diff --git a/tm_utils.py b/tm_utils.py
index 42f138b4dd01763b2e59916092386daaf1a3448b..e5a74735a9958218de1992f2b4331e5715f56169 100644
--- a/tm_utils.py
+++ b/tm_utils.py
@@ -266,7 +266,7 @@ def format_topics_sentences(ldamodel=None, corpus=None, texts=None):
     contents = pd.Series(texts)
     sent_topics_df = pd.concat([sent_topics_df, contents], axis=1)
     sent_topics_df = sent_topics_df['Dominant_Topic'].fillna(0).apply(lambda x: str(int(x)))
-    return sent_topics_df
+    return(sent_topics_df)
 
 
 def convertldaGenToldaMallet(mallet_model):
diff --git a/voeb_tm_wallnig.ipynb b/voeb_tm_wallnig.ipynb
index 3469b7de9295daf0c81c4403a32de1967ad488a8..c66f14fa7cbb2dfe8dbfccfacee48c564266959a 100644
--- a/voeb_tm_wallnig.ipynb
+++ b/voeb_tm_wallnig.ipynb
@@ -421,16 +421,51 @@
   },
   {
    "cell_type": "markdown",
+   "metadata": {
+    "tags": []
+   },
+   "source": [
+    "### Now for the tables\n",
+    "\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 29,
    "metadata": {},
+   "outputs": [],
    "source": [
-    "### Now for the tables (datasette)\n",
-    "\n",
-    "Sometimes we would have to restart datasette with `systemctl start datasette`..."
+    "from operator import itemgetter\n",
+    "def format_topics_sentences(ldamodel=None, corpus=None, texts=None):\n",
+    "    # cf. `testing_103.ipynb`\n",
+    "    sent_topics_df = pd.DataFrame()\n",
+    "    topics = {}\n",
+    "    # Get main topic in each document\n",
+    "    for i, row in enumerate(ldamodel[corpus]):\n",
+    "        row_item = row[0]\n",
+    "        # print(row_item)\n",
+    "        row_item = sorted(row_item, key=itemgetter(1), reverse=True)[0]\n",
+    "        topic_num, prop_topic = row_item\n",
+    "        if not topic_num in topics:\n",
+    "            wp = ldamodel.show_topic(topic_num)\n",
+    "            topic_keywords = \", \".join([word for word, prop in wp])\n",
+    "            topics[topic_num] = topic_keywords\n",
+    "        else:\n",
+    "            topic_keywords = topics[topic_num]\n",
+    "        sent_topics_df = sent_topics_df.append(pd.Series([int(topic_num), round(prop_topic,4), \n",
+    "                                    str(topic_num)+\": \" + topic_keywords]), ignore_index=True)\n",
+    " \n",
+    "    sent_topics_df.columns = ['Dominant_Topic', 'Perc_Contribution', 'Topic_Keywords']\n",
+    "    contents = pd.Series(texts)\n",
+    "    sent_topics_df = pd.concat([sent_topics_df, contents], axis=1)\n",
+    "    \n",
+    "    sent_topics_df['Dominant_Topic'] = sent_topics_df['Dominant_Topic'].fillna(0).apply(lambda x: str(int(x)))\n",
+    "    return(sent_topics_df)\n"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 8,
+   "execution_count": 30,
    "metadata": {},
    "outputs": [
     {
@@ -440,153 +475,108 @@
       "corpusname: voeb48-73_\n",
       "voeb48-73_20211028-175146 voeb48-73\n",
       "loading dict and corpus from data-tw/dict_voeb48-73_20211028-175146.dict, data-tw/corpus_voeb48-73_20211028-175146.mm\n",
-      "[(2, 0.2805531), (4, 0.026617138), (7, 0.5166085), (9, 0.031186195), (10, 0.1295674), (11, 0.015451236)]\n",
-      "[(4, 0.0335408), (7, 0.93391645), (9, 0.0260835)]\n",
-      "[(4, 0.059605595), (7, 0.9234904), (9, 0.016532116)]\n",
-      "[(2, 0.99909395)]\n",
-      "[(2, 0.76777035), (10, 0.2285372)]\n",
-      "[(2, 0.99807)]\n",
-      "[(2, 0.018939564), (4, 0.05009651), (7, 0.8701947), (9, 0.019532165), (10, 0.041053202)]\n",
