zri/MVs68xI0fw+rvvk5OdRVqqWgkrqW+emz39rq5fr9djtd7FPFiWkKxvskdSzUhWQ5FkVwz1TFUM99Sq0mJu3rjO8BEjwrY2Gr7/8hGddJ6IxVE9lR7lFZUkathv6asrw7WgE3SIv7KarL7YvmcvfXt2r3vDu0Tj/Dy6dWrP8pU/MHls3clJLdzvGBgNkyk8L/P5fJH//4PigcdAwR6PHpg2ajArNu9h0uDeCiXt9JEDeWv5D7zy1FDFfs+MGcIHX6/m5bkzCFYraQVBYMEzc1i8ZAkvvfBCZFuTXmDO3Hn89S9/5rmXXw3njAjPceXKiQZ5ebz0Yni/uqzMohFRpAW89bd+kvdmkf5fi9pFMFnrb2dWDxw5eoyM9DQyk+NVpIzg9+Jye7AZDQh+5WcgGs0IwYCKVAoEAuj0etXYq7y8nLbtElQkhsWox+MJqGwqIWxdphUfzQYBva6GpIg1zlWQGHK1TvViufJSC/LrXPfDdwwdeSctl2JDTtBI6P5YTzatX8funTvo1advzH2jiRmo+Z3+GjFQ/lvKbdiYVWuUffD+QXHPMfAfYoTcFDvHqKBDlEomHTNHNGzMcrByhAqSMGGOWn6CSspEP4lCTTVytsmM1ybw3alLjBZFEpvm1uu67oQYkQiWYHz9VBr1hUTQ1KbeSbHqKXYHcTmrEIoLOHb+EmWFt7hWWAbArSo/9tQsKsUExKANvesyekcaeksc8TlxVFw/ozqm6HOpiBkA0V2i6M8QWR70IujVA5ZYDV9jLa9rXSz4PS5MhpoHRLS1mRjwItxB/wiAKxfOkte46R1fi4TaiDcJOp2Ol8cO4j+/2cQfnhpyV+cxGo1s2rRJsaxHjx7867/+q2LZjBkzmCG3fCHcJGzw4MGRv7Wqw83VypkgIvpHv3J8G8qGXtsIS7il/PQDIWeixwJD0tNZc/0mTzZQEoEjmjXg3Z9P8FJWKjrZRHB8mya8ueswrwzpjtygYFq/Tvx51TYWOGwkpqUT8rjQWWz07diarzfvYdPm7Qwe1C9ibRaN+tjhSLAYdDXN5qshWcFIcJgNkWQrhPvOlLv9kari6KSVXDETy96rNuiEAIGqYrxltwi6ShGDfkBAMJgQjHb09lSM1gQqTm3EktsBdHoMFjsBjzJhqDfbCIohBEFQ9bPxCwKW+AxFgiyMWJ9bjBgYY3OfN6BaWekJEGcx4MOI3+tSLJMg6PQEAwH0BuWwoMoXwGEy4HI5sdvCEx7FwFlmbxa5NqMZwe9l7fY9PNFHaUeis9giSgCDzRqxaYKw5ZGvomaAb7Sb8Ttrn9iYBR39zYlscZcxwKRB/NcD9zMGaiEFE4ep+EcnZ36z2CgIAi269OTCgd2079UPqLGj6fHEU6z96jOGPz1Psc+oyTNYsfQD5i18KbLMFxR5evY8Fr/zJvNfeg2H1RT5rY8a/xSfvL+IUChEp7atagiauhDV2PRuIN0zgj1eoQaB8D0jkRvmeLXCTE7MyCG3wQSgqrpJtS5EecjPbZ2PEjEQscyziTq8QTM5OjNpoo7vK0uZ0KSBipiRyH6PP4DFbsEUb4uQMhC+5wWjMfK3nGSKKGeqlxlsVoornCQ57AjWcOxREDQxgmDIqe5/IX1u9vgEqpxRSYTqZEgsf/LIR+Sswma/Mx/Z/ds2MmjsZGKV/kjPtPrCZDEonm1hIiQFa047Ks/uIK5ZX00LMy1IhM2vHf8Aklv1oujAauIynqrXtT2i+M1ioM1mJTM9jXMXLtK0cSNF3Bk3+gm+/HYVk8ePjSzT6XSMHf0EX3y9kqlPjYss1+v1TJ8ykbc++pwX5s9REAgL587iL2+8w4ypEzXtmWqzN30QMIqBe67GDYVClBfe5Or161y/foMrBQV4/UGMeoG01FQaNWxEo0aNsOh1fLV0CS+99vuYxMzFCxci1d7yZFooFKoeW6L4nrS8+gFuFxaRmqIu9AmFQjEJnmjLpOh1sVBXDLwbHDt5hhfm/rqKkU7t23K7qJgde/bdFRH0IGLgqOFDWLl6LZPGjbnj63uE8EBjoGCyRtQgeZmprN71CxVOF4kycsZkNNKxRWP2HD1Nz3YtIsvj0zNp26ol2w4cpfeAmvxJQkI8j/XowbcrVzFu7JhITLGaDMybv4B3X/8bc597HqNVdo7qGKAiYAPeuseA9RlHEkXy3MW4UpqXyaHzuxTqGdFgxu/3c+PmLW4U3ORGYTElpWWIoohOpyMjPZ2GeQ3Iz8vjdlEhW7Zu4dV56ntbOs/mPT/Tr3sn1frCggKSkhJUyy9evkpGZrYij2DSCZSXlZGalBj+W0bQyGNgNGEhiqKKeJeszORlANEkTX1iYDQxI12T/Fjy66yqrIzYst0PaBE0g4cN54tPl5KVnU2jxk3U1xyDRJLwIGJg+/bt2f/LL3To2qPObR9h3HMM/IfwGdIjkIGZ66grCVvh4IS8LLAarYnjOJWqRH4rHJwNuSgRlZOlLilJ5Lph0f6TuKsbjfoLLuEvuBTZRrx9RfGqDbHW6ysKIq/6oD7bxSJmAoEAR/dsZcniRXz24WKObF9PadFt2jdrTNdBI5g8ey5dRk5m2PhJ2FIyiaMM3/U9GBxpZHZ6XPOYIBEz2hZlYiiAoNMaPKsHkr/GIDE2xJh+42UFBQScZRhsiZFlUh8eOc4VKpf9snsHXXr3r9fZ70Y1I8FkNDBveB/eWLXlAX9malzRuAcBmmDnfIzm29Eo8wYpdt/Z60FBFMU51T64C4FNwDngMnCp+vWbIMVswqzTcdXpklnbeAm6vIxp2ZDlP58AiCS+dTqBaT3b8eGOQ4rjBN0eXh7Zh0Xrf6K0SvmbnDCoJ0aDnvdWrCGor91zWj5okDfL04LUfDW68Wr037U1UL5bhAI+XFcPU35sHeXH1uG6coiQz401rSGJrQeR3HEUcS0fx9awO6aEDALlN3Bd2IU9ryuG+ExNuyKDxU6w4jr6+GwVMRO+P8XIMukVXqlU7BgtFgLOEkXciYbc0kyB6lgWbe8miiI6QR8jGRh7Mg9QcPMmjqRUfEFRWxFltIQl9LKB/uUbt2iYrbYA0EK0TVN0E3EJ8sp/CFssxesMtNTb2OtXJ2UfNMpipGGzMHOD+k2ofEHxjl7+OtRpDwK/dWzMadGOwivn8TgrFcstNjuNWrXn2N4diuWOuHi69erHhh9WKpbrzVamzp7L+2/9nUqXciI7b8GznD17lm9Xrqr/hUmNTaNf9YBgrZsIkJOZgMLasj6oCgTYWVnGmqpiNrhLKdf7MOuhkcFKN0M8HXXhV2uDg0SDAafBz25/BWMzMkhLtGGym1TEjCnexqYrBQxr00hxLoPNSkmVi+TEuIgCyGi3YrRb8Rn02GQxXzrW4QtX6dBEOYaVfy7S/0MeJ6KzAtFZQaXTTbyGklh0VhB0VmAM+WqSJtVJDiHgRScGI0kVUE/2/T4/ZrM5koSRJvoWg07RRBzCzy9RFAn4/RhN5sgyRy22k3cKo+xY5pR89NZ4Ks7v09zWYHUonkcmW4Ji2f1EsLoAQLo+k9mAzmDEFJeMp+RmnfuL3HkM/LV7ztQHv3UMHP/kSL75brWqWrhJo4YAnD53XrG8eZPGxMfHsXf/AcXy3Owshgzqz7sffKyYUxiNRv7l1RdZvX4TO3b/pHkND7zZr+z+lRCLLImF27duseLL5XyyZDFffPIBJ48dwaA30KZzV0ZPnsGoqbMYOnEGj/Xuh1mv48jenezYtJaXXvt9rf1XNm5Yz4jhQxUJW6MYYP/ePXTt3EmRYBUCXo6ePE3bVi1Uxzl74SLNmzRSLb9VWKSpYgKoqKoiLk773q5tnHcvzao1r6OykjjHnRHad4thg/pz6ep1jp48/UDOVxu05uI5WVkUFpXgdteteg2F7jwGBv8ZA5k9aiAfrdsV+VuwxyPY4xnYrQO/nLtKhb9a/VBN3gzs34dTF29w9dLF8A7V92T3ju1IS4pXjfUSk5J4/sWX+GTJIi6fP0OcWaciZiLnljsJBLyxiWtpHBI1HnlQ0PldXLh8hY+/WMGiJR/wyRdfcerMWeIcdgb07M68aZNYMGMKz8ycTtfOHXG6XKzdsJHDR47y8rPzIseAGlJGUuecv3yVxnnqgvYNe35hSH+1wmP/z/to1yXcm04+x/T7/ZqxtqiwkMSUVNX2AC6vF8FgwhsQI+uluas8a+QLKXubSDFQvkz+fy1Thuhzy0mbE8eO0qqt2j42FrQsz7TyJ1quJJOnTWfd6h8oKryt3j7qff4W6NunN9t37MQQqrsgKRi6s/jnC4o8BCHwvsTAfwjlDEAmFo5SQRpmRW8LIzqyMXMJFw2pmawZEGiOneNU0jaq/0xXXTwHQhXkBw1wG3LSw/s1irPTPC+Hv329halDnLTu2hEIkzRyi7P6oi5FS21qmvqSN9G4euMmW3fvo8rlQrAn071LZ+bMnYdOp6PYHeRmtX77Ull48CDZm3Xr2IZTBQ3wp4TteKT+M2UFBcTnNFeoZwLF5zCkt1K/30AMdYwogpaiwleFYLr/HrWaEMHvrEBvr2kmJ1fPlF09R3xWbvh9p9c90AyFQoRCoYifbabjzmXM9fmOJXIwNcHB2F4d+XjTLmb36VDvc2xs1QWAJZevMtSSHFFXnInS8Zf46keAlBEgT0M9Y0NPABEvdVsNPSJYCZQBByCScf1NHwtDszP4+PxlZjbJx1vhi9ibpev1JFhMHL54gw6NapQ1GfF2OjfM4uudh5jQp2Nkudlo4NXRffnbmh08M6w36dW+/zqLnf79etO0uIL/9eb7PPvMbE3vXbl6xmwQIgMjUNpH1AabUadoxFofG5hYfWZMZgO+assvn8dP0HmDiovHEIMBgiEd1uzW2BrEvmeMFgt+D+gSczAm5kSqjeXKF4NFGRNEZyGWxuE+KxHyBfCXXsWYpI75QXc5xvh0xTkBvIXnMac10SRhjNXJwGgLGVEUQRTxeQIqf/9QMIBgUD/2q7wBRFHEGQgRp9fj8oewGZW1G6XFRSSlKHuvRQZ6GuqZkrJykhOqbYYs9oi90N1CSjrH6qeRqTfjEkOcDDpppQ9/H/XpP/Oc0BARUbNH3Z1CROQKbhJRf1/pmDlMOVk84OTVg8dKfqPY2Hn4U+xb/RVPzFigWN6iU3d+/OoT8pq1wpZRc5+1aNOOm9evcvDnvXTqVlPJZU9I5unZc3n/zb/x/CuvYjbXfGfjxo/nyOHD/PXtRTw/d5ZinRbkyUrFhLvaFk2qNg8Zbej9sSfkcsVZXTDajTHvk5AociHk5dT1QkKANQBtLDbiBDtu2XO+KhDiujuATgjfQxlmAwlGHWk2IyaHMUKSSs8Zo90asS8TRZFip4c0h01Fuv546hpDenYGQgrl3C8XbtCjVaMIKSPhws0iHu/RqfozqIkjLvTYLMrPPuRxorPYKa9yEW/XtnkNOCsxElT0TZP/OIWAF8mFUfKbr09/Gal3kVz5eeboQdp17FLnvlqQ95up1Hi2Sc81CWaLEXI7UHZyK96iC5hT1Qp1UPZVk55NOVMXEfK7cV/eh71p/5i91yD83JOWG6yOCMljtFgwW4wEvS6cF3eR0lHdazGhRW9u712JJXlyfT+GRxUr+Q1ioCAITJ04ns++/JoZUyYq1k0aN4Y//f0tXlk4XxGzRg4dzKKPlpKelkqj/JqxSYumTdDrdLy56ANeXPBMJGGl0+lYMHsGG7ds48NPv2D2tMnqwrrfUEETrZ6R37+RsWjAz96f93L25HEAUjKyGDxkKAZHQiR554n0Pwyiq7bcdThSyM5Ix9KlS9gWrZqc1bLUcTqd2G0W9Hq9gvAVAl5+OXiIhbOnKZYBHDh8lGlPjVW9p2AwhEFj3HarsIis9DTVcoCKyiriY5AzDxI/bNjMyCH1661zPzBj0jjefP9jkhLiyc2unxOJ/2aYtDx97gKnz53nyeFD7olkPHn6DJeuXGOExvueNmk8n331DfNmqpt3/4NhJQ84BuosduwWO93btmDr/iMM7F/T61Kwx/PczMn8bfFS/jjrqTBpY7IiAs9Mm8R/vPEuCxfMC/dFqrba6tu7F7t+PsjKr5YzdmLNM8tms/Hyq79jxZfLuXrxAsNHPKG005Ld7/g9KpJGjrv6ndWmmqnN0qx6fCn4vVQ5XWzZf4SrN8J5poaNmjDxyZHYbNaY16QL+shKSSQrJZHHOoXJBsV7ixq/nr5aQJMmTTRt1Morq0iIj1P9IMrLy0lPTq43iXDr1i269uqjuX2NerBGxSI9C4KharKijrFd9HGjt9fqHxONA3t38/Sc+bWfJwa5I7+G+uRPBEFg/sIXePNv/8mChS9oKr1Vn5XegL96HL5+3Tpyc3Np01bdWw7Cv23Vsz3Kmk40mPlh9RpatmhO06Zq96DhQ4eybv16Rgz/dfpxP0RYyV3GwH8I5YyEljg4paGSScOMhxBVRDWWxkAWFs5E7SMIAp118Zz0u7he/SMsOVcS3sdkZGG31hy8fJO/ffQNmw+dIhQKqVQ09UV9rM/kSpo7UdUAVFY5WbN5B+988gXvfPIFh46dZOzwx1k4cwrPTRhKh/btiJdV80okQsNEbeVLbmZ4sCcRFInV0vb4nObE5zQnLqsJlvgUEvLaKGzBAAKllzBntVEf1FuOYFYnxUR3EYJNuyqoNtxdn5qwcsZbWaK5Nugux2BTWuZI6hmpJ48cZw/vp12X+++xWxuZ1ygzlQ55Gaw6eOdVQ93N8ez1qd/HnaIBFq7GqA5vhp2zGvfnI4pcURSniKL4H6Io/qX69Z+/5QUJgsDwnEzWXA/HB2+FL2IJNSAzlZ1XbuLy+SOV1gGXh875WTgsJraeuBg5TsDlxmjQ87sJg/lwwy5ulyp/F7lZGfzxuTmsXLOeNxd9wC8HDyGKIkYxoFLMAAo/3uh1UkJLXnWsqkCWVQfHWQwkWGtX7YDS0sxfVUbJ8R3c3vc9xQdW468sIaHlQJI7PEF8q8cxJtQ9gZP3folWw0RXHusEEcHsQBAEBTEDEKy4jjVXXUETrLiOOaO5anmgqhi9XcPfvboqT07MSFXKYsCHTjYYlkirSk8AMRjEGzWwi5BeGjYY8kRjMBDAIKtcqks98/3WPYwe9nikD8SdIDpBKyWAo2E1KX8rjQ3h/U5pNKSsDUK1+vZmPZUttR0nHgPlMdQzjbBxgbtXST4i+PVjYwyFqNFiJa9VB07/ske1bsC4p9n67bLIvVPlC+DyB+k/9AnOnj3DiRMn8ARCkaRcQmISM+Y9y3tv/J2Q31tjVxAUad+hA7NmTOeDT7/g3fc/4NyFC9qXqdFUVXpVX7BiO9FoRjBZFfeMXCWis9S/r5xkW2aON3Pb72NTeTHflRbyfeEtRESezM5iQk42Q1LTSDGq7y+HQUeO1UCG2aBJzBjtRoVqRo79l2/SNT9Tdi3WsJ2ZPZ5St5+UeEfkPRps4XVnbhbRLFMr1qHZTPxmSRmZWerigJDHSYXTRXyMam1/IIBBDCD4vej8LnR+V81ks9pqSPo7uieFFiT1jAT58+v0kQO06NC5ern6PUhq0OhnmhYxE6v4AJTPgcRWA/AVXSRQqa6cNFoskZekmpGeXzqjFcFgJugqJeCuUhEz0rYSGRMLerMNMRQk6FPHUkGnx5HbjIorJ2Pu/w+CXz0GxlLJN8jJxmQycv7iJcVyQRCYP3s673+yTLXP/FnT+fq71RQVK+c/TRs3YtTwIbz+3vuq8w0Z2J8BfXvx1uIPef+Tz7h5S/17+zVRl8WPnDQRRZHjJ07x1Wef8MmSxXy27DMSUlKZs+A5nl0wnzFjx2KLspyRxqYSHCYDNqMei0EXUc1Fn0+O77/7jgmjRyrsjSJqvWAAQRBU1fT+QKBOsl+Oglu3yYhBzpRXVpIQ94CKG2tBaVk5Kcl3Zzd7t3j+mRl8tmIl5RWVdW8sQ4umjbl05Roez70Ri61aNOfU2bOa92hiQgImo5HbhUX3dI5HAA80BsrHTL06tOLYlZtUOl3h8VT1y+JI4Mnhj/P1jl8UvVd0Oh2vPjuXNxctweerLkytjim9u3WiQYNcvly+XHFuQRCYOHkKmZlZLHnvHT5ftoyKigqVnZkQqBlnSC/FcapjgCIWaKhn7pXsDgaD7D9ygveWfcM7n37F1+s2075pPgtnTmHhzCmM6NsNW7WaOfqaVNcXBa1eMwDrt+5i+IDeCjcFgCqnC5tVOWYUAl6MYgCDRlba6/VitSjHqFK89Xq9WGTzc0kd4guJBEMoikMj21QrbSu92sV7csWGfB9fUKy2Uau7wBTCBEswGAz31Y3Ka0gESX2Po9UrJta2BoOBBQtfYNE7bxEIxB43al3D0GHDWL9+fczxhV8wKOc10rM36hn8xIjhrFm3TvMYrVu34szZc/j99bfzfURx1zHwkSRnPGhX8RvRkY6J6xoJlhbYOYOTYBRplYIJBwYuRSVMBEFgkCWJswE3F2TViqXnChEEgXFdWrJgQGcS3VW8uXQl763ezuEL17h24gjua+cjZI38FQv1sUGD+ikpPB4vm3ftjZAxK9f9SKumjSIBePTQgTElxilWpcpDImiapoUnYlLj+2iCRnH+G0cxZ2vL90SfE51JvY/oKkSwpaqXB7wIhthVAL8W5ASNpAgK+ZxUloUnq2W3664Av3z6OM1a11/GeL/QKS+TeIuZ7acvq9aVniuMuV+yzohbDOEW780iLBkTpfg1+/4Y0WHhLhp+PpzYLQjCg/+Cq+GM8T1lWi0YBB3XZJ76EkEzrX1TPthzBFEUFVY4g1o1orjKxcFLyvhi0Ot5bfxgPl6/g4KiUsU6k8nIM9Mm88L8OXi9Xt5+510++OhjTp06RUlxMQaUlR5aBI0W5FZmNqNO8bejFlszeeIq4HFScnI3BXtWUbBnFeUXDhGX35b07qNJ7TKKuIYd0BmqE5exbME0oEXQRMNgdeC9eQxzVlsFMRNJgokigqBTJMYMVgdBTwV6a4LqPAAWqzpxGvI6McVpkx5Bj1Ol5InsFwyg09d8jvKKbCkpXeVTD+ailykGrdUD2ehBW0WVk4R6Vm7KyRip+r5mnTpZYY43Y3Jof3et9HZKRT9FolL9V1d1UxYWbuK9q55lcuRj5bKGvaNJJ5CqM+ET/mHUg7Hwq8dGr6uKkgsnNNc1bNeF6+dOUVRapliuNxjo9cR4Nn/7hWqfJydNY++Ordy+eQMI3wu+oEhcfAJzFjzHO2/8HZdLOUZ0JKfx3LMLmDtvPmcvXuHNdxfx+ZcrOHfhAmVl5YSqVcJ+wRB5yRFN0ERD3tBWYeNlj8dgs6oITAnmeBNVBth06zbf3rrJt7ducsHrpqcjkSeT0hiTnknr+Hj0GvY10WSnw6AjwajTVMxI5wKlagbg0LXbdGqgJk7cXh9mkzFCMkmWIwB6o7FeljrS53KzqIyslETNbcpKiokzCppqPX8giN7rQvS5EfzeCEkjBLw1DWqpH0Ejf75J9mYQJmgCfj82s0nzPTnMhlqfZxK0FDPRMGrYpDlaDMJ1aR9BT01yUnquSM88iaSBmueTNa8b7iv7FceS1sm3rYugSWrdn8qzO4Gwwkexrllnys4erPN9PeL41WNgcUkp1wu054STxo3h61U/qOzNkhIT6dyhHet/3KJYLggCrzw3j0UffYIzqh9To/w8xo4cwV/ffk91vEb5eby44Bmefmo8O3b/xBvvLWHV6rVcvHwlXAzygG2W5ffs5cuX+WLZZ3z0/iKWfvA+Rbdv8eSEScycO59pM2fTsmUrBEHALxgU45loshXUFrsSYiXJDCE/5cWFpKSkKK4Lv4dTZ8/RolEDdQW9KGp+Xk6XC6tVO9YXFhWTHsPWzOf1YbHcvfrjfuDajQKyM+tna3s/EU62P8NbSz6pSbbXE9OeGsuyr1feczJ8yIB+bNyyTXPdlAlj+fzrb+/p+I8AfvUYeKuoGJfbg2BS3h+CPZ65T43ig2/XIxrNCuVG61atwGDi2Olzin0sFjMvzJ7G399ZXBPnqscCj/XoQYsmDVn22WcKm26TXqB7184sfP55Rg0bzA8rv+HNt95m0+bNXL12XWFfJ401gDrJGvm57why9YIocvzIIT5Y+jnvfvQp7y/7mpAoMnfSkyycPpFZE0aRn5Oluq5YiNiWxSBrInZm1f1/JAJGsIQJ4pDRFnlt2H2AxwcNUhUvlZaWavZlOXniBK1bh117FKqkWlAX6RGonrd6A+qXrCZRRdKUlZaQmKSMubWpfPbu3E6vvuE+mLFU2PJl0b8vOeQkTV0Ejc1uZ/qs2Sx+5y3Fc0VuASa/dulvQRAYOnQoWzasjdhw3g10Oh35eflcuHhRc/3kSRP54ssv7+rYjxDuOgY+krZmBgTO46QJ6gRUJhaOUUEyRqyyRLCAQGscHKGCjsQr1BXZWLiCmyu4yaMmyJ+p8jHAkchPhRVciHcz8KxIWrPwTVl+/joJTXJomZVKy6xU/MEgJ70+fjp1kZIKJ0HZILZmbrYTUQxbnxgSUslMSaJhTgaNsjOIs9sUBE1tCgk5vF4few8d4cSZ84iiiNlkomeXjgzs1f2+e8fGgmRvJooiwapCrLkdI+skyzPR74oQLea4ZAUBIgb96LR6WIjaSSwx6EPQaSfmxFAABG3OUQz6Y/S7IVwxadKebFZcP4O+OqkajWs3qyJklQSf14PRpD0pfxAY2KohKw+c4tCVm3RskkP5+et17pOTbqP3rRBbvWUMs6gbT94J8rBwGbfCRlBCY2z8eE9H/20hCMJRwrJEAzBHEIQLgJfqRl+iKLZ/UNdy3OukkyMx8rfP6cNkNzEsO4MPz11iRpN8kNmbmfxBhjTO5bN9x5neIyxZDbg8GGwWnmzTmC8PhonITg1rlCQGvZ7fTRzB+xt2k9/gBiOHPa7QpQmCQK/HetDrsR5UeQPsPXCYUydPUlRSSigUIiCGPUDlc07JG14QdKRmZpPTIJ+UrFxsFotCqSGHw2ygyqscJDgsRqo8fgIeJ1Xnj1JecBUIV+7aG7QluVUvxfaStZnfG8Bo0eP3hM8lJau81dXKWoSNtC5scVYzaDbZEvC5yiOJKjHgxWC0Yo6rIZuldb6iixiTG6iOLYoihIKR40eWB/0YTRp2ZhY9/pKbmBJllemyBJjfWYrRnqjaD8DvrsJYndwsd/uVFdtRiQEtazMIJ66lJKRUlaQgPowWzl28REONhoTyZt5azc3rg9osmyS018fxc7CcBqIVxx00CG6CnbM4ac7d24EICCRgoAQfyZhUpFBL7GxHW6H5KONBxkazPY7Sy6dITEmmQUO1fVPH4U+x/dtPGTLtWeLMNb/x1KxcKhrks2/rRrpXN4CVYs7o6XNZ/v5bPD56Ag3zau7TuPh4Fix8gSWL3+Oxnr3p1r1GEesXwnZ+w4cNg2HDKCoq5sjRoxw4coKSynAxRyAYVqTpZbeSLhQEUcRoMpGXnUHD/DzyMlIx1WJtJr93olHs8rDn4nWK3V6C3gBxIR1dk5JIzKi5V7wVXlW/pvogzRb+/ORkqKSaCf9fRlrbLFwsLCMvI1llZybY41nz0zFG9A/bx0kETcjjolIwYjEZFTZnAFcKS8lO0bYavFRwmyebddNcV1haQZeWNfFHTnRVutw4qq9N9LkViZ3IJLbapkEIeBEN5ohVklZVpxzhCbMOTyDEzzu30K3PQCBM1rj8wep4atAkwGtDbaoZOcwWI16PH5PVSlyb4VQc+Z64tiMxO+Ij6+XbgfKZJuj0GJPz8d4+gzm9RskpPZekbSPPNJm1pxx6iwPEEAFXBSazejyZ0rY3F354r17v6VHCg4yBqSnJfLb8axbMmUFigvIeEQSBKU+N4+NlXzJn+hTFup7du7L8m5UcOHyEzh1qLsdoNPLKcwv4+7uLeOnZecQ5ap6B+Q1ymTRuDH9+/W3GjR5Js6j+JzablYnjngTgyrXrnD57jp9+/gVnRc3vI1ZPUbPFTKMGuTTMyyU7MyNiBX2nuHL1Grv2/ER5da/E7PyGjBz9JGa7I5KEqw1yZaTivVXfu3XtJ8EoBti4eTP9+4cTctHJ1i1btjB/xlTVcY6ePE2r5jUWMFKj7p0//UzPbuqG2gA+v1/T7gxQEWly1Eaa1bYuGAyi19e/pnfdj9uYPnFcvbe/nzCbzTz/zAz+9t4H/PHFZ+s9H09JTsJsNnPp6jXyG6nHsPVF29at2LBlG4P69VF9RyaTiW6dOt71sR9mPMgYmJaSzN8+WMa/PDsTPUr1jD0hiR7dOrNu606GD+ijIGgmjh3F399fSmJqKjky8jAxIZ5p40fx17cX8erC+eFY5PcgAF27dMFoNPL63//O1KefJjtVqQZLTk5m1ozpCAEvp86c5diRwxQX3sYrzXGCAQShZpolGIyRezQ+zk7DBrnkN25KRlpqZNwB9VfMiKLIqeNH2bf/AO7q53nrFs2ZPn4kVl04fkXbjskRIWhqOYcUk2Jeg69m7Pbl9+sYPyI8xo5+L1euXWfsE0NryuCqx1ubt2ylb9+aPjQSAXHk8CGmT3ta85zRcU4ev0VRVFiry8kRUZSsK5XvODzlDT8vtIpKiwoLSU1TF5PHsjc7c/o0s/sPVL0nLdRWACR/b5J1vMKpROPcqWnpDB85is8++Yjps+ao7T2rjy8nl0x6gbbt2vHuts307tULhyMqvxkUa2zM6/htjh41kr+9/ga/e/UV1brMjAzyGtQvz/2o4X7EwEeUnNFhQaciUyS0Io7DlNORBHSyVKIFPc2xc4RK2hOnIGjysHINNxdwkizrQQPwmDkes83A1yW36VWqp/05SGqaFkl6JzTJwajX094KWBMgSzlQtjVsqLrGUCjErbJKrrk8fL99L5XOcFATBIEEh40WDRsgCOC2JuFyu3F7vFRWVVFZ5VIMngwGPd07tWPBtIma1g9aihw58aOvKNDsaZPpMHGzykfDRGuk/0xd8N44olLNSMqTQOEZDBk1lmbmuPCEzVNyXVMdI3orEMzaleFi1S0ER4xqHE85WGL0DfCWg4Z9WvgCXWDMqdm0siRyjVqI7j1zqqAioiw6vHMzHfrcm8duLJVUfRRWAGM7t2TR1gPkJsVHuh8kNU2rVT1jFnQ00ls46Xei1+iZUF8kVavXfIQU/Z8Axf34iGLUb30BAHZBz+2Aj3MeF21kCTeJoJmQn8vyS1eZ3jgfCKtnjHYzjZPjcQUCfH30HBPaNVVUO0/r04GvfjqKx+enb8eapqR6vY7nxg/jxLVC/vT+MsY9MYRmzWUWXNUDK7vdzqC+vSIV4rEqMyA8OAgGg1y9do1rVy7zy/59+LxefMEgHn+QpNR0knPyqfL48HncVFQ5Ka9yUlZaSsDrxe0P4vEF8QSCBAQjSU3ak9q6Bx6vchIttzeT957xe9XJrjtR0UCYdJF8+6UkVeD2KawNuyu2keC5eZK4NiNUx/HePoO9QVuVYsZ/8xj2/I6Rv+XWNe5bF0juMDS8PKoy2V96DUfLHmih6uYVsjv3Vy+vJfkXTirqVf+XQ/qOJS5n09btzJ0yHhF/eDTirIjZd0aekDXYLARcNeSX0W7B75SRYXYTPqeyElJe7V9e3afIrtfRRYxnW6iUzmKCpkpAC3EYuIlAOX4S7iEG5mHlMBUkYSS6n5pZ0NfpOltXIika9ZHGPwA80NjYfvgkjq/5jKR4B47kdMU6k8VKuz6D+XnDKgaNfiqy3GbU0bZbL47t2syhPTvoI5s06XQ6Js97gRUfvcegoSNo3qxZZJ3d4eClV15j547tvPXG35k0ZSppaemY9EIk3hnFAKmpKQwaOEAVAxXXJmsO7fP5uHrpPBcvXWb71m0EvG6EoA98bvKS48hNcuDx+XF7fbi8XlwVFZSUluJzVhHw+gn6fPjKnSRazXRvlE0SQkQp6a2ouU/8Tn+EmJHsziRyRVrmd/rxVnipzXk0mtzRUrWtPnKW5wd2VSwz2KyEQiFulpSRnVozrhLdTnQWGz9s3sfo/j2AQCQeGGxWNu4/y6yRA9FCpctNnE09/hfdYVuzBIc6iSDY4/GIOuwp4d9LdMWtAlE+2hKkCb58guwLKpMAFoOOwmtX6DkwHKOrfAFFkje6Er/SEyDBaqTcfec2D9KzTF5wACDoDMS1GU7VifUI7UZhslrxevwKYib8NpUVuub05lSd3oQxqQGm+BrLJPnzUU7QyJ9x0vEB4lsOpOjQGjJ7TVCpZ+wZ+bW+J1G88xhYS/78QeKBxsBXFs7nP998l1cWLohY0kjIy82hQW4223btoX/vnop1k8eP5YOln2O1WGjVomYsZ7fbeO35Z/nb24t49pmZJCfVJCBzs7P44ysvsPKHtWzauo2ZUyZh1+jrlJebQ15uzVyqrgSOy+Xm0tVrHD15mvWbt0eSbXq9jsYN80lPS8Hj9lbPgz243B5KSksJBkOIekNEcZLTIJ/hQweTmBqeG8pjcF3Px/r2lZIQra6Rx/RQKMTx4ycY8vjjqv3KKyqwWa2aja137NnHwjnTI39LSdDzly4zbJB6zPZroTYSo6S0jKTExHodRxRFvL7fVr2TmBDPpLGj+Ojzr5jz9KR67zd1/JP8xxvv8sfXXtHMq9T7OBPGseyrb5g5VX3uXj20CwskhMS6CcVo1KPF4oPAA4uBer2eBVPH89cly/j9/OmRWCNZlj3WuQMff7ue01dv06xxQ6BGAfLSM9P4j0WfMmfqRNJSq3vlGcxkN8hn+qQJ/OWNd3j1+QWYTKYIQdOhfXtatWzJsi+WYzDoeXrCWE0yuWWjBrRqkK5QosQiRkSjmYrKKi5evc7P+/Zyq7AYUW9CFEUMZistW7cmPi4uHP/cblxuN66KckrKyiK5QCkGNm/ahIljn1Q8C8L2ai4Ev1dBnkifUzQiChiNPjHS5yfFJnm/RB01M50ytw+/qCchLVOhjhENZo6fPKUgoSPwe7h54xoNMtPwV8cgaV7p8XgU1mUSAoEAouz+jBXDJZLFGxAVsT7auhLCfbySklMi28v3ByguKiItPT1yPgV5EkXQVFZWYo/hVKS1fV2Q95ypbT852dKocRMKb9/mx40beHzI0MhYNea+1e9pxpx5LFmymFdeelGxToJUmCaAYqws/751Oh19+/Rm85atDBo4QHWu/v36qpbJEYhhS1cbQvXsVfQr455j4CNJzgDkYOUSLm7gIRvlTatHoBVxHKOS9lFEix0DjbBynEraRq3LxcpNvGz3ldHHmIBOEDhT5aO5w4S3NMCk9AyOXC3n05JynvD6aNImPACVkzRacF26BChJGp1OR1ZyAllAt/RGGLNq1pVVVnHq0jUEQcCuKycttyE2iwWH3XZHDf5iJfKl5XKSxhFyUaWzkWLVU+xWz3Kapjk4Vxh71i6GggSqCrHkdFCvC/pA0CFoqGP03mIMOR3wuZTesKHKG+hS1D0YAER/FboEdQU6gOgpQ4i1zluOEB9jnSiii6G4kaOsoCDSZycWSgtvkZxev0aEEP7sfw0807cjf9+4l9lNcjFoDDCTmyZHeilJaG60scFTQo6ox1iPzyMWWlT3f2qHNsH2qEIURbVf3G+EgfYkNrjLSPBYyKUm6eZz+kiwm3gsNYW11woY27omEeJ3emibnow3UMgPJy8yvkebiHrG73Qz8bF2rDl4mi93HWbSkD6KiVrbpg1p274d3275iQ27f2HmtKnYbcqqGPmDOXrCKx9YmA0CXvQ0zM8nOzeP7r364gmEIsmrqzcKuHjhPCFBj80RhykhhXjBQDN7HD6MVHoClLv9VHn8CusXq8WgqDI2WQwKgkaO6GRWLMgTWeH9aiqN5QRN0FtFQKdHZ7RG1kU+9/ICLKl5mDTsKZzlVzHljYz8LSW3qipuEdeke+Ra5RBDwXCVs4alTdDrwmDRfk4EvG6MtfStqPIGwiolXyCmlYeE6IEphAdsel2IILpwAqLaUzZaJaPV3Nxot+J31q8QQILJYcRXVfP9JFSzQ1WBEDpB4DFDAj8HKuhMmJSXEqq1oSk2DmkobO8EAgKNsXEeF63vQYXzKOFBxkadIIRVe+Nn8fM3H9B++ETiLEqrgayGTSm9dYOT+/fQqqsyOdl9wBB2bviBo/v30q5rDZGp0+mYOOc5Nn69jKIbVxkwqCbB5guJdO/dl07dH2PFF5+jNxiYMnkyBoNBQdJEto8xUZTuG79gwGSCJs1b0bRxY4U/OT4PVy5f5vLFC5gRSY53kG1Oxkoa8QYw+dwEXG78TjcBlydiUyndP36nF3O8CW+FT0HCgJKUidXLSX5PuX1BBQEqqWa09j189RbtctLRySaOkv3a+l9OMKybsnhHsmsr9/pJqiZTRGcFBps1bL/pD2A2GRW2bhC7ultSFsnX6iz2O+p7Ff0ck/7WBbwIUeOoaIIGws+524XFxCcmRggZh6lGLWMz6nD5Q3dN0EjPM59GgQHUqGKMFgt+wJrfBef5nZjahqtYayNmJNia9MNzZS+mNiMwWiyYLUbVM0hO0EQXFgDoDEZsWU2punqC5KYPTFD8m+JBjw/NZjMvPTuP199dzO9fWqhK+g8e0I+Ply0nKzOD5k2UCsNnZkzl7fc/wmw207hhzRjRarXy+5cW8ubiDxjcvx/t27aOrBMEgXGjn6CispIPP/uChvkNGDl0cK0JfSmBFws2m5XWLZrRukUzxfJgMMj5S1coLCrGZrWQmpKMzWrFarWQnJiAwWCI2bsrGpH+BHeY6AFUqplYlc+S/cvKVd8x5snRmtusWPUDU558QrXc6/ViNBhURECV04kthqVZWXlFuHn5XSDW91XldKpIPjkKi0tIS6mfs8L+Q0fo1um3v+8bNsilYV4Dtuzcw8A+PevegfA44OkJY/niy694esrkuneIgazMDHQ6HdcLCsipI2/wj4IHHQNTMjKYPH40b368nJdmT0EQhAixEDLamD5xLP/5zvs88/QkkhITFMqP3y2cx5/eXMRz859RqA8z0tOYP3s6f3njHWY+PSn83VUTNGYdzHl6EtdvFPC319+gV/eu9OzeNfqy6g3B7yXBYqRD6xZ0aN0ict0APp+PUxevUVFZidViIT4jA6vFgs2oIzkpsU7iUBpPSsSMNAeTxkMSWVMbSSOHFmEjxVy5BuXT5T8w4+mnNePxpm07ePnZeYhRMeji5SvkNVDn506fPEGLli0V42YIj6MPHTxIuw4dI3/L4XG7Vf27pAIa0e/FbNa2E75+5TIZOUpFh1xFU1JcRMvWNc/E2gia9WvXMGLESOoLrTm1FuS5lDq31Qn06dWLTz/7jLNnTtOseQvFWFW+nfw67HY7Hbt2Z+vuvfTu3VtVbKu4zlqev926duX1N9+kV8/HNAm2f0Tcjxj4SPackdAQGy6CFKIOIlb05GLRbEAej5EcLJxE3SwuEzNNsLEnVIa/2lbrTFW4AvH6bRftbXEMDTnYU1jMOxt/Yf1PpyMWZuXnryte0XBduhR5RUPelyYxzsFj7VrSo20L2jVtSBMbZGem3xdi5l4hqUPkKCsowH31F6wNuiiW16hmTmNIa6HaTxRFxFAAQW9UqFREUQQxpGkjVhfEkB9Br51wEIOx19UFT9mtem3nqqzAHqMXRH1xr6oZCQa9jlm9O7D08NnIsqSm2s0j5ehrTqDAeGdJ0mgY0ZGAkWLuzO/3n7gzjExMZfvNQm77lDHQ5/TRNN5BktnErgs3Vft1yU4j0WJmzS+nABRqhSc6taBDwyxeX7kZwRzl5SsITBg+iBkTRrNsxSreWvIJvxw6rKjIkXuUSk1ZtZrZ1Va9kZSaRstO3WjbsTO5TVuSmpNHdnY2Jkstlc7VsEZ5+ZssBkzVy6QKXonUMFr0qqRTfaDVf8Z9eR9xLQcpmixL8N08ji2/s+o4Qa8z3Ii5eqAqETNBTxV6k03z+sRgICYxUxdqG8ppJTxd/ppSPG+w5v+eWkr0Dhw8SLcunRENZkJGm2JAr7PYVf0zIFxZL4cp3qbqqRGdDI6u4nfIqqAcBh12vQ6roKeV3s4ZsWYcUFelkkSsXODeSPN4jPi59z5e/4Q2EqxGBJ2OLmNmcXLDl/g86u+rdY9+FN24SsHlCxGLPkn51WfoKAquX+H00UOKfewmA2OnzsRssfDtl+rm2UajkakzZtJvwEDef38xixa9x8nTZ1XNQ2uD5nqZSkMQBPKyM+jTsQ3dOranVaNcGmWnk5GUgFmj6lpSQBrtVox2C0a7GaPdjDk+TKKY7DUvaZl0P8m3safbNfs5uX31+w1vP32Zfi3UVgWiKHLu+m2aNwgnqHQWe+R17Opt2rRoGrE5k3Do0g06NqmZrMutyS7euE2jbKV6Wsvy7U6IGb/fj8EQ9SyQ9Z8pLS0jLbGa5I0xgZaeaXu2bWTwsLBKUq40lP4fbRfpsBiIkz23HPVUcUYrQKVnhVzlYkzIRm+Jp/Ly4ai3piRmAu6aGKkzmDAm5hIsv6pJzISXxZ5oS0UP8Y06UHXlOKFgzXXGKpb4J+4ODoedBXNm8Le3F2laWc2cOonv126gtKxMtW7h3Fl8t3a9qneNyWTidy88x4VLl1m3aYtqv/i4OF5c8AyN8/N4+/2P+GDp59y8dfu+vScIV8U3b9KI3j260ql9W1o1b0p+gxzSU1OUxEw1YhEzdwqTXlApY2LZEEaPJXw+HwUFBTTScMtwu90EAgEcdnUl9Zq1axk9SE0crN64hSeGaLsw7Nq3nz4x1BculxuLVfv+9Hq9GI3aY8eLV67RKE+7gBGgqLiE1DsiZ9TFmr8FBvbpyaUrV7l45Wq998nLzSYQCFBws35z/1iY+tQ4Pl+x8p6O8U9oQxR0hIw2GmRnMvTx/ry/4gcFMQPhsdRL82bx9gdLVQ3I9RY7r730PG+//6Gq11ZSYiL/+tpLrNu0hQOHj4QXypqf56Ql8Yfn5hDyeXj7vcUs+2I5laVFkV4stfVvgTAxIr1ASYZI+5pMJtq3aEzPzu3p2Lo5LZo1Ja9BLqkpyQpiJroPTHQ/GDlCHieis0JRLCe/luhXfSHN966XVBGXkBRWVRotNS/g0pWr5OfmapLD6zdsYMTAPggBryKHsGvHdvpU92yJxtEjh2nXXh1jvAGRc2fP0LR5OO8o7+FiNghcPH+Ops2aqfYDuHblEjl5+aoxukTsl5eVkpCotLSL3lYiMMrKynAk1R4v6yoWrA11ETny59O0p59m/ZrVVFZU1IsA8gVFevXqxS/791NZnR+KvlZ5n9nanr8zp09n6aef1XnOf6IGjzQ5A9AUO7fx4UQ9eErGhBU91zWa8yZhIg0zp6hUNQC2oqeXLlGhHJATNAZBoKfHzJRGeaSYTSz+8RDvbTrAidulhGQJrrqIGi3ISRo5xNtX6p2cj95O63ha290txIAP0edEb6sJWBIxI4aCYQJG48YNll7CkFRTsSURNKKrEMGuTSKIAe9dEywPAqcO/ETLLrVX56RY7zwZfLffVWqcjW45aaw/V/9BqVXQk6ozcDt0bw0R87ByFfc9N9j+J2JDEATGJaWzvqgQTzDK0svp47G0FArcHi5WVEXsbiSbqB7pSegEgbW/nI7sI1Vet8hJ5+Wxg2JW2MXHOXh26hief2YGPp+ftxZ/yOIPP+b8mZOIoqjZRC5WMzv5/7USWXUhTqOxstVi0CRpYuFeCRqCbozx6ZrqQCHgRG9L1CSbned342gS7o0jT6hVXvyZpNbqOGI0G/AVXyQur2XsC6t+BtX2fuWQGvfWVv1a5fVH1tfmvw5w8OAhOndUDpgFk1WVJI1OxkI4uRzdq0ILkkoMwuoZeWV/gizxadfrSNOZiNPruSnWP54lYMRLCA/3Rqw0x8HJ2nyi/om7gl426dAbjTw2fhZ7Vy7VJBj7jJ7IgW0bqCwvVSx3mAwMHTORC6dPRggaeczp0qMXYyeqewNISE7PZPrcZ5k++xnOnD/Pe++8zcefLOXytRu1XrsvJIZfQVGltpETmlr3TH1QQ9CoSRo5wSmti94mFkEjV9NoYef5a/RpnqcZR3adukSvNmH/fjnJArB532EG9eqOYLWjs9gi73nvxVs81qqR6lgAu4+cold7dcEPgMvjxWaueZ+CyRp5+Xx+jNEETDWu3iggN1ujurk6IVNUVBRp8A01z63oZ5rZIFBZUUF8QqLCNkNSysh/Yw6TAYeMZI+zGBR9wKKfbXWpZkD5LJOeUdbcDvhLr+Iuvl79ltSKGamoQHpZc9rhvnEMUeqHZjaEXzICyGix1E7SeAOkdBhMwb51Mbf5J+4Sgi6S+EpOz+Lpp59m0dIvlAkxowXBZOWlBc/w7pKPVclJQRB4+dl5fPH1Kq5eV8etsaNGMOzxATEvoXXLFrwwfw5TJoxl5569vLnoA775brWKCBIN5vtGnqigYT14R7vLi4miyBYt25tomPRC5BhfLf+CSeNGayZGv/5uNROeVLudCD4nVwtukZOZoUroFhWXkJ6aotoH4NqNAvJyszXXnT53nlbNtPulnLt0maaNGmquu3z1GvkNtB1AAIpKSklNToq5Xg6hWt36sGD21Il8ufIHXK76J5ynPTWWz7765p7Oq9frGdSvNxu3bLun4/wTGqj+fYWMNlo0aUTHNq34du0mVV8Uk8nEs7Oe5s0lHxPSmxTxyGw28+rLL/O39z6gsko5VtfpdMyd8TSd2ssUv9UKZ4mA6d++KS9PHc3I/j1Y9f0PvPXeYtZvWI/TFZuciSY9aiNoIKpvVZTdam2qxGjVjGQrLf0b3fNTIm0UrxgEkub7Mpj58vv1TJo0SR2XjRa+X7uB0SOGKhYLAS/uijL0Oj0moaa4wKQXCIVCiKIYsY6LqDeq//UHg+j1es1ipzOnTtKsRUtFgahJFyZorl48S+Om2uRMRXkZ8QmJkfNE27GLIpqKpehrqPJ40WkUUmmhNoLGKAY0XxIk0in6WNHPMkEQWLjweZYsepdQKFRvgmby09NZ9ulSxTVK8xcJsZ7t0n2S5LCSlpTA2VMn6jznPxHGI0/OALTGwWmc+FFXDeVixU2IWxrqmlRMZGDhCBUEoxLIpX7lsf6n9zzTbx1l3ZAO/M/MeDaOfhz9v/+JtzGzLzWTL6u8nOs2jKZ/+5w9XUcyfe8lXj5bQer//S6N/7pMk6SJpaKBKJKmwzCm/2kpQ/7wZ/7LG0vRN2jH5lM3GTLrFR6f8RKHbvvQN2hH68FP8fiMlxj8+z9xxtoIQ5eRiuPFQiylRl3wO8spO74J5/ntWPNrrEEkYgYgUHgKQ6rankwURUKuInQ25cDTHJeM6CxEsKobbgGIldcRHNoD0jqbHMaywhBDmoNIb+WdN20uuXWDlEzt6/ut0DY9GYNOx95rtVe25aTXDGg6GB2cF90Ea/lMAcrxcwNtawwIk6en0W5i/E/cO3xVfnSCwISMLJZduKL5fY3KzWLnjUJuaFhGDWraAJvJwLJ9JxT3T8DlBlelwnrK0GUkYtOePP1//ZnBM1/mv7yxlBO3qvj//cff+G7DZv789zfZsG03Fkc8K1Z+x9DBjzNl0kQMYiCmfFauntFKZAHM6JzL/K65bPvbv7Hmv8/H/eMH/OeYtkxJKaLwk3/j1kf/wr93M7PmuV6c/+scXF/8X7i++L/4c79EtrzaT03SRKlnJNyVisZfQeWpTbivHMSW31212mixUHV+D47Gj2G2GBUvoz6IXg/W+HgFMWMw68BficFaY1khJcYAXAVnsWWqm6AD4C3H6EjUXlVZismmrb4sLbhCcnbsisny4kISklNVFaRSo11fsCbh7AuJ6My2mEmT+qpn5NDqbaGFaPUMhAmaZjo7lTo/pWI4OVUfn98W1cRKXeTydTxUahSHQNhiNRszV8Q7UyJKk4L6vh6Sfgu/GUwWG+0GjmL/D5+r1gmCwLCpz7B++ce4nWqibMRTU7lx9TK7N6/X3BdqJl6pdjOvPjuXqWNH8eb//39QcuUc0yeMYfGbf2fRO2/h97ho07wJa7/7llHDBjNz6iQMYoDkOFuElImGvPpMC4I9HlPvSeh6jGfW++t54i8r+O+/lBI/539woMVQpq47zuQ1R7k97nka/D9LGPzVTp45eINnDt4g+Or/Q4tF36iIGK37SU7SGO1GlTJNe3sLp4vK+OjnE9wsd9IpL1O1nSiK7D93jS7N1H1GLhRX0rBhvmr8VSWYMBkNGGLEq3KnS7PfDMDekxfo0qqJQjUjVdP+fOoCXToqrXakdSeOHaVNy/BYVSvhcePaZbKzMjULDxTHq4PojgVHPcj0aMI9QpjIXhB+lknPFIlAcbQYhPP8TjzlRfW6HqPFQlyLgZQe3VDntlXndxPyh2OcygbUkYTeZMVdWP8CIVG8s/jnC4oEHg6v8d8MOdlZdOrQnlU/rFGtM9njWTBnJv/55rsEo4p4dDodrz2/gNXrN7Lvl4OqfaN/y7rETGa++AeGTZzBf/uP1zlxrYixM+ez6NPlvLH4Q25WuMlo2pav1m9jwJOTGD/7OTymeEypufdE0hgzmyCk5jPj1f/K0Knz+G//8Tqm1Fy27TvI8HGTGDZyNMdOncFsj6N9566MemIEo54Ywc2rl+7qfPWFKIrs3LWbt995l9TUFNLT1IWFnsoyKiqrSEtQq2Y27tjDoN7qHoGnz12gUX5sG+5AIPZD/9CxE7RtqU1e/3L4GB3attJcd6PgFlkZ6ZrrINxzJjkpMeZ6CUXFJYp+RQ8DBEHgxXmz+PuiD/H56ufoYDAYGDKgHz+s31jntp98/qWmcg2gc4f2nDl3gbLy8npfb1C883FgXfP1f0REbLWMNrp2aENIb2bfgUOq7VIyshgxfDiLP/40vEBGYNtsNn738gu88+GnXLys0ac5KgZKcWjwzJf5t3e/5EiFgYkv/Tc++W4Tf/9oOedKfMS36MEX24/Qd/KzjFn4X6hKbY6ucdc61Si1ETSR2Dt2YiT+bT16gWFPz2fIlLkcuV6GMbMJbfs/wZApc3l8xkuc8tjQt1T39pATNNFKmjuF3+/nh03beHPJJ/R47DHNnlpXrl4jIysbvUUdA5ev/J6JY9T2X9s2bmDI4CGRv+V5hIrycmy22P1cKsrLccSwfSwqLCQjLUWToNAavyl6rQRju0bIcWD/z3TuUntfKQnRBT5aJEx9Ee1UIofVamXS1Gm8/+47teZL5UhKTiY1I5NjR46orhdqeruJosgnMnVM9Bh67JOj+HbVd6rxR20I3sU48B9lGPgPQc4ICLQnjqNUENJIpDTFTjl+TfuzJIy0wMFhynFHVcmWRFk5fPvtt3To0IEtW7bgdrsRBIGtW7eydetW2rdvz6hRo/D7/bz77rts376dGTNm8N577wHw2eGzfHX8PNt3HeH2aWXwj0XQxDrv4cOHee+999i4cSNbt26lS5ewnVhaWlrkelpXeyLKSZnaCBo5PG43Rw7+wu4fvmLVsg85vGY5P61fxYWDe7h18Qw3Du2kYPe3lJ3dT3yz3jhaDEZnCif25cSMGPRD0I/OpA6gwdJL6JPUVZEhTwWCyR5zcisGPAhG7Um56CpCsGlXGYnuYgRbDMLHXQKW2NJDMeABDbVO2W016VBYVTPou1RW8xC+KVuu1dOnNsRSzdTn+5QIwccb53CrysWpwlKFtVlyU+33LQgCHXVxHAyFH9jJJu2ktWRd5tUgRgEcGDCho+Sf9ma/Kmx6PSNS01l+QZ0AEQSB6S0asuFKAbc0CJqe+Vn0apLD39bsxuMP1Nr3425j4JL3F7P0w/dZ/vkyjh87SiAQqJd6JtZ57yQGQo3VWSx7MzmMFj1BrxPnteOUHl1P+fH1VJzYQNX5PQSKTiNWFeC5vIfyo2vwFV0iqd0wkjs/iaDTRRJh0stffhNDXCoWuzpmlZ/aTkKLforzGi16qi4dwtGoU+T65NcohkIgigg65WdkMhswmQ2Unz9AQpPOiiSe9N6LTu4js+1jqusAuHbyMMmN2gDhvjPRuHX9ClkNlMlVLWszl8uFRWY9V5cSQEs9I4ekApBD2TMjPDGrTT0joaMujku4cNXTZkyPQEOsXKzD3iwbM2dxao49ADIFC2X4/2lvdh8RDImK3hyVngCJGTnktuzAoR9/AJS/Y4PRxJOznuOHTxfjcamf2wOfGEN8YjIrli5RJFgk8lH6/72MAT/+4H0+/uB9Vn2zggvnz0UmR7EmYNI9I+FeY2B94a0IP6vL/H4OearY6C5lo7uUHwPlbC8p5nBZOVdDXr4+fYmPD52h1O1lZtdWPNW5hcIeU8Lm4xcY1D5sWxZNyn63eSdjBocTBxJpq7PY+HbfcSYN6RPezmpXqG2KyspJjleTNoI1vP+ZqwW0zFdWf0sJjyMnz9ChVfOIkkaO6zdvkZ2ptEqT4+rVa+TlqS3bonH29CmatWgVszIxlvKwqha7L3mBgcliiMR7LWgRNAAmq42ULhOoOrkxPDavBwy2RARrCuUXT+D3BsIvjT5ttrzOVBxXkjjSdn5vgKQ2/bh9eJvC3uyfuP/o0a0rRqOBHbt2q9alZGQxe/Ys/vrWe5oEzXPPzOLm7dt8893qWs9xLzHwvQ8/4b0PP+G7dRu5duPOiwJ/jRjoFwwKP33p/6IoUnD9Gr9s28jqLz5m1bKPWLX8UzavX8uBn/dx/OhRPlzyPm+9/Q7WuASeX/gcw0aMVBBQUoLqi69XMmXCGNW5RVHk6MkztG+lLmBcv3kbwwf117zmnw8epnvn2JZhXp8PawxbM6fTSZxDm/QOiaFa+1iEQrWvl7B1908M6K091vwtYbfZeG72NF5f/FG9k5Md2rWhsLBYZf0XjQF9e/Pp8hUx18+dMZUlS9XFI//E/cWEoX05cvwU5y5eiiyT7scWTZvQq3tXPvz0C9V+VquVP772Cpt37WXnnr0xjy8EvPcWA79YxXtfrGL9zn0UlZbV+X7kBM39jn8hjzNC0mhBtDo4e+kqX/+4m3eXfc17y77hk69WsfbHrew/dISfDxzkrcUf8sGnn9O6VQtefG4B3Xv2jsRAeSz8ZtX3TBj7pOoclZ4AvhAkpqYriHujGODKpQu0btlcpQ4BWLd2DUNGjNC8bpNeSajJi6JEUcQYI/dQvUHMzwNi9+uKxqkTx+nQrq1StRPjJb+OuyFk6tN7BsKfQ3ZODoOHDeOLT5eq1sVS8Ax7YiTbtvyI2+3WdD+B8OfSrGlTftyyRbO4SRAEZk6bykefLFWt+yfUuCNyRhAEnSAIuwVBEAVByK1eNlsQhJAgCFWy1+dR+/2rIAgFgiDsEAQhX7Z8a/Wx+kVtf04QhNl3cm0GdLSqJmi0Kl2b46AUPzc1qvwt6OlIAmdxqnpkyAmaCxcu0L59uOquY8eO7NmzBwgPdm7evEnTpk05c+YM7dq1w2AwMHjwYH766ScApnVoxpMtGqITBL47fYm3v9nKBzsO8f2hMxSUV9Xaiyb6vLt27UKn0zFixAhmzJiB0xkOriUlJfTr149nn30WT4xGn9EJfVEUOXn2Ah8t/YwlixfxwfuLWbPqGwRB4Ikx4xnz9ByenDqLdr0GkJCehc/tJD67EVm9xpHW8XF0sgmunJgBCNw+iSFdXaETVs0Uo7eryZJAyXksuR01r130uxEMsSXsors4tuLGVRiTnMFdgmCNTc6EPOXoLDXN4sqiBmnXboarcSuKbhGXXHdPl18LdZF8T7ZsyO6rtyhx18/exyroSRNMXA3FVsYAtCJOs3+ThEZYuYJbpU57FPEwx8BUk4mu8Ql8f6lGoedz+qTjMbNlI9ZeuM7lcnX1eMOUBGb3bMdbP/5MQdT6kMcV8fO/2xg4d9585s6bz7ixY6isrOSrz5by8ZLFfLJkMbu2bKCsVFulJhE19yMGxiJoDEYBX/FFig+upejAaooOrKHqws/oLQ4SWz9OepdRpHYaQULjjhisCQQ9FdgbtCe92xiSW/WOWJlp2bs4L+7D3kitqAn6XCCG0FscKsWOp+gK1rSGmsRR1ZXjOPLbKpbJk3QBtxNbjMpGvd+FKYZNks/txGJXVhnJVTK3r18lI7fuxOSuPXvo2qN+TVe11DNQY20m9dGoWW6OsmXSloxrqWcgfA90IJ7jVNa7wjAJEwHEmMoYCBeHtMDO6Vrsy9oQx3Eq650QeFjxsMW/aIImq1kbBGscZ/bvjCyXfscms4UnZz7Htx8vorKsVHWstp270aXfYD56+6+4nFUR8lFO0NzLGHDWM/OY9cw8+g0cxLWrV/nogyW8v3gRi99fwrbtOyIxTCI0I59F9Rjrfo4DJUjEpy8Y5OeCIj49dIYVl67x7fUb/HyrmDS9kcctiQyxJjE0IYW2cXE4DAbKfH6GNcphVsfmPNYgA50g4KtQk5h6q4UT125HGt1G3pM9ntMXr9A0P1eR7NNZ7IhmK063h8TUNAUxI8WI1Tt+ZvQgbQ/y8OdnQm/VTj6CcnIt74clCIK2lUg1/IEAJlPdlrq/7PuJjhoVk1W+QISYkXp5RSsRKzUIGsnaTG7VKfVRi0XQyCEnaAS9gaROT+I88yMGs1lhSxZdWCDBltcJ942TeCuqVMSMdGyd0YIluw3Oy78AavWMIAikdhrO7f1r67zehx0PWwyMxhPDhnL5ylVOnDylWpeRns60aU/zlzfe0VQPPDliGI3y83hz0QcxK1zvJQY+O2cmz86ZSdeu3Th07ATvffwZ7338GUs+/YJ9Bw7VqWi42xgoj+EqpW91YqukvIL169fzyZLFfPrhEr745ANOnzhGs9ZtmTTjGcY8PZtxT02mdfsOmC0WqqoqmTZjJgueW0j7DrGJkvLyCgLBoKaSZN3mbYwYqK5qLyktIykxdsPvnw8eoWuUAlCC2+3BYtZWJzldLmzWGMWNd6n400Jtdmy/NZISExgzYihLv6y/XdnMqRP5bPnXMZUxAHm5OcTHxXHsxEnN9RaLhSED+vH9urqViA87HvYYOHf6ZFat3UhhUbFqXdvWrejarRvvLflQNR4XBIG5s2ZQ5XTx+YpvYx7/nmLglDEsmPwkzfJz2br3IO9+vpJ3P1/Jhyu+4+jpc5pxVxqX/BpjQKhR0RSWlvPNj7t4d8UaFn2/hfe/+p4rhaX0796Z556ewIJZU5k4ehhtWjRHV23TvXDuLJ5dsIDGGn22JJw8fYZmTZtE7MnkWP7tKiaPryaujZYIQXPg4EE6duqkeTyTXqCsrIyMapvZaKLg7OnTkX4zcvhCIqdOHKdl63AhouTcIe1fVHiblLTYykEJ0rMk+prk0MewdazNTkwiZmrrGQQo7JDrS8zI0bhJU/IbNWLr5h9V6yK2y7IXwMw5c/n8ow9qfQ89H+vBubPnKCpW33cAWZmZZKQkcbhahRNt6/xP1OBOlTOvgWYZ6QVRFB2yV8SoWxCEpsAAoDHw34F/j9q3GPizcB9GBVb0NMQW0+O9OQ5chLiq0YNGh0B74inDz1mcCoJHImhatGjBtm1h39AtW7ZQWhqe4K9du5bhw4cD4QZQ8fHhSWRCQkJkm9JzhbguldAuI5mJbZowrUMzJmSn0Vqn48ClApZsP8j6Y+c1E+zR5y0vL6egoIC1a9fSq1evCCO/c+dOtm/fTn5+PosWLYrsLz9mpcvDim9W8d6KNbzz1WreXbqcm4VFTH5qPHPnL+CZefOZP2cm7Tp2xlI9iBMEAXtcAik5DWnQuhOOdLUnbTQxI/rdIAjavWZKLmBIVtvyiEE/gqDT7M0AIFZcRYiPbb1DDHuy8LrYjLcohlSV6Ir1ngoEGTkTC3u2bye/fXfOFT4cPQa0eh3N6NCcW1WueqlnmjtM5Ous3BS9eMRgTPWMAYEGtVSYCwi0xMGpf4zeCw9NDNRq0tzIZiPLbGFblIWdt8KHThCY1bYJe24UcuK2OjkZZzHx6tAerD1yjh+PnSfgcqukzncbA6VBh8PhoF+f3sya8wyz5s5n7vz5NGvRkp1bfuTzDxdz8uDPkXPJrc3uJQbGyZotWy0GvOXFlJ3awc2fvqP4wGqKDqxDDAXJ6PYEqZ1Hktr5CVI7PY4lNR9BH95PEHQYrPGYUxpgz22LwZYYuTbJpiwa3qKLmFLysFhl1UDVRIzz/E5SOgxU2aiFnIXYUrM1iRkA160LWDPCsTO6ejoU8GO0KJOHUjIv6PeiN6gTi1Jy2+OPPel0+UN4XE5sdodsmfK3JyU8Lp4/R5OmTWu1ahLs8YpKeLl6RsvarL7qGUChnpHDrg8/U+KNetoRRxWBelmbATTDXqsyBsCOATsGTXWuLySiFwQaYeN8HSqcRwAPRfxT9PZz+xUkTZPOvXGVl3HtzHHVfmarlYnzXmTNl0spvKmuhM3IzuXpuQtZsfQDTh07oljnDYj3NAaUkJSUTL8BA5kzdx7z5i9g7jNzyEhJ5OuV3/HOko84dfZcZFs5eXCv40A5LpVXsfbqTT49fJZlJy7w3dmrJJhNTGyax1MNcxmVmEa/+CRyjGZ01V+LXhBINppolZFE1/RkkpK0LSPk6pkfDp5iTC/txOWabXsYNaCXavmmg6cZ0idMaEvWZBIxI9jjqXC6iHfYVL1rAC7euE1+lrJARrIROXPxMs0a1aj/5J+t3+/HoJE4iIY0Ya6tutHn8xNnj11E5Kol1oKScNSCiqTRUNHI1TOgJGj0Zjv2Rt3DY3Rp+1r6xgDYmj9O4QG1XZYclvSmBJ3FBJw1v3c5mWN0JGJOSKfq2mmt3R8lPBQxsDZMnzqZH7du40bBTdW6rMxM5s+fx1/eXqxqgg3QqUM7nhozij/9/S0uX72mWn8/YmBWZgajhj7Os7Om8eysacycPAGD3sDSL7/hnQ+Xclsjqap17juNgfJE1pFDh/j8s09ZsngRixa9x9rVP9CkWXNmPDOP6XPmMnXWXAYMGU5mdk0Da5PZTGZWNm3atadHz14KsjY60STFis+/+JypE8ap3ksoFOLU2XO0bq7uDbNyzXrGjRyqWg7Vscqgjzmf3bJrD/1jqFY2bdvF4/16a647dzF2L5p/NDRr3JB2rVrUSrbIodfrmfLUOD778utatxs7agTrNm2JmRBv37Y1hYXFFNy8dcfX/JDhoY6BgiDwyoI5LF76BU6f+jtu17YNgwcN4G9vvqNJhgwfPJAObVvz5zfeiVjRyRPm9xoDBUGgcYNsnho+kOemjuW5qWOZMmoo5ZVVLPriW9766HNVfzCd33Vfx4Ci28nWn37hw2/X8c7X63l72Tds++UovTq0ZuGsKTw7ZQzPzpjC4N49SEupIZatFgt5udl07tCWbp07KQhk0WDWTLiv3bSFJ4YNUS2vqAwXrCXEx6tssHfv3kP/nurCRoDr16+RnaPMQ8oJg59/2k23x5RFghLJ8PO+vXTrURMf5QTNkV9+pkMX7XMCBIPBmPlJOSorKrDbleNTufpH+r/8pYXaCJo7RbQqplefviQlxy5Kj0ZKYgKdu3Zl17YttW73zJzZfPCxdv9PgNFPDGfTj5vrRRr+n4x6kzOCIDQHngf+cBfn0AF62f/lWAzkArE7r0ahtia9CRhJxcT5GH0uGhNOBF2Isb4JdjIwcYgKKlAGx9GjR+N2u3n88ccxm81kZIQtEL799lvGjx8PQGJiIhUV4YRmRUUFiYmJimOUniuk9Fxh5O9Uu5U+Dhtz+3ViWNvwIC2aoIk+b0JCAn369Ak3mhs0iJMnw5UaydU32rhx4zh27JjiGNIxjQY9j7VsxOyeLVk4cSTPDe/FwF7dsVqtOELqZ22mo+5KQS34a1PNuEvR2dRBIVB8Dn2KdpMuURQRQwHNhtsAos+JYNT2nxS9lQga1mqyLWpZB6LfRULDjprr5NZmPlcF1jgliRPL2uxeUV+LumgY9TpapcX2Apb3nZHQSRfHoVBsZQxACia8hGJWmFvQk4CBmxrJy2gUOv3crPLd0etB4GGKgdHWTN6Kms+1Q3w8QUQO3FRPcAVBYEqrRpwuLmP/9ULVetHj45m+HXHoBF5ft4eSqnBMkHrP3EsMVDWx04UrSxrk5TNq/ERmzVtAp25h7+1oa7P7EQMlgsaR4CCpWRcyeowmq+cYcnqPwZHbEkGvV5Aid9p/Rt5PRhRFXFcPk9i0q+p4QY8TBB16c/hek/cLKDu7j4Rm6sGhyWzAoAthtJgxW4yaFdMVFw+T0KQmESq3wik5fYD0Vl00r9vndmGstiKLZa1Tm+JD0RgwuvpSNuCOtmmC2OoZ4I7UM1oNzLWszQAsgp4EoX6NGqF+yhiAPKzcwKPZ+w4gRTDhI0RlPWTrnkDojl7eevogx4IgCMsFQThU/bokCMIhjW0emvjndzu5euooVVEV+pLyoGnv4Vw5cYiiG2qbR4PRyMR5L/LjD99w9eJ51XqL1cbM516m6PZNPlnyHt7qymu4P2PAaOh0Olq1aM7MaVNZOHc2LZs1BYioZyQS4X7EQAlpyXEMbJTD9A7NeLp1Y55q2ZBGZjP+Sn9EbVkb5D1rjDLLRrl6xusPcK24gsaZNRXUEtly/OxFWjYO95qJLgA4ffk6rZo3U/SMkXD+ynUaZWcojid/bT1yhsd7heNn9L5bf/qF/t07A0piBuDIybO0q7YWim7KDYDfoxkDoyfV4cRp/aoBJdWMlo1kNOI0+tFIJE20ElRCbQSNKTE7YkVcH4SVMa0pOf2TShUjP25cy8cpO7ZB9Vn5q99jUsseVF05QtBX+8Q8JN55DPTfo9n4oxYDi0tKuHpNXYAl4YVn57N02edUVKjH7kmJibz8/HP8fdGHlJSqC3UyM9L5l1dfZOeevSz76htFEvt+xUCFhY3RSOcObZk7fQoL58yIqbq4nzEwJSOLEWPGMWPufGbPW8CYiVPIy294R+oRKeEVq3r5RsFNHHY7drv6Xvthw4+MGjpYtTwQCOD2eHHYteesG7ftZHD/PjGv6dKVqzTK0y5ivF5QQG52lua6fQcOxVTjQO1jQDkuXL5CfoPcem37W6JT+7Z1WrTJf6N5uTnEORycOFU7uTxv1jTe/2RZzPWznp7E0i++qvPzDIniHcfAe+279ajFwNuFxVSVaRO5BoOBlxfM5vV3FxMIyJ6x1XOSJo0aMWXieP78t9fxetV5idYtW/Di/Dl8vuJb1q9Xqp3u9zhQMFmxWiz06dqRhdOe4oXZUzX7ttyP+Ce6nREnjGY5GUwd9BjPPdGH58YP46nBfchMTYpcU2Qfo1k1ZoLY5IFfMERee/fto2uXLppxdfk3q5gyeXLkO5Hut8LCIpJTkhEEQbP/yvr16xk8RE1eS+Mxn88XU+UcqB6jycduEkFTUniT9Ezt+Ahw+2YB6ZnqvorR48D9e3bTu09fzfWxesnIVTNy1KaiuRM7My106FijTJL3bYmGVMjYp1dPzp49Q3EMZQyASQgx9snRfPXNypjbzJ0zm/eXfFDndQdCdx4D77XvVn1i4INAvcgZIUwVfgD8ESjT2KSBIAg3BUG4KgjCF4IgRJqJiKJ4BtgDnAf+b+D/E7WvE/j/Av9TEIR6dQo0ouNIjP4yAOmYsaDjUowq1QZYsWPgJJWaFmjxGOlIPLfxcZqqyHn0ej1vvPEGP/74I3q9nqFDh+L3+zl58iQdqmXNzZs359ixYwSDQTZt2sRjj2lXsMgJGlCrHOQETfR5R48eHQnChw4dolGjRvh8vsgDZteuXTRpoiZ6XJcuYTEZyUiKr5dvbF3Q6rkCEKy6jc6aiKBTTygDRWcwpKoJGDEURPS7IxNGc5ySvBGrbqKzx5YbhiquIMRrDwhDldcQ4tRqHwDRXYpgTox53PBGIpU3zta6ScDn0axMjwV535kqXf0nyfcL0b+/2mAQdDQRbJwI1p6cbFFHhXkuVs3K8kcBD1sMFEXY7tG6jDD6JiVzy+fjWHmFItnmd4Y//1F5WZR5vKw9Ev5dR1vSdM7P4rnB3flmz1FW7zsaWX63MbA+FccSLHJbqmr1zL3EQEeUqsVgsWO0x2O2aifotQgaSfES/YoF/40DJDXvERmQyrctPbaZpDb9Vf1kfJXFGCx2BL0+Ug0tr4ouOrKFlDZqCwwIV1B7S65iz1A33QYIlFzHka4dHy8f3EVehzr8wUVRs1eCvO/MpQvnyctvqPBtB7VNk4RY6hlQJnxrlsVWz8hhNeljWpvdLewYcGCgQMMWVY7WxHFCw+JRGhy3ekgVhKIoThZFsaMoih2BrwGF58fDFv+MVjuVt65y87jSGzxCwFoM9BzzNEe2b8RdpFbI6HQ6Js99nsP7dnP84H4gTAjLSeE+g4Yy9qnJfPHx+xzavw+4v2PA2qClOruXGBiNRIuZOLNRpUozx5ti3legbSUYq0fZ8oNnmNq7JtknJ2LXbv+J4X3DRLykjBHs8ew5c5munTso1DJy/LBlFyOGDNQ8XygUosrlwWpRf3aiKOL1+jCZjJpJhp8PH6VLO7U3u/Tc8vv9mpYc0RPZbT9upO/AQartJEszLdWMw1zzm42zGEiwGkmwGnFYlC9JAapF1Jg0lkHtBE194fd48Hs86ONz8ZUX4q+4jdfjV5E0AIJOT0KrgVSejl1dmdZlFNd31N9S6EHhUYuBKcnJfLd6DUeOapMPOp2OV15YyFvvLdIkaOx2O3987WU++HwFFy5d1tx/2qQJ9H6sO3954x3Onr8I3N8YGEtdGwt3GwOjbWi8AZG09HRstppxR20VzKDdCzEa0VXjyz7/nCkTxgLKpJvf7+fCpSs0a9xQdYyvvlvD2Ce0VTOiKHL63HmaNNQe55WVV2C3ac8nyysqY1qahddXkBCvrYaEsLKmccO6rW03b9/NoD71s7Z91DBm5HDWbtpCZVXsMVxiQgKdO7Rj09btmuv1ej2TJ4zlo8+W/1qXedd41GJgakoyb37wGTdiKJHsCcnMnTmN/3zzXQKCQaXOyMrM5Nm5z/Cfr79JWVl5zYrq7SwWCwvnziY9M4s/v7UoYpN2v8eBos8dUfjWhvs5BgTITk3CbLrzMUHkumXxW1LNyMdEfr+f7bv30rdPb1Wsv3W7ELPJhKO6/5V8/ZdffcWEcWq1IYDH4yHg92OpVvtGOyCcPXGM5i3DheHR8fzEsWM0a6G2O5MQDAZrfQYcP3KY1u06RMicaEg9ZC5fvkSDvDzFMyWalJGTTnfSZ0Z6xtwrMaPYJupY8r+je8zMnvMMS95frCjYiH7uNW8a/s2dOqOdN01MTKRD1+5sWL++Hu/gwaKuGPigUN+sxSvATVEUtS5yO9AOyAa6AR5goyAIkZmYKIr/XRTFDFEUe4mieFHjGB8CldXnqRN6BJpi5xAVMatUc7BiRIhJ0GRgJhsLh2McQ6g+Rw4WjhBmv69fv86AAQMYNGgQvXr1Ijc3l82bNzNoUM1kzGg0Mn/+fPr27cvHH3/Ms88+C0DJOXVPhfomyKPP26BBA/r370+/fv348MMPee655ygtLaVnz57069eP77//nueff75ex64Ld6pKEMUQwdJLMW3LRJ9T0b9FQqDwJMa0ljGOKYb7ycToGSMG/QjoNK3JxFAQEGLaloWcNxEcsZvA1hfHtv1IVocaufjDYm2mBa3fXW3WZgBpOhN6QcBnqL33QiscMW0FIZy8fETxUMVAq6An32Dhu8oiPJXhe1SungEYnJLKDY+HY+UV1euV9/LgJrkkWc18sv8kAdmDVrKlMRn0zBvSg7y0ZP6yYiNwbzEwsj5qIGLSC5qDHflk+F5joETQaCW2QLvqODqxpQUtkiboqcJfVYI5JU+1v6/8NnpbPGaNhqwVp3aQ0WWwpiom5PcR9Lkx2tWx02Qx4Lp9FWtqDQEtV824S25iS45NbDtLC3FErZdXc7udVVjt6uuNxvYtm+k/6PE6txNMVkXiNVo9I7c2k9Qz0WRNrN4ztalnJGuzuyVrGmClGD+uWpS7RnTkxrB49IXCqqJ2D3EMrLaUmAREd659qOIfQF6PIdjMRs7vWkeCjGh1VP/24yxGBk6ewy9b11N1O1z8Io8pgiAwavIMXGXF7Fi7UlXJajHoiE9IZNazLxL0efjw3TfvS/yLhsIC0BjbXupeY6BEzEdDImiUahhjRI1mNelj2gVGQ1K6nS4oIjPRQVpacrWNYU3CcOu+g/Tr1kFVSSmKIrsPHKNPFxmhY7JGXldu3CInIw2DwaBJ3KzdtZ8RvbuqlgsmK5t3/8zAnl01iRlRFAkEghjF2Pf14WPh5q61wRcUuXrlChk5+RGbR08gpCC1bTHUfA6zIfySETASSSMnayTEJGnq0YPmTuCPsp6wN+tP1dkdhAKx5wXG+HT0lnjcN2sm5tKz1OcNoDdbSWmrba30MOBRioEvPDufE6dOs3mbdiLYYrHw2ksvxCRojEYjv3/5Rbbt+ZnN23dqHAHyG+Tyh5ef58ix4yz6aOmvEgPri3uJgfVNZtWWnPMEQor+NbEgBLys3bCRIQP6heNVVOXz599+z5Tx6ubYVX6B0rIycrLU1dkA23b/xIBesZO8X3+/hgmjtZtkf7t6HeNHDddcV+V01krcAOz95SDdO8furQPhWOrz+zDH6HnzqEMQBBY+M4t33v+oVuVLrx7duHTlKjduqm0FIXxPtWqh7RLyMOBRiYE6vZ5/efVFvl6ziWNnLxIy2ggZbYpG9GlZOcyZM5v/fP1NpYKmGomJCfzu93/gw2XLOXpMZoUrG4t16tCOVxbMYdXajXz+zXe/WgyUCBrBrz1Wu5f4J/WVuVeoCu1kfWKi8emnS5k9LSyEio6By79ZFSGu5esvXb5MRkZGzBiy4quvGD1uQszr27VjOwMG9NeM47t2bKNPvwGa+509dZJmLdRuP3LcvlVARpSyJmJVVk1iVFRUkBgfp1LL1BfRn6X8t3ynxMzdIvo9KdaZTEyfMYOPPlQqX6Rrk6534vix/LBmrcK+TFrnFww89thjOOIeybnwA0GdI/lqn8jfA+pZDyCK4gXZnzcFQZgPlAOPAepuQ9rHCAqC8C/A54IgLKnPPjbC3vFHqaAVcVhRTx5zsHIdN5dw0RB1NUkCRtpUV7rmYiUFdcWgAwMdCSfEcnJy2Lp1q2L9sGHDGDZsmGLZjBkzmDFjhupYEkEjT4SXniuM9P8oP3+dhCY1CTZJ9ZIzSn3e1157jddee02x7MCBA6pzRh/XdekStload9WFUwUVXLupTr7H5zSn4voZAreOY8hQVyACBG6fxJiuXicGvBAKIkTZLJjjkvFWliBWFaBzxJYaimWXEBIbaq8rv4IuQbvaRxRFEMVaPSQ9xVcx1GqJFoa/shRrYiqnCipomaXddLu+CMZnoa9QV/tGznWXlmZQP0IwJ93G9dvq5GILnZ19wTIaYMOscb9BuO9TEkZu4CEbdaJJz/1pOPkg8bDGwHyDhThBz4rKQibaszDrdHgrvIoeHAMdSWypKsVYWk67pHAc8zu9GO1m/E4PXbLTyE9w8M7uI0zs0Jy8HDUB2jY9jrYTwvYLdxsDfUXXEFAPPEw6QVHZYdILmgMPrfPeSQyEMEEj2SBZLQbcMSy85DCaDRFLlug+MH4ZgSERMH5PkLLjG0nqMEqxXELlud1kPFZTESQl01y3r2BJzkan134kFx7eTGp7dcW4VDFdcnIvOX3Ha+5bfnIPTfprVyH5PTWWZrFw/thBmrXTbswoIRQKhV9Czfv1CwaMBhD84cFZyGhDR83EQ7DHoyM8aRCs9ur/h+OORNBoVeWHf7t1K/AcBh1V1coe+f/liP791YXWODhEOR1JQBcjlqVgohgf5fhJQEkW+UIiFp2+LifN3xJ9gVuiKEYyqw9r/HNYjDja9sBbcJ5Dq5fRZ9z0CDEjqRHizEaGTZ3LluUf0H3QcBpqjH36D32CS+fO8Mm7rzNx5lxsdodCvWfSC/Ts259evXuRk5l812NAX1BUTRi1loG2XcT9iIGxoKVU8zuj7Ktkz5XwM0SbSNJZzKzbeZjfj+0fWSZYw7ZjotXBgeOn+f2zcyLrpITEut0HGTl4gMr6UNrmmw3beGlG7En