-      "[(2, 0.30289793), (7, 0.38114664), (9, 0.03813178), (10, 0.27691138)]\n",
-      "[(4, 0.032640114), (7, 0.935043), (9, 0.02452857)]\n",
-      "[(4, 0.0550239), (7, 0.93037254), (9, 0.014232905)]\n",
-      "[(2, 0.9990953)]\n",
-      "[(2, 0.7647797), (10, 0.23157236)]\n",
-      "[(2, 0.8355817), (7, 0.11142462), (9, 0.023192778), (10, 0.0131209195), (11, 0.016423883)]\n",
-      "[(2, 0.46640286), (4, 0.040240686), (7, 0.271938), (9, 0.04701706), (10, 0.09569729), (11, 0.078543805)]\n",
-      "[(2, 0.092409864), (4, 0.04902445), (7, 0.78285456), (9, 0.054846834), (10, 0.02074028)]\n",
-      "[(2, 0.112780854), (4, 0.02586087), (7, 0.82400656), (9, 0.029357133)]\n",
-      "[(2, 0.6328255), (7, 0.34989017), (11, 0.016721573)]\n",
-      "[(2, 0.1505291), (4, 0.024832528), (7, 0.7936737), (10, 0.018778518)]\n",
-      "[(2, 0.32843506), (4, 0.040555365), (7, 0.53169554), (9, 0.043821767), (11, 0.047176685)]\n",
-      "[(2, 0.40401903), (4, 0.06405743), (7, 0.36368492), (9, 0.021000203), (10, 0.013611786), (11, 0.13355342)]\n",
-      "[(2, 0.3361721), (4, 0.14966382), (7, 0.36112234), (9, 0.030305833), (10, 0.034698848), (11, 0.087940045)]\n",
-      "[(2, 0.5824958), (4, 0.08177448), (10, 0.33350626)]\n",
-      "[(2, 0.56737334), (4, 0.099197485), (7, 0.20318973), (9, 0.023298362), (11, 0.10680778)]\n",
-      "[(2, 0.12868905), (4, 0.06824589), (7, 0.49881265), (9, 0.2887983), (10, 0.014769213)]\n",
-      "[(2, 0.62545335), (4, 0.12095001), (7, 0.07840649), (10, 0.06259749), (11, 0.11221576)]\n",
-      "[(2, 0.14459576), (4, 0.0936272), (9, 0.01156143), (11, 0.7498722)]\n",
-      "[(2, 0.45956668), (4, 0.06435885), (6, 0.07969774), (7, 0.16556579), (9, 0.06613689), (10, 0.03169823), (11, 0.13275075)]\n",
-      "[(2, 0.0347122), (11, 0.96488273)]\n",
-      "[(2, 0.088310905), (4, 0.062799305), (5, 0.014985357), (7, 0.15732811), (9, 0.028218329), (10, 0.039133493), (11, 0.6091809)]\n",
-      "[(2, 0.13958132), (4, 0.03976587), (7, 0.09445578), (9, 0.07991784), (10, 0.0612161), (11, 0.5847389)]\n",
-      "[(2, 0.43281084), (4, 0.100822575), (7, 0.03893598), (9, 0.026698781), (10, 0.28327924), (11, 0.11717471)]\n",
-      "[(2, 0.7818935), (4, 0.14960098), (7, 0.06715488)]\n",
-      "[(2, 0.90718), (4, 0.046793427), (9, 0.045456998)]\n",
-      "[(2, 0.34763563), (4, 0.3842686), (7, 0.09916011), (9, 0.034207687), (10, 0.07952978), (11, 0.055022098)]\n",
-      "[(4, 0.042264383), (7, 0.858117), (9, 0.09142882)]\n",
-      "[(4, 0.052148297), (7, 0.48781973), (9, 0.45966977)]\n",
-      "[(4, 0.055325173), (7, 0.49083987), (9, 0.45347628)]\n",
-      "[(2, 0.023911085), (4, 0.120421834), (7, 0.4024756), (9, 0.23378178), (10, 0.12844229), (11, 0.09075342)]\n",
-      "[(2, 0.36894888), (4, 0.04179211), (7, 0.1389178), (9, 0.041064333), (10, 0.40913212)]\n",
-      "[(2, 0.3261571), (4, 0.09141748), (7, 0.06889465), (10, 0.40162906), (11, 0.111012295)]\n",
-      "[(2, 0.24502474), (4, 0.1662812), (7, 0.10007411), (9, 0.057046663), (10, 0.06392365), (11, 0.36729845)]\n",
-      "[(4, 0.03527757), (7, 0.8000644), (9, 0.13965479), (10, 0.016864482)]\n",
-      "[(4, 0.046740916), (9, 0.068160124), (11, 0.87861127)]\n",
-      "[(4, 0.26713732), (7, 0.70290494), (10, 0.028992627)]\n",
-      "[(4, 0.09300666), (7, 0.7673158), (9, 0.13829629)]\n",
-      "[(4, 0.022928521), (9, 0.032768436), (10, 0.011241415), (11, 0.93288296)]\n",
-      "[(2, 0.25791875), (4, 0.11015291), (7, 0.2376752), (11, 0.39120385)]\n",
-      "[(2, 0.1337724), (4, 0.18047144), (5, 0.1493544), (7, 0.2036052), (10, 0.14679994), (11, 0.18432277)]\n",
-      "[(2, 0.3362658), (4, 0.48107362), (7, 0.18136439)]\n",
-      "[(2, 0.68358207), (4, 0.1382686), (7, 0.07193991), (9, 0.034910206), (10, 0.043409046), (11, 0.020519607)]\n",
-      "[(2, 0.09697018), (4, 0.2164108), (7, 0.2175626), (9, 0.0722713), (11, 0.39592153)]\n",
-      "[(4, 0.17859197), (7, 0.71225655), (9, 0.07464845), (10, 0.034257855)]\n",
-      "[(4, 0.16188428), (7, 0.7660489), (9, 0.071355864)]\n",
-      "[(4, 0.47196886), (7, 0.47376692), (9, 0.053329516)]\n",
-      "[(2, 0.83459514), (4, 0.09010547), (9, 0.0745168)]\n",
-      "[(2, 0.26260626), (4, 0.20297582), (5, 0.06683364), (7, 0.09248767), (9, 0.053551324), (11, 0.32117915)]\n",
-      "[(2, 0.0151258465), (4, 0.0487812), (5, 0.01280832), (7, 0.84131074), (9, 0.076691516)]\n",
-      "[(2, 0.39000282), (4, 0.18601581), (5, 0.06887991), (7, 0.15141004), (9, 0.07428958), (11, 0.12027027)]\n",
-      "[(2, 0.31650478), (4, 0.24970184), (5, 0.046464406), (7, 0.13724995), (10, 0.24818428)]\n",
-      "[(4, 0.22466533), (6, 0.117342986), (7, 0.09998731), (10, 0.16637614), (11, 0.38846293)]\n",
-      "[(2, 0.09362584), (3, 0.1238802), (4, 0.3593046), (7, 0.3338605), (9, 0.088648304)]\n",
-      "[(0, 0.22675493), (2, 0.06712009), (4, 0.31200948), (7, 0.2582018), (9, 0.066289075), (10, 0.06149375)]\n",
-      "[(0, 0.22614719), (4, 0.36301723), (7, 0.33477435), (9, 0.07516922)]\n",
-      "[(2, 0.53701824), (4, 0.3603416), (5, 0.04599441), (10, 0.055573378)]\n",
-      "[(2, 0.3383623), (4, 0.17071772), (5, 0.28385293), (7, 0.17929342), (9, 0.026837116)]\n",
-      "[(2, 0.35674962), (4, 0.37027392), (7, 0.15435497), (9, 0.05567779), (10, 0.046111044), (11, 0.016374981)]\n",
-      "[(2, 0.400412), (4, 0.09259629), (7, 0.1721627), (9, 0.33391258)]\n",
-      "[(2, 0.36706805), (4, 0.06187569), (7, 0.11543792), (9, 0.40301746), (10, 0.012816688), (11, 0.039422754)]\n",
-      "[(2, 0.14874376), (4, 0.123410955), (7, 0.2002042), (9, 0.394779), (10, 0.13235474)]\n",
-      "[(7, 0.14047143), (9, 0.084204175), (10, 0.7734269)]\n",
-      "[(4, 0.6215544), (7, 0.042740345), (9, 0.105777524), (10, 0.08722626), (11, 0.14207742)]\n",
-      "[(0, 0.020146385), (4, 0.2174245), (7, 0.29464835), (9, 0.20780663), (11, 0.2591272)]\n",
-      "[(2, 0.39141038), (4, 0.5413344), (10, 0.06588475)]\n",
-      "[(2, 0.29253194), (4, 0.14046106), (5, 0.27256966), (7, 0.08628638), (9, 0.17593509), (11, 0.03168814)]\n",
-      "[(2, 0.091311015), (4, 0.22958764), (9, 0.1416632), (10, 0.040435653), (11, 0.49630657)]\n",
-      "[(2, 0.32591188), (4, 0.14575388), (5, 0.010086877), (7, 0.10935142), (9, 0.10230067), (10, 0.26048017), (11, 0.045984503)]\n",
-      "[(9, 0.024144225), (11, 0.97554266)]\n",
-      "[(2, 0.182749), (4, 0.48231214), (7, 0.100606464), (9, 0.07756725), (10, 0.026663717), (11, 0.12979878)]\n",
-      "[(2, 0.24598487), (4, 0.28187233), (7, 0.12888093), (9, 0.11054232), (10, 0.23169671)]\n",
-      "[(2, 0.373515), (4, 0.18770917), (5, 0.020417225), (7, 0.1690224), (9, 0.12493417), (10, 0.11487046)]\n",
-      "[(2, 0.37631118), (4, 0.20933467), (5, 0.21088243), (7, 0.03913531), (9, 0.16323185)]\n",
-      "[(2, 0.33449683), (4, 0.045258284), (9, 0.22064714), (11, 0.3981758)]\n",
-      "[(2, 0.2638961), (4, 0.5413212), (7, 0.107675515), (9, 0.031046528), (10, 0.055511333)]\n",
-      "[(4, 0.0828329), (7, 0.64052755), (9, 0.21048824), (10, 0.062462017)]\n",
-      "[(2, 0.043114707), (4, 0.2607085), (7, 0.23128694), (10, 0.43940273), (11, 0.021594316)]\n",
-      "[(2, 0.36785796), (4, 0.1603459), (9, 0.44459584), (10, 0.025889214)]\n",
-      "[(2, 0.28757623), (4, 0.15526289), (7, 0.15263833), (8, 0.0376659), (9, 0.27751094), (10, 0.08849836)]\n",
-      "[(2, 0.39055955), (4, 0.58292824), (5, 0.02370643)]\n",
-      "[(4, 0.17245817), (7, 0.16922893), (9, 0.6537295)]\n",
-      "[(2, 0.7588662), (4, 0.07487608), (5, 0.040221617), (9, 0.064358346), (10, 0.061249927)]\n",
-      "[(2, 0.33220628), (4, 0.05561143), (5, 0.43853623), (9, 0.17216116)]\n",
-      "[(2, 0.28272012), (4, 0.18492875), (5, 0.07377189), (7, 0.21272132), (9, 0.052982252), (10, 0.19233702)]\n",
-      "[(2, 0.21442762), (4, 0.4965944), (7, 0.08489679), (9, 0.1397767), (11, 0.06360585)]\n",
-      "[(2, 0.29686487), (4, 0.12553315), (9, 0.07112925), (10, 0.013048349), (11, 0.4931021)]\n",
-      "[(2, 0.78269356), (4, 0.10137049), (9, 0.115548015)]\n",
-      "[(2, 0.2884586), (4, 0.1481043), (7, 0.17265686), (9, 0.31642842), (11, 0.07348688)]\n",
-      "[(2, 0.409713), (4, 0.17038544), (7, 0.08065667), (9, 0.25919116), (10, 0.027758613), (11, 0.05205198)]\n",
-      "[(2, 0.21934862), (4, 0.16837862), (7, 0.08992787), (9, 0.08549616), (10, 0.40364566), (11, 0.032902677)]\n",
-      "[(2, 0.4154466), (4, 0.34010348), (7, 0.13885087), (9, 0.08750115), (11, 0.01742183)]\n",
-      "[(2, 0.17591386), (4, 0.29826498), (7, 0.0637388), (9, 0.098285966), (10, 0.3572086)]\n",
-      "[(5, 0.9466116), (9, 0.051640823)]\n",
-      "[(4, 0.9819012), (10, 0.016341466)]\n",
-      "[(2, 0.03543197), (4, 0.9460082), (11, 0.015636228)]\n",
-      "[(4, 0.010969139), (5, 0.22666751), (9, 0.7608348)]\n",
-      "[(4, 0.013159093), (9, 0.9839817)]\n",
-      "[(4, 0.9210771), (9, 0.077488765)]\n",
-      "[(4, 0.088405326), (9, 0.91085476)]\n",
-      "[(4, 0.5857286), (9, 0.40695855)]\n",
-      "[(9, 0.07238506), (10, 0.92089194)]\n",
-      "[(4, 0.010254808), (9, 0.9852471)]\n",
-      "[(4, 0.94235295), (9, 0.05665622)]\n",
-      "[(9, 0.9980122)]\n"
-     ]
-    },
-    {
-     "ename": "AttributeError",
-     "evalue": "'Series' object has no attribute 'columns'",
-     "output_type": "error",
-     "traceback": [
-      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
-      "\u001b[0;31mAttributeError\u001b[0m                            Traceback (most recent call last)",
-      "\u001b[0;32m/tmp/ipykernel_29650/1374924362.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m     14\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     15\u001b[0m \u001b[0mdf_topic_sent_keywords\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtm_utils\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mformat_topics_sentences\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mldamodel\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mlda_model\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcorpus\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mcorpus\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtexts\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 16\u001b[0;31m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdf_topic_sent_keywords\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcolumns\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m     17\u001b[0m \u001b[0mdf_topic_sent_keywords\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'Dominant_Topic'\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdf_topic_sent_keywords\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'Dominant_Topic'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfillna\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mapply\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;32mlambda\u001b[0m \u001b[0mx\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mstr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     18\u001b[0m \u001b[0;31m# Format\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