52Ss3GNlX2y/8+JnzDBqgVh0Kfi/HT5+jbRNlJbrO71IkIQ4fO8FM2fepaMharRQsKS4iLiFsCXK3k2dHPciVaCs/6VlmshjweQKRZ4pP9tzyewMYLXr8nmBM9Uy0EiaamIFwcjK+7XAqjq0jseOTmvsBJLfsSfGBVdgzGwDq8bMxQVvJ/pDgkYmBAFMmTmDj5i2s+HYlT40bq1ovETR/feMtXnh2AfFR6ghBEJgzczo7du3m3Q8+Zt7MaSprPkEQmDBmFBWVlaTe4zw4GqLBXG9v/buNgTfdsW2ZtcYA8pgca5gYK3YDVFRUcuHiJUYMVMec8opKPG4PmenheX/IaItYKX7+zSqeliUs5RBFkQNHjvO7hfM013u9XvyBgKYdWigUosrpIj5GMmzd5m0MG9Rfc52EKqcz5v4Sfj54mO6dO9a6zaOCWAlnm83K+CdH8tmXXzN98lMx958zbQp/fv1t/vDy85qqy8e6adsMPyR4ZGKgzmzjxReeZ9myZRSVlNK/d7VqS2aVlZqZw+w5c/nLm+/yu1dfUcU3E/Dqyy/x7cpVnDh1mkkTxoWLR4wWqJ6/GKwO5s2Ywo2bt+45F1jrZ+Bza46BQkYbOZm/3hiwPtchHxNF3x/R6olz586RmJBIWlpUTsHv4dTZczRqmKeyHhMCXlau+o6XX3xBdT1+wYDL5cLlcpKSojymFMOvX7tGdk62poWaq7yMhITEmLaV+/bsZMrMZzTX1QWTrkYh8+P6tYx44onIujshZiTU9tk+KGKmNmRn59CsWXO2btnCgIE1eQm/YKh5v0YL8xc8y3sffcLLL76o2EZCr17qnpMPEVQx8EGiPiWkfYA04JggCEWAdNcfEQRBS54hVr/uKAsriuJaYB9hWWO9YERHRxI4TRXOGL0u6lLQGNHRgQTK8XMOp6bN2f3GtdOFHCstVzS1laDVxP1eIB1P67jyJH9tZIAWJEuzsoKa/WwJyaAzoDOpq6xD3krQ6RFk1QjxOc2Jz2lOoPQSBg3SBsJKnLBqRtuDWBRDiCE/QoyBlBhwIWhY6gDgKUWwxO6/AiC6CtHFhyeSFdfPaG7jLS/EFF+/xlpyJVK0tZkoitwuLGTHrt188MU3vLf0S95b+iXvrljD15t2cv5aQb19fwEF0Qd3ZmUWC511CRynqtb7JBsLpXVUmD9ieGhjYLLeyChHCitKbuGtVr9EK2iGZqRzubSSo6XlWocg1W7l+V7t+fHsFXacU/ZoCLiqK3nuT5/ayCT89vUrXDh7OubvWUqO1sdK4l4Qyw5Gjmj7MfnyaHhvnyAuvzU6gzoB5r11Gnt284iKT17lXHnlBEmtekauSf4SQm70ehF7SopqHYCvshSjIwGh2qpSrpqx6YMIOj26GH0Qrh3eTcPO4QRCpUYWosoX4NaVi2TmNVIskyB9T3t37aBnH3UiAlBVVkX3npHszQSrHcFs5boryI9HzvLh1gN8su8ESw+cYtnx82y7UUiJGFL8ZuQWTPLksbzS/36qZ3QItIphXSZHM+xcwEXwLscTYQuk+r/c4er8JoIg7Je9FsiPKQjCJkEQjmm8xsg2m4q6UuihjX8JViPpjVvSvt8Qfln1EaFQqMYmqtoS0W7SM3L6PPZtXset61cU6yQ0bNqcybPn8/WnH3L5zInIcmmiYjYIMT2s7wTyidXZs2e4fi3ccFuhnqmGZu+Tu4REZtZGakYraOTqmWhFWvhY2hZ/K/afYEr/ThjtNpVq5su1m3kqqnpbUsbcKi6mdTO14hrg+NmLNGvYQJHkkluf/XT0FN3btlCsk4596doN8vKVBTqC3xshiXf8fJB+3TtFlmshEAioPOCjJ8lrV69h4LARkeVq1YzyWRb9G4xsZxAovn6Zqwd3cHT9lxxdv5yj65dz+scVlJ3Zj8FfvwrYe1HRaBEzEvRmO9YG7ak6v0dzvUT+pHcfRdHB1apnvK8ePXZC1Taad/Lyhsn3rv+nxUCAIYMG0qRRIz7+VLvXRV0KGoC+vXsxbtw4/vz62+qKf6MFjBbik9Pu5LLqxKEjxyguKb1je7N7gaZlS7UdjfSSw2LQ1ToOlRM7UmLqw6WfMWdKOHEfTTx9svxrpk9UF8v4fGGrnsQE7eK+Hzb8yBODtS0dAb7+YR3jRmorYzZt28nj/WKr1W7dLiIrI7a6Guo3B/j54BG6dGhX53Z1wefzceL0Wb5dvZ73Pv6MRR8v472PP2PJp1+wa+/+Wm3F7gfq+j02bdyIlORk9u6PnQTX6/XMnDqJDz69u8LrQOjOY6A//Nse8n9iDHz66adx+4Os27ozMueQf49paanMmTWL//zb3zUVNADjxo6hfcfO/PmNd6iSfmPyvpkGM9mZ9+60Iseeg8dwupRFaKLPrRiLaNlC3y8IVrvCvQBQ9QGMhlzprXWviKLIqpUrGathTSaKIt+vWc+oYUPCC/w1Y42r167TrlVz9CF1wQfAF58vY/zEKZrrTDqBdau/Z/jI0Zrrvv9uFWPGjNHYs7oXdigUGV9qERQ+rxejUTkHkHrnylFSUkJmcsId25VFw+l0sv/wMZZ99Q1L3l/MkvcX896ixXz26SccOnhQs0+S6pprKTyUX7fW+61rfd9+/bh46SJXrypzRnLyJT4+nt69erFm7dpIDyI56vp8/ME7j4HVfbcm/Uox8IGhPqP3L4FNsr9zCftGDgVOCYIwEjgMXAeSgP8FFAE/3cX1/LF6v3p7aekQaE88h6mgFQ4sMRU0Hs7jpIlGFRdAY+yU4ucwFbQmDlMUb/Wc0DDy/0SjjjOikwoxQEPBSh8Nn1atxuoSLDodFdcq+Lq8AhFocLuYwT2aYdKorgAofvOPAPVWvMj7zMghKWjuVD0jb2ofC6Io4r7yM4YY1mSB2ycx5oYLLuJzmivWpXQcHZP40HsKIbGR5jqoXRkTchYiWLWt0ABCVbfQpcb2nwQUfXBiofTUT6R3HhZz/aUyNw0TY1eni6LIlh83cf74YRrl59GieTN6jhuF2VzzILh9+iiHTp9n008HcRXdokPjXPq0bXrfkubRiKWeMQgCzbFziipa1WLP0woHh6igI/ExK8wfITyUMbAqEMJh0GHT6RllSmJFyS0mpWRgFNQKmqEZ6WwuKyF46TY9GqYr1DNGu4WQ28u0zi3Ze+UmH+w+wpyBXcDpVlRUezd9GKmA9ujNfLlhBxWVVYwdNpAG+crKY9Vg0mAOD8KMFoSAl/S0NE6c+YnNW7YSFEVatutApy7d8IcElXpmx4Wwz69ECkje/VW+AFXegKKJvRbBIFkelbv9EWsYre3uBhJB4/cGCPk9uG+eI627ekBqMAgUXz1BZu+JgDpx1qDPqJjnuLV/PVmPqQecEgoPbyWzxxOa667/spWczsqKSLk9jru0CHtS7BgJYQLcHRCxGWPfx6dPHGPAwBdjrpcgrxKFcBJVdFYgGi18ueZHbt2+TZPsdJo3zGNA2yaIHi9+pxu/083l64UculRAQUkFLrePLo4EmsarCwFMDiO+qvDgPpZiRrH9HapnrOhJw8xlXORrKHIhbPHYGgfHqaQ9ymTLnZzrDnFeFEXtmQsgiqK6+7AMgiAYgPFAdEnnQxf/dLLnXpzFAJYsOgwaxf5VnzJw8hzizMpEuiAITJzzLKs+WUzXfo/TUsN32mK1Mf+FV9jww0rOnTrJ2KfC96rccvFKSXjCbtILlJaW8N23YXePJ8eNJykpOTKhqatRNEBaZja7t29l7ZrVmI16+vV8jNbNGmk+LYNXa/p+4SxDdFYQ8jgJlhYiOisIuML3SMDlwVfhiijOYhEosWC0W/E7PRHbwGj1TF24XlaJKEJuclilqbPYIhP/4rIKKp0u8nO0VdBznlLb/EB4fLR6627+OO9pzfWCPZ6fTl3k1Ynadj4//LiDZ2fX7CtPeoiiSDAY0qxslhAK1RDC0YkISTXj8YdwVlVisobjkaeWmGMz6jR7z/g8Hvat+4ZgIEB6XiOatGpDYr/HI9uGQiGuXrzAxZO/UFpcjNvrI7fzAIL2FJV6RoLJbMDnDajUM3cLY7XPuzmlIf6yAiqun8Wc0lBTjaMzmEho3ovKMztIaa/uw/MrYb8oitoZGP6xYmA0OnXsQCAY5Muvv2XSBPUYxGKx8LuXX+Svb7zFvDmzSE1RF7xlpKfzxz/8ng8/+oiGeQ0YPKCfymrRV14USahdunKVH9ZtJCE+joljR0f6ANQXDXJz2LR1GyWlZVjMFgb36UFebrbmtv6b51XLRINZUSEvt33RisGeQIh4sz5MttdSISzF8Vj2ZQqCJ+o4e37aS4d2bbHZ1HO+oydP07hhnmpdyGjDYIRpT43VPJ/H4+Xi5auMHqb98w0GgxQVl5ARXaVejZNnzjF0YD/NdRWVlcQ5aneHKC4pJTFBbakrh9Plwmox39OctLiklE+/+ha7zUaLpo3p3aMradWNwSHcw+Lk2fOsWruRyqoqDHoDTz35BEmJtV/br4ERQwbx9vsf0Sg/j/QYn3tWZgaNG+azY/dP9K3Fju4+Y6MoigtjrfyHioGCTvFMHjZiJN//sJrtP+2nb5/eqmRwYnomc2bN4i9//RuvvvySpnVWy5YtyMtrwLuLFjO4X286tG+nUNBATSzS+V0cOn6KbXt+Ji8niyeHDkSv1yvmOdJ4Q6unjOisICfeyper1uDyeElw2BnWqzNpOQ00365iHCh9BDEKSiLn8Lk1yZZoQibWvtHqmfpY8K746ivGT5iASaNAd/WGTYwcNlgzTjTIzaFBbrioWCK1pfMVFNzAarURHyMOlZaUEB/nUKuidALBYBCXy0VcXJzm/OvUieO0aNVGuV9UHuLo4YO06dBRsT76/5fOnKR5Y+1+YLEQ/T4vXrrEN9+uJCU9k+YtmjNk6FBscTXv2e12c+L4cVZ8+QVOp4vExESeHDvujp69WnZl0e+pPpg1azZ/+fOfePmVVxX3kvy+a9+lO58uXcrFixdp1Ch2Lvc+40tRFP9HrJX3EAMfGOokZ0RRdEGN7KT6oiHsO1klCMIAYDGQAFQAu4AhoijecWmDKIqHBUH4Aph9J/vJCZo2ODQtl3KwcBsvx6ikDQ4EjSlwEkbiiOMUVcRjJA/thLpOEGgpOBBFkUuim3XuYloa7TQ01Nwc8sR2NFGjEwRaWu30ahhWW1yucrJ06xFMqXbS7Vb6+gNktVTf4BLpUhuxIidm7qcK51xhFacKYrPp7st7seZ1xVVeqloXKL2MPrEBgqBTETMSJFs0OUK+KggFsKTn4a1U9+wRxVC4h00sSzPnLXRpbbTXieEJb22WZqIYqrPmwxEfNlbVGdVVtecKq2iaVnuvhlMnT7Bh/ToGDnqcJwdFFZ/I1ExpSQkMeawzEFY8/XL2Mm+u2kJOaiKjH+uA0VB/hUHWex8zatQoTpw4QVVVFQaDgT/96U+sKl1Ffn4+H330EUajkTFjxrBt2zZWrF7B4MHhWLZ582b+63/9r1gsFv7b0qXk5uYqiEsJOgRa4uAElbRFuxLsUcHDGAODsmpUty+I1aRndFIaXxXfYlJKJgZBiBA0fqcfo93IoMRk9lVVsO5yAcPztRNkPfIyaaUTeHfLL/Ru1oAerbUrma0WM7OeHExQZ+TbDVv5Zt1mRg8fQuP8cNN5eQI+ZLQhBLyKQbTRaGTAwIH06jcAbzDEgQMH+fTDJfiDIRo1aUbHHr2xGI14AiFsRr1mM3otSD78sUiacvedJRslaFUhyyuAjWYDN/atJbmDmqQ1mg0UHdxASvvHNY9Vm3qn4spJbOn56E3alXy+yhL0Ziv66l4KctWM3SRQUFGCNaEmCSMnZpwlt7Em1qzT6mFQXlxIXKK2ahHCyY4bF8+R30j7d1IbBJMV0edm+/EL7D9wiPF9u5CX2RvR7STkcYWTztK2gkB2vIO0Jrn4Mz34qjzsuVnEZxcuk2c008nkUA32rSY9bl/N70Yiav6n9zw3btzQjoGrYsTAFXceA83oycbCBZw0jlEU8pBhMHBKFMVr8oUPY/zTQlJGNo269WPrio8Z8NQsFUHjDoQYM3M+m1Yux11aSKfH+mgeZ+iosRRcucCiN/7K2PHjyWuoPaFISkpm1jPzcLlcrPp6BR6Pm9HjxpOaWnt1uWSHY7PbeWLkKEx6AcHvYdf2bbzz4wYAunbqQLd2LTEENaylTFbFZFsiZiDco0mC3+nGaLdUE/DmCCEv2ZFpWZmFl9ccw+f0yZYbMdlNmONNUf1pwscxOKx8veswfxw7AINN2VdKZ7HzyYpveGGOkmDR6gETeZ/VSYev123mycf7xLajOHKCLm1aqPrQCCYrxaVlOBISFBN20WiOHHvb3gP06dYx5jUA7Nyzl17du9W6zdaN6+gzUD3fk55dDpOBKl8g8rdE0DhMBkRRZOfG1ZTdLqDH8PHY4qOTD+Gxqk6nIyWnIaaUXMrdfiqq3Fw/uI3S2wUkN+2IKaMpoHyeyG3O5Dj0P5+4DzFwJxafhaV/CcfANr/7XnUeS0ouvpIbVF09gaNBjTq+PuqZ3wiPdAzs1qUzXq+Xb1Z9x/gxarLTbDbz+1de4s13FzN8yOO0aqkmqfV6PfPmzmXvz/v5z3eXMGvaVFKSo5wBqpOVDfMa8OKCZygqLuHDz77AarEwadwYTWJCCynJSUwePxYIJ51+3LyZ1Rt/RK/T07dnd1o1b1qv48jHllJCTSq6UCacwvO9+iahJGJeGk5KSuFY+1dWVvLz/p955bn5imQuhMnVtZu28McX77z/zgfLljNzcmxLxxXfr2XsE9oFggePHKND29i9FFau2cCTw4fUev7VGzcz9omhtW7z+dffMWnsyFq3iQWfz8fn33xHMBjkudnTYvabMBqNtG/dkvatw0WgVU4nX3+/lorKKp4YMpAmDeufGDVmNrnnGLh81WpWrf+RpdXjQF/RNdV5Hu/fl/c/+Yy8BrnkN8i9i0/ngeORjoGjR43k62++ZduefRHbJLkFYWJ6JnOfXchfXn+T2bPnkJ2mdj2x2Wz87tVXWL1mLbv3LmHOjGlIDtXRNowd27SkY5uWXLh8jTc+XEZ2ehrjnxiMzmCok5gByGvShDlNwg3UyyoqWb9jH8Vbf8bqiGPwgL40yM5UFrTVQcbUBtHt1Py/RNSEPM6Ik4Ecgt+r3a9PPqevVkFcvHIVMeCleUM1wVRZWcWVG7dqVDNQK8kTOY8osuyzZTz/8quqddL3uuKrL5kxa7Ym8fDDd6sYOSpc4CgvxpMImJ927mD2gufw1ZJmOH7kEDPm1h67V69dp2nJVhukz7CiooLPln1OcnomL776O3TVThjRBV5Wq5UuXbvSpWu42L2w8DbLPl0KwOgxY0hLq10BCTXFY5kJ9nuOgRvWr2f7tm0sXbqUxGTtXMG06dP5y5//zHMLF+LQ6Lf7EEIzBj5I3LHuXRTFS8hS1qIo/pEwy33HEEVxgMayOcAc9da1Q49AB+I5TDltiMes4diWjhk7eg5SQTviMGpsY0BHW+IpxMshymmOA1sU2VPiC5Js0iMIAo0EG2JAxGMIst5TQobOSHujQ1HZGa1AkMiaknMlJDdNJt9hJ99hJ6lpGgWVLlafuYxwuwSdTqBxahLtG6STJJtIa5E00WqZ+hAzxqyGdW4TDa1+M77iSwiCHoMjjXhHmoJkEYN+Qq4iTDldYhIzWhBFkcCt4xhzY0+KxdIL6JK0EyeiqxjBmhxzQh9W3GhXJ0S2qbyBLk67iktC0eHNpHWslYRV4WaVD2vAyTdffEbDxk146ZXXEASBKsARqp+VSZdm+XRpls+1wlLeX7eTeK+bsZ1bKN5vrN9AcnIyP/74I+OqJaeFhYVs2bKFnTt38r//9/9m5cqVTJw4kXfffZf33ntPse+///u/s2HDBk6cOMH/+l//i7feeivmNdrQk4GZC7hoHKPC/FHEwxoDLW6RocZEviq+xcSUDAVBI6FPRiqnyyv57PQlpjTLxxJniahnJKQ6rCzs1Z4dl2/y9oa9PDO8J3FR4zXRWRFu3m4wMPGJwYRCIVZt3Mb3G7fQpX0benfrFPktRvv3R0MQBNp17ES7jmFrmRMnT/P9l5/i9QUwGA00aNyc3OatcdgdCkut2iAnGuqrkpGqjKOX1bY9hBNNpSd2EJ/fGkt8OEEo71PjKy9E0OkwxiXfETETCvgoO3eIvEFTNddbLQaubdtMdp+xmuvDqpkBMY9/5ZdtdB0R2zMb4NiuHxkwMnZSAGD7j+uZ//xLtW4DykmNaDRz+eJFvvxuLX26tOd3M8bHbFgZK4ncKyuNLvYEzlVU8c2N2+TrzXRNSMRb4VWpZwDKZdXqDyoGpmKiigC38JLBQ98kdwr1kHE/DPFPbglb6QlE7ve03IbYDALbVnxC/6dmEmc24vKHIo3YBUFgyLgpHNi1lY3frWDIk9q///xGTXjptd/x3Tcr2L1zO09NUfZhkE/2bTYbU2fMxOPx8N03X1NeXkbf/gNo3CKcjPYGRIX6RoJ8EmkkyICeXRnQsyuhUIhfDh3m3aXL0YlBLGYz7Vu3ok3LZpjNZvT1nJxH3zdyUsYUXxOPfRWumPvFZUFlQbVaKIqYkT8zDA4rH+0/ydP9O2NyqO3Mdh8+SeeWTTHfoTXczcIiSssraNk4hje10cKOAyf4/Wzl9yhVe36xdgvPTNaw1qhONBw5eYaX50xVLZfj6IlTvDBf++coVWVevXSegUPDyh1fUMRi0MVUz8gJmuNHDnFi3y46DxhG1tCwerK+z7h4hxVdt8dJcPspPXeYq1uWk9i8M3E5NY2mI9aXGiTNrx0D/Z4gRoue+GbdKTqwBmNcKubEuhMHvzEemRgYC3169WT7zl18u+p7xo1RK26NRiOvvfQ8y5Z/xfWCAgYPVJ0egB7dutKxfTs+/uxzMtLSeHLUEzHnU6kpySycO5vSsjI+/XIFwWCQUcOH0iCn9vmTHFarlVEjRyIEvPj9fnb89DNbdu5Gr9fjsNvp2K41LZs2iajctHz5a1MqSjFY+jdW9bAWonuQacHj8fDGu4t49YVq0UJUtf3ylT8waeyoO1aWHDh8jCYN82PanbndHgqLimMqjrbt3ssrz2r3UhBFkfKKypjHllBZVXu/mdKycnQ6oc6eNFrYuHUHx0+dYeqEMTGVP7HgsNuZNeUpgsEgqzduZtXajUwaM5Lc7Ng9auV4UOPAuTOe5k9/f4vn583BUYdK6SHAIx8DJ4wfxxdfr+Snn37iscfCiiX5mC0hIYHf/f4PvPfuu/Tr14+27ZRWfBLRMPKJEZQX3eadxR/QrUMb+vTsEfOcjfNzeXXeDK7euMk7nyzHbrMyfnBfkjTuLUn5DGG6WCosSYyPY/LIxxFMVpyBEBu37+G7DVvQEyIlMYGu7VrRqEFOJK5o9aZRnEeDFNLczu3UtDYT7PER9Yzg94b7ghLb9q+0tJSvl3/Ov/2L+mcgGsx8/Nki5syYFl4QTcpUO2toYdV33zNy1CiVwln6Pq9du0ZGWirxdqvqGRAMBim4cYPcBtr5vsqKCmwOe3VcVvce8wVFCPgwmUwIgqA5lvcFRc6dOkHzVm0I6k3o7sDOTBRFvvxqBRUVFUydORu7Rs+w2pCWls4z8+YT9HlYtXIlJSUlTHp6OvHx9SuKvp8x8H//6c+a5xAEgedfeIG33nqT3//+DxHi6SFGvWLgr4m7NyV+CBEmaBJqJWjsGGhHHEeppDl2HDE+gjTMpGDiNFUY0dEEm6baBsI/vBZGGy2NNm4FfWz2lqEHOpviSNCpj3/9tktF0EC4J0hW0zQmtgmz6HGNsrlYVMbWU5cpdXkQhLDqJpKX2HkYAJvZSHaig5zEeLISHViMtX+t0cobl9vNuUtXOVd4kCKnD4/HQ1U1hVwVgKz2PUFfc6NL/Wa8xVepOrUZQ0IOljzNHnEEbh0nueOYOq3BohEsPoc+uUlE2WKOU1Y3iEEfgUpTzKRvqKoAa+O+CIKgrbrxO9GZGtZ6DaK3AmtO+5jrQ4FwVaneXHeVmNzazON28c3Sxcx74RVM5nuTgeemJbFwVH+O7jvI3zfuY0qPNmQmqJlpeb8Zi8WikEDu27ePAQMGADB48GCWLVvGxIkTycpSDnBdLhdWq5W4uDh69OjBv/3bvwEQREQf495Iw4wT10OfnBQE4d+BMYTHHreB2aIo3vhtr6puSNZmEuL1BgaTUK2gyUAv2QFUq2d8Th8tEuLITnWw5MR5ZnVqjsOk3SB4YKuG9NLr+Wjzflo1acjQXmGFp7y6Rhq46XQ6xg0L+2H/fOIcb3zwGYnxcYwbMbhOy4RoNGnWnCbNwkSuy+vn1KmTbF+/Gq/HhTco4guG8AVFvIEQ3kAQrz+ExRFHXGomCWmZOJLT0Mt6vtSmppEQ8FThKbqOs/AGQZ8HMeBDX/256k0WElv0wGgLx0B5wqvi0jEqr5zAltsWu4x8lvejKT66hcxeaoKjrn43BXvXkNUjXIlo1djWefsacRlZ2DUac4uhIO7S29i7PR5ZJlfNhAJ+rAYdBg3FX+QYoojP48ZsjR3frl+5TF7DxrXGMNFgDkeH6glFyGjj5tVLrNq4lT88NyesqnJWoLPYVQSNwWaN9D3SgjneRFMc5OlNHC2v4MubNxiVloHeGf6u5eoZee+Z+x0DRcSY44OG2DhOJXb0Mccb0ahvgjZyXfVUltUGURRn3/NBHjDK3f6IbWGVJ4DDYsCemU/LbrDj2894YspsxfbhpLiezr0HUHjpHF9+8A7T5z6nIF6kCZ8gCIyZMJFbN2+y+K3X6Tvwcdq27xDZLnoSqDOamfT0NEKhEFu3bGXr1q2kpGcxaNgTgEmboNEL4USA3xNRF+p0Orp17kS3zmGy2uPxcPTESZatXIPP40Lv9yC6Kgi5KhGd5fgqw+RKisNKTmIcWUlxJDss6GNMgCRiRq6y8ZY7KXF5uFBSwc1KJ25/ALfLS9DnJ+j1k2g2MSgtF6PBoCRlbBa2XLvF5QonT/ZoS6MGmSpixh8IsOfwCX4/s3aSVwsff/0Dv583HTQ8yAWTlXW79zO032OaSYpipwerxYzFoj3uuH7zFlnZ2bWqd5wuF/Y6erds3fwjg4YMw2wQ8AbEyIReImii1TMQJmiOHT5EydWLTJz3gsLmTL6dHHL7TrkKVBAEkpt1xNqgLUXHdlF55RSZ3Ueg0xtUzw05SXO/Y6AWJIImpdNwbu/5iqzeE9Cb6q6UDYl3HgPdgf8zY6AW+vXpzbYdu1j1/WrGjNZWMzw9eSJbtu1g6bIvmD51suYz3Gw2s+CZ2Zw8dZo//fXvTH5qAvl5sYvakhITWTB7Bj6fj9XrN7Hyh7W0atGMQf363FFCxmg0MqhvLwb1DZOylVVVHDp6gg+XfUUoFApfq8EI+nDsD+iMhNCRlp5OTk4O2Tk5pKSkKtQzvqBYq52ZKIoUFBRw/txZCm/fptLpwuPzEwiF+xFkNcinT78BkXNK8dzn87Fy5TeUl5cz55m52Gw2kFXWiwYzRTdv4Ha7adggN1IFX58+Ej6fj807d/OHFxbE3OaLb7/j6QnaTn6Hj5+kXeuWMcdn23b/RL9esRPOELZEa9G0dmX0t6vXMXlcbOvdWFi9cTNxdjuvPjf3jveVQ6/X8+TwIYRCobAtmt3G+JHD65xbP4gYCOEY/eKCubz+7mL+5dUX63UvBELiHcdAX7B2C9/64B8lBk546im++vJLBEGgU9fugJKg0ev1PP/CC3y9YgUFBQUMGVqjDJNsmYxigITUdF576Xm279zFX99+j9lPTybZEXtO1CA7k5eemUZVaQnfbthKWXkFPTu0pGvbsNqrrn4ugsmKaDRjM8KYYYMiSpnCWwX8cvwMG7buRPS60Vur44feGMkJGgx6stNTyc3KoEFWBvFmPbhq748pQXQ7CZmsXDh/gQu3Sykpr8IVEgiGws/VkM5Ah3Zt6d5Dbc9XUVHB8i+/wqiDVxfO17zvDh0+TLMWLWsnHzQImtu3CykuKWFky/DnF1FGVn+PRjHAd9+s4MXnFxKSLZe2W/3D9zwxShmb5OqZTWu+Z/gobUtdCVt/3ED/x2tXDm7dupWFz4fdb/yCod79Zj746GP69elNw+ax1Y21IfI8s1qZMnUqbrebjz78kJZt2tKtl7Y7gBz3MwYeOXyY9h06oAWbzca0adNY8v5i5i8IK5CibQej4QuG7jgGBu6DbfjDEAMfSXLGT+wHkJygaU2cZg8aIzo6Ec9JqkjGSCbakwWp+W8Ffo5QSSpGcmJYnZ2p8tHcYSJDH375xBAHfFVUigEydCbaGO2RRCkoCZpYqLx4g1RgUGIcJIYrUqKbvANUeX0UlFZypbicn85fo6ygGHlsFEUif1sKijCdvIaIiCHhJKIoYk/PpmmjfHp060J8XBxBewolnvBnfLmonB/Wref0uYsUeYDMDvjKSqg8vxdTUi72FkNiDoBCrmJsmU3rTcxI1mb/L3v/HSXFlW17o79I78p7CgpXUHjvvRVGeO+9l0Cm1d3njvu998433vjuuO+2utWySEiAEFaA8AgvPEISILz33pXPSp8Z74+syEoTkVUlpG50juYYOaAydkRGmlix95prziW6bIhuG5rkOopjPU8uokmtjxDE4DuL89DHJOIteYY6MStwXhKxI5E0oj0fwZAQ9VxEjxNBHb3Ks/jGj2Q09S8eqqZXTKrn9XpZu+RTXnv9dXQK0u3Kwnb7NrVTE5jfqzWrjp8nyWKif5OK2QEAFBQUBFj2uLg48vMjrenAXxURzMZ7vf6b9nmKaRrFuuyXJCf/DfibKIr/LwBBEBbgb0Y45997SspwI1Lo9gUSzpK1GUBcKUGz+tFDRmdkQJh6BiDGLTC5fk1WnLlG37pZ1DEbSm1wQuObxaDj9f4dOfUwn79/vYNXOraiSZ0aIWPCfWlbN8imdYNs8kqcrN++mxKbnRYtWtCmbTsEym+2KSW5ADQaDY0aNSa7XkNsbi9Wlyei50yx3Y2zpJii5495euc6N08dw+f1IhcEHW4vdpcHp9uLw+3F5fbh9fj8TY5TqmKp3gS1zojebAzED4/dSv6VHxDdJWhNMSQ1aI/t6T0Kb57FVKUemV1GAfJWLYXXfiKudgv0xspd69YH19HHpxKbFCm5l/Dk9EFq9pJX1RRdPBbSa8YS1hPg+flj1GrdLeo53Lt6gWo5jaKOObp/N2Mn+asy5RQCcpNUa0kJy9Zv5j9mTkClUqE0lZL60ShBsmqS0DguluqCjq3PnpCNnoYWCy6rO3BdROs986Ix8Bol1EX5HtAAS1TF7h+oHNwOG8+fPiU51V+JL6lnJILGklGdOs19bF+1hP5jp4aoZyTUrFuPhKRkvvjoPcZMmkZ6apkdWfDvOC09nblvvM3B7/ay6OMPeHXwUDKryico/QtCgU7dutO6UzcePbjP+lVf4fV66dK1G3Xrhfbk04oeBI8TweP0KwwJi49aAwatgdZt2wfIGrU9H0oK8Ny/jjf3McV3HvoroH0iDwuKOX33Mc+KbAF1kej2J/GleaBK51/Mq/VaPE5/gYnP5SFepaJmYix1kjMx6TRoVSo8NgfuEgdPSuzsvPcEu8dLhsVEzwY1OXbnEbetNvq2yGFIzcyAlVkwMQOwYuchJg7oSWWxZe9B+nfvVEqcaUKqQAWdEbeg5sL1u/SZPtbfdThMUfT1lh1MGTVE8fhb9xxg6qhIVY0EldvGtt3f8eor8ucuJXzv3rhOz96vBJK/cn0qwgmapw/vc+v8KXqOmly6Xb4PTWWR3KgjzqJcHh9eS3rzbsTE16LY4ZEl98PxojEw//pJErIjLbolgia51WAeHf2G1PYj0Rkqp6D6A5EoLCrC4XAoes137dyRA4eOKFqcAXTv2pkr167zjw8/5rVZMxSPVb9eDjl167B+42a279zF2FEjSJApCpGg0+kYOtDfB+/i5SssXLwMnU5Lv949K6xqCEaMxULn9m3o3L5N4Dmp34zUa8bu8vDs2VMe3H/A98eOkZfr71UoiiIeUUQQBMTSfzWl/5e2S3O9jIwq1MquTdOmzVAbjIilxZVOj8itG9dYv+orPB4P2XXr0b5De3Zu20Jh3nOGDx9OWlq6P1EmeiKsj5av28j8GZND3lN5inKAL1evZ+rYkYrbc/PyEUWRxIR42e37Dx9TVM0AnLt4hfkzp0Q9h/1HjjF78njF7aIoYrM7MJsqV4D5w8mfcbs95ZJDlYFKpWLS6OFcunqdv330GVPHjiQlWdmWNxwvGgOvXL9BTnZt2X1MJiMTxozk82UrmD11UoXP6Q8oI7+gAJ/Pp0h2jRw1inVr1+J0e2jXvsziDMqS2sNHjODo0aMsXbqEyZOnhBwreP3SpVNHWjdpwKr1G1GLXsYOG4xJwU1ecDuJsZiZNOxVfE4bx34+z4fL1xOjVTGoazvidELAVswHqEuVMxIxE3wcad6TnBDPK83rQfN6IQWSgjk2sP52uz08evacew+fsOvSQQqKreAqdStwO/2PoHygz+VCLF2BqTQ6NEYj1dKSqVu7FsnxsRj1erRx/lyZKIqcunKbhUuXI6q0tG3XjpwGjVizdh143YwdPqzMsSKsj4rX62Xvvu945+23/HM1T+hcLdwCMhjLV66MsAoLJmbOnT9P/Tq1UKvVqEVPIOGvUwv4fD6ePHxA9jD/PC+8oEoURYqKComLiweQnb/p1AKPH9znlf7y5LPLJ2IvKsQUExOSCy2PeADYsmUz9Rs3+UXEjFyRgVb0oDVomTtvHgcOHWbJwo8ZM3kqmqAC8vIsPV8kBh48eJBqWVkkJCSEEKESqlTJpHmLFmzbtpUBAypP5v93wkubKY0GEbiClbqYZatVJYLmLEXUxYxZ5m36G/bGcA87FymmHhbFxuWxaGmKNmB1Vh0juHQk6pT7fOgEFe30/h/uY6+Lg84CAJpqLSSpQxNl4eqZhGxlz3LJqiqYpLHoddRJT6JOepJ/e4oy8RBXOzOgnJFszYTULAC8sWkAWIMCjN5gpGW3PsQ1tHL+9hPOH/oOp9VDYovBCIKKgkePCEdsZl0K719B7S7AkN1X8VzkIIoi7ifn0GbKK3EAfI5C0BhCiBkoI2G8+XfQZkYuEvUxiTiL8/AVP0SV0iBie8h5FN7BULVZ1DGeklx0sRWf+ImiyPovP6P/iLEUi7pAF4Jcu5ckY8V7xihBrVIxsUMTLj58xgd7fmBgRgqJFUgKx8fH8+CB/3dVVFREfHy87LiEhASKisqSpdIkpioGrlNCdpS+ClJyshGVl73/KyCKYnAW2Ey4vvUlg0P0cclTQjttTEA9E07Q9LcksTb3CcMSU9ETqp7RmXXo1Wqm1a/FrsfPuJxbyMDG8osK8NvotWpUj70nL7DvxDnGDXyFKkEe/3KNAxPNeqaOHoooipy4eJNPvvgSo8XC4CHDiEkKtTcJb74XXoUcDn+itSyuxxgTSU5OhHqh17U1TC1T7PBQaHdjdbgpdniwl26Xmii7nJH2L6aEeEzt/H7e7pJCnp8/giExg2rdR4fsG7yfy+nB67ThyH1ASqP2Eecf3c7MTfGNk9R6RXlBnHvlJAnZTRFkFiWiz4st7zFVW/mVTOHEjCiKFD97SJ32ZXaMcv1mrv/8I91HK7sKOB0OVCoVWq288kpucub0CXyw6Ev+NGMigt4ApQnV8oiYYEgEYnCzc51Zh6vERWysgVHqKpwqKmRj3lNejU8Gm3/hHKwwC8eLxkADah7hIEOh0ENACCh2m/3Oe3C9DFBpjdw9vhMatYJaDQLqGShT0MRUqUlDnZ6dKxbRZ9wMCCNnrC4P8UnJjJs1nx1rv6JBw0Z07NRZ8TV79+5Np67d+XbLJvbu3MHw0WOxKNi4SAu8jMyqjJsyA6/Xy/Ejhzh6cD8JSUkMHDQIS6zZf5cJWpiq3Da8QQ1XpcWt4HGWVRTay6ovJVWZIAjEqwWSq6XRpFqa4nuQswiU+tV4bA5Fi7OqZgPja/ptcx4UWvnm3HVaVUtjQKemaM1GRWLm5qOnmPR6UhPjI143OAkR3EAX4OnzXB49zWVQr64R+0kJjBUbdzJqyIBAgjP4280rKMSg12NUSDY7HP64o9dHJwmePH1GanKS4mTg/r17ZGT65+LB96pw9UwwvCVFHNi+kZEzXkcQhIDq7ZcQNFJsD1aFxqemEddnIgVnD3Dr3kVqdOiP1eU/rtGgCdzzwvGiMdBT/BRXwSN08ZHJd7fDC2hJaNid3JPbSW71x8L8RWExm/nnR58wdtRIRTVLty6d+P6HH1mx+msmjB0tOyanTjYZaZP56NNFvNqvL/Vz5O2nVSoVo4YPxW63s3rdejRqDWOHDlC8/0toUC+HBvVycDqd7NjzHRu3fkvNGln069UjwqYGIns6lAfJzkytVpOenkF6egYtCV0/hjeBDrY0U5pjunxiyPM1a9ehZm1/weC1y5dYt2oFPV/pS/WsqiHHCy9IOXj0e9q2aVPu5xSO0+cvUiUjjaRE5fX88rUbmDt1guy2sxcv06h+jmLx5J17D8jMSI96Dg6HE5VKJfs9Sfju8DG6dqxcs/vL125w4fJVpo2X/02+KOrXzSa7ZnWWrfmG9LQUBigQ7OF40Ri4dcdu0iePJ07BUqhqlQyaN2nMpm07GDKgXyXe0R+Qg9lk4v+8+3fmzp5FnEKj+JGjRrFx8xa+27uHHr3Kep0Er086duxI9erV+fu7f2PSpMmkpctfF0ajkekTx5H39DFfrFhDVlqiX90SdI2FF4kIgkDHFo3pkFOdQmsJW/YeIq/ISrMaGXRsVMdfsChZiGn1gblQ+HGkOZ/kLiDnYKHVaqiWHEe15DhoUjdknwAZ5FC2zlcZTAF7s/C5nCAItGrSgJYtm+NRGzh+/hpr1q5j5KBXiYuLDSVYShUwkhp89ddfM3qUMskcgiD1zLYdu+jdqydarZZw7bRW9CCKIrt37uBPb8wPvJY2iKDZts1vhyYhPNYfPniAjp0j55jBePTgPqnp/jmNnPodYNvWzQwcNER2zauEw4cOodPpaN26TdRx4UogpeMH33O0ooduXTrTuElTli5ZTNNWrWnZum3IcZTwIjFw9pw5vP/P93jr7T+BEHrPkM6vfcvmfLN1Oz/++CNt2kR/7/+d8bss4dShIh09pynCpaCiUSPQjFhuYKMw4rIuQzWMVMfIaYqwEl0+lYKepsRSiIfraislYRXBV60u2Ue6WkcPQwJd9PHc8jrY48jjlKsYjyh/kQRbUCkhvJ9I4Y0HFeoz8yLQ6I0kN+5KTO12AbuxcNxZPo3O4ne01pxiTp863F81k+7qQ2Q/XEn9Z2s58+EwHqyexf8ZYKb6nS9pXryFS5+N4cFqv2xbr3KhTqyFoFKeDHqeXUaTEtnIEsBrfYLKnKI4IdVq1Qg6c1S5s+jzoNbpETShC3upZ058Rga2BxdJbdBc8RhyWPz5p3Tq1Y/kNOXKMavqxXuzNKiSwtwerdh06RZXnheUO75169YcPHgQgL179wY8WsNhMpmw2+1YrVZ+/PFHGjTwJ8KT0KFHxQOUqx8EBJoQwzkqloD9d0AQhP9HEIR7wHj8ypmXFibUGAQVW0ty8QbFEbvLG7BxsqjUDNQlsiHvKUWeyBjoLHIhCAIDs6tRKz6Gz366SLHTFZGgkyA67fRu1Yj5I/uz98gPfPbV11hLysaKLrusx60gCLRs1pjXZk5l1LChfLtzJws/+YTDhw7h8/kUvb+VJkLRYNFrAo9fgvJ6wmjNcdTsPID42vLSXYCD73Sh9qUlxH3/PmMaWzj8l27UPL8EzY7/G+Pe/8XmGU3Y/2YXZqTcw7n2PzDv/T9sntaM/W92wWjQkPvzbqp2GKB4fJ/HTdG9q2Q1aCa7/fHpQ1F7zRRdO0XVRmW9vIKJGUvp/wuePiI2OTVqnNz37WZ69IsuBw+GR9Dw3sefMW/axIikaTgxE74wAL+FUnCvDPCrZ/SxkQnWFrFxvBKXxPq8J+R5y9QzSnjRGJiFkUI8FESZa2hRUQ8L56iYzcAfiAIB6r4ylpK8p9w4usNPOMoknZMzs2jScyDbly2kyOa/P4VbwGm0WgaOn47T7WXZF4twu+W/QykBOHDocEaMGceGtWvYtH5txHg55YRaraZj1+5MnT2XTl27s2ntGhZ+8glnzp4NsXEIVFIHETMQpKZxO0IW7RqTEY3JEHiAn1AJfkjwq2Ai47M0Ru76kkNmnIXxLeqRk5IQOKbHZg9cw/peU1F3m8jkL3Yxb8lOztn0qJr3Y8p7q+kx+//ilVn/QV5sDdTVGrPm0Fk6j57N0BlvUBJXHXU1v/f78m+2Mm185GJeImYeP32O6PORUTVL9hzXbN7BmMHKya81W3YwcoB8A20J+386S6e2yj0PodQy49XQWK103zJp1ViLi9i86ksmzXr9hexsg2ExaIkx+C3MJIWMIAgkNO1Oav1WnNnyJR6n/3tXImbgxWOgoUZH8i4dwetQjm+6uFTM1RqSd27fL3qvf6AMarWav7z9JvsOHGDfgYOK49q3bUPTxo349IslAbVIOGJjY/jTG/O5cPEia9Z9ozgO/AnKaZMm0qd3Tz7+Yik79nwXdbwEvV7PkAH9mD97OvXr1uGzpcv5dMkybt25GzKuMsRMcIx0+UTlhzeUaAkma8pLVgWPk8bWqVefkROnBYjZcPJHb45BZY5n0uvv8L/++QnfHvwedWpNpr7z/6HHhNfpM/Ut8o0ZaNNrs3bfcboOm8jQGW9gN6WgTa+Nz+dj36GjUUmFE6fP0qh+DnoFB4Z9h47Qs0tHxf03fbuLwf16K24HWLtlO8PLIRHOX7pC4/ry63E53Lxzl32HjjJ13KgK7/NLoNVqmTFxDFXS0vh48VcBdQsoq/dfNAbOnzWNTz5fqjiHAGjTsjlGo4F9Bw//0rf2B0qh0+l4c8F8li77irPnzimOGzp4EIJKxdYtmxXHVK1albfe/hPbtm3lu33++5OkbAbK+rx4nCQlJvD6jMnUr1OLdz9dyvFTZyp0vjEaGN+3C/NH9cek1/HJpr0s2bqPZ/mFgeLG4CKVYEh9aSRCRvpXgrT+FkuKAg+foyRAzPgcNry5jwPb5OBz2IJIHPkeoOBPxLdv0YQZE8f6iRmIsCPTxSWjMsczefpMVqxaw6LFS9EazUyfPZfeg4bTf/gYitz+cet2HaTboFEMmzIHhy4WXVwyBQWFPHj4kCZh/YCCsWHjJoYMiuzjpRU9eDwe7t29R42gNg7BsV4URS6eO0eDRtHdIXZt20yvfgNC5nXBBIng9VBSYiNWgRyUw/Hjx8nNzaVv336B+0p59yGdWtmSE0KVOlLBQkxMDAsWLMBWXMT2jesqdG4vEgN1Oh1Tpkzl04ULQ2rhwt0zBg0azJXLl7l86VKFzum/I36X5AxAHFoaE8NFisnDJTtGqlZ9gINchTHg70PTnFjuYecO0RuyCwjUwERLVSw3fXZOeAuxidG9jiWSRiMItNLF0NuQSJZaz+p7D9mU95TbzsgFc0UJmn8FKaMEOdXMxo0badq0Kfv378dut3P48GF0Oh0HDx5k6tSprFy5ErfbzaeffsqhQ4eYOHFioMmU6HXjKX5CQl3lCaUn7ybqhJqKC1tvwT3U8fILdgBP7nUMVZVJFX1MImrHM7TJoZPN2MzQajL746vEZFVcirh/wyrqt+pAZvWaFd7nRWC7/ZhpLepx5XkB+2+Ftk5xu9306tWLM2fO0KdPH27dukWXLl3o1KkTp0+fZsiQIQAsWLCAr776ir/85S8sWrQIgP/5P/8nvXv35q9//WuIz241jJTgIT/KdaZBRaMKVI0/KHZwu8BeqQeQLAjCiaBHhEmzIAh7BUE4L/MYDCCK4v8URbEasBJ4vdwT/TcjRdTTXBPDdkcu+d7Qm59E0BhUKkYlpbHh3kOeu1y4SyIXDe4SJ3UTY5ncvC4rf7zA6QeRsSd4Mqd2Oxjftwtj+nRlxfotLF65HrtDfkEdXv1jsViYMG4cc+fNIz4+ni8WfcbSxV/w4P79ClechBxPp4kgZCy6SLIhHMGqGYgkYXQGTeA5Y1Diyxj0nNK+LxIDHQXPUGt16CyhE70YgybwyD25m5yuAwPPB8Pn9eAseIY5WZ4AFkWRZ7eukFqrvuz+Es4d3EnzbsqqR6/XS2F+PonJ8irP8GSFz+fjvQ8/Zvqk8eU2n4XI6i65in9tmK2Kzqwrfd5foWpWqxmdlM5ReyHXXKHH+y1iYA5m7mLHjvJ8wISaGgrWqMHwW/dV/OH4Ffot/J6gLiV0q7fqRlKNepzYuAS3wxYgaKwOj//h9HuGtx00lm1ffoLD5v8dSARNsJ9xg9Yd6NZ/MJ9++B7Xrt/E6RFliRYAs8XCpOkzad+xM8uXfM72zRvxer2K46EsaV8lPZXJU6cxZ+5cioqK+ejTRXy5dhPPraX3TpmmqILHCW4Hant+qL1XkHoxnIxxl9gjVDHRCBq/AkaZoJGOF3zc4GN6bPbAdfsiMfD7k2do3axRSB8gCG1+u3LjNsaPGAKUJdokYutZbh4Wk1FRNWMtseF0ukhSsAKS8PPZC7Ro2kgxkff8+XPi4uIizlOCdD+TmonbSqx88+Uixsx4DY1WG7hPmbTKxLHVGan8lBBn1AYUYxJBE3E/MCdTvftIru/5mvyH90O2/doxUBAE4pu8yrOT23CU2HA63DgdofMNt8OLMa0WuvjoFfs+Uax0DPw1+i383qBSqZg2aSI6rZZFS74MSUAHo3GjhvTu2Z1/frQQn0/+cxIEgRFDh9CieTP+9t775CnYmUhIS03lzQULqJFVlX8uXMTeA4cqRNIA1K5Zg3kzpjB94jguXL7CR4uWsG7jFuz2ijWwBhSbR0uQEl7FTl/gkWur/H3S6fEfR1LABSfTpG0QqbR5kRi4dvN2Rg6S7xUE/vnX/iPf06urfE+Bk6fP0aJJI8V18vVbt6mRVS2qIsbhcGK1WqPagp08fY7mjRsqbg/HvQcP2bJjD/OmTfzVyOny0KJpI4YN6Mv/74NPKSwKJY5/7Rio1+uZNXUSHy5aHPVa6NOzOw5ndBLS4/sjBpYHEX/PjDcXzOfGjZus/2aD4tg+vXuRmZHO+jWrAHkFgkajYfqMmRhNJj776ANc0rpXwXarTr2G/HnuNNxuD3//7EtOnbsYen6lczU5MqRl04a8NrQ3o3t1ZN8Pp/lg8XK+3b0Pj8cTsW6WEE7QBM//gkmXYFJGImbEkiI8Njv2Z3mBYho5oiaYoFE6d0VoDWUPXiwGrljzNRMV1J7gt9/Kzc0lu5Z8P6wtmzczuPT6lcP+fXvp1jO6ou7Rg/ukpKVjDnKfCP7d6FQC27ZsZsAg+Z5fcjh16iR3bt9myNChFS4MqCjcgkbWTq1fnz7Ub9CQJQs/iiCOf+0YmJKaSu9XXmH1Kv91ptR7Z+KkSdy8dTPq+3F5fZWOgb9Gz5mXAb9LWzMJGlQ0I45rWHHgo4qMpYhkX3YVKy58UW1H6hMTsC7LwYJRpl+NBLUg0Fgdg0f0cdFXghsfDVUWDILyPlJfGoBktY4eah0ZCUZO24pZc+suBrWazmnJJJVWwpRncfZbIFi58diqnGhXws2bN2nSpAkAzZo148CBA4FJWEFBAUlJSVy9epXGjRuj0Wjo1asXs2b58+i22z9gquFnaaX+M8EQvW589gJ0ifLB2Fv0EHVMunIPnJJcVMYEBEEIWKBBWa8a8KtmRK8LIUqfHMfzO+iTq8tuq5cRmXg8uX8nNeo3IrNWKMHz2OoivfT3IGdt5o3NQF0USYBVBoPq1eDEg2d8c/k+w7IyEQQBrVbL3r17Q8a1bduWv/71ryHPffDBB3zwwQchz/Xq1YtevXohh7pYOEsRetSYFK4d/W/HBz8XRVHZCw8QRVH+xCOxCtgO/H9e+Kx+I/hKjVZiVBoG6JLYa8+nnSGGKkGJJMnmTCzxMjoxjS25z+mYkEDNIGszZ5EroDxQOz1Mb1GPo49zWXzsLONaNwiY0GlMkQlli0Zk9oj+5BUWs2T1N1hMRsYMfRU9yDZoDkfjJk3IadjYb3excyc7t28lPiGRbr37EqNgCxANIaRM6f+Dk1vBlmZy0Bk0/obJQQmuinj1h+NFYuCjE3up3j20Yjw44VaS+xi1zoA+Jl72tR+fOkB6i+6K55Z7/hg1W3eJev4FTx8Rk5SKWiHpCHB0705ad4/eIDEYX3y1ivFjRpOcFB/wI1ZagJQHKXksJYi1Zv9v3lkUeb9SCwIDLckcsxfywOOkbanV6G8RAwUEGhHDaYpoSixqBZvUOCpnb/IHlGF1uInPrIk5KZ1TW5bTpO9oID7kmrE6PVhi4+g3YRYbvvyUgeOmEBNfdv+3ujyBeKGPTWDSvLfZu2U9Pxz/nmEjR+MsvZfJKSLSMjKYNnse9+/dZemihaRlZtGr76sVavgrCAKdO3WkS7tWFOU9Y9vOPeQXFFKteg1e6dsPScQnETOCx4ngduIrrYgUjGZw2CpkVRZNMSP3nJJ6Mvw1pPGeUlWSxuRfyL9IDDxy6jx/num3dBS1+og4ceiHE7Rt0xaNRiNrN/b1lp3MHDdC8bxXbdzO2CH9o763A9//RJf20XshbNq4gZFj5S2FwiGKIl8vXcTUufPxBd2jpR40wZD+Dr53hdtzBiPY0g+IUJC5RS1ZPcfz6PutmNNrElfLX4n6a8dAj90KWIht1JeCs9uJbzYYQRBwOtzog5IbbocXS7WKJ3T/QPno3LED2bVr8e4/P+DN1+fJqilq16zJ6BHD+Nt77yuOAaibXZs3XpvLkq9WkFWtGq/2jX6fr9+oCfVz6nL2/EX+uXARLZs2oUvHSCtXOWi1Wgb08as3Hj95yur1m3DYrDSsV4cu7dsqxtHy+hYGEycOjy9CLZlkUuPyiYqqbSWEWxSCCr1GkLWzeZEYWFhURFbVKornsXrDFsYOU1YtHzr+A2/NmaG4feuuvbwxS7kXDfhVM9EIIoDDx3+M2tMmGE6nk5XrN/GX+XP+ZcSMhIy0VN6eO4MPv/iSwQMHUqe2v0jyt5gHJiUmMLBvH5at+pop48contOrr1R0OfoHokGyERw6ZDDnz1/gk4WfMnfObOSm3+3atcNsMrFs8SJmzJwl+zvUih66tGtNk+wsPvrsczq1bkHbVi0AeVWfT2uic9uWdGrTgv3HfuTvS9fQp0MrGuWE9v2VU6IIRjMxBjNj+nZFMMdy/cEzPl+1Hp/LRYeWTWlWJyviHIMJGQmSSibwdxC5IhEzflImlGSS1vWSrVrwPir8/XDCFToVgRSfXyQGVsvMxGQyhczxgsmMFStXMX1aqO22ZG3mdrt58uQJVatWld3X4fFy9dKlEJs7Oezatpnps8taD4cTMz6fj8ePHlGlinKsDsaTx485eeIEM2fNlrfSrIQtWjTIHbtJo0akpKXx2Qf/YPzUGSQk+kn3XzMGWkttlnNycsh78ogDe3bSWyZGStZz/ftHv7/8d8bvVjkTjDpYcOLjPspVN3Wx4EbkGspSPfBblzUmllvYuElJoFmWEjSCiibqGBqrYrjiK+Gkt5CSKEqaq2GEh0oQaGGO5RWvhT5V0jmVW8CaW3fZ+eAxj+0O8q49rZCK5mWAKIrk5OQEJHH79+9Ho9HgdDqpX78+CxcuZNiwYYoNpwSVGpVeuamy58kFtGnyizpRFPEWPUAdV1V2O4An36+6CUcwUeN5diWqaiY+I4OSu6cxZzULPFc1Xfmcnz96QElxITXrN1Ec81ujVWYK7VOS+PLGbZwKlXUvguDeS42I4TJWPAp2gy8rBEGoE/TnIODyv+tcKotij0hvfQLn3SXc8chX+KgEgcGmRM4VF/NTXmRFZHBj9Y7pSQzOzuKr4+c5fDXUciJc0eBzlJAYF8O8UQPo17EVX6xcz5L12yjOz63w+ev1eoYMHsz02XPp1rMne7/dytLPFrJr+1bynj8vd3+LThNUhawKPAKqmkoQLJUhZuS2+zyuF4qBsVXrolIH9dIJe417P+whq23ohFIa43U5cJcUYIiXJ/R9Pi8Fj+6QmFlT9tjS53Tu4E4ad1G2/BFFkUf371ClWhlBHa0C6PgPP1Crdi2qlONvXhFI1k0SlNQz4ehgjCNJpWWnLe+FzyEaVKUEzVmKyp07/IFfD1qDkVbDpnFu93pK8p9T7PBQXKqekeBW6xgw5TX2bFrH7asXQxJ2VpcnkBS3e3z0HjySpm07suij97lw4QJAVCVN1WpZTJz5GvUaNOSrzxeyfdM3stYmOrUQkRAUNXpiE1MYN3IYr82bS9PGjfhqxUo+/mQhe7/7jqKiYgSPE5XbFmEbqTKYZIlzCCVm3CUO3CUObE/zKXmUq6igAT9BUxF7M/ATNMFEjidocfZLY+CwAcqKPbfbw4kzF+jQpqVsgvbO/YekJCWE9JIR3M7AI6+gEI1GTWyM8pxNFEVOXrxGi6ZBdhdhVfolJSWoVCqMxuhFCNJC+8C3m+jedwAGoymqUkaCHDEjZ9sXDElJExzXJXWoIAhU6TAIj91KwcXfzk7HY7fiEzUYqrag+FLZgj9cQfMHfn1kpKcze/o0/vHBR4oKlCoZ6cyZMZ33PvyYh48eKx5Lr9czd+Z0qmVW4W/vvR91LABaA00aNeCtebMxmYy8/+nn7Nq3v8JKGoD0tFSmTRzLa9MnkZSYyKdfruCTJV/x/U+nAj2iKgJJLVPk9JJnd/O0xInV5Qmo7PPs7oCCRrI9UzpOOMETqVj1Kd4TXiQGThg5VPH9PX2ei9vtpmoVeXX0oWM/0LGNcp3amQuXaJhTN2oBQUVUM9du3ia7Vo0KEy2fL1/DnCkTKlS48FvAYNDzzmuz+P7Hnzh87Phv+lp1atekTu1afLv7D/vGfwUktUCjRg3p27cPH3z0saJCsHGTJrzSpy9/f/ddrFZryDapyl/wOEmIj+dPc2dQYrPxwadfYC1QXtP6tCYEQaBHx7a8NXMSD548473FK/nx7MUKKU8kYqROzSzmjR3Ka5NGYXM4+GjFNyz6ejM/X7yKxyN//w8mZiSlDBCwMXM/exIgZlxFNkoe5WJ7nIf9WT72Z3khxwl5T2FrfclStjwEz8teJAYOGuAvoJEjxM6cPk1OTt3S3rNEKJvWrl/PsGHDFM9xx7at9C3tRRO8dg2O5blPHlClSkZAGS1HmuzdvZuer5QVL0QjVkRRZPny5UybPiNivax0D5KgFT2BRzTI2aNJdmg6tUBGSgrz3/oTG9es4tqV3y7FpRU9dOnciaKiYk6fqZjl3x8Ixe9aOROMmpi4W2pLVh35hWUWRvJwcYZCGkWpbFWXqm0KcHMXu+LxgqETVDRVx+IRRS77/EqeBioLpihKmnDYbxfSO9vfzLXA5eJcfiGHn/iJGc2dB9SJtdCyWQ1MWvmvLRqJE6zAsd2+jSnIhzEaSi2jKgTHvRMMHPgp+/bto2fPntSoUYP4+Hji4uK4dOkS69ev591332X48OGBRlLBDaeM1UObQ0mkSNGDq3hLnvt7xShUTHlzr6NRUNQAfuImJiN6rxmvO0I1E25n5ip4iDY2jYQ05cV94DXdLo7t+IYBUyvnkGVVmbD4yq9crQyqmIyMrF6Nr27cwdOvO+bSG07e9ejJygdPlc8jnGgEf3KyMTGcLW18rVK4xl5C/G9BEHLwF4vcAeaUM/6lgNXjw6JRIQgCHbTxHHIWUOzx0ai0Z4eknnFZ3egsWvqlpPJzUSFbHj5iYEY6eov89RRr0DG7czNOPc7lpxv3ad+4Tsh20V4SaBwoNSZMSYhj3qgBFPlUrN6+F5VWz9iBfTDFKU/owhv0JSUlM3q8vxr5zt37/HDsMM+ePcPtE1FpDVTNaUhi1RpodfqQBsqmIINTk1YdUSlZWUjES3CiK1pyTFLdPPlxOwP/xz9/cQxMqtcycMxw8uTR2WOkNWyDILO4jTFouH5sJ1Xa9lW0KntyYh91Orwie2wJeY/uE5eSrqiasbm9XDx+kFaduil+FsF4/vw5J0+e4rV5cwOKmV8DlVHPSMjWGolVqRltSqWPIZFij4i1tBK2xOvD6vGVO0mu0LmhIhszF7HSMKA9+wO/NaxuaDV0Kic3L6Ne5/7EpPjJQCm5bdFr0Gi19B0/k9PfbePpg3u06d4nJFkerGKITclg3OwFHP9uF3q9nuxsfyWk0yMq9hXJqlGLKbNf4/Gjh6z+8gtiE5MZMHioovVVCEoJgOpZ1Zg1eTw+tY7rVy6xbdtWrHlPELwe4kx6WtSqSs3kWNRqfxwQzLGBibxEjsjBXeIMXCfBhEqwgkZjMuKx2QMkqJyCxl3iKN0vlLDw2ByBZOzAgQN/cQysmVXNX7Ep472+bMM2JgzzL6qlKkkJoiiyZvMO/jy3rJoyXHWz4putzByvrKoB+O7oD3Tr4FdwK1Xor1+/jmHDlY+j1wiBhf71K35f7RrZ8o3WoWL3rBiDJuo9SNqemWCi0O7mUdDcXbqfVW3ZmYJbF6g39j/IaNsfV9DxXE4PbqcHt8OL0+HG7fB/zx67FZetsFQZ44fGGDn/1ZniAuM1Mal47YVYbx7HUivSs9zt+O9lw/ivQnx8HPPnzua9Dz9h/tzZxMiQkHFxsfzl7TdZtORLmjVpTLs2yn2VmjRuRMMG9Vm5Zi2DB7xa1l9ADqXxq1XzZrRq3oxLV67y/qefU79uHV7p0a1SaonG9XNoXD8Hr9fL2YuXWbNxC06XC1EUSc+oQrMmjcmqWTtiv2Kn/34ukSlWl6eUSPEFYvvTEicmrZpip0CM3h9Dpfu+RJyHzwOkY8lBsi2U4HHasZiMLxQDzSblnMNXX3/DG7Omym5zuVycPHtOUTUjiiK79x/inddmIWr0iv191m7eVq5qZvvufSxQOI9w7DlwmOaNG1bI0va3hCAITBo7ii07drF59Vf0693jN3utju3asHn7Do7/dJJ2rVuGbizHku8PVAzB9IukoKlVsybDhw3l/X/+kwVvvCFr3Ve9enXmvfYany5cyOAhQ6hdu3YIMeM/oP/+16NLJ9q1asmqNV8zfcLocslFlcdFny7teaVdMw6fOMN7KzbQqXkjWtbOVNwnXLkiCAKdWjWjY5McnC4Xpy5cZemGb/F4vAgaLTWrZdI0O4tUoyYQV4NJGTkoKaj98z15BY1oL4EKKmeC50r37t8nO6f+C8VAufuFTi1gc7rZt28ff337Ddk15ZMnT3G7PVRNS5btAFpYYuPB/fu8Wo4V2bdbNjFl5pzA64ach0pAFEWuXr3MK32Vi4mCsWL5ckaMHIlarcar0P9MDuGEjKQ6CYdcgaQcWWTW65gzfwHLli7BYbfTuFlzRVJJuh9K24PPRe4cwjF82FA+W/Q5CQkJVM9SbjfxByLxX4acAT/5ch87t7BRU4FQSUSHGQ1nKKIuZixRPoJ4tMRX0oJEIwg0UsfgEUUu+vxWavVUZiwV+CGDP1memJ1IvE5H57QyQsXt83GtyMo3Ry/g8Pgwpfgn3fFGPa2qJKN7HF0R9FvDY32G6POiVqv58MMPAZg1axYxMTEkJvqVKcnJyRQWFlK3bl3Onz+P1+sNaTglqOSJrJiM2uT++APaqm1kt4tuG6LbjsokX+Uj+rx4ix6iqxq9uavn6SW0qcp9ZOIzMnh+YiNJLeWDeril2c3v1tNjxMR/W6VQOCxaDRNrV2fFzTsMz6pKgl6+ylxCNGImHIk6NXmlfU6kxtfnKaYxMQi/A4JGFMXh/+5zqAx8oj+hbFaH/ra66OM55izEYxfJ1hqxaFQBggbAWeSkeWwcz9Velt+9x9i6NaCIgLWZu8QRknRrUyszkLyTJm4+hw2VwSRL0ADEqnzMHDWIQoeHrzZuR2cwMnzoECzx0atudCohZKKSkZlJv0FDA5WLuYVFnD1zmqs7NmErTRy5vCKJaRk0adWGmLiEQKK1LOGqifDttwRZrMg1SP4lVmYAtvvnicuq80IxUAmukiJKnj8ko0kH2e0Fd69iSkonMayPgvRe7UX5uJ12YlMyZIkZSTVz/vBuOo2YEujfEw6DWuDu9St06/lKSFJbbnLn8XhYumQxf35zQdT3JgeVwRRYZEgJYyVozYZAwrjsOf/7dhY50Vm0uKz+aXqqWkcHfRzbHbm0V8dX+rwqihg0pKPnGlbqUD6RHw6JdKwo7FF6nfxXhDcoTlgd7sDvvNjlo9WQKfy8bQW12nQnpkaoUlayMGvWYwAPr55j+8rFDJswLYKMlMYJgkD7nn0xaFSBxY9OXZZ4D07CQ9kCKTE1gzHT5vD44QOWffEZaampDBo6FJ1aF2KnIyUU5KDyuqhbPZOczFf9REVJAbkPH3D6yg0OHD+B1+cDtwuf20WdzFTa5NQgSk4P8F8rkjJGImBC7ckq0fMhDBqTgQ1nrzETftUYKFmbXbp+i8T4WFKTk0KSMlKT3IiNAAEAAElEQVQyZdvuffTr2ydkvhVc6Xn6wmXq1Kqu2IsG/L2xTl+5yVtzlJN2zwqt+Hw+TDGRDWDDiw0KC/I5sn8vU+bMl7FEioS/yCDMkq80NlsdnkDslkia8Fge/rfV4Y4gdOJrNkStM3L/0HoyOw/H7SyfKAkmXoL/lSNppOcsWY0puXMK2/1zmKqGNvXVGqIXrfnEysdAZwU+3/8OsFgsvDV/Hu99+AnzZs0gPj7yd6pSqZgzYxo7du9h5Zq1jBs9UpE8UavVTBo/ttLnUT+nLvVz6nLh0mXe//RzcrKz6dure7kkTTBpoFarad64YaCviajR8/DxY86cu8iuA0dApcHhExBVKrLrNaBuw2bodLoQwkSyDpQKeFLNemL16gDBHjzvfJHiDEkVuWjxYv7jr3/5TeaBu747SPeO7dFq5fMSy9Z8w6RRykuZLTv3MuDV/gFyQI6gKSouxuFwRlXNXLhylZw6tSu0tr164xaPnz5n4ihlNdC/GoP69eG7Q0dYt3ELI4cq28O9KAa/2o8vV64hPj6OenWyy98hCF6fWOkY6P4v0m+hogj+9QXPo6pmZjJ+/Hje+8c/eOPNN2WvF5PJxFtvv82qlSu5fesWfXt2U3wdk8nIzEnKMVAqJAkvBuncqimd6tfkwPc/8d7qU3RsUo82DevIHUIWgs6IHmjfvBEd2vrzV6IocvPuA46fvsCjhw8R3U5wu9BpNTSrnkbDrCoRhTvuEnuIGlqa//n7DBplrdJUBlNgfV+hcy0tlvH5fKxavYb/93/+379qDJRIiXVrVjJ+/Hj/3FlTOv8LimcrVq3ijfmvh+wDZXOzb1avZPS48bKvIc3n79+6RvUaNWWLqqS5+45vtzPg1VcrZEN26OBBsrKyqBGlKF5aF4Rbm1WEBAk/TsQ5l773wH3OKzJ20lQ2rV+L1WqlfafOgXGBfYIU/tI5SeuV8s5J2q4VPcyaOYO/v/dPpk6eRFJSUqXek/sXxEDvf5EY+F+KnAGoipGHOLhOCdnIBxY9KpoTyyWsxKElU6EPjRw+cl9nwoQJXHnyhNatW/O///f/ZtKkSdy7dw+tVsuaNWtITk4mJyeHjIwGAMz55BMaNGjAXF0WCUL5ZI+kZkjMLrPb0qpUNIiPpUF8aBDNd7o4dvoWz0pl3wa1mnpxMdS0mNGUTpx+6741os+H/e4JLPX78uDBA8aPH49KpWLSpEmMGzeOMWPG0K1bN3w+H0uXLkWr1TJz5kw6d+5MQkICq0obRynBdvMICU0HUZL3RHa7+8kFtFVaKO7veXoRTWp0j2vRbQdBQNCU/RbCVTP2J9cxpNQkIa2sGlrJ0uzCwW9p0bYzlriEqK/7WyGudiaFNx5EPG9Qq5lSuwYrbt6ljUtPuq58maoS6lp0IeqZYILGhJrqGLmElQZ/VI//5ih0+4grXXx20Mfxk6uIy24f9TAHCBqsoLP440+yV83oqpmsv32fTmnJNIhNlD1usEetxmTEOOA1PB4PEyZM4Ek5MbB9Tg4ZGX7rhY6vjqRBclUe3LhMcnqm7KQpGHJVIEaTmYYt29KwZduQKuNnjx5w5tghrIX56NQqLHHxZDdoQnwVf6VGONFQaK+YxYpc4is80WU0aLA7PLjtxVgfXqdqlxG/egwURZF7R7bQuP941FptRM8cn9fDo3PHqf/qpMBzwQQUwP3vv6X5q/ITUin59+jGZdJq1Im64D66exsdekfv1yBh8aLPmDJ1mmIiQa6fRDRozUbcJf6qful3KT0nQSIZXSXKCpo4lYZehgS2luTRUhUb0icunCB8ESShw4kvqpr3D/wy+HyhCepggkZQqWg+cCKnt6/C63ZTo468YiG7YVNS0jNZ+dn7DBg5gcTUtIgxNrc3woaqTmpMhWPgsG6tAzGwT5d21G7QgJsPn6KLsYQswqJVMavcNgS3ExFIjIuhW5M6dGviX+CL9hJEUeTa/cdsPPozJQ7/7z7dpKVxRhJpRj3BJRjhxIyEMgWa/3oK9yYPRjAZGqy6uV1Ugr7U5utFY2C4asbuhU37jvDX16bj05ZdS9JnlpdfwMPHTxjYp1cIcSMdx+fzsfvgMf4yL3p/hC279zOwj98jO1w1I/299us1jBo3MepxwN+0e9XSL5g0p2LkdLB6RkooS/cuiaSxKpAygCyJIyH8vhWTWQuPoOPed6tJazccIay6WOoR43Y40BgtIWRMsIJGCdpSAsxcvQXF1w7jK7wDhsolJ//AL4fRaORPb7zOex9+zPQpk0hJTpYd1++V3ly+eo2/v/8hc2ZMw2KpWCGBLi65wjFwzIyeZGRk8O2+Q9Rp2ooGDRpge3w7qppQLh5K11+V9HSqpKcjGuNwCxpcXhGby82Zs+fY+PUqPB43oihSJasmteo3JjG5bP1r0WlINGrRa4QQi8ny7vvSPSBcPSM9LxE9Rw58R+s2/iLCX3se+PjpM27fu0+fHl1lt1+4cpW01GSSEuXXnIVFxTx8lsuggaHXYfhnvXrDFsaPGKJ4HgA79x3k7bnKPW0kFBUXs2XnHv40b2a5Y/8VCI7pPbp04sTPp1m8fBXTJoz9zfrgTB43mg8/W0yMxUxmhrwV3R94McgVuKSmpTF12jT++d4/mL/gDQwGQ8i6UqcWEASB8RMmcPToURZ9/gXTpk5RLMcOv06E5OoVin85QevggfP+B7oGDdj+3v+kV+smFfrNhfdvFQSB2tWrUisjKWBpJtpLsBUVcuraXZbsPorPJyIIAvWrpdO0dlViUhJDLMzkiBmVIXKNUtl+M4LHycqVqxk31t9r6deOgWdOnyY5OZm0dL8qXiJoJOzYuZNePXuE3FuCcw3Xrl0lOSWFuFJ1jhL27trBrNf88zY5wkIlerl3+xZDBg0s9zO5ffs2t27fYvLkKWXHCcp5hBcHSARNMH5pH5rwooPw4w4ZMYp9u3awd+e39OpbsXV9Zcgit6ABAeYteJP3/vF3Xp+/AFNQBVk0O/T/7vhdkjPleblXwcBTnFykmPpYZCv3hVLrsoc4OE8R9YlRtDkLxsaNG2natCn/43/8D+bPn8/hw4fR6XQcPHiQlStXsnLlSt544w1SUlI4cOBAyL7PRBfXfCVoPTHU1JTfMFtS0URDgl5Ht/TUwN92j5crRcVsvfcIryhiSrGgPV9EjfgYaiXGEiuKlZqE1Ig3ylqbFTzyN6oXRR8lV/diqtkBQRDIzMyMeN/r16+P2H/ixIlMnFj+Atf55AqamHTUxjggkpzx5N9GHVdNUXXjcxSBSoNKFz055n52GW16Y8Xt8RkZ5J7cSFJL+eqfYNXM/ctnyEpNoFodZRXOrwXb7duV3kejUjG5dnWW/nSFpuYYauojf4uVUc0oIQ4tLnxRidI/8MsgQsCSCcCiUVEYVGFQV7BwwWPllFhMC2KwlFYSSgoCfawevVrN2IwqHC7K58YtO0Mb1qxQbHiRGLhn337y8vPp268/tWvXjkrQVBQpGZmkZGQGFsrFBflcv3iOE98fxun24vT68Kl1WNKro0+uBuqy37sxzJ//l6hmvC4HDw5voFp3/4T0146Bd77fQc22PVFr/WnWcOLl6v7tNOw5GJNBflnx+PIp0us0Rq3VKvaZAbj60xG6jJ4uq5oxaVV4PR5ynzymc9/yKw23b9lMuw4dSElJgXJ8cn8pdLGmgO2SpPYK7p0E/t+5s8j/nFGn9pOUgFFQ00OXwC5HHi01sah+o/Z7VTBwBxsPcVClEkUgfyA6fB4XNrsbk1Ebkni2GLQU2t3EGbU0e3UcF/ZtQu0uoX6L1v4Et14TUMXY3D7ikpIZOn0+321cTVJaFTr1iN4gVMKLxMD1a9cg+nwMHjyYqhnpyuoZt0ORsJEgGM1gL6FutQzqVvMnAHwOGw9zCzh94Sq7Hj/D63Tjc7kxA/Wy0slJjFGc+Cv1oYkGXayJ524POy7e5p0pI4FfPwZ+8tUa5k4ajSAIsrP/pavX8fr0SRHPS0TOmrXrGDO4X9TXcLvd3H70nEEDa4RuCLKgefg8H7PZErrAVEjqrvlqCcPHTUSri65QDoZ0D7O5fYE+ahJJE07QSJBiePAYJQRfK4bEdNLb9ufRsbWkth0KaNCWxn452zGdKQ6XrTCEoPHYrSHqGTklTUydztiu7kOlM6JPyCxXNfMHKgaXS7kAAfx9Y955cwHvf/IpQwcNoJZC1W69unWollmFRUuW0bVzR1o0a1qh13+RGPjZ0uXEWMwMG/gqFov82iA4GRphLxhmC6XRaKjbsCl1G/rPXRRF7t25xYWT3/OstG+hxyeSlppKTk496tSpjc5Y+cI0iTSVw7WL53n48CFTJ/gr7H/NGOjxeFi6ah1/mT9bdrvX62X77u/48+vy20WNnmXrVjBj0jjF7YLHyZNnzzEZTVjMyuu1E6fP0qZ504i1gvQdSd+Zz+fjkyXLeXP29N+M+HhRtGreDIvFwoefLeb1WdN+E5cLQRB4fdY03v3gE2ZMHk9iwr+nYPO/IlwuV8jcKTxeJCUlMXvOXP7x3j+ZMXMW8QqffceOHalXuwZ/f++fjB0+hOpZ1WTHBcekF4l/VZIT+HDdt1RNSWJw765oK2J7GwU+hw2DTkuHhrXp0NBv9+jz+bh87wnf/nieIpsDnHZcVhuZCTE0qFmF2knxCObYCFImXC0TrqoJLo4Jx979B0hNTSEr3U+I/5oxsKCggKOHDjBvwZshz0vz54KCAu7cuUu/vn0jfgda0YMLNTu3beX1N9/GHSXVcOnMSZo2b4kgCLLEjE4tsH7dRoaPKN9spaSkhPXr1vGnd94pd6yEYGV94Lkg1X4wwlUsSiRMNPTs04/jR4+wcd3XDB05WpEIClf0BJ8DRJI2weO1Wi2vvT6fjz/6kDffehutVvsHMVMOfpfkjAMfT3GSivLkKhU9elScpYjGUXpfVMFAIlrOUkRNTOXamN28eZMmTfzN3Zs1a8aBAwcCE4+CgoKAbCsvL48uXbpQv3593n//fQwGA3VVZuqYtVzz2NntyCNRpSFNNKKJMnGpCEETDKNGTbPEeJolxgcUMy6vlzsFVk4+fMahwmIAdJfuoYnze2GrYv3n7NHH4BR0qFQqEjKyiKtWm6SUyGpSCaLPi/XyHkw125WSJ78uvLZ8PMVPMGd3AfxKlqIHV8te3+PEZ8tDlxlFNfP8CtpM5eaIAD5nEYLGiKCSvxziMzKwP7mBIbU28allNy451YytKJ+HV87RbcZv07LE/ej2r3Kc/Bv5DElMZVdBLm6fj7qVkK8GI5p6BiAFPW5EbmOjxh/V478aSvBSJLqxRImBDTUWbnntHHEW0FeTGGFvBn77p54ZaTxVeVj400VGN84m3VzWbyBYCi1Z3rxIDBw3bCBelZad3x1kx85dNGjQgE7dewb2/zWUCzHxCTTv0IWc1h0DXuN5BUXcuXGd26eOUFhQiMPjxen2QkjsFUD0E1xGgx5HejViq9RCbymLbeHqGbetmPsH11Ot6yjUFWiWWOH3UJpgy715gdj4BGLT5f1aCx/dRWMwYYqXr4z1edwU37lEzpApEduCk3i3zv5EjcYtIxbRUoIQ4Id930aoZsL91gEuX7yAz+elabPm8m9OBoI5tkKNM+UQrp4B0Jklmz5llZRWUNFFk8BRTwG1BTPq34igqY6J65TwDCcpUa7XP1BxiKLIrV3LqdZ1KFpjDMag6zKgoBEEGvUayv0T33Hp+AHqt+smeyy1Wk3vERO4du5nvl78Ca+MnERCrCVA4oC/h0Hwb/1FYuCYSdPwuZ3s2b6VZ0+f0qVzJ1o3axxamVlKzARUMy57SOPXaFAZTFTNNFElKR6xpAiPzY79WT6Fdie3i21s/fkqdrcnUOQkFS9Jl75PFPG5PBi0amqaTNRJiUfnViZY79sc7Lx0mzfHDUJlqryFX8T5h6lmNu7YS4+ObYmLjQkkBoLH7D18nE5tW6HX+6+t4ESu4HHy7HkuDi9UrVEbZPrYgD/hsHrTRkYNGRBxjJBz2fANYyZMLvc9HNi3h0ZNmpGalh6xCK1IPzTJgimYpIFIBU0wMRP8bzBJ479naQOKUek68RcixJPZZTj3D64jre1QvIQSSVqDIUQ9I0fQhEMbZhunN2jRNe5D3s9bUGn0aA3Ka4o/UHG43R4+XPgZs6dPRadAAGo0Gt6e/xqfL11GqxbNFYkXs9nMW/PnsX3nbpZ8tZzJ48fJ9moIxovEwNdmTiW/oIC1G7dgdzjo17sHtWpUj3iNaIpCCS5fWRPksl5gAnWya1Mn25+olKwnc589496tq2xdfwKfx41G5b9PeEV/DwFPac8s0efD4wOTJZas7Byq1MgGhfWhTi1w9uSP3L15g0kTJ/4mxShfrFjDtPGjFL+Tles3MWHk0JD5W3AMO332PPXqZmM0Ri8KXbtpG3OmyCusJRw5/hNvzpmuuF163a+Wr2D8iCEYDC/HnEcppterk43FbOYfH33KW6/NLvd3/0ugUql4c94s3v3wE96YPx9z5dzy/4AC7HY7y1euZMK4cai88mS1wRzDgjff4pOPPmDkqDFkVq0KRCab09PS+POf3mbViuXExsYyuE/0fkQvEv8a1sqiYa0s7j/N5fO1W9DojQwb0IeUxEilTDRIqhkgsH4KKGFUKhrl1KZB9TK1ls9ayJ0HT7iRV8zRYxcQS2OaEOSgIgj+WIhGhwikZ2TQoH49sqtXjbrG3bJ9B0ajgb69e1X4/CsKURT57PMveHPBfNntbkHDsuUrmD0zVM0X3Jfw280bGTR4sJ90EeSLakRR5PixI8yZ/2bI88HEjNfr5dnjB1TPSINyLL4+X7SIufPmVZqcjpYDKU9F80tIj3YdO3HuzGlWL/+SyVOU+4gpETQQShRJ5xBMKpnNZqbPmMk/3nuPN976EyqV6ldzqfiviN8lOWNEjR0vV7FSB7NiT4s4tNTFwmmKaEIsGoVxBtQ0I5Yb2MjFRS1MisfMycnh4MGDvPrqq+zfv5/69evjdDqpX78+arWaH3/8EYAjR46QmJjI//pf/4tFixaxYIFfIicIAnW1JupqTeR63WzLf4ZBpaJTTDwW9a/7deRff0ZCdgo6tZo6SXHUSYojrrQpmalGDbQZNfznlOpP/HljM7CqTHi9Xs5cucGPP5/iwd1bxGbloKsZOqkXfV6sl3Zhzu6CSl+2IM8cu6jc85IIFvfj86gTa6DSWSIsxESvG9ut77E0CG22FUzQuB+fRZvRTPF1PHk3UcdnRQ2MoijieXIRbbXQfjbB5yOKIiV3T5PUaljgOTliRhRFTn67lolz5G8gLyP6xCexrzAPtyjSsDSx8qKqmXCCpgoG7mLnHnaqUfGJxx9Qhgk193GQ53bTKEpPi5oaI1aVho3W5wwxJ0XYm0lI9WmYUr8Wm249oI7dTodq6SGWNcF9CV40BqrVavr381cxnz9/gU8+/pi0tDQGDByIKmjy54zSR6MiDZSDoTOayMhugKVqXQrt7oA1mFyD5RiDBq/HjfXJPZ5c+BFb7mPSG7cjvlqoV7DbVsydgxuo228CTk9ZjOn/6bGo5xKsXrmyaxXZPUYEVDHB2xxFeVjvXqJhX3mvY5/Hze0f9tBksLxVT5xRy7ndm6nfbUDEsYOJGZfdxp2Lpxkwea7iObucDvKePiG1StWQZGEw9BoBh93Onl07efvtPykeqzwIRnNgwVEZBPdKchaFLtSC+84EQyUIdNTEc9BdQKZoIK4CtqO/BNmYuYwVFQJJVLyS/g/IQ1BpSW49hAdHtxNbswmJtRuEEDTg//0D1O/0Co8v/sTpfdvo1H8IQIh6RkqE12ncnKq16rBj9VI6dO9FjbqhytfgniEvGgMNBgPDR45CFEV++v4o7320kAZ1a9O7a6dfnBwKbwTrfvYkhLSMM+ppmRRHyxrlW6t4bA5KXG4u33rEtjPXeG5zMCAniyoxoUUcD91uDt58yptDu6MxW1AZzHhObg9slxIFUsJBDFvce9QG3v14EX9+fTaCIEQQM2cvXcWFmibNWgTsyoLH5OYXcPn6TebN8i/K5azIlq3fwoJp/oRjOLkj/X33/kM8Hg/pqfIWwKJGz51HT4iNjcMQRD7ILS4fP3zIowf3GTbuxZMUJq0q4LktF3eVeoNFQ3iBgUZvolq3MdzZt4b0doPR6oPiqMMdQbYA5RI04RAEgcTmAyk4vQmtqRda8x/V4y8Ks9nE+DGjeO/DjxkzcoRitbcgCMyaNoWv12+guNhK184dFY/5at9XePDwEX97730mjR9HlYx0xbEvGgMT4uOZNnFsqepjL1t27KJdq5a0bdVCkWQAQlQzlU1EJaWkUCUjlc6dO6NTlVVGB5JJQdezyyvyLDefS5cus/2bNRRZS+g3YizoQ4vMTv30AwVPHzAmqI+Bs8RfBBlCLJU2GA8nmwqLilm5fiPzpkUq/8BvIda0YQPSUuQLcC5cuYrJZKRKehnpGfyZud1u9uw/yJ/feE3+QynFsVPnqFe/PhqjJUKdKJ3z9z+dolWzJhH7hn9HJ34+TWp6FapWrynbtPtlQ9UqGUwcM5K/f7iQt16brWjF+yLQ6XS8MWcW73/4IW+98Ua5RNkfKB/xcXF07NCB//Pu35kzdVJIf60Q62ydjgVvvs3nny6kW8+e5OTUCzmOVP2vUqmYOG4M585f4O8ffcrsKRMVlX0vGv8AqqYmMWdYH5xo2HjkR57nF9C3R1fq1a4R9X1LxTqivQSfwxZS2Bb8f1/Y34IgUKNqOjWqpofYmcn1llEZzIiiyHOnj4u3H/LdsR/RGU1MHD4IjTnOT3wAaA1s3LyV5OQkOncs64nqKnwe9T0Ezlej5/r165w5e47hw/zONOEx8sulixk9aqS/AEeGENmzezet23cImZsFIzc3l6dPn/LqkDoh94zw+8e2TRvo1Se6wnrT+q8ZMris77RSD5bNmzfRs2dPzAoqRCVrs2iQxkQjaIKPG55DKSteiETjpv5+bcsWf86kaTNAIQceooiRKUSQuydLz1niEhgzbgKffPQBM19b8NIqKl8GvBydyn8BqmMiDT2nKcIZ4jIdCiNqGhHDGQpxRRknIJCNmUR0nKGIEuSrXwYOHIjdbqdnz57o9Xri4+OJi4vj0qVL/Od//ifvvvsuQKDp1dChQzl//rzssZLUWoYkptI5JoFj1kI25j3lrK3Yz1oHQepB80uQf/0Z+defyW5TUmGo1Wqq16xN51f6027ENJ65BDYt/pjrl64DkmJmdwQxUx6KHlwNECs+ewGo1LLEDEDJtf2Y63RDEOR/op7n11An1EBQK/QzcNsQHUWoLdGr9DxPL6BJrR/yOuHnY711AkvN1iSkyb9XydLs7N7NNOr2KhqtfPKtRvyLT8YkQu3XRM+4RHI9bs6ULigqgytuGzHG8m8qWRjxIvIAZS/7P1A5ZIsW9Kj4yVuIV5T/DqweHxaflubaGNZbn0eMc5e4A/05tCoV4xrUQnB6WHLqMlanP5kd3n/g14yBjRo15LXXX6djp458tXwFny38hIsKY8MR3gtCjqyxujxYnR6sDo8sERMOicBQa7TEZdaiQdf+tBw6FXveU67sWo3TWgiA217CnQPfULPXWFQaLUaDJvBQOq70kPD08kmSajUKEDPB8Hk83D+ylfq9Ryqe6+V935DTY1jIBCfOqA08nt2+gik+CXN8smyPAgnHNq+k10j5xICEA1vW0W2w8rlIWLZ4EVNnzCp30hVNGh8MaQGhMfljp0QQSj0zgpVdctCatehjQxMHljC1j0oQ6KaN57HKQZ7oipCUl4eblOCgfKKwHhae4CSf8nseWV2eSj1sUZQN/1Wh0uio0mkErsLnPP5pF7YgZYDV4Q5RCqQ3aI0xOZPvNqymuJSYlexpbG5fIAFuNFsYMm0et27eYOe6lXg8Htm48mvFQEEQ6NS5M6/Pn0/NGjX5bPFSPv1iCbfv3guMEbV6BJ2x1IIidKEnLc69uY/9i/WSItzPnmC7fRv7s3w8Nge2x3m4imy4imyyvWS0ZmPIQ4JZp6VxRjIDq2cwvUUOPz14xupz13F6vGjNBu4XWtl98Raze7UOXO8VUfaA//r3aU2sXL+ZscMGle1f+rxPa+K51cXeYycZOehV2X29GiOL1mxmxhR/7JKrjN62aw+9unZWVBaA3zJo5fpNTBotY1MRlAhet3YdI0eNivq+bE4369esZHQUdU34fas8SOQh+Akai06DRa9RJGasTuVYEG6JKUGt01Ol8ygeH9+M4Lai1WvQGtToDdrAQ2swoDUY0Bgt6Ez+JJhkY+a4ewLRW2pv4Qj9jTlLrzdBUBHfdDB5Z/bgsRVGfc9eUax0DLR7lNd3/1WRmJDAX95+k/0HD7F733dRx44eMYxiq5XtO3dHHZdZJYM/v/UGu/bsZcPmLRHrUQm/VgxUq9UM6teHN+bMRBAEPv58KUtXrOF5rsy6N6jxc3BCzOnxq2eKnb7A41mJJ/AocnopcnpxecXAWElxo0TMOD0iBksc9Zu3ps/ICXQfNpbtG9dxYPvGwNz43KmfuHv3Lv0Gl2Nx41Ze9yxdtZapY+XjyuVrN8grKKB9a3l3CLvdwY69Bxg+QDmh+OWqr5k8bnTU08svKODEz2fo1a2L7HZRo8cjaPj+xCk6tWsd8nx43M0vKOD7H0/Sr3ePwJh/NypyDmmpKcyYPJ6/f7gQh6Ny61RRFFmyfLXitSLBbDYxf/YM3vvwE5zO6KSV2+erdAx0/TeMgbVq1uSN+a/z5YpV/Hz6TOD58IS5SqVi1tx5/PTDD/x86pRsglkiBRo3asicqZNYsmI1B49+H3Ic6bf0a8U/lcGMKSmF8YNeYf7EEdy+c4f3v/iKVRu2YC3wx0DRZQ99lKqowwtywuF+9gSPzS77kOaLPocNb/4zf//CoIfPUYIgCKQmJdC9fSvmTRzF4D49+OSrNezdtzfweW3evInExMQQYiYcUpyQe/h8PjZs2sywoUNCvgMJ+w4cpHbNWtTMLCsU0IqewPf28OED7j+4T+vWbQLfefDxARZ/tZLxU6L3G7x+9Qo+n4/sujlAJAGiUwvk5+dTXGwlq1poIUQ4SXH16lWcDieNm0QS2UrQqYQKrT2DlaLBShU5cieYjIlGzEho3Kghnbt1Z/FnC3F6lWNJ8OtL55BbbGP9unXlvkZGRgb9Bw9j0ScflxsvXZ7Kx0DPfxE1TqXIGUEQVIIgHBMEQRQEoWrQ85MEQbghCIJNEIQfBEFoGbbfXwVBeCQIwmFBEKoHPX+g9FhdwsZfFwRhSnnnE4eWxsRyiWKKFcgUAB0qmhLHeYqxRhkHkICWJsRyDwfXKYnob6NWq/nwww/Zt28farWamJiYQPBNTk6msLAQl8sVuPEePXqU2rVrK77eg6c2zGo1r8QlMTQxFbNKzeb8Z2zLf8Ztp73cH++/Apk5TcjpOx7rvUvc3LOO+/uXYarVMYSYkYiXaA8JoijieX4FTUo9uZfDdudH9BmNFPvEmGJiEX0e1GaFKkdRxP34HJooPWQAvNYnCBoDKkNZtUU4MRObkoir8DGG5DJbITnVzIMr5zDGxpOQXjViG8gTM+mWildQS+qmiqLwxoNKje8Sm4DN5+VEJa2F6mqMXHCXUCCGJhwTdZEJiBqYcFYgifky42WLgUminho+E3vdeeR5PJR4fSEP8BM0Wp+ajvo41lqfketw4bK6A9ZmEpxFLtwlTlplJDOmcTarf7rAvjPXAtulKuxfOwYCZGRUYcq06cycPYeC/DyWfraQ9auWc6ucnkomrTok2WVze4MekZMLKWEbjnDiBELtkTKadiS7xzDun9zP/e+/5c7+ddTsPVaWWCnvuAAep4P8O1dJriM/ebt76Bvq9RqOqlRNGUy6xBm1PDj3A4nV65KWlhryvASv283tU0eo3aZ7xLGDVTPnD++habsuGEyR1T1SpXbJ80cYTRZSS2X6EJpglCaxO7ZupnO3HlhiYqJ+JuEL5crI+JUQnFQOnJc58rsxBsWlOK0qQNQIgkAXXQJ5KhclKneFJ8rgLxS5iDVqkYiE+lh4+DsmqF+2+AeQ2KADxowc7n23mpLSRvXBBE2h3U2xw0Ns9fqk1m3K4XVLKSwdJ03ogZB40bZnP9r1eIXliz7i+qXzAYJG+vdFYmBwI+pg1K1bh7nzXmP65ImcvXCRj75Yxqpt+3gml6QshVQ1KS247c/y/BZmNx5Q8iiXkke5uEvsgYfUo0mC3HUTDCnm++wuBterQf86Waw6d51Nl26x994TZnaK7D2gBEk1E6xWAaiWWSVirNfr5bPlXzN31gzZBCDA8nV+GzKdTie7/emz5zx6/ISmjRuGPB+svFG5bSxe+TXTxo8K9BuQO9aRo8do265dVFWTyyuyatlSxkycgtsX/TMJjp9KSsRoqMg+4b1posHl8KDSaMnsMoYnJ3eAswCtXoMpTo/WoA4haiQljUTQAOgyGlJ4bivuktLiBYXkpqBSk9puOLk/76jwub1seNlioCAITJk4nhiLhSVfLY86dkC/PsRYzHy1MnoiWa1WM3XSBBo2aMDf3nufe/cj1xO/9jxQEATatmrB67OmMXLIQPbsP8hHi5awZccuiq3yCq1ggsXh8eHw+Mizu7lbaOd2gY3bBTaeljgDD4fHJ1/ZG+TVL2dDaHV58Gn0dB8+gZqNWrB12WdsX7+KGzdv0H/IiJDxlWmYfPSHE7Ro0gijMbLiu7ComO17vmPsMOUef58uW8HsyeMUY/CZcxfISE8jVUF1A/718udfrmDWlAlRz/XrDZsZNWJYROJT7lizp4b2j3gZCJqKIDEhgXkzp/Lex59hs1W8/5ogCHTp2I7Pln5V7tgYi4V5s2bwjw8+epFT/bfiZYmB0pVqMBh44803uXvvPtt27AoZE5xkFwSBaVOn8PDeHXbv2iVLzEgwm00smDMDrUbDe598RmFRaG7k14h/4cU2KpWKPp3asGDSSHp1aM3X3+7jg8XL2XvsBM7SHmMSMRPNXUCaCwbP/YIf0phwkkZ6ACHHF13+fZITE3hzxkRSEhN49/2PWLxiDbFGPV3btYw8CeTJ23CsXb+ekSOGR8Ywt4MbVy9z/85tRbWn4HawcsUKJk+eUrZbWPzduH0HvXv3DinQCScyHA4Hu7ZvZdCw0FgOhMzVV61cycTx8n27JMLIbrezdcuWcgt5lFCRtWfwfU+OmNGpy1Sheo1QLjETPL5W7Wz69B/AZx99iMPj9b9W0CNwDkH3SbegITY2lpT0DLZs3lTue6xarRp9X32VZYs/L3fsf1dUdlXwFhCyuhMEoROwEBgKHATeAL4VBKGOKIpFgiBkA92AWkAH4P8LBJfp5gLvCoLQVvwFTIQGgabEco5iamAkVqFnjAaB5sRyESsp6KL2q1EhUA8Lhbg5TRHZmIlBQ6JOzYMHDxg/fjwqlYpJkyYxbtw4xowZQ7du3fD5fCxdupT8/Hz69euHxWIhISGBFStWVPj91DaYqG0w4RZ9XLKXsLXALw1MOJVPj8ZZxJTKbSuipgnuVSNZnP1SCCoVyU26I9x7Co8eodKX3VSCiZeKwPP8KprkugiCEEGGuPPvIqh1aOMiF+wAoseF/cFpEpsNovjhNdkx3tzrqBNrI6iUF9Ki14W34B66qmX9aOQUPAUXviO+QY+QXjPBqJcRi8NaxL2Lp2g3dDLZKS/uuf6iqCwxI6F9TDw77z/lCSLNdNETrBIEQaCnPoHdYj4qj0BsOQuTWpiBisldX1K8dDHQKKhp5IvhBIW0VMViENRYgyqozOrSpJNXRV9DIrvs+fTUJFAtKFa6SlwhyWyty8OU5jmcLyjmk4OnGNe6AcnJ8QC/aQxUqVR06NyFVh06k19o5eiRwxzetxuX10dq1Ro0bdMet+rXsxyQI04Uq4u1emp3HcLzJ0/QGC1R/XejKVUAbh3eQq0uA2Vf8+6Jg2TUb4Uh1m/9Eky6AFjznuLJf0SDPspKlvN7N9Co1/Co55L36B4OaxHVchpGbAtO/h3buYUBk2ZFfT83r1/D6XTSrGnFK4WgVBXgLlsUqQzmQPW9ymAKqQzTmIx4bHbZHjPh0MfqQqzNJPWMZG1m0agC10jw/zvq4jnuKiRJJRLr01VIbq4unYOcppAmxKKNUvMiINAAC0f45WrYfzNeqvjncnrQ6TUYk6uiNvTm3nerqdZjbIDUDEdcShY5XQaw66uFdB81BaMlxt9IPcjmDPxqBV1sIiNnvM6PB/Zw/tSP9B8xHl1pX5PfIgZKjU21Wi2D+vVB8DjJzcvn4MGDPM3NQ/C6aVKnBq0yE9Bo1P4Kx5Ii7M/8vyWPzVFKxjhwl0RW5WrN+sA4SXkmKdJCzqP02pKInOBjxZkNTG2ew4OiEqqnJ4WQOz6HDbXRf/0GJx3kyFdRFFm9YXNEA+tApePKFUydMDZkQR28yD/x82mSEuKpmVVNMUn41eq1vDkvetw6/MNJ6tSqqWgZBOBGzYmTJ3ntjbdCng+PC0cOHiCnfn2SU1ICdhK/VtPTYPUMhPaiCW5QLqlm5IiZOGNZ35lwazMJglpNZufRPDy6nqRGXTEkRCrPnQ53hKWZSmvEUL0Nhee2EtdkEFpTLG6HI0DkOB1u9FKxg0pNSrvhPD4UnUh4ifFSxUAJ7du2IS42lk+/WMLs6VMVE/ZdOnUkNTWV9z76hPlzZkW1cMqpk807by5g1dfrUKvVjB4xLEBi/pbzQIvFzNgRfoub+w8fsXn7TortTtRqNW3atad+k+a4SxNTTo+fmJFIFKkw53Gxw68wK71OTFoVT0ucpJr1srYw4VYwEuETfEwAc0oVek+YjfXpAxrVzcbh8ZUmt8q3nAmGw+Hkx59P89acGRHbRFHks2UrWTBT+Xvc9O1uenTuSIxFfs3pdDrZc+AQ78xXtqsFWLtxM0MG9g/07JJDbl4+DoeTzAx5S0wpsb3im62MGDJQVqlYkf5BvwUqSwzFxsSwYM5M3l+4iNdnT1f8fMORXasmbrebJctXM22ivBWxhPj4ON6a/xr/+f/870qd20uElyIG+iibNwEMGjqM/QcOsnnLVvoPHhoYF35NDh02jOOHD/LlV8uZPHGC/DWmNYDbQYe2rWnepBFLV35N7ZrV6dPTX/D2ovFPmiNJ7gDhSEmMZ9qIAYiiyNXb91i+bjMutwe9INKpfg1qJsr/Lj02PwFje1y2xojmMBCwLLfZA/NBKXsgOEpQyZxj80b1adawHncfPKJazewIG0So2HX38NEjnE4XNWvU8L9eUHxwuVx8s3mb347R7QCtIaSHDMDiJUuZMXlS4J4UeE+leainT57w7NkzBgzwr7WV5mMrv1zMhGkzohYanT93juzsbEXrNAlLFn3KvJnT0OEl+IORI+2DLcgitpWz9nT5RNkxErHj8onRjx/lPlUtK4uhI0fxyQf/ZO78N0KKkgLWaiohxOLM5RVp36EjBw/sZ+eOb+nbr7/ssaX9q9eoybCxE/kf77yteB7/nVFhckYQhLrAPGA48HPQppnABlEUd5eO+xvwOv4AvQy/OkcFqIP+H4zPgcnAWGDVL3kTAgKNieE8xVQD4hUIGgGBhsRwkxJseMttUB6HlmbEch0bD3DQTowlMzOTAwcOhIxbv359xL6nTp2KeK5uJZQSWkFFE1MMTUz+JHmu28WhJ895+qgQnaCitTmW5HKqtvOu54UQNOBP3Et9Z34J1HrzCxEzPlcJeJyojJGe06LXjePxJar1mAJAwaNHEWNKrh/EnN01hNgJPgefy4rosaMx14nYNxjuR2dC+tXIETMmkwq7wYI66P2Gq2ZEUeTEtjW0GzZF8bUqoppJMv46TQh/KTEjobHOwgV3CaddVprpKjYpFQSB3oYEdjryUHuMmEtvQuG9Z37veFljoP8mraKRL5bvfYU0Igaj4P89BZM0Fo0KraBiiCmJPSX55Hs9NMFf/aoN6lDpLnEGEnnNM1NpkJbEN2eukZ4Ux2R4oRgoIXySFfxeJJjMZrr26gP4+z1cvXaNPZvX43Q60ZostO7ai5i4eP/YsB40Nrev0pZmoEzMWAzaQJ8afVyS7JhohEzwcZ/fvEhyZnUSEiJjoL0gF3thLlmtukaQMgA+r4eL+zbTapi8RDvGoOHBlXOkV8siNTUy4SipZrweN6f3bWPgtNcjxwQRMzdPH6d+izaByVnwNqlBusNuZ8+3W5n/1m8zyRLMsSG+yRI0JoOCTZM+JKGsNWtxl5Qppow6tb/3En71TKHbF1DQWD0+2uni+MFViKASiPFpK0zQNCGWsxTRlDjF/naAYj+7lx0va/yToLMkkNyiP7d3r6RG73HYFQRKccZYGg+czMFvVtC696tQJSuEoAECvWhsbi9tuvWmuLCADcu/oF6T5nSuNfBXiYHlQdToSUpMYMSAV/x/O+2cuXSNJTuP4HHaSTOo6VE9GWwOXEU2bE/zcZc4KX5kDfzepbiuM/vJSktGGeliTEkIWXRL15jWbAxcV+4SR0T/Jq3ZQGasGX1cZMGKaC+R9S8Px6ZvdzOwTy9UKlXEfeDnM+eomlWdtMxqsnZABYWFHP3hJ96YM1M2KQCwadsOXu3bG41Go5gQzM0v4MzFK7w+dZy85q3UQunrdesYPSq6peO9+w+5e/sm4yZPk+2V5pCxmwm+Z1l0mhCSpTyEkjWawL3uRaErvT/U6DWW+wfWomvWHZ0xdA2hD7tHukotylR6C4ZqLSk8t424xgPRmmJCCBoJbocXrcJ99mXHyx4DG9Svh1qj4ZNFXzBvlnKyqV7dOiQnJfK39z5g7qzpJMTHKx5TpVIxYexobt+5y9/f/5AB/fvRtE3yvyQGgr8fyITRI0BrwCWq+OHHn1j02ac4vSJZtbJp3KYzNrfI09J7/tMSF9eeWHmQbyMzwUSMQYPF4LcBTDXrSsfpiUUd0XMmnJgJVmGHX5+W1EysLk+lbAqDY9GXa9YxZYx8XNm8Yw/9e/fAYJBPcF69cQub3U7ThvVltwMsWbGa6eWQBJeuXEWj1lC3dq2o41au/SZCDROOk6fPkRhrplaN6opj/l0ETWVhNpt467XZ/OPjT1kwe6Zi35Fw1M+pi8vlZsXX6/2/WSW4HeUmeV9WvIwxMJig6d6tK4cOH2HDN98wbLi83aBW9NC5U0fS01L5xz/fZ8Hs6VGtT41GI/NmTOHUmbO8++FCJg4fSLUm7X5x/JMjZuTWOBLqpsaT3bcTALaCfA78dIadx/xFri2rJtMquyqCIGB/loendD7oV8k40JoNIT1jdbEm2XVTMDSl5ybaS/AB6jByRnA7EYAaaUmIbpu/tw2E2E5KkCMltKIHURRZsXIVf3rrzcgTcDtYunIN0yeNj7iHSbmD/QcO0qBBA1JTU6D0uw9+LVEUWb58OW+86T9+OEkh/b13zx6atWxFXGkuQQ6iKLJ7927eevttiOL+snnLVrp360psbCThFqzSqqi6siIETfBYuX3DCRo5UiZ4X+mYaenpjBk/gQ//+R6z578ZyAEE7pkSORT2ufbu2YM9u3dzeP8+OnfvqXzuXvF3GwP/FajQL0TwN+RYAvwZKAjb3BT4UvpDFEVREISfS59HFMWrgiB8D9wofYwP278E+H8D/0sQhG9EUfxFd24BgUbEcAkrXsSoTXdrYeYxTi5STH0sUZMlAgJ1MKPTivzgi+6T/EshNWDPTFUmi5K0Oto7gIRUnD4fP5UU8ry4gDiNhnaWOIxRVCKVRa79lyfU3Y/OoklrKKtaEUURz+NzaKu1ASIJkZLrh6jSoWxCEx9UpVPw6BH2Oz+hT2+AShtKdkjHEX1erJd2Etd8GMWPriuf49PLqBNqIqi1sqSMhKKrR0hqNVRRNQPw8851/j4zCjf2X2JnZvHZsNvtnDp9hiunf0IURXQ6LSZ3CSaDnhScNK2VGVEt8GuhodbMOZeVMy4rTStI0KgEgb6GRL4qekpzVWyAHPgluJNno9hQsUaz/yq87DFQulG2EOP4mULqi5YASSahjKhR8YoxkTPeEo4U59MzNj0kea2P9f8+3aXWP3qzkSntG3P1yW9f7R8+GZEmFgaNirp16lC1hn8RWVxYwHe7d2AtKiS9ahYtO3VHmuvL2ZlVBErETEUgETOiz8eNAxvI7lEWx4KP67aX8PD8jzQZNCXiGKLPx9UDm2g8cLIsMQNw+ts1NOo9DFWYvY70+vbiAu6eP0n74ZHHD7Yz+37TSnoMD534hlvleD0eblw4y+ApcxQTEKIosuzzhUybGdlnprwKUp/WFNEAXIJgNFPw/Bk/nLnErSfPEVwO9FotBkHEpNNS1WKiTlpixH7+hUjZwkNn1gV6KgHoLFpZ9YwE6bm2uji+dxUiqMBSQYJGi4rGAYImFvULkDCVTbSW/MYk+Msc/1yln5VOr0FrjiO93WBu7VpBjd5jsWPAWKoSiDFoAgQrCDQZNIULBzaSXK02DVq1jSBoghETF8+ASbM599P3Edt+a0jXiaA30rxhDk2rxONzlHD3+jW+3v89xflF5MTF0Ehf8eIf8FdMakxFgQRBIFFQaucSTZ0WzQ6txO5gw57vmTywl+x7uX3vPoUlduo3bBRBrlitJez//kfenl/avDqo5wtuB16vl4VffMnbr8+RfW3B4+TytRs4bFYa1MpSbEbt9Xr5dPla/jxnatT+V7l5eTidLjLS0xU7RTkcDtauWsG8N5XJaYNGJUvQlIeC3GdcPXOS/OdPUalU6PQG9AYjeqOJrOwcktKrlBI1pSoahbgRXjhgdbjL7hkOT4CUkSAIAlW7juTega9JaNgNfZyy6l5niisjaAyx6Ks0oejCt8Q27I/WVKbADlbPlAefKFY6BjpkekP9mniZY2Awcupko9VqeP/jT1kwb7biOiE5KYl33pzPBws/Y9Cr/ambHd16tkb1LN55cwGbt26naRvl/gK/CUrjgFarpW2nLjRv3xmXT+TMhSusX7GUYqeHrMatSKmZE/K7KbSX/c6luC79G25hFkyq6tQCDg+lqhlfCPkZ3uvJ5vZi0KhCjnXv4SMunT3NgFd6yBLMR384QXbNGiQENTCXcOvuPYqKi2lUT35tWlRczOYdu3nnNWVV4HeHjtCgXk5U0q2ouJhv93zH26/NVhwDcPb8Repm146qrHn89BnHT/7Ma9MnKRLmvwSiKHLn/gN+OHmaoqJiBEHAaDRgNpmwmE20aNKIxIR45f1fwE7NYDDw5tzZ/HPhZ7wxZxZmc8X6JDZt3BCny8X6TX4V0S+Fx1v5GOiK0ifi18DLHgMl4q9L504c/+EH1q1ewcixfrs+ueblderUYdqEMbz7zw+ZNX0KyUlhhXel6hkJLZo2oUnDBqxYtZpZTdpV9vRkEY2UiRhrL8Go19Gnld/tQBRFTly7w6e7vkerVtMjJ4vgO7XW/K9PfkvX3PEffkClN9K8eWS/LLegYd26tQwaMEDWKvbo8R/JrlWTpMTIAkaAm7ducfvOHaZOVu6V+tXyFbw6aAg+QS2rHtGpBa7fuEnu00f06t076nv6dvs2Bgwc6F/jKgS4M2fP4vV6aVpOn5lwYiaaugXA5/Nx/dpVTp88icPpQBRUGI0mTCYTlphY2rRuhclsDuSAJMjlUYAQtUt5iE1MYcTYCSz66H1mz38zZC4R/Frhx+v9yits3bqFn44fo3W7srmC0jkpweX1VToGun3/NfpuVVQ58wbwWBTFDYIg1AjbFgOEsxYFQIA6FEXxP4H/jHL8paWv8Qbwfyp4ThHwW4bEcKWUoIlmXZaOHjNqTlNEfSwYiJ5Mtgga2qniGKFNp0T00kQVg7qCXtsSylPOPHhqi0rQSNCrVHSK8QetfI+bA0X5OH0+ahmMNDJaUAWdl5x6piJ4bHVxu8DO9WdWLj8q4v5jKwVPSwJqFjnFjCf3BipziqKdmOfJOT9xI6giSBHHw/Mk5rRGbZAnA3RiAQ6tAW28suqn5PpBTLW7IKgijy8h/9JBBLWWhLrRFxdazzN0mf5zVYI5/wbatEzi0/3nFG5pJkfMyCHJqEYURQ7s/45bN2+i8zkxGgy0bN6MaWOGolKpcLs9WO9ew+ZwcPvCOT7fcQSfKFJTK9Ahuyoa9a9L1DTWWTjrsnLWZaVJBQma6yVu2qriOe4roLUqDp2g+q+knnnpY6B042tUmiCuLZpJKrUAK/H6AvZmEtoZY7nusrP69j2GZ2UG9IZSpbSknpGSdHXTEnn4v19j/bkbmPVaRnRqhiAIaEzGkAoglcGEYDSjMpgRzLEIOiOiVu9PgkVZLAXfrKWbvdMTWvkhVRvHxMUzeORYrC4Pj+7dYdf6ldhdbhq0bEuNnIaVJmgkAkUiRZR600CkJUxw4uvmwU1Uado54rjgn0hf3L2Whn3HRBwzzqjl/J4NNO89hBhLZNyIMWi4eHgXOS3akpYeaTUDfnLnxLY1dBgRqqqxhCXezh3aRYNW7bDEl90X5BLSJ3dvonP/IRHETPDfe7dt5JVXB5bbZ0YO4cSMx+Nly8HjPHn6FIAYrYo29WrRs7m/N5mjII8Sp5viwiKuP87j0KGf8bk9NK+WSv2Y0Bgl/XbLfsva0r/9izc59YwEiaBpX0rQUAmCRoeKBlg4SxHNiP3dqmRk8FLFP1EUcStN2lUGqnQawe09q6necxR2zBEEjcWgpcjhoU73YTw+d4yfdqynVd/hxBi0IRZnknpG+s03bt2ejadusnP9KmrUrU+zdp1Crh0lEtOgUaFT+72fK7QwCksKRLx/ewmZSfFM6doC29M8fr52nzXX7+EtcdAmJp7kICWkZFdpyYhBazYELC48Ngf2Z3kYUbbWcJc4Iywvo0EURT75ZievTxgeWhVaGv9dLherN27nr2/ND2yTEiqiRs+nS79i3hzlZOGnS75i6oSxEYlC6RjWkhK27d7Hn+bNDD2voIptn9bEpyuWM2XCODTmyORoMJav+po5c6PbAq1ctpRJM2YGkgx6jRBI9FZkAQpl1mQOWwnf795OYXExAHGJydRt2pKktAxEUcTlcOB02HHabdy4dI4fD+xGrVbTsFV7Eqr6CxesTg8Wg0bW2iz4XiURlUaDBnvpWGPYvaJat9Hc3rOKlOa9QB8fcs1JihiP3RpC0KhNCZiyWmK7eQRz7c4hY50O5fvq7wAvVQyMhlo1ajBy2BD+8cFHvPn6PDQa+aW+TqfjTwteZ9XX67h67ToD+vWJelxBEBgyaAD3rl1k+ao19OnVk8aNIm1RIxAlllUU4Yl2l1ekVnYdqtbMxubysO/Afo5+swyV3kiN1l0hwURGvCGgmDFp1Vh0mkCMluzIwhF8/UoIThBZnZ4IgiYYDoeDNWtW8x9vvwm+0N+7qNGT++QRp89f5LXpkYlFt9vNmg1b+Y835GOO1+vl48XLeWvOdEVV1O1Hz7h15y7TJ8r3RgB/wu+Tz5fy5rzIoprwcbv27eedBfMUx4iiyJer1/Hn12dXiAyRxigpaJ49z2XLzj24Pf7PvHq1qvTu2onEhHh8Ph82ux2b3UGx1cruA4fJLyjAZDTSq2snMjPSZY/5S2EyGQMEzZtzZ2OSsQGVQ5uWzbHZ7WzbtYcBfaInfn9neKlioLSi1YqekN+T4HHSrm1bDAYDy5cu9ifxZX7ngsdJYkICf35rAZ8tXkqbVi1p0yqsf0rYXEyj0TB13CjOH9nDpm93MWloXzLD1mSC2xno0xLeI0ZSFqsM5koRM3IQBIHWdWvQum4NXG4Pu46d4N7zAmJEkV61MzGXU7Aj2dtCWcGNtJ6X1vHqpIzAGl6CGMXSG+Dxkyf8/PNpZsx9TXb7hfPn0Wg01K7fEDehxNnz3FxOX7zCa9PklXrFxVa+2bCRd94us5kNJzyOHPue5ORkain0ONOpBAqKrXy7eQOzF0R3fLBardy/d4+hg5V7f9ntdr7bf4C33lgQ9VhKipnweeKtmzfZ/90+vKIIgkCdOnUZMHgIJrMZj8dDkdWGzWajqLCADd98g91uJzkpge69ehMfL09oRSNowomdYKSmpTFs1FgWffQ+r7/xJiBEJWYkDBw4iHVr1/LzqVM0bxFJ0P2B6CiXnCn1ifwT0EphSDEQvsKJx8+MVwiiKHoFQfgLsFoQhMUV3U8JOVi4QQkufFRF+WYag4YmxHKJYpLRkY48yyw1NxcEgbqCGZvo5SdfIVmCgSqqX8ZMX3XbqKbRv5DCACBBo6VfvN++5obDxtaCZwgINDfFUE3/27DmcsSMz5aL6HWhSZIPht6iBwj6WFT6mAjixFuSh9degClDfhLjLn6G49lt0lv2k7U6A3A8OIMuqSZqg3KS0GsvRKf2Ya7fT3EMgCXeTNHlkyQ2H6A4xu2wcf/SadoPnwpUnJiRU80cPXKY0z+fonuPngzs1j5km7rI/351Oi0JsRYSYi2kemvSpl5NAE4fP8mK78/h8njp3bAWNWtnRlib5V9/FvJ3RfoVATTRWTjjsnLOZaVxOQTNVas/CaoWBNqo4vjBV0g7VTwaQfjdEzS/txioKu2BcYFiEI3g0QVsm4CQRHS2zkiW0cS6x4/o6kqkJrGBRJxkDSVV37iKbOhiTYxuWoc7Vjt/33SQYR2bULdGJmJJkWKCTwn79u+nc8eO6HShk5bgJLi0UPZPAPzVx+EWZhnVqvPq2Cn4fD5O/nCMb1ctQVTrqNO2K5pYeQuyYJuycGIm/P/gJ2uC95EQnOx6cuFHYjKqY0pKCzluYPup72jQoQdJ8ZGf06MrZ7AkpRKTHLq4lI7/4MpZ1Bot6bWVbSxO7VhH015DUAfZXYYTM/evXsCgVZOV06hsjAwxk3vnGjqDgcTUdMVxD+/fxeVyUrN2dAvJ8uDz+di85xC3b99heM+OVIlrBpQ1pJT6zhh0Wgw6LXFqgaqJcXSsno7PJ3Li6h2Wn7yMIECvrHSSg9QzkgpMUs8E954x6sqs/8IJGglN1DGc8RZhF0VShIolqA2oqYuZsxTThJjfPUHzMsY/0ee3R5KDVq/Bi5aUtsO5u389mR0HAEmyBE2h3U164w54C56wf+WntB0wmrS01KgEjcFkZsikmVz8+Sc2LF1IzyGjyEzzX/M2hep9gyayeMLn87F/3176vNI7pCKtstYvgiDQKD2JnBgTJUU29p67zf4CKzEaDd2z0tFRRsyYM0LjYUUIGvBfP9K1JAePzY4GWL73OEO7t8Nc2uA6fFG/6KvVzJwyMZAQDH6f32zcSL9e3SP6q0jYtG0H7du0JD0ttey9B+0viiKfLFnO69MnyyYcpaTgtzt20LJpYzKCjiOHXXv30a5Nq6gV48ePHaVe/QZRLTEkhKtnpN+K1eXB7XJyYPtGnHY73QYMwxIbejnZ3F4EQUBvNKI3GiEhkZQq/j7MHrebCye+5+zxwwg6Aw269MWjjt4PLcag4X6+/+9ihyeClJEgqFRU6TyKB4e/Jr5hDwSdMpkVTNBoY9PB68J26zixDXrhdpQlt7QGw++OpHkZY2B5yKySweQJ43j3nx+wYN4cTCb5wj9BEBg/ZhSnTp/hnx8tZPb0KRiN0ZPQaampvPPmArZ+u5Ojx39g8vix5e4jh4LCQi5duUb7NkofayiUklsmnYaOnbvRsXM3nuUXcnjvTh48fYonI5P23XqSatbLEudKVcR6jQBhIdjq8ITMp8LjlDRP/WLRp8yaVapYCptS+Hw+Pl++hndeCyWPJSz6ajUzJ45RJEwWfbWKyWOGK9qdORxO1qzfyF/ejLSrDcbi5asYP3pEubYyy1atZcyIoVEJnK83bGLk4FdRq9WVUs2E3+cKi4pZvWEzJpOJCSOHysZdlUqFxWzGYjaTmpxE7VILtRKbjb0Hj7Lp292kpSYzuG9vNMZfp/+ryWTkjTmzKk3QdOvUgR17vmPfwcP07No5csCvQFj+K/EyxkCBIGIm7PMUgOYN62E0GPn4k4XMmzsnZJ4V/NvTarW8PmcWu/buY+lXK5g8YVyo4lBS8Ja+hqjRk5Ndi3dem8XK9ZvQ4mXM4H4RKpBo5IvUm+/G/Ue4PR7q1agWdWx5MMTEMrCrX83z9NFDtn1/juLiEuqkJdK5bhZqlSpgZxZMyoCfmJH6zZRHzJQHt9vN0i+X8daf/yq73Wq1snfXDt7405/L9im1pfOpdSz+8iveXvA6IfZhpZ+/z+fj4y+WsuD11wIxKfyecO/hI86eOcOMWcpFPqIosnTRQmbMnhs1tgEs+WIR02fODtwrgi30JCxespTpU6dEPU55VmY6tcCtu/fZsnED1apXZ8q06Xhk1o4ajQZLTAyWmBhS09LIrpsDQH5eLrt27qK4II/sujl07d4j6nsrT0ETTBalZWQwcvQYPv3oAxYseAOoWJHZyFGjWLL0S4xGA/XqN5B9z39AHhVRznQCUoDzpV+0FLHOCoLwfwFngAAtJvgHNQM2VOZERFHcIQjCj/hljS+M2pi5h52blJQ2IZeHGoFGxHIfOxcpph4WVEEXhETMBMMkqGmnjue2z86P3gIaq2LKJVnCVTPVNHp+dBbjRaSNLhZLqdqkouoZOdQ2mKhtMOEVRX4uKeZkSRF6lYo+DjPJCpM5Cd7YyEZ/waqZaBA9Ljy5N9BWbS2/3W3HW/wEXWYkeyr6vNhuH6dqz6my+/o8Lgou7ie5jbJ/q7vwIT6PE0NSzajnKWh0mLK7Rh0Tl57G85/Wk9xyGECIpVlwvxnrqZ207D9K9hgVJWbO/nySiye/p32HTrw2/w3/kz55m59gaDNq4H50G4Bm7VpSNz0Jr8/H7gs32XX+Bg10WpqmyyelK4umpQTNeXcJjbQV893VCipaqeL4wVdAe1V8iJLrd4rfXQwUSuPaVdGKEx91S/trWT2+EKIGQGcXGW5O4rC1mNteJ91T/cLocHszrdkYIGiqW4ws6N2GbRdvceDiLSb3boe+kgRNwwYNWLxkKWaLhSEjRkUs7uWqjqUEl0TQBHv1q1QqGrZqT8NW7SkoLuGHg3t5+vgxKoOFOm274VZHXpdyxMwvgfXZQ0pyH1Ory6CQ40pwP7sDQHJWdsS+Dmshj66eo8XACYHnQiqc85/z4PJZ2gyeELGvhBunjpJcvTaxKemlry9/a8+qURNT46aBv+WIGZXbwclD+xgybZ6iEkCngm0b1jLvjT/JbKvY9S6KIjsPHOHKlWsM7NqWwR2aAeUvRDQmI55S6yWVSqBFVjotstIpyiti25lr5NmddEpLokacJUAwlhGO/qSgnL1ZMEEjPWdWq2hKLGcoQvBBskpXrnoGwIyGmhi5QDGNqBxp+RLipYt/PtEXkeCNtE1SkdJuBA9/2Exa086QWk2RoImLT6PlkCmc2fMNGbVzaNy6vSxBE4wajVpQp2FT9m1ai8Fspv/g4YoWQv6kfFjcVanIqlGDDz/8iBrVsxgwcCAh+T6tARHlCmM56NQqetfJxFnkosjl5vuiAmyCSCZO+rULrXCXfMnNGUkhBI1/kZ4fcWxnkSugSJPDscu3SUuIpXZSZIGMT2ti13cHadmypaxVxZXrN/F4vDSsX0/22GfOnkMURVo0LbOMCP9clq/dwIhB/SOSZ+HV3B06dCA+Lk7R8gzg3oOHPHz4iD69ekYkHKX7krPEypmff2b2a69H3Kcqqp4ptDk4vGsrRfm5dO0/hLjEyD5hEKrICv8darRamrbvQtP2XbAWFXBwxzZsTid12/dCMJd91uH3hOB7npISVEJm51Hc/W4NcQ17gFo5noUQNAlZiF43tts/YKrRNjAmmKj5HeGli4EVQUpyMq/PmcX7Hy9k1vSpJCUquyi0aNaU7Fq1+Pizz3m1X1/q5yhbPksY2L8vhYVFfL50GQ3q16NX926Rg6IkoePj4lCpVLz/6ec0blCf7p07hiaUtJHkgcsrytqjSNdISkIcw0aO9luS5T7l9HfbOO92UTcnh7YdO+OljCSV4rKUJApWNgYT6lLfQqV5lYTNG9bTs1dv4uLiAn0QgrFs1VrGjxiCVhs539x78AjNGjUgOUn+O9q+5ztaNGlEFSXltCjy0ZermDtjSrkJx5FDBvpjYBQc/+kkVTLSqJZZRXHMjVu38fnEAElSWYgaPbaifNZs2ALAxFHDMCuQiNFgNpkY3M9f3Hn/4SM+X74aozmG4YMHEGN5cZLGbDaxYPZM/rnwM95+bU6FeyX0692DDVu2c+yHn+jQVj4/8jvCSxcDRcQQYiZYhSs1ka9Xuzoxxv78/d2/8cZrc+WLLUr379O1I/ef5vG3995nysTxpKWGFXCEqWjUajWTRg/n3oOH/GPRMnp2akeLxqFJ6GDVDET25auVmc7OoyfYceQnurduRrOc6P2f5KAymEL+Ta+ZzbSMKoglRVy4fpdlR87gFUVa1axCs2pl8SNYLQO/jJjxaU0hc6zPFn3OjGnTZO3KABZ/tpC5s2ehFT0hhIVb0LBm5TJGjRlbGh+1ge8wsO+KNYwdM1qxEKDE4WLFV1/x5tuR69JwTJs+E6PZ/z0ozc+2btpA9959MJtDc1/BBM3BQ4dp1qyZbJ+Z4PHhCCZ4nj17zur1G0hJSWHmnLloNJoKrTODkZCYxNCRowG4dfUSny/8hLT0NAYPGoxOp5PtP1MZi7OMKlUYOXIUn3z0AW+V9vEJfx8Sgt/vtKlT+OjjTzAYjFSpXqNS7+m/MypCzqwF9gb9XRX4HngFuAycBXYKgrAMOAwsAAzAxl9wPn8GjgOuaIPseHHhQxfRTywU1TDyBCeXsVKP6DfoqhgpwcNpisjBjBmNLDETjBoqI1VFPWd9VkyCihzBXO6kSIJRUNPVEI9L9PGjqxib6KWx1kyGWl9hgkbqVQOh/WrUgkArSyytiMXh83Hk4n08iXrE2/fIqJZEj8RYsmtEHs+qMpFr9wYszYJR8FQ+YSaKIu5HP6Ot0kK+WlEUcT86i7aqv9giXDVju3EYU+1OivZh+We2k9i0f2B7fEZGiHrG57bjfHgOc71XZPcPRnivmnDEZ2SQf34PcfW6IaiVL43HF36gVr0m6EpvsMGqmYpYmZWUWFmzbAlNmrcsI2VeEGqVin6N/Ynf7w6fZsmpy7TISKZZhvxiXwmZqaaQ3xX4CZpTrmKuuG3kyPizS6qZYBgEFc1VsaUKmrjfu3rmpYyBPsQQIlkOdbFwHzvXfTayMYVYm0n9Now6NYIg0EUXy33Bw8q79xhdpzqUFv34G6xHEjReu5OBDWtRLMInWw/RMqcGXds0K/8dlk640tPSmDtnNnl5eXy9cjlun8jAgYNC1BoQqp6R+s8oETQSdAYjzbv7FXJPnj7jzOHvKLKWgCgimBNIq9ccS0w8UJakCk9KBSes4ozaEKuz4LEep4O7P+ym/quTgUhixqTycPrEQVoNDbUbA398PLtzHS0GT5JNivm8Hk7tWEen0fKVlgB5D+9S/PwpnQZFb1pt0WtArzyBlCpBN69YRp8xk0MSghKJIz23ee0qBg4fg0ql8leZUrkqmEdPnvLVqtUM7t6R/p3aILrsEVVmgtGMaC9BZTDhc9j8DSqDxmjNxpC+GAaNhhEt6+O02jh4+yH7zz6ia2oS1WLN5dqbVYSgOUURGp9AvEpboYlzLFqqIHKZYupROds3OUuiaLC9YDNwQRBG4rebqA+0EUXxRNDmtcBFYD/wD2A7/+b453PaKLiwD1OtDopzLq1Bjcctktx6KM/P7iLBaYNqObIEDYDNI9Ck3xgeX/yJPWu/osewcVghhKAJh1tQ03fUBB7fv8OqRR/SsUcfataVJxjC4fKJ1KlTlzp16vL4wT0+X7QIi1HP8KFDiDNVwB6mHEuMlGQzw6onojUbKDDq2HjhJk67/3df1WigSUIMOreXkke5mDOSAuqXiiK4+vJhfhEX7j5m1tDQeZi0sL//8BH3n+Qy7ZWy7VIixVWcz5Zt23nnjdcDzV6DkV9QwP5DR3hztnwBD8Dh73+kSnoatapnlXveUlJSyV7H7Xazau03/Pmd6Av8ZUsXM3GaclyWI2ike5fN7eXW1cvs37ODHgOHk5yunAANR7QG5KakJF4dPYHCEjtHdm/n+dMntHhlCOa4hBArJqvTI3u/UYKgUpPecQQPDq4hrkFfCLKM1hgteOzyBVy65No4H1/Cfu80xmrNABTHBsPnEysdA1+058zvLQbmFxSw78BBenaLXnBmsVh4580FvP/xQkaPGE61qsrW0LGxMfzpjfl8s2kzFy5eZPiQweWuaePiYlkwbw4nfz7Nu+9/yLhRI6lSCXuptq1a0LZVC86ev8iHny0mPS2FIUOGhjToFjX6ciuP5eaFqVnVqFdrCjq1wJ3rV9iwahkAXhGq1MqhYdMWgA6JoNGphYjiEqvLE5gLSuoZuaKWsz+fRK3VU79BEAkelMj94cQpMtLTyKoaea0/fPyEW3fuMXPSWNn3duX6TQoKi3i1dw/F9//11p30792D2ApYzJZHzOTl5/PTqdPMnz1dcYzH42Hdxi1+i0qv6xf1dzl49HvOnr/IpLEjiZOSm8EJ9nIgV7hQtUoGc2fNpLCoiPWbtuH2uJk0ZuQLN5+2WMy8Pms67338Ge8smCdLsMlh2KBXWbn2G4wGA82bNq7w63m8lY+Bzl/Q1ywYv7cY+PzZM87+fIomjRogeJwBq2QfoQRNZpUMZk2byt/f/4j5c2cTE6OcD6yaWYU/vTGfxcuWk1OnDt26dJIdF6z8qpZZhT/PncbOA0f4YPEKpg3rj0VXvtW8VIjWr1Nr+nZsxYETZ3l/1WbqZlWhT4eWssU+kpOABIlM8f/fHDim2mhGNJhoZI6lYXYW7hIb31+4ydLDp0EQMJgMNKueTrOcGkAZMaNOSA2xI68wtAY2b/uW9u3bkZKSLNujb+OGDfTrE0l2AJw6dZK4pBRqVK9eVpQURMx8d/AQdbKzyapWpjCS7gkS4bB40WdMnTZdkRiSIAgCcaX9uORIC4Arly/h8/nICVJ8BJMZbkFDSf5zzp8/z2vzlK1vw+9bwWSGKIp8s2Ej1pISZk+bjMpgrpANbrSCH6dHpGbd+uTUb8DjR4/46sulxMXFMXzkqBAljtMjBtbuFXk9nUogMzOTEcOH8+nChcyZOxcdCu4Fpe9Reu8zZ8/h4w/fZ9DwUaQH9RIvD06Pr9Ix0FOBzy8ayomBCIKQhT8O/qcoiu++0ItFQbnRQxRFmyiK96UH8Lh002NRFK2iKB4B5gGf4/ebHAX0F0Wx0maKoiieAdZA9FJTAyouUkyBYovOMqShJxUdFylGLEd0a0ZDM2K5g517KDdDDYZGUNFCHUuKoOO4r5A8Uf6c5BLYADpBRSd9HL30CTz1utnlyOOa28b9J9Grh8MT6A+e2gKPYBhUKrrEJjCiRlVG1qhG5+rpnL73hE+3H+TT7QdZt+cwT5/nVui9ylmKeZ6cR5NSH0EtP1HxPL2EJiUHQaWOIGacT66giatCUs0c2X2Lrh3DnNUsog9NfOnFLYo+Sq7ux1w3unyvIojPyMD28BJaSyK6WH+1hJxqxpb3hBhnHlkNK+ehKKlmTp/4kbXLv2Ts5Om0bt/xhc5ZCS2rpDCtRT2KXW4+23vqV2kS2EIXQ77Pwy1Pxa4L8CvMGqos/OQrRBR/zTaR/1q8rDHwNIXYFW6OwagqGnF5Ra76/DHF6vGFWDjZXd6AiqC2yczA+BTWXrvLlcJinEWugPoAyvrPuIrK4kyixcj8vu3RatT8c8NenhVU7G1LE9vExERmTp/G5ClTOXz4MAs/+pCbVy8DhFQ0/hJYnR7McQk06TWYpn1H0bTfaFJqN+LhuR+4uPtrLu7+mhs/HsBpi54wkoiZcOJFFEWu71tHnV6jEAQhYnucUcvZnWtp2q/MqkKylYkxaLh99Fua9+hPQow8GX9y+9e07D8KlQJZrBNd3Di+h44DlZWFENnEFgjrleGfChzbtYXmnbpjNJllxwGcP32ShKRkqmcpy/CjYfu33/Ltnu/4y9xpNKwbvQlxRSAliaVeGipBoHvNTKY0zuaCtYSttx4gimJI3wx9rB6dxf9dSfZmkqIsTsFWqbkqhocqB1bRU2F1UCI6ktBxnfJtCf7NOA8MAw6FbxBF0Qb8FfgWf3z7t8c/Qa1DZU6l4OcNuIvzAglft8MRUNRItmeCIJDYtC9F929RePt8oL9GWcLNHUK8pjdoTaNOvdm+bCF5Tx4GiF+b2xd4BMPm9pJetTqDp87j+o3rbFi+GIe9fAVsMLKyspgzdy4Dhw5n/YaNfPz5Uh48DCpCUWha7y6xBxQw7hIH7hInziIXrhIXziIX1kfFuEscxNtdjG1Wl3ENazO2QS2y4mPYef0ea67fZdWlWxy5fh+H24PHZg+o0qJButYAXB4vK4+cYXqvNvLnqNKzfO1Gpo4eIrt94fKvmTtpNIIgRCTkRFFk0eKlzJs1XbaKHuDu/YdcuX6TXl0jkyiV6YEgYdGXK5g+abyiCgpg65bNdOveQ9EqSkLwfUu6l/l8PvZuXMPdW9cZOeP1ShEzFUWc2Uj3AcPoPXoyV47s4s6po4FtFp0Gi16DpfQeVB6MBg06gwZBpSal7TAKL+xAq/aiN2gDvWSCLYR0ptDErz69Pl5nCSW3T1aImPk34ncVAxPi49FptXy+dBm+cprgarVa3l7wOt9s2sKt23eijhUEgRFDh9Cwfn3+/v6HFBUVV+i8WzZvxluvz2Pvd/tZsfprvN7SuanCdRuOJo0asGDODDp17sriZctZvGw5hYWhH1+4aiYYkhom2C7Q5vbi8PhweUWqZ+cwYep0Rk6cxpCxkzGZzWxcu4oVSxaxYukXnDn5EzanG5dP/jXC+xBKPWwAHj99xukTP/JK/wGy+xYVF3P8xEn69uoesc3r9bJszTdMGy/vxGCz2dm8Yzfjhg+W3Q7w46nTWCyWCqmdyoPP52PR0uXMnirf80HCoi9XMHXCWNm4XR4cDgcffrYYtUrF/NnTy4gZ/PG4oseLNi4uNpapE8YwauggPv7iS06dOVupc5RDbEwMs6ZO4p+fLCr3mgvG+FHDOXnmLFeuV9jh69+F31UMTElO5tqde2zc+i3gnycpzZXi4+N4a/48Pvr0s4i4Eg6NRsPs6VNRq1Us/HwxbndkXi+YGJRIob7dOjFjxACWfbONrfuP4q3g/c7nKEEQBLq3bsob4wZTs2o6H67ZysotO7EXFSDa/eqbcGLGv68tyAI6VKHjc9gQS4pK53UOWteswrQuzZnWuRljOzTB4fawdN9PfLbre5buOsalR3mVytUEf9YXzp7G7XbRsrS/SLii4saNG7hcLho2jLS3Kiws5OiRo/Tr11/2de4/eMiNO/fp2qXMHjCc9NiyeRMdO3cmMalyrjHSWk4i5wHc9hL27trJoKHDFfuriKLIJ18sYcb0yKJLpXMMfu7581z+9vd/0KhhQ6ZMmhih6KroGjMYwb3SXF6R9IwMZsyaTfsOHfn739/l3t27suPkIL1X6V/pvpaVlUXPXr348sulFT4vQRD4/7P31+FxXOm2P/6pZlKLbFkyMzMzQ2wn5jhmiilxHJhMzrn33O+d3zn3wD13KBMyM8cxO2Z2HNsxM8VMkiVbLDV3/f5oVau6u7rVsp3Emcl6nnokVe2iVtdbe+/1rvW++977rF+zkqys6Moq/IIIGwOL8Cmw46e+iNIkygEgiuJdCEzXFkVxGbDsOY7VVWHdRCB8ihw+y54mWLlJATm4qELkAVICOlQIXCSPhsREzDZXIVCfGNKwc9KTQzOVFU0UE/+Jgo62Ki3XxQLuem00UlnQBqlBJIIm2OIMfBNKTXQWmgC33DZ2O7Io8zCf/hWSUAedP5iACUY45U18TZ9dUb8aFTBVrQpAtiGew8dP82T/Cbw6M68NGx2wTyRLM0/2A18dGYPy+9Nb8AxBpUFljAutM2PPxZ2bRoXOocWxARzPHiB6XBjKKluVxaWkkHVhJ8ltBqCNKetfH64mTThIRI+7MAd7+i0SmvrqzCgRM163m7tHtjF4SnHRr2hUM8kWHS6Xi7UrllClWnUmTo/sByxBqjfzvOhUJYVKBSKr79ynXVIita2lL9otR1u9lUP2bHSCigoyT/PaFl1Y8tEqaKihMnHOm0cznfXXrJ7x41WJgU2J5Qp5JKEniciDmWTRQIbHwQkxl9Y6q181A8WT0hJBY7TqGVW5It89fcaPuXkMqV8loP6Mq8Dml0NLHrZas5F2darQslE9Vn13DqPlJiNf7xXyggnOjJb/rdPpeHP4cBxuL/v27Gb37j00atyYlu07+YmNcOqZ0iClQnlMCb6YEWvUkpv+mMdnDnHHVoA5NoH6nV+LuL+89sz947sp36wTWoPyO+jumSOUr9cMndEcMhGWdusqOqOJhPLK2d63znxPuep1MceFdjYtBg2iKHJw1XI6DB0XkZyOVLw24FpvXEEQVFSuVVcxO9ukVZOTncXVc6cYOzlykWwl5OTkMn/hQnp2bMPrvXv4BjTeF1N8KEFS1OgsRt6oWYnbT7JYfu8BvcskkYAKrVmraG8mh6SgkatnCjxeWqmsHCeHml4zRpU6KgVNWfS4ELlLIVVL6Kv8UhBF8Sqg+D0SBGEQcBt8DNMrEf9UarSxKahN8eRf34uxSuuwHvMuhxutXkPZZj15euEgXqcDY+M2AW3ktaRiDBoEczxdR03j9M71WOLL0KprcT08SUkjQW551q7HawgOG1vXLKdi1eq069YLk1btt8iRD4R0asFfiFPKyIuNjWXsxLcRHYVs3rKV1EcP6da+NU3qKpOY7kK7IjHjKnDhKnChNWvJT81Db3XgKrBjSopHEASqJlipmuDL8NbGGLmTV8jaYxdxuD3ULJdA26RQ6zHJ5lKK/dLP2QdOM61/x7BkxrKv1zPurSG+7bJ4L2r0bNu+nU4dOmJJUK7/smzlat4aNjQgi16CqNFjz8th1fpN/NPM6SHbwiJ4sthl97ffsWc/rZo39RMmSse5dvUqLqeTho0aR/X8SwSNwy3yLO0R675eRZ9Bw7Em+c4RrPp8WTBpVWA20W/EBG5fPsfhNQvoNmQ06AL7gZJyNLieWjB0eg1gJKXjMFKPrCOuySC/jaDLbo+ooDFUaILt3kmcz+6iS6z6wvf2U+DXFgMBOnVoT7WqVfnjX//G9MlvExcXXhGhUqn4YMZ0Zs9fSOcO7WmoMEkmR726dahWtQpzFy6hfdvWtGpRckKaWq1m3OiRPHqcyt++mk3nDu2j2s8PrYHyKcm8M+Vt8vLyWbdxEwV2J6+/3p/yVYrtfoKtWexuL+lFfdRCl4dCl9dvS2nSqvxEitRfzHe6iatSm65VamPRafB4PDy4fpmVy5Yiety0atuOpOr1fW2LVKnSc2LRawJUlB6Ph/UrFzNtpkJh6SIbpPlLV/Lu2z5ldXD/d9HKtUwYOSxstvfsJSt4Z+KYsH281CfpnD5/kelTJkfzCZeIJSu/ZvRbwxRjroQ9Bw7RpGF9yiWVDdsmHM5fvMzeQ98xedyoAFLmeRGsgAyO2XGxsXz83nR27NnP3MXLmDRmZNSqFyUkJsQz+q2hfD53AR9MnxJ1YujbY0fxxdyFmIzGiFZxvyR+dTFQUDF00EDOnznN3+Ys5N1JYyN+b41GI797/z0+/eIrxo8ZRUpykcIvDIHcqUN76tWtw18//5LhA/tTrUiZq0TMAAguB2aTkRkjB3Dh/AX+vGIzQ7u3o3qFcn4CRW5pJodUgwagdnICtYf0JO1ZNos27EDwuhnSoRmJVuU+rtde6M+0lxM4rownAe4C8pozgsNJm5qVaFOzEhqTEafOyMnbacy9chsnKt58oy8VkpPCqmfkxExObi67Dxzio3enBfTxJOsyl8vFhg3r+f3vP8EV9N0SRZH58+bx3syZgeuLlElut5sVa9fzyccK8bUI58+dRaVS0ahxk7BtIkEiQpxeEa0K5i2Yx7Rp09HLnEaCnSFWLF/Om28O9/3PFKy9ImHX/kPcvPkjMz74yPd9LfqcolHNQHhCJTiJVWqXVKEiMz/6mLVr1iAKavoPHvbcCe1Oj0jt2rWxFRayfM03jB0R2bEDisY6qHjv/Q/561//wtR3ZmB+CXaTPwVKEwN/SpSsu3tFISBQCwsG1FyKQhUTh5YamDhHLq7gKn0KSMZAw6Ks/4IoHzxBEKirslBfZeasN4/bYeqHhJvIllBDY6SPIYHKaj0rHjxi9YPHFBZlIZVEzCghoWZ4n+Gy8bEMe7030ydPovdrrzH/y7/hLsoSuJbqyy5QsjTzOvLw2jLRxCt7zYpeN+7MW6jL1AohZkTRS+GtI5TvqPxQe1128m6fwFqnc9jrzr97Bl1CpQBiBnxki7REgryN6PWQdXEX8Y37EpdkDiBm5Lh9eBOvjRiPECGjUo5ki45ki44H9+6ycNbn9B0whI5de0S178tCrE7L+JpVSS20s+HeQzxRZEVEstTrYojjqquAp57A77AS4SghUdCRIui56Mkr0SrwN0QPVVFdmUI83IriXVFBMGD2ajjozMJb9D3IcXnJd3uxBZFmrgIXncok0shoYc6ZG7g8XlwFDr+9GQSqZyTotBom9etMxyb1+HTFRk5fvh61NFrKtBEEgZ69+zD9vZlYY+NYNHcWWzeux+mMHDdLA7nfvjWpPI17DqTVG6NIrFiNU9+uLjF7yGLQknn7ClqjCWtKVf86OTT2HHIzHpNSu3HI/k5bAbfPHKVuh14h2ywGDe7cDHLTU6ncsEXINsn3/NSOdTTu1hedQZkUtug1YYmZYNVMYX4eF44dpl3v1yPamW1cuYQR44qtLoItzeRZSFD8Pz15/ChLV65ixuQJNGsUWPtCdEavxisJUka/NHEMUL1cPG/Xr8GJp5kczimupaG3Fn8vg9UzckjrzGoVgiDQRhXLDVU+TtEbdXZTeQyoEHgYpSL3VYEgCGZ82ZL/9ktfSzA0RgsqrQFL/b44069jT73i3xasnnE53Dgdbso07oooern7vS/xKS9IMp9jc/nXFTq91Os+GEt8IrvXLPFP0uU73f4FCFDTFLo8iHojb06cRplyyayY8xmP7kfOVFeCoDfx5rChvP/uNJ5mZvLZ3EXsPHgEURTx2n0ZkZLCRYmYceQ6cOQ6cBW4KEgvIC81n/zUPArTQ2vJaM1GGtSoyLjOzZjSvSUum4Ntl5QzfLXmIqVEkVpt+6XbdKpfnQRLaJ9B0Bk5c/EKSWXLUEHB5uju/Qc8y8mneZOGgGxSrWii5IeTpyhXLomqcqsy2SSKv8bC1Mk+C46ijOuwxIzWoDwJU7Tu9t17PH32jNZt2wVeDzL7DKeT7du3M3hoZKWiEo7s38XRwweZMvNjqlapEtGe7HkRnKjgm5hWUb1BU3oOH893W7/h2uljirZMkSCpZ3R6DWqdgeR2g8i+sBmNjrAKmpBjVGmFK/shrpzHpb+xXxCvcgwEnw3PRzNnsHj5Sq5cvRaxrSAIvDt1MhcvX2HfwUMlHttgMPDBjOk8y8xk3cZNUV9ThfIpfPz+e+Tl5/O3L2eTmR/Fey/o2YyJsTBh0ttMmzqFk+cu8Nlnn3P6VLHDiMMtBhAzTwtd3M22kV7gJC3PTlqOnZsZ+dzOLORutq1om0ORDFWr1VSt35ghoycycuJULl26xA/Hj4WoJOU1Z6RnaPOqJfQeOgo3Kn9GsnzybMuOXfTq2lmxTsKRU+epVqMGyRWUVcjrv91B726dw9ZNcTqdLFm9jqnjRiluLy2+O3qcqlUqRSQP0p6kc+/BQzq0VVZKhoMoiixbvZZ7Dx/y8XvTXwoxE3D8EhQ3fXt1Z+iA1/ls9nyuXr/xQucqn5zMG6/1Zu7i6HkIQRB4b+okvl6/iYwo3UpeFbzqMbBJ8xaMHT2Sv8xawJOMpyF9CXnfQK/X88lHH7Bu42YuXb4S4ag+lElM5J9mTuf74yc4eORoRGIG8Fs0N6hYlt+PGciZa7eZt2kPdqcrgJiR1DBy+Pp2xevKmbRM7dOOUd1as+PkJb7acoCbj9MVr9NrL/QrZcSCXD8x4y60+xcJ0u8SceMutKFz2ujcpA5TX+/Ce0N68/WW7dy699B/X+HgVeuYs3Ap70waX/xZyD4jrehm6ZLFTBivXAtr3Tff8MaAAWFtB+cvXcnbEyeGTf55+vQpJ48fY8iggcXWlFEsStCpBDau+4Y33nhD0XpNwpkzp0lKSqJqUZK7EpRUM06nky+/+AKT2czUadP9RGI4YuZ51DMh5yw6rlsU6D90BA2bNmPOZ38hI/1JifsGf05SMpLTI9KkaVMqV6nC+q3bwu4frJ7SarVMmzGTubO+xOGIvpbmq4CfOwb+askZCeXQUwUjF8iNyrasETFcJI8CSiZcjIKatqpYTJRuEGUQ1LRW+/Y77snmqRg6qVgSQQNQVq2jpyGBltoYNj16wtL7j8j5CTKNJSQnpzBi3ES++uwvXH2QEbad6PXgfnIZTXLopKMEV+oFtCmNia0YallWePsopqptEVTKn2vm+e1FdWaUA5Pj2X3cthzMFRsobpcgJ2qCFzmyLu4irkEP4pNDO4uSaiYv7T41qlTEFFucUSpXzQRDbmP2/aH9THv/d6WWW8ohpt9/7n0BuiSXpXO5siy5eZdsd8l2gJEImh76eE4680K+i5EImmSVnnhBy3XvK2/v86tDVUxY0XCDyBJqp1ekjKCjnsrMXlcmma7A/59kbybV43AVuEgxGphQsyreguK2vsnAyIPtysll+P34YTzLzuHT+ctIfRIUT2Re3MG+0fIOQaMmTXh7+gxatWnHhlVLWbtiKU6F7NzSTjZBIEEjoVz1OlRr1o4fNi5FjGBbYM/NIu/+FWq3VfYAF71eLu3dQMOeQ4DQejYnt66i1Ru+AbVEuEiLx+3izO5NdBgwPGSbhBunjpCQUpnEINWNRMhEq5YB36B555ol9HlLuc6MhKMH99K1Ry+0Ol2p6sts/XYbqalpvP/udP8EhXxQI4d8YPIyIE0mqwSBNxtUparFzIp7D/AaZBlRpbA3M6tVqIoImiuqPNylIGgqY8SBlyeU3CnNKypAHO1S4PAA1BAE4ZRsmSo/piAIewVBuKSwhPdL8XVEPxVF8ZX0I9IYLWhNMZiqd0B027E9Cm9dIhE0lirNMKdU58ddaxC9ngB7Mwnyzza+an0a9RlOvt1NvqN4AcKSNAC16jdi1NSZXL9wmtWL51OQX2wPJE0syhH8t0vQgNZA984d+WDaJCqXT+GzBcv4es/3uNwev6UZEELMOPNdOPNd5D3Ox5HrID81n4L0ghCCRmc1BRCZAN3qVSVWENh87a6vjVkXYAko7XP9WQ4uj4em1ZQn8vLyCzhw9ERInQTB7cBty+fr9ZvCZt09y8zk5OkzvNarp+J2gOVrvmFAvz4l11gIR8rIUOjysv7bnYwZMwZQJmYAVq9exbjx40uVdSiKIquXLSY2Lo5RY8dikMVYuTVS8bWUrAS16JTrXshh0qpli4q4GDODxk1Gp4IDG1Zi0qoCJ5sNkbPJ5QSNKS6Ocq36k3FiExq9KmqCxlyjI44n13DnP414Lo9XLHUMLEowafmPFgMB9Ho9H818l2MnTnLx0uUS248c7iMX13yzPqrjv9arJ0MGDij1dXXv0pl3pkxiw+atLF/zjaI9EKD4fErPoEajYeDAQUyf8R42p5O5X33Jvt07EcVAYkYiZH58ks+11DyupebyMMtGarZvfVqenbvZtojPV6bNhdMj0n3AcB6lPubSD9/5t0l9OEmBA3D84F5q1WtIYllfkW2nJzCu3713n+zsHBo3DFUpPcvM4uyFS/To0ingfiVcuf4jHo+XRvWUbb9FUeSLBUuZPmE0arVasf5KafAoNZWrN36ke5gaGxJWr9/I+JHKFmzh4HQ6+cuXc2jfphUD+vZ5kct8IZRJTODjme9w6co1Nn37Ys40NapVpVO7Nixd9XXU+6hUKj58dyoLlq4gNy+yXaDL6y11DHT6+h+9/lFioEjxc5MQH88/zZzGsq/Xk/YkPYCYCdhHo0elN/HezPejI6lddgRBYMxbw+jSupl/dSRiRhrHCILAsB7teLN7OxbsOsrmwycRRTGAlAkmaKR1clsyk8fBmB5teef1Ltx4+IQvNu3nxLU7xe1lhIwtI7NoyaIwLRNnbmHIAqEEDRSrblQqFR+OH87u745x6frNkOuTq2aWrvqaEcMGF5MrRWN7KR59f/QYtapXpWxSqDr66pUrqNVq6tTxxbjgyfzdh47QpEkTypQJnTvTim6cTieLFi5g6rRpIdtLghJRc+b0aWJjLNSqVTukrQSv18uhg4fo81p4hw0lYiYrK4s///kvvDliFM1btfG/K4LfGSHX+ZIIGilxoGr1mkyd+RG7t23h5PGjpT+WjKBp3749ZpOZ7Xv2R72/yWTi7anTmfPl59hKUI07XaWPgW5fGYfhv/YY+KsnZwBi0FADc1QEjRYVTbFym0KeRa41BviC6/PKv5JVetqoYskSXZzwZFMoBnYKoyFoAEwqNV0McXTVx3HFVcBueybZJZA0z6OwAbBrLfQZNZkTW1eGbeNKPYc2pUnYz8WdeQe1NQVBE9rhdj67g9oYS2JNZWIl98YRLFVboNIpZ4N77Hnk3TlNbN2uJd9MFMi7c5oytetTtnqotZBEzAA8OnNIMctdgpKl2d4d20hPf8KIcZMUP6tE48vPnMy59SjstjIGPeNrVOFAbhY3FLxLo4UgCPQxJPCdI4cCb+B3OhJBU1FlQFtCAfvf8Hwoi554tFERNHhUtFLFctSdTarL6VfP+NvICBoAd6FvQC2vPyMRNM7cQr+1jlKtgt4dWjNz4ij2f/8D85auwmazh7QJB7kKI7l8ecZPnkq/gYPZtnE9a5cv8luoBGcgB2c7loSYgAkqDYkVqlK/02tc3OObuAj2Gvd6PVzbt556vd4s2kcbMrH18Og26ncboFgr5sp3u6jZqgvxcTEBk2MSjm9ZTZvX3wqbKZR+/za5T9Op0azYmqk0hEywamb/xjV06jeYeFmRzMA2apwOB3du3qBuw/CEfDBEUWTBosUkJiYy8I3+AYTcy4a8OLmSekZr9g3QalotDK9VhTUPHvHE4fCrZySCJhgSQSNX1JjVKjSC7xm6rMqLSo0ooQbmqGrlPSduiaLYUrbMk28URbGnKIoNFZbNEY7ZBvijIAh3gQ+BfxEEITpfzp8ZxkrNweuh8P7ZiO2cDje6hCqUbdqNW7tW4HEGfi9zbIE1aPLsbvKdvkFCftECRCBpPP7fLXot/QYNY+DwkXy7YS3bNnxTXItBuh6ZNZbiQK1okqF+7Rp8MH44nZvVZ8Hmvaw9eYWC3PyAmmASMWNzevxqSMm2z5HrCCFo5M+NHK0rJVMzwcq+B2n+dVqz3v9M5dkc7Dn3I0PbhY8Hc1dtYNokZVeS+ctXM3nUMH+9AnmmqyiKLFi8lGlvh3E00Ro48N33VKxQnto1qiu3KWoXTb0LURSZNX8h70x5O6R+gnyQnZaailajpUyZMiUeU4LT6WTuF3+jXcfOtGzd1r9epxb8VndQHG+liWOlCWSJkImWlAm3rmHrDjRu341dy2ZhL8gjxqAptmxSeJcFQ1f0zjInlqFMk248PbVFkaAJR9KYa3XD/uB0xHO8AE79I8fAt8eP5dSZs1ERND26dqFh/Xp8OSe6+hmRajBFgl6vZ/KEcfTu04dZC5ewc++BwAYRiBk5BEGgddt2TJw+g5RK1Vg45yu2bN1CRpFSJjXbzsMsG4+yCrmdlsfDtHxup/lIGt+Sx49PfEqap0V9WqVnKdPmotDloXm3vjhshTy8fsm/Td7Henz/LllPM2jU0tcPC35mbR5Yu36DIgEtiiILlq5g6oQxip9ZQWEh2/ce4M0ByjUYAFau20T/Xt2Jj2BlFy0cDgfLV3/D5HGjI7Y7cfoszZs0LpUtWGZWFn/+YhaTxoygZnVlm/KfE4Ig8ObgAVStXInP5swPTxhGgQb16lK/bm2+2bgl6n00Gg0fzZjGV/MWPfd5S8Cef5QY6MX3jhY1etAaUOlNfDRzBivWriftScnKgBGjRiOqtazeEObWg5III8VAiZhRQrzVwszh/ahbtQJ/Xb2VU9fvBO6rQNAE15cRC3IRbPn0a92ImYO64xVFPt+0j6NnLgI+9YuklJFIGZ/lrS0kmTISQeO3XxMEpg9/nQPHTvFM9lnKiZnvjp2gUsUKVKlUUfG+szLSOH/+PD27hyYxFhYWsmPHDgYPGaK474OHD3nw4CHt2rZR3A4wZ/ZsJk+ZikZT+uRMOXRqgadPMzh18gR9+/WP2Hbjhg0h1yzvJyoRM7dv32b+ggXM/PAj4hPCOxn9VJDXmAGfUnT0xCnYbDbWrV5Z6prQcoKmR8+eOJwODnx/POr9fYlK41i6YG6pzlsKrP21x8AX+0a/QrAUETQXyaMRMQgl1JVphJUfyceGh4ooEwFK+D8F1xkzZgxPnjyhVatW/PGPf2TmzJlcvHiR6tWrM3/+fD8TnFKk0Jg1axb169enn6YsagQaqCyonoPw0QgC7fSxuEWRk85c8kUPbXRWrKrI/8bMm5mK1mbalKoISZXxWFPIV5l4ZvN1Lg0mMwZTDF7ZxLtUy+XZuS2orRUQtMqfmei247Vno0toFrLN6yzEmXETS11lksPx7AGi6MVQptgq7fJf3+Dx48e8/vrrXLlyhfz8fDSaUfzpT39i8+bNVKlShSVLlqDValm5ciVfffUVCQkJrFq1CqvVSteuXRFFEUEQ+MMf/kD37t1p8LutvvNlPcZjy8FaJbx9GkDqxWO07dYjgGCJVGsmyaRh5eL5NGzclCYtWkU89stGbI0KEQkajUrF4IQkjuRl8dTlpH1MXNi2FZJMYUk+lSDwmiGB7fZn9DEkoJfVV5IIGiXysbrq1ay58PeAsugRgR8poBbhJbm+F6tAC3UsFz15FIhGaspioKQgkAgarVmLs8CJzqyj4cptuN1uXwz8MdUXA/9JioEnS4yBf/33/031qpXp+9prCC571MViJVhirLw1dgIFBflsWrcWQRDo8cbQsMex6DX+CdRIxY+DSRJr2WRF5YwoilzduYZaXZSJl1ijlsyHt9GZLcSUSQ4577NHd9HgpkY9Zb/3Gye/o0KtBpjjiuP1J11qKsTA3s8fA9t2Z/mZh5i0Ki6dPEpShUpUqVIcc4OJGYDtG75m6HCf0kfKIopkaWa325nz5ecMHTKYGpV+On9tqb5M5DYGvx2f3qqDXBhbpRKbH6dS1WmgoTXG/1036tTYnB5/rRk55OvMahV4oJnKyklvLs0FK64o+7d1sHCQX4ethSiK/gqcgiD8K5AviuKXv9wVRYaxUjOcaRcpfHgRfU1frQOX3YPW4PseS/VnnA43On0sye2HcGff11Rs14+yySnk213+yWmJoJEr7PLsbv46sGFxDHyOfuD/+Nf/pEXrtrSJMOiUatAIbkdxJqLLgQiklInnnaF9uHvhMl8fOkOM20v3pEQocBZb9RVx9HLSUW/VozVr0Vt1aM0GRdWMBJ3VRIOkBM7ce1K0b3HShVenZd6hM3wwvB+CXhcyISEYzew+e42ubVtgMoUe/8CRYzSqV5fEckHWs0UxXKozI58A1MWWUYiBmueOgR1bFJNKqzdsZsCAgZjjEgNSu4IH2WvXruXdGTOi9gV/9jSDlUsWM37yFGLjAmv4SMeQCJpClyeAoHkey7NwhI6SjVNicnl6jpzCzlULqNG2J9qECv7veY7NFUDQBFv/yaGPSyK+Tisyz+8msWlxRrzLXuRtX0TQyGvRCIKAuU4vcs9vKOUd/jL4tcXAiePGsGDJMjRabYkF4hs2qE9CQgJ/+vQzZkybgiVKH3hdbJkXioH/9Yd/YWD/vtSqETpZH0zMSJYvchK7Rq3alK1cg+s3rrN7zQIs5auRUE8WT+OKv7fh+n3yZy4cmnXuxeZVS2hUpW7A+rzsLPZv38zoae+H2RPWrFjGuNEjFRPzVny9jjcHDwhbH2Pu0lVMnzA6YF9tco2XGwMbF383Zi9ayrRJ4yJOPnu9Xr479gMfvzc9bJtgXPvxJtt27eX3M9+NWAvkl0DTxg2pWKE8f/58FtMmjSMhPrTOWjRo1bwZBYU2tu/eR7/e0dmWGwwGPvlgBv/6339+rnP+3Pg1xUC1Ws1HH7zPXz//kgkT36ZMmci22j26dePipUt8OWce70x5O2ztJ6kGiv/vlHrPFf/+58gP2fnZ/+azdbsY2aMdSfHWELuzSJD6W23rVadtveqcuHaHz7cdoU3VFBoX1QrUWU2KtuPhIO8Hyq9F0BkZ2Lsrxy5e4/Vy5QL2uXHrDtfvPuDtseEtFZesWMWMqb5aWFL9GQkL5s9nytSpivHR5XKxYuUq/vmT3wesf5aTFxD//uV//o8XmgvML0ootTndLF28mA8+Cl/XBiAnJ4esrMyIdmbBOHLkCDdv/sgnv/89pcwbVURJ/U+pLi+EkjJy6DUCnbv14MGdm8z+4jPeeedd9ProLOjlah6nR+T119/gm7VrOXnuIq2aNorqGGWTyjHu7an827/8c1Ttf2n83DHw70I5I8GChqoYuRxFDRqAWlgQELhGflTtATZu3EiTJk04cOAANpuNQ4cO4XQ6OXjwIA0aNODbb78FoGzZshw8eJCDBw9Sv75vIq6p2kpVlZFT3hxuewsRRTFq9YwcEknTVR/HRVcBe+1Z5BcRKTfynf5jPq96BqBM5er8eOEK2ekFfmIm8/w2VDoL6phQ/3AJrrRLaJOVH86CW4cx1+qquM3rdvjqzNTuFLItISGBffv20batL/MwIyODAwcOcOTIERo3bsymTZtwuVzMmTOHw4cPM3bsWObOLWZk9+3bx8GDB+kuY++9Ljt5Px6lSpfXFa9HUs14XE6MBWkkVy/unEeyM3M5ncz74lO69XrtZyNmTBFeFPE1lQs2doyJJ0GjZWtWRqlZcwmaIgXNLnsmboVj1LboIippfsPLRxJ6YlBHVYOm0CPSRLCS4XVyyZ0fUH9GXiRdKp4u4UVi4AcThlO1ckU+/eIrzpwvtiBSsmSQZ2cEw2y28OaYifR5YzDb1q9h2zcrcdh9HS2Tgh2VkkJFWi9t81uCSZnBRj1ul5NYo9a/3Du4gXrtulG+QgX/OgmxRi2i18vN4/up1c5HQMsnBjxuF7eO76VZT2V7kOz0VDLTHlG1UYuQbT9FDHyW9pjUe7dp07GL4vVIyEhLxWQ0EBdlxs/Tp0/54vPPmDZlMtWrKWdKyrOvSgPB7LOe1ChM+soRrJ7Rmg1+9YzeqsNg0TO4QnkKNSKHMp+ht+qjsjcLVtCYBDXNNTGcJxftr1gUKAjCYEEQHgLtgG2CIOz6pa8pGrht+SFFyM1VW+F1FlLwsDh7XKo9Az6CBnwKGo+opXyXETw5/x0Prp4HQgujByvn4MVi4Nvvvg9eF3O//Iz7d+8q3pdOLRTX4HI7FG0AK6SUYXqPVrSpVp61dx9x1JWHoawJS4qFmPK+RW/Vo7fqsaRY0Jq16Mw6vwImnGpGgvTsSMSM1mxAZTbw1b6TTOndFqPet156JiXkFhTy490HtGjRLMDrXdToefosk+s3b9GxU1A/r4iYOXn6DElJZalSo1ZIDZmfIgaeOHWaWKuVWrVqRfwsTpw4QbNmzQIyNOWTxcG4eeM6G7/5mnc//B0GSxwOt+hfgt9nBo0qgIx52bVowk1Aa/V6Xp/wLk+unyXz5jn/+uD3Wkkwlq1MTKXaZF0+iNag9itotDIP+WAlTbR1G39O/FpjoBImTxjHoe+OcPP27RLblk9JZuY705g9fyG3w8QjJbxIDPx45jtcuXaNL+ct4llmZthzBBOkkj2L9AzVqV2Ht995nxpVKnN5+wryb56mQpyBCvEmUuKMpMQZA9Rg8v6Y9JxFet58ZEXg81qYl8vGlYsY8fa7Yd0jbt+6RYzFQnJCqKrl4uWrWGMsVK+qXK9147Zd9OraCYtCzYOfIgZu3Lqdbh07EB8XF/ZzAFi3eSvDBiqPl5Xw3dHjnDx9lt/NmPbKETMSJJuzpavXcv2mcp21aNC1Y3tERA5/fyzqfV402/+nwK85BsrVt2q1mg8/+h0LFy8mKyu0zl4wGtetxZtDBvGnTz8jKzu7eENQ0p+cOH6R+Ne9ZSNmjBzArnPXWbTnODbH89dTbV23Gh8M74dLpWLOd+e4mqms3lFKYpP3AQWzFZXB5P9d0BkRtXoqVq7Mw1Sfgloat925/4DdBw4zaczI0BMVfWb7Dh6iY7u26PX6kPH9zp076NS5EzFhLGkXLlrM5EmTQsjilx3/JKX64oULGDt+fInP5OpVqxg1Wlnt6BI0Ie+rTRs3UlhQwIQJExGE8PVunF7RvyitjwbyYwcnUEbap0bNWoweN4G//e1TUjPCl7Pw76Ngs+b0iAwc+iZnz53lys07/s/CX6tRYQ7H6RF/i4ER8Or1kF8QVrRUxMiVKAmXChgoj55z5OIikNbMdIZmot2+fZvGjX1Zd02bNuXgwYMBfx875ns5Z2Zm0rlzZ6ZNm4bdXiyNjBE0tFbHYUbND94cnngdz0XQAGgFFR30sXTWx7IzL5s1OU+xi+H9dMGnrCgJNzPyybVUouBxsdek/dF5UOtQxyrLFwE82Q9Qx6QgKCh57I/OY0hugKBWHvRlnd9OfJO+ip1dg8FAvCyr5cSJE3Tt2hWAnj17cvz4cW7cuEGjRo3QaDT+deDrXPfs2ZMRI0aQWTQIEEWRzHPbqNZreMj5KiZbAuzM7h3dQeMexZOpwcSMXDXj8Xj4dtkcRk14m/IViws8JhrVissvBUlFVddopqXZyvqsdH+B+NJCL6joro9nlz0z7DFKS9DcSs+XWRFEt/yGYiRjwIia24QnZ6UXfr7bS3XBjNqr4jtnNl5RDCBo5PZmzgJfnHrRGNioekU+fncK2Tm5/PVvf+P+g4f+bcGes5GgUwvEWGMZM3EKvfu9weEt33Bs23pczvDe20o1XOSWYBZdMUFTrkY9nt657t/34u51VGzUivjygYNq+WTW1UPbqNulP4IghGRsXt2/idb93wyIOdK5jWq4uG8z3YeMUrQoe9kxUIubg1u+oceQwKwnJdXMri3r6TcosAB2ONWMozCfRQsX8MmH72O1Wos75REszYQwFpYlZZBFCyV7M/DV0uhQJpFErY7dT32d0tLUn5EQI2iopzFzmfyX4g8MxdZa0S6RstujgSiKG0VRrCiKol4UxXKiKIYYw4ui+K+iKL4SqZ6i1xNCyshhqd4Ge3YGhY+LC2QHEzRSDRqXUySpzQAceVncOLITCCVogvGiMbBN+45MeXcm58+dYeHc2aTLJiglYkaumvHfd5BKRWMykBJjYnLbhjSrmMSmZ+mccOdjLGvCnGT2L1LdmGDVjMZUvCghxmLAoVWhNetRGfXMPnyWse0bk2AJJFcFs9VP0iz+9gCThhZZQwRNbixeu4lJ48cFnqSoTVZ2NkdPnua1fsoTgC87BmY8fcqJU6dDauIEw+v18v2RI3Tq3Dls1qJ8wP3wwX2+O7CfMZPfxRNUrzJ4f/l+SvVnokU41UwkWHQaBEGgVd9h2HKzybhyghiDxv/eijX6JrWD32NOWazRFb2nzOVrYUxIIufHHwDQF02Ga4OK/EayO5PDI4qljoGFCuO10uDXFgNLwrS3J7Jz917u3L1XYluTycTvP3yfQ4ePcPDwkaiO/yIxUBAEBvbvy5TJb7Pl2+0sXrYCh8OhaCkoqWYiZQzXrd+AUVNmULl8Mpe3r6Dw7nkqxhsDEmt832df30pK4ImGoNFrivoCBg32wgJ2r1nEgPHTsYvK73pRFNm8aQNDhwwO2eZyudi17wAD+/cN2Sa4Hdy4dQe7wxG2zszLjoEXL1/F6/XSpFHk+q05ublk5+SGtS8KxskzZ3mSnsHYEW+GJbBeFeh0Oj58ZyqHvz/G5avXSt4hDPr37klaejqnz51/KdflcntLHQPt7n/wGCjrb2g0Gj764H1mL1hERk74vqI0RimXlMTv3n+PJctXcUX+PQjjyvAi8U9lMKPVaBjXrytDurZh0dZ9rN9/zG8vGWxppoTgvmCnlk14r09bsgpszD58luvpoaSUEkEj9QPBp5pRGcx+YgZ8sVpU6/zEzINHj9m0fRcz3h4X+mwXfVb5+flcuXqN1i0DEw21opunT5/y6OFDmjVrHrINYP+BgzRs2JCyZQPtYwW346XHP4C9u3fRuEkTkpIClUHBuH79OhUrVcRkii6xcMeWTaSUTaR/7x5oRXfA3Eakmq1hiZoItWnkx4tmDBpM2sTGxTHzo49ZuXQJGenFFnYh/dUSjj1q7AT27N7No0fFczrRKs2VYHd7Sh0DX+R88OrEwF8lOVMCGUgcWipg4HKUBI0VLQ2J4SJ55BF+kiPT6aFOnTocOuQrIHbgwAF0Op3/7/379/tZ+iNHjnD48GGqVKnCvHnzQo5VrqgeTQEefvBk88zzfL6nN/Kd3C1w01gdQ0OVhWveAs54cjmfF97qJVhpIVmapeU7uZvt209rMOF12clOTcWeepnCzDQ08cqZPgCix4WnIB11bCj543Hk47Flo40vJiwkNQ5A7s3jmCs1Qa2LLuhlZ2djtfomAmJjY8nKylJcB7Bu3ToOHjzIgAED+I//+A/f+a4dokLrbqj1gRMSclIGwJaVQcWysZisvpdBJMWMKIqsXTSbYaPGYo2Ni+o+fipEQ8BJSNHp6Wl9MQ9Mi0pNe72VPfassCqc31Q0Py/KY8CAitsRFDRygiZB1FFDMLG+4CmFRSo8OUEjV8+8rBjYo30rPpg+hWNHjzBr3gKy5RlLCogk0Y2Ni2fwmEm07NydvetXceTbdbgcgSRNsHomhJQJmswqV7UW+Y992XSX922iXM2GJFaqEfYacjN8Ma1CpUohE1p5j24Sk5iEJS4x5NwARzavpsOAwDozkerIvGgM3LlmCX1GjMeiLybLlYiZC6dP0LR5C3+GS6ROpcPhYPasr5j5/gdhPclLKlqrMoRmi0YzUIkGWrOh6Kc+wKapWXICLWNjQ+rPhCNogtUzAImCjqpqA9dfrXqp/zCQT/hKlkqWmh2wZaZR+OiKbJsnhKRxOtw47W6stduiSajEhW9X4HW7IxI0LxIDpYGRSqXijUFDGDVuAt9u3sTKFcvwukKfD5Wr0Gdp5gzs00kDaq3ZiNZspFaNCkxu25D65RP5JvUxR3Iy0Vh8NmbSEqyakateJJJG2q6zmmhYLoHLT7MRRZH5P1xmeIu6pCSHFmeVcOzmQ1o0rIc5Nr5YHVdU++XbXXvo3a1LYGyQivaKInMXL2falClhjx2MF4mBHo+HhUuWMX3yJMVjyzMg169bx7A33wwY9IXLZnz2NINvN65n5KRp/omLcEVf5VmOkr2ZRNCUhqQprlPjDfhbOp6c9Ak3Cd2y+2skVSu2OZJIGomgiQYxVRsjCAKOJ5f8ChoIJWiAqAia3/BiEASBGdOmsG3nrqgUNIIgMHHcGDxeD8tWri5RUf8y+oF6vZ6J48Yw4PV+zFu0hI2bNuP1esNm3EqqGXuw5ahOg0mrpl7DRgya8A4piXE+kubOeZJj9QGkY7hnK9yzYYlLoCA7E5fDzv41C+k7Zho6fdEkpIJl4Ob13zB0WGjiH8CSVV8zftRbiuex2x1s3rGbEYPfUNyuhBeJgTm5uew5eIihUahhVny9nrFvDSuxHcCVa9e5cu0GwwZFfx+/NARBYMr4MZRJDP9uiwbDBw/k/MUrXPsxtIj6b/jpEKxYkEhenU7H+x98yLy5c3iSVXISp06n46OZ73Lx8hV27N5TvEGBoHnR+Kcy+IiQeKuFGcP60qxOdT5dvoGD566WeJ1K9V1VBhNas4kezesyvVNT0vIKWHjmGtefZge0UyJoglUz4FPJSIuAgCiKpKVn8PWmb/lgqnIdZQmLl69k4tjA+lXS2G/Z0qWMGz9Bcb/Hqancun2bjh3aK+4bjBcdB9++dYuMjAxat2mreHwJoiiyfds2+vf3xcpgsiUYh/fvwWDQh9yH0n5S4kE4UiHSNghMkPRbi6sCFTry/YMTKyVoNBpmfPARqiJbv3DETDj1D/ji6KSp0/l6zdc8e/bshYmSf2T8KskZgARdZOVBHFoqYeBilBZnWlQ0w8oDbKQRmuUrqWjeeOMNbDYbPXr0QK/XU65cORo2bEi3bt3Izc2lXJEvY0KRBczgwYO5dOlSyPHA90WurjLRShXLd/l57LVnYStB+SJBbl8mQSeoaKq20lBl4YbXZ3eW5VaeYJDXm1HCw7R8CnPt2B6eozDjHpqEYnsaR15mwALgSj2PtlxDxWO5sx9hqt4xYF1ckQenI/MhosuOISlCYdcgxMXFkZvre9Hm5uYSFxenuA6U/w8qgwVj2UqhBw6C/ephGnYNXxxMrprZtHIxXfq8TtkS2PeXAVfq3VK1V7I2k9cgitNon6sGUsA5VFqa6CwcdGRHbPcbQfPzoXyRguZmlASN2quitSqOnYVZ3HSExkCJoHmRGCgUTT5KNj0a0c1bQwYxYcwoNm5Yx7IVK/0FOuWdAVCW6AZ3EmITytB35ESadOjO6R3f8P2WNWg8xR07v3WZAilj0qowaVV+9UxsjInCvGyuHtxKYuWaJMmsDYNh1grcPrKN1n0GBqyXFDp5WU9p0KGHIuFy/dRRUqrVwpqgbEGohBeNgQ1atsdijYt4Do/Hw/lTP9CybYcSr8fj8TDnq8+ZNv0drEWTciURMT81JGszCLQ3k6C3+tQEAOXizEXrlAmaYMgJGgnJKj0WNDwUItfA+Q0/Hyw1O2DLfkrBgwsB6+UkjZygsZSvQWKzXpzfsgRHfk5YguZl9gONRiNjxk/ktb79WLxoETu2bPIpZlz2Ep8huSpMGnTXSCnD9M5NaVKzAt88TmNfVjbaxBhMSbF+1QwUkzvBtmRy1KlYjss5eay4cY8BDapRIQIxk1Ng48yNu3Ru0QhRqw+xJTOYY2jcUFZrSzbhsXzteoYNHRK15zW8WAz8au58JowdXaKtQnZ2Nrm5OVSqVHJ/MS83l1VLlzB26nsIghAyqJZPKCsNbg1BMUV6N0VD1BQTM6U3NZfeR8kpyQGKUjnkyQa6oO06vcavoEls0B7RmUfhY5/iVE7QKJE0v+GnhUTQ7N1/kKvXrpe8A9CjaxfatW3NXz7/EocjfPx5mTEwMSGB92a+T5Mmjfnsiy85evSo/9kpSTUjQSJoTFoV1es3ocfIycTHWTm8dhEPz3+PWa8OaR8NajZtxbXv93Do6wV0f2sSeqOyytCkVZP24A4qRGpWrxoSu91uN7VqVKdsGeUYOnvJcqaNH1UqpcmLxMBZ8xfz7tsTSjzH1Rs/UrlSBYxh7luOu/cfcOC7o2EJqFcd5ZKi74OHw8QxI9iz/xD3H4av/fobfhrI+xvgI230er3P4mzhAjIynga0D9e/emvYEOJiY5m/eGkxSS0lkhQd/4XGwTKlsZSQVr1COX43vC8WjcCnG/Zy7UFaiDoGiokZd6ENsSA3pI2rwIYgCLRPTmRs7SpkFNhYcPoq59MC61xqTIYSVTMSmjVuwLqt21m6Zh0fTX9buTZV0edz6NhJGjdsWFy/rKgvC/DkSTp9e3VXTN5zu90sW76CSRPGhx47DF50HLx1yyZGjBodeuAiSETE7l276N27N4IgBJArSgTNiRMnyMnOoXcv5dra8mOXhJdFboSrExsMtVpNYmKZ6BQ6YY6hUqmYNmMmc+fNJz//t2TF58WvlpyBkgmaWLRUw8R5cvFGQdAICNQnBgdenmhsisdXq9V88cUX7Nu3D7VaTe/evfnDH/7AgQMHSExMpH///jidTn+n9vvvv6dGjfDZ1uArrl5fbSHZZeSYI5eTztyIWUsl2aDpBBVN1Fa66GM5XZDLxsx0rufkRV1bRLKJimvQE5VGjyaxZsT27qc3UMdVQtAoD6z15eogqEI/S6/LTt6tH7DWVa55EO56W7Vq5c9Q2Lt3L23btqV27dpcunQJj8fjXwf4g7T8/1CpTej5glUzGTfOUb52Qz+LHMnObMf6NTRu1Zbm9UOLb/5S9mWlUc9EQoWk6GtDJKt11NAY+d6R81LO/RteHCkYsKLhOuFfkvIsYIdXpLUqlguOAk7Z8hXtzV40BgYTNOAjRiaNG0ufXr2YM3s2x747FHCN4QiacJ2ImPgEeg6fQKc+Azi1ezOnv12NLSNwsBSoFFEF/C4RNO36DaFi9VrUatQ08PhFmZjScmrbGpr1Ger30g+e5KrdsqOiCiYz7RFPH9+ndnPlzB2nPZQkgxePgdXrNQzIFFW0M9u8jtcHDvGvD9fB0wow68vPGT9uPLGxoR7rSpZmSjU0wkHK6JIQru5MSTU05Ai2N/Ot8w0YlAiaSPZmZrXKr6CpozWhBtKE8DZuv+HnhaVGOxwF+WTdOBGyTYmg0ZpjSekygusHt5D7+A4QaDMHLxYD5QpAefxKTCzDO+++S53atfnL519y8XLkDEp3oQ1bRhaF6b7FVWAPWFI0GiY1r0urCmVZeeFHvrl8i6yiPpVE6gR4jCuQNCpBoFu1CvSqUZGqFZPCXovX62XuzqNMHzMcVXw5vFoTojHWn9EqavT07Na1mJCRETPHT5ykbJky1KiunKDzWKayluNFYmDPbl1JLqecSCPPwl2xfDmjRo8pUTVjt9tZPG8OU2bMxFxESAQPXuXkS8Dxin63u71+1Uu+0x2wRII0Ie373fezWE3jodDl8R8j2P7MTwAFvZukd5dcPRNj0GAsWq8zaPyLBImkSW7RE1f2Q9x5D4BiggaKSZrfiJqfD4IgMH3yJI6dOMG58xdK3gGoVaMGk8eP46+ff0l6GB/6n2IsXL1aNd778HcIgsCXn/+NO/cfRFXcGOButo272TbSC5yk5dlJy7GjS6lFi4Hj0cUmsW/1Qs7t+xZbfh6grHqRIN+mMsdTpkoNmvYfjVuj/L01adV4HYXs376Z8aNHonMVhPR7NBoNXTu2V9x//eZv6dG5I9YwNRjOnFcmtV4kBk4ePwZDCc+hKIps27mH1/tEnmgESM94yvot23h38oQS2/49QxAE3ps6ibUbt5AeRAb8hl8GOp2Ojz76HUuXL+fR48dAyclj7dq0plf3bvzp08+w2UITrl40/kmkitfuS54UbQV47YU0r1mZDwf34Obte8zacZScwqA4omBFKxbk4nmWhi0jE3ehnYLUZ7gK7LgLnbQpE8/kFvVwebwsPHON/bcf4TWWLkm2TcNaxBq1fDJlNGp1+Dmt+w8e8uP1q3TuJrOKLVJOA5Qrl0S9xs2A0LH77AWLeXvixLDH3/zt9pB1LzoOnv7ueyFkuETISP23wsJCbt68SYOGDUu0Xb986RI3rl/njSElqwyl+5dULkpkR/C1lBY6tUCMXoVeI6DXRHesSISQUr9VCVqtlhkz32fOrK8C7JyDUdI7/R8Zr141nihgF6PPDotBQy3MnCeXJlhRUfKXvJkuhjSvg1OeHJqrrKgEgQSdmkynh0ePHjF69GhUKhXjxo2jfPnydO3aFbVaTY8ePWjTpg1Pnjyhb9++WCwW4uPjWbFiRVTXqhNUdDfEk+5xssOeSUOtmcpBncHS1KfRCip6xibiEUUeeTysuPAjxscZtLJ56VCuMkoh8GZG8SSuSqNDn1wPx6Mb/nWSUkaCxmtDFFSoLaVTjEh1XxKa9g+bKZRzZT8wAJfLRd++fTl//jx9+vThv/7rv+jcuTMdO3akcuXKfPjhh2i1WqZMmUKnTp2Ij49n1apVAHTv3h2j0YjBYGDJkiWK5wkmZuw5z9Bn36dKF+XCX3Ic2vUtlavXpEOLpqW5fUVYvMUTlupc5QmJVx2VNQZciJx05tJKFz4j9ze8GILrY0VCEnrUCFwhj3pYEMLEwHy3F4tGhSAItNHEcl8s5Dt7Dr11CTjzizPIXyQGik4bgs7os+mRPG3dxV7jyYmx/G7muxw/c47P//ZXhg4bTtnyPqJRpxZKnUliirHScdAoXE4HN04f4/Kxgxi0Guo0a425Zl0EQQjxH5dPYFkTk1CZfRk3wVZlEq58t4vaTVqQXF5ZhRjOmswgeDm3ZzOvT3zPn4kUPGFwaP0yPuj6Xy89BpZUdPrGlYvodHpSimpnhevQ6VQCC+bNZdjQoSSVKxex8/pTKWm0ZqNfNaAxGXDLBjM6qwlnbmFAO63ZgKvA10Zv1eHIdaIz63AWONGatbgKXOitehy5DnQWrf+7b9GoyHd7idWqyHF5/YRNflFGvFmtosDjpYHWwnlXHmnYSeb5JiFLqnkSjELH89mi/lrhddlx56WjifERBm5bfoi1mXwC2Fy1FYUPzpF59QgJ9QJVvC67B61Bjcsh84Q2aKjaYwSPT+zGlv2UGs0DJ9VeJAZKMUwiOZ0e0RfbvL6fderUpk7199i9aycHDx1i4tB+xBl1xbWZ7AWIBbm4CmwUpD4j86YvI1IiGSVI9WWSLSYmNKtDnsPFiafZ7H2UjtFspHen1lRL9BE0knWgYLZCkGVG7UQFwjUI83YfZ8LwgZiSK+ExxeONScIlaALigagpKgwrI2bSMzI4ffYc7854T/G4Ujbl/+/f/s9LjYFlLSUrdHbu3EGr1q1R64qvV4mY8Xg8zP3qCyZOne6f7NRrBBxu0R83wxVElSARM+EmjIOz/OXxW9rHFEQcpxc4Qt5p4ZQ10vHzZc+AxaAhv6i+jFRTTQ5b0bZgJY3T7qZ82/7cO7COmOp6VMbwpF44eL1iqWOgXaHuzt8zsrKzyczKIkHmwR8Jk8aNZcXqr3E4nbRp1bLE9nFxsXzy0QfMnr+Qbp070bBB/YDtP+VYuEXrtjRt0Ypv1q0jLz+f14eN8heV16kFgkus3c22cTMjnzy720+gA1SM98XMpKq1SKpaC7Ewm9MHd+FxFBJntfJan9eIT/TVNpATo76/vT5y1O4moWZTDEXf83ynG5M2MNZqBZFli+bw4QfvoyP0e6jU95H6vBIJ36hxE1Bol5Wdw3fHT9Cmz8CXGwP1JfelF69Yw5uDB5So5snNy2PxitX8/v13X/kaMz8HBEHgo3en8ufPZzFt0jjilJKWSoDLU/oY6HCXXjn5a0bms2c4HI6oFLdGNfzuww/4/MuvGNz/NapWqVziPlWrVOadKZP57KvZjBs9ivIpyeCyI2r0LzYODlK7hNTXLMyjf8t62JwuVh46Q7zFyJC2jSI+W8HETH5qXsD2lhXK0rJCWR7k5LP+7HVcgkBKUjx9WjXEai66BoPZZ59bNDaXkugEl4O+HVqB6EF0FRZb1sqQm5vHmm/W8clHH/juSVM8vpf+DrarlPq+u3bupHmLFiF1ZiRc//EmhYWFL30cXNL3RhRFZs+axbTp08OObbWiG5eg4e7du3z//RGmTpsOhFrtRUK4Wi7y/mZJ8x9Or+g/TnA/NVpyJ1JNROn4JV2DBKPRyNTp7zDryy94/8OPMOm1vv+3SghrCxwMh9tb6hjo9vx9xEAhWjXFq4Qygk5srrb6iZPMKApB2vBwhTwaY0VbgmBIUszki27Oe/NoqYpFL/j2+S/Hree+7n/RR84akiBZP5135pPuddJJH8f9AuXAkOn0KCp8pGNUSDL5Lazia5bFWr08P3o1HLmbQYdu3WnZpY+/5szxhznczPAVY3+Ylk92egH3TwVmsMvJGa1GhSf7PtqUxorXZq0QqiSRIOTcwJBUA32CcoHBwtTreGy53N/0f8Ie43nR4b/3+38PJma8bjdPv/uajm9NQaX2Bddwqpnb16/y4O4t3ho6BCWURjUjJ2YglJwR0+/7f1eyNSu8G7ou51agUiDrZmAGXObNQKItEh6ll67uwxVXAS5RpIku1Ft8Yua106IoKo4OBUH4uu9/rxseU65kGxE51k5sE/aYf4+IFbRiK+KoSWiNjnDIwsUDbDQiRpGgkV7sFo1PCWDRqMgTXNz0FjIktizGGB29rp5+oev2XPsOIEA67dWaiqXoWoO/E2dzuln/zVpcbhdvjRiFV1XshSplXARnHec73YoTUdKA26LT4PV4uHHuBD+eP03X/oMoV7GyfxLLotP4j+EfnDvc/kmqYGTcOIu9sIB6bbsqbg/JSJZNsu1cOZ9Ob7yJOYy92Im927CWr8x/jgktHvui2HHtScDf8uty5ufw7brVTH5npn9dONXMoT27SCxTlratfY+e1IH1T0bIskeldfIOP+CvpRGcSQaBgxZ57RmprSTxD/ZRlhM0EjkjbyeRM64C3zU4cn1JD84CZ9F6V9F6h5+csRX1MyQyJkf+/ZINigs8XvLdXq6L+cSIWsoQmqU2l3uRYuDp4Yt/aK60LRzy0u6z43+++bUoiiNKs9+vFbqEKqK5VlfUpgT0yfWA0DoWStn5tkeXcBdkEVO7U0BGv6+9Gm3R86rT+1QBRoOGZ9dOQ8EzGnT3TVItHNHsha79cpEyWemZ0qkEzCqP71lx2bHn5bBs1SrKl0tiYLf24LLjfngTz7M08u49JuP8bVLPpPmOU6T4khRgOrOvzowpKbZovRGd1YTGZECIjeHAj4+58ugpU9/oRpylmKARC3JxF9pwFdhwF9r9z4+0r2SFISlt1h27SL0GDWjetl0AMQOhtg/ySUqPx8OfPv2M33/4PhqNJsCORMLsOXMZOPRNqlUNX+/weeDMKc5oDj6vS9Bw7do1zp87x1sjRgTYKylh5bIl9Oz9GvFlAxOUgrMClQa1ktVZJGIGwpMz8gnlYFWMHNHanUnvO//fRe+9vKKfj7IKA/6GYpJGDqfdjcPu4vF332Cp0RGvpjhRR3rurnw6IGwMTKhaV+z1r8uiumYJj84c4vsv/ukPoij+e6l2/JWiedMm4sjhb9Kja+cQ4iQSvtmwkcTERLp36Rz1PmvXbyQ21kqfnj0A0MUqT6JFC+fTooLBQVZB8sk7yc4s9clTNq5dRZPmLWnZpp1/u9Tnu5tt4+yDbL/jg/z7WD05xk/QgI9wTI4xYNKqEO0FXDp2iNxn6bwxahIarTZAYVbo8pKWZyc1286jrEIqxJuIMWhIjjVg0WkoY9L6rdS2rpjHW28Oo3pKWX/slhApKSU3L4/5q9bxuxnTFduLosj/+3w2H01/G0uV6P/H0cD/PwiDvQcPo9Nq6dyhXYnH+vMXs3lvysQSlTj/aHA4HPz1yzl88M5UTEFKbwB92UqKMVAQhHqV2752pe20fyvV+a58u4RL62cPFUVxw/Nf9a8HjRo3EYcMGcyYsWOpnKycBBDSF3HZmTVvAV07daRB/XqK+wQTCx6PhzkLFtG+TWuaNagDgK6M8txVNHCf3gaEqmYglLgBuJ32jA0/XOKNlvWoUyHwPuV9NTkxI41lIvUDM90e9l+/j1erZ+IbPdAklPP168xx/uPLx2nSuF0iZ6TPye1286cv5/LRzBkYDAbFvpycrJD3he7cvs3xY0cZP26s7/qC+oyFhYXMnvUVH38wE33ci9sOypGZFzqvJSckVixfTrv27albPbD/KSecAArdIn/726f8/vefREVOy+8/mDgJ7icG9zuV+pHyujNK+0RLiES6Lvmxwl2bUttnz56yYtlSPv7d71CpVAHvdodbpHY5a7gYOLTh0HfW1X99QonXLcfxuX/g/vFd9URRvFaqHV8x/CptzbSCQF2VmWPebGyiMjkRDCNqGmPlIrnYFTJbJMiPZRE0tFHFcsabS6b482WmSuqYJjoLKS4T63OfcTNo8j7T6fGTUvLfwyG+Zllia1TAXK0aTWtU4qMxQ0h9ksGWbTt4ZvOQpqDIyQ5jJwGgM5hwP72BJrlRaW8PvaoAlVYflphx23KxpV6nUpgJz58SuSe30PL1ESUSMy6nk6MHdtO5d/iaNNEimJgJRknETDi8LGszKJ29GUB9rRkRuOoKX+/kNzw/dKhIQMt5cvFEYdkIEI+W6pg4F2Yf+YtWmmCOEbU018SwOvsJT3NevJaG1PEUnTZ/pw9CB7Ba0Y1Rp2H4iJH07NWb2V99wcUzPmJIpxYC7M2Ci8MqQe7dr1KrqduiHcOnzuT8sUPcv3zO3ybs/kU2ZXKrMlvGAzIe3PUTM/J6NsG1ZYJrB5w+uIs6zduEJWYe3rqO1+uhbv3Sx9fSQn5dOkFk3fJFjJgwtXhdGGIm51kGDx48CCFmlFAa1YzkwRwN5EXRA9cXTxLIa89IkGrPSPZmemt4mX9w/Rkli7PgGjQWjYo6goVMwUkW/1iqlp8DgkqNtUEfEFQU3DqCKIq4bYHWjS67PWTRJNZEF1+BnEs7sducOIKysuTqGafdjc3uJrFuC/QV6nB602LczhdXf9ndXuxub1i7Hvkg1mg08M64EdSuXpU/zl3Krfu+hAtbRibZNx+ReTOLnEw7OZl20u/mkPc4n/xU31KQXoAj1+knIqHYZ9yg0/J65zZ8OGYwC3cd5XZqeoh9YCRIBWS/u36fhOTyfmJGbmWmBPmgfcGSZYwfM8pf9yU4RuzZu5cmTZpQNqn0yosXQU5ODjt37GD4W2+FVbxIy7nzFyhTpizlkpND2gVbcAYPdqXJ5ZKImWDIVTPhfpdQ6PKWSMxItdYARYszOSyGYoszSUlqLCIx5YvOoEFv0FK+4zDybhxELdrQG7QhhOhveH4IgsAHM6Zz9fp1tm7fGfV+bw4ZjMvlYtOWb6PeZ/jQwZhNJhYuXR61PfbzQpq8kZCQmMjb78xE9HpZOOtzsjJ9SsFCl4f0Agc3M/I5eyeTjCf5PL6fTVZ6vn+5nZbHwyzlfqs5xkqP1wfTY+BwVs75jNQiC6qAxJwiJU6e3e0nJuXkpUmr5tC36+nSpUsxMSNDpH6PKIrMXryCGeNHBRIyshi5dM06Rg4ZWKpaXC8DN2/f4dHj1KiIma07d9Ora+ffiBkF6PV63p8+hc9mz8PpjN715DdEB7VGzXsffsy3W7fy/ckzYdvJxyZSHa4z587z/bHjIW3lz5/0u1qtZsa0Kdy5d4/NpYi10UCegBauxkxlq4mPB3Tm+qMM5u46hr3IUUciZgrTMkOIGVeBK6AfWJgeajdfLtbC2K4t6NSwFn9duxNnUb1XaWwuuByITptvKcj1j9uDbam/WrCYSePH+mNAcNwLR8zYbDY2bVzPiFGj/evlbUVRZPbceUyfPOlnV+Qd+e47UlJSwhIzcixbuoQJ4ycoXqO8vyivQyi3GJN/P4OtzHQqIYAQiaSCkd6b0j46lYBFq0KnLvopWx+s1omGmJHOIS0lwekVSUwsw7DhI5j11Vc/ed/h7wm/Slsz8BEnbVVxnPLmUFNlIrFI8hyJpNCiogmxXCCX2pgxR3H7GkFFW1UsF735ZAsu/kVfw3+OaEih54VE0OgEFa3UsaR5HRzzZNNAZcFaCrmcErQpVQEY9FoPtp5/wNHDB6keZNuRnR44qZ53+M+43W7GjBnDkydPaNWqFX/842FmzpzJxYsXqV69OvPnz0etVrNy5Uq++uorEvKusWrVKqxWKxVGzgPA68inMPMKic0DC2dLiC1j4OHBjVTr5UsAlqtcSgtRFHl8+GuSWvVDawq12ApWzTw6e5j6jVphspZsE7Bj/WpeHz6GlBjlTnO0qhklYubntjTrdfU0jx8/5vXXX+fKlSvk5+ej0Wj405/+xObNm6lSpQpLlizBbrczaNAgXC4XVquV1atXExMTw/79+/lf/+t/YTAYWL58ORUrVmRJYj2a6iz84MjltttGdU3JxSR/Q+mQgA4zas6TQz1iMCoaFQbCgob6xHCeHBqFURFK9mYSrCoNA01l2FeYTXa1ejRIikdr1gZk5EjZOMay8QGFplUGE4LRN9kuTbqLBbn+rGvB5UAFxTJplx2B4k6xTi1QrlwyMz/4iAP797Fo9lcMGzUGgyW8ZZ5Jq6bQ5ZH573tl2wLvd9CoCezd9DVJZRKwVK+lMMFVbPfySZeaITHwmz/+MXIMTEjwx8DlZ3yZio/u/IjDVki1esqKw8K8XM5/f4D+43zZlNJ+kRB8XxJcTgebl8xm0MQZaLTakPsLJqQ2rV7GoBFjsRhLngxYvXIF78yYGbJeSTUjoTS1ZiJBMFtDBjJye7NwUGqjNeupM29D5BjYvG6pY+C/6GvQwGXhDLloEbD8ertbryzMVVtgz7hD/tVdWGp3L3kHQBVTHpPeRM75rcQ27o/D7svmD7Y30+k1OIuysC3JVUhMKseZzUt5Ky+LCkV2fzESaavXFGVRq0p8xsAXo3yksm/gJBE04ewN6tWqTr0q4/l60zb2PbrHoMrFfRRJtSXFbGe+y08ogk8dpjUbAkhKKf7qdVo+Hj2Av67eyqRe7XwKGgixNpOQ+N6fFPqBf4gqBuqLBnyiRs/e/fupX7cOKQqkBsCt27d5nJrG+LFjcAH5Ya4HgiZe5APnoviTnvGUVes28MH0KcWDZ63yRKIoiiyYP58Z772HnNOQBqLyAazb7ebw/r1Mf/+jsFYPkr1ZMOQJBc9LzMghKT4lSO88uWJU+XjF742xzSsWxcAhITFw33P2A1v9226S2gwh9chaEpsPRKU1oDX8MnUY/17x5pDBnDh1mjkLFjF10gTlYs1B6NOzB8dPnGT5qjWMHRWd2LJj+3ZUqliRP/71b7wzZTJWq3J9lOdFMKkrZdZKz1aT1u1p0qIVG9aswGyNo3LbnlxMzePknUwfGZOWHbC/pJy8XfR3xXhjSMIMgDUunlHT3mfJ7M94fcK7qDXFfb48u5t8u8uvxsmzu/nfPWoGxT9fH/Df/qXkPqArrdh5Y/naDQwb0A+DIbSvJWr0fHf0OBVSkqlSyZdkJ99XCUrZ6hIuXbnKxSvXGDlscMRjgE/tsWHLNj75YEaJbTOzsnicmsYbr/Uuse2vAboyFV/qWDjJAGaziXcmT+Bvs+bx+/ffjer5/A3RQ61WM2XqNLZv38aGjZsYMnhQVPuNHTWCLdt2sGvvPr8iMPgZCp6IH9KvN6fPneeLuQt55+3xaIsSvZXGNeGcASTIHQLkrgByuGX9HkEQGNC6ATmihvk7vqNRSgJtysX7XQJ8tQYdfsWMvE6ss8CJ3qrDVWAPSWQDqFG+LBP7duLLNVv5ePoExWuRQ0ypx1iFGBjNODi/0OaP6QvmzeHtKdPCEi9rv1lHv9dew2LxzdXJFc8h16SgvvTfv1fkwL696LRaOnT21ZwO19cGSH/yhGvXrjJ5ylQoqc7M5SuUS072JxGV1npd6r9K9mhyyK3M5OqXaC3eS7IzCz4mQHKs+aXGQF1sAtUqV6Rvv34sXrSQMRPeLtXn84+KX/VbQi0ItFbF8sBrJ83rC0QlESZqBJpi5RaF5MgyWhN06rD7CoJAY3UMWgTOeHKJ16p+UmJGCckqPW1Usdz32jjniS5bPpLaQUiqjMeaQucuXbl35xbPMoptbh6mKRcP37hxI02aNOHAgQPYbDYOHTqE0+nk4MGDNGjQgG+//RaXy8WcOXM4fPgwY8eOZe7cuf79Ra+XgpuHSWjSL+x1pf2wlXKt+vmVKy+C9JPbSWzYOSpipuBpKglqBym1GoQ9nqSaeXj3NhZrLHUrK9eYeJWIGbl6Jr5moCRUsrsDSEhIYN++ff7iaRkZGRw4cIAjR47QuHFjNm3ahFarZcWKFRw+fJiBAwf6fTv//d//nd27d/Pf//3f/N//+38DztFGb+W+20Ga57esoZ8CetQ0JZbr5FNAdJM8elQ0CqMilF7U+W6vXz2T4/Ji94j00ceT6nRwqChzUYI8M9snry7uUHrthf7MIHlnFIo7rRKU1DNQ3Gno1r0H4yZOYsM3X7NtyybFLAzliVBVQHawb53aP9E18M1RHN61DbWnZIXDi8ZAW34e577bR7vXBike3+v1snftEnq9NaHEa5HfnxJEUeTb5fPpO3KSIjETjB/Pn6JilWqUSSq25wlWzUg4eugAHTp2xmwoubCkUqZR8MAlGoTL7JcXxpQPPMKpZ6Q2knpGwk8RA2O0apoLVn6kIKJiNxh5dneploIorF3/XmEoWw1zrS7kX9uNM+9ZyTsA6OKw1O5E9rnNiB6XX0Hjsvs+R5fDjbOIpJEUNA6VgYo9RnPrxCGun/0h7KElNYQEpcLu8u3yTDol+IlrnYERg19nQPcOLDp2kdOZOWjNWiwaFWVNWow6NTqLFp1F67c4Ax/5WPyd91mSyUlzQRB4b1hf5m09EFVm2/PGQGngefvOHR49ekzHLt0QNfqABXw2Fus3bGTk2PGl8u1Wgs1mY+Gylbw3JSjzMozt0Lr1G3hjwICossA3rl3D4OEjI7YpiZiBUFWlEuR2S3IE/y291wKUMBGOHayqedkxUKfXoDMZSG4/hOwLW9Foo5u48HhLHwNt/8AxsHXLFvR/rQ9//fxLvN7oLOzatm5FsyaNmbtwcdQZrVUqV+L9d6czb9Firv948/kuNihpQz4hKrc8UYJOp2PEuEk0btKEbUtnk//4NjEGDVq9JsDG0m3LxxVUiNhiKCbQk4oUs9LzotXpeO3NMRzetDrsZUtKsRftAwIcOX6SlHJJ1CiyawyeFH7w6DHXfrxJr66dwl5PtEhNe8L+w99HRcwAzFuygikTxkSVqb509VomjHrrRS/xlcJP0Q+Mi41lzIhhfDlvUdTPmtvrLXUMdP6D1d2So1+//lSrVpXFS6O3wxzQvy9qtZoN3+6MSG4C/rjVomkTRgwdxJ//9gUZT59FRcy8TMRZTLw/qAcmvZbP9/xAak4+rgIbrgKH355ZqpspQapHKI155Pa04BtbJZYrR7dWTdh88Ae/5bio1ftrHUoJPfDiMVCnFtiyYR39+/alTHysoorkxMmTWCwW6tWr+8Kf2cXz58nNyfYTM0BY9YfX62XpsqVMmDhJ8Vjy74nX62X7zp307/96qa9JrhSSlnBtlOBX1gTbosnuKYCgCvdOVVDRvMwYKF1fjRo1aN68Beu/Wat43UpwujyljoGuv5OaM1GRM4Ig/KcgCHcEQcgVBCFdEIR1giBULto2QRAEryAI+bJlddD+/ywIQqogCN8JglBFtv6gIAiiIAidg9rfFARhQpTXRlO1lSeig/QoCRoBgUbE8Ag7T3FGTbRUUhmpqTJxzJuNXXz+L0C+6Mb7HPIulSDQUB1DWY+BS+TxmNDM5GAk1EwImZQPxvAxE9i2diU30nL8vr1KuH37No0b+7K9mzZtysGDBwP+PnbsGDdu3KBRo0ZoNBp69uzJ8ePFstHCW99hqt4BQa1sbeDNvIilQm10MQmK20uDzCvfYypXFUNi+ZBtIXVmvB7uHdtJ016BnddgSzPwTXge3LGFbv2UlT/REDMWb+FzEzOS6ullw2AwEC8rLHrixAm6du0K4P8/GgwGUlJ8hJRGo0GtVlNYWIjRaCQmJoY2bdpw5cqVkGN30cdy3plPtjf6DNFfAoIgzBQE4bogCJcFQfhj0LZXNgaqEGiCbwK4MMoJYElFeFWB1IkkV22jslDGreLrBw9xyyYBXAW2gNoe7kJbQKZQMEHz4PbtgEFKQAfXZfdPmAUTNCaTiQmTp1KvfgPmffEpt24o24rKyZdw66WJK7NOw8jxk1m3YhEGTWjmOxTXjnmRGCiKInvWLmHA6ImYdeoA0khajm39mh4D3yTOUrLFUDDhFIzd3yynw2sDMcdYle9JNmmXl5vDlfNnadu5G4aiDHylzpNOLWCz2bh6+TItWhbbxIbUmlFASaoZeec/Gsjbl5agKW5bvP1lx0Cz2vc5CoJAY6xcIQ8Xv96O46sUA4Wg7FOV1oi5bm8Kru3FJauLFwmiyoi1QW+yz23G67KFJWicDrefoLE7vSS1G0B+XgGndq4n1+Yi315Ul8rpDrCRCiZpgACS5klqYE24gGsrGgBKP/0e31o95VJS+GhId0wWE+uy0nFbfaRMTHkLeqs+pPaMBI3J4K8VE6xm1Ou0DOnUktX7Qm0+gpVmLxIDc+0uvl6/iZFjxyvftyjyxZz5TH33vagsIiBM4VWXHa/Xy+dzFjDz7TH+DNfgNnLcuPEjXq+X2rUDayUqvQ9THz1CrVYr2pmFg9LgWB6XSyJSwhE08v3lxy3p/SBB/p39qfqBKq2BxGb9yDixEfEFxk6/NF6lGIjoDfgOV6pYgZHD3+TTL2dFTdA0bFCfnt278tlXc/B4ous7Go1GPv5gJqfPnGXH7j1R7eOH7HpFUeTho8dhm8pVM3LoNQJVqtVg4rsfUvj0MfcOrkONE71BG0DQaA0GtHqfzV6sUYtFH0rMyFGpfAoVqtXk8qljmLQqLHpNkTKyOI7GGDQvPA5+nPaEy9dvhCVeHA4Hq9auZ/LIoWE/m2CEm1guKChkyco1zJgyMarj7Dv0Hc2bNCI+Lq7Etkd/OEmLJo1/dsu1nxo/VQwsn5xM7x5dWbLy65/tXn4KvFIxUAat6KZZ06Y0a9qE5StXRn0/PXr1ITk5OWSfcGMZwe0gKc7CJ+9NZe36DZw+fRbB5QhYSoI0Dnbk5pCepTzn5g5SC0t/S+Pq5hXKMqNHKw5cvMWaM9dweb1+1YwSJAvn4HGQ1B9UGcw0b9GMnEI7Nx8/DehzCjqjfxG1+heOgWfOnMZgNFC3XmDNH2kc+eRJOqdOnaZ/v76RLbFddv8Srt3dBw85+cMxBg4ZFv44MixfsZK33hrht9uNlCC0dt063hw2tFSWa/JxdWlVNtFanAUTNFGpbGTH/qliYNNmzUgqV45De3YBoUmfv6EY0SpnlgNNRVG0AlWB+8Aa2fbboihaZIs/nUwQhJpAV6A68K9AcLHGZ8CfhRc0FGyitvJIdPBU9AUnSQmjRLwk6NQk6jR01MXhUnu4U0LNDzmsgobWqlgueHN57C2ZHAmHH7w5pHufT01gRE0TrKiAc+RElTEfW6MCpqpVQyb3n9k8ZNg8NOw1iHO71yvu6yia7KhTpw6HDh0C4MCBA+h0Ov/f+/fvJysri+zsbKxW36RZbGwsWVlZANjTrqCJLY/aGKt4Dh3P8NjyiKn84kUP8+5dRhRFYqqEqmCCiRmAu999S6+hI0MmfOSQVDOHd2+jU+/+Ye3MSkK4+jLhiBl5vZmXgUjqGTnC/R8B8vPzmTdvHqNGjSIrK8vfDlAc4AmCQC9DPEcc2RR6X83MHkEQugEDgcaiKDYA/hzU5JWOgQK+CeDr5GOLkqCRVIS3KeQZ4WORpJ6R7HNqGkz0iElg2a17PMoP/D67C+0Bk3liQW5xoUMZQZOTX8CfFqzi4YP7YWvPhCNoAKrXrMXUmR9x7/Yt1iyeR0F+nuK1F2cSq0MmwqTtADGxsbRu047D+3b7tysRGi8SA3/Yvo5u/QejNyhb/F04/h0pVapRNqVC0bWFkjdKKiAlHN+zjer1GpFUoVKJxAzArm9WMGT0BMVjBXeg1qxYxuix4yKeX5qEiaSaiQbSJLKEYPVMOIJGDjlBI0FO4AQraCS8rBho0agwqorVat4oa0S9gnilYqB8Ik5jtKDS6DDX6UH+tT248rMi7FkMr6jBVKcXORe24y7IwmH3qWhcdo9vkdQzRQQN+ApOm2u1xFKlAd+tmUfG02cBBA2gSNLIl3ynm1u3brFwzpfk5+VGHKRIqhKv1oRXa/INps1WOrWsy6QWdbjgKWSvIyeALJegt+r8lmZas4+YUcf7+gDBtZ1qViyHSa/j4tUb/nUS4e4qsPmfoxeJgXPnzGHa9OkIghCQMSgty1avZcDAgZjNgdcWboCpOOgsij1zFi1j9FvDiCmyxBDcDv8S3NZjL2DTli0MfzO6Afzm9WsZOGx4xDZy1Yx0nUr10ZTeTeFImsCC5aHv+WCCxvdTwbo0SMkVDi+zH6gxWYlr0JWnp6OvdfIK4pWKgUAA4VGhfApvDh7E57PmRp2hX6NaNUa8OYQ/ffoZBQXR1YgUBIFRb71JXGwsX82dj8MRxTtdweb05KnTLFy8hMKiZyVSYpC81qBeI/iSHjr1pHbXQTy7sJeCe8fRFSloNMbAcV6MXzWjnDwnrW/atiNpt6+TmxVI8BuLSJrkWMMLxT+Xy8XSNeuZMrZYcRdMrMxauIRpk8a9sP2Vx+Phi7kLeH/6FNTqkpMGM7OyuHHzFh3ati6xrdPp5NjJ01HVpPm142XGwLq1atKwfh3Wb/4tBvKSYmDwBHXTJk2oV7cuq79WJsGUasq0a9uG5k2b8cVXX+HxeELHLQrjGZ3o5P2xw3j0JINlG7aFxNtoVDMqlcC24+fYcOTMc9XjEO1OBtaoSPvEBJaev8XZ7OyQNvIkHZ9aplg1I1mPQxFJozMyeuQI1m7bi1NjwmOMx6s1IWr1/sWrNb1QDMzMzOTY0WO8/vobgddZNM53u90sWrKEqVMmK9+0jJApCXl5eXyzZhUTJvtqqCol98jfOdeuXcVssVC5cuWIxxU1ep5k5lJYaKNqlcCaNOEIk4A6MkEEjdJ1RYKS2iUYJb1Lg2vbRMLLjIGdOnfB5Xbzw7GjUZ37HxVRvf1FUbwmiqJUTUoAvECdUpxDBahlv8sxH6gIRPYHiALN1FbueW08EwMnGuVETTBZ00Dt68Rd8ShbeSlBI6horY6jEC9nPbmlVsFYBA3t1HHk4OKMJxfPcxZJSsZAY6w8ws418vzHqW2JbDUjWZrlq4onuhKSUjDHJZJ9/0bY/d544w1sNhs9evRAr9dTrlw5GjZsSLdu3cjNzaVcuXLExcWRm+tj9nNzc4krysDxFGSiT6pFXEqoFZjHWUjW1aOUadqztB9BCOyZjyl4cofEBh2pmGwJWYKR8/AWOkssMYmBRWeVVDN5uTlkZqRTpUYtxXOXpJopLTHzSyLc/1EURSZNmsR//ud/EhcXR3x8vL8dEHZAoRIE+hgS2OuIbtLsF8A7wH+LougAEEUxXb7x1xADJQXNVfKjtlDyqQitZOLkEcWdSadX9FubySFZh8RqtYxOKc8P9zPYfSc0A1zJ3gyKCZp6Fcrwu7f6se/YKVZt2YkoiiHqGVAmaHQqX4dCEAS6v9afgW+NZtv6NRzcuRVRFCNmH8snvuQDdYNGRaNmLUh//IDCnOKBefDE1ovEwLjEspSrqNzpS3/0gIzHD2nYqr3i9tLg6pkTaHQ6ajVqVqKVGcCxA3to3aELeoOhRNXMjevXqFC+PNbYWMVihuGgpJp5WZJ/JcWNkq8yKNubhcOLxkCLRuVXz4BPrVaPGC4QXp36KuNVjIHaIPspldaAuXZ38q/tRvREp9RUafSY6/Ul59ohnJm+ZAi5isblcBeraOzFKhriylO1x1uc2bOZq6ePBxA0wSRNsH1UoctD0zYdGDp6Alu+WcPhA/uUbi7gT/mkgsrgI1uMMSaGNqhG5/Jl2ZiVwSVnAVqz1j8glyzNNCYD2rLl/APxYGJGwqBOLdh19joOV/jP7nlj4Ib16+naoyd6k0VxAHrs2DHKli1LzZo1A9aXNrsQYN2mrbRr1YJKScrJJwEkjcvO0pWrGT92bFQZkAf27qZTtx5RTXhCZGLGIKvtFi6BIBglkSolETTy/ZUs9+R4Wf1AbZHyVGctS0yVJmReKKXi4hXBqxgDgYDJqsqVKjLw9X58OWde1BN+yeXKMfOdaXwxey5P0tNL3qEI7dq0ZtRbb/L5rDlcvR5+7Kg0kSYIAoMHvsGA11/nqy+/5ORpX0Hv4FozwfCrqLVqLDoNZeKtVOw0hJjyNcg+txExP9X/XtD51S8aypi0IX0/g0YV8AxadBr6Dh/Hvg2rQj67WKNv/xfpA85btprJY97yPx/BxMw3G7fQu1sX4mKVkxiDIbeDDMasBUsYN2o4ZnPJKmyARSvWMGlMdF+95V+vY9yIN6Nq+2vHyx4Lt2rejLi4WHbvP/hTX/pPglc2BsrQskULqlWtyjfrlBOOlZ6bBg3qM3TIEP78pz9is8nGJmFqZwouB6LTxoAurenYtC7/98v5pD1+pDiukbtISKoZ0VaARq1mYt/ONK5ekb+s28P9jOebHylj1PNWcgoaQWDl/Qc8dfrmQCUVdXCSjpyYkVQzkioGrYGJkyazaMUa0Br8iUHgU3CLGv0LxcCFCxfw7pRJaEV3wCJhztx5TJ40ya9cCUAUhIwEj8fDrFlfMfXd91CpVBGTe5xeEZfLxa4d23ljwMCQtkrqmRWrVjF29KgSryNaAiT4ul4GSaNk3RZubB/pOl92DOzX/3Xu3b3LlUuXIt7fPzKiTs0QBGGUIAg5QD7wAT7WW0IlQRDSBEF4IAjCGkEQqkkbRFG8ARwDbgH/BvzvoEMXAH8A/ksQhBfWxzZXWbnttZETxYSRhGoqEwmClnOe3FKx1zVVJr/NWX4pziehlspMPZWZ497sqK83M8hXWYVAbSxUwcRJb46/9k6kejPhULttd25fusSD4wfJTk0l99ENHHmZiEVqB7VazRdffMG+fftQq9X07t2bP/zhDxw4cIDExET69+9P7dq1uXTpEh6Ph7179/o9C03VlScdRVEk69w2ktsPLpU0UAluWz6uO8do8cZbikRMMDxuF4/PH6FH/zdKbAuwe+Na+g0bSbIC+fVTEDMvWzUjoSSbO4BWrVr5MyHk/8c//OEPdOjQge7dfcWXTSYTNpuN/Px8Tpw4Qf364ZVPWkFFT3182O2/MGoDnQRB+EEQhEOCILQKbvBriIESQXOFPJylsFCqhQUPcJeSVYTOfN/EpSAI9K+YQgWdjtlHL5CdlYszt9BfoBAC7c2Cix6q1WrGDepL26YN+eMXc8nJ9alfIsqYZZCyKI0mM8PHT6F+/QasnPMZTx4/VGyvNGkVPDh/c/R4tm9cx5VzpwP2y8/O9F/z88bA5p2UC5Y7bDa+276R7oOjK8wbCan37/Dozk1adukVsXi0hKynGWQ9eUzdRk0U2wZn9O/ZuYP+ryvHy2j+b5FUM8EFM6GYzJMjXO0ZeP76M0p4WTHQrFZh0ajQqQSMqKlG6d/Nrwpe5RgoZUurdEbMtbqSfXYDroJc3LZ83LbIyTeCSoW1wWsUPLpK/oPLAFHVoSn0qKjSdRh5hQ6ObFqF1+PxETQOpTozgURNvtONwWhi1KSpxMRYWTBnFi5X5LpXKlehX40oKRT1Vh1VqiQwoV51DCYdq+4/JM/l9vuMSwNyeZ2ZYEjPmePBHd6qU5m/bTzArQdPAtpcT/UVY33eGKjS6qjfoKH/ePJMwbsPHnHh4iV69Q4sLP08xMx3R49jNptp1qRRVO0vXLtJuaQkypVLKrGt4HVz++aPNGjUuNTX9TIRrfIlGkRS6rxoDNQZNL66M/qiuiB6DTEVa6CLV67X+GvAqxwDpcmralWr8FrvnsxfvDTqXc1mM5989AEr1qzl3v0HUe8XHxfH7z98n4uXLvPNho2BY+goMpzLli3Dhx99RGpqKt+sWR0yBlciNZVgKFOR8l1GILgysN/ehylGTWycgbopVr8tbTCUjq3Raunw2kB2LZ2FLS8b8ClvUuIM3Dz9/Qv1Adu2aEbZMomK13Lq7DkMRgMNoqyxEKlGxtcbNtGlQzvKR2m7+O2uPfTq2jkqi7K0J+nodbqw9/H3hp9iLNyjSycczl9vHdZXJQZKIzelBLG2bdqQnJzMzq2bo76v8ikpvDd9Kp9+MYvc3EA3BkUXgKJ6LNUqlueTt0eycc9hDvxwJurzgW9cXLN8Er8b2pODl2+z53wEkrsENIqNZUSlipzMyWbvs6dh5zNDiBmz1a+KAV9MbtGiOZ/PmoPD4QggaFZ9s+GFYuCoUaPQ6ZQTyDdv2Uq7dm0pW7bMc38GEubPmc3EiRMxGn3/o5JIkpXLlzFqjC9BpyQy5YcTJ2jZogVarfaF6yJCZJVLNJBImnCLv91zKlV+ihg4fOQo7t65/VzX84+AqMkZURRXiaIYC6TgC8QXizYdBhoB5YFWgB3YIwiCWbbvv4qiWE4UxfaiKN5ROPxiIA9fkH8hCIJAS5WVq9588kpBmCSr9FRUGTjtLR1BEyNoaKeK44a3sFT2aBKMgpr2qjjuegu5FWH/TKcnhJgJOA5q2qrjyMfDbnsmt+yF/noz8qLwSribbeNmRj7X0/JIat4bjSmO/Ot7Eb1uRFHEm+GbrHj06BFdu3ale/futG/fnvLly9O1a1d69OiBTqejTZs2aLVapkyZQqdOnVi6dCnTpk0DQBBUiqqZ7Et7qNSxL2qt8ntY9HopSL0V8forJlson2Sk8OJ2avceGTXJc+fwZvoMDy18GKyaqRpn5Gl6GjFxcWEticIhXH2ZXxJZNzNC1rlcLnr27Mn58+fp06cPd+7coXPnznTs2JFz584xaNAgHj9+zP/7f/+PjRs30rVrV2bPng3A//pf/4tevXrxz//8z/yP//E/Ip7bpCo52zQto5CHafmlWoAygiCcki1Tg48rCMJeQRAuKSwDAQ0QD7QFPgHWBkurfy0xUF1kcXaJ3FLVuKiMES0qblKytYUjt7ijWjvOyqj61Vlx4UeuPPEV5FayN/P/HjThXi05kQ8njWLx2k2cOS/LpAijngmHqjVqMWra+5w/eYxda5aQl/7YP/Ekz5iUEzPBEFUahk2YSm52Foe3rMWoUeGwFfLDFp9t8ovEQCUYNSr2fr2YYeOnYi6y3QjOoLYV5JN6X+krEwhbQT7H927njbfGREXMiKLI7vWrGDRibInH1qkFTv5wnNZt25UcXyNYmvnPHUE1I2WWRUIkezM5IhE0EkkjtXnZMTBW6yNlJEgETSzKNdfksBVN/ke72B0/j13kqxYDg4s+S1DpzJiqdyD/+m5/jYtoSBpLrS6489LJu3s22ksAoHzD1tRs051dy2aTk5EGQH4RkVOSOgGgWctWvPXWW8z64m/cv6+clKG2ZUFBNp6sdFwZTyhMy8RVUHz/equO1lWTmNCyFkccuWzLfordYsRYNh5t2XL+gbhcNSN/1hwP7pBz6xFGl4eZXVvww91UDj58gjklkWyjju8f+voNzxsD+4UpmupwOFizaiXjJ04Ka+/w4P59smVWCuFw5+49btx9QN9evsFi8ASmlDErLQ6Hgz0HDvJ63z4lHhtgy8YNDBkanfWZRGxHGhBHO/EcDkrfLSXrs2DlloRgUuZlx0CjQeMjaGQkDUB8zaYR78sriqWOgY6fqRj2qxYDQ1D0/q1VowbtWrdiyfLo6y+o1Wp+N3MGW7fv4NqNH6PeTxAEhg8dTIN69fjLZ1+Ql/W0VFnOAN379KVJi1Z8/te/8DQz8Fm3u73kOjzkObzkObw43CLpBQ7S8uzk2IoJbUEQiK/bnrJNumG7sY+Ci/vR4Qr5nsufDbvb67eazHe6eVroIk2IJb7jm+zZsJZ7l89gMWh5eusygi3vhfqALZoGEsZSH+lJegYnTp/jjdeKyeng2HXhyrWo6gJ9f/wEsdZYGjeMziI87Uk6aU/SadIo1AZcCes2f8vwwQOiavtrxM81Fpb/r5Xg9pQ+Brpe8H0SLV6VGCgQeVzYqWMHDEYDu3bvLt5Hyd5UBovFwu/en8FXc+fxNC18TSwxaM5Ka4rhnfEjUWkNzFq+Fre7+LrCjU/kCYuCLZ9xXVtgNRqYteMoTrfysx7uWDqzDp1Zh9GiZ0DVCjQuG8e6zHSO5mUjGLV+BbXiMXXF4yTps2nZuAHjhg/ms9nzuXXnLgBb9h6icsUKLxQDK1SoqHgNFy5exO1206J584D18jh4/uqPIYryYGhFN+vXraNTly4kJZVTJCiClSJXzp+jQoUKlC0bPkFHst4FOHb8Bzp36hgVMfM8CUZKCL5upaWk/SUEq5WC8TJjYKT77/dG5PeIy+0tdQz0vKTP+5eG8Dw+h4IgJAG3gcqiKGYGbdMCOcAboigqeDUEtD0I7BVF8T8EQegLrAZqAD8A/yGK4hKl/VJUenGiVvkBlyCKIj94c2igshBTCmYzW3Rx1VtAa1Us6lIqOR547aSJDpqrrKXeF+CR185jhf0jkTJyJOjU1LboEEWRpxYvaTECNasnMaRna6w1qqNNqeq3NAO459CTlu/0kzPXUnN5mJZPdnoBmfdukXlmPW57AarE2rgurSnh7JFRYeS8EHIm/945BLWGCs3bhN0v7YetxNdtiz42UO0RrIy5eWAD5Zt2xBRfcvYjwLNblyhn8FKzZceQbUrkzLol8xg0eiIarTZEORNONVMSKROsmnmU9oTTF67w+Ek65GUh4ut8BE+GGp359GhWl7KxMf51hXfvhj1Pzq1A26lgcqbF1pdvMbEksV7YbRMzr50WRbGl0jZBEL5u9vGy4cYykQnFYBz9nz3CHjMaCIKwE5+t2cGiv28BbUVRDGWy+OVjYFlBLw4lcvapCy8XyaURVrTR8/Ck4yBbcNEACzFatT/zX5psNup8Baj1Vj1asxadWVckm9azPzUDuyAwskNj/6S3XEYNBGTsQLHXrajVs3X3AZ4VOBgzcoTve1/UEZM6aC5B45u48/om7/Ic3oAJLmnA7Xa7ObpvF2mPH1Cjdn2at++EuWiArkTKyCEN1tMePWDbhrXYXS56jpzK5A7KdobRYv3FxyGkyZ6Na2jQvA3lq1RT3KfA6WbToq/oN/rtiMSwKIpsWvQVwyZMDdsueILiwPbN1K/fgGq1fI4EwZZmctWMTi0w54vPmT7zfX9HN9jWTG4TJP9bbmkmKWeCyRmJvPvx/iPOXrxKZl5+UTtfe/+VFMXCMrEWujeoToxssCEnAIOLaQYXNZeru5y5hVT6j4W8bKwr1yCgXlOBp7hu0xfeu5Fi4Omunx5qrrQtHAozHnLiv0Z/LYrii8uvosQvGQP1ZaqLyQP+I+RYweSLx5ZN4d0fsNTthSAUP/fBNQmCYXtwBrVGjblam6JC077n1m/PpPdNOBsNvr+lwtFWvZqbhzaTVL48ddt0AVDM2rbofDY7SWY9Vr0avUbAolWhEURWLF9OxeSyvNa9S8CzpMp+jOdZKu6Ht8i795iC1Ge4Cuzkp+ahtwb2SbRmPcRZ2J/2lHxBRZd2rWjaqF6InZnXXoBoK8DzLI1nF2+Sc8dHLMVWS0ZnNXHu4ROO3nqEYDTwz1NHYez9dsTPLRIy85T7Q19+/jfGjZ+INYyVj8PhYNaXn/NPn3yCIAgBgz15DLLb7Xz+2d/4p999WNxnKmGCeNbiFYwcPoy4MuV8zWVjhWBPcqfTybJFC5g8/d2A7ZEg1Z2JZG0mR4HTzc2rl7hz4yq2woKA9vJ+oCiKJFesTOPWHdAqZKEG16MJJmfynW5ZwoLvuRjaqHyJ91NavLXkBHmyWk2Av3ZTpD5bTKU6YsuP55fqXBkXv+Pyov/vD6IoBtcx+MnwS8bAFk0bi8f2bg9/0KK+07nzFzh/8RLjx5RswSJBFEWWrlhF3Tq1ads6REQeHi47hYU25i1dTqd2bWjRVFmRK79GUaOnwKv29+ly820sWzSfFm3b07BJ85BnxqBRYXd7uZKRHzBulVSN4IvPFZMtVDZ5eHzmACqvh+69+1Czeg3Fy8h3uosIG6//mBJSLxzFkJ9KxaREZkybSotKcdF/HsEfT1pooqHL5eJPsxbyTx++p2iVKLgdPMl4yoZvd/DOxOJEGiXlTGraEzZv38n0SeOjuh5RFPnj377k45nvKNsIKRz/4JGjjBw2OKrjPw/cbjcnz5zjxs1bOJxOf7KsIAghMbBR/Xq0adn8hevzSNCViTyvVFo4nyqr+CXoy1ZSjIGCINRLatHrSv0x/1+pzndvz3LubF8wVBTFDaW70ufHLxoDmzcXj353qMRr3L3HN8fRu1evAFJG6RmStrvdbj774ksG9X+NGtWqBuwnjWnCOQGkP81k/qpvGPVGL6pW8I3Tix0kCmT1V4v7RPLxy7O8QhbtPcGQFnWoUiYOKHYFkMbRrown2DKyKEh9RmF6Do5cZSXWU5WbY7l56I16hnZuSnK5RL/FrWA0o05M8Y+/JXVMQF0eUWTl2vWkpT6mfv0G9Ovd44Wek/xCWwgxkJmZyfKVq/hg5nth97tw5hR3791n4Bv9AzdIfbyid8nZc+e48/AxffopOzwEq1Q8DjsL5s1h5gcfASWrS44fPw7gV48onkOhbxh83Ej9R5vNxqmTJ7hz+zYejwdRFNGoivuA/jgoCLRp3Yb6DRpEnZQe/NkHE0yWMLVbnxdK/X75/yAlzhIuBg6t1m/yuiq9Sk4elePK8n8n/czeeqIoXnuOy31l8Lx6LA1gxseOZwZtE4uWUrEToijuEAThBD5J4wtDEATaqGL5wZtDQ5UFS5QETZygpakqhmPebFqorBiF6HylASqpDJQRtfzgzaauykKCUHKGrBwVVAYSivavr7IQJ2ijJmbkqFjOTEUgoXoCBWWNLPzuLHUzCxkwoKq/ja/eTOixs9N9Lw2VzoS2Ymu8OU8Q1JFr2ESDYGLGmZ2GKy+D+Ia9wu6Tc+ssxjIVqVFHeeJSwpPLJ4gtXy1qYsbtsCOkXaPmsEkh25RqzTxNTyM2ISFqYqa0pMzxM+f54cwFKqaUo33LZpSjMGygdaXeJTu/kL1nr5KRk49eq6FbkzqUC3OukoiZ3+DHJqA7cFAQhNqADngaof0rHwO1FBchLw1Bk4SeGNScIZeOYlypztmnZiUeO118uvM44zo1JTmp2MZOLMj1dyxFWwFeQmsfvNG7Gz8+yuCPf/0bU9+eSHxcHGgNCG6ftForunESPiabtGoKXR40Gg2d+/g6cQ9/vML6RbNo3rYDLVv6JhqCC/IpHSe5QiWGTnqX3EI7BtOLW1EFEzOXTh0noWy5sMQMwPEdG+n62hslKvYObfmG7v0GRk3MPHn8EK/T7idmSsKJ48do2aZNiUUIIyHcQMaTl83uY2e4fu8RtcuXoVvLhiTGxihamklIfZbNllOXycvLJcZooGezepSLtypao4GPIJQTNBqTwU/QyG3OXiaMOuXvaf7PlN34M+CVi4EaoyWAoFEb4zBVaU3BtT2YgwiaSDBWao4n+z65V/ZSptlruOweP0ETCYJKRa1ug8m9d4XD3yym3YCR5OObJA1nrQPF8UilUvH2uNH8cOIEX8yey7RxI9GrRD8x48nKwJaRiTPX18dwFfieKUeu00/QaM16TEnxmJITGN+iHphi+P5uBn9Zs4OhPTtSvaLP6kZOzOTde0xhehaZN4sz1ss2qU7TiuWoWyWF+Bo10CZGZ5ETDtKATIohTq/IpvXf0KVHr7DEDMCCeXOYNnWqv08UbvA8e+48pk9+O7DvJGVZBpM0WgPHfjhBvTp1/MRMwLUqvBO2btrIgMFD0akEnF4RnVoodVakNLEcDJfTyYGd3/I4LZW6jZrSsWdfTJaYABVMMFLv3Wb7+tW4XS5iE8vQtH1XTJaYkHZKqplgYuangsVQujHQrxCvXAz0w2UHrYGmTXwWfMtWrmbc6OhKOQiCwISxo9mybQdbtu1gQP++JZ+rCCaTkQ/fmcr23ftYsnIN40YOV548L3o2fZNDvufI4RYRtHrGT3uPg7t3sHntKnoPfivgmba7vaQXOMh3uv3EnxyWWANJcQYqxJtIijNQfdAoEvUqLn6/n5P7dtD/zdFY43z90kCVmZezD7L9xExMEfFeq3UXqlhE6lcON8p6McxevIKpY4aHrWHlFjQsWrmWT94LMQMIgMvlYumqr/nkgxlRn/ubTVsYMuD1qIgZgPVbtjFtYukmy6JFbl4e6zdvo9Bmo0ObVrw1ZCAGQ/gseVEUOX/xMvOWLMfrFalWpTLdO3eIyprtN7xUvLoxsAi9e/Vi1+7d7Nm1g949iu2lpXGlEjQaDb+bMY1FK1bzLDOLNk2KlWherclnMavVK45rksok8D+njWX55p1cuHaTAT06+faTKZWDbb7lSIwx8ftBXVhx6AzXH2fQu7EvMVCe4OgjayKrifVWHVXNMdRvVB23QcvOq3cpuHSbyUP7YDQUj7/lxEzw5yIIAmPeGkZ2Tk7UtbBKA4/Hw9z5C/j4ow/DtsnOzubA98d95E2w4kmmpMnMzOTI998z/b1i0VVwHy14DDt38SLGT/DNBUZj+3Xihx94/4PSC1udHtF//HD9xidP0vh2yxbUajXtO3akXfsOaDQaxevSim5fEuqx4yyaOxtRFGncuDFt27RGrVYrqnqiqQ/7c+JlqYr+HlHiG1nwjWbfBdaKopguCEJF4AvgLnBNEIT+wHngET5boP+Lb1Lz+HNczydF+70UM06JoDnuzaGRykLzGBM38ks+tFFQ004VxwlvDvVUZuJKQbJI+17xFpAhOKmjUvb4Lmn/S958bnhs1MCEEMV7LSFoIkiyNIsHpjWvw1WXwKcrNjJz5ruKU7RS9pEcgiD4iRlds0noY0KLq1or1A5ZZ7t/GrU5EV1iVSCUmPG67OTcOEyZVuELCjpyMrA9fUjLgZEHEwVPUyl4lkb1ztHLrPPPbKdFv7eiautTzSxn0OiJUbWPlpgRRZFt+w5z6+59WjdrzAeTZRlRJdSaibOYGNapBQB2p4sD56+z9vwVuterRoMKJdeTCcbpNwIJssybwf2rfwgsAhYJgnAJX/wZLxalbP2aY6CcoGmMFU2UBE2soKW12spxbzadxTgsUewnTRSWNxuY1rYRX1/4kYZVU2hfsxJQnPnjtRcq1g0RXA5ErZ5aFcry0fS3mb9qPQ3q1aFrN+VaLeEQTILUrt+I2vUbcfLwPjauWcHwUWMCtkeaZNNotSTEail0eVh/0Sdxl092hZvc2vv1Ytr37EeZZOVs5Kdpj7l38zr9R4TPcLxx8SwWaywVqlb3r1OapLt36SxJ5cqRUrmq4nGCiRmv18vuTd8wZebvwp5bDp1a4MzJk0yf+X7AuheFy+Xmm537yXjyhN7tmvNah5ZRWZoBpCTGMbZ3BwCynj1jz5krPMzIYljLOlRIjEVjMoaoZ5QIGvCpaJ78caZswttW9NNe9LN4MBCcneYsKP7bVeAqalPcPhxB83Ke7p8Pr1oMlOrgRQO1KR5jldbkXPwWY41O6M3xuG35fvWMVDw62CLNkFwbtdHKs9ObSGz2BkQghQHyi2rUxBq1WKvUp0zF6uxfu4RmnXuRVKWG3+ZMQnDskD9TbVq3pna1ynw+aw79OzSnnlWFJysDV8YTv2Wk3NJMgkTMSHVmJG/xbu2r0a1nD1Z8s5mrd+7Tt5XPwkYiZrJvPiLz5jPyHucXHUeL1vyIuJoVKFsxGU3ZZASzFVfaLURjLE6t2a9gVILb7ebLv/2Vqe/MwGQO7ANL+5w9fQqj0USdevV9ZIcC8bt1y2a6d+3qL0AaDus3bKR3z57ExipbfgRbYeTn53Pi1Bk+mDEd6Q7CWVToVAJOp5PcrEwqpiQXr4uCoNFrBBzuwHZygqYgP49dm9fjdrvo1ud1OiYWJxiVVFMmpUp1Uqr43g1ZT9M5vnc7toJ8ug0cjskSE9bKTIL0/ZPelzuuPVF8v0B4WzTpOv0WfvbiCXPJburvhaB51WJgadC0SWNEUWTF6q8ZM1I29lFSlsmelQH9+3LshxMsXraCCWNHKyeNhVGn9evdg4ePU/nTZ18xccxIkuR1BBSsaYKtDLv27suDe3dYPvtTXhsygqTk8n77sUKXx/+dy7P7aoHp9Bpi4wzEGDRUiDf51Ix6n6WtWqOifc++6PGyZc0yqtRrTN0mzQNs/84+yObsnUyy0n0xMD7JQlKcgYrxRqqVtVDOYsCgUZGWU0C8xuvLpFe4dynDPic3jzlLVvDJe9PCKjs2bttFxzatKJOYQLgoMn+p77MviUCZt2QFk8ePCUvyBOPOvfu4XG5q1Yic/CghNe0JZRLj0Wpf7vOc9iSd9Vu2YTIaGTqwP9aYUIJZCYIg0LRxQ5o29tUxu3n7DktWfY1Wo2XsiGHPdZ0lKV3+0fHKxUDRW6ISRsJr3buwc89e9uw/QK/u3Uo+u8uOIAi8PXYUW7Z+y7b0NPr3Ch2LSvZmwSSNIAiMG9SXc1d/5M8LV/PuoJ6UhjYUBIGxXVtw6uYDvtp/ikk9WmM1R665KYfkZqE1+2KtSadleKv65ANfbDrAsJ7tqRUhoTmYuJITM86cwLzVcJ/77Tt32Lf/AFPeLk6EDn4q5y9YyITx48LWoRFFkbnzF/Dh+zMDzhVsS+dRaZm/cBEfffB+wPpIipWj3x+hYePGWGNjoxrTHjt2jLbt2pXYLhzC9RV//PEG+3bvplxyMmPGjS+RYJZIFo1GQ+dOHencqSOiKHLh4kVmz5lLSkoKQwYP8r+vXYImLDGjFd0BfV+50iW4fx+pryt9fi+SwPkbihFt2lQ/4JIgCAX4JIaFQE9RFN1AV+AEvsJgl4FEoJcoipHNvRUgiuJ5YA0QZoTlg6EUEtY6MXrGWsvyWFNIvtdDbYuO2goF3YOhFgTaqmK57bWR5o2uQLUEQRBooLYQi4ZTnpxS1bCR9m+kjiERHefIxaagcFGC0n1J9WZa1KrCuNd78Nd5y/B6iwdakqWZHNmpxcoOfUyCf4kGjrSrCFpjWGJGFL08O7uFxGYDEASBuKRQ8srrcZN+ehct3ohMoHg9bu4d20m1jspe5gB1U6wBi+r+aSrWb4beFHpeJdVM5tN0rHFxiqqZ0kIiZmx2O//91QJqVKnEB5PH0q5FsfQ/EjHjSr0bss6g09KlrIWZPVtz71kOy76/gMf7YpnZCTWj+19HQoWkX1fRa1EUnaIojhFFsaEois1FUdwf1OSVioGlgRYVDbFygVw8YYeAoTAKatqo4vjBnUu2N3Kh6uBJa61axaT2jSnIK2Tj6WJ1aThlQ7DNlV6vZ8aUiWg1Gj6fNQebTblGiU4tlGhTBr4JsU7de9GydRu+Xr4EvUYIKXYvhzRoV6pVY9Kq/EswTFo1x3dspHHrDmGJGXthAfs2f0Pf4coZiBadhtysTK6cOUmbboG+1MH1aDwFufx4+RwtOykTWEqFnretXcHAN0cETBhEsjQ7ffIELVq3Vjx+SZZmShCdNtKfZfHHBSvp2rg2748cSN2qlaImZoIRazYyrFML3h/UnX3XH7L5xKWw71yt2RhQhwaKSZrgGjTSoEZrLu4o6606/wLFPs++dlq0Zp/dH4DO4huGGHXqAFvAaOC0u0u1uBw/S0bUKxMDhShql8mhNsVjqdER18PTPouAIFuzcLVrtLHJxDXowdNT6/E4QhMvbAqZ29KktN5sof2wt3lw/SK3zv7g3y5NGCaZ9Rg0KvSaYk9s+fOUYDHyz9PGcvPmLRZv3IknL9tvYwHF30//tcoUM1KdGcm6AkClNzF2+CDMRgM7TvrqCApmKxqTAa3Z4PsuW7Sy4xnQmAyoE5NRJ6aAOc5fqyUSMSOKIgtmz2L4mAlowkwkPH70iPNnz9CnX7FFRfDxrl27itflpEnTporHKG53Da/XS4MG0dVYEEWR2fMXMnnC2IiTOXJs3byJgYOLrXxetIArwO0b19iwcgl9Bg5l+PgplE0Ob1MaroaYhPgySXQf9BY9h47iwKavuXL6h4D3VPC7KpiYKQnh3nfge8dY9EWLQeNXHMQaA6dhJJJG2h4JolcsdQx0P4fLwHPglYmBUUFGHjRr2oQ6tWuxdv1G3/ooa8K0a9OaDu3b8bcvZwfUUYgGFcun8PHMd1i9fiNXrxcVupYRM9LzF+55qlSlGm/P+IijB/aye8e3fmImvcBJaradR1mF2OxuLLGGUGLG4Iuzvu+umiSznlizkaHjJpP64C4XzvkKd0tWZo+yipIz7B5c9qL+n0FLcqyBMiYtCUYtiSY1Fq1KkZiR17FwOp18tXAZH06bFJaYOXn2PIIg0LxJw7Cf354Dh2hYry7J5SK7Quw5cIjmTRpRJjG6sZvdbmfths2MenNIVO0BNmzdztAB4cfaz4ODR47y7a49TJ0wholjRkRNzCihZvVqTJs4jjf69ubTr+Zy7cebL/FKf354Pd5Sx0DPz6PK/nXFQOl4Gj2v9eqJzWbn8JHv/evlz63SOEZwOxjYtxdxVivL1m5A5SoMsGouCU3r1WLaiIF8umIjTwvDj6MFs1WxnkzLmpWY0qsNS/af5PjZS3iepfmTaiRLMzmk8Yl83CJHvNnIx8N68e3JKzx88tRfb6a09yUhXB/q2bNnbN6ylcmTwic2b96ylRYtmpOSHF6VvXT5Coa/OSyEsAg+7/KVqxg54q2wJE8wnjxJ4/KlS3To2Cmq9gCnTp6kdZix8PNi4/p1XL1yhWnvzmDw0ND7jBaCINCkcWPem/EujRs15I9//gtPnqRHVRdHjkgkVTQEVkl949L0nT3u0sdA79+JGqfEmQJRFL2iKPYTRTFJFEWzKIoVRFEcLYriraLtn4iiWL5oW4ooisNEUbwRzclFUewqiuJ/BK2bKIqiEK7WggSJZClpAVAJAq8ZEtnvyMImRt+BFwSB5mormaKLO89R1D1Zpae2ysxxbw6eUhI0mU4P8WhpjJXbFPKA8AWU5VCaFDdVrYo2pSplajdk9MTJ/HHWAp4WukmLQkVUGriyHuCx52FIqU9cSkoIMQOQdWEncfW6oYpQ1OvJ8S0kt3kDoQQS7vahTVTvMlCxnUTGyJF+90cchQVUrFuCD3IRqsYZObhjK137DlTcHq7WjBIkYuZZVjZ/mbuU9yaMol6t6gFtwhEzrtS7isRMMPo1rkmvhtX5fM8J7j7NVmwTXzM6Zc3LIGj+XvCqxsDSQIeK+sRwnly8YQgaqXCePPMhVqOmkyaOi+58HrhLV+DVmVtItzpVqFY2joUHTuMqUI6h4QgbgA5tWzNhzGhmzV/IufPnw3Y0DBqVIkkjX69TC9SoVZuWrVqyfs0qxeOUVBMg0mSWSavm1Hf7KZOcQtXayjWXvF4vm5cvYODYyVgNOt/EVtDi9XrZu24F/UdOiHguo0bF9rXL6Tt8nGIbJWLmxHcHqFW7Nsnlo/cMPnXiBK3ahPfXjQSlzv6Pdx+wYssu/nnKaFLKKMeZSJZmIecomgBWqVSM79WOWtWr8pcth8nxiGhMRr9iS45gkiYSQeNb9AELEJak8W0LJGjkMKt/WiuhnwK/phgYrp6MxpyAuVpb7PcCkzjDETPSeo9gJLHFIJ6e3krhs3TFtkr2Onl2N4Ig0KL3IJwOG5e+2+0nZqQJQ3kxzwCi02X3TQy4HAxs35TuDavz36t28uP1+wGKGVNSLJaUGOJrlpURMwkBxIzKYEYVX2zJ061LR9QqFXtPXkBl8ClszCmJWFJisKRYiClvISbFgjklEWPZBNTxSWCOw2OMRzTGUuANHwOdHpEVy5fRtfdrlClb1r9OjsKCAr5Zs4pxkyaHPU5+fj67dmxn2Jvh1dXgm2Tcvm0bw4ZGP8m4bOVqhgwagNkcnard4/HwNCOD5AjkSWlx5fQPXDl/lrHTZmJWsCJTQjREit5gpP+YyXg9bratXIhGllQRTNQoHa+kcwQTPtLif3/JCJoYg4ZYozaApCkNQfOq4dcUAwMgETEuO60a1yelTDybt+2I3D4ItWvWYPSIN/nTp59RUBD0bi6hQLNGo+GD6VM4cfosx06cithWafLHJQr0HjYaa1J5Vs39gntPnnLqbhbXUnNJz/Zdq7Ho+xZAzOiL46xFp/H3BU1aNd1eH0LarWvc/7E4cchi0GI0aDDF6jHF6v2qmSSzjsqxRmL0KixaVYnWMKIo8tm8xbwzcUzYibYHjx5z+vxFBvULXxT+3oOHPHyUSsd2vpqsAXUgZL+npj3h3oOHtGsdXclNURT5cv5ipr89Puo6BU+fZRJrjXmpqpmNW7djtzuYPG70Sz1u2TKJfPLBDC5fucbyNd8EJKP+hhfDqxgDpYSRaBItRI2eAf378iQ9neMnTgZs8xOuUt8rqMZMp+b1ad2gFp8tWI7HEziPGM6yWUKM2cQ/z5jE8t3fc+dpblG/zKS4SCSNnKwx6XXM7N+RAoeT2VsP8+zWA0ViRoI0RvGNXYzorKaiJBwj2rLlUBvNfDB2GKv3HSP9aaBTSkSSRmsIqAMb7jO32+3MW7CQ9959J2yMOXnK9y5o1TJ83Dp67DgVyqdQrWrVsG0ATp89R1JCLJUrVYrYToLT6WT50qVMmjwlqvYAZ86cplmzZlG3LwmiKLJowXyq16jBgIGDoo7F0aBWrVp8/NGHbN22jR07ItSlCwO5CiZYCROOoJH3819G8tI/On59swSAWIrsbwkaQaCvIYE99iwcYule1vXVvsH+FU+pyX+sgsZfwyba88rrzKgRaEAMOlRcIBd3FPceaWI9JTmZAQMHs2rJgoD1D9PyyU4vCFDNlAS5pZmnMAtHxo+YqoZnlXNvHsdYribaGN+gXUk1k3n1GJZK9ahWI3JB+IzrZ7GWr4bBGnivSqQMgD0/l5snD9Owa/+QbaCsmsnLycZgNKJ7QQ9biZi5c/8hC1dv4J/fnUSMJfDeIxEzkVB4N3B7SqyFD3u34cSdxxy4GnnfkvAbQfPqQkXp5aMG1NTDwnlyA2Ko0gtYDqtWTSddPA89Di47o5s0l9tHNa2cTKdq5fl85zHcQZ3aaNQSVmsMv/vdxzx+/JhlS5didxcfI1j9Ig3Ag8kauSKkQaPGVKtRk93fblZUz4SzdpEgqVeClxsXz2IvLKBx6w5h992+Zik9Br5Jmbjw3r3ffr2c14aMIN4SWX128NsNdOrzhmJBaCVi5uHd2+Q9S6d5m8Dri6Q8unLpIvUbNoh4HdFAGrz8cO4Sh0+e56MJb6GWKRGeVzWjhAZVyvPBm31Z891ZLtzzxV6JpAkmapQIGvm2YJKmeFsgSSNBZ9ahNWuL1hcTNM+jnvkNESAIaA0GvyVZNNAYLWhjk9En1yP/xoGw7dy2fH/dGomgUWn0xDcdTPaVw9gywqtbJWuzYNRr2xVLfBnO7FyPSasKUM0E3JaMmFG5ChGdNjxZ6ZQTnUxpXItDV+6y7eztgH20ZgPmlMT/f3tvHRzHte/7ftcwicGSZWaG2DHEzMwQO7ZjSGyHdzacunXufffUe/fUrffeOe/sneywYye2Y46ZmTFmllGyLVnMM6PBXu+PUY96eroHJIvs9anqktS9unv1aOY3a63vD7zCDJ/KTCjMULXWkx+9wkty7IDesLooLj7OqPhc6GBIjPGIMolGGBKjoE+IgTLOk86MUxsAtS6gF57DTXF4/160adcerdq09TsGeMTpn3/8Hks/+kTWo5xSip9/+gFLl/tO7KUWRVetXIkPly4NOrHlFxFOnTmHlJTGaN3SN5VPoOfat2c3xk+sLC4rnHhWJWf2iUP7UVJchImzQqv/ISS4eOL5LuozYDDGTX8X23/9EbaifL/zQo2YCXQP300g0lQINHJRNK9LmrO6Jkx/Py+D3ukHk8mE/YcD1uf2IzEhAV988hG++eEn5OaJalcGEWgAYOF77yK3sAQHDh/x2R/qZ6hVh84YOnsRtqxbh+sXL/hELSZH6/2EmUSjxivMxOrVXhFcp/K8T0fPeA/3rl5EXuZzmCqExAidCqYoHUxRnpo1SVE6JBq1iNAqEKtTQk1dslEzPD+v3YiZk8cjRmaMZ7FasX7rTix7/z3vPvEip81mw8bft2PRPP/sEcK2HMdh7cYtWDxvTkivIQBs3LoDE8aMRFRk6AEJW3ftwcwpryZqhlKKVb9tQErjZIwdGUJ6qSpACMGMKRMxeEB//MdX38JakeKWX3QPFNnNaDjQ8ErZeM5RaTFr+jQ8eZqGazduVh4QRf3zIoVQqOjUrjVmTxqL//jhF5RXjA2lhBlxJgjAI1L/dckcHLueiutpWSB6o+QmFGoA+ETTDG6dgvGtU/DN/vNIffLS7x7CuYh/ZLVn/sOPDZUR0fjr8kX4eeselJZJr236fE4kRBmpcRN1lOObf36NTz/+SFZ0fZGRgWvXrmPK5EmSxwEgOycHt27dwqiRI2XbAEBZmRlnzl3A+DGjZfskRKMkWLXiJ3zw4dKQU0ACwPlz5zFg4MCQ2wfC6XTin1/9HSNGjkL3HsEFH/F3ZCjRMCqVCgs/WIrkpGR89+23sNPw5p389yUQ+loTE2heHQ1ylaCUc8MZpsACAGqiwBhdLA7ZCuEK8/yWCgNiiRrX3KVhpynTEyX6KaJwhSuBOYjXTaFMaH4jaNEeJtxGKUoROMUQ4ImQiJIROJo1b46k5BRkPksDAG8BxKrCOcthTb8IY9uhAPxTmQGAJeMOCFFAn+QRdKSEGWvuc7htFkQ0k/Y657GbS1D84jESO/Ty7pMTZQCAchwu79mAPlMWSE7ipYSZFtF6HN+3A8MnTAWAkFKaBao3c+32PRw+dR7/8vFivy+sYDVmwoUQgtlvd4LT7capdP8v8FCjZwAm0NRXyuEGpTSosCJGDyXawYhbKIWayH/pSi0g99dGwUE5nC+X9tbhEddCcFltaJkQjfcGdMd/7ToFq80BzmYNKzoCAEaNn4SBQ4bhm3/8F4qKKr19hIMIMcJjwoXQfv36orCwADZRujQpYYb3Cg5EdsYzPLp7CwPHyA82T+3fiZ693kaLZs1k21w5dwrNWrVBYnJj772leP74AVRqNRo3911klOur1WLG+cN7MXGm74JgsJRw58+cwsDBQwFUP5fsgZPnkJGdiw9mTQy4mBru+wLwz8OsUavw2axxuJ5RgJsiGxhIoAE80TN8BI34eGUkjW9EjTiKRizQMF4xLhvsGR7Pu1BEGpXe5G1nTG4DQ3J7mB+f8b9suVnyd7vNCaJQIqHPVFgyUlGafgeOisVBqdRmUvTr/w469+iFwxtWQSea+AgX/XhhhjjtoJZScDYrnJZy2PKKMVwfjRgo8OPpG7BXiNRqox76hBhPlEtcEpQxCVDGJEIZl+wVZji1AZza4BVoiDESU4e9g8v3HwOGCKiNehiSYr2ROMbkOI+HZUXUjLDODI/QHjjcFJcvXfBECr3dV/L5KaVY+eMPmDXnPb86NEI2bViPKVOnw2DwF6eFAs3RI0fQs3cfRIa4yJj+MgcP055h5LChnv6E4GnLcRwyMzLQNIDNDoedm9cjKjoGw8aM9zsWzCmAR0poEae7BICk+Dgs/vTPOLtvGwpys2XbhXpPqXOFaT89PxUB05zxIg0TaKpPcUkxzl+6HLyhBCOGDAIhBEdPng7rPKPRiL99+QXWb/odj5488T0YgkAzZdIEGPQGbNyyFVSl9Vtk0qqkx3Jmhwv5Vifu5tqg7DAWtpJSZF3aD0opEqN1iNKrkRytQ1KUDkkRuoroRKX3p0bpSWMboVVAoyTeY2PeXYirpw773S8xWofkaB1aROuRZNIEjJgRLmBu3bMfvbp3Rctm0h7cTqcTX//0Kz5fusgrTkvZoe9XrcbHHy7yGyeJ267ZsAXz58wMeZHxwh9XEB0VhY7t2gZvXEFJaSm0Gi10YThCyOFyufDVDysw+J3+6NPr1Xmhy9G8aRN8/sF8fPXt97CW+hZPZyJNwycvLw+PH4efvo6qtJg3ZzZu3b6DO3fv+UTLBEvvldwoAZ/Pm4GvfvwVhbk5Yd2XEILlc6bgaW4RTtx85HGeEW28SAPAR6RxWctRnlcERVYhZkfH42Z+MU5lVt6fn38I05kJo2aAitRpFU47gGcB/4sl8/H73kN+fZV6DYSiDG+7hTacuOz44edVeO/d2YgyaCU/X0VFRdi4aTOWfviB7OvkdDqxes1avzZSosSKX1dj+QeL/PbLif47tm/HoCFDEBNbubYVLF3X/Xv30KFDh1cS3VJWVoav//F3LHh/EZoHiQgSEq5Awx/v0bMnpk6bin9+/XWVogilBJpArxcTaF4NDVKciVAoccBWCGsYRWF5tESBUboYXOJKwIUpsiQptGil0FfpXBVRoL8iGnc5M4qotLgiJ8zwaKFAD0QiC3a8ROUCaKxGKVtHh09pJmboqDE4f/ywX70ZMZRSOHPugLNJL8hSjoPl4QmY2o8EIQpJYcaWlwZnWR4iWstH1bjtVhTdP4/4HiPQJEk6LQnfn6endqLV0KnefXKiDM+1A7+j+8ipUEl4mMsJM3ZbOQACnV7aez3UlGbK0ixcv3MfqY/TsHzBbP/Bdpg1ZoSIo2bEjO7SGpQCp9P9o6GYQNOw0REFrqHUa4dCXTjXKAhiFGq0JybcQhkAjxAj3gDp9Es9tRGIU6pxsDjf75gUfJF1AEiINOLT8QPwz9/3o8gcYppI0YS/SdOm+PjzP2Hz+vV48sg3Wt7H00Mk2AiFGX7/hMlTcHD3Du9+uZRmLpcLm1d9D5Xb4ZN+jMdqMeP0gd0Y/658erF7F08jKTER7bv2kH3UrIznyHmZgR6iyBax2OJ02HHxxGE/IUhOyKGUYu/6XzBnyfKAg0vxgOtZ2lO0aNnqlQxI9584B51Wi+nDq15MMRhShTIXjX4HN18W4U5umU+aAHEUDS/ACKNnhCINH0UjTocmrksjJ9CIo2eC4bC7wtqc1ay3QAj5T0JIKiHkFiFkByEkumJ/HCHkBCHETAj5tlo3eYUoNAaoTXGwPjoBjdbzvpcTaIRpzrQ6NbQ6NSKbtoc+oTnsGVclz3FY5QXoqE7DYSstRuH9CyH311TRx/YdOmLMpGlY8/1XcDqdvp85iXRCnM0CaimFNbsQTosdTosTTcwE4+IT8dOF2zATAkOSJ42ZMi7JO/EmxkgQjd4rzACeibVYoHmnXXOcu+tZZOXTmxkSYzxRMzEJUMQ0glsfgwIbh3989ZWsY9KL589w7+59DB7lLzrwrP/tNwwdMQKNU+Sjoi9dvIBGjRqhVevWPq+NeGE0NycHT9Ofoffbb8tei4eqtLDb7di4aTM+WLwopBQo/L2PHTmMkWPGePdXZ7K5Y9M6dO3ZC2/1rb4NrBRD/Mehwu8npVKJOUs/w9l92+EoLfRrG+ja/O9SgozwHrICjcZfoAH8a9FIQSkN2wa6nNVLX9TQbGBMdDQKi4ux56C/uBAK40YNh8VqxdkLl/wPClKhiVGpVPjys49x5tx5XLl23fegIO2NHEMGDUDHLl2x4ueVXnuiUUiLMvyYzOp043GeGdfTClGca4FD3w6aRp3w/Nh66FX+afL496BBrays6yVw0uGdUgghiI5PREletvdcfUV6tKSIyqgZo8KNFxkZWP3LKp/XRLj4eOHyNeh1OvTq0VXyufl0Z8venwujodImi/l9x26MGT40aGTLjVt3kJAQhxSJObcU2Tm5uHH7DsaPHhFSe55tu/Zh1lR5p6Nw+PrHlZg3awbatm4ZvPErgLjsMBmN+PKjJfjqx19gs/kvFtfXaBrOHb4NrG7NmYZmAxMTE3D67Dn8cblqIvWiBfNw7txZPHn0AICvIEGcdtktwmTEvyx7H79s2Y1nmaFnm+GZPX4E3Boddp2/4ZfGTCjSCOHrDTotdjitTgzVRUFn5rDu1hPYSnzfu4GiZvjxIY/JaIDN7oDdHqDMgVoHqtLi+o0b2Ln/IADPIrxYMNi2cxcG9OuLJimV9VaFnyubzYYfV/yML7/4XDZyGgBW/LwSHy5Z4hWd5cSg3fsOYOTQIdDr/VNX830UcvPGDSiUCrzVo7K0QSh1VE6cOIERQSJ4QsHpdOLH777Fp59/gdi4uGpfL1RSUppg9ruz8fdvvg87uECO6go0oUTMul1c2Dawumks64sNbJDijAKeFGXH7EUwV0Gg0RMleigicYUrCfuNGk3U6FaRpizc6BsFIeijiEIaV45crmoDAQKC9jChHG5kw3fgnJJokF1IJ4nN4I5MhllhQEG5G3nlbiAqAYUvK8UBcUqziOTWcGZehTIiGQpdZYh2ZEo7RKa0A6UUlkfHYWg1AESplhRmnGX5sGbcRXTHyvBlcdQMpRRZ53cg6Z1paJocOP/2iz+OoEmvYVCqPBO8YMLMsztXENO4GSIT/AuOSQkzPBdOHMGAEWNkj4cKpRRHz1zAe9Ok06nVNENbNka5y4XrWaEtpssR2yaWiTT1CCUI3lZF4rai1FvPKphAIzzeWK1BO6UB6SRwlAIv1AgXlNtrDOikN2JbdlbY9lPHcfjz5MFYdeAssgqK/Y4LQ8Sl0kcAgEajwfJPP8PpE8fxPD3NLzWQeNAgJcwAQFxcPErNFlgs8gK1pawM63/8GqOnzPITak0aFXSE4sC6lZj34ceI0Kola8ik3roOq8WMXu8Mlr2PrdyKY3u2Y/zM92Tb8OzbtBbj333fRzQJFNlzZv8ODBs3ya//waJmTh0/hqEj5XOih4rZYkXai0wM6x9aTvTqIPQ041k4qj/O3XuMZzmeQurCiYlQpBEKNHIiDY845Znnp7xAw8MLNPWQIwC6UEq7AXgI4F8r9tsA/E8Af6urjklBFEBki46IbNUFRTf2QaNVQatTewUacd0ZtU4HrchbP6p5Zyg0BjjzH3n3qfQmqPQmGOJSvNE2YtRaFRK7DYTWZETxnZPeegehYHW6kZCUjOnzF+Pnb/6BkjKB/Q2wqKmJNAjeX1okxBvx8TvdsOnhM9gFqSqkhBmxGEGcdlBHORyPb6GLAbh47bbXjqsMOq/Yo9AZQdVaPM/Ox/c//IAlHy6TFGrzCgqxd8c2vLtgEQDA7vL/TjhyYB9atmmDdu07yD5jfnYW7t29i+EjR/nZcOGEnOM4rFm7BgsWLpK9lpgVK1fio2XS6c8CeSA+ffoUbdu2kz0eKs/T02AwGtG6nfzz85gdLpgd8tFYVqc7YJSN+FyFQoE5H36KvZvXQVGRbkXqe0q4BYqwCdQ3MVJ1aPhaNPWQBmUDAWDimFGIjIjAtl17q3T+lPFj8SQtHQ8eP5FvJCHUEEKw5P0FeJqW7lNcW07QAeBj37p364bhw4bi22++gYr42wvx5z/X4kBGUTkcNhfsFakjtTFJaD18Bh4dXAe9Cn71vHhhBvDYJLnFoKZvD8fZA7uRWWRFmc2FCJ0KydE6xBvU3vOvXb+O/Xv3YOF86fHZwydpSH30GBNGDZd+dnjSnc2YNA7xcZXzKLEgcOX6DWh1WnTuGNhOmM0WnDh7DhPHjArYjofjOKxevwlLF84PqT0PpRTlNhtMptDqcwXi2KkzGDqwPxIT4qt9rVAQvrZGgwGfL12Ir35a5VcvRO6cN5QGZQMpCJYsWoj09Gc4I7RDAoIJb8sWLcCOg8dRWFTsdWQBAKoO7MChVqvwt2ULsPvIKaQ+SQ+772MG9kFCXAzW7w4urruslRke7KWVIkqnyAj0S4jDlvQMUEplo2ZUBr03akYIdZSDOO2YM2Uc1u8I/B1y8NAhPEp7jgkTJnptqYPz2FUnUeHU6TMwGo3o0b2b7z0qxp4cx+Gf336HTz/+CBoJR2me3Xv2on//fohKaOQjynifq8JRJ/3ZMxQXF6N7N2kxHPD9HikrK8OpU6cwZcpU77FQhJmysjKYTKawnBTlrvv7lk1YuGSJrJgk7JfUBnien98CIT7euHEKpk6bhp9W/OyzP5QUaVXtK08Di6CpFzawXq4ShIKaKDBOF4eT9mKUcKFPFniMRInWCgNucWVhn2sgSvRWROEiVwIbDU8cIoTgV8q2ygAAXdhJREFULWUkcqgDGVzlIDZY1IyY1jCiDC5YVf5ROIFSmgnpPWwszhza5603I4RzlsN8/yBiuk9CdNv+XkFGWGemPO08tMldoNRHSQozbrsVJfdPIKZHpTelVDqz3Cv7Ed9jJJo3Dawkl75MAyEKRCQ1C5jGzNu/smLkPElFq57+noqBhBkAKMjLRXyj6heA3XnwGKaODc9T6VUzpk1TPCksxeNCX2/gcKJneIIJNLetZu9CT0pi4JoZjKqjAIGBKNFL4RFotBXrKHICDb9fGBmToNDARFR4wllhVCr8NrEwY1IpoNcooTGp0TYhGgNiYrHueQZcAk8FpyX45EajUuHP00di8/GLeJKZLdkmUFg54LGjyz76CIcP7MOztKfQqoh34xH/LTVgmj57Dnb9vknyHjkvM7H9t5WYs/RTxMT7f1Yopdjyyw+YOn8JtFrphdWXL57hwZ2bGDpusuyzUEqxfe1KTH//Q9kBIL9odvXsCbTv2hOmyCifY3KkP3oAlUqN5q3ayLaR65Pb7YZKVf3Czb9t2433p3vEab7mRU0jLrK5fPxgbDt7DfklHiFOGEUDwE+g8ewLTaTx/KwUaK7kFvoJNHz0TH2FUnqYUu9o/iKAJhX7LZTSswBkVtzqBkII1FoVIhq3RHSHPii5vQeUcn4CjVhgUeuUUOsqF51j2vWB21oIzpLtTXsm3IDKaBsxjbv2gSEhBbkX94BSCpNODZNO7bfwbBalPTM7XFAbI/He0k/ww7f/RG5hIZxE5edFTdVar9jiKeaqgzHRCGOiEWqjFtFNEvDnyYPx4/FrKHJSWWHG+5oJ6ti4Mh7Dmp6O8rwiTOjZHvuuezxHPSnSYr1RM5cfvsD+I8fxpz//1W9C6eAo7HY71qz8GR98/JnXdonF8suXPBFGbweIGLHb7di4fh0WLl4i2wbwTCTX/fYb5syZG1IqH6rS4sjRo+jbpw+io6MlrydHcVGR5DlV4fC+3Rg1YYr3b2GUplBskRM++DZiUSbUVGhKpRLvfvgJfv/1J2jh71QWKDpGvPH9FG7CvlBK8eD6Jd9rCerQAP6RDvWBhmYDeYYM6I+UxsnY8Pv2Kp3//tzZ2H/4KLJzcoM3Fgk1s2dMQ5nZgj17dsuLMjK0adMGM2fNxD/+/nc4HA5v9IzYflidbpg0HkFPo1N57bFGq0JsbAzemTwXF35fBS3cXmHGpFH5OJ843NQr0JTZORSWO5FrseNpoRWnHxWiUJWAp/fuotzm8kbNmDQqaJQEp44cQvqTR/jowyVQuH29y6lKi9z8Auw/chyL5s6SfdZtew/IpjvjF45z8/Jx8fI1TB4X3Cnwp9W/YdnCBUHb8azduAXz58wKezx37eYt9OrRLXjDILhcLty6ew+9BB7rtU1kRAQWvzcb3/y8OqBT2asQaMrMZty4dafa16ltGqINdBIVZs+aicLCQhw9ftznmPB/KSfSEELwxfIP8MOv62Cz2b0pYIHgAg0hBJ8tfBfnb97DxTsPKveHOM95p31zdG6aiB/XbAJnLgG1eEoMyNXg5FOGOy2V635NjQYMbNEImx49qxBodKLo/sB9oY5yxJv0oJSisLhyjUjo2LNm3QYYDEZMmz7d51x+XeHunTt4lpmFMeM88zz+POH488efVuC9uXMCpqG9fuc+bC4OXd8KHBHtcrmwafMWLHgv9FpbfH3CcDl44ADGT6i+c3VBQT44N4fExEYA5IUNKUIVZILRvHlz9B0wCOs3bgz5HKEQFw5pT58gW+Dw7+Co9xpVqdVYW9QXG9hgxRkAUBGC8bpYnLGXVCnFWRzRIJ5okMoFTu0lhZYo0E8RjWtcKcqq8IHpqoyABW6kBahTEoy2MMEODlkqK5IT/A0wn9JMHDWTbXYgvbgcT/ItiG3VCWXP7/mc57YUelKVdRgNpU46ksWWeRPKiEZQR/pHpAAAdbtQeGMPYt+a4kl3lmiUFGaKH1+DLrYxdDGNAj6r22lH5vUzGDl5WlBRBvBMEK/u/x29xs/22d8mwRRUmCnKz0N0bPVDDq1WKzKzc9G2ZXPpPlYjpVm4zOzcCmeeZSM71HRSAQgk0MSqVDhZVpnbNyXRwESaGkBJPGnH4lRqDFV70jQapHKDVtSkEacr47fOaiOUCuC527f2ipQwI6ZprAmTGydh9ZN0lLv87a/TUi77t1KpwJ9mjsGxy7dx65Gn9hVfRJGPnlE4rZKDaf75CCH44KNPceXSRRzcu9t7XEqUkRv0mCIiYDAakZfjKxI9uHMT544dxLyP/uQjvAhz7+/euAZDx01GVIz056G0uAgn9+/C5LkLJY/z1zu5ZytGjZ8EgzGwXcrPzUZxdibe7tuvsv8BhBmnw4E/ThzCCMGiII84akb8+ly5dAFv96t++p30F5mIi45GxCvwvKwOSr0RX86ZiFVHL8EiSG0hJ9CEItIIU555fla00ShxLYBAo9dUvRh3LbEEwIG67kQgiIJ405mZkpoiqsMglNzZDwA+Ag2PWFwRCjTx3UbClfcQxF7oXfgTbj7naVXQaFXQVCwuN2nfFYkdeuHZiS3gJMagZRXCjNnuWcS2ClIvKTR6LP3sz/h15Uo8z3zpEQoq0kfwiwOeNBcG6BNiYUyO89Y2MiTGQGXQwRgVgX+ZNwUbDp3B2Rt3AUBSmPG+bk47XBmPYU69h/xbT5B38ykSLDY8zy+Bo8KGE2MklHHJOHDuMp6+eIklyz+GC8Q7ueInWBzH4afvvsGiZcuh0Wj87C4APHn0EGmPH2PUuMCT27Urf8KHS5dBoVDI2monUeH69WtISExA06bSNR3E5OTkIj39GfqI0p9JeWSKOXhgP8aOk0/TBgRPiWF3UVw6dwZv93tHMo2HUFyREmaCRcmIrxEIrVaH6QuXYvOq78FxnF8dGeHf4damEfah3EWRl/kCeS9fePeJ69CY6qE4I6Le20Ah/d7uhQ7t2mDz9p1hn+tZnPwQq9dvQmlZGM6KFSLNhBGDERMVhfVbtoV0mrBuQXJyYyxesgT//OofsFqDz030OpVXYNfoVDDp1DBExWDw9Pk4uO5nFGakeSO/xPDCjM3FwexwIdfiwJW0QpTbXIjt0AeFDy5DL4ia0asU2PP7BkRFmDBj6hRJ8clisWLVus347MOFso41J89dQITRKJvuDADcNgtWrV2Pj5ZIp8blIS47du/Zi1FDB8NoDG1edfP2XcTFxaJJ4/CdDS9duY6+vd8K+zwxG7fuwNwZ06p9nVCRE1gaJcRj4pgRWLVuc5XOD5UIkwknzp6D2Rx+/cR6RIOxgU6iwpTJk+Cw23HqtH8tQSFSIo1Go8FnHy/DP1as9kZWCaNoAqLRYfG705CZlYNDF656BZ1AAg21lHqFmO7tWmFE3x74esMucBznFWb42pucLbhdbBVlwvA2TbDy3lPw8oqw1gwgnfZZyPxJo7B+u2/0jMvlwlff/oA+b/fG4EEDJc/LzMzE6dOnMfc9T1Sh1Lhz4+bNGDRoIJrIpLR1EhVyi8tw4sQJPwFIilW//Ioli/xrcgkRjs327duL4cOHS9YxDEZBQQHi46sf7ff7pk2YPWduyBE7AHwEmaqkXpQSc7p07YrmzZpj3/4DkmNgPl2dMG1dIGGGX2MSb21atsSm9b/5pRkTCjNSUfb1jDqzgQ1anAE8qcLG6GJwzF4Udh0YAEhR6KCGokoiiYoQ9FdE4z5nRgENkK9RhvYKIyiAq47wo3cAT62Z1goDummM2FSQDXeT8BfAEtr1RGl6ZVoLZ9Fz2DJvwtRpLIhS2tPXke8JgdcmeLyxxVEzlFKPMNN9PBQqjaQoAwDl+ZmwF+cgqnXPgHVmOiRHouzqfoybKz8AFnP/zCG07zcMSrXGK8gEE2V4zh0/hHeGVz+dz28bN2PBjFeTq/dVsLBHO+y4l4ayQLlFQ0ROoEnReAYDGQ7/lHuhCjVlhVYU51rC2t5EeMFESxQYoI7CNa7UK8LwX5DCdrwgI6az0oQ86oSZOH1EHLEww0fNCIlSqzGvZXOsT3uGIlt47ytCCJZNHYVbD9Nw/vpt+YYVxRql0KoUmDHnPTRr0RI//vMfsJgrhfZQB0ETps7EgV2VCwuXTh1DRvpTTF/wARQKheRi1dG9O9GtR0+0ad1aciHA5XRix7pfMHvJx5I2i7/etUvnEBufgOat2gRcEOM4Dvt/34CJ73q8JcV1b6Q4sOU3TJsXeAArx51bt9C5a/U9JrfuO4yZE6tvS18FKqUSX0wfje/2nQUn8IiTq0UjJdLIIRRo+qck4oHFgnIV8Qo0nmOhR9A47a6wNpdnYbc1IeSKYFsmvCYh5Cgh5I7ENkXQ5n8AcAFYH7STdQghBBpdhVCiVcGYkIToNj1gSb8IoFKgEUfNCBFG0cR0Hw9L2nkQzuzdL46yEf7OpzIz6dRIbtEarfqPwe3da2BUBR+DWp3uyoV4pRqLP/kSWzZvwYNHTzwTW4FAQzR6T4HYiugZQ2IUDIlRFWnOPKkqtJFR+GLBTDgUGvz4+z44iMZvgsxHzbiynsL+Ig0lTzJR+LgAhY+LkHvzOcYmxWHLBY8NVsYkYO2eY9AaIzFz2lTJZ3BwFKtXrsDMd+ciUhDFJ6S4qBDHDh/ErPc8qXTkbPGOrVswbPgIREVH+6VuEFJWVoYzp89gXIVgEsy+c0oNVq9di8WLFnrFmECijPh+VnMZokSRM6HWduNxuVy4c+sGuveqFIekapuJhRmhKGN1cpJbVWgUF4sps+Zg7/pffPbrVArJTeq7T/y9IyUODZgwAxcO7oRWQSuiGUR1aLSBv7sopWHbQLdHXOz9pthAMW9174YIUwT+uHo9eGMRSqUSX36yDN+uWAW7PfyF6YH9+6Jb5074fmXgqAQpYmNj8fGnn+GH776FtaQ46JhNrVVBrVVBXyHwmXQqJMbHYfayz5H58B7OHtiFCI1C0j7YXBxyLXakF5fjZGouHjzMR+7zEhBCENOmJ2jGLSRF6KBTAFt++QG93+6NgYMGSfbD7Xbjm59W4vOPl8tGpNx/+BgZL7Mxeph8SlsA+P6X37B0XuDIFuKyI+35C5SUlaFbl04Br8dTXl6OIydPY9LY8MdgTqcTSqWi2jUHCwqL4HA6kdQosVrXeVW0adkCPbt2xtY9+wO2q65As2zhAvy8dl2Vz+c4Lnwb6OYAYNSbagPHjxuHR48f40VGRtj/v8iICCyePxdfrVwLTqnxqdEnB3+MUxswdcoUEBBs3XtYVqARijI8nM2CVglRmDmkF/5z1UY4nC5JYUZYvxXwRM9ojJXzi5ZJcfh0yFvYfz8df+QWeucrfEqzQFBHOXRaLZITE5D2PAOc2oBSmxP/8fW3mDdnFjp0lhaWS0tLsXnjBixeulz22sdOnEBSoyR07dJF8riTqOByufDzip+w/KOPAvYTAM6cPYd27dohMTG0zC+ZmRnIz89Hr26dfSJQ5KJRhOJBZmYGkqsgaou5e+c22rRtC5Pe/70k1yc5UUZYIysUwUZKoOk7cDAcFDh//rzPfqmIFjlhRrjGJPVdq1QqMXfOXPy+cUPA6wfC7Q7fBnKee8xu6DawwYszgCfF2TuaKJx1yBdxDURrhQHllEN2FerAEELwtiIKzzhblQSaaJcWeijxEOFH7wBAO5MGMQo13o1LwqmcPKQbAw+k+KiZx3lmpGaVIiPbjNiO76DgynZYn/0BZ2k2jO2GgRDpt4aj8DlcZbnQpXRHdHKyZDqzktSTMLXohbhmSbLCjMtmQeHdM0jsNTaoMPPk2jmktO8GnTFwPRqesoJcRKvd6N+7R8iCDA+lFDarFXpDZb+TTPL5MeWwWCxQqVSIigytz7WBghAseasD1t185J1AVSW1GY+cQDM0IgZnyopfWeExhj9KQhClVnjFFBNRoaVSh5eoyCmvUvhFy4j3C7chumikuq0o4VyIUiskhRkebaTvAEOvUmJR6xbY+uQ5SmSEP5dVOhKUllvw3oi+yH35EkfOVRZ1FNae4REOMnyig5QEPbp3w4fLP8K6X1Yg60V6SKIMP1BQq9Xo2LU7fl+7Enu3rINKrcaIidNkxZKzxw/DYDKhc/dKj0LxIta2tT9j6rzFUKl9F+KFbTLS0/D86RP0HzLCr42Yg9s3Ycy0d0NK5QMAT25fQ6u27REVHeN3LFjUjNtuhU6vq/ak/E7qQ/To3DFg4ceqEoo3mRRGvRZLxg/Byr0n/erTBBJpeKSiaHiEAs27HVpi24NnUBu10EZqvJMoXqCpIZ5QSnsLthXCg5TSkZTSLhLbLgAghCwEMBHAPFrPjbdC4RFINPymVcGQ1BpKJeA2ZwKojJbxCDXynxu1TgmNXoWEPtNQdOsQlAq3dwFQrVXBEKWFIUrrEzXjV4A6JgF9J7+HqztXw+3ypJyICFKLxup0w+bioFQqsfjjz3D02FFcv3PfK6wonFZwRTmg5RY483KgNuphTI6DMTnOm0ecf/8SYyRGDhmIaRPG4j++W4lii91b44EXZmAphrsoD+V5RbDmlsCcZUbZSzMcFgf0FhuMCoINN57i271n0KtndwwePARUpZWcUG1Yuwb93hmIxnKekE4n1q5aicXLPOK0nD2+eP4c4mNi0Kmz9MRdaPN/WbUqrLQUW7dtx8zp08JK5cPf79GjR2jZsvpFq48e2IsJU2dIHpNKZSaOlOFFGOmoGt/UaMHgv1caJaeg94BBOH1wt1eEkUN4PJBA43sfBYwaJcZMn4NTe7b67A927ivgyptiA6UYP3oE/rh6HQWFRcEbi9DpdPjkw8X4548rqzR279q5I8aPHoFvflrlf36AeloAEBNpwud/+hK//rISebk5fhF4QGUqPI1WBVOUDhE6FZrE6JEUoYNBrUAjkw6Tps9Cj+7dsPrHf0IhWpSyuThYnW7kW524kl6Ep8+KkZeWgZd3riD3eQkimraHypyLuyf3Yccv3+LdOXPwVpdO0DgtflEzLpcL//juJyyeP1c2gqWouAT7j57AvJlTAz775p17MWzQO0iID5ytwe12Y/OOPVgwa1rIC8+/rNuEZYvCqzPDc+j4SYwaNqRK5wrZumsP5s+WtoE1QSivTa8eXWEyGHEpiJBZHYHGaDRgUP++OHrydJWvUUWOvIk2kHe6WLJoIdZv2AinsyL1V6A6WCIaJSZg8rgx+HWdJ9V1IIFGKMzwjBgxAk2at8CmXfv9zpESZYTpyxrHx+LDKSPxX+t3oVwwj6aWUjgt5X6ZKHi0kRpvrRmVQoEPh/eCxqDFmnM3AzqUSTFj1CBs3XcYO/cfxrc/rcKXX3yBxAT/NSKNkqCsrAwrfvgen3z2OXQVYwOx48ujR4+QmfkSw4b62xGho8xPP/6IxYuX+NSiEUZu8FiK8nHr1i3J60lBKcWmjZuweN7ckNoL7w0Ahw4exJgxY8M6V4qzp09j3FjfdJWhpCnzsT8B3sfBRBqp+0ycOAmpqffx8qVnvhSqMCMUZQDf9QNxeramzZoh0mTE0yePZftWQ2xp6DbwtRBnACBOqUYUUeGpS9qAiWknWnDvpDQhg9qqlKKMEIKeigg84aywhFGDhq8zkwQtoqHGozAEmljBYmlKogEJbeMws3kTZJuteKJSyKY0k8JOYxHXayo0Mc1haN5H9p727PvQquxo/M50SVEGACwvbiE6OQmNOnaUvQ7lOGRf2Inkd6ajabK8eNEhORLlZSUoyEhH0049Zdvx8NExL/84jIETZgZtL4X5yW10fqv6hasvXr6CQQPeqfZ1AmFo0SLsc7QqJca0aYpDjzO8+161QEMIweCIaJwzF1f5uozAKIhHOOGFFJNKgU5aI4qpC24FJ1k/Jlgh8kmGWNzkSmGnnE97XpgRevzzhc75RWdjtA6LOrbC7+mZcEgU3JQaJAoX2KcM7Q+b3Y5jp8+G/BqIvZgNBgM++/IvOLR/vzfXqTDMVgo+D/nb/Qdi8uz5GDh4GAYNGSYbwXJgxxbodHq8M3SkbL9O7d2GwcNGIjkxQTZNTLnVgiN7d2DKHOm84cK26Y8fwmA0oVHj4HXEAECrAK7/cQF9BvoPYAMtxPEc3LsbYydUP+Lv0pVrGNy3V9jniYtWShEsRD8QiTGRaJ3SCFcepHmvJRZpeEJJdSYl0JiijGgbG4l7+cUA4CPQ1EcIIWMB/DcAkyml1c99WQdotCrEdB4Mc9oVKJUuqHVKH2FGKLioJTz3NXotGvWbivwru6BWK7xROcItKlqHxGh/WxalV0NrjMCAqe/h3oENMGkFC9k6lU+xaiH855EQgoUfLMUfl/9A6p1bIC473M/vw/H4Fuwv0rzt+fedPiHWW+BVoTN668zEN2uDv/7lz/h+xUofD3jitMNdkAVnXo7ntTBqfURCtVGHaQO6Y+rQfpg7bSI6dukGqHXeyTM/UbY53Vjx/Xfo1acPOnXpIusJt/rnHzF/8RKo1WpZYSbjxQs8fJCKEaPkvbr5+x89cgQDBw2UTEshNfEsLLOiuKQErVu39lswkJr0izl65AhGjvIvth1u3u3CgnwkJTf23o+PmpETZuQIV9AQiznC7xOdSoEunbvAYjYjPzcnpOsJBRr+Wnyf5L4rYxIagXIcSosKw+p7XfE62EAAWLZoPlatXV8lgSU6Kgqzpk3GyrVVcxZt0awpxowchrUbtwRtK/7cajQafPHlX7Bp/TpkZecB8Hwm7uSW4fqLYlxOK0RJsQ0anQqtkiLQITkSbRJMiDeokWjUIlavRqRWic6dOmDO/Pex8vtvvNfmhZlcix2P88x4ml0Ga4nHPnrqkimRGK3D+DnvY9SQwfjo40/QvlmyR5gRYbWW4z+//g4L5sxCo8QEyUUxp9OJ73/5DZ8HSHcGAJeuXofJaEDXju2Dvl5rN2/D++/OACFEMnWQmLv3U9G8WRNERlTNQTAt/TlatZBOyR0OlFJotTXmkFJlxo4YgvOXr1YpUixUevfsgTv3U+FyVa9WRG3RkG0gb08UCgU+fP89rFy91reB1OK2xGJ3m1Yt0alDO+w9egqAtEAj/F1cH7XPWz2QmJyCQ6fOgaq13ugZcfSKQucZuwmJiTThs9nj8dXWQygv8zibl+cVwprt+Q5VG3UVYozaOwdXG7XeOjN8KrMh3dthWPe2WHfxrjc1rnesGCCKhmj1+OsXn6FT5y74l7/9FfrIGFCV1i/iODsrC7+s+AF//vOXiBTVtOHb5haXYc++/Vgw7z3J4zy7du7EwIEDkZDoG1knjsZQUxd+Wb0GHyxZ7N0ntINSNvHAgf2YNHZ0UKdGqTGk1e6E0+mEThdY4JKLwuH7ryIUep3G53tAfD/JWkhVEIbDTX22cOEibNywEXaJaG5AOmVZIMTp0ABg8tRpOLJ/r2R7KSeMuqa+2MDXRpwBgO4aEx45y1EeokAiFmh6KSJxiyuDg4afMoAQgt6KKNzgSuEMcn6hw+0VZngSoUUE1HiM0FM0ifsf0yYB49o2w9lHL/zy/AkRRs14+69QQhXpW/eFj4yJTk4GKX0CY2wMotrLh2drSSHUKEF0u8DiRs7lfeg2ZiqaNZWvXcLXlbl+cCveGitfaBHwrSNz/8oFtOvxNhQhepgLaRGtR+rtG+jYLXCO3Ti9/7VNorR4jx4/QdvWrcLuQ23QKjYSJXYH8mWiGV4FKRod8pxO2AO8DxlVR0F8U5bxIs0QbTTucGUwKIlf9AzfRm5TEIKpxniccnhSROo1Sm8qM43J4/GvjdR6B4Vi1AoF5ndpjdW3H4OjNGghQjGThg9EaZkFpy5dlW0jXugTDxYIIfjoo4+wZ/vvfseEf4sX52wuDlqdDo2bNpO8L6UUm1evQOv2HdH7Hek0FwBw5fwZxMQloHX7AOI0pdj0y0+Ys2R50OgUl8uFs0cPYMjY0MWSAzt+x9ipoYnT4teTUori4iLEhFlzyzswrvCQpSotnC4XVEZPyqNghTVrAqI3ym6jB/XF6ZupcDgrB8mBomh45FKdSdWgGda+Oc5n5kJlqPye5uvP1EO+BRAB4Agh5AYh5Ef+ACEkHcDfASwihGQQQkLLqVIL8Klt+BowWp0aKQOmoOj2IQAVqctkxBjhfv6nPjISCT1GIP/avsqonIotKloXMBImQqdCQkI8eo0Yh3vHtntra4iFGWGNDyEaBcHyxQtx6tRJPDx3FGXXL6Ps2UvfPhv1XmFGGZMAZVwyFDGNQNVauPUxgFoHjUaDZR8swobNv3ujZriiHLiL8uC0lHvTY6iNHrvueU96IsXim7VEfLM2oPooONRGr53UKAlsNhu+/+q/MG7yNLRs20FW4Ni+ZROGDB+JpMQEWWGmvLwc27ZswvyFiyUFD+EEvrCwEGlpT9Grl/+4UjzJ5e3Qb+vX+y0KAL52X67/ZWVl0Bv0IUUpVqewKS+gBKorIxbzxIQbPSMU5yfNnIN92zaFnP5TeC4v0vCpyuSiTAdPnI4z+6pWqL4OaJA2UIxGo8GMKROxceuOKp3follTdO/SGbv2VS3Vevs2rdGmVUvsPXTEs0MUNRNo8UipVOLjz/+ELevXIDsvH+nF5dhz4yUu3c9FSbFnvtIqKQJNYvQ+wkySSYMIrcK72BMdE4sRI0fh7Mlj3mvzdWYyisphLrHBbvN41msMUVBrVUiJMSDRqEHnNs3QLCFaUpjJyy/A1z+swBcfLUVSbKTss3y3ai2WL3zPxxNczMvsHFy7dQcTRg0P+trcS32A6Nh4NE4KXJuVh1KK/YePYcJoeSeiQNx/8BAd2rWp0rlCyss96ZLqK4vmzMKaTaHVSqoqs6dNxubtu2r0Hq+QBmcDxYvixGVHQnw8OnXogFNnzvmfwAsyAaJp+r3dCy6bFZeveSKrhAJNKHOZoQP6o9jqwLXbnnrOQoFGTqThtwiDHp9MHYF/bD8GS9ZLuKw2n6gZtVELjVGDiGQTTMkRXmHGkBQLlUHnHct16NIJccnJeGp2QRmTCGVcctD0ZjxtO3SEUmeUTAP74MEDbN26FX/569+g10vP8Z1OpydN2aefw6VQy6aUvXH9OkCA7j16BO3TocOHMXTIYD+xhKq0PnXMeKxWKzLSnqJzZ/+3aSgpwQ4e2I9x46VrJcqlROOPCbl/7x46dursc564H+I+SfZLrQsagSp1Xbl+AZ7v21HjxmP/PmnxJBSkBBmfvhCCfv3ewZUL58Kqt1OH1Asb+FqJMwAwTBeN47aqpVQihKCPIgqXuRK4q3C+oiLF2R9ciWz9G7EoIyQJWhihxJMwBJqURINP9EJU6xTMGj8M+1Kz/KJm+JRmQoT1OvhoGGG6MkopCm8egCaqEUzNpaNXohONMEVwKLx/AQlvjZFsw6PMu43mHTvCECs/yOSFmYeXTqJlz/5QSQxwperIuJxOpN+/hbbdwvfWbhGtR152FuIbJfnsr0pKM57qpgV6FUS1lva2n96xJbbfS5M89qoYGRWLo6UNw2uyIcKLJ0IRJkajxEhDNG5xnjpWQvElEPz5eoUCYyPjcNhRBEqpN1qG97IWRszwkQDCuhoRGjUmtmmKDbfCC2PlbBZQSymmjhqMvMJinL1yI+RzxZ4dKpUKnTp1xs0bnoG13ICAj5qRqgEgxOlwYM33X2HIqHFo18mTe1cqP3/2s6fIz8pAv8HDAl5v1+Z1GD15hk/qRCkMaiX2/74e42fODcmWGNRK2EuL4HI5kZjU2O94KFEzl86dQb8BleJTsIGUXP0GSmnQPgf04AoheibQuaGcv3DKaKw9/ofPPnFEjlSaM8BXpJFKc8YfG96uGU69yPGmNwsVp80d3mavnghOKW1DKW1KKe1RsX0kONaCUhpLKTVRSptQSu9V62avAKWCeIUSsUCj0hkR07obLM+uSYoyYvg2moqfEUkpiGzeGUW3jkOvU3m3QMKMkOYtW6FVh054fOGYt7aGWJiRi4QgLjs+mTQI+7fvwNUzN5FxJhX5IlsqFGaIRg+3IcYrzPDEx8UBbhcKsjMAS7HXvgrRGDUVgrsGmkiDd+FAONnlKSoqxE/ffo2FHy5HI5moaQA4f+Y0kpMaoYvEhJi3z2oCrPn5R3yw7CO/lIdSE7w1q1dj4aLFPvsCpYS4duc+OnboAJ1O52OfAgkpwmvt2rkTU6cGL14dTJh5mZWL2Lh42agZ8e9yBBNogp/vec/x9p//PjRo1Rg8fBSOHzrg3R8McRo0oUgj/JtHrdEiMaUZMtPCGw9QLnwb6HK8WTYwEK1btoBep8Ode/erdH6fXj2hVmtw8uz54I0lGNCvD9wuFy5duRawndRnmCNKLFj+Odb+8jMOXXviFWUAj40XCzORWiW0KuKTUkWjJOjSrRse3L8Hp9PpFUCzS2x4ml0Gp73yvvqYeJiidEiO1qFFtAEmtUJSmHmSlo61m37Hv/zpU9lUZgCwYdsujB42GPFx8s6HDocDazZtw7L3/QVkMU6nE/sOHcWUCZ70OqFEzezcewBTJ46v8hz02KmzGDFE3gkpVP64dgN9ewd2dqxLYqKj0Di5EW7dS62xezROSoLFakVJaWnwxgKom4ZtA91B5jJB79nAbKD43S1ckB4yaADu3r+P/AKJNYgQ0pxNnTgOt++mIvWR57uLF2ikEEfPUJUWsyZPwMVbqXiW67m/sP5MMJEkQgksH9YT/7XtOIoz8nyOVUbPaH2EGd5xh68xo9AZMG3UYOw5fyNkUYbvOx8tI+bixYu4dPEiPv3ss4DOKz/+8AOWfPBhQHE6Ly8P58+fx5QpU4P2qTQ/B8+ePcdbPeUz6Ij7u+m3NVgwf573bznhQ06gyXzxAs2a+TtrBktFJm5z5eoV9OrVS1aUqTJ8JFiQdGeBcLgpOnToiLzcXBQU5Psdf1VCytt9++LqlctQodLZKxTcLi5sG8iFGd0upr7YwNdOnNEQBXqoTbjiLKvS+WqiwFuKSFziqibwaIgC3RQRuMp5voj5KBmpaBkpkqGDHko8hXw0VaxGKRk1w9O6cQJe5hXCWi6d4o2PmpEqpC5MV0Y5Nwqu7oSpeQ/ok9r6t000IjrRCM7tQtaFXUh+Z5rsYLBJkgmRtAD2siIktOsh+2y8MGMpLkRpfjaS2/hP8uXqyJzbvw0DJoSf27ZFtOdL8+zRAxg4clzY54ux2+3QBvhSepVUJbUZAKiVCgxo1ggn014Gb1xFIpQqaAhBgTP8WkyMwBAl8Ua08CIN4BFZmmq0iFWokE/s3n3BNqBS7IlTqjEwLhZH3R4bJiXMBKKxyYCeyXHYfe+pz/5QI2lmjhuBzOxcXLh6M8RXwxeNkmDM6FE4e+okhOta4gFBKMKMxVyGNT/+E9PnLUZSSlPZHP0lxUU4fmgfpsx+z0ewEXP53GmkNG2OlGbB00U8un8HyUlJiI0PXkiVXxDbt20TJs6Y43c8FGEGAB7cu4NOXaSLP4bDg8dP0L5N6JGD4vB+IHyBJlRRhic+OhKJsdFIzS7yOS9YmjOxSOPZLy3QtI+PxotymzfVX31Pb9ZQEQs0EU07gNqK4SjJDel8XpjRVAgxiW07QReTiLLUC4jQqZAcrYdJp4ZJ5x/1FKVXI0IQJQMAXXu+DaNOi8y7V4OmpOIXFo0KN1QF6XA+uY3pCTHYefI+blx5gZybmT4CjViYoSqtpEfd/OkTsGHrLlBLKdxFeXBZ/ceDnvQYWqgMOk/qC43em86MFxUyXrzAutW/4uMv/oyISM9nwe6isLt8x8dPHj1E7ssMDBk23O8+wqjFLZs2YtyEiYiNigyaJmH//n0YOXKkzyRfXChVOAHlOA7HT5zEqJG+HuOhRrhwHIfS0lJER0f7HQuU0ox/PYTblUvn0buvb2pbqXRmoRBIoBFGzwRD/B3YvlNnZGdloqS4SPK4HGLHBGEUjae/lQs3vYeOwh8nDsEimP/UcN0ZBoBpk8bj4LGTsEp87kNh/OgRyMvLx9UbVRuHTZkwDrcfPMaTNH8nsECLRnYXRZkLiB44G8d+W4XndyrHka2SIvyEmQitwiOoSKRdmTR9FnZt+x1mhwtPC63IKCqHw+b72dPq1EiM1qFVrAEJRhU01gK/Ra9rN2/h+Omz+Muny6FSqWT7f/LcBSTGx6FTe//5spDvflmLjxbNCyk6b/WGzVg0b07I6cxKy8qQnZuLtq2rVjOruKQEkRGmV1IrMPXhI3RoF/i1qGsmjh6BwydOS6YeC+X1DoX5s2fit01bgzdkVBmpz+TS+e9i5Zp1Qdfy5BbuF8+fgyPHTyHjZZZ3n5xAI4aqtFi+cB427tyP4nLPGohYoJGKpOHRWsvxXufW+PHCbZSXWeG0VC7AGxKj/IQZXpRRxiV5xogxiVDqTRg8oB9O/XEjpD5zaoPP+E84bjp08CByc3Pw/sKF0MAtGz2ybv0GDBkxEpExcX7jLv6aVrsTv/6yCsuWL/ceCxSJ8uuatVi08H3ZfouFmcePHyMxMRGRFePVcIWQO7dvoVMX/zqIgYQZuUgVzm5DhMBJzK8vQQQWSaTaylxDeD9h/4X/m/fmL8CGdb95/xY6tL6qaJcpU6dj5/Zt3u/oBhBBU6e8duIMAKSotHBQigK3s0rn64kSXRURuMaF5+nA43QSRLs1+MNRtfMbQwcFgDwENihSUTP8Yv3koX1x7OwlAPCJmnmcF1pdG85lR/7lbYjuNAyaaF9PSV6UATwe0lnntiGp7yQoVNLpWpokmeBy2JB57RSa95cXP3hhBgBuHN6GnmP8hRY5YcZc4plcRsbGy16/RbRecgM8NSAUCgXUQUQVqZRmYtxuNyZPHB+0XV3TOTEWz0pCr3NUFYZHxuJ0WXGN3uNNRCEsyCYSafQaJfobIvGcs0EmHbwX4TnCa6VodOgcF4U/3Baf/LahLix3ToxFhEaNm4UlQdvScl+RmDrK8e7E0bh17wGyc/P82os9JMWbtw+dOyM9Pd3vfIfbf2FRioK8XGxevQILln2GyOhoWYHDbrNh468/Y8GHH/uJ00KRJjf7JTKepeHtAfKpIXmcDgfOnTiKIaPHy+b0B3w9lR/eu402HTpBpQ4tbZZ4cPQs7QlatmwR0rnBiIuJQf9X4DEZqthS1UibyYN64/jV25LXkEtzBvinOvPskxZopnVsiQMV0TOMV4swmkUo0Gh0KiT2Goviuyeg1igl68cIN/48/hoROhWad+0NrZKgPPMhovRq75YSY/AKNWJhRrhA3XPwSBS8SIMlz+MAIfU5Fn4GSXkJXFlP4czLgctqx3h1NI6XFcFSZofTYkN5XhHUCY38hBmqj/J6O3oXk5w26IgLGgXgLsoFtZSiPK8ILkEqU14o5Cf5RG+E2xDjk84s9f497N+3F599+ReY9J5rC20n/3tuTg5OHTmEWXP9PcGFC6ZXLl9GbGws2rZtJ/s/5e+dl5uL7KwsdO3WzXtMbnLMT0B379mLaVOneF4Cmai+QBw5ehTDR4wI+zwpur/VG/GJ0sJ6VcQJoUATTNwRiyQ6lUJ2Mjxz7gIc2F2ZAquqk3Hx+5v/mxCC7v0G4/6VC2Ffk1E9Plr8Plb9tqHK58+aNhlXrt/Ey+zsKp3/wcIF2L5zN8xm/3mG1IKZg6Motbtx9FEezt/NQ7m6KbJO/owXD7K8UTOSwoxwMUkg0iQ2SkJJWRnyrU5kFXuiZhwVUTOmaB0SWjZB83ZxmNitMbo1ikCS0ua3UHvi+DE8eZqOpQvnB4xEuXUvFZlZORg5ZGDA12T73oMYOWQQYqKjJI8LX5ebt++icXISEuJDTzO7cesOvD9ndsjt/fq3ez+mTXo189cJY0bViwwSwZg1eQL2Hz3ht1+caqiq3u4Ggx5JiQl4kVlzzpBvKoH+L2q1Gu/OmIpN23YGPF/2GCH4dOlirN+8FeXl5d4xFqc2yIo0Ps4yah2++HgZvluzEW6lZ15GNHofkQbwnV/Qck+Us8tqg5HjMD4mHpsqnHN4gUZt1MOYHOcnzIhryyhiGqHf271wPz0DwaDqyjGk2cnB7OTg4DxiysZNm6HX6zF58hTJc/lx2dEjR9AoKQkdOlSm9ZZKe/XrqpVYvOQDqFQqn/P534Xb3n37MWb0KMkoHKlUaWrqwsG9uzF1yuSgz8xDXHZvHzRKgvNnTmP4UN+araEIM1LvpfHjAzh8h1ADqTbQaDTo0KEjnj55Ijv2k9rv4KjPJm4v3Jo1b46CggLY7fbKTCdMoJHltRRnAKC/JhKPXfIeQw/NDjw0y3v0RxAVEokGaZx8BIsYYXRMHDRQAMhH1aIGWsCATNjggu8bPljUDACok1sgollblCsNMCvCL5zsKi9FwdWdiOs5CSpDtFeMEYoyPNkXdiGu61CojdIDzSZJHjHlyYntaDN8uuRArUNypI8w8+DCMbR5ewiUIrFHTpgBgIuHdqP/GN8vDikRRo4T+3dh+ISpPvuqmtLMYDAgLlY+pL22kUttBnjSUJkdTr/3UDgIBUIxSkIQqVShyFU1oZQhD18Dho9s4YUVwCO6TIyMw0Ou3EeAEW88wnP5a7Y3muBSE6RbrD5pzHz7IPBoNvIRNp6B6bA2TXH7ZR7yysKrqcYPXD+YOx1rtuyssvea0WSC3VY52AnmPS30BM55noaju7di4cdfIspkkBVmXC4XVv/0DRYs/TigsKsmFAe2bcSUOQtC6vuuzb9hqqAtL8KINyF/nD2FvoMCp1QLxInDBzFijPxAMuRi2GodEuLjoKmYbPCTGD5Xs1x4v1T0DBBceJE7Ls7lLN4Az+RLJfBelRJoAkXR8AQSaBLjo2F2OOHiuLDTmzGkURDijWKJEKQc0wsEFq1Bg6TeI2DPe+yNqJFDeJy/lkmnRvO3h6H06W3YynxFZl6oEQszPAa1Aga1AiOmz8XpfdslJ3bCNFMxKg6q0my4Mp54zk+MQWRKBGY0TsLBkgKojTroE2KgjEkAjNEeYUYfBaqPkpygel8nlwPucgsKbj9G3k2PB7om0oDoNilI6N4Kid2bIb5bGxi69QVp3Qv2yMri9ZcuXsCVa9ex7CNf0VlYxFOrIigtLcGW9WuxcPknkuM7fuJWWlKCy5cuYtSYsT7HhD+9+90Uv/32Gxa8v1DyucRQlRZutxvPXzxHq5b+HuOyE8uKRQMnUcEBJe4+eIwOHTp4+xAI4TW1KuK3JTX2H3cJ7bawVotczRY5xO81/triewHBoyY1Wq1kjcpgThDCBfFg92jVqSueP7zr/TvcyCFG1TCZjOjUoR1y8/xTloTK0oXzsXbDlvCLmqt1nsXN5Uvxw8+rwCk1kikTgcrPWpmdw708My6nFcJaYofaGA1Ds16g+XeQGK1DUpQOzaL0SDCqvMJMMJwUyC6zIbPIiqJcs09Ks8bNojG3TzP0axKF5lo7SLmvnd+xZz8cDgdmTatc6JNagEt7/gLn/7iCeTOnBuzL47R0lNts6NqxfdB+OxwOHDl5Oqy6MQWFRdBptQHTrgXCZrPB4XQgwiQ/1w6HJo3lU2DWJ5o3TUFWTmhRtlVlyoSx2HPgcI3e440jWH1otQ4tmzeDWqWStF+hFGJXKBT4ZOli/PDLmsrbVtgwfm7jneNIRDFrtVq8P3MyVm0MXHuNWkrB2SzgbFa4rJ7agE6LDSYXkEjUuJ1X5P94MsKMGIVC6b2HOL0t4JmTcWqDdzzJL5yrCbDq5xVo264d+g2sdCoUjzedRIWLFy/CWm7FkKHyc1CNkuDi2dPo3rULEhI8a06BRI/c3Dxk5+Sgq0QUi9S5aurCzVu30K1b19BEYUG0CS/QPHv2DE2bNvU5P1gqMz/nKAFNUuTX37x1ZIRbDcL/36TGtoMGDsDNa1dkz/WLggqwHiA13tYoCWZOn4YDe3b5OFIwpHltxRkFIeir9Q8XDCbKCGmq0KOEulAaQo5BqZRlrWBEJsrhQNXygHZEBFIhnZ4tUNQMAGjUapQ6iV/UTGpW4GgeR2kuiu8cQevx7yO2SbyfGCMk9+pBRLXuAV2MdP0YXph5efMsEtr2gFrvP+ATijIAYC7Kh7moAI1a+npWBhJmyooKodHp0C4pNmQxRojT4UC51YqIqOiQz3ld6J4Uh1s5BdW+TiCBZlBENM6w6JlXClESn4gWKZEmOlKHPnrpkGm+jZQow6M2qjEqMQEXSothc1faN22kxrtVtvUdlPCL1e/37YL1l+/BLbH4Ewiq1kKhj8SUieOwbecu76BHbpAk9rZRUxc0GjUcDl9bH0rUzO0bV/HH+dN4f9mnMGrlo1AopVi74jvMmr8YRlNEwGtu37gW096dD0MIHtOpt2+iUXIKomND95ZMvXML7Tt3q7KXYnbWSyQ0Sgo5lYXU4C4UEa06Ao2UCBNImAkGL9I0SkxETmFxwHuFItBU7vMfYI9u3QSnskO3s3abM6zNYX8zxW9hmjFxFI1ep4IhoQkim3m8+PiIGqmNP0d83Si9Gt3HzcHNg5th0ii8QhC/iYUZXpThIYRg7LsLsWfDr5L916oITGoFFGW5cGVVpu/RRBpgTDQiuUk0OrVphFSH0xs149Z7hBmH2ggLp/R+FvmJF/85JE47lA4rSp8+Re7N58i6lu0VaHiiWqfA0K0vuObdfYSZffv3Ize/ALMrImGkUhFoVQQ2mw2rV/yEpZ9+AaVSKStoUEqxctVKzFvyIQBIetoJ/963dw/GjBkDtSgKULgoIJ4Q79y1G1MmT/ZrJ4VYFHK4Kc6dO4cBAwcELG4qJpDnHy9iSQkYwlot4nRggUT4UOrPCIUboQAo7peYqqRxFl9bfH8eq5NDkzYd8PzR/ZCEGY6jYdtAl5MJPlKMGDIIiQnyGQWCoVAo8MH787Bi9boqnW8wGDBl6jRs2rIlYDuzk0O22YHrL4qRl2OG3eaExhCFiOY9oFI4EMWVIdGo8YoygYQZofBqdriRVWxDRrYZTpvvPH1Sj8aSwgylFL9u2IKUxskYMyKww0tOXj527DuE5QvnBWzncDiwbc8BvDdD2vtcCHHZ8ev6TVg8zz9FbSC27NiF2dNC9xgXs3XXXsycMqnK59cHXlUqsleNWq2G0aBHcUnwbAIA4HaHbwPdYaS4fC2RSe00c+okb5RGKIgFmgiTCaOHDcH23fu8+4RRNN5xiHBxXfB7k+QktGmShFOXrnrOdfg6jvPCDP+701JesXn60dsYiYvPsmFzVdovqXmGLG6HQPzxL2dA1Z4IbCEKzo1vvv4HRo4ajW7de8he2klUuHP7NtKePsXYCf62R+jIkZeXh9TU+xg4yFPPKpDoQSnF6rVrsXDB/ICPxl+D/3ni5CkMHzrU91pSNkH4PhEINAf37MK0ieNk07aFimw9VsG4NaQ5cxht5c4P1B/A8z+KjIxEWZn0+nA4wkwgGiUlIS8vDxzHhRSh7XZyYdtAzv162MDXVpyRIlRRRkh3RQTucGVwB5i4BKol0xmRuIsyUIT/ZtZCgRiokQ2P4ZCLmhFGRqiTW4AkNoMyrikcMrU+MrI9IebiiBi1OxvuvFtoPX4BFMrAX2QFd05Dn9AMhkYtvPuaJJl8NgCwFuTAVlKI2Fa+tWPE0TKAxxhfP7QNPcdM9+5rk2AKKMwAwMMzB/Duu+ENYoWcPLgbQ8f5DkirGjUjRFmaFbzRK6CqdWcAoGVMBNKLPAJgdaJnAqFRKKAAUM4Fr7nECA0i8DiQE2kAfxFGKMYIEYsy3uuZtJjVogm2pL/wE2Qq2wvP9R0wqpQKzO3dEb+dvx32M1KVFu07dkZ5uQ3PX7yovIeEECOFVqP12kCH23cxUDzY4Bexzp08hpcvnmPW/MVBhY6Nv/6MsZOnITYu8MLHzauXkZzSFIlJyd57yXka22zluHT2JAaNHCt5XI4r50+j9ztVL+B6eN9ujJYYWFcXsYeZEHFoP08gYYUXTsKtLxOIft064I+HzyXv5duvwAKNsKYSP3Hio2eaJ8fjZZkFKoOWpTd7xQhrwQiFE6BSpNEHiZwRpjMTCjMAoFSr0Xv0FNw4XOn5aNKpkBSlQ1KEriICQuG3cM4vrCfExaLr2/1x8fghn+PeSavTAkXxS2/UDOB5/5iSIxCRbMKot9rjZqkFdn0kYIwG1UfBrDB4bRq/ECmGOsqhtluQdeMxsm/k4F6mGVnXsuEorYxk5IUZszbWe70NGzfCFBGBMeMnyL5eWhWBy+XCz999gyXLP4ZWW/melurL3l07MGrsOOh0uoATOwdH8fLlSxQVFqJtx86y7cS4XC5kvsxE82bNZCehchNBvj9Xr15Dl+7SqRjD9RKUQ2z7xZE0cunO5KJqxFEzUjVfQulf85atkf60sq6RVCSQeAuXzn0G4u6lM2Gfx6h7EuLj0LNbFxw+frJK57dt2xZGgxHXb9zwO8bbnTyLC3dyy5CaVeoT3aKPiUfzIRPx4uIBNI/Se9OYBcPu8tQULLU5kZpVipznxXh5p9IzeHjfZhjZKg7NFSU+wozb7cY/V/yKd/r0Rt/u/jVPhZSUluHXDVvwp2XBx4sr123C0gVzQ3Kg+ePaDbRqkoy42JigbXnyCwphNBig14fumCjE5XKhuKQU8XH1J+tDbaJSKuF01qyTy4zJE7F1194avccbh1TNDuHvMtEI4aao69KpIziOw73UBz77vaKMWhdwEX34O2/j3uM0ZIuiGIWRLHyKbz79rL3UAafFCafFiUmJSdiS6qnfpYk0+ETN+D2beJ/DDs5mAS23wF2UB3dB5doU0eg9Dj8qrXfsZLFY8NXf/wvzFryP5oL1JeHYjo/YTktLw4UL5zH3Pd+UtuLFd0opVq/+FYuXfADAX5gR/z+279iJyRMn+jnoSMFf69r16+jRvTsUbkf4KQidNuTm5SEuOjJoLbBgKQ7DSakrFmvCFW98EL3XQxVmvO0l1rlDFWaCRcHwazUTRo/A4cOHArZlvEHiTFWEGcDj+dhDESlbfyaQMAMAKhC0ggGP4K9Wh0IK9MiFAyZ15RtfHDUDeBboeWHGHZkMuzYKxRZ7yFEzBXdOozzvOZL7Twk6eCx6eBlKnRERzTr5iTFCOM6N9AsH0HLgRJ/9YlGG587Jfeg8eJxXGAokyvDRMdGcFQajCVpt1cIBOY5DUUE+4hIqo39ehTBT35BLbaYgBEJbW930ZnIRNEMiY3C6tLjK12b4w6ca4zcpkUac+izQMXFtGT6NWUysAcNbJePgM3+xMZAww5OSFIfWiTE4k5ou+yy03NejR7iY/978Bdi4abNk6hUxwkGTQa2Ew+EMKZ2Z2+3G7+t+hUqlwphJ04LeZ+fm9egzYBAaN2kWsF1ZaQluXbuMgcP8U1NIiTQ71q/BjPmLg95fyL2b19Gha48qR82UFBfBaDSFNAiWQnLgFyA8m4+eESKeTIQS+SJHuOc2TohDZm6BT7ozb79EIpCcQMMjFGh4eIFmULtmOP8iJ6y+MaRRSkwEhCINEFioEW98eykidCpEN0pBYuMU5D++haQonV+0DI9ciqq2nbvDai5DZnpl5IpW5UlnpizN8k6WXYLi3YbEGBgSo2BIisXSWRPx68nrcOtjPNEyHPXkBOfzeXOV6bl43AVZcBeV4uWtbNwoKMf9MjvuZZqRe9MjREa/9ValMMNRFJst+OGbr9G5Sxf0H+CpmyCccAl/p5Ri5Q/f4r2Fi2CK8I8aFNrcp08ew+l0ob0gD7kcHMdh04b1mDsvsLekmJ27dmPqlCmStigU78cbt26jXefQxSAxwbwAxceEKTR1KoWkSCMWavjjctEzUnVmxPCiilhc6f5WL9y6flXymBxSIk2g1GyEEBjjGqEgK3j+e0b9o3+f3niZlY1nL8L7//ELRJMnTcTpM2dRWuBfRzCz1Il7eWY8yjGjpNjX890UrUOjWCNGTpyG0/u2w6hwB3TOEUbN5FrsKCl34uXzYmRcPgxL3gs4bW7EJJowqn2CJ2JGsMiWk5eP//z2J8yeOhHt27QK+Fw2mx3frVqLP3/0QdDFvBNnL6Bbp46IjYkO2A4AzBYLzv9xFaOHDQ64CCiuhbJlx+5qRc3sOXAYk8ePqfL59YmqeJl369wRt+6mBm1X1bozgCfNoNPphM3mH93BqAKB0poFqN/hl7rMafVucm0ATwTOgaMnYDZXzFVlRBm599+yOdPwy5bdcFdkouCFGV44Eac0c1gcsJfaYS+1Q+Pg0CEuGtcKSqAy6Hyi9oXzEjHUUQ7qtHuvTy2lXhGIr10onK+lpqbi559+wMeffoa4II6HuTk52L1rFz5cusxnv9RYaOOGDZg1azYMKiIrzPC27NmTR7BZytCxTYuA9xdz+sxZDH2nj891+Wv7/E9k3hvbt2/H9CmTqlVjqiq1DqtyTjDkhBl+bC4es6qpC5FGPcrKyvzaev+uQsSM+Du6bdu2ePrwQbWikt4E3ghxpqrCDI+BKJFANMjiqvalHAXPgoEVVYsc6AAT7nPmoFEzQgghsjmChUIK53Qg8/QW6OJSEN9NPnybF2C0pY8QY6DoMnCIpCAj5Nn5A2gxYDyIIFWOnDBjKS6A2+lAbONmIUXL8Jw6uBvDJ04Nqa0UT1LvomPXngA8oszrKMwEQ7zOVd0IGimBJkKpgj1YflhGyBAl8UsvxospQpFFiFikEbaVEmU853h+bx0VgXKXCyWEQm3UerfK6+gEv3sGjfyiNOBZmL79PAcOV3Ab6F28rxgwKjknJk2YgOMnT/q/DgGKdTZt2gRpTz2LoXLe5TqVAkUFBVj57d8xeMQY9B04xK+NmIO7t6N5qzZo075ysVFuYW77xt8we8GSgNfjF+ge372BVu06wBQhbSPluHH5Inr3ly9CG6wewJkTxzBi7KspABsIoeAWLL0ZUDWBpqqijlLwHSV1jWACTSjpzTo1isOTwlJZEZMRHnzdF+EGVIo0wk2cjkxqM+nUSIkx+NST8aYu06nQvs8g5Dy8DbfLKSnMBGPYpBm4cOxAxXlKaJTEY7MsxXAX5aE8r9CnvSbSAGNyHPQJsYhOaY6UFm3wpMAKs5NDmZ2D3UW9m9C2EZcd9MYR5Bw4hIRyO9LK/Wt+6RNioGrfG4XqGJidHFIfPMSKH77HnPeXoHWHwCIFpRS/rvgBE6ZMQ1x85VhBqhYJx3HYu2snps2cFdJrdGjPLkybPsO72Cl8LrnJHKUUGdm5SG7mX2smVP64eB4DBw+VL24aYm5s8feAUMAIxdtfLG5ICTSeTVGxVaZHExLM5osxRUSi3BpebTgxodyz+5DRuHvhVLXuw6g73p87OzTP/4qxm3iR8qPFC7Bu02bv306iQpbZhfRiKx7nmXE9rRAOuwtOmxtanRrRycmISTShd8tY9OnSAc7yMjgspX7jPaFd4FPX2lwc0ovLkWVRIPv+fUQ0bg0AMERpsWRwK/RMNvlEzJz/4yq27z2Av326DMmNEgM+nt1ux99/WInPly70iRqUosxsxt3UhxjY7+0gL5qH37Zsx4cLfDNBiMe24r/LzGbotFrodFUfW+Tk5aFZkwD1EV5zmqY0RkZWdo3fZ9K4MTh8gtnAhspHi9/H2t93BIyUIS474LT5fU6VSiUWTBuP3w+e8O4TOiVSSynK84rgtEjXy+6THI/bgvTIUg5iQqijHNRSCpfbLencSNWVERpOosLu3btw+9Yt/Mvf/oaYSJNsjTkAKCgowJq1a/DZ558HdQx8+vQpNBoN2jZvErAdz9YdO/Heu6GNGXlSUx+gc/s2kn3x+b4QCDN+dpUQ6EIv/eeHWAgJRXx4ZcKMQGALJE4HciRqnNwYOTnyDoQaBZEcCwvTHvPXDiS+dOrUEY8ePZK9DwN49XJdPaO6wgxPC4UeF93FSKIanw9/rEYZNHoGAFrDiLsoQzeEt/AGAEkaNV64raCUokkjI2LbxPosoIujZswKAwrK3Si1u5FWZMWTfItk1IytMAv5t04iqd9kqAQLUnKiS9bNc+DcLjTpPTxony0F2SAKBQwxlYNcOWEGAG4f34M5S5ZDFYL3Nl9PxuV0wu3mqhw1AwA5j+9h0vRZ0OqCizJxemmrbeKqN6mtLtb09Gpewd/YxrRJQNFjfw+36pCk1iDLEVzgLM3Ng6qcFQoLBFEooDZqvTlpxenGHBaHpEAjh5Qgw8OLMNO6tMK6O0+wuFtb0fHQPn+z+nXB9usPMX+If+oYvpAh0eglE0B2btcKx0+cwMjhHtsTikeLNiIaFovZZ594IfP29au4efUylnzyZUiRIzs2rUOrtu3RvZfvRFtK+Ll26QI6d+8JbQgTZkop/jh7Gks+/dK7z+YKLmbm52QjPlG65leolJYUIzrm1aSyoCpt5f9GrQOcNp99nNrg9U6jai2I0+75n1fkYOYnG7xHmVgoEedLDkeMEU5kxEUxxQN6hc4omZu58rgBnM3X7qsMeris5VAb9d7Jlcqgg8tqgybSAEepFTq9FvYQBEpnmJ6VLvurGec0FJQKIhvpUhV4YUd4TZPwd63n92GTZuDG0d0YO2Ou5HWsTnfABfZ+Awbj4dULaDZ8ODQKAmIpgbsgC9b0dJQ8yURU6xSojXrvBgCqJq2hiGmECVPewndrNmHagg/97stPitTUBdw5jsx9R+C02NAhNgrXYwsxIiISueklSOkcjxZjesA0ZDKscW0AJ4djhw6gpKQEH//pL36fAwdHvRMvB0fhdrvx07f/xPjJU9G0WXOf+0uxY+vvmDZzdsDJO399i8WC3NxctGxV6bEeiqBx9tx5DBgwQPZ4KJNfQohPHwNNQKW8BzUKEtCrUKsisLsoNEoScj0bHpNG5VenRZzGTLzf2y/R6xe43lp4Yy7xtWwuDlan29tXq9PfzkUZ9ODcwRcsKOXCt4GON7PuVm2iUCgwbNA7OH76LIYPlncIkUOn0yExIR7Pnr9A82ZNvfutTg4ZReUwl9hgLakc2xmitOjZMhZdGkUgVq/GxImTsPfAQcyY6qnb4jMOVKt8akjdyzNj3cmnKDRHwZ59B4YWfdFp3EwsGdMOQ1pEe2rWlFfUDty8DcmNEvHx4gVBn6HMbMbXK37FZx8sRIQpuBPh6o1bsWTe7JBen7TnL5AQHweTUcJBxGX3HV8J2LH/MKZNGhfSPaSglFY58rq+IvdayeFyuaBWB/+uqG5NmyaNk7HnQPC0PpzbHbYNdMs45L6RiOu/CBblhf9D4rL7pV2W/R+rdTBG69AoMQGPn2eidSv/6Do5YYZ3SGvSvDkKj56GjSPg78JHtZTnFcKS5RFf1EYdIpJNcFqcUBvViEg2QW3U4a2OzfHIakf3ivkM7yxG9EYo45J971kxz+nVrTNuvMjFW82TAJ0ByphET9SM2gCodbA4Oaz46RsMHDgQPXr2lH52ARkZGdiyeTO+/PLPQaMGKaXYsX07/vLXvwIyDurC1/v4iZMYNmRwyPVPeY4dP45PPlwU1jlC8gsKER8b2jxY6v1RVZEl1OgR3+86nWzqvqraJydRwe6mPusgcuNVyfGxQJSRQtj/of37YM36jWjXMnDmEbfLFbYN5NyvR/kEUtUikHUJIeRK8FYMBqOekk8plSyqQQjZnDjh32erIgJ7rol5uWn5VUpp71fSuwYAs4EMRoMmkA282mzxeuniFzI4S7KRtf2vmymlVS++1oBg9o/BaPDI2kBNfEuaPPl/h3Ux67MryD/+j3+jlP77K+ldPYfZQAajwSNpAwkhHQ2tBtyLH/JJWBcrubkLJde2zKCUbg/euuHDbCCD0eCRs4Ezot6avTWq+5TwLnbqO1ifnu9IKQ2eo7Ie0yAjZ96kRVgGg8EQw2wgg8F4U2H2j8FgvMkwG8hgMN5kmA1kMBivI29EzRkGg8FgMBgMBoPBYDAYDAaDwWAwGIz6AhNnGAwGg8FgMBgMBoPBYDAYDAaDwWAwapEGmdaMwWAwGAwG43XEVW4Oq73bbqmhnjAYDEYtw3Hh20BHeIVjGQwGo75C3c6wbSDntAdvxGAwGA0AzmkP2wZSt6uGelO7sMgZBoPBYDAYDAaDwWAwGAwGg8FgMBiMWqRBiTOEkDmEkDOEkFJCiEt0bBEhhCOEmAXbRlGb/0YIyaq4RnPB/pOEELvoXDMhpOsr7Pv/Swi5W9H3l4SQnwkhsQ2l/4J7/W9CSFrFc+QSQrYSQpo1sGdQEELOE0IoIaRJQ+k7IWQ1IcQpuscnguP1/hkY1YPZwDr/DDZ4+1dxP2YDmQ1scDRk+1dxH2YD68nnryHaQGb/GMwG1otnYDaQ2UBGHcFsYL14BmYDmQ1k1BANSpwBUATgewBfyhx/Sik1Cba5/AFCSBsAQwG0AvB/Avh30bn/LjrXRCm9/Qr77gYwH0AcgO4AmgD4tQH1n+c3AD0opZEAWgB4DmBTA3uGPwOwSuxvCH1fI7rH9w3wGRhVh9nAun3/vg72D2A2sK6fgVE1GrL9A5gNrA/952moNpDZvzcbZgPr/hmYDWQ2kFF3MBtY98/AbCCzgYwaokHVnKGUHgIAQsjQKpyuqNiUgt9rDUrpfxf8mUcI+RbAhjAuUaf956GUpgr+JAA4AO1DPL3On4EQ0g7AJwBmALgexql13vdXwOvwDDUCIaQ7gB8BmACkA5hHKS2t005JwGxg3b5/G7r9A5gNRAN4Boe1JKz27vKyGupJ/aIh2z+A2UDUg/4Db7QNbBD95zh32DbQ9YbU3WI2sF48A7OB9dyGBKBB9J9zOcMfB74hNWeYDawXz8BsYD23IQFoEP13O+1h20DO5aih3tQuDUqcCYGmhJBsAE4A5wD8K6U0DQAopQ8JIRcAPKnY5tVdNwEAIwDcEu1rEP0nhLwH4AcAkQBcAP4iOFxvn4EQogDwC4B/AVAs0aTe9l3ADELIdAD5AHYB+L8opcKKWQ3hGeojKwH8jVJ6ihCyBJ73yP+s4z5VhYb0/2+QNrCh2j+A2cB69AyMmqGh/e+ZDaxlXgMbyOwfIxAN7f/PbGAtw2xgnfefUbM0tP8/s4G1DLOBdd5/RgAIpbSu+xA2FWr5UUqpSrCvFTxi02MAiQD+HwADAXSnlAZ0qSKEnATQF4CP2wGlNPoVdlt4vxkAVgMYQim9VrGvwfRfcN8kAB8AOEcpPVnfn4EQ8mcAAyilMwkhLQCkAWhKKc2o732vuE8vABkA8gB0hCcM9gkfrtgQniEYhJDNiRP+fbYqIjGs815uWn6VUtq7GvctBRBFKaWEkKYADlFKO1X1ejUNs4F+1zuJWn7/NjT7V3EfZgPr+BmCQQi5Gj/5P94K5xy3OQ9Fx/9zM6V0Tk31qz7R0O1fxT2ZDfS91kkwGxis76+9/QMAVXQTGjPkT2GdY8+6g7LLa/+NUipO0fFawmyg5PVOgtnAUPrMbGAd9T8UCCEdtSk970X0mhu8sQDrw+Owph6cQSndXkNdq1cwGyh5vZNgNjCUPjMbWEf9DwVCyAxDh7FbDe2Gh3Ve2dUNsGfe6Eh9I7saHPUylKkqUEqfUkofUko5Smk2gKUAGgPoF+Il/jelNFq41UQ/CSGzAPwMYDJviIGG038hFf38GcBeQkhsfX4G4smx+FcAn0kdr899F/TxKqU0p6KPd+HJlTmTEKJtKM9Qj7kDYHLF77MANK3DvlSJhvL/f11sYEOyfwCzgfXlGRg1Q0P63zMbKAuzgQFg9o8RiIb0/2c2UBZmAwPAbCAjEA3p/89soCzMBgaA2cDXn9ctrZkQWrGRuu4IDyFkMYD/AjCJUnouSPN6138ZVACM8HzwC0XH6tMzDASQAOAOIQSoFCZvEUL+D+pfTKs+9V0OruKnXB8bwjP4Yc5Jg6K0ONzT4gkhVwR/r6CUrhA2IIQcBZAkce7/ALAEwD8JIf8GYDeA1yFxZb37/7+GNrCh2D+A2cAGg6vcHLyRALdNqp5l6BBC/hPAJHjs3hMAiymlxYQQNTwpH9+C572+llL6f1frZrVHvfzfMxtYp7xuNvC1tH/guPBtoMNWrVsyG1h7MBtYpzAb2ADg3K6wbSDnql7NGWYDaw9mA+sUZgMbAJzLHr4NdLuqdc/6YgMbVOQMIURJCNEB0FT8ravYCCFkAiGkScXvsQC+gycX38W67DMPIeQLAP8fgDFShri+9x/w5GgkhHxGCEms+LsJPP1MB5Baz59hC4DWAHpUbOMr9o8GsLae9x0AQAiZQwiJrvi9LTxf7LsppbaKffX+GWqQfEppb8G2QtyAUjqSUtpFYttFKU2llI6mlPYCsBEeo1zvYDaw7mjg9g9gNpAhzxEAXSil3QA8BPCvFftnAdBSSrsC6AVgOfGkAKgTGrL9A5gNrAc0aBvI7F+NwmxgLcBsYJ3DbCBDDmYDawFmA+scZgMZctQLG9igxBkACwCUAzgEQFnxezmA5gCGAvgDgBnAXQBxAEZR3wJJgfifhBCzaJv4Cvv+NTxFs04I7yE4Xt/7zzMeHrXZAuASACuAkZRSF+rxM1BKrZTSDH4DkF1xKLuif/W27wI+AvC04rU/DI+hXSw4PhT1/xnqJYJBhgLA/wHgx7rtkSzMBtZd/4EGav8AZgNDvP4baQMppYcr3sOA5zVtwh8CYCSEqADo4fEmKq2DLvI0ZPsHMBtYp/1/DWwgs381BLOBAJgNDBVmA+uo/2A2sMZgNhAAs4GhwmxgHfUfzAbWGPXFBhJKaU1dm8FgMMKCELLZ0HvJbIU+JqzzzGf+6yqltHc17vsnAJ9W/LkdwL9SZhwZDEYtQwi5Gj3q394K5xy3pQBl57/bTCmd8wruvwfAZkrpOuIJ5f4NwAgABgB/lopKZDAYjFeFKrIxjei3NKxzHLmpsN7c8m+U0n+v7v2ZDWQwGHUFIaSjOqnrPWPXaWGdZ0s7A9vjEzMopdtfQR+YDWQwGHUCIWSGrs2wrbqWg8I6z3J7O5zZdzpSSlNfQR/qzAa+zjVnGAwGIyQopV/D483CYDAYdYrLZgmrPecoB4DWJEDdLRKg5haldFdFm/8BwAVgfcWxPgDc8OSRjgFwhhBylFL6NKwOMhgMRohQ6q6CDbQBQG9mAxkMRkOHul3h20CnEwBGEUL+u2A3s4EMBqPBwTmdYdtA6qk5M5sQMlmwu8HZQCbOMBgMBoPBYDRsngSKnKGUjgx0MiFkIYCJAEYIogbfA3CQUuoEkEsIOQegNwA2KWcwGPWNK5TSKXIHmQ1kMBivOUcopR/LHWQ2kMFgvOZsoZT+L7mDDcEGNrSaMwwGg8FgMBiMVwQhZCyA/wZgMqXUKjj0HMBw4sEIoB+AaoeLMxgMRn2C2UAGg/Emw2wgg8F4k6kvNpCJMwwGg8FgMBhvLt8CiABwhBBygxDyY8X+7wCYANwBcBnAr5TSW3XURwaDwagpmA1kMBhvMswGMhiMN5l6YQNZWjMGg8FgMBiMeoKz3BxWe85mDd4oAJTSNjL7zQBmVeviDAaDEQaU48K2gW5PzZmq35PZQAaDUU/g3M7wbaDLXq17MhvIYDDqC26XPfy5sKfmTJWpLzaQRc4wGAwGg8FgMBgMBoPBYDAYDAaDwWDUIkycYTAYDAaDwWAwGAwGg8FgMBgMBoPBqEWYOMNgMBgMBoPBYDAYDAaDwWAwGAwGg1GLsJozDAaj3qCI7zDbXvAciiga8jnUXgpiSu5Vg91iMBiMWoGYkt5yWwpAtBEhn8NZ8qGI7/gugDk11zMGg8GoeSjngttuAVGqQz6HsxZA0aT//wLw7zXXMwaDwahxiqmtBG6nHYSQkE/irIUAkF9jvWIwGIzaIZ+zFoJzOUI+gVIKaisBgOKa6lRtwSJnGAxGvYHLT23J5dwEpVzI57izrkLRqHsN9orBYDBqB0Wj7nBnXQ25PaUcuJwb4PLvt6i5XjEYDEbtoIhrDy7vbsjtqcsOrigNXMYFQw12i8FgMGocSmkW0ceCljwL/ZzyIsBpBYAzNdYxBoPBqB1Ow2nx2LUQoSXPQPRxoJRm12C/agUmzjAYjHoDpTSdGBuBFj0JqT1nyQM4N1yPD4TuXsRgMBj1FNfjgwSc02PbQoAWPgExJYFSGvpMnsFgMOopXOYlLVfyDNRZHlr7nJtQJnYGpTS0ExgMBqMewxU8SHaH4ajozroCas7qQykNPe0Eg8Fg1EMopZSas/u5s66E1p5zw51zE1xBalINd61WYOIMg8GoV3B5d2LdufdAOVfAdpRScFlXQEtfdK6lrjEYDEaNQ0szunJZVxBsnk05F9x598Dl3omppa4xGAxGjUIpdSgbdQeXfT14W3sZqCUX7udnlLXQNQaDwahxKKXZiqjm4PJTg7blyl4CCjUopZdroWsMBoNR41BKL0Gh8ti3IHAFD6CIag5KaU4tdK3GYeIMg8GoV1BKixSxbcDl3QvcruQ5oI0EpTRwQwaDwWhAUErvQBMBWvo8YDsu9y4UcW1AKS2unZ4xGAxGzeNOP6GgtmJQW3HgdlnXoEh+CzScXLgMBoNRz+Gyr5u4goegbvm6Cx4nxWugxWmtarFrDAaDUePQ4vTWXNa1gI6K1GUHV/AQXPZ1Yy12rUZh4gyDwah3cC//0HHFaaAum+RxSjm4c26CFjxsXMtdYzAYjBqHFj5KcWfLp7WgznJwJengMv/Q1nLXGAwGo0ahlFJqyRngfilff4uz5gNuuycVJIPBYLxGUEotyoSO4HJuy7cpegJiTASlNK0Wu8ZgMBg1DqX0KTEmgBY9lW3D5d6GMqETKKXWWuxajcLEGQaDUe+glNqViV3BZd+QPM4VPIAisikopVm12zMGg8GoeSilLxWRTcAVPJQ8zuXcgDKxGyil8m6VDAaD0UChlJ4HIeDM/vVdKaXgXl4BLcvsXgddYzAYjBrH/eK8mpa9BHWY/Y5RzgV37l1weXfj6qBrDAaDUeNweffi3bl3JEsdUIcZ1JwF94tzqjroWo3BxBkGg1EvcT87paDlBaD2Ep/91O0El/8AXM6NiDrqGoPBYNQ4XM7NSC4/FdTt9NlPbSWg5UVwPzvJxnAMBuO1hZY8a8dlXfVLa0FLMwCNCZTSW3XUNQaDwahRKKUuRVIPuCXqb3F596GIbQVKaWEddI3BYDBqHEppgSKmFbj8+37H3FnXoEjqCUqpuw66VmOwiT2DwaiXeNJa5A4Vp7Xgcm9DEd8BlFJ/VyIGg8F4TaCUliniO4DL9U1r4c66AmrJGUwDJeJlMBiMBg6l9BHRx4EWpwn2ceCyr4MWPmpah11jMBiMGseddlQBhwW0vFKDoS4buKKn4F5e0ddh1xgMBqPG4bKu6LnCpz6lDqi1AHCVw/30yGunZbx2D8RgMF4fKKWnQDlwlhzP3w4LaGkGuIwL6jruGoPBYNQ4XMYFDVeaAer0pNPlzDkABSilZ+q4awwGg1HjcPn3E925t0E5j3MkLXwEEpkCSmlGHXeNwWAwahRKKaXmrN7ul1e8+7jsm1AmdgGlVLowK4PBYLwmUEptysQu4HJu8X97nBTLXvZ6HZ0UmTjDYDDqNbT0RSfupSethTv7OhRJPUAp9U8+yWAwGK8ZlFKnMqk73FnXPXUWsq6Clj7vUNf9YjAYjNqAUpqniG4BPsWjO+8+uJxbUXXdLwaDwagNKKVXodKCK80EtZeCWvPgfn5aWdf9YjAYjNrA/fy0klpyQe1loGWZgEoPSum1uu5XTUBeQ8GJwWC8ZijjO1Co9aDmbFBztuJ1VMoZDAZDCkIIIaYkjhiTAJcN7vz7pK77xGAwGLUFIcQAXYxFEZEMaCLhzrjAbCCDwXhjIIS0IIb4NKiNUMR3hOvxAWYDGQzGG4OqzVjKFTwAHGZQa34LSumzuu5TTcDEGQaDUe8hhCRBoc4C5+xDKb1c1/1hMBiM2oQQ0gcK9SVwziRKaU5d94fBYDBqE1WzQdSdexuwl2gopc667g+DwWDUJspGXSm1FYMrecGEGQaD8cahiGpKiS4a7pzbr60NZOIMg8FgMBgMBoPBYDAYDAaDwWAwGAxGLcJqzjAYDAaDwWAwGAwGg8FgMBgMBoPBYNQiTJxhMBgMBoPBYDAYDAaDwWAwGAwGg8GoRZg4w2AwGAwGg8FgMBgMBoPBYDAYDAaDUYswcYbBYDAYDAaDwWAwGAwGg8FgMBgMBqMWYeIMg8FgMBgMBoPBYDAYDAaDwWAwGAxGLcLEGQaDwWAwGAwGg8FgMBgMBoPBYDAYjFrk/wciRBEk4FSNEAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "<Figure size 1800x288 with 10 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Showing all terms in Eq.2 ( DIAB computed explicitly )\n", + "print('Simulation on day ',time[stp])\n", + "\n", + "tfact = (6/dt) # This is for an easier comparison between the 6-h vs 1-h results...