-      "\u001b[0;32m/opt/tljh/user/lib/python3.7/site-packages/pandas/core/generic.py\u001b[0m in \u001b[0;36m__getattr__\u001b[0;34m(self, name)\u001b[0m\n\u001b[1;32m   5463\u001b[0m             \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_info_axis\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_can_hold_identifiers_and_holds_name\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   5464\u001b[0m                 \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 5465\u001b[0;31m             \u001b[0;32mreturn\u001b[0m \u001b[0mobject\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__getattribute__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mname\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m   5466\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   5467\u001b[0m     \u001b[0;32mdef\u001b[0m \u001b[0m__setattr__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mname\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mstr\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvalue\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m->\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
-      "\u001b[0;31mAttributeError\u001b[0m: 'Series' object has no attribute 'columns'"
+      "Index(['Dominant_Topic', 'Perc_Contribution', 'Topic_Keywords', 0], dtype='object')\n"
      ]
     },
     {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "/opt/tljh/user/lib/python3.7/site-packages/past/builtins/misc.py:45: DeprecationWarning: the imp module is deprecated in favour of importlib; see the module's documentation for alternative uses\n",
-      "  from imp import reload\n",
-      "/opt/tljh/user/lib/python3.7/site-packages/past/builtins/misc.py:45: DeprecationWarning: the imp module is deprecated in favour of importlib; see the module's documentation for alternative uses\n",
-      "  from imp import reload\n",
-      "/opt/tljh/user/lib/python3.7/site-packages/past/builtins/misc.py:45: DeprecationWarning: the imp module is deprecated in favour of importlib; see the module's documentation for alternative uses\n",
-      "  from imp import reload\n",
-      "/opt/tljh/user/lib/python3.7/site-packages/past/builtins/misc.py:45: DeprecationWarning: the imp module is deprecated in favour of importlib; see the module's documentation for alternative uses\n",
-      "  from imp import reload\n",
-      "/opt/tljh/user/lib/python3.7/site-packages/past/builtins/misc.py:45: DeprecationWarning: the imp module is deprecated in favour of importlib; see the module's documentation for alternative uses\n",
-      "  from imp import reload\n",
-      "/opt/tljh/user/lib/python3.7/site-packages/past/builtins/misc.py:45: DeprecationWarning: the imp module is deprecated in favour of importlib; see the module's documentation for alternative uses\n",
-      "  from imp import reload\n",
-      "/opt/tljh/user/lib/python3.7/site-packages/past/builtins/misc.py:45: DeprecationWarning: the imp module is deprecated in favour of importlib; see the module's documentation for alternative uses\n",
-      "  from imp import reload\n",
-      "/opt/tljh/user/lib/python3.7/site-packages/past/builtins/misc.py:45: DeprecationWarning: the imp module is deprecated in favour of importlib; see the module's documentation for alternative uses\n",
-      "  from imp import reload\n"
-     ]
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<style scoped>\n",
+       "    .dataframe tbody tr th:only-of-type {\n",
+       "        vertical-align: middle;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe tbody tr th {\n",
+       "        vertical-align: top;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe thead th {\n",
+       "        text-align: right;\n",
+       "    }\n",
+       "</style>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>Document_No</th>\n",
+       "      <th>Dominant_Topic</th>\n",
+       "      <th>Topic_Perc_Contrib</th>\n",
+       "      <th>Keywords</th>\n",
+       "      <th>Text</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>0</th>\n",
+       "      <td>0</td>\n",
+       "      <td>7</td>\n",
+       "      <td>0.5166</td>\n",
+       "      <td>7: osterr, titel, vereinigung, mitteilungen, d...</td>\n",
+       "      <td>\\nScnftfalen\\n\\n\\ne,/.\\ndei  3et\\n\\nARBEITSPRO...</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>1</th>\n",
+       "      <td>1</td>\n",
+       "      <td>7</td>\n",
+       "      <td>0.9339</td>\n",
+       "      <td>7: osterr, titel, vereinigung, mitteilungen, d...</td>\n",
+       "      <td>\\nMITTEILUNGEN\\nDER VEREINIGUNG ÖSTERREICHISCH...</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2</th>\n",
+       "      <td>2</td>\n",
+       "      <td>7</td>\n",
+       "      <td>0.9235</td>\n",
+       "      <td>7: osterr, titel, vereinigung, mitteilungen, d...</td>\n",
+       "      <td>\\nMITTEILUNGEN\\nDER VEREINIGUNG ÖSTERREICHISCH...</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>3</th>\n",
+       "      <td>3</td>\n",
+       "      <td>2</td>\n",
+       "      <td>0.9991</td>\n",
+       "      <td>2: vereinigung, osterr, mitglieder, vorsitzend...</td>\n",
+       "      <td>\\n\\nMITTEILUNGEN\\nDER VEREINIGUNG ÖSTERREICHIS...</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>4</th>\n",
+       "      <td>4</td>\n",
+       "      <td>2</td>\n",
+       "      <td>0.7678</td>\n",
+       "      <td>2: vereinigung, osterr, mitglieder, vorsitzend...</td>\n",
+       "      <td>\\n\\nMITTEILUNGEN\\nDER VEREINIGUNG ÖSTERREICHIS...</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "   Document_No Dominant_Topic  Topic_Perc_Contrib  \\\n",
+       "0            0              7              0.5166   \n",
+       "1            1              7              0.9339   \n",
+       "2            2              7              0.9235   \n",
+       "3            3              2              0.9991   \n",
+       "4            4              2              0.7678   \n",
+       "\n",
+       "                                            Keywords  \\\n",
+       "0  7: osterr, titel, vereinigung, mitteilungen, d...   \n",
+       "1  7: osterr, titel, vereinigung, mitteilungen, d...   \n",
+       "2  7: osterr, titel, vereinigung, mitteilungen, d...   \n",
+       "3  2: vereinigung, osterr, mitglieder, vorsitzend...   \n",
+       "4  2: vereinigung, osterr, mitglieder, vorsitzend...   \n",
+       "\n",