\n", + "\n", + "\n", + "fig1 = plt.figure(figsize=(25, 4))\n", + "clevs_mslp=np.arange(900,1060,5)\n", + "\n", + "ax1 = plt.subplot(1,5,1,projection=ccrs.PlateCarree())\n", + "ax1.set_extent([lonmin, lonmax, latmin, latmax]) \n", + "#ax1.coastlines('50m', linewidth=1.5,color='k')\n", + "clevs= np.arange(-10.,10.1,1)\n", + "cd = plt.contourf(lons,lats,tfact*ITT[stp,:,:]/100,clevs,cmap='RdBu_r',extend='both',transform=ccrs.PlateCarree())\n", + "cs = plt.contour(lons,lats,mslp[stp,:,:]/100,clevs_mslp,colors='k',linewidths=0.4,transform=ccrs.PlateCarree())\n", + "clabels = plt.clabel(cs, inline=True,fmt='%1.f', fontsize=8)\n", + "[txt.set_bbox(dict(facecolor='white', edgecolor='none', pad=0)) for txt in clabels]\n", + "for l in clabels:\n", + " l.set_rotation(0)\n", + "gl = ax1.gridlines(linewidth=0)\n", + "gl.xlabels_bottom = gl.ylabels_left = True\n", + "gl.xformatter =LONGITUDE_FORMATTER\n", + "gl.yformatter =LATITUDE_FORMATTER\n", + "gl.xlocator = mticker.FixedLocator(np.arange(-180,180,5))\n", + "gl.ylocator = mticker.FixedLocator(np.arange(10,90,5))\n", + "gl.xlabel_style = {'size': 13, 'color': 'k'}\n", + "gl.ylabel_style = {'size': 13, 'color': 'k'}\n", + "plt.colorbar(cd,label='hPa/6h',pad=0.025)\n", + "plt.title('ITT')\n", + "\n", + "ax1 = plt.subplot(1,5,2,projection=ccrs.PlateCarree())\n", + "ax1.set_extent([lonmin, lonmax, latmin, latmax]) \n", + "#ax1.coastlines('50m', linewidth=1.5,color='k')\n", + "clevs= np.arange(-30.,30.1,1)\n", + "cd = plt.contourf(lons,lats,tfact*(TADV_avg[stp,:,:])/100,clevs,cmap='RdBu_r',extend='both',transform=ccrs.PlateCarree())\n", + "cs = plt.contour(lons,lats,mslp[stp,:,:]/100,clevs_mslp,colors='k',linewidths=0.4,transform=ccrs.PlateCarree())\n", + "clabels = plt.clabel(cs, inline=True,fmt='%1.f', fontsize=8)\n", + "[txt.set_bbox(dict(facecolor='white', edgecolor='none', pad=0)) for txt in clabels]\n", + "for l in clabels:\n", + " l.set_rotation(0)\n", + "gl = ax1.gridlines(linewidth=0)\n", + "gl.xlabels_bottom = gl.ylabels_left = True\n", + "gl.xformatter =LONGITUDE_FORMATTER\n", + "gl.yformatter =LATITUDE_FORMATTER\n", + "gl.xlocator = mticker.FixedLocator(np.arange(-180,180,5))\n", + "gl.ylocator = mticker.FixedLocator(np.arange(10,90,5))\n", + "gl.xlabel_style = {'size': 13, 'color': 'k'}\n", + "gl.ylabel_style = {'size': 13, 'color': 'k'}\n", + "plt.colorbar(cd,label='hPa/6h',pad=0.025)\n", + "plt.title('TADV_avg')\n", + "\n", + "ax1 = plt.subplot(1,5,3,projection=ccrs.PlateCarree())\n", + "ax1.set_extent([lonmin, lonmax, latmin, latmax]) \n", + "#ax1.coastlines('50m', linewidth=1.5,color='k')\n", + "clevs= np.arange(-30.,30.1,1)\n", + "cd = plt.contourf(lons,lats,tfact*(VMT_avg[stp,:,:])/100,clevs,cmap='RdBu_r',extend='both',transform=ccrs.PlateCarree())\n", + "cs = plt.contour(lons,lats,mslp[stp,:,:]/100,clevs_mslp,colors='k',linewidths=0.4,transform=ccrs.PlateCarree())\n", + "clabels = plt.clabel(cs, inline=True,fmt='%1.f', fontsize=8)\n", + "[txt.set_bbox(dict(facecolor='white', edgecolor='none', pad=0)) for txt in clabels]\n", + "for l in clabels:\n", + " l.set_rotation(0)\n", + "gl = ax1.gridlines(linewidth=0)\n", + "gl.xlabels_bottom = gl.ylabels_left = True\n", + "gl.xformatter =LONGITUDE_FORMATTER\n", + "gl.yformatter =LATITUDE_FORMATTER\n", + "gl.xlocator = mticker.FixedLocator(np.arange(-180,180,5))\n", + "gl.ylocator = mticker.FixedLocator(np.arange(10,90,5))\n", + "gl.xlabel_style = {'size': 13, 'color': 'k'}\n", + "gl.ylabel_style = {'size': 13, 'color': 'k'}\n", + "plt.colorbar(cd,label='hPa/6h',pad=0.025)\n", + "plt.title('VMT_avg')\n", + "\n", + "\n", + "ax1 = plt.subplot(1,5,4,projection=ccrs.PlateCarree())\n", + "ax1.set_extent([lonmin, lonmax, latmin, latmax]) \n", + "#ax1.coastlines('50m', linewidth=1.5,color='k')\n", + "clevs= np.arange(-30.,30.1,1)\n", + "#cd = plt.contourf(lons,lats,tfact*(Integ_phy_hr2pt[stp-1,:,:]+Integ_phy_hr2pt[stp,:,:])/200,clevs,cmap='RdBu_r',extend='both',transform=ccrs.PlateCarree())\n", + "cd = plt.contourf(lons,lats,tfact*(DIABcomp_avg[stp,:,:])/100,clevs,cmap='RdBu_r',extend='both',transform=ccrs.PlateCarree())\n", + "cs = plt.contour(lons,lats,mslp[stp,:,:]/100,clevs_mslp,colors='k',linewidths=0.4,transform=ccrs.PlateCarree())\n", + "clabels = plt.clabel(cs, inline=True,fmt='%1.f', fontsize=8)\n", + "[txt.set_bbox(dict(facecolor='white', edgecolor='none', pad=0)) for txt in clabels]\n", + "for l in clabels:\n", + " l.set_rotation(0)\n", + "gl = ax1.gridlines(linewidth=0)\n", + "gl.xlabels_bottom = gl.ylabels_left = True\n", + "gl.xformatter =LONGITUDE_FORMATTER\n", + "gl.yformatter =LATITUDE_FORMATTER\n", + "gl.xlocator = mticker.FixedLocator(np.arange(-180,180,5))\n", + "gl.ylocator = mticker.FixedLocator(np.arange(10,90,5))\n", + "gl.xlabel_style = {'size': 13, 'color': 'k'}\n", + "gl.ylabel_style = {'size': 13, 'color': 'k'}\n", + "plt.colorbar(cd,label='hPa/6h',pad=0.025)\n", + "plt.title('DIAB_avg (explicitly computed)')\n", + "\n", + "ax1 = plt.subplot(1,5,5,projection=ccrs.PlateCarree())\n", + "ax1.set_extent([lonmin, lonmax, latmin, latmax]) \n", + "#ax1.coastlines('50m', linewidth=1.5,color='k')\n", + "clevs= np.arange(-30.,30.1,1)\n", + "#cd = plt.contourf(lons,lats,tfact*(Integ_phy_hr2pt[stp-1,:,:]+Integ_phy_hr2pt[stp,:,:])/200,clevs,cmap='RdBu_r',extend='both',transform=ccrs.PlateCarree())\n", + "cd = plt.contourf(lons,lats,tfact*(ITTeq2_RES[stp,:,:])/100,clevs,cmap='RdBu_r',extend='both',transform=ccrs.PlateCarree())\n", + "cs = plt.contour(lons,lats,mslp[stp,:,:]/100,clevs_mslp,colors='k',linewidths=0.4,transform=ccrs.PlateCarree())\n", + "clabels = plt.clabel(cs, inline=True,fmt='%1.f', fontsize=8)\n", + "[txt.set_bbox(dict(facecolor='white', edgecolor='none', pad=0)) for txt in clabels]\n", + "for l in clabels:\n", + " l.set_rotation(0)\n", + "gl = ax1.gridlines(linewidth=0)\n", + "gl.xlabels_bottom = gl.ylabels_left = True\n", + "gl.xformatter =LONGITUDE_FORMATTER\n", + "gl.yformatter =LATITUDE_FORMATTER\n", + "gl.xlocator = mticker.FixedLocator(np.arange(-180,180,5))\n", + "gl.ylocator = mticker.FixedLocator(np.arange(10,90,5))\n", + "gl.xlabel_style = {'size': 13, 'color': 'k'}\n", + "gl.ylabel_style = {'size': 13, 'color': 'k'}\n", + "plt.colorbar(cd,label='hPa/6h',pad=0.025)\n", + "plt.title('residual ( eq.2 for ITT decopmosition )')\n", + "\n", + "plt.subplots_adjust(bottom=0.05, right=1,wspace = 0.1, hspace = 0.25,top=1)\n", + "print(level[lev]/100)\n", + "#plt.savefig('PTE_'+exp+'_'+data_dt+'_Eq2ori_DIABcomp_n_res_upper'+str(int(level[lev]/100))+'hPa_central.png',\n", + "# bbox_inches='tight',dpi=100)\n", + "plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "1 Python 3 (based on the module python3/2023.01)", + "language": "python", + "name": "python3_2023_01" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.10" + }, + "toc-showtags": false + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/Scripts_for_analysis/PTEstep3_Cyclone_centered_analysis.ipynb b/Scripts_for_analysis/PTEstep3_Cyclone_centered_analysis.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..f7a7c558762097001e7143f4be6fb7fe51276f67 --- /dev/null +++ b/Scripts_for_analysis/PTEstep3_Cyclone_centered_analysis.ipynb @@ -0,0 +1,3222 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "tags": [] + }, + "source": [ + "# (Step 3 for PTE) PTE analysis for the cyclone core " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Original script written by Georgios Papavasileiou \n", + "\n", + "Modified by Ting-Chen Chen (ting-chen.chen@kit.edu) \n", + "\n", + "Added the re-centering of the domain" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "exp='channel_2km_0006'\n", + "dt = 6\n", + "data_res = '1x1latlon'\n", + "if dt == 1:\n", + " data_dt = '1hrly'\n", + "elif dt == 6:\n", + " data_dt = '6hrly'\n", + " \n", + "p2level=50\n" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import pandas as pd\n", + "import scipy as sp\n", + "import scipy.ndimage\n", + "from netCDF4 import Dataset\n", + "import matplotlib.pyplot as plt\n", + "import matplotlib.ticker as mticker\n", + "import matplotlib.patches as patches\n", + "import psutil\n", + "import datetime\n", + "import time as tm\n", + "import seaborn as sns\n", + "import cartopy.crs as ccrs\n", + "from cartopy.mpl.gridliner import LONGITUDE_FORMATTER, LATITUDE_FORMATTER\n", + "import warnings\n", + "warnings.filterwarnings(\"ignore\")" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "def def_memory(msg=None):\n", + " process = psutil.Process()\n", + " mem = np.round(process.memory_info().rss/(1024*1024))\n", + " return mem" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "time = [1.5 1.75 2. 2.25 2.5 2.75 3. 3.25 3.5 3.75 4. 4.25 4.5 4.75\n", + " 5. 5.25 5.5 5.75 6. 6.25 6.5 6.75 7. 7.25 7.5 7.75 8. 8.25\n", + " 8.5 8.75 9. ]\n", + "##################################\n", + "Memory before we load PTE data: 183.0 MB\n", + "Memory after we load PTE data: 198.0 MB\n", + "##################################\n", + "The script started at: 09:48:10.870253\n", + "The script ended at: 09:48:11.216892\n", + "0.34656381607055664\n", + "##################################\n" + ] + } + ], + "source": [ + "mem_before = def_memory()\n", + "datetime_start = datetime.datetime.now().time()\n", + "time_start = tm.time()\n", + "\n", + "#####################################################\n", + "# Read in PTE data from file\n", + "#####################################################\n", + "\n", + "\n", + "# path on Levante for the PTE calculated results (2D maps for all selected time steps)\n", + "#ipath = '/work/bb1152/Module_A/A6_CyclEx/b382037_TingChen/Task3/PTE/maps/'\n", + "ipath = '/work/bb1152/Module_A/A6_CyclEx/pp_data/PTE_maps/'\n", + "\n", + "ifile = \"PTE_map_for_\"+exp+\"_\"+data_dt+\"_\"+data_res+\"_upper\"+str(int(p2level))+\"hPa.nc\"\n", + "\n", + "\n", + "# read the data\n", + "data_file= ipath+ifile\n", + "nc = Dataset(data_file, mode='r')\n", + "lons = nc.variables['lon'][:]\n", + "lats = nc.variables['lat'][:]\n", + "lev = nc.variables['lev'][:] /100. # Pa--> hPa\n", + "time = nc.variables['time'][:]\n", + "mslp = nc.variables['mslp'][:] /100. # Pa--> hPa\n", + "\n", + "# Eq.1:\n", + "dp = nc.variables['dpsfc_dt'][:]/100. # Pa--> hPa\n", + "dfi = nc.variables['dfi_dt'][:] /100. \n", + "ep = nc.variables['EP'][:] /100.\n", + "itt = nc.variables['ITT'][:] /100.\n", + "eq1res = nc.variables['Eq1res'][:] /100.\n", + "\n", + "# Eq.2:\n", + "tadv = nc.variables['TADV'][:] /100.\n", + "vmt = nc.variables['VMT'][:] /100.\n", + "# if compute_DIAB----:\n", + "diab = nc.variables['DIABcomp'][:]/100.\n", + "eq2res = nc.variables['Eq2res'][:] /100.\n", + "# --------------------\n", + "diabres = nc.variables['DIABres'][:] /100. # diabres equals to diab + eq2res,\n", + " # so if diab is calculated explicitly (derived from the models),\n", + " # this term is not useful for PTE analysis. \n", + " # I kept it, just to examine the difference between diab and diabres.\n", + "# Extra terms:\n", + "#tadv_3D = nc.variables['TADV_3D'][:] /100.\n", + "\n", + "nc.close()\n", + "\n", + "# dimensions\n", + "ntimes = len(time)\n", + "nlons = len(lons)\n", + "nlats = len(lats)\n", + "nlev = len(lev)\n", + "\n", + "print('time = ', time)\n", + "\n", + "box = np.ones((nlats,nlons), float)\n", + "\n", + "print('##################################')\n", + "mem_after = def_memory()\n", + "print('Memory before we load PTE data: ', mem_before,'MB')\n", + "print('Memory after we load PTE data:', mem_after,'MB')\n", + "print('##################################')\n", + "time_elapsed = (tm.time() - time_start)\n", + "print('The script started at: ', datetime_start) \n", + "print('The script ended at: ', datetime.datetime.now().time()) \n", + "print(time_elapsed)\n", + "print('##################################')" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/html": [ + "<div>\n", + "<style scoped>\n", + " .dataframe tbody tr th:only-of-type {\n", + " vertical-align: middle;\n", + " }\n", + "\n", + " .dataframe tbody tr th {\n", + " vertical-align: top;\n", + " }\n", + "\n", + " .dataframe thead th {\n", + " text-align: right;\n", + " }\n", + "</style>\n", + "<table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: right;\">\n", + " <th></th>\n", + " <th>Unnamed: 0</th>\n", + " <th>time</th>\n", + " <th>pmin</th>\n", + " <th>lon</th>\n", + " <th>lat</th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <th>0</th>\n", + " <td>0</td>\n", + " <td>0.00</td>\n", + " <td>1001.004700</td>\n", + " <td>50.5</td>\n", + " <td>23.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1</th>\n", + " <td>1</td>\n", + " <td>0.25</td>\n", + " <td>998.373047</td>\n", + " <td>61.5</td>\n", + " <td>23.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2</th>\n", + " <td>2</td>\n", + " <td>0.50</td>\n", + " <td>998.121826</td>\n", + " <td>19.5</td>\n", + " <td>43.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>3</th>\n", + " <td>3</td>\n", + " <td>0.75</td>\n", + " <td>997.513733</td>\n", + " <td>31.5</td>\n", + " <td>28.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>4</th>\n", + " <td>4</td>\n", + " <td>1.00</td>\n", + " <td>999.711426</td>\n", + " <td>25.5</td>\n", + " <td>44.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>5</th>\n", + " <td>5</td>\n", + " <td>1.25</td>\n", + " <td>998.156067</td>\n", + " <td>24.5</td>\n", + " <td>43.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>6</th>\n", + " <td>6</td>\n", + " <td>1.50</td>\n", + " <td>998.357910</td>\n", + " <td>28.5</td>\n", + " <td>44.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>7</th>\n", + " <td>7</td>\n", + " <td>1.75</td>\n", + " <td>998.299683</td>\n", + " <td>37.5</td>\n", + " <td>42.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>8</th>\n", + " <td>8</td>\n", + " <td>2.00</td>\n", + " <td>997.672424</td>\n", + " <td>40.5</td>\n", + " <td>43.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>9</th>\n", + " <td>9</td>\n", + " <td>2.25</td>\n", + " <td>996.791870</td>\n", + " <td>45.5</td>\n", + " <td>42.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>10</th>\n", + " <td>10</td>\n", + " <td>2.50</td>\n", + " <td>995.451721</td>\n", + " <td>45.5</td>\n", + " <td>44.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>11</th>\n", + " <td>11</td>\n", + " <td>2.75</td>\n", + " <td>993.176392</td>\n", + " <td>49.5</td>\n", + " <td>44.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>12</th>\n", + " <td>12</td>\n", + " <td>3.00</td>\n", + " <td>992.472473</td>\n", + " <td>53.5</td>\n", + " <td>46.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>13</th>\n", + " <td>13</td>\n", + " <td>3.25</td>\n", + " <td>991.768677</td>\n", + " <td>56.5</td>\n", + " <td>46.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>14</th>\n", + " <td>14</td>\n", + " <td>3.50</td>\n", + " <td>987.364929</td>\n", + " <td>61.5</td>\n", + " <td>43.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>15</th>\n", + " <td>15</td>\n", + " <td>3.75</td>\n", + " <td>979.655151</td>\n", + " <td>16.5</td>\n", + " <td>43.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>16</th>\n", + " <td>16</td>\n", + " <td>4.00</td>\n", + " <td>973.292236</td>\n", + " <td>18.5</td>\n", + " <td>45.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>17</th>\n", + " <td>17</td>\n", + " <td>4.25</td>\n", + " <td>970.220764</td>\n", + " <td>20.5</td>\n", + " <td>46.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>18</th>\n", + " <td>18</td>\n", + " <td>4.50</td>\n", + " <td>966.458496</td>\n", + " <td>22.5</td>\n", + " <td>47.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>19</th>\n", + " <td>19</td>\n", + " <td>4.75</td>\n", + " <td>963.531555</td>\n", + " <td>24.5</td>\n", + " <td>48.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>20</th>\n", + " <td>20</td>\n", + " <td>5.00</td>\n", + " <td>962.853760</td>\n", + " <td>25.5</td>\n", + " <td>48.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>21</th>\n", + " <td>21</td>\n", + " <td>5.25</td>\n", + " <td>964.222473</td>\n", + " <td>27.5</td>\n", + " <td>47.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>22</th>\n", + " <td>22</td>\n", + " <td>5.50</td>\n", + " <td>967.600342</td>\n", + " <td>30.5</td>\n", + " <td>46.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>23</th>\n", + " <td>23</td>\n", + " <td>5.75</td>\n", + " <td>969.177979</td>\n", + " <td>41.5</td>\n", + " <td>50.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>24</th>\n", + " <td>24</td>\n", + " <td>6.00</td>\n", + " <td>967.899902</td>\n", + " <td>43.5</td>\n", + " <td>50.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>25</th>\n", + " <td>25</td>\n", + " <td>6.25</td>\n", + " <td>966.300720</td>\n", + " <td>46.5</td>\n", + " <td>51.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>26</th>\n", + " <td>26</td>\n", + " <td>6.50</td>\n", + " <td>958.802185</td>\n", + " <td>58.5</td>\n", + " <td>50.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>27</th>\n", + " <td>27</td>\n", + " <td>6.75</td>\n", + " <td>950.869080</td>\n", + " <td>59.5</td>\n", + " <td>51.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>28</th>\n", + " <td>28</td>\n", + " <td>7.00</td>\n", + " <td>945.676147</td>\n", + " <td>60.5</td>\n", + " <td>52.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>29</th>\n", + " <td>29</td>\n", + " <td>7.25</td>\n", + " <td>946.446228</td>\n", + " <td>61.5</td>\n", + " <td>52.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>30</th>\n", + " <td>30</td>\n", + " <td>7.50</td>\n", + " <td>952.393982</td>\n", + " <td>13.5</td>\n", + " <td>51.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>31</th>\n", + " <td>31</td>\n", + " <td>7.75</td>\n", + " <td>951.814087</td>\n", + " <td>19.5</td>\n", + " <td>55.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>32</th>\n", + " <td>32</td>\n", + " <td>8.00</td>\n", + " <td>952.943176</td>\n", + " <td>19.5</td>\n", + " <td>55.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>33</th>\n", + " <td>33</td>\n", + " <td>8.25</td>\n", + " <td>952.477600</td>\n", + " <td>27.5</td>\n", + " <td>55.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>34</th>\n", + " <td>34</td>\n", + " <td>8.50</td>\n", + " <td>951.754517</td>\n", + " <td>31.5</td>\n", + " <td>55.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>35</th>\n", + " <td>35</td>\n", + " <td>8.75</td>\n", + " <td>950.936279</td>\n", + " <td>31.5</td>\n", + " <td>56.5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>36</th>\n", + " <td>36</td>\n", + " <td>9.00</td>\n", + " <td>953.853577</td>\n", + " <td>31.5</td>\n", + " <td>57.5</td>\n", + " </tr>\n", + " </tbody>\n", + "</table>\n", + "</div>" + ], + "text/plain": [ + " Unnamed: 0 time pmin lon lat\n", + "0 0 0.00 1001.004700 50.5 23.5\n", + "1 1 0.25 998.373047 61.5 23.5\n", + "2 2 0.50 998.121826 19.5 43.5\n", + "3 3 0.75 997.513733 31.5 28.5\n", + "4 4 1.00 999.711426 25.5 44.5\n", + "5 5 1.25 998.156067 24.5 43.5\n", + "6 6 1.50 998.357910 28.5 44.5\n", + "7 7 1.75 998.299683 37.5 42.5\n", + "8 8 2.00 997.672424 40.5 43.5\n", + "9 9 2.25 996.791870 45.5 42.5\n", + "10 10 2.50 995.451721 45.5 44.5\n", + "11 11 2.75 993.176392 49.5 44.5\n", + "12 12 3.00 992.472473 53.5 46.5\n", + "13 13 3.25 991.768677 56.5 46.5\n", + "14 14 3.50 987.364929 61.5 43.5\n", + "15 15 3.75 979.655151 16.5 43.5\n", + "16 16 4.00 973.292236 18.5 45.5\n", + "17 17 4.25 970.220764 20.5 46.5\n", + "18 18 4.50 966.458496 22.5 47.5\n", + "19 19 4.75 963.531555 24.5 48.5\n", + "20 20 5.00 962.853760 25.5 48.5\n", + "21 21 5.25 964.222473 27.5 47.5\n", + "22 22 5.50 967.600342 30.5 46.5\n", + "23 23 5.75 969.177979 41.5 50.5\n", + "24 24 6.00 967.899902 43.5 50.5\n", + "25 25 6.25 966.300720 46.5 51.5\n", + "26 26 6.50 958.802185 58.5 50.5\n", + "27 27 6.75 950.869080 59.5 51.5\n", + "28 28 7.00 945.676147 60.5 52.5\n", + "29 29 7.25 946.446228 61.5 52.5\n", + "30 30 7.50 952.393982 13.5 51.5\n", + "31 31 7.75 951.814087 19.5 55.5\n", + "32 32 8.00 952.943176 19.5 55.5\n", + "33 33 8.25 952.477600 27.5 55.5\n", + "34 34 8.50 951.754517 31.5 55.5\n", + "35 35 8.75 950.936279 31.5 56.5\n", + "36 36 9.00 953.853577 31.5 57.5" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#####################################################\n", + "# Read in track data from file\n", + "#####################################################\n", + "#Cyclone Track\n", + "#path_track = '/work/bb1152/Module_A/A6_CyclEx/b382037_TingChen/Task3/PTE/cyclone_tracks/'\n", + "path_track = '/work/bb1152/Module_A/A6_CyclEx/pp_data/cyclone_tracks/'\n", + "df_track = pd.read_csv(path_track+'Track_for_'+exp+'_'+str(dt)+'hrly_1x1latlon.csv')\n", + "\n", + "# get timesteps from map\n", + "#tmin = time.min()\n", + "#tmax = time.max()\n", + "\n", + "# select timesteps from track\n", + "#df_track = df_track.loc[(df_track['time']>=tmin) & (df_track['time']<=tmax)]\n", + "\n", + "# determine timesteps of track\n", + "ntrack = len(df_track['lat'])\n", + "\n", + "track_dur = df_track['time']\n", + "track_lon = df_track['lon']\n", + "track_lat = df_track['lat']\n", + " \n", + "\n", + "df_track\n", + "\n", + "#print(track_lat[0])" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "# Added by Ting-Chen Chen, Feb 2023\n", + "#--------------------------------------------------------------------------------------------------------\n", + "# This extracts/shifts associated fields with the cyclone center as the center of the domain.\n", + "# Note (1) the domain size is only meaningful if it is smaller than the latitudinal extent\n", + "# as the moving domain follows the movement of the cyclone which is mainly zonal.\n", + "# (2) the \"true\" values of the latitude and longitude are kept here, i.e.,\n", + "# the derived new domains do not have the same lat/lon bounds at different time steps!\n", + "# (3) code modification may be required for different domain sizes & grid resolutions (not checked yet). \n", + "#--------------------------------------------------------------------------------------------------------\n", + "def cyclone_center_analysis(inputdata, lons, lats, track_lon, track_lat, ntimes, boxsize, nlats, nlons, res):\n", + " \n", + " # boxsize is defined in number of grid points and is an odd number \n", + " \n", + " Clats = np.full((ntimes,boxsize),np.nan,dtype=float)\n", + " Clons = np.full((ntimes,boxsize),np.nan,dtype=float)\n", + " Coutput = np.full((ntimes,boxsize,boxsize),np.nan,dtype=float)\n", + " inputextend = np.full((ntimes,nlats,nlons*3),np.nan,dtype=float)\n", + " lonextend = np.full((nlons*3),np.nan,dtype=float) # \n", + " \n", + " for ti in range(0,ntimes):\n", + " \n", + " for la in range(nlats):\n", + " for lo in range(nlons*3): \n", + " lonextend[lo] = lons[0]-res*nlons+res*lo\n", + " if lo < nlons: \n", + " inputextend[ti,la,lo] = inputdata[ti,la,lo] \n", + " elif lo >= nlons and lo < nlons*2: \n", + " inputextend[ti,la,lo] = inputdata[ti,la,lo-nlons] \n", + " elif lo >= nlons*2: \n", + " inputextend[ti,la,lo] = inputdata[ti,la,lo-nlons*2]\n", + "\n", + " for ti in range(0,ntimes):\n", + " \n", + " indlonC = np.where(lonextend == track_lon[ti+6])[0]\n", + " indlatC = np.where(lats == track_lat[ti+6])[0]\n", + " #print(track_lon[ti+6], track_lat[ti+6])\n", + " #print(indlonC,indlatC)\n", + " \n", + " if indlatC+int(boxsize/2) > nlats :\n", + " latboxsize = int(boxsize- (indlatC+int(boxsize/2)-nlats))\n", + " else:\n", + " latboxsize = int(boxsize)\n", + " \n", + " for la in range(latboxsize):\n", + " #----lat-----\n", + " Clats[ti,la]= track_lat[ti+6]-int(boxsize/2)*res+la*res\n", + " for lo in range(boxsize): \n", + " #----var-----\n", + " Coutput[ti,la,lo]= inputextend[ti,indlatC-int(boxsize/2)+la,indlonC-int(boxsize/2)+lo]\n", + " for lo in range(boxsize):\n", + " #----lon-----\n", + " Clons[ti,lo]= lonextend[indlonC-int(boxsize/2)+lo]\n", + " \n", + " return Coutput, Clons, Clats\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "# Remap to a cyclone-centered domain.\n", + "rDomain = 41 # the length of the domain in degrees. \n", + "gres = 1 # resolution of the data in longitude-latitude\n", + "\n", + "gDomsize= int(rDomain/gres)\n", + "\n", + "if (gDomsize % 2) == 0: #even number\n", + " gDomsize = gDomsize+1 # I plus one so that the cyclone is \n", + " # exactly located at the center of the domain\n", + "#===========================================================================================\n", + "\n", + "Cmslp, Clons, Clats = cyclone_center_analysis(mslp, lons, lats, track_lon, track_lat, ntimes, gDomsize, nlats, nlons, gres)\n", + "# Eq.1:\n", + "Cdp, Clons, Clats = cyclone_center_analysis(dp, lons, lats, track_lon, track_lat, ntimes, gDomsize, nlats, nlons, gres)\n", + "Cdfi, Clons, Clats = cyclone_center_analysis(dfi, lons, lats, track_lon, track_lat, ntimes, gDomsize, nlats, nlons, gres)\n", + "Cep, Clons, Clats = cyclone_center_analysis(ep, lons, lats, track_lon, track_lat, ntimes, gDomsize, nlats, nlons, gres)\n", + "Citt, Clons, Clats = cyclone_center_analysis(itt, lons, lats, track_lon, track_lat, ntimes, gDomsize, nlats, nlons, gres)\n", + "Ceq1res, Clons, Clats = cyclone_center_analysis(eq1res, lons, lats, track_lon, track_lat, ntimes, gDomsize, nlats, nlons, gres)\n", + "# Eq.2:\n", + "Ctadv, Clons, Clats = cyclone_center_analysis(tadv, lons, lats, track_lon, track_lat, ntimes, gDomsize, nlats, nlons, gres)\n", + "Cvmt, Clons, Clats = cyclone_center_analysis(vmt, lons, lats, track_lon, track_lat, ntimes, gDomsize, nlats, nlons, gres)\n", + "Cdiab, Clons, Clats = cyclone_center_analysis(diab, lons, lats, track_lon, track_lat, ntimes, gDomsize, nlats, nlons, gres)\n", + "Ceq2res, Clons, Clats = cyclone_center_analysis(eq2res, lons, lats, track_lon, track_lat, ntimes, gDomsize, nlats, nlons, gres)\n", + "Cdiabres,Clons, Clats = cyclone_center_analysis(diabres,lons, lats, track_lon, track_lat, ntimes, gDomsize, nlats, nlons, gres)\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "Clons2d = np.full((ntimes,gDomsize,gDomsize),np.nan,dtype=float)\n", + "Clats2d = np.full((ntimes,gDomsize,gDomsize),np.nan,dtype=float)\n", + "\n", + "for t in range(0,ntimes):\n", + " for i in range(gDomsize):\n", + " Clons2d[t,i,:] = Clons[t,:]\n", + " for i in range(gDomsize):\n", + " Clats2d[t,:,i] = Clats[t,:]\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "from netCDF4 import Dataset as nc\n", + "##########################\n", + "# Write out the PTE data \n", + "##########################\n", + "\n", + "### ONLY POSSIBLE IF FILE DOES NOT EXIST YET ###\n", + "\n", + "outpath = \"/work/bb1152/Module_A/A6_CyclEx/b382037_TingChen/Task3/PTE/maps/\"\n", + "outfile = \"CCenter_PTE_map_for_\"+exp+\"_\"+data_dt+\"_\"+data_res+\"_upper\"+str(p2level)+\"hPa.nc\"\n", + "\n", + "#Creating a netcdf dataset\n", + "fout = nc(outpath+outfile, 'w', format='NETCDF4')\n", + "\n", + "#Specifying dimenstions\n", + "fout.createDimension('gDomsize', gDomsize)\n", + "fout.createDimension('time', None)\n", + "\n", + "#Building variables\n", + "lon_out = fout.createVariable('Clon', 'f4', ('time','gDomsize'))\n", + "lat_out = fout.createVariable('Clat', 'f4', ('time','gDomsize')) \n", + "time_out = fout.createVariable('time', 'f4', 'time') \n", + "# --------Eq.1--------\n", + "dp_out = fout.createVariable('Cdp', 'f4', ('time', 'gDomsize', 'gDomsize'))\n", + "dfi_out = fout.createVariable('Cdfi', 'f4', ('time', 'gDomsize', 'gDomsize'))\n", + "ep_out = fout.createVariable('Cep', 'f4', ('time', 'gDomsize', 'gDomsize'))\n", + "itt_out = fout.createVariable('Citt', 'f4', ('time', 'gDomsize', 'gDomsize'))\n", + "eq1res_out = fout.createVariable('Ceq1res', 'f4', ('time', 'gDomsize', 'gDomsize'))\n", + "# --------Eq.2--------\n", + "tadv_out = fout.createVariable('Ctadv', 'f4', ('time', 'gDomsize', 'gDomsize'))\n", + "vmt_out = fout.createVariable('Cvmt', 'f4', ('time', 'gDomsize', 'gDomsize'))\n", + "diab_comp_out = fout.createVariable('Cdiab', 'f4', ('time', 'gDomsize', 'gDomsize'))\n", + "eq2res_out = fout.createVariable('Ceq2res', 'f4', ('time', 'gDomsize', 'gDomsize'))\n", + "diab_res_out = fout.createVariable('Cdiabres', 'f4', ('time', 'gDomsize', 'gDomsize'))\n", + "\n", + "\n", + "#Passing data into variables\n", + "lon_out[:] = Clons[0:ntimes,:]\n", + "lat_out[:] = Clats[0:ntimes,:]\n", + "time_out[:] = time[0:ntimes]\n", + "\n", + "# Eq.1:\n", + "dp_out[:,:,:] = Cdp[0:ntimes,:,:]\n", + "dfi_out[:,:,:] = Cdfi[0:ntimes,:,:]\n", + "ep_out[:,:,:] = Cep[0:ntimes,:,:]\n", + "itt_out[:,:,:] = Citt[0:ntimes,:,:]\n", + "eq1res_out[:,:,:] = Ceq1res[0:ntimes,:,:]\n", + "\n", + "# Eq.2:\n", + "tadv_out[:,:,:] = Ctadv[0:ntimes,:,:]\n", + "vmt_out[:,:,:] = Cvmt[0:ntimes,:,:] \n", + "diab_comp_out[:,:,:] = Cdiab[0:ntimes,:,:]\n", + "eq2res_out[:,:,:] = Ceq2res[0:ntimes,:,:]\n", + "diab_res_out[:,:,:] = Cdiabres[0:ntimes,:,:]\n", + "\n", + "#Closing the dataset\n", + "fout.close()\n", + "\n", + "\n", + "print('We saved the output data at: ', datetime.datetime.now().time()) \n", + "print('####################')\n", + "print(' STATUS == FINISHED ')\n", + "print('####################')\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Test plots" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1.5 1.75 2. 2.25 2.5 2.75 3. 3.25 3.5 3.75 4. 4.25 4.5 4.75\n", + " 5. 5.25 5.5 5.75 6. 6.25 6.5 6.75 7. 7.25 7.5 7.75 8. 8.25\n", + " 8.5 8.75 9. ]\n" + ] + } + ], + "source": [ + "print(time)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Check the PTE results!\n", + "\n", + "plt.rcParams['savefig.facecolor']='white'\n", + "lonmin=lons.min()\n", + "lonmax=lons.max()\n", + "latmin=25\n", + "latmax=75\n", + "# Showing Dp/dt term at a given time step\n", + "stp = 22\n", + "print('Simulation on day ',time[stp])\n", + "\n", + "tfact = (6/dt) # This is for an easier comparison between the 6-h vs 1-h results (converting to the same unit)\n", + "clevs_mslp=np.arange(900,1060,5)\n", + "tadv_roll=np.roll(tadv,10)\n", + "\n", + "fig1 = plt.figure(figsize=(15, 6))\n", + "ax1 = plt.subplot(1,2,1,projection=ccrs.PlateCarree())\n", + "ax1.set_extent([lonmin, lonmax, latmin, latmax]) \n", + "#ax1.coastlines('50m', linewidth=1.5,color='k')\n", + "clevs= np.arange(-11.,12,1)\n", + "cd = plt.contourf(lons,lats,tadv[stp,:,:],clevs,cmap='RdBu_r',extend='both',transform=ccrs.PlateCarree())\n", + "cs = plt.contour(lons,lats,mslp[stp,:,:],clevs_mslp,colors='k',linewidths=0.8,transform=ccrs.PlateCarree())\n", + "clabels = plt.clabel(cs, inline=True,fmt='%1.f', fontsize=10)\n", + "[txt.set_bbox(dict(facecolor='white', edgecolor='none', alpha=0.6, pad=0.5)) for txt in clabels]\n", + "for l in clabels:\n", + " l.set_rotation(0)\n", + "gl = ax1.gridlines(linewidth=0)\n", + "gl.xlabels_bottom = gl.ylabels_left = True\n", + "gl.xformatter =LONGITUDE_FORMATTER\n", + "gl.yformatter =LATITUDE_FORMATTER\n", + "gl.xlocator = mticker.FixedLocator(np.arange(-180,180,5))\n", + "gl.ylocator = mticker.FixedLocator(np.arange(10,90,5))\n", + "gl.xlabel_style = {'size': 13, 'color': 'k'}\n", + "gl.ylabel_style = {'size': 13, 'color': 'k'}\n", + "plt.colorbar(cd,label='hPa/6h',pad=0.025)\n", + "\n", + "ax1 = plt.subplot(1,2,2,projection=ccrs.PlateCarree())\n", + "ax1.set_extent([lonmin, lonmax, latmin, latmax]) \n", + "#ax1.coastlines('50m', linewidth=1.5,color='k')\n", + "clevs= np.arange(-11.,12,1)\n", + "cd = plt.contourf(lons,lats,tadv_roll[stp,:,:],clevs,cmap='RdBu_r',extend='both',transform=ccrs.PlateCarree())\n", + "cs = plt.contour(lons,lats,mslp[stp,:,:],clevs_mslp,colors='k',linewidths=0.8,transform=ccrs.PlateCarree())\n", + "clabels = plt.clabel(cs, inline=True,fmt='%1.f', fontsize=10)\n", + "[txt.set_bbox(dict(facecolor='white', edgecolor='none', alpha=0.6, pad=0.5)) for txt in clabels]\n", + "for l in clabels:\n", + " l.set_rotation(0)\n", + "gl = ax1.gridlines(linewidth=0)\n", + "gl.xlabels_bottom = gl.ylabels_left = True\n", + "gl.xformatter =LONGITUDE_FORMATTER\n", + "gl.yformatter =LATITUDE_FORMATTER\n", + "gl.xlocator = mticker.FixedLocator(np.arange(-180,180,5))\n", + "gl.ylocator = mticker.FixedLocator(np.arange(10,90,5))\n", + "gl.xlabel_style = {'size': 13, 'color': 'k'}\n", + "gl.ylabel_style = {'size': 13, 'color': 'k'}\n", + "plt.colorbar(cd,label='hPa/6h',pad=0.025)\n", + "#plt.title('dP/dt (shaded); mslp (contours)')\n", + "#plt.savefig('dPdt.png',\n", + "# bbox_inches='tight',dpi=100)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Showing all terms in Eq.2 ( DIAB computed explicitly )\n", + "\n", + "\n", + "tfact = (6/dt) # This is for an easier comparison between the 6-h vs 1-h results...