+       "                                                Text  \n",
+       "0  \\nScnftfalen\\n\\n\\ne,/.\\ndei  3et\\n\\nARBEITSPRO...  \n",
+       "1  \\nMITTEILUNGEN\\nDER VEREINIGUNG ÖSTERREICHISCH...  \n",
+       "2  \\nMITTEILUNGEN\\nDER VEREINIGUNG ÖSTERREICHISCH...  \n",
+       "3  \\n\\nMITTEILUNGEN\\nDER VEREINIGUNG ÖSTERREICHIS...  \n",
+       "4  \\n\\nMITTEILUNGEN\\nDER VEREINIGUNG ÖSTERREICHIS...  "
+      ]
+     },
+     "execution_count": 30,
+     "metadata": {},
+     "output_type": "execute_result"
     }
    ],
    "source": [
@@ -604,7 +594,7 @@
     "\n",
     "# we should create a column with the date/vol in it (also necessary for timeline)\n",
     "\n",
-    "df_topic_sent_keywords = tm_utils.format_topics_sentences(ldamodel=lda_model, corpus=corpus, texts=data)\n",
+    "df_topic_sent_keywords = format_topics_sentences(ldamodel=lda_model, corpus=corpus, texts=data)\n",
     "print(df_topic_sent_keywords.columns)\n",
     "df_topic_sent_keywords['Dominant_Topic'] = df_topic_sent_keywords['Dominant_Topic'].fillna(0).apply(lambda x: str(int(x)))\n",
     "# Format\n",
@@ -615,7 +605,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 20,
+   "execution_count": 31,
    "metadata": {},
    "outputs": [
     {
@@ -646,13 +636,14 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 21,
+   "execution_count": 41,
    "metadata": {},
    "outputs": [
     {
      "name": "stdout",
      "output_type": "stream",
      "text": [
+      "28\n",
       "Table voeb48-73_most_representative_topics in jbekesi.db updated/created\n"
      ]
     }
@@ -665,9 +656,10 @@
     "for i, grp in sent_topics_outdf_grpd:\n",
     "    most_repr = pd.concat([most_repr, grp.sort_values(['Perc_Contribution'], ascending=[0]).head(1)], \n",
     "                                            axis=0)\n",
-    "\n",
+    "print(most_repr.size)\n",
     "# Reset Index    \n",
     "most_repr.reset_index(inplace=True)\n",
+    "most_repr.head()\n",
     "most_repr.set_index('index', drop=False, inplace=True)\n",
     "#sent_topics_sorteddf_mallet.reset_index(drop=True, inplace=True)\n",
     "# Format\n",
@@ -677,7 +669,7 @@
     "most_repr.head()\n",
     "output_table = \"{}_most_representative_topics\".format(corpusname)\n",
     "output_csv = str(DATA.joinpath(output_table + \".csv\"))\n",
-    "most_repr.to_csv(put_csv, sep=\";\", index=False)\n",
+    "most_repr.to_csv(output_csv, sep=\";\", index=False)\n",
     "tm_utils.csv_to_datasette(tablename=output_table, csv=output_csv, db=None)"
    ]
   },
@@ -692,7 +684,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 23,
+   "execution_count": 43,
    "metadata": {},
    "outputs": [
     {
@@ -724,7 +716,7 @@
     "df_dominant_topics.columns = ['Dominant_Topic', 'Topic_Keywords', 'Num_Documents', 'Perc_Documents']\n",
     "\n",
     "# Show\n",
-    "# df_dominant_topics\n",
+    "df_dominant_topics.head()\n",
     "output_table = \"{}_distribution_of_topics\".format(corpusname)\n",
     "output_csv = str(DATA.joinpath(output_table + \".csv\"))\n",
     "df_dominant_topics.to_csv(output_csv, sep=\";\", index=False)\n",
@@ -767,9 +759,6 @@
     }
    ],
    "source": [
-    "#\n",
-    "# ok, we use mallet for this until we know how to reproduce it with gensim...\n",
-    "# \n",
     "data_lemmatized = tm_utils.get_lemmatized(corpusname=corpusname, datadir=DATA)\n",
     "id2word, corpus = tm_utils.get_corpus_dictionary(data_lemmatized, \n",
     "                        corpusname=corpusname, save=False, \n",