\n", + "domsize=rDomain-2\n", + "c0='orange'\n", + "\n", + "print('Showing the cyclone-centered fields of each PTE terms over a box of ',domsize,'x',domsize,' degrees')\n", + "\n", + "for stp in range(2,22,1):\n", + " print('Day=',time[stp]+1)\n", + " tt=stp+6\n", + " fig1 = plt.figure(figsize=(20, 4))\n", + " clevs_mslp=np.arange(930,1010,5)\n", + "\n", + " ax1 = plt.subplot(1,5,1,projection=ccrs.PlateCarree())\n", + " ax1.set_extent([track_lon[tt]-domsize/2, track_lon[tt]+domsize/2-1, track_lat[tt]-domsize/2, track_lat[tt]+domsize/2-1]) \n", + " #ax1.set_extent([lonmin, lonmax, latmin, latmax]) \n", + " clevs= np.arange(-10.,10.1,1)\n", + " cd = plt.contourf(Clons[stp,:],Clats[stp,:],tfact*Citt[stp,:,:],clevs,cmap='RdBu_r',extend='both',transform=ccrs.PlateCarree())\n", + " cd0 = plt.contour(Clons[stp,:],Clats[stp,:],tfact*Citt[stp,:,:],[0],colors=c0,transform=ccrs.PlateCarree())\n", + " cs = plt.contour(Clons[stp,:],Clats[stp,:],Cmslp[stp,:,:],clevs_mslp,colors='k',linewidths=0.4,transform=ccrs.PlateCarree())\n", + " clabels = plt.clabel(cs, inline=True,fmt='%1.f', fontsize=8)\n", + " [txt.set_bbox(dict(facecolor='white', edgecolor='none', pad=0)) for txt in clabels]\n", + " for l in clabels:\n", + " l.set_rotation(0)\n", + " gl = ax1.gridlines(linewidth=0.3,linestyle=':',color='gray')\n", + " gl.xlabels_bottom = gl.ylabels_left = True\n", + " gl.xformatter =LONGITUDE_FORMATTER\n", + " gl.yformatter =LATITUDE_FORMATTER\n", + " gl.xlocator = mticker.FixedLocator(np.arange(-180,180,2))\n", + " gl.ylocator = mticker.FixedLocator(np.arange(10,90,2))\n", + " gl.xlabel_style = {'size': 10, 'color': 'k'}\n", + " gl.ylabel_style = {'size': 10, 'color': 'k'}\n", + " cb= plt.colorbar(cd,pad=0.025,shrink=0.7)\n", + " cb.ax.tick_params(labelsize=12)\n", + " plt.scatter(track_lon[tt], track_lat[tt], c='k', s=60, zorder=20,transform=ccrs.PlateCarree())\n", + " plt.title('ITT')\n", + "\n", + " ax1 = plt.subplot(1,5,2,projection=ccrs.PlateCarree())\n", + " ax1.set_extent([track_lon[tt]-domsize/2, track_lon[tt]+domsize/2-1, track_lat[tt]-domsize/2, track_lat[tt]+domsize/2-1]) \n", + " #ax1.set_extent([lonmin, lonmax, latmin, latmax]) \n", + " clevs= np.arange(-30.,30.1,1)\n", + " cd = plt.contourf(Clons[stp,:],Clats[stp,:],tfact*(Ctadv[stp,:,:]),clevs,cmap='RdBu_r',extend='both',transform=ccrs.PlateCarree())\n", + " cd0 = plt.contour(Clons[stp,:],Clats[stp,:],tfact*Ctadv[stp,:,:],[0],colors=c0,transform=ccrs.PlateCarree())\n", + " cs = plt.contour(Clons[stp,:],Clats[stp,:],Cmslp[stp,:,:],clevs_mslp,colors='k',linewidths=0.4,transform=ccrs.PlateCarree())\n", + " clabels = plt.clabel(cs, inline=True,fmt='%1.f', fontsize=8)\n", + " [txt.set_bbox(dict(facecolor='white', edgecolor='none', pad=0)) for txt in clabels]\n", + " for l in clabels:\n", + " l.set_rotation(0)\n", + " gl = ax1.gridlines(linewidth=0.3,linestyle=':',color='gray')\n", + " gl.xlabels_bottom = True\n", + " gl.ylabels_left = False\n", + " gl.xformatter =LONGITUDE_FORMATTER\n", + " gl.yformatter =LATITUDE_FORMATTER\n", + " gl.xlocator = mticker.FixedLocator(np.arange(-180,180,2))\n", + " gl.ylocator = mticker.FixedLocator(np.arange(10,90,2))\n", + " gl.xlabel_style = {'size': 10, 'color': 'k'}\n", + " gl.ylabel_style = {'size': 10, 'color': 'k'}\n", + " cb= plt.colorbar(cd,pad=0.025,shrink=0.7)\n", + " cb.ax.tick_params(labelsize=12)\n", + " plt.scatter(track_lon[tt], track_lat[tt], c='k', s=60, zorder=20,transform=ccrs.PlateCarree())\n", + " plt.title('TADV')\n", + "\n", + " ax1 = plt.subplot(1,5,3,projection=ccrs.PlateCarree())\n", + " ax1.set_extent([track_lon[tt]-domsize/2, track_lon[tt]+domsize/2-1, track_lat[tt]-domsize/2, track_lat[tt]+domsize/2-1]) \n", + " #ax1.set_extent([lonmin, lonmax, latmin, latmax]) \n", + " clevs= np.arange(-30.,30.1,1)\n", + " cd = plt.contourf(Clons[stp,:],Clats[stp,:],tfact*(Cvmt[stp,:,:]),clevs,cmap='RdBu_r',extend='both',transform=ccrs.PlateCarree())\n", + " cd0 = plt.contour(Clons[stp,:],Clats[stp,:],tfact*Cvmt[stp,:,:],[0],colors=c0,transform=ccrs.PlateCarree())\n", + " cs = plt.contour(Clons[stp,:],Clats[stp,:],Cmslp[stp,:,:],clevs_mslp, colors='k',linewidths=0.4,transform=ccrs.PlateCarree())\n", + " clabels = plt.clabel(cs, inline=True,fmt='%1.f', fontsize=8)\n", + " [txt.set_bbox(dict(facecolor='white', edgecolor='none', pad=0)) for txt in clabels]\n", + " for l in clabels:\n", + " l.set_rotation(0)\n", + " gl = ax1.gridlines(linewidth=0.3,linestyle=':',color='gray')\n", + " gl.xlabels_bottom = True\n", + " gl.ylabels_left = False\n", + " gl.xformatter =LONGITUDE_FORMATTER\n", + " gl.yformatter =LATITUDE_FORMATTER\n", + " gl.xlocator = mticker.FixedLocator(np.arange(-180,180,2))\n", + " gl.ylocator = mticker.FixedLocator(np.arange(10,90,2))\n", + " gl.xlabel_style = {'size': 10, 'color': 'k'}\n", + " gl.ylabel_style = {'size': 10, 'color': 'k'}\n", + " cb= plt.colorbar(cd,pad=0.025,shrink=0.7)\n", + " cb.ax.tick_params(labelsize=12)\n", + " plt.scatter(track_lon[tt], track_lat[tt], c='k', s=60, zorder=20,transform=ccrs.PlateCarree())\n", + " plt.title('VMT')\n", + "\n", + " ax1 = plt.subplot(1,5,4,projection=ccrs.PlateCarree())\n", + " ax1.set_extent([track_lon[tt]-domsize/2, track_lon[tt]+domsize/2-1, track_lat[tt]-domsize/2, track_lat[tt]+domsize/2-1]) \n", + " #ax1.set_extent([lonmin, lonmax, latmin, latmax]) \n", + " clevs= np.arange(-30.,30.1,1)\n", + "#cd = plt.contourf(lons,lats,tfact*(Integ_phy_hr2pt[stp-1,:,:]+Integ_phy_hr2pt[stp,:,:])/200,clevs,cmap='RdBu_r',extend='both',transform=ccrs.PlateCarree())\n", + " cd = plt.contourf(Clons[stp,:],Clats[stp,:],tfact*(Cdiab[stp,:,:]),clevs,cmap='RdBu_r',extend='both',transform=ccrs.PlateCarree())\n", + " cd0 = plt.contour(Clons[stp,:],Clats[stp,:],tfact*Cdiab[stp,:,:],[0],colors=c0,transform=ccrs.PlateCarree())\n", + " cs = plt.contour(Clons[stp,:],Clats[stp,:],Cmslp[stp,:,:],clevs_mslp, colors='k',linewidths=0.4,transform=ccrs.PlateCarree())\n", + " clabels = plt.clabel(cs, inline=True,fmt='%1.f', fontsize=8)\n", + " [txt.set_bbox(dict(facecolor='white', edgecolor='none', pad=0)) for txt in clabels]\n", + " for l in clabels:\n", + " l.set_rotation(0)\n", + " gl = ax1.gridlines(linewidth=0.3,linestyle=':',color='gray')\n", + " gl.xlabels_bottom = True\n", + " gl.ylabels_left = False\n", + " gl.xformatter =LONGITUDE_FORMATTER\n", + " gl.yformatter =LATITUDE_FORMATTER\n", + " gl.xlocator = mticker.FixedLocator(np.arange(-180,180,2))\n", + " gl.ylocator = mticker.FixedLocator(np.arange(10,90,2))\n", + " gl.xlabel_style = {'size': 10, 'color': 'k'}\n", + " gl.ylabel_style = {'size': 10, 'color': 'k'}\n", + " cb= plt.colorbar(cd,pad=0.025,shrink=0.7)\n", + " cb.ax.tick_params(labelsize=12)\n", + " plt.scatter(track_lon[tt], track_lat[tt], c='k', s=60, zorder=20,transform=ccrs.PlateCarree())\n", + " plt.title('DIAB')\n", + "\n", + " ax1 = plt.subplot(1,5,5,projection=ccrs.PlateCarree())\n", + " ax1.set_extent([track_lon[tt]-domsize/2, track_lon[tt]+domsize/2-1, track_lat[tt]-domsize/2, track_lat[tt]+domsize/2-1]) \n", + " #ax1.set_extent([lonmin, lonmax, latmin, latmax]) \n", + "#ax1.coastlines('50m', linewidth=1.5,color='k')\n", + " clevs= np.arange(-30.,30.1,1)\n", + "#cd = plt.contourf(lons,lats,tfact*(Integ_phy_hr2pt[stp-1,:,:]+Integ_phy_hr2pt[stp,:,:])/200,clevs,cmap='RdBu_r',extend='both',transform=ccrs.PlateCarree())\n", + " cd = plt.contourf(Clons[stp,:],Clats[stp,:],tfact*(Ceq2res[stp,:,:]),clevs,cmap='RdBu_r',extend='both',transform=ccrs.PlateCarree())\n", + " #cd0 = plt.contour(Clons[stp,:],Clats[stp,:],tfact*Ceq2res[stp,:,:],[0],colors=c0,transform=ccrs.PlateCarree())\n", + " cs = plt.contour(Clons[stp,:],Clats[stp,:],Cmslp[stp,:,:],clevs_mslp,colors='k',linewidths=0.4,transform=ccrs.PlateCarree())\n", + " clabels = plt.clabel(cs, inline=True,fmt='%1.f', fontsize=8)\n", + " [txt.set_bbox(dict(facecolor='white', edgecolor='none', pad=0)) for txt in clabels]\n", + " for l in clabels:\n", + " l.set_rotation(0)\n", + " gl = ax1.gridlines(linewidth=0.3,linestyle=':',color='gray')\n", + " gl.xlabels_bottom = True\n", + " gl.ylabels_left = False\n", + " gl.xformatter =LONGITUDE_FORMATTER\n", + " gl.yformatter =LATITUDE_FORMATTER\n", + " gl.xlocator = mticker.FixedLocator(np.arange(-180,180,2))\n", + " gl.ylocator = mticker.FixedLocator(np.arange(10,90,2))\n", + " gl.xlabel_style = {'size': 10, 'color': 'k'}\n", + " gl.ylabel_style = {'size': 10, 'color': 'k'}\n", + " cb= plt.colorbar(cd,pad=0.025,shrink=0.7)\n", + " cb.ax.tick_params(labelsize=12)\n", + " plt.scatter(track_lon[tt], track_lat[tt], c='k', s=60, zorder=20,transform=ccrs.PlateCarree())\n", + " plt.title('residual (eq.2)')\n", + "\n", + "\n", + " plt.subplots_adjust(bottom=0.05, right=1,wspace = 0.09, hspace = 0.25,top=1)\n", + " #print(level[lev]/100)\n", + " plt.savefig('Cyclonecentered_PTE_'+exp+'_'+data_dt+'_Eq2_upper'+str(p2level)+'hPa_t'+str(tt)+'.png',\n", + " bbox_inches='tight',dpi=100)\n", + " plt.show()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Showing all terms in Eq.2 ( DIAB computed explicitly )\n", + "\n", + "\n", + "tfact = (6/dt) # This is for an easier comparison between the 6-h vs 1-h results...\n", + "domsize=rDomain-2\n", + "c0='orange'\n", + "\n", + "print('Showing the cyclone-centered fields of each PTE terms over a box of ',domsize,'x',domsize,' degrees')\n", + "\n", + "for stp in range(2,30,1):\n", + " print('Day=',time[stp]+1)\n", + " tt=stp+6\n", + " fig1 = plt.figure(figsize=(20, 4))\n", + " clevs_mslp=np.arange(930,1010,5)\n", + "\n", + " ax1 = plt.subplot(1,1,1,projection=ccrs.PlateCarree())\n", + " ax1.set_extent([track_lon[tt]-domsize/2, track_lon[tt]+domsize/2-1, track_lat[tt]-domsize/2, track_lat[tt]+domsize/2-1]) \n", + " #ax1.set_extent([lonmin, lonmax, latmin, latmax]) \n", + " clevs= np.arange(-10.,10.1,1)\n", + " cd = plt.contourf(Clons[stp,:],Clats[stp,:],tfact*Cdp[stp,:,:],clevs,cmap='RdBu_r',extend='both',transform=ccrs.PlateCarree())\n", + " cd0 = plt.contour(Clons[stp,:],Clats[stp,:],tfact*Cdp[stp,:,:],[0],colors=c0,transform=ccrs.PlateCarree())\n", + " cs = plt.contour(Clons[stp,:],Clats[stp,:],Cmslp[stp,:,:],clevs_mslp,colors='k',linewidths=0.4,transform=ccrs.PlateCarree())\n", + " clabels = plt.clabel(cs, inline=True,fmt='%1.f', fontsize=8)\n", + " [txt.set_bbox(dict(facecolor='white', edgecolor='none', pad=0)) for txt in clabels]\n", + " for l in clabels:\n", + " l.set_rotation(0)\n", + " gl = ax1.gridlines(linewidth=0.3,linestyle=':',color='gray')\n", + " gl.xlabels_bottom = gl.ylabels_left = True\n", + " gl.xformatter =LONGITUDE_FORMATTER\n", + " gl.yformatter =LATITUDE_FORMATTER\n", + " gl.xlocator = mticker.FixedLocator(np.arange(-180,180,2))\n", + " gl.ylocator = mticker.FixedLocator(np.arange(10,90,2))\n", + " gl.xlabel_style = {'size': 10, 'color': 'k'}\n", + " gl.ylabel_style = {'size': 10, 'color': 'k'}\n", + " cb= plt.colorbar(cd,pad=0.025,shrink=0.7)\n", + " cb.ax.tick_params(labelsize=12)\n", + " plt.scatter(track_lon[tt], track_lat[tt], c='k', s=60, zorder=20,transform=ccrs.PlateCarree())\n", + " plt.title('dP')\n", + "\n", + " plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "<div>\n", + "<style scoped>\n", + " .dataframe tbody tr th:only-of-type {\n", + " vertical-align: middle;\n", + " }\n", + "\n", + " .dataframe tbody tr th {\n", + " vertical-align: top;\n", + " }\n", + "\n", + " .dataframe thead th {\n", + " text-align: right;\n", + " }\n", + "</style>\n", + "<table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: right;\">\n", + " <th></th>\n", + " <th>Unnamed: 0</th>\n", + " <th>time</th>\n", + " <th>pmin</th>\n", + " <th>lon</th>\n", + " <th>lat</th>\n", + " <th>dp</th>\n", + " <th>dfi</th>\n", + " <th>ep</th>\n", + " <th>itt</th>\n", + " <th>eq1res</th>\n", + " <th>tadv</th>\n", + " <th>vmt</th>\n", + " <th>diab</th>\n", + " <th>eq2res</th>\n", + " <th>diabres</th>\n", + " <th>diabptend</th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <th>0</th>\n", + " <td>0</td>\n", + " <td>0.00</td>\n", + " <td>1001.004700</td>\n", + " <td>50.5</td>\n", + " <td>23.5</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1</th>\n", + " <td>1</td>\n", + " <td>0.25</td>\n", + " <td>998.373047</td>\n", + " <td>61.5</td>\n", + " <td>23.5</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2</th>\n", + " <td>2</td>\n", + " <td>0.50</td>\n", + " <td>998.121826</td>\n", + " <td>19.5</td>\n", + " <td>43.5</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>3</th>\n", + " <td>3</td>\n", + " <td>0.75</td>\n", + " <td>997.513733</td>\n", + " <td>31.5</td>\n", + " <td>28.5</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>4</th>\n", + " <td>4</td>\n", + " <td>1.00</td>\n", + " <td>999.711426</td>\n", + " <td>25.5</td>\n", + " <td>44.5</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>5</th>\n", + " <td>5</td>\n", + " <td>1.25</td>\n", + " <td>998.156067</td>\n", + " <td>24.5</td>\n", + " <td>43.5</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>6</th>\n", + " <td>6</td>\n", + " <td>1.50</td>\n", + " <td>998.357910</td>\n", + " <td>28.5</td>\n", + " <td>44.5</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>0.000000</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>7</th>\n", + " <td>7</td>\n", + " <td>1.75</td>\n", + " <td>998.299683</td>\n", + " <td>37.5</td>\n", + " <td>42.5</td>\n", + " <td>-1.257118</td>\n", + " <td>-2.435947</td>\n", + " <td>NaN</td>\n", + " <td>1.160268</td>\n", + " <td>NaN</td>\n", + " <td>-1.953507</td>\n", + " <td>-0.000114</td>\n", + " <td>2.578179</td>\n", + " <td>0.535710</td>\n", + " <td>3.113889</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>8</th>\n", + " <td>8</td>\n", + " <td>2.00</td>\n", + " <td>997.672424</td>\n", + " <td>40.5</td>\n", + " <td>43.5</td>\n", + " <td>-0.545256</td>\n", + " <td>-3.108921</td>\n", + " <td>-0.001821</td>\n", + " <td>2.683342</td>\n", + " <td>-0.117856</td>\n", + " <td>-2.861484</td>\n", + " <td>0.787436</td>\n", + " <td>4.218125</td>\n", + " <td>0.539264</td>\n", + " <td>4.757390</td>\n", + " <td>84.268785</td>\n", + " </tr>\n", + " <tr>\n", + " <th>9</th>\n", + " <td>9</td>\n", + " <td>2.25</td>\n", + " <td>996.791870</td>\n", + " <td>45.5</td>\n", + " <td>42.5</td>\n", + " <td>-0.942827</td>\n", + " <td>-1.312977</td>\n", + " <td>-0.013002</td>\n", + " <td>0.368925</td>\n", + " <td>0.014227</td>\n", + " <td>-2.779676</td>\n", + " <td>2.550434</td>\n", + " <td>2.251066</td>\n", + " <td>-1.652900</td>\n", + " <td>0.598167</td>\n", + " <td>46.882564</td>\n", + " </tr>\n", + " <tr>\n", + " <th>10</th>\n", + " <td>10</td>\n", + " <td>2.50</td>\n", + " <td>995.451721</td>\n", + " <td>45.5</td>\n", + " <td>44.5</td>\n", + " <td>-1.332711</td>\n", + " <td>-0.539705</td>\n", + " <td>-0.029820</td>\n", + " <td>-0.795882</td>\n", + " <td>0.032695</td>\n", + " <td>-2.601373</td>\n", + " <td>2.558377</td>\n", + " <td>0.305608</td>\n", + " <td>-1.058493</td>\n", + " <td>-0.752886</td>\n", + " <td>10.670714</td>\n", + " </tr>\n", + " <tr>\n", + " <th>11</th>\n", + " <td>11</td>\n", + " <td>2.75</td>\n", + " <td>993.176392</td>\n", + " <td>49.5</td>\n", + " <td>44.5</td>\n", + " <td>-2.582161</td>\n", + " <td>-3.358950</td>\n", + " <td>-0.060472</td>\n", + " <td>0.769681</td>\n", + " <td>0.067580</td>\n", + " <td>-3.402263</td>\n", + " <td>2.490304</td>\n", + " <td>1.349365</td>\n", + " <td>0.332276</td>\n", + " <td>1.681640</td>\n", + " <td>35.142735</td>\n", + " </tr>\n", + " <tr>\n", + " <th>12</th>\n", + " <td>12</td>\n", + " <td>3.00</td>\n", + " <td>992.472473</td>\n", + " <td>53.5</td>\n", + " <td>46.5</td>\n", + " <td>-1.500610</td>\n", + " <td>-3.046119</td>\n", + " <td>-0.078552</td>\n", + " <td>1.703900</td>\n", + " <td>-0.079838</td>\n", + " <td>-4.808954</td>\n", + " <td>0.941563</td>\n", + " <td>2.640907</td>\n", + " <td>2.930383</td>\n", + " <td>5.571291</td>\n", + " <td>73.717491</td>\n", + " </tr>\n", + " <tr>\n", + " <th>13</th>\n", + " <td>13</td>\n", + " <td>3.25</td>\n", + " <td>991.768677</td>\n", + " <td>56.5</td>\n", + " <td>46.5</td>\n", + " <td>-1.185294</td>\n", + " <td>1.054215</td>\n", + " <td>-0.113672</td>\n", + " <td>-2.239687</td>\n", + " <td>0.113850</td>\n", + " <td>-6.207281</td>\n", + " <td>3.753949</td>\n", + " <td>0.329412</td>\n", + " <td>-0.115766</td>\n", + " <td>0.213646</td>\n", + " <td>8.067181</td>\n", + " </tr>\n", + " <tr>\n", + " <th>14</th>\n", + " <td>14</td>\n", + " <td>3.50</td>\n", + " <td>987.364929</td>\n", + " <td>61.5</td>\n", + " <td>43.5</td>\n", + " <td>-4.415220</td>\n", + " <td>-0.652110</td>\n", + " <td>-0.224648</td>\n", + " <td>-3.707302</td>\n", + " <td>0.168840</td>\n", + " <td>-7.687628</td>\n", + " <td>7.711843</td>\n", + " <td>-3.652287</td>\n", + " <td>-0.079231</td>\n", + " <td>-3.731518</td>\n", + " <td>32.207360</td>\n", + " </tr>\n", + " <tr>\n", + " <th>15</th>\n", + " <td>15</td>\n", + " <td>3.75</td>\n", + " <td>979.655151</td>\n", + " <td>16.5</td>\n", + " <td>43.5</td>\n", + " <td>-7.613641</td>\n", + " <td>-3.711725</td>\n", + " <td>-0.312119</td>\n", + " <td>-3.821748</td>\n", + " <td>0.231950</td>\n", + " <td>-10.824820</td>\n", + " <td>11.601254</td>\n", + " <td>-5.999154</td>\n", + " <td>1.400973</td>\n", + " <td>-4.598181</td>\n", + " <td>35.658365</td>\n", + " </tr>\n", + " <tr>\n", + " <th>16</th>\n", + " <td>16</td>\n", + " <td>4.00</td>\n", + " <td>973.292236</td>\n", + " <td>18.5</td>\n", + " <td>45.5</td>\n", + " <td>-6.111332</td>\n", + " <td>-2.389692</td>\n", + " <td>-0.408764</td>\n", + " <td>-3.569898</td>\n", + " <td>0.257021</td>\n", + " <td>-13.568789</td>\n", + " <td>11.200696</td>\n", + " <td>-3.847375</td>\n", + " <td>2.645570</td>\n", + " <td>-1.201805</td>\n", + " <td>22.090828</td>\n", + " </tr>\n", + " <tr>\n", + " <th>17</th>\n", + " <td>17</td>\n", + " <td>4.25</td>\n", + " <td>970.220764</td>\n", + " <td>20.5</td>\n", + " <td>46.5</td>\n", + " <td>-3.917209</td>\n", + " <td>1.443829</td>\n", + " <td>-0.398411</td>\n", + " <td>-5.294263</td>\n", + " <td>0.331636</td>\n", + " <td>-13.900916</td>\n", + " <td>9.769786</td>\n", + " <td>-4.021318</td>\n", + " <td>2.858185</td>\n", + " <td>-1.163133</td>\n", + " <td>22.437593</td>\n", + " </tr>\n", + " <tr>\n", + " <th>18</th>\n", + " <td>18</td>\n", + " <td>4.50</td>\n", + " <td>966.458496</td>\n", + " <td>22.5</td>\n", + " <td>47.5</td>\n", + " <td>-3.643573</td>\n", + " <td>0.045098</td>\n", + " <td>-0.319834</td>\n", + " <td>-3.461043</td>\n", + " <td>0.092206</td>\n", + " <td>-12.206576</td>\n", + " <td>7.911099</td>\n", + " <td>-3.471126</td>\n", + " <td>4.305560</td>\n", + " <td>0.834434</td>\n", + " <td>22.140530</td>\n", + " </tr>\n", + " <tr>\n", + " <th>19</th>\n", + " <td>19</td>\n", + " <td>4.75</td>\n", + " <td>963.531555</td>\n", + " <td>24.5</td>\n", + " <td>48.5</td>\n", + " <td>-2.053540</td>\n", + " <td>-0.683702</td>\n", + " <td>-0.238511</td>\n", + " <td>-1.474657</td>\n", + " <td>0.343331</td>\n", + " <td>-10.157607</td>\n", + " <td>7.404062</td>\n", + " <td>-1.046730</td>\n", + " <td>2.325619</td>\n", + " <td>1.278888</td>\n", + " <td>9.342189</td>\n", + " </tr>\n", + " <tr>\n", + " <th>20</th>\n", + " <td>20</td>\n", + " <td>5.00</td>\n", + " <td>962.853760</td>\n", + " <td>25.5</td>\n", + " <td>48.5</td>\n", + " <td>0.431536</td>\n", + " <td>-1.046151</td>\n", + " <td>-0.175827</td>\n", + " <td>1.576970</td>\n", + " <td>0.076543</td>\n", + " <td>-5.463251</td>\n", + " <td>6.082942</td>\n", + " <td>1.969096</td>\n", + " <td>-1.011817</td>\n", + " <td>0.957279</td>\n", + " <td>24.454632</td>\n", + " </tr>\n", + " <tr>\n", + " <th>21</th>\n", + " <td>21</td>\n", + " <td>5.25</td>\n", + " <td>964.222473</td>\n", + " <td>27.5</td>\n", + " <td>47.5</td>\n", + " <td>1.798391</td>\n", + " <td>-1.936974</td>\n", + " <td>-0.154484</td>\n", + " <td>3.458330</td>\n", + " <td>0.431519</td>\n", + " <td>-1.666817</td>\n", + " <td>4.359176</td>\n", + " <td>1.240290</td>\n", + " <td>-0.474319</td>\n", + " <td>0.765971</td>\n", + " <td>22.150151</td>\n", + " </tr>\n", + " <tr>\n", + " <th>22</th>\n", + " <td>22</td>\n", + " <td>5.50</td>\n", + " <td>967.600342</td>\n", + " <td>30.5</td>\n", + " <td>46.5</td>\n", + " <td>2.822545</td>\n", + " <td>0.026572</td>\n", + " <td>-0.109731</td>\n", + " <td>2.753272</td>\n", + " <td>0.152433</td>\n", + " <td>0.716325</td>\n", + " <td>3.224537</td>\n", + " <td>-0.101727</td>\n", + " <td>-1.085863</td>\n", + " <td>-1.187590</td>\n", + " <td>22.150151</td>\n", + " </tr>\n", + " <tr>\n", + " <th>23</th>\n", + " <td>23</td>\n", + " <td>5.75</td>\n", + " <td>969.177979</td>\n", + " <td>41.5</td>\n", + " <td>50.5</td>\n", + " <td>-3.145794</td>\n", + " <td>-1.675342</td>\n", + " <td>-0.118772</td>\n", + " <td>-1.571864</td>\n", + " <td>0.220185</td>\n", + " <td>-13.645788</td>\n", + " <td>9.808459</td>\n", + " <td>1.013745</td>\n", + " <td>1.251719</td>\n", + " <td>2.265464</td>\n", + " <td>9.367273</td>\n", + " </tr>\n", + " <tr>\n", + " <th>24</th>\n", + " <td>24</td>\n", + " <td>6.00</td>\n", + " <td>967.899902</td>\n", + " <td>43.5</td>\n", + " <td>50.5</td>\n", + " <td>-1.813903</td>\n", + " <td>-1.269433</td>\n", + " <td>-0.097049</td>\n", + " <td>-0.561658</td>\n", + " <td>0.114237</td>\n", + " <td>-11.533457</td>\n", + " <td>8.291761</td>\n", + " <td>2.872664</td>\n", + " <td>-0.192626</td>\n", + " <td>2.680038</td>\n", + " <td>25.730512</td>\n", + " </tr>\n", + " <tr>\n", + " <th>25</th>\n", + " <td>25</td>\n", + " <td>6.25</td>\n", + " <td>966.300720</td>\n", + " <td>46.5</td>\n", + " <td>51.5</td>\n", + " <td>-1.847223</td>\n", + " <td>-1.881520</td>\n", + " <td>-0.092925</td>\n", + " <td>-0.175571</td>\n", + " <td>0.302794</td>\n", + " <td>-10.114643</td>\n", + " <td>8.453484</td>\n", + " <td>1.494853</td>\n", + " <td>-0.009265</td>\n", + " <td>1.485588</td>\n", + " <td>15.026156</td>\n", + " </tr>\n", + " <tr>\n", + " <th>26</th>\n", + " <td>26</td>\n", + " <td>6.50</td>\n", + " <td>958.802185</td>\n", + " <td>58.5</td>\n", + " <td>50.5</td>\n", + " <td>-9.496336</td>\n", + " <td>1.353529</td>\n", + " <td>-0.461208</td>\n", + " <td>-10.840587</td>\n", + " <td>0.451930</td>\n", + " <td>-25.935946</td>\n", + " <td>23.044511</td>\n", + " <td>-9.201638</td>\n", + " <td>1.252486</td>\n", + " <td>-7.949153</td>\n", + " <td>26.187453</td>\n", + " </tr>\n", + " <tr>\n", + " <th>27</th>\n", + " <td>27</td>\n", + " <td>6.75</td>\n", + " <td>950.869080</td>\n", + " <td>59.5</td>\n", + " <td>51.5</td>\n", + " <td>-7.364622</td>\n", + " <td>-2.338256</td>\n", + " <td>-0.472553</td>\n", + " <td>-5.063940</td>\n", + " <td>0.510127</td>\n", + " <td>-23.929109</td>\n", + " <td>21.973131</td>\n", + " <td>-6.513736</td>\n", + " <td>3.405774</td>\n", + " <td>-3.107962</td>\n", + " <td>21.396608</td>\n", + " </tr>\n", + " <tr>\n", + " <th>28</th>\n", + " <td>28</td>\n", + " <td>7.00</td>\n", + " <td>945.676147</td>\n", + " <td>60.5</td>\n", + " <td>52.5</td>\n", + " <td>-4.084285</td>\n", + " <td>-1.721580</td>\n", + " <td>-0.413671</td>\n", + " <td>-2.459203</td>\n", + " <td>0.510169</td>\n", + " <td>-17.876838</td>\n", + " <td>17.854676</td>\n", + " <td>-2.227244</td>\n", + " <td>-0.209797</td>\n", + " <td>-2.437041</td>\n", + " <td>11.078567</td>\n", + " </tr>\n", + " <tr>\n", + " <th>29</th>\n", + " <td>29</td>\n", + " <td>7.25</td>\n", + " <td>946.446228</td>\n", + " <td>61.5</td>\n", + " <td>52.5</td>\n", + " <td>-0.193830</td>\n", + " <td>-2.413281</td>\n", + " <td>-0.302323</td>\n", + " <td>2.123823</td>\n", + " <td>0.397951</td>\n", + " <td>-8.924268</td>\n", + " <td>11.516918</td>\n", + " <td>-0.690684</td>\n", + " <td>0.221857</td>\n", + " <td>-0.468827</td>\n", + " <td>7.183434</td>\n", + " </tr>\n", + " <tr>\n", + " <th>30</th>\n", + " <td>30</td>\n", + " <td>7.50</td>\n", + " <td>952.393982</td>\n", + " <td>13.5</td>\n", + " <td>51.5</td>\n", + " <td>2.806097</td>\n", + " <td>1.784208</td>\n", + " <td>-0.228302</td>\n", + " <td>0.669511</td>\n", + " <td>0.580679</td>\n", + " <td>-4.818362</td>\n", + " <td>5.888177</td>\n", + " <td>-0.405722</td>\n", + " <td>0.005418</td>\n", + " <td>-0.400304</td>\n", + " <td>7.766371</td>\n", + " </tr>\n", + " <tr>\n", + " <th>31</th>\n", + " <td>31</td>\n", + " <td>7.75</td>\n", + " <td>951.814087</td>\n", + " <td>19.5</td>\n", + " <td>55.5</td>\n", + " <td>-4.026090</td>\n", + " <td>-3.138299</td>\n", + " <td>-0.340485</td>\n", + " <td>-0.840500</td>\n", + " <td>0.293193</td>\n", + " <td>-19.028790</td>\n", + " <td>16.757120</td>\n", + " <td>-2.120747</td>\n", + " <td>3.551917</td>\n", + " <td>1.431170</td>\n", + " <td>10.027393</td>\n", + " </tr>\n", + " <tr>\n", + " <th>32</th>\n", + " <td>32</td>\n", + " <td>8.00</td>\n", + " <td>952.943176</td>\n", + " <td>19.5</td>\n", + " <td>55.5</td>\n", + " <td>1.553478</td>\n", + " <td>-0.523193</td>\n", + " <td>-0.203578</td>\n", + " <td>1.877815</td>\n", + " <td>0.402434</td>\n", + " <td>-7.264248</td>\n", + " <td>6.876778</td>\n", + " <td>2.153318</td>\n", + " <td>0.111966</td>\n", + " <td>2.265284</td>\n", + " <td>23.846019</td>\n", + " </tr>\n", + " <tr>\n", + " <th>33</th>\n", + " <td>33</td>\n", + " <td>8.25</td>\n", + " <td>952.477600</td>\n", + " <td>27.5</td>\n", + " <td>55.5</td>\n", + " <td>-4.924411</td>\n", + " <td>-3.585867</td>\n", + " <td>-0.406188</td>\n", + " <td>-1.299860</td>\n", + " <td>0.367504</td>\n", + " <td>-21.410933</td>\n", + " <td>18.350495</td>\n", + " <td>-3.024343</td>\n", + " <td>4.784922</td>\n", + " <td>1.760579</td>\n", + " <td>12.376956</td>\n", + " </tr>\n", + " <tr>\n", + " <th>34</th>\n", + " <td>34</td>\n", + " <td>8.50</td>\n", + " <td>951.754517</td>\n", + " <td>31.5</td>\n", + " <td>55.5</td>\n", + " <td>-4.029729</td>\n", + " <td>-0.146216</td>\n", + " <td>-0.387689</td>\n", + " <td>-4.278154</td>\n", + " <td>0.782329</td>\n", + " <td>-20.540410</td>\n", + " <td>18.728307</td>\n", + " <td>-4.990357</td>\n", + " <td>2.524306</td>\n", + " <td>-2.466051</td>\n", + " <td>19.546444</td>\n", + " </tr>\n", + " <tr>\n", + " <th>35</th>\n", + " <td>35</td>\n", + " <td>8.75</td>\n", + " <td>950.936279</td>\n", + " <td>31.5</td>\n", + " <td>56.5</td>\n", + " <td>-2.306775</td>\n", + " <td>-3.818694</td>\n", + " <td>-0.260307</td>\n", + " <td>1.591867</td>\n", + " <td>0.180359</td>\n", + " <td>-12.876667</td>\n", + " <td>12.932075</td>\n", + " <td>-0.682163</td>\n", + " <td>2.218622</td>\n", + " <td>1.536458</td>\n", + " <td>5.031138</td>\n", + " </tr>\n", + " <tr>\n", + " <th>36</th>\n", + " <td>36</td>\n", + " <td>9.00</td>\n", + " <td>953.853577</td>\n", + " <td>31.5</td>\n", + " <td>57.5</td>\n", + " <td>2.309420</td>\n", + " <td>0.262329</td>\n", + " <td>-0.161560</td>\n", + " <td>1.971185</td>\n", + " <td>0.237466</td>\n", + " <td>-5.595805</td>\n", + " <td>6.792581</td>\n", + " <td>2.646176</td>\n", + " <td>-1.871767</td>\n", + " <td>0.774408</td>\n", + " <td>28.035216</td>\n", + " </tr>\n", + " </tbody>\n", + "</table>\n", + "</div>" + ], + "text/plain": [ + " Unnamed: 0 time pmin lon lat dp dfi ep \n", + "0 0 0.00 1001.004700 50.5 23.5 NaN NaN NaN \\\n", + "1 1 0.25 998.373047 61.5 23.5 NaN NaN NaN \n", + "2 2 0.50 998.121826 19.5 43.5 NaN NaN NaN \n", + "3 3 0.75 997.513733 31.5 28.5 NaN NaN NaN \n", + "4 4 1.00 999.711426 25.5 44.5 NaN NaN NaN \n", + "5 5 1.25 998.156067 24.5 43.5 NaN NaN NaN \n", + "6 6 1.50 998.357910 28.5 44.5 NaN NaN NaN \n", + "7 7 1.75 998.299683 37.5 42.5 -1.257118 -2.435947 NaN \n", + "8 8 2.00 997.672424 40.5 43.5 -0.545256 -3.108921 -0.001821 \n", + "9 9 2.25 996.791870 45.5 42.5 -0.942827 -1.312977 -0.013002 \n", + "10 10 2.50 995.451721 45.5 44.5 -1.332711 -0.539705 -0.029820 \n", + "11 11 2.75 993.176392 49.5 44.5 -2.582161 -3.358950 -0.060472 \n", + "12 12 3.00 992.472473 53.5 46.5 -1.500610 -3.046119 -0.078552 \n", + "13 13 3.25 991.768677 56.5 46.5 -1.185294 1.054215 -0.113672 \n", + "14 14 3.50 987.364929 61.5 43.5 -4.415220 -0.652110 -0.224648 \n", + "15 15 3.75 979.655151 16.5 43.5 -7.613641 -3.711725 -0.312119 \n", + "16 16 4.00 973.292236 18.5 45.5 -6.111332 -2.389692 -0.408764 \n", + "17 17 4.25 970.220764 20.5 46.5 -3.917209 1.443829 -0.398411 \n", + "18 18 4.50 966.458496 22.5 47.5 -3.643573 0.045098 -0.319834 \n", + "19 19 4.75 963.531555 24.5 48.5 -2.053540 -0.683702 -0.238511 \n", + "20 20 5.00 962.853760 25.5 48.5 0.431536 -1.046151 -0.175827 \n", + "21 21 5.25 964.222473 27.5 47.5 1.798391 -1.936974 -0.154484 \n", + "22 22 5.50 967.600342 30.5 46.5 2.822545 0.026572 -0.109731 \n", + "23 23 5.75 969.177979 41.5 50.5 -3.145794 -1.675342 -0.118772 \n", + "24 24 6.00 967.899902 43.5 50.5 -1.813903 -1.269433 -0.097049 \n", + "25 25 6.25 966.300720 46.5 51.5 -1.847223 -1.881520 -0.092925 \n", + "26 26 6.50 958.802185 58.5 50.5 -9.496336 1.353529 -0.461208 \n", + "27 27 6.75 950.869080 59.5 51.5 -7.364622 -2.338256 -0.472553 \n", + "28 28 7.00 945.676147 60.5 52.5 -4.084285 -1.721580 -0.413671 \n", + "29 29 7.25 946.446228 61.5 52.5 -0.193830 -2.413281 -0.302323 \n", + "30 30 7.50 952.393982 13.5 51.5 2.806097 1.784208 -0.228302 \n", + "31 31 7.75 951.814087 19.5 55.5 -4.026090 -3.138299 -0.340485 \n", + "32 32 8.00 952.943176 19.5 55.5 1.553478 -0.523193 -0.203578 \n", + "33 33 8.25 952.477600 27.5 55.5 -4.924411 -3.585867 -0.406188 \n", + "34 34 8.50 951.754517 31.5 55.5 -4.029729 -0.146216 -0.387689 \n", + "35 35 8.75 950.936279 31.5 56.5 -2.306775 -3.818694 -0.260307 \n", + "36 36 9.00 953.853577 31.5 57.5 2.309420 0.262329 -0.161560 \n", + "\n", + " itt eq1res tadv vmt diab eq2res diabres \n", + "0 NaN NaN NaN NaN NaN NaN NaN \\\n", + "1 NaN NaN NaN NaN NaN NaN NaN \n", + "2 NaN NaN NaN NaN NaN NaN NaN \n", + "3 NaN NaN NaN NaN NaN NaN NaN \n", + "4 NaN NaN NaN NaN NaN NaN NaN \n", + "5 NaN NaN NaN NaN NaN NaN NaN \n", + "6 0.000000 NaN NaN NaN NaN NaN NaN \n", + "7 1.160268 NaN -1.953507 -0.000114 2.578179 0.535710 3.113889 \n", + "8 2.683342 -0.117856 -2.861484 0.787436 4.218125 0.539264 4.757390 \n", + "9 0.368925 0.014227 -2.779676 2.550434 2.251066 -1.652900 0.598167 \n", + "10 -0.795882 0.032695 -2.601373 2.558377 0.305608 -1.058493 -0.752886 \n", + "11 0.769681 0.067580 -3.402263 2.490304 1.349365 0.332276 1.681640 \n", + "12 1.703900 -0.079838 -4.808954 0.941563 2.640907 2.930383 5.571291 \n", + "13 -2.239687 0.113850 -6.207281 3.753949 0.329412 -0.115766 0.213646 \n", + "14 -3.707302 0.168840 -7.687628 7.711843 -3.652287 -0.079231 -3.731518 \n", + "15 -3.821748 0.231950 -10.824820 11.601254 -5.999154 1.400973 -4.598181 \n", + "16 -3.569898 0.257021 -13.568789 11.200696 -3.847375 2.645570 -1.201805 \n", + "17 -5.294263 0.331636 -13.900916 9.769786 -4.021318 2.858185 -1.163133 \n", + "18 -3.461043 0.092206 -12.206576 7.911099 -3.471126 4.305560 0.834434 \n", + "19 -1.474657 0.343331 -10.157607 7.404062 -1.046730 2.325619 1.278888 \n", + "20 1.576970 0.076543 -5.463251 6.082942 1.969096 -1.011817 0.957279 \n", + "21 3.458330 0.431519 -1.666817 4.359176 1.240290 -0.474319 0.765971 \n", + "22 2.753272 0.152433 0.716325 3.224537 -0.101727 -1.085863 -1.187590 \n", + "23 -1.571864 0.220185 -13.645788 9.808459 1.013745 1.251719 2.265464 \n", + "24 -0.561658 0.114237 -11.533457 8.291761 2.872664 -0.192626 2.680038 \n", + "25 -0.175571 0.302794 -10.114643 8.453484 1.494853 -0.009265 1.485588 \n", + "26 -10.840587 0.451930 -25.935946 23.044511 -9.201638 1.252486 -7.949153 \n", + "27 -5.063940 0.510127 -23.929109 21.973131 -6.513736 3.405774 -3.107962 \n", + "28 -2.459203 0.510169 -17.876838 17.854676 -2.227244 -0.209797 -2.437041 \n", + "29 2.123823 0.397951 -8.924268 11.516918 -0.690684 0.221857 -0.468827 \n", + "30 0.669511 0.580679 -4.818362 5.888177 -0.405722 0.005418 -0.400304 \n", + "31 -0.840500 0.293193 -19.028790 16.757120 -2.120747 3.551917 1.431170 \n", + "32 1.877815 0.402434 -7.264248 6.876778 2.153318 0.111966 2.265284 \n", + "33 -1.299860 0.367504 -21.410933 18.350495 -3.024343 4.784922 1.760579 \n", + "34 -4.278154 0.782329 -20.540410 18.728307 -4.990357 2.524306 -2.466051 \n", + "35 1.591867 0.180359 -12.876667 12.932075 -0.682163 2.218622 1.536458 \n", + "36 1.971185 0.237466 -5.595805 6.792581 2.646176 -1.871767 0.774408 \n", + "\n", + " diabptend \n", + "0 NaN \n", + "1 NaN \n", + "2 NaN \n", + "3 NaN \n", + "4 NaN \n", + "5 NaN \n", + "6 NaN \n", + "7 NaN \n", + "8 84.268785 \n", + "9 46.882564 \n", + "10 10.670714 \n", + "11 35.142735 \n", + "12 73.717491 \n", + "13 8.067181 \n", + "14 32.207360 \n", + "15 35.658365 \n", + "16 22.090828 \n", + "17 22.437593 \n", + "18 22.140530 \n", + "19 9.342189 \n", + "20 24.454632 \n", + "21 22.150151 \n", + "22 22.150151 \n", + "23 9.367273 \n", + "24 25.730512 \n", + "25 15.026156 \n", + "26 26.187453 \n", + "27 21.396608 \n", + "28 11.078567 \n", + "29 7.183434 \n", + "30 7.766371 \n", + "31 10.027393 \n", + "32 23.846019 \n", + "33 12.376956 \n", + "34 19.546444 \n", + "35 5.031138 \n", + "36 28.035216 " + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#####################################################\n", + "# Compute cyclone-specific PTE data\n", + "# i.e., grid-box averages targeting the centeral core \n", + "#####################################################\n", + "import math\n", + "\n", + "boxsize = 10 # Is this enough? A larger boxsize should be considered.\n", + "\n", + "# Eq.1 -------\n", + "dp_cycl = []\n", + "dfi_cycl = []\n", + "ep_cycl = []\n", + "itt_cycl = []\n", + "eq1res_cycl = []\n", + "\n", + "# Eq.2 -------\n", + "tadv_cycl = []\n", + "vmt_cycl = []\n", + "diab_cycl = []\n", + "eq2res_cycl = []\n", + "diabres_cycl= [] # will not be useful if DIAB is calculated explicitly\n", + "\n", + "# New variable -------\n", + "diabptend_cycl = [] \n", + "\n", + "for i in range(ntrack):\n", + " #find timestep corresponding to track and data\n", + " indtime = np.where(time == track_dur[i])\n", + " \n", + " # find coordinates of the box at that particular timestep \n", + " # Later we need to include a part that deals with the situations when the\n", + " # box crosses the east/west boundaries...\n", + " \n", + " lonW = track_lon[i] - boxsize/2\n", + " lonE = track_lon[i] + boxsize/2\n", + " latS = track_lat[i] - boxsize/2\n", + " latN = track_lat[i] + boxsize/2\n", + " \n", + " # Find PTE data within the box\n", + " # Eq. 1 -----\n", + " dp_box = np.where((Clons2d[indtime,:]>=lonW) & (Clons2d[indtime,:]<=lonE) & \\\n", + " (Clats2d[indtime,:]>=latS) & (Clats2d[indtime,:]<=latN), Cdp[indtime,:,:], np.nan)\n", + " dfi_box = np.where((Clons2d[indtime,:]>=lonW) & (Clons2d[indtime,:]<=lonE) & \\\n", + " (Clats2d[indtime,:]>=latS) & (Clats2d[indtime,:]<=latN), Cdfi[indtime,:,:], np.nan)\n", + " ep_box = np.where((Clons2d[indtime,:]>=lonW) & (Clons2d[indtime,:]<=lonE) & \\\n", + " (Clats2d[indtime,:]>=latS) & (Clats2d[indtime,:]<=latN), Cep[indtime,:,:], np.nan)\n", + " itt_box = np.where((Clons2d[indtime,:]>=lonW) & (Clons2d[indtime,:]<=lonE) & \\\n", + " (Clats2d[indtime,:]>=latS) & (Clats2d[indtime,:]<=latN), Citt[indtime,:,:], np.nan)\n", + " eq1res_box = np.where((Clons2d[indtime,:]>=lonW) & (Clons2d[indtime,:]<=lonE) & \\\n", + " (Clats2d[indtime,:]>=latS) & (Clats2d[indtime,:]<=latN), Ceq1res[indtime,:,:], np.nan)\n", + " # Eq. 2 -----\n", + " tadv_box = np.where((Clons2d[indtime,:]>=lonW) & (Clons2d[indtime,:]<=lonE) & \\\n", + " (Clats2d[indtime,:]>=latS) & (Clats2d[indtime,:]<=latN), Ctadv[indtime,:,:], np.nan)\n", + " vmt_box = np.where((Clons2d[indtime,:]>=lonW) & (Clons2d[indtime,:]<=lonE) & \\\n", + " (Clats2d[indtime,:]>=latS) & (Clats2d[indtime,:]<=latN), Cvmt[indtime,:,:], np.nan)\n", + " diab_box = np.where((Clons2d[indtime,:]>=lonW) & (Clons2d[indtime,:]<=lonE) & \\\n", + " (Clats2d[indtime,:]>=latS) & (Clats2d[indtime,:]<=latN), Cdiab[indtime,:,:], np.nan)\n", + " eq2res_box = np.where((Clons2d[indtime,:]>=lonW) & (Clons2d[indtime,:]<=lonE) & \\\n", + " (Clats2d[indtime,:]>=latS) & (Clats2d[indtime,:]<=latN), Ceq2res[indtime,:,:], np.nan)\n", + " diabres_box= np.where((Clons2d[indtime,:]>=lonW) & (Clons2d[indtime,:]<=lonE) & \\\n", + " (Clats2d[indtime,:]>=latS) & (Clats2d[indtime,:]<=latN), Cdiabres[indtime,:,:], np.nan) \n", + " #tadv_pre_box = np.where((lon2d>=lonW) & (lon2d<=lonE) & \\\n", + " # (lat2d>=latS) & (lat2d<=latN), tadv_pre[indtime,:,:,:], np.nan)\n", + " \n", + " #add mean box value to list\n", + " # Eq. 1 -----\n", + " dp_cycl.append( np.nanmean(dp_box) )\n", + " dfi_cycl.append( np.nanmean(dfi_box) )\n", + " ep_cycl.append( np.nanmean(ep_box) ) \n", + " itt_cycl.append( np.nanmean(itt_box) )\n", + " eq1res_cycl.append( np.nanmean(eq1res_box) ) \n", + " \n", + " # Eq. 2 -----\n", + " tadv_cycl.append( np.nanmean(tadv_box) )\n", + " vmt_cycl.append( np.nanmean(vmt_box) )\n", + " diab_cycl.append( np.nanmean(diab_box) )\n", + " eq2res_cycl.append( np.nanmean(eq2res_box) )\n", + " diabres_cycl.append( np.nanmean(diabres_box) )\n", + " \n", + " #tadv_1dpre_cycl[i,:] = np.nanmean(tadv_pre_box, axis=(0,1,3,4)) \n", + " \n", + " #--------------------------------------------------------------------------------------------------\n", + " # Compute DIABptend based on Fink et al.(2012): \n", + " # To estimate the relative contribution of DIAB (explicit or residual) to the sfc pressure tendency\n", + " if not pd.isnull(np.nanmean(diab_box)):\n", + " if (np.sign(np.nanmean(diab_box)) == np.sign(np.nanmean(tadv_box)) and np.sign(np.nanmean(diab_box)) == np.sign(np.nanmean(vmt_box))):\n", + " diabptend = abs(np.nanmean(diab_box))/( abs(np.nanmean(diab_box))+ abs(np.nanmean(tadv_box))+abs(np.nanmean(vmt_box)))\n", + " elif (np.sign(np.nanmean(diab_box)) == np.sign(np.nanmean(tadv_box)) and np.sign(np.nanmean(diab_box)) != np.sign(np.nanmean(vmt_box))):\n", + " diabptend = abs(np.nanmean(diab_box))/( abs(np.nanmean(diab_box))+ abs(np.nanmean(tadv_box)))\n", + " elif (np.sign(np.nanmean(diab_box)) == np.sign(np.nanmean(vmt_box)) and np.sign(np.nanmean(diab_box)) != np.sign(np.nanmean(tadv_box))):\n", + " diabptend = abs(np.nanmean(diab_box))/( abs(np.nanmean(diab_box))+ abs(np.nanmean(vmt_box)))\n", + " else:\n", + " diabptend = math.nan \n", + " diabptend_cycl.append( diabptend*100. ) \n", + " #--------------------------------------------------------------------------------------------------\n", + " \n", + "# Other variables (for debugging) ...............................................\n", + "# These are calculated to re-examine the budget analysis results \n", + "# ittprime_cycl = [sum(x) for x in zip(tadv_cycl, vmt_cycl, diabres_cycl)]\n", + "# res_cycl = [a-b-c-d for a,b,c,d in zip(dp_cycl, dfi_cycl, itt_cycl, ep_cycl)]\n", + "# ...............................................................................\n", + " \n", + "\n", + "# Add box-averaged values to the track dataframe (pandas)\n", + "# Eq. 1 -----\n", + "df_track['dp'] = dp_cycl\n", + "df_track['dfi'] = dfi_cycl\n", + "df_track['ep'] = ep_cycl\n", + "df_track['itt'] = itt_cycl\n", + "df_track['eq1res'] = eq1res_cycl\n", + "# Eq. 2 -----\n", + "df_track['tadv'] = tadv_cycl\n", + "df_track['vmt'] = vmt_cycl\n", + "df_track['diab'] = diab_cycl\n", + "df_track['eq2res'] = eq2res_cycl\n", + "df_track['diabres'] = diabres_cycl\n", + "# New variable -----\n", + "df_track['diabptend'] = diabptend_cycl\n", + "\n", + "df_track" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "<div>\n", + "<style scoped>\n", + " .dataframe tbody tr th:only-of-type {\n", + " vertical-align: middle;\n", + " }\n", + "\n", + " .dataframe tbody tr th {\n", + " vertical-align: top;\n", + " }\n", + "\n", + " .dataframe thead th {\n", + " text-align: right;\n", + " }\n", + "</style>\n", + "<table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: right;\">\n", + " <th></th>\n", + " <th>Unnamed: 0</th>\n", + " <th>time</th>\n", + " <th>pmin</th>\n", + " <th>lon</th>\n", + " <th>lat</th>\n", + " <th>dp</th>\n", + " <th>dfi</th>\n", + " <th>ep</th>\n", + " <th>itt</th>\n", + " <th>eq1res</th>\n", + " <th>tadv</th>\n", + " <th>vmt</th>\n", + " <th>diab</th>\n", + " <th>eq2res</th>\n", + " <th>diabres</th>\n", + " <th>diabptend</th>\n", + " <th>magres1</th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <th>0</th>\n", + " <td>0</td>\n", + " <td>0.00</td>\n", + " <td>1001.004700</td>\n", + " <td>50.5</td>\n", + " <td>23.5</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1</th>\n", + " <td>1</td>\n", + " <td>0.25</td>\n", + " <td>998.373047</td>\n", + " <td>61.5</td>\n", + " <td>23.5</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2</th>\n", + " <td>2</td>\n", + " <td>0.50</td>\n", + " <td>998.121826</td>\n", + " <td>19.5</td>\n", + " <td>43.5</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>3</th>\n", + " <td>3</td>\n", + " <td>0.75</td>\n", + " <td>997.513733</td>\n", + " <td>31.5</td>\n", + " <td>28.5</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>4</th>\n", + " <td>4</td>\n", + " <td>1.00</td>\n", + " <td>999.711426</td>\n", + " <td>25.5</td>\n", + " <td>44.5</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>5</th>\n", + " <td>5</td>\n", + " <td>1.25</td>\n", + " <td>998.156067</td>\n", + " <td>24.5</td>\n", + " <td>43.5</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>6</th>\n", + " <td>6</td>\n", + " <td>1.50</td>\n", + " <td>998.357910</td>\n", + " <td>28.5</td>\n", + " <td>44.5</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>0.000000</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>7</th>\n", + " <td>7</td>\n", + " <td>1.75</td>\n", + " <td>998.299683</td>\n", + " <td>37.5</td>\n", + " <td>42.5</td>\n", + " <td>-1.257118</td>\n", + " <td>-2.435947</td>\n", + " <td>NaN</td>\n", + " <td>1.160268</td>\n", + " <td>NaN</td>\n", + " <td>-1.953507</td>\n", + " <td>-0.000114</td>\n", + " <td>2.578179</td>\n", + " <td>0.535710</td>\n", + " <td>3.113889</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>8</th>\n", + " <td>8</td>\n", + " <td>2.00</td>\n", + " <td>997.672424</td>\n", + " <td>40.5</td>\n", + " <td>43.5</td>\n", + " <td>-0.545256</td>\n", + " <td>-3.108921</td>\n", + " <td>-0.001821</td>\n", + " <td>2.683342</td>\n", + " <td>-0.117856</td>\n", + " <td>-2.861484</td>\n", + " <td>0.787436</td>\n", + " <td>4.218125</td>\n", + " <td>0.539264</td>\n", + " <td>4.757390</td>\n", + " <td>84.268785</td>\n", + " <td>21.614801</td>\n", + " </tr>\n", + " <tr>\n", + " <th>9</th>\n", + " <td>9</td>\n", + " <td>2.25</td>\n", + " <td>996.791870</td>\n", + " <td>45.5</td>\n", + " <td>42.5</td>\n", + " <td>-0.942827</td>\n", + " <td>-1.312977</td>\n", + " <td>-0.013002</td>\n", + " <td>0.368925</td>\n", + " <td>0.014227</td>\n", + " <td>-2.779676</td>\n", + " <td>2.550434</td>\n", + " <td>2.251066</td>\n", + " <td>-1.652900</td>\n", + " <td>0.598167</td>\n", + " <td>46.882564</td>\n", + " <td>1.508986</td>\n", + " </tr>\n", + " <tr>\n", + " <th>10</th>\n", + " <td>10</td>\n", + " <td>2.50</td>\n", + " <td>995.451721</td>\n", + " <td>45.5</td>\n", + " <td>44.5</td>\n", + " <td>-1.332711</td>\n", + " <td>-0.539705</td>\n", + " <td>-0.029820</td>\n", + " <td>-0.795882</td>\n", + " <td>0.032695</td>\n", + " <td>-2.601373</td>\n", + " <td>2.558377</td>\n", + " <td>0.305608</td>\n", + " <td>-1.058493</td>\n", + " <td>-0.752886</td>\n", + " <td>10.670714</td>\n", + " <td>2.453291</td>\n", + " </tr>\n", + " <tr>\n", + " <th>11</th>\n", + " <td>11</td>\n", + " <td>2.75</td>\n", + " <td>993.176392</td>\n", + " <td>49.5</td>\n", + " <td>44.5</td>\n", + " <td>-2.582161</td>\n", + " <td>-3.358950</td>\n", + " <td>-0.060472</td>\n", + " <td>0.769681</td>\n", + " <td>0.067580</td>\n", + " <td>-3.402263</td>\n", + " <td>2.490304</td>\n", + " <td>1.349365</td>\n", + " <td>0.332276</td>\n", + " <td>1.681640</td>\n", + " <td>35.142735</td>\n", + " <td>2.617181</td>\n", + " </tr>\n", + " <tr>\n", + " <th>12</th>\n", + " <td>12</td>\n", + " <td>3.00</td>\n", + " <td>992.472473</td>\n", + " <td>53.5</td>\n", + " <td>46.5</td>\n", + " <td>-1.500610</td>\n", + " <td>-3.046119</td>\n", + " <td>-0.078552</td>\n", + " <td>1.703900</td>\n", + " <td>-0.079838</td>\n", + " <td>-4.808954</td>\n", + " <td>0.941563</td>\n", + " <td>2.640907</td>\n", + " <td>2.930383</td>\n", + " <td>5.571291</td>\n", + " <td>73.717491</td>\n", + " <td>5.320364</td>\n", + " </tr>\n", + " <tr>\n", + " <th>13</th>\n", + " <td>13</td>\n", + " <td>3.25</td>\n", + " <td>991.768677</td>\n", + " <td>56.5</td>\n", + " <td>46.5</td>\n", + " <td>-1.185294</td>\n", + " <td>1.054215</td>\n", + " <td>-0.113672</td>\n", + " <td>-2.239687</td>\n", + " <td>0.113850</td>\n", + " <td>-6.207281</td>\n", + " <td>3.753949</td>\n", + " <td>0.329412</td>\n", + " <td>-0.115766</td>\n", + " <td>0.213646</td>\n", + " <td>8.067181</td>\n", + " <td>9.605249</td>\n", + " </tr>\n", + " <tr>\n", + " <th>14</th>\n", + " <td>14</td>\n", + " <td>3.50</td>\n", + " <td>987.364929</td>\n", + " <td>61.5</td>\n", + " <td>43.5</td>\n", + " <td>-4.415220</td>\n", + " <td>-0.652110</td>\n", + " <td>-0.224648</td>\n", + " <td>-3.707302</td>\n", + " <td>0.168840</td>\n", + " <td>-7.687628</td>\n", + " <td>7.711843</td>\n", + " <td>-3.652287</td>\n", + " <td>-0.079231</td>\n", + " <td>-3.731518</td>\n", + " <td>32.207360</td>\n", + " <td>3.824034</td>\n", + " </tr>\n", + " <tr>\n", + " <th>15</th>\n", + " <td>15</td>\n", + " <td>3.75</td>\n", + " <td>979.655151</td>\n", + " <td>16.5</td>\n", + " <td>43.5</td>\n", + " <td>-7.613641</td>\n", + " <td>-3.711725</td>\n", + " <td>-0.312119</td>\n", + " <td>-3.821748</td>\n", + " <td>0.231950</td>\n", + " <td>-10.824820</td>\n", + " <td>11.601254</td>\n", + " <td>-5.999154</td>\n", + " <td>1.400973</td>\n", + " <td>-4.598181</td>\n", + " <td>35.658365</td>\n", + " <td>3.046508</td>\n", + " </tr>\n", + " <tr>\n", + " <th>16</th>\n", + " <td>16</td>\n", + " <td>4.00</td>\n", + " <td>973.292236</td>\n", + " <td>18.5</td>\n", + " <td>45.5</td>\n", + " <td>-6.111332</td>\n", + " <td>-2.389692</td>\n", + " <td>-0.408764</td>\n", + " <td>-3.569898</td>\n", + " <td>0.257021</td>\n", + " <td>-13.568789</td>\n", + " <td>11.200696</td>\n", + " <td>-3.847375</td>\n", + " <td>2.645570</td>\n", + " <td>-1.201805</td>\n", + " <td>22.090828</td>\n", + " <td>4.205653</td>\n", + " </tr>\n", + " <tr>\n", + " <th>17</th>\n", + " <td>17</td>\n", + " <td>4.25</td>\n", + " <td>970.220764</td>\n", + " <td>20.5</td>\n", + " <td>46.5</td>\n", + " <td>-3.917209</td>\n", + " <td>1.443829</td>\n", + " <td>-0.398411</td>\n", + " <td>-5.294263</td>\n", + " <td>0.331636</td>\n", + " <td>-13.900916</td>\n", + " <td>9.769786</td>\n", + " <td>-4.021318</td>\n", + " <td>2.858185</td>\n", + " <td>-1.163133</td>\n", + " <td>22.437593</td>\n", + " <td>8.466125</td>\n", + " </tr>\n", + " <tr>\n", + " <th>18</th>\n", + " <td>18</td>\n", + " <td>4.50</td>\n", + " <td>966.458496</td>\n", + " <td>22.5</td>\n", + " <td>47.5</td>\n", + " <td>-3.643573</td>\n", + " <td>0.045098</td>\n", + " <td>-0.319834</td>\n", + " <td>-3.461043</td>\n", + " <td>0.092206</td>\n", + " <td>-12.206576</td>\n", + " <td>7.911099</td>\n", + " <td>-3.471126</td>\n", + " <td>4.305560</td>\n", + " <td>0.834434</td>\n", + " <td>22.140530</td>\n", + " <td>2.530642</td>\n", + " </tr>\n", + " <tr>\n", + " <th>19</th>\n", + " <td>19</td>\n", + " <td>4.75</td>\n", + " <td>963.531555</td>\n", + " <td>24.5</td>\n", + " <td>48.5</td>\n", + " <td>-2.053540</td>\n", + " <td>-0.683702</td>\n", + " <td>-0.238511</td>\n", + " <td>-1.474657</td>\n", + " <td>0.343331</td>\n", + " <td>-10.157607</td>\n", + " <td>7.404062</td>\n", + " <td>-1.046730</td>\n", + " <td>2.325619</td>\n", + " <td>1.278888</td>\n", + " <td>9.342189</td>\n", + " <td>16.718987</td>\n", + " </tr>\n", + " <tr>\n", + " <th>20</th>\n", + " <td>20</td>\n", + " <td>5.00</td>\n", + " <td>962.853760</td>\n", + " <td>25.5</td>\n", + " <td>48.5</td>\n", + " <td>0.431536</td>\n", + " <td>-1.046151</td>\n", + " <td>-0.175827</td>\n", + " <td>1.576970</td>\n", + " <td>0.076543</td>\n", + " <td>-5.463251</td>\n", + " <td>6.082942</td>\n", + " <td>1.969096</td>\n", + " <td>-1.011817</td>\n", + " <td>0.957279</td>\n", + " <td>24.454632</td>\n", + " <td>17.737441</td>\n", + " </tr>\n", + " <tr>\n", + " <th>21</th>\n", + " <td>21</td>\n", + " <td>5.25</td>\n", + " <td>964.222473</td>\n", + " <td>27.5</td>\n", + " <td>47.5</td>\n", + " <td>1.798391</td>\n", + " <td>-1.936974</td>\n", + " <td>-0.154484</td>\n", + " <td>3.458330</td>\n", + " <td>0.431519</td>\n", + " <td>-1.666817</td>\n", + " <td>4.359176</td>\n", + " <td>1.240290</td>\n", + " <td>-0.474319</td>\n", + " <td>0.765971</td>\n", + " <td>22.150151</td>\n", + " <td>23.994705</td>\n", + " </tr>\n", + " <tr>\n", + " <th>22</th>\n", + " <td>22</td>\n", + " <td>5.50</td>\n", + " <td>967.600342</td>\n", + " <td>30.5</td>\n", + " <td>46.5</td>\n", + " <td>2.822545</td>\n", + " <td>0.026572</td>\n", + " <td>-0.109731</td>\n", + " <td>2.753272</td>\n", + " <td>0.152433</td>\n", + " <td>0.716325</td>\n", + " <td>3.224537</td>\n", + " <td>-0.101727</td>\n", + " <td>-1.085863</td>\n", + " <td>-1.187590</td>\n", + " <td>22.150151</td>\n", + " <td>5.400553</td>\n", + " </tr>\n", + " <tr>\n", + " <th>23</th>\n", + " <td>23</td>\n", + " <td>5.75</td>\n", + " <td>969.177979</td>\n", + " <td>41.5</td>\n", + " <td>50.5</td>\n", + " <td>-3.145794</td>\n", + " <td>-1.675342</td>\n", + " <td>-0.118772</td>\n", + " <td>-1.571864</td>\n", + " <td>0.220185</td>\n", + " <td>-13.645788</td>\n", + " <td>9.808459</td>\n", + " <td>1.013745</td>\n", + " <td>1.251719</td>\n", + " <td>2.265464</td>\n", + " <td>9.367273</td>\n", + " <td>6.999340</td>\n", + " </tr>\n", + " <tr>\n", + " <th>24</th>\n", + " <td>24</td>\n", + " <td>6.00</td>\n", + " <td>967.899902</td>\n", + " <td>43.5</td>\n", + " <td>50.5</td>\n", + " <td>-1.813903</td>\n", + " <td>-1.269433</td>\n", + " <td>-0.097049</td>\n", + " <td>-0.561658</td>\n", + " <td>0.114237</td>\n", + " <td>-11.533457</td>\n", + " <td>8.291761</td>\n", + " <td>2.872664</td>\n", + " <td>-0.192626</td>\n", + " <td>2.680038</td>\n", + " <td>25.730512</td>\n", + " <td>6.297856</td>\n", + " </tr>\n", + " <tr>\n", + " <th>25</th>\n", + " <td>25</td>\n", + " <td>6.25</td>\n", + " <td>966.300720</td>\n", + " <td>46.5</td>\n", + " <td>51.5</td>\n", + " <td>-1.847223</td>\n", + " <td>-1.881520</td>\n", + " <td>-0.092925</td>\n", + " <td>-0.175571</td>\n", + " <td>0.302794</td>\n", + " <td>-10.114643</td>\n", + " <td>8.453484</td>\n", + " <td>1.494853</td>\n", + " <td>-0.009265</td>\n", + " <td>1.485588</td>\n", + " <td>15.026156</td>\n", + " <td>16.391831</td>\n", + " </tr>\n", + " <tr>\n", + " <th>26</th>\n", + " <td>26</td>\n", + " <td>6.50</td>\n", + " <td>958.802185</td>\n", + " <td>58.5</td>\n", + " <td>50.5</td>\n", + " <td>-9.496336</td>\n", + " <td>1.353529</td>\n", + " <td>-0.461208</td>\n", + " <td>-10.840587</td>\n", + " <td>0.451930</td>\n", + " <td>-25.935946</td>\n", + " <td>23.044511</td>\n", + " <td>-9.201638</td>\n", + " <td>1.252486</td>\n", + " <td>-7.949153</td>\n", + " <td>26.187453</td>\n", + " <td>4.758997</td>\n", + " </tr>\n", + " <tr>\n", + " <th>27</th>\n", + " <td>27</td>\n", + " <td>6.75</td>\n", + " <td>950.869080</td>\n", + " <td>59.5</td>\n", + " <td>51.5</td>\n", + " <td>-7.364622</td>\n", + " <td>-2.338256</td>\n", + " <td>-0.472553</td>\n", + " <td>-5.063940</td>\n", + " <td>0.510127</td>\n", + " <td>-23.929109</td>\n", + " <td>21.973131</td>\n", + " <td>-6.513736</td>\n", + " <td>3.405774</td>\n", + " <td>-3.107962</td>\n", + " <td>21.396608</td>\n", + " <td>6.926726</td>\n", + " </tr>\n", + " <tr>\n", + " <th>28</th>\n", + " <td>28</td>\n", + " <td>7.00</td>\n", + " <td>945.676147</td>\n", + " <td>60.5</td>\n", + " <td>52.5</td>\n", + " <td>-4.084285</td>\n", + " <td>-1.721580</td>\n", + " <td>-0.413671</td>\n", + " <td>-2.459203</td>\n", + " <td>0.510169</td>\n", + " <td>-17.876838</td>\n", + " <td>17.854676</td>\n", + " <td>-2.227244</td>\n", + " <td>-0.209797</td>\n", + " <td>-2.437041</td>\n", + " <td>11.078567</td>\n", + " <td>12.491028</td>\n", + " </tr>\n", + " <tr>\n", + " <th>29</th>\n", + " <td>29</td>\n", + " <td>7.25</td>\n", + " <td>946.446228</td>\n", + " <td>61.5</td>\n", + " <td>52.5</td>\n", + " <td>-0.193830</td>\n", + " <td>-2.413281</td>\n", + " <td>-0.302323</td>\n", + " <td>2.123823</td>\n", + " <td>0.397951</td>\n", + " <td>-8.924268</td>\n", + " <td>11.516918</td>\n", + " <td>-0.690684</td>\n", + " <td>0.221857</td>\n", + " <td>-0.468827</td>\n", + " <td>7.183434</td>\n", + " <td>205.309066</td>\n", + " </tr>\n", + " <tr>\n", + " <th>30</th>\n", + " <td>30</td>\n", + " <td>7.50</td>\n", + " <td>952.393982</td>\n", + " <td>13.5</td>\n", + " <td>51.5</td>\n", + " <td>2.806097</td>\n", + " <td>1.784208</td>\n", + " <td>-0.228302</td>\n", + " <td>0.669511</td>\n", + " <td>0.580679</td>\n", + " <td>-4.818362</td>\n", + " <td>5.888177</td>\n", + " <td>-0.405722</td>\n", + " <td>0.005418</td>\n", + " <td>-0.400304</td>\n", + " <td>7.766371</td>\n", + " <td>20.693485</td>\n", + " </tr>\n", + " <tr>\n", + " <th>31</th>\n", + " <td>31</td>\n", + " <td>7.75</td>\n", + " <td>951.814087</td>\n", + " <td>19.5</td>\n", + " <td>55.5</td>\n", + " <td>-4.026090</td>\n", + " <td>-3.138299</td>\n", + " <td>-0.340485</td>\n", + " <td>-0.840500</td>\n", + " <td>0.293193</td>\n", + " <td>-19.028790</td>\n", + " <td>16.757120</td>\n", + " <td>-2.120747</td>\n", + " <td>3.551917</td>\n", + " <td>1.431170</td>\n", + " <td>10.027393</td>\n", + " <td>7.282325</td>\n", + " </tr>\n", + " <tr>\n", + " <th>32</th>\n", + " <td>32</td>\n", + " <td>8.00</td>\n", + " <td>952.943176</td>\n", + " <td>19.5</td>\n", + " <td>55.5</td>\n", + " <td>1.553478</td>\n", + " <td>-0.523193</td>\n", + " <td>-0.203578</td>\n", + " <td>1.877815</td>\n", + " <td>0.402434</td>\n", + " <td>-7.264248</td>\n", + " <td>6.876778</td>\n", + " <td>2.153318</td>\n", + " <td>0.111966</td>\n", + " <td>2.265284</td>\n", + " <td>23.846019</td>\n", + " <td>25.905359</td>\n", + " </tr>\n", + " <tr>\n", + " <th>33</th>\n", + " <td>33</td>\n", + " <td>8.25</td>\n", + " <td>952.477600</td>\n", + " <td>27.5</td>\n", + " <td>55.5</td>\n", + " <td>-4.924411</td>\n", + " <td>-3.585867</td>\n", + " <td>-0.406188</td>\n", + " <td>-1.299860</td>\n", + " <td>0.367504</td>\n", + " <td>-21.410933</td>\n", + " <td>18.350495</td>\n", + " <td>-3.024343</td>\n", + " <td>4.784922</td>\n", + " <td>1.760579</td>\n", + " <td>12.376956</td>\n", + " <td>7.462906</td>\n", + " </tr>\n", + " <tr>\n", + " <th>34</th>\n", + " <td>34</td>\n", + " <td>8.50</td>\n", + " <td>951.754517</td>\n", + " <td>31.5</td>\n", + " <td>55.5</td>\n", + " <td>-4.029729</td>\n", + " <td>-0.146216</td>\n", + " <td>-0.387689</td>\n", + " <td>-4.278154</td>\n", + " <td>0.782329</td>\n", + " <td>-20.540410</td>\n", + " <td>18.728307</td>\n", + " <td>-4.990357</td>\n", + " <td>2.524306</td>\n", + " <td>-2.466051</td>\n", + " <td>19.546444</td>\n", + " <td>19.413934</td>\n", + " </tr>\n", + " <tr>\n", + " <th>35</th>\n", + " <td>35</td>\n", + " <td>8.75</td>\n", + " <td>950.936279</td>\n", + " <td>31.5</td>\n", + " <td>56.5</td>\n", + " <td>-2.306775</td>\n", + " <td>-3.818694</td>\n", + " <td>-0.260307</td>\n", + " <td>1.591867</td>\n", + " <td>0.180359</td>\n", + " <td>-12.876667</td>\n", + " <td>12.932075</td>\n", + " <td>-0.682163</td>\n", + " <td>2.218622</td>\n", + " <td>1.536458</td>\n", + " <td>5.031138</td>\n", + " <td>7.818673</td>\n", + " </tr>\n", + " <tr>\n", + " <th>36</th>\n", + " <td>36</td>\n", + " <td>9.00</td>\n", + " <td>953.853577</td>\n", + " <td>31.5</td>\n", + " <td>57.5</td>\n", + " <td>2.309420</td>\n", + " <td>0.262329</td>\n", + " <td>-0.161560</td>\n", + " <td>1.971185</td>\n", + " <td>0.237466</td>\n", + " <td>-5.595805</td>\n", + " <td>6.792581</td>\n", + " <td>2.646176</td>\n", + " <td>-1.871767</td>\n", + " <td>0.774408</td>\n", + " <td>28.035216</td>\n", + " <td>10.282478</td>\n", + " </tr>\n", + " </tbody>\n", + "</table>\n", + "</div>" + ], + "text/plain": [ + " Unnamed: 0 time pmin lon lat dp dfi ep \n", + "0 0 0.00 1001.004700 50.5 23.5 NaN NaN NaN \\\n", + "1 1 0.25 998.373047 61.5 23.5 NaN NaN NaN \n", + "2 2 0.50 998.121826 19.5 43.5 NaN NaN NaN \n", + "3 3 0.75 997.513733 31.5 28.5 NaN NaN NaN \n", + "4 4 1.00 999.711426 25.5 44.5 NaN NaN NaN \n", + "5 5 1.25 998.156067 24.5 43.5 NaN NaN NaN \n", + "6 6 1.50 998.357910 28.5 44.5 NaN NaN NaN \n", + "7 7 1.75 998.299683 37.5 42.5 -1.257118 -2.435947 NaN \n", + "8 8 2.00 997.672424 40.5 43.5 -0.545256 -3.108921 -0.001821 \n", + "9 9 2.25 996.791870 45.5 42.5 -0.942827 -1.312977 -0.013002 \n", + "10 10 2.50 995.451721 45.5 44.5 -1.332711 -0.539705 -0.029820 \n", + "11 11 2.75 993.176392 49.5 44.5 -2.582161 -3.358950 -0.060472 \n", + "12 12 3.00 992.472473 53.5 46.5 -1.500610 -3.046119 -0.078552 \n", + "13 13 3.25 991.768677 56.5 46.5 -1.185294 1.054215 -0.113672 \n", + "14 14 3.50 987.364929 61.5 43.5 -4.415220 -0.652110 -0.224648 \n", + "15 15 3.75 979.655151 16.5 43.5 -7.613641 -3.711725 -0.312119 \n", + "16 16 4.00 973.292236 18.5 45.5 -6.111332 -2.389692 -0.408764 \n", + "17 17 4.25 970.220764 20.5 46.5 -3.917209 1.443829 -0.398411 \n", + "18 18 4.50 966.458496 22.5 47.5 -3.643573 0.045098 -0.319834 \n", + "19 19 4.75 963.531555 24.5 48.5 -2.053540 -0.683702 -0.238511 \n", + "20 20 5.00 962.853760 25.5 48.5 0.431536 -1.046151 -0.175827 \n", + "21 21 5.25 964.222473 27.5 47.5 1.798391 -1.936974 -0.154484 \n", + "22 22 5.50 967.600342 30.5 46.5 2.822545 0.026572 -0.109731 \n", + "23 23 5.75 969.177979 41.5 50.5 -3.145794 -1.675342 -0.118772 \n", + "24 24 6.00 967.899902 43.5 50.5 -1.813903 -1.269433 -0.097049 \n", + "25 25 6.25 966.300720 46.5 51.5 -1.847223 -1.881520 -0.092925 \n", + "26 26 6.50 958.802185 58.5 50.5 -9.496336 1.353529 -0.461208 \n", + "27 27 6.75 950.869080 59.5 51.5 -7.364622 -2.338256 -0.472553 \n", + "28 28 7.00 945.676147 60.5 52.5 -4.084285 -1.721580 -0.413671 \n", + "29 29 7.25 946.446228 61.5 52.5 -0.193830 -2.413281 -0.302323 \n", + "30 30 7.50 952.393982 13.5 51.5 2.806097 1.784208 -0.228302 \n", + "31 31 7.75 951.814087 19.5 55.5 -4.026090 -3.138299 -0.340485 \n", + "32 32 8.00 952.943176 19.5 55.5 1.553478 -0.523193 -0.203578 \n", + "33 33 8.25 952.477600 27.5 55.5 -4.924411 -3.585867 -0.406188 \n", + "34 34 8.50 951.754517 31.5 55.5 -4.029729 -0.146216 -0.387689 \n", + "35 35 8.75 950.936279 31.5 56.5 -2.306775 -3.818694 -0.260307 \n", + "36 36 9.00 953.853577 31.5 57.5 2.309420 0.262329 -0.161560 \n", + "\n", + " itt eq1res tadv vmt diab eq2res diabres \n", + "0 NaN NaN NaN NaN NaN NaN NaN \\\n", + "1 NaN NaN NaN NaN NaN NaN NaN \n", + "2 NaN NaN NaN NaN NaN NaN NaN \n", + "3 NaN NaN NaN NaN NaN NaN NaN \n", + "4 NaN NaN NaN NaN NaN NaN NaN \n", + "5 NaN NaN NaN NaN NaN NaN NaN \n", + "6 0.000000 NaN NaN NaN NaN NaN NaN \n", + "7 1.160268 NaN -1.953507 -0.000114 2.578179 0.535710 3.113889 \n", + "8 2.683342 -0.117856 -2.861484 0.787436 4.218125 0.539264 4.757390 \n", + "9 0.368925 0.014227 -2.779676 2.550434 2.251066 -1.652900 0.598167 \n", + "10 -0.795882 0.032695 -2.601373 2.558377 0.305608 -1.058493 -0.752886 \n", + "11 0.769681 0.067580 -3.402263 2.490304 1.349365 0.332276 1.681640 \n", + "12 1.703900 -0.079838 -4.808954 0.941563 2.640907 2.930383 5.571291 \n", + "13 -2.239687 0.113850 -6.207281 3.753949 0.329412 -0.115766 0.213646 \n", + "14 -3.707302 0.168840 -7.687628 7.711843 -3.652287 -0.079231 -3.731518 \n", + "15 -3.821748 0.231950 -10.824820 11.601254 -5.999154 1.400973 -4.598181 \n", + "16 -3.569898 0.257021 -13.568789 11.200696 -3.847375 2.645570 -1.201805 \n", + "17 -5.294263 0.331636 -13.900916 9.769786 -4.021318 2.858185 -1.163133 \n", + "18 -3.461043 0.092206 -12.206576 7.911099 -3.471126 4.305560 0.834434 \n", + "19 -1.474657 0.343331 -10.157607 7.404062 -1.046730 2.325619 1.278888 \n", + "20 1.576970 0.076543 -5.463251 6.082942 1.969096 -1.011817 0.957279 \n", + "21 3.458330 0.431519 -1.666817 4.359176 1.240290 -0.474319 0.765971 \n", + "22 2.753272 0.152433 0.716325 3.224537 -0.101727 -1.085863 -1.187590 \n", + "23 -1.571864 0.220185 -13.645788 9.808459 1.013745 1.251719 2.265464 \n", + "24 -0.561658 0.114237 -11.533457 8.291761 2.872664 -0.192626 2.680038 \n", + "25 -0.175571 0.302794 -10.114643 8.453484 1.494853 -0.009265 1.485588 \n", + "26 -10.840587 0.451930 -25.935946 23.044511 -9.201638 1.252486 -7.949153 \n", + "27 -5.063940 0.510127 -23.929109 21.973131 -6.513736 3.405774 -3.107962 \n", + "28 -2.459203 0.510169 -17.876838 17.854676 -2.227244 -0.209797 -2.437041 \n", + "29 2.123823 0.397951 -8.924268 11.516918 -0.690684 0.221857 -0.468827 \n", + "30 0.669511 0.580679 -4.818362 5.888177 -0.405722 0.005418 -0.400304 \n", + "31 -0.840500 0.293193 -19.028790 16.757120 -2.120747 3.551917 1.431170 \n", + "32 1.877815 0.402434 -7.264248 6.876778 2.153318 0.111966 2.265284 \n", + "33 -1.299860 0.367504 -21.410933 18.350495 -3.024343 4.784922 1.760579 \n", + "34 -4.278154 0.782329 -20.540410 18.728307 -4.990357 2.524306 -2.466051 \n", + "35 1.591867 0.180359 -12.876667 12.932075 -0.682163 2.218622 1.536458 \n", + "36 1.971185 0.237466 -5.595805 6.792581 2.646176 -1.871767 0.774408 \n", + "\n", + " diabptend magres1 \n", + "0 NaN NaN \n", + "1 NaN NaN \n", + "2 NaN NaN \n", + "3 NaN NaN \n", + "4 NaN NaN \n", + "5 NaN NaN \n", + "6 NaN NaN \n", + "7 NaN NaN \n", + "8 84.268785 21.614801 \n", + "9 46.882564 1.508986 \n", + "10 10.670714 2.453291 \n", + "11 35.142735 2.617181 \n", + "12 73.717491 5.320364 \n", + "13 8.067181 9.605249 \n", + "14 32.207360 3.824034 \n", + "15 35.658365 3.046508 \n", + "16 22.090828 4.205653 \n", + "17 22.437593 8.466125 \n", + "18 22.140530 2.530642 \n", + "19 9.342189 16.718987 \n", + "20 24.454632 17.737441 \n", + "21 22.150151 23.994705 \n", + "22 22.150151 5.400553 \n", + "23 9.367273 6.999340 \n", + "24 25.730512 6.297856 \n", + "25 15.026156 16.391831 \n", + "26 26.187453 4.758997 \n", + "27 21.396608 6.926726 \n", + "28 11.078567 12.491028 \n", + "29 7.183434 205.309066 \n", + "30 7.766371 20.693485 \n", + "31 10.027393 7.282325 \n", + "32 23.846019 25.905359 \n", + "33 12.376956 7.462906 \n", + "34 19.546444 19.413934 \n", + "35 5.031138 7.818673 \n", + "36 28.035216 10.282478 " + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "def relativemag(x, y):\n", + " rmag=abs(x)/abs(y)*100. \n", + " return rmag\n", + "\n", + "# Add a new variable for the relative magnitude of the residual term... (mainly for debugging) \n", + "df_track['magres1'] = df_track.apply(lambda x: relativemag(x['eq1res'], x['dp']), axis=1)\n", + "\n", + "\n", + "df_track" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "#####################################################\n", + "# Write out track data\n", + "#####################################################\n", + "# File to save cyclone-associated PTE output \n", + "#dataout ='/work/bb1152/Module_A/A6_CyclEx/b382037_TingChen/Task3/PTE/'\n", + "dataout ='/work/bb1152/Module_A/A6_CyclEx/pp_data/cyclone_PTE_timeseries/'\n", + "df_track.to_csv(dataout+\"PTE_for_\"+exp+\"_\"+data_dt+\"_\"+data_res+\"_upper\"+str(int(p2level))+\"hPa_box\"+str(int(boxsize))+\".csv\", header=True)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# PLOT the time evolution of the cyclone-associated PTE " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Separating the two equations #\n", + "\n", + "# Eq.1 ------\n", + "col = sns.color_palette()\n", + "col_pte = ['#436bad', 'orange','crimson', 'gray']\n", + "\n", + "col_pte2 = [col[0], 'gray', col[4], 'gold', col[2], col[3]]\n", + "\n", + "\n", + "ax = df_track[['dfi', 'ep','itt', 'eq1res']].plot(kind='bar', stacked=True, title='', color=col_pte, figsize=(6, 3))\n", + "df_track.plot(x ='Unnamed: 0', y='dp', kind = 'line', ax=ax, color='k', linewidth='3')\n", + "\n", + "ax.set_xlabel('Day', fontsize=12)\n", + "ax.set_ylabel('hPa/'+str(dt)+'hr', fontsize=12)\n", + "\n", + "if dt == 1:\n", + " ax.set_xlim((48-0.5,192+0.5))\n", + " ax.set_xticks(np.arange(48,193,6))\n", + " ax.set_xticklabels(df_track['time'][8:193:6])\n", + "elif dt == 6: \n", + " ax.set_xlim((9-0.5, 32+0.5))\n", + " if int(boxsize) <= 4: \n", + " ax.set_ylim((-18, 8))\n", + " else:\n", + " ax.set_ylim((-14, 6))\n", + " ax.set_xticks(np.arange(9, 32, 2))\n", + " ax.set_xticklabels(df_track['time'][9:32:2]+1)\n", + "#ax.set_xlim(np.min(df_track['Unnamed: 0'])-0.5, np.max(df_track['Unnamed: 0']+0.5))\n", + " #ax.set_xticklabels(df_track['time'])\n", + "ax.yaxis.grid()\n", + "plt.legend(bbox_to_anchor=(1.0, 1), loc='upper left')\n", + "#plt.title(''+exp+'',fontsize=13)\n", + "plt.savefig('TimeseriesPTE_'+exp+'_'+str(dt)+'hrly_Eq1_upper'+str(int(p2level))+'hPa_box'+str(int(boxsize))+'_CyCen.png',\n", + " bbox_inches='tight',dpi=200)\n", + "plt.show()\n", + "\n", + "# Eq.2 ------\n", + "\n", + "col_itt = ['#4984b8','yellowgreen','orange', 'gray']\n", + "\n", + "ax = df_track[['tadv', 'vmt', 'diab', 'eq2res']].plot(kind='bar', stacked=True, title='', color=col_itt, figsize=(6, 4))\n", + "df_track.plot(x ='Unnamed: 0', y='itt', kind = 'line', ax=ax, color='crimson', linewidth='3')\n", + "\n", + "ax.set_xlabel('Day', fontsize=12)\n", + "ax.set_ylabel('hPa/'+str(dt)+'hr', fontsize=12, color='crimson')\n", + "plt.legend(bbox_to_anchor=(1.0, 1), loc='upper left')\n", + "\n", + "ax1 = ax.twinx()\n", + "#df_track['diabptend'][df_track[\"diab\"] >= 0] \n", + "dfp=df_track['diabptend'].mask(df_track[\"diab\"]<0)\n", + "dfp.plot(kind='bar', ax=ax1, color='none', hatch=\"//\",edgecolor='k',linewidth=1.0)\n", + "dfn=df_track['diabptend'].mask(df_track[\"diab\"]>=0)\n", + "dfn.plot(kind='bar', ax=ax1, color='orange',edgecolor='k',linewidth=1.0)\n", + "#df_track['diabptend'][df_track[\"diab\"] < 0.].plot(kind='bar', ax=ax1, color='k',edgecolor='orange',linewidth=1.0)\n", + "#df_track[['diabptend']].plot(kind='bar', ax=ax1, color='k',edgecolor='orange',linewidth=1.0)\n", + "ax1.set_ylim((0, 200))\n", + "if int(boxsize) <= 4: \n", + " plt.legend(bbox_to_anchor=(1.0, 0.48), loc='upper left')\n", + "else:\n", + " plt.legend(bbox_to_anchor=(1.0, 0.57), loc='upper left')\n", + " \n", + "if dt == 1:\n", + " ax.set_xlim((48-0.5, 192+0.5))\n", + " ax.set_xticks(np.arange(48, 193, 6))\n", + " ax.set_xticklabels(df_track['time'][48:193:6]+1)\n", + "elif dt == 6: \n", + " ax.set_xlim((9-0.5, 32+0.5))\n", + " if int(boxsize) <= 4: \n", + " ax.set_ylim((-85, 65))\n", + " ax.set_yticks([-60,-40,-20,0,20,40])\n", + " ax1.set_ylim((0, 300))\n", + " ax1.set_yticks([0,20,40,60,80])\n", + " else:\n", + " ax.set_ylim((-70, 50))\n", + " ax.set_yticks([-60,-40,-20,0,20,40])\n", + " ax1.set_ylim((0, 240))\n", + " ax1.set_yticks([0,10,20,30,40,50,60,70])\n", + "\n", + " ax.tick_params(axis='y', colors='crimson')\n", + " ax1.tick_params(axis='y', colors='k')\n", + " #ax.set_xticklabels(df_track['time'])\n", + " ax.set_xticks(np.arange(9, 32, 2))\n", + " ax.set_xticklabels(df_track['time'][9:32:2]+1)\n", + "\n", + "\n", + " # ax1.set_ylabel('hPa/'+str(dt)+'hr')\n", + " \n", + "\n", + "#ax.set_xlim((8, 28))\n", + "#ax.set_xlim(np.min(df_track['Unnamed: 0'])-0.5, np.max(df_track['Unnamed: 0']+0.5))\n", + "#ax.set_xticklabels(df_track['time'])\n", + "ax.yaxis.grid()\n", + "ax1.yaxis.grid(ls=':')\n", + "#plt.title(''+exp+'',fontsize=13)\n", + "plt.savefig('TimeseriesPTE_'+exp+'_'+str(dt)+'hrly_Eq2_upper'+str(int(p2level))+'hPa_box'+str(int(boxsize))+'_CyCen.png',\n", + " bbox_inches='tight',dpi=100)\n", + "plt.show()\n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Combining two equations into one plot #\n", + "\n", + "ax = df_track[['dfi','tadv','vmt','diab','ep', 'eq1res']].plot(kind='bar', stacked=True, title='', color=col_pte2, figsize=(5, 3))\n", + "df_track.plot(x ='Unnamed: 0', y='dp', kind = 'line', ax=ax, color='k', linewidth='4')\n", + "#ax = df_track[['tadv', 'vmt', 'diab']].plot(kind='bar', stacked=True, title='', color=col_itt, figsize=(8, 4))\n", + "#df_track.plot(x ='Unnamed: 0', y='itt', kind = 'line', ax=ax, color='k', linewidth='4')\n", + "\n", + "ax.set_xlabel('Day', fontsize=12)\n", + "ax.set_ylabel('hPa/'+str(dt)+'hr', fontsize=12)\n", + "#plt.legend(bbox_to_anchor=(1.0, 1), loc='upper left')\n", + "ax.legend(['Dp','Dfi', 'TADV','VMT','DIAB','EP','res'],ncol=4,loc='upper left')\n", + "#ax.get_legend().remove()\n", + "\n", + "#ax1 = ax.twinx()\n", + "#df_track[['diabptend']].plot(kind='bar', ax=ax1, color='orange')\n", + "#ax1.set_ylim((0, 200))\n", + "#ax1.legend(['DIAB cont.'],loc='best',bbox_to_anchor=(0.35,0.24))\n", + "#ax1.get_legend().remove()\n", + "\n", + "if dt == 1:\n", + " ax.set_xlim((48, 168))\n", + " ax.set_xticks(np.arange(48, 169, 6))\n", + " ax.set_xticklabels(df_track['time'][48:169:6])\n", + "elif dt == 6: \n", + " ax.set_xlim((8, 28))\n", + " ax.set_ylim((-65, 60))\n", + " ax1.set_ylim((0, 225))\n", + " ax1.set_yticks([0,15,30,45,60])\n", + " #ax.set_xticklabels(df_track['time'])\n", + " ax.set_xticks(np.arange(8, 28, 2))\n", + " ax.set_xticklabels(df_track['time'][8:28:2])\n", + " \n", + "\n", + "#ax.set_xlim((8, 28))\n", + "#ax.set_xlim(np.min(df_track['Unnamed: 0'])-0.5, np.max(df_track['Unnamed: 0']+0.5))\n", + "#ax.set_xticklabels(df_track['time'])\n", + "ax.yaxis.grid()\n", + "\n", + "#plt.title(''+exp+'',fontsize=13)\n", + "#plt.savefig('TimeseriesPTE_'+exp+'_'+str(dt)+'hrly_combined_upper'+str(int(p2level))+'hPa_box'+str(int(boxsize))+'.png',\n", + "# bbox_inches='tight',dpi=200)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Checking the time evolution of DIABptend (Fink et al.,2012) #\n", + "\n", + "ax= df_track[['diabptend']].plot(kind='bar', color='k', figsize=(5, 1.5))\n", + "#df_track.plot(x ='Unnamed: 0', y='dp', kind = 'line', ax=ax, color='k', linewidth='4')\n", + "#ax = df_track[['tadv', 'vmt', 'diab']].plot(kind='bar', stacked=True, title='', color=col_itt, figsize=(8, 4))\n", + "#df_track.plot(x ='Unnamed: 0', y='itt', kind = 'line', ax=ax, color='k', linewidth='4')\n", + "\n", + "ax.set_xlabel('Day', fontsize=12)\n", + "ax.set_ylabel('%', fontsize=12)\n", + "#plt.legend(bbox_to_anchor=(1.0, 1), loc='upper left')\n", + "#ax.legend(['DIAB cont.'],loc='upper left')\n", + "ax.get_legend().remove()\n", + "if dt == 1:\n", + " ax.set_xlim((48, 168))\n", + " ax.set_xticks(np.arange(48, 169, 6))\n", + " ax.set_xticklabels(df_track['time'][48:169:6])\n", + "elif dt == 6: \n", + " ax.set_xlim((8, 28))\n", + " ax.set_ylim((0, 39))\n", + " ax.set_yticks(np.arange(0,39,10))\n", + " #ax.set_xticklabels(df_track['time'])\n", + " ax.set_xticks(np.arange(8, 28, 2))\n", + " ax.set_xticklabels(df_track['time'][8:28:2])\n", + "plt.xticks(rotation=0)\n", + "#ax.legend(['DIAB contribution to DP'],loc='upper right')\n", + "\n", + "#ax.set_xlim((8, 28))\n", + "#ax.set_xlim(np.min(df_track['Unnamed: 0'])-0.5, np.max(df_track['Unnamed: 0']+0.5))\n", + "#ax.set_xticklabels(df_track['time'])\n", + "ax.yaxis.grid()\n", + "\n", + "#plt.title(''+exp+'',fontsize=13)\n", + "#lt.savefig('TimeseriesPTE_'+exp+'_'+str(dt)+'hrly_DIABptend_upper'+str(int(p2level))+'hPa_box'+str(int(boxsize))+'.png',\n", + "# bbox_inches='tight',dpi=200)\n", + "plt.show()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### " + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "1 Python 3 (based on the module python3/2023.01)", + "language": "python", + "name": "python3_2023_01" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.10" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +}